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Abstract

The C++ Standard Template Library (STL) is the most well-known and
widely used library that is based on the generic programming paradigm.
STL takes advantage of C++ templates, so it is an extensible, effective and
flexible system. Professional C++ programs cannot miss the usage of the STL
because it increases quality, maintainability, understandability and efficacy
of the code.

However, the usage of C++ STL does not guarantee perfect, error-free
code. Contrarily, incorrect application of the library may introduce new types
of problems. Unfortunately, there is still a large number of properties that
are tested neither at compilation-time nor at run-time. It is not surprising
that in implementations of C++ programs so many STL-related bugs may
occur.

It is clearly seen that the compilation validation is not enough to exclude
STL-related bugs. For instance, the mathematical properties of user-defined
sorting parameters are not validated at compilation phase nor at run-time.
Contravention of the strict weak ordering property results in weird behavior
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that is hard to debug. In this paper, we argue for a static analysis tool
which finds erroneous implementation of functors regarding the mathematical
properties. The primary goal is to support Continuous Integration pipelines,
using this tool during development to overcome debugging efforts.

Keywords: C++, static analysis, STL, generic programming, functor

MSC: 68N19 Other programming techniques

1. Introduction

The C++ Standard Template Library (STL) is a widely-used, handy library based
on the generic programming paradigm [2]. On one hand, the library provides
convenient, suitable containers (e.g. list) and algorithms (e.g. find) that make
easier stock-in-trade [19]. On the other hand, STL introduces many new kinds of
bugs which are hard to detect and fix, such as invalid iterators, weird effect of the
remove algorithm and writing uninitialized memory via copy algorithm, etc. [16]

STL provides four standard sorted associative containers, these are set, map,
multiset and multimap [8]. These containers are able to work together with user-
defined orders via functor types [21]. In this case, the user-defined functor has
to implement strict weak ordering, but this property is not validated neither at
compilation time nor at runtime [15]. If someone uses a functor which does not
fulfill the strict weak ordering rules, the container becomes inconsistent because
same values are not considered to be equal [14]. Let us consider the following code:

struct Comp
{

bool operator()( int a, int b ) const
{

return a >= b;
}

};
// ...
std::set<int, Comp> s;
s.insert( 3 );
s.insert( 3 );
std::cout << s.size();

// Prints 2 that is weird because same value inserted twice
// into the set. Correctly, 1 should be printed.

std::cout << s.count( 3 ); // prints 0 in spite of it is contained

This phenonmenon is weird, the root cause is hard to find. Compilers should
emit error (or warning at least) diagnostics, but the problem is not detected at
all. Strict weak order property should be an axiom according to modern generic
constraint approach in C++. However, these axioms are not validated by the
compiler [22]. Therefore, our aim is to develop a tool based on static analysis that
detects problematic functors.

6 B. Babati, N. Pataki



This tool is based on a recently popular software, called Clang. Clang is a stan-
dard compliant C/C++/Objective-C compiler, furthermore, it provides a static
analyzer, as well. It is open source and based on the LLVM compiler infrastruc-
ture. It is mainly developed by the community, there are many contributors, also
it is supported by big companies as well [3].

The Clang architecture is well designed and modular which makes it possible
to use it as a library [17]. The users can use the end products, like Clang as a
compiler or build their own tools on top of its libraries. It provides an API for
third-parties to use its internal structures and analyze the source code in a high-
level way. Its libraries provide a wide scale of features related to compilation and
analysis, for example tokenizer or AST visitor. Many useful static analysis tools
have been developed based on Clang (e.g. [1, 4, 10]). Clang’s another significant
advantage is the evolving approach regarding the C++ standards, so users do not
need to take care of parsing of newly introduced language elements and can focus
on their actual goal. That makes Clang powerful and very popular recently.

The rest of this paper is organized as follows: the related work is discussed in
Section 2, the technical details of our Clang-based solution are presented in Section
3 and decision logic is explained in Section 4. Our approach is evaluated and results
are shown in Section 5. Finally, the paper is concluded in Section 6.

2. Related Work

A comprehensive description of STL-related bugs can be found in [14] including the
ordering functor types’ mathematical properties, as well. However, many problems
have been presented, but no tool support was proposed to avoid the erroneous
situations. Compilation time validation of the STL typically uses two different
approaches: template metaprogramming (e.g. [18]) and static analysis (e.g. [4, 9]).
These methods do not help to find the problematic ordering functor types in C++
source, the functors’ statefulness is analyzed exclusively [10]. Model checking of
STL containers also misses the validation of user-defined comparisons [6].

On the other hand, C++ functors are analyzed previously, a limited, lightweight,
runtime approach has been developed [15]. This approach has runtime overhead
and does not deal with comprehensive evaluation.

Another direction in functors’ usage is a transparent version of the functor
templates [12]. The paper presents a refactoring tool which makes the usage of
functors safer, but this tool does not deal with the mathematical properties.

The constraints and concepts [22] have been included officially in the C++20
standard version. These let the users to define compile time expectations on the
template parameters. For example, it can be checked pragmatically that a given T
template parameter type has operator() member function or not. However, the
beforehand presented STL-related issue is more complex, it requires to check the
implementation of the given functions as well.

A static analysis method for safe comparison functors in C++ 7



3. Our Approach

3.1. Technical Background
The previously depicted theoretical problem may appear sometimes. However, the
compiler cannot warn about it at all. In order to detect this kind of problem,
a brand new tool has been developed. Its purpose is to find misuses of ordered
associative containers related to the given issue. Many faulty functor classes can be
caught in suspicious context, although, the tool has limitations which are described
at the end of this section.

The implementation uses Clang’s libraries and framework to analyze the C++
source code. It takes advantage of Clang’s architecture including the built-in ab-
stract syntax tree (AST) and its visitors. AST is comprehensively used in our tool
to extract information from the source code.

3.2. High-level Overview
This section presents a high-level overview and describes how our tool works in a
nutshell [5]. As it was mentioned above, it works on the source code itself and it
does not require to execute the binary.

That means, it can only rely on compile time information which are given in
the source code. The original compiler arguments are very essential regarding
the reproducible compilation process. These arguments or flags may affect the
whole compilation process, for instance preprocessor macros often depend on the
compilation arguments.

In general, let us see what is the idea behind the analysis and how the workflow
looks like. This solid outline will highlight the main points of the analysis and how
it is performed to gather the necessary information from the source code.

The main problem is related to the associative containers and the regarding
user-defined ordering functors. At the beginning, every instantiation of associated
containers has to be found which uses a custom functor for comparing objects.
The functor classes only can be identified at usage places, because the instantiated
assiative container is the evidence of the given functor must meet certain require-
ments. The beforehand found instantiations each has a functor whose type is a
suspect of misusage.

These marked types are analysed in the next step. The tool retrieves the type
of comparison functor and tries to find the proper operator() for the given usage.
Two cases are possible, the definition is not available, for instance it is defined
in another translation unit, it will be skipped. This case is rare because most of
comparisons have short implementation, so they are typically inline methods in the
class. Another case, when the definition of candidate operator() is available, it
can be analyzed in order to extract the expressions which are used to compare two
objects. From one function, multiple expressions can be collected, for example the
return value depends on a condition. The following code snippet presents this case:

8 B. Babati, N. Pataki



bool ExampleComp::operator()( int lhs, int rhs ) const
{

if ( lhs > 0 && rhs > 0 )
{

return lhs < rhs;
}
else
{

return lhs * 2 <= rhs + 1;
}

}

These collected expressions are evaluated later in order to decide whether they
meet the requirement of strict weak ordering rules. The details of the proposed
analysis method can be seen below.

3.2.1. Analyzing AST

In our tool, Clang libraries are in-use to parse the source code and build internal
structures. Clang performs every low level action (tokenizing, parsing, etc.) that
lets us to concentrate on our aim by defining a higher level analysis based on the
built structures.

The main and worth to mention data structure of them is the abstract syntax
tree, AST. It represents the source code in an abstract way, contains all the data
about the parsed source files. In Clang, it is a little bit more than a syntax tree,
because it contains some semantic information as well.

To collect data from abstract syntax trees, they can be visited by AST visitors.
Custom AST visitors need to be implemented in order to use the Clang hierarchy
and AST visitor interface. AST visitors can extract the relevant information from
the AST and capture any kind of context within the AST, for example, all function
declarations can be visited.

The proposed tool is mostly built on AST visitors. These visitors can be used
to find container instantiations, types, member functions, expressions and many
other source-based constructs. More precisely three different kinds of visitors have
been declared. Each has different tasks on different part of the AST. These visitors
work together and built on each other.

The following paragraphs detail these AST visitors and the presented order is
the same as the order of processing. That means in the analysis logic, the visitor
which finds associate container instantiations is used before the visitor which parses
the body of member functions.

Usage finder visitor The original issue can occur only when someone uses
std::map, std::multimap, std::set or std::multiset with custom compari-
son objects. The first task is to find template instantiations of previously listed

A static analysis method for safe comparison functors in C++ 9



types and inspect them in order to find those which are using custom comparison
types other than the default std::less.

Although, std::less can be specialized for used defined types, in this case
the written comparator is user-defined and it should be analysed as well. Other
special case, when the default std::less is provided without any specialization,
in this case the operator< is called on the objects. The custom object comparison
can sneak into without using custom functors. From the analysis point of view,
the only difference is that the operator< function should be analysed instead of
the operator() of the provided functor. However, it is not covered in this paper,
focusing only on user-defined functors.

When an instantiation meets the given criteria, it should be analyzed because
it can be erroneous, for example SpecialKeyCmp class is used here:

std::map<SpecialKey, int, SpecialKeyCmp> m;

After these usage places are located, the classes of the used functors need to
be checked. For this, it is necessary to find the definition of the used functor type
and the matching operator() member function for the given usage. When the
definition of operator() is available in this translation unit, it can be used to
furthermore processing, but it is done by next visitor.

Function body parser The next AST visitor is responsible for parsing the
function implementation. Its input is the function definition in the AST, the usage
finder visitor passes the operator() member function definitions to this visitor.

The visitor’s purpose is to extract one or more expressions from the function
body which can be used to compare objects. This kind of visitor can locate and
capture every logical or comparison expression which can affect the return value.
The outcome is a list of expressions which can define the return value of the given
function. The visitor needs to process the job backward, because the root ex-
pression which defines the return value, can be identified only at the end of each
execution path. These end points are the return-statements in the function body.

However, it is not adequate to process only them. It can happen that someone
declares a local variable or calls a function to evaluate an expression. This visi-
tor needs to handle variable declarations and assignments, when an expression is
bounded to a name which is used in return-statement. The names are replaced
by the bounded expressions in the return-statement.

Nevertheless it tracks function calls which can modify variables or their return
values appear in the expressions. In case of function calls, the function body is
parsed with another object of this visitor to get the relevant expressions.

An important point here is to manage the currently valid conditions on the
given execution path. It is necessary, because the conditions can affect the return
value, in some case, they define the comparison implicitly. For example, without
analysing the conditions, the following functor cannot be judged well, however, it
definitely breaks the strict weak ordering rule.

10 B. Babati, N. Pataki



bool CustomComp::operator()( int lhs, int rhs ) const
{

if ( lhs < rhs )
{

return false;
}
else
{

return true;
}

}

In addition to all of this, they need to be performed recursively in order to
dissolve an expression as much as possible at compile time. For instance, when a
function calls another one which affects the return value in some way, it is necessary
to inspect that function and substitute it with extracted elemental expressions.

This visitor deals with the following code context:

bool CustomComp::inRange( int value ) const
{

return value < 42;
}

bool CustomComp::operator()( int lhs, int rhs ) const
{

const bool tmp = lhs > 0 && rhs > 0;
return tmp && inRange( lhs ) && inRange( rhs ) && lhs < rhs;

}

In this example, the expression which actually will be evaluated at each operator()
function call is: lhs > 0 && rhs > 0 && lhs < 42 && rhs < 42 && lhs < rhs.

Expression parser This is the lowest level visitor in this implementation. This
parser works on a very small part of the AST, the beforehand located expressions
are visited by it. Its purpose is parsing the given expressions and convert them to
an internal data structure. The advantage of this data structure is that, it is far
simpler than Clang’s AST and contains only the relevant information.

The internal data structure is a graph which represents logical and comparison
expressions. The nodes are typically operators and variables but more constructs
are supported. The edges are logical relations between nodes, for example, the
operator< has two other nodes which are the left and right hand side operands of
expression.

The visitor handles binary operators, unary operators, literals, variables and
so on. It walks over on that small part of AST and tranforms nodes to proper
internal data structures. At the end of the visiting of Clang’s AST, the result is a

A static analysis method for safe comparison functors in C++ 11



graph which is identical to the original one without excess. For example, the graph
belongs to the a > 0 && b > 0 code snippet is depicted in Figure 1.

Figure 1: Internal data structure

With this step, the AST processing is mostly done. A list of expressions is
extracted for each instantiation which needs to be analyzed later, however, before
performing the concrete analysis, some small transformations need to be applied
on them. These transformations are detailed in the next subsection.

3.2.2. Transformations

After processing of Clang’s AST, an internal graph structure is created for each
expression at each functor usage place. They are identical to the original expres-
sions, although most of time they are not that complex. To reduce this complexity,
some modifications need to be applied on them. After the transformations, the
expressions will be equivalent with the original one, but simpler.

They target to eliminate the obvious complications and keep the expressions
plain. There are several well-known replacement rules related to mathematical
logic [7]:

• De Morgan’s laws: !(X || Y) -> !X && !Y

• Double negation: !!X -> X

• Tautology: X && X -> X

Besides that more transformations can be applied at compile time which comes
from the programming language behavior:

• Short-circuit binary operators: at logical and and or, when the first operand
is evaluated, it may define the result of the whole expression, e.g.: true ||
(X < 0) -> true

• Constant evaluation: comparisons may be evaluated at compile time, e.g.: 0
< 42 -> true

Using these replacement rules, the original expression can be transformed into
a new expression which contains less boilerplate. For example, the expression (x

12 B. Babati, N. Pataki



< y) || (0 != 0) can be converted into x < y. The 0 != 0 is not relevant from
the analysis point of view since it is always false and the outcome of the original
expression does not depend on it.

These transformations are applied on each expression when it is possible. This
approach results in a new, simplified expression which can be analyzed with more
confidence. These newly created expressions will be used later in order to decide
the correctness of functors.

3.2.3. Output format

After finding a custom functor suspicious, the tool emits a warning like the compiler
does, but it refers to the type that can be seen in the source, not the underlying
one [14]. It uses Clang’s diagnostic framework to report issues, so they look like a
compiler warning at the line of data structure usage, e.g. instantiation of std::map.

main.cpp:44:10: warning: Strict weak ordering is not fulfilled
by comparison type

std::set<int, Comp> s;

4. Decision Logic

The analysis can be executed on cleaned expressions that are prepared to be ana-
lyzed whether they meet the requirement of strict weak ordering rules.

Let 𝐴 be an arbitrary set and relation 𝑅 ⊆ 𝐴× 𝐴. It is a strict weak ordering
if the following properties are met[20]:

• Asymmetry: ∀𝑎, 𝑏 ∈ 𝐴 : 𝑎𝑅𝑏 ⇒ ¬(𝑏𝑅𝑎).

• Irreflexivity: ∀𝑎 ∈ 𝐴 : ¬𝑎𝑅𝑎.

• Transitivity: ∀𝑎, 𝑏, 𝑐 ∈ 𝐴 : 𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐 ⇒ 𝑎𝑅𝑐.

On one hand, this analysis is pragmatic and conservative, therefore it minimizes
the false positive warnings which is an essential property in static analysis tools,
but on the other hand, the tool is not a theorem prover.

The decision logic takes advantage of the previously presented visitors. The
pseudocode of the decision logic can be seen in Figure 2, the entry point is the
DecisionLogic procedure. We omit the proper type information but the informal
description helps to comprehend the proposed solution. In this procedure, the first
attribute to check whether the comparison uses both arguments because a regular
binary relation is required. We use the ParseNumberOfUtilizedParams function
that is straightforward, therefore we not detailed in Figure 2. If the comparison
does not utilize any of its argument, we emit a warning by calling EmitWarning
that is not detailed in the pseudocode, but presented in Section 3.2.3. However,
the functor’s operator() must have two parameters due to the compilation model
of C++ but parameter can be unused [18].

A static analysis method for safe comparison functors in C++ 13



procedure CheckExpression(<simplified structure of> 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ← ParseOperator(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

if 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is operator== ∨ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is operator!= then
EmitWarning

end if

if 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is operator<= ∨ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is operator>= then
EmitWarning

end if
end procedure
procedure CheckLiteral(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

𝑙𝑖𝑡𝑒𝑟𝑎𝑙, 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛← ParseLiteralCondition(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

if ¬(Evaluate(𝑙𝑖𝑡𝑒𝑟𝑎𝑙)) then
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛← ¬(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

end if
CheckExpression(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

end procedure
procedure DecisionLogic(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

𝑝𝑎𝑟𝑎𝑚𝑠← ParseNumberOfUtilizedParams(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)
if 𝑝𝑎𝑟𝑎𝑚𝑠 ̸= 2 then

EmitWarning
else

𝑒𝑛𝑡𝑖𝑡𝑦 ← ParseReturnEntityType(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)
if 𝑒𝑛𝑡𝑖𝑡𝑦 is expression then

CheckExpression(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
end if
if 𝑒𝑛𝑡𝑖𝑡𝑦 is literal then

CheckLiteral(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)
end if
if 𝑒𝑛𝑡𝑖𝑡𝑦 is variable then

𝑣𝑎𝑙𝑢𝑒, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← ParseVariableValue(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛← ParseCondition(𝑓𝑢𝑛𝑐𝑡𝑜𝑟)

if ¬ Evaluate(value) then
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛← ¬(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

end if
CheckExpression(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

end if
end if

end if
end procedure

Figure 2: Pseudocode for the Decision Logic
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If both arguments take part in the comparison, we query what kind of result
is specified in the return-statement. The potential kinds are expressions, literals
(e.g. true, or 0), variables but every kind may depend on function calls that we
process by inlining them on the level of AST. However, we do not highlight this
fact in Figure 2.

The parameter of the decision logic is the AST representation of the analyzed
functor. When we produce the cleaned, simplified expression that we take advan-
tage of transformation steps presented in Section 3.2.2. If this transformed expres-
sion contains one of the following operators <=, >=, == or !=, we emit a warning,
otherwise we consider the comparison meets the requirement conservatively. We
query the applied operator with ParseOperator method in Figure 2.

When the returned element in the return-statement is a literal and the com-
parison utilizes both parameters the result must depend on a condition. As Section
3 presented, this condition is retrieved by our visitors and the condition is negated
when the literal is false or converted to false with the Evaluate function. We also
showed previously if there are multiple conditional statements, we process all these
conditions in the ParseCondition function that is not detailed in Figure 2. In case
of returned literal is considered to be true by the Evaluate method, the condition
remains untouched. This condition contains operator to compare the arguments,
so we evaluate this processed condition just like the expression previously.

In case of variable is returned, we call the ParseVariableValue procedure to
recognize its value if we are able to specify it. This recognized value can be used
as a literal and evaluate the comparison just like the previous case. We do not
emit warning, if the value of the variable cannot be determined. Of course, this
can cause false negative cases during the analysis, but it is not a typical use-case.

Briefly, our tool also emits a warning when it detects that the arguments are
compared with operator== or operator!=. If an ordering relation is defined as
a C++ comparison functor in an erroneous way, the asymmetry and transitivity
requirements are still met. The problematic property is the irreflexivity, therefore
our tool focuses on the validation of this requirement that is the most common
misuse regarding functors [14]. The possible comparison operators are <, >, <=,
>=. Although the operators < and > are considered right, they cannot cause issues
regarding to the given problem. The rest of them may cause issues, since the
equality is included in all of them, thus we emit warning in these cases.

We also take into consideration whether the arguments are compared with con-
stant values, but they are compared to each other with <= or >=, therefore this
essential expression of functor is incorrect: lhs > 0 && rhs > 0 && lhs <= rhs.

5. Limitations and Evaluation

The tool has some limitations, which one should bear in mind. First of them comes
from Clang’s nature, it handles translation units separately, so if the operator()
is defined in a different source file (.cc) where the container is instantiated with
the corresponding functor class, the tool cannot find the operator’s definition due
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to Clang’s limitation [11]. In this case, the given functor will not be analysed.
Another issue is related to compile time behavior, no runtime information is

available for the analysis; also if a very tricky comparison expression is written,
likely the functor cannot be decided if it is compliant or not.

During the development of the tool, some handmade test cases have been im-
plemented. They are good to cover all the corner cases in theory, however, it would
be good to see how the proposed tool performs on real-world projects.

Since the effect of this issue is very well-marked and serious, they usually are
eliminated during the development or testing phase of real products.

Nonetheless, in order to ascertain the quality of our approach and solution,
the tool was tested and evaluated on well-known open source projects. The user-
defined comparison functor usage with associative containers is not used very often,
so a limited number of projects could be checked unfortunately. However, even
comprehensive profiling does not measure the functors’ usage [13].

The methodology of testing was that the tool reported that a functor is being
analyzed then the result of the analysis is checked. Each functor which was report-
edly analyzed is inspected manually, as well. That makes it possible to verify the
result of the tool.

In this testing, four different functors are analyzed from three different projects
listed below:

• Flatbuffers - https://github.com/google/flatbuffers/

• Thrift - https://github.com/apache/thrift/

• Orc - https://github.com/apache/orc

All of the analyzed functors are used with std::map container. None of them
was reported as suspicious by our tool and the manual verification proved the
results’ correctness. Despite of the limitations of the tool, every functor’s properties
are evaluated correctly. The limitations do not affect the usage of tool in the source
code of real-world applications. The tool does not emit false positive reports at all,
so it can be used safely in quality assurance regularly.

6. Conclusion

C++ STL is a widely-used library that is based on the generic programming
paradigm. The usage of the library increases the code quality and comprehen-
sibility, however, the incorrect usage of library may result in new kind of errors.

This paper has presented a weird error related to the C++ Standard Template
Library that is related to sorted associated containers. The ordering can be cus-
tomized via functor class, but it should implement strict weak ordering. However,
this property is not validated at all. If a functor does not meet this requirement,
the container becomes inconsistent.

So in order to detect this kind of defects in the source code, a new approach has
been proposed. We have developed a tool for this method. The proposed solution
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analyzes source code that means the execution of the program is not required.
It is a Clang-based tool that takes advantage of Clang’s libraries and framework.
Our tool was tested on manually prepared test cases and it was evaluated on open
source projects to prove that it works perfectly with real-world applications.

The tool did not find any questionable functor, however, it confirms our tool
validity and the fact that is not a very often issue in released projects. Although
it does not report unnecessary false positive alarms, so it can be a handy tool in
the development process and Continuous Integration servers for quick feedback, as
well.
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Abstract

Let ℐ ⊆ 2N be an admissible ideal, we say that a sequence (𝑥𝑛) of real
numbers ℐ−converges to a number 𝐿, and write ℐ − lim𝑥𝑛 = 𝐿, if for each
𝜀 > 0 the set 𝐴𝜀 = {𝑛 : |𝑥𝑛 − 𝐿| ≥ 𝜀} belongs to the ideal ℐ. In this paper
we discuss the relation ship between convergence of positive series and the
convergence properties of the summand sequence. Concretely, we study the
ideals ℐ having the following property as well:

∞∑︁

𝑛=1

𝑎𝛼
𝑛 <∞ and 0 < inf

𝑛

𝑛

𝑏𝑛
≤ sup

𝑛

𝑛

𝑏𝑛
<∞⇒ ℐ − lim 𝑎𝑛𝑏

𝛽
𝑛 = 0,
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where 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼

are real numbers and (𝑎𝑛), (𝑏𝑛) are sequences
of positive real numbers. We characterize 𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) the class of all such
admissible ideals ℐ.

This accomplishment generalized and extended results from the papers
[4, 7, 12, 16], where it is referred that the monotonicity condition of the
summand sequence in so-called Olivier’s Theorem (see [13]) can be dropped
if the convergence of the sequence (𝑛𝑎𝑛) is weakend. In this paper we will
study ℐ-convergence mainly in the case when ℐ stands for ℐ<𝑞, ℐ(𝑞)𝑐 , ℐ≤𝑞,
respectively.

Keywords: ℐ-convergence, convergence of positive series, Olivier’s theorem,
admissible ideals, convergence exponent

MSC: 40A05, 40A35

1. Introduction

We recall the basic definitions and conventions that will be used throughout the
paper. Let N be the set of all positive integers. A system ℐ, ∅ ≠ ℐ ⊆ 2N is called
an ideal, provided ℐ is additive (𝐴,𝐵 ∈ ℐ implies 𝐴 ∪ 𝐵 ∈ ℐ), and hereditary
(𝐴 ∈ ℐ, 𝐵 ⊂ 𝐴 implies 𝐵 ∈ ℐ). The ideal is called nontrivial if ℐ ≠ 2N. If ℐ is a
nontrivial ideal, then ℐ is called admissible if it contains the singletons ({𝑛} ∈ ℐ
for every 𝑛 ∈ N). The fundamental notation which we shall use is ℐ−convergence
introduced in the paper [11] ( see also [3] where ℐ−convergence is defined by means
of filter-the dual notion to ideal). The notion ℐ−convergence corresponds to the
natural generalization of the notion of statistical convergence ( see [5, 17]).

Definition 1.1. Let (𝑥𝑛) be a sequence of real (complex) numbers. We say that
the sequence ℐ−converges to a number 𝐿, and write ℐ − lim𝑥𝑛 = 𝐿, if for each
𝜀 > 0 the set 𝐴𝜀 = {𝑛 : |𝑥𝑛 − 𝐿| ≥ 𝜀} belongs to the ideal ℐ.

In the following we suppose that ℐ is an admissible ideal. Then for every
sequence (𝑥𝑛) we have immediately that lim𝑛→∞ 𝑥𝑛 = 𝐿 (classic limit) implies
that (𝑥𝑛) also ℐ−converges to a number 𝐿. Let ℐ𝑓 be the ideal of all finite
subsets of N. Then ℐ𝑓–convergence coincides with the usual convergence. Let
ℐ𝑑 = {𝐴 ⊆ N : 𝑑(𝐴) = 0}, where 𝑑(𝐴) is the asymptotic density of 𝐴 ⊆ N
(𝑑(𝐴) = lim𝑛→∞

#{𝑎≤𝑛:𝑎∈𝐴}
𝑛 , where #𝑀 denotes the cardinality of the set 𝑀).

Usual ℐ𝑑−convergence is called statistical convergence. For 0 < 𝑞 ≤ 1 the class

ℐ(𝑞)
𝑐 = {𝐴 ⊂ N :

∑︁

𝑎∈𝐴

𝑎−𝑞 < ∞}

is an admissible ideal and whenever 0 < 𝑞 < 𝑞′ < 1, we get

ℐ𝑓 ( ℐ(𝑞)
𝑐 ( ℐ𝑞′

𝑐 ( ℐ(1)
𝑐 ( ℐ𝑑.

The notions the admissible ideal and ℐ−convergence have been developed in several
directions and have been used in various parts of mathematics, in particular in
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number theory, mathematical analysis and ergodic theory, for example [1, 2, 5, 6,
9–11, 15, 17–19].

Let 𝜆 be the convergence exponent function on the power set of N, thus for
𝐴 ⊂ N put

𝜆(𝐴) = inf
{︁
𝑡 > 0 :

∑︁

𝑎∈𝐴

𝑎−𝑡 < ∞
}︁
.

If 𝑞 > 𝜆(𝐴) then
∑︀

𝑎∈𝐴
1
𝑎𝑞 < ∞, and

∑︀
𝑎∈𝐴

1
𝑎𝑞 = ∞ when 𝑞 < 𝜆(𝐴); if 𝑞 = 𝜆(𝐴),

the convergence of
∑︀

𝑎∈𝐴
1
𝑎𝑞 is inconclusive. It follows from [14, p. 26, Examp. 113,

114] that the range of 𝜆 is the interval [0, 1], moreover for 𝐴 = {𝑎1 < 𝑎2 < · · · <
𝑎𝑛 < . . . } ⊆ N the convergence exponent can be calculate by using the following
formula

𝜆(𝐴) = lim sup
𝑛→∞

log 𝑛

log 𝑎𝑛
.

It is easy to see that 𝜆 is monotonic, i.e. 𝜆(𝐴) ≤ 𝜆(𝐵) whenever 𝐴 ⊆ 𝐵 ⊂ N,
furthermore, 𝜆(𝐴 ∪𝐵) = max{𝜆(𝐴), 𝜆(𝐵)} for all 𝐴,𝐵 ⊂ N.

2. Overwiew of known results

In this section we mention known results related to the topic of this paper and some
other ones we use in the proofs of our results. Recently in [19] was introduced the
following classes of subsets of N:

ℐ<𝑞 = {𝐴 ⊂ N : 𝜆(𝐴) < 𝑞}, if 0 < 𝑞 ≤ 1,

ℐ≤𝑞 = {𝐴 ⊂ N : 𝜆(𝐴) ≤ 𝑞}, if 0 ≤ 𝑞 ≤ 1, and
ℐ0 = {𝐴 ⊂ N : 𝜆(𝐴) = 0}.

Clearly, ℐ≤0 = ℐ0. Since 𝜆(𝐴) = 0 when 𝐴 ⊂ N is finite, then ℐ𝑓 = {𝐴 ⊂ N :
𝐴 is finite} ⊂ ℐ0, moreover, there is proved [19, Th.2] that each class ℐ0, ℐ<𝑞, ℐ≤𝑞,
respectively forms an admissible ideal, except for ℐ≤1 = 2N.

Proposition 2.1 ([19, Th.1]). Let 0 < 𝑞 < 𝑞′ < 1. Then we have

ℐ0 ( ℐ<𝑞 ( ℐ(𝑞)
𝑐 ( ℐ≤𝑞 ( ℐ<𝑞′ ( ℐ(𝑞′)

𝑐 ( ℐ≤𝑞′ ( ℐ<1 ( ℐ(1)
𝑐 ( ℐ≤1 = 2N,

and the difference of successive sets is infinite, so equality does not hold in any of
the inclusions.

The claim in the following proposition is a trivial fact about preservation of the
limit.

Proposition 2.2 ([11, Lemma]). If ℐ1 ⊂ ℐ2, then ℐ1 − lim𝑥𝑛 = 𝐿 implies ℐ2 −
lim𝑥𝑛 = 𝐿.

In [13] L. Olivier proved results so-called Olivier’s Theorem about the speed of
convergence to zero of the terms of convergent positive series with nonincreasing
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terms. Precisely, if (𝑎𝑛) is a nonincreasing positive sequence and
∑︀∞

𝑛=1 𝑎𝑛 < ∞,
then lim𝑛→∞ 𝑛𝑎𝑛 = 0 (see also [8]). In [16], T. Šalát and V. Toma made the
remark that the monotonicity condition in Olivier’s Theorem can be dropped if
the convergence the sequence (𝑛𝑎𝑛) is weakened by means of the notion of ℐ-
convergence (see also [7]). In [12], there is an extension of results in [16] with very
nice historical contexts of the object of our research.

Since 0 = lim𝑛→∞ 𝑛𝑎𝑛 = ℐ𝑓 − lim𝑛𝑎𝑛, then the above mentioned Olivier’s
Theorem can be formulated in the terms of ℐ-convergence as follows:

(𝑎𝑛) nonincreasing and
∞∑︁

𝑛=1

𝑎𝑛 < ∞ ⇒ ℐ − lim𝑛𝑎𝑛 = 0,

holds for any admissible ideal ℐ (this assertion is a direct corollary of the facts
ℐ𝑓 ⊆ ℐ and Proposition 2.2), and providing (𝑎𝑛) to be a sequence of positive real
numbers.

The following simple example

𝑎𝑛 =

{︃
1
𝑛 , if 𝑛 = 𝑘2, (𝑘 = 1, 2, . . . )
1
2𝑛 , otherwise,

shows that monotonicity condition of the positive sequence (𝑎𝑛) can not be in
general omitted. This example shows that lim sup𝑛→∞ 𝑛𝑎𝑛 = 1, thus the ideal ℐ𝑓
does not have for positive terms the following property

∞∑︁

𝑛=1

𝑎𝑛 < ∞ ⇒ ℐ − lim𝑛𝑎𝑛 = 0. (2.1)

The previous example can be strengthened taking 𝑎𝑛 = log𝑛
𝑛 if 𝑛 is square, in

such case the sequence (𝑛𝑎𝑛) is not bounded yet. In [16], T. Šalát and V. Toma
characterized the class 𝑆(𝑇 ) of all admissible ideals ℐ ⊂ 2N having the property
(2.1), for sequences (𝑎𝑛) of positive real numbers.

They proved that

𝑆(𝑇 ) = {ℐ ⊂ 2N : ℐ is an admissible ideal such that ℐ ⊇ ℐ(1)
𝑐 }.

J. Gogola, M. Mačaj, T. Visnyai in [7] introduced and characterized the class 𝑆𝑞(𝑇 )
of all admissible ideals ℐ ⊂ 2N for 0 < 𝑞 ≤ 1 having the property

∞∑︁

𝑛=1

𝑎𝑞𝑛 < ∞ ⇒ ℐ − lim𝑛𝑎𝑛 = 0, (2.2)

providing (𝑎𝑛) be a positive real sequence. The stronger condition of convergence
of positive series requirest the stronger convergence property of the summands as
well. They proved

𝑆𝑞(𝑇 ) = {ℐ ⊂ 2N : ℐ is an admissible ideal such that ℐ ⊇ ℐ(𝑞)
𝑐 }.
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Of course, if 𝑞 = 1 then 𝑆1(𝑇 ) = 𝑆(𝑇 ).
In [12], C. P. Niculescu, G. T. Prǎjiturǎ studied the following implication, which

is general as (2.1):

∞∑︁

𝑛=1

𝑎𝑛 < ∞ and inf
𝑛

𝑛

𝑏𝑛
> 0 ⇒ ℐ − lim 𝑎𝑛𝑏𝑛 = 0, (2.3)

for sequences (𝑎𝑛), (𝑏𝑛) of positive real numbers.
They proved that the ideal ℐ𝑑 fulfills (2.3). In the next section we are going to

show that ℐ(1)
𝑐 is the smallest admissible ideal partially ordered by inclusion which

also fulfills (2.3).

3. ℐ(𝑞)
𝑐 − convergence and convergence of positive se-

ries

In this part we introduce and characterize the class of such ideals that fulfill the
following implication (3.1). Obviously this class will generalize the results of (2.2)
and (2.3). On the other hand, we define the smallest admissible ideal partially
ordered by inclusion which fulfills (3.1).

In the sequel we are going to study the ideals ℐ having the following property:

∞∑︁

𝑛=1

𝑎𝛼𝑛 < ∞ and 0 < inf
𝑛

𝑛

𝑏𝑛
≤ sup

𝑛

𝑛

𝑏𝑛
< ∞ ⇒ ℐ − lim 𝑎𝑛𝑏

𝛽
𝑛 = 0, (3.1)

where 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 are real numbers and (𝑎𝑛), (𝑏𝑛) are positive sequences

of real numbers.
We denote by 𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) the class of all admissible ideals ℐ ⊂ 2N having the

property (3.1). Obviously 𝑇 (1, 1, 𝑎𝑛, 𝑛) = 𝑆(𝑇 ) and 𝑇 (𝑞, 1, 𝑎𝑛, 𝑛) = 𝑆𝑞(𝑇 ).

Theorem 3.1. Let 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 be real numbers. Then for every positive

real sequences (𝑎𝑛), (𝑏𝑛) such that

∞∑︁

𝑛=1

𝑎𝛼𝑛 < ∞ and inf
𝑛

𝑛

𝑏𝑛
> 0

we have
ℐ(𝛼𝛽)
𝑐 − lim 𝑎𝑛𝑏

𝛽
𝑛 = 0.

Proof. Let 𝜀 > 0, put 𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏
𝛽
𝑛 ≥ 𝜀}. We proceed by contradiction.

Then there exists such 𝜀 > 0 that 𝐴𝜀 /∈ ℐ(𝛼𝛽)
𝑐 , thus

∑︁

𝑛∈𝐴𝜀

1

𝑛𝛼𝛽
= ∞. (3.2)
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For 𝑛 ∈ 𝐴𝜀 we have

𝑎𝛼𝑛 ≥ 𝜀𝛼
1

𝑏𝛼𝛽𝑛
= 𝜀𝛼

(︁ 𝑛

𝑏𝑛

)︁𝛼𝛽 1

𝑛𝛼𝛽
≥ 𝜀𝛼

(︁
inf
𝑛

𝑛

𝑏𝑛

)︁𝛼𝛽 1

𝑛𝛼𝛽
,

and so ∞∑︁

𝑛=1

𝑎𝛼𝑛 ≥
∑︁

𝑛∈𝐴𝜀

𝑎𝛼𝑛 ≥ 𝜀𝛼
(︁
inf
𝑛

𝑛

𝑏𝑛

)︁𝛼𝛽 ∑︁

𝑛∈𝐴𝜀

1

𝑛𝛼𝛽
.

Using this and the assumption for a sequence (𝑏𝑛) and (3.2) we get
∞∑︁

𝑛=1

𝑎𝛼𝑛 = ∞,

which is a contradiction.

If in Theorem 3.1 we put 𝛼 = 𝑞 and 𝛽 = 1, we can obtain the following corollary.

Corollary 3.2. For every positive real sequences (𝑎𝑛), (𝑏𝑛) such that
∞∑︁

𝑛=1

𝑎𝑞𝑛 < ∞ and inf
𝑛

𝑛

𝑏𝑛
> 0

we have
ℐ(𝑞)
𝑐 − lim 𝑎𝑛𝑏𝑛 = 0.

Already in the case when 𝑞 = 1 in Corollary 3.2, we get a stronger assertion
than given in [12] for the ideal ℐ𝑑, because of ℐ(1)

𝑐 ( ℐ𝑑.
Remark 3.3. Let (𝑎𝑛), (𝑏𝑛) be positive real sequences. For special choices 𝛼 and
(𝑏𝑛) in Corollary 3.2, we can obtain the following:

i) Putting 𝛼 = 1. Then we get: If
∑︀∞

𝑛=1 𝑎𝑛 < ∞ and inf𝑛
𝑛
𝑏𝑛

> 0 then ℐ(1)
𝑐 −

lim 𝑎𝑛𝑏𝑛 = 0 ( which is stronger result as [12, Theorem 5]).

ii) Putting 𝛼 = 1 and 𝑏𝑛 = 𝑛. Then we get: If
∑︀∞

𝑛=1 𝑎𝑛 < ∞ then ℐ(1)
𝑐 −

lim 𝑎𝑛𝑛 = 0 ( see [16, Theorem 2.1]).

iii) Putting 𝛼 = 𝑞 and 𝑏𝑛 = 𝑛. Then we get: If
∑︀∞

𝑛=1 𝑎
𝑞
𝑛 < ∞ then ℐ(𝑞)

𝑐 −
lim 𝑎𝑛𝑛 = 0 ( see [7, Lemma 3.1]).

Theorem 3.4. Let 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 be real numbers. If for some admissible

ideal ℐ holds
ℐ − lim 𝑎𝑛𝑏

𝛽
𝑛 = 0

for every sequences (𝑎𝑛), (𝑏𝑛) of positive numbers such that
∞∑︁

𝑛=1

𝑎𝛼𝑛 < ∞ and sup
𝑛

𝑛

𝑏𝑛
< ∞,

then
ℐ(𝛼𝛽)
𝑐 ⊆ ℐ.
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Proof. Let us assume that for some admissible ideal ℐ we have ℐ − lim 𝑎𝑛𝑏
𝛽
𝑛 = 0

and take an arbitrary set 𝑀 ∈ ℐ(𝛼𝛽)
𝑐 . It is sufficient to prove that 𝑀 ∈ ℐ. Since

ℐ− lim 𝑎𝑛𝑏
𝛽
𝑛 = 0 we have for each 𝜀 > 0 the set 𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏

𝛽
𝑛 ≥ 𝜀} ∈ ℐ. Since

𝑀 ∈ ℐ(𝛼𝛽)
𝑐 we have

∑︀
𝑛∈𝑀

1
𝑛𝛼𝛽 < ∞. Now we define the sequence 𝑎𝑛 as follows:

𝑎𝑛 =

{︃
1
𝑛𝛽 , if 𝑛 ∈ 𝑀,
1
2𝑛 , if 𝑛 /∈ 𝑀.

Obviously the sequence (𝑎𝑛) fulfills the premises of the theorem as 𝑎𝑛 > 0 and

∞∑︁

𝑛=1

𝑎𝛼𝑛 =
∑︁

𝑛∈𝑀

(︁ 1

𝑛𝛽

)︁𝛼
+
∑︁

𝑛/∈𝑀

(︁ 1

2𝑛

)︁𝛼
≤
∑︁

𝑛∈𝑀

1

𝑛𝛼𝛽
+

∞∑︁

𝑛=1

(︁ 1

2𝛼

)︁𝑛
< ∞.

Hence 𝑎𝑛𝑛
𝛽 = 1 for 𝑛 ∈ 𝑀 and so for each 𝑛 ∈ 𝑀 we have

𝑎𝑛𝑏
𝛽
𝑛 = 𝑎𝑛𝑛

𝛽
(︁𝑏𝑛
𝑛

)︁𝛽
=
(︁𝑏𝑛
𝑛

)︁𝛽
≥ 1
(︀
sup𝑛

𝑛
𝑏𝑛

)︀𝛽 > 0.

Denote by 𝜀(𝛽) =
(︀
sup𝑛

𝑛
𝑏𝑛

)︀−𝛽
> 0 and preceding considerations give us

𝑀 ⊂ 𝐴𝜀(𝛽) ∈ ℐ.

Thus 𝑀 ∈ ℐ, what means ℐ(𝛼𝛽)
𝑐 ⊆ ℐ.

The characterization of the class 𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) is the direct consequence of
Theorem 3.1 and Theorem 3.4.

Theorem 3.5. Let 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 be real numbers and (𝑎𝑛), (𝑏𝑛) be sequences

of positive real numbers. Then the class 𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) consists of all admissible
ideals ℐ ⊂ 2N such that ℐ ⊇ ℐ(𝛼𝛽)

𝑐 .

For special choices 𝛼, 𝛽 and (𝑏𝑛) in Theorem 3.5 we can get the following.

Corollary 3.6. Let 0 < 𝑞 ≤ 1 be a real number and (𝑎𝑛) be positive real sequences
having the properties

∞∑︁

𝑛=1

𝑎𝑞𝑛 < ∞.

Then we have

i) 𝑇 (𝑞, 1, 𝑎𝑛, 𝑛) = {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ(𝑞)
𝑐 } = 𝑆𝑞(𝑇 ),

ii) 𝑇 (1, 1, 𝑎𝑛, 𝑛) = {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ(1)
𝑐 } = 𝑆(𝑇 ).
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4. ℐ<𝑞− and ℐ≤𝑞−convergence and convergence of
series

In this section we will study the admissible ideals ℐ ⊂ 2N having the special property
(4.1) and (4.3), respectively.

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 < ∞ for every 𝑘 and 0 < inf
𝑛

𝑛

𝑏𝑛
≤ sup

𝑛

𝑛

𝑏𝑛
< ∞ ⇒ ℐ − lim 𝑎𝑛𝑏𝑛 = 0, (4.1)

where (𝑞𝑘) is a strictly decreasing sequence which is convergent to 𝑞, 0 ≤ 𝑞 < 1
and (𝑎𝑛), (𝑏𝑛) are sequences of positive real numbers.

Denote by 𝑇 𝑞𝑘
𝑞 (𝑎𝑛, 𝑏𝑛) the class of all admissible ideals ℐ having the property

(4.1).

Theorem 4.1. Let 0 ≤ 𝑞 < 1 and (𝑞𝑘) be a strictly decreasing sequence which is
convergent to 𝑞. Then for positive real sequences (𝑎𝑛), (𝑏𝑛) such that holds

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 < ∞, for every 𝑘 and inf
𝑛

𝑛

𝑏𝑛
> 0,

we have
ℐ≤𝑞 − lim 𝑎𝑛𝑏𝑛 = 0.

Proof. Again, we proceed by contradiction. Put 𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏𝑛 ≥ 𝜀}. Then
there exists such 𝜀 > 0 that 𝐴𝜀 /∈ ℐ≤𝑞, thus 𝜆(𝐴𝜀) > 𝑞. Hence there exists such
𝑖 ∈ N, that 𝑞 < 𝑞𝑘𝑖

< 𝜆(𝐴𝜀), and so we get

∑︁

𝑛∈𝐴𝜀

1

𝑛𝑞𝑘𝑖
= ∞. (4.2)

For 𝑛 ∈ 𝐴𝜀 we have

𝑎
𝑞𝑘𝑖
𝑛 ≥ 𝜀𝑞𝑘𝑖

1

𝑏
𝑞𝑘𝑖
𝑛

= 𝜀𝑞𝑘𝑖

(︁ 𝑛

𝑏𝑛

)︁𝑞𝑘𝑖 1

𝑛𝑞𝑘𝑖
≥ 𝜀𝑞𝑘𝑖

(︁
inf
𝑛

𝑛

𝑏𝑛

)︁𝑞𝑘𝑖 1

𝑛𝑞𝑘𝑖
,

therefore ∞∑︁

𝑛=1

𝑎
𝑞𝑘𝑖
𝑛 ≥

∑︁

𝑛∈𝐴𝜀

𝑎
𝑞𝑘𝑖
𝑛 ≥ 𝜀𝑞𝑘𝑖

(︁
inf
𝑛

𝑛

𝑏𝑛

)︁𝑞𝑘𝑖
∑︁

𝑛∈𝐴𝜀

1

𝑛𝑞𝑘𝑖
.

Using this and the assumption for a sequence (𝑏𝑛) and (4.2) we get

∞∑︁

𝑛=1

𝑎
𝑞𝑘𝑖
𝑛 = ∞,

what is a contradiction.
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Theorem 4.2. Let 0 ≤ 𝑞 < 1 and (𝑞𝑘) be a strictly decreasing sequence which is
convergent to 𝑞. If for some admissible ideal ℐ holds

ℐ − lim 𝑎𝑛𝑏𝑛 = 0

for every sequences (𝑎𝑛), (𝑏𝑛) of positive numbers such that

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 < ∞, for every 𝑘 and sup
𝑛

𝑛

𝑏𝑛
< ∞,

then
ℐ≤𝑞 ⊆ ℐ.

Proof. Let us assume that for any admissible ideal ℐ we have ℐ − lim 𝑎𝑛𝑏𝑛 = 0 and
take an arbitrary set 𝑀 ∈ ℐ≤𝑞. It is sufficient to prove that 𝑀 ∈ ℐ. Since 𝑀 ∈ ℐ≤𝑞

we have 𝜆(𝑀) ≤ 𝑞 and so for each 𝑞𝑘 > 𝑞 we get
∑︁

𝑛∈𝑀

1

𝑛𝑞𝑘
< ∞.

Moreover ℐ − lim 𝑎𝑛𝑏𝑛 = 0 and so for each 𝜀 > 0 the set 𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏𝑛 ≥
𝜀} ∈ ℐ. Define the sequence (𝑎𝑛) as follows:

𝑎𝑛 =

{︃
1
𝑛 , if 𝑛 ∈ 𝑀,
1
2𝑛 , if 𝑛 /∈ 𝑀.

The sequence (𝑎𝑛) fulfills the premises of the theorem, 𝑎𝑛 > 0 and for each 𝑞𝑘 we
obtain

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 =
∑︁

𝑛∈𝑀

1

𝑛𝑞𝑘
+
∑︁

𝑛/∈𝑀

(︁ 1

2𝑛

)︁𝑞𝑘
≤
∑︁

𝑛∈𝑀

1

𝑛𝑞𝑘
+

∞∑︁

𝑛=1

(︁ 1

2𝑞𝑘

)︁𝑛
< ∞.

Now 𝑎𝑛𝑛 = 1 for 𝑛 ∈ 𝑀 . Therefore for each 𝑛 ∈ 𝑀 we have

𝑎𝑛𝑏𝑛 = 𝑎𝑛𝑛
(︁𝑏𝑛
𝑛

)︁
=

𝑏𝑛
𝑛

≥ 1

sup𝑛
𝑛
𝑏𝑛

> 0.

Denote by 𝜀 =
(︀
sup𝑛

𝑛
𝑏𝑛

)︀−1
> 0 we have

𝑀 ⊂ 𝐴𝜀 ∈ ℐ.

Thus 𝑀 ∈ ℐ, what means ℐ≤𝑞 ⊆ ℐ.

The above mentioned results (Theorem 4.1 and Theorem 4.2) allow us to give
a characterization for the class 𝑇 𝑞𝑘

𝑞 (𝑎𝑛, 𝑏𝑛).

Theorem 4.3. Let 0 ≤ 𝑞 < 1 and (𝑞𝑘) be a strictly decreasing sequence which
converges to 𝑞. Let (𝑎𝑛), (𝑏𝑛) be positive real sequences. Then the class 𝑇 𝑞𝑘

𝑞 (𝑎𝑛, 𝑏𝑛)

consists of all admissible ideals ℐ ⊂ 2N such that ℐ ⊇ ℐ≤𝑞.
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Let us consider the following property and pronounce for it analogical results
as above.

∞∑︁

𝑛=1

𝑎𝑞𝑘𝑛 < ∞ for some 𝑘 and 0 < inf
𝑛

𝑛

𝑏𝑛
≤ sup

𝑛

𝑛

𝑏𝑛
< ∞ ⇒ ℐ − lim 𝑎𝑛𝑏𝑛 = 0, (4.3)

where (𝑞𝑘) is a strictly increasing sequence of positive numbers which is convergent
to 𝑞, 0 < 𝑞 ≤ 1 and (𝑎𝑛), (𝑏𝑛) are sequences of positive real numbers.

Denote by 𝑇 𝑞
𝑞𝑘
(𝑎𝑛, 𝑏𝑛) the class of all admissible ideals ℐ having the property

(4.3).

Theorem 4.4. Let 0 < 𝑞 ≤ 1 and (𝑞𝑘) be a strictly increasing sequence of positive
numbers which is convergent to 𝑞. Then for positive real sequences (𝑎𝑛), (𝑏𝑛) such
that holds ∞∑︁

𝑛=1

𝑎
𝑞𝑘0
𝑛 < ∞, for some 𝑘0 ∈ N and inf

𝑛

𝑛

𝑏𝑛
> 0,

we have
ℐ<𝑞 − lim 𝑎𝑛𝑏𝑛 = 0.

Proof. Again, we proceed by contradiction. Then there exists 𝜀 > 0 such that
𝐴𝜀 = {𝑛 ∈ N : 𝑎𝑛𝑏𝑛 ≥ 𝜀} /∈ ℐ<𝑞, thus 𝜆(𝐴𝜀) ≥ 𝑞. For each 𝑘 ∈ N ( as well for 𝑘0)
we have 𝑞𝑘 < 𝑞 ≤ 𝜆(𝐴𝜀), and so

∑︁

𝑛∈𝐴𝜀

1

𝑛𝑞𝑘
= ∞. (4.4)

Further the proof continues by the same way as it was outlined in Theorem 4.1.

Theorem 4.5. Let 0 < 𝑞 ≤ 1 and (𝑞𝑘) be a strictly increasing sequence of positive
numbers which is convergent to 𝑞. If for some admissible ideal ℐ holds

ℐ − lim 𝑎𝑛𝑏𝑛 = 0

for every sequences (𝑎𝑛), (𝑏𝑛) of positive numbers such that
∞∑︁

𝑛=1

𝑎
𝑞𝑘0
𝑛 < ∞ for some 𝑘0 ∈ N and sup

𝑛

𝑛

𝑏𝑛
< ∞,

then
ℐ<𝑞 ⊆ ℐ.

Proof. Let us assume that for any admissible ideal ℐ we have ℐ − lim 𝑎𝑛𝑏𝑛 = 0
and take an arbitrary 𝑀 ∈ ℐ<𝑞. It is sufficient to prove that 𝑀 ∈ ℐ. Since
𝑀 ∈ ℐ<𝑞 we have 𝜆(𝑀) < 𝑞 and so there exists a sufficiently large 𝑘0 ∈ N such
that 𝜆(𝑀) < 𝑞𝑘0

< 𝑞. So ∑︁

𝑛∈𝑀

1

𝑛𝑞𝑘0
< ∞.

Again, the proof continues by the same way as it was outlined in Theorem 4.2.
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The above results (Theorem 4.4 and Theorem 4.5) allow us to give a character-
ization for the class 𝑇 𝑞

𝑞𝑘
(𝑎𝑛, 𝑏𝑛).

Theorem 4.6. Let 0 < 𝑞 ≤ 1 and (𝑞𝑘) be a strictly increasing sequence of positive
numbers which converges to 𝑞. Let (𝑎𝑛), (𝑏𝑛) be positive real sequences. Then the
class 𝑇 𝑞

𝑞𝑘
(𝑎𝑛, 𝑏𝑛) consists of all admissible ideals ℐ ⊂ 2N such that ℐ ⊇ ℐ<𝑞.

5. Summary and scheme of main results

Let (𝑎𝑛), (𝑏𝑛) be fix sequences of positive real numbers having the appropriate
property (3.1), (4.1) and (4.3), respectively. Denote in short classes given above
𝑇 (𝛼, 𝛽, 𝑎𝑛, 𝑏𝑛) = 𝑇 (𝛼, 𝛽), 𝑇 𝑞𝑘

𝑞 (𝑎𝑛, 𝑏𝑛) = 𝑇 𝑞𝑘
𝑞 and 𝑇 𝑞

𝑞𝑘
(𝑎𝑛, 𝑏𝑛) = 𝑇 𝑞

𝑞𝑘
. Then we have

i) for 0 < 𝛼 ≤ 1 ≤ 𝛽 ≤ 1
𝛼 ,

𝑇 (𝛼, 𝛽) = {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ(𝛼𝛽)
𝑐 },

ii) for 1 ≥ 𝑞𝑘 > 𝑞 ≥ 0 (𝑘 = 1, 2 . . . ), 𝑞𝑘 ↓ 𝑞 as 𝑘 → ∞,

𝑇 𝑞𝑘
𝑞 = {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ≤𝑞},

iii) for 0 < 𝑞𝑘 < 𝑞 ≤ 1 (𝑘 = 1, 2 . . . ), 𝑞𝑘 ↑ 𝑞 as 𝑘 → ∞,

𝑇 𝑞
𝑞𝑘

= {ℐ ⊂ 2N : ℐ is admissible ideal such that ℐ ⊇ ℐ<𝑞}.

For special cases the following scheme shows the smallest(minimal) admissible
ideals partially ordered by inclusion which belong to the classes in the second line.

ℐ0 ( ℐ(𝛼𝛽)
𝑐 ( ℐ<𝑞 ( ℐ(𝑞)

𝑐 ( ℐ≤𝑞 ( ℐ<1 ( ℐ(1)
𝑐

↕ ↕ ↕ ↕ ↕ ↕ ↕

𝑇 𝑞𝑘
0 ) 𝑇 (𝛼, 𝛽)

𝑖𝑓 𝛼𝛽<𝑞

) 𝑇 𝑞
𝑞𝑘

) 𝑇 (𝛼, 𝛽)
𝑖𝑓 𝛼𝛽=𝑞

) 𝑇 𝑞𝑘
𝑞 ) 𝑇 1

𝑞𝑘
) 𝑇 (𝛼, 𝛽)

𝑖𝑓 𝛼𝛽=1

References

[1] V. Baláž, J. Gogola, T. Visnyai: ℐ(𝑞)
𝑐 -convergence of arithmetical functions, J. Number

Theory 183 (2018), pp. 74–83,
doi: http://dx.doi.org/10.1016/j.jnt.2017.07.006.

[2] V. Baláž, O. Strauch, T. Šalát: Remarks on several types of convergence of bounded
sequences, Acta Math. Univ. Ostraviensis 14 (2006), pp. 3–12.

[3] N. Burbaki: Éléments de Mathématique, Topologie Générale Livre III, (Russian transla-
tion) Obščaja topologija. Osnovnye struktury, Moskow: Nauka, 1968.

Convergence of positive series and ideal convergence 29



[4] A. Fasaint, G. Grekos, L. Mišík: Some generalizations of Olivier’s Theorem, Math. Bo-
hemica 141 (2016), pp. 483–494,
doi: https://doi.org/10.21136/MB.2016.0057-15.

[5] H. Fast: Sur la convergence statistique, Colloq. Math. 2 (1951), pp. 241–244.

[6] H. Furstenberg: Recurrence in Ergodic Theory and Combinatorial Number Theory, Prince-
ton: Princeton University Press, 1981.

[7] J. Gogola, M. Mačaj, T. Visnyai: On ℐ(𝑞)
𝑐 - convergence, Ann. Math. Inform. 38 (2011),

pp. 27–36.

[8] K. Knopp: Theorie und Anwendung unendlichen Reisen, Berlin: Princeton University Press,
1931.

[9] P. Kostyrko, M. Mačaj, T. Šalát, M. Sleziak: ℐ−convergence and extremal ℐ−limit
poits, Math. Slovaca 55 (2005), pp. 443–464.

[10] P. Kostyrko, M. Mačaj, T. Šalát, O. Strauch: On statistical limit points, Proc. Amer.
Math. Soc. 129 (2001), pp. 2647–2654,
doi: https://doi.org/10.1090/S0002-9939-00-05891-3.

[11] P. Kostyrko, T. Šalát, W. Wilczyński: ℐ- convergence, Real Anal. Exchange 26 (2000),
pp. 669–686.

[12] C. P. Niculescu, G. T. Prǎjiturǎ: Some open problems concerning the convergence of
positive series, Ann. Acad. Rom. Sci. Ser. Math. Appl. 6.1 (2014), pp. 85–99.

[13] L. Olivier: Remarques sur les séries infinies et leur convergence, J. Reine Angew. Math. 2
(1827), pp. 31–44,
doi: https://doi.org/10.1515/crll.1827.2.31.

[14] G. Pólya, G. Szegő: Problems and Theorems in Analysis I. Berlin Heidelberg New York:
Springer-Verlag, 1978.

[15] J. Renling: Applications of nonstandard analysis in additive number theory, Bull. of Sym-
bolic Logic 6 (2000), pp. 331–341.

[16] T. Šalát, V. Toma: A classical Olivier’s theorem and statistical convergence, Ann. Math.
Blaise Pascal 1 (2001), pp. 305–313.

[17] I. J. Schoenberg: The Integrability of Certain Functions and Related Summability Methods,
Amer. Math. Monthly 66 (1959), pp. 361–375.

[18] H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math.
2 (1951), pp. 73–74.

[19] J. T. Tóth, F. Filip, J. Bukor, L. Zsilinszky: ℐ<𝑞− and ℐ≤𝑞−convergence of arithmetic
functions, Period. Math. Hung. (2020), to appear,
doi: https://doi.org/10.1007/s10998-020-00345-y.

30 V. Baláž, K. Liptai, J. T. Tóth, T. Visnyai



Integer sequences and ellipse chains
inside a hyperbola

Hacène Belbachira, László Némethb,
Soumeya Merwa Tebtouba

aDepartment of Mathematics, RECITS Laboratory, USTHB, Algiers, Algeria
hbelbachir@usthb.dz and hacenebelbachir@gmail.com
stebtoub@usthb.dz and tebtoubsoumeya@gmail.com

bInstitute of Mathematics, University of Sopron, Sopron, Hungary
and associate member of RECITS Laboratory, USTHB

nemeth.laszlo@uni-sopron.hu

Submitted: May 12, 2020
Accepted: June 24, 2020

Published online: June 30, 2020

Abstract

We propose an extension to the work of Lucca [Giovanni Lucca, Integer
sequences and circle chains inside a hyperbola, Forum Geometricorum, Vol-
ume 19. 2019, 11–16]. Our goal is to examine chains of ellipses inside a
hyperbola, and we derive recurrence relations of centers and minor (major)
axes of the ellipse chains. We also determine conditions for these recurrence
sequences to consist of integer numbers.

Keywords: Ellipse chains, circle chains, hyperbola, integer sequences.

MSC: 52C26, 11B37.

1. Introduction

Let us consider the hyperbola ℋ with the canonical equation

𝑥2

𝑎2
− 𝑦2

𝑏2
= 1, (1.1)
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and foci (±𝑐, 0), where 𝑎 and 𝑏 are positive real numbers and 𝑐2 = 𝑎2 + 𝑏2. Lucca
[1] examined a tangential chain of circles inside the branch 𝑥 > 0 of the hyperbola
so that the 𝑖-th circle with center (𝑥𝑖, 0) and radius 𝑟𝑖 is tangent to the hyperbola
and to the preceding and succeeding circles labelled by indexes 𝑖 − 1 and 𝑖 + 1,
respectively. He showed that in case of certain ratios 𝑏

𝑎 the sequences { 𝑥𝑖

𝑥0
}∞𝑖=0 and

{ 𝑟𝑖
𝑟0
}∞𝑖=0 are integers.
In our article, we extend Lucca’s work. We define and examine a special chains

of ellipses inside the branch 𝑥 > 0 of the hyperbola, when the ratio of the minor
and major axis is fixed. It is a natural extension of Lucca’s circle chains. We
describe the recurrence relations of sequences of centers, major and minor axes,
which determine another type of proof to give integer sequences. Therefore, we are
able to provide more integer sequences than in case of Lucca’s circle chains.

2. Ellipse chains inside a branch of hyperbola

Let us define a chain of ellipses with the following properties:

• The center of each ellipse lies on the 𝑥-axis, inside the branch 𝑥 > 0 of the
hyperbola (1.1), the semi-axes are parallel to the coordinate lines. More
precisely, the canonical equation of the 𝑖-th ellipse centered at point (𝑢𝑖, 0)
(𝑢𝑖 > 0) is

(𝑥− 𝑢𝑖)
2

𝛼2
𝑖

+
𝑦2

𝛽2
𝑖

= 1, (2.1)

where 2𝛼𝑖 > 0 is the width and 2𝛽𝑖 > 0 is the height of the ellipse (Figure 1).
If 𝛼𝑖 > 𝛽𝑖, then the focal axis of the 𝑖-th ellipse is coincident with the 𝑥-axis,
if 𝛼𝑖 < 𝛽𝑖, then it is parallel to the ordinate axis, and if 𝛼𝑖 = 𝛽𝑖, then the
𝑖-th ellipse is a circle. In the figures 𝛼𝑖 < 𝛽𝑖.

a

b

(u ,0)

y

xi

i

i

Figure 1: An ellipse chain inside a hyperbola
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• The ellipses (2.1) are tangent to the hyperbola (1.1).

• The first ellipse (Figure 2) is tangent (and do not intersect at any points) to
the hyperbola at its vertex 𝐴 having coordinates (𝑎, 0), so:

𝑢0 = 𝑎 + 𝛼0.

A
a

b

a
(u ,0)

y

x0

0

0

Figure 2: First ellipse of a chain

• The curvature in case of the hyperbola must not be bigger than the curvature
in case of the first ellipse at 𝐴, otherwise they are not only tangent to each
other at 𝐴, but also the ellipse intersects the hyperbola at two other points.
Thus,

𝛼0𝑏
2

𝑎
≥ 𝛽2

0 , (2.2)

where 𝑎
𝑏2 and 𝛼0

𝛽2
0

are, respectively, the curvatures of the hyperbola and the
first ellipse at point 𝐴.

• In order that the first ellipse provides the best touching to the hyperbola at
𝐴, we have to require the same curvature of the ellipse and the hyperbola at
𝐴. That is why we restrict inequality (2.2) to equation

𝛼0𝑏
2

𝑎
= 𝛽2

0 .

• The ellipses are mutually tangent. It means that the 𝑖-th ellipse is tangent
to the (𝑖− 1)-th ellipse and to the (𝑖 + 1)-th ellipse, so we have

𝑢𝑖 − 𝑢𝑖−1 = 𝛼𝑖 + 𝛼𝑖−1. (2.3)
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• We pose 𝛽𝑖

𝛼𝑖
= 𝑚, where 𝑚 = 𝛽0

𝛼0
=

√︁
𝛼0𝑏2

𝑎

𝛼0
= 𝑏√

𝛼0𝑎
. Hence the ellipses are

similar to each other.

In order to achieve our goal, we consider the system of equations
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑥2

𝑎2
− 𝑦2

𝑏2
= 1,

(𝑥− 𝑢𝑖)
2

𝛼2
𝑖

+
𝑦2

𝛽2
𝑖

= 1.

(2.4)

Now we give the general relations between 𝑢𝑖 and 𝛼𝑖. From (2.4) we have
(︂
𝛽2
𝑖

𝛼2
𝑖

+
𝑏2

𝑎2

)︂
𝑥2 − 2

𝛽2
𝑖

𝛼2
𝑖

𝑢𝑖𝑥 +
𝛽2
𝑖

𝛼2
𝑖

𝑢2
𝑖 = 𝑏2 + 𝛽2

𝑖 , (2.5)

due to the tangency condition the discriminant ∆ of (2.5) must be zero so:

∆

4
=

𝛽4
𝑖

𝛼4
𝑖

𝑢2
𝑖 −

(︂
𝛽2
𝑖

𝛼2
𝑖

+
𝑏2

𝑎2

)︂(︂
𝛽2
𝑖

𝛼2
𝑖

𝑢2
𝑖 − 𝑏2 − 𝛽2

𝑖

)︂
= 0.

Then we have

𝑢2
𝑖 =

(︂
𝑎2

𝑏2
+

𝛼2
𝑖

𝛽2
𝑖

)︂(︀
𝑏2 + 𝛽2

𝑖

)︀
.

Since 𝛽𝑖

𝛼𝑖
= 𝑚, then

𝑢2
𝑖 =

(︂
𝑎2

𝑏2
+

1

𝑚2

)︂(︀
𝑏2 + 𝑚2𝛼2

𝑖

)︀
(2.6)

and

𝑢2
𝑖−1 =

(︂
𝑎2

𝑏2
+

1

𝑚2

)︂(︀
𝑏2 + 𝑚2𝛼2

𝑖−1

)︀
. (2.7)

By subtracting (2.7) from (2.6) and by remembering (2.3), we obtain
⎧
⎪⎪⎨
⎪⎪⎩

𝑢𝑖 + 𝑢𝑖−1 = 𝑚2

(︂
𝑎2

𝑏2
+

1

𝑚2

)︂
(𝛼𝑖 − 𝛼𝑖−1),

𝑢𝑖 − 𝑢𝑖−1 = 𝛼𝑖 + 𝛼𝑖−1.

Since 𝑚2 = 𝑏2

𝑎𝛼0
, we gain

⎧
⎪⎪⎨
⎪⎪⎩

𝑢𝑖 + 𝑢𝑖−1 =

(︂
1 +

𝑎

𝛼0

)︂
(𝛼𝑖 − 𝛼𝑖−1),

𝑢𝑖 − 𝑢𝑖−1 = 𝛼𝑖 + 𝛼𝑖−1.

(2.8)
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In order to give the expression of 𝑢𝑖 and 𝛼𝑖, we have to solve the system (2.8),
after some algebraical steps we obtain

𝑢𝑖 =
(︁

2
𝛼0

𝑎
+ 1
)︁
𝑢𝑖−1 + 2

(︁
1 +

𝛼0

𝑎

)︁
𝛼𝑖−1, (2.9)

𝛼𝑖 = 2
𝛼0

𝑎
𝑢𝑖−1 +

(︁
2
𝛼0

𝑎
+ 1
)︁
𝛼𝑖−1. (2.10)

Since 𝛽𝑖 = 𝑚𝛼𝑖, we have

𝛽𝑖 =
𝑏

𝑎
√
𝛼0𝑎

(︂
2𝛼0𝑢𝑖−1 + (2𝛼0 + 𝑎)𝛼𝑖−1

)︂
. (2.11)

We should notice that the case 𝑚 = 1 (the ellipses are circles) provides 𝛼0 = 𝛽0 =
𝑏2

𝑎 , so we are in [1].
We can represent the expression of 𝑢𝑖 and 𝛼𝑖 in matrix form as follows:

(︂
𝑢𝑖

𝛼𝑖

)︂
=

(︂
2𝛼0

𝑎 + 1 2
(︀
1 + 𝛼0

𝑎

)︀

2𝛼0

𝑎 2𝛼0

𝑎 + 1

)︂(︂
𝑢𝑖−1

𝛼𝑖−1

)︂
.

2.1. Sequences
In this paragraph, we give recurrence relations of centers and minor (major) axes
of the ellipse chains.

Theorem 2.1. The sequences {𝑢𝑖}, {𝛼𝑖} and {𝛽𝑖} are the same second-order linear
homogeneous recurrence sequences

ℓ𝑖 = 2
(︁

2
𝛼0

𝑎
+ 1
)︁
ℓ𝑖−1 − ℓ𝑖−2 (𝑖 ≥ 2), (2.12)

with initial values 𝛼0 ∈ R+, 𝛽0 = 𝑏𝛼0√
𝑎𝛼0

, 𝑢0 = 𝑎 + 𝛼0, 𝛼1 = 𝛼0

𝑎 (3𝑎 + 4𝛼0), 𝛽1 =
𝑏
√
𝛼0(3 𝑎+4𝛼0)

𝑎3/2 and 𝑢1 = 𝑎2+5𝛼0𝑎+4𝛼0
2

𝑎 .

Proof. From the sum of (2.8) we have

2𝑢𝑖 =

(︂
2 +

𝑎

𝛼0

)︂
𝛼𝑖 −

𝑎

𝛼0
𝛼𝑖−1

and
2𝑢𝑖−1 =

(︂
2 +

𝑎

𝛼0

)︂
𝛼𝑖−1 −

𝑎

𝛼0
𝛼𝑖−2.

The sum of them combined again by (2.8) after some calculation yields

𝛼𝑖 = 2
(︁

2
𝛼0

𝑎
+ 1
)︁
𝛼𝑖−1 − 𝛼𝑖−2.

Similarly, 𝑢𝑖 = 2
(︀
2𝛼0

𝑎 + 1
)︀
𝑢𝑖−1 − 𝑢𝑖−2. Moreover, since 𝛽𝑖 = 𝑚𝛼𝑖, the recurrence

is true for 𝛽𝑖. The initial values come from the equations (2.9)–(2.11).
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Let 𝑢𝑖 = 𝑢𝑖

𝑢0
, 𝛼𝑖 = 𝛼𝑖

𝛼0
, and 𝛽𝑖 = 𝛽𝑖

𝛽0
. Then we obtain the following theorem as

a corollary of Theorem 2.1.

Theorem 2.2. The sequences {𝑢𝑖}, {𝛼𝑖} and {𝛽𝑛} are second-order linear ho-
mogeneous recurrence sequences (2.12) with initial values 𝑢0 = 𝛼0 = 𝛽0 = 1,
𝑢1 = 1 + 4𝛼0

𝑎 , 𝛼1 = 𝛽1 = 3 + 4𝛼0

𝑎 .

Corollary 2.3. The sequences {𝛼𝑖} and {𝛽𝑖} are the same.

Circle chains defined by Lucca [1] are the special cases 𝛼𝑖 = 𝛽𝑖 = 𝑟𝑖 of our
chains. The following corollary gives the recurrence relation for this unique case.

Corollary 2.4. If 𝛼0 = 𝑏2

𝑎 , then the sequences {𝑢𝑛}, {𝛼𝑛} are second-order linear
homogeneous recurrence sequences

ℓ𝑖 = 2

(︂
2
𝑏2

𝑎2
+ 1

)︂
ℓ𝑖−1 − ℓ𝑖−2 (𝑖 ≥ 2), (2.13)

with initial values 𝑢0 = 𝛼0 = 1, 𝑢1 = 1 + 4𝑏2

𝑎2 , 𝛼1 = 3 + 4𝑏2

𝑎2 .

2.2. Integer sequences
In this paragraph, we determine conditions to relate the ellipse chains with integer
sequences.

Theorem 2.5. In case of any positive integer 𝑘, if

𝛼0 = 𝑘
𝑎

4
,

then the sequences {𝑢𝑖}𝑖∈N and {𝛼𝑖}𝑖∈N are integer sequences, and their recurrences
are

ℓ𝑖 = (𝑘 + 2) ℓ𝑖−1 − ℓ𝑖−2 (𝑖 ≥ 2), (2.14)

with initial values 𝑢0 = 𝛼0 = 1, 𝑢1 = 1 + 𝑘, 𝛼1 = 3 + 𝑘.

Proof. Theorem 2.2 shows, that the first two items of the sequences are integers if
𝑘 = 4𝛼0

𝑎 is integer. Then the first coefficient of recurrence relation (2.12) is 𝑘 + 2,
which guarantees that all the other items of the sequences are integers.

Example 2.6. We give now some examples of integer sequences that can be ob-
tained for different values of 𝑘.

• For 𝑘 = 1;
The sequence {𝛼} = {1, 4, 11, 29, 76, 199, . . .} which corresponds to the bisec-
tion of Lucas sequence is classified in The On-Line Encyclopedia of Integer
Sequences (OEIS [2]) as 𝐴002878.

• For 𝑘 = 2;
The sequence {𝑢} = {1, 3, 11, 41, 153, 571, 2131, . . .} is classified in OEIS as
𝐴001835.
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• For 𝑘 = 3;
The sequence {𝑢} = {1, 4, 19, 91, 436, 2089, . . .} appears in OEIS as 𝐴004253.
The sequence {𝛼} = {1, 6, 29, 139, 666, 3191, . . .} which corresponds to the
Chebyshev even index 𝑈 -polynomials evaluated at

√
7
2 is classified in OEIS

as 𝐴030221.

• For 𝑘 = 4;
The sequence {𝛼} = {1, 7, 41, 239, 1393, 8119, . . .} which corresponds to the
Newman, Shanks–Williams (NSW) numbers is classified in OEIS as 𝐴002315.

In case of Lucca’s circle chains for integer sequences when 𝛼0 = 𝑘𝑎
4 = 𝑏2

𝑎 we
obtain the following corollary.

Corollary 2.7. If 𝑟𝑖 = 𝛼𝑖 = 𝛽𝑖 and the ratio 𝑏
𝑎 is given by

√
𝑘

2
=

𝑏

𝑎
, 𝑘 = 1, 2, . . . ,

then the sequences {𝑢𝑖}, {𝑟𝑖} are integer sequences. Their recurrences are

ℓ𝑛 = (𝑘 + 4) ℓ𝑛−1 − ℓ𝑛−2 (𝑛 ≥ 2),

with initial values 𝑢0 = 𝛼0 = 1, 𝑢1 = 1 + 𝑘, 𝛼1 = 3 + 𝑘.

Comparing Corollary 2.7 and Lucca’s similar main theorem, we find that Corol-
lary 2.7 contains more integer sequences. Only if 𝑘 is a square number, then the
sequence appears in Lucca’s theorem. We also mention that for relatively small 𝑘
a huge number of integer sequences are arising in OEIS [2].
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Abstract
We investigate when two four-term arithmetic progressions have an equal

product of their terms. This is equivalent to studying the (arithmetic) ge-
ometry of a non-singular quartic surface. It turns out that there are many
polynomial parametrizations of such progressions, and it is likely that there
exist polynomial parametrizations of every positive degree. We find all such
parametrizations for degrees 1 to 4, and give examples of parametrizations
for degrees 5 to 10.

1. Introduction

The problem considered in this paper was first drawn to my attention by Richard
Guy and Alex Fink, who asked which 𝑛-term arithmetic progressions can have
equal product of their terms. For example, when 𝑛 = 5, Fink observed that the
two progressions

(4 + 𝑡5, 3 + 2𝑡5, 2 + 3𝑡5, 1 + 4𝑡5, 5𝑡5), (𝑡 + 4𝑡6, 2𝑡 + 3𝑡6, 3𝑡 + 2𝑡6, 4𝑡 + 𝑡6, 5𝑡)

have equal product. There is some literature on the subject. Gabovich [5] gives
infinitely many examples of two such 4-term progressions. For general 𝑛, the only
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known example of two arithmetic progressions with equal product of terms is given
by

(𝑛 + 1)(𝑛 + 2) . . . (2𝑛) = 2 · 6 · 10 · . . . · (4𝑛− 2);

in fact, Saradha, Shorey and Tijdeman [9, 10] show that other than this example,
solutions in positive integers 𝑥 > 𝑦, 𝑛 > 2, to

𝑥(𝑥 + 𝑑1)...(𝑥 + (𝑛− 1)𝑑1) = 𝑦(𝑦 + 𝑑2)...(𝑦 + (𝑛− 1)𝑑2),

for fixed integers 0 < 𝑑1 < 𝑑2, are finite in number, and can be effectively deter-
mined. Choudhry [2–4] gives several results, including the construction for a fixed
positive integer 𝑛 of two arithmetic progressions of length 𝑛 with equal product of
terms. Further, he describes infinitely many pairs of 5-term progressions with equal
product, and also constructs five 4-term progressions, all having equal product of
terms.

Here, we investigate the case 𝑛 = 4. The defining equation is that of a quartic
surface, and we study the geometry of this surface. By computing the Néron-Severi
group of the surface over C, we can determine infinitely many parametrizations for
the problem, and in particular, can determine all parametrizations of a given degree
that correspond to curves lying on the surface of arithmetic genus 0. The number
of such parametrized curves increases rapidly, with attendant computational dif-
ficulties. Here, we simply give all such parametrizations of degrees 1, 2, 3, 4, and
examples of parametrizations for degrees 5, ..., 10.

2. A quartic surface

Consider two four-term arithmetic progressions with equal products, which by
homogeneity we may take in the form {𝑎 − 3𝑑, 𝑎 − 𝑑, 𝑎 + 𝑑, 𝑎 + 3𝑑} and
{𝑏− 3𝑐, 𝑏− 𝑐, 𝑏 + 𝑐, 𝑏 + 3𝑐}. Then

𝑉 : (𝑎2 − 9𝑑2)(𝑎2 − 𝑑2) = (𝑏2 − 9𝑐2)(𝑏2 − 𝑐2).

This equation defines a non-singular quartic surface 𝑉 . Symmetries of 𝑉 occur
with sign changes of the coordinates, under the mapping (𝑎, 𝑏, 𝑐, 𝑑) → (𝑏, 𝑎, 𝑑, 𝑐),
and under the mapping (𝑎, 𝑏, 𝑐, 𝑑) → (3𝑑, 3𝑐, 𝑏, 𝑎), generating a symmetry group
of order 32. The surface contains the twenty Q-rational straight lines shown in
Table 1.

Accordingly, there is a rich geometry of 𝑉 over the rationals. Denote by
NS(𝑉 (𝐾)) the Néron-Severi group of the surface 𝑉 over the field 𝐾; then we
expect NS(𝑉 (Q)) to be a sizeable subgroup of NS(𝑉 (C)). For reference, the action
of the symmetries on the Q-rational straight lines is given in the Appendix.

There are four real lines defined over Q(
√

3) (see Table 2) and eight imaginary
lines (see Table 3).

It is straightforward by considering linear parametrizations to see that this is
the full list of lines on the surface 𝑉 . The intersection matrix {(𝑙𝑖 · 𝑙𝑗)} of the 32
lines has rank 19.
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𝑙1: 𝑎 = 3𝑑 𝑙2: 𝑎 = 3𝑑 𝑙3: 𝑎 = 3𝑑 𝑙4: 𝑎 = 3𝑑
𝑏 = 3𝑐 𝑏 = 𝑐 𝑏 = −𝑐 𝑏 = −3𝑐

𝑙5: 𝑎 = 𝑑 𝑙6: 𝑎 = 𝑑 𝑙7: 𝑎 = 𝑑 𝑙8: 𝑎 = 𝑑
𝑏 = 3𝑐 𝑏 = 𝑐 𝑏 = −𝑐 𝑏 = −3𝑐

𝑙9: 𝑎 = −𝑑 𝑙10: 𝑎 = −𝑑 𝑙11: 𝑎 = −𝑑 𝑙12: 𝑎 = −𝑑
𝑏 = 3𝑐 𝑏 = 𝑐 𝑏 = −𝑐 𝑏 = −3𝑐

𝑙13: 𝑎 = −3𝑑 𝑙14: 𝑎 = −3𝑑 𝑙15: 𝑎 = −3𝑑 𝑙16: 𝑎 = −3𝑑
𝑏 = 3𝑐 𝑏 = 𝑐 𝑏 = −𝑐 𝑏 = −3𝑐

𝑙17: 𝑎 = 𝑏 𝑙18: 𝑎 = 𝑏 𝑙19: 𝑎 = −𝑏 𝑙20: 𝑎 = −𝑏
𝑐 = 𝑑 𝑐 = −𝑑 𝑐 = 𝑑 𝑐 = −𝑑

Table 1: Twenty Q-rational straight lines on 𝑉

𝑙21: 𝑎 =
√

3𝑐 𝑙22: 𝑎 =
√

3𝑐 𝑙23: 𝑎 = −
√

3𝑐 𝑙24: 𝑎 = −
√

3𝑐

𝑏 =
√

3𝑑 𝑏 = −
√

3𝑑 𝑏 =
√

3𝑑 𝑏 = −
√

3𝑑

Table 2: Four real straight lines on 𝑉

𝑙25: 𝑎 = 𝑖𝑏 𝑙26: 𝑎 = 𝑖𝑏 𝑙27: 𝑎 = −𝑖𝑏 𝑙28: 𝑎 = −𝑖𝑏
𝑐 = 𝑖𝑑 𝑐 = −𝑖𝑑 𝑐 = 𝑖𝑑 𝑐 = −𝑖𝑑

𝑙29: 𝑎 = 𝑖
√

3𝑐 𝑙30: 𝑎 = 𝑖
√

3𝑐 𝑙31: 𝑎 = −𝑖
√

3𝑐 𝑙32: 𝑎 = −𝑖
√

3𝑐

𝑏 = 𝑖
√

3𝑑 𝑏 = −𝑖
√

3𝑑 𝑏 = 𝑖
√

3𝑑 𝑏 = −𝑖
√

3𝑑

Table 3: Eight imaginary straight lines on 𝑉

Various conics arise as the residual intersection of 𝑉 with a plane passing
through two of the straight lines. Denote by Π a hyperplane section of the surface
𝑉 , so that Π has genus 3, and Π2 = 2 ·genus(Π)−2 = 4. Then the effective divisor
Π − 𝑙𝑖 − 𝑙𝑗 has self-intersection (Π − 𝑙𝑖 − 𝑙𝑗)

2 = −4 + 2(𝑙𝑖 · 𝑙𝑗), so consequently has
genus 0 if and only if (𝑙𝑖 · 𝑙𝑗) = 1.

If Π− 𝑙𝑖 − 𝑙𝑗 is irreducible, then its intersection pairing with 𝑙𝑘 is non-negative,
so ((𝑙𝑖 + 𝑙𝑗) · 𝑙𝑘) ≤ 1. Conversely, if Π − 𝑙𝑖 − 𝑙𝑗 is reducible, then necessarily it is
linearly equivalent to 𝑙𝑚 + 𝑙𝑛 for lines 𝑙𝑚, 𝑙𝑛, and now its intersection pairing with
𝑙𝑛 equals (𝑙𝑚 · 𝑙𝑛)−2 ≤ −1, that is, ((𝑙𝑖+ 𝑙𝑗) · 𝑙𝑛) ≥ 2. Hence Π− 𝑙𝑖− 𝑙𝑗 is irreducible
if and only if ((𝑙𝑖 + 𝑙𝑗).𝑙𝑘) ≤ 1 for all lines 𝑙𝑘.

If one of the component lines is Q-rational, then by symmetry we can assume
𝑙𝑖 is one of 𝑙1, 𝑙2, 𝑙17. Only Π − 𝑙1 − 𝑙𝑗 , for 𝑗 = 17, 20, 26, 27, are acceptable under
the above criteria. Only Π − 𝑙2 − 𝑙𝑗 , for 𝑗 = 21, 24, 30, 31, are acceptable. Only
Π − 𝑙17 − 𝑙𝑗 , for 𝑗 = 1, 6, 11, 16, 18, 19, 21, 24, 29, 32, are acceptable.

If no component line is Q-rational, then we have only Π − 𝑙𝑖 − 𝑙𝑗 for (𝑖, 𝑗) =
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(21, 22), (21, 23), (21, 25), (21, 28), (25, 26), (25, 27), (25, 29), (25, 32), (29, 30),
(29, 31).

It follows that there are precisely two equivalence classes of such Q-rational
conics, typified by Π − 𝑙1 − 𝑙17 (∼ Π − 𝑙6 − 𝑙20), and Π − 𝑙17 − 𝑙19.
The plane 𝑎 + 𝑏 = 𝑐 + 𝑑 cuts the surface in the two lines 𝑙6, 𝑙20, and the residual
conic

4𝑎2 + 7𝑎𝑏 + 2𝑏2 − 11𝑎𝑐− 7𝑏𝑐 + 9𝑐2 = 0,

with parametrization

𝑎 : 𝑏 : 𝑐 : 𝑑 = 3𝑠2 + 𝑠 + 2 : −𝑠2 − 3𝑠− 8 : 𝑠2 − 3𝑠− 2 : 𝑠2 + 𝑠− 4. (2.1)

This conic lies in an equivalence class under symmetry of order 16.
The plane 𝑐 = 𝑑 cuts 𝑉 in 𝑙17, 𝑙19, and the conic

𝑎2 + 𝑏2 = 10𝑐2,

with parametrization

𝑎 : 𝑏 : 𝑐 : 𝑑 = 3𝑠2 − 2𝑠− 3 : 𝑠2 + 6𝑠− 1 : 𝑠2 + 1 : 𝑠2 + 1, (2.2)

lying in an equivalence class of order 4. In this manner we recognise twenty Q-
rational conics on 𝑉 , the residual intersections of the following planes:

𝑄1: 𝑎 + 𝑏 = 𝑐 + 𝑑 𝑄2: 𝑎 + 𝑏 = 𝑐− 𝑑
𝑄3: 𝑎 + 𝑏 = −𝑐 + 𝑑 𝑄4: 𝑎 + 𝑏 = −𝑐− 𝑑
𝑄5: 𝑎− 𝑏 = 𝑐 + 𝑑 𝑄6: 𝑎− 𝑏 = 𝑐− 𝑑
𝑄7: 𝑎− 𝑏 = −𝑐 + 𝑑 𝑄8: 𝑎− 𝑏 = −𝑐− 𝑑
𝑄9: 𝑎− 𝑏 = 3(𝑐− 𝑑) 𝑄10: 𝑎− 𝑏 = 3(𝑐 + 𝑑)
𝑄11: 𝑎− 𝑏 = −3(𝑐 + 𝑑) 𝑄12: 𝑎− 𝑏 = 3(−𝑐 + 𝑑)
𝑄13: 𝑎 + 𝑏 = 3(𝑐− 𝑑) 𝑄14: 𝑎 + 𝑏 = 3(𝑐 + 𝑑)
𝑄15: 𝑎 + 𝑏 = −3(𝑐 + 𝑑) 𝑄16: 𝑎 + 𝑏 = 3(−𝑐 + 𝑑)
𝑄17: 𝑎 = 𝑏 𝑄18: 𝑎 = −𝑏
𝑄19: 𝑐 = 𝑑 𝑄20: 𝑐 = −𝑑

Table 4: Twenty Q-rational conics on 𝑉

A plane intersection does not of course necessarily contain a straight line, but may
give rise to two conics. A straightforward (machine) computation shows that plane
intersections delivering two conics arise precisely for the planes (writing 𝑖 =

√
−1,

𝑟 =
√

3):
𝑎− (1 − 𝑖)𝑐 + 𝑟𝑑 = 0, and 𝑎 + 2(1 − 𝑖)𝑐− 𝑖𝑟𝑑 = 0,

together with symmetries and conjugates. The first plane intersection here com-
prises the two conics

𝑄0 : 𝑎− (1 − 𝑖)𝑐 + 𝑟𝑑 = 0, 𝑏2 + (2𝑟 − 5)𝑐2 + (2𝑖 + 2)𝑐𝑑− 2𝑟𝑖𝑑2 = 0;
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𝑄′
0 : 𝑎− (1 − 𝑖)𝑐 + 𝑟𝑑 = 0, 𝑏2 + (−2𝑟 − 5)𝑐2 + (−2𝑖− 2)𝑐𝑑 + 2𝑟𝑖𝑑2 = 0;

and 𝑄0 has parametrization

(𝑎, 𝑏, 𝑐, 𝑑) = ((−1 + 𝑟)(3𝑢2 − (3 + 𝑟)𝑢𝑣 − 𝑣2), (1 + 𝑖)(𝑟𝑢2 + (−4 + 2𝑟)𝑢𝑣 + 𝑣2),

(1 + 𝑖)(𝑟𝑢2 − 𝑣2), (−1 + 𝑟)(𝑢2 + (1 + 𝑟)𝑢𝑣 − 𝑣2)).

Further, the surface 𝑉 is fibred by curves of genus 1. Consider the intersection of
𝑉 with the family of planes

𝑎− 𝑑 = 𝑡(𝑏− 𝑐). (2.3)

The intersection contains the line 𝑙6 : {𝑎 = 𝑑, 𝑏 = 𝑐}, together with residual cubic
curve

𝑏3(−1 + 9𝑡4) + 𝑏2𝑐(−1 − 27𝑡4) + 9𝑏𝑐2(1 + 3𝑡4) +

9𝑐3(1 − 𝑡4) − 36𝑎(𝑏− 𝑐)2𝑡3 + 44𝑎2(𝑏− 𝑐)𝑡2 − 16𝑎3𝑡 = 0.

This cubic contains points such as 𝒪𝑡(𝑎, 𝑏, 𝑐, 𝑑) = (𝑡, 1,−1,−𝑡), the point where
(2.3) meets the skew line {𝑎+ 𝑑 = 0 = 𝑏+ 𝑐}, and so is an elliptic curve over Q(𝑡).
The locus of 𝒪𝑡 as 𝑡 varies is the line 𝑙11. A cubic model of the above curve is

𝐸𝑡 : 𝑉 2 = 𝑈3 + 67𝑡2𝑈2 + 1440𝑡4𝑈 + 36𝑡2(1 + 277𝑡4 + 𝑡8), (2.4)

with mappings

(𝑈, 𝑉 ) =
(︀
−4𝑡(−2𝑎 + 7𝑏𝑡− 7𝑎𝑡4 + 2𝑏𝑡5)/(𝑏 + 𝑐− 2𝑎𝑡3 + 𝑏𝑡4 − 𝑐𝑡4), (2.5)

2𝑡(𝑡4 − 1)(−𝑏2 − 10𝑏𝑐− 9𝑐2 − 40𝑎2𝑡2 + 82𝑎𝑏𝑡3 − 82𝑎𝑐𝑡3 − 42𝑏2𝑡4 + 82𝑏𝑐𝑡4

+20𝑎2𝑡6 − 28𝑎𝑏𝑡7 + 28𝑎𝑐𝑡7 + 9𝑏2𝑡8 − 18𝑏𝑐𝑡8 + 9𝑐2𝑡8)/(𝑏 + 𝑐− 2𝑎𝑡3 + 𝑏𝑡4 − 𝑐𝑡4)2
)︀
,

and

𝑎 : 𝑏 : 𝑐 : 𝑑=−36𝑡2(1 + 𝑡4)(7 + 2𝑡4) − 2(4 + 59𝑡4)𝑈 − 5𝑡2𝑈2 + 2𝑡(7 + 2𝑡4)𝑉 :

−36𝑡(1 + 𝑡4)(2 + 7𝑡4) − 2𝑡3(59 + 4𝑡4)𝑈 − 5𝑡𝑈2 + 2(2 + 7𝑡4)𝑉 :

4𝑡(2 + 509𝑡4 − 43𝑡8) + 2𝑡3(101 − 4𝑡4)𝑈 + 5𝑡𝑈2 + 2(−2 + 3𝑡4)𝑉 :

4𝑡2(−43 + 509𝑡4 + 2𝑡8) + 2(−4 + 101𝑡4)𝑈 + 5𝑡2𝑈2 + 2𝑡(3 − 2𝑡4)𝑉 . (2.6)

We note that the torsion subgroup of 𝐸(C(𝑡)) is trivial. The curve 𝐸𝑡 at (2.4) is
singular at 𝑡 = 0,∞,±1,±𝑖, and at the eight roots of 243𝑡8 + 1711𝑡4 + 243 = 0.
The discriminant of (2.4) is

−144(𝑡− 1)2𝑡4(𝑡 + 1)2(𝑡2 + 1)2(243𝑡8 + 1711𝑡4 + 243),

and we have the following Kodaira classification types, with the corresponding
decomposition of the intersection (see Table 5) together with type 𝐼1 nodal cubics
at each root of 243𝑡8 + 1711𝑡4 + 243 = 0. Shioda’s fundamental formula [11] results
in

20 ≥ rank NS(𝑉 (C)) = rank 𝐸𝑡(C(𝑡)) + 2 + 2(3 − 1) + 4(2 − 1) + 8(1 − 1),
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whence rank 𝐸𝑡(C(𝑡)) ≤ 10.

𝑡 = 0 𝐼𝑉 𝑙5 + 𝑙7 + 𝑙8
𝑡 = ∞ 𝐼𝑉 𝑙2 + 𝑙10 + 𝑙14
𝑡 = 1 𝐼2 𝑙17 + 𝑄7

𝑡 = −1 𝐼2 𝑙20 + 𝑄1

𝑡 = 𝑖 𝐼2 𝑙26 + conic
𝑡 = −𝑖 𝐼2 𝑙27 + conic

Table 5: Singular decompositions of 𝐸𝑡

Theorem 2.1. NS(𝑉 (C)) is a Z-module of rank 19, with basis the divisor classes
of the 18 lines 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙7, 𝑙8, 𝑙10, 𝑙11, 𝑙16, 𝑙17, 𝑙18, 𝑙20, 𝑙21, 𝑙22, 𝑙25, 𝑙26, 𝑙29,
and the conic 𝑄0.

We prove Theorem 2.1 in several steps. It is known that NS(𝑉 (C)) is generated
over Z by (i) a fibre of 𝐸𝑡, the zero section, the fibre components that do not meet
the zero section; and (ii) sections that form a basis of 𝐸𝑡(C(𝑡)). For (i), we have
the ten generators 𝑙2, 𝑙5, 𝑙7, 𝑙8, 𝑙10, 𝑙11, 𝑙17, 𝑙20, 𝑙26, 𝑙27. For (ii), we shall show
𝐸𝑡(C(𝑡)) has rank 9, so that indeed rank NS(𝑉 (C)) = 19. It will then remain to
determine an explicit basis.

The straight lines and conic 𝑄0 provide us with the following 9 independent
points in 𝐸𝑡(C(𝑡)):

pullback point on 𝐸𝑡(C(𝑡))
𝑙1 𝐽1 = (−15𝑡2, 6𝑡5 + 6𝑡);
𝑙4 𝐽2 = (−18𝑡2, 6𝑡5 − 6𝑡);
𝑙16 𝐽3 = (−30𝑡2, −6𝑡5 − 6𝑡);
𝑙18 𝐽4 = (4𝑡4 − 10𝑡3 − 10𝑡2 − 10𝑡 + 4,

−8𝑡6 + 30𝑡5 − 58𝑡4 + 60𝑡3 − 58𝑡2 + 30𝑡− 8);
𝑙21 𝐽5 = (2𝑟𝑡3 − 18𝑡2 + 2𝑟𝑡, 6𝑡5 + 2𝑟𝑡4 + 12𝑡3 + 2𝑟𝑡2 + 6𝑡);
𝑙22 𝐽6 = (4𝑟𝑡3 − 18𝑡2 − 4𝑟𝑡, −6𝑡5 − 16𝑟𝑡4 + 12𝑡3 + 16𝑟𝑡2 − 6𝑡);
𝑙25 𝐽7 = (−4𝑡4 + 10𝑖𝑡3 − 10𝑡2 − 10𝑖𝑡− 4,

8𝑖𝑡6 + 30𝑡5 − 58𝑖𝑡4 − 60𝑡3 + 58𝑖𝑡2 + 30𝑡− 8𝑖);
𝑙29 𝐽8 = (−4𝑟𝑖𝑡3 − 18𝑡2 − 4𝑟𝑖𝑡,−6𝑡5 − 16𝑟𝑖𝑡4 − 12𝑡3 − 16𝑟𝑖𝑡2 − 6𝑡);
𝑄0 𝐽9 = ((𝑟 + 3)(𝑖 + 1)𝑡3 − 2(𝑟 + 10)𝑡2 + (3𝑟 + 5)(𝑖− 1)𝑡 + 4(𝑟 + 2)𝑖,

6𝑡5 + (5𝑟 + 9)(𝑖− 1)𝑡4 + 2(5𝑟 + 11)𝑖𝑡3 − 7(𝑟 + 1)(𝑖 + 1)𝑡2

−6(4𝑟 + 7)𝑡 + 4(3𝑟 + 5)(𝑖− 1))

Table 6: Points on 𝐸𝑡(C(𝑡))

That the points 𝐽𝑖, 𝑖 = 1, . . . , 9, are linearly independent on 𝐸𝑡 follows from
the height-pairing matrix
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𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8
3 0 4

3 2 2
3

4
3 2 4

3
4
3

0 2
3 0 0 0 0 0 0 1

3
4
3 0 8

3 2 4
3

2
3 2 2

3
2
3

2 0 2 3 1 1 2 1 3
2

2
3 0 4

3 1 5
3

1
3 1 1

3 − 1
6

4
3 0 2

3 1 1
3

5
3 1 2

3
1
6

2 0 2 2 1 1 3 1 1
2

4
3 0 2

3 1 1
3

2
3 1 5

3
7
6

4
3

1
3

2
3

3
2 − 1

6
1
6

1
2

7
6

7
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

of determinant 8
9 . It follows that rank 𝐸𝑡(C(𝑡)) ≥ 9.

We now have that the divisor classes of the following 19 curves are independent
in the Néron-Severi group NS(𝑉,C):

𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙7, 𝑙8, 𝑙10, 𝑙11, 𝑙16, 𝑙17, 𝑙18, 𝑙20, 𝑙21, 𝑙22, 𝑙25, 𝑙26, 𝑙29, 𝑄0. (2.7)

(Note: the conic 𝑎𝑐 = 𝑏𝑑 cuts 𝑉 in the divisor

𝑙1 + 𝑙6 + 𝑙11 + 𝑙16 + 𝑙17 + 𝑙20 + 𝑙26 + 𝑙27 ∼ 2 Π ∼ 𝑙1 + 𝑙2 + 𝑙3 + 𝑙4 + 𝑙5 + 𝑙6 + 𝑙7 + 𝑙8,

which allows us up to linear equivalence to replace 𝑙27 by 𝑙3.)

Lemma 2.2. NS(𝑉 (C)) has rank 19.

Proof. We follow closely the exposition of Kloosterman [6] to which the reader is
referred for full details.

Let 𝑌 be a smooth projective surface defined over Q, with Néron-Severi group
NS(𝑌 ). Suppose that 𝑝 is a prime of good reduction, and denote by 𝑌 the reduction
of 𝑌 modulo 𝑝. It is known that NS(𝑌 ) modulo torsion together with the intersec-
tion pairing on NS(𝑌 ) forms a lattice. Denote by ∆(NS(𝑌𝐾)) the discriminant of a
Gram matrix of the Néron-Severi lattice NS(𝑌𝐾) of 𝑌 over 𝐾 with respect to the
pairing. Proposition 4.2 of Kloosterman tells us that ∆(NS(𝑌Q)) and ∆(NS(𝑌 F𝑝

))
differ by a square.

The idea therefore (originally suggested by van Luijk) is to find two distinct
primes 𝑝1, 𝑝2 of good reduction for which the rank of the Néron-Severi lattices is
the same, but for which the discriminants of the lattices differ by a non-square. It
will follow that the rank of NS(𝑌Q) is at least one less than the rank of NS(𝑌 F𝑝1

).

We quote two further results from Kloosterman. Here, 𝑞 is a prime power, and
𝑙 a prime with (𝑙, 𝑞) = 1.

Conjecture 4.3 (Tate Conjecture).
Let 𝑌/F𝑞 be a smooth surface with Néron-Severi rank 𝜌(𝑌 ). Let 𝐹𝑞 be the auto-
morphism of 𝐻2

é𝑡(𝑌,Q𝑙)) induced by the Frobenius automorphism of F𝑞. Let 𝑄(𝑡)
be det(𝐼 − 𝑡𝐹𝑞|𝐻2

é𝑡(𝑌,Q𝑙)). Then 𝜌(𝑌 ) equals the number of reciprocal zeroes of
𝑄(𝑡) of the form 𝑞𝜁, with 𝜁 a root of unity.
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Conjecture 4.6 (Artin-Tate Conjecture).
Let 𝑌/F𝑞 be a smooth surface with Néron-Severi rank 𝜌(𝑌 ). Let 𝐹𝑞 be the auto-
morphism of 𝐻2

é𝑡(𝑌,Q𝑙)) induced by the Frobenius automorphism of F𝑞. Let 𝑄𝑞(𝑡)
be det(𝐼 − 𝑡𝐹𝑞|𝐻2

é𝑡(𝑌,Q𝑙)). Then

lim
𝑠→1

𝑄𝑞(𝑞−𝑠)

(1 − 𝑞1−𝑠)𝜌′(𝑌 )
=

(−1)𝜌
′(𝑌 )−1#Br(𝑌 )∆(NS(𝑌F𝑞

))

𝑞𝛼(𝑌 )(#𝑁𝑆(𝑌F𝑞
)tor)2

,

where 𝛼(𝑌 ) = 𝜒(𝑌,𝑂𝑌 ) − 1 + dim Pic0(𝑌 ), Br(𝑌 ) is the Brauer group of 𝑌 ,
NS(𝑌F𝑞

) is the subgroup of NS(𝑌F𝑞
) generated by F𝑞-rational divisors, and 𝜌′(𝑌 ) =

rank NS(𝑌F𝑞
).

These Conjectures are known to be true when (𝑞, 6) = 1 and 𝑌/F𝑞 is an elliptic
𝐾3 surface, as in the case we are considering.

Again from Kloosterman, Proposition 4.7, the order of Br(𝑌 ) is a square, and
with the hypothesis that 𝜌(𝑌 ) = 𝜌′(𝑌 ), then the Artin-Tate Conjecture gives the
following:

∆(NS(𝑌F𝑞
)) ≡ (−1)𝜌

′(𝑌 )−1𝑞𝛼(𝑌 ) lim
𝑠→1

𝑄𝑞(𝑞−𝑠)

(1 − 𝑞1−𝑠)𝜌′(𝑌 )
mod Q* 2.

In our case, at the primes of good reduction 𝑝 = 37, 61, the known 19 independent
divisor classes are defined over F𝑝. By counting the points on 𝑉 over F𝑝 and F𝑝2

we compute

𝑄37(𝑥) = (1−37𝑥)20(1+38𝑥+1369𝑥2), 𝑄61(𝑥) = (1−61𝑥)20(1+118𝑥+3721𝑥2).

We have 𝜌(𝑌 ) = 𝜌′(𝑌 ) = 20. We thus get

∆(NS(𝑌F𝑝
)) ≡ −𝑝𝛼(𝑌 ) lim

𝑠→1

𝑄𝑝(𝑝−𝑠)

(1 − 𝑝1−𝑠)20
mod Q* 2.

Hence

∆(NS(𝑌F37)
) ≡ −37𝛼(𝑌 )(1 +

38

37
+ 1) ≡ −7 · 37𝛼(𝑌 )−1 mod Q* 2;

∆(NS(𝑌F61
)) ≡ −61𝛼(𝑌 )(1 +

118

61
+ 1) ≡ −3 · 5 · 61𝛼(𝑌 )−1 mod Q* 2.

Consequently, the two discriminants do not differ by a perfect square, and it follows
that the rank of NS(𝑌Q) is at least one less than the rank of NS(𝑌F37

), so must
equal 19.

Corollary 2.3. The group 𝐸𝑡(C(𝑡)) has rank nine, and the points 𝐽1,. . . ,𝐽9 listed
in Table 6 form a basis.

Proof. The previous computation implies the rank is 9. That the {𝐽𝑖} form a basis
follows from Lemma 2.5 of Kuwata [7]. The first criterion in the Lemma implies
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that the index of the subgroup in 𝐸𝑡(C(𝑡)) generated by the 𝐽𝑖 can be divisible
only by 2 or 3. It is a straightforward computation to determine that for 𝜖𝑖 = 0, 1,
not all zero, none of the points

∑︀9
𝑖=1 𝜖𝑖𝐽𝑖 can lie in 2𝐸𝑡(C(𝑡)); and for 𝜖𝑖 = 0,±1,

not all zero, none of the points
∑︀9

𝑖=1 𝜖𝑖𝐽𝑖 can lie in 3𝐸𝑡(C(𝑡)).

It remains to determine a Z-basis for NS(𝑉,C).

The divisors at (2.7) form a basis over Q. Let 𝐷 ∼ 𝑐1𝑙1 + 𝑐2𝑙2 + · · · + 𝑐26𝑙26 +
𝑐29𝑙29 + 𝑐0𝑄0, which notationally we abbreviate to (𝑐1, 𝑐2, . . . , 𝑐26, 𝑐29, 𝑐0), lie in
NS(𝑉,C) for 𝑐𝑖 ∈ Q. Demanding integer intersection with each of the 32 straight
lines and 𝑄0 gives a system of equations for the coefficients 𝑐𝑖 that implies 𝐷 is a
Z-linear combination of the following divisors:

𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙7, 𝑙10, 𝑙17, 𝑙18, 𝑙20, 𝑙21, 𝑙22, 𝑙25, 𝑙26, 𝑙29, 𝑄0, (2.8)

and

𝐷1 ∼ 1

4
(0, 0, 1,−1, 0,−1, 1, 0, 0, 0, 0,−2, 0, 0, 2, 2, 0,−2, 0),

𝐷2 ∼ 1

4
(1,−3, 2, 0,−1, 1, 0,−1, 1, 0, 2, 0, 0, 0,−2, 0,−2, 2, 0),

𝐷3 ∼ 1

8
(0, 1, 1, 3, 3,−5,−1, 2,−1, 1,−2, 0,−2,−4, 4,−4, 4, 0, 0).

The divisor ∆ ∼ 𝑎𝐷1 + 𝑏𝐷2 + 𝑐𝐷3 for 𝑎, 𝑏, 𝑐 ∈ Z satisfies

∆2 = −4𝑎2 +
5

2
𝑎𝑏− 7

2
𝑏2 +

3

2
𝑎𝑐 +

7

2
𝑏𝑐− 33

8
𝑐2,

which, being equal to 2 ·genus(∆)−2, lies in 2Z. Thus 𝑐 is even, and 𝐷 is a Z-linear
combination of the divisors at (2.8) and of (𝑑1, 𝑑2, 𝑑3) = (𝐷1, 𝐷2, 2𝐷3 + 𝑙2 − 𝑙26).
Now

4𝑑1 ∼ −2𝑙9 + 2𝑙13 + 2𝑙15 + 2𝑙16 + 2𝑙19 + 2𝑙22 + 𝑙25 − 𝑙28 − 5𝑙29 − 3𝑙32,

4𝑑2 ∼ −2𝑙3 + 4𝑙4 − 6𝑙9 + 4𝑙12 + 4𝑙15 + 4𝑙16 − 2𝑙19 − 8𝑙22 − 4𝑙23 + 2𝑙24

+ 𝑙25 + 3𝑙28 + 2𝑙29 + 5𝑙30 + 3𝑙31 − 2𝑙32 − 4𝑄0,

4𝑑3 ∼ −2𝑙3 + 10𝑙4 − 8𝑙9 + 8𝑙13 + 6𝑙15 + 14𝑙16 + 3𝑙22 − 𝑙23 + 4𝑙24 + 4𝑙28

− 9𝑙29 − 10𝑙30 − 10𝑙31 − 9𝑙32,

linear equivalences which express the divisors 4𝑑𝑖 of degree 0 in terms of divisors
which meet 𝐸𝑡. Each induces a divisor of points (4𝑑𝑖.𝐸𝑡) on 𝐸𝑡 of degree 0, and
we can compute the image of these divisors under the Jacobian mapping jac from
the group of divisors on 𝐸𝑡 of degree 0, to 𝐸𝑡.

We first identify the following intersections on 𝐸𝑡.
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𝑙 (𝑙.𝐸𝑡) 𝑙 (𝑙.𝐸𝑡)
𝑙1 𝐽1 𝑙21 𝐽5
𝑙3 −𝐽2 + 𝐽3 𝑙22 𝐽6
𝑙4 𝐽2 𝑙23 𝐽1 − 𝐽6
𝑙9 𝐽2 + 𝐽3 𝑙24 𝐽3 − 𝐽5
𝑙11 𝒪 𝑙25 𝐽7
𝑙12 𝐽1 − 𝐽2 𝑙28 𝐽1 + 𝐽3 − 𝐽7
𝑙13 −𝐽2 𝑙29 𝐽8
𝑙15 𝐽1 + 𝐽2 𝑙30 −𝐽1 − 𝐽2 − 𝐽4 + 𝐽5 + 𝐽6 + 𝐽7 − 𝐽8 + 2𝐽9
𝑙16 𝐽3 𝑙31 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4 − 𝐽5 − 𝐽6 − 𝐽7 + 𝐽8 − 2𝐽9
𝑙18 𝐽4 𝑙32 𝐽1 − 𝐽8
𝑙19 𝐽1 + 𝐽3 − 𝐽4 𝑄0 𝐽9

Table 7: Intersections on 𝐸𝑡

Using the above table,

jac(4𝑑1.𝐸𝑡) = −2𝐽2 + 𝐽3 − 2𝐽4 + 2𝐽6 + 2𝐽7 − 2𝐽8,

jac(4𝑑2.𝐸𝑡) = 𝐽1 − 2𝐽2 + 2𝐽3 − 2𝐽6 + 2𝐽8,

jac(4𝑑3.𝐸𝑡) = 2(𝐽2 + 𝐽3 − 2𝐽5 + 2𝐽6 − 2𝐽7). (2.9)

The assumption that 𝑎𝑑1 + 𝑏𝑑2 + 𝑐𝑑3, 𝑎, 𝑏, 𝑐 ∈ Z, exists as divisor implies that
jac((𝑎 4𝑑1 + 𝑏 4𝑑2 + 𝑐 4𝑑3).𝐸𝑡) = 4 jac((𝑎𝑑1 + 𝑏𝑑2 + 𝑐𝑑3).𝐸𝑡) ∈ 4𝐸𝑡(C(𝑡)), that is

𝑏𝐽1 − 2(𝑎 + 𝑏− 𝑐)𝐽2 + (𝑎 + 2𝑏 + 2𝑐)𝐽3 − 2𝑎𝐽4 − 4𝑐𝐽5 + 2(𝑎− 𝑏 + 2𝑐)𝐽6

+ 2(𝑎− 2𝑐)𝐽7 − 2(𝑎− 𝑏)𝐽8 ∈ 4𝐸𝑡(C(𝑡)).

The deduction is that 𝑎, 𝑏 ≡ 0 mod 4, 𝑐 ≡ 0 mod 2. A set of Z-generators is now
the divisors at (2.8) and 4𝑑1, 4𝑑2, 2𝑑3; equivalently, the divisors

𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙7, 𝑙8, 𝑙10, 𝑙11, 𝑙17, 𝑙18, 𝑙20, 𝑙21, 𝑙22, 𝑙25, 𝑙26, 𝑙29, 𝑄0,

and

𝑑4 = 2𝑑3 ∼ 1

2
(0, 5, 1, 3, 3,−5,−1, 2,−1, 1,−2, 0,−2,−4, 4,−4, 0, 0, 0).

Assume that 𝑑4 exists as a divisor in NS(𝑉,C). From (2.9), we have jac(2𝑑4.𝐸𝑡) =
jac(4𝑑3.𝐸𝑡) = 2(𝐽2 + 𝐽3 − 2𝐽5 + 2𝐽6 − 2𝐽7), so that the divisor 𝑑5 = 𝑑4 − 𝑙9 + 𝑙21 −
𝑙22 + 𝑙25 of degree 0 satisfies jac(2𝑑5.𝐸𝑡) = 0. Since 𝐸 has trivial torsion, it follows
that jac(𝑑5.𝐸𝑡) = 0. Hence from properties of the Jacobian mapping, 𝑑5.𝐸𝑡 ∼ 0 on
𝐸𝑡. Thus there exists a function 𝑓𝑡 on 𝐸𝑡 having divisor 𝑑5.𝐸𝑡, and induced by a
function 𝑓 on 𝑉 . Then (𝑓) − 𝑑5 is a divisor not meeting 𝐸𝑡, which therefore is a
sum of the singular components of 𝐸𝑡; equivalently, a sum of the singular straight
line components of 𝐸𝑡. We deduce

𝑑5 ∼ 𝑐2𝑙2 + 𝑐5𝑙5 + 𝑐7𝑙7 + 𝑐8𝑙8 + 𝑐10𝑙10 + 𝑐14𝑙14 + 𝑐17𝑙17 + 𝑐20𝑙20 + 𝑐26𝑙26 + 𝑐27𝑙27.
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However 1 = 𝑑5.𝑙17 = −2𝑐17, impossible. Thus 𝑑5 cannot exist as divisor, and
NS(𝑉,C) has Z-basis as required. This completes the proof of Theorem 2.1.

In the Appendix, we give a matrix expressing the divisor classes of the 32 lines
as linear combinations of this generating set.

3. Rational parametrizations

That part of the Néron-Severi Group defined over Q is seen to be generated by the
divisor classes of

𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙7, 𝑙8, 𝑙10, 𝑙11, 𝑙16, 𝑙17, 𝑙18, 𝑙20,

which set we denote by {𝐶𝑖}, 𝑖 = 1, . . . , 13, with

𝑙21 + 𝑙conj
21 ∼ 𝑙3 + 𝑙4 + 𝑙7 + 𝑙8 − 𝑙17 − 𝑙20,

𝑙22 + 𝑙conj
22 ∼ 𝑙1 + 𝑙2 − 𝑙5 − 𝑙7 − 2𝑙8 + 𝑙10 + 𝑙11 + 𝑙17 + 𝑙20,

𝑙25 + 𝑙conj
25 ∼ 𝑙1 − 𝑙7 − 𝑙10 + 𝑙16 + 𝑙17 + 𝑙20,

𝑙26 + 𝑙conj
26 ∼ 𝑙2 + 𝑙3 + 𝑙4 + 𝑙5 + 𝑙7 + 𝑙8 − 𝑙11 − 𝑙16 − 𝑙17 − 𝑙20,

𝑙29 + 𝑙conj
29 ∼ 𝑙1 + 2𝑙2 + 𝑙3 + 𝑙4 − 𝑙8 + 𝑙10 − 𝑙16 − 𝑙17 − 𝑙20,

𝑙30 + 𝑙conj
30 ∼ −𝑙2 − 𝑙5 + 𝑙11 + 𝑙16 + 𝑙17 + 𝑙20.

The associated intersection matrix is

𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙7 𝑙8 𝑙10 𝑙11 𝑙16 𝑙17 𝑙18 𝑙20
𝑙1 -2 1 1 1 1 0 0 0 0 0 1 0 1
𝑙2 1 -2 1 1 0 0 0 1 0 0 0 0 0
𝑙3 1 1 -2 1 0 1 0 0 1 0 0 0 0
𝑙4 1 1 1 -2 0 0 1 0 0 1 0 1 0
𝑙5 1 0 0 0 -2 1 1 0 0 0 0 0 0
𝑙7 0 0 1 0 1 -2 1 0 1 0 0 1 0
𝑙8 0 0 0 1 1 1 -2 0 0 1 0 0 0
𝑙10 0 1 0 0 0 0 0 -2 1 0 0 1 0
𝑙11 0 0 1 0 0 1 0 1 -2 0 1 0 1
𝑙16 0 0 0 1 0 0 1 0 0 -2 1 0 1
𝑙17 1 0 0 0 0 0 0 0 1 1 -2 1 0
𝑙18 0 0 0 1 0 1 0 1 0 0 1 -2 1
𝑙20 1 0 0 0 0 0 0 0 1 1 0 1 -2

Putting Γ ∼ 𝑥1𝐶1 + 𝑥2𝐶2 + ... + 𝑥13𝐶13, we have

deg(Γ)2 − 4(Γ.Γ) = deg(Γ)2 − 8(genus(Γ) − 1) =

(𝑥1 − 𝑥2 − 𝑥3 + 𝑥4 − 𝑥5 + 𝑥6 − 𝑥7 + 𝑥8 + 𝑥9 + 𝑥10 − 𝑥11 − 𝑥12 − 𝑥13)2

+ 2(𝑥1 − 𝑥4 − 𝑥6 − 𝑥8 + 𝑥9 + 𝑥10 − 𝑥11 + 𝑥12 − 𝑥13)2
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+ 2(𝑥1 − 𝑥4 + 𝑥6 + 𝑥8 − 𝑥9 + 𝑥10)2

+ 2(𝑥1 − 𝑥2 − 𝑥5 − 𝑥9 − 𝑥10)2 + 2(𝑥1 − 𝑥3 + 𝑥7 + 𝑥9 − 𝑥10)2

+ 2(𝑥2 − 𝑥4 − 𝑥5 + 𝑥6 − 𝑥8)2 + 2(𝑥3 − 𝑥4 − 𝑥6 + 𝑥7 + 𝑥8)2

+ 2(𝑥11 − 𝑥12 + 𝑥13)2 + 4(𝑥11 − 𝑥13)2 + 4(𝑥5 − 𝑥7)2 + 4(𝑥2 − 𝑥3)2 + 4𝑥2
12

which is in a machine computable form if we wish to determine (via the coefficients
𝑥𝑖) the curves Γ of genus 0 and given degree deg(Γ). Putting

𝑚1 = 𝑥1 − 𝑥2 − 𝑥3 + 𝑥4 − 𝑥5 + 𝑥6 − 𝑥7 + 𝑥8 + 𝑥9 + 𝑥10 − 𝑥11 − 𝑥12 − 𝑥13,

𝑚2 = 𝑥1 − 𝑥2 − 𝑥5 − 𝑥9 − 𝑥10,

𝑚3 = 𝑥2 − 𝑥4 − 𝑥5 + 𝑥6 − 𝑥8,

𝑚4 = 𝑥1 − 𝑥3 + 𝑥7 + 𝑥9 − 𝑥10,

𝑚5 = 𝑥3 − 𝑥4 − 𝑥6 + 𝑥7 + 𝑥8,

𝑚6 = 𝑥1 − 𝑥4 + 𝑥6 + 𝑥8 − 𝑥9 + 𝑥10,

𝑚7 = 𝑥1 − 𝑥4 − 𝑥6 − 𝑥8 + 𝑥9 + 𝑥10 − 𝑥11 + 𝑥12 − 𝑥13,

𝑚8 = 𝑥11 − 𝑥12 + 𝑥13,

𝑚9 = 𝑥2 − 𝑥3,

𝑚10 = 𝑥5 − 𝑥7,

𝑚11 = 𝑥11 − 𝑥13,

𝑚12 = 𝑥12,

𝑚13 = deg(Γ),

we have to tabulate the finitely many solutions to the equation

𝑚2
1 + 2

8∑︁

𝑖=2

𝑚2
𝑖 + 4

12∑︁

𝑖=9

𝑚2
𝑖 = deg(Γ)2 − 4(Γ.Γ) (3.1)

and then determine (𝑥1, . . . , 𝑥13) = x from (𝑚1, . . . ,𝑚13) = m by means of

x =
1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0 0 1 0 1 1 0 −2 1
0 1 1 −1 1 −1 0 −1 3 1 0 −2 1
0 1 1 −1 1 −1 0 −1 −1 1 0 −2 1
0 1 −1 −1 −1 −1 0 −1 1 −1 0 −2 1

−1 −1 −1 1 −1 1 0 −1 −1 1 0 −2 0
0 −1 1 1 −1 1 −1 −1 −2 0 0 0 0

−1 −1 −1 1 −1 1 0 −1 −1 −3 0 −2 0
1 0 0 0 2 0 −1 0 1 1 0 2 0
1 −1 1 1 1 −1 0 1 −1 1 0 2 0
0 −1 −1 −1 −1 1 1 1 0 −2 0 0 0
0 0 0 0 0 0 0 2 0 0 2 2 0
0 0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 2 0 0 −2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m𝑡
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This imposes congruence conditions on the 𝑚𝑖 at (3.1), namely:

𝑚1 + 𝑚13 ≡ 0 mod 2,

𝑚2 + 𝑚3 + 𝑚6 ≡ 0 mod 2,

𝑚4 + 𝑚5 + 𝑚6 ≡ 0 mod 2,

𝑚6 + 𝑚7 + 𝑚8 ≡ 0 mod 2,

𝑚8 + 𝑚11 + 𝑚12 ≡ 0 mod 2,

𝑚1 + 𝑚3 + 𝑚4 + 𝑚8 ≡ 0 mod 2,

𝑚1 + 𝑚7 + 𝑚9 + 𝑚10 ≡ 0 mod 2,

and

𝑚1 + 2𝑚6 + 𝑚13 ≡ 0 mod 4,

𝑚1 −𝑚2 + 𝑚3 + 𝑚4 + 𝑚5 −𝑚6 + 𝑚8 −𝑚9 + 𝑚10 + 2𝑚12 ≡ 0 mod 4,

𝑚2 −𝑚3 −𝑚4 + 𝑚5 −𝑚6 + 𝑚7 + 𝑚8 + 2𝑚9 ≡ 0 mod 4.

For Q-rational curves of degree 1, we find (as expected) exactly the 20 known
Q-rational lines, falling into three equivalence classes under symmetry, with repre-
sentatives 𝑙1 (8 symmetries), 𝑙2 (8 symmetries), and 𝑙17 (4 symmetries).

For Q-rational curves of degree 2 we find the known conics, falling into the two
equivalence classes Π − 𝑙1 − 𝑙17 (16 symmetries) and Π − 𝑙17 − 𝑙18 (4 symmetries).
Their parametrizations are given at (2.1) and (2.2).

There are 24 Q-rational irreducible cubics, in three equivalence classes up to
symmetry, with representatives 2Π− 𝑙5 − 𝑙12 − 𝑙19 − 𝑙30 − 𝑙31, 2Π− 𝑙11 − 𝑙16 − 𝑙17 −
𝑙18 − 𝑙20, and 2Π − 𝑙1 − 𝑙11 − 𝑙17 − 𝑙18 − 𝑙20 (8 symmetries each).

Equivalence class Parametrization (𝑎 : 𝑏 : 𝑐 : 𝑑)
2Π − 𝑙5 − 𝑙12 − 𝑙19 − 𝑙30 − 𝑙31 −5 + 21𝑠2

5 + 3𝑠2

−7𝑠 + 15𝑠3

𝑠 + 15𝑠3

2Π − 𝑙11 − 𝑙16 − 𝑙17 − 𝑙18 − 𝑙20 4 + 𝑠 + 7𝑠2 + 6𝑠3

6 + 7𝑠 + 𝑠2 + 4𝑠3

−2 + 3𝑠 + 7𝑠2 + 4𝑠3

4 + 7𝑠 + 3𝑠2 − 2𝑠3

2Π − 𝑙1 − 𝑙11 − 𝑙17 − 𝑙18 − 𝑙20 3 + 7𝑠 + 7𝑠2 + 𝑠3

1 + 7𝑠 + 7𝑠2 + 3𝑠3

1 + 𝑠 + 3𝑠2 + 𝑠3

1 + 3𝑠 + 𝑠2 + 𝑠3

Table 8: Rational cubics on 𝑉

There are 176 Q-rational quartics in eight equivalence classes:
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Equivalence class Parametrization (𝑎 : 𝑏 : 𝑐 : 𝑑)
{0, 0, 0,−1, 0, 1,−1, 1, 2,−1, 1, 1, 1} 6 − 5𝑠− 11𝑠2 − 7𝑠3 − 𝑠4

−12 − 21𝑠− 15𝑠2 − 5𝑠3 − 𝑠4

4 + 𝑠− 3𝑠2 − 3𝑠3 − 𝑠4

6 + 11𝑠 + 11𝑠2 + 5𝑠3 + 𝑠4

{0, 0, 0, 1, 1, 1, 2,−1, 0, 1, 0,−1, 0} 3 − 7𝑠− 2𝑠2 − 20𝑠3 + 8𝑠4

−3 + 3𝑠− 24𝑠2 + 16𝑠3 − 8𝑠4

−1 + 7𝑠− 8𝑠4

3 − 5𝑠 + 2𝑠2 + 4𝑠3 − 8𝑠4

{1, 0, 1, 1,−1, 0, 0, 0, 0, 0, 0, 1, 1} 12 + 27𝑠 + 42𝑠2 + 23𝑠3 + 2𝑠4

18 + 37𝑠 + 18𝑠2 + 9𝑠3 + 4𝑠4

6 + 7𝑠− 7𝑠3 − 4𝑠4

4 − 9𝑠− 12𝑠2 − 7𝑠3 − 2𝑠4

{0,−1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1} −3 − 18𝑠− 6𝑠2 − 4𝑠3 − 𝑠4

9 − 4𝑠− 6𝑠2 − 6𝑠3 − 𝑠4

−3 + 2𝑠 + 12𝑠2 + 4𝑠3 + 𝑠4

1 − 12𝑠 + 2𝑠3 + 𝑠4

{0, 0,−1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1} 12 + 27𝑠− 21𝑠2 − 149𝑠3 − 65𝑠4

6 + 41𝑠 + 27𝑠2 + 33𝑠3 + 65𝑠4

6 + 25𝑠 + 81𝑠2 + 41𝑠3 − 13𝑠4

−4 − 15𝑠− 9𝑠2 − 59𝑠3 − 13𝑠4

{1, 0, 1, 0,−1, 0,−2, 1, 1, 0, 1, 1, 1} −1 + 11𝑠 + 3𝑠2 + 49𝑠3 + 10𝑠4

3 − 𝑠 + 9𝑠2 + 21𝑠3 + 40𝑠4

1 − 𝑠 + 13𝑠2 − 27𝑠3 − 10𝑠4

−1 + 5𝑠 + 𝑠2 − 𝑠3 + 20𝑠4

Table 9: Rational quartics on 𝑉

The divisor{0,−1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1}represents a Q-rational quartic curve
defined over Q, but possessing no rational (indeed real) points; its parametrization
may be given as

𝑎 : 𝑏 : 𝑐 : 𝑑 = 𝑖
√

3(1 + 𝑠2)(1 − 𝑠− 𝑠2) :

𝑖
√

3(1 + 𝑠2)(1 + 𝑠− 𝑠2) :

1 − 𝑠 + 4𝑠2 + 𝑠3 + 𝑠4 :

1 + 𝑠 + 4𝑠2 − 𝑠3 + 𝑠4.

Similarly, the divisor {2, 3, 2, 2, 0,−1,−1, 0, 0,−1,−1,−1, 0} is represented by

𝑎 : 𝑏 : 𝑐 : 𝑑 = 3 + 7𝑠− 8𝑠2 − 7𝑠3 + 3𝑠4 :

3 − 7𝑠− 8𝑠2 + 7𝑠3 + 3𝑠4 :
√︀

7/3(1 + 𝑠− 𝑠2)(1 + 𝑠2) :
√︀

7/3(1 − 𝑠− 𝑠2)(1 + 𝑠2).
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The number of rationally parametrizable curves increases rapidly, and it seems
likely that there are such curves of every positive degree. We content ourselves
with listing just one rational parametrization for degrees 5 to 10.

(𝑎, 𝑏, 𝑐, 𝑑) = (3𝑠5 + 5𝑠, 5𝑠4 + 3, 𝑠4 − 1, 𝑠5 − 𝑠);

(𝑎, 𝑏, 𝑐, 𝑑) = (27𝑠6 + 27𝑠5 + 19𝑠2 + 17𝑠 + 6,

27𝑠6 + 45𝑠5 + 36𝑠4 − 18𝑠3 − 39𝑠2 − 23𝑠− 4,

9𝑠6 − 3𝑠5 + 12𝑠4 + 30𝑠3 + 35𝑠2 + 17𝑠 + 4,

9𝑠6 − 9𝑠5 − 36𝑠4 − 48𝑠3 − 31𝑠2 − 11𝑠− 2);

(𝑎, 𝑏, 𝑐, 𝑑) = (𝑠7 + 16𝑠6 + 56𝑠5 + 85𝑠4 + 44𝑠3 + 𝑠2 − 11𝑠− 3,

3𝑠7 + 11𝑠6 − 𝑠5 − 44𝑠4 − 85𝑠3 − 56𝑠2 − 16𝑠− 1,

𝑠7 + 5𝑠6 + 9𝑠5 + 20𝑠4 + 25𝑠3 + 16𝑠2 + 4𝑠 + 1,

𝑠7 + 4𝑠6 + 16𝑠5 + 25𝑠4 + 20𝑠3 + 9𝑠2 + 5𝑠 + 1);

(𝑎, 𝑏, 𝑐, 𝑑) = (𝑠8 − 5𝑠7 + 26𝑠6 − 76𝑠5 + 137𝑠4 − 115𝑠3 + 16𝑠2 + 64𝑠− 24,

𝑠8 − 3𝑠7 − 2𝑠6 + 46𝑠5 − 153𝑠4 + 277𝑠3 − 282𝑠2 + 156𝑠− 24,

𝑠8 − 5𝑠7 + 10𝑠6 − 6𝑠5 − 17𝑠4 + 35𝑠3 − 30𝑠2 + 4𝑠− 8,

𝑠8 − 7𝑠7 + 26𝑠6 − 60𝑠5 + 105𝑠4 − 137𝑠3 + 136𝑠2 − 80𝑠 + 24);

(𝑎, 𝑏, 𝑐, 𝑑) = (𝑠9 − 33𝑠5 − 184𝑠, 𝑠8 + 47𝑠4 + 96, 3𝑠8 + 21𝑠4 − 32, 𝑠9 + 7𝑠5 + 56𝑠);

(𝑎, 𝑏, 𝑐, 𝑑) =

(4𝑠10−25𝑠9+123𝑠8−355𝑠7+653𝑠6−610𝑠5+56𝑠4+720𝑠3−976𝑠2+640𝑠−192,

6𝑠10−31𝑠9+61𝑠8−15𝑠7−233𝑠6+538𝑠5−728𝑠4+760𝑠3−864𝑠2+544𝑠−64,

2𝑠10−5𝑠9−19𝑠8+155𝑠7−481𝑠6+930𝑠5−1208𝑠4+1080𝑠3−608𝑠2+160𝑠−64,

4𝑠10−31𝑠9+119𝑠8−285𝑠7+533𝑠6−762𝑠5+808𝑠4−560𝑠3+304𝑠2−256𝑠+64).

4. Appendix

For reference, we give here (in terms of subscript) the action of the sign-change
symmetries on the Q-rational lines, together with the action of the further two
symmetries:
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(a,b,c,d) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(a,b,c,-d) 13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4 18 17 20 19
(a,b,-c,d) 4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13 18 17 20 19
(a,b,-c,-d) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 17 18 19 20
(a,-b,c,d) 4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13 19 20 17 18
(a,-b,c,-d) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20 19 18 17
(a,-b,-c,d) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 19 18 17
(-a,b,c,d) 13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4 19 20 17 18

(b,a,d,c) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 17 18 19 20

(3d,3c,b,a) 6 5 8 7 2 1 4 3 14 13 16 15 10 9 12 11 17 19 18 20

Table 10: Action of the symmetries on the Q-rational straight lines

The following matrix expresses the linear equivalence classes of the 32 straight
lines on 𝑉 in terms of the set of Z-generators of Theorem 2.1.

𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙7 𝑙8 𝑙10 𝑙11 𝑙16 𝑙17 𝑙18 𝑙20 𝑙21 𝑙22 𝑙25 𝑙26 𝑙29 𝑄0
𝑙1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑙2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑙3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑙4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑙5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑙6 1 1 1 1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
𝑙7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑙8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
𝑙9 0 0 0 1 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 0
𝑙10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
𝑙11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
𝑙12 1 1 1 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0
𝑙13 0 1 1 0 -1 0 -1 1 1 -1 0 0 0 0 0 0 0 0 0
𝑙14 0 -1 0 0 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0
𝑙15 1 1 0 1 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0
𝑙16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
𝑙17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
𝑙18 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
𝑙19 1 1 1 1 1 0 1 -1 -1 0 -1 -1 -1 0 0 0 0 0 0
𝑙20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
𝑙21 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
𝑙22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
𝑙23 1 1 0 0 -1 -1 -2 1 1 0 1 0 1 0 -1 0 0 0 0
𝑙24 0 0 1 1 0 1 1 0 0 0 -1 0 -1 -1 0 0 0 0 0
𝑙25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
𝑙26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
𝑙27 0 1 1 1 1 1 1 0 -1 -1 -1 0 -1 0 0 0 -1 0 0
𝑙28 1 0 0 0 0 -1 0 -1 0 1 1 0 1 0 0 -1 0 0 0
𝑙29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
𝑙30 -1 1 1 0 0 1 0 0 -1 -1 -1 -1 -2 1 1 1 -1 -1 2
𝑙31 1 -2 -1 0 -1 -1 0 0 2 2 2 1 3 -1 -1 -1 1 1 -2
𝑙32 1 2 1 1 0 0 -1 1 0 -1 -1 0 -1 0 0 0 0 -1 0

Table 11: Linear equivalence classes of the lines in terms of the
Z-generators of Theorem 2.1
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Abstract

Third-order Jacobsthal quaternions are first defined by [5]. In this study,
dual third-order Jacobsthal and dual third-order Jacobsthal–Lucas numbers
are defined. Furthermore, we work on these dual numbers and we obtain the
properties e.g. linear and quadratic identities, summation, norm, negative
dual third-order Jacobsthal identities, Binet formulas and relations of them.
We also define new vectors which are called dual third-order Jacobsthal vec-
tors and dual third-order Jacobsthal–Lucas vectors. We give properties of
these vectors to exert in geometry of dual space.

Keywords: Dual numbers, Jacobsthal numbers, Recurrences, Third-order Ja-
cobsthal numbers, Third-order Jacobsthal–Lucas numbers.

MSC: Primary 11B39; Secondary 11R52, 05A15.

1. Introduction

Dual numbers which have lots of applications to modelling plane joint, to screw
systems and to mechanics, were first invented by W. K. Clifford in 1873. The dual
numbers extend to the real numbers has the form 𝑑 = 𝑎 + 𝜀𝑏, where 𝜀 is the dual
unit and 𝜀2 = 0, 𝜀 ̸= 0. The set D = R[𝜀] = {𝑎+𝜀𝑏 : 𝑎, 𝑏 ∈ R} is called dual number
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system and forms two dimensional commutative associative algebra over the real
numbers. The algebra of dual numbers is a ring with the following addition and
multiplication operations

(𝑎1 + 𝜀𝑏1)± (𝑎2 + 𝜀𝑏2) = (𝑎1 ± 𝑎2) + 𝜀(𝑏1 ± 𝑏2),

(𝑎1 + 𝜀𝑏1) · (𝑎2 + 𝜀𝑏2) = 𝑎1𝑎2 + 𝜀(𝑎1𝑏2 + 𝑎2𝑏2).
(1.1)

The equality of two dual numbers 𝑑1 = 𝑎1 + 𝜀𝑏1 and 𝑑2 = 𝑎2 + 𝜀𝑏2 is defined
as, 𝑑1 = 𝑑2 if and only if 𝑎1 = 𝑎2 and 𝑏1 = 𝑏2. The division of two dual numbers
provided 𝑎2 ̸= 0 is given by

𝑑1
𝑑2

=
𝑎1
𝑎2

+ 𝜀

(︂
𝑏1𝑎2 − 𝑎1𝑏2

𝑎22

)︂
.

The conjugate of the dual number 𝑑 = 𝑎+ 𝜀𝑏 is 𝑑 = 𝑎− 𝜀𝑏.
Vectors are used to study the analytic geometry of space, where they give simple

ways to describe lines, planes, surfaces and curves in space. In this work we will
speak on vectors of dual space using third order Jacobsthal numbers.

Now, the set D3 = {−→𝑎 + 𝜀
−→
𝑏 : −→𝑎 ,

−→
𝑏 ∈ R3} is a module on the ring D which is

called D-Module and the members of D3 are called dual vectors consisting of two
real vectors. Also a dual vector

−→
𝑑 = −→𝑎 + 𝜀

−→
𝑏 has another expression of the form

−→
𝑑 = (𝑎1 + 𝜀𝑏1, 𝑎2 + 𝜀𝑏2, 𝑎3 + 𝜀𝑏3) = (𝑑1, 𝑑2, 𝑑3),

where 𝑑1, 𝑑2, 𝑑3 are dual numbers and −→𝑎 = (𝑎1, 𝑎2, 𝑎3),
−→
𝑏 = (𝑏1, 𝑏2, 𝑏3).

The norm of the dual vector
−→
𝑑 is given by

⃦⃦
⃦−→𝑑
⃦⃦
⃦ = ‖−→𝑎 ‖+ 𝜀

⟨−→𝑎 ,
−→
𝑏 ⟩

‖−→𝑎 ‖ , (1.2)

where ⟨−→𝑎 ,
−→
𝑏 ⟩ = 𝑎1𝑏1+𝑎2𝑏2+𝑎3𝑏3. Furthermore,

−→
𝑑 = −→𝑎 +𝜀

−→
𝑏 is dual unit vector

(e.g.
⃦⃦
⃦−→𝑑
⃦⃦
⃦ = 1) if and only if ‖−→𝑎 ‖ = 1 and ⟨−→𝑎 ,

−→
𝑏 ⟩ = 0.

The dual unit vectors are related with oriented lines, found by E. Study, which
is called Study mapping: The oriented lines in R3 are in one-to-one correspondence
with the points of dual unit sphere in D3.

On the other hand, the Jacobsthal numbers have many interesting properties
and applications in many fields of science (see, e.g., [2]). The Jacobsthal numbers
𝐽𝑛 are defined by the recurrence relation

𝐽0 = 0, 𝐽1 = 1, 𝐽𝑛+2 = 𝐽𝑛+1 + 2𝐽𝑛, 𝑛 ≥ 0. (1.3)

Another important sequence is the Jacobsthal-Lucas sequence. This sequence is
defined by the recurrence relation 𝑗0 = 2, 𝑗1 = 1, 𝑗𝑛+1 = 𝑗𝑛 + 2𝑗𝑛−1, 𝑛 ≥ 1 (see
[12]).

In [7] the Jacobsthal recurrence relation (1.3) is extended to higher order re-
currence relations and the basic list of identities provided by A. F. Horadam [12] is
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expanded and extended to several identities for some of the higher order cases. In
fact, third-order Jacobsthal numbers, {𝐽 (3)

𝑛 }𝑛≥0, and third-order Jacobsthal–Lucas
numbers, {𝑗(3)𝑛 }𝑛≥0, are defined by

𝐽
(3)
𝑛+3 = 𝐽

(3)
𝑛+2 + 𝐽

(3)
𝑛+1 + 2𝐽 (3)

𝑛 , 𝐽
(3)
0 = 0, 𝐽

(3)
1 = 𝐽

(3)
2 = 1, 𝑛 ≥ 0, (1.4)

and

𝑗
(3)
𝑛+3 = 𝑗

(3)
𝑛+2 + 𝑗

(3)
𝑛+1 + 2𝑗(3)𝑛 , 𝑗

(3)
0 = 2, 𝑗

(3)
1 = 1, 𝑗

(3)
2 = 5, 𝑛 ≥ 0, (1.5)

respectively.
Some of the following properties given for third-order Jacobsthal numbers and

third-order Jacobsthal–Lucas numbers are used in this paper (for more details, see
[5–7]). Note that Eqs. (1.9) and (1.12) have been corrected in this paper, since
they have been wrongly described in [7]:

3𝐽 (3)
𝑛 + 𝑗(3)𝑛 = 2𝑛+1,

𝑗(3)𝑛 − 3𝐽 (3)
𝑛 = 2𝑗

(3)
𝑛−3, (1.6)

𝐽
(3)
𝑛+2 − 4𝐽 (3)

𝑛 =

{︂
−2 if 𝑛 ≡ 1 (mod 3)
1 if 𝑛 ̸≡ 1 (mod 3)

, (1.7)

𝑗(3)𝑛 − 4𝐽 (3)
𝑛 =

⎧
⎨
⎩

2 if 𝑛 ≡ 0 (mod 3)
−3 if 𝑛 ≡ 1 (mod 3)
1 if 𝑛 ≡ 2 (mod 3)

, (1.8)

𝑗
(3)
𝑛+1 + 𝑗(3)𝑛 = 3𝐽

(3)
𝑛+2, (1.9)

𝑗(3)𝑛 − 𝐽
(3)
𝑛+2 =

⎧
⎨
⎩

1 if 𝑛 ≡ 0 (mod 3)
−1 if 𝑛 ≡ 1 (mod 3)
0 if 𝑛 ≡ 2 (mod 3)

, (1.10)

(︁
𝑗
(3)
𝑛−3

)︁2
+ 3𝐽 (3)

𝑛 𝑗(3)𝑛 = 4𝑛,

𝑛∑︁

𝑘=0

𝐽
(3)
𝑘 =

{︃
𝐽
(3)
𝑛+1 if 𝑛 ̸≡ 0 (mod 3)

𝐽
(3)
𝑛+1 − 1 if 𝑛 ≡ 0 (mod 3)

(1.11)

and (︁
𝑗(3)𝑛

)︁2
− 9

(︁
𝐽 (3)
𝑛

)︁2
= 2𝑛+2𝑗

(3)
𝑛−3. (1.12)

Using standard techniques for solving recurrence relations, the auxiliary equa-
tion, and its roots are given by

𝑥3 − 𝑥2 − 𝑥− 2 = 0; 𝑥1 = 2, 𝑥2 =
−1 + 𝑖

√
3

2
and 𝑥3 =

−1− 𝑖
√
3

2
.
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Note that the latter two are the complex conjugate cube roots of unity. Call
them 𝑥1 = 𝜔1 and 𝑥2 = 𝜔2, respectively. Thus the Binet formulas can be written
as

𝐽 (3)
𝑛 =

2

7
· 2𝑛 −

(︃
3 + 2𝑖

√
3

21

)︃
𝜔𝑛
1 −

(︃
3− 2𝑖

√
3

21

)︃
𝜔𝑛
2 (1.13)

and

𝑗(3)𝑛 =
8

7
· 2𝑛 +

(︃
3 + 2𝑖

√
3

7

)︃
𝜔𝑛
1 +

(︃
3− 2𝑖

√
3

7

)︃
𝜔𝑛
2 , (1.14)

respectively.
A variety of new results on Fibonacci-like quaternion and octonion numbers

can be found in several papers [4–6, 10, 11, 13, 14]. The origin of the topic of
number sequences in division algebra can be traced back to the works by Horadam
in [11] and by Iyer in [14]. Horadam [11] defined the quaternions with the classic
Fibonacci and Lucas number components as

𝑄𝐹𝑛 = 𝐹𝑛 + 𝐹𝑛+1i + 𝐹𝑛+2j + 𝐹𝑛+3k

and
𝑄𝐿𝑛 = 𝐿𝑛 + 𝐿𝑛+1i + 𝐿𝑛+2j + 𝐿𝑛+3k,

respectively, where 𝐹𝑛 and 𝐿𝑛 are the 𝑛-th classic Fibonacci and Lucas numbers,
respectively, and the author studied the properties of these quaternions. Several
interesting and useful extensions of many of the familiar quaternion numbers (such
as the Fibonacci and Lucas quaternions [1, 10, 11] have been considered by several
authors.

There has been an increasing interest on quaternions and octonions that play
an important role in various areas such as computer sciences, physics, differential
geometry, quantum physics, signal, color image processing and geostatics (for more,
see [3, 8, 15]). For example, in [5, 6] the author studied the third-order Jacobsthal
quaternions and give some interesting properties of this numbers.

In this paper, we give some properties and relations of dual third-order Ja-
cobsthal and dual third-order Jacobsthal–Lucas numbers. Then, we define dual
third-order Jacobsthal vectors and investigate geometric notions which are created
by using dual third-order Jacobsthal vectors.

2. Dual third-order Jacobsthal numbers

In this section, we define new kinds of sequences of dual number called as dual
third-order Jacobsthal numbers and dual third-order Jacobsthal–Lucas numbers.
We study some properties of these numbers. We obtain various results for these
classes of dual numbers included recurrence relations, summation formulas, Binet’s
formulas and generating functions.
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In [9], the authors introduced the so-called dual Fibonacci numbers, which are
a new class of dual numbers. They are defined by

𝐹𝐷𝑛 = 𝐹𝑛 + 𝜀𝐹𝑛+1, (𝑛 ≥ 0) (2.1)

where 𝐹𝑛 is the 𝑛-th Fibonacci number, 𝜀2 = 0 and 𝜀 ̸= 0.
We now consider the usual third-order Jacobsthal and third-order Jacobsthal–

Lucas numbers, and based on the definition (2.1) we give definitions of new kinds
of dual numbers, which we call the dual third-order Jacobsthal numbers and dual
third-order Jacobsthal–Lucas numbers. In this paper, we define the 𝑛-th dual
third-order Jacobsthal number and dual third-order Jacobsthal–Lucas number, re-
spectively, by the following recurrence relations

𝐽𝐷(3)
𝑛 = 𝐽 (3)

𝑛 + 𝜀𝐽
(3)
𝑛+1, 𝑛 ≥ 0 (2.2)

and
𝑗𝐷(3)

𝑛 = 𝑗(3)𝑛 + 𝜀𝑗
(3)
𝑛+1, 𝑛 ≥ 0, (2.3)

where 𝐽
(3)
𝑛 and 𝑗

(3)
𝑛 are the 𝑛-th third-order Jacobsthal number and third-order

Jacobsthal–Lucas number, respectively.
The equalities in (1.1) gives

𝐽𝐷(3)
𝑛 ± 𝑗𝐷(3)

𝑛 = (𝐽 (3)
𝑛 ± 𝑗(3)𝑛 ) + 𝜀(𝐽

(3)
𝑛+1 ± 𝑗

(3)
𝑛+1). (2.4)

From the conjugate of a dual number, (2.2) and (2.3) an easy computation gives

𝐽𝐷
(3)
𝑛 = 𝐽 (3)

𝑛 − 𝜀𝐽
(3)
𝑛+1, 𝑗𝐷

(3)
𝑛 = 𝑗(3)𝑛 − 𝜀𝑗

(3)
𝑛+1.

By some elementary calculations we find the following recurrence relations for
the dual third-order Jacobsthal and dual third-order Jacobsthal–Lucas numbers
from (2.2), (2.3), (2.4), (1.1), (1.4) and (1.5):

𝐽𝐷
(3)
𝑛+1 + 𝐽𝐷(3)

𝑛 + 2𝐽𝐷
(3)
𝑛−1 = (𝐽

(3)
𝑛+1 + 𝐽 (3)

𝑛 + 2𝐽
(3)
𝑛−1) + 𝜀(𝐽

(3)
𝑛+2 + 𝐽

(3)
𝑛+1 + 2𝐽 (3)

𝑛 )

= 𝐽
(3)
𝑛+2 + 𝜀𝐽

(3)
𝑛+3

= 𝐽𝐷
(3)
𝑛+2 (2.5)

and similarly 𝑗𝐷
(3)
𝑛+2 = 𝑗𝐷

(3)
𝑛+1 + 𝑗𝐷

(3)
𝑛 + 2𝑗𝐷

(3)
𝑛−1, for 𝑛 ≥ 1.

Now, we will state Binet’s formulas for the dual third-order Jacobsthal and dual
third-order Jacobsthal–Lucas numbers. Repeated use of (1.13) in (2.2) enables one
to write for 𝛼 = 1 + 2𝜀, 𝜔1 = 1 + 𝜔1𝜀 and 𝜔2 = 1 + 𝜔2𝜀

𝐽𝐷(3)
𝑛 = 𝐽 (3)

𝑛 + 𝜀𝐽
(3)
𝑛+1

=
1

7
2𝑛+1 − 3 + 2𝑖

√
3

21
𝜔𝑛
1 − 3− 2𝑖

√
3

21
𝜔𝑛
2

+ 𝜀

(︃
1

7
2𝑛+2 − 3 + 2𝑖

√
3

21
𝜔𝑛+1
1 − 3− 2𝑖

√
3

21
𝜔𝑛+1
2

)︃

=
1

7
𝛼2𝑛+1 − 3 + 2𝑖

√
3

21
𝜔1𝜔

𝑛
1 − 3− 2𝑖

√
3

21
𝜔2𝜔

𝑛
2

(2.6)
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and similarly making use of (1.14) in (2.3) yields

𝑗𝐷(3)
𝑛 = 𝑗(3)𝑛 + 𝜀𝑗

(3)
𝑛+1

=
1

7
2𝑛+3 +

3 + 2𝑖
√
3

7
𝜔𝑛
1 +

3− 2𝑖
√
3

7
𝜔𝑛
2

+ 𝜀

(︃
1

7
2𝑛+4 +

3 + 2𝑖
√
3

7
𝜔𝑛+1
1 +

3− 2𝑖
√
3

7
𝜔𝑛+1
2

)︃

=
1

7
𝛼2𝑛+3 +

3 + 2𝑖
√
3

7
𝜔1𝜔

𝑛
1 +

3− 2𝑖
√
3

7
𝜔2𝜔

𝑛
2 .

(2.7)

The formulas in (2.6) and (2.7) are called as Binet’s formulas for the dual third-
order Jacobsthal and dual third-order Jacobsthal–Lucas numbers, respectively. The
recurrence relations for the 𝑛-th dual third-order Jacobsthal number are expressed
in the following theorem.

Theorem 2.1. For 𝑛,𝑚 ≥ 0, we have the following identities:

𝐽𝐷
(3)
𝑛+2 + 𝐽𝐷

(3)
𝑛+1 + 𝐽𝐷(3)

𝑛 = 2𝑛+1(1 + 2𝜀),

𝐽𝐷
(3)
𝑛+2 − 4𝐽𝐷(3)

𝑛 =

⎧
⎨
⎩

1− 2𝜀 if 𝑛 ≡ 0 (mod 3)
−2 + 𝜀 if 𝑛 ≡ 1 (mod 3)
1 + 𝜀 if 𝑛 ≡ 2 (mod 3)

, (2.8)

𝐽𝐷(3)
𝑛 𝐽𝐷

(3)
𝑚+1 + 𝑇

(3)
𝑛−1𝐽𝐷

(3)
𝑚 + 2𝐽𝐷

(3)
𝑛−1𝐽𝐷

(3)
𝑚−1 = 𝐽𝐷

(3)
𝑛+𝑚 + 𝜀𝐽

(3)
𝑛+𝑚+1,

(︁
𝐽𝐷

(3)
𝑛+1

)︁2
+
(︁
𝐽𝐷(3)

𝑛

)︁2
+ 4𝐽𝐷(3)

𝑛 𝐽𝐷
(3)
𝑛−1 = 𝐽𝐷

(3)
2𝑛+1 + 𝜀𝐽

(3)
2𝑛+2, (2.9)

where 𝑇
(3)
𝑛 = 𝐽𝐷

(3)
𝑛 + 2𝐽𝐷

(3)
𝑛−1.

Proof. Consider (2.2) and (2.4) we can write

𝐽𝐷
(3)
𝑛+2 + 𝐽𝐷

(3)
𝑛+1 + 𝐽𝐷(3)

𝑛 = 𝐽
(3)
𝑛+2 + 𝐽

(3)
𝑛+1 + 𝐽 (3)

𝑛 + 𝜀(𝐽
(3)
𝑛+3 + 𝐽

(3)
𝑛+2 + 𝐽

(3)
𝑛+1).

Using the identity 𝐽
(3)
𝑛+2 + 𝐽

(3)
𝑛+1 + 𝐽

(3)
𝑛 = 2𝑛+1, the above sum can be calculated as

𝐽𝐷
(3)
𝑛+2 + 𝐽𝐷

(3)
𝑛+1 + 𝐽𝐷(3)

𝑛 = 2𝑛+1 + 2𝑛+2𝜀,

which can be simplified as 𝐽𝐷(3)
𝑛+2+𝐽𝐷

(3)
𝑛+1+𝐽𝐷

(3)
𝑛 = 2𝑛+1(1+2𝜀). Now, using (1.7)

and (2.2) we can write 𝐽𝐷
(3)
𝑛+2 − 4𝐽𝐷

(3)
𝑛 = 1− 2𝜀 if 𝑛 ≡ 1(mod 3) and similarly in

the other cases, this proves (2.8). Now, from the definition of third order Jacobsthal
number, dual third order Jacobsthal number in Eq. (2.2), the equations

(︁
𝐽
(3)
𝑛+1

)︁2
+
(︁
𝐽 (3)
𝑛

)︁2
+ 4𝐽 (3)

𝑛 𝐽
(3)
𝑛−1 = 𝐽

(3)
2𝑛+1
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and 𝐽
(3)
𝑛 𝐽

(3)
𝑚+1 + (𝐽

(3)
𝑛−1 + 2𝐽

(3)
𝑛−2)𝐽

(3)
𝑚 + 2𝐽

(3)
𝑛−1𝐽

(3)
𝑚−1 = 𝐽

(3)
𝑛+𝑚 (see Waddill and Sacks

[16]), we get

𝐽𝐷(3)
𝑛 𝐽𝐷

(3)
𝑚+1 + (𝐽𝐷

(3)
𝑛−1 + 2𝐽𝐷

(3)
𝑛−2)𝐽𝐷

(3)
𝑚 + 2𝐽𝐷

(3)
𝑛−1𝐽𝐷

(3)
𝑚−1

= (𝐽 (3)
𝑛 + 𝜀𝐽

(3)
𝑛+1)(𝐽

(3)
𝑚+1 + 𝜀𝐽

(3)
𝑚+2)

+ ((𝐽
(3)
𝑛−1 + 2𝐽

(3)
𝑛−2) + 𝜀(𝐽 (3)

𝑛 + 2𝐽
(3)
𝑛−1))(𝐽

(3)
𝑚 + 𝜀𝐽

(3)
𝑚+1)

+ 2(𝐽
(3)
𝑛−1 + 𝜀𝐽 (3)

𝑛 )(𝐽
(3)
𝑚−1 + 𝜀𝐽 (3)

𝑚 )

= (𝐽 (3)
𝑛 𝐽

(3)
𝑚+1 + (𝐽

(3)
𝑛−1 + 2𝐽

(3)
𝑛−2)𝐽

(3)
𝑚 + 2𝐽

(3)
𝑛−1𝐽

(3)
𝑚−1)

+ 𝜀(𝐽 (3)
𝑛 𝐽

(3)
𝑚+2 + (𝐽

(3)
𝑛−1 + 2𝐽

(3)
𝑛−2)𝐽

(3)
𝑚+1 + 2𝐽

(3)
𝑛−1𝐽

(3)
𝑚 )

+ 𝜀(𝐽
(3)
𝑛+1𝐽

(3)
𝑚+1 + (𝐽 (3)

𝑛 + 2𝐽
(3)
𝑛−1)𝐽

(3)
𝑚 + 2𝐽 (3)

𝑛 𝐽
(3)
𝑚−1)

= (𝐽
(3)
𝑛+𝑚 + 𝜀𝐽

(3)
𝑛+𝑚+1) + 𝜀𝐽

(3)
𝑛+𝑚+1

= 𝐽𝐷
(3)
𝑛+𝑚 + 𝜀𝐽

(3)
𝑛+𝑚+1.

(2.10)

Finally, if we consider first 𝑛 = 𝑛+ 1 and 𝑚 = 𝑛 in above result (2.10), we obtain

(︁
𝐽𝐷

(3)
𝑛+1

)︁2
+
(︁
𝐽𝐷(3)

𝑛

)︁2
+ 4𝐽𝐷(3)

𝑛 𝐽𝐷
(3)
𝑛−1 = 𝐽𝐷

(3)
2𝑛+1 + 𝜀𝐽

(3)
2𝑛+2,

which is the assertion (2.9) of theorem.

The following theorem deals with two relations between the dual third-order
Jacobsthal and dual third-order Jacobsthal–Lucas numbers.

Theorem 2.2. Let 𝑛 ≥ 0 be integer. Then,

𝑗𝐷
(3)
𝑛+3 − 3𝐽𝐷

(3)
𝑛+3 = 2𝑗𝐷(3)

𝑛 , (2.11)

𝑗𝐷(3)
𝑛 + 𝑗𝐷

(3)
𝑛+1 = 3𝐽𝐷

(3)
𝑛+2, (2.12)

𝑗𝐷(3)
𝑛 − 𝐽𝐷

(3)
𝑛+2 =

⎧
⎨
⎩

1− 𝜀 if 𝑛 ≡ 0 (mod 3)
−1 if 𝑛 ≡ 1 (mod 3)
𝜀 if 𝑛 ≡ 2 (mod 3)

, (2.13)

𝑗𝐷(3)
𝑛 − 4𝐽𝐷(3)

𝑛 =

⎧
⎨
⎩

2− 3𝜀 if 𝑛 ≡ 0 (mod 3)
−3 + 𝜀 if 𝑛 ≡ 1 (mod 3)
1 + 2𝜀 if 𝑛 ≡ 2 (mod 3)

. (2.14)

Proof. The following recurrence relation

𝑗𝐷
(3)
𝑛+3 − 3𝐽𝐷

(3)
𝑛+3 = (𝑗

(3)
𝑛+3 − 3𝐽

(3)
𝑛+3) + 𝜀(𝑗

(3)
𝑛+4 − 3𝐽

(3)
𝑛+4) (2.15)

can be readily written considering that 𝐽𝐷
(3)
𝑛 = 𝐽

(3)
𝑛 + 𝜀𝐽

(3)
𝑛+1 and 𝑗𝐷

(3)
𝑛 = 𝑗

(3)
𝑛 +

𝜀𝑗
(3)
𝑛+1. Notice that 𝑗(3)𝑛+3−3𝐽

(3)
𝑛+3 = 2𝑗

(3)
𝑛 from (1.6) (see [7]), whence it follows that
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(2.15) can be rewritten as 𝑗𝐷(3)
𝑛+3−3𝐽𝐷

(3)
𝑛+3 = 2𝑗𝐷

(3)
𝑛 from which the desired result

(2.11) of Theorem 2.2. In a similar way we can show the second equality. By using
the identity 𝑗

(3)
𝑛 + 𝑗

(3)
𝑛+1 = 3𝐽

(3)
𝑛+2 we have

𝑗𝐷(3)
𝑛 + 𝑗𝐷

(3)
𝑛+1 = 3(𝐽

(3)
𝑛+2 + 𝜀𝐽

(3)
𝑛+3),

which is the assertion (2.12) of theorem.
By using the identity 𝑗

(3)
𝑛 − 𝐽

(3)
𝑛+2 = 1 from (1.10) (see [7]) we have

𝑗𝐷(3)
𝑛 − 𝐽𝐷

(3)
𝑛+2 = (𝑗(3)𝑛 − 𝐽

(3)
𝑛+2) + 𝜀(𝑗

(3)
𝑛+1 − 𝐽

(3)
𝑛+3) = 1− 𝜀

if 𝑛 ≡ 0(mod 3), the other identities are clear from equation (1.10). Finally, the
proof of Eq. (2.14) is similar to (2.13) by using (1.8).

Now, we use the notation

𝐻𝑛(𝑎, 𝑏) =
𝐴𝜔𝑛

1 −𝐵𝜔𝑛
2

𝜔1 − 𝜔2
=

⎧
⎨
⎩

𝑎 if 𝑛 ≡ 0 (mod 3)
𝑏 if 𝑛 ≡ 1 (mod 3)

−(𝑎+ 𝑏) if 𝑛 ≡ 2 (mod 3)
, (2.16)

where 𝐴 = 𝑏−𝑎𝜔2 and 𝐵 = 𝑏−𝑎𝜔1, in which 𝜔1 and 𝜔2 are the complex conjugate
cube roots of unity (i.e. 𝜔3

1 = 𝜔3
2 = 1). Furthermore, note that for all 𝑛 ≥ 0 we

have
𝐻𝑛+2(𝑎, 𝑏) = −𝐻𝑛+1(𝑎, 𝑏)−𝐻𝑛(𝑎, 𝑏),

where 𝐻0(𝑎, 𝑏) = 𝑎 and 𝐻1(𝑎, 𝑏) = 𝑏.
From the Binet formulas (1.13), (1.14) and Eq. (2.16), we have

𝐽 (3)
𝑛 =

1

7

(︀
2𝑛+1 − 𝑉𝑛

)︀
and 𝑗(3)𝑛 =

1

7

(︀
2𝑛+3 + 3𝑉𝑛

)︀
,

where 𝑉𝑛 = 𝐻𝑛(2,−3). Then, for 𝑚 ≥ 𝑛:

𝐽 (3)
𝑚 𝐽

(3)
𝑛+1 − 𝐽

(3)
𝑚+1𝐽

(3)
𝑛 =

1

49

(︂
(2𝑚+1 − 𝑉𝑚)(2𝑛+2 − 𝑉𝑛+1)
−(2𝑚+2 − 𝑉𝑚+1)(2

𝑛+1 − 𝑉𝑛)

)︂

=
1

49

(︂
−2𝑚+1𝑉𝑛+1 − 2𝑛+2𝑉𝑚 + 2𝑚+2𝑉𝑛 + 2𝑛+1𝑉𝑚+1

+𝑉𝑚𝑉𝑛+1 − 𝑉𝑚+1𝑉𝑛

)︂

=
1

7

(︀
2𝑚+1𝑈𝑛+1 − 2𝑛+1𝑈𝑚+1 + 𝑈𝑚−𝑛

)︀
, (2.17)

where 𝑈𝑛+1 = 1
7 (2𝑉𝑛 − 𝑉𝑛+1) = 𝐻𝑛+1(0, 1) and 𝑉𝑛 = 𝐻𝑛(2,−3). Furthermore, if

𝑚 = 𝑛+ 1 in Eq. (2.17), we obtain for 𝑛 ≥ 0,

𝐽
(3)
𝑛+2𝐽

(3)
𝑛 −

(︁
𝐽
(3)
𝑛+1

)︁2
=

1

7

(︀
2𝑛+1𝑉−(𝑛+2) − 1

)︀
, (2.18)

where 𝑉−𝑛 = 𝑈𝑛 − 2𝑈𝑛+2 = 𝐻𝑛(2, 1).
Using the above notation, the following theorem investigate a type of Cassini

identity for this numbers.
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Theorem 2.3. For 𝑛 ≥ 0, the Cassini-like identity for dual third-order Jacobsthal
number 𝐽𝐷

(3)
𝑛 is given by

𝐽𝐷
(3)
𝑛+2𝐽𝐷

(3)
𝑛 −

(︁
𝐽𝐷

(3)
𝑛+1

)︁2

=
1

7

(︀
2𝑛+1𝑉 𝐷−(𝑛+2) + (−1 + 𝜀(2𝑛+2𝑉−(𝑛+2) + 1))

)︀
, (2.19)

where 𝑉−𝑛 = 𝐻𝑛(2, 1) and 𝑉 𝐷−𝑛 = 𝑉−𝑛 + 𝜀𝑉−(𝑛+1).

Proof. From Eqs. (2.2) and (2.4), the identity (2.18) for third-order Jacobsthal
numbers and 𝑛 = 𝑚+ 2 in Eq. (2.17), we get

𝐽𝐷
(3)
𝑛+2𝐽𝐷

(3)
𝑛 −

(︁
𝐽𝐷

(3)
𝑛+1

)︁2

=
(︁
𝐽
(3)
𝑛+2 + 𝜀𝐽

(3)
𝑛+3

)︁(︁
𝐽 (3)
𝑛 + 𝜀𝐽

(3)
𝑛+1

)︁
−
(︁
𝐽
(3)
𝑛+1 + 𝜀𝐽

(3)
𝑛+2

)︁2

=

(︂
𝐽
(3)
𝑛+2𝐽

(3)
𝑛 −

(︁
𝐽
(3)
𝑛+1

)︁2)︂
+ 𝜀

(︁
𝐽
(3)
𝑛+3𝐽

(3)
𝑛 − 𝐽

(3)
𝑛+1𝐽

(3)
𝑛+2

)︁

=
1

7

(︀
2𝑛+1𝑉−(𝑛+2) − 1

)︀
+

𝜀

7

(︀
2𝑛+1(𝑉−𝑛 + 2𝑉−(𝑛+2)) + 1

)︀
,

where 𝑈𝑛 − 4𝑈𝑛+1 = 𝑉−𝑛 + 2𝑉−(𝑛+2) = 𝐻𝑛(−4, 5).
Furthermore, using 𝑉 𝐷−(𝑛+2) = 𝑉−(𝑛+2) + 𝜀𝑉−𝑛, we obtain the next result

𝐽𝐷
(3)
𝑛+2𝐽𝐷

(3)
𝑛 −

(︁
𝐽𝐷

(3)
𝑛+1

)︁2
=

1

7

(︀
2𝑛+1𝑉−(𝑛+2) − 1 + 2𝑛+1𝜀(𝑉−𝑛 + 2𝑉−(𝑛+2)) + 𝜀

)︀

=
1

7

(︀
2𝑛+1𝑉 𝐷−(𝑛+2) + (−1 + 𝜀(2𝑛+2𝑉−(𝑛+2) + 1))

)︀
.

we reach (2.19).

Theorem 2.4. If 𝐽𝐷(3)
𝑛 is a dual third-order Jacobsthal number, then the limit of

consecutive quotients of this numbers is

lim
𝑛→∞

𝐽𝐷
(3)
𝑛+1

𝐽𝐷
(3)
𝑛

= lim
𝑛→∞

(︃
𝐽
(3)
𝑛+1 + 𝜀𝐽

(3)
𝑛+2

𝐽
(3)
𝑛 + 𝜀𝐽

(3)
𝑛+1

)︃
= 2. (2.20)

Proof. The limit of consecutive quotients of third order Jacosbthal numbers ap-

proaches to the radio 𝐽
(3)
𝑛+1

𝐽
(3)
𝑛

→ 2 if 𝑛 → ∞ (See [7]). From the previous limit,
Eqs. (2.2) and (2.18), we have

lim
𝑛→∞

𝐽
(3)
𝑛+1 + 𝜀𝐽

(3)
𝑛+2

𝐽
(3)
𝑛 + 𝜀𝐽

(3)
𝑛+1

= lim
𝑛→∞

⎛
⎜⎜⎝
𝐽
(3)
𝑛 𝐽

(3)
𝑛+1 + 𝜀

(︂
𝐽
(3)
𝑛+2𝐽

(3)
𝑛 −

(︁
𝐽
(3)
𝑛+1

)︁2)︂

(︁
𝐽
(3)
𝑛

)︁2

⎞
⎟⎟⎠

= lim
𝑛→∞

𝐽
(3)
𝑛+1

𝐽
(3)
𝑛

+ 𝜀 lim
𝑛→∞

⎛
⎜⎝
2𝑛+1𝑉−(𝑛+2) − 1

7
(︁
𝐽
(3)
𝑛

)︁2

⎞
⎟⎠ ,

(2.21)
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where 𝑉−𝑛 = 𝐻𝑛(2, 1). In last equality of (2.21), by using 𝑉−𝑛 = 𝐻𝑛(2, 1) (see
Eq. (2.16)), lim𝑛→∞ 2𝑛+1

7𝐽
(3)
𝑛

= 1 and

lim
𝑛→∞

(︃
𝐽
(3)
𝑛+2 − 2𝐽

(3)
𝑛+1

𝐽
(3)
𝑛

)︃
= lim

𝑛→∞

(︃
𝐽
(3)
𝑛+2

𝐽
(3)
𝑛

− 4
𝐽
(3)
𝑛+1

𝐽
(3)
𝑛

)︃
= 0,

we find zero for the second limit. Thus, the result (2.20) is true.

3. Dual third-order Jacobsthal vectors

A dual vector in D3 is given by
−→
𝑑 = −→𝑎 + 𝜀

−→
𝑏 where −→𝑎 ,

−→
𝑏 ∈ R3. Now, we will give

dual third-order Jacobsthal vectors and geometric properties of them.
A dual third-order Jacobsthal vector is defined by

−−−→
𝐽𝐷(3)

𝑛 =
−−→
𝐽 (3)
𝑛 + 𝜀

−−−→
𝐽
(3)
𝑛+1, 𝑛 ≥ 0, (3.1)

where
−−→
𝐽
(3)
𝑛 =

(︁
𝐽
(3)
𝑛 , 𝐽

(3)
𝑛+1, 𝐽

(3)
𝑛+2

)︁
and

−−−→
𝐽
(3)
𝑛+1 =

(︁
𝐽
(3)
𝑛+1, 𝐽

(3)
𝑛+2, 𝐽

(3)
𝑛+3

)︁
are real vectors

in R3 with 𝑛-th third-order Jacobsthal number 𝐽
(3)
𝑛 .

The dual third-order Jacobsthal vector
−−−→
𝐽𝐷

(3)
𝑛 is also can be expressed as

−−−→
𝐽𝐷(3)

𝑛 =
(︁
𝐽𝐷(3)

𝑛 , 𝐽𝐷
(3)
𝑛+1, 𝐽𝐷

(3)
𝑛+2

)︁
,

where 𝐽𝐷
(3)
𝑛 is the 𝑛-th dual third-order Jacobsthal number. For example, the first

three dual third-order Jacobsthal vectors can be given easily as

−−−→
𝐽𝐷

(3)
0 = (𝜀, 1 + 𝜀, 1 + 2𝜀) ,

−−−→
𝐽𝐷

(3)
1 = (1 + 𝜀, 1 + 2𝜀, 2 + 5𝜀) ,

−−−→
𝐽𝐷

(3)
2 = (1 + 2𝜀, 2 + 5𝜀, 5 + 9𝜀) .

Let
−−−→
𝐽𝐷

(3)
𝑛 and

−−−→
𝐽𝐷

(3)
𝑚 be two dual third-order Jacobsthal vectors and 𝜆 ∈ R[𝜀]

be a dual number. Then the product of the dual third-order Jacobsthal vector and
the scalar 𝜆 is given by

𝜆 ·
−−−→
𝐽𝐷(3)

𝑛 = 𝜆
−−→
𝐽 (3)
𝑛 + 𝜀𝜆

−−−→
𝐽
(3)
𝑛+1.

Furthermore,
−−−→
𝐽𝐷

(3)
𝑛 =

−−−→
𝐽𝐷

(3)
𝑚 if and only if 𝐽𝐷(3)

𝑛 = 𝐽𝐷
(3)
𝑚 , 𝐽𝐷(3)

𝑛+1 = 𝐽𝐷
(3)
𝑚+1

and 𝐽𝐷
(3)
𝑛+2 = 𝐽𝐷

(3)
𝑚+2, where 𝐽𝐷

(3)
𝑛 = 𝐽

(3)
𝑛 + 𝜀𝐽

(3)
𝑛+1.
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Theorem 3.1. The dual third-order Jacobsthal vector
−−−→
𝐽𝐷

(3)
𝑛 is a dual unit vector

if and only if

3 · 22(𝑛+1) − 2𝑛+2𝑈𝑛 = 5 and 3 · 22𝑛+3 − 2𝑛+1(𝑈𝑛 − 𝑈𝑛+2) = 1, (3.2)

where 𝑈𝑛 = 𝐻𝑛(0, 1).

Proof. By using the definitions of third-order Jacobsthal numbers, Eq. (3.1) and
the identities 𝑉𝑛𝑉𝑛+1 + 𝑉𝑛+1𝑉𝑛+2 + 𝑉𝑛+2𝑉𝑛+3 = −7 and 𝑉 2

𝑛 + 𝑉 2
𝑛+1 + 𝑉 2

𝑛+2 = 14
(see Eq. (2.16)) we get the following statements

⃦⃦
⃦⃦−−→𝐽 (3)

𝑛

⃦⃦
⃦⃦
2

=
(︁
𝐽 (3)
𝑛

)︁2
+
(︁
𝐽
(3)
𝑛+1

)︁2
+
(︁
𝐽
(3)
𝑛+2

)︁2

=
1

49

(︁(︀
2𝑛+1 − 𝑉𝑛

)︀2
+
(︀
2𝑛+2 − 𝑉𝑛+1

)︀2
+
(︀
2𝑛+3 − 𝑉𝑛+2

)︀2)︁

=
1

49

(︁
21 · 22(𝑛+1) − 2𝑛+2(𝑉𝑛 + 2𝑉𝑛+1 + 4𝑉𝑛+2) + 14

)︁

=
1

7

(︁
3 · 22(𝑛+1) − 2𝑛+2𝑈𝑛 + 2

)︁

and

𝐽 (3)
𝑛 𝐽

(3)
𝑛+1+𝐽

(3)
𝑛+1𝐽

(3)
𝑛+2 + 𝐽

(3)
𝑛+2𝐽

(3)
𝑛+3

=
1

49

(︂
(2𝑛+1 − 𝑉𝑛)(2

𝑛+2 − 𝑉𝑛+1) + (2𝑛+2 − 𝑉𝑛+1)(2
𝑛+3 − 𝑉𝑛+2)

+(2𝑛+3 − 𝑉𝑛+2)(2
𝑛+4 − 𝑉𝑛+3)

)︂

=
1

49

(︂
21 · 22𝑛+3 − 2𝑛+1(4𝑉𝑛+3 + 10𝑉𝑛+2 + 5𝑉𝑛+1 + 2𝑉𝑛)

+𝑉𝑛𝑉𝑛+1 + 𝑉𝑛+1𝑉𝑛+2 + 𝑉𝑛+2𝑉𝑛+3

)︂

=
1

7

(︀
3 · 22𝑛+3 − 2𝑛+1(𝑈𝑛 − 𝑈𝑛+2)− 1

)︀
,

where 7𝑈𝑛 = 3𝑉𝑛+2 + 𝑉𝑛+1, 𝑉𝑛 + 5𝑉𝑛+2 = 𝑈𝑛 − 𝑈𝑛+2 and 𝑈𝑛 = 𝐻𝑛(0, 1).

Using that
⃦⃦
⃦⃦
−−−→
𝐽𝐷

(3)
𝑛

⃦⃦
⃦⃦ = 1 if and only if

⃦⃦
⃦⃦
−−→
𝐽
(3)
𝑛

⃦⃦
⃦⃦ = 1 and

⟨−−→
𝐽
(3)
𝑛 ,

−−−→
𝐽
(3)
𝑛+1

⟩
= 0 (see

Eq. (1.2)) and above calculations, we easily reach the result (3.2).

Now, if
−→
𝑑1 = −→𝑎1 + 𝜀

−→
𝑏1 and

−→
𝑑2 = −→𝑎2 + 𝜀

−→
𝑏2 are two dual vectors, then the dot

product and cross product of them are given respectively by
⟨−→
𝑑1,

−→
𝑑2

⟩
= ⟨−→𝑎1,−→𝑎2⟩+ 𝜀

(︁⟨−→𝑎1,
−→
𝑏2

⟩
+
⟨−→
𝑏1 ,

−→𝑎2
⟩)︁

,

−→
𝑑1 ×

−→
𝑑2 = −→𝑎1 ×−→𝑎2 + 𝜀

(︁−→𝑎1 ×
−→
𝑏2 +

−→
𝑏1 ×−→𝑎2

)︁
.

(3.3)

(For more details, see [9]).

Theorem 3.2. Let
−−−→
𝐽𝐷

(3)
𝑛 and

−−−→
𝐽𝐷

(3)
𝑚 be two dual third-order Jacobsthal vectors.

The dot product of these two vectors is given by
⟨−−−→
𝐽𝐷(3)

𝑛 ,
−−−→
𝐽𝐷(3)

𝑚

⟩
=

1

7

(︂
3 · 2𝑛+𝑚+2(1 + 4𝜀)− 2𝑛+1(𝑈𝐷𝑚 + 2𝜀𝑈𝑚)

−2𝑚+1(𝑈𝐷𝑛 + 𝜀𝑈𝑛) +𝑊𝑛−𝑚(1− 𝜀)

)︂
, (3.4)
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where 𝑈𝑛 = 𝐻𝑛(0, 1), 𝑊𝑛 = 𝐻𝑛(2,−1) and 𝑈𝐷𝑛 = 𝑈𝑛 + 𝜀𝑈𝑛+1.

Proof. If
−−−→
𝐽𝐷

(3)
𝑛 =

−−→
𝐽
(3)
𝑛 + 𝜀

−−−→
𝐽
(3)
𝑛+1 and

−−−→
𝐽𝐷

(3)
𝑚 =

−−→
𝐽
(3)
𝑚 + 𝜀

−−−→
𝐽
(3)
𝑚+1 are two dual vectors,

then the dot product of them are given respectively by
⟨−−−→
𝐽𝐷(3)

𝑛 ,
−−−→
𝐽𝐷(3)

𝑚

⟩
=

⟨−−→
𝐽 (3)
𝑛 ,

−−→
𝐽 (3)
𝑚

⟩
+ 𝜀

(︂⟨−−→
𝐽 (3)
𝑛 ,

−−−→
𝐽
(3)
𝑚+1

⟩
+

⟨−−−→
𝐽
(3)
𝑛+1,

−−→
𝐽 (3)
𝑚

⟩)︂

= 𝐽 (3)
𝑛 𝐽 (3)

𝑚 + 𝐽
(3)
𝑛+1𝐽

(3)
𝑚+1 + 𝐽

(3)
𝑛+2𝐽

(3)
𝑚+2

+ 𝜀

(︃
𝐽
(3)
𝑛 𝐽

(3)
𝑚+1 + 𝐽

(3)
𝑛+1𝐽

(3)
𝑚+2 + 𝐽

(3)
𝑛+2𝐽

(3)
𝑚+3

+𝐽
(3)
𝑛+1𝐽

(3)
𝑚 + 𝐽

(3)
𝑛+2𝐽

(3)
𝑚+1 + 𝐽

(3)
𝑛+3𝐽

(3)
𝑚+2

)︃
.

By using the definition of third-order Jacobsthal number (1.13), the equations
(2.16) and (3.1), we have

𝐽 (3)
𝑛 𝐽 (3)

𝑚 + 𝐽
(3)
𝑛+1𝐽

(3)
𝑚+1 + 𝐽

(3)
𝑛+2𝐽

(3)
𝑚+2

=
1

49

(︂ (︀
2𝑛+1 − 𝑉𝑛

)︀ (︀
2𝑚+1 − 𝑉𝑚

)︀
+
(︀
2𝑛+2 − 𝑉𝑛+1

)︀ (︀
2𝑚+2 − 𝑉𝑚+1

)︀

+
(︀
2𝑛+3 − 𝑉𝑛+2

)︀ (︀
2𝑚+3 − 𝑉𝑚+2

)︀
)︂

=
1

49

(︂
21 · 2𝑛+𝑚+2 − 2𝑛+1(𝑉𝑚 + 2𝑉𝑚+1 + 4𝑉𝑚+2)

−2𝑚+1(𝑉𝑛 + 2𝑉𝑛+1 + 4𝑉𝑛+2) + 𝑉𝑛𝑉𝑚 + 𝑉𝑛+1𝑉𝑚+1 + 𝑉𝑛+2𝑉𝑚+2

)︂

=
1

7

(︀
3 · 2𝑛+𝑚+2 − 2𝑛+1𝑈𝑚 − 2𝑚+1𝑈𝑛 +𝑊𝑛−𝑚

)︀
,

where 𝑉𝑛+1 + 3𝑉𝑛+2 = 7𝑈𝑛 and 𝑊𝑛 = 𝐻𝑛(2,−1) = 𝜔𝑛
1 + 𝜔𝑛

2 . Then,
⟨−−−→
𝐽𝐷(3)

𝑛 ,
−−−→
𝐽𝐷(3)

𝑚

⟩
=

1

7

(︀
3 · 2𝑛+𝑚+2 − 2𝑛+1𝑈𝑚 − 2𝑚+1𝑈𝑛 +𝑊𝑛−𝑚

)︀

+
𝜀

7

(︀
3 · 2𝑛+𝑚+4 + 2𝑛+1𝑊𝑚+1 + 2𝑚+1𝑊𝑛+1 −𝑊𝑛−𝑚

)︀

=
1

7

(︂
3 · 2𝑛+𝑚+2(1 + 4𝜀)− 2𝑛+1(𝑈𝑚 − 𝜀𝑊𝑚+1)
−2𝑚+1(𝑈𝑛 − 𝜀𝑊𝑛+1) +𝑊𝑛−𝑚(1− 𝜀)

)︂
,

with 𝑈𝑛+1 + 2𝑈𝑛 = −𝑊𝑛+1, 𝑊𝑛 +𝑊𝑛+2 = −𝑊𝑛+1 and 𝑈𝐷𝑛 = 𝑈𝑛 + 𝜀𝑈𝑛+1, we
easily reach the result (3.4).

Theorem 3.3. For 𝑛,𝑚 ≥ 0. Let
−−−→
𝐽𝐷

(3)
𝑛 and

−−−→
𝐽𝐷

(3)
𝑚 be two dual third-order Jacob-

sthal vectors. The cross product of
−−−→
𝐽𝐷

(3)
𝑛 and

−−−→
𝐽𝐷

(3)
𝑚 is given by

−−−→
𝐽𝐷(3)

𝑛 ×
−−−→
𝐽𝐷(3)

𝑚 =
1

7

(︂
2𝑛+1(𝑍𝐷𝑚+1 + 2𝜀𝑍𝑚+1)− 2𝑚+1(𝑍𝐷𝑛+1 + 2𝜀𝑍𝑛+1)

+𝑈𝑛−𝑚(1− 𝜀)(i+ j+ k)

)︂
,

where 𝑍𝑛 = 2𝑈𝑛+1i+𝑊𝑛+1j+𝑈𝑛k, 𝑈𝑛 = 𝐻𝑛(0, 1), 𝑊𝑛 = 𝐻𝑛(2,−1), i = (1, 0, 0),
j = (0, 1, 0), k = (0, 0, 1) and 𝑍𝐷𝑛 = 𝑍𝑛 + 𝜀𝑍𝑛+1.
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Proof. From the equations (3.1) and (3.3), we get

−−−→
𝐽𝐷(3)

𝑛 ×
−−−→
𝐽𝐷(3)

𝑚 =
−−→
𝐽 (3)
𝑛 ×

−−→
𝐽 (3)
𝑚 + 𝜀

(︂−−→
𝐽 (3)
𝑛 ×

−−−→
𝐽
(3)
𝑚+1 +

−−−→
𝐽
(3)
𝑛+1 ×

−−→
𝐽 (3)
𝑚

)︂
. (3.5)

First, let us compute
−−→
𝐽
(3)
𝑛 ×

−−→
𝐽
(3)
𝑚 , if we use the properties of determinant to calculate

the cross product of two vectors, the equality

𝐽 (3)
𝑛 𝐽

(3)
𝑚+1 − 𝐽

(3)
𝑛+1𝐽

(3)
𝑚 =

1

7

(︀
2𝑛+1𝑈𝑚+1 − 2𝑚+1𝑈𝑛+1 + 𝑈𝑛−𝑚

)︀

(see (2.17)), 𝑈𝑛 = 𝐻𝑛(0, 1) and simplify the statements, we find that

−−→
𝐽 (3)
𝑛 ×

−−→
𝐽 (3)
𝑚 =

⃒⃒
⃒⃒
⃒⃒
⃒

i j k
𝐽
(3)
𝑛 𝐽

(3)
𝑛+1 𝐽

(3)
𝑛+2

𝐽
(3)
𝑚 𝐽

(3)
𝑚+1 𝐽

(3)
𝑚+2

⃒⃒
⃒⃒
⃒⃒
⃒

= i

⃒⃒
⃒⃒
⃒
𝐽
(3)
𝑛+1 𝐽

(3)
𝑛+2

𝐽
(3)
𝑚+1 𝐽

(3)
𝑚+2

⃒⃒
⃒⃒
⃒− j

⃒⃒
⃒⃒
⃒
𝐽
(3)
𝑛 𝐽

(3)
𝑛+2

𝐽
(3)
𝑚 𝐽

(3)
𝑚+2

⃒⃒
⃒⃒
⃒+ k

⃒⃒
⃒⃒
⃒
𝐽
(3)
𝑛 𝐽

(3)
𝑛+1

𝐽
(3)
𝑚 𝐽

(3)
𝑚+1

⃒⃒
⃒⃒
⃒

=
1

7

⎛
⎝

i(2𝑛+2𝑈𝑚+2 − 2𝑚+2𝑈𝑛+2 + 𝑈𝑛−𝑚)
−j(−2𝑛+1𝑊𝑚+2 + 2𝑚+1𝑊𝑛+2 − 𝑈𝑛−𝑚)
+k(2𝑛+1𝑈𝑚+1 − 2𝑚+1𝑈𝑛+1 + 𝑈𝑛−𝑚)

⎞
⎠

=
1

7

(︀
2𝑛+1𝑍𝑚+1 − 2𝑚+1𝑍𝑛+1 + 𝑈𝑛−𝑚(i + j + k)

)︀

(3.6)

where 𝑍𝑛 = 2𝑈𝑛+1i+𝑊𝑛+1j+ 𝑈𝑛k, 𝑈𝑛 = 𝐻𝑛(0, 1), 𝑊𝑛 = 𝐻𝑛(2,−1), i = (1, 0, 0),
j = (0, 1, 0) and k = (0, 0, 1). Putting the equation (3.6) in (3.5), and using the
definition of third-order Jacobsthal numbers, we obtain the result as
−−−→
𝐽𝐷(3)

𝑛 ×
−−−→
𝐽𝐷(3)

𝑚 =
1

7

(︀
2𝑛+1𝑍𝑚+1 − 2𝑚+1𝑍𝑛+1 + 𝑈𝑛−𝑚(i + j + k)

)︀

+
𝜀

7

(︂
2𝑛+1𝑍𝑚+2 − 2𝑚+2𝑍𝑛+1 + 𝑈𝑛−𝑚−1(i + j + k)
+2𝑛+2𝑍𝑚+1 − 2𝑚+1𝑍𝑛+2 + 𝑈𝑛−𝑚+1(i + j + k)

)︂

=
1

7

(︂
2𝑛+1(𝑍𝐷𝑚+1 + 2𝜀𝑍𝑚+1)− 2𝑚+1(𝑍𝐷𝑛+1 + 2𝜀𝑍𝑛+1)

+𝑈𝑛−𝑚(1− 𝜀)(i + j + k)

)︂
,

where 𝑍𝐷𝑚 = 𝑍𝑚 + 𝜀𝑍𝑚+1.

Acknowledgements. The author also thanks the suggestions sent by the re-
viewer, which have improved the final version of this article.

References

[1] M. Akyiğit, H. H. Kösal, M. Tosun: Split Fibonacci Quaternions. Adv. Appl. Clifford
Algebr. 23 (2013), pp. 535–545,
doi: https://doi.org/10.1007/s00006-013-0401-9.

A note on dual third-order Jacobsthal vectors 69



[2] P. Barry: Triangle Geometry and Jacobsthal Numbers. Irish Math. Soc. Bulletin 51.1
(2003), pp. 45–57.

[3] K. Carmody: Circular and Hyperbolic quaternions, octonions and sedenions. Appl. Math.
comput. 28 (1988), pp. 47–72.

[4] G. Cerda-Morales: Dual third-order Jacobsthal quaternions. Proyecciones Journal of Math-
ematics 37.4 (2018), pp. 731–747.

[5] G. Cerda-Morales: Identities for Third Order Jacobsthal Quaternions. Adv. Appl. Clifford
Algebr. 27.2 (2017), pp. 1043–1053,
doi: https://doi.org/10.1007/s00006-016-0654-1.

[6] G. Cerda-Morales: On the third-order Jacobsthal and third-order Jacobsthal-Lucas se-
quences and their matrix representations. Mediterr. J. Math. 16.2 (2019), pp. 1–12,
doi: https://doi.org/10.1007/s00009-019-1319-9.

[7] C. K. Cook, M. R. Bacon: Some identities for Jacobsthal and Jacobsthal-Lucas numbers
satisfying higher order recurrence relations. Ann. Math. Inform 41.1 (2013), pp. 27–39.

[8] M. Gogberashvili: Octonionic Geometry, Adv. Appl. Clifford Algebr. 15 (2005), pp. 55–
66,
doi: https://doi.org/10.1007/s00006-005-0003-2.

[9] İ. A. Güven, S. K. Nurkan: A New Approach To Fibonacci, Lucas Numbers and Dual
Vectors, Adv. Appl. Clifford Algebr. 25 (2015), pp. 577–590,
doi: https://doi.org/10.1007/s00006-014-0516-7.

[10] S. Halici: On Fibonacci quaternions, Adv. Appl. Clifford Algebr. 22 (2012), pp. 321–327,
doi: https://doi.org/10.1007/s00006-011-0317-1.

[11] A. F. Horadam: Complex Fibonacci numbers and Fibonacci quaternions. Am. Math. Month.
70.1 (1963), pp. 289–291.

[12] A. F. Horadam: Jacobsthal representation numbers. Fibonacci Quart. 34 (1996), pp. 40–54.

[13] A. F. Horadam: Quaternion recurrence relations. Ulam Quarterly 2 (1993), pp. 23–33.

[14] M. Iyer: A Note On Fibonacci Quaternions. Fibonacci Quart. 3.1 (1969), pp. 225–229.

[15] J. Köplinger: Hypernumbers and relativity, Appl. Math. Computation 188 (2007), pp. 954–
969,
doi: https://doi.org/10.1016/j.amc.2006.10.051.

[16] M. E. Waddill, L. Sacks: Another generalized Fibonacci sequence, Fibonacci Quart. 5
(1967), pp. 209–222.

70 G. Cerda-Morales



Binary quadratic forms and sums of powers
of integers

José Luis Cereceda

Collado Villalba 28400 – Madrid, Spain
jl.cereceda@movistar.es

Submitted: May 16, 2019
Accepted: February 8, 2020

Published online: February 15, 2020

Abstract

In this methodological paper, we first review the classic cubic Diophantine
equation 𝑎3 + 𝑏3 + 𝑐3 = 𝑑3, and consider the specific class of solutions 𝑞31 +
𝑞32 + 𝑞33 = 𝑞34 with each 𝑞𝑖 being a binary quadratic form. Next we turn
our attention to the familiar sums of powers of the first 𝑛 positive integers,
𝑆𝑘 = 1𝑘+2𝑘+· · ·+𝑛𝑘, and express the squares 𝑆2

𝑘, 𝑆2
𝑚, and the product 𝑆𝑘𝑆𝑚

as a linear combination of power sums. These expressions, along with the
above quadratic-form solution for the cubic equation, allows one to generate
an infinite number of relations of the form 𝑄3

1 + 𝑄3
2 + 𝑄3

3 = 𝑄3
4, with each

𝑄𝑖 being a linear combination of power sums. Also, we briefly consider the
quadratic Diophantine equations 𝑎2 + 𝑏2 + 𝑐2 = 𝑑2 and 𝑎2 + 𝑏2 = 𝑐2, and give
a family of corresponding solutions 𝑄2

1 + 𝑄2
2 + 𝑄2

3 = 𝑄2
4 and 𝑄2

1 + 𝑄2
2 = 𝑄2

3

in terms of sums of powers of integers.

Keywords: Diophantine equation, binary quadratic form, algebraic identity,
sums of powers of integers, product of power sums, Pythagorean quadruples

MSC: 11D25, 11B57

1. Introduction

Our starting point is the cubic Diophantine equation

𝑎3 + 𝑏3 + 𝑐3 = 𝑑3, 𝑎𝑏𝑐𝑑 ̸= 0. (1.1)

Annales Mathematicae et Informaticae
52 (2020) pp. 71–84
doi: https://doi.org/10.33039/ami.2020.02.002
url: https://ami.uni-eszterhazy.hu
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(Note that 𝑎𝑏𝑐𝑑 ̸= 0 as, by Fermat’s Last Theorem, we cannot have 𝑎3 + 𝑏3 = 𝑐3.)
As pointed out by Dickson in his comprehensive History of the Theory of Numbers,
the problem of finding the rational or integer (positive or negative) solutions to
Equation (1.1) can be traced back to Diophantus [11, p. 550]. A first parametric
solution was given by Vieta in 1591 [11, p. 551] and, in 1754, Euler found the most
general family of rational solutions to (1.1) (see [11, p. 552] and [9]). Much more
recently, Choudhry [8] obtained a complete solution of (1.1) in positive integers.

It is to be noted that there are several different formulations equivalent to the
general solution discovered by Euler. In his third notebook, Ramanujan provided
a family of solutions equivalent to Euler’s general solution that appears to be the
simplest of all [4, 7]. In addition to this general solution, Ramanujan also gave
some further families of parametric solutions to (1.1) as well as several numerical
examples. Specifically, in a problem submitted to the Journal of the Indian Math-
ematical Society, (Question 441, JIMS 5, p. 39, 1913), Ramanujan put forward the
following two-parameter solution to Equation (1.1) [5]:

(3𝑢2+5𝑢𝑣−5𝑣2)3+(4𝑢2−4𝑢𝑣+6𝑣2)3+(5𝑢2−5𝑢𝑣−3𝑣2)3 = (6𝑢2−4𝑢𝑣+4𝑣2)3. (1.2)

Relation (1.2) constitutes an algebraic identity and, as such, is satisfied by any real
or complex values of the parameters 𝑢 and 𝑣. As we are dealing with Diophantine
equations, however, it will be assumed that 𝑢 and 𝑣 take only rational or integer
values. In particular, putting 𝑢 = 1 and 𝑣 = 0 in (1.2) gives us the smallest positive
solution to (1.1), namely 33 + 43 + 53 = 63.

In this methodological paper, we search for solutions of the kind shown in
Equation (1.2), that is, solutions 𝑞31 + 𝑞32 + 𝑞33 = 𝑞34 for which each of the 𝑞𝑖’s
(𝑖 = 1, 2, 3, 4) adopts the form of a quadratic polynomial of two variables, say 𝑢
and 𝑣 (a binary quadratic form): 𝑞𝑖 = 𝛼𝑖𝑢

2+𝛽𝑖𝑢𝑣+𝛾𝑖𝑣
2, where 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖 take

integer (positive or negative) values. Our interest in this type of solutions stems
from the fact that, as explained in [12], by using the above identity 33+43+53 = 63

as a seed, one can generate quadratic-form formulas to Equation (1.1). Expanding
on this point, and borrowing a theorem of Sándor [22, Theorem 1], in Section 2
we show that, indeed, it is possible to construct quadratic-form representations for
the cubic equation (1.1) starting from any particular nontrivial solution to (1.1)
(see below for the definition of a trivial solution). The proof of this result given
by Sándor (which is essentially reproduced in Section 2) is particularly suitable for
our purpose since it utilizes only precalculus tools. Furthermore, Sándor’s theorem
allows one to readily produce a wealth of algebraic identities like that in Equation
(1.2) by simply adding and multiplying the integers 𝑎, 𝑏, 𝑐, and 𝑑 constituting a
particular (nontrivial) solution of (1.1).

In Section 3, we consider the familiar sums of powers of the first 𝑛 positive
integers, 𝑆𝑘 = 1𝑘 +2𝑘 + · · ·+𝑛𝑘 (with 𝑘 being a nonnegative integer), and express
the squares 𝑆2

𝑘, 𝑆2
𝑚, and the product 𝑆𝑘𝑆𝑚 as a linear combination of power sums.

In this way, using such expressions for 𝑆2
𝑘, 𝑆2

𝑚, and 𝑆𝑘𝑆𝑚, the following generic
quadratic form

𝑄𝑖(𝑘,𝑚, 𝑛) = 𝛼𝑖𝑆
2
𝑘 + 𝛽𝑖𝑆𝑘𝑆𝑚 + 𝛾𝑖𝑆

2
𝑚, (1.3)
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can be equally expressed as a linear combination of power sums. (Note that
𝑄𝑖(𝑘,𝑚, 𝑛) depends explicitly on 𝑛 through the power sums 𝑆𝑘 and 𝑆𝑚.) Therefore,
using the quadratic-form solutions obtained in Section 2, one can construct relation-
ships of the type 𝑄1(𝑘,𝑚, 𝑛)3 + 𝑄2(𝑘,𝑚, 𝑛)3 + 𝑄3(𝑘,𝑚, 𝑛)3 = 𝑄4(𝑘,𝑚, 𝑛)3, with
each 𝑄𝑖(𝑘,𝑚, 𝑛) being a linear combination of power sums. Moreover, substituting
each of the power sums in 𝑄𝑖(𝑘,𝑚, 𝑛) for its polynomial representation yields (for
fixed 𝑘 and 𝑚) algebraic identities of the form 𝑄1(𝑢)

3+𝑄2(𝑢)
3+𝑄3(𝑢)

3 = 𝑄4(𝑢)
3,

where each 𝑄𝑖(𝑢) is itself a polynomial in the real or complex variable 𝑢 (see, for
instance, Equation (3.8) below).

Finally, in Section 4 we briefly consider the quadratic Diophantine equation
𝑎2 + 𝑏2 + 𝑐2 = 𝑑2. Using a particularly simple quadratic-form solution for this
equation, we give a corresponding solution in terms of 𝑆𝑘 and 𝑆2

𝑘 (see Equation
(4.4) below). On the other hand, starting from an almost trivial identity, we
give a family of Pythagorean triangles whose side lengths are given by |𝑆2

𝑘 − 𝑆2
𝑚|,

2𝑆𝑘𝑆𝑚, and 𝑆2
𝑘 +𝑆2

𝑚. As a by-product, we also obtain a family of solutions for the
Diophantine equation 𝑎2 + 𝑏2 = 𝑐2 + 𝑑2.

From a pedagogical point of view, this methodological paper could be of inter-
est to both high school and college students for the following reasons. On the one
hand, it shows in an elementary way how to obtain systematically quadratic-form
solutions for the cubic equation (1.1). In this regard, as we shall see, Sándor’s
theorem proves to be extremely useful to this end since it provides a fairly elemen-
tary yet powerful method to generate quadratic-form formulas 𝑞31 + 𝑞32 + 𝑞33 = 𝑞34
for Equation (1.1). On the other hand, we introduce some well-known formulas
(though rarely found in the current literature) involving sums of powers of integers,
in particular that expressing the product 𝑆𝑘𝑆𝑚 as a linear combination of 𝑆𝑗 ’s. Us-
ing these formulas, and with the aid of a computer algebra system, students ought
reliably compute the quadratic form in Equation (1.3) for a variety of values of
the parameters. Last, but not least, equipped with the given formulas for 𝑆𝑘𝑆𝑚,
𝑆2
𝑘, 𝑆𝑘

1 , and 𝑆2𝑆
𝑘
1 , students might want to explore other low degree Diophantine

equations (see, in this respect, [3, Chapter 2]) and recast some of their solutions in
terms of sums of powers of integers.

2. Quadratic solutions for the cubic equation

As was anticipated in the introduction, we shall make use of a theorem of Sándor
(see [22, Theorem 1]) in order to construct two-parameter quadratic solutions for
the cubic equation (1.1). Following Sándor, we say that a solution of (1.1) is trivial
if 𝑑 = 𝑎 or 𝑑 = 𝑏 or 𝑑 = 𝑐. The said theorem, adapted to our notation, is as follows.

Theorem 2.1. If (𝑎, 𝑏, 𝑐, 𝑑) is a nontrivial integer solution of (1.1) then for any
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integer values of 𝑢 and 𝑣

𝑞1 = 𝑎(𝑎+ 𝑐)𝑢2 + (𝑑− 𝑏)(𝑑+ 𝑏)𝑢𝑣 − 𝑐(𝑑− 𝑏)𝑣2,

𝑞2 = 𝑏(𝑎+ 𝑐)𝑢2 − (𝑐− 𝑎)(𝑐+ 𝑎)𝑢𝑣 + 𝑑(𝑑− 𝑏)𝑣2,

𝑞3 = 𝑐(𝑎+ 𝑐)𝑢2 − (𝑑− 𝑏)(𝑑+ 𝑏)𝑢𝑣 − 𝑎(𝑑− 𝑏)𝑣2,

𝑞4 = 𝑑(𝑎+ 𝑐)𝑢2 − (𝑐− 𝑎)(𝑐+ 𝑎)𝑢𝑣 + 𝑏(𝑑− 𝑏)𝑣2,

(2.1)

satisfy 𝑞31 + 𝑞32 + 𝑞33 = 𝑞34.

Proof. As noted by Sándor, relations (2.1) can be obtained by generalizing Ra-
manujan’s quadratic solution (1.2) but, following [22], we will give a simpler proof
of Theorem 2.1 employing a technique devised by Nicholson [18]. Thus, let 𝑎3 +
𝑏3 + 𝑐3 = 𝑑3 be a nontrivial solution of (1.1), and consider Nicholson’s parametric
equation [22]

(︀
𝑢𝑥− 𝑐𝑦

)︀3
+
(︀
− 𝑢𝑥− 𝑎𝑦

)︀3
+
(︀
𝑣𝑥− 𝑏𝑦

)︀3
=
(︀
𝑣𝑥− 𝑑𝑦

)︀3
. (2.2)

Expanding in (2.2) and using the constraint 𝑎3+𝑏3+𝑐3 = 𝑑3, the cubic terms vanish
and we are left with an equation involving only quadratic and linear exponents,
namely

− 3𝑢2𝑥2𝑐𝑦 + 3𝑢𝑥𝑐2𝑦2 − 3𝑢2𝑥2𝑎𝑦 − 3𝑢𝑥𝑎2𝑦2 − 3𝑣2𝑥2𝑏𝑦

+ 3𝑣𝑥𝑏2𝑦2 = −3𝑣2𝑥2𝑑𝑦 + 3𝑣𝑥𝑑2𝑦2.

Dividing throughout by the common factor 3𝑥𝑦 gives

𝑥
(︀
𝑑𝑣2 − 𝑏𝑣2 − 𝑐𝑢2 − 𝑎𝑢2

)︀
= 𝑦
(︀
𝑑2𝑣 − 𝑏2𝑣 + 𝑎2𝑢− 𝑐2𝑢

)︀
.

Clearly, the values 𝑥 = 𝑑2𝑣− 𝑏2𝑣+ 𝑎2𝑢− 𝑐2𝑢 and 𝑦 = 𝑑𝑣2 − 𝑏𝑣2 − 𝑐𝑢2 − 𝑎𝑢2 satisfy
the equation, and then we obtain

𝑢𝑥− 𝑐𝑦 = 𝑢
(︀
𝑑2𝑣 − 𝑏2𝑣 + 𝑎2𝑢− 𝑐2𝑢

)︀
− 𝑐
(︀
𝑑𝑣2 − 𝑏𝑣2 − 𝑐𝑢2 − 𝑎𝑢2

)︀

= 𝑎(𝑎+ 𝑐)𝑢2 + (𝑑− 𝑏)(𝑑+ 𝑏)𝑢𝑣 − 𝑐(𝑑− 𝑏)𝑣2,

−𝑢𝑥− 𝑎𝑦 = −𝑢
(︀
𝑑2𝑣 − 𝑏2𝑣 + 𝑎2𝑢− 𝑐2𝑢

)︀
− 𝑎
(︀
𝑑𝑣2 − 𝑏𝑣2 − 𝑐𝑢2 − 𝑎𝑢2

)︀

= 𝑏(𝑎+ 𝑐)𝑢2 − (𝑐− 𝑎)(𝑐+ 𝑎)𝑢𝑣 + 𝑑(𝑑− 𝑏)𝑣2,

𝑣𝑥− 𝑏𝑦 = 𝑣
(︀
𝑑2𝑣 − 𝑏2𝑣 + 𝑎2𝑢− 𝑐2𝑢

)︀
− 𝑏
(︀
𝑑𝑣2 − 𝑏𝑣2 − 𝑐𝑢2 − 𝑎𝑢2

)︀

= 𝑐(𝑎+ 𝑐)𝑢2 − (𝑑− 𝑏)(𝑑+ 𝑏)𝑢𝑣 − 𝑎(𝑑− 𝑏)𝑣2,

𝑣𝑥− 𝑑𝑦 = 𝑣
(︀
𝑑2𝑣 − 𝑏2𝑣 + 𝑎2𝑢− 𝑐2𝑢

)︀
− 𝑑
(︀
𝑑𝑣2 − 𝑏𝑣2 − 𝑐𝑢2 − 𝑎𝑢2

)︀

= 𝑑(𝑎+ 𝑐)𝑢2 − (𝑐− 𝑎)(𝑐+ 𝑎)𝑢𝑣 + 𝑏(𝑑− 𝑏)𝑣2.

Nicholson’s parametric equation (2.2) then guarantees that 𝑞31 + 𝑞32 + 𝑞33 = 𝑞34 , with
the 𝑞𝑖’s being given by Equations (2.1).
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Let us consider a few examples illustrating the application of Theorem 2.1. In
each case, starting from a given (nontrivial) integer solution (𝑎, 𝑏, 𝑐, 𝑑) to (1.1), it
generates a two-parameter family of solutions (𝑞1, 𝑞2, 𝑞3, 𝑞4) satisfying (1.1):

1. Substituting (𝑎, 𝑏, 𝑐, 𝑑) = (3, 4, 5, 6) into Equations (2.1), dividing by 2, and
using the linear transformation 𝑢 → 𝑢/2, we get Ramanujan’s solution (1.2)
[22].

2. Using (𝑎, 𝑏, 𝑐, 𝑑) = (1, 6, 8, 9) into Equations (2.1) and dividing by 3 yields

(3𝑢2 + 15𝑢𝑣 − 8𝑣2)3 + (18𝑢2 − 21𝑢𝑣 + 9𝑣2)3

+ (24𝑢2 − 15𝑢𝑣 − 𝑣2)3 = (27𝑢2 − 21𝑢𝑣 + 6𝑣2)3. (2.3)

Now, putting 𝑢 = 1 and 𝑣 = 2 in (2.3) gives 13 + 123 + (−10)3 = 93 or,
equivalently,

13 + 123 = 93 + 103 = 1729. (2.4)

Readers will recognize 1729 as the famous Hardy-Ramanujan number, having
the distinctive property that it is the smallest positive integer that can be
written as the sum of two positive cubes in more than one way [16, 23, 24].
On the other hand, for 𝑢 = 6 and 𝑣 = −1, we obtain

103 + 7833 + 9533 = 11043. (2.5)

3. Likewise, using (𝑎, 𝑏, 𝑐, 𝑑) = (7, 14, 17, 20) into Equations (2.1) and dividing
by 6 yields

(28𝑢2 + 34𝑢𝑣 − 17𝑣2)3 + (56𝑢2 − 40𝑢𝑣 + 20𝑣2)3

+ (68𝑢2 − 34𝑢𝑣 − 7𝑣2)3 = (80𝑢2 − 40𝑢𝑣 + 14𝑣2)3. (2.6)

Putting 𝑢 = −2 and 𝑣 = −3 in (2.6) we find

1633 + 1643 + 53 = 2063. (2.7)

And, for 𝑢 = 10 and 𝑣 = 3, we obtain

36673 + 45803 + 57173 = 69263. (2.8)

Rather interestingly, it can be shown (see [22, Theorem 2]) that if (𝑎, 𝑏, 𝑐, 𝑑) is a
nontrivial integer solution to (1.1) and (𝑞1, 𝑞2, 𝑞3, 𝑞4) is a nontrivial integer solution
obtained via Equations (2.1), then necessarily

𝑎+ 𝑐

𝑑− 𝑏
=

𝑞1 + 𝑞3
𝑞4 − 𝑞2

. (2.9)

Note that the denominators in Equation (2.9) are well defined since both (𝑎, 𝑏, 𝑐, 𝑑)
and (𝑞1, 𝑞2, 𝑞3, 𝑞4) are nontrivial solutions. Note further that, for given 𝑎, 𝑏, 𝑐, and 𝑑,
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relation (2.9) holds irrespective of the (integer) values taken by 𝑢 and 𝑣 in Equations
(2.1). Conversely (see [22, Theorem 3]), if (𝑎, 𝑏, 𝑐, 𝑑) and (𝑞1, 𝑞2, 𝑞3, 𝑞4) are two
integer nontrivial solutions to (1.1) and 𝑎+𝑐

𝑑−𝑏 = 𝑞1+𝑞3
𝑞4−𝑞2

, then there exist integers
𝑢 and 𝑣 such that substituting these into Equations (2.1) yields (𝑞1, 𝑞2, 𝑞3, 𝑞4) or
a multiple of it. Thus, the solutions (𝑞1, 𝑞2, 𝑞3, 𝑞4) obtained from a given solution
(𝑎, 𝑏, 𝑐, 𝑑) via Equations (2.1) can be essentially characterized through the condition
stated in Equation (2.9).

We can readily check that the said condition is indeed satisfied by the examples
given above. So, for the example given in (2.3), the condition (2.9) reads as

1 + 8

9− 6
=

3𝑢2 + 15𝑢𝑣 − 8𝑣2 + 24𝑢2 − 15𝑢𝑣 − 𝑣2

27𝑢2 − 21𝑢𝑣 + 6𝑣2 − 18𝑢2 + 21𝑢𝑣 − 9𝑣2
= 3,

which is fulfilled for all integer values of 𝑢 and 𝑣 (discarding the trivial solution
𝑢 = 𝑣 = 0). In particular, it holds for the numerical examples (2.4) and (2.5), as
1−10
9−12 = 10+953

1104−783 = 3. Similarly, regarding the example given in (2.6), the condition
(2.9) reads as

7 + 17

20− 14
=

28𝑢2 + 34𝑢𝑣 − 17𝑣2 + 68𝑢2 − 34𝑢𝑣 − 7𝑣2

80𝑢2 − 40𝑢𝑣 + 14𝑣2 − 56𝑢2 + 40𝑢𝑣 − 20𝑣2
= 4,

which is equally fulfilled for any choice of integers 𝑢 and 𝑣 (excluding the case
𝑢 = 𝑣 = 0). In particular, it holds for the numerical examples (2.7) and (2.8), as
163+5

206−164 = 3667+5717
6926−4580 = 4.

We conclude this section by noting that, naturally, given an initial solution
(𝑎, 𝑏, 𝑐, 𝑑) to (1.1), we can use as well either of its permutations (𝑎, 𝑐, 𝑏, 𝑑), (𝑏, 𝑎, 𝑐, 𝑑),
(𝑏, 𝑐, 𝑎, 𝑑), (𝑐, 𝑎, 𝑏, 𝑑), or (𝑐, 𝑏, 𝑎, 𝑑) as inputs to Equations (2.1). For instance, instead
of the initial solution (1, 6, 8, 9) used above, we can plug (1, 8, 6, 9) into Equations
(2.1) to obtain

(7𝑢2 + 17𝑢𝑣 − 6𝑣2)3 + (56𝑢2 − 35𝑢𝑣 + 9𝑣2)3

+ (42𝑢2 − 17𝑢𝑣 − 𝑣2)3 = (63𝑢2 − 35𝑢𝑣 + 8𝑣2)3. (2.10)

Incidentally, we observe that setting 𝑢 = −1 and 𝑣 = −3 in (2.10) yields (after
dividing by 2): 23 + 163 = 93 + 153 = 4104, which is the next Hardy-Ramanujan
number after 1729. We encourage the students to search for their own solutions to
the cubic equation (1.1) by means of Theorem 2.1, and to verify that they comply
with relation (2.9).

3. Quadratic forms of sums of powers of integers

Consider now the power sums 𝑆𝑘 = 1𝑘+2𝑘+ · · ·+𝑛𝑘 and 𝑆𝑚 = 1𝑚+2𝑚+ · · ·+𝑛𝑚.
Their product is given by

𝑆𝑘𝑆𝑚 =
1

𝑘 + 1

𝑘/2∑︁

𝑗=0

𝐵2𝑗

(︂
𝑘 + 1

2𝑗

)︂
𝑆𝑘+𝑚+1−2𝑗
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+
1

𝑚+ 1

𝑚/2∑︁

𝑗=0

𝐵2𝑗

(︂
𝑚+ 1

2𝑗

)︂
𝑆𝑘+𝑚+1−2𝑗 , (3.1)

where 𝐵0 = 1, 𝐵1 = −1/2, 𝐵2 = 1/6, 𝐵3 = 0, 𝐵4 = −1/30, etc., are the Bernoulli
numbers (which fulfill the property that 𝐵2𝑗+1 = 0 for all 𝑗 ≥ 1) [2, 10];

(︀
𝑘
𝑚

)︀
are the

familiar binomial coefficients; and where the upper summation limit 𝑘/2 denotes
the greatest integer lesser than or equal to 𝑘/2. Formula (3.1) is not commonly
encountered across the abound literature on sums of powers of integers. A notable
exception being the paper [15], where formula (3.1) is stated as a theorem. As
noted in [15], formula (3.1) was known to Lucas by 1891. For the case that 𝑘 = 𝑚,
formula (3.1) reduces to

𝑆2
𝑘 =

2

𝑘 + 1

𝑘/2∑︁

𝑗=0

𝐵2𝑗

(︂
𝑘 + 1

2𝑗

)︂
𝑆2𝑘+1−2𝑗 . (3.2)

For later reference, we also quote the formula for the 𝑘-th power of 𝑆1 expressed
as a linear combination of power sums

𝑆𝑘
1 =

1

2𝑘−1

𝑘−1
2∑︁

𝑗=0

(︂
𝑘

2𝑗 + 1

)︂
𝑆2𝑘−1−2𝑗 , (3.3)

as well as the formula for the product

𝑆2𝑆
𝑘
1 =

1

3 · 2𝑘

𝑘+1
2∑︁

𝑗=0

2𝑘 + 3− 2𝑗

2𝑗 + 1

(︂
𝑘 + 1

2𝑗

)︂
𝑆2𝑘+2−2𝑗 . (3.4)

Note that the right-hand side of Equations (3.2) and (3.3) involves only power sums
𝑆𝑗 with 𝑗 odd, whereas that of Equation (3.4) involves only power sums 𝑆𝑗 with 𝑗
even. Formula (3.3) (written in a slightly different form) appears as a theorem in
[15], where it is further noted that it was known as far back as 1877 (Lampe) and
1878 (Stern). Regarding formula (3.4), it looks somewhat more exotic, although
it is by no means new. An equivalent formulation of both Equations (3.3) and
(3.4) can be found in, respectively, formulas (17) and (22) of the review paper by
Kotiah [14]. It is worth pointing out, on the other hand, that the right-hand side
of Equation (3.3) [(3.4)] can be interpreted as a sort of average of sums of powers

of integers as the total number
∑︀ 𝑘−1

2
𝑗=0

(︀
𝑘

2𝑗+1

)︀
[
∑︀ 𝑘+1

2
𝑗=0

2𝑘+3−2𝑗
2𝑗+1

(︀
𝑘+1
2𝑗

)︀
] of power sums

appearing on the right-hand side of (3.3) [(3.4)] is just 2𝑘−1 [3 · 2𝑘] (see [6, 21]).
Provided with Equations (3.1) and (3.2), we can thus write the quadratic form

(1.3) as the following linear combination of power sums:

𝑄𝑖(𝑘,𝑚, 𝑛) =
2𝛼𝑖

𝑘 + 1

𝑘/2∑︁

𝑗=0

𝐵2𝑗

(︂
𝑘 + 1

2𝑗

)︂
𝑆2𝑘+1−2𝑗 +

𝛽𝑖

𝑘 + 1

𝑘/2∑︁

𝑗=0

𝐵2𝑗

(︂
𝑘 + 1

2𝑗

)︂
𝑆𝑘+𝑚+1−2𝑗
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+
𝛽𝑖

𝑚+ 1

𝑚/2∑︁

𝑗=0

𝐵2𝑗

(︂
𝑚+ 1

2𝑗

)︂
𝑆𝑘+𝑚+1−2𝑗 +

2𝛾𝑖
𝑚+ 1

𝑚/2∑︁

𝑗=0

𝐵2𝑗

(︂
𝑚+ 1

2𝑗

)︂
𝑆2𝑚+1−2𝑗 . (3.5)

Regarding the coefficients 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖, we must choose them so that the quadratic
forms 𝑞𝑖 = 𝛼𝑖𝑢

2 + 𝛽𝑖𝑢𝑣+ 𝛾𝑖𝑣
2 satisfy the relation 𝑞31 + 𝑞32 + 𝑞33 = 𝑞34 for any integer

values of 𝑢 and 𝑣. This in turn ensures that the quadratic forms 𝑄𝑖(𝑘,𝑚, 𝑛) in
Equation (3.5) will satisfy 𝑄1(𝑘,𝑚, 𝑛)3+𝑄2(𝑘,𝑚, 𝑛)3+𝑄3(𝑘,𝑚, 𝑛)3 = 𝑄4(𝑘,𝑚, 𝑛)3

as well.
At this point, it is obviously most useful to run a computer algebra system such

as Mathematica to quickly compute the quadratic form 𝑄𝑖(𝑘,𝑚, 𝑛) for concrete
values of 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝑘, 𝑚, and 𝑛. As a simple but illustrative example, let us first
take 𝑘 = 1 and 𝑚 = 2 to obtain

𝑄𝑖(1, 2, 𝑛) =
1

6

(︀
𝛽𝑖𝑆2 +

(︀
6𝛼𝑖 + 2𝛾𝑖

)︀
𝑆3 + 5𝛽𝑖𝑆4 + 4𝛾𝑖𝑆5

)︀
.

Then, choosing for example the coefficients 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖 appearing in Equation
(2.3) (namely, 𝛼1 = 3, 𝛽1 = 15, 𝛾1 = −8, 𝛼2 = 18, 𝛽2 = −21, 𝛾2 = 9, 𝛼3 = 24,
𝛽3 = −15, 𝛾3 = −1, 𝛼4 = 27, 𝛽4 = −21, and 𝛾4 = 6), we get (after removing the
common factor 1/6) the following relationship among the power sums 𝑆2, 𝑆3, 𝑆4,
and 𝑆5:
(︀
15𝑆2 + 2𝑆3 + 75𝑆4 − 32𝑆5

)︀3
+
(︀
− 21𝑆2 + 126𝑆3 − 105𝑆4 + 36𝑆5

)︀3

+
(︀
− 15𝑆2 + 142𝑆3 − 75𝑆4 − 4𝑆5

)︀3

=
(︀
− 21𝑆2 + 174𝑆3 − 105𝑆4 + 24𝑆5

)︀3
. (3.6)

Equation (3.6) can in turn be written explicitly as a function of the variable 𝑛 by
expressing each of the involved power sums in terms of 𝑛. It is a well-known result
that 𝑆𝑘 can be expressed as a polynomial in 𝑛 of degree 𝑘 + 1 with zero constant
term according to the formula (see, for instance, [14, 26–28]):

𝑆𝑘 =
1

𝑘 + 1

𝑘+1∑︁

𝑗=1

(︂
𝑘 + 1

𝑗

)︂
(−1)𝑘+1−𝑗𝐵𝑘+1−𝑗𝑛

𝑗 , 𝑘 ≥ 0. (3.7)

𝑆2 = 1
3𝑛

3 + 1
2𝑛

2 + 1
6𝑛

𝑆3 = 1
4𝑛

4 + 1
2𝑛

3 + 1
4𝑛

2

𝑆4 = 1
5𝑛

5 + 1
2𝑛

4 + 1
3𝑛

3 − 1
30𝑛

𝑆5 = 1
6𝑛

6 + 1
2𝑛

5 + 5
12𝑛

4 − 1
12𝑛

2

𝑆6 = 1
7𝑛

7 + 1
2𝑛

6 + 1
2𝑛

5 − 1
6𝑛

3 + 1
42𝑛

𝑆7 = 1
8𝑛

8 + 1
2𝑛

7 + 7
12𝑛

6 − 7
24𝑛

4 + 1
12𝑛

2

Table 1: The power sums 𝑆2, 𝑆3, . . . , 𝑆7 expressed
as polynomials in 𝑛
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This formula, which was first established by Jacob Bernoulli in his masterpiece
Ars Conjectandi (published posthumously in 1713 [1]), provides an efficient way to
compute the power sums 𝑆𝑘. Table 1 shows the polynomials for 𝑆2, 𝑆3, . . . , 𝑆7 as
obtained from Bernoulli’s formula (3.7).1 Thus, substituting the power sums 𝑆2,
𝑆3, 𝑆4, and 𝑆5 in Equation (3.6) by the corresponding polynomial in Table 1, and
renaming the variable 𝑛 as a generic variable 𝑢, we get (after multiplying by an
overall factor of 3) the algebraic identity

(︀
32𝑢2 + 93𝑢3 + 74𝑢4 − 3𝑢5 − 16𝑢6

)︀3
+
(︀
54𝑢2 + 63𝑢3 − 18𝑢4 − 9𝑢5 + 18𝑢6

)︀3

+
(︀
85𝑢2 + 123𝑢3 − 11𝑢4 − 51𝑢5 − 2𝑢6

)︀3

=
(︀
93𝑢2 + 135𝑢3 + 3𝑢4 − 27𝑢5 + 12𝑢6

)︀3
, (3.8)

which is true for all real or complex values of 𝑢. For example, for 𝑢 = 1, relation
(3.8) gives us (after dividing by 36): 53 + 33 + 43 = 63.

On the other hand, taking 𝑢 = 𝑆2 and 𝑣 = 𝑆𝑘
1 in the quadratic form 𝑞𝑖 =

𝛼𝑖𝑢
2 + 𝛽𝑖𝑢𝑣 + 𝛾𝑖𝑣

2 yields

𝐹𝑖(𝑘, 𝑛) = 𝛼𝑖𝑆
2
2 + 𝛽𝑖𝑆2𝑆

𝑘
1 + 𝛾𝑖𝑆

2𝑘
1 .

Utilizing Equations (3.3) and (3.4), and noting that 𝑆2
2 = 1

3𝑆3 +
2
3𝑆5, we can then

write 𝐹𝑖(𝑘, 𝑛) as the linear combination of power sums

𝐹𝑖(𝑘, 𝑛) =
𝛼𝑖

3
𝑆3 +

2𝛼𝑖

3
𝑆5 +

𝛽𝑖

3 · 2𝑘

𝑘+1
2∑︁

𝑗=0

2𝑘 + 3− 2𝑗

2𝑗 + 1

(︂
𝑘 + 1

2𝑗

)︂
𝑆2𝑘+2−2𝑗

+
𝛾𝑖

22𝑘−1

2𝑘−1
2∑︁

𝑗=0

(︂
2𝑘

2𝑗 + 1

)︂
𝑆4𝑘−1−2𝑗 . (3.9)

As before, in order to derive relations of the type 𝐹1(𝑘, 𝑛)
3+𝐹2(𝑘, 𝑛)

3+𝐹3(𝑘, 𝑛)
3 =

𝐹4(𝑘, 𝑛)
3, we must choose the coefficients 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖 such that the quadratic

forms 𝑞𝑖 = 𝛼𝑖𝑢
2 + 𝛽𝑖𝑢𝑣 + 𝛾𝑖𝑣

2 satisfy 𝑞31 + 𝑞32 + 𝑞33 = 𝑞34 for any integer values of 𝑢
and 𝑣. As a concrete example, let us first take 𝑘 = 2 in Equation (3.9) to get

𝐹𝑖(2, 𝑛) =
1

12

(︀
4𝛼𝑖𝑆3 + 5𝛽𝑖𝑆4 + (8𝛼𝑖 + 6𝛾𝑖)𝑆5 + 7𝛽𝑖𝑆6 + 6𝛾𝑖𝑆7

)︀
.

Then, using the coefficients 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖 appearing in Equation (2.10) (namely,
𝛼1 = 7, 𝛽1 = 17, 𝛾1 = −6, 𝛼2 = 56, 𝛽2 = −35, 𝛾2 = 9, 𝛼3 = 42, 𝛽3 = −17,
𝛾3 = −1, 𝛼4 = 63, 𝛽4 = −35, and 𝛾4 = 8), we obtain (omitting the common factor

1Equation (3.7) is often referred to in the literature as Faulhaber’s formula after the German
engineer and mathematician Johann Faulhaber (1580-1635). In our view, however, it is more
accurate to name Equation (3.7) as Bernoulli’s formula or Bernoulli’s identity.
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1/12) the following relationship among the power sums 𝑆3, 𝑆4, 𝑆5, 𝑆6, and 𝑆7:
(︀
28𝑆3 + 85𝑆4 + 20𝑆5 + 119𝑆6 − 36𝑆7

)︀3

+
(︀
224𝑆3 − 175𝑆4 + 502𝑆5 − 245𝑆6 + 54𝑆7

)︀3

+
(︀
168𝑆3 − 85𝑆4 + 330𝑆5 − 119𝑆6 − 6𝑆7

)︀3

=
(︀
252𝑆3 − 175𝑆4 + 552𝑆5 − 245𝑆6 + 48𝑆7

)︀3
.

(3.10)

Likewise, replacing each of the power sums in (3.10) by its respective polynomial
in Table 1 yields (after multiplying by an overall factor of 12) the algebraic identity
(︀
28𝑢2 + 270𝑢3 + 820𝑢4 + 1038𝑢5 + 502𝑢6 − 12𝑢7 − 54𝑢8

)︀3

+
(︀
224𝑢2 + 1134𝑢3 + 1943𝑢4 + 1122𝑢5 − 88𝑢6 − 96𝑢7 + 81𝑢8

)︀3

+
(︀
168𝑢2 + 906𝑢3 + 1665𝑢4 + 1062𝑢5 − 96𝑢6 − 240𝑢7 − 9𝑢8

)︀3

=
(︀
252𝑢2 + 1302𝑢3 + 2298𝑢4 + 1422𝑢5 − 30𝑢6 − 132𝑢7 + 72𝑢8

)︀3
,

(3.11)

which has been written in terms of the generic (complex or real) variable 𝑢. More-
over, it is to be noted that each of the four summands in Equation (3.11) can be
factorized as 𝑢2(𝑢 + 1)2 times a polynomial in 𝑢 of degree 4, so that the identity
in (3.11) can be neatly simplified to
(︀
28 + 214𝑢+ 364𝑢2 + 96𝑢3 − 54𝑢4

)︀3
+
(︀
224 + 686𝑢+ 347𝑢2 − 258𝑢3 + 81𝑢4

)︀3

+
(︀
168 + 570𝑢+ 357𝑢2 − 222𝑢3 − 9𝑢4

)︀3
=
(︀
252 + 798𝑢+ 450𝑢2 − 276𝑢3 + 72𝑢4

)︀3
.

In particular, for 𝑢 = 0, we obtain 283 +2243 +1683 = 2523 or, after dividing each
term by 28, 13 + 83 + 63 = 93.

Trivially, for 𝑢 = 0, all four summands in either of relations (3.8) or (3.11)
vanish. Less obvious is the fact that the same happens for 𝑢 = −1. To see why, we
need to extend the domain of definition of 𝑆𝑘 = 1𝑘+2𝑘+ · · ·+𝑛𝑘 to negative values
of 𝑛. As explained in [13], this can be achieved simply by subtracting successively
the 𝑘-th power of 0, −1, −2, etc. In this way, it is not difficult to show (see Table 1
of [13]) that, for all 𝑘 ≥ 1, the polynomial 𝑆𝑘 is symmetric about the point − 1

2 (see
also [17, Theorem 10] for a rigorous proof of this assertion). Thus, as 𝑆𝑘 = 0 for
𝑛 = 0, this means that 𝑆𝑘 equally vanishes for 𝑛 = −1.2 (It is readily verified that
the polynomials in Table 1 indeed satisfy 𝑆𝑗(−1) = 0 for each 𝑗 = 2, 3, . . . , 7.3) As
a consequence, the quadratic forms 𝑄𝑖(𝑘,𝑚, 𝑛) and 𝐹𝑖(𝑘, 𝑛) (defined in Equation

2It is left as an exercise to the reader to show the following basic recurrence formula for the
Bernoulli numbers

𝐵𝑘 = − 1

𝑘 + 1

𝑘−1∑︁

𝑗=0

(︁𝑘 + 1

𝑗

)︁
𝐵𝑗 , for all 𝑘 ≥ 1,

employing Bernoulli’s formula (3.7), and using that 𝑆𝑘(−1) = 0 for all 𝑘 ≥ 1.
3That 𝑆𝑘(−1) = 0 also follows directly from the well-known fact that 𝑆1 = 1

2
𝑛(𝑛 + 1) is a

factor of 𝑆𝑘 for all 𝑘 ≥ 1.
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(3.5) and (3.9), respectively) are zero for 𝑛 = −1, regardless of the values that 𝛼𝑖,
𝛽𝑖, 𝛾𝑖, 𝑘, and 𝑚 may take (provided that 𝑘,𝑚 ≥ 1).

Again, we encourage the students to construct their own algebraic identities
like those in Equations (3.8) and (3.11) by making use of the quadratic forms (3.5)
and (3.9), and Bernoulli’s formula (3.7).

4. Concluding remarks

In what follows, we briefly consider the Diophantine quadratic equation

𝑎2 + 𝑏2 + 𝑐2 = 𝑑2. (4.1)

Quadruples of positive integers (𝑎, 𝑏, 𝑐, 𝑑) such as (2, 3, 6, 7) satisfying (4.1) are
called Pythagorean quadruples, in analogy with the Pythagorean triples (𝑎, 𝑏, 𝑐)
satisfying 𝑎2+ 𝑏2 = 𝑐2. A full account of Equation (4.1), including its most general
solution, can be found in, for instance, [19, 25]. A partial, quadratic-form solution
to (4.1) was given by Titus Piezas III in [20]

(︀
𝑎𝑢2 − 2𝑑𝑢𝑣 + 𝑎𝑣2

)︀2
+
(︀
𝑏𝑢2 − 𝑏𝑣2

)︀2
+
(︀
𝑐𝑢2 − 𝑐𝑣2

)︀2
=
(︀
𝑑𝑢2 − 2𝑎𝑢𝑣 + 𝑑𝑣2

)︀2
, (4.2)

where (𝑎, 𝑏, 𝑐, 𝑑) is a Pythagorean quadruple and 𝑢 and 𝑣 are integer variables.4
On the other hand, setting 𝑢 = 𝑆𝑘 in the algebraic identity5

𝑢2 + (1 + 𝑢)2 + (𝑢+ 𝑢2)2 = (1 + 𝑢+ 𝑢2)2, (4.3)

and utilizing the formula (3.2), we obtain the following solution to Equation (4.1)
in terms of sums of powers of integers:

(︀
𝑆𝑘

)︀2
+
(︀
1 + 𝑆𝑘

)︀2
+

(︃
𝑆𝑘 +

2

𝑘 + 1

𝑘/2∑︁

𝑗=0

𝐵2𝑗

(︂
𝑘 + 1

2𝑗

)︂
𝑆2𝑘+1−2𝑗

)︃2

=

(︃
1 + 𝑆𝑘 +

2

𝑘 + 1

𝑘/2∑︁

𝑗=0

𝐵2𝑗

(︂
𝑘 + 1

2𝑗

)︂
𝑆2𝑘+1−2𝑗

)︃2

. (4.4)

4It is to be noted that, for the specific case in which 𝑏2 + 𝑐2 happens to be a perfect square,
say 𝑒2, Equation (4.2) becomes

(︀
𝑎𝑢2 − 2𝑑𝑢𝑣 + 𝑎𝑣2

)︀2
+

(︀
𝑒𝑢2 − 𝑒𝑣2

)︀2
=

(︀
𝑑𝑢2 − 2𝑎𝑢𝑣 + 𝑑𝑣2

)︀2
,

which constitutes a two-parameter solution to the Pythagorean equation 𝑟2 + 𝑠2 = 𝑡2. For
example, for (𝑎, 𝑏, 𝑐, 𝑑) = (8, 9, 12, 17), where 92 + 122 = 152, we have

(︀
8𝑢2 − 34𝑢𝑣 + 8𝑣2

)︀2
+

(︀
15𝑢2 − 15𝑣2

)︀2
=

(︀
17𝑢2 − 16𝑢𝑣 + 17𝑣2

)︀2
.

5Clearly, Equation (4.3) is of the form 𝑞21 + 𝑞22 + 𝑞23 = 𝑞24 , with each 𝑞𝑖 being a quadratic form
𝑞𝑖 = 𝛼𝑖𝑢

2 + 𝛽𝑖𝑢𝑣 + 𝛾𝑖𝑣
2. For example, taking 𝑣 = 1, 𝛼1 = 𝛾1 = 0, and 𝛽1 = 1, we have 𝑞1 = 𝑢.
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For example, for 𝑘 = 2, from Equation (4.4) we find (after multiplying by an overall
factor of 3)

(︀
3𝑆2

)︀2
+
(︀
3 + 3𝑆2

)︀2
+
(︀
3𝑆2 + 𝑆3 + 2𝑆5

)︀2
=
(︀
3 + 3𝑆2 + 𝑆3 + 2𝑆5

)︀2
.

Now, replacing 𝑆2, 𝑆3, and 𝑆5 by its respective polynomial in Table 1, and multi-
plying by an overall factor of 12, we arrive at the following identity

𝑎2 + (𝑎+ 18)2 + 𝑏2 = (𝑏+ 18)2,

where

𝑎 = 3𝑢+ 9𝑢2 + 6𝑢3, and 𝑏 = 3𝑢+
19

2
𝑢2 + 9𝑢3 +

13

2
𝑢4 + 6𝑢5 + 2𝑢6,

with 𝑢 taking any real or complex value. (It is easily seen that 𝑏 is integer whenever
𝑢 so is.)

Let us finally mention that, by replacing 𝑢 with 𝑆2
𝑘 and 𝑣 with 𝑆2

𝑚 in the basic
identity (𝑢 − 𝑣)2 + (2

√
𝑢𝑣)2 = (𝑢 + 𝑣)2, one can generate infinite Pythagorean

triangles through the relation
(︀
𝑆2
𝑘 − 𝑆2

𝑚

)︀2
+
(︀
2𝑆𝑘𝑆𝑚

)︀2
=
(︀
𝑆2
𝑘 + 𝑆2

𝑚

)︀2
. (4.5)

Using Equations (3.1) and (3.2), the side lengths of the triangle can furthermore be
written as a linear combination of power sums. For example, for 𝑘 = 1 and 𝑚 = 3,
from Equation (4.5) we get (after multiplying by a global factor of 2) the relation

(︀
𝑆5 + 𝑆7 − 2𝑆3

)︀2
+
(︀
𝑆3 + 3𝑆5

)︀2
=
(︀
2𝑆3 + 𝑆5 + 𝑆7

)︀2
.

This is to be compared with the following relation
(︀
2𝑆5 + 2𝑆7 − 𝑆3

)︀2
+
(︀
𝑆3 + 3𝑆5

)︀2
=
(︀
𝑆3 + 2𝑆5 + 2𝑆7

)︀2
,

which was derived by Piza [21] using the algebraic identity (𝑦4−𝑦2)2/4+(2𝑦3)2/4 =
(𝑦4+ 𝑦2)2/4 and then taking 𝑦 = 2𝑆1. Now, from the last two relations, we readily
obtain
(︀
𝑆5 + 𝑆7 − 2𝑆3

)︀2
+
(︀
𝑆3 + 2𝑆5 + 2𝑆7

)︀2
=
(︀
2𝑆3 + 𝑆5 + 𝑆7

)︀2
+
(︀
2𝑆5 + 2𝑆7 − 𝑆3

)︀2
.

Taking into account that 𝑆5 + 𝑆7 = 2𝑆2
3 , this relation can be simplified to (after

dividing by the common factor 𝑆3):

(︀
2𝑢− 2

)︀2
+
(︀
4𝑢+ 1

)︀2
=
(︀
2𝑢+ 2

)︀2
+
(︀
4𝑢− 1

)︀2
, (4.6)

with 𝑢 = 𝑆3. The identity in Equation (4.6), which actually holds for arbitrary
values of 𝑢, gives us a family of solutions to the Diophantine equation 𝑎2+𝑏2 = 𝑐2+
𝑑2. For example, for 𝑢 = 17, from Equation (4.6) we find that 322+692 = 362+672.
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1. Introduction

A sum of integer powers of gaps values in numerical semigroups 𝑆𝑚 = ⟨𝑑1, . . . , 𝑑𝑚⟩
with gcd(𝑑1, . . . , 𝑑𝑚) = 1, is referred often as the semigroup series

𝑔𝑛(𝑆𝑚) =
∑︁

𝑠∈N∖𝑆𝑚

𝑠𝑛, 𝑛 ∈ Z,

where N∖𝑆𝑚 is known as the set of gaps of 𝑆𝑚 and 𝑔0(𝑆𝑚) is called the genus of 𝑆𝑚.
The semigroup series 𝑔𝑛(𝑆𝑚) has been attractive by many researchers for 𝑛 ≥ 0. In
particular, an explicit expression of 𝑔𝑛(𝑆2) and implicit expression of 𝑔𝑛(𝑆3) were
given in [6] and [4], respectively. However, the series 𝑔𝑛(𝑆𝑚) for negative integers 𝑛
has not seemingly treated so often. In this paper we derive a formula for semigroup
series 𝑔−𝑛(𝑆2) =

∑︀
𝑠∈N∖𝑆2

𝑠−𝑛 and 𝑔−𝑛(𝑆3) =
∑︀

𝑠∈N∖𝑆3
𝑠−𝑛 (𝑛 ≥ 1). In fact, it will

be known that such series are related with zeta functions in Number theory.
Consider a numerical semigroup 𝑆2 = ⟨𝑑1, 𝑑2⟩, generated by two integers 𝑑1, 𝑑2 ≥

2 with gcd(𝑑1, 𝑑2) = 1. Here, the Hilbert series 𝐻(𝑧;𝑆2) and the gaps generating
function Φ(𝑧;𝑆2) are given as

𝐻(𝑧;𝑆2) =
∑︁

𝑠∈𝑆2

𝑧𝑠 and Φ(𝑧;𝑆2) =
∑︁

𝑠∈N∖𝑆2

𝑧𝑠,

respectively, satisfying

𝐻(𝑧;𝑆2) + Φ(𝑧;𝑆2) =
1

1 − 𝑧
(𝑧 < 1), (1.1)

where min{N ∖ 𝑆2} = 1, and max{N ∖ 𝑆2} = 𝑑1𝑑2 − 𝑑1 − 𝑑2 is called the Frobenius
number and is denoted by 𝐹2. A rational representation (Rep) of 𝐻(𝑧;𝑆2) is given
by

𝐻(𝑧;𝑆2) =
1 − 𝑧𝑑1𝑑2

(1 − 𝑧𝑑1)(1 − 𝑧𝑑2)
. (1.2)

We introduce a new generating function Ψ1(𝑧;𝑆2), defined by

Ψ1(𝑧;𝑆2) =

𝑧∫︁

0

Φ(𝑡;𝑆2)

𝑡
d𝑡 =

∑︁

𝑠∈N∖𝑆2

𝑧𝑠

𝑠
with Ψ1(1;𝑆2) = 𝑔−1(𝑆2). (1.3)

Substituting (1.1) into (1.3), we obtain

Ψ1(𝑧;𝑆2) =

𝑧∫︁

0

(︂
1

1 − 𝑡
−𝐻(𝑡;𝑆2)

)︂
d𝑡

𝑡
. (1.4)

Since (1 − 𝑡𝑑𝑖)−1 =
∑︀∞

𝑘𝑖=0 𝑡
𝑘𝑖𝑑𝑖 , by substituting (1.4) into (1.2), we obtain

𝐻(𝑡;𝑆2) =
∞∑︁

𝑘1,𝑘2=0

𝑡𝑘1𝑑1+𝑘2𝑑2 −
∞∑︁

𝑘1,𝑘2=0

𝑡𝑘1𝑑1+𝑘2𝑑2+𝑑1𝑑2 . (1.5)
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Indeed, an expression (1.5) is an infinite series with degrees 𝑠 = 𝑘1𝑑1+𝑘2𝑑2 running
over all nodes in the following sublattice K of the integer lattice Z2.

K = {0, 0} ∪K1 ∪K2,

{︂
K1 = {1 ≤ 𝑘1 ≤ 𝑑2 − 1, 𝑘2 = 0},
K2 = {0 ≤ 𝑘1 ≤ 𝑑2 − 1, 1 ≤ 𝑘2 ≤ ∞}. (1.6)

In Figure 1, as an example, we present a part of the integer lattice K for the
numerical semigroup

⟨5, 8⟩ = {0, 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26, 28, ↦−→},

where the symbol ↦−→ denotes an infinite set of positive integers exceeding 28.

13 18 23 28 33 38 43

21 26 31 36 41 46 51

29 34 39 44 49 54 59

37 42 47 52 57 62 67

8

16

24

32

45 50 55 60 70 7565

0 5 10 15 20 25 30 35

53 58 63 68 73 78 83

40

48

8k2

5k1

Figure 1: A part of the integer lattice K ⊂ Z2 for the numerical
semigroup ⟨5, 8⟩. The nodes mark the non-gaps of semigroup: the
values, assigned to the black and white nodes, exceed and precede

𝐹2 = 27, respectively.

Proposition 1.1. There exists a bijection between the infinite set of nodes in the
integer lattice K and an infinite set of non-gaps of the semigroup ⟨𝑑1, 𝑑2⟩.

Proof. We have to prove two statements of existence and uniqueness:

1) Every 𝑠 ∈ ⟨𝑑1, 𝑑2⟩ has its Rep node in K,

2) All 𝑠 ∈ ⟨𝑑1, 𝑑2⟩ have their Rep nodes in K only once.

1) Let 𝑠 ∈ ⟨𝑑1, 𝑑2⟩ be given. Then by definition of ⟨𝑑1, 𝑑2⟩ an integer 𝑠 has Rep,

𝑠 = 𝑘1𝑑1 + 𝑘2𝑑2, 𝑘1, 𝑘2 ∈ Z, 𝑘1, 𝑘2 ≥ 0. (1.7)

Choose 𝑠 such that 𝑘1 = 𝑝𝑑2 + 𝑞, where 𝑝 = ⌊𝑘1/𝑑2⌋, namely, 0 ≤ 𝑞 ≤ 𝑑2 − 1, and
⌊𝑥⌋ denotes the integer part of a real number 𝑥. Then Rep (1.7) is expressed as

𝑠 = 𝑞𝑑1 + (𝑘2 + 𝑝𝑑1)𝑑2,
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and 𝑠 has its Rep node in K.

2) By way of contradiction, assume that there exist two nodes {𝑘1, 𝑘2} ∈ K and
{𝑙1, 𝑙2} ∈ K such that

𝑘1𝑑1 + 𝑘2𝑑2 = 𝑙1𝑑1 + 𝑙2𝑑2, (1.8)
0 ≤ 𝑘1, 𝑙1 ≤ 𝑑2 − 1, 0 ≤ 𝑘2, 𝑙2 ≤ ∞, 𝑘1 > 𝑙1, 𝑘2 < 𝑙2,

namely, that there exists such 𝑠 ∈ ⟨𝑑1, 𝑑2⟩ which has two different Rep nodes in K.
Rewrite equality (1.8) as follows.

(𝑘1 − 𝑙1)𝑑1 = (𝑙2 − 𝑘2)𝑑2. (1.9)

Since gcd(𝑑1, 𝑑2) = 1, the equality (1.9) implies that

𝑘1 − 𝑙1 = 𝑏𝑑2 (𝑏 ≥ 1) =⇒ 𝑘1 = 𝑙1 + 𝑏𝑑2 =⇒ 𝑘1 ≥ 𝑑2,

contradicting the assumption {𝑘1, 𝑘2} ∈ K.

2. A sum of the inverse gaps values 𝑔−1(𝑆2)

Rewrite the integral in (1.4) as follows.

Ψ1(𝑧;𝑆2) =

𝑧∫︁

0

(︃ ∞∑︁

𝑘=0

𝑡𝑘−1 − 𝐻(𝑡;𝑆2)

𝑡

)︃
d𝑡, (2.1)

where

𝐻(𝑡;𝑆2)

𝑡
=

2∑︁

𝑗=0

ℎ𝑗(𝑡;𝑆2), ℎ0(𝑡;𝑆2) =
1

𝑡
,

ℎ1(𝑡;𝑆2) =

𝑑2−1∑︁

𝑘1=1

𝑡𝑘1𝑑1−1, ℎ2(𝑡;𝑆2) =
∑︁

𝑘1,𝑘2∈K2

𝑡𝑘1𝑑1+𝑘2𝑑2−1.

By integration we obtain from (2.1),

Ψ1(𝑧;𝑆2) =
∞∑︁

𝑘=1

𝑧𝑘

𝑘
− 1

𝑑1

𝑑2−1∑︁

𝑘1=1

𝑧𝑘1𝑑1

𝑘1
−

∑︁

𝑘1,𝑘2∈K2

𝑧𝑘1𝑑1+𝑘2𝑑2

𝑘1𝑑1 + 𝑘2𝑑2
, (2.2)

and deduce by (1.3) and (1.6),

𝑔−1(𝑆2) =
∞∑︁

𝑘=1

1

𝑘
−

∑︁

𝑘1,𝑘2∈K2

1

𝑘1𝑑1 + 𝑘2𝑑2
− 1

𝑑1

𝑑2−1∑︁

𝑘1=1

1

𝑘1
. (2.3)
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By Proposition 1.1, after subtraction in (2.3) there is a finite number of terms left,
since all terms, which exceed 𝐹2 in the two first infinite series in (2.3), are cancelled.
To emphasize that fact, we represent formula (2.3) as follows.

𝑔−1(𝑆2) =

𝑐2∑︁

𝑘=1

1

𝑘
−

𝑘1𝑑1+𝑘2𝑑2≤𝑐2∑︁

𝑘1,𝑘2∈K2

1

𝑘1𝑑1 + 𝑘2𝑑2
− 1

𝑑1

𝑑2−1∑︁

𝑘1=1

1

𝑘1
,

where 𝑐2 = 𝐹2 + 1 is called the conductor of semigroup 𝑆2.

3. A sum of the negative degrees of gaps
values 𝑔−𝑛(𝑆2)

We generalize formula (2.2) and introduce a new generating function Ψ𝑛(𝑧;𝑆2)
(𝑛 ≥ 2)

Ψ𝑛(𝑧;𝑆2) =

𝑧∫︁

0

d𝑡1
𝑡1

𝑡1∫︁

0

d𝑡2
𝑡2

. . .

𝑡𝑛−1∫︁

0

Φ(𝑡𝑛;𝑆2)
d𝑡𝑛
𝑡𝑛

=
∑︁

𝑠∈N∖𝑆2

𝑧𝑠

𝑠𝑛
, (3.1)

where Ψ𝑛(1;𝑆2) = 𝑔−𝑛(𝑆2) and satisfies the following recursive relation.

Ψ𝑘+1(𝑡𝑛−𝑘−1;𝑆2) =

𝑡𝑛−𝑘−1∫︁

0

d𝑡𝑛−𝑘

𝑡𝑛−𝑘
Ψ𝑘(𝑡𝑛−𝑘;𝑆2), 𝑘 ≥ 0,

Ψ0(𝑡𝑛;𝑆2) = Φ(𝑡𝑛−1;𝑆2), 𝑡0 = 𝑧.

Namely,

Ψ1(𝑡𝑛−1;𝑆2) =

𝑡𝑛−1∫︁

0

d𝑡𝑛
𝑡𝑛

Ψ0(𝑡𝑛;𝑆2),

Ψ2(𝑡𝑛−2;𝑆2) =

𝑡𝑛−2∫︁

0

d𝑡𝑛−1

𝑡𝑛−1
Ψ1(𝑡𝑛−1;𝑆2), . . . .

By integration in (3.1), we obtain

Ψ𝑛(𝑧;𝑆2) =
∞∑︁

𝑘=1

𝑧𝑘

𝑘𝑛
− 1

𝑑𝑛1

𝑑2−1∑︁

𝑘1=1

𝑧𝑘1𝑑1

𝑘𝑛1
−

∑︁

𝑘1,𝑘2∈K2

𝑧𝑘1𝑑1+𝑘2𝑑2

(𝑘1𝑑1 + 𝑘2𝑑2)𝑛
.

Thus, for 𝑧 = 1 we have

𝑔−𝑛(𝑆2) =
∞∑︁

𝑘=1

1

𝑘𝑛
−

𝑑2−1∑︁

𝑘1=0

∞∑︁

𝑘2=1

1

(𝑘1𝑑1 + 𝑘2𝑑2)𝑛
− 1

𝑑𝑛1

𝑑2−1∑︁

𝑘1=1

1

𝑘𝑛1
, 𝑛 ≥ 2. (3.2)

A sum of negative degrees of the gaps values. . . 89



Denoting the ratio 𝑑1/𝑑2 by 𝛿, we can rewrite (3.2) as

𝑔−𝑛(𝑆2) =
∞∑︁

𝑘=1

1

𝑘𝑛
− 1

𝑑𝑛2

∞∑︁

𝑘2=1

1

𝑘𝑛2
− 1

𝑑𝑛2

𝑑2−1∑︁

𝑘1=1

∞∑︁

𝑘2=1

1

(𝑘1𝛿 + 𝑘2)𝑛
− 1

𝑑𝑛1

𝑑2−1∑︁

𝑘1=1

1

𝑘𝑛1
.

Making use of the Hurwitz 𝜁(𝑛, 𝑞) =
∑︀∞

𝑘=0(𝑘 + 𝑞)−𝑛 and Riemann zeta functions
𝜁(𝑛) = 𝜁(𝑛, 1), we represent the last formula as follows.

𝑔−𝑛(𝑆2) =

(︂
1 − 1

𝑑𝑛2

)︂
𝜁(𝑛) − 1

𝑑𝑛2

𝑑2−1∑︁

𝑘1=1

𝜁(𝑛, 𝑘1𝛿), 𝑛 ≥ 2. (3.3)

On interchanging the generators 𝑑1 and 𝑑2 in (3.3), we obtain an alternative ex-
pression for 𝑔−𝑛(𝑆2):

𝑔−𝑛(𝑆2) =

(︂
1 − 1

𝑑𝑛1

)︂
𝜁(𝑛) − 1

𝑑𝑛1

𝑑1−1∑︁

𝑘2=1

𝜁

(︂
𝑛,

𝑘2
𝛿

)︂
. (3.4)

4. Symmetric 3-generated numerical semigroup

We deal with symmetric numerical semigroup 𝑆3 = ⟨𝑑1, 𝑑2, 𝑑3⟩ generated by three
integers with the Hilbert series 𝐻(𝑧;𝑆3), satisfying minimal relations,

𝐻(𝑧;𝑆3) =

(︀
1 − 𝑧𝑎22𝑑2

)︀ (︀
1 − 𝑧𝑎33𝑑3

)︀

(1 − 𝑧𝑑1)(1 − 𝑧𝑑2)(1 − 𝑧𝑑3)
(𝑎22, 𝑎33 ≥ 2), (4.1)

with 𝑎11𝑑1 = 𝑎22𝑑2, 𝑎33𝑑3 = 𝑎31𝑑1 + 𝑎32𝑑2 (see [3]). In this section, we prove a
statement which is necessary to establish the convergence for 𝑔1(𝑧, 𝑆3), namely, the
difference between two divergent infinite series is convergent

𝑔1(𝑧, 𝑆3) =

∞∑︁

𝑘=1

1

𝑘
−

𝑎22−1∑︁

𝑘2=0

𝑎33−1∑︁

𝑘3=0

∞∑︁

𝑘1=0

1

𝑘1𝑑1 + 𝑘2𝑑2 + 𝑘3𝑑3
,

3∑︁

𝑗=1

𝑘𝑗 ≥ 1. (4.2)

The idea is to prove that after cancellation of identical terms, a finite number of
terms is left in (4.2).

We consider the sublattice ̃︀L = L ∪ {0, 0, 0} of the integer lattice Z3, where

L =

∞⋃︁

𝑘1=0
𝑘1+𝑘2+𝑘3≥1

L𝑘1 , L𝑘1 =

∞⋃︁

𝑘2,𝑘3

{𝑘1, 𝑘2, 𝑘3},

with 0 ≤ 𝑘2 < 𝑎22 and 0 ≤ 𝑘3 < 𝑎33. In Figure 2, we present a part of the integer
lattice ̃︀L for the numerical semigroup ⟨4, 7, 10⟩.
Proposition 4.1. There exists a bijection between the infinite set of nodes in the
integer lattice ̃︀L and an infinite set of non-gaps of the semigroup ⟨𝑑1, 𝑑2, 𝑑3⟩.
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0

7 k

117

4 k

10

15 19 23

14

161284

18 22 26

17 21 25 29 33

2

3

1

10 k

Figure 2: A part of the integer lattice ̃︀L ⊂ Z3 for ⟨4, 7, 10⟩. The
nodes mark the non-gaps of semigroup: the values, assigned to the
black and white nodes, exceed and precede the Frobenius number

𝐹3 = 13.

Proof. We have to prove both existence and uniqueness.

1) Every 𝑠 ∈ ⟨𝑑1, 𝑑2, 𝑑3⟩ has its representative node in ̃︀L.

2) All 𝑠 ∈ ⟨𝑑1, 𝑑2, 𝑑3⟩ have their representative nodes in ̃︀L only once.

1) Let 𝑠 ∈ ⟨𝑑1, 𝑑2, 𝑑3⟩ be given. Then by definition of ⟨𝑑1, 𝑑2, 𝑑3⟩ an integer 𝑠 has
a representation,

𝑠 = 𝑘1𝑑1 + 𝑘2𝑑2 + 𝑘3𝑑3, 0 ≤ 𝑘1, 𝑘2, 𝑘3 < ∞. (4.3)

Choose 𝑠 such that

𝑘2 = 𝑝2𝑎22 + 𝑞2, 𝑘3 = 𝑝3𝑎33 + 𝑞3, namely, 𝑝2 =

⌊︂
𝑘2
𝑎22

⌋︂
, 𝑝3 =

⌊︂
𝑘3
𝑎33

⌋︂
, (4.4)

𝑝2, 𝑝3, 𝑞2, 𝑞3 ∈ Z, 𝑝2, 𝑝3 ≥ 0, 0 ≤ 𝑞2 < 𝑎22, 0 ≤ 𝑞3 < 𝑎33.

By substituting (4.4) into (4.3), we get

𝑠 = 𝑘1𝑑1 + (𝑝2𝑎22 + 𝑞2)𝑑2 + (𝑝3𝑎33 + 𝑞3)𝑑3. (4.5)

Combining (4.5) with minimal relations (4.1), we obtain

𝑠 = (𝑘1 + 𝑝2𝑎11)𝑑1 + 𝑝3(𝑎31𝑑1 + 𝑎32𝑑2) + 𝑞2𝑑2 + 𝑞3𝑑3 (4.6)
= (𝑘1 + 𝑝2𝑎11 + 𝑝3𝑎31)𝑑1 + (𝑝3𝑎32 + 𝑞2)𝑑2 + 𝑞3𝑑3.

If 𝑝3𝑎32+𝑞2 < 𝑎22, then 𝑠 has its representative node in ̃︀L. But, if 𝑝3𝑎32+𝑞2 ≥ 𝑎22,
let us write

𝑝3𝑎32 + 𝑞2 = 𝑝4𝑎22 + 𝑞4, 𝑝4 ≥ 0, 0 ≤ 𝑞4 < 𝑎22, 𝑝4 =

⌊︂
𝑝3𝑎32 + 𝑞2

𝑎22

⌋︂
. (4.7)
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Substitute (4.7) into (4.6) and get

𝑠 = (𝑘1 + 𝑝2𝑎11 + 𝑝3𝑎31 + 𝑝4𝑎11)𝑑1 + 𝑞4𝑑2 + 𝑞3𝑑3,

and 𝑠 still has its representative node in ̃︀L.
2) By way of contradiction, assume that there exist two nodes {𝑘1, 𝑘2, 𝑘3} ∈ ̃︀L and
{𝑙1, 𝑙2, 𝑙3} ∈ ̃︀L such that

𝑘1𝑑1 + 𝑘2𝑑2 + 𝑘3𝑑3 = 𝑙1𝑑1 + 𝑙2𝑑2 + 𝑙3𝑑3, (4.8)
0 ≤ 𝑘1 ̸= 𝑙1 < ∞, 0 ≤ 𝑘2 ̸= 𝑙2 < 𝑎22, 0 ≤ 𝑘3 ̸= 𝑙3 < 𝑎33. (4.9)

The case, when one of the differences 𝑘𝑗 − 𝑙𝑗 vanishes, will be considered later.
Suppose that 𝑘1 − 𝑙1 > 0, and 𝑘2 − 𝑙2 < 0, 𝑘3 − 𝑙3 < 0. In fact, due to (4.9) we also
have to include the upper bound

0 < 𝑙2 − 𝑘2 < 𝑎22, 0 < 𝑙3 − 𝑘3 < 𝑎33. (4.10)

Rewrite (4.8) as
(𝑘1 − 𝑙1)𝑑1 = (𝑙2 − 𝑘2)𝑑2 + (𝑙3 − 𝑘3)𝑑3,

where 𝑘1 − 𝑙1 ≥ 𝑎11, otherwise (due to minimal relations) equation (4.8) would
have trivial solution 𝑘𝑗 = 𝑙𝑗 (𝑗 = 1, 2, 3). But the last contradicts (4.9), namely,
𝑘1 ̸= 𝑙1, 𝑘2 ̸= 𝑙2, 𝑘3 ̸= 𝑙3.

If so, represent 𝑘1 − 𝑙1 = 𝑢1𝑎11 + 𝑣1 with 𝑢1 ≥ 1, 0 ≤ 𝑣1 < 𝑎11, then

(𝑢1𝑎11 + 𝑣1)𝑑1 = 𝑢1𝑎22𝑑2 + 𝑣1𝑑1 = (𝑙2 − 𝑘2)𝑑2 + (𝑙3 − 𝑘3)𝑑3. (4.11)

Rewrite (4.11) as

(𝑙3 − 𝑘3)𝑑3 = 𝑣1𝑑1 + (𝑢1𝑎22 − (𝑙2 − 𝑘2))𝑑2, (4.12)

and note that the both terms on the right-hand side in (4.12) are positive by (4.10),

0 < 𝑙2 − 𝑘2 < 𝑎22 < 𝑢1𝑎22. (4.13)

However, 0 < 𝑙3 − 𝑘3 < 𝑎33 by (4.10), and (due to minimal relations) equation
(4.12) has only a trivial solution, 𝑙3 = 𝑘3, 𝑣1 = 0, 𝑙2 = 𝑘2 + 𝑢1𝑎22. But the last
contradicts an inequality (4.13).

Now, consider the case when

𝑎33 > 𝑘3 − 𝑙3 > 0, 0 < 𝑙1 − 𝑘1, 0 < 𝑙2 − 𝑘2 < 𝑎22,

and write
(𝑘3 − 𝑙3)𝑑3 = (𝑙1 − 𝑘1)𝑑1 + (𝑙2 − 𝑘2)𝑑2. (4.14)

But (due to minimal relations) equation (4.14) has only trivial solution 𝑘𝑗 = 𝑙𝑗
(𝑗 = 1, 2, 3), that contradicts (4.9), namely, 𝑘1 ̸= 𝑙1, 𝑘2 ̸= 𝑙2, 𝑘3 ̸= 𝑙3.
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Next, consider the case when

𝑙1 − 𝑘1 = 0, 0 < 𝑙2 − 𝑘2 < 𝑎22, 𝑎33 > 𝑘3 − 𝑙3 > 0, (4.15)

and write
(𝑘3 − 𝑙3)𝑑3 = (𝑙2 − 𝑘2)𝑑2. (4.16)

But (due to minimal relations) equation (4.16) has only a trivial solution, 𝑙3 = 𝑘3,
𝑙2 = 𝑘2, that contradicts (4.15). For similar reasons the case

𝑘3 − 𝑙3 = 0, 0 < 𝑘1 − 𝑙1 < 𝑎11, 0 < 𝑙2 − 𝑘2 < 𝑎22, (4.17)

leads to an equality
(𝑘1 − 𝑙1)𝑑1 = (𝑙2 − 𝑘2)𝑑2,

which also has only a trivial solution, 𝑙1 = 𝑘1, 𝑙2 = 𝑘2, that contradicts (4.17).
Thus, what is left

𝑙1 = 𝑘1, 𝑙2 = 𝑘2, 𝑙3 = 𝑘3,

and the result is proven.

5. Identities for the Hurwitz zeta function

As an application, our argument can be deduced to the multiplication theorem
in Hurwitz zeta functions. Indeed, combining formulas (3.3) and (3.4), we get an
identity

𝛿𝑛
𝑑2−1∑︁

𝑘=1

𝜁(𝑛, 𝑘𝛿) = (1 − 𝛿𝑛) 𝜁(𝑛) +

𝑑1−1∑︁

𝑘=1

𝜁

(︂
𝑛,

𝑘

𝛿

)︂
.

Another spinoff of formulas (3.3) and (3.4) is a set of identities for Hurwitz zeta
functions. For example, consider the numerical semigroup ⟨3, 4⟩ with three gaps
N ∖ ⟨3, 4⟩ = {1, 2, 5}. Substituting it into (3.3) and (3.4), we have

𝜁

(︂
𝑛,

3

4

)︂
+ 𝜁

(︂
𝑛,

6

4

)︂
+ 𝜁

(︂
𝑛,

9

4

)︂
= (4𝑛 − 1)𝜁(𝑛) −

(︂
4𝑛 + 2𝑛 +

(︂
4

5

)︂𝑛)︂

and

𝜁

(︂
𝑛,

4

3

)︂
+ 𝜁

(︂
𝑛,

8

3

)︂
= (3𝑛 − 1)𝜁(𝑛) −

(︂
3𝑛 +

(︂
3

2

)︂𝑛

+

(︂
3

5

)︂𝑛)︂
,

respectively.
We shall show that the identity (3.3) can be deduced to the multiplication

theorem in Hurwitz zeta functions (see, e.g., [1, p.249], [2, (16), p.71]). It is similar
for (3.4).

Since gcd(𝑑1, 𝑑2) = 1, if 𝑘1𝑑1 ≡ 𝑘2𝑑1 (mod 𝑑2) then 𝑘1 ≡ 𝑘2 (mod 𝑑2). There-
fore,

𝜁

(︂
𝑛,

{︂
𝑑1
𝑑2

}︂)︂
+ 𝜁

(︂
𝑛,

{︂
2𝑑1
𝑑2

}︂)︂
+ · · · + 𝜁

(︂
𝑛,

{︂
(𝑑2 − 1)𝑑1

𝑑2

}︂)︂
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= 𝜁

(︂
𝑛,

1

𝑑2

)︂
+ 𝜁

(︂
𝑛,

2

𝑑2

)︂
+ · · · + 𝜁

(︂
𝑛,

𝑑2 − 1

𝑑2

)︂
,

where {𝑥} denotes the fractional part of a real number 𝑥. There exists a nonnega-
tive integer 𝑎 such that

𝑎𝑑1
𝑑2

< 1 <
(𝑎 + 1)𝑑1

𝑑2
.

Then for any integer 𝑘′ with 𝑎 < 𝑘′ ≤ 𝑑2 − 1 there exists a positive integer 𝑙′ such
that 1 ≤ 𝑘′𝑑1 − 𝑙′𝑑2 < 𝑑2, and

𝜁

(︂
𝑛,

𝑘′𝑑1
𝑑2

)︂
= 𝜁

(︂
𝑛,

𝑘′𝑑1 − 𝑙′𝑑2
𝑑2

)︂
−
(︂

𝑑2
𝑘′𝑑1 − 𝑙′𝑑2

)︂𝑛

−
(︂

𝑑2
𝑘′𝑑1 − (𝑙′ − 1)𝑑2

)︂𝑛

− · · · −
(︂

𝑑2
𝑘′𝑑1 − 𝑑2

)︂𝑛

, (5.1)

where
𝑘′𝑑1 − 𝑙′𝑑2

𝑑2
=

{︂
𝑘′𝑑1
𝑑2

}︂
.

For any positive integer 𝑟, there exist integers 𝑥 and 𝑦 such that 𝑟 = 𝑥𝑑1 + 𝑦𝑑2.
If 0 ≤ 𝑥 < 𝑑2, then 𝑟 can be expressed uniquely. Thus, if 𝑦 ≥ 0, then 𝑟 ∈ 𝑆2.
If 𝑦 < 0, then 𝑟 ̸∈ 𝑆2. The largest integer is given by (𝑑2 − 1)𝑑1 − 𝑑2, that is
exactly the same as the Frobenius number 𝐹 (𝑑1, 𝑑2). Thus, 𝑘′𝑑1 − 𝑙′′𝑑2 ̸∈ 𝑆2 for
all 𝑙′′ with 1 ≤ 𝑙′′ ≤ 𝑙′ in (5.1). In addition, if 𝑘1𝑑1 − 𝑙1𝑑2 = 𝑘2𝑑1 − 𝑙2𝑑2, then
by gcd(𝑑1, 𝑑2) = 1 we have 𝑑1|(𝑘1 − 𝑘2) and 𝑑2|(𝑙1 − 𝑙2). As 0 < 𝑘1, 𝑘2 < 𝑑2 and
0 < 𝑙1, 𝑙2 < 𝑑1, we get 𝑘1 = 𝑘2 and 𝑙1 = 𝑙2. Thus, all such numbers of the form
𝑘𝑑1 − 𝑙𝑑2 ̸∈ 𝑆2 are different.

In [5, (3.32)] for a real 𝜉 and 𝑑 = gcd(𝑑1, 𝑑2)

𝑑2−1∑︁

𝑘=0

⌊︂
𝑘𝑑1 + 𝜉

𝑑2

⌋︂
= 𝑑

⌊︂
𝜉

𝑑

⌋︂
+

(𝑑1 − 1)(𝑑2 − 1)

2
+

𝑑− 1

2
. (5.2)

Hence, by (5.2) with 𝑑 = 1 and 𝜉 = 0, the total number of non-representable
positive integers of the form 𝑘𝑑1 − 𝑙𝑑2 (𝑎 < 𝑘 < 𝑑2, 𝑙 = 1, 2, . . . , ⌊𝑘𝑑1/𝑑2⌋ − 1) is

𝑑2−1∑︁

𝑘=1

⌊︂
𝑘𝑑1
𝑑2

⌋︂
=

(𝑑1 − 1)(𝑑2 − 1)

2
,

which is exactly the same as the number of integers without non-negative integer
representations by 𝑑1 and 𝑑2, that was given by Sylvester in 1882. Therefore, the
right-hand side of (3.3) is

(︂
1 − 1

𝑑𝑛2

)︂
𝜁(𝑛) − 1

𝑑𝑛2

𝑑2−1∑︁

𝑘1=1

𝜁

(︂
𝑛,

𝑘1𝑑1
𝑑2

)︂
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=

(︂
1 − 1

𝑑𝑛2

)︂
𝜁(𝑛) − 1

𝑑𝑛2

⎛
⎝

𝑑2−1∑︁

𝑘1=1

𝜁

(︂
𝑛,

{︂
𝑘1𝑑1
𝑑2

}︂)︂
− 𝑑𝑛2

∑︁

𝑠∈N∖𝑆2

𝑠−𝑛

⎞
⎠

=

(︂
1 − 1

𝑑𝑛2

)︂
𝜁(𝑛) − 1

𝑑𝑛2

𝑑2−1∑︁

𝑘1=1

𝜁

(︂
𝑛,

𝑘

𝑑2

)︂
+

∑︁

𝑠∈N∖𝑆2

𝑠−𝑛.

On the other hand, the left-hand side of (3.3) is

𝑔−𝑛(𝑆2) =
∑︁

𝑠∈N∖𝑆2

𝑠−𝑛.

Therefore, we obtain that

𝑑2∑︁

𝑘=1

𝜁

(︂
𝑛,

𝑘

𝑑2

)︂
= 𝑑𝑛2 𝜁(𝑛),

which is the multiplication theorem in Hurwitz zeta functions.
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Abstract

The aim of the paper is to use some identities involving binomial co-
efficients to derive new combinatorial identities for balancing and Lucas-
balancing polynomials. Evaluating these identities at specific points, we can
also establish some combinatorial expressions for Fibonacci and Lucas num-
bers.
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1. Introduction

Balancing polynomials (𝐵𝑛(𝑥))𝑛≥0 and Lucas-balancing polynomials (𝐶𝑛(𝑥))𝑛≥0

are defined for 𝑥 ∈ C by the recurrences [17]

𝐵𝑛(𝑥) = 6𝑥𝐵𝑛−1(𝑥)−𝐵𝑛−2(𝑥), 𝑛 ≥ 2,
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with 𝐵0(𝑥) = 0, 𝐵1(𝑥) = 1 and

𝐶𝑛(𝑥) = 6𝑥𝐶𝑛−1(𝑥)− 𝐶𝑛−2(𝑥), 𝑛 ≥ 2,

with 𝐶0(𝑥) = 1, 𝐶1(𝑥) = 3𝑥.
(Lucas-) Balancing numbers and (Lucas-) balancing polynomials are related by

𝐵𝑛 = 𝐵𝑛(1) and 𝐶𝑛 = 𝐶𝑛(1). Sequences (𝐵𝑛)𝑛≥0 and (𝐶𝑛)𝑛≥0 are indexed in
On-Line Encyclopedia of Integer Sequences [19] (see entries A001109 and A001541,
respectively). The polynomials are interesting also due to their direct connection to
Fibonacci numbers, Lucas numbers and Chebyshev and Legendre polynomials [7].

These polynomials have been introduced recently as an extension of the popular
balancing and Lucas-balancing numbers 𝐵𝑛 and 𝐶𝑛, respectively, as presented by
Behera and Panda in [2].

Balancing polynomials (numbers) are members the Lucas sequence of the first
kind defined by the recurrence relation 𝑈0 = 0, 𝑈1 = 1, 𝑈𝑛 = 𝑝𝑈𝑛−1 + 𝑞𝑈𝑛−2

(𝑛 ≥ 2). Lucas-balancing polynomials (numbers) can also be defined using initial
values 𝐶0(𝑥) = 2 and 𝐶1(𝑥) = 6𝑥. In this case, Lucas-balancing polynomials
will belong to the Lucas sequence of the second kind defined by 𝑉0 = 2, 𝑉1 = 𝑝,
𝑉𝑛 = 𝑝𝑉𝑛−1 + 𝑞𝑉𝑛−2 (𝑛 ≥ 2). Such an approach would allow us to simplify some
formulas, but would complicate our comparative analysis with articles where these
polynomials are defined by initial values 𝐶0(𝑥) = 1 and 𝐶1(𝑥) = 3𝑥.

Solving the recurrences routinely we get the following closed forms for polyno-
mials 𝐵𝑛(𝑥) and 𝐶𝑛(𝑥) known as Binet formulas:

𝐵𝑛(𝑥) =
𝜆𝑛(𝑥)− 𝜆−𝑛(𝑥)

𝜆(𝑥)− 𝜆−1(𝑥)
, 𝐶𝑛(𝑥) =

𝜆𝑛(𝑥) + 𝜆−𝑛(𝑥)

2
, (1.1)

where 𝜆(𝑥) = 3𝑥+
√
9𝑥2 − 1.

Using (1.1), it is easy to see that

𝐵2𝑛(𝑥) = 2𝐵𝑛(𝑥)𝐶𝑛(𝑥), 𝑛 ≥ 0. (1.2)

Combinatorial expressions for balancing and Lucas-balancing polynomials are
[3, 15]

𝐵𝑛(𝑥) =

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 1− 𝑘

𝑘

)︂
(6𝑥)𝑛−1−2𝑘, 𝑛 ≥ 1, (1.3)

𝐶𝑛(𝑥) =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
(6𝑥)𝑛−2𝑘, 𝑛 ≥ 1. (1.4)

The relations 𝐵𝑛(−𝑥) = (−1)𝑛+1𝐵𝑛(𝑥) and 𝐶𝑛(−𝑥) = (−1)𝑛𝐶𝑛(𝑥) follow from
𝜆(±𝑥) = −𝜆−1(∓𝑥).

Some examples of recent works involving balancing and Lucas-balancing poly-
nomials conclude [7–9, 16].
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The aim of the paper is to derive new combinatorial identities for polynomials
𝐵𝑛(𝑥) and 𝐶𝑛(𝑥). Evaluating these identities at specific points, we can also estab-
lish some interesting combinatorial identities as special cases, especially those with
Fibonacci and Lucas numbers.

2. Combinatorial identities using Waring’s formulas

Our first result provides two combinatorial identities for balancing and Lucas-
balancing polynomials involving binomial coefficients.

Theorem 2.1. Let 𝑚 ≥ 0. Then

𝐵(𝑛+1)𝑚(𝑥) = 𝐵𝑚(𝑥)

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 𝑘

𝑘

)︂
(2𝐶𝑚(𝑥))𝑛−2𝑘, 𝑛 ≥ 0, (2.1)

𝐶𝑛𝑚(𝑥) =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
(2𝐶𝑚(𝑥))𝑛−2𝑘, 𝑛 ≥ 1. (2.2)

Proof. We combine the Binet formulas (1.1) with the following combinatorial for-
mulas

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 𝑘

𝑘

)︂
(𝑋𝑌 )𝑘(𝑋 + 𝑌 )𝑛−2𝑘 =

𝑋𝑛+1 − 𝑌 𝑛+1

𝑋 − 𝑌
(2.3)

and
⌊𝑛

2 ⌋∑︁

𝑘=0

(−1)𝑘
𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
(𝑋𝑌 )𝑘(𝑋 + 𝑌 )𝑛−2𝑘 = 𝑋𝑛 + 𝑌 𝑛. (2.4)

To get (2.1), set 𝑋 = 𝜆𝑚(𝑥) and 𝑌 = 𝜆−𝑚(𝑥) in (2.3). Formula (2.1) is the
immediate result when replacing 𝑛 by 𝑛−1. To get (2.2) apply the same argument
to the formula (2.4).

Remark 2.2. Formulas (2.3) and (2.4) are well-known in combinatorics and called
Waring’s (sometimes Girard-Waring’s) formulas. In [12] the reader will find some
interesting remarks about the history and the use of these formulas and their
generalizations. The proof of these formulas can be seen, for example, in [4].

In view of (1.2), formulas (2.1) and (2.2) can be written entirely in terms of
balancing polynomials 𝐵𝑛(𝑥). Special cases of (2.1) and (2.1) for 𝑚 = 1 are
formulas (1.3) and (1.4), respectively.

Setting 𝑥 = 1 in (2.1), we immediately get

𝐵𝑚𝑛 = 𝐵𝑚

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 1− 𝑘

𝑘

)︂
(2𝐶𝑚)𝑛−1−2𝑘.
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This result appears as Theorem 3.2 in [18]. Similarly, setting 𝑥 = 1 in (2.2) yields

𝐶𝑚𝑛 =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
(2𝐶𝑚)𝑛−2𝑘. (2.5)

Special cases of (2.5) are

𝐶𝑛 =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
6𝑛−2𝑘, (2.6)

𝐶2𝑛 =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
34𝑛−2𝑘,

and so on. Formula (2.6) may be found in [15]. More expressions of this kind can
be found in [10].

Next we are going to present some consequences of the above results to combi-
natorial sums involving Fibonacci numbers 𝐹𝑛 and Lucas numbers 𝐿𝑛. Recall that
both sequences satisfy the same recurrence relation 𝑢𝑛 = 𝑢𝑛−1 + 𝑢𝑛−2 for 𝑛 ≥ 2,
but with initial conditions 𝐹0 = 0, 𝐹1 = 1 and 𝐿0 = 2, 𝐿1 = 1 (sequences A000045
and A000032 in [19], respectively).

Balancing and Lucas-balancing polynomials are linked to Fibonacci and Lucas
numbers via

𝐵𝑛

(︂
𝐿2𝑞

6

)︂
=

𝐹2𝑞𝑛

𝐹2𝑞
, 𝐶𝑛

(︂
𝐿2𝑞

6

)︂
=

𝐿2𝑞𝑛

2
, (2.7)

and
𝐵𝑛

(︂
𝐿2𝑞+1

6
𝑖

)︂
=

𝐹(2𝑞+1)𝑛

𝐹2𝑞+1
𝑖𝑛−1, 𝐶𝑛

(︂
𝐿2𝑞+1

6
𝑖

)︂
=

𝐿(2𝑞+1)𝑛

2
𝑖𝑛, (2.8)

where 𝑞 is an integer and 𝑖 is the imaginary unit; see [7].
Formulas (2.7) and (2.8), coupled with Theorem 2.1 above, yield the following

results, which are known.

Corollary 2.3. Let 𝑚 ≥ 0. Then

𝐹2𝑚(𝑛+1) = 𝐹2𝑚

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
2𝑚 , 𝑛 ≥ 0, (2.9)

𝐹(2𝑚+1)(𝑛+1) = 𝐹2𝑚+1

⌊𝑛
2 ⌋∑︁

𝑘=0

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
2𝑚+1, 𝑛 ≥ 0, (2.10)

𝐿2𝑚𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
2𝑚 , 𝑛 ≥ 1, (2.11)
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𝐿(2𝑚+1)𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
2𝑚+1, 𝑛 ≥ 1. (2.12)

The above results are rediscoveries of known identities. Formulas (2.9) and
(2.10) we can united as a single formula [13]

𝐹𝑚(𝑛+1) = 𝐹𝑚

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘(𝑚+1)

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
𝑚 , 𝑛,𝑚 ≥ 0. (2.13)

Also, formulas (2.11) and (2.12) may be written in the same manner as follows [13]

𝐿𝑚𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘(𝑚+1) 𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
𝑚 , 𝑛 ≥ 1, 𝑚 ≥ 0. (2.14)

Since 𝐿𝑠 = 𝐹2𝑠/𝐹𝑠, formulas (2.13) and (2.14) can be written entirely in terms
of Fibonacci numbers.

Specific examples of (2.13) and (2.14) include the following combinatorial Fi-
bonacci and Lucas identities:

𝐹𝑛 =

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(︂
𝑛− 1− 𝑘

𝑘

)︂
, (2.15)

𝐹2𝑛 =

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 1− 𝑘

𝑘

)︂
3𝑛−2𝑘−1, (2.16)

𝐹3𝑛 = 2

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(︂
𝑛− 1− 𝑘

𝑘

)︂
4𝑛−2𝑘−1, (2.17)

𝐿𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
,

𝐿2𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
3𝑛−2𝑘,

𝐿3𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
4𝑛−2𝑘,

and so on. All identities in our list are know. For instance, identity (2.15) appears
as equation (1) in [11] and again as equation (5.1) in [5]. Identity (2.16) is equation
(2) in [11] and stated slightly differently equation (5.10) in [5].
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3. Combinatorial identities using Jennings’ formulas

Theorem 3.1. For 𝑚,𝑛 ≥ 0, we have

𝐵(2𝑛+1)𝑚(𝑥)

2𝑛+ 1
=

𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
(36𝑥2 − 4)𝑘

2𝑘 + 1
𝐵2𝑘+1

𝑚 (𝑥), (3.1)

𝐶(2𝑛+1)𝑚(𝑥)

2𝑛+ 1
=

𝑛∑︁

𝑘=0

(−1)𝑛−𝑘

(︂
𝑛+ 𝑘

2𝑘

)︂
4𝑘

2𝑘 + 1
𝐶2𝑘+1

𝑚 (𝑥). (3.2)

Proof. The following identities are from Jennings [14, Lemmas (i) and (ii)]:

𝑛∑︁

𝑘=0

2𝑛+ 1

2𝑘 + 1

(︂
𝑛+ 𝑘

2𝑘

)︂(︂
𝑧2 − 1

𝑧

)︂2𝑘

=
𝑧2(𝑛+1) − 𝑧−2𝑛

𝑧2 − 1
, (3.3)

𝑛∑︁

𝑘=0

(−1)𝑛−𝑘 2𝑛+ 1

2𝑘 + 1

(︂
𝑛+ 𝑘

2𝑘

)︂(︂
𝑧2 + 1

𝑧

)︂2𝑘

=
𝑧2(𝑛+1) + 𝑧−2𝑛

𝑧2 + 1
. (3.4)

To get (3.1), set 𝑧 = 𝑋/𝑌 in (3.3) to derive at

𝑛∑︁

𝑘=0

2𝑛+ 1

2𝑘 + 1

(︂
𝑛+ 𝑘

2𝑘

)︂
(𝑋𝑌 )𝑛−𝑘(𝑋 − 𝑌 )2𝑘+1 = 𝑋2𝑛+1 − 𝑌 2𝑛+1.

Now, we can insert 𝑋 = 𝜆𝑚(𝑥) and 𝑌 = 𝜆−𝑚(𝑥), and the statement follows. To
get (3.2) apply the same argument to formula (3.4).

Note that identity (3.3) also appears in [1] to prove some Fibonacci identities.

Corollary 3.2. For 𝑛 ≥ 0,

𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
(−4)𝑘

2𝑘 + 1
=

(−1)𝑛

2𝑛+ 1
.

Proof. Set 𝑥 = 0 in (3.1) and use

𝐵𝑛(0) =

{︃
0, if 𝑛 is even,
(−1)

𝑛−1
2 , if 𝑛 is odd.

Corollary 3.3. For 𝑛,𝑚 ≥ 0,

𝐵(2𝑛+1)𝑚 = (2𝑛+ 1)

𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
32𝑘

2𝑘 + 1
𝐵2𝑘+1

𝑚 ,

𝐶(2𝑛+1)𝑚 = (2𝑛+ 1)
𝑛∑︁

𝑘=0

(−1)𝑛−𝑘

(︂
𝑛+ 𝑘

2𝑘

)︂
4𝑘

2𝑘 + 1
𝐶2𝑘+1

𝑚 .
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Proof. Set 𝑥 = 1 in (3.1) and (3.2), respectively.

Corollary 3.4. For 𝑛,𝑚 ≥ 0,

𝐹2𝑚(2𝑛+1) = (2𝑛+ 1)

𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
5𝑘

2𝑘 + 1
𝐹 2𝑘+1
2𝑚 , (3.5)

𝐹(2𝑚+1)(2𝑛+1) = (2𝑛+ 1)(−1)𝑛
𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
(−5)𝑘

2𝑘 + 1
𝐹 2𝑘+1
2𝑚+1. (3.6)

Proof. Insert 𝑥 = 𝐿2𝑞/6 and 𝑥 = 𝑖𝐿2𝑞+1/6 in (3.1), use (2.7) and (2.8), and simplify
using 𝐿2

𝑛 = 5𝐹 2
𝑛 + (−1)𝑛4.

Remark 3.5. Equations (3.5) and (3.6) are rediscoveries of Theorem 1 in [14].

4. Combinatorial identities using Toscano’s identity

Theorem 4.1. For 𝑛 ≥ 1 and 𝑚 ≥ 0, we have the following combinatorial identity:

22𝑛−1𝐶2𝑛
𝑚 (𝑥) =

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
2𝑘𝐶𝑘

𝑚(𝑥)𝐶𝑚𝑘(𝑥). (4.1)

Proof. Combine the Binet formula for 𝐶𝑛(𝑥) with combinatorial identity
𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
(𝑋𝑘 + 𝑌 𝑘)

(︂
𝑋𝑌

𝑋 + 𝑌

)︂𝑛−𝑘

= (𝑋 + 𝑌 )𝑛,

which have been proved in [20] by Toscano.

Setting 𝑥 = 1 in (4.1) immediately gives the next relation.

Corollary 4.2. For 𝑛 ≥ 1 and 𝑚 ≥ 0,

22𝑛−1𝐶2𝑛
𝑚 =

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
2𝑘𝐶𝑘

𝑚𝐶𝑚𝑘.

The next two identities are special instances of the previous corollary for 𝑚 = 0
and 𝑚 = 1, respectively:

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
2𝑘 = 22𝑛−1

and

2
𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
6𝑘𝐶𝑘 = 36𝑛.

Focusing on Lucas numbers we obtain the following known combinatorial iden-
tities [6].
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Corollary 4.3. For 𝑛 ≥ 1 and 𝑚 ≥ 0, Lucas numbers satisfy

𝐿2𝑛
2𝑚 =

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿𝑘
2𝑚𝐿2𝑚𝑘,

and

𝐿2𝑛
2𝑚+1 =

𝑛∑︁

𝑘=1

(−1)𝑛−𝑘

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿𝑘
2𝑚+1𝐿(2𝑚+1)𝑘.

The next evaluation are consequences of Corollary 4.3:

𝑛∑︁

𝑘=1

(−1)𝑛−𝑘

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿𝑘 = 1,

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿2𝑘

32𝑛−𝑘
= 1,

𝑛∑︁

𝑘=1

(−1)𝑛−𝑘

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿3𝑘

42𝑛−𝑘
= 1,

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿4𝑘

72𝑛−𝑘
= 1.
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1. Introduction

A positive integer 𝑥 is known as a Markov number if there are positive integers
𝑦, 𝑧, such that the triple (𝑥, 𝑦, 𝑧) satisfies the equation

𝑥2 + 𝑦2 + 𝑧2 = 3𝑥𝑦𝑧. (1.1)

Some Markov numbers (sequence A002559 in the OEIS [7]) are

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, . . . .

Note that, if (𝑥, 𝑦, 𝑧) satisfies (1.1), then 𝑦 and 𝑧 are also Markov numbers, hence
(𝑥, 𝑦, 𝑧) is called a Markov triple. Clearly, one can permute the order of the three
components and assume that 0 < 𝑥 ≤ 𝑦 ≤ 𝑧.

It is known that (1, 𝐹2𝑛−1, 𝐹2𝑛+1) is a Markov triple for all 𝑛 ≥ 0, where 𝐹𝑟

denotes the 𝑟th Fibonacci number. Luca and Srinivasan [6] showed these are the
only Markov triples whose components are all Fibonacci numbers.

For 𝑘 ≥ 2, let {𝐹 (𝑘)
𝑟 }𝑟≥−(2−𝑘) denote the 𝑘-generalized Fibonacci sequence

given by the recurrence

𝐹 (𝑘)
𝑟 = 𝐹

(𝑘)
𝑟−1 + · · · + 𝐹

(𝑘)
𝑟−𝑘, for all 𝑟 ≥ 2,

with 𝐹
(𝑘)
𝑗 = 0 for 𝑗 = 2 − 𝑘, . . . , 0 and 𝐹

(𝑘)
1 = 1.

We determine all Markov triples of the form (𝐹
(𝑘)
𝑠 , 𝐹

(𝑘)
𝑚 , 𝐹

(𝑘)
𝑛 ), where 𝑠,𝑚, 𝑛

are positive integers. That is, we find all the solutions of the Diophantine equation
(︁
𝐹 (𝑘)
𝑠

)︁2
+
(︁
𝐹 (𝑘)
𝑚

)︁2
+
(︁
𝐹 (𝑘)
𝑛

)︁2
= 3𝐹 (𝑘)

𝑠 𝐹 (𝑘)
𝑚 𝐹 (𝑘)

𝑛 . (1.2)

By symmetry and since 𝐹
(𝑘)
1 = 𝐹

(𝑘)
2 = 1, we assume that 2 ≤ 𝑠 ≤ 𝑚 ≤ 𝑛. Many

arithmetic properties have recently been studied for the 𝑘-generalized Fibonacci
sequences. Some Diophantine equations similar to the one discussed in this paper
can be found in [1] and [4].

Here is our main result.

Main Theorem. The only solutinos (𝑘, 𝑠,𝑚, 𝑛) of equation (1.2) with 𝑘 ≥ 2 and
2 ≤ 𝑠 ≤ 𝑚 ≤ 𝑛 are the trivial solutions (𝑘, 2, 2, 2) and (𝑘, 2, 2, 3) and the parametric
one (2, 2, 2𝑙 − 1, 2𝑙 + 1) for some integer 𝑙 ≥ 2.

In particular, there are no non-trivial Markov triples of 𝑘-generalized Fibonacci
numbers for any 𝑘 ≥ 3.

2. Preliminaries

To start, let us assume that (𝑥, 𝑦, 𝑧) is a Markov triple with 𝑥 ≤ 𝑦 ≤ 𝑧. Suppose
that 𝑥 = 𝑦. Then

2𝑥2 + 𝑧2 = 3𝑥2𝑧,
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which implies (𝑧/𝑥)2 = 3𝑧 − 2 ∈ Z. Therefore, 𝑧 = 𝑟𝑥 where 𝑟 is some positive
integer. We thus get

2 + 𝑟2 = 3𝑥𝑟. (2.1)

Hence, 𝑟|2, so 𝑟 = 1, 2 and we obtain the triples (𝑥, 𝑦, 𝑧) = (1, 1, 1), (1, 1, 2).
Suppose next that 𝑦 = 𝑧. Then,

𝑥2 + 2𝑧2 = 3𝑧2𝑥,

which implies (𝑥/𝑧)
2

= 3𝑥−2 ∈ Z. Hence, 𝑧 | 𝑥, but since 𝑥 ≤ 𝑧, we get 𝑥 = 𝑦 = 𝑧,
and again the only possibility is (𝑥, 𝑦, 𝑧) = (1, 1, 1). The previous observation
shows that aside from the triples (1, 1, 1) and (1, 1, 2), each Markov triple consists
of different integers. Thus, we obtained for the Diophantine equation (1.2) the
trivial solutions (𝑘, 𝑠,𝑚, 𝑛) given by (𝑘, 2, 2, 2) and (𝑘, 2, 2, 3). From now on, we
assume that 1 ≤ 𝑥 < 𝑦 < 𝑧, so 2 ≤ 𝑠 < 𝑚 < 𝑛.

We need some facts about 𝑘-generalized Fibonacci numbers. For 𝑘 ≥ 2 fixed,
by [3] we have the following Binet-like formula for the 𝑟th 𝑘-generalized Fibonacci
number

𝐹 (𝑘)
𝑟 =

𝑘∑︁

𝑖=1

𝑓𝑘(𝛼𝑖)𝛼
𝑟−1
𝑖 , (2.2)

where 𝛼1, 𝛼2, . . . , 𝛼𝑘 are the roots of the characteristic polynomial

Φ𝑘(𝑥) = 𝑥𝑘 − 𝑥𝑘−1 − · · · − 1,

and
𝑓𝑘(𝑥) :=

𝑥− 1

2 + (𝑘 + 1)(𝑥− 2)
.

It is known that this polynomial has only one real root larger than 1, let’s
denote it by 𝛼(= 𝛼1). It is in the interval (2(1 − 2−𝑘), 2), see [5, Lemma 2.3] or
[8, Lemma 3.6]. The remaining roots 𝛼2, . . . , 𝛼𝑘 are all smaller than 1 in absolute
value. Furthermore, powers of 𝛼 can be used to bound 𝐹

(𝑘)
𝑟 (see [2]) from above

and below as in the inequality

𝛼𝑟−2 < 𝐹 (𝑘)
𝑟 < 𝛼𝑟−1, which holds for all 𝑟 ≥ 1. (2.3)

It is known from [4] that the coefficient 𝑓𝑘(𝛼) in the Binet formula (2.2) satisfies
the inequalities

1

2
≤ 𝑓𝑘(𝛼) ≤ 3

4
, for all 𝑘 ≥ 2. (2.4)

It is also known (see [3]) that

𝐹 (𝑘)
𝑟 = 𝑓𝑘(𝛼)𝛼𝑟−1 + 𝑒𝑘(𝑟), for all 𝑟 ≥ 1, with |𝑒𝑘(𝑟)| < 1/2, (2.5)

and it follows from the recurrence formula that

𝐹 (𝑘)
𝑟 = 2𝑟−2 for all 2 ≤ 𝑟 ≤ 𝑘 + 1. (2.6)
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Sometimes we write 𝛼(𝑘) := 𝛼 in order to emphasize the dependence of 𝛼 on
𝑘. It is easy to check that 𝛼(𝑘) is increasing as a function of 𝑘. In particular, the
inequality

𝜑 :=
1 +

√
5

2
= 𝛼(2) ≤ 𝛼(𝑘) < 𝛼(𝑘 + 1) < 2 (2.7)

holds for all 𝑘 ≥ 2
By (1.2) and (2.3), we have the following relations between our variables:

𝛼2(𝑛−2) < (𝐹 (𝑘)
𝑛 )2 < 3𝐹 (𝑘)

𝑠 𝐹 (𝑘)
𝑚 𝐹 (𝑘)

𝑛 < 𝛼𝑠+𝑚+𝑛

and
3𝛼𝑠+𝑚+𝑛−6 < 3𝐹 (𝑘)

𝑠 𝐹 (𝑘)
𝑚 𝐹 (𝑘)

𝑛 < (3𝐹 (𝑘)
𝑛 )2 < 3𝛼2(𝑛−1),

which imply 𝑛 ≤ 𝑠 + 𝑚 + 3 and 𝑠 + 𝑚 ≤ 𝑛 + 3, respectively. We record this
intermediate result.

Lemma 2.1. Assume that (𝑘, 𝑠,𝑚, 𝑛) is a solution of equation (1.2) with 𝑘 ≥ 2
and 2 ≤ 𝑠 < 𝑚 < 𝑛. Then

|𝑛− (𝑠 + 𝑚)| ≤ 3. (2.8)

3. The proof of the Main Theorem

To avoid notational clutter, we omit the superscript (𝑘), so we write 𝐹𝑟 instead of
𝐹

(𝑘)
𝑟 but understand that we are working with the 𝑘-generalized Fibonacci numbers.

We use (2.5) to rewrite (1.2), as

𝐹 2
𝑠 + 𝐹 2

𝑚 + 𝑓2
𝑘𝛼

2(𝑛−1) + 2𝑒𝑘𝑓𝑘𝛼
𝑛−1 + 𝑒2𝑘

= 3(𝑓𝑘𝛼
𝑠−1 + 𝑒′′𝑘)(𝑓𝑘𝛼

𝑚−1 + 𝑒′𝑘)(𝑓𝑘𝛼
𝑛−1 + 𝑒𝑘). (3.1)

Here, for simplicity, we wrote 𝑓𝑘 := 𝑓𝑘(𝛼), 𝑒𝑘 := 𝑒𝑘(𝑛), 𝑒′𝑘 := 𝑒𝑘(𝑚), 𝑒′′𝑘 := 𝑒𝑘(𝑠).
Therefore, after some calculations, we get

|𝑓2
𝑘𝛼

2(𝑛−1) − 3𝑓3
𝑘𝛼

𝑠+𝑚+𝑛−3| ≤ |𝐺1(𝑘, 𝑠,𝑚, 𝑛, 𝛼)| + 𝐹 2
𝑠 + 𝐹 2

𝑚, (3.2)

where 𝐺1(𝑘, 𝑠,𝑚, 𝑛, 𝛼) is the contributions of those terms in the right-hand side
expansion of (3.1). Therefore,

|𝐺1(𝑘, 𝑠,𝑚, 𝑛, 𝛼)| ≤ 27

32
𝛼𝑠+𝑚−2 +

27

32
𝛼𝑠+𝑛−2 +

9

16
𝛼𝑠−1

+
27

32
𝛼𝑚+𝑛−2 +

9

16
𝛼𝑚−1 +

21

16
𝛼𝑛−1 +

5

8
.

Now, we divide both sides of (3.2) by 3𝑓3
𝑘𝛼

𝑠+𝑚+𝑛−3. By (2.3) and (2.4), we get

|1 − (3𝑓𝑘)−1𝛼𝑛−(𝑚+𝑠)+1| ≤ 8

3

(︂
27𝛼

32𝛼𝑛
+

27𝛼

32𝛼𝑚
+

9𝛼2

16𝛼𝑚+𝑛
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+
27𝛼

32𝛼𝑠
+

9𝛼2

16𝛼𝑠+𝑛
+

21𝛼2

16𝛼𝑠+𝑚

+
5𝛼3

8𝛼𝑠+𝑚+𝑛
+

𝛼

𝛼𝑚+𝑛−𝑠
+

𝛼

𝛼𝑠+𝑛−𝑚

)︂
.

Since 2 ≤ 𝑠 < 𝑚 < 𝑛, we have 𝑚 ≥ 3, 𝑛 ≥ 4, 𝑚 ≥ 𝑠 + 1 and 𝑛 ≥ 𝑠 + 2. Therefore,
after some calculations, we arrive at

|1 − (3𝑓𝑘)−1𝛼𝑛−(𝑚+𝑠)+1| < 15.2

𝛼𝑠
. (3.3)

We put 𝑡 := 𝑛− (𝑚 + 𝑠). By (2.8), we have that 𝑡 ∈ {±3,±2,±1, 0}. We proceed
by cases. If 𝑡 + 1 ≤ 0, then

1

3
≤ 1 − (3𝑓𝑘)−1𝛼𝑡+1 ≤ 1 − 2𝑡+3

9
,

which implies
1/3 < |1 − (3𝑓𝑘)−1𝛼𝑡+1|. (3.4)

Now, if 𝑡 + 1 ≥ 2, then 𝜑2 ≤ 𝛼𝑡+1 ≤ 2𝑡+1. Thus, we obtain

1 − 2

3
2𝑡+1 ≤ 1 − (3𝑓𝑘)−1𝛼𝑡+1 ≤ 1 − 4

9
𝜑2.

Since 1 − 4𝜑2/9 < −0.16 and 1 − 2𝑡+2/3 < −1.6, we get

0.16 < |1 − (3𝑓𝑘)−1𝛼𝑡+1|. (3.5)

Finally, we treat the case 𝑡 = 0. Let us consider, for 𝑘 ≥ 2, the function

𝑔(𝑥, 𝑘) =
2𝑥 + (𝑘 + 1)(𝑥2 − 2𝑥)

3(𝑥− 1)
.

Clearly, for 𝑥 >
√

2 fixed, the function 𝑔(𝑥, 𝑘) is increasing as a function of 𝑘. On
the other hand,

𝜕

𝜕𝑥
𝑔(𝑘, 𝑥)

⃒⃒
⃒
𝑥=𝑥𝑘

= 0, where 𝑥𝑘 :=
1 + 𝑘 ±

√
1 − 𝑘2

𝑘 + 1
.

Assume first that 𝑘 ≥ 4 fixed. Then 𝑔(𝑥, 𝑘) is increasing for 𝑥 ∈ (1, 2) and 1.93 <
𝛼(4) ≤ 𝛼(𝑘). Therefore,

1.14 < 𝑔(1.93, 4) ≤ 𝑔(𝛼, 𝑘) = (3𝑓𝑘)−1𝛼.

Thus, we conclude that
0.14 < |1 − (3𝑓𝑘)−1𝛼|. (3.6)

Now, for 𝑘 = 2 and 𝑘 = 3, we get

(3𝑓2)−1𝜑 < 0.75 and (3𝑓3)−1𝛼(3) < 0.992, (3.7)
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respectively. By (3.4), (3.5), (3.6) and (3.7), we conclude that the inequality

0.008 < |1 − (3𝑓𝑘)−1𝛼𝑛−(𝑚+𝑠)+1|, (3.8)

holds in all the cases when 𝑘 ≥ 2 and |𝑛 − (𝑚 + 𝑠)| ≤ 3. Thus, by the previous
estimate (3.8) together with (3.3) and the inequality (2.8), we get

2 ≤ 𝑠 ≤ 15 and 1 ≤ 𝑛−𝑚 ≤ 18.

Now, we rewrite equation (1.2) as

𝐹 2
𝑠 + 𝑓2

𝑘𝛼
2(𝑚−1) + 2𝑒′𝑘𝑓𝑘𝛼

𝑚−1 + (𝑒′𝑘)2 + 𝑓2
𝑘𝛼

2(𝑛−1) + 2𝑒𝑘𝑓𝑘𝛼
𝑛−1 + 𝑒2𝑘

= 3𝐹𝑠(𝑓𝑘𝛼
𝑚−1 + 𝑒′𝑘)(𝑓𝑘𝛼

𝑛−1 + 𝑒𝑘). (3.9)

After some calculations, we obtain

|𝑓2
𝑘𝛼

2(𝑛−1) + 𝑓2
𝑘𝛼

2(𝑚−1) − 3𝐹𝑠𝑓
2
𝑘𝛼

𝑛+𝑚−2| ≤ |𝐺2(𝑘, 𝑠,𝑚, 𝑛, 𝛼)| + 𝐹 2
𝑠 , (3.10)

where 𝐺2(𝑘, 𝑠,𝑚, 𝑛, 𝛼) correspond to those terms in the right-hand side expansion
of (3.9). Therefore,

|𝐺2(𝑘, 𝑠,𝑚, 𝑛, 𝛼)| ≤
(︂

9𝛼13

8
+

3

4𝛼

)︂
(𝛼𝑚 + 𝛼𝑛) +

3𝛼14

4
+

1

2
. (3.11)

Now, we divide both sides of (3.10) by 3𝐹𝑠𝑓
2
𝑘𝛼

𝑛+𝑚−2 and use the previous estimate
(3.11) together with the fact that the inequality 𝐹 2

𝑠 < 𝛼28 holds for all 2 ≤ 𝑠 ≤ 15,
to get

|(3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1| < 1.37 × 108

𝛼𝑚
(3.12)

Let us assume that 𝑘 ≥ 14. By (2.6), we have that 𝐹𝑠 = 2𝑠−2 for 2 ≤ 𝑠 ≤ 15. We
now put 𝑡 := 𝑛−𝑚 and we study the function

ℎ(𝑠, 𝑡, 𝑥) =
1

3 · 2𝑠−2

(︂
𝑥2𝑡 + 1

𝑥𝑡

)︂
,

where (𝑠, 𝑡) ∈ [2, 15]× [1, 18] and 𝑥 ∈ (𝛼(14), 2). Clearly this function is increasing
in terms of 𝑥, therefore

ℎ(𝑠, 𝑡, 𝛼(14)) ≤ (3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) ≤ ℎ(𝑠, 𝑡, 2).

We check computationally that

ℎ(𝑠, 𝑡, 2) < 0.9 and 1.1 < ℎ(𝑠, 𝑡, 𝛼(14)),

hold in the entire range of our variables (𝑠, 𝑡) ∈ [2, 15]× [1, 18]∩ (Z×Z). Therefore,
for 𝑘 ≥ 14, 2 ≤ 𝑠 ≤ 15 and 1 ≤ 𝑛−𝑚 ≤ 18, we get

0.1 < |(3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1|.
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On the other hand, for 3 ≤ 𝑘 ≤ 13, 2 ≤ 𝑠 ≤ 15 and 1 ≤ 𝑛 − 𝑚 ≤ 18, we find
computationally that

0.004 < min |(3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1|. (3.13)

Therefore, comparing the above lower bound (3.13) with (3.12), we get that for
𝑘 ≥ 3,

2 ≤ 𝑠 ≤ 15, 3 ≤ 𝑚 ≤ 50 and 4 ≤ 𝑛 ≤ 68. (3.14)

The remaining case 𝑘 = 2 has already been treated but we can include it in our
analysis nevertheless. We start noting that for 3 ≤ 𝑠 ≤ 15 and 1 ≤ 𝑛−𝑚 ≤ 18, we
have

0.16 < min |(3𝐹𝑠)
−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1|. (3.15)

If 𝑠 = 2, we have that 3−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) = 1 when 𝑛−𝑚 = 2. Therefore, for
1 ≤ 𝑛−𝑚 ≤ 18 with 𝑛 ̸= 𝑚 + 2,

0.25 < min |3−1(𝛼𝑛−𝑚 + 𝛼−(𝑛−𝑚)) − 1|.

Thus, comparing the above lower bound (3.15) with (3.12), for 𝑘 = 2 and 𝑛 ̸= 𝑚+2,
we get,

2 ≤ 𝑠 ≤ 15, 3 ≤ 𝑚 ≤ 42 and 4 ≤ 𝑛 ≤ 50. (3.16)

By (3.14) and (3.16), we conclude that:

Lemma 3.1. If (𝑘, 𝑠,𝑚, 𝑛) is a solution of equation (1.2) with 2 ≤ 𝑠 < 𝑚 < 𝑛 and
𝑘 ≥ 2, then either 𝑘 = 2 and 𝑛 = 𝑚 + 2 or 𝑘 ≥ 3,

2 ≤ 𝑠 ≤ 15, 3 ≤ 𝑚 ≤ 50 and 4 ≤ 𝑛 ≤ 68.

Now, we need to bound the variable 𝑘. Let us assume first that 𝑘 > 67. Then,
by Lemma 3.1, we have

𝑛 ≤ 68 < 𝑘 + 1.

Thus, the formula 𝐹𝑟 = 2𝑟−2 holds for all three 𝑟 ∈ {𝑠,𝑚, 𝑛}. Hence, equation
(1.2) may be rewritten as

22(𝑠−2) + 22(𝑚−2) + 22(𝑛−2) = 3 · 2𝑛+𝑚+𝑠−6.

Dividing both sides of this equality by 22(𝑠−2), we get

1 + 22(𝑚−𝑠) + 22(𝑛−𝑠) = 3 · 2𝑛+𝑚−𝑠−2. (3.17)

Since 𝑚−𝑠 ≥ 1 and 𝑛−𝑠 ≥ 2, the left-hand side of (3.17) is an odd integer greater
than or equal to 21. If 𝑛 + 𝑚 > 𝑠 + 2, the right-hand side is an even number,
if 𝑛 + 𝑚 < 𝑠 + 2 the right-hand side is not an integer and if 𝑛 + 𝑚 = 𝑠 + 2 the
right-hand side is 3 and none of these situations is possible. Thus, 𝑘 ≤ 67.
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Assume next that 𝑘 = 2 and 𝑛 = 𝑚 + 2 for some 𝑚 ≥ 3. Recall that the case
𝑘 = 2 was treated in [6], so, the following has already been done and we present it
here just to end our analysis. By their Lemma 3.2, we have 𝑠 = 2. Thus,

1 + 𝐹 2
𝑚 + 𝐹 2

𝑚+2 = 3𝐹𝑚𝐹𝑚+2. (3.18)

If 𝑚 is an even number, then one of 𝑚 or 𝑚+ 2 is a multiple of 4, so one of 𝐹𝑚 or
𝐹𝑚+2 is a multiple of 3, which leads to

1 + 𝐹 2
𝑗 ≡ 0 mod 3,

for some 𝑗 ∈ {𝑚,𝑚 + 2}, which is not possible. Therefore, 𝑚 = 2𝑙 − 1 for some
𝑙 ≥ 2. Thus, equation (3.18) may rewritten as

1 + 𝐹 2
2𝑙−1 + 𝐹 2

2𝑙+1 = 3𝐹2𝑙−1𝐹2𝑙+1 for 𝑙 ≥ 2,

which holds since it is equivalent to 1 + 𝐹 2
2𝑙 = 𝐹2𝑙−1𝐹2𝑙+1, which is a particular

case of Cassini’s formula.

In summary, we have the following result:

Lemma 3.2. If (𝑘, 𝑠,𝑚, 𝑛) is a solution of (1.2) with 2 ≤ 𝑠 < 𝑚 < 𝑛, then either
𝑘 = 2, 𝑠 = 2, 𝑚 = 2𝑙 − 1 and 𝑛 = 2𝑙 + 1 for some 𝑙 ≥ 2 or

2 ≤ 𝑘 ≤ 67, 2 ≤ 𝑠 ≤ 15, 3 ≤ 𝑚 ≤ 50 and 4 ≤ 𝑛 ≤ 68.

Finally, a brute force search for solutions (𝑘, 𝑠,𝑚, 𝑛) of the equation (1.2), using
the respective range given by the previous lemma, finishes the proof of our Main
Theorem. Here, we used

𝐹 [𝑟_, 𝑘_] := SeriesCoefficient[Series[𝑥/(1 − Sum[𝑥𝑗 , {𝑗, 1, 𝑘}]), {𝑥, 0, 1400}], 𝑟],

to create the 𝑟th 𝑘-Fibonacci number.
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1. Introduction

In this paper, we deal with the concept of algebraic thickness, defined by Carlet
in [3, 4] as the minimum number of terms of all Boolean functions in the affine
equivalence orbit of a Boolean function – and aim to reveal the distribution of
algebraic thickness of all Boolean functions in four and five variables.

As will be discussed in the coming sections, by using an exhaustive search, the
calculation of this distribution for 𝑛 ≤ 4 variables is at best a straightforward,
and at worst, a lengthy – but manageable – endeavor. There are 22

𝑛

Boolean
functions in 𝑛 variables, which, for 𝑛 = 4, equals 65536. Since there are 322560
different affine transformations needed to be checked for each Boolean function,
the calculation of the algebraic thickness for all Boolean functions in four variables
is a time consuming task, albeit doable.

However, in moving from four to five variables, this number grows significantly.
The total number of unique Boolean functions is 4 294 967 296, and the number of
different affine transformations is 319 979 520. One of the sub-goals of the paper
was to find an efficient method able to handle the magnitude of the computation,
and another was to effectively handle and analyze the resulting data set for 𝑛 = 5.

Additionally, throughout the paper, when discussing functions 𝑛 ≤ 5, we omit
the trivial cases 𝑛 = 0, 1, unless specified. We used SageMath [9] for all computa-
tions in this paper.

A Boolean function 𝑓 in 𝑛 variables, where 𝑛 is any positive integer, is a function
from the vector space F𝑛

2 to the finite field F2, i.e. 𝑓 : F𝑛
2 → F2. The set of all

Boolean functions in 𝑛 variables is denoted by ℬ𝑛, and the symbol ⊕ denotes
addition modulo 2, in F2, F𝑛

2 , and ℬ𝑛.
Every Boolean function 𝑓 has a unique representation called its algebraic normal

form (ANF) as a polynomial over F2 in 𝑛 variables:

𝑓(x) =
⨁︁

u∈F𝑛
2

𝑐u

(︃
𝑛∏︁

𝑖=1

𝑥𝑢𝑖
𝑖

)︃
=
⨁︁

u∈F𝑛
2

𝑐ux
u,

where each 𝑐u ∈ F2, u = (𝑢1, . . . , 𝑢𝑛) and x = (𝑥1, . . . , 𝑥𝑛). The algebraic degree
of 𝑓 is the largest weight of u such that 𝑐u ̸= 0. A homogeneous function is a sum
of monomials of the same degree.

An affine function ℓu,𝑐 is a function with algebraic degree at most 1, which
takes the form

ℓu,𝑐(x) = u · x⊕ 𝑐 = 𝑢1𝑥1 ⊕ · · · ⊕ 𝑢𝑛𝑥𝑛 ⊕ 𝑐, (1.1)

where u = (𝑢1, . . . , 𝑢𝑛) ∈ F𝑛
2 and 𝑐 ∈ F2. If 𝑐 = 0, such that ℓu,0 only consists of

monomials of algebraic degree 1, and no constant, then it is a linear function. The
Hamming weight of a vector x ∈ F𝑛

2 is denoted by 𝑤𝑡(x) and is equal to the number
of 1’s in the vector x. For a Boolean function 𝑓 on F𝑛

2 , let Ω𝑓 = {x ∈ F𝑛
2 | 𝑓(x) = 1}

be the support of 𝑓 . The Hamming weight of 𝑓 is then |Ω𝑓 |, or equivalently,
the weight of the vector of its truth table. The Hamming distance between two
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functions 𝑓, 𝑔 : F𝑛
2 → F2, denoted by 𝑑(𝑓, 𝑔), is defined as 𝑑(𝑓, 𝑔) = 𝑤𝑡(𝑓 ⊕ 𝑔). A

balanced function on 𝑛 variables has weight exactly 2𝑛−1. For 𝑓 : F𝑛
2 → F2 we define

the Walsh-Hadamard transform to be the integer-valued function

𝒲𝑓 (u) =
∑︁

𝑥∈F2𝑛

(−1)𝑓(x)+ux, u ∈ F𝑛
2 .

The nonlinearity 𝒩𝑓 of a function 𝑓 is defined as

𝒩𝑓 = min
𝜑∈𝒜𝑛

𝑑(𝑓, 𝜑)

where 𝒜𝑛 is the class of all affine functions on F𝑛
2 . The largest nonlinearity, namely

2𝑛−1−2
𝑛
2 −1 is achieved by bent functions (they exist for even dimension 𝑛) and they

have only two values in their Walsh spectrum (the multiset of Walsh coefficients),
namely ±2

𝑛
2 . The semi-bent functions will have three values in their Walsh spec-

trum, namely, {0,±2
𝑛+2
2 }, {0,±2

𝑛+1
2 }, for 𝑛 even, respectively, odd, and they can

be balanced, as opposed to bent functions, whose weight can only be 2𝑛−1 ± 2
𝑛
2 −1.

For these definitions and to know more on Boolean functions, and their cryp-
tographic properties, the reader can consult [2, 5].

2. Algebraic thickness

Carlet, in [3], defined algebraic thickness, and discussed lower and upper bounds.
His paper also includes further discussion on the relation that algebraic thickness
has with other complexity criteria (e.g., nonlinearity, algebraic degree, etc.). In [4],
Carlet improved some of the prior results, and further expanded on the properties
of algebraic thickness.

Definition 2.1 ([4]). The algebraic thickness 𝒯 (𝑓) of a Boolean function 𝑓 is
the minimum number of monomials with non-zero coefficients in the ANF of the
functions 𝑓 ∘ 𝒜, where 𝒜 ∈ GL(𝑛,F2) (the general affine group). When we want
to emphasize the number of variables, we shall write 𝒯𝑛(𝑓).

Surely, the algebraic thickness of affine functions is at most 1 [1, 4]. The
quadratic functions are also well understood, due to the well-known Dickson’s the-
orem (see MacWilliams and Sloane [8], or the simpler version below taken from
Boyar and Find [1]).

Theorem 2.2 (Dickson’s Theorem). If 𝑓 : F𝑛
2 → F2 is a quadratic Boolean func-

tion, then there exist an invertible 𝑛×𝑛 matrix 𝐴, b ∈ F𝑛
2 , 𝑡 ≤ 𝑛

2 , and 𝑐 ∈ F2 such
that for y = 𝐴x + b one of the following two equations holds:

𝑓(𝑥) = 𝑦1𝑦2 + 𝑦3𝑦4 + · · · + 𝑦𝑡−1𝑦𝑡 + 𝑐, or
𝑓(𝑥) = 𝑦1𝑦2 + 𝑦3𝑦4 + · · · + 𝑦𝑡−1𝑦𝑡 + 𝑦𝑡+1.

Furthermore 𝐴, b, and 𝑐 can be found efficiently.
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We also mention that we re-computed (see Table 4) the distribution of nonlin-
earities of all functions in 2 ≤ 𝑛 ≤ 5 variables, confirming known results (see, for
instance, the paper by Sertkaya and Doğanaksoy [10]).

For Boolean functions in 𝑛 variables, it is of interest to determine the maximum
value possible for the thickness, namely, 𝜏𝑛 = max𝑓∈ℬ𝑛

(𝒯 (𝑓)), and specifically, its
growth. Surely, we have the trivial upper bound 𝜏𝑛 ≤ 2𝑛, since the maximum
number of terms in the ANF of a function in 𝑛 variables is ≤ 2𝑛.

Regarding the lower bound of the thickness, Carlet showed in [3] that, for every
𝜆 < 1

2 and positive integer 𝑛, the density in ℬ𝑛 of the subset

{𝑓 ∈ ℬ𝑛 | 𝒯 (𝑓) ≥ 𝜆2𝑛}

is greater than 1−22
𝑛𝐻2(𝜆)−2𝑛+𝑛2+𝑛, where 𝐻2(𝑥) = −𝑥log2(𝑥)−(1−𝑥)log2(1−𝑥)

is the entropy function, and therefore almost all Boolean functions have algebraic
thickness greater than 𝜆2𝑛. This was improved in [4], showing that almost all
Boolean functions have algebraic thickness greater than 2𝑛−1 − 𝑛2

𝑛−1
2 . The best

upper bound on algebraic thickness is still the one in [3], namely,

𝒯 (𝑓) ≤ 2

3
2𝑛,

which is believed to be improvable.

3. Some theoretical results on thickness

Brute force computation is still possible for 𝑛 = 4, but for 𝑛 = 5 we need to find
some techniques to reduce the computational time, as it would take thousands of
years on a personal computer. The idea is that this new technique may be useful
in approaching the thickness distribution computation for 𝑛 = 6 (or at least for
some subclass of ℬ6).

For any Boolean function 𝑓 , we define its orbit or equivalence class as the set
of functions {𝑓 ∘ 𝒜 : 𝒜 ∈ GL(𝑛,F2)}.

Given a Boolean function 𝑓 , if 𝑓𝑚𝑖𝑛 is an element (not necessarily unique) of
its equivalence class with minimum number of terms, then the algebraic thickness
of 𝑓𝑚𝑖𝑛 is the number of terms in its ANF.

Definition 3.1 (Rigid Boolean functions). We call a Boolean function 𝑓 with
𝒯 (𝑓) monomials in its ANF, a rigid function. The set of all rigid functions will be
denoted by 𝒮𝑛.

Thus, a rigid Boolean function cannot be mapped to a function with lower
monomial count, through any affine transformation. Furthermore, any Boolean
function can be mapped to a rigid function. The reason for this should be clear,
but for completion, we state it as a lemma.

Proposition 3.2. Any Boolean function can be mapped to a rigid function, by an
affine transformation.
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Proof. Given a Boolean function 𝑓 ∈ ℬ𝑛, let 𝑔 be a function in the orbit of 𝑓
(through affine transformations), where the monomial count of 𝑔 is equal to 𝒯 (𝑓).
If 𝑔 is not a rigid function, then 𝑔 does not have the minimum monomial count
in its orbit. Suppose ℎ is in the orbit of 𝑔, and has lower monomial count than
𝑔. Since 𝑓 maps to 𝑔 and 𝑔 maps to ℎ, then by composition of transformations, 𝑓
maps to ℎ as well. Thus, we reach a contradiction.

Experimentally, it was found that 𝒮𝑛 ⊂ 𝒮𝑛+1, for small values of 𝑛, suggesting
that perhaps this is true in general, and will be shown next.

Theorem 3.3. All rigid functions in 𝑛 variables are also rigid functions in (𝑛+1)
variables, that is, 𝒮𝑛 ⊂ 𝒮𝑛+1.

Remark 3.4. As is customary in this area (for easy writing), in the following proof,
we disregard the usual linear algebra convention of matrix-vector multiplication
and regard x and b both as a row- and a column vector, when there is no danger
of confusion.

Proof. Let 𝑓 ∈ 𝒮𝑛 with 𝒯 (𝑓) = 𝑡. We embed 𝑓 in 𝑛 + 1 variables, and we denote
its embedding by 𝑓 , such that 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1) = 𝑓(𝑥1, . . . , 𝑥𝑛). Let a non-zero
affine transformation of the input of 𝑓 be given by x ↦→ 𝐴x̃ + b, where 𝐴 is an
(𝑛 + 1) × (𝑛 + 1) matrix and b = (𝑏1 . . . , 𝑏𝑛), and x̃ = (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1),x =
(𝑥1, . . . , 𝑥𝑛). We label the first 𝑛 rows and 𝑛 columns in 𝐴 by 𝐴 and so,

𝐴 =

⎛
⎜⎝

𝑎1,𝑛+1

𝐴
...

𝑎𝑛+1,1 · · · 𝑎𝑛+1,𝑛+1

⎞
⎟⎠ .

Thus,

𝐴x̃ + b =

⎛
⎜⎜⎜⎝

𝐴x + 𝑥𝑛+1

⎛
⎜⎝
𝑎1,𝑛+1

...
𝑎𝑛,𝑛+1

⎞
⎟⎠+

⎛
⎜⎝
𝑏1
...
𝑏𝑛

⎞
⎟⎠

𝑎𝑛+1,1𝑥1 + · · · + 𝑎𝑛+1,𝑛+1𝑥𝑛+1 + 𝑏𝑛+1

⎞
⎟⎟⎟⎠ ,

and so

𝑓(𝐴x̃ + b) = 𝑓

⎛
⎜⎝𝐴x + 𝑥𝑛+1

⎛
⎜⎝
𝑎1,𝑛+1

...
𝑎𝑛,𝑛+1

⎞
⎟⎠+

⎛
⎜⎝
𝑏1
...
𝑏𝑛

⎞
⎟⎠

⎞
⎟⎠ ,

from which our claim is inferred.

In summary, the introduction of 𝑥𝑛+1 does not induce any further monomial
eliminations not already possible in 𝑛 variables. Therefore, for a rigid function 𝑓
with monomial count 𝑡,

𝒯𝑛(𝑓) = 𝑡 = 𝒯𝑛+1(𝑓).
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Corollary 3.5. For any Boolean function 𝑓 in 𝑛 variables,

𝒯𝑛(𝑓) = 𝒯𝑛+1(𝑓),

where 𝑓 is the embedding of 𝑓 in ℬ𝑛+1, such that

𝑓(𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1) = 𝑓(𝑥1, . . . , 𝑥𝑛).

Proof. Given a rigid Boolean function 𝑓 in 𝑛 variables, let 𝒜𝑛(𝑓) be the orbit of
𝑓 through all nonzero affine transformations, and let 𝒯𝑛(𝑓) = 𝑡. As we know,
from the definition of algebraic thickness, any Boolean function 𝑔 ∈ 𝒜𝑛(𝑓) satisfies
𝒯𝑛(𝑔) = 𝑡, as well. Since 𝑓 is rigid, 𝒯𝑛+1(𝑓) = 𝑡, by Theorem 3.3. Clearly, then,
𝒜𝑛(𝑓) ⊆ 𝒜𝑛+1(𝑓), by the very same affine transformations as in 𝑛 variables (leaving
the new variable 𝑥𝑛+1 mapped to itself), and therefore all functions in 𝒜𝑛(𝑓) have
thickness 𝑡 in 𝑛 + 1 variables, as well.

3.1. Multiplication by a new variable may conserve thickness
We showed in Theorem 3.3 that all rigid functions in ℬ𝑛 are also rigid functions in
ℬ𝑛+1. Moreover, 𝑓 ∈ ℬ𝑛, 𝒯𝑛(𝑓) = 𝒯𝑛+1(𝑓), as well. These properties give insight
into the distribution of algebraic thickness in (𝑛+1) variables, when the distribution
for 𝑛 variables is known. Surely, we cannot expect an inductive procedure for the
computation of thickness, but as observed already in Theorem 3.3, a connection
does exist that may decrease the complexity even further.

Proposition 3.6. Let 𝑓 ∈ ℬ𝑛 be a Boolean function in variables x = (𝑥1, ..., 𝑥𝑛)
vector, and let 𝑥𝑛+1 be a new variable. Then:

𝒯𝑛+1(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) ≤ 𝒯𝑛(𝑓).

Proof. Given a Boolean function 𝑓 ∈ ℬ𝑛, with known algebraic thickness 𝒯𝑛(𝑓) = 𝑡,
on the variables (𝑥1, . . . , 𝑥𝑛), we let 𝑓min ∈ ℬ𝑛 be the representative function with
monomial count 𝑡 of the orbit of 𝑓 , and let 𝜋 denote the affine transformation such
that 𝜋(𝑓) = 𝑓min. As before, 𝑥𝑛+1 is the new variable introduced in ℬ𝑛+1.

In ℬ𝑛+1, then, 𝜋′(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) = 𝑓min(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1, by the trans-
formation 𝜋′(𝑥𝑗) = 𝜋(𝑥𝑗), for 𝑗 < (𝑛 + 1), and 𝜋′(𝑥𝑛+1) = 𝑥𝑛+1. Since 𝑓min has
monomial count 𝑡, 𝑓min(𝑥1, . . . , 𝑥𝑛) ·𝑥𝑛+1 also has monomial count 𝑡, and therefore
𝒯𝑛+1(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) ≤ 𝒯𝑛(𝑓).

Based upon extensive computations (exhaustive for lower dimensions and ran-
dom for higher dimensions) and the previous proposition, we propose the following
question.

Open question 3.7 (Thickness conservation). Let 𝑓 ∈ ℬ𝑛 be a Boolean function
in variables x = (𝑥1, ..., 𝑥𝑛) vector, and let 𝑥𝑛+1 be a new variable. Is it true that

𝒯𝑛+1(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) = 𝒯𝑛(𝑓)?
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While this is not necessarily the goal of the paper, and we cannot provide
an answer to this question, we attempt to explain it further. Assume that there
exists a function 𝑓 in 𝑛 variables such that 𝒯𝑛(𝑓) > 𝒯𝑛+1(𝑓 · 𝑥𝑛+1) = 𝑡. Take an
affine transformation that brings 𝑓(𝑥1, . . . , 𝑥𝑛) ·𝑥𝑛+1 to its minimal thickness form,
transformation determined by the vector b = (𝑏1, . . . , 𝑏𝑛+1), and the matrix 𝐴 of
the form

𝐴 =

⎛
⎜⎝

𝑎1,𝑛+1

𝐴
...

𝑎𝑛+1,1 · · · 𝑎𝑛+1,𝑛+1

⎞
⎟⎠ ,

where 𝐴 is an 𝑛× 𝑛 matrix, and so,

𝐴x̃ + b =

⎛
⎜⎜⎜⎝

𝐴x + 𝑥𝑛+1

⎛
⎜⎝
𝑎1,𝑛+1

...
𝑎𝑛,𝑛+1

⎞
⎟⎠+

⎛
⎜⎝
𝑏1
...
𝑏𝑛

⎞
⎟⎠

𝑎𝑛+1,1𝑥1 + · · · + 𝑎𝑛+1,𝑛+1𝑥𝑛+1 + 𝑏𝑛+1

⎞
⎟⎟⎟⎠ ,

as in Theorem 3.3. We label 𝑟𝑖,𝐴, 𝑟𝑖,𝐴, the 𝑖th row of 𝐴, respectively 𝐴, and
x̃ = (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1),x = (𝑥1, . . . , 𝑥𝑛). Thus, using “ ·” to denote the usual scalar
product,

(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) ∘ (𝐴x̃ + b)

= 𝑓(𝑟1,𝐴 · x + 𝑎1,𝑛+1𝑥𝑛+1 + 𝑏1, . . . , 𝑟𝑛,𝐴 · x + 𝑎𝑛,𝑛+1𝑥𝑛+1 + 𝑏𝑛) (3.1)
· (𝑎𝑛+1,1𝑥1 + · · · + 𝑎𝑛+1,𝑛+1𝑥𝑛+1 + 𝑏𝑛+1).

We let 𝑏′𝑖 = 𝑏𝑖 + 𝑎𝑖,𝑛+1𝑥𝑛+1, 1 ≤ 𝑖 ≤ 𝑛 + 1 and b′ = (𝑏′1, . . . , 𝑏
′
𝑛). Since the first

factor is simply 𝑓(𝐴x + b′) (we regard its coefficients in F2[𝑥𝑛+1], and assume
that 𝐴 is invertible; again, it may happen that it is not), it must have more than
𝒯𝑛+1(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) = 𝑡 terms (call them 𝑇𝑖(𝑥1, . . . , 𝑥𝑛), of degrees deg 𝑇𝑖 =
𝑑𝑖, 1 ≤ 𝑖 ≤ 𝑠, with 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑠), given our assumption. We thus write its
algebraic normal form as

𝑓(𝐴x + b′) = (𝛼1𝑥𝑛+1 + 𝛽1)𝑇1(𝑥1, . . . , 𝑥𝑛) + · · ·
+ (𝛼𝑠𝑥𝑛+1 + 𝛽𝑠)𝑇𝑠(𝑥1, . . . , 𝑥𝑛), 𝑠 > 𝑡,

(𝛼𝑖, 𝛽𝑖 are not zero simultaneously, since we need to have 𝑠 > 𝑡 terms in 𝑓(𝐴x+b′)),
and therefore Equation (3.1) becomes (for easy writing, we denote the (𝑛 + 1)st
row of 𝐴 by (𝛾1, . . . , 𝛾𝑛+1) and we will not write the input (𝑥1, . . . , 𝑥𝑛) for 𝑇𝑖),

𝑠∑︁

𝑖=1

(𝛼𝑖𝑥𝑛+1 + 𝛽𝑖)𝑇𝑖

⎛
⎝

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗 + 𝛾𝑛+1𝑥𝑛+1 + 𝑏𝑛+1

⎞
⎠

=
𝑛∑︁

𝑗=1

𝑠∑︁

𝑖=1

(𝛼𝑖𝑥𝑛+1 + 𝛽𝑖)𝛾𝑗𝑥𝑗𝑇𝑖(𝑥1, . . . , 𝑥𝑛)
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+
𝑠∑︁

𝑖=1

𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖)𝑥𝑛+1𝑇𝑖 +
𝑠∑︁

𝑖=1

(𝛼𝑖𝑥𝑛+1 + 𝛽𝑖)𝑏𝑛+1𝑇𝑖

=

𝑠∑︁

𝑖=1

𝑥𝑛+1𝑇𝑖

⎛
⎝𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠ (3.2)

+
𝑛∑︁

𝑗=1

𝑠∑︁

𝑖=1

𝛽𝑖𝛾𝑗𝑥𝑗𝑇𝑖 +
𝑠∑︁

𝑖=1

𝛽𝑖𝑏𝑛+1𝑇𝑖.

=
𝑠∑︁

𝑖=1

⎛
⎝𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑥𝑛+1𝑇𝑖

+

𝑠∑︁

𝑖=1

𝛽𝑖

⎛
⎝𝑏𝑛+1 +

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖.

We thus get

(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) ∘ (𝐴x̃ + b)

= 𝑥𝑛+1

𝑠∑︁

𝑖=1

⎛
⎝𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖

+
𝑠∑︁

𝑖=1

𝛽𝑖

⎛
⎝𝑏𝑛+1 +

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖.

For the inequality to hold, we need to have enough cancellations in both sums

𝑆1 =
𝑠∑︁

𝑖=1

⎛
⎝𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖

𝑆2 =
𝑠∑︁

𝑖=1

𝛽𝑖

⎛
⎝𝑏𝑛+1 +

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖,

for a total of more than (𝑠− 𝑡) terms. We let 𝐴𝑖 be the index support for 𝑇𝑖 (that
is, if 𝑇𝑖(𝑥1, . . . , 𝑥𝑛) = 𝑥𝑖1 · · ·𝑥𝑖ℓ , then 𝐴𝑖 = {𝑖1, . . . , 𝑖ℓ}). Therefore, the above
sums can be written as (we let |𝐽 |2 = |𝐽 | (mod 2), where 𝐽 = {𝑗|𝛾𝑗 ̸= 0}, and
|𝐽𝑖|2 = |𝐽𝑖| (mod 2), where 𝐽𝑖 = {𝑗 ∈ 𝐴𝑖|𝛾𝑗 ̸= 0}),

𝑆1 =
𝑠∑︁

𝑖=1

(𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖))𝑇𝑖 +
𝑠∑︁

𝑖=1

𝛼𝑖

⎛
⎝|𝐽𝑖|2 +

∑︁

𝑗∈𝐽∖𝐽𝑖

𝑥𝑗

⎞
⎠𝑇𝑖

=

𝑠∑︁

𝑖=1

(𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖|𝐽𝑖|2)𝑇𝑖 +

𝑠∑︁

𝑖=1

𝛼𝑖𝑇𝑖

∑︁

𝑗∈𝐽∖𝐽𝑖

𝑥𝑗
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=
𝑠∑︁

𝑖=1

𝛼𝑖 (𝑏𝑛+1 + |𝐽𝑖|2)𝑇𝑖 +
𝑠∑︁

𝑖=1

𝛼𝑖𝑇𝑖

∑︁

𝑗∈𝐽∖𝐽𝑖

𝑥𝑗 + 𝛾𝑛+1

𝑠∑︁

𝑖=1

(𝛼𝑖 + 𝛽𝑖)𝑇𝑖,

𝑆2 =
𝑠∑︁

𝑖=1

𝛽𝑖𝑏𝑛+1𝑇𝑖 +
𝑠∑︁

𝑖=1

𝛽𝑖

⎛
⎝∑︁

𝑗∈𝐴𝑖

𝛾𝑗 +
∑︁

𝑗 ̸∈𝐴𝑖

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖

=

𝑠∑︁

𝑖=1

𝛽𝑖 (𝑏𝑛+1 + |𝐽𝑖|2)𝑇𝑖 +

𝑠∑︁

𝑖=1

𝛽𝑖𝑇𝑖

∑︁

𝑗∈𝐽∖𝐽𝑖

𝑥𝑗 .

If 𝛾𝑛+1 = 0 then, for 𝑖 such that 𝑏𝑛+1 + |𝐽𝑖|2 ̸= 0, then either 𝛼𝑖 (𝑏𝑛+1 + |𝐽𝑖|2)𝑇𝑖,
or 𝛽𝑖 (𝑏𝑛+1 + |𝐽𝑖|2)𝑇𝑖 survives. Similarly, assuming that for an 𝑖, 𝐽 ∖ 𝐽𝑖 ̸= ∅, then
either 𝛼𝑖𝑇𝑖

∑︀
𝑗∈𝐽∖𝐽𝑖

𝑥𝑗 , or 𝛽𝑖𝑇𝑖

∑︀
𝑗∈𝐽∖𝐽𝑖

𝑥𝑗 survives. If it were true that for all 𝑖,
𝐽 ∖𝐽𝑖 ̸= ∅, then the inequality would be false and the conjecture would “hold” in this
case. However, at least 𝐽 ∖ 𝐽𝑠 = ∅, since otherwise our affinely equivalent function
would have degree higher than 𝑑𝑠 + 2 (recall that 𝑆1 is multiplied by 𝑥𝑛+1), and
that is impossible. If one would attempt to find a counterexample for a negative
answer to our open question, then one could take a matrix 𝐴 where the last row
is rather very sparse, along with 𝑏 such that 𝐴x + 𝑏′ has most of the 𝛽𝑖 = 0. Can
that be achieved? We do not know the answer to this question.

3.2. Gaps in thickness distribution
Noting the algebraic thickness distributions listed in Table 3, it is easy to see that,
for 𝑛 ≤ 5 and 𝑚 > 0, if there exists a representative with 𝒯𝑛 = 𝑚, then there exists
a representative with 𝒯𝑛 = 𝑚 − 1, and conversely: if there are no representatives
with 𝒯𝑛 = 𝑚 − 1, then there are no representatives with 𝒯𝑛 = 𝑚. The following
conjecture is an extension of Lemma 3.9.

Conjecture 3.8. For any 𝑛, in any given monomial count 𝑚 ≤ 2𝑛, if there are
no rigid functions with 𝑚 monomials, then for any 𝑓 ∈ ℬ𝑛,

𝒯𝑛(𝑓) < 𝑚.

The idea here is that if there are no rigid functions in a set monomial count
𝑚, then there are no rigid functions in any monomial count 𝑀 , where 𝑀 > 𝑚.
Proving this would have implications for further attempts at determining maximum
algebraic thickness (and the following thickness distribution) using the methods
described in this paper, as finding no rigid functions in 𝑛 variables with monomial
count (e.g.) 2𝑛−1 would imply there are no rigid functions with monomial count
greater than 2𝑛−1, thus eliminating half of the set of functions to search through.

The definition for rigid functions is closely related to Carlet’s definition for
algebraic thickness. We record that below.

Proposition 3.9. Given all Boolean functions in 𝑛 variables with monomial count
𝑘 in their ANF, if there are no rigid functions with 𝑘 monomials, then there are
no functions 𝑓 in 𝑛 variables with 𝒯𝑛(𝑓) = 𝑘.
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This simple proposition was the inception of the program described later to find
the thickness distribution.

𝑛 Number of rigid functions
0 2
1 3
2 6
3 28
4 588
5 211 259

Table 1: Number of rigid functions in 𝑛 ≤ 5 variables

The distribution of the number of rigid functions in 𝑛 ≤ 5 variables is listed in
Table 1, where: for 𝑛 ≤ 4 variables, these numbers were collected from analysis of
the data sets calculated by brute-force, and for 𝑛 = 5, the number was (along with
double-checking values for 𝑛 < 5) collected from analysis of the data sets calculated
by the program described later.

We hope that our methods will prove useful for 𝑛 > 5, as well, since an itera-
tive approach is impossible by modern computing standards for these dimensions.
Searching for rigid functions and – most importantly – disregarding non-rigid func-
tions, should improve the efficiency of any program (at the very least, it improves
the program given later).

Determining which functions are rigid functions in 𝑛 variables yields information
regarding the thickness distribution in 𝑛 + 1 variables as well, by Theorem 3.3.
Furthermore, by Corollary 3.5, unveiling the distribution of all functions in ℬ𝑛

immediately gives the distribution of 22
𝑛

functions in ℬ𝑛+1 – which may be a small
portion compared to 22

𝑛+1

, but is nonetheless a start.
The functions in 𝒮0,𝒮1,𝒮2 (i.e., the rigid functions in 𝑛 = 0, 1, 2 variables) are

listed below:

𝒮0 = {0, 1}
𝒮1 = {0, 1, 𝑥1}
𝒮2 = {0, 1, 𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥1𝑥2 + 1}

Since the sets 𝒮3,𝒮4 are of rather large sizes (28 and 588, respectively), they will
not be listed here (but the data can be found in [7]).

4. Representatives

By uncovering one function 𝜑 for each of these orbits, every function in 𝑛 variables
can be generated from a corresponding 𝜑, by iteration through all affine trans-
formations for each one. Calculating the algebraic thickness of each 𝜑 yields the
thickness distribution for all functions in ℬ𝑛, as 𝒯 is (trivially) an affine invariant.
Since these 𝜑 would be representing their orbits, the name representative function
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𝑛 Number of equivalence classes
1 3
2 5
3 10
4 32
5 382
6 15 768 919

Table 2: Number of affine equivalence classes of Boolean functions [6]

was chosen. As the rigid functions are the functions with the minimum number
of monomials in their ANF, these representative functions were chosen to be the
smallest rigid functions in their orbit (we call smallest, a function with a minimal
sum of the degrees of each monomial in its ANF, with lowest indexed variables, in
lexicographical order, in descending order by degree of monomials).

We give an example below.

Example 4.1. For 𝑛 = 3, 𝒯3 = 3, and there is a single orbit with maximum
thickness, containing 9 rigid functions, namely: 𝑥1𝑥2𝑥3 + 𝑥3 + 1, 𝑥1𝑥2𝑥3 + 𝑥2 + 1,
𝑥1𝑥2𝑥3 + 𝑥1 + 1, 𝑥1𝑥2𝑥3 + 𝑥2 + 𝑥3, 𝑥1𝑥2𝑥3 + 𝑥1 + 𝑥3, 𝑥1𝑥2𝑥3 + 𝑥1 + 𝑥2, 𝑥1𝑥2𝑥3 +
𝑥2𝑥3 +𝑥1, 𝑥1𝑥2𝑥3 +𝑥1𝑥3 +𝑥2, 𝑥1𝑥2𝑥3 +𝑥1𝑥2 +𝑥3. In the first three functions, the
sum of the monomial degrees for each function is 4, the next three functions have
this sum 5, and the last three, 6. We therefore, look at the first three functions,
and going through from the highest to the lowest degree monomials in the three
functions, and observing that 𝑥1 is smaller (lexicographically), we therefore choose
𝑥1𝑥2𝑥3 + 𝑥1 + 1 as a representative.

It is clear that the choice of a representative in any orbit is purely implemen-
tation specific and will not affect any properties related to algebraic thickness.
As with rigid functions, the set of all representative functions will be denoted as
ℛ𝑛 ⊆ 𝒮𝑛 for representatives in 𝑛 variables.

The number of Boolean functions in 𝑛 variables that have exactly 𝑚 monomials
in their ANF is

(︀
2𝑛

𝑚

)︀
, and so, the number of Boolean functions with at least 𝑚

monomials is the sum of the binomial coefficients
(︀
2𝑛

𝑖

)︀
, where 𝑖 ≥ 𝑚, that is,∑︀2𝑛

𝑖=𝑚

(︀
2𝑛

𝑖

)︀
.

Using Carlet’s upper-bound for algebraic thickness in 𝑛 variables, 𝒯 ≤
⌊︀
2
32𝑛
⌋︀
,

it follows that no rigid function will have more than
⌊︀
2
325
⌋︀

= 21 monomials in its
ANF. We checked and ultimately, the first monomial count where a rigid function
could be found, was 𝑚 = 8 (i.e., first, in descending order). Thus, the maximum
thickness of 𝑛 = 5 is 8, by Proposition 3.9.

Our code takes advantage of various “quality-of-life” method calls for printing
out current positions – and saving the positions of the iterations, in case of power
failure. Surely, the “bottleneck” of finding representatives of functions in five vari-
ables is the number of affine transformations to go through for each function –
but also the fact that the number of affine transformations is much larger than
the number of functions in any orbit (by the pigeonhole principle). This means
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that there are several affine transformations that, for each 𝑓 , maps 𝑓 to the same
function. However, since there is no way of predicting, as far as we know, which
transformations will do this, it cannot be avoided. The final program used for
finding all 382 representatives in 𝑛 = 5 variables (and lower dimensions) can be
found in [7], which also includes a listing of these.

5. Distribution of thickness

The full distribution of algebraic thickness of the representative functions in 𝑛 ≤
5 variables is given in Table 3, summarizing the results of the data collection
conducted by our program. The distribution for number of functions within each
thickness value is further detailed and described later.

𝒯 𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5

0 1 1 1 1 1 1
1 1 2 3 4 5 6
2 - - 1 4 10 19
3 - - - 1 10 46
4 - - - - 5 81
5 - - - - 1 111
6 - - - - - 81
7 - - - - - 33
8 - - - - - 4

Sum 2 3 5 10 32 382
max(𝒯𝑛) 1 1 2 3 5 8

Table 3: Distribution of representatives within each thickness value

While this is known, we re-checked the distribution of functions with a specific
nonlinearity 𝒩 for 𝑛 ≤ 5, confirming the results listed in [10]. Columns for 𝑛 = 2, 3
are not strictly relevant to the following property analysis, but are included for
completeness.

𝒩 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5

0 8 16 32 64
1 8 128 512 2048
2 - 112 3840 31 744
3 - - 17 920 317 440
4 - - 28 000 2 301 440
5 - - 14 336 12 888 064
6 - - 896 57 996 288
7 - - - 215 414 784
8 - - - 647 666 880
9 - - - 1 362 452 480
10 - - - 1 412 100 096
11 - - - 556 408 832
12 - - - 27 387 136

max(𝒩 ) 1 2 6 12

Table 4: Distribution of number of 𝑓 ∈ ℬ𝑛 with given 𝒩 -value, 𝑛 ≤ 5

Furthermore, the distribution of the number of orbits within each possible 𝒩 -
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value (i.e., the distribution of nonlinearity of the representatives) is shown in Table 5
– recall that nonlinearity is an affine invariant. Note that there are 16 represen-
tatives (and therefore orbits) in 𝑛 = 5 variables where 𝒩 = 5. Further, we can
see that there are two orbits with maximum nonlinearity in 𝑛 = 4 (and therefore
two orbits that contain all bent functions in 𝑛 = 4), and 14 orbits with maximum
nonlinearity in 𝑛 = 5 (𝒩 = 6 and 𝒩 = 12, respectively; recall that the maximum
nonlinearity for 𝑛 = 5 is 2𝑛−1 − 2

𝑛−1
2 = 12, the well known bent concatenation

bound).

𝒩 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5

0 3 3 3 3
1 2 4 4 4
2 - 3 5 5
3 - - 6 6
4 - - 8 12
5 - - 4 16
6 - - 2 31
7 - - - 46
8 - - - 68
9 - - - 72
10 - - - 73
11 - - - 32
12 - - - 14

Table 5: Distribution of number of orbits with given 𝒩 -value, 𝑛 ≤ 5

6. Conclusions

Table 3 summarizes the outcome of our computation to find the number of orbits in
each thickness class, for 𝑛 ≤ 5 variables, with the number of orbits and maximum
thickness listed. As a double check, the number of equivalence classes (orbits) in
ℬ𝑛 matches the one of Harrison [6].

By using the concepts of rigid and representative functions defined in Sections 3
and 4, the thickness distribution of 𝑛 ≤ 5 can be calculated in significantly less
time than the time estimation of a brute-force application, by (roughly) 2 · 106

years. The case of 𝑛 = 4 took little time compared to 𝑛 = 5 (we display in Table 6
the time our computation took; iterations stand for the number of parallel sessions
we ran).

Mon. count Functions/Iterations Min. time Max. time Total time (add.)
2 28 / 3 4h 4h 12h
3 134 / 4 6h 12h 1d 12h
4 625 / 4 1d 3h 1d 7h 4d 21h
5 2674 / 8 4d 10h 5d 5h 38d 14h
6 10 195 / 14 1d 14h 3d 19h 39d 17h
7 34 230 / 15 1d 4h 3d 15h 36d 16h
8 100 577 / 20 24s 5d 1h 11d 20h

Total 19d 15h 131d 16h

Table 6: Execution time of the iterations completed by our program
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We display in Appendices A and B, the distribution of various cryptographic
properties (bentness and semi-bentness, balancedness, etc.) as they relate to thick-
ness, for 𝑛 = 4, respectively, 𝑛 = 5. Three physical computers were used for
these computations (which took about 35 days): 1) a dedicated Windows server
with Intel(R) Xeon(R) E5-2690 v2 3.00 GHz CPU, 20 cores, and 128 GiB RAM,
responsible for the bulk of the calculations, 2) a desktop running Ubuntu with
Intel(R) Core(TM) i7-6800K 3.40 GHz CPU, 8 cores, and 32 GiB RAM, and fi-
nally 3) a desktop running Windows 10 with Intel(R) Core(TM) i5-4460 3.20 GHz
CPU, 4 cores, and 16 GiB RAM. The program iterations referenced in Table 6
were run simultaneously and each program was continually updated whenever new
representatives were found.

Acknowledgements. The authors would like to thank the referee for the com-
ments and the editors for the prompt handling of our paper.
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Appendix A: Property distribution in n = 4, sorted
by thickness

We include here the comparison between various cryptographic properties (homo-
geneous, rigid, balanced, bentness, nonlinearity, degree) of Boolean functions as
related to thickness for 𝑛 = 4 variables. Table 7 is a summary of all the property
distributions of Tables 8–12 (independent on algebraic thickness).

Properties Total number
Number of functions 65536
Homogeneous functions 96
Rigid functions 588
Balanced functions 12 870
Bent functions 896
Orbits 32
Bent orbits 2
Balanced orbits 4

Table 7: Summary of the property distribution of n = 4

Properties Nonlinearity Degrees
Number of functions 307 0 31 0 1
Homogeneous functions 52 1 16 1 30
Rigid functions 16 2 120 2 140
Balanced functions 30 3 0 3 120
Bent functions 0 4 140 4 16
Orbits 5 5 0
Bent orbits 0 6 0
Balanced orbits 1

Table 8: Property distribution of functions in ℬ4 with 𝒯4 = 1

Properties Nonlinearity Degrees
Number of functions 6804 0 0 0 0
Homogeneous functions 42 1 256 1 0
Rigid functions 64 2 2880 2 1428
Balanced functions 2760 3 560 3 4560
Bent functions 448 4 2660 4 816
Orbits 10 5 0
Bent orbits 1 6 448
Balanced orbits 2

Table 9: Property distribution of functions in ℬ4 with 𝒯4 = 2
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Properties Nonlinearity Degrees
Number of functions 33 448 0 0 0 0
Homogeneous functions 1 1 240 1 0
Rigid functions 188 2 840 2 448
Balanced functions 10 080 3 8960 3 19 320
Bent functions 448 4 18 480 4 13 680
Orbits 10 5 4480
Bent orbits 1 6 448
Balanced orbits 1

Table 10: Property distribution of functions in ℬ4 with 𝒯4 = 3

Properties Nonlinearity Degrees
Number of functions 22 288 0 0 0 0
Homogeneous functions 0 1 0 1 0
Rigid functions 271 2 0 2 0
Balanced functions 0 3 8400 3 6720
Bent functions 0 4 6720 4 15 568
Orbits 5 5 7168
Bent orbits 0 6 0
Balanced orbits 0

Table 11: Property distribution of functions in ℬ4 with 𝒯4 = 4

Properties Nonlinearity Degrees
Number of functions 2688 0 0 0 0
Homogeneous functions 0 1 0 1 0
Rigid functions 48 2 0 2 0
Balanced functions 0 3 0 3 0
Bent functions 0 4 0 4 2688
Orbits 1 5 2688
Bent orbits 0 6 0
Balanced orbits 0

Table 12: Property distribution of functions in ℬ4 with 𝒯4 = 5

Appendix B: Property distribution in n = 5, sorted
by thickness

The cryptographic properties dealt with and the goals of the comparison for 𝑛 = 5
are the same as for 𝑛 = 4.

Properties Total amount
Number of functions 4 294 967 296
Homogeneous functions 2111
Rigid functions 211 259
Balanced functions 601 080 390
Semi-Bent functions 14 054 656
Number of orbits 382
Semi-Bent orbits 9
Balanced orbits 38

Table 13: Summary of the property distribution of n = 5
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Properties Nonlinearity Degrees
Number of 𝑓 2451 0 63 0 1
Homogeneous 𝑓 203 1 32 1 62
Rigid 𝑓 32 2 496 2 620
Balanced 𝑓 62 3 0 3 1240
Semi-Bent 𝑓 0 4 1240 4 496
Orbits 6 5 0 5 32
Semi-Bent orbits 0 6 0
Balanced orbits 1 7 0

8 620
9 0
10 0
11 0
12 0

Table 14: Property distribution of functions in ℬ5 with 𝒯5 = 1

Properties Nonlinearity Degrees
Number of 𝑓 695 796 0 0 0 0
Homogeneous 𝑓 987 1 1024 1 0
Rigid 𝑓 336 2 23 808 2 23 188
Balanced 𝑓 84 072 3 4960 3 466 736
Semi-Bent 𝑓 13 888 4 104 160 4 194 928
Orbits 19 5 0 5 10 944
Semi-Bent orbits 1 6 45 136
Balanced orbits 3 7 4960

8 180 420
9 0
10 317 440
11 0
12 13 888

Table 15: Property distribution of functions in ℬ5 with 𝒯5 = 2

Properties Nonlinearity Degrees
Number of 𝑓 31 424 328 0 0 0 0
Homogeneous 𝑓 859 1 992 1 0
Rigid 𝑓 2480 2 7440 2 41 664
Balanced 𝑓 4 228 896 3 158 720 3 7620792
Semi-Bent 𝑓 874 944 4 1 536 360 4 22 119 120
Orbits 46 5 34 720 5 1 642 752
Semi-Bent orbits 3 6 2 138 752
Balanced orbits 6 7 853 120

8 15 323 920
9 317 440
10 9 900 160
11 277 760
12 874 944

Table 16: Property distribution of functions in ℬ5 with 𝒯5 = 3
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Properties Nonlinearity Degrees
Number of 𝑓 240 101 200 0 0 0 0
Homogeneous 𝑓 61 1 0 1 0
Rigid 𝑓 11 520 2 0 2 0
Balanced 𝑓 15 582 336 3 153 760 3 23 290 176
Semi-Bent 𝑓 2 499 840 4 659 680 4 168 597 840
Orbits 81 5 1 416 576 5 48 213 184
Semi-Bent orbits 2 6 10 731 952
Balanced orbits 6 7 17 541 536

8 112 334 080
9 18 213 120
10 63 162 624
11 10 888 192
12 4 999 680

Table 17: Property distribution of functions in ℬ5 with 𝒯5 = 4

Properties Nonlinearity Degrees
Number of 𝑓 1 086 598 112 0 0 0 0
Homogeneous 𝑓 0 1 0 1 0
Rigid 𝑓 47 220 2 0 2 0
Balanced 𝑓 187 210 240 3 0 3 27 664 896
Semi-Bent 𝑓 2 666 496 4 0 4 763 701 120
Orbits 111 5 7 936 992 5 295 232 096
Semi-Bent orbits 1 6 42 413 952
Balanced orbits 11 7 53 524 352

8 364 837 760
9 193 162 240
10 375 614 848
11 40 608 512
12 8 499 456

Table 18: Property distribution of functions in ℬ5 with 𝒯5 = 5

Properties Nonlinearity Degrees
Number of 𝑓 1 842 215 424 0 0 0 0
Homogeneous 𝑓 0 1 0 1 0
Rigid 𝑓 59 760 2 0 2 0
Balanced 𝑓 308 646 912 3 0 3 7 999 488
Semi-Bent 𝑓 7 999 488 4 0 4 951 105 792
Orbits 81 5 3 499 776 5 883 110 144
Semi-Bent orbits 2 6 2 666 496
Balanced orbits 9 7 96 827 136

8 154 990 080
9 694 122 240
10 788 449 536
11 88 660 992
12 12 999 168

Table 19: Property distribution of functions in ℬ5 with 𝒯5 = 6
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Properties Nonlinearity Degrees
Number of 𝑓 935 273 472 0 0 0 0
Homogeneous 𝑓 0 1 0 1 0
Rigid 𝑓 64 470 2 0 2 0
Balanced 𝑓 85 327 872 3 0 3 0
Semi-Bent 𝑓 0 4 0 4 174 655 488
Orbits 33 5 0 5 760 617 984
Semi-Bent orbits 0 6 0
Balanced orbits 2 7 46 663 680

8 0
9 436 638 720
10 174 655 488
11 277 315 584
12 0

Table 20: Property distribution of functions in ℬ5 with 𝒯5 = 7

Properties Nonlinearity Degrees
Number of 𝑓 158 656 512 0 0 0 0
Homogeneous 𝑓 0 1 0 1 0
Rigid 𝑓 25 440 2 0 2 0
Balanced 𝑓 0 3 0 3 0
Semi-Bent 𝑓 0 4 0 4 0
Orbits 4 5 0 5 158 656 512
Semi-Bent orbits 0 6 0
Balanced orbits 0 7 0

8 0
9 19 998 720
10 0
11 138 657 792
12 0

Table 21: Property distribution of functions in ℬ5 with 𝒯5 = 8

Thickness distribution of Boolean functions in 4 and 5 variables . . . 135





Pentagonal and heptagonal repdigits

Bir Kaflea, Florian Lucab, Alain Togbéa

aDepartment of Mathematics and Statistics
Purdue University Northwest

Westville, USA
bkafle@pnw.edu
atogbe@pnw.edu

bSchool of Mathematics
University of the Witwatersrand

Wits, South Africa
florian.luca@wits.ac.za

Submitted: July 25, 2019
Accepted: September 24, 2020

Published online: October 8, 2020

Abstract

In this paper, we prove a finiteness theorem concerning repdigits repre-
sented by a fixed quadratic polynomial. We also show that the only pentag-
onal numbers which are also repdigits are 1, 5 and 22. Similarly, the only
heptagonal numbers which are repdigits are 1, 7 and 55.

Keywords: Pentagonal numbers, heptagonal numbers, repdigits.

MSC: 11A25, 11B39, 11J86

1. Introduction

It is well known that the polygonal numbers of the forms 𝑛(3𝑛−1)/2 and 𝑛(5𝑛−3)/2
are called pentagonal number (OEIS [14] A000326) and heptagonal numbers (OEIS
[14] A000566), respectively, where 𝑛 is any positive integer. Many authors have
studied the problems of searching for these numbers in some interesting sequence
of positive integers.

In 1996, M. Luo [6] has proved that 1 and 5 are the only pentagonal numbers
in the Fibonacci sequence and later identified in [7] that 1 is the only pentagonal
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number in the Lucas sequence. The so-called generalized pentagonal numbers are
given by 𝑛(3𝑛 − 1)/2 with 𝑛 integral, not necessarily positive. In [7], again M.
Luo showed that 2, 1 and 7 are the only generalized pentagonal numbers which
are also Lucas numbers. In [10], V. S. Rama Prasad and B. Rao proved that 1
and 7 are the only generalized pentagonal numbers in the associated Pell sequence
and subsequently in [11], they identified that the only Pell numbers which are also
pentagonal are 1, 5, 12 and 70.

In 2002, B. Rao [13] proved that 1, 4, 7 and 18 are the only generalized hep-
tagonal numbers (where 𝑛 is any integer) in the Lucas sequence. Furthermore in
[12], B. Rao identified that 0, 1, 13, 34 and 55 are the only generalized heptagonal
numbers in the sequence of Fibonacci numbers.

A positive integer is called a repdigit (OEIS [14] A010785), if it has only one
distinct digit in its decimal expansion. Repdigits have the form

ℓ

(︂
10𝑚 − 1

9

)︂
, for some 𝑚 ≥ 1 and ℓ ∈ {1, 2, . . . , 9}.

The first few repdigits are

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, . . . , 111, . . .

In addition, repunits are particular instances of repdigits, obtained when the re-
peating digit has the value 1. Earlier in 2000, F. Luca [5] proved that 55 is the
largest repdigit in the Fibonacci sequence, and 11 is the largest member of the
Lucas sequence which is also the repdigit. In 2012, Marques and Togbé [8] studied
the repdigits that are products of consecutive Fibonacci numbers.

According to Ballew and Weger [1], E. B. Escott in 1905 proved that 1, 3, 6, 55, 66
and 666 are the only triangular numbers of less than 30 digits that consist of a
single repeated digit. And in 1975, they [1] proved that, in fact these are the only
triangular repdigits. Recently, J. H. Jaroma [3], proved that 1 is the only integer
that is both triangular and repunit.

In this paper, we first establish the finiteness of the solutions of some of the
equations that involve repdigits, and consequently, we identify the petangonal and
heptagonal numbers that are also repdigits.

2. Main results

The following result is a restatement of Theorem 1 in [4].

Theorem 2.1. Let 𝐴, 𝐵, 𝐶 be fixed rational numbers with 𝐴 ̸= 0. Then the
Diophantine equation

ℓ

(︂
10𝑚 − 1

9

)︂
= 𝐴𝑛2 +𝐵𝑛+ 𝐶, (2.1)

has only finite number of solutions, in integers 𝑚,𝑛 ≥ 1 and ℓ ∈ {1, 2, . . . , 9}
provided 9𝐵2 − 36𝐴𝐶 − 4𝐴ℓ ̸= 0.
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Proof. We multiply both sides of equation (2.1) by 4𝐴, and rearrange some terms,
which gives us

4𝐴ℓ

(︂
10𝑚 − 1

9

)︂
+𝐵2 − 4𝐴𝐶 = (2𝐴𝑛+𝐵)2.

Further, we can rewrite the last equation as

4𝐴ℓ103𝑚1+𝑟 +
(︀
9
(︀
𝐵2 − 4𝐴𝐶

)︀
− 4𝐴ℓ

)︀
= 9(2𝐴𝑛+𝐵)2, (2.2)

where we let 𝑚 = 3𝑚1 + 𝑟 with 𝑟 ∈ {0, 1, 2}. We again multiply both sides of
equation (2.2) by 16ℓ2102𝑟, thus we get

𝑌 2 = 𝑋3 +𝐴, (2.3)

where
𝑋 := 4ℓ10𝑚1+𝑟, 𝑌 := 12ℓ10𝑟(2𝐴𝑛+𝐵),

and
𝐴 := 16ℓ2102𝑟

(︀
9(𝐵2 − 4𝐴𝐶)− 4𝐴ℓ

)︀
.

By the hypothesis, we have 𝐴 ̸= 0. Thus, we obtain an elliptic curve over Q given
by (2.3). By a theorem of Siegel (see [9], p. 313), this curve has a finite number
of integer points. As a consequence, equation (2.1) has only a finite number of
positive integer solutions.

The result of Ballew and Weger [1] is the case when 𝐴 = 𝐵 = 1
2 and 𝐶 = 0 in

equation (2.1), though their method of proof is different. Now, we establish some
further applications of Theorem 2.1. First, we identify all the pentagonal repdigits.
Our result is the following, which comes as a corollary of Theorem 2.1.

Corollary 2.2. The complete list of pentagonal repdigits is 1, 5 and 22.

Proof. In order to prove our result, we study the equation

ℓ

(︂
10𝑚 − 1

9

)︂
=

𝑛(3𝑛− 1)

2
, (2.4)

in integers 𝑚,𝑛 ≥ 1 and ℓ ∈ {1, 2, . . . , 9}, which is the case when 𝐴 = 3
2 , 𝐵 = − 1

2
and 𝐶 = 0 in equation (2.1). Further, working as in the proof of Theorem 2.1,
equation (2.4) can be written as

𝑦21 = 𝑥3
1 + 𝑎1, (2.5)

where 𝑥1 := 6ℓ10𝑚1+𝑟, 𝑦1 := 9ℓ10𝑟(6𝑛 − 1), and 𝑎1 := 27(3 − 8ℓ)ℓ2102𝑟. We note
that 𝑎1 is nonzero, otherwise this would lead to ℓ = 3/8, which is not true. By
Theorem 1, the equation (2.4) has only a finite number of solutions in 𝑚,𝑛 ≥ 1 and
1 ≤ ℓ ≤ 9. Since ℓ ∈ {1, . . . , 9} and 𝑟 ∈ {0, 1, 2}, we obtain twenty-seven elliptic
curves given by (2.5). Now, we determine the integer points (𝑥1, 𝑦1) on each these
elliptic curves. For this, we used MAGMA [2].

The following table displays all1 the integer points (𝑥1, 𝑦1)
2, described above

1Equation (2.5) has no integer points for (ℓ, 𝑟) = (1, 2), (3, 1), (4, 1), (4, 2), (5, 2), (6, 1), (8, 1),
(8, 2), (9, 2).

2(𝑥1, 𝑦1)’s in bold correspond to the integer solutions of the equation (2.4) in the third column.
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and corresponding integer solutions (𝑚,𝑛) of the equation (2.4), whenever they
exist.

ℓ, 𝑟 (𝑥1, 𝑦1) (𝑚,𝑛)
ℓ = 1,
𝑟 = 0

(6,±9), (19,±82), (24,±117)

ℓ = 1,
𝑟 = 1

(24,±18), (60,±450), (85,±775), (2256,±107154) (1, 1)

ℓ = 2,
𝑟 = 0

(12,±18), (120,±1314)

ℓ = 2,
𝑟 = 1

(120,±1260)

ℓ = 2,
𝑟 = 2

(264,±2088), (300,±3600), (1000,±31400),
(1200,±41400), (24400,±3811400),
(130296,±47032344)

(2, 4)

ℓ = 3,
𝑟 = 0

(18,±27), (288,±4887)

ℓ = 3,
𝑟 = 2

(856,±24004)

ℓ = 4,
𝑟 = 0

(24,±36), (33,±153), (112,±1180), (384,±7524),
(528,±12132)

ℓ = 5,
𝑟 = 0

(30,±45), (46,±269), (64,±487), (75,±630),
(120,±1305), (480,±24345), (1654,±67267)

ℓ = 5,
𝑟 = 1

(136,±134), (300,±4950), (525,±11925),
(4800,±332550)

(1, 2)

ℓ = 6,
𝑟 = 0

(36,±54), (1224,±42822)

ℓ = 6,
𝑟 = 2

(1224,±37368)

ℓ = 7,
𝑟 = 0

(42,±63), (1680,±68859)

ℓ = 7,
𝑟 = 1

(240,±2610), (301,±4501), (420,±8190),
(2940,±159390)

ℓ = 7,
𝑟 = 2

(4200,±270900)

ℓ = 8,
𝑟 = 0

(48,±72), (2208,±103752)

ℓ = 9,
𝑟 = 0

(54,±81), (108,±1053), (162,±2025), (279,±4644),
(2808,±148797), (2979,±162594),
(3310254,±6022710369)

ℓ = 9,
𝑟 = 1

(1296,±46494)

Table 1: Integer solutions (𝑥1, 𝑦1)
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The list of ordered pair (𝑚,𝑛) in third column of Table 1 above, together with
the corresponding values of ℓ in the first column give us the complete list of the
solutions (𝑚,𝑛, ℓ) in positive integers for equation (2.4). From this, we can deduce
that the only pentagonal numbers in the sequence of repdigits are given by the
statement of Corollary 2.2. This completes the proof of Corollary 2.2.

Next, we identify all the heptagonal numbers in the sequence of the repdigits.
Our result is the following.

Corollary 2.3. The complete list of heptagonal repdigits is 1, 7 and 55.

Proof. We let 𝐴 = 5
2 , 𝐵 = − 3

2 and 𝐶 = 0 in equation (2.1), which allows us to
study the following equation (finite number of solutions, by Theorem 2.1),

ℓ

(︂
10𝑚 − 3

9

)︂
=

𝑛(5𝑛− 1)

2
, (2.6)

in integers 𝑚,𝑛 ≥ 1 and ℓ ∈ {1, 2, . . . , 9}. As before, last equation can be reduced
to

𝑦22 = 𝑥3
2 + 𝑎2, (2.7)

where 𝑥2 := 10ℓ10𝑚1+𝑟, 𝑦2 := 15ℓ10𝑟(10𝑛− 3), and 𝑎2 := 25ℓ2102𝑟(81− 40ℓ). We
note that 𝑎2 is nonzero, otherwise we get ℓ = 81/40, which is not true. Now, we use
MAGMA [2], to determine the integer points (𝑥2, 𝑦2) on the elliptic curves given
by (2.7).

The following table shows all3 the integer points (𝑥2, 𝑦2)
4, described above and

corresponding integer solutions (𝑚,𝑛) of the equation (2.6), whenever they exist.

ℓ, 𝑟 (𝑥2, 𝑦2) (𝑚,𝑛)

ℓ = 1,
𝑟 = 0

(10,±5), (5,±30), (4,±31), (1,±32), (4,±33),
(10,±45), (20,±95), (40,±225), (50,±355), (64,±513),
(155,±1930), (166,±2139), (446,±9419), (920,±27905),
(3631,±218796), (3730,±227805)

ℓ = 1,
𝑟 = 1

(100,±1050) (1, 1)

ℓ = 1,
𝑟 = 2

(200,±1500), (2000,±89500)

ℓ = 2,
𝑟 = 0

(4,±6), (0,±10), (5,±15), (20,±90), (24,±118),
(2660,±137190)

ℓ = 2,
𝑟 = 1

(0,±100)

ℓ = 2,
𝑟 = 2

(100,±0), (0,±1000), (200,±3000)

3Equation (2.7) has no integer points for (ℓ, 𝑟) = (6, 1), (6, 2), (8, 1), (9, 1).
4(𝑥2, 𝑦2)’s in bold correspond to the integer solutions of the equation (2.6) in the third column.
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ℓ = 3,
𝑟 = 0

(30,±135), (40,±235), (1299,±46818)

ℓ = 3,
𝑟 = 1

(100,±350)

ℓ = 3,
𝑟 = 2

(1200,±40500)

ℓ = 4,
𝑟 = 0

(40,±180)

ℓ = 4,
𝑟 = 1

(184,±1752), (200,±2200), (400,±7800), (1900,±82800),
(60625,±14927175)

ℓ = 4,
𝑟 = 2

(800,±14000)

ℓ = 5,
𝑟 = 0

(50,±225), (134,±1527), (7550,±656025)

ℓ = 5,
𝑟 = 1

(200,±750), (6000,±464750)

ℓ = 5,
𝑟 = 2

(5000,±352500) (2, 5)

ℓ = 6,
𝑟 = 0

(60,±270), (280,±4670)

ℓ = 7,
𝑟 = 0

(70,±315), (91,±714), (200,±2785), (2240,±106015)

ℓ = 7,
𝑟 = 1

(301,±1701), (700,±17850), (1400,±52150),
(7900,±702150)

(1, 2)

ℓ = 7,
𝑟 = 2

(1400,±17500), (25424,±4053532), (49000,±10846500),
(325000,±185278500)

ℓ = 8,
𝑟 = 0

(80,±360), (120,±1160), (200,±2760), (396,±7856),
(1244,±43872), (2081,±94929)

𝑐 = 8,
𝑟 = 2

(1700,±33000), (2400,±100000), (32000, 5724000)

ℓ = 9,
𝑟 = 0

(90,±405), (171,±2106), (180,±2295), (630,±15795),
(700,±18505), (720,±19305),
(150750,±58531005), (238770,±116672805)

ℓ = 9,
𝑟 = 2

(1800,±13500), (2016,±50436), (3600,±202500),
(5625,±415125), (9000,±850500), (25425,±4053375),
(83800,±24258500), (126000,±44725500)

Table 2: Integer solutions (𝑥2, 𝑦2)

In Table 2, as in the proof of Corollary 2.2, the list of ordered pair (𝑚,𝑛) in
third column together with the corresponding values of ℓ in the first column give
us the complete list of the solutions (𝑚,𝑛, ℓ) in positive integers with 1 ≤ ℓ ≤ 9
for the equation (2.4), which are the only pentagonal numbers in the sequence of
repdigits. This completes the proof of Corollary 2.3.
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Recently in [4], authors of this paper studied the triangular numbers that are
also repeated blocks of two digits, which we call the repblocks of two digits. Such
numbers have the form

ℓ

(︂
102𝑚 − 1

99

)︂
, for some 𝑚 ≥ 1 and ℓ ∈ {10, 11, . . . , 99}.

Additionally in this paper, we extend and complement the results obtained in [4]
by finding all the pentagonal repblocks of two digits. Our results are the following.

Corollary 2.4. The complete list of pentagonal numbers which are also repblocks
of two digits is

12, 22, 35, 51, 70, 92, 1717.

Proof. To prove our result, in equation (2.1), we replace the left hand side by
ℓ
(︁

102𝑚−1
99

)︁
, with ℓ ∈ {10, 11, . . . , 99} and the right hand side of it by 𝐴 = 3

2 , 𝐵 =

− 1
2 and 𝐶 = 0. As before, the resulting equation can be written as

𝑦23 = 𝑥3
3 + 𝑎3, (2.8)

where 𝑥3 := 66ℓ102𝑚1+2𝑟, 𝑦3 := 1089ℓ102𝑟(6𝑛− 1) and 𝑎3 := 11979ℓ2104𝑟(3− 8ℓ).
We note that 𝑎3 is nonzero. Now, we use MAGMA [2], to determine the integer
points (𝑥3, 𝑦3) on the two hundred forty-three elliptic curves given by (2.8).

The following table displays all the integer points (𝑥3, 𝑦3)
5 of (2.8), which pro-

duce the corresponding integer solutions (𝑚,𝑛) of equation (2.4). There are only
seven such elliptic curves. The other two hundred thirty-six equations either do
not have any integer points (𝑥3, 𝑦3), or do not produce relevant solutions (𝑚,𝑛)
and thus, we omit those equations.

ℓ, 𝑟 (𝑥3, 𝑦3) (𝑚,𝑛)
ℓ = 12,
𝑟 = 1

(25524,±3656232), (79200,±22215600),
(127600,±45544400), (1753200,±2321384400)

(1, 3)

ℓ = 17,
𝑟 = 2

(1734000,±2259810000), (3706000,±7126910000),
(4686000,±10138590000), (11220000,±37581390000),
(17217600,±71442126000), (20476500,±92657565000),
(166268400,±2143949598000)

(2, 34)

ℓ = 22,
𝑟 = 1

(31944,±2779128), (36300,±4791600),
(121000,±41793400), (145200,±55103400),
(2952400,±5072973400), (15765816,±62600049864)

(2, 4)

ℓ = 35,
𝑟 = 1

(67200,±13954500), (231000,±110533500),
(279400,±147317500)

(2, 5)

ℓ = 51,
𝑟 = 1

(336600,±194386500) (1, 6)

5(𝑥3, 𝑦3)’s in bold correspond to the integer solutions in the third column.
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ℓ = 70,
𝑟 = 1

(462000,±312543000) (1, 7)

ℓ = 92,
𝑟 = 1

(607200,±470883600) (1, 8)

Table 3: Integer solutions (𝑥3, 𝑦3)

The ordered pairs (𝑚,𝑛) in the third column of Table 3, together with the
corresponding values of ℓ in the first column give us the complete list of pentagonal
numbers which are also the repblock of two digits. This completes the proof of
Corollary 2.4.

In the same fashion, one can show that 18, 34, 55, 81 and 4141 are the only
heptagonal numbers which are also repblocks of two digits.
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Abstract

In this paper, the notions of rainbow neighbourhood and rainbow neigh-
bourhood number of a graph are generalised and further to these general-
isations, the notion of a proper 𝑘-jump colouring of a graph is also intro-
duced. The generalisations follow from the understanding that a closed 𝑘-
neighbourhood of a vertex 𝑣 ∈ 𝑉 (𝐺) denoted, 𝑁𝑘[𝑣] is the set, 𝑁𝑘[𝑣] = {𝑢 :
𝑑(𝑣, 𝑢) ≤ 𝑘, 𝑘 ∈ N and 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺)}. If the closed 𝑘-neighbourhood 𝑁𝑘[𝑣]
contains at least one of each colour of the chromatic colour set, we say that
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1. Introduction

For general notation and concepts in graphs and digraphs we refer to [1, 2, 8].
Unless mentioned otherwise all graphs 𝐺 are simple, connected and finite graphs.
For corresponding results of disconnected graphs, see [3].

Recall that a vertex colouring of a graph 𝐺 is an assignment 𝜙 : 𝑉 (𝐺) ↦→ 𝒞,
where 𝒞 = {𝑐1, 𝑐2, 𝑐3, . . . , 𝑐ℓ} is a set of distinct colours. A vertex colouring is said
to be a proper vertex colouring of a graph 𝐺 if no two distinct adjacent vertices
have the same colour. The cardinality of a minimum set of colours in a proper
vertex colouring of 𝐺 is called the chromatic number of 𝐺 and is denoted 𝜒(𝐺). A
colouring of 𝐺 consisting of exactly 𝜒(𝐺) colours may be called a 𝜒-colouring or a
chromatic colouring of 𝐺.

When the cardinality of the set of colours 𝒞 is bound by conditions such as
minimum, maximum or others and since 𝑐(𝑉 (𝐺)) = 𝒞, it can be agreed that 𝑐(𝐺)
means 𝑐(𝑉 (𝐺)) and hence 𝑐(𝐺) ⇒ 𝒞 and |𝑐(𝐺)| = |𝒞|.

Index labelling the elements of a graph such as the vertices say, 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛
or written as 𝑣𝑖; 1 ≤ 𝑖 ≤ 𝑛 or as 𝑣𝑖; 𝑖 = 1, 2, 3, . . . , 𝑛, is called a minimum parameter
indexing. Similarly, a minimum parameter colouring of a graph 𝐺 is a proper
colouring of 𝐺 which consists of the colours 𝑐𝑖; 1 ≤ 𝑖 ≤ ℓ. The set of vertices of
𝐺 having the colour 𝑐𝑖 is said to be the colour class of 𝑐𝑖 in 𝐺 and is denoted by
𝒞𝑖. Unless stated otherwise, we consider minimum parameter colouring throughout
this paper.

Note that the closed neighbourhood 𝑁 [𝑣] of a vertex 𝑣 ∈ 𝑉 (𝐺) which contains
at least one vertex from each colour class of 𝐺 in the chromatic colouring, is called a
rainbow neighbourhood (see [4–7] for further results on rainbow neighbourhoods of
different graphs). The number of vertices in 𝐺 which yield rainbow neighbourhoods,
denoted by 𝑟𝜒(𝐺), is called the rainbow neighbourhood number of 𝐺 corresponding
to the chromatic colouring. Note that 𝑟−𝜒 (𝐺) and 𝑟+𝜒 (𝐺) respectively denote the
minimum value and maximum value of 𝑟𝜒(𝐺) over all minimum proper colourings
(see [4]).

Rainbow neighbourhood convention ([4]): The rainbow neighbourhood con-
vention is a colouring protocol as described below:

Let 𝑋1 be a maximal independent set in 𝐺. Let 𝐺1 = 𝐺 − 𝑋1. Let 𝑋2 be a
maximal independent set in 𝐺1 and 𝐺2 = 𝐺1 −𝑋2. Proceed like this, until after
a finite number of iterations, say 𝑘, the induced graph ⟨𝑋𝑘⟩ is a trivial or empty
graph. Clearly, we have |𝑋1| ≥ |𝑋2| ≥ . . . |𝑋𝑘−1| ≥ |𝑋𝑘|. Now, consider a set
C = {𝑐1, 𝑐2, . . . , 𝑐𝑘} of 𝑘 colours and we assign the colour 𝑐𝑖 to all vertices in 𝑋𝑖

for 1 ≤ 𝑖 ≤ 𝑘.
Unless mentioned otherwise the rainbow neighbourhood convention together

with a minimum parameter colouring will be used for all graph colourings.
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2. 𝑘-rainbow neighbourhood number of a graph

In this section, we generalise the notion of a rainbow neighbourhood of a graph.
A closed 𝑘-neighbourhood of a vertex 𝑣 ∈ 𝑉 (𝐺), denoted by 𝑁𝑘[𝑣], is the set,
𝑁𝑘[𝑣] = {𝑢 : 𝑑(𝑣, 𝑢) ≤ 𝑘, 𝑘 ∈ N} (Note that 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺)).

Definition 2.1. If the closed 𝑘-neighbourhood 𝑁𝑘[𝑣]; 𝑣 ∈ 𝑉 (𝐺) contains at least
one of each colour from the chromatic colour class, we say that 𝑣 yields a 𝑘-rainbow
neighbourhood.

In this context, a rainbow neighbourhood defined in [5] is indeed a 1-rainbow
neighbourhood.

Definition 2.2. For a chromatic colouring of a graph 𝐺, the number of distinct
vertices which yield a 𝑘-rainbow neighbourhood is called the 𝑘-rainbow neighbour-
hood number of 𝐺 and is denoted by 𝑟𝜒,𝑘(𝐺).

Definition 2.3. The 𝑘−-rainbow neighbourhood number of a graph 𝐺, denoted
by 𝑟−𝜒,𝑘(𝐺), is defined as the minimum number of distinct vertices which yield a
𝑘-rainbow neighbourhood. That is,

𝑟−𝜒,𝑘(𝐺) = min{𝑟𝜒,𝑘(𝐺) : over all chromatic colourings of 𝐺}.

Definition 2.4. The 𝑘+-rainbow neighbourhood number of a graph 𝐺, denoted
by 𝑟+𝜒,𝑘(𝐺), is defined as the maximum number of distinct vertices which yield a
𝑘-rainbow neighbourhood. That is,

𝑟+𝜒,𝑘(𝐺) = max{𝑟𝜒,𝑘(𝐺) : over all chromatic colourings of 𝐺}.

Note that 𝑟−𝜒,𝑘(𝐺) necessarily corresponds to a chromatic colouring in accor-
dance with the rainbow neighbourhood convention. Note that if vertex 𝑣 yields a
𝑘-rainbow neighbourhood it does not imply that 𝑣 yields a (𝑘 − 1)-rainbow neigh-
bourhood. The aforesaid is true because 𝑁(𝑘−1)[𝑣] ⊆ 𝑁𝑘[𝑣] and hence for any
colouring, |𝑁𝑘[𝑣]| ≥ |𝑁(𝑘−1)[𝑣]|. However, all vertices yield a 𝑑𝑖𝑎𝑚(𝐺)-rainbow
neighbourhood. Hence, for a graph 𝐺 of order 𝑛 we have, 𝑟𝜒,𝑑𝑖𝑎𝑚(𝐺)(𝐺) = 𝑛. Also,
if the vertex 𝑣 yields a 1-rainbow neighbourhood, it yields a 𝑘-rainbow neighbour-
hood, where 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺).

We now present a fundamental recursive lemma.

Lemma 2.5. If the vertex 𝑣 ∈ 𝑉 (𝐺) yields a 𝑡-rainbow neighbourhood in graph 𝐺,
it yields a 𝑘-rainbow neighbourhood for 𝑡+ 1 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺).

Proof. Because 𝑁𝑡[𝑣] ⊆ 𝑁𝑘[𝑣], 𝑡+1 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺), the result immediately follows
by mathematical induction.

Lemma 2.5 implies that 𝑟𝜒,𝑘(𝐺) ≥ 𝑟𝜒(𝐺), because for a vertex 𝑣 that yields
a rainbow neighbourhood all 𝑢 ∈ 𝑁 [𝑣] yields a 2-rainbow neighbourhood if 𝑁2[𝑢]
exists. For now our interest lies in understanding the invariant 𝑟𝜒,2(𝐺) and deter-
mining 𝑟−𝜒,2(𝐺).
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Proposition 2.6. The minimum 2-rainbow neighbourhood number for the follow-
ing graphs, all of order 𝑛 are:

(i) For 2-colourable graphs 𝐺, 𝑟−𝜒,2(𝐺) = 𝑛.
(ii) For cycle 𝐶3, 𝑟−𝜒,2(𝐶3) = 3, for 𝐶𝑛, 𝑛 is odd and 𝑛 ≥ 5 we have: 𝑟−𝜒,2(𝐶𝑛) = 5.
(iii) For wheels 𝑊𝑛 = 𝐾1 + 𝐶𝑛, 𝑛 ≥ 3:

𝑟−𝜒,2(𝑊𝑛) =

⎧
⎪⎨
⎪⎩

4, if 𝑛 = 3;

6, if 𝑛 ≥ 5, 𝑛 is odd;
𝑛+ 1, if 𝑛 is even.

Proof. (i) Because 𝑟−𝜒 (𝐺) = 𝑛 for 2-colourable graphs and 𝑟−𝜒 (𝐺) = 𝑟−𝜒,1(𝐺) it
follows that, 𝑟−𝜒,2(𝐺) = 𝑛.

(ii) The first part, which states that 𝑟−𝜒,2(𝐶3) = 3, is straight forward. Further-
more, because 𝑟−𝜒,2(𝐺) corresponds to a chromatic colouring in accordance with
the rainbow neighbourhood convention, such chromatic colouring of a cycle 𝐶𝑛,
𝑛 is odd and 𝑛 ≥ 5 permits a single vertex to have colour 𝑐3. The result follows
immediately from the aforesaid.

(iii) Part (1) and Part(2) of (iii) are direct consequence of (ii). Furthermore,
since an even cycle is 2-colourable, result (i) read together with the fact that the
central vertex is adjacent to all cycle vertices implies that, 𝑟−𝜒,2(𝐶𝑛) = 𝑛+ 1 if 𝑛 is
even.

The results for many other cycle related graphs such as sun graphs, sunlet
graphs, helm graphs and so on, can be derived easily through similar reasoning.

2.1. 𝑘-rainbow neighbourhood number of certain graph oper-
ations

Generally, graph operations are distinguished between operations on a graph 𝐺 such
as the complement graph, the line graph, the total graph, the power graph and so
on. It results in a new graph or a derivative graph of the given graph 𝐺. Then
there are those which are operations between graphs 𝐺 and 𝐻. In this subsection
the join and the corona of graphs 𝐺 and 𝐻 will be considered.

Theorem 2.7. Let two graphs 𝐺 and 𝐻 of order 𝑛1, 𝑛2 respectively. Let 𝐺 +𝐻
and 𝐺 ∘𝐻 be the join and the corona of 𝐺 and 𝐻. Then,

(i) 𝑟−𝜒,2(𝐺+𝐻) = 𝑛1 + 𝑛2.
(ii) (a) 𝑟−𝜒,2(𝐺 ∘𝐻) = 𝑛1 · 𝑛2, if 𝜒(𝐻) ≥ 𝜒(𝐺)− 1; else,

(b) 𝑟−𝜒,2(𝐺 ∘𝐻) = 𝑟−𝜒,2(𝐺).

Proof. (i) Since, for any two vertices 𝑣, 𝑢 ∈ 𝑉 (𝐺+𝐻) the distance is, 𝑑(𝑣, 𝑢) ≤ 2,
the result is immediate.

(ii)(a): For 𝜒(𝐻) ≥ 𝜒(𝐺) − 1 each 𝑣 ∈ 𝑉 (𝐺) yields a rainbow neighbourhood.
Also for 𝑢 ∈ 𝑉 (𝐻), 𝑑(𝑣, 𝑢) ≤ 2, and therefore, the result is immediate.
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(b): For the second part it is clear that all the vertices 𝑣 ∈ 𝑉 (𝐺) that yield
a 2-rainbow neighbourhood in 𝐺 will yield a 2-rainbow neighbourhood in 𝐺 ∘ 𝐻.
Therefore, 𝑟−𝜒,2(𝐺 ∘𝐻) ≥ 𝑟−𝜒,2(𝐺).

It also follows that no vertex 𝑤 ∈ 𝑉 (𝐻) can yield a 2-rainbow neighbourhood
in 𝐺 ∘ 𝐻. To show the aforesaid, assume that the vertex 𝑤 ∈ 𝑉 (𝐻) of the 𝑡-th
copy of 𝐻 joined to 𝑣 ∈ 𝑉 (𝐺) is a vertex yielding a 2-rainbow neighbourhood
in 𝐺 ∘ 𝐻. It means that vertex 𝑤 has at least one 2-reach neighbour for each
colour 𝑐𝑖, 1 ≤ 𝑖 ≤ 𝜒(𝐻) < 𝜒(𝐺) − 1 as well as the neighbour 𝑣 with, without loss
of generality the colour 𝑐(𝑣) = 𝑐𝜒(𝐻)+1. Since, 𝑐𝜒(𝐻)+1 can at best be the colour
𝑐𝜒(𝐺)−1, the colour 𝑐𝜒(𝐺) /∈ 𝑁 [𝑤] in 𝑟−𝜒,2(𝐺∘𝐻) which is a contradiction. Therefore,
𝑟−𝜒,2(𝐺 ∘𝐻) = 𝑟−𝜒,2(𝐺).

3. On 𝑘-jump colouring

In this section, we introduce the main concept of study and the main results of this
paper.

A path of length 𝑘 also called a 𝑘-path is a path on 𝑘 + 1 vertices. Similarly, a
cycle of length (or circumference) 𝑘, also called a 𝑘-cycle is a cycle on 𝑘 vertices. If
a graph 𝐺 has 𝑑𝑖𝑎𝑚(𝐺) = ℓ, then clearly it is possible for each vertex 𝑣 ∈ 𝑉 (𝐺) to
find a vertex 𝑢 which is at maximum distance 𝑑(𝑣, 𝑢) = ℓ′ ≤ ℓ and hence furthest
away from 𝑣 in 𝐺. We say 𝑢 is a ℓ′-jump away from 𝑣. Consider a graph 𝐺 for
which 𝑋 ∪ 𝑌 = 𝑉 (𝐺) and for which the vertices in set 𝑋 ⊆ 𝑉 (𝐺) are uncoloured
and the vertices in set 𝑌 ⊆ 𝑉 (𝐺) are coloured. We say 𝐺 is partially coloured.

Definition 3.1. Consider a partially coloured graph 𝐺 and let the set of uncoloured
vertices be 𝑋 ⊆ 𝑉 (𝐺). A 𝑘-jump colouring in 𝐺 with respect to 𝑣 is the colouring in
𝐺 such that of vertex 𝑣 ∈ 𝑋 together with all vertices 𝑢 ∈ 𝑋 for which 𝑑(𝑣, 𝑢) = 𝑘
have the same colour.

The rainbow neighbourhood convention can naturally be extended to vertices
at distance 𝑘. The derivative is called the rainbow 𝑘-neighbourhood convention.
It is also clear that since 𝐺 is finite, that colouring 𝑣 say, 𝑐1 and then colouring all
vertices 𝑢𝑖 at jump ℓ′ from 𝑣 also 𝑐1 followed by repeating the colouring procedure
for all ℓ′-jumps from vertices 𝑢𝑖 and so on will exhaust in finite number of iterations
and either, colour all vertices in 𝐺 the colour 𝑐1 or result in some vertices remaining
uncoloured. It means that no vertex which remains uncoloured is at distance ℓ from
any vertex coloured 𝑐1. The aforesaid implies that the procedure is possible for a
𝑘-jump, 𝑘 ≤ ℓ. For a graph 𝐺 with 𝑑𝑖𝑎𝑚(𝐺) = ℓ and 0 ≤ 𝑘 ≤ ℓ, consider the
𝑘-jump colouring procedure (𝑘-JCP) as explained below:

𝑘-JCP for a graph
Step-0: Let 𝒱0 = ∅.
Step-1: For 0 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺), choose an arbitrary vertex 𝑣1 ∈ 𝑉 (𝐺). Let 𝒱1 =
𝒱0 ∪ {𝑣1} and colour 𝑣1 and all uncoloured vertices 𝑢1,𝑖 ∈ 𝑉 (𝐺) at distance 𝑘
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(𝑘-jump) from 𝑣1 if such vertices exist, the colour 𝑐1. Repeat the procedure for
all vertices 𝑢1,𝑖 to obtain all vertices 𝑤1,𝑖 to be coloured 𝑐1 and so on. When this
procedure is exhausted proceed to Step 2.
Step 2: If any uncoloured vertices exist, choose an arbitrary vertex 𝑣2. Let 𝒱2 =
𝒱1∪{𝑣2} and colour 𝑣2 and all uncoloured vertices 𝑢2,𝑖 at distance 𝑘 (𝑘-jump) from
𝑣2 if such vertices exist, the colour 𝑐2. Repeat the procedure similar to that in Step
1 for all vertices 𝑢2,𝑖 to obtain all vertices 𝑤2,𝑖 to be coloured 𝑐2, if such vertices
exist and so on. When this procedure is exhausted proceed to Step 3.
Step-3: If possible proceed iteratively through the arbitrary choice of an uncoloured
𝑣3 and update 𝒱3 = 𝒱2 ∪ {𝑣3} and colour corresponding 𝑘-jump vertices 𝑐3, and so
on, until the graph has a 𝑘-jump colouring which might not be proper.
Step-4: When this iterative procedure is exhausted, delete all edges between ver-
tices 𝑢 and 𝑣 for which 𝑐(𝑢) = 𝑐(𝑣).

On conclusion of Step-4, a proper colouring is obtained. Call the conclud-
ing set of vertices say, 𝒱𝑖, a 𝑘-string. Note that it means that the graph per-
mits a maximum of 𝑖 colours in respect of the 𝑘-string 𝒱𝑖. For the correspond-
ing set of colours 𝒞, we call the mapping 𝑓𝒱⟩ : 𝑉 (𝐺) ↦→ 𝒞, a 𝑘-jump colouring
of 𝐺 in respect of 𝒱𝑖. The 𝑘-jump colouring number of 𝐺, with respect to the
rainbow 𝑘-neighbourhood convention, is defined to be, 𝜒𝐽(𝑘)(𝐺) = 𝑗 = |𝒱𝑗 | =
max{|𝒱𝑖| : 𝑓𝒱𝑖

(𝐺); a 𝑘-jump colouring of 𝐺 in respect of 𝒱𝑖}. It is easy to verify
that 𝜒𝐽(2)(𝐶9) = 1, 𝜒𝐽(3)(𝐶9) = 3 and 𝜒𝐽(4)(𝐶9) = 1. Hence, in general there is
no relation between 𝜒𝐽(𝑘)(𝐺) and 𝑘 per se. Also, there is no relation between the
chromatic number 𝜒(𝐺) and the jump colouring number, 𝜒𝐽(𝑘)(𝐺).

For 𝑘 = 0 we have the jump string 𝒱𝑛 = 𝑉 (𝐺) and 𝑐(𝑣) ̸= 𝑐(𝑢) ⇔ 𝑣 ̸= 𝑢. It
is called the Type I primitive jump colouring. For 𝑘 = 1 the we have the 𝑘-string,
𝒱1 = {𝑣}, 𝑣 ∈ 𝑉 (𝐺), 𝑐(𝐺) = 𝑐1. It is called the Type II primitive jump colouring
which returns a null graph in Step 4 of the 𝑘-JCP.

Further throughout this section the bounds for a 𝑘-jump colouring, 2 ≤ 𝑘 ≤
𝑑𝑖𝑎𝑚(𝐺) will apply. A complete graph 𝐾𝑛, 𝑛 ≥ 3 only permits a 𝑘-jump colouring
for 𝑘 = 0, 1 and the 1-jump colouring always returns a null graph. It is easy to
verify that a path 𝑃𝑛, 𝑛 ≥ 3 has 𝜒𝐽(𝑘)(𝑃𝑛) = 𝑘, 1 ≤ 𝑘 ≤ 𝑛 − 1. Because acyclic
graphs are bipartite and hence 2-colourable, such graphs permit a 2-jump colouring
without the deletion of any edges. It implies that the 2-jump colouring returns a
chromatic 2-colouring. For 2-colourable graphs 𝐺, 𝜒𝐽(2)(𝐺) = 𝜒(𝐺). It is easy to
see that a 2-jump colouring returns a null graph for an odd cycle graph, meaning
that all vertices are coloured 𝑐1. We say that an odd cycle permits a Type II
primitive jump colouring or returns a null graph in respect of a 2-jump colouring.
We are now in a position to state and prove two of the main results of this study.

Theorem 3.2. A non-trivial graph 𝐺 returns a null graph in respect of a 2-jump
colouring if and only if 𝐺 contains an odd cycle (not necessarily an induced odd
cycle).

Proof. Say that for an odd cycle 𝐶𝑚 ⊆ 𝐺 and 𝑢, 𝑣 ∈ 𝑉 (𝐶𝑚), 𝑚 ≤ 𝑛, a 2-path
from 𝑢 to 𝑣, if it exists, is within 𝐶𝑚. Similarly, say that a 2-path from 𝑢 to 𝑣,
𝑢 /∈ 𝑉 (𝐶𝑚), 𝑣 ∈ 𝑉 (𝐶𝑚) if it exists, is into 𝐶𝑚. Also, say that a 2-path from 𝑢 to 𝑣,
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𝑢 ∈ 𝑉 (𝐶𝑚), 𝑣 /∈ 𝑉 (𝐶𝑚) if it exists, is out of 𝐶𝑚. Consider a graph which contains
an odd cycle, 𝐶𝑚, 𝑚 ≤ 𝑛. Here are two sub-cases to be considered.

(a) Assume that 𝐺 has odd cycle 𝐶𝑚 and the arbitrary vertex 𝑣1 /∈ 𝑉 (𝐶𝑚).
For any vertex 𝑢 ∈ 𝑉 (𝐶𝑚) a 𝑣𝑢-path exists because 𝐺 is connected. If the 𝑣𝑢-
path is odd then 𝑐(𝑣1) = 𝑐(𝑢) = 𝑐1. Without loss of generality, 2-jump colour
the cycle to exhaustion, followed by 2-jump colouring the 𝑣𝑢-path. It follows that
𝑐(𝑉 (𝑣𝑢-path) ∪ 𝑉 (𝐶𝑚))) = 𝑐1.

(b) If the 𝑣𝑢-path is even then a vertex 𝑤 which is adjacent to 𝑢 exists and
which does not lie on the 𝑣𝑢-path. Extend to the 𝑣𝑤-path which is odd and 2-
jump colour similar to (a). It follows that 𝑐(𝑣1) = 𝑐(𝑤) = 𝑐1. Without loss of
generality, 2-jump colour the cycle to exhaustion, followed by 2-jump colouring the
𝑣𝑢-path. It follows that 𝑐(𝑉 (𝑣𝑢− 𝑝𝑎𝑡ℎ) ∪ 𝑉 (𝐶𝑚))) = 𝑐1.

Invoking the sub-cases (a), (b) together, the result follows by mathematical
induction.

If a non-trivial graph 𝐺 returns a null graph with respect to a 2-jump colouring,
the result follows by logical deduction in that, from say 𝑣𝑗 , the 2-jump colouring
iteration must be along a combination of paths or even cycles (not necessarily
induced even cycles).

The proof of Theorem 3.2 makes a generalized result for cycles possible. Note
that for the discussion of cycles and chorded cycles and certain cycle related graphs
the bounds on 𝑘 are relaxed for convenience to, 2 ≤ 𝑘 ≤ 𝑛. For graphs in general
a similar relaxation is possible by substituting modulo bounds on 𝑑𝑖𝑎𝑚(𝐺).

Theorem 3.3. Let 𝑘 ≥ 3. A cycle 𝐶𝑛, returns a null graph in respect of a 𝑘-jump
colouring if and only if 𝑛 ̸= 𝑡 · 𝑘 where 𝑡 ∈ N.

Proof. For a cycle 𝐶𝑛, 𝑛 ≥ 3 and by relaxed convention, 2 ≤ 𝑘 ≤ 𝑛, all paths from
vertices 𝑢 to 𝑣 are within 𝐶𝑛. Also, for any 𝑛-path from 𝑢 to 𝑣 we have 𝑢 = 𝑣.
Similarly, for any 𝑘 for which 𝑛 is divisible by 𝑘, a (𝑘 · 𝑛

𝑘 )-path from 𝑢 to 𝑣 implies
𝑢 = 𝑣. Therefore, for any 𝑘 for which 𝑛 is not divisible by 𝑘, Step 1 will exhaust
all vertices with colouring 𝑐1. Hence, the result.

The following two corollaries are direct consequences of Theorem 3.3.

Corollary 3.4. For 𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠 and 𝑘𝑖 ≥ 3, let the least common multiple,
𝐿𝐶𝑀(𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠) = ℓ. A cycle 𝐶𝑛, returns a null graph in respect of a
𝑘𝑖-jump colouring if and only if 𝑛 ̸= 𝑡 · ℓ where 𝑡 ∈ N.

Corollary 3.5. For 𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠 and 𝑘𝑖 ≥ 3, let the least common multiple,
𝐿𝐶𝑀(𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠) = ℓ. A cycle 𝐶𝑛, has 𝜒𝐽(𝑘𝑖)(𝐶𝑛) = 1 𝑜𝑟 𝑘𝑖 in respect of a
𝑘𝑖-jump colouring.

It is observed that cycles has the extremal edge deletion properties i.e. either
all edges are deleted for a 𝑘-jump colouring or no edges are deleted.
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3.1. Investigating chorded cycles, slings graphs and 𝑝-sling
graphs

From Corollary 3.4 a general result for chorded cycles follows.

Theorem 3.6. For 𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠 and 𝑘𝑖 ≥ 3 let the least common multiple,
𝐿𝐶𝑀(𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠) = ℓ. A chorded cycle 𝐶~

𝑛 , 𝑛 ≥ 4 returns a null graph in
respect of a 𝑘𝑖-jump colouring.

Proof. From Corollary 3.4, a cycle 𝐶𝑚1
and 𝐶𝑚2

must both have 𝑚1 = 𝑡1 ·ℓ, 𝑡1 ∈ N
and 𝑚2 = 𝑡2 · ℓ, 𝑡2 ∈ N for each to permit a 𝑘𝑖-jump colouring, 1 ≤ 𝑖 ≤ 𝑠. Obtain
a chorded cycle 𝐶~

𝑛 by merging two edges, one each from 𝐶𝑚1
and 𝐶𝑚2

. It is easy
to verify that 𝑛 = 𝑚1 + 𝑚2 is not divisible by at least one 𝑘𝑖, 1 ≤ 𝑖 ≤ 𝑠. From
Corollary 3.3 it then follows that 𝐶~

𝑛 will return a null graph. Though immediate
induction the resut follows for any chorded graph 𝐶~

𝑛 , 𝑛 ≥ 4.

An immediate consequence of Theorem 3.6 is that Theorem 3.2 cannot be gen-
eralized for 𝑘-jump colouring for 𝑘 ≥ 3. Hence, for 𝑘-jump colouring, 𝑘 ≥ 3 only
graphs with edge-disjoint holes (induced cycles) can be investigated.

Consider a cycle 𝐶𝑛, 𝑛 ≥ 3 and a path 𝑃𝑚+1, 𝑚 ≥ 1 (also called a 𝑚-path).
The graph obtained by merging an end vertex of the path with a vertex of 𝐶𝑛 is
called a sling graph and is denoted by 𝑆𝑛,𝑚+1. We begin with an important lemma.

Lemma 3.7. Let the vertices of a 𝑚-path be labeled, 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑚+1. For the
cycle 𝐶𝑛, 𝑛 = 𝑡 · ℓ, 𝑡 = 1, 2, . . ., and ℓ = 𝐿𝐶𝑀(1, 2, 3, . . . ,𝑚), construct the sling
graph 𝑆𝑛,𝑚+1 by merging 𝑣1 with a vertex on 𝐶𝑛. For 2 ≤ 𝑘 ≤ 𝑚 initiate (Step 1 of
the 𝑘-JCP) a 𝑘-jump colouring from vertex 𝑣𝑘+1. The sling graph 𝑆𝑛,𝑚+1 permits
such 𝑘-jump colouring.

Proof. Initiating a 𝑘-jump colouring from vertex 𝑣𝑘+1 in accordance with the con-
ditions set, clearly colours vertex 𝑣1 to be, 𝑐(𝑣1) = 𝑐1. Proceeding along the cycle
without returning a null graph follows from Corollary 3.4.

A 𝑝-sling graph has paths, 𝑃𝑚𝑖+1, 1 ≤ 𝑖 ≤ 𝑝, each linked to a common cycle
in accordance to the construction of a sling graph. It is denoted, 𝑆1≤𝑖≤𝑝

𝑛,𝑚𝑖+1. In this
sense a sling graph is a 1-sling graph.

Assume without loss of generality that 𝑚1 ≤ 𝑚2 ≤ 𝑚3 ≤ · · · ≤ 𝑚𝑝. Label the
vertices of the respective paths to be, 𝑣𝑖,1, 𝑣𝑖,2, 𝑣𝑖,3, . . . , 𝑣𝑖,𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑝. The next
lemma generalizes Lemma 3.7.

Lemma 3.8. For a cycle 𝐶𝑛, 𝑛 = 𝑡 · ℓ, 𝑡 ∈ N, and ℓ = 𝐿𝐶𝑀(1, 2, 3, . . . ,𝑚𝑝),
construct the 𝑝-sling graph 𝑆1≤𝑖≤𝑝

𝑛,𝑚𝑖+1 by merging 𝑣𝑖,1 with some vertex on 𝐶𝑛. For 2 ≤
𝑘 ≤ 𝑚𝑝 initiate (Step-1 of the 𝑘-JCP), a 𝑘-jump colouring from any vertex 𝑣𝑖,𝑘+1.
The 𝑝-sling graph 𝑆1≤𝑖≤𝑝

𝑛,𝑚𝑖+1 permits such 𝑘-jump colouring if all paths 𝑃𝑚𝑗+1, 𝑗 ̸= 𝑖
are merged with some vertex on 𝐶𝑛 which is coloured 𝑐1.

Proof. Note that ℓ is divisible by 𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑝. The result follows trivially from
Lemma 3.7 by induction on the number of paths.
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A trivial illustration of Lemma 3.8 is the observation that a thorny cycle 𝐶⋆
𝑛, 𝑛

is even, permits a 2-jump colouring.

Theorem 3.9. If a graph 𝐺 which permits a 𝑘-jump colouring then 𝑣 ∈ 𝑉 (𝐺)
yields a (𝑘 − 1)-rainbow neighbourhood.

Proof. Consider any vertex 𝑣 and any (𝑘 − 1)-path 𝑃𝑘 leading from 𝑣. Label the
vertices on 𝑃𝑘 to be, 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑘. Since for any pair of distinct vertices say,
𝑣𝑖, 𝑣𝑗 the distance, 𝑑(𝑣𝑖, 𝑣𝑗) ≤ 𝑘 − 1 it follows that 𝑐(𝑣𝑖) ̸= 𝑐(𝑣𝑗). Therefore, all
𝑐(𝑃𝑘) = 𝒞. Hence, the result.

Theorem 3.9 implies that if 𝐺 permits a 𝑘-jump colouring, then 𝑟−𝜒,(𝑘−1)(𝐺) =

|𝑉 (𝐺)|.

Theorem 3.10. For 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺), the 𝑘-jump colouring of 𝐺 returns a null
graph if 𝐺 contains a cycle 𝐶𝑚 (not necessarily induced) of length, 𝑚 ̸= 𝑡 · 𝑘; 𝑡 =
1, 2, 3 . . ..

Proof. The result follows by similar reasoning to that found in the proof of Theorem
3.2.

3.2. On acyclic graphs
With some understanding of the importance of path, cycles and chorded cycles two
general results can be stated. We begin with two important lemmas.

Lemma 3.11. If an acyclic graph 𝐺 with 𝑑𝑖𝑎𝑚(𝐺) = ℓ, permits a 𝑘-jump colouring
for 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺) such colouring is unique (up to isomorphism).

Proof. Note that for an acyclic graph a path from 𝑣 to 𝑣 in 𝐺 exists and is unique.
Hence, Theorem 3.9 read together with with any injective mapping 𝑓 : 𝒞 ↦→ 𝒞
implies up to isomorphism that the 𝑘-jump colouring is unique.

Lemma 3.11 implies that a 𝑘-jump colouring may initiate from any 𝑣 ∈ 𝑉 (𝐺).

Lemma 3.12. If an acyclic graph 𝐺 is 𝑘-jump colourable, 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺) then
𝐺 is 𝑡𝑘-jump colourable for 2 ≤ 𝑡𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺).

Proof. Let 𝐺 be 𝑘-jump colourable, 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺). Note that for an acyclic
graph 𝐺 a path from 𝑣 to 𝑣 in 𝐺 exists and is unique. Consider a vertices 𝑣, 𝑢, 𝑤
such that 𝑑(𝑣, 𝑢) = 𝑘 and 𝑑(𝑢,𝑤) = (𝑡−1)𝑘. Clearly 𝑐(𝑣) = 𝑐(𝑢) = 𝑐(𝑤). Hence, in
a 𝑡·-jump colouring, 𝑐(𝑣) = 𝑐(𝑤) ̸= 𝑐(𝑢). The aforesaid holds for all 𝑣𝑢-paths and
all 𝑢𝑤-paths in 𝐺. Therefore, the result follows through immediate induction.

Theorem 3.13. An acyclic graph 𝐺 with 𝑑𝑖𝑎𝑚(𝐺) = ℓ, permits a 𝑘-jump colouring
for 𝑘 = 2, 3, 4, . . . , ℓ.
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Proof. If 𝐺 is acyclic the result for 𝑘 = 2, 3, 5, 7, . . . , 𝑝 ≤ 𝑑𝑖𝑎𝑚(𝐺), 𝑝 is prime
follows by the same reasoning as for 𝑑(𝑣, 𝑢) = 𝑘 and 𝑑(𝑢,𝑤) = (𝑡− 1)𝑘 in the proof
of Lemma 3.12. For the multiples of the corresponding prime jumps, the result is
a direct consequence of Lemma 3.12.

We can now state and prove results for the elementary graph operations, join
and corona. First, the result for the corona 𝑃𝑛 ∘𝐻 will be stated.
Remark 3.14. Heuristic reasoning suggests that in Step i of the 𝑘-JCP the vertex 𝑣𝑖
should be such that an uncoloured vertex 𝑢 at maximum distance from 𝑣𝑖 (furthest
away) exists. So for such 𝑣1 such 𝑢 always exists at distance 𝑑(𝑣1, 𝑢) = 𝑑𝑖𝑎𝑚(𝐺).

Theorem 3.15. The join 𝐺+𝐻 of two graphs 𝐺 and 𝐻 returns a Type II primitive
jump colouring.

Proof. Since 𝑑𝑖𝑎𝑚(𝐺+𝐻) = 2 we only consider 𝑘 = 2. Without loss of generality
consider vertices 𝑣, 𝑢 ∈ 𝑉 (𝐺) and vertex 𝑤 ∈ 𝑉 (𝐻). Since 𝑑(𝑣, 𝑢) ≥ 2 in 𝐺 there
exists a cycle from 𝑣 to 𝑢 to 𝑤 to 𝑣 in 𝐺+𝐻 with length (circumference) at least 4.
If the cycle length is odd the result follows from Theorem 3.2. If the cycle length
is even then since there exists a vertex 𝑣′ adjacent to 𝑣 on a 𝑣𝑢-path in 𝐺, there
exists an odd cycle from 𝑣′ to 𝑢 to 𝑤 to 𝑣′ in 𝐺 +𝐻. Similarly the result follows
from Theorem 3.2.

For the corona of graphs some special graph classes will be discussed.

Proposition 3.16. (i) For a path 𝑃𝑛, 𝑛 ≥ 4 and graph 𝐻 of order 𝑚, the corona
𝑃𝑛 ∘ 𝐺 is 𝑘-jump colourable, if 2 ≤ 𝑘 ≤ 𝑛 + 1 and 𝑘 ̸= 3. A 3-jump colouring
returns a Type-II trivial jump colouring.
(ii) For 𝑃𝑛, 𝑛 = 1, 2, 3, 2-jump colourings are returned.

Proof. (i) Consider any path 𝑃𝑛, 𝑛 ≥ 4 and any graph 𝐻 of order 𝑚. Two sub-cases
must be considered.

(a) Let 𝑘 = 3. In accordance with the rainbow 𝑘-neighbourhood convention and
without loss of generality begin Step 1 of the 𝑘-JCP by selecting any 𝑢 ∈ 𝑉 (𝐻1).
The first iteration results in 𝑐(𝑢) = 𝑐(𝑣3) = 𝑐(𝑉 (𝐻2) = 𝑐1. The second iteration
results in 𝑐(𝑣4) = 𝑐(𝑉 (𝐻3) = 𝑐1 followed by, 𝑐(𝑣1) = 𝑐1. Immediate iterative
exhaustion shows that a Type II trivial jump colouring returns.

(b) Begin by considering the case of maximum 𝑘-jump. Clearly 𝑑𝑖𝑎𝑚(𝑃𝑛∘𝐻) =
𝑛 + 1. Let the path vertices be 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛 and the corresponding corona’d
copies of 𝐻 be labeled 𝐻1, 𝐻2, 𝐻3, . . . ,𝐻𝑛. In accordance with the rainbow 𝑘-
neighbourhood convention and without loss of generality begin Step 1 of the 𝑘-JCP
by selecting any 𝑢 ∈ 𝑉 (𝐻1). Step 1 results in 𝑐(𝑢) = 𝑐(𝑉 (𝐻𝑛) = 𝑐1. Similarly,
Step 2 results in 𝑐(𝑉 (𝐻1) = 𝑐1. Hereafter, for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 2 ≤ 𝑗′ ≤ 𝑛 − 2,
all pairs of vertices 𝑣𝑖, 𝑣𝑗 , 𝑣𝑖𝑢𝑗′ , 𝑢𝑗′ ∈ 𝑉 (𝐻𝑗′ and pair 𝑢𝑖′𝑢𝑗′ all distances are at

most, 𝑛 − 1. Hence, 𝑘-JCP results in each vertex in {𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛}
𝑛−1⋃︀
𝑗=2

𝑉 (𝐻𝑗)

to be distinctly coloured. The result follows for 𝑘 = 𝑛 + 1. By immediate inverse
induction the result follows for 𝑘 ̸= 3.
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(ii)(a) For 𝑘 = 2, and applying 𝑘-JCP to 𝑃1 ∘𝐻1 returns a 2-jump colouring.
𝑃2 ∘𝐻 returns a 2-jump colouring. Also, 𝑃3 ∘𝐻 returns a 2-colouring.

(b) For 𝑘 = 3, and applying 𝑘-JCP to 𝑃2 ∘𝐻 returns a 2-jump colouring with
3 colours needed. 𝑃3 ∘ 𝐻 returns a 2-jump colouring with all vertices except 𝑣2
coloured 𝑐1 and 𝑐(𝑣2) = 𝑐2.

Theorem 3.17. Consider a cycle 𝐶𝑛, 𝑛 ≥ 3. For all graphs 𝐻, of order 𝑚 the 𝑘-
colourability of the corona, 𝐶𝑛 ∘𝐻 is equivalent to the 𝑘-colourability of the thorny
graph 𝐶⋆

𝑁 with 𝑚 thorns (pendant vertices) attached to each vertex, 𝑣 ∈ 𝑉 (𝐶𝑛).

Proof. The adjacency properties of 𝐻 are irrelevant in 𝐶𝑛 ∘ 𝐻 in that for 𝑣, 𝑢 ∈
𝑉 (𝐻) the distance reduces to 𝑑(𝑣, 𝑢) ≤ 2. So for the direct application of Lemma
3.8, 𝐶𝑛 ∘𝐻 can be treated as if, equivalent to a thorny cycle.

3.3. On modified 𝑘-jump colouring
Consider a cycle 𝐶𝑛, 𝑛 ≥ 3 which for some 2 ≤ 𝑘 ≤ 𝑛− 1 is not 𝑘-jump colourable.
Certainly 𝑃𝑛 is 𝑘-jump colourable. Now allocate any colour 𝑐𝑖 ∈ 𝒱𝑘, 𝑐𝑖 ̸= 𝑐(𝑣𝑛) or a
new colour 𝑐𝑘+1 to vertex 𝑣𝑛 in accordance to a proper colouring. If colour 𝑐𝑘+1 is
needed, then update, 𝒱𝑘+1 = 𝒱𝑘∪{𝑐𝑘+1}. The (𝑘+1)-string colouring of 𝐶𝑛 is called
a modified 𝑘-jump colouring of 𝐶𝑛. Now similarly for 𝑃𝑛 which has been 𝑘-jump
coloured, it is possible to recolour a vertex 𝑣𝑖 with 𝑐𝑗 ∈ 𝒱𝑘 or with 𝑐𝑘+1 to add the
edge 𝑣𝑖𝑣𝑗 . From Theorem 3.12 it follows that for a graph 𝐺 and 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺),
any spanning tree 𝑇 of 𝐺 is 𝑘-jump colourable. Therefore it is possible to obtain
a modified 𝑘-jump colouring of 𝐺 by iteratively applying the colouring principles
set out. Clearly the modified modified 𝑘-jump colouring obtained in respect of a
particular spanning tree is minimal. The minimum colours in a modified 𝑘-jump
colouring over all distinct spanning trees is the optimal modified 𝑘-jump colouring
of 𝐺.

Theorem 3.18. For any graph 𝐺 and 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺), an optimal modified
𝑘-jump colouring exists.

Proof. For any graph 𝐺 and any spanning tree 𝑇 we have, 𝑑𝑖𝑎𝑚(𝐺) ≤ 𝑑𝑖𝑎𝑚(𝑇 ).
Hence, 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺) ⇒ 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝑇 ). Therefore, from Theorem 3.15, it
follows that all possible distinct spanning trees are 𝑘-jump colourable and there-
fore permits a corresponding modified 𝑘-jump colouring. By the principle of well-
ordering of integers a minimum number of colours exists over all minimal modified
𝑘-jump colourings of 𝐺.

4. Conclusion

In this paper, we introduced the notion of the 𝑘-rainbow neighbourhood number
of a graph 𝐺. There is a wide scope for determining the minimum and maximum
𝑘-rainbow neighbourhood numbers for many other classes of graphs. In terms of

Generalisation of the rainbow neighbourhood number . . . 157



graph operations on and between graphs, investigations in respect of the comple-
ment of a graph, the line graph, the jump graph, the total graph etc. seem to be
promising. Studies in this area on graph products such as the Cartesian product,
the tensor product, the strong product and the lexicographical product of various
graph classes also seem to be worthy research directions.

In this article, we also introduced a new notion of a 𝑘-jump colouring of graphs.
Further studies on various aspects of 𝑘-jump colouring remains open. Note from
Proposition 3.16 that for the (𝑛+1)-jump colouring, where 𝑛 ≥ 4, 𝜒𝐽(𝑛+1)(𝑃𝑛∘𝐻) =
(𝑛+1)+𝑚(𝑛−2). Determining the values of 𝜒𝐽(𝑘)(𝑃𝑛 ∘𝐻), 0 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝑃𝑛 ∘𝐻)
is another open problem in this area.

Complexity analysis with respect to the optimal modified 𝑘-jump colouring of a
graph 𝐺 is considered to be worthy research. There are good algorithms to find the
spanning trees such as Prim’s algorithm for edge weighted graphs and Kruskal’s
algorithm. It is also well-known that the number of distinct spanning trees of
a graph denoted by, 𝑡(𝐺) can be calculated by using the Kirchhoff matrix-tree
theorem.

All the above mentioned facts show that there is a wide scope for further inves-
tigations in this direction.

Acknowledgements. Authors would like to acknowledge the positive and criti-
cal comments of the referee(s), which helped improving the content and presenta-
tion style of the paper significantly.
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Abstract
The paper presents formulas and conditions relevant to the construction

of chains of mutually tangent ellipses inscribed inside a parabola. Moreover,
some connections with certain integer sequences and Pythagorean triplets are
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1. Introduction

In the previous paper [2], we studied the problem of inscribing a chain of mutually
tangent circles inside a parabola; here we want to generalise it by considering the
case of ellipses instead of circles.

We also mention that a cognate problem has been presented in [1] by considering
a hyperbola instead of a parabola.

Let us consider a parabola in its simplest form that is:

𝑦 = 𝑎𝑥2, 𝑎 > 0.

This is not a limitation because, as known, the shape of the parabola depends only
on the coefficient of the second order term; moreover, the main results presented
in this paper do not change in the case when 𝑎 < 0. The advantage in considering
only the case 𝑎 > 0 consists in obtaining simpler formulas.
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Inside this parabola, we want to inscribe an infinite chain of ellipses where the
generic 𝑖-th ellipse is tangent to the preceding and succeeding ones; see an example
in Figure 1.

Figure 1: Example of ellipse chain inscribed inside a parabola

2. Construction of the ellipse chain

For symmetry reasons, the centre of each ellipse must be placed on the ordinate
axis; thus, the centre of the generic 𝑖-th ellipse of the chain has coordinates (0, 𝑌𝑖).

Moreover, we define respectively by 𝛼𝑖 and 𝛽𝑖 the horizontal and vertical semi-
axes of the generic 𝑖-th ellipse.

In the next subsections, we introduce the hypotheses adopted and the basic
conditions needed to build up the ellipse chain.

2.1. Similarity of the ellipses
The first basic assumption we make is that all the ellipses forming the chain are
similar that is

𝜆 =
𝛼𝑖

𝛽𝑖
, 𝜆 ∈ R+, 𝑖 = 0, 1, . . . (2.1)

Note that it could be 𝜆 < 1; in that case, the major axis of the ellipses of the chain
is the vertical one.

2.2. Tangency condition between to consecutive ellipses
By considering two consecutive ellipses of the chain, we have that the difference
between the ordinate centres is equal to the sum of the vertical semi-axis that is

𝑌𝑖 − 𝑌𝑖−1 = 𝛽𝑖 + 𝛽𝑖−1, 𝑖 = 1, 2, . . . (2.2)
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2.3. Tangency condition between parabola and ellipses
In order to find the intersections between the parabola and the generic 𝑖-th ellipse,
we have to consider the following equation system

⎧
⎪⎨
⎪⎩

𝑦 = 𝑎𝑥2,

𝑥2

𝛼2
𝑖

+
(𝑦 − 𝑌𝑖)

2

𝛽2
𝑖

= 1.

By solving with respect to 𝑦, one obtains

𝑦 =
−𝛽2

𝑖 + 2𝑎𝛼2
𝑖𝑌𝑖 ± 𝛽𝑖

√︀
𝛽2
𝑖 − 4𝑎𝛼2

𝑖𝑌𝑖 + 4𝑎2𝛼4
𝑖

2𝑎𝛼2
𝑖

. (2.3)

In order that the ellipses of the chain are tangent to the parabola, we have, from
equation (2.3), that the discriminant ∆ = 𝛽2

𝑖 − 4𝑎𝛼2
𝑖𝑌𝑖 + 4𝑎2𝛼4

𝑖 must be zero;
therefore the tangency condition is

𝛽2
𝑖 − 4𝑎𝛼2

𝑖𝑌𝑖 + 4𝑎2𝛼4
𝑖 = 0. (2.4)

2.4. Condition relating 𝜆, 𝑎 and 𝛽0

Even if we are considering only the case with 𝑎 > 0, it is necessary to remark
that by looking at equation (2.3), one has that the sign of the ordinates 𝑦𝑇𝑖 of the
tangency points (just given by equation (2.3) when equation (2.4) holds) between
ellipses and parabola must be consistent with the sign of 𝑎; i.e., they must be
positive when 𝑎 is positive and vice-versa. Therefore, we must have

⎧
⎪⎪⎨
⎪⎪⎩

𝑦𝑇𝑖 =
−𝛽2

𝑖 + 2𝑎𝛼2
𝑖𝑌𝑖

2𝑎𝛼2
𝑖

≥ 0 if 𝑎 > 0,

𝑦𝑇𝑖 =
−𝛽2

𝑖 + 2𝑎𝛼2
𝑖𝑌𝑖

2𝑎𝛼2
𝑖

≤ 0 if 𝑎 < 0.
(2.5)

In the case when 𝑎 > 0, equation (2.5) is verified if

𝑌𝑖 ≥
1

2𝑎𝜆2
, 𝑖 = 0, 1, . . . (2.6)

Clearly, if the following relationship holds

𝑌0 ≥ 1

2𝑎𝜆2
. (2.7)

then also (2.6) is verified because the relation 𝑌𝑖 ≥ 𝑌0 is always fullfilled. Neverth-
less, it must also be 𝑌0 ≥ 𝛽0 because, in order to have no intersections between the
first ellipse and the parabola, the ordinate of the centre of the first ellipse cannot
be smaller than its vertical semi-axis length; so, we can write the following relation

min (𝑌0) = 𝛽0.
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Thus, by considering the case 𝑌0 = 𝛽0, from relation (2.7) we finally obtain

1

𝛽0𝑎𝜆2
≤ 2. (2.8)

Condition (2.8) or equivalently
1

𝛼0𝑎𝜆
≤ 2

are the basic relationships, relating the parameters of the parabola and of the ellipse
chain, that must be fulfilled in order to be able to construct the ellipse chain itself.

2.5. Recursive formulas
Let us consider equation (2.4); by means of (2.1) it can be written as

𝛽2
𝑖 − 4𝑎𝜆2𝛽2

𝑖 𝑌𝑖 + 4𝑎2𝜆4𝛽4
𝑖 = 0.

Being 𝛽𝑖 ̸= 0, it can be simplified into

1 − 4𝑎𝜆2𝑌𝑖 + 4𝑎2𝜆4𝛽2
𝑖 = 0.

We also have
1 − 4𝑎𝜆2𝑌𝑖−1 + 4𝑎2𝜆4𝛽2

𝑖−1 = 0.

By subtracting the corresponding members of the two above equations, by means
of equation (2.2) one gets

𝛽𝑖 = 𝛽𝑖−1 +
1

𝑎𝜆2
, 𝑖 = 1, 2, . . . (2.9)

By substituting (2.9) into (2.2) one finally has

𝑌𝑖 = 𝑌𝑖−1 + 2𝛽𝑖−1 +
1

𝑎𝜆2
, 𝑖 = 1, 2, . . . (2.10)

Equation (2.9) together equation (2.10) form a system of non homogeneous linear
recursive relations that allow us to built the ellipse chain starting from the pair of
initial values (𝛽0, 𝑌0) where 𝛽0 must full-fill relation (2.8) and 𝑌0 is given by

𝑌0 = 𝑎𝜆2𝛽2
0 +

1

4𝑎𝜆2

as one can deduce from (2.4) when 𝑖 = 0.
Clearly, the values of 𝛼𝑖 can be determined by remembering (2.1).
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3. Some integer sequences associated to the ellipse
chains

In this paragraph, we focus our attention on the particular chains characterised by
the following relationship

𝑌0 = 𝛽0. (3.1)

All these chains have in common the characteristic that the first ellipse is tangent
to the parabola at its vertex (see Figure 2).

Figure 2: Example of ellipse chain with tangency point at the
parabola vertex

Remark 3.1. In this case we have that
1

𝛽0𝑎𝜆2
= 2. (3.2)

This kind of ellipse chains, as we shall see in the following, are in relation with
certain integer sequences that do not depend neither on 𝑎, that is the shape of
the parabola, nor on 𝜆, that is the ratio between the ellipse semi-axes, but, on the
contrary, they can be considered as common and invariant sequences to be related
to the set of all parabolas with inscribed ellipse chains disposed as in Figure 2.

Let us introduce the following sequences
{︀
𝑌 𝑖

}︀
, {𝛼𝑖},

{︀
𝛽𝑖

}︀
respectively defined

as
𝑌 𝑖 =

𝑌𝑖

𝑌0
, 𝛼𝑖 =

𝛼𝑖

𝛼0
, 𝛽𝑖 =

𝛽𝑖

𝛽0
.

Remark 3.2. By remembering equation (2.1) and from the definitions of {𝛼𝑖} and{︀
𝛽𝑖

}︀
, one has:

{𝛼𝑖} =
{︀
𝛽𝑖

}︀
. (3.3)

Thus, in the following, we focus only on sequence
{︀
𝛽𝑖

}︀
.
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We now derive some theorems related to the above introduced sequences.

Theorem 3.3. Sequence
{︀
𝛽𝑖

}︀
is the sequence of the odd numbers.

Proof. By dividing both the members of equation (2.12) by 𝛽0 and by taking into
account equation (3.2) one gets

𝛽𝑖 = 𝛽𝑖−1 + 2, 𝑖 = 1, 2, . . . (3.4)

By remembering that 𝛽0 = 1, from equation (3.4), it follows, by induction, that{︀
𝛽𝑖

}︀
is the sequence of the odd numbers.

Sequence
{︀
𝛽𝑖

}︀
is classified in the On-Line Encyclopedia of Integer Sequences

OEIS [3] as A005408.
As far as sequence

{︀
𝑌 𝑖

}︀
is concerned, the following theorem holds:

Theorem 3.4. Sequence
{︀
𝑌 𝑖

}︀
is the integer sequence

{︀
2𝑖2 + 2𝑖 + 1

}︀
.

Proof. From equations (2.4) and (2.1) one obtains

𝑌𝑖 = 𝑎𝜆2𝛽2
𝑖 +

1

4𝑎𝜆2
. (3.5)

By dividing both the members of equation (3.5) by 𝛽0 and by taking into account
of equations (3.1) and (3.2) and of Theorem 3.3 one has

𝑌 𝑖 =
1

2
(2𝑖 + 1)

2
+

1

2
= 2𝑖2 + 2𝑖 + 1, 𝑖 = 0, 1, . . . (3.6)

which was to be proved.

This sequence is classified in OEIS as A046092.
Let us consider now, the ordinates of the tangency points 𝑦𝑇𝑖 of the ellipses to

the parabola given by equation (2.5). From this equation, we have that 𝑦𝑇𝑖 is given
by

𝑦𝑇𝑖 = 𝑌𝑖 −
1

2𝑎𝜆2
, 𝑖 = 1, 2, . . . (3.7)

Then, we can define a further sequence {𝑦𝑇𝑖} as follows

𝑦𝑇𝑖 =
𝑦𝑇𝑖

𝛽0
, 𝑖 = 1, 2, . . . (3.8)

and the following theorem holds:

Theorem 3.5. Sequence {𝑦𝑇𝑖} is the integer sequence
{︀

2𝑖2 + 2𝑖
}︀
.

Proof. From equations (3.7) and (3.8) we have

𝑦𝑇𝑖 =
𝑌𝑖

𝛽0
− 1

2𝛽0𝑎𝜆2
, 𝑖 = 1, 2, . . . (3.9)

By remembering equations (3.6) and (3.2), one finally has:

𝑦𝑇𝑖 = 2𝑖2 + 2𝑖, 𝑖 = 1, 2, . . . (3.10)

which was to be proved.
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The sequence {𝑦𝑇𝑖} can be found in OEIS as well. It is classified as: A001844.
If we consider the area 𝐴𝑖 of the 𝑖-th ellipse, it is given by

𝐴𝑖 = 𝜋𝛼𝑖𝛽𝑖.

Thus, we can introduce another sequence
{︀
𝐴𝑖

}︀
defined as

𝐴𝑖 =
𝐴𝑖

𝐴0
, 𝑖 = 0, 1, . . .

By considering this sequence, we have the following theorem:

Theorem 3.6. The sequence
{︀
𝐴𝑖

}︀
is the integer sequence given by the square of

the odd numbers.

Proof. We have that 𝐴𝑖 is given by

𝐴𝑖 =
𝛼𝑖

𝛼0

𝛽𝑖

𝛽0
, 𝑖 = 0, 1, . . .

and from Theorem 3.3 and equation (3.3) it follows that

𝐴𝑖 = (2𝑖 + 1)
2
, 𝑖 = 0, 1, . . . (3.11)

which was to be proved.

This sequence is classified in OEIS as A016754.
The results here found, relevant to the integer sequences, are consistent with

the ones appearing in [2] which are a particular case of the work here presented
when 𝛼𝑖 = 𝛽𝑖, i.e., the ellipses degenerate into circles.

4. Relation with Pythagorean triplets

By looking at the sequences
{︀
𝛽𝑖

}︀
, {𝑦𝑇𝑖} and

{︀
𝑌 𝑖

}︀
for 𝑖 = 1, 2, . . ., they have a

particular characteristic that puts them in relation with the primitive Pythagorean
triplets.

In fact, the following theorem holds:

Theorem 4.1. The sequences
{︀
𝛽𝑖

}︀
, {𝑦𝑇𝑖} and

{︀
𝑌 𝑖

}︀
for 𝑖 = 1, 2, . . . form an

infinite set of primitive Pythagorean triplets.

Proof. By remembering that 𝛽𝑖 = 2𝑖 + 1 and by using equations (3.6) and (3.10),
one can immediately verify that:

𝛽
2

𝑖 + 𝑦2𝑇𝑖 = 𝑌
2

𝑖 , 𝑖 = 1, 2, . . .

so meaning that the corresponding terms of these sequences form a Pythagorean
triplet; in particular, these Pythagorean triplets are also primitive.
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In fact, we have that, for each 𝑖 with (𝑖 = 1, 2, . . .), 𝑦𝑇𝑖 =
𝛽
2
𝑖−1
2 and 𝑌 𝑖 =

𝛽
2
𝑖+1
2 .

On the other hand, a well known algorithm, attributed to Pythagoras himself,
allows to generate a primitive Pythagorean triplet starting from any odd integer
number 2𝑖 + 1; according to it, the primitive triplet is given by

(︃
2𝑖 + 1,

(2𝑖 + 1)
2 − 1

2
,

(2𝑖 + 1)
2

+ 1

2

)︃
.

Being 𝛽𝑖 an odd integer, we have that the triplet
(︃

2𝑖 + 1,
(2𝑖 + 1)

2 − 1

2
,

(2𝑖 + 1)
2

+ 1

2

)︃

is identical to the triplet
(︀
𝛽𝑖, 𝑦𝑇𝑖, 𝑌 𝑖

)︀
so deducing that it is primitive.

Remark 4.2. Notice that for 𝑖 = 1, the corresponding first three terms of the three
above sequences form the basic primitive Pythagorean triplet (3, 4, 5).
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Abstract

The isoptic surface of a three-dimensional shape is defined in [1] as the
generalization of isoptics of curves. The authors of the paper also presented
an algorithm to determine isoptic surfaces of convex meshes. In [9] new
searching algorithms are provided to find points of the isoptic surface of a
triangulated model in E3. The new algorithms work for concave shapes as
well.

In this paper, we present a faster, simpler, and efficiently parallelised
version of the algorithm of [9] that can be used to search for the points of
the isoptic surface of a given closed polyhedral mesh, taking advantage of
the computing capabilities of the high-performance graphics cards and using
the benefits of nested parallelism. For the simultaneous computations, the
NVIDIA’s Compute Unified Device Architecture (CUDA) was used. Our
experiments show speedups up to 100 times using the new parallel algorithm.

Keywords: Isoptic surface, CUDA, Parallel algorithm, Nested parallelism

MSC: 65D17, 68U07

1. Introduction

The isoptic curves in the Euclidean plane E2 have been widely studied since cen-
turies. It is defined as the locus of points, from where a given curve can be seen
under a predefined angle (of less than 𝜋). There are well-known results of several
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classical curves [13]. However, the exact calculation of the isoptic curve may be a
complicated task. For example, using direct computations, it is only possible to
obtain it for low degree Bézier curves [6]. In such difficult cases, the points of the
isoptic curve are determined by the appropriate tangents of the given curve, which
meet at the given angle.

The isoptics in the three-dimensional space, besides the theoretical results, can
also be of great interest in certain applications, which are concerned with the quality
or quantity of visibility. However, the extension to E3 is not straightforward and the
calculations are also getting more complicated. In [8] an algorithm was presented
to find the isoptic curve of a Bézier surface to be used as a camera path. Despite the
specific case, the exact equations seemed too difficult to solve, even for computer
algebra systems. Only the numerical methods can determine the isoptic curve.

In [1], the isoptic in E3 is defined as a surface by substituting the two-dimensional
viewing angle for the appropriate three-dimensional measure of visibility (solid
angle). The authors are also provided a formula and algorithm for convex shapes,
but it is possible to solve and plot the isoptic surface only using computer algebra
systems. Moreover, it takes around 20–40 minutes to display it, even for simple
regular polyhedra. In [9], a faster, general algorithm was presented to determine
the isoptic surface of a given polyhedral mesh. These results, including the precise
definitions, will be briefly summarized in Section 2.

The latter algorithm is able to find and render the isoptic surface in case of
concave objects as well independently of computer algebra systems, but for a mesh
with a few hundred polygons, the process still takes several minutes. Our aim is to
accelerate the algorithm of [9] to find the isoptic surface within a reasonable time,
using general-purpose computing on graphics processing units (GPGPU).

In the following sections, we present the simpler and parallel version of the
algorithm. The different levels of parallelism will be discussed separately, in Sec-
tion 3 and in Section 4. The running times of the new GPU-based methods will be
compared with the original version of the algorithm presented in [9] in Section 5.

2. Previous results

In this section, we recall the notion of the isoptic surface, defined in [1] and briefly
describe the earlier sequential algorithm, presented in [9] that obtains the isoptic
surface of a closed polyhedral mesh.

The 3D generalization of the isoptics is based on the extension of the two-
dimensional measure of angles. The angle at vertex 𝐴 can be measured by the arc
length on the unit circle around 𝐴. An appropriate substitution of the arc length
in the Euclidean space can be the solid angle [2]:

Definition 2.1. The solid angle Ω𝒮(𝑃 ) subtended by a surface 𝒮 is defined as the
surface area of the projection of 𝒮 onto the unit sphere around 𝑃 .

Based on this notion the isoptic surface is defined in [1] as follows:
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Definition 2.2. The isoptic surface 𝒮𝛼
𝒟 in E3 of an arbitrary 3-dimensional com-

pact domain 𝒟 is the locus of points 𝑃 where the measure of the projection of 𝒟
onto the unit sphere around 𝑃 is equal to a given fixed solid angle value 𝛼, where
0<𝛼<2𝜋.

The algorithm, presented in [9] searches for spatial points around the mesh,
where the solid angle is equal to a given value 𝛼. The solid angle is calculated at
each point 𝑃 as the area of the projection of the given model on the unit sphere,
centered at 𝑃 . The projection of a polyhedral mesh covers a spherical polygon on
the unit sphere, the area of which can be calculated by the following formula:

Ω(𝑃 ) = 𝜃 − (𝑛− 2)𝜋, (2.1)

where 𝑛 is the number of the containing vertices and 𝜃 is the sum of the angles of
the spherical polygon.

After calculating the solid angle, the isoptic surface of the model can be deter-
mined by finding the appropriate three-dimensional points, where the solid angle is
equal to the given value 𝛼. The search for these points is done using the following
methods, regarding [9]:

1. brute-force: one can scan the space around the model with a given increment
and select the appropriate 3-dimensional points, where the solid angle differs
from the given 𝛼 with a suitable small (error) value.

2. flood-fill: in this search, we test the neighboring positions of a previously
found isoptic point. The first point can be determined by shooting a ray
outwards from the barycenter of the mesh.

3. spherical: it is based on the search of the first point of the flood-fill method, by
shooting rays outwards from the barycenter of the mesh into many directions.

The result of the above algorithms is the point cloud of the isoptic surface of
the given mesh. The comparison of the search methods is described in [9]. From
the found points the isoptic surface can be constructed as a polygon model using
mesh reconstruction algorithms (see Figure 1).

The running time of the algorithm highly depends on the speed of obtaining the
spherical contour (and calculating the solid angle) and the swiftness of the used
searching method. In Section 3, we present an alternative method to accelerate
the computation of the solid angle at point 𝑃 , using the graphical processing unit
(GPU). The steps of the algorithm call special functions that run on the GPU.
In CUDA they are called kernels. Each execution launches a specified number of
thread blocks (a group of threads) and each thread performs the operation specified
by the kernel function.

Besides the procedure that calculates the solid angle, the used search method
can also be accelerated by parallel processing. Therefore, the algorithm to find
the isoptic surface requires embedded kernel launches. This solution leads us to
use multiple levels of parallelism. In CUDA it is called dynamic parallelism [3]. It
enables the threads to create and synchronize new nested work. The new parallel
versions of the searching methods will be discussed in Section 4.
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Figure 1: Isoptic surface of an airplane model, constructed from
point cloud (𝛼 = 𝜋

2
, model source: www.cadnav.com)

3. Solid angle computation in parallel mode

Let ℳ be a closed polyhedral mesh given in a half-edge data structure, in which
each facet ℱ is represented by a list of directed edges ℰ . The vertices of the edges
belonging to the same facet are required to be in counterclockwise order to calculate
the proper solid angle. Beside the endpoints (V_1[3], V_2[3]), to determine faster
the visible edges from a point 𝑃 the normal vector (other_normal[3]) of the other
facet that also contains the edge is stored as well:

edge = {
V_1[3] : float ;
V_2[3] : float ;
other_normal[3] : float ;

}

Listing 1: Edge data structure

To make the computations easier, one can apply a coordinate transformation
to place the origin into the center of the unit sphere (i.e. 𝑃 ). In this case, during
the calculation of the solid angle of ℳ at a point 𝑃 we project the model onto an
origin centered unit sphere.

The algorithm of [9] first determines the spherical boundary of the projection
and then computes the spherical area of it. The new method focuses on the calcu-
lation of the solid angle, rather than obtaining the spherical contour. The compu-
tation requires four steps. At first, one needs to project the edges of ℳ onto the
unit sphere, then calculate the spherical angles at all the intersections. After, to
summarize the appropriate spherical angles, it is required to find a proper starting
point. The last step is the traversing of the consecutive (counterclockwise ordered)
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edges at their intersections. It is done by selecting always that edge, which inter-
sects the given edge closer to its first vertex or which meet at the same position but
has a higher spherical angle at the intersection. Finally, the solid angle is obtained
using Eq. (2.1).

The following subsections will describe the steps in detail and specify the tech-
nique and data structures needed for the parallelisation. The final pseudo-code of
the algorithm is shown in Listing 4.

3.1. Projecting edges
To calculate the solid angle on the unit sphere it is necessary to project the edges
of the facets visible from 𝑃 . To avoid projecting the edges containing the same
endpoints with the opposite direction we project the edges which belong to one
facet visible from 𝑃 and to another that hidden from 𝑃 . The selection of the
appropriate edges is done efficiently, using the other_normal[3] data of Listing 1. In
this step, we create a new array 𝒮 that consists of the projected edges, which are
great arc segments on the origin centered unit sphere. The elements of 𝒮 have the
following structure:

spherical_edge = {
A[3] : float ;
B[3] : float ;
dist_from_center : float ;
intersection_id[max_int] : integer ;
n_int : integer ;

}

Listing 2: Spherical edge data structure

The projected endpoints A[3] and B[3] remain stored as points of E3. The
dist_from_center is the distance between B[3] and the projection of the barycenter
of ℳ. It is required for the subsequent step of the algorithm but the values are
computed in this stage. It can be calculated as spherical or Euclidean distance. To
avoid using trigonometric functions, the latter is preferred. The rest of Listing 2
will be explained in the further steps of the algorithm.

It is possible to fill 𝒮 in parallel since the faces can be processed independently.
However, for the preceding memory allocation, it is necessary to approximate the
expected size of 𝒮 (see max_S in Listing 4). For simplicity, one can multiply the
number of facets of ℳ by the number of edges of a facet (which is three in case
of triangulated meshes) to obtain a limit of 𝒮. However, a better approximation is
recommended to preserve the memory. The authors of [5] have made a probabilistic
analysis of the expected number of the contour edges with respect to a random
viewing direction, which can be used to approximate the size of 𝒮. Therefore, the
expected number of the contour edges is calculated by the following formula [5]:

∑︁

𝑒∈ℰ
1 − 2𝜑𝑒, where 𝜑𝑒 =

1

2𝜋
arccos

−𝑛𝑓𝑖 · 𝑛𝑓𝑗

| − 𝑛𝑓𝑖 ||𝑛𝑓𝑗 |
. (3.1)
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The 𝑛𝑓𝑖 and 𝑛𝑓𝑗 are the normal vectors of faces 𝑓𝑖 and 𝑓𝑗 ∈ ℱ and the 𝜑𝑒 is the
probability that the facets incident to 𝑒 ∈ ℰ are both front or both back facets.

In addition, the further steps of the algorithm require the exact size 𝑛𝒮 of 𝒮,
therefore it needs to be counted during the filling. It can be is done using atomic
increment operation that reads the value at a specified address of the memory, adds
a number to it (in this case one), and writes the result back to the same address.
The atomic means that, it is guaranteed to be performed without interference from
other threads [11].

3.2. Calculating intersections
In this step one needs to calculate the spherical angles of all the overlapping edge
pairs 𝑒 and 𝑓 of 𝒮 at the intersections and when they meet at an opposite endpoint
(A[3]𝑒 = B[3]𝑓 or B[3]𝑒 = A[3]𝑓 ). This stage is done in a brute-force manner, in
parallel (consider all pairs of spherical segments and test each pair for intersec-
tion). The intersection point of two projected edge is computed using the formula
described in [9]. However, there are faster line segment intersection algorithms
for GPU (such as [12]), considering the nested parallelisation, the much simpler
brute-force manner is recommended.

Besides the spherical angles, the algorithm requires other data as well. If there
is an intersection between 𝑒 and 𝑓 , we set two elements in the intersection array ℐ,
using the following structure:

intersection = {
angle : float ;
other_edge : integer ;
dist_from_A : float ;

}

Listing 3: Intersection data structure

One element, which corresponds to edge 𝑒 stores the spherical angle between
𝑒 and 𝑓 . To calculate it (up to 2𝜋), the formula presented in [9] was used. The
other_edge is the index 𝑗 of edge 𝑓 in 𝒮. The dist_from_A is the distance between the
intersection point and the first endpoint (A[3]) of edge 𝑒. It can also be calculated
as spherical or Euclidean distance. The other element that corresponds to edge 𝑓
stores the 2𝜋 - angle, the index 𝑖 of 𝑒, and the distance between the intersection
point and the first endpoint of 𝑓 .

The above calculations are processed in parallel, using one thread for each 𝑒
and 𝑓 pairs. The ℐ is stored in the global memory as a one-dimensional array. The
size of it should be the number of the expected size of the projected edges on the
square to avoid array access conflicts. The appropriate indices in ℐ of the element
𝑒 and 𝑓 is calculated using their indices 𝑖, 𝑗 and the size 𝑛𝒮 . The position of 𝑒 is
𝑛𝒮 · 𝑖 + 𝑗 and 𝑓 is 𝑛𝒮 · 𝑗 + 𝑖.

The element indices of ℐ are also needed to be stored locally in the correspond-
ing edge structure (see intersection_id[max_int] in Listing 2). Since one spherical
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segment can cross multiple others, it also needs to be stored as an array. The
size max_int of it should be estimated previously for the memory allocation. In [5],
there is a formula also for the expected number of edge intersections. The detailed
calculation of the probability that two edges are crossing with respect to a random
viewing direction is described in Section 3. of [5]. To obtain max_int, one needs
to find that edge pair that has the highest likelihood. In addition, the coincident
endpoints of the edges also need to be considered, since they are also stored as
intersections. To take it into account, one needs to find that vertex position, where
the most facets meet. The number of the incident facets at this vertex should be
added twice to consider the intersection at both endpoints of an edge.

The actual number of the intersections, i.e. the size n_int of the local array (in
Listing 2) is counted similarly as in the case of 𝒮, using atomic increment operation.

3.3. Finding the first edge
To begin the traversal of 𝒮 one needs to determine a proper starting spherical
segment 𝑒 that is a contour edge of 𝒮. It is selected by its first endpoint A[3]𝑒,
which should be the farthest away from the projection 𝐶 of the barycenter of ℳ.
However, it is also necessary that the vertex of the mesh that corresponds to A[3]𝑒
is visible from 𝑃 and not covered by any facet of ℳ. It can be seen, if the spherical

arc segment
⌢

𝐶 ′A[3]𝑒, formed by the antipode of 𝐶 and A[3]𝑒, does not intersect with
any edge of 𝒮. The above conditions can also be satisfied by the first endpoint of
an interior silhouette of 𝒮. Therefore, to obtain a contour spherical segment 𝑒, one
has to select the edge that has the highest spherical angle ^𝐶 ′B[3]𝑒A[3]𝑒.

In ℐ, besides the intersections, the coincident opposite endpoints are also stored.
Therefore, let us find the farthest endpoint B[3]𝑓 from 𝐶, using dist_from_center
of Listing 2. In this way, the starting edge 𝑒 with the highest spherical angle
^𝐶 ′B[3]𝑒A[3]𝑒 is found faster since 𝒮 is not processed again because the indices
of the possible starting edges are obtained using the local intersection_id[max_int]
array of 𝑓 .

In this step, the visibility test is processed simultaneously. In the iteration of

obtaining the farthest endpoint B[3]𝑓 from 𝐶 ′ the spherical arc segment
⌢

𝐶 ′B[3]𝑓 is
tested for intersection with the other edges of 𝒮 in parallel.

3.4. Calculating the sum of the spherical angles
The final task is to summarize the appropriate spherical angles by traversing 𝒮 and
calculate the solid angle using Eq. (2.1). It can only be done by an iterative loop,
that begins with the selected starting arc segment.

One has to go along its intersections using the local array intersection_id[
max_int] of Listing 2 and select the subsequent edge by comparing the distances
between its intersections and the first endpoint. The distance values are computed
in dist_from_A of Listing 3. The following edge is that, which has the closest in-
tersection. Its index is stored in other_edge. If a spherical arc segment has more
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than one intersection at the same position (in cases when the dist_from_A values are
equal) the one with the highest spherical angle needs to be considered.

The search of the minimum dist_from_A of an edge 𝑓 does not necessarily start
from zero but from a minimum value, based on where the earlier edge 𝑒 is connected.
In case of an intersection between 𝑒 and 𝑓 two elements are added to ℐ. Each stores
the distance from the first endpoint and the cross point. Therefore, the minimum
value can be obtained by finding the corresponding members in ℐ. If the index
of the intersection element of the edge 𝑒 in ℐ is 𝑖, then the corresponding element
index 𝑗 of ℐ that belongs to the next edge 𝑓 is calculated as 𝑛𝒮(𝑖 mod 𝑛𝑒)+(𝑖/𝑛𝒮),
where 𝑛𝒮 is the size of 𝒮.

The iteration ends when the loop reaches again the first edge. During the
traversal, the appropriate spherical angles are added directly to 𝜃 of Eq. (2.1) since
the values are already calculated.

Regarding [5], one contour edge has only a few numbers of intersections (n_int),
therefore, it is not necessary to sort them since it can be traversed fast enough
iteratively. The complete pseudo-code of the solid angle computation is shown in
Listing 4.

4. Search for the isoptic points in parallel mode

In the preceding sections, the new parallel method is described to compute the solid
angle and decide when the point 𝑃 in E3 is a point of the isoptic surface of ℳ.
Besides the speed, the simplicity of the algorithm is also important, since we intend
to calculate it for multiple points at the same time, using the new parallel search
methods. In this case, all the computations to obtain the point cloud of the isoptic
surface are embedded into one kernel function call, which entirely handled by the
graphical processor. The procedures to calculate the solid angle at the specific 3-
dimensional points are nested parallel works. The new approach is efficient because
the process is not interrupted by memory management operations. All the required
space can be allocated and all the required data can be loaded into the memory
previously.

To search for the isoptic points in parallel the following modifications need to
be performed:

1. brute-force: one has to divide the space around ℳ, where the points are
searched into a discrete set of cubes (see marching cubes in [7]) and process
the containing points of the cubes at the same time.

2. spherical: in this case, one can do the search in many directions simultane-
ously from the barycenter of the vertices of ℳ. Each thread can process one
direction.

Unfortunately, the flood-fill search can not be accelerated using the GPU. In
the case of the above methods, the parallelisation was feasible and straightforward.
The main difficulty of the flood-fill algorithm, even in the sequential CPU case is
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to keep track of the previously visited positions. In the CPU version, to speed up
the process a binary search tree can be used. However, there are also algorithms
to build search trees parallel on the GPU (e.g. [10]) along with the new solid
angle computation the isoptic surface determination is slower than the CPU version
algorithm.

The algorithms running on the GPU are producing the same isoptic surfaces as
the CPU versions since the base stages of the algorithms are the same (calculating
the solid angle and the search for the three-dimensional points).

R

r ·

α
2

Figure 2: Radius 𝑅 of the isoptic of the circle

In the case of the brute-force method the space around the model which needs
to be traversed can be defined using a minimum bounding sphere of ℳ. The isoptic
surface of this enclosing sphere is also a sphere. Its radius 𝑅 is calculated similarly
as the radius of the two-dimensional isoptic of the circle (see Figure 2):

𝑅 = 𝑟/ sin
𝛼

2
,

where 𝑟 is the radius of the bounding sphere. The radius 𝑅 defines the maximum
distance from the mesh, where the isoptic points of ℳ are (See Figure 3). This
maximum distance can also be used in case of the spherical method to limit the
search.
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Figure 3: The points (red dots) of the isoptic surface of the cat
model are inside the isoptic (blue sphere) of the enclosing sphere

(model source: www.turbosquid.com)

5. Performance analysis

Table 1 shows the execution time of the original CPU-based algorithms of [9] and
the new GPU-based methods, using the following parameters: 𝛼 = 𝜋

2 , the size of
the traversal step is 0.1, and a point 𝑃 is accepted if the difference between the
calculated solid angle at point 𝑃 and 𝛼 is less than 2× 10−3 (error). All the tested
models are scaled to have radius 𝑟 = 5 of the bounding sphere, which is calculated
as the distance of the farthest vertex from the barycenter of the mesh. Therefore
the same radius 𝑅 = 5/ sin(𝜋/4) was used for all the meshes. The experiments were
run on an Intel Core i7-7700HQ and Geforce GTX 1050 Ti with CUDA version
10.1. The algorithms were using single-precision arithmetic. The results can be
seen in Figure 4. The isoptic surfaces around the tested objects are displayed as
wireframe models created from the found point cloud using mesh reconstruction
algorithm [4].

The execution times are generally increasing according to the complexity of the
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Model
Brute-force Spherical

Sequential Parallel Sequential Parallel

Stanford Bunny
499.1 10.6 24.2 0.9

F: 128, V: 66
Cat

2279.9 36.5 117.4 2.9
F: 428, V: 216
Moose

4233.7 92.2 228.9 8.8
F: 747, V: 376
Airplane

6449.4 63.8 418.3 5.1
F: 910, V: 529
Elephant

9185.6 163.5 453.5 13.6
F: 1492, V: 779

Table 1: Execution times (in seconds) of the previous sequential and
the new GPU-based parallel searching algorithms (𝛼 = 𝜋

2
, step size =

0.1, solid angle error = 2 × 10−3, F and V are the numbers of the faces and
vertices of the models)

meshes. However, in the case of the airplane model, which consists of more faces
than the moose model, the parallel algorithm finds the isoptic surface within a
shorter time. The reason behind is the number of the threads running in parallel.
The expected size of 𝒮 is estimated using Eq. (3.1). This calculation is based on the
probability that both facets sharing the same edge are front faces with respect to a
random viewing direction. On the wings of the airplane model, there are numerous
coincident front facets from many positions, which imply the small number of the
expected contour edges. Therefore, more threads can search in parallel because the
fewer number of contour edges indicates the larger size of the marching cubes. It
causes lower execution times for the airplane model in case of the GPU algorithms.
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Figure 4: Isoptic surfaces of the tested models (Stanford Bunny,
a moose and an elephant), constructed from point cloud (𝛼 = 𝜋

2
,

model sources: graphics.stanford.edu/data/3Dscanrep, www.
cadnav.com)

178 F. Nagy



6. Summary

As can be seen from Table 1, the search of the isoptic surface is highly accelerated
using the new parallel algorithms. In case of simple meshes, it effects greatly for the
whole isoptic surface obtaining process. However, in case of complex meshes, the
parallelism of the searching methods is limited, because the solid angle computation
consumes more GPU resources (memory space and threads as well). Therefore,
fewer points are searched in parallel.

To render the isoptic surface of a highly detailed polyhedral mesh (with thou-
sands of facets) using the new GPU algorithms can still be time-consuming. A
simple way to increase the speed is to search for the spatial isoptic points after the
decimation of the given model, because even significant polygon reduction of the
mesh can cause only slight decrease of the area of its projection, which is negligible,
regarding the acceptance error between the given 𝛼 and the computed solid angle.
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Appendix

float CALCULATE_SOLID_ANGLE(P[3], faces)
spherical_edge S[max_S] // max_S approximated
n_S = PROJECT_EDGES(*S, faces)
CALCULATE_INTERSECTIONS(S, n_S)
float min = float_max
spherical_edge f, first
foreach spherical_edge e of S do

if (e.dist_from_center < min AND IS_VISIBLE(e))
f = e
min = e.dist_from_center

endif
endforeach
min = 0
spherical_edge C_fB // from the antipode of C to f.B
foreach index i of f.intersection_id do

if ((I[i].dist_from_a=length(f)) AND // it is at f.B
(spherical_angle(Cf_B, S[I[i].other_edge])>min))

first = S[I[i].other_edge]
min = spherical_angle(Cf_B, S[I[i].other_edge])

endif
endforeach
spherical_edge current_edge = first
integer n = 0 // number of traversed edges
float theta, min_dist = 0
repeat

integer int_id
float min_angle = 0, max_dist = 2 // Euclidean distance
foreach index i of current_edge.intersection_id do

if (((I[i].dist_from_a > min_dist) OR
((I[i].dist_from_a = min_dist) AND
(I[i].angle > min_angle))) AND

(I[i].dist_from_a < max_dist))
int_id = i
max_dist = I[i].dist_from_a
min_angle = I[i].angle

endif
endforeach
theta = theta + I[i].angle
min_dist = I[n_S * (int_id%n_S) + (int_id/n_S)].dist
current_edge = S[I[int_id].other_edge]
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n = n + 1
until (current_edge != first)
return (theta - ((n - 2) * PI))

end CALCULATE_SOLID_ANGLE

Listing 4: Solid angle computation method
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Abstract
Bioenergy plants are widely used as a form of renewable energy. It is

important to monitor the vegetation and accurately estimate the yield before
harvest in order to maximize the profit and reduce the costs of production.
The automatic tracking of plant development by traditional methods is quite
difficult and labor intensive. Nowadays, the application of Unmanned Aerial
Vehicles (UAV) became more and more popular in precision agriculture. De-
tailed, precise, three-dimensional (3D) representations of energy forestry are
required as a prior condition for an accurate assessment of crop growth. Using
a small UAV equipped with a multispectral camera, we collected imagery of
1051 pictures of a study area in Kompolt, Hungary, then the Pix4D software
was used to create a 3D model of the forest canopy. Remotely sensed data
was processed with the aid of Pix4Dmapper to create the orthophotos and
the digital surface model. The calculated Normalized Difference Vegetation
Index (NDVI) values were also calculated. The aim of this case study was
to do the first step towards yield estimation, and segment the created or-
thophoto, based on tree species. This is required, since different type of trees
have different characteristics, thus, their yield calculations may differ. How-
ever, the trees in the study area are versatile, there are also hybrids of the
same species present. This paper presents the results of several segmentation
algorithms, such as those that the widely used eCognition provides and other
Matlab implementations of segmentation algorithms.
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1. Introduction

Energy plants are important for preserving the Earth’s ecology and as alternative
energy sources like bio-fuel. They play an important role both in producing biofuel
and heating electricity-generating power stations. There are plenty of tree species
(woody plants) that can be planted as energy plants, for example Gray Poplar
(Populus canescens), White Poplar (Populus alba) or Red oak (Quercus rubra).

Precise and detailed three-dimensional (3D) representations of the forestry area
are very important for an accurate assessment of their volume and growth. Un-
til recently, measuring the volume, spatial arrangement and shape of trees with
precision has been constrained by logistical and technological limitations and cost.
Traditional methods of plant biometrics provide merely partial measurements and
these methods are labor intensive. Advances in Unmanned Aerial Vehicle (UAV)
technology has made it feasible to obtain high-resolution imagery and three dimen-
sional (3D) data using lightweight and inexpensive cameras. These are esential for
energy plants monitoring and assessing tree attributes automatically [18].

In order to monitor and control the vegetation of plants and to measure their
volume, it is necessary to create a 3D model from the UAV recorded 2D images.
For processing huge amounts of imaging data, there are two frequently applied
approaches: structure-from-motion (SfM) and multi-view stereopsis (MVS). Both
can operate without information on the 3D position of the camera or the 3D location
of control points.

SfM is a cost-effective method for extracting the 3D model of a scene from mul-
tiple overlapping images using bundle adjustment procedures [17]. It can generate
high quality 3D point clouds for characterizing forest structures and can be used to
generate accurate Digital Surface Models (DSMs) from the 3D point clouds. The
3D representation of the surface of a terrain and DEM (Digital Elevation Model)
is a subset, and the most fundamental component of DSM [4, 15, 21]. The DSM
is essential in creating an orthophoto of the whole scanned area as a geometrically
corrected uniform-scale photograph, it is possible to use it for measurements. The
success of SfM is controlled by image resolution, the degree of image overlap, as
well as the relative motion of the camera with respect to the scene [25]. Photos
created by an UAV are ideal for SfM since UAV fly only a few tens of meters above
the ground, providing data with high spatial resolution that is better than space-
borne sensors. Therefore, UAVs have the potential of resolving the measurement
of individual trees and plants for biomass estimation[24].

Image segmentation is the process of separating or grouping an image into dif-
ferent image objects. An image object is a group of connected pixels in a picture,
where the objects are homogeneous with respect to specific features. These fea-
tures can be represented by the RGB values, textures or gray-levels, each encoding
similarities between the pixels of a region. Other segmentation methods focus on
finding boundaries between regions. There are many different ways of perform-
ing image segmentation, ranging from the simple thresholding method to different
colour image segmentation algorithms. In this paper, we aimed to find the best seg-

184 M. Pap, S. Király, S. Molják



mentation algorithm for the purpose of segmenting an energy forest where hybrids
of the same species are present. The goal is to find a method that is efficient but
also robust in the sense that it is not strongly dependent on its input parameters.

Hossain and Chen [16] conducted an extensive state-of-the-art survey on OBIA
(Segmentation for Object-Based Image Analysis) techniques, discussed different
segmentation techniques and their applicability to OBIA. This article shows, that
Ming et al. [12] implemented MeanShift algorithm for QuickBird ( high-resolution
remote sensing imagery) and panchromatic images, Maurer [13] for cropland and
Michel et al. [8] for multiple objects but none of them targeted energy plants. Li
et al. [14] implemented SRM segmentation method for QuickBird imagery as well.

Csillik [3] proposed a segmentation workflow where MRS algorithm started from
superpixels instead of individual pixels. He also used the quickBird dataset and
reached accuracy above 90%. Instead of using a single scale for the entire image,
Fonseca-Luengo et al. [6] offered a hierarchical multiscale segmentation using su-
perpixels (SLIC) which allowed users to detect objects at different scales. They
used a satellite image that was collected by the Pléiades Satellite, in the central irri-
gated valley of Chile. Several researchers applied Region growing/merging, Region
splitting and merging, Hybrid method (HM) and Semantic methods for different
targets: road and agricultural land, fozen oil, sand ore, mixed vegetation, etc. but
none for hybrid energy plants.

Tsouros et al. [23] reviewed the UAV-Based Applications for Precision Agricul-
ture. This article shows that Zhao et al. [26] implemented segmentation method for
targeting canopy pixels of pomegranate trees by using a fully convolutional neural
network. Their tests on validation set showed that its precision reached above 90%
and it was robust to changes in camera settings, lighting condition, canopy devel-
opment and changing background. They worked with LIDAR imagery. Hassain
et al. [10] has introduced a new vegetation segmentation approach which aims to
generate vegetation binary images from RGB images acquired by a lowcost UAV
system. They reached 87.29% with standard deviation 12.5%, in the detection of
any type of vegetation in an area. Their study did not involve distinguishing the
types of vegetation. Parraga et al. [22] used an algorithm to segment wheat plots
for two kinds of Brazilians wheat cultivates.

2. Methods

2.1. Study area
The study area is located in Kompolt, at the Rudolf Fleischman Research Institute
of the Eszterhazy Karoly University (47.735889 N, 20.224807 W, see Fig. 1).

A variety of three species (willows, acacias, poplars) and six hybrids of poplar
are present in this study area.
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Figure 1: Satellite image of the study area from Google Earth

2.2. Data Acquisition and Processing
For this study, the aerial survey was conducted on 6 September 2018 using a DJI In-
spire 2 quadcopter. Besides the built-in high-precision satellite positioning system,
ultrasonic, infrared and optical sensors help the machine to navigate and oper-
ate autonomously. An IMU (Inertial Measurement Unit), compass and barometer
also improved the navigation. The true colour sensor was a Zenmus X5S. Us-
ing a 4/3 inch CMOS sensor, the camera can produce images of a resolution of
20.8 megapixels. The camera was equipped with a 15 mm F/1.7 lens that has a
FoV value of 72∘. Multispectral images were taken with a Parrot Sequoia cam-
era. The sensor has 4 multispectral sensors, capable of a resolution of 1.2 MP, and
a 16MP RGB sensor. In addition, the Sequoia has a sun sensor that eliminates
changes in ambient light intensity. The camera and the sun sensor have also a
built-in IMU and magnetometer, and the sun sensor also contains an integrated
GPS. We applied the Altizure flight planning software to create multispectral sub-
sides, since the application also supports individual cameras that are not directly
connected to the drone. The Altizre was adapted to the unique viewing angle of the
multispectral sensor, so the overlaps between the lines were accurate. The ground
switch points were measured with a 216 channel GPS + Glonass signaling dual
frequency Javad Triumph 2 GNSS rover. The GNSS receiver was controlled by a
Carlson SurvPC installed on a Juniper Systems Mesa2 tablet computer. The RTK
correction service was provided by www.gnssnet.hu.
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2.2.1. RGB images

The flight altitude was 100 meters and the total flight time was 13 minutes 21
seconds. The overlap in the flight range was 90%, while the overlap between the
two lines was 75%. The drone flew the hand-selected area of approximately 326×
433meters at the set height and overlap in 7 flight lines. During the flight 263
images were taken in orthogonal camera positions. The georeference was specified
with 7 ground connection points (see Fig. 2).

Figure 2: The flight path of the above study area and the Ground
Control Points (GCPs)

2.2.2. Multispectral images

The multispectral investigation of the study area was performed at 70 meters and
with a 70% overlap. The drone flew 8 flight lines at 6m/s. The georeference was
refined with 7 ground connection points. During the flight 788 images were taken
from 197 positions and in 4 channels (Green, Red, Red edge, NIR) in an orthogonal
camera position (see Fig. 3).

2.2.3. 3D reconstruction

The essence of 3D reconstruction is the assumption that the 3D point correspond-
ing to a specific image point is constrained to the line of sight. Taking two images,
we know that a 3D point that is present on both of the images is located at the
intersection of the two projection rays. This process is also known as triangula-
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Figure 3: The flight path above the study area and Ground Control
Points (GCPs) – multispectral images

tion. Furthermore, we can conclude that corresponding sets of points must have a
relationship that is related to the positions and the calibration of the camera.

Figure 4: The 3D point cloud obtained from the RGB images

As a result of the photogrammetric processing, the average field resolution was
2.3 cm/pixel in the case of the RGB 3D model and the total processed area was
12.8 hectares. The number of the average key points was 72423. The average
RMS error was 0.013 m. The finished 3D point cloud consists of over 34 million
points (Figure 4), averaging 2614 points 𝑚2. After the photogrammetric process-
ing of the images taken by multispectral camera the average field resolution was
7.7 cm/pixel, the total processed area was 12.3 hectares. The average RMS error
was 0.023m. The finished 3D point cloud consists of over 412,000 points, averaging
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2.21 points/𝑚2 (see Figure 5).

Figure 5: The 3D point cloud obtained from the multispectral
images

Using Pix4Dmapper photogrammetry software, the digital surface model was
created in the WGS 1984 UTM Zone 34N coordinate system. The achieved spa-
tial resolution was 2 cm/pixel at an average height of 95.5 meters. The difference
between the lowest and the highest point is 21.5 meters (see Figure 4). Applying
the Pix4Dmapper software, we also created the NDVI map of the study area in the
WGS 1984 UTM Zone 34N coordinate system. The spatial resolution of the map
is 6.9 cm/pixel and the average NDVI is 0.78. The lowest value was 0.28 and the
highest one was 0.95 (see Figure 6a).

2.2.4. Segmentation Methods

The difficulty of the segmentation of species arises from the presence of hybrids.
They have similar characteristics in height and colour; therefore they are barely
distinguishable even to the human eye. There are a vast amount of segmenta-
tion methods already in the literature. We aimed at selecting the ones that are
based on colour rather than edges or shapes present in images. We used the most
widespread segmentation methods in the field of agriculture such as Multiresolution
segmentation provided by the eCognition software and the Mean shift segmenta-
tion implemented in Matlab. In addition to these algorithms we also investigated
the usability of the Statistical Region Merging method.

2.2.5. Multiresolution segmentation (MRS)

We investigated the eCognition’s hierarchical, multiresolution (MRS) algorithm.
This algorithm combines pixels or objects, so it is based on region growing. Also
this is an optimization method that minimizes the average heterogeneity with a
given number of objects and maximizes the homogeneity of the object. It merges
objects that best fit each other. The steps of the algorithm:

∙ Step 1: each pixel is an independent object. These are combined in several
steps into larger objects until they reach a certain homogeneity threshold.
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This threshold is derived from spectral and formal homogeneity values that
can be specified in the parameter.

∙ Step 2: Find the best matched neighbor for each core object that is created
in the first step.

∙ Step 3: If the best fit is not mutual, the object in the comparison will be the
next object tested.

∙ Step 4: If the best fit is mutual, the two objects are merged.

∙ Step 5: In each iteration, each object is tested once.

∙ Step 6: Iteration stops if there is no additional merge option.

The following parameters can be set:

∙ Layer weights: selection and weighting of the layers we want to apply dur-
ing segmentation. It increases the weighting of the layer when calculating
the heterogeneity measure used to decide whether pixels/objects are merged.
Zero ignores the layer.

∙ Scale parameter(r): maximum allowed heterogeneity within an object. It
controls the amount of spectral variation within objects and therefore their
resultant size. It can be any positive, integer number.

∙ Shape(s): the degree of spectral and geometric homogeneity (colour = 1
- shape). A weighting between the objects shape and its spectral colour
whereby if 0, only the colour is considered whereas if > 0, the objects shape
along with the colour are considered and therefore less fractal boundaries are
produced. The higher the value, the more that shape is considered.

∙ Compactness(c): compactness of objects. A weighting for representing the
compactness of the objects formed during the segmentation [1]. It can be a
value between 0 and 1.

By changing these parameters and the input layers the size and shape of image
objects are almost endlessly modifiable. The ability to perform other types of seg-
mentation such as conditional or classification-based segmentation makes limitless
modifications to the results of multiresolution segmentation possible. Sadly, it is
a semiautomatic approach, there is no generally applicable formula for assigning
layer weights, setting the parameters, and implementing segmentation - ultimately,
trial and error and experience are the best guides [9].

2.2.6. Statistical Region Merging (SRM)

The Statistical Region Merging (SRM) Segmentation algorithm proposed by the
authors of [20] is a time efficient method that operates as follows. It defines a
real-valued function of similarity 𝑓(𝑝0; 𝑝1), where the 𝑝0 and 𝑝1 are two different
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points in the image. It takes each pair of points and sorts the pairs based on
their similarity. In the next step, it iterates through the sorted pairs that are not
yet in the same region and merges their two regions if a predefined probabilistic
function returns true. The value of the function 𝑓 is based on the between-pixel
local gradients, and their maximal perchannel variation.

The algorithm takes one argument, the scale parameter 𝑄 that defines the sizes
of expected regions relative to the size of the original image. By choosing the value
of 𝑄 for smaller results in larger segments, while choosing it for greater results in
small segments.

2.2.7. Mean shift

The Mean Shift Segmentation (MSS), proposed in [7], is based on the assumption
that the feature space is a probabilistic density function. The dense regions in the
feature space correspond to local maximas. So for each data point, the algorithm
performs a gradient ascent on the local estimated density until convergence. The
stationary points obtained through gradient ascent represent the local maximas of
the density function. All points associated with the same stationary point belong
to the same cluster. The MSS only requires one parameter: the spatial radius 𝑟𝑠.

3. Results and discussion

3.1. NDVI and DEM
The created maps (NDVI and DEM) are suitable to track the vegetation of plants.
The NDVI (Normalized Difference Vegetation Index) was developed to give an
insight of plant presence and health. It is calculated as follows:

NDVI =
𝑎nir − 𝑎vis

𝑎nir + 𝑎vis
,

where 𝑎nir is the surface reflectance in the near infrared channel, and 𝑎vis is the
reflectance in the visible red channel [2]. The NDVI map indicates where an area
has healthy vegetation (green areas) and also the segments where the vegetation is
low, i.e. the NDVI values are below 0.6 (yellow and red areas). With the incorpo-
ration of the DEM it is possible to locate areas where the canopy is low, as well as
detect the lack of trees. As it is visible in Figure 6, compared to the NDVI map it
can be seen that the hight of the plants correlates with low vegetation.

3.2. Preprocessing methods
When analyzing the orthophotos, it was found that the leaves of the same species
did not have the same intensity value. Furthermore, the canopy of trees always
have small gaps between leaves, branches and crowns. To eliminate the differences,
two types of blur filters were used: Gauss filter and Median filter. The latter is a
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(a) NDVI map (b) DEM map

Figure 6: The calculated NDVI and DEM images

nonlinear filter being used frequently to remove the “salt and pepper” image noise
while preserving edges. The effect of Gaussian smoothing is also to blur the image.
The degree of smoothing is determined by the standard deviation of the Gaussian
and it outputs a “weighted average” of each pixel’s neighborhood. Both methods
were used with versatile kernels.

3.3. Evaluation method
We evaluated the results of the segmentation methods by an external cluster valid-
ity index, the Sorensen-Dice similarity coefficient (𝐷) [5]. Based on the conclusions
stated in [19], the 𝐷 is a suitable measure for evaluation in the field of biogeography
since it is less sensitive to outliers than the other coefficients. The coefficient 𝐷 is
calculated as follows:

𝐷 =
2𝑎

2𝑎+ 𝑏+ 𝑐
,

where 𝑎 is the number of point pairs that belong to the same segment in the
ground truth as well as in the segmentation result, 𝑏 is the number of point pairs
that belong to the same segment in the ground truth, but to different ones in the
segmentation result and 𝑐 is the number of point pairs that are in different segments
in the ground truth, but in the same segment in the segmentation result.

3.4. Segmentation
We used the aforementioned segmentation algorithms: MRS, SRM and MSS. In
order to evaluate the results of segmentations, we first had to create the ground
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truth image for the area. This images is presented in Figure 7b.
The goal was to find a method that is efficient but also robust in the sense

that it is not strongly dependent on its input parameters. First we evaluated the
eCognition’s MRS segmentation algorithm that is the state of the art currently in
this field of application. This is a semi-automatic process, it requires the users
supervision to achieve the best results. Therefore, to reach the accuracy of this
method was the goal for the other, unsupervised methods. The different segmen-
tation methods were used with varying preprocessing methods. The segmentation
methods also differ in their inputs.

(a) The original orthophoto (b) The ground truth image

Figure 7: The original orthophoto and the corresponding ground
truth image

In the MRS of eCognition, the user can select the RGB channels and can add
the DEM and the NDVI of the original image as a new layer. The above mentioned
parameters were selected empirically in our study. The image layer weights were
set for RGB channels (1,5,10 and 1,10,5), for DEM (between 1 and 10) and for
NDVI (between 1 and 10). The scale parameter was tested between 100 and 240.
Our shape parameter was set between 0.01 and 0.4, the compactness parameter was
between 0.6 and 1.0. For the original size images, the application of filters resulted
in worse results. For the resampled (reduced to 75%) images, we got slightly worse
results (68–71% accuracy) and the applied filters also resulted in weaker results.

Analysing the vegetation of energy plants by processing UAV images 193



Reducing the size of the original orthophoto (and both DEM and NDVI images)
to 50% led to results below 50%. The best results were obtained by performing
this algorithm on the image reduced to one quarter of the original size with the
layers: 1,5,10 of the RGB channels respectively, 2 for the DEM layer and 0 to the
NDVI layer, the other parameters were set as follows: 𝑟 = 240, 𝑠 = 0.4, 𝑐 = 0.9.
After the first run of the algorithm, further hierarchical segmentation was applied
by selecting regions that we wished to further split and the segmentation method
was rerun on that region only. After performing such steps repeatedly, we reached
the highest accuracy: 73.15% (Fig. 8).

Figure 8: The segmented objects after performing multiresolution
segmentation for the study area

The Matlab implementation of the MSS only required one parameter: the spa-
tial radius 𝑟𝑠. The rest of the settings of the algorithm are calculated from this
parameter. The parameter 𝑟𝑠 was tested with the values 0.05, 0.06, . . . , 0.1.

For preprocessing, the Median filter was tested with two kernel sizes: 9 and
12. The used kernel sizes of the Gauss filter were 2 and 3, the application of
preprocessing methods improves the segmentation accuracy significantly regardless
of the type of smoothing operator. The best accuracy, 80.70% was reached on the
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RGB image resampled to 10% of the original size and filtered by a Gauss filter of
kernel size 3 and the rs set to 0.07.

We have used the Matlab implementation of the SRM algorithm provided by
the authors of [20]. We tested this algorithm with the RGB images downsampled
to 10% of the original size. The Median and Gauss smoothing filters were also
tested as preprocessing steps before the application of the SRM. The values for the
scale parameter 𝑄 were selected from the range [100, 3000] on a logarithmic basis
as it was proposed by the authors of [20]. The Median filter was tested with two
kernel sizes: 9 and 12. The used kernel sizes of the Gauss filter were 2 and 3. The
achieved best accuracy was 62.45%.

The summary of the best accuracies of the used segmentation methods is shown
in Table 1.

Segmentation Accuracy
eCognition (MRS) 73.15%
MSS 80.70%
SRM 62.45%

Table 1: Results of segmentations

4. Conclusions

One aim of this case study was to investigate the applicability of a lowcost UAV in
the field of precision agriculture. On other goal was to find a suitable segmentation
method that is able to operate on an image that contains several hybrids of the
same tree species, a task which is hard even for the human eye. Many studies were
solving segmentation problems on areal imagery, however, these mostly aimed at
detecting vegetation and distinguishing it from the surrounding landmarks [6, 8,
10, 12]. Our goal was to perform the task of segmenting tree species apart, that is
an even more challenging task with hybrids present.

The created precise 3D model is suitable for agriculture experts to examine
energy plantation, the NDVI and DEM maps can be used to observe vegetation
in the study area and to give a mass estimate. The orthophoto obtained from the
3D model can be used for segmentation. The eCognition’s MRS reached 73.15%
accuracy when the DEM was added to the RGB orthophoto as a layer. With
the help of the NDVI map added to the RGB image as a layer we got worse
segmentation results. The Matlab implementation of the MSS algorithm was the
parameter insensitive method that reached the highest accuracy with 80.70%.
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Abstract

Algorithms for line and line segment clipping are well known algorithms
especially in the field of computer graphics. They are formulated for the Eu-
clidean space representation. However, computer graphics uses the projective
extension of the Euclidean space and homogeneous coordinates for represen-
tation geometric transformations with points in the 𝐸2 or 𝐸3 space. The
projection operation from the 𝐸3 to the 𝐸2 space leads to the necessity to
convert coordinates to the Euclidean space if the clipping operation is to be
used.

In this contribution, an optimized simple algorithm for line and line seg-
ment clipping in the 𝐸2 space, which works directly with homogeneous rep-
resentation and not requiring the conversion to the Euclidean space, is de-
scribed. It is based on Geometric Algebra (GA) formulation for projective
representation.

The proposed algorithm is simple, efficient and easy to implement. The
algorithm can be efficiently modified for the SSE4 instruction use or the GPU
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1. Introduction

The line and line segment clipping are fundamental and critical operations in the
computer graphics pipeline as all the processed primitives have to be clipped out
of the drawing area to decrease computational requirements and also respect the
physical restrictions of the hardware. The clipping operations are mostly connected
with the Window-Viewport and projection operations. There are many algorithms
developed recently with many modifications, see Andreev [1], Day [4], Dörr [5],
Duvalenko [8], Kaijian [12], Krammer [14], Liang [16], Sobkow [29].

However, those algorithms have been developed for the Euclidean space repre-
sentation in spite of the fact, that geometric transformations, i.e. projection, trans-
lation, rotation, scaling and Window-Viewport etc., use homogeneous coordinates,
i.e. projective representation. This results in the necessity to convert the results of
the geometric transformations to the Euclidean space using division operation.

The conversion of a point x = [𝑥, 𝑦 : 𝑤]𝑇 from homogeneous coordinates to the
Euclidean representation X = (𝑋,𝑌 ) is given as:

𝑋 = 𝑥/𝑤, 𝑌 = 𝑦/𝑤, 𝑤 ̸= 0,

where 𝑤 is the homogeneous coordinate. It means, that a point X ∈ 𝐸2 is repre-
sented by a line in the projective space 𝑥, 𝑦 : 𝑤 without the origin, which represents
a point in the infinity, see Figure 1.

The extension to the 𝐸3 case is straightforward, e.g. Foley [9].

𝑋 = 𝑥/𝑤, 𝑌 = 𝑦/𝑤, 𝑍 = 𝑧/𝑤, 𝑤 ̸= 0,

where x = [𝑥, 𝑦, 𝑧 : 𝑤]𝑇 . The use of the projective extension of the Euclidean space
is convenient not only for geometric transformations, as it replaces addition by
multiplication in the case of translation operation, but also it enables to represent
a point in infinity. Also, it enables to express some geometric entities in more
compact form, e.g. a line in the 𝐸2 case as:

𝑎𝑋 + 𝑏𝑌 + 𝑐 = 0, 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑤 = 0, a𝑇x = 0, (1.1)

where a = [𝑎, 𝑏 : 𝑐]𝑇 . It is necessary to note, that (𝑎, 𝑏) represents the normal
vector of a line, while 𝑐 is related to the distance of a line from the origin of the
Euclidean coordinate system. Similarly, a plane in the 𝐸3 case is defined as:

𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 + 𝑑 = 0, 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑𝑤 = 0, a𝑇x = 0, (1.2)

where a = [𝑎, 𝑏, 𝑐 : 𝑑]𝑇 .
However, it is necessary to distinguish vectors, as “movable” entities, from

“frames”, which have the origin as the reference point. It is necessary to note,
that metric is not defined in the projective space. In many cases, the principle
of duality can be used to derive a solution of a dual problem and have only one
programming sequence for both problems, i.e. the primary one and the dual. Un-
fortunately, the principle of duality is not usually part of the standard computer
science curricula.
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Figure 1: Projective space and its dual

2. Principle of duality

The principle of duality is one of the most important principles in mathematics. In
our case of geometric problems described by linear equations, see (1.1) and (1.2),
the principle of duality states that any theorem remains true when we interchange
the words

• “point” and “line” in the 𝐸2 case, resp. “point” and “plane” in the 𝐸3 case,

• “lie on” and “pass through”, “join” and “intersection” and so on.

Once the theorem has been established, the dual theorem is obtained as described
by Johnson [11].

In other words, the principle of duality in the 𝐸2 case says, that in all theorems
it is possible to substitute the term “point” by the term “line” and term “line” by
the term “point” and the given theorem remains valid. This helps a lot in the
solution of some geometrical problems, similarly in the 𝐸3 case. It means, that the
intersection computation of two lines is dual to the computation of a line given by
two points in the 𝐸2 case.

Similarly, the intersection computation of three planes is dual to the computa-
tion of a plane given by three points in the 𝐸3 case.

It is strange as the usual solution in the first case leads to formulation Ax = b,
while in the second case, the parameters of a line are determined as Ax = 0.
However, if the projective representation is used, both cases are solved as Ax = 0,
Skala [23].

This is the direct impact of the fact, that the point must lie on a line in the
𝐸2 case, resp. on a plane in the 𝐸3 case, (2.1). Also, two lines in the 𝐸2 case,
respectively three planes in the 𝐸3 case must not be collinear, i.e.:

a𝑇x = 0 (2.1)

where a = [𝑎, 𝑏 : 𝑐]𝑇 in 𝐸2, resp. a = [𝑎, 𝑏, 𝑐 : 𝑑]𝑇 in 𝐸3. It can be seen that the
meaning of the term a and x can be interchanged due to the principle of duality.
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Let us consider the intersection of two lines in the 𝐸2 case. Both lines must
not be collinear, the conditions (2.1) for each line must be orthogonal to other,
therefore the result of the outer product (cross product) must be zero. Similarly,
for planes which must be non-collinear Lengyel [15], Skala [22–24].

Let us consider two lines a1 = [𝑎1, 𝑏1 : 𝑐1]
𝑇 and a2 = [𝑎2, 𝑏2 : 𝑐2]

𝑇 in the 𝐸2

case (using the cross-product notation extended to the 𝑥, 𝑦 : 𝑤 coordinate system).
Then the intersection point x = [𝑥, 𝑦 : 𝑤]𝑇 is given as:

a𝑇1 x = 0, a𝑇2 x = 0, (a1 × a2)
𝑇x = 0.

Using the matrix notation:

det

⎡
⎣
𝑥 𝑦 𝑤
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

⎤
⎦ = 0.

It means that a point given as the intersection of two lines is given as:

x = a1 × a2 i.e. x = a1 ∧ a2,

where x = [𝑥, 𝑦 : 𝑤]𝑇 and ∧ means the outer product.
As a direct consequence of the principle of duality a line a = [𝑎, 𝑏 : 𝑐]𝑇 given by

two points x1 = [𝑥1, 𝑦1 : 𝑤1]
𝑇 and x2 = [𝑥2, 𝑦2 : 𝑤2]

𝑇 is given as:

a = x1 × x2 i.e. a = x1 ∧ x2. (2.2)

It should be noted that the operator × is the equivalent specific symbol used in
the 𝐸3 case, while ∧ is defined for the 𝑛-dimensional space, in general.

Extension to the 𝐸3 dimensional case is quite simple due to multi-linearity. It
means, that the intersection point of three planes a𝑖, 𝑖 = 1, 2, 3 is given as:

det

⎡
⎢⎢⎣

𝑥 𝑦 𝑧 𝑤
𝑎1 𝑏1 𝑐1 𝑑1
𝑎2 𝑏2 𝑐2 𝑑2
𝑎3 𝑏3 𝑐3 𝑑3

⎤
⎥⎥⎦ = 0.

It means that the point given as an intersection of three planes is given as:

x = a1 ∧ a2 ∧ a3,

where x = [𝑥, 𝑦, 𝑧 : 𝑤]𝑇 .
As a direct consequence of the principle of duality, a plane a = [𝑎, 𝑏, 𝑐 : 𝑑]𝑇

given by three points x𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖 : 𝑤𝑖]
𝑇 , 𝑖 = 1, 2, 3 is given as:

a = x1 ∧ x2 ∧ x2.
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3. Geometric algebra

Linear algebra is used for formulation and solution of many engineering prob-
lems, including a solution of geometrically oriented problems, e.g. in computer
vision or computer graphics. Usually, vectors or matrices are used to represent
one-dimensional or two-dimensional (data) structure and standard operations are
defined. For vectors in the mathematical sense, basic mathematical operations are
defined, e.g. addition, multiplication (dot-product, cross-product), etc. This “stan-
dard” vector algebra framework enables basic operation with geometric entities.

3.1. Geometric product
However, there is another framework called Geometric Algebra (GA), which comes
from the William Kingdom Clifford formulation and which enables to define the
product of union and intersection operations with points, lines, areas, volumes and
hyper-volumes in general, see Vince [30], Kanatani [13]. The GA is an alternative
formalism for describing geometrical entities and operations in 𝑛-dimensional space.
It uses only one product (multiplication) called geometric product defined as:

ab = a ∙ b+ a ∧ b

where a ∙ b is the dot (scalar) product and a ∧ b is the outer product (equivalent
to the cross-product in the 𝐸3 case).

It can be seen that the geometric product is “strange” as the result consists of
a scalar value and a bivector (usually called as a vector, but having different prop-
erties and representation from a vector), which is the result of the outer product.

The geometric product can be easily computed as the non-commutative tensor
product as a⊗ b, see Skala [28], as:

a⊗ b =

⎡
⎣
𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

⎤
⎦ .

The diagonal elements represent the dot product part, while the upper and the lower
triangular matrices represent the outer product part. It should be noted, that the
geometric product computation using the non-commutative tensor product can be
used for the 𝑛-dimensional space, too.

Nowadays, the geometric algebra is widely used across many fields, but mostly in
connection with vector oriented operations in the Euclidean space. The applications
of GA can be found in Physics (Hestenes [10]), Computer Science (Dorst [6]),
Computer Graphics (Vince [30], Lengyel [15]), and in other engineering fields as
well (Dorst [7]).

3.2. Geometric product and projective space
It should be noted, that it is possible to extend the GA for the projective extension
of the Euclidean space as well. In the case of computer graphics, points are not
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represented by vectors in the mathematical sense, as they are represented by a
vector data structure, which represents a frame fixed to the origin of the coordinate
system.

As mentioned in Chapter 2, computation of a line p by given two points and
an intersection point x given as an intersection of two lines is given by the outer
product as:

p = x1 ∧ x2, x = p1 ∧ p2.

Using the determinant notation:

det

⎡
⎣
𝑎 𝑏 𝑐
𝑥1 𝑦1 𝑤1

𝑥2 𝑦2 𝑤2

⎤
⎦ = 0, det

⎡
⎣
𝑥 𝑦 𝑤
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

⎤
⎦ = 0.

It can be seen, there is no need to convert homogeneous coordinates of the points
to the Euclidean space, since the determinant is multi-linear.

Extension to the 𝐸3 case is straightforward, i.e. a plane 𝜌 given by three points
and an intersection point x of three planes are given as:

𝜌 = x1 ∧ x2 ∧ x3, x = 𝜌1 ∧ 𝜌2 ∧ 𝜌3.

Using the determinant notation, the intersection point of three planes, respectively
the plane given by three points is are given as:

det

⎡
⎢⎢⎣

𝑎 𝑏 𝑐 𝑑
𝑥1 𝑦1 𝑧1 𝑤1

𝑥2 𝑦2 𝑧2 𝑤2

𝑥1 𝑦3 𝑧3 𝑤3

⎤
⎥⎥⎦ = 0, det

⎡
⎢⎢⎣

𝑥 𝑦 𝑧 𝑤
𝑎1 𝑏1 𝑐1 𝑑1
𝑎2 𝑏2 𝑐2 𝑑2
𝑎1 𝑏3 𝑐3 𝑑3

⎤
⎥⎥⎦ = 0.

It can be seen, that there is no problem with singular cases, like collinear lines,
respectively planes, as the intersection is in infinity. In this case, the homogeneous
coordinate of the result is 𝑤 = 0 or 𝑤 ↦→ 0. This is to be evaluated after outer
product computation.

4. Line clipping

The line clipping operation in 𝐸2 space is a fundamental problem in Computer
Graphics. It was already deeply analyzed and many algorithms have been de-
veloped. The Cohen-Sutherland (CS) [9] for a line segment clipping against the
rectangular window, the Liang-Barsky (LB) [16] and Cyrus-Beck (CB) [3] (exten-
sible to the 𝐸3 case) algorithms for clipping a line against a convex polygon, the
Nichol-Lee-Nichol (LNL) [17] (modified by Skala [27]) are the most used algorithms.

However, some more sophisticated algorithms or modification of the recent ones
have been developed recently, e.g. line clipping against a rectangular window, see
Bui [2], Skala [20, 21], line clipping by a convex polygon with 𝑂(lg𝑁) complexity,
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see Skala [26] (based on Rappaport [18]), or algorithm with 𝑂expected(1) complex-
ity, see Skala [25], etc. In the case of 𝐸3, the algorithms have computational
complexity 𝑂(𝑁) as there is no ordering in 𝐸3 case, however, the algorithm with
𝑂expected(sqrt(𝑁)) have been developed by Skala [19, 20, 25].

Figure 2: Clipping against the rectangular window in 𝐸2

The line and line segment clipping algorithms against a rectangular window in
𝐸2 are probably the most used algorithms and any improvements or speed up can
have a high influence on the efficiency of the whole graphics pipeline.

Let us consider a typical example of a line clipping by a rectangular clipping
window, see Figure 2, and a line 𝑝 given in the implicit form using projective
notation.

𝑝 : 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑤 = 0 i.e. a𝑇x = 0,

where a = [𝑎, 𝑏 : 𝑐]𝑇 are coefficients of the given line 𝑝, x = [𝑥, 𝑦 : 𝑤]𝑇 is a point
on this line using projective notation.

In the following, a version of the line clipping algorithm for the general case
will be described, which can be easily extended to a line clipping and line segment
clipping by a convex polygon, and the optimization for the use in the Normalized
Device Coordinate (NDC) system.

4.1. S-L-Clip algorithm

Let us consider an implicit function 𝐹 (x) = a𝑇x. The clipping operation should
determine intersection points x𝑖 = [𝑥𝑖, 𝑦𝑖 : 𝑤𝑖]

𝑇 , 𝑖 = 1, 2 of the given line with the
window, if any. The line splits the plane into two parts, see Fig. 2. The corners of
the window are split into two groups according to the sign of the 𝐹 (x) value. This
results into Smart-Line-Clip (S-L-Clip) algorithm, see Algorithm 1.

It means that each corner can be classified by a bit value 𝑐𝑖 as:

𝑐𝑖 =

{︃
1 if 𝐹 (x) ≥ 0

0 otherwise
𝑖 = 0, 1, 2, 3,

where a = [𝑎, 𝑏 : 𝑐]𝑇 are coefficients of the given line 𝑝, x = [𝑥, 𝑦 : 𝑤]𝑇 means a
point on this line.
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c c TAB1 TAB2 MASK c c TAB1 TAB2 MASK
0 0000 None None None 15 1111 None None None
1 0001 0 3 0100 14 1110 3 0 None
2 0010 0 1 0100 13 1101 1 01 0100
3 0011 1 3 0010 12 1100 3 1 0010
4 0100 1 2 0010 11 1011 2 1 0010
5 0101 N/A N/A N/A 10 1010 N/A N/A N/A
6 0110 0 2 0100 9 1001 2 0 0100
7 0111 2 3 1000 8 1000 3 2 1000

Table 1: All cases; N/A - Non-Applicable (impossible) cases

Table 1 shows the codes for all situations (some of those are not possible). The
TAB1 and TAB2 contain indices of edges of the window intersected by the given
line (values in the MASK will be used in the line segment algorithm).

It can be seen, that the S-L-Clip algorithm (see Algorithm 1) is quite simple
and easily extensible for the convex polygon clipping case as well (Table 1 can
be generated synthetically). It is significantly simpler than the Liang-Barsky al-
gorithm [16]. It also supports SSE4 and GPU use directly and leads to simple
implementations, as the cross-product and dot-product operations, are supported
in hardware. It should be noted, that the algorithm is designed for a very general
case, as the window corners and the points defining the line, are generally in the
projective representation, i.e. 𝑤 ̸= 1. Therefore, the S-L-Clip algorithm has further
potential for optimization, especially for the case, when the corner points of the
window are given in the Euclidean coordinates, i.e. 𝑤 = 1, and clipping is made in
the Normalized Device Coordinate (NDC) system.

Algorithm 1 S-L-Clip - Line clipping algorithm by the rectangular window

1: procedure S-L-Clip(x𝐴,x𝐵); ◁ line is given by two points
2: p := x𝐴 ∧ x𝐵 ; ◁ computation of the line coefficients
3: for 𝑖 := 0 to 3 do
4: if p𝑇x𝑖 ≥ 0 then 𝑐𝑖 := 1 else 𝑐𝑖 := 0; ◁ codes computation
5: end for
6: if c ̸= [0000]𝑇 and c ̸= [1111]𝑇 then ◁ line intersects the window
7: 𝑖 := 𝑇𝐴𝐵1[c]; x𝐴 := p ∧ e𝑖; ◁ first intersection point
8: 𝑗 := 𝑇𝐴𝐵2[c]; x𝐵 := p ∧ e𝑗 ; ◁ second intersection point
9: output(x𝐴,x𝐵);

10: end if
11: end procedure
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4.2. S-L-Clip-Opt - Optimization of the S-L-Clip

The S-L-Clip algorithm can be optimized for the use in the 𝐸2 case, as the corners of
the window and points defining the line are in the Euclidean coordinates, i.e. 𝑤 = 1,
and the edges of the window are vertical or horizontal only. Also, it is necessary to
consider the computer graphics pipeline, where all primitives passing the clipping
operations are transformed from the World Coordinates (WC) to the Normalized
Device Coordinates(NDC) and then to the Device Coordinates (DC), where NDC
coordinates are ⟨0, 1⟩×⟨0, 1⟩ or ⟨−1, 1⟩×⟨−1, 1⟩, which simplifies the outer-product
(cross-product) computation significantly.

These computational transformations can be described as:

x′ = T𝑁𝐷𝐶 ↦→𝐷𝐶 CLIP (T𝑊𝐶 ↦→𝑁𝐷𝐶 x).

Let us consider a line coefficients determination first, using (2.2), and setting
𝑤 = 1. Then the coefficients of the line are given by (4.1).

𝑎 = 𝑦1 − 𝑦2, 𝑏 = 𝑥2 − 𝑥1, 𝑐 = 𝑥1 * 𝑦2 − 𝑥2 * 𝑦1. (4.1)

It leads to a significant reduction of a number of the floating point operations
(±, *) from (6, 3) to (3, 2). Also, the outer product is used for computation of the
intersection points, i.e. x𝐴 and x𝐵 , can be simplified.

As the edges of the window are vertical or horizontal only and clipping is done
in the normalized space NDC, the codes of the corners and related intersection
point computation can be simplified significantly. It means, that for each edge of
the window the intersection computation with the line can be simplified as:
⎡
⎣
𝑥 𝑦 𝑤
𝑎 𝑏 𝑐
0 1 0

⎤
⎦ = 0

⎡
⎣
𝑥 𝑦 𝑤
𝑎 𝑏 𝑐
1 0 −1

⎤
⎦ = 0

⎡
⎣
𝑥 𝑦 𝑤
𝑎 𝑏 𝑐
0 1 −1

⎤
⎦ = 0

⎡
⎣
𝑥 𝑦 𝑤
𝑎 𝑏 𝑐
1 0 0

⎤
⎦ = 0

edge 𝑒0 edge 𝑒1 edge 𝑒2 edge 𝑒3

Table 2: Explicit evaluation of an intersection point for each edge

It means that the outer product sequence for the line intersection with an edge
can be replaced by direct computing of all cases shown in Table 1. Rewriting those
conditions at Table 2, the intersection for each edge is given as:

edge 𝑒0 : 𝑥 = −𝑐, 𝑦 := 0, 𝑤 := 𝑎,

edge 𝑒1 : 𝑥 = −𝑏, 𝑦 := 𝑎+ 𝑐, 𝑤 := −𝑏,

edge 𝑒2 : 𝑥 = −𝑏− 𝑐, 𝑦 := 𝑎, 𝑤 := 𝑎,

edge 𝑒3 : 𝑥 = 0, 𝑦 := 𝑐, 𝑤 := −𝑏.

It leads to another significant reduction of the number of the floating point
operations (±, *) from (6, 3) to (1, 0) in the most of cases. If the line does not
intersect the window, there is no computation at all.
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The optimized line clipping algorithm for the 𝐸2 case is represented by the
algorithm S-L-Clip-Opt, see Algorithm 2.

From Algorithm 2, it can be seen that also the evaluation of the window cor-
ners were simplified as instead of 4 * (2, 3) with floating point operations, only
(4, 0) operations are needed. This results in an additional speedup of the proposed
optimization.

Algorithm 2 Optimized S-L-Clip-Opt line clipping algorithm in 𝐸2

1: procedure S-L-Clip-Opt(x𝐴,x𝐵); ◁ line is given by two points
2: 𝑎 = 𝑦1 − 𝑦2; 𝑏 = 𝑥2 − 𝑥1;
3: 𝑐 = 𝑥1 * 𝑦2 − 𝑥2 * 𝑦1; ◁ line coefficients
4: 𝑐0 := 𝑠𝑖𝑔𝑛(𝑐); 𝑐1 := 𝑠𝑖𝑔𝑛(𝑎+ 𝑐); ◁ corner’s codes computation
5: 𝑐2 := 𝑠𝑖𝑔𝑛(𝑎+ 𝑏+ 𝑐); 𝑐3 := 𝑠𝑖𝑔𝑛(𝑏+ 𝑐); ◁ c = [𝑐3, 𝑐2, 𝑐1, 𝑐0]

𝑇

6: if c ̸= [0000]𝑇 and c ̸= [1111]𝑇 then ◁ line intersects the window
7: 𝑖 := 𝑇𝐴𝐵1[c]; ◁ x𝐴 := [𝑥𝐴, 𝑦𝐴 : 𝑤𝐴]

𝑇

8: switch 𝑖 do ◁ equivalent of x𝐴 := p ∧ e𝑖;
9: case 0: 𝑥𝐴 := −𝑐; 𝑦𝐴 := 0; 𝑤𝐴 := 𝑎;

10: case 1: 𝑥𝐴 := −𝑏; 𝑦𝐴 := 𝑎+ 𝑐; 𝑤𝐴 := 𝑏;

11: case 2: 𝑥𝐴 := −𝑏− 𝑐; 𝑦𝐴 := −𝑎; 𝑤𝐴 := 𝑎;

12: case 3: 𝑥𝐴 := 0; 𝑦𝐴 := 𝑐; 𝑤𝐴 := −𝑏;

13: default: ERROR ◁ actually the N/A case
14: end switch
15: 𝑗 := 𝑇𝐴𝐵2[c]; ◁ x𝐵 := [𝑥𝐵 , 𝑦𝐵 : 𝑤𝐵 ]

𝑇

16: switch 𝑗 do ◁ equivalent of x𝐵 := p ∧ e𝑗 ;
17: case 0: 𝑥𝐵 := −𝑐; 𝑦𝐵 := 0; 𝑤𝐵 := 𝑎;

18: case 1: 𝑥𝐵 := −𝑏; 𝑦𝐵 := 𝑎+ 𝑐; 𝑤𝐵 := 𝑏;

19: case 2: 𝑥𝐵 := −𝑏− 𝑐; 𝑦𝐵 := −𝑎; 𝑤𝐵 := 𝑎;

20: case 3: 𝑥𝐵 := 0; 𝑦𝐵 := 𝑐; 𝑤𝐵 := −𝑏;

21: default: ERROR ◁ actually the N/A case
22: end switch
23: output(x𝐴,x𝐵); ◁ output with the intersection points
24: end if
25: end procedure

Now, the proposed optimized algorithm is to be modified for the line segment
clipping case, which is used nearly exclusively in computer graphics.

5. Line segment clipping

In computer graphics, geometric elements like points, line segments, triangles,
etc. are processed. Therefore, the proposed algorithm is to be modified for the
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line segment clipping case, see Figure 3.

Figure 3: The codes of line segment end-points

It can be seen that there are some special line positions, which lead to direct
acceptance or rejection of the whole line segment, while other cases have to be
processed.

5.1. End-points coding
A line segment is defined by its end-points x𝐴 and x𝐵 . The classification of the
line segment end-points and the corners of the window mutual positions enables
faster processing, see Algorithm 3. The end-point classification was used in the
CS algorithms developed by Cohen-Sutherland [9]. Some additional coding for
speedup were introduced in Bui [2]. It enables simple rejection of line segments
not intersecting the window and direct acceptance of segments totally inside of the
window. If c𝐴 and c𝐵 are codes of the end-points then the sequence catching those
cases can be expressed as:

if (c𝐴 or c𝐵) = [0000] then the line segment is totally inside;
if(c𝐴 and c𝐵) ̸= [0000] then the line segment is outside;

If the end-points of a line are given in the Euclidean space, i.e. 𝑤 = 1, then the
codes of the end-points are determined as in Algorithm 3. In the general case,
i.e. when 𝑤 ̸= 1 and 𝑤 > 1 the conditions must be modified using multiplication
as 𝑥𝑤min < 𝑥min𝑤, etc. and therefore no division operation is needed.

It can be seen, that other cases, see Figure 3, cannot be directly distinguished by
the CS algorithm coding and intersection points are to be computed, including the
invalid ones. It is necessary to note, that the CS algorithm uses division operations
in the floating point.

The S-LS-Clip algorithm (Algorithm 4) is derived from the S-L-Clip algorithm
(Algorithm 1), which uses the gained information on positions of the line segment
end-points.
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Algorithm 3 End-point code computation

1: procedure CODE (c,x); ◁ code c for the position x = [𝑥, 𝑦 : 1]𝑇

2: c := [0000]𝑇 ; ◁ initial setting
3: if 𝑥 < 𝑥𝑚𝑖𝑛 then c := [1000]𝑇 ◁ setting according to x coordinate
4: if 𝑥 > 𝑥𝑚𝑎𝑥 then c := [0100]𝑇 ;

5: if 𝑦 < 𝑦𝑚𝑖𝑛 then c := c lor [0001]𝑇 ◁ setting according to y coordinate
6: if 𝑦 > 𝑦𝑚𝑎𝑥 then c := c lor [0010]𝑇 ;
7: ◁ lor represents or operation on all bits
8: end procedure

Algorithm 4 Smart-line segment clipping algorithm by the rectangular window

1: procedure S-LS-Clip(x𝐴,x𝐵); ◁ two line segment end-points
2: CODE (c𝐴,x𝐴); CODE (c𝐵 ,x𝐵); ◁ code for the end-points x𝐴 and x𝐵

3: if (c𝐴 lor c𝐵) = [0000]𝑇 then output (x𝐴, x𝐵); EXIT
4: ◁ the whole segment is inside
5: if (c𝐴 land c𝐵) ̸= [0000]𝑇 then EXIT ◁ the whole segment is outside
6: p := x𝐴 ∧ x𝐵 ; ◁ computation of the line coefficients
7: for 𝑖 := 0 to 3 do
8: if p𝑇x𝑖 ≥ 0 then 𝑐𝑖 := 1 else 𝑐𝑖 := 0; ◁ codes computation
9: end for

10: if c = [0000]𝑇 or c = [1111]𝑇 then EXIT ◁ line does not intersect
11: if c𝐴 ̸= 0 and c𝐵 ̸= 0 then ◁ two intersection points
12: x𝐴 := 𝑝 ∧ e𝑖; x𝐵 := 𝑝 ∧ e𝑗 ;
13: output (x𝐴,x𝐵); EXIT

14: 𝑖 := 𝑇𝐴𝐵1[c]; 𝑗 := 𝑇𝐴𝐵2[c]; ◁ only one end-point is inside
15: ◁ end-points handling
16: if c𝐴 = 0 then ◁ point x𝐴 is inside
17: if (c𝐵 land 𝑀𝐴𝑆𝐾[c]) ̸= 0 then
18: x𝐵 := p ∧ e𝑖; ◁ new position of xB

19: else
20: x𝐵 := p ∧ e𝑗 ;

21: else ◁ point x𝐵 is inside
22: if (c𝐴 land 𝑀𝐴𝑆𝐾[c]) ̸= 0 then ◁ new position of x𝐴

23: x𝐴 := p ∧ e𝑖;
24: else
25: x𝐴 := p ∧ e𝑗 ;

26: end if
27: output (x𝐴,x𝐵);

28: end procedure
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5.2. Optimized Line Segment Clipping S-LS-Clip-Opt
For clipping line segments, the line segment S-L-Clip algorithm (see Algorithm 2)
is to be modified to take into account positions of the end-points of the given line
segment using the MASK part of Table 1. The modification uses the end-points
codes to determine the case, how the line segment intersects the window. However,
computation of the line segment intersection points with the window is needed and
the MASK determines the appropriate end-point, which is to be replaced by the
computed intersection point. It can be seen, that the modification is quite simple,
see Algorithm 4.

If the end-points of the line segments are given in homogeneous coordinates,
i.e. 𝑤 ̸= 1 and 𝑤 > 0, the algorithm Algorithm 3 needs a simple modification,
i.e. the conditions are to be changed to 𝑥 < 𝑥min * 𝑤, 𝑦 < 𝑦min * 𝑤 and similarly
for all other cases. It should be noted that in the NDC coordinate system, the
conditions are even more simplified, see Algorithm 5.

Algorithm 5 End-point code computation for NDC coordinate system

1: procedure CODE (c,x); ◁ code c for the position x = [𝑥, 𝑦 : 𝑤]𝑇 𝑤 > 0
2: c := [0000]𝑇 ; ◁ initial setting
3: if 𝑥 < 0 then c := [1000]𝑇 ◁ setting according to x coordinate
4: if 𝑥 > 𝑤 then c := [0100]𝑇 ; ◁ as 𝑥𝑚𝑎𝑥 = 1 𝑤 > 0 then 𝑤 * 1 = 𝑤

5: if 𝑦 < 0 then c := c lor [0001]𝑇 ◁ setting according to y coordinate
6: if 𝑦 > 𝑤 then c := c lor [0010]𝑇 ;
7: ◁ lor represents or operation on all bits
8: end procedure

The end-points classification was simplified for the NDC coordinate system
above. The algorithm Smart Line Segment Clip (S-LS-Clip), see Algorithm 4, was
designed for the general case, when the end-points of the given line and the corners
of the window are given in the projective space, i.e. 𝑤 ̸= 1 and 𝑤 > 0.

It means, that the S-LS-Clip algorithm can be further optimized for the case,
when clipping is done in the NDC coordinate system. After clipping in the NDC
coordinates, the window-viewport transformation is applied according to the output
device resolution. The transformation can be made in homogeneous coordinates
as it uses matrix multiplication, therefore the conversions of the line segment end-
points are not needed.

In the NDC case, the CODE computation is to be modified, as the line segments
end-points might be given in homogeneous coordinates (see Algorithm 5) and the
algorithm for the line segment clipping can be simplified as well. Algorithm 6
is optimized line segment clipping algorithm for the case, when the end-points
are given in the Euclidean space. If the end-points are given in homogeneous
coordinates, the outer product for the line coefficients is to be used, however, it is
one-clock instruction on GPU (cross-product).
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Algorithm 6 Optimized S-LS-Clip-Opt line clipping algorithm in 𝐸2

1: procedure S-L-Clip-Opt(x𝐴,x𝐵); ◁ line is given by two points
2: CODE (c𝐴,x𝐴); CODE (c𝐵 ,x𝐵); ◁ lor represents or operation on all bits
3: if (c𝐴 lor c𝐵) = [0000]𝑇 then ◁ code for the end-points x𝐴 and x𝐵

4: output (x𝐴, x𝐵); EXIT ◁ the whole segment is inside
5: if (c𝐴 land c𝐵) ̸= [0000]𝑇 then EXIT ◁ the whole segment is outside
6: 𝑎 = 𝑦1 − 𝑦2; 𝑏 = 𝑥2 − 𝑥1; ◁ line coefficients computation
7: 𝑐 = 𝑥1 * 𝑦2 − 𝑥2 * 𝑦1; ◁ if 𝑤 ̸= 1 use [𝑎, 𝑏 : 𝑐]𝑇 := x𝐴 ∧ x𝐵 ;
8: 𝑐0 := 𝑠𝑖𝑔𝑛(𝑐); 𝑐1 := 𝑠𝑖𝑔𝑛(𝑎+ 𝑐); ◁ corner’s codes computation
9: 𝑐2 := 𝑠𝑖𝑔𝑛(𝑎+ 𝑏+ 𝑐); 𝑐3 := 𝑠𝑖𝑔𝑛(𝑏+ 𝑐); ◁ c = [𝑐3, 𝑐2, 𝑐1, 𝑐0]

𝑇

10: if c = [0000]𝑇 or c = [1111]𝑇 then EXIT; ◁ no intersection
11: ◁ line segment intersects the window
12: 𝑖 := 𝑇𝐴𝐵1[c]; ◁ x𝐴 := [𝑥𝐴, 𝑦𝐴, 𝑤𝐴]

𝑇

13: switch 𝑖 do ◁ equivalent of x𝐴 := p ∧ e𝑖;
14: case 0: 𝑥𝐴 := −𝑐; 𝑦𝐴 := 0; 𝑤𝐴 := 𝑎;

15: case 1: 𝑥𝐴 := −𝑏; 𝑦𝐴 := 𝑎+ 𝑐; 𝑤𝐴 := 𝑏;

16: case 2: 𝑥𝐴 := −𝑏− 𝑐; 𝑦𝐴 := −𝑎; 𝑤𝐴 := 𝑎;

17: case 3: 𝑥𝐴 := 0; 𝑦𝐴 := 𝑐; 𝑤𝐴 := −𝑏;

18: default: ERROR ◁ actually the N/A case
19: end switch
20: 𝑗 := 𝑇𝐴𝐵2[c]; ◁ x𝐵 := [𝑥𝐵 , 𝑦𝐵 , 𝑤𝐵 ]

𝑇

21: switch 𝑗 do ◁ equivalent of x𝐵 := p ∧ e𝑗 ;
22: case 0: 𝑥𝐵 := −𝑐; 𝑦𝐵 := 0; 𝑤𝐵 := 𝑎;

23: case 1: 𝑥𝐵 := −𝑏; 𝑦𝐵 := 𝑎+ 𝑐; 𝑤𝐵 := 𝑏;

24: case 2: 𝑥𝐵 := −𝑏− 𝑐; 𝑦𝐵 := −𝑎; 𝑤𝐵 := 𝑎;

25: case 3: 𝑥𝐵 := 0; 𝑦𝐵 := 𝑐; 𝑤𝐵 := −𝑏;

26: default: ERROR ◁ actually the N/A case
27: end switch
28: ◁ evaluation of the end-points x𝑖 = [𝑥𝐴, 𝑦𝑖 : 𝑤𝑖]

𝑇 , 𝑖 = 1, 2
29: if c𝐴 = 0 then ◁ point x𝐴 is inside
30: if (c𝐵 land 𝑀𝐴𝑆𝐾[c]) ̸= 0 then
31: x𝐵 := x𝐴; ◁ new position of x𝐵

32: else
33: x𝐵 := x𝐵 ;

34: else ◁ point x𝐵 is inside
35: if (c𝐴 land 𝑀𝐴𝑆𝐾[c]) ̸= 0 then ◁ new position of x𝐴

36: x𝐴 := x𝐴;
37: else
38: x𝐴 := x𝐵 ;

39: end if
40: output (x𝐴,x𝐵);

41: end procedure
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The algorithm S-L-Clip (see Algorithm 1) and S-LS-Clip (see Algorithm 4) can
be easily modified for the line and line segment clipping by a convex polygon, as
Table 1 can be generated synthetically for the given number of the convex polygon
vertices and the cycle for and codes c computation must be modified accordingly.

6. Conclusion

Algorithms for the line clipping and line segment clipping by a rectangular window
have been deeply studied for a long time and many algorithms and their modifica-
tions have been described.

This contribution describes a new line and line segment clipping algorithms with
their optimization using principles of geometric algebra extended for the projective
extension of the Euclidean space. The algorithms process line and line segments
given by end-points in the homogeneous coordinates and use the outer product
applied in the projective space. Also, a simple geometric product computation
using tensor multiplication is presented.

It should be noted, that the S-L-Clip and S-LS-Clip algorithms can be easily
modified for the line and line segment clipping by a convex polygon.
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Abstract

We propose an algorithm improvement for classifying machine learning
algorithms with the fuzzification of training data binary class membership
values. This method can possibly be used to correct the training data out-
put values during the training. The proposed modification can be used for
algorithms running individual learners and also as an ensemble method for
multiple learners for better performance. For this purpose, we define the
single and the ensemble variants of the algorithm. Our experiment was done
using convolutional neural network (CNN) classifiers for the base of our pro-
posed method, however, these techniques might be used for other machine
learning classifiers as well, which produce fuzzy output values. This fuzzi-
fication starts with using the original binary class membership values given
in the dataset. During training these values are modified with the current
knowledge of the machine learning algorithm.
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1. Introduction

The increasing performance of computers enables the wide use of artificial intelli-
gence and machine learning technologies. These technologies come into our daily
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lives, with image recognition, automatic translation, AI assistants, chatbots, au-
tonomous cars, etc. One of the most widely used machine learning algorithms
is the Artificial Neural Network and its Deep and Convolutional variants [8, 17].
Neural network algorithms are supervised machine learning algorithms, their major
applications include classification, regression, pattern recognition, function approx-
imation, intelligent control, learning from data. The neural network is basically a
set of interconnected artificial neurons and the appropriate algorithms working on
them [8].

A variation of the multi-layer perceptron model is the convolutional neural
network. LeNet was one of the very first convolutional neural networks creating
an area of deep learning. Yann LeCun’s pioneering work has been named LeNet-5,
after many successful iterations [11]. Convolutional networks have shown to be
very effective e.g. in image classification [4, 5], natural language processing [6] and
time series forecasting [3]. CNNs have a convolution operator, hence the name
convolutional network. This convolution operator does feature extraction, e.g.
when learning to classify a 2D image, smaller (e.g. 3 × 3 or 5 × 5 pixels) parts
of the image will be processed as a sliding window over the whole image, so the
network learns such smaller-scale features of the images. Committee machines and
ensemble methods have been shown to improve the accuracy of neural networks
and other machine learning algorithms.

One of the most widely used public datasets is the Modified National Institute
of Standards and Technology database (MNIST) [12], which contains 60,000 hand-
written numbers in the training set and 10,000 handwritten numbers in the test set.
Different classifiers, like K-Nearest Neighbors, SVMs, Neural Nets, Convolutional
Neural Nets, proved on this database had shown fail rate down to about 0.2% (20
failures from 10000 test samples) [12]. We have used this dataset for our research.

State-of-the-art architecture as of the time writing this paper is the squeeze-
and-excitation network1 [9].

Modification of training data is often useful for regularization. This can be
done by e.g. making distortion, adding noise, using data augmentation [21] or
adversarial training [19]. Changing the class membership values of the training
data can be considered as one such method.

Usual classification is done providing binary class membership values in the
training data, although even for the input patterns for which the classification
could be considered uncertain. Fuzzy logic has advantages compared to binary
logic having values between false and true as well [1, 2, 10, 15, 22]. Fuzzy logic
can be used in machine learning as well, e.g. combining with neural network [7],
even with ensemble methods [17]. Using fuzzy class membership values can have
performance improvement and this method can also be considered to provide a kind
of confidence, which can be an additional advantage in cases where the confidence
of the outputs is also required [13].

1MNIST classifier with average 0.17% error, 25 February 2020, https://github.com/
Matuzas77/MNIST-0.17/blob/master/MNIST_final_solution.ipynb
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2. Improvements for neural network classifiers

We propose the fuzzification of training data output class membership values. This
can be used with standalone learners and with multiple (ensemble) learners as well
for better result.

One common problem is that training data usually has binary output values,
even when the train samples may belong to more than one class at a certain fuzzy
level. [7, 23] These data come usually labeled so that each sample has one or more
labels, each of which means the crisp True membership in the class behind that
label, and crisp False membership value for the other classes in the same category.
There can be cases where these crisp class membership values can be considered
misleading, so the correction of these values can lead to reducing the confounding
effect of them.

The proposed fuzzification technique might be applied to other classifying algo-
rithms as well, in case they are able to give fuzzy membership values in their output.
Research on other algorithms in order to apply the fuzzification technique on them
can be a future research, in the current research we conducted our measurements
with convolutional neural network algorithms.

We define simple methods which can be used to modify the target output values
given for train patterns during the training process to get fuzzy output values
from the crisp (binary) values of the training data set. This class membership
fuzzification is done so that the knowledge gained during the learning process will
be used to correct the inaccurate or incorrect output class membership values of the
train patterns. In the following, we will show and describe the proposed algorithm
variants. The performance of these algorithm variations will be analysed and shown
in Section 3.2.

Three versions of the algorithm will be presented below. The first of them
(Algorithm1) is for single learners, the second version (Algorithm2) is for multiple
learners the result of which can be used with committee machine voting functions,
the third variant (Algorithm3) is a simple modification to handle the parameters
of the fuzzification for multiple learners.

1 function FuzzyTraining(model , train_X , train_Y , a, b, c):
2 epoch = 0
3 fuzzy_Y = train_Y
4 while epoch < MAX_EPOCHS and CheckEarlyStopCondition () == False:
5 model.fit(train_X , fuzzy_Y , epochs =1)
6 out = model.predict(train_X)
7 if epoch > START\_FUZZY:
8 fuzzy_Y = a*fuzzy_Y + b*out + c*train_Y
9 epoch = epoch + 1

Algorithm 1: Fuzzy Training

Algorithm1 must be called with the training data inputs and outputs, and the
parameters for the fuzzification for the training of a learning model. The parameter
𝑎 is the coefficient for the momentum which means the importance of the actual
(current) class membership values, which are in the fuzzy_Y vector. This affects
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the change from original values towards the desired values. The parameter 𝑏 is the
coefficient for the current knowledge (the out vector), that means the courage to
change. The parameter 𝑐 is the coefficient used for the train_Y vector, which means
the importance of the original target output data. The sum of the parameters 𝑎, 𝑏
and 𝑐 must be 1.0 . Of course the condition when to start the correction must be
also considered. In the algorithm presented above, it is a simple condition to have
a number of epochs before the first correction. This of course can be changed to an
adaptive condition to achieve better performance, however, for our measurement it
is more important to know the number of correction operations. When the learning
starts, the initial values in the fuzzy_Y vector are the same as given in the train_Y
vector.

As it can be seen in Algorithm1, the defined algorithm can work with individual
learner algorithm.

We give an extended variant of the algorithm as well to enable to use the
combined knowledge of multiple (ensemble) learners. The usage of multiple learners
of similar level usually gives better result compared to the individual learners,
well-known methods are the committee machines and the ensemble methods [14,
16, 20]. In this version of the algorithm, all the learners will modify the same
fuzzy_Y corrected output values, so their combined opinion will have an effect on
the subsequent training epochs.

1 function FuzzyTrainingEnsemble(models , train_X , train_Y , a, b, c):
2 epoch = 0
3 fuzzy_Y = train_Y
4 while epoch < MAX_EPOCHS and CheckEarlyStopCondition () == False:
5 for model in models:
6 model.fit(train_X , fuzzy_Y , epochs =1)
7 out = model.predict(train_X)
8 if epoch > START_FUZZY:
9 fuzzy_Y = a*fuzzy_Y + b*out + c*train_Y

10 epoch = epoch + 1

Algorithm 2: Fuzzy Training Ensemble

In the case of this new variant of the proposed algorithm (Algorithm2) the cor-
rection of the training data outputs will be better, because the combined knowledge
of the learners has a better performance compared to the individual results. The
correction will also be faster, because after every learning epoch of each individual
learner a correction of the training data outputs will be done. In case of multiple
learners, parameter a affects the change from original values towards the desired
values and it affects the averaging effect on the outputs of multiple learners too. In
a future development, it might be useful to change the algorithm with an additional
parameter to separately control these two effects.

In this case, the number of times the correction statement will be run is the
number of (epochs - START_FUZZY) multiplied by the number of the learners.
This can be taken into account when setting the parameters for the training data
output value fuzzification. We provide a modification to Algorithm2 with a simple
normalization with respect to the number of learners.
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Let 𝑀 be the number of learners, 𝑎, 𝑏 and 𝑐 the weights for the train output class
membership value fuzzification as described for the algorithm. We can calculate
the normalized 𝑎′, 𝑏′ and 𝑐′ weights as follows:

• 𝑎′ = 𝑀
√
𝑎

• 𝑏′ = (1−𝑎′)𝑏
𝑏+𝑐

• 𝑐′ = 1− (𝑎′ − 𝑏′)

The parameters 𝑎′, 𝑏′, 𝑐′ now correspond to the parameters 𝑎, 𝑏, 𝑐 so that the
speed of convergence with 𝑀 learners giving the same output will be the same as
the speed of convergence would be using the parameters 𝑎, 𝑏 and 𝑐 with one learner.
Now we apply the above formulae to get the new version of this algorithm.

1 function FuzzyTrainingEnsemble2(models , train_X , train_Y , a, b, c):
2 epoch = 0
3 fuzzy_Y = train_Y
4 a = power(a, 1/len(models))
5 b = (1-a)*b/(b+c)
6 c = 1-(a+b)
7 while epoch < MAX_EPOCHS and CheckEarlyStopCondition () == False:
8 for model in models:
9 model.fit(train_X , fuzzy_Y , epochs =1)

10 out = model.predict(train_X)
11 if epoch > START_FUZZY:
12 fuzzy_Y = a*fuzzy_Y + b*out + c*train_Y
13 epoch = epoch + 1

Algorithm 3: Fuzzy Training Ensemble 2

In Algorithm3 the normalization of the parameters has to be done only once,
before the training loop. Certainly it might be possible to adaptively change the
parameters during the training process, the research of this can be conducted in
the future. Note that we have overwritten the original values of the parameters 𝑎, 𝑏
and 𝑐. If this is not the desired behavior then these values can be preserved. Since
with given number of learners and given (not changing) 𝑎, 𝑏 and 𝑐 parameters the
difference between the Algorithm2 and Algorithm3 variants lies only on changing
the parameters, we have not conducted any separate measurements on Algorithm3.

3. Performance evaluation of fuzzification of train-
ing data binary class membership values

3.1. Performance evaluation framework
The experiments ran on personal computers equipped with NVIDIA and AMD
GPUs using Tensorflow from Python programs. Our simple framework was based
on file interface which enables to run the machine learning on multiple machines,
and then later collected and processed the output files generated by the learners.
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For the research, two convolutional neural network learning algorithms with
different strength have been chosen as the basis of the modifications.

The problem set given to the learning algorithms was the well known MNIST
database of handwritten digits [12].

The results may vary given the stochastic nature of the algorithms, so thou-
sands of experiments with different parameters were performed, and average results
were analysed. For the analyses we first measured the performance of the individ-
ual learners on the test dataset with different parameters for fuzzification. Since
multiple learners have proven to be more successful when we combine their results
through voting, we might expect better results by setting the fuzzified class mem-
bership together as well. We will show the results of this research in Section 3.2. In
these experiments we have measured the standalone test results of the learners, as
well as the results of the fuzzy average voting of multiple learners, as a committee
machine. When we talk about committee machine voting we can choose from many
voting functions, e.g. fuzzy averaging, plurality (or majority) voting, etc. In our
research we have used the well-known fuzzy voting [18].

For the analyses we used the Python Numpy and Pandas frameworks. The
algorithms run with different epoch counts to see the behavior of our proposed
algorithm variations not only with the statistically best settings. In the following
sub-section we will show the performance of the proposed fuzzification of training
data binary class membership values. For the evaluation we run about one million
learning sessions with convolutional neural network algorithms modified according
to our proposed methods. The first algorithm variant was built from the algo-
rithm introduced in2. The second algorithm variant was based on the algorithm
which uses the Squeeze-and-Excitation Network method. We have added to both
algorithms the proposed fuzzification of binary class membership values of training
data.

3.2. Performance evaluation of training data class member-
ship value fuzzification

We have executed several experiments with two algorithms of different strengths.
The algorithm variations were executed with different parameters, e.g. the number
of epochs to run, the number of instances in the ensembles and the parameters
for the fuzzification of binary class membership values of training data, including
parameters which keep the original class membership values. We note that we have
executed many learning sessions without fuzzification as well in order to have more
reliable results for comparison.

3.2.1. Fuzzification experiment 1

The first experiment ran using the modified variant of. Thousands of learners
learned with different epoch counts and different parameters for fuzzification, in-

2https://www.kaggle.com/cdeotte/25-million-images-0-99757-mnist
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cluding parameters which keep the original class membership values(𝑎 = 0, 𝑏 = 0,
𝑐 = 1). We will first show the average results in function of the 𝑐/(𝑏+ 𝑐) ratio.

Figure 1: The average accuracy results of our algorithm on test
data using different parameters for the fuzzification of the training

data class membership values.

Figure 1 shows the average accuracy of the individual learners with different
parameters used for the fuzzification. The ratio 𝑐/(𝑏 + 𝑐) of the parameters of
Algorithm1 has the meaning of how important the original binary class membership
values provided in the training data are. If the ratio is 1.0 , then no fuzzification will
happen. As it can be seen, the accuracy achieved was better when the algorithm
was used with fuzzification. We note that when the ratio goes below 50% then the
performance gets again lower. In that case the fuzzification can change the class
membership values to have a big difference from the original values. We will also
show the performance using the fuzzy average voting function when using multiple
learners.

Figure 2 shows the accuracy of the V1 fuzzy average voting on the same ex-
periment. As we can see, the results using the fuzzy average voting are similar,
the fuzzification helps to achieve better performance, i.e. higher accuracy on the
training dataset. As the ratio of 𝑐/(𝑏 + 𝑐) increases, i.e., the possibility of fuzzifi-
cation decreases, so the accuracy achieved tends to decrease as well. We note, that
although the shown results are mean values of several measurements, the random
behavior of the algorithms can result in fluctuation in performance, some values
can be the effect of that. We also show a 3D diagram to better understand the
results for different parameters. Since the sum of the parameters 𝑎, 𝑏 and 𝑐 must
be 1.0 we can choose two of these parameters for the 𝑋 and 𝑌 axes of the diagram,
and the 𝑍 axis can show the average accuracy values. We have chosen the 𝑎 and 𝑏
parameters for that, the 𝑐 parameter for every measurement is 1− (𝑎+ 𝑏) .

Figure 3 shows the average individual accuracy on test data for the 𝑎 and 𝑏
parameters. The value with 𝑎 = 0, 𝑏 = 0 coordinates shows the average result
without fuzzification. We can see that with values of parameter b around 0.4
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Figure 2: The performance results of our algorithms V1 fuzzy av-
erage voting function by 6-20 voters on test data using different
parameters for the fuzzification of the training data class member-

ship values.

Figure 3: The average performance results of our algorithms on test
data using different parameters for the fuzzification of the training

data class membership values.

(40%) we had better accuracy, especially when the value of parameter a was close
to 0.3 (30%).

3.2.2. Fuzzification experiment 2

The next experiment ran using a modified algorithm of , using the parameters for
the fuzzification. The number of epochs we had run the algorithm was from 15 to
20.

Figure 4 shows the average accuracy of the individual learners with different
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Figure 4: The individual accuracy results of the algorithm on test
data using different parameters for the fuzzification of the training

data class membership values.

parameters used for the fuzzification. As described for Figure 1 the ratio 𝑐/(𝑏+ 𝑐)
tells the importance of the original class membership values of the training data,
fuzzification can be done only if the ratio is below 1.0 . As we can see, the accuracy
can be better with modest fuzzification. We also note that if the ratio of 𝑐/(𝑏+ 𝑐)
decreases to below 0.5 then the accuracy seems to decrease as well. This can be the
effect of too much freedom of the algorithm to change the class membership values.
For this experiment, too, we have measured the performance using the well-known
fuzzy average voting function (V1) when using multiple (6–20) learners.

Figure 5: The individual accuracy results of algorithm on test data
using different parameters for the fuzzification of the training data

class membership values.

Figure 5 shows the results of the V1 fuzzy mean vote in this experiment. The
results are different in this case. The accuracy averages using fuzzified training
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data class membership values were lower for most parameters than the accuracy
using only the original training data. However, there is a promising range what we
can look from another perspective as well. Below we show the average accuracy
of the learners for different 𝑎, 𝑏 and 𝑐 parameters on a 3D figure using the fuzzy
average (V1) voting function with 6–20 voters. We show the results in function of
𝑎 and 𝑏 parameters, while parameter 𝑐 is dependent on them.

Figure 6: The results of our algorithms’ average accuracy on test
data using different parameters for the fuzzification of the training

data class membership values.

Figure 6 shows the results of thousands of learning sessions which were executed
with different 𝑎, 𝑏 and 𝑐 parameters. The point with 𝑎 = 0, 𝑏 = 0 coordinates
shows the average result when class membership values of training data were not
corrected. We can see that the results were higher with lower a and b parameter
values. For such parameters the 𝑐 parameter is higher, so only minor corrections
on the training data class membership values can be made.

We note that this is a strongly different behavior compared to the performance
of fuzzification with the first (weaker) algorithm variant. This is probably because
the Squeeze-and-Excitation Network has much higher accuracy on this dataset, and
this might mean that it can handle misclassified train samples better, so fuzzifica-
tion may result only in minor improvement.

For a range of parameter values where parameter a and b are not zero but both
have low values the accuracy was better using the proposed fuzzification. That
means that fuzzification in a lower rate had an improvement even for this strong
algorithm.

4. Conclusion

From the results of our fuzzification experiments we can conclude that the fuzzifica-
tion of the training data binary class membership values can improve the accuracy
of the prediction of class membership values.
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The results show that the parameters of our proposed fuzzification algorithm
highly affect the accuracy of the predictions of the learners. Their effect was dif-
ferent depending on the basic algorithm to which we added it. The performance
improvement of individual test accuracy was significant for both algorithms we used
for the evaluation. When we compared the accuracy of the fuzzy average voting
function for different parameters of the fuzzifying algorithm we had also significant
improvement for the weaker algorithm with wider range of the parameters of the
fuzzification algorithm, but in case of the stronger algorithm only a minor improve-
ment was observed for a narrow range of these parameters. Further measurements
will be performed to analyze this behavior with the same dataset and with other
datasets as well.
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Abstract
Neural Network and Convolutional Neural Network algorithms are among

the best performing machine learning algorithms. However, the performance
of the algorithms may vary between multiple runs because of the stochastic
nature of these algorithms. This stochastic behavior can result in weaker
accuracy for a single run, and in many cases, it is hard to tell whether we
should repeat the learning giving a chance to have a better result. Among the
useful techniques to solve this problem, we can use the committee machine
and the ensemble methods, which in many cases give better than average or
even better than the best individual result. We defined new voting function
variants for ensemble learner committee machine algorithms which can be
used as competitors of the well-known voting functions. Some belong to the
locally weighted average voting functions, others are meta voting functions
calculated from the output of the previous voting functions functions called
with the results of the individual learners. The performance evaluation of
these methods was done from numerous learning sessions.

Keywords: Machine learning, neural networks, committee machines, ensemble
methods

MSC: 92B20, 03B70, 03B52

1. Introduction

One of the most widely used machine learning algorithms is the Artificial Neu-
ral Network or its Deep and Convolutional variants [7, 12, 19]. Neural network
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algorithms are supervised machine learning algorithms, widely used in machine
learning. Its major applications include classification, regression, pattern recogni-
tion, function approximation, intelligent control, learning from data. The neural
network is a set of interconnected artificial neurons and the appropriate algorithms
working on them [7].

A variation of the multi-layer perceptron model is the convolutional neural
network. LeNet was one of the very first convolutional neural networks creating
an area of deep learning. Yann LeCun’s pioneering work has been named LeNet-5,
after many successful iterations [12]. CNNs have a convolution operator, hence the
name convolutional network. This convolution operator does feature extraction,
e.g. when learning to classify a 2D image, smaller (e.g. 3× 3 or 5× 5 pixels) parts
of the image will be processed as a sliding window over the whole image, so the
network learns such smaller-scale features of the images.

The knowledge of experts can be very useful in machine learning as well. When
several learner algorithms learn the same problem or parts of the problem their
knowledge can be combined in numerous ways [5, 17, 23]. This can be used both
for getting satisfactory results from weak learners and for reaching top performance
when using strong learners. Since multiple learners have proven to be more success-
ful when we combine their results through voting, we defined new voting functions
and measured their performance with ensemble learners in different group sizes.
Committee machine algorithms and ensemble methods use multiple neural net-
works or other machine learning algorithms to make predictions and combine their
results [22]. This can work with multiple instances of the same algorithm (e.g. [4])
or different algorithms or models (e.g. [9]) as well. Several simple committee ma-
chine variants are used efficiently with committees voting on the same problem and
combining their results with voting functions.

Note that many voting functions are available, e.g. minimum, maximum, me-
dian voting [10]. We use the most well-known voting functions: fuzzy average,
weighted fuzzy average, plurality, borda and product voting.

Ensemble methods have been very successful in setting record performance on
challenging data sets [17]. Ensemble learners can also be used combined with other
methods that can be used with machine learning algorithms, e.g. the fuzzification
of training data binary class membership values [21], to have the advantage of using
fuzzy truth values instead of the binary truth values [2, 3, 6, 8, 16, 24].

The most well-known committee machine voting functions are described in the
followings. For each voting function, first let 𝑜𝑖 be the actual output vector of class
membership values predicted by learner 𝑖 for the actual sample given as input.

We note that training data can be changed dynamically, e.g. for time series
prediction often we get new training data periodically.
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1.1. Voting functions

1.1.1. Fuzzy average voting

Averaging is one of the most simple linear combiner voting schemes having the 1/𝑁
weight for the outputs of each learner [20]. Calculate the average of the individual
predictions: 𝑜[𝑗] = 1

𝑁

∑︀𝑛
𝑖=1 𝑜𝑖[𝑗] for each 𝑗 output class, where 𝑁 is the number of

learners, 𝑜𝑖[𝑗] is the jth element (class membership value) in the output vector of
the prediction. Then find for each sample the class with the highest membership
value as the chosen class for the given sample (𝑙 = argmax(𝑜)).

1.1.2. Plurality voting [18]

Find for each learner 𝑖, the class with the highest membership value from the
prediction 𝑜𝑖. If it is at index ℎ𝑖 (ℎ𝑖 = argmax(𝑜𝑖)), then then let

𝑐𝑖[𝑗] =

{︃
1, if 𝑗 = ℎ𝑖,

0, otherwise,

for all 𝑗 classes.
Then calculate the sum 𝑐[𝑗] = 1

𝑁

∑︀𝑛
𝑖=1 𝑐𝑖[𝑗] for each 𝑗 classes, where 𝑁 is the

number of learners. The winner of the voting for the sample is a class with the
maximum value 𝑙 = argmax(𝑐). We note, that sometimes this method is called
majority voting, although majority voting means choosing the winner only if more
than 50% of the learners have voted on it. When using majority voting it is
recommended to use an odd number of voters.

1.1.3. Borda voting [1]

For each individual learner 𝑖, calculate the index 𝑠𝑖[𝑗] in order of the membership
values from the prediction 𝑜𝑖[𝑗]. Let 𝑠𝑖[𝑗] be 𝑛 if 𝑜𝑖[𝑗] has the nth smallest value,
for each 𝑗 class for each 𝑖 learner. Then calculate the sum 𝑠[𝑗] = 1

𝑁

∑︀𝑛
𝑖=1 𝑠𝑖[𝑗] for

each 𝑗 classes, where 𝑁 is the number of learners used for the prediction. The
winner of the voting is a class with the maximum values 𝑙 = argmax(𝑠).

1.1.4. Nash (product) voting [1]

For each class 𝑗 evaluate the product of the predictions of all of the 𝑖 individual
learners: 𝑜[𝑗] =

∏︀𝑁
𝑖=𝑗 𝑜𝑖[𝑗] Then find for each sample the class with the highest

membership value (𝑙 = argmax(𝑜)).
We note that the fuzzy voting and the product voting can be used for regression

as well, while plurality voting and borda voting are suitable for classification only.
These voting functions can be applied simply on the predictions of the individual
learners which have learned either sequentially or in parallel.
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2. New voting functions for neural network classi-
fiers

We propose the addition of new variants for committee machine voting functions
which in some cases might have better performance compared to the well-known
voting functions. We note that our experiment was done using convolutional neural
network classifiers, however, these voting functions might be used for every classifier
which can produce fuzzy output values, as well. The good performance and the
variety of the well-known committee machines motivated us to develop our new
ones. We defined the following new committee machine voting functions which we
will compare with some of the well-known voting functions. Some of the proposed
new voting functions belong to the locally weighted average voting functions [22],
others are meta voters using the previous ones.

2.1. Fuzzy average voting weighted by the confidence
Fuzzy average voting can be weighted by confidence [14]. Here we propose a simple
function with getting a confidence from the class membership values. This method
obviously needs less performance compared to other more advanced methods. Class
membership values closer to 0 or 1 will have stronger weight, we transform the
output of the individual learners before calculating the fuzzy average, so that the
values which are considered uncertain (not close to 0 or 1) values will be less
important by multiplying with a smaller weight. Given the network output 𝑜𝑖[𝑗]
for each 𝑖 learners for each 𝑗 classes we calculate the combined result with the
following formula:

𝑜[𝑗] =
1

𝑁

𝑁∑︁

𝑖=1

((𝑜𝑖[𝑗]− 0.5)(2𝑜𝑖[𝑗]− 1)2 + 0.5).

Then we get the winner class from this weighted average: 𝑙 = argmax(𝑜).

2.2. Fuzzy average voting weighted by 1-difference from the
combined output

Knowing the outputs of the learners we can base another weighted average method
based on the better performance of the fuzzy average compared to the individual
learners. Starting with the calculation of the fuzzy average, individual predictions
will be multiplied by a weight that is the difference from the ensemble prediction
subtracted from 1. Let 𝑜[𝑗] be calculated as defined for the fuzzy voting in Section 1.
Then we calculate the new variant as follows:

𝑜′[𝑗] =
1

𝑁

𝑁∑︁

𝑖=1

((𝑜𝑖[𝑗]− 0.5)(1− |𝑜𝑖[𝑗]− 𝑜[𝑗]|) + 0.5).

We can find the winner class from the weighted average: 𝑙 = argmax(𝑜′).
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2.3. Fuzzy average voting weighted by the reciprocal value of
the number of failed training samples

Let 𝑓𝑖 be the number of failed (misclassified) samples for each learner 𝑖, of the
training dataset. The reciprocal value of 𝑓𝑖 will be used as the weight for the
learner 𝑖 if 𝑓𝑖 is not equal to 0, otherwise we use a maximal weight, e.g. 2.

𝑜[𝑗] =
1

𝑁

𝑁∑︁

𝑖=1

𝑜𝑖[𝑗]

𝑓𝑖

From this weighted average we get the winner class: 𝑙 = argmax(𝑜).

2.4. Geometric mean (Nash voting with 𝑁th root)
We create a variant of the Nash (product) vote function for using in meta voting
function as well. Since with higher number of voters (𝑁) the product of many values
from the interval [0, 1] can be a very small number, much smaller than e.g. the fuzzy
average, so we take the 𝑁th root of the product, getting the geometric mean of
the output values. We note that the geometric mean will choose the same winner
as the Nash (product) voting, since the Nth root function is strictly monotonically
increasing over the interval [0, 1]. For each class 𝑗 evaluate the product sum of the
predictions of all of the 𝑖 individual learners:

𝑜[𝑗] = 𝑁

⎯⎸⎸⎷
𝑁∏︁

𝑖=1

𝑜𝑖[𝑗].

Then find the class with the highest membership value (𝑙 = argmax(𝑜)).

2.5. Meta-voting variants
Fuzzy average or plurality vote by combining selected voting functions by calcu-
lating the fuzzy average or the plurality of votes on the classes of the results of
the selected voting functions. For analysis purposes, we define three meta voter
variants.

• V8: Plurality voting from the results of V1, V2, V3, V4, V5, V6, V7

• V9: Plurality voting from the results of V1, V2, V3, V4, V7

• V10: Fuzzy average voting from the results of V1, V2, V3, V4, V7

For the above three meta voting functions, we calculate the results of the needed
voting functions first, then we combine them as it was described above for the voting
functions calculated from the results of the individual learners.

We note that any data used to calculate the weights certainly can only be
part of the training data or result of the learning process, without any knowledge
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about test data or performance on test data. We also note that plurality vote and
borda vote functions do not give fuzzy class membership values, so they cannot
be combined well by fuzzy average with the fuzzy results of other voters. So for
the performance evaluation, we will use three meta voter functions described above
(V8, V9, V10) for the better understanding and comparison possibility.

3. Performance evaluation of voter functions

3.1. Performance evaluation framework
We performed our evaluation using NVIDIA and AMD GPUs with the Tensorflow
framework. Our simple system was based on a file interface allowing to run on
multiple machines. For the experiments, we have used two convolutional neural
network learning algorithms with different strength. They were built as modified
variants of [15].

We used the MNIST database of handwritten digits [13] to perform our research.
The accuracy results may vary because of the stochastic nature of the algorithms, so
many learning sessions were executed, and their average results were analysed. We
can choose from many voting functions, e.g. fuzzy averaging, plurality(or majority)
voting, etc. In our research, we have compared the results of some of the most well-
known voting functions with our newly defined ones.

For the analyses, we used the Python Numpy and Pandas frameworks. The
algorithms run with different epoch counts to see the behavior of our proposed
algorithm variations not only with the statistically best settings. In the following
subsection we will show the performance of the proposed voting functions. For
the evaluation we run about one million learning sessions with three convolutional
neural network algorithms modified according to our proposed methods.

We have executed several experiments with two algorithms of different strengths.
The first algorithm variant was built from the algorithm introduced in, the second
variant was developed based on the algorithm. The algorithm variations were exe-
cuted with different parameters, e.g. number of epochs to run, number of instances
in the ensembles and parameters for the fuzzification of binary class membership
values of training data, including parameters which keep the original class mem-
bership values. We note that we have executed many learning sessions without
fuzzification in order to have more reliable results for comparison.

3.2. Performance of voting functions
For the evaluation, we have included the well-known voter schemes and our new
variants as well. We have implemented the following voting functions:

• V1: fuzzy voting, i.e. averaging

• V2: fuzzy variant – average of individual predictions weighted by a confidence
estimation of the class membership values
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• V3: fuzzy variant – average of individual predictions weighted by 1-difference
from V1 results, predictions will be multiplied by a weight which is the dif-
ference from the ensemble prediction subtracted from the value 1.0

• V4: fuzzy variant – average of individual predictions weighted by 1/training
failures

• V5: plurality voting

• V6: borda voting

• V7: geometric mean voting (instead of product voting)

• V8: meta-voter: plurality vote by using all the above voting functions

• V9: meta-voter: plurality meta vote of voters without the plurality and borda
voting (V1–V4, V7)

• V10: meta voter: fuzzy average meta vote of voters without the plurality and
borda voting (V1–V4, V7)

We note that variations of the plurality vote also can be applied [11] however
plurality and borda votes are not among the best performing voting functions
according to our measurements, we included them for reference and comparison
purposes.

3.2.1. Voting experiment 1 with algorithm based on [14]

Our first experiment on voting schemes has been run 1000 times. In each turn 6–20
voters voted with the voting functions (V1–V10) described above.

Voting function MIN AVG MAX
max(accuracy) 0.995600 0.997043 0.998000
avg(accuracy) 0.995188 0.996306 0.997260
min(accuracy) 0.992700 0.995422 0.996900
V1 – fuzzy average 0.996000 0.997351 0.998400
V2 – weighted by confidence 0.995900 0.997360 0.998300
V3 – weighted by diff from V1 0.996000 0.997346 0.998300
V4 – weighted by 1/failures 0.995500 0.997321 0.998300
V5 – plurality voting 0.995500 0.997280 0.998400
V6 – borda voting 0.995600 0.997296 0.998400
V7 – geometric mean voting 0.996000 0.997367 0.998300
V8 – meta – plurality (V1–V7) 0.995900 0.997353 0.998400
V9 – meta – plurality (V1–V4, V7) 0.996000 0.997356 0.998400
V10 – meta – fuzzy avg (V1–V4, V7) 0.996100 0.997350 0.998300

Table 1
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Table 1 shows the accumulated results of the tested voting functions with the
minimum, average and maximum number of the failed samples of the individual
learners included. The best individual result was 20 fails of 10000 test samples, the
worst was 73 failed samples and on average they performed as low as 36.94 fails
from 10000 samples as individual learners. The well-known fuzzy voting performed
26.49 fails on average. There were no big differences among the voting functions,
the best result came from the product voting (V7) from committee results on
training failures. For some of the best performing voting functions (V1, V2, V7)
we also show the accuracy achieved by them with different number of voters.

Figure 1: The performance results of our algorithm with V1 fuzzy
average voting function by 6-20 voters on average on test data using

different epoch counts (15, 17, 19, 20).

As we can see on Figure 1 the three voting functions show similar behavior. All
of them were performing better with more voters.

3.2.2. Voting experiment 2 with algorithm based on [15]

The second experiment ran 1000 training sessions on a slightly better algorithm, a
modified version of [15]. It was executed with different epoch counts (15, 17, 19,
20) to eliminate the effect of a possibly statistically optimized epoch count for a
specific dataset.

Table 2 shows the results where in each turn 6–20 voters cast their votes which
were then combined using the voter functions defined above. The best individual
result was 15 fails from 10000 test samples, the worst individual result was 44 failed
samples and on average they performed only 27.55 fails as individual learners.
The well-known fuzzy voting performed 21.41 fails on average. There were no
big differences among the voting functions, the best average result (21.28 fails on
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Voting function MIN AVG MAX
max(accuracy) 0.996700 0.997795 0.998500
avg(accuracy) 0.996580 0.997245 0.997880
min(accuracy) 0.995600 0.996662 0.997600
V1 – fuzzy average 0.996700 0.997859 0.998700
V2 – weighted by confidence 0.996600 0.997863 0.998600
V3 – weighted by diff from V1 0.996700 0.997857 0.998700
V4 – weighted by 1/training failures 0.996800 0.997872 0.998700
V5 – plurality voting 0.996500 0.997786 0.998600
V6 – borda voting 0.996600 0.997791 0.998600
V7 – geometric mean voting 0.996700 0.997861 0.998700
V8 – meta – plurality (V1-V7) 0.996700 0.997860 0.998700
V9 – meta – plurality (V1-V4,V7) 0.996700 0.997862 0.998700
V10 – meta – fuzzy avg (V1-V4,V7) 0.996700 0.997857 0.998700

Table 2

average) came from the fuzzy voting weighted by the reciprocal value of training
failures (V4).

Also, we can check whether the difference between the voting functions depends
on the number of voters. On the next figure, we can check that for three of the
best performing voting functions.

Figure 2: The performance results of our algorithm with V1 fuzzy
average voting function by 6-20 voters on average on test data using
different parameters for the fuzzification of the training data class

membership values.
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3.2.3. Voting experiment 3 with algorithm based on [15]

The third experiment ran also 1000 times on a modified version of [15]. It was
executed with 20 epochs for each learner.

Voting function MIN AVG MAX
max(accuracy) 0.997100 0.997914 0.998500
avg(accuracy) 0.996840 0.997418 0.997886
min(accuracy) 0.996200 0.996878 0.997700
V1 – fuzzy average 0.997300 0.998126 0.998700
V2 – weighted by confidence 0.997300 0.998122 0.998700
V3 – weighted by diff from V1 0.997200 0.998128 0.998700
V4 – weighted by 1/failures 0.997300 0.998126 0.998700
V5 – plurality voting 0.997000 0.998044 0.998700
V6 – borda voting 0.997000 0.998044 0.998700
V7 – geometric mean voting 0.997100 0.998126 0.998700
V8 – meta – plurality (V1–V7) 0.997200 0.998125 0.998700
V9 – meta – plurality (V1–V4, V7) 0.997200 0.998128 0.998700
V10 – meta – fuzzy avg (V1–V4, V7) 0.997200 0.998129 0.998700

Table 3

Table 3 shows the results where in each turn 6-20 voters voted using the above-
defined voter functions. The best individual result was 15 fails from 10000 test
samples, the worst individual result was 38 failed samples and on average they
performed only 25.82 fails as individual learners. The well-known fuzzy voting per-
formed 18.74 on average. There were no big differences among the voting functions,
the best result (18.71 fails) came from our meta fuzzy voter function (V10).

3.2.4. Voting experiment 4 with algorithm based on [15]

Our last experiment to compare voting functions also ran 1000 training sessions
on a similar modified version of [15]. This time we also added a 0.2 dropout to
the algorithm. Dropout is a useful regularization method, which helps to eliminate
the overfitting in general, as well as in our case is useful for the fuzzification of the
training data class membership values.

Table 4 shows the results of the experiment where in each turn 6–20 voters
voted using the voting functions V1–V10. The best individual result was 17 fails
from 10000 test samples, the worst individual result was 42 failed samples and
on average they performed only 26.35 fails as individual learners. The well-known
fuzzy voting performed 21.76 fails on average. There were no big differences among
the voting functions, the best result came from our fuzzy voting weighted by the
reciprocal value of training failures (V4).
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Figure 3: The performance results of our algorithm with V1 fuzzy
average voting function by 6-20 voters on average on test data using
different parameters for the fuzzification of the training data class

membership values.

Voting function MIN AVG MAX
max(accuracy) 0.996900 0.997805 0.998300
avg(accuracy) 0.996740 0.997365 0.997980
min(accuracy) 0.995800 0.996841 0.997700
V1 – fuzzy average 0.996800 0.997824 0.998600
V2 – weighted by confidence 0.996900 0.997809 0.998600
V3 – weighted by diff from V1 0.996900 0.997833 0.998600
V4 – weighted by 1/failures 0.996800 0.997835 0.998600
V5 – plurality voting 0.996600 0.997721 0.998500
V6 – borda voting 0.996600 0.997733 0.998500
V7 – geometric mean voting 0.996800 0.997826 0.998600
V8 – meta – plurality (V1–V7) 0.996800 0.997829 0.998600
V9 – meta – plurality (V1–V4, V7) 0.996800 0.997828 0.998600
V10 – meta – fuzzy avg (V1–V4, V7) 0.996800 0.997829 0.998600

Table 4

3.2.5. Combined statistics from experiments with different learners

We also show combined statistics from the collected results performed by different
learners to see a more comprehensive comparison between the voting functions. We
collected all the results of our experiments which had all the variables presented
in the above tables: individual test results and the results of the V1–V10 voting
functions.

New voting functions for neural network algorithms 239



Voting function MIN AVG MAX
max(accuracy) 0.994600 0.997751 0.998500
avg(accuracy) 0.994400 0.997193 0.998250
min(accuracy) 0.992600 0.996563 0.998200
V1 – fuzzy average 0.995200 0.997819 0.998800
V2 – weighted by confidence 0.995300 0.997825 0.998700
V3 – weighted by diff from V1 0.995200 0.997820 0.998800
V4 – weighted by 1/failures 0.994800 0.997813 0.998800
V5 – plurality voting 0.993900 0.997749 0.998700
V6 – borda voting 0.993900 0.997758 0.998700
V7 – geometric mean voting 0.995200 0.997824 0.998700
V8 – meta – plurality (V1-V7) 0.995300 0.997819 0.998800
V9 – meta – plurality (V1-V4,V7) 0.995200 0.997821 0.998800
V10 – meta – fuzzy avg (V1-V4,V7) 0.995200 0.997821 0.998800

Table 5

Table 5 shows the combined statistics of about 1 million votings where in each
turn 2–40 voters voted using the voting functions V1–V10. This statistics can
differ from what we can see from the above tables, since the results of yet more
learning sessions are included and the number of conducted tests and the number
of learners participated in the tests were not the same in the experiments. The best
individual result was 15 fails from 10000 test samples, the worst individual result
was 74 failed samples and on average they performed only 28.07 fails as individual
learners. The well-known fuzzy voting performed 21.81 fails on average. There
were small differences among the voting functions, the best result came from our
fuzzy average voting variant (V2) with 21.75 fails from 10000 test samples. V3 and
V7 voting functions and V9 and V10 meta voting functions have also outperformed
the V1 fuzzy average voting function. The voting performance of V7 had the lowest
standard deviation among the voting functions.

4. Conclusion

From the experiments, which were performed to compare the new voting functions
with some of the well-known ones, we can conclude that the accuracy of the ex-
amined voting functions have a stochastic behavior. We discovered that there is
no voting function that is always the winner. The availability of multiple voting
functions can, however, lead to better performance, if the best performer function
will be chosen for a specific problem set. Some of the proposed voting functions
had better accuracy, in all our experiments, compared to the most frequently used
well-known fuzzy average and plurality voting functions (V2, V7, V9, V10). This
is results are very promising, although further research and analysis must be done
to discover their behavior.
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Abstract

Let 𝑚 be a positive integer. Then we show that the exponential Diophan-
tine equation (4𝑚2+1)𝑥+(21𝑚2−1)𝑦 = (5𝑚)𝑧 has only the positive integer
solution (𝑥, 𝑦, 𝑧) = (1, 1, 2) under some conditions. The proof is based on
elementary methods and Baker’s method.

Keywords: Exponential Diophantine equation, integer solution, lower bound
for linear forms in two logarithms.

MSC: 11D61

1. Introduction

Let 𝑎, 𝑏, 𝑐 be fixed relatively prime positive integers greater than one. The expo-
nential Diophantine equation

𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 (1.1)

in positive integers 𝑥, 𝑦, 𝑧 has been actively studied by a number of authors. It
is known that the number of solutions (𝑥, 𝑦, 𝑧) of equation (1.1) is finite, and all
solutions can be effectively determined by means of Baker’s method of linear forms
in logarithms.
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Equation (1.1) has been investigated in detail for Pythagorean numbers 𝑎, 𝑏, 𝑐,
too. Jeśmanowicz [8] conjectured that if 𝑎, 𝑏, 𝑐 are Pythagorean numbers, i.e., posi-
tive integers satisfying 𝑎2+𝑏2 = 𝑐2, then (1.1) has only the positive integer solution
(𝑥, 𝑦, 𝑧) = (2, 2, 2) (cf. [14, 17, 22]). As an analogue of Jeśmanowicz’ conjecture, the
author proposed that if 𝑎, 𝑏, 𝑐, 𝑝, 𝑞, 𝑟 are fixed positive integers satisfying 𝑎𝑝+𝑏𝑞 = 𝑐𝑟

with 𝑎, 𝑏, 𝑐, 𝑝, 𝑞, 𝑟 ≥ 2 and gcd(𝑎, 𝑏) = 1, then (1.1) has only the positive integer
solution (𝑥, 𝑦, 𝑧) = (𝑝, 𝑞, 𝑟) except for a handful of triples (𝑎, 𝑏, 𝑐) (cf. [6, 12, 13, 15,
21, 24]). This conjecture has been proved to be true in many special cases. This
conjecture, however, is still unsolved.

In Terai [23], the author showed that if 𝑚 is a positive integer such that 1 ≤
𝑚 ≤ 20 or 𝑚 ̸≡ 3 (mod 6), then the Diophantine equation

(4𝑚2 + 1)𝑥 + (5𝑚2 − 1)𝑦 = (3𝑚)𝑧 (1.2)

has only the positive integer solution (𝑥, 𝑦, 𝑧) = (1, 1, 2). The proof is based on
elementary methods and Baker’s method. Suy-Li [20] proved that if 𝑚 ≥ 90
and 3 | 𝑚, then equation (1.2) has only the positive integer solution (𝑥, 𝑦, 𝑧) =
(1, 1, 2) by means of the result of Bilu-Hanrot-Voutier [3] concerning the existence
of primitive prime divisors in Lucas-numbers. Finally, Bertók [1] has completely
solved equation (1.2) including the remaining cases 20 < 𝑚 < 90. His proof can be
done by the help of exponential congruences. This is a nice application of Bertók
and Hajdu [2].

More generally, several authors have studied the Diophantine equation

(𝑝𝑚2 + 1)𝑥 + (𝑞𝑚2 − 1)𝑦 = (𝑟𝑚)𝑧 (1.3)

under some conditions, where 𝑝, 𝑞, 𝑟 are positive integers satisfying 𝑝 + 𝑞 = 𝑟2:

∙ (Miyazaki-Terai [16], 2014) (𝑚2 + 1)𝑥 + (𝑞𝑚2 − 1)𝑦 = (𝑟𝑚)𝑧, 1 + 𝑞 = 𝑟2,

∙ (Terai-Hibino [25], 2015) (12𝑚2 + 1)𝑥 + (13𝑚2 − 1)𝑦 = (5𝑚)𝑧,

∙ (Terai-Hibino [26], 2017) (3𝑝𝑚2 − 1)𝑥 + (𝑝(𝑝− 3)𝑚2 + 1)𝑦 = (𝑝𝑚)𝑧,

∙ (Fu-Yang [7], 2017) (𝑝𝑚2 + 1)𝑥 + (𝑞𝑚2 − 1)𝑦 = (𝑟𝑚)𝑧, 𝑟 | 𝑚,

∙ (Pan [19], 2017) (𝑝𝑚2 + 1)𝑥 + (𝑞𝑚2 − 1)𝑦 = (𝑟𝑚)𝑧, 𝑚 ≡ ±1 (mod 𝑟),

∙ (Murat [18], 2018) (18𝑚2 + 1)𝑥 + (7𝑚2 − 1)𝑦 = (5𝑚)𝑧,

∙ (Kizildere et al. [10], 2018) ((𝑞+1)𝑚2+1)𝑥+(𝑞𝑚2−1)𝑦 = (𝑟𝑚)𝑧, 2𝑞+1 = 𝑟2.

We note that equation (1.2), which was completely resolved by Terai, Suy-Li
and Bertók, is the first equation shown that equation (1.3) has only the trivial
solution (𝑥, 𝑦, 𝑧) = (1, 1, 2) without any assumption on 𝑚. All known results for
the above-mentioned equations need congruence relations or inequalities on 𝑚.

In this paper, we consider the exponential Diophantine equation

(4𝑚2 + 1)𝑥 + (21𝑚2 − 1)𝑦 = (5𝑚)𝑧 (1.4)
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with 𝑚 positive integer. Denote 𝑣𝑝(𝑛) by the exponent of 𝑝 in the factorization of
a positive integer 𝑛. Our main result is the following:

Theorem 1.1. Let 𝑚 be a positive integer. Suppose that 𝑣5(4𝑚2 +1) = 𝑣5(21𝑚2−
1) = 1 only if 𝑚 ≡ ±1 (mod 10). Then equation (1.4) has only the positive integer
solution (𝑥, 𝑦, 𝑧) = (1, 1, 2).

This paper is organized as follows. When 𝑚 is even or 𝑚 is odd in (1.4) with
𝑦 ≥ 2, we show Theorem 1.1 by using elementary methods such as congruence
methods and the quadratic reciprocity law. When 𝑚 is odd in (1.4) with 𝑚 ≡ ±2
(mod 5) and 𝑦 = 1, we show Theorem 1.1 by applying a lower bound for linear
forms in two logarithms due to Laurent [11]. The proof of the case 𝑚 ≡ ±1 (mod 5)
uses the Primitive Divisor Theorem due to Zsigmondy [27]. That of the case 𝑚 ≡ 0
(mod 5) is based on a result on linear forms in 𝑝-adic logarithms due to Bugeaud
[5].

2. Preliminaries

In order to obtain an upper bound for a solution of Pillai’s equation, we need a
result on lower bounds for linear forms in the logarithms of two algebraic numbers.
We will introduce here some notations. Let 𝛼1 and 𝛼2 be real algebraic numbers
with |𝛼1| ≥ 1 and |𝛼2| ≥ 1. We consider the linear form

Λ = 𝑏2 log𝛼2 − 𝑏1 log𝛼1,

where 𝑏1 and 𝑏2 are positive integers. As usual, the logarithmic height of an alge-
braic number 𝛼 of degree 𝑛 is defined as

ℎ(𝛼) =
1

𝑛

⎛
⎝log |𝑎0| +

𝑛∑︁

𝑗=1

log max
{︁

1,
⃒⃒
𝛼(𝑗)

⃒⃒}︁
⎞
⎠ ,

where 𝑎0 is the leading coefficient of the minimal polynomial of 𝛼 (over Z) and
(𝛼(𝑗))1≤𝑗≤𝑛 are the conjugates of 𝛼. Let 𝐴1 and 𝐴2 be real numbers greater than
1 with

log𝐴𝑖 ≥ max

{︂
ℎ(𝛼𝑖),

| log𝛼𝑖|
𝐷

,
1

𝐷

}︂
,

for 𝑖 ∈ {1, 2}, where 𝐷 is the degree of the number field Q(𝛼1, 𝛼2) over Q. Define

𝑏′ =
𝑏1

𝐷 log𝐴2
+

𝑏2
𝐷 log𝐴1

.

We choose to use a result due to Laurent [11, Corollary 2], with 𝑚 = 10 and
𝐶2 = 25.2.
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Proposition 2.1 (Laurent [11]). Let Λ be given as above, with 𝛼1 > 1 and 𝛼2 > 1.
Suppose that 𝛼1 and 𝛼2 are multiplicatively independent. Then

log |Λ| ≥ −25.2𝐷4

(︂
max

{︂
log 𝑏′ + 0.38,

10

𝐷

}︂)︂2

log𝐴1 log𝐴2.

Next, we shall quote a result on linear forms in 𝑝-adic logarithms due to Bugeaud
[5]. Here we consider the case where 𝑦1 = 𝑦2 = 1 in the notation from [5, p. 375].

Let 𝑝 be an odd prime. Let 𝑎1 and 𝑎2 be non-zero integers prime to 𝑝. Let 𝑔
be the least positive integer such that

ord𝑝(𝑎𝑔1 − 1) ≥ 1, ord𝑝(𝑎𝑔2 − 1) ≥ 1,

where we denote the 𝑝-adic valuation by ord𝑝( · ). Assume that there exists a real
number 𝐸 such that

1/(𝑝− 1) < 𝐸 ≤ ord𝑝(𝑎𝑔1 − 1).

We consider the integer
Λ = 𝑎𝑏11 − 𝑎𝑏22 ,

where 𝑏1 and 𝑏2 are positive integers. We let 𝐴1 and 𝐴2 be real numbers greater
than 1 with

log𝐴𝑖 ≥ max{log |𝑎𝑖|, 𝐸 log 𝑝} (𝑖 = 1, 2),

and we put 𝑏′ = 𝑏1/ log𝐴2 + 𝑏2/ log𝐴1.

Proposition 2.2 (Bugeaud [5]). With the above notation, if 𝑎1 and 𝑎2 are multi-
plicatively independent, then we have the upper estimate

ord𝑝(Λ) ≤ 36.1𝑔

𝐸3(log 𝑝)4
(︀

max{log 𝑏′ + log(𝐸 log 𝑝) + 0.4, 6𝐸 log 𝑝, 5}
)︀2

log𝐴1 log𝐴2.

The following is a direct consequence of an old version of the Primitive Divisor
Theorem due to Zsigmondy [27]:

Proposition 2.3 (Zsigmondy [27]). Let 𝐴 and 𝐵 be relatively prime integers with
𝐴 > 𝐵 > 1. Let {𝑎𝑘}𝑘>1 be the sequence defined as

𝑎𝑘 = 𝐴𝑘 + 𝐵𝑘.

If 𝑘 > 1, then 𝑎𝑘 has a prime factor not dividing 𝑎1𝑎2 · · · 𝑎𝑘−1, whenever (𝐴,𝐵, 𝑘) ̸=
(2, 1, 3).

3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1.
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3.1. The case where 𝑚 is odd and 𝑚 ≡ ±1 (mod 5)

Lemma 3.1. Let 𝑚 be a positive integer such that 𝑚 is odd and 𝑚 ≡ ±1 (mod 5).
Suppose that 𝑣5(4𝑚2 + 1) = 𝑣5(21𝑚2 − 1) = 1. Then equation (1.4) has only the
positive integer solution (𝑥, 𝑦, 𝑧) = (1, 1, 2).

Proof. If 𝑣5(4𝑚2 + 1) = 𝑣5(21𝑚2 − 1) = 1, then gcd(4𝑚2 + 1, 21𝑚2 − 1) = 5.
Put 𝐴 = (4𝑚2 + 1)/5 and 𝐵 = (21𝑚2 − 1)/5. Then gcd(𝐴,𝐵) = 1 and 𝐴𝐵 ̸≡ 0
(mod 5). In view of (5𝑚)𝑥 < (4𝑚2 + 1)𝑥 < (5𝑚)𝑧 from (1.4), it follows that the
inequality 𝑧 > 𝑥 holds. Equation (1.4) can be written as

5𝑦𝐵𝑦 = 5𝑥(5𝑧−𝑥𝑚𝑧 −𝐴𝑥)

with 𝐴𝐵 ̸≡ 0 (mod 5). This implies that 𝑥 = 𝑦. Then equation (1.4) becomes

𝑎𝑥 = 𝐴𝑥 + 𝐵𝑥 = 5𝑧−𝑥𝑚𝑧.

Apply Proposition 2.3 with 𝐴 = (4𝑚2 + 1)/5 and 𝐵 = (21𝑚2 − 1)/5. Note that
gcd(𝐴,𝐵) = 1. Since 𝑎1 = 5𝑚2, it follows that 𝑥 = 1, which yields (𝑦, 𝑧) =
(1, 2).

Lemma 3.2. In (1.4), 𝑦 is odd.

Proof. When 𝑚 = 1, we see that 𝑣5(4𝑚2 + 1) = 𝑣5(21𝑚2 − 1) = 1. By Lemma 3.1,
we may suppose that 𝑚 ≥ 2. It follows that 𝑧 ≥ 2 from (1.4). Taking (1.4) modulo
𝑚2 implies that 1 + (−1)𝑦 ≡ 0 (mod 𝑚2) and hence 𝑦 is odd.

3.2. The case where 𝑚 is even
Lemma 3.3. If 𝑚 is even, then equation (1.4) has only the positive integer solution
(𝑥, 𝑦, 𝑧) = (1, 1, 2).

Proof. If 𝑧 ≤ 2, then (𝑥, 𝑦, 𝑧) = (1, 1, 2) from (1.4). Hence we may suppose that
𝑧 ≥ 3. Taking (1.4) modulo 𝑚3 implies that

1 + 4𝑚2𝑥− 1 + 21𝑚2𝑦 ≡ 0 (mod 𝑚3),

so
4𝑥 + 21𝑦 ≡ 0 (mod 𝑚),

which is impossible, since 𝑦 is odd and 𝑚 is even. We therefore conclude that if
𝑚 is even, then equation (1.4) has only the positive integer solution (𝑥, 𝑦, 𝑧) =
(1, 1, 2).

3.3. The case where 𝑚 is odd and 𝑚 ≡ ±2 (mod 5)

By Lemma 3.3, we may suppose that 𝑚 is odd with 𝑚 ≥ 3. Let (𝑥, 𝑦, 𝑧) be a
solution of (1.4).
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Lemma 3.4. If 𝑚 is odd and 𝑚 ≡ ±2 (mod 5), then 𝑦 = 1 and 𝑥 is odd.

Proof. Suppose that 𝑚 ≡ ±2 (mod 5), i.e., 𝑚2 ≡ −1 (mod 5). Then
(︁

21𝑚2−1
4𝑚2+1

)︁
=

1 and
(︁

5𝑚
4𝑚2+1

)︁
= −1, where

(︀*
*
)︀

denotes the Jacobi symbol. Indeed,

(︂
21𝑚2 − 1

4𝑚2 + 1

)︂
=

(︂
𝑚2 − 6

4𝑚2 + 1

)︂
=

(︂
4𝑚2 + 1

𝑚2 − 6

)︂
=

(︂
25

𝑚2 − 6

)︂
= 1

and
(︂

5𝑚

4𝑚2 + 1

)︂
=

(︂
5

4𝑚2 + 1

)︂(︂
𝑚

4𝑚2 + 1

)︂
=

(︂
4𝑚2 + 1

5

)︂(︂
4𝑚2 + 1

𝑚

)︂
=

(︀−3
5

)︀ (︀
1
𝑚

)︀
= (−1) · 1 = −1, since 𝑚2 ≡ −1 (mod 5). In view of these, 𝑧 is even

from (1.4).
Suppose that 𝑦 ≥ 2. Taking (1.4) modulo 8 implies that

5𝑥 ≡ (5𝑚)𝑧 ≡ 1 (mod 8),

so 𝑥 is even.
On the other hand, since 𝑚2 ≡ −1 (mod 5), taking (1.4) modulo 5 implies that

2𝑥 + 3𝑦 ≡ 0 (mod 5),

which contradicts the fact that 𝑥 is even and 𝑦 is odd. Hence we obtain 𝑦 = 1.
Then, taking (1.4) modulo 8 implies that 5𝑥 + 4 ≡ (5𝑚)𝑧 ≡ 1 (mod 8), so 𝑥 is
odd.

From Lemma 3.4, it follows that 𝑦 = 1 and 𝑥 is odd. If 𝑥 = 1, then we obtain
𝑧 = 2 from (1.4). From now on, we may suppose that 𝑥 ≥ 3. Hence our theorem
is reduced to solving Pillai’s equation

𝑐𝑧 − 𝑎𝑥 = 𝑏 (3.1)

with 𝑥 ≥ 3, where 𝑎 = 4𝑚2 + 1, 𝑏 = 21𝑚2 − 1 and 𝑐 = 5𝑚.
We now want to obtain a lower bound for 𝑥.

Lemma 3.5. 𝑥 ≥ 1
4 (𝑚2 − 21).

Proof. Since 𝑥 ≥ 3, equation (3.1) yields the following inequality:

(5𝑚)𝑧 = (4𝑚2 + 1)𝑥 + 21𝑚2 − 1 ≥ (4𝑚2 + 1)3 + 21𝑚2 − 1 > (5𝑚)3.

Hence 𝑧 ≥ 4. Taking (3.1) modulo 𝑚4 implies that

1 + 4𝑚2𝑥 + 21𝑚2 − 1 ≡ 0 (mod 𝑚4),

so 4𝑥 + 21 ≡ 0 (mod 𝑚2). Hence we obtain our assertion.
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We next want to obtain an upper bound for 𝑥.

Lemma 3.6. 𝑥 < 2521 log 𝑐.

Proof. From (3.1), we now consider the following linear form in two logarithms:

Λ = 𝑧 log 𝑐− 𝑥 log 𝑎 (> 0).

Using the inequality log(1 + 𝑡) < 𝑡 for 𝑡 > 0, we have

0 < Λ = log(
𝑐𝑧

𝑎𝑥
) = log(1 +

𝑏

𝑎𝑥
) <

𝑏

𝑎𝑥
. (3.2)

Hence we obtain
log Λ < log 𝑏− 𝑥 log 𝑎. (3.3)

On the other hand, we use Proposition 2.1 to obtain a lower bound for Λ. It
follows from Proposition 2.1 that

log Λ ≥ −25.2 (max {log 𝑏′ + 0.38, 10})
2

(log 𝑎)(log 𝑐), (3.4)

where 𝑏′ = 𝑥
log 𝑐 + 𝑧

log 𝑎 .
We note that 𝑎𝑥+1 > 𝑐𝑧. Indeed,

𝑎𝑥+1−𝑐𝑧 = 𝑎(𝑐𝑧−𝑏)−𝑐𝑧 = (𝑎−1)𝑐𝑧−𝑎𝑏 ≥ 4𝑚2 ·25𝑚2− (4𝑚2 +1)(21𝑚2−1) > 0.

Hence 𝑏′ < 2𝑥+1
log 𝑐 .

Put 𝑀 = 𝑥
log 𝑐 . Combining (3.3) and (3.4) leads to

𝑥 log 𝑎 < log 𝑏 + 25.2

(︂
max

{︂
log

(︂
2𝑀 +

1

log 𝑐

)︂
+ 0.38, 10

}︂)︂2

(log 𝑎)(log 𝑐),

so

𝑀 < 1 + 25.2

(︂
max

{︂
log

(︂
2𝑀 +

1

2

)︂
+ 0.38, 10

}︂)︂2

,

since log 𝑐 = log(5𝑚) ≥ log 15 > 2. We therefore obtain 𝑀 < 2521. This completes
the proof of Lemma 3.6.

We are now in a position to prove Theorem 1.1. It follows from Lemmas 3.5,
3.6 that

1

4
(𝑚2 − 21) < 2521 log 5𝑚.

Hence we obtain 𝑚 ≤ 269. From (3.2), we have the inequality
⃒⃒
⃒⃒ log 𝑎

log 𝑐
− 𝑧

𝑥

⃒⃒
⃒⃒ < 𝑏

𝑥𝑎𝑥 log 𝑐
,

which implies that
⃒⃒
⃒ log 𝑎
log 𝑐 − 𝑧

𝑥

⃒⃒
⃒ < 1

2𝑥2 , since 𝑥 ≥ 3. Thus 𝑧
𝑥 is a convergent in the

simple continued fraction expansion to log 𝑎
log 𝑐 .
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On the other hand, if 𝑝𝑟

𝑞𝑟
is the 𝑟-th such convergent, then

⃒⃒
⃒⃒ log 𝑎

log 𝑐
− 𝑝𝑟

𝑞𝑟

⃒⃒
⃒⃒ > 1

(𝑎𝑟+1 + 2)𝑞2𝑟
,

where 𝑎𝑟+1 is the (𝑟 + 1)-st partial quotient to log 𝑎
log 𝑐 (see e.g. Khinchin [9]). Put

𝑧
𝑥 = 𝑝𝑟

𝑞𝑟
. Note that 𝑞𝑟 ≤ 𝑥. It follows, then, that

𝑎𝑟+1 >
𝑎𝑥 log 𝑐

𝑏𝑥
− 2 ≥ 𝑎𝑞𝑟 log 𝑐

𝑏𝑞𝑟
− 2. (3.5)

Finally, we checked by Magma [4] that inequality (3.5) does not hold for any 𝑟 with
𝑞𝑟 < 2521 log(5𝑚) in the range 3 ≤ 𝑚 ≤ 269.

3.4. The case 𝑚 ≡ 0 (mod 5)

Let 𝑚 be a positive integer with 𝑚 ≡ 0 (mod 5). Let (𝑥, 𝑦, 𝑧) be a solution of (1.4).
Taking (1.4) modulo 𝑚(≥ 5) implies that 𝑦 is odd. Here, we apply Proposition 2.2.
For this we set 𝑝 := 5, 𝑎1 := 4𝑚2 + 1, 𝑎2 := 1 − 21𝑚2, 𝑏1 := 𝑥, 𝑏2 := 𝑦, and

Λ := (4𝑚2 + 1)𝑥 − (1 − 21𝑚2)𝑦.

Then we may take 𝑔 = 1, 𝐸 = 2, 𝐴1 = 4𝑚2 + 1, 𝐴2 := 21𝑚2 − 1. Hence we have

2𝑧 ≤ 36.1

8(log 5)4
(︀

max{log 𝑏′+log(2 log 5)+0.4, 12 log 5}
)︀2

log(4𝑚2+1) log(21𝑚2−1),

where 𝑏′ := 𝑥
log(21𝑚2−1) + 𝑦

log(4𝑚2+1) . Suppose that 𝑧 ≥ 4. We will observe that
this leads to a contradiction. Taking (1.4) modulo 𝑚4 implies that

4𝑥 + 21𝑦 ≡ 0 (mod 𝑚2).

In particular, we see that 𝑀 := max{𝑥, 𝑦} ≥ 𝑚2/25. Therefore, since 𝑧 ≥ 𝑀 and
𝑏′ ≤ 𝑀

log𝑚 , we obtain

2𝑀 ≤ 36.1

8(log 5)4

(︂
max

{︂
log

(︂
𝑀

log𝑚

)︂
+ log(2 log 5) + 0.4, 12 log 5

}︂)︂2

× log(4𝑚2 + 1) log(21𝑚2 − 1). (3.6)

If 𝑚 ≥ 122009, then

2𝑀 ≤ 36.1

8(log 5)4

(︂
log

(︂
𝑀

log𝑚

)︂
+ log(2 log 5) + 0.4

)︂2
log(4𝑚2 + 1) log(21𝑚2 − 1).

Since 𝑚2 ≤ 25𝑀 , the above inequality gives

2𝑀 ≤ 0.7 (log𝑀 − log(log 122009) + 1.6)
2

log(100𝑀 + 1) log(525𝑀 − 1).
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We therefore obtain 𝑀 ≤ 3386, which contradicts the fact that 𝑀 ≥ 𝑚2/25 ≥
595447844.

If 𝑚 < 122009, then inequality (3.6) gives

2

25
𝑚2 ≤ 251 log(4𝑚2 + 1) log(21𝑚2 − 1).

This implies that 𝑚 ≤ 882. Hence all 𝑥, 𝑦 and 𝑧 are also bounded. It is not hard to
verify by Magma [4] that there is no (𝑚,𝑥, 𝑦, 𝑧) under consideration satisfying (1.4).
We conclude that 𝑧 ≤ 3. In this case, we can easily show that (𝑥, 𝑦, 𝑧) = (1, 1, 2).
This completes the proof of Theorem 1.1.
Remark 3.7. The values of 𝑚, 𝑎, 𝑏, 𝑐 satisfying the condition of Theorem 1.1 with
1 ≤ 𝑚 < 100 are given in the table below.

𝑚 𝑎 𝑏 𝑐
1 5 22 · 5 5

11 5 · 97 22 · 5 · 127 5 · 11
19 5 · 172 22 · 5 · 379 5 · 19
21 5 · 353 22 · 5 · 463 3 · 5 · 7
29 5 · 673 22 · 5 · 883 5 · 29
31 5 · 769 22 · 5 · 1009 5 · 31
39 5 · 1217 22 · 5 · 1597 3 · 5 · 13
49 5 · 17 · 113 22 · 5 · 2521 5 · 72

51 5 · 2081 22 · 5 · 2731 3 · 5 · 17
61 5 · 13 · 229 22 · 5 · 3907 5 · 61
69 5 · 13 · 293 22 · 5 · 4999 3 · 5 · 23
71 5 · 37 · 109 22 · 5 · 67 · 79 5 · 71
79 5 · 4993 22 · 5 · 6553 5 · 79
81 5 · 29 · 181 22 · 5 · 832 34 · 5
89 5 · 6337 22 · 5 · 8317 5 · 89
99 5 · 7841 22 · 5 · 41 · 251 32 · 5 · 11

Let 𝑚 be a positive integer with 𝑚 ≡ ±1 (mod 10). Suppose that 𝑣5(4𝑚2+1) =
𝑣5(21𝑚2−1). Since (4𝑚2+1)+(21𝑚2−1) = 25𝑚2, we see that gcd(4𝑚2+1, 21𝑚2−
1) = 5 or 25 according as 𝑣5(4𝑚2+1) = 𝑣5(21𝑚2−1) = 1 or 2. Put 𝐴 = (4𝑚2+1)/5𝑒

and 𝐵 = (21𝑚2 − 1)/5𝑒 with 𝑒 = 1, 2 according as 𝑣5(4𝑚2 + 1) = 𝑣5(21𝑚2 − 1) =
1 or 2. Then gcd(𝐴,𝐵) = 1 and 𝐴𝐵 ̸≡ 0 (mod 5). Though we apply Proposition
2.3 to the case 𝑣5(4𝑚2 + 1) = 𝑣5(21𝑚2 − 1) = 2, e.g., 𝑚 = 9, 41, 59, 191, 209, etc.,
we can not obtain 𝑥 = 1 unlike Theorem 1.1. Indeed, 𝑎𝑥 = 𝐴𝑥 + 𝐵𝑥 = 5𝑧−2𝑥𝑚𝑧

and 𝑎1 = 𝑚2.

References

[1] C. Bertók: The complete solution of the Diophantine equation (4𝑚2 +1)𝑥 + (5𝑚2 − 1)𝑦 =
(3𝑚)𝑧 , Period. Math. Hung. 72 (2016), pp. 37–42,
doi: https://doi.org/10.1007/s10998-016-0111-x.

On the exponential Diophantine equation (4m2 + 1)x + (21m2 − 1)y = (5m)z 251



[2] C. Bertók, L. Hajdu: A Hasse-type principle for exponential Diophantine equations and
its applications, Math. Comp. 85 (2016), pp. 849–860,
doi: https://doi.org/10.1090/mcom/3002.

[3] Y. Bilu, G. Hanrot, P. M. Voutier: Existence of primitive divisors of Lucas and Lehmer
numbers, Journal für die Reine und Angewandte Mathematik 539 (2001), pp. 75–122,
doi: https://doi.org/10.1515/crll.2001.080.

[4] W. Bosma, J. Cannon: Handbook of magma functions, Department of Math., University
of Sydney,
url: http://magma.maths.usyd.edu.au/magma/.

[5] Y. Bugeaud: Linear forms in 𝑝-adic logarithms and the Diophantine equation (𝑥𝑛−1)/(𝑥−
1) = 𝑦𝑞 , Math. Proc. Cambridge Phil. Soc. 127 (1999), pp. 373–381,
doi: https://doi.org/10.1017/S0305004199003692.

[6] Z. Cao: A note on the Diophantine equation 𝑎𝑥+𝑏𝑦 = 𝑐𝑧 , Acta Arith. 91 (1999), pp. 85–93,
doi: https://doi.org/10.4064/aa-91-1-85-93.

[7] R. Fu, H. Yang: On the exponential Diophantine equation (𝑎𝑚2+1)𝑥+(𝑏𝑚2−1)𝑦 = (𝑐𝑚)𝑧

with 𝑐 | 𝑚, Period. Math. Hung. 75 (2017), pp. 143–149,
doi: https://doi.org/10.1007/s10998-016-0170-z.

[8] L. Jeśmanowicz: Some remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/1956),
pp. 196–202.

[9] A. Y. Khinchin: Continued Fractions, 3rd ed., Groningen: P. Noordhoff Ltd., 1963.

[10] E. Kizildere, T. Miyazaki, G. Soydan: On the Diophantine equation ((𝑐+1)𝑚2 +1)𝑥 +
(𝑐𝑚2 − 1)𝑦 = (𝑎𝑚)𝑧 , Turk. J. Math. 42 (2018), pp. 2690–2698,
doi: https://doi.org/10.3906/mat-1803-14.

[11] M. Laurent: Linear forms in two logarithms and interpolation determinants II, Acta Arith.
133 (2008), pp. 325–348,
doi: https://doi.org/10.4064/aa133-4-3.

[12] M. Le: A conjecture concerning the exponential diophantine equation 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 , Acta
Arith. 106 (2003), pp. 345–353,
doi: https://doi.org/10.4064/aa106-4-2.

[13] T. Miyazaki: Exceptional cases of Terai’s conjecture on Diophantine equations, Arch. Math.
(Basel) 95 (2010), pp. 519–527,
doi: https://doi.org/10.1007/s00013-010-0201-6.

[14] T. Miyazaki: Generalizations of classical results on Jeśmanowicz’ conjecture concerning
primitive Pythagorean triples, J. Number Theory 133 (2013), pp. 583–595,
doi: https://doi.org/10.1016/j.jnt.2012.08.018.

[15] T. Miyazaki: Terai’s conjecture on exponential Diophantine equations, Int. J. Number The-
ory 7 (2011), pp. 981–999,
doi: https://doi.org/10.1142/S1793042111004496.

[16] T. Miyazaki, N. Terai: On the exponential Diophantine equation (𝑚2+1)𝑥+(𝑐𝑚2−1)𝑦 =
(𝑎𝑚)𝑧 , Bull. Australian Math. Soc. 90 (2014), pp. 9–19,
doi: https://doi.org/10.1017/S0004972713000956.

[17] T. Miyazaki, P. Yuan, D. Wu: Generalizations of classical results on Jeśmanowicz’ con-
jecture concerning Pythagorean triples II, J. Number Theory 141 (2014), pp. 184–201,
doi: https://doi.org/10.1016/j.jnt.2014.01.011.

[18] A. Murat: On the exponential Diophantine equation (18𝑚2 + 1)𝑥 + (7𝑚2 − 1)𝑦 = (5𝑚)𝑧 ,
Turk. J. Math. 42 (2018), pp. 1990–1999,
doi: https://doi.org/10.3906/mat-1801-76.

[19] X. Pan: A note on the exponential Diophantine equation (𝑎𝑚2 +1)𝑥 +(𝑏𝑚2 − 1)𝑦 = (𝑐𝑚)𝑧 ,
Colloq. Math. 149 (2017), pp. 265–273,
doi: https://doi.org/10.4064/cm6878-10-2016.

252 N. Terai



[20] J. Su, X. Li: The exponential Diophantine equation (4𝑚2 + 1)𝑥 + (5𝑚2 − 1)𝑦 = (3𝑚)𝑧 ,
Abstract and Applied Analysis 2014 (2014), pp. 1–5,
doi: https://doi.org/10.1155/2014/670175.

[21] N. Terai: Applications of a lower bound for linear forms in two logarithms to exponential
Diophantine equations, Acta Arith. 90 (1999), pp. 17–35,
doi: https://doi.org/10.4064/aa-90-1-17-35.

[22] N. Terai: On Jeśmanowicz’ conjecture concerning primitive Pythagorean triples, J. Number
Theory 141 (2014), pp. 316–323,
doi: https://doi.org/10.1016/j.jnt.2014.02.009.

[23] N. Terai: On the exponential Diophantine equation (4𝑚2 +1)𝑥 +(5𝑚2 − 1)𝑦 = (3𝑚)𝑧 , Int.
J. Algebra 6 (2012), pp. 1135–1146.

[24] N. Terai: The Diophantine equation 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 , Proc. Japan Acad. Ser. A Math. Sci. 70
(1994), pp. 22–26,
doi: https://doi.org/10.3792/pjaa.70.22.

[25] N. Terai, T. Hibino: On the exponential Diophantine equation (12𝑚2+1)𝑥+(13𝑚2−1)𝑦 =
(5𝑚)𝑧 , Int. J. Algebra 9 (2015), pp. 261–272,
doi: https://doi.org/10.12988/ija.2015.5529.

[26] N. Terai, T. Hibino: On the exponential Diophantine equation (3𝑝𝑚2−1)𝑥+(𝑝(𝑝−3)𝑚2+
1)𝑦 = (𝑝𝑚)𝑧 , Period. Math. Hung. 74 (2017), pp. 227–234,
doi: https://doi.org/10.1007/s10998-016-0162-z.

[27] K. Zsigmondy: Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), pp. 265–284,
doi: https://doi.org/10.1007/BF01692444.

On the exponential Diophantine equation (4m2 + 1)x + (21m2 − 1)y = (5m)z 253





Simulation of the performance of Cognitive
Radio Networks with unreliable servers∗

Mohamed Hedi Zaghouania, János Sztrika, Arban Ukab

aSchool of Informatics, Faculty of Informatics
University of Debrecen, Debrecen, Hungary

zaghouani.hedi,sztrik.janos@inf.unideb.hu
bEPOKA University, Tirana, Albania

auka@epoka.edu.al

Submitted: September 17, 2019
Accepted: January 19, 2020

Published online: January 31, 2020

Abstract

This paper deals with a Cognitive Radio Network (CRN) which is modeled
using a retrial queuing system with two finite-sources. This network includes
two non-independent service units treating two types of users: Primary Users
(PU) and Secondary Users (SU). The primary unit has priority queue (FIFO)
and a second service unit contains an orbit both units are dedicated for the
Primary Users and Secondary Users, respectively.

The current work highlights the unreliability of the servers as we are as-
suming that both servers of this network are subject to random breakdowns
and repairs. All the inter-event times in this CRN are either exponentially
or non-exponentially distributed. The novelty of our investigation is to ana-
lyze the effect of several distributions (Gamma, Pareto, Log-normal, Hypo-
Exponential and Hyper-Exponential) of the failure and repair times on the
main performance measure of the system. By the help of simulation we show
some interesting results concerning to sensitivity problems.
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1. Introduction

Recent years have seen a significant increase in the demand for radio spectrum.
As this kind of network provides a maximum use rate for customers, by allowing
unlicensed (Secondary) users to process their services, while there is no licensed
(Primary) user in the spectrum. Cognitive Radio (CR) is an intelligent technology
that can sense automatically the available channels in a wireless spectrum and mod-
ify the transmission parameters allowing more communications to be established,
additionally improves the network’s behavior. The CRN’s ultimate goal is to ex-
ploit the free sections of the primary frequency bands for the benefit of unlicensed
customers, without any disadvantage for the licensed users, more explanations can
be found in [2, 3, 14]. As the idea of the cognitive radio was introduced to the re-
search community of wireless communications, the establishment of CRNs becomes
more realistic day by day, since so many researchers consider this innovation a big
benefit for the network field. There are two types of CRN, the first is known as
(underlay network) in which unlicensed users are entitled at the same time to use
the primary channels with the PUs, depending on some predefined conditions. The
second type is called (overlay networks) where the secondary customers are allowed
to use the Primary Service Unit if this unit does not contain licensed customers,
more explanation was introduced by the authors of [10, 13, 16]. Theoretically, the
current paper treats the second mentioned type of CRN (overlay), by modeling a
CRN that uses two finite-source subsystems with non-reliable servers (Primary and
Secondary) exposed to breakdowns and repairs.

We are taking into consideration two subsystems in this queuing system. The
first sub-system is built for the primary users (PU) requests. The number of sources
is finite, moreover, in exponentially distributed time each source generates a pri-
mary request for the PU, these tasks should be sent with a preemptive discipline
to a single server which is called the Primary Channel Service (PCS), to start the
service based on an exponentially distributed time as well. The second part of the
model is dedicated to the secondary unit requests arriving from a finite-source as
well, knowing that the service and the source times of the secondary customers
are exponentially distributed. All the generated primary requests are headed to
the primary server in order to check its accessibility. If the service unit is free the
service starts instantly. However, if the primary unit is already busy with another
primary request this last packet joins a FIFO queue. Nevertheless , if the primary
unit is busy by treating a secondary user service, as consequence this packet dis-
connects right away and will be sent back to the Secondary Channel Service (SCS).
Based on the availability of the secondary server this postponed task either starts
the service again or joins the orbit. In the other hand, the secondary requests are
sent to the secondary server to verify its availability. If the aimed server is available
the service of request starts instantly, otherwise these unlicensed requests will try
to join the Primary Service Unit (PSU). If it is free the service of the low priority
task begins. If not, they must join the orbit automatically. Canceled requests in
the orbit retry to be served after an exponentially distributed random interval,
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more details can be found in [2, 3, 10, 13, 14, 16]. The servers used in our network
are subject to some random breakdowns the interrupted requests are sent to the
queue or to the orbit, respectively.

In our case, we assume that the servers failure and repair times are non-
exponentially distributed (Hypo-Exponential, Hyper-Exponential, Gamma, Pareto
and Log-normal). All the random times concerned in this model construction are
supposed to be independent of each other.

In a similar work [6] authors considered that the network has a single server
which is subject to breakdowns and repairs. This type of network suffers from
difficulty with processing the requests as the breakdown of the only server effects
the whole system, if the server is down then the whole network is down. Some other
papers investigated further the retrial queuing model by modeling a cognitive radio
network using two service channels (Primary and Secondary) both are subject to
breakdowns and repair. For example, the authors of [9] assumed that both servers
are unreliable and used different distributions for the inter-event times, Hypo and
Hyper Exponential were used for the failure and repair times and Exponential
distribution was assumed for the rest of the inter-event times (arrival, service and
retrial). As extended work authors of [15] have added Gamma distribution to the
above mentioned above distributions.

The main aim of this work is to study the effect of distributions for the failure
and repair time on the main performance measures of the system. By the help of
simulation we show some interesting results concerning to sensitivity problems.

2. System Model

As shown in Figure 1 our system model is a finite source queuing system with
retrials which contains two sub-systems for the PUs and SUs knowing that these
two subsystems are connected to each other. The model’s first subsystem will be
dedicated for PU requests, in which 𝑁1 is the finite number of sources. Each inter-
arrival time is exponentially distributed with rate 𝜆1 thus a primary request will
be created and sent to a preemptive priority queue (FIFO). If the target server is
idle the service starts instantly and last for an exponentially distributed time with
parameter 𝜇1. Otherwise, the new created request will have to wait in the queue.
The calls of the SUs will be generated randomly as well as, thus every inter-request
time is assumed to be exponentially distributed with parameter 𝜆2 and will be
served according to an exponentially distributed random variable with parameter
𝜇2. The number of sources in this second subsystem is 𝑁2.

It should be noted that if a high priority request joins the primary server and
finds it busy with an unlicensed (secondary) request the latter request will be
interrupted and sent back either to the SSU (Secondary Service Unit) or to the
orbit depending on the accessibility of the secondary channel. However, if the
primary server is processing a licensed request the new customer will have to wait
in the queue.

In case of secondary users they can process their services immediately if the
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Figure 1: Cognitive Radio Network with finite-source retrial queu-
ing system

dedicated channel is free. If it is busy they will check the availability of the primary
channel hoping to start the service, furthermore, if the primary channel is busy too
the involved task will be forwarded to the orbit. These postponed packets will try
to get served after an exponentially distributed time with parameter 𝜈.

As mentioned before the two subsystems of our network will be subject to
breakdowns and repairs the failures of the service units can occur both in busy and
idle status.

Failure and repair times will appear randomly for primary and secondary servers
according to Hyper-Exponential, Hypo-Exponential, Gamma, Log-normal and Pa-
reto distributions with given parameters. The corresponding intensities which are
the inverse of the mean are denoted by 𝛾1, 𝛾2 and 𝜎1, 𝜎2, respectively.

Using the following stochastic model we can identify our system through the
notations:

• 𝑘1(𝑡): represents the number of licensed sources at given time 𝑡;

• 𝑘2(𝑡): refers to the number of unlicensed at time given 𝑡;

• 𝑞(𝑡): is the number of primary requests in the queue at certain time 𝑡;

• 𝑜(𝑡): denotes the number of tasks in the orbit at time 𝑡;

• 𝑦(𝑡) = 0, if the primary channel is idle, 𝑦(𝑡) = 1, if the primary channel is
processing (busy) a high-priority request and 𝑦(𝑡) = 2, if the primary service
unit is processing (busy) a low-priority request at time 𝑡;

• 𝑐(𝑡) = 0, if the secondary service unit is idle(free) and 𝑐(𝑡) = 1, if the sec-
ondary service unit is busy at given time 𝑡.
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As consequence we can see that:

𝑘1(𝑡) =

{︃
𝑁1− 𝑞(𝑡), 𝑦(𝑡) = 0, 2,

𝑁1− 𝑞(𝑡)− 1, 𝑦(𝑡) = 1,

𝑘2(𝑡) =

{︃
𝑁2− 𝑜(𝑡)− 𝑐(𝑡), 𝑦(𝑡) = 0, 1,

𝑁2− 𝑜(𝑡)− 𝑐(𝑡)− 1, 𝑦(𝑡) = 2.

Beside these we have to know if the server is operational or failed. We assume
that the random variables involved in the model construction are either exponen-
tially or non-exponentially distributed. Due to the non-exponential distributions
the determination of stationary distribution of the system is too difficult so we de-
cided to use a stochastic simulation using C coding language with GSL stochastic
library.

Several previous works were analyzing and investigating the behavior and the
performance measure of CRN, authors of [11] have dealt with two reliable servers
in which all the inter-event times (arrival, service and retrial) were exponentially
distributed.

In papers [8, 12] authors took into consideration that the servers are subject
to breakdowns. In these works all the inter-event times including the failure and
repair times were exponentially distributed. Same authors of papers [8, 12] have
investigated further the CRN with breakdowns, in paper [9] the failure and repair
time of the servers are non-exponential distributed (Hypo-exponentially and Hyper-
exponentially).

In the present work we add Gamma, Pareto and Log-normal distributions to
the Hypo-Exponential and Hyper-Exponential for the failure and repair times and
we provide different parameters for these distributions, in order to investigate and
show the impact of the distributions and their parameters on the behavior of the
system.

Parameters Value at moment 𝑡 Maximum Value
Primary sources 𝑘1(𝑡) N1

Secondary Sources 𝑘2(𝑡) N2
Primary arrival rate 𝜆1

Secondary arrival rate 𝜆2

Number of requests at the queue (FIFO) 𝑞(𝑡) N1-1
Number of requests at the orbit 𝑜(𝑡) N2-1

Primary service rate 𝜇1

Secondary service rate 𝜇2

Failure rate of the primary server 𝛾1
Failure rate of the secondary server 𝛾2
Repair rate of the primary server 𝜎1

Repair rate of the secondary server 𝜎2

Table 1: Parameters of the simulation
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The set of parameters used in the simulation are shown in Table 1. Table 1
presents all the values needed for the simulation and their maximums (if exists),
we can see that the primary number of sources is 𝑘1 at moment 𝑡, however the
Maximum number for this values is 𝑁1, similarly for the second server has 𝑘2
a number of sources and 𝑁2 is the max number of secondary sources. As the
Maximum number of primary sources in the system is 𝑁1, the Maximum of the
requests in the queue will be 𝑁1 − 1 since the server deals with one user in the
same time, likewise for the orbit the maximum number of requests at the orbit will
be 𝑁2− 1.

3. Simulation Results

We used the batch-mean method to estimate the mean response times of each
request. This method is one of the most common confidence interval techniques
which is used for steady-state simulation output analysis. See for example [1, 7,
12].

This method aims to obtain a series of independent samples(batches) by accu-
mulating a number of contiguous observations of the simulation in order to produce
point and interval estimators. Each batch size needs to be enough large so that
the sample averages will not be highly correlated. Then we take the average of the
data points in each batch in order to get the final mean or variance.

A confidence interval for the mentioned above technique can be obtained using
the corresponding theorem as can be seen in [5].

The distribution’s confidence intervals are displayed in Table 2.

̂︀𝜇𝑁 ± 𝑡𝑁,1− 𝛽
2

𝑆√
𝑁

with confidence level 1− 𝛽.

• ̂︀𝜇𝑁 : Estimator for the mean response time

• 𝑁 : Number of Batches

• 𝑡𝑁,1− 𝛽
2
: The 1− 𝛽

2 critical value of the Student t distribution with 𝑁 degrees
of freedom

• 𝑆: Sample standard deviation.

Using our simulation program we could display different figures for several case
combinations in which we focused on the effect of the distribution of the failure
and repair times on the mean response time of secondary users using different
distributions.

Both Figure 2 and 3 show the mean response time of secondary users in function
of the primary repair intensity 𝜎1 using different distributions (Hypo-Exponential,
Hyper-Exponential, Gamma, Pareto and Log-normal) for the primary operating
time, knowing that the Exponential distribution was used for the rest of the inter-
event times (arrival, service, retrial and failure).
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Fig. Obs.
Point Distribution N 𝑡𝑁,1− 𝛽

2

95% Confidence Interval
LB UB

2 0,05

Pareto 68 1.995 51.00341 60.68059
Gamma 70 1.994 50.36767 60.85413
Hypo 65 1.997 52.49875 61.91125

Log-normal 60 2.000 50.85023 63.76017

3 0,06

Pareto 86 1.988 39.51273 45.94387
Gamma 85 1.988 20.90805 29.10195
Hyper 79 1.990 28.46989 39.66451

Log-normal 90 1.987 27.29105 38.18235

4 5

Pareto 105 1.960 47.26031 58.73689
Gamma 95 1.985 66.61442 80.87038
Hyper 83 1.989 59.83858 68.57142

Log-normal 89 1.987 56.9076 68.7024

5 6

Pareto 115 1.960 69.67006 84.29174
Gamma 97 1.985 68.84348 82.95172
Hypo 92 1.986 68.33082 84.06698

Log-normal 87 1.988 70.94546 83.30734

Table 2: Confidence intervals of the figures

Figure No. 𝑁1 𝑁2 𝜆1 𝜆2 𝜇1 𝜇2 𝜎1 𝜎2 𝛾1 𝛾2

Figure 2,3 6 10 0.6 0.1 1.5 1 x-axis 0.5 5 4
Figure 4,5 6 10 0.6 0.1 1.5 1 0.5 0.5 5 x-axis

Table 3: Numerical values of model parameters

Distribution Hyper Hypo Gamma Pareto Lognormal

Figure 2,5

Mean N/A 0.2 0.2 0.2 0.2
Variance N/A 0.03 0.03 0.03 0.03

Parameters N/A 𝜆1 = 0.0292 𝛼 = 1.333 𝛼 = 2.5275 m=-1.889
𝜆2 = 0.1707 𝛽 = 6.667 k=0.6043 𝜎 = 0.74807

Figure 3,4

Mean 0.2 N/A 0.2 0.2 0.2
Variance 0.4 N/A 0.4 0.4 0.4

Parameters 𝜆1 = 0.2 N/A 𝛼 = 0.1 𝛼 = 2.04880 m=-1.657
𝜆2 = 0.632 𝛽 = 0.5 k=0.51191 𝜎 = 1.5485

Table 4: Values of the distribution parameters

As expected the mean response time of the users decreases with the increment
of the repair intensity. In Figure 2 we can observe the insensitivity of the distribu-
tions where the squared coefficient of variation was less than one, as the difference
between the distributions was almost negligible. However, the difference between
distributions is very significant in Figure 3 as the squared coefficient of variation
is greater than one.

The last two results are related to the effect of the failure intensity for the
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Figure 2: The effect of the Primary repair intensity on the mean
response time of the Secondary Users

Figure 3: The effect of the Primary repair intensity on the mean
response time of the Secondary Users

secondary server 𝛾2 versus the mean response time of secondary users. It should be
noted that in all the figures we assumed that both Primary and Secondary servers
of our network are non-reliable.

Figure 4 shows the mean response time of SU in function with the secondary
failure intensity, knowing that all the means and variances of the different distri-
butions were equals and their squared coefficient of variation was greater than one
as shown in Table 3.
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Figure 4: The effect of the Secondary failure intensity on the mean
response time of the Secondary Users

Figure 5: The effect of the Secondary failure intensity on the mean
response time of the Secondary Users

Even though the mean and the variance of the distributions were equals, a sig-
nificant difference can be seen between the values of mean response time of the SUs,
mainly for Gamma and Pareto distribution. The effect of the used distributions
can be obviously observed in this figure and it shows sensitivity to the involved
distributions.

In Figure 5 where the squared coefficient of variation was less than one we
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can see how the the mean response time of the secondary users increases with the
increment of the failure intensity. By examining closely the figure no effect can
be seen regardless of the different distributions. Furthermore, all the values of
mean response time were nearly similar which means insensitivity to the type of
distributions.

4. Conclusion

In this paper a finite-source retrial queuing system is presented with a non-reliable
server in each subsystem. We showed the effect of several distributions concerning
the failure and repair times of the servers on the mean response time of secondary
users. A significant effect of these distributions was seen when the squared co-
efficient of variation was greater than one having the same mean and variance,
however the impact was almost negligible when it was less than one. Lastly, as
future works we would like deal with more distributions, in order to investigate
further their influence on the cognitive radio networks.

Acknowledgments. The authors are very grateful to the reviewers for their valu-
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Abstract

Inclusive education and inclusive learning environment have become a
major issue in Hungarian schools in Slovakia in the last decade. The number
of underprivileged students with marginalised social background has risen
tremendously. The primary questions of education including the provision
of a proper learning environment in heterogeneous classes, the tackling of
status problems among students have become inevitable. The introduction
of the Complex Instruction Methodology (CIP) into the education process
created an opportunity for teachers to work with heterogeneous groups in
classes. Mathematics by definition creates heterogeneous groups in schools
as due to large knowledge gaps among students the differentiation of work
and the cooperation of students is extremely difficult. The CIP method is
a special group work designed for heterogeneous groups which could provide
enormous help for the work of the teachers. In the current work we would
like to present the adaptation process of the CIP method in two Hungarian
schools in Slovakia. By conducting a series of interviews with teachers we are
going to analyse the efficiency of the CIP method in cooperative mathematics
classes.
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1. Introduction

Teaching even in its simplest form is one the most complex tasks. The teacher has
to adapt to classes numbering 20 to 30 people, to class syllabuses and to individ-
ual need of students as well. The usual teaching methods are not in compliance
with current expectations of the society, they have changed a lot in the past 15
years. The labour market presents a demand for young people who are innovative
and adaptive to the rapidly changing world. There is a widespread need for new
basic skills affordable to everyone. There are new skills to be acquired: to solve
problems, to look for sources needed for the task, to cooperate with each other in
groups, to express their opinion, to focus on a given problem. It is an outstanding
obstacle for Hungarian schools in Slovakia as the composition of the students is
extremely heterogeneous. The work with heterogeneous groups of students accord-
ing to knowledge and social status presents a highly demanding challenge for the
teachers. The international and Slovakian studies on teaching has revealed that
the unchanged system of education has not been successful. Critique has been
oriented both towards the content and the methodology of teaching. A substantial
part of students do not have sufficient level of development (Monitor5, Monitor9,
centralised school leaving exams). The students lost their motivation, studying
has become a painful experience for them. Traditional teaching methods are not
sufficient for success.

There are new promising methods available, but their infiltration to the Hun-
garian education system in Slovakia is very poor. Due to the Slovak official state
language there is a time shift until they can reach Hungarian students in Slovakia.
It takes years of preparation until a new textbook or a new development reaches
its target audience. The introduction of new teaching methods is a slow proce-
dure. In the past years project methodology and cooperative learning has come
to the forefront. Its adaptation Hungarian schools is similar to its adaptation in
Hungary, most Hungarian teachers in Slovakia use the actual available literature in
Hungary. In the study we shall focus on the adaptation of the Complex Instruction
Methodology into the mathematics teaching in Slovakia: the process itself and the
experiences of teachers.

2. CIP – a special cooperative learning process

Cooperative learning has become the most dynamic teaching method in Western
Europe and North America. Large number of studies unveiled its efficiency in var-
ious fields of education. Cooperative learning has become a summarizing term for
various methods focusing on groups, classes and schools ([1, 8, 10, 15]). Cooper-
ative learning is a management of learning in which the acquisition of knowledge,
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cognitive knowledge, social motives and skills, learning motives are parallel in time
and equal in their status. During cooperative learning the tasks are organised in
such a way that students cannot cope with them individually, there is an essential
need for constructive cooperation. The society building is not achieved by separate
tools, but it is inherently built into the process [7].

The provision of equal chance to each student has become more important. The
teaching method should take into account both the needs of elite students and of
students with slower and lower achievements, they should have a chance to converge
to students with higher achievements. It has become a major obstacle to teachers.
In Hungarian schools in Slovakia this problem has become even more eminent, the
share of students with disadvantageous social background has been rising in the
past decades. The number of parents choosing Slovak schools for their children has
been rising as well due to the fact that majority schools with Slovak language of
education have better social ratios, thus enhancing the assimilation of minorities
in Slovakia. When looking for plausible solutions our attention has been drawn
to the Complex Instruction Programme, which has been successfully adapted in
Hungary since 2000, first at the school IV. Béla Elementary School by Emese K.
Nagy and her colleagues [8]. Based on their experience, a complex system called
Complex Basic Programme has been developed in Eszterházy Károly University in
2016, and has been introduced to several Hungarian primary schools since 2018 [9,
11, 12].

The Complex Instruction Programme developed at the Stanford University pro-
vides an excellent opportunity for schools and teachers to create an inclusive space
for students. The founding scientists of the programme assumed that the social
structure of a given class could be transformed by the teachers implying the change
in the environment of education which could lead to a modified learning environ-
ment for students which is most adaptable to their individual skills and needs and
provides an environment for tackling status problems in classes.

The main goal of the programme was to create an equal opportunity learning en-
vironment in which access to learning and to teaching materials is equally provided
for students. The programme has been designed so that teachers would have tools
and methods for tackling the heterogeneity of linguistic and cultural background
of students. The primary idea has been formulated that each student is capable
of acquiring a higher level of knowledge once the proper conditions have been set
for learning. It has been a guiding principle that the cooperation among students
should be based on equal status, each student should participate in the solution of
selected problems and tasks. The new method is independent of special subjects
and teaching materials. In addition to cooperative learning the development of an
individual student has been taken into account as well ([2, 8]).

Cooperative learning requires a different approach to the teaching planning pro-
cess as well a different attitude of the teachers. The classic, in our region overruling
frontal teaching method puts the teacher in the forefront, his knowledge and meth-
ods are superior. In classes using cooperative learning methods the activities of
students are prior, the teacher’s role is modified: helping and organising is required
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from teachers. The CIP method is independent of specific teaching subjects, in ad-
dition to its ability to develop competencies it could be effectively used in individual
development and work with talented students as well.

3. The introduction of CIP method in Hungarian
schools in Slovakia

The cross-border project called KIP ON LEARNING – Schools in a changing world
– Inclusive, innovative and reflexive teaching and learning – cross border exchange
of know-how was launched in September 2017 supported by Interreg V-A Slo-
vakia Hungary Cross Border Cooperation Programme.1 The main objective of
the project has been the introduction of CIP method in two Hungarian elemen-
tary schools in Slovakia: Feszty Elementary School in Hurbanovo (Ógyallai Feszty
Árpád Magyar tanítási Nyelvű Alapiskola) and in Helmeczy Mihály Elementary
School in Královsky Chlmec (Királyhelmeci Helmeczy Mihály Magyar Tanítási
Nyelvű Alapiskola). The two schools are similar in number of students and in
social status of students, one is in Western Slovakia the other in Eastern Slovakia.
The number of students is approximately 300 with a large share of students from
socially marginalized groups (30–35%) and Roma pupils (appr. 25%).

The CIP method has been adapted in these two elementary schools. The prepa-
ration process included purchase of equipment and surveys in both schools. The
introduction of CIP methodology started in January 2018. All the teachers from
both schools (60 teachers) participated at the CIP training course (60 hour train-
ing) which was followed by tutoring until the end of the project. The teachers
started developing their own CIP materials after the training. The students were
prepared for the new methodology, sociometric analysis was made in order to di-
vide students into groups within classes. The teachers were acquainted with the
CIP methodology in the first semester, with the help of tutors they prepared its
adaptation to the education system of Slovakia. The teachers started using the
method in their classes starting from the 2018/19 academic year.

The sustainability period for the project is 5 years, CIP classes were held until
the closures due to the COVID-19 pandemics in 2020. The effects and effectiveness
of the new methodology are analysed by continuous surveys, where several indica-
tors are monitored: social and affective factors, number of absences, change in the
status of students etc.

4. CIP learning process and the social competences

Research focusing on innovative teaching methods including cooperative learning
has shown numerous accomplishments. The primary goal of the new method is the

1Project number: SKHU/1601/4.1/172.
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elevation of the knowledge level of students as well as experiencing success in the
school environment. Acceptance of others and respect have been key elements as
well [8].

Cohen, Lotan describe group work as: „Students are working in groups which
are small enough for each member to participate in solving tasks. It is a requirement
that students are able to work autonomously without direct control of the teacher.“
([2], p. 22.)

The CIP methodology enhances the convergence of less developed students while
advanced students do not need to slow down in their work. Studies have revealed
that group work enhances the understanding of the theoretical part of the subject,
they are less distracted, and are able to focus more when compared to classic frontal
teaching ([4, 13, 14]). Students working in groups are more tolerant in accepting
their fellow classmates of different origin or social status.

CIP could be successfully used in classes with different levels of knowledge,
origin and language. Students can learn from each other, they serve as role models
to each other, they are interconnected, dependent on each other. Joint effort brings
the experience of success to the students, authentic intellectual pride could be
achieved, the outcome is on a higher level when compared to individual work.
Hereby comes the main slogan of the programme: We are smarter together than
alone [2].

Group work with tasks requiring different levels of knowledge and skills brings
students closer to cooperation, enabling the unravelling of talents in students. Stu-
dents with different levels of knowledge and skill could present different problem
solving strategies, which develops their strengths while acquiring new skills. The
proper compilation of tasks creates an opportunity for each student to show their
understanding and abilities thus students with different social backgrounds can
solve tasks successfully teaching [8].

The aim of the teacher through the organisation of group work is to provide
equal opportunities to each student to participate and to ensure that everyone has
a skill that leads to successful solution to the problem. The teachers need to learn
to tackle the differences among students in order to enhance the development of
each student. The development of the teacher’s skill to organise groups is a key
element to the success of the new method. When compared to classical methods
where teachers are more eager to get into direct involvement and control in the new
method there is no need for it. It is necessary that teachers stay in the background
thus enabling the individual work of students based on the previously set roles.

It is essential that teachers are able to assign their controlling role to students.
The teacher stays in the background ready to get involved if necessary thus creating
a space for students to make their decisions and to develop their personalities.
Students acquire skills needed for individual planning and organising their learning
process [6].

Each member of the group benefits from the work if tasks are not based on
routine work, when it needs to be discussed, when the outcome is not visible from
the very beginning [3]. Learning from more advanced students is a key element in
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cognitive development as Vygotsky stated:”Learning initiates various inner pro-
cesses, which can only work if children get into connection with each other and
they work together ([17] p.90). Joint work, common discussions, interactions pro-
vide opportunity for students to cooperate irrespectively of their level of knowledge
and their rank in the class.

5. Cooperativ learning and mathematics – mathe-
matics in CIP

There are many benefits coming from collaboration on math lessons in the class-
room. Education is not equitably accessible to all students. Collaborative learn-
ing could contribute to closing the achievement gap among students and to reach
greater success in mathematics. Learning by cooperative and problem-based ap-
proach students at elementary schools could get a more detailed impression on
higher-level math. Students often believe that success in math is based on memo-
rization. In addition to basic mechanics of solving problems it is of high importance
that students are able to formulate and interpret more complex problems, and are
able to work in groups while managing problem solving strategies. This process
makes mathematics such an interesting subject. Cooperative problem solving mo-
tivates students more and could introduce them into further careers in mathemat-
ics [5].

Cooperative problem-based learning enhances the use of different abilities and
could lead to mathematical growth. The cooperation develops interpersonal skills,
makes conflict resolution easier and gives students some leadership experience.
Working on well designed tasks provides students with common goals, sharing
ideas connects people. Students can immerse the beauty and the fun in mathemat-
ics. Teachers can use cooperative learning activities in order to help students find
connections between the concrete and abstract level of instruction through peer
interactions and properly designed activities. Cooperative learning can contribute
to the promotion of classroom discourse and oral language development [5, 7].

In Hungary a complex mathematical programme based on CIP methodology
has been elaborated, called Logical Basic Program. The main goal of the basic
program focuses on the change of the approach to mathematics teaching including
motivation, experience based learning and development. The skills and knowledge
of students should be impacted by by playing games and using game-structures,
new approaches, promoting enactive and visual representation, positive reassuring
environment enhancing creativity taking into consideration the level of students’
progress in mathematics. Theoretical works of Zoltán Dienes, Tamás Varga and
Jerome Bruner and problem and research based theories have supported this ap-
proach.

Why does the CIP method work on math lessons? First, students are more
willing to solve challenging problems as a group. Second, students are often able to
explain things to each other in ways that make more sense than the teacher’s origi-
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nal explanation. Third, students are more willing to ask questions and take risks in
small groups. Fourth, students learn more when they invest in math discourse. It
is of high importance teachers use flexible grouping throughout the school year so
that each student is challenged appropriately and the rotation of the roles is sup-
ported. When classrooms achieve this balance, all students have the opportunity
to learn within their zone of proximal development [17].

6. The experiences of teachers with CIP – analysis
of interviews with teachers

We have conducted deep interviews with teachers to survey their experiences while
using the new CIP method. The participating schools are mid-size involving 2
mathematics teachers, all 4 teachers have been interviewed.

Mapping the experiences of teachers with the introduction of the new teaching
method was the main goal of the interviews. The interviews included the teachers’s
perception of the method as well as its potential to their professional development.

The interviews focused on 4 topics.

1. The first topic included the teacher’s motivation, what was their motive for
enlarging the scale of used methods beyond classical frontal teaching. The main
motivation described by teachers promoted the involvement of those students into
mathematics learning who were less interested in the subject. Bringing new moti-
vation for students has been mentioned as well. This has been the hardest part of
the education process. Students were described as having low levels of motivation,
curriculum described as badly designed, useful textbooks missing from the market,
deepening the gap of the level of knowledge among students as well as of their social
status. Hungarian schools in Slovakia have a higher share of Roma students which
is characterised by strong backlash in the level of knowledge as well as in social sta-
tus of families. The involvement of Roma students into mathematics learning has
been a painful experience. The new CIP method presented an emerging possibility
to involve these students into education.

The improvement of the attitude of students during the classes has been men-
tioned often. The new method to be adapted in these schools should have been
able to be inserted into the educational system. International experience with the
CIP method helped the teachers’ orientation and decision.

2. The second topic included the teachers’ experiences on application of CIP into
their classes. The questions focused on the behaviour of students during the classes,
on changes in social interactions and in mathematics learning. Which competencies
in mathematics could be developed most and what change could be induced in the
approach of students.
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All teachers involved used CIP in classes for exercising and for repetition, the
new method was not used for the acquisition of new knowledge. During the inter-
views the teachers revealed their fears that the essence of mathematics knowledge
could be lost during the cooperative classes. An assumption that less developed
students would refrain from works was highlighted by the teachers. The teach-
ers assumed that in heterogeneous groups only talented students would follow the
course of mathematics classes while all the other students would emerge only as
observers.

The perception of the new method has changed during the course of its adapta-
tion. In the first period when both teachers and students were getting familiar with
the new method the original assumptions were fulfilled but later the perception has
changed. It is still evident that new tasks are solved by more talented students,
but with the acquisition of new roles used in the CIP method all students could
contribute to the outcome. The most imminent change perceived by the teachers
was the enhanced active communication within the groups.

The ability of students to understand texts and solve problems was on a low
level (textbooks used on the first stage of education in elementary schools do not
encourage the development of these skills. Common analysis of problems and their
common solution contributed to the development of these skills in a visible manner.
There has been a perceivable change.

The most visible change in the long run while using the new method was the
fact that students became more open in classical classes as well, they asked more
questions and felt encouraged to participate in debates, the behaviour of students
and their attention to classes improved as well. There were issues which could not
be successfully implemented, the cyclic rotation of roles within the groups posed
difficulties. Presenting the outcomes of the works has always been difficult for
students and not only for those with lower level of knowledge and skills. There
were students refusing to take that part, teachers were not pushing hard to do so
in order to maintain the functionality of the groups. Difference in the knowledge
of mathematics was not perceived with use of the CIP method, at least it could
not be attached to the use of CIP. One year of experience was not enough for its
perception. There has been a positive change however in the attitude of students
towards problem solving, mathematical text analysing which could be connected
to the use of CIP.

3. The third topic analysed was oriented towards the impact of CIP on the work
of mathematics teachers in participating schools. The first thing mentioned by
the teachers was the change of used routines, the shift from their comfort zone.
The importance of CIP in their education was characterised by the process of the
acquisition of a new method by the use of which they could depict the importance
and the impact of mathematics in everyday life.The tasks selected by the teachers
presented an everyday life case, formulated as an open question. The existing
mathematical knowledge was made to be used in a non-conventional environment
for the students. The attention paid by the teachers, the evaluation process and the
self esteem of students has been outlined as well. There were teachers admitting
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that observation and evaluation was missing from their previous work, it was the
use of CIP that drew their attention to the importance of these elements. The
method was perceived as successful for less developed students whose self esteem
and motivation skyrocketed with the use of CIP.

The formulation of groups was questioned by the teachers. There were teachers
using the proper method in heterogeneous group formation, but there were several
teachers who disagreed, claiming that more homogeneous groups would enhance
the solution of more complex mathematical problems.

Teachers who used the proper CIP method argued that cooperative learning
often works best if the team members are not of the same level in mathematics.
According to their argumentation the more capable students are advancing by
teaching the concept while others are advancing by engaging with the problem and
wrestling with the solution.

None of the teachers said that CIP could be used for effective talent management
in heterogeneous groups, not even with the use of individual tasks. Individual
tasks at the end of classes due to time pressure were poorly performed, often even
neglected thus their function was completely lost.

The long preparation of CIP classes has been reported as the harshest drawback
of the CIP method. It is hard to create innovative tasks for group work. Social
sciences provide a more fruitful environment for the use of CIP classes. Drama
pedagogy, music, arts are not applicable to mathematics. The types of tasks for
group work start repeating after a certain amount of time. The most important
factor for the use of CIP in mathematics teaching is the enhanced motivation of
students for the subject. It brings new variety into monotony.

4. The last area of questions focused on the training and tutoring. Teachers
expressed their satisfaction with the initial training, its content and source as well.
The importance of tutoring was strengthened by the responses of the teachers.
They did not perceive it as a burden, rather as a collegial help. It created a
positive environment among teachers to share their experiences, difficulties and
successes. The visiting of classes by the mentors was highly appreciated especially
with the following consultations. The teachers would like to be in contact with their
mentors in the long run. More class syllabuses are needed for the sustainability
of the method in schools which are in line with the requirements in Slovakia [16].
Altogether 600 class syllabuses were prepared during the 24 months of the project,
but the share of mathematics syllabuses is low. A collection of Great ideas for
group work for each grade would be highly appreciated. In the management the
teachers proposed that in class management double classes using CIP methodology
would contribute to the success and efficiency of the new method.

7. Conclusion – experiences from the interviews

The introduction of CIP methodology into the teaching system in two Hungarian
schools in Slovakia was successful. According to the teachers the method could
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and should be used in education. The new method enhances better understanding
of mathematics, special vocabulary is acquired by students and used in active
debates. The development of problem solving and logical thinking is visible even
on classical frontal classes. The most important improvement could be perceived
in the behaviour of students during classes, their activity level has been visibly
rising after one year of experience. Continuous mentoring is a key factor to the
efficiency of teachers’ work. The mentoring method should be considered in the
adaptation process of other methods, starting freshman teachers should be involved
in tutoring on a larger systematic level. CIP found its place in the education system
of Slovakia, the penetration of the method into the teaching process of other schools
is highly recommended.
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1. Introduction

In mathematics, we often solve a problem that we characterize as finding a mini-
mum value of an examined function (so-called global optimization) 𝑓 : 𝐷 → 𝑅 on
a specific set 𝐷 ⊆ 𝑅𝑑, 𝑑 ∈ 𝑁 . This minimum value (global minimum or global
optimum) is one or more points from the smallest functional value set 𝐷, that is
a set {𝑥′ ∈ 𝐷 : 𝑓(𝑥′) ≤ 𝑓 (𝑥) ∀𝑥 ∈ 𝐷} [8]. From mathematical analysis, we know
the procedure for finding the extreme of a function when 𝑑 = 2 and there are the
first and second function derivatives. However, finding a general solution to the
problem formulated this way is very difficult (or even impossible) for any 𝑑 or if
the function considered is multimodal or not differentiable [3]. Any determinis-
tic algorithm addressing the generally formulated problem of global optimization
is exponentially complex [2]. That is why we use the so-called randomly working
(stochastic) algorithms to find a solution to this task, which, although not capable
of finding a solution, are capable of finding a satisfactory solution to the problem
within a reasonable time. Thus, for the same input problem, such an algorithm
performs several different calculations and we aim to create conditions for the al-
gorithm so that we reduce the probability of incorrect calculation as much as pos-
sible. Today, the use of stochastic algorithms, especially of the evolutionary type,
is very successful in seeking global optimization functions [4]. Those are simple
models of Darwin’s evolutionary theory of populations development using selection
(the strongest individuals are more likely to survive), crossing (from two or more
individuals new individuals with combined parental properties will emerge) and
mutation (accidental modification of information that an individual bears); to cre-
ate a population with better properties. For some classes of evolution algorithms,
the truly best “individuals” of the population are approaching the global optimum.

Experimental verification and comparison of algorithms on test functions offer
us an insight into the performance and behavior of the used global optimization
algorithms. Based on this, we can then decide which algorithm is most efficient
and usable under the given conditions when solving practical tasks. The most basic
test functions include the 1st De Jong function, Rosenbrock’s saddle (2nd De Jong
function), Ackley’s function and Griewangk’s function. Matlab source code of these
functions can be found in [12].

In the Matlab environment, there are several implemented optimization func-
tions, of which the fminsearch function [6] is very important. The fminsearch
function serves for finding a global minimum of the function of multiple variables.
The variables of the function, the global minimum of which we are looking for,
are entered into the vector and, also, we specify the so-called start vector 𝑥0, from
which the search for the minimum will start. The start vector 𝑥0 must be suffi-
ciently close to the global minimum (not necessarily in unimodal functions only),
because different estimates of the start vector may result in different local minima
being found instead of the global one. Since the algorithm fminsearch is based on
the so-called simplex method [9], it may happen that the solution will not be found
at all. Otherwise, the fminsearch function returns the vector 𝑥, that is the point
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at which the global minimum of the given function is located.
Some optimization parameters for global minimum search can be specified in

options structure using the function optimset [7]. Then the generic call command
of the fminsearch function has the form

[x, fval, exitflag, output] = fminsearch(fun, x0, options),

where fun is a string that records a given mathematical function, 𝑥0 start vector,
search setup options, x is the resulting vector of the global minimum, fval func-
tional value at 𝑥, exitflag is a value, which specifies the type of search termination
and output is a structure that contains the necessary optimization information (al-
gorithm used, number of function evaluations, number of iterations).

For each algorithm, we need to distinguish four types of search termination.
Type 1 is the correct completion of the algorithm when it is found (sufficiently
close) to the global minimum, type 2 means that the algorithm is completed by
reaching the maximum allowed number of iterations (although it converts to a
global minimum), type 3 is an early convergence (the algorithm has completed
searches in the local minimum) and type 4 means that browsing is completed by
reaching the maximum allowed number of iterations, but no close point to the
minimum has been found.

In order to determine the type of algorithm termination for the fminsearch
function, it is possible to use the nested funcCount element of the output structure
(which gives the number of function evaluations). You can also find out how to
complete by using the exitflag element.

The Controlled Random Search (CRS) algorithm [11] works with a population
of 𝑁 points in space 𝐷, from which a new point 𝑦 is generated with the so-called
simplex reflex. Simplex 𝑆 = {𝑥1, 𝑥2, . . . , 𝑥𝑑+1} is a set of randomly selected 𝑑 + 1
space 𝐷 points. In simplex, we find the point 𝑥ℎ = max𝑥∈𝑆 𝑓 (𝑥) with the highest
functional value and, as the worst of simplex, we remove it. To the remaining 𝑑
points, we find their center of gravity

𝑔 =
1

2

∑︁

𝑥∈𝑆

(𝑥− 𝑥ℎ) .

Reflexion means a point overturning 𝑥ℎ around the center of gravity 𝑔 to obtain a
point

𝑦 = 𝑔 + (𝑔 − 𝑥ℎ) = 2𝑔 − 𝑥ℎ.

The simplest variant of the reflection algorithm can then be entered as a function
in Matlab as follows: [12]

Reflection algorithm
1: function [y] = reflex(P)
2: N = length(P(:, 1))
3: d = length(P(1, :)) – 1
4: v = random_simplex(N, d + 1)
5: S = P(v, :)
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6: [x, id] = max(S(:, d + 1))
7: x = S(id, 1:d)
8: S(id, :) = [ ]
9: S(:, d + 1) = [ ]
10: g = mean(S)
11: y = 2*g − x

where a random selection of a set 𝑆 is provided by the function

Random selection algorithm
1: function [res] = random_simplex(N, j);
2: v = 1:N;
3: res = [ ];
4: for i = 1:j
5: index = fix(rand(1) * length(v)) + 1;
6: res(end + 1) = v(index);
7: v(index) = [ ];
8: end

If the 𝑓 (𝑦) < 𝑓 (𝑥ℎ), the point 𝑦 of the population replaces the point 𝑥ℎ and we
continue to do so. In case that 𝑓 (𝑦) ≥ 𝑓 (𝑥ℎ), simplex is reduced. By replacing the
worst points of the population, this is concentrated around the lowest functional
point being sought. However, the reflection does not guarantee that the newly
generated point 𝑦 will be in the searched area 𝐷. Then, we flip all coordinates
𝑦𝑖 /∈ ⟨𝑎𝑖, 𝑏𝑖⟩ , 𝑖 = 1, . . . , 𝑑, and inside of the searched area 𝐷 around the relevant
side of the 𝑑−dimensional rectangular parallelepiped 𝐷. The algorithm of the
so-called mirroring can be entered as a function in Matlab:

Mirroring algorithm
1: function [res] = mirror(y, a, b);
2: f = find(y < a | y > b);
3: for i = f
4: while(y(i) < a(i) | y(i) > b(i))
5: if y(i) > b(i)
6: y(i) = 2 * b(i) - y(i);
7: elseif(y(i) < a(i))
8: y(i) = 2 * a(i) - y(i);
9: end
10: end
11: end
12: res = y;

The algorithm’s source text itself, Controlled Random Search, can be then writ-
ten as an m-file crs.m in Matlab.

CRS algorithm
1: function [FunEvals, fval, ResType] = crs(N, d, a, b, TolFun, MaxIter, fnear, fname);
2: P = zeros(N, d + 1);
3: for i = 1:N
4: P(i, 1:d) = a + (b - a).* rand(1, d);
5: P(i, d + 1) = feval(fname,(P(i, 1:d)));
6: end
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7: [fmax, indmax] = max(P(:, d + 1));
8: [fval, indmin] = min(P(:, d + 1));
9: FunEvals = N;
10: while (fmax - fval > TolFun) & (FunEvals < d * MaxIter)
11: y = reflex(P);
12: y = mirror(y, a, b);
13: fy = feval(fname, y);
14: FunEvals = FunEvals + 1;
15: if(fy < fmax)
16: P(indmax, :) = [y fy];
17: [fmax, indmax] = max(P(:, d + 1));
18: [fval, indmin] = min(P(:, d + 1));
19: end
20: end
21: if fval <= fnear
22: if (fmax - fval) <= TolFun
23: ResType = 1;
24: else
25: ResType = 2;
26: end
27: elseif (fmax - fval) <= TolFun
28: ResType = 3;
29: else
30: ResType = 4;
31: end

The FunEvals variable is the counter of the number of algorithms’ function
evaluations. As the previous selection 𝑁 of population points results in 𝑁 function
evaluation, it must be preset to the value 𝑁 . Line 10 represents a search termination
condition (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 < 𝜖)∨(𝐹𝑢𝑛𝐸𝑣𝑎𝑙𝑠 > 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 * 𝑑) where 𝑑 is the dimension
of the searched area, 𝑓𝑚𝑎𝑥 is the largest functional value that is located in the
searched population, 𝑓𝑚𝑖𝑛 is the smallest functional value, 𝜖 is the tolerance of the
distance of the largest and smallest functional value, MaxIter*d is the limitation
of the maximum number of permitted function evaluations during the execution of
the algorithm. For test functions, where the solution to the problem is known in
advance, it is sufficient that the best point of the population has a value less than
f_near, a value close enough to the global minimum that we pre-set. At the end
of the algorithm, we find the type of search termination.

Differential Evolution is a stochastic algorithm for a heuristic search for a global
minimum using evolutionary operators [10], [1]. The Differential Evolution algo-
rithm creates a new population 𝑄 by gradually creating a point 𝑦 for each point
𝑥𝑖, 𝑖 = 1, . . . , 𝑁 of the old population 𝑃 , and assigning a point with a lower func-
tional value to the population 𝑄 from that pair. The point 𝑦 is created by crossing
the vector 𝑣, where the point 𝑣 is generated from three different points, 𝑟1, 𝑟2, 𝑟3
which are randomly selected from the population 𝑃 and different from the point
𝑥𝑖 of the relationship 𝑣 = 𝑟1 + 𝐹 (𝑟2 − 𝑟3), where 𝐹 > 0 is the input parameter
which can be determined according to different rules and the vector 𝑥𝑖 so that
any of its elements 𝑥𝑖𝑗 , 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑑, is replaced by a value 𝑣𝑗 with
probability 𝐶 ∈ ⟨0, 1⟩. If no change occurs for 𝑥𝑖𝑗 or for 𝐶 = 0 one randomly
selected vector 𝑥𝑖 element is replaced. We can see that, compared to the algorithm
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Controlled Random Search, Differential Evolution does not replace the worst point
in a population but only the worse of a pair of points and thus the Differential
Evolution algorithm tends to end searches in a local minimum. On the other hand,
however, it converges more slowly with the same end condition. The algorithm for
generating a point 𝑦 can be entered as a function in Matlab [12]:

Algorithm for generating a point 𝑦
1: function [y] = gen(P, F, C, v);
2: N = length(P(:, 1));
3: d = length(P(1, :)) - 1;
4: y = P(v(1), 1:d);
5: re = rand_elem(N, 3, v);
6: r1 = P(re(1), 1:d);
7: r2 = P(re(2), 1:d);
8: r3 = P(re(3), 1:d);
9: v = r1 + F * (r2 - r3);
10: prob = find(rand(1, d) < C);
11: if(length(prob) == 0)
12: prob = 1 + fix(d * rand(1));
13: end
14: y(prob) = v(prob);

Selecting points 𝑟1, 𝑟2, 𝑟3 from the population 𝑃 provides a function

Algorithm for selecting points 𝑟1, 𝑟2, 𝑟3
1: function [res] = rand_elem(N, k, v);
2: c = 1 N;
3: c(v)=[ ];
4: res = zeros(1, k);
5: for i = 1:k
6: index = 1 + fix(rand(1) * length(c));
7: res(i) = c(index);
8: c(index) = [ ];
9: end

We construct the source text of the algorithm Differential Evolution in the same
way as with the algorithm Controlled Random Search as the m-file difevol.m.

Differential Evolution algorithm
1: function [FunEvals, fval, ResType]
= difevol(N, d, a, b, TolFun, MaxIter, fnear, fname, F, C);
2: P = zeros(N, d + 1);
3: for i = 1:N
4: P(i, 1:d) = a + (b - a) .* rand(1, d);
5: P(i, d + 1) = feval(fname, (P(i, 1:d)));
6: end
7: fmax = max(P(:, d + 1));
8: [fval, imin] = min(P(:, d + 1));
9: FunEvals = N;
10: Q = P;
11: while (fmax - fval > TolFun) (FunEvals < d * MaxIter)
12: for i = 1:N
13: y = gen(P, F, C, i);
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14: fy = feval(fname, y);
15: FunEvals = FunEvals + 1;
16: if(fy < P(i, d + 1))
17: Q(i, :) = [y fy];
18: end
19: end
20: P = Q;
21: fmax = max(P(:, d + 1));
22: [fval, imin] = min(P(:, d + 1));
23: end
24: if fval <= fnear
25: if (fmax - fval) <= TolFun
26: ResType = 1;
27: else
28: ResType = 2;
29: end
30: elseif (fmax - fval) <= TolFun
31: ResType = 3;
32: else
33: ResType = 4;
34: end

2. Methodology of research and algorithms verifica-
tion and comparison

The experiment was carried out at the Faculty of Natural Sciences of Constan-
tine the Philosopher University in Nitra during the academic years 2018/2019 and
2019/2020. A total of 42 students of single branch study of mathematics and
students of teaching combined with maths, who selected the subject numerical
mathematics, participated in the experiment. The group of students was taught
a selected part “global optimization” of the mathematics curriculum with use of
Matlab.

The aim of our research was to verify the behavior and efficiency of three selected
algorithms in the global optimization problem. We used four known test functions
to test the efficiency of each of the three selected algorithms. In the experiment
while searching a global optimum, we recorded the number of evaluations of each
algorithm used for each of the selected function. When algorithms are compared,
tests must be performed under the same conditions. The experiment was realized
for two different dimensions 𝑑 = 3 and 𝑑 = 4, the number of times the minimum
search is repeated to 100, tolerance 𝜖 to the value seteps = 1e−7; and the default
value MaxIter=10000 for one dimension. The search algorithm ends when the
minimum and maximum distance are at the selected value or the maximum number
of function evaluations has been reached. Especially for the function fminsearch,
the above end condition is maintained by the code sequence:

Termination condition for fminsearch
1: while func_evals < maxfun && itercount < maxiter
2: if max(abs(fv(1)-fv(two2np1))) <= max(tolf,10*eps(fv(1))) &&
3: max(max(abs(v(:,two2np1)-v(:,onesn)))) <= max(tolx,10*eps(max(v(:,1))))
4: break
5: end
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in the part Main algorithm of the source text fminsearch [6]. The func_evals
variable is in the role of the variable FunEvals, the maxfun constant in the role of
the expression MaxIter*d.

The required limit to the number of algorithm iterations and the tolerance of
any point in the population from the local minimum point, but also the necessary
tolerance 𝜖 of functional values and the limit to the maximum number of test
function evaluations can be adjusted by setting the appropriate parameters of the
structure options for the fminsearch function.

optimset(’MaxFunEvals’, MaxIter*d, ’MaxIter’, MaxIter*d, ’TolX’, seteps,
’TolFun’, seteps));

The dimension of space to be searched, the space limitations, the number of searches
repeated and ensuring that the correct function is linked to the algorithm and
the correct file name for storing the necessary records are entered through the
formal run_test parameters that can be run for each global optimization algorithm
(depending on the altype parameter). While searching for the global optimum,
the function writes the repeat number, the number of function evaluations, the
type of algorithm termination, the function value of the minimum found into the
filenamesaveres text file.

Algorithm for running the test
1: function run_test(fname, filenamesaveres, boundary_interval, repcount, d, algtype);
2: N = 10 * d;
3: a = boundary_interval * ones(1, d);
4: b = -a;
5: MaxIter = 10000;
6: seteps = 1e-7;
7: fnear = 1e-6;
8: fid = fopen(filenamesaveres, ’a’);
9: if(algtype == 3) %fminsearch
10: setval = optimset(’MaxFunEvals’, MaxIter*d, ’MaxIter’, MaxIter*d,
’TolX’, seteps, ’TolFun’, seteps);
11: end
12: for i = 1:repcount
13: i
14: switch(algtype)
15: case 1 %crs
16: [FunEvals, fmin, ResType] = crs(N, d, a, b, seteps, MaxIter, fnear, fname);
17: case 2 %difevol
18: F = 0.8;
19: C = 0.5;
20: [FunEvals, fmin, ResType] = difevol(N, d, a, b, seteps, MaxIter, fnear, fname, F, C);
21: case 3 %fminsearch
22: x = a + (b - a).* rand(1, d);
23: [x, fmin, exitflag, output] = fminsearch(fname, x, setval);
24: FunEvals = output.funcCount;
25: if fmin <= fnear
26: if FunEvals < MaxIter*d
27: ResType = 1;
28: else
29: ResType = 2;
30: end
31: elseif FunEvals < MaxIter*d
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32: ResType = 3;
33: else
34: ResType = 4;
35: end
36: end
37: fprintf(fid, ’%5.0f ’, i);
38: fprintf(fid, ’%10.0f’, FunEvals);
39: fprintf(fid, ’ %1.0f’, ResType);
40: fprintf(fid, ’ %15.4e’, fmin);
41: fprintf(fid, ’%1s\r\n’, ’ ’);
42: end
43: fclose(fid);

The fminsearch algorithm has 4 output parameters (x, fmin, exitflag, output).
Thus, in determining the type of algorithm termination for the fminsearch func-
tion, it is not possible to use the non-existent variable fmax. The disadvantage in
the run_test function above is solved by using the nested funcCount element of
the output structure, which indicates the number of function evaluations.

We ran the run_test function for each dimension, for each algorithm, and for
each test function, so we each time got 100 evaluations of the test function by
selected algorithm in selected dimension.

Example of calling the run_test function
for the 1st De Jong function in dimension 4
1: fname = ’dejong’;
2: filenamesaveres = ’dejong.txt’;
3: boundary_interval = -5.12;
4: repcount = 100;
5: d = 4;
6: algtype = 1;
7: run_test(fname, filenamesaveres, boundary_interval, repcount, d, algtype);

For example, program code creates a dejong.txt file with 100 rows and 4
columns i, FunEvals, ResType, fmin for the 1st De Jong function in dimension
4, with the CRS algorithm used. Thus, for all combinations of the algorithm and
the test function, we get 12 files for each dimension, each with 100 evaluations.

3. Results of the experiment and their statistical
analysis

Based on the results of the experiment, we can compare the search time complexity
[2] and reliability of the algorithms used. The time complexity of the algorithm
is determined by the number of test function evaluations during the search, which
ensures comparability of results regardless of the speed of the computer used. We
analysed the results of the experiment using selected statistical methods. Since
we have been following the influence of two factors − the algorithm and function
on the assessment numbers, the possibility to use a two-factor variance analysis in
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addition to descriptive statistics was offered for the assessment of the results of the
experiment. However, we can only use the variance analysis if the following condi-
tions are met: The sample files come from the basic files with normal distributions,
the sample files are independent of each other and the variances of the basic files
are equal. Given that the observed feature assumptions described above were not
met, we used the non-parametric method of Kruskal–Wallis test [5] for the analysis.
Since the Kruskal–Wallis test is a non-parametric analogue to a one-factor analysis,
all combinations of the levels of the original two factors were a factor: algorithms
and types of functions. In our case, we tested 3 algorithms in combination with 4
types of functions, so we gained 12 independent selections (sub-groups) or 12 levels
of the factor “algorithm type + function type” in each of the two dimensions.

In the experiment, 100 measurements of the assessment numbers were per-
formed in dimension 3 and 4 in each of the 12 selections (so-called sub-groups), i.e.
altogether 1200 measurements. The tested problem is formulated as follows. We
test a null hypothesis 𝐻0: the numbers of evaluations in the 12 sub-groups created
according to the factor levels “algorithm type + function type” are identical as in
the alternative hypothesis 𝐻1: The numbers of evaluations in the 12 sub−groups
created according to the factor levels indicated are not identical (or, at least at
a level, they are different). As we have already stated, since the condition of the
normal distribution of observed features was not met, we used the Kruskal–Wallis
test to test the null hypothesis.

The Kruskal–Wallis test is a non-parametric analogue to one-factor variance
analysis, i.e. it allows testing the hypothesis 𝐻0 that 𝑘 (𝑘 ≥ 3) independent files
originate from the same distribution. It is a direct generalization of Wilcoxon
signed-rank test in the case k of independent selection files (𝑘 ≥ 3).

Let’s mark 𝑛1, 𝑛2, . . . , 𝑛𝑘 the ranges of individual selection files. Let’s pose,
𝑛 = 𝑛1 + 𝑛2 + · · · + 𝑛𝑘. Let’s line all 𝑛 elements into a non-decreasing sequence
and let’s assign its rank to each element. Let’s mark 𝑇𝑖 the sum of the elements
ranks of the ith selection file (𝑖 = 1, 2, . . . , 𝑘). Since 𝑇1 + 𝑇2 + · · · + 𝑇𝑘 = 𝑛(𝑛+1)

2
must hold, we can use this relationship to check the calculation of the values of the
characteristics 𝑇𝑖 (𝑖 = 1, 2, . . . , 𝑘). The test statistics is the statistics

𝐾 =
12

𝑛 (𝑛 + 1)

𝑘∑︁

𝑖=1

𝑇 2
𝑖

𝑛𝑖
− 3 (𝑛 + 1)

which has asymptotically the 𝜒2-distribution with 𝑘 − 1 degrees of freedom. We
reject the null hypothesis 𝐻0 at significance level 𝛼 if 𝐾 ≥ 𝜒2 (𝑘 − 1), where
𝜒2 (𝑘 − 1) is the critical value of the 𝜒2-distribution with 𝑘 − 1 degrees of free-
dom. As the statistics 𝐾 has an asymptotic 𝜒2-distribution, we can only use the
above relationship if the selections have a large range (𝑛𝑖 ≥ 5, 𝑖 = 1, 2, . . . , 𝑘), and
if 𝑘 ≥ 4. For some 𝑖 is 𝑛𝑖 < 5, or if 𝑘 = 3, we compare the test criteria value 𝐾
with the critical value 𝐾𝛼 of the Kruskal–Wallis test. Critical values 𝐾𝛼 are listed
in the critical values table. The tested hypothesis 𝐻0 is rejected at significance
level 𝛼 if 𝐾 ≥ 𝐾𝛼.
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If identical values occur in the obtained sequence data, that are assigned the
average rank, it is necessary to divide the value of the testing criterion 𝐾 by the
so−called correction factor. Its value is calculated by the following formula:

𝑓 = 1 −
∑︀𝑝

𝑖=1

(︀
𝑡3𝑖 − 𝑡𝑖

)︀

𝑛3 − 𝑛

where 𝑝 is the number of classes with the same rank, 𝑡𝑖 the number of ranks in the
𝑖−th class. The testing statistics will then have the form

𝐾2 =
𝐾

𝑓
.

If we reject the tested hypothesis 𝐻0 in favour of the alternative hypothesis 𝐻1,
which means that the selections do not come from the same distribution, a question
remains unanswered: which selections differ statistically significantly from each
other. In the analysis of variance, Duncan test, Tukey method, Scheffe method or
Neményi test are used to answer this question. In the Kruskal–Wallis test, Tukey
method is most frequently used to test contrasts, which we also briefly describe
below.

In the Tukey method, we compare the 𝑖−th and the 𝑗−th file for each 𝑖, 𝑗, where
𝑖, 𝑗 = 1, 2, . . . , 𝑘 and 𝑖 ̸= 𝑗, according to the following procedure. For each pair of
compared files, we calculate average ranks

𝑇𝑖 =
𝑇𝑖

𝑛𝑖
, 𝑇𝑗 =

𝑇𝑗

𝑛𝑗
.

The testing criterion of the null hypothesis 𝐻0, that the distributions of the files 𝑖
and 𝑗 are identical, is the absolute value of the difference in their average rank

𝐷 =
⃒⃒
𝑇𝑖 − 𝑇𝑗

⃒⃒
.

The tested hypothesis 𝐻0 is rejected at significance level 𝛼, if 𝐷 > 𝐶, where

𝐶 =

√︃
𝜒2
𝛼 (𝑘 − 1)

𝑛 (𝑛 + 1)

12

(︂
1

𝑛𝑖
+

1

𝑛𝑗

)︂

𝜒2
𝛼 (𝑘 − 1) is the critical value of the 𝜒2−distribution with 𝑘−1 degrees of freedom,

𝑘 is the number of compared files. In our case, we verified by the Kruskal–Wallis test
whether the 12 sub-groups produced by the level of the factor “type of algorithm
+ type of function” statistically significantly differ in the observed feature “the
numbers of evaluations”. Therefore 𝑘 = 12, while 𝑛1 = 𝑛2 = · · · = 𝑛12 = 100, 𝑛 =
𝑛1 +𝑛1 + · · ·+𝑛12 = 1200 are measured numbers of evaluations. We implemented
the Kruskal–Wallis test in program STATISTICA. After entering the input data in
the computer output reports, we get the following results for the selected Kruskal–
Wallis test: the testing criterion value 𝐻 and the probability value 𝑝.
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Dimension 3

We have used the Kruskal–Wallis test to test the null hypothesis 𝐻0: the numbers
of evaluations in the 12 sub-groups created according to the factor levels “algorithm
type + function type” are identical as in the alternative hypothesis 𝐻1: the numbers
of evaluations in the 12 sub-groups created according to the factor levels indicated
are not identical (or, at least at a level, they are different).

First, we calculated arithmetic averages and standard deviations of the assess-
ment numbers (Table 1) and also presented it graphically in Figure 1 in each of
the 12 sub-groups.

Evaluations count
Groups Means N Std. Dev.

1 22709,21 100 7098,061
2 2249,60 100 114,419
3 27863,82 100 3143,617
4 2703,36 100 191,001
5 5980,20 100 328,916
6 2711,70 100 117,233
7 10827,00 100 1327,715
8 16384,20 100 1092,761
9 192,89 100 25,877
10 234,79 100 14,931
11 272,89 100 28,379
12 376,47 100 69,821

All Grps. 7708,84 1200 9504,885

Table 1: Numbers of evaluations in each subgroup in dimension 3

Figure 1: Numbers of evaluations (average values) in each subgroup
in dimension 3

We have calculated the rank sums Table 2, the test criterion value 𝐾 = 1172.02
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and the value 𝑝 = 0.000 by the Kruskal–Wallis test in dimension 3 for the assess-
ment numbers. As the calculated probability value 𝑝 is less than 0.01, we reject the
null hypothesis at the significance level 𝛼 = 0.01, i.e. the difference between the 12
sub-groups in dimension 3 with respect to the observed feature of the “number of
evaluations” is statistically significant.

Groups Evaluation Sum of
count Ranks

1 100 105274,0
2 100 45221,0
3 100 111855,0
4 100 59602,0
5 100 75050,0
6 100 60327,0
7 100 85271,5
8 100 97799,5
9 100 6294,5
10 100 15348,0
11 100 24279,5
12 100 34278,0

Table 2: Kruskal–Wallis test results

The test confirmed that the individual sub-groups in dimension 3 differ statis-
tically significantly from each other in relation to the assessment numbers. In the
same way, as in dimension 2, we have been able to find out by multiple comparisons
which groups are statistically significantly different from each other Table 3 in this
case.

Groups
2 3 4 5 6 7 8 9 10 11 12

1 0,00* 1,00 0,00* 0,00* 0,00* 0,00* 1,00 0,00* 0,00* 0,00* 0,00*
2 0,00* 0,22 0,00* 0,14 0,00* 0,00* 0,00* 0,00* 0,00* 1,00
3 0,00* 0,00* 0,00* 0,00* 0,27 0,00* 0,00* 0,00* 0,00*
4 0,11 1,00 0,00* 0,00* 0,00* 0,00* 0,00* 0,00*
5 0,18 1,00 0,00* 0,00* 0,00* 0,00* 0,00*
6 0,00* 0,00* 0,00* 0,00* 0,00* 0,00*
7 0,70 0,00* 0,00* 0,00* 0,00*
8 0,00* 0,00* 0,00* 0,00*
9 1,00 0,02* 0,00*
10 1,00 0,01*
11 1,00

Table 3: Results of Kruskal–Wallis multiple comparison test
(𝑝-values)

The Table 3 shows that there is a statistically significant difference in the num-
bers of evaluations in dimension 3 between sub-group 1 and sub-group 2, between
sub-group 1 and sub-groups 4 to 7 and between the sub-group 1 and sub-groups
9 to 12 (probability value 𝑝 = 0.000). This means that the measured assessment
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numbers in sub-group 1 are statistically significantly different as measured in sub-
group 2 and sub-groups 4 to 7 and 9 to 12 (or the assessment numbers between
sub-groups 1st and 2nd and between the 1st sub-group and sub-groups 4–7 a 9–
12 are significantly different respectively). In the same way, we can interpret all
results in Table 3 marked with a *. We also illustrated the situation graphically
(Figure 2).

Figure 2: Numbers of evaluations (average values) in each subgroup
in dimension 3

Dimension 4

As in previous dimensions, we also tested the statistical significance of differences
in the number of evaluations in 12 sub-groups by the Kruskal–Wallis test in di-
mension 4. In each of the 12 sub-groups of dimension 4, we calculated arithmetic
averages and standard deviations of the number of evaluations (Table 4) and we
also presented the situation graphically in Figure 3.

We have calculated the rank sums (Table 5) and the test criterion value 𝐾 =
1180.46 and the value 𝑝 = 0.000 by the Kruskal–Wallis test. As the calculated
probability value 𝑝 is as well less than 0.01 in this case, we reject the null hypoth-
esis at the significance level 𝛼 = 0.01, i.e. the difference between the 12 sub-groups
in dimension 4 with respect to the observed feature “numbers of evaluations” is
statistically significant. The Kruskal–Wallis test confirmed that the individual
sub-groups in dimension 4 differ statistically significantly from each other in re-
lation to the assessment numbers. Subsequently, we have identified by multiple
comparisons (Table 6) which groups are statistically significantly different from
each other. Table 6 shows that there is a statistically significant difference in the
numbers of evaluations in dimension 4 between sub-group 1and sub-group 2. and
sub-group 1 and sub-groups 4 to 6 and between the sub-group 1 and sub-groups
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Evaluations count
Groups Means N Std. Dev.

1 34741,03 100 3119,75
2 4666,28 100 186,43
3 40000,00 100 0,00
4 5618,71 100 237,65
5 11676,80 100 518,89
6 4992,00 100 160,60
7 22800,00 100 2404,70
8 40000,00 100 0,00
9 298,57 100 57,56
10 379,91 100 44,35
11 439,19 100 61,26
12 609,18 100 129,52

All Grps 13851,81 1200 15432,29

Table 4: Numbers of evaluations in each subgroup in dimension 4

Figure 3: Numbers of evaluations (average values) in each subgroup
in dimension 4

9 to 12 (probability value 𝑝 = 0.000). This means that the measured assessment
numbers in sub-group 1 in dimension 4 are statistically significantly different as
measured in this dimension in sub-groups 2, 4 to 6 as well as 9 to 12 (or the assess-
ment numbers between sub-groups 1 and sub-groups 4− 7 and 9− 12 in dimension
4 are significantly different). In the same way, we can interpret all results in Table
6 marked with a *. We also illustrated the situation graphically (Figure 4).
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Groups Evaluation Sum of
count Ranks

1 100 105000,0
2 100 49972,5
3 100 105000,0
4 100 65050,0
5 100 75050,0
6 100 50127,5
7 100 85200,0
8 100 105000,0
9 100 5884,5
10 100 16658,5
11 100 23892,5
12 100 33764,5

Table 5: Kruskal–Wallis test results

Groups
2 3 4 5 6 7 8 9 10 11 12

1 0,00* 0,24 0,00* 0,00* 0,00* 1,00 0,24 0,00* 0,00* 0,00* 0,00*
2 0,00* 0,01* 0,00* 1,00 0,00* 0,00* 0,00* 0,00* 0,00* 0,83
3 0,00* 0,00* 0,00* 0,00* 1,00 0,00* 0,00* 0,00* 0,00*
4 1,00 1,00 0,00* 0,00* 0,00* 0,00* 0,00* 0,00*
5 0,00* 1,00 0,00* 0,00* 0,00* 0,00* 0,00*
6 0,00* 0,00* 0,00* 0,00* 0,00* 0,00*
7 0,00* 0,00* 0,00* 0,00* 0,00*
8 0,00* 0,00* 0,00* 0,00*
9 1,00 0,04* 0,00*
10 1,00 0,02*
11 1,00

Table 6: Results of Kruskal–Wallis multiple comparison test
(𝑝-values)

Figure 4: Numbers of evaluations (average values) in each subgroup
in dimension 4
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4. Conclusion

In conclusion, we can summarize based on the results of the experiment that the
fminsearch function is the fastest algorithm and, on the other hand, the Differ-
ential Evolution algorithm is the slowest one. Only type 1 search is considered
successful. Then the reliability of finding the global minimum can be characterized
as the relative number of type 1 termination, that is 𝑅 = 𝑛1

𝑛 , where 𝑛1 is the num-
ber of type 1 terminations and 𝑛 the number of repetitions. The algorithms based
on the experiment determine this reliability (in percent) of the global minimum
finding (Table 7).

De Jong 1 Rosen Ackley Griewangk Average
CRS

100% 100% 53% 3% 64%
fminsearch

100% 87% 0% 0% 47%
difevol

100% 35% 99% 94% 82%

Table 7: Reliability of algorithms id dimensions 3 and 4

We can see a considerable difference in the reliability of the Differential Evolu-
tion algorithm (which is very slow) and algorithms Controlled Random Search and
fminsearch. We can say that evolutionary operations mutation, cross-breeding,
and selection are a major benefit of reliability for the algorithm. The difference
in reliability of the algorithm Controlled Random Search and Fminsearch can also
be considered significant given the number of times the global minimum search
and the test functions used are repeated. Furthermore, based on the results of the
test, we can say that finding a global minimum of the First De Jong function is
simple and almost certain for any algorithm. Finding a global minimum for Rosen-
brock’s saddle is not easy just for an algorithm Differential Evolution that searches
unreliably. From the above-mentioned reliabilities, it can be said that finding the
global minimum of the Ackley function and Griewangk’s function is difficult for the
truly fast Fminsearch algorithm implemented in the Matlab environment, which
produces great results for the Second De Jong function reliably and quickly. In
general, the finding of the global minimum of the Griewangk’s function is least
likely in dimensions 3 and 4.

Based on the results of the experiment, we can conclude that by involving math-
ematical software to solve global optimization problems, a higher level of knowledge
was achieved, a better understanding of various principles and algorithms, and,
thus, students better mastered the issue. It is therefore effective and necessary to
pay sufficient attention to these methods. Thanks to the use of computer tech-
niques in the pedagogical process, everyone can draw into mathematics secrets of
global optimization problems. On the basis of the results and theoretical starting
points of the work, we have arrived at the following recommendations:

1. lead the students in solving mathematical application tasks in order to best
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understand the theoretical starting points of the subject topic

2. use computer technology to increase students’ activity and to provide a suc-
cessful motivation to work

3. create suitable, modern and pregnant study material that will enhance the
knowledge of students

4. within the cross-subject relations, extend the students’ knowledge from the
computer algebra systems

5. involve the use of computer algebra systems into maths teaching for achieving
better results

6. effectively use the subject matter from another field within the framework of
cross-subject relationships (such as mathematics and informatics).
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Abstract
The aim of this paper is to present potential connection points and inter-

relations between the development of spatial abilities and concepts and fine
arts in high school (K9–12) education. The evaluation and comparison re-
sults of the assessment of spatial abilities and freehand drawing abilities show
strong correlation, which fact further supports this potential educational in-
terconnection.
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1. Introduction

Development of spatial abilities and concepts is of utmost importance in school
education. Many papers studied the importance of spatial visualisation skills in
various countries and in various school levels (for a good overview see e.g. [1, 6]).
Spatial skills and spatial visualisation abilities have no unique definition – here we
apply the following concept: by spatial ability we mean the ability of perception of
two and three dimensional shapes, and the ability of application of the perception
of these shapes and their relationships in spatial reasoning and solving spatial
problems [10].
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Spatial abilities or some of their aspects can be assessed through various tests,
among which one can find international standards (such as Mental Cutting Test,
Mental Rotation Test, see [3, 4, 12, 13]) and national versions as well. Most of them
are specified for a certain aspect of school period/age. Several studies, including
Hungarian surveys, observed gender differences in these abilities, which can and
must be considered during the educational process [6–8].

It is also known that spatial ability is not the result of a person’s ability to
be born with it, but is the result of a long-term learning process([10, pp. 40–45]).
The lack, or rather deficiency, of spatial ability yields problems only in a rather
narrow part of the mathematics curriculum (spatial geometry), but in practical
terms, in everyday life, correct spatial approach is extremely important and should
be improved.

According to psychological studies, the development of visual thinking is com-
pleted relatively early. Therefore, neglecting spatial geometric problems and de-
veloping spatial attitudes in elementary school at the age of 10–14 can lead to an
imminent disadvantage [9]. Literature data (see [10] and references therein) prove
that the spatial concept of students can still be improved at the age of 12–16, but
only to a certain extent. That is, in high school, spatial awareness is more difficult
to develop, especially if a pupil comes from the primary school already possessing
spatial deficiencies.

Therefore, we must grab all the tools, fields, subjects and lessons that can help
us further develop spatial abilities. Beside mathematics lessons, which are natural
milieu of development, other study fields can also support this development.

In this paper we discuss the correlation between art history and spatial visu-
alization in order to show potential connection points in terms of development of
space concept and space representation through fine arts. We intend to specify
those periods or styles in the history of art, which can be assigned to well defined
spatial visualisation problems. This is discussed in Section 2. In Section 3 we
present outcomes of a test period, where spatial ability tests and drawing tasks
have been tested and their correlation has been studied. This study supports our
initial hypothesis, that there is a strong correlation between spatial abilities and
(spatial) drawing abilities, which makes sense the above mentioned interdisciplinary
approach.

2. Periods of art history and spatial visualisation

Problem solving on the plane of a drawing sheet is evidently not sufficient to de-
velop spatial concept, to improve the spatial abilities. It is also important to act
and construct in space for better understanding and more effective development.
Kárpáti et al. found that the most effective developmental procedures are real-
world operations: making sculptures and installations, modeling, object creation.
([5, p. 103]).

Where else can students find and study spatial constructions and their repre-
sentation? Evidently in lessons on fine arts. Since people exists in space and time,
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from the beginning of (art) history man is deeply interested in the visible and tac-
tile space, and its visual expression, the planar representation of space. At first we
briefly review the development of spatial approach and spatial representation, as
well as its development in different eras of art from this point of view.

Period/style of art Topics to study Spatial visualisation

Prehistoric and Egyp-
tian Art

Cave paintings (side
view), Egyptian paint-
ings (principle of
largest surface view)

Similarity to orthogo-
nal mappings

Art of the Roman Em-
pire

wall-paintings (Pom-
pei) and mosaics

Analogue of axonomet-
ric mapping

Medieval Art Byzantine icons, codex
illustrations Reverse perspective

Late Medieval Paint-
ings Giotto frescos Similarity to axono-

metric mapping

Renaissance

Development of cor-
rect perspective draw-
ing through many art-
works of various artists

Perspective mapping

Baroque, Classicist
and Romantic Paint-
ings

Illusionistic ceiling
paintings, flourishing
of perspectivity

Perspective mapping

Impressionism, Post-
impressionism, Cu-
bism

Monet, Cézanne, Gau-
guin, Picasso, Braque,
emphasising the cubist
approach (Braque, Pi-
casso), where spatial
relations and structure
of objects have been
studied, with manifold
unified views and map-
pings in the same fig-
ure. Mondrian’s geo-
metric compositions

Different parallel pro-
jections

Op-art, Contemporary
Graphic Art

Art of geometric com-
positions (e.g. Victor
Vasarely and Maurits
Escher)

Non-linear mappings

Table 1: Embedding spatial visualisation methods into teaching of
history of fine arts

Here we only review and list a few important elements of potential areas of
drawing lessons in the National Core Curriculum, where spatial ability can be
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intentionally developed. For a more detailed overview see [10, pp. 135–148].

2.1. Primary school
Class 5: Making apparent drawings depicting spatial situations after a sight and
based on imagination. View and derivation of objects from simple geometric shapes.
Output: draws a fictional object based on memory, imagination. Knows how to
display spatial situations. Class 6: Preparation of shape analysis structural draw-
ings, sections, reductions. Projection representation. Output: Apply the familiar
representation modes as appropriate. Class 7: Means of plastic expression (degree
of spatial extent, directions, articulation, place in the environment). Structural,
perspective representation of larger artificial and natural forms, Monge projection,
(one-dimensional) editing of axonometry. Designing a utility object by making an
appearance and projection drawing. Output: Its ability to abstraction is mani-
fested in the emphasis on substance, in geometric simplification. He knows the
basics of Monge projection and axonometric representation, he/she solves such an
editing task with more or less independence. Class 8: Observation of a built spa-
tial unit (building, street detail), experience-perspective representation. Edit a
one- or two-way perspective image. Use of longitudinal and cross-sections to make
illustrative diagrams. Reconstructions based on projection and axonometric draw-
ings. Observation of the representation that creates the illusion of space, apparent
shortenings, point of view. The perspective representation. Spatial representation
modes, mixed perspective representation modes in different ages. Output: Has
the necessary spatial basis for representation conventions, is able to edit simple
projection, axonometric and perspective figures.

In grade 7–8. it is no accident that the curriculum related to the spatial ap-
proach swells in the classroom. These are the two school years when students who
are no longer in secondary school must be taught all this. Another question is how
much the number of hours shrunk to one drawing lesson per week is enough to
master the diverse curriculum [10].

2.2. Secondary school
Prior to the new framework curriculum introduced from the 2014/15 school year,
in secondary school (in vocational high school from the 2016/17 school year), it
was possible to learn more about spatial representations and apply them to stu-
dents as part of a drawing and visual culture class. There was an opportunity for
freehand drawing and even occasionally even editing. The development of spatial
representation can be traced throughout art history, which could be interestingly
approached and skilfully emphasized in drawing lessons on art history topics. (As
a drawing teacher, I also used it in secondary school for as long as I could – in the
framework of the Drawing and Visual Culture subject, before the new framework
curriculum introduced from the 2014/15 school year.)

The way in which space is depicted is a central issue in painting, as it also
expresses the painter’s relationship to reality, and the worldview of the ages can
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also be read from it. (Thus, from prehistory to the renaissance, where painters had
perfected the experiential perspective – which mathematicians only wrote much
later – we could arrive at isms, modern endeavors, where they again began to
ignore perspective.)

3. Experimental study of the relation between spa-
tial abilities and art

In order to apply the above principles, we need to test that drawing skill and
spatial ability are related. Therefore we organised an experimental study in this
regard. 9th and 12th grade students participated in the survey. The hypotheses are
that the above mentioned correlation exists, that final year students score higher
(perform better) on the spatial test than 9th graders, meaning students increase
their spatial performance with age, and there is a clear gender difference in these
abilities. Continuing the previous studies in gender differences, and applying their
methods ([6–8, 10]) we also studied this latter aspect. While previous studies
mainly focused on university students, here we prove through experimental data
that there is a difference in the spatial and performance of boys and girls already
in high school. According to the results of an experiment([2]), the development
of the spatial ability is significantly reflected by the students marks in maths and
drawing. Our main focus is on the correlation between drawing abilities and spatial
abilities.

We present the evaluation of the first three tasks of the written test series,
which require mathematical and geometric knowledge in addition to the appropriate
spatial approach, in terms of the two age groups (grades 9 and 12), and gender
(girls and boys). We also examine the relationship between test scores and students’
representation of space from memory. Drawing from memory is more difficult than
drawing from sight, because from memory one draws what one knows about objects
– based on schemes. In the case of a room and an interior, on the other hand, the
task is to display the space, to place and draw the objects in space (abstracting
from schemes, application of a representation system is necessary).

So this work raises the following questions:

• How did students of different ages pass the spatial test?

• How did students of different ages perform in the part of the test that also
required knowledge of mathematics?

• Is there a significant relationship between students’ performance in the test
and the spatial quality of the room drawings made from memory?
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4. Test results and correlations

The survey was conducted in two vocational grammar schools of a Transdanu-
bian county seat, among “incoming” (9th grade), starting the vocational grammar
school, and graduating (12th grade) students. Regarding the qualification in draw-
ing, it should be mentioned that the graduates had a Visual Culture class in the
10th grade, 1 hour per week, and one class (21 people – 12 girls and 9 boys) had a
Technical Representation class in the 9th grade, for one semester, 1 hour a week.
Incoming 9th grade students are equipped with the drawing knowledge and skills
learned in primary school (they will not have a Visual Culture, or Technical Rep-
resentation, or any other “drawing” class during their high school years). The test
is based on the tasks from the online database [11].

The tests were written at the beginning of the school year – in the second
half of September. The drawing assignment was completed a few months later, in
November and December. Due to this time delay, a few drawings may not have
been drawn, or conversely, some drawings may not be assigned to test. The number
of completed drawings became less than the number of test writers, so we take the
number of written tests as a basis, and we have associated the drawings with these
tests. For those tests no drawing was assigned, the category “none (drawing)” is
created.

The test was written by: 295 people (241 girls and 54 boys); the drawing task
was completed by 262 people (214 girls and 48 boys) in 12 classes. (no drawing:
27 girls, 6 boys) In grade 9, the test was written by 182 people (153 girls and 29
boys); the drawing task was completed by 163 people (137 girls and 26 boys) in 6
classes. (no drawing: 16 girls, 3 boys). In grade 12, 113 people (88 girls and 25
boys) completed the test; the drawing task was completed by 99 people (77 girls
and 22 boys) in 6 classes (no drawing: 11 girls, 3 boys).

Tasks of the test include standard spatial problems about a cube. For example,
we have marked some points on the edges of a cube (see Fig. 1).

Figure 1: A cube with edge mid-points for spatial tasks
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Students have to find a) four-point sets that are coplanar, and b) four-point
sets that are not coplanar. A total of 10 points can be obtained in the task, from
which 4 points could be obtained with four good solutions in part a). There are
many good solutions in part b), where 1 point is awarded for a good answer, but
we maximized the points that can be obtained in 6 points.

Another task is to determine what type of triangle are defined by the point
triples BCD; BFD; FGC; ACE; GBE. A total of 10 points can be obtained in the
task. Since triangles can be grouped according to their sides and angles (6th grade
curriculum), the triangles listed by the points (their vertices) must be given in both
ways.

In the spatial tasks the usual gender difference is observed, as one can see in
the Table 2.

9th grade average score 12th grade average score
overall 3.63 4.64
girls 3.48 4.28
boys 4.38 5.88

Table 2

We can also observe a significant improvement from 9th to 12th grade. More
precisely, testing the hypothesis that this improvement is significant, the result of
the t-probe is 0.0024 overall, 0.0291 for girls, and 0.0432 for boys, all less than 0.05.

What is even more interesting is our second hypothesis: that the spatial abilities
measured by the test and the freehand drawing abilities measured by a drawing
task (see below) are in correlation.

The drawing task had to be done freehand, that is without the use of a ruler,
compass or other tool. The time allotted for the drawing task was 20 minutes – not
much, but enough to sketch the main fixtures (optimally). Task text: “Draw your
room from memory, as if you were standing in the doorway or sitting on your bed!
You have 20 minutes for the task, you don’t have to tone or color, line drawing is
enough. (But whoever has the time and ambition, and of course the means, can
also tone and color.) Write your name, year of birth and class on the back of the
drawing! Use paper of size A4, preferably draw with a pencil (so that you can
adjust or correct it).”

For the evaluation and classification of the drawings, we intended to define the
categories in a similar way as the development of spatial representation can be
traced in art history. It is surpirsing that axonometric drawings were not used,
that is the expected, typically axonometric representation was not typical at all.

The established categories according to the spatial representation and the num-
ber (and proportion) of drawings corresponding to the categories by grades:
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category 9th grade 12th grade
perspective (at least 90%) 4 (2.20%) 7 (6.20%)

perspective-axonometric (around 50%–50%) 22 (12.09%) 25 (22.12%)
space-like with planar elements 32 (17.58%) 25 (22.12%)
planar-like with a single view 43 (23.63%) 8 (7.08%)

mixed view with “unfolded” parts 44 (24.18%) 19 (16.81%)
simple layout (floor plan) 18 (9.90%) 15 (13.27%)

no drawing 19 (10.44%) 14 (12.39%)

Table 3

What we observed through calculating the significance is that the quality (cat-
egory) of the freehand drawing and the scoring level of the test are in strong cor-
relation in both grades. The correlation coefficient is 0.3994 for 9th grade students
and 0.2937 for 12th grade students, both are well above the signifcance level of
98%, which is 0.2301.

5. Conclusion and future work

Our aim was to test a hypothesis in terms of spatial abilities of secondary school
students, namely that the spatial ability, tested by standard tasks, and the freehand
drawing ability, tested by a drawing task, are in strong correlation. This hypothesis
has been proved, and, as a side effect, we also observed a gender difference, reported
by many other publication, in spatial ability.

Our further goal is to prove the assumption that due to changes in curricula
(visual culture instead of drawing and visual culture) and omission of subjects
(cessation of drawing lessons), tests written in later school years show worse results,
and spatial representation reaches a lower level. Further tests and drawings are
needed to investigate this issue.
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1. Introduction and problem statement

Earlier findings show that there is a gap between the knowledge of students entering
the university and the expectations and prerequisites of the universities’ curriculum
[8]. These prerequisites are based on the National Core Curriculum (NCC) [20] for
high schools. The admission process to the university is strongly based on a final
exam that every student has to take at the end of secondary school from five
subjects: mathematics is compulsory. They get a grade 1–5 for the exam and this
grade is put into their transcripts. At the same time their score in percentages
counts at the admission points to the university. Students can choose between two
levels, medium and raised. The tasks in the final exam are mainly standard tasks
and can be anticipated, even on the raised level, hence, can be practised. Thus a
student can practice to the final exam without gaining deeper understanding. This
final exam has a high impact on secondary education and on the transition from
secondary to tertiary education in Hungary. Not only students are ranked and
can get admission to universities based on their final exam-results, high schools
are also ranked based on the average scores of their students on final exams [19].
Most students successfully pass their final exam in mathematics [7], however, it is a
general observation that the knowledge of students entering university is deficient.
This suggests that there is a gap between the final exams and the NCC [8].

We would like to argue that the strong external influence of the final exam
distorts the original conceptions of the NCC. German universities struggled with
a similar problem [3]: there was a big difference between the knowledge of the
students entering the university and the knowledge required by the university.
After several conciliations between the universities and each province’s secondary
schools, this problem seems to be being solved in Germany. In this paper we
investigate this gap in the Hungarian math education.

Understandably, achieving good results on the final exam becomes a crucial
aspect in high school mathematics education – sometimes even more important
than aspects set up by the NCC. This implies that teachers will concentrate more
on the topics and the tasks which occur in the final exam than on other topics that
are in the curriculum. The entry system allows students to enter the university
in the absence of the required knowledge [8]. We chose to examine this problem
focusing on students’ geometrical thinking due to the great proportion of geometry
in the curriculum and the final exam. Geometry holds a central role in science,
has several applications in everyday life, and in arts as well [5, 12]. Geometry
itself is a separate high school subject in Greece, for example. In Hungary usually
thirty percent of the final exam tasks are geometric flavoured. This is a significant
proportion. Geometry is a substantial part of secondary mathematics education as
well. It occupies approximately thirty-five percent of the high school mathematics
material, similarly to its proportion in the final exam.

Hence it is natural to consider to investigate the geometrical understanding
of Hungarian high school students. The aim of this research was to investigate
students’ Van Hiele levels to follow their development, especially to see whether or
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not this development is parallel to the requirements of the NCC. In particular, we
were interested if students from grade 12 have achieved level 4, the level of proofs.
In our study we use the Usiskin test for the framework of the Van Hieles [15]. The
test was filled in by 342 students from five different high schools. The results show
that there is no improvement during the high school years, the average score of the
Usiskin test is between 2.03 and 2.17 on all grades.

2. Description of geometrical understanding in the
National Core Curriculum

There are several ways of thinking about geometry, there are different ways people
think about it and there are several ways to structure geometry and how to teach
geometry. The Van Hieles elaborated one possible way of structuring and describ-
ing people’s understanding of geometry: focusing on understanding of geometrical
shapes and structures, they distinguished five different levels of geometrical un-
derstanding. These levels are: visualization, analysation, abstraction, deduction
and rigor (they are explained down below). According to the van Hiele theory, a
student moves sequentially from the initial level (Visualization) to the highest level
(Rigor). Students cannot achieve one level of thinking successfully without having
passed through the previous levels [15].

The van Hieles’ theory has been applied to clarify students’ difficulties with the
higher order cognitive processes. In order to succeed in high school geometry, higher
order cognitive processes are indispensable. [20] According to the theory if students
are not taught at the proper Van Hiele level, then they will face difficulties and
they cannot understand geometry. This makes measuring students’ Van Hiele level
necessary. A possible validated tool for this measurement is the test elaborated by
Usiskin in 1982.

2.1. Level 1: Visualization
At this initial stage, students recognize figures only by appearance and they usually
think about space only as something that exists around them. Geometric concepts
are viewed as undivided, whole entities rather than as having components or at-
tributes. For example, geometric figures are recognized by their whole physical
appearance, not by their parts or properties, so the properties of a figure are not
detected. A person functioning at this level makes decisions based on perception,
not reasoning. On the other hand, they can learn geometric vocabulary, identify
specified shapes, reproduce a given figure. However, a person at this stage would
not recognize the part of the figures, thus, they cannot identify the properties of
these parts.
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2.2. Level 2: Analysation
At this level an analysis of geometric concepts begins. For example, students
can connect a collection of properties to figures, but at this point they see no
relationship between these properties. Figures are recognized as having parts and
are recognized by their parts. Usually they know a list of properties, but they
cannot decide which properties are necessary and which are sufficient to describe
the object. Interrelationships between figures are still not seen, and definitions are
not yet understood at this level.

2.3. Level 3: Abstraction
At level 2 students perceive relationships between properties and between figures,
they are able to establish the interrelationships of properties both within figures
(e.g., in a quadrilateral, opposite angels being equal necessitates opposite sides
being equal) and among figures (a rectangle is a parallelogram because it has all
the properties of a parallelogram). So, at this level, class inclusion is understood,
and definitions are meaningful. They are also able to give informal arguments to
justify their reasoning. However, a student at this level does not understand the
role and significance of formal deduction.

2.4. Level 4: Deduction
The 4th level is the level of deduction: students can construct smaller proofs (not
just memorize them), understand the role of axioms, theorems, postulates and
definitions, and recognize the meaning of necessary and sufficient conditions. The
possibility of developing a proof in more than one way is also seen and distinctions
between a statement and its converse can be made at this level.

2.5. Level 5: Rigor
This level is the most abstract of all. A person at this stage can think and construct
proofs in different kind of geometric axiomatic systems. So, students at this level
can understand the use of indirect proof and proof by contra-positive and can
understand non-Euclidean systems.

The existence of Level 0 – the level of pre- recognition is also proposed [6].
Students at this level notice only a subset of the visual characteristics of a shape.
As a result, they are not able to distinguish between certain figures. Progress from
one level to the next is more dependent on educational experiences, than on age or
maturation. Some experiences can facilitate progress within a level or to a higher
level.There is some logic behind this kind of structuring. Although there might be
other levelings, but these levels should be achieved by everybody independently of
the manner in which they learned geometry.

The logic of this structure is also confirmed by the observation that the Van
Hiele levels can be recognized in the Hungarian National Core Curriculum [20] step
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by step. The following sentences and requirements connecting to different grades
are from the NCC.

• Grade 1–4: “The creation, recognition and characteristics of triangles, squares,
rectangles, polygons and circles.”

• Grade 5–8 “Triangles and their categories. Quadrilaterals, special quadrilat-
eral (trapezoids, parallelograms, kites, rhombuses). Polygons, regular poly-
gons. The circle and its parts. Sets of points that meet given criteria.”

• Grade 9–12.: “The classification of triangles and quadrilaterals. Altitudes,
centroid, incircle and circumcircle of triangles. The incircle and circumcircle
of regular polygons. Thales’ theorem.”
“Remembering argumentation, refutations, deductions, trains of thought; ap-
plying them in new situations, remembering proof methods is important.”
“Generalization, concretization, finding examples and counterexamples (con-
firming general statements by deduction; proving, disproving: demonstrating
errors by supplying a counterexample); declaring theorems and proving them
(directly and indirectly) is also necessary.”

The levels correspond to age groups: a 4th grader (10 years old) has to reach
level 1, a 6th grader (12 years old) should reach level 2, an 8th grader (14 years old)
should be on at least level 3, and finally at grade 12 students (18 years old) have to
reach level 4, which means they have to reach the level of deductions – students have
to be able to construct smaller proofs, understand the role of axioms, theorems,
postulates and definitions.

3. The survey

A survey of high-school students was held during the 2015/2016 academic year.
Participants were 342 students from five different high-schools: one from Budapest
and four from Miskolc. The schools were selected from a list that either had
an agreement with our university or showed earlier a willingness to participate
in research experiments. We omitted the schools with a special math program
and schools founded by our university. Among the schools there was one music
conservatory, and four standard high-schools such that three of them is considered
as an average high-school, and one of them is in the top forty by the official ranking
of the Hungarian Ministry of National Resources [19]. Four schools are founded
by the government, one by the church. The data from Miskolc was collected by
two colleagues from Miskolc: Csenge Edőcsény and Ákos Győry. There was 62
students from the music conservatory and the other 280 students followed the
normal curriculum. Also there were 32 pupils who belonged to the Arany János
Tehetséggondozó Program (AJTP) which is a talent care program for pupils coming
from socially handicapped families, mostly from small villages. Out of the 280
students there were 91 from grade 9, 103 from grade 10, 27 from grade 11, and 59
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from grade 12. Among the 62 music conservatory students 18 9th graders, 17 10th

graders, 15 11th graders, and 59 12th graders participated in our research.
The measuring of the levels was carried out by means of the Usiskin-test [15],

which is a 25 item multiple-choice test with 5 foils per item. The test contains five
questions per level and to fulfill correctly a level one has to answer correctly to at
least 3 or 4 questions – depending on which scoring system is used – out of the five
questions. We distinguish two kinds of scoring system: we called them “strong”
version and a “weak” version. In the “weak” version one has to answer correctly to
at least 3 questions from the five to fulfill correctly a level, while in the “strong”
version at least 4 good answer is needed. To reach a level one has to fulfill correctly
all the previous levels, too. That means if a person completed correctly level 1, 2,
3, 5 but not level 4, then this person is on level 3 according to the test. In general
if a person met the criteria of passing each level up to and including level 𝑛, but
not level 𝑛+ 1, then the person is assigned to level 𝑛. This test was used in more
than forty countries [1, 2, 4, 9–11, 13, 14, 16–18, 22], and this test is tested and
used continuously from 1982.

There are 35 minutes for the test independently of age and grade. In our
experiment the students had to complete the test either on paper or online decided
by the teacher of the class.

4. The results

The following table shows the results of the high-school students. On the table A,
B, C, D, E letters denote the schools. The abbreviation n.o.p. denote the number
of participants. By strong version we mean that the text filler has to answer four
questions correctly out of the five to fill correctly a certain level and by weak version
we mean that the text filler has to answer only three questions correctly out of the
five.

A B C D E total
mean 1,42 1,26 1,40 1,00 0,67 1,21
dev. 1,35 1,38 1,16 1,05 0,97 1,23
n.o.p. 24 27 30 10 18 109

Table 1: Grade 9 – strong version
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A B C D E total
mean 2,29 2,22 2,13 2,10 1,17 2,03
dev. 0,95 1,69 1,22 1,20 1,34 1,35
n.o.p. 24 27 30 10 18 109

Table 2: Grade 9 – weak version

A B C D E total
mean 1,18 1,13 1,54 1,80 1,00 1,31
dev. 1,26 1,18 1,14 1,32 1,12 1,19
n.o.p. 22 32 39 10 17 120

Table 3: Grade 10 – strong version

A B C D E total
mean 1,18 2,16 2,21 2,40 1,59 2,05
dev. 1,10 1,30 1,10 0,97 1,12 1,16
n.o.p. 22 32 39 10 17 120

Table 4: Grade 10 – weak version

A B C D E total
mean 2,86 - 1,38 1,14 0,47 1,26
dev. 1,21 - 1,39 0,90 0,74 1,33
n.o.p. 7 0 13 7 15 42

Table 5: Grade 11 – strong version

A B C D E total
mean 4,00 - 2,23 2,43 1,13 2,17
dev. 1,29 - 1,48 1,27 0,92 1,54
n.o.p. 7 0 13 7 15 42

Table 6: Grade 11 – weak version
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A B C D E total
mean 0,70 1,75 2,11 0,87 1,00 1,14
dev. 1,02 1,36 1,05 1,19 1,04 1,21
n.o.p. 23 12 9 15 12 71

Table 7: Grade 12 – strong version

A B C D E total
mean 2,47 2,75 2,89 1,00 1,17 2,04
dev. 1,04 1,42 0,60 1,95 1,11 1,34
n.o.p. 23 12 9 15 12 71

Table 8: Grade 12 – weak version

n.o.p. mean (strong version) mean (weak version)
grade 9 109 1,21 2,03
grade 10 120 1,31 2,05
grade 11 42 1,26 2,17
grade 12 71 1,14 2,04

Table 9: cumulative results

Although the results are from different schools, the performances of the schools
are similar and based on these results we can estimate the Van Hiele levels of
students attending to other schools in the country. Based on this estimation most
of the Hungarian high-school students are on the level of a primary school student
in geometry. This raises the question how students can be successful on the final
exam. This question requires a deeper investigation, a part of it could be the
analysis of the geometry problems and their sample solutions in the final test.
Reading through the past fifteen years’ final exams it is reasonable to question the
amount of geometrical proving skills needed to solve the tasks. Typical geometry
flavoured tasks are the following ones [21]:

Problem 4.1 (A tipical final exam task – a “less difficult” one). The ending point
of a straight line that closes at 6.5∘to the horizontal is 124 meters higher than its
starting point. How long is the road? Justify your answer!

Problem 4.2 (A tipical final exam task – a “difficult” one). A motion sensor is on
the top of a 4m high vertical pole. The lamp connected to the sensor illuminates
vertically downwards at a rotational cone of 140∘.
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a) Make a sketch with the details.
b) How far is the farthest illuminated point from the lamp?
c) Does the sensor lamp illuminate an object on the ground 15m from the bottom

of the pole?
d) There are hooks on the pole, one per meter, in order to hang the motion

detector lamp. Which hook should we use in order that the lamp illuminates
at most 100m2 on the horizontal ground? (Numbering of the hooks starts
from the bottom of the pole.)

The first task is from May 2003 and the second one was from May 2006. On
the first task students could reach 3 points, while with the second one they could
get 17 out of 115 points on the exam. In the latter case pupils get only 2 points for
noticing that the flat section is a triangle and they get 15 points for the calculations.
So a possible answer could be obtained answering the quesiton: Does the final exam
require the 4th van Hiele level at all?

5. Discussion

The tables show the results of the van-Hiele tests from five Hungarian high-schools.
The sample naturally does not cover the whole country. It involves three schools
that are average in the Hungarian rankings, one vocational music school and a non-
elite, but fairly top ranked school. With these limitations we made the following
observations. It can be read from the tables, that even considering the weaker
criteria, in each grade the average performance of the students is around level 2
– which should be the level of a 6th grader. There is no development in the level
of understanding geometry from grade 9 to grade 12. Most of the students do
not even reach the 3rd level which should be the level of an 8th grader according
to the NCC. In the weak version 40.37% of the students reached the 3rd Van
Hiele level at grade 9, which is the level that the NCC suggests. In grade 12
45.07% of the students reached the 3rd Van Hiele level and only 8.45% of these
students reached the 4th Van Hiele level, which is the level that a 12 grader should
reach according to the NCC. Although there exist students who reach the required
level, the geometrical thinking of the vast majority did not improve during their
high-school years. Still, both groups passed the final exam with relatively good
results. One can see that mathematical education in Hungary is in a controversial
situation. On the one hand, students achieve a certain, well defined level, namely,
they perform well on final exam. On the other hand, they do not reach the level
of geometric understanding required by the NCC.

To look for the possible reasons it is worth examining the geometry content of
the final exam. By its nature the final exam is predictable and a has a high impact
on the curriculum and teacher activities in class.

The gap between the final exam’s requirement and the NCC’s requirement
indicates further problems for higher education. Since the university education is
built on the National Core Curriculum, not on the final exam, this gap results
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in a big difference between the knowledge of the students entering the university
and the knowledge required by the universities. We see three kind of solution to
this problem. The first one is to change the requirement system of the NCC and
make it consistent with the requirement system of the final exam. It follows that
universities would adopt to the new NCC and the standard of higher education
would fall. The second solution is to change the entry system of the universities
concerned, and make it obligatory to take the mathematics final exam on advanced
level or reintroduce an entry exam for the universities. The third solution we
imagine is to introduce bridging courses at the universities specialized to different
topics and levels depending on their needs. We think that the latter solution would
not work. It would be difficult and nearly impossible to bring the students from
such a low level to the level where they understand the need for proof and where
they can also construct easier ones in a half a year course.
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