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Abstract

Consider the curve C : y2 = ax4+bx2+c. MacLeod previously found four
curves of the given form, with an arithmetic progression in the x coordinates,
of length 14. By similar methods, we also find the same four curves, and
several more.

Keywords: Diophantine equations, arithmetic progressions.

1. Introduction

Let F (x) be a quartic polynomial over the rationals, which is not the square of a
quadratic. If a rational point exists on y2 = F (x), then this curve is birationally
equivalent to an elliptic curve. We will call these curves quartic elliptic curves [4].

We will say that points on a curve are in arithmetic progression (AP) if their
x coordinates form an arithmetic progression. Previously, Ulas found an infinite
family of curves with an AP of length 12 [4]. The author first found a curve

Ca : y2 = fa(x),

where fa is degree four and parameter a, with length ten AP. The AP in x is
{1, 2, . . . , 10}. Ulas then noted that fa(0) = fa(11). The quartic curve Y 2 = fa(0)
is birationally equivalent to an elliptic curve of rank three. Thus, points on this
rank three elliptic curve map to points on Y 2 = fa(0) which give infinitely many
values for a.

By the use of symmetry and methods similar to those found in Ulas, MacLeod
[2] found an infinite family of curves with AP length ten. Numerical investigations
lead to four examples with AP length 14. In this paper, we follow similar methods
as Ulas and MacLeod. We find the same four curves, plus eleven more.
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4 A. Alvarado

2. Arithmetic progressions

Macleod simplifies Ulas’ approach when searching for points in AP. Because the
general solution to length ten AP is difficult, Ulas instead considers a curve with
symmetry. As noted in MacLeod, it is enough to consider the curve to be symmetric
about the x-axis. In that case, we can write the curve as y2 = ax4 + bx2 + c, i.e.,
F (x) = ax4 + bx2 + c with rational coefficients. In this section, we construct curves
with length 14 AP. From these, we will attempt to find examples of length 16.

Suppose

F (±1) = p2

F (±3) = q2

F (±5) = r2

F (±7) = s2

This gives us an AP of length eight. The first three equations imply

a =
2p2 − 3q2 + r2

384

b = −34p2 − 39q2 + 5r2

192

c =
150p2 − 25q2 + 3r2

128

which forces s2 = 5p2 − 9q2 + 5r2. This last equation, representing a quadric
surface, has a parametrization in u and v:

(p : q : r : s) = (−u2 − 2uv − 5v2 − 2uw + w2 :

u2 − 5v2 + w2 :

u2 − 5v2 − 2uw − 2vw − w2 :

u2 + 10uv + 5v2 + 10vw + w2)

Then F (x) = ax4 + bx2 + c is a polynomial in x with coefficients in (u, v, w). Thus
far, we have an infinite family of curves with an arithmetic progression of length
eight in the x-coordinates. Up to this point, we have followed similar techniques
as MacLeod, except that our parametrization has smaller coefficients. We now
introduce a different approach to this problem. If we want an AP of length at least
14, then we must force

F (±9) = t21

F (±11) = t22

F (±13) = t23

Consider the family of planes w = Au+Bv in the (u, v, w) space. These last three
homogeneous equations are now quartics in (u, v) with coefficients in (A,B). With
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respect to u, these curves are singular if and only if their discriminant is zero. With
the help of Magma [1], we find that (2A + 1 − B)2(A + B + 2)2 is a factor of the
discriminant of all three. After substituting B = 2A + 1, we find (u + 2v)2 is a
factor of all three equations. If we substitute B = −A− 2, then (u− v)2 is a factor
of the three equations.

Let us first consider the case B = −A− 2. If v = 1, then

F (±9) = (u − 1)2(u2 +A4u2 + 24Au2 + 2A2u2 − 24A3u2 + 124Au+ 38u− 2A4u

+ 180uA2 + 76A3u+ 361 + 14A2 +A4 − 52A3 + 412A)

F (±11) = (u − 1)2(841 − 2A4u+ 560uA2 + 216A3u+ 384Au+ 972A+ 58u

+A4u2 + 14A2 +A4 − 132A3 − 84A3u2 + u2 + 84Au2 + 2A2u2)

F (±13) = (u − 1)2(1681− 2A4u+ 1280uA2 + 472A3u+ 872Au+ 1952A+ 82u

+A4u2 + 14A2 +A4 − 272A3 − 200A3u2 + u2 + 200Au2 + 2A2u2)

Write the rational value A = a1/a2, and consider the degree six polynomial

f(u) =
F (9)F (11)F (13)

(u− 1)6

with coefficients in (a1, a2). Then the equation Y 2 = f(u) represents a hyperelliptic
curve of degree six. The reason for considering the above curves with discriminant
zero, is because it is much more practical to search for points on a hyperelliptic
curve of degree six rather than twelve. With the aid of Magma, we found points on
this curve by varying values of (a1, a2) up to |a1| + |a2| = 200 . We then checked
whether F (±9), F (±11), and F (±13) are squares but F is not a perfect square.
We found the same four curves listed in MacLeod:

1. y2 = −17x4 + 3130x2 + 8551

2. y2 = 2002x4 − 226820x2 + 18168514

3. y2 = 3026x4 − 222836x2 + 3709234

4. y2 = 34255x4 − 1436006x2 + 447963175

and seven new curves:

1. y2 = 2753x4 − 728770x2 + 59217921

2. y2 = 627x4 − 87870x2 + 3312859

3. y2 = 3689x4 − 88994x2 + 4312441

4. y2 = −143644199x4 + 26117509014x2 − 24973534431

5. y2 = −15015x4 + 2758974x2 + 25050025
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6. y2 = 506363x4 − 1726486x2 + 740805923

7. y2 = −2219x4 + 378494x2 + 19089469

If we now look at the case B = 2A + 1, we find at least four more distinct
curves:

1. y2 = 1012726x4 − 3452972x2 + 1481611846

2. y2 = −308503x4 + 53324830x2 + 72961849

3. y2 = −31730x4 + 4968916x2 + 68267950

4. y2 = −18750709x4 + 5055585994x2 + 16925811919

We end this paper with some final comments. First, none of these curves
contain a length 16 AP with x-coordinates {−13,−11, ..., 13}. Secondly, the reason
we used Magma was because it effectively found rational points on hyperelliptic
curves. Although, Michael Stoll’s ratpoint package is now supported by Sage [3].
Ratpoints finds rational points of bounded height on hyperelliptic curves.

Acknowledgements. Thank you to Dr. Andrew Bremner for suggesting this
problem, Dong-Quan Nguyen, and Robert Miller.
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Abstract

Our purpose is to establish that hyperharmonic numbers – successive
partial sums of harmonic numbers – satisfy a non-integer property. This
gives a partial answer to Mező’s conjecture.
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late.
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1. Introduction

In 1915, L. Taeisinger proved that, except for H1, the harmonic number Hn :=
1 + 1

2 + · · · + 1
n is not an integer. More generally, H. Belbachir and A. Khelladi

[1] proved that a sum involving negative integral powers of consecutive integers
starting with 1 is never an integer.

In [3, p. 258–259], Conway and Guy defined, for a positive integer r, the hyper-
harmonic numbers as iterate partial sums of harmonic numbers

H(1)
n := Hn and H(r)

n =

n∑

k=1

H
(r−1)
k (r > 1) .

The number H(r)
n , called the nth hyperharmonic number of order r, can be ex-

pressed by binomial coefficients as follows (see [3])

H(r)
n =

(
n+ r − 1

r − 1

)
(Hn+r−1 −Hr−1) . (1.1)

7
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For other interesting properties of these numbers, see [2].

I. Mező, see [5], proved that H(r)
n , for r = 2 and 3, is never an integer except

for H(r)
1 . In his proof, he used the reduction modulo the prime 2. He conjectured

that H(r)
n is never an integer for r > 4, except for H(r)

1 .

In our work, we give another proof that H(r)
n is not an integer for r = 2, 3 when

n > 2. We also give an answer to Mező’s conjecture for r = 4 and a partial answer
for r > 4.

Our proof is based on Bertrand’s postulate which says that for any k > 4, there
is a prime number in ]k, 2k − 2[. See for instance [4, p. 373].

2. Results

Theorem 2.1. For any n > 2, the hyperharmonic numberH
(2)
n is never an integer.

Proof. Let n > 2 and assume H(2)
n ∈ N. We have H(2)

n =
(
n+1

1

)
(Hn+1 −H1) =

(n+ 1) (Hn+1 − 1), therefore (n+ 1)Hn+1 = (n+ 1)
(
1 + 1

2 + · · · + 1
n+1

)
is an in-

teger. Let P be the greatest prime number less than or equal to n. We have
(n+1)!

P Hn+1 − (n+1)!
P

∑
k 6=P

1
k = (n+1)!

P 2 . The left hand side of the equality is an in-
teger while the right hand side is not. Indeed, by Bertrand’s postulate, the prime
P is coprime to any k, k 6 n+ 1, contradiction. �

Theorem 2.2. For any n > 2, the hyperharmonic number H
(3)
n is never an inte-

ger.

Proof. The arguments here are similar to those in the proof of the following the-
orem. �

Theorem 2.3. For any n > 2, the hyperharmonic number H
(4)
n is never an inte-

ger.

Proof. We have H(4)
2 = 9

2 /∈ N, H(4)
3 = 37

3 /∈ N and H(4)
4 = 319

12 /∈ N. Let n > 5 and

assume that H(4)
n ∈ N. With the same arguments as in the proof of Theorem 1 we

deduce that (n+ 1) (n+ 2) (n+ 3)Hn ∈ N. Let P be the greatest prime less than

or equal to n. Then (n+3)!
P Hn − (n+3)!

P

(
1 + 1

2 + · · · + 1
P−1 + 1

P+1 + · · · + 1
n

)
=

(n+3)!
P 2 . The left hand side of the equality is an integer while the right hand side is

not. Again, P is coprime to any k, P < k 6 n+3. Therefore, if P divides (n+ 3)!,
then P would divide (P + 1) · · · (n+ 3), thus one of the factors would be equal to
2P , consequently 2P −2 6 n+1, hence, by Bertrand’s postulate, there would exist
a prime strictly between P and n+ 1, contradicting the fact that P is the greatest
prime less than or equal to n. Therefore, H(4)

n /∈ N for any n > 2. �

For r > 5, we give a class of hyperharmonic numbers satisfying the non-integer
property.
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Theorem 2.4. Let n ∈ N such that n > 2 and that none of the integers n+ 1, n+

2, . . . , n+ r − 4 is a prime number, then we have H
(r)
n /∈ N.

Proof. It is easy to see that H(r)
2 = r+1

2 + r
2 /∈ N, H(r)

3 = (r+1)(r+2)
6 + r(r+2)

6 +
r(r+1)

6 /∈ N and H(r)
4 = (r+1)(r+2)(r+3)

24 + r(r+2)(r+3)
24 + r(r+1)(r+3)

24 + r(r+1)(r+2)
24 /∈ N.

For any n > 5, we have by relation (1.1)

H(r)
n =

(n+ 1)(n+ 2) · · · (n+ r − 1)

(r − 1)!

(
Hn +

1

n+ 1
+

1

n+ 2
+· · ·+ 1

n+ r − 1
−Hr−1

)
.

Set Er,n :=(r−1)!
(
H

(r)
n −

(
n+r−1

r−1

)
Hr−1

)
−(n+1) · · · (n+r−1)

(
1

n+1 + · · ·+ 1
n+r−1

)
.

Thus Er,n = (n+ 1) (n+ 2) · · · (n+ r − 1)
(
1 + 1

2 + · · · + 1
n

)
.

Assume that H(r)
n is an integer. So Er,n is an integer as well. Let P be the

greatest prime 6 n. Then we have

n!

P
Er,n =

(n+ r − 1)!

P

(
1 + · · · + 1

P
+ · · · + 1

n

)
,

and therefore

(n+ r − 1)!

P
Er,n − (n+ r − 1)!

P

∑

k 6=P

1

k
=

(n+ r − 1)!

P 2
.

The left side of the equality is an integer. If the right side is an integer, then P
should divide (n+ 2) · · · (n+ r − 1), hence one of the integers n, . . . , (n+ r − 3)
should be equal to 2P − 2, so either there exist a prime Q strictly between P
and n + 1 and this is a contradiction with Bertrand’s postulate, either one of the
integers n+ k with 1 6 k 6 r − 4 is prime and this contradicts the assumption of
the Theorem. �

It is well known that we can exhibit an arbitrary long sequence of consecutive
composite integers: m! + 2, m! + 3, . . . , m! +m, (m > 3). We will use this fact to

establish that for all r > 5, we can find a non integer hyperharmonic number H(r)
n .

Corollary 2.5. Let r > 5, then the hyperharmonic numbers H
(r)
r!+1, H

(r)
r!+2, H

(r)
r!+3

and H
(r)
r!+4 satisfy the non-integer property.

Proof. It suffices to use Theorem 2.4. �

The arguments used in the proof of Theorem 2.4 give more. As an illustration,
we treat the case r = 5.

Proposition 2.6. For any n > 2, the hyperharmonic number H
(5)
n is never an

integer when n+ 1 6= 2Q− 3 is prime with Q prime.
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Proof. For n = 2 or 3, n odd, or even with n + 1 composite, see Theorem 2.4.
For even n > 4 with n + 1 prime, using notations in the proof of Theorem 2.4, if
H

(5)
n ∈ N then P | (n+ 2) (n+ 3) (n+ 4). We have P ∤ (n+ 2), there would be a

prime between P and n = 2P − 2. We have P ∤ (n+ 3), otherwise n + 3 = 2P
which contradicts the fact n+ 3 is odd. Finally, if n+ 4 = 2P i.e. n+ 1 = 2P − 3,
we have a contradiction. �

Example 2.7. For n 6 100, we list the values of r, given by Theorem 2.4, such
that H(r)

n is never an integer.

1. H(5)
n /∈ N for n = 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24,

25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72,
73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100.

The bold numbers are given by Proposition 2.6.

2. H(6)
n /∈ N for n = 2, 3, 7, 8, 13, 14, 19, 20, 23, 24, 25, 26, 31, 32, 33, 34, 37, 38,

43, 44, 47, 48, 49, 50, 53, 54, 55, 56, 61, 62, 63, 64, 67, 68, 73, 74, 75, 76, 79, 80,
83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 97, 98.

3. H(7)
n /∈ N for n = 2, 3, 7, 19, 23, 24, 25, 31, 32, 33, 37, 43, 47, 48, 49, 53, 54, 55,

61, 62, 63, 67, 73, 74, 75, 79, 83, 84, 85, 89, 90, 91, 92, 93, 97.

4. H(8)
n /∈ N for n = 2, 3, 23, 24, 31, 32, 47, 48, 53, 54, 61, 62, 73, 74, 83, 84, 89, 90,

91, 92.

5. H(9)
n /∈ N for n = 2, 3, 23, 31, 47, 73, 83, 89, 90, 91.

6. H(10)
n /∈ N for n = 2, 3, 89, 90.

7. H(11)
n /∈ N for n = 2, 3, 89.
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Abstract

Two independent research yielded two different characterizations of groups
whose group algebras have minimal Lie derived lengths. In this note we show
that the two characterizations are equivalent and we propose a simplified
description for these groups.

1. Introduction

Let FG be the group algebra of a group G over a field F . As every associative
algebra, FG can be viewed as a Lie algebra with the Lie multiplication defined by
[x, y] = xy − yx, for all x, y ∈ FG. Let δ[0](FG) = δ(0)(FG) = FG, and for n > 0
denote by δ[n+1](FG) the F -subspace of FG spanned by all elements [x, y] with
x, y ∈ δ[n](FG), and by δ(n+1)(FG) the associative ideal of FG generated by all
elements [x, y] with x, y ∈ δ(n)(FG). We say that FG is Lie solvable (resp. strongly
Lie solvable) if there exists n such that δ[n](FG) = 0 (resp. δ(n)(FG) = 0), and
the least such n is called the Lie derived length (resp. strong Lie derived length)
of FG and denoted by dlL(FG) (resp. dlL(FG)).

Sahai [6] proved that

ω(FG′)2
n−1FG ⊆ δ(n)(FG) ⊆ ω(FG′)2

n−1

FG for all n > 0, (1.1)

∗This research was supported by NKTH-OTKA-EU FP7 (Marie Curie action) co-funded grant
No. MB08A-82343
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from which it follows that FG is strongly Lie solvable if and only if either G is
abelian or the augmentation ideal ω(FG′) of the subalgebra FG′ is nilpotent, that
is the derived subgroup G′ of G is a finite p-group and char(F ) = p. Obviously,
δ[n](FG) ⊆ δ(n)(FG) for all n, thus every strongly Lie solvable group algebra FG
is Lie solvable too, and dlL(FG) 6 dlL(FG). However, according to a result of
Passi, Passman and Sehgal (see e.g. in [5]), there exists a Lie solvable group algebra
which is not strongly Lie solvable. They proved that a group algebra FG is Lie
solvable if and only if one of the following conditions holds: (i) G is abelian; (ii)
G′ is a finite p-group and char(F ) = p; (iii) G has a subgroup of index 2 whose
derived subgroup is a finite 2-group and char(F ) = 2. Note that for char(F ) = 2
the values of dlL(FG) and dlL(FG) can be different (see e.g. Corollary 1 of [1]).

Evidently, if FG is commutative, then dlL(FG) = dlL(FG) = 1. Shalev [8]
proved that if FG is a non-commutative Lie solvable group algebra of characteristic
p, then dlL(FG) > ⌈log2(p + 1)⌉, where ⌈log2(p + 1)⌉ denotes the upper integer
part of log2(p + 1). Shalev also showed that there is no better lower bound than
⌈log2(p+ 1)⌉, emphasizing that the complete characterization of groups for which
this lower bound is exact “may be a delicate task ”. Clearly, for a non-commutative
strongly Lie solvable group algebra FG the value of dlL(FG) can also be estimated
from below by the same integer ⌈log2(p + 1)⌉, and the question of characterizing
groups for which this bound is achieved can be posed. Since we conjecture there
is no group algebra FG over a field F of characteristic p > 2 such that dlL(FG) 6=
dlL(FG), we may expect that the answer will solve Shalev’s original problem.

Levin and Rosenberger (see e.g. in [5]) described the group algebras of Lie
derived length two. Moreover, they also proved that dlL(FG) = 2 if and only if
dlL(FG) = 2. This answers both questions for the special cases p = 2 and 3.
Assume that p > 5 and G′ has order pn. As it is well-known ω(FG′)n(p−1) 6= 0,
furthermore there exists an integer i such that p < 2i 6 2p− 1. Hence, for n > 2
we have

0 6= ω(FG′)n(p−1) ⊆ ω(FG′)2p−2 ⊆ ω(FG′)2
i−1,

and by (1.1), dlL(FG) > i + 1 > ⌈log2(p + 1)⌉. Let now n = 1, that is G′ is of
order p, and denote by CG(G′) the centralizer of G′ in G. In view of Theorem 1
of [1] (in which the authors determined the Lie derived length and the strong Lie
derived length of group algebras of groups whose derived subgroup is cyclic of odd
order) the value of dlL(FG) depends on the order of the factor group G/CG(G′)
as follows. For m > 0, let

s(l,m) =





1 if l = 0;

2s(l − 1,m) + 1 if s(l − 1,m) is divisible by 2m;

2s(l − 1,m) otherwise.

If G/CG(G′) has order 2mpr, then dlL(FG) = d+1, where d is the minimal integer
for which s(d,m) > p; otherwise dlL(FG) = ⌈log2(2p)⌉ > ⌈log2(p+ 1)⌉. Hence we
have obtained the following criterion for groups whose group algebras have minimal
strong Lie derived length.
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Theorem 1.1 (Balogh, Juhász [1]). Let FG be a strongly Lie solvable group alge-
bra of positive characteristic p. Then dlL(FG) = ⌈log2(p + 1)⌉ if and only if one
of the following conditions holds:

(i) p = 2 and G′ is central elementary abelian subgroup of order 4;

(ii) G′ has order p, G/CG(G′) has order 2mpr, and the minimal integer d such
that s(d,m) > p satisfies the inequality 2d − 1 < p.

An alternative characterization of these groups is obtained independently in [9] by
using a different method. For m > 0 let

g(0,m) = 1, and g(l,m) = g(l− 1,m) · 2m+1 + 1 for all l ∈ N;

further, denote by qn−m,m and ǫn−m,m the quotient and the remainder of the
Euclidean division of n−m− 1 by m+ 1, respectively.

Theorem 1.2 (Spinelli [9]). Let FG be a non-commutative strongly Lie solvable
group algebra over a field F of positive characteristic p. Let n be the positive
integer such that 2n 6 p < 2n+1 and s, q (q odd) the non-negative integers such
that p− 1 = 2sq. The following statements are equivalent:

(i) dlL(FG) = ⌈log2(p+ 1)⌉;

(ii) p and G satisfy one of the following conditions:

(a) p = 2, G′ has exponent 2 and an order dividing 4 and G′ is central;

(b) p > 3 and G′ is central of order p;

(c) 5 6 p < 2n+2/3, G′ is not central of order p and |G/CG(G′)| = 2m with
m 6 s a positive integer such that p 6 2ǫn−m,m · g(qn−m,m + 1,m).

In the present paper the authors are going to dispel doubts about that the
different conditions of the two above theorems could describe different classes of
groups. We give a direct proof of the equivalence between them. According to [10],
these same conditions describe completely the groups whose group algebras have
minimal Lie derived length. Combining our results with the main theorem of [10],
we propose the following simplified answer to Shalev’s question.

Theorem 1.3. Let FG be a Lie solvable group algebra over a field F of positive
characteristic p. Then the following statements are equivalent:

(i) dlL(FG) = ⌈log2(p+ 1)⌉;

(ii) dlL(FG) = ⌈log2(p+ 1)⌉;

(iii) either p = 2 and G′ is central elementary abelian subgroup of order 2 or 4; or

G′ has order p > 2, |G/CG(G′)| = 2m and ⌈log2(p+ 1)⌉ = ⌈log2(
2m+1−1

2m p)⌉.
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2. Proof of the equivalence

In the next lemma we concentrate on the series s(l,m) and g(l,m), and on the
connection between them.

Lemma 2.1. For all m,n, i > 0,

(i) 2i 6 s(i,m) < 2i+1;

(ii) s(i,m+ 1) 6 s(i,m);

(iii) g(i,m) = s((m+ 1)i,m);

(iv) s(n,m) = 2ǫn−m,m · g(qn−m,m + 1,m);

(v) s(i,m) = 2m+i+1−2
(m+1){ i

m+1
}

2m+1−1 , where { i
m+1} is the fractional part of i

m+1 .

Proof.
(i) This is obvious for i = 0, and assume that 2i 6 s(i,m) < 2i+1, or equiv-

alently, 2i+1 6 2s(i,m) < 2i+2 for some i > 0. Moreover, 2s(i,m) is even, so
2i+1 6 2s(i,m) < 2s(i,m) + 1 < 2i+2. By definition,

2s(i,m) 6 s(i+ 1,m) 6 2s(i,m) + 1

and the statement (i) is true.
(ii) For a fixed m assume that l is the minimal integer for which s(l,m+ 1) >

s(l,m). Then we get that 2s(l−1,m+1) > s(l,m) > 2s(l−1,m). Being l minimal
s(l − 1,m) = s(l − 1,m+ 1). Since s(l − 1,m) cannot be divisible by 2m+1 so

s(l,m) > 2s(l − 1,m) = 2s(l − 1,m+ 1) = s(l,m+ 1)

which is a contradiction.
(iii) For i = 0 the definitions say that g(0,m) = s(0,m) = 1. Assume that

i > 0 and g(i,m) = s((m+ 1)i,m). Then

g(i+ 1,m) = g(i,m) · 2m+1 + 1 = s((m+ 1)i,m) · 2m+1 + 1.

Since g(j,m) is odd for all j, we conclude that s((m + 1)j,m) is also odd. Using
the definition we get that

s((m+ 1)i,m) · 2m+1 + 1 = s((m+ 1)(i+ 1),m)

and the proof is complete.
(iv) According to the definition, s(i,m) is odd whenever i is divisible by m+ 1,

and

s(n,m) = s((m+ 1)(qn−m,m + 1) + ǫn−m,m,m)

= s((m+ 1)(qn−m,m + 1),m) · 2ǫn−m,m ,
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and by (iii),

2ǫn−m,m · s((m+ 1)(qn−m,m + 1),m) = 2ǫn−m,m · g(qn−m,m + 1,m).

(v) Denote by q and r the quotient and the remainder of the Euclidean division
of i by m+ 1, respectively. It is easy to check that

s(i,m) = 2q(m+1)+r + 2(q−1)(m+1)+r + · · · + 2r

= 2r

q∑

j=0

(2m+1)j =
2(m+1)(q+1)+r − 2r

2m+1 − 1
.

Using i = q(m+ 1) + r and r = (m+ 1){ i
m+1} we have the desired formula. �

Let G be a group with derived subgroup of order p. As it is well-known, the
automorphism group of G′ is isomorphic to the unit group of the field of p elements.
But this unit group is cyclic of order p− 1, so the factor group G/CG(G′), which
is isomorphic to a subgroup of it, is cyclic and its order divides p− 1.

Proof of the equivalence. Denote by A the set of all groups G which satisfy the
conditions (ii) of Theorem 1.2; by B those for which (i) or (ii) of Theorem 1.1
hold. Assume first that G ∈ A. We distinguish the following cases.

1. G′ is central elementary abelian subgroup of order 4. Then by Theorem
1.1(i), G ∈ B.

2. G′ is central of order p. Then the factor group G/CG(G′) is trivial, and
s(i, 0) = 2i+1−1. It is clear that the minimal integer d such that 2d+1−1 > p
satisfies the inequality 2d − 1 < p, therefore G ∈ B in this case.

3. G′ is not central of order p. Suppose that 2n 6 p < 2n+1. Then, by Theorem
1.2(ii/c), |G/CG(G′)| = 2m with a positive integer m such that

p 6 2ǫn−m,m · g(qn−m,m + 1,m).

According to Lemma 2.1(iv), s(n,m) = 2ǫn−m,m · g(qn−m,m + 1,m), hence
p 6 s(n,m). At the same time, 2n 6 p < 2n+1, so by Lemma 2.1(i) we have
that n is the minimal integer such that p 6 s(n,m), and since 2n − 1 < p, it
follows that G ∈ B.

We have just shown that A ⊆ B. To prove the converse inclusion we consider
the following cases.

1. G′ is central elementary abelian subgroup of order 4. Then by part (a) of
Theorem 1.2(ii), G also belongs to A.

2. G′ is cyclic of order p. Then by the assumption |G/CG(G′)| = 2mpr, but
|G/CG(G′)| must divide p− 1, actually r is always zero, and if s, q (q is odd)
are the non-negative integers such that p− 1 = 2sq, then m 6 s.



18 Zs. Balogh, T. Juhász

(a) m = 0. Then G′ is central, and by parts (a) and (b) of Theorem 1.2, we
have G ∈ A.

(b) m > 0. Then G′ is not central and p is odd. Assume that the minimal
integer d such that s(d,m) > p satisfies the inequality 2d − 1 < p. It
follows that 2d 6 p < 2d+1, so n = d. By Lemma 2.1(iv),

p 6 s(n,m) = 2ǫn−m,m · g(qn−m,m + 1,m).

Furthermore, Lemma 2.1(ii) yields p 6 s(n,m) 6 s(n, 1) < 2n+2/3.
Finally, we show that p > 5. Indeed, if p was equal to 3, then m should
be equal to 1, and from s(d, 1) > 3 it would follow that d = 2. But
22 − 1 6< 3, so this is an impossible case.

The proof is done. �

3. Remarks

First we mention that we can get rid of the recursive sequence s(l,m) in Theorem 1
of [1]. Indeed, assume that |G′| = pn, where p is an odd prime, |G/CG(G′)| = 2mpr

and d is the minimal integer for which s(d,m) > pn. By Lemma 2.1(v), we have

2m+d − 2(m+1){ d−1
m+1}

2m+1 − 1
< pn 6

2m+d+1 − 2(m+1){ d
m+1}

2m+1 − 1
.

Since (m+ 1){ d−1
m+1}, (m+ 1){ d

m+1} ∈ {0, 1, . . . ,m}, so

2m+d − 1

2m+1 − 1
< pn 6

2m+d+1 − 1

2m+1 − 1
,

and

d < log2

(
2m+1 − 1

2m
pn +

1

2m

)
6 d+ 1.

Keeping in mind that d is an integer, we conclude that

d+ 1 = ⌈log2

(
2m+1 − 1

2m
pn +

1

2m

)
⌉ = ⌈log2

(
2m+1 − 1

2m
pn

)
⌉.

Now, we can restate our Theorem 1 of [1] as follows.

Theorem 3.1. Let G be a group with cyclic derived subgroup of order pn, where
p is an odd prime, and let F be a field of characteristic p. If G/CG(G′) has order
2mprs, where (2p, s) = 1, then

dlL(FG) = dlL(FG) = ⌈log2 2pnνm⌉,

where νm = 1 if s > 1, otherwise νm = 1 − 1
2m+1 .
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This implies Theorem 1.3.
Let now FG be a group algebra over a field F of positive characteristic p with

Lie (or strong Lie) derived length n. Then p < 2n, furthermore, p > 2n−1 if
and only if (iii) of Theorem 1.3 holds. Using this fact, we make an attempt to
give a characterization of group algebras of Lie derived length 3 over a field of
characteristic p > 3. As we told above, p must be smaller than 8, and for the
cases p = 5 and 7 (iii) of Theorem 1.3 must hold. It is easy to check that only the
following (p,m) pairs are possible: (7, 0), (5, 0), (5, 1). This proves the following
statement.

Corollary 3.2. Let FG be the group algebra of a group G over a field F of char-
acteristic p > 3. Then dlL(FG) = 3 if and only if one of the following conditions
holds: (i) p = 7 and G′ is central of order 7; (ii) p = 5, G′ has order 5, and either
G′ is central or xg = x−1 for every x ∈ G′ and g 6∈ CG(G′).

For an alternative proof and for the case p = 3 we refer the reader to [6, 7].
Finally, we would like to draw reader’s attention to recent articles [2, 3, 4] about

Lie derived lengths of group algebras.
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Abstract

We consider random processes defined on Banach sequence spaces. Then
we seek on conditions of M-regularity of bounded linear operators, where M
denotes any of the usual stochastic modes of convergence.
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1. Introduction

Non deterministic systems derived from applications of probability theory to a wide
real life situations give rise to the investigation of stochastic (or random) processes.
This setting allows a quote of indeterminacy that reasonably must be considered
according to the way the underlying process evolves in time. Among other basic
examples, Markov processes concern to possibly dependent random variables, while
Poisson processes concern events that occur continously and independent of one
another (cf. [7]).

Tests or experiments observed in discrete times amount to sequences of random
variables. The problematic of convergence acceleration methods has been studied
for many years with broad applications to numerical integration, to informatics,
in solving differential equations, etc. (cf. [15, 2]). Sequence transformations and
extrapolations were applied in order to accelerate the convergence of sequences in
some well known statistical procedures, for instance bootstrap or jacknife (cf. [5, 4]).

The notion of stochastic regularity under the action of linear transformations
applied to sequences of random elements in a Banach space was introduced by

21
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H. Lavastre in 1995 (see [6]). His approach was very general, considering sequences
{Xn}∞n=1 of random variables on a fixed probability space (Ω,A,P) with values in
a Banach space (E, ‖◦‖). Any such sequence induces a map

X : w → {Xn (w)}∞n=1

of Ω into the set S (E) of all sequences of elements of E. Let us suppose that S (E)
is a normed space and that X is a generalized random variable, i.e. X−1 (B) ∈ A
if B is any Borel subset of E. Given a linear functional T on S (E) it is natural
to ask whether T (X) : w → T [{Xn (w)}∞n=1] is still a generalized random variable.
If this is the case, the preservation of stochastic modes of convergence leaded to
several notions of stochastic regularity of the sequence {Xn}∞n=1 under the action
of T . From a theoretic point of view, besides its applications the determination
of conditions of stochastic regularity has its own interest. For the resolution of
this problem for E = Lp (Ω,F,P), where 1 6 p < ∞ and F is a Banach space,
the reader can see [6, Th. III, 3, p. 480]. Further, stochastic regularity under the
action of certain linear transformations defined by some infinite triangular matrices
of complex numbers is established in [6, Th. III, 6 and Th. III, 7, p. 482].

The purpose of this article is to initiate an extension of Lavastre’s reseach to
stochastic processes in other Banach spaces. Nevertheless, we are aware that this
goal is easy to state as well as difficult to fulfil. So, we will restrict its general-
ity to the case of bounded linear operators acting on separable Banach sequence
spaces. In order to be self-contained in Prop. 2.1 we will show that the set of
random variables X : Ω → E between a probability space (Ω,A,P) and a separable
Banach space E admits a complex vector space structure. It is known that if E
is separable and X : Ω → E is a random variable then ‖X‖ : Ω → [0,∞) is a ran-
dom variable (cf. [8]). Prop. 2.2 and Corollary 2.3 will motivate Definition 3.1 in
Section 3, giving a precise meaning to random processes defined by a sequence of
random variables on a Banach space E. In this section we will analize some con-
crete examples constructed on an underlying Hilbert space or on a Banach space
of continuous functions (see Ex. 3.3 and Ex. 3.4 below). In Section 4 we consider
conditions of stochastic regularity of linear bounded operators acting on a Banach
sequence space S (E). In particular, we will observe in Remark 3.2 that our ap-
proach is more general than the so called summation process defined in [6]. In
§4.1 we will establish precise conditions of stochastic regularity related to rather
general bounded operators, when E = C and S (E) is the uniform Banach space of
convergent sequences of complex numbers c (C). Finally, in §4.2 we will establish
conditions of stochastic regularity of a class of bounded operators for the Banach
space C [0, 1] and the Banach sequence space lp (C [0, 1]) , with 1 < p <∞.

Besides some posed questions, we believe that possible ways for further investi-
gations will be open. In order of generality, the former will require some knowledge
about the structure of bounded linear operators on Banach sequence spaces. Among
a huge literature in this topic we only mention [1, 10, 9].
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2. Random variables and Banach sequence spaces

Throughout this article (Ω,A,P) will be a probability space, (E, ‖◦‖) will be a
separable Banach space and X will be a topological space. By MP (Ω,A,X) we
will denote the class of random variables X : Ω → X, i.e. those functions so that
X−1 (B) ∈ A for all sets B ∈ B (X) , where B (X) is the class of Borel subsets of
X. Indeed, MP (Ω,A,X) is really the quotient of all such random variables when
we identify those that differ on a set of P-measure zero.

Proposition 2.1. If the Banach space (E, ‖◦‖) is separable then MP (Ω,A,E) is
a complex vector space.

Proof. Clearly MP (Ω,A,E) is endowed with a natural complex vector space
structure, and it only remains to see that this structure is valid. Let {fn}∞n=1

be a dense sequence of elements of E. Then any open subset O of E × E can be
written as

O =
⋃

(n,m,r)∈N×N×Q>0:B∞((fn,fm),r)⊆O
B∞ ((fn, fm) , r) ,

where for (n,m, r) ∈ N × N × Q>0 is

B∞ ((fn, fm) , r) = {(g, h) ∈ E × E : max {‖fn − g‖ , ‖fm − h‖} < r} .

So, if X1, X2 ∈ MP (Ω,A,E) the set (X1, X2)
−1 (O) is realized as

⋃

(n,m,r)∈N×N×Q>0:B∞((fn,fm),r)⊆O
X−1

1 (B (fn, r)) ∩X−1
2 (B (fm, r)) ,

i.e. (X1, X2)
−1

(O) ∈ A. Hence (X1, X2) ∈ MP (Ω,A,E × E). Since E is a topo-
logical vector space the conclusion now follows immediately. �

Proposition 2.2. Let {Xn}∞n=1 ⊆ MP (Ω,A,E).
(i) Let us write

Ω∞
E ({Xn}∞n=1) , {w ∈ Ω : {Xn (w)}∞n=1 ∈ l∞ (N,E)} ,

Ωc
E ({Xn}∞n=1) , {w ∈ Ω : {Xn (w)}∞n=1 ∈ c (N,E)} ,

Ωc0
E ({Xn}∞n=1) , {w ∈ Ω : {Xn (w)}∞n=1 ∈ c0 (N,E)} ,

Ωp
E ({Xn}∞n=1) , {w ∈ Ω : {Xn (w)}∞n=1 ∈ lp (N,E)} ,

with 1 6 p < +∞ . The above sets are A-measurable and

Ωp
E ({Xn}∞n=1) ⊆ Ωc0

E ({Xn}∞n=1) ⊆ Ωc
E ({Xn}∞n=1) ⊆ Ω∞

E ({Xn}∞n=1) . (2.1)

(ii) If Xn
a.e.−−→ 0 then P (Ωc0

E ({Xn}∞n=1)) = 1.
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Proof. (i) It suffices to observe that

Ω∞
E ({Xn}∞n=1) =

∞⋃

m=1

∞⋂

p=1

{‖Xp‖ 6 m} ,

Ωc
E ({Xn}∞n=1) =

∞⋂

m=1

∞⋃

p=1

⋂

q>p,r>0

{‖Xq −Xq+r‖ 6 1/m} ,

Ωc0
E ({Xn}∞n=1) =

∞⋂

m=1

lim inf
q→∞

{‖Xq‖ 6 1/m} .

Further,

Ωp
E ({Xn}∞n=1) =

{
w ∈ Ω : sup

m∈N

m∑

n=1

‖Xn (w)‖p < +∞
}

and {∑m
n=1 ‖Xn‖p}m∈N

⊆ MP (Ω,A,R). Thus Ωp
E ({Xn}∞n=1) ∈ A, because

MP (Ω,A,R) is an order complete vector space and A is a σ-algebra. The in-
clusions (2.1) are trivial.
(ii) It is trivial. �

Corollary 2.3. Let {Xn}∞n=1 ⊆ MP (Ω,A,E) so that Xn
a.e.−−→ 0. Then there are

induced well defined random variables

Xc0 (w) = {Xn (w)}∞n=1 , X
c (w) = {Xn (w)}∞n=1 , X

∞ (w) = {Xn (w)}∞n=1 ,

where w ∈ Ω, with values in the Banach spaces c0 (N,E), c (N,E) and l∞ (N,E)
respectively.

Remark 2.4. Convergence in probability is not appropiate in general to derive
natural randon variables with values in classical Banach sequence spaces. For
instance, let n = k + 2υ, 0 6 k < 2υ, υ ∈ N0, and set Xn = nχ[k/2υ ,(k+1)/2υ ].
The sequence {Xn}∞n=1 of random variables on the Lebesgue measure space [0, 1]
converges in probability to zero and Ω∞

R ({Xn}∞n=1) = ∅.

Remark 2.5. Previously to the main Definition 3.1 of this article, let us remember
the usual stochastic modes of convergence:

1. Convergence in distribution

Xn
d−→ X if and only if given B ∈ B (E) so that P ({X ∈ ∂B}) = 0 then

P ({Xn ∈ B}) → P ({X ∈ B}).

2. Convergence in probability

Xn
P−→ X if and only if ∀ε > 0, P ({‖Xn −X‖ > ε}) → 0.

3. Almost everywhere convergence

Xn
a.e.−−→ X if and only if P ({Xn → X}) = 1.
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4. Almost complete convergence

Xn
a.c.−−→ X if and only if ∀ε > 0,

∑∞
n=1 P ({‖Xn −X‖ > ε}) < +∞.

5. Convergence in the r-th mean

Xn
Lr

−→ X if and only if E (‖Xn −X‖r
) → 0.

6. Convergence in the mean

Xn
E−→ X if and only if E (Xn −X) → 0. (See Remark 2.6 below).

It is well known that almost complete convergence implies almost everywhere
convergence, almost everywhere convergence implies convergence in probability and
convergence in probability implies convergence in distribution (cf. [12, pp. 240]).
Likewise, if r > s then convergence in the r-th mean implies convergence is the
s-th mean and the later implies convergence in probability. Further, by Lévy‘s
convergence theorem if Xn

a.e.−−→ X in MP (Ω,A,R) and there is a random variable

Y so that for all n ∈ N is |Xn| 6 Y and E (Y ) < +∞ then Xn
Lr

−→ X (see [14,
pp. 187–188]).

Remark 2.6. If the Banach space E is separable the notion of expected value of
a random variable X ∈ MP (Ω,A,E) is well defined. Precisely, given a random
variable X its expected value is any element f ∈ E so that if ϕ ∈ E∗ then

〈f, ϕ〉 =

∫

Ω

〈X (w) , ϕ〉 dP (w) .

Since E∗ becomes a separating family if such an element exists it is necessarily
unique and it is denoting as E (X). For instance, E (X) exists if E (‖X‖) < +∞.
For further information the reader can see [11].

3. Random processes on Banach sequence spaces

Definition 3.1. A random process of MP (Ω,A,E) on a Banach sequence space
S (E) is a sequence {Xn}∞n=1 ∪ {X} ⊆ MP (Ω,A,E) so that:
(i) the set

ΩS(E) ({Xn −X}∞n=1)) , {w ∈ Ω : {Xn (w) −X (w)}∞n=1 ∈ S (E)}

belongs to A;
(ii) P

(
ΩS(E) ({Xn −X}∞n=1)

)
= 1. By [MP (Ω,A,E) ,S (E)] we will denote the

class of all such random processes.

Remark 3.2. By Prop. 2.2 any almost everywhere convergent sequence of random
variables with values in a Banach space E defines a random process on the classical
Banach sequence spaces c0 (N,E), c (N,E) and l∞ (N,E).
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Example 3.3. Let 1 6 p < ∞, T ∈ B(Lp [0, 1]). If n ∈ N let Xn (t) = T n
(
χ[0,t]

)
,

0 6 t 6 1. If 0 6 s, t 6 1 then

‖Xn(t) −Xn (s)‖p =
∥∥T n

(
χ[0,t] − χ[0,s]

)∥∥
p

6 ‖T n‖
∥∥χ[0,t]△[0,s]

∥∥
p

6 ‖T ‖n |s− t|1/p
,

i.e. Xn : [0, 1] → Lp [0, 1] becomes uniformly continuous and

{Xn}∞n=1 ⊆ Mdx ([0, 1] ,L [0, 1] ,Lp [0, 1]) ,

where dx is the Lebesgue measure on [0, 1] and L [0, 1] is the Lebesgue σ−algebra
of subsets of [0, 1]. For instance, let Tf (t) =

∫ t

0 fdx if f ∈ Lp [0, 1]. It is easy to
see that T is a bounded linear operator and if n ∈ N and 0 6 t, τ 6 1 then

Xn (t) (τ) , T n
(
χ[0,t]

)
(τ) =

{
(τn − (τ − t)

n
) /n! if 0 6 t 6 τ,

τn/n! if τ 6 t 6 1.
(3.1)

Consequently, if t ∈ [0, 1] and n ∈ N the following inequality

‖Xn (t)‖p 6 1/
[
n! (1 + np)1/p

]
(3.2)

holds. From (3.2) we infer that Xn
a.c.−−→ 0 and that {Xn}∞n=1 defines well random

process on any of the classical Banach sequence spaces on Lp [0, 1]. Further, if
n ∈ N from (3.1) we have that Xn : [0, 1] → C [0, 1] and

‖Xn (s) −Xn(t)‖∞ = max {|s− t|n , |(1 − t)
n − (1 − s)

n|} /n!

if 0 6 s, t 6 1, i.e. Xn is continuous and {Xn}∞n=1 ⊆ Mdx ([0, 1] ,L [0, 1] ,C [0, 1]).
Since

‖Xn (t)‖∞ = (1 − (1 − t)n) /n!

the same conclusions are true for the underlying Banach space C [0, 1]. In this
setting the sequence of random variables {Xn}∞n=1 converges to zero in the r-th
mean for all r ∈ N. For, if n ∈ N and s ∈ R we have

Fn (s) ,

∫

{‖Xn‖∞6s}
dx =





0 if s 6 0,

1 − (1 − sn!)
1/n if 0 < s < 1/n!,

1 if s > 1/n!.

(3.3)

In particular, d− limn→∞ ‖Xn‖∞ = H, i.e. the sequence of random variables
{‖Xn‖∞}∞n=1 converges in distribution to the Heaviside function. Now, using (3.3)
we obtain

E (‖Xn‖r
∞) =

∫ 1/n!

0

srdFn(s)
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= (n− 1)!

∫ 1/n!

0

sr (1 − sn!)1/n−1 ds

=
1

nn!r

∫ 1

0

ur (1 − u)1/n−1 du

=
1

nn!r
· Be (r + 1, 1/n)

=
1

nn!r
· Γ (r + 1)Γ (1/n)

Γ(r + 1 + 1/n)

=
r!

nn!r
·

r∏

j=0

(1/n+ j)−1 6
r!

(n− 1)!r
,

i.e. limn→∞ E (‖Xn‖r
∞) = 0. Further, if n ∈ N then

E (Xn) (τ) =
τn

n!
− τn+1

(n+ 1)!
. (3.4)

For, let φ ∈ BV [0, 1] be a complex valued function of bounded variation on [0, 1].
By the Fubini-Tonelli theorem and (3.1) we see that

∫∫

[0,1]×[0,1]

|Xn (t) (τ)| d |φ| (τ) × dt =

∫ 1

0

∫ 1

0

|Xn (t) (τ)|d |φ| (τ) dt

6

∫ 1

0

d |φ| (τ) /n! 6 ‖φ‖BV[0,1] < +∞,

where ‖φ‖BV[0,1] , |φ (0)| + V[0,1] (φ). As it is well known
(
BV [0, 1] , ‖◦‖BV[0,1]

)

becomes a Banach space isometrically isomorphic to (C [0, 1])
∗ (cf. [3, Th. 1.37, p.

16]). Hence,

〈
τn

n!
− τn+1

(n+ 1)!
, dφ (τ)

〉
=

∫ 1

0

(
τn

n!
− τn+1

(n+ 1)!

)
dφ (τ)

=

∫ 1

0

(∫ τ

0

τn − (τ − t)
n

n!
dt+

τn

n!
(1 − τ)

)
dφ (τ)

=

∫ 1

0

∫ 1

0

Xn (t) (τ) dtdφ (τ)

=

∫ 1

0

∫ 1

0

Xn (t) (τ) dφ (τ) dt

=

∫ 1

0

〈Xn(t), dφ〉 dt.

By the uniqueness of the expected value of Xn as it was pointed in Remark 2.6 we
obtain (3.4). In particular, E (Xn) → 0 in C [0, 1].
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Example 3.4. Let Ω = {00, 010, 0110, . . .} ∪ {11, 101, 1001, . . .} and if 0 < p < 1
let q = 1 − p. Given w ∈ Ω we put P(w) = paqb if w contains a zeros and b ones.
Hence (Ω,P) becomes a discrete probability space. For instance, Ω can be seen as
the set of all possible random events in a game consisting in throwing a possible non
calibrated coin successively, assuming that the play ends when the first result occurs
again. Let us consider a separable Hilbert space H endowed with an orthonormal
basis {en}∞n=1. We can represent any element w ∈ Ω as a sequence w = {wm}∞m=1 ,
where wm = 0 except a possible finite number of indices. For instance, we write
010 = {0, 1, 0, 0, 0, . . .} , 1001 = {1, 0, 0, 1, 0, 0, 0, . . .}, etc. Now, for w ∈ Ω and
n ∈ N we will write Yn (w) =

∑n
m=1 wm · em. Then {Yn}∞n=1 ⊆ MP (Ω,P (Ω) ,H).

Further, if for w ∈ Ω we set

Y (w) =

∞∑

m=1

wm · em (3.5)

then Y : Ω → H is a well defined random variable since any series in (3.5) is
reduced to a finite sum. If Xn , Yn − Y , n ∈ N, clearly Ωp

H
(
{Xn}n∈N

)
= Ω.

Indeed, {Xn}∞n=1 converges to zero in the r-th mean for all r ∈ N. For, if n ∈ N
then

P ({‖Xn‖ = 0}) = P

({
00, 010, . . . , 01 . . . 1

(n+1)

0 , 11, 101, . . . , 10 . . . 0
(n)

1

})
(3.6)

= p2
n−1∑

j=0

qj + q2
n−2∑

j=0

pj

= 1 − pqn − pn−1q,

P ({‖Xn‖ = 1}) = P

({
01 . . .

(n)

1 10, 10 . . .
(n)

0 1, 10 . . .
(n)

0 01, . . .

})

= p2qn + pn−1q2 + pnq2 + . . .

= p2qn + pn−1q.

For an integer m > 2 we see that

P
({

‖Xn‖ = m1/2
})

= P

({
01 . . .

(n)

1 1 . . .
(n+m)

1

})
= p2qn+m−1. (3.7)

Using the identities (3.6) and (3.7) we evaluate

E (‖Xn‖r
) =

∞∑

m=0

mr/2 P
({

‖Xn‖ = m1/2
})

(3.8)

= p2qn + pn−1q + p2qn−1
∞∑

m=2

mr/2qm.
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Letting n → ∞ in (3.8) the claim follows. With the notation of Ex. 3.4 we will
show that

lim
n→∞

E (Xn) = 0. (3.9)

For, we will prove that if n ∈ N then

E (Xn) = −
∞∑

υ=n+1

(
pqυ−1 + pυ−2q2

)
eυ (3.10)

and later (3.9) will follows at once. As 0 < p, q < 1 the above series is absolutely
convergent. If g ∈ H the random variable w → 〈Xn (w) , g〉 maps Ω onto the

set
{∑k

s=1 〈g, en+s〉
}∞

k=1
. If m ∈ N set Ωm = {w ∈ Ω : wυ = 0 if υ > m}. Thus

{Ωm}∞m=1 is an increasing sequence of sets and Ω = ∪Ωm. If m ∈ N and m > n we
have

∫

Ω

〈Xn (w) , g〉χΩm (w) dP (w) = −
∫

Ωm

m∑

υ=n+1

wυ 〈eυ, g〉 dP (w) (3.11)

= −
m∑

s=1

〈
s∑

t=1

en+t, g

〉
p2qn+s−1

−
m∑

υ=n+1

〈eυ, g〉 pυ−2q2

= −p
m∑

t=1

〈en+t, g〉
(
qn+t−1 − qn+m

)

−
m∑

υ=n+1

〈eυ, g〉 pυ−2q2.

Since the series
∑∞

m=1 q
mm1/2 converges we conclude that

0 6 lim sup
m→∞

qn+m
m∑

t=1

|〈en+t, g〉| 6 lim sup
m→∞

qn+m ‖g‖m1/2 = 0. (3.12)

From (3.11) and (3.12) we get

lim
m→∞

∫

Ω

〈Xn (w) , g〉χΩm (w) dP (w) = −p
∞∑

t=1

〈en+t, g〉 qn+t−1 (3.13)

−
∞∑

υ=n+1

〈eυ, g〉 pυ−2q2

= −
∞∑

υ=n+1

〈eυ, g〉
(
pqυ−1 + pυ−2q2

)



30 A. L. Barrenechea

=

〈
−

∞∑

υ=n+1

(
pqυ−1 + pυ−2q2

)
eυ, g

〉
.

But for m ∈ N and w ∈ Ω we see that

|〈Xn (w) , g〉|χΩm (w) 6 |〈Xn (w) , g〉| . (3.14)

Moreover,
∫

Ω

|〈Xn (w) , g〉| dP (w) = |〈g, en+1〉|P
({

10 . . . 0
(n+1)

1 , 01 . . .
(n+1)

1 0

})
(3.15)

+

∞∑

k=2

∣∣∣∣∣

k∑

s=1

〈g, en+s〉
∣∣∣∣∣P
({

01 . . .
(n+1)

1 . . .
(n+k)

1 0

})

= |〈g, en+1〉|
(
pn−1q2 + pqn

)

+
∞∑

k=2

∣∣∣∣∣

k∑

s=1

〈g, en+s〉
∣∣∣∣∣ pq

n+k−1.

Further,
∞∑

k=1

∣∣∣∣∣

k∑

s=1

〈g, en+s〉
∣∣∣∣∣ q

k 6 ‖g‖
∞∑

k=1

k1/2qk < +∞. (3.16)

Thus, by (3.15) and (3.16) the random variable w → 〈Xn (w) , g〉 becomes abso-
lutely integrable on Ω. Finally, using (3.14) and the Lebesgue dominated conver-
gence theorem in (3.13) we obtain

∫

Ω

〈X (w) , g〉 dP (w) =

〈
−

∞∑

υ=n+1

(
pqυ−1 + pυ−2q2

)
eυ, g

〉

and (3.10) follows.

4. Random processes and stochastic regularity

Definition 4.1. With the notation of Definition 3.1, let A ∈ B [S (E)]. Then
A is called M-regular for {Xn −X}∞n=1 on the Banach sequence space S (E) if
it preserves its M-stochastic mode of convergence, i.e. if M-limn→∞Xn = X
then M-limm→∞ ‖Am ({Xn −X}∞n=1)‖ = 0. A subset R of S (E) is called M-
regular for the sequence {Xn −X}∞n=1 on S (E) if each element of R is M-regular
for it. Indeed, R will be called simply M-regular on MP (Ω,A,E) and S (E) if
each element of R preserves the M-stochastic mode of convergence of any random
process of [MP (Ω,A,E) ,S (E)].

Remark 4.2. The well known shift operator W ((fn)∞n=1) = (fn+1)
∞
n=1 is linear

and bounded on any of the classical Banach sequences spaces lp (N,C) , c0 (N,C),
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c (N,C) and l∞ (N,C). For conditions concerning to the M-regularity of p (W )
when p is any polynomial the reader can see [6]. That approach could be improved
in various directions, for instance: (1st) What can be said about the M-regularity
of general bounded operators on Banach sequence spaces over C? (2nd) What
happens if we state the same problem replacing C by any other Banach space? The
first question already has its own interest since Banach sequence spaces of complex
or real numbers offer a natural frame to modeling a huge variety of statistical and
numerical analysis processes. Even in this case the determination of the structure
and characterization of bounded operators sometimes constitute a difficult matter.
In particular, the characterization of bounded operators on c (N,C) is a celebrated
result of I. Schur (cf. [13]). For more information on these topics the reader can
see [9], [10]. For a proof of Schur‘s theorem and the characterization of bounded
operators on Banach sequence spaces of complex series see [1].

4.1. M-regularity on [MP (Ω,A, C) , c (N,C)]

If A ∈ B (c (N,C)) there is a unique complex matrix {an,m}∞n,m=0 so that for z ∈
c (N,C) we have

A(z) =

{
an,0λ (z) +

∞∑

m=1

an,m · zm

}∞

n=1

,

where λ (z) = limn→∞ zn. Further,

‖A‖ = sup
n∈N

∞∑

m=0

|an,m| , (4.1)

a0,0 = lim
n→∞

∞∑

m=1

an,m,

a0,m = lim
n→∞

an,m if m ∈ N

and {a0,m}∞m=1 ∈ l1 (N,C) (cf. [1], Corollary 2, p. 20). Let us consider the random
process on c (N,C) induced by Xn = χ[n,+∞), n ∈ N on the probability space
(R,L (R) ,P) , where L (R) is the class of Lebesgue measurable subsets of R and
P (E) =

∫
E∩(0,+∞)

exp (−x) dx if E ∈ L (R). Let A ∈ B (c (N,C)) be defined by the
infinite matrix whose nm-entry is

an,m =





1 if n = m = 0,
0 if n = 0,m ∈ N,
(1 + n)−m if n,m ∈ N.

Then A is ac-regular for the sequence {Xn}∞n=1. For, let ε > 0, m ∈ N. Then

m∑

n=1

P ({|Xn| > ε}) =

m∑

n=1

∫ +∞

n

exp(−x)dx =

m∑

n=1

exp (−n)
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i.e.
∑∞

n=1 P ({|Xn| > ε}) = 1/ (e−1) and Xn
a.c.−−→ 0. If A ({Xn}∞n=1) = {Yn}∞n=1

then

Yn =
∞∑

m=1

(1 + n)−m χ[m,+∞) if n ∈ N. (4.2)

Consequently, for n ∈ N and w ∈ R it is easy to see that

Yn (w) =
1

n

(
1 − 1

(1 + n)
[w]

)
χ[0,+∞) (w) .

Thus {|Yn| > ε} = ∅ if n > 1/ε and so ac-limn→∞ Yn = 0. However, c (N,C) is not
ac-regular for {Xn}∞n=1. For, if B ∈ B (c (N,C)) is defined by the infinite matrix
whose nm-entry is 2−m−1 we write B ({Xn}∞n=1) = {Zn}∞n=1. For w ∈ R we now
evaluate that Zn(w) =

(
1 − 2−[w]

)
/2 for all n ∈ N. If 0 < ε < 1/2 let us choose

υ ∈ N so that ε < (1 − 2−υ) /2. Then,

{|Zn| > ε} ⊇
{
Zn > 2−1 − 2−υ−1

}
= [υ,+∞) ,

i.e. P ({|Zn| > ε}) > exp (−υ). Therefore ac-limn→∞ |Zn| 6= 0 and B is not ac-
regular for the sequence {Xn}∞n=1. Since obviously B is not a d-regular operator
for {Xn}∞n=1 it is also not p-regular nor not ae-regular for it. Finally, if r > 0 then
A becomes Lr-regular for {Xn}∞n=1. For,

Lr - lim
n→∞

Xn = lim
n→∞

E (|Xn|r) = lim
n→∞

exp (−m) = 0.

If n ∈ N using (4.2) Yn becomes a discrete random variable and

E (|Yn|r) =
1

nr

∞∑

m=1

(
1 − 1

(n+ 1)m

)r

P ([m− 1,m))

6
1

nr

∞∑

m=1

[exp (−m) − exp (−m− 1)] =
1

enr
,

i.e. Lr-limn→∞ Yn = 0. However, it is evident that B is not Lr-regular for {Xn}∞n=1.

Problem 4.3. Is it possible to characterize the subclasses of M-regular operators
of B (c (N,C)) for the sequence {Xn}∞n=1? In the general case, what relevant
properties can be developed concerning to those classes? Can be determinated
some subsets of B (c (N,C)) that are M-regular for all random process on any
unrestricted probability space (Ω,A,P)? A partial answer to the last question is
given in the following Th. 4.5. To this end remember the following.

Definition 4.4. A covering of a non empty set X is a subset U of P (X) so that
X = ∪U . It is said that the covering U of X is locally finite if any element of X
belongs to a finite number of elements of U . Further, a locally finite covering U of
X is called bounded if

η = sup {card {U ∈ U : x ∈ U} : x ∈ X} <∞.

Then η ∈ N and we will say that η is the least upper bound of U .
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Theorem 4.5. (i) Let U = {Un}∞n=1 be a locally finite bounded covering of N
with a least upper bound η. If A ∈ B (c (N,C)) is defined by any infinite matrix
{an,m}∞n,m=0 so that an,m = 0 if m /∈ Un then A is ac-regular for any random

process on the Banach space sequence c (N,C).

(ii) Let A ∈ B (c (N,C)) induced by an infinite matrix of non negative coefficients
{an,m}∞n,m=0 with a0,0 = 0. Then A is Lr- regular if 1 6 r < +∞.

Proof. (i) If {Xn}∞n=1 ∪ {X} ⊆ MP (Ω,A,E) and X = ac-limn→∞Xn we know
that X = ae-limn→∞Xn and by Corollary 2.3 it is defined a random process on
c0 (N,C). If n ∈ N let Yn ,

∑∞
m=1 an,m (Xm −X). So, if ε > 0 then {|Yn| > ε} = ∅

or

{|Yn| > ε} ⊆
{
∑

m∈Un

|an,m (Xm −X)| > ε

}

⊆
{

sup
m∈Un

|Xm −X |
∑

m∈Un

|an,m| > ε

}

⊆
{

sup
m∈Un

|Xm −X | > ε/ ‖A‖
}

⊆
⋃

m∈Un

{|Xm −X | > ε/ ‖A‖} .

Consequently, if N ∈ N we estimate

N∑

n=1

P ({|Yn| > ε}) 6

N∑

n=1

∑

m∈Un

P ({|Xm −X | > ε/ ‖A‖})

6
∑

m∈∪N
n=1Un

P ({|Xm −X | > ε/ ‖A‖}) card{n : m ∈ Un}

6 η
∞∑

m=1

P ({|Xm −X | > ε/ ‖A‖}) .

Therefore,

∞∑

n=1

P ({|Yn| > ε}) 6 η

∞∑

m=1

P ({|Xm −X | > ε/ ‖A‖}) <∞

and our claim follows.
(ii) Let A ∈ B (c (N,C)) defined by an infinite matrix {an,m}n,m∈N

with non neg-
ative coefficients and a0,0 = 0. Let {Zm}∞m=1 ∪ {Z} be a sequence of random

variables defining a Banach random process on c (N,C) so that Zm
Lr

−→ Z. Giving
n ∈ N set Wn , An ({Zm − Z}∞m=1). Of course we may assume that A 6= 0. Con-
sider the measure space (N,P (N) , µn) so that µn (S) , ‖A‖−1∑

m∈S an,m. Let us
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consider the function

F : N×Ω→ C, F (m,w) , Zm (w) − Z (w) .

Giving ζ ∈ C and r > 0 it is easy to see that

{|F − ζ| < r} =

∞⋃

m=1

{m} × {|Zm − Z| < r} ,

i.e. {|F − ζ| < r} is clearly a measurable subset of N×Ω and since ζ and r are
arbitrary F is measurable. Indeed, for almost all w ∈ Ω and m ∈ N there is a
positive constant K (w) so that |Zυ (w)| 6 K(w) if υ ∈ N and we have

∫

{1,...,m}
|F (υ,w)| dµn(υ) = ‖A‖−1

m∑

υ=1

an,υ |Zυ (w) − Z (w)| (4.3)

6 2K(w) ‖A‖−1
m∑

υ=1

an,υ

6 2K(w).

By an easy application of the monotone convergence theorem in (4.3) we deduce
that F (◦, w) ∈ L1 (N, µn). Further,

F (◦, w) = lim
m→∞

m∑

υ=1

(Zυ (w) − Z (w))χ{υ} (◦)

and if m ∈ N we have that
∣∣∣∣∣

m∑

υ=1

(Zυ (w) − Z (w))χ{υ} (◦)
∣∣∣∣∣ 6 |F (◦, w)|

on N. By Lebesgue’s dominated convergence theorem for almost all w ∈ Ω we get

Wn(w) =
∞∑

m=1

an,m (Zm (w) − Z (w)) (4.4)

= ‖A‖
∞∑

m=1

(Zm (w) − Z (w))µn ({m})

= ‖A‖
∞∑

m=1

(Zm (w) − Z (w))

∫

N

χ{m} (υ)dµn (υ)

= ‖A‖
∫

N

F (υ,w) dµn(υ).

Using (4.4) and applying the Minkowski’s integral inequality we now write

E (|Wn|r)1/r
=

(∫

Ω

|Wn(w)|r dP(w)

)1/r

(4.5)
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= ‖A‖
(∫

Ω

∣∣∣∣
∫

N

F (m,w) dµn(m)

∣∣∣∣
r

dP(w)

)1/r

6 ‖A‖
∫

N

(∫

Ω

|F (m,w)|r dP(w)

)1/r

dµn(m)

= ‖A‖
∫

N

(∫

Ω

|Zm(w) − Z(w)|r dP(w)

)1/r

dµn(m)

= ‖A‖
∫

N

E (|Zm − Z|r)1/r
dµn(m)

=
∞∑

m=1

an,m E (|Zm − Z|r)1/r
.

Finally, the sequence {E (|Zm − Z|r)}∞m=1 is bounded and the claim follows letting
n→ ∞ in (4.5), using (4.1) and that a0,0 = 0. �

4.2. M-regularity on [Mdt ([0, 1] ,L [0, 1] , C [0, 1]) , lp (C [0, 1])]

Theorem 4.6. Let U = {Un}n∈N be a disjoint bounded covering of N with a least
upper bound η. Given m ∈ N let n (m) be the unique positive integer so that
m ∈ Un(m). Let 1 < p, q < ∞ so that 1/p+ 1/q = 1 and let a , {an,m}∞n,m=1 be a

set of complex numbers so that the series σ (a) ,
∑∞

m=1

∣∣an(m),m

∣∣q is finite. Given
x ∈ lp (C [0, 1]) set

Aa (x) =

{
∑

m∈Un

an,m · xm

}∞

n=1

.

Then
(i) Aa (x) ∈ lp (C [0, 1]).

(ii) Aa ∈ B [lp (C [0, 1])].

(iii) The class R , {Aa : σ (a) <∞} is simply almost completely regular on

[Mdx ([0, 1] ,L [0, 1] ,C [0, 1]) , lp (C [0, 1])] .

(iv) The class R , {Aa : σ (a) <∞} is regular in the mean on any random process
{Xn}∞n=1 ∪ {X} so that

∑∞
n=1 ‖E (Xn −X)‖p

∞ <∞.

Proof. (i) Since U is a bounded covering of N then Aa (x) →֒ C [0, 1] if x ∈
lp (C [0, 1]). Indeed, if a ∈ R and N ∈ N we obtain

[
N∑

n=1

‖Aa
n (x)‖p

∞

]1/p

6

[
N∑

n=1

(
∑

m∈Un

|an,m| ‖xm‖∞

)p]1/p

(4.6)

6
∑

m∈∪1∪···∪UN

‖xm‖∞

(
∑

n∈N:m∈Un

|an,m|p
)1/p
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=
∑

m∈∪1∪···∪UN

‖xm‖∞ ·
∣∣an(m),m

∣∣

6 σ (a)
1/q · ‖x‖lp(C[0,1])

Letting N → ∞ from (4.6) we see that Aa (x) ∈ lp (C [0, 1]) and

‖Aa(x)‖lp(C[0,1]) 6 σ (a)
1/q · ‖x‖lp(C[0,1]) .

(ii) It is now clear that Aa is linear and that ‖Aa‖ 6 σ (a)
1/q.

(iii) Let {Xm}∞m=1 ∪ {X} be a random process of Mdx ([0, 1] ,L [0, 1] ,C [0, 1]) on
the Banach sequence space lp (C [0, 1]) so that Xm

a.c.−−→ X . Given a ∈ R we will
show that Aa

n ({Xm −X}∞m=1)
a.c−−→ 0. For, evidently we can assume σ (a) > 0. If

ε > 0 and n ∈ N we write

{
‖Aa

n ({Xm −X}∞m=1)‖∞ > ε
}

=





∥∥∥∥∥
∑

m∈Un

an,m · (Xm −X)

∥∥∥∥∥
∞

> ε





⊆
{
σ (a)

1/q
∑

m∈Un

‖Xm −X‖∞ > ε

}

⊆
⋃

m∈Un

{
‖Xm −X‖∞ >

ε

σ (a)1/q · card (Un)

}

⊆
⋃

m∈Un

{
‖Xm −X‖∞ >

ε

σ (a)
1/q · η (a)

}
.

Consequently, if N ∈ N we see that

N∑

n=1

∫ 1

0

χ{‖Aa
n({Xm−X}∞m=1)‖∞>ε}dt 6

N∑

n=1

∑

m∈Un

∫ 1

0

χ{
‖Xm−X‖∞> ε

σ(a)1/q·η(a)

}dt

6
∞∑

m=1

∫ 1

0

χ{
‖Xm−X‖∞> ε

σ(a)1/q·η(a)

}dt <∞,

and our claim follows.
(iv) Let Xn

E−→ X , a ∈ R. If n ∈ N and

Yn , Aa
n ({Xm −X}∞m=1) ,

∑

m∈Un

an,m · (Xm −X)

it will suffice to show that ∞∑

n=1

‖E (Yn)‖p
∞ <∞. (4.7)

Indeed, we can assume X = 0 a.e. Thus, if υ ∈ N and

‖φ1‖BV[0,1] = · · · = ‖φυ‖BV[0,1] = 1
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we have
∣∣∣∣∣

υ∑

n=1

〈E (Yn) , φn〉
∣∣∣∣∣ =

∣∣∣∣∣

υ∑

n=1

∫ 1

0

(∫ 1

0

Yn(t)(s)dφn (s)

)
dt

∣∣∣∣∣
∣∣∣∣∣

υ∑

n=1

∫ 1

0

(∫ 1

0

∑

m∈Un

an,mXm (t) dφn (s)

)
dt

∣∣∣∣∣
∣∣∣∣∣

υ∑

n=1

∑

m∈Un

an,m 〈E(Xm), φn〉
∣∣∣∣∣

6

υ∑

n=1

∑

m∈Un

|an,m| ‖E(Xm)‖∞

6

υ∑

n=1

(
∑

m∈Un

‖E(Xm)‖p
∞

)1/p( ∑

m∈Un

|an,m|q
)1/q

6

( ∞∑

n=1

‖E (Xn)‖p
∞

)1/p

σ (a)1/q .

But lp (C [0, 1])
∗ ≈ lq (BV [0, 1]) , where ≈ denotes an isometric isomorphism of

Banach spaces. Therefore,

(
υ∑

n=1

‖E (Yn)‖p
∞

)1/p

= sup
‖φ1‖BV[0,1]=···=‖φυ‖BV[0,1]=1

∣∣∣∣∣

υ∑

n=1

〈E (Yn) , φn〉
∣∣∣∣∣

6

( ∞∑

n=1

‖E (Xn)‖p
∞

)1/p

σ (a)1/q ,

and (4.7) follows since υ is arbitrary. �
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Abstract

Sufficient conditions for existence of random fixed point of a nonexpan-
sive rotative random operator are obtained and existence of random periodic
points of a random operator is proved. We also derive random periodic point
theorem for ǫ- expansive random operator.
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1. Introduction

Random nonlinear analysis has grown into an active research area closely associ-
ated with the study of random nonlinear operators and their properties needed in
solving nonlinear random operator equations (see [7, 18, 21]). The study of random
fixed point theory was initiated by the Prague school of probabilists in the 1950’s
([15, 24]). Random fixed point theorems are of tremendous importance in proba-
bilistic functional analysis as they provide a convenient way of modelling many real
life problems and random methods have also revolutionized the financial markets.
The survey article by Bharucha -Reid [8] in 1976 attracted the attention of several
mathematician and gave wings to this theory. Itoh [17] extended Spacek’s and
Hans’s theorems to random multivalued contraction mappings. In recent years, a
lot of efforts have been made ([2, 3, 4, 5, 6, 16, 22, 23], and references therein) to
show the existence of random fixed points of certain random single valued and mul-
tivalued operators and various applications in diverse area from pure mathematics

39
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to applied sciences have been explored. The aim of this paper is to establish the
existence of random fixed point of nonexpansive rotative random operator in the
setting of Banach spaces. A random analogue of Edelstein theorem to establish
the existence of random periodic points for random single valued ǫ- contractive op-
erator is proved. These results are then used to obtain the random periodic point
of ǫ- expansive random operators. The results proved in this paper improve and
generalize several well known results in the literature [9, 12, 17].

2. Preliminaries

We begin with some definitions and state the notations used throughout this paper.
Let (Ω,Σ) be a measurable space (Σ- sigma algebra) and F be a nonempty subset of
a separable metric space (X, d). A single valued mapping T : Ω → X is measurable if
T−1(U) ∈ Σ for each open subset U of X, where T−1(U) = {ω ∈ Ω : T (ω)∩U 6= ∅}.
A mapping T : Ω × X → X is a random operator if and only if for each fixed
x ∈ X, the mapping T (., x) : Ω → X is measurable and it is continuous if for
each ω ∈ Ω, the mapping T (ω, .) : X → X is continuous. A measurable mapping
ξ : Ω → X is a random fixed point of a random operator T : Ω×X → X if and only
if ξ(ω) = T (ω, ξ(ω))) for each ω ∈ Ω. We denote the set of random fixed points of a
random operator T by RF (T ) and the set of all measurable mappings from Ω into
X by M(Ω, X). For the random operator f : Ω ×X → X , the map f−1

ω : X → X
is defined by f−1

ω (y) = x if and only if f(ω, x) = y.
We denote the nth iterate T (ω, T (ω, T (ω, . . . , T (ω, x) · · · ))) of random operator

T : Ω×X → X by T n(ω, x). The letter I denotes the random operator I : Ω×X →
X defined by I(ω, x) = x and T 0 = I. The random operator T : Ω × X → X is
called random periodic operator with period p ∈ N, if for each x ∈ X and ω ∈ Ω
we obtain T p(ω, x) = I(ω, x). Let B(x0, r) denotes the spherical ball centred at x0

with radius r, defined as the set {x ∈ X : d(x, x0) 6 r}.
Definition 2.1. Let F be a nonempty subset of a separable metric space X . The
random operator T : Ω × F → F is said to be:

(a) k(ω)- contraction random operator if for any x, y ∈ F and ω ∈ Ω, we have

d(T (ω, x), T (ω, y)) 6 k(ω)d(x, y),

where k : Ω → [0, 1) is a measurable map. If k(ω) = 1 for any ω ∈ Ω, then T
is called nonexpansive random operator.

(b) contractive random operator if for any x, y ∈ F and ω ∈ Ω, we have

d(T (ω, x), T (ω, y)) < d(x, y).

(c) ǫ-contractive random operator if for ǫ > 0 and x, y ∈ F with x 6= y and
d(x, y) < ǫ, we have,

d(T (ω, x), T (ω, y)) < d(x, y),
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for every ω ∈ Ω. Obviously, every contractive random operator is ǫ- contrac-
tive random operator for any ǫ > 0.

(d) ǫ-expansive random operator if for ǫ > 0 and x, y ∈ F with x 6= y and
d(x, y) < ǫ, we have

d(T (ω, x), T (ω, y)) > d(x, y), (2.1)

for every ω ∈ Ω. If inequality (2.1) holds for every x, y ∈ X with x 6= y then
T is called an expansive random operator.

Obviously, every expansive random operator is ǫ- expansive random operator
for any ǫ > 0.

Definition 2.2. Let T : Ω×F → F be a random operator, where F is a nonempty
subset of a separable complete metric space X . A measurable mapping ξ : Ω → F is
called a random periodic point of T there exists n > 1 such that T n(ω, ξ(ω)) = ξ(ω),
for every ω ∈ Ω. That is, random periodic point is random fixed point of nth iterate
of T for some n > 1. The least such positive integer n is called period of random
periodic point ξ.

Note that random fixed point of T is also random periodic point of T of period
1 but there exists a random periodic point of T which fails to be the random fixed
point of T as shown in the examples presented below. It is also shown that there
exists a random operator having random periodic point of period 5 but does not
posses the random periodic point of period 3.

Example 2.3. Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measurable
subsets of Ω. Take X = R with d(x, y) = |x− y| , for x, y ∈ R. Define random
operator T from Ω ×X to X as,

T (ω, x) =

{
ω2 − x, if (ω, x) ∈ Ω × [0, 1]

ω2 − x− 1, otherwise.

Define the measurable mapping ξ : Ω → X as ξ(ω) = 1
2 (3ω2 − 1), for every ω ∈ Ω.

Now ξ is a random periodic point of T with period 2 but it fails to be a random
fixed point of T.

Example 2.4. Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measurable
subsets of Ω. Take X = R with d(x, y) = |x− y| , for x, y ∈ R. Define random
operator T from Ω×X to X as, T (ω, 1) = 3, T (ω, 2) = 5, T (ω, 3) = 4, T (ω, 4) = 2,
T (ω, 5) = 1 and T (ω, x) = x− ω, when x /∈ {1, 2, 3, 4, 5}.

Define measurable mapping ξ : Ω → X as ξ(ω) = 1, for every ω ∈ Ω. Note that
ξ is a random periodic point of period 5. It is also noted that random operator
T in this example does not posses random fixed point because for any ξ to be the
random fixed point, we must have T (ω, ξ(ω)) = ξ(ω), for every ω ∈ Ω. But this
random operator equation holds only for ω = 0.
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Remark 2.5. Let F be a closed subset of a complete separable metric space X and
the sequence of measurable mappings {ξn} from Ω to F be point wise convergent,
that is, ξn(ω) → q := ξ(ω) for each ω ∈ Ω. Then ξ being the limit of the sequence
of measurable mappings is measurable and closedness of F implies ξ is a mapping
from Ω to F. Since F is a subset of a complete separable metric space X , also if T
is a continuous random operator from Ω × F to F then by the lemma 8.2.3 of [1],
the map ω → T n(ω, f(ω)) is measurable for any measurable mapping f from Ω to
F.

Definition 2.6. Let F be a nonempty subset of a Banach space X . The random
operator T : Ω × F → F is said to be (k, n)− rotative random operator for k < n,
if for each ω ∈ Ω,

‖ξ(ω) − T n(ω, ξ(ω))‖ 6 k ‖ξ(ω) − T (ω, ξ(ω))‖ ,

where ξ is a mapping from Ω to F and n ∈ N. The operator T is said to be n−
rotative random operator if it (k, n)− rotative random operator for some k < n
and T is called rotative random operator if it is an n- rotative random operator
for some n ∈ N. Note that any random periodic operator with period p is (0, p)-
rotative random operator.

Remark 2.7. If T : Ω × F → F is k(ω) contraction random operator where F is
a closed subset of Banach space X and n > 1. For any ξ : Ω → F, consider,

‖ξ(ω) − T n(ω, ξ(ω))‖ 6

n∑

k=1

∥∥T k−1(ω, ξ(ω)) − T k(ω, ξ(ω))
∥∥

6 (1 + k(ω) + (k(ω))2 + · · ·
+ (k(ω))n−1) ‖ξ(ω) − T (ω, ξ(ω))‖

< n ‖ξ(ω) − T (ω, ξ(ω))‖ ,

for every ω ∈ Ω. Thus T is a rotative random operator.

3. Periodic and fixed points of rotative random op-

erators

In this section, we first show an existence of a random fixed point of a nonexpansive
rotative random operator which not only provides a random analogue of theorem
17.1 of [11] (see also [12]) but also improves theorem 2.1 of [17] in the sense that it
does not require the boundedness of T (ω, F ) for any ω ∈ Ω. Moreover we replace
continuous condensing random operator by nonexpansive rotative random operator.

Periodic point problems were systematically studied since the beginning of fifties
(see [9, 10, 13, 14, 19, 20]). We show some results on the existence of random
periodic points of random single valued ǫ- contractive operator in the setting of a
separable metric space.
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Theorem 3.1. Let F be a nonempty closed and convex subset of a separable Ba-
nach space X and T : Ω × F → F be a nonexpansive rotative random operator.
Then T has a random fixed point.

Proof. Let ξ : Ω → F be any fixed measurable mapping. For 0 < α < 1 and any
arbitrary measurable mapping η : Ω → F, define Tα : Ω × F → F as,

Tα(ω, η(ω)) = (1 − α)ξ(ω) + αT (ω, η(ω)).

Note that for each α, the random operator Tα has Lipschitz constant α. we may
apply [8] to obtain the sequence of random operators Fα : Ω × F → F such that
Tα(ω, Fα(ω, ξ(ω))) = Fα(ω, ξ(ω)), for every ω ∈ Ω. Consequently, we have

Fα(ω, ξ(ω)) = (1 − α)ξ(ω) + αT (ω, Fα(ω, ξ(ω))).

It can be verified that each Fα is nonexpansive random operator. By iterating Fα

we obtain

F k
α(ω, ξ(ω)) = (1 − α)F k−1

α (ω, ξ(ω)) + αT (ω, F k
α(ω, ξ(ω))), k ∈ N. (3.1)

Note that,

(1 − α)Fα(ω, ξ(ω))

= (1 − α)ξ(ω) + αT (ω, Fα(ω, ξ(ω))) − αFα(ω, ξ(ω))

= (1 − α)ξ(ω) + α(T (ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω))).

Thus for each ω ∈ Ω

(1 − α)(ξ(ω) − Fα(ω, ξ(ω)))

= α(Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))). (3.2)

Now suppose T is a (a, n)-rotative random operator, that is

‖ξ(ω) − T n(ω, ξ(ω))‖ 6 a ‖ξ(ω) − T (ω, ξ(ω))‖ ,

for every ω ∈ Ω. Now,
∥∥Fα(ω, ξ(ω)) − F 2

α(ω, ξ(ω))
∥∥

=

∥∥∥∥
(1 − α)ξ(ω) + αT (ω, Fα(ω, ξ(ω))) − (1 − α)Fα(ω, ξ(ω))

− αT (ω, F 2
α(ω, ξ(ω)))

∥∥∥∥

=

∥∥∥∥
(1 − α)(ξ(ω) − Fα(ω, ξ(ω))) + α(T (ω, Fα(ω, ξ(ω)))

− αT (ω, F 2
α(ω, ξ(ω)))

∥∥∥∥

=

∥∥∥∥
α(Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))) + α(T (ω, Fα(ω, ξ(ω)))

− αT (ω, F 2
α(ω, ξ(ω)))

∥∥∥∥
= α

∥∥Fα(ω, ξ(ω)) − T (ω, F 2
α(ω, ξ(ω)))

∥∥
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6 α ‖Fα(ω, ξ(ω)) − T n(ω, Fα(ω, ξ(ω)))‖
+ α

∥∥T n(ω, Fα(ω, ξ(ω))) − T (ω, F 2
α(ω, ξ(ω)))

∥∥
6 αa ‖Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))‖

+ α
∥∥T n−1(ω, Fα(ω, ξ(ω))) − F 2

α(ω, ξ(ω))
∥∥

= (1 − α)a ‖Fα(ω, ξ(ω)) − ξ(ω)‖
+ α

∥∥T n−1(ω, Fα(ω, ξ(ω))) − F 2
α(ω, ξ(ω))

∥∥ ,

for every ω ∈ Ω. Now we claim that the following inequality holds for every ω ∈ Ω
and m > 2.

α
∥∥Tm−1(ω, Fα(ω, ξ(ω))) − F 2

α(ω, ξ(ω))
∥∥

6 (m− 1) −mα+ αm ‖ξ(ω) − Fα(ω, ξ(ω))‖
+ αm

∥∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥∥ . (3.3)

For this consider,

α
∥∥T (ω, Fα(ω, ξ(ω))) − F 2

α(ω, ξ(ω))
∥∥

= α
∥∥T (ω, Fα(ω, ξ(ω))) − (1 − α)Fα(ω, ξ(ω)) − αT (ω, F 2

α(ω, ξ(ω)))
∥∥

= α

∥∥∥∥
(1 − α)(T (ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω))) − α(T (ω, F 2

α(ω, ξ(ω)))
− T (ω, Fα(ω, ξ(ω))))

∥∥∥∥
6 (1 − α) ‖α(T (ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω)))‖

+ α2
∥∥T (ω, F 2

α(ω, ξ(ω))) − T (ω, Fα(ω, ξ(ω)))
∥∥

= (1 − α)2 ‖ξ(ω) − Fα(ω, ξ(ω))‖ + α2
∥∥T (ω, F 2

α(ω, ξ(ω))) − T (ω, Fα(ω, ξ(ω)))
∥∥

6 (1 − α)2 ‖ξ(ω) − Fα(ω, ξ(ω))‖ + α2
∥∥F 2

α(ω, ξ(ω)) − Fα(ω, ξ(ω))
∥∥ .

So (3.3) is valid for m = 2 and for any ω ∈ Ω.
Assuming the validity of (3.3) for m = j and for any ω ∈ Ω, consider

α
∥∥T j(ω, Fα(ω, ξ(ω))) − F 2

α(ω, ξ(ω))
∥∥

= α
∥∥T j(ω, Fα(ω, ξ(ω))) − (1 − α)Fα(ω, ξ(ω)) − αT (ω, F 2

α(ω, ξ(ω)))
∥∥

= α

∥∥∥∥
(1 − α)(T j(ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω))) + α(T j(ω, Fα(ω, ξ(ω)))

− T (ω, F 2
α(ω, ξ(ω))))

∥∥∥∥
6 α(1 − α)

∥∥T j(ω, Fα(ω, ξ(ω))) − Fα(ω, ξ(ω))
∥∥

+ α2
∥∥T j(ω, Fα(ω, ξ(ω))) − T (ω, F 2

α(ω, ξ(ω)))
∥∥

6 jα(1 − α) ‖Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))‖
+ α2

∥∥T j−1(ω, Fα(ω, ξ(ω))) − F 2
α(ω, ξ(ω))

∥∥
6 jα(1 − α) ‖Fα(ω, ξ(ω)) − T (ω, Fα(ω, ξ(ω)))‖

+ α[(j − 1) − jα+ αj ] ‖ξ(ω) − Fα(ω, ξ(ω))‖
+ αj+1

∥∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥∥

6 j(1 − α)2 + α2[(j − 1) − jα+ αj ] ‖ξ(ω) − Fα(ω, ξ(ω))‖
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+ αj+1
∥∥Fα(ω, ξ(ω)) − F 2

α(ω, ξ(ω))
∥∥

6 [j − (j + 1)α+ αj+1] ‖ξ(ω) − Fα(ω, ξ(ω))‖
+ αj+1

∥∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥∥ .

So by induction inequality (3.3) is valid for every ω ∈ Ω and m > 2.
Now consider, for ω ∈ Ω

∥∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥∥
6 (1 − α)a ‖Fα(ω, ξ(ω)) − ξ(ω)‖

+ α
∥∥T n−1(ω, Fα(ω, ξ(ω))) − F 2

α(ω, ξ(ω))
∥∥

6 (1 − α)a ‖Fα(ω, ξ(ω)) − ξ(ω)‖
+ [(n− 1) − nα+ αn] ‖ξ(ω) − Fα(ω, ξ(ω))‖
+ αn

∥∥Fα(ω, ξ(ω)) − F 2
α(ω, ξ(ω))

∥∥ .

It further implies that

(1 − αn)
∥∥Fα(ω, ξ(ω)) − F 2

α(ω, ξ(ω))
∥∥

6 [(1 − α)a+ (n− 1) − nα+ αn] ‖ξ(ω) − Fα(ω, ξ(ω))‖ ,

for every ω ∈ Ω. Now we arrive at
∥∥Fα(ω, ξ(ω)) − F 2

α(ω, ξ(ω))
∥∥

6 (1 − αn)−1[(1 − α)a+ (n− 1) − nα+ αn] ‖ξ(ω) − Fα(ω, ξ(ω))‖
6 (a+ n)(1 − α)(1 − αn)−1 − 1 ‖ξ(ω) − Fα(ω, ξ(ω))‖

= [(a+ n)(

n−1∑

i=0

αi)−1 − 1] ‖ξ(ω) − Fα(ω, ξ(ω))‖

= g(α) ‖ξ(ω) − Fα(ω, ξ(ω))‖ ,

for every ω ∈ Ω, where g(α) = [(a + n)(
∑n−1

i=0 α
i)−1 − 1]. Since g is continuous

and decreasing for α ∈ (0, 1] with g(1) = a
n < 1, there exists b ∈ (0, 1] such that

g(1) < 1 for α ∈ (b, 1]. For such α, the sequence of measurable mappings defined
by ηn(ω) = Fn

α (ω, ξ(ω)) → η(ω), for each ω ∈ Ω, η : Ω → F, being the limit of the
sequence of measurable functions, is also measurable (see remark 2.6). From (3.1)
it follows that η is a random fixed point of T. �

Example 3.2. Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measurable
subsets of Ω. Take X = R with d(x, y) = |x− y| , for x, y ∈ R. Define random
operator T from Ω ×X to X as, T (ω, x) = ω − x.

Define a fixed measurable mapping ξ : Ω → X as ξ(ω) = ω
3 , for every ω ∈ Ω.

Note that T is nonexpansive random operator. Since random operator equation
T 2(ω, ξ(ω)) = ξ(ω) holds for every ω ∈ Ω, therefore it is (2, 1)−rotative random
operator. Thus the conditions of Theorem 3.1 are satisfied. Moreover a measurable
mapping η : Ω → X defined as η(ω) = ω

2 , for every ω ∈ Ω, serve as a unique random
fixed point of T.
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Theorem 3.3. Let X be a separable metric space and T : Ω × X → X be a ǫ-
contractive random operator. Let ξ0 : Ω → X be any measurable mapping such that
a sequence {T n(ω, ξ0(ω))} has a point wise convergent subsequence of measurable
mappings. Then T has a random periodic point.

Proof. Let {T ni(ω, ξ0(ω))} be a subsequence of {T n(ω, ξ0(ω))} such that T ni(ω, ξ0
(ω)) → ξ(ω) for each ω ∈ Ω as ni → ∞ where {ni} is a strictly increasing sequence
of positive integers. The mapping ξ : Ω → X being point wise limit of sequence
of measurable mappings is measurable. Define sequence of measurable mappings
ξi : Ω → X as ξi(ω) = T ni(ω, ξ0(ω)). Given ǫ > 0, there exists an integer n0 such
that

d(ξi(ω), ξ(ω)) <
ǫ

4
, for i > n0 and ω ∈ Ω.

Put k = ni+1 − ni. Consider,

d(ξi+1(ω), T k(ω, ξ(ω))) = d(T k(ω, ξi(ω)), T k(ω, ξ(ω)))

< d(ξi(ω), ξ(ω)) <
ǫ

4
, for each ω ∈ Ω.

Now,

d(ξ(ω), T k(ω, ξ(ω)))

6 d(ξi+1(ω), T k(ω, ξ(ω))) + d(ξi+1(ω), ξ(ω))

<
ǫ

4
+
ǫ

4
=
ǫ

2
, for every ω ∈ Ω.

Now we claim that ξ is a random periodic point of T. To prove this, assume that
η : Ω → X be any measurable mapping such that η(ω) = T k(ω, ξ(ω)) but

η(ω) 6= ξ(ω), for some ω ∈ Ω. (3.4)

Which implies that 0 < d(η(ω), ξ(ω)) < ǫ. As T is a ǫ- contractive random operator
therefore for ω ∈ Ω for which (3.4) holds, we have

d(T (ω, ξ(ω)), T (ω, η(ω))) < d(ξ(ω), η(ω)).

Define h : Ω ×X2 → R as, h(ω, x(ω), y(ω)) = d(T (ω,x(ω)),T (ω,y(ω)))
d(x(ω),y(ω)) , where x(ω) 6=

y(ω) ∈ X for each ω ∈ Ω. Now h(ω, ., .) is continuous at (ξ(ω), η(ω)) for every
ω ∈ Ω for which (3.4) is valid.

Take 0 < α < 1, then there exists δ > 0 such that x(ω) ∈ B(ξ(ω), δ) and
y(ω) ∈ B(η(ω), δ) gives

d(T (ω, x(ω)), T (ω, y(ω))) < αd(x(ω), y(ω)).

As, lim
r→∞

T k(ω, ξr(ω)) = T k(ω, ξ(ω)) = η(ω), for every ω ∈ Ω. So there exists

n1 > n0 such that
d(ξr(ω), ξ(ω)) < δ
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and
d(T k(ω, ξr(ω)), η(ω)) < δ,

for r > n1 and ω ∈ Ω. Hence we have

d(T (ω, ξr(ω)), T (ω, T k(ω, ξr(ω)))) < αd(ξr(ω), T k(ω, ξr(ω))). (3.5)

Consider,

d(ξr(ω), T k(ω, ξr(ω)))

6 d(ξr(ω), ξ(ω)) + d(ξ(ω), T k(ω, ξ(ω))) + d(T k(ω, ξ(ω)), T k(ω, ξr(ω)))

<
ǫ

4
+
ǫ

2
+
ǫ

4
= ǫ, (3.6)

for r > n1 > n0 and ω ∈ Ω for which (3.4) holds. Now using (3.5) and (3.6), we
have

d(T (ω, ξr(ω)), T (ω, T k(ω, ξr(ω))))

< αd(ξr(ω), T k(ω, ξr(ω))) < d(ξr(ω), T k(ω, ξr(ω))) < ǫ,

for r > n1. Since T is a ǫ- contractive random operator so for r > n1 and q > 0,
we have

d(T q(ω, ξr(ω)), T q(ω, T k(ω, ξr(ω))))

< d(ξr(ω), T k(ω, ξr(ω))) <
ǫ

α
.

Put q = nr+1 − nr, we have d(ξr+1(ω), T k(ω, ξr+1(ω))) < ǫ
α . Hence,

d(ξs(ω), T k(ω, ξs(ω))) < ǫαs−r.

Now,

d(ξ(ω), η(ω)) 6 d(ξ(ω), ξs(ω)) + d(ξs(ω), T k(ω, ξs(ω)))

+d(T k(ω, ξs(ω)), η(ω)) → 0, as s→ ∞.

for those ω ∈ Ω for which (3.4) holds. This contradiction concludes the result. �

Corollary 3.4. If in theorem 3.2, the random periodic point ξ (say) of T satisfies

d(ξ(ω), T (ω, ξ(ω))) < ǫ, for every ω ∈ Ω. (3.7)

Then ξ is a random fixed point of T.

Proof. Let k be the positive integer such that T k(ω, ξ(ω)) = ξ(ω), for every ω ∈ Ω.
If ξ is not a random fixed point of T, then ξ(ω) 6= T (ω, ξ(ω) for some ω ∈ Ω. Since
T is ǫ- contractive random operator, using (3.7) we have

d(ξ(ω), T (ω, ξ(ω))) = d(T k(ω, ξ(ω)), T k+1(ω, ξ(ω)))

< d(ξ(ω), T (ω, ξ(ω))).

This contradiction concludes the proof. �
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Remark 3.5. If X is a separable compact metric space and T : Ω×X → X is an
ǫ- contractive random operator. Then applying theorem 3.3, we conclude that T
has a random periodic point.

Theorem 3.6. Let X be a separable compact metric space and T : Ω × X → X
be an ǫ- contractive random operator. Then T has finitely many random periodic
points.

Proof. Let ξ, ζ : Ω → X be two random periodic points of T with ξ(ω) 6= ζ(ω)
and d(ξ(ω), ζ(ω)) < ǫ for some ω ∈ Ω. Let m,n > 1 be two integers such
that Tm(ω, ξ(ω)) = ξ(ω) and T n(ω, ζ(ω)) = ζ(ω) for every ω ∈ Ω. Obviously
Tmn(ω, ξ(ω)) = ξ(ω) and Tmn(ω, ζ(ω)) = ζ(ω) for each ω ∈ Ω. Now consider,

d(ξ(ω), ζ(ω)) = d(Tmn(ω, ξ(ω)), Tmn(ω, ζ(ω)))

< d(ξ(ω), ζ(ω)),

which is contradiction. Therefore any two random periodic point of T must be
at least ǫ- apart. Compactness of X prevents us defining infinitely many random
periodic points from Ω ×X to X. �

Acknowledgement. The authors are thankful to referee for precise remarks to
improve the presentation of the paper.
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Abstract

We describe the results of analyzing the performance model of a finite-
source retrial queueing system with the probabilistic model checker PRISM.
The system has been previously investigated with the help of the performance
modeling environment MOSEL; we are able to accurately reproduce the re-
sults reported in literature. The present paper compares PRISM and MOSEL
with respect to their modeling languages and ways of specifying performance
queries and benchmark the executions of the tools.

1. Introduction

The performance analysis of computing and communicating systems has always
been an important subject of computer science. The goal of this analysis is to
make predictions about the quantitative behavior of a system under varying con-
ditions, e.g., the expected response time of a server under varying numbers of

∗The work is supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project. The project
is implemented through the New Hungary Development Plan, co-financed by the European Social
Fund and the European Regional Development Fund.
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service requests, the average utilization of a communication channel under varying
numbers of communication requests, and so on.

To perform such an analysis, however, first an adequate mathematical model of
the system has to be developed which comprises the interesting aspects of the sys-
tem but abstracts away from details that are irrelevant to the questions addressed.
Originally, these models were developed purely by manual efforts, typically in for-
mal frameworks based on queuing theory, stochastic Petri networks, and the like,
which can be ultimately translated into continuous time Markov chains (CTMCs)
as the fundamental mathematical basis [18]. Since the manual creation of com-
plex models is tedious and error-prone, specification languages and corresponding
tools were developed that automated the model creation from high-level system
descriptions. Since the generated models cannot typically be solved analytically,
simulation-based techniques were applied in order to predict their quantitative
behavior from a large number of sampled system runs. Latter on, however, the
underlying systems of equations were solved (for fixed parameter values) by iter-
ative numerical calculations, thus deriving (mathematically exact but numerically
approximated) solutions for the long-term (steady state) behavior of the system.

One tool of this kind is MOSEL (Modeling, Specification, and Evaluation Lan-
guage) [14, 3] with its latest incarnation MOSEL-2 [15]. The software has a high-
level specification language for modeling interconnected queue networks where tran-
sitions execute at certain rates to move entities across queues. The environment
supports various back ends for simulating the model system or for computing nu-
merical solutions of the derived system of steady-state equations. In particular, it
may construct a stochastic Petri net model as input to the SPNP solver [10].

While above developments emerged in the performance modeling and evalu-
ation community, also the formal methods community has produced theoretical
frameworks and supporting tools that are, while coming from a different direction,
nevertheless applicable to performance analysis problems. Originally, the only goal
of formal methods was to determine qualitative properties of systems, i.e., prop-
erties that can be expressed by formal specifications (typically in the language of
temporal logic).

In the last couple of years, however, the formal methods community also got
more and more interested in systems that exhibit stochastic behavior, i.e., systems
whose transitions are executed according to specific rates (respectively probabili-
ties); this gives rise to continuous time (respectively discrete time) Markov chains
like those used by the performance modeling community and to questions about
quantitative rather than qualitative system properties. To pursue this new direc-
tion of quantitative verification [12], model checking techniques were correspond-
ingly extended to stochastic/probabilistic model checking [13].

A prominent tool in this category is the probabilistic model checker PRISM [16,
9] which provides a high-level modeling language for describing systems that ex-
hibit probabilistic behavior, with models based on continuous-time Markov chains
(CTMCs) as well as discrete-time Markov chains (DTMCs) and Markov decision
procedures (MDPs). For specifying system properties, PRISM uses the probabilis-
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tic logics CSL (continuous stochastic logic) for CTMCs and PCTL (probabilistic
computation tree logic) for DTMCs and MDPs, both logics being extensions of
CTL (computation tree logic), a temporal logic that is used in various classical
model checkers for specifying properties [7]. While some probabilistic model check-
ers are faster, PRISM provides a comparatively comfortable modeling language;
for a more detailed comparison, see [11].

The fact that the previously disjoint areas of performance evaluation and formal
methods have become overlapping is recognized by both communities. While origi-
nally only individual authors hailed this convergence [8], today various conferences
and workshops are intended to make both communities more aware of each others’
achievements [5, 21]. One attempt towards this goal is to compare techniques and
tools from both communities by concrete application studies. The present paper is
aimed at exactly this direction.

The starting point of our investigation is the paper [19] which discusses various
performance modeling tools; in particular, it presents the application of MOSEL
to the modeling and analysis of a retrial queuing system previously described in [1]
and latter refined in [17]. The goal of the present paper is to construct PRISM
models analogous to the MOSEL models presented in [19] for computing the per-
formance measures presented in the above paper, to compare the results derived
by PRISM with those from MOSEL, to evaluate the usability and expressiveness of
both frameworks with respect to these tasks, to benchmark the tools with respect
to their efficiency (time and memory consumption), and finally to draw some over-
all conclusions about the suitability of PRISM to performance modeling compared
with classical tools in this area.

The rest of the paper (which is based on the more detailed technical report [4])
is structured as follows: Section 2 describes the application to be modeled and
the questions to be asked about the model; Section 3 summarizes the previously
presented MOSEL solution; Section 4 presents the newly developed PRISM solu-
tion; Section 5 gives the experimental results computed by PRISM in comparison
to those computed by MOSEL and also gives benchmarks of both tools; Section 6
concludes and gives an outlook on further work.

2. Problem description

2.1. Problem overview

In this section we give a brief overview on the model of the retrial queueing system
presented in [19]. The variable names used latter in the model are indicated in
italics in the textual description. The dynamic behavior of the model is illustrated
by UML state machine diagrams [20].

The system contains a single server and NT terminals. Their behavior is as
follows:

• Intuitively, terminals send requests to the server for processing. If the server
is busy, the terminals retry to send the request latter. More precisely, the
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Figure 1: State machine representation of the server

terminals can be in three different states (which are named in parentheses):

1. ready to generate a primary call (busy),

2. sending repeated calls (retrying) and

3. under service by the server (waiting).

• The server according to its CPU state (cpu) can be operational (cpu=cpu_up)
or non-operational (cpu=cpu_down): if it is operational we distinguish be-
tween two further states (cpu_state): idle (cpu_state=cpu_idle) and busy
(cpu_state=cpu_busy).

• In the initial state of the system, the server is operational (cpu=cpu_up)
waiting for requests (cpu_state=cpu_idle) and all terminals are ready to
generate a primary call.

2.2. Finite state model

The behavior of the system can be described by the state transitions of the terminals
and the server, which occur at different rates.

We extend the standard UML [20] state machine diagram notation and seman-
tics to present our model in an easy-to-read way. According to the standard, the
diagram contains states and transitions; the transitions in different swim-lanes can
occur independently. Our extensions are the following:
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• Every comment of a swim-lane contains a variable name which is changed by
the transition of that lane.

• Each transition is associated with a triple of a label, a guard (in square
brackets) and a rate(in parentheses); if there is no rate indicated, then the
rate equals 1.

• A parallel composition semantics: the set of the states of the composed system
is the Cartesian product of the state sets of the two swim-lanes or state
machines. The composed state machines can make a transition whenever one
of the original state machines can make one, except if multiple transitions in
different original state machines have the same label: it that case, they must
be taken simultaneously.

In Figure 1 we show the state transitions of the server:

t1 (The server starts to serve a primary call) If the server is in operational
state and idle, it can receive a primary call and become busy.

t2 (The server rejects to serve a primary call) If the server is operational
and busy, it can reject a primary call.

t3 (The server starts to serve a retried call) If the server is in operational
state and idle, it can start to serve a repeated call.

t4 (The server finishes a call) If the server is operational and busy, it can finish
the processing of the call.

t5 (An idle server becomes inoperable) If the server is in operational state
and idle, it can become inoperable with rate δ.

t6 (A busy server becomes inoperable) If the server is in operational state
and busy, it can become inoperable with rate γ.

t7 (A server gets repaired) If the server is inoperable, it can become operable
again with rate τ .

The state transitions of the terminal are described in Figure 2:

t1 (The server starts to serve a primary call) The call of a terminal which
issues a primary call is accepted and it becomes a waiting terminal with
probability λ.

t2 (The server rejects a primary call) The call of a terminal which issues a
primary call is rejected and it becomes a retrying terminal with probability λ.

t3 (The server starts to serve a retried call) The call of a terminal which re-
tries a call is accepted and it becomes a waiting terminal with probability ν.

t4 (The server finishes a call) The call of a terminal is finished and it becomes
ready to generate a new primary call again with rate µ.
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Figure 2: State machine representation of the terminals

The system can be represented alternatively by merging the server and the
terminals into a single system as modelled in the original MOSEL model [19]: the
guard conditions of all transitions with the same label are logically conjoined and
their probabilities are multiplied.

2.3. Mathematical model

In this section we describe the mathematical formulation of the queries. The
state of the system at time t can be described by the process X(t)=(cpu(t),
cpu_state(t), retrying_terminals(t)), where cpu(t)=0 (cpu_up) if the server is
operable, cpu(t)=1 (cpu_ down) if the server is not operable, cpu_state(t)=0
(cpu_idle) if the server is idle and cpu_state(t)=1 (cpu_busy) if the server is busy
and retrying_terminals(t) describe the number of repeated calls at time t. The
number of waiting terminals and busy terminals are not expressed explicitly in the
mathematical model. Their values can be calculated according to the following
equations:

• waiting_terminals=0 if cpu_state=cpu_idle,

• waiting_terminals=1 if cpu_state=cpu_busy,

• busy_terminals=NT-(waiting_terminals+retrying_terminals),

Because of the exponentiality of the involved random variables and the finite
number of sources, this process is a Markov chain with a finite state space. Since
the state space of the process X(t), t > 0 is finite, the process is ergodic for all
reasonable values of the rates involved in the model construction. From now on,
we assume that the system is in the steady-state.

We define the stationary probabilities by:

P (q, r, j) = lim
t→∞

P (cpu(t), cpu_state(t), retrying_terminals(t)),

q = 0, 1, r = 0, 1, j = 0, · · · , NT − 1,

The main steady-state system performance measures can be derived as follows:
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• Utilization of the servers

cpuutil =
NT−1∑

j=0

P (0, 1, j)

• Availability of the servers

goodcpu =

1∑

r=0

NT−1∑

j=0

P (0, r, j)

• Utilization of the repairman

repairutil =

1∑

r=0

NT−1∑

j=0

P (1, r, j) = 1 − goodcpu

• Mean rate of generation of primary calls

busyterm = E[NT − cpu_state(t) − retrying_terminals(t); cpu(t) = 0]

=
1∑

r=0

NT−1∑

j=0

(NT − r − j)P (0, r, j)

• Utilization of the sources

termutil =
busyterm

NT

• Mean rate of generation of repeated calls

retravg = E[retrying_terminals(t); cpu(t) = 0] =

1∑

r=0

NT−1∑

j=0

jP (0, r, j)

• Mean number of calls staying in the server

waitall = E[cpu_state(t)] =

1∑

q=0

NT−1∑

j=0

P (q, 1, j)

• Mean number of calls staying in the orbit

retrall = E[retrying_terminals(t)] =
1∑

q=0

1∑

r=0

NT−1∑

j=0

jP (q, r, j)
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• Overall utilization

overallutil = cpuutil+ repairutil+NT ∗ termutil

• Mean number of calls staying in the orbit or in the server

meanorbit = waitall+ retrall

• Mean response times

E[T ] =
E[retrying_terminals(t)] +E[cpu_state(t)]

λ ∗ busyterm

The last equation is essentially a consequence of Little’s Theorem, a classical
result in queuing theory [6], which describes for a queuing system in equilibrium
by the equation T = L/λ the relationship between the long-term average waiting
time T of a request, the long-term average number of requests L pending in the
system, and the long-term average request arrival rate λ. Furthermore, according
to Jackson’s Theorem, a network ofN queues with arrival rates λ may (under rather
loose assumptions) be considered as a single queue with arrival rate λ̄ = λN . This
relationship will become crucial in the use of MOSEL and PRISM described in the
following sections because it allows us to reduce questions about average timing
properties of a system to questions about quantities which can be deduced from
the (long-term) observation of states.

2.4. Questions about the system

Our goal is to study various quantitative properties of the presented models to
get a deeper understanding of the modelled systems. The following properties are
analyzed:

cpuutil The ratio of the time the server spends serving calls compared to the total
execution time (06cpuutil61).

goodcpu The ratio of the time when the server is operable compared to the total
execution time (06goodcpu61).

repairutil The ratio of the time when the server is inoperable compared to the
total execution time (06repairutil61).

busyterm The average number of served terminals while the system is operable
(0 6 busyterm 6 NT).

termutil The ratio of served terminals while the system is operable to the total
number of terminals (06termutil61).

retravg The average number of retrying terminals while the system is operable
(0 6 retravg 6 NT − 1).
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waitall The average number of waiting terminals during the total system execution
time (06waitall61).

retrall The average number of retrying terminals during the total system execu-
tion time (06retrall6NT-1).

overallutil The sum of the system average utilization, i.e., the sum of cpuutil,
repairutil and NT*termutil (06overallutil6NT+1).

meanorbit The average number of retrying terminals and waiting terminals dur-
ing the total system execution time (06retrall6NT).

resptime The mean response time, i.e., the average waiting time till a call of a
terminal is successfully accepted.

2.5. Different versions of the system

In [19], actually four slightly different systems were described:

continuous The presented model.

non-continuous If the server becomes inoperable, then the call has to be retried
(the waiting terminal becomes retrying).

continuous, intelligent It can also reject a call if the server is inoperable (the
original model cannot handle a call if the server is inoperable.

non-continuous, intelligent The combination of the non-continuous and intel-
ligent model.

The latter three variants are not formally described in the present paper. However,
they have been implemented and have been used for the experiments in Section 5.

3. Modeling and analyzing in MOSEL

The MOSEL language (Modeling Specification and Evaluation Language) was de-
veloped at the University of Erlangen. The MOSEL system uses a macro-like
language to model communication networks and computer systems, like stochastic
Petri nets. The MOSEL tool contains some language features, like variables and
functions in the style of the C programming language. The MOSEL system calls
an external tool after having translated the MOSEL code into the respective tool’s
format. For example the Petri net analysis tool SPNP and the state analysis tool
MOSES can be used. Because of page limitation the interested reader is referred
to [4] where the source codes and technical details of our MOSEL model can be
found.
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4. Modeling and analyzing in PRISM

In this section we describe how we translate the model described in Section 2 into
a PRISM model. Further information about the PRISM system can be found in
[16]. In the first subsection we show the source-code of the PRISM model; in the
second subsection we formulate questions in the model.

4.1. Translating the model to PRISM

In this subsection and the following ones, we present the full source code of the
PRISM model (in verbatim) surrounded by detailed comments. The model de-
scription has 4 main parts:

• the type of the model,

• the constant declarations,

• the module declarations and

• the reward specifications.

In our case, all models are represented in Continuous-time Markov chains model,
which is indicated by the keyword stochastic.

stochastic

Constants can be used in two manners:

• uninitialized constants denote parameters of the model and,

• initialized constants denote fixed values.

The parameters of the model are the following constants:

const int NT; // number of terminals

const double lambda; // the rate of primary call generation

const double mu; // the rate of the call servicing

const double nu; // the rate of repeated call generation

const double delta; // the failure rate in idle state of the server

const double gamma; // the failure rate in busy state of the server

const double tau; // the repair rate of the server

In our simulation we do not distinguish between the failure rate in idle and
busy state, so we equal gamma with delta.

We define two pairs of constants to represent the state of the server to make
the model human-readable:

const int cpu_up = 0; // the server is operable

const int cpu_down = 1; // or not

const int cpu_busy = 0; // the server is busy serving a call

const int cpu_idle = 1; // or idle waiting for a call
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The next fragment are the module definitions. A module definition is started
with the module keyword and is closed with the endmodule keyword. All modules
contain state variables and state transitions. We have two modules TERMINALS and
SERVER described in the following subsections

4.2. Terminals

The module TERMINALS represents the set of the terminals. We keep track of the
number of terminals in specific states, because in PRISM it is not possible to have
multiple instances of a module. Thus all variables range from 0 to the maximal
number of terminals, which is denoted by the range indicator within square brackets
in the source code.

module TERMINALS

busyTs : [0..NT] init NT;

retryingTs : [0..NT] init 0;

waitingTs : [0..NT] init 0;

We have the following variables in the model :

• busyTs is the number of terminals, which are capable to generate primary
calls (they are busy with local tasks and may generate calls to the server);

• retryingTs is the number of retrying terminals, i.e., terminals which have
generated an unsuccessful call and are retrying the same call;

• waitingTs is the number of waiting terminals, i.e., terminals which have
issued a successful call to the server and wait for the answer of the call.

In the current model, we have only one server, therefore the number of waiting
terminals never be more than 1. Initially all terminals are busy terminals.

The transitions are represented in form [l] g -> r : u. The transition with
label l occurs if the guard g evaluates to true; the rate of the transition is r,
the values of the state variables are updated according to u. The labels serve as
synchronization identifiers for parallel composition. Transitions with the same label
in different modules execute together, i.e., all guards of the transition must be true
and the total transition rate is the product of the individual transition rates. We
also have to notice that the transitions of the terminals have their counterparts on
the server side, which make the transition guards unique.

The transition with label t1 describes the scenario of a successful primary call:

[t1] busyTs > 0 & waitingTs < NT -> lambda*busyTs :

(busyTs’ = busyTs-1) & (waitingTs’ = waitingTs+1);

The transition occurs if there are some busy terminals and the number of waiting
terminals is lower than the number of terminals. The second part of the guard
condition is purely technical to explicitly state that the value of waitingTs is not
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greater than the maximally allowed value. (According to the model semantics we
know that it never becomes greater than one, because the server serves only one
call at once.) All busy terminals produce that call with rate λ, so the rate is λ
multiplied by the number of busy terminals. After that transition, the number of
busy terminals decreases by one and the number of busy terminals increases by
one.

The transition with label t2 describes the scenario of an unsuccessful primary
call:

[t2] busyTs > 0 & retryingTs < NT -> lambda*busyTs :

(busyTs’ = busyTs-1) & (retryingTs’ = retryingTs+1);

The transition occurs if there are some busy terminals and the number of retry-
ing terminals is lower than the number of terminals. The second part of the guard
condition is also purely technical to explicitly state that the value of waitingTs is
not greater than the maximally allowed value. (According the model semantics we
know that it never becomes grater than maximal number, because the sum of the
terminal variables equals the number of terminals.) All busy terminals produce
that call with rate λ, so the rate is λ multiplied by the number of busy termi-
nals. After that transition the number of busy terminals decreases by one and the
number of busy terminal increases by one.

The transition with label t3 describes the scenario of a successfully repeated
call:

[t3] retryingTs > 0 & waitingTs < NT -> nu*retryingTs :

(retryingTs’ = retryingTs-1) & (waitingTs’ = waitingTs+1);

The transition occurs if there are some retrying terminals and the number of
waiting terminals is smaller than the number of terminals. All retrying terminals
produce the calls with rate ν, so the rate is ν multiplied by the number of busy
terminals. After that transition, the number of retrying terminals decreases by one
and the number of waiting terminals increases by one.

The transition with label t4 describes the scenario of an answer for a waiting
terminal:

[t4] waitingTs > 0 & busyTs < NT -> 1 :

(waitingTs’ = waitingTs-1) & (busyTs’ = busyTs+1);

The transition occurs if there are some waiting terminals and the number of
busy terminals smaller than the number of terminals. Its rate is determined by the
call serving rate on the server side (see below). After that transition, the number of
retrying terminals decreases by one and the number of waiting terminals increases
by one.

endmodule
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4.3. Server

The second module represents the server by two binary state variables. The variable
cpu expresses the operability of the server by the values 0 and 1, which are denoted
by the constants cpu_up and cpu_down, respectively. The variable cpu_state the
state of the server by values 0 and 1, which are denoted by the constants cpu_busy
and cpu_idle, respectively.

module SERVER

cpu : [cpu_up..cpu_down] init cpu_up;

cpu_state : [cpu_busy..cpu_idle] init cpu_idle;

The transition with label t1 describes the server side scenario of a successful
primary call. It occurs, if the server is operable and idle. After the transition, the
server becomes busy.

[t1] cpu = cpu_up & cpu_state = cpu_idle -> 1 :

(cpu_state’ = cpu_busy);

The transition with label t2 describes the server side scenario of an unsuccessful
primary call. It occurs, if the server is operable and busy. After the transition, the
state of the server doesn’t change.

[t2] cpu = cpu_up & cpu_state = cpu_busy -> 1 :

(cpu’ = cpu) & (cpu_state’ = cpu_state);

The transition with label t3 describes the server side scenario of a successful
primary call. It is the same as the transition t1, because the server can’t distinguish
between a primary and a repeated call.

[t3] cpu = cpu_up & cpu_state = cpu_idle -> 1 :

(cpu_state’ = cpu_busy);

The transition with label t4 describes the server side scenario of finishing a call
(a successful call served). It occurs with rate µ and the server becomes idle after
the transition.

[t4] cpu = cpu_up & cpu_state = cpu_busy & mu > 0 -> mu :

(cpu_state’ = cpu_idle);

The transition with label t5 describes the scenario when an idle server becomes
inoperable. It occurs, if the server is operable and idle with rate γ. If a server
becomes inoperable, it keeps its state. After it gets repaired, it continues the
processing, if it was busy at the time of the failure.

[t5] cpu_state = cpu_idle & cpu = cpu_up & delta > 0 -> delta :

(cpu’ = cpu_down);
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The transition with label t6 describes the scenario when a busy server becomes
inoperable. It occurs, if the server is operable and busy with rate δ.

[t6] cpu_state = cpu_busy & cpu = cpu_up & gamma > 0 -> gamma :

(cpu’ = cpu_down);

The transition with label t7 describes the scenario when a server gets repaired.
It occurs, if the server is inoperable with rate τ .

[t7] cpu = cpu_down & tau > 0 -> tau : (cpu’ = cpu_up);

endmodule

4.4. Rewards

The last section of a model description is the declaration of rewards. Rewards
are numerical values assigned to states or to transitions. Arbitrary many reward
structures can be defined over the model and they can referenced by a label. We
use rewards to define the various question defined in Section 2.4.

The first reward is the server utilization (cpuutil). It assigns a value 1 to all
states where the server is operable and busy.

rewards "cpuutil"

cpu = cpu_up & cpu_state = cpu_busy : 1;

endrewards

The reward goodcpu assigns 1 to all states where the server is operable.

rewards "goodcpu" cpu = cpu_up : 1; endrewards

The reward repairutil assigns 1 to all states where the server is inoperable.

rewards "repairutil" cpu = cpu_down : 1; endrewards

The reward busyterm assigns the number of busy terminals to all states where
the server is operable.

rewards "busyterm" cpu = cpu_up : busyTs; endrewards

The reward termutil assigns the ratio of the busy terminals over the total num-
ber of terminals to all states where the server is operable.

rewards "termutil" cpu = cpu_up : busyTs/NT; endrewards

The reward retravg assigns the number of retrying terminals to all states where
the server is operable.

rewards "retravg" cpu = cpu_up : retryingTs; endrewards

The reward waitall assigns the number of waiting terminals to states with such
terminals.
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rewards "waitall" waitingTs > 0 : waitingTs; endrewards

The reward waitall assigns the number of retrying terminals to states with such
terminals.

rewards "retrall" retryingTs > 0 : retryingTs; endrewards

The reward meanorbit assigns the number of retrying and waiting terminals to
states with such terminals.

rewards "meanorbit"

retryingTs > 0 : retryingTs;

waitingTs > 0 : waitingTs;

endrewards

The reward pending computes the number of pending calls (calls by terminals
that are waiting or retrying); the relevance of this reward for computing the mean
response time response will be explained in the next subsection.

rewards "pending"

retryingTs > 0 : retryingTs;

waitingTs > 0 : waitingTs;

endrewards

The reward overallutil assigns to the all states the total number of all busy
elements, i.e., the server, if it is busy or is under repair (a repair unit is busy with
its repair), and all busy terminals.

rewards "overallutil"

cpu = cpu_up & cpu_state = cpu_busy : 1;

cpu = cpu_down : 1 ;

cpu = cpu_up : busyTs;

endrewards

4.5. Questions about the System in PRISM

As we mentioned in the introduction, in PRISM the queries about the CTMC
models can be formulated in CSL (Continuous Stochastic Logic). CSL is a branch-
ing-time logic similar to CTL or PCTL [2]. It is capable to express queries about
both transient and steady-state properties. Transient properties refers to the values
of the rewards at certain times and the steady-state properties refer to long-run
rewards.

The PRISM system support not only evaluating predicates about the rewards,
but also queries about the rewards. In our experiments we used only the following
one CSL construction: R{"l"}=? [ S ]. This query ask for the expected long-run
reward of the structure labelled with l. Most questions about the model described
in Section 2.4 can be formulated as CSL expressions.
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R{"cpuutil"}=? [ S ]

R{"goodcpu"}=? [ S ]

R{"repairuti"}=? [ S ]

R{"busyterm"}=? [ S ]

R{"termutil"}=? [ S ]

R{"retravg"}=? [ S ]

R{"waitall"}=? [ S ]

R{"retrall"}=? [ S ]

R{"overallutil"}=? [ S ]

R{"meanorbit"}=? [ S ]

The response time (resptime) cannot be directly calculated from a CSL query,
because CSL does not allow us to ask questions about execution times (rather than
say probabilities or long-term average rewards). We rather resort to queuing theory
and apply the definition of E[T ] stated in Section 2 which can be expressed as

resptime=pending/(lambda*busyterm)

Since this calculation is not directly expressible as a CSL query, we apply a post-
processor to compute resptime from the values for pending and busyterm gener-
ated by PRISM from above CSL queries. Similar to MOSEL, we can thus reduce
questions about timing properties of a system to the computation of quantities
that can be derived from system states and are thus amenable to CSL queries in
PRISM.

5. Experimental results

In this section, we show the result of the experiments carried through with PRISM.
The parameters used for the experiments are listed in Figure 4; they are the same
as published in [19]. The results of the experiments with PRISM are presented in
diagrams Figure 5, 6, 7, 8, 9, 10, whereas the raw results can be seen in Tables in
[4].

The experiments was performed in two main steps: the execution of the ex-
periments through the GUI of PRISM and the post-processing of the results. We
selected the appropriate CSL query according the Figure 3 and set up the parame-
ters according the Figure 4; after the execution of PRISM the results were exported
to CSV files for further processing. The post processing happened with a help of
Python scripts.

5.1. Analysis results

The diagrams compared with the ones presented in [19] clearly show that the two
models (MOSEL and PRISM) produce identical results for the same parameters.
Comparing the raw results of the experiments, it shows that they are differ only
after the 5th decimal digit. The quality of the results produced with PRISM is this
the same as the ones produced in MOSEL.
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Nr. of the experiment used reward(s)
1 pending and termutil
2 overallutil
3 meanorbit
4 pending and termutil
5 overallutil
6 meanorbit

Figure 3: Rewards calculated in the experiments

Exp. Nr. NT λ µ ν γ/δ τ X axis
1 6 0.8 4 0.5 X axis 0.1 0. 0.01. ..., 0.12
2 6 0.1 0.5 0.5 X axis 0.1 0. 0.01. ..., 0.12
3 6 0.1 0.5 0.05 X axis 0.1 0. 0.01. ..., 0.12
4 6 0.8 4 0.5 0.05 X axis 0.5. 1.0. ..., 4.0
5 6 0.05 0.3 0.2 0.05 X axis 0.5. 1.0. ..., 4.0
6 6 0.1 0.5 0.05 0.05 X axis 0.5. 1.0. ..., 4.0

Figure 4: Parameters of the experiments

Figure 5: Results of the 1st experiment
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Figure 6: Results of the 2nd experiment

Figure 7: Results of the 3rd experiment
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Figure 8: Results of the 4th experiment

Figure 9: Results of the 5th experiment
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Figure 10: Results of the 6th experiment

5.2. Tool benchmarks

A benchmark was carried through to compare the efficiency of the two tools. The
parameters of the machine that was used for the benchmark: P4 2.6GHz with
512KB L2 Cache and 512MB of main memory. Unfortunately MOSEL is not
capable to handle models where the number of terminals (NT ) is greater than 126,
such that the runtime of the benchmarks (which in PRISM especially depend on
NT ) remain rather small.

Both of the tools were tested with the described model using the following
parameters: λ =0.05, µ =0.3, ν =0.2, γ = δ =0.05, τ =0.1. The comparison of the
two tools can be seen in Figure 11 and Figure 12. In Figure 13, we can see a more
detailed description of the PRISM benchmark (the times of the model construction
and model checking are indicated separately).

The following preliminary conclusions can be drawn from benchmark:

• The execution times of the MOSEL system almost stay constant indepen-
dently of NT ;

• The execution times of the PRISM system increase rapidly with the increase
of NT.

• The model construction time in PRISM dominates the execution time rather
than the model checking time (also [11] reports on the overhead of PRISM
for model generation).
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Figure 11: Results of the 2nd experiment

NT MOSEL PRISM
5 0.7125 0.025
10 0.7135 0.047
20 0.715 0.094
50 0.719 0.219
100 0.725 0.596
120 0.728 0.938
150 - 1.550
200 - 2.377

Figure 12: Total execution times of the MOSEL and the PRISM
in seconds

NT Model const. Model checking Total
5 0.015 0.01 0.025
10 0.031 0.016 0.047
20 0.047 0.047 0.094
50 0.141 0.078 0.219
100 0.391 0.205 0.596
120 0.594 0.344 0.938
150 1.071 0.479 1.550
200 1.609 0.768 2.377

Figure 13: Execution times in seconds
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While MOSEL is thus more efficient for smaller models, with PRISM also larger
models can be analyzed. Furthermore, once a PRISM model is constructed, it can
be arbitrarily often model checked with different parameter values (the PRISM “Ex-
periments” feature). For such scenarios, the model checking time is more relevant
than the model construction time.

6. Conclusions

Probabilistic model checkers like PRISM are nowadays able to analyze quantitative
behaviors of concurrent systems in a similar way that classical performance analysis
tools like MOSEL are. In this paper, we reproduced for the particular example of a
retrial queuing system the results of an analysis that were previously generated with
the help of MOSEL. The numerical results were virtually identical such that we can
put confidence on the quality of the analysis. The construction of the models and
the benchmarks of the tools demonstrate the following differences between both
tools:

• The PRISM modeling language allows us to decompose a system into multiple
components whose execution can be synchronized by combined state transi-
tions; this makes the model more manageable than the monolithic MOSEL
model. However, the decomposition can be only based on a fixed number
of components such that NT terminals must be still represented by a single
PRISM module.

• The state transitions in PRISM are described on a lower level than those in
MOSEL: all guard conditions have to be made explicit (while the MOSEL
FROM part of a rule imposes implicit conditions on the applicability of the
rule) and all effects have to be exposed (while the MOSEL TO part of a rule
imposes implicit effects); on the other side, this makes the PRISM rules more
transparent than the MOSEL rules. In any case, the difference is syntactic
rather than fundamental.

• Several kinds of analysis can be expressed in the property specification lan-
guage of PRISM (by the definition of “rewards” and CSL queries for the
long-term values of rewards) on a higher level than in MOSEL (where ex-
plicit calculations have to be written). Like in MOSEL, not every kind of
analysis can be directly expressed in PRISM; especially the average execu-
tion times can be only computed indirectly from the combination of reward
values by external calculations.

• PRISM is also able to answer questions about qualitative system properties
such as safety or liveness properties that are beyond the scope of MOSEL.

• The time for an analysis depends in PRISM on the size of the state space
of the system while it essentially remains constant in MOSEL (which on the
other side puts a rather small limit on the ranges of state variables); the time
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growth factor in PRISM is is significantly super-linear. While we were thus
able to analyze larger systems with PRISM than with MOSEL, it is thus not
yet clear whether the analysis will really scale to very large systems.

• As documented by the PRISM web page, the tool is actively used by a large
community in various application areas; PRISM is actively supported and
further developed (the current release version 3.1.1 is from April 2006, the
current development version is from December 2007). On the other hand,
the latest version 2.0 of MOSEL-2 is from 2003; the MOSEL web page has
not been updated since then.

The use of PRISM for the performance analysis of systems thus seems a promising
direction; we plan to further investigate its applicability by analyzing more sys-
tems with respect to various kinds of features. While there may be still certain
advantages of using dedicated performance evaluation tools like MOSEL, we be-
lieve that probabilistic model checking tools are quickly catching up; on the long
term, it is very likely that the more general capabilities of these systems and their
ever growing popularity will make them also the tools of choice in the performance
evaluation community.

References

[1] Almási, B., Roszik, J., Sztrik, J., Homogeneous Finite-Source Retrial Queues
with Server Subject to Breakdowns and Repairs, Mathematical and Computer Mod-
elling, (2005) 42, 673–682.

[2] Baier, C., Haverkort, B., Hermanns, H., Katoen, J., Model Checking
Continuous-time Markov chains by transient analysis, In 12th annual Symposium
on Computer Aided Verification (CAV 2000), volume 1855 of Lecture Notes in Com-
puter Science, Springer, (2000) 358–372.

[3] Barner, J., Begain, K., Bolch, G., Herold, H., MOSEL — MOdeling, Speci-
fication and Evaluation Language, In 2001 Aachen International Multiconference on
Measurement, Modelling and Evaluation of Computer and Communication Systems,
Aachen, Germany, September 11–14, 2001.

[4] Berczes, T., Guta, G., Kusper, G., Schreiner, W., Sztrik, J., Compar-
ing the Performance Modeling Environment MOSEL and the Probabilistic Model
Checker PRISM for Modeling and Analyzing Retrial Queueing Systems, Techni-
cal Report 07-17, Research Institute for Symbolic Computation (RISC), Johannes
Kepler University, Linz, Austria, December 2007.

[5] Bernardo, M., Hillston, J. (editors), Formal Methods for Performance Eval-
uation: 7th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2007, volume 4486 of Lecture Notes in
Computer Science, Bertinoro, Italy, May 28 – June 2, 2007. Springer.

[6] Cooper, R. B., Introduction to Queueing Theory, North Holland, 2nd edition,
1981.



74 T. Bérczes, G. Guta, G. Kusper, W. Schreiner, J. Sztrik

[7] Clarke, E. M., Grumberg, O., Peled, D. A., Model checking, MIT Press,
Cambridge, MA, USA, 1999.

[8] Herzog, U., Formal Methods for Performance Evaluation, In Ed Brinksma, Holger
Hermanns, and Joost-Pieter Katoen, editors, European Educational Forum: School
on Formal Methods and Performance Analysis, volume 2090 of Lecture Notes in Com-
puter Science, pages 1–37, Lectures on Formal Methods and Performance Analysis,
First EEF/Euro Summer School on Trends in Computer Science, Berg en Dal, The
Netherlands, July 3-7, 2000, Revised Lectures, 2001. Springer.

[9] Hinton, A., Kwiatkowska, M. Z., Norman, G., Parker, D., PRISM: A Tool
for Automatic Verification of Probabilistic Systems, In Holger Hermanns and Jens
Palsberg, editors, Tools and Algorithms for the Construction and Analysis of Systems,
12th International Conference, TACAS 2006, Vienna, Austria, March 27–30, volume
3920 of Lecture Notes in Computer Science, Springer, (2006) 441–444.

[10] Hirel, C., Tuffin, B., Trivedi, K. S., SPNP: Stochastic Petri Nets. Version
6.0, In Boudewijn R. Haverkort, Henrik C. Bohnenkamp, and Connie U. Smith,
editors, Computer Performance Evaluation: Modelling Techniques and Tools, 11th
International Conference, TOOLS 2000, Schaumburg, IL, USA, March 27-31, 2000,
Proceedings, volume 1786 of Lecture Notes in Computer Science, Springer, (2000)
354–357.

[11] Jansen, D. N., Katoen, J.-P., Oldenkamp, M., Stoelinga, M., Zapreev, I.,
How Fast and Fat Is Your Probabilistic Model Checker? An Experimental Perfor-
mance Comparison, In Hardware and Software: Verification and Testing, volume
4899 of Lecture Notes in Computer Science, pages 69–85, Proceedings of the Third
International Haifa Verification Conference, HVC 2007, Haifa, Israel, October 23–25,
2007, 2008, Springer.

[12] Kwiatkowska, M., Quantitative Verification: Models, Techniques and Tools. In
6th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
Cavtat near Dubrovnik, Croatia, September 3–7, 2007, ACM Press.

[13] Norman, G., Kwiatkowska, M., Parker, D., Stochastic Model Checking, In
M. Bernardo and J. Hillston, editors, Formal Methods for Performance Evaluation:
7th International School on Formal Methods for the Design of Computer, Communi-
cation, and Software Systems, SFM 2007, volume 4486 of Lecture Notes in Computer
Science, pages 220–270, Bertinoro, Italy, May 28 – June 2, 2007, Springer.

[14] MOSEL — Modeling, Specification, and Evaluation Language, June 2003.
http://www4. informatik.uni-erlangen.de/Projects/MOSEL.

[15] MOSEL-2, September 2007.
http://www.net.fmi.uni-passau.de/hp/projects-overview/mosel-2.html.

[16] PRISM — Probabilistic Symbolic Model Checker, September 2007.
http://www.prismmodelchecker.org.

[17] Roszik, J., Sztrik, J., Virtamo, J., Performance Analysis of Finite-Source Retrial
Queues Operating in Random Environments, International Journal of Operational
Research, (2007) 2, 254–268.

[18] Stewart, W. J., Performance Modelling and Markov Chains, In Formal Methods
for Performance Evaluation: 7th International School on Formal Methods for the



Evaluating a probabilistic model checker. . . 75

Design of Computer, Communication, and Software Systems, SFM 2007, volume
4486 of Lecture Notes in Computer Science, pages 1–33, Bertinoro, Italy, May 28 –
June 2, 2007, Springer.

[19] Sztrik, J., Kim, C. S., Performance Modeling Tools with Applications, Annales
Mathematicae et Informaticae, (2006) 33, 125–140.

[20] Unified Modeling Language (UML), version 2.1.1, 2007.
http://www.omg.org/technology/documents/formal/uml.htm.

[21] Wolter, K. (editor), Formal Methods and Stochastic Models for Performance Eval-
uation, number 4748 in Lecture Notes in Computer Science, Fourth European Per-
formance Engineering Workshop, EPEW 2007, Berlin, Germany, September 27–28,
2007.

Tamás Bérczes, János Sztrik

Faculty of Informatics, University of Debrecen
Hungary
e-mail:{tberczes,jsztrik}@inf.unideb.hu

Gábor Guta, Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University
Linz, Austria
e-mail: {Gabor.Guta,Wolfgang.Schreiner}@risc.uni-linz.ac.at

Gábor Kusper

Eszterházy Károly College, Eger, Hungary
e-mail: gkusper@aries.ektf.hu





Annales Mathematicae et Informaticae
37 (2010) pp. 77–84
http://ami.ektf.hu

On the skeleton of a finite transformation

semigroup

Attila Egri-Nagyab, Chrystopher L. Nehanivb

aDepartment of Computing Science, Eszterházy Károly College, Hungary
bSchool of Computer Science, University of Hertfordshire, United Kingdom

Submitted 5 October 2010; Accepted 13 December 2010

Dedicated to professor Béla Pelle on his 80th birthday

Abstract

There are many ways to construct hierarchical decompositions of trans-
formation semigroups. The holonomy algorithm is especially suitable for
computational implementations and it is used in our software package. The
structure of the holonomy decomposition is determined by the action of the
semigroup on certain subsets of the state set. Here we focus on this struc-
ture, the skeleton, and investigate some of its properties that are crucial for
understanding and for efficient calculations.

Keywords: transformation semigroup, Krohn-Rhodes decomposition, holon-
omy algorithm

MSC: 20M20, 20M35, 06A06

1. Introduction

The holonomy decomposition [11, 12, 6, 8, 9, 3] is an important proof technique
for the Krohn-Rhodes theory [1, Chapter 5], as it works with transformation semi-
groups, instead of abstract ones, and it is relatively close to the computer scientist’s
way of thinking. Our computer algebra package, SgpDec [5] is now a mature piece
of software, so we can study the holonomy decompositions of semigroups with tens
of thousands of elements. Here we concentrate on simpler examples and study the
underlying structure of the holonomy decomposition, namely the skeleton of the
transformation semigroup [6, 9]. It is important to note that this notion is different
from the skeleton of an abstract semigroup (biordered set of idempotents) and from
the topological concept with the same name.
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Mathematical preliminaries

A transformation semigroup (X,S) is a finite nonempty set X (the state set) to-
gether with a set S of total transformations of X closed under function compo-
sition. A semigroup is a monoid if it contains the identity element, the identity
map in case of transformations. The action on the points (states) x ∈ X natu-
rally extends to set of points: P · s = {p · s | p ∈ P}, P ⊆ X , s ∈ S. The set
O(X) = {X · s | s ∈ S} is the orbit of the state set. For finite transformations
we use two different notations. The traditional matrix notation uses two rows, one
for the elements of X and the second for their corresponding images. We also use
the linear (one-line) notation defined in [7] with slight modifications described in
[4]. The linear notation is a generalization of the cyclic notation for permutations,
therefore the cycle decomposition works as usual. However, for collapsing states we
use [xi1 , . . . , xik

;xi] meaning that xij 7→ xi for all j ∈ {1, . . . , k}. These expressions
can be nested recursively and blended with the cycle notation. This mirrors the
fact that graphically a finite transformation is a bunch of cycles decorated with
trees (incoming collapses). Examples are abundant in Section 3. The linear nota-
tion is proved to be very useful in software implementations and it is expected to
soon have widespread use.

2. The skeleton

From now on we consider transformation monoids instead of transformation semi-
groups. From a categorical viewpoint this is a dangerous step (see [10, p22]), but
in a computational setting it is natural. The augmented orbit of the state set under
the action of the semigroup is O′(X) = O(X) ∪ {X} ∪

{
{x} | x ∈ X

}
, i.e. we add

the state set itself and the singletons. In case of a monoid, X is already in the
orbit.

Definition 2.1 ([6, 9]). The skeleton of a transformation monoid (X,M) is the
augmented orbit equipped with a preorder relation (O′(X),⊆M ). This relation is
the generalized inclusion defined by

P ⊆M Q ⇐⇒ ∃s ∈M such that P ⊆ Q · s P,Q ∈ O′(X), (2.1)

i.e. we can transform Q to include P under the action of M .

The skeleton is a feature of the monoid action, it does not depend on the
actual generating set, therefore it is justified to talk about the skeleton of the
transformation monoid.

It is easy to see that ⊆M is a preorder: it is reflexive, since P ⊆ P · 1, and it is
transitive, since if P ⊆ Q · s1 and Q ⊆ R · s2 then P ⊆ R · s2s1, thus P ⊆M R.
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P

Q · s1
Q

s1

R · s2 R

s2

We also define an equivalence relation on O′(X) by taking the generalized inclusion
in both directions: P ≡M Q ⇐⇒ P ⊆M Q and Q ⊆M P. These equivalence
classes are the strong orbits of the transformation monoid and are denoted by
O1, . . . , Om. For each equivalence class there will be a component in the hierarchical
decomposition.

Height and depth of sets

The height of a set Q ∈ O′(X) is given by the function h : O′(X) → N, which is
defined by h(Q) = 0 if Q is a singleton, and for |Q| > 1, h(Q) is defined by the
length of the longest strict generalized inclusion chain(s) in the skeleton starting
from a non-singleton set and ending in Q:

h(Q) = max
i

(Q1 ⊂M · · · ⊂M Qi = Q),

where |Q1| > 1. The height of (X,M) is h = h(X).
It is also useful to speak of depth values, which are derived from the height

values:

d(Q) = h(X) − h(Q) + 1.

The top level is depth 1.
Calculating the height values establishes the hierarchical levels in the decom-

position, i.e. the number of coordinate positions in the holonomy decomposition is
h(X).

Covers

Considering the inclusion relation (O′(X),⊆), the set of (lower) covers of a subset
P ∈ O′(X) is denoted by C(P ). These are the maximal subsets of P . The com-
ponent of the holonomy decomposition corresponding to a set P is derived from
those elements of M that act on C(P ), given that P is a chosen representative of
some equivalence class. This action is a restriction of the action of M on O′(X).
Obvious properties of covers are:

P =
k⋃

i=1

Pi, Pi ⊆ Pj =⇒ Pi = Pj

where Pi ∈ C(P ) and k = |C(P )|.
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3. Skeletons with salient features

Nonimage covers

Generalized inclusion by definition allows for the existence of (lower) covers of a
set that are not images of the set, i.e. Pi ∈ C(P ) but there is no s ∈ M such that
Pi = P ·s. However, we still have to show that these nonreachable maximal subsets
are indeed possible. Let’s consider the following generator set:
a = ( 1 2 3 4 5 6

1 2 3 1 1 1 ) = [4, 5, 6; 1] has the image {1, 2, 3},
b = ( 1 2 3 4 5 6

4 4 4 5 4 6 ) = ([1, 2, 3; 4], 5) and c = ( 1 2 3 4 5 6
4 4 4 5 6 4 ) = ([1, 2, 3; 4], 5, 6) produce

the image {4, 5, 6} and form a generator set (a transposition and a cycle) for the
symmetric group S3 acting on the image,
d = ( 1 2 3 4 5 6

4 4 4 4 5 5 ) = [1, 2, 3; 4][6; 5] together with these point collapsings S3 produce
the images with cardinality 2,
e = ( 1 2 3 4 5 6

4 4 4 1 2 3 ) = (1, [[5; 2], [6; 3]; 4]) maps {4, 5, 6} to {1, 2, 3} (and permutes 1
and 4),
f = ( 1 2 3 4 5 6

2 3 1 4 4 4 ) = (1, 2, 3)[5, 6; 4] is just a cycle on {1, 2, 3}.
The skeleton of the monoid they generate contains a set {1, 2, 3} which has

nonimage covers, see Fig. 1.

Unfortunately, the existence of nonimage covers makes a computational implemen-
tation slightly more complicated, as we really have to calculate with the generalized
inclusion, which is the same as dealing with two relations (inclusion, and ’image
of’ relation).

Width

It is important to know the bound for the number of states in a component of a
decomposition. These states are determined by the number of covering sets of the
component’s underlying set.

Proposition 3.1. Let C(Q) be the set of covers of Q and |Q| = m, then

|C(Q)| 6

(
m

⌊m
2 ⌋

)
.

Proof. (2Q,⊆) has a maximal antichain (a set of mutually incomparable elements)
consisting of all subsets with ⌊m

2 ⌋ elements. We then apply Dilworth’s Theorem [2],
which says that the width (the size of a largest antichain) of a partially ordered set
is the same as the minimum number of chains whose union is the partially ordered
set itself. This theorem implies that the number of chains needed to cover (2Q,⊆)
is equal to

(
m

⌊m
2 ⌋
)
. Since O(X) does not necessarily equal 2Q (it is a subset of it),

we need the same number of or less chains to cover the elements of O(X) below
Q in the inclusion relation, i.e. the subsets of Q. The number of chains covering



On the skeleton of a finite transformation semigroup 81

Figure 1: The skeleton of a monoid acting on 6 points (see text
for the generators). The nodes are the elements of the augmented
orbit. The boxes are the equivalence classes, the rectangular nodes
the chosen representatives of a class. The box of the equivalence
class is grey if there is a nontrivial subgroup of the monoid acting on
the elements of the equivalence class (these groups are isomorphic
on equivalent elements). The arrows point to the covers of a set.
Dotted arrows indicate nonimage covers. On the side depth values

are indicated.

O(X) below Q is at least the number of the maximal subsets of Q, which are the
covers of Q by definition. �

We show that the maximum value can be achieved, so we have a sharp bound.
We need the generators of the symmetric group Sn:

(2 3 . . . n− 1 1), (2 1 3 . . . n)

and an arbitrary transformation t which collapses ⌈n
2 ⌉ states, thus its rank is ⌊n

2 ⌋.
For instance a transformation t given by:

t(i) =

{
i t 6 ⌈n

2 ⌉
⌈n

2 ⌉ otherwise.

For a concrete example see Fig. 2.
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Figure 2: The skeleton of the monoid generated by
{(1, 2), (1, 2, 3, 4, 5), [4, 5; 3] = ( 1 2 3 4 5

1 2 3 3 3 )}. The top node 5-element
set has 10 covering sets.

Maximum height skeletons

Previous examples may suggest that height could be bounded by the size of the
state set. This is far from being true. For instance the semigroup generated
by {( 1 2 3 4 5 6 7

2 4 1 6 6 7 7 ) = [[[[[3; 1]; 2]; 4], 5; 6]; 7], ( 1 2 3 4 5 6 7
7 2 3 4 5 6 5 ) = [[1; 7]; 5], ( 1 2 3 4 5 6 7

1 2 3 3 5 6 7 ) =
[4; 3]} gives rise to a skeleton with height 21. It is easy to see why these high
skeletons exist: it is possible to have strict generalized inclusion between sets of
the same cardinality. For instance {3, 4} ⊂M {1, 2} if M is generated by s1 =
( 1 2 3 4

1 2 1 1 ) = [3, 4; 1] and s2 = ( 1 2 3 4
3 4 3 4 ) = [1; 3][2; 4], where s1 produces the image

{1, 2}, s2 takes it to {3, 4}, but there is no transformation for the reverse direction.
We do not know an exact bound for the length of the holonomy decompositions

yet, but we can summarize the observations of computational experiments.

Experimental observation 3.2. High skeletons tend to have a low number of
nontrivial holonomy group components with small cardinality.

It seems that in order to build a high skeleton, we need sufficiently many ele-
ments in O(X), and that is provided by the nontrivial group components’ permu-
tations. But on the other hand, if we have a group component with high order,
then its subgroups might also be components on lower levels, thus collapsing the
hierarchy.

It has been shown [6, Chapter XI by Bret Tilson, pp. 287–312] that the length of
the longest essential (containing a nontrivial group) J -class chain in the semigroup
(see cited reference for detailed definitions) is a lower bound for the length of the
holonomy decomposition. Then the obvious guess would be that it is the same as
the length of the longest J -class chains in the semigroups. Again, computational
experiments show that this is not the case. The length of the longest J -chain can
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be smaller, equal to or bigger than the levels of the holonomy decomposition. This
is due to the fact that in general we do not act on the semigroup itself but on
another set.

4. Conclusions and future work

We carried out an initial analysis of hierarchical decompositions of transformation
semigroups using the holonomy algorithm. We showed that when working with
the components’ state sets we have to deal with covers that are not images of the
covered set. We also found a sharp upper bound for the width of the decomposition.
However, other properties of the holonomy decomposition, including its height, still
need further investigation.
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Abstract

Properties of dispersion of block sequences were investigated by J. T. Tóth,
L. Mišík, F. Filip [20]. The present paper is a continuation of the study of
relations between the density of the block sequence and so called dispersion
of the block sequence.

Keywords: dispersion, block sequence, (R)-density.

MSC: Primary 11B05.

1. Introduction

In this part we recall some basic definitions. Denote by N and R+ the set of all
positive integers and positive real numbers, respectively. For X ⊂ N let X(n) =
#{x ∈ X ;x 6 n}. In the whole paper we will assume that X is infinite. Denote by
R(X) = {x

y ;x ∈ X, y ∈ X} the ratio set of X and say that a set X is (R)-dense
if R(X) is (topologically) dense in the set R+. Let us notice that the concept of
(R)-density was defined and first studied in papers [17] and [18].

Now let X = {x1, x2, . . . } where xn < xn+1 are positive integers. The sequence

x1

x1
,
x1

x2
,
x2

x2
,
x1

x3
,
x2

x3
,
x3

x3
, . . . ,

x1

xn
,
x2

xn
, . . . ,

xn

xn
, . . . (1.1)

∗Supported by grants APVV SK-HU-0009-08 and VEGA Grant no. 1/0753/10.
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of finite sequences derived from X is called ratio block sequence of the set X . Thus
the block sequence is formed by blocks X1, X2, . . . , Xn, . . .where

Xn =

(
x1

xn
,
x2

xn
, . . . ,

xn

xn

)
; n = 1, 2, . . . .

This kind of block sequences were studied in papers, [1] , [3] , [4] , [16] and [20]. Also
other kinds of block sequences were studied by several authors, see [2], [6], [8], [12]
and [19]. Let Y = (yn) be an increasing sequence of positive integers. A sequence
of blocks of type

Yn =

(
1

yn
,

2

yn
, . . . ,

yn

yn

)

was invetigated in [11] which extends a result of [5]. Authors obtained a complete
theory for the uniform distribution of the related block sequence (Yn).
For every n ∈ N let

D(Xn) = max

{
x1

xn
,
x2 − x1

xn
, . . . ,

xi+1 − xi

xn
, . . . ,

xn − xn−1

xn

}
,

the maximum distance between two consecutive terms in the n-th block.
In this paper we will consider the characteristics (see [20])

D(X) = lim inf
n→∞

D(Xn),

called the dispersion of the block sequence (1.1) derived from X , and its relations
to the previously mentioned asymptotic density of the original set X .

At the end of this section, let us mention the concept of a dispersion of a general
sequence of numbers in the interval 〈0, 1〉. Let (xn)∞n=0 be a sequence in 〈0, 1〉. For
every N ∈ N let xi1 6 xi2 6 . . . 6 xiN be reordering of its first N terms into a
nondecreasing sequence and denote

dN =
1

2
max

{
max{xij+1 − xij ; j = 1, 2, . . .N − 1}, xi1 , 1 − xiN

}

the dispersion of the finite sequence x0, x1, x2, . . . xN . Properties of this concept
can be found for example in [10] where it is also proved that

lim sup
N→∞

NdN >
1

log 4

holds for every one-to-one infinite sequence xn ∈ 〈0, 1〉. Also notice that the density
of the whole sequence (xn)∞n=0 is equivalent to lim

N→∞
dN = 0. Also notice that the

analogy of this property for the concept of dispersion of block sequences defined in
the present paper does not hold.

Much more on these and related topics can be found in monograph [13].
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2. Results

When calculating the value D(X), the following theorems are often useful (See [20],
Theorem 1, Corollary 1, respectively).

(A1) Let

X = {x1, x2, . . . } =

∞⋃

n=1

(cn, dn〉 ∩ N ,

where xn < xn+1 and let cn < dn < cn+1, for n ∈ N, be positive integers. Then

D(X) = lim inf
n→∞

max{ci+1 − di : i = 1, 2, . . . , n}
dn+1

.

(A2) Let X be identical to the form of X in (A1). Suppose that there exists a
positive integer n0 such that for all integers n > n0

cn+1 − dn 6 cn+2 − dn+1 .

Then

D(X) = lim inf
n→∞

cn+1 − dn

dn+1
.

The basic properties of the dispersion D(X) and the relations between dispersion
and (R)-density are investigated in the paper [TMF]. The next theorem states the
upper bound for dispersions D(X) of (R)-dense sets where 1 6 a = lim

n→∞
dn

cn
< ∞

(See [20], Theorem 10).

(A3) Let X =
⋃∞

n=1

(
cn, dn

〉
∩N be an (R)-dense set where cn < dn < cn+1 for all

n ∈ N and suppose that the limit lim
n→∞

dn

cn
= a exists. Then

D(X) 6 min

{
1

a+ 1
,max

{
a− 1

a2
,

1

a2

}}
,

more precisely,

D(X) 6





1
1+a if a ∈ 〈1, 1+

√
5

2 )
1
a2 if a ∈ 〈1+

√
5

2 , 2)
a−1

a2 if a ∈ 〈2,∞) .

The following theorem shows that in the third case (if a > 2), that the dispersion

D(X) can be any number in the interval
〈
0, a−1

a2

〉
, where X =

⋃∞
n=1

(
cn, dn

〉
∩N is

(R)-dense and lim
n→∞

dn

cn
= a. Thus the upper bound for D(X) is the best possible

in the case a > 2 (See [4], Theorem 2).
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(A4) Let a > 1 be a real number and k be an arbitrary natural number. Then for

every α ∈ 〈0, ak −1
a2k 〉 there exists an (R)-dense set

X =

∞⋃

n=1

(cn, dn〉 ∩ N

where cn < dn < cn+1 are positive integers for every n ∈ N, such that lim
n→∞

dn

cn
= a

and D(X) = α.

In this paper we prove that in the second case
(
if a ∈

〈
1+

√
5

2 , 2
))

, the dispersion

D(X) can be any number in the interval
〈
0, 1

a2

〉
, where X =

∞⋃
n=1

(
cn, dn

〉
∩ N is

(R)-dense and lim
n→∞

dn

cn
= a. Thus the upper bound for D(X) is the best possible

in the case a ∈
〈

1+
√

5
2 , 2

)
. The following lemma will be useful.

Lemma 2.1. Let the set

M(X) = {n ∈ N : cn+1 − dn = max{ci+1 − di : i = 1, 2, . . . , n}} =

= {m1 < m2 < · · · < mk < . . . }
be infinite. Then

D(X) = lim inf
k→∞

cmk+1 − dmk

dmk+1

.

Proof. Let n ∈ N be an arbitrary integer such that n > m1. Then there is unique
k ∈ N with mk 6 n < mk+1. >From the definition of the set M(X) we obtain

max{ci+1 − di : i = 1, 2, . . . , n}
dn+1

=
cmk+1 − dmk

dn+1
>
cmk+1 − dmk

dmk+1

.

Then obviously

D(X) = lim inf
n→∞

max{ci+1 − di : i = 1, 2, . . . , n}
dn+1

> lim inf
k→∞

cmk+1 − dmk

dmk+1

.

On the other hand, the sequence
( cmk+1−dmk

dmk+1

)∞
k=1

is a subsequence of the sequence
(

max{ci+1−di:i=1,2,...,n}
dn+1

)
n∈N

, hence

D(X) = lim inf
n→∞

max{ci+1 − di : i = 1, 2, . . . , n}
dn+1

6 lim inf
k→∞

cmk+1 − dmk

dmk+1

.

The last two inequalities imply

D(X) = lim inf
k→∞

cmk+1 − dmk

dmk+1

.

�
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Theorem 2.2. Let a ∈
〈

1+
√

5
2 , 2

)
be an arbitrary real number. Then for every

α ∈ 〈0, 1
a2 〉 there is an (R)-dense set

X =

∞⋃

n=1

(cn, dn〉 ∩ N ,

where cn < dn < cn+1 are positive integers for every n ∈ N such that lim
n→∞

dn

cn
= a

and D(X) = α.

Proof. Let a ∈ 〈1+
√

5
2 , 2). According to (A4), it is sufficient to prove Theorem

2.2 for a−1
a2 < α 6 1

a2 . Define function f(b) = b−1
ab . Clearly f is continuous and

increasing on the interval 〈a,∞). Moreover

f(a) =
a− 1

a2
and f(a2) =

a2 − 1

a3
.

We have a2−1
a3 > 1

a2 if a > 1+
√

5
2 . Thus there exists a real number a < b 6 a2 such

that
b− 1

ab
= α.

Define a set X ⊂ N by

X =

∞⋃

n=1

(
An ∪Bn

)
∩ N ,

where for every n ∈ N

An = (an,1, bn,1〉 ∪ (an,2, bn,2〉 a Bn =

n⋃

k=1

(cn,k, dn,k〉 .

Put a1,1 = 1 and for every n ∈ N and k = 2, 3, . . . , n
bn,1 = [aan,1] + 1, an,2 = bn,1 + 1, bn,2 = [aan,2] + 1 ,
cn,1 = [bbn,2] + 1, dn,1 = [acn1 ] + 1, cn,k = [bdn,k−1] + 1, dn,k = [acn,k] + 1 ,
and an+1,1 = (n+ 1)dn,n.
Obviously for every n ∈ N

a <
bn,1

an,1
6 a+

1

an,1
and a <

bn,1

an,1
6 a+

1

an,1
,

and for k = 1, 2, . . . , n

a <
dn,k

cn,k
6 a+

1

an,1
.

First we prove that D(X) = α. We have the following inequalities:

cn+1,1 − bn+1,2 > bbn+1,2 − bn+1,2 > (b− 1)bn+1,2 > (b− 1)a2an+1,1 >

> (a− 1)a2an+1,1 > aan+1,1 > an+1,1 > an+1,1 − dn,n
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The inequality a2(a− 1) > a follows from a > 1+
√

5
2 . Then

cn,2−dn,1 > bdn,1−dn,1 = (b−1)dn,1 > (b−1)acn,1 > (a−1)acn,1 > cn,1 > cn,1−bn,2

and for every k = 2, 3, . . . , n− 1

cn,k+1 − dn,k > bdn,k − dn,k = (b − 1)dn,k > (b− 1)acn,k >

> (a− 1)acn,k > cn,k > cn,k − dn,k−1.

Finally
an+2,1 − dn+1,n+1 = (n+ 2)dn+1,n+1 − dn+1,n+1 >

> dn+1,n+1 > cn+1,n+1 > cn+1,n+1 − dn+1,n .

From the above inequalities we have for a sufficiently large n ∈ N the following
inequalities:

1 = an,2 − bn,1 < an,1 − dn−1,n−1 < cn,1 − bn,2 < cn,2 − dn,1 < . . .
· · · < cn,n − dn,n−1 < an+1,1 − dn,n .

(2.1)

Now we use Lemma 2.1. From (2.1) one can see that it is sufficient to study
the quotients:
a)an+1,1−dn,n

bn+1,2
,

b)
cn,1−bn,2

dn,1
,

c)
cn,k−dn,k−1

dn,k
for k = 2, 3, . . . , n.

In case a)

lim inf
n→∞

an+1,1 − dn,n

bn+1,2
= lim inf

n→∞
(n− 1)dn,n

na2dn,n
=

1

a2
> α,

in case b)

lim inf
n→∞

cn,1 − bn,2

dn,1
= lim inf

n→∞
(b− 1)bn,2

abbn,2
=
b− 1

ab
= α

and in case c)

cn,k − dn,k−1

dn,k
6

(b − 1)dn,k−1 + 1

abdn,k−1
6
b− 1

ab
+

1

abdn,k−1
6 α+

1

abdn,1

and
cn,k − dn,k−1

dn,k
>

(b − 1)dn,k−1

abdn,k−1 + b+ 1
>

>
b − 1

ab
− b − 1

ab

b+ 1

abdn,k−1 + b+ 1
> α− b2 − 1

dn,1
.

From this it is obvious that D(X) = α.
It remains to prove that the setX is (R)-dense. We have 1

a2 6 1
b and 1

blal+2 6 1
bl+1al

for every l = 1, 2, . . . , hence
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( 1

a2
, 1
〉
∪

∞⋃

l=1

( 1

blal+2
,

1

blal−1

〉
= (0, 1〉

and it is sufficient to prove that the ratio set of the set X is dense on intervals
( 1

a2
, 1
〉

and
( 1

blal+2
,

1

blal−l

〉

for every l = 1, 2, . . . .

Now we prove that the ratio set of X is dense on
(

1
a2 , 1

〉
. Let (e, f) ⊂

(
1
a2 , 1

〉
.

Put ε = f − e. Consider the set
{an,1 + 1

bn,2
<
an,1 + 2

bn,2
< · · · < bn,1

bn,2
<

<
an,2 + 1

bn,2
<
an,2 + 2

bn,2
< · · · < bn,2 − 1

bn,2
<
bn,2

bn,2
= 1
}
,

(2.2)

which is obviously a subset of the ratio set of X . The largest difference between
consecutive terms of (2.2) is 2

bn,2
. Then

an,1 + 1

bn,2
=
an,1

bn,2
+

1

bn,2
6

an,1

a2an,1
+

1

bn,2
=

1

a2
+

1

bn,2
.

If we choose n ∈ N so that 2
bn,2

< ε, then the interval (e, f) is not disjoint with (2.2),

hence the ratio set of X is dense in the interval
(

1
a2 , 1

〉
.

Let l ∈ N be arbitrary. We prove that the ratio set of X is dense in the interval(
1

blal+2 ,
1

blal−1

〉
. Let (e, f) ⊂

(
1

blal+2 ,
1

blal−1

〉
. Put ε = f − e. Choose n1 ∈ N so

that n1 > l and an,1 + 1 > 2
ε for every n > n1. Consider the set

{ bn,2

cn,l + 1
>
bn,2 − 1

cn,l + 1
> · · · > an,2 + 1

cn,l + 1
>

bn,1

cn,l + 1
>

>
bn,1 − 1

cn,l + 1
> · · · > an,1 + 1

cn,l + 1
>
an,1 + 1

cn,l + 2
> · · · > an,1 + 1

dn,l

}
,

(2.3)

which is obviously a subset of the ratio set of X . The largest difference between
consecutive terms of (2.3) is 6 2

an,1+1 . On the other hand,

lim
n→∞

bn,2

cn,l + 1
=

1

blal−1
and lim

n→∞
an,1 + 1

dn,l
=

1

blal+2
.

Then there exists n2 ∈ N, such that for every n > n2

bn,2

cn,l + 1
>

1

blal−1
− ε and

an,1 + 1

dn,l
<

1

blal+2
+ ε .

If we choose n > max{n1, n2}, then the interval (e, f) is not disjoint with (2.3),
hence the ratio set of X is dense in the interval

(
1

bl,al+2 ,
1

bl,al−1

〉
. This concludes

the proof. �
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Abstract

In this paper, we present some inequalities for q-polygamma functions and
ζq-Riemann Zeta functions, using a q-analogue of Holder type inequality.

Keywords: q-polygamma functions, q-zeta function.

MSC: 33D05, 11S40, 26D15.

1. Introduction and preliminaries

In this section, we provide a summary of notations and definitions used in this
paper. For details, one may refer to [3, 5].

For n = 1, 2, . . . we denote by ψn(x) = ψ(n)(x) the polygamma functions as the

n-th derivative of the psi function ψ(x) = Γ′(x)
Γ(x) , x > 0, where Γ(x) denotes the

usual gamma function.
Throughout this paper we will fix q ∈ (0, 1). Let a be a complex number. The

q-shifted factorials are defined by

(a; q)n =

n−1∏

k=0

(1 − aqk), n = 1, 2, . . . ,

(a; q)∞ = lim
n→∞

(a; q)n =
∏

k>0

(1 − aqk).

95
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Jackson [4] defined the q-gamma function as

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x, x 6= 0,−1, . . . (1.1)

It satisfies the functional equation

Γq(x+ 1) = [x]qΓq(x), Γq(1) = 1, (1.2)

where for x complex [x]q = 1−qx

1−q .
The q-gamma function has the following integral representation (see [2])

Γq(x) =

∫ 1
1−q

0

tx−1E−qt
q dqt =

∫ ∞
1−q

0

tx−1E−qt
q dqt, x > 0.

where Ex
q =

∑∞
j=0 q

j(j−1)
2

xj

[j]q ! = (1 + (1 − q)x)∞q , which is the q-analogue of the
classical exponential function.

The q-analogue of the ψ function is defined as the logarithmic derivative of the
q-gamma function

ψq(x) =
Γ′

q(x)

Γq(x)
, x > 0. (1.3)

The q-Jackson integral from 0 to a is defined by (see [4, 5])

∫ a

0

f(x)dqx = (1 − q)a

∞∑

n=0

f(aqn)qn. (1.4)

For a = ∞ the q-Jackson integral is defined by (see [4, 5])

∫ ∞

0

f(x)dqx = (1 − q)

∞∑

n=−∞
f(qn)qn (1.5)

provided that sums in (1.4) and (1.5) converge absolutely.
In [2] the q-Riemman zeta function is defined as follows (see Section 2.3 for the

definitions)

ζq(s) =

∞∑

n=1

1

{n}s
q

=

∞∑

n=1

q(n+α([n]q))s

[n]sq
. (1.6)

In relation to (1.3) and (1.6), K. Brahim [1], using a q-analogue of the generalized
Schwarz inequality, proved the following Theorems.

Theorem 1.1. For n = 1, 2 . . .,

ψq,n(x)ψq,m(x) > ψ2
q, m+n

2

(x),

where ψq,n = ψ
(n)
q is n-th derivative of ψq and m+n

2 is an integer.
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Theorem 1.2. For all s > 1,

[s+ 1]q
ζq(s)

ζq(s+ 1)
> q[s]q

ζq(s+ 1)

ζq(s+ 2)
.

The aim of this paper is to present some inequalities for q-polygamma functions
and q-zeta functions by using a q-analogue of Holder type inequality, similar to
those in [1].

2. Main results

2.1. A lemma

In order to prove our main results, we need the following lemma.

Lemma 2.1. Let a ∈ R+ ∪{∞}, let f and g be two nonnegative functions and let
p, t > 1 such that p−1 + t−1 = 1. The following inequality holds

∫ a

0

f(x)g(x)dqx 6
(∫ a

0

fp(x)dqx
) 1

p
( ∫ a

0

gt(x)dqx
) 1

t

.

Proof. Let a > 0. By (1.4) we have that

∫ a

0

f(x)g(x)dqx = (1 − q)a

∞∑

n=0

f(aqn)g(aqn)qn. (2.1)

By the use of the Holder’s inequality for infinite sums, we obtain

( ∞∑

n=0

f(aqn)g(aqn)qn
)

6
( ∞∑

n=0

fp(aqn)qn
) 1

p ·
( ∞∑

n=0

gt(aqn)qn
) 1

t

. (2.2)

Hence

(1 − q)a
( ∞∑

n=0

f(aqn)g(aqn)qn
)

6 ((1 − q)a)
1
p

( ∞∑

n=0

fp(aqn)qn
) 1

p · ((1 − q)a)
1
t

( ∞∑

n=0

gt(aqn)qn
) 1

t

. (2.3)

The result then follows from (2.1), (2.2) and (2.3). �

2.2. The q-polygamma function

From (1.1) one can derive the following series representation for the function

ψq(x) =
Γ′

q(x)

Γq(x) :

ψq(x) = − log(1 − q) + log q
∑

n>1

qnx

1 − qn
, x > 0, (2.4)
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which implies that

ψq(x) = − log(1 − q) +
log q

1 − q

∫ q

0

tx−1

1 − t
dqt. (2.5)

Theorem 2.2. For n = 2, 4, 6 . . . set ψq,n(x) = ψ
(n)
q (x) the n-th derivative of the

function ψq. Then for p, t > 1 such that 1
p + 1

t = 1 the following inequality holds

ψq,n

(x
p

+
y

t

)
6 ψq,n(x)

1
p · ψq,n(y)

1
t . (2.6)

Proof. From (2.5) we deduce that

ψq,n(x) =
log q

1 − q

∫ q

0

(log u)nux−1

1 − u
dqu, (2.7)

hence

ψq,n

(x
p

+
y

t

)
=

log q

1 − q

∫ q

0

(log u)nu
x
p + y

t −1

1 − u
dqu.

By Lemma 2.1 with a = q we have

ψq,n

(x
p

+
y

t

)
=

log q

1 − q

∫ q

0

[ (log u)n

1 − u

] 1
p

u
x−1

p

[ (log u)n

1 − u

] 1
t

u
y−1

q dqu

6
( log q

1 − q

∫ q

0

(log u)nux−1

1 − u
dqu
) 1

p
( log q

1 − q

∫ q

0

(log u)nuy−1

1 − u
dqu
) 1

t

= (ψq,n(x))
1
p (ψq,n(y))

1
t

where f(u) =
(

(log u)n

1−u

)p

u
x−1

p and g(u) =
(

(log u)n

1−u

)t

u
y−1

t . �

For p = t = 2 in (2.6) one has the following result.

Corollary 2.3. We have

ψq,n

(x+ y

2

)
6
√
ψq,n(x) · ψq,n(y).

2.3. q-zeta function

For x > 0 we set α(x) = log x
log q − E

(
log x
log q

)
and {x}q =

[x]q
qx+α([x]q) , where E

(
log x
log q

)
is

the integer part of log x
log q .

In [2] the q-zeta function is defined as follows

ζq(s) =

∞∑

n=1

1

{n}s
q

=

∞∑

n=1

q(n+α([n]q))s

[n]sq
.
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There ([2]) it is proved that ζq is a q-analogue of the classical Riemman Zeta
function, and for all s ∈ C such that R(s) > 1, and for all u > 0 one has

ζq(s) =
1

Γ̃q(s)

∫ ∞

0

us−1Zq(u)dqu,

where Zq(t) =
∑∞

n=1 e
−{n}qt
q , Γ̃q(t) =

Γq(t)
Kq(t) , and

Kq(t) =
(1 − q)−s

1 + (1 − q)−1
· (−(1 − q); q)∞(−(1 − q)−1; q)∞
(−(1 − q)qs; q)∞(−(1 − q)−1q1−s; q)∞

.

Theorem 2.4. For 1
p + 1

t = 1 and x
p + y

t > 1,

Γ̃q

(
x
p + y

t

)

Γ̃q

1
p
(x) · Γ̃q

1
t
(y)

6
ζ

1
p
q (x) · ζ

1
t
q (y)

ζq

(
x
p + y

t

) .

Proof. From Lemma 2.1 we have that∫ ∞

0

u
x
p + y

t −1Zq(u)dqu =

∫ ∞

0

u
x−1

p · (Zq(u))
1
p u

y−1
t · (Zq(u))

1
t dqu.

6
( ∫ ∞

0

ux−1 · (Zq(u))dqu
) 1

p ·
(∫ ∞

0

uy−1 · (Zq(u))dqu
) 1

t

.

For f(u) = u
x−1

p · (Zq(u))
1
p and g(u) = u

y−1
t · (Zq(u))

1
t we obtain that

Γ̃q

(x
p

+
y

t

)
· ζq
(x
p

+
y

t

)
6 Γ̃

1
p
q (x) · Γ̃

1
t
q (y) · ζ

1
p
q (x) · ζ

1
t
q (y),

which completes the proof. �
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Abstract

The aim of this paper is to investigate the zeros of polynomials

Pn,k(x) = Kk−1x
n + Kkxn−1 + · · · + Kn+k−2x + Kn+k−1,

where the coefficients Ki’s are terms of a linear recursive sequence of k-order
(k > 2).

Keywords: linear recurrences, zeros of polynomials with special coefficients

MSC: 11C08, 13B25

1. Introduction

Let the linear recursive sequence K = {Kn}∞n=0 of order k (k > 2) be defined by
the initial values K0 = K1 = · · · = Kk−2 = 0 and Kk−1 = 1, the nonnegative
integral weights A1, A2, · · · , Ak 6= 0 and the linear recursion

Kn = A1Kn−1 +A2Kn−2 +A3Kn−3 + · · · +AkKn−k (n > k). (1.1)

According to the explicit form for Kn we can write that

Kn = p1(n)αn
1,k + p2(n)αn

2,k + · · · + pt(n)αn
t,k, (1.2)

∗Research has been supported by the Hungarian-Slovakian Foundation No. SK-8/2008.
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where α1,k, α2,k, . . . , αt,k are the distinct zeros of the characteristic polynomial

fk(x) = xk −A1x
k−1 −A2x

k−2 − · · · −Ak−1x−Ak (1.3)

of the sequence K, while pi(n)’s (1 6 i 6 t 6 k) are polynomials of n with at most
degree mi − 1, where mi is the multiplicity of αi,k (

∑t
i=1mi = k).

In the particular case k = 2,K0 = 0,K1 = 1, A1 = A2 = 1 we can get the
Fibonacci-sequence F = {Fn}∞n=0, while if k = 3, A1 = A2 = A3 = 1 the sequence
K is known as the Tribonacci-sequence T = {Tn}∞n=0.

D. Garth, D. Mills and P. Mitchell [1] introduced the definition of the Fibonacci-
coefficient polynomials pn(x) = F1x

n + F2x
n−1 + · · · + Fnx + Fn+1 and – among

others – determined the number of the real zeros of pn(x). In [2] we investigated
the zeros of the much more general polynomials

qn,i(x) = Rix
n +Ri+tx

n−1 +Ri+2tx
n−2 · · · +Ri+(n−1)tx+Ri+nt,

where the sequence R = {Rn}∞n=0 can be obtained from (1.1) if k = 2 and i >
1, t > 1 are fixed integers.

The aim of this paper is to investigate the number of the real zeros of the
polynomials

Pn,k(x) = Kk−1x
n +Kkx

n−1 + · · · +Kn+k−2x+Kn+k−1. (1.4)

It is worth mentioning that the problem investigated in this paper can be extended
for much more general sequences than K, which can be the topic of a further paper,
as it was suggested by the anonymous referee. The authors would like to express
their gratitude to the referee for his/her valuable comments.

2. Preliminary and known results

At first we are going to introduce the following notation. Using (1.3) and (1.4) put

Qn,k(x) := fk(x) · Pn,k(x). (2.1)

Lemma 2.1. The polynomial Qn,k(x) has the following much more suitable form:

Qn,k(x) = Kk−1x
n+k −Kn+kx

k−1−
− (AkKn+1 +Ak−1Kn+2 + · · · +A2Kn+k−1)x

k−2−
− · · · − (AkKn+k−2 +Ak−1Kn+k−1)x−AkKn+k−1.

Proof. After the multiplication in (2.1) Qn,k(x) can be written as

Qn,k(x) = Kk−1x
n+k + (Kk −A1Kk−1)x

n+k−1

+ (Kk+1 −A1Kk −A2Kk−1)x
n+k−2+

...
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+ (K2k−2 −A1K2k−3 −A2K2k−4 − · · · −Ak−1Kk−1)x
n+1

+ (K2k−1 −A1K2k−2 −A2K2k−3 − · · · −Ak−1Kk − AkKk−1)x
n+

...

+ (Kn+k−1 −A1Kn+k−2 −A2Kn+k−3 − · · · −Ak−1Kn −AkKn−1)x
k

− (A1Kn+k−1 +A2Kn+k−2 + · · · + Ak−1Kn+1 +AkKn)xk−1

− (A2Kn+k−1 +A3Kn+k−2 + · · · + Ak−1Kn+2 +AkKn+1)x
k−2−

...

− (Ak−1Kn+k−1 +AkKn+k−2)x−AkKn+k−1.

But, due to the definition (1.1) the coefficients of the terms xj are 0 if n+ k− 1 >
j > k, thus we get that

Qn,k(x) = Kk−1x
n+k −Kn+kx

k−1

− (AkKn+1 +Ak−1Kn+2 + · · · +A2Kn+k−1)x
k−2

− · · · − (AkKn+k−2 +Ak−1Kn+k−1)x−AkKn+k−1,

which matches the statement of Lemma 2.1. �

Let us consider the distinct zeros α1,k, α2,k, . . . , αt,k of the characteristic poly-
nomial fk(x) from (1.3). The root α1,k is said to be the dominant root of fk(x) if
α1,k >| αj,k | for every 2 6 j 6 t and the multiplicity of α1,k is equal to 1, that is
m1 = 1, α1,k ∈ R and since Ak > 1 therefore α1,k > 1.

Lemma 2.2. Let α1,k be the dominant root of fk(x). Then

lim
n→∞

Kn

Kn−1
= α1,k.

Proof. This is a known result, or it can easily be proven if one uses (1.2), where
now p1(n) is a nonzero real number. �

When the weights A1 = A2 = · · · = Ak = 1 in (1.1), that is, when

fk(x) = xk − xk−1 − xk−2 − · · · − x− 1, (2.2)

then we prove the following result about the real zeros of this fk(x).

Lemma 2.3. If fk(x) is of form (2.2), then
(i) the polynomial fk(x) has only one positive zero, e.g. α1,k,
(ii) α1,k strictly increasingly tends to 2, if k tends to infinity,
(iii) if k is even, then the polynomial fk(x) has exactly one negative zero, e.g. α2,k,
(iv) if k is even, then α2,k strictly decreasingly tends to −1, if k tends to infinity,
(v) if k is odd, then the polynomial fk(x) has no negative zero.
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Proof. Since x = 1 and x = 0 are not roots of the equation xk − xk−1 − xk−2 −
· · · − x− 1 = 0, therefore it can be rewritten into the following equivalent forms:

xk = xk−1 + xk−2 + · · · + x+ 1,

xk =
xk − 1

x− 1
,

xk+1 = 2xk − 1,

2 − x = x−k. (2.3)

Drawing the graphs of both sides of (2.3) in the same Descartes’ coordinate system,
one can obtained the desired statements (i)–(v). �

Remark 2.4. In the case of Tribonacci sequence the polynomial f3(x) = x3−x2−
x − 1 has dominant root, namely α1,3 = 1, 839286755 . . ., the two other zeros of
f3(x) are non-real conjugate complex numbers of absolute value 0.737353 . . .. While
the characteristic polynomial of the Fibonacci sequence is f2(x) = x2 − x − 1, its

positive and negative zeros are α1,2 = 1+
√

5
2 and α2,2 = 1−

√
5

2 , respectively.

It will be suitable to apply the following lemma if we want to give bounds for
the absolute value of (real and complex) zeros of the polynomial

Pn,k(x) = Kk−1x
n +Kkx

n−1 + · · · +Kn+k−2x+Kn+k−1.

Lemma 2.5. If every coefficients of the polynomial g(x) = a0+a1x+· · ·+anx
n are

positive numbers and the roots of equation g(x) = 0 are denoted by z1, z2, . . . , zn,
then

γ 6 |zi| 6 δ

hold for every 1 6 i 6 n, where γ is the minimal, while δ is the maximal value in
the sequence

a0

a1
,
a1

a2
, . . . ,

an−1

an
.

Proof. This lemma is known as Theorem of S. Kakeya [3]. �

3. Results and proofs

At first we deal with the number of the real zeros of the polynomial defined in
(1.4), that is

Pn,k(x) = Kk−1x
n +Kkx

n−1 + · · · +Kn+k−2x+Kn+k−1.

Clearly, positive real zeros of Pn,k(x) do not exist, since – under our conditions –
all of the coefficients are positive. Thus we can restrict our investigation on the
existence of negative real zeros.
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Theorem 3.1. Let d and h denote the number of the negative real zeros of the
characteristic polynomial fk(x) defined in (1.3), and the polynomial Pn,k(x) defined
in (1.4), respectively. Then
(i) k − 1 − 2j = h+ d for some j = 0, 1, 2, . . . , (k − 2)/2, if k and n are even,
(ii) k − 2j = h+ d for some j = 0, 1, 2, . . . , (k − 2)/2, if k is even and n is odd,
(iii) k− 1− 2j = h+ d for some j = 0, 1, 2, . . . , (k− 1)/2, if k is odd and n is even,
(iv) k − 2j = h+ d for some j = 0, 1, 2, . . . , (k − 1)/2, if k and n are odd.

Proof. We will prove only the case (i), since the other three cases can similarly
be proven. Let us consider the polynomial Qn,k(x) from (2.1). According to
Lemma 2.1

Qn,k(x) = fk(x)Ṗn,k(x)

= Kk−1x
n+k −Kn+kx

k−1

− (AkKn+1 +Ak−1Kn+2 + · · · +A2Kn+k−1)x
k−2 − · · ·

− (AkKn+k−2 +Ak−1Kn+k−1)x−AkKn+k−1.

For using the Descartes’ rule of signs we create the the polynomial Qn,k(−x), which
– with the assumption k and n are even – is:

Qn,k(−x) = Kk−1x
n+k +Kn+kx

k−1

− (AkKn+1 + Ak−1Kn+2 + · · · +A2Kn+k−1)x
k−2 + · · ·

+ (AkKn+k−2 +Ak−1Kn+k−1)x−AkKn+k−1.

Since the number of changes of signs in the polynomial Qn,k(−x) is k − 1 (which
is odd), therefore the number of the negative real zeros of the polynomial Qn,k(x)
may be 1, 3, 5, . . . , k − 1. From these negative real zeros d zeros belong to the
polynomial fk(x), while the other h to the polynomial Pn,k(x). This proves the
statement of Theorem 3.1 (i). �

Corollary 3.2. If the polynomial fk(x) is defined as in (2.2), that is when A1 =
A2 = · · · = Ak = 1, then – according to Lemma 2.3 – d = 1, if k is even, while
d = 0, if k is odd. This implies that in this case the number of the negative real
zeros of the polynomial Pn,k(x) is:
(i) h = k − 2 − 2j for some j = 0, 1, 2, . . . , (k − 2)/2, if k and n are even,
(ii) h = k − 1 − 2j for some j = 0, 1, 2, . . . , (k − 2)/2, if k is even and n is odd,
(iii) h = k − 1 − 2j for some j = 0, 1, 2, . . . , (k − 1)/2, if k is odd and n is even,
(iv) h = k − 2j for some j = 0, 1, 2, . . . , (k − 1)/2, if k and n are odd.

Corollary 3.3. In the case of Tribonacci sequence , for fk(x) = f3(x) = x3 −
x2 − x− 1 we get the following result. The number of the negative real zeros of the
polynomial Pn,3(x) is
(i) 0 or 2, if n is even,
(ii) 1 or 3, if n is odd.
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For the absolute value of zeros of polynomial Pn,k(x) defined in (1.4) we prove
the next theorem:

Theorem 3.4. Let z be any zero of polynomial Pn,k(x) and let a and b denote the
minimum and the maximum of the set

{
Kn+k−1

Kn+k−2
,
Kn+k−2

Kn+k−3
,
Kn+k−3

Kn+k−4
, . . . ,

Kk+1

Kk
,
Kk

Kk−1

}
,

respectively. Then
a 6 |z| 6 b.

Proof. Applying Lemma 2.5 one can obtain the statement. �

Remark 3.5. According to Lemma 2.2 if α1,k denotes the dominant root of fk(x)
then

lim
n→∞

Kn

Kn−1
= α1,k.

E.g. for the Tribonacci sequence the above quotients of consecutive coefficients tend
to 1,83928675 in an alternating way, where a = 1, and b = 2.
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Abstract

Here, we prove that there is no perfect number of the form Fmn/Fm,
where Fk is the kth Fibonacci number.

Keywords: Perfect numbers, Fibonacci numbers.

MSC: 11Axx, 11B39, 11Dxx.

1. Introduction

For a positive integer n let σ(n) be the sum of its divisors. A number n is called
perfect if σ(n) = 2n and multiperfect if n | σ(n). Let (Fk)k>0 be the Fibonacci
sequence given by F0 = 0, F1 = 1 and Fk+2 = Fk+1 + Fk for all k > 0.

In [6], it was shown that there is no perfect Fibonacci number. More generally,
in [1], it was shown that in fact Fn is not multiperfect for any n > 3.

In [8], it is was shown that the set {Fmn/Fm : m, n ∈ N} contains no perfect
number. The proof of this result from [8] uses in a fundamental way the claim that
if N is odd and perfect, then

N = paqa1
1 · · · qas

s (1.1)

for some distinct primes p and q1, . . . , qs, with p ≡ a ≡ 1 (mod 4), ai even for
i = 1, . . . , s and qi ≡ 3 (mod 4) for i = 1, . . . , s. We could not find neither a
reference nor a proof for the fact that the primes qi must necessarily be congruent

∗F. L. was supported in part by Grants SEP-CONACyT 79685 and PAPIIT 100508, and
V. J. M. H. was supported by Grant UAM-A 2232508.
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to 3 (mod 4). The remaining assertions about p, a and the exponents ai for i =
1, . . . , s were proved by Euler.

In this paper, we revisit the question of perfect numbers of the shape Fmn/Fm

and give a proof of the fact that there are indeed no such perfect numbers. We
record our result as follows.

Theorem 1.1. There are no perfect numbers of the form Fmn/Fm for natural
numbers m and n.

Our proof avoids the information about the congruence classes of the primes qi
for i = 1, . . . , s from (1.1). Ingredients of the proof are Ribenboim’s description of
square-classes for Fibonacci and Lucas numbers [9], as well as an effective version
of Runge’s theorem from Diophantine equations due to Gary Walsh [11].

In what follows, for a positive integer n we use Ω(n), ω(n) and τ(n) for the
number of prime divisors of n (counted with and without multiplicities) and the
total numbers of divisors of n, respectively.

From now on, we put N := Fmn/Fm for some positive integers m and n, and
assume that N is perfect. Clearly, n > 1, and by the result from [6] we may assume
that m > 1 also. A quick computation with Mathematica confirmed that there is
no such example with mn 6 100. So, from now on, we also suppose that mn > 100.

2. The even perfect number case

While there is no problem with the treatment of the even perfect number case from
[8], we include it here for the convenience of the reader.

For every positive integer m, let z(m) be the minimal positive integer k such
that m | Fk. This always exists and it is called the index of appearance of m
in the Fibonacci sequence. Indices of appearance have important properties. For
example, m divides Fk if and only if z(m) divides k. Furthermore, if p is prime,
then

p ≡
(p

5

)
(mod z(p)), (2.1)

where for an odd prime q and an integer a we write

(
a

q

)
for the Legendre symbol

of a with respect to q. In particular, from congruence (2.1), we deduce that p ≡ 1
(mod z(p)) if p ≡ ±1 (mod 5), and p ≡ −1 (mod z(p)) provided that p ≡ ±2
(mod 5). Clearly, z(5) = 5.

So, if p is a prime factor of Fn, then z(p) divides n. If z(p) = n, then p is called
primitive for Fn. Equivalently, p is a primitive prime factor of Fn if p does not divide
Fm for any positive integer m < n. An important result of Carmichael [2] asserts
that Fn has a primitive prime factor for all n 6∈ {1, 2, 6, 12}. From congruence
(2.1), we have that if p is primitive for Fn, then p ≡ ±1 (mod n) unless p = n = 5.

So, let us now suppose that N = Fmn/Fm is even and perfect. By the structure
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theorem of even perfect numbers, we have that

Fmn

Fm
= 2p−1(2p − 1), (2.2)

where p and 2p − 1 are both primes. If p ∈ {2, 3}, then Fmn = 2 × 3 × Fm, or
22 × 7 × Fm. However, since mn > 100, it follows that Fmn has a primitive prime
factor q. The prime q does not divide Fm and since q ≡ ±1 (mod mn), it follows
that q > mn−1 > 99. Thus, q cannot be one of the primes 2, 3, or 7, and we have
obtained a contradiction.

Suppose now that p > 5. Then 16 | Fmn/Fm. Assume first that 3 ∤ m.
Since z(2) = 3 and 3 ∤ m, it follows that Fm is odd, therefore 16 | Fmn. Hence,
12 = z(16) | mn. However, since 9 divides F12, we get that 9 | F12 | Fmn. Relation
(2.2) together with the fact that p > 5 implies that N is coprime to 3, therefore
9 | Fm. Hence, 12 = z(9) | m, contradicting our assumption that 3 ∤ m. Thus,
3 | m. In particular, 2 | Fm, therefore 25 | Fmn. Write mn = 2s × 3 × λ for some
odd positive integer λ. Since 25 | Fmn, we get that 23 × 3 = z(25) | mn, therefore
s > 3. Next we show that m | 2s−3×3×λ. Indeed, for is not, since m is a multiple
of 3, it would follow that 2s−2 × 3 | m. It is known that if a is positive then the
exponent of 2 in the factorization of F2a×3×b is exactly a + 2 for all odd integers
b. Hence, the exponent of 2 in Fmn is precisely s+ 2, while since 2s−2 × 3 divides
m, we get that the exponent of 2 in Fm is at least s. Thus, the exponent of 2 in
Fmn/Fm cannot exceed (s+ 2) − s = 2, a contradiction. We conclude that indeed
m | 2s−3 × 3 × λ.

Hence, mn has at least

τ(2s × 3 × λ) − τ(2s−3 × 3 × λ) = (s+ 1)τ(3λ) − (s− 2)τ(3λ) = 3τ(3λ) > 6

divisors d which do not divide m. These divisors are of the form 2αd1, where
α ∈ {s − 2, s − 1, s}, and d1 is odd. Since these numbers are all even, it follows
that for a most three of them (namely, for d ∈ {2, 6, 12}), the number Fd might
not have a primitive prime factor. Thus, for the remaining even divisors d of mn
which do not divide m (at least three of them in number), we have that Fd has a
primitive prime factor pd. The primes pd for such values of d are distinct and do
not divide Fm, therefore they appear in the factorization of N = Fmn/Fm. Hence,
ω(N) > 3, which contradicts relation (2.2) according to which ω(N) = 2.

Hence, N cannot be even and perfect.

3. The odd perfect number case

Here, we use a result of Ribenboim [9] concerning square-classes of Fibonacci and
Lucas numbers. We say that positive integers a and b are in the same Fibonacci
square-class if FaFb is a square. The Fibonacci square-class of a is called trivial if
FaFb is a square only for b = a. Then Ribenboim’s result is the following.

Theorem 3.1. If a 6= 1, 2, 3, 6, 12, then the Fibonacci square-class of a is trivial.
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In the same paper [9], Ribenboim also found the square-classes of the Lucas
numbers. Recall that the Lucas sequence (Lk)k>0 is given by L0 = 2, L1 = 1 and
Lk+2 = Lk+1 + Lk for all k > 0. We say that positive integers a and b are in the
same Lucas square-class if LaLb is a square. As previously, the Lucas square-class
of a is called trivial if LaLb is a square only for b = a. Then Ribenboim’s result is
the following.

Theorem 3.2. If a 6= 0, 1, 3, 6, then the Lucas square-class of a is trivial.

We deal with the case of the odd perfect number N = Fmn/Fm through a se-
quence of lemmas. We write N as in (1.1) with odd distinct primes p and q1, . . . , qs
and integer exponents a and a1, . . . , as such that p ≡ a ≡ 1 (mod 4) and ai are
even for i = 1, . . . , s. We use � to denote a perfect square.

Lemma 3.3. Both m and n are odd.

Proof. Assume that n is even. Then Fmn = Fmn/2Lmn/2 and Fm | Fmn/2. Thus,

N =
Fmn

Fm
=

(
Fmn/2

Fm

)
Lmn/2 = p�. (3.1)

Now it is well-known that gcd(Fℓ, Lℓ) ∈ {1, 2} and since N is odd, we get that
gcd(Fmn/2, Lmn/2) = 1. Hence, the two factors on the left hand side of equation
(3.1) above are coprime, and we conclude that either

{
Fmn/2

Fm
= p�

Lmn/2 = �
, or

{
Fmn/2

Fm
= �

Lmn/2 = p�
.

In the first case, since L1 = 1, we get that mn/2 is in the same Lucas square-class as
1, which is impossible by Theorem 3.2 because mn/2 > 50. In the second case, we
get that mn/2 and m are in the same Fibonacci square-class, which is impossible
by Theorem 3.1 for mn/2 > 50 unless mn/2 = m, which happens when n = 2. But
if n = 2, we then get that

N =
F2m

Fm
= Lm,

and the fact that Lm is not perfect was proved in [6]. The proof of the lemma is
complete. �

Lemma 3.4. We have ai ≡ 0 (mod 4) for all i = 1, . . . , s.

Proof. It is well-known that if ℓ is odd then every odd prime factor of Fℓ is
congruent to 1 modulo 4. One of the simplest way of seing this is via the formula
F2ℓ+1 = F 2

ℓ + F 2
ℓ+1 valid for all ℓ > 0, together with the fact that Fℓ and Fℓ+1 are

coprime. Since mn is odd (by Lemma 3.3), it follows that qi ≡ 1 (mod 4) for all
i = 1, . . . , s. Now

σ(qai

i ) = 1 + qi + · · · + qai

i ≡ ai + 1 (mod 4).
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If ai is a not a multiple of 4 for some i ∈ {1, . . . , s}, then ai ≡ 2 (mod 4), therefore
σ(qai

i ) ≡ 3 (mod 4). Hence, σ(qai

i ) has a prime factor q ≡ 3 (mod 4). However,
since q | σ(qai

i ) | σ(N) = 2N , it follows that q is a divisor of N , which is false
because from what we have said above all prime factors of N are congruent to 1
modulo 4. �

Lemma 3.5. The number n is prime.

Proof. Say n = rb1
1 · · · rbℓ

ℓ , where 3 6 r1 < · · · < rℓ are primes and b1, . . . , bℓ are
positive integers. Then

Fmn

Fm
=

(
Fmn/r1

Fm

)(
Fmn

Fmn/r1

)
= p�. (3.2)

It is well-known that the relation

gcd

(
Fa,

Far

Fa

)
=

{
r if r | Fa

1 otherwise
(3.3)

holds for all positive integers a and primes r. Furthermore, if the above greatest
common divisor is not 1, then r‖Far/Fa. We apply this with a := mn/r1 and
r := r1 distinguishing two different cases.

The first case is when Fmn/r1
and Fmn/Fmn/r1

are coprime. In this case, (3.2)
implies that

either
Fmn/r1

Fm
= �, or

Fmn

Fmn/r1

= �.

The second instance is impossible by Theorem 3.1 since mn > 100. By the same
theorem, the first instance is also impossible unless mn/r1 = m, which happens
when n = r1, which is what we want to prove.

So, let us analyze the second case. Then r1 | Fmn/r1
. Since r1 | Fz(r1), we get

that r1 | gcd(Fmn/r1
, Fz(r1)) = Fgcd(mn/r1,z(r1)). We know that r1 > 3 by Lemma

3.3. If r1 = 3, then z(r1) = 4 and r1 | Fgcd(mn/3,4) = F1 = 1, where the fact that
gcd(mn/r1, 4) = 1 follows from Lemma 3.3 which tells us that the number mn is
odd. We have reached a contradiction, so it must be the case that r1 > 5. Let us
observe that if r1 > 7, then z(r1) | r1 ± 1. Hence, in this case

r1 | Fgcd(mn/r1,r1±1).

Since r1 is the smallest prime in n, it follows that n/r1 is coprime to r1 ± 1,
therefore gcd(mn/r1, r1 ± 1) = gcd(m, r1 ± 1) | m. Consequently, r1 | Fm if
r1 > 7. We now return to equation (3.2) and use the fact that r1‖Fmn/Fmn/r1

and
r1 = gcd(Fmn/r1

, Fmn/Fmn/r1
).

We distinguish two instances.
The first instance is when r1 = p. We then get that

Fmn/r1

Fm
= �, and

Fmn

Fmn/r1

= p�.
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By Theorem 3.1, the first equation is not possible unless n = r1, which is what we
want.

The second instance is when r1 6= p. Then, by Lemma 3.4, we have that r41 | N ,
and since r1‖Fmn/Fmn/r1

, we get that r31 | Fmn/r1
/Fm. If r1 = 5, this implies that

r31 | n/r1, because it is well-known that the exponent of 5 in the factorization of Fℓ

is the same as the exponent of 5 in the factorization of ℓ. If r1 > 7, then r1 | Fm,
so z(r1) | m. It is then well-known that if re

1 denotes the exponent of r1 in the
factorization of Fz(r1), then for every nonzero multiple ℓ of z(r1), the exponent of
r1 in Fℓ is f (> e), where f − e is the precise exponent of r1 in ℓ/z(r1). It then
follows again that the divisibility relation r31 | Fmn/r1

/Fm together with the fact
that r1 | Fm imply that r31 | n/r1. Hence, in all cases (r1 = 5, or r1 > 7), we have
that r41 | n. Now we write

N =
Fmn

Fm
=

(
Fmn/r2

1

Fm

)(
Fmn

Fmn/r2
1

)
= p�. (3.4)

Using (3.3), one proves easily that the greatest common divisor of the two factors
on the right above is r21 and that r21‖Fmn/Fmn/r2

1
. The above equation (3.4) then

leads to

either
Fmn/r2

1

Fm
= �, or

Fmn

Fmn/r2
1

= �.

Theorem 3.1 implies that the second instance is impossible and that the first in-
stance is possible only when n = r21 . However, we have already seen that r41 must
divide n. Thus, the first instance cannot appear either. The proof of this lemma
is complete. �

From now on, we shall assume that n is prime and we shall denote n by q.

Lemma 3.6. We have q ∤ m.

Proof. Say q | m. Then

Fmq

Fm
=

(
Fm

Fm/q

)(
Fmq/Fm

Fm/Fm/q

)
= p�. (3.5)

Both factors above are integers.
Suppose first that the two factors above are coprime. Then

either
Fm

Fm/q
= �, or

Fmq/Fm

Fm/Fm/q
= �.

The first instance is impossible by Theorem 3.1. The second instance leads to
Fmq/Fm/q = �, which is again impossible by the same Theorem 3.1.

Suppose now that the two factors appearing in the right hand side in relation
(3.5) are not coprime. But then if r is a prime such that

r | gcd

(
Fm

Fm/q
,
Fmq/Fm

Fm/Fm/q

)
, then r | gcd

(
Fm,

Fmq

Fm

)
,
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therefore r = q by (3.3). Since q | Fm/Fm/q, we get that q | Fm/q and q‖Fm/Fm/q,
and also q‖Fmq/Fm = N . Thus, q = p, and now equation (3.5) implies

Fm

Fm/q
= p�, and

Fmq/Fm

Fm/Fm/q
= �.

The second relation leads again to Fmq/Fm/q = �, which is impossible by Theorem
3.1. Hence, indeed q ∤ m. �

Lemma 3.7. We have q > 7.

Proof. We have q > 3 by Lemma 3.3. If q = 3, then since 3 ∤ m (by Lemma 3.6),
it follows that Fm is odd. But then N = F3m/Fm is even, which is a contradiction.
If q = 5, then N = F5m/Fm has the property that 5‖N . Thus, p = 5, and we get
the equation

F5m

Fm
= 5�,

which has no solution (see equation (8) in [1]). The lemma is proved. �

Lemma 3.8. (i) All primes p and q1, . . . , qs have their orders of appearance
divisible by q. In particular, they are all congruent to ±1 (mod q);

(ii) p ≡ 1 (mod 5) and p ≡ 1 (mod q). Furthermore, N ≡ 1 (mod 5) and N ≡ 1
(mod q);

(iii) If qi ≡ 1 (mod q) for some i = 1, . . . , s, then ai > 2q − 2;

(iv) We have q ≡ ±1 (mod 20). In particular, Fq ≡ 1 (mod 5);

(v) Fq 6= p.

Proof. (i) Observe first that all primes p and q1, . . . , qs are > 7. Indeed, it is clear
that they are all odd. If one of them is 3, then 3 | Fmq, so that 4 = z(3) | mq,
which is impossible by Lemma 3.3, while if one of them is 5, then 5 | Fmq/Fm,
which implies that q = 5, contradicting Lemma 3.7. Thus, p and qi are congruent
to ±1 (mod z(p)) and ±1 (mod z(qi)) for i = 1, . . . , s, respectively. If q | z(p)
and q | z(qi) for i = 1, . . . , s, we are through. So, assume that for some prime
number r in {p, q1, . . . , qs} we have that q ∤ z(r). Then r | Fmq and r | Fz(r), so
that r | gcd(Fmq, Fz(r)) = Fgcd(mq,z(r)) | Fm. Thus, r | Fm and r | N = Fmq/Fm,
therefore r | gcd(Fm, Fmq/Fm), so r = q by (3.3). In this case, q‖Fmq/Fm, therefore
q = p. The above argument shows, up to now, that all prime factors of N are either
congruent to ±1 (mod q), or the prime q itself, but if this occurs, then p = q. But
with p = q, we have that (q + 1) = (p + 1) | σ(N) = 2N , therefore (q + 1)/2 is a
divisor of N . Thus, all prime factors of (q+1)/2 are either q, which is not possible,
or primes which are congruent to ±1 (mod q), which is not possible either. This
contradiction shows that in fact q ∤ N , therefore indeed all prime factors of N have
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their orders of appearance divisible by q and, in particular, they are all congruent
to ±1 (mod q) by (2.1).

(ii) Clearly, (p + 1) | σ(N) = 2N . By (i), p ≡ ±1 (mod q), and by relation

(2.1), we have that p ≡
(p

5

)
(mod q). If p ≡ −1 (mod q), then q | (p+ 1) | 2N , so

that q | N , which is impossible by (i). So, p ≡ 1 (mod q), showing that
(p

5

)
≡ 1

(mod 5), therefore p ≡ ±1 (mod 5). Finally, if p ≡ −1 (mod 5), then 5 | (p+ 1) |
σ(N) = 2N , so 5 | N , which is impossible by (i). Thus, indeed p ≡ 1 (mod 5) and
p ≡ 1 (mod q). The fact that N ≡ 1 (mod q) is now a consequence of the fact that
p ≡ 1 (mod 5), qi > 5 and ai is a multiple of 4 for all i = 1, . . . , s (see Lemma 3.4),
therefore qai

i ≡ 1 (mod 5) for all i = 1, . . . , s. The fact that N ≡ 1 (mod q) follows
because by (i) p ≡ 1 (mod q), qi ≡ ±1 (mod q), and ai is even for all i = 1, . . . , s.

(iii) Assume that qi ≡ 1 (mod q) for some i = 1, . . . , s. Then

σ(qai

i ) = 1 + qi + · · · + qai

i ≡ ai + 1 (mod q).

Since σ(qai

i ) is an odd divisor of σ(N) = 2N , we get that σ(qai

i ) is a divisor of N ,
so, by (i), all its prime factors are congruent to ±1 (mod q). Hence, σ(qai

i ) ≡ ±1
(mod q), showing that ai ≡ −2, 0 (mod q). Since ai is also even, we get that
ai ≡ −2, 0 (mod 2q). In particular, ai > 2q − 2, which is what we wanted.

(iv) We use the formula

Fqm =
1

2q−1

(q−1)/2∑

i=0

(
q

2i+ 1

)
5iF 2i+1

m Lq−1−2i
m . (3.6)

Assume that 5b‖m with some integer b > 0. We then see that all the terms in the
sum appearing on the right hand side of formula (3.6) above are multiples of 5b+1,
whereas the first term (with i = 0) is qFmL

q−1
m , which is divisible by 5b, but not

by 5b+1. It then follows that

Fqm

Fm
≡ q

2q−1
Lq−1

m (mod 5). (3.7)

Since m is odd, the sequence (Lk)k>0 is periodic modulo 5 with period 4, and
L1 = 1, L3 = 4 ≡ −1 (mod 5), it follows that Lm ≡ ±1 (mod 5), so that Lq−1

m ≡ 1
(mod 5). Hence, from congruence (3.7), we get N ≡ q/2q−1 (mod 5). Since also
N ≡ 1 (mod 5) (see (ii)), we get that q ≡ 2q−1 (mod 5). In particular, q is a
quadratic residue modulo 5, therefore q ≡ ±1 (mod 5). If q ≡ 1 (mod 5), we then
get that the congruence 2q−1 ≡ 1 (mod 5) holds, so that q ≡ 1 (mod 4) as well.
If q ≡ −1 (mod 5), we then get that the congruence 2q−1 ≡ −1 (mod 5) holds, so
that q ≡ −1 (mod 4) as well. Summarizing, we get that q ≡ ±1 (mod 20), and, in
particular, Fq ≡ 1 (mod 5).

(v) Assume that Fq = p. Then Fq + 1 = p+ 1 divides σ(N) = 2N . Now let us
recall that if a > b are odd numbers, then

Fa + Fb = F(a+δb)/2L(a−δb)/2,
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where δ ∈ {±1} is such that a ≡ δb (mod 4). Applying this with a := q and b := 1,
we get that 5 | F(q+δ)/2L(q−δ)/2 divides 2Fqm. Observe that since q ≡ δ (mod 4),
it follows that (q− δ)/2 is even. Now it is well-known and easy to prove that if u is
even and v is odd, then gcd(Lu, Fv) = 1, or 2. Thus, L(q−δ)/2 cannot divide 2Fmq,
unless L(q−δ)/2 6 4, which is not possible for q > 7. �

From now on, we write r for the minimal prime factor dividing m.

Lemma 3.9. There exists a divisor d ∈ {r, r2} of m such that

Fmq/Fmq/d

Fm/Fm/d
= �. (3.8)

Furthermore, the case d = r2 can occur only when r | Fq.

Proof. Write again, as often we did before,

N =
Fmq

Fm
=

(
Fmq/r

Fm/r

)(
Fmq/Fmq/r

Fm/Fm/r

)
= p�. (3.9)

Suppose first that the two factors appearing in the left hand side of equation (3.9)
above are coprime. Then

either
Fmq/r

Fm/r
= �, or

Fmq/Fmq/r

Fm/Fm/r
= �.

The first instance is impossible by Theorem 3.1, while the second instance is the
conclusion of our lemma with d := r.

So, from now on let’s assume that the two factors appearing in the left hand
side of equation (3.9) are not coprime. Let λ be any prime dividing both num-
bers Fmq/r/Fm/r and (Fmq/Fmq/r)/(Fm/Fm/r). Then λ | gcd(Fmq/r , Fmq/Fmq/r).
By (3.3), we get that λ = r. In this last case, r = gcd(Fmq/r , Fmq/Fmq/r),
r‖Fmq/Fmq/r, and also r | Fmq/r/Fm/r. If r | Fm/r, it then follows that r |
gcd(Fm/r, Fmq/r/Fm/r), so, by (3.3), we get that r = q, which contradicts Lemma
3.6. Hence, r ∤ Fm/r. Thus, r | Fmq/r and r ∤ Fm/r. Now if r | Fm, then
r | gcd(Fm, Fmq/r) = Fgcd(m,mq/r) = Fm/r, which is impossible. Thus, r ∤ Fm, so
that r ∤ Fm/Fm/r. Since r‖Fmq/Fmq/r, we get that r‖(Fmq/Fmq/r)/(Fm/Fm/r).

We now distinguish two instances.
The first instance is when r = p, case in which equation (3.9) leads to

Fmq/r

Fm/r
= �, and

Fmq/Fmq/r

Fm/Fm/r
= p�. (3.10)

The first relation in (3.10) above is impossible by Theorem 3.1.
The second instance is when r 6= p.
Let r = qi for some i = 1, . . . , s, and suppose first that r‖m. Then rai−1 |

Fmq/r. Furthermore, since r ∤ mq/r, we also get that rai−1‖Fz(r). Hence, rai−1 |
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gcd(Fmq/r , Fz(r)) = Fgcd(mq/r,z(r)). Since r | N , we have that r > 7 (by (i) of
Lemma 6, for example), therefore z(r) | r ± 1. Since r is the smallest prime
in m and r‖m, we get that gcd(mq/r, z(r)) | gcd(mq/r, r ± 1) | q. Thus, ei-
ther gcd(mq/r, z(r)) = 1, leading to rai−1 | F1, which is of course impossible, or
gcd(mq/r, z(r)) = q, leading to rai−1 | Fq.

Next, we get from equation (3.9) that

either
Fmq/Fmq/r

Fm/Fm/r
= r�, or

Fmq/Fmq/

Fm/Fm/r
= pr�. (3.11)

By (v) of Lemma 3.8, we have that q ≡ ±1 (mod 20). Hence, mq ≡ ±m (mod 20),
therefore Fmq ≡ F±m ≡ Fm (mod 5). The last relation, namely Fm ≡ F−m

(mod 5), holds because m is odd. Similarly, mq/r ≡ ±m/r (mod 20), so that
Fmq/r ≡ Fm/r (mod 5). Since Fm/r, Fmq/r , Fm and Fmq are all invertible modulo
5 (because the smallest prime factor of m which is r divides Fq, therefore r >
2q− 1 > 5), it follows that (Fmq/Fmq/r)/(Fm/Fm/r) ≡ 1 (mod 5). Relation (3.11)
together with the fact that p ≡ 1 (mod 5), which is (ii) of Lemma 3.8, now shows

that 1 ≡ r� (mod 5), therefore
( r

5

)
= 1, so, by (2.1), we have r ≡ 1 (mod q).

Hence, by (iii) of Lemma 3.8, we have that ai > 2q − 2, therefore ai − 1 > 2q − 3.
Since rai−1 | Fq and r > 2q − 1, we get the inequality

(2q − 1)2q−3 6 Fq ,

which is false for all primes q > 7.
This contradiction shows that in this case it is not possible that r‖m. Thus,

r2 | m, and then we can write

N =
Fmq

Fm
=

(
Fmq/r2

Fm/r2

)(
Fmq/Fmq/r2

Fm/Fm/r2

)
= p�. (3.12)

Furthermore, one shows easily that r2‖(Fmq/Fmq/r2)/(Fm/Fm/r2) by applying
(3.3) twice. Since r = qi for some i ∈ {1, . . . , s} and ai is even, it follows that
the exponent of r in the factorization of Fmq/r2/Fm/r2 is also even. We now get
from equation (3.12) that

either
Fmq/r2

Fm/r2

= �, or
Fmq/Fmq/r2

Fm/Fm/r2

= �.

The first instance is impossible by Theorem 3.1, while the second instance is the
conclusion of our lemma for d := r2. Notice that along the way we also saw that
this case is possible only when r | Fq. The lemma is therefore proved. �

Lemma 3.10. Let q and d ∈ {r, r2}, where q and r are two distinct odd primes.
Then the coefficients of the polynomial

fq,d(X) =
(Xqd − 1)(X − 1)

(Xq − 1)(Xd − 1)

are in the set {0,±1}.



On perfect numbers which are ratios of two Fibonacci numbers 117

Proof. When d := r, the given polynomial is Φqr(X), where Φℓ(X) stands for the
ℓth cyclotomic polynomial, and the fact that all its coefficients are in {0,±1} has
appeared in many papers (see, for example, [4] and [5]). When d := r2, we have
fq,d(X) = Φqr(X)Φqr2(X), and the fact that the coefficients of this polynomial are
also in {0,±1} was proved in Proposition 4 in [3]. �

Lemma 3.11. The inequality m < 2d3q2 holds.

Proof. We start with the Diophantine equation (3.8). Recall that if we put α :=
(1 +

√
5)/2 and β := (1 −

√
5)/2 for the two roots of the characteristic polynomial

x2 − x− 1 of the Fibonacci and Lucas sequences, then the Binet formulas

Fn =
αn − βn

α− β
and Ln = αn + βn hold for all n > 0.

Putting d ∈ {r, r2}, Lemma 3.9 tells us that

(αmq − βmq)(αm/d − βm/d)

(αm − βm)(αmq/d − βmq/d)
= �. (3.13)

We recognize the expression on the left of (3.13) above as f∗
q,d(α

m/d, βm/d), where
for a polynomial P (X) we write P ∗(X,Y ) for its homogenization, and fq,d(X) is the
polynomial appearing in Lemma 3.10. It is clear that f∗

q,d(X,Y ) is monic and sym-
metric since it is the homogenization of either the cyclotomic polynomial Φqr(X), or
of the product Φqr2(X)Φqr(X), and both these polynomials have the property that
they are monic, their last coefficient is 1, and they are reciprocal, meaning that if ζ is
a root of one of these polynomials, so is 1/ζ. These conditions lead easily to the con-
clusion that their homogenizations are symmetric. By the fundamental theorem of
symmetric polynomials, we have that f∗

q,d(X,Y ) = Fq,d(X+Y,XY ) is a monic poly-
nomial with integer coefficients in the basic symmetric polynomials X+Y and XY .
Specializing X := αm/d, Y := βm/d, we have that X + Y = αm/d + βm/d = Lm/d,
and XY = (αβ)m/d = −1, where the last equality holds because m is odd. Hence,
f∗

q,d(α
m/d, βm/d) = Gq,d(Lm/d) is a monic polynomial in Lm/d. Its degree is obvi-

ously D := (q − 1)(d − 1), which is even. Hence, equation (3.13) can be written
as

Gq,d(x) = y2, (3.14)

where x := Lm/d, y is an integer, and Gq,d(X) is a monic polynomial of even degree
D. The finitely many integer solutions (x, y) of this equation can be easily bounded
using Runge’s method. This has been done in great generality by Gary Walsh [11].
Here is a particular case of Gary Walsh’s theorem.

Lemma 3.12. Let F (X) ∈ Z[X ] be a monic polynomial of even degree without
double roots. Then all integer solutions (x, y) of the Diophantine equation

F (x) = y2
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satisfy

|x| < 22D−2

(
D

2
+ 2

)2

(h(F ) + 2)D+2,

where h(F ) denotes the maximum absolute value of the coefficients of the polynomial
F (X).

From Lemma 3.12, we read that all integer solutions (x, y) of the Diophantine
equation (3.14) satisfy

|x| 6 22D−2

(
D

2
+ 2

)2

(h(Gq,d) + 2)D+2, (3.15)

where h(Gq,d) is the maximum absolute value of all the coefficients of Gq,d(X).
Theorem 3.12 requires that the polynomial Gq,d(X) has only simple roots. Let’s
prove that this is indeed the case.

Let us take a closer look at how we got Gq,d(X) from f∗
q,d(X,Y ). Note that the

roots of fq,d(X) are the roots of unity ζ of order dq, which are neither of order d,
nor of order q. Let ζ and η stand for such roots of unity. Then Gq,d(X) is obtained
from fq,d(X) first by homogenizing, next by replacing Y by −X−1, and finally by
rewriting the resulting expression as a polynomial in X + Y = X − X−1. Thus,
Gq,d(X) is a polynomial whose roots are ζ − ζ−1. To see that they are all distinct,
note that if ζ−ζ−1 = η−η−1, then either ζ = η, or ζ = −1/η. However, the second
option is not possible when both ζ and η are roots of unity of odd orders qd (to see
why, raise the equality ζ = −1/η to the odd exponent dq to get the contradiction
1 = −1). Thus, the numbers ζ − ζ−1 remain distinct when ζ runs through roots of
unity of order dq which are neither of order d nor of order q, showing that Gd,q(X)
has only simple roots, and therefore inequality (3.15) applies in our instance.

It remains to bound h(Gq,d). For this, let us start with

f∗
q,d(X,Y ) =

D∑

t=0

ctX
tY D−t,

where ct ∈ {0,±1} by Lemma 3.10. Since f∗
q,d(X,Y ) is symmetric, we have ct =

cD−t for all t = 0, . . . , D, therefore

f∗
q,d(α

mt/d, βmt/d) =
∑

06t6D
t≡0 (mod 2)

ct(α
mt/d + βmt/d)(αβ)(D−t)/2.

Now for even t we have

αmt/d + βmt/d = Lmt/d =

t/2∑

i=0

t

t− i

(
t− i

i

)
(−1)iLt−2i

m/d . (3.16)

The knowledgeable reader would recognize the expression on the right as the Dick-
son polynomial Dt(Z,−1) specialized in Z := Lm/d. Thus,

Gq,d(Lm/d) = f∗
q,d(α

mt/d, βmt/d)
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=
∑

06t6D
t≡0 (mod 2)

ct(−1)(D−t)/2

t/2∑

i=0

t

t− i

(
t− i

i

)
(−1)iLt−2i

m/d ,

=
∑

06u6D
u≡0 (mod 2)

buL
u
m/r,

where

bu :=
∑

u6t6D
t≡0 (mod 2)

ct(−1)(D−t)/2+(t−u)/2 2t

t+ u

( t+u
2

t−u
2

)
. (3.17)

Hence,

Gq,d(X) =
∑

06u6D
u≡0 (mod 2)

buX
u,

where bu is given by (3.17). Since |ct| 6 1, 2t/(t+ u) 6 2 and (t + u)/2 6 D, we
get that

|bu| 6 2

D∑

t=0

(
D

t

)
= 2D+1 for all u = 0, 1, . . . , D,

therefore h(Gq,d) 6 2D+1. Inserting this into (3.15) and using the fact that D >
q > 4, therefore D > D/2 + 2, we get

Lm/d 6 22D−2

(
D

2
+ 2

)2

(2D+1 + 1)D+2 < 22DD22(D+2)2 . (3.18)

Since both sides of the inequality (3.18) are integers, we get that

Lm/d 6 2(D+2)222DD2 − 1,

and since Lm/d = αm/d + βm/d > αm/d − 1, we get that

αm/d < 2(D+2)222DD2,

which is equivalent to

m

d
<

(
log 2

logα

)
(D + 2)2

(
1 +

2D

(D + 2)2
+

2 logD

(D + 2)2 log 2

)
.

Since q > 7 and r > 3, we get that D > 12. The functions D 7→ D/(D + 2)2 and
logD/(D + 2)2 are decreasing for D > 12, so the expression in parenthesis is

6 1 +
2 × 12

(12 + 2)2
+

2 log 12

(12 + 2)2 log 2
< 1.2.



120 F. Luca, V. J. Mejía Huguet

Since log 2/ logα < 1.5, it follows that

m

d
< 1.5 × 1.2(D + 2)2 < 2(D + 2)2.

Since D = (q − 1)(d− 1), it follows that D + 2 = qd− q − d+ 3 < qd, so that

m < 2d(qd)2 = 2d3q2,

which is what we wanted to prove. �

Lemma 3.13. The number N has at most three distinct prime factors < 1014.

Proof. Assume that this is not so and that N has at least four distinct primes
< 1014. One of them might be p, but the other three, let’s call them ri for i =
1, 2, 3, have the property that r4i | N (see Lemma 3.4). A calculation of McIntosh
and Roettger [7] showed that the divisibility relation r‖Fz(r) holds for all primes
r < 1014. In particular, ri‖Fz(ri) for i = 1, 2, 3. Since r4i | N for i = 1, 2, 3, we get
that r3i | m for i = 1, 2, 3. Hence,

r31r
2
2r

3
3 6 m 6 2d3q2 6 2r6q2.

Clearly, r1 > r and r2 > r, since r is the smallest prime factor of m, therefore
r33 6 2q2. Since r3 ≡ ±1 (mod q) (see Lemma 6 (i)), we get that r3 > 2q − 1.
Thus, we have arrived at the inequality

(2q − 1)3 < 2q2,

which is false for any prime q > 7. Thus, the conclusion of the lemma must hold.
�

We are now ready to finally show that there is no such N . By Lemma 3.13, it
can have at most three prime factors < 1014. Since q > 7 and all prime factors of
N are congruent to ±1 (mod q), it follows that the smallest three such primes are
at least 13, 17, and 19, respectively. Thus,

2 =
σ(N)

N
<

N

φ(N)
6

(
1 +

1

12

)(
1 +

1

16

)(
1 +

1

18

) ∏

p|N
p>1014

(
1 +

1

p− 1

)
,

which, after taking logarithms and using the fact that the inequality log(1+x) < x
holds for all positive real numbers x, leads to

0.494 < log(1.64) <
∑

p|N
p>1014

log

(
1 +

1

p− 1

)
<

∑

p|N
p>1014

1

p− 1
. (3.19)

Let’s call a prime good if p < z(p)3 and bad otherwise. We record the following
result.
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Lemma 3.14. We have ∑

p>1014

p bad

1

p− 1
< 0.002. (3.20)

Proof. Observe first that since p > 1014, it follows that z(p) > 69. For a positive
number u let Pu := {p : z(p) = u}. Let u > 69 be any integer and put ℓu := #Pu.
Then, since p ≡ ±1 (mod u) for all p ∈ Pu, we have that

(u − 1)ℓu 6
∏

p∈Pu

p 6 Fu < αu−1,

therefore

ℓu <
(u− 1) logα

log(u− 1)
.

Thus, for a fixed u, we have

∑

p∈Pu
p bad

1

p− 1
<

ℓu
u3 − 1

<
logα

(u2 + u+ 1) log(u− 1)
<

logα

u2 log(u− 1)
,

which leads to

∑

p>1014

p bad

1

p− 1
<
∑

u>69

logα

u2 log(u − 1)
<

logα

log 68

∑

u>69

1

u2
<

logα

68 log 68
< 0.002.

�

Returning to inequality (3.19), we get

0.49 <
∑

p>1014

p|N
p good

1

p− 1
. (3.21)

The following result is Lemma 8 in [1].

Lemma 3.15. The estimate

∑

p∈Pu

1

p− 1
<

12 + 2 log log u

φ(u)
holds for all u > 3. (3.22)

Let U be the set of divisors u of mq of the form u := z(p) for some good prime
factor p of N with p > 1014. Observe that all elements of U exceed 1014/3 > 46415.
Inserting the estimate (3.22) of Lemma 3.15 into estimate (3.21), we get

0.49 <
∑

u∈U

12 + 2 log log u

φ(u)
. (3.23)
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Let u1 be the smallest element in U . We distinguish two cases.

Case 1. q < r/
√

2.

By Lemma 3.11, we have that m < 2r6q2 < r8, therefore Ω(m) 6 7, so ω(m) 6
7, and τ(m) 6 27. Observe that U is contained in the set of divisors of qm which
are not divisors of m, and this last set has cardinality τ(qm)− τ(m) = τ(m) 6 27.
Here, we used the fact that τ(qm) = 2τ(m), which holds because q ∤ m (see Lemma
3.6). Hence, #U 6 27. Furthermore, since ω(m) 6 7, we get that ω(qm) 6 8 and

qm

φ(qm)
6

8∏

i=1

(
1 +

1

pi − 1

)
< 5.9,

where we used the notation pi for the ith prime number. Hence, the inequality

1

φ(u)
6

6

u

holds for all divisors u of mq. Using also the fact that the functions u 7→ 1/u and
u 7→ log log u/u are decreasing for u > q > 7, we arrive at the conclusion that
inequality (3.23) implies

0.49 <
∑

u∈U

12 + 2 log log u

φ(u)
< 6

∑

u∈U

12 + 2 log log u

u

< 6#U
(

12 + 2 log log u1

u1

)
6 6 × 27

(
12 + 2 log log u1

u1

)
.

Since 6 × 27 × 0.49−1 < 1600, we get that

u1 < 1600(12 + 2 log log u1). (3.24)

Inequality (3.24) yields u1 < 27000 < 46415, which is a contradiction.

Case 2. q > r/
√

2.

Note that in this case we necessarily have d = r, for otherwise we would have
d = r2, but by Lemma 3.9 this situation occurs only when r is a prime factor of Fq.
If this were so, we would get that r > 2q−1, therefore q > r/

√
2 > (2q−1)/

√
2, but

this last inequality is not possible for any q > 7. Hence, d = r andm < 2r4q2 < 8q6.
Since members u of U are the product between q and some divisor v of m (see
Lemma 3.8 (i)), we deduce from inequality (3.23) that

0.49 <
12 + 2 log log(8q7)

q − 1

∑

v|m

1

φ(v)
. (3.25)

It is easy to prove that the inequality

∑

v|ℓ

1

φ(v)
<
ζ(2)ζ(3)

ζ(6)

ℓ

φ(ℓ)
holds for all positive integers ℓ. (3.26)
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Inserting inequality (3.26) for ℓ := m into inequality (3.25), we get that

q − 1 <

(
ζ(2)ζ(3)

ζ(6) · 0.49

)(
12 + 2 log log(8q7)

) m

φ(m)
. (3.27)

The constant in parenthesis in the right hand side of inequality (3.27) above is < 4.
Furthermore, Theorem 15 in [10] says that the inequality

ℓ

φ(ℓ)
< 1.8 log log ℓ+ 2.51/log log ℓ holds for all ℓ > 3. (3.28)

The function ℓ 7→ 1.8 log log ℓ + 2.51/ log log ℓ is increasing for ℓ > 26, and since
m < 8q6, we get, by inserting inequality (3.28) with ℓ := m into inequality (3.27),
that the inequality

q − 1 < 4
(
12 + 2 log log(8q7)

) (
1.8 log log(8q6) + 2.51/ log log(8q6)

)
, (3.29)

holds whenever m > 26. Inequality (3.29) yields q 6 577. This was if m > 26. On
the other hand, if m < 26, then m/φ(m) 6 15/8 < 2, so we get

q − 1 < 8
(
12 + 2 log log(8q7)

)
,

which yields q 6 151. So, we always have q 6 577.
Let us now get the final contradiction. The factorizations of all Fibonacci

numbers Fℓ with ℓ 6 1000 are known. A quick look at this table convinces us that
Fq is square-free for all primes q 6 577.

If Fq is prime, then Fq 6= p by Lemma 3.8 (v). Furthermore, by Lemma 6
(iv), putting qi = Fq for some i = 1, . . . , s, we get that qi ≡ 1 (mod q), therefore
ai > 2q − 2. So q2q−3

i divides m, leading to

(2q − 1)2q−3 6 q2q−3
i 6 m 6 8q6, (3.30)

and this last inequality is false for any q > 7.
If Fq is divisible by at least three primes, it follows that at least two of them,

let’s call them qi and qj , are not p. By Lemma 3.4, we get that q3i and q3j divide
m. Thus,

(2q − 1)6 6 q3i q
3
j 6 m 6 8q6, (3.31)

and again this last inequality is again false for any q > 7.
Finally, if Fq has precisely two prime factors, then either both of them are

distinct from p, and then we get a contradiction as in (3.31), or Fq = pqi for some
i ∈ {1, . . . , s}. But in this case, by Lemma 3.8 (ii) and (iv), we get that qi ≡ 1
(mod 5), therefore qi ≡ 1 (mod q), so q2q−3

i divides m by Lemma 3.8 (iii), and we
get a contradiction as in (3.30).

This completes the proof of our main result.
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Abstract

A positive integer n is called a balancing number if

1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r)

for some positive integer r.
Several authors investigated balancing numbers and their various gener-

alizations.
The goal of this paper is to survey some interesting properties and results

on balancing, cobalancing and all types of generalized balancing numbers.

Keywords: balancing and cobalancing number, recurrence relation, sequence
balancing number, power numerical center, (a, b)-type balancing number

MSC: 11D25, 11D41

1. Introduction

The sequence R = {Ri}∞i=0 = R(A,B,R0, R1) is called a second order linear recur-
rence if the recurrence relation

Ri = ARi−1 +BRi−2 (i > 1)

holds for its terms, where A, B 6= 0, R0 and R1 are fixed rational integers and |R0|+
|R1| > 0. The polynomial f(x) = x2 −Ax−B is called the companion polynomial

∗Supported in part by Grant T-48945 and T-48791 from the Hungarian National Foundation
for Scientific Research.
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of the sequence R = R(A,B,R0, R1). Let D = A2 + 4B be the discriminant of
f . The roots of the companion polynomial will be denoted by α and β. As it is
well-known, if D > 0 then sequence can be written in the form

Ri =
aαi − bβi

α− β
, (i > 2),

where a = R1 −R0β and b = R1 −R0α.

In [3] A. Behera and G. K. Panda gave the notion of balancing number.

Definition 1.1 ([3]). A positive integer n is called a balancing number if

1 + 2 + · · · + (n− 1) = (n+ 1) + (n+ 2) + · · · + (n+ r)

for some positive integer r. This number is called the balancer corresponding to
the balancing number n. The mth term of the sequence of balancing numbers is
denoted by Bm.

Remark 1.2. It can be derived from Definition 1.1 that the following statements
are equivalent to each other (see also [3]):

• n is a balancing number,

• n2 is a triangular number (i.e. n2 = 1 + 2 + · · · + k for some k ∈ N),

• 8n2 + 1 is a perfect square.

It is easy to see that 6, 35, and 204 are balancing numbers with balancers 2, 14
and 84, respectively.

2. Properties of balancing numbers

2.1. Generating balancing numbers

In [3] A. Behera and G. K. Panda proved other interesting properties about bal-
ancing numbers.

Let us consider the following functions:

F (x) =2x
√

8x2 + 1 (2.1)

G(x) =3x+
√

8x2 + 1 (2.2)

H(x) =17x+ 6
√

8x2 + 1 (2.3)

They proved that these functions always generate balancing numbers.

Theorem 2.1 (Theorem 2.1 in [3]). For any balancing number n, F (n), G(n),
and H(n) are also balancing numbers.
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Remark 2.2. Using the theorem above we get that if n is a balancing number,
then G(F (n)) = 6n

√
8n2 + 1+16n2 +1 is an odd balancing number, because F (n)

is always even and G(n) is odd when n is even.

For generating balancing numbers they proved the following theorems:

Theorem 2.3 (Theorem 3.1 in [3]). If n is any balancing number, then there is
no balancing number k such that n < k < 3n+

√
8n2 + 1.

Its corollary is the following:

Corollary 2.4 (Corollary 3.2 in [3]). If n = Bm is a balancing number with m >
1, then we have Bm−1 = 3n−

√
8n2 + 1.

They proved that a balancing number can also be generated by two balancing
numbers.

Theorem 2.5 (Theorem 4.1 in [3]). If n and k are balancing numbers, then

f(n, k) = n
√

8k2 + 1 + k
√

8n2 + 1 (2.4)

is also a balancing number.

2.2. A recurrence relation and other properties

In [3] Behera and Panda proved that the balancing numbers fulfill the following
recurrence relation

Bm+1 = 6Bm −Bm−1 (m > 1)

where B0 = 1 and B1 = 6. Using this recurrence relation they get interesting
relations between balancing numbers.

Theorem 2.6 (Therem 5.1 in [3]). For any m > 1 we have

• Bm+1 ·Bm−1 = (Bm + 1)(Bm − 1),

• Bm = Bk · Bm−k −Bk−1 ·Bm−k−1 for any positive integer k < m,

• B2m = B2
m −B2

m−1,

• B2m+1 = Bm(Bm+1 −Bm−1).

In [26] G. K. Panda established other interesting arithmetic-type, de-Moivre’s-
type and trigonometric-type properties of balancing numbers.

Theorem 2.7 (Theorem 2.1 in [26]). If m and k are natural numbers and m > k,
then (Bm +Bk)(Bm −Bk) = Bm+k ·Bm−k.

Remark 2.8. The Fibonacci numbers Fm satisfy a similar property (see [16] p. 59)

Fm+k · Fm−k = F 2
m − (−1)m+kF 2

k .
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We know that if m is natural number, then 1+3+ · · ·+(2m− 1) = m2. In [26]
G. K. Panda proved three properties of balancing numbers similar to the identity
above. For balancing numbers we get:

Theorem 2.9 (Theorem 2.2 in [26]).

• B1 +B3 + · · · +B2m−1 = B2
m,

• B2 +B4 + · · · +B2m = BmBm+1,

• B1 +B2 + · · · +B2m = Bm(Bm +Bm+1).

The identity (cosx+i sinx)n = cosnx+i sinnx for complex numbers is known as
the de-Moivre’s formula. The following theorem gives a de-Moivre’s-type property
of balancing numbers. Let Cm =

√
8B2

m + 1.

Theorem 2.10 (Theorem 2.3 in [26]). If m and k are natural numbers, then

(Cm +
√

8Bm)k = Cmk +
√

8Bmk.

Remark 2.11. The Fibonacci (Fm) and Lucas (Lm) numbers satisfy a similar
property [

Lm +
√

5Fm

2

]r

=
Lmr +

√
5Fmr

2
.

Panda proved another interesting result about the greatest common divisor of
balancing numbers.

Theorem 2.12 (Theorem 2.5 in [26]). If m and k are natural numbers then

gcd(Bm, Bk) = B(m,k).

In [3] we can find nonrecursive forms to obtain balancing numbers. One of these
results is the following:

Theorem 2.13 (Theorem 7.1 in [3]). If Bm is the mth balancing number then

Bm =
λm+1

1 − λm+1
2

λ1 − λ2
, m = 0, 1, 2, . . . ,

where λ1 = 3 +
√

8 and λ2 = 3 −
√

8.

Remark 2.14. We get this formula easily using the companion polynomial of the
recurrence relation of Bm.
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2.3. Fibonacci and Lucas balancing numbers

In [21] K. Liptai obtained several results about special type of balancing numbers.
Let us consider the definition below:

Definition 2.15 ([21] and [22]). We call a balancing number a Fibonacci or a Lu-
cas balancing number if it is a Fibonacci or a Lucas number, too.

Using this definition and companion polynomial of Bm K. Liptai proved that
the balancing numbers are solutions of a Pell’s equation.

Theorem 2.16 (Theorem 1 in [21]). The terms of the second order linear recur-
rence R(6,−1, 1, 6) are the solutions of the equation

x2 − 8y2 = 1

for some integer y.

There is also a connection between Fibonacci or Lucas numbers and Pell’s
equation. The following theorem is due to D. E. Ferguson:

Theorem 2.17 (Theorem in [7]). The only solutions of the equation

x2 − 5y2 = ±4

are x = ±Lm, y = ±Fm (n = 0, 1, 2 . . .), where Lm and Fm are the mth terms of
the Lucas and Fibonacci sequences, respectively.

To find all Fibonacci or Lucas balancing numbers K. Liptai proved that there
are finitely many common solutions of the Pell’s equations above using a method
of A. Baker and H. Davenport.

The main theorem in [21] and [22] are the following:

Theorem 2.18 (Theorem 4 in [21] and [22]). There is no Fibonacci or Lucas bal-
ancing number.

Remark 2.19. Using another method L. Szalay got the same result for the solu-
tions of simultaneous Pell equations in [35]. In this method he converted simul-
taneous Pell’s equations into a family of Thue equations which could be solved
completely.

3. Properties of cobalancing numbers

3.1. Introduction

By slightly modifying the definition 1.1 we get:
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Definition 3.1 ([27]). We call n ∈ N a cobalancing number if

1 + 2 + · · · + n = (n+ 1) + (n+ 2) + · · · + (n+ rc)

for some rc ∈ N. Here we call rc the cobalancer corresponding to the cobalancing
number n. Denote n by Bc

m if n is the mth term of the sequence of cobalancing
numbers.

Remark 3.2. The first three cobalancing numbers are 2, 14 and 84 with cobal-
ancers 1, 6, 35, respectively.

3.2. Properties of cobalancing numbers

Cobalancing numbers Bc
m have similar properties to balancing numbers Bm. In

[27] G. K. Panda and P. K. Ray proved the following properties:

Theorem 3.3 (Theorem 2.2 in [27]). If n = Bc
m is a cobalancing number with

m > 1 then Bc
m+1 = 3n+

√
8n2 + 8n+ 1+1 and Bc

m−1 = 3n−
√

8n2 + 8n+ 1+1.

By Theorem 3.3 they get a recurrence relation for cobalancing numbers that is

Bc
m+1 = 6Bc

m −Bc
m−1 + 2, (m = 2, 3, . . .)

where they set Bc
1 = 0. The following theorem is a consequence of the relation

above.

Theorem 3.4 (Theorem 3.1 in [27]). Every cobalancing number is even.

We also denote by rm the balancer belonging to Bm and rc
m the cobalancer

belongig to Bc
m. Then by using the definition 1.1 and 3.1 the following theorems

are valid:

Theorem 3.5 (Theorem 6.1 in [27]). Every balancer is a cobalancing number and
every cobalancer is a balancing number.

Using our notation we get:

Theorem 3.6 (Theorem 6.2 in [27]). We have rm = Bc
m and rc

m+1 = Bm for ev-
ery m = 1, 2, . . ..

Panda and Ray got a corollary from the theorems above.

Corollary 3.7 (Corollary 6.4 in [27]). rm+1 = rm + 2Bm.
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3.3. Connection between (co)balancing and Pell numbers

In [28] we can find interesting results about the connection of Pell, balancing or
cobalancing numbers. Let Pm be the mth Pell number (m = 1, 2 . . .). It is well
known that

P1 = 1, P2 = 2, Pm+1 = 2Pm + Pm−1.

The authors call Cm =
√

8B2
m + 1 the mth Lucas-balancing number and cm =√

8 (Bc)
2
m + 8Bc

m + 1 the mth Lucas-cobalancing number. The first result of them
is the following:

Theorem 3.8 (Theorem 2.2 in [28]). The sequences of Lucas-balancing and Lu-
cas-cobalancing numbers satisfy recurrence relations with identical balancing num-
bers. More precisely, C1 = 3, C2 = 17, Cm+1 = 6Cm − Cm−1 and c1 = 1, c2 = 7,
cm+1 = 6cm − cm−1 for m = 2, 3, . . ..

In [28] the authors get a formula how to calculate balancing or cobalancing
numbers from Pell numbers.

Theorem 3.9 (Theorem 3.2 in [28]). If P is a Pell number then ⌈P/2⌉ is either
a balancing number or a cobalancing number. More precisely P2m/2 = Bm and
⌈P2m−1/2⌉ = Bc

m (m = 1, 2, . . .).

There is another result for calculating balancing number and its balancer, too.

Theorem 3.10 (Theorem 3.4 in [28]). The sum of the first 2m− 1 Pell numbers
is equal to the sum of the mth balancing number and its balancer.

4. Generalizations

4.1. Sequence balancing and cobalancing numbers

In [25] G. K. Panda defined sequence balancing and sequence cobalancing numbers.

Definition 4.1 ([25]). Let {sm}∞m=1 be a sequence of real numbers. We call a
number sm of this sequence a sequence balancing number if

s1 + s2 + · · · + sm−1 = sm+1 + sm+2 + · · · + sm+r

for some natural number r. Similarly, we call sm a sequence cobalancing number
if

s1 + s2 + · · · + sm = sm+1 + sm+2 + · · · + sm+r

for some natural number r.

Remark 4.2. For example, if we take sm = 2m then the sequence balancing
numbers of this sequence are 12, 70, 408,. . . which are twice the balancing numbers.
It is also true for sequence cobalancing numbers and similarly in the case when
sm = m

2 .
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In [25] the author investigated the existence of sequence balancing or cobalanc-
ing numbers in the sequence of odd natural numbers. So, let sm = 2m− 1. Using
simple technics he got that the sequence of sequence balancing numbers in the se-
quence of odd natural numbers is given by {2Bc

m+1 + rc
m+1 + 1}∞m=1 (see Theorem

2.1.4 in [25]). So, let the mth sequence balancing number in the sequence of odd
natural numbers be denoted by xm. Then by this fact above G. K. Panda got the
following recurrence relation for these solutions.

Theorem 4.3 (Theorem 2.1.5 in [25]). The sequence {xm}∞m=1 satisfies the recur-
rence relation xm+1 = 6xm − xm−1 for m > 2.

Remark 4.4. The author in [25] investigated also the existance of sequence bal-
ancing or cobalancing numbers in the cases when am = m+1 and am = Fm (among
Fibonacci numbers). In the first case the sequence balancing numbers among the
numbers am = m+ 1 can be given by a linear combination of balancing numbers.

In the second one he gets that the only sequence cobalancing number in the
Fibonacci sequence is F2 = 1.

4.2. Generalized balancing sequences

In [4] A. Bérczes, K. Liptai and I. Pink generalized the definition 4.1 due to G. K.
Panda.

Definition 4.5 ([4]). We call a binary recurrence Ri = R(A,B,R0, R1) a balanc-
ing sequence if

R1 +R2 + · · · +Rm−1 = Rm+1 +Rm+2 + · · · +Rm+k (4.1)

holds for some k > 1 and m > 2.

In that paper they proved that any sequence Ri = R(A,B, 0, R1) with condi-
tions D = A2 + 4B > 0, (A,B) 6= (0, 1) is not a balancing sequence.

Theorem 4.6 (Theorem 1 in [4]). There is no balancing sequence of the form
Ri = R(A,B, 0, R1) with D = A2 +4B > 0 except for (A,B) = (0, 1) in which case
(4.1) has infinitely many solutions (m, k) = (m,m − 1) and (m, k) = (m,m) for
m > 2.

By this theorem they got the following corollary.

Corollary 4.7 (Corollary 1 in [4]). Let Ri = R(A,B, 0, 1) be a Lucas-sequence
with A2 + 4B > 0. Then Ri is not a balancing sequence.

4.3. (k, l)-numerical centers

Definition 4.8 ([23]). Let y, k and l be fixed positive integers with y > 4. A
positive integer x (x 6 y − 2) is called a (k, l)-power numerical center for y, or a
(k, l)-balancing number for y if

1k + 2k + · · · + (x − 1)k = (x+ 1)l + · · · + (y − 1)l.
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Remark 4.9. In [8] R. Finkelstein studied ”The house problem” and introduced
the notion of first-power numerical center which coincides with the notion of bal-
ancing number Bm. He proved that infinitely many integers y possess (1, 1)-power
centers and there is no integer y > 1 with a (2, 2)-power numerical center. In his
paper, he conjectured that if k > 1 then there is no integer y > 1 with (k, k)-power
numerical center. Later in [33] his conjeture was confirmed for k = 3. Recently,
Ingram in [17] proved Finkelstein’s conjecture for k = 5.

In [23] the authors proved a general result about (k, l)-balancing numbers, but
they could not deal with Finkelstein’s conjecture in its full generality. Their main
results are the following theorems.

Theorem 4.10 (Theorem 1 in [23]). For any fixed positive integer k > 1, there
are only finitely many positive pairs of integers (y, l) such that y possesses a (k, l)-
power numerical center.

For the proof of this theorem they used a result from [31]. Thus Theorem 4.10
is ineffective in case l 6 k in the sense that no upper bound was made for possible
numerical centers except for the cases when l = 1 or l = 3.

Theorem 4.11 (Theorem 2 in [23]). Let k be a fixed positive integer with k > 1
and l ∈ {1, 3}. If (k, l) 6= (1, 1), then there are only finitely many (k, l)-balancing
numbers, and these balancing numbers are bounded by an effectively computable
constant depending only on k.

Remark 4.12. In [23] the authors gave an example for numerical centers in the
case when (k, l) = (2, 1). After solving an elliptic equation by MAGMA [24] they
got three (2, 1)-power numerical centers x, namely 5, 13 and 36.

4.4. (a, b)-type balancing numbers

Another generalization is the following by T. Kovács, K. Liptai and P. Olajos:

Definition 4.13 ([20]). Let a, b be nonnegative coprime integers. We call a posi-
tive integer an+ b an (a, b)-type balancing number if

(a+ b) + (2a+ b) + · · · + (a(n− 1) + b) = (a(n+ 1) + b) + · · · + (a(n+ r) + b)

for some r ∈ N. Here r is called the balancer corresponding to the balancing
number. We denote the positive integer an+ b by B(a,b)

m if this number is the mth
among the (a, b)-type balancing numbers.

Remark 4.14. We have to mention that if we use notation an = an+ b then we
get sequence balancing numbers and if a = 1 and b = 0 for (a, b)-type balancing
numbers than we get balancing numbers Bm.

Using the definition the authors in [20] get the following proposition:



134 P. Olajos

Lemma 4.15 (Proposition 1 in [20]). If B
(a,b)
m is an (a, b)-type balancing number

then the following equation

z2 − 8
(
B(a,b)

m

)2

= a2 − 4ab− 4b2 (4.2)

is valid for some z ∈ Z.

4.4.1. Polynomial values among balancing numbers

Let us consider the following equation for (a, b)-type balancing numbers

B(a,b)
m = f(x) (4.3)

where f(x) is a monic polynomial with integer coefficients. By Proposition 4.15
and the result from Brindza [5] Kovács, Liptai and Olajos proved the following
theorem:

Theorem 4.16 (Theorem 1 in [20]). Let f(x) be a monic polynomial with integer
coefficients, of degree > 2. If a is odd, then for the solutions of (4.3) we have
max(m, |x|) < c0(f, a, b), where c0(f, a, b) is an effectively computable constant
depending only on a, b and f .

Let us consider a special case of Theorem 4.16 with f(x) = xl. Using one of
the results from Bennett [1] the authors in [20] get the following theorem:

Theorem 4.17 (Theorem 2 in [20]). If a2−4ab−4b2 = 1, then there is no perfect
power (a, b)-balancing number.

Remark 4.18. There are infinitely many integer solutions of the equation a2 −
4ab− 4b2 = 1.

The authors are interested in combinatorial numbers (see also Kovács [19]),
that is binomial coefficients, power sums, alternating power sums and products of
consecutive integers. For all k, x ∈ N let

Sk(x) = 1k + 2k + · · · + (x− 1)k,

Tk(x) = −1k + 2k − · · · + (−1)x−1(x− 1)k,

Πk(x) = x(x + 1) . . . (x+ k − 1).

We mention that the degree of Sk(x), Tk(x) and Πk(x) are k + 1, k and k, respec-
tively and

(
x
k

)
, Sk(x), Tk(x) are polynomials with non-integer coefficients. More-

over, in the case when f(x) = Πk(x) Theorem 4.16 is valid but the parameter a is
odd.

Let us consider the following equation

B(a,b)
m = p(x), (4.4)

where p(x) is a polynomial with rational integer coefficients. In this case Kovács,
Liptai and Olajos gave effective results for the solutions of equation (4.4).
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Theorem 4.19 (Theorem 3 in [20]). Let k > 2 and p(x) be one of the polyno-
mials

(
x
k

)
, Πk(x), Sk−1(x), Tk(x). Then the solutions of equation (4.3) satisfy

max(m, |x|) < c1(a, b, k), where c1(a, b, k) is an effectively computable constant de-
pending only on a, b and k.

4.4.2. Numerical results

In [20] T. Kovács, K. Liptai and the author completely solve the above type equa-
tions for some small values of k that lead to genus 1 or genus 2 equations. In this
case the equation can be written as

y2 = 8f(x)2 + 1, (4.5)

where f(x) is one of the following polynomials. Beside binomial coefficients
(
x
k

)
,

we consider power sums and products of consecutive integers, as well. We mention
that in their results, for the sake of completeness, they provide all integral (even
the negative) solutions to equation (4.5).

Genus 1 and 2 equations They completely solve equation (4.5) for all param-
eter values k in case when they can reduce the equation to an equation of genus 1.
We have to mention that a similar argument has been used to solve several com-
binatorial Diophantine equations of different types, for example in [9], [10], [12],
[13], [18], [19], [29], [30], [34], [37], [38]. Further they also solved a particular case
(f(x) = S5(x)) when equation (4.3) can be reduced to the resolution of a genus 2
equation. To solve this equation, they used the so-called Chabauty method. We
have to note that the Chabauty method has already been successfully used to solve
certain combinatorial Diophantine equations, see e.g. the corresponding results in
the papers [6], [11], [14], [15], [32], [36] and the references given there.

Theorem 4.20 (Theorem 4 in [20]). Suppose that a2 − 4ab− 4b2 = 1. Let f(x) ∈
{
(
x
2

)
,
(
x
3

)
,
(
x
4

)
,Π2(x),Π3(x),Π4(x), S1(x), S2(x), S3(x), S5(x)}. Then the solutions

(m,x) of equation (4.3) are those contained in Table 1. For the corresponding
parameter values we have (a, b) = (1, 0) in all cases.

Remark 4.21. In [20] the authors considered some other related equations that
led to genus 2 equations. However, because of certain technical problems, they
could not solve them by the Chabauty method. They determined the ”small"
solutions(i.e. |x| 6 10000) of equation (4.5) in cases

f(x) ∈
{(

x

6

)
,

(
x

8

)
,Π6(x),Π8(x), S7(x)

}
.

Their conjecture is that that there is no solution for these equations.
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f(x) Solutions (m,x) of (4.3)(
x
2

)
(1,−3), (1, 4)(

x
3

)
(2,−5), (2, 7)(

x
4

)
(2,−4), (2, 7)

Π2(x) (1,−3), (1, 2)
Π3(x) (1,−3), (1, 1)
Π4(x) ∅
S1(x) (1,−4), (1, 3)
S2(x) (3,−8), (3, 9), (5,−27), (5, 28)
S3(x) ∅
S5(x) ∅

Table 1
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Abstract

Let G be a finite and simple graph with vertex set V (G), and let f: V (G)→
{−1, 1} be a two-valued function. If k > 1 is an integer and

∑
x∈N[v] f(x) > k

for each v ∈ V (G), where N [v] is the closed neighborhood of v, then f is
a signed k-dominating function on G. A set {f1, f2, . . . , fd} of signed k-
dominating functions on G with the property that

∑d
i=1 fi(x) 6 k for each

x ∈ V (G), is called a signed (k, k)-dominating family (of functions) on G.
The maximum number of functions in a signed (k, k)-dominating family on
G is the signed (k, k)-domatic number on G, denoted by dk

S(G).
In this paper we initiate the study of the signed (k, k)-domatic number,

and we present different bounds on dk
S(G). Some of our results are extensions

of well-known properties of the signed domatic number dS(G) = d1
S(G).

Keywords: Signed (k, k)-domatic number, signed k-dominating function, sig-
ned k-domination number

MSC: 05C69

1. Terminology and introduction

Various numerical invariants of graphs concerning domination were introduced by
means of dominating functions and their variants. In this paper we define the
signed (k, k)-domatic number in an analogous way as Volkmann and Zelinka [6]
have introduced the signed domatic number.

We consider finite, undirected and simple graphs G with vertex set V (G) and
edge set E(G). The cardinality of the vertex set of a graph G is called the order of
G and is denoted by n(G). If v ∈ V (G), then N(v) is the open neighborhood of v,
i.e., the set of all vertices adjacent to v. The closed neighborhood N [v] of a vertex
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v consists of the vertex set N(v) ∪ {v}. The number d(v) = |N(v)| is the degree
of the vertex v. The minimum and maximum degree of a graph G are denoted by
δ(G) and ∆(G). The complement of a graph G is denoted by G. We write Kn for
the complete graph of order n and Cn for a cycle of length n. A fan and a wheel is a
graph obtained from a path and a cycle by adding a new vertex and edges joining
it to all the vertices of the path and cycle, respectively. If A ⊆ V (G) and f is a
mapping from V (G) into some set of numbers, then f(A) =

∑
x∈A f(x).

If k > 1 is an integer, then the signed k-dominating function is defined in
[7] as a two-valued function f : V (G) → {−1, 1} such that

∑
x∈N [v] f(x) > k for

each v ∈ V (G). The sum f(V (G)) is called the weight w(f) of f . The minimum
of weights w(f), taken over all signed k-dominating functions f on G, is called
the signed k-domination number of G, denoted by γkS(G). As the assumption
δ(G) > k − 1 is necessary, we always assume that when we discuss γkS(G), all
graphs involved satisfy δ(G) > k − 1 and thus n(G) > k. The special case k = 1
was defined and investigated in [1]. Further information on γ1S(G) = γS(G) can
be found in the monographs [2] and [3] by Haynes, Hedetniemi, and Slater.

Rall [4] has defined a variant of the domatic number of G, namely the frac-
tional domatic number of G, using functions on V (G). Analogous to the fractional
domatic number we may define the signed (k, k)-domatic number.

A set {f1, f2, . . . , fd} of signed k-dominating functions on G with the property
that

∑d
i=1 fi(x) 6 k for each x ∈ V (G), is called a signed (k, k)-dominating family

on G. The maximum number of functions in a signed (k, k)-dominating family on
G is the signed (k, k)-domatic number of G, denoted by dk

S(G).
First we study basic properties of dk

S(G). Some of them are extensions of well-
known results on the signed domatic number dS(G) = d1

S(G) given in [6]. Using
these results, we determine the signed (k, k)-domatic numbers of fans, wheels and
grids.

2. Basic properties of the signed (k, k)-domatic num-

ber

Theorem 2.1. The signed (k, k)-domatic number dk
S(G) is well-defined for each

graph G with δ(G) > k − 1.

Proof. Since δ(G) > k − 1, the function f : V (G) → {−1, 1} with f(v) = 1 for
each v ∈ V (G) is a signed k-dominating function on G. Thus the family {f} is
a signed (k, k)-dominating family on G. Therefore the set of signed k-dominating
functions on G is non-empty and there exists the maximum of their cardinalities,
which is the signed (k, k)-domatic number of G. �

Theorem 2.2. If G is a graph of order n, then

γkS(G)dk
S(G) 6 kn.
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Proof. If {f1, f2, . . . , fd} is a signed (k, k)-dominating family on G such that d =
dk

S(G), then the definitions imply

dγkS(G) =

d∑

i=1

γkS(G) 6

d∑

i=1

∑

x∈V (G)

fi(x)

=
∑

x∈V (G)

d∑

i=1

fi(x) 6
∑

x∈V (G)

k = kn.

�

Theorem 2.3. If G is a graph with minimum degree δ(G) > k − 1, then

dk
S(G) 6 δ(G) + 1.

Proof. Let {f1, f2, . . . , fd} be a signed (k, k)-dominating family on G such that
d = dk

S(G). If v ∈ V (G) is a vertex of minimum degree δ(G), then it follows that

dk =

d∑

i=1

k 6

d∑

i=1

∑

x∈N [v]

fi(x)

=
∑

x∈N [v]

d∑

i=1

fi(x)

6
∑

x∈N [v]

k = k(δ(G) + 1),

and this implies the desired upper bound on the signed (k, k)-domatic number. �

The special case k = 1 in Theorems 2.2 and 2.3 can be found in [6]. As an
application of Theorem 2.3, we will prove the following Nordhaus-Gaddum type
result.

Theorem 2.4. If k > 1 is an integer and G a graph of order n such that δ(G) >
k − 1 and δ(G) > k − 1, then

dk
S(G) + dk

S(G) 6 n+ 1.

If dk
S(G) + dk

S(G) = n+ 1, then G is regular.

Proof. Since δ(G) > k − 1 and δ(G) > k − 1, it follows from Theorem 2.3 that

dk
S(G) + dk

S(G) 6 (δ(G) + 1) + (δ(G) + 1)

= (δ(G) + 1) + (n− ∆(G) − 1 + 1)

6 n+ 1,

and this is the desired Nordhaus-Gaddum inequality. If G is not regular, then
∆(G)−δ(G) > 1, and the above inequality chain leads to the better bound dk

S(G)+
dk

S(G) 6 n. This completes the proof. �
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Theorem 2.5. If v is a vertex of a graph G such that d(v) is odd and k is odd or
d(v) is even and k is even, then

dk
S(G) 6

k

k + 1
(d(v) + 1).

Proof. Let {f1, f2, . . . , fd} be a signed (k, k)-dominating family on G such that
d = dk

S(G). Assume first that d(v) and k are odd. The definition yields to∑
x∈N [v] fi(x) > k for each i ∈ {1, 2, . . . , d}. On the left-hand side of this in-

equality a sum of an even number of odd summands occurs. Therefore it is an even
number, and as k is odd, we obtain

∑
x∈N [v] fi(x) > k+1 for each i ∈ {1, 2, . . . , d}.

It follows that

k(d(v) + 1) =
∑

x∈N [v]

k >
∑

x∈N [v]

d∑

i=1

fi(x)

=
d∑

i=1

∑

x∈N [v]

fi(x)

>

d∑

i=1

(k + 1) = d(k + 1),

and this leads to the desired bound. Assume next that d(v) and k are even. Note
that

∑
x∈N [v] fi(x) > k for each i ∈ {1, 2, . . . , d}. On the left-hand side of this

inequality a sum of an odd number of odd summands occurs. Therefore it is an odd
number, and as k is even, we obtain

∑
x∈N [v] fi(x) > k+1 for each i ∈ {1, 2, . . . , d}.

Now the desired bound follows as above, and the proof is complete. �

The next result is an immediate consequence of Theorem 2.5.

Corollary 2.6. If G is a graph such that δ(G) and k are odd or δ(G) and k are
even, then

dk
S(G) 6

k

k + 1
(δ(G) + 1).

As an Application of Corollary 2.6, we will improve the Nordhaus-Gaddum
bound in Theorem 2.4 for many cases.

Theorem 2.7. Let k > 1 be an integer, and let G be a graph of order n such that
δ(G) > k − 1 and δ(G) > k − 1. If ∆(G) − δ(G) > 1 or k is even or k and δ(G)
are odd or k is odd and δ(G) and n are even, then

dk
S(G) + dk

S(G) 6 n.

Proof. If ∆(G) − δ(G) > 1, then Theorem 2.4 implies the desired bound. Thus
assume now that G is δ(G)-regular.



Signed (k, k)-domatic number of a graph 143

Case 1: Assume that k is even. If δ(G) is even, then it follows from Theorem
2.3 and Corollary 2.6 that

dk
S(G) + dk

S(G) 6
k

k + 1
(δ(G) + 1) + (δ(G) + 1)

=
k

k + 1
(δ(G) + 1) + (n− δ(G) − 1 + 1)

< n+ 1,

and we obtain the desired bound. If δ(G) is odd, then n is even and thus δ(G) =
n− δ(G) − 1 is even. Combining Theorem 2.3 and Corollary 2.6, we find that

dk
S(G) + dk

S(G) 6 (δ(G) + 1) +
k

k + 1
(δ(G) + 1)

= (n− δ(G)) +
k

k + 1
(δ(G) + 1)

< n+ 1,

and this completes the proof of Case 1.
Case 2: Assume that k is odd. If δ(G) is odd, then it follows from Theorem 2.3

and Corollary 2.6 that

dk
S(G) + dk

S(G) 6
k

k + 1
(δ(G) + 1) + (n− δ(G)) < n+ 1.

If δ(G) is even and n is even, then δ(G) = n− δ(G) − 1 is odd, and we obtain the
desired bound as above. �

Theorem 2.8. If G is a graph such that k is odd and dk
S(G) is even or k is even

and dk
S(G) is odd, then

dk
S(G) 6

k − 1

k
(δ(G) + 1).

Proof. Let {f1, f2, . . . , fd} be a signed (k, k)-dominating family on G such that
d = dk

S(G). Assume first that k is odd and d is even. If x ∈ V (G) is an arbitrary
vertex, then

∑d
i=1 fi(x) 6 k. On the left-hand side of this inequality a sum of an

even number of odd summands occurs. Therefore it is an even number, and as k is
odd, we obtain

∑d
i=1 fi(x) 6 k− 1 for each x ∈ V (G). If v is a vertex of minimum

degree, then it follows that

dk =

d∑

i=1

k 6

d∑

i=1

∑

x∈N [v]

fi(x)

=
∑

x∈N [v]

d∑

i=1

fi(x)

6
∑

x∈N [v]

(k − 1) = (δ(G) + 1)(k − 1),
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and this yields to the desired bound. Assume second that k is even and d is odd.
If x ∈ V (G) is an arbitrary vertex, then

∑d
i=1 fi(x) 6 k. On the left-hand side of

this inequality a sum of an odd number of odd summands occurs. Therefore it is
an odd number, and as k is even, we obtain

∑d
i=1 fi(x) 6 k− 1 for each x ∈ V (G).

Now the desired bound follows as above, and the proof is complete. �

According to Theorem 2.1, dk
S(G) is a positive integer. If we suppose in the

case k = 1 that dS(G) = d1
S(G) is an even integer, then Theorem 2.8 leads to the

contradiction dS(G) 6 0. Consequently, we obtain the next known result.

Corollary 2.9 (Volkmann, Zelinka [6] 2005). The signed domatic number dS(G)
is an odd integer.

Corollary 2.10. If T is a nontrivial tree, then dS(T ) = 1 and d2
S(T ) 6 2. In

addition, if the diameter of T is at most three, then d2
S(T ) = 1.

Proof. Theorem 2.3 implies that dS(T ) 6 2 and d2
S(T ) 6 2. Applying Corollary

2.9, we obtain dS(T ) = 1. Now let f be a signed 2-dominating function on T . Then
we observe that f(x) = 1 if x is a leaf or x is neighbor of a leaf. However, if the
diameter of T is at most three, then each vertex of T is a leaf or a neighbor of a
leaf and thus f(x) = 1 for every vertex x ∈ V (T ). This shows that d2

S(T ) = 1 in
that case, and the proof is complete. �

The following example demonstrates that the bound d2
S(T ) 6 2 in Corollary

2.10 is sharp.
Let T ′ be a tree of order 10 with the leaves u1, u2, v1, v2, w1, w2 and the vertices

u3, v3, w3 and z such that u3 is adjacent to u1 and u2, v3 is adjacent to v1 and v2,
w3 is adjacent to w1 and w2 and z is adjacent to u3, v3 and w3. Then the functions
fi : V (T ′) → {−1, 1} such that f1(x) = 1 for each x ∈ V (T ′) and f2(z) = −1 and
f2(x) = 1 for each vertex x ∈ V (T ′) \ {z} are signed 2-dominating functions on T ′

such that f1(x) + f2(x) 6 2 for each vertex x ∈ V (T ′). Using Corollary 2.10, we
conclude that d2

S(T ′) = 2.

Theorem 2.11. Let k > 2 be an integer, and let G be a graph with minimum
degree δ(G) > k − 1. Then dk

S(G) = 1 if and only if for every vertex v ∈ V (G) the
closed neighborhood N [v] contains a vertex of degree at most k.

Proof. Assume that N [v] contains a vertex of degree at most k for every vertex
v ∈ V (G), and let f be a signed k-dominating function on G. If d(v) 6 k, then it
follows that f(v) = 1. If d(x) 6 k for a neighbor x of v, then we observe f(v) = 1
too. Hence f(v) = 1 for each v ∈ V (G) and thus dk

S(G) = 1.
Conversely, assume that dk

S(G) = 1. If G contains a vertex w such d(x) > k+1
for each x ∈ N [w], then the functions fi : V (G) → {−1, 1} such that f1(x) = 1 for
each x ∈ V (G) and f2(w) = −1 and f2(x) = 1 for each vertex x ∈ V (G) \ {w} are
signed k-dominating functions on G such that f1(x)+f2(x) 6 2 6 k for each vertex
x ∈ V (G). Thus {f1, f2} is a signed (2, 2)-dominating family on G, a contradiction
to dk

S(G) = 1. �
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Next we present a lower bound on the signed (k, k)-domatic number.

Theorem 2.12. Let k > 1 be an integer, and let G be a graph with minimum
degree δ(G) > k − 1. If G contains a vertex v ∈ V (G) such that all vertices of
N [N [v]] have degree at least k + 1, then dk

S(G) > k.

Proof. Let {u1, u2, . . . , uk} ⊂ N(v). The hypothesis that all vertices of N [N [v]]
have degree at least k+ 1 implies that the functions fi : V (G) → {−1, 1} such that
fi(ui) = −1 and fi(x) = 1 for each vertex x ∈ V (G)\{ui} are signed k-dominating
functions on G for i ∈ {1, 2, . . . , k}. Since f1(x) + f2(x) + · · · + fk(x) 6 k for each
vertex x ∈ V (G), we observe that {f1, f2, . . . , fk} is a signed (k, k)-dominating
family on G, and Theorem 2.12 is proved. �

Corollary 2.13. If G is a graph of minimum degree δ(G) > k+1, then dk
S(G) > k.

Theorem 2.14. Let k > 1 be an integer, and let G be a (k + 1)-regular graph of
order n. If n 6≡ 0 (mod(k + 2)), then dk

S(G) = k.

Proof. Let f be an arbitrary signed k-dominating function on G. If we define the
sets P = {v ∈ V (G) | f(v) = 1} and M = {v ∈ V (G) | f(v) = −1}, then we firstly
show that

|P | >

⌈
n(k + 1)

k + 2

⌉
. (2.1)

Because of
∑

x∈N [y] f(x) > k for each vertex y ∈ V (G), the (k + 1)-regularity of
G implies that each vertex u ∈ P is adjacent to at most one vertex in M and each
vertex v ∈M is adjacent to exactly k + 1 vertices in P . Therefore we obtain

|P | > |M |(k + 1) = (n− |P |)(k + 1),

and this leads to (2.1) immediately.
Now let {f1, f2, . . . , fd} be a signed (k, k)-dominating family on G with d =

dk
S(G). Since

∑d
i=1 fi(u) 6 k for every vertex u ∈ V (G), each of these sums

contains at least ⌈(d−k)/2⌉ summands of value -1. Using this and inequality (2.1),
we see that the sum

∑

x∈V (G)

d∑

i=1

fi(x) =

d∑

i=1

∑

x∈V (G)

fi(x) (2.2)

contains at least n⌈(d−k)/2⌉ summands of value -1 and at least d⌈n(k+1)/(k+2)⌉
summands of value 1. As the sum (2.2) consists of exactly dn summands, it follows
that

n

⌈
d− k

2

⌉
+ d

⌈
n(k + 1)

k + 2

⌉
6 dn. (2.3)

It follows from the hypothesis n 6≡ 0 (mod(k + 2)) that
⌈
n(k + 1)

k + 2

⌉
>
n(k + 1)

k + 2
,
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and thus (2.3) leads to

n(d− k)

2
+
dn(k + 1)

k + 2
< dn.

A simple calculation shows that this inequality implies d < k+ 2 and so d 6 k+ 1.
If we suppose that d = k + 1, then we observe that d and k of different parity.
Applying Theorem 2.8, we obtain the contradiction

k + 1 = d 6
k − 1

k
(k + 2) < k + 1.

Therefore d 6 k, and Corollary 2.13 yields to the desired result d = k. �

On the one hand Theorem 2.14 demonstrates that the bound in Corollary 2.13
is sharp, on the other hand the following example shows that Theorem 2.14 is not
valid in general when n ≡ 0 (mod(k + 2)).

Let v1, v2, . . . , vk+2 be the vertex set of the complete graph Kk+2. We define
the functions fi : V (G) → {−1, 1} such that fi(vi) = −1 and fi(x) = 1 for each
vertex x ∈ V (G) \ {vi} and each i ∈ {1, 2, . . . , k + 2}. Then we observe that
fi is a signed k-dominating function on Kk+2 for each i ∈ {1, 2, . . . , k + 2} and∑k+2

i=1 fi(x) = k for each vertex x ∈ V (Kk+2). Therefore {f1, f2, . . . , fk+2} is a
signed (k, k)-dominating family on G and thus dk

S(Kk+2) > k + 2. Using Theorem
2.3, we obtain dk

S(Kk+2) = k + 2.

3. Signed (k, k)-domatic number of fans, wheels and

grids

Volkmann and Zelinka [6] have proved that dS(G) = 1 when G is a fan or a wheel
of order n > 4. If a graph G has a vertex of degree 3, then Volkmann [5] showed
that dS(G) = 1. Therefore dS(G) = 1 for each grid. Using the results of Section 2,
we now determine the signed (k, k)-domatic numbers of fans, wheels and grids for
k > 2.

Theorem 3.1. Let G be a fan of order n > 3. Then d3
S(G) = 1, d2

S(G) = 1 when
3 6 n 6 5 and d2

S(G) = 2 when n > 6.

Proof. Since N [v] contains a vertex of degree at most 3 for every vertex v ∈ V (G),
it follows from Theorem 2.11 that d3

S(G) = 1.
Let now x1, x2, . . . , xn be the vertex set of the fan G such that x1x2 . . . xnx1 is

a cycle of length n and xn is adjacent to xi for each i = 2, 3, . . . , n− 2.
If n 6 5, then N [v] contains a vertex of degree at most 2 for every vertex

v ∈ V (G), and Theorem 2.11 implies d2
S(G) = 1.

If n > 6, then the functions fi : V (G) → {−1, 1} such that f1(x) = 1 for each
x ∈ V (G) and f2(x3) = −1 and f2(x) = 1 for each vertex x ∈ V (G) \ {x3} are
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signed 2-dominating functions on G such that f1(x) + f2(x) 6 2 for each vertex
x ∈ V (G). Thus d2

S(G) > 2. In view of Corollary 2.6, we see that

d2
S(G) 6

2

3
(δ(G) + 1) = 2,

and therefore d2
S(G) = 2. �

Theorem 3.2. Let G be a wheel of order n > 5. Then d4
S(G) = d3

S(G) = 1,
d2

S(G) = 4 when n− 1 ≡ 0 (mod 3) and d2
S(G) = 2 when n− 1 6≡ 0 (mod 3).

Proof. Since N [v] contains a vertex of degree at most 3 for every vertex v ∈ V (G),
it follows from Theorem 2.11 that d4

S(G) = d3
S(G) = 1.

Now let x1, x2, . . . , xn be the vertex set of the wheel G such that x1x2 . . . xn−1x1

is a cycle of length n − 1 and xn is adjacent to xi for each i = 1, 2, . . . , n − 1. It
follows from Theorem 2.3 that d2

S(G) 6 4. Since δ(G) = 3, Corollary 2.13 implies
that d2

S(G) > 2. Let {f1, f2, . . . , fd} be a signed (2, 2)-dominating family on G
with d = d2

S(G). If d = 3, then Theorem 2.8 leads to the contradiction

3 = d 6
1

2
(δ(G) + 1) = 2.

Consequently, d = 2 or d = 4. Assume that d = 4. Since f1(x) + f2(x) + f3(x) +
f4(x) 6 2 for each vertex x ∈ V (G), there exists at least one number j ∈ {1, 2, 3, 4}
such that fj(x) = −1 for each x ∈ V (G). Assume, without loss of generality, that
f1(xn) = −1. Because of

∑
x∈N [v] f1(x) > 2 for each vertex v, we deduce that

f1(x1) = f1(x2) = . . . = f1(xn−1) = 1. If we assume, without loss of generality,
that f2(x1) = −1, then it follows that f2(x2) = f2(x3) = 1. If we assume next, with-
out loss of generality, that f3(x2) = −1, then we observe that f3(x3) = f3(x4) = 1
and therefore f4(x3) = −1 and thus f4(x4) = f4(x5) = 1. This leads to f2(x4) = −1
and so f2(x5) = f2(x6) = 1. Inductively, we see that f2(xi) = −1 if and only if
i ≡ 1 (mod 3), f3(xi) = −1 if and only if i ≡ 2 (mod 3) and f4(xi) = −1 if and
only if i ≡ 0 (mod 3). This can be realized if and only if n− 1 ≡ 0 (mod 3), and
this completes the proof. �

The cartesian product G = G1 × G2 of two vertex disjoint graphs G1 and G2

has V (G) = V (G1)×V (G2) and two vertices (u1, u2) and (v1, v2) of G are adjacent
if and only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1).
The cartesian product of two paths Pr = x1x2 . . . xr and Pt = y1y2 . . . yt is called
a grid.

Theorem 3.3. Let G = Pr × Pt be a grid of order n = rt > 2 such that r 6 t.
Then

(1) If r = 1, then d2
S(G) = 1.

(2) If r = 2, then d3
S(G) = 1, d2

S(G) = 1 when t 6 4 and d2
S(G) = 2 when t > 5.
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(3) If r > 3, then d2
S(G) = 2.

(4) If 3 6 r 6 4, then d3
S(G) = 1.

(5) If r = 5 and t = 5, then d3
S(G) = 2.

(6) If r = 5 and t > 6 or r > 6, then d3
S(G) = 3.

Proof. (1) Assume that r = 1. Then G is a path and it follows from Theorem 2.11
that d2

S(G) = 1.
(2) Assume that r = 2. Then 2 6 d(v) 6 3 for every v ∈ V (G), and hence

Theorem 2.11 implies that d3
S(G) = 1. If t 6 4, then N [v] contains a vertex of

degree at most 2 for every vertex v ∈ V (G), and so d2
S(G) = 1, by Theorem 2.11.

If t > 5, then all vertices of N [(x1, y3)] are of degree 3, and thus it follows from
Theorem 2.11 that d2

S(G) > 2. Since δ(G) = 2, we deduce from Corollary 2.6 that
d2

S(G) 6 2 and so d2
S(G) = 2.

(3) Assume that r > 3. Then all vertices of N [(x2, y2)] are of degree at least 3,
and thus it follows from Theorem 2.11 that d2

S(G) > 2. Since δ(G) = 2, we deduce
from Corollary 2.6 that d2

S(G) 6 2 and so d2
S(G) = 2.

(4) Assume that 3 6 r 6 4. This condition shows that N [v] contains a vertex
of degree at most 3 for every vertex v ∈ V (G), and so Theorem 2.11 implies that
d3

S(G) = 1.
(5) Assume that r = t = 5. Then all vertices of N [(x3, y3)] are of degree 4, and

thus it follows from Theorem 2.11 that d3
S(G) > 2. Since N [v] contains a vertex of

degree at most 3 for every vertex v ∈ V (G) \ {(x3, y3)}, we deduce that f(v) = 1
for every signed 3-dominating function f on G and every vertex v 6= (x3, y3). This
implies that d3

S(G) 6 2 and thus d3
S(G) = 2.

(6) Assume that r = 5 and t > 6 or r > 6. In view of Theorem 2.3, we have
d3

S(G) 6 3. Define now the functions fi : V (G) → {−1, 1} such that f1(v) = 1
for each vertex v ∈ V (G), f2((x3, y3)) = −1 and f2(v) = 1 for each v ∈ V (G) \
{(x3, y3)} and f3((x3, y4)) = −1 and f3(v) = 1 for each v ∈ V (G)\{(x3, y4)}. Then
{f1, f2, f3} is a family of signed 3-dominating functions on G such that f1(v) +
f2(v) + f3(v) 6 3 for each vertex v ∈ V (G). Therefore d3

S(G) = 3, and the proof is
complete. �
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Abstract

We study algebraic and transcendental powers of positive real numbers,
including solutions of each of the equations xx = y, xy = yx, xx = yy, xy = y,
and xxy

= y. Applications to values of the iterated exponential functions are
given. The main tools used are classical theorems of Hermite-Lindemann
and Gelfond-Schneider, together with solutions of exponential Diophantine
equations.
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1. Introduction

Transcendental number theory began in 1844 with Liouville’s explicit construction
of the first transcendental numbers. In 1872 Hermite proved that e is transcen-
dental, and in 1884 Lindemann extended Hermite’s method to prove that π is also
transcendental. In fact, Lindemann proved a more general result.

Theorem 1.1 (Hermite-Lindemann). The number eα is transcendental for any
nonzero algebraic number α.

As a consequence, the numbers e2, e
√

2, and e i are transcendental, as are log 2
and π, since elog 2 = 2 and eπi = −1 are algebraic.

At the 1900 International Congress of Mathematicians in Paris, as the seventh
in his famous list of 23 problems, Hilbert raised the question of the arithmetic
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nature of the power α β of two algebraic numbers α and β. In 1934, Gelfond and
Schneider, independently, completely solved the problem (see [2, p. 9]).

Theorem 1.2 (Gelfond-Schneider). Assume α and β are algebraic numbers, with
α 6= 0 or 1, and β irrational. Then α β is transcendental.

In particular, 2
√

2,
√

2
√

2
, and eπ = i−2i are all transcendental.

Since transcendental numbers are more “complicated” than algebraic irrational
ones, we might think that the power of two transcendental numbers is also tran-
scendental, like eπ. However, that is not always the case, as the last two examples
for Theorem 1.1 show. In fact, there is no known classification of the power of
two transcendental numbers analogous to the Gelfond-Schneider Theorem on the
power of two algebraic numbers.

In this paper, we first explore a related question (a sort of converse to one raised
by the second author in [14, Apêndice B]).

Question 1.3. Given positive real numbers X 6= 1 and Y 6= 1, with XY algebraic,
under which conditions will at least one of the numbers X,Y be transcendental?

Theorem 1.2 gives one such condition, namely, Y irrational. In Sections 2 and 3,
we give other conditions for Question 1.3, in the case XY = Y X . To do this, we
use the Gelfond-Schneider Theorem to find algebraic and transcendental solutions
to each of the exponential equations y = xx, y = x 1/x, and x y = y x with x 6= y.

In the Appendix, we study the arithmetic nature of values of three classical
infinite power tower functions. We do this by using the Gelfond-Schneider and
Hermite-Lindemann Theorems to classify solutions to the equations y = x y and
y = xx y

.
A general reference is Knoebel’s Chauvenet Prize-winning article [12]. Consult

its very extensive annotated bibliography for additional references and history.

Notation. We denote by N the natural numbers, Z the integers, Q the rationals,
R the reals, A the algebraic numbers, and T the transcendental numbers. For any
set S of complex numbers, S+ := S ∩ (0,∞) denotes the subset of positive real
numbers in S. The Fundamental Theorem of Arithmetic is abbreviated FTA.

2. The case X = Y : algebraic numbers T T with T

transcendental

In this section, we give answers to Question 1.3 in the case X = Y . For this we
need a result on the arithmetic nature of QQ when Q is rational.

Lemma 2.1. If Q ∈ Q \ Z, then QQ is irrational.

Proof. If Q > 0, write Q = a/b, where a, b ∈ N and gcd(a, b) = 1. Set a1 = aa

and b1 = ba. Then gcd(a1, b1) = 1 and (a1/b1)
1/b = QQ ∈ Q+. Using the FTA,
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we deduce that b1/b
1 ∈ N. We must show that b = 1. Suppose on the contrary

that some prime p | b. Let pn be the largest power of p that divides b. Using

ba/b = b
1/b
1 ∈ N and the FTA again, we deduce that pna/b ∈ N. Hence b | na. Since

gcd(a, b) = 1, we get b | n. But then pn | n, contradicting pn > n. Therefore, b = 1.
If Q < 0, write Q = −a/b, where a, b ∈ N and gcd(a, b) = 1. If b is odd, then

by the previous case, QQ = (−1)a(a/b)−a/b /∈ Q. If b is even, then a is odd and
(−1)1/b /∈ R; hence QQ = (−1)1/b(a/b)−a/b /∈ Q. This completes the proof. �

As an application, using Theorem 1.2 we obtain that QQQ

is transcendental if
Q ∈ Q \ Z.

Consider now the equation xx = y. When 0 < y < e−1/e = 0.69220 . . . , there
is no solution x > 0. If y = e−1/e, then x = e−1 = 0.36787 . . . . For y ∈ (e−1/e, 1),
there are exactly two solutions x0 and x1, with 0 < x0 < e−1 < x1 < 1. (See
Figure 1, which shows the case y = 1/

√
2, x0 = 1/4, x1 = 1/2.) Finally, given

y ∈ [1,∞), there is a unique solution x ∈ [1,∞).

Figure 1: y = xx

Turning to the case X = Y of Question 1.3, we give two classes of algebraic
numbers A such that T T = A implies T is transcendental.

Proposition 2.2. Given A ∈ [e−1/e,∞), let T ∈ R+ satisfy T T = A. If either
(i) An ∈ A \ Q for all n ∈ N, or

(ii) A ∈ Q \ {nn : n ∈ N},
then T is transcendental. In particular, T ∈ T if T T ∈ Q ∩ (e−1/e, 1).

Proof. (i) Suppose T ∈ A. Since T > 0 and T T = A ∈ A, Theorem 1.2 implies
T ∈ Q, say T = m/n with m,n ∈ N. But then An = T m ∈ Q, contradicting (i).
Therefore, T ∈ T.
(ii) Since T T = A ∈ Q \ {nn : n ∈ N}, Lemma 2.1 implies T is irrational. Then
Theorem 1.2 yields T ∈ T, and the proposition follows. �
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To illustrate case (i), take A =
√

3 − 1 ∈ (e−1/e, 1). Using a computer algebra
system, such as Mathematica with its FindRoot command, we solve the equation
xx = A with starting values of x near 0 and 1, obtaining the solutions T0 :=
0.15351 . . . and T1 := 0.63626 . . . . Similarly, for case (ii), setting A = 2 leads to
the solution T2 := 1.68644 . . . . Then

T T0
0 = T T1

1 =
√

3 − 1, T0 < e−1 < T1; T T2
2 = 2; T0, T1, T2 ∈ T.

Problem 2.3. In Proposition 2.2, replace the two sufficient conditions (i), (ii) with
a necessary and sufficient condition that includes them.

We will return to the case X = Y of Question 1.3 at the end of the next section
(see Corollary 3.8).

3. The case XY = Y X , with X 6= Y

In this section, we give answers to Question 1.3 by finding algebraic and tran-
scendental solutions of the equation xy = yx, for positive real numbers x 6= y.
(Compare Figure 2. Moulton [16] gives a graph for both positive and negative
values of x and y, and discusses solutions in the complex numbers.)

Figure 2: xy = yx

Consider now Question 1.3 in the case XY = Y X = A ∈ A, with X 6= Y . We
give a condition on A which guarantees that at least one of X,Y is transcendental.

Proposition 3.1. Assume that

T,R ∈ R+, A := TR = RT , T 6= R. (3.1)

If An ∈ A \ Q for all n ∈ N, then at least one of the numbers T,R, say T , is
transcendental.
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Proof. Suppose on the contrary that T,R ∈ A. Since TR = RT = A ∈ A and (3.1)
implies T,R 6= 0 or 1, Theorem 1.2 yields T,R ∈ Q, say T = a/b and R = m/n,
where a, b,m, n ∈ N. But then An = (a/b)m ∈ Q, contradicting the hypothesis.
Therefore, {T,R} ∩ T 6= ∅. �

In order to give an example of Proposition 3.1, we need the following classical
result, which is related to a problem posed in 1728 by D. Bernoulli [4, p. 262]. (In
[12], see Sections 1 and 3 and the notes to the bibliography.)

Lemma 3.2. Given z ∈ R+, there exist x and y such that

xy = yx = z, 0 < x < y,

if and only if z > ee = 15.15426 . . .. In that case, 1 < x < e < y and x, y are given
parametrically by

x = x(t) :=

(
1 +

1

t

)t

, y = y(t) :=

(
1 +

1

t

)t+1

(3.2)

for t > 0. Moreover, x(t)y(t) is decreasing, and any one of the numbers x ∈ (1, e),
y ∈ (e,∞), z ∈ (ee,∞), and t ∈ (0,∞) determines the other three uniquely.

Proof. Given x, y ∈ R+ with x < y, denote the slope of the line from the origin
to the point (x, y) by s := y/x. Then s > 1, and y = sx gives the equivalences

xy = yx ⇐⇒ xsx = (sx)x ⇐⇒ xs = sx

⇐⇒ x = x1(s) := s1/(s−1) ⇐⇒ y = y1(s) := ss/(s−1).

The substitution s = 1 + t−1 then produces (3.2), implying 1 < x < e < y. Using
L’Hopital’s rule, we get

lim
t→0+

x(t) = 1, lim
t→0+

y(t) = ∞ =⇒ lim
t→0+

y(t)x(t) = ∞.

By calculus, x(t) is increasing, y(t) is decreasing, and y(t)x(t) → ee as t → ∞
(see Figure 3). Anderson [1, Lemma 4.3] proves that the function y1(s)

−x1(s) is
decreasing on the interval 1 < s < ∞, and we infer that y(t)x(t) is decreasing on
0 < t <∞ (see Figure 4). The lemma follows. �

For instance, taking t = 1 in (3.2) leads to 24 = 42 = 16. To parameterize
the part of the curve xy = yx with x > y > 0, replace t with −t − 1 in (3.2)
(or replace s with 1/s in the parameterization x = x1(s), y = y1(s), which is
due to Goldbach [11, pp. 280-281]). For example, setting t = −2 in (3.2) yields
(x, y) = (4, 2).

Euler [8, pp. 293-295] described a different way to find solutions of xy = yx

with 0 < x < y. Namely, the equivalence

xy = yx ⇐⇒ x1/x = y1/y
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Figure 3: The graphs of x(t) (bottom) and y(t)

Figure 4: z = x(t)y(t) = y(t)x(t)

Figure 5: v = g(u) = u1/u

shows that a solution is determined by equal values of the function g(u) = u1/u at
u = x and u = y. (Figure 5 exhibits the case x = 2, y = 4.) From the properties
of g(u), including its maximum at u = e and the bound g(u) > 1 for u ∈ (1,∞),
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we see again that 1 < x < e < y.
We can now give an example for Proposition 3.1.

Example 3.3. Set A = 14 +
√

2. Since A > ee, the equation x(t)y(t) = A has a
(unique) solution t = t1 > 0. (Computing t1, we find that x(t1) = 2.26748 . . . and
y(t1) = 3.34112 . . . .) Then (T,R) := (x(t1), y(t1)) or (y(t1), x(t1)) satisfies

TR = RT = 14 +
√

2, T 6= R, T ∈ T.

In the next proposition, we characterize the algebraic and rational solutions of
xy = yx with 0 < x < y. (Part (i) is due to Mahler and Breusch [13]. For other
references, as well as all rational solutions to the more general equation xy = ymx,
where m ∈ N, see Bennett and Reznick [3].)

Proposition 3.4. Assume 0 < A1 < A2. Define x(t) and y(t) as in (3.2).
(i) Then AA2

1 = AA1
2 and A1, A2 ∈ A if and only if A1 = x(t) and A2 = y(t),

with t ∈ Q+.
(ii) In that case, if t ∈ N, then AA2

1 = AA1
2 ∈ A and A1, A2 ∈ Q, while if t 6∈ N,

then AA2
1 = AA1

2 ∈ T and A1, A2 6∈ Q.

Proof. (i) By Lemma 3.2, it suffices to prove that t ∈ Q if x(t), y(t) ∈ A. Formulas
(3.2) show that x(t)(t+1)/t = y(t). As x(t) 6= 0 or 1, Theorem 1.2 implies t 6∈ A\Q.
From (3.2) we also see that y(t)/x(t) = 1+ t−1, and hence t ∈ A. Therefore, t ∈ Q.
(ii) It suffices to show that if AA2

1 = AA1
2 ∈ A, where A1 = x(a/b) and A2 = y(a/b),

with a, b ∈ N and gcd(a, b) = 1, then b = 1. Theorem 1.2 implies A1, A2 ∈ Q. It
follows, using (3.2) and the FTA, that a+ b and a are bth powers, say a+ b = mb

and a = nb, where m,n ∈ N. Then d := m − n > 1 and b = (n+ d)b − nb

= bnb−1d+ · · · + db. Hence b = 1. �

For example, taking t = 2 and 1/2 yields

(9/4)27/8 = (27/8)9/4 ∈ A,
√

3

√
27

=
√

27

√
3 ∈ T.

Here is another sufficient condition for Question 1.3 in the case XY = Y X with
X 6= Y .

Corollary 3.5. Let T,R ∈ R+ satisfy TR = RT = N ∈ N and T 6= R. If N 6= 16,
then at least one of the numbers T,R, say T , is transcendental.

Proof. If on the contrary T,R ∈ A, then Proposition 3.4 implies
(T,R) = (x(n), y(n)) or (y(n), x(n)), for some n ∈ N. Thus x(n)y(n) = N 6= 16.
But a glance at Figure 4 (or at Lemma 3.2) shows that is impossible. �

For instance, the equation x(t)y(t) = 17 has a (unique) solution t = t1 > 0
(computing t1, we get (x(t1), y(t1)) = (1.78381 . . . , 4.89536 . . . )), and for (T,R) =
(x(t1), y(t1)) or (y(t1), x(t1)) we have

TR = RT = 17, T 6= R, T ∈ T.

We make the following prediction.



158 J. Sondow, D. Marques

Conjecture 3.6. In Proposition 3.1 and Corollary 3.5 a stronger conclusion holds,
namely, that both T and R are transcendental.

We can give a conditional proof of Conjecture 3.6, assuming a conjecture of
Schanuel [2, p. 120]. Namely, in view of Proposition 3.1 and Corollary 3.5, Con-
jecture 3.6 is an immediate consequence of the following conditional result [15,
Theorem 3].

Theorem 3.7. Assume Schanuel’s conjecture and let z and w be complex numbers,
not 0 or 1. If z w and w z are algebraic, then z and w are either both rational or
both transcendental.

We now give an application of Proposition 3.4 to Question 1.3 in the case
X = Y .

Corollary 3.8. Let T,Q ∈ (0, 1) satisfy T T = QQ and T 6= Q ∈ Q. Then
T ∈ T if and only if x(n) 6= 1/Q 6= y(n) for all n ∈ N. In particular, T ∈ T if
1/Q ∈ N \ {1, 2, 4}.

Proof. It is easy to see the equivalences

T T = QQ ⇐⇒ (1/T )1/Q = (1/Q)1/T

and, as A is a field, T ∈ T ⇐⇒ 1/T ∈ T. Using Proposition 3.4, the “if and only
if” statement follows. Since n ∈ N and 1/Q ∈ N \ {2, 4} imply x(n) 6= 1/Q 6= y(n),
the final statement also holds. �

For example, taking Q = 4/9 = 1/x(2) leads to (4/9)4/9 = (8/27)8/27 ∈ A,
while Q = 1/3 and 2/3 give

(1/3)1/3 = T T1
1 , T1 ∈ T; (2/3)2/3 = T T2

2 , T2 ∈ T.

Here T1 = 0.40354 . . . and T2 = 0.13497 . . . can be calculated by computing solu-
tions to the equations xx = (1/3)1/3 and xx = (2/3)2/3, using starting values of x
in the intervals (e−1, 1) and (0, e−1), respectively.

4. Appendix: The infinite power tower functions

We use the Gelfond-Schneider and Hermite-Lindemann Theorems to find algebraic,
irrational, and transcendental values of three classical functions, whose analytic
properties were studied by Euler [9], Eisenstein [7], and many others.

Definition 4.1. The infinite power tower (or iterated exponential) function h(x) is
the limit of the sequence of finite power towers (or hyperpowers) x, xx, xx x

, . . ..
For x > 0, the sequence converges if and only if (see [1], Cho and Park [5], De
Villiers and Robinson [6], Finch [10, p. 448], and [12])

0.06598 . . .= e−e 6 x 6 e1/e = 1.44466 . . . ,
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and in that case we write

h(x) = xx x ··
·

.

By substitution, we see that h satisfies the identity

xh(x) = h(x). (4.1)

Thus y = h(x) is a solution of the equations xy = y and, hence, x = y 1/y. In other
words, g(h(x)) = x, where g(u) = u 1/u for u > 0. Replacing x with g(x), we get
g(h(g(x))) = g(x) if g(x) ∈ [e−e, e1/e]. Since g is one-to-one on (0, e], and since h is
bounded above by e (see [12] for a proof) and g([e,∞)) ⊂ (1, e1/e] (see Figure 5),
it follows that

h(g(x)) = x (e−1 6 x 6 e), h(g(x)) < x (e < x <∞). (4.2)

Therefore, h is a partial inverse of g, and is a bijection (see Figure 6)

h : [e−e, e1/e] → [e−1, e].

Figure 6: y = h(x) = x x x ··
·

For example, taking x = 1/2 and 2 in (4.2) gives

(1/4)(1/4)(1/4)·
··

=
1

2
,

√
2

√
2
√

2·
··

= 2, (4.3)

while choosing x = 3 yields

3
√

3
3√3

3√3
··
·

< 3.

Recall that the Hermite-Lindemann Theorem says that if A is any nonzero
algebraic number, then eA is transcendental. We claim that if in addition A lies
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in the interval (−e, e−1), then h(eA) is also transcendental. To see this, set x = eA

and y = h(x). Then (4.1) yields eAy = y, and Theorem 1.1 implies y ∈ T, proving
the claim. For instance,

3
√
e

3
√

e
3√e

··
·

= 1.85718 . . . ∈ T, (4.4)

where the value of h( 3
√
e) can be obtained by computing a solution to x1/x = 3

√
e,

using a starting value of x between e−1 and e.
Here is an application of Proposition 2.2.

Corollary 4.2. Given A ∈
[
e−e, e1/e

]
, if either An ∈ A \ Q for all n ∈ N, or

A ∈ Q \ {1/4, 1}, then

AAA··
·

∈ T. (4.5)

Proof. From (4.1), we have A1 := 1/A = (1/h(A))
1/h(A). The hypotheses imply

that A1 satisfies condition (i) or (ii) of Proposition 2.2. Thus 1/h(A) and, hence,
h(A) are transcendental. �

For example, h
(
(
√

2 + 1)/2
)

= 1.27005 . . . ∈ T and

(1/2)(1/2)(1/2)·
··

= 0.64118 . . . ∈ T.

It is easy to give an infinite power tower analog to the examples in Section 2 of
powers T T ∈ A with T ∈ T. Indeed, Theorem 1.2 and relation (4.1) imply that if
A ∈ (A \ Q) ∩ (e−1, e), then

T := 1/AA ∈ T, T T T ··
·

= 1/A ∈ A. (4.6)

Notice that (4.3), (4.4), (4.5), (4.6) represent the four possible cases (x, h(x)) ∈
A × A, T × T, A × T, T × A, respectively.

We now define two functions each of which extends h to a larger domain.

Definition 4.3. The odd infinite power tower function ho(x) is the limit of the
sequence of finite power towers of odd height:

x, xx x

, xx x x x

, . . . −→ ho(x).

Similarly, the even infinite power tower function he(x) is defined as the limit of the
sequence of finite power towers of even height:

xx, xx x x

, xx x x x x

, . . . −→ he(x).

Both sequences converge on the interval 0 < x 6 e 1/e (for a proof, see [1] or [12]).
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It follows from Definition 4.3 that ho and he satisfy the identities

xx ho(x)

= ho(x), xx he(x)

= he(x) (4.7)

and the relations

xhe(x) = ho(x), xho(x) = he(x) (4.8)

on (0, e 1/e]. From (4.7), we see that y = ho(x) and y = he(x) are solutions of the
equation y = xx y

. So is y = h(x), since y = xy implies y = xx y

.
It is proved in [1] and [12] that on the subinterval [e−e, e1/e] ⊂ (0, e 1/e] the

three infinite power tower functions h, ho, he are all defined and are equal, but on
the subinterval (0, e−e) only ho and he are defined, and they satisfy the inequality

ho(x) < he(x) (0 < x < e−e) (4.9)

and are surjections (see Figure 7)

ho : (0, e1/e] → (0, e], he : (0, e1/e] → [e−1, e].

In order to give an analog for ho and he to Corollary 4.2 on h, we require a
lemma.

Lemma 4.4. Assume Q,Q1 ∈ Q+. Then

QQ Q1
= Q1 (4.10)

if and only if (Q,Q1) is equal to either (1/16, 1/2) or (1/16, 1/4) or (1/nn, 1/n),
for some n ∈ N.

Proof. The “if” part is easily verified. To prove the “only if” part, note first that
(4.10) and Theorem 1.2 imply QQ1 ∈ Q. Then, writing Q = a/b and Q1 = m/n,
where a, b,m, n ∈ N and gcd(a, b) = gcd(m,n) = 1, the FTA implies a = an

1

and b = bn
1 , for some a1, b1 ∈ N. From (4.10) we infer that m b m

1 = a
na m

1
1 and

n b m
1 = b

na m
1

1 .
We show that m = 1. If m 6= 1, then some prime p | m, and hence p | a1.

Write m = m′p r and a1 = a2p
s, where r, s ∈ N and gcd(m′, p) = gcd(a2, p) = 1.

Substituting into m b m
1 = a

na m
1

1 , we deduce that rbm
1 = snam

1 . Since gcd(a1, b1) =

1, we have am
1 | r. But am

1 = am′p r

1 > r, a contradiction. Therefore, m = 1.
It follows that a1 = 1, and hence n b1 = bn

1 . Proposition 3.4 then implies that
(n, b1) = (2, 4) or (n, b1) = (4, 2) or n = b1. The lemma follows. �

Proposition 4.5. We have ho(1/16) = 1/4 and he(1/16) = 1/2. On the other
hand, if Q ∈ Q ∩ (0, e−e] but Q 6= 1/16, then ho(Q) and he(Q) are both irrational,
and at least one of them is transcendental.
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Figure 7: (from [12]) x = g(y), y = h(x), y = he(x), y = ho(x)

Proof. Since 1/16 < e−e, the equation

(1/16) (1/16) y

= y

has exactly three solutions (see [12] and Figure 7), namely, y = 1/4, 1/2, and
y0, say, where 1/4 < y0 < 1/2. By (4.7) and (4.9), two of the solutions are
y = ho(1/16) and he(1/16). In view of (4.9), either ho(1/16) = 1/4 or ho(1/16) =
y0. But the latter would imply that he(1/16) = 1/2, which leads by (4.8) to
y0 = (1/16) 1/2 = 1/4, a contradiction. Therefore ho(1/16) = 1/4. Then (4.8)
implies he(1/16) = (1/16) 1/4 = 1/2, proving the first statement.

To prove the second, suppose Q1 := ho(Q) is rational. Then (4.7) and
Lemma 4.4 imply (Q,Q1) = (1/nn, 1/n), for some n ∈ N. Hence QQ1 = Q1.
But from (4.8) and (4.9) we see that Qho(Q) = he(Q) > ho(Q), so that QQ1 > Q1,
a contradiction. Therefore, ho(Q) is irrational. The proof that he(Q) 6∈ Q is
similar. Now (4.8) and Theorem 1.2 imply that {ho(Q), he(Q)} ∩ T 6= ∅. �
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For example, the numbers ho(1/17) = 0.20427 . . . and he(1/17) = 0.56059 . . .
are both irrational, and at least one is transcendental. The values were computed
directly from Definition 4.3.

Conjecture 4.6. In the second part of Proposition 4.5 a stronger conclusion holds,
namely, that both ho(Q) and he(Q) are transcendental.

As with Conjecture 3.6, we can give a conditional proof of Conjecture 4.6.
Namely, in view of Proposition 4.5 and the identities (4.7), Conjecture 4.6 is a
special case of the following conditional result [15, Theorem 4].

Theorem 4.7. Assume Schanuel’s conjecture and let α 6= 0 and z be complex
numbers, with α algebraic and z irrational. If αα z

= z, then z is transcendental.

Some of our results on the arithmetic nature of values of h, ho, and he can be
extended to other positive solutions to the equations y = x y and y = xx y

. As with
the rest of the paper, an extension to negative and complex solutions is an open
problem (compare [12, Section 4] and [16]).
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Abstract

New types of quadratic and cubic trigonometrial polynomial curves have
been introduced in [2] and [3]. These trigonometric curves have a global shape
parameter λ. In this paper the geometric effect of this shape parameter on the
curves is discussed. We prove that this effect is linear. Moreover we show that
the quadratic curve can interpolate the control points at λ =

√
2. Constrained

modification of these curves is also studied. A curve passing through a given
point is computed by an algorithm which includes numerical computations.
These issues are generalized for surfaces with two shape parameters. We show
that a point of the surface can move along a hyperbolic paraboloid.

Keywords: trigonometric curve, spline curve, constrained modification

MSC: 68U07, 65D17

1. Introduction

In Computer Aided Geometric Design the most prevalently used curves are B-
Spline and NURBS curves. Besides the quadratic and the cubic B-Spline and
NURBS curves the trigonometric spline curves are another way to define curves
above a new function space. Among the first ones, C-Bézier and uniform CB-spline

∗The second author was supported by the János Bolyai Fellowship of the Hungarian Academy
of Science.
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curves are defined by means of the basis {sin t, cos t, t, 1}, which was generalized to
{sin t, cos t, tk−3, tk−4, . . . , t, 1} (cf. [14, 15, 16, 1]). Wang et al. introduced NUAT
B-spline curves ([13]) that are the non-uniform generalizations of CB-spline curves.
The other basic type is the HB-spline curve, the basis of which is {sinh t, cosh t, t, 1},
and {sinh t, cosh t, tk−3, tk−4, . . . , t, 1} in higher order ([12, 9]). Li and Wang de-
veloped its non-uniform generalization ([8]). Trigonometric curves can produce
several kinds of classical important curves explicitly due to their trigonometric
basis functions, including circle and circular cylinder [14], ellipse [16], surfaces of
revolution [11], cycloid [10], helix [12], hyperbola and catenary [9]. Two recently
defined trigonometric curves are the quadratic [2] and cubic [3] trigonometric curves
of Xuli Han. The aim of this paper is to discuss the geometric properties of these
curves, including the effect of their shape parameters and the possibility of con-
strained modification of the curves by these parameters. The method of our study
is similar to the papers discussing geometric properties and modification of other
types of spline curves. Such research has been done e.g. for C-Bézier curves [6],
FB-spline curves [4], GB-spline curves [7] and another quartic curve of Han [5].

In this paper the definition of quadratic and cubic trigonometric polynomial
curves are presented in Section 2. The geometric effects of the shape parameter
as well as its application for constrained modification are discussed for quadratic
curve in Section 3. These results are extended for the cubic case in Section 4, and
for quadratic trigonometric surfaces in Section 5.

2. Definition of the basis functions

The construction of the basis functions of the quadratic trigonometric curve is the
following [2].

Definition 2.1. Given knots u0 < u1 < · · · < un+3, let

∆ui := ui+1 − ui, ti(u) :=
π

2

(
u− ui

∆ui

)
,

αi :=
∆ui

∆ui−1 + ∆ui
, c(t) :=

(
1 − sin(t)

)(
1 − λ sin(t)

)
,

βi :=
∆ui

∆ui − ∆ui+1
, d(t) :=

(
1 − cos(t)

)(
1 − λ cos(t)

)
,

where −1 < λ < 1. Then the associated trigonometric polynomial basis functions
are defined to be the following functions:

bi(u) =





βid(ti), u ∈ [ui, ui+1) ,

1 − αi+1c(ti+1) + βi+1d(ti+1), u ∈ [ui+1, ui+2) ,

αi+2c(ti+2), u ∈ [ui+2, ui+3) ,

0, u /∈ [ui, ui+3) ,

for i = 0, 1, . . . , n.
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In [2] the author proves several theorems in terms of this new curve, but the most
important ones are the following: if λ = 0, then the trigonometric polynomial curve
is an arc of an ellipse and the basis function bi(u) has C1 continuity at each of the
knots.

The definition of the cubic trigonometric polynomial curve in [3] is as follows.

Definition 2.2. Given knots u0 < u1 < · · · < un+4 and refer to U = (u0, u1, . . . ,
un+4) as a knot vector. For λ ∈ R and all possible i ∈ Z+, let ∆i = ui+1 − ui,

αi = ∆i

∆i−1+∆i
, βi = ∆i

∆i+∆i+1
, γi = 1

∆i−1+(2λ+1)∆i+∆i+1
,

ai = ∆iαiγi−1, di = ∆iβiγi+1,
bi2 = 1

4λ+6 (∆i+1 − ∆i)γi, ci1 = 1
4λ+6 (∆i−1 − ∆i)γi,

bi0 = ∆i−1αiγi − ai + bi2, ci0 = [1 − (2λ+ 3)αi] ci1,
bi1 = 1

2∆iγi + bi2, ci2 = 1
2∆iγi + ci1,

bi3 = [1 − (2λ+ 3)βi] bi2, ci3 = ∆i+1βiγi + ci1 − di,
f0(t) = (1 − sin(t))2(1 − λ sin(t)), f1(t) = (1 + cos(t))2(1 + λ cos(t)),
f2(t) = (1 + sin(t))2(1 + λ sin(t)), f3(t) = (1 − cos(t))2(1 − λ cos(t)).

Given a knot vector U , let tj(u) = π
2

u−uj

∆j
(j = 0, 1, . . . , n + 3), the associated

trigonometric polynomial basis functions are defined to be the following functions:

Bi(u) =





dif3(ti), u ∈ [ui, ui+1),∑3
j=0 ci+1,jfj(ti+1), u ∈ [ui+1, ui+2),∑3
j=0 bi+2,jfj(ti+2), u ∈ [ui+2, ui+3),

ai+3f0(ti+3), u ∈ [ui+3, ui+4),

0, u /∈ [ui, ui+4),

for i = 0, 1, . . . , n.

3. The quadratic case

3.1. Geometric effect of the shape parameter

The basis functions of the quadratic trigonometric polynomial curve have a shape
parameter λ ∈ (−1, 1), (see Section 1). For our works we restrict the domain of
definition of the basis functions to one span. Let u ∈ [ui, ui+1), then

bi(u) =

(
ui+1 − ui

ui+2 + ui

)(
1 − cos

(
π

2

u− ui

ui+1 − ui

))(
1 − λ cos

(
π

2

u− ui

ui+1 − ui

))
,

bi−1(u) = 1 −
(

ui+1 − ui

ui−1 + ui+1

)(
1 − sin

(
π

2

u− ui

ui+1 − ui

))(
1 − λ sin

(
π

2

u− ui

ui+1 − ui

))
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−
(
ui+1 − ui

ui+2 + ui

)(
1 − cos

(
π

2

u− ui

ui+1 − ui

))(
1 − λ cos

(
π

2

u− ui

ui+1−ui

))
,

bi−2(u) =

(
ui+1 − ui

ui−1 + ui+1

)(
1 − sin

(
π

2

u− ui

ui+1 − ui

))(
1 − λ sin

(
π

2

u− ui

ui+1 − ui

))
,

hence one arc of the quadratic trigonometric polynomial curve is

Ti(u, λ) = bi−2(u)pi−2 + bi−1(u)pi−1 + bi(u)pi,

where pi are the control points.

Theorem 3.1. The geometric effect of the shape parameter is linear, that is if
u0 ∈ [ui, ui+1) is fixed, then the curve point Ti(u0, λ) moves along a line segment.

Proof. Parts of basis functions not containing the shape parameter λ can be con-
sidered as constants:

k1 =
(

ui+1−ui

ui+2+ui

)(
1 − cos

(
π
2

u0−ui

ui−1−ui

))
, k2 = cos

(
π
2

u0−ui

ui−1−ui

)
,

k3 =
(

ui+1−ui

ui+1+ui−1

)(
1 − sin

(
π
2

u0−ui

ui−1−ui

))
, k4 = sin

(
π
2

u0−ui

ui−1−ui

)
.

By these constants the basis functions of the quadratic trigonometric polynomial
curve can be expressed as:

bi−2(u0, λ) = k3 − λk3k4,

bi−1(u0, λ) = 1 − k3 + λk3k4 − k1 + λk1k2,

bi(u0, λ) = k1 − λk1k2.

Thus the path of the curve point at parameter u0 is

T(u0, λ) = (k3 −λk3k4)pi−2 + (1− k3 +λk3k4 − k1 +λk1k2)pi−1 + (k1 −λk1k2)pi,

which yields an equation of a line segment

T(u0, λ) =
(
k3pi−2 + (1 − k1 − k3)pi−2 + k1pi

)

+ λ
(
k3k4(pi−1 − pi−2) + k1k2(pi−1 − pi)

)
.

The theorem follows. �

3.2. Common interpolation

Interpolation of points in general is possible by any of the spline curves by a reverse
algorithm: considering the points p0,p1, . . . ,pn to be interpolated by the curve, the
new control points can be computed. This algorithm, however, generally requires
time-consuming computation solving a system of equations. Thus it can be useful
to study if the curve (if it includes a shape parameter) can directly interpolate the
given points at a proportional value of the shape parameter.
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Figure 1: The geometric effect of the shape parameter with fixed
parameter u0. Straight lines show the λ-paths of the quadratic

trigonometric curve.

Theorem 3.2. The quadratic trigonometric polynomial curve interpolates the con-
trol points at λ =

√
2.

Proof. Let the control points p0,p1,p2 so ui−1 = 0, ui = 0, ui+1 = 1, ui+2 = 1
and the parameter where we search the interpolation is u = ui+ui+1

2 hence

bi(u) =

(
1 − cos

(
π

4

))(
1 −

√
2cos

(
π

4

))
= 0,

bi−1(u) = 1 −
(

1 − cos

(
π

4

))(
1 −

√
2cos

(
π

4

))

−
(

1 − sin

(
π

4

))(
1 −

√
2sin

(
π

4

))
= 1,

bi−2(u) =

(
1 − sin

(
π

4

))(
1 −

√
2sin

(
π

4

))
= 0.

The theorem follows. �

Figure 2: The quadratic trigonometric polynomial curve with λ =√
2 interpolates the control points, having end tangents parallel to

the sides of the control polygon.
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3.3. Constrained modification

In Computer Aided Geometric Design a frequent problem is the constrained modifi-
cation, when control points are given and we have another point p what we need to
interpolate by the curve, possibly by altering the parameters of the curve. Our aim
is to modify the given curve T(u, λ) by altering exclusively the shape parameter in
a way, that the modified curve will pass through the given point, that is, for some
parameters T(ū, λ̄) = p. The first observation to create this interpolation with
the quadratic trigonometric polynomial curve is to show how we could produce a
segment with this curve.

Lemma 3.3. Let the control points be pi−2,pi−1,pi. If λ = −1, then the quadratic
trigonometric curve is a line segment between pi−2 and pi.

Proof. Let the curve segment be

Ti(u0,−1) = pi−1 +A(pi−2 − pi−1) +B(pi − pi−1),

where A = k3 − λk3k4, B = k1 − λk1k2, and A+B = 1, therefore

Ti(u0,−1) = Api−2 + (1 −A)pi.

The theorem follows. �

Figure 3: Constrained modification on the quadtaric trigonometric
polynomial curve.

For a fixed parameter u0 one can also find the intersection of the λ-path as-
sociated to u0 and the control polygon. In the first case, when 0 6 u0 6 0, 5 we
can find the parameter value λ0 at which B = 0. Since B = k1 − λk1k2 = 0,
therefore λ0 = 1

k2
. So the intersection point is T(u0,

1
k2

). In the second case, when
0, 5 < u0 6 1 then A = 0 should hold. A = k3 − λk3k4 yields λ0 = 1

k4
. Thus the

point what we are looking for is T(u0,
1
k4

). Since lambda paths are line segments,
they can be described by the two points Ti(u0,−1) and Ti(u0, λ0). Our next task
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is to find the value ū for which the path T(ū, λ) passes trough p, by elementary in-
cidence computation. Finally the value of λ̄ can be found by a numerical algorithm
for which

T(ū, λ̄) = p.

holds. From the algorithm it is clear that the admissible positions of p can be
inside the convex hull of the control points.

4. Extension to the cubic case

The cubic trigonometric polynomial curve also has a shape parameter λ ∈ R (see
Section 1), and we need the following remark from [3].

Remark 4.1. If ui 6= ui+1 (3 6 i 6 n), then for u ∈ [ui, ui+1], the curve T (u) can
be represented by curve segment

T(u) = Bi−3pi−3 +Bi−2pi−2 +Bi−1pi−1 +Bipi.

With a uniform knot vector, we have

Bi−3(u) = f0(t)
4λ+6 , Bi−2(u) = f1(t)

4λ+6 , Bi−1(u) = f2(t)
4λ+6 , Bi(u) = f3(t)

4λ+6 ,

where t = π(u − ui)/(2∆i).

Theorem 4.2. With a uniform knot vector if u0 ∈ [ui, ui+1) is fixed, then the ge-
ometric effect of the shape parameter is linear, i.e. the λ-path of the point T(u0, λ)
of the curve are straight line segments.

Proof. The derivatives of the basis functions with respect to λ are

δBi−3

δλ
=

[
−(1 − sin(t))2 sin(t)

]
(4λ+ 6) − 4(1 − sin(t))2(1 − λ sin(t))

(4λ+ 6)2
=

= − (−1 + sin(t))2(2 + 3 sin(t))

2(3 + 2λ)2
,

δBi−2

δλ
=

[
(1 + cos(t))2 cos(t)

]
(4λ+ 6) − 4(1 + cos(t))2(1 + λ cos(t))

(4λ+ 6)2
=

=
(1 + cos(t))2(−2 + 3 cos(t))

2(3 + 2λ)2
,

δBi−1

δλ
=

[
(1 + sin(t))2 sin(t)

]
(4λ+ 6) − 4(1 + sin(t))2(1 + λ sin(t))

(4λ+ 6)2
=

=
(1 + sin(t))2(−2 + 3 sin(t))

2(3 + 2λ)2
,

δBi

δλ
=

[
−(1 − cos(t))2 cos(t)

]
(4λ+ 6) − 4(1 − cos(t))2(1 − λ cos(t))

(4λ+ 6)2
=
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= − (−1 + cos(t))2(2 + 3 cos(t))

2(3 + 2λ)2
,

hence the derivative of the cubic trigonometric polynomial curve with respect to λ
is

δT

δλ
=

1

2(3 + 2λ)2
(
(−1 + sin(t))2(2 + 3sin(t))p0

+ (1 + cos(t))2(−2 + 3 cos(t))p1 + (1 + sin(t))2(−2 + 3 sin(t))p2

+ (−1 + cos(t))2(2 + 3 cos(t))p3

)
.

In the domain of T(u0, λ) all the derivative vectors of the λ-paths with respect to
λ point to the same direction, λ alters only the derivatives lengths. This proves
the statement. �

Figure 4: The geometric effect of the shape parameter is linear in
the cubic case as well, λ-paths are line segments.

Since λ-paths belong to a fixed u0 are line segments in the cubic case as well,
constrained modification can be computed analogously to the quadratic case (cf.
Fig. 5).

Figure 5: Constrained modification on the cubic trigonometric
polynomial curve.
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5. Extension to surfaces

In this section we present the quadratic trigonometric polynomial surface which is
a tensor product surface obtained by the quadratic curve. The basis functions are
as follows

bi(u) =

(
ui+1 − ui

ui+2 + ui

)(
1 − cos

(
π

2

u− ui

ui+1 − ui

))(
1 − λu cos

(
π

2

u− ui

ui+1 − ui

))
,

bi−1(u) = 1 −
(

ui+1 − ui

ui−1 + ui+1

)(
1 − sin

(
π

2

u− ui

ui+1 − ui

))(
1 − λu sin

(
π

2

u− ui

ui+1 − ui

))

−
(
ui+1 − ui

ui+2 + ui

)(
1 − cos

(
π

2

u− ui

ui+1 − ui

))(
1 − λu cos

(
π

2

u− ui

ui+1 − ui

))
,

bi−2(u) =

(
ui+1 − ui

ui−1 + ui+1

)(
1 − sin

(
π

2

u− ui

ui+1 − ui

))(
1 − λu sin

(
π

2

u− ui

ui+1 − ui

))
,

bi(v) =

(
vi+1 − vi

vi+2 + vi

)(
1 − cos

(
π

2

v − vi

vi+1 − vi

))(
1 − λv cos

(
π

2

v − vi

vi+1 − vi

))
,

bi−1(v) = 1 −
(

vi+1 − vi

vi−1 + vi+1

)(
1 − sin

(
π

2

v − vi

vi+1 − vi

))(
1 − λv sin

(
π

2

v − vi

vi+1 − vi

))

−
(
vi+1 − vi

vi+2 + vi

)(
1 − cos

(
π

2

v − vi

vi+1 − vi

))(
1 − λv cos

(
π

2

v − vi

vi+1 − vi

))
,

bi−2(v) =

(
vi+1 − vi

vi−1 + vi+1

)(
1 − sin

(
π

2

v − vi

vi+1 − vi

))(
1 − λv sin

(
π

2

v − vi

vi+1 − vi

))
,

where −1 < λu, λv < 1 are shape parameters, and the surface patch is defined as

T(u, v) =bi−2(u)bi−2(v)pj + bi−2(u)bi−1(v)pj+1 + bi−2(u)bi(v)pj+2+

+ bi−1(u)bi−2(v)pj+3 + bi−1(u)bi−1(v)pj+4 + bi−1(u)bi(v)pj+5+

+ bi(u)bi−2(v)pj+6 + bi(u)bi−1(v)pj+7 + bi(u)bi(v)pj+8.

The shape parameters λu, λv are independent so they modify the surface in sep-
arated ways. As we have seen for λ = −1 the quadratic curve is a line segment
passing through pi−2 and pi. Consequently the quadratic trigonometric polyno-
mial surface at λu = −1 and λv = −1 is a plane interpolating control points
pj ,pj+2,pj+6,pj+8.

Theorem 5.1. The quadratic trigonometric polynomial surface interpolates the
control points when λu =

√
2 and λv =

√
2.

Proof. Considering the control points pk (k = 1, 2, . . . , 9), knots ui−1 = 0, ui = 0,
ui+1 = 1, ui+2 = 1, vi−1 = 0, vi = 0, vi+1 = 1, vi+2 = 1, the parameters at which
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the interpolation holds are u = ui+ui+1

2 and v = vi+vi+1

2 hence the statement
follows from Theorem 3.2. �

Figure 6: The quadratic trigonometric polynomial surface with
λu =

√
2 and λv =

√
2.

5.1. Geometric effect of the shape parameters λu and λv on
the quadratic trigonometric surface

Since shape parameters acts independently on the surface, if we fix either of them,
the geometric effect of the other shape parameter is the same as in the curve case
(see Section 3.1). Consequently in the case when both of the shape parameters are
changing simultaneously, points of the surface can move on a doubly ruled surface,
an example of which can be seen in Fig.7.

Figure 7: λ-paths of a surface point associated to u0 = 0, 2 and
v0 = 0, 2 are on a hyperbolic paraboloid (one of its section curves

is also shown).
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Abstract

A method of generating cubic blending spline curves based on weighted
trigonometric and hyperbolic polynomial is presented in this paper. The
curves inherit nearly all properties of cubic B-splines and enjoy some other
advantageous properties for modeling. They can represent some conics and
some transcendental curves exactly. Here weight coefficients are also shape
parameters, which are called weight parameters. The interval [0,1] of weight

parameter values can be extended to [ e−1)2

(e−1)2−π
, e−1)2π2

(e−1)2π2−8e
]. Not only can

the shape of the curves be adjusted globally or locally, but also the type
of some segments of a blending curve can be switched by taking different
values of the weight parameters. Without solving system of equations and

letting certain weight parameter be (e−1)2(2−π)

2(e−1)2−2π
, the curves can interpolate

corresponding control points directly.

Keywords: cubic uniform B-spline, CTH B-spline, weight parameter, local
and global interpolation, local and global adjustment, transcendental curve

MSC: 68U05

1. Introduction

B-spline curves and surfaces are well known geometric modeling tools in Computer
Aided Geometric Design (CAGD). Due to their several limitations in practical ap-
plications[1], several new forms of curve and surface schemes have been proposed

∗Reaserch supported by the National Nature Science Foundation of China (No.61070227), the
Doctoral Program Foundation of Ministry of Education of China (No. 20070359014) and the Key
Project Foundation of Scientific Research for Hefei university (No.11KY02ZD).
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for geometric modeling in CAGD[2-12]. C-curves are introduced in [2,3] by us-
ing the basis {1, t, cost, sint} instead of {1, t, t2, t3} in cubic spline curves, which
can represent some transcendental curves such as the ellipse, the helix and the
cycloid. Further properties of C-curves have been studied in [4]. Hoffmann et al.
[5] investigated a geometric interpretation of the change of parameter α for C-B-
spline curves. Similarly, using the hyperbolic basis {1, t, cosht, sinht} instead of
{1, t, t2, t3}in cubic uniform B-splines, one can construct a curve family too. This
has been studied as exponential B-splines [6,7,8]. Just for convenience, we call
them HB-splines. Koch and Lyche[6] presented a kind of exponential splines in
tension in the space spanned by {1, t, cosht, sinht}. Lü et al.[7] gave the explicit
expressions for uniform splines. Li and Wang[8] generalized the curves and surfaces
of exponential forms to algebraic hyperbolic spline forms of any degree, which can
represent exactly some remarkable curves and surfaces such as the hyperbola, the
catenary, the hyperbolic spiral and the hyperbolic paraboloid.

CB-splines and HB-splines are the same in structure and their shapes are ad-
justable. However, after comparing CB-splines and HB-splines, we found that a
CB-spline is located on one side of the B-spline, and the HB-spline is located on
the other side of the B-spline, see Figure 1. Therefore, one thinks whether the
two different curves can be unified. If we can unify them, then the new curve will
have more plentiful modeling power. In order to construct more flexible curves
for the surface modeling, Zhang et al. [9,10] proposed a curve family, named FB-
spline, that is the unification of CB-spline and HB-spline. However, the formulas
for the FB-splines were rather complicated. Hoffmann et al. [11] introduced prac-
tical shape modification algorithms of FB-spline curves and the geometrical effects
of the alteration of shape parameters, which are essential from the users’ point of
view. Wang and Fang[12] unified and extended three types of splines by a new kind
of spline (UE-spline for short) defined over the space {cosωt, sinωt, 1, t, ..., tl, ...},
where the type of a curve can be switched by a frequency sequence{ωi}.

Figure 1: CB-spline and HB-spline are located on the different sides of B-spline

In this paper, we present a set of new bases by unifying the trigonometric basis
and the hyperbolic basis using weight method, which inherits the most properties
of cubic uniform B-spline bases. Based on those bases, we introduce a new spline
curve, named CTH B-spline curve. This approach has the following features:
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• The introduced curves can cross the B-splines and reach the both sides of
cubic B-splines.

• The shape of the curves can be adjusted globally or locally.

• Without solving system of equations and letting weight parameters be (e −
1)2(2− π)/(2(e− 1)2 − 2π), the curves can interpolate certain control points
directly.

• With the weight parameters and control points chosen properly, the CTH B-
spline curves can be used to represent some conics and transcendental curves.

• The type of the curves can be switched by letting weight parameters λi = 0
or 1 easily. And, a blending curve can be composed of different type curve
segments.

The rest of this paper is organized as follows. In Section 2, the basis functions
unified by the trigonometric basis and the hyperbolic basis using weight method
are established and the properties of the basis functions are shown. In Section 3,
the CTH B-spline curves are given and some properties are discussed. It is pointed
out in Section 4 that some transcendental curves can be represented precisely with
the CTH B-spline curves and the applications of the curves are shown in Section
5. Finally, we conclude the paper in Section 6.

2. The construction of CTH B-spline basis functions

In order to construct CTH B-spline basis functions, we give two classes of basis
functions as follows.

Definition 2.1. The following functions,




T0,3(t) = 1−t
2 − 1

π cos
π
2 t,

T1,3(t) = t
2 + 2

π cos
π
2 t− 1

π sin
π
2 t,

T2,3(t) = 1−t
2 + 2

π sin
π
2 t− 1

π cos
π
2 t,

T3,3(t) = t
2 − 1

π sin
π
2 t,

are called CT B-spline basis functions.

Remark 2.2. The CT B-spline basis functions are the CB-spline basis functions
with α = π/2, see[3].

Definition 2.3. The following functions,




H0,3(t) = − e
(e−1)2 (1 − t) + e

(e−1)2 sinh(1 − t),

H1,3(t) = − e
(e−1)2 + 1+e+e2

(e−1)2 (1 − t) + e+1
2(e−1)cosh(1 − t)

+ 1+4e+e2

(e−1)2π sinh(1 − t),

H2,3(t) = − e
(e−1)2 + 1+e+e2

(e−1)2 t+
e+1

2(e−1) cosht+
1+4e+e2

(e−1)2π sinht,

H3,3(t) = − e
(e−1)2 t+ e

(e−1)2 sinht,
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are called CH B-spline basis functions.

Remark 2.4. The CH B-spline basis functions are the AH B-spline basis functions
of order 4 with α = 1 for a uniform knot vector, see[7].

Obviously, the CT B-spline basis functions and CH B-spline basis functions
share the properties similar to cubic B spline basis functions, such as nonnegativity,
partition of unity and symmetry.

Note that shape of the CT B-spline curves and CH B-spline curves based on
the CT B-spline basis functions and CH B-spline basis functions are fixed relative
to their control polygons respectively, which is inconvenient to the user.

Next, we construct a set of new basis functions by unifying the CT B-spline
basis functions and CH B-spline basis functions using weight method.

Definition 2.5. The following functions,




TH0,3(t) = 1
π (λi − 1)cosπ

2 t+ 1
(e−1)2 ((1 − e)2 − (1 + e2)λi)(1 − t)

+2eλisinh(1 − t)),

TH1,3(t) = 1
2 t+ e2+1

2(e−1)2 ((λi+1 + 2λi)t− λi+1)) + 2
π (1 − λi)cos

π
2 t−

1
π (1 − λi+1)sin

π
2 t+ (1+e)λi+1

2e−2 cosh(1 − t) − (1+e2)λi+1+4eλi

(e−1)2π sinh(1 − t),

TH2,3(t) = 1
2 (1 − t) + e2+1

2(e−1)2 ((λi + 2λi+1)t− λi)) + 2
π (1 − λi+1)sin

π
2 t

− 1
π (1 − λi)cos

π
2 t+

(1+e)λi

2e−2 cosht− (1+e2)λi+4eλi+1

(e−1)2π sinht,

TH3,3(t) = 1
π (λi+1 − 1)sinπ

2 t+ 1
(e−1)2 ((1 − e)2 − (1 + e2)λi+1)t

+2eλi+1sinht),

(2.1)

are called CTH B-spline basis functions with weight parameter sequence {λk}.
Straightforward computation testifies that these CTH B-spline basis functions

possess the properties similar to the cubic B-Spline basis functions as follows.
(a)Partition of unity:

3∑

j=0

THj,3(t) = 1. (2.2)

(b) Nonnegativity:

THj,3(t) > 0, j = 0, 1, 2, 3. (2.3)

(c) Symmetry:

TH0,3(t;λi) = TH3,3(1 − t;λi), TH1,3(t;λi, λi+1) = TH2,3(1 − t;λi+1, λi).(2.4)

According to the method of extending definition interval of C-curves in Ref.

[13], The interval [0, 1] of weight parameter values can be extended to [ e−1)2

(e−1)2−π ,
e−1)2π2

(e−1)2π2−8e ], where e−1)2

(e−1)2−π ≈ −15.6134 and e−1)2π2

(e−1)2π2−8e ≈ 3.9412.
For a uniform knot vector, Figure 2 shows cubic uniform B-spline basis functions

(dashed lines) and the CTH B-spline basis functions with all parameters being the
same (left)and with all parameters different from one another (right).
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Figure 2: CTH B-spline basis functions

3. CTH B-spline curves

3.1. Construction of the curves

Definition 3.1. Given control points Pi ∈ Rd(d = 2, 3, i = 0, 1, . . . , n) and knots
u1 < u2 < . . . < un−1, for u ∈ [ui, ui+1], i = 0, 1, . . . , n, the curves

r(u) =
3∑

j=0

Pi+j−1THj,3(t) (3.1)

are defined to be piecewise CTH-B-spline curves, where ∆i = ui+1 − ui, u = u−ui

∆i
.

We can construct the open and closed curves similar to the cubic B-Spline
curves.

For open curves, we can expand the curve segment by setting e−1)2

(e−1)2−π 6

λ0, λn 6 e−1)2π2

(e−1)2π2−8e ,u0 < u1, un−1 < un, P−1 = 2P0−P1, Pn+1 = 2Pn−Pn−1.This
assures that original points P0 and Pn are the points on the curves, i.e., r(u0) =
P0, r(un) = Pn. For closed curves, we can periodically assign control points by
setting Pn+1 = P0, Pn+2 = P1, Pn+3 = P2, and expand the knots by setting

un−1 < un < un+1 < un+2 and let λi ∈ [ e−1)2

(e−1)2−π ,
e−1)2π2

(e−1)2π2−8e ],i = n, n + 1, n +

2, λ1 = λn+2. Thus, the parametric formulae for closed curves are defined on the
interval[u1, un+1].

3.2. Properties of the curves

3.2.1. Parametric continuity

Curves (3.1) are piecewise trigonometric hyperbolic polynomial curves. We need
to show the continuity of the curves.

Theorem 3.2. For [u1, un−1], curves (3.1) are GC2continuous. The uniform
curves (3.1) are C2 continuous.
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Proof. For i = 0, 1, . . . , n , We have

r(u+
i ) = (

π − 2

2π
+
λi

π
− λi

(e− 1)2
)(Pi−1 + Pi+1) + (

2

π
− 2λi

π
+

2λi

(e− 1)2
)Pi,(3.2)

r(u−i+1) = (
π − 2

2π
+
λi+1

π
− λi+1

(e− 1)2
)(Pi + Pi+2) + (

2

π
− 2λi+1

π
+

2λi+1

(e− 1)2
)Pi+1,(3.3)

r′(u+
i ) =

1

2∆i
(Pi+1 − Pi−1), (3.4)

r′(u−i+1) =
1

2∆i
(Pi+2 − Pi), (3.5)

r′′(u+
i ) =

(e− 1)π + ((e− 1)π − 2(e+ 1))λi)

4(e− 1)∆2
i

(Pi−1 − 2Pi + Pi+1), (3.6)

r′′(u−i+1) =
(e− 1)π + ((e− 1)π − 2(e+ 1))λi+1)

4(e− 1)∆2
i

(Pi − 2Pi+1 + Pi+2), (3.7)

Thus, we obtain

r(k)(u−i ) = (
∆i

∆i−1
)kr(k)(u+

i ), k = 2, 3, i = 0, 1, . . . , n− 2. (3.8)

This implies the theorem. �

From (3.4) and (3.5), we know that the tangent line of curves r(u) at the
point r(ui) is parallel to the line segment Pi−1Pi+1 (for any λi ). This property
corresponds to the property of the cubic uniform B-spline curves.

Theorem 3.3. The curvature of the curves at u = ui is

K(ui) =
|(e− 1)π + ((e− 1)π − 2(e+ 1))λi)|

e− 1

|(Pi − Pi−1) × (Pi+1 − Pi)|
‖Pi+1 − Pi−1‖3

(3.9)

Proof. According to (3.4) and (3.6),the curvature of the curves at u = ui is

K(ui) =
|r′(ui) × r′′(ui)|

‖r′(ui)‖3

=
|(e− 1)π + ((e− 1)π − 2(e+ 1))λi)|

e− 1

|(Pi+1 − Pi−1) × (Pi−1 − 2Pi + Pi+1|
‖Pi+1 − Pi−1‖3

=
|(e− 1)π + ((e− 1)π − 2(e+ 1))λi)|

e− 1

|(Pi − Pi−1) × (Pi+1 − Pi)|
‖Pi+1 − Pi−1‖3

.

�
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According to (3.9), the local parameter λi controls the curvature of the curves
r(u) at the end of the curve segments. When λi >

(e−1)π
2(e+1)−(e−1)π , the curvature of

the curves at u = ui increases with the increase of λi. When λi <
(e−1)π

2(e+1)−(e−1)π ,
the curvature of the curves at u = ui increases with the decrease of λi.

3.2.2. Local and global adjustable properties

By rewriting (3.1), for u ∈ [ui−1, ui], we have

ri−1(u) = TH0,3(t;λi−1)Pi−2 + TH1,3(t;λi−1, λi)Pi−1 +

TH2,3(t;λi−1, λi)Pi + TH3,3(t;λi)Pi+1. (3.10)

For u ∈ [ui, ui+1], we have

ri(u) = TH0,3(t;λi)Pi−1 + TH1,3(t;λi, λi+1)Pi +

TH2,3(t;λi, λi+1)Pi+1 + TH3,3(t;λi+1)Pi+2. (3.11)

Obviously, weight parameter λi only affect two curve segments ri−1(u) and
ri(u)without altering the remainder, namely, weight parameterλi only affect control

polygon ̂Pi−1PiPi+1. So we can adjust the curves locally by changing certain λi.
From Figure 3(a), we can see that increasing λi moves locally the curvesr(u)u ∈
[ui−1, ui+1]towards the control polygon ̂Pi−1PiPi+1 , or decreasing λi moves locally

the curves r(u)u ∈ [ui−1, ui+1]away the control polygon ̂Pi−1PiPi+1.

(a) Local adjustment (b) Global adjustment

Figure 3: Adjusting the shape of the curves

When all λi are the same, the curves can be adjusted globally. From Figure
3(b), we can see that when the control polygon is fixed, adjusting the value of the
weight parameters from -15.6134 to 3.9412, the CTH B-spline curves can cross the



184 J. Xie, J. Tan, S. Li

cubic B-spline curves (dashed lines) and reach the both sides of cubic B-splines,
in other words, the CTH B-spline curves can range from inside the cubic B-spline
curves to outside the cubic B-spline curves. And, the weight parameters are of
the property that the larger the weight parameter is, the more closely the curves
approximate the control polygon.

3.2.3. Local and global interpolation

Curve (3.1) can also be used for local interpolation. Let λi = (e−1)2(2−π)
2(e−1)2−2π) ≈ 8.91206,

from (3.2) and (3.3), we have r(ui) = Pi. This means that curve r(u) interpolates
point Pi atu = ui locally. Thus, we provide a GC2continuous local interpolation
method without solving a linear system or any additional control points. The
given piecewise CTH B-spline curves unify the representation of the curves for
interpolating and approximating the control polygons.

Obviously, when all λi = (e−1)2(2−π)
2(e−1)2−2π) , the curve can interpolate the control poly-

gon globally. Figure 4 shows global interpolation curves with all λi = (e−1)2(2−π)
2(e−1)2−2π)

(red lines) and local interpolation curves with allλi = −1exceptλ5 = (e−1)2(2−π)
2(e−1)2−2π)

(blue lines).

(a) The planar case (b) The space case

Figure 4: The local and global interpolation curves

4. The representations of cycloid, helix and catenary

Given uniform knots, when all λi = 0, curves r(u) are piecewise trigonometric
polynomial curves. In this case, for u ∈ [ui, ui+1], if we take Pi−1 = (π−2

2 a, a), Pi =
(0, 2−π

2 a), Pi+1 = (2−π
2 a, a), Pi+2 = (2a, 2+π

2 a) (a 6= 0),then the coordinates of r(u)
are

{
x = a(ti − sinπ

2 ti),
y = a(1 − cosπ

2 ti).
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This gives the parametric equation of cycloid. Hence r(u) is an arc of a cycloid,
see Figure 5.

Figure 5: The representation of cycloid by the CTH B-spline curves

If we take Pi−1 = (m,n− π
2 a,−b), Pi = (m+ π

2 a, n, 0), Pi+1 = (m,n+ π
2 a, b),

Pi+2 = (m− π
2 a, n, 2b) (ab 6= 0) , the coordinates of r(u) are




x = m+ acosπ

2 ti,
y = n+ asinπ

2 ti,
z = bti,

which is parametric equation of a helix. Hence r(u) is a helix segment, see Figure 6.

Figure 6: The representation of helix by the CTH B-spline curves

On the other hand, given uniform knots, when all λi = 1, curves r(u) are
piecewise hyperbolic polynomial curves. In this case, for u ∈ [ui, ui+1], if we take
Pi−1 = (2a, e4+1

e3−ea), Pi = (a, e2+1
e2−1a), Pi+1 = (0, 2e

e2−1a), Pi+2 = (−a, e2+1
e2−1a) (a 6= 0)

, then the coordinates of r(u) are

{
x = ati,
y = acoshti.

This gives the parametric equation of catenary. Hence r(u) is an arc of a catenary,
see Figure 7.



186 J. Xie, J. Tan, S. Li

Figure 7: The representation of catenary by the CTH B-spline curves

Remark 4.1. By selecting proper control points and weight parameters, some
conics such as hyperbola, ellipse and some transcendental curves such as sine curve,
cosine curve and hyperbolic sine curves can also be represented via CTH B-spline
curves.

5. Application of the curves

As mentioned in section 4, the types of the curves can be changed by selecting
control points and parameters properly. So, as an application, we can construct
a blending curve using different type curve segments flexibly. For example, given
a uniform knot vector, let control points as follows,P0 = (−2, π

4 ), P1 = (π−4
2 , 0),

P2 = (−2,−π
4 ), P3 = (−π+4

4 , 0), P4 = (− e2+1
2 , e4+e3−e+1

e3−e ), P5 = (−1, 2e2

e2−1 ), P6 =

(0, e2+2e−1
e2−1 ), P7 = (1, 2e2

e2−1 ), P8 = (2, e4+e3−e+1
e3−e ), P9 = (1, 6), P10 = (2, π+12

2 ),

P11 = (3, 6), P12 = (4, 12−π
2 ), P13 = (4, e2+1

e ), P14 = (3, 1), P15 = (2, 0), P16 =
(1,−1), P17 = (π−2

2 , 1), P18 = (0, 2−π
2 ), P19 = (2−π

2 , 1), P20 = (2, 2+π
2 ). so we

obtain a blending curve composed of different type curve segments, which is C2

continuous, see Figure 8.

6. Conclusions

CTH B-spline curves inherited nearly all the properties that CB-spline curves and
CH-spline curves and cubic B-spline curves have, such as variation diminishing
property, convex hull property, geometric invariance and so on. In this paper, we
focus on some special properties of the introduced curves. For example, the shape of
the curves can be adjusted globally or locally without adjusting the corresponding
control polygon. Without solving system of equations, the curves can interpolate
certain control points with proper parameter values. Also, the types of the curves
can be switched by weight parameters λi = 0 or 1, which are easier to determine
than the FB-spline or the UE-spline.
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Figure 8: A C2 continuous blending curve

(a) Adjusting surfaces locally (b) Adjusting surfaces globally

(c) Local interpolation surfaces (d) Global interpolation surfaces

Figure 9: CTH B-spline surfaces
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Both rational methods (NURBS or Rational Bézier curves) [15] and CTH B-
spline curves can deal with both free form curves and most important analytical
shapes for the engineering. However, CTH B-spline curves are simpler in structure
and more stable in calculation .The weight parameters of CTH B-spline curves
have geometric meaning and are easier to determine than the rational weights in
rational methods. Also, CTH B-spline curves can represent the helix, the cycloid,
and the catenary precisely, but NURBS can not. Therefore, CTH B-spline curves
would be useful for engineering.

Just as in the construction of cubic B-spline tensor product surfaces from cubic
B-spline curves, CTH B-spline surfaces can be constructed from CTH B-spline
curves easily. And many properties of the curves can be extended to the surfaces.
Figure 9 shows an example of the CTH B-spline tensor product surfaces, where
surface shapes are adjusted locally and globally (see (a) and (b)), and surfaces can
also interpolate the control mesh locally and globally (see(c) and (d)).
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Abstract

In this paper we present a simple method for factoring a quintic equation
into quadratic and cubic polynomial factors by using a novel decomposition
technique, wherein the given quintic is compared with the another, which
deceptively appears like a sextic equation.

1. Introduction

From the works of Abel (1826) and Galois (1832), we know that a general quintic
equation can not be solved in radicals [1, 2]. With some condition imposed on
it, the quintic becomes solvable in radicals, and is aptly called solvable quintic
equation. In this paper we present a very simple method for solving certain type
of solvable quintic equations. The method converts given quintic equation into a
decomposable quintic equation in an elegant fashion. The condition to be satisfied
by the coefficients of the quintic so that it becomes solvable is derived. We discuss
the behavior of roots of such quintic equations. A procedure to synthesize these
quintics is given. We solve one numerical example using the proposed method at
the end of the paper.

2. The proposed method

We know that in an N -th degree polynomial equation, the (N − 1)-th term can be
eliminated by suitable change of variable. Therefore without loss of generality, we
consider the following reduced quintic equation:

x5 + a3x
3 + a2x

2 + a1x+ a0 = 0, (2.1)
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for solving by the proposed method, where the coefficients, a0, a1, a2, and a3, are
real. Let us consider another quintic equation (which deceptively appears like a
sextic equation!) as shown below:

1

4b2

[
(x3 + b2x

2 + b1x+ b0)
2 − (x3 − b2x

2 + c1x+ c0)
2
]

= 0, (2.2)

where b0, b1, b2, c0, and c1 are unknowns to be determined, and b2 6= 0. Notice
that the term inside the square bracket in the above expression is in the form of
A2 − B2, hence the expression (2.2) can be split into two factors (quadratic and
cubic) as shown below.

[
x2 +

(
b1 − c1

2b2

)
x+

(
b0 − c0

2b2

)][
x3 +

(
b1 + c1

2

)
x+

(
b0 + c0

2

)]
= 0 (2.3)

Therefore our aim is to represent the given quintic (2.1) in the form of (2.2), so
that it can be easily decomposed as shown in (2.3). To achieve this, the coefficients
of quintic (2.1) are to be equated with that of quintic (2.2). However since the
coefficients of (2.2) are not explicitly written, we expand and rearrange the the
expression (2.2) in the descending powers of x, as shown below.

x5 +

[
b1 − c1

2b2

]
x4 +

(
b0 − c0 + b2(b1 + c1)

2b2

)
x3 +

[
b21 − c21 + 2b2(b0 + c0)

4b2

]
x2 +

(
b0b1 − c0c1

2b2

)
x+

[
b20 − c20

4b2

]
= 0 (2.4)

Now, equating the coefficients of (2.1) and (2.4), we obtain five equations in five
unknowns, b0, b1, b2, c0, and c1, as shown below.

b1 − c1 = 0 (2.5)

b0 − c0 + b2(b1 + c1) = 2a3b2 (2.6)

b21 − c21 + 2b2(b0 + c0) = 4a2b2 (2.7)

b0b1 − c0c1 = 2a1b2 (2.8)

b20 − c20 = 4a0b2 (2.9)

Employing the elimination method, we attempt to determine the unknowns using
above equations (2.5)–(2.9). Using (2.5) we eliminate c1 from equations (2.6), (2.7),
and (2.8) leading to following new equations respectively.

b0 − c0 + 2b1b2 = 2a3b2 (2.10)

b0 = 2a2 − c0 (2.11)

b1(b0 − c0) = 2a1b2 (2.12)
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Using (2.11) we eliminate b0 from (2.9), (2.10), and (2.12) resulting in the following
expressions.

c0 = a2 −
a0b2
a2

(2.13)

a2 − c0 + b1b2 = a3b2 (2.14)

b1(a2 − c0) = a1b2 (2.15)

Now, we use (2.13) to eliminate c0 from (2.14) and (2.15) and obtain the following
new expressions.

b1 = a3 −
a0

a2
(2.16)

b1 =
a1a2

a0
(2.17)

Notice an interesting situation here! We are now left with two equations (2.16) and
(2.17), and both are expressions for the unknown b1. Eliminating b1 from (2.16)
using (2.17) leaves us with an expression, which contains only the coefficients of
given quintic (2.1) as shown below.

a1 =
a0a3

a2
− a2

0

a2
2

(2.18)

Note that at this stage we have exhausted all the equations, and the unknown b2
is yet to be determined. It appears that we have hit a dead end in the pursuit of
decomposition of quintic. After thinking a while, we note that what really required
to be determined are the coefficients of quadratic and cubic polynomial factors in
(2.3), and therefore we attempt to find expressions for these coefficients. For this
purpose, the expression (2.3) is rewritten as,

(x2 + d1x+ d0)(x
3 + e1x+ e0) = 0, (2.19)

where d0, d1, e0, and e1 are given by,

d0 =
b0 − c0

2b2
, (2.20)

d1 =
b1 − c1

2b2
, (2.21)

e0 =
b0 + c0

2
, (2.22)

e1 =
b1 + c1

2
. (2.23)

Using (2.12) and (2.17) we evaluate d0 as: d0 = a0/a2. From (2.5) we note that
d1 = 0. From (2.11), e0 is determined as: e0 = a2. Again using (2.5) we determine
e1 as: e1 = a1a2/a0. Thus all the coefficients in (2.19) are determined and there
is no need to determine the unknown b2. When each of the polynomial factors in
(2.19) is equated to zero and solved, we obtain all the five roots of the given quintic
equation (2.1).
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3. A discussion on such solvable quintic

The expression (2.18) is the condition for the coefficients of quintic (2.1) to satisfy in
order that the quintic becomes solvable. Such solvable quintics can be synthesized
by determining the coefficient a1 using expression (2.18) from the remaining real
coefficients, a0, a2, and a3, which are chosen arbitrarily. In the numerical example
given (at the end of the paper) we first synthesize the quintic equation and then
solve it to determine the roots. How do the roots of such quintic behave? To
find out the answer, we express the decomposed quintic (2.19) as below (using the
expressions for the coefficients of quadratic and cubic polynomial factors).

[x2 + (a0/a2)][x
3 + (a1a2/a0)x+ a2] = 0. (3.1)

From the above expression it is clear that the sum of roots of quadratic factor is
zero. This automatically sets the sum of roots of cubic factor to zero since the sum
of roots of quintic (2.1) is zero as x4 term is missing in (2.1).

4. Numerical example

Let us synthesize solvable quintic proposed in this paper. Consider the quintic
equation as below.

x5 − 18x3 + 30x2 + a1x+ 30 = 0 (4.1)

The coefficient a1 is determined from (2.18) as: −19. The coefficient in the
quadratic factor d0 is evaluated as 1, and the coefficients in the cubic factor, e0 and
e1, are determined as 30 and −19 [see expression (3.1) for the factored quintic].
Thus the factored quintic is expressed as:

(x2 + 1)(x3 − 19x+ 30) = 0.

Equating each factor in the above quintic to zero and solving, we determine the
roots of quintic (4.1) as: ±i, 2, 3,−5, where i =

√
−1.
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Abstract

Dynamic Geometry Systems allow new opportunities for the teaching of
geometry and descriptive geometry. These systems make possible to create
dynamic drawings quickly and flexibly. In the University of Debrecen Fac-
ulty of Engineering we executed a controlgrouped developing research for
two years, one of them was at Descriptive geometry with participating first
year full-time Mechanical engineer students and the other one was at Tech-
nical representation practice, in two-two practical groups, for trying out a
teaching-learning strategy. We taught one of the groups with the help of
Dynamic Geometry System, the other one traditionally, with the paper-and-
pencil method. In this paper, I report on our experiences of this course.

Keywords: Spatial ability, descriptive geometry, dynamic geometry.

1. Introduction

Descriptive Geometry provides training for students’ intellectual capacity for spa-
tial perception and it is therefore important for all engineers, physicians and natural
scientists. “Descriptive Geometry is a method to study 3D geometry through 2D
images thus offering insight into structure and metrical properties of spatial ob-
jects, processes and principles” [19]. Moreover some basic differential-geometric
properties of curves and surfaces and some analytic geometry are included and one
aim is also to develop the students’ problem solving ability [20].

The most important ability in working with Descriptive Geometry are the abil-
ity to perform operations on the basis of definitions and the spatial ability. We get
most of our knowledge in a visual way so it is very important for us how much we
are aware of the language of vision.
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Spatial ability for engineering students is very important, which decides of the
future career. These abilities are not determined genetically, but rather a result of
a long learning process. The definition of spatial ability according to Séra and his
colleagues [18] “the ability of solving spatial problems by using the perception of two
and three dimensional shapes and the understanding of the perceived information
and relations” - relying on the ideas of Haanstra and others [4].

Séra and his colleagues [18] are approaching the spatial problems from the side
of the activity. The types of exercises:

• projection illustration and projection reading: establishing and drawing two
dimensional projection pictures of three dimensional configurations;

• reconstruction: creating the axonometric image of an object based on pro-
jection images;

• the transparency of the structure: developing the inner expressive image
through visualizing relations and proportions;

• two-dimensional visual spatial conception: the imaginary cutting up and piec-
ing together of two-dimensional figures;

• the recognition and visualization of a spatial figure: the identification and
visualization of the object and its position based on incomplete visual infor-
mation;

• recognition and combination of the cohesive parts of three-dimensional fig-
ures: the recognition and combination of the cohesive parts of simple spatial
figures that were cut into two or more pieces with the help of their axono-
metric drawings;

• imaginary rotation of a three-dimensional figure: the identification of the
figure with the help of its images depicted from two different viewpoints by
the manipulation of mental representations;

• imaginary manipulation of an object: the imaginary following of the phases
of the objective activity;

• spatial constructional ability: the interpretation of the position of three-
dimensional configurations correlated to each other based on the manipula-
tion of the spatial representations;

• dynamic vision: the imaginary following of the motion of the sections of
spatial configuration.

The link between engineering students’ spatial ability and their success in a
range of engineering courses is very important. Mental Cutting Test (MCT) is
one of the most widely used evaluation method for spatial abilities. Németh and
Hoffmann [14] presented an analysis of MCT results of first-year engineering stu-
dents, with emphasis on gender differences. They used the classical MCT test for
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first-year engineering students of Szent István University. Németh, Sörös and Hoff-
mann [15] attempted to find possible reasons of gender difference, concluding, that
typical mistakes play central role in it. They show typical mistakes can be one
of the possible reasons, since female students made typical mistakes in some cases
more frequently than males. In accordance with the international experiences, they
observed relevant improvement after descriptive geometry courses. Williams and
his colleagues’ paper [24] and others [10] report on research into the spatial abilities
of engineering students, too. MCT and similar tests have been widely studied in
the following papers: [3, 5, 17, 21, 22, 23].

One of the programs, that supports computer-aided descriptive geometry was
developed by a Hungarian expert and helps the teacher to explain the theory and
practice of the Monge projection, the reconstruction of the spatial objects in the
mind and, with the help of interactive feature, to understand spatial relationships
[8]. Designs can be saved in BMP format.

At the University of Debrecen, Faculty of Engineering, we can experience that
the basic studies have their difficulties: there are huge differences among the pre-
education level of the students, the number of lessons is continuously decreasing
and education becomes multitudinous. In our college, full time engineer students
have a 2 hour seminar and a 2 or 1 hour lecture in every course from descriptive
geometry. During that period of time they should pick up the elements of Monge-
projection to the interpenetration of flat bodies and the curvilinear surfaces. (The
syllabus differs according to their major.)

The interest, the pre-knowledge and motivation of the students are very differ-
ent. One of the problems of the traditional teaching is that these problems can not
be easily managed. But the use of computer tools makes it possible that each and
every student can proceed in his own speed, so they do not lag behind and they do
not get bored. The student can plan his/her own pace of learning and the speed
of development.

This article reports about our experiences and results of descriptive geometry
course.

2. Tasks with Dynamic Geometry Systems

Literature suggests that Dynamic Geometry Systems (DGS) is a valuable tool to
teach geometry in schools [1, 2, 6, 7, 9, 16]. These systems are not only com-
plement static geometrical figures, but also the software stores construction steps
throughout its use and objects can be treated as dynamic figures. In this way when
parts of figures are altered then this change also modify the entire figure structure.
Thus, students can follow how elements of figures are built on one another.

Laborde [10] classified these tasks according to their role that the designer of
the task attributes to Cabri (another type of DGS) and to the expected degree of
change. The four type of roles:

• DGS is used mainly as a facilitating material, while aspects of the task are
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not changed conceptually.

Our example: Figure 1 shows the construction of a worksheet and Figure 2
shows the right solution. (Figure 1 and Figure 2 - Created with Cinderella.)
(Interactive worksheet 1 - in our phrasing.)

Figure 1: Construction of a worksheet

Figure 2: The right solution

• The task itself takes its meaning from DGS (for example Black-Box tasks),
with DGS construction tools and dynamic features.

Our example is Pyramid’s plane section. (Figure 3 - Created with Cinderella.)
(Interactive worksheet 2 - in our phrasing.)

The pictures of the Figure 4 show the use of the program’s dynamic features
in descriptive geometry. On the left side moving the point P to the right
side’s projection picture we can trace back the representation of the picture
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Figure 3: Pyramid’s plane section

if our point is at the I., II., III. or IV. spatial quarter. (Figure 4 - Created
with GeoGebra.)

• DGS is used as a visual amplifier (static fugures).

Our example: There are two planes, the first with the ABC triangle, the sec-
ond with the 123 triangle, from which we cut out the 456 triangle. Construct
the intersection of the two planes. To state the visibility you should consider
the holes. (Figure 5 - Created with Cinderella.)

• DGS is supposed to modify the solving strategies of the task, with some
construction tools of DGS.

So by means of movement it can be observed how figures are constructed upon
each other, as well as the construction process itself [7]. If a constructed figure
in the drag mode does not keep the shape that was expected, it means that the
construction process must be wrong [10]. Looking at how students used dragging
provided an insight into their cognitive processes [1].
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Figure 4: Representation of a point

3. Experiments

In the University of Debrecen Faculty of Engineering we executed a controlgrouped
developing research in two semesters, it was at Descriptive geometry with partici-
pating first year full-time Mechanical engineer students, for trying out a teaching-
learning strategy. We taught one of the groups with the help of DGS, the other one
traditionally, with the paper-and-pencil method. We carried out the educational
research with 80 first year full-time Mechanical engineer students at Descriptive
geometry practice, in two-two practical groups.

In the University of Debrecen, Faculty of Engineering the students selected for
the engineering programme acquire the basics of the Descriptive geometry - the
elements of the Monge projection - in the course of a 2-hour lecture and a 2-hour
seminar each week, which they use later in their professional subjects. From the two
seminars we held, one group worked with DGS and interactive whiteboard, while
the other group did constructions in the traditional way with paper and pencil for
two years. The tests were paper-and-pencil tests, even for members of the group
that had been working with the computers. The tasks are the traditional paper
and pencil tasks. It does not contain theoretical question but practical ones.

Our goals:

• To meet the curriculum requirements.

• Increasing the understanding of the Descriptive geometry.
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Figure 5: Intersection of planes

• To meet the mass education demands.

• To get prepared one part of our students to get into the university level.

During the semester the lecture went on without using a computer. The two
seminar groups had only one computer room, so the first group worked with DGS
while the second worked with the traditional paper and pencil methods. We paid
special attention to make sure that all the two groups have the same tasks and
they got the same paper and pencil homework. The difference is in the drawing
opportunities of the program. The solution strategies of both tasks do not differ
essentially. These are the peculiarities of the first type of exercises made by Laborde
[10]. We tried to organize the practises in such a way that neither approach-whether
teaching aided by the DGS, or teaching using paper-and-pencil had an advantage.
Thus we hoped to achieve reliable measurements of relative ability. DGS that we
chose for practice is able to save all the constructions as an interactive webpage. So
there is an opportunity to make worksheets to practice constructions. The teacher
can adjust the set of starting objects and desired objects. After that he/she can save
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the task with a limited use of geometric tools. Since we do not have to adjust the
proceedings of the solution, we just have to adjust the set of the desired objects,
so the program accepts more than one approach to the good solution. You can
attach guidance or construct help to the worksheet. There is no need to install the
program, to make the interactive worksheet; you should only attach a special file
to the web page besides the tasks. Using this opportunity the students could work
online on the seminars. To the education of the Descriptive geometry that is using
DGS we made a webpage made up of Cinderella worksheets, involves the material
of the practises. We tried out this curriculum system throughout two years and we
continuously examined its efficiency. The curriculum system processed by us, which
was suitable for teaching the Descriptive geometry according to the experiences of
the 2004/2005 school year we modified and revised it in the 2006/2007 school year.

In the preliminary phase the students’ levels of knowledge was examined by
measurement of spatial ability. At the beginning of the semesters we examined
whether there is a significant difference between the spatial ability of students in
their preliminary basic knowledge of descriptive geometry. The measurement of
the students’ preliminary knowledge took place in the first teaching week. The
exercises can be categorised under the following headings [18]:

• imaginary manipulation of an object,

• imaginary rotation of a solid,

• projection description and projection reading,

• reconstruction.

By the preliminary survey it can be seen that the two groups achieved nearly
the same. The results of this test are presented in [11].

4. Results

To measure the efficiency of the teaching-learning process during the semester,
there were two tests and one delayed test, consisting of practical exercises, which
was taken by the students four months after the semester; all of which we rated
with a score [12, 13]. The comparative survey of the results is based on these tests.

The test of the computer group was more punctual, a little more precise and
it was better in both years. But the determination of transparency in 2004 was
wrong more often by them than by the students of the paper-and-pencil group. In
2006 from learning this we paid larger attention for practising the determination
of transparency in the computer group. Based on both tests we can say that the
computer-aided group carried out the acquirement of the legally given educational
requirement better than the control group. Figure 6 shows the result of the two
tests and the delayed test.

In the traditional, paper-and-pencil first and second tests can be observed that
the students of the computer-aided group perform better than the students of the
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Figure 6: Results of two tests and delayed test

paper-and-pencil group. The difference between the performances in the first test
was 17% in 2004, 18% in 2006. The difference between the performances in the
second test was 11% in 2004, 7% in 2006.

As we compare the result of the delayed test with the tests we see that the
performance of the paper-and-pencil group by all three tests of both years stayed
under the performance of the computer group. In 2007 on the delayed test both
groups performed worse than in 2005. The reason for this can be that the weekly
number of the lecture decreased from two to one and also the fact that in 2007 they
wrote the delayed test more than a month after ending the education comparing
to 2005.

It cleared out from the answers to the questionnaire, and also during the con-
versations with the students that they liked that they could work with computer,
they found constructions easier in this way. In average they visited the webpage
from home used at practice once a week.

Based on the tests we can say that we can reach quality improving with using
DGS. Organizing the education by computer takes much more time of the teacher,
the effective usage of DGS requires continuous developing work, but the results of
the tests show that the invested work returns.

In the computer group it was more typical that the students helped each other,
corrected their mistakes. Experimentation was more typical for them as well, as the
faulty elements could be hidden without any sign with a mouse click. The members
of the paper-and-pencil group waited for the teacher’s help, instruction when they
stuck in their work. So the computer inspired the students for separateness. We
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found that the testing phase at the traditional, paper-and-pencil group was often
missing.

As an effect of introducing the worksheets made by DGS into education the mo-
tivation level of learning increased, the worksheets are helpful for large percentage
of the students.

5. Summary

The aim of our educational research was to introduce the worksheets made by
DGS into the education of the Descriptive geometry of the mechanical engineer
students. To reach this aim, after surveying of the literature of the spatial ability,
the computer-aided education, the DGS and Mathematics Didactics, we executed
a controlgrouped developing research for trying out the new educational method.
At the creating and trying out of the curriculum made up of the DGS generated
worksheets that include the material of the practises we took into consideration
the offers of the literature and we modified and corrected the curriculumsystem
according to the experiences of the first school year.

We may assert on the basis of these results that use of the computer and the use
of interactive worksheets provided by DGS increases success and helps to create a
proper conceptual structure. The computer-aided seminar helps the effectiveness of
teaching, with the help of the interactive worksheets we can improve the student’s
problem-solving abilities and improvement in the field of creativity was observed
among the students. On the seminar we could more easily trace the thoughts of
the students [12].

Direction by the teacher is very importanteven in case of using DGS. If the
software is simply made available, the program might become an obstacle to the
transition from empirical to theoretical thinking, as it allows the validating of a
proposition without the need to use a theory [1].

According to the current experiments, task of the future is to improve, develop
and correct worksheets and with the help of all of these sheets we could make the
tasks more efficient in the future.
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Abstract

The C++ programming language supports multiparadigm programming.
We can write programs in procedural, object-oriented, generic way at the
same time.

However, it is difficult to figure out exercises for the terminal examinations
since not easy to separate the algorithmic cogitation from the knowledge of
the programming language. There are some basic elements that programmer
students have to know: constructors, parameter passing, objects, inheritance,
standard library, handling constants, copying objects, functions and member
functions, etc. Exercises must be multiparadigm according to the C++ lan-
guage. Using only one paradigm in C++ is not enough. This results in that
we have to distinguish the different linguistic constructs on the basis of its
complexity.

Many questions are arisen in connection with the exercises of terminal
examinations. How can we gauge the procedural, the object-oriented, and
the generic paradigms at the same time? How can we gauge students’ C++
knowledge when we do not lay stress on the algorithmic cogitation? What
kind of exercises may be interesting by the Standard Template Library?
Which C++ constructs are reckoned to be more difficult and which ones
considered to be easier? What are the most important ones? In this paper
we give answers to the previous questions, we describe our methodology to
assessment of students’ C++ knowledge in a semi-automatic grading way. We
also present exercise examples that worked out according to our methodology.
We take stock of students’ results in the paper.
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MSC: 68N19

211



212 N. Pataki, Z. Szűgyi

1. Introduction

In software technology a paradigm represents the directives in creating abstractions
[21]. The paradigm is the principle by which a problem can be comprehended and
decomposed into manageable components. A paradigm directs us in identifying
the elements in which a problem will be decomposed. The paradigm sets up the
rules and properties, but also offers tools for developing applications.

C++ is usually considered as an object-oriented programming language, but it
is not completely true. C++ supports multiparadigm programming [24]. Structured
programming features come from C legacies with better parameter-passing oppor-
tunities and features of overloading. Classes may be created in a sophisticated way,
for example the C++ programming language distinguishes between three different
variants of inheritance based on access control. Templates are also supported.
Generic and generative programming have become available with C++’s template
construct. The C++ Standard Template Library (STL) was the very first library
based on generic programming and its usage is similar to the functional program-
ming approach [2], [18].

C++ is considered as a language that hard to teach. C legacies must be known
because of their hazard but Stroustrup argues for a use of C++ as a higher-level
language that relies on abstraction to provide elegance without loss of efficiency
compared to lower-level styles [23]. Many paradigms and approaches should be
taught at the same time. By the way, C++’s standard library is roomy. Standard
Template Library (STL) includes more than sixty algorithms and seven actual
containers and three adaptors. STL is just a part of the standard library.

Multiparadigm software design and its implementation in the C++ program-
ming language are deeply investigated by James Coplien [7]. One of his most
important conclusions is that different kind of domain problems should be targeted
using different programming paradigms. The domain analysis, especially identify-
ing positive and negative variability helps to select the most appropriate paradigm.

We work with only standard C++, so we do not deal with multithreaded C++
programs, sockets, graphical user interfaces. This can ease the teaching process
as well as the examination. For example, we do not have to work with graphical
forms, inputs and outputs which could not be integrated to our framework easily.

However, gauging students’ C++ knowledge is much more harder. Students’
attainments must be examined from many aspects.

Many elementary constructs can be found in the C++ programming language.
All students should know these features: functions, classes, methods, templates.
Students must use these constructs in a sophisticated way. Constructs like pa-
rameter passing, constructors, constants, copying objects, inheritance are also very
important. Contrarily, importance of algorithmic cogitation should be minimalized
because we gauge the C++ knowledge.

Teaching the standard library is important in a C++ programming language
course [25]. Therefore the students can use the STL when writing exams. Many ex-
ercises are unusable, like lists, maps, vectors, etc. without significant modification
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in their specifications.
In Hungary, a five-point grade system is used. 1 is the failing grade and 5 is

the best possible grade. C++’s constructs should be reflected in this grade system.
Which constructs the students must know, and which ones are more difficult?
Which constructs are the most weighty ones?

In this paper we describe our methodology to assessment of students’ C++
knowledge. We present the structure of former exercises that able to grading stu-
dents in a semi-automatic way and an archetypal exercise is detailed.

This paper is organized as follows. In section 2 we describe the general condi-
tions and introduce the frame of exercises. In section 3 we detail a specific exercise.
Other ideas are presented briefly in section 4. We give a brief overview about our
experiences in section 5. We analyze the students’ results in section 6. Finally, we
conclude our issues in section 7.

2. Exams in a nutshell

In this section we describe the general circumstances in connection with the exams.
Students have to write exams in a computer lab. They may use their books,

notes and the world wide web, but they have to work alone. The exams last about 3
and a half hours. An experienced C++ programmer is able to solve these problems
within half an hour.

Five different grades are distinguished in the Hungarian education. The grades
denote in numbers from 1 to 5, where 1 means unsatisfactory and 5 means first.

The exercise is typically the implementation of a class template, with many
member functions. Students receive the client code that instantiates the template.
The client describes the specification of the class template as a sequence of use cases.
For the pass grade the students have to implement some base functionality of class
template. For better marks they need to implement more and more functions. At
the beginning all the code of functional tests are commented. When the students
implement all the necessary functions for a given mark they can uncomment the
corresponding part of client code to see whether their work were correct or not.
On the other hand, these functional and semantical tests are not given proof of the
correctness of implementation but usually a very good feedback to the students
[15].

The program always prints to display the student’s mark, if the program can
be compiled. When students download the exercise program, it displays the unsat-
isfactory mark. In our case students must progress linearly.

The main goal of exercise is usually a template container similar to STL’s
containers. The representation of the class is not determined. Students can freely
choose the representation. The effectiveness is not a primary goal here, however
extremely poor design is rejected.

Students have to write a template class with proper template parameters, a
trivial constructor. Inserting elements must be supported and a basic information
should be obtained from an object and a constant object. Copying object via copy
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constructor and assignment operator is usually also needed to the pass mark. We
reckon that these constructs are essential ones.

Usually the class must be extended for a better grade. The usual constructs for
a fair mark are more difficult methods, like erasing elements, etc..

For a good or an excellent grade iterator or const_iterator inner type is
often required. Iterator objects must work together with the STL algorithms.
Students should use the STL containers and iterators to overcome this exercise,
because they do not know all necessary members for iterator types.

For a good mark operators that overloaded on const are fine. Sometimes usage
of polymorphism appears here.

For excellent grade clearly many constructs can be gauged. Special template
constructors for any iterator types or template copy constructors are ideal. Some-
times generic algorithms are required that are not in the standard, like copy_if.
These template algorithms must be similar to STL’s algorithm. Introduction of a
new template parameter with default value is reasonable. Basic template metapro-
gramming features (like overloading on the returning values according to a template
argument) is also proper. We assume that students can take advantage of the STL.

Our method can be applied when the marking conditions are more complex.
The following excerpt describes the general schema of our exercises:

#include "work.h"

#include <iostream>

// necessary classes and functions

int main()

{

int yourMark = 1;

/* 2

here we use the basic methods of the class: some use cases

...

if the implementation suits the use cases, variable

yourMark is increased

*/

/* 3

here we use more methods: more uses cases

...

after some basic functional test, value of yourMark is 3

*/

/* 4

More difficult methods tested at this block:

...

inasmuch as implementation passes the test, variable
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yourMark is increased

*/

/* 5

Quite difficult methods required in this block:

...

after successful test cases, value of yourMark is 5

*/

std::cout << "Your mark is " << yourMark << std::endl;

return 0;

}

Students must use this schema, they are only allowed to uncomment the differ-
ent parts. However, the linearity is not necessary, but we apply it. The different
parts could be independent and at the end of parts variable can be increased one
by one.

Students present their solution at the end of the exams. One of the teachers
analyzes someone’s code and asks the student to make sure cheatless. The teacher
gives the grade based on the program’s output, but he can give different grade. So,
the students do not achieve the program’s output as a grade automatically. This is
important because the tests are not all-inclusive ones and it could be eluded. The
structure of the exam makes much more easier the teacher’s work and he or she
can focus on the details and it is also a good feedback to the students.

In this section we introduced the general frame of exercises. We categorized
the different linguistic constructs to gauge. Hereinafter we paraphrase a specific
example that describes an exercise of sorted list template.

3. A detailed example

In this example a sorted list container must be implemented which is template.
It keeps its elements ordered. Its public interface is quite similar to STL’s list
container, but STL’s list container is not ordered.

The test file includes a functor class that called Compare for a user-defined
comparison:

#include "sl.h"

#include <deque>

#include <iostream>

#include <string>

#include <numeric>

#include <functional>

#include <vector>
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struct Compare: std::binary_function<int, int, bool>

{

bool operator()(int a, int b) const

{

return a > b;

}

};

Students must working in the file called sl.h. They must know that templates
do not compose compilation units.

The following part must work to pass the exam. If this part does not work,
then the student fails.

/* 2

SortedList<int> li;

SortedList<double> ls;

ls.insert(5.6);

ls.insert(3.2);

li.insert(7);

li.insert(2);

li.insert(5);

const SortedList<int> cli = li;

if (3 == cli.size())

yourMark = cli.front();

*/

Default constructor must be callable. Inserting elements is required, and it
should be an actual template: insert must work proper according to the template
argument. Creating copy via copy constructor must be supported. This not a prob-
lem, if the standard list container is used for representation, because the default
copy constructor calls the members’ copy constructors to create copies. Further-
more. two more methods must be implemented: the size method that returns how
many elements are in the list, and the front method the returns the list’s very first
element. These two methods called on constant list, so these are const methods
according to the features of C++’s constant correctness. The very first element
is least element in the ordered list, therefore value of yourMark variable will be 2.
This part should not be a real challenge for prepared students: it is a very basic
linked list. Of course, some students present worser accomplishment because of
jitter. We try to help these students with more help or comment.

/* 3

li.insert(8);

li.remove(5);

if (7 == cli.back())

yourMark = cli.size();
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*/

Two more methods needed for fair grade: a remove method that erases a given
element from the list, and a back method that returns list’s last element.

Overload on const is not good in this specific example because an overloaded
function would violate the constraint of orderness.

/* 4

const int N = std::accumulate(cli.begin(), cli.end(), 0);

yourMark += (14 == N);

*/

An iterator type is required for good grade. We call STL’s accumulate algorithm
with SortedList’s iterator. Accumulate adds together the elements in the container.
Therefore iterator’s proper work is needed, because students cannot modify the
accumulate algorithm. If accumulate returns 14, yourMark variable is increased.
Implementation of an iterator class is not easy because many operators must be
implemented and many special members are needed. But when STL’s list is used
for the representation this implementation is unnecessary, because we can use list’s
iterator instead of a handcrafted one.

/* 5

std::deque<int> d;

d.push_back(2);

d.push_back(1);

d.push_back(3);

const SortedList<int, Compare> lc1(d.begin(), d.end());

std::vector<int> v;

v.push_back(3);

v.push_back(7);

const SortedList<int, Compare> lc2(v.begin(), v.end());

if (7 == lc2.front())

yourMark = lc1.front() + lc2.size();

*/

Two special features needed for the best grade. Arbitrary ordering can be
passed as template argument by functor class. All previous code must be compiled
with this feature, therefore the new template parameter needs default parame-
ter. With the introduction of this parameter the list’s behaviour must remain the
same. std::less<T> is a standard functor class template to describe the normal
behaviour of list ordering. The operator() of this template functor class calls the
operator< of T. Implementation of less is quite easy, but can be found in the
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STL. This functor class must be the default argument to the new template pa-
rameter. Another feature is the special template constructor for arbitrary iterator
types. In the example we use this constructor with vector<int>::iterator and
deque<int>::iterator. All standard containers offer this kind of constructor.
Nevertheless, overloading is not allowed to overcome this situation.

The functional tests in the previous code fragments do not ensure the correctness
of the implementation. However, most problems can be discovered by this method.

This example is not too difficult from the view of algorithmic cogitation, but it
is more and more difficult from the view of C++ language. This example presents
our conception aright.

4. Other examples

We create our exercises according to our methodology. The previous example
presents our ideas. We expect an implementation of a template class with ever
more difficult features. We keep track the student’s grade in a variable. This
variable depends on the correct implementation of the exercise.

Many ideas can be found in [18]. The usual exercise is based on STL’s flaws.
Containers for pointers are not supported by the standard library. Containers of
pointers cause many problems (for example, copying is not trivial and avoiding
memory leaks).

Another flaw is STL’s multimap container does not define the relative order of
elements at the same key. A multimap container that defines the relative order of
element at the same key is a fine exercise.

STL does not include hashing containers. Hashtables, hashmaps are also ideal
containers for exams.

Caching associative containers are similar to the standard associative contain-
ers. They are sorted, they can take advantage of sortedness, ensure iterators, but
they have a special invariant, their size is limited. If the container would be over-
sized, it erases the oldest element from the container. Any kind of these containers
is good for exams.

Graph types also cannot be found in the standard library. Graphs are worth
considering, because they can be gauged in many different ways.

Union of akin containers (for instance set and multiset, or stack and queue)
can be worked out. The behaviour of union’s container based on a bool template
argument.

In this section we present some more examples in a nutshell. These ideas were
the basis of former exams.

5. Experiences in general

In this section we present our general experiences in connection with students,
exercises and C++ itself.
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Typically, every kind of grades is achieved. The grades are harmonized with
the students’ capability. The main approach (selection of the representing object)
determines the obtainable grades considerably.

One of the major experiences that STL mightily makes the examination’s solu-
tion easier. STL allows students concentrating on linguistic challenges. This is the
very same experience when STL allows professional programmers concentrating on
runtime complexity and different optimizations. The better grades are reached al-
most only with the STL. For the best mark we assume that students use the STL,
and no student can solve the last part without the library.

Strictly speaking, some of the students do not use the standard library, and
implement a handcrafted linked list class (or other node-based container). These
approaches often fail on small pitfalls. Special analysis tools (like valgrind) are
not necessary to avoid memory related bugs. Typically handcrafted containers are
makeshift and should be avoided in this situation.

6. Quantitative Results

In this section we present the results of students. First, we give an overview about
the results of given semester chronologically regardless of resits. We also present
the results in graphical way (see Figure 1, Figure 2 and Figure 3). These charts
present the number of students who achieved the given grade.

7–10 students failed on every examinations in the examined semester. In addi-
tion there were some students who applied for an exam, but did not come.

Twenty-five students gained rather good (excellent and good) grades and eight
students failed on the first occasion from fourty-six students. Presumably we
claimed typical constructs for these marks. Generally, the more talented students
come on the very first occasions. However, when a new series of datastructues
are introduced we work out a lighter exam (easier member methods with easier
algorithms) to focus on the new features. We keep our exams available on the local
network.

Figure 1: The results on the first time in a semester

The results of second occasion differ from the first one. Fifty-five students came
to the exam, nine students failed. Twenty students reached the best grade. The
differences became sharper, because the students could prepare for the examination
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on the grounds of the previous exam and some of the students practiced with the
previous exam, and some of them do not. These two exercises were similar, but
the second one was more difficult. This approach results in this far cry.

Figure 2: The results on the second time in a semester

Completely different result is yielded on the third time. Figure 3 looks like
normal distribution, this result denotes correct exercise: only nine students were
able to carry through the exam of fifty-five people, and ten of them cannot do the
examination. Most of them – fourteen to be exactly – reached the better grade.
The main reason of this incident is that we cannot continue of the previous series
but we worked out a new exercise, that had a good difficulty level.

Figure 3: The results on the third time in a semester

Next, we consider results of more then thousand students from the last four
years. We compare students’ results to their results of Ada programming language.
This couse is similar to ours, but students get the grade in a more classical way,
teachers read through the student’s code in the course of Ada programming lan-
guage. Fails are not taken into account.

We divide the students into six groups. The first group is the students, who
have rather good grades (excellent or good marks) from C++ as well as from Ada.
This group includes 281 students. The second group is the students, who have
rather bad grades (pass or fair marks). There are 421 people in this group. The
third group includes the students who have rather good grades from C++ but have
rather bad grades from C++. This group includes 192 students. The fourth group
is just the opposite of the third one, this group contains the students, who have
rather good grades from Ada but have rather bad grades from C++. 119 students
are in this group. However, the third and fourth group contain students who have
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fair mark from the either of the courses and better from the other one. This is not
a significant difference. The students with significant difference can be found in
the fifth and sixth group. Students who have excellent mark from C++ but have
only pass mark from Ada are in the fifth group. This group contains 32 people.
Students who have excellent mark from Ada but have pass grade from C++ are
in the sixth group. 18 people belong to this group. The following chart presents
these numbers in a graphical format.

Figure 4: Connection between Ada and C++ grades

These numbers ensure our methodology is fair. About half of the students get
similar grades from C++ and Ada but the exam methodology is quite different.
Only few students have achieved completely different grades from the two courses.
Special prolegomena (e.g. industrial experience) may causes these incidents.

In this section we argued for our methodology in a quantitative manner. We
counted how many students achieved different marks in an entire semester. We
compare our methodology to an other similar course’s methodology. Our method-
ology has been confirmed by the computation.

7. Conclusion

The C++ programming language is difficult to teach and to learn. C++ supports
multiparadigm programming. Functions, classes, generative constructs can be used
in an orthogonal way.

However, contrive exams is much more harder process. In Hungary a five-grade
system is used. We present our methodology based on this grading system. Our
methodology supports multiparadigm programming. Our examples take advantage
of STL’s flaws and supports a semi-automatic grading system. This semi-automatic
system means that our client code offers a mark that we check at the end of
examination. The offered mark is based on test cases. The test cases are not
all-inclusive but we give a feedback to the student as well to the teachers.

We presented our general framework to gauging students’ knowledge and a spe-
cific example is detailed. We defined classification of C++ constructs based on
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their difficulty and essentiality. We outlined students’ results in a given semester.
We compared the results of our excercises to the results of the course Ada pro-
gramming language that applies a more classical method. Our charts confirm that
our framework is fair.
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Abstract

Object-oriented metrics are becoming evermore popular and they are used
in many different areas of software development. Many researchers have
showed in practice that object-oriented metrics can be efficiently used for
quality assurance. For example, a lot of experimental results confirm that
some of the object-oriented metrics (like coupling, size, and complexity) are
able to predict the fault-proneness of classes. Quality assurance experts usu-
ally accept that actively applying metrics can help their work. On the other
hand, developers tend not to use metrics because they do not know about
them, or if they do know about them, they do not really know how to use
them. Hence we devised a Survey to ask developers with different levels of ex-
perience about the use of metrics. Our hypothesis was that developers with
different levels of experience might have significantly different views about
the usefulness of metrics.

In the Survey four metrics (size, complexity, coupling, and code duplica-
tion) were examined. The Survey asked questions about the participants’ ex-
perience and skills, then it asked questions about how the participants would
probably use these metrics for software testing or program comprehension,
and at the end the relative importance of the metrics was assessed.

The main result of the Survey is a list which contains those cases where
the views about the metrics from developers having different experience sig-
nificantly differ. We think that getting to know the developers’ views better
can help us to create better quality models based on object-oriented metrics.

Keywords: Survey, object-oriented metrics, program comprehension, software
testing.
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1. Introduction

Quite a lot of object-oriented metrics have been defined and published (for example,
Brito e Abreu’s MOOD metrics [5]) since Chidamber and Kemerer published the
first notable article in this area, which discussed 6 object-oriented design metrics [4].
Besides their “simple presentation”, they investigated how metrics could be applied
for quality assurance. Other surveys looked at the relationship between the object-
oriented metrics and the number of bugs found and corrected in software products.
For example, Basili et al. [1] examined the relationship between Chidamber and
Kemerer metrics and the fault density on a small/medium-sized software system.
We repeated Basili’s experiment on Mozilla [8], while Olague et al. [9] carried out
a similar experiment on six different versions of Rhino, but they examined more
metrics. The common conclusion of these studies was that metrics could be used
to predict bugs, hence they can be used to measure the quality aspect of a piece of
software.

In general we can say that experts very familiar with metrics accept that met-
rics can be used efficiently in different areas of software development. On the other
hand, developers hardly use metrics in their everyday work because they do not
know the metrics well enough, or they know about the metrics but they do not
know how they can apply them. Therefore we devised a Survey to get to learn
about the developers’ knowledge and views of object-oriented metrics and also to
see how experience influences the assessment of their practical worth. We asked 50
software engineers working at our department on industrial and R&D projects to
take part in our experiment and to fill out an online Survey. The participants’ ex-
perience was wide ranging because there were both very experienced programmers
and students with very little experience among them. Our hypothesis was that
there was a significant difference between the views of senior programmers experi-
enced in different areas of software development and junior developers about the
usefulness of metrics. This experiment validated these suspicions in many cases.
For example, the senior and junior programmers often judged generated classes
with bad metric values quite differently, regardless of the metric they were asked
about. On the other hand, we did not find any significant difference in certain situ-
ations. One example might be that the senior and junior participants’ opinions did
not differ significantly from the point of view of program comprehension. Hence,
one of the Survey results is a set of hypotheses. The aim of a further investigation
is to validate these results by involving some of our project partners. If we can
reliably characterize the views of senior and junior developers about the usefulness
of metrics, then we could develop the kind of metric-based tools which support
development and run more efficiently.

In this paper we will proceed as follows. In the next section we will introduce
the Survey and the main results will be discussed in detail. In Section 3 we will
discuss several other articles which addressed the same problems. Then in Section
4 we will present our main conclusions, and outline our plans for future study.
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2. Survey

In this section we will present the Survey and our main findings. It contained
over 50 questions, so due to lack of space we cannot present all the questions and
results. Therefore we will only describe the Survey in general, and only the most
interesting questions and most important results will be elaborated on.

The Survey can be divided into three parts. The first part (Section 2.1) contains
several general questions about the participants’ experience and skills. From the
responses we were able to get a general picture about the participants.

The rest of the questions examined the participants’ views about the object-
oriented metrics and about the connection between these metrics and program
comprehension & testing. Since object-oriented programming is class-based, we
examined only class-level metrics. We could have examined many different metric-
categories and specific metrics but in that case the Survey would have been too
long. Therefore only four general categories (size, complexity, coupling, and code
duplications) and only one metric per category were selected for the Survey.

• The size metric we chose was Lines of Code (LOC), which counts all non-
empty and non-comment lines of the class and all its methods implemented
outside the class definition.

• Weighted Methods for Class (WMC), which measures the complexity of a
class, is defined as the sum of the complexity of its methods where the McCabe
cyclomatic complexity is used to measure their complexity.

• Coupling metrics measure the interactions between the program elements
and Coupling Between Object classes (CBO), the chosen metric from this
category, counts the number of other classes “used” by the given class.

• In the case of code duplications (later we will refer to this category as clones
as well), the Clone Instances (CI) metric was chosen which counts the number
of duplicated code instances which are located inside the class.

In the second part (Section 2.2) the metrics were examined one by one; more
precisely, we asked exactly the same questions about all four metrics to see what
the participants thought about them. The third part can be found at the end of the
Survey (Subsection 2.3) where the metrics were examined together in the questions
and the participants had to rank the metrics by their importance.

The 50 participants who filled out the questionnaire at our Software Engineering
Department all work on industrial and R&D projects. They ranged from begin-
ner students to experienced programmers so the participants’ experience and skills
differed greatly. Consequently we examined how the different levels of experience
influenced their assessment on the practical worth of the metrics examined in the
Survey. This meant that besides the presentation of the answers and their dis-
tribution, statistical methods were applied to see whether experience affected the
participants’ responses or not.

In the following we will present the most important parts of the Survey and
the conclusions drawn from it in the following way: after each question or group of
questions (if they belong together) the possible answers and the set of participants
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who indicated the given answer are presented in percentage terms. In addition,
after each question we discuss the results and conclusions drawn.

2.1. Questions about the participants’ skills

The first questions measured the participants’ experience and skills. The partic-
ipants had to rank their experience and skills from 1 (least experienced) to 4 or
5 (most experienced).1 Since there was no point in drawing any conclusion from
the individual questions, the following questions were examined together and the
conclusions drawn are presented after them. So, first the questions and the distri-
butions of the answers are presented in Table 1.

Question 1 2 3 4 5
How much programming experience do you have? 8% 14% 24% 54% –
How much do you know about software metrics? 10% 58% 16% 16% –
How experienced are you in using the C language? 2% 20% 32% 30% 16%
How experienced are you in using the C++ language? 0% 20% 14% 32% 34%
How experienced are you in using the Java language? 0% 8% 34% 24% 34%
How experienced are you in using the C# language? 32% 32% 22% 8% 6%
How experienced are you in using the SQL language? 6% 34% 20% 30% 10%
How experienced are you in open-source development? 22% 52% 16% 10% –
How experienced are you in software testing? 10% 34% 40% 16% –

Table 1: The general questions and the distributions of the replies

First, we examined whether there was any connection between the different ex-
perience and skills mentioned above. In spite of the fact that the results inferred
from these questions cannot really be generalized to any other group of develop-
ers because they are greatly influenced by the group structure of our department,
we will present them and briefly explain them. We applied the Kendall tau rank
correlation [3] with a 0.05 significance level to see whether there was any connec-
tion between the participants’ experience and skills or not. Table 2 contains only
the significant correlation coefficients. These results highlight some of the typical
features of our department. For example, our most experienced programmers use
C/C++ (the corresponding correlation coefficients are 0.494 and 0.252) and many
of them took part in open source projects as well (0.344), where all the project
were written in C/C++ (0.534 and 0.281). Java and C# are less frequently used
in our department (there are no significant correlations) but our applications writ-
ten in Java also use databases, which indicates a correlation between Java and SQL
(0.351). And finally, object-oriented metrics are one of our research areas, hence
many of us working here are very familiar with them.

Now, we will examine how experience and skills acquired in different areas
influenced the responses. The results of 5 out of the 9 questions listed above were

1The answers for these questions were full sentences expressing different levels of experience
and skills, so the programmers could easily and accurately rank themselves on the given scale.
However due to lack of space we cannot present these answers here but only their distributions.
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Exp. in Metrics Exp. Exp. Exp. Exp. Exp. Exp.
prog. knowl. C C++ Java C# SQL in os

Exp. in prog. 1.000
Metrics knowl. 0.425 1.000
Exp. in C 0.494 0.242 1.000
Exp. in C++ 0.252 0.324 0.393 1.000
Exp. in Java 1.000
Exp. in C# 1.000
Exp. in SQL 0.256 0.351 1.000
Exp. in os 0.344 0.534 0.281 1.000
Exp. in testing

Table 2: Correlation between experience in different areas and skills

included (experience in C, Java, C# and SQL were not taken into account). In
the rest of this study we applied only two categories, senior (experienced) and
junior (inexperienced), thus the 4 or 5 possible answers of a question had to be
placed into one of the two categories. Since there was no exact definition about a
person’s amount of experience in a particular area, we drew the borderline between
the categories ourselves. We categorized the responses for the 5 questions and the
results can be seen in Table 3.

Question No. of junior part. No. of senior part.
Experienced in programming 23 (46%) 27 (54%)
Metrics knowledge 34 (68%) 16 (32%)
Experienced in C++ 17 (34%) 33 (66%)
Experienced in open-source 37 (74%) 13 (26%)
Experienced in testing 22 (44%) 28 (56%)

Table 3: The scores obtained for the senior and junior participants

2.2. Questions about metrics separately

The following questions examined the metrics separately, which means that only
one metric was considered in each question. Besides the usefulness of metrics, we
examined whether there was any significant difference between the responses of
the senior and the junior participants. We applied Pearson’s χ2 test with a 0.1
significance level to see whether there was statistical correlation between the expe-
rience level and the judgment of metrics. The null hypothesis is that a participant’s
judgment of a metric does not depend on experience. The alternative hypothesis
is that experience influences a participant’s judgment of metrics. In each case we
carried out a test and either accepted the null hypothesis or rejected it (then, we
accepted the alternative hypothesis).

We know that the size of the sample is small, hence the test is less reliable and
since the sample was collected from our department the results cannot really be
generalized to any other software engineering team. In spite of this, the results
presented in this article show that it is worth investigating this topic in greater
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depth because the results reveal a potential problem about the usage of metrics in
practice.

In the following, each question was asked for each metric category (although
there was one case where it was no use asking about code duplications). For all the
questions and for each experience and skill group defined in the previous subsection
we examined the connection between the experience and skills and the replies given
to the questions. These results are also presented after the questions.

2.2.1. Metrics used for program comprehension and testing

The first two kinds of questions examined how metrics can help in understanding
or testing an unknown part of a familiar program. The question was posed for
understanding with a size metric only, but the same one was asked with complexity,
coupling, and clone metrics, and all four questions were repeated with testing.

Question1: Suppose that you have to become familiar with (or to test) a system
whose development you did not take part in. Does the size ( complexity, coupling,
and clones) of the classes in the system influence your understanding ( testing
approach)?

• A1: Yes, it is easier to understand them if the system consists of more, but
smaller classes

• A2: Yes, it is easier to understand them if the system consists of fewer, but
bigger classes

• A3: No, the size of the classes does not influence my understanding
• A4: I am not sure
• A5: In my opinion, size itself is not enough for this and I suggest using other

metrics as well

Metric
Understanding Testing

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

Size 28% 6% 10% 6% 50% 36% 10% 16% 6% 32%
Complexity 68% 6% 6% 0% 20% 80% 2% 2% 2% 14%
Coupling 56% 12% 6% 4% 22% 80% 2% 2% 0% 16%
Clones 64% 8% 14% 4% 10% 64% 8% 14% 4% 10%

Table 4: The distributions of the replies for Question1

The distributions of the responses for the four key questions are summarized
in Table 4. The figures in bold represent the answers which were selected by most
participants. From the point of view of understanding half of the participants would
have chosen other metrics than size (A5), while 28% of them said that programs
containing more but smaller classes were more understandable (A1). In the case of
testing the scores changed a lot because 36% of them indicated that it was easier
to test programs that had more but smaller classes (A1), but only slightly fewer
participants (32%) wanted to choose another metric than size (A5). In the case of
complexity, coupling and clones more than the half of the participants said that
it was easier to understand programs containing more but less complex or less
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strongly coupled classes, or classes containing fewer clones (A1). This score is even
more remarkable in the case of testing.

Figure 1: The distributions of the senior and junior participants’
answers for Question1 when testing was considered

We found that from the point of view of understanding there was no significant
difference between the responses of the senior and junior participants. On the other
hand, with testing we found that, in 4 out of the 20 cases, experience and skills
significantly influenced the person’s assessment of the metrics. Figure 1 shows the
distributions of the responses of the senior and junior participants for the questions
where the difference is significant and their justifications are the following:

Experience in programming and size: 22% of the participants inexperi-
enced in programming thought that it was easier to test fewer but bigger classes
while experienced ones rejected this answer. On the other hand, many more expe-
rienced programmers (41% versus 22%) thought that size itself was not enough to
decide this question.

Metric knowledge and coupling: 25% fewer people quite familiar with met-
rics thought that low coupling was better for testing but significantly more of them
(8% versus 31%) thought that coupling itself was not enough to assess the testing
aspect.

Experience in open source and complexity: Most of the programmers
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not experienced in open source systems (89%) thought that more but less complex
classes could be tested more easily while only 54% of open source developers, which
is 35% less than the other group, had the same opinion. On the other hand, almost
one third (31%) of open source developers said that complexity was not enough
while only 8% of the other group marked this option.

Experience in open source systems and clones: Most of the inexperienced
open source programmers (73%) said that fewer clones were easier to test. However,
the experienced group was divided on this point since 3 possible answers were
chosen with more or less the same frequency (from 23% to 31%).

2.2.2. Acceptable reasons for bad metric values

When a part of a given source code has bad metric values (e.g. due to strong
coupling), it is suggested that the code be refactored so as to improve its quality.
But in some cases bad metric values may be accepted. For example, we will not
refactor a well-known design pattern just because of its bad metric values. The
next questions examined what kind of reasons the participants can accept for this.

Question2: What reasons would you accept for a class being too large? (Several
answers can be marked.)

• A1: No reason at all
• A2: A well-known design pattern
• A3: The implemented functionality requires a large size
• A4: The source code of the class is generated from some other file
• A5: The class must fit a given API
• A6: If the large size does not make understanding difficult
• A7: It has been tested and works properly
• A8: I cannot decide
• A9: Any other reason (with a justification)

Metric A1 A2 A3 A4 A5 A6 A7 A8 A9

Size 2% 34% 52% 56% 56% 24% 28% 2% 4%
Complexity 2% 36% 80% 46% 30% 36% 28% 2% 0%
Coupling 4% 36% 56% 38% 52% 26% 26% 8% 0%
Clones 18% 42% 22% 68% 24% 12% 14% 4% 4%
Average 6.5% 37% 52.6% 52% 40.5% 24.5% 24% 4% 2%

Table 5: The acceptance rates of the different reasons (Question2)

Table 5 shows the distributions of the replies, expressed in percentage terms.2

It is interesting that though many participants said that bad metric values made
understanding and testing difficult, only a few of those questioned indicated that
they did not accept any reason (A1) or that they could not decide (A8) based on
a large size, complexity or coupling. More participants (18%) rejected the clones
option but this percentage is still not very high, so we can say that to some extent

2Since an arbitrary number of replies could be given for these questions, the sum of the scores
for a question is not 100%.
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bad metrics values can be accepted. The answers from A2 to A7 that reflect some
special excuses got notable scores. The most widely accepted reasons were the
implemented functionality (A3) and the generated code (A4) but the design patterns
(A2) and the given API (A5) also had high scores. The remaining two reasons (A6

and A7) are still worth examining but they got much lower scores.
We also examined the difference between the senior and junior participants’

responses in this case. More answers could be marked for this question, therefore
every answer was handled separately and we examined whether there was a sig-
nificant difference between the answers of the senior and junior participants who
accepted the given reason. Since answers A1, A8, and A9 were rarely marked, we
decided to exclude them from any further investigation. On the other hand, the
excluded answers are just synonyms of “I do not know”, therefore all real excuses
will be discussed. Table 6 shows the results where the possible answers can be
found in the rows and the given metric categories are presented in the columns.
Where a significant difference was found between the answers of the two groups, an
abbreviation of the participant’s experience or skill was written in that table cell.
For example, test in the second row (A3) and in the second column (Complexity)
means that there was a significant difference between the replies of participants
experienced in testing well and the replies of participants with little experience in
testing.

Size Complexity Coupling Clones
A2

A3 test o.s., test
A4 exp, met, C++, test exp, met, C++, test exp, met exp, met, C++, test
A5 exp, met
A6

A7 exp, met, C++, o.s. met o.s. met, test

Table 6: Significant correlations between the participant’s experi-
ence and skills and the different excuses

Since too many significant cases were found, we will discuss them in general and
only one example will be presented. First, we will analyze the results from the point
of view of experience groups. Metric knowledge (met) influenced the judgment of
metrics in 8 out of the 24 cases, which is 33.3%. Experience in programming (exp)
and experience in testing (test) influenced their judgment 6 times (25%), while
experience in C++ (C++) influenced their judgment 4 times (16.7%). Experience
with open source systems had the smallest effect because the replies of the two
groups differed only in 3 cases (12.5%). We may conclude from these questions
that the participants’ experience or skills have a notable influence on the judgment
of metrics.

Next, we examined how the opinions of the participants varied based on the
given replies. The judgment of generated classes (A4) affected the opinions of
the senior and junior participants in most cases: programming experience and
metric knowledge always divided their opinions and having experience in C++
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and experience in testing influenced them significantly in 3 cases. On the other
hand, experience in open source development had no effect in this case. A typical
opinion about the tested code (A7) was the other possible reason that had different
judgments. In this case, the judgments of size and clones differed in four and two
cases, respectively, but with the other two metric categories the answers of the two
groups were very similar in four out of the five cases. This means that here the
difference between the opinions of the senior and junior participants was significant
in 8 out of the 20 cases examined. After these observations it was interesting that
the judgments of understandable source code (A6) and design pattern (A2) were the
same. Only several significant differences were found when the other two reasons
(A3 and A5) were investigated.

Figure 2: The distributions of the senior and junior participants’
replies (Question2)

Due to lack of space we cannot discuss all 27 significant differences one by one,
hence we present only one example. Figure 2 shows that 74% of the participants
experienced in programming accept large generated classes and only 26% of them
reject such classes. On the other hand, only 35% of the participants inexperienced
in programming accept it and 65% of them reject large generated classes. This
is a good example because it shows how much the senior and junior participants’
judgment of metrics can differ.

2.2.3. Sharing testing resources based on metrics

Testing is a very important phase of software development. Its aim is to reveal
all the bugs in the source code, but for large software packages this is impossible
because the testing resources (testers, time, etc.) are limited. Hence, we have to
share testing resources among the parts of a program and it is important how we
do it. The better the testing resources are shared, the more effective the testing
phase is, which means that more bugs can be found. We examined how the partic-
ipants would probably share testing resources if they knew the metric values of the
elements in advance. A very simple example (consisting of two classes) was chosen
to see how the participants would share testing resources.

Question3: Suppose that there are two classes in an unknown system where the
size of class A is 1000 lines (LOC) and the size of class B is 5000 lines. The quality
of the two classes is almost the same. During the development the size of class A
increased by 10 percent and the size of class B increased by 2 percent. How would
you share your testing resources?

• A1: I would test only class A
• A2: I would spend 90% of the testing res. on class A and 10% on class B
• A3: I would spend 75% of the testing res. on class A and 25% on class B
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• A4: I would spend the testing resources equally on the two classes
• A5: I would spend 25% of the testing res. on class A and 75% on class B
• A6: I would spend 10% of the testing res. on class A and 90% on class B
• A7: I would test only class B
• A8: I would not determine it based on size
• A9: I cannot decide
The same question was asked for complexity where the complexity (WMC)

values of class A and B were 100 and 500, and for coupling where the coupling
(CBO) values of class A and class B were 20 and 100, respectively. We did not ask
about code duplications here because it would not have made any sense.

Metric A1 A2 A3 A4 A5 A6 A7 A8 A9

Size 0% 0% 8% 12% 30% 0% 0% 48% 2%
Complexity 0% 4% 10% 34% 30% 6% 0% 12% 4%
Coupling 0% 2% 10% 28% 28% 6% 4% 20% 2%

Table 7: The distributions of the replies for Question3

The results of the responses are listed in Table 7. Almost half (48%) of the
participants said that they would not share testing resources based on size (A8)
while 30% of them said they would spend 75% of the testing effort on class A (A5).
With the complexity issue, most participants (34%) said they would share testing
resources equally between the two classes (A4) but only slightly fewer (30%) said
that they would spend 75% of the testing resources on class A (A5). In the case of
coupling answers A4 and A5 got the same response (28%), which is very similar to
what we got with complexity.

Figure 3: The distributions of the senior and junior participants’
replies for Question3
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We found in two cases that experience and skills had a significant effect on the
kind of answers of Question3 (see Figure 3). These two cases are the following:

Experience in programming and complexity: 48% of the (37% and 11%)
participants experienced in programming thought that it was the absolute complex-
ity of the classes that matters from a testing perspective and not the increment after
a change (A5 and A6). In contrast, participants inexperienced in programming said
they would share testing resources equally (A4).

Experience in C++ and size: More than half of the senior C++ program-
mers (55%) would not rely on size for test design (A8), and they (30%) thought
that absolute size was more important than any increment (A5). The opinions of
the junior C++ programmers were heterogeneous, which meant that two answers
conflicting with each other (A3 and A5) had significant scores and they were almost
the same (24% and 29%).

Besides these four questions (actually, there are a lot of questions but they can
be classified into four basic categories), there were other questions which examined
the metrics individually. Due to lack of space they will not be presented in detail,
but will be mentioned only briefly.

We analyzed ten systems3 and calculated the averages of the metrics and what
percentage of the classes exceeded the triple of the average of the metric values
in question. For a given metric both values of the systems were presented anony-
mously on a diagram and the participants were asked to classify the systems into
7 quality categories using the diagrams. The categories ranged from very bad qual-
ity to very good quality. We gave the same task for all four metrics mentioned
previously.

We investigated the participants’ opinions about what the optimal size (com-
plexity and coupling) for a class in an object-oriented system was (minimum and
maximum values could be given) and what the code size was, above which the clone
instances should be eliminated (a limit could be given).

2.3. Questions about the importance of metrics

In the third part of the Survey the importance of each metric was examined. In
these questions more than one metric was used at the same time and the partici-
pants had to select those they thought were the better ones, and they also had to
rank them.

Question4, the only question delineated from this part of the Survey, examined
the importance of the metrics from a testing point of view. The participants had
to weight the four metrics (size, complexity, coupling, and code duplications) when
deciding how useful the four metrics were. The weight ranged from 1 (the least
useful) to 10 (the most useful).

Figure 4 gives a histogram representation of the responses. According to the
participants surveyed, complexity is the most relevant metric because the two high-

3We analyzed 6 industrial and 4 open source systems. Among the industrial ones there were
telecommunications, a graphical application, and a code analysis system, while the four open
source systems were Tamarin, WebKit, Mozilla, and OpenOffice.org.
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Figure 4: The distributions of the senior and junior participants’
replies for Question4

est weights got the biggest response and its average (7.88) is the largest. The two
most frequent weights of the other three metrics are the same (weights 7 and 8) and
their averages (size 6.40, coupling 6.34, and clones 6.20) are almost the same. De-
spite the fact that the distributions of the three metrics differ, we can say that their
degree of importance is very similar, but they seem less important than complex-
ity. This result is slightly surprising because in an earlier paper [8] we investigated
which metrics could be used to predict the fault-proneness of the classes and we
found that CBO (coupling) and LOC (size) metrics came out top while WMC
(complexity) got a lower score, which seems to contradict these new findings.

2.3.1. An experiment on Mozilla

In an earlier paper [8] we examined the fault-proneness property of eight object-
oriented class level metrics. We calculated the metrics for seven different versions of
Mozilla [12] (from version 1.0 to version 1.6), collected the reported and corrected
bugs from the bug tracking system called Bugzilla [2] and associated them with the
classes. This way we knew the metric values and the number of bugs for each class
in each version so we could examine how well the different metrics could predict the
fault-proneness property of classes. Although we had all the necessary information
for all the Mozilla versions, we chose version 1.6, which contained 3,209 classes,
and carried out the experiment on this version. We applied a statistical method
(logistic regression) and machine learning (neural networks and decision tree) to
predict whether a given class was bug-free (containing no bug) or faulty (containing
at least one bug). We examined the metrics one by one with each method and the
results of the three methods were very similar. We found that CBO was the best
metric but LOC was only a slightly worse and WMC also gave good results. On
the other hand, code duplication was not examined, so we have no information
about the usefulness of the CI metric.
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We carried out an experiment to investigate the result of Question4 on Mozilla
version 1.6. We examined which weight combination given by the participants
could find the most classes which contained at least 10 bugs. For this we defined
a simple model in the following way: for each class we calculated the weighted
sum of its four normalized metrics (LOC, CBO, WMC and CI) where the weights
were the answers of Question4. Then, the classes were sorted by their weighted
sum and the top 177 were selected as faulty classes. We selected only the top 177
because there were 177 classes in Mozilla version 1.6 which contained at least 10
bugs. We examined how many of the 177 classes selected by the given model really
contained at least 10 bugs so we could compare the “quality” of the models. The
more such classes the model found, the better it was. We examined all 50 models
and discovered that the best one found 113 out of the 177 classes, which means
that it found 63.8% of the worst classes. Here, the weights of the model were the
following: size = 3, complexity = 8, coupling = 9, and clones = 3.

3. Related works

Our earlier experiment on Mozilla [8] was described in Section 2.3.1 above. In this
summary we can see that metrics can be used for fault-proneness but at a different
level. However, instead of presenting other similar empirical validations (e.g. Yu
et al. [13], Fioravanti and Nesi [6], Basili et al. [1], and Olague et al. [9]), we will
summarize another survey.

The ISO/IEC 9126 international standard [10] defines the relationship between
the system quality and ISO/IEC 9126 subcharacteristic. The Software Improve-
ment Group (SIG) introduced another level below the subcharacteristics which
consists of system properties and they defined a binary mapping between ISO/IEC
9126 subcharacteristics and system properties. José et al. [11] carried out a survey
to examine the connection between system properties and quality characteristics
for maintainability. 22 software quality experts of SIG were asked to take part in
their experiment. The participants had to compare the 4 maintainability subchar-
acteristics with each other (6 comparisons) and the 9 systems properties with each
other for each subcharacteristic (4 times 36 comparisons), so a participant had to
make 150 comparisons. They used a scale of 1 (equal importance) to 5 (extreme
importance) to rate the relative importance. There were three main questions that
they wanted to answer with their survey.

Does the weighted mapping represent agreement among experts? The result was
that, at the level of subcharacteristics, 2 out of 4 relations were non-consensual,
while at the level of system properties 7 out of the 36 relations were non-consensual.

How similar are the weighted mapping and binary mapping? After the evalua-
tion they found that in 7 cases the result had to be excluded because there was no
consensus; in 21 cases the result confirmed the earlier definitions; in 2 cases new
relations were found; and 6 were not presented.

Can the difference between the mappings be somehow used to refine the quality
model? In the case of mapping from subcharacteristics to maintainability, the re-
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sults suggested that the relative weight of testability should be increased and the
weight of stability should be decreased. However, the consensus among the experts
was too small to warrant the change. On the other hand, there was a better consen-
sus among the experts for mapping from system properties to subcharacteristics.
After excluding non-consensual relations, several changes were recommended.

4. Conclusions and future work

The main motivation for this Survey was to learn more about the developers’
expertise and opinions concerning object-oriented metrics and to investigate how
experience influenced their assessment of metrics.

The main contributions of this paper are the following. Firstly, we listed a set of
interesting questions of our Survey which examined the software engineers’ opinions
about four object-oriented metrics. Secondly, we presented the distributions of
the replies and drew some conclusions about them. Thirdly, we examined the
relationship between the experience and skills of our programmers. Fourthly, we
applied a statistical method to see how experience affects the assessment of these
metrics and we devised hypotheses based on them. And finally, we carried out an
experiment on Mozilla to see which metrics were important in bug prediction.

Our main observations are the following. First, we did learn more about the
participants’ opinions concerning the four metrics in different situations. Second,
we found that in certain cases experience in different areas significantly affects
the assessment of the metrics. Third, the importance of metrics in testing is not
in accordance with the results of experiments [8, 1] which examined the relation-
ship between metrics and fault-proneness. Fourthly, we devised several hypotheses
which asserted that there were significant differences between the senior and junior
programmers’ assessments of metrics (for example, generated code with wrong met-
ric values was judged differently in 14 out of the 20 cases). The main conclusion is
that we need to investigate this topic in greater depth because some of the results
here are quite surprising.

In the future we plan to repeat this experiment with our industrial partners to
survey the same questions, but in different circumstances. This way we can verify
our observations and we should have more reliable conclusions. Furthermore, we
will refine the Survey by using the experience gained during this experiment. We
examined only four metric categories here, but there are many other interesting
issues which are worth investigating. Hence, we plan to incorporate other kinds of
metrics (e.g. cohesion metrics) and design issues (e.g. bad smells [7]) into our next
Survey.
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Abstract

First I’d like to write about the idea of mathematical competence and
make clear its components, according to the 2000 Lisbon Resolution of the
European Union. That, and the results of the first PISA examination impli-
cated a development work in our country, and as a result we now have new
types of competence-based school-books, and the methodological culture of
teachers is under reformation too. But these changes are not uniformly wel-
come among teachers. There is a kind of contradiction between traditional
and competence-based education and evaluation – so I tried to match the two
types with measuring the present level of competence of secondary school stu-
dents, and upon that work out development methods, in which the defects of
the knowledge can be supplied.

The students solved an exercise-paper with 5 exercises (practical, playful,
needs many different abilities and skills, but less knowledge, both simple and
complex) in 45 minutes. I made two types of measurements – a traditionally
used method which measures the mathematical achievement, and another,
which measures the level of skills and competences. I analysed the results
with comparing the achievements with the competences to show how the
mathematical skills prevail among achievements. I show this analysis with
graphs in my paper. According to the results of the measurement, we can
declare the main areas of development. At the end of my paper I’d like to
show how I plan the follow-up of this examination.

241
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1. Introduction

Nowadays we can hear a lot about different competences and competence-based
teaching. The European Union in 2000 Lisbon Declaration gave recommendation
to its member states to develop their educational system. Moreover the results of
international measurements on the knowledge of Hungarian students also required
reformation. According to the measurements, it seems that our students’ knowl-
edge lags behind the knowledge of other countries’, it isn’t modern enough for the
challenges of present days. On these effects new projects were realized to develop
education in our country too. In 2002 within the confines of the National Devel-
opment Plan the key competences were defined, which the education has to take
attention on. Through the Human Resource Development Operative Programme
started curricular and methodological generative works, and after that the tests
of the developed programmes in schools through tenders. Now we have tangible
results of it in school-books and other learning materials, programme packs. But
the spread of using these new methods is delayed by the doubtfulness of teach-
ers, sometimes negative behaviour, the slothfulness of the changes of educational
procedures, and also the negative reactions of parents. It’s hard to accept every
newness, but it’s easier if well prepared and supported by examinations. It’s a pity,
that it was not like this in Hungary, so that’s why we have this resistance against
these changes.

The aim of my assessment is to see the appliable mathematical knowledge
of secondary school students learning according to traditional curriculum with a
pretest. After the evaluation of the test – comparing competences and mathemati-
cal achievement too – I would like to look for development strategies and methods,
which are valid for the general school system to appraise mathematical competences
within the maths lessons, and not in extraordinary time.

2. Mathematical competences – theoretical consid-

erations

The key competences are indispensable for the flexible accomodation to changes,
the acceptation of changes and the forming of own life. Mathematical competences
belong to them. The OECD in connection with the PISA-examinations drew up the
competence like this in 2000: “Mathematical competence is a preparedness, which
qualifies the person to identify mathematical problems, understand and handle
them, and also to form a valid opinion on the act of mathematics in present and
future professional and private life, and the role in personal and social connections.”
[2]. According to this the following components were defined:

1. mathematical thought, conclusion

2. mathematical argument, proof

3. mathematical communication
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4. mathematical modelling

5. problem posing and solving

6. representation

7. symbolic and formal language, operations

8. tool using skills.

These components can be on three development levels:

a. reproductive – executing routine, standard exercises, using definitions,

b. connective – executing complex, but still standard exercises, using integra-
tion,

c. reflective – handling complex problems, genuine approach, generalization.

Psychologists and theoreticians in pedagogy devided these components to more
skills and abilities according to factor and matter analysing [2]. Let’s see such a
division:

Skills Thinking abili-
ties

Communication
abilities

Cognitive
abilities

Learning
abilities

numbering,
counting,
quantitative
conclusion,
estimation,
measuring,
changing units,
solving textual
exercises

systematisation,
combinativity,
deductive
conclusion,
inductive
conclusion,
probability
conclusion,
argument, proof

relation
vocabulary,
textual
understanding
and
explanation,
spatial sight,
perception of
spatial
relations,
representation,
presentation

problem
sensitivity,
problem
representation,
originality,
creativity,
problem
solving,
metacognition

listening,
perception of
parts-whole,
memory,
exercise-
keeping
attitude,
exercise solving
velocity

If we think it over, these components are really important parts of the compet-
itive mathematical knowledge, but they mean so multiple and diverse knowledge
system, that even some mathematics teachers don’t dispose all of these skills and
abilities on the needed level. Such a division could hardly be used in everyday
school-life during maths lessons, because of its complexity.

In the 2006 PISA report we can find another desciption of mathematical com-
petence: “The applied mathematical literacy means, that the person recognizes and
understands the act of mathematics in real world, forms valid decisions and his/her
mathematical knowledge helps in solving own life’s real problems, and become a
constructive, enquirer, moderate member of the society.” [2]. This description is
more general, then the previous.

If we look after in different sources, we can find many different definitions. This
multiple approach shows that the research of the theme is not closed, its special
literature is under evolution, and the educational methods based on it are under
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developing yet. On the other hand, it’s hard to accept such a diversity. If we lay
down a few (6-8) guiding principles to go along during a development programme,
it’s easier to follow. That’s why I use the above mentioned 8 points with the 3
levels to define mathematical competences, as it is in English usage. These points
draw up handable abilities, don’t touch on different parts of mathematical literacy,
general enough to cover the whole spectrum of mathematics, and all the skills and
abilities mentioned in the tablet could be classified under one of the 8 points.

3. Traditional education – competence based educa-

tion

Before we compare the traditional and competence based education we have to
make clear, why we teach mathematics. After defining and deciding the goals can
the materials and methods be determined. The materials of education are assigned
by social expectations, we have to cultivate such skills and abilities, that are es-
sential to social integration and forming own life. And of course, in working out
materials and methods pedagogical and psychological wiewpoints must be taken
into consideration too [3]. The acceleration of changes in society and technology
gives new challenges to the members of education, and if we react too late, we’ll
lag behind. After the weak results of the first PISA assessment in 2000, Germany
started a development in education, accepted and supported by wide rates of the
society, which caused a significant growth in the 2003 and 2006 results [2]. We’d
need a similar quick development too. In teaching mathematics we can develop
many psychic attributes, that are important parts of social integration and lifestyle.
This is one of the most important pedagogical goals. As an educational goal, we
can declare to give such experiences, images, ideas and knowledge during teaching
mathematics which works up the ability of simple and complex using of abstrac-
tions, connections, terminology, operations, cognitive actions. The most important
qualificational goal is to make the students able to use their knowledge creatively,
and work up routines and such personal abilities that help them in lifelong learning
process [3].

I think, that the traditional, matter-concentrated teaching has got many valu-
able moments, which shouldn’t be dropped out, but should be saved among new
forms and methods. If we look into old school-books and exercise-collections, we
can find many practical textual exercises, that could be used as nowadays as 20-
30-50 years ago, only we have to make the text current sometimes. Our secondary
school mathematics curriculum aspired to give knowledge from many different parts
of mathematics. The revision of the National Basis Curriculum and the frame cur-
riculum in 2003 dropped out such parts, that were articular in maths curriculum
and maturity earlier, but the needth was querying (e.g. trigonometric equations,
additional theorems, etc.) These changes showed the signs of modernisation, and
also some new parts were put in, such as statistical counts. These changes and em-
phasis shifts to new themes are the results of the 2000 Lisbon Declaration, which
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started the reforms [7]. I think, the material is still too wide, so that the teachers
don’t have enough time for practising and problem solving. The decrease of num-
ber of lessons, the increase of number of students in one class, and the traditional
circumstances of teaching frames hardly give enough space to use new methods
efficiently. The structural changes in secondary school system from the 1990’s on
also makes the efficient work hard: though the number of children weakens year by
year, more students learn in grammar schools now, where traditionally more the-
oretical knowledge is expected then in the previous practical, vocational training
schools. So, many of those children has to learn theoretical knowledge who don’t
really need and claim it – because the practical schools disappeared or changed.
This also raise the question of restructuring the teaching materials and the learning
methods. But to achieve a real and efficient competence based education we have
to change the frames of school timing too.

4. The participants and the test problems of the as-

sessment – research question

The aim of my assessment is to see the appliable mathematical knowledge of
secondary school sudents learning according to traditional curriculum. This is
a pretest of a development strategy on mathematical competences (mainly mod-
elling and problem solving). How can we simply assess the level of abilities together
with the mathematical achievement? We used to assess only the achievement in
school, but for such a development work I’d need a combined evaluation of the two
things. I made my assessment in the Practising Secondary School of Eszterházy
Károly College in Eger, in 12 grammar classes (3 classes per grade) with test papers
laboured for 45 minutes. Altogether 278 students did the tests (77 on 9th grade, 48
on 10th grade, 82 on 11th grade, 71 on 12th grade). These grammar classes learn
standard mathematical curriculum, 3 lessons per week, no special maths classes
among them. The main profile of the school gives high level education to students
in drawing and visual communication, music, foreign languages, and information
technology, with more lessons per week in these subjects than the average. So in
mathematics they have got average preparedness. At least half of the students
come from other places, many of them live in student hostel, and the rate is even
higher among the special classes. The students didn’t get special preparation for
this assessment. They solved the exercises during a normal maths lesson, and I
would like to thank to my colleges, Mrs. Győzőné Erdős, Mrs. Zoltánné Pelbárt
and Mrs. Katalin Lénártné Pintér for their helpfulness.

I got the test problems from competence based school-books made by Edu-
catio Kht., partly from “Secondary school mathematical exercise collection” from
National School-book Publisher, and also from the collection of the MA students
of “teacher of Mathematics” in Eszterházy Károly College. When collecting and
selecting the exercises I took into consideration, that they should:

• be practical,
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• measure varies of skills and abilities,

• need only such knowledge, that the students already learnt in previous school
years,

• be playful, diversified,

• be both simple and complex exercises among them.

I gave 5 different exercises to every grade, which the students had to solve in
45 minutes. The time was far enough for those ones, who read slowly too. The
exercises were all textual, so the weakness of reading and understanding ability
naturally influenced the results. But, unfortunately, it is not enough to make only
one test, to find out, how this weakness effects on mathematical achievement, just
during continuous work with a student – so I couldn’t take this into account. Every
papers had exercises to measure counting skill, logical thinking skill, combinativity,
functional, algorithmical thinking, spatial sight, perception of spatial relations,
problem solving abilities. In assessing the exercises I took into consideration which
thinking or counting units would lead to the result (but of course, different ways
could be right) [1]. I made two types of assessment to each papers: a mathematical
achievement evaluation, traditionally used in school practise by teachers, and a
new type of skills – ability level assessment [4]. I would like to choose the main
path of development strategy by comparing these two, in order to develop skills
and abilities of students, so as to result growth in mathematical achievement in
school too. An example of the test (made for the 11th grade) and the two types
of assessments can be seen below. The paper of other grades contains similar
exercises.

Table 1: Exercise paper for 11th grade

Exercise Solution and achievement

points

Competence

points

1. Five friends noticed, that their
telephone numbers are such 7-digit
numbers, which’s first digit is 3, every
digit is different, and the buttons on the
mobile phone pushed one after the other
goes in the order of the move of horse in
chess. Which are the five numbers? Can
there be more numbers like these?

1 2 3
4 5 6
7 8 9

0

Possibilities according to the
conditions:
3-4-9-2-7-6-0 (1p.)
3-4-9-2-7-6-1 (1p.)
3-4-0-6-7-2-9 (1p.)
3-8-1-6-7-2-9 (1p.)
3-8-1-6-0-4-9 (1p.)
There can’t be more, because
keeping the rule of chess move,
the numbers would repeat.
Argument: tree graph. (1p.)

a,
b,
c,
g,
h,
i,
j,
k,
m
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2. Feri’s father would like to hang two
90◦ angled halogene lamps in their
cellar. One into the middle of the 6 m
long ceiling, lighting straight down, but
in this case 1-1m long stripes would left
unlighted. The other lamp obliquely in
another place, to lighten the whole floor.
How far is the second lamp from the
middle? See the figure below!

Interpretation, notation on
figure: (2p.)
ABC△ isosceles, rectangular,
so the altitude
h = AC/2 = 2 m (2p.)
DEF△ rectangular, the
altitude belonging to DF
hypotenuse is also 2m, the
two parts of the hypotenuse
are: x and 6 − x long. (2p.)
According to altitude theorem:
x(6 − x) = 22 (2p.), from this
we get: x2 − 6x + 4 = 0.
Using the solution formule, we
get x1 = 3 −

√
5 ∼= 0.76 and

x2 = 3 +
√

5 ∼= 5.24. (2p.)
Conclusion: he has to put the
second lamp (E) in
3 − 0.76 = 2.24m distance
from the first one (B). (2p.)

a,
b,
c,
f,
g,
h,
i,
k,
l,
m

3. One day Barbara, Bea, Bori and
Balázs travelled by train with their
friends, and for passing time, they
played. At first every member of the
company had to think of a 3-digit
positive number, which’s digits are
bigger then 4 and less then 7. When
they told their numbers one by one, they
realized, that all numbers were different.
a) How many were they at most? An
other day Barbara, Bea, Bori, Balázs
and their 4 friends (Attila, András, Ali
and Anna) went to cinema together. All
the 8 places, on the tickets, were in one
row, next to each other.
b) In how many different orders can the
8 friends sit, if non of those, who’s name
begins with the same letter, can sit near
each other?

a) The digits can be 5 or 6, and
can be repeated. (1p.) The
number of variations of 2 dig-
its, in 3 places are 23 = 8.
(555, 556, 565, 566, 655, 656,
665, 666) So the company’s got
8 members at most. (2p.)
b) The sitting order can be
ABABABAB or BABABABA
patterned. (1p.) The number
of orders with letter “A” are 4!
altogether, and with letter “B”
the same. (1p.) All the orders
can be the multiplication of
these: 2 · 4! · 4! = 1152. (2p.)

a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m

4. Choose which figure is the imprint of
the postmark on the picture!

The “b” is the right imprint.
(3p.)

a,
b,
c,
i,
m
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5. A 130m long freight train goes 42
kilometres per hour. What time does it
go through a 220 m long tunnel?

The length of the train and
the tunnel together is:
130 m + 220m = 350 m =
0.35 km. That’s the way to go
if it wants to go through the
tunnel. (2p.) According to
relation between the way (s),
time (t) and velocity (v):
t = s/v = 0.35/42 =
0.00833 h = 0.5 min. So it
takes the train 0,5 minutes to
go through the tunnel. (3p.)

a, b,
c, d,
e, f,
g, h,
i, j,
k, m

5. The assessment of mathematical achievement

I evaluated the completed papers with giving 1-1 points to each thinking or counting
units, similar to the pointing system of maths maturity. I put the points per student
and per exercise into an Excel tablet. I used the Excel to summarize the points
of students, giving the achievement in percentage too, the average and deviation
of each exercises, and each grades. I made graphs from the points of students,
compared with the average, the minimal and optimal level. It caused difficulties
that some of the students didn’t get the test serious enough, because it didn’t have
any “stake” – it shows, that in our schools students used to work for marks, not
really for knowledge. I tried to strain off these papers, because they wouldn’t show
the real knowledge and abilities, just the motivation (which is an interesting topic
too, but it wasn’t the main in my examination).

I appointed the minimal level of mathematical achievement at 20%, and the
optimal level above 60%. Here are the summarized graphs of each grades. They
show the points of the students in growing order, the minimal level, the average of
the grade and the optimal level. Below the graph the tablets show the evaluation
of each exercises per grade.

Figure 1: Assessment of achievement, 9th grade
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Exercise 1. (8p.) 2. (12p.) 3. (12p.) 4. (3p.) 5. (5p.)
∑

(40p.) %
Average 3.30 4.71 3.75 1.44 0.81 14.01 35.03
Deviation 2.79 3.84 3.03 1.51 1.34 7.05 17.63

Table 2: Average of points and deviation on 9th grade

Figure 2: Assessment of achievement, 10th grade

Exercise 1. (6p.) 2. (12p.) 3. (10p.) 4. (12p.) 5. (12p.)
∑

(52p.) %
Average 5.2 1.7 2.3 4.0 1.4 14.7 28.2
Deviation 1.69 2.85 3.61 4.47 2.43 8.51 16.36

Table 3: Average of points and deviation on 10th grade

Figure 3: Assessment of achievement, 11th grade

Exercise 1. (6p.) 2. (12p.) 3. (7p.) 4. (3p.) 5. (5p.)
∑

(33p.) %
Average 3.39 0.56 2.98 1.76 1.50 10.18 30.86
Deviation 2.37 1.51 2.27 1.49 1.97 4.55 13.79

Table 4: Average of points and deviation on 11th grade
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Figure 4: Assessment of achievement, 12th grade

Exercise 1. (4p.) 2. (12p.) 3. (8p.) 4. (6p.) 5. (16p.)
∑

(46p.) %
Average 3.45 1.18 3.44 2.23 3.32 13.62 29.61
Deviation 1.01 1.45 2.71 1.31 4.77 7.26 15.77

Table 5: Average of points and deviation on 12th grade

On every grade the students showed weak average achievement. The best av-
erage was on 9th grade, and the least on 10th grade (see tablet 2 and 3). If we
look at the graphs (figures 1–4), we can see, that the averages of all grades are
closer to the minimal level, than to the optimal. I could evaluate the work of 278
students, so we can consider the sample is representative for a normal grammar
school, learning mathematics according to general curriculum. Altogether 74 stu-
dents got points under the minimal level, that’s the 26.5% of all. Their school
achievement is rather weak too, we can declare. Above the optimal level were only
23 students, that is the 8.3% of the sample (see figures 1–4). I think one reason
for the weak achievement is, that these exercises were unconventional, strange for
most of them, and they weren’t prepared for the test. On the other hand, I think
the lack of motivation also weakened the results.

In general we can say, that the playfully interpreted, simple exercises, which
didn’t need too much counting, were more successful, than the complex ones. The
result of those exercises, needed only spatial sight were much better, then those
ones in which they had to count something from a given figure. The result of the
exercises needed logical thinking and combinativity were better then the average as
well. The weakest results were the complex exercises, which needed problem solving
abilities, planning and more relations (see tables 2–5). I think, in this case the
difficulty was the translation of the real problem into the language of mathematics.
In my opinion, another reason of this weak result is a kind of laziness, because this
generation prefers the easily, quickly available results to the ones demands patience
and endurance. I think this problem is more related on present social problems than
mathematics teaching, but in school we have to take this also into consideration,
and it can be developed with traditional methods as well as competence based
methods.
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6. The assessment of skills and abilities

Still we rarery meet the measuring of skills and abilities in public education. After
the first PISA assessment, started the Country Competence Measurement, which
measures the abilities of students in textual understanding and mathematical tool
usage. The system of this measurement shows into good ways of developing, be-
cause it measures the same grades (4th, 6th, 8th, 10th) year by year, among the
same circumstances. It also followed by a social survey too. From this, we can
follow up the development of these abilities of children year by year, and the per-
formance of schools too. The problem is, that most of the students, parents, and
even much of the teachers don’t know, what this measurement is really for, and
what the results really mean. It is hard to compare the ability points to the tra-
ditional school marks. That’s why I tried to make a kind of comparison of the
two types of evaluations. Because whatever we say, the achievement (marks) is
important in school life (and further too), and we would like to see, how skills and
abilities come out in achievement.

For the above mentioned purposes I wanted to examine the skills and abilities,
so I made another kind of assessment, according to dr. István Czeglédy, used in a
survey in Miskolc, among elementary school students. [4] I identified which of the
following items can appear in the solution of each exercises (in a more complex one,
all of them, in a simple, some), and gave simply 1 or 0 points, if an item appeared
or not:

a) does he/she begins the exercise?

b) does he/she interprets the exercise well?

c) is there any valuable in his/her work?

d) does he/she make figure, tablet, systematize data?

e) is the figure, tablet, systematization valid for the solution?

f) does he/she use notations?

g) does he/she make plan?

h) is his/her solution purposive (even if there was no written plan)?

i) is he/she motivated to solve the exercise?

j) does he/she explain statements?

k) does he/she look for causal connections, relationships?

l) does he/she try for visualize in short forms?

m) does he/she try for whole solution, give full answer?

The competence points identified for the exercises are the following:
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1st exercise 2nd exercise 3rd exercise 4th exercise 5th exercise
9th grade Balance of

scales
Eggs for
Easter

Combinatory Imprint Train

Altogether:
54 points

a,b,c,d,e,i,j,
k,m

a,b,c,d,e,f,g,
h,i,j,k,l,m

a,b,c,d,e,f,g,
h,i,j,k,l,m

a,b,c,i,m a,b,c,d,e,f,g,
h,i,j,k,m

10th grade Spinning
dice

Selling shirts How old is
the captain?

PIN-code
(comb.)

Place of the
well

Altogether:
50 points

a,b,c,i,m a,b,c,f,g,h,i,
j,k,l,m

a,b,c,g,h,i,j,
k,l,m

a,b,c,f,g,h,i,
j,k,l,m

a,b,c,d,e,f,g,
h,i,j,k,l,m

11th grade Phone num-
bers

Lamps in the
cellar

Combinatory Imprint Train in tun-
nel

Altogether:
49 points

a,b,c,g,h,i,j,
k,m

a,b,c,f,g,h,i,
k,l,m

a,b,c,d,e,f,g,
h,i,j,k,l,m

a,b,c,i,m a,b,c,d,e,f,g,
h,i,j,k,m

12th grade Filling
dishes

Taxing in
Zed

Cost of the
horse

Queer
money

Tangential
trapezoid

Altogether:
54 points

a,b,c,i,k,m a,b,c,f,g,h,i,
j,k,l,m

a,b,c,d,e,f,g,
h,i,j,k,l,m

a,b,c,d,e,g,
h,i,j,k,m

a,b,c,d,e,f,g,
h,i,j,k,l,m

Table 6: Competence points to each exercises

Evaluating the papers according to these viewpoints I summarized the compe-
tence points of all students per grade in an Excel tablet. The next step was to
compare the achievement and competence points of students. How could I show,
which students achieved above, according to, or below the level of their compe-
tences? For examining this I took the quotient of the students’ competence points
(C) and achievement points (A). My hypothesis was, that there can be a special
relation between the two kind of assessments, and I tried to show and analyze it.
I adjusted the students (per grades) into order of growing achievement points, and
represented the C/A quotient on graphs. On the graphs we can see how many
students did the test per grades, and the value of the C/A. I identified the “ideal”
value of the quotient (maximal achievement points/maximal competence points)
for every grade, the average and deviation of grades too (see figures 5–8). The
graphs show interesting coherence.

Figure 5: C/A in order of growing mathematical achievement, 9th
grade
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Figure 6: C/A in order of growing mathematical achievement, 10th
grade

Figure 7: C/A in order of growing mathematical achievement, 11th
grade

Figure 8: C/A in order of growing mathematical achievement, 12th
grade

The graphs show the ideal level of C/A with orange line, and the average of
the grade with red line (see figures 5–8). How can the C/A quotient be inter-
preted? It means that more the level of the quotient is above the ideal line, the
student’s mathematical achievement is more below his/her competences. If it is
close to the ideal value, it shows, the student’s achievement adequates to his/her
competences. And if it is below the ideal line, the student’s achievement is beyond
his/her competences.

On every grades the graphs show an exponential-like degrease. This means that
if one’s achievement is better, his/her competences come up better in achievement.
This also shows, that worse achievement doesn’t always mean worse skills and
abilities, but other factors too: lack of motivation, deficiency of previous knowledge,
reading or understanding problems, etc. Mapping this needs a longer examination.
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But such an analysis would help the maths teachers a lot in evaluating how the
students can show up their mathematical competences in solving exercises. On the
other hand it would help to decide which way to develop the students: some skills,
abilities are weak, or the knowledge. We can see students achieving above and
below the competences on every achievement levels, but if we look at the right end
of the graphs, (figures 5–8) we can see, that those students, whose achievement
points were better, all “brought out” their skills, abilities. In all, more students
achieved below his/her competences, than above (see table 7).

Achievement below competences adequate to competences above competences

9th grade 43 students (56%) 22 students (28%) 12 students (16%)
10th grade 26 students (55%) 19 students (40%) 2 students (5%)
11th grade 55 students (67%) 23 students (27%) 5 students (6%)
12th grade 56 students (79%) 12 students (17%) 3 students (4%)

Table 7: Number of students and percentage of the level of C/A

These numbers show that the main problem is, that for much students their
skills and abilities don’t come up in solving exercises as mathematical achievement
– this could be developed by thorough knowledge, well structured and deliberate
matters. I think, we’d need less, but in practical problems better appliable knowl-
edge in our maths education. Nowadays after acquiring new matters (70–75% of all
lessons) we have little time, only the 15–20% of the lessons, to practice and deepen
the knowledge. I think, we’d have to change this rate into the growth of practising
to get better results in problem solving achievements.

7. Further examinations, working out development

methods

Beyond the examination of the present level of skills and abilities the statistical
analysis of competence points is also helpful to find out which of them accured the
least during solving the exercises. From the summary of the competence points
I pried those points out, which appeared in less than one third of the students’
solutions – I think these are the competences principally needs to be developed.
There are some exercises, which were solved by more than one third of the students
(4th exercise on 9th grade, the first exercise on 10th grade, the 4th exercise on 11th
grade and the first exercise on 12th grade), so I didn’t mention them – these were
short, mainly “choosing from given answers”-type exercises. The next tablet shows
the weaknesses (table 8):
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9th grade 1st ex.: d, e, k, m 11th grade 1st ex.: g, j,
2nd ex.: f, g, h, j, l, m 2nd ex.: b, c, f, g, h, i, k, l, m
3rd ex.: f, g, h, j, l, m 3rd ex.: f, g, j, l
5th ex.: d, e, f, g, h, j, l, m 5th ex.: d, e, g, h, j, l, m

10th grade 2nd ex.:h, j, l, m 12th grade 2nd ex.: f, g, h, i, j, l, m
3rd ex.:g, h, i, j, l, m 3rd ex.: d, e, f, j
4th ex.: f, g, h, j, l 4th ex.: d, e, g, h, j, m
5th ex.: f, g, h, i, j, k, l, m 5th ex.: g, h, i, j, l, m

Table 8: The worst competence points in exercises

The above statistics show that most defects are

• in planning (g),

• in purposive solution (h),

• in explaining statements (j),

• in visualizing results in short forms (l),

• in trying to give full answer (m).

The present examination was the first step of a longer research, and would be
followed by further comparing assessments according to my aims. The results show
that we should start development on the following topics:

• “translating” exercises, problems from vernacular words to mathematical sym-
bols,

• working out typical exercises, patterns for using mathematical tools,

• planning solutions of complex exercises, and working out solutions,

• developing exercise keeping ability, patience, extended attention,

• developing argumental and proofing abilities.

The next step of my research is to work out exercise papers on the above men-
tioned topics, which are appliable for a 45 minutes long lessons and a whole class
of 30-35 students. In point of methods, I think, both cooperative and individual
learning forms have got their own place in learning mathematics, so as in develop-
ment work too. My opinion is, that variable usage of different methods could be
the most efficient, because none of these forms result increase on its own – we have
to find the right rates. The most difficult is to develop those psychical abilities,
which are needed for long lasting concentrations, and dividing a complex exercise to
parts. But these abilities are essential to social integration and lifelong learning and
development. This also poses the question of too much materials – we’d need less,
to get time for deepen knowledge. It’s a pity, that the teenagers nowadays see, that
these attributes aren’t respected. The world of media and internet, from which the
students get most of their information, prefers quick, easy-to-get, “instant” things,
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and don’t relay the hard work behind the commanding achievements. I think in
education we have to make stress not only to adapt ourselves to changing technical
circumstances and matters, but also to put the negative changes of society to right
path.

After setting the development papers into the course of maths lessons and test-
ing the usage I’d like to assess the students once more. After comparing the results
with the first one comes the re-working of exercise papers, or the following of us-
age. My aim is to work out such methods for developing competences, that can
be fitted into curriculum, don’t take extra time and efforts to use, don’t “set back”
the execution of given matters, can be used in general secondary school classes
within the present circumstances, the working forms accuring variedly, and results
increase in mathematical achievement too.

For motto I chose the words of a great educator, old, but still valid: “From
wherever we see, the aim of our didactics must be to ferret out and hunt up the
practise of education, so as to teachers should teach less, in the same time the
students should learn more. In terms of this didactics let there be less confusion
in schools, but more freedom, pleasure, and impresses a real development on all.”
(Comenius, 1657)

At the end I’d like to thank for the constructive critic I got from the anonym
reviewers, they made my paper better, and I got good ideas and inspirations from
them for my future work.
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