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Abstract. In this paper, we consider a perturbed sweeping process for
a class of subsmooth moving sets. The perturbation is general and takes
the form of a sum of a single-valued mapping and a set-valued mapping.
In the first result, we study some topological proprieties of the attain-
able set, the set-valued mapping considered here is upper semi-continuous
with convex values. In the second result, we treat the autonomous prob-
lem under assumptions that do not require the convexity of the values
and that weaken the assumption on the upper semi-continuity. Then, we
deduce a solution of the time optimality problem.

1 Introduction

The attainable sets plays an important role in control theory; many problems
of optimization, dynamics, planning procedures in mathematical economy and
game theory can be stated and solved in terms of attainable sets. The per-
turbed state-dependent sweeping process is an evolution differential inclusion
governed by the normal cone to a mobile set depending on both time and state
variables, of the following form:{

−u̇(t) ∈ NC(t,u(t))(u(t)) + F(t, u(t)), a.e t ∈ [T0, T ];

x(t) ∈ C(t, u(t)), ∀t ∈ [T0, T ]; u(T0) = u0 ∈ C(T0, u0),

2010 Mathematics Subject Classification: 34A60, 28A25
Key words and phrases: sweeping process, subsmooth sets, perturbation, almost convex,
attainable sets, time optimal control problems
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where NC(t,u(t))(u(t)) is the normal cone to C(t, u(t)) at u(t) and F is a set-
valued or single-valued mapping playing the role of a perturbation to the
problem, that is an external force applied on the system. This type of prob-
lems was initiated by J. J. Moreau in the 1970’s and extensively studied
by himself when the sets C(t) are assumed to be convex and F ≡ {0} (see
[24, 25, 26, 27]). The original motivation is to model quasistatic evolution in
elastoplasticity, friction dynamics, granular material, contact dynamics. How-
ever, many applications of the sweeping processes can be also found nowa-
days in nonsmooth mechanics, convex optimization, modeling of crowd mo-
tion, mathematical economics, dynamic networks, switched electrical circuits,
etc, see for example [2, 15, 16, 19, 22] and the references therein. Existence
(and possibly uniqueness) of solutions of such systems and their classical vari-
ants subjected to perturbation forces, state-dependent, second order sweeping
processes, etc, have been studied fruitfully in the literature see for example
[1, 3, 7, 8, 9, 10, 11, 14, 17, 21, 22, 28, 29, 30, 31] and the references therein.

In [12], a generalization of convexity has been defined, that is the almost
convexity of sets, the authors have shown the existence of solution to the
upper semi-continuous differential inclusions ẋ(t) ∈ F(x(t)), x(0) = a. This
almost convexity condition has been used successfully by [3, 4, 5] to study the
perturbed first order Moreau’s sweeping process, the right-hand side contains
a set-valued perturbation with almost convex values.

In this work, we extend the results in [3] in many direction. At first, we study
in finite dimensional space, the existence of solution and the compactness of
the attainable sets for the problem

(SP)

{
u̇(t) ∈ −N

C
(
t,u(t)

)(u(t))+ F(t, u(t))+ f(t, u(t)), a.e. t ∈ [T0, T ];

u(t) ∈ C
(
t, u(t)

)
, ∀t ∈ [T0, T ]; u(T0) = u0 ∈ C(T0, u0),

when F is a set-valued mapping with nonempty closed convex values, upper
semi-continuous and the element of minimum norm satisfies a linear growth
condition, f is a continuous single-valued mapping and the moving sets C(t, x)
are equi-uniformlt-subsmooth. It is important to emphasize that this class
of sets, introduced by D. Aussel, A. Daniilidis and L. Thibault in [6], is an
extension of convexity and prox-regularity of a set. In this way, the result
concerning existence of solution of the first order differential inclusion is more
general. Second, we define a larger class contains set-valued mappings with
almost convex values and their translated, then we study the existence of
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solution to the autonomous problem

(ASP)

{
u̇(t) ∈ −N

C
(
u(t)
)(u(t))+ F(u(t))+ f(u(t)), a.e. t ∈ [T0, T ];

u(t) ∈ C
(
u(t)

)
, ∀t ∈ [T0, T ]; u(T0) = u0 ∈ C(u0),

under the weaker assumption on the upper semi-continuity and the almost
convexity of the values of F. We mention that C, F and f are assumed time in-
dependent for purely technical reasons. As will be shown, our almost convexity
does not imply that the set of solutions to (ASP) is compact in the space of
continuous functions with uniform convergence, as happens in the case of the
assumption of convexity, but only that the sections of this set of solutions are
compact. As an application, we consider the autonomous control system

(ASPO)

{
u̇(t) ∈ −N

C
(
u(t)
)(u(t))+ h(u(t), z(t))+ f(u(t)), a.e. t ∈ [T0, T ];

z(t) ∈ U(u(t)), u(t) ∈ C
(
u(t)

)
, ∀t ∈ [T0, T ]; u(T0) = u0 ∈ C(u0),

controlled by parameters z(t) ∈ U(u(t)), where U : Rn ⇒ Rn is a set-valued
mapping with compact values that is upper semi-continuous on Rn. Under the
almost convexity assumption on the sets

F
(
u(t)

)
= h

(
u(t), U(u(t))

)
= {h

(
u(t), z(t)

)
}z(t)∈U(u(t))

and F
(
u(t)

)
+ f
(
u(t)

)
the solutions of the control problem (ASPO) are so-

lutions to the (ASP), in which the controls do not appear explicitly, we say
that F is parameterized by elements of U. The equivalence between a control
system and the corresponding differential inclusion is the central idea used to
prove the existence of solution to the minimum time problem for (ASPO).
This paper is organized as follows: in the first section, we introduce prelim-
inaries and background. In the second, we study the existence of solution to
the problem (SP) and some topological proprieties of the attainable set when
the perturbation is convex. In the last section, we prove the existence of so-
lution for a differential inclusion (ASP) with almost convex perturbation and
we deduce a solution of the time optimality problem.

2 Preliminaries and background

Throughout this paper Rn is the n-dimensional Euclidean space, I = [T0, T ]
(T > T0 ≥ 0) an interval of R, B is the closed unit ball centered at the origin
of Rn and B(a, η) the open ball of center a and radius η > 0. We denote



4 D. Affane, L. Boulkemh

by CRn(I) the Banach space of all continuous maps from I into Rn endowed
with the sup-norm, L1Rn(I) stands for the space of all Lebesgue integrable Rn-
valued mappings defined on I. A map u : I → Rn is absolutely continuous
if there is a mapping g ∈ L1Rn(I) such that u(t) = u(T0) +

∫t
T0
g(s) ds, for

all t ∈ I. For a nonempty closed subset K of Rn, co(K)
(
resp. co(K)

)
stands

for the convex
(
resp. closed convex

)
hull of K, which can be characterized by

co(K) =
{
x ∈ Rn, ∀x ′ ∈ Rn, 〈x ′, x〉 ≤ δ∗(x ′, K)

}
where δ∗(x ′, K) = sup

y∈K
〈x ′, y〉 is

the support function of K at x ′ ∈ Rn. We denote by dK(·) the usual distance
function associated with K, i.e., dK(x) = inf

y∈K
‖x − y‖, ProjK(x) = {y ∈ K :

dK(x) = ‖x − y‖} the projection set of x into K and by m(K) = ProjK(0) the
element of K with minimal norm, it is unique whenever K is a closed convex. If F
is a measurable set-valued mapping, with nonempty closed convex values, then
F admits a measurable selection with minimal norm m(F(x)) = ProjF(x)(0).
We will need the concept of Clarke subdifferential and normal cone. For a
locally Lipschitzian function ϕ : Rn → R ∪ {∞}, the Clarke subdifferential
∂ϕ(x) of ϕ at x is the nonempty convex compact subset of Rn, given by
(see[13])

∂ϕ(x) = {ξ ∈ Rn : 〈ξ, v〉 ≤ ϕo(x, v), for all v ∈ Rn},

whereϕo(x, v) = lim sup
y→x
t↓0

ϕ(y+ tv) −ϕ(y)

t
is the generalized directional deriva-

tive of ϕ at x in the direction v. The Clarke normal cone NK(x) at x ∈ K is
defined from TCK by polarity, that is,

NK(x) = {ξ ∈ Rn : 〈ξ, v〉 ≤ 0, for all v ∈ TCK (x)},

where TCK (x) is the Clarke tangent cone at x ∈ K given by TCK (x) =
{
v ∈ Rn :

doK(x, v) = 0
}

.
The concept of Fréchet subdifferential will be needed. A vector v ∈ Rn is

a Fréchet subdifferential ∂Fϕ(x) of ϕ at x (see[23]) provided that for every
ε > 0, there exists δ > 0 such that

〈v, y− x〉 ≤ ϕ(y) −ϕ(x) + ε‖y− x‖, for all y ∈ B(x, δ).

We always have the inclusion ∂Fϕ(x) ⊂ ∂ϕ(x), for all x ∈ K. The Fréchet
normal cone at x ∈ K is given by NFK(x) = ∂

FψK(x), where ψK is the indicator
function of K, that is, ψK(x) = 0 if x ∈ K and ψK(x) = +∞ otherwise. So
we have the inclusion NFK(x) ⊂ NK(x), for all x ∈ K. On the other hand, the
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Fréchet normal cone is also related (see[23]) to the Fréchet subdifferential of
the distance function, since for all x ∈ K

∂FdK(x) = N
F
K(x) ∩ B. (1)

An important property is that, whenever y ∈ ProjK(x), one has

x− y ∈ NFK(y) hence also x− y ∈ NK(y). (2)

Now, we introduce a class of subsmooth sets introduced in [6].

Definition 1 Let K be a closed subset of Rn. The set K is called subsmooth
at x0 ∈ K, if for every ε > 0 there exists δ > 0, such that for all x1, x2 ∈
B(x0, δ) ∩ K and ξi ∈ NK(xi) ∩ B (i ∈ {1, 2}), on has

〈ξ1 − ξ2, x1 − x2〉 ≥ −ε‖x1 − x2‖. (3)

The set K is subsmooth, if it subsmooth at each point of K. We say that K is
uniformly subsmooth, if for every ε > 0 there exists δ > 0, such that (3) holds
for all x1, x2 ∈ K satisfying ‖x1 − x2‖ < δ and all ξi ∈ NK(xi) ∩ B (i ∈ {1, 2}).

The following subdifferential regularity of the distance function remains true
for subsmooth sets (see [6]).

Proposition 1 Let K be a closed set of Rn. If K is subsmooth at x ∈ K, then

NK(x) = N
F
K(x) and ∂dK(x) = ∂

FdK(x). (4)

The concept of equi-uniformly subsmoothness will also be helpful.

Definition 2 Let (K(q))q∈Q be a family of closed sets of Rn with parameter
q ∈ Q. This family is called equi-uniformly subsmooth, if for every ε > 0,
there exists δ > 0 such that, for each q ∈ Q, the inequality (3) holds for all
x1, x2 ∈ K(q) satisfying ‖x1 − x2‖ < δ and all ξi ∈ NK(q)(xi) ∩ B.

The next proposition provides partial upper semi-continuity property. For the
proof, we refer the reader to [21].

Proposition 2 Let {K(t, x) : (t, x) ∈ I × Rn} be a family of nonempty closed
sets of Rn, which is equi-uniformly-subsmooth and let a real η ≥ 0. Assume
that there exist a real constants L1 ≥ 0, L2 ∈ [0, 1[ such that, for any x1, x2, y ∈
Rn and t, s ∈ I

|dK(t,x1)(y) − dK(s,x2)(y)| ≤ L1|t− s|+ L2‖x1 − x2‖. (5)

Then, the following assertions hold:
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(i) for all (t, x, y) ∈ GphK, we have η∂dK(t,x)(y) ⊂ ηB;

(ii) for any sequence
(
tn, xn

)
n

in I × Rn converging to (t, x), any (yn)n
converging to y ∈ K(t, x) with yn ∈ K(tn, xn) and any ξ ∈ Rn, we have

lim sup
n→+∞ δ∗

(
ξ, η∂dK(tn,xn)(yn)

)
≤ δ∗

(
ξ, η∂dK(t,x)(y)

)
.

In the next, we give the definition of the almost convex sets and attainable
sets.

Definition 3 [12] For a vector space X, a set D ⊂ X is called almost convex if
for every ξ ∈ co(D) there exist λ1 and λ2, 0 ≤ λ1 ≤ 1 ≤ λ2 such that λ1ξ ∈ D
and λ2ξ ∈ D.

Any convex set is almost convex since D = co(D). If Q is a convex set not
containing the origin, D = ∂Q is almost convex, and if the convex set Q
contains the origin, one take D = {0} ∪ ∂Q. The origin plays a particular role
in the definition of almost convexity. It ensues that the class of almost convex
sets is not stable under translation, for example the set for example the set
K = {0, 1} is almost convex, while K− 1

2 = {− 1
2 ,
1
2 } is not.

Definition 4 The attainable set of any problem at time τ ∈ I is defined by

Ru0(τ) = {x ∈ Rn : x = u(τ) such that u(·) ∈ Sτ(u0)},

where Sτ(u0) is the set of the trajectories of our problem on the interval [T0, t].

We will also need the following result, which is a discrete version of Gronwall’s
Lemma.

Lemma 1 Let α > 0, (an) and (bn) two nonnegative sequence such that

an ≤ α+

n−1∑
k=0

bkak, for all n ∈ N.

Then, for every n ∈ N∗, we have

an ≤ α exp

(
n−1∑
k=0

bk

)
.
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3 Convex case

In this section, we study the existence of solution and some topological prop-
erties of the attainable set for the sweeping process (SP) when F is an upper
semi-continuous set-valued mapping with nonempty closed convex values un-
necessarily bounded.

Theorem 1 Let C : I × Rn ⇁ Rn be a set-valued mapping with nonempty
closed values satisfying:

(AC1 ) for all (t, x) ∈ I ×Rn, the sets C(t, x) are equi-uniformly subsmooth;

(AC2 ) there are two constants L1 ≥ 0, L2 ∈ [0, 1[ such that, for all t, s ∈ I and
any x, u, v ∈ Rn on has∣∣dC(t,u)(x) − dC(s,v)(x)∣∣ ≤ L1|t− s|+ L2∥∥u− v

∥∥.
Let F : I × Rn ⇁ Rn be a set-valued mapping with nonempty closed convex
values, upper semi-continuous such that:

(AF) for some real α ≥ 0, dF(t,x)(0) ≤ α
(
1+ ‖x‖

)
, for all (t, x) ∈ I ×Rn.

And f : I ×Rn → Rn be a continuous mapping such that:

(Af) for some real β > 0,
∥∥f(t, x)∥∥ ≤ β(1+ ‖x‖), for all (t, x) ∈ I ×Rn.

Then, for any u0 ∈ C(0, u0)

(1) the problem (SP) admits a Lipschitz solution;

(2) for τ ∈ I fixed, the attainable set Ru0(τ) is compact;

(3) the set-valued mapping Ru0(·) is upper semi-continuous.

Proof. (1) The existence of solution: for each (t, x) ∈ I×Rn, we put m(t, x) =
ProjF(t,x)(0) the element of minimal norm of F and h(t, x) = m(t, x) + f(t, x).
It follows that, ‖h(t, x)‖ ≤ γ

(
1 + ‖x‖

)
with γ = α + β. For each n ∈ N∗, we

consider a partition of I by Ini = [tni , t
n
i+1[, t

n
i = T0 + iµn, µn =

T − T0
n

, i ∈
{0, 1, · · · , n− 1} and In0 = {tn0 } = {T0}.

Step 1. We define inductively the sequence (xni )0≤i≤n in Rn. Putting xn0 =
u0 ∈ C(tn0 , xn0 ) and for each i ∈ {1, 2, · · · , n− 1} the following inclusions is well
defined

xni+1 ∈ C
(
tni+1, x

n
i

)
, (6)
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xni + µnh(t
n
i , x

n
i ) − x

n
i+1 ∈ NC

(
tni+1,x

n
i

)(xni+1). (7)

Indeed, for i = 0 and since C(tn1 , x
n
0 ) has closed values, we can take

xn1 ∈ ProjC(tn1 ,xn0 )
(
xn0 + µnh(t

n
0 , x

n
0 )
)
,

clearly

xn1 ∈ C
(
tn1 , x

n
0

)
. (8)

Then, by (2), we obtain

xn0 + µnh(t
n
0 , x

n
0 ) − x

n
1 ∈ NC

(
tn1 ,x

n
0

)(xn1 ).
Using (AC2 ) and (8), we get∥∥xn1 − xn0∥∥ ≤ d

C
(
tn1 ,x

n
0

)(xn0 + µnh(tn0 , xn0 ))+ µn∥∥h(tn0 , xn0 )∥∥
≤

∣∣∣d
C
(
tn1 ,x

n
0

)(xn0 ) − dC(tn0 ,xn0 )(xn0 )
∣∣∣+ 2µn∥∥h(tn0 , xn0 )∥∥

≤ L1µn + 2γµn(1+ ‖xn0 ‖).

Assume that, for i ∈ {0, 1, · · · , n − 1} the points xn1 , x
n
2 , · · · , xni have been

constructed satisfying (6) and (7). Since C(tni+1, x
n
i ) is closed, we can take

xni+1 ∈ ProjC
(
tni+1,x

n
i

)(xni + µnh(tni , xni )),
and

xni+1 ∈ C
(
tni+1, x

n
i

)
.

Using the characterization of the normal cone in terms of projection operator,
we can write a.e. t ∈ I

xni + µnh(t
n
i , x

n
i ) − x

n
i+1 ∈ NC

(
tni+1,x

n
i

)(xni+1).
By (AC2 ) and (6), we get

‖xni+1 − xni ‖ ≤ d
C
(
tni+1,x

n
i

)(xni + µnh(tni , xni ))+ ∥∥µnh(tni , xni )∥∥
≤

∣∣∣d
C
(
tni+1,x

n
i

)(xni ) − dC(tni ,xni−1

)(xni )∣∣∣+ 2µn∥∥h(tni , xni )∥∥
≤ L1µn + L2‖xni − xni−1‖+ 2γµn(1+ ‖xni ‖).
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By induction, we find for i ∈ {0, 1, · · · , n− 1},

‖xni+1 − xni ‖ ≤ (L1 + 2γ)µn

i∑
k=0

Lk2 + 2γµn

i∑
k=0

Li−k2 ‖x
n
k‖,

since L2 ∈ [0, 1[, we get

‖xni+1 − xni ‖ ≤
L1 + 2γ

1− L2
µn + 2γµn

i∑
k=0

Li−k2 ‖x
n
k‖. (9)

Furthermore, we have

‖xni − xn0 ‖ ≤ ‖xni − xni−1‖+ ‖xni−1 − xni−2‖+ · · ·+ ‖xn1 − xn0 ‖

≤ L1 + 2γ

1− L2
µn + 2γµn

i−1∑
k=0

Li−k2 ‖x
n
k‖+

L1 + 2γ

1− L2
µn

+ 2γµn

i−2∑
k=0

Li−k2 ‖x
n
k‖+ · · ·+ µn(L1 + 2γ) + 2γµn‖xn0 ‖

≤ L1 + 2γ

1− L2
µn(i− 1) + 2γµn‖xn0 ‖

i−1∑
k=0

Lk2 + 2γµn‖xn1 ‖
i−1∑
k=0

Lk2

+ 2γµn‖xn2 ‖
i−1∑
k=0

Lk2 + · · ·+ 2γµn‖xni−1‖
i−1∑
k=0

Lk2

≤ T
L1 + 2γ

1− L2
+
2γ T

1− L2

i−1∑
k=0

‖xnk‖.

Then,

‖xni ‖ ≤ ‖xn0 ‖+ T
L1 + 2γ

1− L2
+
2γ T

1− L2

i−1∑
k=0

‖xnk‖.

By Lemma 1 and for all i ∈ {0, 1, · · · , n− 1}, we can write

‖xni ‖ ≤
(
‖xn0 ‖+ T

L1 + 2γ

1− L2

)
exp

( 2γ T
1− L2

)
= η. (10)

Using relations (9) and (10), we get

‖xni+1 − xni ‖ ≤
L1 + 2γ

1− L2
µn + 2γ µn

i∑
k=0

Li−k2 η.
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Since L2 ∈ [0, 1[, we obtain

‖xni+1 − xni ‖ ≤
1

1− L2
µn
(
L1 + 2γ+ 2γη

)
. (11)

Step 2. Construction of sequence
(
un(·)

)
n≥0.

For any t ∈ Ini with i ∈ {0, 1, · · · , n− 1} and for every n ≥ 1, we define

un(t) = x
n
i +

(
t− tni

)xni+1 − xni
µn

. (12)

Observe that un(t
n
i ) = x

n
i , and

u̇n(t) =
xni+1 − x

n
i

µn
. (13)

By (6) and (7) we can write

un(t
n
i+1) ∈ C

(
tni+1, un(t

n
i )
)

(14)

u̇n(t) ∈ −N
C
(
tni+1,un(t

n
i )
)(un(tni+1))+ h(tni , un(tni )), a.e. t ∈ Ini . (15)

Relations (11) and (13) imply that

‖u̇n(t)‖ ≤
1

1− L2

(
L1 + 2γ+ 2γη

)
= ∆. (16)

Now let us defined the step functions from I to I by

θn(t) =

{
tni if t ∈ Ini ,
tnn−1 if t = T0.

(17)

ρn(t) =

{
tni+1 if t ∈ Ini ,
T if t = T.

(18)

Observe that, for all t ∈ I,

lim
n→+∞

∣∣θn(t) − t∣∣ = lim
n→+∞

∣∣ρn(t) − t∣∣ = 0. (19)

Combining (14), (15), (17) and (18), it results

un
(
ρn(t)

)
∈ C

(
ρn(t), un(θn(t))

)
, for all t ∈ I, (20)

u̇n(t) ∈ −N
C
(
ρn(t),un(θn(t))

) (un(ρn(t)))+ h(θn(t), un(θn(t))), a.e. t ∈ I,
(21)
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Furthermore, for all t ∈ I, we have∥∥h(θn(t), un(θn(t)))∥∥ ≤ γ(1+ η) = Θ, (22)

and ∥∥m(θn(t), un(θn(t)))∥∥ ≤ α(1+ η) (23)

with m
(
θn(·), un(θn(·))

)
= ProjF(θn(·),un(θn(·))(0).

Step 3. The convergence of the sequences.
By relation (12) and (16) we have for all t ∈ I,∥∥un(ρn(t))∥∥−∥∥un(t)∥∥ ≤ ∥∥un(ρn(t))−un(t)∥∥ ≤ ‖u̇n(s)‖(ρn(t)−t) ≤ ∆ (ρn(t)−t),
then

lim
n→+∞

∥∥un(ρn(t)) − un(t)∥∥ = 0. (24)

In the same way
lim

n→+∞
∥∥un(θn(t)) − un(t)∥∥ = 0. (25)

So, (un(t))n≥1 is relatively compact for all t ∈ I, on the other hand (un(·))n≥1
is equi-continuous according to (16). Using Ascoli-Arzelà’s theorem, (un(·))n≥1
is relatively compact in CRn(I), so we can extract a subsequence of (un(·))n≥1
(that we do not relabel) which converges uniformly to some mapping u(·) ∈
CRn(I) and (u̇n(·))n≥1 converges weakly in L1Rn(I) to a mapping y with
‖y(t)‖ ≤ ∆. Fixing t ∈ I and taking any ξ ∈ Rn, the above weak conver-
gence in L1Rn(I) yields

lim
n→+∞

∫ T
T0

〈
χI(s) ξ, u̇n(s)

〉
ds =

∫ T
T0

〈
χI(s) ξ, y(s)

〉
ds

or equivalently

lim
n→+∞

〈
ξ, u0 +

∫ t
T0

u̇n(s) ds
〉
=
〈
ξ, u0 +

∫ t
T0

y(s)ds
〉
.

Then, lim
n→+∞

∫t
T0
u̇n(s) ds =

∫t
T0
y(s) ds. Since un(·) is an of absolutely contin-

uous mapping, we get

lim
n→+∞

(
un(t) − u0

)
= lim
n→+∞

∫ t
T0

u̇n(s) ds =

∫ t
T0

y(s)ds.

Then u(t) = u0 +
∫t
T0
y(s)ds and y = u̇.

Let set
(
m
(
θn(·), un(θn(·))

))
n

=
(
pn(·)

)
n
, for all n ≥ 0, by (23) we get
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‖pn(t)‖ ≤ α(1 + η), which means that (pn) is integrably bounded, so, by
extracting a subsequence, not relabeled, we may assume that (pn) weakly
converges in L1Rn(I) to some mapping p ∈ L1Rn(I), with ‖p(t)‖ ≤ α(1+ η) for
all t ∈ I.
Let put

(
f
(
θn(·), un(θn(·))

))
n
=
(
qn(·)

)
n
, according to the continuity of f,

(19) and (25) we get that (qn(·)) converges to q(·) and for all t ∈ I, ‖q(t)‖ ≤
β(1+ η).
Step 4. We prove that the mapping u is a solution of (SP). Fix any t ∈ I, by
(AC2 ) and (20), we have

dC(t,u(t))
(
un(t)

)
≤ ‖un(t) − un(ρn(t))‖+ d

C
(
t,u(t)

)(un(ρn(t)))
≤ ‖un(t)−un(ρn(t))‖+

∣∣∣d
C
(
t,u(t)

)(un(ρn(t)))− d
C
(
ρn(t),un(θn(t))

)(un(ρn(t)))∣∣∣
≤ ‖un(ρn(t)) − un(t)‖+ L1|t− ρn(t)|+ L2

∥∥u(t) − un(θn(t))∥∥.
Using (19), (24), (25), and by passing to the limit in the preceding inequality,
thanks to the closedness of C(t, u(t)), we get

u(t) ∈ C
(
t, u(t)

)
, for all t ∈ I.

Furthermore, by (16) and (22), we have∥∥− u̇n(t) + pn(t) + qn(t)∥∥ ≤ ∆+Θ = Υ. (26)

Then, (21) and (26) yield that

−u̇n(t) + pn(t) + qn(t) ∈ N
C
(
ρn(t),un(θn(t))

) (un(ρn(t))) ∩ ΥB,
from relation (1) and Proposition 1, we get

− u̇n(t) + pn(t) + qn(t) ∈ Υ∂d
C
(
ρn(t),un(θn(t))

) (un(ρn(t))), a.e. t ∈ I (27)

and
pn(t) ∈ F

(
θn(t), un(θn(t))

)
. (28)

Since
(
− u̇n+pn+qn, pn

)
weakly converges in L1Rn×Rn(I) to

(
− u̇+p+q, p

)
,

by Mazur’s Lemma, there exists a sequence
(
ωn, ζn

)
n≥1 with

ωn ∈ co{−u̇k + pk + qk} and ζn ∈ co{pk, k ≥ n}, n ≥ 0

such that
(
ωn, ζn

)
n≥1 converges strongly in L1Rn×Rn(I) to

(
− u̇+p+q, p

)
. By

extracting a subsequence if necessary, we suppose that
(
ωn, ζn

)
n≥1 converges
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a.e. to
(
− u̇ + p + q, p

)
. Then, there is a Lebesgue negligible set S ⊂ I

such that, for every t ∈ I\S, on one hand
(
ωn, ζn

)
n≥1 converges strongly to(

− u̇+p+q, p
)

and on the other hand the inclusions (27) and (28) hold true
for every integer n as well as the inclusions

−u̇(t)+p(t)+q(t) ∈
⋂
n≥0

{ωk(t), k ≥ n} ⊂
⋂
n≥0

co{−u̇k(t)+pk(t)+qk(t), k ≥ n},

(29)
and

p(t) ∈
⋂
n≥0

{pk(t), k ≥ n} ⊂
⋂
n≥0

co{pk(t), k ≥ n}, (30)

Fix any t ∈ I\S and z ∈ Rn the relations (27) and (29) gives

〈z,−u̇(t) + p(t) + q(t)〉 ≤ lim sup
n→+∞ δ∗

(
z, Υ∂d

C
(
ρn(t),un(θn(t))

)(un(ρn(t)))).
By Proposition 2, we get

〈z,−u̇(t) + p(t) + q(t)〉 ≤ δ∗
(
z, Υ∂d

C
(
t,u(t)

)(u(t))).
Since Υ∂d

C
(
t,u(t)

)(u(t)) is closed convex values, we obtain

− u̇(t) + p(t) + q(t) ∈ Υ∂dC(t,u(t))
(
u(t)

)
⊂ N

C
(
t,u(t)

)(u(t)). (31)

Furthermore, according to (28), (30) and the upper semi-continuous of F, we
have

〈z, p(t)〉 ≤ lim sup
n→+∞ δ∗

(
z, F(θn(t), un(θn(t))

)
≤ δ∗

(
z, F(t, u(t))

)
.

Since F has closed convex values, we conclude that p(t) ∈ F
(
t, u(t)

)
for all

t ∈ I\S. By (31)

u̇(t) ∈ −N
C
(
t,u(t)

)(u(t))+ F(t, u(t))+ f(t, u(t)), a.e. t ∈ I.

2) It suffice to show that the solution set

Sτ(u0) = {u ∈ CRn([T0, τ]) : u is a Lipschitz solution of (SP)}

is compact for τ ∈ I. By part 1, we have Sτ(u0) 6= ∅. Let (un)n be a sequence
in Sτ(u0). Then, for each n ∈ N, un is a Lipschitz solution of (SP) with∥∥u̇n(t̃)∥∥ ≤ ∆, a.e. t̃ ∈ [T0, τ], (32)



14 D. Affane, L. Boulkemh

and ∥∥un(t̃)∥∥ ≤ ∥∥u0∥∥+ ∫ t̃
T0

∥∥u̇n(s)∥∥ ds ≤ ∥∥u0∥∥+ ∆(t̃− T0).
Then, (un(t̃))n is relatively compact in Rn, in addition, it is equi-continuous
according to (32). By Arzelà-Ascoli theorem

(
un
)
n

is relatively compact in
CRn([T0, τ]), so, we can extract a subsequence of (un)n (that we do not rela-
bel) which converges uniformly to some mapping u on [T0, τ]. By the inequal-
ity (32), (u̇n)n converges in L1Rn([T0, τ]) to mapping u̇(·) ∈ L1Rn([T0, τ]) with∥∥u̇(t̃)∥∥ ≤ ∆ a.e. t̃ ∈ [T0, τ]. For the rest of the demonstration we can follow
the proof of the part 1 to get

u̇(t̃) ∈ −N
C
(
t̃,u(t̃)

)(u(t̃))+ F(t̃, u(t̃))+ f(t̃, u(t̃)), a.e. t̃ ∈ [T0, τ].

Then, Sτ(u0) is compact.
3) Now we show the upper semi-continuity of the set-valued mapping Ru0(·)
on I. Consider the graph of Ru0(·) defined by

Gph(Ru0) = {(τ, x) ∈ I ×Rn : x ∈ Ru0(τ)}.

Let (τn, xn) ∈ Gph(Ru0) converges to (τ, x), then, for all n ≥ 0 there exists a
Lipschitz mapping (un(·)) ∈ Sτ(u0) such that un(τn) = xn ∈ Ru0(τn), by the
compactness of Sτ(u0) we can extract a subsequence of (un(·))n (that we do
not relabel) which converges uniformly to the Lipschitz mapping u(·) ∈ Sτ(u0),
and we have

x = lim
n→∞ xn = lim

n→∞un(τn) = u(τ),
so x ∈ Ru0(τ). We deduce that Gph(Ru0) is closed, then Ru0(·) is upper
semi-continuous. �

4 Almost convex case

In this section we study the existence of solution and a property of the at-
tainable set to the perturbed sweeping process (ASP), when we weaken the
condition of convexity and upper semi-continuity. Then we present an exis-
tence result of the minimum time of the problem (ASPO). We begin by the
following preliminary lemma.

Lemma 2 Let G : Rn ⇁ Rn be a measurable set valued mapping with nonempty
compact and almost convex values. Then, there exist two integrable functions
ξ1(·) and ξ2(·) defined on I, satisfying 0 ≤ ξ1(t) ≤ 1 ≤ ξ2(t) and for t ∈ I

ξ1(t)m
(
u(t)

)
∈ G

(
u(t)

)
and ξ2(t)m

(
u(t)

)
∈ G

(
u(t)

)
. (33)
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Proof. By the almost convexity of the values of G there exist two nonempty
set-valued mappings Ω1(·) and Ω2(·) such that

Ω1(t) =
{
ξ1 ∈ [0, 1] : ξ1m

(
u(t)

)
∈ G

(
u(t)

)}
,

and

Ω2(t) =
{
ξ2 ∈ [1,+∞[ : ξ2m

(
u(t)

)
∈ G

(
u(t)

)}
.

Let show that Ω1(·) is measurable. Consider its graph

Gph(Ω1) = {(t, ξ1) ∈ I × [0, 1] : ξ1m
(
u(t)

)
∈ G

(
u(t)

)
},

then,

Gph(Ω1) = {(t, ξ1) ∈ I × [0, 1] : d
G
(
u(t)
)(ξ1m(u(t))) = 0}

= σ−1
(
{0}
)
∩
(
I × [0, 1]

)
where σ : (t, ξ1) 7→ d

G
(
u(t)
)(ξ1m(u(t))) is measurable. Then Gph(Ω1) is

measurable. It follows that Ω1 is measurable on I, then there exists a measur-
able selection ξ1(·) defined on I. The proof that Ω2(·) is measurable is similar,
since G(u(t)) is bounded, and the same reasoning as in the previous point can
be applied . Then, there exists measurable selection ξ2(·) defined on I. �

Consider the following assumptions:
Assumption 1: Let C : Rn ⇁ Rn be a set-valued mapping with nonempty
closed values satisfying:

(HC
1 ) for all x ∈ Rn, the sets C(x) are equi-uniformly subsmooth;

(HC
2 ) there is a constant L2 ∈ [0, 1[ and for any x, u, v ∈ Rn on has∣∣dC(u)(x) − dC(v)(x)∣∣ ≤ L2∥∥u− v

∥∥.
Assumption 2: Let F : Rn ⇁ Rn be a measurable set valued mapping with
nonempty compact and almost convex values such that:

1. (HF
1) the set-valued mapping co(F(·)) is upper semi-continuous on Rn;

2. (HF
2) for some real α > 0, dco(F(x))(0) ≤ α

(
1+ ‖x‖

)
for all x ∈ Rn.
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Assumption 3: Let f : Rn → Rn be a continuous mapping such that, for
some real β ≥ 0, ∥∥f(x)∥∥ ≤ β(1+ ‖x‖), ∀x ∈ Rn.

Let
X = {F : Rn ⇁ Rn : F satisfies Assumption 1},

Y = {f ∈ CRn(Rn) : f satisfies Assumption 2}.

Since the class of almost convex sets is not stable under translation, we will
define a larger class

Z = {F ∈ X, ∃ f ∈ Y : F+ f has almost convex values}

which contains the set-valued mappings with almost convex values and their
translated.

Theorem 2 Assume that the Assumption 1 holds and let F ∈ Z. Then, for
every u0 ∈ C(u0),

1. the problem (ASP) admits a solution;

2. for all τ ∈ I, the attainable set of the problem (ASP) at τ, Ru0(τ)
coincides with Rcou0(τ), the attainable set at τ of the convexified problem.

Proof. 1) (a) Let [α,β] ⊂ I be an interval, and assume that, there exist two
integrable functions ξ1(·) and ξ2(·) such that 0 ≤ ξ1(t) ≤ 1 ≤ ξ2(t) for all
t ∈ [α,β]. In addition, assume that ξ1(·) > 0 a.e., using the same technique
as in the proof in [5] and [12], there exist two measurable subsets of [α,β],
having characteristic functions χ1 and χ2 such that χ1 + χ2 = χ[α,β] and an
absolutely continuous function y = y(t) on [α,β], such that

ẏ(t) =
1

ξ1(t)
χ1(t) +

1

ξ2(t)
χ2(t) and y(β) − y(α) = β− α.

(b) By Theorem 1 there exists a Lipschitz solution x : I → Rn of the convex-
ified problem

(ASPco)

{
u̇(t) ∈ −N

C
(
u(t)
)(u(t))+ co(F(u(t)))+ f(u(t)), a.e. t ∈ I ;

u(t) ∈ C
(
u(t)

)
, ∀t ∈ I ; u(T0) = u0 ∈ C(u0).

Let set mT

(
x(τ)

)
= Projco(F(x(τ)))+f(x(τ)(0) and consider the closed set

A = {τ ∈ I : mT

(
x(τ)

)
= 0}.
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Case 1: A is empty. In this case ξ1(τ) > 0, so, we can apply the part (a) to
the interval I. Set y(τ) = T0 +

∫τ
T0
ẏ(s) ds is increasing and we have y(T0) =

T0 andy(T) = T , so, y defined from I into itself. Let ϑ : I → I be its inverse,
then ϑ(T0) = T0, ϑ(T) = T , 1 = ẏ

(
ϑ(τ)

)
ϑ̇(τ) and

ϑ̇(τ) = ξ1
(
ϑ(τ)

)
χ1(τ) + ξ2

(
ϑ(τ)

)
χ2(τ).

Define the map x̃ : I → Rn, as x̃(τ) = x
(
ϑ(τ)

)
for all τ ∈ I, then we have

d

dτ
x̃(τ) = ϑ̇(τ)

d

dτ
x
(
ϑ(τ)

)
∈ ϑ̇(τ)

(
−N

C
(
x(ϑ(τ))

)(x(ϑ(τ)))+mT

(
x(ϑ(τ))

)
,

using the property of the normal cone and the definition of the set Z. we get,
far all τ ∈ I

d

dτ
x̃(τ) ∈ −N

C
(
x(ϑ(τ))

)(x(ϑ(τ)))+ F(x(ϑ(τ)))+ f(x(ϑ(τ)))
= −N

C
(
x̃(τ)
)(x̃(τ))+ F(x̃(τ))+ f(x̃(τ)).

Case 2: A is non-empty. Let c = sup{τ, τ ∈ A}, so that c ∈ A because A is
closed relative to I. The complement of A is open relative to I, it consists of
at most countably many overlapping open intervals ]αi, βi[, with the possible
exception of one of the form [c, βii [. For each i, apply part (a) to the interval
]αi, βi[, to infer the existence of two measurable subsets of ]αi, βi[ with char-
acteristic functions χi1(·) and χi2(·) such that χi1(·)+χi2(·) = χ]αi,βi[(·). Setting,

ẏ(τ) =
1

ξ1(τ)
χi1(τ) +

1

ξ2(τ)
χi2(τ), we obtain

∫βi

αi
ẏ(τ)dτ = βi − αi.

On [T0, c], set

ẏ(τ) =
1

ξ2(τ)
χA(τ) +

∑
i

( 1

ξ1(τ)
χi1(τ) +

1

ξ2(τ)
χi2(τ)

)
,

where the sum is over all intervals contained in [T0, c], in addition to that
ξ2(τ) ≥ 1 and

∫c
T0
ẏ(τ)dτ = κ ≤ c − T0. Setting y(τ) = T0 +

∫τ
T0
ẏ(τ)dτ,

we obtain that y(·) is an invertible map from [T0, c] to [T0, κ]. Define ϑ = ϑ(τ)
from [T0, κ] to [T0, c] to be the inverse of y(·), then extend ϑ(·) as an absolutely

continuous map ϑ̃(·) on [T0, c]. Setting ˙̃
ϑ(τ) = 0 for all τ ∈]κ, c]. We prove the

mapping x̃(τ) = x(ϑ̃(τ)) is a solution of the problem (ASP) on [T0, c] satisfying
x̃(c) = x(c).
For τ ∈ [T0, κ], we get ϑ̃(τ) = ϑ(τ) it is invertible and

ϑ̇(τ) = ξ2(ϑ(τ))χA(ϑ(τ)) +
∑
i

(
ξ1(ϑ(τ))χ

i
1(ϑ(τ)) + ξ2(ϑ(τ))χ

i
2(ϑ(τ))

)
.
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As
d

dτ
x̃(τ) = ϑ̇(τ)

d

dτ
x(ϑ(τ)), we have

d

dτ
x̃(τ) = ϑ̇(τ)

(
−N

C
(
x(ϑ(τ))

)(x(ϑ(τ)))+mT

(
x(τ)

))
. (34)

Using (33) and the properties of the normal cone we get

d

dτ
x̃(τ) ∈ −N

C
(
x(ϑ(τ))

)(x(ϑ(τ)))+ F(x(ϑ(τ)))+ f(x(ϑ(τ)))
∈ −N

C
(
x̃(τ)
)(x̃(τ))+ F(x̃(τ))+ f(x̃(τ)).

For τ ∈]κ, c], we get ϑ(κ) = c and ˙̃
ϑ(τ) = 0, then we have ϑ̃(τ) = ϑ̃(κ) = ϑ(κ),

so x̃(τ) = x(ϑ̃(τ)) = x(ϑ̃(κ)) = x̃(κ), then x̃ is constant on ]κ, c] and we have
d

dτ
x̃(τ) = 0 ∈ co(F(x̃(τ))+f(x̃(τ)), in addition 0 ∈ N

C
(
x̃(τ)
)(x̃(τ)), we conclude

that for all τ ∈]κ, c]

d

dτ
x̃(τ) = 0 ∈ −N

C
(
x̃(τ)
)(x̃(τ))+ F(x̃(τ))+ f(x̃(τ)).

On ]c, T ], A is empty and ξ1(τ) > 0, then we can repeat the arguments of the
part (a). We conclude, That x̃ is a solution of the problem (ASP).
2) For all τ ∈ I,Ru0(τ) ⊂ Rcou0(τ). It is enough to prove the converse inclusion.
Let u(τ) ∈ Rcou0(τ), so, u(t) is a Lipschitz solution of (ASPco) on [T0, τ]. Then
the proof of Theorem 2 can be repeated on [T0, υ] and we find a solution
ũ(·) : [T0, υ] → Rn of the problem (ASP) such that ũ(τ) = u(τ) ∈ Ru0(t).
Then Rcou0(t) ⊂ Ru0(t). Hence we get the needed coincidence. �

The following corollary to Theorem 2, to be compared with Theorem 1
of Filippov [20], shows that, in the case of autonomous control systems, for
the existence of a time optimal solution, Filippov’s assumption that the set
h(x,U(x)) is convex can be replaced by the weaker assumption that the same
set is almost convex.

Corollary 1 Assume that Assumption 1 holds. Let U : Rn ⇒ Rn be a set-
valued mapping with compact valued that is upper semi-continuous on Rn and
h : Rn×Rn → Rn be a continuous mapping satisfying the following assumption

(Hh) there is a nonnegative constant α, such that ‖h(x, y)‖ ≤ α(1+ ‖x‖), for
all (x, y) ∈ Rn × Rn;
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We associate with these data the set-valued mapping F : Rn ⇁ Rn defined by

F(x) = {h
(
x, z
)
}z∈U(x), for all x ∈ Rn.

Assume that F ∈ Z, where

Z = {F ∈ X, ∃ f ∈ Y : F+ f has almost convex values}.

Let u0 and ζ be given in Rn such that u0 ∈ C(u0) and for some t̄ ∈ [T0, T ],
ζ ∈ Ru0(t̄). Then, the problem of reaching ζ from u0 in a minimum time
admits a solution.

Proof. Consider
M = {t ∈ [T0, t̄] : ζ ∈ Ru0(t)}.

By hypothesis M 6= ∅. We put τ = infM, then, there exists a decreasing
sequence (τn) in [T0, t̄] converges to τ, and a mapping un(·) solution of{

u̇(t) ∈ −N
C
(
u(t)
)(u(t))+ F(u(t))+ f(u(t)) a.e. t ∈ [T0, τn];

u(t) ∈ C
(
u(t)

)
, ∀t ∈ [T0, τn]; u(T0) = u0 ∈ C(u0).

such that for all n ≥ 1, un(τn) = ζ. Also, for all n ≥ 1, un(·) is solution of{
u̇(t) ∈ −N

C
(
u(t)
)(u(t))+ co(F)(u(t))+ f(u(t)) a.e. t ∈ [T0, τn];

u(t) ∈ C
(
u(t)

)
, ∀t ∈ [T0, τn]; u(T0) = u0 ∈ C(u0).

Let wn(t) = un(t) for t ∈ [0, τ] and n ≥ 1, wn(·) ∈ Sτ(u0), by the proof of
theorem 2 this set is compact, then by extracting a subsequence if necessary we
may conclude that (wn(·) converges uniformly to w(·) ∈ Sτ(u0). On the other
hand, we have ζ = un(τn) ∈ Rcou0(τn), by Theorem 2 again, the multifunction
Rcou0(·) is upper semi-continuous with nonempty compact values, so we get
lim sup
n→∞ Rcou0(τn) = Rcou0(τ). Then, ζ ∈ Rcou0(τ) = Ru0(τ). Consequently, w is

the solution of the problem (ASPO) that reaches ζ in the minimum time, and
τ is the value of the minimum time. �
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Abstract. In this paper, we introduce the notion of Walsh shift-invariant
space and present a unified approach to the study of shift-invariant sys-
tems to be frames in L2(R+). We obtain a necessary condition and three
sufficient conditions under which the Walsh shift-invariant systems con-
stitute frames for L2(R+). Furthermore, we discuss applications of our
main results to obtain some known conclusions about the Gabor frames
and wavelet frames on positive half line.

1 Introduction

Shift-invariant spaces play an important role in modern analysis for the past
two decades because of their rich underlying theory and their applications
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in time frequency analysis, approximation theory, numerical analysis, digital
signal and image processing and so on. A shift-invariant space serves as a
universal model for sampling problem as it includes a large class of functions
whether bandlimited or not by appropriately choosing a generator. The con-
cept of shift-invariant subspace of L2(R) was introduced by Helson [15]. In fact,
he introduced range functions and used this notion to completely characterize
shift invariant spaces. Later on, a considerable amount of research has been
conducted using this framework in order to describe and characterize frames
and bases of these spaces. For example, de Boor et al.[7] gave the general
structure of these spaces in L2(Rn) using the machinery of fiberization based
on range functions. This has been further developed in the work of Ron and
Shen [25] with the introduction of the technique of Gramians and dual Grami-
ans. Bownik [8] gave a characterization of shift-invariant subspaces of L2(Rn)
following an idea from Helson’s book [15]. The invariance properties of shift-
invariant spaces under non-integer translations were completely characterized
by Aldroubi et al.[4] and they showed that the principal shift-invariant spaces
generated by a compactly supported function is not invariant under such trans-
lations. In [23], authors constructed p-frames for the weighted shift-invariant
spaces and investigated their frame properties under some mild technical con-
ditions on the frame generators. On the other side, the study of shift-invariant
spaces and frames have been extended to locally compact Abelian groups in
[9], nilpotent Lie groups in [11] and non-abelian compact groups in [24]. The
results of Aldroubi et al.[4] were further generalized to the context of LCA
groups by Anastasio et al.[5]. They provide necessary and sufficient conditions
for an H-invariant space to be M-invariant space by means of range functions,
where H is a countable uniform lattice in G and M is any closed subgroup of
G containing H. Shift-invariant spaces for local fields were first introduced and
investigated by Ahmadi et al.[2]. More precisely, they studied shift-invariant
spaces of L2(G), where G is a locally compact abelian group, or in general a
local field, with a compact open subgroup. The general results in Euclidean
spaces to characterize tight frame generators for the shift-invariant subspaces
was studied by Labate in [19]. Some applications of this general result are then
obtained, among which are the characterization of tight wavelet frames and
tight Gabor frames [20, 21]. In his recent paper, Behera [6] showed that every
closed shift-invariant subspace of L2(R+) is generated by the Λ-translates of
a countable number of functions, where K is the local field of positive charac-
teristic and Λ is the associated translation set.

In the framework of mathematical analysis and linear algebra, redundant
representations are obtained by analysing vectors with respect to an overcom-
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plete system.Then the obtained vectors are interpreted using the frame theory
as introduced by Duffin and Schaeffer [12] and recently studied at depth, see
[10] and the compressive list of references therein. Most commonly used coher-
ent/structured frames are wavelet, Gabor, and wave-packet frames which are a
mixture type of wavelet and Gabor frames [10]. Frames provide a useful model
to obtain signal decompositions in cases where redundancy, robustness, over-
sampling, and irregular sampling ploy a role. Today, the theory of frames has
become an interesting and fruitful field of mathematics with abundant applica-
tions in signal processing, image processing, harmonic analysis, Banach space
theory, sampling theory, wireless sensor networks, optics, filter banks, quan-
tum computing, and medicine. Recall that a countable collection {fk : k ∈ Z}
in an infinite-dimensional separable Hilbert space H is called a frame if there
exist positive constants A and B such that

A
∥∥f∥∥2 ≤∑

k∈Z

∣∣〈f, fk〉∣∣2 ≤ B∥∥f∥∥2, (1)

holds for every f ∈ H and we call the optimal constants A and B the lower
frame bound and the upper frame bound, respectively. If we only require the
second inequality to hold in (1), then {fk : k ∈ Z} is called a Bessel collection.
A frame is tight if A = B in (1) and if A = B = 1 it is called a Parseval frame
or a normalized tight frame.

During last two decades there is a substantial body of work that has been
concerned with the wavelet and Gabor frames on positive half line. Kozyrev
[16] found a compactly supported p-adic wavelet basis for L2(Qp) which is an
analog of the Haar basis. It turns out that these wavelets are eigenfunctions of
some p-adic pseudodifferential operators in [18]. Such property used to solve p-
adic pseudodifferential equations which are needed for some physical problems.
Khrennikov et al. [17] developed a method to find explicitly the solution for a
wide class of evolutionary linear pseudo-differential equations. Farkov [13] in-
dicated several differences between the constructed wavelets in Walsh analysis
and the classical wavelets, and characterized all compactly supported refin-
able functions on the Vilenkin group Gp with p ≥ 2. Manchanda et al. [22]
introduced the vector-valued wavelet packets and obtained their properties
and orthogonality formulas. Albeverio et al. [3] presented a complete char-
acterization of scaling functions generating an p-MRA, suggested a method
for constructing sets of wavelet functions, and proved that any set of wavelet
functions generates a p-adic wavelet frame. Shah [27] constructed Gabor frame
on positive half line and obtain necessary and sufficient conditions for Gabor
frames in L2(R+). More Recently, Zhang [28] characterize the shift-invariant
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Bessel sequences, frame sequences and Riesz sequences in L2(R+) and give a
characterization of dual wavelet frames using Walsh-Fourier transform.

Motivated and inspired by the above work, we introduce the notion of Walsh
shift-invariant spaces and establish some necessary and sufficient conditions
under which shift-invariant systems become frames in L2(R+). Furthermore,
we use these results to give some necessary conditions and sufficient conditions
for Gabor frames and wavelet frames on positive half line.

The paper is structured as follows. In Section 2, we give a brief introduction
to Walsh-Fourier analysis including the definition of shift-invariant spaces on
half line. In Section 3, we obtain a necessary condition for the shift-invariant
system to be a frame for L2(R+). In Section 4, we establish sufficient conditions
for shift-invariant systems to be frames. Sections 5 and 6 discusses applications
of the our main results to Gabor frames and wavelet frames, respectively on
positive half line.

2 Preliminaries and shift-invariant spaces on posi-
tive half line

As usual, let R+ = [0,+∞), Z+ = {0, 1, 2, . . . } and N = Z+ − {0}. Denote by
[x] the integer part of x. Let p be a fixed natural number greater than 1. For
x ∈ R+ and any positive integer j, we set

xj = [pjx](modp), x−j = [p1−jx](modp), (2)

where xj, x−j ∈ {0, 1, . . . , p− 1}. Clearly, xj and x−j are the digits in the p-
expansion of x:

x =
∑
j<0

x−jp
−j−1 +

∑
j>0

xjp
−j.

Moreover, the first sum on the right is always finite. Besides,

[x] =
∑
j<0

x−jp
−j−1, {x} =

∑
j>0

xjp
−j,

where [x] and {x} are, respectively, the integral and fractional parts of x.
Consider on R+ the addition defined as follows:

x⊕ y =
∑
j<0

ζjp
−j−1 +

∑
j>0

ζjp
−j,
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with ζj = xj+yj(modp), j ∈ Z \ {0} , where ζj ∈ {0, 1, . . . , p− 1} and xj, yj are
calculated by (2). Clearly, [x⊕ y] = [x]⊕ [y] and {x⊕ y} = {x}⊕ {y}. As usual,
we write z = x	y if z⊕y = x, where 	 denotes subtraction modulo p in R+

.
Let εp = exp(2πi/p), we define a function r0(x) on [0, 1) by

r0(x) =


1, if x ∈ [0, 1/p)

ε`p, if x ∈
[
`p−1, (`+ 1)p−1

)
, ` = 1, 2, . . . , p− 1.

The extension of the function r0 to R+ is given by the equality r0(x + 1) =
r0(x), ∀ x ∈ R+. Then, the system of generalized Walsh functions {wm(x) :
m ∈ Z+} on [0, 1) is defined by

w0(x) ≡ 1 and wm(x) =

k∏
j=0

(
r0(p

jx)
)µj

where m =
∑k
j=0 µjp

j, µj ∈ {0, 1, . . . , p− 1} , µk 6= 0. They have many proper-
ties similar to those of the Haar functions and trigonometric series, and form
a complete orthogonal system. Further, by a Walsh polynomial we shall mean
a finite linear combination of generalized Walsh functions. For x, y ∈ R+

, let

χ(x, y) = exp

2πi
p

∞∑
j=1

(xjy−j + x−jyj)

 , (3)

where xj, yj are given by equation (2).
We observe that

χ

(
x,
m

pn

)
= χ

(
x

pn
,m

)
= wm

(
x

pn

)
, ∀ x ∈ [0, pn), m, n ∈ Z+,

and

χ(x⊕ y, z) = χ(x, z)χ(y, z), χ(x	 y, z) = χ(x, z)χ(y, z),

where x, y, z ∈ R+ and x⊕y is p-adic irrational. It is well known that systems
{χ(α, .)}∞α=0 and {χ(·, α)}∞α=0 are orthonormal bases in L2[0,1) (See [14, 26]).

The Walsh-Fourier transform of a function f ∈ L1(R+) ∩ L2(R+) is defined
by

f̂(ξ) =

∫
R+

f(x)χ(x, ξ)dx, (4)
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where χ(x, ξ) is given by (3). The Walsh-Fourier operator F : L1(R+) ∩
L2(R+) → L2(R+), Ff = f̂, extends uniquely to the whole space L2(R+). The
properties of the Walsh-Fourier transform are quite similar to those of the
classic Fourier transform (see [14, 26]). In particular, if f ∈ L1(R+) ∩ L2(R+),
then f̂ ∈ L2(R+) and ∥∥∥f̂∥∥∥

L
2
(R+)

=
∥∥f∥∥

L2(R+)
. (5)

Moreover, if f ∈ L2[0, 1), then we can define the Walsh-Fourier coefficients of
f as

f̂(n) =

∫ 1
0

f(x)wn(x)dx. (6)

The series
∑
n∈Z+ f̂(n)wn(x) is called the Walsh-Fourier series of f. Therefore,

from the standard L2-theory, we conclude that the Walsh-Fourier series of f
converges to f in L2[0, 1) and Parseval’s identity holds:∥∥f∥∥2

2
=

∫ 1
0

∣∣f(x)∣∣2dx = ∑
n∈Z+

∣∣∣f̂(n)∣∣∣2 . (7)

By p-adic interval I ⊂ R+ of range n, we mean intervals of the form

I = Ikn =
[
kp−n, (k+ 1)p−n

)
, k ∈ Z+.

The p-adic topology is generated by the collection of p-adic intervals and
each p-adic interval is both open and closed under the p-adic topology (see
[14]). The family

{
[0, p−j) : j ∈ Z

}
forms a fundamental system of the p-adic

topology on R+. Therefore, the generalized Walsh functions wj(x), 0 ≤ j ≤
pn−1, assume constant values on each p-adic interval Ikn and hence continuous
on these intervals. Thus, wj(x) = 1 for x ∈ I0n.

Let En(R+) be the space of p-adic entire functions of order n, that is, the
set of all functions which are constant on all p-adic intervals of range n. Thus,
for every f ∈ En(R+), we have

f(x) =
∑
k∈Z+

f(p−nk)χIkn(x), x ∈ R+. (8)

Clearly each Walsh function of order up to pn−1 belongs to En(R+). The set
E(R+) of p-adic entire functions on R+ is the union of all the spaces En(R+).
It is clear that E(R+) is dense in Lp(R+), 1 ≤ p < ∞ and each function in
E(R+) is of compact support. Thus, we consider the following set of functions

E0(R+) =
{
f ∈ E(R+) : f̂ ∈ L∞(R+) and supp f ⊂ R+ \ {0}

}
. (9)
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For any A ∈ R+ and m,n ∈ Z+, we define the following operators on L2(R+)
as:

Tnf(x) = f
(
x	 n

)
; Emf(x) = χm

(
x
)
f(x); DAf(x) =

√
Af (Ax) .

Then for any f ∈ L1(R+)∩ L2(R+), the following results can easily be verified:

F
{
Tnf(x)

}
= E−nF

{
f(x)
}
; F
{
Emf(x)

}
= TmF

{
f(x)
}
;

F
{
DAjf(x)

}
= DA−jF

{
f(x)
}
.

Definition 1 A closed subspace S of L2(R+) is called a Walsh shift invariant
space if Tkϕα(x) ∈ S, for every ϕα ∈ S, k ∈ Z+, and α ∈ Λ, where Tk is the
translation operator and Λ is a countable indexing set.

A closed shift-invariant subspace S of L2(R+) is said to be generated by Ψ ⊂
L2(R+) if S = span

{
Tkψα(x) := ψα

(
x	 k

)
: k ∈ Z+, ψα ∈ Ψ

}
. The cardinality

of a smallest generating set Ψ for S is called the length of S which is denoted
by |S|. If |S| = finite, then S is called a finite Walsh shift-invariant space (FSI)
and if |S| = 1, then S is called a principal Walsh shift-invariant space (PSI).
Moreover, the spectrum of a Walsh shift-invariant space is defined to be

σ(S) =
{
ξ ∈ [0, 1) : Ŝ(ξ) 6= {0}

}
, (10)

where Ŝ(ξ) =
{
ϕ̂α
(
ξ⊕ k

)
∈ l2(Z+) : ϕα ∈ S, k ∈ Z+, α ∈ Λ

}
.

It is easy to verify that the system

Γ =
{
Tkϕα(x) =: ϕα

(
x	 k

)
: k ∈ Z+, α ∈ Λ

}
, (11)

is a Walsh shift-invariant system with respect to lattice Z+, where ϕα(x) ∈
L2(R+).

Definition 2 The Walsh shift-invariant system Γ defined by (11) is called
shift-invariant frame if there exist constants C and D with 0 < C ≤ D < ∞
such that

C
∥∥ϕ∥∥2

2
≤
∑
α∈Λ

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2 ≤ D∥∥ϕ∥∥22, (12)

holds for every ϕ ∈ L2(R+). The largest constant A and the smallest constant
B satisfying (12) are called the optimal lower and upper frame bounds, respec-
tively. A frame is a tight frame if A and B are chosen so that A = B and is a
Parseval frame if A = B = 1.

Since the set E(R+) is dense in L2(R+) and is closed under the Fourier
transform, the set E0(R+) defined by (9) is also dense in L2(R+). Therefore,
it is sufficient to prove that the Walsh shift-invariant system Γ given by (11)
is a frame for L2(R+) if the inequalities in (12) holds for all ϕ ∈ E0(R+).
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3 Necessary condition for Walsh shift invariant space
to be frame for L2(R+)

In this section, we shall study the necessary condition for the Walsh shift-
invariant system Γ defined by (11) to be frame for L2(R+).

Theorem 1 If the Walsh shift-invariant system Γ defined by (11) is a frame
for L2(R+) with bounds A and B, then

A ≤ GΓ (ξ) ≤ B, a.e. ξ ∈ R+ (13)

where GΓ (ξ) =
∑
α∈Λ

∣∣ϕ̂α(ξ)∣∣2.
Proof. Since the Walsh shift-invariant system Γ is a frame for L2(R+) with
bounds A and B, we have

A
∥∥ϕ∥∥2

2
≤
∑
α∈Λ

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2 ≤ B∥∥ϕ∥∥22, for all ϕ ∈ L2(R+). (14)

Notice that for all ϕ ∈ L2(R+) and m ∈ Z+ . By substituting ϕ by Tmϕ,
equation (14) can be rewritten as

A
∥∥ϕ∥∥2

2
≤
∑
α∈Λ

∑
n∈Z+

∣∣〈Tmϕ, Tnϕα〉∣∣2 ≤ B∥∥ϕ∥∥22.
Or, equivalently

A
∥∥ϕ∥∥2

2
≤
∫
[0,1)

∑
α∈Λ

∑
n∈Z+

∣∣〈Tmϕ, Tnϕα〉∣∣2 dx ≤ B∥∥ϕ∥∥22,
for all ϕ ∈ L2(R+).

(15)

Since R+ =
⋃
n∈Z+

(
T ⊕ n

)
is a disjoint union,where T = [0, 1). Therefore, it

follows from the Plancherel theorem that
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T

∑
α∈Λ

∑
n∈Z+

∣∣〈Tmϕ, Tnϕα〉∣∣2 dx =∑
α∈Λ

∑
n∈Z+

∫
T

∣∣〈ϕ, Tn	mϕα〉∣∣2 dx
=
∑
α∈Λ

∫
R+

∣∣〈ϕ, Tmϕα〉∣∣2 dx
=
∑
α∈Λ

∫
R+

∣∣∣〈ϕ̂, (Tmϕα)∧〉∣∣∣2 dx
=
∑
α∈Λ

∫
R+

|〈ϕ̂, E	mϕ̂α〉|2 dx

=
∑
α∈Λ

∫
R+

∣∣∣∣∫
R+

ϕ̂(ξ)ϕ̂α(ξ)wm(ξ)dξ

∣∣∣∣2 dx.

(16)

Clearly, for all ϕ ∈ E0(R+), we have ϕ̂(ξ)ϕ̂α(ξ) ∈ L1(R+)∩L2(R+). Therefore,
it follows from (16) and the Plancherel theorem that for all ϕ ∈ E0(R+),∫

T

∑
α∈Λ

∑
n∈Z+

∣∣〈Tmϕ, Tnϕα〉∣∣2 dx =∑
α∈Λ

∫
R+

∣∣∣(ϕ̂ϕ̂α)∨(ξ)∣∣∣2 dx
=
∑
α∈Λ

∫
R+

∣∣∣ϕ̂(ξ)ϕ̂α(ξ)∣∣∣2dξ
=

∫
R+

∣∣∣ϕ̂(ξ)∣∣∣2∑
α∈Λ

∣∣∣ϕ̂α(ξ)∣∣∣2dξ.
(17)

Combining (15) and (17), we observe that for all ϕ ∈ E0(R+), we have

A
∥∥ϕ∥∥2

2
≤
∫
R+

∣∣∣ϕ̂(ξ)∣∣∣2∑
α∈Λ

∣∣∣ϕ̂α(ξ)∣∣∣2dξ ≤ B∥∥ϕ∥∥22. (18)

Making appropriate choices of ϕ ∈ E0(R+) in (18), we obtain

A ≤ GΓ (ξ) ≤ B, a.e. ξ ∈ R+.

Thus the proof of Theorem 1 is complete. �

4 Sufficient conditions for Walsh shift invariant space
to be frame for L2(R+)

In this section, we derive three sufficient conditions for the Walsh shift-invariant
system Γ to be a frame for L2(R+).

In order to prove our results, we need the following lemma.
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Lemma 1 Suppose that Walsh shift-invariant system Γ is defined by (11). If

ϕ ∈ E0(R+) and ess sup
{∑

α∈Λ
∣∣ϕ̂α(ξ)∣∣2 : ξ ∈ R+

}
<∞, then

∑
α∈Λ

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2 = ∫
R+

|ϕ̂(ξ)|2
∑
α∈Λ

|ϕ̂α(ξ)|
2 dξ+ R(ϕ), (19)

where

R(ϕ) =
∑
α∈Λ

∑
m∈N

∫
R+

ϕ̂(ξ)ϕ̂α(ξ)ϕ̂
(
ξ⊕m

)
ϕ̂α
(
ξ⊕m

)
dξ. (20)

Furthermore, the iterated series in (20) is absolutely convergent.

Proof. By Parseval formula, we have

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2 = ∑
n∈Z+

∣∣∣〈ϕ̂, (Tnϕα)∧〉∣∣∣2
=
∑
n∈Z+

∣∣∣∣∫
R+

ϕ̂(ξ)ϕ̂α(ξ)wn(ξ)dξ

∣∣∣∣2

=
∑
n∈Z+

∫
R+

{ ∑
m∈Z+

∫
[0,1)
ϕ̂
(
ξ⊕m

)
ϕ̂α
(
ξ⊕m

)
wn
(
ξ⊕m

)
dξ

}
× ϕ̂(ξ)ϕ̂α(ξ)wn(ξ)dξ.

Notice that ϕ̂ has compact support and wnm ≡ 1 for all m,n ∈ Z+. There-
fore, by the convergence theorem of Fourier series on T, we obtain

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2 = ∫
R+

ϕ̂(ξ)ϕ̂α(ξ)

{ ∑
m∈Z+

ϕ̂
(
ξ⊕m

)
ϕ̂α
(
ξ⊕m

)}
dξ. (21)

We claim that

∑
α∈Λ

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2 =∑
α∈Λ

∫
R+

|ϕ̂(ξ)|2 |ϕ̂α(ξ)|
2 dξ+ R(ϕ), (22)

hold for all ϕ ∈ E0(R+). In fact, by (21), we have
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α∈Λ

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2
=
∑
α∈Λ

∫
R+

{
|ϕ̂(ξ)|2 |ϕ̂α(ξ)|

2 + ϕ̂(ξ)ϕ̂α(ξ)
∑
m∈Z+

ϕ̂
(
ξ⊕m

)
ϕ̂α
(
ξ⊕m

)}

=
∑
α∈Λ

∫
R+

|ϕ̂(ξ)|2 |ϕ̂α(ξ)|
2 dξ+ R(ϕ).

This is just (22). Finally, by the condition that ess sup
{∑

α∈Λ
∣∣ϕ̂α(ξ)∣∣2 : ξ ∈ R+

}
<∞, and by invoking Levi Lemma, we have∑

α∈Λ

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2 = ∫
R+

|ϕ̂(ξ)|2
∑
α∈Λ

|ϕ̂α(ξ)|
2 dξ+ R(ϕ).

We now proceed to prove that the iterated series in (20) is absolutely con-
vergent. Note that∣∣∣ϕ̂α(ξ)ϕ̂α(ξ⊕m)∣∣∣ ≤ 1

2

[
|ϕ̂α(ξ)|

2 +
∣∣ϕ̂α(ξ⊕m)∣∣2] .

We have∣∣R(ϕ)∣∣ = ∣∣∣∣∣∑
α∈Λ

∑
m∈N

∫
R+

ϕ̂(ξ)ϕ̂α(ξ)ϕ̂
(
ξ⊕m

)
ϕ̂α
(
ξ⊕m

)
dξ

∣∣∣∣∣
≤
∑
α∈Λ

∑
m∈N

∫
R+

∣∣∣ϕ̂(ξ)ϕ̂α(ξ)ϕ̂(ξ⊕m)ϕ̂α(ξ⊕m)dξ∣∣∣
≤ 1
2

∑
α∈Λ

∑
m∈N

∫
R+

∣∣ϕ̂(ξ)ϕ̂(ξ⊕m)∣∣ |ϕ̂α(ξ)|2 dξ
+
1

2

∑
α∈Λ

∑
m∈N

∫
R+

∣∣ϕ̂(ξ)ϕ̂(ξ⊕m)∣∣ ∣∣ϕ̂α(ξ⊕m)∣∣2 dξ.
Hence it suffices to verify that the series∑

α∈Λ

∑
m∈N

∫
R+

∣∣ϕ̂(ξ)ϕ̂(ξ⊕m)∣∣ |ϕ̂α(ξ)|2 dξ
is convergent. In fact,∑

α∈Λ

∑
m∈N

∫
R+

∣∣ϕ̂(ξ)ϕ̂(ξ⊕m)∣∣ |ϕ̂α(ξ)|2 dξ
≤ ess sup

ξ∈R+

∑
α∈Λ

|ϕ̂α(ξ)|
2
∑
m∈N

∫
R+

∣∣ϕ̂(ξ)ϕ̂(ξ⊕m)∣∣dξ. (23)
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Since m ∈ N and ϕ ∈ E0(R+), hence, only finite terms of the iterated series in
(23) are non-zero. Consequently, (23) becomes

∑
α∈Λ

∑
m∈N

∫
R+

∣∣ϕ̂(ξ)ϕ̂(ξ⊕m)∣∣ |ϕ̂α(ξ)|2 dξ
≤ ess supξ∈R+

∑
α∈Λ

|ϕ̂α(ξ)|
2C ‖ϕ̂‖2 ,

(24)

where C is a constant. Using the assumption ess supξ∈R+

∑
α∈Λ

∣∣f̂α(ξ)∣∣2 < ∞
and equation (24), it follows that the series (20) is absolutely convergent for
all f ∈ E0(R+). The proof of the lemma is completed. �

To establish the first sufficient condition of shift-invariant frame for L2(R+),
we put

GΓ = ess inf
{
GΓ (ξ) : ξ ∈ R+

}
, GΓ = ess sup

{
GΓ (ξ) : ξ ∈ R+

}
,

Θf
(
m
)
= ess sup

{∑
α∈Λ

∣∣∣ϕ̂α(ξ)ϕ̂α(ξ⊕m)∣∣∣ : ξ ∈ R+

}
,

where GΓ (ξ) is the same as the one in (13).

Theorem 2 Suppose
{
ϕα(x) : α ∈ Λ

}
⊂ L1(R+) ∩ L2(R+) such that

C1 = GΓ −
∑
m∈N

[
Θϕ
(
m
)
·Θϕ

(
	m

)]1/2
> 0, (25)

D1 = GΓ +
∑
m∈N

[
Θϕ
(
m
)
·Θϕ

(
	m

)]1/2
< +∞. (26)

Then
{
Tnϕα(x) : n ∈ Z+, α ∈ Λ

}
is a frame for L2(R+) with bounds C1

and D1.

Proof. By Lemma 1 and (26), equation (19) holds, where

R(ϕ) =
∑
m∈N

∫
R+

ϕ̂(ξ)ϕ̂
(
ξ⊕m

)∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)
dξ. (27)

Using the Cauchy–Schwarz inequality, the change of variables η = ξ ⊕m
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and (27), we obtain

∣∣R(ϕ)∣∣ ≤∑
m∈N

{∫
R+

|ϕ̂(ξ)|2

∣∣∣∣∣∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)∣∣∣∣∣dξ
}1/2

×

{∫
R+

∣∣ϕ̂(ξ⊕m)∣∣2 ∣∣∣∣∣∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)∣∣∣∣∣dξ
}1/2

=
∑
m∈N

{∫
R+

|ϕ̂(ξ)|2

∣∣∣∣∣∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)∣∣∣∣∣dξ
}1/2

×

{∫
R+

|ϕ̂(η)|2

∣∣∣∣∣∑
α∈Λ

ϕ̂α
(
η	m

)
ϕ̂α(η)

∣∣∣∣∣dη
}1/2

≤
∫
R+

|ϕ̂(ξ)|2 dξ
∑
m∈N

[
Θϕ
(
m
)
·Θϕ

(
	m

)]1/2
≤
∥∥ϕ∥∥2

2

∑
m∈N

[
Θϕ
(
m
)
·Θϕ

(
	m

)]1/2
.

(28)

Consequently, it follows from equations (19), (25), (26) and (28) that

C1
∥∥ϕ∥∥2

2
≤
∑
α∈Λ

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2 ≤ D1∥∥ϕ∥∥22, for all ϕ ∈ E0(R+).

The proof of Theorem 2 is complete. �

Remark 1 It is easy to see that∑
m∈N

Θϕ
(
m
)
=
∑
m∈N

Θϕ
(
	m

)
.

Set Θϕ =
∑
m∈NΘϕ

(
m
)
. Then by (27) and the Cauchy–Schwarz inequality,

we have ∣∣R(ϕ)∣∣ ≤∑
m∈N

[
Θf
(
m
)
·Θf

(
	m

)]1/2∥∥f∥∥2
2
≤ Θf

∥∥f∥∥2
2
.

As a consequence, the following second sufficient condition is obtained.
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Theorem 3 Suppose
{
ϕα(x) : α ∈ Λ

}
⊂ L1(R+) ∩ L2(R+) such that

C2 = GΓ −Θf > 0, (29)

D2 = GΓ +Θf < +∞. (30)

Then
{
Tnϕα(x) : n ∈ Z+, α ∈ Λ

}
is a frame for L2(R+) with bounds C2

and D2.
The proof follows in the similar lines to that of Theorem 2.

Using a different estimation technique, we are in a position to position
to provide the third sufficient condition for the Walsh shift-invariant system
W(ϕ,α, k) to be frame of L2(R+) as follows:

Theorem 4 Suppose
{
ϕα(x) : α ∈ Λ

}
⊂ L1(R+) ∩ L2(R+) such that

C3 = ess inf
ξ∈R+

[∑
α∈Λ

|ϕ̂α(ξ)|
2 −
∑
m∈N

∣∣∣∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)∣∣∣] > 0, (31)

D3 = ess sup
ξ∈R+

[∑
m∈Z+

∣∣∣∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)∣∣∣] < +∞. (32)

Then
{
Tnϕα(x) : n ∈ Z+, α ∈ Λ

}
is a frame for L2(R+) with bounds

C3and D3.

Proof. We estimate R(ϕ) in (27) by another technique. Using the Cauchy–
Schwarz inequality, the change of variables η = ξ ⊕m and the Levi Lemma,
we have

∣∣R(ϕ)∣∣ ≤∑
m∈N

{∫
R+

|ϕ̂(ξ)|2
∣∣∣∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)∣∣∣dξ}1/2

×

{∫
R+

∣∣ϕ̂(ξ⊕m)∣∣2 ∣∣∣∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)∣∣∣dξ}1/2

≤

{∫
R+

|ϕ̂(ξ)|2
∑
m∈N

∣∣∣∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)∣∣∣dξ}1/2

×

{∫
R+

|ϕ̂(η)|2
∑
m∈N

∣∣∣∑
α∈Λ

ϕ̂α(η)ϕ̂α
(
η	m

)∣∣∣dη}1/2
=

∫
R+

|ϕ̂(ξ)|2
∑
m∈N

∣∣∣∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕m

)∣∣∣dξ.

(33)
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Consequently, it follows from equations (19), (31), (32) and (33) that

C3
∥∥ϕ∥∥2

2
≤
∑
α∈Λ

∑
n∈Z+

∣∣〈ϕ, Tnϕα〉∣∣2 ≤ D3∥∥ϕ∥∥22, for all ϕ ∈ E0(R+).

The proof of Theorem 4 is complete. �

5 Walsh shift-invariant systems as Gabor frames on
positive half line

In this section, we apply Theorems 1, 2 and 4 to the Gabor systems and obtain
some results on Gabor frames on local fields of positive characteristic.

Gabor systems are the collection of functions

G(g,m,n) =
{
MmTng(x) =: wm(x)g

(
x	 n

)
: m,n ∈ Z+

}
(34)

which are built by the action of modulations and translations of a single g ∈
L2(R+). If we interchange the role of the translation and modulation operators,
we have the system

G′(g,m,n) =
{
TnMmg(x) =: wm(x)g

(
x	 n

)
: m,n ∈ Z+

}
. (35)

It is immediate to see that the system G(g,m,n) is a frame of L2(R+) if and
only if G′(g,m.n) is a frame of L2(R+), and the frame bounds are the same in
the two cases. It is evident that Gabor system (35) is shift-invariant. So, the
main results in Sections 3 and 4 can apply directly to the Gabor systems.

Setting Λ = {m : m ∈ Z+}, and for all α ∈ Λ,we take ϕα = Emg(x). Then
the system Γ(ϕ,α,m) given by (11) reduces to the Gabor system G(g,m,n)
defined by (34). Notice that for all α ∈ Λ,

ϕ̂α(ξ) = ĝ
(
ξ	m

)
.

Therefore, for all n ∈ Z+, we have∑
α∈Λ

ϕ̂α(ξ)ϕ̂α
(
ξ⊕ n

)
=
∑
m∈Z+

ĝ
(
ξ	m

)
ĝ
(
ξ	m⊕ n

)
.

Using Theorems 1, 2 and 4, we obtain
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Theorem 5 If the Gabor system G(g,m,n) defined by (34) is a frame for
L2(R+) with bounds C4 and D4, then

C4 ≤
∑
m∈Z+

∣∣ĝ(ξ	m)∣∣2 ≤ D4, a.e. ξ ∈ R+. (36)

Theorem 6 Suppose g ∈ L1(R+) ∩ L2(R+) such that

C5 = ess inf
ξ∈R+

∑
m∈Z+

∣∣ĝ(ξ	m)∣∣2 −∑
n∈N

[
Θg
(
n
)
·Θg

(
	 n

)]1/2
> 0, (37)

D5 = ess sup
ξ∈R+

∑
m∈Z+

∣∣ĝ(ξ	m)∣∣2 +∑
n∈N

[
Θg
(
n
)
·Θg

(
	 n

)]1/2
< +∞, (38)

then
{
MmTng(x) : m,n ∈ Z+

}
is a Gabor frame for L2(R+) with bounds C5

and D5, where

Θg
(
n
)
= ess sup

{ ∑
m∈Z+

∣∣∣ĝ(ξ	m)ĝ(ξ	m⊕ n)∣∣∣ : ξ ∈ R+

}
.

Theorem 7 Suppose g ∈ L1(R+) ∩ L2(R+) such that

C6 = ess inf
ξ∈R+

{ ∑
m∈Z+

∣∣ĝ(ξ	m)∣∣2 −∑
n∈N

∣∣∣ ∑
m∈Z+

ĝ
(
ξ	m

)
ĝ
(
ξ	m⊕ n

)∣∣∣} > 0, (39)

D6 = ess sup
ξ∈R+

{ ∑
n∈Z+

∣∣∣ ∑
m∈Z+

ĝ
(
ξ	m

)
ĝ
(
ξ	m⊕ n

)∣∣∣} < +∞. (40)

Then
{
MmTng(x) : m,n ∈ Z+

}
is a Gabor frame for L2(R+) with bounds

C6 and D6.

Remark 2 Since〈
ϕ, TnMmg

〉
=
〈
ϕ∨, (TnMmg)

∨
〉
=
〈
ϕ∨, T	mMng

∨
〉

by the Plancherel Theorem, similarly to the case in the frequency domain, we
able to present similar results in the time domain. They were omitted.
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6 Walsh shift-invariant systems as wavelet frames
on positive half line

In this section, we apply Theorems 1, 2 and 4 to the wavelet systems and
obtain some results on wavelet frames on positive half line.

For a given ψ ∈ L2(R+), define the wavelet system

W(ψ, j, k) =
{
ψj,k(x) : j ∈ Z, k ∈ Z+

}
(41)

where ψj,k(x) = pj/2ψ
(
pjx 	 k

)
. In general, the wavelet system W(ψ, j, k)

is not shift-invariant, and thus the main results in Sections 3 and 4 do not
apply directly to a wavelet system. But we can use a quasi-wavelet system to
investigate the wavelet system. The quasi-wavelet system generated by ψ ∈
L2(R+) is defined by

W̃
(
ψ̃, j, k

)
=
{
ψ̃j,k(x) : j ∈ Z, k ∈ Z+

}
(42)

where

ψ̃j,k(x) =


DAjTkψ(x) = A

j/2ψ
(
Ajx	 k

)
, j ≥ 0, k ∈ Z+,

Aj/2TkDAjψ(x) = A
jψ
(
Aj
(
x	 k

))
, j < 0, k ∈ Z+.

(43)

It is easy to see that the quasi-wavelet system is shift-invariant. There is
some sort of equivalence between wavelet and quasi-wavelet systems. Indeed,
Abdullah [1] proved in full generality the following result on positive half line.

Theorem 8 Let ψ ∈ L2(R+). Then

(a) W(ψ, j, k) is a Bessel family if and only if W̃
(
ψ̃, j, k

)
is a Bessel family.

Furthermore, their exact upper bounds are equal.
(b) W(ψ, j, k) is a frame for L2(R+) if and only if W̃

(
ψ̃, j, k

)
is a frame

for L2(R+). Furthermore, their lower and upper exact bounds are equal.
For j ∈ Z+, let Nj denotes a full collection of coset representatives of

Z+/AjZ+, i.e.,

Nj =
{ {

0, 1, 2, . . . , Aj − 1
}
, j ≥ 0

{0} , j < 0.
(44)

Then, Z+ =
⋃
n∈Nj

(
n⊕AjZ+

)
, and for any distinct n1, n2 ∈ Nj, we have(

n1 ⊕AjZ+
)
∩
(
n2 ⊕AjZ+

)
= ∅. Thus, every non-negative integer k can

uniquely be written as k = rA−j ⊕ s, where r ∈ Z+, s ∈ Nj.
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We now show that the quasi-wavelet system F̃
(
ψ̃, j, k

)
given by (42) is

invariant under translations by k, k ∈ Z+. In fact

Tkψ̃j,n(x) = ψ̃j,0
(
x	 k

)
= Ajψ

(
Aj
(
x	 k

))
= ψ̃j,k, if j < 0,

and for j ≥ 0, n ∈ Nj, we have

Tkψ̃j,n(x) = ψ̃j,n
(
x	 k

)
= ψj,d

(
x	 k

)
= Aj/2ψ

(
Aj
(
x	 k

)
	 n

)
= Aj/2ψ

(
Ajx	

(
Ajk⊕ n

))
= ψj,kAj⊕n(x).

Therefore, the quasi-wavelet system can also be represented as Suppose that
Λ = {(j, n) : j ∈ Z, n ∈ Nj} . Then, for all α ∈ Λ, we set

W̃
(
ψ̃, j, k

)
=
{
Tkψ̃j,n(x) : j ∈ Z, k ∈ Z+, n ∈ Nj

}
. (45)

Suppose that Λ = {(j, n) : j ∈ Z, n ∈ Nj} . Then, for all α ∈ Λ, we set

ϕα(x) =


Aj/2ψ

(
Ajx	 n

)
, if j ≥ 0,

Ajψ
(
Aj
(
x	 n

))
, if j < 0.

(46)

Therefore, one can easily see that ϕα ∈ L2(R+) and consequently, the system{
Tkϕα : k ∈ Z+, α ∈ Λ

}
is the quasi-wavelet system F̃

(
ψ̃, j, k

)
. Moreover, the

Fourier transform of (46) yields

ϕ̂α(ξ) =

 A−j/2ψ̂
(
Ajξ

)
wn
(
Ajξ

)
, if j ≥ 0,

ψ̂
(
Ajξ

)
wn
(
Ajξ

)
, if j < 0.

(47)

Thus, for all m ∈ Z+, we have∑
α∈Λ

|ϕ̂α(ξ)|
∣∣ϕ̂α(ξ⊕m)∣∣

=
∑
j<0

∣∣∣ψ̂(Ajξ)∣∣∣ ∣∣∣ψ̂(Aj(ξ⊕m))∣∣∣+∑
j≥0

∑
n∈Nj

A−j/2
∣∣∣ψ̂(Ajξ)∣∣∣ ∣∣∣ψ̂(Aj(ξ⊕m))∣∣∣
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=
∑
j∈Z

∣∣∣ψ̂(Ajξ)∣∣∣ ∣∣∣ψ̂(Aj(ξ⊕m))∣∣∣ .
As a consequence of Theorems 1, 2, 4 and Theorem 8, a necessary condition

and two sufficient conditions for wavelet frames on positive half line.

Theorem 9 If the quasi-wavelet system
{
ψ̃j,k : j ∈ Z, k ∈ Z+

}
defined by (42)

is a frame for L2(R+) with bounds A7 and B7, then

C7 ≤
∑
j∈Z

∣∣∣ψ̂(Ajξ)∣∣∣2 ≤ D7, a.e. ξ ∈ R+. (48)

Theorem 10 Let ψ ∈ L1(R+) ∩ L2(R+). If

C8 = ess inf
ξ∈R+

∑
j∈Z

∣∣∣ψ̂(Ajξ)∣∣∣2 −∑
n∈N

[
Θψ
(
n
)
·Θψ

(
	 n

)]1/2
> 0, (49)

D8 = ess sup
ξ∈R+

∑
j∈Z

∣∣∣ψ̂(Ajξ)∣∣∣2 +∑
n∈N

[
Θψ
(
n
)
·Θψ

(
	 n

)]1/2
< +∞. (50)

Then
{
ψ̃j,k(x) : j ∈ Z, k ∈ Z+

}
is a wavelet frame for L2(R+) with bounds

C8 and D8, where

Θψ
(
n
)
= ess sup

∑
j∈Z

∣∣∣ψ̂(Ajξ)ψ̂(Aj(ξ⊕ n))∣∣∣ : ξ ∈ R+

 .
Theorem 11 Let ψ ∈ L1(R+) ∩ L2(R+). If

C9 = ess inf
ξ∈R+

∑
j∈Z

∣∣∣ψ̂(Ajξ)∣∣∣2 −∑
j∈Z

∑
n∈N

∣∣∣ψ̂(Ajξ)ψ̂(Aj(ξ⊕ n))∣∣∣
 > 0, (51)

D9 = ess sup
ξ∈R+

∑
j∈Z

∑
n∈Z+

∣∣∣ψ̂(Ajξ)ψ̂(Aj(ξ⊕ n))∣∣∣
 < +∞. (52)

Then
{
ψ̃j,k(x) : j ∈ Z, k ∈ Z+

}
is a wavelet frame for L2(R+) with bounds

C9 and D9.
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Abstract. In this paper, we investigate the asymptotic properties of
a nonparametric conditional quantile estimation in the single functional
index model for dependent functional data and censored at random re-
sponses are observed. First of all, we establish asymptotic properties for
a conditional distribution estimator from which we derive an central limit
theorem (CLT) of the conditional quantile estimator. Simulation study is
also presented to illustrate the validity and finite sample performance of
the considered estimator. Finally, the estimation of the functional index
via the pseudo-maximum likelihood method is discussed, but not tackled.

1 Introduction

Multivariate regression analysis is a powerful statistical tool in biomedical re-
search and many fields of life (Muharisa et al. [27]) with numerous applications.
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62M10
Key words and phrases: conditional quantile, censored data, functional random vari-
able, Kernel estimator, nonparametric estimation, probabilities of small balls, strong mixing
processes, single index model
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While linear regression can be used to model the expected value (ie, mean) of
a continuous outcome given the covariates in the model, quantile regression
can be used to compare the entire distribution of a continuous response or a
specific quantile of the response between groups. Despite the regression func-
tion is of interest, other statistics such as quantile and mode regression might
be important from a theoretical and a practical point of view. Quantile regres-
sion is a common way to describe the dependence structure between a response
variable Y and some covariate X. Unlike the regression function that relies only
on the central tendency of the data, the conditional quantile function allows
the analyst to estimate the functional dependence between variables for all
portions of the conditional distribution of the response variable. Moreover,
it is well known that conditional quantiles can give a good description of the
data (see, Chaudhuri et al. [9]), such as robustness to heavy-tailed error distri-
butions and outliers to ordinary mean-based regression. As a particular case,
note that the conditional median is useful for asymmetric distributions.

Quantile regression(QR) is one of the major statistical tools and is gradually
developing into a comprehensive strategy for completing the regression predic-
tion. It is emerging as a popular statistical approach, which complements the
estimation of conditional mean models. While the latter only focuses on one
aspect of the conditional distribution of the dependent variable, the mean,
quantile regression provides more detailed insights by modeling conditional
quantiles. Her can therefore detect whether the partial effect of a regressor on
the conditional quantiles is the same for all quantiles or differs across quantiles,
and can provide evidence for a statistical relationship between two variables
even if the mean regression model does not. In many fields of applications
like quantitative finance, econometrics, marketing and also in medical and bi-
ological sciences, QR is a fundamental element for data analysis, modeling
and inference. An application in finance is the analysis of conditional Value-
at-Risk, moreover, her is the development of statistical tools used to explain
the relationship between response and predictor variables (see Yanuar et al.
[37]). The quantile method is a technique of dividing a group of data into
several parts after the data is sorted from the smallest to the largest Yanuar
et al. [36]. QR enjoys some very appealing features. Apart from enabling some
very exible patterns of partial effects, quantile regressions are also interesting
because they satisfy some equivariance and robustness principles.

The advantage of the QR methodology is that it allows for understanding re-
lationships between variables outside of the conditional mean of the response;
it is useful for understanding an outcome at its various quantiles and compar-
ing groups or levels of an exposure on those quantiles. QR is a common way
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to describe the dependence structure between a response variable Y and some
covariate X. Unlike the regression function (which is defined as the conditional
mean) that relies only on the central tendency of the data, the conditional
quantile function allows the analysts to estimate the functional dependence
between variables for all portions of the conditional distribution of the re-
sponse variable. Moreover, quantiles are well known for their robustness to
heavy-tailed error distributions and outliers which allow to consider them as
a useful alternative to the regression function Chaouch and Khardani [8].

Moreover, it is a statistical technique intended to estimate, and conduct
inference about, conditional quantile functions. Just as classical linear regres-
sion methods based on minimizing sums of squared residuals enable one to
estimate models for conditional mean functions, quantile regression methods
offer a mechanism for estimating models for the conditional median function,
and the full range of other conditional quantile functions. By supplementing
the estimation of conditional mean functions with techniques for estimating an
entire family of conditional quantile functions, quantile regression is capable
of providing a more complete statistical analysis of the stochastic relationships
among random variables.

For example, QR has been used in a broad range of application settings.
Reference growth curves for children’s height and weight have a long history
in pediatric medicine; quantile regression methods may be used to estimate
upper and lower quantile reference curves as a function of age, sex, and other
covariates without imposing stringent parametric assumptions on the relation-
ships among these curves. In ecology, theory often suggests how observable
covariates affect limiting sustainable population sizes, and quantile regression
has been used to directly estimate models for upper quantiles of the condi-
tional distribution rather than inferring such relationships from models based
on conditional central tendency. In survival analysis, and event history analy-
sis more generally, there is often also a desire to focus attention on particular
segments of the conditional distribution, for example survival prospects of the
oldest-old, without the imposition of global distributional assumptions.

In recent years, estimating conditional quantiles has received increasing in-
terest in the literature, for both independent and dependent data; Samanta
[31] established a nonparametric estimation of conditional quantiles, Wang
and Zhao [35] presented a kernel estimator for conditional t-quantiles for mix-
ing samples and established its strong uniform convergence. Ferraty et al.
[15] studied the estimation of a conditional quantiles for functional dependent
data with application to the climatic El Ninö phenomenon. Ezzahrioui & Elias
Ould-Säıd [14] considered the estimation of the conditional quantile function
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when the covariates take values in some abstract function space, the almost
complete convergence and the asymptotic normality of the kernel estimator
of the conditional quantile under the α-mixing assumption were established.
Ferraty et al. [15] introduced a nonparametric estimator of the conditional
quantile defined as the inverse of the conditional cumulative distribution func-
tion (df) when data are dependent.

In life time data analysis, nonparametrically estimated conditional survival
curves (such as the conditional Kaplan-Meier estimate) are useful for assess-
ing the influence of risk factors, predicting survival probabilities, and checking
goodness-of-fit of various survival regression models. It is well known that in
medical studies the observation on the survival time of a patient is often in-
complete due to right censoring. Classical examples of the causes of this type
of censoring are that the patient was alive at the termination of the study,
that the patient withdrew alive during the study, or that the patient died
from other causes than those under study. The censored quantile regression
model is derived from the censored model. This method is used to overcome
problems in modeling censored data as well as to overcome the assumptions
of linear models that are not met, in this linear models Sarmada and Yan-
uar [32] have compared the results of the analysis of the quantile regression
method with the censored quantile regression method for censored data. In the
context of censored data, Gannoun et al. [17] introduced a local linear (LL) es-
timator of the quantile regression and established its almost sure consistency
(without rate) as well as its asymptotic normality in the independent and
identically distributed (i.i.d.) case. El Ghouch and Van Keilegom [13] consid-
ered the LL estimation of the quantile regression and its first derivative under
an α-mixing assumption and studied their asymptotic properties. Ould-Säıd
[28] constructed a kernel estimator of the conditional quantile under an i.i.d.
censorship model and established its strong uniform convergence rate. Under
an α-mixing assumption, Liang and Alvarez [21] established the strong uni-
form convergence (with rate) of the conditional quantile function as well as its
asymptotic distribution.

The single index model is a natural extension of the linear regression model
for applications in which linearity does not hold. This last approach is widely
applied in econometrics as a reasonable compromise between nonparametric
and parametric models. In the past few recent years, the single functional index
models have received much attention, and it has been studied extensively in
both statistical and econometric literatures. Interesting to this methods, many
authors worked on this sort of problems, see for instance Aı̈t-Saidi et al. [1, 2].
Attaoui et al. [3] investigated the kernel estimator of the conditional density
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of a scalar response variable Y, given a Hilbertian random variable X when
the observations are from a single functional index model. Ling et al. [24]
reconsidered the kernel estimator of the conditional density when the scalar
response variable Y and the Hilbertian random variable X also come from
the single functional index model. The asymptotic results such as pointwise
almost complete consistency and the uniform almost complete convergence
of the kernel estimation with rates in the setting of the α mixing functional
data are also obtained, which extend the i.i.d. case in Attaoui et al. [3] to the
dependence setting. Ling & Xu [23] investigated the estimation of conditional
density function based on the single-index model for functional time series
data. Under α-mixing condition, the asymptotic normality of the conditional
density estimator and the conditional mode estimator where obtained. Attaoui
[4] studied a nonparametric estimation of the conditional density of a scalar
response variable given a random variable taking values in separable Hilbert
space when the variables satisfy the strong mixing dependency, based on the
single-index structure.

Inspired by all the papers above, our work in this paper aims to contribute
to the research on functional nonparametric regression model, by giving an
alternative estimation of QR estimation in the single functional index model
with randomly right-censored data under α-mixing conditions whose definition
is given below.

Recall that a process (Xi, Yi)i≥1 is called α-mixing or strongly mixing (see
Lin and Lu [22]) for more details and examples, if

sup
k

sup
A∈Fk1

sup
B∈F∞

n+k

|P(A ∩ B) − P(A)P(B)| = α(n)→ 0 as n→∞,
where Fkj denotes the σ-field generated by the random variables {(Xi, Yi), j ≤
i ≤ k}. The process {(Xi, Yi), i ≥ 1} is said to be arithmetically α mixing with
order a > 0, if ∃C > 0, α(n) ≤ Cn−a.

The strong-mixing condition is reasonably weak and has many practical ap-
plications (see, e.g., Cai [6], Doukhan [11], Dedecker et al. [10] Ch. 1, for more
details). In particular, Masry and Tøjstheim [25] proved that, both ARCH pro-
cesses and nonlinear additive autoregressive models with exogenous variables,
which are particularly popular in finance and econometrics, are stationary and
α-mixing.

This article is organized as follows: In Section 2, we describe our model
and construct precisely the QR estimator based on the functional stationary
data under censorship model. In Section 3, we build up asymptotic theorems
for our model. Section 4 illustrates those asymptotic properties through some
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simulated. Finally, the proofs of the main results are postponed to Section 5.

2 Notations and estimators of the semi-parametric
framework

2.1 The model

Let (X, T) be a pair of random variables where T is a real-valued random
variable and X takes its values in a separable Hilbert space H with the norm
‖ · ‖ generated by an inner product < ·, · >. Let C be a censoring variable with
common continuous distribution function G. The continuity of G allows to use
the convergence results for the Kaplan and Meier estimator of G. (see [19]).

From now on we suppose that (X, T) and C are independent. It is plausible
whenever the censoring is independent of the characteristics of the patients
under study. In the right censorship model, the pair (T, C) is not directly
observed and the corresponding available information is given by Y = min(T, C)
and δ = 1{T≤C}, where 1A is the indicator function of the set A.

Such censorship models have been amply studied in the Literature for real
or multi-dimensional random variables, and in nonparametric frameworks the
kernel techniques are particularly used (see Tanner and Wong [33], Padgett
[29], Lecoutre and Ould-Säıd [20] and Van Keilegom and Veraverbeke [34], for
a necessarily non-exhaustive sample of literature in this area).

Furthermore, let (Xi, Ti)1≤i≤n be the statistical sample of pairs which are
identically distributed like (X, T), but not necessarily independent, (Ci)1≤i≤n
is a sequence of i.i.d. random variables which is independent of (Xi, Ti)1≤i≤n.
Therefore, we assume that the sample {(Xi, δi, Yi), i = 1, . . . , n} is at our dis-
posal. Moreover, we consider dθ(·, ·) a semi-metric associated with the single
index θ ∈ H defined by dθ(x1, x2) := | < x1 − x2, θ > |, for x1 and x2 in H.

For a fixed x in H, the conditional cumulative distribution function (cond-
cdf) of Y given < θ,X >=< θ, x >, is defined as follows:

∀t ∈ R, F(θ, t, x) := P(Y ≤ t| < X, θ >=< x, θ >).

Saying that, we are implicitly assuming the existence of a regular version
for the conditional distribution of Y given < θ,X >. Now, let ζθ(γ, x) be the
γth-conditional quantile of the distribution of Y given < θ,X >=< θ, x >.
Formally, ζθ(γ, x) is defined as:

ζθ(γ, x) := inf{t ∈ R : F(θ, t, x) ≥ γ}, ∀γ ∈ (0, 1).
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In order to simplify our framework and to focus on the main interest of our
paper (the functional feature of < θ,X >), we assume that F(θ, ·, x) is strictly
increasing and continuous in a neighborhood of ζθ(γ, x). This is insuring that
the conditional quantile ζθ(γ, x) is uniquely defined by:

ζθ(γ, x) = F−1(θ, γ, x) equivalently F̂(θ, ζ̂θ(γ, x) , x) = γ. (1)

Next, in all what follows, we assume only smoothness restrictions for the
cond-cdf F(θ, ·, x) through nonparametric modeling. Assume also (Xi, Ti)i∈N is
an α-mixing sequence, which is one among the most general mixing structures.

2.2 The estimators

The kernel estimator Fn(θ, ·, x) of F(θ, ·, x) is presented as follows:

Fn(θ, t, x) =

n∑
i=1

K
(
h−1K (< x− Xi, θ >)

)
H
(
h−1H (t− Ti)

)
n∑
i=1

K
(
h−1K (< x− Xi, θ >)

) , (2)

where K is a kernel function, H a cumulative distribution function and hK =
hK,n (resp. hH = hH,n) a sequence of positive real numbers. Note that using
similar ideas, Roussas [30] introduced some related estimates but in the special
case when X is real, while Samanta [31] produced previous asymptotic study.

As a by-product of (1) and (2), it is easy to derive an estimator ζθ,n(γ, x)
of ζθ(γ, x):

ζθ,n(γ, x) = F−1n (θ, γ, x). (3)

Such an estimator is unique as soon as H is an increasing continuous func-
tion. Such an approach has been largely used in the case where the variable X
is of finite dimension (see e.g Whang and Zhao [35], Cai [7], Zhou and Liang
[38] or Gannoun et al. [17]).

The objective of this section is to adapt these ideas under functional random
variable X, and build a kernel type estimator of the conditional distribution
F(θ, ·, X) adapted for censored samples. In the censoring case, based on the
observed sample (Xi, δi, Yi)i=1,...,n we define the following ”pseudo-estimator”
of F(θ, ·, X) which is used as an intermediate estimator, thus we can reformulate
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the expression (2) as follows:

F̃(θ, t, x) =

n∑
i=1

δi

Ḡ(Yi)
K
(
h−1K (< x− Xi, θ >)

)
H
(
h−1H (t− Yi)

)
n∑
i=1

K
(
h−1K (< x− Xi, θ >)

) . (4)

In practice Ḡ(·) = 1 − G(·) is unknown, hence it is impossible to use the
estimator (6). Then, we replace Ḡ(·) by its Kaplan and Meier [19] estimate
Ḡn(·) given by

Ḡn(t) = 1−Gn(t) =


n∏
i=1

(
1−

1− δ(i)

n− i+ 1

)1{Y(i)≤t}

, if t < Y(n);

0, if t ≥ Y(n).
(5)

where Y(1) < Y(2) < . . . < Y(n) are the order statistics of Yi and δ(i) is the
concomitant of Y(i). Therefore, a full estimator of the conditional distribution
function F(θ, ·, x) is defined as:

F̂(θ, t, x) =

n∑
i=1

δi

Ḡn(Yi)
K
(
h−1K (< x− Xi, θ >)

)
H
(
h−1H (t− Yi)

)
n∑
i=1

K
(
h−1K (< x− Xi, θ >)

) , (6)

which is rewritten also as:

F̂(θ, t, x) =
F̂N(θ, t, x)

F̂D(θ, x)
. (7)

Consequently, a natural estimator of ζθ(γ, x) is given by

ζ̂θ(γ, x) = F̂−1(θ, γ, x)

= inf{t ∈ R : F̂(θ, t, x) ≥ γ}, (8)

which satisfies

F̂(θ, ζ̂θ(γ, x) , x) = γ. (9)
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3 Assumptions and results

3.1 Assumptions on the functional variable

Let Nx be a fixed neighborhood of x and let B(x, h) be the ball of center
x and radius h, namely Bθ(x, h) = {f ∈ H/0 < | < x− f, θ > | < h}. Assume
that, (Ci)i≥1 and (Ti)i≥1 are independent and we assume that τG := sup{t :
G(t) < 1} and let τ be a positive real number such that τ < τG.

let’s consider the following hypotheses:

(H1) ∀h > 0, P (X ∈ Bθ(x, h)) = φθ,x(h) > 0,

(H2) (Xi, Yi)i∈N is an α-mixing sequence whose the coefficients of mixture
verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.

(H3) 0 < sup
i6=j

P ((Xi, Xj) ∈ Bθ(x, h)× Bθ(x, h)) = O

(
(φθ,x(hK))

(a+1)/a

n1/a

)
.

3.2 The nonparametric model

As usually in nonparametric estimation, we suppose that the cond-cdf F(θ, ·, x)
verifies some smoothness constraints. Let b1 and b2 be two positive numbers;
such that:

(H4) ∀(x1, x2) ∈ Nx ×Nx, ∀(t1, t2) ∈ S2R,

(i) |F(θ, t1, x1) − F(θ, t2, x2)| ≤ Cθ,x
(
‖x1 − x2‖b1 + |t1 − t2|

b2
)
,

(ii)

∫
R
tf(θ, t, x)dt <∞ for all θ, x ∈ H.

To this end, we need some assumptions concerning the kernel estimator
F̂(θ, ·, x) :

(H5) ∀(t1, t2) ∈ R2, |H(t1) −H(t2)| ≤ C|t1 − t2| with

∫
H(1)(t)dt = 1,∫

H2(t)dt <∞ and

∫
|t|b2H(1)(t)dt <∞.

(H6) K is a positive bounded function with support [0, 1].

(H7) The df of the censored random variable, G has bounded first derivative
G ′.
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(H8) For all u ∈ [0, 1], lim
h→0 φθ,x(uh)φθ,x(h)

= lim
h→0 ξθ,xh (u) = ξθ,x0 (u).

(H9) The bandwidth hH satisfies,

(i) nh2Hφ
2
θ,x(hK) −→∞, and

nh3Hφθ,x(hK)

log2 n
−→∞ as n→∞.

(ii) nh2Hφ
3
θ,x(hK) −→ 0, as n→∞.

(H10) There exist sequences of integers (un) and (vn) increasing to infinity
such that (un + vn) ≤ n, satisfying

(i) vn = o((nφθ,x(hK))
1/2) and

(
n

φθ,x(hK)

)1/2
α(vn)→ 0 as n→ 0,

(ii) qnvn = o((nφθ,x(hK))
1/2) and qn

(
n

φθ,x(hK)

)1/2
α(vn)→ 0 as n→ 0

where qn is the largest integer such that qn(un + vn) ≤ n.

3.3 Comments of the assumptions

(H1) can be interpreted as a concentration hypothesis acting on the distribu-
tion of the f.r.v. X, while (H3) concerns the behavior of the joint distribution
of the pairs (Xi, Xj). Indeed, this hypothesis is equivalent to assume that, for
n large enough

sup
i6=j

P ((Xi, Xj) ∈ Bθ(x, h)× Bθ(x, h))
P (X ∈ Bθ(x, h))

≤ C
(
φθ,x(hK)

n

)1/a
.

This is one way to control the local asymptotic ratio between the joint distri-
bution and its margin. Remark that the upper bound increases with a. In other
words, more the dependence is strong, more restrictive is (H3). The hypoth-
esis (H2) specifies the asymptotic behavior of the α-mixing coefficients. Let’s
note that (H4) is used for the prove of the the almost complete convergence
of ζ̂θ(γ, x). Assumptions (H5), (H6) and (H7) are classical in nonparametric
estimation. To establish the asymptotic normality, dealing with strong mix-
ing random variables (under (H2)), we use the well-known sectioning device
introduced by Doob [12] in (H10).

This part of paper is devoted to the main result, the asymptotic normality
of F̂(θ, t, x) and ζ̂θ(γ, x).
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Theorem 1 Under Assumptions (H1)-(H10), we have(
nφθ,x(hK)

σ2(θ, t, x)

)1/2 (
F̂(θ, t, x) − F(θ, t, x)

)
D−→N (0, 1), (10)

where σ2(θ, t, x) =
a2(θ, x)

(a1(θ, x))2
F(θ, t, x)

(
1

Ḡ(t
− F(θ, t, x)

)
and

φθ,x(hK)EK21(x, θ)
E2K1(x, θ)

=:
a2(θ, x)

(a1(θ, x))2
.

Theorem 2 If the Assumptions (H1)-(H10) are satisfied, and et γ is the
unique order of the quantile such that γ = F(θ, ζθ(γ, x), x) = Fn(θ, ζ̂θ(γ, x), x),(

nφθ,x(hK)

Σ2(θ, ζθ(γ, x), x)

)1/2
(ζθ,n(γ, x) − ζθ(γ, x))

D−→N (0, 1), (11)

where Σ(θ, ζθ(γ, x), x) =
σ(θ, ζθ(γ, x), x)

f(θ, ζθ(γ, x), x)
.

As one can see, the asymptotic variance Σ(θ, ζθ(γ, x), x) depends on some
unknown functions f(θ, ζθ(γ, x), x) and φθ,x(hK) and other theoretical quanti-
ties F(θ, ζθ(γ, x), x), G(·) and ζθ(γ, x) that have to be estimated in practice.
Therefore, G(·), F(θ, t, x) and ζθ(γ, x) should be replaced, respectively, by the
Kaplan-Meier’s estimator Gn(·), the kernel-type estimator of the joint distri-
bution f̂(θ, ζθ(γ, x), x) and ζθ,n(γ, x) the conditional quantile estimator given
by equation (8). Moreover, using the decomposition given by assumption (H1),
one can estimate φθ,x(z) by Fx,n(z) = 1/n

∑n
i=1 1{Xi∈Bθ(x,z)}.

The corollary below allows one to obtain a confidence interval in practice
since all quantities are known.

3.4 Confidence intervals

Now based on the quantities estimation, we easily get a plug-in estimator
Σ̂(θ, ζθ,n(γ, x), x) of Σ(θ, ζθ(γ, x), x). The Theorem (2) can be now used to
provide the 100(1 − γ)% confidence bands for ζθ(γ, x) which is given, for
x ∈ H, by[

ζθ,n(γ, x) − cγ/2
Σ̂(θ, ζθ,n(γ, x), x)√

nFx,n(hK)
, ζθ,n(γ, x) + cγ/2

Σ̂(θ, ζθ,n(γ, x), x)√
nFx,n(hK)

]
where cγ/2 is the upper γ/2 quantile of the distribution of N (0, 1).



56 N. Kadiri, A. Rabhi, S. Khardani, F. Akkal

4 Finite sample performance

This section considers simulated as well as real data studies to assess the finite-
sample performance of the proposed estimator and compare it to its competi-
tor. More precisely, we are interested in comparing the conditional quantile
estimator based on single functional index model (SFIM) to the kernel-type
conditional quantile estimator (NP) introduced in Chaouch and Khardani [8]
when the data is dependent and the response variable is subject to a random
right-censorship phenomena. Throughout the simulation part, the n i.i.d. ran-
dom variables (Ci)i ( censured variables) are simulated through the exponen-
tial distribution E (1.5). Similarly, in the real data applications, the censored
variables are simulated according to the aforementioned exponential law.

The single functional index θ ∈ H is usually unknown and has to be es-
timated in practice. This topic was discussed in single functional regression
model literature and an estimation approaches based on cross-validation or
maximum-likelihood methods were discussed, for instance, in Aı̈t Saidi et al. [2]
and the references therein. Another alternative, which will be adopted in this
section, consists in selecting θ (t) among the eigenfunctions of the covariance
operator E [(X′ − E(X′)) < X′, . >H] , where X (t) is, for instance, a diffusion-
type process defined on a real interval [a, b] and X′ (t) its first derivative (see,
for instance, Attaoui and Ling [5]). Given a training sample L, the covariance
operator can be estimated by its empirical version 1

|L|
∑
i∈L(X

′
i − EX′) t(X′i −

EX′). Consequently, one can obtain a discretized version of the eigenfunctions
θi(t) by applying the principle component analysis method. Let θ? be the first
eigenfunction corresponding to the highest eigenvalue of the empirical covari-
ance operator, which will replace θ in the simulation steps to calculate the
estimator of the conditional distribution as well as the conditional quantiles.

4.1 Simulation study

We generate n copies, say (Xi, δi, Yi)i=1,...,n, of (X, δ, Y), where X and Y are
simulated according to the following functional regression model.

Ti = R (Xi) + εi, i = 1, . . . , n,

where εi is the error assumed to be generated according to an autoregressive
model defined as:

εi = 1/
√
2εi−1 + ηi, i = 1, . . . , n,

where (ηi)i a sequence of i.i.d. random variables normally distributed with a
variance equal to 0.1. The functional covariate X is assumed to be a diffusion
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process defined on [0, 1] and generated by the following equation:

X (t) = A (2− cos (πtW)) + (1−A) cos(πtW), t ∈ [0, 1] ,

where W  N (0, 1) and A Bernoulli(1/2).
Figure 1 depicts a sample of 100 realizations of the functional random vari-

able X sampled in 100 equidistant points over the interval [0, 1].

Figure 1: A sample of 100 curves {Xi (t) , t ∈ [0, 1]}i=1,...,100

On the other side, a nonlinear functional regression, defined as follows, is
considered

R (X) =
1

4

∫ 1
0

(
X′ (t)

)2
dt,

the computation of our estimator is based on the observed data (Xi, δi, Yi)
n
i=1,

where Yi = min (Ti, Ci) , δi = 1{Ti≤Ci}.
To assess the accuracy of the proposed estimator, we split the generated

data into a training (L) and a testing (J ) subsamples. The training subsam-
ple is used to estimate the single functional index and to select the smoothing
parameters hk and hH. Whereas the testing subsample is used to assess and
compare the single functional index based estimator of the conditional quan-
tile, namely ζ̂θ(γ, ·), to the kernel-type conditional quantile estimator, say
ζ̂(γ, ·), which is introduced in Chaouch and Khardani [8] as follows:

ζ̂(γ, x) = inf
{
y ∈ R, F̂x (y) ≥ γ

}
,
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where

F̂x (y) =

∑n
i=1

δi
Ḡn(Yi)

K
(
h−1K d (x, Xi)

)
H
(
h−1H (y− Yi)

)∑n
i=1 K (h−1d (x, Xi))

, ∀y ∈ R.

Figure 2 displays the first three eigenfunctions calculated from the estimated
covariance operator using the data in the training subsample.

Figure 2: The first three eigenfunctions (respectively, continuous, dashed and
dotted lines) representing θi(t), i = 1, 2

Given an X = x, we can observe that the random variable T has a nor-
mal distribution with mean equal to R(x) and standard deviation equal to 0.2.
Therefore, the conditional median is equal to R(x). A 500 Monte-Carlo simula-
tions are performed in order to assess the estimation accuracy of R(x) using the
conditional median estimation by the single functional index approach and by
the nonparametric approach. The simulations were performed for two sample
sizes n = 100, 500 and for two Censorship Rates CR = 60%, 30%. Furthermore,
some tuning parameters have to be specified. The kernel K(·) is chosen to be
the quadratic function defined as K (u) = 3

2

(
1− u2

)
1[0,1] and the cumulative

distribution function H (u) =

∫u
−∞

3

4

(
1− z2

)
1[−1,1] (z)dz. As shown in Figure

1 the covariate is a smooth process and the regression function R(·) is defined
as the integral of the derivative of the functional random variable X. Con-
sequently, according to Ferraty and Vieu [16], the appropriate choice of the
semi-metric is the L2 distance between the first derivatives of the curves. In
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this section, we assume that h := hK = hH, is selected using a cross-validation
method based on the k-nearest neighbors as described in Ferraty and Vieu
[16], p. 102.

We consider the absolute error (AE) as a measure of accuracy of the esti-
mators:

AEk,θ = |ζ̂θ(0.5, x) − R(x)| and AEk = |ζ̂(0.5, x) − R(x)|, k = 1, . . . , 500,

where ζ̂θ(0.5, x) and ζ̂(0.5, x) are, respectively, the estimators of the condi-
tional median using the single functional index model and the nonparametric
approach. Table 1 shows that the SFIM estimator performs better that the NP
one in estimating R(x). Higher is the sample size and lower is the censorship
rate better will be the accuracy of the SFIM compared to the NP one. More-
over, even when CR=60% and n = 100, the SFIM estimator is still performing
better than the NP one.

Table 1: First, second and third quartile of the Absolute errors (AEk,θ and AEk,
k = 1, . . . , 500) obtained for CR=60% and CR=30%(between parentheses).

n=100 n=500
NP SFIM NP SFIM

1st quartile of AE 0.709 0.69 0.62 0.53
(0.29) (0.212) (0.136) (0.097)

Median of AE 0.955 0.93 0.95 0.75
(0.557) (0.573) (0.584) (0.346)

3rd quartile of AE 1.085 1.08 1.07 0.92
(0.73) (0.76) (0.718) (0.624)

The next phase of this simulation study consists in comparing the accuracy
of the SFIM and the NP approaches in terms of prediction. For this purpose a
sample of 550 observations was simulated according to the previous functional
regression model defined above. A subsample of size 500 is considered for train-
ing and the remaining 50 observations are used for prediction assessment. The
purpose consists in predicting the response variable Yi in the test sample using
the conditional median which is estimated either by SFIM or NP approach.
An overall assessment of the predictions is performed using the median square
error, where the square error (SE) is defined as follows: SEj,θ := (Yj−ζ̂θ(0.5, x))

and SEj := (Yj − ζ̂(0.5, x)), j = 1, . . . , 50. Two censorship rates are considered
here: CR = 45% and CR = 2%.
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Figure 3: Prediction of (Yj)j=1,...,50 in the test subsample when CR = 45%.

Figure 4: Prediction of (Yj)j=1,...,50 in the test subsample when CR = 2%.

Figures 3 and 4 show that the SFIM estimator performs better than the NP
estimator in predicting the response variable in the testing subsample. The
accuracy increases when the censorship rate decreases. Indeed when CR =
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45%, the median square error is equal to 0.011 using the SFIM approach and
0.055 for the NP one. whereas, when CR = 2%, the median square error is
equal to 0.008 for the SFIM and 0.012 for the NP approach.

5 Proofs

In order to prove our results, we introduce some further notations. Let First
we consider the following decomposition

F̂(θ, t, x) − F(θ, t, x) =
F̂N(θ, t, x)

F̂D(θ, x)
−
a1(θ, x)F(θ, t, x)

a1(θ, x)

=
1

F̂D(θ, x)

(
F̂N(θ, t, x) − EF̂N(θ, t, x)

)
−

1

F̂D(θ, x)

(
a1(θ, x)F(θ, t, x) − EF̂N(θ, t, x)

)
+
F(θ, t, x)

F̂D(θ, x)

(
a1(θ, x) − E

[
F̂D(θ, x)

])
−
F(θ, t, x)

F̂D(θ, x)

(
F̂D(θ, x) − EF̂D(θ, x)

)
=

1

F̂D(θ, x)
An(θ, t, x) + Bn(θ, t, x)

(12)

where

An(θ, t, x) =
1

nEK1(x, θ)

n∑
i=1

{(
δi

Ḡn
Hi(t) − F(θ, t, x)

)
Ki(θ, x)

−E
[(

δi

Ḡn
Hi(y) − F(θ, t, x)

)
Ki(θ, x)

]}

=
1

nEK1(x, θ)

n∑
i=1

Ni(θ, t, x).

It follows that,

nφθ,x(hK)Var (An(θ, t, x)) =
φθ,x(hK)

E2K1(x, θ)
Var(N1)

+
φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj)
(13)
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= Vn(θ, t, x)

+
φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj).

Lemma 1 Under hypotheses (H1)-(H3) and (H6)-(H8) as n→∞ we have

nφθ,x(hK)Var (An(θ, t, x)) −→ V(θ, t, x)

where V(θ, t, x) =
a2(θ, x)

(a1(θ, x))2
F(θ, t, x)

(
1

Ḡ(t
− F(θ, t, x)

)
.

Lemma 2 Under hypotheses (H1)-(H3), (H6) and (H8)-(H10), as n → ∞
we have (

nφθ,x(hK)

V(θ, t, x)

)1/2
An(θ, t, x)

D−→N (0, 1)

where
D−→ denotes the convergence in distribution.

Lemma 3 Under Assumptions (H1)-(H3) and (H6)-(H9)as n→∞ we have√
nφθ,x(hK)Bn(θ, t, x) −→ 0 in Probabilty.

Next, Making use of Proposition 3.2 for l = 1 and Theorem 3.1, in Kadiri
et al. [18] we get the following corollary.

Corollary 1 Under hypotheses of Lemma 3, as n→∞ we have

(nφθ,x(hK))
1/2 Bn(θ, t, x)

f̂
(
θ, ζ∗θ,n(γ, x), x

) −→ 0 in Probabilty.

Proof. [Proof of Theorem 1]
To prove Theorem 1, it suffices to use (12). Applying Lemmas Lemma 1 and

Lemma 3, we get the result. �

Proof. [Proof of Theorem 2]
For Theorem 2, making use of (12), we have√
nφθ,x(hK) (ζθ(γ, x) − ζθ,n(γ, x)) =

√
nφθ,x(hK)

Fn(θ, ζθ(γ, x), x)

F ′n(θ, ζ
∗
θ,n(γ, x), x)

−
√
nφθ,x(hK)

F(θ, ζθ(γ, x), x)

F ′n(θ, ζ
∗
θ,n(γ, x), x)



Central limit theorem in single functional index 63

=

√
nφθ,x(hK)An(θ, t, x)

F ′n(θ, ζ
∗
θ,n(γ, x), x)

−

√
nφθ,x(hK)Bn(θ, t, x)

F ′n(θ, ζ
∗
θ,n(γ, x), x)

.

Then using Theorem 1, Corollary 1 and Lemma 3 we obtain the result. �

Proof. [Proof of Lemma 1]

Vn(θ, t, x) =
φθ,x(hK)

E2K1(θ, x)
E

[
K21(θ, x)

(
δ1

Ḡ(Y1)
H1(t) − F(θ, t, x)

)2]

=
φθ,x(hK)

E2K1(θ, x)
E

[
K21(θ, x)E

((
δ1H1(t)

Ḡ(Y1)
−F(θ, t, x)

)2
|<θ,X1 >

)]
.

(14)

Using the definition of conditional variance, we have

E

[(
δ1

Ḡ(Y1)
H(h−1H (t− Y1)) − F(θ, t, x)

)2
| < θ,X1 >

]
= J1n + J2n

where J1n = Var
(

δ1
Ḡ(Y1)

H(h−1H (t− Y1))| < θ,X1 >
)

,

J2n =
[
E
(

δ1
Ḡ(Y1)

H(h−1H (t− Y1))| < θ,X1 >
)
− F(θ, t, x)

]2
Concerning J1n,

J1n = E
[

δ1

Ḡ2(Y1)
H2
(
t− Y1
hH

)
| < θ, x >

]
−

(
E
[
δ1

Ḡ(Y1)
H

(
t− Y1
hH

)
| < θ,X1 >

])2
= J1 + J2.

As for J1, by the property of double conditional expectation, we get that,

J1 = E
{
E
[

δ1

Ḡ2(Y1)
H2
(
t− Y1
hH

)
| < θ,X1 >, T1

]}
= E
{

δ1

Ḡ2(T1)
H2
(
t− T1
hH

)
E [1T1≤C1 |T1] | < θ,X1 >

}
= E

(
1

Ḡ(T1)
H2
(
t− T1
hH

)
| < θ,X1 >

) (15)
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=

∫
R

1

Ḡ(v)
H2
(
t− v

hH

)
dF(θ, v, X1)

=

∫
R

1

Ḡ(t− uhH)
H2(u)dF(θ, t− uhH, X1).

By the first order Taylor’s expansion of the function Ḡ−1(·) around zero,
one gets

J1 =

∫
R

1

Ḡ(t)
H2(u)dF(θ, t− uhH, X1)

+
h2H
Ḡ2(t)

∫
R
uH(u)Ḡ(1)(t∗)f(θ, t− uhH, X1)du+ o(1)

where t∗ is between t and t− uhH
Under hypothesis (H7) and using hypothesis (H3)-(ii), we get

J ′1 =
h2H
Ḡ2(t)

∫
R
uH2(t)Ḡ(1)(t∗)f(θ, t− uhH, X1)du = O(h2H).

Indeed

J ′1 ≤ h2H
(

sup
u∈R

|G ′(u)|/Ḡ2(t)

) ∫
R
uf(θ, t− uhH, x)du.

On the other hand, by integrating by part and under assumption (H3)-(i),
we have∫

R

H2(u)

Ḡ(t)
dF(θ, t− uhH, X1) =

1

Ḡ(t)

∫
R
2H(u)H ′(u)F(θ, t− uhH, X1)du

−
1

Ḡ(t)

∫
R
2H(u)H ′(u)F(θ, t, x)du

+
1

Ḡ(t)

∫
R
2H(u)H ′(u)F(θ, t, x)du.

Clearly we have∫
R
2H(u)H ′(u)F(θ, t, x)du =

[
H2(u)F(θ, t, x)

]+∞
−∞ = F(θ, t, x) (16)

thus ∫
R

1

Ḡ(t)
H2(u)dF(θ, t− uhH, X1) =

F(θ, t, x)

Ḡ(t)
+O(hβ1K + hβ2H ). (17)
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As for J2n, by (H2), (H4) and (H5), and using Lemma 3.2 in Kadiri et al.
[18] we obtain that

J2n −→ 0, as n→∞.
• Concerning J2

J ′2 = E
[
δ1

Ḡ(Y1)
H1(t)| < θ,X1 >

]
= E

(
E
[
δ1

Ḡ(Y1)
H1(t)| < θ,X1 >, T1

])
= E

(
1

Ḡ(T1)
H

(
t− T1
hH

)
E [1T1≤C1 |T1] | < θ,X1 >

)
= E

(
H

(
t− T1
hH

)
| < θ,X1 >

)
=

∫
H

(
t− v

hH

)
f(θ, t, X1)dv.

Moreover, we have by integration by parts and changing variables

J ′2 = F(θ, t, x)

∫
H ′(u)du+

∫
H ′(u) (F(θ, t− uhH, x) − F(θ, t, x))du

the last equality is due to the fact that H ′ is a probability density.
Thus we have:

J ′2 = F(θ, t, x) +O
(
h
β1
K + hβ2H

)
. (18)

Finally by hypothesis (H5) we get J2 −→
n→∞ F2(θ, t, x).

Meanwhile, by (H1), (H4), (H6) and (H8), it follows that:

φθ,x(hK)EK21(θ, x)
E2K1(θ, x)

−→
n→∞ a2(θ, x)

(a1(θ, x))2
.

which leads to combining equations (14)-(18)

Vn(θ, t, x) −→
n→∞ a2(θ, x)

(a1(θ, x))2
F(θ, t, x)

(
1

Ḡ(t)
− F(θ, t, x)

)
. (19)

Secondly, by the boundness of H and conditioning on (< θ,Xi >,< θ, Xj >),
we have

E (|NiNj|) = E [(Ωi) (Ωj)Ki(θ, x)Kj(θ, x)]
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= E
(
E
[
(Ωi) (Ωj) | < θ,Xi >,< θ, Xj >

]
Ki(θ, x)Kj(θ, x)

)
≤

(
1+

1

Ḡ(τF)

)2
E(Ki(θ, x)Kj(θ, x))

≤ CP ((Xi, Xj) ∈ Bθ(x, h)× Bθ(x, h))

≤ C

((
φθ,x(hK)

n

)1/a
φθ,x(hK)

)

where Ωi =
δi

Ḡi
Hi(t) − F(θ, t, x).

Then, taking

φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj) =
φθ,x(hK)

nE2K1(x, θ)

n∑
0<|i−j|≤mn

Cov(Ni, Nj)

+
φθ,x(hK)

nE2K1(x, θ)

n∑
|i−j|>mn

Cov(Ni, Nj)

= K1n + K2n.

Therefore

K1n ≤ C mn

{(
φθ,x(hK)

n

)1/a}
, ∀i 6= j.

Now choose mn =
(
φθ,x(hK)

n

)−1/a
, we get K1n = o(1).

For K2n: since the variable (∆i)1≤i≤n is bounded (i.e, ‖∆i‖∞ < ∞, we can
use the Davydov-Rio’s inequality. So, we have for all i 6= j,

|Cov(∆i, ∆j)| ≤ Cα(|i− j|).

By the fact,
∑

k≥mn+1
k−a ≤

∫∞
mn

v−adv =
m−a+1
n

a− 1
, we get by applying (H1),

K2n ≤
∑

|i−j|≥mn+1

|i− j|−a ≤ nm
−a+1
n

a− 1

with the same choice of mn, we get K2n = o(1).
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Finally by

φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj) = o(1), (20)

this complete the proof of lemma. �

Proof. [Proof of Lemma 2]
We will establish the asymptotic normality of An(θ, t, x) suitably normal-

ized. We have

√
nφθ,x(hK)An(θ, t, x) =

√
nφθ,x(hK)

nEK1(θ, x)

n∑
i=1

Ni(θ, t, x)

=

√
φθ,x(hK)√
nEK1(θ, x)

n∑
i=1

Ni(θ, t, x)

=
1√
n

n∑
i=1

Ξi(θ, t, x) =
1√
n
Sn.

Now we can write, Ξi =

√
φθ,x(hK)

EK1(θ, x)
Ni, we have

Var(Ξi) =
φθ,x(hK)

E2K1(θ, x)
Var(Ni) = Vn(θ, t, x).

Note that by (19), we have Var(Ξi) −→ V(θ, t, x) as n goes to infinity and
by (20), we have

∑
|i−j|>0

|Cov(Ξi, Ξj)| =
φθ,x(hK)

E2K1(x, θ)

n∑
|i−j|>0

|Cov(Ni, Nj)| = o(n), (21)

Obviously, we have√
nφθ,x(hK)

V(θ, t, x)
(An(θ, t, x)) = (nV(θ, t, x))−1/2 Sn.

Thus, the asymptotic normality of (nV(θ, t, x))−1/2 Sn, is sufficient to show
the proof of this Lemma. This last is shown by the blocking method, where
the random variables Ξi are grouped into blocks of different sizes defined.
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We consider the classical big- and small-block decomposition. We split the
set {1, 2, . . . , n} into 2kn + 1 subsets with large blocks of size un and small
blocks of size vn and put

kn :=
[ n

un + vn

]
.

Now by Assumption (H10)-(ii) allows us to define the large block size by

un =:
[(nφθ,x(hK)

qn

)1/2 ]
.

Using Assumption (H10) and simple algebra allows us to prove that

vn

un
→ 0,

un

n
→ 0,

un√
nφθ,x(hK)

→ 0, and
n

un
α(vn)→ 0. (22)

Now, let Υj, Υ
′
j and Υ

′′
j be defined as follows:

Υj(θ, t, x) = Υj =

j(u+v)+u∑
i=j(u+v)+1

Ξi(θ, t, x), 0 ≤ j ≤ k− 1,

Υ ′j(θ, t, x) = Υ ′j =

(j+1)(u+v)∑
i=j(u+v)+u+1

Ξi(θ, t, x), 0 ≤ j ≤ k− 1,

Υ
′′
j (θ, t, x) = Υ

′′
j =

n∑
i=k(u+v)+1

Ξi(θ, t, x), 0 ≤ j ≤ k− 1.

Clearly, we can write

Sn(θ, t, x) = Sn =

k−1∑
j=1

Υj +

k−1∑
j=1

Υ ′j + Υ
′′
k

=: Ψn(θ, t, x) + Ψ
′
n(θ, t, x) + Ψ

′′
n(θ, t, x)

=: Ψn + Ψ
′
n + Ψ

′′
n .

We prove that

(i)
1

n
E(Ψ ′n)2 −→ 0, (ii)

1

n
E(Ψ ′′n)2 −→ 0, (23)



Central limit theorem in single functional index 69

∣∣∣E{exp
(
izn−1/2Ψn

)}
−

k−1∏
j=0

E
{

exp
(
izn−1/2Υj

)} ∣∣∣ −→ 0, (24)

1

n

k−1∑
j=0

E
(
Υ2j

)
−→ V(θ, t, x), (25)

1

n

k−1∑
j=0

E
(
Υ2j 1{|Υj|>ε

√
nV(θ,t,x)}

)
−→ 0 (26)

for every ε > 0.
Expression (23) show that the terms Ψ ′n and Ψ ′′n are asymptotically neg-

ligible, while Equations (24) and (25) show that the Υj are asymptotically
independent, verifying that the sum of their variances tends to V(θ, t, x). Ex-
pression (26) is the Lindeberg-Feller’s condition for a sum of independent
terms. Asymptotic normality of Sn is a consequence of Equations (23)-(26).

• Proof of (23) Because E(Ξj) = 0, ∀j, we have that

E(Ψ ′n)2 = Var

k−1∑
j=1

Υ ′j

 =

k−1∑
j=1

Var
(
Υ ′j
)
+

k−1∑
|i−j|>0

Cov
(
Υ ′i, Υ

′
j

)
:= Π1+Π2.

By the second-order stationarity and (21) we get

Var
(
Υ ′j
)

= Var

 (j+1)(un+vn)∑
i=j(un+vn)+un+1

Ξi(θ, t, x)


= vnVar(Ξ1(x)) +

vn∑
|i−j|>0

Cov (Ξi(θ, t, x), Ξj(θ, t, x))

= vnVar(Ξ1(x)) + o(vn).

Then

Π1
n

=
kvn

n
Var(Ξ1(θ, t, x)) +

k

n
o(vn)

≤ kvn

n

{
φθ,x(hK)

E2K1(x)
Var (Ξ1(x))

}
+
k

n
o(vn)
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≤ kvn

n

{
1

φθ,x(hK)
Var (Ξ1(x))

}
+
k

n
o(vn).

Simple algebra gives us

kvn

n
∼=

(
n

un + vn

)
vn

n
∼=

vn

un + vn
∼=
vn

un
−→ 0 as n→∞.

Using Equation (20) we have

lim
n→∞ Π1

n
= 0. (27)

Now, let us turn to Π2/n. We have

Π2
n

=
1

n

k−1∑
|i−j|>0

Cov (Υi(x), Υj(x))

=
1

n

k−1∑
|i−j|>0

vn∑
l1=1

vn∑
l2=1

Cov
(
Ξmj+l1 , Ξmj+l2

)
,

with mi = i(un+vn)+un+1. As i 6= j, we have |mi−mj+ l1− l2| ≥ un.
It follows that

Π2
n
≤ 1

n

n∑
|i−j|≥un

Cov (Ξi(x), Ξj(x)) = o(1),

then

lim
n→∞ Π2

n
= 0. (28)

By Equations (27) and (28) we get Part(i) of the Equation(23).

We turn to (ii), we have

1

n
E
(
Ψ ′′n
)2

=
1

n
Var

(
Υ ′′k
)

=
ϑn

n
Var (Ξ1(x)) +

1

n

ϑn∑
|i−j|>0

Cov (Ξi(x), Ξj(x)) ,

where ϑn = n−kn(un+vn); by the definition of kn, we have ϑn ≤ un+vn.
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Then

1

n
E
(
Ψ ′′n
)2 ≤ un + vn

n
Var (Ξ1(x)) +

1

n

ϑn∑
|i−j|>0

Cov (Ξi(x), Ξj(x))

and by the definition of un and vn we achieve the proof of (ii) of Equation
(23).

• Proof of (24) We make use of Volkonskii and Rozanov’s lemma (see the
appendix in Masry [26]) and the fact that the process (Xi, Xj)is strong
mixing.

Note that Υa is F jaia -mesurable with ia = a(un + vn) + 1 and ja =

a(un + vn) + un; hence, with Vj = exp
(
izn−1/2Ψn

)
we have

∣∣∣E {Vj}−

k−1∏
j=0

E
{

exp
(
izn−1/2Υj

)} ∣∣∣ ≤ 16knα(vn + 1)

∼=
n

vn
α(vn + 1)

which goes to zero by the last part of Equation (22). Now we establish
Equation (25).

• Proof of (25) Note that Var(Ψn) −→ V(θ, t, x) by equation (23) (by
the definition of the Ξi). Then because

E (Ψn)
2 = Var (Ψn) =

k−1∑
j=0

Var (Υj) +

k−1∑
i=0 i6=j

k−1∑
j=1

Cov (Υi, Υj) ,

all we have to prove is that the double sum of covariances in the last
equation tends to zero. Using the same arguments as those previously
used for Π2 in the proof of first term of Equation (23) we obtain by
replacing vn by un we get

1

n

k−1∑
j=1

E
(
Υ2j

)
=
kun

n
Var (Ξ1) + o(1).

As Var (Ξ1) −→ V(θ, t, x) and
kun

n
−→ 1, we get the result.

Finally, we prove Equation (26).
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• Proof of (26) Recall that

Υj =

j(un+vn)+un∑
i=j(un+vn)+1

Ξi.

Finally for establish (26) it suffices to show for n large enough that the
set {|Υj| > ε

√
nV(θ, t, x)} is empty .

Making use Assumptions (H3) and (H5), we have∣∣∣Ξi∣∣∣ ≤ C (φθ,x(hK))
−1/2

therefore ∣∣∣Υj∣∣∣ ≤ Cun (φθ,x(hK))−1/2 ,
which goes to zero as n goes to infinity by Equation (22).

Since |Hi(t) − F(θ, t, x)| ≤ 1, then∣∣∣Υj∣∣∣ ≤ unNj√
φθ,x(hK)

≤ Cun√
φθ,x(hK)

.

Thus
1√
n

∣∣∣Υj∣∣∣ ≤ Cun√
nφθ,x(hK)

.

Then for n large enough, the set
{
|Υj| > ε (nV(θ, t, x))

−1/2
}

becomes

empty, this completes the proof and therefore that of the asymptotic
normality of (nV(θ, t, x))−1/2 Sn and the Lemma 2.

�

Proof. [Proof of Lemma 3]
We have√
nφθ,x(hK)Bn(θ, t, x) =

√
nφθ,x(hK)

F̂D(θ, x)

{
EF̂N(θ, t, x) − a1(θ, x)F(θ, t, x)

+F(θ, t, x)
(
a1(θ, x) − EF̂D(θ, x)

)}
.
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Firstly, observed that the results below as n→∞
1

φθ,x(hK)
E
[
Kl
(
< x− Xi, θ >

hK

)]
−→ al(θ, x), for l = 1, 2, (29)

E
[
F̂D(θ, x)

]
−→ a1(θ, x), (30)

and

E
[
F̂N(θ, t, x)

]
−→ a1(θ, x)F(θ, t, x), (31)

can be proved in the same way as in Ezzahrioui and Ould-Säıd [14] corre-
sponding to their Lemmas 5.1 and 5.2, and then their proofs are omitted.

Secondly, on the one hand, making use of (29), (30) and (31), we have as
n→∞{

EF̂N(θ, t, x) − a1(θ, x)F(θ, t, x) + F(θ, t, x)
(
a1(θ, x) − EF̂D(θ, x)

)}
−→ 0.

On other hand,√
nφθ,x(hK)

F̂D(θ, x)
=

√
nφθ,x(hK)F̃

′(θ, t, x)

F̂D(θ, x)F̃ ′(θ, t, x)
=

√
nφθ,x(hK)F̃

′(θ, t, x)

F̃ ′N(θ, t, x)
. (32)

Then using Proposition 3.2 in Kadiri et al. [18], it suffices to show that√
nφθ,x(hK)

F̃ ′N(θ,t,x)
tends to zero as n goes to infinity.

Indeed

F̃ ′N(θ, t, x) =
1

nhHEK1(θ, x)

n∑
i=1

δi

Ḡ(Yi)
K

(
< x− Xi, θ >

hK

)
H ′
(
t− Yi
hH

)
.

Because K(·)H ′(·) is continuous with support on [0, 1] then by (H5)-(ii) and
(H6) ∃ m = inf

[0,1]
K(t)H ′(t) it follows that

F̃ ′N(θ, t, x) ≥
m

hHφθ,x(hK)

which gives

nφθ,x(hK)

F̃ ′N(θ, t, x)
≤

√
nh2Hφθ,x(hK)

3

m
.

Finally, using (H10), completes the proof of Lemma 3.
�
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Sankhyã B, Special Issue on Quantile Regression and Related Methods,
67(2) (2005), 378–399.

[16] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory
and Practice, Springer Series in Statistics, Springer, New York, 2006.

[17] A. Gannoun, J. Saracco and K. Yu, Nonparametric prediction by con-
ditional median and quantiles, J. Statist. Plann. Inference., 117 (2003),
207–223.

[18] N. Kadiri, A. Rabhi and A. Bouchentouf, Strong uniform consistency rates
of conditional quantile estimation in the single functional index model
under random censorship, Journal Dependence Modeling, 6(1) (2018),
197–227.

[19] E. Kaplan and P. Meier, Nonparametric Estimation from Incomplete Ob-
servations, Journal of the American Statistical Association, 53 (1958),
457–481.
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Abstract. In this paper, we discuss tripotent1 elements in the finite
ring H/Zp. We provide examples and establish conditions for tripotency.
We follow similar methods used in [3] for idempotent elements in H/Zp.

1 Introduction

Quaternions, denoted by H, were first discovered by William. R. Hamilton in
1843 as an extension of complex numbers into four dimensions [9]. Namely, a
quaternion is of the form x = a0 + a1i + a2j + a3k, where ai are reals and
i, j, k are such that i2 = j2 = k2 = ijk = −1. Algebraically speaking, H forms
a division algebra (skew field) over R of dimension 4 ([9], p.195–196). A study
of the finite ring2 H/Zp, where p is a prime number, looking into its structure
and some of its properties, was done in [2]. A more detailed description of the
structure H/Zp was given by Miguel and Serodio in [6]. Among others, they
found the number of zero-divisors, the number of idempotent elements, and
provided an interesting description of the zero-divisor graph. In particularly,
they showed that the number of idempotent elements in H/Zp is p2+p+2, for
p odd prime. As discussed in [3], the only scalar idempotents in H/Zp are a0 =
0, 1. Unlike that, as we will see below, there are scalar tripotents (a0 6= 0, 1) in
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Key words and phrases: quaternion, ring, idempotent, tripotent
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H/Zp. Yet, in both cases, there are no non-zero scalar multiple of the imaginary
units (i.e. x = bi). Unlike also to the idempotent case, there are also pure
imaginary tripotents (i.e. x = a1i+a2j+a3k). There are also tripotent elements
which are not idempotent. In the sections that follow, we give examples of
tripotent elements in H/Zp and provide conditions for tripotency in H/Zp.

2 Tripotent elements in H/Zp
A quaternion x of the form x = a0+a1i+a2j+a3k is said to be tripotent if x3 =
x. For the case of H/R (i.e. a0, a1, a2, a3 ∈ R), the only tripotent elements are
x = −1, x = 0 and x = 1. However, for the case H/Zp (i.e. a0, a1, a2, a3 ∈ Zp),
where p is a prime number, there are other possible tripotents other than, say,
the obvious ones.

First notice the following: Take, for example, p = 5. If a0 6= 0, a1 = a2 =
a3 = 0, i.e. H/Z5 = {0, 1, 2, 3, 4}, a scalar tripotent is 4. For H/Z7 is 6, H/Z11
is 10, etc. In other words, for H/Zp the only scalar tripotent is p–1. This is
not hard to show as (p–1)3 = (−1)3 = −1 = p–1. Furthermore, there are no
tripotents that are non-zero scalar multiple of the imaginary units (say x = bi)
because x3 = (bi)3 = −bi = −x ( 6= x).

Furthermore, the existence of non-trivial tripotents is guaranteed as follows:
As discussed in [2], [3] and [6], H/Zp, which is not a division ring, has non-
trivial idempotents3. But, it is not hard to show that idempotency implies
tripotency due to the fact that in any ring x2 = x ⇒ x3 = x. (actually
x2 = x ⇒ xn = x , for n > 0). Nevertheless, the converse is not true. For
example, in H/Z5, 3 + i is idempotent and hence also tripotent, but 2 + i is
tripotent but not idempotent. (see also Example 1 and Remark 1).

The following propositions discuss the cases in which a non-scalar quaternion
x ∈ H/Zp , where p is a prime number, is tripotent.

Proposition 1 Let x ∈ H/Zp be a quaternion of the form x = a0+a1i, where
a0, a1 6= 0. Then, x is tripotent if and only if a20 =

1−p
4 and a21 =

p−1
4 , where p

prime number and p 6= 2, 3.

Proof. Let x = a0 + a1i. Then:

x3 = x⇒ (a0 + a1i)
3 = a0 + a1i⇒ a30 − 3a0a

2
1 + (3a20a1 − a

3
1)i = a0 + a1i

From the above we have the following two equations:

a30 − 3a0a
2
1 = a0
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3a20a1 − a
3
1 = a1

These can be simplified into the following:

a20 − 3a
2
1 = 1 (1)

3a20 − a
2
1 = 1 (2)

One can solve for a20 and a21 as follows:

a20−3a
2
1 = 3a

2
0−a

2
1 ⇒ a20−3a

2
0 = 3a

2
1−a

2
1 ⇒ −2a20 = 2a

2
1 ⇒ −a20 = a

2
1 (3)

Substituting for a20 in (1) and solving for a21 , we get:

−a21 − 3a
2
1 = 1⇒ −4a21 = 1⇒ a21 =

−1

4
. Since p = 0 (modp) , a21 =

p− 1

4
.

Solving for a20, equation (3) gives: a20 = −
(
p−1
4

)
= 1−p

4 .

To see if the quantities p−1
4 and 1−p

4 are squares modp, we calculate the

Legendre Symbol 4 for
( p−1

4
p

)
and

( 1−p
4
p

)
respectively. The first gives:( p−1

4

p

)
=

(
p− 1

p

)( 1
4

p

)
=

(
p− 1

p

)
· 1 = (p− 1)

p−1
2 = (−1)

p−1
2

=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).

Hence, there are no tripotents of the form a0+a1i, if p ≡ 3 (mod 4). Elements
of the form a0+a1i are tripotent if p ≡ 1 (mod 4) and, in that case, a20 =

1−p
4

and a21 =
p−1
4 .

For the converse, it is not hard to show that given a20 =
1−p
4 and a21 =

p−1
4 , we

have that:

x3 = (a0 + a1i)
3 = a30 − 3a0a

2
1 + (3a20a1 − a

3
1)i

= a0(a
2
0 − 3a

2
1) + a1(3a

2
0 − a

2
1)i

= a0

(
1− p

4
− 3

p− 1

4

)
+ a1

(
3
1− p

4
−
p− 1

4

)
i

= a0(1− p) + a1(1− p)i

= a0 + a1i, as p = 0 (mod p)

= x

Hence, x is tripotent. �



Tripotent elements in H/Zp 81

Example 1 Let p = 13. Then, we have a20 =
1−13
4 = −12

4 = −3 = 10 (mod 13)

and a21 = 13−1
4 = 12

4 = 3. There are many values for a0 and a1. One pair of
these possible values is a0 = 6 and a1 = 4, because 62 = 36 = 10 (mod 13) and
42 = 16 = 3 (mod 13). Therefore x = 6 + 4i is a tripotent in H/Z13. Notice
also that x = 6+ 4i is not an idempotent in H/Z13.

Remark 1 As we have seen already above, there are tripotents which are also
idempotents. As we explained already, idempotency implies tripotency, hence
the tripotents which are also idempotents satisfy also the conditions of idem-

potency given in [3]. Namely, a0 =
p+1
2 and a21 + a

2
2 + a

2
3 =

p2−1
4 . Tripotents

which are not idempotends, that is ‘proper’ tridempotents, do not satisfy these
additional conditions. It is not hard to see that the conditions for idempotency
imply the conditions for tripotency that we provide here, but not vice versa.
(see more in Par. 3 for a general condition on when a tripotent is also idem-
potent). Notice also that in [3] it was shown that there are no pure imaginary
idempotents of the form x = a1i + a2j + a3k. Yet, as Proposition 2 below
shows, there are tripotents of that form. Hence, all pure imaginary elements
are ‘proper’ tripotents.

Proposition 2 Let x ∈ H/Zp be a pure imaginary element of the form x =
a1i+a2j+a3k, where at least two of a1, a2, a3 are non-zero. Then, x is tripotent
if and only if a21 + a

2
2 + a

2
3 = p− 1.

Proof. Let x = a1i+ a2j+ a3k. Then:

x3 = x⇒ (a1i+ a2j+ a3k)
3 = a1i+ a2j+ a3k

Expanding the above, we get:

a1
(
−a21−a

2
2−a

2
3

)
i+a2

(
−a21−a

2
2−a

2
3

)
j+a3

(
−a21−a

2
2−a

2
3

)
k = a1i+a2j+a3k

Hence, we obtain the following three equations:

a1(−a
2
1 − a

2
2 − a

2
3) = a1 (4)

a2(−a
2
1 − a

2
2 − a

2
3) = a2 (5)

a3(−a
2
1 − a

2
2 − a

2
3) = a3. (6)

From the above three equations we get:

a1 = 0 or − a21 − a
2
2 − a

2
3 = 1
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a2 = 0 or − a21 − a
2
2 − a

2
3 = 1

a3 = 0 or − a21 − a
2
2 − a

2
3 = 1.

From the equation −a21 − a
2
2 − a

2
3 = 1, we have a21 + a

2
2 + a

2
3 = −1. This can

be written also as a21 + a
2
2 + a

2
3 = p− 1, as pmodp = 0.

For the converse, given that a21 + a
2
2 + a

2
3 = p − 1, it is not hard to see that:

x3 = (a1i+a2j+a3k)
3 = a1(−a

2
1−a

2
2−a

2
3)i+a2(−a

2
1−a

2
2−a

2
3)j+a3(−a

2
1−

a22 − a
2
3)k = a1(1 − p)i + a2(1 − p)j + a3(1 − p)k = a1i + a2j + a3k = x, as p

modp = 0. Hence, x is tripotent. �

Example 2 Let p = 5. Then, we have a21+a
2
2+a

2
3 = 5− 1 = 4. We can have

different combinations of numbers from Z5 that satisfy the above equation. One
such combinations is a1 = 3, a2 = 4 and a3 = 2 (i.e. 32 + 42 + 22 = 29 = 4

mod 5). Hence, x = 3i+ 4j+ 2k is a tripotent in H/Z5.

Theorem 1 Let x ∈ H/Zp, where p is prime and p 6= 2, 3, be an element of
the from x = a0+a1i+a2j+a3k, where a0 6= 0 and at least one of a1, a2, a3 is
non-zero. Then, x is tripotent if and only if a20 =

1−p
4 and a21+a

2
2+a

2
3 =

p−1
4 .

Proof. Let x = a0 + a1i+ a2j+ a3k. Then:

x3 = x⇒ (a0 + a1i+ a2j+ a3k)
3 = a0 + a1i+ a2j+ a3k.

After the multiplications, we get:

a0
(
a20−3

(
a21+a

2
2+a

2
3

))
+a1

(
3a20−

(
a21+a

2
2+a

2
3

))
i+a2

(
3a20−

(
a21+a

2
2+a

2
3

))
j

+ a3
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
k = a0 + a1i+ a2j+ a3k.

Hence, we obtain the following four equations by equating the correspond-
ing coefficients:

a0
(
a20 − 3

(
a21 + a

2
2 + a

2
3

))
= a0 (7)

a1
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
= a1 (8)

a2
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
= a2 (9)

a3
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
= a3. (10)

From the above four equations we get the following:

a0 = 0 or a20 − 3
(
a21 + a

2
2 + a

2
3

)
= 1
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a1 = 0 or 3a20 −
(
a21 + a

2
2 + a

2
3

)
= 1

a2 = 0 or 3a20 −
(
a21 + a

2
2 + a

2
3

)
= 1

a3 = 0 or 3a20 −
(
a21 + a

2
2 + a

2
3

)
= 1.

From the first, since a0 6= 0, we have a20 − 3
(
a21 + a

2
2 + a

2
3

)
= 1. In addition,

from the last three we have 3a20 −
(
a21 + a

2
2 + a

2
3

)
= 1. Let a21 + a

2
2 + a

2
3 = λ.

Then, we have the following two equations:

a20 − 3λ = 1 (11)

3a20 − λ = 1. (12)

Combining the equations, we get:

a20 − 3λ = 3a20 − λ⇒ −2a20 = 2λ⇒ a20 = −λ.

Substituting a20 for −λ in (11), we get λ = −1
4 =

p−1
4 , because pmodp = 0.

Hence, a21 + a
2
2 + a

2
3 =

p−1
4 . And, since a20 = −λ, we get a20 =

1−p
4 .

For the converse, given that a20 =
1−p
4 and a21 + a

2
2 + a

2
3 =

p−1
4 , it is not hard

to see that:

x3 =
(
a0 + a1i+ a2j+ a3k

)3
= a0

(
a20 − 3

(
a21 + a

2
2 + a

2
3

))
+

a1
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
i+

a2
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
j+

a3
(
3a20 −

(
a21 + a

2
2 + a

2
3

))
k

= a0

(
1− p

4
− 3

p− 1

4

)
+

a1

(
3
1− p

4
−
p− 1

4

)
i+

a2

(
3
1− p

4
−
p− 1

4

)
j+

a3

(
3
1− p

4
−
p− 1

4

)
k

= a0(1− p) + a1(1− p)i+ a2(1− p)j+ a3(1− p)k

= a0 + a1i+ a2j+ a3k , as p = 0 mod p

= x.

Hence, x is tripotent. �
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Example 3 Let p = 7. Then, a20 =
1−7
4 = −6

4 and a21+a
2
2+a

2
3 =

7−1
4 = 6

4 . From
the two equations we have 4a20 = −6 = 1 (mod 7) and 4(a21+a

2
2+a

2
3) = 6. One

possible solution is a0 = 3 and a1 = 2, a2 = 2, a3 = 2. This can be checked as
follows: 4(32) = 36 = 1 (mod 7) and 4(22 + 22 + 22) = 48 = 6 (mod 7).Thus,
the element x = 3 + 2i + 2j + 2k is tripotent in H/Z7 (but not idempotent).
Another tripotent is x = 4+ 3i+ j+ 4k, which is also idempotent.

Remark 2 The equation a21 + a
2
2 + a

2
3 =

p−1
4 brings to mind the classic ‘Sum

of Three Squares Theorem’ which was proved by Gauss in his Disquisitiones
Arithmeticae in 1801.5 As that theorem says, an integer n can be the sum of
three squares if and only if n 6= 4m(8k+ 7),m, k,≥ 0. So, clearly, when n = 7
one does not have solutions to the equation a21 + a

2
2 + a

2
3 = n. But, in our

case (in this special ‘modp’ version), one does get solutions for p = 7 to the
equation a21 + a

2
2 + a

2
3 =

p−1
4 , as Example 3 above shows. More interestingly,

we get solutions even if p−14 = 4m(8k+7),m, k,≥ 0. For example, for p = 113,
p−1
4 = 113−1

4 = 28 = 41(8.0+ 7), but 28 = 141 (mod 113) = 42+ 52+ 102. And,

given that a20 =
1−113
4 = −28 = 85 (mod 113), the tripotent is 56+4i+5j+10k.

3 Connection to general rings and applications

There is a lot in the literature regarding tripotents, and k-potents in general,
in more general rings R. It would be interesting to see if and how some of these
results relate to the ‘special’, in a sense, ring H/Zp.

In Zhou et al. [14] (Theorem 2.1), we are informed that in a commutative
ring R every x is the sum of two idempotents if and only if x3 = x. As H/Zp
is not commutative, the above fails. For example, consider the idempotents
a = 3+ i and b = 3+ j in H/Z5. Then, x = a+b = (3+ i)+(3+ j) = 6+ i+ j =
1 + i + j, but x is not tripotent (because 12 6= 1−5

4 and 12 + 12 6= 5−1
4 from

the Theorem 1 above). The above fails even when the idempotents commute.
Take, for example, a = b = 3+ i in H/Z5.

Also, Mosic in [7] gives the relation between idempotent and tripotent ele-
ments in any associative ring R, generalizing the result on matrices by Bak-
salary and Trenkler [12]. Namely, for any x ∈ R, where 2, 3 are invertible, x is
idempotent if and only if x is tripotent and 1−x is tripotent (or 1+x is invert-
ible). Since H/Zp is associative, the result holds. As we have seen already in
Par.2 above, idempotency implies tripotency. But for a tripotent to be idem-
potent it is also required that 1−x is tripotent. Take for example the tripotents
in our Example 3 above. Namely, x = 4+3i+ j+4k and x = 3+2i+2j+2k in
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H/Z7. The first is also an idempotent, but the second is not. It is not hard to
check that directly or using the conditions for idempotency in [3]. Notice also
that for the first case we have 1− x is tripotent (and 1+ x is invertible as the
N(x) = 2 6= 0), where in the second case is 1− x is not tripotent (nor 1+ x is
invertible as the N(x) = 0). More generally, in H/Zp, one can see the condi-
tions given by Mosic as follows: Theorem 1 says that if x = a0+a1i+a2j+a3k
is tripotent then a20 =

1−p
4 and a21 + a

2
2 + a

2
3 =

p−1
4 . If 1− x is also a tripotent,

then (1−a0)
2 = 1−p

4 and a21+a
2
2+a

2
3 =

p−1
4 . Equating the corresponding first

terms, one has a20 = (1 − a0)
2 ⇒ 1 − 2a0 + a

2
0 ⇒ 2a0 = 1 ⇒ a0 =

1
2 = p+1

2 ,
which is the first condition for idempotency in [3]. (the second condition in [3]

is also true by simply noticing that a21 + a
2
2 + a

2
3 =

p−1
4 = p2−1

4 ).
Finally, it is interesting to note any possible applications of idempotents,

tripotent or more generally k-potent ring elements. Wu in [13] applies k-potent
matrices in digital image encryption. A series of encryption key matrices is
used, via matrix multiplications, to mask an image by altering the gray level of
each pixel of the image. The original image then is transformed into a different
image. k-potent matrices, and their ‘variations’, are used for the encryption
key matrices. Wu defines them all via the equation: A = αI + βA, where
αβ = 0, α, β ∈ {−1, 0, 1} and k ≥ 2. (e.g. A is periodic with period k − 1
if Ak = A and k is the least positive integer as such, A is skew-unipotent if
Ak = −I, etc).

4 Conclusion

In this paper, we talked about tripotent elements in H/Zp. Unlike idempotents,
there are scalar tripotents (a0 6= 0, 1) in H/Zp. Yet, in both cases, there are
no non-zero scalar multiple of the imaginary units (i.e. x = bi). Unlike also
to the idempotent case, there are also pure imaginary tripotents (i.e. x =
a1i+a2j+a3k). There are also tripotent elements which are not idempotent.
We provided examples of non-trivial tripotents and we established conditions
for tripotency. The methodology we followed and the conditions we found were
very similar as the one(s) in [3]. An interesting and possibly harder project
is to look at the structure of O/Zp, where O is the octonion division algebra,
and discuss idempotent, tripotent and nilpotent elements in that finite ring.
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Notes

1. Recall that x is idempotent if x2 = x, and x is tripotent if x3 = x. In general, x is
k-potent if xk = x, for some k.
2. + and · on H are defined in ([5], p.124). As p = 0 (modp), on H/Zp they are
defined as follows:

x+ y = (a0 + a1i+ a2j+ a3k) + (b0 + b1i+ b2j+ b3k)

= (a0 + b0) + (a1 + b1)i+ (a2 + b2)j+ (a3 + b3)k

x · y = (a0 + a1i+ a2j+ a3k) · (b0 + b1i+ b2j+ b3k)
= a0b0 + (p− 1)a1b1 + (p− 1)a2b2 + (p− 1)a3b3+

(a0b1 + a1b0 + a2b3 + (p− 1)a3b2)i+

(a0b2 + (p− 1)a1b3 + a2b0 + a3b1)j+

(a0b3 + a1b2 + (p− 1)a2b1 + a3b0)k.

3. In Herstein ([5], p.130), we have that: In a ring F, if x2 = x, for all x, then F is
commutative. It is not hard to show that the converse is not true. (e.g. F = Z3, 2 is not
idempotent). Actually, a field F has only trivial idempotents. Hence, in H/Zp some
elements are non-trivial idempotents and they were described in [3]. Interestingly,
in Herstein ([5], p.136) we also have that: In a ring F, if x3 = x, for all x, then
F is commutative. The latter is much harder to establish, but a solution (with an
interesting story behind it) can be found in [4].

4. The Legendre Symbol
(

a
p

)
is defined as follows:

(
a

p

)
= a

p−1
2 =

 1 if a is a qudratic residue mod p
−1 if a is not a qudratic residue mod p
0 if p/a.

5. For a proof see ([11], p.45). Also see [1] for a more elementary proof.
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Abstract. In this paper, we establish several generalized Becker-Stark
type inequalities for the tangent function. We present unified proofs of
many inequalities in the existing literature. Graphical illustrations of
some obtained results are also presented.

1 Introduction

Becker and Stark [6] established the inequality

1−
4x2

π2
<

x

tan x
<
π2

8
−
x2

2
; x ∈ (0, π/2). (1)

The inequality (1) attracted many researchers and several of its variations and
refinements have been established. We may refer to [8, 9, 10, 20, 21, 5, 11, 16,
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Key words and phrases: Becker-Stark inequality, Stečkin inequality, tangent function,
monotonicity of functions, Bernoulli numbers

88
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19, 3, 4], and the references therein for more details. Chen and Cheung [8]
proved that the best possible constants for which the inequality(

1−
4x2

π2

)β
<

x

tan x
<

(
1−

4x2

π2

)α
; x ∈ (0, π/2) (2)

holds are α = π2/12 ≈ 0.8224 and β = 1. The inequality (2) refines (1).
Recently, Chen and Elezović [9] proved the following inequality:

π2

12
−
2x3

3π
<

x

tan x
< 1−

8x3

π3
; x ∈ (0, π/2). (3)

Although the upper bound of (3) is sharper than the corresponding upper
bound of (1), it is not sharper than the upper bound in (2).

The inequality

1−
4x2

π2
<

x

tan x
< 1−

x2

3
; x ∈ (0, π/2) (4)

was proved by Z.-H. Yang et. al. [19, (96)]. Before we proceed further, we
would like to note that the right inequality in (4) is not good near the point
x = π/2− as well as that this inequality is not better than the right inequality
in (2), as incorrectly stated in [19, Remark 17]. Strictly speaking, the following
inequality, which appears as a part of the equation [19, (98)], is not true since
the estimate (

π2 + 4x2

π2 − 4x2

)π2/24
<

3

3− x2
, x ∈ (0, π/2)

cannot be satisfied near the point x = π/2− . It is also known that

1−
2x

π
<

x

tan x
<
π2

4
−
πx

2
; x ∈ (0, π/2). (5)

The left inequality of (5) is due to H.-F. Ge [12] and the right inequality of
(5) is due to S. B. Stečkin [18].

Among all the inequalities (1)-(5), the inequality (2) is the best. In this
paper, our aim is to obtain several generalized inequalities by studying the
monotonicity of functions with one parameter. We will obtain or refine the
above inequalities as particular cases of our results. We also aim to improve
the lower bound of (2) in the interval (0, δ∗) where δ∗ ≈ 1.3407 as well as the
upper bound of (2) near the point x = π/2−. Our new bounds may not be
uniformly better than the ones in (2) but they certainly provide alternatives
to the best bounds.
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2 Preliminaries and lemmas

The following power series expansions involving Bernoulli numbers can be
found in [13, 1.411]:

cot x =
1

x
−

∞∑
k=1

22k

(2k)!
|B2k|x

2k−1 ; |x| < π, x 6= 0 (6)

and

csc x =
1

x
+

∞∑
k=1

2
(
22k−1 − 1

)
(2k)!

|B2k|x
2k−1; |x| < π, x 6= 0, (7)

where B2k are the even indexed Bernoulli numbers. The expansion (7) can be
rewritten as

x

sin x
= 1+

∞∑
k=1

2
(
22k−1 − 1

)
(2k)!

|B2k|x
2k; |x| < π. (8)

From (6), we obtain( x

sin x

)2
= −x2(cot x) ′ = 1+

∞∑
k=1

(2k− 1)22k

(2k)!
|B2k|x

2k; |x| < π, x 6= 0. (9)

Also, with reference to [13, 1.518], we have

ln(tan x) = ln x+

∞∑
k=1

(22k−1 − 1)22k

k(2k)!
|B2k|x

2k; 0 < x <
π

2
, x 6= 0. (10)

In addition to the above formulas, we will also use the following lemmas in
order to prove our main results. For Lemma 1, we refer to [2](see also [7, eqn
(4.3), p. 42].

Lemma 1 Let f1(x) and f2(x) be two real valued functions which are continu-
ous on [a, b] and derivable on (a, b), where −∞ < a < b <∞ and g′(x) 6= 0,
for all x ∈ (a, b). Let,

A(x) =
f1(x) − f1(a)

f2(x) − f2(a)
, x ∈ (a, b)

and

B(x) =
f1(x) − f1(b)

f2(x) − f2(b)
, x ∈ (a, b).

Then, we have
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(i) A(x) and B(x) are increasing on (a, b) if f′1(x)/f
′
2(x) is increasing on

(a, b).

(ii) A(x) and B(x) are decreasing on (a, b) if f′1(x)/f
′
2(x) is decreasing on

(a, b).

The strictness of the monotonicity of A(x) and B(x) depends on the strictness
of monotonicity of f′1(x)/f

′
2(x).

The result below shows the relationship between two consecutive absolute
Bernoulli numbers. It was established recently in [17].

Lemma 2 For k ∈ N, the Bernoulli numbers satisfy

(22k−1 − 1)

(22k+1 − 1)

(2k+ 1)(2k+ 2)

π2
<

|B2k+2|

|B2k|
<

(22k − 1)

(22k+2 − 1)

(2k+ 1)(2k+ 2)

π2
.

Lemma 3 Let A(x) =
∑∞
k=0 akx

k and B(x) =
∑∞
k=0 bkx

k be convergent for
|x| < R, where ak and bk are real numbers for k = 0, 1, 2, · · · such that bk > 0
for k ≥ 0. If the sequence ak/bk is strictly increasing (or decreasing), then the
function A(x)/B(x) is also strictly increasing (or decreasing) on (0, R).

For more details about Lemma 3, see, for instance, [14]. The following lemma
can be found in [1].

Lemma 4 For all integers k ∈ N, we have

2(2k)!

(2π)2k
1

1− 2α−2k
< |B2k| <

2(2k)!

(2π)2k
1

1− 2β−2k
, (11)

with the best constants α = 0 and β = 2+ (ln(1− 6/π2))/ ln 2 ≈ 0.6491.

3 Main results

In this section, we will state and prove our main results. In the beginning, for
any number p ∈ R, we define

φp(x) :=
tan x− x

xp tan x
, x ∈ (0, π/2).

Then, the following result holds.
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Theorem 1

I. φp(x) is strictly increasing on (0, π/2) if and only if p ≤ 2, and

II. φp(x) is strictly decreasing on (0, π/2) if and only if p ≥ π2/4 ≈ 2.4674.

Proof. By differentiation, we have

Fp(x) = tan2 x · φ ′p(x) = −px−(p+1) tan2 x− (1− p)x−p tan x+ x1−p sec2 x.

Note that φp(x) is strictly increasing on (0, π/2) if and only if Fp(x) > 0,

x ∈ (0, π/2), i.e.,

p <
x2 sec2 x− x tan x

tan x(tan x− x)
=

(
x

sin x

)2
− x cot x

1− x cot x
=: f(x), x ∈ (0, π/2).

From (6) and (9), we get

f(x) =

∑∞
k=1

22k(2k−1)
(2k)! |B2k|x

2k +
∑∞
k=1

22k

(2k)! |B2k|x
2k∑∞

k=1
22k

(2k)! |B2k|x
2k

=

∑∞
k=1

22k2k
(2k)! |B2k|x

2k∑∞
k=1

22k

(2k)! |B2k|x
2k

:=

∑∞
k=1 akx

2k∑∞
k=1 bkx

2k
, x ∈ (0, π/2).

From this, we get ak/bk = 2k (k ∈ N). Since the sequence {ak/bk}
∞
k=1 is

strictly increasing, we conclude from Lemma 3 that the function f(x) is strictly
increasing on (0, π/2). Hence, φp(x) is strictly increasing on (0, π/2) if and
only if p ≤ inf {f(x) : 0 < x < π/2} = f(0+) = 2. Similarly, φp(x) is strictly
decreasing on (0, π/2) if and only if Fp(x) < 0, which is equivalent to saying
that p ≥ sup {f(x) : 0 < x < π/2} = f(π/2−) = π2/4. �

Remark 1 Suppose that p ∈ (2, π2/4). Since the function f(x) is strictly in-
creasing on (0, π/2), we get from the above that there exists a unique point
xp ∈ (0, π/2) such that f(xp) = p. This implies f(x) < p for x ∈ (0, xp) and
f(x) > p for x ∈ (xp, π/2) so that φp(x) is strictly decreasing on (0, xp) and
strictly increasing on (xp, π/2), with φp(x) ≥ φp(xp) for x ∈ (0, π/2).

Let p ∈ (−∞, 4] \ {0}. Define now

ψp(x) :=
ln
(

x
tan x

)
ln
(
1− p x

2

π2

) , x ∈ (0, π/2).

Then, we have:
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Theorem 2

I. ψp(x) is strictly decreasing on (0, π/2) if and only if p < 0, and

II. ψp(x) is strictly increasing on (0, π/2) if and only if 0 < p ≤ 4.

Proof. Set ψ1(x) := ln(x/ tan x), x ∈ (0, π/2) and (ψ2)p(x) := ln(1−(px2/π2)),
x ∈ (0, π/2). Then ψ1(0

+) = 0 = (ψ2)p(0) and differentiation yields

ψ ′1(x)

(ψ2) ′p(x)
=
1

2p

(
π2 − px2

) x− sin x cos x

x2 sin x cos x
=
1

2p
(ψ3)p(x), x ∈ (0, π/2),

where, for every x ∈ (0, π/2),

(ψ3)p(x) :=
(
π2 − px2

) x− sin x cos x

x2 sin x cos x
=

(π2 − px2)

x2

(
2x

sin 2x
− 1

)
.

By (8), we get

(ψ3)p(x) =
(π2 − px2)

x2

∞∑
k=1

22k − 2

(2k)!
|B2k|(2x)

2k

= (π2 − px2)

∞∑
k=1

22k(22k − 2)

(2k)!
|B2k|x

2k−2

= π2
∞∑
k=1

22k(22k − 2)

(2k)!
|B2k|x

2k−2 − p

∞∑
k=1

22k(22k − 2)

(2k)!
|B2k|x

2k

=
2π2

3
+

∞∑
k=1

(
π222k+2(22k+2 − 2)

(2k+ 2)!
|B2k+2|− p

22k(22k − 2)

(2k)!
|B2k|

)
x2k

=
2π2

3
+

∞∑
k=1

akx
2k, x ∈ (0, π/2),

where

ak :=
π222k+2(22k+2 − 2)

(2k+ 2)!
|B2k+2|− p

22k(22k − 2)

(2k)!
|B2k| (k ∈ N). (12)

Case I. If p < 0, then ak > 0 for k ∈ N and (ψ3)p(x) is strictly increasing
on (0, π/2). Consequently, ψp(x) is strictly decreasing on (0, π/2) by
Lemma 1.
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Case II. If p ∈ (0, 4], then −p ≥ −4 and we have

ak ≥
π222k+2(22k+2 − 2)

(2k+ 2)!
|B2k+2|− 4

22k(22k − 2)

(2k)!
|B2k| =: j(k), k ∈ N.

From Lemma 4, we calculate

ak ≥ j(k) >
22k+3

π2k

(
22k+2 − 2

22k+2 − 1
−
22k − 2

22k − 2β

)
=
22k+3

π2k
.
22k+2(2− 2β) − 22k

(22k+2 − 1)(22k − 2β)

=
24k+3

π2k
.

4(2− 2β) − 1

(22k+2 − 1)(22k − 2β)
.

Since 4(2 − 2β) ≈ 1.7268, we get ak > 0 for k ∈ N. This shows that
(ψ3)p(x) is strictly increasing on (0, π/2). By Lemma 1, ψp(x) is also
strictly increasing on (0, π/2).

�

If p < 4, then the function ψp(x) cannot be defined for x ≥ π/2. Suppose
now that p > 4 and consider the function ψp(x) defined for x ∈ (0, π/

√
p).

Then, the following result holds.

Theorem 3 The function ψp(x) is strictly decreasing on (0, π/
√
p) if p ≥

84/15.

Proof. Repeating verbatim the arguments used in the proof of Theorem 2,
we get that

(ψ3)p(x) =
2π2

3
+

∞∑
k=1

akx
2k, x ∈ (0, π/2),

where ak (k ∈ N) is given through (12). Let c := 84/(15π2). Then, we have

ak ≤ π2
(
22k+2(22k+2 − 2)

(2k+ 2)!
|B2k+2|− c

22k(22k − 2)

(2k)!
|B2k|

)
=: l(k), k ∈ N.

Then l(k) < 0 if and only if

|B2k+2|

|B2k|
< c

22k(22k − 2)

(2k)!

(2k+ 2)!

22k+2(22k+2 − 2)
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=
c

4

(2k+ 1)(2k+ 2)(22k−1 − 1)

(22k+1 − 1)
.

From Lemma 2, we have

|B2k+2|

|B2k|
<

(22k − 1)

(22k+2 − 1)

(2k+ 1)(2k+ 2)

π2
.

Keeping in mind the arguments used in the proof of Theorem 2, it remains to
be shown that

4(22k − 1)(22k+1 − 1) < cπ2(22k−1 − 1)(22k+2 − 1), k ∈ N.

After making a substitution x = 4k (x ≥ 4), it suffices to show that

2
(x− 1)(2x− 1)

(x− 2)(4x− 1)
≤ c
4
π2, x ≥ 4.

The equality holds for x = 4, while the strict inequality holds for x > 4 because
the function

y = 2
(x− 1)(2x− 1)

(x− 2)(4x− 1)
, x ≥ 4

is strictly decreasing (https://www.desmos.com/calculator), as it can be easily
approved. �

Next, we will show how our results give some known and other inequalities
for x/ tan x. First of all, we can see by Theorem 1 that the function

φ2(x) =
tan x− x

x2 tan x

is strictly increasing on (0, π/2). Hence,

φ2(0
+) =

1

3
< φ2(x) =

tan x− x

x2 tan x
< φ2(π/2

−) =
4

π2
,

which gives the inequality (4). Similarly, φ1(x) is strictly increasing on (0, π/2)
and thus with limits at extremities we obtain

1−
2x

π
<

x

tan x
< 1; x ∈ (0, π/2). (13)

This gives the left inequality of (5). Looking at the strictly decreasing function
φ3(x) on (0, π/2) and the limit φ3(π/2

−) = 8/π3, we get the right inequality
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of (3). Indeed, this inequality can be sharpened by considering φp(x) for p =
π2/4. Since (φp(x))p=π2/4 is strictly decreasing on (0, π/2), we obtain

(φp(x))p=π2/4 >
(
φp(π/2

−)
)
p=π2/4

,

i.e.,

x

tan x
< 1−

(
2x

π

)π2/4
; x ∈ (0, π/2). (14)

The inequality (14) is better than the right inequality of (2) near the point
x = π/2−. However, there is no strict comparison between the two.

Now it is easy to formulate the following

Corollary 1 The exponents 2 and π2/4 such that

1−

(
2x

π

)2
<

x

tan x
< 1−

(
2x

π

)π2/4
; x ∈ (0, π/2) (15)

are optimal.

Proof. Let

g(x) =
ln
(
1− x

tan x

)
ln
(
2x
π

) =
g1(x)

g2(x)
.

Here g1(x) and g2(x) are such that g1(π/2
−) = 0 = g2(π/2). Then

g ′1(x)

g ′2(x)
=
x2 sec2 x− x tan x

tan x · (tan x− x)
= f(x),

which is strictly increasing on (0, π/2) as discussed in the proof of Theorem 1.
Calculating the limits at extremities, we obtain the required. �

Several other inequalities can be established by using Theorem 1. We also
have the following corollaries of Theorem 2.

Corollary 2 If p ∈ (0, 4] and x ∈ (0, λ), where λ ∈ (0, π/2], then the inequal-
ities (

1− p
x2

π2

)α
<

x

tan x
<

(
1− p

x2

π2

)β
(16)

hold with the best possible constants α = ψp(λ
−) and β = π2/3p.



On the generalized Becker-Stark type inequalities 97

Proof. From Theorem 2, ψp(x) is strictly increasing on (0, λ) for p ∈ (0, 4].
So,

ψp(0
+) < ψp(x) < ψ(λ

−).

Since ψp(0
+) = π2/3p, we get (16). �

Remark 2 The inequality (2) can be deduced from Corollary 2, with p = 4

and λ = π/2.

Corollary 3 If a > 0, then the following inequality holds:

x

tan x
<

(
π2

π2 + ax2

)π2/3a
; x ∈ (0, π/2). (17)

Remark 3 Graphically it is observed that the inequality (17) is in fact true
for x ∈ (0, π).

We can use Theorem 3 to prove the following important corollary:

Corollary 4 If x ∈ (0, π/
√
p), where p ≥ 84/15, then the following inequality

holds:

x

tan x
≥
(
1− p

x2

π2

)π2/3p
. (18)

Furthermore, α = π2/3p is the optimal value for which (18) holds with a
number p ≥ 84/15 given in advance.

Albeit not used henceforward, we will state and prove the following result:

Proposition 1 Suppose that 0 < p1 < p2 and x ∈ (0, π/
√
p2). Then, we have(

1− p2
x2

π2

)π2/3p2
<

(
1− p1

x2

π2

)π2/3p1
. (19)

Proof. Let 0 < a < 1. Then, the mapping t 7→ ln(1 − at) − a ln(1 − t),
0 ≤ t < 1 is strictly increasing because its first derivative is given by

t 7→ a(1− a)t(1− t)−1(1− at)−1, t ∈ [0, 1).

Therefore, we have

ln(1− at) > a ln(1− t), 0 < a < 1, 0 < t < 1. (20)
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Applying (20) with a = p1/p2 and t = p2x
2/π2, we get

ln(1− p2x
2/π2)

p2
<

ln(1− p1x
2/π2)

p1
.

Multiplying both sides of the above inequality with π2/3 and taking the ex-
ponents, we immediately get (19). �

Suppose now that 4 < p < 84/15. We want to better explore the inequality
(18) and the right part of the inequality (2) in this intermediate case. First
of all, it is clear that there exists a sufficiently small real number εp > 0 such
that

x

tan x
>

(
1− p

x2

π2

)π2/3p
, x ∈

(
(π/
√
p) − εp, π/

√
p
)
. (21)

Set now

A :=

{
p > 4 ;

x

tan x
>

(
1− p

x2

π2

)π2/3p
for all x ∈

(
0, π/

√
p
)}
.

By Corollary 4, we have [84/15,+∞) ⊆ A. On the other hand, Proposition
yields that, if p0 > 4 and p0 /∈ A, then (4, p0]∩A = ∅. Therefore, it is natural
to ask: Can we calculate the set A intrinsically?

The answer is affirmative as the next result shows:

Theorem 4 We have A = [7π2/15,+∞).

Proof. Define

h(x) := ln
( x

tan x

)
−
π2

3p
ln
(
1− p

x2

π2

)
, x ∈ (0, π/

√
p).

Then h(0+) = 0 and

h′(x) =
3π2 + x2(2π2 − 3p)

3x(π2 − px2)
−

2

sin(2x)

=
[3π2 + x2(2π2 − 3p)] sin(2x) − 6x(π2 − px2)

3x(π2 − px2) sin(2x)
, x ∈ (0, π/

√
p).

Set t := 2x ∈ (0, 2π/
√
p) and

g(t) :=
sin t

t
−

12π2 − 3pt2

12π2 + t2(2π2 − 3p)
, t ∈ (0, 2π/

√
p).
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Then, it can be easily seen that h′(x) > 0 if and only if g(t) > 0 if and only if
q(t) > 0, where

q(t) := sin(t) ·
[
12π2 + t2(2π2 − 3p)

]
− t
[
12π2 − 3pt2

]
, t ∈ [0, 2π/

√
p).

Using https://www.symbolab.com/solver/partial-derivative-calculator, we get
that q(i)(0) = 0 for i = 0, 1, 2, 3, 4 as well as that

q(v)(t) = t2 cos t · (2π2 − 3p) + 10t sin t · (2π2 − 3p) + cos t · (60p− 28π2),

for any t ∈ [0, 2π/
√
p). Since 2π2 − 3p > 0 for p < 84/15, we have that

the assumption p ≥ 7π2/15 implies q(v)(0) ≥ 0 and q(v)(t) > 0 for all t ∈
(0, 2π/

√
p). This simply implies q(t) > 0 for all t ∈ (0, 2π/

√
p) and therefore

the function h(x) is strictly increasing on (0, π/
√
p); therefore h(x) > h(0+) =

0 for all x ∈ (0, π/
√
p) and [7π2/15,+∞) ⊆ A. If p < 7π2/15, then we have

q(i)(0) = 0 for i = 0, 1, 2, 3, 4 and q(v)(0) < 0, so that t = 0 is a local maximum
of function q(t) (which can be extended to the even function defined on the
whole real line) and therefore q(t) < 0 in a right neighborhood of point t = 0,
which implies that h′(x) < 0 in a right neighborhood of point x = 0 and
therefore h(x) < 0 in a right neighborhood of point x = 0; hence, p /∈ A.
Theorem 4 is proved. �

We now propose an alternative proof of Theorem 4 through the same base-
line and the use of power series expansions.
Proof. [Alternative proof] Define

h(x) := ln
( x

tan x

)
−
π2

3p
ln
(
1− p

x2

π2

)
, x ∈ (0, π/

√
p).

Then, by the power series expansion of the logarithmic function and (10), we
have

h(x) =
π2

3p

∞∑
k=1

1

k

pk

π2k
x2k −

∞∑
k=1

(22k−1 − 1)22k

k(2k)!
|B2k|x

2k.

Since |B2| = 1/6, after simplification, we get

h(x) =

∞∑
k=2

c2kx
2k, (22)

where

c2k :=
1

k

[
1

3

pk−1

π2k−2
−

(22k−1 − 1)22k

(2k)!
|B2k|

]
.
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Now, since |B4| = 1/30, we have c4 = p/(6π2) − 7/90. So, if p ≥ 7π2/15, we
obtain c4 ≥ 0. The rest of the proof consists in proving that c2k > 0 for k ≥ 3.
It follows from Lemma 4 that, for any k ∈ N,

|B2k| <
22k−1

22k−1 − 1

2(2k)!

(2π)2k
,

which implies that

(22k−1 − 1)22k

(2k)!
|B2k| <

24k

(2π)2k
=

(
4

π2

)k
.

Therefore, if p ≥ 7π2/15, the following inequality holds:

c2k >
1

k

[
1

3

(
7

15

)k−1
−

(
4

π2

)k]
.

Now, remark that the inequality (1/3) (7/15)k−1 >
(
4/π2

)k
is equivalent to

21/15 < (7π2/60)k, which is true for k ≥ 3 since 21/15 = 1.4, 7π2/60 ≈
1.151454 > 1 and (7π2/60)3 ≈ 1.52665. Thus, for k ≥ 3, we have c2k > 0.
Now, if p < 7π2/15, we have c4 < 0. Owing to the expansion (22) and [15],
there exists a δ > 0 such that h(x) < 0 for x ∈ (0, δ). This ends the proof of
Theorem 4. �

Now, Corollary 4 holds with p ≥ 7π2/15. For p = 7π2/15, from Corollary
4, we get (

1−
7x2

15

)15/21
<

x

tan x
; x ∈ (0, δ), (23)

where δ =
√
15/7 ≈ 1.46385 · · · .

Now, let us compare graphically the bounds of x/ tan x given in (2) with
those obtained in (14) and in (23) in Figures 1 and 2, respectively. In each
case, we distinguish two non-overlapping intervals of values for x to show some
hierarchy for these bounds.

Based on Figure 1 and a numerical analysis, we see that, for x ∈ (0, δ∗)
where δ∗ ≈ 1.3407, the lower bound in (23) is stronger than the lower bound
in (2). It is weaker for x ∈ (δ∗, δ), where δ ≈ 1.4638. Also, based on Figure 2
and a numerical analysis, for x ∈ (0, µ), where µ ≈ 1.1913, the upper bound
in (2) is stronger than the upper bound in (14). It is weaker for x ∈ (µ, π/2).
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Figure 1: Graphs of lower bounds of x/ tan x in (2) and (23) for (a) x ∈ (0, 1.2)
and (b) x ∈ (1.2,
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Figure 2: Graphs of upper bounds of x/ tan x in (2) and (14) for (a) x ∈ (0, 1)
and (b) x ∈ (1, π/2).

We conclude the paper by posing an open problem as follows:

Open Problem. Suppose that p, ζ > 0. Then, determine the best possible
constants αp,ζ, βp,ζ ∈ R such that the inequality

(
1−

pxζ

πζ

)βp,ζ
<

x

tan x
<

(
1−

pxζ

πζ

)αp,ζ
; x ∈ (0, π/2) ∩ (0, π/p1/ζ)

holds.
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Abstract. In this paper, we investigate the existence of a positive so-
lution to the third-order boundary value problem{

−u′′′(t) + k2u′(t) = φ (t) f(t, u(t), u′(t)), t > 0
u(0) = u′(0) = u′(+∞) = 0,

where k is a positive constant, φ ∈ L1 (0,+∞) is nonnegative and does
vanish identically on (0,+∞) and the function f : R+ × (0,+∞) ×
(0,+∞) → R+ is continuous and may be singular at the space variable
and at its derivative.

1 Introduction and main results

Boundary value problems for third-order differential equations arise in many
branches of physics and engineering where, for physical considerations, the
positivity of the solution is required. For instance, Danziger and Elemergreen
(see [15], p. 133) have obtained the following third-order linear differential
equations:
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α3u
′′′ + α2u

′′ + α1u
′ + (1+ k)u = kc, θ < c and

α3u
′′′ + α2u

′′ + α1u
′ + u = 0, θ > c.

(1)

These equations describe the variation of thyroid hormone with time. Here
u = u(t) is the concentration of thyroid hormone at time t and α3, α2, α2, k
and c are constants.

A reduced version of the Hodgkin–Huxley model was proposed by Nagumo.
He suggested the class of third-order differential equation

u′′′ − cu′′ + f′(u)u′ −
b

c
u = 0 (2)

as a model exhibiting many of the features of the Hodgkin–Huxley equations,
where f is a regular function. The Hodgkin–Huxley model is a system of non-
linear differential equations that approximates the electrical characteristics of
excitable cells such as neurons and cardiac myocytes. Recall that the Hodgkin–
Huxley model describes the ionic mechanisms underlying the initiation and
propagation of action potentials in the squid giant axom. The model has played
a vital role in biophysics and neuronal modelling. For more details of Nagumo’s
equations, we refer to the paper by McKeen [22].

The Kuramoto–Sivashinsky equation

ut + uxxxx + uxx +
1

2
u2 = 0

arises in a wide variety of physical phenomena. It was introduced to describe
pattern formulation in reaction diffusion systems, and to model the instabil-
ity of flame front propagation (see Y. Kuramoto and T. Yamada [18] and
D. Michelson [23]). The travelling wave solutions of this partial differential
equation (i.e. u(x, t) = u(x − ct)) solve the nonlinear third-order differential
equation

λu′′′(x) + u′(x) + f(u) = 0, (3)

where λ is a parameter depend on the constant c and f is an even function.
A three-layer beam is formed by parallel layers of different materials. For an

equally loaded beam of this type, Krajcinovic in [17] proved that the deflection
u is governed by the third order differential equation

− u′′′ + k2u′ = a, (4)

where k and a are physical parameters depending on the elasticity of the
layers.
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Study of existence of positive solutions for third-order bvps has received a
great deal of attention and was the subject of many articles, see, for instance,
[10, 11, 12, 13, 14, 21, 25, 27, 28, 29, 30, 31], for the case of finite intervals
and [1, 2, 3, 4, 6, 7, 8, 9, 16, 19, 20, 24, 26] for the case posed on the half-
line. Naturally, in such boundary value problems, the nonlinearity may have
a singular dependence on time or on the space variable. This was the case in
the papers [3, 6, 7, 8, 20, 21, 27, 28, 29], which motivated this work.

We are concerned in this paper by existence of a positive solution to the
boundary value problem (bvp for short),{

−u′′′(t) + k2u′(t) = φ (t) f(t, u(t), u′(t)), t > 0
u(0) = u′(0) = u′(+∞) = 0,

(5)

where k is a positive constant, φ : (0,+∞)→ R+ is a measurable function,
f : R+ × (0,+∞) × (0,+∞) → R+ is a continuous function and observe that
the form of the differential equation in (5) is more general to those of (1)-(4).
Here the constant k which may have a physical signification as in (4), will play
an important role in finding a suitable framework for a fixed point formulation
of bvp (5).

By positive solution to the bvp (5), we mean a function u ∈ C2 (R+) ∩
W3,1 (0,+∞) such that u > 0 in (0,+∞) and u(0) = u′(0) = limt→+∞ u′(t) =
0, satisfying the differential equation in (5).

In all this paper, we let

γ1(t) = (e2kt − 1)e−4kt,
γ̃(t) = k∗ektγ1(t) = k

∗ (1− e−kt) (1+ e−kt)e−kt,
γ(t) =

∫t
0 γ̃(s)ds =

k∗

3k

(
2− 3e−kt + e−3kt

)
=
k∗

3k

(
1− e−kt

)2
(2+ e−kt)

where k∗ = min(1, k)/2 and we assume that the functions φ and f satisfy the
following condition:

for all R > 0 there exists a function ΨR : (0,+∞)× (0,+∞)→ (0,+∞)
such that ΨR nonincreasing following its two variables,
f(t, ektw, ektz) ≤ ΨR (w, z) for all t,w, z ≥ 0 with |(w, z)| ≤ R,
lims→+∞φ (s)ΨR

(
re−ksγ(s), re−ksγ̃(s)

)
= 0 and∫+∞

0 φ (s)ΨR
(
re−ksγ(s), re−ksγ̃(s)

)
ds <∞ for all r ∈ (0, R] .

(6)
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Remark 1 Notice that functions m in L1 (0,+∞) do not satisfy limt→+∞
m(t) = 0. Indeed, the function

m0(t) =


2n4t− n(2n4 − 1) if t ∈

[
n− 1

2n3
, n
]

−2n4t+ n(2n4 + 1) if t ∈
[
n,n+ 1

2n3

]
0 if not

is integrable since
∫+∞
0 m0(t)dt ≤

∑
n≥1

1
n2
< ∞, and limn→+∞m0 (n) =

limn→+∞ n = +∞.
Hence, the condition

∫+∞
0 φ (s)ΨR

(
re−ksγ(s), re−ksγ̃(s)

)
ds <∞ in Hypoth-

esis (6) does not imply that lims→+∞φ (s)ΨR
(
re−ksγ(s), re−ksγ̃(s)

)
= 0.

Remark 2 Observe that the case where the nonlinearity f satisfies the poly-
nomial growth condition

f(t, u, v) ≤ C (1+ uσ + vµ)

with c, σ, µ > 0, lims→+∞φ (s) = 0 and
∫+∞
0 φ (s)ds <∞, is a particular case

where Condition (6) is satisfied.

Remark 3 Notice that if Hypothesis (6) holds then |φ|1 =
∫+∞
0 φ (s)ds <∞.

Indeed, for R = 1 we have

∞ >

∫+∞
0

φ (s)Ψ1

(
e−ksγ(s), e−ksγ̃(s)

)
ds ≥ Ψ1

(
γ+, γ+

)
|φ|1 ,

where γ+ = maxs>0
(
e−ks (γ(s) + γ̃(s))

)
.

The statement of the main result needs to introduce the following notations.
Let

f0 = lim sup
|(w,z)|→0

(
sup
t≥0

f(t, ektw, ektz)

w+ z

)
,

f∞ = lim sup
|(w,z)|→+∞

(
sup
t≥0

f(t, ektw, ektz)

w+ z

)
,

f0 (θ) = lim inf
|(w,z)|→0

(
min
t∈Iθ

f(t, ektw, ektz)

w+ z

)
,

f∞ (θ) = lim inf
|(w,z)|→+∞

(
min
t∈Jθ

f(t, ektw, ektz)

w+ z

)
,

where |(w, z)| = |w|+ |z|, for θ > 0 Iθ = [0, θ] and for θ > 1 Jθ = [1/θ, θ] .



Positive solution for singular third-order BVPs 109

Let also,

Γ = (Γ1 + Γ2)
−1 ,

Θ0(θ) = (Θ1,0(θ) +Θ2,0(θ))
−1 if θ > 0,

Θ∞(θ) = (Θ1,∞(θ) +Θ2,∞(θ))−1 if θ > 1,

where

Γ1 = sup
t>0

(
e−kt
∫+∞
0

G(t, s)φ(s)ds

)
,

Γ2 = sup
t>0

(
e−kt
∫+∞
0

G̃(t, s)φ(s)ds

)
,

Θ1,0(θ) = sup
t>0

(
e−kt
∫θ
0

G(t, s)φ(s)e−ksγ (s)ds

)
,

Θ2,0(θ) = sup
t>0

(
e−kt
∫θ
0

G̃(t, s)φ(s)e−ksγ (s)ds

)
,

Θ1,∞(θ) = sup
t>0

(
e−kt
∫θ
1/θ

G(t, s)φ(s)e−ksγ (s)ds

)
,

Θ2,∞(θ) = sup
t>0

(
e−kt
∫θ
1/θ

G̃(t, s)φ(s)e−ksγ (s)ds

)
,

and notice that Remark 3 guarantees that the constants Γ1 and Γ2 are finite.

Theorem 1 Assume that Hypothesis (6) holds and one of the following con-
ditions

f0 < Γ, Θ∞(θ) < f∞ (θ) for some θ > 1 (7)

f∞ < Γ, Θ0(θ) < f0 (θ) for some θ > 0 (8)

is satisfied. Then the bvp (5) admits at least one positive solution.

Remark 4 For the particular case where f(t, u, v) =
(
e−kt(u+ v)

)σ
with σ >

0 and σ 6= 1, we have f0 = 0 and f∞ (θ) = +∞ for all θ > 0 if σ > 1, and
f∞ = 0 and f0 (θ) = +∞ for all θ > 0 if σ < 1. Hence, Conditions (7) and
(8) in Theorem 1 correspond to the superlinear case and the sublinear case of
the nonlinearity f, respectively.
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2 Example

Consider the case of the bvp (5) where φ(t) = e−αt, α > 0 and

f(t, u, v) = A

(
u+ v

ekt + u+ v

)p
+ B

(
u+ v

ekt

)q
,

with A,B > 0, p ≤ 1 and q ≥ 1.
Thus, for all t,w, z > 0 we have

f(t, ektw, ektz) = A

(
w+ z

1+w+ z

)p
+ B (w+ z)q ,

and if |(w, z)| = w+ z < R, then

f(t, ektw, ektz) = A

(
w+ z

1+w+ z

)p
+ B (w+ z)q ≤ ΨR (w, z) ,

where

ΨR (w, z) =

{
ARp + BRq if p ≥ 0,
A (w+ z)p (1+ R)−p + BRq if p < 0.

Thus, if p ≥ 0 then

lim
s→+∞φ(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= (ARp + BRq) lim

s→+∞ e−αs = 0,∫+∞
0

φ(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
ds =

ARp + BRq

α
<∞,

and if p < 0 then

φ(s)ψR
(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= BRqe−αs+

A (1+ R)−p (k∗R)p e−(α+pk)s
(
1− e−ks

)p
ρ(s),

where

ρ(s) =

(
1

3k

(
1− e−ks

)(
2+ e−ks

)
+ e−ks

(
1+ e−ks

))p
satisfies (

max

(
2,
2

3k

))p
≤ ρ(s) ≤

(
min

(
2,
2

3k

))p
.

Therefore, we have

lim
s→+∞φ(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= 0 if and only if α > −pk
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and ∫+∞
0 φ(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
ds <∞ if and only if

α > −pk and p > −1.

Straightforward computations lead to

f∞ = f∞ (θ) = f∞ =

{
+∞ if q > 1,

B if q = 1,
for all θ > 1

f0 = f0 (θ) = f0 =


+∞ if p < 1,

A if p = 1 < q,
A+ B if p = q = 1,

for all θ > 0.

We conclude from Theorem 1 and all the above calculations that this case
of the bvp (5) admits a positive solution in each of the following situations:

1. p = 1, q = 1, B < Γ and A+ B > Θ0 (θ) for some θ > 0,

2. p = 1, q > 1, and A > Θ0 (θ) for some θ > 0,

3. p ∈ [0, 1) , q = 1 and B < Γ,

4. p ∈ (−1, 0) , q = 1, B < Γ and α > −pk.

3 Abstract background

Let (E, ||.||) be a real Banach space. A nonempty closed convex subset C of E
is said to be a cone in E if C ∩ (−C) = {0E} and tC ⊂ C for all t ≥ 0.

Let Ω be a nonempty subset in E. A mapping A : Ω → E is said to be
compact if it is continuous and A (Ω) is relatively compact in E.

The main tool of this work is the following Guo-Krasnoselskii’s version of
expansion and compression of a cone principal in a Banach space.

Theorem 2 Let P be a cone in E and let Ω1,Ω2 be bounded open subsets of
E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. If T : P ∩ (Ω2\Ω1) → P is a compact mapping
such that either

1. ||Tu|| ≤ ||u|| for u ∈ P ∩ ∂Ω1 and ||Tu|| ≥ ||u|| for u ∈ P ∩ ∂Ω2, or

2. ||Tu|| ≥ ||u|| for u ∈ P ∩ ∂Ω1 and ||Tu|| ≤ ||u|| for u ∈ P ∩ ∂Ω2.

Then T has at least one fixed point in P ∩ (Ω2\Ω1).
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4 Fixed point formulation

In all this paper, we let

E = {u ∈ C1(R+,R) : limt→+∞ e−ktu(t) = 0, limt→+∞ e−ktu′(t) = 0}.
Endowed with the norm ‖u‖ = ‖u‖k+‖u′‖k where ‖u‖k = supt≥0

(
e−kt|u(t)|

)
,

E becomes a Banach space.
The following lemma is an adapted version for the case of the space E of

Corduneanu’s compactness criterion ([5], p. 62). It will be used in this work
to prove that some operator is completely continuous.

Lemma 1 A nonempty subset M of E is relatively compact if the following
conditions hold:

(a) M is bounded in E,

(b) the sets {u : u(t) = e−ktx(t), x ∈M} and {u : u(t) = e−ktx′(t), x ∈M}
are locally equicontinuous on [0,+∞), and

(c) the sets
{
u : u(t) = e−ktx(t), x ∈M

}
and
{
u : u(t) = e−ktx′(t), x ∈M

}
are equiconvergent at +∞.

In all this work, P denotes the cone in E defined by

P =
{
u ∈ E : u′(t) ≥ γ̃(t)||u|| and u(t) ≥ γ(t)||u|| for all t > 0

}
.

Let G, G̃ : R+ × R+ → R+ be the functions defined by

G(t, s) =
1

k2

{
e−ks (cosh (kt) − 1) if t ≤ s,
−e−kt sinh (ks) +

(
1− e−ks

)
if s ≤ t,

G̃(t, s) =
∂G

∂t
(t, s) =

1

k

{
e−ks sinh (kt) if t ≤ s,
e−kt sinh (ks) if s ≤ t.

Lemma 2 The functions G and G̃ satisfy:

(a) For all t, s ∈ R+ we have G(t, s) ≥ 0 and G̃(t, s) ≥ 0.

(b) The functions G and G̃ are continuous and for all s ≥ 0, we have

G(0, s) = G̃(0, s) = 0. (9)
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(c) For all t, s ≥ 0, we have

G(t, s) ≤ 1

k2
(1− e−ks) ≤ 1

k2
, G̃(t, s) ≤ G̃(s, s) ≤ 1

2k
.

(d) For all s, t, τ ≥ 0, we have

G̃(t, s)e−kt ≥ γ1(t)G̃(τ, s)e−kτ.

(e) For all t2, t1 ≥ 0, we have∣∣∣e−kt2G(t2, s) − e−kt1G(t1, s)∣∣∣ ≤ 3

2k
|t2 − t1| (10)∣∣∣e−kt2G̃(t2, s) − e−kt1G̃(t1, s)∣∣∣ ≤ |t2 − t1| (11)

Proof. Assertions (a), (b) and (c) are easy to prove, Assertion (d) is proved
in [8]. Assertion (e) is obtained by the mean value theorem. �

Lemma 3 Assume that Hypothesis (6) holds, then there exists a continuous
operator T : P r {0}→ P such that for all r, R with 0 < r < R, T(P ∩ (B(0, R)r
B(0, r))) is relatively compact and fixed points of T are positive solutions to the
bvp (5).

Proof. The proof is divided into four steps.
Step 1. In this step we prove the existence of the operator T. To this aim

let u ∈ P r {0} . By means of Hypothesis (6) with R = ‖u‖, for all t > 0 we
have∫+∞
0

G(t, s)φ (s) f(s, u(s), u′(s))ds

≤ 1

k2

∫+∞
0

φ (s) f
(
s, u(s), u′(s)

)
ds

=
1

k2

∫+∞
0

φ (s) f
(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤ 1

k2

∫+∞
0

φ (s)ΨR

(
Re−ksγ(s), Re−ksγ̃(s)

)
ds <∞

and∫+∞
0

G̃(t, s)φ(s)f
(
s, u(s), u′(s)

)
ds ≤ 1

2k

∫+∞
0

φ(s)f
(
s, u(s), u′(s)

)
ds
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≤ 1

2k

∫+∞
0

φ(s)ΨR

(
Re−ksγ(s), Re−ksγ̃(s)

)
ds <∞.

Thus, let v and w be the functions defined by

v(t) =

∫+∞
0

G(t, s)φ (s) f(s, u(s), u′(s))ds

w(t) =

∫+∞
0

G̃(t, s)φ (s) f(s, u(s), u′(s))ds.

Since for all t > 0,

v(t) = −
e−kt

k2

∫ t
0

sinh(ks)φ (s) f(s, u(s), u′(s))ds

+
1

k2

∫ t
0

(1− e−ks)φ (s) f(s, u(s), u′(s))ds

+
cosh(kt) − 1

k2

∫ t
0

e−ksφ (s) f(s, u(s), u′(s))ds,

we see that v is differentiable on R+ and for all t ≥ 0,

v′(t) =
e−kt

k

∫ t
0

sinh(ks)φ (s) f(s, u(s), u′(s))ds

+
sinh(kt)

k

∫+∞
t

e−ksφ (s) f(s, u(s), u′(s))ds

=

∫+∞
0

G̃(t, s)φ (s) f(s, u(s), u′(s))ds = w(t)

with w continuous on R+.

At this stage we have proved that v belongs to C1(R+,R) and we need to
prove that v ∈ E. Thus, we have to show that limt→+∞ e−ktv(t) = limt→+∞
e−ktv′(t) = 0. Clearly for all t > 0, v(t), v′(t) > 0 and we have

e−ktv(t) = e−kt
∫+∞
0

G(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds

≤ e
−kt

k2

∫+∞
0

φ (s)ΨR

(
Re−ksγ(s), Re−ksγ̃(s)

)
ds

and

e−ktv′(t) = e−kt
∫+∞
0

G̃(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds
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≤ e
−kt

2k

∫+∞
0

φ(s)ΨR

(
Re−ksγ(s), Re−ksγ(s)

)
ds.

The above two estimates prove that limt→+∞ e−ktv(t) = limt→+∞ e−ktv′(t) =
0.

Now for all t, τ > 0, we have from Assertion (c) in Lemma 2

v′(t) = ekt
∫+∞
0

e−ktG̃(t, s)f
(
s, u(s), u′(s)

)
ds

≥ ektγ1(t)
∫+∞
0

e−kτG̃(τ, s)f
(
s, u(s), u′(s)

)
ds

= ektγ1(t)e
−kτv′(τ).

Passing to the supremum on τ, we obtain

v′(t) ≥ ektγ1(t)
∥∥v′∥∥

k
for all t > 0. (12)

Since for all t > 0

v(t) =

∫ t
0

ekξ
(
e−kξv′(ξ)

)
dξ ≤

∫ t
0

ekξdξ
∥∥v′∥∥

k
≤ e

kt

k

∥∥v′∥∥
k
,

we have ∥∥v′∥∥
k
≥ k ‖v‖k . (13)

Therefore, (12) Combined with (13) leads to

v′(t) ≥ kektγ1(t)
∥∥v′∥∥

k
for all t > 0,

then to

v′(t) ≥ γ̃(t) ‖v‖ for all t > 0. (14)

Integrating (14), yields v(t) ≥ γ(t) ‖v‖ for all t > 0.
Thus, we have proved that v ∈ P and the operator T : P r {0} → P where

for u ∈ P r {0}

Tu(t) =

∫+∞
0

G(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds,

is well defined.
Step 2. In this step we prove that the operator T is continuous. Let (un)

be a sequence in P r {0} such that limn→∞ un = u∞ in E with u∞ in P r {0}
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and let R > r > 0 be such that (un) ⊂ B(0, R)r B(0, r). If ΨR is the function
given by Hypothesis (6), then for all n ≥ 1 we have

‖Tun − Tu∞‖k = sup
t≥0

|Tun (t) − Tu∞ (t)|

≤ 1

k2

∫+∞
0

φ(s)
∣∣f(s, un(s), u′n(s))− f(s, u∞(s), u′∞(s)

)∣∣ds
and∥∥ (Tun)′ − (Tu∞)′

∥∥
k
= sup

t≥0

∣∣ (Tun)′ (t) − (Tu∞)′ (t)
∣∣

≤ 1

2k

∫+∞
0

φ (s)
∣∣f(s, un(s), u′n(s))− f(s, u∞(s), u′∞(s)

)∣∣ds.
Because of∣∣f(s, un(s), u′n(s))− f(s, u∞(s), u′∞(s)

)∣∣→ 0, as n→ +∞
for all s > 0 and

φ(s)
∣∣f(s, un(s), u′n(s))− f(s, u∞(s), u′∞(s)

)∣∣
≤ 2φ (s)ΨR

(
re−ksγ(s), re−ksγ(s)

)
with

∫+∞
0 φ (s)ΨR

(
re−ksγ(s), re−ksγ(s)

)
ds < ∞, the Lebesgue dominated

convergence theorem guarantees that limn→∞ ‖Tun − Tu∞‖ = 0. Hence, we
have proved that T is continuous.
Step 3. In this step, we prove that for R > r > 0, T

(
P ∩

(
B(0, R)r B(0, r)

))
is relatively compact. Set Ω = P ∩

(
B(0, R)r B(0, r)

)
and let Φr,R be defined

by

Φr,R(s) = ΨR

(
re−ksγ(s), re−ksγ(s)

)
where ΨR is the function given by Hypothesis (6). For all u ∈ Ω, we have

‖Tu‖ ≤
(
1

k2
+
1

2k

) ∫+∞
0

φ (s)Φr,R(s)ds <∞,
proving that TΩ is bounded in E.

Now, let t1, t2 ∈ [η, ξ], for all u ∈ Ω, we have from (10) and (11) the
estimates

|e−kt1Tu(t1) − e
−kt2Tu(t2)| ≤

∫+∞
0

|e−kt1G(t1, s) − e
−kt2G(t2, s)|φ (s)Φr,R(s)ds
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≤ 3

2k
|t2 − t1|

∫+∞
0

φ (s)Φr,R(s)ds

and

|e−kt1(Tu)′(t1)−e
−kt2(Tu)′(t2)| ≤

∫+∞
0

|e−kt1G̃(t1, s)−e
−kt2G̃(t2, s)|φ(s)Φr,R(s)ds

≤ |t2 − t1|

∫+∞
0

φ (s)Φr,R(s)ds.

Proving the equicontinuity of TΩ on bounded intervals.
For all u ∈ Ω and t > 0, we have

|e−ktTu(t)| ≤ e
−kt

k2

∫+∞
0

φ (s)Φr,R(s)ds

and

|e−kt (Tu)′ (t)| ≤ e
−kt

k

∫+∞
0

φ (s)Φr,R(s)ds.

Thus, the equiconvergence of TΩ follows from the fact that limt→∞ e−kt = 0.
In view of Lemma 1, TΩ is relatively compact in E.
Step 4. In this step we prove that fixed points of T are positive solutions

to the bvp (5). Let u ∈ Pr {0} be a fixed point of T , then for all t > 0 we have

u(t) =

∫+∞
0

G(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds and

u′(t) =

∫+∞
0

G̃(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds.

These with (9) lead to u(0) = u′(0) = 0.
Differentiating twice in

u′(t) =

∫+∞
0

G̃(t, s)φ (s) f
(
s, u(s), u′(s)

)
ds

=
e−kt

k

∫ t
0

sinh(ks)φ (s) f
(
s, u(s), u′(s)

)
ds

+
sinh(kt)

k

∫+∞
t

e−ksφ (s) f
(
s, u(s), u′(s)

)
ds,

we see that −u′′′ (t) + ku′(t) = φ (t) f(t, u(t), u′(t)) for all t > 0.
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It remains to prove that limt→+∞ u′(t) = 0. We have

u′(t) =
1

kekt

∫ t
0

sinh(ks)φ (s) f
(
s, u(s), u′(s)

)
ds

+
sinh(kt)

k

∫+∞
t

e−ksφ (s) f
(
s, u(s), u′(s)

)
ds.

By means of Hypothesis (6) with R = ‖u‖ and the L’Hopital’s rule, we obtain

lim
t→+∞ 1

kekt

∫ t
0

sinh(ks)φ (s) f
(
s, u(s), u′(s)

)
ds

≤ lim
t→+∞ 1

kekt

∫ t
0

sinh(ks)φ (s)ΨR

(
Re−ksγ(s), Re−ksγ(s)

)
ds

= lim
t→+∞ sinh(kt)

kekt
φ (t)ΨR

(
Re−ktγ(t), Re−ktγ(t)

)
ds = 0.

Also, we have

sinh(kt)

k

∫+∞
t

e−ksφ (s) f
(
s, u(s), u′(s)

)
ds

≤ sinh(kt)e−kt

k

∫+∞
t

φ (s) f
(
s, u(s), u′(s)

)
ds→ 0 as t→ +∞.

The above calculations show that limt→+∞ u′(t) = 0, completing the proof
of the lemma. �

5 Proof of Theorem 1

Step 1. Existence in the case where (7) holds
Let ε > 0 be such that (f0 + ε) < Γ . For such a ε, there exists R1 > 0 such

that f(t, ektw, ektz) ≤ (f0 + ε)(w + z) for all w, z with |(w, z)| ≤ R1 and let
Ω1 = {u ∈ E, ‖u‖ < R1} .

Therefore, for all u ∈ P ∩ ∂Ω1 and all t > 0, we have

e−ktTu(t) = e−kt
∫+∞
0

G(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤
(
f0 + ε

)
e−kt
∫+∞
0

G(t, s)φ(s)e−ks
(
u(s) + u′(s)

)
ds

≤ ‖u‖
(
f0 + ε

)
e−kt
∫+∞
0

G(t, s)φ(s)ds ≤ Γ1
(
f0 + ε

)
‖u‖ ,
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leading to

‖Tu‖k = sup
t>0

(
e−ktTu(t)

)
≤
(
f0 + ε

)
Γ1 ‖u‖ . (15)

Similarly, we have

e−kt (Tu)′ (t) = e−kt
∫+∞
0

G̃(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤
(
f0 + ε

)
e−kt
∫+∞
0

G̃(t, s)φ(s)e−ks
(
u(s) + u′(s)

)
ds

≤ ‖u‖
(
f0 + ε

)
e−kt
∫+∞
0

G̃(t, s)φ(s)ds

≤
(
f0 + ε

)
Γ2 ‖u‖ ,

leading to ∥∥(Tu)′∥∥
k
= sup

t>0

(
e−kt (Tu)′ (t)

)
≤
(
f0 + ε

)
Γ2 ‖u‖ . (16)

Summing (15) with (16), we obtain

‖Tu‖ ≤ ‖u‖
(
f0 + ε

)
Γ−1 ≤ ‖u‖ .

Now, suppose that f∞ (θ) > Θ∞(θ) for some θ > 1 and let ε > 0 be such
that
(f∞ (θ) − ε) > Θ∞(θ). There exists R̃2 > R1 such that f(t, ektw, ektz) >
(f∞ (θ) − ε) (w+ z) for all t ∈ Jθ and all w, z with |(w, z)| ≥ R̃2. Let γθ =
min
{
γ(s)e−ks : s ∈ Jθ

}
, R2 = R̃2/γθ and Ω2 = {u ∈ E : ‖u‖ < R2} . For all

u ∈ P ∩ ∂Ω2, and all t > 0 we have

‖Tu‖k ≥ e
−ktTu(t) ≥ e−kt

∫θ
1/θ

G(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≥ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G(t, s)φ(s)
(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G(t, s)φ(s)e−ksγ (s)ds
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and

∥∥(Tu)′∥∥
k
≥ e−kt

∫θ
1/θ

G̃(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≥ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G̃(t, s)φ(s)
(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G̃(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f∞ (θ) − ε)e−kt
∫θ
1/θ

G̃(t, s)φ(s)e−ksγ (s)ds.

The above estimates lead to

‖Tu‖k ≥ (f∞ (θ) − ε)Θ1,∞(θ) ‖u‖ ,∥∥(Tu)′∥∥
k
≥ (f∞ (θ) − ε)Θ2,∞(θ) ‖u‖

then to

‖Tu‖ ≥ (f∞ (θ) − ε) (Θ∞(θ))−1 ‖u‖ ≥ ‖u‖ .

We deduce from Assertion 1 of Theorem 2, that T admits a fixed point u ∈ P
with
R1 ≤ ‖u‖1 ≤ R2 which is, by Lemma 3, a positive solution to Problem (5).

Step 2. Existence in the case where (8) holds
Suppose that f0 (θ) > Θ0(θ) for some θ > 0 and let ε > 0 be such that

(f0 (θ) − ε) > Θ0(θ). There exists R1 such that f(t, ektw, ektz) > (f0 (θ) −
ε) (w+ z) for all w, z with |(w, z)| ≤ R1. Let Ω1 = {u ∈ E : ‖u‖ < R1} , for all
u ∈ P ∩ ∂Ω1 and all t > 0, we have

‖Tu‖k ≥ e
−ktTu(t) ≥ e−kt

∫θ
0

G(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≥ (f0 (θ) − ε)e
−kt

∫θ
0

G(t, s)φ(s)
(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f0 (θ) − ε)e
−kt

∫θ
0

G(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f0 (θ) − ε)e−kt
∫θ
0

G(t, s)φ(s)e−ksγ (s)ds
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and

∥∥(Tu)′∥∥
k
≥ e−ktTu(t) ≥ e−kt

∫θ
0

G̃(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≥ (f0 (θ) − ε)e
−kt

∫θ
0

G̃(t, s)φ(s)
(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f0 (θ) − ε)e
−kt

∫θ
0

G̃(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f0 (θ) − ε)e−kt
∫θ
0

G̃(t, s)φ(s)e−ksγ (s)ds.

The above estimates lead to

‖Tu‖k ≥
(
f0 (θ) − ε

)
Θ1,0(θ) ‖u‖ ,∥∥(Tu)′∥∥

k
≥
(
f0 (θ) − ε

)
Θ2,0(θ) ‖u‖

then to

‖Tu‖ ≥
(
f0 (θ) − ε

)
(Θ0(θ))

−1 ‖u‖ ≥ ‖u‖ .

Let ε > 0 be such that (f∞ + ε) < Γ, there exists Rε > 0 such that

f(t, ektw, ektz) ≤ (f∞ + ε)(w+ z) + ΨRε (w, z) , for all t,w, z > 0,

where ΨRε is the functions given by Hypothesis (6) for R = Rε.
Let

Φε (t) = ΨRε
(
Rεe

−ksγ(s), Rεe
−ksγ̃(s)

)
R̃2 =

2ΨεΓ

Γ − (f∞ + ε)

with Φε = supt≥0

(
e−kt
∫+∞
0 G(t, s)Φε (s)ds

)
and notice that Γ−1(f∞ + ε)R+ 2Φε ≤ R for all R ≥ R̃2.

Let R2 > max(R1, R̃2, Rε) and Ω2 = {u ∈ E, ‖u‖ < R2} . For all u ∈ P ∩ ∂Ω2
and all t > 0, we have

e−ktTu(t) =

∫+∞
0

G(t, s)φ(s)f
(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤ e−kt
∫+∞
0

G(t, s)φ(s)
(
(f∞ + ε)

(
e−ksu(s) + e−ksu′(s)

)
+Ψε

(
e−ksu(s), e−ksu′(s)

))
ds
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≤ (f∞ + ε) ‖u‖ e−kt
∫+∞
0

G(t, s)φ(s)ds+ Ψε

≤ (f∞ + ε) ‖u‖ Γ1 + Ψε,

leading to
‖Tu‖k ≤ (f∞ + ε) ‖u‖ Γ1 + Ψε. (17)

Similarly, we have

e−kt (Tu)′ (t) =

∫+∞
0

G̃(t, s)φ(s)f

(
s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

))
ds

≤ e−kt
∫+∞
0

G̃(t, s)φ(s)
(
(f∞ + ε)

(
e−ksu(s) + e−ksu′(s)

)
+Ψε

(
e−ksu(s), e−ksu′(s)

))
ds

≤ (f∞ + ε) ‖u‖ e−kt
∫+∞
0

G̃(t, s)φ(s)ds+ Ψε

≤ (f∞ + ε) ‖u‖ Γ2 + Ψε,

leading to ∥∥(Tu)′∥∥
k
≤ (f∞ + ε) Γ2 ‖u‖+ Ψε. (18)

Summing (17) with (18), we obtain

‖Tu‖ ≤ (f∞ + ε) Γ−1 ‖u‖+ 2Ψε ≤ ‖u‖ .

We deduce from Assertion 2 of Theorem 2, that T admits a fixed point u ∈ P
with R1 ≤ ‖u‖ ≤ R2 which is, by Lemma 3, a positive solution to Problem (5).

Thus, the proof of Theorem 1 is complete.

6 Comments

1. Notice that the obtained positive solution in Theorem 1 is nondecreasing
and bounded. Indeed, if u ∈ P r {0} is a fixed point of T with ‖u‖ = R,
then for all t > 0

u′(t) = (Tu)′ (t) =

∫+∞
0

G̃(t, s)φ(s)f
(
s, u(s), u′(s)

)
ds > 0

and Hypothesis (6) leads to

u(t) = Tu(t) =

∫+∞
0

G(t, s)φ(s)f
(
s, u(s), u′(s)

)
ds
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≤
∫+∞
0

G(t, s)φ(s)ΨR

((
e−ksu(s)

)
,
(
e−ksu′(s)

))
ds

≤ 1

k2

∫+∞
0

φ(s)ΨR(Re
−ksγ(s), Re−ksγ̃(s))ds <∞.

2. From the above comment arise the following question. Why we looked
for solutions in the space E instead of looking for them in the natural
space
F =
{
u ∈ C1 (R+) : max (supt>0 |u(t)| , supt>0 |u

′(t)|) <∞}?
The answer is: There is no cone in F where we can realize the inequality
‖Tu‖ ≥ ‖u‖ in Theorem 2.

3. Notice that for θ > 1, Γ < Θ0(θ) < Θ∞(θ) and let the interval I =
(Γ,Θ∞(θ)). In the particular case where the limits

f0 = lim
|(w,z)|→0

f
(
t, ektw, ektz)

w+ z
, f∞ = lim

|(w,z)|→0
f(t, ektw, ektz)

w+ z

exist, then Theorem 1 claims that the bvp (5) admits a positive solution
if f0 and f∞ are oppositely located relatively to the interval I, that is the
ratio

(
f(t, ektw, ektz)/w+ z

)
crosses the interval I. Two questions arise

from this observation; what happens if
(
f(t, ektw, ektz)/w+ z

)
> Θ∞(θ)

or
(
f(t, ektw, ektz)/w+ z

)
< Γ for all t,w, z > 0?

The second question is: are the constants Γ,Θ0(θ), Θ∞(θ) the best ones?
In an other manner, does exist two positive constants α and β with Γ <
α < β < Θ0(θ) such that if f0 and f∞ are oppositely located relatively
to the interval (α,β), then the bvp (5) admits a positive solution?

4. Let p > 1 and consider the case where E is equipped with the norm

‖u‖p = p

√
‖u‖pk + ‖u‖

p
k. In this case, under Hypothesis (6), we prove

by the same arguments that the bvp (5) admits a positive solution if
f0 < Γp < Θ

p∞(θ) < f∞ (θ) for some θ > 1 or f∞ < Γ < Θ
p
0(θ) < f0 (θ)

for some θ > 0, where

Γp = ((Γ1)
p + (Γ2)

p)
−1/p

,

Θ
p
0(θ) = ((Θ1,0(θ))

p + (Θ2,0(θ))
p)

−1/p
for θ > 0,

Θ
p∞(θ) = ((Θ1,∞(θ))p + (Θ2,∞(θ))p)

−1/p
for θ > 0.

Noticing that Γp > Γ, Θ
p
0(θ) > Θ0(θ) and Θp∞(θ) > Θp,∞(θ) we under-

stand that the problem posed in the above comment is a serious problem.
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126 A. Benmezäı, E. Sedkaoui

[22] H. P. McKean, Nagumo’s equation, Advances in Mathematics, 4 (1970),
209–223.

[23] D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation,
Physica D, 19 (1986), 89–111.

[24] P. K. Palamides and R. P. Agarwal, An existence result for a singular
third-order boundary value problem on [0,+∞), Appl. Math. Lett., 21
(2008), 1254–1259.

[25] H. Pang, W. Xie and L. Cao, Successive iteration and positive solutions
for a third-order boundary value problem involving integral conditions,
Bound. Value Probl., (2015), 2015:39.

[26] H. Shi, M. Pei and L. Wang, Solvability of a third-order three point
boundary value problem on a half-line, Bull. Malays. Math. Sci. Soc., 38
No. 3 (2015), 909–926.

[27] Y. Sun, Triple positive solutions for a class of third-order p-Laplacian
singular boundary value problems, J. Appl. Math. Comput., 37 (2011),
587–599.

[28] Z. Wei, Some necessary and sufficient conditions for existence of positive
solutions for third-order singular sublinear multi-point boundary value
problems, Acta Math. Sin., 34 B (6) (2014), 1795–1810.

[29] Z. Wei, Some necessary and sufficient conditions for existence of positive
solutions for third-order singular super-linear multi-point boundary value
problems, J. Appl. Math. Comput., 46 (2014), 407–422.

[30] Y. Wu and Z. Zhao, Positive solutions for a third-order boundary value
problems with change of signs, Appl. Math. Comput., 218 (2011), 2744–
2749.

[31] J. Zhang, Z. Wei and W. Dong, The method of lower and upper so-
lutions for third-order singular four-point boundary value problems, J.
Appl. Math. Comput., 36 (2011), 275–289.

Received: June 29, 2020



Acta Univ. Sapientiae, Mathematica, 13, 1 (2021) 127–144

DOI: 10.2478/ausm-2021-0007

On a new one-parameter generalization of

dual-complex Jacobsthal numbers

Dorota Bród
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Abstract. In this paper we define dual-complex numbers with general-
ized Jacobsthal coefficients. We introduce one-parameter generalization
of dual-complex Jacobsthal numbers - dual-complex r-Jacobsthal num-
bers. We investigate some algebraic properties of introduced numbers,
among others Binet type formula, Catalan, Cassini, d’Ocagne and Hons-
berger type identities. Moreover, we present the generating function, sum-
mation formula and matrix generator for these numbers. The results are
generalization of the properties for the dual-complex Jacobsthal numbers.

1 Introduction

The Jacobsthal sequence {Jn} is one of the special cases of sequences {an} which
are defined recurrently as a linear combination of the preceding k terms
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an = b1an−1 + b2an−2 + · · ·+ bkan−k for n ≥ k, (1)

where k ≥ 2, bi are integers, i = 1, 2, . . . , k and a0, a1, . . . , ak−1 are given
numbers.
By recurrence (1) for k = 2 we get (among others) definitions of the well-
known sequences:

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1 (Fibonacci numbers)
Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1 (Lucas numbers)
Jn = Jn−1 + 2Jn−2, J0 = 0, J1 = 1 (Jacobsthal numbers)
Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1 (Pell numbers).

Sequences defined by (1) are called sequences of the Fibonacci type. The first
ten terms of the Jacobsthal sequence are 0, 1, 1, 3, 5, 11, 21, 43, 85, 171. This se-
quence is also given by formula Jn = 2n−(−1)n

3 , named as Binet type formula for
the Jacobsthal numbers. Many authors have generalized the recurrence of the
Jacobsthal sequence. In [4] a one-parameter generalization of the Jacobsthal
numbers was introduced. We recall this generalization.

Let n ≥ 0, r ≥ 0 be integers. The nth r-Jacobsthal number J(r, n) is defined
by the following recurrence relation

J(r, n) = 2rJ(r, n− 1) + (2r + 4r)J(r, n− 2) for n ≥ 2 (2)

with J(r, 0) = 1, J(r, 1) = 1+ 2r+1.
For r = 0 we have J(0, n) = Jn+2. By (2) we obtain

J(r, 0) = 1
J(r, 1) = 2 · 2r + 1
J(r, 2) = 3 · 4r + 2 · 2r
J(r, 3) = 5 · 8r + 5 · 4r + 2r
J(r, 4) = 8 · 16r + 10 · 8r + 3 · 4r
J(r, 5) = 13 · 32r + 20 · 16r + 9 · 8r + 4r.

In [4], it was proved that the r-Jacobsthal numbers can be used for counting
of independent sets of special classes of graphs. We will recall some useful
properties of the r-Jacobsthal numbers.

Theorem 1 [4] (Binet type formula) Let n ≥ 0, r ≥ 0 be integers. Then the
nth r-Jacobsthal number is given by

J(r, n) =

√
4 · 2r + 5 · 4r + 3 · 2r + 2
2
√
4 · 2r + 5 · 4r

λ1
n +

√
4 · 2r + 5 · 4r − 3 · 2r − 2
2
√
4 · 2r + 5 · 4r

λ2
n,
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where

λ1 = 2
r−1 +

1

2

√
4 · 2r + 5 · 4r, λ2 = 2

r−1 −
1

2

√
4 · 2r + 5 · 4r.

Theorem 2 [4] Let n ≥ 1, r ≥ 0 be integers. Then

n−1∑
l=0

J(r, l) =
J(r, n) + (2r + 4r)J(r, n− 1) − 2− 2r

4r + 2r+1 − 1
. (3)

Theorem 3 [4] (Cassini type identity) Let n ≥ 1, r ≥ 0 be integers. Then

J(r, n+ 1)J(r, n− 1) − J2(r, n) = (−1)n(2r + 1)2(2r + 4r)n−1.

Proposition 1 [4] Let n ≥ 4, r ≥ 0 be integers. Then

J(r, n) = (3 · 8r + 2 · 4r)J(r, n− 3) + (2 · 16r + 3 · 8r + 4r)J(r, n− 4).

Theorem 4 [4] Let n,m, r be integers such that m ≥ 2, n ≥ 1, r ≥ 0. Then

J(r,m+ n) = 2rJ(r,m− 1)J(r, n) + (4r + 8r)J(r,m− 2)J(r, n− 1).

Theorem 5 [4] The generating function of the sequence of r-Jacobsthal num-
bers has the following form

f(x) =
1+ (1+ 2r)x

1− 2rx− (2r + 4r)x2
.

2 The dual-complex numbers and their properties

The set of dual numbers is defined in the following way

D = {d : d = u+ vε |u, v ∈ R, ε2 = 0, ε 6= 0}.

Dual numbers were introduced by Clifford ([5]). Dual-complex numbers are
known generalization of complex and dual numbers. These numbers were in-
troduced by Majernik [8]. The set of dual-complex numbers, denoted by DC,
is defined as follows

DC = {w : w = z1 + εz2 | z1, z2 ∈ C, ε2 = 0, ε 6= 0}.
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If z1 = x1 + ix2 and z2 = y1 + iy2, x1, x2, y1, y2 ∈ R, then any dual-complex
number can be written as

w = x1 + ix2 + εy1 + iεy2.

Let w1, w2 be any dual-complex numbers, w1 = z1 + εz2, w2 = z3 + εz4.
Addition, subtraction and multiplication of them are defined by

w1 ±w2 = (z1 ± z3) + ε(z2 ± z4),

w1 ·w2 = z1z3 + ε(z1z4 + z2z3).

Table 1 presents multiplication scheme of dual-complex numbers.

· 1 i ε iε

1 1 i ε iε

i i −1 iε −ε
ε ε iε 0 0

iε iε −ε 0 0

Table 1.

Assuming that Re(w2) 6= 0, the division of two dual-complex numbers
w1, w2 is given by

w1
w2

=
z1 + εz2
z3 + εz4

=
(z1 + εz2)(z3 − εz4)

(z3 + εz4)(z3 − εz4)
=
z1
z3

+ ε
z2z3 − z1z4

z23
.

The dual-complex numbers form a commutative ring with characteristics 0.
Moreover, the multiplication of these numbers gives the dual-complex numbers
the structure of 2-dimensional complex Clifford algebra and 4-dimensional real
Clifford algebra.

Let w = z1 + εz2 = x1 + ix2 + εy1 + iεy2, z2 6= 0. There are five different
conjugations, denoted by w∗, of dual-complex number w:

w∗1 = (z1)
∗ + ε(z2)

∗ = (x1 − ix2) + ε(y1 − iy2) complex conjugation

w∗2 = z1 − εz2 = (x1 + ix2) − ε(y1 + iy2) dual conjugation

w∗3 = (z1)
∗ − ε(z2)

∗ = (x1 − ix2) − ε(y1 − iy2) coupled conjugation

w∗4 = (z1)
∗ ·
(
1− ε

z2
z1

)
= (x1 − ix2)

(
1− ε

y1 + iy2
x1 + ix2

)
dual − complex conjugation

w∗5 = z2 − εz1 = (y1 + iy2) − ε(x1 + ix2) anti − dual conjugation.
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Therefore, the norms of a dual-complex number w are defined as

N∗1
w = ||w ·w∗1|| =

√
|z21|+ 2εRe(z1(z2)

∗)

N∗2
w = ||w ·w∗2|| =

√
z21

N∗3
w = ||w ·w∗3|| =

√
|z21|− 2iεIm(z1(z2)∗)

N∗4
w = ||w ·w∗4|| =

√
|z21|

N∗5
w = ||w ·w∗5|| =

√
z1z2 + ε(z

2
2 − z

2
1).

In the literature there are a lot of studies about numbers of the Fibonacci
type. Many authors investigated quaternions, split quaternions, hyperbolic
numbers, dual-hyperbolic numbers and dual-complex numbers with Fibonacci,
Lucas, Pell, Jacobsthal coefficients, see [1, 2, 7, 9, 10]. In [6] dual-complex
Fibonacci and Lucas numbers were studied. In [3] many interesting properties
of dual-complex k-Pell quaternions were given. In this paper we introduce
dual-complex numbers with generalized Jacobsthal numbers coefficients. We
use one-parameter generalization of the Jacobsthal numbers - r-Jacobsthal
numbers.

3 The dual-complex rrr-Jacobsthal numbers

For nonnegative integers n and r the nth dual-complex r-Jacobsthal number
DCJ(r, n) is defined as

DCJ(r, n) = J(r, n) + iJ(r, n+ 1) + εJ(r, n+ 2) + iεJ(r, n+ 3), (4)

where J(r, n) is given by (2).
Note that for r = 0 we obtain DCJ(0, n) = DCJn+2, where DCJn denotes

the nth dual-complex Jacobsthal number.
Now we give five conjugations of dual-complex r-Jacobsthal numbers

1) complex conjugation

DCJ(r, n)∗1 = J(r, n) − iJ(r, n+ 1) + εJ(r, n+ 2) − iεJ(r, n+ 3),

2) dual conjugation

DCJ(r, n)∗2 = J(r, n) + iJ(r, n+ 1) − εJ(r, n+ 2) − iεJ(r, n+ 3),
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3) coupled conjugation

DCJ(r, n)∗3 = J(r, n) − iJ(r, n+ 1) − εJ(r, n+ 2) + iεJ(r, n+ 3),

4) dual-complex conjugation

DCJ(r, n)∗4 = (J(r, n) − iJ(r, n+ 1))

(
1− ε

J(r, n+ 2) + iJ(r, n+ 3)

J(r, n) + iJ(r, n+ 1)

)
,

5) anti-dual conjugation

DCJ(r, n)∗5 = J(r, n+ 2) + iJ(r, n+ 3) − εJ(r, n) − iεJ(r, n+ 1).

By simple calculations we can give the following relations

DCJ(r, n) · DCJ(r, n)∗1 = J2(r, n) + J2(r, n+ 1) + 2ε[J(r, n)J(r, n+ 2)
+J(r, n+ 1)J(r, n+ 3)],

DCJ(r, n) · DCJ(r, n)∗2 = J2(r, n) − J2(r, n+ 1) + 2iJ(r, n)J(r, n+ 1),
DCJ(r, n) · DCJ(r, n)∗3 = J2(r, n) + J2(r, n+ 1) + 2iε[J(r, n)J(r, n+ 3)

−J(r, n+ 1)J(r, n+ 2)],
DCJ(r, n) · DCJ(r, n)∗4 = J2(r, n) + J2(r, n+ 1),
DCJ(r, n) · DCJ(r, n)∗5 = J(r, n)J(r, n+ 2) − J(r, n+ 1)J(r, n+ 3)

+i[J(r, n)J(r, n+ 3) + J(r, n+ 1)J(r, n+ 2)]
+ε[−J2(r, n) + J2(r, n+ 1)
+J2(r, n+ 2) − J2(r, n+ 3)]
+2iε(J(r, n+ 2)J(r, n+ 3) − J(r, n)J(r, n+ 1)),

DCJ(r, n) + DCJ(r, n)∗1 = 2[J(r, n) + εJ(r, n+ 2)],
DCJ(r, n) + DCJ(r, n)∗2 = 2[J(r, n) + iJ(r, n+ 1)],
DCJ(r, n) + DCJ(r, n)∗3 = 2[J(r, n) + iεJ(r, n+ 3)],
DCJ(r, n) − εDCJ(r, n)∗5 = J(r, n) + iJ(r, n+ 1),
εDCJ(r, n) + DCJ(r, n)∗5 = J(r, n+ 2) + iJ(r, n+ 3).

Using the definition of the dual-complex r-Jacobsthal number we get the
following recurrence relations.

Proposition 2 Let n ≥ 0, r ≥ 0 be integers. Then

DCJ(r, n+ 2) = 2rDCJ(r, n+ 1) + (2r + 4r)DCJ(r, n)

with

DCJ(r, 0) = 1+ i(2r+1 + 1) + ε(3 · 4r + 2r+1) + iε(5 · 8r + 5 · 4r + 2r),
DCJ(r, 1) = 2r+1 + 1+ i(3 · 4r + 2r+1) + ε(5 · 8r + 5 · 4r + 2r)

+iε(8 · 16r + 10 · 8r + 3 · 4r).



On a new one-parameter generalization of dual-complex Jacobsthal numbers 133

Proof. By formulas (4) and (2) we get

2rDCJ(r, n+ 1) + (2r + 4r)DCJ(r, n)
= 2r(J(r, n+ 1) + iJ(r, n+ 2) + εJ(r, n+ 3) + iεJ(r, n+ 4))

+ (2r + 4r)(J(r, n) + iJ(r, n+ 1) + εJ(r, n+ 2) + iεJ(r, n+ 3))

= J(r, n+ 2) + iJ(r, n+ 3) + εJ(r, n+ 4) + iεJ(r, n+ 5) = DCJ(r, n+ 2).

�

Proposition 3 Let n ≥ 4, r ≥ 0 be integers. Then

DCJ(r, n) = (3 · 8r + 2 · 4r)DCJ(r, n− 3) + (2 · 16r + 3 · 8r + 4r)DCJ(r, n− 4).

Proof. Let A = 3 · 8r+ 2 · 4r, B = 2 · 16r+ 3 · 8r+ 4r. By Proposition 1 we have

DCJ(r, n) = J(r, n) + iJ(r, n+ 1) + εJ(r, n+ 2) + iεJ(r, n+ 3)

= A · J(r, n− 3) + B · J(r, n− 4) + i(A · J(r, n− 2) + B · J(r, n− 3))

+ ε(A · J(r, n− 1) + B · J(r, n− 2)) + iε(A · J(r, n) + B · J(r, n− 1))

= A(J(r, n− 3) + iJ(r, n− 2) + εJ(r, n− 1) + iεJ(r, n))

+ B(J(r, n− 4) + iJ(r, n− 3) + εJ(r, n− 2) + iεJ(r, n− 1)).

Hence we get

DCJ(r, n) = A · DCJ(r, n− 3) + B · DCJ(r, n− 4).

�

Theorem 6 Let n ≥ 0, r ≥ 0 be integers. Then

DCJ(r, n) − iDCJ(r, n+ 1) − εDCJ(r, n+ 2) + iεDCJ(r, n+ 3) =
= J(r, n) + J(r, n+ 2).

Proof. By simple calculations we get

DCJ(r, n) − iDCJ(r, n+ 1) − εDCJ(r, n+ 2) + iεDCJ(r, n+ 3) =
= J(r, n) + iJ(r, n+ 1) + εJ(r, n+ 2) + iεJ(r, n+ 3)

−i (J(r, n+ 1) + iJ(r, n+ 2) + εJ(r, n+ 3) + iεJ(r, n+ 4))
−ε (J(r, n+ 2) + iJ(r, n+ 3) + εJ(r, n+ 4) + iεJ(r, n+ 5))
+iε (J(r, n+ 3) + iJ(r, n+ 4) + εJ(r, n+ 5) + iεJ(r, n+ 6))

= J(r, n) + iJ(r, n+ 1) + εJ(r, n+ 2) + iεJ(r, n+ 3)
−iJ(r, n+ 1) + J(r, n+ 2) − iεJ(r, n+ 3) + εJ(r, n+ 4)
−εJ(r, n+ 2) − iεJ(r, n+ 3) + iεJ(r, n+ 3) − εJ(r, n+ 4)

= J(r, n) + J(r, n+ 2),
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which ends the proof. �

In the next theorem we present the Binet type formula for the dual-complex
r-Jacobsthal numbers.

Theorem 7 Let n ≥ 0, r ≥ 0 be integers. Then the nth dual-complex r-
Jacobsthal number is given by

DCJ(r, n) = C1λ̂1λn1 + C2λ̂2λn2 , (5)

where

λ1 = 2
r−1 +

1

2

√
4 · 2r + 5 · 4r, λ2 = 2

r−1 −
1

2

√
4 · 2r + 5 · 4r,

λ̂1 = 1+ iλ1 + ελ
2
1 + iελ

3
1, λ̂2 = 1+ iλ2 + ελ

2
2 + iελ

3
2,

C1 =

√
4 · 2r + 5 · 4r + 3 · 2r + 2
2
√
4 · 2r + 5 · 4r

, C2 =

√
4 · 2r + 5 · 4r − 3 · 2r − 2
2
√
4 · 2r + 5 · 4r

.

Proof. By Theorem 1 we get

DCJ(r, n) = J(r, n) + iJ(r, n+ 1) + εJ(r, n+ 2) + iεJ(r, n+ 3)

= C1λ
n
1 + C2λ

n
2 + i(C1λ

n+1
1 + C2λ

n+1
2 )

+ε(C1λ
n+2
1 + C2λ

n+2
2 ) + iε(C1λ

n+3
1 + C2λ

n+3
2 )

= C1λ
n
1

(
1+ iλ1 + ελ

2
1 + iελ

3
1

)
+ C2λ

n
2

(
1+ iλ2 + ελ

2
2 + iελ

3
2

)
= C1λ̂1λ

n
1 + C2λ̂2λ

n
2 ,

which ends the proof. �

Corollary 1 (Binet type formula for dual-complex Jacobsthal numbers) Let
n ≥ 0 be an integer. Then

DCJn =
1

3

[
2n(1+ 2i+ 4ε+ 8iε) − (−1)n(1− i+ ε− iε)

]
.

Proof. By formula (5), for r = 0 we obtain λ1 = 2, λ2 = −1, C1 =
4
3 , C2 = −1

3 .
Moreover,

DCJ(0, n) =
4

3
· 2n(1+ 2i+ 4ε+ 8iε) − 1

3
(−1)n(1− i+ ε− iε)

=
1

3
· 2n+2(1+ 2i+ 4ε+ 8iε) − 1

3
(−1)n+2(1− i+ ε− iε)

= DCJn+2.

�
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4 Some identities involving the dual-complex
rrr-Jacobsthal numbers

In this section we give some identities such as Catalan, Cassini and d’Ocagne
type identities for the dual-complex r-Jacobsthal numbers. These identities
can be proved by using formula (5). We will need the following lemma.

Lemma 1 Let λ̂1 = 1+ iλ1 + ελ
2
1 + iελ

3
1, λ̂2 = 1+ iλ2 + ελ

2
2 + iελ

3
2, where

λ1 = 2
r−1 +

1

2

√
4 · 2r + 5 · 4r, λ2 = 2r−1 −

1

2

√
4 · 2r + 5 · 4r.

Then

λ̂1λ̂2 = λ̂2λ̂1 = 1+ 4r + 2r + 2ri+ (2r+1 + 5 · 4r + 5 · 8r + 3 · 16r)ε
+(3 · 8r + 2 · 4r)iε. (6)

Proof. By simple calculations we get

λ̂1λ̂2 = 1+ iλ2 + ελ
2
2 + iελ

3
2 + iλ1 − λ1λ2 + iελ1λ

2
2

−ελ1λ
3
2 + ελ

2
1 + iελ

2
1λ2 + iελ

3
1 − ελ

3
1λ2

= 1− λ1λ2 + (λ1 + λ2)i+ (λ21 + λ
2
2)(1− λ1λ2)ε

+(λ31 + λ
3
2 + λ1λ2(λ1 + λ2))iε.

Using the equalities

λ1λ2 = −(4r + 2r),

λ1 + λ2 = 2
r,

λ21 + λ
2
2 = (λ1 + λ2)

2 − 2λ1λ2 = 3 · 4r + 2r+1,
λ31 + λ

3
2 = (λ1 + λ2)

3 − 3λ1λ2(λ1 + λ2) = 4 · 8r + 3 · 4r,

we get the result. �

Theorem 8 (Catalan type identity for dual-complex r-Jacobsthal numbers)
Let n ≥ 0, m ≥ 0, r ≥ 0 be integers such that n ≥ m. Then

(DCJ(r, n))2 − DCJ(r, n−m) · DCJ(r, n+m) =

= −
(−4r − 2r)n(1+ 2r)2

4 · 2r + 5 · 4r

(
2−

(
λ1
λ2

)m
−

(
λ2
λ1

)m)
λ̂1λ̂2,

where λ̂1λ̂2 is given by (6).
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Proof. By formula (5) we get

(DCJ(r, n))2 − DCJ(r, n−m) · DCJ(r, n+m)

= (C1λ̂1λ
n
1 + C2λ̂2λ

n
2 )(C1λ̂1λ

n
1 + C2λ̂2λ

n
2 )

− (C1λ̂1λ
n−m
1 + C2λ̂2λ

n−m
2 )(C1λ̂1λ

n+m
1 + C2λ̂2λ

n+m
2 )

= 2C1C2λ̂1λ̂2(λ1λ2)
n − C1C2λ̂1λ̂2λ

n+m
1 λn−m2 − C1C2λ̂1λ̂2λ

n−m
1 λn+m2

= C1C2λ̂1λ̂2(λ1λ2)
n

(
2−

(
λ1
λ2

)m
−

(
λ2
λ1

)m)
.

Since λ1λ2 = −(4r + 2r) and C1C2 = − (1+2r)2

4·2r+5·4r , we have

(DCJ(r, n))2 − DCJ(r, n−m) · DCJ(r, n+m) =

= C1C2(−4
r − 2r)nλ̂1λ̂2

(
2− (

λ1
λ2

)m −

(
λ2
λ1

)m)
= −

(−4r − 2r)n(1+ 2r)2

4 · 2r + 5 · 4r

(
2− (

λ1
λ2

)m −

(
λ2
λ1

)m)
λ̂1λ̂2,

which ends the proof. �

Corollary 2 (Cassini type identity for dual-complex r-Jacobsthal numbers)
Let n ≥ 1, r ≥ 0 be integers. Then

(DCJ(r, n))2 − DCJ(r, n− 1) · DCJ(r, n+ 1) = (−4r − 2r)n−1(1+ 2r)2λ̂1λ̂2.

In particular, by Theorem 8, we obtain the following formulas for the dual-
complex Jacobsthal numbers.

Corollary 3 (Catalan type identity for dual-complex Jacobsthal numbers) Let
n ≥ 0, m ≥ 0, be integers such that n ≥ m. Then

(DCJn)2 − DCJn−m · DCJn+m =
4

9
(−2)n−m ((−2)m − 1))2 (3+ i+ 15ε+ 5iε).

Corollary 4 (Cassini type identity for dual-complex Jacobsthal numbers) Let
n ≥ 1 be an integer. Then

(DCJn)2 − DCJn−1 · DCJn+1 = 4(−2)n−1(3+ i+ 15ε+ 5iε).
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Theorem 9 (Vajda type identity for dual-complex r-Jacobsthal numbers) Let
n ≥ 0, m ≥ 0, k ≥ 0, r ≥ 0 be integers such that n ≥ k. Then

DCJ(r,m+ k) · DCJ(r, n− k) − DCJ(r,m) · DCJ(r, n) =

= −
(1+ 2r)2(−4r − 2r)m

4 · 2r + 5 · 4r

(
λn−m2

[(
λ1
λ2

)k
− 1

]
+ λn−m1

[(
λ2
λ1

)k
− 1

])
λ̂1λ̂2,

where λ̂1λ̂2 is given by (6).

Proof. By (5) we get

DCJ(r,m+ k) · DCJ(r, n− k) − DCJ(r,m) · DCJ(r, n) =
= (C1λ̂1λ

m+k
1 + C2λ̂2λ

m+k
2 )(C1λ̂1λ

n−k
1 + C2λ̂2λ

n−k
2 )

− (C1λ̂1λ
m
1 + C2λ̂2λ

m
2 )(C1λ̂1λ

n
1 + C2λ̂2λ

n
2 )

= C1C2λ̂1λ̂2

(
λm+k
1 λn−k2 + λn−k1 λm+k

2 − λm1 λ
n
2 − λ

n
1 λ
m
2

)
= C1C2λ̂1λ̂2(λ1λ2)

m

(
λn−m2

[(
λ1
λ2

)k
− 1

]
+ λn−m1

[(
λ2
λ1

)k
− 1

])

= −
(1+ 2r)2(−4r − 2r)m

4 · 2r + 5 · 4r

(
λn−m2

[(
λ1
λ2

)k
− 1

]
+ λn−m1

[(
λ2
λ1

)k
− 1

])
λ̂1λ̂2.

�

Theorem 10 (Vajda type identity for dual-complex Jacobsthal numbers) Let
n ≥ 0, m ≥ 0, k ≥ 0 be integers such that n ≥ k. Then

DCJm+k · DCJn−k − DCJm · DCJn =

= −
4

9
(−2)m

(
(−1)n−m[(−2)k − 1] + 2n−m[(−

1

2
)k − 1]

)
(3+ i+ 15ε+ 5iε).

Theorem 11 (d’Ocagne type identity for dual-complex r-Jacobsthal numbers)
Let n ≥ 0, m ≥ 0, r ≥ 0 be integers such that n ≥ m. Then

DCJ(r, n) · DCJ(r,m+ 1) − DCJ(r, n+ 1) · DCJ(r,m) =

=
(1+ 2r)2

√
4 · 2r + 5 · 4r

4 · 2r + 5 · 4r
(−4r − 2r)m

(
λn−m1 − λn−m2

)
λ̂1λ̂2,

where λ̂1λ̂2 is given by (6).
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Proof. Using the Binet type formula (5) we get

DCJ(r, n) · DCJ(r,m+ 1) − DCJ(r, n+ 1) · DCJ(r,m) =

= (C1λ̂1λ
n
1 + C2λ̂2λ

n
2 )(C1λ̂1λ

m+1
1 + C2λ̂2λ

m+1
2 )

− (C1λ̂1λ
n+1
1 + C2λ̂2λ

n+1
2 )(C1λ̂1λ

m
1 + C2λ̂2λ

m
2 )

= C1C2λ̂1λ̂2

(
λm+1
1 λn2 + λ

n
1 λ
m+1
2 − λm1 λ

n+1
2 − λn+11 λm2

)
= C1C2λ̂1λ̂2(λ1λ2)

m(λ1λ
n−m
2 + λn−m1 λ2 − λ

n−m+1
2 − λn−m+1

1 )

= C1C2(λ2 − λ1)(λ1λ2)
mλ̂1λ̂2

(
λn−m1 − λn−m2

)
=

(1+ 2r)2
√
4 · 2r + 5 · 4r

4 · 2r + 5 · 4r
(−4r − 2r)m

(
λn−m1 − λn−m2

)
λ̂1λ̂2.

�

Corollary 5 (d’Ocagne type identity for dual-complex Jacobsthal numbers)
Let n ≥ 0, m ≥ 0 be integers such that n ≥ m. Then

DCJn · DCJm+1 − DCJn+1 · DCJm =

=
4

3
(−2)m

(
2n−m − (−1)n−m

)
(3+ i+ 15ε+ 5iε).

Now we give a summation formula for the dual-complex r-Jacobsthal numbers.

Theorem 12 Let n ≥ 1, r ≥ 0 be integers. Then

n∑
l=0

DCJ(r, l) =
1

4r + 2r+1 − 1
[DCJ(r, n+ 1) + (2r + 4r)DCJ(r, n)

−(1+ i+ ε+ iε)(2+ 2r)]
−i− (2+ 2r+1)ε− (2r+2 + 3 · 4r + 2)iε.

Proof. By formula (3) we have

n∑
l=0

DCJ(r, l) =
n∑
l=0

(J(r, l) + iJ(r, l+ 1) + εJ(r, l+ 2) + iεJ(r, l+ 3))

=

n∑
l=0

J(r, l) +

n∑
l=0

iJ(r, l+ 1) +

n∑
l=0

εJ(r, l+ 2) +

n∑
l=0

iεJ(r, l+ 3)

=
1

4r + 2r+1 − 1
[J(r, n+ 1) + (2r + 4r)J(r, n) − 2− 2r
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+ i(J(r, n+ 2) + (2r + 4r)J(r, n+ 1) − 2− 2r)

+ ε(J(r, n+ 3) + (2r + 4r)J(r, n+ 2) − 2− 2r)

+ iε(J(r, n+ 4) + (2r + 4r)J(r, n+ 3) − 2− 2r)]

− iJ(r, 0) − ε(J(r, 0) + J(r, 1)) − iε(J(r, 0) + J(r, 1) + J(r, 2)).

By simple calculations we get

n∑
l=0

DCJ(r, l) =
1

4r + 2r+1 − 1
[J(r, n+ 1) + iJ(r, n+ 2)

+ εJ(r, n+ 3) + iεJ(r, n+ 4)

+ (2r + 4r)(J(r, n) + iJ(r, n+ 1) + εJ(r, n+ 2) + iεJ(r, n+ 3))

− (2+ 2r)(1+ i+ ε+ iε)] − i− (2r+1 + 2)ε− (2r+2 + 3 · 4r + 2)iε

=
DCJ(r, n+ 1) + (2r + 4r)DCJ(r, n) − (1+ i+ ε+ iε)(2+ 2r)

4r + 2r+1 − 1

− i− (2+ 2r+1)ε− (2r+2 + 3 · 4r + 2)iε.

�

In particular, we obtain the following formula for the dual-complex Jacob-
sthal numbers.

Corollary 6 Let n ≥ 1 be an integer. Then

n∑
l=0

DCJl =
DCJn+2 − DCJ1

2
.

Proof. By Theorem 12 for r = 0 we have

n∑
l=0

DCJ(0, l) =
DCJ(0, n+ 1) + 2DCJ(0, n) − 3(1+ i+ ε+ iε)

2

−(i+ 4ε+ 9iε)

=
DCJ(0, n+ 2) − (3+ 5i+ 11ε+ 21iε)

2
.

Using fact that J(0, n) = Jn+2 and DCJ0 = i+ ε+ 3iε, DCJ1 = 1+ i+ 3ε+ 5iε,
we get

n∑
l=0

DCJl =
DCJn+2 − (3+ 5i+ 11ε+ 21iε)

2
+ DCJ0 + DCJ1

=
DCJn+2 − (3+ 5i+ 11ε+ 21iε) + 2(1+ 2i+ 4ε+ 8iε)

2

=
DCJn+2 − (1+ i+ 3ε+ 5iε)

2
=

DCJn+2 − DCJ1
2

,

.
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which ends the proof. �

The next theorem gives the Honsberger type identity for the dual-complex
r-Jacobsthal numbers.

Theorem 13 Let m ≥ 2, n ≥ 1, r ≥ 0 be integers. Then

2rDCJ(r,m− 1) · DCJ(r, n) + (4r + 8r)DCJ(r,m− 2) · DCJ(r, n− 1) =

= 2DCJ(r,m+ n) − J(r,m+ n) − J(r,m+ n+ 2)

− 2εJ(r,m+ n+ 4) + 2iεJ(r,m+ n+ 3).

Proof. By simple calculations we have

2rDCJ(r,m− 1) · DCJ(r, n) =
= 2r[J(r,m− 1)J(r, n) + iJ(r,m− 1)J(r, n+ 1)
+εJ(r,m− 1)J(r, n+ 2) + iεJ(r,m− 1)J(r, n+ 3)
+iJ(r,m)J(r, n) − J(r,m)J(r, n+ 1) + iεJ(r,m)J(r, n+ 2)
−εJ(r,m)J(r, n+ 3) + εJ(r,m+ 1)J(r, n) + iεJ(r,m+ 1)J(r, n+ 1)
+iεJ(r,m+ 2)J(r, n) − εJ(r,m+ 2)J(r, n+ 1)],

(4r + 8r)DCJ(r,m− 2) · DCJ(r, n− 1) =
= (4r + 8r)[J(r,m− 2)J(r, n− 1) + iJ(r,m− 2)J(r, n)
+εJ(r,m− 2)J(r, n+ 1) + iεJ(r,m− 2)J(r, n+ 2)
+iJ(r,m− 1)J(r, n− 1) − J(r,m− 1)J(r, n)
+iεJ(r,m− 1)J(r, n+ 1) − εJ(r,m− 1)J(r, n+ 2)
+εJ(r,m)J(r, n− 1) + iεJ(r,m)J(r, n)
+iεJ(r,m+ 1)J(r, n− 1) − εJ(r,m+ 1)J(r, n)].

Hence

2r · DCJ(r,m− 1) · DCJ(r, n) + (4r + 8r)DCJ(r,m− 2) · DCJ(r, n− 1) =
= 2r J(r,m− 1)J(r, n) + (4r + 8r)J(r,m− 2)J(r, n− 1)
+i[2r J(r,m− 1)J(r, n+ 1) + (4r + 8r)J(r,m− 2)J(r, n)
+2r J(r,m)J(r, n) + (4r + 8r)J(r,m− 1)J(r, n− 1)]
+ε[2r J(r,m− 1)J(r, n+ 2) + (4r + 8r)J(r,m− 2)J(r, n+ 1)
+2r J(r,m+ 1)J(r, n) + (4r + 8r)J(r,m)J(r, n− 1)]
+iε[2r J(r,m− 1)J(r, n+ 3) + (4r + 8r)J(r,m− 2)J(r, n+ 2)
+2r J(r,m)J(r, n+ 2) + (4r + 8r)J(r,m− 1)J(r, n+ 1)]
−2r J(r,m)J(r, n+ 1) − (4r + 8r)J(r,m− 1)J(r, n)
−ε[2r J(r,m)J(r, n+ 3) + (4r + 8r)J(r,m− 1)J(r, n+ 2)
+2r J(r,m+ 2)J(r, n+ 1) + (4r + 8r)J(r,m+ 1)J(r, n)]
+iε[2r J(r,m+ 1)J(r, n+ 1) + (4r + 8r)J(r,m)J(r, n)
+2r J(r,m+ 2)J(r, n) + (4r + 8r)J(r,m+ 1)J(r, n− 1)].
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Using Theorem 4, we get

2rDCJ(r,m− 1) · DCJ(r, n) + (4r + 8r)DCJ(r,m− 2) · DCJ(r, n− 1) =
= J(r,m+ n) + 2[iJ(r,m+ n+ 1) + εJ(r,m+ n+ 2)
+iεJ(r,m+ n+ 3)] − J(r,m+ n+ 2)
−2εJ(r,m+ n+ 4)ε+ 2iεJ(r,m+ n+ 3)

= 2DCJ(r,m+ n) − J(r,m+ n) − J(r,m+ n+ 2)
−2εJ(r,m+ n+ 4) + 2iεJ(r,m+ n+ 3).

�

5 Generating functions and matrix generators

Now we give the generating function of the dual-complex r-Jacobsthal num-
bers.

Theorem 14 The generating function of the dual-complex r-Jacobsthal num-
bers has the following form

g(x) =
DCJ(r, 0) + (DCJ(r, 1) − 2rDCJ(r, 0))x

1− 2rx− (2r + 4r)x2
.

Proof. Let

g(x) = DCJ(r, 0) + DCJ(r, 1)x+ DCJ(r, 2)x2 + · · ·+ DCJ(r, n)xn + · · ·

be the generating function of the dual-complex r-Jacobsthal numbers. Then

2rxg(x) = 2rDCJ(r, 0)x+ 2rDCJ(r, 1)x2 + 2rDCJ(r, 2)x3
+ · · ·+ 2rDCJ(r, n− 1)xn + · · ·

(2r + 4r)x2g(x) = (2r + 4r)DCJ(r, 0)x2 + (2r + 4r)DCJ(r, 1)x3
+(2r + 4r)DCJ(r, 2)x4 + · · ·
+(2r + 4r)DCJ(r, n− 2)xn + · · · .

By Proposition 2 we get

g(x) − 2rxg(x) − (2r + 4r)x2g(x)
= DCJ(r, 0) + (DCJ(r, 1) − 2rDCJ(r, 0))x
+(DCJ(r, 2) − 2rDCJ(r, 1) − (2r + 4r)DCJ(r, 0))x2 + · · ·

= DCJ(r, 0) + (DCJ(r, 1) − 2rDCJ(r, 0))x.
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Thus

g(x) =
DCJ(r, 0) + (DCJ(r, 1) − 2rDCJ(r, 0))x

1− 2rx− (2r + 4r)x2
.

Moreover,

DCJ(r, 0) = 1+ (2r+1 + 1)i+ (3 · 4r + 2r+1)ε
+(5 · 8r + 5 · 4r + 2r)iε,

DCJ(r, 1) − 2rDCJ(r, 0) = 2r + 1+ (4r + 2r)i+ (2 · 8r + 3 · 4r + 2r)ε
+(3 · 16r + 5 · 8r + 2 · 4r)iε.

�

Corollary 7 The generating function of the dual-complex Jacobsthal sequence
is

g(x) =
i+ ε+ 3iε+ (1+ 2ε+ 2iε)x

1− x− 2x2
.

At the end we give the matrix representation of the dual-complex r-Jacobsthal
numbers.

Theorem 15 Let n ≥ 1, r ≥ 0 be integers. Then[
DCJ(r, n+ 1) DCJ(r, n)
DCJ(r, n) DCJ(r, n− 1)

]
=

[
DCJ(r, 2) DCJ(r, 1)
DCJ(r, 1) DCJ(r, 0)

]
·
[
2r 1

2r + 4r 0

]n−1
.

(7)

Proof. (by induction on n) It is easy to check that for n = 1 the result holds.
Assume that the formula (7) is true for n ≥ 1. We will show that[
DCJ(r, n+ 2) DCJ(r, n+ 1)
DCJ(r, n+ 1) DCJ(r, n)

]
=

[
DCJ(r, 2) DCJ(r, 1)
DCJ(r, 1) DCJ(r, 0)

]
·
[
2r 1

2r + 4r 0

]n
.

By induction’s hypothesis and simple calculations we have[
DCJ(r, 2) DCJ(r, 1)
DCJ(r, 1) DCJ(r, 0)

]
·
[
2r 1

2r + 4r 0

]n−1
·
[
2r 1

2r + 4r 0

]

=

[
DCJ(r, n+ 1) DCJ(r, n)
DCJ(r, n) DCJ(r, n− 1)

]
·
[
2r 1

2r + 4r 0

]
=

[
2rDCJ(r, n+ 1) + (2r + 4r)DCJ(r, n) DCJ(r, n+ 1)
2rDCJ(r, n) + (2r + 4r)DCJ(r, n− 1) DCJ(r, n)

]
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=

[
DCJ(r, n+ 2) DCJ(r, n+ 1)
DCJ(r, n+ 1) DCJ(r, n)

]
,

which ends the proof. �

Calculating the determinants in formula (7) we obtain the Cassini type
identity for the dual-complex r-Jacobsthal numbers. We have∣∣∣∣ DCJ(r, n+ 1) DCJ(r, n)
DCJ(r, n) DCJ(r, n− 1)

∣∣∣∣ = DCJ(r, n+1) ·DCJ(r, n−1)−(DCJ(r, n))2,

∣∣∣∣ DCJ(r, 2) DCJ(r, 1)
DCJ(r, 1) DCJ(r, 0)

∣∣∣∣ = DCJ(r, 2) · DCJ(r, 0) − (DCJ(r, 1))2.

∣∣∣∣ 2r 1

2r + 4r 0

∣∣∣∣n−1 = (− (2r + 4r))n−1 .

Consequently,

DCJ(r, n+ 1) · DCJ(r, n− 1) − (DCJ(r, n))2 =
= (− (2r + 4r))n−1 (DCJ(r, 2) · DCJ(r, 0) − (DCJ(r, 1))2).

Compliance with ethical standards

Conflict of Interest: The authors declare that they have no conflict of interest.

References
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Abstract. Here, we employ soft semi open sets to define new soft or-
dered maps, namely soft x-semi continuous, soft x-semi open, soft x-semi
closed and soft x-semi homeomorphism maps, where x denotes the type
of monotonicity. To show the relationships among them, we provide some
illustrative examples. Then we give complete descriptions for each one of
them. Also, we investigate “transmission” of these maps between soft and
classical topological ordered spaces.

1 Introduction

In 1965, Nachbin [41] introduced new mathematical structure, namely topo-
logical ordered space. This structure consists of two independent concepts
defined on a non-empty set X, one of them is a topological space (X, τ) and
the other is a partially ordered set (X,�). McCartan [39] in 1968, studied
separation axioms via topological ordered spaces. Kumar [35] defined the con-
cepts of continuous and homeomorphism maps via topological ordered spaces.
Recently, the authors of [1, 4, 6, 9, 10, 12, 23, 26, 28] have introduced and
investigated many concepts via supra topological ordered spaces.

In 1999, Molotdsov [40] introduced the concept of soft sets for dealing with
uncertainties and vagueness. Then, Maji et al. [38] put up the basis of soft
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Key words and phrases: soft I(D,B)-semi continuous map, soft I(D,B)-semi open map,
soft I(D,B)-semi closed map, soft I(D,B)-semi homeomorphism map
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set theory by defining some operations between two soft sets like soft subset
and equality relations, and soft union and intersection. Shabir and Naz [45]
initiated the idea of soft topological spaces and studied soft separation axioms.
Later on, many researchers carried out several studies to discuss the topological
notions on soft topologies (see, for example [2, 3, 7, 11, 15, 20, 22, 29, 30, 31, 36,
44]). Chen [24] and Mahanta and Das[37] displayed and probed the notions of
soft semi open sets and soft semi separation axioms. Depend on soft semi open
sets, some works were done (see, for example [5, 25, 33, 34]). At present, the
notions of soft topological ordered spaces [16], supra soft topological ordered
spaces [13] and soft ordered maps [13] were introduced and investigated.

This paper is organized as follows: In Section (2), we recall the previous
definitions and results that we will need to prove our results. Section (3) gives
other applications of soft semi open sets by defining some soft ordered maps,
namely soft x-semi continuous, soft x-semi open, soft x-semi closed and soft
x-semi homeomorphism maps for x ∈ {I,D, B}. These concepts are described
and some examples are constructed to show the relationships among them.
Also, we demonstrate the interrelationships between these soft maps and their
counterparts of crisp ordered maps when the soft topology is extended. Section
(4) concludes the paper.

2 Preliminaries

Let X and Ω be a universal set and a set of parameters, respectively. The
power set of X is denoted by 2X.

2.1 Soft sets

Definition 1 [40] A notation GΩ is said to be a soft set, terminologically,
over X, if G is a map from Ω to 2X. Usually, we write it as follows:

GΩ = {(ω,G(ω)) : ω ∈ Ω and G(ω) ∈ 2X}.

Through this article, S(XΩ) denotes the family of soft sets on X with Ω.

Definition 2 [29, 45] For y ∈ X and GΩ over X, we write that:

1. y ∈ GΩ (resp. y 6b GΩ) if y ∈ G(ω) (resp. y 6∈ G(ω)) for each ω ∈ Ω.

2. y b GΩ (resp. y 6∈ GΩ) if y ∈ G(ω) (resp. y 6∈ G(ω)) for some ω ∈ Ω.
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Definition 3 [38] If G(ω) = ∅ and F(ω) = X for each ω ∈ Ω, then GΩ
and FΩ are respectively called null soft set and absolute soft set. They are
respectively denoted by ∅̃ and X̃.

Definition 4 [21] The relative complement GcΩ of GΩ is defined by Gc(ω) =
X \G(ω) for each ω ∈ Ω.

Definition 5 [46] A soft mapping of S(XΩ, ) into S(YΓ ), denoted by fφ, is a
pair of mappings f : X→ Y and φ : Ω→ Γ such that the image of GK ∈ S(XΩ, )
and pre-image of HL ∈ S(YΓ ) are given by the following formulations:

(i) fφ(GK) = (fφ(G))Γ is a soft subset of S(YΓ ) given by

fφ(G)(γ) =

{ ⋃
a∈φ−1(γ)

⋂
K f(G(a)) : φ−1(γ)

⋂
K 6= ∅

∅ : φ−1(γ)
⋂
K = ∅

for each γ ∈ Γ .

(ii) f−1φ (HL) = (f−1φ (H))Ω is a soft subset of S(XΩ) given by

f−1φ (H)(ω) =

{
f−1(H(φ(ω))) : φ(ω) ∈ L

∅ : φ(ω) 6∈ L

for each ω ∈ Ω.

Definition 6 [46] If f and φ are injective (resp. surjective, bijective) maps,
then fφ : S(XΩ)→ S(YΓ ) is said to be injective (resp. surjective, bijective).

Proposition 1 [42] Let GΩ and HΓ be soft subsets of S(XΩ) and S(YΓ ), re-
spectively. Then:

(i) GΩ⊆̃f−1φ fφ(GΩ). If fφ is injective, then GΩ = f−1φ fφ(GΩ).

(ii) fφf
−1
φ (HΓ )⊆̃HΓ . If fφ is surjective, then fφf

−1
φ (HΓ ) = HΓ .

Definition 7 [27], [42] If there exist ω ∈ Ω and x ∈ X such that G(ω) = {x}

and G(a) = ∅ for each a ∈ Ω \ {ω}, then GΩ is called a soft point. Briefly, it
is denoted by Pxω.

If x ∈ G(ω), then Pxω ∈ GΩ.
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Definition 8 [16] A triple (X,Ω,�) is said to be a partially ordered soft set
if (X,�) is a partially ordered set.
� is called linearly ordered if any pair of elements in the set of the relation

are comparable, i.e., for each x, y ∈ X either x � y or y � x.

Remark 1 Through this paper, the notation 4 denotes a diagonal relation,
i.e. 4 = {(x, x) : x ∈ X}.

Definition 9 [16] An increasing soft operator i : (S(XΩ),�) → (S(XΩ),�)
and a decreasing soft operator d : (S(XΩ),�) → (S(XΩ),�) are defined as
follows: For each soft subset GΩ of S(XΩ)

1. i(GΩ) = (iG)Ω, where a mapping iG of Ω into 2X given by iG(ω) =
i(G(ω)) = {v ∈ X : y � v for some y ∈ G(ω)}.

2. d(GΩ) = (dG)Ω, where a mapping dG of Ω into 2X given by dG(ω) =
d(G(ω)) = {v ∈ X : v � y for some y ∈ G(ω)}.

Definition 10 [16] A soft subset GΩ of (X,Ω,�) is said to be increasing
(resp. decreasing) if GΩ = i(GΩ)(resp. GΩ = d(GΩ)).

Theorem 1 [16] If fφ : (S(XΩ),�1)→ (S(YΓ ),�2) is surjective and increasing
(resp. decreasing), then the inverse image of each increasing (resp. decreasing)
soft set is increasing (resp. decreasing).

2.2 Soft topologies

Definition 11 [45] A sub-collection τ of S(XΩ) is called a soft topology on X
provided that it is closed under finite soft intersection and arbitrary soft union.

By a soft topological space we mean a triple (X, τ,Ω). Every member of τ is
called soft open and its relative complement is called soft closed.

Proposition 2 [45] In (X, τ,Ω), a class τγ = {G(ω) : GΩ ∈ τ} defines a
classical topology on X for each ω ∈ Ω.

Proposition 3 [42] A class τ? = {GΩ : G(ω) ∈ τγ for each ω ∈ Ω} defines a
soft topology on X finer than τ.

Henceforward, τ? is called an extended soft topology.

Definition 12 [24, 37] A soft subset HΩ of (X, τ,Ω) which satisfies HΩ⊆̃cl
(int(HΩ)) is said to be soft semi open. The relative complement of a soft semi
open set is said to be soft semi closed.



New soft ordered maps using soft semi open sets 149

Definition 13 [24, 37, 45] We associate a subset HΩ of (X, τ,Ω) with the
following four operators:

(i) int(HΩ) (resp. ints(HΩ)) is the largest soft open (resp. soft semi open)
set contained in HΩ.

(ii) cl(HΩ) (resp. cls(HΩ)) is the smallest soft closed (resp. soft semi closed)
set containing HΩ.

Definition 14 [24] fφ : (X, τ,A)→ (Y, θ, B) is said to be:

(i) soft semi continuous if f−1φ (GB) is soft semi open for each GB ∈ θ.

(ii) soft semi open (resp. soft semi closed) if fφ(UA) is soft semi open (resp.
soft semi closed) for each UA(resp. U

c
A) ∈ τ.

(iii) a soft semi homeomorphism if it is bijective, soft semi continuous and
soft semi open.

Definition 15 [16] We call a quadrable system (X, τ,Ω,�) a soft topological
ordered space provided that τ is a soft topology and � is a partially ordered set
on X.

Henceforward, we use the two notations (X, τ,Ω,�1) and (Y, θ, Γ,�2) to de-
note soft topological ordered spaces.

Definition 16 [17] The composition of fφ : (X, τ,Ω,�1) → (Y, θ, Γ,�2) and
gλ : (Y, θ, Γ,�2)→(Z, υ, K,�3) is a soft map fφ◦gλ : (X, τ,Ω,�1)→(Z, υ, K,�3)
and is given by (fφ ◦ gλ)(Pxω) = fφ(gλ(Pxω)).

Definition 17 [43] A map g from (X, τ,�1) to (Y, θ,�2) is said to be:

(i) D (resp. I, B) -semi continuous if g−1(G) is D (resp. I, B) -semi open for
each G ∈ θ.

(ii) D (resp. I, B) -semi open if g(F) is D (resp. I, B) -semi open for each
F ∈ τ.

(iii) D (resp. I, B) -semi closed if g(H) is D (resp. I, B) -semi closed for each
Fc ∈ τ.

(iv) D (resp. I, B) -semi homeomorphism if it is bijective, D (resp. I, B) -semi
continuous and D (resp. I, B) -semi open.
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3 New types of soft semi ordered maps

3.1 Soft D(I, B)-semi continuity

This subsection introduces the concepts ofD(I, B)-semi continuity at soft point
and ordinary point, where D, I and B denote “Decreasing”, “Increasing” and
“Balancing”, respectively. We also give the equivalent terms for each one of
these concepts at the ordinary points and provide some illustrative examples.

Definition 18 A soft subset HΩ of (X, τ,Ω,�1) which is:

(i) soft semi open and increasing (resp. decreasing, balancing) is said to be SI
(resp. SD, SB) -semi open.

(ii) soft semi closed and increasing (resp. decreasing, balancing) is said to be
SI (resp. SD, SB) -semi closed.

Definition 19 fφ : (X, τ,Ω,�1)→ (Y, θ, Γ,�2) is called:

1. SI (resp. SD, SB) -semi continuous at Pxω ∈ X̃ if for each soft open set
HΓ containing fφ(P

x
ω), there exists an SI (resp. SD, SB) -semi open set

GΩ containing Pxω such that fφ(GΩ)⊆̃HΓ .

2. SI (resp. SD, SB) -semi continuous at x ∈ X if it is SI (resp. SD, SB)
-semi continuous at each Pxω.

3. SI (resp. SD, SB) -semi continuous if it is SI (resp. SD, SB) -semi
continuous at each x ∈ X.

Theorem 2 fφ : (X, τ,Ω,�1) → (Y, θ, Γ,�2) is SI (resp. SD, SB) -semi con-
tinuous iff the inverse image of each soft open set is SI (resp. SD, SB) -semi
open.

Proof. When fφ is SD-semi continuous.

Necessity: Let GΓ ∈ θ. Without loss of generality, consider f−1(GΓ ) 6= ∅̃. By
choosing Pxω ∈ X s.t. Pxω ∈ f−1φ (GΓ ), we obtain fφ(P

x
ω) ∈ GΓ . Then there is

an SD-semi open set HΩ containing Pxω s.t. fφ(HΩ)⊆̃GΓ . Since Pxω is chosen

arbitrary, then f−1φ (GΓ ) =
⋃̃
Pxω∈f−1φ (GΓ )

HΩ; therefore, f−1φ (GΓ ) is an SD-semi

open set.
Sufficiency: Let GΓ ∈ θ such that fφ(P

x
ω) ∈ θ. Then Pxω ∈ f−1φ (GΓ ). By

hypothesis, f−1φ (GΓ ) is an SD-semi open set. Since fφ(f
−1
φ (GΓ ))⊆̃GΓ , then fφ is

an SD-semi continuous map at Pxω and since Pxω is selected randomly, then fφ
is an SD-semi continuous map. �
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Remark 2 It can be seen from Definition (19) the following.

1. Every SI (SD, SB) -semi continuous map is soft semi continuous.

2. Every SB-semi continuous map is SI (SD) -semi continuous.

Examples given below manifest that the two results of the remark above are
not reversible.

Example 1 Let Ω = {ω1,ω2} be a parameters set and X = {1, 2, 3, 4} be
a universe set and consider φ : Ω → Ω and f : X → X are two identity
maps. Let �= 4

⋃
{(1, 3)} be a partial order relation on X and consider τ =

{∅̃, X̃, FΩGΩ} and θ = {∅̃, Ỹ, HΩLΩ} are two soft topologies on X, where FΩ =
{(ω1, {1}), (ω2, {3, 4})}, GΩ = {(ω1, ∅), (ω2, {3})}, HΩ = {(ω1, {1}), (ω2, {2, 3})}
and LΩ = {(ω1, {1}), (ω2, {3})}. For a soft map fφ : (X, τ,Ω,�)→ (X, θ,Ω,�),
we note that f−1φ (HΩ) = HΩ and f−1φ (LΩ) = LΩ are soft semi open sets. So fφ

is a soft semi continuous map. But, f−1φ (HΩ) is neither an SD-semi open set
nor an SI-semi open set. Hence fφ is not SI (SD, SB)-semi continuous.

Example 2 By replacing a partial order relation (in the above example) by
�= 4

⋃
{(2, 4)}(resp. �= 4

⋃
{(4, 1)}), we obtain a soft map fφ is SD-semi

continuous (resp. SI-continuous), but is not SB-semi continuous.

Definition 20 For any set HΩ in (X, τ,Ω,�), we introduce the next opera-
tors:

(i) HisoΩ (resp. HdsoΩ , HbsoΩ ) is the largest SI (resp. SD, SB) -semi open set
contained in HΩ.

(ii) HisclΩ (resp. HdsclΩ , HbsclΩ ) is the smallest SI (resp. SD, SB) -semi closed set
containing HΩ.

Lemma 1 The next properties are satisfied for a set HΩ in (X, τ,Ω,�).

(i) (HdsclΩ )c = (HcΩ)
iso.

(ii) (HisclΩ )c = (HcΩ)
dso.

(iii) (HbsclΩ )c = (HcΩ)
bso.
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Proof.

(i) (HdsclΩ )c = {
⋃̃
FΩ : FΩ is an SD-semi closed set containing HΩ}

c

=
⋂̃
{FcΩ : FcΩ is an SI-semi open set contained in HcΩ} =

(HcΩ)
iso.

By analogy with (i), one can prove (ii) and (iii). �

Theorem 3 The next properties of fφ : (X, τ,Ω,�1)→ (Y, θ, Γ,�2) are equiv-
alent:

1. fφ is SI-semi continuous;

2. f−1φ (LΓ ) is an SD-semi closed subset of X̃ for any soft closed set LΓ in Ỹ;

3. (f−1φ (MΓ ))
dscl⊆̃f−1φ (cl(MΓ )) for every MΓ ⊆̃Ỹ;

4. fφ(N
dscl
Ω )⊆̃cl(fφ(NΩ)) for every NΩ⊆̃X̃;

5. f−1φ (int(MΓ ))⊆̃(f−1φ (MΓ ))
iso for every MΓ ⊆̃Ỹ.

Proof. 1⇒ 2 : Suppose LΓ is a soft closed set in Ỹ. Then, f−1φ (LcΓ ) is an SI-semi

open set in X̃. Now, f−1φ (LcΓ ) = (f−1φ (LΓ ))
c; hence, f−1φ (LΓ ) is an SD-semi closed

set.
2 ⇒ 3 : It comes from 2 that f−1φ (cl(MΩ)) is an SD-semi closed set in X̃ for

any MΓ ⊆̃Ỹ. Therefore, (f−1φ (MΓ ))
dscl⊆̃(f−1φ (cl(MΓ ))

dscl = f−1φ (cl(MΓ )).

3 ⇒ 4 : We know that that NdsclΩ ⊆̃(f−1φ (fφ(NΩ))
dscl; according to 3 we have

(f−1φ (fφ(NΩ))
dscl ⊆̃f−1φ (cl(fφ(NΩ)). Hence, fφ(N

dscl
Ω )⊆̃cl(fφ(NΩ)).

4⇒ 5 : For any soft set MΓ in Ỹ, we obtain from Lemma (1) that fφ(X̃− (f−1φ
(NΩ))

iso) = fφ(((f
−1
φ (NΩ))

c)dscl). It follows from statement 4, that fφ(((f
−1
φ

(NΩ))
c)dscl) ⊆̃cl(fφ(f−1φ (NΩ))

c) = cl(fφ(f
−1
φ (NcΩ)))⊆̃cl(Ỹ−NΩ) = Ỹ−int(NΩ).

Therefore (X̃ − (f−1φ (NΩ))
iso)⊆̃f−1φ (Ỹ − int(NΩ)) = X̃ − f−1φ (int(NΩ)). Thus

f−1φ (int(NΩ))⊆̃(f−1φ (NΩ))
iso.

5 ⇒ 1: Consider MΓ is a soft open set in Ỹ. Then f−1φ (MΓ ) = f
−1
φ (int(MΓ ))⊆̃

(f−1φ (MΓ ))
iso. So (f−1φ (MΓ ))

iso = f−1φ (MΓ ) and this means that f−1φ (MΓ ) is an

SI-semi open set in X̃. �

Theorem 4 The next properties of fφ : (X, τ,Ω,�1)→ (Y, θ, Γ,�2) are equiv-
alent:
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1. fφ is SD-semi continuous (resp. SB-semi continuous);

2. f−1φ (LΓ ) is an SI-semi closed (resp. SB-semi closed) set in X̃ for each soft

closed set LΓ in Ỹ;

3. (f−1φ (MΓ ))
iscl⊆̃f−1φ (cl(MΓ )) (resp. (f−1φ (MΓ ))

bscl⊆̃f−1φ (cl(MΓ ))) for every

MΓ ⊆̃Ỹ;

4. fφ(N
iscl
Ω )⊆̃cl(fφ(NΩ)) (resp. fφ(N

bscl
Ω )⊆̃cl(fφ(NΩ))) for every NΩ⊆̃X̃;

5. f−1φ (int(MΓ ))⊆̃(f−1φ (MΓ ))
dso (resp. f−1φ (int(MΓ ))⊆̃(f−1φ (MΓ ))

bso) for ev-

ery MΓ ⊆̃Ỹ.

Proof. Similar to the proof of Theorem (3). �

Theorem 5 Let a soft topology τ? be extended. Then gφ : (X, τ?,Ω,�1) →
(Y, θ, Γ,�2) is SI (resp. SD, SB) -semi continuous iff a crisp map g : (X, τ?γ,�1
)→ (Y, θφ(ω),�2) is I (resp. D, B) -semi continuous.

Proof. ⇒: Consider U is an open set in (Y, θφ(ω),�2). Then there is a soft
open set GΓ in (Y, θ, Γ,�2) s.t. G(φ(ω)) = U. Since gφ is an SI (resp. SD, SB)
-semi continuous map, then g−1φ (GΓ ) is an SI (resp. SD, SB) -semi open set.

From Definition (5), a soft set g−1φ (GΓ ) = (g−1φ (G))Ω in (X, τ,Ω,�1) is given

by g−1φ (G)(ω) = g−1(G(φ(ω))) for any ω ∈ Ω. Now, τ? is extended; thus, a

set g−1(G(φ(ω))) = g−1(U) in (X, τγ,�1) is I (resp. D, B) -semi open. This
proves that g is I (resp. D, B) -semi continuous.⇐: Consider GΓ is a soft open set in (Y, θ, Γ,�2). Then a soft set g−1φ (GΓ ) =

(g−1φ (G))Ω in (X, τ?,Ω,�1) isgiven by g−1φ (G)(ω) = g−1(G(φ(ω))) for any

ω ∈ Ω. Since amap g is I (resp. D, B) -semi continuous, a set g−1(G(φ(ω)))
in (X, τ?γ,�1) is I (resp. D, B) -semi open. Now, τ? is extended; thus, g−1φ (GΓ )
is an SI (resp. SD, SB) -semi open set in (X, τ?,Ω,�1). This proves that a soft
map gφ is SI (resp. SD, SB) -semi continuous. �

Proposition 4 Let fφ : (X, τ,Ω,�1) → (Y, θ, Γ,�2) be SB-semi continuous
and surjective. If �1 is linearly ordered, then θ is the indiscrete soft topology.

3.2 Soft I(D,B)-semi open and soft I(D,B)-semi closed maps

In the following part, we present the notions of soft I(D,B)-semi open and soft
I(D,B)-semi closed maps. Then, we elucidate the relationships among them
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with the help of examples. Finally, we characterize each one of these concepts
and study some properties.

Definition 21 fφ : (X, τ,Ω,�1)→ (Y, τ, Γ,�2) is called:

(i) SI (resp. SD, SB) -semi open if the image of any soft open set in X̃ is an
SI (resp. SD, SB) -semi open set in Ỹ.

(ii) SI (resp. SD, SB) -semi closed if the image of any soft closed set in X̃ is
an SI (resp. SD, SB) -semi closed set in Ỹ.

Remark 3 Note that:

1. an SI (SD, SB) -semi open map is soft semi open.

2. an SI (SD, SB) -semi closed map is soft semi closed.

3. an SB-semi open (resp. SB-semi closed) map is SI (SD) -semi open (resp.
SI (SD) -semi closed).

Examples given below manifest that the three results of the remark above are
not reversible.

Example 3 Let Ω, X, φ : Ω → Ω, f : X → X and � be the same as in
Example (1). Consider τ = {∅̃, X̃, FΩ} and θ = {∅̃, Ỹ, LΩ} are two soft topologies
on X, where FΩ = {(ω1, {1}), (ω2, {3, 4})} and LΩ = {(ω1, {1}), (ω2, {3})}. For
a soft map fφ : (X, τ,Ω,�) → (X, θ,Ω,�), we note that fφ(FΩ) = FΩ is a
soft semi open set. So fφ is a soft semi open map. On the other hand, fφ(FΩ)
is neither an SD-semi open set nor an SI-semi open set. Hence fφ is not SI
(SD, SB)-semi open. Also, fφ is a soft semi closed map, but it is not SI (SD,
SB)-semi closed.

Example 4 By replacing a partial order relation (given in the example above)
by �= 4

⋃
{(2, 4)}, we obtain fφ is SI-semi open and SD-semi closed, but it is

neither an SB-semi open map nor an SB-semi closed map. Also, if we replace
only the partial order relation by �= 4

⋃
{(1, 2)}, then the soft map fφ is

SD-open and SI-semi closed, but it is neither an SB-semi open map nor an
SB-semi closed map.

Theorem 6 The next properties of fφ : (X, τ,Ω,�1)→ (Y, θ, Γ,�2) are equiv-
alent:

1. fφ is SI-semi open;
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2. int(f−1φ (MΓ ))⊆̃f−1φ (Miso
Γ ) for any MΓ ⊆̃Ỹ;

3. fφ(int(NΩ))⊆̃(fφ(NΩ))iso for any NΩ⊆̃X̃.

Proof. 1 ⇒ 2: It is clear that int(f−1φ (MΓ )) is a soft open set in X̃ for any

soft set MΓ in Ỹ. Now, fφ(int(f
−1
φ (MΓ ))) is an SI-semi open set in Ỹ. Since

fφ(int(f
−1
φ (MΓ )))⊆̃fφ(f−1φ (MΓ ))⊆̃MΓ , then int(f−1φ (MΓ ))⊆̃f−1φ (Miso

Γ ).

2 ⇒ 3: Given a soft set NΩ in X̃, according to 2 int(f−1φ (fφ(NΩ)))⊆̃ f−1φ ((fφ

(NΩ))
iso). Since int(NΩ)⊆̃f−1φ (fφ(int(f

−1
φ (fφ(NΩ)))))⊆̃f−1φ ((fφ(NΩ))

iso), then

fφ(int(NΩ))⊆̃(fφ(NΩ))iso.
3⇒ 1: LetGΩ be a soft open set in X̃. Then fφ(int(GΩ)) = fφ(GΩ)⊆̃(fφ(GΩ))iso.
Hence, fφ is an SI-semi open map. �

Following similar technique, the following two theorems are proved.

Theorem 7 The following three properties of fφ : (X, τ,Ω,�1)→ (Y, θ, Γ,�2)
are equivalent:

1. fφ is SD-semi open (resp. SB-semi open);

2. int(f−1φ (MΓ ))⊆̃f−1φ (Mdso
Γ ) (resp. int(f−1φ (MΓ ))⊆̃f−1φ (Mbso

Γ )) for every

MΓ ⊆̃Ỹ;

3. fφ(int(NΩ))⊆̃(fφ(NΩ))dso (resp. fφ(int(NΩ))⊆̃(fφ(NΩ))bso) for every

NΩ⊆̃X̃.

Theorem 8 The next statements hold for fφ : (X, τ,Ω,�1)→ (Y, θ, Γ,�2):

1. fφ is SI-semi closed iff (fφ(GΩ))
iscl⊆̃fφ(cl(GΩ)) for every GΩ⊆̃X̃.

2. fφ is SD-semi closed iff (fφ(GΩ))
dscl⊆̃fφ(cl(GΩ)) for every GΩ⊆̃X̃.

3. fφ is SB-semi closed iff (fφ(GΩ))
bscl⊆̃fφ(cl(GΩ)) for every GΩ⊆̃X̃.

Proof. We only prove 1.
Necessity: Since fφ is SI-semi closed, fφ(cl(GΩ)) is an SI-semi closed set in Ỹ
and since fφ(GΩ)⊆̃fφ(cl(GΩ)), (fφ(GΩ))iscl⊆̃fφ(cl(GΩ)).
Sufficiency: Consider HΩ is a soft closed set in X̃. Then fφ(HΩ)⊆̃(fφ(HΩ))iscl⊆̃
fφ(cl(HΩ)) = fφ(HΩ). Therefore, fφ(HΩ) = (fφ(HΩ))

iscl. This means that
fφ(HΩ) is an SI-semi closed set. �
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Theorem 9 The next hold for a bijective soft map fφ : (X, τ,Ω,�1) → (Y, θ,
Γ,�2):

(i) fφ is SI (resp. SD, SB) -semi open if and only if fφ is SD (resp. SD, SB)
-semi closed.

(ii) fφ is SI (resp. SD, SB) -semi open if and only if f−1φ is SI (resp. SD, SB)
-semi continuous.

(iii) fφ is SD (resp. SI, SB) -semi closed if and only if f−1φ is SI (resp. SD,
SB) -semi continuous.

Proof. We prove the cases outside the parenthesis and the cases between
parenthesis can be made similarly.

(i) Necessity: Let HΩ be a soft closed set in X̃ and consider fφ is an SI-
semi open map. Then HcΩ is soft open and fφ(H

c
Ω) is SI-semi open.

Bijectiveness of fφ leads to that fφ(H
c
Ω) = [fφ(HΩ)]

c. This automatically
implies that fφ(HΩ) is SD-semi closed. Thus, fφ is an SD-semi closed
map. Following similar technique, the sufficient condition is proved.

(ii) Necessity: Let GΩ be a soft open set in X̃ and consider fφ is an SI-semi
open map. Then fφ(GΩ) is SI-semi open. Bijectiveness of fφ leads to that
fφ(GΩ) = (f−1φ )−1(GΩ). This automatically implies that (f−1φ )−1(GΩ) is

SI-semi open. Thus f−1φ is an SI-semi continuous map. Following similar
technique, the sufficient condition is proved.

(iii) It follows from (i) and (ii).

�

Theorem 10 Let a soft topology θ? be extended and a map φ be injective.
Then gφ : (X, τ,Ω,�1) → (Y, θ?, Γ,�2) is SI (resp. SD, SB) -semi open iff a
crisp map g : (X, τγ,�1)→ (Y, θ?φ(ω),�2) is I (resp. D, B) -semi open.

Proof. Let U be an open set in (X, τγ,�1) and φ(ω) = f. Then there
is a soft open set GΩ in (X, τ,Ω,�1) s.t. G(ω) = U. Since gφ is an SI
(resp. SD, SB) -semi open map, then gφ(GΩ) is an SI (resp. SD, SB) -
semi open set. Now, a soft set gφ(GΩ) = (gφ(G))Γ in (Y, θ, Γ,�2) is given
by gφ(G)(f) =

⋃
ω∈φ−1(f) g(G(ω)) for each f ∈ Γ . View of θ? is extended, a

set
⋃
ω∈φ−1(f) g(G(ω)) = g(U) in (Y, θφ(ω),�2) is I (resp. D, B) -semi open.
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Hence a map g is I (resp. D, B) -semi open. Conversely, consider GΩ is a soft
open set in (X, τ,Ω,�1). Then a soft set gφ(GΩ) = (gφ(G))Γ in (Y, θ?, Γ,�2)
is given by gφ(G)(f) =

⋃
ω∈φ−1(f) g(G(ω)) for each f ∈ Γ . Since a map g is I

(resp. D, B) -semi open, a set
⋃
ω∈φ−1(f) g(G(ω)) in (Y, θ?φ(ω),�2) is I (resp.

D, B) -semi open. Now, θ? is an extended soft topology on Y, gφ(GΩ) is an
SI (resp. SD, SB) -semi open subset of (Y, θ?, Γ,�2). Hence a soft map gφ is SI
(resp. SD, SB) -semi open. �

Theorem 11 Let a soft topology θ? be extended and a map φ is injective.
Then gφ : (X, τ,Ω,�1) → (Y, θ?, Γ,�2) is SI (resp. SD, SB) -semi closed iff a
crisp map g : (X, τγ,�1)→ (Y, θ?φ(ω),�2) is I (resp. D, B) -semi closed.

Proposition 5 Let x ∈ {I,D, B} and consider fφ : (X, τ,Ω,�1)→ (Y, θ, Γ,�2)
and gλ : (Y, θ, Γ,�2)→ (Z, υ, K,�3) are soft maps. Then:

(i) If fφ is an Sx-semi continuous map and gλ is a soft continuous map, then
gλ ◦ fφ is an Sx-continuous map.

(ii) If fφ is a soft open (resp. soft closed) map and gλ is an Sx-semi open
(resp. Sx-semi closed) map, then gλ ◦ fφ is an Sx-semi open (resp. Sx-
semi closed) map.

(iii) If gλ ◦ fφ is an Sx-open map and fφ is surjective soft continuous, then
gλ is an Sx-open map.

3.3 Soft I(D,B)-semi homeomorphism

We define and investigate in this subsection, the concepts of soft I(D,B)-
semi homeomorphism maps. We discussed their main features and verify some
findings related to them.

Definition 22 A bijective soft map gφ : (X, τ,Ω,�1) → (Y, θ, Γ,�2) is called
SI (resp. SD, SB) -semi homeomorphism if it is SI-semi continuous and SI-
semi open (resp. SD-semi continuous and SD-semi open, SB-semi continuous
and SB-semi open).

Remark 4 Note that:

1. an SI (SD, SB) -semi homeomorphism map is soft semi homeomorphism.

2. an SB-semi homeomorphism map is SI-semi homeomorphism or SD-
semi homeomorphism.
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Examples given below manifest that the results of the remark above are not
reversible.

Example 5 Let Ω, X, φ : Ω→ Ω, f : X→ X and � be the same as in Exam-
ple (1). Consider τ = {∅̃, X̃, FΩ, LΩ} and θ = {∅̃, Ỹ, LΩ} are two soft topologies
on X, where FΩ = {(ω1, {1}), (ω2, {3, 4})} and LΩ = {(ω1, {1}), (ω2, {3})}. Then
we find that fφ : (X, τ,Ω,�) → (X, θ,Ω,�) is a soft semi homeomorphism
map, but it is neither an SD-semi homeomorphism map nor an SI-semi home-
omorphism map. Hence fφ is not SI (SD, SB)-semi homeomorphism.

Example 6 By replacing a partial order relation (given in example above)
by �= 4

⋃
{(2, 4)}, we find that a soft map fφ is SI-semi homeomorphism,

but it is not an SB-semi homeomorphism map. Also, replacing a partial order
relation (given in example above) by �= 4

⋃
{(1, 2)} leads to that a soft map

fφ is SD-homeomorphism, but it is not an SB-semi homeomorphism map.

Theorem 12 Consider fφ : (X, τ,Ω,�1) → (Y, θ, Γ,�2) is a bijective soft
map and let (γ, λ) ∈ {(Is, dscl), (Ds, iscl), (Bs, bscl)}. Then fφ is soft γ-
homeomorphism if and only if (fφ(GΩ))

λ = fφ(cl(GΩ)) = cl(fφ(GΩ)) =

fφ(G
λ
Ω) for every GΩ⊆̃X̃.

Proof. We only prove the case of (γ, λ) = (Is, dscl).
Necessity: The property fφ is an SI-semi homeomorphism map implies that

fφ(G
dscl
Ω )⊆̃cl(fφ(GΩ)) and (fφ(GΩ))

dscl⊆̃fφ(cl(GΩ)) for every GΩ⊆̃X̃. So fφ
(cl(GΩ)) ⊆̃fφ(GdsclΩ )⊆̃cl(fφ(GΩ))⊆̃(fφ(GΩ))dscl and cl(fφ(GΩ))⊆̃(fφ(GΩ))dscl
⊆̃fφ(cl(GΩ)) ⊆̃fφ(GdsclΩ ). By the preceding two inclusion relations, we obtain
the required equality relation.
Sufficiency: The equality relation (fφ(GΩ))

dscl = fφ(cl(GΩ)) = cl(fφ(GΩ)) =
fφ(G

dscl
Ω ) implies that fφ(G

dscl
Ω )⊆̃cl(fφ(GΩ)) and (fφ(GΩ))

dscl⊆̃fφ(cl(GΩ)).
So fφ is SI-semi continuous and SD-semi closed map. Hence the desired result
is proved. �

Theorem 13 If a bijective soft map fφ : (X, τ,Ω,�1) → (Y, θ, Γ,�2) is SI-
semi continuous (resp. SD-semi continuous, SB-semi continuous), Then the
following three statements are equivalent:

1. fφ is SI-semi homeomorphism (resp. SD-semi homeomorphism, SB-semi
homeomorphism);

2. f−1φ is SI-semi continuous (resp. SD-semi continuous, SB-semi continu-
ous);
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3. fφ is SD-semi closed (resp. SI-semi closed, SB-semi closed).

Proof. 1⇒ 2 : Since fφ is an SI-semi homeomorphism (resp. SD-semi homeo-
morphism, SB-semi homeomorphism) map, fφ is SI-semi open (resp. SD-semi
open, SB-semi open). It comes from item 2 of Theorem (9) that f−1φ is SI-semi
continuous (resp. SD-semi continuous, SB-semi continuous).
2⇒ 3 : It comes from item 3 of Theorem (9).
3 ⇒ 1 : It suffices to prove that fφ is an SI-semi open (resp. SD-semi open,
SB-semi open) map. This comes from item 1 of Theorem (9). �

Theorem 14 Let soft topologies τ? and θ? be extended on X and Y, respec-
tively. Then a soft map gφ : (X, τ?,Ω,�1)→ (Y, θ?, Γ,�2) is SI (resp. SD, SB)
-semi homeomorphism iff amap g : (X, τ?γ,�1) → (Y, θ?φ(ω),�2) is I (resp. D,

B) -semi homeomorphism.

Proof. Directly from Theorem (5) and Theorem (10). �

Proposition 6 Let the two soft topologies τ and θ on X and Y, respectively,
do not belong to {soft discrete topology, soft indiscrete topology}. If a soft map
fφ : (X, τ,Ω,�1) → (Y, θ, Γ,�2) is SB-semi homeomorphism, then �1 and �2
is not linearly ordered.

4 Conclusion

Study topological concepts in the ordered domain is an important issue be-
cause it helps to obtain some properties induced from the interaction between
topology and algebra. Also, it helps to describe and solve some practical prob-
lems; see [8]

To this end, we [16] have formulated the concept of soft topological ordered
spaces as an extension of the concept of soft topological spaces. Then we
[17] have utilized monotone soft sets to define some soft ordered maps and
investigated their main properties. In this work, we have used soft semi open
sets to give the concepts of soft x-semi continuous, soft x-semi open, soft x-semi
closed and soft x-semi homeomorphism maps for x ∈ {I,D, B}. We have given
various characterizations for these concepts and have shown the relationships
among them with the help of examples. It should be noted that results obtained
herein and results obtained in [14] are independent of each other. Also, they
are special case of results obtained in [32, 19] and are genuine generalizations
of results obtained in [18].
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Abstract. Let G be a group with identity e. Let R be a graded ring, I
a graded ideal of R and M be a G-graded R-module. Let ψ : Sgr(M) →
Sgr(M) ∪ {∅} be a function, where Sgr(M) denote the set of all graded
submodules of M. In this article, we introduce and study the concepts
of graded ψ-second submodules and graded I-second submodules of a
graded R-module which are generalizations of graded second submodules
of M and investigate some properties of this class of graded modules.

1 Introduction

The study of graded rings arises naturally out of the study of affine schemes
and allows them to formalize and unify arguments by induction [13]. How-
ever, this is not just an algebraic trick. The concept of grading in algebra,
in particular graded modules is essential in the study of homological aspect
of rings. Much of the modern development of the commutative algebra em-
phasizes graded rings. Graded rings play a central role in algebraic geometry
and commutative algebra. Gradings appear in many circumstances, both in
elementary and advanced level. In recent years, rings with a group-graded
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Key words and phrases: graded second submodule, graded ψ-second submodule, graded
I-second submodule
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structure have become increasingly important and consequently, the graded
analogues of different concepts are widely studied (see [1, 4, 10, 11, 12, 14]).
Throughout this work, all graded rings are assumed to be commutative graded
rings with identity, and all graded modules are unitary graded R-modules. We
will denote the set of graded ideals of R by Sgr(R) and the set of all graded
submodules of M by Sgr(M). Let G be a group with identity e and R be a ring.
Then R is said to be a G-graded if R =

⊕
g∈G Rg such that RgRh ⊆ Rgh for all

g, h ∈ G, where Rg is an additive subgroup of R for all g ∈ G. The elements
of Rg are homogeneous of degree g. Consider supp(R,G) = {g ∈ G | Rg 6= 0}.
For simplicity, we will denote the graded ring (R,G) by R. If r ∈ R, then r
can be written as

∑
g∈G rg, where rg is the component r in Rg. Moreover, Re

is a subring of R and if R contains a unitary 1, then 1 ∈ Re. Furthermore,
h(R) =

⋃
g∈G Rg.

Let I be a left ideal of a graded ring R. Then I is said to be a graded ideal
of R, if I =

⊕
g∈G(I ∩ Rg), i. e., for x ∈ I, x =

∑
g∈G xg, where xg ∈ I for all

g ∈ G. A proper graded ideal I of a graded ring R is said to be graded prime
if whenever rgsh ∈ I for some rg, sh ∈ h(R), then rg ∈ I or sh ∈ I. Graded
primary (prime) ideals over commutative graded rings have been studied by
[14].
Assume that M is an R-module. Then M is said to be G-graded if M =⊕

g∈GMg with RgMh ⊆ Mgh for all g, h ∈ G, where Mg is an additive sub-
group of M for all g ∈ G. The elements of Mg are called homogeneous of
degree g. Also, we consider supp(M,G) = {g ∈ G | Mg 6= 0}. It is clear that
Mg is an Re-submodule of M for all g ∈ G. Moreover h(M) =

⋃
g∈GMg. Let

N be an R-submodule of a graded R-module M. Then N is said to be a graded
R-submodule if N =

⊕
g∈G(N ∩Mg), i. e., for m ∈ N, m =

∑
g∈Gmg, where

mg ∈ N for all g ∈ G. Moreover, M/N becomes a G-graded module with
g-component (M/N)g = (Mg +N)/N for g ∈ G.

A proper graded submodule N of a graded R-module M is said to be graded
prime, if rgmh ∈ N where rg ∈ h(R) and mh ∈ h(M), then mh ∈ N or
rg ∈ (N :M). A graded R-module M is called graded prime, if the zero graded
submodule is graded prime in M. For more information about graded prime
submodules over commutative graded rings see [3, 7, 9]. A graded R-module M
is called graded finitely generated if M = Rmg1 +Rmg2 + · · ·+Rmgn for some
mg1 , · · · ,mgn ∈ h(M). Farshadifar and Ansari-Toroghy in [5, 6] introduced
the concepts of I-second submodules of M and ψ-second submodules of M
which are two generalizations of second submodules ofM. In the first section of
this paper, we introduce and study the notion of graded ψ-second submodules
of a graded R-module M and we investigate some properties of such graded



166 P. Ghiasvand, F. Farzalipour

submodules. For example, in Theorem 7, we characterize graded ψ-second
submodules of a graded R-module M. In the second section, we introduce the
notion of graded I-second submodules of a graded R-module M and obtain
some related results. For example, we prove when a graded submodule of a
graded R-module is a graded I-second submodule.

2 Graded ψ-second submodules

In this section, we define and study graded ψ-second submodules of a graded
module over a commutative graded ring.

The following Lemma is known, but we write it here for the sake of refer-
ences.

Lemma 1 Let M be a graded module over a graded ring R. Then the following
hold:

(i) If I and J are graded ideals of R, then I+ J and I
⋂
J are graded ideals of

R.

(ii) If I is a graded ideal of R, N is a graded submodule of M, r ∈ h(R) and
x ∈ h(M), then Rx, IN, rN and (0 :M I) are graded submodules of M.

(iii) If N and K are graded submodules of M, then N + K and N
⋂
K are

also graded submodules of M and (N :R M) is a graded ideal of R. Also,
AnnR(M) = (0 :R M) is a graded ideal of R.

(iv) Let {Nλ}λ∈Λ be a collection of graded submodules of M. Then
∑
λNλ and⋂

λNλ are graded submodues of M.

Definition 1 Let M be a graded R-module and let g ∈ G.
(a) A non-zero submodule Ng of Re- module Mg is said to be g-second

submodule of Mg, if for each re ∈ Re, either reNg = 0 or reNg = Ng.
(b) A non-zero graded submodule N of M is said to be a graded second

submodule of M if for each rg ∈ h(R), either rgN = 0 or rgN = N.

Definition 2 Let M be a graded R-module and let g ∈ G. Let ψ : S(Mg) →
S(Mg)∪ {∅} be a function, where S(Mg) is the set of all submodules of Mg. We
say that a non-zero submodule Ng of Re-module Mg is a g-ψ-second submodule,
if re ∈ Re, K a submodule of Mg, reNg ⊆ K, and reψ(Ng) * K, then Ng ⊆ K
or reNg = 0.
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Definition 3 Let M be a graded R-module, Sgr(M) be the set of all graded
submodules of M, and let ψ : Sgr(M) → Sgr(M) ∪ {∅} be a function. We say
that a non-zero graded submodule N of M is a graded ψ-second submodule of
M if rg ∈ h(R), K a graded submodule of M, rgN ⊆ K, and rgψ(N) * K, then
N ⊆ K or rgN = 0

We use the following functions ψ : Sgr(M) → Sgr(M) ∪ {∅}.

ψM(N) =M, ∀N ∈ Sgr(M),

ψi(N) = (N :M AnniR(N)), ∀N ∈ Sgr(M), ∀i ∈ N,

ψσ(N) =

∞∑
i=1

ψi(N), ∀N ∈ Sgr(M).

Then it is clear that for any graded submodule and every positive integer
n, we have the following implications:

graded second⇒ graded ψn−1 − second⇒ graded ψn − second⇒ graded ψσ − second

For functions ψ, θ : Sgr(M) → Sgr(M)∪ {∅}, we write ψ ≤ θ if ψ(N) ⊆ θ(N)
for each N ∈ Sgr(M). So whenever ψ ≤ θ, any graded ψ-second submodule is
graded θ-second.

Theorem 1 Let M be a graded R-module and N be a graded submodule of R.
Then the following statements are equivalent:

(i) N is a graded second submodule of M.

(ii) N 6= 0 and rgN ⊆ K, where rg ∈ h(R) and K is a graded submodule of
M, implies either rgN = 0 or N ⊆ K.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (i) Let rg ∈ h(R) and rgN 6= 0. Since rgN ⊆ rgN, so N ⊆ rgN by
assumption. Therefore rgN = N, as needed. �

Theorem 2 Let M be a graded R-module, N a graded submodule of M and
let g ∈ G. Let ψ : S(Mg) → S(Mg)∪ {∅} be a function and Ng be a g-ψ-second
submodule of Re-module Mg such that AnnRe(Ng)ψ(Ng) * Ng. Then Ng is a
g-second submodule of Mg.
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Proof. Let re ∈ Re and K be a submodule of Mg such that reNg ⊆ K. If
reψ(Ng) * K, then we are done because Ng is a g-ψ-second submodule of
Re-module Mg. Thus suppose that reψ(Ng) ⊆ K. If reψ(Ng) * Ng, then
reψ(Ng) * Ng ∩ K. Since reNg ⊆ Ng ∩ K, then Ng ⊆ Ng ∩ K ⊆ K or reNg =
0, as required. So let reψ(Ng) ⊆ Ng. If AnnRe(Ng)ψ(Ng) * K, then (re +
AnnRe(Ng))ψ(Ng) * K. Thus (re +AnnRe(Ng))Ng ⊆ K implies that Ng ⊆ K
or reNg = (re+AnnRe(Ng))Ng = 0, as needed. Hence let AnnRe(Ng)ψ(Ng) ⊆
K. Since AnnRe(Ng)ψ(Ng) * Ng, there exists se ∈ AnnRe(Ng) such that
(seψ(Ng) * Ng. Thus seψ(Ng) * Ng ∩ K. Hence we have (re + se)ψ(Ng) *
Ng ∩ K. Therefore, (re + se)Ng ⊆ Ng ∩ K implies that Ng ⊆ Ng ∩ K ⊆ K or
(re + se)Ng = reNg = 0, as needed. �

Corollary 1 Let M be a graded R-module, N a graded submodule of M and
g ∈ G. Let ψ : S(Mg) → S(Mg) ∪ {∅} be a function and Ng be a g-ψ-second
submodule of Re-module Mg such that (Ng :Mg Ann

2
Re
(Ng)ψ(Ng) ⊆ ψ(Ng).

Then Ng is a g-ψσ-second submodule of Mg.

Proof. If Ng is a g-second submodule of Mg, then the result is clear. So
assume that Ng is not g-second submodule of Mg. Then by Theorem 2, we
have AnnRe(Ng)ψ(Ng) ⊆ Ng. Therefore, by assumption,

(Ng :Mg Ann
2
Re(Ng)) ⊆ ψ(Ng) ⊆ (Ng :Mg AnnRe(Ng)).

We conclude that ψ(Ng) = (Ng :Mg Ann
2
Re
(Ng)) = (Ng :Mg AnnRe(Ng)),

because (Ng :Mg AnnRe(Ng)) ⊆ (Ng :Mg Ann
2
Re
(Ng)). So we get

(Ng :Mg Ann
3
Re(Ng)) = (((Ng :Mg Ann

2
Re(Ng)) :Mg AnnRe(ψ(Ng))) =

((Ng :Mg AnnRe(Ng)) :Mg AnnRe(Ng)) = (Ng :Mg Ann
2
Re(Ng)) = ψ(Ng).

By continuing, we get that ψ(Ng) = (Ng :Mg Ann
i
Re
(Ng)) for all i ≥ 1. Hence

ψ(Ng) = ψσ(Ng), as needed. �

Theorem 3 Let M be a graded R-module and ψ : Sgr(M) → Sgr(M) ∪ {∅} be
a function. Let N be a graded submodule of M such that for all graded ideals I
and J of R, (N :M I) ⊆ (N :M J) implies that J ⊆ I. If N is not a graded second
submodule of M, then N is not a graded ψ1-second submodule of M.

Proof. Since N is not a graded second submodule of M, there exists rg ∈ h(R)
and a graded submodule K of M such that rgN 6= 0 and N * K, but rgN ⊆ K
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by Theorem 1. We have N * N∩K and rgN ⊆ N∩K. If rg(N :M AnnR(N)) *
N ∩ K, then N is not a graded ψ1-second submodule of M. Hence let rg(N :M
AnnR(N)) ⊆ N ∩ K. Thus rg(N :M AnnR(N)) ⊆ N ∩ K ⊆ N. Therefore,
(N :M AnnR(N)) * (N :M rg) and so by assumption, rg ∈ AnnR(N), which is
a contradiction. �

Corollary 2 Let M be a graded R-module and ψ : Sgr(M) → Sgr(M) ∪ {∅} be
a function. Let N be a graded submodule of M such that for all graded ideals I
and J of R, (N :M I) ⊆ (N :M J) implies that J ⊆ I. Then N is a graded second
submodule of M if and only if N is a graded ψ1-second submodule of M.

A graded R-module M is said to be a graded multiplication module if for
every graded submodule N of M, there exists a graded ideal I of R such that
N = IM. It is easy to see that M is a graded multiplication module if and
only if N = (N :M)M for each graded submodule N of M [8].

A graded R-module M is said to be a graded comultiplication module if for
every graded submodule N of M, there exists a graded ideal I of R such that
N = (0 :M I) [2].

Definition 4 Let R be a graded ring and ϕ : Sgr(R) → Sgr(R) ∪ {∅} be a
function. A proper graded ideal P of R is called graded ϕ-prime, if for ag, bh ∈
h(R), agbh ∈ P −ϕ(P), then ag ∈ P or bh ∈ P.

Definition 5 Let M be a graded R-module and ϕ : Sgr(M) → Sgr(M)∪ {∅} be
a function. A proper graded submodule N of M is said to be graded ϕ-prime,
if for each rg ∈ h(R) and mg ∈ h(M), rgmh ∈ N \ ϕ(N), then mh ∈ N or
rg ∈ (N :R M).

Theorem 4 Let M be a graded R-module, ϕ : Sgr(R) → Sgr(R) ∪ {∅}, and
θ : Sgr(M) → Sgr(M) ∪ {∅} be functions such that θ(P) = ϕ((P :R M))M. The
following statements hold:

(i) If P is a graded θ-prime submodule of M such that (θ(P) :R M) ⊆ ϕ((P :R
M)), then (P :R M) is a graded ϕ-prime ideal of R.

(ii) If M is a graded multiplication R-module and (P :R M) is a graded ϕ-
prime ideal of R, then P is a graded θ-prime submodule of M.

Proof. (i) Let agbh ∈ (P :R M) \ ϕ((P :R M)) for some ag, bh ∈ h(R). If
agbhM ⊆ θ(P), then agbh ∈ ϕ((P :R M)), a contradiction. Thus agbhM *
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θ(P). Therefore, agM ⊆ P or bhM ⊆ P because P is a graded θ-prime sub-
module of M. Thus ag ∈ (P :R M) or bh ∈ (P :R M), as needed.
(ii) Let agmh ∈ P \θ(P) = P \ϕ((P :R M))M. Then ag((Rmh :R M))M ⊆ P. If
ag((P :R M)) ⊆ ϕ((Rmh :R M)), then ag((Rmh :R M))M ⊆ ϕ((P :R M))M. As
M is a graded multiplication R-module, we have agmh ∈ Rmh = (Rmh :R
M)M. Therefore, agmh ∈ ϕ((P :R M))M which is a contradiction. Thus
ag((Rmh :R M)) * ϕ((P :R M)) and so by assumption, ag ∈ (P :R M) or
(Rmh :M M) ⊆ (P :R M), as needed. �

Theorem 5 Let M be a graded R-module, ϕ : Sgr(R) → Sgr(R) ∪ {∅}, and
ψ : Sgr(M) → Sgr(M) ∪ {∅} be functions. Then the following hold:

(i) If S is a graded ψ-second submodule of M such that AnnR(ψ(S)) ⊆
ϕ(AnnR(S)), then AnnR(S) is a graded ϕ-prime ideal of R.

(ii) If M is a graded comultiplication R-module, S is a graded submodule
of M such that ψ(S) = (0 :M ϕ(AnnR(S))), and AnnR(S) is a graded
ϕ-prime ideal of R, then S is a graded ψ-second submodule of M.

Proof. (i) Let agbh ∈ AnnR(S) \ ϕ(AnnR(S)) for some ag, bh ∈ h(R). Then
agbhψ(S) 6= 0 by assumption. If agψ(S) ⊆ (0 :M bh), then agbhψ(S) = 0, a
contradiction. Thus agψ(S) * (0 :M bh). Therefore, S ⊆ (0 :M bh) or agS = 0
because S is a graded ψ-second submodule of M. Hence ag ∈ AnnR(S) or
bh ∈ AnnR(S), as required.
(ii) Let ag ∈ h(R) and K be a graded submodule of M such that agS ⊆ K and
agψ(S) * K. As agS ⊆ K, we have S ⊆ (K :M ag). It follows that

S ⊆ ((0 :M AnnR(K)) :M ag) = (0 :M agAnnR(K)).

This implies that agAnnR(K) ⊆ AnnR((0 :M agAnnR(K))) ⊆ AnnR(S). Hence
agAnnR(K) ⊆ AnnR(S). If agAnnR(K) ⊆ ϕ(AnnR(S)), then

ψ(S) = ((0 :M ϕ(AnnR(S)) = ((0 :M AnnR(K)) :M ag).

As M is a graded comultiplication R-module, we have agψ(S) ⊆ K, a con-
tradiction. Thus agAnnR(K) * ϕ(AnnR(S)) and so as AnnR(S) is a graded
ϕ-prime ideal of R, we conclude that agS = 0 or

S = (0 :M AnnR(S)) ⊆ (0 :M AnnR(K)) = K

as needed. �
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Example 1 Let G = Z2 and R = Z be a G-graded ring with R0 = Z and
R1 = {0}. Let M = Z×Z. Then M is a G-graded R-module with M0 = Z× {0}

and M1 = {0} × Z. Consider the graded submodule S = (2Z × {0}) ⊕ ({0} ×
2Z). Clearly, M is not a graded comultiplication R-module. Suppose that ϕ :
Sgr(R) → Sgr(R) ∪ {∅} and ψ : Sgr(M) → Sgr(M) ∪ {∅} be functions such that
ϕ(I) = I for each graded ideal I of R and ψ(S) = M. Then AnnR(S) = 0 is
a graded ϕ-prime ideal of R and ψ(S) = M = (0 :M ϕ(AnnR(S))). But since
4S ⊆ (8Z× {0})⊕ ({0}× 8Z), S * (8Z× {0})⊕ ({0}× 8Z), and 4S 6= 0, we have
S is not a graded ψ-second submodule of M.

Let R be a G-graded ring and S ⊆ h(R) be a multiplicatively closed subset of
R. Then the ring of fractions S−1R is a graded ring which is called the graded
ring of fractions. Indeed, S−1R =

⊕
g∈G(S

−1R)g where (S−1R)g = {r/s : r ∈
R, s ∈ Sandg = (degs)−1(degr)}. We write h(S−1R) =

⋃
g∈G(S

−1R)g [8].

Proposition 1 Let M be a graded R-module, ψ : Sgr(M) → Sgr(M) ∪ {∅} be
a function and N be a graded ψ-second submodule of M. Then we have the
following statements.

(i) If K is a graded submodule of M with K ⊂ N and ψK : Sgr(M/K) →
Sgr(M/K) ∪ {∅} be a function such that ψK(N/K) = ψ(N)/K, then N/K
is a graded ψK-second submodule of M/K.

(ii) Let N be a graded finitely generated submodule of M, S be a multiplica-
tively closed subset of R with AnnR(N)∩S = ∅, and S−1ψ : Sgr(S−1M) →
Sgr(S−1M)∪ {∅} be a function such that (S−1ψ)(S−1N) = S−1ψ(N). Then
S−1N is a graded S−1ψ-second submodule of S−1M.

Proof. (i) Since K ⊂ N, then N/K 6= 0. Let rg ∈ h(R), L/K be a graded
submodule of M/K, rg(N/K) ⊆ L/K and rgψ(N/K) * L/K. We get rgN ⊆ L
and rgψ(N) * L. Therefore, rgN = 0 or N ⊆ L since N is a graded ψ-second
submodule of M. Hence rg(N/K) = 0 or N/K ⊆ L/K, as needed.
(ii) SinceN is graded finitely generated and AnnR(N)∩S = ∅, we get S−1(N) 6=
0. Let rs ∈ h(S

−1R), S−1(K) be a graded submodule of S−1M and r
s(S

−1ψ)(S−1N)
* S−1K. Thus we get rN ⊆ K and rψ(N) * K ((S−1ψ)(S−1N) = S−1ψ(N)).
Hence N ⊆ K or rN = 0 since N is a graded ψ-second submodule of M. There-
fore, S−1N ⊆ S−1K or r

sψ(S
−1N) = 0, and so S−1N is a graded S−1ψ-second

submodule of S−1M. �

Let R =
⊕

g∈G Rg and S =
⊕

g∈G Sg be two graded ring. The function
f : R→ S is called a graded homomorphism, if
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(i) for any a, b ∈ R, f(a+ b) = f(a) + f(b),

(ii) for any a, b ∈ R, f(ab) = f(a)f(b), and

(iii) f(Rg) ⊆ Sg for any g ∈ G.

Proposition 2 Let M and M ′ be graded R-modules and f : M → M ′ be a
graded monomorphism. Let ψ : Sgr(M) → Sgr(M) ∪ {∅} and ψ ′ : Sgr(M ′) →
Sgr(M ′)∪{∅} be functions such that ψ(f−1(N ′)) = f−1(ψ ′(N ′)), for each graded
submodule N ′ of M ′. If N ′ is a graded ψ-second submodule of M ′ such that
N ′ ⊆ Im(f), then f−1(N ′) is a graded ψ-second submodule of M.

Proof. Since N ′ 6= 0 and N ′ ⊆ Im(f), we have f−1(N ′) 6= 0. Let ag ∈ h(R) and
K be a graded submodule of M such that agf

−1(N ′) ⊆ K and agψ(f
−1(N ′)) *

K. Then by assumptions, agN
′ ⊆ f(K) and agψ

′(N ′) * f(K). Thus agN
′ = 0

or N ′ ⊆ f(K). Therefore, agf
−1(N ′) = 0 or f−1(N ′) ⊆ K, as required. �

A proper graded submodule N of a graded R-module M is said to be graded
completely irreducible if N =

⋂
i∈INi, where {Ni}i∈I is a family of graded

submodules of M, implies that N = Ni for some i ∈ I. It is easy to see
that every graded submodule of M is an intersection of graded completely
irreducible submodules of M.

Remark 1 Let N, K be graded submodules of a graded R-module M. To prove
N ⊆ K, it is enough to show that if L is a graded completely irreducible sub-
module of M such that K ⊆ L, then N ⊆ L.

Proposition 3 Let M be a graded R-module, ψ : Sgr(M) → Sgr(M)∪ {∅} be a
function and let N be a graded ψ1-second submodule of M . Then we have the
following statements:

(i) If for ag ∈ h(R), agN 6= N, then (N :M AnnR(N)) ⊆ (N :M ag).

(ii) If J is a graded ideal of R such that AnnR(N) ⊆ J and JN 6= N, then
(N :M AnnR(N)) = (N :M J).

Proof. (i) By Remark 1, there exists a graded completely irreducible submod-
ule L of M such that agN ⊆ L and N * L. If agN = 0, then we get (N :M
AnnR(N)) ⊆ (N :M ag). Hence let agN 6= 0. Since N is a graded ψ1-second
submodule of M, we have ag(N :M AnnR(N)) ⊆ L. Now let H be a graded
completely irreducible submodule of M such that N ⊆ H. Then N * L ∩ H
and agN ⊆ L ∩ H. Thus as N is a graded ψ1-second submodule of M, we
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have ag(N :M AnnR(N)) ⊆ L ∩H. Hence ag(N :M AnnR(N)) ⊆ H. Therefore,
ag(N :M AnnR(N)) ⊆ N by Remark 1. Hence (N :M AnnR(N)) ⊆ (N :M ag).
(ii) This follows from (i). �

Theorem 6 Let M be a graded R-module, ψ : Sgr(M) → Sgr(M) ∪ {∅} be a
function and let g ∈ G. If (0 :Mg ae) is a g-ψ1-second submodule of Re-module
Mg such that (0 :Mg ae) ⊆ ae(0 :Mg aeAnnR(0 :Mg ae)), then (0 :Mg ae) is a
g-second submodule of Mg.

Proof. Let N = (0 :Mg ae) be a g-ψ1-second submodule of M. Then (0 :Mg

ae) 6= 0. Let be ∈ Re and K be a submodule of Mg such that be(0 :Mg

ae) ⊆ K. If be(N :Mg AnnRe(N)) * K, then be(0 :Mg ae) = 0 or (0 :Mg

ae) ⊆ K since (0 :Mg ae) is a g-ψ1-second submodule of Mg. So let be(N :Mg

AnnRe(N)) ⊆ K. Now we have (ae + be)(0 :Mg ae) ⊆ K. If (ae + be)(N :Mg

AnnRe(N)) * K, then as (0 :Mg ae) is a g-ψ1-second submodule of Mg, then
(ae+be)(0 :Mg ae) = 0 or (0 :Mg ae) ⊆ K and we are done. Hence assume that
(ae + be)(N :Mg AnnRe(N)) ⊆ K. Then be(N :Mg AnnRe(N)) ⊆ K gives that
ae(N :Mg AnnRe(N)) ⊆ K. Therefore by assumption, (0 :Mg ae) ⊆ K and the
result follows from Theorem 1. �

Theorem 7 Let M be a graded R-module, ψ : Sgr(M) → Sgr(M) ∪ {∅} be a
functions, and N be a non-zero graded submodule of M. Then the following
are equivalent:

(i) N is a graded ψ-second submodule of M;

(ii) For graded completely irreducible submodule L of M with N * L, we have
(L :R N) = AnnR(N) ∪ (L :R ψ(N));

(iii) For graded completely irreducible submodule L of M with N * L, we have
(L :R N) = AnnR(N) or (L :R N) = (L :R ψ(N));

(iv) For any graded ideal I of R and any graded submodule K of M, if IN ⊆ K
and Iψ(N) * K, then IN = 0 or N ⊆ K.

(v) For each ag ∈ h(R) with agψ(N) * agN, we have agN = N or agN = 0.

Proof. (i) ⇒ (ii) Let for a graded completely irreducible submodule L of M
with N * L, we have ag ∈ (L :R N) \ (L :R ψ(N)). Then agψ(N) * L. Since
N is a graded ψ-second submodule of M, we have ag ∈ AnnR(N). As we may
assume that ψ(N) ⊆ N, the other inclusion always holds.
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(ii) ⇒ (iii) This follows from the fact that if a graded ideal is a union of two
graded ideals, it is equal to one of them.
(iii) ⇒ (iv) Let I be a graded ideal of R and K be a graded submodule of M
such that IN ⊆ K and Iψ(N) * K. Suppose I * AnnR(N) and N * K. We
show that Iψ(N) ⊆ K. Let a ∈ I and L is a graded completely irreducible
submodule of M with K ⊆ L. First, let a 6∈ AnnR(N). Then since aN ⊆ L, we
have (L :R N) 6= AnnR(N). Hence by assumption (L :R N) = (L :R ψ(N)). So
aψ(N) ⊆ L. Now let a ∈ I ∩ AnnR(N). Let b ∈ I \ AnnR(N). Then a + b ∈
I \ AnnR(N). Hence by the first case, for each graded completely irreducible
submodule L of M with K ⊆ L we have bψ(N) ⊆ L and (b + a)ψ(N) ⊆ L.
This gives that aψ(N) ⊆ L. Thus in any case aψ(N) ⊆ L. Thus Iψ(N) ⊆ L.
Therefore, aψ(N) ⊆ K by Remark 1.
(iv) ⇒ (i) The proof is straightforward.
(i) ⇒ (v) Let ag ∈ h(R) such that agψ(N) * agN. Then agN ⊆ agN implies
that N ⊆ agN or agN = 0 by part (i). Thus N = agN or agN = 0, as
required. (v) ⇒ (i) Let ag ∈ h(R) and K be a graded submodule of M such
that agN ⊆ K and agψ(N) * K. If agψ(N) ⊆ agN, then agN ⊆ K implies
that agψ(N) ⊆ K, a contradiction. Thus by part (v), agN = N or agN = 0.
Therefore, N ⊆ K or agN = 0, as needed. �

Example 2 Let N be a non-zero graded submodule of a graded R-module M
and let ψ : Sgr(M) → Sgr(M) ∪ {∅} be a function. If ψ(N) = N, then N is a
graded ψ-second submodule of M by Theorem 7 (v) ⇒ (i).

Let R1 and R2 be two G-graded rings. Then R = R1×R2 becomes a G-graded
ring with homogeneous elements h(R) =

⋃
g∈G Rg, where Rg = (R1)g × (R2)g

for all g ∈ G. Let M1 be a graded R1-module and M2 be a graded R2-module.
Then M =M1 ×M2 is a graded R = R1 × R2-module.

Theorem 8 Let R = R1×R2 be a graded ring and M =M1×M2 be a graded
R-module where M1 is a graded R1-module and M2 is a graded R2-module.
Suppose that ψi : S(Mi) → S(Mi) ∪ {∅} be a function for i = 1, 2. Then S1 × 0
is a graded ψ1 × ψ2-second submodule of M, where S1 is a graded ψ1-second
submodule of M1 and ψ2(0) = 0.

Proof. Let (rg, r
′
g) ∈ h(R) and K1×K2 be a graded submodule of M such that

(rg, r
′
g)(S1 × 0) ⊆ K1 × K2 and

(rg, r
′
g)((ψ

1 ×ψ2)(S1 × 0)) = rgψ1(S1)× r ′gψ2(0) = rgψ1(S1)× 0 * K1 × K2
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Then rgS1 ⊆ K1 and rgψ
1(S1) * K1. Hence rgS1 = 0 or S1 ⊆ K1 since S1 is

a graded ψ1-second submodule of M1. Therefore, (rg, r
′
g)(S1 × 0) = 0 × 0 or

S1 × 0 ⊆ K1 × K2, as needed. �

3 Graded I-second submodules

Definition 6 Let R be a graded ring, M be a graded R-module and I be a
graded ideal of R.
(a) A proper graded ideal P of R is called graded I-prime, if agbh ∈ P \ IP,
then ag ∈ P or bh ∈ P.
(b) A proper graded submodule N of M is called graded I-prime, if rgmh ∈
N \ IN, then mh ∈ N or rg ∈ (N :R M).

Theorem 9 Let I be a graded ideal of a graded ring R. For a non-zero graded
submodule S of a graded R-module M the following statements are equivalent:

(i) For each rg ∈ h(R), a submodule K of M, rg ∈ (K :R S) \ (K :R (S :M I))
implies that S ⊆ K or rg ∈ AnnR(S);

(ii) For each rg 6∈ (rgS :R (S :M I)), we have rgS = S or rgS = 0;

(iii) (K :R S) = AnnR(S ∪ (K :R (S :M I)), for any submodule K of M with
S * K;

(iv) (K :R S) = AnnR(S) or (K :R S) = (K :R (S :M I)), for any submodule K
of M with S * K.

Proof. (i) ⇒ (ii) Let rg 6∈ (rgS :R (S :M I)). Then as rgS ⊆ rgS, we have
S ⊆ rgS or rgS = 0 by part (i). Thus rgS = S or rgS = 0.
(ii) ⇒ (i) Let rg ∈ h(R) and K be a graded submodule of M such that rg ∈
(K :R S)\(K :R (S :M I)). Then if rg ∈ (rgS :R (S :M I)), then rg ∈ (K :R (S :M I))
which is a contradiction. Thus rg 6∈ (rgS :R (S :M I)). Now by part (ii), rgS = S
or rgS = 0. So S ⊆ K or rgS = 0, as needed.
(i) ⇒ (iii) Let rg ∈ (K :R S) and S * K. If rg 6∈ (K :R (S :M I)), then
rg ∈ AnnR(S) by part (i). Hence, (K :R S) ⊆ AnnR(S). If rg ∈ (K :R (S :M I)),
then (K :R S) ⊆ (K :R (S :M I)). Therefore, (K :R S) ⊆ AnnR(S)∪(K :R (S :M I)).
The other inclusion always holds.
(iii) ⇒ (iv) and (iv) ⇒ (i) are clear. �
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Definition 7 Let I be a graded ideal of R. We say that a non-zero graded
submodule S of a graded R-module M is a graded I-second submodule of M, if
satisfies the equivalent conditions of Theorem 9.

Let I be a graded ideal of R. Clearly, every graded second submodule is a
graded I-second submodule. But the converse is not true in general.

Example 3 (a) If I = 0, then every graded module is a graded I-second sub-
module of itself but every graded module is not a graded second module. for
example, let G = Z2, R = Z be a G-graded ring with R0 = Z and R1 = {0}.
Then it is clear that the graded R-module M = Z[i] = {a + bi | a, b ∈ Z} with
M0 = Z and M1 = iZ is not a graded second module.
(b) Let G = Z2, R = Z and M = Z12[i] = {ā + b̄i | ā, b̄ ∈ Z12}. Then R

is a G-graded ring with R0 = Z, R1 = {0} and M is a graded R-module with
M0 = Z12, M1 = iZ12. Consider the grade ideal I = 4Z ⊕ {0} and the graded
submodule S = 3̄Z ⊕ {0}. Thus S is a graded I-second submodule of M, but it
is not a graded second submodule of M.

Let I be a graded ideal of R and M be a graded R-module . If I = R, then
every graded submodule is a graded I-second submodule. So in the rest of this
paper we can assume that I 6= R.

Theorem 10 Let M be a graded R-module and I, J be graded ideals of R such
that I ⊆ J. If S is a graded I-second submodule of M, then S is a graded
J-second submodule of M.

Proof. The result follows from the fact that I ⊆ J implies that (rgS :R S) \
(rgS :R (S :M J)) ⊆ (rgS :R S) \ (rgS :R (S :M I)), for each rg ∈ R. �

Theorem 11 Let M be a graded R-module and g ∈ G. If I is an ideal of Re
and S a g-I-second submodule of Re-module Mg which is not g-second, then
AnnRe(S)(S :Mg I) ⊆ S.

Proof. Assume on the contrary that AnnRe(S)(S :Mg I) * S. We show that
S is g-second. Let rS ⊆ K for some r ∈ Re and a submodule K of Mg. If
r 6∈ (K :Re (S :Mg I)), then S is a g-I-second submodule implies that S ⊆ K or
r ∈ AnnRe(S) as needed. So assume that r ∈ (K :Re (S :Mg I)). First, suppose
that r(S :Mg I) * S. Then there exists a graded submodule L of M such that
S ⊆ L but rg(S :Mg I) * L. Then r ∈ (K ∩ L :Re S) \ (K ∩ L :Re (S :Mg I)). So
S ⊆ K ∩ L or rg ∈ AnnRe(S) and hence S ⊆ K or r ∈ AnnRe(S). So we can
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assume that r(S :Mg I) ⊆ S. On the other hand, if AnnRe(S)(S :Mg I) * K,
then there exists t ∈ AnnRe(S) such that t 6∈ (K :Re (S :Mg I)). Then t + r ∈
(K :Re S) \ (K :Re (S :Mg I)). Thus S ⊆ K or t + r ∈ AnnRe(S) and hence
S ⊆ K or r ∈ AnnRe(S). So we can assume that AnnRe(S)(S :Mg I) ⊆ K. Since
AnnRe(S)(S :Mg I) * S, there exists t ∈ AnnRe(S), a submodule L of M such
that S ⊆ L and t(S :Mg I) * L. Now we have r + t ∈ (K ∩ L :Re S) \ (K ∩ L :Re
(S :Mg I)). So S is a g- I-second submodule gives S ⊆ K∩L or r+t ∈ AnnRe(S).
Hence S ⊆ K or r ∈ AnnRe(S), as requested. �

Theorem 12 Let I be a graded ideal of R, M a graded R-module and S be a
graded submodule of M. Then we have the following.

(i) If S is a graded I-second submodule of M such that AnnR((S :M I)) ⊆
IAnnR(S), then AnnR(S) is a graded I-prime ideal of R.

(ii) If M is a graded comultiplication R-module and AnnR(S) is a graded
I-prime ideal of R, then S is a graded I-second submodule of M.

Proof. (i) Let agbh ∈ AnnR(S) \ IAnnR(S) for some ag, bh ∈ h(R). Then
agS ⊆ (0 :M bh). As agbh 6∈ IAnnR(S) and AnnR((S :M I)) ⊆ IAnnR(S), we
have agbh 6∈ AnnR((S :M I)). This implies that ag 6∈ ((0 :M bh) :R (S :M I)).
Thus ag ∈ AnnR(S) or S ⊆ (0 :M bh). Hence ag ∈ AnnR(S) or bh ∈ AnnR(S),
as needed.
(ii) Let rg ∈ (K :R S)\(K :R (S :M I)) for some rg ∈ h(R) and graded submodule
K of M. As M is a graded comultiplication R-module, there exists a graded
ideal J of R such that K = (0 :M J). Thus rgJ ⊆ AnnR(S). Since rg 6∈ (K :R
(S :M I)), we have Jrg(S :M I) 6= 0. This implies that Jrg * AnnR((S :M I)).
Since always IAnnR(S) ⊆ AnnR((S :M I)), we have rgJ * IAnnR(S). Thus by
assumption, rg ∈ AnnR(S) or J ⊆ AnnR(S) and so S ⊆ (0 :M J) = K. �

Proposition 4 Let M be a graded R-module and I a graded ideal of R. Let N
be a graded I-second submodule of M. Then we have the following statements.

(i) If K is a graded submodule of M with K ⊂ N, then N/K is a graded
I-second submodule of M/K.

(ii) Let N be a graded finitely generated submodule of M, S ⊆ h(R) be a
multiplicatively closed subset of R with AnnR(N)∩ S = ∅. Then S−1N is
a graded S−1I-second submodule of S−1M.
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Proof. (i) This follows from the fact that rg 6∈ (rg(S/K) :R (S/K :M/K I))
implies that rg 6∈ (rgS :R (S :M I)).
(ii) As AnnR(N) ∩ S = ∅ and N is graded finitely generated, S−1N 6= 0. Now
the claim follows from the fact that r/s 6∈ ((r/s)S−1N :S−1 (S−1N :S−1M S−1I))
implies that r 6∈ (rN :R (N :M I)). �

Proposition 5 Let I be a graded ideal of R, M and M ′ be graded R-modules,
and let f : M → M ′ be an R-monomorphism. If N ′ is a graded I-second
submodule of M ′ such that N ′ ⊆ Im(f), then f−1(N ′) is a graded I-second
submodule of M.

Proof. AsN ′ 6= 0 andN ′ ⊆ Im(f), we have f−1(N ′) 6= 0. Let rg 6∈ (rgf
−1(N ′) :R

(f−1(N ′) :M I)); then one can see that rg 6∈ (rgN
′ :R (N ′ :M I)) using assump-

tions. Thus rgN
′ = 0 or rgN

′ = N ′. This implies that rgf
−1(N ′) = 0 or

rgf
−1(N ′) = f−1(N ′), as requested. �

Theorem 13 Let I be a graded ideal of R, M1,M2 be graded R-modules, and
let N be a graded submodule of M1. Then N⊕0 is a graded I-second submodule
of M1 ⊕M2 if and only if N is a graded I-second submodule of M1 and for
rg ∈ (rgN :R (N :M1

I)), rgN 6= 0, and rgN 6= N, we have rg ∈ AnnR((0 :M2

I)).

Proof. (⇒) Let rg 6∈ (rgN :R (N :M1
I)). Then rg ∈ (rg(N⊕0) :R (N⊕0 :M I)).

Since N ⊕ 0 is a graded I-second submodule, either rg(N ⊕ 0) = N ⊕ 0 or
rg(N⊕ 0) = 0⊕ 0. Thus either rgN = N or rgN = 0, so N is graded I-second.
Now, let rg ∈ (rgN :R (N :M1

I)), rgN 6= 0, and rgN 6= N. Assume on the
contrary that rg ∈ AnnR((0 :M2

I)). Then there exists yh ∈ M2 such that
Iyh = 0 and rgyh 6= 0. This implies that rg(0, yh) ∈ rg(N⊕ 0 :M I) \ rg(N⊕ 0).
So since N ⊕ 0 is a graded I-second submodule, either rg(N ⊕ 0) = N ⊕ 0 or
rg(N⊕ 0) = 0⊕ 0. Thus either rgN = N or rgN = 0, which is a contradiction.
Therefore, rg ∈ AnnR((0 :M2

I)).
(⇐) Let rg 6∈ (rg(N ⊕ 0) :R (N ⊕ 0 :M I)). Then if rgN = N or rgN = 0,
the result is clear. So suppose that rgN 6= N and rgN 6= 0. We show that
rg(rgN :R (N :M1

I)) and this contradiction proves the result because N is a
graded I-second submodule of M1. Assume on the contrary that rg ∈ (rgN :R
(N :M1

I)). Then by assumption, rg ∈ AnnR((0 :M2
I)). This implies that

if (xh, yh) ∈ N ⊕ (0 :M I), then rg(xh, yh) ∈ rg(N ⊕ 0). Therefore, rg ∈
(rg(N⊕ 0) :R (N⊕ 0 :M I)), which is a desired contradiction. �
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A non-zero graded R-module M is said to be graded secondary if for each
ag ∈ h(R) the endomorphism of M given by multiplication by ag is either
surjective or nilpotent [4].

Corollary 3 Let I and P be graded ideals of R, M1,M2 be graded R-modules,
and let N be a graded submodule of M1. Let Si (1 ≤ i ≤ n) be graded P-
secondary submodules of M1 with

∑n
i=1 Si = (N :M1

I). If N is a graded
I-second submodule of M1 and P ⊆ AnnR((0 :M2

I)), then N ⊕ 0 is a graded
I-second submodule of M1 ⊕M2.

Proof. Let rg ∈ (rgN :R (N :M1
I)), rgN 6= 0, and rgN 6= N. Then we will prove

that rg ∈ AnnR((0 :M2
I)) and hence the result is obtained by Theorem 13.

Assume on the contrary that rg 6∈ AnnR((0 :M2
I)). Hence r 6∈ P. On the other

hand, rg(
∑n
i=1 Si) = rg(N :M1

I) ⊆ rgN. But
∑n
i=1 Si is a graded P-secondary

submodule by [4], so either rg(
∑n
i=1 Si) =

∑n
i=1 Si or rg ∈ P. This implies that

rgN = N or rg ∈ P, which is a contradiction. Thus rg ∈ AnnR((0 :M2
I)). �

Theorem 14 Let I be a graded ideal of R and M be a graded R-module. Then
we have the following.

(i) If
⋂∞
n=1 I

nM = 0 and every proper graded submodule of M is graded
I-prime, then every non-zero graded submodule of M is graded I-second.

(ii) If
∑∞
n=1(0 :M In) = M and every non-zero graded submodule of M is

graded I-second, then every proper graded submodule of M is graded I-
prime.

Proof. (i) Let S be a non-zero graded submodule of M, rg ∈ (K :R S) \ (K :R
(S :M I)) for some rg ∈ h(R) and a graded submodule K of M and rgS 6= 0.
If rgS * IK, then as K is graded I-prime, we have rgM ⊆ K or S ⊆ K. If
rgM ⊆ K, then rg(S :M I) ⊆ K which is a contradiction. So S ⊆ K and we
are done. Now suppose that rgS ⊆ IK. As rgS 6= 0 and

⋂∞
n=1 I

nK = 0, there
exists a positive integer t such that rgS * ItK. Therefore, there is a positive
integer h such that rgS ⊆ Ih−1K but rgS * IhK, where 2 ≤ h ≤ t. Thus since
Ih−1K is graded I-prime, S ⊆ Ih−1K or rgM ⊆ Ih−1K. If rgM ⊆ Ih−1K, then
rg(S :M I) ⊆ K which is a contradiction. So S ⊆ Ih−1K as needed.
(ii) Let P be a proper graded submodule of M, rgK ⊆ P\IP for some rg ∈ h(R)
and a graded submodule K of M and rgM * P. If rg(K :M I) * P, then as K is
graded I-second, we have rgK = 0 or K ⊆ P. If rgK = 0, then rgK ⊆ IP which is
a contradiction. So K ⊆ P and we are done. Now suppose that rg(K :M I) ⊆ P.
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As rgM * P and
∑∞
n=1(K :M In) = M, there exists a positive integer t such

that rg(K :M It) * P. Therefore, there is a positive integer h such that rg(K :M
Ih−1) ⊆ P but rg(K :M Ih) * P, where 2 ≤ h ≤ t. Thus since (K :M Ih−1) is
graded I-second, (K :M Ih−1) ⊆ P or rg(K :M Ih−1) = 0. If rg(K :M Ih−1) = 0,
then 0 = rgK ⊆ IP which is a contradiction. So K ⊆ (K :M Ih−1) ⊆ P, as
needed. �
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Abstract. We show that the sum of two intervals in an ordered dense
Abelian group is also an interval such that the endpoints of the sum
are equal to the sums of the endpoints. We prove analogous statements
concerning to the product of two intervals.

1 Introduction

It is well known from elementary real analysis that if a, b, c, d are real numbers
with a < b and c < d, then

]a, b[ + ]c, d[ = ]a+ c, b+ d[ , (1)

moreover, if 0 6 a < b and 0 6 c < d, then

]a, b[ · ]c, d[ = ]ac, bd[ . (2)

The main purpose of this article is to show that equations (1), (2) remain valid
in more general settings. Our references to ordered structures are [4], [8], [12],
[13], [18].
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Now, we shall give a sort list of the necessary concepts and notations:
We say that X = X(6) is a partially ordered set or a poset if X is a set and
6 is a relation on X such that it is reflexive, symmetric and transitive.

A poset X = X(6) is said to be ordered or a loset, if either x 6 y or y 6 x
for all x, y ∈ X.

Let X = X(∗) be a groupoid in the sense that X is a nonempty set, ∗ is a
binary operation on X. Then for any A, B ⊆ X and a ∈ X define

A ∗ B := {a ∗ b ∈ X | a ∈ A, b ∈ B} ,
a ∗ B := {a} ∗ B.

Let X = X(6) be a poset and a ,b ∈ X such that a < b, that is, a 6 b but
a 6= b. The open interval is defined by

]a, b[ := {x ∈ X | a < x and x < b}.

The a and b are the endpoints of the interval ]a, b[. Similarly, we can define
]a, b] := {x ∈ X | a < x 6 b}, [a, b[ := {x ∈ X | a 6 x < b}, [a, b] := {x ∈ X |

a 6 x 6 b}.
A poset X = X(6) is said to be dense (in itself) if ]x, y[ 6= ∅ for all x, y ∈ X

with x < y.
An ordered group G = G(+,6) is a group together with an order that

is compatible with the group operation. A set of all positive elements of an
ordered group G is denoted by G+, that is, G+ := {x ∈ G | x > 0}.

An ordered group G = G(+,6) is said to be Archimedean ordered if for all
x, y ∈ G+ there exits a positive integer n such that nx := x+ · · ·+ x > y.

An ordered field F = F(+, ·,6) is a field (the operation · is commutative)
together with an order that is compatible with the field operations, in the
sense, that if x 6 y, then x + z 6 y + z for all x, y, z ∈ F and if x 6 y, then
xz 6 yz for all x, y ∈ F and z ∈ F+ := {x ∈ F | x > 0}.

The foundations of the so-called interval arithmetic were laid by E. Moore,
the first appearance of this topic was in 1959 [14], see also [15], [16] and [1].
Now, we shall show the Moore’s formulas

[a, a] + [b, b] = [a+ b, a+ b],

[a, a] − [b, b] = [a− b, a− b],

[a, a] · [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

[a, a]/[b, b] = [a, a] · [1/b, 1/b] 0 /∈ [b, b]

(3)

for all a, a, b, b ∈ R with a 6 a and b 6 b.
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Due to [9] the results of Moore was extended to open ended unbounded
intervals by R. J. Hanson (1968) [5], W. Kahan (1968) [10], E. Davis (1987)
[2].

The famous Kohan-Novoa-Ratz arithmetic concerning to the division by an
interval coutaining zero can be found in [11]:

a/b =



a · [1/b, 1/b] for 0 /∈ b

[−∞,+∞] for 0 ∈ a and 0 ∈ b

[a/b,+∞] for a < 0 and b < b = 0

[−∞, a/b] ∪ [a/b,+∞] for a < 0 and b < 0 < b

[−∞, a/b] for a < 0 and 0 = b < b

[−∞, a/b] for 0 < a and b < b = 0

[−∞, a/b] ∪ [a/b,+∞] for 0 < a and b < 0 < b

[a/b,+∞] for a < 0 and 0 = b < b

∅ for 0 /∈ a and 0 ∈ b

(4)

for all closed ended bounded interval a, b of the real line.
An other way to extend the results of E. Moore that is to use the set R =

R ∪ {−∞,+∞} with uppear additions of J. Moreau [17], that is,

+∞+ (+∞) = +∞ and +∞+ (−∞) = +∞.
For example, in [3] can be found that

]x+ y,+∞[ =]x,∞]+]y,+∞[ (x, y ∈ R),
]x+ y,+∞] = [x,∞] + [y,+∞] (x, y ∈ R),
[−∞, x+ y[ = [−∞, x[+] −∞, y] (x, y ∈ R ∪ {−∞} or R ∪ {+∞}),

[−∞, x+ y] = [−∞, x] + [−∞, y] (x, y ∈ R ∪ {−∞} or R ∪ {+∞}).

In [11] the author use intervals X = [X,X] where X is the vector or matrix
whose components are lower bounds of corresponding components of X, and
X is the vector or matrix whose components are upper bounds of corresponding
components of X.

In our former paper [6] we have investigated the sums and the products of
intervals in ordered semigroups.

In our present paper we investigate the sums of open ended bounded inter-
vals in ordered groups and the products of open ended buonded intervals in
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ordered fields. To obtained results will be used to extend additive and loga-
rithmic functions [7].

Cases that arise when proving results for a product of two intervals a and
b can be grouped according to the following criteria: the point 0 is an interior
point neither of a nor of b; the point 0 is an interior point either of a or of b;
the point 0 is an interior point both of a and b.

Finally, it is worth mentioning that if X = X(6) is a loset, ]a, b[ ⊆ X and
c ∈ ]a, b[, then

]a, b[ = ]a, c] ∪ ]c, b[ . (5)

If X = X(6) is only a poset but is not a loset, then (5), in general, is not true.
Thus, our applied arguments lose their validity on ordered structures in which
the order is not linear.

2 Sum of intervals in ordered dense Abelian groups

In this section G = G(+,6) is an ordered dense Abelian group, a, a, b, b
γ ∈ G with a < a and b < b.

The following Proposition is trivial.

Proposition 1 γ+ ]a, a[ = ]γ+ a, γ+ a[, and γ+ ]a, a] = ]γ+ a, γ+ a].

Proposition 2 If α, β ∈ G+, then ]0, α+ β[ ⊆ ]0, α[ + ]0, β[.

Proof. Let x ∈ ]0, α+ β[. Since 0 < α < α+ β there are two cases:
1. Assume that x ∈ ]0, α]. Since x > 0 and β > 0 there exists an y ∈ G+ such
that y < x and y < β. Since y < x < x+y thus we have that 0 < x−y < x 6 α
whence we obtain that

x = (x− y) + y ∈ ]0, α[ + ]0, β[ .

2. Assume that x ∈ ]α,α+ β[. Then by Proposition 1. x − α ∈ ]0, β[ thus
there exists an element y ∈ G+ such that y < β − (x − α) and y < α. Since
y < α < α + y thus we have that 0 < α − y < α. Since y < β − (x − α) thus
we have that 0 < x− α < y+ (x− α) = x+ y− α < β. Thus

x = (α− y) + (x+ y− α) ∈ ]0, α[ + ]0, β[ .

�

The following Proposition is trivial.
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Proposition 3 ]a, a[ +
]
b, b

[
⊆
]
a+ b, a+ b

[
.

Theorem 1 ]a, a[ +
]
b, b

[
=
]
a+ b, a+ b

[
.

Proof. By Proposition 3 it is enough to show that]
a+ b, a+ b

[
⊆ ]a, a[ +

]
b, b

[
.

By Proposition 1. and by Proposition 2. we have that]
a+ b, a+ b

[
= (a+ b) +

]
0, (a− a) + (b− b)

[
⊆

(a+ ]0, a− a[) +
(
b+

]
0, b− b

[)
=

]a, a[ +
]
b, b

[
�

The following Theorem can be easily obtained by simply calculation.

Theorem 2 If G = G(+, ·,6) is an Archimedean ordered group, then the
following assertions are equivalent:

1. G is dense.

2. ]a, a[+]b, b[=]a+ b, a+ b[ for all a, a, b, b ∈ G with a < a and b < b.

3. G(+,6) is not isomorphic to the ordered group Z = Z(+,6) (which is
the group of all integers).

3 The products of intervals in ordered fields

In this section F = F(+, ·,6) is an ordered field, a, a, b, b ∈ F with a < a
and b < b. Define the intervals a and b by

a := ]a, a[ and b :=
]
b, b

[
.

As a temporary device, use the notation for any open ended bounded interval
x that

0 < x, if 0 < x for all x ∈ x,

x < 0, if x < 0 for all x ∈ x.

Proposition 4 If α, β, γ ∈ F with α < β, then

γ · ]α,β[ =
{

]γβ, γα[ , if γ < 0;
]γα, γβ[ , if γ > 0.
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Proof. If γ > 0 and x ∈ ]γα, γβ[, then γα < x < γβ thus α < x
γ < β whence

x = γ · x
γ
∈ γ · ]α,β[ .

The converse inclusion is trivial.
The case γ < 0 can be proved analogously. �

The following Proposition is trivial.

Proposition 5 If 0 < a and 0 < b, then a · b ⊆
]
ab, ab

[
.

Proposition 6 If 0 < a and 0 < b, then
]
ab, ab

[
⊆ a · b.

Proof. Let x ∈
]
ab, ab

[
. There are two cases:

1. If either a = 0 or b = 0, say a = 0, then there exists an ε > 0 such that

ε < b−
x

a
, and ε < b− b.

Since 0 < ε < b − x
a we have that 0 < x

b−ε
< a. Since 0 < ε < b − b we have

that b < b− ε < b. Thus we obtain that

x =
x

b− ε
· (b− ε) ∈ ]a, a[ ·

]
b, b

[
.

2. If a 6= 0 and b 6= 0, then it is easy to see that ab < ab < ab thus there is
two sub-cases:
a. If x ∈

]
ab, ab

]
, then there exists an ε > 0 such that

ε < a− a and ε <
x

b
− a.

Since 0 < ε < a− a thus we have that a < a+ ε < a and since 0 < ε < x
b − a

hence b < x
a+ε < b. Thus we obtain that

x = (a+ ε) · x

a+ ε
∈ ]a, a[ ·

]
b, b

[
.

b. If x ∈
]
ab, ab

[
, then there exists an ε > 0 such that

ε < b−
x

a
and ε < b− b.
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Since 0 < ε < b − x
a we have that a < x

b−ε
< a and since 0 < ε < b − b we

have that b < b− ε < b. Thus we obtain that

x =
x

b− ε
· (b− ε) ∈ ]a, a[ ·

]
b, b

[
.

�

As an immediate consequence of Propositions 4., 5. and 6. we can state that

Theorem 3 If 0 < a and 0 < b, then a · b =
]
ab, ab

[
.

First, we investigate the case, when the point 0 is an interior point neither
of the interval a nor of the interval b.

Theorem 4 1. If 0 < a and 0 < b, then a · b =
]
ab, ab

[
.

2. If a < 0 and b < 0, then a · b =
]
ab, ab

[
.

3. If a < 0 and 0 < b, then a · b =
]
ab, ab

[
.

4. If b < 0 and 0 < a, then a · b =
]
ab, ab

[
.

The following figures illustrate some cases of the Theorem.

Proof.
1. Is evident by Theorem 3.
2. By Proposition 4. and by assertion 1. we obtain that

]a, a[ ·
]
b, b

[
= (−1)(−1) ]−a,−a[ ·

]
−b,−b

[
=
]
ab, ab

[
.

3. By Proposition 4. and by assertion 1. we obtain that

]a, a[ ·
]
b, b

[
= (−1) ]−a,−a[ ·

]
b, b

[
= (−1)

]
−ab,−ab

[
=
]
ab, ab

[
.

4. Is an immediate consequence of assertion 3. �

Now we investigate the case, when the point 0 is an interior point either of
the interval a or of the b.
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Theorem 5 1. If 0 ∈ a and 0 < b, then a · b =
]
ab, ab

[
.

2. If 0 ∈ a and b < 0, then a · b = ]ab, ab[.

3. If 0 ∈ b and 0 < a, then a · b =
]
ab, ab

[
.

4. If 0 ∈ b and a < 0, then a · b =
]
ab, ab

[
.

The following figures illustrate some cases of the Theorem.

Proof.
1. By assertions 2. and 1. of Theorem 4. we obtain that

]a, a[ ·
]
b, b

[
= (]a, 0[ ∪ {0} ∪ ]0, a[) ·

]
b, b

[
=

]a, 0[ ·
]
b, b

[
∪ {0} ∪ ]0, a[ ·

]
b, b

[
=]

ab, 0
[
∪ {0} ∪

]
0, ab

[
=]

ab, ab
[
.

2. By assertions 2. and 4. of Theorem 4. we obtain that

]a, a[ ·
]
b, b

[
= (]a, a[ · ∪ {0} ∪ ]0, a[) ·

]
b, b

[
=(

]a, 0[ ·
]
b, b

[)
∪ {0} ∪

(
]0, a[ ·

]
b, b

[)
=

]0, ab[ ∪ {0} ∪ ]ab, 0[ =

]ab, ab[ .

3. Can be obtained from assertion 1. by changing the roles of a and b.
4. Can be obtained from assertion 2. by changing the roles of a and b. �

Finally, we investigate the case, when the point 0 is an interior point both
of ]a, a[ and

]
b, b

[
.

Theorem 6 If 0 ∈ a ∩ b, then a · b =
]
min
{
ab, ab

}
,max

{
ab, ab

}[
.

The following figure illustrates the Theorem.
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Proof. By Theorem 5. we obtain that

]a, a[ ·
]
b, b

[
= ]a, a[ ·

(
]b, 0[ ∪ {0} ∪

]
0, b
[)

=

]a, a[ · ]b, 0[ ∪ {0} ∪ ]a, a[ ·
]
0, b
[
=

]ab, ab[ ∪ {0} ∪
]
ab, ab

[
=]

min
{
ab, ab

}
,max

{
ab, ab

}[
.

�

Example 1 Let F = Q(
√
2) equipped with the usuall field operations and or-

der. Let a :=]− 1−
√
2, 1+ 2

√
2], b := [1− 2

√
2, 2−

√
2]. Calculate the product

a · b. Since

a · b = −
√
2 = −1.4142 . . .

a · b = 3+ 2
√
2 = 4.4142 . . .

and

and

a · b = −7

a · b = −2+ 3
√
2 = 2.2426 . . . ,

thus by Theorem 6. we obtain that

a · b =
[
−7, 3+ 2

√
2
[
.

Problem 1 Check equation (4) for any ordered field F = F(+, ·,6).

References

[1] M. J. Cloud, R. B. Kearfott, R. E. Moore, Introduction to Interval
Analysis, Philadelphia: Society for Industrial and Applied Mathematics
(SIAM).

[2] E. Davis, Constraint propagation with interval labels . Artifical Intelli-
gence, 32(3) (1987) 281–331.
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Abstract. A rectifying curve in the Euclidean 4-space E4 is defined as
an arc length parametrized curve γ in E4 such that its position vector
always lies in its rectifying space (i.e., the orthogonal complement Nγ

⊥ of
its principal normal vector fieldNγ) in E4. In this paper, we introduce the
notion of an f-rectifying curve in E4 as a curve γ in E4 parametrized by its
arc length s such that its f-position vector γf, defined by γf(s) =

∫
f(s)dγ

for all s, always lies in its rectifying space in E4, where f is a nowhere
vanishing integrable function in parameter s of the curve γ. Also, we
characterize and classify such curves in E4.

1 Introduction

Let E3 denote the Euclidean 3-space. Let γ : I −→ E3 be a unit-speed curve
(parametrized by arc length s) with at least four continuous derivatives. It is
needless to mention that I denotes a non-trivial interval in R, i.e., a connected
set in R containing at least two points. For the curve γ in E3, we consider
the Frenet apparatus {Tγ, Nγ, Bγ, κγ, τγ}, where Tγ = γ ′ is the unit tangent
vector field of γ, Nγ is the unit principal normal vector field of γ obtained by

2010 Mathematics Subject Classification: 53A04, 53C40
Key words and phrases: Euclidean 4-space, Frenet formulae, rectifying curve, curvature
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normalizing the acceleration vector field T ′
γ, Bγ = Tγ×Nγ is the unit binormal

vector field of the curve γ so that the Frenet frame {Tγ, Nγ, Bγ} is positive
definite along γ having the same orientation as that of E4, and κγ : I −→ R is
at least twice differentiable function with κγ > 0, known as the curvature of
γ, and τγ : I −→ R is a differentiable function, called the torsion of the curve
γ. Then the Frenet formulae for the curve γ are given by ([1, 2]) T ′

γ

N ′
γ

B ′
γ

 =

 0 κγ 0

−κγ 0 τγ
0 −τγ 0

 Tγ
Nγ
Bγ

 .
The planes spanned by {Tγ, Nγ}, {Nγ, Bγ} and {Tγ, Bγ} are called the osculating
plane, the normal plane and the rectifying plane of the curve γ, respectively
(cf. [1, 2, 3]).

In the Euclidean 3-space E3, the notion of a rectifying curve was introduced
by B.Y. Chen in [3] as a tortuous curve whose position vector always lies in
the rectifying plane of the curve. That is, for a rectifying curve γ : I −→ E3,
the position vector of γ can be expressed as

γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), s ∈ I,

for two unique smooth functions λ, µ : I −→ R.

Several characterizations and classification of the rectifying curves in E3
were studied in [3, 4, 5, 6]. Meanwhile, the notion of rectifying curves were
extended to several sorts of Riemannian and pseudo-Riemannian spaces. As
for example, many interesting characterizations and classification of rectifying
curves in the higher dimensional Euclidean spaces were studied in [7, 8], and
the same in Minkowski 3-space E31 were studied in [9, 10].

In [7], a rectifying curve in the Euclidean 4-space E4 was defined as a curve
γ : I −→ E4 parametrized by its arc length s such that its position vector
always lies in its rectifying space, i.e., in the orthogonal complement Nγ

⊥ of
its principal normal vector field Nγ. In collateral to this, in this paper, we
introduce the notion of an f-rectifying curve in E4 as a curve γ : I −→ E4
parametrized by its arc length s such that its f-position vector, denoted and
defined by γf(s) ··=

∫
f(s)dγ for all s ∈ I, always lies in its rectifying space.

Here f : I −→ R is a nowhere vanishing integrable function in arc length
parameter s of the curve γ. In this regard, let us mention that non-null and
null f-rectifying curves were investigated in Minkowski 3-space E31 [11, 12] and
null f-rectifying curves were explored in Minkowski space-time E41 [13].
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In the first section, we give requisite basic preliminaries and then introduce
the notion of f-rectifying curves in E4. Thereafter, the second section is devoted
to investigate some geometric characterizations of f-rectifying curves in E4. In
the concluding section, we attempt for some classification of f-rectifying curves
in terms of their f-position vectors in E4. Finally, we cite an example of an
f-rectifying curve lying wholly in E4. This is how this paper is organised.

2 Preliminaries

The Euclidean 4-space E4 is the four dimensional real vector space R4 equipped
with the standard inner product 〈· , ·〉 defined by

〈v,w〉 ··=
4∑
i=1

viwi

for all vectors v = (v1, v2, v3, v4), w = (w1, w2, w3, w4) ∈ R4. As usual, the
norm or length of a vector v = (v1, v2, v3, v4) ∈ R4 is denoted and defined by

‖v‖ ··=
√
〈v, v〉 =

√√√√ 4∑
i=1

v2i .

Let γ : J −→ E4 be an arbitrary smooth curve in E4 parametrized by t and γ ′

stands for its velocity vector field. If we change the parameter t by arc length
function s = s(t) based at some t0 ∈ J given by s(t) =

∫t
t0
‖γ ′(u)‖ du such

that 〈γ ′(s), γ ′(s)〉 = 1 for all possible s, then γ is a curve in E4 parametrized
by arc length s or a unit-speed curve in E4. We may assume that γ is at least
4-times continuously differentiable. Now, let Tγ, Nγ, Bγ1 and Bγ2 denote the
unit tangent vector field, the unit principal normal vector field, the unit first
binormal vector field and the unit second binormal vector field of the curve γ
in E4, respectively, so that for each s ∈ I, the set {Tγ(s), Nγ(s), Bγ1(s), Bγ2(s)}
forms an orthonormal basis for E4 at the point γ(s). Also, let κγ1, κγ2 and
κγ3 denote the first curvature, the second curvature and the third curvature of
the curve γ in E4, respectively. Thus

{
Tγ, Nγ, Bγ1, Bγ2

}
is the dynamic Frenet

frame along the curve γ having the same orientation as that of E4. Then the
Frenet formulae for the curve γ are given by ([14, 15])

T ′
γ

N ′
γ

Bγ
′
1

Bγ
′
2

 =


0 κγ1 0 0

−κγ1 0 κγ2 0

0 −κγ2 0 κγ3
0 0 −κγ3 0




Tγ
Nγ
Bγ1
Bγ2

 . (1)
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From the above formulae, it follows that κγ3 6≡ 0 if and only if the curve γ
lies wholly in E4. This is equivalent to saying that κγ3 ≡ 0 if and only if the
curve γ lies wholly in a hypersurface in E4 (cf. [14, 15]). We recall that the
hypersurface in E4 defined by

S3(1) ··=
{
v ∈ E4 : 〈v, v〉 = 1

}
is called the unit-sphere with centre at the origin in E4. We also recall that
the rectifying space of the curve γ is the orthogonal complement Nγ

⊥ of its
principal normal vector field Nγ defined by

Nγ
⊥ :=

{
v ∈ E4 : 〈v,Nγ〉 = 0

}
.

Consequently, Nγ
⊥ at each point γ(s) on γ is a three dimensional subspace of

E4 spanned by
{
Tγ(s), Bγ1(s), Bγ2(s)

}
.

3 f-rectifying curves in E4

As defined in [7], a unit-speed curve γ : I −→ E4 (parametrized by arc length
function s) is a rectifying curve if and only if its position vector always lies in
its rectifying space, i.e., if and only if its position vector can be expressed as

γ(s) = λ(s)Tγ(s) + µ1(s)Bγ1(s) + µ2(s)Bγ2(s)

for some differentiable functions λ, µ1, µ2 : I −→ R in parameter s, for each
s ∈ I. Now, for some nowhere vanishing integrable function f : I −→ R in
parameter s, the f-position vector of γ in E4 is denoted and defined by

γf(s) ··=
∫
f(s)dγ

for all s ∈ I. Here the integral sign is used in the sense that γf is an integral
curve of the vector field fTγ and after differentiating the previous equation we
find γ ′

f(s) = f(s)Tγ(s) for all s ∈ I. Keeping in mind this notion of position
vector of a curve in E4, we define an f-rectifying curve in E4 as follows:

Definition 1 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc
length function s) with Frenet apparatus {Tγ, Nγ, Bγ1, Bγ2, κγ1, κγ2, κγ3}. Also,
let f : I −→ R be a nowhere vanishing integrable function in parameter s with at
least twice differentiable primitive function F. Then γ is called an f-rectifying
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curve in E4 if its f-position vector γf always lies in its rectifying space in E4,
i.e., if its f-position vector γf in E4 can be expressed as

γf(s) = λ(s)Tγ(s) + µ1(s)Bγ1(s) + µ2(s)Bγ2(s) (2)

for all s ∈ I, where λ, µ1, µ2 : I −→ R are three unique smooth functions in
parameter s.

4 Some geometric characterizations of f-rectifying
curves in E4

In this section, we characterize unit-speed f-rectifying curves in E4 in terms
of their curvatures and components of their f-position vectors. First, in the
following theorem, we establish a necessary as well as sufficient condition for
a unit-speed curve in E4 to be an f-rectifying curve.

Theorem 1 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc length
s), having nowhere vanishing curvatures κγ1, κγ2 and κγ3. Also, let f : I −→ R
be a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F. Then, up to isometries of E4, γ is congruent
to an f-rectifying curve in E4 if and only if the following equation is satisfied:

d

ds

 d
ds

(
κγ1(s)
κγ2(s)

F(s)
)

κγ3(s)

+
κγ1(s)κγ3(s)

κγ2(s)
F(s) = 0 (3)

for all s ∈ I.

Proof. Let us first assume that γ : I −→ E4 be an f-rectifying curve having
nowhere vanishing curvatures κγ1, κγ2 and κγ3. Then for some differentiable
functions λ, µ1, µ2 : I −→ R in parameter s, its f-position vector γf satisfies
equation (2). Differentiating (2) and then applying (1), we obtain

f(s)Tγ(s) = λ ′(s)Tγ(s) +
(
λ(s)κγ1(s) − µ1(s)κγ2(s)

)
Nγ(s) (4)

+
(
µ ′
1(s) − µ2(s)κγ3(s)

)
Bγ1(s)

+
(
µ ′
2(s) + µ1(s)κγ3(s)

)
Bγ2(s)

for all s ∈ I. Equating the coefficients from both sides of (4), we get
λ ′(s) = f(s),

λ(s)κγ1(s) − µ1(s)κγ2(s) = 0,

µ ′
1(s) − µ2(s)κγ3(s) = 0,

µ ′
2(s) + µ1(s)κγ3(s) = 0

(5)
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for all s ∈ I. From first three equations of (5), after some steps, we find

λ(s) = F(s),

µ1(s) =
κγ1(s)

κγ2(s)
F(s),

µ2(s) =
1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

) (6)

for all s ∈ I. Substituting (6) in the fourth one of (5), we obtain

d

ds

 d
ds

(
κγ1(s)
κγ2(s)

F(s)
)

κγ3(s)

+
κγ1(s)κγ3(s)

κγ2(s)
F(s) = 0

for all s ∈ I.
Conversely, we assume that γ : I −→ E4 is a unit-speed curve having nowhere

vanishing curvatures κγ1, κγ2 and κγ3, and f : I −→ R is a nowhere vanishing
integrable function in parameter s with at least twice differentiable primitive
function F such that the equation (3) is satisfied.

Let us define a vector field V along γ by

V(s) = γf(s) − F(s)Tγ(s) −
κγ1(s)

κγ2(s)
F(s)Bγ1(s) (7)

−
1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
Bγ2(s)

for all s ∈ I. Differentiating (7) and then applying (1) and (3), we find that
V ′(s) = 0 for all s ∈ I. This implies that V is constant along γ. Hence, up to
isometries of E4, γ is congruent to an f-rectifying curve in E4. �

Remark 1 For an f-rectifying curve in E4, if all of its curvature functions
κγ1, κγ2 and κγ3 are non-zero constants, say, κγ1(s) = a1 6= 0, κγ2(s) = a2 6= 0
and κγ3(s) = a3 6= 0 for all s ∈ I, then from (3), we obtain

F ′′(s) + a23F(s) = 0. (8)

If f is non-zero constant or linear, then from (8) we find a3 = 0 which is
a contradiction. Again, if f is non-linear, then from (8) we find a3 is non-
constant which is also a contradiction.

According to the above remark, we have the following theorem:
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Theorem 2 Let γ : I −→ E4 be a unit-speed curve having nowhere vanishing
curvatures κγ1, κγ2 and κγ3. Then γ is not congruent to an f-rectifying curve
for any choice of f if and only if all of its curvatures κγ1, κγ2 and κγ3 are
constants.

Now, it may happen that any two among the three nowhere vanishing curva-
tures κγ1, κγ2 and κγ3 are constants. Then, as some immediate consequences of
Theorem 1, the following theorem provides some characterizations regarding
the non-constant one.

Theorem 3 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc length
s), having nowhere vanishing curvatures κγ1, κγ2 and κγ3. Also, let f : I −→ R
be a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F. We have the following:

(i) If the first curvature κγ1 and the second curvature κγ2 are constants,
then γ is congruent to an f-rectifying curve in E4 if and only if the third
curvature κγ3 satisfies the following differential equation:

κγ3(s)F
′′(s) − κγ

′
3(s)F

′(s) + κγ
3
3(s)F(s) = 0.

(ii) If the first curvature κγ1 and the third curvature κγ3(= a) are constants,
then γ is congruent to an f-rectifying curve in E4 if and only if the second
curvature κγ2 satisfies the following differential equation:

d2

ds2

(
F(s)

κγ2(s)

)
+ a2

F(s)

κγ2(s)
= 0.

(iii) If the second curvature κγ2 and the third curvature κγ3(= a) are con-
stants, then γ is congruent to an f-rectifying curve in E4 if and only if
the first curvature κγ1 satisfies the following differential equation:

d2

ds2

(
κγ1(s)F(s)

)
+ a2κγ1(s)F(s) = 0.

Analogous characterizations can be derived as consequences of Theorem 1
when any one of κγ1, κγ2 or κγ3 is a constant.

Next, in the following theorem, we characterize unit-speed f-rectifying curves
in E4 in terms of norm functions, tangential, normal, first and second binormal
components of their f-position vectors.
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Theorem 4 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc length
s), having nowhere vanishing curvatures κγ1, κγ2 and κγ3. Also, let f : I −→ R
be a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F. If γ is an f-rectifying curve in E4, then the
following statements are true:

(i) The norm function ρ = ‖γf‖ is given by

ρ(s) =
√
F2(s) + c2

for all s ∈ I, where c is a non-zero constant.

(ii) The tangential component 〈γf, Tγ〉 of the f-position vector γf of γ is given
by

〈γf(s), Tγ(s)〉 = F(s)

for all s ∈ I.

(iii) The normal component γ
Nγ
f of the f-position vector γf of γ has constant

length and the norm function ρ is non-constant.

(iv) The first binormal component
〈
γf, Bγ1

〉
and the second binormal com-

ponent
〈
γf, Bγ2

〉
of the f-position vector γf of γ are respectively given

by

〈
γf(s), Bγ1(s)

〉
=
κγ1(s)

κγ2(s)
F(s),

〈
γf(s), Bγ2(s)

〉
=

1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
for all s ∈ I.

Conversely, if γ : I −→ E4 is a unit-speed curve (parametrized by arc length
s), having nowhere vanishing curvatures κγ1, κγ2 and κγ3, and f : I −→ R
is a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F such that any one of the statements (i), (ii),
(iii) or (iv) is true, then γ is an f-rectifying curve in E4.

Proof. Let us first assume that γ : I −→ E4 is an f-rectifying curve having
nowhere vanishing curvatures κγ1, κγ2 and κγ3. Then for some differentiable
functions λ, µ1, µ2 : I −→ R in parameter s, the f-position vector γf of the
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curve γ in E4 satisfies equation (2) and from the proof of Theorem 1, we have
(5) and (6). Now, from last two equations of (5), we easily find

µ1(s)µ
′
1(s) + µ2(s)µ

′
2(s) = 0

for all s ∈ I. Integrating previous equation, we obtain

µ21(s) + µ
2
2(s) = c

2 (9)

for all s ∈ I, where c is an arbitrary non-zero constant. We have the following:

(i) Using (2), (6) and (9), the norm function ρ = ‖γf‖ is given by

ρ2(s) = ‖γf(s)‖2 = 〈γf(s), γf(s)〉 = F2(s) + c2,

i.e.,

ρ(s) =
√
F2(s) + c2

for all s ∈ I, where c is a non-zero constant.

(ii) Using (2) and (6), the tangential component 〈γf, Tγ〉 of γf is given by

〈γf(s), Tγ(s)〉 = λ(s) = F(s)

for all s ∈ I.
(iii) An f-position vector αf of an arbitrary curve α : J −→ E4 can be decom-
posed as

αf(t) = ν(t) Tγ(t) + α
Nγ
f (t), t ∈ J,

for some differentiable function ν : I −→ R, where α
Nγ
f denotes the normal

component of αf. Here, γ is an f-rectifying curve in E4 and hence from (2), it

is evident that the normal component γ
Nγ
f of γf is given by

γ
Nγ
f (s) = µ1(s)Bγ1(s) + µ2(s)Bγ2(s)

for all s ∈ I. Therefore, we have∥∥∥γNγf (s)
∥∥∥ =

√〈
γ
Nγ
f (s), γ

Nγ
f (s)

〉
=
√
µ21(s) + µ

2
2(s)

for all s ∈ I. Now, by using (9), we see that ‖γNγf (s)‖ = c. This implies that

γ
Nγ
f has constant length. Furthermore, from statement (i), it follows that the

norm function ρ = ‖γf‖ is non-constant.
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(iv) Using (2) and (6), the first binormal component
〈
γf, Bγ1

〉
of γf is given

by 〈
γf(s), Bγ1(s)

〉
= µ1(s) =

κγ1(s)

κγ2(s)
F(s)

for all s ∈ I, and the second binormal component
〈
γf, Bγ2

〉
of γf is given by

〈
γf(s), Bγ2(s)

〉
= µ2(s) =

1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
for all s ∈ I.

Conversely, we assume that γ : I −→ E4 is a unit-speed curve having nowhere
vanishing curvatures κγ1, κγ2 and κγ3, and f : I −→ R is a nowhere vanishing
integrable function in parameter s with at least twice differentiable primitive
function F such that statement (i) or statement (ii) is true. For statement (i),
we have

〈γf(s), γf(s)〉 = F2(s) + c2

for all s ∈ I, where c is a non-zero constant. On differentiation of last equation,
we obtain

〈γf(s), Tγ(s)〉 = F(s) (10)

for all s ∈ I. So in either case we have equation (10). Differentiating (10) and
by using (1), we finally obtain

〈γf(s), Nγ(s)〉 = 0

for all s ∈ I. This asserts us that γ is an f-rectifying curve in E4.
Next, we assume that statement (iii) is true. Then ‖γNγf ‖ = c, say. Now, the

normal component γ
Nγ
f is given by

γf(s) = F(s) Tγ(s) + γ
Nγ
f (s)

for all s ∈ I. Therefore, we have

〈γf(s), γf(s)〉 = 〈γf(s), Tγ(s)〉2 + c2

for all s ∈ I. Differentiating previous equation and using (1), we obtain

〈γf(s), Nγ(s)〉 = 0

for all s ∈ I. This implies that γ is an f-rectifying curve in E4.
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Finally, we assume that statement (iv) is true. Then we have〈
γf(s), Bγ1(s)

〉
=

κγ1(s)

κγ2(s)
F(s), (11)

〈
γf(s), Bγ2(s)

〉
=

1

κγ3(s)

d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
(12)

for all s ∈ I. Differentiating (11) and using (1), we obtain

−κγ2(s) 〈γf(s), Nγ(s)〉+ κγ3(s)
〈
γf(s), Bγ2(s)

〉
=
d

ds

(
κγ1(s)

κγ2(s)
F(s)

)
for all s ∈ I. From the equations (12) and last equation, we find

〈γf(s), Nγ(s)〉 = 0

for all s ∈ I. Consequently, γ is an f-rectifying curve in E4. �

5 Classification of f-rectifying curves in E4

In many papers, e.g., [3, 7, 8, 9], several interesting results were found primarily
attempting towards the classification of the rectifying curves which are mostly
based on their parametrizations. In this section we attempt for the same in
the case of unit-speed f-rectifying curves in E4 but this classification is totally
based on the parametrizations of their f-position vectors.

Theorem 5 Let γ : I −→ E4 be a unit-speed curve (parametrized by arc length
s) having nowhere vanishing curvatures κγ1, κγ2 and κγ3, and let f : I −→ R
be a nowhere vanishing integrable function in parameter s with at least twice
differentiable primitive function F. Then γ is an f-rectifying curve in E4 if and
only if, up to a parametrization, its f-position vector γf is given by

γf(t) =
c

cos
(
t+ arctan

(
F(s0)
c

)) α(t) (13)

for all t ∈ J, where c is a positive constant, s0 ∈ I and α : J −→ S3(1) is a
unit-speed curve having t : I −→ J as arc length function based at s0.

Proof. Let us first assume that γ : I −→ E4 be an f-rectifying curve hav-
ing nowhere vanishing curvatures κγ1, κγ2 and κγ3. Then from the proof of
Theorem 4, we have

ρ(s) =
√
F2(s) + c2 (14)
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for all s ∈ I, where we may choose c as a positive real constant. Now, we define
a new curve α in E4 by

α(s) ··=
1

ρ(s)
γf(s) (15)

for all s ∈ I. Then we find
〈α(s), α(s)〉 = 1 (16)

for all s ∈ I. Therefore, α is a curve whose trace is lying wholly in the unit
sphere S3(1). Differentiating (16), we get〈

α(s), α ′(s)
〉
= 0, (17)

for all s ∈ I. Now, from (14) and (15), we have

γf(s) = α(s)
√
F2(s) + c2 (18)

for all s ∈ I. Differentiating (18), we find

f(s)Tγ(s) = α
′(s)
√
F2(s) + c2 +

α(s)f(s)F(s)√
F2(s) + c2

(19)

for all s ∈ I. Using (16), (17) and (19), we obtain

〈
α ′(s), α ′(s)

〉
=

c2 f2(s)

(F2(s) + c2)
2

for all s ∈ I. Therefore, we get

∥∥α ′(s)
∥∥ =

√
〈α ′(s), α ′(s)〉 = c f(s)

F2(s) + c2

for all s ∈ I. Let s0 ∈ I and t : I −→ J be arc length function of α based at s0
given by

t =

∫ s
s0

∥∥α ′(u)
∥∥du.

Then we find

t =

∫ s
s0

c f(u)

F2(u) + c2
du

=⇒ t = arctan

(
F(s)

c

)
− arctan

(
F(s0)

c

)
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=⇒ F(s) = c tan

(
t+ arctan

(
F(s0)

c

))
.

Substituting previous equation in (18), we obtain the f-position vector of γ as
follows:

γf(t) =
c

cos
(
t+ arctan

(
F(s0)
c

)) α(t)
for all t ∈ J.

Conversely, let γ be a curve in E4 such that its f-position vector γf is given
by (13), where c is a positive constant, s0 ∈ I and α : J −→ S3(1) is a unit-speed
curve having t : I −→ J as arc length function based at s0. Differentiating (13),
we obtain

γ ′
f(t) =

c sin
(
t+ arctan

(
F(s0)
c

))
cos2

(
t+ arctan

(
F(s0)
c

)) α(t) +
c

cos
(
t+ arctan

(
F(s0)
c

)) α ′(t) (20)

for all t ∈ J. Since α is a unit-speed curve in the unit-sphere S3(1), we have
〈α ′(t), α ′(t)〉 = 1, 〈α(t), α(t)〉 = 1 and consequently 〈α(t), α ′(t)〉 = 0 for all
t ∈ J. Therefore, from (13) and (20), we have



〈γf(t), γf(t)〉 =
c2

cos2
(
t+ arctan

(
F(s0)
c

)) ,
〈
γf(t), γ

′
f(t)
〉
=
c2 sin

(
t+ arctan

(
F(s0)
c

))
cos3

(
t+ arctan

(
F(s0)
c

)) ,
〈
γ ′
f(t), γ

′
f(t)
〉
=

c2

cos4
(
t+ arctan

(
F(s0)
c

))
(21)

for all t ∈ J. We may reparametrize γ by

t = arctan

(
F(s)

c

)
− arctan

(
F(s0)

c

)
.
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Then s becomes arc length parameter of γ and equations (21) reduce to

〈γf(s), γf(s)〉 =
c2

cos2
(

arctan
(
F(s)
c

)) ,
〈
γf(s), γ

′
f(s)

〉
=
c2 sin

(
arctan

(
F(s)
c

))
cos3

(
arctan

(
F(s)
c

)) ,
〈
γ ′
f(s), γ

′
f(s)

〉
=

c2

cos4
(

arctan
(
F(s)
c

))
(22)

for all s ∈ I. Now, the normal component γ
Nγ
f of γf is given by

〈
γ
Nγ
f (s), γ

Nγ
f (s)

〉
= 〈γf(s), γf(s)〉−

〈γf(s), γ ′
f(s)〉

2〈
γ ′
f(s), γ

′
f(s)

〉
for all s ∈ I. Then substituting (22) in last equation, we obtain

g
(
γ
Nγ
f (s), γ

Nγ
f (s)

)
=
∥∥∥γNγf (s)

∥∥∥2 = c2
for all s ∈ I. This implies that γ

Nγ
f has a constant length. Also, the norm

function ρ is given by

ρ(s) =
√
g (γf(s), γf(s)) =

c

cos
(

arctan
(
F(s)
c

))
for all s ∈ I, and it is non-constant. Hence, by applying Theorem 4, we conclude
that γ is an f-rectifying curve in E4. �

Finally, we cite an example of an f-rectifying curve lying wholly in E4.

Example 1 Let γ be a unit-speed curve (parametrized by arc length s) in
E4. Let f be a nowhere vanishing integrable function in parameter s defined
by

f(s) ··= exp s.

Then its primitive function F is given by

F(s) = exp s+ c1,
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where c1 is an arbitrary constant. We choose c1 = 0 and substitute

F(s) = tan

(
t+ arctan

(
F(0)

1

))
= tan

(
t+

π

4

)
,

i.e.,

s = ln
∣∣∣tan

(
t+

π

4

)∣∣∣ .
Now, let, up to a parametrization, the f-position vector γf of γ is given by

γf(t) =
1

cos
(
t+ π

4

) α(t),
where α be a curve in E4 defined by

α(t) ··=
1√
2
(sin t, cos t, sin t, cos t) .

Evidently, we have 〈α(t), α(t)〉 = 1 and 〈α ′(t), α ′(t)〉 = 1 for all t. Therefore,
α is a unit-speed curve in S3(1) having t as arc length function based at 0.
Consequently, γ is an f-rectifying curve and, up to a parametrization, it is
given by

γ(t) =
1

2

(
ln

∣∣∣∣1+ sin 2t

cos 2t

∣∣∣∣ , ln ∣∣∣∣1− sin 2t

cos 2t

∣∣∣∣ , ln ∣∣∣∣1+ sin 2t

cos 2t

∣∣∣∣ , ln ∣∣∣∣1− sin 2t

cos 2t

∣∣∣∣) .
Note: Examples of curves in E4 which are not f-rectifying for any choice of
f are trivial and can be easily constructed by violating the condition stated
in Theorem 1. For example, according to Theorem 2 (which is an immediate
consequence of Theorem 1), curves in E4 having non-zero constant first, second
and third curvatures are not f-rectifying.
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Abstract. An induced star-triangle factor of a graph G is a spanning
subgraph F of G such that each component of F is an induced subgraph
on the vertex set of that component and each component of F is a star
(here star means either K1,n, n ≥ 2 or K2) or a triangle (cycle of length
3) in G. In this paper, we establish that every graph without isolated
vertices admits an induced star-triangle factor in which any two leaves
from different stars K1,n (n ≥ 2) are non-adjacent.

1 Introduction

A simple graph is denoted by G(V(G), E(G)), where V(G) = {v1, v2, . . . , vn}

and E(G) are respectively the vertex set and edge set of G.. The order and
size of G are |V(G)| and |E(G)|, respectively. The set of vertices adjacent to
v ∈ V(G), denoted by N(v), refers to the neighborhood of v. A cycle of order n
is denoted by Cn and a triangle is denoted by C3. A complete bipartite graph
K1,n is called a star. In K1,n, the vertex of degree n is its center and all other
vertices are leaves.

2010 Mathematics Subject Classification: 05C60, 05C62, 05C70
Key words and phrases: Matching, factor, star-triangle factor
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A matching in a graph is a set of independent edges. That is, a subset M

of the edge set E of G is a matching if no two edges of M have a common
vertex. A matching M is said to be maximal if there is no matching N strictly
containing M, that is, M is maximal if it cannot be enlarged. A matching
M is said to be maximum if it has the largest possible cardinality, that is,
M is maximum if there is no matching N such that |N| > |M|. A vertex
v is said to be M-saturated (or saturated by M) if there is an edge e ∈ M

incident with v. A vertex which is not incident with any edge of M is said
to be M-unsaturated. An M-alternating path in G is a path whose edges are
alternately in E(G) −M and M. That is, in an M-alternating path, the edges
alternate between M-edges and non-M-edges. An M-alternating path whose
end vertices are M-unsaturated is said to be an M-augmenting path.

For S ⊂ V(G), the induced graph on S is a subgraph of G with vertex set S

and the edge set consisting of all the edges of G which have both end vertices
in S. An induced star of G is an induced subgraph of G which itself is a star.

For a set S of connected graphs, a spanning subgraph F of a graph G is
called an S-factor of G if each component of F is isomorphic to an element
of S. A spanning subgraph F of a graph G is a star-cycle factor of G if each
component of F is a star or a cycle. A spanning subgraph S of a graph G will
be called an induced star-triangle factor of G if each component of S is an
induced star (K1,n, n ≥ 2, or K2) or a triangle of G.

For a vertex subset S of V(G), let G[S] and G − S, respectively, denote
the subgraph of G induced by S and V(G) − S. Further, let iso(G) mean the
number of isolated vertices in G and Iso(G) be the set of isolated vertices of G.
Clearly |Iso(G)| = iso(G). For more definitions and notations, we refer to [7].

Tutte [8] characterized graphs having {K2, Cn : n ≥ 3}-factor. An elemen-
tary and short proof of Tutte’s characterization can be seen in [1]. Las Vergnas
[6] and Amahashi and Kano [2] showed that, for an integer n ≥ 2, a graph has
a {K1,1, K1,2, . . . , K1,n}-factor if and only if iso(G− S) ≤ n|S| for all S ⊂ V(G).
Berge and Las Vergnas [3] showed the existence of {K1,n, Cm : n ≥ 1, m ≥ 3}-
factor in graphs. A short proof of this theorem can be seen in [4].

2 Main results

In [5], we established Boyer’s conjecture on the dimension of sphere of influence
of graphs having perfect matchings, by obtaining a factor of a given graph and
then embedding that into a suitable finite dimensional Euclidean space. While
working on the main conjecture, we encountered the following result, which
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we believe would of interest to a general reader.

Theorem 1 Every graph without isolated vertices,
admits an induced star-triangle factor in which any two leaves from different

stars K1,n (n ≥ 2) are non adjacent.

To prove the result, let G be any graph without isolated vertices.
Let V(G) and E(G), respectively, denote the vertex set and the edge set

of G. Let M be the maximum matching in G, M ′ be the set of M-saturated
vertices and I be the set of M-unsaturated vertices.

We adopt the following algorithm, which contains the gist of the proof of
Theorem 1.

Algorithm 1

1. Let M1 = M.

2. If I 6= ∅, then pick a vertex v from I, otherwise go to step 10.

3. Pick u ∈ N(v) and call the edge uv as the neighborhood edge of v. (As v

is not isolated, there exists an edge uv ∈ E(G).) Then u ∈M ′. Otherwise
M ∪ {uv} will be a larger matching than M, which is impossible.

4. Let w ∈M ′ such that uw ∈M.

5. If Su is not defined, define Su := {w, v}, otherwise go to step 7.

6. Remove uw from M1, go to step 8.

7. If Su is defined then add v to Su.

8. Set J = I \ {v}.

9. With I = J, go to step 2.

10. Stop.

At the end of this algorithm, we obtain a matching M1, finitely many vertices
u1, . . . , uk and the corresponding sets Su1

, . . . , Suk
. Before we analyze these

sets, let us consider an example to see how the algorithm works.

Example 1 Consider a graph G on 17 vertices, given by Figure 1.
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Here
M =

{
{1, 2}, {7, 8}, {9, 10}, {13, 14}, {15, 16}

}
is a maximum matching and the corresponding set I is given by {3, 4, 5, 6, 11, 12}.

Applying Algorithm 1, we obtain a factor of G, given by Figure 2.
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Figure 1: Graph G
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Figure 2: Output of Algorithm 1 on G
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Figure 3: Star-triangle factor of G

After applying the procedure specified in the proof of Theorem 1 we will
obtain the graph given by Figure 3, which is a required star-triangle factor
of G. 2

To prove Theorem 1, we need a series of lemmas. The first one is immediate.

Lemma 1 1. Each v ∈ I has exactly one neighborhood edge.
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2. Each Sui
has at least two vertices, exactly one vertex from M ′, and ui

has a matching edge with that vertex.

Using this lemma, we obtain the following result.

Lemma 2 For each 1 ≤ i < j ≤ k, we have

({ui} ∪ Sui
) ∩ ({uj} ∪ Suj

) = ∅.

Proof. It is enough to prove the result for i = 1 and j = 2. Assume that there
exists some x ∈ ({u1} ∪ Su1

) ∩ ({u2} ∪ Su2
).

If x ∈ I, then x ∈ Su1
and x ∈ Su2

. Therefore, xu1 and xu2 are the neigh-
borhood edges of x. By Lemma 1, x has only one neighborhood edge, a con-
tradiction. Therefore x /∈ I and thus x ∈M ′.

If x ∈ {u1, u2}, without loss of generality, let x = u1. Then u1 ∈ Su2
. By

Lemma 1, Su2
has only one vertex from M ′, and u2 has a matching edge

with that vertex. Therefore, u1u2 is a matching edge, that is, u1u2 ∈M. This
implies that u2 ∈ Su1

.

Also, by Lemma 1, we have |Su1
| ≥ 2 and |Su2

| ≥ 2. Choose x1 ∈ Su1
and

x2 ∈ Su2
such that {x1, x2} ∩ {u1, u2} = ∅. Then {x1, x2} ⊆ I and thus x1 6= x2.

Therefore, x1u1u2x2 is an augmenting path of M, which implies that M is
not a maximum matching, a contradiction. Hence x /∈ {u1, u2}.

Consequently x ∈ M ′ such that x ∈ Su1
and x ∈ Su2

. Again, Lemma 1
ensures that xu1 and xu2 are matching edges. Hence xu1 and xu2 are not
independent edges, a contradiction. 2

Lemma 3 The residual set M1 is a matching. Further, if M ′
1 is the set of

vertices of M1, then V(G) can be partitioned as

V(G) =
(
∪̇ki=1({ui}∪̇Sui

)
)
∪̇M ′

1.

Proof. Since M1 embeds inside the matching M, it is a matching in G.

Pick any y ∈ V(G). Then, either y ∈ M ′
1 or y /∈ M ′

1. If y /∈ M ′
1, then by

our construction y ∈ {ui} ∪ Sui
, for some i.

Therefore, y ∈ ∪ki=1({ui} ∪ Sui
).

Thence, V(G) ⊂
(
∪ki=1 ({ui} ∪ Sui

)
)
∪M

′
1. The other inclusion is trivial.

To prove that the union is disjoint, let x ∈ {u} ∪ Su, for some u ∈ V(G).
Then, either x ∈ I or x ∈ M ′. If x ∈ I, then x /∈ M ′ and thus x /∈ M ′

1. If
x ∈ M ′, then either Sx is defined or x ∈ Sx ′ where xx ′ is a matching edge
removed from M1. Therefore, x /∈M ′

1 and thence

M ′
1 ∩ (∪Su({u} ∪ Su)) = ∅.
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This along with Lemma 2, establishes the result. 2

Lemma 4 If u ∈ {u1, . . . , uk} and if there are v,w ∈ Su such that vw ∈ E(G),
then

Su = {w, v}.

Proof. If possible, choose v ′ ∈ Su \ {w, v}. By our construction, there exists
some v ′′ ∈ Su such that v ′′u ∈M. We have the following cases to consider.

1. If v ′′ /∈ {w, v}, then by construction, Su has exactly one vertex from M ′

and all other vertices from I. Therefore vw /∈M and thus {vw}∪M is a
matching in G, larger than M.

2. If v ′′ = w, then vwuv ′ is an M-augmented path.

3. If v ′′ = v, then wvuv ′ is an M-augmented path.

Therefore, in each case, the augmented paths contradict the choice of M as a
maximum matching. This proves our assertion. 2

Proof of Theorem 1: First, we make a small change in our notations from
Algorithm 1.

For each Su = {v1, v2}, if v1v2 ∈ E(G), then destroy (remove) Su means from
now onwards this Su does not exist. Instead, if such an Su exists, we do the
following.

If T is not defined, then define T := {{u, v1, v2}}, otherwise add {u, v1, v2} to T.

Basically, we are separating out the class of triangles from stars. Thus, we
have found mutually exclusive stars {u} ∪ Su, triangles and a matching M1 in
G covering all the vertices.

Now, we establish that the remaining sets {u} ∪ Su are stars.
Claim 1. Each Su is an independent set.
To see this, note that we first defined Su as having one vertex from M ′ and

other from I. Then we added some vertices from I to Su. Therefore, each Su
has one vertex from M ′ and remaining vertices from I.

Let {v1, v2} ⊆ Su. If {v1, v2} ⊆ I, then clearly v1v2 /∈ E(G). Otherwise, without
loss of generality, assume that v1 ∈M ′ and v2 ∈ I.

If |Su| = 2, then by our construction, we have
v1v2 /∈ E(G). If |Su| > 2, then there exists some v3 ∈ Su \ {v1, v2}. Therefore,

v3 ∈ I and v1u ∈M.

If v1v2 ∈ E(G), then v2v1uv3 is an M-augmenting path. Therefore, M is not
a maximum matching, a contradiction. Hence, v1v2 /∈ E(G). This establishes
claim 1.
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So we obtain a matching M1, finitely many induced stars and triangles, all
of which span our given graph G. Note that the matching M1 can also be
treated as a finite collection of induced stars K2. Consequently, we obtain an
induced star-triangle factor of G.

To conclude our main result, we claim the following.
Claim 2. The set ∪Su is independent.
To see this, let {v1, v2} ⊆ ∪Su. We have to prove that v1v2 /∈ E(G). If

{v1, v2} ⊆ Su, for some u, then this follows by Claim 1. Without loss of gener-
ality, it is enough to assume that v1 ∈ Su1

and v2 ∈ Su2
.

We have the following cases to consider.

1. {v1, v2} ⊆M ′. To prove by contradiction, assume that v1v2 ∈ E(G).

By our construction, |Su1
| ≥ 2 and |Su2

| ≥ 2. Therefore, we can choose
x1 ∈ Su1

and x2 ∈ Su2
such that x1 6= v1 and x2 6= v2. Then {x1, x2} ⊆ I

and {u1v1, u2v2} ⊆ M. Therefore, x1u1v1v2u2x2 is an M-augmenting
path, concluding that M is not the maximum matching, a contradiction.

2. {v1, v2} ⊆ I. Clearly, v1v2 /∈ E(G), as I is an independent set.

3. v1 ∈M ′ and v2 ∈ I. (The other case v1 ∈ I and v2 ∈M ′ is similar.) To
prove by contradiction, assume that v1v2 ∈ E(G).

Since |Su1
| ≥ 2, there exists some x1 ∈ Su1

\ {v1}. As Su has only one
vertex from M ′ and v1 ∈ M ′, we have x1 ∈ I. Also, u1v1 ∈ M ensures
that x1u1v1v2 is an M-augmenting path. Thus, M is not the maximum
matching, a contradiction.

Therefore, in every case v1v2 6∈ E(G). This establishes claim 2. Hence, Theorem
1 is proved. 2
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Abstract. In this study, we define the generalized normal ruled surface
of a curve in the Euclidean 3-space E3. We study the geometry of such
surfaces by calculating the Gaussian and mean curvatures to determine
when the surface is flat or minimal (equivalently, helicoid). We examine
the conditions for the curves lying on this surface to be asymptotic curves,
geodesics or lines of curvature. Finally, we obtain the Frenet vectors of
generalized normal ruled surface and get some relations with helices and
slant ruled surfaces and we give some examples for the obtained results.

1 Introduction

Ruled surfaces have an important role in many areas such as architecture,
robotics, computer aided geometric design, physics, design problems in spatial
mechanism, etc. In 1930, precontraint concrete has been discovered. Then,
these surfaces have had an important role in architectural construction and
used to construct the spiral stair-cases, roofs, water-towers and chimney-pieces.
For instance, Eero Saarinen (1910–1961) used helicoid surface in staircase in
General Motor Technical Center in Michigan. He also used ruled surfaces at
Yale and M.I.T. buildings. Furthermore, Antonio Gaud́ı (1852-1926) designed
the many pillars of the Sagrada Familia by using hyperbolic hyperboloids.
Builder Felix Candela (1910-1997) has made extensive use of cylinders and
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the most familiar ruled surfaces [2]. Therefore, ruled surfaces have been the
focus of study by many mathematicians and different kinds of such surfaces
have been defined and studied. One of these kinds is rectifying developable of
a curve which defined by Izumiya and Takeuchi as the envelope of the family
of rectifying planes of a space curve. They have studied singularities of such
surfaces and also given a local classification. They also defined and studied
Darboux developable of a space curve whose singularities are given by the
locus of the endpoints of modified Darboux vector of the curve [4, 5, 6, 7, 8].

Later, Soliman et al have made a different definition for the rectifying de-
velopable surface [13]. They have defined this surface as the surface whose
generator line is unit Darboux vector of a space curve. They have obtained
that this surface has pointwise 1-type Gauss map of the first kind with a base
plane curve if and only if the base curve is a circle or straight line.

Recently, Önder and Kahraman defined general type of rectifying ruled sur-
faces as the surface whose rulings always lie on the rectifying plane of the base
curve [12]. He has obtained many properties of these special ruled surfaces and
showed that only the developable rectifying surfaces are the surfaces defined
by Izumiya and Takeuchi.

Furthermore, in [11] Önder has defined some new types of ruled surfaces in
3-dimensional Euclidean space which are called slant ruled surfaces by using
the “slant” concept in [4]. Later, Önder and Kaya have given some differential
equation characterizations for slant ruled surfaces [10].

In this paper, we define a new type of ruled surfaces called generalized nor-
mal ruled surfaces in the Euclidean 3-space. We study their Gaussian and mean
curvatures, investigate surface curves on generalized normal ruled surfaces and
relations with other special ruled surfaces such as slant ruled surfaces.

2 Preliminaries

A surface F is called to be a ruled surface if it is drawn by the continuous
movement of a straight line along a curve α. Such surfaces are parameterized
as F(α,q)(s, u) : I× R→ R3, ~F(α,q)(s, u) = ~α(s) + u~q(s) where α : I ⊂ R→ R3

is called the base curve and q : R→ R3 − {0} is called the ruling. If q is unit,
the ruled surface F(α,q) is cylindrical if and only if ~q ′ = 0 and non-cylindrical
otherwise, where the prime “ ′” shows derivative with respect to s. The curve
c = c(s) which satisfies the condition 〈~c ′,~q ′〉 = 0 is called the striction curve
of ruled surface F(α,q). The striction curve has an important geometric meaning
such that if there exists a common perpendicular to two constructive rulings,
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then the foot of the common perpendicular on the main ruling is called a
central point and striction curve is the locus of central points.

The Gauss map or the unit surface normal U of the ruled surface F(α,q) is
defined by

~U(s, u) =

∂~F(α,q)
∂s × ∂~F(α,q)

∂u

‖∂
~F(α,q)
∂s × ∂~F(α,q)

∂u ‖
. (1)

If
∂~F(α,q)
∂s × ∂~F(α,q)

∂u = 0 for some points (s0, u0), then such points are called
singular points of the surface. Otherwise, they are called regular points. The
ruled surface F(α,q) is called to be developable if the surface normal does not
change along a ruling q = q0. Non-developable ruled surfaces are called skew
surfaces. A ruled surface F(α,q) is developable if and only if det(~α ′,~q,~q ′) = 0.

When ‖~q(s)‖ = 1, the vectors ~h(s) =
~q ′(s)
‖~q ′(s)‖ and ~a(s) = ~q(s) × ~h(s) are

called central normal and central tangent, respectively. The orthonormal frame
{~q, ~h, ~a} is called the Frenet frame of ruled surface F(α,q) [9].

Definition 1 [11] A ruled surface F(α,q) is called a q-slant or a-slant (respec-
tively, h-slant) ruled surface if its ruling q (respectively, central normal h)
always makes a constant angle with a fixed direction.

The first fundamental form I and second fundamental form II of ruled sur-
face F(α,q) are defined by

I = Eds2 + 2Fdsdu+Gdu2

II = Lds2 + 2Mdsdu+Ndu2
(2)

where

E =

〈
∂~F(α,q)

∂s
,
∂~F(α,q)

∂s

〉
, F =

〈
∂~F(α,q)

∂s
,
∂~F(α,q)

∂u

〉
,

G =

〈
∂~F(α,q)

∂u
,
∂~F(α,q)

∂u

〉 (3)

and

L =

〈
∂2~F(α,q)

∂s2
, ~U

〉
, M =

〈
∂2~F(α,q)

∂s∂u
, ~U

〉
, N =

〈
∂2~F(α,q)

∂u2
, ~U

〉
. (4)
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The Gaussian curvature K and mean curvature H are defined by

K =
LN−M2

EG− F2

H =
EN− 2FM+GL

2(EG− F2)

(5)

respectively [1]. An arbitrary surface is called the flat surface if K = 0 and
called minimal if H = 0 at all points of the surface.

Helicoid (or right helicoid) is a special kind of ruled surfaces which is gener-
ated by a line attached orthogonally to an axis such that the line moves along
the axis and also rotates, both at constant speed.

The following theorem is known as Catalan theorem [3].

Theorem 1 Among all ruled surfaces except planes only the helicoid and its
fragments are minimal.

Definition 2 Let α : I ⊂ R→ R3 be a smooth curve and {~T, ~N, ~B} be its Frenet
frame. The ruled surfaces F(α,N) and F(α,B) are called principal normal surface
and binormal surface of α, respectively, which are given by the parametrizations

~F(α,N) = ~α± u~N and ~F(α,B) = ~α± u~B, (6)

respectively.

3 Generalized normal ruled surfaces

In this section, we define generalized normal ruled surfaces of a curve in the
Euclidean 3-space E3.

Definition 3 Let α(s) : I ⊂ R → R3 be a unit speed curve with arclength
parameter s, Frenet frame {~T, ~N, ~B}, curvature κ and torsion τ. The ruled
surface F(α,qn)(s, u) : I× R→ R3 defined by

~F(α,qn)(s, u) = ~α(s) + u~qn(s), ~qn(s) = a1(s)~N(s) + a2(s)~B(s) (7)

is called the generalized normal ruled surface (GNR-surface) of α where a21 +
a22 = 1 and a1, a2 are smooth functions of arc-length parameter s.

From Definition 3, we can easily see that if a1 = 0 and a2 = ±1, then the
GNR-surface F(α,qn) becomes binormal surface F(α,B). Similarly, if a1 = ±1 and
a2 = 0, then the GNR-surface F(α,qn) becomes principal normal surface F(α,N).
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Let f : I ⊂ R→ R and g : I× R→ R be smooth functions defined by

f(s) = a ′
1(s)a2(s) − a1(s)a

′
2(s) − τ(s)

g(s, u) = 1− ua1(s)κ(s)
(8)

We will call f and g as the characterization functions of GNR-surface F(α,qn)
and give the many properties of the surface with respect to f and g.

Theorem 2 The surface F(α,qn) is not regular if and only if f = g = 0.

Proof. From the partial derivatives of equation (7) we get

∂~F(α,qn)

∂s
= g~T + u(a ′

1 − a2τ)
~N+ u(a1τ+ a

′
2)
~B

∂~F(α,qn)

∂u
= a1~N+ a2~B

(9)

Then, from the cross product of the last equations it follows

∂~F(α,qn)

∂s
×
∂~F(α,qn)

∂u
= uf~T − a2g~N+ a1g~B

and we have that f = g = 0 if and only if
∂~F(α,qn)

∂s × ∂~F(α,qn)

∂u = 0. �

This theorem allows to determinate the singular points of the GNR-surfaces
as follows.

Proposition 1 (i) If the surface has singular points, α is not a plane curve
and not a line, for a1, a2 6= 0, the locus of the singular points of the GNR-
surface F(α,qn) is given by the curve γ defined by

~γ(s) = ~α(s) + u(s)~qn(s)

where

u(s) =
1

a2κ
∫
τ
a22
ds
.

(ii) If α is a line, then the surface does not have singular points.
(iii) If the surface has singular points, α is a plane curve and not a line,

then the locus of singular points of the GNR-surface F(α,qn) is given by the
curve

~γ(s) = ~α(s) + u(s)~qn(s)

where

u(s) = ±
√
1+ C2

Cκ
.

and C is a real constant.
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Proof. (i) From Theorem 2, for the singular points of F(α,qn) we have

a ′
1(s)a2(s) − a1(s)a

′
2(s) − τ(s) = 0,

1− ua1(s)κ(s) = 0.

From the first equation of this system, we get a1 = a2
∫
τ
a22
ds and from the

second equation, we get a1 = 1
uκ . By eliminating a1, we obtain the desired

result.
(ii) In order to achieve singular points both f and g must be equal to zero.

In the case of κ, g and κ cannot be zero at the same time since

g = 1− ua1(s)κ(s)

If we choose g = κ = 0, we obtain the contradiction 1 = 0. Therefore, the
surface does not have singular points if α is a line.

(iii) Since α is planar, we have τ = 0. Then, from f = 0, for a real constant
C, we get

a ′
1(s)a2(s) − a1(s)a

′
2(s) = 0⇒ a ′

1(s)

a1(s)
=
a ′
2(s)

a2(s)⇒ ln |a1(s)| = ln |a2(s)|+ ln |C| , C ∈ R⇒ a1(s) = Ca2(s).

Since a21 + a
2
2 = 1, it follows

a1 = ±
C√
1+ C2

, a2 = ±
1√
1+ C2

.

Therefore, in the case κ 6= 0 and τ = 0, for the locus of the singular point of
the GNR-surface F(α,qn) we get

~γ(s) = ~α(s) + u(s)~qn(s)

where

u(s) = ±
√
1+ C2

Cκ
.

�

Since we have ~qn(s) = a1(s)~N(s)+a2(s)~B(s), by the derivation of the ruling
with respect to s, it follows

~qn
′ = −a1κ~T + (a ′

1 − a2τ)
~N+ (a1τ+ a

′
2)
~B.
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Then, the surface is cylindrical, i.e., ~qn
′ = 0 if and only if the following system

hold 
a1κ = 0,

a ′
1 − a2τ = 0,

a1τ+ a
′
2 = 0.

This system is reduced to 
κ = 0,

a1 = constant,

a2 = constant.

(10)

when a1 6= 0. In this case, since κ = 0, we have that the tangent vector ~T
is constant. Moreover, the principal normal vector ~N and binormal vector ~B
are also constant vectors based on choice which are perpendicular to ~T . Since
the tangent of the base curve α is constant and the surface is cylindrical, the
GNR-surface F(α,qn) becomes a plane. This gives the following corollary:

Corollary 1 If a1 6= 0, among all GNR-surfaces F(α,qn) only the plane is
cylindrical.

In the case that a1 = 0, the surface becomes binormal surface F(α,B) and we
get τ = 0 which means that α is a planar curve. For this case we can give the
following corollary

Corollary 2 The binormal surface F(α,B) is cylindrical if and only if τ = 0,
i.e., α is a planar curve.

The striction parameter of the GNR-surface F(α,qn) can be achieved by

u(s) = −
〈~α ′,~qn

′〉
〈~qn′,~qn′〉

=
a1κ

a21κ
2 + (a ′

1 − a2τ)
2 + (a1τ+ a

′
2)
2
. (11)

If a1 = 0, then we have ~qn = ±~B. Thus, 〈~α ′,~qn
′〉 = 〈~T,∓τ~N〉 = 0. Therefore,

we have the following corollary:

Corollary 3 The base curve α of surface F(α,qn) is its striction curve if and
only if F(α,qn) = F(α,B) or α is a straight line.

Proposition 2 The GNR-surface F(α,qn) is developable if and only if f = 0.
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Proof. A ruled surface F(α,q) is developable if and only if det(~α ′,~q,~q ′) = 0.
Then, we get

det(~α ′,~qn,~qn
′) = det(~T, a1~N+ a2~B,−a1κ~T

+ (a ′
1 − a2τ)

~N+ (a1τ+ a
′
2)
~B)

= a1a
′
2 − a

′
1a2 + τ

= −f

(12)

From (12), it is clear that det(~α ′,~qn,~qn
′) = 0 if and only if f = 0. �

Considering Theorem 2 and Proposition 2, the following corollary is ob-
tained.

Corollary 4 A developable GNR-surface F(α,qn) is regular if and only if g 6= 0.

The Gaussian map or the unit surface normal U of the GNR-surface F(α,qn)
can easily be calculated from (1) as

~U(s, u) =
1√

u2f2 + g2

(
uf~T − a2g~N+ a1g~B

)
. (13)

Considering base curve α on F(α,qn), the unit surface normal ~U can be restricted
to α by taking u = 0, i.e.,

~Uα = −a2~N+ a1~B. (14)

Then, we can give the followings:

Proposition 3 (i) The base curve α is a geodesic if and only if α is a straight
line or F(α,qn)=F(α,B).

(ii) The base curve α is an aymptotic curve if and only if α is a straight
line or F(α,qn)=F(α,N).

Proof. For the curve α to be a geodesic on F(α,qn), the directions of principal

normal N of α and the surface normal ~Uα along α must be identical. Then, α
is a geodesic if and only if ~Uα × ~α ′′ = 0. Using this equality, we get

~Uα × ~α ′′ =
(
−a2~N+ a1~B

)
× κ~N = −a1κ~T.

which gives us (i).
Similarly, for the base curve α to be an asymptotic curve on F(α,qn), the

principal normalN of α and surface normal ~Uα along αmust be perpendicular.
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Then, α is an asymptotic curve if and only if 〈~Uα, ~α ′′〉 = 0. Using this equality,
we get

〈~Uα, ~α ′′〉 = 〈−a2~N+ a1~B, κ~N〉 = −a2κ

which gives (ii). �

Proposition 4 The base curve α is a line of curvature on the GNR-surface
F(α,qn) if and only if the system{

a ′
2 + a1τ = 0

a ′
1 − a2τ = 0

satisfies.

Proof. For the curve α to be a line of curvature on F(α,qn), the tangent vector
~T of the curve and the derivative of the surface normal along α must be in the
same direction, i.e., ~α ′ × ~U ′

α = 0. Then, we get

~α ′ × ~U ′
α = ~T ×

(
a2κ~T − (a ′

2 + a1τ)
~N+ (a ′

1 − a2τ)
~B
)

= −(a ′
1 − a2τ)

~N− (a ′
2 + a1τ)

~B

Since the vectors ~N and ~B are linearly independent, we obtain that ~α ′×~U ′
α = 0

if and only if a ′
2 + a1τ = 0 and a ′

1 − a2τ = 0. �

Let now consider the Gaussian curvature K and the mean curvature H of
GNR-surface F(α,qn). The fundamental coefficients of GNR-surface F(α,qn) are
calculated from (3) and (4) as

E = g2 + u2
[
(a ′
1 − a2τ)

2 + (a1τ+ a
′
2)
2
]

F = 0

G = 1

(15)

and

L =
1√

u2f2 + g2

[
−uf

(
g ′ − uκ(a ′

1 − a2τ)
)

+g
(
−a2κg+ a2τ(a

′
2 + a1τ)

+u
(
−f ′ + a1τ(a

′
1 − a2τ)

))]
M =

−f√
u2f2 + g2

N = 0

(16)
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respectively. Then, from (5) the Gaussian curvature and mean curvature of
GNR-surface F(α,qn) are

K = −
M2

E
= −

f2

(u2f2 + g2)
[
g2 + u2

[
(a ′
1 − a2τ)

2 + (a1τ+ a
′
2)
2
]]

H =
L

2E
=
[
−uf

(
g ′ − uκ(a ′

1 − a2τ)
)

+g
(
−a2κg+ a2τ(a1τ+ a

′
2) + u

(
−f ′ + a1τ(a

′
1 − a2τ)

))]
/
{
2
√
u2f2 + g2

[
g2 + u2

[
(a ′
1 − a2τ)

2 + (a1τ+ a
′
2)
2
]]}

(17)

respectively. As we see from (17) and Proposition 2, a classical characterization
for developable ruled surfaces stated as “a ruled surface is developable if and
only if the Gaussian curvature vanishes” holds for GNR-surfaces.

From (17), we have the following corollary:

Corollary 5 Between the Gaussian curvature K and the mean curvature H
of a GNR-surface F(α,qn) the following relation exists

KL+ 2HM2 = 0

or substituting L and M from (16),

K√
u2f2 + g2

[
−uf

(
g ′ − uκ(a ′

1 − a2τ)
)

+g
(
−a2κg+ a2τ(a1τ+ a

′
2)

+u
(
−f ′ + a1τ(a

′
1 − a2τ)

))]
−

2Hf2

u2f2 + g2
= 0.

Proposition 5 The GNR-surface F(α,qn) is minimal if and only if the equality

f

g
=

−a2κg+ a2τ(a
′
2 + a1τ) + u (−f

′ + a1τ(a
′
1 − a2τ))

u
(
g ′ − uκ(a ′

1 − a2τ)
) (18)

satisfies.

Proof. The proof is clear from the second equality in (17). �

From Catalan theorem, Theorem 1, and Proposition 5 we obtain the follow-
ing corollaries:
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Corollary 6 The GNR-surface F(α,qn) is a plane, a helicoid or its fragment
if and only if (18) holds.

Corollary 7 Let the base curve α of the normal surface F(α,qn) be a straight
line. Then, F(α,qn) is a minimal surface if and only if f is constant.

Now, let F(α,qn) be developable. Then, f = 0 and we have a ′
1a2 − a1a

′
2 = τ.

Since qn is unit, a1a
′
1 + a2a

′
2 = 0. Now, it follows,

a1τ+ a
′
2 = 0 and a ′

1 − a2τ = 0.

Now, from (18) we have that a2κg
2 = 0. From the last equations and Propo-

sition 4, the followings are obtained:

Corollary 8 The base curve α is always a line of curvature on the developable
GNR-surface F(α,qn).

Corollary 9 A developable regular GNR-surface F(α,qn) is minimal (or equiv-
alently a helicoid or a plane) if and only if α is a straight line or F(α,qn) =
F(α,N).

Since we assume F(α,qn) is developable, the partial derivatives given by (9)
become

∂~F(α,qn)

∂s
= g~T

∂~F(α,qn)

∂u
= a1~N+ a2~B

(19)

and the unit surface normal U becomes ~U = −a2~N+ a1~B. By considering the

base

{
∂~F(α,qn)

∂s ,
∂~F(α,qn)

∂u

}
of the tangent space TpF(α,qn) at a point p ∈ F(α,qn),

for a vector vp ∈ TpF(α,qn), the Weingarten map of F(α,qn) is given by Sp =

−Dpv : TpF(α,qn) → TvpS
2. Then, we have
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Sp

(
∂~F(α,qn)

∂s

)
= D∂F(α,qn)

∂s

~U

= −
∂~U

∂s

= −
∂

∂s

(
−a2~N+ a1~B

)
= −a2κ~T

= −
a2κ

g

∂~F(α,qn)

∂s

Sp

(
∂~F(α,qn)

∂s

)
= D∂F(α,qn)

∂u

~U

= −
∂~U

∂u

= 0

Thus, at the non-singular points of the surface, the matrix form of the Wein-
garten map is given as

Sp =

[
−a2κ

g 0

0 0

]
(20)

From (20), it is easy to see that for a developable GNR-surface F(α,qn), the
Gaussian curvature and mean curvature are

K = det(Sp) = 0 and H =
1

2
tr(Sp) = −

a2κ

2g
,

respectively. From the characteristic equation det(Sp − λI) = 0 of the matrix
of Weingarten map, the principal curvatures of the developable GNR-surface
F(α,qn) are λ1 = −a2κ

g , λ2 = 0 and we have the following corollary:

Corollary 10 (i) If κ 6= 0 and a2 6= 0, there are no umbilical points on the
surface F(α,qn).

(ii) If κ = 0 or a2 = 0, then we get λ1 = λ2 = 0 and all the points of the
surface F(α,qn) are planar and the quadratic approach of the surface is a
plane.

(iii) If κ 6= 0 and a2 6= 0, then λ1λ2 = 0, λ1 6= 0 and all points of the surface
F(α,qn) are parabolic. Therefore, the quadratic approach of the surface is
a parabolic cylinder.
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The principal directions ~e1, ~e2 of developable GNR-surface are defined by
Sp(~e1) = λ1~e1, Sp(~e2) = λ2~e2 and calculated as

~e1 = g~T

~e2 = a1~N+ a2~B
(21)

respectively. Since a curve on a surface is a line of curvature if its tangent
vector is a principal line, i.e., Sp(~T) = m~T , m ∈ R, from the first equality,
we have that the base curve α is always a line of curvature on developable
GNR-surface F(α,qn), i.e., we have Corollary 3.13 again. Furthermore, for the
parameter curves of the developable normal surface F(α,qn), we have the fol-
lowing corollary:

Corollary 11 All parameter curves F(α,qn)(s, u0) and F(α,qn)(s0, u) of a de-
velopable GNR-surface F(α,qn) are lines of curvatures.

Let now ~vp be a unit tangent vector in the tangent space TpF(α,qn) at a point
p on developable GNR-surface F(α,qn). Then, ~vp can be written as

~vp = C(s, u)
∂~F(α,qn)

∂s
+D(s, u)

∂~F(α,qn)

∂u
(22)

where C,D are differentiable functions. Using the linearity of Weingarten map,
we have

Sp(~vp) = Ca2κ~T

and substituting (19) in (22), we get

~vp = Cg~T +D~qn.

Since, the normal curvature in the direction of~vp is given by kn(~vp) = 〈Sp(~vp),~vp〉,
we have

kn(~vp) = C
2a2κg

If C = 0, a2 = 0 or κ = 0, then kn(~vp) = 0 and we have the following theorem:

Theorem 3 (i) If κ 6= 0, then a unit tangent vector ~vp on the developable
GNR-surface F(α,qn) is asymptotic if and only if ~vp is a ruling i.e, ~vp = ~qn
or a2 = 0.

(ii) If α is a straight line, then any tangent vector ~vp is asymptotic.
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Let ϕ be a regular curve on the developable GNR-surface F(α,qn) given by
the parametrization ~ϕ(t) = F(α,qn) (s(t), u(t)). Since the tangent vector of ϕ
lies in the tangent space of F(α,qn), from (22) we get

~̇ϕ =
d~ϕ

dt
=
∂~F(α,qn)

∂s

ds

dt
+
∂~F(α,qn)

∂u

du

dt

which yields that

ds

dt
= ṡ = C (s(t), u(t)) and

du

dt
= u̇ = D (s(t), u(t)) .

From the derivative of ~vp with respect to t, we obtain

~̇vp =
(
C2gs + 2CDgu + Ċg

)
~T +

(
C2gκ+ Ḋa1

)
~N+ Ḋa2~B

where gs =
∂g
∂s and gu = ∂g

∂u . Since the unit surface normal along ϕ is ~Uϕ =

−a2~N+ a1~B, then the geodesic curvature of the surface curve ϕ is given by

κg = 〈~vp, ~̇vp × ~Uϕ〉

= Cg
(
Ḋ− C2ggu

)
−D

(
C2gs + 2CDgu + Ċg

)
.

(23)

From (23), we have the following corollary:

Corollary 12 A surface curve ϕ on the developable GNR-surface F(α,qn) is a
geodesic if and only if

Cg
(
Ḋ− C2ggu

)
−D

(
C2gs + 2CDgu + Ċg

)
= 0.

The derivative of unit surface normal along ϕ with respect s is given by ~U ′
ϕ =

−Sp(~vp) = −Ca2κ~T and therefore the geodesic torsion of the surface curve ϕ
is given by

τg = 〈~U ′
ϕ,

~Uϕ ×~vp〉 = CDa2κ. (24)

From the equation (24) we have the following corollary:

Corollary 13 (i) If κ = 0, i.e., the base curve α is a straight line, then all
surface curves are lines of curvature.

(ii) If F(α,qn) = F(α,N), then all surface curves are lines of curvature.



Generalized normal ruled surface of a curve 231

(iii) If C = 0, κ 6= 0 and a2 6= 0, then ~vp = ~qn and only rulings are lines of
curvature.

(iv) If D = 0, κ 6= 0 and a2 6= 0, then ~vp = ~T and only the base curve α is a
line of curvature.

Now, let us consider the Frenet frame of the GNR-surface F(α,qn). Since the

vector ~qn(s) = a1(s)~N(s) + a2(s)~B(s) is unit, we can take a1(s) = cos(θ(s))
and a2(s) = sin(θ(s)), i.e., ~qn = cos θ~N+ sin θ~B where θ is the angle function
between ~qn and ~N. Then, the vectors of the Frenet frame {~qn, ~h, ~a} of the
GNR-surface F(α,qn) are given by

~qn = cos θ~N+ sin θ~B

~h =
1√

κ2 cos2 θ+ z2

(
−κ cos θ~T − z sin θ~N+ z cos θ~B

)
~a =

1√
κ2 cos2 θ+ z2

(
z~T − κ cos θ sin θ~N+ κ cos2 θ~B

) (25)

where z = θ ′ + τ. These equalities give the following proposition:

Proposition 6 For a GNR-surface F(α,qn), the followings are equivalent.

(i) The angle function θ is given with the equality θ = −
∫
τds.

(ii) The central normal vector ~h of F(α,qn) coincides with the tangent vector
~T of the curve α.

(iii) The central tangent vector ~a of F(α,qn) lies in the normal plane of the
curve α.

Proof. If θ = −
∫
τds, then we have z = 0. Therefore, the proof is clear from

(25). �

Corollary 14 Let F(α,qn) be a GNR-surface with frame {~qn, ~h, ~a} and the angle

function θ between ~qn and ~N be given by θ = −
∫
τds. Then, the GNR-surface

F(α,qn) is an h-slant ruled surface if and only if α is a general helix.

4 Examples

In this section, we give some examples for the obtain results in the previous
section.
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Example 1 Let take the z-axis as the base curve. Then, ~α1(s) = (0, 0, s). By
choosing a1(s) = cos s, a2(s) = sin s, we have ~qn = (cos s, sin s, 0) and GNR-
surface F1(α1,qn)(s, u) = (u cos s, u sin s, s) which is a right helicoid given in
Figure 1. For this surface, it is obtained f = −1 and g = 1 which gives that
F1(α1,qn) is a regular and non-developable GNR-surface. The graph of the base
curve α1 is also given in Figure 1 colored red.

Figure 1: The GNR-surface F1(α1,qn)

Example 2 Let the GNR-surface F2(α2,qn) be given by the parametrization

~F2(α2,qn)(s, u) = ~α2(s) + u~qn(s)

where α2(s) is a cylidrical helix given by the parametric form

~α2(s) =

(
cos

(
s√
2

)
, sin

(
s√
2

)
,
s√
2

)
The Frenet vectors of α2 are

~T(s) =

(
−
1√
2

sin

(
s√
2

)
,
1√
2

cos

(
s√
2

)
,
1√
2

)
,

~N(s) =

(
− cos

(
s√
2

)
,− sin

(
s√
2

)
, 0

)
,

~B(s) =

(
1√
2

sin

(
s√
2

)
,−

1√
2

cos

(
s√
2

)
,
1√
2

)
.
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By choosing a1 = sin
(
s
2

)
, a2 = cos

(
s
2

)
, we get

~qn(s) =

(
−
1√
2

cos

(
s√
2

)
+
1

2
sin

(
s√
2

)
,−

1√
2

sin

(
s√
2

)
−
1

2
cos

(
s√
2

)
,
1

2

)
and f = 0, g = 1− 1

2u sin
(
s
2

)
. For the function g to be zero, we get u = 2

sin( s2)
.

Then, the locus of singular points of GNR-surface F2(α2,qn) are given by the
curve γ(s) = (γ1(s), γ2(s)γ3(s)) where

γ1(s) =
√
2 cot

(s
2

)
sin

(
s√
2

)
− cos

(
s√
2

)
,

γ2(s) = −
√
2 cot

(s
2

)
cos

(
s√
2

)
− sin

(
s√
2

)
,

γ3(s) =
s√
2
+
√
2 cot

(s
2

)
.

The graph of GNR-surface F2(α2,qn) is given in Figure 2. In the same figure,
the graphs of base curve α2 and locus of singular points of F2(α2,qn) are also
given by colored red and blue, respectively.

Figure 2: Two different views of the GNR-surface F2(α2,qn)

Example 3 Let the GNR-surface F3(β,qn) be given by the parametrization

~F3(β,qn)(s, u) =
~β(s) + u~qn(s)
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where ~β(s) = (β1(s), β2(s), β3(s)) is a special curve known as pedal curve with

β1(s) =
3

2
cos
(s
2

)
+
1

6
cos

(
3s

2

)
,

β2(s) =
3

2
sin
(s
2

)
+
1

6
sin

(
3s

2

)
,

β3(s) =
√
3 cos

(s
2

)
.

The Frenet vectors of β are given by

~T(s) =

(
−
3

4
sin
(s
2

)
−
1

4
sin

(
3s

2

)
, cos3

(s
2

)
,−

√
3

2
sin
(s
2

))
,

~N(s) =

(
−

√
3

2

(
2 cos2

(s
2

)
− 1
)
,−
√
3 cos

(s
2

)
sin
(s
2

)
,−
1

2

)
,

~B(s) =

(
1

2
cos
(s
2

)(
2 cos2

(s
2

)
− 3
)
,− sin3

(s
2

)
,

√
3

2
cos
(s
2

))
.

If we take a1(s) = cos
(
s
2

)
and a2(s) = sin

(
s
2

)
, we get ~qn(s) = (q1(s), q2(s), q3(s))

where

q1(s) =
1

2
cos
(s
2

)(
2 sin

(s
2

)
cos2

(s
2

)
− 2
√
3 cos2

(s
2

)
− 3 sin

(s
2

)
+
√
3
)
,

q2(s) = sin
(s
2

)(
sin
(s
2

)
cos2

(s
2

)
−
√
3 cos2

(s
2

)
− sin

(s
2

))
,

q3(s) =
1

2
cos
(s
2

)(√
3 sin

(s
2

)
− 1
)
,

and f(s) =
√
3
2 sin

(
s
2

)
− 1
2 , g(s, u) = 1−

√
3
2 u cos2

(
s
2

)
. Assuming k ∈ Z, for the

points

(s0, u0) =

2 arcsin

(
1√
3

)
− 4kπ,

2
√
3 cos2

(
arcsin

(
1√
3

)
− 2kπ

)
 ,

and

(s1, u1) =

2π− 2 arcsin

(
1√
3

)
+ 4kπ,

2
√
3 cos2

(
π− arcsin

(
1√
3

)
+ 2kπ

)
 ,
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we get f = g = 0 and therefore these points are singular points on the GNR-
surface F3(β,qn). Therefore, except the points (s0, u0) and (s1, u1), the surface
is regular. The graph of the GNR-surface F3(β,qn) is given by Figure 3. The
graphs of the base curve β and the images of singular points of the surface are
also given in Figure 3 colored red and blue, respectively.

Figure 3: Two different views of the GNR-surface F3(β,qn)

Example 4 Let the GNR-surface F4(α3,qn) be given by the parametrization

~F4(α3,qn)(s, u) = ~α3(s) + u~qn(s)

where

~α3(s) =
(√

1+ s2, s, ln
(
s+

√
1+ s2

))
.

The Frenet vectors of α3 are

~T =

( √
2s

2
√
s2 + 1

,

√
2

2
,

√
2

2
√
s2 + 1

)
,

~N =

(
1√
s2 + 1

, 0,−
s√
s2 + 1

)
,

~B =

(
−

√
2s

2
√
s2 + 1

,

√
2

2
,−

√
2

2
√
s2 + 1

)
.
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By assuming a1(s) = s and a2(s) =
√
1− s2, we get

~qn =

(
s√
s2 + 1

−

√
2

2

s
√
1− s2√
s2 + 1

,

√
2

2

√
1− s2,−

s2√
s2 + 1

−

√
2

2

√
1− s2

s2 + 1

)
,

and

f(s) =
2s2 −

√
1− s2 + 2

2(s2 + 1)
√
1− s2

, g(s, u) =
2s2 − u

√
1− s2 + 2

2(s2 + 1)
.

Then, the surface is regular and non-developable. The graph of GNR-surface
F4(α3,qn) is given by Figure 4.

Figure 4: The GNR-surface F4(α3,qn)

5 Conclusions

In the Euclidean 3-space E3, the principal normal surface and the binormal
surface of a curve are the special ruled surfaces and they are well-known. Here,
we have defined generalized normal ruled surface (GNR-surface) of a curve
and showed that such surfaces are more general than the principal normal
surface and binormal surface. We have given conditions when GNR-surfaces
are minimal and investigated when the base curve is geodesic, asymptotic or
a line of curvature on GNR-surface. By using a similar way of defining GNR-
surfaces, other special ruled surfaces can be defined as well. In addition to
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this, classes of such ruled surfaces can be obtained. Therefore, new methods
can be achieved for constructing new ruled surfaces related to a curve.
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Abstract. In this paper, we prove some new integral inequalities for
s-convex function on time scale. We give results for the case when time
scale is R and when time scale is N.

1 Introduction

The study of various types of integral inequalities for convex functions has been
the focus of great attention for well over a century by a number of scientists,
interested both in pure and applied mathematics. Out of these inequalities
Ostrowski inequality and Hermite-Hadamard inequality are the most common
inequalities. These two inequalities have applications in numerical analysis,
probability, optimization theory, stochastic, statistics, information and inte-
gral operator theory. Also these inequalities have various implementation in
trapezoid, Simpson and quadrature rules, etc. The basic definitions of Os-
trowski and Hermite-Hadamard inequalities are as follows.

The Ostrowski inequality [21] for a differetiable mapping g on the interior
of an interval ᵀ with | g ′ (c)| ≤ M, where g ′ implies first derivative of g, is
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defined as:

∣∣∣∣g(k) − 1

b2 − b1

∫b2
b1

g(c)dc

∣∣∣∣ ≤M(b2 − b1)

1
4
+

(
k− b1+b2

2

)2
(b2 − b1)2

 , (1)

for b1 < b2 ∈ ᵀ. This inequality gives an upper bound for the approximation of
the integral average − 1

b2−b1

∫b2
b1
g(c)dc by the value g(c) at point c ∈ [b1, b2].

The above inequality is then further generalized by researchers. For instance
see [2, 6, 19]. On the other hand, for a convex function g : ᵀ → R on an
interval ᵀ, the Hermite-Hadamard inequality [10, 11] is defined as:

g

(
b1 + b2
2

)
≤ 1

b2 − b1

∫b2
b1

g(c)dc ≤ g(b1) +g(b2)
2

, (2)

for all b1, b2 ∈ ᵀ with b1 < b2. The inequality (2) is the special case of Jensen
inequality. For more generalizations and details see [9, 13, 14, 15, 16, 17, 18, 20].

During last few decades, the inequalities (1) and (2) have been proved on
time scale, see [1, 3, 7, 8, 23] for more information. Of course the role of
inequalities (1) and (2) on time scales are similar as in usual sense. Here we
prove some Ostrowski and Hermite-Hadamard’s type inequalities for s-convex
functions on time scale. We also extend the results given in [22]. In [22], Tahir
et. al. proved several useful identities for convex functions on time scales. By
using some of these identities we find certain useful inequalities for s-convex
functions. Our work has many mathematical applications and has flexibility
to extend it for more useful results.

2 Preliminaries

A time scale is a nonepmty closed subset T of R. Most common examples are
R and N.

The forward and the backward jump operators respectively, denoted by σ
and ρ, are defined as:

σ(k) = inf{c ∈ T : c > k}, ρ(k) = sup{c ∈ T : c < k},

for all k ∈ T.
The number k is called right-scattered if σ(k) > k and is called left scattered

if ρ(k) < k. Moreover, k is called isolated if both the right-scattered and the
left-scattered. Similarly, the number k is called right dense or left dense if
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σ(k) = k or ρ(k) = k, respectively. Furthermore, k is called dense if it is right
dense and left dense simultaneously.

The mappings µ, τ : T→ [0,∞) defined by

µ(k) := σ(k) − k, τ(k) := k− ρ(k),

are known as forward and backward graininess functions, respectively.
A function g : T→ R is called rd-continuous Crd if it is continuous at right-

dense points of T and its left-sided limits exist (finite) at left-dense points of
T.

If g ∈ Crd and k1 ∈ T, then we have

F(k) =

∫k
k1

g(c)∆c, k ∈ T.

That is, for g ∈ Crd implies
∫b2
b1
g(c)∆c = F(b1) − F(b2), where F∆ = g.

Theorem 1 ([4]) Let b1, b2, b3 ∈ T, g,g1,g2 ∈ Crd, $ ∈ R and σ is forward
jump operator, then

(i).
∫b2
b1
(g1(c) +g2(c))∆c =

∫b2
b1
g1(c)∆c+

∫b2
b1
g2(c)∆c;

(ii).
∫b2
b1
$g (c)∆c = $

∫b2
b1
g(c)∆c;

(iii).
∫b1
b2
g(c)∆c = −

∫b2
b1
g(c)∆c;

(iv).
∫b2
b1
g(c)∆c =

∫b3
b1
g(c)∆c+

∫b2
b3
g(c)∆c;

(v).
∫b2
b1
gσ1 (c)g

∆
2 (c)∆c = (g1g2)(b2) − (g1g2)(b1) −

∫b2
b1
g∆1 (c)g2 (c)∆c;

(vi).
∫b2
b1
g1(c)g∆2 (c)∆c = (g1g2)(b2) − (g1g2)(b1) −

∫b2
b1
g∆1 (c)g

σ
2 (c)∆c;

(vii).
∫b1
b1
g(c)∆c = 0;

(viii). If g(c) ≥ 0 for all c, then
∫b2
b1
g(c)∆c ≥ 0;

(ix). If |g1 (c)| ≤ g2(c) on [b1, b2], then∣∣∣∣∫b2
b1

g1(c)∆c

∣∣∣∣ ≤ ∫b2
b1

g2(c)∆c.
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From Theorem 1 (ix), for g2(c) = |g1 (c)| on [b1, b2], we have∣∣∣∣∫b2
b1

g(c)∆c

∣∣∣∣ ≤ ∫b2
b1

|g (c)|∆c.

Definition 1 ([12]) Consider a time scale T and s ∈ (0, 1]. A function g :
ᵀ ⊂ T → R0, where R0 = [0,∞), is called s-convex function in second sense,
if

g (tb1 + (1− t)b2) ≤ ts g (b1) + (1− t)s g (b2), (3)

for all b1, b2 ∈ ᵀ and t ∈ [0, 1].

3 Main results

First we prove the following identity.

Lemma 1 Consider a time scale T and ᵀ = [b1, b2] ⊆ T such that b1 < b2 ∈
T. Let g : ᵀ → R be a delta differentiable mapping on ᵀo, where ᵀo is the
interior of ᵀ. If g∆ ∈ Crd then following equality holds:

g(b1) +g(b2)
2

−
1

b2 − b1

∫b2
b1

gσ(c)∆c

=
1

2(b2 − b1)

[ ∫b2
b1

(c− b1)g
∆ (c)∆c−

∫b2
b1

(b2 − c)g
∆ (c)∆c

]
.

(4)

Proof. By using the formula∫b2
b1

g1(c)g
∆
2 (c)∆c(g1g2)(b2) − (g1g2)(b1) −

∫b2
b1

g∆1 (c)g
σ
2 (c)∆c,

with g1(c) =
c−b1
b2−b1

, g2(c) = g(c) in first integral and g1(c) =
c−b2
b1−b2

, g2(c) =
g(c) in second integral , we have∫b2

b1

c− b1
b2 − b1

g∆ (c)∆c−

∫b2
b1

c− b2
b1 − b2

g∆ (c)∆c

=

[
g(b2) −

1

b2 − b1

∫b2
b1

gσ(c)∆c

]
−

[
−g (b1) +

1

b2 − b1

∫b2
b1

gσ(c)∆c

]
= g(b1) +g(b2) −

2

b2 − b1

∫b2
b1

gσ(c)∆c.

(5)
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Then by multiplying 1
2 on both sides of equation (5), we get the required

equality (4) (also see the proof of Lemma 3.1 in [5]). �

Corollary 1 Let T = R in Lemma 1, then we have

g(b1) +g(b2)
2

−
1

b2 − b1

∫b2
b1

g(c)dc

=
1

2(b2 − b1)

[ ∫b2
b1

(c− b1)g
′ (c)dc−

∫b2
b1

(b2 − c)g
′ (c)dc

]
.

(6)

Corollary 2 Let T = N in Lemma 1. Let b1 = 0, b2 = d, c = x and g(k) =
ck, then

c0 + cd
2

−
1

d

d∑
x=0

cx =
1

2d

[
d−1∑
x=0

x∆cx −

d−1∑
x=0

(d− x)∆cx

]
. (7)

Corollary 3 Under the assumptions of Lemma 1, we have

g(b1) +g(b2)
2

−
1

b2 − b1

∫b2
b1

gσ(c)∆c

=
b2 − b1
2

[ ∫ 1
0

tg∆ (tb2 + (1− t)b1)∆t−

∫ 1
0

tg∆ (tb1 + (1− t)b2)∆t

]
.

(8)

Proof. In Lemma 1 using change of variable method, that is, by taking t =
c−b1
b2−b1

, we find∫b2
b1

c− b1
b2 − b1

g∆ (c)∆c = (b2 − b1)

∫ 1
0

tg∆ (tb2 + (1− t)b1)∆t. (9)

Similarly, by taking t = c−b2
b1−b2

, we get∫b2
b1

c− b2
b1 − b2

g∆ (c)∆c = (b2 − b1)

∫ 1
0

tg∆ (tb1 + (1− t)b2)∆t. (10)

Hence by using (9) and (10), we get the required equality (8). �

Theorem 2 Consider a time scale T and ᵀ = [b1, b2] ⊆ T such that b1 <
b2 ∈ T. Let g : ᵀ→ R be a delta differentiable mapping on ᵀo, where ᵀo is the
interior of ᵀ. If |g∆ | is s-convex then following inequality holds:
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−

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣ ≤ b2 − b12
λ1

(
|g∆ (b2)|+ |g∆ (b1)|

)
,

(11)

where

λ1 =

∫ 1
0

(ts+1 + t(1− t)s)∆t.

Proof. Using Corollary 3, property of modulus and convexity of |g∆ |, we find∣∣∣∣g(b2) +g(b1)2
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣
≤ b2 − b1

2

[ ∫ 1
0

t|g∆ (tb2 + (1− t)b1)|∆t

+

∫ 1
0

t|g∆ (tb1 + (1− t)b2)|∆t

]
≤ b2 − b1

2

[ ∫ 1
0

t{ts|g∆ (b2)|+ (1− t)s|g∆ (b1)|}∆t

+

∫ 1
0

t{ts|g∆ (b1)|+ (1− t)s|g∆ (b2)|}∆t

]
=
b2 − b1
2

[(
|g∆ (b2)|+ |g∆ (b1)|

) ∫ 1
0

(ts+1 + t(1− t)s)∆t

]
=
b2 − b1
2

λ1

(
|g∆ (b2)|+ |g∆ (b1)|

)
.

(12)

Hence the proof. �

Remark 1 If T = R, then inequality (11) becomes:∣∣∣∣g(b1) +g(b2)2
−

1

b2 − b1

∫b2
b1

g(c)dc

∣∣∣∣≤ b2 − b12(s+ 1)

(
|g ′ (b2)|+ |g ′ (b1)|

)
. (13)

Theorem 3 Consider a time scale T and ᵀ = [b1, b2] ⊆ T such that b1 <
b2 ∈ T. Let g : ᵀ → R be a delta differentiable mapping on ᵀo, where ᵀo is
the interior of ᵀ. If | g∆ |q is s-convex, for q > 1 such that 1

r +
1
q = 1, then

following inequality holds:
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−

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣
≤ b2 − b1

2

(∫ 1
0

tr∆t

) 1
r

×

[(∫ 1
0

(
ts|g∆ (b2)|

q + (1− t)s|g∆ (b1)|
q
)
∆t

) 1
q

+

(∫ 1
0

(
ts|g∆ (b1)|

q + (1− t)s|g∆ (b2)|
q
)
∆t

) 1
q

]
.

(14)

Proof. Using Corollary 3, property of modulus, Holder’s integral inequality
and convexity of |g∆ |q, we find∣∣∣∣g(b2) +g(b1)2

−
1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣
=
b2 − b1
2

∣∣∣∣ ∫ 1
0

tg∆ (tb2 + (1− t)b1)∆t−

∫ 1
0

tg∆ (tb1 + (1− t)b2)∆t

∣∣∣∣
≤ b2 − b1

2

[∣∣∣∣∫ 1
0

tg∆ (tb2+(1−t)b1)∆t

∣∣∣∣+ ∣∣∣∣∫ 1
0

tg∆ (tb1 + (1−t)b2)∆t

∣∣∣∣]

≤ b2 − b1
2

(∫ 1
0

tr∆t

) 1
r
[(∫ 1

0

∣∣∣g∆(tb2 + (1− t)b1)
∣∣∣∆tq) 1

q

+

(∫ 1
0

∣∣∣g∆(tb1 + (1− t)b2)
∣∣∣q∆t) 1

q
]

≤ b2 − b1
2

(∫ 1
0

tr∆t

) 1
r

[(∫ 1
0

(
ts|g∆ (b2)|

q + (1− t)s|g∆ (b1)|
q
)
∆t

) 1
q

+

(∫ 1
0

(
ts|g∆ (b1)|

q + (1− t)s|g∆ (b2)|
q
)
∆t

) 1
q

]
.

(15)

Hence the proof. �

Remark 2 If T = R, then inequality (14) becomes∣∣∣∣g(b1) +g(b2)2
−

1

b2 − b1

∫b2
b1

g(c)dc

∣∣∣∣≤ b2 − b1

(r+ 1)
1
r

(
|g ′ (b1)|

q + |g ′ (b2)|
q

s+ 1

) 1
q

.

(16)
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Lemma 2 Consider a time scale T and ᵀ = [b1, b2] ⊆ T such that b1 < b2 ∈
T. Let g : ᵀ → R be a delta differentiable mapping on ᵀo, where ᵀo is the
interior of ᵀ. If g∆ ∈ Crd then following equality holds:

g

(
b1 + b2
2

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

=

∫ b1+b2
2

b1

c− b1
b2 − b1

g∆ (c)∆c+

∫b2
b1+b2

2

(
c− b1
b2 − b1

− 1

)
g∆ (c)∆c.

(17)

Proof. By using the formula∫b2
b1

g1(c)g
∆
2 (c)∆c = (g1g2)(b2) − (g1g2)(b1) −

∫b2
b1

g∆1 (c)g
σ
2 (c)∆c,

with g1(c) = c−b1
b2−b1

, g2(c) = g(c) in first integral and g1(c) = c−b1
b2−b1

− 1,
g2(c) = g(c) in second integral, we have

∫ b1+b2
2

b1

c− b1
b2 − b1

g∆ (c)∆c+

∫b2
b1+b2

2

c− b2
b2 − b1

g∆ (c)∆c

=
1

2
g

(
b1 + b2
2

)
−

1

b2 − b1

∫ b1+b2
2

b1

gσ(c)∆c

+
1

2
g

(
b1 + b2
2

)
−

1

b2 − b1

∫b2
b1+b2

2

gσ(c)∆c

= g

(
b1 + b2
2

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c.

(18)

Hence the proof. �

Corollary 4 Let T = R in Lemma 2, then

g

(
b1 + b2
2

)
−

1

b2 − b1

∫b2
b1

g(c)dc

=

∫ b1+b2
2

b1

c− b1
b2 − b1

g ′ (c)dc+

∫b2
b1+b2

2

(
c− b1
b2 − b1

− 1

)
g ′ (c)dc.

(19)
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Corollary 5 Let T = N in Lemma 2. Let b1 = 0, b2 = d(with d is even),
c = x and g(k) = ck, then

cd
2
−
1

d

d∑
x=0

cx =
1

d

d
2
−1∑
x=0

x∆c+
1

d

d−1∑
x=d

2

(x− d)∆c. (20)

Corollary 6 Under the assumptions of Lemma 2, we have

g

(
b1 + b2
2

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

= (b2 − b1)

[ ∫ 1/2
0

tg∆ (tb2 + (1− t)b1)∆t

+

∫ 1
1/2

(t− 1)g∆ (tb2 + (1− t)b1)∆t

]
.

(21)

Proof. In Lemma 2 using change of variable method, that is, by taking t =
c−b1
b2−b1

, we find∫ b1+b2
2

b1

c− b1
b2 − b1

g∆ (c)∆c = (b2 − b1)

∫ 1/2
0

tg∆ (tb2 + (1− t)b1)∆t, (22)

and∫b2
b1+b2

2

(
c− b1
b2 − b1

−1

)
g∆ (c)∆c = (b2 − b1)

∫ 1
1/2

(t− 1)g∆ (tb2 + (1− t)b1)∆t.

(23)

Hence by using (22) and (23), we get the required equality (21). �

Theorem 4 Consider a time scale T and ᵀ = [b1, b2] ⊆ T such that b1 <
b2 ∈ T. Let g : ᵀ→ R be a delta differentiable mapping on ᵀo, where ᵀo is the
interior of ᵀ. If |g∆ | is s-convex then following inequality holds:∣∣∣∣g(b1 + b22

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣≤(b2−b1)
(
H1|g

∆ (b2)|+H2|g
∆ (b1)|

)
,

(24)

where

H1 =

∫ 1
2

0

ts+1∆t+

∫ 1
1
2

ts(1− t)∆t, and H2 =

∫ 1
2

0

t(1− t)s∆t+

∫ 1
1
2

(1− t)s+1∆t.
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Proof. Using Corollary 6, property of modulus and s-convexity of | g∆ |, we
find ∣∣∣∣g(b1 + b22

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣
≤ (b2 − b1)

[ ∫ 1/2
0

t|g∆ (tb2 + (1− t)b1)|∆t

+

∫ 1
1/2

|t− 1||g∆ (tb2 + (1− t)b1)|∆t

]
≤ (b2 − b1)

[ ∫ 1/2
0

t
(
ts|g∆ (b2)|+ (1− t)s|g∆ (b1)|

)
∆t

+

∫ 1
1/2

(1− t)|
(
ts|g∆ (b2)|+ (1− t)s|g∆ (b1)|

)
∆t

]
≤ (b2 − b1)

(
H1|g

∆ (b2)|+H2|g
∆ (b1)|

)
,

(25)

where

H1 =

∫ 1
2

0

ts+1∆t+

∫ 1
1
2

ts(1− t)∆t, and H2 =

∫ 1
2

0

t(1− t)s∆t+

∫ 1
1
2

(1− t)s+1∆t.

Hence the proof is completed. �

Corollary 7 If T = R in Theorem 4, we get

H1 =

∫ 1
2

0

ts+1dt+

∫ 1
1
2

ts(1− t)dt =
1

(s+ 1)(s+ 2)

[
1−

1

2s+1

]
,

and

H2 =

∫ 1
2

0

t(1− t)sdt+

∫ 1
1
2

(1− t)s+1dt =
1

(s+ 1)(s+ 2)

[
1−

1

2s+1

]
.

Hence inequality (24) becomes∣∣∣∣g(b1 + b22

)
−

1

b2 − b1

∫b2
b1

g(c)dc

∣∣∣∣
≤ b2 − b1

(s+ 1)(s+ 2)

(
1−

1

2s+1

)(
|g ′ (b1)|+ |g ′ (b2)|

)
.

(26)
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Theorem 5 Consider a time scale T and ᵀ = [b1, b2] ⊆ T such that b1 <
b2 ∈ T. Let g : ᵀ → R be a delta differentiable mapping on ᵀo, where ᵀo is
the interior of ᵀ. If | g∆ |q is s-convex, for q > 1 such that 1

r +
1
q = 1, then

following inequality holds:∣∣∣∣g(b1 + b22

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣ ≤ (b2 − b1)

[(∫ 1/2
0

tr∆t

) 1
r

×

(
|g∆ (b2)|

q

∫ 1/2
0

ts∆t+ |g∆ (b1)|
q

∫ 1/2
0

(1− t)s∆t

) 1
q

+

(∫ 1
1/2

(1− t)r∆t

) 1
r

×

(
|g∆ (b2)|

q

∫ 1
1/2

ts∆t+ |g∆ (b1)|
q

∫ 1
1/2

(1− t)s∆t

) 1
q
]
.

(27)

Proof. Using Corollary 6, property of modulus, Holder’s integral inequality
and s-convexity of |g∆ |q, we find∣∣∣∣g(b1 + b22

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣
≤ (b2 − b1)

[ ∣∣∣∣∣
∫ 1/2
0

tg∆ (tb2 + (1− t)b1)∆t

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1
1/2

(t− 1)g∆ (tb2 + (1− t)b1)∆t

∣∣∣∣∣
]

≤ (b2 − b1)

[(∫ 1/2
0

tr∆t

) 1
r
(∫ 1/2

0

|g∆ (tb2 + (1− t)b1)|
q∆t

) 1
q

+

(∫ 1
1/2

|1− t|r∆t

) 1
r
(∫ 1

1/2

|g∆ (tb2 + (1− t)b1)|
q∆t

) 1
q
]

≤ (b2−b1)

[(∫ 1/2
0

tr∆t

) 1
r
(∫ 1/2
0

(ts|g∆ (b2)|
q + (1− t)s|g∆ (b1)|

q)∆t

) 1
q

+

(∫ 1
1/2

(1− t)r∆t

) 1
r
(∫ 1

1/2

(ts|g∆ (b2)|
q +(1− t)s|g∆ (b1)|

q)∆t

) 1
q
]

(28)
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= (b2 − b1)

[(∫ 1/2
0

tr∆t

) 1
r (

|g∆ (b2)|
q

∫ 1/2
0

ts∆t+ |g∆ (b1)|
q

∫ 1/2
0

(1− t)s∆t

) 1
q

+

(∫ 1
1/2

(1− t)r∆t

) 1
r (

|g∆ (b2)|
q

∫ 1
1/2

ts∆t+ |g∆ (b1)|
q

∫ 1
1/2

(1− t)s∆t

) 1
q

]
.

Hence the proof. �

Corollary 8 If T = R in Theorem 5, then we have∫ 1
2

0

trdt =

∫ 1
1
2

(1− t)rdt =
1

(r+ 1)2r+1
,

∫ 1
2

0

tsdt =

∫ 1
1
2

(1− t)sdt =
1

(s+ 1)2s+1
,

and ∫ 1
2

0

(1− t)sdt =

∫ 1
1
2

tsdt =
1

s+ 1
−

1

(s+ 1)2s+1
.

Hence the inequality (27) becomes∣∣∣∣g(b1 + b22

)
−

1

b2 − b1

∫b2
b1

g(c)dc

∣∣∣∣
≤ (b2 − b1)

(
1

2r+1(r+ 1)

) 1
r

[{
1

2s+1(s+ 1)
|g ′ (b2)|

q

+

(
1

s+ 1
−

1

2s+1(s+ 1)

)
|g ′ (b1)|

q

} 1
q

+

{
1

2s+1(s+ 1)
|g ′ (b1)|

q +

(
1

s+ 1
−

1

2s+1(s+ 1)

)
|g ′ (b2)|

q

} 1
q

]
.

(29)

Definition 2 ([5]) Let hk : T2 → R, k ∈ N0 be defined by

h0(t, r) = 1 for all r, t ∈ T

and then recursively by

hk+1(t, r) =

∫ t
r

hk(τ, r)∆τ

for all r, t ∈ T.
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For next result we need following lemma.

Lemma 3 ([22]) Let g : T→ R be a differentaible mapping and b1 < b2 ∈ T.
Let g∆ ∈ Crd then following holds:

g (b1){1− h2(1, 0)}+g(b2)h2(1, 0) −
1

b2 − b1

∫b2
b1

gσ(c)∆c

=
b2 − b1
2

∫ 1
0

∫ 1
0

[g∆(tb1 + (1−t)b2)−g
∆(rb1 + (1− r)b2)](r− t)∆t∆r.

(30)

Theorem 6 Let g : T→ R be a differentaible mapping and b1 < b2 ∈ T. Let
|g∆ | be s-convex function, then following inequality holds:∣∣∣∣g (b1){1− h2(1, 0)}+g(b2)h2(1, 0) −

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣
≤ b2 − b1

2
[A1|g

∆ (b1)|+A2|g
∆ (b2)|],

(31)

where

A1 =

∫ 1
0

∫ 1
0

(ts + rs)(r+ t)∆t∆r,

A2 =

∫ 1
0

∫ 1
0

((1− t)s + (1− r)s)(r+ t)∆t∆r.

Proof. Using Lemma 3, modulus property and s-convexity of |g∆ |, we have∣∣∣∣g (b1){1− h2(1, 0)}+g(b2)h2(1, 0) −
1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣
≤ b2 − b1

2

∫ 1
0

∫ 1
0

|g∆ (tb1 + (1− t)b2) −g
∆(rb1 + (1− r)b2)||r− t|∆t∆r

≤ b2−b1
2

∫ 1
0

∫ 1
0

[|g∆ (tb1+(1−t)b2)|+|g∆ (rb1+(1−r)b2)|](r+t)∆t∆r

≤ b2 − b1
2

∫ 1
0

∫ 1
0

[(ts|g∆(b1)|+ (1− t)s|g∆ (b2)|)

+ (rs|g∆ (b1)|+ (1− r)s|g∆ (b2)|)](r+ t)∆t∆r

=
b2 − b1
2

∫ 1
0

∫ 1
0

[(ts+rs)|g∆(b1)|+((1−t)s+(1−r)s)|g∆(b2)|](r+t)∆t∆r

=
b2 − b1
2

[A1|g
∆ (b1)|+A2|g

∆ (b2)|],

(32)
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where

A1 =

∫ 1
0

∫ 1
0

(ts + rs)(r+ t)∆t∆r,

A2 =

∫ 1
0

∫ 1
0

((1− t)s + (1− r)s)(r+ t)∆t∆r.

Hence the proof. �

Corollary 9 Let T = R in Theorem 6, then we have σ(b) = b and

h2(1, 0) =

∫ 1
0

(τ− 1)dτ =
1

2
.

Also,

A1 =

∫ 1
0

∫ 1
0

(ts + rs)(r+ t)dtdr =
3s+ 4

(s+ 1)(s+ 2)
,

A2 =

∫ 1
0

∫ 1
0

((1− t)s + (1− r)s)(r+ t)dtdr = 2β(2, s+ 1) +
1

s+ 1
,

(33)

and hence inequality (31) becomes,∣∣∣∣g(b1) +g(b2)2
−

1

b2 − b1

∫b2
b1

g(c)dc

∣∣∣∣
≤ b2 − b1

2

[(
3s+ 4

(s+ 1)(s+ 2)

)
|g ′ (b1)|+

(
2β(2, s+ 1) +

1

s+ 1

)
|g ′ (b2)|

]
,

(34)

where β is Beta function.

Lemma 4 ([22]) Let g : ᵀ ⊆ T→ R be a delta differentaible mapping on ᵀo

and b1 < b2 ∈ ᵀ. Let g∆ ∈ Crd then following equality holds:

g

(
b1 + b2
2

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

=
b2 − b1
2

∫ 1
0

∫ 1
0

[g∆(tb1 + (1− t)b2)

−g∆(rb1 + (1− r)b2)](m(r)−m(t)∆t∆r,

(35)
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where

m(c) =


c, c ∈

[
0,
1

2

]
c− 1, c ∈

(
1

2
, 1

]
.

Theorem 7 Let g : ᵀ ⊆ T → R be a delta differentaible mapping on ᵀo and
b1 < b2 ∈ ᵀ. Let |g∆ | be s-convex function, then following inequality holds:∣∣∣∣g(b1 + b22

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣ ≤ b2 − b12
[B1|g

∆ (b1)|+ B2|g
∆ (b2)|],

(36)

where

B1 =

∫ 1
0

∫ 1
0

(ts + rs)(m(r) +m(t))∆t∆r,

B2 =

∫ 1
0

∫ 1
0

((1− t)s + (1− r)s)(m(r) +m(t))∆t∆r.

Proof. Using Lemma 4, modulus property and s-convexity of |g∆ |, we have∣∣∣∣g(b1 + b22

)
−

1

b2 − b1

∫b2
b1

gσ(c)∆c

∣∣∣∣
≤ b2 − b1

2

∫ 1
0

∫ 1
0

|g∆ (tb1 + (1− t)b2)

−g∆(rb1 + (1− r)b2)||m(r) −m(t)|∆t∆r

≤ b2 − b1
2

∫ 1
0

∫ 1
0

[|g∆ (tb1 + (1− t)b2)|

+ |g∆ (rb1 + (1− r)b2)|](m(r) +m(t))∆t∆r

≤ b2 − b1
2

∫ 1
0

∫ 1
0

[(ts|g∆ (b1)|+ (1− t)s|g∆ (b2)|)

+ (rs|g∆ (p1)|+ (1− r)s|g∆ (p2)|)](m(r) +m(t))∆t∆r

=
b2 − b1
2

∫ 1
0

∫ 1
0

[(ts + rs)|g∆ (b1)|

+ ((1− t)s + (1− r)s)|g∆ (b2)|](m(r) +m(t))∆t∆r

=
b2 − b1
2

[B1|g
∆ (b1)|+ B2|g

∆ (b2)|],

(37)
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where

B1 =

∫ 1
0

∫ 1
0

(ts + rs)(m(r) +m(t))∆t∆r,

B2 =

∫ 1
0

∫ 1
0

((1− t)s + (1− r)s)(m(r) +m(t))∆t∆r.

Hence the proof. �

Corollary 10 Let T = R in Theorem 7, then we have σ(b) = b and

B1 =

∫ 1
0

∫ 1
0

(ts + rs)(m(r) +m(t)dtdr =
1

s+ 1

[
1

2s
−

2

s+ 2

]
, (38)

B2 =

∫ 1
0

∫ 1
0

((1− t)s + (1− r)s)(m(r) +m(t)dtdr

= 2β 1
2
(2, s+ 1) −

1

ss+1(s+ 2)
,

(39)

and hence inequality (36) becomes,∣∣∣∣g(b1) +g(b2)2
−

1

b2 − b1

∫b2
b1

g(c)dc

∣∣∣∣
≤ b2 − b1

2

[(
1

s+ 1

[
1

2s
−

2

s+ 2

])
|g ′ (b1)|

+

(
2β 1

2
(2, s+ 1) −

1

ss+1(s+ 2)

)
|g ′ (b2)|

]
,

(40)

where βu is incomplete Beta function defined by

βu(b1, b2) =

∫u
0

xb1−1(1− x)b2−1dx, u ∈ (0, 1).

4 Conclusion

This research investigation includes some inequalities for s-convex function on
time scales such as Hermite-Hadamard type inequalities. Some special cases
are discussed, that is, when the time scale is T = R and T = N.
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1 Introduction

Let A denote the class of functions of the form

f(z) = z+

∞∑
n=2

anz
n (1)

which are analytic in the open unit disk ∆ = {z : z ∈ C and |z| < 1}. Further,
by S we shall denote the class of all functions in A which are univalent in ∆.

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ ∆)

and

f(f−1(w)) = w (|w| < r0(f); r0(f) =
1

4
),

where

f−1(w) = w− a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · .

A function f ∈ A is said to be bi-univalent in ∆ if both the function f and its
inverse f−1 are univalent in ∆. Let Σ denote the class of bi-univalent functions
in ∆ given by (1).

In 2010, Srivastava et al. [28] revived the study of bi-univalent functions by
their pioneering work on the study of coefficient problems. Various subclasses
of the bi-univalent function class Σ were introduced and non-sharp estimates on
the first two coefficients |a2| and |a3| in the Taylor-Maclaurin series expansion
(1) were found in the very recent investigations (see, for example, [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30])
and including the references therein. The afore-cited all these papers on the
subject were actually motivated by the work of Srivastava et al. [28]. However,
the problem to find the coefficient bounds on |an| (n = 3, 4, · · · ) for functions
f ∈ Σ is still an open problem.

For analytic functions f and g in ∆, f is said to be subordinate to g if there
exists an analytic function w such that

w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)) (z ∈ ∆).

This subordination will be denoted here by

f ≺ g (z ∈ ∆)
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or, conventionally, by
f(z) ≺ g(z) (z ∈ ∆).

In particular, when g is univalent in ∆,

f ≺ g (z ∈ ∆) ⇔ f(0) = g(0) and f(∆) ⊂ g(∆).

The Horadam polynomials hn(x, a, b; p, q), or briefly hn(x) are given by
the following recurrence relation (see [14, 15]):

h1(x) = a, h2(x) = bx and hn(x) = pxhn−1(x) + qhn−2(x) (n ≥ 3) (2)

for some real constants a, b, p and q.
The generating function of the Horadam polynomials hn(x) (see [15]) is

given by

Π(x, z) :=

∞∑
n=1

hn(x)z
n−1 =

a+ (b− ap)xz

1− pxz− qz2
. (3)

Here, and in what follows, the argument x ∈ R is independent of the argument
z ∈ C; that is, x 6= <(z).

Note that for particular values of a, b, p and q, the Horadam polynomial
hn(x) leads to various polynomials, among those, we list a few cases here (see,
[14, 15] for more details):

1. For a = b = p = q = 1, we have the Fibonacci polynomials Fn(x).

2. For a = 2 and b = p = q = 1, we obtain the Lucas polynomials Ln(x).

3. For a = q = 1 and b = p = 2, we get the Pell polynomials Pn(x).

4. For a = b = p = 2 and q = 1, we attain the Pell-Lucas polynomials
Qn(x).

5. For a = b = 1, p = 2 and q = −1, we have the Chebyshev polynomials
Tn(x) of the first kind

6. For a = 1, b = p = 2 and q = −1, we obtain the Chebyshev polynomials
Un(x) of the second kind.

Abirami et al. [1] considered bi- Mocanu - convex functions and bi-µ− star-
like functions to discuss initial coefficient estimations of Taylor-Macularin se-
ries which is associated with Horadam polynomials, Abirami et al. [2] discussed
coefficient estimates for the classes of λ−bi-pseudo-starlike and bi-Bazilevič
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functions using Horadam polynomial, Alamoush [3, 4] defined subclasses of
bi-starlike and bi-convex functions involving the Poisson distribution series
involving Horadam polynomials and a class of bi-univalent functions associ-
ated with Horadam polynomials respectively and obtained initial coefficient
estimates, Altınkaya and Yalçın [7, 8] obtained coefficient estimates for Pascu-
type bi-univalent functions and for the class of linear combinations of bi-
univalent functions by means of (p, q)-Lucas polynomials respectively, Aouf
et al. [10] discussed initial coefficient estimates for general class of pascu-type
bi-univalent functions of complex order defined by q−Sălăgean operator and
associated with Chebyshev polynomials, Awolere and Oladipo [11] found ini-
tial coefficients of bi-univalent functions defined by sigmoid functions involv-
ing pseudo-starlikeness associated with Chebyshev polynomials, Naeem et al.
[18] considered a general class of bi-Bazilevič type functions associated with
Faber polynomial to discuss n-th coefficients estimates, Magesh and Bulut [19]
discussed Chebyshev polynomial coefficient estimates for a class of analytic
bi-univalent functions related to pseudo-starlike functions, Orhan et al. [21]
discussed initial estimates and Fekete-Szegö bounds for bi-Bazilevič functions
related to shell-like curves, Sakar and Aydogan [23] obtained initial bounds for
the class of generalized Sălăgean type bi-α− convex functions of complex order
associated with the Horadam polynomials, Singh et al. [24] found coefficient
estimates for bi-α-convex functions defined by generalized Sãlãgean operator
related to shell-like curves connected with Fibonacci numbers, Srivastava et
al. [25] introduced a technique by defining a new class bi-univalent functions
associated with the Horadam polynomials to discuss the coefficient estimates,
Srivastava et al. [27] gave a direction to study the Faber polynomial coeffi-
cient estimates for bi-univalent functions defined by the Tremblay fractional
derivative operator, Srivastava et al. [29] obtained general coefficient |an| for
a general class analytic and bi-univalent functions defined by using differen-
tial subordination and a certain fractional derivative operator associated with
Faber polynomial, Wanas and Alina [30] discussed applications of Horadam
polynomials on Bazilevič bi-univalent functions by means of subordination and
found initial bounds. Motivated in these lines, estimates on initial coefficients
of the Taylor-Maclaurin series expansion (1) and Fekete-Szegő inequalities for
certain classes of bi-univalent functions defined by means of Horadam polyno-
mials are obtained. The classes introduced in this paper are motivated by the
corresponding classes investigated in [16, 20].
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2 Coefficient estimates and Fekete-Szegő inequali-
ties

A function f ∈ A of the form (1) belongs to the class G∗Σ(α, x) for 0 ≤ α ≤ 1
and z, w ∈ ∆, if the following conditions are satisfied:

α

(
1+

zf′′(z)

f′(z)

)
+ (1− α)f′(z) ≺ Π(x, z) + 1− a

and for g(w) = f−1(w)

α

(
1+

wg′′(w)

g′(w)

)
+ (1− α)g′(w) ≺ Π(x, w) + 1− a,

where the real constant a is as in (2).

Remark 1 The classes KΣ(x) and HΣ(x) are defined by G∗Σ(1, x) := KΣ(x)
and introduced by [1] and G∗Σ(0, x) := HΣ(x) introduced by [4] respectively.

For functions in the class G∗Σ(α, x), the following coefficient estimates and
Fekete-Szegő inequality are obtained.

Theorem 1 Let f(z) = z+
∞∑
n=2

anz
n be in the class G∗Σ(α, x). Then

|a2| ≤
|bx|

√
|bx|√

|(3− α)b2x2 − 4 (px2b+ qa)|
, and |a3| ≤

|bx|

3 (α+ 1)
+
b2x2

4

and for ν ∈ R

∣∣∣a3 − νa22∣∣∣ ≤


|bx|

3α + 3
if |ν − 1| ≤

∣∣(3 − α)b2x2−4 (
px2b + qa

)∣∣
b2x2 (3α + 3)

|bx|3 |ν−1|

|(3−α)b2x2−4 (px2b + qa)|
if |ν − 1| ≥

∣∣(3 − α)b2x2 − 4 (
px2b + qa

)∣∣
b2x2 (3α + 3)

.

Proof. Let f ∈ G∗Σ(α, x) be given by the Taylor-Maclaurin expansion (1).
Then, there are analytic functions r and s such that

r(0) = 0; s(0) = 0, |r(z)| < 1 and |s(w)| < 1 (∀ z, w ∈ ∆),

and we can write

α

(
1+

zf′′(z)

f′(z)

)
+ (1− α)f′(z) = Π(x, r(z)) + 1− a (4)
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and

α

(
1+

wg′′(w)

g′(w)

)
+ (1− α)g′(w) = Π(x, s(w)) + 1− a. (5)

Equivalently,

α

(
1+

zf′′(z)

f′(z)

)
+ (1− α)f′(z)

= 1+ h1(x) − a+ h2(x)r(z) + h3(x)[r(z)]
2 + · · ·

(6)

and

α

(
1+

wg′′(w)

g′(w)

)
+ (1− α)g′(w)

= 1+ h1(x) − a+ h2(x)s(w) + h3(x)[s(w)]
2 + · · · .

(7)

From (6) and (7) and in view of (3), we obtain

α

(
1+

zf′′(z)

f′(z)

)
+ (1− α)f′(z)

= 1+ h2(x)r1z+ [h2(x)r2 + h3(x)r
2
1]z

2 + · · ·
(8)

and

α

(
1+

wg′′(w)

g′(w)

)
+ (1− α)g′(w)

= 1+ h2(x)s1w+ [h2(x)s2 + h3(x)s
2
1]w

2 + · · · .
(9)

If

r(z) =

∞∑
n=1

rnz
n and s(w) =

∞∑
n=1

snw
n,

then it is well known that

|rn| ≤ 1 and |sn| ≤ 1 (n ∈ N).

Thus upon comparing the corresponding coefficients in (8) and (9), we have

2a2 = h2(x)r1 (10)

3 (α+ 1)a3 − 4a
2
2α = h2(x)r2 + h3(x)r

2
1 (11)

− 2a2 = h2(x)s1 (12)
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and
2 (α+ 3)a22 − 3 (α+ 1)a3 = h2(x)s2 + h3(x)s

2
1. (13)

From (10) and (12), we can easily see that

r1 = −s1, provided h2(x) = bx 6= 0 (14)

and

8 a22 = (h2 (x))
2
(
r1
2 + s1

2
)

a22 =
1

8
(h2 (x))

2
(
r1
2 + s1

2
)
. (15)

If we add (11) to (13), we get

2 a22 (3− α) = (r2 + s2)h2 (x) + h3 (x)
(
r1
2 + s1

2
)
. (16)

By substituting (15) in (16), we obtain

a22 =
(r2 + s2) (h2 (x))

3

2 (3− α) (h2 (x))
2 − 8h3 (x)

(17)

and by taking h2(x) = bx and h3(x) = bpx
2 + qa in (17), it further yields

|a2| ≤
|bx|

√
|bx|√

|(3− α)b2x2 − 4 (px2b+ qa)|
. (18)

By subtracting (13) from (11) we get

6 (α+ 1)
(
a3 − a2

2
)
= (r2 − s2)h2 (x) +

(
r1
2 − s1

2
)
h3 (x) .

In view of (14) , we obtain

a3 =
(r2 − s2)h2 (x)

6(α+ 1)
+ a2

2. (19)

Then in view of (15), (19) becomes

a3 =
(r2 − s2)h2 (x)

6(α+ 1)
+
1

8
(h2 (x))

2
(
r1
2 + s1

2
)
.

Applying (2), we deduce that

|a3| ≤
|bx|

3 (α+ 1)
+
b2x2

4
.
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From (19), for ν ∈ R, we write

a3 − νa
2
2 =

h2(x) (r2 − s2)

6 (α+ 1)
+ (1− ν)a22. (20)

By substituting (17) in (20), we have

a3 − νa
2
2 =

h2(x) (r2 − s2)

6 (α+ 1)
+

(
(1− ν) (r2 + s2) (h2 (x))

3

2 (3− α) (h2 (x))
2 − 8h3 (x)

)

= h2(x)

{(
Λ1(ν, x)+

1

6 (α+1)

)
r2+

(
Λ1(ν, x)−

1

6 (α+1)

)
s2

}
,

(21)

where

Λ1(ν, x) =
(1− ν) [h2(x)]

2

2 (3− α) (h2 (x))
2 − 8h3 (x)

.

Hence, in view of (2) we conclude that

∣∣∣a3 − νa22∣∣∣ ≤


|h2(x)|

3(α+ 1)
; 0 ≤ |Λ1(ν, x)| ≤

1

6 (α+ 1)

2 |h2(x)| |Λ1(ν, x)| ; |Λ1(ν, x)| ≥
1

6 (α+ 1)

and in view of (2), it evidently completes the proof of Theorem 1. �

Taking α = 1 in Theorem 1, we have following corollary.

Corollary 1 Let f(z) = z+
∞∑
n=2

anz
n be in the class KΣ(x). Then

|a2| ≤
|bx|

√
|bx|√

|2b2x2 − 4 (px2b+ qa)|
, and |a3| ≤

|bx|

6
+
b2x2

4

and for ν ∈ R

∣∣∣a3 − νa22∣∣∣ ≤


|bx|

6
if |ν− 1| ≤

∣∣b2x2 − 2 (px2b+ qa)∣∣
3b2x2

|bx|3 |ν− 1|

|2b2x2 − 4 (px2b+ qa)|
if |ν− 1| ≥

∣∣b2x2 − 2 (px2b+ qa)∣∣
3b2x2

.
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Taking α = 0 in Theorem 1, we have following corollary.

Corollary 2 Let f(z) = z+
∞∑
n=2

anz
n be in the class HΣ(x). Then

|a2| ≤
|bx|

√
|bx|√

|3b2x2 − 4 (px2b+ qa)|
, and |a3| ≤

|bx|

3
+
b2x2

4

and for ν ∈ R

∣∣∣a3 − νa22∣∣∣ ≤


|bx|

3
if |ν− 1| ≤

∣∣3b2x2 − 4 (px2b+ qa)∣∣
3b2x2

|bx|3 |ν− 1|

|3b2x2 − 4 (px2b+ qa)|
if |ν− 1| ≥

∣∣3b2x2 − 4 (px2b+ qa)∣∣
3b2x2

.

Next, a function f ∈ A of the form (1) belongs to the class LΣ(x) and
z, w ∈ ∆, if the following conditions are satisfied:

1+
zf′′(z)

f′(z)

zf′(z)

f(z)

≺ Π(x, z) + 1− a

and for g(w) = f−1(w)

1+
wg′′(w)

g′(w)

wg′(w)

g(w)

≺ Π(x, w) + 1− a,

where the real constant a is as in (2).
For functions in the class LΣ(x), the following coefficient estimates and

Fekete-Szegő inequality are obtained.

Theorem 2 Let f(z) = z+
∞∑
n=2

anz
n be in the class LΣ(x). Then

|a2| ≤
|bx|

√
|bx|√

|px2b+ qa|
, and |a3| ≤

|bx|

4
+ b2x2
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and for ν ∈ R

∣∣∣a3 − νa22∣∣∣ ≤


|bx|

4
if |ν− 1| ≤

∣∣bpx2 + aq∣∣
4b2x2

|bx|3 |ν− 1|

|bpx2 + aq|
if |ν− 1| ≥

∣∣bpx2 + aq∣∣
4b2x2

.

Proof. Let f ∈ LΣ(x) be given by the Taylor-Maclaurin expansion (1). Then,
there are analytic functions r and s such that

r(0) = 0; s(0) = 0, |r(z)| < 1 and |s(w)| < 1 (∀ z, w ∈ ∆),

and we can write

1+
zf′′(z)

f′(z)

zf′(z)

f(z)

= Π(x, r(z)) + 1− a (22)

and

1+
wg′′(w)

g′(w)

wg′(w)

g(w)

= Π(x, s(w)) + 1− a. (23)

Equivalently,

1+
zf′′(z)

f′(z)

zf′(z)

f(z)

= 1+ h1(x) − a+ h2(x)r(z) + h3(x)[r(z)]
2 + · · · (24)

and

1+
wg′′(w)

g′(w)

wg′(w)

g(w)

= 1+ h1(x) − a+ h2(x)s(w) + h3(x)[s(w)]
2 + · · · . (25)

From (24) and (25) and in view of (3), we obtain

1+
zf′′(z)

f′(z)

zf′(z)

f(z)

= 1+ h2(x)r1z+ [h2(x)r2 + h3(x)r
2
1]z

2 + · · · (26)
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and

1+
wg′′(w)

g′(w)

wg′(w)

g(w)

= 1+ h2(x)s1w+ [h2(x)s2 + h3(x)s
2
1]w

2 + · · · . (27)

If

r(z) =

∞∑
n=1

rnz
n and s(w) =

∞∑
n=1

snw
n,

then it is well known that

|rn| ≤ 1 and |sn| ≤ 1 (n ∈ N).

Thus upon comparing the corresponding coefficients in (26) and (27), we have

a2 = h2(x)r1 (28)

4
(
a3 − a

2
2

)
= h2(x)r2 + h3(x)r

2
1 (29)

− a2 = h2(x)s1 (30)

and
4
(
a22 − a3

)
= h2(x)s2 + h3(x)s

2
1. (31)

From (28) and (30), we can easily see that

r1 = −s1, provided h2(x) = bx 6= 0 (32)

and

2 a22 = (h2 (x))
2
(
r1
2 + s1

2
)

a22 =
1

2
(h2 (x))

2
(
r1
2 + s1

2
)
. (33)

If we add (29) to (31), we get

0 = (r2 + s2)h2 (x) + h3 (x)
(
r1
2 + s1

2
)
. (34)

By substituting (33) in (34), we obtain

a22 = −
(r2 + s2) (h2 (x))

3

2h3 (x)
(35)
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and by taking h2(x) = bx and h3(x) = bpx
2 + qa in (35), it further yields

|a2| ≤
|bx|

√
|bx|√

|px2b+ qa|
. (36)

By subtracting (31) from (29) we get

−8
(
a2
2 − a3

)
= (r2 − s2)h2 (x) +

(
r1
2 − s1

2
)
h3 (x)

In view of (32) , we obtain

a3 =
1

8
(r2 − s2)h2 (x) + a2

2. (37)

Then in view of (33), (37) becomes

a3 =
1

8
(r2 − s2)h2 (x) +

1

2
(h2 (x))

2
(
r1
2 + s1

2
)
.

Applying (2), we deduce that

|a3| ≤
|bx|

4
+ b2x2.

From (37), for ν ∈ R, we write

a3 − νa
2
2 =

1

8
h2(x) (r2 − s2) + (1− ν)a22. (38)

By substituting (35) in (38), we have

a3 − νa
2
2 =

1

8
h2(x) (r2 − s2) +

(
(ν− 1) (r2 + s2) (h2 (x))

3

2h3 (x)

)

= h2(x)

{(
Λ2(ν, x) +

1

8

)
r2 +

(
Λ2(ν, x) −

1

8

)
s2

}
,

(39)

where

Λ2(ν, x) =
(ν− 1) (h2 (x))

2

2h3 (x)
.

Hence, in view of (2) we conclude that

∣∣∣a3 − νa22∣∣∣ ≤


|h2(x)|

4
; 0 ≤ |Λ2(ν, x)| ≤

1

8

2 |h2(x)| |Λ2(ν, x)| ; |Λ2(ν, x)| ≥
1

8

and in view of (2), it evidently completes the proof of Theorem 2. �
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Abstract. In this article, we are going to look at the requirements
regarding a monotone function f ∈ R → R≥0, and regarding the sets of
natural numbers (Ai)

∞
i=1 ⊆ dmn(f), which requirements are sufficient for

the asymptotic ∑
n∈AN
P(n)≤Nθ

f(n) ∼ ρ(1/θ)
∑
n∈AN

f(n)

to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n)
denotes the largest prime factor of n, and ρ is the Dickman function.

1 Introduction

In his article [3], Croot gave a sufficient condition to express sums of non-
negative functions over smooth natural numbers, using the Dickman function
ρ. The result can be summarized as∑

1≤n≤N
P(n)≤Nθ

f(n) ∼ ρ(1/θ)
∑

1≤n≤N
f(n) (1)

where f is a non-negative function defined over N, θ ∈ (0, 1) is a constant, and
P(n) denotes the largest prime factor of n, with the convention that P(1) = 1.

2010 Mathematics Subject Classification: 40D05
Key words and phrases: smooth number, monotone function, Dickman function, Abel’s
identity
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The Dickman function can be taken as the limit

ρ(1/θ) = lim
N→∞ Ψ(N,Nθ)

N
(2)

which limit exists if θ > 0, see the article of Dickman [4]. Here Ψ(x, y) is
the count of y-smooth positive integers smaller than-, or equal to x. For a
recollection about the behavior of the function ρ, and about smooth integers,
see article [6], and chapter III.5 in [7].

The method of Croot is specialized for the problem tackled by him, and it
is difficult to apply in more general situations. We are going to look at when
we can say that the asymptotic equality (1) holds, based on properties of the
examined function, which properties are easier to check.

Based on the properties of the function Ψ, it is easy to see that the idea
works for functions f(n) := c, with any real constant c, as the equalities

∑
1≤n≤N
P(n)≤Nθ

c = cΨ(N,Nθ) =
Ψ(N,Nθ)

N

∑
1≤n≤N

c

hold. We are expecting a similar result for more general functions. Concern-
ing the basic properties of the examined functions, we expect them to be
non-negative, monotone changing functions, which are not the constant zero
function. As we are going to apply Abel’s identity to handle certain sums,
a heavier requirement arises, namely that the examined functions should be
continuously differentiable.

A sufficient condition for (1) to hold is — informally — that f shouldn’t
change too fast. To introduce the concept in iterations, first we say that f(x)
should be in o(xα) ∩ ω(x−α) for every α > 0, so f should be changing with
at most the speed of the polylogarithmic functions or their reciprocals. As a
second iteration, because we will bound the derivative of f, we will actually
need a bit stronger requirement, namely that f′(x) should be in o(xα−1) while
f(x) ∈ ω(x−α) for every α > 0. (We need this, because differentiation doesn’t
preserve inequalities.) As a third, and final iteration, we can actually lighten
these requirements a bit. Let

L1 := {f ∈ R → R : ∀α > 0, f′(x) ∈ O(xα−1)∧ f(x) ∈ ω(x−α)}

and

L2 := {f ∈ R → R : ∀α > 0, f′(x) ∈ o(xα−1)∧ f(x) ∈ Ω(x−α)}
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then let L := L1 ∪ L2. We will show that f ∈ L is a sufficient condition for (1)
to hold. It’s worth mentioning, that we cannot lighten both conditions at the
same time. (Regarding the asymptotic notation, we refer to section 3.1 of [2],
and to section 4.1.1 of [5]. Take note that we use these notations in the sense
that they express a bound on the absolute value of the examined function.)

As a final generalization, instead of looking at the sum going from some
initial positive value up until N, we will sum the examined function over some
sets (Ai)

∞
i=1 ⊆ dmn(f). The only requirement concerning these sets is that they

should be “dense” among the natural numbers, i. e. |AN| ∼ N should hold.

Proposition 1 Let θ ∈ (0, 1), m ∈ N, and let f : [m,+∞) → R≥0 be a
monotone, continuously differentiable function which is in L. Take the sets
(Ai)

∞
i=1 ⊆ {m, . . . ,N}, where N > m is an integer, which sets satisfy |AN| ∼ N.

Then ∑
n∈AN
P(n)≤Nθ

f(n) ∼ ρ(1/θ)
∑
n∈AN

f(n).

2 Proof of the proposition

First, we separately prove a lemma, which we are going to use after the appli-
cation of Abel’s identity, to bound the remaining integral term.

Lemma 1 Let m ∈ N, and let f : [m,+∞) → R≥0 be a monotone, continu-
ously differentiable function which is in L. Then

1

f(x)

∫x
m

btc|f′(t)|dt ∈ o(x).

Proof.

� Assume that f ∈ L1, and take an arbitrary real α > 0. Then because
f′(x) ∈ O(xα−1), there exists a real c > 0, and a real xc, such that for
every real x > xc, we have that |f′(x)| ≤ cxα−1 holds. So the inequality

1

f(x)

∫x
m

btc|f′(t)|dt < c

f(x)

∫x
m

tα dt (3)

holds when x > max(m,xc). Because f(x) ∈ ω(x−α), for every real
ε > 0, there exists a real xε, such that for every real x > xε, we have
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that |f(x)| > εx−α holds. By this, when x > max(m,xc, xε), the right
hand side of inequality (3) is smaller than

c

εx−α

∫x
m

tα dt <
c

ε(α+ 1)
x2α+1 → c

ε
x

as α goes to zero. So for every real δ = c/ε > 0, there exists a real
xδ = max(m,xc, xε), such that for every real x > xδ, we have the left
hand side of (3) is smaller than δx.

� Assume that f ∈ L2, and take an arbitrary real α > 0. Then because
f(x) ∈ Ω(x−α), there exists a real c > 0, and a real xc, such that for
every real x > xc, we have that |f(x)| ≥ cx−α holds. So the inequality

1

f(x)

∫x
m

btc|f′(t)|dt ≤ 1

cx−α

∫x
m

btc|f′(t)|dt (4)

holds when x > max(m,xc). Because f′(x) ∈ o(xα−1), for every real
ε > 0, there exists a real xε, such that for every real x > xε, we have
that |f′(x)| < εxα−1 holds. By this, when x > max(m,xc, xε), the right
hand side of inequality (4) is smaller than

ε

cx−α

∫x
m

tα dt <
ε

c(α+ 1)
x2α+1 → ε

c
x

as α goes to zero. So for every real δ = ε/c > 0, there exists a real
xδ = max(m,xc, xε), such that for every real x > xδ, we have the left
hand side of (4) is smaller than δx.

�

Now we are going to give an asymptotic for the sum of our examined function
over the sets AN by using Abel’s identity.

Lemma 2 Let m ∈ N, and let f : [m,+∞) → R≥0 be a monotone, continu-
ously differentiable function which is in L. Take the sets (Ai)

∞
i=1 ⊆ {m, . . . ,N},

where N > m is an integer, which sets satisfy |AN| ∼ N. Then∑
n∈AN

f(n) ∼ Nf(N).

Proof. First, we split the examined sum as∑
n∈AN

f(n) =
∑

m≤n≤N
f(n) −

∑
n∈{m,...,N}\AN

f(n). (5)



On sums of monotone functions over smooth numbers 277

Because f has a continuous derivative on the interval [m,+∞), we can apply
Abel’s identity, see theorem 4.2 in section 4.3 of the book of Apostol [1], to
get the equality

∑
m<n≤N

f(n) = Nf(N) −mf(m) −

∫N
m

btcf′(t)dt. (6)

� Assume that f is monotone increasing. Then∑
n∈{m,...,N}\AN

f(n) ≤ f(N)(N−m+ 1− |AN|).

Using this inequality, and equality (6), we get that the left hand side of
equality (5) is greater than-, or equal to

f(N)

(
(1−m)

f(m)

f(N)
−

1

f(N)

∫N
m

btcf′(t)dt+m− 1+ |AN|

)
which, by lemma 1, is greater than-, or equal to f(N) (|AN|+ o(N)). By
this, we have that the limit

lim
N→+∞

∑
n∈AN f(n)

Nf(N)
≥ lim
N→+∞

(
|AN|

N
+ oN(1)

)
= 1

because |AN| ∼ N. Regarding the upper bound of the limit, we have

lim
N→+∞

∑
n∈AN f(n)

Nf(N)
≤ lim
N→+∞

f(N)
∑
n∈AN 1

Nf(N)
= lim
N→+∞ |AN|

N
= 1

because f is monotone increasing, and |AN| ∼ N.

� Assume that f is monotone decreasing. Then∑
n∈{m,...,N}\AN

f(n) ≥ f(N)(N−m+ 1− |AN|).

Using this inequality, and equality (6), we get that the left hand side of
equality (5) is less than-, or equal to

f(N)

(
(1−m)

f(m)

f(N)
+

1

f(N)

∫N
m

btc|f′(t)|dt+m− 1+ |AN|

)
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where we could switch the sign of the integral, because f is monotone
decreasing, so f′ is non-positive on [m,N]. By lemma 1, this is less than-,
or equal to f(N)(|AN|+ o(N)). Based on this, using the same reasoning
as in the case when f was monotone increasing, we can show that

lim
N→+∞

∑
n∈AN f(n)

Nf(N)
≤ 1

holds. Regarding the lower bound of the limit, we have

lim
N→+∞

∑
n∈AN f(n)

Nf(N)
≥ lim
N→+∞

f(N)
∑
n∈AN 1

Nf(N)
= lim
N→+∞ |AN|

N
= 1

because f is monotone decreasing, and |AN| ∼ N.

�

Proof. (Proposition 1) Fix a smoothness θ ∈ (0, 1), and assume that we
have a function f, and sets AN satisfying the requirements mentioned in the
proposition. We will show that the limit

lim
N→+∞

∑
n∈AN
P(n)≤Nθ

f(n)

ρ(1/θ)
∑
n∈AN f(n)

(7)

is equal to one, separately when f is monotone increasing, and when f is
monotone decreasing. Assuming that N is big enough, we can guarantee that
AN is not empty, thus the sums in the numerator and the denominator are
not zero.

� Assume that f is monotone increasing. Then the limit (7) is less than-,
or equal to

lim
N→+∞ f(N)Ψ(N,Nθ)

ρ(1/θ)
∑
n∈AN f(n)

because f is monotone increasing, and AN ⊆ {m, . . . ,N}. Using lemma
2, this is equal to

1

ρ(1/θ)
lim

N→+∞ Ψ(N,Nθ)

N(1+ oN(1))
= 1

based on the limit (2). Regarding the lower bound of the limit, first we
note that ∑

n∈AN
P(n)≤Nθ

f(n) =
∑
n∈An

f(n) −
∑
n∈AN
P(n)>Nθ

f(n) (8)
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where ∑
n∈AN
P(n)>Nθ

f(n) ≤ f(N)
∑
n∈AN
P(n)>Nθ

1 ≤ f(N)(N− Ψ(N,Nθ))

because f is monotone increasing, and AN ⊆ {m, . . . ,N}. By these, we
have that the limit (7) is greater than-, or equal to

lim
N→+∞

∑
n∈AN f(n) − f(N)(N− Ψ(N,Nθ))

ρ(1/θ)
∑
n∈AN f(n)

where, by using lemma 2, we get

1

ρ(1/θ)

(
1− lim

N→+∞ 1

1+ oN(1)
+ lim
N→+∞ Ψ(N,Nθ)

N(1+ oN(1))

)
= 1

based on the limit (2).

� Assume that f is monotone decreasing. Because∑
n∈AN
P(n)≤Nθ

1 =
∑

1≤n≤N
P(n)≤Nθ

1−
∑

n∈{1,...,N}\AN
P(n)≤Nθ

1 ≥ Ψ(N,Nθ) −N+ |AN|

we have that the limit (7) is greater than-, or equal to

lim
N→+∞ f(N)(Ψ(N,Nθ) −N+ |AN|)

ρ(1/θ)
∑
n∈AN f(n)

because f is monotone decreasing. Here, by using lemma 2, we get

1

ρ(1/θ)
lim

N→+∞
(

Ψ(N,Nθ)

N(1+ oN(1))
−

1

1+ oN(1)
+

|AN|

N(1+ oN(1))

)
= 1

based on |AN| ∼ N, and on the limit (2). Regarding the upper bound of
the limit, because∑

n∈AN
P(n)>Nθ

1 =
∑

1≤n≤N
P(n)>Nθ

1−
∑

n∈{1,...,N}\AN
P(n)>Nθ

1 ≥ |AN|− Ψ(N,N
θ)

we have that the limit (7) is less than-, or equal to

lim
N→+∞

∑
n∈AN f(n) − f(N)(|AN|− Ψ(N,N

θ))

ρ(1/θ)
∑
n∈AN f(n)
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based on equality (8). Here, by using lemma 2, we get

1

ρ(1/θ)

(
1− lim

N→+∞ |AN|

N(1+ oN(1))
+ lim
N→+∞ Ψ(N,Nθ)

N(1+ oN(1))

)
= 1

based on |AN| ∼ N, and on the limit (2).

�
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