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Abstract

The problem of estimating the parameters of linear regression Z(s, t) =
m1g1(s, t)+ · · ·+mpgp(s, t)+W (s, t) based on observations of Z on a spatial
domain G of special shape is considered, where the driving process W is a
standard Wiener sheet and g1, . . . , gp are known functions. We provide an
expression for the maximum likelihood estimator of the unknown parameters
based on the observation of the process Z on the set G. Simulation results
are also presented, where the driving random sheets are simulated with the
help of their Karhunen-Loève expansions.

Keywords: Wiener sheet, maximum likelihood estimation, Radon-Nikodym
derivative.

MSC: 60G60; 62M10; 62M30.

1. Introduction

The Wiener sheet is one of the most important examples of Gaussian random
fields. It has various applications in statistical modelling. Wiener sheet appears
as limiting process of some random fields defined on the interface of the Ising
model [12], it is used to model random polymers [9], to describe the dynamics of
Heath–Jarrow–Morton type forward interest rate models [10] or to model random
mortality surfaces [6]. Further, [7] considers the problem of estimation of the mean

∗Research has been supported by the Hungarian Scientific Research Fund under Grant
No. OTKA T079128/2009 and partially supported by TÁMOP 4.2.1./B-09/1/KONV-2010-
0007/IK/IT project. The project is implemented through the New Hungary Development Plan
co-financed by the European Social Fund, and the European Regional Development Fund.
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in a nonparametric regression on a two-dimensional regular grid of design points
and constructs a Wiener sheet process on the unit square with a drift that is almost
the mean function in the nonparametric regression.

In this paper we consider a linear regression driven by a Wiener sheet, that is
random field

Z(s, t) := m1g1(s, t) + · · ·+mpgp(s, t) +W (s, t) (1.1)

observed on a domain G, where g1, . . . , gp are known functions andW is a standard
Wiener sheet, and we determine the maximum likelihood estimator (MLE) of the
unknown parameters m1, . . . ,mp.

In principle, the Radon-Nikodym derivative of Gaussian measures might be
derived from the general Feldman-Hajek theorem [11], but in most of the cases
explicit calculations cannot be carried out. For example, if p = 1 and g1 ≡ 1
(shifted Wiener sheet), the MLE of the unknown parameter is given in [13] and
the estimator is expressed as a function of a usually unknown random variable
satisfying some characterizing equation. In several cases the exact form of this
random variable can be derived by a method proposed in [14] based on linear
stochastic partial differential equations.

Special case 1: Baran et al. [3] studied the case, when p = 1 and the random
field Z is observed on a rectangular domain G := [a1, a2]× [b1, b2], [a1, a2], [b1, b2] ⊂
(0,∞). Assuming that g1 is absolutely continuous with respect to the Lebesgue
measure and ∂1∂2g1 ∈ L2(G), they proved that the MLE of the shift parameter m1

has the form m̂1 = A−1ζ, where

A =
g2

1(a1, b1)

a1b1
+

a2∫

a1

[∂1g1(u, b1)]2

b1
du+

b2∫

b1

[∂2g1(a1, v)]2

a1
dv (1.2)

+

∫∫

G

[∂1∂2g1(u, v)]2dudv,

ζ =
g1(a1, b1)Z(a1, b1)

a1b1
+

a2∫

a1

∂1g1(u, b1)

b1
Z(du, b1) +

b2∫

b1

∂2g1(a1, v)

a1
Z(a1,dv) (1.3)

+

∫∫

G

∂1∂2g1(u, v)Z(du,dv),

and it has normal distribution with mean m1 and variance 1/A. For g1 ≡ 1 we
have m̂1 = Z(a1, b1).

Special case 2: Arató N.M. [2] considered the case p = 1 and g1 ≡ 1 and using
Rozanov’s method found the MLE of the shift parameter m1 when the process is
observed on a special domain

G ⊂ G̃ := {(s, t) ∈ R2 : a ≤ s ≤ b, t ≥ γ(s) or s > b, t ≥ γ(b)}

4 S. Baran, K. Sikolya



containing an ε–strip of Γ := {(s, γ(s)) : s ∈ (a, b)}, i.e. for some ε > 0

{(s, t) ∈ R2 : s ∈ [a, a+ε], t ∈ [γ(s), γ(a)] or s ∈ [a+ε, b], t ∈ [γ(s), γ(s)+ε]} ⊂ G,

where γ : [a, b] ⊂ (0,∞)→ R is continuous and strictly decreasing with γ(b) > 0.
Baran et al. [4] considered the same model and under much weaker conditions

γ ∈ C2(a, b), γ′(a) := lims↓a γ′(s) ∈ [−∞, 0] and γ′(b) := lims↑b γ′(s) ∈ [−∞, 0]
exist, and

b∫

a

|γ′(s)γ′′(s)|
(1 + γ′(s)2)2

ds <∞,

they proved the result of [2, Theorem 2]. They showed that the MLE of the shift
parameter m1 has the form m̂1 = A−1ζ, where

A =
1

bγ(b)
+

b∫

a

ds

s2γ(s)
, ζ = c1Z(a, γ(a)) + c2Z(b, γ(b)) +

∫

Γ

y1Z +

∫

Γ

y2∂nZ,

(1.4)
c1, c2 are constants depending on γ and γ′ at a and b, y1 and y2 are functions of
γ, γ′, γ′′, and ∂nZ denotes the normal derivative of Z [4, Definition 4.1].

If γ′(a) = −∞ we have

ζ =
Z(b, γ(b))

bγ(b)
+

b∫

a

Z(s, γ(s))

s2γ(s)
ds−

b∫

a

1

sγ(s)
Z(ds, γ(s)).

In the present paper we consider the same type of domain G as in [5] and give
a natural extension of their result for the general model (1.1). We also present
some simulation results to illustrate the theoretical ones where the Wiener sheet is
simulated with the help of its Karhunen-Loève expansion (see e.g. [8]).

2. Model and estimator

Consider the model (1.1) with some given functions g1, . . . , gp : R2
+ → R and with

unknown regression parameters m1, . . . ,mp ∈ R. Let [a, c] ⊂ (0,∞) and b1, b2 ∈
(a, c), let γ1,2 : [a, b1] → R and γ0 : [b2, c] → R be continuous, strictly decreasing
functions and let γ1 : [b1, c] → R and γ2 : [a, b2] → R be continuous, strictly
increasing functions with γ1,2(b1) = γ1(b1) > 0, γ2(b2) = γ0(b2), γ1,2(a) = γ2(a)
and γ1(c) = γ0(c). Consider the curve Γ := Γ1,2 ∪ Γ1 ∪ Γ2 ∪ Γ0, where

Γ1,2 :=
{(
s, γ1,2(s)

)
: s ∈ [a, b1]

}
, Γ1 :=

{(
s, γ1(s)

)
: s ∈ [b1, c]

}
,

Γ2 :=
{(
s, γ2(s)

)
: s ∈ [a, b2]

}
, Γ0 :=

{(
s, γ0(s)

)
: s ∈ [b2, c]

}
,

Parameter estimation in linear regression driven by a Wiener sheet 5



and for a given ε > 0 let Γε1,2, Γε1, Γε2 and Γε0 denote the inner ε-strip of Γ1,2, Γ1,
Γ2 and Γ0, respectively, that is e.g.

Γε1,2 :=
{

(s, t) ∈ R2 : s ∈ [a, a+ ε], t ∈ [γ1,2(s), γ1,2(a)] or

s ∈ [a+ ε, b1], t ∈ [γ1,2(s), γ1,2(s) + ε]
}
.

Suppose that there exists an ε > 0 such that

Γε1 ∩ Γε2 = ∅ and Γε1,2 ∩ Γε0 = ∅, (2.1)

and consider the set G := G1 ∪G2 ∪G3, where

G1 :=
{

(s, t) ∈ R2 : s ∈ [a, b1 ∧ b2], t ∈ [γ1,2(s), γ2(s)]
}
,

G2 :=

{{
(s, t) ∈ R2 : s ∈ [b1, b2], t ∈ [γ1(s), γ2(s)]

}
, if b1 ≤ b2,{

(s, t) ∈ R2 : s ∈ [b2, b1], t ∈ [γ1,2(s), γ0(s)]
}
, if b1 > b2,

G3 :=
{

(s, t) ∈ R2 : s ∈ [b1 ∨ b2, c], t ∈ [γ1(s), γ0(s)]
}
.

An example of such a set of observations can be seen of Figure 1.

b1 b2

1,2
γ

γ
2

γ
1

γ
0

2
Γ

Γ
0

Γ
1

1,2
Γ

a c

t

s

G

Figure 1: An example of a set of observations G

The following theorem is an extension of Theorem 2.1 of [5] and can be proved in
a similar way. The proof is based on the discrete approximation method described
in [3, 4, 5], which relies on the results of [1, Section 2.3.2].

Theorem 2.1. If g1, . . . , gp are twice continuously differentiable inside G and the
partial derivatives ∂1gi, ∂2gi and ∂1∂2gi, i = 1, . . . , p, can be continuously extended
to G then the probability measures PZ and PW , generated on C(G) by the sheets Z
and W , respectively, are equivalent and the Radon-Nikodym derivative of PZ with
respect to PW equals

dPZ
dPW

(Z) = exp

{
−1

2

(
m>Am− 2ζ>m

)}
,

6 S. Baran, K. Sikolya



where A :=
(
Ak,`

)p
k,`=1

, m := (m1, . . . ,mp)
> and ζ :=

(
ζ1, . . . , ζp

)> with

Ak,` :=
gk
(
b1, γ1,2(b1)

)
g`
(
b1, γ1,2(b1)

)

b1γ1,2(b1)
(2.2)

+

b1∫

a

[
gk
(
s, γ1,2(s)

)
− s∂1gk

(
s, γ1,2(s)

)][
g`
(
s, γ1,2(s)

)
− s∂1g`

(
s, γ1,2(s)

)]

s2γ1,2(s)
ds

+

c∫

b1

∂1gk
(
s, γ1(s)

)
∂1g`

(
s, γ1(s)

)

γ1(s)
ds+

γ2(b2)∫

γ2(a)

∂2gk
(
γ−1

2 (t), t
)
∂2g`

(
γ−1

2 (t), t
)

γ−1
2 (t)

dt

+

γ1,2(a)∫

γ1,2(b1)

∂2gk
(
γ−1

1,2(t), t
)
∂2g`

(
γ−1

1,2(t), t
)

γ−1
1,2(t)

dt+

∫∫

G

∂1∂2gk(s, t) ∂1∂2g`(s, t)dsdt,

and

ζk :=
gk
(
b1, γ1,2(b1)

)
Z
(
b1, γ1,2(b1)

)

b1γ1,2(b1)
+

c∫

b1

∂1gk
(
s, γ1(s)

)

γ1(s)
Z
(
ds, γ1(s)

)
(2.3)

+

b1∫

a

[
gk
(
s, γ1,2(s)

)
− s∂1gk

(
s, γ1,2(s)

)]

s2γ1,2(s)

[
Z
(
s, γ1,2(s)

)
ds− sZ

(
ds, γ1,2(s)

)]

+

γ2(b2)∫

γ2(a)

∂2gk
(
γ−1

2 (t), t
)

γ−1
2 (t)

Z
(
γ−1

2 (t),dt
)

+

γ1,2(a)∫

γ1,2(b1)

∂2gk
(
γ−1

1,2(t), t
)

γ−1
1,2(t)

Z
(
γ−1

1,2(t),dt
)

+

∫∫

G

∂1∂2gk(s, t)Z(ds,dt).

If det(A) 6= 0 then the maximum likelihood estimator of the parameter vector m
based on the observations {Z(s, t) : (s, t) ∈ G} has the form m̂ = A−1ζ and has a
p-dimensional normal distribution with mean m and covariance matrix A−1.

Remark 2.2. Observe that all six terms of matrix A are non-negative definite ma-
trices, so A is non-negative definite, too. Hence, to ensure det(A) 6= 0 it suffices to
have at least one positive definite among the terms, which fulfils e.g. if g1, . . . , gp
are linearly independent.

Remark 2.3. We remark that the weighted L2-Riemann integrals of partial deriva-
tives of the Wiener sheet (and of other L2-processes) along a curve are defined in
the sense of [5, Definition 4.1]. This means that if Z is an L2-process given along
an ε-neighborhood of a curve Γ :=

{
(s, γ(s)) : s ∈ [a, b]

}
, where γ : [a, b] → R is

Parameter estimation in linear regression driven by a Wiener sheet 7



strictly monotone and y : [a, b]→ R is a function, then

b∫

a

y(s)Z(ds, γ(s)) := l.i.m.
h→0

1

h

b∫

a

y(s)
[
Z(s+ h, γ(s))− Z(s, γ(s))

]
ds,

γ(b)∫

γ(a)

y(γ−1(t))Z(γ−1(t),dt) := l.i.m.
h→0

1

h

γ(b)∫

γ(a)

y(γ−1(t))
[
Z(γ−1(t), t+ h)−Z(γ−1(t), t)

]
dt,

if the right hand sides exist.

Example 2.4. Consider the model

Z(s, t) = m1(s2 + t2) +m2(s+ t) +m3(s · t) +W (s, t), (s, t) ∈ G,

where W (s, t), (s, t) ∈ [u− r, u+ r]× [v − r, v + r] is a standard Wiener sheet and
G is a circle with center at (u, v) and radius r. Thus

γ1,2(s) = v −
√
r2 − (s− u)2, s ∈ [u− r, u],

γ1(s) = v −
√
r2 − (s− u)2, s ∈ [u, u+ r],

γ2(s) = v +
√
r2 − (s− u)2, s ∈ [u− r, u],

γ0(s) = v +
√
r2 − (s− u)2, s ∈ [u, u+ r],

γ−1
1,2(t) = u−

√
r2 − (t− v)2, t ∈ [v − r, v],

γ−1
2 (t) = u−

√
r2 − (t− v)2, t ∈ [v, v + r].

In this case the distinct elements of the symmetric matrix A defined by (2.2) are
the following

A1,1 =
(u2 + (v − r)2)2

u(v − r) +

u∫

u−r

(γ2
1,2(s)− s2)2

s2γ1,2(s)
ds+ 4

u+r∫

u

s2

γ1(s)
ds

+ 4

v∫

v−r

t2

γ−1
1,2(t)

dt+ 4

v+r∫

v

t2

γ−1
2 (t)

dt,

A1,2 =
(u2+(v−r)2)(u+v−r)

u(v − r) +

u∫

u−r

γ2
1,2(s)−s2

s2
ds

+ 2

u+r∫

u

s

γ1(s)
ds+ 2

v∫

v−r

t

γ−1
1,2(t)

dt+ 2

v+r∫

v

t

γ−1
2 (t)

dt,

A2,2 =
(u+ v − r)2

u(v − r) +

u∫

u−r

γ1,2(s)

s2
ds+

u+r∫

u

1

γ1(s)
ds

8 S. Baran, K. Sikolya



+

v∫

v−r

1

γ−1
1,2(t)

dt+

v+r∫

v

1

γ−1
2 (t)

dt, (2.4)

A1,3 =u2+(v−r)2+2r(u+2v)+r2,

A2,3 =u+v+2r,

A3,3 =u(v−r) + r(v+2u)− 3πr2

4
,

while the components of ζ =
(
ζ1, ζ2, ζ3)> defined by (2.3) are

ζ1 =

(
u2 + (v − r)2

)
Z
(
b1, γ1,2(b1)

)

u(v − r) +

u+r∫

u

2s

γ1(s)
Z
(
ds, γ1(s)

)

+

v∫

v−r

2t

γ−1
2 (t)

Z
(
γ−1

2 (t),dt
)

+

u∫

u−r

(γ2
1,2(s)− s2)

s2γ1,2(s)

[
Z
(
s, γ1,2(s)

)
ds− sZ

(
ds, γ1,2(s)

)]

+

v+r∫

v

2t

γ−1
1,2(t)

Z
(
γ−1

1,2(t),dt
)
,

ζ2 =

(
u+ v − r

)
Z
(
b1, γ1,2(b1)

)

u(v − r) +

u+r∫

u

1

γ1(s)
Z
(
ds, γ1(s)

)

+

v∫

v−r

1

γ−1
2 (t)

Z
(
γ−1

2 (t),dt
)

(2.5)

+

u∫

u−r

1

s2

[
Z
(
s, γ1,2(s)

)
ds− sZ

(
ds, γ1,2(s)

)]
+

v+r∫

v

1

γ−1
1,2(t)

Z
(
γ−1

1,2(t),dt
)
,

ζ3 =Z
(
b1, γ1,2(b1)

)
+

u+r∫

u

Z
(
ds, γ1(s)

)
+

v∫

v−r

Z
(
γ−1

2 (t),dt
)

+

v+r∫

v

Z
(
γ−1

1,2(t),dt
)

+

∫∫

G

Z(ds,dt).

Parameter estimation in linear regression driven by a Wiener sheet 9



3. Simulation results

To illustrate the theoretical results of [2, 3, 4, 5] and of Theorem 2.1 we performed
computer simulations using Matlab 2010a. In order to simulate a Wiener sheet
W (s, t), 0 ≤ s ≤ S, 0 ≤ t ≤ T , we considered its Karhunen-Loève expansion, that
is

W (s, t) ≈
n∑

j,k=1

ωj,k
8
√
ST

(π2)(2k − 1)(2j − 1)
sin

(
π(2j − 1)t

2T

)
sin

(
π(2k − 1)s

2S

)
, (3.1)

where {ωj,k : 1 ≤ j, k ≤ n} are independent standard normal random variables
[8]. Figure 2 shows an approximation of the Wiener sheet with n = 150. Obvi-
ously, there are other methods of simulating a Wiener sheet e.g. with the help of
discretization and using the independence of increments (see e.g. [15]). However,
in order to calculate our estimators we need a method which provides us whole
realizations of the sheet.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 2: Simulation of Wiener sheet, n = 150

In each of the following examples 1000 independent samples of the driving
Wiener sheet were simulated with n varying between 25 and 100 and the means of
the estimates of the parameters and the empirical variances or covariance matrices
of ζ defined by (1.3), (1.4) and (2.3), respectively, were calculated.

Example 3.1. Consider the model

Z(s, t) = W (s, t) +m(s2 + t2),

10 S. Baran, K. Sikolya



where W (s, t), (s, t) ∈ G = [1, 3]2 is a standard Wiener sheet (see Special case
1). Components of A and of the approximation of ζ can be given in the following
closed form:

A =
4b32 − b31

3a1
+

4a3
2 − a3

1

3b1
+ 2a1b1,

ζ −mA ≈
n∑

j,k=1

ωj,k
8
√
ST

(π2)(2k − 1)(2j − 1)

{
a2

1 + b21
a1b1

sin

(
π(2k − 1)a1

2S

)
sin

(
π(2j − 1)b1

2T

)

+
2

b1
sin

(
π(2j − 1)b1

2T

)[
2S

π(2k − 1)

(
cos

(
π(2k − 1)a2

2S

)
− cos

(
π(2k − 1)a1

2S

))

+ a2 sin

(
π(2k − 1)a2

2S

)
− a1 sin

(
π(2k − 1)a1

2S

)]
+

2

a1
sin

(
π(2k − 1)a1

2S

)

×
[

2T

π(2j − 1)

(
cos

(
π(2j − 1)b2

2T

)
− cos

(
π(2j − 1)b1

2T

))

+ b2 sin

(
π(2j − 1)b2

2T

)
− b1 sin

(
π(2j − 1)b1

2T

)]}
,

where

ζ =

(
a2

1 + b21
)
Z
(
a1, b1

)

a1b1
+

a2∫

a1

2u

b1
Z
(
du, b1

)
+

b2∫

b1

2v

a1
Z
(
a1,dv

)
.

The theoretical parameter value is m = 5, while A = 33.3333. On Figure 3
the means of the estimates of the parameter and the estimated variances of ζ are
plotted versus the level n of the approximation (3.1). In case of n = 100 we have
m̂ = 5.0007 and Â = 33.7233.

Example 3.2. Consider the model

Z(s, t) = W (s, t) +m,

where W (s, t), (s, t) ∈ G, is a standard Wiener sheet and G is a set satisfying
conditions of Special case 2 and Γ is a part of a circle with center at the origin,
that is γ(s) =

√
r2 − s2 with some r > 0 and with [a, b] ⊂ (0, r) [4, Example 1.2] .

Then

A =
1

r2

(√
r2 − a2

a
+

b√
r2 − b2

)
, c1 =

√
r2 − a2

r2a
, c2 =

b

r2
√
r2 − b2

,

y1(s,
√
r2 − s2) ≡ 0, y2(s,

√
r2 − s2) ≡ − 1

r2

Parameter estimation in linear regression driven by a Wiener sheet 11



30 40 50 60 70 80 90 100
5

5.001

5.002

n

m̂

30 40 50 60 70 80 90 100
32.8

33.3

33.8

n

Â

Figure 3: Means of the estimates of m and estimated variances of
ζ in Example 3.1 for 25 ≤ n ≤ 100

30 40 50 60 70 80 90 100
4.91

4.93

4.95

n

m̂

30 40 50 60 70 80 90 100
0.216

0.22

0.224

n

Â

Figure 4: Means of the estimates of m and estimated variances of
ζ in Example 3.2 for 25 ≤ n ≤ 100

and

ζ −mA ≈
n∑

j,k=1

ωj,k
8
√
ST

π2r2(2k−1)(2j−1)
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×
{√

r2−a2

a
sin

(
π(2k−1)a

2S

)
sin

(
π(2j−1)

√
r2−a2

2T

)

+
b√

r2−b2
sin

(
π(2k−1)b

2S

)
sin

(
π(2j−1)

√
r2−b2

2T

)

−
b∫

a

{
π(2k−1)s

2S
√
r2−s2

cos

(
π(2k − 1)s

2S

)
sin

(
π(2j−1)

√
r2−s2

2T

)

+
π(2j−1)

2T
sin

(
π(2k−1)s

2S

)
cos

(
π(2j−1)

√
r2−s2

2T

)}
ds

}
,

where ζ is defined by (1.4).
Let parameter value be m = 5 and choose a = 1, b = 3 and r = 5 yielding

A = 0.2205. On Figure 4 the means of the estimates of the parameter and the
estimated variances of ζ are plotted versus the level n of the approximation (3.1).
In case of n = 100 we have m̂ = 4.9357 and Â = 0.2213.

30 40 50 60 70 80 90 100
4.99

5

5.01

n

m̂
1

30 40 50 60 70 80 90 100
8.01

8.03

8.05

n

m̂
2

30 40 50 60 70 80 90 100
2.96

2.98

3

n

m̂
3

Figure 5: Means of the estimates of the components of m in Ex-
ample 3.3 for 25 ≤ n ≤ 100

Example 3.3. Consider the same model

Z(s, t) = m1(s2 + t2) +m2(s+ t) +m3(s · t) +W (s, t), (s, t) ∈ G,
as in Example 2.4, where W (s, t), (s, t) ∈ [0, 8]2, is a standard Wiener sheet and
G is a circle with center at (6, 6) and radius r = 2. In this case the entries

Parameter estimation in linear regression driven by a Wiener sheet 13



of the matrix A defined by (2.4) and the approximation of the components of
ζ =

(
ζ1, ζ2, ζ3)> defined by (2.5) can be calculated using numerical integration,

where Matlab function quad is applied (recursive adaptive Simpson quadrature).

40 60 80 100
330

335

340

n

Â
1
,1

40 60 80 100
38

39

40

n

Â
1
,2

40 60 80 100
5.8

5.9

6

n

Â
2
,2

40 60 80 100
124

127

130

n

Â
1
,3

40 60 80 100
49

50

51

n

Â
3
,3

40 60 80 100
15.5

16

16.5

n

Â
2
,3

Figure 6: Estimated covariances of ζ in Example 3.3 for
25 ≤ n ≤ 100

The theoretical parameter values are m1 = 5, m2 = 8 and m3 = 3, while the
theoretical covariance matrix of ζ equals

A =




339.0895 38.6688 128.0000
38.6688 5.9115 16.0000
128.0000 16.0000 50.5752


 .

On Figure 5 the means of the estimates of the three parameters, while on Figure 6
the estimated covariances of ζ are plotted versus the level n of the approximation
(3.1). In case of n = 100 we have (5.0050, 8.0442, 2.9723) for the mean and

Â =




339.4824 38.9639 127.1914
38.9639 5.8811 15.9680
127.1914 15.9680 49.9207




for the covariance matrix.
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Abstract

In the present paper we prove a general theorem which gives the rates of
convergence in distribution of asymptotically normal statistics based on sam-
ples of random size. The proof of the theorem uses the rates of convergences
in distribution for the random size and for the statistics based on samples of
nonrandom size.

Keywords: sample of random size; asymptotically normal statistic; transfer
theorem; rate of convergence; mixture of distributions; Laplace distribution;
Student’s distribution

1. Introduction

Asymptotic properties of distributions of sums of random number of random vari-
ables are subject of many papers (see e.g. Gnedenko&Fahim, 1969; Gnedenko,
1989; Kruglov&Korolev, 1990; Gnedenko&Korolev, 1996; Bening&Korolev, 2002;
vonChossy&Rappl, 1983). This kind of sums are widely used in insurance, eco-
nomics, biology, etc. (see Gnedenko, 1989; Gnedenko, 1998; Bening&Korolev,
2002). However, in mathematical statistics and its applications, there are common
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statistics that are not sums of observations. Examples are the rank statistics, U-
statistics, linear combinations of order statistics, etc. In this case the statistics are
often situations when the sample size is not predetermined and can be regarded
as random. For example, in reliability testing the number of failed devices at a
particular time is a random variable.

Generally, in most cases related to the analysis and processing of experimental
data, we can assume that the number of random factors, influencing the observed
values, is itself random and varies from observation to observation. Therefore,
instead of different variants of the central limit theorem, proving the normality of
the limiting distribution of classical statistics, in such situations we should rely on
their analogues for samples of random size. This makes it natural to study the
asymptotic behavior of distributions of statistics of general form, based on samples
of random size. For example, Gnedenko (1989) examines the asymptotic properties
of the distributions of sample quantiles constructed from samples of random size.

In this paper we estimate the rate of convergence of distribution functions of
asymptotically normal statistics based on samples of random size. The estima-
tions depend on the rates of convergences of distributions of the random size of
sample and the statistic based on sample of nonrandom size. Such statements are
usually called transfer theorems. In the present paper we prove transfer theorems
concerning estimates of convergence rate.

In this paper we use the following notation and symbols: R as real numbers,
N as positive integers, Φ(x), ϕ(x) as standard normal distribution function and
density.

In Section 2 we give a sketch of the proof of a general transfer theorem, Sections
3, 4 and 5 contain the main theorems, their proofs and examples.

Consider random variables N1, N2, . . . and X1, X2, . . . defined on a common
measurable space (Ω,A,P). The random variables X1, X2, . . . Xn denote observa-
tions, n is a nonrandom size of sample, the random variable Nn denotes a random
size of sample and depends on a natural parameter n ∈ N. Suppose that the
random variables Nn take on positive integers for any n ≥ 1, that is Nn ∈ N,
and do not depend on X1, X2, . . .. Suppose that X1, X2, . . . are independent and
identically distributed observations having a distribution function F (x).

Let Tn = Tn(X1, . . . , Xn) be some statistic, that is a real measurable function
on observations X1, . . . , Xn. The statistic Tn is called asymptotically normal with
parameters (µ, 1/σ2), µ ∈ R, σ > 0, if

P(σ
√
n(Tn − µ) < x) −→ Φ(x), n→∞, x ∈ R, (1.1)

where Φ(x) is the standard normal distribution function.
The asymptotically normal statistics are abundant. Recall some examples of

asymptotically normal statistics: the sample mean (assuming nonzero variances),
the maximum likelihood estimators (under weak regularity conditions), the central
order statistics and many others.

For any n ≥ 1 define the random variable TNn by

TNn
(ω) ≡ TNn(ω)(X1(ω), . . . , XNn(ω)(ω)), ω ∈ Ω. (1.2)
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Therefore, TNn is a statistic constructed from the statistic Tn and from the sample
of random size Nn.

In Gnedenko&Fahim (1969) and Gnedenko (1989), the first and second transfer
theorems are proved for the case of sums of independent random variables and
sample quantiles.

Theorem 1.1 (Gnedenko, 1989). Let X1, X2, . . . be independent and identically
distributed random variables and Nn ∈ N denotes a sequence of random variables
which are independent of X1, X2, . . .. If there exist real numbers bn > 0, an ∈ R
such that

1. P
( 1

bn

n∑

i=1

(Xi − an) < x
)
−→ Ψ(x), n→∞

and

2. P
(Nn
n

< x
)
−→ H(x), H(0+) = 0, n→∞,

where Ψ(x) and H(x) are distribution functions, then, as n→∞,

P
( 1

bn

Nn∑

i=1

(Xi − an) < x
)
−→ G(x), n→∞,

where the distribution function G(x) is defined by its characteristic function

g(t) =

∞∫

0

(ψ(t))z dH(z)

and ψ(t) is the characteristic function of Ψ(x).

The proof of the theorem can be read in Gnedenko (1998).

Theorem 1.2 (Gnedenko, 1989). Let X1, X2, . . . be independent and identically
distributed random variables and Nn ∈ N is a sequence of random variables which
are independent of X1, X2, . . ., and let Xγ:n be the sample quantile of order γ ∈
(0, 1) constructed from sample X1, . . . , Xn. If there exist real numbers bn > 0,
an ∈ R such that

1. P
( 1

bn
(Xγ:n − an) < x

)
−→ Φ(x), n→∞

and

2. P
(Nn
n

< x
)
−→ H(x), H(0+) = 0, n→∞,
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where H(x) is a distribution function, then, as n→∞,

P
( 1

bn
(Xγ:Nn

− an) < x
)
−→ G(x), n→∞

where the distribution function G(x) is a mixture of normal distribution with the
mixing distribution H

G(x) =

∞∫

0

Φ(x
√
y) dH(y).

In Bening&Korolev (2005), the following general transfer theorem is proved for
asymptotically normal statistics (1.1).

Theorem 1.3. Let {dn} be an increasing and unbounded sequence of positive in-
tegers. Suppose that Nn →∞ in probability as n→∞. Let Tn(X1, . . . , Xn) be an
asymptotically normal statistics, that is

P(σ
√
n(Tn − µ) < x) −→ Φ(x), n→∞.

Then a necessary and sufficient condition for a distribution function G(x) to satisfy

P(σ
√
dn(TNn

− µ) < x) −→ G(x), n→∞,

is that there exists a distribution function H(x) with H(0+) = 0 satisfying

P(Nn < dnx) −→ H(x), n→∞, x > 0,

and G(x) has a form

G(x) =

∞∫

0

Φ(x
√
y) dH(y), x ∈ R,

that is the distribution G(x) is a mixture of the normal law with the mixing distri-
bution H.

Now, we give a brief sketch of proof of Theorem 1.3 to make references later.

2. Sketch of proof of Theorem 1.3

The proof of Theorem 1.3 is closely related to the proof of Theorems 6.6.1 and
6.7.3 for random sums in Kruglov&Korolev (1990).

By the formula of total probability, we have

P
(
σ
√
dn(TNn

− µ) < x
)
−G(x)
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=
∞∑

k=1

P(Nn = k)P
(
σ
√
k(Tk − µ) <

√
k/dnx

)
−G(x)

=

∞∑

k=1

P(Nn = k)
(

Φ
(√

k/dnx
)
−G(x)

)

+
∞∑

k=1

P(Nn = k)
(
P
(
σ
√
k(Tk − µ) <

√
k/dnx

)
− Φ

(√
k/dnx

))

≡ J1n + J2n. (2.1)

From definition of G(x) the expression for J1n can be written in the form

J1n =

∞∫

0

Φ(x
√
y) dP(Nn < dny)−

∞∫

0

Φ(x
√
y) dH(y)

=

∞∫

0

Φ(x
√
y) d

(
P(Nn < dny)−H(y)

)
.

Using the formula of integration by parts for Lebesgue integral (see e.g. Theorem
2.6.11 in Shiryaev, 1995) yields

J1n = −
∞∫

0

(
P(Nn < dny)−H(y)

)
dΦ(x

√
y). (2.2)

By the condition of the present theorem,

P(Nn < dny)−H(y) −→ 0, n→∞
for any fixed y ∈ R, therefore, by the dominated convergence theorem (see e.g.
Theorem 2.6.3 in Shiryaev, 1995), we have

J1n −→ 0, n→∞.
Consider J2n. For simplicity, instead of the condition for the statistic Tn to be
asymptotically normal (see (1.1)), we suggest a stronger condition which describes
the rate of convergence of distributions of Tn to the normal law. Suppose that the
following condition is satisfied.

Condition 1. There exist real numbers α > 0 and C1 > 0 such that

sup
x

∣∣∣P
(
σ
√
n(Tn − µ) < x

)
− Φ(x)

∣∣∣ ≤ C1

nα
, n ∈ N.

From the condition we obtain estimates for J2n. We have

|J2n| =
∣∣∣
∞∑

k=1

P(Nn = k)
(
P
(
σ
√
k(Tk − µ) <

√
k/dnx

)
− Φ

(√
k/dnx

))∣∣∣
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≤ C1

∞∑

k=1

P(Nn = k)
1

kα
= C1E(Nn)−α =

C1

dαn
E(Nn/dn)−α. (2.3)

Since, by the condition of theorem, the random variables Nn/dn have a weak limit,
then the expectation E(Nn/dn)−α is typically bounded. Because dn → ∞, from
the last inequality it follows that

J2n −→ 0, n→∞.

3. The main results

Suppose that the limiting behavior of distribution functions of the normalized ran-
dom size is described by the following condition.

Condition 2. There exist real numbers β > 0, C2 > 0 and a distribution H(x)
with H(0+) = 0 such that

sup
x≥0

∣∣∣P
(Nn
n

< x
)
−H(x)

∣∣∣ ≤ C2

nβ
, n ∈ N.

Theorem 3.1. If for the statistic Tn(X1, . . . , Xn) condition 1 is satisfied, for the
random sample size Nn condition 2 is satisfied, then the following inequality holds

sup
x

∣∣∣P
(
σ
√
n(TNn

− µ) < x
)
−G(x)

∣∣∣ ≤ C1EN
−α
n +

C2

2nβ
,

where the distribution G(x) has the form

G(x) =

∞∫

0

Φ(x
√
y) dH(y), x ∈ R.

Corollary 3.2. The statement of the theorem remains valid if the normal law is
replaced by any limiting distribution.

Corollary 3.3. If the moments E(Nn/n)−α are bounded uniformly in n, that is

E
(Nn
n

)−α
≤ C3, C3 > 0, n ∈ N,

then the right side of the inequality in the statement of the theorem has the form

C1C3

nα
+

C2

2nβ
= O

(
n−min(α,β)

)
.

22 V. E. Bening, N. K. Galieva, R. A. Korolev



Corollary 3.4. By Hölder’s inequality for 0 < α ≤ 1, the following estimate holds

EN−αn ≤
(
E

1

Nn

)α
,

which is useful from practical viewpoint. In this case, the right side of the inequality
has the form

C1

(
E

1

Nn

)α
+

C2

2nβ
.

Corollary 3.5. Note that, condition 2 means that the random variables Nn/n
converge weakly to V which has the distribution H(x). From the definition of weak
convergence with function x−α, x ≥ 1, for Nn ≥ n, n ∈ N, it follows that

E
(Nn
n

)−α
−→ E

1

V α
, n→∞,

that is the moments E(Nn/n)−α are bounded in n and, therefore, the estimate from
Corollary 3.3 holds.

The case Nn ≥ n appears when the random variable Nn takes on values
n, 2n, . . . , kn with equal probabilities 1/k for any fixed k ∈ N. In this case, the
random variables Nn/n do not depend on n and, therefore, converge weakly to V
which takes values 1, 2, . . . , k with equal probability 1/k.

Corollary 3.6. From the proof of the theorem it follows that skipping of conditions
1 and 2 yields the following statement

sup
x

∣∣∣P
(
σ
√
n(TNn

− µ) < x
)
−G(x)

∣∣∣

≤
∞∑

k=1

P
(
Nn = k

)
sup
x

∣∣∣P
(
σ
√
k(Tk − µ) < x

)
− Φ(x)

∣∣∣

+
1

2
sup
x≥0

∣∣∣P
(Nn
n

< x
)
−H(x)

∣∣∣.

Following the proof of Theorem 3.1 (see Section 2 and 4), we can formulate
more general result.

Theorem 3.7. Let a random element Xn in some measurable space and random
variable Nn be defined on a common measurable space and independent for any
n ∈ N. Suppose that a real-valued statistic Tn = Tn(Xn) and the random variable
Nn satisfy the following conditions.

1. There exist real numbers α > 0, σ > 0, µ ∈ R, C1 > 0 and a sequence
0 < dn ↑ +∞, n→∞, such that

sup
x

∣∣∣P
(
σ
√
dn(Tn − µ) < x

)
− Φ(x)

∣∣∣ ≤ C1

nα
, n ∈ N.
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2. There exist a number C2 > 0, a sequence 0 < δn ↓ 0, n → ∞ and a
distribution function H(x) with H(0+) = 0 such that

sup
x≥0

∣∣∣P
(Nn
dn

< x
)
−H(x)

∣∣∣ ≤ C2δn, n ∈ N.

Then the following inequality holds

sup
x

∣∣∣P
(
σ
√
dn(TNn − µ) < x

)
−G(x)

∣∣∣ ≤ C1EN
−α
n +

C2

2
δn,

where the distribution function G(x) has the form

G(x) =

∞∫

0

Φ(x
√
y) dH(y), x ∈ R.

4. Proof of Theorem 3.1

Suppose x ≥ 0. Using formulas (2.1)–(2.3) with dn = n yields

sup
x≥0

∣∣∣P
(
σ
√
n(TNn − µ) < x

)
−G(x)

∣∣∣ ≤ I1n + I2n, (4.1)

where

I1n = sup
x≥0

∞∫

0

∣∣P(Nn < ny)−H(y)
∣∣ dΦ(x

√
y), (4.2)

I2n =

∞∑

k=1

P(Nn = k) sup
x≥0

∣∣∣P
(
σ
√
k(Tk − µ) <

√
k/nx

)
− Φ

(√
k/nx

)∣∣∣. (4.3)

To estimate the variable I1n we use equality (4.2) and condition 2,

I1n ≤
C2

nβ
sup
x≥0

∞∫

0

dΦ(x
√
y) =

C2

2nβ
. (4.4)

The series in I2n (see (4.3)) is estimated by using condition 1.

I2n ≤ C1

∞∑

k=1

1

kα
P(Nn = k) = C1EN

−α
n . (4.5)

Note that the estimate (4.5) is valid for x < 0. For I1n and negative x, we have
(see (2.1) and (2.2))

I1n = sup
x<0

∣∣∣
∞∫

0

(
P(Nn < ny)−H(y)

)
dΦ(x

√
y)
∣∣∣
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= sup
x<0

∣∣∣
∞∫

0

(
P(Nn < ny)−H(y)

)
dΦ(|x|√y)

∣∣∣

≤ sup
x≥0

∞∫

0

∣∣P(Nn < ny)−H(y)
∣∣dΦ(x

√
y),

and we can use (4.4) again. The statement of the theorem follows from (4.1), (4.4)
and (4.5). The theorem is proved.

5. Examples

We consider two examples of use of Theorem 3.1 when the limiting distribution
function G(x) is known.

5.1. Student’s distribution
Bening&Korolev (2005) shows that if the random sample size Nn has the negative
binomial distribution with parameters p = 1/n and r > 0, that is (in particular,
for r = 1, it is the geometric distribution)

P(Nn = k) =
(k + r − 2) · · · r

(k − 1)!

1

nr

(
1− 1

n

)k−1
, k ∈ N,

then, for an asymptotically normal statistic Tn the following limiting relationship
holds (see Corollary 2.1 in Bening&Korolev, 2005)

P(σ
√
n(TNn

− µ) < x) −→ G2r(x
√
r), n→∞, (5.1)

where G2r(x) is Student’s distribution with parameter γ = 2r, having density

pγ(x) =
Γ((γ + 1)/2)√
πγΓ(γ/2)

(
1 +

x2

γ

)−(γ+1)/2

, x ∈ R,

where Γ(·) is the gamma function, and γ > 0 is a shape parameter (if the parameter
γ is a positive integer, then it is called the number of degrees of freedom). In our
situation the parameter may be arbitrary small, and we have typical heavy-tailed
distribution. If γ = 2, that is r = 1, then the distribution function G2(x) can be
found explicitly

G2(x) =
1

2

(
1 +

x√
2 + x2

)
, x ∈ R.

For r = 1/2, we obtain the Cauchy distribution.
Bening et al. (2004) gives an estimate of rate of convergence for random sample

size, for 0 < r < 1,

sup
x≥0

∣∣∣P
( Nn
ENn

< x
)
−Hr(x)

∣∣∣ ≤ Cr
nr/(r+1)

, Cr > 0, n ∈ N, (5.2)
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where

Hr(x) =
rr

Γ(r)

x∫

0

e−ryyr−1 dy, x ≥ 0,

for r = 1, the right side of the inequality can be replaced by 1/(n− 1). So, Hr(x)
is a distribution with parameter r ∈ (0, 1], and

ENn = r(n− 1) + 1. (5.3)

From

(1 + x)γ =
∞∑

k=0

γ(γ − 1) · · · (γ − k + 1)

k!
xk, |x| < 1, γ ∈ R,

we have

EN−1n =
1

(n− 1)(1− r)
( 1

nr−1
− 1
)

= O(n−r), 0 < r < 1, n ∈ N. (5.4)

If the Berry-Esseen estimate is valid for the rate of convergence of distribution of
Tn, that is

sup
x

∣∣∣P
(
σ
√
n(Tn − µ) < x

)
− Φ(x)

∣∣∣ = O
( 1√

n

)
, n ∈ N, (5.5)

then from Theorem 3.1 with α = 1/2, β = r/(r+ 1), from relations (5.1)–(5.4) and
Corollary 3.4, we have the following estimate

sup
x

∣∣∣P
(
σ
√
n(TNn

− µ) < x
)
−G2r(x

√
r)
∣∣∣

= O
( 1

nr/2

)
+O

( 1

nr/(r+1)

)
= O

( 1

nr/2

)
, r ∈ (0, 1), n ∈ N. (5.6)

5.2. Laplace distribution
Consider Laplace distribution with distribution function Λγ(x) and density

λγ(x) =
1

γ
√

2
exp
{
−
√

2|x|
γ

}
, γ > 0, x ∈ R.

Bening&Korolev (2008) gives a sequence of random variables Nn(m) which depends
on the parameter m ∈ N. Let Y1, Y2, . . . be independent and identically distributed
random variables with some continuous distribution function. Let m be a positive
integer and

N(m) = min{i ≥ 1 : max
1≤j≤m

Yj < max
m+1≤k≤m+i

Yk}.

It is well-known that such random variables have the discrete Pareto distribution

P(N(m) ≥ k) =
m

m+ k − 1
, k ≥ 1. (5.7)
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Now, let N (1)(m), N (2)(m), . . . be independent random variables with the same
distribution (5.7). Define the random variable

Nn(m) = max
1≤j≤n

N (j)(m),

then Bening&Korolev (2008) shows that

lim
n→∞

P
(Nn(m)

n
< x

)
= e−m/x, x > 0, (5.8)

and, for an asymptotically normal statistic Tn, the following relationship holds

P(σ
√
n(TNn(m) − µ) < x) −→ Λ1/m(x), n→∞,

where Λ1/m(x) is the Laplace distribution function with parameter γ = 1/m.
Lyamin (2010) gives the estimate for the rate of convergence for (5.8),

sup
x≥0

∣∣∣P
(Nn(m)

n
< x

)
− e−m/x

∣∣∣ ≤ Cm
n
, Cm > 0, n ∈ N. (5.9)

If the Berry-Esseen estimate is valid for the rate of convergence of distribution for
the statistic (see (5.5)), then from Corollary 3.4 for α = 1/2, β = 1 and from
inequality (5.9), we have

sup
x

∣∣∣P
(
σ
√
n(TNn(m)−µ) < x

)
−Λ1/m(x)

∣∣∣ = O
(

(EN−1n (m))1/2
)

+O
(
n−1

)
. (5.10)

Consider the variable EN−1n (m). From definition of Nn(m) and inequality (5.7),
we have

P(Nn(m) = k) =
( k

m+ k

)n
−
( k − 1

m+ k − 1

)n
= mn

k∫

k−1

xn−1

(m+ x)n+1
dx,

therefore,

EN−1n (m) =
∞∑

k=1

1

k
P(Nn(m) = k) = mn

∞∑

k=1

1

k

k∫

k−1

xn−1

(m+ x)n+1
dx

≤ mn
∞∑

k=1

k∫

k−1

xn−2

(m+ x)n+1
dxmn

∞∫

0

xn−2

(m+ x)n+1
dx.

To calculate the last integral we use the following formula (see formula 856.12 in
Dwight, 1961)

∞∫

0

xm−1

(a+ bx)m+n
dx =

Γ(m)Γ(n)

anbmΓ(m+ n)
a, b,m, n > 0.

On rate of convergence in distribution of asymptotically normal statistics . . . 27



We have
EN−1n (m) ≤ mnΓ(n− 1)Γ(2)

m2Γ(n+ 1)
=

1

m(n− 1)
= O(n−1).

Now, by this formula and (5.10), we obtain

sup
x

∣∣∣P
(
σ
√
n(TNn(m) − µ) < x

)
− Λ1/m(x)

∣∣∣ = O
( 1√

n

)
.
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1. Introduction and main results

The properties of a simple symmetric random walk on the square lattice Z2 have
been extensively investigated in the literature since Dvoretzky and Erdős (1951),
and Erdős and Taylor (1960). For these and further results we refer to Révész
(2005).

Subsequent investigations concern random walks on other structures of the
plane. For example, a simple random walk on the 2-dimensional comb lattice
that is obtained from Z2 by removing all horizontal lines off the x-axis was studied
by Weiss and Havlin (1986), Bertacchi and Zucca (2003), Bertacchi (2006), Csáki
et al. (2009, 2011).

These are particular cases of the so-called anisotropic random walk on the plane.
The general case is given by the transition probabilities

P(C(N + 1) = (k + 1, j)|C(N) = (k, j))

= P(C(N + 1) = (k − 1, j)|C(N) = (k, j)) =
1

2
− pj ,

P(C(N + 1) = (k, j + 1)|C(N) = (k, j))

= P(C(N + 1) = (k, j − 1)|C(N) = (k, j)) = pj ,

for (k, j) ∈ Z2, N = 0, 1, 2, . . . with 0 < pj ≤ 1/2 and minj∈Z pj < 1/2. See Seshadri
et al. (1979), Silver et al. (1977), Heyde (1982) and Heyde et al. (1982). The simple
symmetric random walk corresponds to the case pj = 1/4, j = 0,±1,±2, . . ., while
p0 = 1/4, pj = 1/2, j = ±1,±2, . . . defines random walk on the comb.

In this paper we combine the simple symmetric random walk with random walk
on a comb, when pj = 1/4, j = 0, 1, 2, . . . and pj = 1/2, j = −1,−2, . . ., i.e., we
have a square lattice on the upper half-plane, and a comb structure on the lower
half-plane. We call this model Half-Plane Half-Comb (HPHC) and denote the
random walk on it by C(N) = (C1(N), C2(N)), N = 0, 1, 2, . . ..

For the second component of the HPHC walk a theorem of Heyde et al. (1982)
gives in this particular case, the following strong limit theorem.

Theorem A. On an appropriate probability space one can construct a sequence
C

(N)
2 (·) and a process Y (·) such that

lim
N→∞

sup
0≤t≤M

∣∣∣∣∣
C

(N)
2 ([Nt])√

N
− Y (t)

∣∣∣∣∣ = 0 a.s.,

where Y (·) is an oscillating Brownian motion (Wiener process) and M > 0 is
arbitrary.

Our first result is a strong approximation of both components of the random
walk C(·) by certain time-changed Wiener processes (Brownian motions) with rates
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of convergence. Before stating it, we need some definitions. Assume that we have
two independent standard Wiener processes W1(t),W2(t), t ≥ 0, and consider

α2(t) :=

t∫

0

I{W2(s) ≥ 0} ds,

i.e., the time spent by W2 on the non-negative side during the interval [0, t]. The
process γ2(t) := α2(t) + t is strictly increasing, hence we can define its inverse:
β2(t) := (γ2(t))−1. Observe that the processes α2(t), β2(t) and γ2(t) are defined in
terms of W2(t) so they are independent from W1(t). Moreover, it can be seen that
0 ≤ α2(t) ≤ t, and t/2 ≤ β2(t) ≤ t.

Theorem 1.1. On an appropriate probability space for the HPHC random walk
{C(N) = (C1(N), C2(N));N = 0, 1, 2, . . .} with pj = 1/4, j = 0, 1, 2, . . ., pj =
1/2, j = −1,−2, . . . one can construct two independent standard Wiener processes
{W1(t); t ≥ 0}, {W2(t); t ≥ 0} such that, as N →∞, we have with any ε > 0

|C1(N)−W1(N − β2(N))|+ |C2(N)−W2(β2(N))| = O(N3/8+ε) a.s.

We note that the process W2(β2(t)) is identical with Y (t) of Theorem A, i.e.,
an oscillating Brownian motion. It is a diffusion with speed measure (see Heyde et
al., 1982)

m(dy) =





4 dy for y ≥ 0,

2 dy for y < 0.

For more details on oscillating Brownian motion we refer to Keilson and Wellner
(1978).

2. Preliminaries

First we want to redefine our walk C(·) as follows: On a suitable probability space
consider two independent simple symmetric (one-dimensional) random walks S1(·),
and S2(·). We may assume that on the same probability space we have a sequence
of independent geometric random variables {Gi, i = 1, 2, . . .}, independent from
S1(·), S2(·), with distribution

P(Gi = k) =
1

2k+1
, k = 0, 1, 2, . . .

Now horizontal steps will be taken consecutively according to S1(·), and vertical
steps consecutively according to S2(·) in the following way. Start from (0, 0), take
G1 horizontal steps (possibly G1 = 0) according to S1(·), then take 1 vertical step.
If this arrives to the upper half-plane (S2(1) = 1), then take G2 horizontal steps.
If, however, the first vertical step is on the negative direction (S2(1) = −1), then
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continue with another vertical step, and so on. In general, if the random walk is on
the upper half-plane (y ≥ 0) after a vertical step, then take a random number of
horizontal steps according to the next (so far) unused Gj , independently from the
previous steps. On the other hand, if the random walk is on the lower half-plane
(y < 0) then continue with vertical steps according to S2(·) until it reaches the
x-axis, and so on.

Now we define the local times of a random walk and a Wiener process. Let
{S(n); n = 0, 1, . . .} be a simple symmetric random walk on the line, i.e., S(0) = 0,
S(n) = X1 + . . .+Xn, where {X1, X2, . . .} are i.i.d. random variables with P(Xi =
1) = P(Xi = −1) = 1/2. The local time is defined by

ξ(x, n) :=
n∑

i=0

I{S(i) = x}, x ∈ Z, n = 0, 1, . . . ,

where I{·} is the indicator function. The local time η(x, t) of a Wiener process
W (·) is defined via

∫

A

η(x, t) dx = λ{s : 0 ≤ s ≤ t, W (s) ∈ A}

for any x ∈ R, t ≥ 0, where A ⊂ R is any Borel set and λ is the Lebesgue measure.
Now we state some results needed to prove our Theorem 1.1. First we quote a

result of Révész (1981), that amounts to the first simultaneous strong approxima-
tion of a simple symmetric random walk and that of its local time process on the
integer lattice Z.

Lemma A. On an appropriate probability space for a simple symmetric ran-
dom walk {S(n); n = 0, 1, 2, . . .} with local time {ξ(x, n); x = 0,±1,±2, . . . ; n =
0, 1, 2, . . .} one can construct a standard Wiener process {W (t); t ≥ 0} with local
time process {η(x, t); x ∈ R; t ≥ 0} such that, as n→∞, we have for any ε > 0

S(n)−W (n) = O(n1/4+ε) a.s.

and
sup
x∈Z
|ξ(x, n)− η(x, n)| = O(n1/4+ε) a.s.,

simultaneously.

The following strong invariance principle is given in Horváth (1998).

Lemma B. On the probability space of Lemma A, for any ε > 0, as n → ∞, we
have

∣∣∣∣∣∣

n∑

k=0

g(S(k))−
n∫

0

g(W (t)) dt

∣∣∣∣∣∣
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=

∣∣∣∣∣∣

∞∑

j=−∞
g(j)ξ(j, n)−

∞∫

−∞

g(x)η(x, n) dx

∣∣∣∣∣∣
= O(na/2+3/4+ε) a.s.,

where g(t) ≥ 0, t ∈ R is a function such that for k ∈ Z we have g(t) = g(k),
k ≤ t < k + 1 and

g(t) ≤ C(|t|a + 1)

for some C > 0 and 0 ≤ a.
For n ≥ 1 let

A(n) :=

n−1∑

i=0

I{S(i) ≥ 0} =

∞∑

j=0

ξ(j, n− 1), (2.1)

i.e., the time spent by the random walk S(·) on the non-negative side during the
first n− 1 steps. Let furthermore

α(t) =

t∫

0

I{W (s) ≥ 0} ds =

∞∫

0

η(x, t) dx.

Applying Lemma B with g(t) = I{t ≥ 0}, a = 0, and taking into account that
A(n+ 1)−A(n) ≤ 1, we have the following consequence.

Corollary A. On the probability space of Lemma A, for any ε > 0, as n→∞, we
have almost surely

A(n)− α(n) = O(n3/4+ε).

Concerning the increments of the Wiener process we quote the following result
from Csörgő and Révész (1981).

Lemma C. Let 0 < aT ≤ T be a non-decreasing function of T . Then, as T →∞,
we have almost surely

sup
0≤t≤T−aT

sup
s≤aT

|W (t+ s)−W (t)| = O(a
1/2
T (log(T/aT ) + log log T )).

Put
fv(z, y) dz dy := P(W (v) ∈ dz, α(v) ∈ dy),

the joint density function of (W (v), α(v)). For fv(z, y) the following two formulas
are known in the literature. The first one is due to Karatzas and Shreve (1984), (see
also Borodin and Salminen, 1996), the second one is given in Nikitin and Orsingher
(2000).

Lemma D. For 0 ≤ y ≤ v we have

fv(z, y) =





∫∞
0

s(s+z)
πy3/2(v−y)3/2 exp

(
− s2

2(v−y) −
(s+z)2

2y

)
ds, z ≥ 0,

∫∞
0

s(s−z)
πy3/2(v−y)3/2 exp

(
− s2

2y −
(s−z)2
2(v−y)

)
ds, z < 0,
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fv(z, y) =





∫ v
v−y

z exp
(
− z2

2(v−s)

)

2πs3/2(v−s)3/2 ds, z ≥ 0,

∫ v
y

|z| exp
(
− z2

2(v−s)

)

2πs3/2(v−s)3/2 ds, z < 0.

3. Proof of Theorem 1.1

Start with the construction of HPHC given in Section 2. Let HN and VN , the
number of horizontal and vertical steps, respectively of the two-dimensional ran-
dom walk C(·) during the first N steps, i.e., HN + VN = N . Consider the two
independent simple symmetric random walks S1(·) and S2(·) and the sequence of
i.i.d. geometric random variables, which is indepedent from these two walks, as
it was described in Section 2. Define A2(n) as in (2.1), in terms of S2(·), i.e.,
A2(n) =

∑∞
j=0 ξ2(j, n− 1), where ξ2(·, ·) is the local time of S2(·). Assume further-

more that on the same probability space we have strong approximations of (S1, ξ1)
by (W1, η1) and that of (S2, ξ2) by (W2, η2) as described in Lemma A, where W1

and W2 are two independent Wiener processes on the line, and η1 and η2 are their
respective local times.

Then, with VN = n,

A2(n)∑

j=1

Gj ≤ HN ≤
A2(n)+1∑

j=1

Gj

and since one term in the above sum is O(logN) a.s., and EGj = 1, with finite
variance, we have

HN = A2(n) +O(A2(n)1/2+ε) = A2(n) +O(N1/2+ε) a.s.,

as N →∞. Hence, using Corollary A, we have almost surely, as N →∞,

α2(n) +n = A2(n) +O(N3/4+ε) +VN = HN +VN +O(N3/4+ε) = N +O(N3/4+ε).

Consequently,

VN = n = β2(α2(n) + n) = β2(N +O(N3/4+ε)) = β2(N) +O(N3/4+ε)

and
HN = N − β2(N) +O(N3/4+ε).

Using Lemma C, this gives almost surely, as N →∞,

C1(N) = S1(HN ) = W1(HN ) +O(H
1/4+ε
N ) = W1(N − β2(N)) +O(N3/8+ε)

and
C2(N) = S2(VN ) = W2(β2(N)) +O(N3/8+ε),

proving Theorem 1.1.
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Remark 3.1. In the above argument we used the fact, that for u, v > 0, β(u+ v)−
β(u) ≤ v. To see this recall that β(t) is the inverse of γ(t) = α(t) + t. Hence

v = γ(β(u+v))−γ(β(u)) = α(β(u+v))+β(u+v)−α(β(u))−β(u) ≥ β(u+v)−β(u),

as α(t) is nondecreasing.

4. Limiting densities and consequences

First we give an integral expression for the joint density of the vector (W1(t −
β(t)),W2(β(t))), using Lemma D. Here, and throughout this section, β(t) stands
for β2(t), hence it is independent from W1. The joint density of W1(t − β(t)),
W2(β(t)), β(t) is given by

P(W1(t− β(t)) ∈ du, W2(β(t)) ∈ dz, β(t) ∈ dv)

=
1√

2π(t− v)
exp

(
− u2

2(t− v)

)
fv(z, t− v) du dz dv.

From this we get

Lemma 4.1.

gt(u, z) du dz := P(W1(t− β(t)) ∈ du, W2(β(t)) ∈ dz)

=




t∫

t/2

1√
2π(t− v)

exp

(
− u2

2(t− v)

)
fv(z, t− v) dv


 du dz.

The marginal density of W1(t− β(t)) is given by

Lemma 4.2.

g
(1)
t (u) du : = P(W1(t− β(t)) ∈ du) =

1

π
√

2πt
exp

(
−u

2

2t

)
K0

(
u2

2t

)
du,

where K0(·) is the modified Bessel function of the second kind.

Proof.

P(W1(t− β(t)) ∈ du) =

t∫

t/2

P(W1(t− v) ∈ du, β(t) ∈ dv)

=




t∫

t/2

1√
2π(t− v)

exp

(
− u2

2(t− v)

)
1

π
√

(t− v)(2v − t)
dv


 du
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=
1

π
√

2π
exp

(
−u

2

t

)∞∫

0

1√
y2t+ yu2

e−y dy du =
1

π
√

2πt
exp

(
−u

2

2t

)
K0

(
u2

2t

)
du,

where the substitution
y = u2

(
1

2(t− v)
− 1

t

)

was made and the formula
∞∫

0

e−px dx√
x(x+ a)

= eap/2K0

(ap
2

)

was used (see Gradsteyn and Ryzhik, 1994, 3.364.3).

For the marginal density of W2(β(t)) as follows, we refer to Heyde et al. (1982).

Lemma E.

g
(2)
t (z) dz = P(W2(β(t)) ∈ dz) =





2
√

2
πt (
√

2− 1)e−z
2/t dz, z ≥ 0

√
2
πt (
√

2− 1)e−z
2/2t dz, z < 0.

As a consequence of these Lemmas, we now obtain the joint and marginal
limiting distributions of the HPHC random walk.

Corollary 4.3.

lim
N→∞

P

(
C1(N)√

N
≤ x, C2(N)√

N
≤ y
)

=

x∫

−∞

y∫

−∞

g1(u, z) du dz,

lim
N→∞

P

(
C1(N)√

N
≤ x

)
=

x∫

−∞

g
(1)
1 (u) du,

lim
N→∞

P

(
C2(N)√

N
≤ y
)

=

y∫

−∞

g
(2)
1 (z) dz.

Corollary 4.4. The following laws of the iterated logarithm hold.

(i) lim sup
t→∞

W1(t− β(t))√
t log log t

= lim sup
N→∞

C1(N)√
N log logN

= 1 a.s.,

(ii) lim inf
t→∞

W1(t− β(t))√
t log log t

= lim inf
N→∞

C1(N)√
N log logN

= −1 a.s.,

(iii) lim sup
t→∞

W2(β(t))√
t log log t

= lim sup
N→∞

C2(N)√
N log logN

= 1 a.s.,
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(iv) lim inf
t→∞

W2(β(t))√
t log log t

= lim inf
N→∞

C2(N)√
N log logN

= −
√

2 a.s.

Proof. We give short proofs in the case of W1 and W2. The results for C1 and C2

then follow from Theorem 1.1. In the proof we repeatedly use the inequality

t

2
≤ β(t) ≤ t.

Proof of (i) and (ii). By the law of the iterated logarithm for W1 we have for all
large enough t

W1(t− β(t)) ≤ (1 + ε)(2(t− β(t)) log log(t− β(t)))1/2

≤ (1 + ε)(t log log t)1/2,

which gives an upper bound in (i).
To give a lower bound in (i), for any sufficiently small δ > 0 define the events

An = {W1(un) ≥ (1− δ)(2un log log un)1/2}, Bn = {α(un(1 + δ)) > un},

n = 1, 2, . . . . Then, with some sequence {un} (un = an with sufficiently large a
will do), we have

P(An i.o.) = 1, P(Bn) > c > 0.

It follows from Klass (1976) that

P(AnBn i.o.) ≥ c > 0.

By the 0-1 law this probability is equal to 1. Let tn be defined by

un = tn − β(tn) = α(β(tn)).

Since
Bn = {α(un(1 + δ)) > α(β(tn))},

Bn implies

un ≥
β(tn)

1 + δ
≥ tn

2(1 + δ)
.

Hence AnBn implies

W1(t− β(tn)) ≥ (1− δ)
(
tn log log tn

1 + δ

)1/2

.

Since δ > 0 is arbitrary, this gives a lower bound in (i).

The proof of (ii) follows by symmetry.
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Proof of (iii). We have infinitely often with probability 1

W2(β(t)) ≥ (1− ε)(2β(t) log log t)1/2 ≥ (1− ε)(t log log t)1/2,

giving a lower bound in (iii).
To give an upper bound, we use the formula for the distribution of the supremum

of W2(β(t)) given in Corollary 2 of Keilson and Wellner (1978), which in our case
is equivalent to

P( sup
0≤s≤t

W2(β(s)) > y)

=
2
√

2

1 +
√

2

∞∑

k=0

(
1−
√

2

1 +
√

2

)k(
1− Φ

(
(2k + 1)y

√
2√

t

))
.

From this it is easy to give the estimation

P( sup
0≤s≤t

W2(β(s)) > y) ≤ c exp

(
−y

2

t

)

with some constant c, from which the upper estimation in (iii) follows by the usual
procedure.

Proof of (iv). The lower estimation is easy. Namely we have

W2(β(t)) ≥ −(1 + ε)(2β(t) log log β(t))1/2 ≥ −(1 + ε)(2t log log t)1/2.

It remains to prove an upper estimation in (iv). By the law of the iterated
logarithm for W2

W2(v) ≤ −((2− ε)v log log v)1/2 (4.1)

almost surely for infinitely many v tending to infinity. Let ζ(v) be the last zero of
W2 before v, i.e.,

ζ(v) = max{u ≤ v : W2(u) = 0}.
By Theorem 1 of Csáki and Grill (1988), for large v satisfying (4.1) we have ζ(v) ≤
εv, and hence also α(v) ≤ ζ(v) ≤ εv. Now put v = β(t), i.e., α(v)+v = t ≤ (1+ε)v,
from which v = β(t) ≥ t/(1 + ε). Hence

W2(v) = W2(β(t)) ≤ −
(

(2− ε)t log log t

1 + ε

)1/2

.

Since ε > 0 is arbitrary, this gives an upper bound in (iv).
This completes the proof of Corollary 4.4.

Some related distributions can also be determined. For example, we can obtain
the following result for the supremum of the first component.
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Lemma 4.5.

P( sup
0≤s≤t

|W1(s− β(s))| ≤ u)

=
4

π

∞∑

j=0

(−1)j

2j + 1
exp

(
− (2j + 1)2π2t

32u2

)
I0

(
(2j + 1)2π2t

32u2

)
,

where I0 is the modified Bessel function of the first kind given by

I0(z) =

∞∑

k=0

z2k

4k(k!)2
.

Proof.

P( sup
0≤s≤t

|W1(s− β(s))| ≤ u) =

t∫

t/2

P( sup
z≤t−v

|W1(z)| ≤ u)P(β(t) ∈ dv)

=

t∫

t/2

4

π

∞∑

j=0

(−1)j

2j + 1
exp

(
− (2j + 1)2π2(t− v)

8u2

)
1

π
√

(t− v)(2v − t)
dv,

and using 3.384.2 and 9.235.1 of Gradsteyn and Ryzhik (1994), and some calcula-
tions, we obtain Lemma 4.5.

Corollary 4.6.

lim
N→∞

P

(
sup0≤k≤N |C1(k)|√

N
≤ u

)

=
4

π

∞∑

j=0

(−1)j

2j + 1
exp

(
− (2j + 1)2π2

32u2

)
I0

(
(2j + 1)2π2

32u2

)
,

5. Return probabilities

We give the probability that the random walk returns to the origin in 2N steps.

Theorem 5.1. For N ≥ 1

P(C(2N) = (0, 0))

=
1

24N



(

2N

N

)
+

N∑

n=1

n∑

k=1

k∑

j=1

(
2N − 2n

N − n

)
ajan+1−j (b(n, 2k) + b(n, 2k − 1))


 ,

where for i = 1, 2, . . . , n = 1, 2, . . . , N, ` = 1, 2, . . . ,

ai =
1

2i− 1

(
2i− 1

i

)
, b(n, `) =

(
2N − 2n+ `

`

)
22n−`.
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Proof. For n ≥ 1 let

P (2n, r) = P(S2(2n) = 0, A2(2n) = r), Q(2n, r) = 22nP (2n, r).

Obviously P (2n, r) = 0 if r > 2n or r ≤ 0. Furthermore it is easy to see, that

P (2n, 1) =
1

2n− 1

(
2n− 1

n

)
1

22n
=

1

2(2n− 1)

(
2n

n

)
1

22n
,

P (2n, 2n) =
1

n+ 1

(
2n

n

)
1

22n
.

For n = 1, 2 . . . , r = 2, 3, . . . 2n, we have the following recursion for P (2n, r).

P (2n, r) =
n∑

i=1

P(S(1) < 0, . . . , S(2i− 1) < 0, S(2i) = 0)P (2n− 2i, r − 1)

+
n∑

i=1

P(S(1) > 0, . . . , S(2i− 1) > 0, S(2i) = 0)P (2n− 2i, r − 2i)

=
n∑

i=1

1

2i− 1

(
2i− 1

i

)
1

22i
P (2n− 2i, r − 1)

+
n∑

i=1

1

2i− 1

(
2i− 1

i

)
1

22i
P (2n− 2i, r − 2i),

where we define P (0, 0) = 1.

Now we need the following lemma.

Lemma 5.2. For n = 1, 2, . . . , k = 1, 2, . . . , n, we have

Q(2n, 2k − 1) = Q(2n, 2k) (5.1)

and

Q(2n, 2k) =
k∑

j=1

ajan+1−j

=

k∑

j=1

1

2j − 1

(
2j − 1

j

)
1

2n+ 1− 2j

(
2n+ 1− 2j

n+ 1− j

)
. (5.2)

Remark 5.3. It is obvious that

Q(2n+ 2, 1) = Q(2n, 2n).

Furthermore, we can conveniently reformulate the second statement as

Q(2n, 2k) = Q(2n, 2k − 2) + akan+1−k.

In particular
Q(2n, 2n) = Q(2n+ 2, 2) = an+1.
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Proof. We prove Lemma 5.2 with simultaneous induction. Clearly, for n = 1 and
k = 1 both of our statements are correct. We suppose that (5.1) and (5.2) hold for
all m < n and j ≤ 2k − 2. First we prove (5.1). By our recursion formula and the
induction hypothesis we have

Q(2n, 2k − 1) =
n−k+1∑

j=1

ajQ(2n− 2j, 2k − 2) +
k−1∑

j=1

aj Q(2n− 2j, 2k − 2j − 1)

=
n−k+1∑

j=1

ajQ(2n− 2j, 2k − 2) +
k−1∑

j=1

aj Q(2n− 2j, 2k − 2j).

Moreover,

Q(2n, 2k) =
n−k∑

j=1

ajQ(2n− 2j, 2k − 1) +
k−1∑

j=1

aj Q(2n− 2j, 2k − 2j)

=

n−k∑

j=1

ajQ(2n− 2j, 2k) +

k−1∑

j=1

aj Q(2n− 2j, 2k − 2j).

Then

Q(2n, 2k)−Q(2n, 2k − 1)

=
n−k∑

j=1

aj (Q(2n− 2j, 2k)−Q(2n− 2j, 2k − 2))− an−k+1Q(2k − 2, 2k − 2)

=
n−k∑

j=1

ajakan+1−k−j − an−k+1 ak = ak

n−k∑

j=1

ajan+1−k−j − an−k+1 ak

= akQ(2n− 2k, 2n− 2k)− an−k+1 ak = ak an−k+1 − ak an−k+1 = 0,

which proves (5.1). To prove (5.2), consider

Q(2n, 2k)−Q(2n, 2k − 2) =
n−k∑

j=1

ajQ(2n− 2j, 2k) +
k−1∑

j=1

ajQ(2n− 2j, 2k − 2j)

−



n+1−k∑

j=1

ajQ(2n− 2j, 2k − 2) +

k−2∑

j=1

ajQ(2n− 2j, 2k − 2− 2j)




=

n−k∑

j=1

aj (Q(2n− 2j, 2k)−Q(2n− 2j, 2k − 2))− an+1−kQ(2k − 2, 2k − 2)

+
k−2∑

j=1

aj (Q(2n− 2j, 2k − 2j)−Q(2n− 2j, 2k − 2− 2j)) + ak−1Q(2n− 2k + 2, 2)
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=

n−k∑

j=1

ajakan−k+1−j − an+1−kak +

k−2∑

j=1

ajak−jan+1−k + ak−1 an−k+1

= ak

n−k∑

j=1

ajan−k+1−j − an+1−kak + an+1−k

k−2∑

j=1

ajak−j + ak−1an−k+1

= akQ(2n− 2k, 2n− 2k)− an+1−kak + an+1−kQ(2k − 2, 2k − 4) + ak−1an−k+1

= akan−k+1 − an+1−kak + an+1−k (Q(2k − 2, 2k − 2)− a1ak−1) + ak−1an−k+1

= an+1−kak − an+1−kak−1 + ak−1an+1−k = akan+1−k,

proving (5.2).

Returning to the proof of Theorem 5.1, let VN andHN be the number of vertical
and horizontal steps, resp. as in the proof of Theorem 1.1. We have

P(C(2N) = (0, 0)) = P(H2N = 2N,S1(2N) = 0)

+

N∑

n=1

2n∑

r=1

P(H2N = 2N − 2n|S2(2n) = 0, A2(2n) = r)

× P (2n, r)P(S1(2N − 2n) = 0).

For n ≥ 1 we show that

P(H2N = 2N − 2n|S2(2n) = 0, A2(2n) = r) =

(
2N − 2n+ r

r

)
1

22N−2n+r
.

Under the condition S2(2n) = 0, A2(2n) = r, we have

H2N =
r∑

i=1

Gi +G,

where Gi are i.i.d. geometric variables with

P(Gi = k) =
1

2k+1
, k = 0, 1, . . .

and G denotes the number of horizontal steps after the 2n-th vertical step up to
the total number of 2N steps. So

P(H2N = 2N − 2n|S2(2n) = 0, A2(2n) = r) =
2N−2n∑

k=0

P

(
r∑

i=1

Gi = k

)
1

22N−2n−k

=
2N−2n∑

k=0

(
k + r − 1

k

)
1

2k+r
1

22N−2n−k
=

1

22N−2n+r

2N−2n∑

k=0

(
k + r − 1

k

)

=

(
2N − 2n+ r

r

)
1

22N−2n+r
.
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Hence we have

P(C(2N) = (0, 0))

=
1

24N

(
2N

N

)
+

N∑

n=1

2n∑

r=1

P (2n, r)

(
2N − 2n

N − n

)
1

22N−2n

(
2N − 2n+ r

r

)
1

22N−2n+r

=
1

24N

(
2N

N

)
+

N∑

n=1

2n∑

r=1

Q(2n, r)

(
2N − 2n

N − n

)
1

22N

(
2N − 2n+ r

r

)
1

22N−2n+r

and using Lemma 5.2 completes the proof of our Theorem 5.1.
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Abstract

The Central Limit Theorem is considered for m-dependent random fields.
The random field is observed in a sequence of irregular domains. The se-
quence of domains is increasing and at the same time, the locations of the
observations become more and more dense in the domains. The Central Limit
Theorem is applied to obtain asymptotic normality of kernel type density es-
timators. It turns out that the covariance structure of the limiting normal
distribution can be a combination of those of the continuous parametric and
the discrete parametric results. Numerical evidence is presented.
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1. Introduction

Consider a domain D in Rd. We observe a random field ξ(·) in certain points of
the domain D and we assume the following setup. Suppose that the random field
ξ(·) is observed at finitely many locations i.e. at the elements sn1, . . . , snn lying
in the sampling region Dn ⊂ D. Let Rn = {sn1, . . . , snn} denote the n-th set
of the locations of the observations. We shall use the notion of the mixed (or
nearly infill or infill-increasing) domain sampling which means that the sampling
region Dn increases and at the same time, the data sites {sn1, . . . , snn} fill in any
given sub-region of Dn increasingly densely as n→∞. (Increasing domains means
that Dn ⊆ Dn+1 and the size of Dn goes to infinity as n → ∞.) This approach
was studied e.g. by Lahiri [4], Lahiri, Kaiser, Cressie and Hsu [5], Fazekas and
Chuprunov [2], Park, Kim, Park and Hwang [6] and Karácsony and Filzmoser [3].
It can be useful in geostatistics, environmental sciences etc.

To obtain asymptotic normality, we assume that the n-th set of observations is
ξn(sn1), . . . , ξn(snn), where ξn(·), n = 1, 2, . . . is a sequence of stationary random
fields and ξn(·) is weakly dependent for any fixed n. For the sake of simplicity we
suppose that ξn(·) ism-dependent. It is a restriction but it has an advantage namely
that we can easily obtain a central limit theorem (CLT) for irregular domains. We
mention that similar results can be obtained for mixing random fields as well (see
e.g. Fazekas and Chuprunov [1], but there the domain is regular and the conditions
are quite difficult to check). The main objective of Park, Kim, Park and Hwang
[6] is to provide central limit theorems that could be applied easily in practice.
In our paper we discuss some consequences of the results of Park, Kim, Park and
Hwang [6].

The article is organized as follows. In Section 2, we introduce our notations and
we recall the CLT for stationary random fields of Park, Kim, Park and Hwang [6].
In Section 3, we turn to the density estimator, we quote Theorem 3 of Park, Kim,
Park and Hwang [6]. It states that under mild conditions the kernel type density
estimator is asymptotic normal. In Section 4, we deal with the multidimensional ex-
tension of this theorem. Simulation evidence is presented here, too. The numerical
examples show the unusual covariance structure of the limiting normal distribu-
tion. This covariance structure was first presented in Fazekas and Chuprunov [2].
That is, the asymptotic covariance of the kernel type density estimator for nearly
infill sampling can be a combination of the covariances of the discrete and the con-
tinuous parameter models. Similar result is valid for the regression estimator (see
Karácsony and Filzmoser [3]).

2. CLT for stationary random fields

Let us consider a zero mean strictly stationary random field {ξ(s) : s ∈ D}, D ⊆
Rd. Here, the strict stationarity of the random field means that for any s1, . . . , sk, t,
the distribution of (ξ(s1), . . . , ξ(sk)) is the same as that of (ξ(s1 +t), . . . , ξ(sk+t)).
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We assume that the random field ξ(·) is m-dependent. m-dependence means
that m is the infimum of the numbers denoted by b such that if ‖s1− s2‖ > b, then
ξ(s1) and ξ(s2) are independent. Here, ‖ · ‖ denotes the Euclidean norm in Rd.

For u ∈ Rn, let
Im,n(u) = {s ∈ Rn : ‖s− u‖ ≤ m}

and κn = maxu∈Rn
]{Im,n(u)}. So κn denotes the number of elements of the set

Im,n(u) with maximal cardinality. Therefore κn is an indicator of the strength of
dependence. To avoid the independent case, we assume that κn > 0 for each n.
We suppose that the measure κn of density of locations satisfies

κn ∼ na with a constant 0 < a < 1. (2.1)

Here for any two sequences {tn} and {vn} of positive numbers, the notation tn ∼ vn
means that the relation

0 < c1 ≤ lim inf
n→∞

(tn/vn) ≤ lim sup
n→∞

(tn/vn) ≤ c2 <∞

holds for positive constants c1 and c2.
For real valued sequences {an} and {bn}, the notation an = o(bn) (resp. an =

O(bn)) means that the sequence an/bn converges to 0 (resp. is bounded). The
sign E stands for expectation. Variance and covariance are denoted by var(.) and
cov(., .), respectively. The sign “⇒” denotes convergence in distribution. N (m,Σ)
stands for the (vector) normal distribution with mean (vector) m and covariance
(matrix) Σ.

First, recall the CLT for m-dependent random fields presented in Park, Kim,
Park and Hwang [6].

Consider a series of strictly stationary m-dependent random fields {ξn(s) : s ∈
D}, D ⊆ Rd, n = 1, 2, . . .. For a fixed n, let us introduce the notation Sn =∑n
i=1 ξn(sni). Furthermore, let Tn = {(i, j) : 0 < ‖sni−snj‖ ≤ m}, νn = var(ξn(s))

and

τn =
1

nκn

∑

(i,j)∈Tn
cov(ξn(sni), ξn(snj)). (2.2)

At this point we notice that var(Sn) = nνn+nκnτn and τn can be negative as well.

Theorem 2.1 (Theorem 2 of Park, Kim, Park and Hwang [6]). Let {ξn} be a
sequence of strictly stationary random fields on D ⊂ Rd with Eξn(s) = 0. Assume
that sups∈D |ξn(s)| is bounded with probability one and E

∣∣∣
∏l
j=1 ξn(s

′
nj)
∣∣∣ = O

(
νln
)

holds uniformly for all the different points s
′
nj ∈ {sn1, . . . , snn}. If νn + κnτn ≥

δκnν
2
n for some δ > 0, then we have

Sn√
var(Sn)

⇒ N (0, 1).
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3. Application to density estimation

In Park, Kim, Park and Hwang [6], the CLT was applied to obtain asymptotic
normality of the kernel type density estimator.

Let {Z(s) : s ∈ D} be a strictly stationary m-dependent random field, D ⊆ Rd.
For each z ∈ R, let F (z) = P (Z(s) ≤ z). We call the function F marginal
distribution function. Assume that there exist the appropriate marginal density
function f . Suppose that we observe the values of Z at the points sn1, . . . , snn in
D. In this section we study the nonparametric estimation of the marginal density
function. Consider the kernel type density estimator

f̂n(z) =
1

nhn

n∑

i=1

K

(
z − Z(sni)

hn

)
.

Here K is a kernel. We say that the function K : R → [0,∞) is a kernel if it is
a bounded, continuous, symmetric density function (with respect to the Lebesgue
measure) and

lim
|u|→∞

|u|K(u) = 0. (3.1)

Let fsni,snj
be the joint density function of Z(sni) and Z(snj). Let z ∈ R be fixed.

Consider the following assumptions.

(1) (a) f(z) > 0,

(b) f is continuous at z,

(c) fsni,snj
are equicontinuous at (z, z), i.e. if (z1, z2)→ (z, z), then

sup
i,j
|fsni,snj

(z1, z2)− fsni,snj
(z, z)| → 0,

(d) all finite dimensional densities of Z(sn1), Z(sn2), . . . exist and are bound-
ed and continuous,

(e) if n→∞, then

1

nκn

∑

(i,j)∈Tn
{fsni,snj

(z, z)− f(z)2} → τ,

where τ is a nonnegative constant depending on z,

(f) h2na, 0 < a < 1 is bounded.

(2) The kernelK is bounded, nonnegative on R and satisfies
∫
RK = 1; |z|K(z)→

0 as |z| → ∞.

(3) hn > 0 is a sequence satisfying hn → 0 and nhn →∞ as n→∞.
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(4) There exists a constant δ > 0 such that

f(z)

∫

R

K2 + τκnhn ≥ δκnhn.

Theorem 3.1 (Theorem 3 of Park, Kim, Park and Hwang [6]). Let us suppose
that the assumptions (1)–(4) hold.

1. Then


n
−1h−1

n f(z)

∫

R

K2 + n−1κnτ





− 1
2

{f̂n(z)− Ef̂n(z)} ⇒ N (0, 1).

2. Suppose that f is twice differentiable in a neighbourhood of z and
∫
uK(u)du=

0. Moreover, assume that f ′′ is continuous, bounded and nh5
n → 0, nκ−1

n h4
n →

0. Then


n
−1h−1

n f(z)

∫

R

K2 + n−1κnτ





− 1
2

{f̂n(z)− f(z)} ⇒ N (0, 1).

4. Joint asymptotic normality for the density esti-
mator

In Park, Kim, Park and Hwang [6], the multivariate asymptotic normality was not
considered.

Our aim is to study the multidimensional version of Theorem 3.1, i.e. the joint
asymptotic normality of the kernel type density estimator.

Proposition 4.1. Let z1, z2, . . . , zq be given distinct real numbers. We assume that

1

nκn

∑

i,j∈Tn

(
fsni,snj (zr, zt)− f(zr)f(zt)

)
→ τrt if n→∞.

Let W =
( τijκn

n

)
1≤i,j≤q and let V be a diagonal matrix with diagonal elements

1
nhn

f(zi)
∫∞
−∞K2(t)dt, i = 1, . . . , q. Let Σ = V +W.

Then under certain conditions, (f̂n(zi) − f(zi), i = 1, . . . , q) is asymptotically
N (0,Σ). The structure of Σ is the following:

Σ = 1
nhn




f(z1)
∫
K2(t)dt+ τ11κnhn τ12κnhn . . . τ1qκnhn
τ21κnhn f(z2)

∫
K2(t)dt+ τ22κnhn . . . τ2qκnhn

...
. . .

...
τq1κnhn . . . . . . f(zq)

∫
K2(t)dt+ τqqκnhn


.
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To obtain this result one has to apply Theorem 2.1 and the Cramér-Wold device.
We can see that the asymptotic covariance matrix Σ has a special structure.

In the diagonal, the expressions f(zi)
∫
K2(t)dt come from the asymptotic covari-

ance matrix of the discrete parameter model. On the other hand, the elements
τijκnhn correspond to the asymptotic covariance matrix of the continuous param-
eter model. We mention that the asymptotic covariance matrices are well-known
both for the discrete time and the continuous time models. The combination of
the two covariance structures was first pointed out in Fazekas and Chuprunov [2]
for the kernel type density estimator and then in Karácsony and Filzmoser [3] for
the regression estimator. To underline the importance of the covariance structure,
we mention the following. When calculating numerically the density estimator for
a continuous time model, we approximate the estimator with a one corresponding
to an infill-increasing model. However, the limiting covariance structures of those
models can be distinct.

We present examples that give numerical evidence for the phenomena described
in the above proposition. First we consider a one-dimensional regular domain D.

Example 1. Moving average on the real line.
We consider the process on the l-lattice points of the domain D = [0, t] with

l = 0.1 and t = 200. It means that the distance between two neighbours is l = 0.1.
That is, the sample is z1 = ξ(1/10), . . . , zn = ξ(2000/10) with n = 2000. The

data generation for the simulation is easy. Let y1, . . . , yn+4 be i.i.d. standard
normal random variables and choose

zi = 0.05 · yi + 0.2 · yi+1 + 0.5 · yi+2 + 0.2 · yi+3 + 0.05 · yi+4, i = 1, . . . , n.

So ξ(s) is a moving average process. We can see that the data is m-dependent with
m = 5. The marginal density is f(x) = 1√

2πσ
exp

(
−x2

2σ2

)
where σ = 0.5788.

Using these data, we calculated the estimation of the marginal density function
of the random field at the points x1 = −1.0, x2 = −0.5, x3 = 0.0, x4 = 0.5 and
x5 = 1.0. We used two values of the bandwidth, h1 = 0.10 and h2 = 0.01, and
applied the standard normal density function as kernel K.

The simulations were performed with MATLAB, 5000 repetitions of the proce-
dure were made. The data sets for both bandwidths h1 and h2 were the same. The
theoretical values of the density function and the average of their estimators are
shown in Table 1. For both values of the bandwidths we can see a close similarity
of the theoretical and the empirical values.

We calculated the empirical covariance matrices Σ1 (corresponding to band-
width h1) and Σ2 (corresponding to bandwidth h2) for our estimators

(f̂n(x1), . . . , f̂n(x5)).

Σ1 =




0.3078 0.0516 −0.1107 −0.1475 −0.0624
0.0516 0.8053 −0.1524 −0.3343 −0.1540
−0.1107 −0.1524 0.9289 −0.1485 −0.1221
−0.1475 −0.3343 −0.1485 0.7853 0.0632
−0.0624 −0.1540 −0.1221 0.0632 0.3195



· 10−3;

50 I. Fazekas, Zs. Karácsony, R. Vas



Σ2 =




2.2605 0.0244 −0.1598 −0.0875 −0.0631
0.0244 6.7115 −0.1994 −0.3860 −0.1832
−0.1598 −0.1994 9.8334 −0.1701 −0.2003
−0.0875 −0.3860 −0.1701 6.8598 0.0881
−0.0631 −0.1832 −0.2003 0.0881 2.2602



· 10−3.

The difference in the diagonals of Σ1 and Σ2 is clearly visible. The off-diagonal
elements are almost the same.

x -1.0 -0.5 0.0 0.5 1.0
f(x) 0.1549 0.4746 0.6892 0.4746 0.1549

f̂n(x) with h1 = 0.10 0.1590 0.4726 0.6794 0.4728 0.1599
f̂n(x) with h2 = 0.01 0.1543 0.4747 0.6876 0.4763 0.1564

Table 1: Theoretical values of the density function and the average
of their estimators for the data of Example 1.

Now calculate the additional terms in the diagonals of the covariance matrices
described by Σ defined in Proposition 4.1. In our case the elements of the diagonal
matrix Vk for the bandwidth hk (k = 1, 2) are

1

n

1

hk
f(xi)

∞∫

−∞

K2(u)du =
1

2000

1

hk
f(xi)

1

2
√
π
.

Since in the infill-increasing case only the diagonals of the limit covariance
matrices can be different for different values of the bandwidth, we show in Table
2 the ratio between the diagonals of the difference of the empirical covariance
matrices, diag(Σ2−Σ1), and of the theoretical covariance matrices, diag(V2−V1).

x −1.0 −0.5 0.0 0.5 1.0
diag(Σ2−Σ1)
diag(V2−V1) 0.9927 0.9803 1.0176 1.0082 0.9867

Table 2: Ratio between the diagonal of the difference of the em-
pirical covariance matrices and that of the theoretical covariance

matrices for the data of Example 1.

These are close to 1 as it is expected from the above proposition.
Finally, Figure 1 shows histograms of 1

2 (f̂n(0.5) + f̂n(1.0)) for the bandwidths
h1 = 0.10 (left picture) and h2 = 0.01 (right picture). Figure 2 shows histograms
of 1

3 (f̂n(−1.0) + f̂n(−0.5) + f̂n(0.0)) for the above bandwidths.
The histograms are presented together with the theoretical normal densities

with means and variances estimated from the data used for the histograms. The
approximate normality of the density estimator stated in the above proposition
is reflected in these figures. Different bandwidths lead to different spreads of the
normal distribution.
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Figure 1: Histograms of 1
2
(f̂n(0.5) + f̂n(1.0)) for the bandwidths

h1 = 0.10 (left) and h2 = 0.01 (right), together with the theoretical
densities of the normal distribution for the data of Example 1.
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Figure 2: Histograms of 1
3
(f̂n(−1.0) + f̂n(−0.5) + f̂n(0.0)) for the

bandwidths h1 = 0.10 (left) and h2 = 0.01 (right), together with
the theoretical densities of the normal distribution for the data of

Example 1.

Now we consider a two-dimensional domain with fractal-like shape.
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Example 2. Two-dimensional moving average.
Now the locations will be the l-lattice points of the domain D = [0, t]2 with

l = 0.1 and t = 10. Thus the random field is z(i,j) = ξ(i/10,j/10), i, j = 1, . . . , 100.
Let yk,l, k, l = 1, . . . , 102, be i.i.d. standard normal random variables, and let

z(i,j) =
1

9

i+2∑

k=i

j+2∑

l=j

yk,l, i, j = 1, . . . , 100.

Therefore the random field is m-dependent with m = 3. The marginal density is
f(x) = 1√

2πσ
exp

(
−x2

2σ2

)
where σ = 0.3333.

Some points from the locations were omitted. In Figure 3, the small squares
where the locations were deleted are marked with dark. We can see that in each
white small square we have 16 sites of observations. Denote the set of the remaining
locations by D. So the observations are z(i,j), i, j ∈ D. Therefore the actual sample
size is 7056.

Figure 3: Sampling sites

It can be seen that the resulted domain is not convex. In the above proposition
the asymptotic properties of the estimator remain true. It is clearly shown by the
following numerical results.

As in the previous example, we calculated the density estimator f̂n at the points
x1 = −1.0, x2 = −0.5, x3 = 0.0, x4 = 0.5, x5 = 1.0. We used the bandwidths
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h1 = 0.10 and h2 = 0.01 and applied the standard normal density function as
kernel K. The data sets for both bandwidths were the same, and 5000 repetitions
were performed. Table 3 shows that the theoretical values of the density function
and the average of their estimators are very similar.

x −1.0 −0.5 0.0 0.5 1.0
f(x) 0.3886 0.9034 1.1968 0.9034 0.3886

f̂n(x) with h = 0.10 0.4087 0.8852 1.1460 0.8858 0.4085

f̂n(x) with h = 0.01 0.3907 0.9032 1.1965 0.9029 0.3895

Table 3: Theoretical values of the density function and the average
of their estimators for the data of Example 2.

The empirical covariance matrices are

Σ1 =




0.5124 0.3246 −0.1801 −0.4534 −0.2921
0.3246 0.7406 0.0403 −0.5479 −0.4382
−0.1801 0.0403 0.5769 0.0194 −0.1941
−0.4534 −0.5479 0.0194 0.7785 0.3362
−0.2921 −0.4382 −0.1941 0.3362 0.5089



· 10−3;

Σ2 =




1.9357 0.2898 −0.1783 −0.5075 −0.2852
0.2898 4.0989 −0.0694 −0.6534 −0.5137
−0.1783 −0.0694 4.9750 −0.1292 −0.2899
−0.5075 −0.6534 −0.1292 4.2037 0.3005
−0.2852 −0.5137 −0.2899 0.3005 1.9322



· 10−3

for the bandwidths h1 and h2, respectively. Again, the agreement of the off-diagonal
elements and the difference in the diagonal becomes visible.

Similarly to the previous example, we show the ratios diag(Σ2−Σ1)
diag(V2−V1) in Table 4.

These are close to 1 as it was expected from our proposition.

x −1.0 −0.5 0.0 0.5 1.0
diag(Σ2−Σ1)
diag(V2−V1) 1.0181 1.0331 1.0213 1.0537 1.0180

Table 4: Ratio between the diagonal of the difference of the em-
pirical covariance matrices and that of the theoretical covariance

matrices for the data of Example 2.

Finally, Figure 4 shows histograms of 1
2 (f̂n(0.0) + f̂n(0.5)) for the bandwidths

h1 = 0.10 (left picture) and h2 = 0.01 (right picture). Figure 5 shows histograms
of 1

3 (f̂n(−1.0) + f̂n(−0.5) + f̂n(0.0)) for the above bandwidths.
The histograms are presented together with the theoretical normal densities

with means and variances estimated from the data used for the histograms. The
approximate normality of the density estimator stated in the above proposition
is reflected in these figures. Different bandwidths lead to different spreads of the
normal distribution.
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Figure 4: Histograms of 1
2
(f̂n(0.0) + f̂n(0.5)) for the bandwidths

h1 = 0.10 (left) and h2 = 0.01 (right), together with the theoretical
densities of the normal distribution for the data of Example 2.
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Figure 5: Histograms of 1
3
(f̂n(−1.0) + f̂n(−0.5) + f̂n(0.0)) for the

bandwidths h1 = 0.10 (left) and h2 = 0.01 (right), together with
the theoretical densities of the normal distribution for the data of

Example 2.
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5. Conclusions

In the paper, the kernel type density estimator f̂n is considered. The underlying
random field is m-dependent but the observation domain can be irregular. Nearly
infill sampling scheme is supposed. Based on the CLT of Park, Kim, Park and
Hwang [6] the joint asymptotic normality of f̂1(x1), . . . , f̂n(xr) is obtained. The
asymptotic covariance matrix is unusual in the sense that it is a combination of the
covariance matrices in the continuous and the discrete parameter cases. Numerical
evidence supports our results.
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Abstract
The generalized allocation scheme was introduced by V.F. Kolchin [1].

Let ξ1, ξ2, . . . , ξN be independent identically distributed non-negative inte-
ger valued non-degenerate random variables. Consider the random variables
η′1, . . . , η

′
N with joint distribution

P{η′1 = k1, . . . , η
′
N = kN} = P

{
ξ1 = k1, . . . , ξN = kN

∣∣ ∑N

i=1
ξi = n

}
.

Let ξi have Poisson distribution, then (η′1, . . . , η
′
N ) has polynomial distribu-

tion. Therefore {η′1 = k1, . . . , η
′
N = kN} means that the contents of the

boxes are k1, . . . , kN after allocating n balls into N boxes during the usual
allocation procedure.

Our aim is to study random variables η1, . . . , ηN with joint distribution

P{η1 = k1, . . . , ηN = kN} = P
{
ξ1 = k1, . . . , ξN = kN

∣∣ ∑N

i=1
ξi ≥ n

}
.

It can be considered as a general allocation scheme when we place at least n
balls into N boxes. Let µnN denote the number of cases when {ηi = r}. That
is µnN is the number of boxes containing r balls. We shall prove limit theo-
rems for P{µnN = k}. Moreover, we shall consider the asymptotic behaviour
of P{max1≤i≤N ηi ≤ r} and P{min1≤i≤N ηi ≤ r}.
Keywords: generalized allocation scheme, conditional probability, law of large
numbers, central limit theorem, Poisson distribution.
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1. Introduction

The usual allocation scheme is the following. Let n balls be placed successively
and independently into N boxes. At any allocation the ball can fall into each box
with probability 1/N . This model was widely studied. See the early papers Weiss
[13], Rényi [12], Békéssy [1] and the monograph Kolchin-Sevast’yanov-Chistyakov
[8]. See also Chuprunov-Fazekas [2] for certain recent results.

A generalization of the usual allocation scheme was introduced by V.F. Kolchin
(see the monographs of Kolchin [7] and Pavlov [10]). Let η′1, η′2, . . . , η′N be non-
negative integer-valued random variables. In Kolchin’s generalized allocation sche-
me the joint distribution of η′1, η′2, . . . , η′N can be represented as

P{η′1 = k1, . . . , η
′
N = kN} = P

{
ξ1 = k1, . . . , ξN = kN

∣∣ ∑N

i=1
ξi = n

}
, (1.1)

where ξ1, ξ2, . . . , ξN are independent identically distributed non-negative integer
valued non-degenerate random variables and k1, k2, . . . , kN are arbitrary non-nega-
tive integers, k1 + k2 + · · · + kN = n. This scheme contains the usual allocation
procedure, certain random forests, and several other models (see the monographs
of Kolchin [7] and Pavlov [10]).

The usual allocation scheme is obtained as follows. Let ξi have Poisson distri-
bution, i.e. P(ξi = k) = λk

k! e
−λ, k = 0, 1, . . . . Then

P{ξ1 = k1, . . . , ξN = kN | ξ1 + · · ·+ ξN = n} =
n!

k1! . . . kN !

(
1

N

)n

if k1 + · · · + kN = n. That is (η′1, . . . , η
′
N ) has polynomial distribution. Now

{η′1 = k1, . . . , η
′
N = kN} means that the cell contents are k1, . . . , kN after allocating

n particles into N cells considering the usual allocation procedure.
The connection of the random forest and the generalized allocation scheme is

the following. Let Tn,N denote the set of forests containing N labelled roots and n
labelled non-root vertices. By Cayley’s theorem, Tn,N has N(n+N)n−1 elements.
Consider uniform distribution on Tn,N . Let η′i denote the number of the non-root
vertices of the ith tree. Then

P{η′1 = k1, . . . , η
′
N = kN} =

n!

k1! . . . kN !

(k1 + 1)k1−1 . . . (kN + 1)kN−1

N(N + n)n−1
.

Now let ξi have Borel distribution (see [5], [9]) P(ξi = k) = λk(1+k)k−1

k! e−(k+1)λ,
k = 0, 1, . . . , λ > 0. Then

P{ξ1 = k1, . . . , ξN = kN | ξ1 + · · ·+ ξN = n}

=
n!

k1! . . . kN !

(k1 + 1)k1−1 . . . (kN + 1)kN−1

N(N + n)n−1

if k1 + · · ·+ kN = n. See [7, 2, 10]. Therefore η′1, . . . , η′N satisfy (1.1).
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We can say that in the generalized allocation scheme we place n balls into N
boxes. In the framework of the generalized allocation scheme several asymptotic re-
sults can be obtained. Let µ′r be the number of the random variables η′1, η′2, . . . , η′N
being equal to r (r = 0, 1, . . . , n).

Observe that
µ′r = µ′rnN = µ′nN =

∑N

i=1
I{η′i=r} (1.2)

can be considered as the number of boxes containing r balls. Here IA is the indicator
of the set A, i.e. IA (x) = 1 if x ∈ A and IA (x) = 0 if x 6∈ A. (µ′r, µ′rnN , and µ′nN
are just different notations for the same quantity.)

Limit results for µ′r can be obtained in the following way. Let ξ0 be a random
variable with the same distribution as ξ1. Let pr = P{ξ0 = r} and Eξ0 = a.
Introduce notation SN =

∑N
i=1 ξi.

Denote by ξ(r)0 a random variable with distribution

P{ξ(r)0 = k} = P{ξ0 = k | ξ0 6= r}. (1.3)

The expectation and the second moment of ξ(r)0 are the following ar = Eξ(r)0 =
a− rpr
1− pr

and E
(
ξ
(r)
0

)2
=

Eξ20 − r2pr
1− pr

. Let ξ(r)1 , . . . , ξ
(r)
N be independent copies of

ξ
(r)
0 . Let S(r)

N =
∑N
i=1 ξ

(r)
i . Denote by CkN the binomial coefficient CkN =

(
N
k

)
.

V.F. Kolchin proved in [7] the following lemma.

Lemma 1.1. Let µ′nN and ξ(r)0 be defined by (1.2) and (1.3), respectively. Then

P{µ′nN = k} = CkNp
k
r (1− pr)N−k

P{S(r)
N−k = n− kr}
P{SN = n} . (1.4)

Using this representation, normal and Poisson limit theorems were obtained
(see [7], and [10]).

In [4] a modification of the generalized allocation scheme was studied, that is
in (1.1) the condition was changed for

∑N
i=1 ξi ≤ n.

In this paper we introduce another scheme, i.e. we use in (1.1) condition of
the form

∑N
i=1 ξi ≥ n. It can be considered as a general allocation scheme when

we place at least n balls into N boxes. Let µnN denote the number of cases when
{ηi = r}. That is µnN is the number of boxes containing r balls.

We shall prove limit theorems for P{µnN = k}. Moreover, we shall consider the
asymptotic behaviour of P{max1≤i≤N ηi ≤ r} and P{min1≤i≤N ηi ≤ r}.

In Section 2 P{µnN = k} is studied. In sections 3 and 4 P{max1≤i≤N ηi ≤ r}
and P{min1≤i≤N ηi ≤ r} are considered, respectively.

2. Another generalized allocation scheme

Let ξ1, ξ2, . . . , ξN be independent identically distributed non-negative integer-valu-
ed non-degenerate random variables. Consider random variables η1, η2, . . . , ηN with
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joint distribution

P{η1 = k1, . . . , ηN = kN} = P
{
ξ1 = k1, . . . , ξN = kN

∣∣ ∑N

i=1
ξi ≥ n

}
. (2.1)

In this case, we place at least n balls into N boxes.

Example 2.1. Let ξi have Poisson distribution, i.e. P(ξi = k) = λk

k! e
−λ, k =

0, 1, . . . . Then

P{ξ1 = k1, . . . , ξN = kN | ξ1 + · · ·+ ξN ≥ n} =
1

k1! . . . kN !
λk0
/ ∞∑

k=n

(Nλ)k

k!
(2.2)

if k1 + · · ·+ kN = k0 ≥ n. Now, we place η (random number) balls into N boxes.
Assume that η ≥ n. Let ηi denote the number of balls in the ith box. Then

P{η1 = k1, . . . , ηN = kN} =
∞∑

i=n

P(η1 = k1, . . . , ηN = kN | η = i)P(η = i)

=
k0!

k1! . . . kN !

(
1

N

)k0
P(η = k0), (2.3)

if k1 + · · · + kN = k0 ≥ n. If we choose the a’priori distribution of η as Poisson
distribution truncated from below, i.e

P(η = i) =
(Nλ)i

i!
e−Nλ

/ ∞∑

k=n

(Nλ)k

k!
e−Nλ, i = n, n+ 1, . . . ,

then we obtain (2.2). That is our scheme (2.1) with ξi having Poisson distribution
describes the usual allocation when the number of balls is given by a truncated
Poisson distribution.

Let
µr = µrnN = µnN =

∑N

i=1
I{ηi=r}

be the number of the boxes containing r balls. Then we have the following analogue
of Kolchin’s formula (1.4) for our model. Recall that ξ(r)0 is defined by (1.3).

Theorem 2.2. For all k = 0, 1, 2, . . . , N we have

P{µnN = k} = CkNp
k
r (1− pr)N−k

P{S(r)
N−k ≥ n− kr}
P{SN ≥ n}

. (2.4)

Proof. (2.4) can be proved by a certain modification of the proof of Lemma 1.1.
Let A(r)

k be the event that exactly k of the random variables ξ1, . . . , ξN are equal
to r. By (2.1), we have

P{µnN = k} = P(A
(r)
k |SN ≥ n) =

P(A
(r)
k , SN ≥ n)

P(SN ≥ n)
.
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Furthermore,

P(A
(r)
k , SN ≥ n) = P(SN ≥ n|A(r)

k )P(A
(r)
k )

= CkNp
k
r (1− pr)N−kP(SN ≥ n| ξ1 6= r, . . . , ξN−k 6= r, ξN−k+1 = r, . . . , ξN = r)

= CkNp
k
r (1− pr)N−kP(S

(r)
N−k ≥ n− kr).

Here we have used that ξ1, . . . , ξN are independent random variables and the event
A

(r)
k can occur CkN different ways, moreover

P(SN ≥ n|A(r)
k ) =

P(SN ≥ n ,A(r)
k )

P(A
(r)
k )

=
P(ξ1 + · · ·+ ξN ≥ n , ξ1 6= r, . . . , ξN−k 6= r, ξN−k+1 = r, . . . , ξN = r)

P(ξ1 6= r, . . . , ξN−k 6= r, ξN−k+1 = r, . . . , ξN = r)

=
P(ξ1 + · · ·+ ξN−k ≥ n− kr , ξ1 6= r, . . . , ξN−k 6= r, ξN−k+1 = r, . . . , ξN = r)

P(ξ1 6= r, . . . , ξN−k 6= r, ξN−k+1 = r, . . . , ξN = r)

=
P(ξ1 + · · ·+ ξN−k ≥ n− kr , ξ1 6= r, . . . , ξN−k 6= r)

P(ξ1 6= r, . . . , ξN−k 6= r)
.

The proofs of our limit theorems are based on representation (2.4). First we
consider two theorems with normal limiting distribution. Let αnN = n

N .

Theorem 2.3. Let Eξ0 = a be finite, Eξ(r)0 = ar, s2r = pr(1− pr).
(1) Let d < a. Then, uniformly for αnN < d, we have

P{µnN = k} =
1√

2πNsr
e−u

2/2(1 + o(1)), (2.5)

as n,N →∞ and u = k−Npr
srN1/2 belongs to an arbitrary bounded fixed interval.

(2) Suppose that ar < a. Let ar < d1 < d < a. If k belongs to a bounded
interval, then we have

lim
n,N→∞, d1<αnN<d

P{µnN = k} = 0. (2.6)

Proof. (1) By the Moivre-Laplace Theorem we have

CkNp
k
r (1− pr)N−k =

1√
2πNsr

e−u
2/2(1 + o(1)), (2.7)

as N → ∞ uniformly if u = k−Npr
srN1/2 belongs to a bounded fixed interval, where

s2r = pr(1− pr).
As αnN < d < a, applying Kolmogorov’s law of large numbers, we obtain

lim
n,N→∞, αnN<d

P

{
N−k∑

i=1

ξ
(r)
i ≥ n− kr

}
= 1,

lim
n,N→∞, αnN<d

P

{
N∑

i=1

ξi ≥ n
}

= 1.

(2.8)
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Now (2.4), (2.7) and (2.8) imply (2.5).
(2) Let d1 < αnN < d. By Kolmogorov’s law of large numbers, we have

lim
n,N→∞, d1<αnN<d

P

{
N−k∑

i=1

ξ
(r)
i ≥ n− kr

}
= 0. (2.9)

We obtain (2.6) from (2.4), if we apply (2.7) and (2.9).

Remark 2.4. It is easy to see that a < ar, a > ar and a = ar if and only if a > r,
a < r and a = r, respectively.

Let Φ denote the standard normal distribution function. Recall that a = Eξ0 ,
ar = Eξ(r)0 and s2r = pr(1− pr).

Theorem 2.5. Suppose that Eξ20 < ∞. Denote by σ2 the variance of ξ0 and by
σ2
r the variance of ξ(r)0 . Assume 0 < σ2, σ2

r < ∞. Let −∞ ≤ C < ∞. Then, as
n,N →∞ such that

√
N(αnN − a)→ C, we have

P{µnN = k} =
1√

2πNsr
e−u

2/2




1− Φ

(
C+usr

a−r
1−pr√

1−prσr

)

1− Φ
(
C
σ

) + o(1)


 , (2.10)

for u = k−Npr
srN1/2 belonging to any bounded fixed interval.

Proof. As σ2 = D2(ξ0) <∞ and σ2
r = D2(ξ

(r)
0 ) <∞, by the central limit theorem,

we obtain

P

{
N∑

i=1

ξi ≥ n
}

= P

{∑N
i=1 ξi −Na√

Nσ
≥
√
N(αnN − a)

σ

}

= 1− Φ

(√
N(αnN − a)

σ

)
+ o(1), (2.11)

and similarly we obtain

P

{
N−k∑

i=1

ξ
(r)
i ≥ n− kr

}
= 1− Φ




√
N(αnN − a) + usr

a− r
1− pr√

1− prσr


+ o(1). (2.12)

Using (2.11), (2.12), and (2.7), relation (2.4) implies the desired result.

Using large deviation theorems we can describe the relation between µnN and
µ
′
nN .
Let X1, X2, . . . be independent identically distributed non-negative non-de-

generate random variables with lattice distribution (assume that the span of the
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distribution of X1 is 1). Suppose that Cramér’s condition is satisfied, that is
Eeλ0X1 <∞ for some λ0 > 0. Let ZN = X1 + · · ·+XN . Introduce notation

M(h) = EehX1 , a(h) = (ln(M(h)))′, v2(h) = a′(h).

As X1 is non-degenerate, therefore a′(h) > 0, so a(·) is strictly increasing.
We have the following lemma from [11].

Lemma 2.6. Let x be an integer number and let h = a−1( xN ) . Then, as N →∞,
we have

P(ZN = x) =
1

v(h)
√

2πN
MN (h)e−hx

(
1 + O

(
1

N

))
,

P(ZN ≥ x) =
1

v(h)
√

2πN
MN (h)e−hx(1− e−h)−1

(
1 + O

(
1

N

))

uniformly for x, with Na(ε) ≤ x ≤ Na(λ0 − ε), where ε is an arbitrary small
positive number. In particular

P(ZN ≥ x)

P(ZN = x)
= (1− e−h)−1(1 + o(1)). (2.13)

Introduce notation

L(λ) = Eeλξ0 , Lr(λ) = Eeλξ
(r)
0

where we assume that there exist positive constants λ0 > 0 and λ(r)0 > 0 such that
Eeλ0ξ0 <∞ and Eeλ

(r)
0 ξ

(r)
0 <∞ (Cramér’s condition). Let

m(λ) = (ln(L(λ)))′, σ2(λ) = m′(λ), 0 ≤ λ ≤ λ0 ,

mr(λ) = (ln(Lr(λ)))′, σ2
r(λ) = m′r(λ), 0 ≤ λ ≤ λ(r)0 .

As ξ0 is non-degenerate, therefore m(.) is strictly increasing. Assume that 0 <
P(ξ0 = 0) < 1. Moreover, if we additionally assume that r 6= 0 and P(ξ0 =

0) + P(ξ0 = r) < 1, then ξ(r)0 is non-degenerate, therefore similar property is valid
for the function mr(.).

Let h = m−1 (αnN ), hr = m−1r (αnN ), and β(αnN ) =
1− e−h
1− e−hr

.

Theorem 2.7. Assume r > 0, P(ξ0 = 0) > 0, and P(ξ0 = 0) + P(ξ0 = r) < 1. Let
max{a, ar} < d1 < d2 < min{m(λ0),mr(λ

(r)
0 )}. Then, as n,N →∞, we have

P{µnN = k} = P{µ′nN = k}β(αnN )(1 + o(1)) (2.14)

uniformly for d1 < αnN < d2.

Proof. We obtain Theorem 2.7 from (2.4) and from Lemma 1.1 , if we apply (2.13)
both for ξi and for ξ(r)i .
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We shall use the so called power series distribution. Consider the random
variable ξ0 with the following distribution. Let b0, b1, b2, . . . be a sequence of
non-negative numbers and let R denote the radius of convergence of the series

B(θ) =
∑∞

k=0

bkθ
k

k!
.

Assume that R > 0. Let ξ0 = ξ0(θ) have the following distribution

pk = pk(θ) = P{ξ0(θ) = k} =
bkθ

k

k!B(θ)
, k = 0, 1, 2, . . . . (2.15)

Differentiating B(θ) for 0 ≤ θ < R, we obtain

Eξ0(θ) =
θB′(θ)
B(θ)

, D2ξ0(θ) =
θ2B′′(θ)
B(θ)

+ Eξ0(θ)− (Eξ0(θ))2

(see e.g. [7]).
We will assume that the distribution of the random variable ξ0(θ) satisfies

b0 > 0, b1 > 0. (2.16)

We emphasize that the distribution of ξ0 = ξ0(θ) is not fixed, it depends on θ.
We have the following Poisson limit theorem.

Theorem 2.8. Suppose that the random variable ξ0 = ξ0(θ) has distribution (2.15),
condition (2.16) is satisfied. Let θ ≤ K < R. Let r > 1 and n

N1− 1
r
→ 0. Let

N →∞ such that Npr(θ)→ λ for some 0 < λ <∞. Then for all k ∈ N we have

P{µnN = k} =
λke−λ

k!
(1 + o(1)). (2.17)

Proof. Let k ∈ N. By the Poisson limit theorem, one has

CkNp
k
r (1− pr)N−k =

λke−λ

k!
(1 + o(1)). (2.18)

Relation Npr(θ) → λ implies that θ = o(1), B(θ) = b0 + o(1), B
′
(θ) = b1 + o(1)

and B
′′
(θ) = b2 + o(1). Therefore θ =

(
r!(b0λ+o(1))

Nbr

)1/r
.

We know that Eξ0 = θB
′
(θ)

B(θ) . Therefore

Eξ0 =
b1
b0

(
r!(b0λ+ o(1))

Nbr

)1/r

(1 + o(1)) = C

(
1

N

)1/r

(1 + o(1)). (2.19)

Here and in what follows C denotes an appropriate constant (its value can be
different in different formulae). Similarly

D2ξ0 = C

(
1

N

)1/r

(1 + o(1)). (2.20)
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Now applying condition n

N1− 1
r
→ 0, Chebishev’s inequality and relations (2.19),

(2.20), we obtain
P {SN ≥ n} = (1 + o(1)). (2.21)

As Eξ(r)0 =
Eξ0 − rpr

1− pr
, so (2.19) and condition n

N1− 1
r
→ 0 imply that

Eξ(r)0 = C

(
1

N

)1/r

(1 + o(1)). (2.22)

We have

D2ξ
(r)
0 =

Eξ20
1− pr

− a2

(1− pr)2
+

2arpr
(1− pr)2

− r2pr
(1− pr)2

. (2.23)

We obtain

D2ξ
(r)
0 = C

(
1

N

)1/r

(1 + o(1)). (2.24)

Now applying condition n

N1− 1
r
→ 0, Chebishev’s inequality and relations (2.22),

(2.24), we obtain
P{S(r)

N−k ≥ n− kr} = (1 + o(1)). (2.25)

Inserting (2.21), (2.25), and (2.18) into (2.4), we obtain (2.17).

3. Limit theorems for max1≤i≤N ηimax1≤i≤N ηimax1≤i≤N ηi

Let η(N) = max1≤i≤N ηi. η(N) is the maximal number of balls contained by any of
the boxes.

Let ξ(≤r)0 be a random variable with distribution

P{ξ(≤r)0 = k} = P{ξ0 = k | ξ0 ≤ r}.

Let ξ(≤r)i , i = 1, . . . , N , be independent copies of ξ(≤r)0 . Let S(≤r)
N =

∑N
i=1 ξ

(≤r)
i

and Eξ(≤r)0 = a≤r. We can see that a≤r ≤ a. Moreover, a≤r = a if and only if
P(ξ0 ≤ r) = 1, that is ξ0 and ξ(≤r)0 have the same distribution.

The following representation of η(N) is useful to obtain limit results.

Theorem 3.1. We have

P{η(N) ≤ r} = (1− Pr)N
P{S(≤r)

N ≥ n}
P{SN ≥ n}

, (3.1)

for all r ∈ N where Pr = P{ξ0 > r}.
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Proof.

P{η(N) ≤ r} = P{η1 ≤ r, . . . , ηN ≤ r}

= P
{
ξ1 ≤ r, . . . , ξN ≤ r

∣∣ ∑N

i=1
ξi ≥ n

}

=
P
{
ξ1 ≤ r, . . . , ξN ≤ r , SN ≥ n

}

P
{
SN ≥ n

}

= (P{ξ1 ≤ r})N
P
{
SN ≥ n

∣∣ ξ1 ≤ r, . . . , ξN ≤ r
}

P
{
SN ≥ n

}

= (1− Pr)N
P{S(≤r)

N ≥ n}
P{SN ≥ n}

.

Theorem 3.2. (1) Let d < a≤r. Then for all fixed r ∈ N, as n,N →∞, we have

P{η(N) ≤ r} = (1− Pr)N (1 + o(1)) (3.2)

uniformly for αnN < d.
(2) Suppose that a≤r < a and a≤r < d1 < d < a. Then for all fixed r ∈ N, as

n,N →∞, we have
P{η(N) ≤ r} = (1− Pr)No(1) (3.3)

uniformly for d > αnN > d1.

Proof. (1) Apply Kolmogorov’s law of large numbers for SN and S
(≤r)
N in (3.1).

Then (3.2) follows.
(2) If d1 < αnN < d and we apply Kolmogorov’s law of large numbers, then we

obtain

lim
n,N→∞, d1<αnN<d

P

{
S
(≤r)
N

N
≥ n

N

}
= 0. (3.4)

Theorem 3.3. Suppose that Eξ20 < ∞ and let σ2
≤r be the variance of ξ(≤r)0 . Let

−∞ ≤ C < ∞. Then, for all r ∈ N, as n,N → ∞ such that
√
N(αnN − a) → C,

we have

P{η(N) ≤ r} = (1− Pr)N



1− Φ
(

C
σ≤r

)

1− Φ
(
C
σ

) + o(1)


 , for a≤r = a, (3.5)

P{η(N) ≤ r} = (1− Pr)N · o(1), for a≤r < a. (3.6)

Proof. By the central limit theorem, we have

P

{
N∑

i=1

ξ
(≤r)
i ≥ n

}
= P

{∑N
i=1 ξ

(≤r)
i −Na≤r√
Nσ≤r

≥
√
N(αnN − a≤r)

σ≤r

}
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= 1− Φ

(√
N(αnN − a≤r)

σ≤r

)
+ o(1). (3.7)

In relation (3.1) apply (2.11) and (3.7) to obtain (3.5) and (3.6).

Let η′(N) = max1≤i≤N η′i be the maximum in the usual generalized allocation
scheme (1.1). Using large deviation results, we can describe the relation of η′(N)

and η(N).
Introduce notation

L≤r(λ) = Eeλξ
(≤r)
0

where we assume that there exist a positive constant λ(≤r)0 > 0, such that

Eeλ
(≤r)
0 ξ

(≤r)
0 <∞ (Cramér’s condition).

Let
m≤r(λ) = (ln(L≤r(λ)))′, σ2

≤r(λ) = m′≤r(λ), 0 ≤ λ ≤ λ(≤r)0 .

Let r ≥ 1. If P(ξ0 = 0) > 0 and P(ξ0 ≤ r) > P(ξ0 = 0), then ξ
(≤r)
0 is non-

degenerate, therefore m≤r(.) is a strictly increasing function.
Let h = m−1 (αnN ), h≤r = m−1≤r (αnN ), and β≤r(αnN ) = 1−e−h

1−e−h≤r
.

Theorem 3.4. Assume that r ≥ 1, P(ξ0 = 0) > 0, and P(ξ0 ≤ r) > P(ξ0 = 0).
Let max{a, a≤r} < d1 < d2 < min{m(λ0),m≤r(λ

(≤r)
0 )}. Then, for all r ∈ N as

n,N →∞, we have

P{η(N) ≤ r} = P{η′(N) ≤ r}β≤r(αnN )(1 + o(1)) (3.8)

uniformly for d1 < αnN < d2.

Proof. For the usual generalized allocation scheme, V.F. Kolchin in [7] obtained
that

P{η′(N) ≤ r} = (1− Pr)N
P{S(≤r)

N = n}
P{SN = n} (3.9)

for all r ∈ N where Pr = P{ξ0 > r}.
Using (3.9) and (3.1) and applying (2.13) both for ξi and for ξ(≤r)i , the proof

of Theorem 3.4 is complete.

Theorem 3.5. Suppose that the random variable ξ = ξ(θ) has distribution (2.15),
condition (2.16) is satisfied and θ ≤ K < R. Let r ∈ N. Let θ = θ(N) be such that
Npr+1(θ)→ λ where 0 < λ <∞. Then, as n,N →∞ such that n

Nr/(r+1) → 0, we
have

P{η(N) = r} = e−λ + o(1), (3.10)

P{η(N) = r + 1} = 1− e−λ + o(1). (3.11)
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Proof. Relation n
Nr/(r+1) → 0 implies that

B(θ) = b0 + o(1) and θ =

(
(r + 1)!(b0λ+ o(1))

Nbr+1

)1/(r+1)

.

Using r + 1 instead of r in the proof of Theorem 2.8, we obtain

P {SN ≥ n} = (1 + o(1)). (3.12)

Let r1 ∈ N. Then

Eξ(≤r1)0 =

∑r1
k=1 k

bk
k!b0

((
(r+1)!(b0λ+o(1))

Nbr+1

)1/(r+1)
)k

∑r1
k=0

bk
k!b0

((
(r+1)!(b0λ+o(1))

Nbr+1

)1/(r+1)
)k (1 + o(1))

= C

(
1

N

)1/(r+1)

(1 + o(1)). (3.13)

Moreover,

D2ξ
(≤r1)
0 ≤ C

(
1

N

)1/(r+1)

(1 + o(1)). (3.14)

Using Chebishev’s inequality, (3.13) and (3.14), we obtain

P{S(≤r1)
N ≥ n} = (1 + o(1)). (3.15)

Using relations θ → 0 and Npr+1(θ)→ λ, we obtain

(1− Pr−1)N = o(1), (1− Pr)N = e−λ + o(1), (1− Pr+1)N = 1 + o(1). (3.16)

Inserting (3.12), (3.15), and (3.16) into (3.1), we obtain

P{η(N) ≤ r − 1} = o(1), P{η(N) ≤ r} = e−λ + o(1), P{η(N) ≤ r + 1} = 1 + o(1).

These relations imply (3.10) and (3.11).

4. Limit theorems for min1≤i≤N ηimin1≤i≤N ηimin1≤i≤N ηi

In this section we shall prove limit theorems for the minimal content of the boxes.
Let η(N−) = min1≤i≤N ηi. Let ξ(≥r)0 be a random variable with distribution
P{ξ(≥r)0 = k} = P{ξ0 = k | ξ0 ≥ r}. Let ξ(≥r)i , i = 1, . . . , N , be independent
copies of ξ(≥r)0 . Let S(≥r)

N =
∑N
i=1 ξ

(≥r)
i and Eξ(≥r)0 = a≥r. One can see that

Eξ(≥r)0 ≥ Eξ0 and equality can happen if and only if ξ(≥r)0 = ξ0.
We start with an appropriate representation of η(N−)
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Theorem 4.1. We have

P{η(N−) ≥ r} = (1−Qr)N
P{S(≥r)

N ≥ n}
P{SN ≥ n}

, (4.1)

for all r ∈ N where Qr = P{ξ0 < r}.
Proof.

P{η(N−) ≥ r} = P{η1 ≥ r, . . . , ηN ≥ r}

= P
{
ξ1 ≥ r, . . . , ξN ≥ r

∣∣ ∑N

i=1
ξi ≥ n

}

=
P
{
ξ1 ≥ r, . . . , ξN ≥ r , SN ≥ n

}

P
{
SN ≥ n

}

= (P{ξ1 ≥ r})N
P
{
SN ≥ n

∣∣ ξ1 ≥ r, . . . , ξN ≥ r
}

P
{
SN ≥ n

}

= (1−Qr)N
P{S(≥r)

N ≥ n}
P{SN ≥ n}

.

Theorem 4.2. Let d < a. Then for all r ∈ N, as n,N →∞, we have

P{η(N−) ≥ r} = (1−Qr)N (1 + o(1)) (4.2)

uniformly for αnN < d.

Proof. We apply Kolmogorov’s law of large numbers for SN and S
(≥r)
N in (4.1).

Then we obtain (4.2).

Theorem 4.3. Suppose that Eξ20 < ∞ and let σ2
≥r be the variance of ξ(≥r)0 . Let

−∞ ≤ C < ∞. Then, for all r ∈ N, as n,N → ∞ such that
√
N(αnN − a) → C,

we have

P{η(N−) ≥ r} = (1−Qr)N



1− Φ
(

C
σ≥r

)

1− Φ
(
C
σ

) + o(1)


 , for a≥r = a, (4.3)

P{η(N−) ≥ r} = (1−Qr)N
(

1

1− Φ
(
C
σ

) + o(1)

)
, for a≥r > a. (4.4)

Proof. By the central limit theorem, we have

P

{
N∑

i=1

ξ
(≥r)
i ≥ n

}
= P

{∑N
i=1 ξ

(≥r)
i −Na≥r√
Nσ≥r

≥
√
N(αnN − a≥r)

σ≥r

}

= 1− Φ

(√
N(αnN − a≥r)

σ≥r

)
+ o(1). (4.5)

In relation (4.1) apply (2.11) and (4.5). Then we obtain (4.3) and (4.4).
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István Fazekasa∗, Tibor Tómácsb

aUniversity of Debrecen, Faculty of Informatics
Debrecen, Hungary

e-mail: fazekasi@inf.unideb.hu
bEszterházy Károly College,

Institute of Mathematics and Computer Science
Eger, Hungary

e-mail: tomacs@ektf.hu

Dedicated to Mátyás Arató on his eightieth birthday

1. Introduction

The well known Kolmogorov strong law of large numbers states the following. If
X1, X2, . . . are independent identically distributed (i.i.d.) random variables with
finite expectation and EX1 = 0, then the average (X1 + · · ·+Xn)/n converges to
0 almost surely (a.s.). However, if we consider a double sequence, then we need
another condition. Actually, if (Xij) is a double sequence of i.i.d. random variables
with EX11 = 0, then E |X11| log+ |X11| <∞ implies that

(∑m
i=1

∑n
j=1Xij

)
/(mn)

converges to 0 a.s., as n,m tend to infinity (see Smythe [6]).
For a double numerical sequence xij there are different notions of convergences.

One can consider a strong version of convergence when xij converges as one of
the indices i, j goes to infinity (this type of convergence was used in Fazekas [1]).
Another version when xij converges as both indices i, j tend to infinity. However,
in the second case convergence does not imply boundedness. To avoid unpleasant
situations one can assume that the sequence is bounded. In this paper we shall
study the so called bounded convergence of double sequences.

We shall prove two criteria for the bounded convergence of weighted averages
of double sequences. Both criteria are based on subsequences. The subsequence
is constructed by a well-known method: we proceed along a non-negative, in-
creasing, unbounded sequence and pick up a member which is about the double

∗Supported by the Hungarian Scientific Research Fund under Grant No. OTKA T079128/2009.
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of the previous selected member of the sequence. (This method was applied e.g.
in Fazekas–Klesov [2]). However, this method is not convenient for an arbitrary
double sequence of weights. Therefore we apply weights of product type (it was
considered e.g. in Noszály–Tómács [5]).

Our theorems can be considered as generalizations of some results in Fekete–
Georgieva–Móricz [3], where harmonic averages of double sequences were consid-
ered. They obtained the following theorem.

1

lnm lnn

m∑

i=1

n∑

j=1

xij
ij

b−→ L, as m,n→∞ (1.1)

if and only if

1

2m+n
max

22m−1
<k≤22m

22n−1
<l≤22n

∣∣∣∣∣∣

k∑

i=22m−1+1

l∑

j=22n−1+1

xij − L
ij

∣∣∣∣∣∣
b−→ 0, as m,n→∞. (1.2)

Here b−→ means the bounded convergence. Our Theorem 2.4 is a generalization of
this result for general weights.

Our results can also be considered as extensions of certain theorems of Móricz
and Stadtmüller [4] where ordinary (that is not double) sequences were studied. In
our proofs we apply ideas of [4].

2. Main results

Let (xkl : k, l = 1, 2, . . . ) be a sequence of real numbers, and let (bk : k = 1, 2, . . . ),
(cl : l = 1, 2, . . . ) be sequences of weights, that is, sequences of non-negative num-
bers for which

Bm :=

m∑

k=1

bk →∞, as m→∞, (2.1)

Cn :=
n∑

l=1

cl →∞, as n→∞. (2.2)

Let akl := bkcl, Amn :=
∑m
k=1

∑n
l=1 akl and Smn :=

∑m
k=1

∑n
l=1 aklxkl. The

weighted averages Zmn of the sequence (xkl) with respect to the weights (akl) are
defined by

Zmn :=
1

Amn
Smn

for n,m large enough so that Amn > 0.
We define a sequence m0 = 0,m1 = 1 < m2 < m3 < . . . of integers with the

following property

Bmi+1−1 < 2Bmi
≤ Bmi+1

, i = 1, 2, . . . (2.3)
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Similarly, let n0 = 0, n1 = 1 < n2 < n3 < . . . be a sequence of integers such that

Cnj+1−1 < 2Cnj
≤ Cnj+1

, j = 1, 2, . . . (2.4)

In this paper we shall also use the following notation

∆mn
st A :=

m∑

k=s+1

n∑

l=t+1

akl, ∆mn
st S :=

m∑

k=s+1

n∑

l=t+1

aklxkl.

Actually ∆mn
st A is an increment on a rectangle (in other word two-dimensional

difference) of the sequence Amn. We note that

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S

is called the moving average of the sequence (xkl) with respect to the weights (akl).

Definition 2.1. Let (ykl : k, l = 1, 2, . . . ) be a sequence of real numbers, and let y
be a real number. It is said that bounded convergence

ykl
b−→ y, as k, l→∞,

is satisfied if
(i) the sequence (ykl : k, l = 1, 2, . . . ) is bounded; and
(ii) for every ε > 0 there exist positive integers k0, l0, such that

|ykl − y| < ε for k ≥ k0, l ≥ l0. (2.5)

Remark 2.2. Relation (2.5) does not imply that (ykl) is bounded. For example
if y1l = l for l ≥ 1 and ykl = y for k ≥ 2, l ≥ 1, then (2.5) holds but (ykl) is
unbounded.

Theorem 2.3. Suppose that conditions (2.1) and (2.2) are satisfied. Then for
some constant L, we have

Zminj

b−→ L, as i, j →∞ (2.6)

if and only if

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S
b−→ L, as i, j →∞, (2.7)

where the sequences (mi) and (nj) are defined in (2.3) and (2.4).

Theorem 2.4. Assume that Bm/bm ≥ 1 + δ and Cm/cm ≥ 1 + δ for m being large
enough where δ > 0. Assume that conditions (2.1), (2.2) are satisfied. Then for
some constant L, we have

Zmn
b−→ L, as m,n→∞ (2.8)
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if and only if

1

∆
mi+1nj+1
minj A

max
mi<m≤mi+1

nj<n≤nj+1

∣∣∣∣∣∣

m∑

k=mi+1

n∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣
b−→ 0, as i, j →∞, (2.9)

where the sequences (mi) and (nj) are defined in (2.3) and (2.4).

The following two corollaries characterize the strong law of large numbers for
weighted averages of a sequence of random variables with two-dimensional indices.
These corollaries are consequences of Theorem 2.3 and 2.4.

Corollary 2.5. Let (Xkl : k, l = 1, 2, . . . ) be a sequence of random variables. If
conditions (2.1) and (2.2) are satisfied, then for some constant L, we have

1

Aminj

mi∑

k=1

nj∑

l=1

aklXkl
b−→ L, as i, j →∞ a.s.

if and only if

1

∆
mi+1nj+1
minj A

mi+1∑

k=mi+1

nj+1∑

l=nj+1

aklXkl
b−→ L, as i, j →∞ a.s.,

where the sequences (mi) and (nj) are defined in (2.3) and (2.4).

Corollary 2.6. Let (Xkl : k, l = 1, 2, . . . ) be a sequence of random variables.
Assume that Bm/bm ≥ 1 + δ and Cm/cm ≥ 1 + δ for m being large enough where
δ > 0. Assume that conditions (2.1) and (2.2) are satisfied. Then for some constant
L, we have

1

Amn

m∑

k=1

n∑

l=1

aklXkl
b−→ L, as m,n→∞ a.s.

if and only if

1

∆
mi+1nj+1
minj A

max
mi<m≤mi+1

nj<n≤nj+1

∣∣∣∣∣∣

m∑

k=mi+1

n∑

l=nj+1

akl(Xkl − L)

∣∣∣∣∣∣
b−→ 0, as i, j →∞ a.s.,

where the sequences (mi) and (nj) are defined in (2.3) and (2.4).

Remark 2.7. In the above two corollaries L can be an a.s. finite random variable,
as well.

Remark 2.8. The results of this section can be generalized for sequences with d-
dimensional indices.
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3. Proofs of Theorems 2.3 and 2.4

Proof of Theorem 2.3. Let ε be a fixed positive real number. First we prove the
necessity. Assume that (2.6) is satisfied, that is, there exist integers i0, j0 such that

∣∣Zminj
− L

∣∣ < ε for all i ≥ i0, j ≥ j0,

furthermore (Zminj ) is a bounded sequence. So, if i ≥ i0, j ≥ j0, then we have
∣∣∣∣

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S − L
∣∣∣∣ =

1

∆
mi+1nj+1
minj A

∣∣∣∆mi+1nj+1
minj

S − L∆mi+1nj+1
minj

A
∣∣∣

=
1

∆
mi+1nj+1
minj A

∣∣(Smi+1nj+1
− LAmi+1nj+1

)− (Sminj+1
− LAminj+1

)

− (Smi+1nj
− LAmi+1nj

) + (Sminj
− LAminj

)
∣∣

≤ Ami+1nj+1

∆
mi+1nj+1
minj A

(
|Zmi+1nj+1−L|+ |Zminj+1−L|+ |Zmi+1nj−L|+ |Zminj−L|

)

< 4ε
Ami+1nj+1

∆
mi+1nj+1
minj A

= 4ε
Bmi+1

Bmi+1 −Bmi

Cnj+1

Cnj+1 − Cnj

≤ 16ε. (3.1)

Now, turn to the boundedness. Similarly as above
∣∣∣∣

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S

∣∣∣∣ ≤
Bmi+1

Bmi+1 −Bmi

Cnj+1

Cnj+1 − Cnj

(
|Zmi+1nj+1 |+ |Zminj+1 |

+ |Zmi+1nj
|+ |Zminj

|
)
≤ const., (3.2)

because (Zminj ) is bounded. Inequalities (3.1) and (3.2) imply (2.7).
Now, we turn to sufficiency. Assume that (2.7) is satisfied, that is, there exist

integers i0, j0 such that
∣∣∣∣

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S − L
∣∣∣∣ < ε for all i ≥ i0, j ≥ j0, (3.3)

furthermore
(

1

∆
mi+1nj+1
minj

A
∆
mi+1nj+1
minj S

)
is a bounded sequence. If i ≥ i0 and j ≥ j0,

then mi+1 > mi0 and nj+1 > nj0 , so

Zmi+1nj+1
− L

=
1

Ami+1nj+1

(Smi+1nj+1
− LAmi+1nj+1

) =
1

Ami+1nj+1

mi+1∑

k=1

nj+1∑

l=1

akl(xkl − L)

=
1

Ami+1nj+1



mi0∑

k=1

nj0∑

l=1

akl(xkl − L) +

mi+1∑

k=mi0
+1

nj+1∑

l=nj0
+1

akl(xkl − L)
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+

mi0∑

k=1

nj+1∑

l=nj0+1

akl(xkl − L) +

mi+1∑

k=mi0+1

nj0∑

l=1

akl(xkl − L)


 (3.4)

for all i ≥ i0, j ≥ j0.
Consider the first term in (3.4). Since 1

Ami+1nj+1
→ 0, as i→∞, j →∞, then

there exist integers i1 ≥ i0 and j1 ≥ j0, such that

1

Ami+1nj+1

∣∣∣∣∣

mi0∑

k=1

nj0∑

l=1

akl(xkl − L)

∣∣∣∣∣ < ε for all i ≥ i1, j ≥ j1. (3.5)

Now, turn to the secont term in (3.4). If i ≥ k, then

Bmk+1
−Bmk

Bmi+1

=
Bmk+1

−Bmk

Bmk+1

Bmk+1

Bmk+2

Bmk+2

Bmk+3

. · · · Bmi

Bmi+1

≤
(

1

2

)i−k
.

Similarly, if j ≥ l, then
Cnl+1

− Cnl

Cnj+1

≤
(

1

2

)j−l
.

Hence we get from (3.3)

1

Ami+1nj+1

∣∣∣∣∣∣

mi+1∑

k=mi0
+1

nj+1∑

l=nj0
+1

akl(xkl − L)

∣∣∣∣∣∣

=
1

Ami+1nj+1

∣∣∣∣∣∣

i∑

k=i0

j∑

l=j0

mk+1∑

s=mk+1

nl+1∑

t=nl+1

ast(xst − L)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

i∑

k=i0

j∑

l=j0

Bmk+1
−Bmk

Bmi+1

Cnl+1
− Cnl

Cnj+1

(
1

∆
mk+1nl+1
mknl A

∆mk+1nl+1
mknl

S − L
)∣∣∣∣∣∣

< ε
i∑

k=i0

(
1

2

)i−k j∑

l=j0

(
1

2

)j−l
< 4ε for all i ≥ i0, j ≥ j0. (3.6)

For the third term in (3.4) we have

1

Ami+1nj+1

∣∣∣∣∣∣

mi0∑

k=1

nj+1∑

l=nj0+1

akl(xkl − L)

∣∣∣∣∣∣

=
1

Ami+1nj+1

∣∣∣∣∣∣

i0−1∑

k=0

j∑

l=j0

mk+1∑

s=mk+1

nl+1∑

t=nl+1

ast(xst − L)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

i0−1∑

k=0

j∑

l=j0

Bmk+1
−Bmk

Bmi+1

Cnl+1
− Cnl

Cnj+1

(
1

∆
mk+1nl+1
mknl A

∆mk+1nl+1
mknl

S − L
)∣∣∣∣∣∣
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≤ 1

Bmi+1

i0−1∑

k=0

(Bmk+1
−Bmk

)

j∑

l=j0

(
1

2

)j−l
const.

≤ const.
1

Bmi+1

Bmi0

i0−1∑

k=0

Bmk+1
−Bmk

Bmi0

≤ const.
Bmi0

Bmi+1

i0−1∑

k=0

(
1

2

)i0−1−k

≤ const.
Bmi0

Bmi+1

→ 0, as i→∞.

Hence, there exists i2 ≥ i1 such that

1

Ami+1nj+1

∣∣∣∣∣∣

mi0∑

k=1

nj+1∑

l=nj0
+1

akl(xkl − L)

∣∣∣∣∣∣
< ε for all i ≥ i2, j ≥ j0. (3.7)

Similarly, for the fourth term in (3.4) we obtain that there exists j2 ≥ j1 such that

1

Ami+1nj+1

∣∣∣∣∣∣

mi+1∑

k=mi0
+1

nj0∑

l=1

akl(xkl − L)

∣∣∣∣∣∣
< ε for all i ≥ i0, j ≥ j2. (3.8)

By (3.4)–(3.8), we have

|Zmi+1nj+1
− L| < 7ε for all i ≥ i2, j ≥ j2. (3.9)

Finally, turn to the proof of boundedness.

|Zminj
| = 1

Aminj

∣∣∣∣∣
mi∑

k=1

nj∑

l=1

aklxkl

∣∣∣∣∣ =
1

Aminj

∣∣∣∣∣
i−1∑

k=0

j−1∑

l=0

∆mk+1nl+1
mknl

S

∣∣∣∣∣

=

∣∣∣∣∣
i−1∑

k=0

j−1∑

l=0

Bmk+1
−Bmk

Bmi

Cnl+1
− Cnl

Cnj

1

∆
mk+1nl+1
mknl A

∆mk+1nl+1
mknl

S

∣∣∣∣∣

≤ const.
i−1∑

k=0

Bmk+1
−Bmk

Bmi

j−1∑

l=0

Cnl+1
− Cnl

Cnj

≤ 4 · const.

This inequality and (3.9) imply (2.6). Thus the theorem is proved.

Proof of Theorem 2.4. Let ε be a fixed positive real number. First we prove the
necessity. Assume that (2.8) is satisfied, that is, there exist integers M0, N0 such
that

|Zmn − L| < ε for all m ≥M0, n ≥ N0, (3.10)

furthermore (Zmn) is a bounded sequence. Since we have

m∑

k=mi+1

n∑

l=nj+1

akl(xkl − L) = Amn(Zmn − L)−Amin(Zmin − L)
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−Amnj (Zmnj − L) +Aminj (Zminj − L),

if m > mi and n > nj , hence the ratio on the left-hand side in (2.9) is less than or
equal to

Ami+1nj+1

∆
mi+1nj+1
minj A


 max
mi<m≤mi+1

nj<n≤nj+1

|Zmn − L|+ max
nj<n≤nj+1

|Zmin − L|

+ max
mi<m≤mi+1

|Zmnj − L|+ |Zminj − L|


 . (3.11)

There exist integers i0, j0 such that if i ≥ i0 and j ≥ j0, than mi ≥ M0 and
nj ≥ N0. So (3.10) and (3.11) imply, that the ratio on the left-hand side in (2.9)
is less than

Ami+1nj+1

∆
mi+1nj+1
minj A

4ε ≤ 16ε for all i ≥ i0, j ≥ j0. (3.12)

On the other hand, since (Zmn) is a bounded sequence, so by (3.11), the ratio on
the left-hand side in (2.9) is less than or equal to

Ami+1nj+1

∆
mi+1nj+1
minj A

4 · const. ≤ 16 · const. for all i, j.

This fact and (3.12) imply (2.9).
Now we turn to sufficiency. Assume that (2.9) is satisfied. The ratio on the

left-hand side in (2.9) is greater than or equal to

1

∆
mi+1nj+1
minj A

∣∣∣∣∣∣

mi+1∑

k=mi+1

nj+1∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣
=

∣∣∣∣
1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S − L
∣∣∣∣ ,

so (2.7) is satisfied. Now, applying Theorem 2.3, we get that (2.6) is true. In the
following parts of the proof, for fixed integers m,n let i, j be integers, such that

mi < m ≤ mi+1 and nj < n ≤ nj+1.

We have

Zmn − L =
1

Amn

m∑

k=1

n∑

l=1

akl(xkl − L)

=
1

Amn

mi∑

k=1

nj∑

l=1

akl(xkl − L) +
1

Amn

m∑

k=mi+1

n∑

l=nj+1

akl(xkl − L)

+
1

Amn

m∑

k=mi+1

nj∑

l=1

akl(xkl − L) +
1

Amn

mi∑

k=1

n∑

l=nj+1

akl(xkl − L). (3.13)
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Consider the absolute values of all terms of this sum. For the first term, from (2.6)
we get that

1

Amn

∣∣∣∣∣
mi∑

k=1

nj∑

l=1

akl(xkl − L)

∣∣∣∣∣

=
Aminj

Amn
|Zminj

− L| ≤ |Zminj
− L| b−→ 0, as m,n→∞. (3.14)

We shall use the following relations for the coefficients.

∆
mi+1nj+1
minj A

Amn
=

(Bmi+1 −Bmi)(Cnj+1 − Cnj )

BmCn
≤ Bmi+1

Bmi+1

Cnj+1

Cnj+1

=
Bmi+1−1

Bmi+1

(
1 +

bmi+1

Bmi+1−1

)
Cnj+1−1

Cnj+1

(
1 +

cnj+1

Cnj+1−1

)

≤ 4

(
1 +

bmi+1

Bmi+1−1

)(
1 +

cnj+1

Cnj+1−1

)
≤ const. (3.15)

To see the above relation, we mention that

Bm−1

bm
+ 1 =

Bm−1 + bm
bm

=
Bm
bm
≥ 1 + δ,

because of the assumptions of the theorem. Therefore (bm/Bm−1) is a bounded
sequence. Similarly (cn/Cn−1) is a bounded sequence, too.

Consider the second term in (3.13). From (3.15) and (2.9) we get that

1

Amn

∣∣∣∣∣∣

m∑

k=mi+1

n∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣

≤ ∆
mi+1nj+1
minj A

Amn

1

∆
mi+1nj+1
minj A

max
mi<t≤mi+1

nj<s≤nj+1

∣∣∣∣∣∣

t∑

k=mi+1

s∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣
b−→ 0,

as m,n→∞. (3.16)

Now turn to the third and fourth terms on the left hand side of (3.13). With
notation

Φit :=
1

∆
mi+1nt
mint−1A

max
mi<s≤mi+1

∣∣∣∣∣∣

s∑

k=mi+1

nt∑

l=nt−1+1

akl(xkl − L)

∣∣∣∣∣∣

we get that

1

Amn

∣∣∣∣∣
m∑

k=mi+1

nj∑

l=1

akl(xkl − L)

∣∣∣∣∣ ≤
1

Amn

j∑

t=1

∣∣∣∣∣∣

m∑

k=mi+1

nt∑

l=nt−1+1

akl(xkl − L)

∣∣∣∣∣∣
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≤ 1

Amn

j∑

t=1

∆mi+1nt
mint−1

AΦit ≤
Bmi+1 −Bmi

Bmi+1

j∑

t=1

Cnt − Cnt−1

Cnj+1
Φit. (3.17)

But

Bmi+1
−Bmi

Bmi+1
<
bmi+1

+Bmi

Bmi+1
< 1 +

Bmi+1−1

Bmi

bmi+1

Bmi+1−1
< 1 + 2

bmi+1

Bmi+1−1
,

which is bounded as we have already seen. Furthermore, for t = 1, 2, . . . , j,

Cnt
− Cnt−1

Cnj+1
=
Cnt
− Cnt−1

Cnt

Cnt

Cnt+1

Cnt+1

Cnt+2

· · · Cnj−1

Cnj

Cnj

Cnj+1
≤
(

1

2

)j−t+1

.

Hence (3.17) implies that

1

Amn

∣∣∣∣∣
m∑

k=mi+1

nj∑

l=1

akl(xkl − L)

∣∣∣∣∣ ≤ const.
j∑

t=1

(
1

2

)j−t
Φit. (3.18)

By (2.9), Φit
b−→ 0. This and (3.18) imply that the expression on the left-hand

side in (3.18) is bounded. Moreover, there exist i0, j0 such that Φit < ε and at the
same time (1/2)t < ε for all i ≥ i0, t ≥ j0. From these facts and applying that the
sequence Φit is bounded, we get

j∑

t=1

(
1

2

)j−t
Φit =

j0∑

t=1

(
1

2

)j−t
Φit +

j∑

t=j0+1

(
1

2

)j−t
Φit

< const.
(

1

2

)j/2 j0∑

t=1

(
1

2

)j/2−t
+ 2ε < const.ε for all i ≥ i0, j ≥ 2j0.

So it follows from (3.18) that

1

Amn

∣∣∣∣∣
m∑

k=mi+1

nj∑

l=1

akl(xkl − L)

∣∣∣∣∣
b−→ 0, as m,n→∞. (3.19)

By similar arguments, for the fourth term in (3.13), we have

1

Amn

∣∣∣∣∣∣

mi∑

k=1

n∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣
b−→ 0, as m,n→∞. (3.20)

Finally (3.13), (3.14), (3.16), (3.19) and (3.20) imply (2.8). Thus the theorem is
proved.
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Abstract

This is a survey of some recent results on hyperbolic scaling limits. In
contract to diffusive models, the resulting Euler equations of hydrodynamics
develop shocks in a finite time. That is why the derivation of the macroscopic
equations from a microscopic model requires a synthesis of probabilistic and
PDE methods. In the case of two-component stochastic models with a hy-
perbolic scaling law the method of compensated compactness seems to be
the only tool that we can apply. Since the associated Lax entropies are
not preserved by the microscopic dynamics, a logarithmic Sobolev inequal-
ity is needed to evaluate entropy production. Extending the arguments of
Shearer (1994) and Serre–Shearer (1994) to stochastic systems, the nonlin-
ear wave equation of isentropic elastodynamics is derived as the hyperbolic
scaling limit of the anharmonic chain with Ginzburg–Landau type random
perturbations. The model of interacting exclusion of charged particles re-
sults in the Leroux system in a similar way. In the presence of an additional
creation-annihilation mechanism the missing logarithmic Sobolev inequality
is replaced by an associated relaxation scheme. In this case the uniqueness
of the limit is also known.
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1. Historical notes and references

The idea that the Euler equations of hydrodynamics ought to be derived from
statistical mechanics goes back to Morrey (1955). He proposed a scaling limit to
pass to the hyperbolic system of classical conservation laws when the number of
particles goes to infinity. The natural scaling of mechanical and related asymmetric
systems is hyperbolic: the microscopic time is speeded up at the same rate at which
the size of the system goes to infinity. The theory of diffusive scaling limits seems to
be more or less complete, see Kipnis–Landim (1989) for a comprehensive survey.1
Here we concentrate on the hyperbolic scaling limit of stochastic systems. Various
models are introduced, and the main ideas of several proofs are also outlined in the
next sections. You shall see that progress in this direction is rather slow, there are
many relevant open problems.
Basic principles: In theoretical physics it is commonly accepted that the equi-
librium states of the microscopic system are specified by the Boltzmann–Gibbs
formalism, and the evolved measure can be well approximated by means of such Gibbs
states with space and time dependent parameters. This principle of local equilibrium
is used then to determine the macroscopic flux of the conserved quantities of the
underlying microscopic dynamics; this is the first crucial problem in the theory of
hydrodynamic limits (HDL). However, a rigorous verification of any version of this
principle is problematic because the standard argument is based on a strong form
of the ergodic hypothesis, which amounts to a description of translation invariant
stationary states of the microscopic system as superpositions of the equilibrium Gibbs
random fields. This is certainly one of the hardest open problems of mathematics,
it is much more difficult than the question of metric transitivity of the underlying
stationary process, but it is much weaker than the claim of the principle of local
equilibrium. A second principal difficulty in the theory of hyperbolic scaling limits
comes from the complexity of the resulting macroscopic equations (conservation
laws). The breakdown of the existence of global classical solutions is quite general,
and the surviving weak solutions are usually not unique. The formation of the associ-
ated shock waves results in extremely strong fluctuations at the microscopic level,
too. Concerning terminology and basic facts on HDL we refer to the textbooks
by Spohn (1991) and Kipnis–Landim (1999), while to Hörmander (1997), Bressan
(2000) and Dafermos (2005) on PDE theory.
Deterministic models: Of course, there exist some mechanical systems that
admit explicit computations. However, the exactly solvable models of one-dimensi-
onal hard rods and coupled harmonic oscillators are not ergodic in the traditional
sense. Besides the classical ones these systems admit a continuum of conservation
laws, consequently the scaling limit of such models does not result in a closed
system of a finite set of equations for the classical conservation laws, see the papers
by Dobrushin and coworkers (1980, 1983, 1985). The treatment of more realistic

1More recent information can be found on the web site http://stokhos.shinshu-
u.ac.jp/10thSALSIS/ of the 10-th Symposium on Stochastic Analysis of Large Scale Interacting
System, Kochi (Japan) 2011.
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mechanical systems is out of question, Sinai (1988) is the only scientist who dared
to attack this issue. He claimed that the identification of the macroscopic flux does
not require the strong ergodic hypothesis, the problem is still open.
Attractive systems: To avoid the hopeless issue of strong ergodicity of me-
chanical systems, stochastic models are only considered in the rest of the related
literature on hydrodynamic limits. Appropriately chosen random effects regular-
ize the dynamics, thus there is a good chance to identify the conservation laws
and the associated stationary states of the microscopic system. The first result in
this direction is due to Rost (1981), he managed to derive certain rarefaction wave
solutions to the Burgers equation as HDL of the totally asymmetric simple exclusion
process. Following some preliminary studies by various authors, a few years later
Rezakhanlou (1991) extended his coupling technique for a large class of attractive
models. Several more recent results in this direction are treated or mentioned by
Kipnis–Landim (1989) and Bahadoran (2004). Although the appearance of shocks
is not excluded, effective coupling in attractive models implies the Kruzkov entropy
condition in a natural way, consequently the empirical process converges to the
uniquely specified weak entropy solution of the associated single conservation law.
We are mainly interested in the hydrodynamic limit of microscopic systems with
two conservation laws, these are certainly not attractive.
Entropy and HDL in a smooth regime: Random effects might regularize even
the classical dynamics in such a way that we have a description of stationary mea-
sures: translation invariant equilibrium states of finite specific entropy with respect to
a given stationary measure are all superpositions of the classical equilibrium (Gibbs)
states. As a next step, a fairly general theory of asymptotic preservation of local
equilibrium has been initiated by Yau (1991). This means that if the initial distri-
bution is close to local equilibrium in the sense of specific relative entropy, then this
property remains in force as long as the macroscopic solution is smooth enough. His
method has been extended to Hamiltonian dynamics2 with conservative noise for
continuous particle systems by Olla–Varadhan–Yau (1993). The hyperbolic (Euler)
scaling limit yields the full set of the compressible Euler equations. The basic ideas
of this approach are to be discussed in the next section.
The problem of shocks: In the case of a hyperbolic scaling limit the microscopic
system simply does not have enough time to organize itself, even the asymptotic
preservation of local equilibrium is a problematic issue in a regime of shock waves.
Therefore the separation of the slowly varying conserved quantities from the other,
rapidly oscillating ones is less transparent than in a smooth or diffusive regime.

The existence theory of parabolic equations or systems is based on the associ-
ated energy inequalities, and it is a quite natural idea of PDE theory to construct a
parabolic approximation to the hyperbolic system of conservation laws by adding
elliptic (viscid) terms to the right hand side of the equations under consideration.
Since the related energy inequalities degenerate in this small viscosity limit, the
standard compactness argument has to be replaced by a radically new technique

2The kinetic energy of the model is not the classical one because energy transport can not be
controlled in that case.
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called compensated compactness, see Hörmander (1997) or Dafermos (2005) with
several further references.

The microscopic models of hydrodynamics imitate this approach, thus the situa-
tion is quite similar. The probabilistic a priori bounds we have in a diffusive scaling
limit3 do not work any more in case of a hyperbolic scaling limit. Therefore we have
to extend the theory of compensated compactness to our microscopic systems, see
Fritz (2001, 2004, 2011), Fritz–Tóth (2004), Fritz–Nagy (2006) and Bahadoran–
Fritz–Nagy (2011). In this way we obtain convergence along subsequences to weak
solutions, and the uniqueness of the limit ought to be the consequence of some
additional information. The familiar Lax entropy inequality is only sufficient for
weak uniqueness to a single conservation law. Unfortunately, in the case of systems
the much deeper Oleinik type conditions of Bressan (2000) are required, and these
strictly local bounds are not attainable by our present probabilistic techniques.

2. The anharmonic chain

It is perhaps the simplest mechanical system that exhibits a correct physical be-
havior, it is considered as a microscopic model of one-dimensional elasticity. The
Hamiltonian of coupled oscillators of unit mass on Z reads as

H(ω) :=
∑

k∈Z
Hk(ω), Hk(ω) := p2k/2 + V (qk+1 − qk),

where ω = {(pk, qk) : k ∈ Z} denotes a configuration of the infinite system, pk, qk ∈
R are the momentum (velocity) and position of the oscillator at site k ∈ Z. In
terms of the deformation variables rk := qk+1 − qk, the equations of motion read
as

ṗk = V ′(rk)− V ′(rk−1) and ṙk = pk+1 − pk for k ∈ Z; (2.1)

in this formulation the interaction potential V needs not be symmetric. The exis-
tence of unique solutions in a space of configurations ω := {(pk, rk) : k ∈ Z} with
a sub-exponential growth is quite standard if V ′ is Lipschitz continuous, i.e. if V ′′
is bounded. The related iterative procedure shows also that the solutions of the
infinite system can be well approximated by the solutions of its finite subsystems
when the size of the finite system goes to infinity, see e.g. Fritz (2011) with further
references.

Although (2.1) is a direct lattice approximation to the p-system ∂tu = ∂xV
′(v),

∂tv = ∂xu, its convergence is rather problematic. In PDE theory (2.1) is not
considered as a stable numerical scheme for solving the p-system, thus we can not
believe in its convergence. The right way of its regularization is suggested by the
small viscosity approach, it is certainly not difficult to define stable approximation
schemes in this way. However, the theory of hydrodynamic limits goes beyond
numerical analysis as discussed below.

3See Fritz (1986), and Guo–Papanicolau–Varadhan (1988) for a more perfect treatment.
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2.1. The compressible Euler equations
(2.1) reads as a lattice system of conservation laws for the total momentum P :=∑
pk, and for the total deformation R :=

∑
rk, respectively: ∂tP = ∂tR = 0

are formal identities. Since ∂tHk(ω) = pk+1V
′(rk) − pkV

′(rk−1) is a difference
of currents, the total energy H is also preserved by the dynamics, therefore we
expect to have three hydrodynamic equations: one for momentum, one for the
deformation, and one for energy. In view of the principle of local equilibrium, the
macroscopic fluxes of these conservative quantities are to be calculated by means
of the stationary states of the dynamics.
Stationary states and thermodynamics: These are characterized by∫
L0ϕdλ = 0 for smooth local functions ϕ of a finite number of variables, where

L0ϕ :=
∑

k∈Z

(
(V ′(rk)− V ′(rk−1))

∂ϕ

∂pk
+ (pk+1 − pk)

∂ϕ

∂rk

)
(2.2)

denotes the associated Liouville operator. Assuming limV (x)/|x| = +∞ as |x| →
+∞, it is easy to check that we have a three-parameter family λβ,π,γ of translation
invariant product measures: β > 0 is the inverse temperature, π ∈ R denotes
the mean velocity, and γ ∈ R is a chemical potential. Under λβ,π,γ the marginal
Lebesgue density of any couple (pk, rk) ∼ (y, x) reads as exp(γx − βI(y, x|π) −
F (β, γ)), where I(y, x|π) := (y − π)2/2 + V (x); the normalization

F (β, γ) := log

∫∫

R2

exp (γr − βI(y, x|π)) dy dx (2.3)

is sometimes referred to as the free energy. Indeed, approximating the infinite
system by its finite subsystems, it follows immediately that these product measures
are really equilibrium states of (2.1). It is easy to see that L0 is antisymmetric
with respect to any λβ,π,γ .

Let us remark that there is a one-to-one correspondence between the parameters
(β, π, γ) and the corresponding expected values (h, u, v) of the conservative quan-
tities Hk, pk and rk with respect to λβ,π,γ . It is plain that u :=

∫
pk dλβ,π,γ = π is

the mean velocity. By a direct computation we see also that the equilibrium mean
of the internal energy Ik := I(pk, rk|π) at one site is given by χ :=

∫
Ik dλβ,π,γ =

−F ′β(β, γ), thus the equilibrium mean of the total energy Hk = p2k/2+V (rk) is just
h := χ + π2/2, while v = F ′γ(β, γ) =

∫
rk dλβ,π,γ is the mean deformation. Inte-

grating by parts we obtain
∫
V ′(rk) dλβ,π,γ = γ/β for the equilibrium expectation

of V ′. The parameters β and γ can be expressed in terms of the thermodynamical
entropy

S(χ, v) := sup {γv − βχ− F (β, γ) : β > 0, γ ∈ R} (2.4)

as follows. Since S is the convex conjugate of F , we have γ = S′v(χ, v) and β =
−S′χ(χ, v) if v = F ′γ(β, γ) and χ = −F ′β(β, γ).
The hyperbolic scaling limit: We are interested in the asymptotic behavior
of the empirical processes uε(t, x) := pk(t/ε), vε(t, x) := rk(t/ε) and hε(t, x) :=
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Hk(ω(t/ε)) if |kε − x| < ε/2, as 0 < ε → 0. Of course it is assumed that at time
zero these processes converge, at least in a weak sense to the corresponding initial
values of the hydrodynamic equations.

In view of the physical principle of local equilibrium, the macroscopic cur-
rents of the conservative quantities should be calculated by means of a prod-
uct measure of type λβ,π,γ with parameters depending on time and space. In
this framework γ/β =

∫
V ′(rk) dλβ,π,γ is the mean current of momentum, and

πγ/β =
∫
pkV

′(rk−1) dλβ,π,γ is the mean current of energy, consequently a formal
calculation results in the triplet of compressible Euler equations:

∂tu = ∂xJ(χ, v), ∂tv = ∂xu and ∂th = ∂x(uJ(χ, v)), (2.5)

where J(χ, v) := γ/β = −S′v(χ, v)/S′χ(χ, v) and χ = h− u2/2, see Chen–Dafermos
(1995) and Fritz (2001). Therefore ∂tχ = J(χ, v)∂xu and ∂tS(χ, v) = 0 along
classical solutions, but we have to keep in mind that this system develops shock
waves in a finite time.

2.2. Stochastic perturbations
As we have emphasized before, we are not able to materialize the heuristic deriva-
tion of the compressible Euler equations, the dynamics of the anharmonic chain
should be regularized by a well chosen noise. There are several plausible tricks, we
are going to consider Markov processes generated by an operator L = L0 + σ G,
where L0 is the Liouville operator, while the Markov generator G is symmetric in
equilibrium. Here σ > 0 may depend on the scaling parameter ε > 0, and εσ(ε)
is interpreted as the coefficient of macroscopic viscosity. We are assuming that
εσ(ε)→ 0 as ε→ 0, then the effect of the symmetric component σG diminishes in
the limit. Our philosophy consists in adapting the vanishing viscosity approach of
PDE theory to the microscopic theory of hydrodynamics. In a regime of shocks an
additional technical condition: εσ2(ε)→ +∞ is also needed.
Random exchange of velocities: As far as I understand, this is the weakest
but still effective conservative noise. At the bonds of Z we have independently
running clocks with exponential waiting times of parameter 1, and we exchange
the velocities at the ends of the bond when the clock rings. The generator G = Gep
of this exchange mechanism is acting on local functions as

Gepϕ(ω) =
∑

k∈Z

(
ϕ(ωk,k+1)− ϕ(ω)

)
, (2.6)

where ωk,k+1 denotes the configuration obtained from ω = {(pj , rj)} by exchanging
pk and pk+1, the rest of ω remains unchanged. It is plain that P =

∑
pk, R =

∑
rk

and the total energy H are formally preserved by Gep, and the product measures
λβ,π,γ are all stationary states of the Markov process generated by L := L0 +σ Gep
if σ > 0.

This model was introduced by Fritz–Funaki–Lebowitz (1994), where the strong
ergodic hypothesis is proven for lattice models with two conservation laws. The
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proof applies also in our case without any essential modification, see below. The
relative entropy S[µ|λ] of two probability measures on the same space is defined by
S :=

∫
log f dµ, provided that f = dµ/dλ and the integral does exist; S[µ|λ] = +∞

otherwise.4 Let µn denote the joint distribution of the variables {(pk, rk) : |k| ≤ n}
with respect to µ, as a reference measure we choose λ := λ1,0,0, and fn := dµn/dλ.

Theorem 2.1. Suppose that µ is a translation invariant stationary measure of
the process generated by L = L0 + σGep. If the specific entropy of µ is finite, i.e.
S[µn|λ] = O(n), then µ is contained in the weak closure of the convex hull of our
set {λβ,π,γ} of stationary product measures.

On the ideas of the proof: The basic steps can be outlined as follows, for tech-
nical details see Theorems 2.4 and 3.1 of our paper cited above, or an improved
version of the notes by Bernardin–Olla (2010). Since S[µn|λ] is constant in a sta-
tionary regime,

∫
L log fn dµ = 0. The contribution of L0 consists of two boundary

terms only because L0 is antisymmetric, while −Dn[µ|λ] is the essential part of the
contribution of the symmetric Gep, where Dn := −

∫
fnGep log fn dλ. Due to the

translation invariance of µ we see immediately that (1/n)Dn[µ|λ]→ 0 as n→ +∞.
Moreover, Dn ≥ 0 is a convex functional of µ, thus Dn+m ≥ Dn + Dm, whence
even Dn[µ|λ] = 0 follows for all n ∈ N. Therefore µ is symmetric with respect
to any exchange of velocities, i.e.

∫
Gepϕdµ = 0 is an identity, consequently the

stationary Liouville equation
∫
L0ϕdµ = 0 also holds true.

Let φ(p) and ψ(r) denote local functions depending only on the velocity and
the deformation variables p := {pj}, r := {rj}, respectively. If ϕk and ψk are their
translates by k ∈ Z, then

∫
φk(p)ψk(r) dµ =

∫
φk(p)ψ0(r) dµ =

1

l

l−1∑

j=0

∫
φk+j(p)ψ0(r) dµ

are identities, and the law of large numbers applies to the right hand side. For
instance we see that given r, the conditional distribution of p is exchangeable, and
it does not depend on the individual deformation variables rj , thus the conditional
expectation of any pj is an invariant and tail measurable function u ∼ π. Similarly,
the conditional variance Q of velocities defines our first parameter, the inverse
temperature β by β := 1/Q, it is an invariant function, too. Moreover, the entropy
condition implies β > 0 almost surely.

On the other hand, for ϕ = ψ(r)(pk−u) the stationary Liouville equation yields
∫
ψ(r)(V ′(rk)− V ′(rk−1) dµ =

∑

j∈Z

∫
∂ψ(r)

∂rj
(pk − u)(pj+1 − pj)) dµ.

In view of the De Finetti–Hewitt–Savage theorem, the velocities are conditionally
independent when r is given, consequently

∫
ψ(r) (V ′(rk)− V ′(rk−1)) dµ =

∫
1

β

(
∂ψ

∂rk
− ∂ψ

∂rk−1

)
dµ.

4The entropy inequality
∫
ϕdµ ≤ S(µ|λ) + log

∫
eϕ dλ is used in several probabilistic compu-

tations; ϕ = log f is the condition equality.
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Now an obvious summation trick lets the law of large numbers work, whence
∫
ψ(r)(V ′(rk)− γ) dµ =

∫
1

β

∂ψ(r)

∂rk
dµ,

where the parameter γ is again invariant and tail measurable because it is the
limit of the arithmetic averages of the V ′(rj) variables. The stationary Liouville
equation has been separated (localized) in this way, therefore the distribution of
the deformation variables can be identified. Indeed, as β does not depend on rk,
the desired statement reduces to the differential characterization of the Lebesque
measure by integrating by parts. In the case of velocities a similar argument results
in ∫

φ(p)(pk − π) dµ =

∫
1

β

∂φ(p)

∂pk
dµ,

consequently if the tail field is given, then the conditional distribution of ω =
{(pk, rk)} under µ is just λβ,π,γ .

It is interesting to note that Theorem 2.1 is not true for finite systems because
the cited theorem on exchangeable variables applies to infinite sequences only.
Physical viscosity with thermal noise: Another popular model is obtained by
adding a Ginzburg-Landau type conservative noise to the equations of velocities:

dpk = (V ′(rk)− V ′(rk−1)) dt+ σ (pk+1 + pk−1 − 2pk) dt

+
√

2σ (dwk − dwk−1), drk = (pk+1 − pk) dt, k ∈ Z,
(2.7)

where σ > 0 is a given constant, and {wk : k ∈ Z} is a family of independent
Wiener processes. Due to V ′′ ∈ L∞, the existence of unique strong solutions to
this infinite system of stochastic differential equations is not a difficult issue, see
e.g. Fritz (2001) with further references. The generator of the Markov process de-
fined in this way can again be written as L := L0 +σGp, where Gp is now an elliptic
operator. Total energy is not preserved any more, and a thermal equilibrium of
unit temperature is maintained by the noise. It is easy to check that the prod-
uct measures λπ,γ := λ1,π,γ are all stationary, thus (2.5) reduces to the p-system
(nonlinear sound equation) of elastodynamics:

∂tu = ∂xS
′(v) and ∂tv = ∂xu, that is ∂2t v = ∂2xS

′(v) (2.8)

because
∫
V ′(rk) dλπ,γ = γ = S′(v) if

∫
rk dλπ,γ = v = F ′(γ), where

S(v) := sup
γ
{γv − F (γ)}; F (γ) := log

∞∫

−∞

exp(γx− V (x)) dx.

Let us remark that both F and S are infinitely differentiable, and S′′(v) = 1/F ′′(γ)
is strictly positive and bounded.

The verification of the strong ergodic hypothesis is similar, but considerably
simpler than in the previous case:
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Theorem 2.2. Translation invariant stationary measures of finite specific entropy
are superpositions of our product measures λπ,γ .

For a complete proof see Theorem 13.1 in the notes by Fritz (2001). HDL of this
model follows easily by the relative entropy argument of Yau. At a level ε > 0 of
scaling µt,ε,n denotes the true distribution of the variables {(pk(t), rk(t)) : |k| ≤ n},
and λt,ε ∼ λπ,γ is a product measure with parameters π = πk(t, ε) and γ = γk(t, ε)
depending on space and time. We say that asymptotic local equilibrium holds true
on the interval [0, T ] if we have a family {λt,ε : t ≤ T/ε, ε ∈ (0, 1]} such that for all
τ ≤ T

lim
ε→0

sup
n≥1/ε

S[µτ/ε,ε,n|λτ/ε,ε]
2n+ 1

= 0. (2.9)

Postulate this for τ = 0, and suppose also that the prescribed initial values give
rise to a continuously differentiable solution (u, v) to (2.8) on [0, T ], T > 0. Then
the approximate local equilibrium (2.9) remains in force for τ ≤ T , at least if
the parameters πk and γk of λt,ε are chosen in a clever way, namely as they are
predicted by the hydrodynamic equations (2.8). For example, we can put πk(t, ε) :=
u(τ/ε, k/ε) and γk(t, ε) := S′(v(τ/ε, k/ε)) if t = τ/ε, but solutions to a discretized
version of (2.8) can also be used. Therefore the empirical processes uε and vε
converge in a weak sense to that smooth solution of (2.8). Indeed, the entropy
inequality implies − log λ[A]µ[A] ≤ S[µ|λ] + log 2 for any event A, and in an exact
local equilibrium λt,ε the weak law of large numbers holds true with an exponential
rate of convergence. Consequently (2.9) implies

Theorem 2.3. Under the conditions listed above we have

lim
ε→0

∞∫

−∞

ϕ(x)uε(τ, x) dx =

∞∫

−∞

ϕ(x)u(τ, x) dx

and

lim
ε→0

∞∫

−∞

ψ(x)vε(τ, x) dx =

∞∫

−∞

ψ(x)v(τ, x) dx

in probability for all continuous ϕ,ψ with compact support if τ ≤ T , where (u, v)
is the preferred smooth solution to (2.8).

The main ideas concerning the derivation of (2.9) are discussed in the next
subsection, for a complete proof see that of Theorem 14.1 in Fritz (2001). In
contrast to the result of Olla–Varadhan–Yau (1993) and other related papers, see
also Theorem 2.4 below, the statement is not restricted to the periodic setting; the
scaling limit here is considered on the infinite line. Such an extension of the original
argument is based on the observation that the boundary terms of ∂tS[µt,ε,n|λt,ε]
can be controlled by the associated Dirichlet form consisting of the volume terms
of ∂tS. The first proof in this direction is due to Fritz (1990), see also Fritz–Nagy
(2006), Bahadoran–Fritz–Nagy (2011) and Fritz (2011).

Microscopic theory of hydrodynamics 91



2.3. Derivation of the Euler equations in a smooth regime
Here we are going to outline Yau’s method for the anharmonic chain with random
exchange of velocities. The argument is similar but much more transparent than
that of Olla–Varadhan–Yau (1993). The derivation of (2.8) is easier, its main
steps are also included in the next coming calculations. Since the noise is not
strong enough to control the flux of the relative entropy, we have to formulate the
problem in a periodic setting: pk(0) = pk+n(0) and rk(0) = rk+n(0) for all k with
some n ∈ N. The evolved configuration remains periodic for all times, which means
that the system can be considered on the discrete circle of length n → +∞. The
coefficient σ > 0 can be kept fixed during the procedure of scaling because the only
role of the exchange mechanism is to ensure the strong ergodic hypothesis. At a
level ε = 1/n of scaling let µt,n denote the evolved measure, and consider the local
equilibrium distributions λt,n of type λβ,π,γ with parameters depending on space
and time: β = βk(t, n), π = πk(t, n) and γ = γk(t, n).

Theorem 2.4. Suppose that (1/n)S[µ0,n|λ0,n] → 0 as n → +∞, and the related
initial values determine a smooth solution (u, v, h) to (2.5) on the interval [0, T ] of
time such that β = −S′χ(χ, v) remains strictly positive. Then

lim
n→∞

∞∫

−∞

ψ(x)zn(t, x) dx =

∞∫

−∞

ψ(x)z(t, x) dx

in probability for all continuous ψ with compact support if t ≤ T , where (zn, z)
is any of the couples (un, u), (vn, v), (hn, h), and un(t, x) := pk(tn), vn(t, x) :=
rk(tn), hn(t, x) := Hk(tn) if |k − xn| < 1/2.

In view of the argument we have sketched before Theorem 2.3, we have to show
that if the parameters of λt,n are defined by means of the smooth solution, then
(1/n)S[µτn,n|λτn,n] → 0 as n → +∞ for all τ ≤ T , consequently the empirical
processes converge in a weak sense to that solution of (2.5).
Calculation of entropy: Let ft,n := dµt,n/dλt,n and consider the time evolution
of S[µt,n|λt,n] =

∫
log ft,n dµt,n. In the next coming calculations we are assuming

that the evolved density ft,n(ω) > 0 is a continuously differentiable function. This
hypothesis can be relaxed by means of a standard regularization procedure, see
e.g. Fritz–Funaki–Lebowitz (1994). The required regularity of the parameters is
a consequence of their construction via discretizing the macroscopic system (2.5).
By a formal computation

∂tS[µt,n|λt,n] =

∫
(∂t + L0 + σGep) log ft,n dµt,n ≤

∫
(∂t + L0)ft,n dλt,n

because
∫
ft,n dλt,n ≡ 1, L0 log ft,n = (1/ft,n)L0ft,n, and the contribution of Gep

is certainly not positive. Moreover, as L0 is antisymmetric with respect to the
Lebesgue measure, we have

∫
(∂tft,n + ft,n∂t log gt,n) dλt,n =

∫
(L0ft,n + ft,nL0 log gt,n) dλt,n = 0,
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where gt,n denotes the Lebesgue density of λt,n, consequently

S[µt,n|λt,n] ≤ S[µ0,n|λ0,n]−
t∫

0

∫
(∂s + L0) log gs,n dµs,n ds. (2.10)

On the other hand, as

log gs,n =
n−1∑

k=0

(γkrk − βkIk − F (βk, γk)) ,

where Ik := I(pk, rk|πk) = (pk − πk)2/2 + V (rk), by a direct calculation we obtain
that

∂s log gs,n =

n−1∑

k=0

(
γ̇k(rk − vk) + βkπ̇k(pk − πk)− β̇k(Ik − χk)

)
,

where "dot" indicates differentiation with respect to time.
There is a fundamental relation between the parameters β, π, γ of λn,t, namely

n−1∑

k=0

((γk−1 − γk)πk + (βkπk − βk+1πk+1)Jk + (βk+1 − βk)πk+1Jk) = 0.

As it is explained by Tóth–Valkó (2003), this identity is due to the conservation
of the thermodynamic entropy in a smooth regime, which is a basic feature of all
models with a proper physical motivation. On the other hand, it is a necessary
requirement when we evaluate the rate of production of S in order to conclude
(2.9). Indeed, we get

L0 log gs,n =

n−1∑

k=0

(γk−1 − γk)(pk − πk)

+

n−1∑

k=0

(βkπk − βk+1πk+1)(V ′(rk)− Jk) (2.11)

+

n−1∑

k=0

(βk+1 − βk)(pk+1V
′(rk)− πk+1Jk),

where vk :=
∫
rk dλt,n, πk := uk =

∫
pk dλt,n and χk :=

∫
Ik dλt,n, finally Jk =

J(χk, vk) = γk/βk :=
∫
V ′(rk) dλt,n. Notice that the local equilibrium mean of any

of the last factors on the right hand sides of (2.11) above does vanish: for instance∫
(V ′(rk)− Jk) dλt,n = 0.

The crucial step: The microscopic time t is as big as t = nτ , thus there is a
danger of explosion on the right hand side of (2.10) as n → +∞. However, due
to the smoothness of the macroscopic solution, the nonlinear functions appearing
in the sums above can be substituted by their block averages, and the celebrated
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One-block Lemma, which is the main consequence of strong ergodicity, allows us
to approximate the block averages by their canonical equilibrium expectations, see
Lemma 3.1 in Guo–Papanicolau–Varadhan (1988) or Theorem 3.5 of Fritz (2001).

The wave equation: The case of (2.8) is quite simple because βk ≡ 1 then, thus
V ′k = V ′(rk) is the only nonlinear function we are facing with. Block averages
η̄l,k := (1/l)(ηk + ηk−1 + · · · + ηk−l+1) of size l ∈ N are also periodic functions of
k ∈ Z with period n. Since

∫
V ′k dλ1,π,γ = S′(vk) = Jk if vk is the local equilibrium

mean of rk, V̄ ′l,k ≈ S′(r̄l,k) is the desired substitution, which is valid as l → +∞
after n → ∞. Presupposing |πk+1 − πk| = O(1/n) and |vk+1 − vk| = O(1/n) we
write

n−1∑

k=0

(πk − πk+1)(V ′(rk)− S′(vk)) ≈
n−1∑

k=0

(πk − πk+1)(V̄ ′l,k − S′(vk))

≈
n−1∑

k=0

(πk − πk+1)(S′(r̄l,k)− S′(vk)) ≈
n−1∑

k=0

(πk − πk+1)S′′(vk)(rk − vk).

The remainders including the squared differences coming from the expansion of
S′(r̄l,k) − S′(vk) are estimated by means of the basic entropy inequality and the
related large deviation bound; let us omit these technicalities. Comparing the
leading terms we see that

γ̇ = S′′(vk)(πk+1 − πk) and π̇k = γk − γk−1

is the right choice of the parameters because then there is a radical cancelation
on the right hand side of (2.10). Since γk = S′(vk), this system is just a lattice
approximation to (2.8), thus our conditions on the regularity of the parameters are
also justified. Summarizing the calculations above, we get a bound

S[µτ,n|λt,n] ≤ S[µ0,n|λ0,n] +
K

n

t∫

0

S[µs,n|λs,n] ds+Rn(T, l) (2.12)

such that Rn(T, l) → 0 as n → +∞ and then l → +∞, whence S[µτn,n|λτn,n] =
o(n) follows by the Grönwall inequality if τ ≤ T .
The general case: It is a bit more complicated then the case of the p-system,
the required substitutions read as

V ′(rk) ≈ J(Īl,k, r̄l,k) ≈ Jk + J ′χ(χk, vk)(Īl,k − χk) + J ′v(χk, vk)(r̄l,k − vk),

and

pk+1V
′(rk) ≈ p̄l,k+1J(Īl,k, r̄l,k) ≈ πk+1J(χk, vk)

+ J(χk, vk)(p̄l,k+1 − πk+1)

+ πk+1J
′
χ(χk, vk)(Īl,k − χk) + πk+1J

′
v(χk, vk)(r̄l,k − vk).
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These steps are justified by the strong ergodicity of the dynamics (One-block
Lemma), provided that V ′(rk) and πk+1V

′(rk) can be replaced by their block av-
erages. This second condition turns out to be a consequence of the smoothness of
the macroscopic solution, see the construction below. The second order quadratic
terms of the expansions above are estimated by means of the entropy inequality,
we only need standard large deviation bounds.

To minimize S[µt,n|λt,n], the parameters of λt,n should be defined by means of
a discretized version of the Euler equations. In fact we set

πk = uk, γk = S′v(χk, vk), βk = −S′χ(χk, vk),

where
v̇k = uk+1 − uk, u̇k = J(χk+1, vk+1)− J(χk, vk)

and χ̇k = J(χk, vk)(uk+1 − uk), whence

βkπ̇k = (γk − γk−1) + (βk−1 − βk) Jk−1,

γ̇k = (βk+1πk+1 − βkπk)J ′v(χk, vk) + (βk − βk+1)J ′v(χk, vk),

β̇k = (βkπk − βk+1πk+1)J ′χ(χk, vk) + (βk+1 − βk)J ′χ(χk, vk)

follow by a direct computation.
As a consequence of these calculations, we see the expected cancelation of the

sum of all leading terms on the right hand side of (2.10), while the remainders can be
estimated by means of the entropy inequality. The summary of these computations
results in (2.12), thus the proof can be terminated as it was outlined in the previous
two paragraphs.

3. Compensated compactness via artificial viscosity

As we have already explained, randomness in the above modifications of the anhar-
monic chain implies convergence to a classical solution of the macroscopic system
(2.5) or (2.8) by the strong ergodic hypothesis, but in a regime of shocks much
more information is needed to pass to the hydrodynamic limit. Effective coupling
techniques that we have for attractive models are not available in the case of two-
component systems, compensated compactness seems to be the only tool we can
use. The microscopic dynamics can not admit non-classical conservation laws be-
cause it should be ergodic in the strong sense, therefore a nontrivial Lax entropy
is not conserved by the microscopic dynamics. In general, the flux of a Lax en-
tropy exhibits a non-gradient behavior, but the standard spectral gap estimates of
Varadhan (1994) are not sufficient for its control in this case, a logarithmic Sobolev
inequality (LSI) is needed. The effective LSI is due to the strong artificial viscosity
of our next model, we will consider a Ginzburg–Landau type stochastic system:

dpk = (V ′(rk)− V ′(rk−1)) dt+ σ(ε) (pk+1 + pk−1 − 2pk) dt

+
√

2σ(ε) (dwk − dwk−1)
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and

drk = (pk+1 − pk) dt+ σ(ε) (V ′(rk+1) + V ′(rk−1)− 2V ′(rk)) dt

+
√

2σ(ε) (dw̃k+1 − dw̃k),

where {wk : k ∈ Z} and {w̃k : k ∈ Z} are independent families of independent
Wiener processes. Of course, the macroscopic viscosity εσ(ε) vanishes as ε → 0,
but we also need εσ2(ε)→ +∞ to suppress extreme fluctuations of Lax entropies.
To have a standard existence and uniqueness theory for this infinite system of
stochastic differential equations, we are assuming that V ′′ is bounded. The gener-
ator of the Feller process defined in this way reads as L = L0 + σGp + σGr, where
Gr is also elliptic. Additional conditions on the interaction potential V are listed
below.

3.1. Conditions and main result
Just as in the case of (2.7), the same {λπ,γ : π, γ ∈ R} is the family of stationary
product measures, and the converse statement, i.e. the strong ergodic hypothesis
can be proven in the same way. Therefore again (2.8) is expected to govern the
macroscopic behavior of the system under hyperbolic scaling. The first crucial
problem is the evaluation of L0h when h is a Lax entropy, we have to show that
its dominant part is a difference of currents. These probabilistic calculations are
based on a logarithmic Sobolev inequality. In view of the Bakry–Emery criterion,
see Deuschel–Stroock (1989), we have to assume that V is strictly convex, i.e. V ′′
is bounded away from zero. On the other hand, the existence of weak solutions to
(2.8) requires the condition of genuine nonlinearity: the third derivative S′′′ can
not have more than one root, see DiPerna (1985), Shearer (1994) and Serre–Shearer
(1994). In terms of V this is a consequence of one of the following assumptions.

(i) V ′ is strictly convex or concave on R.
(ii) V is symmetric and V ′(r) is strictly convex or concave for r > 0.
The very same properties of the flux S′ follow immediately by the theory of

total positivity. Of course, small perturbations of such potentials also imply the
required genuine nonlinearity of the macroscopic flux, V (r) := r2/2−a log cosh(br)
is an explicitly solvable example if a > 0 is small enough.

A technical condition: asymptotic normality requires the existence of positive
constants α, V ′′+ , V ′′− and R such that |V ′′(r)−V ′′+ | ≤ e−αr if r ≥ R, while |V ′′(r)−
V ′′− | ≤ eαr if r ≤ −R.

Since we are not able to prove the uniqueness of the hydrodynamic limit, our
only hypothesis on the initial distribution is an entropy bound: S[µ0,ε,n|λ0,0] =
O(n).

Let Pε denote the distribution of the empirical process (uε, vε), then the simplest
version of our main result reads as:

Theorem 3.1. Pε is a tight family with respect to the weak local topology of the
L2 space of trajectories, and its limit distributions are all concentrated on a set of
weak solutions to (2.8).
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The notion of weak convergence changes from step to step of the argument. We
start with the Young measure of the block-averaged process, and at the end we
get tightness in the strong local Lp(R2

+) topology for p < 2; R2
+ := R+ × R. This

strong form of our result is proven for a mollified version (ûε, v̂ε) of the empirical
process, it is defined a bit later, after (3.2). Compensated compactness is the most
relevant keyword of the proofs.

3.2. On the ideas of the proof
We follow the argumentation of the vanishing viscosity approach. In a concise form
(2.8) can be written as ∂tz + ∂xΦ(z) = 0, where z := (u, v), Φ(z) := −(S′(v), u),
and its viscid approximation reads as ∂tzδ + ∂xΦ(zδ) = δ ∂2xzδ. This parabolic
system admits classical solutions if δ > 0, and the original hyperbolic equation can
be solved by sending δ → 0. The argument is not trivial at all, see e.g. Dafermos
(2005). Our task is to extend this technology to microscopic systems.
Energy inequality: Observe first that the space integral of W (z) := u2/2 +S(v)
is constant along classical solutions to the wave equation (2.8), moreover its viscid
approximation satisfiess

∂tW (zδ) = ∂x (uδS
′(vδ)) + δ ∂x (uδ∂xuδ + S′(vδ)∂xvδ)

− δ
(
(∂xuδ)

2 + S′′(vδ)(∂xvδ)
2
)
.

Since S is strictly convex, we have got a standard energy inequality: an L2 bound
for δ1/2 ∂xzδ. In a regime of shocks, however, this bound does not vanish as δ → 0,
consequently a strong compactness argument is not available.
Young family: Nevertheless, a very weak form of compactness holds true at the
level of the Young measure. The approximate solution zδ can be represented by a
measure Θδ on R2

+ × R2 such that dΘδ := dt dx θδt,x(dz), where θδt,x is the Dirac
mass sitting at the actual value zδ(t, x) of zδ. Since zδ is locally bounded in L2(R2

+),
we can select weakly convergent sequences from Θδ as δ → 0. Of course, the Young
family {θt,x : (t, x) ∈ R2

+} of a limiting measure Θ of Θδ needs not be Dirac, thus we
only have convergence to measure valued solutions: ∂tθt,x(z) + ∂x(θt,x(Φ(z))) = 0
in the sense of distributions, where the abbreviation θt,x(ϕ(z)) :=

∫
ϕ(z) θt,x(dz) is

used; we write θt,x(z) if ϕ(z) ≡ z. F The identification of measure valued solutions
as weak solutions is the subject of the theory of compensated compactness, in fact
the Dirac property of the limiting Young measure should be verified.
Compensated factorization: It is crucial that (2.8) admits a rich family of Lax
entropy pairs (h, J), these are characterized by the conservation law: ∂th(z) +
∂xJ(z) = 0 along classical solutions. Let us now turn to the viscid approximation.
We see that entropy production

Xδ := ∂th(zδ) + ∂xJ(zδ) = δ ∂x(h′u∂xuδ + h′v∂xvδ)

− δ
(
h′′uu(∂xuδ)

2 + 2h′′uv∂xuδ ∂xvδ + h′′vv(∂xvδ)
2
)

decomposes as Xδ = Yδ + Zδ, where Yδ vanishes in H−1, while Zδ is bounded in
the space of measures. As a first consequence we get the Lax entropy inequality:
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Xδ ≤ 0 as a distribution if h is convex, but the famous Div-Curl Lemma is more
relevant at this point. Let θt,x denote the Young family of a weak limit point Θ of
the sequence of Young measures Θδ as δ → 0, then for couples (h1, J1) and (h2, J2)
of Lax entropy pairs we have a compound factorization property:

θt,x(h1J2)− θt,x(h2J1) = θt,x(h1)θt,x(J2)− θt,x(h2)θt,x(J1) (3.1)

almost everywhere on R2. In his pioneering papers Ronald DiPerna managed to
show that (3.1) implies the Dirac property of the Young family, at least if the
sequence of approximate solutions is uniformly bounded, see DiPerna (1985) with
further references.
The microscopic evolution: The Ito lemma yields a parabolic energy inequality

∂tEHk (ω(t)) = E (pk+1V
′(rk)− pkV ′(rk−1))

+ σ(ε)E (pk (pk+1 + pk−1 − 2pk))

+ σ(ε)E (V ′(rk)(V ′(rk+1) + V ′(rk−1)− 2V ′(rk)))

at the microscopic level. If εσ(ε) remains positive as ε → 0, then the tightness in
the local topology of L2(R) of the distributions of the time averaged process might
follow from this bound in much the same way as it is done in PDE theory.5 However,
εσ(ε) → 0 as ε → 0, thus the bound degenerates in the limit, consequently there
is no hope to get tightness in L2. That is why we say that a direct compactness
argument does not work, the method of compensated compactness is needed.

In our case a difficult step of the usual non-gradient analysis can be avoided by
considering the Lax entropy pairs (h, J) as functions of the block averaged empirical
process (ûε, v̂ε). Entropy production Xε := ∂th(ûε, v̂ε) + ∂xJ(ûε, v̂ε) is defined as
a generalized function, without the condition εσ2(ε)→ +∞ its fluctuations might
explode in the limit even if we define the empirical processes in terms of block
averages. The main difficulty is to identify the macroscopic flux in the microscopic
expression of L0h, and to show that the remainders do vanish in the limit. This is
achieved by replacing block averages of the microscopic currents of momenta with
their equilibrium expectations, a logarithmic Sobolev inequality plays a decisive
role in the computations. This substitution transforms the evolution equation of h
into a fairly transparent form: we can recover essentially the same structure which
appears when the vanishing viscosity limit for (2.8) is performed. At this point
can we launch the stochastic theory of compensated compactness, and the proof is
terminated by referring to known results from PDE theory. Unfortunately we can
not find bounded, positively invariant regions in stochastic situations as DiPerna
(1985) did at the PDE level, but the results of Shearer (1994) and Serre–Shearer
(1994) on an Lp theory of compensated compactness are applicable.

5In case of the diffusive models of Fritz (1986) and its continuations, an energy inequality
implies this kind of tightness of the process in the space of trajectories. Guo–Papanicolau–
Varadhan (1988) had raised the problem to the level of measures µt, and instead of energy and
the H+1 norm of configurations, the relative entropy and its rate of production (Dirichlet form)
are estimated to get the required a priori bounds including an energy inequality.
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3.3. Stochastic theory of compensated compactness
Most computations involve mesoscopic block averages of size l = l(ε) such that

lim
ε→0

l(ε)

σ(ε)
= 0 and lim

ε→0

εl3(ε)

σ(ε)
= +∞.

For sequences ξk indexed by Z we define two kinds of block averages:

ξ̄l,k :=
1

l

l−1∑

j=0

ξk−j and ξ̂l,k :=
1

l2

l∑

j=−l
(l − |j|) ξk+j . (3.2)

For example, V̄ ′l,k denotes the arithmetic mean of the sequence ξj = V ′(rj). We
start calculations with the “smooth” averages ξ̂l,k, the arithmetic means appear in
canonical expectations. The corresponding empirical process (ûε, v̂ε) and (ūε v̄ε)
are defined according to ûε(t, x) := p̂l,k(t/ε) if |εk − x| < ε/2, and so on. Since ûε
and v̂ε are bounded in a mean sense in L2(dt, dx), the distributions P̂ε of the Young
measure Θ form a tight family; these are now defined as dΘε := dt dx θεt,x(du),
where θεt,x is the Dirac mass at the actual value of (ûε, v̂ε). The Young family
controls the asymptotic behavior of various functions of the empirical processes.

Given a Lax entropy pair (h, J), the associated entropy production is defined
as

Xε(ϕ, h) := −
∞∫

0

∞∫

−∞

(h(ûε, v̂ε)ϕ
′
t(t, x) + J(ûε, v̂ε)ϕ

′
x(t, x)) dx dt,

where the test function ϕ is compactly supported in the interior of R2
+. We

call an entropy pair (h, J) well controlled if its entropy production decomposes
as Xε(ϕ, h) = Yε(ϕ, h) + Zε(ϕ, h), and we have two random functionals Aε(φ, h)
and Bε(φ, h) such that

|Yε(ψφ, h)| ≤ Aε(φ, h)‖ψ‖+ and |Zε(ψ, h)| ≤ Bε(φ, h)‖ψ‖,

where ‖ · ‖ is the uniform norm, while ‖ · ‖+ denotes the norm of the Sobolev space
H+1. Here the test function φ is compactly supported in the interior of R2

+, its role
is to localize the problem. The factors Aε and Bε do not depend on ψ, moreover
limEAε(φ, h) = 0 and lim supEBε(φ, h) < +∞ as ε→ 0.

Proposition 3.2. If (h1, J1) and (h2, J2) are well controlled entropy pairs, then
(3.1) holds true with probability one with respect to any limit distribution of P̂ε that
we obtain as ε→ 0.

This is the stochastic version of the Div-Curl Lemma above. The proof is
not difficult, by means of the Skorohod Embedding Theorem it can be reduced to
the original, deterministic version, see Fritz (2001), Fritz (2004) and Fritz–Tóth
(2004). The main problem is the verification of its conditions, the logarithmic
Sobolev inequality plays an essential role here.
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3.4. The a priori bounds
Following Fritz (1990), our a priori bounds are all based on the next inequality that
controls relative entropy and its rate of production. The initial condition implies
that

S[µt,ε,n|λ0,0] + σ(ε)

t∫

0

D[µs,ε,n|λ0,0] ds ≤ C
(
t+
√
n2 + σ(ε)t

)

for all t, n, ε with the same constant C, where D is the Dirichlet form, it is due to
the elliptic perturbation of the anharmonic chain:

D[µt,ε,n|λ0,0] :=
n−1∑

k=−n

∫
(∇1∂k

√
fn)2 dλ+

n−1∑

k=−n

∫
(∇1∂̃k

√
fn)2 dλ,

where ∇lξk := (1/l)(ξk+l − ξk), fn := dµt,ε,n/dλ0,0, ∂k := ∂/∂pk and ∂̃k := ∂/∂rk.
This is the consequence of a system of differential inequalities:

∂tSn + 2σ(ε)Dn ≤ K
(
Sn+1 − Sn + σ(ε)

√
Sn+1 − Sn

√
Dn+1 −Dn

)
,

where Sn := S[µt,ε,n|λ0,0] and Dn := D[µt,ε,n|λ0,0] for brevity. For a proof of this
local entropy bound see Fritz (2011) with further references.
LSI: The logarithmic Sobolev inequality we are going to use, can be stated as
follows. Given r̄l,k = v, let µvl,k and λvl,k denote the conditional distributions of the
variables rk, rk+1, ..., rk+l−1 with respect to µ and λ0,0, and set fvl,k := dµvl,k/dλ

v
l,k,

then ∫
log fvl,k dµ

v
l,k ≤ l2Clsi

k+l−2∑

j=k

∫ (
∇1∂̃k(fvl,k)1/2

)2
dλvl,k

for all µ, v, k, l with a universal constant Clsi depending only on V . Of course, a
similar inequality holds true for the conditional distributions of momenta. Com-
bining this with the standard entropy inequality

∫
ϕdµ ≤ S[µ|λ] + log

∫
eϕ dλ, the

calculation of expectations reduces to large deviation bounds for the canonical dis-
tributions of the equilibrium measure λ0,0. The most important consequence of
the local entropy bound and this LSI is the evaluation of the microscopic current
of momentum as follows:

∑

|k|<n

t∫

0

∫ (
V̄ ′l,k − S′(r̄l,k)

)2
dµs,ε ds ≤ C1

(
nt

l
+
l2
√
n2 + σ(ε)t

σ(ε)

)
.

Similar bounds control the differences r̄l,k+l − r̄l,k and r̂l,k − r̄l,k. Later on the
validity of such a bound will be indicated as V̄ ′l,k ≈ S′(r̄l,k), r̄l,k+l ≈ r̄l,k, and so
on.
Entropy flux: Finally, let us outline the crucial step of the evaluation of entropy
production at a heuristic level. Consider a Lax entropy h = h(u, v) with flux
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J = J(u, v) and expand J . The second order terms of the Lagrange expansion can
be neglected, thus we have

X0,k := L0h(p̂l,k, r̂l,k) + J(p̂l,k+1, r̂l,k+1)− J(p̂l,k, r̂l,k)

≈ h′u(p̂l,k, r̂l,k)(V̂ ′l,k − V̂ ′l,k−1) + h′v(p̂l,k, r̂l,k)(p̂l,k+1 − p̂l,k)

+ J ′u(p̂l,k, r̂l,k)(p̂l,k+1 − p̂l,k) + J ′v(p̂l,k, r̂l,k)(r̂l,k+1 − r̂l,k).

Since h′u(u, v)S′′(v) + J ′v(u, v) = h′v(u, v) + J ′u(u, v) = 0,

X0,k ≈ h′u(p̂l,k, r̂l,k)(V̂ ′l,k − V̂ ′l,k−1)− h′u(p̂l,k, r̂l,k)S′′(r̂l,k)(r̂l,k+1 − r̂l,k).

Observe now that ξ̂l,k+1 − ξ̂l,k = (1/l)(ξ̄l,k+l − ξ̄l,k), thus the substitution V̄ ′l,k ≈
S′(r̄l,k) results in l X0,k ≈ 0 as

l X0,k ≈ h′u(p̂l,k, r̂l,k) (S′(r̄l,k−1+l)− S′(r̄l,k−1)− S′′(r̂l,k)(r̄l,k+l − r̄l,k)) .

Of course, the precise computation is much more complicated because in the
formula Xε of entropy production the terms X0,k have a factor 1/ε. In fact,
(εl(ε)σ(ε))−1 is the order of the replacement error; that is why we need εσ2(ε)→
+∞ and the sharp explicit bounds provided by the logarithmic Sobolev inequality.

4. Relaxation of interacting exclusions

We consider ±1 charges in an electric field, positive charges jump to the right on Z,
negative charges move to the left with unit jump rates in both cases such that two
or more particles can not coexist at the same site. There is an interaction between
these processes: if charges of opposite sign meet, then they jump over each other at
rate 2. The configurations are doubly infinite sequences ωk ∈ {−1, 0, 1} indexed by
Z, ωk = 0 indicates an empty site, and ηk := ω2

k denotes the occupation number.
The generator of the process is acting on local functions ϕ as

L0ϕ(ω) =
1

2

∑

k∈Z
(ηk + ηk+1 + ωk − ωk+1)(ϕ(ωk,k+1)− ϕ(ω));

ω → ωk,k+1 indicates the exchange of ωk and ωk+1. This most interesting model
had been introduced by Tóth–Valkó (2003), where its HDL in a smooth regime is
demonstrated, too. The total charge P =

∑
ωk and particle number R =

∑
ηk

are obviously preserved by the evolution, and the associated family of transla-
tion invariant stationary product measures {λu,ρ} can be parametrized so that∫
ωk dλu,ρ = u and

∫
ηk dλu,ρ = ρ. Conservation of ω and η means that they are

driven by currents, i.e. L0ωk = jωk−1 − jωk and L0η = jηk−1 − jηk, where

jωk := (1/2) (ηk + ηk+1 − 2ωkωk+1 + ωkηk+1 − ηkωk+1 + ηk − ηk+1),

jηk := (1/2) (ωk + ωk+1 − ωkηk+1 − ηkωk+1 + ηk − ηk+1).
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Since
∫
jωk dλu,ρ = ρ−u2 and

∫
jηk dλu,ρ = u−uρ, the principle of local equilibrium

suggests that under hyperbolic scaling a version of the Leroux system:

∂tu+ ∂x(ρ− u2) = 0 and ∂tρ+ ∂x(u− uρ) = 0 (4.1)

governs the macroscopic evolution. The strong ergodic hypothesis can easily be
proven by a standard entropy argument. In a regime of shock waves the method
of compensated compactness is applied to derive the Leroux system; therefore an
additional stirring mechanism:

Geϕ(ω) :=
∑

k∈Z

(
ϕ(ωk,k+1)− ϕ(ω)

)

is needed to regularize the process. The full generator reads as L := L0 + σ(ε)Ge,
and our usual conditions εσ(ε)→ 0 and εσ2(ε)→ +∞ are assumed.

The statement is similar to the case of isentropic elastodynamics, the proof is
based on the logarithmic Sobolev inequality what we have for the stirring gener-
ator Ge, see Fritz–Tóth (2004), where HDL is proven in a periodic setting. The
extension of this result to general initial values is explained by Fritz–Nagy (2006),
the optimal version concerns the mollified empirical processes ûε(t, x) := ω̂l,k(t/ε)
and ρ̂ε(t, x) := η̂l,k(t/ε) if |εk − x| < ε/2, where the block size l = l(ε) is the same
as in Section 3.

Theorem 4.1. The distributions of our empirical processes form a tight family
with respect to the strong local topology of L1(R2

+), and any limit distribution of
(ûε, ρ̂ε) is concentrated on a set of weak solutions to (4.1). These weak solutions
satisfy the Lax entropy condition, too.

A uniqueness theorem for the Leroux system requires only a local bound on the
total variation of the weak solution we have constructed, nevertheless we are not
able to prove the uniqueness of the hydrodynamic limit.

4.1. Creation and annihilation of charges
In the paper Fritz–Nagy (2006) it was shown that an additional spin-flip mechanism
relaxes the Leroux system to the Burgers equation ∂tρ+κ ∂x(ρ−ρ2) = 0 even in the
case of shocks, where κ = 0 in the completely symmetric case. The replacement u ≈
κρ is due to a second logarithmic Sobolev inequality. The following modification of
the above process of interacting exclusions is a caricature of electrophoresis, and it
is interesting also from the point of view of mathematics because the PDE method
of relaxation schemes is reformulated for the microscopic dynamics.
The model: Imagine that when two particles of opposite charge collide, then
instead of jumping over each other, they may kill each other and disappear, while
at two neighboring empty sites a couple (+1,−1) can be created. The action
ω → ωk+ of creation at the bond b = (k, k + 1) means that (ωk, ωk+1) → (1,−1)
if ωk = ωk+1 = 0, while annihilation ω → ωk− is defined by (ωk, ωk+1) → (0, 0)
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if ωk = 1 and ωk+1 = −1; at other sites the configuration is not altered. The
generator of this process of interacting exclusions with creation and annihilation
reads as L∗ = L0 + β(ε)G∗, where

G∗ϕ(ω) :=
∑

k∈Z
(1− ηk)(1− ηk+1)(ϕ(ωk+)− ϕ(ω))

+
1

4

∑

k∈Z
(ηk + ωk)(ηk+1 − ωk+1)(ϕ(ωk−)− ϕ(ω)).

Since we do not want to postulate smoothness of the macroscopic solution, the
process should be regularized by stirring, thus the effective generator becomes
L := L∗ + σ(ε)Ge. The factor σ = σ(ε) is the same as above, and it is natural to
assume that β is a positive constant because it is the parameter of the basic model.

Creation-annihilation violates the conservation of particle number, only total
charge

∑
ωk is preserved by our stochastic dynamics. A product measure λu,ρ

will be stationary if λu,ρ[ωk = 0, ωk+1 = 0] = λu,ρ[ωk = 1, ωk+1 = −1], that is
4(1− ρ)2 = (ρ2 − u2), whence

ρ = F (u) := (1/3)(4−
√

4− 3u2) (4.2)

is the criterion of stationarity because the second root:

F̃ (u) := (1/3)(4 +
√

4− 3u2) ≥ 5/3 > 1.

Therefore our one-parameter family {λ∗u : |u| < 1} of stationary product measures
is defined by λ∗u := λu,F (u). Of course,

∫
ωk dλ

∗
u = u and

∫
ηk dλ

∗
u = F (u), thus∫

jωk dλ
∗
u = F (u) − u2. On the other hand, G∗ωk = jω∗k−1 − jω∗k is a difference of

currents,

jω∗k (ω) := (1/4)(ηk + ωk)(ηk+1 − ωk+1)− (1− ηk)(1− ηk+1), (4.3)

and
∫
jω∗k dλu,ρ = C(u, ρ) := (3/4)(ρ−F (u))(F̃ (u)−ρ), thus the equilibrium expec-

tation of jω∗k does vanish, consequently the principle of local equilibrium predicts

∂tu(t, x) + ∂x(F (u)− u2) = 0 (4.4)

as the result of the hyperbolic scaling limit. Note that the flux is neither convex
nor concave, thus the structure of shock waves may be rather complex.

It is not a surprise that the contribution of the creation-annihilation mecha-
nism does not appear in the limit. The generator G∗ is symmetric in L2(dλ∗u),
consequently a diffusive scaling would be needed to recover its action.
Main result. Assume that the initial distributions satisfy

lim
ε→0

ε
∑

k∈Z
ϕ(εk)ωk(0) =

∞∫

−∞

ψ(x)u0(x) dx
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in probability for all compactly supported ϕ ∈ C(R). We say that a measurable
and bounded u = u(t, x) is a weak entropy solution to (4.4) with initial value u0 if

∞∫

0

∞∫

−∞

(ψ′t(t, x)u(t, x) + ψ′x(t, x)(F (u(t, x))− u2(t, x))) dx dt

+

∞∫

−∞

ψ(0, x)u0(x) dx = 0,

and for all convex entropy pairs (h, J) we have the Lax inequality:

−Xε(ψ, h) =

∞∫

0

∞∫

−∞

(ψ′t(t, x)h(u) + ψ′x(t, x)J(u)) dx dt ≥ 0 (4.5)

whenever 0 ≤ ψ ∈ C1(R2) is compactly supported in the interior of R2
+. Entropy

pairs of (4.4) are characterized by J ′(u) = (F ′(u) − 2u)h′(u), that is ∂th(u) +
∂xJ(u) = 0 along classical solutions. Our effective empirical process ûε is now
defined as ûε(t, x) := ω̂l,k(t/ε) if |εk − x| < ε/2; the mesoscopic block size l = l(ε)
is just as big as it was in the previous section.

In the paper by Bahadoran–Fritz–Nagy (2011) we prove:

Theorem 4.2. The above conditions imply that

lim
ε→0

E

τ∫

0

r∫

−r

|u(t, x)− ûε(t, x)| dx dt = 0

for all r, τ > 0, where u is the uniquely specified weak entropy solution to (4.4) with
initial value u0.

Let us remark that the coefficient β > 0 needs not be a constant, it is sufficient
to assume that σ(ε)β(ε)→ +∞ and εσ2(ε)β−4(ε)→ +∞ as ε→ 0.

4.2. Relaxation in action
The proof follows the standard technology of the stochastic theory of compensated
compactness, the entropy production for entropy pairs of (4.4) has to be evaluated.
Here the uniqueness of the hydrodynamic limit is a consequence of the Lax entropy
inequality, see Chen–Rascle (2000), thus lim supXε(ψ, h) ≤ 0 is also needed for
ψ ≥ 0 and convex h. We are facing with the computation of four basic quantities,
besides jωk , j

η
k and jω∗k ,

G∗ηk = (1− ηk)(1− ηk+1)− (1/4)(ηk + ωk)(ηk+1 − ωk+1)

+ (1− ηk−1)(1− ηk)− (1/4)(ηk−1 + ωk−1)(ηk−1 − ωk−1)
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should also be evaluated. Since G∗ηk = −jω∗k−1 − jω∗k , we have
∫

G∗ηk dλu,ρ = (3/2)(ρ− F (u))(ρ− F̃ (u)) = −2C(u, ρ). (4.6)

The macroscopic flux: The fundamental local bound on relative entropy and its
rate of production holds true also in this case, see Lemma 3.1 of our paper, thus
the logarithmic Sobolev inequality involving the Dirichlet form of Ge applies, too.
In this way we can estimate canonical expectations given ω̄l,k and η̄l,k, see Lemmas
3.3–3.5 in Bahadoran–Fritz–Nagy (2011); the explicit upper bounds are the same
as in Section 3.4. Therefore the replacements

j̄ωl,k ≈ η̄l,k − (ω̄l,k)2, j̄ηl,k ≈ ω̄l,k − ω̄l,kη̄l,k, j̄ω∗l,k ≈ C(ω̄k,l, η̄l,k) (4.7)

and η̄∗l,k ≈ −2C(ω̄k,l, η̄l,k), where η∗j := G∗ηj for convenience, are all allowed,
moreover ω̄l,k+l ≈ ω̄l,k ≈ ω̂l,k and η̄l,k+l ≈ η̄l,k.
Entropy production: Since G∗ is reversible, the critical component of entropy
production is induced by L0. Let us consider now an entropy pair (h, J) of (4.4),
i.e. J ′(u) = (F ′(u) − 2u)h′(u). In view of the asymptotic equivalence relations
listed above, we obtain that

X∗0,k := L0h(ω̂l,k) + J(ω̂l,k+1)− J(ω̂l,k) ≈ h′(ω̂l,k)(̂jωl,k−1 − ĵωl,k)

+ (F ′(ω̂l,k)− 2ω̂l,k)h′(ω̂l,k)(ω̂l,k+1 − ω̂l,k)

≈ (1/l)h′(ω̂l,k)
(
η̄l,k − η̄l,k+l − (ω̄l,k)2 + (ω̄l,k+l)

2
)

+ (1/l)h′(ω̂l,k) (F ′(ω̄l,k)− ω̄l,k − ω̄l,k+l) (ω̄l,k+l − ω̄l,k)

≈ (1/l)h′(ω̂l,k) (η̄l,k − η̄l,k+l + F ′(ω̄l,k)(ω̄l,k+l − ω̄l,k)) ,

whence the required l X∗0,k ≈ 0 would follow by the substitution η̄l,k ≈ F (ω̄l,k).
Since we do not have the appropriate logarithmic Sobolev inequality, another tool
must be found.
Relaxation schemes: Observe that η̄l,k appears with a negative sign in the for-
mula of G∗η̄l,k, see also (4.6), thus there is a hope to experience relaxation, which
results in C(ω̄l,k, η̄l,k)→ 0 as ε→ 0. Although the evolution equations of ω̄l,k and
η̄l,k are rather complicated, the following couple of approximate identities reflects
quite well the underlying structure. Applying the substitution relations (4.7) and
neglecting obviously vanishing terms, we get

dũε + ∂x(ρ̃ε − ũ2ε) dt+ β ∂xC(ũε, ρ̃ε) dt ≈ 0,

dρ̃ε + ∂x(ũε − ũερ̃ε) + (2β/ε)C(ũε, ρ̃ε) dt ≈ 0,

where ũε ∼ ω̄l,k and ρ̃ε ∼ η̄l,k by mollification. Since

(ρ− F (u))C(u, ρ) ≥ Ψ(u, ρ) := (1/2) (ρ− F (u))
2
,

even the trivial Liapunov function Ψ can be applied to conclude that η̄l,k ≈ F (ω̄l,k).
This trick works well if εσ2(ε)β2(ε) → +∞ as ε → 0, a slightly better result can
be proven by replacing Ψ with a clever Lax entropy, see Bahadoran–Fritz–Nagy
(2011).
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5. Concluding remarks

In spite of some progress in the stochastic theory of compensated compactness,
there are many relevant open problems whose solution seems to be hard or even
hopeless at this time.
The Lax inequality: The dominant term of entropy production Xε(ψ, h) is gen-
erated by the elliptic components of L = L0+σ(ε)Gp+σ(ε)Gr. It is bounded in the
space of measures, and the contribution of Gp is obviously not positive if ψ ≥ 0 and
h is convex. Our naive large deviation technique is not strong enough to exploit
that V is convex. The Lax inequality restricts the set of limiting weak solutions,
but in the case of systems it is not a known condition of uniqueness.
Uniqueness of HDL: This is a very hard problem in the case of a couple of
conservation laws because any criterion of uniqueness presupposes a sharp local
bound at fixed times. Unfortunately, in the case of stochastic models we are able
to bound expectations of space-time integrals only. From the point of view of
computations the microscopic systems of statistical physics are more complicated
than the sophisticated numerical schemes of PDE theory.6 For example, even the
existence of positively invariant regions is a problematic issue.
Physical viscosity: It would be nice to materialize the argumentation of Serre–
Shearer (1994) at the microscopic level, that is to consider hyperbolic scaling of the
model L = L0 + σGp in a regime of shocks. This is not easy because the Dirichlet
form of Gp controls the distribution of velocities only, while the most crucial step
consists of the substitution V̄ ′l,k ≈ S′(r̄l,k). The less interesting case of L = L0+σGr
seems to be simpler, but it not trivial at all.
The strength of artificial viscosity: The condition εσ2(ε) → +∞ is not nec-
essary in the case of attractive models, but it is systematically applied in more
general situations.
Euler equations with physical viscosity: HDL of the model L = L0 + (1/ε)Gr
results in the p-system of elastodynamics with artificial viscosity, see Theorem 3 in
Fritz (1990). The derivation of the viscid Euler equations (1.5) of Chen–Dafermos
(1995) is more complicated because then a momentum and energy preserving dif-
fusive noise should be added to the equations of the anharmonic chain. To solve
the resulting non-gradient problem, the spectral gap of the elliptic components of
the generator ought to be determined.
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Abstract
We prove large deviation results for sequences of normalized sums which

are defined in terms of triangular arrays of exponentially distributed random
variables. We also present some examples: one of them might have applica-
tions in reliability theory because it concerns the spacings of i.i.d. exponen-
tially distributed random variables; in another one we consider a sequence of
logarithmically weighted means.
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1. Introduction

Throughout the paper we use the symbol Z ∼ E(λ) to mean that a random variable
Z has exponential distribution with parameter λ, i.e. Z has continuous density
fZ(t) = λe−λt1(0,∞)(t). The aim is to study the convergence and to present results
on large deviations for the sequence (Rn)n≥1 defined by

Rn :=

∑n
j=1 T

(n)
j

γn
,
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where: (T
(n)
j )n≥j≥1 is a triangular array of exponentially distributed random vari-

ables i.e., for every n ≥ 1, T (n)
1 , . . . , T

(n)
n are independent and T (n)

j ∼ E(λ
(n)
j ) for

some (λ
(n)
j )j≤n; we put γn :=

∑n
j=1 sj,n for sj,n := 1

λ
(n)
j

, and we assume in the

whole paper that limn→∞ γn = +∞.
The theory of large deviations gives an asymptotic computation of small prob-

abilities on exponential scale (we refer to [2] for this topic), and the basic concept
of Large Deviation Principle (LDP from now on) consists of an upper bound for
all closed sets and a lower bound for all open sets. Here we can prove the upper
bound for all closed sets (Theorem 3.1) and the lower bound for a class of open sets
(Theorem 3.2) which depends on a constant c > 0 appearing in the assumptions.
It is worth noting that, if c ≥ 1, this class of open sets coincides with all the open
sets; therefore, as stated in Corollary 3.6 below, we have a full LDP if c ≥ 1.

We remark that in our setting we obtain a linear rate function (see I in eq.
(3.2) below). This situation is completely different from the classical one, in which
all the random variables (T

(n)
j )n≥j≥1 have the same exponential distribution, i.e.

E(1) (see assumption (ii) in Theorem 3.1), and γn = n (for all n ≥ 1). In such
a case (Rn)n≥1 is a sequence of partial empirical means of i.i.d. random variables
and, by the well-known Cramér Theorem (see e.g. Theorem 2.2.3 in [2]), the LDP
holds with a strictly convex rate function.

We also give some illustrative examples. In Example 4.1 we have λ(n)j = j for
all j = 1, . . . , n; in view of potential applications in reliability theory, we notice
that (for every n ≥ 1) the random variables (T

(n)
j )j≤n can be considered as the

spacings of independent random variables with distribution E(1) (see Remark 4.2).
Example 4.3 consists of a simple choice of (λ

(n)
j )n≥j≥1 such that limn→∞ λ

(n)
j = j

for all j ≥ 1. In some sense Example 4.4 comes up in natural way by considering
a slight change of the values (λ

(n)
j )n≥j≥1 in Example 4.3; an interesting feature is

that the value ζ(2) (i.e. the Riemann-ζ function computed at 2) plays a crucial
role in the computations; moreover we give a version of Example 4.4 which reveals
a connection with the logarithmically weighted means as in the recent paper [3]
(see Remark 4.5). The full LDP can be proved for Examples 4.1–4.3 only, since
Corollary 3.6 can be applied only for those two examples.

The paper is organized as follows: in Section 2 we give some preliminary results
and illustrate some facts about large deviations; in Section 3 we state our results;
in Section 4 we present the examples; Section 5 contains the proofs.

2. Preliminaries on large deviations and first results

We start by giving some convergence results for the sequence (Rn)n≥1.

Proposition 2.1. Assume that

sup
n≥1,

1≤j≤n

sj,n = C < +∞.
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Then Rn−→1 in probability as n→∞.

Proof. Since E
[
T

(n)
j

]
= sj,n, we have

Rn − 1 =

∑n
j=1

(
T

(n)
j −E

[
T

(n)
j

])

γn

and, by Chebyshev inequality,

P

(∣∣∣∣∣

∑n
j=1

(
T

(n)
j −E

[
T

(n)
j

])

γn

∣∣∣∣∣ > ε

)

≤
Var

(∑n
j=1 T

(n)
j

)

ε2γ2n
=

∑n
j=1 s

2
j,n

ε2γ2n
≤ C

(∑n
j=1 sj,n

γn

)(
1

ε2γn

)
→ 0,

as n→∞.

In some particular cases convergence in probability can be improved to almost
sure convergence; this will be shown in the following

Proposition 2.2. Let (Xj)j≥1 be a sequence of i.i.d. random variables, with Xj ∼
E(1) for every j. Assume that T (n)

j := sj,nXj . If

sup1≤j≤n sj,n
γn

= o
( 1√

n log n

)
,

then Rn−→1 P−a.s. as n→∞.

Proof. Since Rn − 1 =
∑n
j=1 aj,n

(
Xj − 1

)
with aj,n =

sj,n
γn

, the result follows from
Corollary 4 of [5].

The main asymptotic results in this paper concern large deviations. We start
by recalling the definition of LDP, for which we refer to [2] (pages 4–5). Let X
be a topological space equipped with its completed Borel σ-field. A sequence of
X -valued random variables (Zn)n≥1 satisfies the LDP with speed function vn and
rate function I if: limn→∞ vn = +∞; the function I : X → [0;∞] is lower semi-
continuous;

lim sup
n→∞

1

vn
logP (Zn ∈ F ) ≤ − inf

x∈F
I(x) for all closed setsF ; (2.1)

lim inf
n→∞

1

vn
logP (Zn ∈ G) ≥ − inf

x∈G
I(x) for all open sets G. (2.2)

A rate function I is said to be good if its level sets {{x ∈ X : I(x) ≤ η} : η ≥ 0}
are compact.

Throughout the paper we always have X = R and we consider applications
of Gärtner–Ellis Theorem (see e.g. Theorem 2.3.6 in [2]). The application of this
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theorem for the sequence (Zn)n≥1 consists in checking the existence of the function
Λ: R→ (−∞,∞] defined by

Λ(θ) := lim
n→∞

1

vn
logE[eθvnZn ].

Then, if 0 belongs to the interior of {θ ∈ R : Λ(θ) <∞} and if we set

I(x) := sup
θ∈R
{θx− Λ(θ)}, (2.3)

we have: (a) the upper bound (2.1); (b) the lower bound

lim inf
n→∞

1

vn
logP (Zn ∈ G) ≥ − inf

x∈G∩F
I(x) for all open sets G, (2.4)

where F is the set of exposed points (see e.g. Definition 2.3.3 in [2]); (c) if Λ
is essentially smooth (see e.g. Definition 2.3.5 in [2]) and lower semi-continuous,
the LDP holds with a good rate function. Thus, if Λ is not essentially smooth,
Gärtner–Ellis Theorem may provide a trivial non-sharp lower bound for open sets
in terms of the exposed points of the rate function. It is exactly what happens in
our case (see Theorem 3.1). Indeed Theorem 2.3.6 (b–c) in [2] would lead to the
non-sharp lower bound (2.4) with F = {1}, and this coincides with the sharp lower
bound (2.2) if and only if 1 ∈ G.

We point out that Corollary 3.6 here below provides an example in which the
LDP holds, i.e. a case where the lower bound (2.4) (in terms of the exposed points)
can be improved obtaining the lower bound for all open sets (2.2). Other examples
are the one presented in Remark (d) after the statement of Theorem 2.3.6 in [2]
where we have again a linear rate function (it is slightly different from the rate
function I in eq. (3.2) below), and Exercise 2.3.24 in [2].

3. Statements of the main results

In order to apply Gärtner–Ellis Theorem, the first thing to do is to check the
existence of the limit

Λ(θ) := lim
n→∞

1

vn
logE[exp(θvnRn)] = lim

n→∞
1

vn
logE


exp


θ vn

γn

n∑

j=1

T
(n)
j




 (3.1)

for all θ ∈ R, where vn is the speed. We start with the following result where
vn = γn.

Theorem 3.1. Let the following assumptions hold:
(i) for each n ≥ 1, the function j 7→ λ

(n)
j (j = 1, . . . , n) is non-decreasing and

limn≥j→∞ λ
(n)
j = +∞;
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(ii) n 7→ λ
(n)
1 is ultimately monotone and limn→∞ λ

(n)
1 = 1.

Then the limit Λ(θ) in (3.1) exists for every θ ∈ R\{1} with vn = γn, and we have

Λ(θ) =

{
θ for θ < 1

+∞ for θ > 1.

It is easy to check that, if the limit Λ(θ) in (3.1) exists for θ = 1, we have
Λ(1) ∈ [1,∞] and the function I in (2.3) becomes

I(x) =

{
x− 1 for x ≥ 1

+∞ for x < 1.
(3.2)

Moreover, the function Λ is not essentially smooth; hence Gärtner–Ellis Theorem
cannot give the sharp lower bound (2.2). In the next result we obtain a weak form
of the lower bound by considering eq. (1.2.8) in [2].

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Assume moreover that:
(i) γn ≥ c log n+ o(log n) ultimately (c > 0 constant);
(ii) for n ≥ j ≥ 1, λ(n)j − λ(n)1 ≥ j − 1;

(iii) for each n ≥ 1, j 7→ λ
(n)
j −λ

(n)
1

j−1 (j = 2, . . . , n) is non-decreasing.
Then, for x ≥ 1/c and for all open sets G such that x ∈ G, we have

lim inf
n→∞

1

γn
logP (Rn ∈ G) ≥ −I(x),

where I is as in (3.2).

Remark 3.3. Assumption (iii) of Theorem 3.2 holds for instance if, for each integer
n, the (finite) sequence j 7→ λ

(n)
j is the restriction to N∩ [2, n] of a convex function

x 7→ f(n)(x) defined on [1, n].
Remark 3.4. We notice for future reference that assumption (iii) of Theorem 3.2
implies that, for i 6= j,

λ
(n)
i − λ(n)1∣∣λ(n)j − λ(n)i

∣∣ ≤
i− 1

|j − i| .

In fact, for j > i, it gives
λ
(n)
j − λ(n)1

λ
(n)
i − λ(n)1

≥ j − 1

i− 1
,

hence, by assumption (i) of Theorem 3.1,

λ
(n)
i − λ(n)1∣∣λ(n)j − λ(n)i

∣∣ =
λ
(n)
i − λ(n)1

λ
(n)
j − λ(n)i

=
1

λ
(n)
j −λ

(n)
1

λ
(n)
i −λ

(n)
1

− 1

≤ 1
j−1
i−1 − 1

=
i− 1

j − i =
i− 1

|j − i| .

The proof for i < j is similar.
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Remark 3.5. A careful look at the proofs shows that assumption (ii) of Theorem
3.2 could be relaxed as follows:
(ii)′ There exists a sequence (an)n≥1, with limn→∞ an = 1, such that, for every
integer n and for each j = 2, . . . , n

λ
(n)
j − λ(n)1 ≥ an(j − 1).

It follows that, if
(
λ
(n)
j

)
j≤n verifies (ii)′, the same happens for

(
λ̃
(n)
j

)
j≤n such that

λ̃
(n)
j = dn

(
λ
(n)
j + cn

)
,

where (cn)n≥1 is any sequence and limn→∞ dn = 1.

It is obvious that the weaker form of the lower bound provided by Theorem 3.2
coincides with the lower bound (2.2) if c ≥ 1. Thus, putting together the results of
Theorems 3.1 and 3.2 and Gärtner Ellis Theorem, we get the following corollary.

Corollary 3.6. Let the whole set of assumptions (i) and (ii) of Theorem 3.1 and
(i), (ii) and (iii) of Theorem 3.2 hold. Moreover we assume that the limit Λ(θ) in
(3.1) exists for θ = 1 with vn = γn. Then, if c ≥ 1, (Rn)n≥1 satisfies an LDP with
speed vn = γn and rate function I as (3.2).

4. Examples

In this section we present some examples checking for each of them that the as-
sumptions of Theorems 3.1–3.2 hold. We remark that Corollary 3.6 is in force (and
therefore the LDP holds) for Examples 4.1–4.3, where c ≥ 1. Here is the first
example.

Example 4.1. Let (λ
(n)
j )j≤n be defined by λ(n)j := j for j = 1, . . . , n and n ≥ 1.

Remark 4.2. Let {Xn : n ≥ 1} be independent random variables such that Xn ∼
E(1) for all n ≥ 1 and, for every n ≥ 1, consider the order statistics Xn,n ≤ · · · ≤
X1,n of X1, . . . , Xn; then the spacings (Tj)j≤n defined by

T
(n)
j := Xj,n −Xj+1,n, j = 1, . . . , n (where Xn+1,n = 0),

meet the framework of Example 4.1 (see for instance [1], Ex. 4.1.5, p. 185).

In this case the assumptions of Theorems 3.1–3.2 can be easily checked. Here
we only notice that assumption (i) of Theorem 3.2 holds with c = 1 since γn =∑n
j=1

1
j ≥ log(n+1). Finally we can apply Corollary 3.6 because we have Λ(1) = 1

with vn = γn (this can be easily checked and we omit the details).

In the next Example 4.3 we consider a particular choice of the values (λ
(n)
j )j≤n.

It is worth noting that limn→∞ λ
(n)
j = j, which are the parameters in Example 4.1.
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Example 4.3. Let (λ
(n)
j )j≤n be defined by λ(n)j := 1

1
j− 1

n+1

= (n+1)j
n+1−j for j = 1, . . . , n

and n ≥ 1.

In this case the assumptions of Theorems 3.1–3.2 can be checked as follows.
The assumptions (i) and (ii) of Theorem 3.1 are obvious. As to (i) of Theorem 3.2
(again with c = 1) we notice that

γn =
n∑

j=1

1

j
−

n∑

j=1

1

n+ 1
=

n∑

j=1

1

j
− n

n+ 1
≥ log(n+ 1)− n

n+ 1
.

Assumption (ii) of Theorem 3.2 holds since

λ
(n)
j − λ(n)1 =

n+ 1

n+ 1− j ·
n+ 1

n
(j − 1) ≥ j − 1;

moreover, it is easily seen that the function x 7→ f(n)(x) = (n+1)x
n+1−x is convex, and

we deduce that also (iii) of Theorem 3.2 is verified, by Remark 3.3. Finally, as for
Example 4.1, we can apply Corollary 3.6 because we have Λ(1) = 1 with vn = γn
(this can be easily checked and we omit the details).

In the previous Example 4.3 we had

1

λ
(n)
j

=
1

j
− 1

n+ 1
=

n+1∫

j

1

x2
dx.

A natural idea is to investigate what happens if we substitute the integral with the
sum over integers, i.e. if we consider

∑n
k=j

1
k2 instead of

∫ n+1

j
1
x2 dx. Since in such

a case limn→∞ 1∑n
k=1

1
k2

= 1
ζ(2) = 6

π2 ' 0.608 6= 1, assumption (ii) of Theorem 3.1
is satisfied if we perform a “normalization”; this leads to the following

Example 4.4. Let (λ
(n)
j )j≤n be defined by λ(n)j := ζ(2)∑n

k=j
1
k2

for j = 1, . . . , n and
n ≥ 1.

Remark 4.5. Let (λ
(n)
j )j≤n be as in Example 4.4 and let (Uj)j≥1 be a sequence of

independent random variables, and assume that they are uniformly distributed on
(0, 1). Then we set

T
(n)
j :=

1

ζ(2)

n∑

k=j

1

k
F−1k (Uj) j = 1, . . . , n,

where F−1k (u) = − 1
k log(1 − u) (for u ∈ (0, 1)) is the inverse of the distribution

function of a random variable Z ∼ E(k). This is a version of Example 4.4 because,
for each fixed n ≥ 1, (T

(n)
1 , . . . , T

(n)
n ) are independent (obvious) and, for all j =

1 . . . , n, T (n)
j = 1

ζ(2)

∑n
k=j

1
k2F

−1
1 (Uj) = (λ

(n)
j )−1F−11 (Uj) with F−11 (Uj) ∼ E(1),
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and therefore T (n)
j ∼ E(λ

(n)
j ). Finally we remark that Rn is a logarithmically

weighted mean as in [3] because, if we set Xk :=
∑k
j=1 F

−1
k (Uj), we have

Rn =

∑n
j=1 T

(n)
j

γn
=

∑n
j=1

1
ζ(2)

∑n
k=j

1
kF
−1
k (Uj)∑n

j=1
1
ζ(2)

∑n
k=j

1
k2

=

∑n
k=1

1
k

∑k
j=1 F

−1
k (Uj)

∑n
k=1

∑k
j=1

1
k2

=

∑n
k=1

1
kXk∑n

k=1
1
k

.

Now we have to check all the conditions of Theorems 3.1–3.2 for Example 4.4.
The assumptions of Theorem 3.1 are obvious. Assumption (i) of Theorem 3.2 holds
since

γn =
1

ζ(2)

n∑

j=1

n∑

k=j

1

k2
=

1

ζ(2)

n∑

k=1

k∑

j=1

1

k2
=

1

ζ(2)

n∑

k=1

1

k
≥ 1

ζ(2)
log(n+ 1).

Note that in this case we have c = 1
ζ(2) < 1 and Corollary 3.6 cannot be applied;

for completeness we check Λ(1) = 1 with vn = γn.

Proof of Λ(1) = 1 with vn = γn for Example 4.4. We have to check that

lim
n→∞

−∑n
j=1 log(1− sj,n)∑n

j=1 sj,n
= 1

because γn =
∑n
j=1 sj,n and

logE


exp




n∑

j=1

T
(n)
j




 =

n∑

j=1

logE
[
eT

(n)
j

]

=

n∑

j=1

log
λ
(n)
j

λ
(n)
j − 1

= −
n∑

j=1

log(1− sj,n).

Moreover, since − log(1− sj,n) ≥ sj,n, it is enough to check

lim sup
n→∞

−∑n
j=1 log(1− sj,n)∑n

j=1 sj,n
≤ 1

and, noting that

n∑

j=1

sj,n =
1

ζ(2)

n∑

j=1

n∑

k=j

1

k2
=

1

ζ(2)

n∑

k=1

k∑

j=1

1

k2
=

1

ζ(2)

n∑

k=1

1

k
∼ 1

ζ(2)
log n,

this is equivalent to

lim sup
n→∞

−∑n
j=1 log(1− sj,n)

log n
≤ 1

ζ(2)
. (4.1)
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Now, since sj,n ≤ sj,∞ = 1− s1,j−1 and x ∈ [0, 1) 7→ − log(1− x) is an increasing
function, we get

−∑n
j=1 log(1−sj,n)

logn ≤ −
∑n

j=1 log(s1,j−1)

logn ; thus (4.1) is implied by

lim
n→∞

−∑n
j=1 log(s1,j−1)

log n
=

1

ζ(2)

or, equivalently (by Cesaro Theorem), limn→∞−n log(s1,n−1) = 1
ζ(2) ; in conclusion

(4.1) is implied by

1

ζ(2)
= lim
n→∞

n(1− s1,n−1) = lim
n→∞

n

ζ(2)

∞∑

k=n

1

k2
,

which can be be checked noting that

1

ζ(2)
=

n

ζ(2)

∞∫

n

1

x2
dx ≤ n

ζ(2)

∞∑

k=n

1

k2
≤ n

ζ(2)

∞∫

n−1

1

x2
dx =

1

ζ(2)

n

n− 1
. �

We conclude with the proof of assumptions (ii)–(iii) of Theorem 3.2 for Exam-
ple 4.4.

Proof of assumption (ii) of Theorem 3.2 for Example 4.4. The condition
is obvious for j = 1 and, from now on, we assume that j = 2, . . . , n. Since

λ
(n)
j − λ(n)1 = ζ(2)

∑j−1
k=1

1
k2(∑n

k=1
1
k2

)(∑n
k=j

1
k2

) ≥
∑j−1
k=1

1
k2(∑n

k=j
1
k2

)

=

∑j−1
k=1

1
k2∑n

k=1
1
k2 −

∑j−1
k=1

1
k2

≥
∑j−1
k=1

1
k2

ζ(2)−∑j−1
k=1

1
k2

=
1

ζ(2)
(∑j−1

k=1
1
k2

)−1
− 1

,

it suffices to show that the last quantity above is ≥ j − 1 or, in equivalent form,
that

ζ(2)
∑j−1
k=1

1
k2

≤ j

j − 1
.

With some algebra, the inequality to be proved can be transformed into the equiv-
alent one

ζ(2)−
∞∑

k=j

1

k2
=

j−1∑

k=1

1

k2
≥ ζ(2)

(
1− 1

j

)
,

or, after simplification,

aj := −
∞∑

k=j

1

k2
+
ζ(2)

j
≥ 0.
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Since limj→∞ aj = 0, it is enough to show that (aj) is non-increasing, i.e. for every j

−
∞∑

k=j+1

1

k2
+

ζ(2)

j + 1
≤ −

∞∑

k=j

1

k2
+
ζ(2)

j
,

and therefore

0 ≥
∞∑

k=j

1

k2
−

∞∑

k=j+1

1

k2
+ ζ(2)

( 1

j + 1
− 1

j

)
=

1

j2
− ζ(2)

j(j + 1)
.

Multiplying by j2(j + 1) we get the equivalent inequality
(
ζ(2)− 1

)
j ≥ 1,

which is true since (
ζ(2)− 1

)
j ≥ 2

(
ζ(2)− 1

)
' 1.28. �

Proof of assumption (iii) of Theorem 3.2 for Example 4.4. For k ≥ 1 we
set sk :=

∑k
h=1

1
h2 and, for n ≥ 2 and j = 1, . . . , n − 1, we set d(n)j :=

sj(
sn−sj

)
j
.

Then we have

d
(n)
j−1 =

sj−1
(sn − sj−1)(j − 1)

=

λ
(n)
j

λ
(n)
1

− 1

j − 1
=

1

λ
(n)
1

·
λ
(n)
j − λ(n)1

j − 1
(j = 2, . . . , n);

therefore we need to prove that the finite sequence
(
d
(n)
j

)
j
is non-decreasing, i.e.

d
(n)
j−1 ≤ d

(n)
j (j = 2, . . . , n− 1).

After rearranging we see that this is equivalent to

sn ≤
sj−1sj

jsj−1 − (j − 1)sj
(j = 2, . . . , n− 1); (4.2)

moreover sn ↑ ζ(2) as n ↑ ∞ and the right hand side in (4.2) tends to ζ(2) as
j →∞; hence it suffices to show that the right hand side in (4.2) is a non-increasing
function of j, i.e.

sj−1sj
jsj−1 − (j − 1)sj

≥ sjsj+1

(j + 1)sj − jsj+1
(j ≥ 2).

We check this inequality with some algebra and by taking into account that sj−1 =
sj − 1

j2 and sj+1 = sj + 1
(j+1)2 ; indeed we get the inequality

sj ≤
2j

j + 1
= 2

(
1− 1

j + 1

)
,

which is obviously true, since

sj =

j∑

h=1

1

h2
≤

j∑

h=1

2

h(h+ 1)
= 2

j∑

h=1

(
1

h
− 1

h+ 1

)
= 2

(
1− 1

j + 1

)
. �
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5. The proofs

Recall the notations sj,n :=
(
λ
(n)
j

)−1 and γn =
∑n
j=1 sj,n, which will be systemat-

ically used in the sequel.

Proof of Theorem 3.1. We give several proofs according to different values of θ.
• Let us consider first the case θ < 1 (excluding the case θ = 0, which is trivial).
Fix δ ∈ (0, 12 ). Assumption (i) assures that exists j0 such that, for j0 ≤ j ≤ n, we
have ∣∣sj,nθ

∣∣ < δ.

We write

1

γn
logE


exp


θ

n∑

j=1

T
(n)
j






=
1

γn

n∑

j=1

logE
[
exp

(
θT

(n)
j

)]
= −

∑n
j=1 log

(
1− sj,nθ

)

γn

=


−

∑j0
j=1 log

(
1− sj,nθ

)

γn


+


−

∑n
j=j0+1 log

(
1− sj,nθ

)

γn


 = An +Bn.

We shall prove that

(a) limn→∞An = 0; (b) θ ≤ lim infn→∞Bn ≤ lim supn→∞Bn ≤ θ + |θ|δ.
Proof of (a). We treat separately the two cases (a1) θ > 0 and (a2) θ < 0.
Proof of (a1). Since θ < 1, there exists ε > 0 such that θ < 1 − ε < 1. By
assumption (ii), λ(n)1 > 1− ε ultimately, so that (i) implies that, for every j ≤ n,

sj,nθ ≤ s1,nθ ≤
θ

1− ε < 1.

Hence ultimately we have

0 ≤ An = −
∑j0
j=1 log

(
1− sj,nθ

)

γn
≤ −

∑j0
j=1 log

(
1− θ

1−ε

)

γn
→ 0, n→∞.

Proof of (a2). In this case we have sj,nθ ∈ (−δ, 0], and therefore 0 ≤ log(1−sj,nθ) =
log(1+sj,n|θ|); moreover the sequence

(
s1,n

)
n
, being convergent (to 1), is bounded

by some positive real number C; hence for every j ≤ n we have sj,n ≤ s1,n ≤ C,
which gives

|An| =
∑j0
j=1 log

(
1− sj,nθ

)

γn
=

∑j0
j=1 log

(
1 + sj,n|θ|

)

γn

Large deviations for some normalized sums of exponentially distributed . . . 119



≤
∑j0
j=1

∣∣ log
(

1 + C|θ|
)∣∣

γn
→ 0, n→∞.

Proof of (b). For |x| < 1/2 we have x ≤ − log(1− x) ≤ x+ x2; hence

θ ·
∑n
j=j0+1 sj,n

γn
≤ Bn ≤ θ ·

∑n
j=j0+1 sj,n

γn
+ θ2 ·

∑n
j=j0+1 s

2
j,n

γn
,

and it is enough to check

(b1) limn→∞
∑n

j=j0+1 sj,n

γn
= 1 and (b2) lim supn→∞

∑n
j=j0+1 s

2
j,n

γn
≤ δ
|θ| .

Proof of (b1). We have
∑n
j=j0+1 sj,n

γn
= 1−

∑j0
j=1 sj,n

γn
,

and (as we have seen before) sj,n ≤ s1,n ≤ C for every j ≤ n; we deduce that

0 ≤
∑j0
j=1 sj,n

γn
≤
∑j0
j=1 C

γn
→ 0, n→∞.

Proof of (b2). By construction we have sj,n|θ| < δ for n ≥ j ≥ j0; thus

0 ≤
∑n
j=j0+1 s

2
j,n

γn
≤ δ

|θ| ·
∑n
j=j0+1 sj,n

γn
≤ δ

|θ| ·
∑n
j=1 sj,n

γn
=

δ

|θ| .

• We pass to the case θ > 1. Since limn→∞ λ
(n)
1 = 1, there exists an integer n0

such that, for every n > n0, we have θ > λ
(n)
1 ; hence

1

γn
logE


exp


θ

n∑

j=1

T
(n)
j




 ≥ 1

γn
logE

[
exp

(
θT

(n)
1

)]
= +∞. �

Proof of Theorem 3.2. The inequality to be proved is trivial if x < 1 (because
I(x) = +∞) and if x = 1 it holds by Proposition 2.1 (because I(x) = 0); so,
throughout this proof, we restrict our attention to the case x > 1. We choose ε > 0
so small to have (x− ε, x+ ε) ⊂ G; hence

P (Rn ∈ G) ≥ P (x− ε < Rn < x+ ε) ≥ P (x < Rn < x+ ε).

The main proof consists in showing that we have

lim inf
n→∞

1

γn
logP (x < Rn < x+ ε) ≥ 1− x− ε;
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(in fact we easily get

lim inf
n→∞

1

γn
logP (Rn ∈ G) ≥ 1− x− ε,

and let ε go to zero).

Let F and f be the distribution function and the density of
∑n
j=1 T

(n)
j respectively.

By Lagrange Theorem, there exists ξ ∈
(
x, x+ ε

)
such that

P (x < Rn < x+ ε) = F
(
(x+ ε)γn

)
− F

(
xγn

)
= ε · γn · f(ξγn).

Passing to the logarithm and dividing by γn we get

1

γn
logP (x < Rn < x+ ε) =

log ε

γn
+

log γn
γn

+
log
(
f(ξγn)

)

γn
,

and of course only the last summand has to be considered. According to a well
known formula (see for instance [4], p. 308 and ff.), f has the form

f(t) = (−1)n−1λ(n)1 · · · · · λ(n)n

n∑

j=1

e−λ
(n)
j t

∏
i 6=j(λ

(n)
j − λ(n)i )

= λ
(n)
1 · · · · · λ(n)n

e−λ
(n)
1 t

∏
i 6=1(λ

(n)
i − λ(n)1 )

·



1−

n∑

j=2

e−(λ
(n)
j −λ

(n)
1 )t ·

∏

i6=1,j

λ
(n)
1 − λ(n)i

λ
(n)
j − λ(n)i





(note that this formula is allowed because the values λ(n)1 , . . . , λ
(n)
n are all different

by the hypotheses). Then we take the logarithm and we get

log f(t) =

n∑

j=1

log λ
(n)
j − λ(n)1 t−

n∑

j=2

log
(
λ
(n)
j − λ(n)1

)

+ log



1−

n∑

j=2

e−(λ
(n)
j −λ

(n)
1 )t ·

∏

i 6=1,j

λ
(n)
1 − λ(n)i

λ
(n)
j − λ(n)i



 .

Calculating in t = ξγn and dividing by γn we find

log
(
f(ξγn)

)

γn
=

(
log λ

(n)
1

γn

)
+




∑n
j=2 log

λ
(n)
j

λ
(n)
j −λ

(n)
1

γn


+

(
−λ(n)1 ξ

)

+


 1

γn
· log



1−

n∑

j=2

e−(λ
(n)
j −λ

(n)
1 )ξγn ·

∏

i 6=1,j

λ
(n)
1 − λ(n)i

λ
(n)
j − λ(n)i







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=: An +Bn + Cn +Dn.

By the assumption (ii) of Theorem 3.1 we have limn→∞An = 0 and limn→∞ Cn =
−ξ > −x− ε. So the proof will be complete if we show that (a) lim infn→∞Bn ≥ 1
and (b) limn→∞Dn = 0.

Proof of (a). For every pair x, y, with 0 < x < y the inequality

log
y

y − x ≥
x

y
,

(which comes from log(1+t) ≤ t putting t = −xy ), applied to y = λ
(n)
j and x = λ

(n)
1

gives

Bn =

∑n
j=2 log

λ
(n)
j

λ
(n)
j −λ

(n)
1

γn
≥

∑n
j=2

λ
(n)
1

λ
(n)
j

γn
= λ

(n)
1

∑n
j=2

1

λ
(n)
j

γn
→ 1,

by assumption (ii) of Theorem 3.1.

Proof of (b). It suffices to show that limn→∞ an = 0, where

an := −
n∑

j=2

e−(λ
(n)
j −λ

(n)
1 )ξγn ·

∏

i 6=1,j

λ
(n)
i − λ(n)1

λ
(n)
i − λ(n)j

.

To begin with, we write

−
∏

i 6=1,j

λ
(n)
i − λ(n)1

λ
(n)
i − λ(n)j

= −
j−1∏

i=2

λ
(n)
i − λ(n)1

λ
(n)
i − λ(n)j

·
n∏

i=j+1

λ
(n)
i − λ(n)1

λ
(n)
i − λ(n)j

= (−1)j−1
j−1∏

i=2

λ
(n)
i − λ(n)1

λ
(n)
j − λ(n)i

·
n∏

i=j+1

λ
(n)
i − λ(n)1

λ
(n)
i − λ(n)j

= (−1)j−1
∏

i 6=1,j

λ
(n)
i − λ(n)1∣∣λ(n)i − λ(n)j

∣∣ ;

by assumption (ii) of Theorem 3.2 and Remark 3.4, we have

|an| ≤
n∑

j=2

e−(λ
(n)
j −λ

(n)
1 )ξγn ·

∏

i6=1,j

λ
(n)
i − λ(n)1∣∣λ(n)i − λ(n)j

∣∣ ≤
n∑

j=2

e−(j−1)ξγn ·
∏

i6=1,j

(
i− 1∣∣i− j

∣∣

)
;

hence, by assumption (i) of Theorem 3.2,

|an| ≤
n∑

j=2

(
1

ebn

)j−1
·


∏

i 6=1,j

i− 1∣∣i− j
∣∣


 ,

where bn := cξ log n+ o(log n). Now

∏

i6=1,j

i− 1∣∣i− j
∣∣ =

(n− 1)!

j − 1

1
∏j−1
i=2 (j − i)

1∏n
i=j+1(i− j) =

(n− 1)!

(j − 1)!(n− j)! =

(
n− 1

j − 1

)
;
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thus

|an| ≤
n∑

j=2

(
n− 1

j − 1

)(
1

ebn

)j−1
=

n−1∑

j=1

(
n− 1

j

)(
1

ebn

)j
=

(
1 +

1

ebn

)n−1
− 1.

Now we show that

lim
n→∞

(
1 +

1

ebn

)n−1
= 1,

or equivalently

lim
n→∞

(n− 1) log

(
1 +

1

ebn

)
= 0.

In fact, since cξ > 1 (because ξ > x and x ≥ 1/c), we have

bn − log(n− 1) = cξ log n+ o(log n)− log(n− 1)→ +∞, n→ +∞,

whence
lim
n→∞

(n− 1) log

(
1 +

1

ebn

)
= lim
n→∞

n− 1

ebn
= 0. �
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Abstract

The aim of the present paper is to review some joint work with Ulrich
Stadtmüller concerning random field analogs of the classical strong laws.

In the first half we start, as background information, by quoting the law of
large numbers and the law of the iterated logarithm for random sequences as
well as for random fields, and the law of the single logarithm for sequences.
We close with a one-dimensional LSL pertaining to windows, whose edges
expand in an “almost linear fashion”, viz., the length of the nth window
equals, for example, n/ logn or n/ log log n. A sketch of the proof will also
be given.

The second part contains some extensions of the LSL to random fields, af-
ter which we turn to convergence rates in the law of large numbers. Departing
from the now legendary Baum–Katz theorem in 1965, we review a number
of results in the multiindex setting. Throughout main emphasis is on the
case of “non-equal expansion rates”, viz., the case when the edges along the
different directions expand at different rates. Some results when the power
weights are replaced by almost exponential weights are also given.

We close with some remarks on martingales and the strong law.

Keywords: i.i.d. random variables, law of large numbers, law of the iterated
logarithm, law of the single logarithm, random field, multiindex.

MSC: Primary 60F05, 60F15, 60G70, 60G60; Secondary 60G40.

1. Introduction

LetX, X1, X2, . . . be independent, identically distributed (i.i.d.) random variables
with partial sums Sn, n ≥ 1, and set S0 = 0. The two most famous strong laws
are the Kolmogorov strong law and the Hartman–Wintner Law of the iterated
logarithm:
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Theorem 1.1 (The Kolmogorov strong law — LLN). Suppose that X, X1, X2, . . .
are i.i.d. random variables with partial sums Sn, n ≥ 1.

(a) If E|X| <∞ and EX = µ, then

Sn
n

a.s.→ µ as n→∞.

(b) If Sn
n

a.s.→ c for some constant c, as n→∞, then

E|X| <∞ and c = EX.

(c) If E|X| =∞, then

lim sup
n→∞

|Sn|
n

= +∞.

Remark 1.2. Strictly speaking, we presuppose in (b) that the limit can only be a
constant. That this is indeed the case follows from the Kolmogorov zero–one law.
Considering this, (c) is somewhat more general than (b). For proofs and details,
see e.g. Gut (2007), Chapter 6.

Theorem 1.3 (The Hartman–Wintner law of the iterated logarithm — LIL).
Suppose that X, X1, X2, . . . are i.i.d. random variables with mean 0 and finite
variance σ2, and set Sn =

∑n
k=1Xk, n ≥ 1. Then

lim sup
n→∞

(lim inf
n→∞

)
Sn√

2σ2n log log n
= +1 (−1) a.s. (1.1)

Conversely, if

P

(
lim sup
n→∞

|Sn|√
n log log n

<∞
)
> 0,

then EX2 <∞, EX = 0, and (1.1) holds.

The sufficiency is due to Hartman and Wintner (1941). The necessity is due to
Strassen (1966). For this and more, see e.g. Gut (2007), Chapter 8.
Remark 1.4. The Kolmogorov zero–one law tells us that the limsup is finite with
probability zero or one, and, if finite, the limit equals a constant almost surely.
Thus, assuming in the converse that the probability is positive is in reality assuming
that it is equal to 1. This remark also applies to (e.g.) Theorem 1.8.

The Kolmogorov strong law, which relates to the first moment, was generalized
by Marcinkiewicz and Zygmund (1937) into a result relating to moments of order
between 0 and 2; cf. also Gut (2007), Section 6.7:

Theorem 1.5 (The Marcinkiewicz–Zygmund strong law). Let 0 < r < 2. Suppose
that X, X1, X2, . . . are i.i.d. random variables. If E|X|r <∞ and EX = 0 when
1 ≤ r < 2, then

Sn
n1/r

a.s.→ 0 as n→∞ ⇐⇒ E|X|r <∞ and, if 1 ≤ r < 2, E X = 0.
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The results so far pertain to partial sums, summing from X1 and onwards.
There exist, however, analogs pertaining to delayed sums or windows or lag sums,
that have not yet reached the same level of attention, most likely because they are
more recent.

In order to describe these results we define the concept of a window, say. Namely
for any given sequence X1, X2, . . . we set

Tn,n+k =

n+k∑

j=n+1

Xj , n ≥ 0, k ≥ 1.

The analogs of the strong law large numbers and the law of the iterated loga-
rithm are due to Chow (1973) and Lai (1974), respectively.

Theorem 1.6 (Chow’s strong law for delayed sums). Let 0 < α < 1, suppose that
X, X1, X2, . . . are i.i.d. random variables, and set Tn,n+nα =

∑n+nα

k=n+1Xk, n ≥ 1.
Then

Tn,n+nα

nα
a.s.→ 0 ⇐⇒ E|X|1/α <∞ and EX = 0.

This result has been extended in Bingham and Goldie (1988) by replacing the
window width nα by a self-neglecting function φ(n) which includes regularly varying
functions φ(·) of order α ∈ (0, 1).
Remark 1.7. As pointed out in Chow (1973), the strong law remains valid for
α = 1, since

Tn,2n
n

= 2 · S2n

2n
− Sn

n

a.s.→ 0 as n→∞,

whenever the mean is finite and equals zero.
In analogy with the LIL, where an iterated logarithm appears in the normalisa-

tion, the following result, due to Lai (1974), is called the law of the single logarithm
(LSL).

Theorem 1.8 (Lai’s law of the single logarithm — LSL). Let 0 < α < 1. Suppose
that X, X1, X2, . . . are i.i.d. random variables with mean 0 and variance σ2, and
set Tn,n+nα =

∑n+nα

k=n+1Xk, n ≥ 1. If

E |X|2/α
(

log+ |X|
)−1/α

<∞,

then,

lim sup
n→∞

(lim inf
n→∞

)
Tn,n+nα√
2nα log n

= σ
√

1− α (−σ
√

1− α) a.s.

Conversely, if

P
(

lim sup
n→∞

|Tn,n+nα |√
nα log n

<∞
)
> 0,

then
E |X|2/α

(
log+ |X|

)−1/α
<∞ and EX = 0.
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We remark, in passing, that results of this kind may be useful for the evaluation
of weighted sums of i.i.d. random variables for certain classes of weights, for ex-
ample in connection with certain summability methods; see e.g., Bingham (1984),
Bingham and Goldie (1983), Bingham and Maejima (1985), Chow (1973).

The aim of this paper is, in the first half, to present a survey of random field
analogs, although with main focus on the LSL. We shall therefore content ourselves
by simply providing appropriate references for the law of large numbers and the
law of the iterated logarithm. However, our first result is an LSL for sequences,
where the windows expand in an “almost linear fashion”, viz., the length of the nth
window equals, for example, n/ log n or n/ log log n. A skeleton of the proof will
be given in Subsection 2.1, and a sketch in Subsection 2.2.

In the second part we first present some extensions of the LSL to random fields,
that is, we consider a collection of i.i.d. random variables indexed by Zd+, the
positive integer d-dimensional lattice, and prove analogous results in that setting.
Main emphasis is on the case when the expansion rates in the components are
different.

Finally we turn to convergence rates in the law of large numbers. Depart-
ing from the legendary Baum–Katz (1965) theorem, more precisely, the Hsu–
Robbins–Erdős–Spitzer–Baum–Katz theorem, relating the finiteness of sums such
as
∑∞
n=1 n

powerP (|Sn| > npowerε) to moment conditions, we review a number of
results in the multiindex setting. Once again, the non-equal expansion rates are
the main point. Some results when the power weights are replaced by almost
exponential weights are also presented.

A final section contains some remarks on martingale proofs of the law of large
numbers and their relation to the classical proofs.

We close this introduction with some pieces of notation and conventions:

• For all results concerning the limsup of a sequence there exist “obvious”
analogs for the liminf.

• In the following we shall, at times, for mutual convenience, abuse the notation
“iff” to be interpreted as in, for example, Theorems 1.3 and 1.8 in LIL- and
LSL-type results.

• C with or without indices denote(s) numerical constants of no importance
that may differ between appearances.

• Any random variable without index denotes a generic random variable with
respect to the sequence or field of i.i.d. random variables under investigation.

• log+ x = max{log x, 1} for x > 0. We shall, however, occasionally be sloppy
about the additional +-sign within computations.

• For simplicity, we shall permit ourselves, when convenient, to treat quantities
such as nα or n/ log n, and so on, as integers.

• Empty products, such as
∏0
i=1 = 1.
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2. Between the LIL and LSL

There exist two boundary cases with respect to Theorem 1.8; the cases α = 0 and
α = 1.

The case α = 0 contains the trivial one; when the window reduces to a single
random variable. More interesting are the windows Tn,n+logn, n ≥ 1, for which
the so-called Erdős–Rényi law (cf. Erdős and Rényi (1970), Theorem 2, Csörgő and
Révész (1981), Theorem 2.4.3) tells us that if EX = 0, and the moment generating
function ψX(t) = E exp{tX} exists in a neighborhood of 0, then, for any c > 0,

lim
n→∞

max
0≤k≤n−k

Tk,k+c log k
c log k

= ρ(c) a.s.,

where
ρ(c) = sup{x : inf

t
e−txψX(t) ≥ e−1/c},

where, in particular, we observe that the limit depends on the actual distribution
of the summands.

For a generalization to more general window widths an, such that an/ log n→∞
as n→∞, but still assuming that the moment generating function exists, we refer,
e.g., to Csörgő and Révész (1981), Theorem 3.1.1. Results where the moment
condition is somewhat weaker than existence of a moment generating function
were discussed in Lanzinger and Stadtmüller (2000).

For the boundary case at the other end, viz., α = 1, one has an = n and
Tn,2n

d
= Sn and the correct norming is as in the LIL.

An interesting remaining case is when the window size is larger than any power
less than one, and at the same time not quite linear. In order to present that one
we need the concept of slow variation.

Definition 2.1. Let a > 0. A positive measurable function L on [a,∞) varies
slowly at infinity, denoted L ∈ SV, iff

L(tx)

L(t)
→ 1 as t→∞ for all x > 0.

The typical example one should have in mind is L(x) = log x (or possibly
L(x) = log log x). Every positive function with a finite limit as x → ∞ is slowly
varying. An excellent source is Bingham, Goldie and Teugels (1987). Some basic
facts can be found in Gut (2007), Section A.7.

With this definition in mind, our windows thus are of the form

Tn,n+n/L(n), (2.1)

where

L ∈ SV, L(·)↗∞, L is differentiable, and
xL′(x)

L(x)
↘ as x→∞. (2.2)

Here is now the corresponding LSL from Gut et al. (2010).
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Theorem 2.2. Suppose that X1, X2, . . . are i.i.d. random variables with mean 0
and finite variance σ2. Set, for n ≥ 2,

dn = log
n

an
+ log log n = logL(n) + log log n,

and
f(n) = min{an · dn, n},

where f(·) is an increasing interpolating function, i.e., f(x) = f[x] for x > 0. Then,
with f−1(·) being the corresponding (suitably defined) inverse function,

lim sup
n→∞

Tn,n+an√
2andn

= σ a.s. ⇐⇒ E
(
f−1(X2)

)
<∞.

Remark 2.3. The “natural” necessary moment assumption is the given one with
f(n) = andn. However, for very slowly increasing functions, such as L(x) =
log log log log x, we have f(n) = n, that is the moment condition is equivalent
to finite variance in such cases.

In order to get a flavor of the result, we begin by providing some examples. In
the following two subsections we shall encounter a skeleton of the proof as well as
a sketch of the same.

First, the two “obvious ones”.

Example 2.4. If for some p > 0

EX2 (log+ |X|)p
log+ log+ |X| <∞,

then
lim sup
n→∞

Tn,n+n/(logn)p√
2(p+ 1) n

(logn)p log log n
= σ a.s.

Example 2.5. If σ2 = VarX <∞, then

lim sup
n→∞

Tn,n+n/ log logn√
2n

= σ a.s.

And here are two more elaborate ones.

Example 2.6. Let, for n ≥ 9, an = n(log log n)q/(log n)p, p, q > 0. Then

dn = log
(n(log log n)q

n/(log n)p

)
+ log log n ∼ (p+ 1) log log n as n→∞,

so that, f(n) = (p+ 1)n(log log n)q+1/(log n)p, and, hence,

f−1(n) ∼ Cn(log n)p/(log log n)q+1
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as n→∞, and the following result emerges.
If, for some p, q > 0,

EX2 (log+ |X|)p
(log+ log+ |X|)q+1

<∞,

then
lim sup
n→∞

Tn,n+n(log logn)q/(logn)p√
2(p+ 1) n

(logn)p (log log n)q+1
= σ a.s.

Example 2.7. Let an = n/ exp{√log n}, n ≥ 1, that is,

dn = log exp{
√

log n}+ log log n =
√

log n+ log log n ∼
√

log n as n→∞,

which yields f(n) ∼ n√log n/ exp{√log n} as n→∞, so that

f−1(n) ∼ n exp{
√

log n+ 1/2}/
√

log n as n→∞,

which tells us that if

EX2
exp{

√
2 log+ |X|}

√
log+ |X|

<∞,

then

lim sup
n→∞

Tn,n+n/ exp{√logn}√
2 n
exp{√logn}

√
log n

= σ a.s.

We refer to Gut et al. (2010) for details and further examples.
The proof of Theorem 2.2 has some common ingredients with that of the LIL, in

the sense that one needs two truncations. One to match the Kolmogorov exponen-
tial bounds and one to match the moment requirement. Typically (and somewhat
frustratingly) it is the thin central part that causes the main trouble in the proof.
A weaker result is obtained if only the first truncation is made. The cost is that
too much (although not much too much) integrability will be required. A proof in
this weaker setting is hinted at in Remark 2.10. For more we refer to Gut et al.
(2010), Section 6.

2.1. Skeleton of the proof of Theorem 2.2
As indicated a few lines ago, one begins by truncating at two levels—bn and cn,
where the former is chosen to match the exponential inequalities, and the latter to
match the moment assumption, after which one defines the truncated summands,

X ′n = XnI{|Xn| ≤ bn},
X ′′n = XnI{bn < |Xn| < cn}, (2.3)
X ′′′n = XnI{|Xn| ≥ cn},
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and, along with them, their expected values, partial sums, and windows: EX ′n,
EX ′′n , EX ′′′n , S′n, S′′n, S′′′n , and T ′n,n+n/L(n), T

′′
n,n+n/L(n), T

′′′
n,n+n/L(n), respectively,

where, in the following any object with a prime or a multiple prime refers to the
respective truncated component.

Since truncation generally destroys centering one then shows that the truncated
means are “small” and that Var(T ′n,n+n/L(n)) ≈ nσ2.

With these quantities one now proceeds as follows:

The upper estimate:

1. Dispose of T ′′′nk,nk+nk/Lnk ;

2. Dispose of T ′′nk,nk+nk/Lnk (frequently the hard(est) part);

3. Upper exponential bounds for a suitable subsequence T ′nk,nk+nk/Lnk ;

4. Borel–Cantelli 1 =⇒ T ′nk,nk+nk/Lnk
is OK;

5. 1 + 2 + 4 =⇒ lim supTnk,nk+nk/Lnk ≤ · · · ;

6. Filling gaps;

7. 5 + 6 =⇒ lim supTn,n+n/L(n) ≤ · · · ;

The lower estimate:

8. Lower exponential for a suitable subsequence T ′nk,nk+nk/Lnk ;

9. Subsequence is sparse =⇒ independence;

10. Borel–Cantelli 2 =⇒ T ′nk,nk+nk/Lnk
is OK;

11. 1 + 2 + 10 =⇒ lim supTnk,nk+nk/Lnk ≥ · · · ;

12. lim supTn,n+n/L(n) ≥ lim supTnk,nk+nk/Lnk ≥ · · · ;

13. 7 + 12 =⇒ lim supTn,n+n/L(n) = · · · ;

14. �

Remark 2.8. This is the procedure in Gut et al. (2010). However, for some results
one can even dispose of T ′′′n,n+n/L(n) and T

′′
n,n+n/L(n) in Steps 1 and 2, respectively.

When it comes to choosing the appropriate subsequence it turns out that the
choice should satisfy the relation

dnk ∼ log k as k →∞, (2.4)

and for this to happen, the following lemma, which is due to Fredrik Jonsson,
Uppsala, is crucial.
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Lemma 2.9. Suppose that L ∈ SV satisfies (2.2). Then

log(L(t) log t)

logϕ(t)
→ 1 as t→∞.

Before presenting the proof we note that the lemma is more or less trivially true
for slowly varying functions made up by logarithms or iterated ones.

Proof. Setting ϕ∗(t) = L(t) log t we have ϕ(t) ≤ ϕ∗(t) since L(·) ↗. For the
opposite inequality an appeal to (2.2) shows that

ϕ∗(t) =

t∫

1

(
L′(u) log u+

L(u)

u

)
du =

t∫

1

L′(u)uL(u)

L(u)u

( u∫

1

1

v
dv
)
du+ ϕ(t)

≤
t∫

1

L(u)

u

( u∫

1

L′(v)

L(v)
dv
)
du+ ϕ(t) ≤ ϕ(t)(1 + log(L(t))),

from which we conclude that

1 ≥ logϕ(t)

logϕ∗(t)
≥ 1− log(1 + logL(t))

log(L(t) log t)
→ 1 as t→∞.

2.2. Sketch of the proof of Theorem 2.2
We introduce the parameters δ > 0 and ε > 0 and truncate at

bn =
σδ

ε

√
an
dn

and cn = δ
√
f(n),

recalling that

an = n/L(n), dn = logL(n) + log log n, f(n) = min{andn, n},

and set, in accordance with (2.3),

X ′n = XnI{|Xn| ≤ bn},
X ′′n = XnI{bn < |Xn| < δ

√
f(n)},

X ′′′n = XnI{|Xn| ≥ δ
√
f(n)},

after which we check the appropriate smallness of the truncated means.
Next we choose a subsequence such that dnk ∼ log k.
In order to dispose of T ′′′nk,nk+ank we observe that if |T ′′′nk,nk+ank | surpasses the

η
√
ankdnk then, necessarily, at least one of the corresponding X ′′′:s is nonzero,

which leads to
∞∑

k=1

P (|T ′′′nk,nk+ank | > η
√
ankdnk) ≤

∞∑

k=1

ankP (|X| > η

2

√
f(nk)) <∞, (2.5)
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where the finiteness is a consequence of the moment assumption.
As for the second step, this is a technically pretty involved matter for which we

refer to Gut et al. (2010).
For the analysis of T ′nk,nk+ank we use the Kolmogorov upper exponential bounds

(see e.g., Gut (2007), Lemma 8.2.1) and obtain (after having taken care of the
centering inflicted by the truncation),

P (|T ′n,n+an | > ε
√

2andn) ≤ P (|T ′n,n+an − ET ′n,n+an | > ε(1− δ)
√

2andn)

≤ 2 exp
{
− ε2(1− δ)3

σ2
· dn
}

for n large,

which, together with the previous estimates, shows that

∞∑

k=1

P (|Tnk,nk+ank | > (ε+ 2η)
√

2ankdnk) <∞,

provided ε > σ/(1 − δ)3/2, and thus, due to the arbitrariness of η and δ, and the
first Borel–Cantelli lemma, that

lim sup
k→∞

Tnk,ank√
2ankdnk

≤ σ a.s. (2.6)

The next step (Step 6 in the above list) amounts to proving the same for the
entire sequence, and this is achieved by showing that

∑

k

P
(

max
nk≤n≤nk+1

Sn+an − Sn√
2an dn

> σ
)
<∞, (2.7)

implying that

P ( max
nk≤n≤nk+1

Sn+an − Sn√
2an dn

> σ i.o) = 0,

which, together with (2.6), then will tell us that

lim sup
n→∞

Tn,n+an√
2andn

≤ σ a.s.

In order to prove (2.7) we first observe that, for any η > 0,

P
(

max
nk≤n≤nk+1

Sn+an − Sn√
2an dn

> (1 + 6 η)σ
)

≤ P ( max
nk≤n≤nk+1

(Sn+an − Snk+ank ) > 2η σ
√

2ank dnk)

+ P ( max
nk≤n≤nk+1

(−Sn + Snk) > 2η σ
√

2ank dnk)

+ P ( max
nk≤n≤nk+1

(Snk+ank − Snk) > (1 + 2η)σ
√

2ankdnk),
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after which (2.7), broadly speaking, follows by applying the Lévy inequality (cf.
e.g. Gut (2007), Theorem 3.7.2) to each of the four terms.

This finishes the “proof” of the upper estimate, and it remains to take care of
the lower one (Step 8 and onwards in the skeleton list).

After having checked that

VarX ′k ≥ σ2 − 2EX2I{|Xk| ≥ bk} ≥ σ2(1− δ),

for n large, so that

Var(T ′n,n+an) ≥ anσ2(1− δ) for n large,

we obtain, exploiting the lower exponential bound (see e.g. Gut (2007), Lemma
8.2.2), that, for any γ > 0,

P (T ′n,n+an > ε
√

2andn)

≥ P
(
T ′n,n+an − ET ′n,n+an >

ε(1 + δ)

σ
√

(1− δ)

√
2 Var(T ′n,n+an)dn

)

≥ exp
{
− ε2(1 + δ)2(1 + γ)

σ2(1− δ) · dn
}

for n large.

Applying this lower bound to our subsequence and combining the outcome with
(2.5) and the omitted analog for T ′′n,n+n/L(n) then yields

lim sup
k→∞

Tnk,nk+ank√
2ankdnk

≥ σ a.s. (2.8)

Finally, since the limsup for the entire sequence certainly is at least as large as that
of the subsequence (Step 12 in the skeleton), we conclude that the lower bound
(2.8) also holds for the entire sequence.

This completes (the sketch of) the proof (Step 14).
Remark 2.10. We close this section by recalling that a slightly weaker result may
be obtained by truncation at bn =

√
an/dn only, in which case T ′′n,n+n/L(n) and

T ′′′n,n+n/L(n) are joined into one “outer” contribution. With the same argument as
above, the previous computation then is replaced by

∞∑

n=1

P (|X| > σδ

ε
bn) <∞,

where finiteness holds iff
E b−1(|X|) <∞.

If, for example, L(n) = log n, then the moment condition EX2 log+ |X|
log+ log+ |X| < ∞

in Theorem 2.2 is replaced by the condition EX2 log+ |X| log+ log+ |X| < ∞; cf.
Gut et al. (2010), Section 6.
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3. The LLN and the LIL for random fields

We now turn our attention to random fields. But first, in order to formulate our
results, we need to define the setup. Toward that end, let Zd+, d ≥ 2, denote the
positive integer d-dimensional lattice with coordinate-wise partial ordering ≤, viz.,
for m = (m1,m2, . . . ,md) and n = (n1, n2, . . . , nd), m ≤ n means that mk ≤ nk,
for k = 1, 2, . . . , d. The “size” of a point equals |n| = ∏d

k=1 nk, and n→∞ means
that nk →∞, for all k = 1, 2, . . . , d.

Next, let {Xk, k ∈ Zd+} be i.i.d. random variables with partial sums Sn =∑
k≤nXk, n ∈ Zd+.
For random fields with i.i.d. random variables {Xk, k ∈ Zd+} the analog of

Kolmogorov’s strong law (see Smythe (1973)) reads as follows:

Sn

|n| =
1

|n|
∑

k≤n

Xk
a.s.→ 0 ⇐⇒ E|X| (log+ |X|)d−1 <∞ and EX = 0. (3.1)

For more general index sets, see Smythe (1974).
The analogous Marcinkiewicz–Zygmund law of large numbers was proved in

Gut (1978):

1

|n|1/r Sn
a.s.→ 0 ⇐⇒ E|X|r(log+ |X|)d−1 <∞ and, if 1 ≤ r < 2, E X = 0.(3.2)

The Hartman–Wintner analog is due to Wichura (1973):

lim supn→∞
Sn√

2|n| log log |n|
= σ
√
d a.s.

⇐⇒ (3.3)

EX2 (log+ |X|)d−1
log+ log+ |X| <∞ and EX = 0, E X2 = σ2.

A variation on the theme concerns the same problems when one considers the
index set Zd+ restricted to a sector, which, for the case d = 2, equals

S
(2)
θ = {(x, y) ∈ Z2

+ : θx ≤ y ≤ θ−1x, 0 < θ < 1}. (3.4)

In the limiting case θ = 1, the sector degenerates into a diagonal ray, in which
case the sums Sn, n ∈ S(2)

θ , are equivalent to the subsequence Sn2 , more generally,
Snd , n ≥ 1, of the sequence {Sn, n ≥ 1} when d = 1. In that case it is clear that
the usual one-dimensional assumptions are sufficient for the LLN and the LIL.
One may therefore wonder about the proper conditions for the sector—since extra
logarithms are needed “at the other end” (as θ → 0).

Without going into any details we just mention that it has been shown in Gut
(1983) that the law of large numbers as well as the law iterated logarithm hold
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under the same moment conditions as in the case d = 1, and that the limit points
in the latter case are the same as in the Hartman–Wintner theorem (Theorem 1.3).

For some additional comments on this we refer to Section 10 toward the end of
the paper.
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Figure 1: A sector (d = 2)

4. The LLN and LSL for windows

Having defined the general setup we also need the extension of the concept delayed
sums or windows to this setting. A window here is an object Tn,n+k. For d = 2 we
this is an incremental rectangle

Tn,n+k = Sn1+k1,n2+k2 − Sn1+k1,n2 − Sn1,n2+k2 + Sn1,n2 :
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Figure 2: A typical window (d = 2)
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In higher dimensions it is the analogous d-dimensional cube. A strong law for this
setting can be found in Thalmaier (2009), Stadtmüller and Thalmaier (2009).

The extension of Theorem 1.8 to random fields runs as follows.

Theorem 4.1. Let 0 < α < 1, and suppose that {Xk, k ∈ Zd+} are i.i.d. random
variables with mean 0 and finite variance σ2. If

EX2/α(log+ |X|)d−1−1/α <∞,

then
lim sup
n→∞

Tn,n+nα√
2|n|α log |n|

= σ
√

1− α a.s.

Conversely, if

P
(

lim sup
n→∞

|Tn,n+nα |√
|n|α log |n|

<∞
)
> 0,

then EX2/α(log+ |X|)d−1−1/α <∞ and EX = 0.

Some remarks on the proof will be given in Section 6.

4.1. An LSL for subsequences
The proof of the theorem is in the LIL-style, which, i.a., means that one begins
by proving the sufficiency as well as the necessity along a suitable subsequence.
Sticking to this fact one can, with very minor modifications of the proof of Theorem
4.1, prove the following LSL for subsequences. The inspiration for this result comes
from the LIL-analog in Gut (1986).

Theorem 4.2. Let 0 < α < 1, suppose that {Xk, k ∈ Zd+} are i.i.d. random
variables with mean 0 and finite variance σ2, and set

Λ = {n ∈ Zd+ : ni = iβ/(1−α), i ≥ 1}.

If
EX2/α(log+ |X|)d−1−1/α <∞,

then, for β > 1,

lim sup
n→∞
{n∈Λ∗}

Tn,n+nα√
2|n|α log |n|

= σ

√
1− α
β

a.s.

Conversely, if

P
(

lim sup
n→∞
{n∈Λ∗}

|Tn,n+nα |√
|n|α log |n|

<∞
)
> 0,

then EX2/α(log+ |X|)d−1−1/α <∞ and EX = 0.

For further details, see Gut and Stadtmüller (2008a), Section 6.
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4.2. Different α:s
During a seminar in Uppsala on the previous material Fredrik Jonsson asked the
question: “What happens if the α:s are different?”

In Theorem 4.1 the windows grow at the same rate in each coordinate; the edges
of the windows are equal to nαk for all k = 1, 2, . . . , d. The focus now is to allow for
different growth rates in different directions; viz., the edges of the windows will be
nαkk , k = 1, 2, . . . , d, where, w.l.o.g., we assume that

0 < α1 ≤ α2 ≤ · · · ≤ αd < 1.

Next, we define α = (α1, α2, . . . , αd), and set, for ease of notation,

nα = (nα1
1 , nα2

2 , . . . , nαdd ), and |nα| =
d∏

k=1

nαkk .

Furthermore, following Stadtmüller and Thalmaier (2009), we let p be equal to the
number of α:s that are equal to the smallest one.

As for the strong law, the results in Thalmaier (2009), Stadtmüller and Thal-
maier (2009), in fact, also cover the case of unequal α:s. For a Marcinkiewicz–
Zygmund analog we refer to Gut and Stadtmüller (2009). For completeness we
also mention Gut and Stadtmüller (2010), where some results concerning Cesàro
summation are proved.

Here is now the generalization of Theorem 4.1. For a proof and further details
we refer to Gut and Stadtmüller (2008b).

Theorem 4.3. Suppose that {Xk, k ∈ Zd+} are i.i.d. random variables with mean
0 and finite variance σ2. If

E|X|2/α1(log+ |X|)p−1−1/α1 <∞,

then
lim sup
n→∞

Tn,n+nα√
2|nα| log |n|

= σ
√

1− α1 a.s.

Conversely, if

P
(

lim sup
n→∞

|Tn,n+nα |√
|nα| log |n|

<∞
)
> 0,

then E|X|2/α1(log+ |X|)p−1−1/α1 <∞ and EX = 0.

Remark 4.4. If α1 = α2 = · · · = αd = α, then p = d and |nα| = |n|α, and the
theorem reduces to Gut and Stadtmüller (2008a), Theorem 2.1 = Theorem 4.1
above.

Remark 4.5. For a result for subsequences analogous to Theorem 4.2; see Gut and
Stadtmüller (2008b), Section 6.
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We observe that the moment condition as well as the extreme limit points
depend on the smallest α and its multiplicity. Heuristically this can be explained
as follows. The longer the stretch of the window along a specific axis, the more
cancellation may occur in that direction. Equivalently, the shorter the stretch, the
wilder the fluctuations. This means that in order to “tame” the fluctuations it is
(only) necessary to put conditions on the shortest edge(s).

4.3. Different α:s, log, and log log

One can exaggerate the mixtures even further, namely, by combining edges that
expand at different α-rates with edges that expand with different almost linear
rates. Some results in this direction concerning the LLN can be found in Gut and
Stadtmüller (2011b).

The paper Gut and Stadtmüller (2011a) is devoted to the LSL. First a result
from that paper that extends Gut et al. (2010) to random fields for (iterated) loga-
rithmic expansions and mixtures of them. For simplicity and illustrative purposes
we stick to the case d = 2.

Theorem 4.6. Let {Xi,j , i, j ≥ 1} be i.i.d. random variables.
(i) If

EX2 (log+ |X|)3
log+ log+ |X| <∞ and EX = 0, E X2 = σ2,

then
lim sup
m,n→∞

T(m,n) , (m+m/ logm,n+n/ logn)√
4mn log logm+log logn

logm logn

= σ a.s.

Conversely, if

P
(

lim sup
n→∞

|T(m,n) , (m+m/ logm,n+n/ logn)|√
mn log logm+log logn

logm logn

<∞
)
> 0,

then EX2 (log+ |X|)3
log+ log+ |X| <∞ and EX = 0.

(ii) If

EX2 log+ |X| log+ log+ |X| <∞ and EX = 0, E X2 = σ2,

then
lim sup
m,n→∞

T(m,n) , (m+m/ log logm,n+n/ log logn)√
2mn log logm+log logn

log logm log logn

= σ a.s.

Conversely, if

P
(

lim sup
n→∞

|T(m,n) , (m+m/ log logm,n+n/ log logn)|√
mn log logm+log logn

log logm log logn

<∞
)
> 0,
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then EX2 log+ |X| log+ log+ |X| <∞ and EX = 0.
(iii) If

EX2(log+ |X|)2 <∞ and EX = 0, E X2 = σ2,

then
lim sup
m,n→∞

T(m,n) , (m+m/ logm,n+n/ log logn)√
4mn log logm+log logn

logm log logn

= σ a.s.

Conversely, if

P
(

lim sup
n→∞

|T(m,n) , (m+m/ logm,n+n/ log logn)|√
4mn log logm+log logn

logm log logn

<∞
)
> 0,

then EX2(log+ |X|)2 <∞ and EX = 0.

We conclude with an example where a logarithmic expansion is mixed with a
power.

Theorem 4.7. Let 0 < α < 1, and let {Xi,j , i, j ≥ 1} be i.i.d. random variables.
If

EX2/α(log+ |X|)−1/α <∞ and EX = 0, E X2 = σ2,

then
lim sup
m,n→∞

T(m,n) , (m+mα, n+n/ logn)√
2mαn (1−α) log(mn)

logn

= σ a.s.

Conversely, if

P
(

lim sup
m,n→∞

|T(m,n) , (m+mα, n+n/ logn)|√
mαn log(mn)

logn

<∞
)
> 0,

then EX2/α(log+ |X|)−1/α <∞ and EX = 0.

5. Preliminaries

Proposition 5.1. Let r > 0 and let X be a non-negative random variable. Then

EXr <∞ ⇐⇒
∞∑

n=1

nr−1P (X ≥ n) <∞,

More precisely,

∞∑

n=1

nr−1P (X ≥ n) ≤ EXr ≤ 1 +
∞∑

n=1

nr−1P (X ≥ n).
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As an example, consider the case r = 1, and suppose that X1, X2, . . . is an
i.i.d. sequence. It then follows from the proposition that, for any ε > 0,

P (|Xn| > nε i.o.) = 0 ⇐⇒
∞∑

n=1

P (|Xn| > nε) <∞ ⇐⇒ E |X| <∞.

Suppose instead that we are facing an i.i.d. random field {Xn, n ∈ Zd+}. What is
then the relevant moment condition that ensures that
∑

n

P (|Xn| > |n|) <∞ ? or, equivalently, that
∑

n

P (|X| > |n|) <∞ ? (5.1)

In order to answer this question it turns out that we need the quantities

d(j) = Card {k : |k| = j} and M(j) = Card {k : |k| ≤ j},

which describe the “size” of the index set, and their asymptotics

M(j)

j(log j)d−1
→ 1

(d− 1)!
and d(j) = o(jδ) for any δ > 0 as j →∞; (5.2)

cf. Hardy and Wright (1954), Chapter XVIII and Titchmarsh (1951), relation
(12.1.1) (for the case d = 2). The quantity d(j) itself has no pleasant asymptotics;
lim infj→∞ d(j) = d, and lim supj→∞ d(j) = +∞.

Now, exploiting the fact that all terms in expressions such as the second sum
in (5.1) with equisized indices are equal, we conclude that

∑

n

P (|X| > |n|) =
∞∑

j=1

∑

|n|=j
d(j)P (|X| > j), (5.3)

which, via partial summation yields the first half of following lemma. The second
half follows via a change of variable.

Lemma 5.2. Let r > 0, and suppose that X is a random variables. Then
∑

n

P (|X| > |n|) <∞ ⇐⇒ EM(|X|) <∞ ⇐⇒ E|X|(log+ |X|)d−1 <∞,
∑

n

|n|r−1P (|X| > |n|) <∞ ⇐⇒ EM(|X|r) <∞ ⇐⇒ E|X|r(log+ |X|)d−1<∞.

Reviewing the steps leading to the lemma one finds that if, instead, we consider
the sector (recall (3.4)) one finds that

∑

n∈Sdθ

P (|X| > |n|) <∞ ⇐⇒ EM(|X|) <∞ ⇐⇒ E|X| <∞. (5.4)

Remark 5.3. Note that the first equivalence is the same as in Lemma 5.2, and that
the second one is a consequence of the “size” of the index set.
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For results such as Theorem 4.3, as well as for some of the results in Section 8
below, we shall need the more general index sets

Mα(j) = Card {k : |kα| ≤ jα1} = Card {k :
d∏

ν=1

kαν/α1
ν ≤ j}. (5.5)

Generalizing Lemma 3 in Stadtmüller and Thalmaier (2009) in a straight forward
manner yields the following analog of (5.2):

Mα(j) ∼ cα j (log j)p−1 as j →∞ (5.6)

where cα > 0, which, in turn, via partial summation, tells us that

∑

n

P (|X| > |nα|) �
∞∑

j=1

(log j)p−1P (|X| > jα1).

Using a slight modification of this, together with the fact that the inverse of the
function y = xα(log x)κ behaves asymptotically like x = y1/α(log y)−(κ/α), yields
the next tool (Gut and Stadtmüller (2008a), Lemma 3.2, Gut and Stadtmüller
(2008b), Lemma 3.1).

Lemma 5.4. Let κ ∈ R and suppose that X is a random variable. Then,
∑

n

P
(
|X| > |nα|(log |n|)κ

)
<∞ ⇐⇒ E|X|1/α1(log+ |X|)p−1−κ/α1 <∞.

In particular, if α1 = α2 = · · · = αd = κ = 1/2, then
∑

n

P
(
|X| >

√
|n| log |n|

)
<∞ ⇐⇒ EX2(log+ |X|)d−2 <∞.

For illustrative reasons we also quote Gut and Stadtmüller (2008a), Lemma 3.3,
as an example of the kind of technical aid that is required at times.

Lemma 5.5. Let κ ≥ 1, θ > 0, and η ∈ R.

∞∑

i=2

∑

{n:|n|=iκ(log i)η}

1

|n|θ =
∞∑

i=2

d(iκ(log i)η)

iκθ(log i)ηθ




<∞, when θ > 1

κ ,

=∞, when θ < 1
κ .

6. Sketch of the proofs of Theorems 4.1 and 4.3

In this section we give som hints on the proofs of Theorems 4.1 and 4.3, in the
sense that we shall point to differences and modifications compared to the proof of
Theorem 2.2 in Section 2.2.
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6.1. On the proof of Theorem 4.1
This time truncation is at

bn = b|n| =
σδ

ε

√
|n|α

log |n| and cn = δ
√
|n|α log |n|,

for some (arbitrarily) small δ > 0.
The first step differs slightly from the analog in the proof of Theorem 2.2, in

that we now start by dispensing of the full double- and triple primed sequences
(recall Remark 2.8).

As for the double primed contribution we argue that in order for the |T ′′′n,n+nα |:s
to surpass the level η

√
|nα| log |n| infinitely often, for some η > 0 small, it is

necessary that infinitely many of the X ′′′:s are nonzero, and the latter event has
probability zero by the first Borel–Cantelli lemma, since

∑

n

P (|Xn| > η
√
|n|α log |n|) =

∑

n

P (|X| > η
√
|n|α log |n|) <∞,

where the finiteness is a consequence of the moment assumption and the second
half of Lemma 5.4.

Taking care of T ′′n,n+nα is a bit easier this time, the argument being that in
order for |T ′′n,n+nα | to surpass the level η

√
|n|α log |n| it is necessary that at least

N ≥ η/δ of the X ′′:s are nonzero, which, by stretching the truncation bounds to
the extremes, some elementary combinatorics, and the moment assumption implies
that

P (|T ′′n,n+nα | > η
√
|n|α log |n|)

≤
(|n|α
N

)(
P
(
bn < |X| ≤ δ

√
(|n|+ |n|α) log(|n|+ |n|α)

))N

≤ C (log |n|)N((3/α)+1−d)

|n|N(1−α) ,

and, hence, that

∑

n

P (|T ′′n,n+n/L(n)| > η
√
|n|α log |n|) <∞ for all η >

δ

1− α,

whenever N(1− α) > 1 (and Nδ ≥ η), after which another application of the first
Borel–Cantelli lemma concludes that part of the proof.

As for T ′n,n+nα , the exponential bounds do the job as before;

P
(
T ′n,n+nα > ε

√
2|n|α log |n|

)




≤ exp
{
− 2ε2(1− δ)2

2σ2
log |n|(1− δ)

}
,

≥ exp
{
− 2ε2(1 + δ)2

2σ2(1− δ) log |n|(1 + γ)
}
.
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Putting things together proves the theorem for suitably selected subsequences, and
thus, in particular also the lower bound for the full field (remember Step 12 in the
skeleton list).

It thus remains to verify the upper bound for the entire field.
Now, for the LIL and LSL one investigates the gaps between subsequence points

with the aid of the Lévy inequalities, as we have seen in the proof of Theorem 2.2,
Step 6. When d ≥ 2, however, there are no gaps in the usual sense and one must
argue somewhat differently.

Let us have a quick look at the situation when d = 2. First we must show
that the selected subsequence (which we have not explicitly presented) is such that
the subset of windows overlap, viz., that they cover all of Z2

+. Next, we select an
arbitrary window

T((m,n),(m+mα,n+nα))

and note that it is always contained in the union of (at most) four of the earlier
selected ones:

-
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Figure 3: A dotted arbitrary window

One, finally, shows that the discrepancy between the arbitrary window and the
selected ones is asymptotically negligible. This is a technical matter which we
omit. Except for mentioning that one has to distinguish between the cases when
the arbitrary window is located in “the center” of the index set or “close” to one of
the coordinate axes (for a similar discussion cf. also Gut (1980), Section 4).

6.2. On the proof of Theorem 4.3
This proof runs along the same lines as the previous one with some additional
technical complications, due to the non-equalness of the α:s. In order to illustrate
this, consider the triple-primed windows.

Truncation now is at

bn = b|n| =
σδ

ε

√
|nα|

log |n| and cn = δ
√
|nα| log |n|,
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for δ > 0 small; note |nα| instead of |n|α.
The argument for T ′′′n,n+nα :s is verbatim as before, and leads to the sum

∑

n

P (|Xn| > η
√
|nα| log |n|) =

∑

n

P (|X| > η
√
|nα| log |n|) <∞,

where the finiteness is a consequence of the moment assumption, which this time
is a consequence of the first half of Lemma 5.4.

The remaining part of the proof amounts to analogous changes.

7. The Hsu–Robbins–Erdős–Spitzer–Baum–Katz
theorem

One aspect of the seminal paper Hsu and Robbins (1947) is that it started an
area of research related to convergence rates in the law of large numbers, which, in
turn, culminated in the now classical paper Baum and Katz (1965), in which the
equivalence of (7.1), (7.2), and (7.4) below was demonstrated. Namely, in Hsu and
Robbins (1947) the authors introduced the concept of complete convergence, and
proved that the sequence of arithmetic means of i.i.d. random variables converges
completely to the expected value of the variables provided their variance is finite.
The necessity was proved by Erdős (1949, 1950).

Theorem 7.1. Let r > 0, α > 1/2, and αr ≥ 1. Suppose that X1, X2, . . . are
i.i.d. random variables with partial sums Sn =

∑n
k=1Xk, n ≥ 1. If

E|X|r <∞ and, if r ≥ 1, EX = 0, (7.1)

then
∞∑

n=1

nαr−2P (|Sn| > nαε) <∞ for all ε > 0; (7.2)

∞∑

n=1

nαr−2P ( max
1≤k≤n

|Sk| > nαε) <∞ for all ε > 0. (7.3)

If αr > 1 we also have

∞∑

n=1

nαr−2P (sup
k≥n
|Sk/kα| > ε) <∞ for all ε > 0. (7.4)

Conversely, if one of the sums is finite for all ε > 0, then so are the others (for
appropriate values of r and α), E|X|r <∞ and, if r ≥ 1, EX = 0.

The Hsu–Robbins–Erdős part corresponds to the equivalence of (7.1) and (7.2)
for the case r = 2 and p = 1. Spitzer (1956) verified the same for the case r = p = 1,
and Katz (1963), followed by Baum and Katz (1965) took care of the equivalence
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between (7.1), (7.2), and (7.4) as formulated in the theorem. Chow (1973) proved
that (7.3) holds iff (7.1) does, somewhat differently.

On the other hand, the equivalence of (7.2) and (7.3) is trivial one way and
follows via the Lévy inequalities (more precisely via the standard Lévy inequalities
as given in e.g. Gut (2007), Theorem 3.7.1 in conjunction with Proposition 3.6.1
there). The implication (7.4) =⇒ (7.2) is also trivial and the converse follows via
a “slicing device” introduced in Baum and Katz (1965).

Remark 7.2. Strictly speaking, if one of the sums is finite for some ε > 0, then so
are the others, and E|X|r < ∞. However, we need convergence for all ε > 0 in
order to infer that EX = 0 for the case r ≥ 1. The same remark applies below.

Before continuing we pause for a moment and consider, for simplicity, the Hsu–
Robbins–Erdős case r = 2 and α = 1, for which the original proof of the implication
(7.1) =⇒ (7.2) was technically very intricate.

The first and obvious attempt in order to find a simple proof of this implication
fails, as is frequently the case, because of the divergence of the harmonic series.
Namely, if EX = 0 and VarX = σ2 < ∞, then, by Chebyshev’s inequality, we
have ∞∑

n=1

P (|Sn| > nε) ≤
∞∑

n=1

σ2

nε2
= +∞ for any ε > 0.

However, a fascinating inequality, due to Kahane (1985) and Hoffmann-Jørgensen
(1974), see also Gut (2007), Theorem 3.7.5, turns out to be an extremely efficient
remedy.

Namely, the KHJ-inequality tells us that for independent symmetric random
variables one has

P (|Sn| > 3nε) ≤ P ( max
1≤k≤n

|Xk| > nε) + 4
(
P (|Sn| > nε)

)2
, (7.5)

which, since P (max1≤k≤n |Xk| > nε) ≤ nP (|X| > nε), yields

∞∑

n=1

P (|Sn| > 3nε) ≤
∞∑

n=1

nP (|X| > nε) + 4
(
P (|Sn| > nε)

)2

≤ E(X/ε)2 + 4

∞∑

n=1

( σ2

nε2

)2
=
EX2

ε2
+ 4

σ4

ε4
π2

6
,

where, in the last inequality, we exploited Proposition 5.1.
Symmetrizing and desymmetrizing follow standard procedures. For a complete

proof of the implication in the general case, one can iterate the KHJ-inequality
and exploit the Marcinkiewicz–Zygmund (moment) inequalities in order to cover
everything (except for the case r = p for which truncation and a WLLN-type of
argument is used). For details and a full proof we refer to Gut (2007), Section
6.11, the proof of which is based on Gut (1978), where the random field version,
Theorem 8.1 below, was proved.
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The beauty of this proof, thanks to KHJ, is the squaring of the Chebyshev
estimate, in that

∑∞
n=1 n

−1 (which is divergent) is replaced by
∑∞
n=1 n

−2 (which
is convergent).

We close by mentioning that for the limiting case p = 2 one is in the realm of the
central limit theorem, and since the individual probabilities do not converge to zero
in that case, there is of course no way of having their sums converge. However, by
replacing, what would then be

√
n by

√
n log n or even by

√
n log log n there exist

positive results; cf. Davis (1968a, 1968b), Lai (1974) for more.

8. The H-R-E-S-B-K theorem for random fields

The obvious question at this point is: What about random field versions?

Theorem 8.1. Let r > 0 and α > 1/2 with αr ≥ 1, suppose that {Xk, k ∈ Zd+}
are i.i.d. random variables, and set Sn =

∑
k≤nXk, n ∈ Zd+. If

E|X|r(log+ |X|)d−1 <∞ and, if r ≥ 1, EX = 0, (8.1)

then
∑

n

|n|αr−2P (|Sn| > |n|αε) <∞ for all ε > 0 ; (8.2)

∑

n

|n|αr−2P (max
k≤n
|Sk| > |n|αε) <∞ for all ε > 0. (8.3)

If αr > 1 we also have
∞∑

j=1

jαr−2P ( sup
j≤|k|

|Sk/|k|α| > ε) <∞ for all ε > 0. (8.4)

Conversely, if one of the sums is finite for all ε > 0, then E|X|r(log+ |X|)d−1 <∞
and, if r ≥ 1, EX = 0.

This is Theorem 4.1 in Gut (1978). As for the proof we only mention that the
KHJ- and the Marcinkiewicz–Zygmund inequalities concern sums and consequently
remain valid also for random fields. The proof of (8.1) =⇒ (8.2) therefore follows
along the same lines as above (with an application to Lemma 5.2 for the appropriate
moment condition).

The same can be said about the equivalence (8.2)⇐⇒ (8.3) (with a Zd+-version
of the Lévy inequality replacing the standard one). The implication (8.4) =⇒ (8.2)
is trivial again, and the converse follows via an elaboration of the slicing device
of Baum and Katz (1965). We refer to Gut (1978) for details in the multiindex
setting.

As the reader may have guessed by now, the next point on the agenda is the
case of unequal α:s. Toward that end we first recall, from Subsection 4.2, that α is
replaced by α = (α1, α2, . . . , αd), where, as before,

p = max{k : αk = α1},
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although now,
1

2
≤ α1 ≤ α2 ≤ · · · ≤ αd ≤ 1,

The reason for the lower bound 1/2 is, as was hinted at before, the central limit
theorem. In fact, supposing that α1 = 1/2, then, for any ε > 0, we have

∑

n

|n|(r/2)−2P (|Sn| > |nα|ε) ≥
∞∑

i=1

i(r/2)−2P (|Si,1,1,...,1| >
√
i·1·1 · · · 1·1·ε) = +∞.

Our first result extends Theorem 8.1. The proof follows the basic lines of
that of Theorem 8.1 with obvious changes, such as |nα| instead of |n|α, and the
additional technicalities inflicted by the unequalness of the α:s. We refer to Gut
and Stadtmüller (2012) for details.

Theorem 8.2. Let r > 0, suppose that α1 > 1/2, that α1 r ≥ 1, let {Xk, k ∈ Zd+}
be i.i.d. random variables, and set Sn =

∑
k≤nXk, n ∈ Zd+. If

E|X|r(log+ |X|)p−1 <∞ and, if r ≥ 1, EX = 0,

then
∑

n

|n|α1r−2P (|Sn| > |nα|ε) <∞ for all ε > 0 ;

∑

n

|n|α1r−2P (max
k≤n
|Sk| > |nα|ε) <∞ for all ε > 0.

If α1r > 1 we also have

∞∑

j=1

jα1r−2P ( sup
j≤|k|

|Sk/|kα|| > ε) <∞ for all ε > 0.

Conversely, if one of the sums is finite for all ε > 0, then E|X|r(log+ |X|)p−1 <∞
and, if r ≥ 1, EX = 0.

In order to illustrate, once more, the efficiency of the KHJ-inequality we show
how the proof for the first sum works in the special case when α1r = 2 and the
summands are symmetric. Following the procedure from the proof of Theorem 7.1
we obtain

∑

n

P (|Sn| > 3j |nα|ε) ≤
∑

n

P (|X| > |nα|ε) + 4
∑

n

(
P (|Sn| > |nα|ε)

)2

≤
∑

n

P (|X| > |nα|ε) +
4σ4

ε4

∑

n

( |n|σ2

|nα|2ε2
)2

=
∑

n

P (|X| > |nα|ε) +
4σ4

ε4

d∏

i=1

∞∑

ni=1

n
−2(2αi−1)
i .
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Now, the first sum is finite iff the desired moment condition is fulfilled (Lemma
5.2), and the second one is finite, since the last exponent 2(2αi − 1) > 1 for all i.

Full details are given in Gut and Stadtmüller (2012), Section 3.

As mentioned some lines ago, there are no positive results when α1 = 1/2.
However, by adding logarithms as in Lai (1974), Gut (1980), maybe ...?

In the following we first let “some” (= p ≤ d) of the α:s be equal to 1/2 with
additional logarithms or iterated logarithms and some (= d − p ≥ 0) of them be
strictly larger than 1/2, after which we consider the complete mixture with q > p
of the α:s being equal to 1/2, the p first of them with additional logarithms, the
q−p next ones with additional iterated logarithms, and the d−q largest ones being
> 1/2. For proofs we refer to Gut and Stadtmüller (2012).

Theorem 8.3. Let r ≥ 2, suppose that α1 = 1/2 (and thus, in particular, that
α1r ≥ 1), let {Xk, k ∈ Zd+} be i.i.d. random variables, and set Sn =

∑
k≤nXk,

n ∈ Zd+. If

E|X|r(log+ |X|)p−1−r/2 <∞, E X = 0, and VarX = σ2 <∞,

then
∑

n

|n|(r/2)−2P
(
|Sn| >

√√√√
p∏

i=1

ni · log
( p∏

i=1

ni
) d∏

i=p+1

nαii · ε
)
<∞

for ε > σ
√
r − 2;

∑

n

|n|(r/2)−2P
(

max
k≤n
|Sk| >

√√√√
p∏

i=1

ni · log
( p∏

i=1

ni
) d∏

i=p+1

nαii · ε
)
<∞

for ε > σ
√
r − 2. If α1r > 1, i.e. if r > 2, then we also have

∞∑

j=1

j(r/2)−2P
(

sup
j≤|k|

∣∣∣Sk

/
√√√√

p∏

i=1

ki log ki

d∏

i=p+1

kαii

∣∣∣ > ε
)
<∞ for all ε > σ

√
r − 2.

Conversely, suppose that either r = 2 and p ≥ 2, or that r > 2. If one of the sums
is finite for some ε > 0, then E|X|r (log+ |X|)p−1−r/2 <∞ and EX = 0.

Theorem 8.4. Suppose that α1 = 1/2, that p ≥ 2, let {Xk, k ∈ Zd+} be i.i.d.
random variables, and set Sn =

∑
k≤nXk, n ∈ Zd+. If

EX2 (log+ |X|)p−1
log+ log+ |X| <∞, E X = 0, and VarX = σ2,

then, for ε > σ
√

2p,

∑

n

1

|n|P
(
|Sn| >

√√√√
p∏

i=1

ni · log log
( p∏

i=1

ni
) d∏

i=p+1

nαii · ε
)
<∞ ;
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∑

n

1

|n|P
(

max
k≤n
|Sk| >

√√√√
p∏

i=1

ni · log log
( p∏

i=1

ni
) d∏

i=p+1

nαii · ε
)
<∞.

Conversely, if one of the sums is finite for some ε > 0, then EX2 (log+ |X|)p−1

log+ log+ |X| <∞
and EX = 0.

Theorem 8.5. Suppose that α1 = 1/2, that 2 ≤ p < d, let {Xk, k ∈ Zd+} be i.i.d.
random variables, and set Sn =

∑
k≤nXk, n ∈ Zd+. If

EX2 (log+ |X|)d−2
log+ log+ |X| <∞, E X = 0, and VarX = σ2,

then, for ε > σ
√

2p,

∑

n

1

|n|P
(
|Sn| >

√√√√
p∏

i=1

ni · log log
( p∏

i=1

ni
)
· log(

d∏

i=p+1

ni) · ε
)
<∞ ;

∑

n

1

|n|P
(

max
k≤n
|Sk| >

√√√√
p∏

i=1

ni · log log
( p∏

i=1

ni
)
· log(

d∏

i=p+1

ni) · ε
)
<∞.

Conversely, if one of the sums is finite for some ε > 0, then EX2 (log+ |X|)d−2

log+ log+ |X| and
EX = 0.

Theorem 8.6. Suppose that α1 = 1/2, that 2 ≤ p < q < d, let {Xk, k ∈ Zd+} be
i.i.d. random variables, and set Sn =

∑
k≤nXk, n ∈ Zd+. If

E|X|2 (log+ |X|)q−2
log+ log+ |X| <∞, E X = 0, and VarX = σ2,

then, for ε > σ
√

2p, we have

∑

n

1

|n|P
(
|Sn| >

√√√√
q∏

i=1

ni log log(

p∏

i=1

ni) · log(

q∏

i=p+1

ni) ·
d∏

i=q+1

nαii · ε
)
<∞ ;

∑

n

1

|n|P
(

max
k≤n
|Sk| >

√√√√
q∏

i=1

ni log log(

p∏

i=1

ni) · log(

q∏

i=p+1

ni) ·
d∏

i=q+1

nαii · ε
)
<∞.

Conversely, if one of the sums is finite for some ε > 0, then E|X|2 (log+ |X|)q−2

log+ log+ |X| and
EX = 0.

Remark 8.7. When p = d = 1 Theorem 8.3 reduces to Lai (1974), Theorem 3, and
for p = d ≥ 2 to Gut (1980), Theorems 3.4 and 3.5. When p = d in Theorem 8.4
one rediscovers Gut (1980), Theorem 6.2.
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Remark 8.8. The reason for strict inequalities between p, q, and d in the last two
results is that there is no “continuity” in the moment assumptions between those
theorems and the earlier ones.

Remark 8.9. The first and necessary moment condition in Theorem 8.3 implies, in
particular, that the variance is finite except for the case when r = 2 and p = 1.
However, one can show (cf. Gut (1980), p. 301) that an intermediate condition is
sufficient when r = 2 and (p =) d = 1 in the symmetric case. For the complicated
precise condition and for more on this exceptional case we refer to Spătaru (2001).
A similar remark applies to the case p = 1, since the variance is automatically
finite unless p = 1.

A related problem occurs in the LIL where the proof of the necessity is “easy”
when d ≥ 2 and “hard” when d = 1.

9. Two additional problems

9.1. Other weights
In all results of the H-R-E-S-B-K kind the probabilities have had polynomial
weights so far. So, what happens if the weights grow faster than polynomially?
But not fast enough for the moment generating function to exist?

A first result in this direction is due to Lanzinger (1998), and corresponds to
the equivalence of the moment condition and the convergence of the first sum for
d = 1 (in a two-sided and, thus, stronger form) in the following result.

Theorem 9.1. Let 0 < α < 1, and suppose that {Xk, k ∈ Zd+} are i.i.d. random
variables with EX = 0 and partial sums Sn =

∑
k≤nXk, n ∈ Zd+. The following

are equivalent:

E exp{|X|α}(log+ |X|)d−1 <∞;
∑

n

exp{|n|α} · |n|α−2P (|Sn| > |n|ε) <∞ for all ε > 1;

∑

n

exp{|n|α} · |n|α−2P (max
k≤n
|Sk| > |n|ε) <∞ for all ε > 1;

∞∑

j=1

exp{jα} · jα−2P ( sup
j≤|k|

|Sk/|k|| > ε) <∞ for all ε > 1.

There remains, in fact, an intermediate case, namely, when the weights are
between polynomial and exponential in the following sense.

Theorem 9.2. Let α > 1, and suppose that {Xk, k ∈ Zd+} are i.i.d. random
variables with EX = 0 and partial sums Sn =

∑
k≤nXk, n ∈ Zd+. The following

are equivalent:

E exp{(log |X|)α}(log+ |X|)d−1 <∞;
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∑

n

exp{(log |n|)α} · (log |n|)α−1
|n|2 P (|Sn| > |n|ε) <∞ for all ε > 1;

∑

n

exp{(log |n|)α} · (log |n|)α−1
|n|2 P (max

k≤n
|Sk| > |n|ε) <∞ for all ε > 1;

∞∑

j=1

exp{(log j)α} · (log j)α−1

j2
P ( sup

j≤|k|
|Sk/|k|| > ε) <∞ for all ε > 1.

Once again, we refer to the original source Gut and Stadtmüller (2011c) for
proofs and further details.

9.2. Last exit times
A strong limit theorem tells us, i.a., that the number of exceedances of some kind is
a.s. finite. For the LLN (with obvious notation) this means that P (|Sn| > nε i.o.) =
0 for any ε > 0. Now, given this, one may ask for the number of them or the last
time an exceedance occurs, which is called the last exit time, denoted L(ε). The
LLN is thus equivalent to the statement P (L(ε) < ∞) = 1. When d = 1 it is
(maybe) more natural to put interest in N(ε) = the number of exceedances, but,
due to the partial order of Zd+ we shall stick to last exit times here.

The point is that there is an obvious connection to the previous results. Namely,
letting an denote |n|α, |nα|,

√
|n| log |n|, or

√
|n| log log |n|, then, for

Ld(ε) = sup{|n| : |Sn| > anε},

we always have
{Ld(ε) ≥ j} = { sup

j≤|k|
|Sk/ak| > ε},

which implies, for example, that

E
(
Ld(ε)

)r �
∞∑

j=1

jr−1P ( sup
j≤|k|

|Sk/ak| > ε),

after which the appropriate result above provides the relevant conditions for a
moment of a given order to exist.

We confine ourselves with providing two examples, and leave it to the reader to
invent the conclusion of his/her favorite choice.

Theorem 9.3. Let α1 > 1/2, α1r > 1, and set Ld(ε) = sup{|n| : |Sn| > |nα|ε}.
The following are equivalent:

E|X|r(log+ |X|)p−1 <∞ and, if r ≥ 1, E X = 0,

E
(
Ld(ε)

)α1r−1
<∞ for all ε > 0.
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Theorem 9.3 is (of course) related to Theorem 8.2. When p = d it reduces to
Gut (1980), Theorem 8.1.

As a final remark we mention that, for an =
√
n log log n, Slivka (1969) showed

that no finite moment exists for the corresponding counting variable, which im-
mediately implies the same for the last exit times and, all the more, for Ld(ε).
However, it was shown in Gut (1980), Theorem 8.3, that logarithmic moments
may exist. More precisely:

Theorem 9.4. Let Ld(ε) = sup{|n| : |Sn| >
√
|n| log log |n|ε}, and suppose that

EX = 0 and VarX = σ2 <∞. Then
(a) E

(
Ld(ε)

)r
= +∞ for all r > 0 and all ε > 0.

(b) If, in addition, EX2 (log+ |X|)d
log log+ |X| <∞, then E logLd(ε) <∞ for ε > σ

√
2(d+ 1).

10. Martingales and the LLN for random fields

New problems appear in random field settings, because there exist four different
definitions of martingales.

In the standard definition one defines a family of nested σ-algebras {Fn, n ∈
Zd+} and an adapted family {Xn, n ∈ Zd+} of random variables, which together
constitute a martingale iff

E(Xn | Fm) = Xm for m ≤ n.

The martingale convergence theorem runs as follows.

Theorem 10.1. (a) If {Xn, n ∈ Zd+} is a martingale, such that

sup
n
E|Xn|(log+ |Xn|)d−1 <∞,

then Xn converges almost surely as n→∞.
(b) The same is true if the index set is a sector Sdθ in Zd+.

Now, introducing a random field {Yn, n ∈ Zd+} of i.i.d. random variables, it is
known that the field {Xn = 1

|n|
∑

k≤n Yk}, where n ∈ Zd+ or n ∈ Sdθ , of arithmetic
means consitute reversed martingales to which Theorem 10.1 is applicable.

The LLN thus follows immediately from Theorem 10.1.
We may thus combine our knowledge about the law of large numbers and about

martingales as follows:

• The LLN in Zd+ holds iff EM(|Y |) <∞ i.e., iff E|Y |(log+ |Y |)d−1 <∞;

• The LLN in the sector Sdθ holds iff EM(|Y |) <∞ i.e., iff E|Y | <∞;

• Martingale convergence holds in both cases iff E|Y |(log+ |Y |)d−1 <∞.

The moral of the story is that for the sector the martingale proof yields a weaker
result, since the LLN requires only finite mean. The explanation is that
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• LLN: The decisive point concerning logarithms or not is the size of the
index set.

• Martingales: Logarithms are present because of the dimension of the index
set.

So, even though the martingale proof is an elegant so-called one-line proof it is
inferior in cases such as the sector.
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Abstract

Nowadays there are many methods for processing of digital signals. A
classic example is Fourier analysis. Using this transformation we build a
decomposition of a signal by frequencies, so the result is easy for interpre-
tation. But this method works well only with stationary signals, when we
can find periodic components. Also using Fourier transform we lose informa-
tion about coordinates of events in the original signal, because the result of
transformation is in terms of frequencies.

Of course, there are alternative ways of signal processing. Wavelet anal-
ysis is one of them. Wavelet transform works in a very simple manner. It
divides the original signal into two parts – approximation and details. This
dichotomization can be repeated many times and we’ll have decomposition
with multilevel detailization. There are 2 ways for further work: to analyze
the result of transformation interpreting it as something or to execute some
operations with the result and then use inverse Wavelet transform.

This article is about the using of wavelet analysis in climatic challenges.
The work of the authors of this article was to analyze water vapor field of the
Earth searching for numerical patterns.

1. Basic information about Wavelet transform

Information about wavelets required for further discussion is placed in this section
of the article.
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1.1. 1D wavelet transform

1.1.1. 1D discrete wavelet transform

Definition 1.1. The function ϕ(x) ∈ L2(R) is scaling function if it can be repre-
sented as:

ϕ(x) =
√
2
∑

n∈Z
hnϕ(2x− n), (1.1)

where hn, n ∈ Z satisfy the condition
∑

n∈Z
|hn|2 <∞.

The equation (1.1) is scaling equation, the set of coefficients {hn}n∈Z is scaling
filter.

Widely known Haar function:

F (x) =

{
1, x ∈ [0, 1),

0, otherwise

is scaling function, but centered Haar function

F (x) =

{
1, x ∈ [− 1

2 ,
1
2 ),

0, otherwise

cannot be classified to scaling functions.

Definition 1.2. Orthogonal multiresolution decomposition (or multiresolution
analysis, or MRA) of L2(R)-space is a sequence of confined spaces:

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ,

with following properties:

1.
⋃
j∈Z Vj = L2(R),

2.
⋂
j∈Z Vj = {0},

3. f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1,

4. ∃ϕ(x) ∈ V0 : {ϕ0,n(x) = ϕ(x− n)}n∈Z – an orthonormal basis of V0-space.

Using properties 3 and 4 of Definition 1.2 we can conclude that

{ϕj,n(x) =
√
2jϕ(2jx− n)}n∈Z

is an orthonormal basis of Vj-space.
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∀j we have Vj ⊂ Vj+1. Let Wj be an orthogonal complement of Vj to Vj+1, i.e.
Vj+1 = Vj ⊕Wj . Then Vj+1 = Vj−1 ⊕Wj−1 ⊕Wj , because Vj = Vj−1 ⊕Wj−1.
Repeating this procedure we’ll have

Vj+1 =

j⊕

k=−∞
Wk.

According to property 1 of Definition 1.2 we can conclude that L2(R)-space has
an orthogonal decomposition:

L2(R) =
+∞⊕

k=−∞
Wk.

Definition 1.3. If a sequence of subspaces . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . is multires-
olution analysis and ∀j ∈ Z Wj is the orthogonal complement of Vj to Vj+1 then
each such Wj is wavelet space and its elements are wavelets.
∃ψ(x) ∈W0, called “mother wavelet”, with properties

1. {ψ(x− n)}n∈Z – an orthonormal basis of W0-space,

2. {ψj,n(x) =
√
2jψ(2jx−n)}n∈Z – an orthonormal basis of Wj-space for every

j.

Let (f(x), g(x)) be the scalar product in L2(R), i.e.

〈f(x), g(x)〉 =
+∞∫

−∞

f(x)g(x)dx. (1.2)

Let f(x) ∈ Vj+1 then we have the decomposition of f(x):

f(x) =

j∑

k=−∞

∑

n∈Z
〈f(x), ψk,n(x)〉ψk,n(x).

In practice the number of detailization levels is finite, so for f(x) we have the
following decomposition formula:

f(x) =

j∑

k=0

∑

n∈Z
〈f(x), ψk,n(x)〉ψk,n(x) +

∑

n∈Z
〈f(x), ϕ(x− n)〉ϕ(x− n),

i.e. the signal from Vj+1-space is represented in terms of elements of spaces
{V0,W0, . . . ,Wj}.

In case of discrete signal the formula (1.2) can be rewritten as the sum. If
x = {xn}n∈Z is the digitization of the signal x(t), t ∈ R, then wavelet coefficient
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aj,n can be represented in terms of discrete convolution with the filter h = {hn}n∈Z
corresponded to function ψj,n:

aj,n =
∞∑

k=−∞
hkxn−k.

Usually the process of signal analysis starts from its representation in terms
of a basis of Vj+1-space. Then we build a decomposition in bases of Vj č Wj

constructing approximation and details. We can repeat decomposition or stop the
process. So we have the following decomposition scheme:

Vj+1 −−−−→ Vj −−−−→ ... −−−−→ V1 −−−−→ V0y
y

y

Wj Wj−1 W0

We stopped at 0-index, so V0-based approximation component consists of the
most general trends of the original signal and W0-based detailization includes the
most spatially extended deviations from these trends.

As we noted in the abstract we can use decomposition coefficients as indepen-
dent data and create a conclusion based on it or perform operations on them and
then reconstruct the signal.

For the reconstruction process we have the following scheme:

Vj+1 ←−−−− Vj ←−−−− ... ←−−−− V1 ←−−−− V0x
x

x

Wj Wj−1 W0

1.1.2. 1D continuous wavelet transform

As we know, for 1D discrete wavelet transform the following formula is valid:

ψj,n(x) =
√
2jψ(2jx− n), where j, n ∈ Z.

Continuous wavelet transform is constructed by allowing arbitrary real values
of the parameters of scaling and shift (in discrete variant we should use powers
of 2 for the scale parameter and integers for shift parameter). This generalization
allows to select details of a signal with arbitrary size of their support.

Let ψ(x) be wavelet. ψ(x) ∈ L2(R) and also

Cψ = 2π

+∞∫

−∞

|ω|−1|ψ̂(ω)|2dω <∞. (1.3)
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(The relation (1.3) guarantees the existence of inverse continuous transform).
Let a be the scaling parameter and b is the shift parameter, then we have

2-parameter family of wavelets:

ψab(x) = |a|−1/2ψ
(
x− b
a

)
, where a, b ∈ R.

1D continuous wavelet transform is defined by the formula:

Wψ [f ] (a, b) = (f, ψa,b) = |a|−1/2
+∞∫

−∞

f(x)ψ

(
x− b
a

)
dx. (1.4)

It’s obvious that the coefficients of 1D discrete wavelet transform can be com-
puted as

cjk =Wψ[f ]

(
1

2j
,
k

2j

)
.

And as in discrete case we have inverse transform:

Theorem 1.4. If f(x) ∈ L2(R) and (1.3) is satisfied, then we have inverse 1D
continuous wavelet transform formula:

f(x) = C−1ψ

∫∫
Wψ[f ](a, b)ψab(x)

dadb

a2
.

1.2. 2D discrete wavelet transform

In this subsection we’ll consider the case of functions from L2(R2)-space.
The simplest way of generalization 1D wavelet transform to 2D wavelet trans-

form is based on tensor product. We have the following representation for L2(R2)-
space:

L2(R2) = L2(R)⊗ L2(R).

I.e. linear combinations of f(x)g(y) construct dense set in L2(R2).
We’ll define V 2

0 as tensor product of V0:

V 2
0 = V0 ⊗ V0.

According to this fact

{ϕ0,k,n(x, y) = ϕ(x− k)ϕ(y − n)}k,n∈Z

is an orthonormal basis of V 2
0 -space.

V 2
j = Vj ⊗ Vj are scaled versions of V 2

0 -space, for them we have the following
relation

f(x, y) ∈ V 2
0 ⇐⇒ f(2jx, 2jy) ∈ V 2

j .
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So, as in 1D-case, there is a sequence of spaces . . . ⊂ V 2
−1 ⊂ V 2

0 ⊂ V 2
1 ⊂ . . ..

Using equation V1 = V0 ⊕W0 for L2(R2) we conclude that

V 2
1 = V1 ⊗ V1 = (V0 ⊕W0)⊗ (V0 ⊕W0) =

= (V0 ⊗ V0)⊕ (V0 ⊗W0)⊕ (W0 ⊗ V0)⊕ (W0 ⊗W0) =

= V 2
0 ⊕ (V0 ⊗W0)⊕ (W0 ⊗ V0)⊕ (W0 ⊗W0).

V0 ⊗W0, W0 ⊗ V0, W0 ⊗W0 forms 2D-wavelet space W 2
0 . The following facts

exist:

space V0 ⊗ W0 is constructed by shifts of function ψH(x, y) = ϕ(x)ψ(y),
we’ll designate it as WH

0 – this is the space of horizontal details (ox-oriented
homogeneous areas can be selected);

space W0 ⊗ V0 is constructed by shifts of function ψV (x, y) = ψ(x)ϕ(y),
we’ll designate it as WV

0 – this is the space of vertical details (oy-oriented
homogeneous areas can be selected);

spaceW0⊗W0 is constructed by shifts of function ψD(x, y) = ψ(x)ψ(y), we’ll
designate it as WD

0 – this is the space of diagonal details(diagonal inhomo-
geneous areas can be selected).

So we have the following decomposition:

V 2
j+1 = V 2

j ⊕WH
j ⊕WV

j ⊕WD
j ∀j.

The following sets of functions are orthonormal bases of listed spaces:

{ϕj,k,n(x, y) = 2jϕ(2jx− k)ϕ(2jy − n)}k,n∈Z;
{ψHj,k,n(x, y) = 2jϕ(2jx− k)ψ(2jy − n)}k,n∈Z;
{ψVj,k,n(x, y) = 2jψ(2jx− k)ϕ(2jy − n)}k,n∈Z;
{ψDj,k,n(x, y) = 2jψ(2jx− k)ψ(2jy − n)}k,n∈Z.

I.e. there are 4 types of decomposition coefficients:

〈f(x, y), ϕj,k,n(x, y)〉 = 2j
∫

R2

f(x, y)ϕ(2jx− k)ϕ(2jy − n)dxdy;

〈f(x, y), ψHj,k,n(x, y)〉 = 2j
∫

R2

f(x, y)ϕ(2jx− k)ψ(2jy − n)dxdy;

〈f(x, y), ψVj,k,n(x, y)〉 = 2j
∫

R2

f(x, y)ψ(2jx− k)ϕ(2jy − n)dxdy;

〈f(x, y), ψDj,k,n(x, y)〉 = 2j
∫

R2

f(x, y)ψ(2jx− k)ψ(2jy − n)dxdy;
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Schemes of decomposition and reconstruction processes are

V 2
j+1 −−−−−−−→ V 2

j −−−−−−−→ ... −−−−−−−→ V 2
1 −−−−−−−→ V 2

0

y
y

y

WH
j ,WV

j ,WD
j WH

j−1,WV
j−1,WD

j−1 WH
0 ,WV

0 ,WD
0

V 2
j+1 ←−−−−−−− V 2

j ←−−−−−−− ... ←−−−−−−− V 2
1 ←−−−−−−− V 2

0

x
x

x

WH
j ,WV

j ,WD
j WH

j−1,WV
j−1,WD

j−1 WH
0 ,WV

0 ,WD
0

2. The task of analysis of water vapor field of the
Earth

2.1. Introduction
The Earth atmosphere is very complex and unpredictable. Energy of the atmo-
sphere is contained mostly in water vapor, because of its heat capacity. Study
of processes in water vapor field can help us to explain and predict atmospheric
phenomena, for example, cyclones and hurricanes’ formation – they are the most
interesting because of their consequences.

Many atmospheric phenomena have periodic nature, for example, it is easy to
understand that water vapor field has an annual cycle of movements. But the most
interesting phenomena for scientists are nonstationary. They should be localized
in space and time and their parameters should be found so appropriate methods
of research are required.

In our research of water vapor field we used wavelet analysis.

2.2. Essence of the task
For every day from 01.01.1999 to 31.12.2009 we had a digital map of the earth
with the size 360× 720 (grid is 0,5◦). A value of every pixel on map is an average
density (kg/m2) of water vapor in spheric segment of the Earth with appropriate
geographic coordinates and date (rounded to the nearest whole). So we had 3D-
array of data from satellite images.

There are some problems with this array. The algorithm of value construction
can be used only for water vapor field above the surface of the oceans, so by this
reason the land surface pixels are filled with zeros. Also there are spaces on maps
where in some days satellites didn’t make images, these pixels are marked with
“−20”-value.

It’s obvious that the most convenient way to display this information is graphic
– for every day we can draw a map of water vapor field as indexed image. The
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picture (1) demonstrates an example image (the matching of colors to values of
density is on the right side): we can see all the problems listed above.

Figure 1: Water vapor field. 01.01.1999

So the essence of the task was to search for numeric patterns in this density
array.

The preliminary analysis of data had given a very important fact. The variance
of values for the first 7 years differs from the variance of values for the last 4 years
(the algorithm of value construction had been changed by data provider), so we
decided to use data from 01.01.1999 to 31.12.2005.

2.3. Research ways
We decided to divide research into 2 parts:

1. The research of time series in every discretization point;

2. Meridional analysis.

The main idea was to examine the results of wavelet decomposition on numeric
patterns. All the algorithms were realized in Matlab using Wavelet Toolbox.

2.3.1. The research of time series

We had 3D-array where every 2D-layer is a density map. Fixing values of geo-
graphic coordinates we can extract time series for every point of discretization of
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the Earth’s surface, so it had been done for data appropriate to surface of the
oceans. An example of such time series is on the Figure 2.

Figure 2: An example of time series (ox - time, oy - density)

In Matlab’s Wavelet Toolbox we can analyze 1D arrays using both discrete and
continuous wavelet transforms. But the second variant gives much more infor-
mation about signal, because we can observe details of time series with arbitrary
length instead of only the powers of 2. We had tested many wavelet families and
for some of them found interesting patterns.

Results obtained with the use of wavelet Morlet (in terms of Matlab - “cmor1-
1.5”) we consider the most important. Wavelet Morlet is a complex function which
can be written as

ψ(t) = e2πit−
t2

2 .

Decomposition of every time series should be executed according to formula
(1.4). On Figure 3 the result of 1D continuous complex wavelet transform for
time series of point from Oceania is presented. This figure is built using Matlab’s
Wavelet Toolbox, so we can see specific Matlab notation for wavelet coefficients.
For example, Ca, b means wavelet coefficient of continuous wavelet decomposition
with scale parameter a and shift parameter b:

Wψ[f ](a, b) = Ca, b.

So we had such decomposition arrays for all available values of geographic co-
ordinates. We had computed main frequencies for every pair (time series, values
of scale parameter) using Fourier transform and for every value of scale parameter
of decomposition generated a “frequency map”. An example of such map is on the
Figure 4. The area of 45◦ sl. — 45◦ nl. is presented because cyclonic activity is
strong there.
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Figure 3: An example of continuous complex wavelet decomposi-
tion of time series which is presented on Figure 2

Figure 4: An example of “frequency map” (30-days activity)

Figure 4 demonstrates distribution of 30-days activity because the wavelet filter
works with interval of coefficients of this length.

The staff of Institute of Space Researches had worked with this algorithm
searching for physical interpretation of results represented on “frequency maps”.
They had found some new numeric patterns in the Earth’s water vapor field such
as subzones of variability of density of water vapor, known subzones had been
localized better. Also all season effects and high day to day activity had been
confirmed.
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2.3.2. Meridional analysis

This part of researches is based on idea of joint analysis of data for every merid-
ian. From original 3D array we extracted 2D array fixing the value of geographic
longitude. So we had indexed images such as presented on Figure 5.

Figure 5: An example of distribution of density of water vapor
during 1999-2005 for 21.5◦ el

According to strong variance of data from day to day we cannot use continuous
wavelets. We will not reconstruct signal after decomposition, so we don’t need
any specific properties of wavelet basis in this context. Also it’s comfortable when
wavelet function is symmetric because transform results are unbiased. So we were
using biorthogonal wavelets.

The physical interpretation of wavelet coefficients is rather simple. 2D discrete
wavelet transform on every step of decomposition doubles the size of details it con-
structs. In our case it doubles them both by time and space. According to nature of
selected basis we can conclude that the first level of decomposition consists of (day
to day, 0,5◦ of latitude) details (for example the 5th level has details represented
fluctuations during a month (approximately)). But we must take into account that
there are 3 sorts of details: horizontal, vertical and diagonal. Horizontal details
represent constant time nature of signal and difference by latitude. For vertical
details we have an opposite situation. Diagonal details include space-and-time
differences in signal.

There are many interesting facts we had found on decomposition images. In
this article we are presented only some of them.

The first conclusion is based on the results of analysis of the first level of decom-
positions.We can say that day to day variability is stronger then interlatitudinal.
Day to day activity is stronger in equatorial zone and mid-latitudes then in sub-
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tropics and circumpolar regions. Also it’s easy to see that activity movings has
seasonal component.

Another interesting fact we want to present in this article had been found on
the 5th level of decomposition (“monthly details”). There is a strong difference
between equatorial and subtropical monthly climatic activities. Similar result we
see in circumpolar regions but we cannot be so sure in wavelet coefficients computed
there because of edge effects.

2.4. Summary of current results
Distancing from facts listed above we can say that some relatively common results
have already been achieved:

New mathematical methods for data processing has been proposed;

Using this methods the new concept “frequency map” has been introduced in the
subject area;

Some numeric patterns for water vapor field have been discovered;

The hypothesis that “frequency maps” can help to predict atmospheric phenomena
has been proposed.

2.5. Further plans
We have got many ideas about further work on this task and using of wavelet anal-
ysis in other research areas. We are working on the hypothesis of the relationship
between water vapor field fluctuations and cyclonic activity. Many facts say that
“frequency maps” can help us to make necessary mathematical tools for prediction
of some atmospheric phenomena such as hurricanes. Some simple visual patterns
were detected during comparison of sets of images such as Figures 6 and 7.

Figure 6: Element of frequency map
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Figure 7: Trajectory of Catrina hurricane

So further researches are needed.
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1. Introduction

Let X be a non-negative integer-valued random variable, pn = P(X = n). Put
Sn =

∑n
1 Xj , n ≥ 1, where Xj are i.i.d. random variables which have the same

distribution as X. In what follows we assume that S0 = 0. Let un =
∑∞
k=0 P(Sk =

n) be the renewal probability at the instant n. Put f(z) =
∑∞
k=0 pkz

k. If g(z) is
an analytical function in some neighbourhood of zero, we denote the coefficient at
zn in Taylor series for g(z) by Cn(g(z)).

In 1963 Garsia and Lamperti [1] proved that under the condition

P(X > n) ∼ L(n)n−α, (1.1)

where L(x) is a slowly-varying function, the asymptotic formula

un ∼
sinπα

π
L−1(n)nα−1, (1.2)

is valid, provided 1/2 < α < 1. The relation an ∼ bn here and below indicates that
lim
n→∞

an/bn = 1.
In 1968 Williamson [3] extended Garsia-Lamperti’s result to the case that X

belongs to the domain of attraction of a non-degenerate d - dimensional stable law
with characteristic exponent α, d/2 < α < min(d; 2).

To prove (1.2) Garsia and Lamperti used the purely analytical method based
on analysis of behavior of the generating function f(z) on the unit circle. On the
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contrary, Williamson’s approach is probabilistic with the local limit theorem by
Rvacheva [4] as the starting point.

As to case 0 < α ≤ 1/2, formula (1.2), generally speaking, is not true if we
restrict our selves to condition (1.1). Corresponding counter-example is given in
[3]. The point is that in the case 0 < α ≤ 1/2 the existence of lacunas in the
sequence pn influences on the behavior of un. Therefore, additional constraints are
necessary to provide the validity of (1.2). One such constraint was suggested by
De Bruijn and Erdos [2] before [1] appeared, namely,

pn−1pn+1 > p2n, (1.3)

i.e. the sequence ln pn is convex. Williamson [3] noticed that (1.2) remains true if
the sequence pn does not increase beginning with some number n. This condition
is weaker than (1.3).

In the present work we use the condition

pn ∼
l(n)

n1+α
, 0 < α < 1, (1.4)

where the function l(x) is slowly varying. Notice that condition (1.1) with L(n) =
α−1l(n) follows from (1.4) (see Lemma 2.1 below). Condition (1.4) is discussed
in our previous paper [5], namely, it is shown therein that if above-mentioned
Williamson’s condition is fulfilled, then (1.4) hold.

Theorem 1.1. If condition (1.4) holds, then

un ∼ c(α)
P(X = n)

P2(X ≥ n)
∼ α2c(α)

l(n)n1−α
, (1.5)

where c(α) = sinπα/πα.

The extreme case pn ∼ n−1l(n) is studied in [5]. It turns out that under this
condition un ∼ P(X = n)/P2(X ≥ n). Since c(α) → 1 as α → 0, it implies that
representation

un ∼ c(α)
P(X = n)

P2(X ≥ n)
,

which is given in Theorem 1.1 is stable as α → 0. However, we can not say this
about the relation un ∼ α2c(α)/l(n)n1−α.

In proving Theorem 1.1 we apply the same approach as in [5]. However, to
realize it was found more difficult in this case.

Remark. In [6] the renewal theorem is proved under condition that (1.1) holds and

pn < cP(X > n)n−1

using Williamson’s method. The proof is based on the following statement:
Assume that F (0) = 0 and (2.1) holds. Then for all n ≥ 1, z large enough and
x ≥ z

P{Sn ≥ x,Mn ≤ z} ≤ {cz/x}x/z,
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where Mn = max{X1, X2, ..., Xn} and Sn =
n∑
1
Xi (see Lemma 2 in [6]).

The author of [6] asserts that this lemma is an immediate consequence of the
inequality

P(Sn ≥ x) ≤
n∑

i=1

P(Xi > yi) + (eA+
t /xy

t−1)x/y,

where Sn =
n∑
j=1

Xj , Xj are independent random variables, y > max
i
yi, A

+
t =

n∑
j=1

{Xt
j ;Xj > 0}, 0 < t < 1 (see Corollary 1.5 in [7]).

If Xj are i.i.d. equal to X by distribution, then

P(Sn ≥ x) ≤ nP(X > y) +

(
enE{Xt;X > 0}

xyt−1

)x/y
.

If X ≤ y, then
E{Xt;X > 0} ≤ yt.

Consequently, in this case

P(Sn ≥ x) ≤
(
eny

x

)x/y
.

This inequality differs from the inequality stated in [6] by the presence of n in the
right-hand side. Thus, Lemma 2 of [6] does not follow from Corollary 1.5 of [7]),
and, therefore, the former can not be considered as being proved.

Let hn =
∞∑
k=0

n−1P(Sk = n).

Theorem 1.2. If condition (1.4) holds, then

hn ∼
α

n
. (1.6)

Notice that hn is the derivative of the measure ν(A) :=
∑
k∈A

hk with respect to

the counting measure. The measure ν(A) is a particular case of so called harmonic

renewal measure. Recall that that the measure ν(·) =
∞∑
1
n−1Fn(·), where Fn is n-

th convolution of any distribution F on R+ is said to be harmonic renewal measure
associated with F . In our case the distribution F is concentrated on the lattice
of non-negative integers.The harmonic renewal function is defined by the equality
H(x) = ν([0, x)).

The next statement concerning the asymptotic behavior of H(n) as n → ∞
follows from Theorem 1.2.

Corollary 1.3. If condition (1.4) holds, then

H(n) ∼ α lnn. (1.7)
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The asymptotic behavior of H(x) for x → ∞ is studied in [9, 10, 11, 12]. The
case that F attracts to a stable law is considered in [9], namely , it is proved therein
that under the condition 1− F (x) ∼ x−αL(x)

lim
x→∞

(H(x)− α lnx+ lnL(x)) = αC− ln Γ(1− α),

where C is the Euler constant, Γ(·) is the gamma function. Of course, the last
assertion is sharper than (1.7). Formula (1.7) is presented by reason of simplicity
of proving.

2. Auxiliary results

Lemma 2.1. For any α > 0

∞∑

k=n

l(k)

kα+1
∼
∞∫

n

l(y)

yα+1
dy. (2.1)

Proof. Put p(x) = l(x)/xα+1. Obviously,

inf
n≤y≤n+1

p(y)

p(n)
≤ 1

p(n)

n+1∫

n

p(y)dy ≤ sup
n≤y≤n+1

p(y)

p(n)
. (2.2)

It is easily seen that for every n ≤ y ≤ n+ 1

(
n

n+ 1

)α+1

inf
n≤y≤n+1

l(y)

l(n)
≤ p(y)

p(n)
≤ sup
n≤y≤n+1

l(y)

l(n)
. (2.3)

In what follows we need Kamarata’s representation

l(x) = a(x) exp

{ x∫

1

ε(u)

u
du

}
, x ≥ 1, (2.4)

where lim
n→∞

ε(u) = 0, lim
x→∞

a(x) = a, 0 < a <∞. Hence,

l(y)

l(n)
=
a(y)

a(n)
exp

{ y∫

n

ε(u)

u
du

}
.

Obviously,

lim
n→∞

sup
n≤y≤n+1

∣∣∣∣

y∫

n

ε(u)

u
du

∣∣∣∣ = 0.
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It follows from last two relations that

lim
n→∞

sup
n≤y≤n+1

∣∣∣∣
l(y)

l(n)
− 1

∣∣∣∣ = 0. (2.5)

Combining (2.2), (2.3) and (2.5), we have

lim
n→∞

1

p(n)

n+1∫

n

p(y)dy = 1. (2.6)

It is easily seen that

inf
k≥n

1

p(k)

k+1∫

k

p(y)dy ≤

∞∫
n

p(y)dy

∞∑
k=n

p(k)
≤ sup
k≥n

1

p(k)

k+1∫

k

p(y)dy. (2.7)

The conclusion of the Lemma follows from (2.6) and (2.7).

Lemma 2.2. For any α > 0

∞∫

x

l(y)

yα+1
dy ∼ l(x)

αxα
. (2.8)

Proof. By using (2.4), we have

∞∫

x

l(y)

yα+1
dy ∼

∞∫

x

l0(y)

yα+1
dy, (2.9)

where

l0(y) = exp

{ y∫

1

ε(u)

u
du

}
. (2.10)

Integrating by parts, we conclude that

∞∫

x

l0(y)

yα+1
dy =

l0(x)

αxα
+

1

α

∞∫

x

ε(u)l0(y)

yα+1
dy

=
l0(x)

αxα
(1 + o(1)) =

l(x)

αxα
(1 + o(1)).

(2.11)

The desired result follows from (2.9) and (2.11).
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Note that (2.8) can be deduced from the asymptotic formula

∞∫

α

f(t)l(xt)dt ∼ l(x)

∞∫

α

f(t)dt,

where α > 0, and f(t)tη, η > 0, is integrable (see [8], Theorem 2.6), but not
immediately. For this purpose one needs to make the change of variables y = xt

in the integral
∞∫
x

y−α−1l(y)dy. On the other hand, the method which is used in

proving Lemma 2.2 allows to obtain very easily the statement the above mentioned
Theorem 2.6 of [8].

Corollary 2.3. Under condition (1.4)

P(X ≥ n) ∼ l(n)

αnα
. (2.12)

Proof. Evidently,

inf
k≥n

l(k)

kα+1pk
≤

∞∑
k=n

l(k)k−α−1

∞∑
k=n

pk

≤ sup
k≥n

l(k)

kα+1pk
.

Hence, by (2.7)

P(X ≥ n) =
∑

k≥n
pk ∼

∑

k≥n

l(k)

kα+1
∼ l(n)

αnα
,

which was to be proved.

Lemma 2.4. For any α < 1

n∑

k=1

l(k)

kα
∼ l(n)

1− αn
1−α. (2.13)

Proof. Let l0(x) be defined by (2.10). Since l0(x) ∼ l(x),

n∑

k=1

l0(k)

kα
∼

n∑

k=1

l(k)

kα
. (2.14)

Indeed,

1− ε <

n∑
k=n(ε)

k−αl0(k)

n∑
k=n(ε)

k−αl(k)
< 1 + ε
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if n(ε) is such that for x > n(ε)

1− ε < l0(x)

l(x)
< 1 + ε.

It is easily seen that

lim
n→∞

n∑

k=n(ε)

k−αl(k) =∞.

Therefore for sufficiently large n

1− 2ε <

n∑
k=n(ε)

k−αl0(k)

n∑
k=n(ε)

k−αl(k)
< 1 + 2ε.

Since ε can be made as small as we wish, hence the validity of (2.14) follows. By
applying the Abel transform, we get

n∑

k=1

l0(k)

kα
= l0(n)

n∑

k=1

k−α +
n−1∑

k=1

(l0(k)− l0(k + 1))
k∑

j=1

j−α. (2.15)

It is easily seen that

l0(k)− 0(k + 1) = l0(k)

(
1− exp

{ k+1∫

k

ε(u)

u
du

})
.

Hence

|l0(k)− 0(k + 1)| < l0(k)

∣∣∣∣
k+1∫

k

ε(u)

u
du

∣∣∣∣ = o(l0(k)k−1). (2.16)

Further,
n∑

k=1

k−α ∼ n1−α

1− α. (2.17)

It follows from (2.16) and (2.17)

n−1∑

k=1

(l0(k)− l0(k + 1))
k∑

j=1

j−α = o

( n∑

k=1

l0(k)

kα

)
. (2.18)

Combining (2.15)–(2.17), we conclude that
n∑

k=1

l0(k)k−α ∼ l0(n)

1− αn
1−α. (2.19)

From (2.14) and (2.19) the result follows.
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Corollary 2.5. Under conditions of Theorem 1.1

n∑

k=1

P(X ≥ k) ∼ l(n)

α(1− α)
n1−α. (2.20)

Proof. According to Corollary 2.3 for any ε > 0 there exists n(ε) such that for
n > n(ε)

1− ε < P(X ≥ n)

/
l(n)

αnα
< 1 + ε.

Hence,

1− ε <
n∑

n(ε)<k≤n
P(X ≥ k)

/
α−1

n∑

n(ε)<k≤n

l(k)

kα
< 1 + ε.

On the other hand, since

lim
n→∞

∑

n(ε)<k≤n

l(k)

kα
=∞

for every ε > 0,

∑

n(ε)<k≤n

l(k)

kα
∼

n∑

k=1

l(k)

kα
,

n∑

n(ε)<k≤n
P(X ≥ k) ∼

n∑

k=1

P(X ≥ k).

Therefore, for sufficiently large n

1− 2ε < α
n∑

k=1

P(X ≥ k)
/ n∑

k=1

l(k)

kα
< 1 + 2ε.

Hence, since ε is arbitrary, it follows that

n∑

k=1

P(X ≥ k) ∼ α−1
n∑

k=1

l(k)

kα
.

To complete the proof it remains to apply Lemma 2.4.

Lemma 2.6. Under conditions of Theorem 1.1

1− f(z) ∼ (1− z)αL
(

1

1− z

)
, (2.21)

where
L(x) =

Γ(1− α)

α
l(x).
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Proof. First of all,
n∑

k=0

P(X > k)zk =
1− f(z)

1− z .

It is easily seen that
P(X > k) ∼ P(X ≥ k).

Now, using Corollary 2.5 and the Abelian theorem (see, e.g. [13], Ch. XIII, section
5, Th. 5), we have

1− f(z)

1− z ∼ Γ(2− α)

α(1− α)
(1− z)α−1L(1− z)

= α−1Γ(1− α)(1− z)α−1l
(

1

1− z

)
= (1− z)α−1L

(
1

1− z

)
,

which is equivalent to the assertion of the Lemma.

Lemma 2.7. Under conditions of Theorem 1.1

n∑

k=0

uk ∼
nα

Γ(α+ 1)L(n)
, (2.22)

where L(x) is defined in Lemma 2.6.

Proof. Obviously,

uk = Ck

(
1

1− f(z)

)
.

Applying Lemma 2.6 and the Tauberian theorem (see ref. in the proof of Lemma
2.6), we obtain the desired result.

The next assertion is borrowed from [5].

Lemma 2.8. The identity

nun =
n−1∑

k=0

(n− k)pn−ku
(2)
k (2.23)

holds, where un =
∞∑
k=0

P(Sk = n), u
(2)
n =

n∑
k=0

un−kuk.

Lemma 2.9. Under condition of Theorem 1.1 there exists the sequence θn such
that lim

n→∞
θn = 1 and

u(2)n ≤
21−αθnnα

Γ(α+ 1)L(n)
max

n/2≤k≤n
uk. (2.24)
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Proof. It is easily seen that

u(2)n ≤ 2
∑

0≤k≤n/2
ukun−k ≤ 2 max

n/2≤k≤n
uk

∑

0≤k≤n/2
uk.

To complete the proof it is sufficient to apply Lemma 2.7.

Lemma 2.10. Under conditions of Theorem 1.1

n∑

k=1

u
(2)
k ∼

n2α

Γ(2α+ 1)L2(n)
, (2.25)

where L(x) is defined in Lemma 2.6.

Proof. It is easily seen that

u
(2)
k = Ck

(
1

(1− f(z))2

)
.

According to Lemma 2.6

(1− f(z))−2 ∼ (1− z)−2αL−2
(

1

1− z

)
.

Applying the Tauberian theorem (see ref. in the proof of Lemma 2.6), we get the
desired result.

Lemma 2.11. Under conditions of Theorem 1.1 for every fixed 0 < a < b < 1

∑

na≤k≤nb
l−2(k)k2α−1(n− k)−α ∼ l−2(n)nα

b∫

a

u2α−1(1− u)−αdu. (2.26)

Proof. First of all, notice that

ln
l0(n)

l0(k)
=

n∫

k

ε(u)

u
du. (2.27)

Consequently,

lim
n→∞

sup
na≤k≤nb

∣∣∣∣
l0(n)

l0(k)
− 1

∣∣∣∣ = 0. (2.28)

This implies that
∑

na≤k≤nb
l−20 (k)k2α−1(n− k)−α ∼ l−20 (n)

∑

na≤k≤nb
k2α−1(n− k)−α.
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Hence it follows that
∑

na≤k≤nb
l−2(k)k2α−1(n− k)−α ∼ l−2(n)

∑

na≤k≤nb
k2α−1(n− k)−α.

Further,

∑

na≤k≤nb
k2α−1(n− k)−α = nα−1

∑

na≤k≤nb

(
k

n

)2α−1(
1− k

n

)−α

∼ nα
b∫

a

u2α−1(1− u)−αdu.

The result follows from last two relations.

3. The proof of Theorem 1.1

Let us write down formula (2.23) in the form

nun =

( ∑

0≤k<√n
+

∑
√
n≤k≤(1−η)n

+
∑

(1−η)n<k≤n

)
(n− k)pn−ku

(2)
k

≡
∑

1
+
∑

2
+
∑

3
,

(3.1)

where 0 < η < 1. For any ε > 0, sufficiently large n, and k <
√
n

pn−k < (1 + ε)
l(n− k)

(n−√n)α+1
. (3.2)

If n−√n ≤ k ≤ n, then

l0(n)

lo(k)
= exp

{ n∫

k

ε(u)

u
du

}
= 1 + o(lnn− ln(n−√n)) = 1 + o

(
1√
n

)
.

Consequently,

max
n−√n≤k≤n

l0(k) ∼ l0(n). (3.3)

It follows from (3.2) and (3.3) that

∑
1

= O

(
l(n)

nα

[
√
n]∑

k=1

u
(2)
k

)
.
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By Lemma 2.10

[
√
n]∑

k=1

u
(2)
k = O

(
nα

l2(
√
n)

)
. (3.4)

Thus,

∑
1

= O

(
1

l(
√
n)

)
. (3.5)

Let us turn to estimating
∑

2. It is easily seen that

∑
2
∼

∑
√
n≤k≤(1−η)n

u
(2)
k

l0(n− k)

(n− k)α
≡
∑

4
. (3.6)

Applying Abel’s transformation, we have

∑
4
∼ l0(n−√n)

(n−√n)α

∑
√
n≤k≤(1−η)n

u
(2)
k

−
∑

√
n≤k≤(1−η)n

(
l0(n− k − 1)

(n− k − 1)α
− l0(n− k)

(n− k)α

) k∑

j=[
√
n]

u
(2)
j .

(3.7)

By Lemma 2.10

∑
√
n≤k≤(1−η)n

u
(2)
k =

∑

k≤(1−η)n
u
(2)
k −

∑

k<
√
n

u
(2)
k ∼

(1− η)2αn2α

Γ(2α+ 1)L2(n)
. (3.8)

Further,

l0(k)

kα
− l0(k + 1)

(k + 1)α
= l0(k)

(
1

kα
− 1

(k + 1)α

)
+
l0(k)− l0(k + 1)

(k + 1)α
. (3.9)

Obviously,

1

kα
− 1

(k + 1)α
∼ α

kα+1
. (3.10)

On the other hand,

l0(k + 1)− l0(k) = l0(k)

(
l0(k + 1)

l0(k)
− 1

)

= l0(k)

(
exp

{ k+1∫

k

ε(u)

u
du

}
− 1

)
= o

(
l0(k)

k

)
.

(3.11)
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It follows from (3.9)–(3.11) that

l0(k)

kα
− l0(k + 1)

(k + 1)α
∼ αl0(k)

kα+1
. (3.12)

Combining (3.6)–(3.8) and (3.12), we obtain

∑
2
∼ (1− η)2αl0(n)nα

Γ(2α+ 1)L2(n)
− α

∑
√
n≤k≤(1−η)n

l0(n− k)

(n− k)α+1

k∑

j=[
√
n]

u
(2)
j

=
(1− η)2ααnα

Γ(1− α)Γ(2α+ 1)a(n)L(n)

− α
∑

√
n≤k≤(1−η)n

l0(n− k)

(n− k)α+1

k∑

j=0

u
(2)
j + α

√
[n]−1∑

j=0

u
(2)
j

∑
√
n≤k≤(1−η)n

l0(n− k)

(n− k)α+1

=
(1− η)2ααnα

Γ(1− α)Γ(2α+ 1)a(n)L(n)
− α

∑
5

+α
∑

6
. (3.13)

Here a(·) is a factor in Karamata’s representation (2.4) for l(x). In view of (3.4)

∑
6

= O

(
l0(n)

l20(
√
n)

)
. (3.14)

We now proceed to estimating
∑

5. By Lemma 2.10

∑
5
∼ c(α)

∑
√
n≤k≤(1−η)n

L−2(k)k2α
l0(n− k)

(n− k)α+1
≡ c(α)

∑
7
, (3.15)

where c(α) = 1/Γ(2α+ 1). Applying the Abel transformation, we have

∑
7
∼ L−2(n)(1− η)2αn2α

∑
√
n≤k≤(1−η)n

l0(n− k)

(n− k)α+1

−
∑

√
n≤k≤(1−η)n

(L−2(k + 1)(k + 1)2α − L−2(k)k2α)

k∑

j=[
√
n]

l0(n− j)
(n− j)α+1

. (3.16)

In the same way as (3.12) we deduce that

L−2(k + 1)(k + 1)2α − L−2(k)k2α ∼ 2αL−2(k)k2α−1.

Hence, denoting the second summand in (3.16) by
∑

8, we obtain

∑
8
∼ 2α

∑
√
n≤k≤(1−η)n

L−2(k)k2α−1
k∑

j=[
√
n]

l0(n− j)
(n− j)α+1
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∼ 2αl0(n)
∑

√
n≤k≤(1−η)n

L−2(k)k2α−1
k∑

j=[
√
n]

(n− j)−α−1. (3.17)

It is not difficult to check that for
√
n ≤ k ≤ (1− η)n

α
∑

j=|√n|
(n− j)−α−1 = (n− k)−α − n−α + o(n−α).

Consequently,
∑

8
+2n−α

∑
√
n≤k≤(1−η)n

L−2(k)k2α−1 ∼ 2l0(n)
∑

√
n≤k≤(1−η)n

L−2(k)k2α−1(n− k)−α. (3.18)

We need the identity

∑
√
n≤k≤(1−η)n

=

( ∑
√
n≤k<εn

+
∑

εn≤k≤(1−η)n

)
L−2(k)k2α−1(n− k)−α

≡
∑

9
+
∑

10
.

(3.19)

It is easily seen that
∑

9
< (1− ε)−αn−α

∑
√
n≤k≤εn

L−2(k)k2α−1.

By using Lemma 2.4, we obtain that

∑
√
n≤k≤εn

L−2(k)k2α−1 ∼ (εn)2α

2αL2(n)
.

Therefore, for sufficiently large n

∑
9
< (1− ε)−α ε2αnα

2αL2(n)
. (3.20)

On the other hand, by Lemma 2.11

∑
10
∼ L−2(n)nα

∫ 1−η

ε

u2α−1(1− u)−αdu. (3.21)

It follows from (3.18) – (3.21) that

∑
8

+
(1− η)2αnα

αL2(n)
∼ 2α2nα

Γ2(1− α)l(n)

1−η∫

0

u2α−1(1− u)−αdu. (3.22)
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Combining (3.15), (3.16), (3.18) and (3.22) we obtain

∑
5
∼ (1− η)2ααnα

Γ(1− α)Γ(2α+ 1)L(n)
− 2α2nα

Γ2(1− α)Γ(2α+ 1)l(n)
I(η), (3.23)

where I(η) =
1−η∫
0

u2α−1(1−a)−αdu. Finally, it follows from (3.13), (3.14) and (3.23)

that

∑
2
∼ 2α3nα

Γ2(1− α)Γ(2α+ 1)l(n)
I(η). (3.24)

We now turn to estimating
∑

3 . Evidently,
∑

3
< max

(1−η)n<k≤n
u
(2)
k

∑

(1−η)n<k≤n
(n− k)pn−k.

By Lemma 2.4

∑

(1−η)n<k≤n
(n− k)pn−k ∼

[ηn]∑

1

l(j)

jα
∼ l(n)

1− α (ηn)1−α.

On the other hand, in view of (2.24)

max
(1−η)n<k≤n

u
(2)
k <

21−αnα

Γ(α+ 1)
max

(1−η)n<k≤n
θk
L(k)

max
(1−η)n/2≤j≤n

uj .

As a result we obtain that
∑

3
= nψ(n)(2η)1−α max

δn≤j≤n
uj , (3.25)

where

ψ(n) =
αbn

Γ(α+ 1)Γ(1− α)(1− α)
, 0 < lim sup

n→∞
bn ≤ 1, δ =

1− η
2

.

Notice that
α

Γ(α+ 1)Γ(1− α)
=

1

Γ(α)Γ(1− α)
=

sinπα

π

( see [14], formula 8.334, 3). Consequently,

ψ(n) =
sinπα

(1− α)π
bn. (3.26)

It follows from (3.1), (3.5), (3.24) and (3.25) that

un = ϕ(n) + (2η)1−αψ(n) max
δn≤j≤n

uj , (3.27)
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where

ϕ(n) =
2α3ann

α−1I(η)

Γ2(1− α)Γ(2α+ 1)l(n)
, an ∼ 1.

Let us fix 0 < ε < 1/2. Let η be such that (2η)1−α < ε. Chose N so that ψ(n) < 1
for n > N . Let n1 be the value of k for which max

δn≤k≤n
uk is attained. In particular,

it may be that n1 = n. In this case un < ϕ(n)/(1− ε). If N < n1 < n, then

un1 < ϕ(n1) + ε max
δn1≤j≤n1

uj

and consequently

un < ϕ(n) + εϕ(n1) + ε2 max
δn1≤j≤n1

uj . (3.28)

If max
δn1≤j≤n1

uj = un1
, then un1

< ϕ(n1)/(1− ε). Substituting this bound in (3.28),

we have

un < ϕ(n) + εϕ(n1) +
ε2

1− εϕ(n1).

If max
δn1≤j≤n1

uj is attained for N < j < n1, then, similarly, the following inequality

is deduced

un < ϕ(n) + εϕ(n1) + ε2ϕ(n2) +
ε3

1− ε max
δn2≤j≤n2

uj

and so forth.
There exist two possibilities: either for some nk > N

max
δnk≤j≤nk

uj = unk
,

or for some k = k0 the inequality nk < N is fulfilled. Consider the first case. First
of all, notice that nk ≥ δkn. Using Karamata’s representation (2.4) for l(n), we
obtain

ϕ(nj)

ϕ(n)
=

ana(n)

anj
a(nj)

(
n

nj

)1−α
exp

{
−

n∫

nj

ε(u)

u

}
.

Evidently,
∣∣∣∣∣

n∫

nj

ε(u)

u
du

∣∣∣∣∣ < sup
nj≤u≤n

|ε(u)| ln n

nj
< −jγ ln δ, γ = sup

u>N
|ε(u)|.

Consequently, there exists ε0 such that for ε < ε0

εjϕ(nj) < εjϕ(n) exp

{
jγ ln 2

}
< εj/2.
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As a result we get that for ε < ε0

un <

k−1∑

j=0

εjϕ(nj) +
εk

1− εϕ(nk) <

( k−1∑

j=0

εj/2 +
εk/2

1− ε

)
ϕ(n) <

ϕ(n)

1− ε1/2 . (3.29)

In the second case the recursion stops for k = k0 = min{k : nk < N}. As a result
we arrive at the bound

un <
ϕ(n)

1− ε1/2 +
εk0−1

1− ε max
k≥0

uk. (3.30)

Since nk ≥ δkn, k0 ≥ logδ
N
n . It implies that εk0 ≤ exp{−2−1 ln ε logδ n} for

n > N2. Consequently, for sufficiently small ε

εk0 = o(n−2) = o(ϕ(n)). (3.31)

It follows from (3.30) and (3.31) that un < 2ϕ(n) for n > N2 if ε sufficiently small.
Returning to (3.27) we conclude that for sufficiently large n

0 < l(n)n1−αun − anc1(α)I(η) < 2εn1−αl(n) max
δn≤k≤n

ϕ(k),

where c1(α) = 2α3/Γ2(1− α)Γ(2α+ 1). It is easily seen that

lim sup
n→∞

n1−αl(n) max
δn≤k≤n

ϕ(k) ≤ δα−1c1(α)I(η).

It follows from two latter relations that

lim
n→∞

l(n)n1−αun = c1(α)I(0). (3.32)

It remains to calculate c1(α)I(0). Obviously,

I(0) = B(2α, 1− α) =
Γ(2α)Γ(1− α)

Γ(1 + α)
.

Consequently,

c1(α)I(0) =
2α3Γ(2α)

Γ(1− α)Γ(2α+ 1)Γ(1 + α)
=

α

Γ(1− α)Γ(α)
=
α sinπα

π
. (3.33)

It follows from (3.32) and (3.33) that

lim
n→∞

l(n)n1−αun =
α sinπα

π

On the other hand, by (2.12)

P(X = n)

P2(X ≥ n)
∼ α2

l(n)n1−α
.

Hence,
sinπα

πα

P(X = n)

P2(X ≥ n)
∼ α sinπα

πl(n)n1−α
∼ un,

which was to be proved.
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4. The proof of Theorem 1.2

According to definition
hn = Cn(− ln (1− f(z))).

Hence,

nhn = Cn

(
f ′(z)

1− f(z)

)
.

Consequently,

hn =
1

n

n∑

k=0

(k + 1)pk+1un−k. (4.1)

Applying Theorem 1.1, we have
∑

εn≤k≤(1−ε)n
(k + 1)pk+1un−k ∼

α sinπα

π

∑

εn≤k≤(1−ε)n
(k + 1)−α(n− k)α−1

∼ α sinπα

π

1−ε∫

ε

u−α(1− u)α−1du ≡ α sinπα

π
I(ε). (4.2)

On the other hand, applying Lemmas 2.4 and 2.7, we have

lim sup
n→∞

∑

0≤k<εn
(k + 1)pk+1un−k <

α

π(1− α)

(
ε

1− ε

)1−α
(4.3)

and

lim sup
n→∞

∑

(1−ε)n<k≤n
(k + 1)pk+1un−k <

1

π

(
ε

1− ε

)α
. (4.4)

It follows from (4.2)–(4.4) that

lim
n→∞

n∑

k=0

(k + 1)pk+1un−k = α
sinπα

π
I(0). (4.5)

Obviously,

I(0) = B(α, 1− α) = Γ(α)Γ(1− α) =
π

sinπα
. (4.6)

Combining (4.1), (4.5), (4.6), we obtain that

hn ∼
α

n
,

which was to be proved.
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Abstract

The distance of two-dimensional samples is studied. The distance is based
on the optimal matching method. Simulation results are obtained when the
samples are drawn from normal and uniform distributions.
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1. Introduction

A well-known result in optimal matchings is the following (see Ajtai-Komlós-Tus-
nády [1]). Assume that both X1, . . . , Xn and Y1, . . . , Yn are independent identi-
cally distributed (i.i.d.) random variables with uniform distribution on the two-
dimensional unit square. Let X1, . . . , Xn and Y1, . . . , Yn be independent of each
other. Let

tn = min
π

n∑

i=1

||Xπ(i) − Yi||, (1.1)

where the minimum is taken over all permutations π of the first n positive integers.
Then

C1(n log n)
1/2 < tn < C2(n log n)

1/2 (1.2)

with probability 1− o(1) (Theorem in [1]). tn is the so-called transportation cost.
Talagrand in [6] explains the specific feature of the two-dimensional case. In [7] it
is explained that the transportation cost is closely related to the empirical process.
So the following question arises. Can tn serve as the basis of testing goodness of
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fit? Therefore to find the distribution of tn is an interesting task. That problem
was suggested by G. Tusnády.

Testing multidimensional normality is an important task in statistics (see e.g.
[4]). In this paper we study a particular case of this problem. We study the fit
to two-dimensional standard normality. The main idea is the following. Assume
that we want to test if a random sample X1, . . . , Xn is drawn from a population
with distribution F . We generate another sample Y1, . . . , Yn from the distribution
F . Then we try to find for any Xi a similar member of the sample Y1, . . . , Yn. We
hope that the optimal matching of the two samples gives a reasonable statistic to
test the goodness of fit.

In this paper we concentrate on three cases, that is when both X1, . . . , Xn

and Y1, . . . , Yn are standard normal, then both of them are uniform, finally when
X1, . . . , Xn are normal and Y1, . . . , Yn are uniform. We calculate the distances
of the samples, then we find the statistical characteristics of the distances. The
quantiles can serve as critical values of a goodness of fit test. Finally, we show
some results on the distribution of our test statistic.

We use the classical notion of sample, i.e. X1, . . . , Xn is called a sample if
X1, . . . , Xn are i.i.d. random variables.

For two given samples Xi, Yi ∈ R2 (i = 1, . . . , n) let us define the statistic Tn
by

Tn = min
π∈Sn

n∑

i=1

||Xπ(i) − Yi||2. (1.3)

Here Sn denotes the set of permutations of {1, . . . , n} and ||.|| is the Euclidean
norm. Formula (1.3) naturally expresses the ’distance’ of two samples. We study
certain properties of Tn for Gaussian and uniform samples. To this aim we made
simulation studies for sample sizes n = 2, . . . , 200 with replication 1000 in each
case. That is we generated two samples of sizes n, calculated Tn, then repeated
this procedure 1000 times. Then we tried to fit the so called general extreme
value (GEV ) distribution (see [5], page 61) to the obtained data of size 1000. The
distribution function of the general extreme value distribution is

F (x, µ, σ, ξ) =




exp

(
−
[
1 + ξ

(
x−µ
σ

)]− 1
ξ

)
, ξ 6= 0;

exp
(
− exp

(
− (x−µ)

σ

))
, ξ = 0.

(1.4)

Here µ, σ > 0, ξ are real parameters. For further details see [5].
The values of Tn are obtained by Kuhn’s Hungarian algorithm as described in

[3]. We mention that a previous simulation study of Tn was performed in [2].

2. Simulation results for samples with common dis-
tribution

In this section we want to determine the distribution of Tn when the samples
X1, . . . , Xn and Y1, . . . , Yn have the same distribution. In terms of testing goodness
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of fit the task is the following.
Let X1, . . . , Xn be a sample. We want to test the hypothesis

H0 : the distribution of Xi is F .

Generate another sample Y1, . . . , Yn from distribution F and calculate the test
statistics Tn. If Tn is large, then we reject H0. (In practice X1, . . . , Xn are real
life data, while Y1, . . . , Yn are random numbers.) To create a test we have to find
some information on the distribution of Tn.

To obtain the distribution of Tn by simulation, we proceed as follows. For a
fixed sample size n, 2n two-dimensional points are generated: Xi = (Xi1, Xi2),
Yi = (Yi1, Yi2), i = 1, . . . , n, with independent coordinates. We restrict our
attention to the simplest cases.

(a) Gaussian case when Xij , Yij ∈ N (0, 1), i = 1, 2, . . . , n, j = 1, 2, i.e. they are
standard normal.

(b) Uniform case when Xij , Yij ∈ U(0, 1), i = 1, 2, . . . , n, j = 1, 2, i.e. they are
uniformly distributed on [0, 1].

All the random variables involved are independent. Graphs of descriptives and
tables of 5%, 10%, 90% and 95% quantiles for selected sample sizes are presented
in figures 1, 2 and tables 1, 4.

Figure 1(a) and Figure 2(a) show the sample mean and sample standard devia-
tion of Tn, respectively, when both Xi and Yi comes form two-dimensional standard
normal. (They are calculated for each fixed n using 1000 replications.) Figure 1(b)
and Figure 2(b) concern the case when both Xi and Yi are uniform.

Table 1 shows the sample quantiles of Tn when both Xi and Yi are two-
dimensional standard normal. Each value is calculated for fixed n using 1000
replications. The upper quantile values (at 90% or 95%) can serve as critical val-
ues for the test

H0 : Xi is two-dimensional standard normal.

Table 2 contains the results when both samples are two-dimensional uniform (more
precisely uniform on [0, 1]× [0, 1]).

3. The mixed case

With the help of previous section’s tables one can construct empirical confidence
intervals for the distance Tn of two samples both in the Gaussian-Gaussian and
uniform-uniform cases. In what follows we present some results on the distance
Tn for the Gaussian-uniform case. For this aim we performed calculations for
sample sizes n = 2, . . . , 200 with 2000 replications in each cases. Note that here we
used U(−

√
3,
√
3) for the uniform variable because then we have E(Yij) = 0 and

D2(Yij) = 1.
Figure 3 and Table 3 concern the distribution of Tn whenXij is standard normal

and Yij ∈ U(−
√
3,
√
3). That is the case when H0 is not satisfied. If we compare
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the last columns (95% quantiles) of Table 3 and Table 1, then we see that our test
is sensitive if the sample size is large (n ≥ 100).

4. Fitting the GEV

To describe the distribution of Tn we fitted general extreme value distribution.
For each fixed n we estimated the parameters of GEV from the 1000 replications.
The maximum likelihood estimates of parameters ξ, µ, σ in (1.4) were obtained with
MATLAB’s fitdist procedure. Then we plotted the cumulative distribution function
of the GEV. Figure 4(a), Figure 5(a) and Figure 6(a) show that the empirical
distribution function of Tn fits well to the theoretical distribution function of the
appropriate GEV when both Xi and Yi are standard Gaussian. Figure 4(b), Figure
5(b) and Figure 6(b) show the same for uniformly distributed Xi and Yi.

Figure 7 shows the empirical significance of Kolmogorov-Smirnov tests per-
formed by kstest. The empirical p-values in Figure 7(a) and Figure 7(b) reveal
that the fitting was succesful.

5. About the GEV parameters

To suspect something about the possible ’analytical form’ of parameters ξ, σ, µ we
made further simulations in the Gaussian case with 5000 replications for sample
sizes n = 2, . . . , 500. After several ’trial and error’ attempts we got the following
experimental results.

Figure 8 concern the functional form of the parameters. Here both Xi and
Yi were Gaussian. For each fixed n we fitted GEV (ξ(n), σ(n), µ(n)). Then we
approximated ξ(n), σ(n) and µ(n) with certain functions. For example we obtained
that ξ(n) can be reasonably approximated with

A/
√
n+B/

√
log(n) + C

where A,B,C are given in Figure 8(a). Note that the classical goodness of fit
measures (χ2 and R2) computed by qtiplot indicate tight fit.

6. Tools

The Hungarian method was implemented in C++ using the GNU g++ compiler.
Most of the graphs were made with the help of the utility gnuplot. The fittings and
the graphs of the last section were performed with qtiplot. MATLAB was used to
compute the maximum likelihood estimators of the GEV .
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7. Figures and tables
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Figure 1: Sample means
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Figure 2: Sample standard deviations
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size mean stddev 5% 10% 90% 95%
1 4.2412 4.2266 0.2381 0.4563 9.8020 12.2026
2 5.9673 4.3135 1.0836 1.7158 11.7292 14.2147
3 7.4222 4.6192 1.7995 2.5588 13.7402 16.0102
4 8.0206 4.6088 2.3981 3.2674 13.6933 16.0876
5 9.3045 4.9715 3.2585 4.1318 15.3954 18.3475
6 10.2078 5.3420 3.7299 4.5396 17.1818 19.4804
7 10.3123 4.5427 4.1995 5.2007 16.2449 19.0637
8 11.0368 4.7393 4.8979 5.7742 17.5610 19.8337
9 11.5844 5.0128 5.0169 5.7831 18.2823 20.9534
10 12.0570 5.3378 5.3833 6.3622 19.4668 21.8923
20 15.2328 5.3538 8.6359 9.5934 22.2431 24.9313
30 16.9197 5.2032 10.1785 11.0722 23.9962 27.0184
40 18.3806 5.2547 11.4259 12.6406 25.5429 28.0519
50 19.9502 5.6199 12.1530 13.5418 27.2146 30.6897
60 20.4902 5.3926 13.3070 14.3950 27.5160 31.5666
70 21.7366 5.5615 14.3281 15.5132 28.9196 32.1283
80 22.2543 5.6370 14.6116 15.8363 29.4256 32.3583
90 23.0996 5.3942 15.7942 16.9445 30.0369 33.0472
100 23.1510 5.3759 15.9969 17.0670 29.9957 33.3124
120 24.9210 5.6381 16.9766 18.4435 32.5778 34.7392
140 25.7610 5.5036 18.1150 19.5019 33.0206 35.3015
160 26.1585 5.3739 18.7503 20.0962 33.6252 36.3843
180 27.3072 5.7067 19.4513 20.7716 34.7677 37.3559
200 27.7257 5.3810 20.2195 21.4550 34.8416 37.1973

Table 1: Quantiles. (a) Gaussian case

size mean stddev 5% 10% 90% 95%
1 4.0262 3.4236 0.1970 0.4216 9.1473 10.7406
2 5.7465 3.6683 1.1099 1.7597 10.9533 12.8762
3 7.0817 3.9889 1.9709 2.5498 12.4090 14.4607
4 8.0923 4.2833 2.5078 3.3816 13.7593 16.6473
5 8.7164 4.3022 3.0438 4.0823 14.4455 17.0613
6 9.2447 4.5952 3.4694 4.3526 15.5264 18.0257
7 9.6608 4.3776 4.1441 5.0191 15.5752 17.7570
8 10.2707 4.8150 4.3921 5.3208 16.7853 19.6646
9 10.5731 4.7847 4.6570 5.4796 16.7946 19.8556
10 10.7589 4.9081 5.0283 5.7636 16.9497 19.6734
20 12.9231 5.2142 6.8068 7.5361 19.3753 22.0094
30 13.6183 4.9743 7.7449 8.5648 20.3468 23.5615
40 14.3316 5.3870 7.9332 9.0030 21.1094 24.8500
50 15.0187 5.2400 8.8329 9.6225 21.8464 25.6322
60 15.2523 5.2565 8.9552 9.8825 21.8732 25.0060
70 15.8911 5.3841 9.5833 10.5137 22.9240 26.1478
80 15.8035 5.0754 9.7065 10.5853 22.9256 26.3499
90 16.2536 5.2216 9.9975 10.7825 22.9050 26.0921
100 16.4830 5.3264 10.2617 10.8682 24.0967 27.2588
120 17.0734 5.6685 10.4419 11.3588 24.4638 28.9698
140 17.2442 5.6141 10.7627 11.5904 24.3573 27.6821
160 17.5099 5.4433 11.1689 12.0155 24.9285 27.9288
180 17.5731 5.4062 11.1337 12.0112 24.5775 27.8075
200 18.0244 5.6245 11.4052 12.3776 25.4038 28.4148

Table 2: Quantiles. (b) uniform case
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size mean stddev 5% 10% 90% 95%
2 5.8818 4.1502 1.1652 1.6532 11.3164 13.6333
3 7.2554 4.1646 2.0590 2.8677 13.0166 15.0618
4 7.9939 4.4994 2.7365 3.3880 13.7425 16.6208
5 8.8754 4.4742 3.2754 4.1966 14.8754 17.3966
6 9.7783 4.5869 4.0448 4.7961 15.8904 18.3626
7 10.0745 4.5939 4.3386 5.2004 16.2399 18.8547
8 10.4734 4.4532 4.5207 5.4837 16.4532 18.8462
9 11.0886 4.6638 5.2157 6.1198 17.3704 19.7215
10 11.5361 4.8266 5.4715 6.4598 17.9202 20.9748
20 14.6339 5.1743 8.0674 9.0785 21.4606 24.9300
30 16.7707 5.1719 10.0346 11.0548 23.5244 26.3029
40 18.4228 5.4695 11.1791 12.2861 25.4337 28.2022
50 20.0629 5.6343 12.4183 13.9359 27.2744 30.4001
60 21.1895 5.4223 13.4741 14.7804 28.4744 31.1559
70 22.4896 5.6856 14.7198 16.0582 29.7835 33.4986
80 24.0810 5.8618 15.6983 17.2439 31.5593 34.0761
90 25.1524 6.0496 16.9018 18.1007 33.2026 36.5343
100 26.5301 6.1983 17.9469 19.3842 34.9823 37.9294
120 28.8502 6.3829 19.9032 21.3154 37.0409 40.2436
140 30.9987 6.5694 21.6081 23.2774 39.7266 42.9169
160 33.1575 6.7402 23.3054 25.1265 42.0649 45.1835
180 34.9612 6.7718 25.3528 26.8373 43.5126 47.4540
200 37.2655 7.0713 27.1785 28.8087 46.5339 49.9597

Table 3: Quantiles. Gaussian-uniform case
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Figure 3: Sample means and standard deviations,
Gaussian-uniform case
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Abstract
This paper reviews recent developments of robust estimation in linear

time series models, with short and long memory correlation structures, in the
presence of additive outliers. Based on the manuscripts Fajardo, Reisen &
Cribari-Neto 2009 [7] and Lévy-Leduc, Boistard, Moulines, Taqqu & Reisen
2011 [19], the emphasis in this paper is given in the following directions; the
influence of additive outliers in the estimation of a time series, the asymptotic
properties of a robust autocovariance function and a robust semiparametric
estimation method of the fractional parameter d in ARFIMA(p, d, q) models.
Some simulations are used to support the use of the robust method when a
time series has additive outliers. The invariance property of the estimators
for the first difference in ARFIMA model with outliers is also discussed. In
general, the robust long-memory estimator leads to be outlier resistent and
is invariant to first differencing.

Keywords: Additive outliers, ARFIMA model, long-memory, robustness.

1. Introduction

Let {Xt}t∈Z be a stationary time series with spectral density that behaves like

fX(ω) ∼ h(ω) | ω |−2d, as ω → 0 (1.1)

where the spectral density h(ω) is a nonvanishing and continuously differentiable
function with bounded derivative for −π ≤ ω ≤ π, and d < 0.5.

A well-known stationary parametric model with the above spectral density is
the ARFIMA(p, d, q) process, which is the solution of the equation

Xt − µ = (1−B)−dηt, t ∈ Z, (1.2)
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where ηt = Θ(B)
Φ(B) εt is an ARMA(p, q) process, µ is the mean (here it is assumed that

µ = 0), Φ(B) ≡ 1 −∑p
j=1 φjB

j , Θ(B) ≡ 1 −∑q
i=1 θiB

i and p and q are positive
integers (Hosking 1981 [11]). Φ(z) and Θ(z), with a scalar z, are the autoregressive
and moving average polynomials with all roots outside the unit circle and share
no common factors. d is the parameter that holds the memory of the process,
that is, when d ∈ (−0.5, 0.5) the ARFIMA(p, d, q) process is said to be invertible
and stationary. Besides, for d 6= 0, its autocovariance decays at a hyperbolic rate
(γ(j) = O(j−1+2d)). For d = 0, d ∈ (−0.5, 0) or d ∈ (0, 0.5), the process is
said to be short-memory, intermediate-memory or long-memory, respectively. The
long-memory property is related to the behavior of the autocovariances, which
are not absolutely summable and the spectral density becomes unbounded at zero
frequency. In the intermediate-memory region, the autocovariances are absolutely
summable and, consequently, the spectral density is bounded.

The spectral density function of {Xt}t∈Z is given by

fX(ω) = fη(ω)
[
2 sin

(ω
2

)]−2d

, ω ∈ [−π, π]. (1.3)

fX(ω) is continuous except for ω = 0 where it has a pole when d > 0. A recent
review of the ARFIMA model and its properties can be found in Palma 2007 [23]
and Doukhan, Oppenheim & Taqqu 2003 [6].

Many estimators for the fractional parameter d in long-memory time series have
already been proposed in the literature. Among them are the semiparametric pro-
cedures, a group which includes a wide variety of estimators based on the Ordinary
Least Square (OLS) method. These procedures require the use of the spectral den-
sity parameterized within a neighborhood of zero frequency. Some references on
this subject include the works of Geweke & Porter-Hudak 1983 [10], Reisen 1994
[26] and Robinson 1995 [27], among others. An overview of long-range dependence
processes can be found in Beran 1994 [1] and Doukhan et al. 2003 [6].

Time series with outliers or atypical observations is quite common in any area
of application. In the case where the data is time-dependent, several authors such
as Ledolter 1989 [17], Chang, Tiao & Chen 1988 [4] and Chen & Liu 1993 [5] have
studied the effect of outliers in a time series that follows ARIMAmodels. In general,
they have concluded that the parameter estimates of ARMA models become more
biased when the data contains outliers. Similar conclusion is also observed when
estimating the fractional parameter in ARFIMA models. The outliers cause a
substantial bias in the differencing parameter (Fajardo et al. 2009 [7]).

An autocovariance robust function was proposed by Ma & Genton 2000 [20].
The asymptotical properties of this function are studied by Lévy-Leduc et al. 2011
[19]. The results presented in Fajardo et al. 2009 [7], Lévy-Leduc et al. 2011 [19]
and Lévy-Leduc, Boistard, Moulines, Taqqu & Reisen 2011 [18] are the motivations
of this paper. The impact of outliers in the estimation of ARFIMA models under
different context is here studied. The asymptotical properties of a robust autoco-
variance function is discussed and some empirical examples are used to illustrate
the usefulness of a robust fractional parameter estimator. The invariance property

208 V. A. Reisen, F. F. Molinares



of the estimator to the first difference is also empirically studied. The outline of this
papers is as follows: Section 2 discusses the model and the impact of the outliers
in time series. Section 3 summarizes the main results related to the robust auto-
covariance estimator given in Lévy-Leduc et al. 2011 [19] and discusses the robust
estimation of the fractional parameter in the ARFIMA model. Section 4 presents
some empirical studies and an application is discussed in Section 5. Concluding
remarks and future directions are given in Section 6.

2. The impact of outliers in time series

Suppose x1, ..., xn is a partial realization of {Xt}t∈Z. Hence, the periodogram
function is defined as Ix(ω) = (2πn)

−1|∑n
t=1 xte

iωt|2. It follows that, when d = 0
in the ARFIMA model,

Ix(ω) = 2πfX(ω)
Iε(ω)

σ2
ε

+H(ω) (2.1)

where E[|H(ω)|2] = O( 1
n2ξ ) (ξ > 0) is uniformly in ω ∈ [−π, π] (Theorem 6.2.2 in

Priestley 1981 [25]) and Iε(·) is the periodogram of the residuals. From (1.2) and
Theorem 6.1.1 in Priestley 1981 [25], asymptotic sample properties of Ix(ω)

fX(ω) are
derived and they are summarized as follows. If {εt}t∈Z are normally distributed,
for a fixed set of values of the Fourier frequencies ωj = 2πj

n , j = 1, ..., [n/2], where [·]
means the integer part, asymptotically the set of variables Ix(ωj)

fX(ωj)
is independently

distributed, each distributed as χ2
2

2 . At ω = 0 and π, the distributions are χ2
1 (for

details see Priestley 1981 [25]). These asymptotic results for the periodogram lead
to E

[
Ix(ωj)
fX(ωj)

]
→ 1 and var

[
Ix(ωj)
fX(ωj)

]
→ (1 + δ(ωj)) as n→∞, where

δ(ωj) = 1 if ωj = 0, π and 0 otherwise. (2.2)

The above results establish the unbiasedness and inconsistency properties of Ix(ωj).
Due to the singularity of fX(ω) when d > 0, the standard results of the

asymptotic distribution of the periodogram discussed previously can not be ap-
plied to Ix(ωj) for small and fixed j. Hurvich & Beltrão 1993 [13] showed that
limn→∞ E

[
Ix(ωj)
fX(ωj)

]
depends on j and d, and exceeds unity for most d 6= 0 (Künsch

1986 [16]; Robinson 1995 [28]). For j 6= k, Ix(ωj)
fX(ωj)

and Ix(ωk)
fX(ωk) are correlated, and for

a fixed value j and Gaussian processes, the limiting distribution of Ix(ωj)
fX(ωj)

is not ex-
ponential (Robinson 1995 [28]). That is, under the Gaussian assumption, Hurvich
& Beltrão 1993 [13] show that the normalized periodogram I(ω)

fX(ω) is asymptotically
distributed as the quadratic form

α1

2
χ1 +

α2

2
χ2
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where χ1 and χ2 are variables with Chi-squared distribution with one degree of
freedom, α1 = Lj(d)− 2L∗j (d), α2 = Lj(d) + 2L∗j (d),

Lj(d) = lim
n→∞

E
{
Ix(ωj)

fX(ωj)

}
=

2

π

∞∫

−∞

sin2(ω/2)

(2πj − ω)2

∣∣∣∣
ω

2πj

∣∣∣∣
−2d

dω

and

L∗j (d) =
1

π

∞∫

−∞

sin2(ω/2)

(2πj − ω)(2πj + ω)

∣∣∣∣
ω

2πj

∣∣∣∣
−2d

dω.

Let {Zt}t∈Z be a process contaminated by additive outliers, which is described by

Zt = Xt +
m∑

j=1

$jYj,t, (2.3)

where m is the maximum number of outliers; the unknown parameter ωj represents
the magnitude of the jth outlier, and Yj,t (≡ Yj) is a random variable (r.v.) with
probability distribution Pr (Yj = −1) = Pr (Yj = 1) =

pj
2 and Pr (Yj = 0) = 1− pj ,

where E[Yj ] = 0 and E[Y 2
j ] = var(Yj) = pj . Model 2.3 is based on the para-

metric models proposed by Fox 1972 [8]. Yj is the product of Bernoulli(pj) and
Rademacher random variables; the latter equals 1 or −1, both with probability 1

2 .
Xt and Yj are independent random variables.

Some results related to the effects of outliers on the spectral density and on the
autocorrelation functions of {Zt}t∈Z are presented as follows.

Proposition 2.1. Suppose that {Zt}t∈Z follows Model 2.3.

i. The autocovariance function (ACOVF) of {Zt}t∈Z is given by

γz(h) =




γX(0) +

m∑
j=1

$2
jpj , if h = 0,

γX(h), if h 6= 0,

where γX(h) = E[XtXt+h]− E[Xt]E[Xt+h] with h ∈ Z.

ii. The spectral density function of {Zt} is given by

fZ(ω) = fX(ω) +
1

2π

m∑

j=1

$2
jpj , ω ∈ (−π, π],

where fX(ω) =
1

2π

∞∑
h=−∞

γX(h)e−ihω.

Proposition 2.1 states that γz(h), for h = 0, depends on var(Yj). γZ(0) increases
with var(Yj) (see the proof in Fajardo et al. 2009 [7]). This relation between RZ(0)
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and var(Yj) will certainly affect the model parameter estimates because it reduces
the magnitude of the autocorrelations and introduces loss of information on the
pattern of serial correlation (see also Chan 1992, 1995 [2, 3]). The spectral form of
{Zt}t∈Z (Model 2.3) when {Xt}t∈Z follows an ARFIMA(p, d, q) model is given in
the next lemma.

Lemma 2.2. Let {Xt}t∈Z be a stationary and invertible ARFIMA(p, d, q) process.
Also, let {Zt}t∈Z be such that Zt = Xt +

∑m
j=1$jYj, where m is the maximum

number of outliers, the unknown parameter $j is the magnitude of the jth outlier
and Yj is a r.v. with probability distribution Pr (Yj = −1) = Pr (Yj = 1) =

pj
2 and

Pr (Yj = 0) = 1− pj. The spectral density of {Zt}t∈Z is

fZ(ω) =
σ2
ε

2π

|Θ(e−iω)|2
|Φ(e−iω)|2

{
2 sin

(ω
2

)}−2d

+
1

2π

m∑

j=1

$2
jpj .

The proof of Lemma 2.2 follows directly from Proposition 2.1.
The effects of an outlier on the sample autocovariance function and on the

periodogram are given below.

Proposition 2.3. Let z1, z2, . . . , zn be generated from Model 2.3 with one outlier,
and let the outlier occur at time t = T with h < T < n− h. It follows that:

i. The sample ACOVF is given by

γ̂z(h) = γ̂x(h) +
$

n
(x

T−h + x
T+h
− 2x̄) +

ω2

n
δ′(h) + op(n

−1), (2.4)

where γ̂x(h) =
1

n

n−h∑
t=1

(xt − x̄)(xt+h − x̄) and δ′(h) =

{
1, when h = 0,

0, otherwise.

ii. The periodogram is given by

Iz(ω) = Ix(ω) + ∆($), ω ∈ (−π, π],

where Ix(ω) =
1

2π

n−1∑
h=−(n−1)

γ̂x(h)e−ihω, and

∆($) =
$2

2πn
± $

πn

{
(x

T
− x̄) +

n−1∑

h=1

(x
T−h + x

T+h
− 2x̄) cos(hω)

}
+ op(n

−1).

These results show that outliers may substantially affect the inference performed
on stationary models by revealing that there is information loss in the serial corre-
lation dynamics of the process, which is translated into the parameter estimation
process.
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3. The autocovariance and spectral density robust
functions

3.1. The autovariance function
Ma & Genton 2000 [20] proposed a scale covariance estimator which is based on
Qn(·), defined in the sequel, and on the following covariance identity

cov(X,Y ) =
1

4ab
[var(aX + bY )− var(aX − bY )], (3.1)

where X and Y are random variables, a = 1√
var(X)

and b = 1√
var(Y )

(Huber 2004

[12]).
Rousseeuw & Croux 1993 [29] proposed a robust scale estimator function Qn(·)

which is based on the τth order statistic of
(
n
2

)
distances {|ηj − ηk|, j < k}, and

can be written as

Qn(η) = c× {|ηj − ηk|; j < k}(τ), (3.2)

where η = (η1, η2, . . . , ηn)′, c is a constant used to guarantee consistency (c =

2.2191 for the normal distribution) and τ =

⌊
(n2)+2

4

⌋
+ 1.

Based on identity (3.1) and on Qn(·), Ma & Genton 2000 [20] proposed a highly
robust estimator for the ACOVF:

γ̂Q(h) =
1

4

[
Q2
n−h(u + v)−Q2

n−h(u− v)
]
, (3.3)

where u and v are vectors containing the initial n − h and the final n − h obser-
vations, respectively. The robust estimator for the autocorrelation function (ACF)
is

ρ̂Q(h) =
Q2
n−h(u + v)−Q2

n−h(u− v)

Q2
n−h(u + v) +Q2

n−h(u− v)
.

It can be shown that |ρ̂Q(h)| ≤ 1 for all h.

Influence Function and Breakdown Point

Influence Function (IF) is an important tool to understand the effect of the con-
tamination of an outlier in any estimator. To define IF supposes that the empirical
c.d.f. Fn of x1, ..xn, adequately normalized, converges. Following Huber 2004 [12],
the influence function x→ IF (x, T, F ) is defined for a functional T at a distribution
F and at point x as the limit

IF (x, T, F ) = lim
ε→0+

ε−1{T (F + ε(δx − F ))− T (F )} ,
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where δx is the Dirac distribution at x.
Breakdown Point (BP) indicates the largest proportion of outliers that the data

may contain such that the estimator still gives some information about the distri-
bution of the outlier-free data (Maronna, Martin & Yohai 2006 [21]). Rousseeuw
& Croux 1993 [29] showed that the asymptotic BP of Qn(·) is 50%, which means
that the data can be contaminated by up to half of the observations with outliers
and Qn(·) will still yield sensible estimates.
The classical notion of sample BP of a scale estimator Sn(·) is given in Definition
3.1.

Definition 3.1. Let η = (η1, η2, . . . , ηn)′ be a sample of size n. Let η̃ be obtained
by replacing any m observations of η by arbitrary values. The sample breakdown
point of a scale estimator Sn(η) is given by

ε∗n(Sn(η)) = max

{
m

n
: sup

η̃
Sn(η̃) <∞ and inf

η̃
Sn(η̃) > 0

}
.

The above BP definition holds for a scale estimator function of a time invariant ran-
dom sample. As noted by Ma & Genton 2000 [20], in time series, the estimators are
based on differences between observations apart by various time lag distances and
usually have a BP with respect to these differences. Then, the time location of the
outlier becomes important (see also, for example, Ledolter 1989 [17]). Therefore,
the authors introduced the following definition of a temporal sample breakdown
point of an autocovariance estimator γ̂η(h) based on (3.1).

Definition 3.2. Let η = (η1, η2, . . . , ηn)′ be a sample of size n and let η̃ be obtained
by replacing any m observations of η by arbitrary values. Denote by Im a subset of
size m of {1, 2, . . . , n}. The temporal sample breakdown point of an autocovariance
estimator γ̂η(h) is given by

εtempn (γ̂η(h)) = max

{
m

n
: sup

Im
sup
η̃
Sn−h(ũ + ṽ) <∞, inf

Im
inf
η̃
Sn−h(ũ + ṽ) > 0,

sup
Im

sup
η̃
Sn−h(ũ− ṽ) <∞ and inf

Im
inf
η̃
Sn−h(ũ− ṽ) > 0

}
,

where ũ and ṽ are derived from η̃ as in (3.3).

Remark 3.3. The relation between the classical sample and the temporal sample
breakdown points can be expressed by the following inequality (Ma & Genton 2000
[20]):

n− h
2n

ε∗n(γ̂η(h)) ≤ εtempn (γ̂η(h)) ≤ 1

2
ε∗n(γ̂η(h)).

It then follows that since the sample breakdown point of the classical autocovariance
estimator is zero, the temporal breakdown point of this estimator is also zero. This
means that only one single outlier is enough to ‘break’ the estimator.
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Ma & Genton 2000 [20] showed that the maximum temporal breakdown point
of the highly robust autocovariance estimator is 25%, which is the highest possible
breakdown point for an autocovariance estimator.

Results of the asymptotic properties of the robust aucovariance function for a
Gaussian ARFIMA model are summarized as follows (see Lévy-Leduc et al. 2011
[19]).

Short-memory case

Let {Xt}t∈Z be a stationary mean-zero Gaussian process given by Model 1.2 with
d = 0, that is, the autocovariance function (γ(h) = E(X1Xh+1)) of {Xt}t∈Z satisfies

∑

h≥1

|γ(h)| <∞.

The following theorems present the asymptotic behavior of the robust autoco-
variance estimator.

Theorem 3.4. Let h be a non-negative integer. Under the assumption that the au-
tocovariances are absolutely summable, the autocovariance estimator γ̂Q(h,X1:n,Φ)
satisfies the following Central Limit Theorem:

√
n (γ̂Q(h,X1:n,Φ)− γ(h))

d−→ N (0, σ̌2
h),

where

σ̌2(h) = E[ψ2(X1, X1+h)] + 2
∑

k≥1

E[ψ(X1, X1+h)ψ(Xk+1, Xk+1+h)] (3.4)

where ψ is a function of γ(h) and of IF (see, Theorem 4 in Lévy-Leduc et al. 2011
[19]).

Long-memory case

Now, let d 6= 0 in Model 1.2 and let D = 1− 2d. The ACF behaves like

γ(h) = h−DL(h), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large h. Note that, for
positive d, as previously stated, the ACF of the process is not absolutely summable.

Theorem 3.5. Let h be a non negative integer. Then, γ̂Q(h,X1:n,Φ) satisfies the
following limit theorems as n tends to infinity.

• If D > 1/2,

√
n (γ̂Q(h,X1:n,Φ)− γ(h))

d−→ N (0, σ̌2(h)) ,
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where

σ̌2(h) = E[ψ2(X1, X1+h)] + 2
∑

k≥1

E[ψ(X1, X1+h)ψ(Xk+1, Xk+1+h)] ,

where ψ is a function of γ(h) and of IF (see, Theorems 4 and 5 in Lévy-Leduc
et al. 2011 [19]).

• If D < 1/2,

β(D)
nD

L̃(n)
(γ̂Q(h,X1:n,Φ)− γ(h))

d−→ γ(0) + γ(h)

2
(Z2,D(1)− Z2

1,D(1))

where β(D) = B((1 − D)/2, D), B denotes the Beta function, the processes
Z1,D(·) and Z2,D(·) are defined by Equations 53 and 54, respectively, in Lévy-
Leduc et al. 2011 [19], and

L̃(n) = 2L(n) + L(n+ h)(1 + h/n)−D + L(n− h)(1− h/n)−D . (3.5)

Remark 3.6. For Model 1.2 with 1/4 < d < 1/2, the robust autocovariance estima-
tor γ̂Q(h,X1:n,Φ) has the same asymptotic behavior as the classical autocovariance
estimator γ̂x(h).

Theories related to the use of the robust ACF function to obtain an spectral
estimate are still opened questions. However, this was first empirically investigated
by Fajardo et al. 2009 [7]. The authors considered a robust estimator of the spectral
density based on the robust ACF function when the time series follows an ARFIMA
Model. Their estimation method is discussed in the next sub-section.

3.2. The sample spectral function
The results discussed in the previous sections and the spectral representation of a
stationary process justify the use of the robust ACF function in the calculus of an
estimator of a spectral density.

As previously stated, for the stationary process {Xt}t∈Z, the spectral density
is a real-valued function of the Fourier transform of the autocovariance function,
that is,

fX(ω) =
1

2π

∞∑

h=−∞
γX(h)e−ihω (3.6)

where γX(·) is the autocovariance of the process.
Equation (3.6) suggests to replace γX(·) by its estimate to obtain an estimate

of fX(ω). The periodogram function is the classical tool to estimate the spectral
function. Other variants of the periodogram are called smoothed window peri-
odogram ( see, for example, Priestley 1981 [25]). In the same direction, Fajardo
et al. 2009 [7] suggested to use the robust autocovariance function as an estimator
of the classical ACF to obtain a robust spectral function. Although the theoretical

Robust estimation in time series 215



justification of this estimator is still an opened question, the authors have empir-
ically shown that the robust spectral estimator can be an alternative method to
estimate a time series with outliers. A robust spectral estimator is

IQ(ω) =
1

2π

∑

|h|<n
κ(h)γ̂Q(h) cos(hω), (3.7)

where γ̂Q(h) is the sample autocovariance function given in (3.3) and κ(h) is defined
as

κ(h) =

{
1, |h| ≤M,

0, |h| > M.

κ(h) is a particular case of the lag window functions used in classical spectral theory
to obtain a consistent spectral estimator, and M is the truncation point which is
a function of n, say M = G(n), where G(n) must satisfy G(n)→∞, n→∞, with
G(n)
n → 0. G(n) is usually chosen to be G(n) = nβ , where 0 < β < 1 (see, e.g.

Priestley 1981 [25, pp. 433–437]). Note that, equivalently to the classical spectral
estimation theories, other different lag window functions can be used to obtain a
robust spectral estimator.

Since (3.7) does not have the same finite-sample properties as the periodogram,
it is defined here as robust truncated pseudo-periodogram. For large h, the numbers
of observations in the calculus of γ̂Q(h) are very small and, consequently, this func-
tion becomes very unstable. Then, to avoid these undesirable covariance estimates
in the calculus of the estimator given in (3.7) justify the use of a truncation point
M in the calculus of this sample function (see Fajardo et al. 2009 [7]). The authors
suggested M that satisfies

M ≤ h′ = min
{

0 < h < n : εtempn (γ̂Q(h)) ≤ m

n

}
− 1.

4. Semiparametric estimation methods of d and em-
pirical studies

The semiparametric estimation procedure based on the OLS estimator proposed
by Geweke & Porter-Hudak 1983 [10](GPH) is considered. Since the GPH estima-
tor is well-discussed in the literature, this method and its asymptotic statistical
properties are briefly summarized as follows.

For a single realization x1, ..., xn of {Xt}t∈Z, the GPH estimate of d is obtained
from the regression equation

log Ix(ωj) = a0 − 2d log [2 sin(ωj/2)] + ξj , j = 1, ...,m′ (4.1)

where ωj is the Fourier frequency at j, m′ is the bandwidth in the regression
equation which has to satisfy m′ →∞, n→∞, with m′

n → 0 and m′ log(m′)
n → 0,
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a0= log fη(0) + log
fη(ωj)
fη(0) + C, ξj = log

Ix(ωj)
fX(ωj)

− C and C = ϕ(1) (ϕ(.) is the
digamma function).

The GPH estimate of d is given by

dGPH = (−0.5)

∑m′

j=1(vj − v̄) log Ix(ωj)

Svv
(4.2)

where Svv =
∑m′

j=1(vj − v)2, vj = log
{

4 sin2(ωj/2)
}
.

Under some conditions, Hurvich, Deo & Brodsky 1998 [14] proved that the
GPH-estimator is consistent for the memory parameter and asymptotically normal
for Gaussian time series processes. The authors established that the optimal m′ in
(4.1) and (4.2) is of order o(n4/5) and (m′)1/2(dGPH − d)

d−→ N(0, π
2

24 ).
To obtain a robust estimator of d, Fajardo et al. 2009 [7] proposed to replace

in (4.1) the log Ix(ωj) by log IQ(ωj) which gives the following OLS regression esti-
mator

dGPHR = −(0.5)

∑m
′

j=1(υj − ῡ) log IQ(ωj)

Svv
, (4.3)

where Svv, m′ are defined as before and IQ(ω) is the function given in (3.7). As pre-
viously mentioned, the asymptotical properties of dGPHR still remains to be estab-
lished. However, based on the following empirical investigation, the robust method
seems to be a reasonable robust alternative method to estimate long-memory time
series in the presence of additive outliers.

4.1. Numerical evaluation using the ARFIMA(0, d, 0) model
The finite series were simulated from zero-mean ARFIMA models (Eq. 1.2) with
{εt}t∈Z, t = 1, ..., n, i.i.d. N(0, 1). The models, parameters, sample sizes and em-
pirical results are displayed in the following tables. The empirical mean, standard
deviation (s.d.), bias and mean squared error (MSE) were obtained as a mean of
10.000 replications. The contaminated data were generated from Model 2.3 with
m = 1, p = 0.05 for magnitude $ = 10 and bandwidth values for dGPH and
dGPHR were computed for α = 0.7 and truncation point M = nβ , β = 0.7. In the
tables dGPHc and dGPHRc mean the estimates of d when the series has outliers.
The simulations were carried out using the Ox matrix programming language (see
http://www.doornik.com). The empirical study was divided into the following
model properties: stationary and non-stationary processes.

Stationary model

Table 1 displays results for d = 0.3, 0.45 and α = β = 0.7. From the table, it
can be seen that when the series does not contain outliers, both estimators present
similar behavior in the estimation of d, which is not a surprising result. However,
the introduction of outliers in the series dramatically changes the performance of
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the classical estimator (GPH), in particular, it significantly underestimates the
true parameter. On the other hand, in this scenario, the robust method (GPHR)
seems to be not sensitive to outliers. Other cases were also simulated such as
ARFIMA models with AR and MA parts and different values of p and $. All
cases indicated similar conclusions to the one given in Table 1. These are available
upon request. Table 2 gives the estimates of d when different lag-windows are
used to compute the robust periodogram estimator. The lag-windows are Parzen
(P), Tukey-Hamming(TH) and Bartlett (B) and the fractional estimators were
computed with the same bandwidths as in the previous case. The choice of the
lag-window does not appear to be too important in the estimation of d since the
estimates obtained from different lag-windows are, in general, numerically very
close to each other. In other words, the estimates are not too sensitive to the
choice of the lag-window. These lag-windows yield similarly accurate estimates
compared to the one given in (3.7).

d n dGPH dGPHc dGPHR dGPHRc

100 mean 0.2988 0.1134 0.2584 0.2449
s.d. 0.1735 0.1619 0.1558 0.1556
bias −0.0012 −0.1866 −0.0416 −0.0551
MSE 0.0301 0.0610 0.0260 0.0272

300 mean 0.3062 0.1007 0.2907 0.2837
0.30 s.d. 0.1005 0.0978 0.0926 0.0960

bias 0.0062 −0.1993 −0.0093 −0.0163
MSE 0.0101 0.0493 0.0087 0.0095

800 mean 0.3003 0.1184 0.2949 0.2869
s.d. 0.0679 0.0715 0.0573 0.0610
bias 0.0003 −0.1816 −0.0051 −0.0131
MSE 0.0046 0.0381 0.0033 0.0039

100 mean 0.4561 0.1923 0.3975 0.3778
s.d. 0.1722 0.1727 0.1506 0.1433
bias 0.0061 −0.2577 −0.0525 −0.0722
MSE 0.0297 0.0962 0.0254 0.0258

300 mean 0.4594 0.2015 0.4329 0.4233
0.45 s.d. 0.0986 0.0976 0.1041 0.1013

bias 0.0094 −0.2485 −0.0171 −0.0267
MSE 0.0098 0.0713 0.0111 0.0110

800 mean 0.4620 0.2306 0.4457 0.4349
s.d. 0.0688 0.0809 0.0562 0.0576
bias 0.0121 −0.2194 −0.0043 −0.0151
MSE 0.0049 0.0547 0.0032 0.0035

Table 1: Simulation results; ARFIMA(0, d, 0) model with α = β =
0.7 and $ = 0, 10.

Non-stationary model

As is well-known, the GPH estimator has been widely used even for ARFIMA
models with d in (0.5, 1.0] (see, for example, Franco & Reisen 2007 [9], Hurvich
& Ray 1995 [15],Olbermann, Lopes & Reisen 2006 [22], Phillips 2007 [24] among
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uncontaminated series
Parameter n dP dTH dB

100 mean 0.2699 0.2602 0.2459
s.d. 0.1497 0.1575 0.1444
bias −0.0301 −0.0398 −0.0541
MSE 0.0233 0.0264 0.0238

300 mean 0.2880 0.2833 0.2857
d = 0.3 s.d. 0.1050 0.1037 0.0976

bias −0.0119 −0.0167 −0.0143
MSE 0.0112 0.0110 0.0097

800 mean 0.2985 0.2966 0.3001
s.d. 0.0554 0.0584 0.0561
bias −0.0015 −0.0034 0.0001
MSE 0.0031 0.0034 0.0031

contaminated series
Parameter n dP dTH dB

100 mean 0.2504 0.2446 0.2419
s.d. 0.1552 0.1482 0.1405
bias −0.0496 −0.0554 −0.0581
MSE 0.0266 0.0250 0.0231

300 mean 0.2806 0.2729 0.2796
d = 0.3 s.d. 0.1028 0.0925 0.0964

bias −0.0194 −0.0271 −0.0204
MSE 0.0109 0.0093 0.0097

800 mean 0.2934 0.2889 0.2928
s.d. 0.0578 0.0606 0.0553
bias −0.0066 −0.0111 −0.0072
MSE 0.0034 0.0038 0.0031

Table 2: Empirical results of d’s estimators in ARFIMA(0, d, 0)
model using different lag-windows.

others).
Based on the theory discussed in the previous sections, the robust method can

not be applied in a non-stationary time series. However, it may be interesting to
verify if GPHR estimator is invariant to the first difference, i.e. estimative of the
memory parameter based on the original data is equal to one plus the estimated d
based on the differenced data.

Now, let Model 1.2 be defined with parameter d∗ = d+κ, where d ∈ (−0.5, 0.5),
κ > 0, κ ∈ Z. Then, Model 1.2, with zero-mean, becomes

Xt = (1−B)−d
∗
ηt, t ∈ Z. (4.4)

Process given in (4.4) is non-stationary when d∗ ≥ 0.5; however, it is still persistent.
For d∗ ∈ [0.5, 1.0) it is level-reverting in the sense that there is no long-run impact
of an innovation on the value of the process. The level-reversion property no longer
holds when d∗ ≥ 1. Note that when d∗ = 1 the process is a random walk.

From Model 4.4 with κ = 1 and p = q = 0,

Wt = (1−B)Xt, t ∈ Z,
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is an ARFIMA(0, d, 0) process. Let d̂∗ be the estimator of d∗ and let d̂ be the
fractional estimator obtained from the differenced data. The main goal is to verify
the equality d̂∗ = d̂ + 1 for uncontaminated and contaminated series. Based on
the same simulation procedure previously described, series from Model 4.4 were
generated and some cases are displayed in Table 3 (other cases are available upon
request). Similar conclusions to the previous study are observed. Both estimators
present equivalent performance when they are applied in the first difference of
uncontaminated series. This suggests that both can be used in practical situations
when dealing with non-stationary data. However, since the first difference does not
eliminate the effect of an outlier, the estimates clearly indicate that caution has to
be exercised when there is suspicion of outliers in the data. The GPH estimator
presents poor performance in terms of bias (high positive bias) and MSE. In
contrast to the GPH estimator, the GPHR method seems to be invariant to the
first difference of non-stationary time series with outliers. This empirical study
suggests that, in practical situations when dealing with non-stationary data with
outliers, one solution is to apply the first difference in the series and then to estimate
d with the robust estimator discussed in this paper.

Parameter n dGPH dGPHc dGPHR dGPHRc

300 mean −0.2141 −0.5066 −0.1906 −0.2211
dX = 0.8, dW = −0.2 bias 0.0141 0.3066 −0.0094 0.0211

s.d 0.1076 0.1469 0.1127 0.1421
MSE 0.0118 0.1155 0.0128 0.0206

800 mean −0.1906 −0.4283 −0.2062 −0.2250
bias −0.0094 0.2283 0.0062 0.0251
s.d 0.0630 0.0883 0.0851 0.1081
MSE 0.0041 0.0599 0.0073 0.0123

100 mean −0.0048 −0.4166 −0.0449 −0.0871
bias 0.0048 0.4166 0.0449 0.0871
s.d 0.1763 0.2215 0.1620 0.1811
MSE 0.0311 0.2226 0.0283 0.0404

300 mean −0.0122 −0.3230 −0.0273 −0.0426
dX = 1.0, dW = 0.0 bias 0.0122 0.3230 0.0273 0.0426

s.d 0.1076 0.1296 0.1094 0.1277
MSE 0.0117 0.1211 0.0127 0.0181

800 mean 0.0059 −0.2181 −0.0107 −0.0222
bias −0.0059 0.2181 0.0107 0.0222
s.d 0.0648 0.0823 0.0629 0.0909
MSE 0.0042 0.0544 0.0041 0.0088

Table 3: Empirical results: ARFIMA(0, d, 0) model with differ-
enced data and ω = 0, 10.

5. Application

IGP-DI is the general price index with domestic availability and is calculated by
Fundação Getúlio Vargas, Brazil. The series comprises monthly observations from
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August 1994 to April 2011 (total of 201 observations). The series and its ACF
are displayed in Figure 1. The observations of the months February 1999 (4.44%),
October 2002 (4.21%) and November 2002 (5.84%) are possibly outliers. Looking
at the plots in Figure 1, these suggest that the series is stationary and possess
long-memory behavior. From the data and using the methodologies previously
discussed, the parameter d is estimated and the results are displayed in Table
4. For this application, the estimates of d were computed from the original data
(OD) and from the modified data (MD), where the observations of February 1999,
October 2002 and November 2002 were replaced by the sample mean of the series.
This analysis is a simple exercise to verify the robustness of the estimators in a
real application and, also, to investigate whether the data contains outliers. The
d′ estimates of OD and MD series are given, respectively, on the left and right
sides of Table 4. These estimates were calculated using different bandwidths in
(4.2)(m′ = nα) and β was fixed as in the simulation study. In both series, for a
fixed α, the robust methods present similar results. The estimates maintain the
same empirical property across the bandwidth values. In contrast to the robust
methods, the classical GPH estimator gives estimates that dramatically change
from OD to MD data, showing that the observations replaced by the mean are
possible atypical data.

time
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Figure 1: IGP-DI series and its sample autocorrelation function:
period from Aug/94 to Apr/11.

6. Concluding remarks and future direction

This paper investigates the effect of outliers in the estimation of the fractional pa-
rameter d in the ARFIMA(p, d, q) model and, also, discusses the asymptotical and
empirical properties of the robust autocovariance and spectral estimators, previ-
ously given in Fajardo et al. 2009 [7] and Lévy-Leduc et al. 2011 [19], for the case of
time series with short and long-memory properties. These studies support the use
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Original time series Modified time series
Estimator α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.5 α = 0.6 α = 0.7 α = 0.8
dGPH 0.0757 0.1205 0.3431 0.3759 0.3110 0.3116 0.3713 0.3875

(0.3417) (0.1869) (0.1389) (0.0888) (0.1586) (0.1077) (0.0909) (0.0683)
dGPHRP 0.1802 0.2335 0.2269 0.2397 0.1630 0.2077 0.2078 0.2230

(0.0857) (0.0745) (0.0469) (0.0331) (0.0782) (0.0603) (0.0385) (0.0251)
dGPHRTH 0.1718 0.1919 0.2125 0.2379 0.1545 0.1782 0.1968 0.2231

(0.0742) (0.0508) (0.0303) (0.0210) (0.0673) (0.0436) (0.0259) (0.0170)
dGPHRB 0.1522 0.1788 0.2047 0.2327 0.1379 0.1667 0.1896 0.2181

(0.0641) (0.0433) (0.0262) (0.0183) (0.0586) (0.0378) (0.0227) (0.0151)
dGPHR 0.1662 0.2628 0.2454 0.2285 0.1500 0.2211 0.2215 0.2228

(0.0862) (0.0995) (0.0671) (0.0436) (0.0794) (0.0717) (0.0511) (0.0328)

Table 4: Estimates of d: IGP-DI data, period from Aug/94 to
Apr/11.

of the robust estimators to estimate the long-memory parameter when Gaussian
long-memory time series are contaminated with additive outliers. Non-stationary
time series with outliers are also studied and the investigation reveals that the
robust method can be used as an alternative estimation procedure in time series
with fractional differences. As previously stated, the asymptotical properties of
the robust estimator under the study still remain to be investigated. The robust
ACF method discussed here has also been used in other contexts such as in the
estimation of periodic process (Sarnaglia, Reisen & Lévy-Leduc 2010 [30]) and in
seasonal ARFIMA processes (this is one of the current research of the authors).
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Abstract

By the method of classical potential theory we obtain an integral repre-
sentation of the two-parameter semigroup of operators that describes an in-
homogeneous Feller process on a line that is a result of pasting together two
diffusion processes with the nonlocal boundary condition of non-transversal
type.
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1. Introduction

Let Di = {x ∈ R : (−1)ix > 0}, i = 1, 2, be the two domains on the line R with
the common boundary S = {0} and the closures Di = Di ∪ {0}, and let T > 0 be
fixed. If Γ is Di or R, then we denote by Cb(Γ) a Banach space of all functions
ϕ(x), real-valued, bounded and continuous on Γ with the norm

‖ϕ‖ = sup
x∈Γ
|ϕ(x)|,

and by C2(Γ) the set of all functions ϕ, bounded and uniformly continuous on Γ
together with their first- and second-order derivatives. Let ϕi be the restriction of
any function ϕ ∈ Cb(R) to Di.
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Assume that an inhomogeneous diffusion process is given in Di, i = 1, 2, and
it is generated by a second-order differential operator A(i)

s , s ∈ [0, T ], with the
domain of definition C2(Di):

A(i)
s ϕi(x) =

1

2
bi(s, x)

d2ϕi(x)

dx2
+ ai(s, x)

dϕi(x)

dx
, i = 1, 2, (1.1)

where the diffusion coefficient bi(s, x) and the drift coefficient ai(s, x) satisfy the
conditions:

1) there exist the constants b and B such that 0 < b ≤ bi(s, x) ≤ B for all
(s, x) ∈ [0, T ]×Di;

2) the function ai(s, x) is bounded on [0, T ]×Di;

3) for all s, s′ ∈ [0, T ], x, x′ ∈ Di the next inequalities hold:

|bi(s, x)− bi(s′, x′)| ≤ c
(
|s− s′|α2 + |x− x′|α

)
,

|ai(s, x)− ai(s′, x′)| ≤ c
(
|s− s′|α2 + |x− x′|α

)
,

where c and α are the positive constants, 0 < α < 1.

Assume also that at the zero point the boundary operator Ls is defined by the
formula

Lsϕ(0) = γ(s)ϕ(0) +

∫

D1∪D2

[ϕ(0)− ϕ(y)]µ(s, dy), s ∈ [0, T ], (1.2)

where the function γ and the measure µ satisfy the following conditions:

a) the function γ(s) is nonegative and Hölder continuous, with exponent 1+α
2 ,

on [0, T];

b) µ(s, ·) is a nonnegative measure onD1∪D2 such that 0 < µ(s,D1∪D2) <∞,
s ∈ [0, T ], and for all the functions f , bounded and measurable in R, the
integrals

G
(i)
f (s) =

∫

Di

fi(y)µ(s, dy), i = 1, 2,

are Hölder continuous, with exponent 1+α
2 , on [0, T ].

Note that the operator Ls is a particular case of Feller-Wentzell boundary oper-
ator ([1, 2]) which describes the behavior of a diffusion particle at the time when it
reaches the origin. Its terms γ(s)ϕ(0) and

∫
D1∪D2

[ϕ(0)−ϕ(y)]µ(s, dy) are supposed

to correspond to the absorption phenomenon, and the inward jump phenomenon
from the boundary, respectively.
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The problem is to clarify the question of existence of the two-parameter semi-
group of operators Tst, 0 ≤ s < t ≤ T, describing the inhomogeneous Feller process
in R such that in the domains D1 and D2 it coincides with the given diffusion pro-
cesses generated by A(1)

s and A(2)
s , respectively, and its behavior at the point zero

is determined by the boundary condition

Lsϕ(0) = 0. (1.3)

This problem is also often called a problem of pasting together two diffusion pro-
cesses on a line or a problem of the mathematical modeling of the diffusion phe-
nomenon on a line with a membrane placed in a fixed point (see [3, 4]).

The investigation of the problem formulated above is performed by the analyt-
ical methods. Such an approach ([3]–[10]) permits to determine the required oper-
ator family by means of the solution of the corresponding problem of conjugation
for a linear parabolic equation of the second order with variable coefficients, dis-
continuous at the zero point. This problem is to find a function u(s, x, t) = Tstϕ(x)
satisfying the following conditions:

∂u(s, x, t)

∂s
+A(i)

s u(s, x, t) = 0, 0 ≤ s < t ≤ T, x ∈ Di, i = 1, 2, (1.4)

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ D1 ∪D2, (1.5)

u(s, 0−, t) = u(s, 0+, t), 0 ≤ s < t ≤ T, (1.6)
Lsu(s, 0, t) = 0, 0 ≤ s < t ≤ T, (1.7)

where ϕ ∈ Cb(R) is the given function. As we see, the condition (1.6) is the
consequence of the Feller property of the required semigroup Tst, and the equality
(1.7) corresponds to the non-transversal nonlocal boundary condition of Feller-
Wentzell (1.2), (1.3). Note that in the transversal case (i.e., when the boundary
condition of Feller-Wentzell includes the local terms of the orders higher than the
order of the nonlocal one) the conjugation problem (1.4)–(1.7) was studied in [10]
(cf. also [7, 8]).

A classical solvability of the problem (1.4)–(1.7) is established by the bound-
ary integral equations method with the use of the ordinary parabolic simple-layer
potentials that are constructed using the fundamental solutions of the uniformly
parabolic operators. Application of this method permits us not only to prove the
existence of the solution of the problem (1.4)–(1.7), but also to obtain its integral
representation. It is necessary to note that we derived a generalization of the cor-
responding result obtained earlier in [6], where a similar problem was analyzed for
the case of homogeneous diffusion processes. Furthermore, the boundary condition
(1.3) considered there, had no term corresponding to the termination of the process
at the zero point. The present paper can be also treated as a generalization of the
work [9] devoted to construction of the two-parameter Feller semigroup that de-
scribes an inhomogeneous diffusion process on a half-line with the non-transversal
nonlocal boundary condition of Feller-Wentzell.
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We should also mention the works [11, 12, 13], where the problem of constructing
of mathematical models of diffusion processes in mediums with membranes was
studied by the methods of stochastic analysis.

2. Auxiliary propositions

Consider the Kolmogorov backward equations (1.4) (i = 1, 2). Assume that their
coefficients ai(s, x) and bi(s, x) are defined on [0, T ] × R and in this domain they
satisfy conditions 1)–3). These conditions imply the existence of the fundamental
solutions of equations (1.4) in the domain [0, T ] × R, i.e., the existence of the
functions Gi(s, x, t, y) defined for 0 ≤ s < t ≤ T, x, y ∈ R such that:

• they are jointly continuous;

• for fixed t ∈ (0, T ], y ∈ R they satisfy equations (1.4);

• for any function ϕ ∈ Cb(R) and any t ∈ (0, T ], x ∈ R

lim
s↑t

∫

R

Gi(s, x, t, y)ϕ(y)dy = ϕ(x).

Recall that (see [3, Ch. II, §2], [5, Addendum, §6], [14, Ch. IV, §§11–13]) the
functionsGi(s, x, t, y) are nonnegative, continuously differentiable with respect to s,
twice continuously differentiable with respect to x and for 0 ≤ s < t ≤ T, x, y ∈ R
the following estimations hold:

|Dr
sD

p
xGi(s, x, t, y)| ≤ c(t− s)− 1+2r+p

2 exp

{
−h (y − x)2

t− s

}
, (2.1)

where r and p are the nonnegative integers such that 2r+ p ≤ 2; Dr
s is the partial

derivative with respect to s of order r; Dp
x is the partial derivative with respect to x

of order p; c, h are positive constants1. Furthermore, Gi(s, x, t, y) are represented
as

Gi(s, x, t, y) = Zi0(s, y − x, t, y) + Zi1(s, x, t, y),

where

Zi0(s, x, t, y) = [2πbi(t, y)(t− s)]− 1
2 exp

{
− (y − x)2

2bi(t, y)(t− s)

}
,

and the functions Zi1(s, x, t, y) satisfy the inequalities

|Dr
sD

p
xZi1(s, x, t, y)| ≤ c(t− s)− 1+2r+p−α

2 exp

{
−h (y − x)2

t− s

}
, (2.2)

1We will subsequently denote various positive constants by the same symbol c (or h).
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where 0 ≤ s < t ≤ T, x, y ∈ R, 2r + p ≤ 2, α is the constant in 3).
Given the fundamental solutions Gi, i = 1, 2, we define the parabolic potentials

that will be used to solve the problem (1.4)-(1.7), namely the Poisson potentials

ui0(s, x, t) =

∫

R

Gi(s, x, t, y)ϕ(y)dy, 0 ≤ s < t ≤ T, x ∈ R,

and the simple-layer potentials

ui1(s, x, t) =

t∫

s

Gi(s, x, τ, 0)Vi(τ, t, ϕ)dτ, 0 ≤ s < t ≤ T, x ∈ R, (2.3)

where ϕ is the function in (1.5), and Vi(s, t, ϕ), i = 1, 2, are arbitrary functions,
continuous in 0 ≤ s < t ≤ T for which the integrals on the right side of (2.3) exist.
Note that (see [3, Ch. II, §3], [14, Ch. IV]) the functions ui0, ui1, i = 1, 2, are
continuous in 0 ≤ s < t ≤ T, x ∈ R and satisfy the equations (1.4) in the domains
(s, x) ∈ [0, t)×R, (s, x) ∈ [0, t)×(D1 ∪D2), respectively, and the initial conditions

lim
s↑t

ui0(s, x, t) = ϕ(x), x ∈ R,

lim
s↑t

ui1(s, x, t) = 0, x ∈ D1 ∪D2.

Furthermore, for the potentials ui0, i = 1, 2, the following estimations are valid:

|Dr
sD

p
xui0(s, x, t)| ≤ c‖ϕ‖(t− s)− 2r+p

2 , (2.4)

where 0 ≤ s < t ≤ T, x, y ∈ R, 2r + p ≤ 2.

We will also use the next lemma.

Lemma 2.1. Let Qf (s), s ∈ [0, T ] be a family of linear functionals defined on
Cb(R) such that for all f ∈ Cb(R) the functions Qf (s) are Hölder continuous with
the same exponent β ∈ (0, 1) on a closed interval [0, T ]. Then for every M > 0
there exist a common constant c > 0 such that for all the functions f ∈ Cb(R),
bounded by M and for all s, s′ ∈ [0, T ] the inequality

|Qf (s)−Qf (s′)| ≤ c|s− s′|β

holds.

Proof. f 7→ |s− s′|−β (Qf (s)−Qf (s′)), for s 6= s′ ∈ [0, T ] is a pointwise bounded
family of linear functionals, hence it is uniformly bounded, which is the statement.
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3. Parabolic conjugation problem

In this section by the boundary integral equations method we establish the classical
solvability of the problem (1.4)–(1.7).

Theorem 3.1. Assume that the coefficients of the operators A(i)
s , i = 1, 2, the

function γ and the measure µ satisfy conditions 1)-3) and a), b). Then for any
function ϕ ∈ Cb(R) the problem (1.4)–(1.7) has a unique solution

u(s, x, t) ∈ C1,2([0, t)×D1 ∪D2) ∩ C([0, t)× R).

Furthermore,

|u(s, x, t)| ≤ c‖ϕ‖, 0 ≤ s < t ≤ T, (3.1)

and this solution is represented as

u(s, x, t) = ui0(s, x, t) + ui1(s, x, t), x ∈ Di, i = 1, 2, 0 ≤ s < t ≤ T, (3.2)

where a pair of functions (V1, V2) in (u11, u21) is a solution of some system of
Volterra integral equations of the second kind.

Proof. We find a solution of the problem (1.4)-(1.7) of the form (3.2) with the
unknown functions Vi to be determined. Without loss of generality we may assume
that

µ(s,D1 ∪D2) ≡ 1.

Therefore, the condition (1.7) reduces to

(γ(s) + 1)u(s, 0, t)−
∫

D1∪D2

u(s, y, t)µ(s, dy) = 0, 0 ≤ s < t ≤ T. (3.3)

If we substitute (3.2) into (3.3) then, upon using the relation (1.6), we get the
following system of Volterra integral equations of the first kind for Vi:

Φi(s, t, ϕ) = (γ(s) + 1)

t∫

s

Gi(s, 0, τ, 0)Vi(τ, t, ϕ)dτ−

−
2∑

j=1

t∫

s



∫

Dj

Gj(s, y, τ, 0)µ(s, dy)


Vj(τ, t, ϕ)dτ, i = 1, 2, (3.4)

where

Φi(s, t, ϕ) =
2∑

j=1

∫

Dj

uj0(s, y, t)µ(s, dy)− (γ(s) + 1)ui0(s, 0, t), i = 1, 2.
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Now we have to reduce (3.4) to an equivalent system of Volterra integral equa-
tions of the second kind. For this purpose we consider the Holmgren’s operator

E(s, t)F =

√
2

π

d

ds

t∫

s

(ρ− s)− 1
2F (s, t, ϕ)dρ, 0 ≤ s < t ≤ T

and apply it to the both sides of each equation in (3.4). After some straightforward
simplifications, we get

E(s, t)Φi =− Vi(s, t, ϕ)√
bi(s, 0)

+

√
2

π

d

ds

t∫

s

(
I

(1)
i (s, τ) +

√
π

2bi(τ, 0)
· γ(s)

)
Vi(τ, t, ϕ)dτ−

−
√

2

π

d

ds

2∑

j=1

t∫

s

I
(2)
j (s, τ)Vj(τ, t, ϕ)dτ, i = 1, 2, (3.5)

where

I
(1)
i (s, τ) =

1√
2πbi(τ, 0)

τ∫

s

(ρ− s)− 1
2 (τ − ρ)−

1
2 (γ(ρ)− γ(s))dρ+

+

τ∫

s

(ρ− s)− 1
2 (γ(ρ) + 1)Zi1(ρ, 0, τ, 0)

]
dρ, i = 1, 2,

I
(2)
i (s, τ) =

τ∫

s

(ρ− s)− 1
2 dρ

∫

Di

Gi(s, y, τ, 0)µ(ρ, dy), i = 1, 2.

In view of the properties a), b) of the function γ and the measure µ, respectively,
as well as the inequalities (2.1), (2.2), it is easy to verify that

lim
s↑τ

I
(1)
i (s, τ) = 0, lim

s↑τ
I

(2)
i (s, τ) = 0, i = 1, 2.

Hence (3.5) can be reduced to the following system of Volterra integral equations
of the second kind:

Vi(s, t, ϕ) =

2∑

j=1

t∫

s

Kij(s, τ)Vj(τ, t, ϕ)dτ + Ψi(s, t, ϕ), i = 1, 2, (3.6)

where

Kii(s, τ) =
ri(s)

2
√

2πbi(τ, 0)

τ∫

s

(ρ− s)− 3
2 (τ − ρ)−

1
2 (γ(ρ)− γ(s))dρ+
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+ ri(s)
d

ds

τ∫

s

(ρ− s)− 1
2

[
(γ(ρ) + 1)Zi1(ρ, 0, τ, 0)−

∫

Di

Gi(ρ, y, τ, 0)µ(ρ, dy)

]
dρ, i = 1, 2,

Kij(s, τ) = −ri(s)
d

ds

τ∫

s

(ρ− s)− 1
2 dρ

∫

Dj

Gj(ρ, y, τ, 0)µ(ρ, dy), i, j = 1, 2, i 6= j,

Ψi(s, t, ϕ) = −ri(s)
√
π

2
E(s, t)Φi, ri(s) =

1

γ(s) + 1

√
2bi(s, 0)

π
, i = 1, 2.

Let us show that there exist a solution of the system of equations (3.6) which
can be obtained by the method of successive approximations

Vi(s, t, ϕ) =

∞∑

k=0

V
(k)
i (s, t, ϕ), 0 ≤ s < t ≤ T, i = 1, 2, (3.7)

where

V
(0)
i (s, t, ϕ) = Ψi(s, t, ϕ),

V
(k)
i (s, t, ϕ) =

2∑

j=1

t∫

s

Kij(s, τ)V
(k−1)
j (τ, t, ϕ)dτ, k = 1, 2, . . . .

For this purpose, we have first to estimate the functions Ψi and the kernels Kij in
(3.6).

Consider the functions Ψi(s, t, ϕ). Calculating the derivatives on the right side
of their expressions, we obtain (i = 1, 2):

Ψi(s, t, ϕ) = ri(s)Φi(s, t, ϕ)(t− s)− 1
2

− ri(s)

2

t∫

s

(ρ− s)− 3
2 (Φi(ρ, t, ϕ)− Φi(s, t, ϕ)) dρ. (3.8)

Denote by Ψi1 and Ψi2 the first and second terms in (3.8), respectively. Using
the estimation

|Φi(s, t, ϕ)| ≤ c‖ϕ‖, (3.9)

that follows easily from the inequalities (2.4) (when r = p = 0), we find that

|Ψi1(s, t, ϕ)| ≤ c‖ϕ‖(t− s)− 1
2 . (3.10)

In order to estimate Ψi1(s, t, ϕ) we consider first the increments Φi(ρ, t, ϕ) −
Φi(s, t, ϕ) and write them in the form

Φi(ρ, t, ϕ)− Φi(s, t, ϕ) = Ni1(s, ρ, t, ϕ) +N2(s, ρ, t, ϕ),
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where

Ni1 =

2∑

j=1

∫

Dj

[uj0(ρ, y, t)− uj0(s, y, t)]µ(ρ, dy)− (γ(s) + 1)[ui0(ρ, 0, t)− ui0(s, 0, t)],

(3.11)

N2 =
2∑

j=1

∫

Dj

uj0(s, y, t)(µ(ρ, dy)− µ(s, dy)).

Expressing by the Lagrange formula the increments uj0(ρ, y, t)−uj0(s, y, t), j =
1, 2, and ui0(ρ, 0, t)− ui0(s, 0, t) in (3.11) in terms of the values of their derivatives
at the intermediate points and then using the inequalities (2.4), after some straight-
forward simplifications, we deduce that

|Ni1(s, ρ, t, ϕ)| ≤ c‖ϕ‖(t− ρ)−1(ρ− s), 0 ≤ s < ρ < t ≤ T. (3.12)

Let us now estimate N2. Note that uj0(s, y, t), j = 1, 2, as functions of y,
belong to a class Cb(R) and are bounded by M = ‖ϕ‖. Hence, by Lemma 1,

∣∣∣∣∣∣∣

∫

Dj

uj0(s, y, t)(µ(ρ, dy)− µ(s, dy))

∣∣∣∣∣∣∣
≤ c‖ϕ‖(ρ− s) 1+α

2 ,

and hence,

|N2(s, ρ, t, ϕ)| ≤ c‖ϕ‖(ρ− s) 1+α
2 , 0 ≤ s < ρ < t ≤ T. (3.13)

Combining (3.12) and (3.13), we obtain

|Φi(ρ, t, ϕ)− Φi(s, t, ϕ)| ≤ c‖ϕ‖
[
(t− ρ)−1(ρ− s) + (ρ− s) 1+α

2

]
. (3.14)

Further, using the inequalities (3.9) and (3.14), we get

|Ψi2(s, t, ϕ)| ≤ c‖ϕ‖

s+t
2∫

s

[(
t− s+ t

2

)−1

(ρ− s)− 1
2 + (ρ− s)−1+α

2

]
dρ

+ c‖ϕ‖
t∫

s+t
2

(ρ− s)− 3
2 dρ ≤ c‖ϕ‖(t− s)− 1

2 . (3.15)

Combining (3.10) and (3.15), we conclude that

|Ψi(s, t, ϕ)| ≤ c0‖ϕ‖(t− s)−
1
2 , 0 ≤ s < t ≤ T. (3.16)
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Proceeding by the same considerations2 as ones leading to the estimation (3.16)
we can also investigate the kernels Kij(s, τ) in (3.6). We find the following result:
the kernels Kij(s, τ), i, j = 1, 2, can be represented as

Kij(s, τ) = K̃ij(s, τ) +Kij(s, τ), 0 ≤ s < τ < t ≤ T, (3.17)

where

K̃ij(s, τ) = −ri(s)
√
πbj(τ, 0)

2

∫

Dj,δ

∂Zj0
∂y

(s, y, τ, 0)µ(s, dy),

and K(2)
ij (s, τ) satisfy the inequality

∣∣Kij(s, τ)
∣∣ ≤ h(δ)(τ − s)−1+α

2 . (3.18)

Here δ, h(δ) are any positive number and some constant depending on δ, respec-
tively; Dj,δ = {y ∈ Dj : |y| < δ}. It is seen that Kij have non-integrable singular-
ity, which is caused by K̃ij , and therefore we do not know yet whether a solution
of (3.6) exists, i.e., whether the series (3.7) converges. For this reason, using (3.16)
and (3.17), we try to estimate each term V

(k)
i of series (3.7) and then to prove the

convergence of (3.7).
Consider first the functions V (1)

i . We can write

V
(1)
i (s, t, ϕ) =

2∑

j=1

t∫

s

Kij(s, τ)V
(0)
i (τ, t, ϕ)dτ =

2∑

j=1

t∫

s

K̃ij(s, τ)Ψi(τ, t, ϕ)dτ

+
2∑

j=1

t∫

s

Kij(s, τ)Ψi(τ, t, ϕ)dτ = V
(1)
i1 + V

(1)
i2 . (3.19)

Using (3.16) and (3.18), we get

∣∣∣V (1)
i2 (s, t, ϕ)

∣∣∣ ≤ 2c0h(δ)‖ϕ‖Γ
(
α
2

)
Γ
(

1
2

)

Γ
(

1+α
2

) (t− s)− 1−α
2 , (3.20)

where c0 and h(δ) are the constants in (3.16) and (3.18), respectively.
For the functions V (1)

i1 we have
∣∣∣V (1)
i1 (s, t, ϕ)

∣∣∣ ≤

≤ c0‖ϕ‖ri(s)
√
π

2

2∑

j=1

t∫

s

(t− τ)−
1
2

√
bj(τ, 0)dτ

∫

Dj,δ

∣∣∣∣
∂Zj0
∂y

(s, y, τ, 0)

∣∣∣∣µ(s, dy) ≤

2For further details cf. [9]
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≤ c0‖ϕ‖
ri(s)

2b

2∑

j=1

t∫

s

(t− τ)−
1
2 (τ − s)− 3

2 dτ

∫

Dj,δ

|y|e−
y2

2B(τ−s)µ(s, dy) =

= c0‖ϕ‖
ri(s)

2b

2∑

j=1

∫

Dj,δ

|y|e−
y2

2B(t−s)µ(s, dy)

t∫

s

(t− τ)−
1
2 (τ − s)− 3

2 e−
y2

2B(t−s) ·
t−τ
τ−s dτ.

(3.21)

The change of variables z = t−τ
τ−s in the inner integral in the last relation in (3.21)

leads to∣∣∣V (1)
i1 (s, t, ϕ)

∣∣∣ ≤

≤ c0‖ϕ‖
ri(s)

2b
(t− s)−1

2∑

j=1

∫

Dj,δ

|y|e−
y2

2B(t−s)µ(s, dy)

∞∫

0

z−
1
2 e−

y2

2B(t−s) zdz ≤

≤ c0‖ϕ‖
B

b
(t− s)− 1

2

2∑

j=1

∫

Dj,δ

e−
y2

2B(t−s)µ(s, dy) ≤

≤ c0‖ϕ‖
B

b
(t− s)− 1

2 max
s∈[0,T ]

µ (s,D1,δ ∪D2,δ) . (3.22)

Combining (3.20) and (3.22), we arrive at the inequality
∣∣∣V (1)
i (s, t, ϕ)

∣∣∣ ≤

≤ c0‖ϕ‖(t− s)−
1
2

(
2h(δ)T

α
2 Γ
(
α
2

)
· Γ
(

1
2

)

Γ
(

1+α
2

) +
B

b
max
s∈[0,T ]

µ (s,D1,δ ∪D2,δ)

)
.

Next, by mathematical induction method, we prove that the terms V (k)
i of series

(3.7) satisfy the inequalities

∣∣∣V (k)
i (s, t, ϕ)

∣∣∣ ≤ c‖ϕ‖(t− s)− 1
2

k∑

n=0

Cnk · a(k−n)m(δ)n, k = 0, 1, 2, (3.23)

where

a(n) =

(
2h(δ)T

α
2 Γ
(
α
2

))n · Γ
(

1
2

)

Γ
(

1+nα
2

) , n = 0, 1, 2, . . . , k,

m(δ) =
B

b
max
s∈[0,T ]

µ (s,D1,δ ∪D2,δ) .

Let us fix δ = δ0 such that, m(δ0) < 1. Then in view of (3.23), we have

∞∑

k=0

∣∣∣V (k)
i (s, t, ϕ)

∣∣∣ ≤ c0‖ϕ‖(t− s)−
1
2

∞∑

k=0

k∑

n=0

Cnk a
(k−n)m(δ0)n =
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= c0‖ϕ‖(t− s)−
1
2

∞∑

k=0

a(k)
∞∑

n=0

Cnk+nm(δ0)n =

= c0‖ϕ‖(t− s)−
1
2

∞∑

k=0

a(k)

(1−m(δ0))k+1
=

= c0‖ϕ‖(t− s)−
1
2

∞∑

k=0

(
h(δ0)

1−m(δ0)T
α
2 Γ
(
α
2

))k

Γ
(

1+kα
2

) · Γ( 1
2 )

1−m(δ0)
. (3.24)

The estimation (3.24) ensures the absolute and uniform convergence of series
(3.7). This means that the functions Vi(s, t, ϕ), i = 1, 2, exist. Furthermore, they
are continuous in 0 ≤ s < t ≤ T and satisfy the inequality

|Vi(s, t, ϕ)| ≤ c‖ϕ‖(t− s)− 1
2 , 0 ≤ s < t ≤ T. (3.25)

Using estimations (2.1), (2.4) and (3.25) we derive the existence of a solution
u(s, x, t), 0 ≤ s < t ≤ T of conjugation problem (1.4)-(1.7) which is of the form
(3.2), satisfies inequality (3.1) and belongs to C1,2([0, t)×D1 ∪D2)∩C([0, t)×R).

Thus, in order to complete the proof of the theorem it remains to prove the
uniqueness of the solution of the conjugation problem (1.4)-(1.7). For this purpose,
it suffices to note that the constructed function u(s, x, t) in each of two domains
0 ≤ s < t ≤ T, x ∈ D1 and 0 ≤ s < t ≤ T, x ∈ D2 can be treated as a unique
solution to the following first boundary-value parabolic problem:

∂ω(s, x, t)

∂s
+A(i)

s ω(s, x, t) = 0, 0 ≤ s < t ≤ T, x ∈ Di, i = 1, 2,

lim
s↑t

ω(s, x, t) = ϕ(x), x ∈ Di, i = 1, 2,

ω(s, 0, t) =
1

γ(s) + 1

∫

D1∪D2

u(s, y, t)µ(s, dy), 0 ≤ s < t ≤ T.

The proof of Theorem 1 is now complete.

Remark 3.2. Let, in addition to the conditions of Theorem 1, the fitting condition

Ltϕ(0) = 0,

holds, then the solution u of the problem (1.4)-(1.7) constructed in Theorem 1
belongs to

C1,2([0, t)×D1 ∪D2) ∩ C([0, t]× R).

4. Process with absorptions and jumps

Suppose that the conditions of Theorem 1 hold and consider the two-parameter
family of linear operators Tst, 0 ≤ s < t ≤ T , acting on the function ϕ ∈ Cb(R) by
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the formula

Tstϕ(x) =

∫

R

Gi(s, x, t, y)ϕ(y)dy +

t∫

s

Gi(s, x, τ, 0)Vi(τ, t, ϕ)dτ, (4.1)

where the pair of functions (V1, V2) is the solution of (3.6).
We introduce the subspace CL(R) of Cb(R) which consists of all ϕ ∈ Cb(R) with

Ltϕ(0) = 0. It is easily seen that the space CL(R) is closed in Cb(R), and so it is
a Banach space. Furthermore, it is invariant under the operators Tst, i.e.,

ϕ ∈ CL(R) =⇒ Tstϕ ∈ CL(R).

Let us study properties of the operator family Tst in the space CL(R). First we
note that

lim
n→∞

Tstϕn(x) = Tstϕ(x), 0 ≤ s < t ≤ T, x ∈ R,

for every sequence of functions ϕn ∈ CL(R) such that

sup
n
‖ϕn‖ <∞ and lim

n→∞
ϕn(x) = ϕ(x), x ∈ R.

This property easily follows from Lebesgue bounded convergence theorem and it
allows us to make all the following considerations, without loss of generality, under
the condition that the function ϕ has compact support.

Now we prove that the cone of nonnegative functions remains invariant under
the operators Tst, 0 ≤ s < t ≤ T .

Lemma 4.1. If ϕ ∈ CL(R) and ϕ(x) ≥ 0 for all x ∈ R, then Tstϕ(x) ≥ 0 for all
0 ≤ s < t ≤ T, x ∈ R.

Proof. Let ϕ be any nonnegative function in CL(R) with compact support. If
ϕ ≡ 0, then the assertion of the lemma is obvious. Consider now the case where
the function ϕ not everywhere equals zero. Denote bym a minimum of the function
Tstϕ(x) in the domain (s, x) ∈ [0, t]×R and assume that m < 0. By the minimum
principle ([15, Ch. II]), the value m can be attained only when (s, x) ∈ [0, t]× {0}.
Fix s0 ∈ [0, t] such that Ts0tϕ(0) = m. Then the following inequalities hold:

γ(s0)Ts0tϕ(0) ≤ 0,

∫

D1∪D2

[Ts0tϕ(0)− Ts0tϕ(y)]µ(s, dy) < 0.

Consequently,
Ls0Ts0tϕ(0) < 0.

Since, however, the condition (1.7) holds, we get a contradiction. This completes
the proof of the lemma.
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By similar considerations to those in proof of Lemma 2, it can be easily verified
that the operators Tst are contractive, i.e.,

‖Tst‖ ≤ 1, 0 ≤ s < t ≤ T.

Finally, we show that the operator family Tst has a semigroup property

Tst = TsτTτt, 0 ≤ s < τ < t ≤ T.

This property is a consequence of the assertion of uniqueness of the solution of
the problem (1.4)–(1.7) which we have already established above. Indeed, to find
u(s, x, t) when lim

s↑t
u(s, x, t) = ϕ(x), the problem (1.4)–(1.7) can be solved first in

the time interval [τ, t], and then with the “initial” function u(τ, x, t) = Tτtϕ(x),
we derived, it can be solved in the time interval [s, τ ]. In other words, Tstϕ(x) =
Tsτ (Tτtϕ)(x), ϕ ∈ Cb(R), i.e., Tst = TsτTτt.

The properties of the operator family Tst, proved above, implies (see [5, Ch. II,
§1]) the next theorem.

Theorem 4.2. Let the conditions of Theorem 1 hold. Then the two-parameter
semigroup of operators Tst, 0 ≤ s < t ≤ T , defined by formula (4.1) describes
the inhomogeneous Feller process in R, such that in D1 and D2 it coincides with
the diffusion processes generated by A(1)

s and A(2)
s , respectively, and its behavior on

S = {0} is determined by the boundary condition (1.3).
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Abstract

For the uniform distance ∆n between the distribution function of the
standard normal law and the distribution function of the standardized sum
of independent random variables X1, . . . , Xn with EXj = 0, E|Xj | = β1,j ,
EX2

j = σ2
j , j = 1, . . . , n, for all n > 1 the bounds

∆n 6 2`n

3
√

2π
+

1

2
√

2πB3
n

n∑

j=1

β1,j σ
2
j +R(`n),

∆n 6 inf
c>2/(3

√
2π)

{
c`n +

K(c)

B3
n

n∑

j=1

σ3
j +Rc(`n)

}
,

are proved, where B2
n =

∑n
j=1 σ

2
j , `n = B−3

n

∑n
j=1 E|Xj |3, R(`n) 6 6`

5/3
n ,

Rc(`n) 6 min{3`7/6n , A(c)`
4/3
n } in the general case and R(`n) 6 3`2n, Rc(`n) 6

min{2`3/2n , A(c)`2n}, if X1, . . . , Xn are identically distributed, A(c) > 0 being
a decreasing function of c such that A(c) → ∞ as c → 2/(3

√
2π). More-

over, the function K(c) is optimal for each c > 2/(3
√

2π). In particular,

K
(
(
√

10 + 3)/(6
√

2π)
)

= 0,K
(
2/(3
√

2π)
)

=
√

(2
√

3− 3)/(6π) = 0.1569 . . .

It is shown that in the first inequality the coefficients 2/(3
√

2π) and
(
2
√

2π
)−1
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are optimal and the lower bound 2/(3
√

2π) for c in the second inequal-
ity is unimprovable. These results sharpen the well-known estimates due
to H.Prawitz (1975), V.Bentkus (1991, 1994) and G.P.Chistyakov (1996,
2001). Also, an analog of the first inequality is proved for the case where the
summands possess only the moments of order 2 + δ with some 0 < δ < 1. As
a by-product, the von Mises inequality for lattice distributions is sharpened
and generalized.

Keywords: central limit theorem, convergence rate estimate, normal approx-
imation, Berry–Esseen inequality, asymptotically exact constant, character-
istic function

MSC: 60F05, 60E10

1. Introduction

For δ ∈ [0, 1] let F2+δ be the class of distribution functions (d.f.’s) F (x) satisfying
the conditions

+∞∫

−∞

x dF (x) = 0,

+∞∫

−∞

|x|2+δ dF (x) <∞.

For h > 0 let Fh2+δ denote the class of all lattice d.f.’s from F2+δ with span h. For
F ∈ F2+δ set

βr = βr(F ) =

+∞∫

−∞

|x|r dF (x), 0 < r 6 2 + δ, σ2 = β2.

For δ = 0 by F2 we mean the class of all d.f.’s with zero mean and finite second
moment. It is easy to see that F2+δ1 ⊂ F2+δ2 for any 0 6 δ1 < δ2 6 1, and
σ2+δ 6 β2+δ for all F ∈ F2+δ and δ ∈ [0, 1] by the Lyapounov inequality.

Let X1, . . . , Xn be independent random variables (r.v.’s) defined on some prob-
ability space (Ω,A,P) with the corresponding d.f.’s F1, . . . , Fn ∈ F2+δ. Denote

σ2
j = EX2

j , βr,j = E|Xj |r, 0 < r 6 2 + δ, j = 1, 2, . . . , n,

B2
n =

n∑

j=1

σ2
j , `n =

1

B2+δ
n

n∑

j=1

β2+δ,j ,

Fn(x) = P(X1 + . . .+Xn < xBn) = (F1 ∗ . . . ∗ Fn)(xBn),

∆n = ∆n(F1, . . . , Fn) = sup
x
|Fn(x)− Φ(x)|, n = 1, 2, . . . ,

Φ(x) being the standard normal d.f. Assume, that Bn > 0. It is easy to verify that
under the above assumptions for any n > 1 we have

`n > 1

B2+δ
n

n∑

j=1

σ2+δ
j > n−δ/2.

242 I. Shevtsova



If the r.v.’s X1, . . . , Xn are independent and identically distributed (i.i.d.), then
their common d.f. will be denoted by F (= F1 = . . . = Fn). In this case we use
the notation

∆n(F ) = ∆n(F1, . . . , Fn), σ2 = EX2
1 > 0, β2+δ = E|X1|2+δ, βδ = E|X1|δ.

Then
Bn = σ

√
n, `n =

β2+δ

σ2+δnδ/2
.

In what follows, for a r.v. X the notation X ∈ F2+δ means that the d.f.
F (x) = P(X < x), x ∈ R, belongs to the class F2+δ.

As is known, the rate of convergence in the central limit theorem of probability
theory obeys the Berry–Esseen inequality

∆n 6 Cbe(δ) · `n, n > 1, F1, . . . , Fn ∈ F2+δ, (1.1)

where Cbe(δ) depends only on δ [4, 8, 9]. Omitting the history of improvement
of the constant Cbe(1) the details of which can be found, for example, in the
papers [19, 20], note that

0.4097 . . . =

√
10 + 3

6
√

2π
6 Cbe(1) 6

{
0.5600, in the general case,
0.4784, if F1 = . . . = Fn,

see [10, 28, 20].1 In 1966–1967 V.M. Zolotarev [37, 38, 39] suggested that Cbe(1) =
(
√

10 + 3)/(6
√

2π). This hypothesis has been neither proved nor rejected yet.
For 0 < δ < 1 the best known upper estimates of the constants Cbe(δ) were

obtained by W.Tysiak [30] for the general case (the second line in table 1) and by
M.Grigorieva and I. Shevtsova [13] for the case of identically distributed summands
(the third line in table 1). The first lower estimates were recently obtained by the
author [29] (the fourth line in table 1).

In the case of identically distributed summands (F1 = . . . = Fn = F ) and δ = 1,
inequality (1.1) takes the form

∆n 6 Cbe(1) · β3

σ3
√
n
, n > 1, F ∈ F3, (1.2)

and along with the information concerning the two first moments also uses the
value of the third absolute moment β3.

1Recently, the presented upper bounds for Cbe(1) were improved to Cbe(1) 6 0.5591 in the
general case by Ilya Tyurin (see “An improvement of the remainder in the Lyapounov theorem”,
Theory Probab. Appl., 2011, vol. 56, No. 4, p. 808-811 (in Russian)) and to Cbe(1) 6 0.4748 in
the i.i.d.-case by the author (see “On the absolute constants in the Berry–Esseen type inequalities
for identically distributed summands”, arXiv:1111.6554, 28 November 2011), the latest one —
as a corollary to the estimate with an improved structure ∆n 6 0.33554(β3/σ3 + 0.415)/

√
n,

since 0.33554(β3/σ3 + 0.415) 6 0.33554 · 0.415β3/σ3 < 0.4748β3/σ3 by virtue of the Lyapounov
inequality. Independently, an estimate Cbe(1) 6 0.4774 for the i.i.d.-case was obtained in the
paper of I. Tyurin.
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δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Cbe(δ) 6 1.102 1.076 1.008 0.950 0.902 0.863 0.833 0.812 0.802
Cbe(δ) 6 0.6028 0.6094 0.6195 0.6342 0.6413 0.6276 0.6026 0.5723 0.5383
Cbe(δ) > 0.4097 0.3603 0.3257 0.3000 0.2803 0.2651 0.2534 0.2446 0.2383

Table 1: Two-sided estimates of the constants Cbe(δ) from inequal-
ity (1.1) for some δ ∈ (0, 1). The second line: the upper estimates
in the general case [30]; the third line: improved estimates for the
case of identically distributed summands [13]; the fourth line: the

lower estimates [29].

On the other hand, as n → ∞, if the summands are i.i.d. with arbitrary fixed
(independent of n) d.f. F ∈ F3, then, as it was established in 1945 by Esseen [9],
uniformly in x

Fn(x) = Φ(x) +
EX3

1

6σ3
· (1− x2)e−x

2/2

√
2πn

+
h

σ
· Hn(x)e−x

2/2

√
2πn

+ o

(
1√
n

)
, (1.3)

where h = hHn(x) ≡ 0, if F is non-lattice, and

Hn(x) =
1

2
−
{(
x
√
n− an

σ

) σ
h

}
, |Hn(x)| 6 1

2
,

if F is concentrated on the lattice {a + kh, k = 0,±1,±2, . . .} with span h, {x}
being the fractional part of x ∈ R, whence Esseen deduced [10] that

lim sup
n→∞

∆n(F )
√
n =

|EX3
1 |+ 3hσ2

6
√

2πσ3
, F ∈ Fh3 . (1.4)

So, unlike (1.2), in the asymptotic relations (1.3) and (1.4) the third absolute
moment E|X1|3 does not take part at all whereas only the first three original
moments are used as well as the parameter h, carrying the information on the
structure of the basic distribution. The numerical characteristics mentioned above
satisfy the relation [10, 40]

sup
h>0

sup
X∈Fh3

|EX3|+ 3hEX2

E|X|3 =
√

10 + 3, (1.5)

with supremum attained at the two-point distribution P(X = −h(4 −
√

10)/2) =
(
√

10− 2)/2, P(X = h(
√

10− 2)/2) = (4−
√

10)/2, called the Esseen distribution.
From (1.4) and (1.5) it follows that for any F ∈ F3

lim sup
n→∞

∆n(F )
√
n 6

√
10 + 3

6
√

2π
· β3

σ3
. (1.6)

With the supremum attained at the Esseen distribution. This remark makes it
possible to establish the lower estimate Cbe(1) > (

√
10 + 3)/(6

√
2π) as it was

done by Esseen [10]. It is worth noticing for the sake of completeness that the
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normalized value of the third absolute moment of the Esseen distribution delivering
the extremum in (1.5) and equality in (1.6) have the form

β3/σ
3 =

√
20(
√

10− 3)/3 = 1.0401 . . .

So, if in (1.5) the supremum is sought not over all X ∈ Fh3 , but under additional
requirement that the ratio E|X|3/(EX2)3/2 should be large enough, then the ex-
tremal value becomes smaller and hence, the lower estimate of the constant Cbe(1)
in (1.2) becomes more optimistic. This remark generates the hope (and explains)
that the larger the value of the Lyapounov ratio β3/σ

3, the smaller the upper
estimate of the constant Cbe(1) in (1.1) is.

Apparently, S. Zahl was the first to notice this [35, 36]. In 1963 he presented
the structural improvement of inequality (1.1)

∆n 6 0.651

B3
n

n∑

j=1

β′3,j ,

where

β′3,j =

{
β3,j , β3,j > 3σ3

j /
√

2,

σ3
j /
(
0.7804− 0.1457β3,j/σ

3
j

)
, β3,j < 3σ3

j /
√

2,

which more efficiently uses the information concerning the first three moments of
random summands.

The next step in this direction was made in 1975 by H.Prawitz, from whose
paper [25] one can deduce the estimate

∆n 6 `n ·A1(`n) +
1

2
√

2πB3
n

n∑

j=1

σ3
j +

1

4πB4
n

n∑

j=1

σ4
j , (1.7)

where A1(`) is a positive function of ` > 0 with a complicated structure such that
A1(`) does not increase for ` small enough and

lim
`→0

A1(`) =
1.0253

6
√

2π
+

1

2
√

2π
=

2

3
√

2π
+

0.0253

6
√

2π
= 0.2676 . . .

Prawitz also described an algorithm for the computation of A1(`) for concrete
values of `. Since

1

B3
n

n∑

j=1

σ3
j 6 1

B3
n

n∑

j=1

β3, j = `n,
1

B4
n

n∑

j=1

σ4
j 6 `4/3n = o(`n), `n → 0,

from (1.7) it follows that
∆n 6 `n ·A2(`n), (1.8)

where A2(`) is a positive function of ` > 0 such that A2(`) does not increase for `
small enough and

lim
`→0

A2(`) =
1.0253

6
√

2π
+

1√
2π

=
7

6
√

2π
+

0.0253

6
√

2π
= 0.4671 . . . .
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Inequality (1.8) with concrete values of A2 plays an important role in the problem
of determination of upper estimates of the absolute constant Cbe(1) in the Berry–
Esseen inequality (1.1), since the algorithms which are traditionally used for these
purposes cannot obtain the values of this constant which are less than A2.

In the same paper [25], for identically distributed summands and n > 2, Prawitz
announced the inequality

∆n 6 2

3
√

2π
· β3

σ3
√
n− 1

+
1

2
√

2π(n− 1)
+A3 · `2n−1, (1.9)

where A3 is an absolute positive constant and stated that the coefficient

2

3
√

2π
= 0.2659 . . .

at the Lyapounov fraction in (1.9) cannot be made smaller. Unfortunately, the
proof of this statement as well as that of inequality (1.9) were not published by
Prawitz.

A strict proof of Prawitz’ inequality (1.9), however, with a little worse remain-
der, follows from the papers of V.Bentkus [2, 3], in which for the case of arbitrary
F1, . . . , Fn ∈ F3 and n > 1 the estimate

∆n 6 2`n

3
√

2π
+

1

2
√

2πB3
n

n∑

j=1

σ3
j +A4 · `4/3n 6 7`n

6
√

2π
+A4 · `4/3n (1.10)

was obtained, where A4 is an absolute constant. The worse order of the remainder
in (1.10) as compared with (1.9) is due to that the estimate (1.10) holds for arbitrary
(not necessarily identical) F1, . . . , Fn ∈ F3.

So, even if the value of the constant A4 in (1.10) were known, it would not be
possible to obtain an estimate of the absolute constant Cbe(1) in the Berry–Esseen
inequality (1.1) lower than 7/(6

√
2π) = 0.4654 . . . . For further progress in this

problem, one has to improve the main term of asymptotic estimate (1.10).
In 1953 A.N.Kolmogorov [17] (also see the monographs of I. A. Ibragimov and

Yu.V. Linnik [16] and V.M. Zolotarev [40]) formulated the problem of calculation
of the so-called asymptotically exact constant

Cae = lim sup
`→0

sup
n>1, F1,...,Fn : `n=`

∆n(F1, . . . , Fn)

`
,

for which from the papers of Esseen [10] and Bentkus [2, 3] it follows that

0.4097 . . . =

√
10 + 3

6
√

2π
6 Cae 6 7

6
√

2π
= 0.4654 . . . .

V.M.Zolotarev [38, 39, 40] held the opinion that Cae coincides with its lower bound
and together with A. N. Kolmogorov considered the problem of calculation of Cae to
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be intermediate or auxiliary for the problem of calculation of the exact value of the
absolute constant Cbe(1) in (1.1). The gap of approximately 0.06 between the upper
and lower bounds of Cae presented above is due to the fact that the information
on the original moments of summands is not taken into account in [25, 2, 3]. Since
the summands are centered, the only informative original moment is the third one.
S.V.Nagaev and V. I. Chebotarev [21] also noticed this and for the i.i.d. two-point
summands proved the estimate Cbe(1) 6 0.4215.

In 2001–2002 G.P.Chistyakov [7] obtained a new asymptotic expansion general-
izing that due to Esseen (1.3) to the case of non-identically distributed summands.
This new expansion allowed Chistyakov, as an intermediate step, to use the in-
formation concerning the original moments and other characteristics of the initial
distributions and, as a result, to deduce the estimate

∆n 6
√

10 + 3

6
√

2π
· `n +A5 · `40/39

n | ln `n|7/6, (1.11)

where A5 is an absolute constant. From (1.11) it follows that

Cae =

√
10 + 3

6
√

2π
= 0.4097 . . . ,

thus Chistyakov proved the validity of Zolotarev’s hypothesis concerning the exact
value of the asymptotically exact constant Cae.

Unfortunately, the particular value of the absolute constant A5 in Chistyakov’s
inequality (1.11) was not given, so this fundamental result cannot be used for
practical calculations, in particular, for the evaluation of the absolute constant
Cbe(1) in the Berry–Esseen inequality.

Nevertheless, the inequalities of Prawitz (1.9) and Bentkus (1.10) are interesting
because in these inequalities the coefficient at the Lyapounov fraction is less than
in Chistyakov’s inequality (1.11):

0.2659 . . . =
2

3
√

2π
<

√
10 + 3

6
√

2π
= 0.4097 . . . ,

and hence, with large values of the ratio

n∑

j=1

β3, j

/ n∑

j=1

σ3
j

inequalities (1.9) and (1.10) are more precise than (1.11). This ratio may be arbi-
trarily large even in the case of identically distributed summands, for example, in
the double array scheme where β3/σ

3 = β3(n)/σ3(n)→∞, so that

1

B3
n

n∑

j=1

σ3
j =

1√
n

= o(`n) as `n =
β3(n)

σ3(n)
√
n
→ 0.
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So, the unproved Prawitz’ assertion that the coefficient 2/(3
√

2π) at the Lyapounov
fraction is unimprovable becomes exceptionally important. This assertion was
proved only recently in [29] where the so-called lower asymptotically exact con-
stant

Cae = lim sup
`→0

lim sup
n→∞

sup
F : β3=σ3`

√
n

∆n(F )

`

was introduced (for the scheme of summation of identically distributed summands),
which is an obvious lower bound for the coefficient under discussion, and it was
demonstrated that Cae = 2/(3

√
2π).

The unimprovability of the first term in (1.9) naturally puts forward the ques-
tion concerning the accuracy of the second term. No suggestions concerning the
“exactness” of the coefficient at the second term in (1.9), (1.10) were stated by
Prawitz or Bentkus. Actually, this question can be formulated in an even more
general form: for any c > Cae find the least possible value K(c) providing the
validity of the asymptotic estimate

sup
F∈F3 : β3=ρσ3

∆n(F ) 6 cρ√
n

+
K(c)√
n

+ rn(ρ) · ρ√
n
, n, ρ > 1,

in which the remainder rn(ρ) > 0 satisfies the conditions

lim sup
`→0

lim sup
n→∞

rn(`
√
n) = 0, sup

ρ>1
lim sup
n→∞

rn(ρ) = 0. (1.12)

Apparently, for the first time this question was formulated in [29], where lower
estimates of K(c) were presented for Cae 6 c 6 Cae. In particular, for c = Cae
in [29] it was shown that

K

(
2

3
√

2π

)
>

√
2
√

3− 3

6π
= 0.1569 . . . ,

which is strictly less than the value of the coefficient
(
2
√

2π
)−1

= 0.1994 . . . at the
second term in inequalities (1.9) and (1.10). Thus, the question of the “exactness”
of the second term in (1.9) and (1.10) remained unanswered.

In the present paper we will prove that: for all n > 1 and F1, . . . , Fn ∈ F3

∆n 6 inf
c>Cae

{
c`n +

K(c)

B3
n

n∑

j=1

σ3
j + min

{
2.7176`7/6n , A(c)`4/3n

}}
,

and for identically distributed summands

∆n 6 inf
c>Cae

{
cβ3

σ3
√
n

+
K(c)√
n

+ min
{

1.7002`3/2n , A(c)`2n

}}
,

with the function K(c) optimal for each c > Cae (the optimality of this function
is proved in remark 4.16), A(c) > 0 being a decreasing function of c such that
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A(c)→∞ as c→ 2/(3
√

2π). The function K(c) decreases monotonically alternat-
ing its sign in a single point c = (

√
10 + 3)/(6

√
2π). So, the second term in the

estimates presented above is negative for c > (
√

10+3)/(6
√

2π). The presence of a
negative summand in the main term is rather unusual in estimates of the accuracy
of the normal approximation, but makes it possible to obtain asymptotically exact
estimates as simple corollaries of the results presented above even for symmetric
Bernoulli distributions (see corollary 4.19) which distinguishes these results from
previously known. In particular, for c = Cae we have

∆n 6
√

10 + 3

6
√

2π
· `n + 3.4314 · `4/3n , n > 1, F1, . . . , Fn ∈ F3,

∆n 6
√

10 + 3

6
√

2π
· β3

σ3
√
n

+ 2.5786 · `2n, n > 1, F1 = . . . = Fn ∈ F3,

which improves Chistyakov’s inequality (1.11) with respect to the remainder, whe-
reas for c = Cae we have

∆n 6 2`n

3
√

2π
+

√
2
√

3− 3

6π

n∑

j=1

σ3
j

B3
n

+ 2.7176 · `7/6n , n > 1, F1, . . . , Fn ∈ F3,

∆n 6 2

3
√

2π
· β3

σ3
√
n

+

√
2
√

3− 3

6πn
+ 1.7002 · `3/2n , n > 1, F1 = . . . = Fn ∈ F3,

which improves Prawitz’ and Bentkus’ inequalities (1.9), (1.10) with respect to the
second term. Moreover, we will obtain the absolute improvements of Prawitz’ and
Bentkus’ inequalities (1.9) and (1.10):

∆n 6 2`n

3
√

2π
+

1

2
√

2πB3
n

n∑

j=1

β1,j σ
2
j + 5.4527 · `5/3n , n > 1, F1, . . . , Fn ∈ F3,

∆n 6 2

3
√

2π
· β3

σ3
√
n

+
1

2
√

2π
· β1

σ
√
n

+ 2.4606 · `2n, n > 1, F1 = . . . = Fn ∈ F3,

in which the remainders have no worse order of decrease than in (1.9) and (1.10) but
with specified constants and an improved function

∑n
j=1 β1,j σ

2
j 6

∑n
j=1 σ

3
j of the

two first moments in the second term with the same coefficient as in (1.9), (1.10).
Below it will be shown that the value of the coefficient

(
2
√

2π
)−1 at this improved

function of the two first moments yet cannot be made less (see remark 4.9). As well,
similar estimates will be obtained for the case 0 < δ < 1, generalizing and sharp-
ening the results of [11], where only the case of identically distributed summands
was considered.

To prove the main results we use a combination of the method of character-
istic functions (ch.f.’s) with the truncation method as well as some methods of
convex analysis based on the works of W.Hoeffding [15] and V.M. Zolotarev [40].
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It is worth noticing that in the preceding works dealing with the accuracy of the
normal approximation, Prawitz’ smoothing inequality was used, besides Prawitz
himself, only by V.Bentkus [2, 3]. G. P.Chistyakov in [7] used Esseen’s traditional
smoothing inequality with the normal smoothing kernel, while in Prawitz’ inequal-
ity, the smoothing function has a compact Fourier transform and does not have
any probabilistic interpretation.

The paper is arranged as follows. In the second section we present new estimates
for ch.f.’s implying, in particular, a generalization and improvement of the von
Mises inequality for lattice distributions: for any h > 0, δ ∈ (0, 1] and F ∈ Fh2+δ

h

σ
6 β2+δ

σ2+δ
+
βδ
σδ
,

whereas in the original von Mises inequality δ = 1 and on the right-hand side there
is 2β3/σ

3. In the third section a moment inequality is proved which improves (1.5)
and plays the key role for the construction of the optimal function of moments in the
resulting estimates. In the fourth section we formulate and prove new moment-type
estimates of the accuracy of the normal approximation with optimal structure.

2. Estimates for characteristic functions

Denote

εn = B−(2+δ)
n

n∑

j=1

(β2+δ,j + βδ,j σ
2
j ) = `n +B−(2+δ)

n

n∑

j=1

βδ,j σ
2
j ,

fj(t) = EeitXj , j = 1, 2, . . . , n, fn(t) =
n∏

j=1

fj

(
t

Bn

)
,

rn(t) =
∣∣∣fn(t)− e−t2/2

∣∣∣ , t ∈ R.

As is well-known, if X1, . . . , Xn are identically distributed, then

fn(t) =

(
f1

(
t

σ
√
n

))n
, t ∈ R.

In this section new estimates for |fn(t)| and rn(t) will be obtained.
Let θ0(δ) be the unique root of the equation

δθ2 + 2θ sin θ + 2(2 + δ)(cos θ − 1) = 0

within the interval (0, 2π). As this is so, π < θ0(δ) < 2π for all 0 < δ 6 1. Let

κδ ≡ sup
x>0

∣∣ cosx− 1 + x2/2
∣∣

x2+δ
=

cos θ0(δ)− 1 + θ2
0(δ)/2

θ2+δ
0 (δ)

=
θ0(δ)− sin θ0(δ)

(2 + δ)θ1+δ
0 (δ)

. (2.1)
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Obviously,

κδ 6
1

2θδ0(δ)
6 1

2πδ
6 1/2, 0 < δ 6 1. (2.2)

For ε > 0 let

ψδ(t, ε) =





t2/2− κδε|t|2+δ, |t| < θ0(δ)ε−1/δ,

1− cos
(
ε1/δt

)

ε2/δ
, θ0(δ) 6 ε1/δ|t| 6 2π,

0, |t| > 2πε−1/δ.

It is easy to see that the function ψδ(t, ε) decreases monotonically in ε for each
fixed t ∈ R and all 0 < δ 6 1. Moreover, ψδ(t, ε) > 0 for all t ∈ R.

The following lemma plays the key role for the construction of estimates of the
absolute value of a ch.f.

Lemma 2.1 (see [26]). For any x ∈ R and θ0(δ) 6 θ 6 2π

cosx 6 1− a(δ, θ)x2 + b(δ, θ)|x|2+δ,

where
a(δ, θ) =

2 + δ

δ
· 1− cos θ

θ2
− 1

δ
· sin θ

θ
,

b(δ, θ) =
2

δ
· 1− cos θ

θ2+δ
− 1

δ
· sin θ

θ1+δ
.

Theorem 2.2. For any F1, . . . , Fn ∈ F2+δ and any t ∈ R

|fn(t)| 6
[
1− 2

n
ψδ(t, εn)

]n/2
6 exp{−ψδ(t, εn)} 6 exp

{
−t2/2 + κδεn|t|2+δ

}
.

Proof. Let X ′j be an independent copy of the r.v. Xj , j = 1, . . . , n. Then

∣∣fn(t)
∣∣2 =

n∏

j=1

∣∣∣∣fj
(

t

Bn

)∣∣∣∣
2

=
n∏

j=1

E cos
t(Xj −X ′j)

Bn
.

Using lemma 2.1 and relations E(Xj − X ′j)2 = 2σ2
j , E|Xj − X ′j |2+δ 6 2

(
β2+δ,j +

βδ,j σ
2
j

)
(see, e. g., [34, p. 74, lemma 2.1.7]) we obtain

|fn(t)|2 6
n∏

j=1

(
1− a(δ, θ)

t2E(Xj −X ′j)2

B2
n

+ b(δ, θ)
|t|2+δE|Xj −X ′j |2+δ

B2+δ
n

)

6
n∏

j=1

(
1− 2a(δ, θ)t2

σ2
j

B2
n

+ 2b(δ, θ)|t|2+δ
β2+δ,j + βδ,j σ

2
j

B2+δ
n

)
.

The expression in brackets is an upper bound for the squared absolute value of the
ch.f. fj(t) and, hence, is nonnegative. Since the geometric mean of nonnegative
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numbers is no greater than their arithmetic mean, for all t ∈ R and θ ∈ [θ0(δ), 2π]
we obtain

|fn(t)|2 6
[
1− 2

n

n∑

j=1

(
a(δ, θ)t2

σ2
j

B2
n

− b(δ, θ)|t|2+δ
β2+δ,j + βδ,j σ

2
j

B2+δ
n

)]n

=
[
1− 2

n

(
a(δ, θ)t2 − b(δ, θ)εn|t|2+δ

) ]n
≡
[
1− 2

n
ψδ(t, εn, θ)

]n
,

where

ψδ(t, ε, θ) = a(δ, θ)t2 − b(δ, θ)ε|t|2+δ, t ∈ R, ε > 0, θ0(δ) 6 θ 6 2π.

It can be made sure (see, e. g., [26]) that for any fixed t ∈ R the minimum of the
right-hand side of the last estimate for |fn(t)|2 is attained at

θ = min
{

max
{
θ0(δ), ε1/δ

n |t|
}
, 2π
}
,

and

ψδ(t, ε) = max
θ0(δ)6θ62π

ψδ(t, ε, θ) > ψδ(t, ε, θ0(δ)) = t2/2− κδε|t|2+δ,

whence follows the statement of the lemma.

For n = 1 from theorem 2.2 we obtain

Corollary 2.3. For any r.v. X ∈ F2+δ for all t ∈ R there hold the estimates
∣∣EeitX

∣∣2 6 1− 2ψδ
(
σt, β2+δ/σ

2+δ + βδ/σ
δ
)
6 1− σ2t2 + 2κδ

(
β2+δ + βδσ

2
)
|t|2+δ.

Remark 2.4. For δ = 1, in the paper of H. Prawitz [24] the first inequality of
corollary 2.3 is proved as well as the second inequality of theorem 2.2. In the book
of N.G.Ushakov [34] the second inequality of corollary 2.3 is proved for arbitrary
0 < δ 6 1.
Remark 2.5. From corollary 2.3 it follows that |f(t)|<1 for |t| < 2π(β2+δ/σ

2 +
βδ)
−1/δ for any d.f. F ∈ F2+δ. A special role of the point t = 2π(β2+δ/σ

2 +βδ)
−1/δ

is due to the fact that this is the least possible period of the ch.f. of a r.v. with fixed
three absolute moments βδ, σ2 and β2+δ. Indeed, for the symmetric distribution
P(X = ±a) = 1/(2a2), P(X = 0) = 1 − 1/a2 with a = 1/

√
2δ − 1 we have

βδ = aδ−2, σ2 = 1, β2+δ = aδ. It is easy to see that the ch.f. f(t) = E cos(tX) =
1− (1− cos(at))/a2 equals 1 for t = π/a, and with a specified above

π

a
=

2π

a(1 + a−2)1/δ
=

2π

(β2+δ + βδ)1/δ
.

The fact mentioned in remark 2.5 can be used for the improvement of the von
Mises inequality

h

σ
6 2

β3

σ3
,
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relating the span of a lattice distribution with its moments. Namely, from corol-
lary 2.3 it follows that

t0 = inf{t > 0: |f(t)| = 1} > 2π(β2+δ/σ
2 + βδ)

−1/δ.

As is known, t0 < ∞ if and only if F ∈ Fh2+δ with h = 2π/t0. So, the following
theorem holds.

Theorem 2.6. For any h > 0 and X ∈ Fh2+δ

h 6 (β2+δ/σ
2 + βδ)

1/δ. (2.3)

For all 0 < δ 6 1, this inequality is unimprovable in the sense that for any h > 0
we have

sup
{
h(β2+δ/σ

2 + βδ)
−1/δ : X ∈ Fh2+δ

}
= 1, 0 < δ 6 1,

moreover, the supremum is attained at the family of distributions of the form

P

(
X =

h

1 + u

)
=

u

1 + u
= 1− P

(
X = − uh

1 + u

)
, u→∞.

For δ = 1 the supremum is also attained at the extremal distribution P(X = h/2) =
P(X = −h/2) = 1/2.

Theorem 2.2 and inequality (2.3) also improve the results of paper [26], in which
σδ > βδ is used instead of βδ.

Lemma 2.7. For any F1, . . . , Fn ∈ F2+δ and t ∈ R

rn(t) ≡
∣∣∣fn(t)− e−t2/2

∣∣∣

6
n∑

j=1

∣∣∣∣∣fj
(

t

Bn

)
− exp

{
−
σ2
j t

2

2B2
n

}∣∣∣∣∣ exp

{
− t

2

2

(
1−

σ2
j

B2
n

)
+ κδεn|t|2+δ

}
.

Proof. In [25] it was proved that for any Aj > 0, Bj ∈ C, Cj > max{Aj , |Bj |}
∣∣∣∣
n∏

j=1

Bj −
n∏

j=1

Aj

∣∣∣∣ 6
1

2

n∏

i=1

Ci

n∑

j=1

|Bj −Aj |
Cj

+
1

2

n∏

i=1

Ai

n∑

j=1

|Bj −Aj |
Aj

6
n∑

j=1

|Bj −Aj |
Aj

n∏

i=1

Ci.

Using this inequality with

Bj = fj

(
t

Bn

)
, Aj = exp

{
−
σ2
j t

2

2B2
n

}
,
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Cj = exp

{
−
σ2
j t

2

2B2
n

+ κδ(β2+δ,j + βδ,j σ
2
j )
|t|2+δ

B2+δ
n

}

(the estimate |Bj | 6 Cj follows from theorem 2.2), for rn(t) we obtain

rn(t) =

∣∣∣∣
n∏

j=1

fj

(
t

Bn

)
−

n∏

j=1

exp

{
−
σ2
j t

2

2B2
n

}∣∣∣∣ 6

6
n∑

j=1

∣∣∣∣∣fj
(

t

Bn

)
− exp

{
−
σ2
j t

2

2B2
n

}∣∣∣∣∣ exp

{
− t

2

2
+ κδεn|t|2+δ +

σ2
j t

2

2B2
n

}
.

The way we estimate |fj(t/Bn)−e−σ2
j t

2/(2B2
n)| in lemma 2.7 depends on whether

δ = 1 or not.

Lemma 2.8. For any r.v. X ∈ F2+δ with the ch.f. f(t) for all t ∈ R we have the
estimates:
if δ = 1, then ∣∣∣f(t)− e−σ2t2/2

∣∣∣ 6 β3|t|3
6

, (2.4)

∣∣∣f(t)− e−σ2t2/2
∣∣∣ 6 |t|

3

6

( ∣∣EX31(|X| 6 U)
∣∣+ E|X|31(|X| > U)

)
+

+
t4

24
E|X|41(|X| 6 U) +

σ4t4

8
(2.5)

for all U > 0;
if 0 < δ 6 1, then

∣∣∣f(t)− e−σ2t2/2
∣∣∣ 6 γδβ2+δ |t|2+δ + σ4t4/8, (2.6)

where

γδ = sup
x>0

∣∣eix − 1− ix− (ix)2/2
∣∣ /x2+δ

= sup
x>0

√(
cosx− 1 + x2/2

x2+δ

)2

+

(
sinx− x
x2+δ

)2

.

The values of γδ for some 0 < δ 6 1 are presented in the second column of
table 3. In particular, γ1 = 1/6. The estimates given in lemma 2.8 were appar-
ently first obtained for the case 0 < δ < 1 by W.Tysiak [30]. Nevertheless, for
completeness we give their simple proof as well.

Proof. The first estimate follows from the works of I. Tyurin [31, 32], in which the
inequality

∣∣∣f(t)− e−σ2t2/2
∣∣∣ 6 e−t

2/2

|t|∫

0

β3s
2

2
es

2/2 ds 6
|t|∫

0

β3s
2

2
ds =

β3|t|3
6

, t ∈ R,
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was proved.
Further, using the inequality |e−x − 1 + x| 6 x2/2, x > 0, for all t ∈ R we

obtain

|f(t)− e−σ2t2/2| 6
∣∣∣∣E
(
eitX − 1− itX +

t2X2

2

)∣∣∣∣+

∣∣∣∣e−σ
2t2/2 − 1 +

σ2t2

2

∣∣∣∣

6 R(t) +
σ4t4

8
,

where

R(t) =

∣∣∣∣E
(
eitX − 1− itX − (itX)2

2

)∣∣∣∣ 6 R1(t, U) +R2(t, U),

R1(t, U) =

∣∣∣∣E
(
eitX − 1− itX − (itX)2

2

)
1(|X| 6 U)

∣∣∣∣ ,

R2(t, U) = E

∣∣∣∣eitX − 1− itX − (itX)2

2

∣∣∣∣1(|X| > U)

for any U > 0.
By the definition of γδ,

∣∣eix − 1− ix− (ix)2/2
∣∣ 6 γδ|x|2+δ, x ∈ R, whence for

R2(t, U) we obtain

R2(t, U) 6 γδ|t|2+δE|X|2+δ1(|X| > U).

Adding and subtracting (itX)3/6 · 1(|X| 6 U) under the sign of expectation
in R1(t, U), taking account of the inequality

∣∣eix − 1− ix− (ix)2/2− (ix)3/6
∣∣ 6

x4/24, x ∈ R, for R1(t, U) we obtain

R1(t, U) 6
∣∣∣∣E
(
eitX − 1− itX − (itX)2

2
− (itX)3

6

)
1(|X| 6 U)

∣∣∣∣

+
|t|3
6

∣∣EX31(|X| 6 U)
∣∣ 6 t4

24
EX41(|X| 6 U) +

|t|3
6

∣∣EX31(|X| 6 U)
∣∣ .

So, for any 0 < δ 6 1 and U > 0 for all t ∈ R we have

|f(t)− e−σ2t2/2| 6 σ4t4

8
+ γδ|t|2+δE|X|2+δ1(|X| > U)

+
|t|3
6

∣∣EX31(|X| 6 U)
∣∣+

t4

24
EX41(|X| 6 U).

Setting U = 0 in this inequality, we obtain the second estimate of the lemma,
setting δ = 1 we obtain the third one. The lemma is completely proved.

Remark 2.9. Note that using new optimal estimates for ζ-metrics obtained in [33],
we can as well prove an analog of the first estimate of lemma 2.8 for the case of an
arbitrary 0 < δ < 1 in the form

∣∣∣f(t)− e−t2/2
∣∣∣ 6 β2+δ|t|2+δ

(1 + δ)(2 + δ)
sup
x>0

|eix − 1|
xδ

,
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however, it turns out that for all 0 < δ < 1

1

(1 + δ)(2 + δ)
sup
x>0

|eix − 1|
xδ

> sup
x>0

∣∣eix − 1− ix− (ix)2/2
∣∣

x2+δ
= γδ,

that is, the coefficient at β2+δ|t|2+δ in this estimate will be greater than that in the
third estimate of lemma 2.8. This circumstance is critical for the estimation of the
remainder in the central limit theorem since it is this coefficient that determines the
value of the constant at the main term. This is the reason why the third estimate
of lemma 2.8 is more preferable, and will be used for our purposes.

3. The moment inequality

Theorem 3.1. For any r.v. X ∈ F3, for all λ > 1 the inequality

|EX3|+ 3E|X| · EX2 6 λE|X|3 +M(p(λ), λ)(EX2)3/2

holds, where

p(λ) =
1

2
−
√
λ+ 1

λ+ 3
sin

(
π

6
− 1

3
arctan

√
λ2 + 2

λ− 1

λ+ 3

)
,

M(p, λ) =
1− λ+ 2(λ+ 2)p− 2(λ+ 3)p2

√
p(1− p)

, 0 < p 6 1

2
, λ > 1,

with equality attained for each λ > 1 at the family of two-point distributions{
P
(
X = σ

√
q/p
)

= p = 1 − P
(
X = −σ

√
p/q
)

: σ > 0
}
, where p = p(λ),

q = 1− p(λ).

The optimal values of the parameter λ = λ(β3), delivering the minimum to
the right-hand side of the inequality in theorem 3.1 and the corresponding values
p = p(λ(β3)) are presented for some β3 = E|X|3/(EX2)3/2 in the fourth and seventh
columns, respectively, of table 2 below.
Remark 3.2. It can be made sure that the function p(λ) increases monotonically
for λ > 1, varying within the limits

0.3169 . . . =
1

2

(
1−

√
1−
√

3/2

)
= p(1) 6 p(λ) 6 lim

λ→∞
p(λ) =

1

2
.

Moreover, as it will be seen from the proof, the function M(p(λ), λ) can be repre-
sented as

M(p(λ), λ) = sup
0<p61/2

(α3(p)− λβ3(p) + 3β1(p)),

where α3(p), β3(p), β1(p) are, respectively, the third original, third absolute and
first absolute moments of the Bernoulli distribution assigning the probabilities p
and q = 1− p to the points

√
q/p and −

√
p/q:

M(p(λ), λ) = sup

{
q − p− λ(p2 + q2) + 6pq√

pq
: 0 < p 6 1

2
, q = 1− p

}
. (3.1)
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From this representation, first, it follows that the functionM(p, λ) decreases mono-
tonically in λ > 1 for each 0 < p 6 1/2. The same property is inherent in
M(p(λ), λ), since for any λ1 > λ2 > 1 we have

M(p(λ1), λ1) 6M(p(λ1), λ2) 6 sup
0<p<1/2

M(p, λ2) = M(p(λ2), λ2).

Second, evidently,

M(p(λ), λ) > q − p− λ(p2 + q2) + 6pq√
pq

∣∣∣∣
p=q=1/2

= 3− λ, λ > 1,

with equality attained at λ→∞, so that

inf
λ>1

(
λ+M(p(λ), λ)

)
= lim
λ→∞

(
λ+M(p(λ), λ)

)
= 3.

Thus, the functionM(p(λ), λ) decreases monotonically for all λ > 1, varying within
the limits

2.3599. . . = 2

√
3
√

3(2−
√

3) = M(p(1), 1) >M(p(λ), λ) > lim
λ→∞

M(p(λ), λ) = −∞,

whence it follows that M(p(λ), λ) alters its sign at the unique point λ =
√

10
corresponding to the value p(

√
10) = 2−

√
10/2 = 0.4188 . . . , so that

M(p(λ), λ) < 0 ⇐⇒ λ >
√

10.

Since p2 + q2 − √pq = −2pq − √pq + 1 > 0 for all p ∈ (0, 1/2), q = 1 − p,
from (3.1) it also follows that the function

λ+M(p(λ), λ) = sup

{
q − p− λ(p2 + q2 −√pq) + 6pq

√
pq

: 0 < p 6 1

2
, q = 1− p

}

decreases monotonically, varying within the limits

3 < λ+M(p(λ), λ) 6 1 + 2

√
3
√

3(2−
√

3) = 3.3599 . . . , λ > 1. (3.2)

Using theorem 3.1 it is possible to improve a result due to C.-G. Esseen [10],
according to which for a sequence of independent r.v.’s X1, X2 . . . with the d.f.
F ∈ Fh3 for some h > 0 such that EX2

1 = 1, EX3
1 = α3, E|X1|3 = β3, the relation

ψ(F ) ≡ lim sup
n→∞

∆n

√
n =

|α3|+ 3h

6
√

2π
6
√

10 + 3

6
√

2π
β3 ≡ ψ1(β3)

holds (see (1.4) and (1.6)).
On the other hand, according to (2.3) for h we have the estimate h 6 β3 + β1,

whence it follows that in the case considered by Esseen
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ψ(F ) 6 |α3|+ 3(β3 + β1)

6
√

2π
6 inf
λ>1

(λ+ 3)β3 +M(p(λ), λ)

6
√

2π
=

= inf
c>2/(3

√
2π)

(cβ3 +K(c)) ≡ ψ2(β3), (3.3)

where
K(c) =

M(p(λ), λ)

6
√

2π

∣∣∣∣
λ=6
√

2πc−3

.

Moreover, from theorem 3.1 it follows that c cannot be less than 2/(3
√

2π) =
0.2659 . . . , and K(c) in (3.3) can be made less for no c > 2/(3

√
2π). From (3.3)

with c = (
√

10 + 3)/(6
√

2π) = 0.4097 . . . (that corresponds to λ =
√

10, K(c) = 0)
Esseen’s bound follows, whereas (3.3) with c = 2/(3

√
2π) (that corresponds to

λ = 1) implies the estimate

ψ(F ) 6 2

3
√

2π
· β3 +

√
2
√

3− 3

6π
< 0.2660β3 + 0.1570, (3.4)

which is more accurate than Esseen’s bound ψ(F ) 6 ψ1(β3) for

β3 >
2
√

3
√

3(2−
√

3)
√

10− 1
= 1.0914 . . . ,

although the value c = 2/(3
√

2π) (that is, λ = 1) is optimal in (3.3) only for
β3 > 1.2185 . . .

Comparing the functions ψ1(β3) and ψ2(β3), we conclude that their values
coincide only at the unique point β3 for which c = (

√
10 + 3)/(6

√
2π), K(c) = 0

(that corresponds to λ =
√

10, p(
√

10) = 2−
√

10/2), that is, at the point

β3 =
p2 + (1− p)2

√
p(1− p)

∣∣∣∣
p=2−

√
10/2

=

√
20(
√

10− 3)/3 = 1.0401 . . . ,

and for all the rest of the values of β3 > 1 the strict inequality ψ1(β3) > ψ2(β3)
holds. In particular, for β3 = 1 (that is, for the symmetric Bernoulli distribution)
ψ1(1) = (

√
10 + 3)/(6

√
2π) = 0.4097 . . . , while

ψ2(1) = lim
c→∞

(c+K(c)) = lim
λ→∞

λ+ 3 +M(p(λ), λ)

6
√

2π

=
1√
2π

= 0.3989 . . . < ψ1(1)− 0.0107.

The values of the functions ψ1(β3) and ψ2(β3) for some β3 > 1 are presented in the
second and third columns of table 2. The corresponding values of c = c(β3) and
K = K(c(β3)) delivering the minimum in (3.3) are presented in the fifth and sixth
columns of table 2.

258 I. Shevtsova



β3 ψ1 ψ2 λ c K p
1 0.4097 0.3989 + inf + inf − inf 1/2

1.01 0.4138 0.4111 7.2034 0.6784 -0.2741 0.4592
1.02 0.4179 0.4170 4.8305 0.5206 -0.1141 0.4424
1.03 0.4220 0.4218 3.7862 0.4512 -0.0430 0.4296
1.04 0.4261 0.4261 3.1682 0.4101 -0.0005 0.4189
1.05 0.4302 0.4300 2.7497 0.3823 0.0286 0.4095
1.06 0.4343 0.4337 2.4432 0.3619 0.0501 0.4011
1.07 0.4384 0.4373 2.2070 0.3462 0.0668 0.3934
1.08 0.4425 0.4407 2.0182 0.3336 0.0803 0.3863
1.09 0.4466 0.4440 1.8633 0.3233 0.0915 0.3796
1.10 0.4507 0.4471 1.7335 0.3147 0.1009 0.3733
1.12 0.4589 0.4533 1.5275 0.3010 0.1161 0.3618
1.14 0.4670 0.4592 1.3707 0.2906 0.1279 0.3513
1.16 0.4752 0.4649 1.2470 0.2823 0.1374 0.3416
1.18 0.4834 0.4705 1.1470 0.2757 0.1451 0.3326
1.20 0.4916 0.4760 1.0645 0.2702 0.1517 0.3243
1.21 0.4957 0.4787 1.0284 0.2678 0.1546 0.3203
1.22 0.4998 0.4813 1.0000 0.2659 0.1569 0.3169

Table 2: The values of the functions ψ1(β3) and ψ2(β3) for some
β3; optimal values of c = (λ + 3)/(6

√
2π) delivering the minimum

to ψ2(β3) (see (3.3)); the corresponding values of K(c) in (3.3); the
parameter p(λ) of the extremal distribution.

Proof of theorem 3.1. Since for σ2 ≡ EX2 = 0 the statement of the theorem is
obvious, in what follows we assume that σ > 0. Consider the functional

Jλ,σ(X) =
(
|EX3|+ 3E|X|σ2 − λE|X|3

)
/σ3, X ∈ F3.

Then the statement of the theorem is equivalent to

sup
σ>0

sup
X∈F3 : EX=0, EX2=σ2

Jλ,σ(X) = M(p(λ), λ).

On the other hand, for any σ > 0

sup
X∈F3 : EX=0, EX2=σ2

Jλ,σ(X) = sup
X∈F3 : EX=0, EX2=σ2

Jλ,σ(−X)

= sup
X∈F3 : EX=0, EX2=σ2

J̃λ,σ(X),

where
J̃λ,σ(X) =

(
EX3 + 3E|X|σ2 − λE|X|3

)
/σ3.

With the account of the results of W.Hoeffding [15] and V.M. Zolotarev [40] it
is easy to see that for each σ > 0 the extremum of the moment-type functional
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J̃λ,σ(X) linear with respect to F ∈ F3 under two moment-type restrictions

EX = 0, EX2 = σ2,

is attained on distributions concentrated in at most three points. Without loss
of generality assume that the r.v. X takes the values x < y 6 0 < z with the
probabilities

P(X = x) =
σ2 + yz

(z − x)(y − x)
, P(X = y) = − σ2 + xz

(z − y)(y − x)
,

P(X = z) =
σ2 + xy

(z − x)(z − y)
, −yz 6 σ2 6 −xz.

Then

E|X| = 2z(σ2 + xy)

(x− z)(y − z) , 3E|X|σ2 =
6zσ4 + 6xyzσ2

(x− z)(y − z) ,

E|X|3 =
(z3 + a)σ2 − xyz(xy − xz − yz − z2)

(z − x)(z − y)
,

EX3 = (x+ y + z)σ2 + xyz =
(z3 − a)σ2 + xyz(xy − xz − yz + z2)

(z − x)(z − y)
,

a = a(x, y, z) = z(x2 + y2 + xy)− xy(x+ y) > 0, x < y 6 0 < z,

J̃λ,σ(X) =
(
6zσ + (6xyz − (λ− 1)z3 − a(λ+ 1))σ−1+

+ xyz((λ+ 1)(xy − xz − yz)− (λ− 1)z2)σ−3
)
/((z − x)(z − y))

and

sup
σ>0

sup
X∈F3 : EX=0, EX2=σ2

J̃λ,σ(X) = sup
X∈F3 : EX=0

sup
σ>0

g(σ)

(z − x)(z − y)
,

where

g(σ) = g(σ, x, y, z, λ) = 6zσ + (6xyz − (λ− 1)z3 − a(λ+ 1))σ−1+

+xyz((λ+ 1)(xy − xz − yz)− (λ− 1)z2)σ−3.

Show that the function g(σ) is quasi-convex for σ > 0, namely, either g(σ) increases
monotonically for σ > 0 or there exists a point σ1 > 0 such that g(σ) decreases
monotonically for 0 < σ < σ1 and increases monotonically for σ > σ1. For this
purpose differentiate g(σ) and find the stationary points. We have

g′(σ) = 6z + (a(λ+ 1) + (λ− 1)z3 − 6xyz)σ−2

− 3xyz((λ+ 1)(xy − xz − yz)− (λ− 1)z2)σ−4 > 0
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if and only if

6σ4 +(a(λ+1)/z+(λ−1)z2−6xy)σ2 +3xy((λ−1)z2− (λ+1)(xy−xz−yz)) > 0.

So, the equation g′(σ) = 0 is equivalent to the quadratic equation with respect to
σ2. The latter either has no real roots and then g′(σ) > 0 and g(σ) increases, or
has one real root which is the point of reflection of g(σ) and then g(σ) increases, or
has two different real roots σ1 < σ2 so that σ1 is the point of maximum and σ2 is
the point of minimum. The desired property of the function g will be proved if we
show that the smaller root σ1 of the equation g′(σ) = 0 is non-positive.

The smaller root s1 of the quadratic equation s2 + bs+ c = 0 with two different
roots has the form s1 = −b −

√
b2 − 4c. It is obvious that s1 6 0 if and only if

either b > 0, or b 6 0 and c 6 0, that is, if the condition b 6 0 implies c 6 0. Apply
this reasoning to s = σ2,

b = (a(λ+ 1)/z+ (λ− 1)z2− 6xy)/6, c =
xy

2z
((λ− 1)z3− (λ+ 1)z(xy−xz− yz)).

Indeed, the condition b 6 0 implies (λ− 1)z3 6 6xyz − a(λ+ 1) and

c · 2z

(λ+ 1)xy
6 6xyz

λ+ 1
− a− z(xy − xz − yz) 6 3xyz − a− z(xy − xz − yz) =

= xz(y − x)− y2z + (x+ y)(xy + z2) 6 0

for all λ > 1 and x < y 6 0 < z. So, the maximum value of the function g(σ) on the
interval −yz 6 σ2 6 −xz is attained either at σ2 = −yz and then P(X = x) = 0,
or at σ2 = −xz and then P(X = y) = 0, that is, the extremum of the functional
J̃λ,σ(X) is attained at two-point distributions of the r.v. X.

Now let P(X = σ
√
q/p) = p, P(X = −σ

√
p/q) = q = 1− p, 0 < p < 1. Then

EX3 =
q − p√
pq

σ3, E|X|3 =
p2 + q2

√
pq

σ3 =
1− 2pq√

pq
σ3, E|X| = 2

√
pqσ.

Since EX3 < 0 for p < 1/2, the range of the values of p under consideration can be
restricted to the semi-interval (0, 1/2]. Further, the functional

J̃λ,σ(X) =
EX3 − λE|X|3 + 3E|X|σ2

σ3
=
q − p− λ(1− 2pq) + 6pq√

pq
=

=
1− λ+ 2(λ+ 2)p− 2(λ+ 3)p2

√
p(1− p)

≡M(p, λ)

does not depend on σ and hence,

sup
σ>0

sup
X∈F3 : EX=0,EX2=σ2

J̃λ,σ(X) = sup
0<p61/2

M(p, λ).

It remains to show that for each λ, M(p, λ) attains its maximum value at the point
p = p(λ) specified in the formulation of Theorem 3.1.
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Consider the zeroes of the derivative M ′p(p, λ). We have

M ′p(p, λ) ·2(p(1−p))3/2 = 4(λ+3)p3−6(λ+3)p2 +6p+λ−1 ≡ h(p), 0 < p 6 1/2.

Since
h′′(p) = (12(λ+ 3)(p2 − p) + 6)′p = 12(λ+ 3)(2p− 1) 6 0

for p 6 1/2, the function h(p) is concave on the interval (0, 1/2]. Moreover,
h(0+) = λ− 1 > 0, h(1/2) = −1 < 0, that is, the function

h(p) = M ′p(p, λ) · 2(p(1− p))3/2

changes its sign at the unique point on the interval (0, 1/2], which delivers the
maximum to the function M(p, λ) for each λ > 1. It is easy to see that

p(λ) =
1

2
−
√
λ+ 1

λ+ 3
sin

(
π

6
− 1

3
arctan

√
λ2 + 2

λ− 1

λ+ 3

)
∈ (0, 1/2],

for all λ > 1 and h(p(λ)) ≡ 0, that is, p(λ) is the point of the maximum of the
function M(p, λ).

4. Estimates of the accuracy of the normal approx-
imation to the distributions of sums of indepen-
dent random variables

In addition to the notation introduced in section 1, let

νn = 1 +
n∑

j=1

βδ,j σ
2
j

/ n∑

j=1

β2+δ,j .

It is easy to see that the quantities νn, `n =
∑n
j=1 β2+δ,j are linked with the

quantity εn introduced in section 2 by the relation εn = νn`n. Furthermore, by the
Lyapounov inequality we have 1 6 νn 6 2, and in the case of identically distributed
summands we have

νn = 1 +
βδσ

2

β2+δ
6 1 +

1

nδ/2`n
6 2. (4.1)

We will also use the following inequality proved by H.Prawitz in [25]:
n∑

j=1

β r2+δ,j 6
( n∑

j=1

β2+δ,j

)r
= (B2+δ

n `n)r, r > 1. (4.2)

Before we proceed to the construction of new estimates of the accuracy of the
normal approximation, note that

κ ≡ sup
F∈F2

sup
x
|F (x)− Φ(x)| = sup

b>0

(
1

1 + b2
− Φ(−b)

)
= 0.54093 . . . (4.3)
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This relation is a consequence of lemma 12.3 from the monograph [5], establishing
an upper bound for the uniform distance between F and Φ, and the paper [18]
where the extremal two-point distribution was constructed. Relation (4.3) provides
a universal estimate for all distributions with finite second moment. We will use
this estimate for the purpose of bounding the range of the values of `n under
consideration.

Recall that in section 2 by fj(t) we denoted the characteristic functions of the
r.v.’s Xj , j = 1, . . . , n, fn(t) =

∏n
j=1 fj(t/Bn), rn(t) = |fn(t)− e−t2/2|.

The key role in the construction of estimates for ∆n is played by Prawitz’
smoothing inequality presented in the following lemma.

Lemma 4.1 (see [23]). For all n > 1 and arbitrary d.f.’s F1, . . . , Fn with zero
expectations for any 0 < t0 6 1 and T > 0 there holds the inequality

∆n 6 2

t0∫

0

|K(t)|rn(Tt) dt+ 2

1∫

t0

|K(t)| · |fn(Tt)|dt+

+2

t0∫

0

∣∣∣∣K(t)− i

2πt

∣∣∣∣ e−T
2t2/2dt+

1

π

∞∫

t0

e−T
2t2/2 dt

t
,

where

K(t) =
1

2
(1− |t|) +

i

2

[
(1− |t|) cotπt+

signt

π

]
, −1 6 t 6 1,

furthermore, the function K(t) satisfies the inequalities

|K(t)| 6 1.0253

2π|t| ,
∣∣∣∣K(t)− i

2πt

∣∣∣∣ 6
1

2

(
1− |t|+ π2t2

18

)
, −1 6 t 6 1.

The following lemma is important for the calculation of constants in the esti-
mates of the normal approximation, to be constructed below. By D denote the
class of real continuous nonnegative functions J(z) defined for z > 0, which have a
unique maximum and do not have a minimum for z > 0.

Lemma 4.2 (see [25, 11]). Let a < b and k > 0 be arbitrary constants, g(s) and
G(s) be positive monotonically increasing differentiable functions on a 6 s 6 b. If
the function

ϕ(s) =
G(s)−G(a)

gk(s)
, a 6 s 6 b,

increases monotonically, then the function

J(z) = zk
b∫

a

e−zg(s) dG(s), z > 0,
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belongs to the class D.
If G(a) = g(a) = 0, then the condition that ϕ(s) increases can be relaxed the

requirement that the function

ψ(s) =
G′(s)

(gk(s))
′ , a 6 s 6 b,

increases.

Lemma 4.1 for all F1, . . . , Fn ∈ F2+δ, n > 1, 0 < δ 6 1, 0 < t0 6 t1 6 1 and
T > 0 implies the estimate

∆n 6 I1 + I2 + I3 + I4 + I5,

where

I1 =
2

T

t0T∫

0

∣∣∣∣K
(
t

T

)∣∣∣∣ rn(t) dt,

I2 =
1.0253

π

t1∫

t0

|fn(Tt)|dt
t
,

I3 = 2

1∫

t1

|K(t)| · |fn(Tt)|dt,

I4 =

t0∫

0

(
1− t+

π2t2

18

)
e−T

2t2/2dt,

I5 =
1

π

∞∫

t0

e−T
2t2/2 dt

t
.

We will estimate the integrals I2, I3, I4, I5 in the same way as it was done in [25, 11].
We have

I4 + I5 =

∞∫

0

(
1− t+

π2t2

18

)
e−T

2t2/2 dt+

∞∫

t0

(
1

πt
− 1 + t− π2t2

18

)
e−T

2t2/2 dt

=

√
π

2
· 1

T
− 1

T 2
+

π5/2

18
√

2
· 1

T 3
+
Ĩ4(T, t0)

T 2
,

where

Ĩ4(T, t0) = T 2

∞∫

t0

g(t)te−T
2t2/2 dt, g(t) =

1

t

(
1

πt
− 1 + t− π2t2

18

)
, t > 0.
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Since

sup
t>0

g′(t) = sup
t>0

(
− 2

πt3
+

1

t2
− π2

18

)
=

(
− 2

πt3
+

1

t2
− π2

18

) ∣∣∣∣
t=3/π

= −π
2

54
< 0,

the function g(t) decreases monotonically for t > 0 and hence,

Ĩ4(T, t0) 6 (g(t0) ∨ 0)T 2

∞∫

t0

te−T
2t2/2 dt

=
1

t0

(
1

πt0
− 1 + t0 −

π2t20
18

)
e−T

2t20/2 ∨ 0 ≡ J4(T, t0).

The function J4(T, t0) of T > 0 is obviously in D for each fixed t0 ∈ (0, 1].
Now choose the values of the parameters T and t1 ∈ (0, 1]. It is clear that for

the efficient estimation of I2 and I3 we should use the upper bounds of |fn(Tt)|
which are almost everywhere strictly less than one. These upper bounds are given
by theorem 2.2, but for their applicability we should assume that T (νn`n)1/δ 6 2π.
On the other hand, taking into account the term of the form 1/T in the estimate
for I4 + I5, we come to the conclusion that T should be taken as large as possible.
Therefore finally we set

T = 2π (νn`n)
−1/δ

, t1 = t1(δ) =
θ0(δ)

T (νn`n)1/δ
=
θ0(δ)

2π
. (4.4)

As it follows from the definition, θ0(δ) ∈ (π, 2π), so that t1(δ) ∈ (1/2, 1) for all
0 < δ 6 1. Moreover, since νn 6 2, the quantities T and `n are linked by the
inequalities

T > 2π(2`n)−1/δ, `n 6
(2π

T

)δ
.

So, for the specified T and t1 the estimates from theorem 2.2 and lemma 2.7 take
the form

|fn(Tt)| 6 exp

{
−T

2t2

2

(
1− 2κδ(2π|t|)δ

)}
, t ∈ R, (4.5)

|fn(Tt)| 6 exp

{
−T 2 1− cos 2πt

4π2

}
, t1(δ) 6 |t| 6 1, (4.6)

rn(t) 6
n∑

j=1

∣∣∣fj(t/Bn)− e−σ2
j t

2/(2B2
n)
∣∣∣×

× exp

{
− t

2

2

(
1−

σ2
j

B2
n

− 2κδ
(2π|t|

T

)δ
)}

, t ∈ R. (4.7)
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Using the estimate (4.5) in the integral I2 and the estimate (4.6) in the integral
I3, for any t0 6 t1(δ) we obtain

I2 6 1.0253

π

t1∫

t0

exp

{
−T

2t2

2

(
1− 2κδ(2πt)δ

)} dt

t
,

I3 6 2

1∫

t1

|K(t)| exp

{
−T 2 1− cos 2πt

4π2

}
dt

= 2

1−t1∫

0

|K(1− t)| exp

{
−T 2 1− cos 2πt

4π2

}
dt

=

1−t1∫

0

t

√
1 +

( 1

πt
− cotπt

)2

exp

{
−T 2 1− cos 2πt

4π2

}
dt.

As is known (see, e. g., [1, 4.3.91]), the cotangent can be expanded into simple
fractions as follows:

f(x) ≡ 1

x
− cotx = 2x

∞∑

k=1

1

π2k2 − x2
, x 6= 0,±π,±2π, . . . ,

whence it follows that the function f(x) is nonnegative and increases monotonically
for all 0 < x < π and hence, for any 0 < ε < 1 we have

I3 6
1−t1∫

0

t

√
1 +

( 1

π(t ∨ ε) − cotπ(t ∨ ε)
)2

exp

{
−T 2 1− cos 2πt

4π2

}
dt ≡ J3(T )/T 2.

Set

g(t) =
1− cos 2πt

4π2
, dG(t) = t

√
1 +

( 1

π(t ∨ ε) − cotπ(t ∨ ε)
)2

dt, 0 6 t 6 1−t1.

Obviously, g(0) = 0 and g(t) increases monotonically for 0 6 t 6 1/2 > 1 − t1
(recall that t1 > 1/2). Moreover, it can be made sure that the function sin t/t
decreases for 0 < t 6 π and hence, on the interval 0 6 t 6 1− t1 6 1/2 the function

G′(t)
g′(t)

=
4π2|K(1− t)|
(1− cos 2πt)′

=
πt

sin 2πt

√
1 +

( 1

π(t ∨ ε) − cotπ(t ∨ ε)
)2

increases as the product of two monotonically increasing nonnegative functions.
So, according to lemma 4.2, J3 ∈ D for any 0 < ε < 1. Everywhere in what follows
we use the value ε = 10−4.
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Consider the upper bound for I2 obtained above. It is easy to see that the
function t2

(
1− 2κδ(2πt)δ

)
is positive for t ∈ (0, t1], since, as it has been already

mentioned, t1 > 1/2, κδ 6 π−δ/2, and has a unique maximum at the point
t = tmax(δ) =

(
(2π)δ(2 + δ)κδ

)−1/δ ∈ (0, t1), and hence, there exists a unique root

t2 = t2(δ) ∈ (0, tmax(δ))

of the equation

t2
(
1− 2κδ(2πt)δ

)
= t21

(
1− 2κδ(2πt1)δ

)
, 0 < t < t1(δ),

so that for all t ∈ (t2, t1) we have

t2
(
1− 2κδ(2πt)δ

)
> t21

(
1− 2κδ(2πt1)δ

)
.

Splitting the integration domain in the upper bound for I2 in two parts by the
point t2 we obtain the estimate

I2 6 (J21(T, t0) + I22(T, t0)) /T 2,

where J21(T, t0) = 0, if t0 > t2, and

J21(T, t0) =
1.0253

π
T 2

t2∫

t0

exp

{
−T

2t2

2

(
1− 2κδ(2πt)δ

)} dt

t
, if t0 6 t2,

I22(T, t0) =
1.0253

π
T 2

t1∫

t0∨t2

exp

{
−T

2t2

2

(
1− 2κδ(2πt)δ

)} dt

t

6 1.0253

π
T 2 exp

{
−T

2t21
2

(
1− 2κδ(2πt1)δ

)} t1∫

t0∨t2

dt

t

=
1.0253

π
T 2 exp

{
−T

2t21
2

(
1− 2κδ(2πt1)δ

)}
ln

t1
t0 ∨ t2

≡ J22(T, t0).

The function J22(T ) obviously belongs to the class D.
With a fixed t0 6 t2(δ), consider J21(T, t0) as a function of T > 0. As was

mentioned above, on the interval [t0, t2] the function t2
(
1− 2κδ(2πt1)δ

)
increases,

therefore, according to lemma 4.2, for J21 ∈ D it suffices that the function

ln t− ln t0
t2 (1−Kδtδ)

, Kδ = 2κδ(2π)δ,

increases on [t0, t2], which is equivalent to the inequality
(

ln t− ln t0
t2(1−Kδtδ)

)′
=
t(1−Kδt

δ)− (ln t− ln t0)(2t− (2 + δ)Kδt
1+δ)

t4(1−Kδtδ)2
> 0,
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t0 6 t 6 t2. The last condition is satisfied, if t0 satisfies the condition

ln t0 > max
t∈[t0, t2]

g(t), g(t) = ln t− 1−Kδt
δ

2− (2 + δ)Kδtδ
.

Taking the derivative

g′(t) =
(2 + δ)2K2

δ t
2δ − (4 + (2 + δ)2)Kδt

δ + 4

t(2− (2 + δ)Kδtδ)2
,

we find that g′(t) changes its sign from positive to negative in the point

t∗ =

(
4

(2 + δ)2Kδ

)1/δ

=
1

2π

(
2

(2 + δ)2κδ

)1/δ

,

which maximizes the function g(t) and

g(t∗) = ln t∗ − 4 + δ

2(2 + δ)
,

and hence, for

t0 > max
t∈[t0, t2]

exp{g(t)} = exp {g(t∗)}

=
1

2π

(
2

(2 + δ)2κδ

)1/δ

exp

{
− 4 + δ

2(2 + δ)

}
≡ t3(δ)

we have J21 ∈ D. So,

I2 + I3 + I4 + I5 6
√
π

2
· 1

T
+
J(T, t0)

T 2
,

where

J(T, t0) = 0 ∨
(
J21(T, t0) + J22(T, t0) + J3(T ) + J4(T, t0)− 1 +

π5/2

18
√

2
· 1

T

)
,

with the functions J21(T, t0), J22(T, t0), J3(T ), J4(T, t0) of T > 0 belonging to D
for each fixed t0.

Finally, consider I1. Estimating rn(t) by (4.7) with T defined in (4.4) we obtain

I1 =
2

T

t0T∫

0

∣∣∣∣K
(
t

T

)∣∣∣∣ rn(t)dt 6 2

T

n∑

j=1

t0T∫

0

∣∣∣∣K
(
t

T

)∣∣∣∣ ·
∣∣∣fj(t/Bn)− e−σ2

j t
2/(2B2

n)
∣∣∣×

× exp

{
− t

2

2

(
1−

σ2
j

B2
n

− 2κδ
(2πt

T

)δ
)}

dt
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− 2

T

n∑

j=1

t0T∫

0

∣∣∣∣K
(
t

T

)∣∣∣∣ ·
∣∣∣fj(t/Bn)− e−σ2

j t
2/(2B2

n)
∣∣∣ e−t2/2 dt

+
2

T

n∑

j=1

t0T∫

0

∣∣∣∣K
(
t

T

)
− iT

2πt

∣∣∣∣ ·
∣∣∣fj(t/Bn)− e−σ2

j t
2/(2B2

n)
∣∣∣ e−t2/2 dt

+
2

T

n∑

j=1

t0T∫

0

∣∣∣∣
iT

2πt

∣∣∣∣ ·
∣∣∣fj(t/Bn)− e−σ2

j t
2/(2B2

n)
∣∣∣ e−t2/2 dt 6 I11 + I12 + I13,

where

I11 =
2

T

n∑

j=1

t0T∫

0

∣∣∣∣K
(
t

T

)∣∣∣∣ ·
∣∣∣fj(t/Bn)− e−σ2

j t
2/(2B2

n)
∣∣∣ e−t2/2×

×
(

exp

{
σ2
j t

2

2B2
n

+ κδ (2π/T )
δ
t2+δ

}
− 1

)
dt,

I12 =
2

T

n∑

j=1

t0T∫

0

∣∣∣∣K
(
t

T

)
− iT

2πt

∣∣∣∣ ·
∣∣∣fj(t/Bn)− e−σ2

j t
2/(2B2

n)
∣∣∣ e−t2/2 dt,

I13 =
1

π

n∑

j=1

∞∫

0

1

t

∣∣∣fj(t/Bn)− e−σ2
j t

2/(2B2
n)
∣∣∣ e−t2/2 dt.

Note that for all j = 1, . . . , n and t 6 t0T with T = 2π (νn`n)
−1/δ

exp

{
σ2
j t

2

2B2
n

+ κδ (2π/T )
δ
t2+δ

}
− 1

6
(
σ2
j t

2

2B2
n

+
κδ(2π)δt2+δ

T δ

)
exp

{
σ2
j t

2

2B2
n

+
κδ(2π)δt2+δ

T δ

}

6
(
σ2
j t

2

2B2
n

+ κδνn`nt2+δ

)
exp

{
t2

2

(
σ2
j

B2
n

+ 2κδ(2πt0)δ

)}
,

Taking into account the estimates for K(t) given by lemma 4.1 and the esti-
mates (2.4), (2.6) for the modulus of the difference of the ch.f.’s from lemma 2.8
for the integral I11 we obtain

I11 6 1.0253

π

n∑

j=1

t0T∫

0

(
γδβ2+δ,j t

2+δ

B2+δ
n

+
σ4
j t

4

8B4
n

1(δ < 1)

)(
σ2
j t

2

2B2
n

+ κδνn`nt2+δ

)
×

× exp

{
− t2

2

(
1−

σ2
j

B2
n

− 2κδ(2πt0)δ

)}
dt
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=
1.0253

π

n∑

j=1

∞∫

0

[
γδt

4+δ
β2+δ,jσ

2
j

2B4+δ
n

+ γδκδνnt4+2δ`n
β2+δ,j

B2+δ
n

+

(
t6σ6

j

16B6
n

+ κδνnt6+δ`n
σ4
j

8B4
n

)
1(δ < 1)

]
×

× exp

{
− t

2

2

(
1−

σ2
j

B2
n

− 2κδ(2πt0)δ

)}
dt.

Estimate the exponent uniformly with respect to j = 1, . . . , n by the inequality

max
16j6n

σ2
j 6

(
max

16j6n
σj

)2

6
(

max
16j6n

β2+δ,j

)2/(2+δ)

6
( n∑

j=1

β2+δ,j

)2/(2+δ)

= B2
n`

2/(2+δ)
n .

Estimate the power-type multiplier by the Lyapounov inequality and relation (4.2)
to obtain

I11 6 1.0253

16π

∞∫

0

[
(8γδ`

(4+δ)/(2+δ)
n t4+δ + 16γδκδνn`2nt4+2δ

+

(
`6/(2+δ)
n t6 + 2κδνn`(6+δ)/(2+δ)

n t6+δ

)
1(δ < 1)

]
×

× exp

{
− t

2

2

(
1− `2/(2+δ)

n − 2κδ(2πt0)δ
)}

dt.

For the case of identically distributed summands, since σ2
j = B2

n/n 6 B2
n`nn

−1+δ/2

for all j = 1, . . . , n, we obtain the estimate

I11 6 1.0253

16π
`2n

∞∫

0

(
8γδt

2+δ +
t4

n1−δ/2 1(δ < 1)

)(
t2

n1−δ/2 + 2κδνnt2+δ

)
×

× exp

{
− t

2

2

(
1− n−1 − 2κδ(2πt0)δ

)}
dt.

Assume that

t0 <
1

2π

(
1− `2/(2+δ)

n

2κδ

)1/δ

≡ t4(δ, `n).

The domain t3(δ) 6 t0 < t4(δ, `n) is non-empty, if

`2/(2+δ)
n < 1− 4

(2 + δ)2
exp

{
−δ(4 + δ)

2(2 + δ)

}
> 0, 0 < δ 6 1.
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For t0 and `n specified above introduce the function

Q(`n, t0, r) =

∞∫

0

tr exp

{
− t

2

2

(
1− `2/(2+δ)

n − 2κδ(2πt0)δ
)}

=
2(r−1)/2Γ

(
r+1

2

)
(
1− `2/(2+δ)

n − 2κδ(2πt0)δ
)(r+1)/2

, r > 0.

It is obvious that Q(`n, t0, r) increases monotonically in `n with fixed t0 and r. So,
for I11 for all t0 6 t4(δ, `n) we obtain

I11 6 1.0253

16π
`(4+δ)/(2+δ)
n

(
8γδQ (`n, t0, 4 + δ)

+ 16νnκδγδ`δ/(2+δ)
n Q (`n, t0, 4 + 2δ) + `(2−δ)/(2+δ)

n Q (`n, t0, 6)1(δ < 1)

+ 2νnκδ`2/(2+δ)
n Q (`n, t0, 6 + δ)1(δ < 1)

)
≡ `(4+δ)/(2+δ)

n J11(`n, νn, t0)

in the general case, whereas for

1

n
< 1−

4 exp
{
− δ(4+δ)

2(2+δ)

}

(2 + δ)2
≡ (`(δ))2/(2+δ), t0 <

1

2π

(
1− n−1

2κδ

)1/δ

≡ t4
(
δ, n−1−δ/2

)
,

for identically distributed summands

I11 6 1.0253

16π
`2n

[
8γδ

n1−δ/2Q
( 1

n1+δ/2
, t0, 4 + δ

)
+ 16νnκδγδQ

( 1

n1+δ/2
, t0, 4 + 2δ

)
+

+
(
n−2+δQ

( 1

n1+δ/2
, t0, 6

)
+

2νnκδ
n1−δ/2 Q

( 1

n1+δ/2
, t0, 6 + δ

))
1(δ < 1)

]
≡`2nĴ11(n, t0).

Similarly, for I12 with the account of the definition of T = 2π(νn`n)−1/δ we
obtain

I12 6 1

T

n∑

j=1

t0T∫

0

(
1− t

T
+
π2t2

18T 2

)(
γδβ2+δ,j t

2+δ

B2+δ
n

+
σ4
j t

4

8B4
n

1(δ < 1)

)
e−t

2/2 dt

6 1

T

∞∫

0

(
1 +

π2t2

18T 2

)(
γδ`nt

2+δ +
t4

8B4
n

n∑

j=1

σ4
j1(δ < 1)

)
e−t

2/2 dt

=
2(δ−1)/2γδ

π
ν1/δ
n `(1+δ)/δ

n Γ
(3 + δ

2

)(
1 +

3 + δ

72
(νn`n)2/δ

)

+
3(νn`n)1/δ

16
√

2πB4
n

n∑

j=1

σ4
j

(
1 +

5

72
(νn`n)2/δ

)
1(δ < 1),

whence by the Lyapounov inequality and (4.2) it follows that in the general case

I12 6 `(1+δ)/δ
n ν1/δ

n

[
2(δ−1)/2γδ

π
Γ
(3 + δ

2

)(
1 +

3 + δ

72
(νn`n)2/δ

)
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+
3`

(2−δ)/(2+δ)
n

16
√

2π

(
1 +

5

72
(νn`n)2/δ

)
1(δ < 1)

]
≡ `(1+δ)/δ

n J12(`n, νn),

and in the case of identically distributed summands

I12 6 `(1+δ)/δ
n ν1/δ

n

[
2(δ−1)/2γδ

π
Γ
(3 + δ

2

)(
1 +

3 + δ

72
(νn`n)2/δ

)

+
3n−1+δ/2

16
√

2π

(
1 +

5

72
(νn`n)2/δ

)
1(δ < 1)

]
≡ `(1+δ)/δ

n Ĵ12(`n, νn, n).

Summarize the above reasoning as a lemma.

Lemma 4.3. For 0 < δ 6 1 by θ0(δ) denote the unique root of the equation

δθ2 + 2θ sin θ + 2(2 + δ)(cos θ − 1) = 0, π < θ < 2π,

κδ = sup
x>0

∣∣ cosx− 1 + x2/2
∣∣

x2+δ
=

cos θ0(δ)− 1 + θ2
0(δ)/2

θ2+δ
0 (δ)

=
θ0(δ)− sin θ0(δ)

(2 + δ)θ1+δ
0 (δ)

,

γδ = sup
x>0

√(cosx− 1 + x2/2

x2+δ

)2

+
( sinx− x

x2+δ

)2

,

t1(δ) = θ0(δ)/(2π), let t2 = t2(δ) be the unique root of the equation

t2
(
1− 2κδ(2πt)δ

)
= t21(δ)

(
1− 2κδ(2πt1(δ))δ

)

on the interval (0, t1(δ)). Let

`(δ) =

(
1− 4

(2 + δ)2
exp

{
−δ(4 + δ)

2(2 + δ)

})1+δ/2

,

t4(δ, `) =
1

2π

(
1− `2/(2+δ)

2κδ

)1/δ

, 0 < ` < `(δ).

t3(δ) =
1

2π

(
2

(2 + δ)2κδ

)1/δ

exp

{
− 4 + δ

2(2 + δ)

}
= t4

(
δ, `(δ)

)
.

Then for all n > 1 and F1, . . . , Fn ∈ F2+δ such that `n < `(δ) and for any t0
from the interval

t3(δ) 6 t0 < min{t1(δ), t4(δ, `n)}
there holds the estimate

∆n 6 1

π

n∑

j=1

∞∫

0

1

t

∣∣∣fj(t/Bn)− e−σ2
j t

2/(2B2
n)
∣∣∣ e−t2/2 dt+

(νn`n)1/δ

2
√

2π
+

+ `(4+δ)/(2+δ)
n J11(`n, νn, t0) + `(1+δ)/δ

n J12(`n, νn) +
(νn`n)2/δ

4π2
J

(
2π

(νn`n)1/δ
, t0

)
,
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where

J11(`, ν, t0) =
1.0253

16π

(
8γδQ (`, t0, 4 + δ) + 16νκδγδ`δ/(2+δ)Q (`, t0, 4 + 2δ)

+
(
`(2−δ)/(2+δ)Q (`, t0, 6) + 2νκδ`2/(2+δ)Q (`, t0, 6 + δ)

)
1(δ < 1)

)
,

1 6 ν 6 2, ` > 0,

Q(`, t0, r) =
2(r−1)/2Γ

(
r+1

2

)
(
1− `2/(2+δ) − 2κδ(2πt0)δ

)(r+1)/2
, 0 < ` < `(δ), r > 0,

J12(`, ν) = ν1/δ

[
2(δ−1)/2γδ

π
Γ
(3 + δ

2

)(
1 +

3 + δ

72
(ν`)2/δ

)

+
3`(2−δ)/(2+δ)

16
√

2π

(
1 +

5

72
(ν`)2/δ

)
1(δ < 1)

]
, 1 6 ν 6 2, ` > 0,

J(T, t0) = 0 ∨
(
J21(T, t0) + J22(T, t0) + J3(T ) + J4(T, t0)− 1 +

π5/2

18
√

2
· 1

T

)
,

J21(T, t0) =
1.0253

π
T 2

t2(δ)∫

t0∧t2(δ)

exp

{
−T

2t2

2

(
1− 2κδ(2πt)δ

)} dt

t
,

J22(T, t0) =
1.0253

π
T 2 exp

{
−T

2t21(δ)

2

(
1− 2κδ(2πt1(δ))δ

)}
ln

t1(δ)

t0 ∨ t2(δ)
,

J3(T ) = T 2

1−t1(δ)∫

0

t

√
1 +

( 1

π(t ∨ 10−4)
− cotπ(t ∨ 10−4)

)2

×

× exp

{
−T 2 1− cos 2πt

4π2

}
dt,

J4(T, t0) = 0 ∨ 1

t0

(
1

πt0
− 1 + t0 −

π2t20
18

)
e−T

2t20/2, T > 0.

If F1 = . . . = Fn ∈ F2+δ, then for all n > (`(δ))−2/(2+δ) and t0 such that

t3(δ) 6 t0 < min
{
t1(δ), t4

(
δ, n−1−δ/2

)}
,

there holds the estimate

∆n 6 1

π

n∑

j=1

∞∫

0

1

t

∣∣∣fj(t/Bn)− e−σ2
j t

2/(2B2
n)
∣∣∣ e−t2/2 dt+

1

2
√

2πn

(
β2+δ

σ2+δ
+
βδ
σδ

)1/δ

+ ` 2
n Ĵ11(n, νn, t0) + `(1+δ)/δ

n Ĵ12(`n, νn, n) +
(νn`n)2/δ

4π2
J

(
2π

(νn`n)1/δ
, t0

)
,

where

Ĵ11(n, ν, t0) =
1.0253

16π

[
8γδ

n1−δ/2 Q
( 1

n1+δ/2
, t0, 4 + δ

)
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+ 16νκδγδQ
( 1

n1+δ/2
, t0, 4 + 2δ

)
+
(
n−2+δQ

( 1

n1+δ/2
, t0, 6

)

+
2νκδ
n1−δ/2 Q

( 1

n1+δ/2
, t0, 6 + δ

))
1(δ < 1)

]
,

Ĵ12(`, ν, n) = ν1/δ

[
2(δ−1)/2γδ

π
Γ
(3 + δ

2

)(
1 +

3 + δ

72
(ν`)2/δ

)

+
3n−1+δ/2

16
√

2π

(
1 +

5

72
(ν`)2/δ

)
1(δ < 1)

]
, 1 6 ν 6 2, ` > 0, n > 1.

With t0 fixed, the functions J21(T, t0), J22(T ), J3(T ), J4(T, t0) of T for T > 0

have at most one maximum and have no minima; Ĵ11(n, ν, t0), Ĵ12(`, ν, n) decrease
monotonically in n > 1 with ` and ν fixed; t4(δ, `) decreases monotonically in `;
J11(`, ν, t0), J12(`, ν), Ĵ11(`−2/δ, ν, t0), Ĵ12(`, ν, `−2/δ) increase monotonically in `;
J11(`, ν, t0), J12(`, ν), Ĵ11(n, ν, t0), Ĵ12(`, ν, n) increase monotonically in ν ∈ [1, 2],
and

lim
n→∞

Ĵ11(n, ν, t0) =
1.0253 · 23/2+δνκδγδΓ(5/2 + δ)

π(1− 2κδ(2πt0)δ)5/2+δ
, 1 6 ν 6 2, t3(δ) 6 t0 6 t1(δ),

lim
`→0

sup
n>`−2/δ

Ĵ12(`, ν, n) = ν1/δ2(δ−1)/2π−1γδΓ((3 + δ)/2), 1 6 ν 6 2,

lim
T→∞

J(T, t0) = 0, t3(δ) 6 t0 6 t1(δ).

The values of γδ, κδ, t1(δ), t2(δ), t3(δ), t4(δ, `), `(δ) and

N(δ) = inf
{
n ∈ N : n > (`(δ))−2/(2+δ)

}
= 1 +

⌊
(`(δ))−2/(2+δ)

⌋

for some 0 < δ 6 1 and ` = 0.1, 0.01 calculated with the accuracy to the fourth
decimal digit are given in table 3.

Remark 4.4. On the right-hand sides of the inequalities in lemma 4.3 the “leading”
terms are two first summands: the integral

I13 =
1

π

n∑

j=1

∞∫

0

1

t

∣∣∣fj(t/Bn)− e−σ2
j t

2/(2B2
n)
∣∣∣ e−t2/2 dt

and
(νn`n)1/δ

2
√

2π
=

√
π

2
· 1

T
,

appearing when the sum of the integrals I4 and I5 is estimated. It is interesting
to clarify the nature of these summands and their contribution into the constants
at the leading terms in the resulting estimates. For simplicity consider the case of
identically distributed summands. As we will see below, the integral I13 contains
the information concerning the “heavy-tailedness” of the distribution: the order of

274 I. Shevtsova



δ γδ κδ t1(δ) t2(δ) t3(δ) t4(δ, 0.1) t4(δ, 0.01) `(δ) N(δ)
0.01 0.5225 0.4909 0.9950 0.0261 0.1356 0.0000 0.3566 0.0193 51
0.05 0.4885 0.4563 0.9761 0.0673 0.1370 0.1055 0.7887 0.0886 11
0.10 0.4498 0.4170 0.9539 0.1019 0.1386 0.2990 0.8613 0.1626 6
0.15 0.4149 0.3815 0.9331 0.1302 0.1401 0.4197 0.8798 0.2265 4
0.20 0.3833 0.3494 0.9132 0.1551 0.1416 0.4944 0.8841 0.2827 4
0.25 0.3548 0.3203 0.8941 0.1778 0.1431 0.5429 0.8826 0.3327 3
0.30 0.3290 0.2940 0.8756 0.1989 0.1444 0.5758 0.8784 0.3776 3
0.35 0.3058 0.2701 0.8576 0.2187 0.1457 0.5987 0.8725 0.4181 3
0.40 0.2847 0.2484 0.8399 0.2375 0.1469 0.6147 0.8658 0.4549 2
0.45 0.2657 0.2287 0.8226 0.2556 0.1480 0.6260 0.8584 0.4884 2
0.50 0.2486 0.2108 0.8054 0.2729 0.1490 0.6338 0.8507 0.5191 2
0.55 0.2331 0.1945 0.7884 0.2896 0.1500 0.6390 0.8427 0.5474 2
0.60 0.2193 0.1796 0.7716 0.3058 0.1509 0.6422 0.8345 0.5734 2
0.65 0.2070 0.1661 0.7548 0.3214 0.1517 0.6439 0.8262 0.5975 2
0.70 0.1960 0.1537 0.7380 0.3366 0.1524 0.6442 0.8177 0.6198 2
0.75 0.1865 0.1424 0.7212 0.3514 0.1530 0.6435 0.8091 0.6405 2
0.80 0.1783 0.1321 0.7044 0.3657 0.1536 0.6420 0.8005 0.6597 2
0.85 0.1715 0.1227 0.6875 0.3797 0.1540 0.6397 0.7918 0.6776 2
0.90 0.1665 0.1142 0.6705 0.3932 0.1544 0.6369 0.7830 0.6944 2
0.95 0.1637 0.1063 0.6533 0.4064 0.1547 0.6334 0.7741 0.7100 2
1.00 0.1666 0.0991 0.6359 0.4191 0.1550 0.6296 0.7652 0.7247 2

Table 3: The values of γδ, κδ, t1(δ), t2(δ), t3(δ), t4(δ, `), `(δ) and
N(δ) = 1 +

⌊
(`(δ))−2/(2+δ)

⌋
for some 0 < δ 6 1 and ` = 0.1, 0.01.

its decrease is completely determined by the maximum order of the finite moment
of a summand (in our case I13 = O(n−δ/2)) whereas the role of the corresponding
characteristic of the distribution is played by the normalized moment of the maxi-
mum order β2+δ/σ

2+δ. In other words, there exists such an absolute positive finite
constant C that

I13 6 C · β2+δ

σ2+δnδ/2
,

moreover, as is illustrated by the corresponding examples in [29], the order of
this estimate is exact, if it is meant uniformly in F ∈ F2+δ. The importance of
the remark concerning the exactness of the order is conditioned by the fact that
∆n(F ) = o(n−δ/2) for any fixed F ∈ F2+δ (see also [22]). But, on the other
hand, if a distribution F ∈ F2+δ depends on n and the moment-type characteristic
β2+δ/σ

2+δ is included in the estimate, then β2+δ/σ
2+δn−δ/2 is an exact character-

istic of the rate of convergence.
Now consider the second term

√
π/2/T . Here the coefficient

√
π/2 is deter-

mined by the limit distribution which is normal in the case under consideration.
The value of T chosen in the process of estimation of the integral I3 is determined
by the maximum length of a zero-left-ended interval on which it is possible to bound
the absolute value of the ch.f. by a number less than one (see remark 2.5). So,
the term under consideration contains the information concerning the smoothness
of the pre-limit distribution. Moreover, since the sum of random variables is nor-
malized by

√
n, the length of the interval on which the absolute value of the ch.f.

is bounded by a number less than one is proportional to
√
n, that is, for δ < 1 the

effects due to the smoothness or discreteness of the original distribution disappear
making no influence on the constant at the leading term of the estimate having the
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order n−δ/2. At the same time,for δ = 1 the order of normalization of the sum of
r.v.’s coincides with the order of the maximum length of the interval on which the
absolute value of the ch.f. is bounded by a number less than one, therefore, the
effects of “heavy-tailedness” revealing themselves in the integral I13 are added with
the effects of “non-smoothness” which leads to abrupt increase (discontinuity) of
the constant at the leading term of order 1/

√
n in the point δ = 1.

Remark 4.5. Let ν ∈ [1, 2] and ` > 0 be arbitrary numbers. For the purpose of
construction of estimates of the function J

(
2π(νn`n)−1/δ, t0

)
with fixed t0 uniform

in `n 6 ` and νn ∈ [1, ν] consider the behavior of the functions J21(T, t0), J22(T, t0),
J3(T ), J4(T, t0) of T = 2π(νn`n)−1/δ > 2π(ν`)−1/δ > 0, which are components
of J(T, t0). Obviously, the function J4(T, t0) decreases monotonically in T > 0.
Noticing that the function xe−ax decreases monotonically for x > 1/a > 0 we
conclude that J22(T, t0) decreases monotonically for

T >
√

2

t1(δ)
√

1− 2κδ(2πt1(δ))δ
≡ T22(δ).

If t3(δ) > t2(δ), then J21(T, t0) = 0 for all t0 > t3(δ). And if t3(δ) < t2(δ),
then using the property of monotonic increase of the function t2(1 − 2κδ(2πt)δ)
for t ∈ (0, t2(δ)) established in the proof of lemma 4.3 we similarly conclude that
J21(T, t0) decreases monotonically for

T >
√

2

t3(δ)
√

1− 2κδ(2πt3(δ))δ
≡ T21(δ)

for each fixed t0 > t3(δ). Finally, for each fixed δ it is possible to find numerically
the unique point T3(δ) of the maximum of the function J3(T ) ∈ D such that J3(T )
decreases monotonically for T > T3(δ). So, if the numbers ν ∈ [1, 2] and ` > 0
satisfy the inequality

ν` 6
(

2π

max{T21(δ), T22(δ), T3(δ)}

)δ
≡ ε(δ),

then
max

`n6`, νn∈[1,ν]
J

(
2π

(νn`n)1/δ
, t0

)
6 J

(
2π

(ν`)1/δ
, t0

)
.

The values of T21(δ), T22(δ), T3(δ) and ε(δ) are given in table 4. From this table
it can be seen, in particular, that for `n 6 0.3 the monotonicity takes place for all
1 6 νn 6 2 and 0.01 6 δ 6 1 given in table 4.

Depending on whether δ = 1 or not, to estimate the integral

I13 =
1

π

n∑

j=1

∞∫

0

1

t

∣∣∣fj(t/Bn)− e−σ2
j t

2/(2B2
n)
∣∣∣ e−t2/2 dt
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δ T21(δ) 6 T22(δ) 6 T3(δ) 6 ε(δ) >
0.01 74.1670 285.6369 1065.6543 0.9498
0.05 33.6579 59.2429 188.6696 0.8434
0.10 24.2258 30.8361 89.8283 0.7663
0.15 20.1242 21.3082 58.3999 0.7156
0.20 17.7237 16.5114 43.1128 0.6802
0.25 16.1158 13.6136 34.1103 0.6550
0.30 14.9517 11.6694 28.1896 0.6373
0.35 14.0650 10.2731 24.0043 0.6254
0.40 13.3653 9.2211 20.8912 0.6183
0.45 12.7987 8.4003 18.4862 0.6152
0.50 12.3308 7.7426 16.5734 0.6156
0.55 11.9386 7.2046 15.0164 0.6191
0.60 11.6060 6.7573 13.7250 0.6256
0.65 11.3215 6.3806 12.6372 0.6348
0.70 11.0764 6.0602 11.7091 0.6466
0.75 10.8643 5.7855 10.9083 0.6610
0.80 10.6802 5.5487 10.2111 0.6540
0.85 10.5202 5.3440 9.5992 0.6451
0.90 10.3813 5.1668 9.0585 0.6363
0.95 10.2609 5.0135 8.5779 0.6274
1.00 10.1571 4.8815 8.1488 0.6185

Table 4: The values of T21(δ), T22(δ), T3(δ) and ε(δ) for some δ.

we will use principally different techniques. The thing is that, as was mentioned
above, for δ < 1 the quantity

(νn`n)1/δ

2
√

2π
=

1

2
√

2π

(
`n +

1

B2+δ
n

n∑

j=1

βδ,j σ
2
j

)1/δ

6 (2`n)1/δ

2
√

2π
,

appearing in the estimate for ∆n from lemma 4.3, is an infinitesimal of higher order
of decrease than `n as `n → 0. Therefore, to estimate I13 it suffices to use tradi-
tional techniques. For δ = 1 this quantity has the same order of decrease as the
Lyapounov fraction `n and, as we will see below, makes the main contribution in the
corresponding constant. The use of the same method as for δ < 1 to estimate I13

makes it possible to obtain a new moment-type estimate whose structure is in some
sense asymptotically optimal. But if this new estimate is used for the construction
of the classical estimate with a single term, the Lyapounov fraction, then the coef-
ficient 7/(6

√
2π) = 0.4654 . . . at the Lyapounov fraction in this classical estimate

will be noticeably greater than its “exact” value (
√

10 + 3)/6/
√

2π = 0.4097 . . ..
So, the new estimate with the asymptotically exact structure is too rough for the
solution of the problem in the classical setting. Therefore, to estimate the integral
I13 in the case δ = 1 we will use another technique which is more delicate and is
based on inequality (2.5) from lemma 2.8. This technique develops and sharpens
the method used by G.P.Chistyakov in [7].

First consider the general case δ 6 1. With the account of estimates (2.4), (2.6)
from lemma 2.8, for the integral I13 we obtain

I13 6 1

π

n∑

j=1

∞∫

0

1

t

(
γδβ2+δ,j t

2+δ

B2+δ
n

+
σ4
j t

4

8B4
n

1(δ < 1)

)
e−t

2/2 dt
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= C(δ)`n +
1

4πB4
n

n∑

j=1

σ4
j1(δ < 1),

where C(δ) = γδ2
δ/2Γ(1 + δ/2)/π. Further, by virtue of the Lyapounov inequality

and (4.2) we conclude that

I13 6
{

C(δ)`n + `
4/(2+δ)
n /(4π)1(δ < 1), in the general case,

C(δ)`n + (4πn)−11(δ < 1), if F1 = . . . = Fn.

So, from lemma 4.3 we obtain that for all n > 1 and F1, . . . , Fn ∈ F2+δ such
that `n 6 `(δ) the estimate

∆n 6 C(δ) · `n +
1

2
√

2π

(
`n +

1

B2+δ
n

n∑

j=1

βδ,j σ
2
j

)1/δ

+

{
C̃δ(`n) · `4/(2+δ)

n , 0 < δ < 1,

C̃1(`n) · `5/3n , δ = 1,
(4.8)

holds, where

C̃δ(`) =
1

4π
+ `

2−δ(1−δ)
δ(2+δ) J12(`, 2) + inf

{
`δ/(2+δ)J11(`, 2, t0)

+ `
2(2−δ)
δ(2+δ) · 22/δ

4π2
sup

0<ε62`
J
(

2πε−1/δ, t0

)
: t3(δ) 6 t0 6 t1(δ) ∧ t4 (δ, `)

}
,

` ∈
(
0, `(δ)

)
, δ ∈ (0, 1),

C̃1(`) = `1/3J12(`, 2) + inf
{
J11(`, 2, t0)

+ `1/3/π2 sup
0<ε62`

J
(

2πε−1/δ, t0

)
: t3(1) 6 t0 6 t1(1) ∧ t4 (1, `)

}
,

` ∈
(
0, `(1)

)
,

and for all n >
(
`(δ)

)−2/(2+δ), F1 = . . . = Fn ∈ F2+δ and

t0 ∈
[
t3(δ), t1(δ) ∧ t4

(
δ, n−1−δ/2

))

we have

∆n 6 C(δ) · β2+δ

σ2+δnδ/2
+

1

2
√

2πn

(
β2+δ

σ2+δ
+
βδ
σδ

)1/δ

+
1

4πn
1(δ < 1) + `2n

(
Ĵ11(n, νn, t0)
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+ `(1−δ)/δn Ĵ12(`n, νn, n) + `2(1−δ)/δ
n · ν

2/δ
n

4π2
J

(
2π

(νn`n)1/δ
, t0

))
. (4.9)

From (4.9) with the account of relations n > `
−2/δ
n , 1 6 νn 6 2 and the properties

of the functions Ĵ11(n, νn, t0), Ĵ12(`n, νn, n), t4(δ, n−1−δ/2) described in lemma 4.3
it follows that, uniformly in n and νn,

∆n 6 C(δ) · β2+δ

σ2+δnδ/2
+

1

2
√

2πn

(
β2+δ

σ2+δ
+
βδ
σδ

)1/δ

+`2n · Ĉδ(`n), `n 6
(
`(δ)

)δ/(2+δ)
,

where

Ĉδ(`) =
1

4π
1(δ < 1) + `(1−δ)/δĴ12(`, 2, `−2/δ)

+ inf
{
`2(1−δ)/δ · 22/δ

4π2
sup

0<ε62`
J
(

2πε−1/δ, t0

)

+ Ĵ11(`−2/δ, 2, t0) : t3(δ) 6 t0 6 t1(δ) ∧ t4
(
δ, `1+2/δ

)}
,

0 < ` 6
(
`(δ)

)δ/(2+δ)
.

For the calculation of the least upper bound of J(2πε−1/δ, t0) over 0 < ε 6 2` see
remark 4.5.

Note that for each 0 < δ 6 1 the functions C̃δ(`) and Ĉδ(`) increase monotoni-
cally varying within the limits

C̃δ(0) ≡ lim
`→0

C̃δ(`) < C̃δ(`) < lim
`→`(δ)

C̃δ(`) = +∞, 0 < ` < `(δ),

Ĉδ(0) ≡ lim
`→0

Ĉδ(`) < Ĉδ(`) < lim
`→(`(δ))δ/(2+δ)

Ĉδ(`) = +∞, 0 < ` < (`(δ))δ/(2+δ),

C̃δ(0) =





(4π)−1 = 0.0795 . . . , 0 < δ < 1,

2 · 1.0253

3π(1− 4/9e−5/6)3
= 0.4142 . . . , δ = 1,

Ĉδ(0) =





1.0253 · 25/2+δκδγδΓ(5/2 + δ)

π (1− 2κδ(2πt3(δ))δ)
5/2+δ

+
1

4π
, 0 < δ < 1,

1.0253 · 5κ1√
2π(1− 4/9e−5/6)7/2

+
1

3π
= 0.5359 . . . , δ = 1,

infinitely large values of the functions C̃δ(`) and Ĉδ(`) appear since t4(δ, `)→ t3(δ)
as `→ `(δ), and for all r > 0

lim
`→`(δ)

inf
t3(δ)6t06t1(δ)∧t4(δ,`)

Q(`, t0, r) = lim
`→`(δ)

Q(`, t3(δ), r) = +∞.
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The values of C̃δ(`) for some 0 < δ 6 1 and ` are given in table 6. The values of
Ĉδ(0) and Ĉδ(`) are given in table 7.

From inequality (4.9) one can also obtain improved estimates in a special scheme
of a double array of row-wise i.i.d. summands:

Fj(x) = Fj,n(x) = F1,n(x), j = 1, . . . , n,

β2+δ = β2+δ,n, σ = σn, `n =
β2+δ,n

σ2+δ
n nδ/2

, n > 1.

The double array scheme admits such a dependence of the distributions F1, . . . , Fn
within each row on the number of the row n that whatever large n is, the Lyapounov
fraction `n may remain fixed and, in particular, may be arbitrarily far from zero.
Such a situation occurs, for example, in the construction of estimates of the rate of
convergence of the distributions of Poisson random sums of i.i.d. summands with
the use of the property of infinite divisibility of the compound Poisson distribution.
The success in solving these problems directly depends on the quality of estimates
of

lim sup
n→∞

sup
F∈F2+δ : |`n(F )−`|6θn

∆n(F ),

with ` > 0 and {θn}n>1 being some infinitesimal sequence, to the construction of
which we proceed. Recall that ∆n(F ) denotes the uniform distance between the
d.f. of the standard normal law and the d.f. of the standardized sum of i.i.d. r.v.’s
with the common d.f. F ∈ F2+δ.

First note that for any ` > 0 and arbitrary infinitesimal sequence of nonnegative
numbers {θn}n>1 by virtue of (4.1) we have

1 6 lim sup
n→∞

sup
F1=...=Fn∈F2+δ : |`n−`|6θn

νn(F ) 6 1 + lim sup
n→∞

sup
`n : |`n−`|6θn

1

nδ/2`n

6 1 + lim
n→∞

1

nδ/2(`− θn)
= 1,

and with account of the inequality κδ 6 (2θ0(δ))−1/δ (see (2.2))

lim
n→∞

t4

(
δ, n−1−δ/2

)
=

(2κδ)−1/δ

2π
> θ0(δ)

2π
= t1(δ).

Further, it is easy to make sure that for any ` > 0 and t0 ∈
[
t3(δ), t1(δ)

)
the

relations

lim sup
n→∞

sup
|`n−`|6θn

Ĵ11(n, νn, t0) = 1.0253π−1κδγδQ(0, t0, 4 + 2δ)

= 1.0253
23/2+δκδγδΓ(5/2 + δ)

π (1− 2κδ(2πt0)δ)
5/2+δ

,

lim sup
n→∞

sup
|`n−`|6θn

Ĵ12(`n, νn, n) = 2(δ−1)/2π−1γδ×

280 I. Shevtsova



× Γ
(3 + δ

2

)(
1 +

(3 + δ)`2/δ

72

)
→∞, `→∞,

hold, where the least upper bounds are taken over all F1 = . . . = Fn ≡ F ∈ F2+δ

such that |`n(F )− `| 6 θn. So, from (4.9) for all ` > 0 follows the estimate

lim sup
n→∞

sup
F∈F2+δ : |`n−`|6θn

∆n(F ) 6 C(δ) · `+
`1/δ

2
√

2π
+ C ′δ(`) · `2,

where

C ′δ(`) = `(1−δ)/δ2(δ−1)/2π−1γδΓ
(3 + δ

2

)(
1 +

(3 + δ)`2/δ

72

)

+ inf
t3(δ)6t0<t1(δ)

(
1.0253

23/2+δκδγδΓ(5/2 + δ)

π (1− 2κδ(2πt0)δ)
5/2+δ

+
`2(1−δ)/δ

4π2
sup

0<ε6`
J

(
2π

ε1/δ
, t0

))
.

For the calculation of the least upper bound of J(2πε−1/δ, t0) over 0 < ε 6 ` see
remark 4.5. Note that for each 0 < δ 6 1 the function C ′δ(`) increases monotonically
varying within the limits

C ′δ(0) ≡ lim
`→0

C ′δ(`) < C ′δ(`) < lim
`→∞

C ′δ(`) = +∞, 0 < δ 6 1, ` > 0,

C ′δ(0) =





1.0253·23/2+δκδγδΓ(5/2+δ)

π(1−2κδ(2πt3(δ))δ)5/2+δ
= 1.0253·23/2+δκδγδΓ(5/2+δ)

π
(

1− 4
(2+δ)2

exp
{
− δ(4+δ)

2(2+δ)

})5/2+δ , 0 < δ < 1,

C ′1−(0) + 1
6π = 1.0253·5κ1

2
√

2π(1−4/9e−5/6)7/2
+ 1

6π = 0.2679 . . . , δ = 1.

The values of C ′δ(0) and C ′δ(`) for some ` and 0 < δ 6 1 are given in table 8.
To obtain estimates with constants C̃δ, Ĉδ, C ′δ at remainders bounded for all

`n > 0, note that if `n > ` for some ` > 0, then by virtue of (4.3) for any

A > κ− C(δ) · `− `1/δ

2
√

2π

the trivial estimate

C(δ) · `n+
1

2
√

2π

(
`n+

1

B2+δ
n

n∑

j=1

βδ,j σ
2
j

)1/δ

+A > C(δ) · `+
`1/δ

2
√

2π
+A > κ > ∆n,

holds so that the quantities C̃δ(`n)`
4/(2+δ)
n and C̃1(`n)`

5/3
n in (4.8) for `n > ` can

be respectively replaced by min
{
C̃δ(`n)`

4/(2+δ)
n , κ− C(δ) · `− (2

√
2π)−1`1/δ

}
and

min
{
C̃1(`n)`

5/3
n , κ− 2/(3

√
2π)`

}
for any ` ∈ (0, `(δ)). Note that

κ− C(δ) · `− `1/δ

2
√

2π
6 κ− `1/δ

2
√

2π
6 0 for ` > (2

√
2πκ)δ.
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Define ˜̀(δ) as the unique root of the equation

C̃δ(`) · `4/(2+δ) = κ− C(δ) · `− `1/δ

2
√

2π
, 0 < δ < 1,

C̃1(`) · `5/3 = κ− 2`

3
√

2π
, δ = 1,

on the interval 0 < ` < `(δ) ∧ (2
√

2πκ)δ = `(δ) (recall that, by definition, `(δ) <
1 < (2

√
2πκ)δ for all 0 < δ 6 1, since κ = 0.54 . . . > 1/2, see (4.3)). The existence

and uniqueness of ˜̀(δ) follow from that on the interval under consideration the
left-hand side of the equation is a continuous strictly monotonically increasing
function taking all values from 0 to +∞, and the right-hand side is a continuous
strictly monotonically decreasing function taking positive values at small `, that
is, the graphs of these functions have a unique point of intersection on the interval
(0, `(δ)). So, since the function C̃δ increases monotonically in `, for any ` > 0 the
estimate

∆n 6 C(δ) · `n +
1

2
√

2π

(
`n +

1

B2+δ
n

n∑

j=1

βδ,j σ
2
j

)1/δ

+





C̃δ

(
` ∧ ˜̀(δ)

)
· `4/(2+δ)
n , 0 < δ < 1,

C̃1

(
` ∧ ˜̀(1)

)
· `5/3n , δ = 1.

holds for all n > 1 and F1, . . . , Fn ∈ F2+δ such that `n 6 `.
Similar reasoning also can be applied to the functions Ĉδ(`), C ′δ(`) with the

only remark that for C ′δ(`) the root of the corresponding equation lies within the
interval

(
0, (2

√
2πκ)δ

)
which results in the following theorem.

Theorem 4.6. For any 0 < δ 6 1 and ` > 0, for all n > 1 and F1, . . . , Fn ∈ F2+δ

such that `n 6 `, the following estimates hold: in the general case

∆n 6 C(δ) · `n +
1

2
√

2π

(
`n +

1

B2+δ
n

n∑

j=1

βδ,j σ
2
j

)1/δ

+





C̃δ

(
` ∧ ˜̀(δ)

)
· `4/(2+δ)
n , 0 < δ < 1,

C̃1

(
` ∧ ˜̀(1)

)
· `5/3n , δ = 1,

in the case F1 = . . . = Fn

∆n 6 C(δ) · β2+δ

σ2+δnδ/2
+

1

2
√

2πn

(
β2+δ

σ2+δ
+
βδ
σδ

)1/δ

+ Ĉδ

(
` ∧ ̂̀(δ)

)
· `2n,

and also for any ` > 0 and arbitrary infinitesimal sequence of nonnegative numbers
{θn}n>1

lim sup
n→∞

sup
F∈F2+δ : |`n−`|6θn

∆n(F ) 6 C(δ) · `+
`1/δ

2
√

2π
+ C ′δ (` ∧ `′(δ)) · `2,

282 I. Shevtsova



where

C(δ) =
γδ2

δ/2

π
Γ

(
2 + δ

2

)
,

C̃δ(`) =
1

4π
+ `

2−δ(1−δ)
δ(2+δ) J12(`, 2) + inf

{
`δ/(2+δ)J11(`, 2, t0)

+ `
2(2−δ)
δ(2+δ) · 22/δ

4π2
sup

0<ε62`
J
(

2πε−1/δ, t0

)
: t3(δ) 6 t0 6 t1(δ) ∧ t4 (δ, `)

}
,

0 < δ < 1,

C̃1(`) = inf
{
J11(`, 2, t0) + `1/3J12(`, 2)

+ `1/3π−2 sup
0<ε62`

J
(

2πε−1/δ, t0

)
: t3(1) 6 t0 6 t1(1) ∧ t4 (1, `)

}
,

Ĉδ(`) =
1(δ < 1)

4π
+ `(1−δ)/δĴ12(`, 2, `−2/δ)

+ inf
{
`2(1−δ)/δ · 22/δ

4π2
sup

0<ε62`
J
(

2πε−1/δ, t0

)

+ Ĵ11(`−2/δ, 2, t0) : t3(δ) 6 t0 6 t1(δ) ∧ t4
(
δ, `1+2/δ

)}
,

C ′δ(`) = `(1−δ)/δ2(δ−1)/2π−1γδΓ
(3 + δ

2

)(
1 +

(3 + δ)`2/δ

72

)

+ inf
t3(δ)6t0<t1(δ)

(
1.0253

23/2+δκδγδΓ(5/2 + δ)

π (1− 2κδ(2πt0)δ)
5/2+δ

+
`2(1−δ)/δ

4π2
sup

0<ε6`
J

(
2π

ε1/δ
, t0

))
,

˜̀(1) is the unique root of the equation C̃1(`) · `5/3 = κ− 2`/(3
√

2π) on the interval
0 < ` < `(1), ˜̀(δ), ̂̀(δ), `′(δ) are respectively the unique roots of the equations

C̃δ(`) · `4/(2+δ) = κ− C(δ) · `− `1/δ

2
√

2π
, 0 < ` < `(δ), 0 < δ < 1,

Ĉδ(`) · `2 = κ− C(δ) · `− `1/δ

2
√

2π
, 0 < ` <

(
`(δ)

)δ/(2+δ)
, 0 < δ 6 1,

C ′δ(`) · `2 = κ− C(δ) · `− `1/δ

2
√

2π
, 0 < ` < (2

√
2πκ)δ, 0 < δ 6 1,

on the intervals specified above; κ = 0.5409 . . . is defined in (4.3); γδ, κδ, t1(δ),
t3(δ), t4 (δ, `), `(δ), J11(`, ν, t0), Ĵ11(n, ν, t0), J12(`, ν), Ĵ12(`, ν, n), J(T, t0), T > 0,
are defined in lemma 4.3.
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δ = C(δ) 6 Cae(δ) > δ = C(δ) 6 Cae(δ) > δ = C(δ) 6 Cae(δ) >
0+ 0.1693 0.0883 0.35 0.1017 0.0422 0.70 0.0709 0.0253
0.05 0.1561 0.0759 0.40 0.0956 0.0390 0.75 0.0685 0.0237
0.10 0.1444 0.0674 0.45 0.0902 0.0361 0.80 0.0665 0.0223
0.15 0.1339 0.0606 0.50 0.0854 0.0334 0.85 0.0650 0.0210
0.20 0.1245 0.0550 0.55 0.0810 0.0311 0.90 0.0642 0.0198
0.25 0.1161 0.0501 0.60 0.0772 0.0290 0.95 0.0642 0.0187
0.30 0.1085 0.0459 0.65 0.0738 0.0271 1− 0.0665 0.0177

Table 5: The values of C(δ) from theorem 4.6 which bounds
above the asymptotically exact constant Cae(δ) (see theorem 4.12)
rounded up to the fourth decimal digit and the corresponding val-
ues of the lower bound for the lower asymptotically exact con-
stant Cae(δ) (see (4.10)) for some 0 < δ 6 1. By definition,

Cae(δ) 6 Cae(δ) 6 C(δ) for all 0 < δ 6 1.

δ = ˜̀(δ) 6 C̃δ
(˜̀(δ)

) 6 C̃δ(0.1) 6 C̃δ(0.01) 6 C̃δ
(
10−3

) 6 C̃δ
(
10−4

) 6
0.05 0.0218 943.5902 943.5902 492.0103 290.6531 253.8418
0.10 0.0437 208.2037 208.2037 67.6270 43.7421 35.7650
0.15 0.0635 89.9006 89.9006 21.7830 13.7457 10.5124
0.20 0.0812 51.0184 51.0184 9.7720 5.8904 4.2460
0.25 0.0969 33.5946 33.5946 5.2585 3.0192 2.0712
0.30 0.1108 24.2825 20.0463 3.1846 1.7473 1.1531
0.35 0.1230 18.7024 12.7760 2.0993 1.1074 0.7110
0.40 0.1337 15.0778 8.8825 1.4770 0.7546 0.4767
0.45 0.1430 12.5785 6.5814 1.0951 0.5460 0.3431
0.50 0.1511 10.7742 5.1210 0.8479 0.4157 0.2623
0.55 0.1580 9.4240 4.1429 0.6812 0.3306 0.2111
0.60 0.1639 8.3842 3.4602 0.5648 0.2730 0.1773
0.65 0.1688 7.5649 2.9681 0.4814 0.2328 0.1543
0.70 0.1728 6.9071 2.6044 0.4203 0.2040 0.1381
0.75 0.1761 6.3715 2.3308 0.3748 0.1830 0.1266
0.80 0.1786 5.9306 2.1226 0.3405 0.1675 0.1182
0.85 0.1804 5.5650 1.9638 0.3146 0.1559 0.1119
0.90 0.1814 5.2610 1.8442 0.2953 0.1473 0.1073
0.95 0.1818 5.0102 1.7588 0.2816 0.1411 0.1040
1.00 0.2325 5.4527 1.6948 0.6317 0.4856 0.4427

Table 6: The values of ˜̀(δ) and C̃δ(`) from theorem 4.6 for ` = ˜̀(δ),
0.1 ∧ ˜̀(δ), 0.01, 0.001, 0.0001 and some 0 < δ 6 1; the fourth
column contains the values of C̃δ

(
0.1∧ ˜̀(δ)

)
. The optimal values of

t0 coincide with t3(δ) (see table 3).

The values of C(δ), ˜̀(δ), ̂̀(δ), `′(δ), C̃δ
(
`
)
, Ĉδ

(
`
)
, C ′δ(`) rounded above up to

the fourth decimal digit are given in tables 5, 6, 7, 8 for some 0 < δ 6 1 and ` > 0.
The computations were carried out in the Matlab R2011a environment.

Since C(1) = 1/(6
√

2π), from theorem 4.6 for δ = 1 we obtain

Corollary 4.7. For all n > 1 and F1, . . . , Fn ∈ F3

∆n 6 2`n

3
√

2π
+

1

2
√

2πB3
n

n∑

j=1

β1,j σ
2
j + 5.4527 · `5/3n
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δ = ̂̀(δ) 6 t0 = Ĉδ
(̂̀(δ)

) 6 Ĉδ(0.1) 6 Ĉδ(0.01) 6 Ĉδ
(
10−3

) 6 Ĉδ(0+) 6
0.05 0.0468 0.1370 243.6690 243.6690 243.6690 243.6690 243.6690
0.10 0.1050 0.1386 47.7282 47.7282 47.7282 47.7282 47.7282
0.15 0.1662 0.1401 18.7976 18.7973 18.7973 18.7973 18.7973
0.20 0.2283 0.1416 9.8319 9.8249 9.8246 9.8246 9.8246
0.25 0.2897 0.1431 6.0285 5.9929 5.9916 5.9916 5.9916
0.30 0.3407 0.1444 4.2951 4.0322 4.0288 4.0287 4.0287
0.35 0.3652 0.1457 3.6948 2.9060 2.8988 2.8987 2.8987
0.40 0.3795 0.1469 3.3818 2.2057 2.1932 2.1928 2.1928
0.45 0.3889 0.1480 3.1837 1.7448 1.7256 1.7246 1.7245
0.50 0.3950 0.1490 3.0525 1.4292 1.4018 1.3996 1.3994
0.55 0.3987 0.1525 2.9657 1.2069 1.1702 1.1661 1.1654
0.60 0.4005 0.1563 2.9104 1.0480 1.0007 0.9941 0.9923
0.65 0.4007 0.1588 2.8812 0.9338 0.8749 0.8652 0.8614
0.70 0.3996 0.1603 2.8742 0.8526 0.7811 0.7682 0.7608
0.75 0.3973 0.1613 2.8863 0.7968 0.7117 0.6957 0.6826
0.80 0.3940 0.1618 2.9157 0.7614 0.6618 0.6432 0.6216
0.85 0.3898 0.1622 2.9611 0.7435 0.6283 0.6081 0.5744
0.90 0.3847 0.1623 3.0228 0.7417 0.6097 0.5895 0.5389
0.95 0.3787 0.1623 3.1027 0.7571 0.6069 0.5886 0.5148
1.00 0.4180 0.1770 2.4606 0.6023 0.5403 0.5364 0.5360

Table 7: The values of ̂̀(δ) and Ĉδ(`) from theorem 4.6 for ` = ̂̀(δ),
0.1 ∧ ̂̀(δ), 0.01, 0.001 and ` → 0+ for some 0 < δ 6 1. The third
column contains the optimal values of t0 delivering the infimum in
Ĉδ(̂̀(δ)), for other ` the optimal values of t0 coincide with t3(δ) (see

table 3).

δ = `′(δ) 6 t0 = C′δ
(
`′(δ)

) 6 C′δ(0.5) 6 C′δ(0.1) 6 C′δ(0+) 6
0.05 0.0661 0.1370 121.7947 121.7947 121.7947 121.7947
0.10 0.1477 0.1386 23.8244 23.8244 23.8244 23.8244
0.15 0.2334 0.1401 9.3589 9.3589 9.3589 9.3589
0.20 0.3205 0.1416 4.8734 4.8734 4.8726 4.8726
0.25 0.4062 0.1431 2.9613 2.9613 2.9561 2.9561
0.30 0.4863 0.1444 1.9884 1.9884 1.9750 1.9746
0.35 0.5581 0.1457 1.4339 1.4291 1.4106 1.4096
0.40 0.6170 0.1469 1.1095 1.0805 1.0588 1.0566
0.45 0.6577 0.1480 0.9320 0.8508 0.8263 0.8225
0.50 0.6867 0.1490 0.8237 0.6935 0.6660 0.6599
0.55 0.7094 0.1500 0.7485 0.5833 0.5519 0.5429
0.60 0.7283 0.1513 0.6924 0.5051 0.4686 0.4564
0.65 0.7457 0.1621 0.6456 0.4497 0.4068 0.3909
0.70 0.7628 0.1717 0.6040 0.4110 0.3605 0.3406
0.75 0.7794 0.1801 0.5673 0.3847 0.3256 0.3015
0.80 0.7950 0.1874 0.5356 0.3680 0.2997 0.2710
0.85 0.8091 0.1937 0.5087 0.3565 0.2811 0.2474
0.90 0.8209 0.1988 0.4870 0.3492 0.2687 0.2297
0.95 0.8291 0.2026 0.4714 0.3469 0.2628 0.2176
1.00 0.8280 0.2044 0.4679 0.3559 0.2684 0.2680

Table 8: The values of `′(δ) and C′δ(`) from theorem 4.6 for ` =
`′(δ), 0.5 ∧ `′(δ), 0.1 ∧ `′(δ) and ` → 0+ for some 0 < δ 6 1.
The third column contains the optimal values of t0 delivering the
infimum in C′δ(`

′(δ)), for other ` the optimal values of t0 coincide
with t3(δ) (see table 3).

in the general case and

∆n 6 2

3
√

2π
· β3

σ3
√
n

+
1

2
√

2π
· β1

σ
√
n

+ 2.4606 · `2n,
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if F1 = . . . = Fn.

Remark 4.8. Corollary 4.7 improves the inequalities of Prawitz (1.9)

∆n 6 2

3
√

2π
· β3

σ3
√
n− 1

+
1

2
√

2π(n− 1)
+A3 · `2n−1, n > 1, F1 = . . . = Fn ∈ F3,

and Bentkus (1.10)

∆n 6 2`n

3
√

2π
+

1

2
√

2πB3
n

n∑

j=1

σ3
j +A4 · `4/3n

6 7`n

6
√

2π
+A4 · `4/3n , n > 1, F1, . . . , Fn ∈ F3,

first, with respect to the second term, since β1,j 6 σj , j = 1, . . . , n, by the Lya-
pounov inequality, and second, with respect to the remainder, since it gives concrete
values of the constants A3 and A4. And as regards the general case, corollary 4.7
also improves the order of decrease of the remainder to `5/3n as compared with `4/3n

in Bentkus’ inequality.

Remark 4.9. The values of the coefficients 2/(3
√

2π) and
(
2
√

2π
)−1 in the estimates

given in corollary 4.7 are optimal in the sense that whatever the coefficient at the
second term is, the coefficient 2/(3

√
2π) at the first term cannot be made less and

for the given value 2/(3
√

2π) of the coefficient at the first term, the coefficient at
the second term cannot be made less than

(
2
√

2π
)−1. To make this sure it suffices

to consider the estimates of the form

∆n 6 C · β3

σ3
√
n

+K · β1

σ
√
n

+A · `1+θ
n ,

with some constants C, K, A ∈ R and θ > 0 assuming that they hold for all (or
at least for large enough) values of n and all F1 = . . . = Fn ∈ F3, and notice that
by virtue of these estimates

Cae = lim sup
`→0

lim sup
n→∞

sup
F : β3=σ3`

√
n

∆n(F )

`

6 C + lim sup
`→0

lim sup
n→∞

sup
F : β3=σ3`

√
n

K · β1

σ
√
n`

6 C,

since Kβ1/(σ
√
n`) 6 0 for K 6 0, and for K > 0 by virtue of the Lyapounov

inequality

K · β1

σ
√
n`

6 K · 1

`
√
n
→ 0, n→∞,

for any ` > 0. So, with the account of the equality Cae = 2/(3
√

2π) [27] we
conclude that for any K ∈ R

C > Cae =
2

3
√

2π
.
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Now let C = 2/(3
√

2π). Show that in this case K is no less than
(
2
√

2π
)−1.

Indeed, by virtue of (1.4) we have

K > sup
X1∈F3

lim sup
n→∞

3
√

2πn∆n(EX2
1 )3/2 − 2E|X1|3

3
√

2πE|X1|EX2
1

= sup
h>0

sup
X∈Fh3

|EX3|+ 3hEX2 − 4E|X|3
6
√

2πE|X|EX2
.

Now letting P(X = −
√
p/q) = q, P(X =

√
q/p) = p = 1 − q, 0 < p 6 1/2, we

arrive at

EX = 0, EX2 = 1, EX3 =
q − p√
pq
, E|X| = 2

√
pq, E|X|3 =

p2 + q2

√
pq

, h =
1√
pq
,

and hence,

K > sup
0<p<1/2, q=1−p

q − p+ 3− 4(p2 + q2)

12
√

2πpq
=

1

6
√

2π
lim
p→0+

3− 4p

1− p =
1

2
√

2π
.

Remark 4.10. The estimate given in corollary 4.7, for summands with the common
symmetric distribution P(X = ±1) = 1/2 with the moments β1 = σ2 = β3 = 1,
takes the form

∆n 6 7

6
√

2πn
+ 2.4606`2n =

7`n

6
√

2π
+ 2.4606`2n.

On the other hand, for the distribution under consideration it follows from Esseen’s
asymptotic expansion (1.3) (see [9, 10]) that

∆n =
1√
2πn

+ o

(
1√
n

)
=

`n√
2π

+ o (`n) , n→∞,

that is, the “exact” constant at the Lyapounov fraction `n is 7/6 ≈ 1.17 times less
than that given by the “optimal” estimate from corollary 4.7. Actually there is no
paradox, since the obtained estimate is optimal in another sense, but the remark
reveals the fact that to obtain estimates with “exact” coefficients at the Lyapounov
fraction, the information concerning all first three absolute moments is not enough
and it is required to use also the information concerning the original moments, the
only informative of which is the third, since the summands are assumed centered.

Corollary 4.11. For any ` > 0 and arbitrary infinitesimal sequence of nonnegative
numbers {θn}n>1

lim sup
n→∞

sup
F∈F3 : |`n−`|6θn

∆n(F ) 6 2`

3
√

2π
+C ′1 (` ∧ 0.8280) ·`2 6 0.2660 ·`+0.4679 ·`2,
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where C ′1(`) is defined in theorem 4.6. In particular, C ′1(0.1) 6 0.2684, and for all
0 < ` 6 0.1

lim sup
n→∞

sup
F∈F3 : |`n−`|6θn

∆n(F ) 6 2`

3
√

2π
+ 0.2684 · `2 <





0.2929 · `, ` 6 0.1,

0.2687 · `, ` 6 10−2,

0.2663 · `, ` 6 10−3,

0.2660 · `, ` 6 10−4.

Letting `→ 0, from theorem 4.6 one can obtain an upper bound for the asymp-
totically exact constant

Cae(δ) = lim sup
`→0

sup
n>1, F1,...,Fn∈F2+δ : `n=`

∆n(F1, . . . , Fn)/`, 0 < δ 6 1.

Theorem 4.12. For all 0 < δ < 1 the estimate Cae(δ) 6 C(δ) holds with C(δ)
defined in theorem 4.6. In particular,

lim
δ→1−

Cae(δ) 6 1

6
√

2π
< 0.0665, lim

δ→0+
Cae(δ) 6 γ0

π
< 0.1693.

The values of C(δ) for other 0 < δ < 1 are given in table 5.

For the scheme of summation of identically distributed r.v.’s theorem 4.12 was
proved in [11].

The lower bounds for the asymptotically exact constant Cae(δ) for 0 < δ < 1
were obtained in [29] in terms of the so-called lower asymptotically exact constant

Cae(δ) = lim sup
`→0

lim sup
n→∞

sup
F∈F2+δ : `n=`

∆n(F )/`

and have the form

Cae(δ) > Cae(δ) > sup
a>0, b>0

4√
2+b2

exp
{
− a2

2(2+b2)

}
+ a2+b2√

2
− 2
√

2

8M2+δb2+δe−a2/(2b2)
1F1

(
3+δ

2 , 1
2 ,

a2

2b2

) , (4.10)

where Γ(·) is the Euler’s gamma-function, 1F1 is the generalized hypergeometric
function (the degenerate Meijer function), M2+δ is the absolute moment of order
2 + δ of the standard normal law. The values of the lower bound mentioned above,
as well as those of the corresponding upper bound, are given in table 5.

For δ = 1 from theorem 4.6 one can obtain only the estimate

Cae(1) 6 7

6
√

2π
= 0.4654 . . . ,

whereas Chistyakov [7] showed that actually

Cae(1) =

√
10 + 3

6
√

2π
= 0.4097 . . . ,
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that is, the technique used above is too rough for the construction of asymptotically
exact estimates in the classical setting in the case δ = 1, and, as it has been noted
in remark 4.10, the only way of sharpening of this technique is the use of the
information concerning the third original moments. This information can be taken
into account, if to estimate the absolute value of the difference of ch.f.’s in the
integral

I13 =
1

π

n∑

j=1

∞∫

0

1

t

∣∣∣fj(t/Bn)− e−σ2
j t

2/(2B2
n)
∣∣∣ e−t2/2 dt

in lemma 4.3, inequality (2.5) given in lemma 2.8 is used. Taking into consideration
that E|Xj |41(|Xj | 6 U) 6 Uβ3,j , j = 1, . . . , n, for any U > 0 we obtain

I13 6

1

π

n∑

j=1

∞∫

0

(
t2

6B3
n

(∣∣EX3
j 1(|Xj |6U)

∣∣+E|Xj |31(|Xj |>U)
)

+
Uβ3,j t

3

24B4
n

+
σ4
j t

3

8B4
n

)
e−t

2/2dt

=
1

6
√

2πB3
n

n∑

j=1

(∣∣EX3
j 1(|Xj |6U)

∣∣+E|Xj |31(|Xj |>U)
)

+
U`n

12πBn
+

1

4πB4
n

n∑

j=1

σ4
j ,

so that

I13 +
νn`n

2
√

2π
= I13 +

`n

2
√

2π
+

1

2
√

2πB3
n

n∑

j=1

β1,j σ
2
j 6 I14√

2π
+

`n

2
√

2π
,

where

I14 =
1

B3
n

n∑

j=1

(
1

6

∣∣EX3
j 1(|Xj | 6 U)

∣∣+
1

2
E|Xj |EX2

j

)
+

U`n

6
√

2πBn
+

1

2
√

2πB4
n

n∑

j=1

σ4
j

+
1

6B3
n

n∑

j=1

E|Xj |31(|Xj | > U), U > 0.

The quantity I14 will be estimated in two steps.

1. Truncation. Denote Yj = Xj1(|Xj | 6 U), j = 1, . . . , n, U > 0. Then
Xk
j = Y kj + Xk

j 1(|Xj | > U) almost surely, E|Yj |k 6 E|Xj |k, k = 1, 2, 3, and for all
j = 1, . . . , n

E|Xj |EX2
j 6 E|Yj |EY 2

j + E|Yj |EX2
j 1(|Xj | > U) + E|Xj |1(|Xj | > U)EX2

j

6 E|Yj |EY 2
j + U−1

(
E|Yj |3

)1/3
E|Xj |31(|Xj | > U)

+ U−2E|Xj |31(|Xj | > U)
(
E|Xj |3

)2/3 6 E|Yj |EY 2
j + β

4/3
3,j /U + β

5/3
3,j /U

2,

whence with the account of the relation
n∑

j=1

βr3,j 6
( n∑

j=1

β3,j

)r
= (B3

n`n)r, r > 1,
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(see (4.2)) in the general case we obtain

n∑

j=1

E|Xj |EX2
j 6

n∑

j=1

E|Yj |EY 2
j +

B4
n`

4/3
n

U
+
B5
n`

5/3
n

U2
.

And if X1, . . . , Xn are identically distributed, then β3,j = β3 = B3
n`n/n, Bn = σ

√
n

and hence,
n∑

j=1

E|Xj |EX2
j 6

n∑

j=1

E|Yj |EY 2
j +

B4
n`

4/3
n

Un1/3
+
B5
n`

5/3
n

U2n2/3
.

So, by the Lyapounov inequality and (4.2), for I14 we obtain

I14 6 I15 +
Bn`

4/3
n

2U
+
B2
n`

5/3
n

2U2
+

U`n

6
√

2πBn
+

`
4/3
n

2
√

2π
, U > 0,

in the general case and

I14 6 I15 +
Bn`

4/3
n

2Un1/3
+

B2
n`

5/3
n

2U2n2/3
+

U`n

6
√

2πBn
+

1

2
√

2πn
, U > 0,

in the case of identically distributed summands, where

I15 =
1

6B3
n

n∑

j=1

∣∣EY 3
j

∣∣+
1

2B3
n

n∑

j=1

E|Yj |EY 2
j +

1

6B3
n

n∑

j=1

E|Xj |31(|Xj | > U).

Now choose the parameter U for the reason of equality of the orders of the “worst”
terms in the obtained estimates for I14, that is, so that for some free parameter
u > 0 in the general case U`n/Bn = u2Bn`

4/3
n /U , and hence, U = uBn`

1/6
n , and

in the case of identically distributed summands U`n/Bn = u2Bn`
4/3
n /(Un1/3), and

hence, U = uBn(`n/n)1/6, the parameter u being evaluated later. Then we obtain
the estimates: in the general case

I14 6 I15 + `7/6n

(
1

2u
+

u

6
√

2π
+
`
1/6
n

2

(
1

u2
+

1√
2π

))
, u > 0,

and, since
1

n
6 `

4/3
n

n1/3
=
`
7/6
n

n1/6
·
(
`n
n

)1/6

,

in the case of identically distributed summands

I14 6 I15 +
`
7/6
n

n1/6

(
1

2u
+

u

6
√

2π
+

1

2

(`n
n

)1/6
(

1

u2
+

1√
2π

))
, u > 0.

2. Centering. Since EXj = 0 for all 1 6 j 6 n, we have

|EYj | = |EXj1(|Xj | > U)| 6 E|Xj |1(|Xj | > U)
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6 U−2E|Xj |31(|Xj | > U) 6 U−2β3,j , (4.11)

and hence,

|EY 3
j − E(Yj − EYj)

3| = |3DYjEYj + (EYj)
3|

6 3EY 2
j |EYj |+ |EYj |3 6 3β

5/3
3,j /U

2 + β3
3,j/U

6,

whence for U chosen above, with the account of (4.2), we obtain

n∑

j=1

∣∣EY 3
j

∣∣ 6
n∑

j=1

∣∣E(Yj − EYj)
3
∣∣+

3B3
n`

4/3
n

u2
+
B3
n`

2
n

u6
, u > 0,

in the general case and

n∑

j=1

∣∣EY 3
j

∣∣ 6
n∑

j=1

∣∣E(Yj − EYj)
3
∣∣+

3B3
n`

4/3
n

u2n1/3
+
B3
n`

2
n

u6n
, u > 0,

in the case of identically distributed summands. Similarly, for the terms of the
second group in I15 we obtain

E|Yj |EY 2
j = E|Yj |DYj + E|Yj |(EYj)2 6 E|Yj − EYj |DYj + |EYj |DYj + E|Yj |(EYj)2

6 E|Yj − EYj |DYj +
(
U−2(E|Yj |3)2/3 + U−4β3,j(E|Yj |3)1/3

)
E|Xj |31(|Xj | > U)

6 E|Yj − EYj |DYj + β
5/3
3,j /U

2 + β
7/3
3,j /U

4,

so that
n∑

j=1

E|Yj |EY 2
j 6

n∑

j=1

E|Yj − EYj |DYj +
B3
n`

4/3
n

u2
+
B3
n`

5/3
n

u4
, u > 0,

in the general case and

n∑

j=1

E|Yj |EY 2
j 6

n∑

j=1

E|Yj − EYj |DYj +
B3
n`

4/3
n

u2n1/3
+
B3
n`

5/3
n

u4n2/3
, u > 0,

in the case of identically distributed summands. With the parameter U specified
above, denote

I16=
1

6B3
n

n∑

j=1

∣∣E(Yj − EYj)
3
∣∣+ 1

2B3
n

n∑

j=1

E|Yj−EYj |DYj+
1

6B3
n

n∑

j=1

E|Xj |31(|Xj |>U).

Then we have: in the general case

I15 =
1

6B3
n

n∑

j=1

∣∣EY 3
j

∣∣+
1

2B3
n

n∑

j=1

E|Yj |EY 2
j

Moment-type estimates with asymptotically optimal structure. . . 291



6 I16 +
`
4/3
n

u2
+
`
5/3
n

2u4
+

`2n
6u6

= I16 + `7/6n

(
`
1/6
n

u2
+
`
1/2
n

2u4
+
`
5/6
n

6u6

)
, u > 0,

and in the case of identically distributed summands

I15 6 I16 +
`
7/6
n

n1/6

(
1

u2

(`n
n

)1/6

+
1

2u4

(`n
n

)1/2

+
1

6u6

(`n
n

)5/6
)
, u > 0.

The application of the moment inequality of theorem 3.1 to the r.v.’s Yj leads
to the estimate

I16 6 λ

6B3
n

n∑

j=1

E|Yj−EYj |3 +
M(p(λ), λ)

6B3
n

n∑

j=1

(DYj)
3/2 +

1

6B3
n

n∑

j=1

E|Xj |31(|Xj |>U)

=
λ`n
6

+
M(p(λ), λ)

6B3
n

n∑

j=1

σ3
j + I17 − I18, λ > 1,

where

I17 =
λ

6B3
n

n∑

j=1

(E|Yj − EYj |3 − E|Yj |3)− M(p(λ), λ)

6B3
n

n∑

j=1

(
σ3
j − (DYj)

3/2
)
, (4.12)

I18 =
λ− 1

6B3
n

n∑

j=1

E|Xj |31(|Xj | > U), (4.13)

with p(λ) andM(p, λ) defined in theorem 3.1. With the account of (4.11) we obtain

E|Yj − EYj |3 − E|Yj |3 6 3|EYj |EY 2
j + |EYj |2E|Yj |

6
(
3β

2/3
3,j /U

2 + β
4/3
3,j /U

4
)
E|Xj |31(|Xj | > U).

By virtue of the inequality (1− x)α > 1−αx which holds for all 0 6 x 6 1, α > 1,
we have

0 6 σ3
j − (DYj)

3/2 = σ3
j − σ3

j

(
1−

EX2
j 1(|Xj | > U) + (EYj)

2

σ2
j

)3/2

6 3σj
2

(
EX2

j 1(|Xj | > U) + (EYj)
2
)
6 3

2

(
β

1/3
3,j /U + β

4/3
3,j /U

4
)
E|Xj |31(|Xj | > U).

Noting that M(p(λ), λ) > 3 − λ > 1 − λ for all λ > 1 (see (3.2)) and using the
estimates for the difference between the third moments and variances and denoting
bj = β

1/3
3,j /U we obtain

I17 6 λ

6B3
n

n∑

j=1

(
E|Yj − EYj |3 − E|Yj |3

)
+
λ− 1

6B3
n

n∑

j=1

(
σ3
j − (DYj)

3/2
)
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6 1

6B3
n

n∑

j=1

(
λ
(
3b2j + b4j

)
+

3

2
(λ− 1)(bj + b4j )

)
E|Xj |31(|Xj | > U)

=
1

6B3
n

n∑

j=1

(
(λ− 1)

(3

2
bj + 3b2j +

5

2
b4j

)
+ 3b2j + b4j

)
E|Xj |31(|Xj | > U), (4.14)

so that

I17 − I18 6

λ− 1

6B3
n

n∑

j=1

(3

2
bj + 3b2j +

5

2
b4j − 1

)
E|Xj |31(|Xj | > U) +

1

6B3
n

n∑

j=1

(
3β

5/3
3,j

U2
+
β

7/3
3,j

U4

)
.

Let b0 = 0.36701 . . . be the unique root of the equation 1 − 3
2b − 3b2 − 5

2b
4 = 0,

b > 0. Then we can guarantee that the first term in the estimate for I17 − I18 is
non-positive if bj ≡ β

1/3
3,j /U 6 b0, i.e. if U > β

1/3
3,j /b0 for all j = 1, . . . , n. In the

i.i.d. case, the condition U > β
1/3
3,j /b0 is equivalent to u > (`n/n)1/6/b0 and may

be strengthened to u > `
1/2
n /b0, since n > 1/`2n, while in the general case it follows

from the condition u > `
1/6
n /b0, since β

1/3
3,j 6 Bn`

1/3
n . Thus, we finally arrive at the

estimate

I17 6 `
4/3
n

2u2
+
`
5/3
n

6u4
= `7/6n

(
`
1/6
n

2u2
+
`
1/2
n

6u4

)
, u > `1/6n /b0 = 2.7246 . . . `1/6n ,

in the general case, and

I17 6 `
4/3
n

2u2n1/3
+

`
5/3
n

6u4n2/3
=
`
7/6
n

n1/6

(
1

2u2

(`n
n

)1/6

+
1

6u4

(`n
n

)1/2

, u > 1

b0

(`n
n

)1/6

,

in the i.i.d. case.
Gathering the estimates for I14, I15, I16, and I17, in the general case for all

u > `
1/6
n /b0 we obtain

I14 6 λ`n
6

+
1

6
M(p(λ), λ)τn+`7/6n

(
1

2u
+

u

6
√

2π
+
`
1/6
n

2

(
4

u2
+

1√
2π

)
+

2`
1/2
n

3u4
+
`
5/6
n

6u6

)
,

where

τn =
1

B3
n

n∑

j=1

σ3
j .

For ` > 0 denote

J13(`) =
1√
2π

inf

{
1

2u
+

u

6
√

2π
+
`1/6

2

(
4

u2
+

1√
2π

)
+

2`1/2

3u4
+
`5/6

6u6
: u > `1/6/b0

}
.
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It is obvious that the function J13(`) monotonically and infinitely increases in ` > 0
and

lim
`→0

J13(`) =
1√
2π

(
1

2u
+

u

6
√

2π

)∣∣∣∣
u=
√

3
√

2π

=

√
3

3(2π)3/4
= 0.1454 . . . .

So, with the account of what has been said for arbitrary λ > 1 we obtain

I14 6 λ`n
6

+
1

6
M(p(λ), λ)τn +





`
7/6
n ·
√

2πJ13(`n), in the general case,

`
7/6
n n−1/6 ·

√
2πJ13(`n/n), in the i.i.d. case,

and, since n > 1/`2n,

I13+
νn`n

2
√

2π
6 I14√

2π
+

`n

2
√

2π
6 c`n+K(c)τn+

{
`
7/6
n · J13(`n), in the general case,
`
3/2
n · J13(`3n), in the i.i.d. case,

where

c =
λ+ 3

6
√

2π
> 2

3
√

2π
= 0.2659 . . . , K(c) =

M(p(λ), λ)

6
√

2π

∣∣∣∣
λ=6
√

2πc−3

.

So, from lemma 4.3 with the account of the estimates for I13 + νn`n/(2
√

2π) es-
tablished above we finally obtain

∆n 6 c`n +K(c)τn +R(`n), (4.15)

where R(`) = C̃(`) · `7/6 in the general case and R(`) = Ĉ(`) · `3/2 in the i.i.d. case,

C̃(`) = J13(`)+`5/6J12(`, 2)+ min
t36t06t1∧t4

{
`1/2J11(`, 2, t0)+`5/6π−2 max

T>π/`
J(T, t0)

}
,

Ĉ(`) =

J13

(
`3
)

+ `1/2
(
Ĵ12(`, 2, `−2/δ)+ min

t36t06t1∧t4

{
Ĵ11

(
`−2, 2, t0

)
+π−2 max

T>π/`
J(T, t0)

})
,

t3 = t3(1) = 0.3566 . . . , t1 = t1(1) = 0.6359 . . . , t4 = t4(1, `) = (1− `2/3)/(4πκ1).
Moreover, the functions C̃(`), Ĉ(`) monotonically and infinitely increase on the
intervals 0 < ` < ` and 0 < ` < (` )1/3 correspondingly, where ` = `(1) =(
1− 4/9e−5/6

)3/2
= 0.7247 . . . .

Let us note that in (4.15) the “constants” C̃(`) and Ĉ(`) in the remainder R(`n)
do not depend on the choice of the coefficient c at the main term `n. But this
“universality” contains a lack: the rate of decrease of the remainder R(`n) is too
low than it could be for c > 2/(3

√
2π) if the remainder could depend on c. Indeed,

in the final estimate for I17 we bounded (1 − λ)E|Xj |31(|Xj | > U) above by zero
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(recall that c = (λ + 3)/(6
√

2π)). The price for this operation is extremely high
for λ > 1 (i.e. for c > 2/(3

√
2π)), since the cubic tail E|Xj |31(|Xj | > U) due to

the truncation determines the rate of decrease of the remainder R(`n) in the final
estimate (4.15), instead of being added to the main term and accurately estimated
in a sum with (1 − λ)E|Xj |31(|Xj | > U). So, if this cubic tail is “transferred” to
the main term, the remainder becomes better. Let us accomplish this transfer.

Estimating the integral I13 in the same way as above, for all U > 0 we obtain

I13 +
νn`n

2
√

2π
6 U`n

12πBn
+

1

4πB4
n

n∑

j=1

σ4
j +

`n

2
√

2π
+

I ′14√
2π
,

where

I ′14 =
1

B3
n

n∑

j=1

(
1

6

∣∣EX3
j 1(|Xj | 6 U)

∣∣+
1

2
E|Xj |EX2

j +
1

6
E|Xj |31(|Xj | > U)

)
.

Truncating the moments E|Xj | and EX2
j in the same way as in the integral I14 we

obtain (recall that Yj = Xj1(|Xj | 6 U))

E|Xj |EX2
j 6 E|Yj |EY 2

j +
(
β

1/3
3,j /U + β

2/3
3,j /U

2
)
E|Xj |31(|Xj | > U), j = 1, . . . , n,

while the centering with the account of (4.11) leads to the estimates

E|Yj |EY 2
j 6 E|Yj − EYj |DYj +

(
β

2/3
3,j /U

2 + β
4/3
3,j /U

4
)
E|Xj |31(|Xj | > U),

|EY 3
j | 6 |E(Yj−EYj)

3|+
(

3β
2/3
3,j /U

2 + β2
3,j/U

6
)
E|Xj |31(|Xj | > U), j = 1, . . . , n.

Summarizing the above estimates we obtain

I ′14 6 1

B3
n

n∑

j=1

(
1

6

∣∣E(Yj − EYj)
3
∣∣+

1

2
E|Yj − EYj |DYj

)
+ I19,

where

I19 =
1

6B3
n

n∑

j=1

(
1 + 3bj + 9b2j + 3b4j + b6j

)
E|Xj |31(|Xj | > U), bj = β

1/3
3,j /U.

Applying the moment inequality from theorem 3.1 to the r.v.’s Yj we obtain

I ′14 6 λ

6B3
n

n∑

j=1

E|Yj − EYj |3 +
M(p(λ), λ)

6B3
n

n∑

j=1

(DYj)
3/2 + I19

=
λ`n
6

+
M(p(λ), λ)

6B3
n

n∑

j=1

σ3
j + I17 −

λ

λ− 1
I18 + I19,
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with I17, I18 defined in (4.12), (4.13) correspondingly. By virtue of the esti-
mate (4.14) we have

I17 −
λ

λ− 1
I18 + I19 6 1

6B3
n

n∑

j=1

E|Xj |31(|Xj | > U)×

×
(

(1− λ)
(

1− 3

2
bj − 3b2j −

5

2
b4j

)
+ 3bj + 12b2j + 4b4j + b6j

)
.

As it was noticed above, 1− 3
2b−3b2− 5

2b
4 > 0 for 0 6 b < b0, where b0 = 0.36701 . . .

is the unique root of the equation 1 − 3
2b − 3b2 − 5

2b
4 = 0, b > 0. Introduce the

function

g(b) =
3b+ 12b2 + 4b4 + b6

1− 3b/2− 3b2 − 5b4/2
, 0 6 b < b0.

Evidently, g(b) increases monotonically varying within the limits

0 = lim
b→0

g(b) 6 g(b) < lim
b→b0

g(b) = +∞, 0 6 b < b0,

and therefore for each λ > 1 there exists a unique root of the equation g(1/u) = λ−1
in the interval u > 1/b0 = 2.7246 . . . . For c = (λ + 3)/(6

√
2π) > 2/(3

√
2π) let uc

be the unique root of the equation g(1/u) = 6
√

2πc− 4, u > 1/b0. It can easily be
made sure that uc decreases monotonically varying within the limits

2.7246 . . . = 1/b0 = lim
c→∞

uc 6 uc 6 lim
c→2/(3

√
2π)

uc = +∞, c > 2/(3
√

2π).

If bj ≡ β1/3
3,j /U 6 u−1

c , i.e. U > ucβ
1/3
3,j , for all j = 1, . . . , n, then I17− λ

λ−1I18+I19 6
0, and thus we obtain the estimate

I13 +
νn`n

2
√

2π
6 c`n +K(c)τn +R,

with c and K(c) defined above, provided that U > ucβ
1/3
3,j for all j = 1, . . . , n,

where

R =
1

4πB4
n

n∑

j=1

σ4
j +

U`n
12πBn

6





`n
12π

(
3`1/3n + U/Bn

)
, in the general case,

`n
12π

(
3
(`n
n

)1/3

+
U

Bn

)
, in the i.i.d. case,

Now choose the parameter U so that the orders of both terms in the above estimate
for R coincide, i.e. let

U =

{
uBn`

1/3
n , in the general case,

uBn(`n/n)1/3, in the i.i.d. case,

u > uc being a free parameter. Then the condition U > ucβ
1/3
3,j is satisfied for all

j = 1, . . . , n, since in the general case β1/3
3,j /U 6 Bn`

1/3
n /U = u−1 6 u−1

c , as well as
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in the i.i.d. case β1/3
3,j /U = Bn(`n/n)1/3/U = u−1 6 u−1

c for all j = 1, . . . , n. So,
we have

I13 +
νn`n

2
√

2π
6 c`n +K(c)τn +





`4/3n (3 + u)/(12π), in the general case,

`4/3n n−1/3(3 + u)/(12π), in the i.i.d. case,

for arbitrary u > uc. Evidently the value u = uc minimizes the right-hand side of
the obtained estimate. Gathering the estimates from lemma 4.3 and theorem 4.6
we finally obtain

∆n 6 c`n +K(c)τn +R(`n, c),

with

R(`, c) =





(
3+uc
12π + C̃1(`)`1/3

)
`4/3, in the general case,

(3+uc)`
4/3

12πn1/3 + Ĉ1(`)`2 6
(

3+uc
12π + Ĉ1(`)

)
`2, in the i.i.d. case,

C̃1(`), Ĉ1(`) defined in theorem 4.6.

As it follows from remark 3.2,

inf
c>2/(3

√
2π)

(c+K(c)) = lim
λ→∞

λ+ 3 +M(p(λ), λ)

6
√

2π
=

1√
2π
,

and also K(c) > 0 if and only if λ <
√

10, that is, c < (
√

10 + 3)/(6
√

2π) =
0.4097 . . . , whence it follows that for all c such that 2/(3

√
2π) 6 c 6 1/

√
2π =

0.3989 . . . the estimates K(c) > 0 and

c`n +K(c)τn > c`n > 2`n

3
√

2π
,

hold and for c > 1/
√

2π

c`n +K(c)τn =
`n√
2π

+

(
c− 1√

2π

)
`n +K(c)τn

> `n√
2π

+

(
c+K(c)− 1√

2π

)
τn > `n√

2π
> 2`n

3
√

2π
,

since `n > τn by the Lyapounov inequality. So,

inf
c>2/(3

√
2π)

(c`n +K(c)τn) > 2`n

3
√

2π
.

For the purpose of lowering the right bound of the interval of the values of `
under consideration and thus bound the range of the constants C̃(`), Ĉ(`) above,
note that if `n > ` for some ` > 0, then by virtue of (4.3) for any

A > κ− 2`

3
√

2π
,
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where κ = 0.5409 . . . (see (4.3)), the trivial estimate

inf
c>2/(3

√
2π)

(c`n +K(c)τn) +A > 2`

3
√

2π
+A > κ > ∆n,

holds so that by virtue of the monotonicity of R(`), in (4.15) for `n > ` the quantity
R(`n) can be replaced by

min

{
R(`), κ− 2`

3
√

2π

}
= R(`R ∧ `),

where `R is the unique root of the equation

R(`) = κ− 2`

3
√

2π

on the interval (0, ` ) in the general case and on the interval
(
0, (`)1/3

)
in the case

of identically distributed summands. The existence of `R and its uniqueness follow
from that on the interval under consideration the left-hand side of the equation is
a continuous function which increases strictly monotonically and takes all values
from 0 to +∞, and the right-hand side is a continuous function which decreases
strictly monotonically and takes positive values at small `, that is, the graphs of
these functions intersect in a single point. The same reasoning concerns R(`n, c)
and is summarized in the following two theorems.

Theorem 4.13. For any ` > 0, for all n > 1 and F1, . . . , Fn ∈ F3 such that `n 6 `
there hold the estimates:

∆n 6 inf
c>2/(3

√
2π)

{
c`n +

K(c)

B3
n

n∑

j=1

σ3
j

}
+ C̃

(˜̀∧ `
)
`7/6n , (4.16)

in the general case and

∆n 6 inf
c>2/(3

√
2π)

{
c`n +

K(c)√
n

}
+ Ĉ

(̂̀∧ `
)
`3/2n , (4.17)

in the case of identically distributed summands, where

K(c) =
M(p(λ), λ)

6
√

2π

∣∣∣∣
λ=6
√

2πc−3

,

M(p, λ) =
1− λ+ 2(λ+ 2)p− 2(λ+ 3)p2

√
p(1− p)

, 0 < p 6 1

2
, λ > 1,

p(λ) =
1

2
−
√
λ+ 1

λ+ 3
sin

(
π

6
− 1

3
arctan

√
λ2 + 2

λ− 1

λ+ 3

)
, λ > 1;

C̃(`)=J13(`)+`5/6J12(`, 2)+ min
t36t06t1∧t4(`)

{
`1/2J11(`, 2, t0)+`5/6π−2 max

T>π/`
J(T, t0)

}
;

298 I. Shevtsova



Ĉ(`) =

J13

(
`3
)
+`1/2

(
Ĵ12(`, 2, `−2)+ min

t36t06t1∧t4(` 3)

{
Ĵ11

(
`−2, 2, t0

)
+π−2 max

T>π/`
J(T, t0)

})
;

˜̀= 0.226547 . . . , ̂̀= 0.402361 . . . are respectively the unique roots of the equations

C̃(`) · `7/6 = κ− 2`

3
√

2π
, 0 < ` < ` =

(
1− 4/9e−5/6

)3/2

= 0.7247 . . . ,

Ĉ(`) · `3/2 = κ− 2`

3
√

2π
, 0 < ` < (` )1/3 =

√
1− 4/9e−5/6 = 0.8982 . . . ,

on the intervals specified above; κ = 0.5409 . . . is defined in (4.3);

J13(`) =
1√
2π

inf

{
1

2u
+

u

6
√

2π
+
`1/6

2

(
4

u2
+

1√
2π

)
+

2`1/2

3u4
+
`5/6

6u6
: u > u0`

1/6

}
,

t3 =
e−5/6

9πκ1
= 0.1550 . . . , t1 =

θ0(1)

2π
= 0.6359 . . . , t4(`) =

1− `2/3
4πκ1

,

u0 = 2.7246 . . . is the unique root of the equation 1 − 3/2u−1 − 3u−2 − 5/2u−4 =

0, u > 0; J11(`, ν, t0), J12(`, ν), Ĵ11(n, ν, t0), Ĵ12(`, ν, n), J(T, t0), θ0(1), κ1 =
0.0991 . . . are defined in lemma 4.3. In particular,

C̃(0.226548) 6 2.7176 (with t0 = t3 = 0.1550 . . . , u = 4.3173 . . .),

Ĉ(0.402362) 6 1.7002 (with t0 = 0.1802 . . . , u = 4.1157 . . .),

C̃(0+) = Ĉ(0+) =

√
3

3(2π)3/4
= 0.1454 . . . (with t0 = t3, u =

√
3
√

2π = 2.7422 . . .).

The values of Ĉ(`), C̃(`) for other ` are given in table 9, the functions C̃(`), Ĉ(`)
being monotonically increasing.

` 0.1 0.01 10−3 10−4 10−7 10−20

ũ(`) = 4.1825 3.8521 3.5852 3.3724 2.9823 2.7440
û(`) = 3.5852 3.0782 2.8609 2.7813 2.7435 2.7422
C̃(`) 6 0.7802 0.2792 0.2110 0.1854 0.1577 0.1456
Ĉ(`) 6 0.3861 0.2169 0.1682 0.1527 0.1458 0.1455

Table 9: The values of C̃(`), Ĉ(`) from theorem 4.13 for some `
together with the optimal values of u from J13 which are denoted
by ũ(`) for C̃(`) and û(`) for Ĉ(`). The optimal values of t0 coincide

with t3 = 0.1550 . . . in both cases.
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Theorem 4.14. For any ` > 0, for all n > 1 and F1, . . . , Fn ∈ F3 such that `n 6 `
there hold the estimates:

∆n 6 inf
c>2/(3

√
2π)

{
c`n +

K(c)

B3
n

n∑

j=1

σ3
j + Ãc

(
` ∧ ˜̀c

)
`4/3n

}
, (4.18)

in the general case and

∆n 6 inf
c>2/(3

√
2π)

{
c`n +

K(c)√
n

+ Âc
(
` ∧ ̂̀c

)
`2n

}
, (4.19)

in the case of identically distributed summands, where K(c) is defined in theo-
rem 4.13;

Ãc(`) =
3 + uc
12π

+ C̃1(`) · `1/3, Âc(`) =
3 + uc
12π

+ Ĉ1(`),

C̃1(`), Ĉ1(`) are defined in theorem 4.6, uc is the unique root of the equation

3u−1 + 12u−2 + 4u−4 + u−6

1− 3/2u−1 − 3u−2 − 5/2u−4
= 6
√

2πc− 4, c >
2

3
√

2π
,

in the interval u > u∞ with u∞ = 2.7246 . . . being the unique root of the equation
1− 3/2u−1 − 3u−2 − 5/2u−4 = 0, u > 0; ˜̀c, ̂̀c are respectively the unique roots of
the equations

Ãc
(
`
)
· `4/3 = κ− 2`

3
√

2π
, 0 < ` < ` =

(
1− 4/9e−5/6

)3/2

= 0.7247 . . . ,

Âc
(
`
)
· `2 = κ− 2`

3
√

2π
, 0 < ` < (` )1/3 =

√
1− 4/9e−5/6 = 0.8982 . . . ,

on the intervals specified above; κ = 0.5409 . . . is defined in (4.3). The functions
Ãc
(
`
)
, Âc

(
`
)
increase monotonically in ` > 0 and decrease monotonically in c,

moreover
lim

c→2/(3
√

2π)
inf
`>0

Ãc(`) = lim
c→2/(3

√
2π)

inf
`>0

Âc(`) = +∞.

lim
c→∞

Ãc(`)− C̃1(`) · `1/3 = lim
c→∞

Âc(`)− Ĉ1(`) =
3 + u∞

12π
= 0.1518 . . . , ` > 0,

lim
`→0

Ãc(`) =
3 + uc
12π

,

lim
`→0

Âc(`)−
3 + uc
12π

= Ĉ1(0) =
1.0253 · 5κ1√

2π(1− 4/9e−5/6)7/2
+

1

3π
= 0.5359 . . . .

The values of Ãc
(
`
)
, Âc

(
`
)
for some ` and c are given in table 10.
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c 0.27 0.28 0.29 0.30
√

10+3
6
√

2π
∞

K(c) 0.1521 0.1402 0.1287 0.1174 0.0000 −∞
uc 54.5687 18.8812 12.6629 10.0115 4.7345 2.7247
˜̀
c 0.2048 0.2220 0.2250 0.2263 0.2288 0.2298

Ãc(˜̀c) 4.0313 3.5851 3.5160 3.4872 3.4314 3.4106
Ãc(0.01) 1.6632 0.7165 0.5516 0.4813 0.3413 0.2880
Ãc(10−3) 1.5757 0.6290 0.4641 0.3937 0.2538 0.2005
Ãc(0+) 1.5271 0.5805 0.4155 0.3452 0.2052 0.1519
̂̀
c 0.3596 0.3942 0.4008 0.4036 0.4094 0.4116

Âc(̂̀c) 3.4449 2.8068 2.7046 2.6619 2.5786 2.5475
Âc(0.07) 2.1042 1.1576 0.9927 0.9223 0.7823 0.7290
Âc(0.05) 2.0902 1.1435 0.9786 0.9083 0.7683 0.7150
Âc(0.03) 2.0780 1.1314 0.9664 0.8961 0.7561 0.7028
Âc(0.01) 2.0674 1.1207 0.9558 0.8855 0.7455 0.6922
Âc(0+) 2.0631 1.1164 0.9515 0.8811 0.7412 0.6878

Table 10: Upper bounds of K(c), uc, ˜̀c, Ãc(`), ̂̀c, Âc(`) from
Theorem 4.14 for some ` and c.

Remark 4.15. Taking into account the properties of the functions M(p(λ), λ) and
λ+M(p(λ), λ), λ > 1 described in remark 3.2 it can be made sure that the functions
K(c) and c+K(c) decrease monotonically for all c > 2/(3

√
2π) varying within the

limits

−∞ = lim
c→∞

K(c) < K(c) 6 K

(
2

3
√

2π

)
=

√
2
√

3− 3

6π
= 0.1569 . . . ,

0.3989 . . . =
1√
2π

= lim
c→∞

(c+K(c)) < c+K(c) 6 2

3
√

2π
+

√
2
√

3− 3

6π
= 0.4228 . . . ,

moreover the function K(c) changes its sign at the unique point c = (
√

10 +
3)/(6

√
2π) = 0.4097 . . . .

Remark 4.16. As it was shown in [27, 29], the least possible value of the coefficient
c at `n in estimates (4.16), (4.17) cannot be made less than Cae = 2/(3

√
2π).

Furthermore, the estimates obtained in theorem 4.13 for each c > Cae are optimal
in the sense that the value of the coefficient K(c) cannot be made less. Indeed,
even in the case of identically distributed summands, for all c > Cae, obviously,
K(c) can be estimated as

K(c) > sup
X1∈F3

lim sup
n→∞

√
n∆n(EX2

1 )3/2 − cE|X1|3

(EX2
1 )

3/2
.
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On the other hand, with the account of (1.4) we obtain

K(c) > sup
h>0

sup
X∈Fh3

|EX3|+ 3hEX2 − 6
√

2πcE|X|3

6
√

2π (EX2)
3/2

, c > Cae.

Now letting P(X = −
√
p/q) = q, P(X =

√
q/p) = p = 1 − q, 0 < p 6 1/2, we

arrive at

EX = 0, EX2 = 1, EX3 =
q − p√
pq
, E|X|3 =

p2 + q2

√
pq

, h =
1√
pq
,

and hence, for all c > Cae

K(c) > 1

6
√

2π
sup

{
q − p+ 3− 6

√
2πc(p2 + q2)√
pq

: 0 < p 6 1/2, q = 1− p
}

=
M(p(λ), λ)

6
√

2π

∣∣∣∣
λ=6
√

2πc−3

by virtue of representation (3.1), which coincides with the definition of K(c) (see
theorem 4.13).

From theorems 4.13 and 4.14 with concrete c we can obtain some corollaries.
For example, with c = Cae = 2/(3

√
2π) we have K(c) =

√
(2
√

3− 3)/(6π), and
hence, theorem 4.13 implies

Corollary 4.17. For all n > 1 and F1, . . . , Fn ∈ F3 there hold the estimates

∆n 6 2`n

3
√

2π
+

√
2
√

3− 3

6π

n∑

j=1

σ3
j /B

3
n + 2.7176 · `7/6n

in the general case and

∆n 6 2`n

3
√

2π
+

√
2
√

3− 3

6πn
+ 1.7002 · `3/2n

in the case F1 = . . . = Fn, moreover, in each of the estimates the constant√
(2
√

3− 3)/(6π) = 0.1569 . . . at the second term cannot be made less under the
condition that the coefficient at the first term is fixed and equals 2/(3

√
2π).

Corollary 4.17 sharpens the inequalities of Prawitz (1.9) and Bentkus (1.10)
with respect to the second term by virtue of the smaller value of the constant

√
(2
√

3− 3)/(6π) = 0.1569 . . .

as compared to
(
2
√

2π
)−1

= 0.1994 . . . in (1.9), (1.10), but the “expense” of using
the unimprovable constant at the second term is a worse order of decrease of the
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remainder, namely, O
(
`
3/2
n

)
and O

(
`
7/6
n

)
as compared with O

(
`2n
)
in (1.9) and

O
(
`
4/3
n

)
in (1.10) respectively. However, here we specify concrete values of the

constants.
With c = Cae = (

√
10 + 3)/(6

√
2π) we have K(c) = 0, and hence, theorem 4.14

implies

Corollary 4.18. For all n > 1 and F1, . . . , Fn ∈ F3 there hold the estimates

∆n 6 Cae · `n + 3.4314 · `4/3n , for any `n,

∆n 6 Cae · `n + 0.3413 · `4/3n < 0.4833 · `n, `n 6 0.01,

∆n 6 Cae · `n + 0.2538 · `4/3n < 0.4352 · `n, `n 6 10−3,

∆n 6 Cae · `n + 0.2053 · `4/3n < 0.4098 · `n, `n 6 10−11,

in the general case, and

∆n 6 Cae · `n + 2.5786 · `2n, for any `n,

∆n 6 Cae · `n + 0.7683 · `2n < 0.4482 · `n, `n 6 0.05,

∆n 6 Cae · `n + 0.7455 · `2n < 0.4172 · `n, `n 6 0.01,

∆n 6 Cae · `n + 0.7412 · `2n < 0.4098 · `n, `n 6 10−5,

in the case F1 = . . . = Fn, where

Cae =

√
10 + 3

6
√

2π
= 0.4097 . . . .

This corollary improves Chistyakov’s inequality (1.11)

∆n 6
√

10 + 3

6
√

2π
· `n +A5 · `40/39

n | ln `n|7/6,

with respect to the remainder: the order is improved, the value of the constant
is explicitly specified. Moreover, comparing the leading term of Chistyakov’s esti-
mate (1.11)

ψ1(F1, . . . , Fn) =

√
10 + 3

6
√

2πB3
n

n∑

j=1

β3, j

with those in theorems 4.13 and 4.14

ψ2(F1, . . . , Fn) = inf
c>2/(3

√
2π)

(
c

B3
n

n∑

j=1

β3, j +
K(c)

B3
n

n∑

j=1

σ3
j

)
,

we notice that their values coincide if and only if
n∑

j=1

β3,j

/ n∑

j=1

σ3
j =

√
20(
√

10− 3)/3 = 1.0401 . . . ,
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whereas in all the rest of the cases the strict inequality ψ1 > ψ2 holds, that is,
the estimates in theorems 4.13 and 4.14 are more accurate. The optimal values
of c delivering the infimum in ψ2 can be found in the fifth column of table 2 for
some values of the ratio `n/τn =

∑n
j=1 β3,j/

∑n
j=1 σ

3
j , which is specified in the first

column named β3.
If the value of the Lyapounov fraction `n = B−3

n

∑n
j=1 β3,j coincides with that

of B−3
n

∑n
j=1 σ

3
j (it is easy to see that this can be if and only if β3,j = σ3

j for all
j = 1, . . . , n, that is, when the random summands have symmetric Bernoulli dis-
tributions P(Xj = σj) = P(Xj = −σj) = 1/2), then, as it follows from remark 3.2,
the greatest lower bound in the estimates of theorem 4.14 is delivered as c → ∞.
So, one more corollary is valid.

Corollary 4.19. For any n > 1 and F1, . . . , Fn ∈ F3 such that β3,j = σ3
j for all

j = 1, . . . , n, the estimate

∆n 6 `n√
2π

+ 3.4106 · `4/3n

holds. If F1 = . . . = Fn ∈ F3 and E|X1|3 = (EX2
1 )3/2, then for all n > 1

∆n 6 1√
2πn

+
2.5475

n
=

`n√
2π

+ 2.5475 · `2n.

Corollary 4.19 completely agrees with the results of V.Bentkus [2, 3], G. P.Chis-
tyakov [6, 7] and Ch.Hipp and L.Mattner [14] obtained for symmetric distributions.
For the case of symmetric summands, in papers [2, 3] the estimate

∆n 6 `n√
2π

+A6 · `4/3n , (4.20)

was announced with the same rate of decrease of the remainder, but unknown
constant A6. In [7], Chistyakov proved an analog of (4.20) with a slightly heavier
remainder of the order O

(
`
40/39
n | ln `n|7/6

)
. Corollary 4.19 improves these results of

Bentkus and Chistyakov for symmetric Bernoulli distributions. The unimprovabil-
ity of the constant 1/

√
2π at the Lyapounov fraction in estimates of type (4.20) for

symmetric distributions was proved in 1945 by C.-G. Esseen [9] (see also [12]).
Ch.Hipp and L.Mattner in [14] considered the case where the random sum-

mands have identical symmetric Bernoulli distribution and established that

∆n =





Φ

(
1√
n

)
− 1

2
, n odd,

n!

2n+1
(
(n/2)!

)2 , n even,

whence it follows that ∆n < 1/
√

2πn for all n > 1. Unlike [14], corollary 4.19 gives
computable estimate with the asymptotically exact constant 1/

√
2π not only for
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identically distributed summands, but for the case of arbitrary symmetric Bernoulli
distributions as well.

However, it should be noted that for the symmetric case, actually, by the meth-
ods originally adjusted for that case, one can considerably improve all the results
obtained above. These improvements will be published elsewhere.

In conclusion the author expresses her sincere gratitude to V.Yu.Korolev for
fruitful discussions and permanent attention to the work and to G.P.Chistyakov
for useful discussions.
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Abstract

In the access part of communication networks user access rates are usually
limited by technology and are much lower than the bottleneck link transmis-
sion capacity carrying the traffic flows aggregated. A possible model for band-
width sharing of the bottleneck link is the Discriminatory Processor Sharing
(DPS) models, in which the server capacity (link bandwidth) is distributed
among different classes of users in an unequal manner. Recently, some DPS
variants incorporating the access rate limits of users have been analyzed.
These models are not bandwidth sparing in a sense, that the capacity share
of a class may simply be cut at its access rate limit, and the incidentally resid-
ual bandwidth is not reused in other classes. In this paper we introduce and
analyze a novel variant of DPS in which the original processor sharing effect
and the access rate limit constraints are combined in a bandwidth economical
way resulting a truly capacity-conserving operation. Besides the state space
characterization of this model, two asymptotic behaviors are also presented.
We also argue in the favor of practical significance of these asymptotics, that
is it could greatly help in finding high quality approximate solutions of this
DPS system, i.e.q in terms of the average waiting times of flows.

1. Introduction

The original discriminatory processor sharing (DPS) model has been presented
and analyzed first in [7] and [11] for modeling purposes of time-sharing computer
operation. In this model there are K number of classes of users, and the state of
the system can be attributed by ni denoting the number of class-i (i = 1, . . . ,K)
users in the C capacity processor sharing system. There is also a set of weights
φi, i = 1, . . . ,K which can be used to control the sharing of the processor capacity
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among the classes of customers. More formally the (instantaneous) service rate of
a class−i customer is

ci =
φi∑K

j=1 φjnj
C. (1.1)

In [6] Fayolle et al. proved the results for DPS with respect to the steady-
state average response times. In [12] Rege and Sengupta showed how to obtain
the moments of the queue length distributions as the solutions to linear equations
in case of exponential service time requirements, and they also presented a heavy-
traffic limit theorem for the joint queue length distribution. These results were
extended to phase type distributions by van Kessel et al. [14]. A further remarkable
milestone in DPS analysis is [1] in which the authors showed that the mean queue
lengths of all classes are finite under reasonable stability conditions, regardless of
the higher moments of the service requirements.

Introducing capacity limits for the customers is mainly motivated by involving
access rate limitations of users (e.g. in DSL-type access systems) into the modeling
framework. In [10] Lindberger analyzed the M/G/R-PS system, which is a single-
class processor sharing model with access rate limit b on the users (R := C/p is
the “number of servers” in this system). Several improvements of this model were
studied for dimensioning purposes of IP access networks, e.g. in [13] and [5] still
remaining at the single-class models.

In case of multi-class discriminative processor sharing with limited access rates
the question of bandwidth re-distribution is an important issue, which was not
addressed in the literature. This means that if users in a class can not fully utilize
their service capacity share (bandwidth share) due to their access rate limit, the
problem is how this unused bandwidth is re-distributed among the other classes. In
one of the extreme cases, there is no re-distribution at all meaning that the possible
remaining unused bandwidth due to rate limits is wasted. One can also interpret
this as the server capacity may not be fully utilized, even in those cases when there
is “enough” customers in the system. This approach is followed for example in the
papers [8], [2].

In this paper we present and analyze the capacity conserving case of access rate
limited discriminatory processor sharing, in which all the unused bandwidth left
by rate limited customers are fully utilized by the other (non-limited) customers.
This is referred to as bandwidth economical discriminatory processor sharing with
access rate limitations. We characterize the state space of this model, with identi-
fying those traffic classes which are compressed (whose users are not able to utilize
its access rates) and those which are not compressed (which can receive service
with their access rates) and with feasible computations for their respective service
rates. Two asymptotic regimes of this bandwidth economical DPS are shown and
their equivalence is proven. We present that the asymptotic equilibrium point of
the bandwidth efficient system is always in the non-compressed region and can sim-
ply be formulated (for every class of users), as opposed to the more complicated
asymptotic equilibrium of the previously analyzed model [2].

The significance of the fluid limits lies in the following. There is still no solution
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in the literature for the multi-class access rate limited DPS system (in case Poisson
arrivals and exponential service time requirements the equilibrium of the under-
lying Markov chain, consequently, the expected response times are not known).
Therefore, achieving high quality approximations of system parameters have an
utmost importance, e.g. from viewpoint of dimensioning tasks of communication
channels for elastic flows in aggregation part of access networks or of processing
capacity in highly loaded computer systems like data centers [3]. One “extreme”
type of access rate limited multi-class DPS is the limitless case (no compression
imposed on the classes), for which Fayolle et al. have already given the solution [6]
in terms of the steady-state average response times (by integro-differential equa-
tions), and also showed that in the special case of exponential distribution of the
service time requirements, the steady-state average response times of classes can
be obtained by solving a system of linear equations. The fluid limit is the other
extreme case of this DPS system in the sense that some of (or all) classes are “in-
finitely” compressed (due to infinitely speed up the system), whilst the scaled down
performance parameters remain (tend to) finite values. Operational systems to be
modeled or dimensioned based on DPS models stand between these two extremes,
surprisingly sometimes very close to the fluid limit.

2. DPS extended by the limits of service
rates

In DPS for every pair of classes i, j the ratio of the service rates allocated to class-i
and class-j users is equal to the ratio of the class weights (see formula (1.1)), that
is

ci
cj

=
φi
φj
, ∀i, j ∈ 1, . . . ,K. (2.1)

The total amount of capacity (in a non-empty system) used by the users of classes
is evidently C, i.e.

K∑

i=1

nici = C. (2.2)

Regarding the incorporation of access rate (customer service capacity share)
limits into the DPS model, in [8] and [2] a very simple approach is followed. Namely,
first computing the bandwidth shares of class-i users according to (1.1) and then
cutting at the access rate limits pi, i.e.

ci = min

(
φi∑K

j=1 φjnj
C, pi

)
. (2.3)

The benefit of this bandwidth share calculation is its simplicity. Nevertheless the
price for simplicity is that this approach is not a bandwidth saving one, because
it may happen that the total amount of capacity used by the customers is smaller
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then the server capacity (the server capacity is not completely shared among the
users), i.e.

K∑

i=1

nici < C (2.4)

even in those cases when there are “enough” users in the system, that is

K∑

i=1

nipi > C. (2.5)

In this paper we follow the other “extreme” approach, in which all the unused
parts of capacity shares due to access rate limits are redistributed among users
which are not imposed by these limits on. Because redistribution and sharing
the whole capacity C is possible when

∑K
i=1 nipi > C, hereafter we assume the

system is in this regime. Otherwise, when
∑K
i=1 nipi ≤ C, the bandwidth shares

are trivially ci = pi. In what follows we define our bandwidth economical DPS.

Definition 2.1. The bandwidth economical DPS is such a discriminatory processor
sharing system in which the bandwidth shares ci of the users of K classes at a given
state n = {n1, . . . , nK} are determined by the following equations:

ci = min

{
pi,

φi
φj
cj

}
∀i, j ∈ {1, . . . ,K}, cj < pj (2.6)

and
K∑

i=1

nici = C (2.7)

where pi is the service rate limit of class−i users, 0 < pi ≤ C.

For the next lemma without loss of generality let us assume that

φK
pK
≤ φi
pi
,∀i = 1, . . . ,K. (2.8)

Lemma 2.2. For class−K users cK < pK always holds.

Proof. The proof is based on contradiction. Assume that cK = pK . Due to (2.6)
and the assumption (2.8) above it follows that

ci = min

{
pi,

φi
φK

cK

}
= pi, ∀i = 1, . . . ,K. (2.9)

But in this case
∑K
i=1 nici =

∑K
i=1 nipi > C which contradicts to equation (2.7).

In the next corollary we show the following statement:
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Corollary 2.3. There is a unique solution of equations (2.6) and (2.7) with respect
to ci, i = 1, . . . ,K.

Proof. Because of Lemma 2.2 and (2.7) and the monotone increasing property of
min{pi, φi

φK
x} w.r.t. x, a class−K user bandwidth share is a unique solution of the

equation
K∑

i=1

ni min

{
pi,

φi
φK

x

}
= C (2.10)

with respect to x. Therefore, every other bandwidth share is also unique and can
be calculated by using cK and the equality

ci = min{pi,
φi
φK

cK}.

Let a numerical example be presented for this calculation. Let C = 100 [Mbit/s]
and five classes (with index 1 to 5 in sequence) are set up with the following
paramaters: n = (8, 15, 20, 10, 30) , p = (2, 2, 1.5, 2, 10) [Mbit/s], φ = (10, 9, 5, 4, 1).
The following table shows the φi/pi ratios, the access rate limits pi, the bandwidth
shares in case of original DPS (without access rate limit), of DPS with access rate
limit with simple cutting at the limits using formula (2.3), and the new bandwidth
economical DPS according to equations (2.6) and (2.7).

class index 1 2 3 4 5
φi/pi 5 4.5 3.33 2 1
pi 2 2 1.5 2 10

orig. DPS 2.5974 2.3377 1.2987 1.0389 0.2597
equ (2.3) 2 2 1.2987 1.0389 0.2597

bw eco. DPS 2 2 1.5 1.3714 0.343

Table 1: Example of bandwidth shares of different DPS systems

The fifth line of the table clearly shows that in case of simple cutting DPS
(using equation (2.3), or simple comparing the third and fourth lines of the table),
the class-1 and class-2 users can utilize their access rates (they are uncompressed),
while classes 3, 4 and 5 are compressed (they can not reach their access rates). It
can also be observed that

∑5
i=1 nici = 90.16 Mbit/s, that is from the total capacity

100 Mbit/s almost ten percent is wasted.
On the contrary, the last row presenting the bandwidth share of the new DPS

system shows, that not only class-1 and class-2 can achieve their access rate limits,
but also class-3 became uncompressed, thanks to the redistribution1 of the unused

1The term ‘redistribution’ is used because it can be shown that the following process results
exactly the same solution: start with the original DPS bandwidth share, cut at the access rate
limits, and redistribute the residual banwidths among the still compressed classes, which may
result some classes become uncompressed. Repeat this until the bandwidth shares no longer
change.
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bandwidth left by class-1 and class-2 customers. Furthermore, class-4 and class-5
bandwidth shares are also higher than in the previous case, because they can also
gain from bandwidth reuse. In this case, of course

∑5
i=1 nici = 100 Mbit/s, hence

this is attributed as bandwidth economical.
Although the computational approach above is straightforward, it is worth ex-

ploring further the structure of the system. For this, let us assume again without
restriction that

φ1
p1
≥ φ2
p2
≥ . . . ≥ φK

pK
. (2.11)

Lemma 2.4. If
∑K
i=1 nipi > C there exists an i∗, 1 ≤ i∗ ≤ K − 1 such that

i∗−1∑

k=1

nkpk +

K∑

k=i∗

nkφk
pi∗

φi∗
≤ C and (2.12)

i∗∑

k=1

nkpk +

K∑

k=i∗+1

nkφk
pi∗+1

φi∗+1
> C . (2.13)

Proof. Note that the function

f(i) =

i−1∑

k=1

nkpk +

K∑

k=i

nkφk
pi
φi

is increasing w.r.t. i due to (2.11) and exceeds C for some i∗ + 1 ≤ K, otherwise
f(K) =

∑K
i=1 nipi ≤ C would hold which is not true.

As an important consequence of this lemma it is also worth noting that

{1, . . . , i} ⊂ U(n) iff
i−1∑

k=1

nkpk +

K∑

k=i

nkφk
pi
φi
≤ C (2.14)

where U(n) := {1, . . . , i∗} is the set of uncompressed classes in the state n.
Now the main theorem of this section is the following:

Theorem 2.5. The unique solution of (2.6) and (2.7) can be expressed through i∗
in the following way:

ck = pk, if k ≤ i∗ and (2.15)

ck =
φk∑K

i=i∗+1 φini


C −

i∗∑

j=1

njpj


 , if i∗ < k. (2.16)

Proof. The validity of (2.7) can easily be checked. Next we show that (2.6) is
fulfilled by ck, cl for which k, l ∈ Z(n) := {1, . . . ,K} \ U(n) . In this case due to
(2.13) and (2.11) ck < pk and cl < pl. Moreover ck/pk = cl/pl holds, therefore
(2.6) is satisfied, that is ck = min{pk, φk

φl
cl}.
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Now assume that l ∈ U(n) and k ∈ Z(n). In this case ck < pk, therefore

φl
φk
ck =

φl∑K
i=i∗+1 φini


C −

i∗∑

j=1

njpj


 (2.17)

which is not less than pl due to (2.12) and (2.11). Hence,

cl = min{pl,
φl
φk
ck} = pl

that is (2.6) is again fulfilled.

3. Asymptotic behaviors of the bandwidth econom-
ical DPS

In this section we first show that the so-called fluid limit of the processor sharing
model investigated in this paper exists. Then we find the equilibrium of the fluid
limit. The stability of this equilibrium has been also proved, however, not presented
in this paper. Assume that the service times are exponentially distributed and the
arrival processes follow Poisson processes. Then in this case the number of jobs (of
customers) in the system can be modeled by a Markov chain. The equilibrium of
the Markov chain, consequently, the expected response times are not known. Fluid
scaling is a possible asymptotic regime in which one may expect computing the
equilibrium at least for the limiting structure. In fluid limit the arrival processes
are accelerated by a common factor and the capacity of the server is speed up by the
same factor. If the accelerating factor goes to infinity then in limit one gets the fluid
limit of the number of waiting jobs. The limiting process of the number of waiting
jobs is deterministic, it is a solution of a differential equation. The equilibrium of
this differential equation can be found using analytical considerations. We remark
that the fluid limit of many processor sharing model, as well as the one investigated
in this paper, can be determined by using classical results presented in e.g. [4,
Chapter 11].

For finding the fluid limit of our model first the transition rates are to be
determined q(n, n+ l) from state n to n + l. Let ek be a vector such that in ej
1 stands at coordinate j and except this coordinate each coordinate is 0. For any
j = 1, . . . ,K

q(n, n+ ej) = λj

q(n, n− ej) = µjnjpj if j ∈ U(n)

q(n, n− ej) = µjnjφj
C −∑i∈U(n) pini∑

i∈Z(n) φini
if j ∈ Z(n)

q(n, n+ l) = 0 if l 6= ±ek
for some k = 1, . . . ,K.

(3.1)
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Let cj(n) denote the bandwidth that a stream of class j obtains. We have

cj(n) = pjI{j ∈ U(n)}+ φj
C −∑i∈U(n) pini∑

i∈Z(n) φini
I{j ∈ Z(n)}. (3.2)

We remark that using (2.14), cj(n) can be given as an explicit function of n as
follows:

cj(n) = pjI





j−1∑

k=1

nkpk +
K∑

k=j

nkφk
pj
φj
≤ C





+ φj
C −∑i∈U(n) pini∑

i∈Z(n) φini
I





j−1∑

k=1

nkpk +
K∑

k=j

nkφk
pj
φj

> C



 . (3.3)

Of course, this definition makes sense for n ∈ RK+ .
Let Πa

j (t), t ≥ 0 and Πd
j (t), t ≥ 0 for j = 1, . . . ,K be 2K independent Poisson

processes with rate 1. Let Nj(t) be the number of flows from class j in the system
at time t. Then by the rates in (3.1) we have

Nj(t) = Nj(0) + Πa
j

(
λjt
)
−Πd

j




t∫

0

µjNj(s)cj (N(s)) ds


 . (3.4)

Let λLj = λjL, j = 1, . . . ,K, CL = CL. Let NL
j (t) be the number of flows

from class j in the system at time t if the arrival intensities to the classes are
λL1 , . . . , λ

L
K respectively and the capacity is CL. Simply rewriting the equation

(3.4) for NL(t), t ≥ 0 and dividing by L we get

NL
j (t)

L
=
NL
j (0)

L
+

1

L
Πa
j

(
Lλjt

)

− 1

L
Πd
j


L

t∫

0

µj
NL
j (s)

L
cj

(
NL(s)

L

)
ds


 j = 1, . . . ,K.

For the ease of notations we rewrite this equation. Introducing nLj (t) =
NL

j (t)

L j =
1, . . . ,K we have

nLj (t) = nLj (0) +
1

L
Πa
j

(
λjLt

)

− 1

L
Πd
j


L

t∫

0

µjn
L
j (s)cj

(
nL(s)

)
ds


 j = 1, . . . ,K (3.5)
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The theory presented in [4, Ch 6.4 and Ch 11.2] can be applied to the process
nL(t), t ≥ 0 for obtaining convergence to n(t), t ≥ 0 the solution of the system of
equations

nj(t) = nj(0) + λjt−
t∫

0

µjnj(s)cj (n(s)) ds, j = 1, . . . ,K (3.6)

as it is stated in the following theorem.

Theorem 3.1. Assume that limL→∞ nLj (0) = n(0) ∈ [0,∞) for any j = 1, . . . ,K.
Then for every t ≥ 0,

lim
L→∞

sup
s≤t

∣∣nL(s)− n(s)
∣∣ = 0 a.s. (3.7)

Proof. We will apply Theorem 2.1 of [4, p 456]. We have to check three conditions.
First, for any compact set B ⊂ [0,∞)K the following bound holds

sup
n∈B

njcj(n) <∞ j = 1, . . . ,K, (3.8)

second, there exist MB such that for any j = 1, . . . ,K

|njcj(n)−mjcj(m)| ≤MB |n−m| n,m ∈ B. (3.9)

Third,
lim
L→∞

nLj (0) = n(0) ∈ [0,∞) j = 1, . . . ,K. (3.10)

Using (3.3) Simple calculations show that (3.8) and (3.9) hold. The condition (3.10)
is the same as the assumption of Theorem 3.1. Therefore, the convergence (3.7)
holds.

The main results of this section is the following.

Theorem 3.2. If the function n(t), t ≥ 0 satisfies the equations (3.6) then in the
stationary state n∗j , j = 1, . . . ,K each class is uncompressed and the the following
holds:

n∗j =
λj
µjpj

j = 1, . . . ,K.

Proof. For finding the stationary state n∗ of the fluid limit differentiate nj(t),
j = 1, . . . ,K with respect to t and find the solution of the system n′j(t) = 0,
j = 1, . . . ,K. Using (3.6) and (3.2) one gets

0 = n′j(t) = λj − µjnj(t)

·
(
pjI{j ∈ U(n(t))}+ φj

C −∑i∈U(n) pini(t)∑
i∈Z(n) φini(t)

I{j ∈ Z(n(t))}
)
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This means that in the stable state we have

λj = µjpjn
∗
j if j ∈ U(n∗),

λj = µjn
∗
j

φj∑
i∈Z φin

∗
i

(
C −

∑

i∈U
pin
∗
i

)
if j ∈ Z(n∗).

If there is at least one compressed class, that is, Z(n∗) 6= ∅ then we have for
j ∈ Z(n∗)

λj = µjn
∗
j

φj∑
i∈Z(n∗) φin

∗
i


C −

∑

i∈U(n∗)
pin
∗
i




= µjn
∗
j

φj∑
i∈Z(n∗) φin

∗
i


C −

∑

i∈U(n∗)

λi
µi




= µjn
∗
j

φj∑
i∈Z(n∗) φin

∗
i


C −

∑

i∈U(n∗)
C%i




since the definition %i = λi

µiC
. Dividing by µjC and using %j =

λj

µjC
one gets

%j =
φjn

∗
j∑

i∈Z(n∗) φin
∗
i


1−

∑

i∈U(n∗)
%i


 ,

rearranging the terms on the right we have

%j
1−∑i∈U(n∗) %i

=
φjn

∗
j∑

i∈Z(n∗) φin
∗
i

,

then summing both sides over j ∈ Z(n∗) one has
∑
j∈Z(n∗) %j

1−∑i∈U(n∗) %i
= 1,

this is equivalent to
∑K
j=1 %j = 1 which is contradiction. Consequently, Z(n∗) = ∅

and for any j = 1, . . . ,K n∗j =
λj

µjpj
.

It can also be shown that the equilibrium n∗ is stable, nevertheless, due to
the lack of space it is not performed here. It has been elaborated following the
argumentation in [2, pp 48–49] and also using [9, Lemma 3].

Here we note that in this bandwidth economical DPS the fluid limit lies com-
pletely in the uncompressed region (every classes in the limit are uncompressed),
and the closed form expression of the fluid limit of a class depends only on the class
parameters (λj , µj , pj), and is quite simple.
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On the contrary, in case of the previously analyzed DPS [2] (based on equation
(2.3)) the fluid limit has no closed form solution, an algorithm is needed to deter-
mine the compressed and uncompressed classes and the corresponding limits in the
asymptotics. Furthermore, the limit of a class may depend on the parameters of
other classes (see Proposition 1.3. in [2]).

4. Fluid limit as the number of servers goes to infin-
ity

In the concept of fluid limit the intensity of the arrival processes and the capacity
of the server increase in the same pace by a multiplier L. Consequently, the number
of packets under service increases and the number of served packets in unit time
increases as well. The first property can be rephrased as the number of servers ( Cpj )
increases. It is natural to ask whether one can take an asymptotic regime in which
the number of servers increases but the intensities of the arrivals and the capacity
are fixed. If so, then what can be said about the limit process. A possible way
of considering such an asymptotic is that we decrease the access rates by L and
take pLj = pj/L. This is not enough to obtain fluid scaling like set up because the
number of served packets per unit time does not increase. One can get over this
problem and obtain limit of similar kind as the fluid limit if the time of the system
is accelerated too. This regime will be described in this section.

Let us fix C and λj and decrease the access rate limits pj , such that pLj =
pj
L ,

j = 1, . . . ,K for L > 0. Let ML
j (t) be the number of flows from class j in the

system at time t if the access rate limits are pLj . It can be proved that the rescaled
and time accelerated process has fluid limit.

Theorem 4.1. Assume that limL→∞
ML

j (Lt)

L = m(0) ∈ [0,∞) for any j = 1, . . . ,K.
For the processes ML

j (t), j = 1, . . . ,K defined above we have the following fluid
limit

lim
L→∞

sup
s≤t

∣∣∣∣∣
ML
j (Lt)

L
− n(s)

∣∣∣∣∣ = 0 a.s. (4.1)

where n(s) is the solution of the differential equation (3.6). Consequently,

lim
t→∞

lim
L→∞

ML
j (Lt)

L
= n∗j j = 1, . . . ,K, (4.2)

where n∗j is defined in Theorem 3.2.

Proof. We will prove that the process ML(Lt)
L , t ≥ 0 satisfies equation (3.5). Con-

sequently, Theorem 3.1 can be applied for ML(Lt)
L , t ≥ 0 yielding the same conver-

gence (4.1). Then one can conclude that Theorem 3.2 holds for the limit process
(4.2) without any further modification.
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Proving the process ML(Lt)
L , t ≥ 0 satisfies equation (3.5), we first rewrite the

equation (3.4) for ML(t), t ≥ 0. We have

ML
j (t) = ML

j (0) + Πa
j

(
λjt
)
−Πd

j




t∫

0

µjM
L
j (s)cL∗j

(
ML(s)

)
ds


 ,

where for any m ∈ [0,∞)K we define

cL∗j (m) = pjI





j∑

k=1

mk
pk
L

+

K∑

k=j+1

mkφk
pj
φjL

≤ C





+ µjφj
C −∑i∈U(m) pimi∑

i∈Z(m) φini
I





j∑

k=1

mk
pk
L

+

K∑

k=j+1

mkφk
pjL

φj
>C



 .

As previously we devide by L and for having fluid limit we speed up the time by
L:

ML
j (Lt)

L
=
ML
j (0)

L
+

1

L
Πa
j

(
λjLt

)

− 1

L
Πd
j




Lt∫

0

µjM
L
j (s)cL∗j

(
ML(s)

)
ds


 .

Using the fact that
∫ Lt
0
f(s) ds =

∫ t
0
Lf(Ls) ds we have

ML
j (Lt)

L
=
ML
j (0)

L
+

1

L
Πa
j

(
λjLt

)

− 1

L
Πd
j


L

t∫

0

µjM
L
j (Ls)cL∗j

(
ML(Ls)

) 1

L
ds


 . (4.3)

From the definition of cL∗j and cj it follows that

cL∗j
(
ML
j (Lt)

)
=

1

L
cj

(
ML
j (Lt)

L

)
.

This equation and (4.3) implies that

ML
j (Lt)

L
=
ML
j (0)

L
+

1

L
Πa
j

(
λjLt

)

− 1

L
Πd
j




t∫

0

µjM
L
j (Ls)cj

(
ML(Ls)

M

)
ds


 . (4.4)

320 B. Székely, A. Kőrösi, P. Vámos, J. Bíró



Introducing mL
j (t) =

ML
j (Lt)

L , (4.4) can be written as

mL
j (t) = mL

j (0) +
1

L
Πa
j

(
λjLt

)
− 1

L
Πd
j


L

t∫

0

µjm
L
j (s)cj

(
mL(s)

)
ds


 .

which is the same as equation (3.5) and for the processes mL
j (t), t ≥ 0 we have fluid

limit.

4.1. The one-dimensional case
Let us consider the M/G/1-PS system as a special one-dimensional case of the
multiclass Processor Sharing. The average number of customers in the sationary
state of the system is EN = ρ

1−ρ where ρ = λ
µC . It can easily be shown (also

based on the previous discussion) that M/G/1-PS has a stable fluid limit, which
is n∗ = limL→∞ ENL

L = ρ where NL is the average number of customers in the L
times speed up M/G/1-PS system (λL = Lλ,CL = LC). Similarly to the multiclass
case above, here it is also true that the very same fluid limit results if the number
of servers goes to infinity (with C and λ fixed), that is L := C

p tends to infinity
(with p tending to zero) where p is the access rate limit. This observation is very
important, because for every finite L the system is equivalent to the M/G/L-PS
(in the literature often referred to as M/G/R-PS [10]) system whose solution is
known. It means that in this single class case not only the two ‘extreme’ systems
(the access rate limitless M/G/1-PS case when L = 1 and the fluid limit when
L =∞) can be characterized, but every system between them can be solved, thus
the convergence to the limit can fully be described. Based on the formula for the
average number of customers presented in [10] for M/G/L-PS, one can obtain

ENL

L
= ρ

(
1 +

E2(L,Lρ)

L(1− ρ)

)
(4.5)

where E2 is Erlang’s second formula. It can easily be checked that the formula
above gives ρ

1−ρ for L = 1, and ρ for L =∞. Of course, the M/G/R-PS itself has
also fluid limit, which is Rρ = λ

µC/R = λ
µp (see the similarities to the multiclass

case in Theorem 3.2) and the convergence to the fluid limit can be characterized
by using similar formula as in (4.5).

We strongly believe that this well characterizable convergence to the fluid limit
of single class DPS can be utilized for solving the bandwidth economical multiclass
access rate limited DPS, because the solution of the original model [6], and the
fluid limit of the access rate limited multiclass DPS presented in this paper are
already in our hands.
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5. Conclusion

In this paper we have analyzed a bandwidth economical discriminatory processor
sharing system with access rate limitations, as a possible and realistic model for
bandwidth sharing of (elastic) network traffic flows subject to flow control and
access rate limits. We have characterized the state-space and determined the unique
state-dependent bandwidth shares of such a capacity conserving system, in which
the unused capacity of users due to the effect of their access rate limits is fully
re-distributed among other users. We have also presented two asymptotic regimes
of the system which may help in the further research to obtain computationally
tractable methods for evaluating the performance.
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Abstract

A new method is proposed in this paper to construct models for solutions
of boundary-value problems for hyperbolic equations with random initial con-
ditions. We assume that the initial conditions are strictly sub-Gaussian ran-
dom fields (in particular, Gaussian random fields with zero mean). The mod-
els approximate solutions with a given accuracy and reliability in the uniform
metric.
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1. Introduction

We construct a model that approximates a solution of the boundary-value problem
(2.1)–(2.3) for the hyperbolic equation with random initial conditions. The model
is convenient to use when developing a software for computers. It approximates a
solution with a given reliability and accuracy in the uniform metric.

We consider a strictly sub-Gaussian random field to model initial conditions
in problem (2.1)–(2.3). Note that Gaussian fields are particular cases of strictly
sub-Gaussian random fields.

It is known that a solution of the boundary-value problem can be represented,
under certain conditions in the form of an infinite series, namely

u(x, y, t) =
∞∑

n=1

∞∑

m=1

Vnm(x, y)
[
anm cos

√
λnmt+ bnm sin

√
λnmt

]
,
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where Vnm(x, y) are known functions and anm and bnm are random variables whose
joint distributions are known.

One can consider the following model for a solution of the boundary-value
problem:

u(x, y, t,N) =
N∑

n=1

N∑

m=1

Vnm(x, y)
[
anm cos

√
λnmt+ bnm sin

√
λnmt

]
,

One can find the values of N for which u(x, y, t, N) approximates the field
u(x; y, t) with a given reliability and accuracy.

The main disadvantage of this method is that the random variables anm and bnm
are independent only for very special initial conditions. Therefore it is practically
impossible to apply this method for large N .

A new method is proposed in this paper to construct a model for a solution
of the boundary problem (2.1)–(2.3). The idea of the method is, first, to model
the initial conditions with a given accuracy and, second, to compute approximate
values ãnm and b̃nm of the coefficients anm and bnm, respectively, by using the
model for the initial conditions. The finite sum

ũ(x, y, t) =
∞∑

n=1

∞∑

m=1

Vnm(x, y)
[
ãnm cos

√
λnmt+ b̃nm sin

√
λnmt

]
,

is considered as a model for the solution. We find values of N and an accuracy of the
approximation of anm and bnm by ãnm and b̃nm for which this model approximates
the solution of the boundary-value problem with a given reliability and accuracy
in the uniform metric.

Note the paper consists of five section. The main result, Theorem 2.2 is stated
in Section 2. The proof of the theorem is given in Section 3, and some examples
are considered in Section 4. The model of a solution of a hyperbolic type equation
with random initial conditions was investigated in the paper [7].

Note that all the results of the paper hold for the case where the initial con-
ditions are zero mean Gaussian random fields. Some methods to model Gaussian
and sub-Gaussian random processes and random fields can be found in the articles
[4], [5] and the book [3].

2. Main result

Consider the problem of vibrations of a rectangular membrane [8] 0 < x < p,
0 < y < q:

uxx + uyy = utt, (2.1)

u|t=0 = ξ(x, y),
∂u

∂t
|t=0 = η(x, y), (2.2)

u|s = 0, (2.3)
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where u is the deviation of the membrane from its equilibrium position, which
coincides with the plane x, y, S is boundary of a rectangle 0 < x < p, 0 < y < q.

Let the initial conditions {ξ(x, y), x ∈ [0, p], y ∈ [0, q]}, {η(x, y), x ∈ [0, p], y ∈
[0, q]} be an independent strictly sub-Gaussian stochastic processes (see [1]).

When solving problems similar (2.1)–(2.3) by Fourier’s method, regardless of
whether initial conditions are random or nonrandom, we look for a solution of the
form

u(x, y, t) =
∞∑

n=1

∞∑

m=1

Vnm(x, y)
[
anm cos

√
λnmt+ bnm sin

√
λnmt

]
, (2.4)

where

anm =

p∫

0

q∫

0

ξ(x, y)Vnm(x, y)dxdy,

bnm =
1√
λnm

p∫

0

q∫

0

η(x, y)Vnm(x, y)dxdy,

λnm and Vnm(x, y) are eigenvalues and eigenfunctions of the Sturm-Liouville prob-
lem [8]:

Vxx + Vyy + λV = 0,

V |s = 0.

where λnm and Vnm(x, y) have the following forms

λnm = π2

(
n2

p2
+
m2

q2

)
,

Vnm(x, y) =
2√
pq

sin
nπ

p
x sin

mπ

q
y, (2.5)

where n,m = 1, 2, . . .
In the papers by [6] (see also [2]) the theorems are formulated according to the

conditions of which series (2.4) is the solution of problem (2.1)–(2.3).
Let’s construct a model for a solution of problem (2.1)–(2.3) approximating the

solution with a given reliability and accuracy in the uniform metric.
Let {ξ̂(x, y), x ∈ [0, p], y ∈ [0, q]} and {η̂(x, y), x ∈ [0, p], y ∈ [0, q]} be mod-

els of processes {ξ(x, y), x ∈ [0, p], y ∈ [0, q]} and {η(x, y), x ∈ [0, p], y ∈ [0, q]},
respectively. Note that the models ξ̂(x, y) and η̂(x, y) are independent stochastic
processes.

Put

ânm =

p∫

0

q∫

0

ξ̂(x, y)Vnm(x, y)dxdy,
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b̂nm =
1√
λnm

p∫

0

q∫

0

η̂(x, y)Vnm(x, y)dxdy.

The sum

uN (x, y, t) =

N∑

n=1

N∑

m=1

Vnm(x, y)
[
ânm cos

√
λnmt+ b̂nm sin

√
λnmt

]
(2.6)

is called a model of the process u(x, y, t).

Definition 2.1. Let a solution u(x, y, t) of problem (2.1)–(2.3) be represented in
the form of series (2.4). We say that a model uN (x, y, t) approximates u(x, y, t)
with a given reliability 1− γ and accuracy δ in the uniform metric in the domain
D = [0, p]× [0, q]× [0, T ] if

P

{
sup

(x,y,t)∈D
|uN (x, y, t)− u(x, y, t)| > δ

}
≤ γ.

Put

∆N (x, y, t,N) = u(x, y, t)− uN (x, y, t) = uN (x, y, t) + VN (x, y, t),

where

uN (x, y, t) =
∞∑

n=N+1

∞∑

m=N+1

Vnm(x, y)
[
anm cos

√
λnmt+ bnm sin

√
λnmt

]
,

VN (x, y, t) =
N∑

n=1

N∑

m=1

Vnm(x, y)
[
(ânm − anm) cos

√
λnmt+ (̂bnm − bnm) sin

√
λnmt

]
.

Below is the main result of the paper.

Theorem 2.2. Let {ξ(x, y), x ∈ [0, p], y ∈ [0, q]} and {η(x, y), x ∈ [0, p], y ∈ [0, q]}
be independent SSub(Ω) processes. Let the models {ξ̂(x, y), x ∈ [0, p], y ∈ [0, q]}
and {η̂(x, y), x ∈ [0, p], y ∈ [0, q]} be such that

1√
pq

p∫

0

q∫

0

√
E
(
ξ̂(x, y)− ξ(x, y)

)2
dxdy ≤ Λ,

1√
pq

p∫

0

q∫

0

√
E (η̂(x, y)− η(x, y))

2
dxdy ≤ Λ.

Then the stochastic process uN (x, y, t) defined by (2.6), is a model of the stochastic
process u(x, y, t) that approximates it with reliability 1 − γ and accuracy δ in the
uniform metric in the domain D = [0, p]× [0, q]× [0, T ] if γ and N a such that

(
T 1/2 + p1/2 + q1/2

)
A2
N ε

2
0(N) < δ,
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1

2



δ1/3

(
δ2/3 − 3

(
T 1/2 + p1/2 + q1/2

) 2
3 A

1/3
N ε

1/3
0 (N)

)

ε0(N)




2

≥ ln
1

γ
,

where

AN =
2π

p3/2q3/2







( ∞∑

n=N+1

∞∑

m=N+1

√
Ea2nm(nq +mp)

)2

+

( ∞∑

n=N+1

∞∑

m=N+1

√
Eb2nm(nq +mp)

)2



1/2

+ 2Λ



(

N∑

n=1

N∑

m=1

(nq +mp)

)2

+

(
N∑

n=1

N∑

m=1

pq

π
√
n2q2 +m2p2

(nq +mp)

)2



1/2



,

ε0(N) =
4√
pq







( ∞∑

n=N+1

∞∑

m=N+1

√
Ea2nm

)2

+

( ∞∑

n=N+1

∞∑

m=N+1

√
Eb2nm

)2



1/2

+Λ


N4 +

(
1

π2

N∑

n=1

N∑

m=1

pq√
n2p2 +m2q2

)2



1/2



.

Remark 2.3. If the conditions of Theorem 4.3 in the paper [6] are hold true the
series in definitions AN and ε0(N) will converge.

3. Proof of Theorem 2.2

Since ∆N (x, y, t,N) is a strictly sub-Gaussian stochastic process, we apply the
result of the paper [6], and conclude that

P

{
sup

(x,y,t)∈D
|∆N (x, y, t,N)| > δ

}
≤ 2Ã(δ, θ), (3.1)

for all 0 < θ < 1, where

Ã(δ, 0) = exp

{
−
(
δ(1− θ)− 2

θ I(θε0)
)2

2ε20

}
, (3.2)

ε0 is an arbitrary number such that

ε0 ≥ sup
(x,y,t)∈D

(
E|∆N (x, y, t,N)|2

)1/2
,
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I(θε0) =
1√
2

θε0∫

0

(
ln

(
p

2σ−1(x)
+ 1

)
+ ln

(
q

2σ−1(x)
+ 1

)

+ ln

(
T

2σ−1(x)
+ 1

))1/2

dx, (3.3)

and where σ(h) is a continuous increasing function such that σ(0) = 0 and

sup
|x−x1|≤h
|y−y1|≤h
|t−t1|≤h

(
E|∆N (x, y, t,N)−∆N (x1, y1, t1, N)|2

)1/2 ≤ σ(h),

sup
|x−x1|≤h
|y−y1|≤h
|t−t1|≤h

(
E|uN (x, y, t) + VN (x, y, t)− uN (x1, y1, t1)− VN (x1, y1, t1)|2

)1/2

≤ sup
|x−x1|≤h
|y−y1|≤h
|t−t1|≤h

[(
E|uN (x, y, t)− uN (x1, y1, t1)|2

)1/2

+
(
E|VN (x, y, t)− VN (x1, y1, t1)|2

)1/2]
,

sup
(x,y,t)∈D

(
E|∆N (x, y, t,N)|2

)1/2
= sup

(x,y,t)∈D

(
E|uN (x, y, t) + VN (x, y, t)|2

)1/2

≤ sup
(x,y,t)∈D

[(
E|uN (x, y, t)|2

)1/2
+
(
E|VN (x, y, t)|2

)1/2]
.

Since the stochastic processes ξ(x, y) and η(x, y) are independent, that is, anm
and bnm are independent, we obtain

E|uN (x, y, t)− uN (x1, y1, t1)|2

= E

∣∣∣∣∣
∞∑

n=N+1

∞∑

m=N+1

Vnm(x, y)
[
anm cos

√
λnmt+ bnm sin

√
λnmt

]

−
∞∑

n=N+1

∞∑

m=N+1

Vnm(x1, y1)
[
anm cos

√
λnmt1 + bnm sin

√
λnmt1

]∣∣∣∣∣

2

= E

∣∣∣∣∣
∞∑

n=N+1

∞∑

m=N+1

anm
2√
pq

[
sin

nπ

p
x sin

mπ

q
y cos

√
λnmt

− sin
nπ

p
x1 sin

mπ

q
y1 cos

√
λnmt1

]

+

∞∑

n=N+1

∞∑

m=N+1

bnm
2√
pq

[
sin

nπ

p
x sin

mπ

q
y sin

√
λnmt

− sin
nπ

p
x1 sin

mπ

q
y1 sin

√
λnmt1

]∣∣∣∣
2
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≤ 4

pq

∞∑

n=N+1

∞∑

m=N+1

∞∑

k=N+1

∞∑

l=N+1

|Eanmakl| ·
∣∣∣∣sin

nπ

p
x sin

mπ

q
y cos

√
λnmt

− sin
nπ

p
x1 sin

mπ

q
y1 cos

√
λnmt1

∣∣∣∣ ·
∣∣∣∣sin

kπ

p
x sin

lπ

q
y cos

√
λklt

− sin
kπ

p
x1 sin

lπ

q
y1 cos

√
λklt1

∣∣∣∣

+
4

pq

∞∑

n=N+1

∞∑

m=N+1

∞∑

k=N+1

∞∑

l=N+1

|Ebnmbkl| ·
∣∣∣∣sin

nπ

p
x sin

mπ

q
y sin

√
λnmt

− sin
nπ

p
x1 sin

mπ

q
y1 sin

√
λnmt1

∣∣∣∣ ·
∣∣∣∣sin

kπ

p
x sin

lπ

q
y sin

√
λklt

− sin
kπ

p
x1 sin

lπ

q
y1 sin

√
λklt1

∣∣∣∣

=
4

pq

( ∞∑

n=N+1

∞∑

m=N+1

√
Ea2nm

∣∣∣∣sin
nπ

p
x sin

mπ

q
y cos

√
λnmt

− sin
nπ

p
x1 sin

mπ

q
y1 cos

√
λnmt1

∣∣∣∣
)2

+
4

pq

( ∞∑

n=N+1

∞∑

m=N+1

√
Eb2nm

∣∣∣∣sin
nπ

p
x sin

mπ

q
y sin

√
λnmt

− sin
nπ

p
x1 sin

mπ

q
y1 sin

√
λnmt1

∣∣∣∣
)2

.

It is easy to check that
∣∣∣∣sin

nπ

p
x sin

mπ

q
y cos

√
λnmt− sin

nπ

p
x1 sin

mπ

q
y1 cos

√
λnmt1

∣∣∣∣

≤
∣∣∣∣sin

nπ

p
x− sin

nπ

p
x1

∣∣∣∣+

∣∣∣∣sin
mπ

q
y − sin

mπ

q
y1

∣∣∣∣+
∣∣∣cos

√
λnmt− cos

√
λnmt1

∣∣∣

≤ 2

∣∣∣∣∣sin
nπ
p (x− x1)

2

∣∣∣∣∣+ 2

∣∣∣∣∣sin
mπ
q (y − y1)

2

∣∣∣∣∣+ 2

∣∣∣∣sin
√
λnm(t− t1)

2

∣∣∣∣

≤ nπ

p
h+

mπ

q
h+

√
λnmh = πh

(
n

p
+
m

q
+

√
n2

p2
+
m2

q2

)

≤ 2πh

(
n

p
+
m

q

)
= 2πh

(
nq + pm

pq

)
.

Similarly
∣∣∣∣sin

nπ

p
x sin

mπ

q
y sin

√
λnmt− sin

nπ

p
x1 sin

mπ

q
y1 sin

√
λnmt1

∣∣∣∣
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≤ 2πh

(
n

p
+
m

q

)
=

2πh

pq
(nq +mp).

Then
(
E|uN (x, y, t)− uN (x1, y1, t1)|2

)1/2

≤


 4

pq

( ∞∑

n=N+1

∞∑

m=N+1

√
Ea2nm

(
2πh

pq
(nq +mp)

))2

+
4

pq

( ∞∑

n=N+1

∞∑

m=N+1

√
Eb2nm

(
2πh

pq
(nq +mp)

))2



1/2

=
4πh

p
3
2 q

3
2



( ∞∑

n=N+1

∞∑

m=N+1

√
Ea2nm(nq +mp)

)2

+

( ∞∑

n=N+1

∞∑

m=N+1

√
Eb2nm(nq +mp)

)2



1/2

. (3.4)

We also have
(
E|VN (x, y, t)− VN (x1, y1, t1)|2

)1/2

≤ 4πh

p
3
2 q

3
2



(

N∑

n=1

N∑

m=1

√
E(ânm − anm)2(nq +mp)

)2

+

(
N∑

n=1

N∑

m=1

√
E(̂bnm − bnm)2(nq +mp)

)2



1/2

.

One can easily obtain that

E(ânm − anm)2 = E




p∫

0

q∫

0

(
ξ̂(x, y)− ξ(x, y)

)
Vnm(x, y)dxdy




2

= E


 2√

pq

p∫

0

q∫

0

(
ξ̂(x, y)− ξ(x, y)

)
sin

nπ

p
x sin

mπ

q
y




2

≤


 2√

pq

p∫

0

q∫

0

√
E
(
ξ̂(x, y)− ξ(x, y)

)2
dxdy




2

≤ 4Λ2. (3.5)

Similarly

E(̂bnm − bnm)2 = 4Λ2 p2q2

π2(n2q2 +m2p2)
. (3.6)
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Then

[
|VN (x, y, t)− VN (x1, y1, t1)|2

]1/2
≤ 4πh

p3/2q3/2



(

N∑

n=1

N∑

m=1

2Λ(nq +mp)

)2

+

(
N∑

n=1

N∑

m=1

2Λ
pq

π
√
n2q2 +m2p2

(nq +mp)

)2



1/2

. (3.7)

Thus we obtain from (3.4), (3.5), (3.6) and (3.7) that σ(h) = hAN , where

AN =
2π

p3/2q3/2







( ∞∑

n=N+1

∞∑

m=N+1

√
Ea2nm(nq +mp)

)2

+

( ∞∑

n=N+1

∞∑

m=N+1

√
Eb2nm(nq +mp)

)2



1/2

+ 2Λ



(

N∑

n=1

N∑

m=1

(nq +mp)

)2

+

(
N∑

n=1

N∑

m=1

pq

π
√
n2q2 +m2p2

(nq +mp)

)2



1/2



.

It is easy to see that

E|uN (x, y, t)|2

≤ E
∣∣∣∣∣
∞∑

n=N+1

∞∑

m=N+1

Vnm(x, y)
[
anm cos

√
λnmt+ bnm sin

√
λnmt

]∣∣∣∣∣

2

=

∣∣∣∣∣
∞∑

n=N+1

∞∑

m=N+1

∞∑

k=N+1

∞∑

l=N+1

Vnm(x, y)Vkl(x, y)
[
Eanmakl cos

√
λnm cos

√
λklt

+ Ebnmbkl sin
√
λnm sin

√
λklt

]∣∣∣

≤ 4

pq



( ∞∑

n=N+1

∞∑

m=N+1

√
Ea2nm

)2

+

( ∞∑

n=N+1

∞∑

m=N+1

√
Eb2nm

)2

 (3.8)

and

E|VN (x, y, t)|2

≤ 4

pq



(

N∑

n=1

N∑

m=1

√
E (ânm − anm)

2

)2

+

(
N∑

n=1

N∑

m=1

√
E
(
b̂nm − bnm

)2
)2

 . (3.9)
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Thus we obtain from (3.8) and (3.9) that

ε0(N) =
4√
pq







( ∞∑

n=N+1

∞∑

m=N+1

√
a2nm

)2

+

( ∞∑

n=N+1

∞∑

m=N+1

√
b2nm

)2



1/2

+ Λ


N4 +

(
1

π2

N∑

n=1

N∑

m=1

pq√
n2p2 +m2q2

)2



1/2



.

Substituting these values of σ(h) and ε0(N) in equality (3.3), we get for z = θε(N)
that

I(z) =
1√
2

z∫

0

(
ln

(
pAN
2x

+ 1

)
+ ln

(
qAN
2x

+ 1

)
+ ln

(
TAN

2x
+ 1

))1/2

dx

≤ 1√
2

z∫

0

(
ln

(
pAN
2x

+ 1

))1/2

dx+
1√
2

z∫

0

(
ln

(
qAN
2x

+ 1

))1/2

dx

+
1√
2

z∫

0

(
ln

(
TAN

2x
+ 1

))1/2

dx

≤




z∫

0

(
pAN
2x

)1/2

dx+

z∫

0

(
qAN
2x

)1/2

dx+

z∫

0

(
TAN

2x

)1/2

dx




=
(
T 1/2 + p1/2 + q1/2

)
A

1/2
N z

1/2
0 (N),

Then equality (3.2) can be rewritten as

Ã(δ, θ) ≤ exp




−1

2


δ(1− θ)−

2
θ1/2

(
T 1/2 + p1/2 + q1/2

)
A

1/2
N ε

1
2
0 (N)

ε0(N)




2



.

If (
T 1/2 + p1/2 + q1/2

)
A2
N ε

2
0(N) < δ,

then Ã(δ, θ) attains its minimum at

θ =

(
T 1/2 + p1/2 + q1/2

)2/3
A

1/3
N ε

1/3
0 (N)

δ2/3
.

Namely

min
θ
Ã(δ, θ)
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= exp




−1

2



δ1/3

(
δ2/3 − 3

(
T 1/2 + p1/2 + q1/2

) 2
3 A

1/3
N ε

1/2
0 (N)

)

ε0(N)




2

≥ ln

1

γ
,

Therefore, given an accuracy δ, one can construct a model with reliability 1− γ if
(
T 1/2 + p1/2 + q1/2

)
A2
N ε

2
0(N) < δ,

1

2



δ1/3

(
δ2/3 − 3

(
T 1/2 + p1/2 + q1/2

)
A

1/3
N εN0

)2

ε0(N)




2

≥ ln
1

γ
.

4. Example

Let η(x, y) = 0, p = q = π, T = π, then the solution of problem (2.1)–(2.3) may
be represented as:

u(x, y, t) =
2

π

∞∑

n=1

N∑

m=1

anm sinnx sinmy cos
(√

n2 +m2t
)
.

Let’s construct a model of the solution in the form:

ûN (x, y, t) =
2

π

N∑

n=1

N∑

m=1

ânm sinnx sinmy cos
(√

n2 +m2t
)
.

Let the assumptions of Theorem 2.2 hold and let ξ(x, y) be a Gaussian stochastic
process such that

ξ(x, y) =
∞∑

i=1

∞∑

j=1

ξij sin(i (x)) sin(j (y)),

where ξij are independent Gaussian random variable with Eξij = 0, Eξ2ij = dij .
Here dij is a number such that 0 < dij < 1. Let

ξ̂(x, y) = ξ̂M (x, y) =
M∑

i=1

M∑

i=1

ξij sin(i (x)) sin(j (y)).

Then

E
(
ξ(x, y)− ξ̂M (x, y)

)2
=

∞∑

i=M+1

∞∑

j=M+1

dij sin2(i (x)) sin2(j (y))

≤
∞∑

i=M+1

∞∑

j=M+1

dij =

∞∑

i=M+1

di(M+1)

1− di ≤
1

1− d
∞∑

i=M+1

di(M+1)
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=
1

1− d ·
d(M+1)2

1− dM+1
≤ d(M+1)2

(1− d)2
.

Note that given Λ, we chose M such that

1

π

π∫

0

π∫

0

√
E
(
ξ(x, y)− ξ̂M (x, y)

)2
dxdy ≤ π

√
d(M+1)2

(1− d)2
< Λ,

d(M+1)2

(1− d)2
<

Λ2

π2

therefore,

M ≥

√
ln
(
λ2

π2 (1− d)2
)

ln d
.

In this case bnm = 0,

anm =

π∫

0

π∫

0

ξ(x, y)Vnm(x, y)dxdy =
2

π

π∫

0

π∫

0

ξ(x, y) sinnx sinmydxdy = 2πξnm,

that Ea2nm = 4π2dnm.

ûN (x, y, t) =
2

π

N∑

n=1

N∑

m=1

ânm sinnx sinmy cos
(√

n2 +m2t
)
.

Thus

AN =
2

π

{
2π

∞∑

n=N+1

∞∑

m=N+1

√
dnm (n+m) + Λ

N∑

n=1

N∑

m=1

(n+m)

}

≤ 2

π





4πd
(N+1)2

2

(
1 +N +Nd

N+1
2

)

(1− d)(d
N+1

2 )2
+ Λ(1 +N)N2




,

ε0 =
4

π2

{
2π

∞∑

n=N+1

∞∑

m=N+1

√
dnm + ΛN2

}
≤ 4

π

{
2πd

(N+1)2
2

(1− d)(1− dN+1
2 )

+ ΛN2

}
.

So, we have received the model, where N andΛ satisfy the following inequality

A2
N ε

2
0(N) <

δ

3
√
π
,



δ1/3

(
δ2/3 − (243πAN ε0(N))

1/3
)

ε0(N)




2

≥ 2 ln

(
1

γ

)
.

When some Λ = 0.005 and N = 36 the model ûN (x, y, t) approaches the random
process u(x, y, t) to reliability 0.99 and accuracy 0.01 in the uniform metric.
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Figure 1: The model of membrane’s vibration at the moment of
time t = 0

Figure 2: The model of membrane’s vibration at the moment of
time t = 1

Figure 3: The model of membrane’s vibration at the moment of
time t = 2
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