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Abstract
In this work we study constant extrinsically Gaussian curvature transla-

tion surfaces in the 3-dimensional Heisenberg group which are invariant under
the 1-parameter groups of isometries.

Keywords: Constant extrinsically Gaussian curvature Surfaces, Homogeneous
group.

MSC: 49Q20 53C22.

1. Introduction

In 1982, W. P. Thurston formulated a geometric conjecture for three dimensional
manifolds, namely every compact orientable 3-manifold admits a canonical decom-
position into pieces, each of them having a canonical geometric structure from the
following eight maximal and simply connected homogenous Riemannian spaces:
E3, S3, H3, S2 × R, H2 × R, 𝑆𝐿(2,R), H3 and 𝑆𝑜𝑙3. See e.g. [34].

During the recent years, there has been a rapidly growing interest in the geom-
etry of surfaces in three homogenous spaces focusing on flat and constant Gaussian
curvature surfaces. Many works are studying the geometry of surfaces in homoge-
neous 3-manifolds. See for example [2–4, 9, 12, 14–16, 21, 22, 24, 36].

The concept of translation surfaces in R3 can be generalized the surfaces in the
three dimensional Lie group, in particular, homogeneous manifolds. In Euclidean
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3-space, every cylinder is flat. Conversely, complete flat surfaces in E3 are cylinders
over complete curves. See [20]. López and Munteanu [17] studied invariant surfaces
with constant mean curvature and constant Gaussian curvature in 𝑆𝑜𝑙3 space. Yoon
and Lee [37] studied translation surfaces in Heisenberg group H3 whose position
vector 𝑥 satisfies the equation ∆𝑥 = 𝐴𝑥, where ∆ is the Laplacian operator of the
surface and 𝐴 is a 3 × 3-real matrix.

Flat 𝐺4-invariant surfaces are nothing but surfaces invariant under 𝑆𝑂(2)-
action, i.e. rotational surfaces. Flat rotational surfaces are classified by Caddeo,
Piu and Ratto in [8].

In [14], J. I. Inoguchi give a classification of intrinsically flat 𝐺1-invariant trans-
lation surfaces in Heisenberg group H3. Let 𝑀 be a surface invariant under 𝐺3,
then 𝑀 is locally expressed as

𝑋(𝑢, 𝑣) = (0, 0, 𝑣).(𝑥(𝑢), 𝑦(𝑢), 0) = (𝑥(𝑢), 𝑦(𝑢), 𝑣), 𝑢 ∈ 𝐼, 𝑣 ∈ R.

Here 𝐼 is an open interval and 𝑢 is the arclength parameter. Note that (𝑥, 𝑦, 0)
and (0, 0, 𝑣) commute. Then the sectional curvature 𝐾(𝑋𝑥 ∧ 𝑋𝑦) = 1

4 and the
extrinsically Gaussian curvature 𝐾𝑒𝑥𝑡 = − 1

4 . Direct computation show that 𝑀 is
flat. (cf. [12–14, 28]).

The paper is divided according the type of surfaces invariant under 1-parameter
subgroups of isometries {𝐺𝑖}𝑖=1,2,3,4. So, in section 3 we classify 𝐺1-invariant
surfaces of the Heisenberg group H3 with constant extrinsically Gaussian curvature
𝐾𝑒𝑥𝑡, including extrinsically flat 𝐺1-invarinant surfaces.

In section 4 we classify 𝐺2-invariant surfaces of the Heisenberg group H3 with
constant extrinsically Gaussian curvature 𝐾𝑒𝑥𝑡, including extrinsically flat 𝐺2-
invariant surfaces.

2. Preliminaries

The 3-dimensional Heisenberg group H3 is the simply connected and connected
2-step nilpotent Lie group. Which has the following standard representation in
𝐺𝐿(3,R) ⎛

⎝
1 𝑟 𝑡
0 1 𝑠
0 0 1

⎞
⎠

with 𝑟, 𝑠, 𝑡 ∈ R. The Lie algebra h3 of H3 is given by the matrices

𝐴 =

⎛
⎝

0 𝑥 𝑧
0 0 𝑦
0 0 0

⎞
⎠

6 L. Belarbi



with 𝑥, 𝑦, 𝑧 ∈ R.The exponential map 𝑒𝑥𝑝 : h3 → H3 is a global diffeomorphism,
and is given by

exp(𝐴) = 𝐼 + 𝐴 +
𝐴2

2
=

⎛
⎝

1 𝑥 𝑧 + 𝑥𝑦
2

0 1 𝑦
0 0 1

⎞
⎠ .

The Heisenberg group H3 is represented as the cartesian 3-space R3(𝑥, 𝑦, 𝑧) with
group structure:

(𝑥1, 𝑦1, 𝑧1).(𝑥2, 𝑦2, 𝑧2) :=

(︂
𝑥1 + 𝑥2, 𝑦1 + 𝑦2, 𝑧1 + 𝑧2 +

1

2
𝑥1𝑦2 −

1

2
𝑥2𝑦1

)︂
.

We equip H3 with the following left invariant Riemannian metric

𝑔 := 𝑑𝑥2 + 𝑑𝑦2 +

(︂
𝑑𝑧 +

1

2
(𝑦𝑑𝑥− 𝑥𝑑𝑦)

)︂2

.

The identity component 𝐼∘(H3) of the full isometry group of (H3, 𝑔) is the
semi-direct product 𝑆𝑂(2) nH3. The action of 𝑆𝑂(2) nH3 is given explicitly by

𝐴 =

⎛
⎝
[︂

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]︂
.

⎡
⎣

𝑎
𝑏
𝑐

⎤
⎦
⎞
⎠ .

⎡
⎣

𝑥
𝑦
𝑧

⎤
⎦

=

⎡
⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

1
2 (𝑎 sin 𝜃 − 𝑏 cos 𝜃) 1

2 (𝑎 cos 𝜃 + 𝑏 sin 𝜃) 1

⎤
⎦ .

⎡
⎣

𝑥
𝑦
𝑧

⎤
⎦+

⎡
⎣

𝑎
𝑏
𝑐

⎤
⎦ .

In particular, rotational around the 𝑧-axis and translations:

(𝑥, 𝑦, 𝑧) → (𝑥, 𝑦, 𝑧 + 𝑎), 𝑎 ∈ R

along the 𝑧-axis are isometries of H3.
The Lie algebra h3 of 𝐼∘(H3) is generated by the following Killing vector fields:

𝐹1 =
𝜕

𝜕𝑥
+

𝑦

2

𝜕

𝜕𝑧
, 𝐹2 =

𝜕

𝜕𝑦
− 𝑥

2

𝜕

𝜕𝑧
,

𝐹3 =
𝜕

𝜕𝑧
, 𝐹4 = −𝑦

𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑦
.

One can check that 𝐹1, 𝐹2, 𝐹3 are infinitesimal transformations of the 1-parameter
groups of isometries defined by

𝐺1 = {(𝑡, 0, 0)|𝑡 ∈ R}, 𝐺2 = {(0, 𝑡, 0)|𝑡 ∈ R}, 𝐺3 = {(0, 0, 𝑡)|𝑡 ∈ R},

respectively. Here this groups acts on H3 by the left translation. The vector field
𝐹4 generates the group of rotations around the 𝑧-axis. Thus 𝐺4 is identified with
𝑆𝑂(2).

Surfaces with constant extrinsically Gaussian curvature in the Heisenberg group 7



Definition 2.1. A surface Σ in the Heisenberg space H3 is said to be invariant
surface if it is invariant under the action of the 1-parameter subgroups of isometries
{𝐺𝑖}, with 𝑖 ∈ {1, 2, 3, 4}.

The Lie algebra h3 of H3 has an orthonormal basis {𝐸1, 𝐸2, 𝐸3} defined by

𝐸1 =
𝜕

𝜕𝑥
− 𝑦

2

𝜕

𝜕𝑧
, 𝐸2 =

𝜕

𝜕𝑦
+

𝑥

2

𝜕

𝜕𝑧
, 𝐸3 =

𝜕

𝜕𝑧
.

The Levi-Civita connection ∇ of 𝑔,in terms of the basis {𝐸𝑖}𝑖=1,2,3 is explicitly
given as follows

⎧
⎨
⎩

∇𝐸1𝐸1 = 0,∇𝐸1𝐸2 = 1
2𝐸3,∇𝐸1𝐸3 = − 1

2𝐸2

∇𝐸2
𝐸1 = − 1

2𝐸3,∇𝐸2
𝐸2 = 0,∇𝐸2

𝐸3 = 1
2𝐸1

∇𝐸3𝐸1 = − 1
2𝐸2,∇𝐸3𝐸2 = 1

2𝐸1,∇𝐸3𝐸3 = 0

The Riemannian curvature tensor 𝑅 is a tensor field on H3 defined by

𝑅(𝑋,𝑌 )𝑍 = ∇𝑋∇𝑌 𝑍 −∇𝑌 ∇𝑋𝑍 −∇[𝑋,𝑌 ]𝑍.

The components {𝑅𝑙
𝑖𝑗𝑘} are computed as

𝑅1
212 = −3

4
, 𝑅1

313 =
1

4
, 𝑅2

323 =
1

4
.

Let us denote 𝐾𝑖𝑗 = 𝐾(𝐸𝑖, 𝐸𝑗) the sectional curvature of the plane spanned by 𝐸𝑖

and 𝐸𝑗 .Then we get easily the following:

𝐾12 = −3

4
, 𝐾13 = −1

4
, 𝐾23 = −1

4
.

The Ricci curvature 𝑅𝑖𝑐 is defined by

𝑅𝑖𝑐(𝑋,𝑌 ) = 𝑡𝑟𝑎𝑐𝑒{𝑍 → 𝑅(𝑍,𝑋)𝑌 }.

The components {𝑅𝑖𝑗} of 𝑅𝑖𝑐 are defined by

𝑅𝑖𝑐(𝐸𝑖, 𝐸𝑗) = 𝑅𝑖𝑗 =
3∑︁

𝑘=1

⟨𝑅(𝐸𝑖, 𝐸𝑘)𝐸𝑘, 𝐸𝑗⟩ .

The components {𝑅𝑖𝑗} are computed as

𝑅11 = −1

2
, 𝑅12 = 𝑅13 = 𝑅23 = 0, 𝑅22 = −1

2
, 𝑅33 =

1

2
.

The scalar curvature 𝑆 of H3 is constant and we have

𝑆 = 𝑡𝑟𝑅𝑖𝑐 =

3∑︁

𝑖=1

𝑅𝑖𝑐(𝐸𝑖, 𝐸𝑖) = −1

2
.

8 L. Belarbi



3. Constant extrinsically Gaussian curvature
𝐺1-invariant translation surfaces in Heisenberg
group H3H3H3

3.1.
In this subsection we study complete extrinsically flat translation surfaces Σ in
Heisenberg group H3 which are invariant under the one parameter subgroup 𝐺1.
Clearly, such a surface is generated by a curve 𝛾 in the totally geodesic plane
{𝑥 = 0}. Discarding the trivial case of a vertical plane {𝑦 = 𝑦0}. Thus 𝛾 is given
by 𝛾(𝑦) = (0, 𝑦, 𝑣(𝑦)). Therefore the generated surface is parameterized by

𝑋(𝑥, 𝑦) = (𝑥, 0, 0).(0, 𝑦, 𝑣(𝑦)) = (𝑥, 𝑦, 𝑣(𝑦) +
𝑥𝑦

2
), (𝑥, 𝑦) ∈ R2.

We have an orthogonal pair of vector fields on (Σ), namely,

𝑒1 := 𝑋𝑥 = (1, 0,
𝑦

2
) = 𝐸1 + 𝑦𝐸3.

and
𝑒2 := 𝑋𝑦 = (0, 1, 𝑣′ +

𝑥

2
) = 𝐸2 + 𝑣′𝐸3.

The coefficients of the first fundamental form are:

𝐸 = ⟨𝑒1, 𝑒1⟩ = 1 + 𝑦2, 𝐹 = ⟨𝑒1, 𝑒2⟩ = 𝑦𝑣′, 𝐺 = ⟨𝑒2, 𝑒⟩ = 1 + 𝑣′2.

As a unit normal field we can take

𝑁 =
−𝑦√︀

1 + 𝑦2 + 𝑣′2
𝐸1 −

𝑣′√︀
1 + 𝑦2 + 𝑣′2

𝐸2 +
1√︀

1 + 𝑦2 + 𝑣′2
𝐸3

The covariant derivatives are
̃︀∇𝑒1𝑒1 = −𝑦𝐸2

̃︀∇𝑒1𝑒2 =
𝑦

2
𝐸1 −

𝑣′

2
𝐸2 +

1

2
𝐸3

̃︀∇𝑒2𝑒2 = 𝑣′𝐸1 + 𝑣′′𝐸3.

The coefficients of the second fundamental form are

𝑙 = ⟨̃︀∇𝑒1𝑒1, 𝑁⟩ =
𝑦𝑣′√︀

1 + 𝑦2 + 𝑣′2

𝑚 = ⟨̃︀∇𝑒1𝑒2, 𝑁⟩ =
−𝑦2

2 + 𝑣′2

2 + 1
2√︀

1 + 𝑦2 + 𝑣′2

𝑛 = ⟨̃︀∇𝑒2𝑒2, 𝑁⟩ =
−𝑦𝑣′ + 𝑣′′√︀
1 + 𝑦2 + 𝑣′2

.

Surfaces with constant extrinsically Gaussian curvature in the Heisenberg group 9



Let 𝐾𝑒𝑥𝑡 be the extrinsic Gauss curvature of Σ,

𝐾𝑒𝑥𝑡 =
𝑙𝑛−𝑚2

𝐸𝐺− 𝐹 2
=

−𝑦2𝑣′2 + 𝑦𝑣′𝑣′′ − (−𝑦2

2 + 𝑣′2

2 + 1
2 )2

(1 + 𝑦2 + 𝑣′2)2
.

Thus Σ is extrinsically flat invariant surface in Heisenberg group H3 if and only if

𝐾𝑒𝑥𝑡 = 0,

that is, if and only if

−𝑦2𝑣′2 + 𝑦𝑣′𝑣′′ −
(︂
−𝑦2

2
+

𝑣′2

2
+

1

2

)︂2

= 0 (3.1)

to classify extrinsically flat invariant surfaces must solve the equation (3.1). We
can writes equation (3.1) as

𝑦2 + 𝑦𝑣′𝑣′′ −
(︂
𝑦2

2
+

𝑣′2

2
+

1

2

)︂2

= 0 (3.2)

we assume that 𝑧 = 𝑦2

2 + 𝑣′2

2 + 1
2 . Then
⎧
⎨
⎩

𝑧′ = 𝑦 + 𝑣′𝑣′′

𝑣′𝑣′′ = 𝑧′ − 𝑦
𝑣′2 = 2𝑧 − 𝑦2 − 1.

(3.3)

Therefore equation (3.2) becomes

𝑦𝑧′ − 𝑧2 = 0. (3.4)

equation (3.4) implies that

− 𝑧′

𝑧2
= −1

𝑦
. (3.5)

and equation (3.5) implies that

𝑧 =
1

− ln(𝑦) + 𝛼
. (3.6)

where 𝛼 ∈ R, and if 𝑦 ̸= 𝑒𝛼.
From (3.3) and (3.6), we have

𝑣′2 = 2𝑧 − 𝑦2 − 1

=
2

− ln(𝑦) + 𝛼
− 𝑦2 − 1.

Thus

𝑣′ =

√︃
2

− ln(𝑦) + 𝛼
− 𝑦2 − 1.

As conclusion, we have

10 L. Belarbi



Theorem 3.1. ∙The only non-extendable extrinsically flat translation surfaces in
the 3-dimensional Heisenberg group H3 invariant under the 1-parameter subgroup
𝐺1 = {(𝑡, 0, 0) ∈ H3/𝑡 ∈ R}, are the surfaces whose parametrization is 𝑋(𝑥, 𝑦) =(︀
𝑥, 𝑦, 𝑣(𝑦) + 𝑥𝑦

2

)︀
where 𝑦 and 𝑣 satisfy

𝑣(𝑦) =

∫︁ √︃
2

− ln(𝑦) + 𝛼
− 𝑦2 − 1𝑑𝑦.

where 𝛼 ∈ R, and 𝑦 ̸= 𝑒𝛼.
∙There are no complete extrinsically flat translation surfaces in the 3-dimensio-

nal Heisenberg group H3 invariant under the 1-parameter subgroup 𝐺1 = {(𝑡, 0, 0) ∈
H3/𝑡 ∈ R}.

Remark 3.2. Let Σ be a 𝐺1-invariant translation surfaces in the 3-dimensional
Heisenberg space. Then Σ is locally expressed as

𝑋(𝑥, 𝑦) = (0, 𝑦, 𝑣(𝑦)) . (𝑥, 0, 0) =
(︁
𝑥, 𝑦, 𝑣(𝑦) − 𝑥𝑦

2

)︁
.

Then the extrinsically Gaussian curvature 𝐾𝑒𝑥𝑡 of Σ is computed as

𝐾𝑒𝑥𝑡 =

(︀
(𝑣′ − 𝑥)2 − 1

)︀2

4 (1 + (𝑣′ − 𝑥)2)
2 .

Thus Σ can not be of constant extrinsically Gaussian curvature.

3.2.
In this subsection we study complete constant extrinsically Gaussian curvature
translation surfaces Σ in Heisenberg group H3 which are invariant under the one
parameter subgroup 𝐺1. Clearly, such a surface is generated by a curve 𝛾 in the
totally geodesic plane {𝑥 = 0}. Discarding the trivial case of a vertical plane
{𝑦 = 𝑦0}. Thus 𝛾 is given by 𝛾(𝑦) = (0, 𝑦, 𝑣(𝑦)). Therefore the generated surface
is parameterized by

𝑋(𝑥, 𝑦) = (𝑥, 0, 0).(0, 𝑦, 𝑣(𝑦)) = (𝑥, 𝑦, 𝑣(𝑦) +
𝑥𝑦

2
), (𝑥, 𝑦) ∈ R2.

Theorem 3.3. ∙The 𝐺1-invariant constant extrinsically Gaussian curvature trans-
lation surfaces in the 3-dimensional Heisenberg group H3, are:

1. 𝐾𝑒𝑥𝑡 = − 1
4 .

The surfaces of equation

𝑧 = 𝑣(𝑦) +
𝑥𝑦

2
=

𝑥𝑦

2
+

1

2
𝑦
√︀

2𝛽 − 𝑦2 + arctan

(︃
𝑦√︀

𝛽 − 𝑦2

)︃
,

where 𝛽 ∈ R.
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2. 𝐾𝑒𝑥𝑡 ̸= − 1
4 .

Then 𝑦 and 𝑣 satisfy

𝑣(𝑦) =

∫︁ √︃
1

−2(𝐾𝑒𝑥𝑡 + 1
4 ) ln(𝑦) + 𝛾

− 𝑦2 − 1𝑑𝑦.

where 𝛾 ∈ R, and 𝑦 ̸= 𝑒
𝛾

2(𝐾𝑒𝑥𝑡+
1
4
) .

∙ There are no complete constant extrinsically Gaussian curvature translation sur-
faces in the 3-dimensional Heisenberg group H3 invariant under the 1-parameter
subgroup 𝐺1.

Proof. From (4.1) and (3.2) we have

𝐾𝑒𝑥𝑡 =
𝑙𝑛−𝑚2

𝐸𝐺− 𝐹 2
=

𝑦2 + 𝑦𝑣′𝑣′′ − 1
4

(︀
1 + 𝑦2 + 𝑣′2

)︀2

(1 + 𝑦2 + 𝑣′2)2
. (3.7)

1. If 𝐾𝑒𝑥𝑡 = − 1
4 . Then equation (3.7) becomes

𝑦2 + 𝑦𝑣′𝑣′′ = 0 (3.8)

We note that 𝑦 equal zero is solution of the equation(3.8).
If 𝑦 is different to zero (𝑦 ̸= 0), equation (3.8) becomes

𝑣′𝑣′′ = −𝑦.

Integration gives us

𝑣(𝑦) =
1

2
𝑦
√︀

2𝛽 − 𝑦2 + arctan

(︃
𝑦√︀

𝛽 − 𝑦2

)︃
,

where 𝛽 ∈ R.

2. If 𝐾𝑒𝑥𝑡 ̸= − 1
4 . Then equation (3.7) becomes

𝑦2 + 𝑦𝑣′𝑣′′ = (𝐾𝑒𝑥𝑡 +
1

4
)(1 + 𝑦2 + 𝑣′2)2.

In fact, put 𝑧 = 1 + 𝑦2 + 𝑣′2. Then 𝑧 satisfies

1

2
𝑦𝑧′ = (𝐾𝑒𝑥𝑡 +

1

4
)𝑧2.

Hence we have
𝑧 =

1

−2(𝐾𝑒𝑥𝑡 + 1
4 )𝑦 + 𝛾

,

where 𝛾 ∈ R, and 𝑦 ̸= 𝑒
𝛾

2(𝐾𝑒𝑥𝑡+
1
4
) . Using the equation 𝑧 = 1 + 𝑦2 + 𝑣′2, we get

𝑣′2 =
1

−2(𝐾𝑒𝑥𝑡 + 1
4 )𝑦 + 𝛾

− 𝑦2 − 1.

12 L. Belarbi



4. Constant extrinsically Gaussian curvature
𝐺2-invariant translation surfaces in Heisenberg
group H3H3H3

In this section we study constant complete extrinsically flat translation surfaces
Σ in Heisenberg group H3 which are invariant under the one parameter subgroup
𝐺2. Clearly, such a surface is generated by a curve 𝛾 in the totally geodesic plane
{𝑦 = 0}. Discarding the trivial case of a vertical plane {𝑥 = 𝑥0}. Thus 𝛾 is given
by 𝛾(𝑥) = (𝑥, 0, 𝑓(𝑥)). Therefore the generated surface is parameterized by

𝑋(𝑥, 𝑦) = (0, 𝑦, 0).(𝑥, 0, 𝑓(𝑥)) = (𝑥, 𝑦, 𝑓(𝑥) − 𝑥𝑦

2
), (𝑥, 𝑦) ∈ R2.

We have an orthogonal pair of vector fields on (Σ), namely,

𝑒1 := 𝑋𝑥 = (1, 0, 𝑓 ′ − 𝑦

2
) = 𝐸1 + 𝑓 ′𝐸3.

and
𝑒2 := 𝑋𝑦 = (0, 1,−𝑥

2
) = 𝐸2 − 𝑥𝐸3.

The coefficients of the first fundamental form are:

𝐸 = ⟨𝑒1, 𝑒1⟩ = 1 + 𝑓 ′2, 𝐹 = ⟨𝑒1, 𝑒2⟩ = −𝑥𝑓 ′, 𝐺 = ⟨𝑒2, 𝑒⟩ = 1 + 𝑥2.

As a unit normal field we can take

𝑁 =
−𝑓 ′

√︀
1 + 𝑥2 + 𝑓 ′2

𝐸1 +
𝑥√︀

1 + 𝑥2 + 𝑓 ′2
𝐸2 +

1√︀
1 + 𝑥2 + 𝑓 ′2

𝐸3.

The covariant derivatives are

̃︀∇𝑒1𝑒1 = −𝑓 ′𝐸2 + 𝑓 ′′𝐸3

̃︀∇𝑒1𝑒2 =
𝑓 ′

2
𝐸1 +

𝑥

2
𝐸2 −

1

2
𝐸3

̃︀∇𝑒2𝑒2 = −𝑥𝐸1.

The coefficients of the second fundamental form are

𝑙 = ⟨̃︀∇𝑒1𝑒1, 𝑁⟩ =
−𝑥𝑓 ′ + 𝑓 ′′

√︀
1 + 𝑥2 + 𝑓 ′2

𝑚 = ⟨̃︀∇𝑒1𝑒2, 𝑁⟩ =
− 𝑓 ′2

2 + 𝑥2

2 − 1
2√︀

1 + 𝑥2 + 𝑓 ′2

𝑛 = ⟨̃︀∇𝑒2𝑒2, 𝑁⟩ =
−𝑦𝑣′ + 𝑣′′√︀
1 + 𝑦2 + 𝑣′2

.
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Let 𝐾𝑒𝑥𝑡 be the extrinsic Gauss curvature of Σ,

𝐾𝑒𝑥𝑡 =
𝑙𝑛−𝑚2

𝐸𝐺− 𝐹 2
=

𝑥2 + 𝑥𝑓 ′𝑓 ′′ − 1
4 (𝑥2 + 𝑓 ′2 + 1)2

(1 + 𝑥2 + 𝑓 ′2)2
. (4.1)

Thus Σ is extrinsically flat invariant surface in Heisenberg group H3 if and only if

𝐾𝑒𝑥𝑡 = 0,

that is, if and only if

𝑥2 + 𝑥𝑓 ′𝑓 ′′ − 1

4
(𝑥2 + 𝑓 ′2 + 1)2 = 0. (4.2)

to classify extrinsically flat invariant surfaces must solve the equation (4.2).
We remark that the equation (4.2) is similarly to the equation (3.1), It is suffi-

cient to change 𝑦 by 𝑥 and 𝑣 by 𝑓 .
As conclusion, we have

Theorem 4.1. ∙The only non-extendable extrinsically flat translation surfaces in
the 3-dimensional Heisenberg group H3 invariant under the 2-parameter subgroup
𝐺2 = {(0, 𝑡, 0) ∈ H3/𝑡 ∈ R}, are the surfaces whose parametrization is 𝑋(𝑥, 𝑦) =(︀
𝑥, 𝑦, 𝑓(𝑥) − 𝑥𝑦

2

)︀
where 𝑥 and 𝑓 satisfy

𝑓(𝑥) =

∫︁ √︃
2

− ln(𝑥) + 𝛼
− 𝑥2 − 1𝑑𝑦.

where 𝛼 ∈ R, and 𝑥 ̸= 𝑒𝛼.
∙There are no complete extrinsically flat translation surfaces in the 3-dimensio-

nal Heisenberg group H3 invariant under the 1-parameter subgroup 𝐺2 = {(0, 𝑡, 0) ∈
H3/𝑡 ∈ R}.

Remark 4.2. Let Σ be a 𝐺2-invariant translation surfaces in the 3-dimensional
Heisenberg space. Then Σ is locally expressed as

𝑋(𝑥, 𝑦) = (𝑥, 0, 𝑓(𝑥)) . (0, 𝑦, 0) =
(︁
𝑥, 𝑦, 𝑓(𝑥) +

𝑥𝑦

2

)︁
.

Then the extrinsically Gaussian curvature 𝐾𝑒𝑥𝑡 of Σ is computed as

𝐾𝑒𝑥𝑡 = −
(︀
(𝑓 ′ + 𝑦)2 − 1

)︀2

4 (1 + (𝑣′ − 𝑥)2)
2 .

Thus Σ can not be of constant extrinsically Gaussian curvature.

Theorem 4.3. ∙ The 𝐺2-invariant constant extrinsically Gaussian curvature trans-
lation surfaces in the 3-dimensional Heisenberg group H3, are:
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1. 𝐾𝑒𝑥𝑡 = − 1
4 .

The surfaces of equation

𝑧 = 𝑓(𝑥) − 𝑥𝑦

2
= −𝑥𝑦

2
+

1

2
𝑥
√︀

2𝛽 − 𝑥2 + arctan

(︃
𝑥√︀

𝛽 − 𝑥2

)︃
,

where 𝛽 ∈ R.

2. 𝐾𝑒𝑥𝑡 ̸= − 1
4 .

Then 𝑥 and 𝑓 satisfy

𝑓(𝑥) =

∫︁ √︃
1

−2(𝐾𝑒𝑥𝑡 + 1
4 ) ln(𝑥) + 𝛾

− 𝑥2 − 1𝑑𝑦.

where 𝛾 ∈ R, and 𝑥 ̸= 𝑒
𝛾

2(𝐾𝑒𝑥𝑡+
1
4
) .

∙ There are no complete constant extrinsically Gaussian curvature translation sur-
faces in the 3-dimensional Heisenberg group H3 invariant under the 1-parameter
subgroup 𝐺2.
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Abstract

Node localization and ranking is an essential issue in wireless sensor net-
works (WSNs). We model WSNs by communication graphs. In our inter-
pretation a communication graph can be directed, in case of heterogeneous
sensor nodes, or undirected, in case of homogeneous sensor nodes, and must
be strongly connected. There are many metrics to characterize networks,
most of them are either global ones or local ones. The local ones consider
only the immediate neighbors of the observed nodes. We are not aware of
a metric which considers a subgraph, i.e., which is between global and lo-
cal ones. So our main goal was to construct metrics that interpret the local
properties of the nodes in a wider environment. For example, how dense the
environment of the given node, or in which extent it can be relieved within its
environment. In this article we introduce several novel 𝑘-hop based density
and redundancy metrics: Weighted Communication Graph Density (𝒲𝒞𝒢𝒟),
Relative Communication Graph Density (ℛ𝒞𝒢𝒟), Weighted Relative Com-
munication Graph Density (𝒲ℛ𝒞𝒢𝒟), Communication Graph Redundancy
(𝒞𝒢ℛ), Weighted Communication Graph Redundancy (𝒲𝒞𝒢ℛ). We com-
pare them to known graph metrics, and show that they can be used for node
ranking.

Keywords: 𝑘-hop based graph metrics, communication graph density, com-
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munication graph redundancy, node ranking
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1. Introduction

The modeling and analysis of complex networks is an important interdisciplinary
field of science. The networks are mathematically related to graph theory. It is
known that topology represents the properties of the whole network structure. A
topology describes a real network (with constraints) and it can be converted to
an undirected or directed graph. The common property of topological models is
that they are usually calculated based on probabilities [2–4, 11]. The objects of
the model can be matched by the vertices of the graph. Edges can be used to
describe the relations between the objects. Graph-based modeling can be of two
types: ad-hoc or measurement-based. On large wireless networks the traditional
measurements based procedures can not be applied efficiently, but 𝑘-hop based
approaches can be computed effectively also for large networks.

There are many graph-based metrics for modeling complex networks [9]. Topo-
logical metrics commonly used on networks: number of nodes and edges, average
degree, degree distribution, connectedness, diameter, number of independent paths.
Parameters for measuring the effectiveness of wireless networks: scope and cover-
age, scalability, expected transmission number, hop count (number of hops), power
consumption / lifetime.

In graph theory, the density of a graph (𝒱; ℰ) can be calculated as |ℰ|
|𝒱|(|𝒱|−1) [6].

Since the number of edges for a complete directed graph is |𝒱| (|𝒱| − 1), the maxi-
mum density is 1. Clearly, the minimum density is 0 (for empty graphs). There are
two different approaches [13, 16], but there is no strict distinction between sparse
and dense graphs.

Distance-based metrics

The eccentricity of a node 𝑢 is defined as the longest hop count between the node
𝑢 and any other node in the graph.

Centralization [8] is a general method for calculating a graph-level centrality
score based on some node-level centrality metric. Centrality based metrics are the
following ones: degree centrality (based on degree), closeness centrality (based on
average distances), betweenness centrality (based on geodesics), eigenvector central-
ity (recursive: similar to page rank methods), eccentricity centrality. In the case of
eccentricity centrality, we not use the reciprocal to assure that more central nodes
have a higher value of eccentricity.

Connection-based metrics

The most basic connection-based metrics are the degree of a node, which is the
number of edges to other nodes, and the degree distribution. The degree distribu-
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tion 𝑃 (𝑘) of a graph is then defined to be the fraction of nodes in the network with
degree 𝑘. Thus if there are 𝑛 nodes in total in a graph and 𝑛𝑘 of them have degree
𝑘, we have 𝑃 (𝑘) = 𝑛𝑘/𝑛.

Clustering is a fundamental and important property of networks, just like degree
and degree distribution. Clustering coefficient is the measurement that shows the
opportunity of a graph to be divided into clusters. Clusters are disjoint subgraphs
of the graph. A cluster usually should be a complete subgraph, so in this way it
is similar to a clique, but a cluster may consists of one node, on the other hand a
clique is a complete subgraph which contains always at least two nodes in case of a
communication graph. The clustering coefficient can globally [12, 18] or locally [19]
characterize a graph. The global clustering coefficient is based on triplets of nodes.
The global clustering coefficient of a network, also known as transitivity 𝑇 , which is
the ratio of the number of loops of length three and the number of paths of length
two.

Let 𝑢 be a vertex with 𝑘 degree and given by the proportion of 𝑒 edges between
the 𝑣 within it is neighborhood 𝐺, then the Local clustering coefficient of 𝑢 in
𝐺 is given by 𝐶𝑢 = 2𝑒

𝑘(𝑘−1) . Thus, 𝐶𝑢 measures the ratio of the number of edges
between the neighbors of 𝑢 to the total possible number of such edges. The average
clustering coefficient is the average of local clustering coefficients.

Wireless sensor networks

The ad hoc wireless sensor networks (WSN) are used widely (for example in military
to observe environment). They have the advantage that they consist of sensors with
low energy consumption, which can be deployed easily in a cheap way on such areas
which are out-of-the-way. These sensors are the nodes of WSN. They are capable to
process some limited information and to use wireless communication. A big effort
is used to research how to deploy them in an optimal way to keep efficient energy
consumption and communication. Although there are many WSN solutions, the
deployment of a WSN is still an active research field [1].

One of the important property of an ad hoc wireless network is node density.
The dense layout makes the following properties available: high fault tolerance,
high-coverage characteristics, but also cause some problems. The interference is
high near to dense node areas, and there are a lot of collisions in case of message
passing, which requires complicated operations for routing protocols, because of
too many possible routes, routing needs lots of resources [5].

The aim of topology control techniques is to reduce the cost of the distributed
algorithms interpreted on the network. The graph, which represents a network, has
to be thinned because of cost-reduction by techniques like disconnection of nodes,
removing links, changing scopes, etc., but the network-quality characteristics (like
scalability, coverage, fault tolerance, etc.) must not fall below a required level. The
overall aim is to create a scalable, fault-tolerant sparse topology, where the degree
of the nodes are low, the maximum load is low, energy consumption is low and the
paths are short. The following techniques are used to create an optimal topology:
reducing the scope of nodes, removing some nodes, introducing a dominating set
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of nodes, clustering, and add some new nodes to gain all-all communication [15,
17].

In multi-hop networks one hop is the unit of the path between source and
destination. The hop count refers to the number of intermediate nodes through
which data must pass between source and destination. Networks can be classified
by the number of hops between source nodes, which measures their environment,
and a sink node, which collects data. In a single-hop network there is only one
(single) hop between the source nodes and the sink node. In a multi-hop network
a sensor can also transmit data from the source to the sink because there are more
than one hop from the source to the sink.

The rest of this article is organized as follows. In Section 2 we give some
preliminary definitions, like communication graph. In Section 3 we introduce the
new metrics, each of them are 𝑘-hop based. In Section 4 we compare existing
metrics and the new ones. In section 5 we show how to use this metrics to rank
nodes and Section 6 contains our conclusions.

2. Preliminaries

Given a randomly-deployed sensor network with homogeneous or heterogeneous
nodes. Also given a mapping which sensor is able to communicate with which sen-
sors directly. Accordingly, by communication graph we mean a weighted directed
graph 𝒟 = (𝒮; ℰ𝒞 ,𝒲), where 𝒮 is the set of nodes, which represents the sensors,
ℰ𝒞 ⊆ 𝒮 × 𝒮 is the set of edges, and 𝒲 is the set of weights. An edge (𝑥𝑖, 𝑥𝑗) ∈ ℰ𝒞
represents the possibility of messaging from node 𝑥𝑖 to 𝑥𝑗 in 𝒟, i.e., the sensor
represented by 𝑥𝑗 is in the transmission range of 𝑥𝑖. The 𝒲𝑖𝑗 denotes the com-
munication cost of the (𝑥𝑖, 𝑥𝑗) message. In the case of homogeneous sensors the 𝒟
graph is symmetric, accordingly 𝒟 = (𝒮; ℰ𝒞 ,𝒲) is equivalent to a simple weighted
undirected graph 𝒢 = (𝒮; ℰ𝒞 ,𝒲).

In case of an weighted undirected graph 𝒢 = (𝒮; ℰ𝒞 ,𝒲) we define a clique as
a subset of the node set 𝒞𝑙 ⊆ 𝒮, such that for every two nodes in 𝒞𝑙, there exists
an edge connecting the two. The weight of a 𝒞𝑙 is the sum of the weight of their
edges.

If our communication graph is directed, we define a clique as a subset of the
node set 𝒞𝑙 ⊆ 𝒮, such that for every two nodes in 𝒞𝑙, there exists an edge from
the first one to the second one, and from the second one back to the fists one.
The weight of the 𝒞𝑙 is defined as above, considering that 𝒲𝑖𝑗 and 𝒲𝑗𝑖 are not
necessarily equal. A maximal clique is a clique which is not a proper subset of any
other clique. A 𝑛-clique is a clique which contains exactly 𝑛 vertices.

In this paper we assume that the communication graph is strongly connected,
the cost of communication between each node is constant (we do not use weights),
and the network consists of homogeneous nodes. To test the new metrics we used
our own representation [7] and SAT solver [10].
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3. k-hop based graph density and redundancy met-
rics

In this section we present some spanning tree and clique-based graph density met-
rics. With spanning tree-based metrics, we define graph density, whereas clique-
based redundancy metrics mean the degree of relieving in our interpretation. We
use the notion of 𝑘-hop environment of a node 𝑢, denoted by 𝒢[𝑛](𝑢), which is a
subgraph of graph 𝒢, which consists 𝑢 and the nodes which can be reached from
𝑢 from an path, which length is smaller or equal than 𝑘, and which contains edges
between these nodes from 𝒢. We compute local metrics for 𝑢 by computing a
graph metrics for 𝒢[𝑛](𝑢). The parameter 𝑘 should be a relatively small number
because otherwise 𝒢[𝑛](𝑢) could be the whole graph. The metrics over the 𝑘-hop
environment of a node can characterize the node more properly then considering
merely the node itself. On the other hand these metrics characterize not only the
node but its environment.

Taking into account the constraints mentioned in Section 2, the basic notations
are:

∙ 𝑢: the candidate node;

∙ 𝑘: the number of hops;

∙ 𝒩 , 𝒱: the number of nodes and edges of graph 𝒢;

∙ 𝒩 [𝑘](𝑢),𝒱 [𝑘](𝑢): the number of nodes and edges of graph 𝒢[𝑘](𝑢);

∙ 𝒞𝑙, ℳ: the set of maximum cliques of graph 𝒢 and the cardinality of this set;

∙ 𝒞𝑙[𝑘](𝑢), ℳ[𝑘](𝑢): the set of maximal cliques of graph 𝒢[𝑛](𝑢) and the cardi-
nality of this set;

∙ 𝒯 [𝑘](𝑢), 𝒯 : the number of edges of the minimum cost spanning tree of graph
𝒢[𝑘](𝑢) and 𝒢. Note, that in case of a communication graph we have that
𝒯 = 𝒩 − 1, regardless whether the graph is directed or undirected;

∙ 𝑠: the spreading factor, which is rather a technical value to enlarge small
differences in the metrics, in this article we set 𝑠 = 2.71;

∙ 𝑐𝑠: the clique size, minimum value is 2.

3.1. Spanning tree-based metrics
Sanning tree-based approaches can be found in the wide area of network protocols.
For example, a known technique is Time-To-Live (TTL). It works as follows, routing
methods try to find the best path for forwarding the collected data, the TTL
mechanism is used to limit the number of hops to avoid over-overlapping of paths
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and to balance the data load on the nodes and the energy consumption [14]. They
use also small 𝑘 values.

We define graph density of the graphs 𝒢 and 𝒢[𝑘](𝑢) as follows:

𝒢𝒟 =
𝒱
𝒯

𝒢𝒟[𝑘](𝑢) =
𝒱 [𝑘](𝑢)

𝒯 [𝑘](𝑢)
.

The graph density takes its maximum if the graph is complete. In case of undirected
graphs the maximum is: 𝒩 (𝒩−1)

2(𝒩−1) = 𝒩
2 . In case of directed graphs the maximum is:

𝒩 (𝒩−1)
𝒩−1 = 𝒩 . The graph density takes its maximum if the graph is a tree. In case

of undirected graphs the minimum is: 𝒩−1
𝒩−1 = 1, since the graph is a communication

graph, i.e., it is strongly connected. If the graph is directed, then the minimum is:
2(𝒩−1)
𝒩−1 = 2, because of the same reason.

Communication and Weighted Communication Graph Density

We define the communication graph density of node 𝑢 in its 𝑘-hop environment as
follows:

𝒞𝒢𝒟[𝑘](𝑢) = 𝑠
𝒱[𝑘](𝑢)

𝒯 [𝑘](𝑢) .

The 𝒞𝒢𝒟[𝑘](𝑢) can be used also as a local metric for a node, and computed
quickly for all nodes and use to rank them.

We define the weighted communication graph density of node 𝑢 in its 𝑘-hop
environment as follows:

𝒲𝒞𝒢𝒟[𝑘](𝑢) = 𝑠
𝒱[𝑘](𝑢)

𝒯 [𝑘](𝑢)
𝒩 [𝑘](𝑢)

𝒩 .

The 𝒲𝒞𝒢𝒟[𝑘](𝑢) is no longer a purely local metric, but takes into account the
number of nodes in the 𝑘-hop environment.

Relative Communication Graph Density

We define the relative communication graph density of node 𝑢 in its 𝑘-hop envi-
ronment as follows:

ℛ𝒞𝒢𝒟[𝑘](𝑢) = 𝑠
𝒞𝒢𝒟[𝑘](𝑢)

𝒞𝒢𝒟 = 𝑠
𝒱[𝑘](𝑢)𝒯
𝒯 [𝑘](𝑢)𝒱 .

It maximizes its value when the 𝑘-hop environment of 𝑢, i.e., 𝒢[𝑘](𝑢) is a complete
graph and the rest of the graph is a tree, or consists of several trees.

The minimum is - vice versa - assumes that the 𝑘-hop environment of 𝑢 is a
tree and the rest of the graph is a complete graph.

If we consider the two extremes, i.e., if the communication graph is a complete
graph or if it is a tree, interestingly enough, we get the same relative communication
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graph density, which is 𝑠. If the communication graph is a complete graph, then for
any 𝑘 >= 1 and for any node 𝑢 we have that 𝒢[𝑘](𝑢) is equal to 𝒢, so, 𝒱[𝑘](𝑢)

𝒯 [𝑘](𝑢)
= 𝒱

𝒯 ,

i.e., 𝒱[𝑘](𝑢)𝒯
𝒯 [𝑘](𝑢)𝒱 = 1. On the other hand, if the communication graph is a tree, then

its communication graph density is a constant (1 if the graph is undirected, 2 if it
is directed) for any 𝑛 and 𝑢, so again 𝒱[𝑘](𝑢)𝒯

𝒯 [𝑘](𝑢)𝒱 = 1.
We get the same result for the two extreme cases, because this metric shows the

relative density of subgraph related to the whole graph. A tree has a very small
density, and a complete graph has a very high density, but if we take a subgraph
of a tree then it has the same density as the whole, and the same is true for a
complete graph. So they have the same relative density.

This metric shows whether the 𝑘-hop environment of a node is more dense as
the whole graph, or has the same density, or it is less dense. This means that if

∙ ℛ𝒞𝒢𝒟[𝑘](𝑢) = 𝑠, then 𝒢[𝑘](𝑢) has the same cgd as 𝒢;

∙ ℛ𝒞𝒢𝒟[𝑘](𝑢) < 𝑠, then 𝒢[𝑘](𝑢) has smaller cgd than 𝒢;

∙ ℛ𝒞𝒢𝒟[𝑘](𝑢) > 𝑠, then 𝒢[𝑘](𝑢) has bigger cgd than 𝒢;

where cgd means communication graph density.
Note, that this metric is computed by dividing a local property by a global one.

Weighted Relative Communication Graph Density

We define the weighted relative communication graph density of node 𝑢 in its 𝑘-hop
environment as follows:

𝒲ℛ𝒞𝒢𝒟[𝑘](𝑢) = ℛ𝒞𝒢𝒟[𝑘](𝑢)
𝒩 [𝑘](𝑢)

𝒩 = 𝑠
𝒱[𝑘](𝑢)𝒯
𝒯 [𝑘](𝑢)𝒱

𝒩 [𝑘](𝑢)

𝒩 .

Note, that this metric is computed as a multiplication of two numbers, which
are both computed by dividing a local property by a global one, so we have
(𝑙𝑜𝑐𝑎𝑙′/𝑔𝑙𝑜𝑏𝑎𝑙′) * (𝑙𝑜𝑐𝑎𝑙′′/𝑔𝑙𝑜𝑏𝑎𝑙′′).

This metric takes in consideration also how many nodes are in the 𝑛-hop en-
vironment of the node 𝑢. A node is more valuable if its 𝑘-hope environment is
bigger.

3.2. Clique-based metrics
During the work of a WSN the topology of the network may change because some
sensors may go wrong, or the transmission range can be less. If a node can be
found in a dense (redundant) environment then it may happen more often that
communication interference occurs and routing is more resource consuming; on the
other hand, the environment itself is more fault tolerant. In a sparse environment
routing is easier, communication interference is less frequent, but the environment
is less fault tolerant. The aim of topology control techniques is to reduce the cost
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of the distributed algorithms interpreted on the network. But the network-quality
characteristics (like scalability, coverage, fault tolerance, etc.) must not fall below a
required level. A clique is a complete subgraph, so they have high communication
redundancy, on the other hand they allow high fault tolerance, results in high
coverage, etc.

First of all we define the average clique size as follows:

𝒞ℒ =
1

ℳ
ℳ∑︁

𝑖=1

|𝒞𝑙𝑖|>=𝑐𝑠 .

The average clique size is maximal, if the graph is complete. Its minimum is 𝑐𝑠
if all maximal cliques have the size 𝑐𝑠. It is not defined if there is no clique with size
at least 𝑐𝑠. Its maximum is 𝒩 if the communication graph is complete, because
then we have only one maximal clique, the graph itself. The clique problem, the
problem of finding all maximal size cliques, is a well-known NP-complete problem.
It meas that is not feasible to find all maximal cliques in a large graph. So one
can not use clique based metrics to guide topology control techniques, except if we
work with relatively small graphs, like in the 𝑘-hop environment of a node.

Clique size-based metrics

So we define the clique size-based communication graph redundancy of node 𝑢
within 𝑘-hop environment as follows:

𝒞𝒢ℛ𝑠𝑏
[𝑘](𝑢) =

1

ℳ[𝑘](𝑢)

ℳ[𝑘](𝑢)∑︁

𝑖=1

⃒⃒
⃒𝒞𝑙[𝑘](𝑢)𝑖

⃒⃒
⃒
>=𝑐𝑠

It only shows the average clique size within 𝑘-hop environment of node 𝑢, but it
ignores the number of nodes within the 𝑘-hop environment.

We define weighted communication graph redundancy of node 𝑢 within 𝑘-hop
environment as follows:

𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘](𝑢) = 𝒞𝒢ℛ𝑠𝑏

[𝑘](𝑢)
𝒩 [𝑘](𝑢)

𝒩 .

This metric uses also the number of nodesThis can be considered to be a local
metric, because the computationally intensive tasks (find cliques) typically occur
in a 𝑘-hop environment.

Clique value-based metrics

Since a clique of size 4 is more valuable in a graph than 6 in a graph with 100
nodes, we shall take into consideration the number of nodes in the graph, which is
denoted by 𝒩 , to compute the value of a clique. We also use the average clique
size to normalize this value.
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So we define the value of a clique as follows:

𝒞ℒ𝑉 =
|𝒞𝑙|>=𝑐𝑠

𝒩 𝑠
|𝒞𝑙|>=𝑐𝑠

𝒞ℒ .

We define also the average value of cliques as follows:

𝒞ℒ𝑉 =
1

ℳ
ℳ∑︁

𝑖=1

|𝒞𝑙𝑖|>=𝑐𝑠

𝒩 𝑠
|𝒞𝑙𝑖|>=𝑐𝑠

𝒞ℒ

We define also the average value of cliques within the 𝑘-hop environment, also
called clique value-based communication graph redundancy as follows:

𝒞𝒢ℛ𝑣𝑏
[𝑘](𝑢) =

1

1
ℳ[𝑘](𝑢)

∑︀ℳ[𝑘](𝑢)
𝑖=1

|𝒞𝑙[𝑘](𝑢)𝑖|>=𝑐𝑠

𝒩 [𝑘](𝑢)
𝑠

|𝒞𝑙[𝑘](𝑢)𝑖|>=𝑐𝑠

𝒞ℒ[𝑘](𝑢)

.

This metric is the pair of 𝒞ℒ𝑉 in case of 𝒢[𝑘](𝑢). This is a local metric, but
this notion does not takes into consideration the number of nodes in the 𝑘-hop
environment of 𝑢. Without reciprocal, the peripheral but relievable nodes are
ranked in advance.

After considerating the number of nodes in the 𝑘-hop and conversion we define
weighted clique value-based communication graph redundancy as follows:

𝒲𝒞𝒢ℛ𝑣𝑏
[𝑘](𝑢) =

1

𝒞𝒢ℛ𝑣𝑏
[𝑘](𝑢)

𝒩 [𝑘](𝑢)

𝒩 =

=
1

ℳ[𝑘](𝑢)

ℳ[𝑘](𝑢)∑︁

𝑖=1

𝒩 [𝑘](𝑢)|𝒞𝑙[𝑘](𝑢)𝑖|>=𝑐𝑠

𝒩 2
𝑠

|𝒞𝑙[𝑘](𝑢)𝑖|>=𝑐𝑠

𝒞ℒ[𝑘](𝑢)

This metric is the pair of 𝒞ℒ𝑉 in case of 𝒢[𝑘](𝑢).

4. Comparisons with other metrics

In this article we considered networks with 200-500 nodes at 15-40% densities. The
𝑘 value in each case is less than 3. An important constraint was that the largest
𝑘-hop environment must be smaller than the quarter of a complete graph.

For simulating and analyzing networks we used a self-developed Python tool
based on NetworkX 1. For computing pairwise correlation of metrics we used pan-
das2. Many metrics are only implemented for undirected graphs in NetworkX,
therefore, the comparisons were done only on undirected graphs.

The results of the correlation analysis are presented in Table 1–3 (average values
of 1000 runs), shows some interesting phenomena and experience. The abbrevation
c. means centrality.

1https://networkx.github.io
2https://pandas.pydata.org
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4.1. 1-hop based environment

𝑘-hop based metrics

𝒲𝒞𝒢𝒟[𝑘] ℛ𝒞𝒢𝒟[𝑘] 𝒲ℛ𝒞𝒢𝒟[𝑘] 𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘] 𝒞𝒢ℛ𝑣𝑏

[𝑘] 𝒲𝒞𝒢ℛ𝑣𝑏
[𝑘]

Clustering coeff. 0,06 0,19 0,00 0,37 -0,17 0,14
Eccentricity -0,07 -0,21 -0,24 -0,15 -0,31 -0,21
Betweenness c. -0,04 -0,05 0,06 -0,12 0,22 -0,01
Degree c. 0,54 0,87 0,94 0,76 0,84 0,83
Closeness c. 0,05 0,23 0,28 0,17 0,37 0,23
Eigenvector c. 0,67 0,61 0,64 0,49 0,28 0,68

Table 1: Correlations with other metrics, where 𝑘 is 1

It can be seen from the Table 1 that within 1-hop environment the defined
metrics show their most significant correlation with degree centrality. The correla-
tion is the strongest between 𝒲ℛ𝒞𝒢𝒟 and degree centrality, the correlation is over
90%. 𝒲𝒞𝒢𝒟, ℛ𝒞𝒢𝒟, 𝒲ℛ𝒞𝒢𝒟 and 𝒲𝒞𝒢ℛ𝑣𝑏 metrics are also strongly correlated
with the eigenvector centrality.

4.2. 2-hop based environment

𝑘-hop based metrics

𝒲𝒞𝒢𝒟[𝑘] ℛ𝒞𝒢𝒟[𝑘] 𝒲ℛ𝒞𝒢𝒟[𝑘] 𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘] 𝒞𝒢ℛ𝑣𝑏

[𝑘] 𝒲𝒞𝒢ℛ𝑣𝑏
[𝑘]

Clustering coeff. -0,07 0,04 -0,15 0,08 -0,26 -0,06
Eccentricity -0,15 -0,24 -0,38 -0,22 -0,45 -0,33
Betweenness c. 0,06 0,03 0,22 0,05 0,32 0,17
Degree c. 0,54 0,78 0,83 0,72 0,67 0,72
Closeness c. 0,08 0,26 0,44 0,24 0,53 0,36
Eigenvector c. 0,87 0,68 0,67 0,57 0,26 0,71

Table 2: Correlations with other metrics, where 𝑘 is 2

It can be seen from the Table 2 that the defined metrics within 2-hop envi-
ronment showed a weaker correlation with the degree centrality and stronger with
the eigenvector centrality, since the degree of neighbors of the examined node also
affects the density and redundancy of the environment. The strongest correlation
with the degree centrality is still shown with 𝒲ℛ𝒞𝒢𝒟, while with the eigenvector
centrality correlats best with𝒲𝒞𝒢𝒟.

4.3. 3-hop based environment
The correlations in the 3-hop environment are shown in the Table 3. In general, the
correlations with the degree centrality and the eigenvector centrality are no longer
significant, the eccentricity and the closeness centraliy correlations are reinforced.

In the following, we will analyze in detail the relationship between the new and
already known metrics.
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𝑘-hop based metrics

𝒲𝒞𝒢𝒟[𝑘] ℛ𝒞𝒢𝒟[𝑘] 𝒲ℛ𝒞𝒢𝒟[𝑘] 𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘] 𝒞𝒢ℛ𝑣𝑏

[𝑘] 𝒲𝒞𝒢ℛ𝑣𝑏
[𝑘]

Clustering coeff. 0,12 0,03 -0,20 0,03 -0,24 -0,19
Eccentricity -0,27 -0,18 -0,55 -0,30 -0,56 -0,51
Betweenness c. 0,18 0,07 0,36 0,14 0,38 0,29
Degree c. 0,46 0,55 0,63 0,56 0,54 0,62
Closeness c. 0,38 0,25 0,63 0,34 0,67 0,54
Eigenvector c. 0,72 0,55 0,52 0,52 -0,26 0,59

Table 3: Correlations with other metrics, where 𝑘 is 3

Weighted Communication Graph Density

The metric 𝒲𝒞𝒢𝒟[𝑘](𝑢) correlats strongly with eigenvector centrality. There is a
not too strong but significant correlation with degree centrality also, and there is
no relevant correlation with other metrics. If we want to characterize this metric
on the basis of the above, then a high 𝒲𝒞𝒢𝒟[𝑘](𝑢) value node has the following
properties (in 𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ high probability of high degree of neighbors,

∙ weak probability of central location.

Relative Communication Graph Density

The metric ℛ𝒞𝒢𝒟[𝑘](𝑢) has average correlation with degree centrality and eigen-
vector centrality, weak but significant contact with closeness centrality, and there
is no relevant correlation with other metrics. So a high ℛ𝒞𝒢𝒟[𝑘](𝑢) value node has
the following properties (in 𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of high degree of neighbors.

Weighted Relative Communication Graph Density

The metric 𝒲ℛ𝒞𝒢𝒟[𝑘](𝑢) has an average linear correlation with degree centrality,
closeness centrality, and eigenvector centrality, and suggests a weak correlation
with betweenness centrality, but with eccentricity shows an average but inverse
correlation. So a high 𝒲ℛ𝒞𝒢𝒟[𝑘](𝑢) value node has the following properties (in
𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of central location,

∙ average probability of high degree of neighbors,

∙ weak probability of high geodesic distance from any other node.
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Weighted Communication Graph Redundancy (size-based)

The metric 𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘](𝑢) has average correlation with degree centrality and eigen-

vector centrality. It suggests a weak but significant correlation with closeness cen-
trality and inverse correlation with eccenticity. There is no relevant correlation
with other metrics. So a high 𝒲𝒞𝒢ℛ[𝑘]

𝑠𝑏 (𝑢) value node has the following properties
(in 𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of high degree of neighbors,

∙ weak probability of central location.

Communication Graph Redundancy (value-based)

The metric 𝒞𝒢ℛ[𝑘]
𝑣𝑏 (𝑢) has an average linear correlation with degree centrality and

closeness centrality. It suggests a weak correlation with betweenness centrality.
It shows shows an average but inverse correlation with eccentricity. So a high
𝒞𝒢ℛ[𝑘]

𝑣𝑏 (𝑢) value node has the following properties (in 𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of central location,

∙ weak probability of great geodesic distance from any other node.

Weighted Communication Graph Redundancy (value-based)

The metric 𝒲𝒞𝒢ℛ[𝑘]
𝑣𝑏 (𝑢) has an average linear correlation with degree centrality,

closeness centrality, and eigenvector centrality. It suggests a weak correlation with
betweenness centrality, but with eccentricity shows an average but inverse corre-
lation. So a high 𝒲𝒞𝒢ℛ[𝑘]

𝑣𝑏 (𝑢) value node has the following properties (in 𝑘-hop
environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of high degree of neighbors,

∙ average probability of central location,

∙ weak probability of great geodesic distance from any other node.
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5. Node ranking

In this section we show how to use the different metrics to make node ranking (top
30 selection). The generated network (shown in Fig. 1 ) contains 100 randomly
deployed and homogeneous sensor nodes (vertices) with 926 connections (edges).
The density is 18.7%, the transmission range is 55 m, the area is 300m×300m and
the 𝑘-hop number is 3. The communication graph of the exemplary network are
shown Fig. 2.

Figure 1: Randomly Deployed Sensor Network

Both the spanning tree and the clique based metrics show the denser environ-
ments of the network. Since this network consists of only 100 nodes it does not
give a real picture of the metrics, but we can still see the tendencies.

Spanning tree-based metrics (density)

Figures 3–5 show how to use the spanning tree based metrics to make ranking nodes.
The task of all three metrics is to designate the densest environments. Based on
the comparisons, the most significant feature of 𝒲𝒞𝒢𝒟 is that the neighbors and
the neighbors’ neighbors have a high degree. Figure 3 shows that the top 3 node
and the at least 40% of the selected nodes are centrally located. The metric ℛ𝒞𝒢𝒟
showed no significant correlation with the closeness centrality and eccentricity. In
Figure 4 we can see that among the selected nodes there are only few nodes in
central position. The metric ℛ𝒞𝒢𝒟 primarily marks the nodes within the densest
areas. The metric 𝒲𝒞𝒢𝒟 selects those nodes whose density is high within their
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Figure 2: Communication Graph

𝑘-hop environment and centrally located. Figure 5 shows that the top 3 node and
the at least 80% of the selected nodes are centrally located.

In these figures we use the following colour codes: top 1 rank node is red, top
2 is green, top 3 is yellow, top 4–10 are blue, top 11–20 are pink, top 21–30 are
orange, the rest is cyan.

Figure 3 shows the top 30 ranked nodes based on the Weighted Communication
Graph Density metric. In 3-hop environments, the highest weighted communication
graph density has nodes 77, 68, and 26.

Figure 3: Weighted Communication Graph Density
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Figure 4 shows the top 30 ranked nodes based on the Relative Communication
Graph Density metric. In 3-hop environments, the highest relative communication
graph density has nodes 30, 79, and 71.

Figure 4: Relative Communication Graph Density

Figure 5 shows the top 30 ranked nodes based on the Weighted Relative Com-
munication Graph Density metric. In 3-hop environments, the highest weighted
relative communication graph density has nodes 68, 77, and 26.

Figure 5: Weighted Relative Communication Graph Density
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Clique-based metrics (degree of relieving)

Figures 6–8 show how can we use the clique based metrics to make ranking nodes.
The task of all three metrics is to designate the degree of relieving nodes within
their 𝑘-hop environment. Figure 6 shows node ranking created by 𝒲𝒞𝒢ℛ𝑠𝑏. In
case of 𝒲𝒞𝒢ℛ𝑠𝑏 only the size of cliques in the 𝑘-hop environment of the examined
node is relevant. 𝒲𝒞𝒢ℛ𝑠𝑏 marks primarily the nodes within the densest areas,
just lik ℛ𝒞𝒢𝒟. Figure 7 shows node ranking created by 𝒲𝒞𝒢ℛ𝑣𝑏. The significant
difference between 𝒲𝒞𝒢ℛ𝑣𝑏 and 𝒲𝒞𝒢ℛ𝑠𝑏 is that 𝒲𝒞𝒢ℛ𝑣𝑏 takes into consideration
also the degree of neighbors. Figure 8 clearly shows that 𝒞𝒢ℛ𝑣𝑏 primarily focuses
on centrally located nodes so the top 3 node and the at least 80% of the selected
nodes are centrally located.

Figure 6 shows the top 30 ranked nodes based on the Clique size-based Weighted
Communication Graph Redundancy metric. In 3-hop environments, the most re-
lieved nodes has nodes 79, 30, and 81.

Figure 6: Clique size-based Weighted Communication Graph Re-
dundancy

Figure 7 shows the top 30 ranked nodes based on the Clique value-based Com-
munication Graph Redundancy metric. In 3-hop environments, the most relieved
nodes has nodes 68, 77, and 26.
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Figure 7: Clique value-based Communication Graph Redundancy

Figure 8 shows the top 30 ranked nodes based on the Clique value-based Weight-
ed Communication Graph Redundancy metric. In 3-hop environments, the most
relieved nodes has nodes 77, 68, and 26.

Figure 8: Clique value-based Weighted Communication Graph Re-
dundancy

These figures show that 1-1 densities and redundancy-based metrics similarly
rank the nodes. Why? The first reason is that the two concepts are closely related,
if the density is high, then the redundancy is high, too. However, if the test is
performed with directed graphs, there will be significant differences, because if
node 𝑢 can send a message to node 𝑣, then 𝑣 may not be able to send a message to
𝑢, which means that high density does not mean necessarily also high redundancy.
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6. Conclusions and Future work

In this paper we introduced several novel 𝑘-hop based density and redundancy
metrics. We compared them to well-known graph metrics and we showed how can
them be used for node ranking. Our primary goal was to define metrics that are
able to rank nodes depending on their immediate environment within the whole
network. Based on the results, we think that more sophisticated node ranking
can be given using the new metrics. We primarily focused on modelling small
heterogeneous networks. Metrics are defined so that they can be used also on
networks where communication costs are different (weighted directed graphs). Our
further goal is to investigate also such networks. An interesting questions is how to
use these metrics to increase the efficiency of different (Tx range-based, hierarchical)
topology control methods and how to use them in different hierarchical topological
models (e.g. clustering, cluster head selection).
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Abstract

Permutations of [𝑛] = {1, 2, . . . , 𝑛} may be represented geometrically as
bargraphs with column heights in [𝑛]. We define the notion of capacity of
a permutation to be the amount of water that the corresponding bargraph
would hold if the region above it could retain water assuming the usual rules
of fluid flow. Let 𝐶(𝑛) be the sum of the capacities of all permutations of [𝑛].
We obtain, in a unique manner, all permutations of length 𝑛+1 from those of
length 𝑛, which yields a recursion for 𝐶(𝑛+ 1) in terms of 𝐶(𝑛) that we can
subsequently solve. Finally, we consider permutations that have a single dam
(i.e., a single area of water containment) and compute the total number and
capacity of all such permutations of a given length. We also provide bijective
proofs of these formulas and an asymptotic estimate is found for the average
capacity as 𝑛 increases without bound.
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1. Introduction

A permutation of [𝑛] is an ordering of the elements of [𝑛]. In recent years, a variety
of different statistics on permutations have been studied in the literature; see, for
example, [1–3, 6–12, 14, 15, 17, 18]. In order to describe our new statistic, we
represent a permutation of [𝑛] as a bargraph with column heights in [𝑛]. The
height of the 𝑖-th column of the bargraph equals the size of the 𝑖-th letter of the
permutation. We define the capacity of a permutation to be the amount of water
the representing bargraph would retain if water is poured onto it from above and
allowed to escape in any direction (if needed) subject to the usual rules of fluid flow.
It is thus a measure of the area in the plane where the water would be retained.
See [16] where the capacity statistic is considered on compositions and finite set
partitions, represented geometrically as bargraphs, and also [4, 5] for further related
results.

The organization of this paper is as follows. In the next section, we find an
explicit formula for the sum of the capacities of all permutations of length 𝑛. In
the third section, we consider the situation in which the retained water is restricted
to a single area, i.e., to a single subsequence of consecutive entries, and refer to
such permutations as having one dam. We then prove an analogous formula for
the total capacity taken over all one-dam permutations of length 𝑛 as well as
an explicit formula for the total number of such permutations by considering a
refinement according to the width of the dam. Some asymptotic estimates as 𝑛
approaches infinity are also found for these quantities, and in the final section,
bijective proofs are provided.

Illustrated below in Figure 1 is the capacity of the permutation 526134 of [6].

WaterWater

5 2 6 1 3 4

Figure 1: Permutation 526134 of [6] with capacity 7

40 A. Blecher, C. Brennan, A. Knopfmacher, M. Shattuck



2. Total capacity of permutations

Let 𝐶(𝑛) be the total capacity of all permutations of [𝑛]. We employ a direct
counting approach in order to obtain a recurrence for 𝐶(𝑛+ 1). This involves the
following procedure. Consider an arbitrary permutation of [𝑛]; from this, we obtain
a unique permutation of [𝑛+ 1] via a simple two-step process:

∙ We raise the permutation of [𝑛] by adding one to each element in the original
permutation. This produces a permutation of the elements of [𝑛+1] ∖ {1} as
illustrated below in Figure 2.

Permutation of [𝑛]

Raising

Figure 2: Raising a permutation of [𝑛] by one

∙ To convert this to an arbitrary permutation of [𝑛+1], we insert the element 1
within the raised permutation in any one of 𝑛+1 possible positions as shown
in Figure 3.

Element 1 added

𝑖− 1

elements
𝑛− 𝑖+ 1

elements

1

Total of 𝑛+ 1 elements

Figure 3: Element 1 added in the 𝑖-th position, 1 ≤ 𝑖 ≤ 𝑛+ 1

We denote the set of all permutations of [𝑛] by 𝒮𝑛. Note that each member of 𝒮𝑛+1

arises uniquely upon applying the above procedure to 𝒮𝑛.
If the element 1 is added in either the first or the last position, there is no

change to the capacity of the original permutation. In general, we will consider
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adding the 1 in all other positions 𝑖, where 2 ≤ 𝑖 ≤ 𝑛, and determine what addition
this makes to the capacity of the member of 𝒮𝑛 from which it arose. Note that the
two-step procedure above is seen to leave the capacity of the precursor permutation
unchanged, except for the additional capacity above the added element 1.

So our method will consist of calculating (see Figure 3) how many times the un-
changed original capacity is to be counted, and secondly what is the total additional
contribution above the 1 over all the possible original permutations of [𝑛].

So let us consider our general case where the 1 is added in the 𝑖-th position.
Let 𝑟 denote the maximum element to the left of 1, where 𝑖 ≤ 𝑟 ≤ 𝑛 + 1. First,
consider the case 𝑖 ≤ 𝑟 ≤ 𝑛, which is illustrated in Figure 4. Then 𝑛 + 1 must
occur to the right of the 1 and hence the additional capacity above the 1 is 𝑟 − 1.
For each maximum 𝑟, the set of numbers to the left of 1 can be chosen, and then
permuted, in

(︀
𝑟−2
𝑖−2

)︀
(𝑖− 1)! ways, while the remaining numbers to the right of 1 can

be permuted in (𝑛− 𝑖+ 1)! ways.

1

𝑟
−

1

𝑟

𝑛
+
1

Total of 𝑛+ 1 elements

Figure 4: Additional capacity above the element 1, 𝑖 ≤ 𝑟 ≤ 𝑛

Thus, the total additional capacity is
𝑛∑︁

𝑖=2

𝑛∑︁

𝑟=𝑖

(︂
𝑟 − 2

𝑖− 2

)︂
(𝑖− 1)!(𝑛− 𝑖+ 1)!(𝑟 − 1). (2.1)

Now let us consider the case 𝑟 = 𝑛+ 1. The sketch for this case is in Figure 5.
Here, by the pigeonhole principle, we have 𝑛− 𝑖+ 2 ≤ 𝑠 ≤ 𝑛, and by a similar

argument as for equation (2.1), the total additional capacity in this case is

𝑛∑︁

𝑖=2

𝑛∑︁

𝑠=𝑛−𝑖+2

(︂
𝑠− 2

𝑛− 𝑖

)︂
(𝑛− 𝑖+ 1)!(𝑖− 1)!(𝑠− 1). (2.2)

Expression (2.2) is equivalent to (2.1), which can also be realized by applying the
reversal operation.
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1
𝑟
=

𝑛
+
1

𝑠

Total of 𝑛+ 1 elements
𝑖− 1 𝑛− 𝑖+ 1

Figure 5: Additional capacity above the element 1

Thus, the total additional capacity over all permutations is

2

𝑛∑︁

𝑖=2

(𝑖− 1)!(𝑛− 𝑖+ 1)!

𝑛∑︁

𝑟=𝑖

(︂
𝑟 − 2

𝑖− 2

)︂
(𝑟 − 1)

= 2

𝑛∑︁

𝑖=2

(𝑖− 1)(𝑖− 1)!(𝑛− 𝑖+ 1)!

(︂
𝑛

𝑖

)︂

= 2𝑛!

𝑛∑︁

𝑖=2

(𝑖− 1)(𝑛− 𝑖+ 1)

𝑖

= 2𝑛!
𝑛∑︁

𝑖=1

(︂
−𝑖+ (𝑛+ 2)− 𝑛+ 1

𝑖

)︂

= 2𝑛!

(︂(︂
𝑛

2

)︂
+ 2𝑛− (𝑛+ 1)𝐻𝑛

)︂
,

where 𝐻𝑛 is the 𝑛-th Harmonic number
∑︀𝑛

𝑖=1
1
𝑖 .

So the recursion is

𝐶(𝑛+ 1) = (𝑛+ 1)𝐶(𝑛) + 2𝑛!

(︂(︂
𝑛

2

)︂
+ 2𝑛− (𝑛+ 1)𝐻𝑛

)︂
, 𝑛 ≥ 1,

with 𝐶(1) = 0.

We solve this first order linear recursion and obtain the following result.

Theorem 2.1. The total capacity 𝐶(𝑛) over all permutations of [𝑛] is

𝐶(𝑛) =
𝑛!

2
(𝑛(𝑛+ 7)− 4(𝑛+ 1)𝐻𝑛) .
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The values of 𝐶(𝑛) for 1 ≤ 𝑛 ≤ 12 are

0, 0, 2,28, 312, 3384, 37872, 446688, 5595840, 74617920, 1058711040, 15958667520.

To illustrate, we list all the permutations of length 4 and their respective capacities
in the table below. Note that the total is indeed 28, shown in bold in the list above.

Permutation 1234 1243 1324 1342 1423 1432

Capacity 0 0 1 0 1 0

Permutation 2134 2143 2314 2341 2413 2431

Capacity 1 1 2 0 2 0

Permutation 3124 3142 3214 3241 3412 3421

Capacity 3 2 3 1 1 0

Permutation 4123 4132 4213 4231 4312 4321

Capacity 3 2 3 1 1 0

Using the asymptotic expansion of 𝐻𝑛, we obtain the following estimate.

Corollary 2.2. The average capacity for permutations of [𝑛] is

1

2
(𝑛(𝑛+ 7)− 4(𝑛+ 1)𝐻𝑛) =

𝑛2

2
− 2𝑛 ln𝑛+

(︂
7

2
− 2𝛾

)︂
𝑛− 2 ln𝑛+𝑂(1)

as 𝑛 → ∞, where 𝛾 is Euler’s constant.

3. Total capacity in the one-dam situation

For permutations of [𝑛], we have computed the total capacity 𝐶(𝑛). We now
determine the total capacity of permutations having exactly one dam defined as
follows.

A permutation 𝜎 = 𝜎1𝜎2 · · ·𝜎𝑛 of [𝑛] is said to have exactly one dam if there
exists only a single connected area of water containment. More precisely, we define
the one-dam situation as that in which all of the water retained by a permutation
𝜎 is contained within a subsequence of 𝜎 of the form 𝑟𝜎𝑖𝜎𝑖+1 · · ·𝜎𝑗𝑠, where 2 ≤
𝑟, 𝑠 ≤ 𝑛 and 𝜎𝑖, 𝜎𝑖+1, . . . , 𝜎𝑗 < min{𝑟, 𝑠}. Moreover, the contribution of each 𝜎ℓ for
1 ≤ ℓ < 𝑖 or 𝑗 < ℓ ≤ 𝑛 towards the capacity is zero.

For example, the permutation 𝜎 = 463152 of [6] has only one dam, with 𝑟 = 6
and 𝑠 = 5, whereas the permutation in Figure 1 above has two. We give, in Figure 6
below, a symbolic sketch of a generic permutation having a single dam.

Let us define the dam width 𝑝 of a one-dam permutation as the number of letters
𝑝 that actually contribute to the capacity, i.e., the aforementioned

𝜎𝑖𝜎𝑖+1 · · ·𝜎𝑗 has 𝑗 − 𝑖+ 1 = 𝑝.
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𝑝
𝜎
𝑖−

1
=

𝑟

𝜎
𝑗
+
1
=

𝑠

𝑛
+
1

sub-permutation 𝜎𝑖 · · ·𝜎𝑗

with elements
from [2, 𝑟 − 1]

single dam

𝑡1 elements

𝑡 2
el

em
en

ts

sub-permutation

with no water

sub-permutations

with no water

Figure 6: Permutation with one dam only, after raising but before
adding 1

Let 𝐶1(𝑛, 𝑝) be the total capacity taken over all permutations of [𝑛] with one
dam of width 𝑝. Now let us obtain all one-dam permutations of [𝑛 + 1] of width
𝑝 + 1 from all possible precursors in 𝒮𝑛. Each one-dam member of 𝒮𝑛+1 of width
𝑝+1 can be obtained in a unique way from a certain subset of 𝒮𝑛 by the following
modified two-step procedure:

∙ Raising such permutations by one,

∙ Adding 1 to these permutations in every possible way that results in a one-
dam permutation of [𝑛+ 1].

Let us first write a recursion for 𝐶1(𝑛+ 1, 1). We consider the following cases:
First case, where we add the element 1 to any raised unimodal permutation

at all points other than the ends.
Second case, where there is a single dam of width one both before and after

adding the element 1 to either end of a raised permutation.

So for the first case, we fix a raised unimodal permutation. The total contribu-
tion of adding the element 1 in any of the specified positions is

1 + 2 + 3 + · · ·+ (𝑛− 1) =

(︂
𝑛

2

)︂
.

There are precisely
(︂
𝑛− 1

0

)︂
+

(︂
𝑛− 1

1

)︂
+ · · ·

(︂
𝑛− 1

𝑛− 1

)︂
= 2𝑛−1
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unimodal permutations of length 𝑛. Hence, the contribution towards 𝐶1(𝑛+ 1, 1)
is 2𝑛−1

(︀
𝑛
2

)︀
.

For the second case, the contribution is seen to be 2𝐶1(𝑛, 1). Combining the
prior two cases, we have the recurrence

𝐶1(𝑛+ 1, 1) = 2𝐶1(𝑛, 1) +

(︂
𝑛

2

)︂
2𝑛−1, 𝑛 ≥ 1,

with the initial condition 𝐶1(1, 1) = 0, which yields the following result.

Proposition 3.1. The total capacity of all one-dam permutations of [𝑛] with dam
width 1 is

𝐶1(𝑛, 1) =
2𝑛 𝑛

24
(𝑛− 1)(𝑛− 2).

We now write a recurrence for 𝐶1(𝑛 + 1, 𝑝 + 1) where 𝑝 ≥ 1. For this, note
that obtaining all one-dam permutations of length 𝑛+1 having width 𝑝+1 entails
either

i) Adding 1 to any of the permutations counted in 𝐶1(𝑛, 𝑝) (after first raising
them) in any of the 𝑝+ 1 positions available inside the dam, or

ii) Adding 1 to either end of a permutation counted by 𝐶1(𝑛, 𝑝 + 1) (after
raising).

Now for case i) above, let 𝑟 be the left bound of the dam in a one-dam permu-
tation and 𝑠 be the right bound. Assume for now that 𝑟 < 𝑠 where 𝑠 ≤ 𝑛. (The
case 𝑠 = 𝑛 + 1 must be considered separately.) The width of the dam is 𝑝. Let
there be 𝑡1 increasing parts to the left of 𝑟 and 𝑡2 + 1 increasing parts to the right
of 𝑠 of which the last part must be 𝑛+ 1.

We note the following restrictions:

1 ≤ 𝑝 ≤ 𝑛− 3,

0 ≤ 𝑡1 ≤ (𝑟 − 1)− (𝑝+ 1) = 𝑟 − 2− 𝑝,

0 ≤ 𝑡2 ≤ 𝑛− 𝑠.

After raising and inserting the 1, we see that

𝑝+ 1 < 𝑟 ≤ 𝑛− 1

(because all 𝑝+ 1 elements of the new wider dam must be < 𝑟).
When we add 1 to the dam (in any of the 𝑝+1 possible positions), the additional

capacity above the 1 is 𝑟 − 1. There are
(︀
𝑟−2−𝑝

𝑡1

)︀
and

(︀
𝑛−𝑠
𝑡2

)︀
ways to choose 𝑡1

and 𝑡2 elements, respectively, to form the increasing sequences. There are
(︀
𝑟−2
𝑝

)︀
𝑝!

ways to choose and order the 𝑝 elements in the dam prior to inserting 1. Thus,
the additional contribution for permutations enumerated by 𝐶1(𝑛, 𝑝) with given
parameters 𝑟 and 𝑠 as stated is

𝑟−2−𝑝∑︁

𝑡1=0

𝑛−𝑠∑︁

𝑡2=0

(︂
𝑟 − 2

𝑝

)︂
𝑝!(𝑟 − 1)(𝑝+ 1)

(︂
𝑟 − 2− 𝑝

𝑡1

)︂(︂
𝑛− 𝑠

𝑡2

)︂
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=

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑛−𝑠

𝑟−2−𝑝∑︁

𝑡1=0

(︂
𝑟 − 2− 𝑝

𝑡1

)︂

=

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑛−𝑠 2𝑟−2−𝑝. (3.1)

Summing (3.1) over all possible values of 𝑠 yields

𝑛∑︁

𝑠=𝑟+1

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑛−𝑠+𝑟−2−𝑝

= (𝑝+ 1)!

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)2𝑛−2−𝑝

(︀
1− 2𝑟−𝑛

)︀
. (3.2)

Finally, summing (3.2) over all possible values of 𝑟, the total additional capacity is

𝑛−1∑︁

𝑟=𝑝+2

(𝑝+ 1)!

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)2𝑛−2−𝑝

(︀
1− 2𝑟−𝑛

)︀

= (𝑝+ 1)!2𝑛−2−𝑝
𝑛−1∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)

(︀
1− 2𝑟−𝑛

)︀
. (3.3)

Now for the case 𝑠 = 𝑛+ 1, the restrictions are

1 ≤ 𝑝 ≤ 𝑛− 2,

0 ≤ 𝑡1 ≤ (𝑟 − 1)− (𝑝+ 1) = 𝑟 − 2− 𝑝.

Considering all possible values of 𝑟 and 𝑡1, the additional contribution for permu-
tations in the case 𝑠 = 𝑛+ 1 is

𝑛∑︁

𝑟=𝑝+2

𝑟−2−𝑝∑︁

𝑡1=0

(︂
𝑟 − 2

𝑝

)︂
𝑝!(𝑟 − 1)(𝑝+ 1)

(︂
𝑟 − 2− 𝑝

𝑡1

)︂

=
𝑛∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑟−2−𝑝. (3.4)

Finding the total capacity requires taking into account the cases when 𝑟 > 𝑠
and exploiting the obvious symmetry (i.e., multiplying by 2). Thus, by (3.3) and
(3.4), the total additional capacity in case i) above is

(𝑝+ 1)!2𝑛−1−𝑝
𝑛−1∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)

(︀
1− 2𝑟−𝑛

)︀

+
𝑛∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑟−1−𝑝
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= (𝑝+ 1)!2𝑛−1−𝑝
𝑛∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1) = (𝑝+ 1)(𝑝+ 1)!2𝑛−1−𝑝

(︂
𝑛

𝑝+ 2

)︂
, (3.5)

where we have made use of [13, p. 174] to obtain the last equality.
The original total capacity from i) is

(𝑝+ 1)𝐶1(𝑛, 𝑝). (3.6)

Case ii) leads to a contribution towards 𝐶1(𝑛+ 1, 𝑝+ 1) of

2𝐶1(𝑛, 𝑝+ 1). (3.7)

So adding (3.5), (3.6) and (3.7), we have the recurrence:

𝐶1(𝑛+ 1, 𝑝+ 1) = 2𝐶1(𝑛, 𝑝+ 1) + (𝑝+ 1)𝐶1(𝑛, 𝑝)

+ (𝑝+ 1)(𝑝+ 1)!2𝑛−1−𝑝

(︂
𝑛

𝑝+ 2

)︂
. (3.8)

We have the following explicit formula for 𝐶1(𝑛, 𝑝).

Theorem 3.2. The total capacity of all one-dam permutations of [𝑛] with dam
width 𝑝 is

𝐶1(𝑛, 𝑝) =
𝑝

𝑝+ 2
2𝑛−2−𝑝 𝑛!

(𝑛− 2− 𝑝)!
,

for 1 ≤ 𝑝 ≤ 𝑛− 2.

Proof. We prove the result for a given 𝑛 ≥ 3 and all 𝑝 ∈ [𝑛− 2] by induction on 𝑛.
The 𝑛 = 3 case is clear since 𝐶1(3, 1) = 2. If 𝑛 ≥ 3 and 𝑝 ≥ 1, then the formula for
𝐶1(𝑛+ 1, 𝑝+ 1) follows from (3.8) and the induction hypothesis, upon considering
separately the cases when 𝑝 ≤ 𝑛−3 and 𝑝 = 𝑛−2. By Proposition 3.1, the formula
holds for 𝑝 = 1 and all 𝑛 ≥ 3, which fully establishes the 𝑛+ 1 case and completes
the induction.

Remark 3.3. From Theorem 3.2, we obtain the generating function

∑︁

𝑛≥𝑝+2

𝐶1(𝑛, 𝑝)𝑥
𝑛 =

𝑝(𝑝+ 1)!𝑥𝑝+2

(1− 2𝑥)𝑝+3
, 𝑝 ≥ 1.

Below is an array of values for 𝐶1(𝑛, 𝑝) for small 𝑛 and 𝑝:

[𝐶1(𝑛, 𝑝)]𝑛≥3,𝑝≥1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
16 12 0 0 0 0
80 120 72 0 0 0
320 720 864 480 0 0
1120 3360 6048 6720 3600 0
3584 13440 32256 53760 57600 30240

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Corollary 3.4. The total capacity of one-dam permutations of [𝑛] is

𝐶1(𝑛) =
𝑛−2∑︁

𝑝=1

𝑝

𝑝+ 2
2𝑛−2−𝑝 𝑛!

(𝑛− 2− 𝑝)!
.

The values of 𝐶1(𝑛) for 1 ≤ 𝑛 ≤ 12 are

0, 0, 2, 28, 272, 2384, 20848, 190880, 1871808, 19832448, 227360256, 2814303232.

4. Total number of one-dam permutations

In this section, we find the number of permutations of [𝑛] that have exactly one
dam. Let 𝑁(𝑛, 𝑝) be the number of one-dam permutations of size 𝑛 with width 𝑝.
In order to obtain a recursion for 𝑁(𝑛+1, 𝑝+1) in terms of 𝑁(𝑛, 𝑝), we apply the
same two-step procedure as before. We again consider separately the cases 𝑝 = 1
and 𝑝 > 1.

4.1. Case where 𝑝 = 1

First, we add 1 at all points other than the ends to a raised unimodal permutation;
then the contribution to the number of permutations is (𝑛− 1)2𝑛−1.

Next, we add 1 to the ends of a one-dam permutation, which yields a contribu-
tion of 2𝑁(𝑛, 1). Combining the prior cases gives

𝑁(𝑛+ 1, 1) = (𝑛− 1)2𝑛−1 + 2𝑁(𝑛, 1), 𝑛 ≥ 1,

with initial condition 𝑁(1, 1) = 0.
Solving this first order linear recursion gives the following result.

Proposition 4.1. The number of one-dam permutations of [𝑛] with dam width 1
is

𝑁(𝑛, 1) = 2𝑛−3(𝑛− 1)(𝑛− 2).

4.2. Case where 𝑝 > 1

First, we add 1 to a permutation counted in 𝑁(𝑛, 𝑝) in any of the 𝑝+ 1 positions
within the dam, which gives a contribution of (𝑝+ 1)𝑁(𝑛, 𝑝). Otherwise, add the
1 to either end of a permutation counted by 𝑁(𝑛, 𝑝+ 1).

Thus, the recursion (3.8) is replaced by

𝑁(𝑛+ 1, 𝑝+ 1) = (𝑝+ 1)𝑁(𝑛, 𝑝) + 2𝑁(𝑛, 𝑝+ 1). (4.1)

One then has the following explicit formula for 𝑁(𝑛, 𝑝).
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Theorem 4.2. The number of one-dam permutations of [𝑛] with dam width 𝑝 is

𝑁(𝑛, 𝑝) =
1

𝑝+ 1
2𝑛−1−𝑝 (𝑛− 1)!

(𝑛− 2− 𝑝)!
,

for 1 ≤ 𝑝 ≤ 𝑛− 2.

Proof. This is shown by induction on 𝑛 as before using (4.1) and Proposition 4.1.

Remark 4.3. From Theorem 4.2, we obtain the generating function

∑︁

𝑛≥𝑝+2

𝑁(𝑛, 𝑝)𝑥𝑛 =
2𝑝!𝑥𝑝+2

(1− 2𝑥)𝑝+2
, 𝑝 ≥ 1.

Below are the values for 𝑁(𝑛, 𝑝) for small 𝑛 and 𝑝:

[𝑁(𝑛, 𝑝)]𝑛≥3,𝑝≥1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
12 4 0 0 0 0
48 32 12 0 0 0
160 160 120 48 0 0
480 640 720 576 240 0
1344 2240 3360 4032 3360 1440

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Corollary 4.4. The number of permutations of [𝑛] with one dam is

𝑁(𝑛) =
𝑛−2∑︁

𝑝=1

1

𝑝+ 1
2𝑛−1−𝑝 (𝑛− 1)!

(𝑛− 2− 𝑝)!
.

The values of 𝑁(𝑛) for 1 ≤ 𝑛 ≤ 12 are

0, 0, 2, 16, 92, 488, 2656, 15776, 105696, 806592, 6974592, 67573504.

5. Asymptotics for 𝐶1(𝑛) and 𝑁(𝑛)

5.1. Asymptotics for 𝐶1(𝑛)

In order to find the asymptotic average capacity for one-dam permutations of [𝑛],
we need asymptotic estimates of the quantities 𝐶1(𝑛) and 𝑁(𝑛) in Corollaries 3.4
and 4.4.

We first find the maximum value of 𝐶1(𝑛, 𝑝) over 𝑝 for a fixed 𝑛. For this, we
compute the ratio 𝐶1(𝑛, 𝑝+ 1)/𝐶1(𝑛, 𝑝) and determine where it is greater than or
less than one.

By the formula 𝐶1(𝑛, 𝑝) =
𝑝

𝑝+22
𝑛−2−𝑝 𝑛!

(𝑛−2−𝑝)! from Theorem 3.2, we have

𝐶1(𝑛, 𝑝+ 1)

𝐶1(𝑛, 𝑝)
=

(𝑛− 2− 𝑝)(𝑝+ 1)(𝑝+ 2)

2𝑝(𝑝+ 3)
.
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Since (𝑝+1)(𝑝+2)
𝑝(𝑝+3) > 1, the ratio 𝐶1(𝑛,𝑝+1)

𝐶1(𝑛,𝑝)
exceeds 1 if 𝑝 ≤ 𝑛 − 4. Comparing

directly 𝐶1(𝑛, 𝑛 − 3) = 2(𝑛−3)𝑛!
𝑛−1 and 𝐶1(𝑛, 𝑛 − 2) = (𝑛 − 2)(𝑛 − 1)!, we have

𝐶1(𝑛, 𝑛 − 3) > 𝐶1(𝑛, 𝑛 − 2) if 𝑛 ≥ 4, which we will assume. Thus, the size of the
largest term is given by 𝐶1(𝑛, 𝑛− 3).

We represent the general term 𝐶1(𝑛, 𝑝) for 𝑝 ≤ 𝑛−3 by 𝐶(𝑛, 𝑛−3− 𝑗), where 𝑗
runs from 0 to 𝑛− 4. Thus, the ratio of the general term 𝐶1(𝑛, 𝑝) to the maximum
term 𝐶1(𝑛, 𝑛− 3) is

𝐶1(𝑛, 𝑛− 3− 𝑗)

𝐶1(𝑛, 𝑛− 3)
=

2𝑗(3 + 𝑗 − 𝑛)(𝑛− 1)

(1 + 𝑗 − 𝑛)(𝑗 + 1)!(𝑛− 3)
.

At this stage, the final term where 𝑝 = 𝑛 − 2 is omitted and will be reintroduced
later.

Summing over all possible values of 𝑗 yields
𝑛−4∑︁

𝑗=0

2𝑗(3 + 𝑗 − 𝑛)(𝑛− 1)

(1 + 𝑗 − 𝑛)(𝑗 + 1)!(𝑛− 3)
=

𝑛− 1

𝑛− 3

𝑛−4∑︁

𝑗=0

2𝑗(3 + 𝑗 − 𝑛)

(1 + 𝑗 − 𝑛)(𝑗 + 1)!
. (5.1)

To estimate this sum, we perform a series expansion on the summand

2𝑗(3 + 𝑗 − 𝑛)

(1 + 𝑗 − 𝑛)(𝑗 + 1)!
=

2𝑗

(1 + 𝑗)!
− 21+𝑗

(1 + 𝑗)!𝑛
+𝑂

(︂
1

𝑛2

)︂
.

We shall replace the original summand by 2𝑗

(1+𝑗)! − 21+𝑗

(1+𝑗)!𝑛 .
Thus, consider the sum

𝑛−4∑︁

𝑗=0

(︂
2𝑗

(1 + 𝑗)!
− 21+𝑗

(1 + 𝑗)!𝑛

)︂
. (5.2)

The terms
𝑛−4∑︁

𝑗=0

21+𝑗

(1 + 𝑗)!𝑛

may be ignored as they only make a small contribution for large 𝑛 since

1

𝑛

𝑛−4∑︁

𝑗=0

21+𝑗

(1 + 𝑗)!
<

𝑒2

𝑛
.

Therefore, the sum in (5.2) can be approximated by an infinite sum
∞∑︁

𝑗=0

2𝑗

(1 + 𝑗)!
,

since the terms for 𝑗 ≥ 𝑛−3 are exponentially small. Thus, the sum in (5.2) equals
∞∑︁

𝑗=0

2𝑗

(1 + 𝑗)!
+𝑂

(︂
1

𝑛

)︂
=

𝑒2 − 1

2
+𝑂

(︂
1

𝑛

)︂
.
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Finally, we include the factor 𝑛−1
𝑛−3 from equation (5.1) above that was left out,

multiply by the largest term 𝐶(𝑛, 𝑛− 3) = 2(𝑛−3)𝑛!
𝑛−1 and then add the missing last

term when 𝑝 = 𝑛− 2 to obtain

(𝑒2 − 1)𝑛!

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
+ 𝑛!

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
,

which yields the following result.

Theorem 5.1. As 𝑛 → ∞, the asymptotic expression for 𝐶1(𝑛), the total capacity
of all one-dam permutations of [𝑛], is given by

𝐶1(𝑛) = 𝑒2 𝑛!

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
.

5.2. Asymptotics for 𝑁(𝑛)

One can also find an asymptotic expression for the number of permutations of [𝑛]
with one dam, following the method used for 𝐶1(𝑛). By Theorem 4.2, the ratio
of 𝑁(𝑛, 𝑝 + 1) to 𝑁(𝑛, 𝑝) simplifies to (𝑛−2−𝑝)(1+𝑝)

2(2+𝑝) . Since 2
3 ≤ 1+𝑝

2+𝑝 < 1, we have
𝑁(𝑛,𝑝+1)
𝑁(𝑛,𝑝) ≥ 1 if 1 ≤ 𝑝 ≤ 𝑛 − 5 and 𝑁(𝑛,𝑝+1)

𝑁(𝑛,𝑝) < 1 if 𝑝 = 𝑛 − 3 or 𝑛 − 4. (Note that

there is equality in the inequality 𝑁(𝑛,𝑝+1)
𝑁(𝑛,𝑝) ≥ 1 if and only if 𝑛 = 6 and 𝑝 = 1.)

Thus, the maximum value of 𝑁(𝑛, 𝑝) for 1 ≤ 𝑝 ≤ 𝑛− 2 where 𝑛 ≥ 5 is given by

𝑁(𝑛, 𝑛− 4) =
4(𝑛− 1)!

𝑛− 3
.

This time however there are two cases to add at the end, namely, when 𝑝 = 𝑛−2

and 𝑝 = 𝑛− 3. We consider the ratio 𝑁(𝑛,𝑛−4−𝑗)
𝑁(𝑛,𝑛−4) of the general term to the largest

term for 0 ≤ 𝑗 ≤ 𝑛− 5 and sum over 𝑗 to get

𝑛−5∑︁

𝑗=0

𝑁(𝑛, 𝑛− 4− 𝑗)

𝑁(𝑛, 𝑛− 4)
=

𝑛−5∑︁

𝑗=0

21+𝑗(𝑛− 3)

(𝑛− 3− 𝑗)(𝑗 + 2)!
.

Similar to before, we have

𝑛−5∑︁

𝑗=0

21+𝑗(𝑛− 3)

(𝑛− 3− 𝑗)(𝑗 + 2)!
=

𝑛−5∑︁

𝑗=0

(︂
21+𝑗

(2 + 𝑗)!
+

21+𝑗𝑗

(2 + 𝑗)!𝑛

)︂
+𝑂

(︂
1

𝑛

)︂
.

We approximate this last sum, ignoring the second part, by the infinite sum

∞∑︁

𝑗=0

21+𝑗

(2 + 𝑗)!
=

𝑒2 − 3

2
.
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Multiplying by the largest term and adding the two missing terms for 𝑝 = 𝑛 − 2
and 𝑝 = 𝑛− 3, we have

(︂
𝑒2 − 3

2

4(𝑛− 1)!

𝑛
+

4(𝑛− 1)!

𝑛
+

2(𝑛− 1)!

𝑛

)︂ (︂
1 +𝑂

(︂
1

𝑛

)︂)︂
,

which yields the following result.

Theorem 5.2. As 𝑛 → ∞, the asymptotic expression for 𝑁(𝑛), the number of
permutations of [𝑛] with one dam, is given by

𝑁(𝑛) =
2𝑒2(𝑛− 1)!

𝑛

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
.

Finally, dividing the result of Theorem 5.1 by that of Theorem 5.2 yields the
following estimate.

Theorem 5.3. As 𝑛 → ∞, the average capacity for the permutations of [𝑛] with
one dam is

𝐶1(𝑛)

𝑁(𝑛)
=

𝑛2

2

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
.

6. Combinatorial proofs

In this section, we provide bijective proofs of Theorems 3.2 and 4.2 above. Since
our combinatorial proof of the former makes use of ideas from the latter, we first
argue the latter.

6.1. Combinatorial proof of Theorem 4.2.

Equivalently, we show 𝑁(𝑛, 𝑝) = 2𝑛−1−𝑝𝑝!
(︀
𝑛−1
𝑝+1

)︀
. To do so, first let 𝑆 = {𝑠1 < 𝑠2 <

· · · < 𝑠𝑝+1} be an arbitrary subset of [𝑛− 1] of size 𝑝+1. We reorder the elements
𝑠1, 𝑠2, . . . , 𝑠𝑝 according to an arbitrary permutation 𝛼 of [𝑝] as 𝑠𝛼(1), 𝑠𝛼(2), . . . , 𝑠𝛼(𝑝),
which we will denote by 𝛼*. Next, we assign to each member of [𝑛]−𝑆 either 𝑎 or
𝑏. From this configuration enumerated by 2𝑛−1−𝑝𝑝!

(︀
𝑛−1
𝑝+1

)︀
, we create a permutation

𝜋 = 𝜋1𝜋2 · · ·𝜋𝑛 of [𝑛] having a single dam 𝜋𝑖−1𝜋𝑖 · · ·𝜋𝑗𝜋𝑗+1 of width 𝑝 such that
the section 𝜋𝑖 · · ·𝜋𝑗 is a permutation of {𝑠1, . . . , 𝑠𝑝} and 𝑠𝑝+1 = min{𝜋𝑖−1, 𝜋𝑗+1}.
In creating 𝜋, we will first form the subsequence 𝑄 of 𝜋 comprising the elements
of 𝑆 ∪ [𝑠𝑝+1 + 1, 𝑛]; note that 𝑄 must consist of consecutive letters of 𝜋.

Consider the sequence 𝑐 = 𝑐1𝑐2 · · · 𝑐ℓ of letters in {𝑎, 𝑏} assigned to the elements
𝑠𝑝+1 + 1, 𝑠𝑝+1 + 2, . . . , 𝑛, where ℓ = 𝑛 − 𝑠𝑝+1. If 𝑐 = 𝑎ℓ or 𝑐 = 𝑏ℓ, then let 𝑄 be
given by 𝑄 = 𝑛(𝑛 − 1) · · · (𝑠𝑝+1 + 1)𝛼*𝑠𝑝+1 or 𝑄 = 𝑠𝑝+1𝛼

*(𝑠𝑝+1 + 1) · · · (𝑛 − 1)𝑛,
respectively. If 𝑐 = 𝑏ℓ−1𝑎 or 𝑐 = 𝑎ℓ−1𝑏, then let 𝑄 = (𝑠𝑝+1 + 1) · · · (𝑛− 1)𝑛𝛼*𝑠𝑝+1

or 𝑄 = 𝑠𝑝+1𝛼
*𝑛(𝑛 − 1) · · · (𝑠𝑝+1 + 1). So assume 𝑐 starts with 𝑏𝑡𝑎 or 𝑎𝑡𝑏, where
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1 ≤ 𝑡 ≤ ℓ − 2. We consider cases based on the final letter 𝑐ℓ to define 𝑄. First
assume 𝑐ℓ = 𝑎. If 𝑐 starts with 𝑏𝑡𝑎 for some 1 ≤ 𝑡 ≤ ℓ− 2, then let

𝑄 = (𝑠𝑝+1 + 𝑡+ 1)𝛽′𝑛𝛽′′(𝑠𝑝+1 + 𝑡) · · · (𝑠𝑝+1 + 1)𝛼*𝑠𝑝+1,

where 𝛽′ is increasing, 𝛽′′ is decreasing and 𝛽′ ∪ 𝛽′′ = [𝑠𝑝+1 + 𝑡 + 2, 𝑛 − 1], with
membership in the string 𝛽′ or 𝛽′′ dependent on whether 𝑎 or 𝑏 is assigned to the
element in question. If 𝑐 starts with 𝑎𝑡𝑏, then let

𝑄 = (𝑠𝑝+1 + 1) · · · (𝑠𝑝+1 + 𝑡)𝛽′𝑛𝛽′′(𝑠𝑝+1 + 𝑡+ 1)𝛼*𝑠𝑝+1,

where 𝛽′ and 𝛽′′ are as before. Now assume 𝑐ℓ = 𝑏. If 𝑐 starts with 𝑏𝑡𝑎, then let
𝑄 be obtained by reversing the 𝑄 from the corresponding case above when 𝑐ℓ = 𝑎.
Likewise, if 𝑐 starts with 𝑎𝑡𝑏, then reverse 𝑄 from the corresponding case when
𝑐ℓ = 𝑎.

Finally, if 𝑥 ∈ [𝑠𝑝+1]−𝑆, then either place 𝑥 before 𝑄 if 𝑥 is assigned 𝑎 or after
𝑄 if 𝑥 is assigned 𝑏 such that any elements of [𝑠𝑝+1]− 𝑆 before (after) 𝑄 occur in
increasing (decreasing) order. Let 𝜋 be the permutation of [𝑛] obtained by applying
the operations described above. One may verify that 𝜋 contains a single dam of
width 𝑝 and that the procedure above is reversible.

6.2. Proof of Theorem 3.2.
Let 𝒩 (𝑛, 𝑝) denote the set of permutations enumerated by 𝑁(𝑛, 𝑝). To compute
the sum of the capacities of all members of 𝒩 (𝑛, 𝑝), it is enough to consider the
contribution from the first letter of each dam, by symmetry, and multiply the result
by 𝑝. Let 𝜆 ∈ 𝒩 (𝑛, 𝑝) be formed in the manner described above from an ordered
triple (𝑆, 𝛼, 𝑑), where 𝑆 and 𝛼 are as before with 𝑆 = {𝑠1 < 𝑠2 < · · · < 𝑠𝑝+1}
and 𝑑 is a binary sequence in {𝑎, 𝑏} of length 𝑛 − 1 − 𝑝. Let 𝜆′ be the member
of 𝒩 (𝑛, 𝑝) obtained from the triple (𝑆′, 𝛾𝛼, 𝑑), where 𝛾 denotes the complement
operation (i.e., 𝛾(𝑖) = 𝑝 + 1 − 𝑖 for all 𝑖 ∈ [𝑝]) and 𝑆′ = {𝑠𝑝+1} ∪ {𝑠𝑝+1 − 𝑠𝑖 : 1 ≤
𝑖 ≤ 𝑝}. Note that 𝜆 = 𝜆′ if and only if 𝑝 = 1, 𝑠2 is even and 𝑠1 = 𝑠2

2 , which is
permitted. Taken together, 𝜆 and 𝜆′ contribute 𝑠𝑝+1 towards the total capacity
of all members of 𝒩 (𝑛, 𝑝) for all 𝜆 (considering only the contribution of the first
position within a dam). So we must replace

(︀
𝑛−1
𝑝+1

)︀
as the enumerator of 𝑆 with the

sum
∑︀𝑛−1

𝑟=𝑝+1

(︀
𝑟−1
𝑝

)︀
𝑟 =

(︀
𝑛

𝑝+2

)︀
(𝑝 + 1), where 𝑟 denotes 𝑠𝑝+1; this identity is shown

below bijectively. Upon considering separately the cases when 𝜆 = 𝜆′ and 𝜆 ̸= 𝜆′,
it is seen that the contribution of each 𝜆 is counted twice (note that if 𝑝 > 1, then
𝜆 ̸= 𝜆′ for all 𝜆 with the mapping 𝜆 ↦→ 𝜆′ an involution for all 𝑝). Thus, multiplying
by 𝑝, the total capacity of all members of 𝒩 (𝑛, 𝑝) is given by

1

2

(︂
2𝑛−1−𝑝𝑝 · 𝑝!

(︂
𝑛

𝑝+ 2

)︂
(𝑝+ 1)

)︂
=

𝑝

𝑝+ 2
2𝑛−2−𝑝 𝑛!

(𝑛− 2− 𝑝)!
,

as desired.
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For completeness, we provide a bijective proof of the identity

𝑛−1∑︁

𝑟=𝑝+1

(︂
𝑟 − 1

𝑝

)︂
𝑟 =

(︂
𝑛

𝑝+ 2

)︂
(𝑝+ 1), 1 ≤ 𝑝 ≤ 𝑛− 2, (6.1)

used above, since the authors were unable to find such a proof in the literature.
Note that the right side of (6.1) clearly counts members of the set 𝒜 consisting of
“marked” subsets of [𝑛] of size 𝑝+2 wherein one of the elements, not the largest, is
marked. To complete the proof, we construct another set ℬ enumerated by the left
side of (6.1) as well as a bijection between the sets ℬ and 𝒜. Given 𝑝+1 ≤ 𝑟 ≤ 𝑛−1,
let ℬ𝑟 denote the set of configurations wherein the members of [𝑟] are written in a
row, exactly 𝑝 + 1 numbers are circled, among them 𝑟 itself, and a dot is placed
directly prior to some member of [𝑟]. Let ℬ =

⋃︀𝑛−1
𝑟=𝑝+1 ℬ𝑟. To define a bijection

from ℬ to 𝒜, renumber the elements to the right of the dot where the dot now
receives a number (the number assigned the position of the dot will become the
marked element of 𝐴 ∈ 𝒜). Note that the element 𝑟 becomes 𝑟 + 1 and thus the
largest element of 𝐴.
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Abstract

The Fibonacci sequence (𝐹𝑛) is defined by 𝐹0 = 0, 𝐹1 = 1 and 𝐹𝑛 =
𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 2. The balancing number sequence (𝐵𝑛) is defined
by 𝐵0 = 0, 𝐵1 = 1 and 𝐵𝑛 = 6𝐵𝑛−1 − 𝐵𝑛−2 for 𝑛 ≥ 2. In this paper, we
find all Fibonacci numbers which are products of two balancing numbers.
Also we found all balancing numbers which are products of two Fibonacci
numbers. More generally, taking 𝑘,𝑚,𝑚 as positive integers, it is proved
that 𝐹𝑘 = 𝐵𝑚𝐵𝑛 implies that (𝑘,𝑚, 𝑛) = (1, 1, 1), (2, 1, 1) and 𝐵𝑘 = 𝐹𝑚𝐹𝑛

implies that (𝑘,𝑚, 𝑛) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 3, 4).

Keywords: Fibonacci number, balancing number, Diophantine equations, lin-
ear forms in logarithms.

MSC: 11B39, 11J86, 11D61

1. Introduction

The Fibonacci sequence (𝐹𝑛) is defined as 𝐹0 = 0, 𝐹1 = 1 and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

for 𝑛 ≥ 2. 𝐹𝑛 is called the 𝑛-th Fibonacci number. It well known that

𝐹𝑛 =
𝛼𝑛 − 𝛽𝑛

√
5
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for every 𝑛 ≥ 0, where 𝛼 = 1+
√
5

2 and 𝛽 = 1−
√
5

2 , which are the roots of the
characteristic equations 𝑥2 − 𝑥− 1 = 0. It is well known that

𝛼𝑛−2 ≤ 𝐹𝑛 ≤ 𝛼𝑛−1 (1.1)

for all 𝑛 ≥ 1. The inequality (1.1) can be proved by induction. It can be seen that
1 < 𝛼 < 2 and −1 < 𝛽 < 0. For more information about the Fibonacci sequence
and its applications, one can see [7]. A positive integer 𝑛 is called a balancing
number if the equation

1 + 2 + · · · + (𝑛− 1) = (𝑛 + 1) + · · · + (𝑛 + 𝑟)

holds for some positive integer 𝑟. The sequence of balancing numbers (𝐵𝑛) satisfys
recurrence relation 𝐵𝑛 = 6𝐵𝑛−1 − 𝐵𝑛−2 for 𝑛 ≥ 2 with initial conditions 𝐵0 =
0, 𝐵1 = 1. 𝐵𝑛 is called the 𝑛-th balancing number. We have the Binet formula

𝐵𝑛 =
𝜆𝑛 − 𝛿𝑛

4
√

2
,

where 𝜆 = 3 + 2
√

2 and 𝛿 = 3 − 2
√

2, which are the roots of the characteristic
equations 𝑥2 − 6𝑥 + 1 = 0. Therefore,

𝐵𝑛 <
𝜆𝑛

4
√

2
. (1.2)

It can be seen that 5 < 𝜆 < 6, 0 < 𝛿 < 1 and 𝜆𝛿 = 1. Moreover, it holds that

𝜆𝑛−1 ≤ 𝐵𝑛 < 𝜆𝑛 (1.3)

for all 𝑛 ≥ 1. This inequality can be proved by noting the facts that 𝜆𝑛 = 𝜆𝐵𝑛 −
𝐵𝑛−1 and 𝐵𝑛− 𝜆𝑛−1 = 𝐵𝑛−(𝜆𝐵𝑛−1−𝐵𝑛−2) = 6𝐵𝑛−1−𝐵𝑛−2−(𝜆𝐵𝑛−1−𝐵𝑛−2) =
(6−𝜆)𝐵𝑛−1 > 0 for all 𝑛 ≥ 2. Clearly, the identity (1.3) holds for 𝑛 = 1. For more
information about the sequence of balancing numbers, see [6, 9, 10]. A different
definition is given by Szakács [12]. A positive integer 𝑛 is called a multiplying
balancing number if the equation

1 · 2 · · · (𝑛− 1) = (𝑛 + 1)(𝑛 + 2) · · · (𝑛 + 𝑟)

holds for some positive integer 𝑟. The number 𝑟 is called the balancer corresponding
to multiplying balancing number 𝑛. In [12], it is shown that the only multiplying
balancing number is 𝑛 = 7 with the balancer 𝑟 = 3. For some other generalization
of balancing numbers, the interested readers can consult [11] and the references
there. In [3], the authors have found all Fibonacci numbers or Pell numbers which
are products of two numbers from the other sequence. Taking 𝑘,𝑚 and 𝑛 are
positive integer, they showed that 𝐹𝑘 = 𝑃𝑚𝑃𝑛 implies that 𝑘 = 1, 2, 3, 5, 12 and
𝑃𝑘 = 𝐹𝑚𝐹𝑛 implies that 𝑘 = 1, 2, 3, 7, where (𝑃𝑛) is the Pell sequence defined by
𝑃0 = 0, 𝑃1 = 1 and 𝑃𝑛 = 2𝑃𝑛−1 + 𝑃𝑛−2 for 𝑛 ≥ 2. In this study, we determine all
solutions of the equation

𝐹𝑘 = 𝐵𝑚𝐵𝑛 (1.4)
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and
𝐵𝑘 = 𝐹𝑚𝐹𝑛 (1.5)

in positive integers 𝑘, 𝑛,𝑚. More generally, taking 𝑘,𝑚,𝑚 as positive integers, it is
proved that 𝐹𝑘 = 𝐵𝑚𝐵𝑛 implies that (𝑘,𝑚, 𝑛) = (1, 1, 1), (2, 1, 1) and 𝐵𝑘 = 𝐹𝑚𝐹𝑛

implies that (𝑘,𝑚, 𝑛) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 3, 4).
Our study can be viewed as a continuation of the previous work on this subject.

We follow the approach and the method presented in [3]. In Section 2, we introduce
necessary lemmas and theorems. Then in Section 3, we prove our main theorem.

2. Auxiliary results

In [3], in order to solve Diophantine equations of the form (1.4) and (1.5), the
authors have used Baker’s theory of lower bounds for a nonzero linear form in
logarithms of algebraic numbers. Since such bounds are of crucial importance
in effectively solving of Diophantine equations of the similar form, we start with
recalling some basic notions from algebraic number theory.

Let 𝜂 be an algebraic number of degree 𝑑 with minimal polynomial

𝑎0𝑥
𝑑 + 𝑎1𝑥

𝑑−1 + · · · + 𝑎𝑑 = 𝑎0

𝑑∏︁

𝑖=1

(︁
𝑋 − 𝜂(𝑖)

)︁
∈ Z[𝑥],

where the 𝑎𝑖’s are relatively prime integers with 𝑎0 > 0 and 𝜂(𝑖)’s are conjugates
of 𝜂. Then

ℎ(𝜂) =
1

𝑑

(︃
log 𝑎0 +

𝑑∑︁

𝑖=1

log
(︁

max
{︁
|𝜂(𝑖)|, 1

}︁)︁)︃
(2.1)

is called the logarithmic height of 𝜂. In particularly, if 𝜂 = 𝑎/𝑏 is a rational number
with gcd(𝑎, 𝑏) = 1 and 𝑏 > 1, then ℎ(𝜂) = log (max {|𝑎|, 𝑏}).

The following properties of logarithmic height are found in many works stated
in the references:

ℎ(𝜂 ± 𝛾) ≤ ℎ(𝜂) + ℎ(𝛾) + log 2, (2.2)

ℎ(𝜂𝛾±1) ≤ ℎ(𝜂) + ℎ(𝛾), (2.3)
ℎ(𝜂𝑠) = |𝑠|ℎ(𝜂). (2.4)

The following theorem is deduced from Corollary 2.3 of Matveev [8] and provides
a large upper bound for the subscript 𝑛 in the equations (1.4) and (1.5)(also see
Theorem 9.4 in [2]).

Theorem 2.1. Assume that 𝛾1, 𝛾2, . . . , 𝛾𝑡 are positive real algebraic numbers in a
real algebraic number field K of degree 𝐷, 𝑏1, 𝑏2, . . . , 𝑏𝑡 are rational integers, and

Λ := 𝛾𝑏1
1 . . . 𝛾𝑏𝑡

𝑡 − 1
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is not zero. Then

|Λ| > exp
(︀
−1.4 · 30𝑡+3 · 𝑡4.5 ·𝐷2(1 + log𝐷)(1 + log𝐵)𝐴1𝐴2 . . . 𝐴𝑡

)︀
,

where
𝐵 ≥ max {|𝑏1|, . . . , |𝑏𝑡|} ,

and 𝐴𝑖 ≥ max {𝐷ℎ(𝛾𝑖), | log 𝛾𝑖|, 0.16} for all 𝑖 = 1, . . . , 𝑡.

The following lemma was proved by Dujella and Pethő [5] and is a variation
of a lemma of Baker and Davenport [1]. This lemma will be used to reduce the
upper bound for the subscript 𝑛 in the equations (1.4) and (1.5). In the following
lemma, the function || · || denotes the distance from 𝑥 to the nearest integer. That
is, ||𝑥|| = min {|𝑥− 𝑛| : 𝑛 ∈ Z} for any real number 𝑥.

Lemma 2.2. Let 𝑀 be a positive integer, let 𝑝/𝑞 be a convergent of the continued
fraction of the irrational number 𝛾 such that 𝑞 > 6𝑀 , and let 𝐴,𝐵, 𝜇 be some real
numbers with 𝐴 > 0 and 𝐵 > 1. Let 𝜖 := ||𝜇𝑞|| − 𝑀 ||𝛾𝑞||. If 𝜖 > 0, then there
exists no solution to the inequality

0 < |𝑢𝛾 − 𝑣 + 𝜇| < 𝐴𝐵−𝑤,

in positive integers 𝑢, 𝑣, and 𝑤 with

𝑢 ≤ 𝑀 and 𝑤 ≥ log(𝐴𝑞/𝜖)

log𝐵
.

The following theorems are given in [2] and [4], respectively.

Theorem 2.3. The only perfect powers in the Fibonacci sequence are 𝐹0 = 0, 𝐹1 =
𝐹2 = 1, 𝐹6 = 8 and 𝐹12 = 144.

Theorem 2.4. For any given positive integers 𝑦 and 𝑙 ≥ 2, the equation 𝐵𝑚 = 𝑦𝑙

has no solution for integers 𝑚 ≥ 2.

3. Main theorems

Theorem 3.1. The Diophantine equation 𝐹𝑘 = 𝐵𝑚𝐵𝑛 has only the solutions

(𝑘,𝑚, 𝑛) = (1, 1, 1), (2, 1, 1)

in positive integers.

Proof. Assume that the equation 𝐹𝑘 = 𝐵𝑚𝐵𝑛 holds. If 𝑚 = 𝑛, we have 𝐹𝑘 = 𝐵2
𝑛,

which is possible only for 𝑘 = 1, 2, and 𝑛 = 1 by Theorem 2.3. In this case,
(𝑘,𝑚, 𝑛) = (1, 1, 1), (2, 1, 1). Therefore, we assume that 1 ≤ 𝑚 < 𝑛. Let 𝑛 ≤ 30.
Then, by using the Mathematica program, we see that 𝑘 ≤ 214. In that case,
with the help of Mathematica program, we obtain only the solutions (𝑘,𝑚, 𝑛) =
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(1, 1, 1), (2, 1, 1) in the range 1 ≤ 𝑚 < 𝑛 ≤ 30. This takes a little time. From now
on, assume that 𝑛 > 30. Using the inequality (1.1) and (1.2) , we get the inequality

𝛼𝑘−2 ≤ 𝐹𝑘 = 𝐵𝑚𝐵𝑛 < 𝜆𝑛+𝑚/32.

From this, it follows that

𝛼𝑘 = 𝛼2𝛼𝑘−2 < 32𝛼𝑘−2 < 𝜆𝑛+𝑚 < (𝛼4)𝑛+𝑚,

which yields to 𝑘 < 4(𝑛 + 𝑚) < 8𝑛. On the other hand, 𝜆𝑚+𝑛−2 ≤ 𝐵𝑚𝐵𝑛 = 𝐹𝑘 ≤
𝛼𝑘−1 < 𝜆𝑘−1 by (1.1) and (1.3). From this, we get 𝑚 + 𝑛 − 1 < 𝑘, which implies
that 𝑘 > 𝑛.

Since

𝛼𝑘 − 𝛽𝑘

√
5

= 𝐹𝑘 = 𝐵𝑚𝐵𝑛 =
𝜆𝑛+𝑚 + 𝛿𝑛+𝑚 − 𝜆𝑛𝛿𝑚 − 𝜆𝑚𝛿𝑛

32
,

we get
𝛽𝑘

√
5
− 𝜆𝑛𝛿𝑚 + 𝜆𝑚𝛿𝑛 − 𝛿𝑛+𝑚

32
=

𝛼𝑘

√
5
− 𝜆𝑛+𝑚

32
.

Taking absolute values, we obtain
⃒⃒
⃒⃒ 𝛼

𝑘

√
5
− 𝜆𝑛+𝑚

32

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒ 𝛽

𝑘

√
5
− 𝜆𝑛𝛿𝑚 + 𝜆𝑚𝛿𝑛 − 𝛿𝑛+𝑚

32

⃒⃒
⃒⃒ ≤ |𝛽|𝑘√

5
+

𝜆𝑛𝛿𝑚 + 𝜆𝑚𝛿𝑛 + 𝛿𝑛+𝑚

32

=
32 |𝛽|𝑘 +

√
5 (𝜆𝑛−𝑚 + 𝛿𝑛−𝑚 + 𝛿𝑛+𝑚)

32
√

5

<

√
5 +

√
5(𝜆𝑛−𝑚 + 2)

32
√

5
<

√
5 + 2

√
5𝜆𝑛−𝑚

32
√

5

<
1 + 2𝜆𝑛−𝑚

32
<

𝜆𝑛−𝑚+1

32
,

where we have used the fact that 0 < 𝛿 < 1, 𝜆 > 2, 𝜆𝛿 = 1, and 32 |𝛽|𝑘 <
√

5 for
𝑘 > 𝑛 > 30. If we divide both sides of the above inequality by 𝜆𝑛+𝑚

32 , we get
⃒⃒
⃒⃒ 32√

5
𝛼𝑘𝜆−(𝑛+𝑚) − 1

⃒⃒
⃒⃒ < 1

𝜆2𝑚−1
. (3.1)

Now, let us apply Theorem 2.1 with 𝛾1 := 32/
√

5, 𝛾2 := 𝛼, 𝛾3 := 𝜆 and 𝑏1 :=
1, 𝑏2 := 𝑘, 𝑏3 := −(𝑛+𝑚). Note that the numbers 𝛾1, 𝛾2, and 𝛾3 are positive real
numbers and elements of the field K = Q(

√
2,
√

5). It is obvious that the degree of
the field K is 4. So 𝐷 = 4. Now, we show that Λ1 := 32√

5
𝛼𝑘𝜆−(𝑛+𝑚) − 1 is nonzero.

For, if Λ1 = 0, then we get

𝛼𝑘𝜆−(𝑛+𝑚) = 𝛼𝑘𝛿𝑛+𝑚 =
√

5/32.
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It is seen that
√

5/32 is not a algebraic integer although 𝛼𝑘𝛿𝑛+𝑚 is an algebraic
integer. This is a contradiction. Moreover, since

ℎ(𝛾1) = ℎ(32/
√

5) =
1

2
(log 5 + 2 log(32/

√
5)) = 3.4657 . . . ,

ℎ(𝛾2) =
log𝛼

2
=

0.4812 . . .

2

and

ℎ(𝛾3) =
log 𝜆

2
=

1.76275 . . .

2

by (2.1), we can take 𝐴1 := 14, 𝐴2 := 1 and 𝐴3 = 3.6. Also, since 𝑘 < 8𝑛, we can
take 𝐵 := max {1, |𝑘|, | − (𝑛 + 𝑚)|} = 8𝑛. Thus, taking into account the inequality
(3.1) and using Theorem 2.1, we obtain

1

𝜆2𝑚−1
> |Λ1| > exp

(︀
−1.4 · 306 · 34.5 · 42(1 + log 4)(1 + log 8𝑛) (14) (3.6)

)︀
,

and so

(2𝑚− 1) log 𝜆 < 1.4 · 306 · 34.5 · 42(1 + log 4)(1 + log 8𝑛) (14) (3.6).

By a simple computation, it follows that

2𝑚 log 𝜆 < 2.7554 · 1014(1 + log 8𝑛) + log 𝜆. (3.2)

Now, we apply Theorem 2.1 a second time. Rearranging the equation 𝐹𝑘 = 𝐵𝑛𝐵𝑚

as
𝛽𝑘

√
5𝐵𝑚

− 𝛿𝑛

4
√

2
=

𝛼𝑘

√
5𝐵𝑚

− 𝜆𝑛

4
√

2
,

and taking absolute values, we obtain
⃒⃒
⃒⃒ 𝛼𝑘

√
5𝐵𝑚

− 𝜆𝑛

4
√

2

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒ 𝛽𝑘

√
5𝐵𝑚

− 𝛿𝑛

4
√

2

⃒⃒
⃒⃒ ≤ |𝛽|𝑘√

5𝐵𝑚

+
𝛿𝑛

4
√

2
<

1√
5𝐵𝑚

+
1

4
√

2
< 1,

where we used the fact that |𝛽| < 1 and 0 < 𝛿 < 1. Dividing both sides of the
above inequality by 𝜆𝑛/4

√
2, we get
⃒⃒
⃒⃒
⃒
4
√

2𝛼𝑘𝜆−𝑛

√
5𝐵𝑚

− 1

⃒⃒
⃒⃒
⃒ <

4
√

2

𝜆𝑛
<

6

𝜆𝑛
. (3.3)

Taking 𝛾1 := 𝛼, 𝛾2 := 𝜆, 𝛾3 :=
√

5𝐵𝑚/4
√

2, and 𝑏1 := 𝑘, 𝑏2 := −𝑛, 𝑏3 := −1, we
can apply Theorem 2.1. The numbers 𝛾1, 𝛾2, and 𝛾3 are positive real numbers and
elements of the field K = Q(

√
2,
√

5) and so 𝐷 = 4. In a similar manner, one can
verify that Λ2 = 4

√
2𝛼𝑘𝜆−𝑛/𝐵𝑚 − 1 ̸= 0. Also, since ℎ(𝛾1) = log𝛼

2 = 0.4812...
2 and
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ℎ( 𝛾2) = log 𝜆
2 = 1.76275...

2 by (2.1), we can take 𝐴1 := 1 and 𝐴2 = 3.6. The number√
5𝐵𝑚/4

√
2 is a root of the polynomial 32𝑋2 − 5𝐵2

𝑚. Thus, using the properties
(2.2), (2.3) and (2.4), it is seen that

ℎ(𝛾3) ≤ 1

2

(︃
log 32 + 2 log

(︃√
5𝐵𝑚

4
√

2

)︃)︃
= log(

√
5𝐵𝑚) ≤ log(

√
5𝜆𝑚/4

√
2)

< 𝑚 log 𝜆,

by (1.2). So we can take 𝐴3 := 4𝑚 log 𝜆. Since 𝑘 < 8𝑛, it follows that 𝐵 := 8𝑛 >
max {|𝑘|, | − 𝑛|, |−1|} . Thus, taking into account the inequality (3.3) and using
Theorem 2.1, we obtain

6

𝜆𝑛
> |Λ2| > exp ((−𝐶)(1 + log 4)(1 + log 8𝑛) (3.6) 4𝑚 log 𝜆) ,

or
𝑛 log 𝜆− log 6 < 𝐶(1 + log 4)(1 + log 8𝑛) (3.6) 4𝑚 log 𝜆, (3.4)

where 𝐶 = 1.4 · 306 · 34.5 · 42. Inserting the inequality (3.2) into the last inequality,
a computer search with Mathematica gives us that 𝑛 < 3.52 · 1031.

Now, let us try to reduce the upper bound on 𝑛 by applying Lemma 2.2. Let

𝑧1 := 𝑘 log𝛼− (𝑛 + 𝑚) log 𝜆 + log(32/
√

5).

Then
|1 − 𝑒𝑧1 | < 1

𝜆2𝑚−1

by (3.1). If 𝑧1 > 0, then we have the inequality

|𝑧1| = 𝑧1 < 𝑒𝑧1 − 1 = |1 − 𝑒𝑧1 | < 1

𝜆2𝑚−1

since 𝑥 < 𝑒𝑥 − 1 for 𝑥 > 0. If 𝑧1 < 0, then

1 − 𝑒𝑧1 = |1 − 𝑒𝑧1 | < 1

𝜆2𝑚−1
<

1

2
.

From this, we get 𝑒𝑧1 > 1
2 and therefore

𝑒|𝑧1| = 𝑒−𝑧1 < 2.

Consequently, we get

|𝑧1| < 𝑒|𝑧1| − 1 = 𝑒|𝑧1| |1 − 𝑒𝑧1 | < 2

𝜆2𝑚−1
.

In both cases, the inequality

|𝑧1| <
2

𝜆2𝑚−1

Fibonacci numbers which are products of two balancing numbers 63



holds. That is,

0 <
⃒⃒
⃒𝑘 log𝛼− (𝑛 + 𝑚) log 𝜆 + log(32/

√
5)
⃒⃒
⃒ < 2

𝜆2𝑚−1
.

Dividing this inequality by log 𝜆, we get

0 <

⃒⃒
⃒⃒
⃒𝑘
(︂

log𝛼

log 𝜆

)︂
− (𝑛 + 𝑚) +

(︃
log(32/

√
5)

log 𝜆

)︃⃒⃒
⃒⃒
⃒ < 6.62 · 𝜆−2𝑚. (3.5)

Take 𝛾 := log𝛼
log 𝜆 /∈ Q and 𝑀 := 2.82 ·1032. Then we found that 𝑞63, the denominator

of the 63th convergent of 𝛾 exceeds 6𝑀 . Moreover,

𝑢 := 𝑘 < 8𝑛 < 8 · 3.52 · 1031 < 𝑀.

Now take

𝜇 :=
log(32/

√
5)

log 𝜆
.

In this case, a quick computation with Mathematica gives us the inequality

0 < 𝜖 = ||𝜇𝑞63|| −𝑀 ||𝛾𝑞63|| ≤ 0.408068.

Let 𝐴 := 6.62, 𝐵 := 𝜆 and 𝑤 := 2𝑚 in Lemma 2.2. Thus, with the help of
Mathematica, we can say that the inequality (3.5) has no solution for

2𝑚 = 𝑤 ≥ log(𝐴𝑞63/𝜖)

log𝐵
≥ 45.04933.

So
𝑚 ≤ 22. (3.6)

Substituting this upper bound for 𝑚 into (3.4), we obtain 𝑛 < 7.255727 · 1016.
Now, let

𝑧2 := 𝑘 log𝛼− 𝑛 log 𝜆 + log

(︃
4
√

2√
5𝐵𝑚

)︃
.

In this case, taking into account that 𝑛 > 30, it is seen that

|1 − 𝑒𝑧2 | < 6

𝜆𝑛
<

1

4
(3.7)

by (3.3). If 𝑧2 > 0, then

|𝑧2| = 𝑧2 < 𝑒𝑧2 − 1 = |𝑒𝑧2 − 1| < 6

𝜆𝑛
.

If 𝑧2 < 0, then 1 − 𝑒𝑧2 = |1 − 𝑒𝑧2 | < 1
4 . Therefore, we get 𝑒𝑧2 > 3

4 and so
𝑒|𝑧2| = 𝑒−𝑧2 < 4

3 . By using (3.7), we get

0 < |𝑧2| < 𝑒|𝑧2| − 1 = 𝑒|𝑧2| |1 − 𝑒𝑧2 | < 4

3
· 6

𝜆𝑛
=

8

𝜆𝑛
.
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Therefore, it holds that

|𝑧2| <
8

𝜆𝑛
.

That is,

0 <

⃒⃒
⃒⃒
⃒𝑘 log𝛼− 𝑛 log 𝜆 + log

(︃
4
√

2√
5𝐵𝑚

)︃⃒⃒
⃒⃒
⃒ <

8

𝜆𝑛
.

Dividing both sides of the above inequality by log 𝜆, we get

0 <

⃒⃒
⃒⃒
⃒⃒𝑘
(︂

log𝛼

log 𝜆

)︂
− 𝑛 +

log
(︁

4
√
2√

5𝐵𝑚

)︁

log 𝜆

⃒⃒
⃒⃒
⃒⃒ < 4.54 · 𝜆−𝑛. (3.8)

Putting 𝛾 := log𝛼
log 𝜆 and taking 𝑀 := 5.81 ·1017, we found that 𝑞39, the denominator

of the 39th convergent of 𝛾 exceeds 6𝑀 . Note that 𝑢 := 𝑘 < 8𝑛 < 8·7.25727·1016 <
𝑀 . Taking

𝜇 :=
log
(︁

4
√
2√

5𝐵𝑚

)︁

log 𝜆

and considering the fact that 𝑚 ≤ 22 by (3.6), a quick computation with Mathe-
matica gives us the inequality

0 < 𝜖 = ||𝜇𝑞39|| −𝑀 ||𝛾𝑞39|| ≤ 0.467267

for all 𝑚 ∈ [1, 22]. Let 𝐴 := 4.54, 𝐵 := 𝜆 and 𝑤 := 𝑛 in Lemma 2.2. Thus, with
the help of Mathematica, we can say that the inequality (3.8) has no solution for

𝑛 = 𝑤 ≥ log(𝐴𝑞39/𝜖)

𝐵
≥ log(𝐴𝑞39/0.467267)

𝐵
≥ 25.6246.

Therefore 𝑛 ≤ 25. This contradicts our assumption that 𝑛 > 30. Thus, the proof
is completed.

Theorem 3.2. The Diophantine equation 𝐵𝑘 = 𝐹𝑚𝐹𝑛 has only the solutions
(𝑘,𝑚, 𝑛) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 3, 4) in positive integers.

Proof. Assume that 𝐵𝑘 = 𝐹𝑚𝐹𝑛 for some positive integers 𝑘,𝑚, 𝑛. Let 𝑛 = 𝑚.
Then 𝐵𝑘 = 𝐹 2

𝑚. Therefore 𝑘 = 1 by Theorem 2.4. So we get (𝑘,𝑚, 𝑛) =
(1, 1, 1), (1, 2, 2). Now assume that 1 ≤ 𝑚 < 𝑛 ≤ 107. Then 𝑘 ≤ 58 and we get the
solutions (𝑘,𝑚, 𝑛) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 3, 4) by using Mathematica. So
assume that 𝑛 > 107. Then 𝑘 ≥ 59. Since

(𝛼3)𝑘−1 < 𝜆𝑘−1 < 𝐵𝑘 = 𝐹𝑚𝐹𝑛 ≤ 𝛼𝑛+𝑚−2

by (1.1) and (1.3), it follows that 3(𝑘 − 1) < 𝑛 + 𝑚− 2 < 2(𝑛− 1), which implies
that 𝑘 < 𝑛. In a similar manner, we see that 𝑘 > (𝑚 + 𝑛)/4 > 108/4 = 27. Since
𝐵𝑘 = 𝐹𝑛𝐹𝑚, we get

𝜆𝑘

4
√

2
− 𝛼𝑚+𝑛

5
=

𝛿𝑘

4
√

2
− 𝛼𝑛𝛽𝑚 + 𝛼𝑚𝛽𝑛 − 𝛽𝑛+𝑚

5
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=
5𝛿𝑘 + 4

√
2(𝛼𝑛𝛽𝑚 + 𝛼𝑚𝛽𝑛 − 𝛽𝑛+𝑚)

20
√

2
.

Taking absolute values, it is seen that
⃒⃒
⃒⃒ 𝜆𝑘

4
√

2
− 𝛼𝑚+𝑛

5

⃒⃒
⃒⃒ ≤ 5𝛿𝑘 + 4

√
2(𝛼𝑛|𝛽|𝑚 + 𝛼𝑚|𝛽|𝑛 + |𝛽|𝑚)

20
√

2

=
4
√

2𝛼𝑛−𝑚 + 5𝛿𝑘 + 4
√

2(|𝛽|𝑛−𝑚 + |𝛽|𝑛+𝑚)

20
√

2

≤ 4
√

2𝛼𝑛−𝑚 + 4
√

2

20
√

2

<
4
√

2(𝛼𝑛−𝑚 + 1)

20
√

2
<

𝛼𝑛−𝑚 + 1

5
<

𝛼𝑛−𝑚+1

5
,

where we use the fact that 5𝛿𝑘 + 4
√

2(|𝛽|𝑛−𝑚 + |𝛽|𝑛+𝑚) ≤ 4
√

2 for 𝑘 > 27 and
𝑛 > 107. Dividing both side of this inequality by 𝛼𝑛+𝑚/5, we get

⃒⃒
⃒⃒5𝜆

𝑘𝛼−(𝑛+𝑚)

4
√

2
− 1

⃒⃒
⃒⃒ < 1

𝛼2𝑚−1
. (3.9)

Now we apply Matheev’s theorem. Let 𝛾1 := 5
4
√
2
, 𝛾2 := 𝜆, 𝛾3 := 𝛼, 𝑏1 := 1, 𝑏2 :=

𝑘, 𝑏3 := −(𝑛 + 𝑚). The numbers 𝛾1, 𝛾2, 𝛾3 are real numbers and elements of the
field K = Q(

√
2,
√

5). So 𝐷 = 4. Now we show that Λ3 = (5𝜆𝑘𝛼−(𝑛+𝑚))/4
√

2 − 1
is nonzero. For, if Λ3 = 0, then 𝜆𝑘𝛼−(𝑚+𝑛) = 4

√
2/5. But this is impossible since

4
√

2/5 is not an algebraic integer although 𝜆𝑘𝛼−(𝑚+𝑛) is an algebraic integer. It
can be seen that

ℎ(𝛾1) = ℎ(5/4
√

2) =
1

2
(log 32) = 1.7328 . . . ,

ℎ(𝛾2) = ℎ(𝜆) = (1.76275)/2 and ℎ(𝛾3) = ℎ(𝛼) = (0.4812)/2. Therefore we can
take 𝐴1 := 7, 𝐴2 := 3.6, 𝐴3 := 1 and 𝐵 := 2𝑛 ≥ max {1, |𝑘|, | − (𝑛 + 𝑚)|}. Thus,
taking into account the inequality (3.9) and using Theorem 2.1, we obtain

1

𝛼2𝑚−1
> |Λ3| > exp

(︀
(−1.4 · 306 · 34.5 · 42(1 + log 4)(1 + log 2𝑛) · 7 · 3.6 · 1

)︀
,

and so
(2𝑚− 1) log𝛼 < (1.37767 · 1014) · (1 + log 2𝑛).

Then it follows that

2𝑚 log𝛼 < (1.37767 · 1014)(1 + log 2𝑛) + log𝛼. (3.10)

Now, writing the equation 𝐵𝑘 = 𝐹𝑚𝐹𝑛 as

𝜆𝑘

4
√

2𝐹𝑚

− 𝛼𝑛

√
5

=
𝛿𝑘

4
√

2𝐹𝑚

− 𝛽𝑛

√
5
,
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and taking absolute values, we get
⃒⃒
⃒⃒ 𝜆𝑘

4
√

2𝐹𝑚

− 𝛼𝑛

√
5

⃒⃒
⃒⃒ ≤ 𝛿𝑘

4
√

2𝐹𝑚

+
|𝛽|𝑛√

5
< 1.

By dividing both side of this inequality by 𝛼𝑛/
√

5, we obtain
⃒⃒
⃒⃒
⃒
𝜆𝑘

√
5𝛼−𝑛

4
√

2𝐹𝑚

− 1

⃒⃒
⃒⃒
⃒ <

√
5

𝛼𝑛
<

3

𝛼𝑛
. (3.11)

Take 𝛾1 := 𝜆, 𝛾2 := 𝛼, 𝛾3 := (4
√

2𝐹𝑚)/
√

5, 𝑏1 := 𝑘, 𝑏2 := −𝑛, 𝑏3 := −1. Clearly,
the numbers 𝛾1, 𝛾2, 𝛾3 are real numbers and elements of the field K = Q(

√
2,
√

5)
and so 𝐷 = 4. It can be seen that

Λ4 =
𝜆𝑘

√
5𝛼−𝑛

4
√

2𝐹𝑚

− 1

is nonzero. On the other hand, ℎ(𝛾1) = ℎ(𝜆) = (1.76275 . . . )/2 and ℎ(𝛾2) =
ℎ(𝛼) = (0.4882 . . . )/2. Since (4

√
2𝐹𝑚)/

√
5 is a root of the polynomial 5𝑥2−32𝐹 2

𝑚,
it follows that

ℎ(𝛾3) ≤ 1

2

(︁
log 5 + 2 log

(︁
4
√

2𝐹𝑚/
√

5
)︁)︁

= log(4
√

2𝐹𝑚) = log(4
√

2) + log𝐹𝑚

< 1.74 + (𝑚− 1) log𝛼 < 1.26 + 𝑚 log𝛼,

and so we can take 𝐴3 := 4(1.26+𝑚 log𝛼). Let 𝐴1 := 3.6, 𝐴2 := 1. Since 𝑘 < 𝑛, we
can take 𝐵 := 𝑛 = max {𝑘, | − 𝑛|, | − 1|}. Using the inequality (3.11) and Theorem
2.1, we get

3

𝛼𝑛
> |Λ4|

> exp
(︀
−1.4 · 306 · 34.5 · 42(1 + log 4)(1 + log 𝑛) · 3.6 · 1 · 4(1.26 + 𝑚 log𝛼)

)︀
,

or
𝑛 log𝛼− log 3 < 1.968 1 × 1012 · (1 + log 𝑛) · (5.04 + 4𝑚 log𝛼). (3.12)

Inserting the inequality (3.10) into the last inequality, a computer search with
Mathematica gives us that 𝑛 < 6.26482 · 1031. Now we reduce this bound to a
size that can be easily dealt. In order to do this, we use Lemma 2.2 again. Let
𝑧3 = 𝑘 log 𝜆− (𝑛+𝑚) log𝛼+log(5/4

√
2). Then from the inequality (3.9), it follows

that
|1 − 𝑒𝑧3 | < 1

𝛼2𝑚−1
.

If 𝑧3 > 0, then

|𝑧3| = 𝑧3 < 𝑒𝑧3 − 1 = |1 − 𝑒𝑧3 | < 1

𝛼2𝑚−1
.

If 𝑧3 < 0, then

1 − 𝑒𝑧3 = |1 − 𝑒𝑧3 | < 1

𝛼2𝑚−1
<

2

3
.
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Thus 𝑒−𝑧3 < 3, which yields to

|𝑧3| < 𝑒|𝑧3| − 1 = 𝑒|𝑧3||1 − 𝑒𝑧3 | < 3

𝛼2𝑚−1
.

Therefore, it holds that

|𝑧3| <
3

𝛼2𝑚−1
.

Then ⃒⃒
⃒𝑘 log 𝜆− (𝑛 + 𝑚) log𝛼 + log(5/4

√
2)
⃒⃒
⃒ < 3

𝛼2𝑚−1
.

Dividing both sides of this inequality by log𝛼, we get

0 <

⃒⃒
⃒⃒
⃒𝑘

log 𝜆

log𝛼
− (𝑛 + 𝑚) +

log(5/4
√

2)

log𝛼

⃒⃒
⃒⃒
⃒ < 10.08 · 𝛼−2𝑚. (3.13)

Now, we apply Lemma 2.2. Take 𝛾 =: log 𝜆/ log𝛼, 𝜇 := log(5/4
√

2)/ log𝛼,𝐴 :=
10.08, 𝐵 := 𝛼,𝑤 = 2𝑚 and 𝑀 = 6.26482 · 1031. We see that 𝑞62, the denominator
of the 62th convergent of 𝛾 exceeds 6𝑀 . Note that 𝑀 = 6.26482 · 1031 = 𝑛 > 𝑘. In
this case, a quick computation with Mathematica gives us the inequality

0 < 𝜖 = ||𝜇𝑞62|| −𝑀 ||𝛾𝑞62|| ≤ 0.39276.

Thus, with the help of Mathematica, we can say that the inequality (3.13) has no
solution for

2𝑚 = 𝑤 ≥ log(𝐴𝑞62/𝜖)

log𝐵
≥ 163.277.

Therefore 𝑚 ≤ 81. Substituting this value of 𝑚 into (3.12), we get 𝑛 < 2.70817 ·
1027. Now, let

𝑧4 := 𝑘 log 𝜆− 𝑛 log𝛼 + log(
√

5/4
√

2𝐹𝑚).

Then, from (3.11), we can write

|1 − 𝑒𝑧4 | < 3

𝛼𝑛
<

1

2
.

If 𝑧4 > 0, then

|𝑧4| = 𝑧4 < 𝑒𝑧4 − 1 = |1 − 𝑒𝑧4 | < 3

𝛼𝑛
.

If 𝑧4 < 0, then 1 − 𝑒𝑧4 = |1 − 𝑒𝑧4 | < 1/2 and we get 𝑒|𝑧4| < 2. Thus,

|𝑧4| < 𝑒|𝑧4| − 1 = 𝑒|𝑧4||1 − 𝑒𝑧4 | < 6

𝛼𝑛
.

In both cases, it holds that |𝑧4| < 6/𝛼𝑛. That is,
⃒⃒
⃒𝑘 log 𝜆− 𝑛 log𝛼 + log(

√
5/4

√
2𝐹𝑚)

⃒⃒
⃒ < 6

𝛼𝑛
.
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Dividing both sides of this inequality by log𝛼, we get

0 <

⃒⃒
⃒⃒
⃒𝑘

log 𝜆

log𝛼
− 𝑛 +

log(
√

5/4
√

2𝐹𝑚)

log𝛼

⃒⃒
⃒⃒
⃒ < 12.46 · 𝛼−𝑛. (3.14)

Now, we apply Lemma 2.2. Let 𝛾 := log 𝜆/ log𝛼, 𝜇 = log(
√

5/4
√

2𝐹𝑚)/ log𝛼,𝐴 :=
12.46, 𝐵 := 𝑘,𝑤 := 𝑛 and 𝑀 := 2.70817 · 1017. It is seen that 𝑞39, the denominator
of the 39th convergent of 𝛾 exceeds 6𝑀 . Moreover, 𝑀 = 𝑛 > 𝑘. In this case, a
quick computation with Mathematica gives us the inequality

0 < 𝜖 = ||𝜇𝑞39|| −𝑀 ||𝛾𝑞39|| ≤ 0.493976

for all 𝑚 ∈ [1, 81]. Thus, with the help of Mathematica, we can say that the
inequality (3.14) has no solution for

𝑛 = 𝑤 ≥ log(𝐴𝑞39/𝜖)

log𝐵
≥ log(𝐴𝑞39/0.493976)

log𝐵
≥ 105.224.

Therefore, 𝑛 ≤ 105. But this contradicts the assumption that 𝑛 > 107. This
completes the proof.
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Abstract
Using connected transversals we determine the six-dimensional indecom-

posable solvable Lie groups with five-dimensional nilradical and their sub-
groups which are the multiplication groups and the inner mapping groups
of three-dimensional connected simply connected topological loops. Together
with this result we obtain that every six-dimensional indecomposable solvable
Lie group which is the multiplication group of a three-dimensional topological
loop has one-dimensional centre and two- or three-dimensional commutator
subgroup.
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1. Introduction

The multiplication group 𝑀𝑢𝑙𝑡(𝐿) and the inner mapping group 𝐼𝑛𝑛(𝐿) of a loop
𝐿 are important tools for the investigations in loop theory since there are strong
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relations between the structure of the normal subloops of 𝐿 and that of the normal
subgroups of 𝑀𝑢𝑙𝑡(𝐿) (cf. [1, 2]). In [9] the authors have obtained necessary and
sufficient conditions for a group 𝐺 to be the multiplication group of 𝐿. These
conditions say that one can use special transversals 𝐴 and 𝐵 with respect to a
subgroup 𝐾 of 𝐺. The subgroup 𝐾 plays the role of the inner mapping group of 𝐿
whereas the transversals 𝐴 and 𝐵 belong to the sets of left and right translations
of 𝐿.

P. T. Nagy and K. Strambach in [8] investigate thoroughly topological and
differentiable loops as continuous and differentiable sections in Lie groups. In this
paper we follow their approach and study topological loops 𝐿 of dimension 3 having
a solvable Lie group as their multiplication group. Applying the criteria of [9] we
obtained in [3] all solvable Lie groups of dimension ≤ 5 which are the multiplication
group of a 3-dimensional connected simply connected topological proper loop. This
classification has resulted only decomposable Lie groups as the group 𝑀𝑢𝑙𝑡(𝐿) of
𝐿. Hence we paid our attention to 6-dimensional solvable indecomposable Lie
groups. If their Lie algebras have a 4-dimensional nilradical, then among the 40
isomorphism classes of Lie algebras there is only one class depending on a real
parameter which consists of the Lie algebras of the group 𝑀𝑢𝑙𝑡(𝐿) of 𝐿 (cf. [4]).
This result has confirmed the observation that the condition for the multiplication
group of a topological loop to be a (finite-dimensional) Lie group is strong. Since
the 6-dimensional solvable indecomposable Lie algebras have 4 or 5-dimensional
nilradical it remains to deal with the 99 classes of solvable Lie algebras having 5-
dimensional nilradical (cf. [7, 10]). In [5] we proved that among them there are 20
classes of Lie algebras which satisfy the necessary conditions to be the Lie algebra
of the group 𝑀𝑢𝑙𝑡(𝐿) of a 3-dimensional loop 𝐿. We determined there also the
possible subalgebras of the corresponding inner mapping groups.

The purpose of this paper is to determine the indecomposable solvable Lie
groups of dimension 6 which have 5-dimensional nilradical and which are the mul-
tiplication group of a 3-dimensional connected simply connected topological loop.
To find a suitable linear representation of the simply connected Lie groups for the
20 classes of solvable Lie algebras given in [5] is the first step to achieve this clas-
sification (cf. Theorem 3.1). Applying the method of connected transversals we
show that only those Lie groups 𝐺 in Theorem 3.1 which have 2- or 3-dimensional
commutator subgroup allow continuous left transversals 𝐴 and 𝐵 in the group
𝐺 with respect to the subgroup 𝐾 given in Theorem 3.1 such that 𝐴 and 𝐵 are
𝐾-connected and 𝐴 ∪ 𝐵 generates 𝐺 (cf. Proposition 3.2 and Theorem 3.3). An
arbitrary left transversal 𝐴 to the 3-dimensional abelian subgroup 𝐾 of 𝐺 depends
on three continuous real functions with three variables. The condition that the
left transversals 𝐴 and 𝐵 are 𝐾-connected is formulated by functional equations.
Summarizing the results of Theorem in [6], of Theorem 16 in [4] and of Theorem
3.3 we obtain that each 6-dimensional solvable indecomposable Lie group which
is the multiplication group of a 3-dimensional topological loop has 1-dimensional
centre and two- or three-dimensional commutator subgroup.
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2. Preliminaries

A loop is a binary system (𝐿, ·) if there exists an element 𝑒 ∈ 𝐿 such that 𝑥 =
𝑒 · 𝑥 = 𝑥 · 𝑒 holds for all 𝑥 ∈ 𝐿 and the equations 𝑥 · 𝑎 = 𝑏 and 𝑎 · 𝑦 = 𝑏 have
precisely one solution 𝑥 = 𝑏/𝑎 and 𝑦 = 𝑎∖𝑏. A loop is proper if it is not a group.

The left and right translations 𝜆𝑎 = 𝑦 ↦→ 𝑎·𝑦 : 𝐿 → 𝐿 and 𝜌𝑎 : 𝑦 ↦→ 𝑦 ·𝑎 : 𝐿 → 𝐿,
𝑎 ∈ 𝐿, are bijections of 𝐿. The permutation group 𝑀𝑢𝑙𝑡(𝐿) = ⟨𝜆𝑎, 𝜌𝑎; 𝑎 ∈ 𝐿⟩ is
called the multiplication group of 𝐿. The stabilizer of the identity element 𝑒 ∈ 𝐿
in 𝑀𝑢𝑙𝑡(𝐿) is called the inner mapping group 𝐼𝑛𝑛(𝐿) of 𝐿.

Let 𝐺 be a group, let 𝐾 ≤ 𝐺, and let 𝐴 and 𝐵 be two left transversals to 𝐾
in 𝐺. We say that 𝐴 and 𝐵 are 𝐾-connected if 𝑎−1𝑏−1𝑎𝑏 ∈ 𝐾 for every 𝑎 ∈ 𝐴
and 𝑏 ∈ 𝐵. The core 𝐶𝑜𝐺(𝐾) of 𝐾 in 𝐺 is the largest normal subgroup of 𝐺
contained in 𝐾. If 𝐿 is a loop, then Λ(𝐿) = {𝜆𝑎; 𝑎 ∈ 𝐿} and 𝑅(𝐿) = {𝜌𝑎; 𝑎 ∈ 𝐿}
are 𝐼𝑛𝑛(𝐿)-connected transversals in the group 𝑀𝑢𝑙𝑡(𝐿) and the core of 𝐼𝑛𝑛(𝐿)
in 𝑀𝑢𝑙𝑡(𝐿) is trivial. In [9], Theorem 4.1, the following necessary and sufficient
conditions are established for a group 𝐺 to be the multiplication group of a loop 𝐿:

Proposition 2.1. A group 𝐺 is isomorphic to the multiplication group of a loop if
and only if there exists a subgroup 𝐾 with 𝐶𝑜𝐺(𝐾) = 1 and 𝐾-connected transver-
sals 𝐴 and 𝐵 satisfying 𝐺 = ⟨𝐴,𝐵⟩.

A loop 𝐿 is called topological if 𝐿 is a topological space and the binary oper-
ations (𝑥, 𝑦) ↦→ 𝑥 · 𝑦, (𝑥, 𝑦) ↦→ 𝑥∖𝑦, (𝑥, 𝑦) ↦→ 𝑦/𝑥 : 𝐿 × 𝐿 → 𝐿 are continuous. In
general the multiplication group of a topological loop 𝐿 is a topological transforma-
tion group that does not have a natural (finite dimensional) differentiable structure.
In this paper we deal with 3-dimensional connected simply connected topological
loops 𝐿. We assume that the multiplication group of 𝐿 is a 6-dimensional solvable
indecomposable Lie group 𝐺 such that its Lie algebra has 5-dimensional nilradical.
Then 𝐿 is homeomorphic to R3 (cf. [3, Lemma 5]). Since it has nilpotency class 2
(cf. [5, Theorem 3.1]) by Theorem 8 A in [2] the subgroup 𝐾 in Proposition 2.1 is
a 3-dimensional abelian Lie subgroup of 𝐺 which does not contain any non-trivial
normal subgroup of 𝐺, 𝐴 and 𝐵 are continuous 𝐾-connected left transversals to
𝐾 in 𝐺 such that 𝐴 ∪𝐵 generates 𝐺.

3. Six-dimensional solvable Lie multiplication
groups with five-dimensional nilradical

Using necessary conditions we found in [5], Theorems 3.6, 3.7, those 6-dimensional
solvable indecomposable Lie algebras with 5-dimensional nilradical which can occur
as the Lie algebra g of the multiplication group of a 3-dimensional topological loop
𝐿. We obtained also the Lie subalgebras k of the inner mapping group of 𝐿. With
the notation in [10] they are the following:

g1 := g𝑎=𝑏=0
6,14 , k1,1 = ⟨𝑒2, 𝑒4 + 𝑒1, 𝑒5⟩, k1,2 = ⟨𝑒3, 𝑒4 + 𝑒1, 𝑒5⟩;
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g2 := g𝑎=0
6,22, k2 = ⟨𝑒3, 𝑒4 + 𝑒1, 𝑒5⟩,

g3 := g𝛿=1,𝑎=𝜀=0
6,17 , k3,1 = ⟨𝑒3, 𝑒4, 𝑒5 + 𝑒1⟩, k3,2 = ⟨𝑒2, 𝑒4, 𝑒5 + 𝑒1⟩;

g4 := g𝜀=±1
6,51 , k4 = ⟨𝑒1 + 𝑎1𝑒2, 𝑒3 + 𝑒2, 𝑒4⟩, 𝑎1 ∈ R;

g5 := g𝑎=𝑏=0
6,54 , k5 = ⟨𝑒1 + 𝑒2, 𝑒3 + 𝑎2𝑒2, 𝑒4⟩, 𝑎2 ∈ R;

g6 := g𝑎=0
6,63, k6 = ⟨𝑒1 + 𝑒2, 𝑒3 + 𝑎2𝑒2, 𝑒4⟩, 𝑎2 ∈ R;

g7 := g𝑎=𝑏=0
6,25 , k7 = ⟨𝑒1 + 𝑒5, 𝑒2 + 𝜀𝑒5, 𝑒4⟩, 𝜀 = 0, 1;

g8 := g𝑎=0
6,15, k8 = ⟨𝑒1 + 𝑒5, 𝑒2 + 𝑎2𝑒5, 𝑒4 + 𝑎3𝑒5⟩, 𝑎3 ∈ R ∖ {0}, 𝑎2 ∈ R;

g9 := g
𝑎=0,0<|𝑏|≤1
6,21 , k9 = ⟨𝑒3, 𝑒4 + 𝑒1, 𝑒5 + 𝑒1⟩;

g10 := g6,24, k10 = ⟨𝑒3, 𝑒4, 𝑒5 + 𝑒1⟩;
g11 := g6,30, k11 = ⟨𝑒3, 𝑒4 + 𝑎2𝑒1, 𝑒5 + 𝑒1⟩, 𝑎2 ∈ R;

g12 := g𝑎=0,𝑏≥0
6,36 , k12,1 = ⟨𝑒3, 𝑒4, 𝑒5 + 𝑒1⟩, k12,2 = ⟨𝑒3, 𝑒4 + 𝑒1, 𝑒5 + 𝑎3𝑒1⟩, 𝑎3 ∈ R;

g13 := g6,16, k13 = ⟨𝑒1 + 𝑒5, 𝑒2 + 𝑎2𝑒5, 𝑒4 + 𝑎3𝑒5⟩, 𝑎2, 𝑎3 ∈ R;

g14 := g𝑎=1,𝑏=𝛿=0
6,27 , k14 = ⟨𝑒1 + 𝑒5, 𝑒2 + 𝑎2𝑒5, 𝑒4⟩, 𝑎2 ∈ R;

g15 := g𝜀=0,±1
6,49 , k15 = ⟨𝑒1 + 𝑎1𝑒3, 𝑒2 + 𝑒3, 𝑒4 + 𝑎3𝑒3⟩, 𝑎1, 𝑎3 ∈ R;

g16 := g𝜀=0,±1
6,52 , k16 = ⟨𝑒1 + 𝑎1𝑒2, 𝑒3 + 𝑒2, 𝑒4⟩, 𝑎1 ∈ R;

g17 := g𝑎=0
6,57, k17 = ⟨𝑒1 + 𝑒2, 𝑒3 + 𝑎2𝑒2, 𝑒4⟩, 𝑎2 ∈ R;

g18 := g𝛿=1
6,59, k18 = ⟨𝑒1 + 𝑒2, 𝑒3 + 𝑎2𝑒2, 𝑒4⟩, 𝑎2 ∈ R;

g19 := g𝛿=𝜀=0,𝑎 ̸=0
6,17 , k19 = ⟨𝑒1 + 𝑒4, 𝑒2 + 𝑎2𝑒4, 𝑒5 + 𝑒4⟩, 𝑎2 ∈ R;

g20 := g𝛿=0,𝑎=𝜀=1
6,17 , k20 = ⟨𝑒1 + 𝑒4, 𝑒2 + 𝑎2𝑒4, 𝑒5 + 𝑎3𝑒4⟩, 𝑎2, 𝑎3 ∈ R.

In [11] a single matrix 𝑀 is established depending on six variables such that the
span of the matrices engenders the given Lie algebra in the list g𝑖, 𝑖 = 1, . . . , 20.
To obtain the matrix Lie group 𝐺𝑖 of the Lie algebra g𝑖 we exponentiate the space
of matrices spanned by the matrix 𝑀 . Simplifying the obtained exponential image
we get a suitable simple form of a matrix Lie group such that by differentiating
and evaluating at the identity its Lie algebra is isomorphic to the Lie algebra g𝑖.
In case of the Lie algebras g𝑗 , 𝑗 = 1, 2, 8, 9, 16, we take in order the exponential
image of the matrices:

𝑀1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −𝑠3 𝑠2 0 −𝑠6 2𝑠1
0 0 0 0 0 𝑠2
0 0 0 0 0 𝑠3
0 0 0 −𝑠6 0 𝑠4
0 0 0 0 0 2𝑠5
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, 𝑠𝑖 ∈ R, 𝑖 = 1, . . . , 6,

74 Á. Figula, K. Ficzere, A. Al-Abayechi



𝑀2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −𝑠3 𝑠2 0 −𝑠6 2𝑠1
0 0 0 0 0 𝑠2
0 −𝑠6 0 0 0 𝑠3
0 0 0 −𝑠6 0 𝑠4
0 0 0 0 0 2𝑠5
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, 𝑠𝑖 ∈ R, 𝑖 = 1, . . . , 6,

𝑀8 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−𝑠6 −𝑠3 −𝑠2 0 0 2𝑠1
0 −𝑠6 0 0 0 𝑠2
0 0 0 0 0 −𝑠3
0 −𝑠6 0 −𝑠6 0 𝑠4
0 0 −𝑠6 0 0 −𝑠5
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, 𝑠𝑖 ∈ R, 𝑖 = 1, . . . , 6,

𝑀9 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −𝑠3 𝑠2 0 0 2𝑠1
0 0 0 0 0 𝑠2
0 −𝑠6 0 0 0 𝑠3
0 0 0 −𝑠6 0 𝑠4
0 0 0 0 −𝑏𝑠6 𝑠5
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, 𝑠𝑖 ∈ R, 𝑖 = 1, . . . , 6,

𝑀16 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−𝑠6 0 0 0 0 𝑠3
0 0 2𝑠5 −𝜀𝑠6 𝜀𝑠4 2𝑠2
0 0 0 𝑠5 0 −𝑠1
0 0 0 0 𝑠5 𝑠4
0 0 0 0 0 𝑠6
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, 𝑠𝑖 ∈ R, 𝜀 = 0,±1, 𝑖 = 1, . . . , 6.

This procedure yields the following

Theorem 3.1. The simply connected Lie group 𝐺𝑖 and its subgroup 𝐾𝑖 of the Lie
algebra g𝑖 and its subalgebra k𝑖, 𝑖 = 1, . . . , 20, is isomorphic to the linear group of
matrices the multiplication of which is given by:

For 𝑖 = 1:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥6𝑦5, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3, 𝑥4 + 𝑦4𝑒
−𝑥6 , 𝑥5 + 𝑦5, 𝑥6 + 𝑦6),

𝐾1,1 = {𝑔(𝑢1, 𝑢3, 0, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3},
𝐾1,2 = {𝑔(𝑢1, 0, 𝑢3, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3},

for 𝑖 = 2:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥6(𝑦5 + 𝑥2𝑦2),

𝑥2 + 𝑦2, 𝑥3 + 𝑦3 − 𝑥6𝑦2, 𝑥4 + 𝑦4𝑒
−𝑥6 , 𝑥5 + 𝑦5, 𝑥6 + 𝑦6),

𝐾2 = {𝑔(𝑢1, 0, 𝑢3, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3},
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for 𝑖 = 3:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1 − 𝑥6𝑦4 + ( 1
2𝑥

2
6 + 𝑥3)𝑦2,

𝑥2 + 𝑦2, 𝑥3 + 𝑦3, 𝑥4 + 𝑦4 − 𝑥6𝑦2, 𝑥5 + 𝑦5𝑒
−𝑥6 , 𝑥6 + 𝑦6),

𝐾3,1 = {𝑔(𝑢2, 𝑢3, 0, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3},
𝐾3,2 = {𝑔(𝑢2, 0, 𝑢3, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3},

for 𝑖 = 4:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1 + 𝑥5𝑦4, 𝑥2 + 𝑦2 + 𝑥5𝑦1 + 𝜀𝑥4𝑦6 + 1
2𝑥

2
5𝑦4,

𝑥3 + 𝑦3𝑒
−𝑥6 , 𝑥4 + 𝑦4, 𝑥5 + 𝑦5, 𝑥6 + 𝑦6), 𝜀 = ±1,

𝐾4 = {𝑔(𝑢1, 𝑎1𝑢1 + 𝑢2, 𝑢2, 𝑢3, 0, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎1 ∈ R,

for 𝑖 = 5:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + (𝑦1 + 𝑥5𝑦3)𝑒−𝑥6 , 𝑥2 + 𝑦2 + 𝑥5𝑦4, 𝑥3 + 𝑦3𝑒
−𝑥6 , 𝑥4 + 𝑦4, 𝑥5 + 𝑦5, 𝑥6 + 𝑦6),

𝐾5 = {𝑔(𝑢1, 𝑢1 + 𝑎2𝑢2, 𝑢2, 𝑢3, 0, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎2 ∈ R,

for 𝑖 = 6:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + (𝑦1 + 𝑦3𝑥5)𝑒−𝑥6 ,

𝑥2 + 𝑦2 − (𝑥5 + 𝑥6)𝑦4, 𝑥3 + 𝑦3𝑒
−𝑥6 , 𝑥4 + 𝑦4, 𝑥5 + 𝑦5, 𝑥6 + 𝑦6),

𝐾6 = {𝑔(𝑢1, 𝑢1 + 𝑎2𝑢2, 𝑢2, 𝑢3, 0, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎2 ∈ R,

for 𝑖 = 7:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + (𝑦1 + 𝑦2𝑥3)𝑒−𝑥6 , 𝑥2 + 𝑦2𝑒
−𝑥6 , 𝑥3 + 𝑦3, 𝑥4 + 𝑦4, 𝑥5 + 𝑦5 − 𝑥4𝑦6, 𝑥6 + 𝑦6),

𝐾7 = {𝑔(𝑢1, 𝑢2, 0, 𝑢3, 𝑢1 + 𝜀𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝜀 = 0, 1,

for 𝑖 = 8:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + (𝑦1 + 𝑦2𝑥3)𝑒−𝑥6 − 𝑦3𝑥2,

𝑥2 + 𝑦2𝑒
−𝑥6 , 𝑥3 + 𝑦3, 𝑥4 + (𝑦4 − 𝑦2𝑥6)𝑒−𝑥6 , 𝑥5 + 𝑦5 − 𝑥6𝑦3, 𝑥6 + 𝑦6),

𝐾8 = {𝑔(𝑢1, 𝑢2, 0, 𝑢3, 𝑢1 + 𝑎2𝑢2 + 𝑎3𝑢3, 0);𝑢𝑖 ∈ R, 𝑖=1, 2, 3}, 𝑎3 ∈ R ∖ {0}, 𝑎2 ∈ R,
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for 𝑖 = 9:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1 + 𝑥2𝑦3 − (𝑥3 + 𝑥2𝑥6)𝑦2, 𝑥2 + 𝑦2,

𝑥3 + 𝑦3 − 𝑥6𝑦2, 𝑥4 + 𝑦4𝑒
−𝑥6 , 𝑥5 + 𝑦5𝑒

−𝑏𝑥6 , 𝑥6 + 𝑦6), 0 < |𝑏| ≤ 1,

𝐾9 = {𝑔(𝑢1 + 𝑢2, 0, 𝑢3, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3},

for 𝑖 = 10:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1 − 2𝑥6𝑦4 + (𝑥2
6 − 𝑥2)𝑦3 − ( 1

3𝑥
3
6 − 𝑥2𝑥6 − 𝑥3)𝑦2, 𝑥2 + 𝑦2,

𝑥3 + 𝑦3 − 𝑥6𝑦2, 𝑥4 + 𝑦4 − 𝑥6𝑦3 + 1
2𝑥

2
6𝑦2, 𝑥5 + 𝑦5𝑒

−𝑥6 , 𝑥6 + 𝑦6),

𝐾10 = {𝑔(𝑢2, 0, 𝑢3, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3},

for 𝑖 = 11:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1 + 𝑥2𝑦3 − 1
2𝑥

2
2𝑦6, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3 − 𝑥2𝑦6,

𝑥4 + 𝑦4𝑒
−𝑥6 , 𝑥5 + 𝑦5𝑒

−𝑥6 − 𝑥4𝑦6, 𝑥6 + 𝑦6),

𝐾11 = {𝑔(𝑎2𝑢1 + 𝑢2, 0, 𝑢3, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎2 ∈ R,

for 𝑖 = 12:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1 − 𝑥2𝑦3 + 𝑦2(𝑥3 + 𝑥2𝑥6), 𝑥2 + 𝑦2, 𝑥3 + 𝑦3 − 𝑥6𝑦2,

𝑥4 + 𝑦4𝑒
−𝑏𝑥6 cos𝑥6 + 𝑦5𝑒

−𝑏𝑥6 sin𝑥6,

𝑥5 − 𝑦4𝑒
−𝑏𝑥6 sin𝑥6 + 𝑦5𝑒

−𝑏𝑥6 cos𝑥6, 𝑥6 + 𝑦6), 𝑏 ≥ 0,

𝐾12,1 = {𝑔(𝑢2, 0, 𝑢3, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3},
𝐾12,2 = {𝑔(𝑢1 + 𝑎3𝑢2, 0, 𝑢3, 𝑢1, 𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎3 ∈ R,

for 𝑖 = 13:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + [𝑦1 − 𝑦4𝑥6 + 𝑦2( 1
2𝑥

2
6 + 𝑥3)]𝑒−𝑥6 − 𝑥2𝑦3, 𝑥2 + 𝑦2𝑒

−𝑥6 ,

𝑥3 + 𝑦3, 𝑥4 + (𝑦4 − 𝑦2𝑥6)𝑒−𝑥6 , 𝑥5 + 𝑦5 − 𝑥6𝑦3, 𝑥6 + 𝑦6),

𝐾13 = {𝑔(𝑢1, 𝑢2, 0, 𝑢3, 𝑢1 + 𝑎2𝑢2 + 𝑎3𝑢3, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎2, 𝑎3 ∈ R,

for 𝑖 = 14:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1𝑒
−𝑥6 + 𝑥2𝑦3, 𝑥2 + 𝑦2𝑒

−𝑥6 , 𝑥3 + 𝑦3,

𝑥4 + 𝑦4 − 𝑥6𝑦3, 𝑥5 + 𝑦5 − 𝑥6𝑦4 + 1
2𝑥

2
6𝑦3, 𝑥6 + 𝑦6),
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𝐾14 = {𝑔(𝑢1, 𝑢2, 0, 𝑢3, 𝑢1 + 𝑎2𝑢2, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎2 ∈ R,

for 𝑖 = 15:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1𝑒
−𝑥6 + 𝑥4𝑦5, 𝑥2 + (𝑦2 − 2𝜀𝑦4𝑥6 − 𝑦1𝑥5)𝑒−𝑥6 + (𝑥1 − 𝑥4𝑥5)𝑦5,

𝑥3 + 𝑦3 − 𝑥6𝑦5, 𝑥4 + 𝑦4𝑒
−𝑥6 , 𝑥5 + 𝑦5, 𝑥6 + 𝑦6), 𝜀 = 0,±1,

𝐾15 = {𝑔(𝑢1, 𝑢2, 𝑎1𝑢1 + 𝑢2 + 𝑎3𝑢3, 𝑢3, 0, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎1, 𝑎3 ∈ R,

for 𝑖 = 16:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1 + 𝑥5𝑦4 + 1
2𝑥

2
5𝑦6,

𝑥2 + 𝑦2 + 2𝑥5𝑦1 + (𝑥2
5 − 𝜀𝑥6)𝑦4 + ( 1

3𝑥
3
5 + 𝜀(𝑥4 − 𝑥5𝑥6))𝑦6,

𝑥3 + 𝑦3𝑒
−𝑥6 , 𝑥4 + 𝑦4 + 𝑥5𝑦6, 𝑥5 + 𝑦5, 𝑥6 + 𝑦6), 𝜀 = 0,±1,

𝐾16 = {𝑔(𝑢1, 𝑎1𝑢1 + 𝑢2, 𝑢2, 𝑢3, 0, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎1 ∈ R,

for 𝑖 = 17:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + (𝑦1 + 𝑥5𝑦3)𝑒−𝑥6 , 𝑥2 + 𝑦2 + 𝑥5𝑦4 − 1
2𝑥

2
5𝑦6,

𝑥3 + 𝑦3𝑒
−𝑥6 , 𝑥4 + 𝑦4 − 𝑥5𝑦6, 𝑥5 + 𝑦5, 𝑥6 + 𝑦6),

𝐾17 = {𝑔(𝑢1, 𝑢1 + 𝑎2𝑢2, 𝑢2, 𝑢3, 0, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎2 ∈ R,

for 𝑖 = 18:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + (𝑦1 + 𝑦3𝑥5)𝑒−𝑥6 , 𝑥2 + 𝑦2 − (𝑥5 + 𝑥6)𝑦4 − 1
2 (𝑥5 + 𝑥6)2𝑦5,

𝑥3 + 𝑦3𝑒
−𝑥6 , 𝑥4 + 𝑦4 + (𝑥5 + 𝑥6)𝑦5, 𝑥5 + 𝑦5, 𝑥6 + 𝑦6),

𝐾18 = {𝑔(𝑢1, 𝑢1 + 𝑎2𝑢2, 𝑢2, 𝑢3, 0, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎2 ∈ R,

for 𝑖 = 19:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + 𝑦1𝑒
−𝑎𝑥6 + 𝑥3𝑦2, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3𝑒

−𝑎𝑥6 ,

𝑥4 + 𝑦4 − 𝑥6𝑦2, 𝑥5 + 𝑦5𝑒
−𝑥6 , 𝑥6 + 𝑦6), 𝑎 ∈ R ∖ {0},

𝐾19 = {𝑔(𝑢1, 0, 𝑢2, 𝑢1 + 𝑎2𝑢2 + 𝑢3, 𝑢3, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎2 ∈ R,

for 𝑖 = 20:

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

= 𝑔(𝑥1 + (𝑦1 − 𝑥6𝑦5 + 𝑦2𝑥3)𝑒−𝑥6 , 𝑥2 + 𝑦2𝑒
−𝑥6 ,

𝑥3 + 𝑦3, 𝑥4 + 𝑦4 − 𝑥3𝑦6, 𝑥5 + 𝑦5𝑒
−𝑥6 , 𝑥6 + 𝑦6),

𝐾20 = {𝑔(𝑢1, 𝑢2, 0, 𝑢1 + 𝑎2𝑢2 + 𝑎3𝑢3, 𝑢3, 0);𝑢𝑖 ∈ R, 𝑖 = 1, 2, 3}, 𝑎2, 𝑎3 ∈ R.
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Among the Lie groups in Theorem 3.1 only the group 𝐺1 has 2-dimensional
commutator subgroup and the groups 𝐺𝑖, 𝑖 = 2, . . . , 7, have 3-dimensional commu-
tator subgroup. We show that among the 6-dimensional solvable indecomposable
Lie groups with 5-dimensional nilradical precisely these Lie groups are the multipli-
cation groups of three-dimensional connected simply connected topological loops.

Proposition 3.2. There does not exist 3-dimensional connected topological proper
loop 𝐿 such that the Lie algebra g of the multiplication group of 𝐿 is one of the Lie
algebras g𝑖, 𝑖 = 8, . . . , 20.

Proof. If 𝐿 exists, then there exists its universal covering loop �̃� which is homeo-
morphic to R3. The pairs (𝐺𝑖,𝐾𝑖) in Theorem 3.1 can occur as the group 𝑀𝑢𝑙𝑡(�̃�)
and the subgroup 𝐼𝑛𝑛(�̃�). We show that none of the groups 𝐺𝑖, 𝑖 = 8, . . . , 20,
satisfies the condition that there exist continuous left transversals 𝐴 and 𝐵 to 𝐾𝑖

in 𝐺𝑖 such that for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 one has 𝑎−1𝑏−1𝑎𝑏 ∈ 𝐾𝑖. By Proposition 2.1
the groups 𝐺𝑖, 𝑖 = 8, . . . , 20, are not the multiplication group of a loop �̃�. Hence
no proper loop �̃� exists which yields that also no proper loop 𝐿 exists. This proves
the assertion.

Two arbitrary left transversals to the group 𝐾𝑖 in 𝐺𝑖 are:

For 𝑖 = 9, 10, 11, 12,

𝐴 = {𝑔(𝑢, 𝑣, ℎ1(𝑢, 𝑣, 𝑤), ℎ2(𝑢, 𝑣, 𝑤), ℎ3(𝑢, 𝑣, 𝑤), 𝑤);𝑢, 𝑣, 𝑤 ∈ R},
𝐵 = {𝑔(𝑘, 𝑙, 𝑓1(𝑘, 𝑙,𝑚), 𝑓2(𝑘, 𝑙,𝑚), 𝑓3(𝑘, 𝑙,𝑚),𝑚); 𝑘, 𝑙,𝑚 ∈ R},

for 𝑖 = 8, 13, 14, 15,

𝐴 = {𝑔(ℎ1(𝑢, 𝑣, 𝑤), ℎ2(𝑢, 𝑣, 𝑤), 𝑢, ℎ3(𝑢, 𝑣, 𝑤), 𝑣, 𝑤);𝑢, 𝑣, 𝑤 ∈ R},
𝐵 = {𝑔(𝑓1(𝑘, 𝑙,𝑚), 𝑓2(𝑘, 𝑙,𝑚), 𝑘, 𝑓3(𝑘, 𝑙,𝑚), 𝑙,𝑚); 𝑘, 𝑙,𝑚 ∈ R},

for 𝑖 = 16, 17, 18,

𝐴 = {𝑔(ℎ1(𝑢, 𝑣, 𝑤), 𝑢, ℎ2(𝑢, 𝑣, 𝑤), ℎ3(𝑢, 𝑣, 𝑤), 𝑣, 𝑤);𝑢, 𝑣, 𝑤 ∈ R},
𝐵 = {𝑔(𝑓1(𝑘, 𝑙,𝑚), 𝑘, 𝑓2(𝑘, 𝑙,𝑚), 𝑓3(𝑘, 𝑙,𝑚), 𝑙,𝑚); 𝑘, 𝑙,𝑚 ∈ R},

for 𝑖 = 19

𝐴 = {𝑔(ℎ1(𝑢, 𝑣, 𝑤), 𝑢, ℎ2(𝑢, 𝑣, 𝑤), 𝑣, ℎ3(𝑢, 𝑣, 𝑤), 𝑤);𝑢, 𝑣, 𝑤 ∈ R},
𝐵 = {𝑔(𝑓1(𝑘, 𝑙,𝑚), 𝑘, 𝑓2(𝑘, 𝑙,𝑚), 𝑙, 𝑓3(𝑘, 𝑙,𝑚),𝑚); 𝑘, 𝑙,𝑚 ∈ R},

for 𝑖 = 20

𝐴 = {𝑔(ℎ1(𝑢, 𝑣, 𝑤), ℎ2(𝑢, 𝑣, 𝑤), 𝑢, 𝑣, ℎ3(𝑢, 𝑣, 𝑤), 𝑤);𝑢, 𝑣, 𝑤 ∈ R},
𝐵 = {𝑔(𝑓1(𝑘, 𝑙,𝑚), 𝑓2(𝑘, 𝑙,𝑚), 𝑘, 𝑙, 𝑓3(𝑘, 𝑙,𝑚),𝑚); 𝑘, 𝑙,𝑚 ∈ R},

where ℎ𝑖(𝑢, 𝑣, 𝑤) : R3 → R and 𝑓𝑖(𝑘, 𝑙,𝑚) : R3 → R, 𝑖 = 1, 2, 3, are continuous
functions with 𝑓𝑖(0, 0, 0) = ℎ𝑖(0, 0, 0) = 0. Taking in 𝐺𝑖, 𝑖 = 9, 11, 12, the elements

𝑎 = 𝑔(0, 𝑣, ℎ1(0, 𝑣, 0), ℎ2(0, 𝑣, 0), ℎ3(0, 𝑣, 0), 0) ∈ 𝐴,

Topological loops with six-dimensional solvable multiplication groups. . . 79



𝑏 = 𝑔(0, 0, 𝑓1(0, 0,𝑚), 𝑓2(0, 0,𝑚), 𝑓3(0, 0,𝑚),𝑚) ∈ 𝐵

and in 𝐺17 the elements

𝑎 = 𝑔(ℎ1(0, 𝑣, 0), 0, ℎ2(0, 𝑣, 0), ℎ3(0, 𝑣, 0), 𝑣, 0) ∈ 𝐴,

𝑏 = 𝑔(𝑓1(0, 0,𝑚), 0, 𝑓2(0, 0,𝑚), 𝑓3(0, 0,𝑚), 0,𝑚) ∈ 𝐵

one has 𝑎−1𝑏−1𝑎𝑏 ∈ 𝐾𝑖 if and only if
for 𝑖 = 9

𝑚𝑣2 − 2𝑣𝑓1(0, 0,𝑚) = ℎ2(0, 𝑣, 0)(1 − 𝑒𝑚) + ℎ3(0, 𝑣, 0)(1 − 𝑒𝑏𝑚), (3.1)

for 𝑖 = 11

1
2𝑚𝑣2 + 𝑣𝑓1(0, 0,𝑚) = (𝑒𝑚 − 1)(ℎ3(0, 𝑣, 0) + 𝑎2ℎ2(0, 𝑣, 0)) − 𝑒𝑚𝑚ℎ2(0, 𝑣, 0), (3.2)

for 𝑖 = 12 and for 𝐾12,1

2𝑣𝑓1(0, 0,𝑚) −𝑚𝑣2 = (1 − 𝑒𝑏𝑚 cos𝑚)ℎ3(0, 𝑣, 0) − 𝑒𝑏𝑚 sin𝑚ℎ2(0, 𝑣, 0), (3.3)

for 𝑖 = 12 and for 𝐾12,2

2𝑣𝑓1(0, 0,𝑚) −𝑚𝑣2 = (1 − 𝑒𝑏𝑚 cos𝑚)(ℎ2(0, 𝑣, 0) + 𝑎3ℎ3(0, 𝑣, 0))

+ 𝑒𝑏𝑚 sin𝑚(ℎ3(0, 𝑣, 0) − 𝑎3ℎ2(0, 𝑣, 0)), (3.4)

for 𝑖 = 17

− 1
2𝑚𝑣2 − 𝑣𝑓3(0, 0,𝑚) = (1 − 𝑒𝑚)[ℎ1(0, 𝑣, 0) + (𝑎2 − 𝑣)ℎ2(0, 𝑣, 0)]

− 𝑒𝑚𝑣𝑓2(0, 0,𝑚) (3.5)

is satisfied for all 𝑚, 𝑣 ∈ R. On the left hand side of equations (3.1), (3.2), (3.3),
(3.4), (3.5) is the term 𝑚𝑣2 hence there does not exist any function 𝑓𝑖(0, 0,𝑚) and
ℎ𝑖(0, 𝑣, 0), 𝑖 = 1, 2, 3, satisfying these equations. Taking in 𝐺10 the elements

𝑎 = 𝑔(0, 𝑣, ℎ1(0, 𝑣, 𝑤), ℎ2(0, 𝑣, 𝑤), ℎ3(0, 𝑣, 𝑤), 𝑤) ∈ 𝐴

𝑏 = 𝑔(0, 0, 𝑓1(0, 0,𝑚), 𝑓2(0, 0,𝑚), 𝑓3(0, 0,𝑚),𝑚) ∈ 𝐵,

respectively in 𝐺18 the elements

𝑎 = 𝑔(ℎ1(0, 𝑣, 𝑤), 0, ℎ2(0, 𝑣, 𝑤), ℎ3(0, 𝑣, 𝑤), 𝑣, 𝑤) ∈ 𝐴,

𝑏 = 𝑔(𝑓1(0, 0,𝑚), 0, 𝑓2(0, 0,𝑚), 𝑓3(0, 0,𝑚), 0,𝑚) ∈ 𝐵,

respectively in 𝐺16 the elements

𝑎 = 𝑔(ℎ1(0, 𝑣, 0), 0, ℎ2(0, 𝑣, 0), ℎ3(0, 𝑣, 0), 𝑣, 0) ∈ 𝐴,

𝑏 = 𝑔(𝑓1(0, 𝑙,𝑚), 0, 𝑓2(0, 𝑙,𝑚), 𝑓3(0, 𝑙,𝑚), 𝑙,𝑚) ∈ 𝐵
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we obtain that 𝑎−1𝑏−1𝑎𝑏 ∈ 𝐾𝑖 if and only if in case 𝑖 = 10 the equation

𝑒𝑤(1 − 𝑒𝑚)ℎ3(0, 𝑣, 𝑤) + 𝑒𝑚(𝑒𝑤 − 1)𝑓3(0, 0,𝑚)

= (𝑤2 + 2𝑣 + 2𝑚𝑤)𝑓1(0, 0,𝑚) + 2𝑤𝑓2(0, 0,𝑚)

− (𝑚2 + 2𝑤𝑚)ℎ1(0, 𝑣, 𝑤) − 2𝑚ℎ2(0, 𝑣, 𝑤)

−𝑚2𝑤𝑣 − 𝑤2𝑚𝑣 −𝑚𝑣2 − 1
3𝑣𝑚

3, (3.6)

respectively in case 𝑖 = 18 the equation

𝑒𝑚(𝑒𝑤 − 1)(𝑓1(0, 0,𝑚) + 𝑎2𝑓2(0, 0,𝑚))

+ 𝑒𝑤(1 − 𝑒𝑚)[ℎ1(0, 𝑣, 𝑤) + (𝑎2 − 𝑣)ℎ2(0, 𝑣, 𝑤)]

= 𝑒𝑚+𝑤𝑣𝑓2(0, 0,𝑚) + (𝑤 + 𝑣)𝑓3(0, 0,𝑚)

−𝑚ℎ3(0, 𝑣, 𝑤) + 𝑣2𝑚 + 1
2𝑚

2𝑣 + 𝑤𝑣𝑚, (3.7)

respectively in case 𝑖 = 16 the equation

− 1
3𝑣

3𝑚− 𝑣2𝑙𝑚− 𝑙2𝑣𝑚− 1
2𝑎1𝑣

2𝑚− 𝜀𝑚2𝑣 − 𝑎1𝑣𝑙𝑚

= (1 − 𝑒𝑚)ℎ2(0, 𝑣, 0) − 2𝑙ℎ1(0, 𝑣, 0) + (𝑙2 + 2𝑣𝑙 + 𝑎1𝑙 + 2𝜀𝑚)ℎ3(0, 𝑣, 0)

+ 2𝑣𝑓1(0, 𝑙,𝑚) − (𝑣2 + 2𝑣𝑙 + 𝑎1𝑣)𝑓3(0, 𝑙,𝑚) (3.8)

holds for all 𝑚, 𝑙, 𝑣, 𝑤 ∈ R. Substituting into (3.6)

𝑓2(0, 0,𝑚) = 𝑓 ′
2(0, 0,𝑚) −𝑚𝑓1(0, 0,𝑚), ℎ2(0, 𝑣, 𝑤) = ℎ′

2(0, 𝑣, 𝑤) − 𝑤ℎ1(0, 𝑣, 𝑤),

respectively into (3.7)

𝑓1(0, 0,𝑚) = 𝑓 ′
1(0, 0,𝑚)−𝑎2𝑓2(0, 0,𝑚), ℎ1(0, 𝑣, 𝑤) = ℎ′

1(0, 𝑣, 𝑤)+(𝑣−𝑎2)ℎ2(0, 𝑣, 𝑤),

respectively into (3.8)

ℎ1(0, 𝑣, 0) = ℎ′
1(0, 𝑣, 0) +

(︀
𝑣 + 1

2𝑎1
)︀
ℎ3(0, 𝑣, 0),

𝑓1(0, 𝑙,𝑚) = 𝑓 ′
1(0, 𝑙,𝑚) +

(︀
𝑙 + 1

2𝑎1
)︀
𝑓3(0, 𝑙,𝑚),

we get in case 𝑖 = 10

𝑒𝑤(1 − 𝑒𝑚)ℎ3(0, 𝑣, 𝑤) + 𝑒𝑚(𝑒𝑤 − 1)𝑓3(0, 0,𝑚)

= (𝑤2 + 2𝑣)𝑓1(0, 0,𝑚) −𝑚2ℎ1(0, 𝑣, 𝑤) + 2𝑤𝑓 ′
2(0, 0,𝑚)

− 2𝑚ℎ′
2(0, 𝑣, 𝑤) −𝑚2𝑤𝑣 − 𝑤2𝑚𝑣 −𝑚𝑣2 − 1

3𝑣𝑚
3, (3.9)

respectively in case 𝑖 = 18

𝑒𝑚(𝑒𝑤 − 1)𝑓 ′
1(0, 0,𝑚) − 𝑒𝑚+𝑤𝑣𝑓2(0, 0,𝑚) + 𝑒𝑤(1 − 𝑒𝑚)ℎ′

1(0, 𝑣, 𝑤)

= (𝑤 + 𝑣)𝑓3(0, 0,𝑚) −𝑚ℎ3(0, 𝑣, 𝑤) + 𝑣2𝑚 + 1
2𝑚

2𝑣 + 𝑤𝑣𝑚, (3.10)
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respectively in case 𝑖 = 16

(1 − 𝑒𝑚)ℎ2(0, 𝑣, 0) + (𝑙2 + 2𝜀𝑚)ℎ3(0, 𝑣, 0)

− 𝑣2𝑓3(0, 𝑙,𝑚) − 2𝑙ℎ′
1(0, 𝑣, 0) + 2𝑣𝑓 ′

1(0, 𝑙,𝑚)

= − 1
3𝑣

3𝑚− 𝑣2𝑙𝑚− 𝑙2𝑣𝑚− 1
2𝑎1𝑣

2𝑚− 𝜀𝑚2𝑣 − 𝑎1𝑣𝑙𝑚. (3.11)

Since on the right hand side of (3.9), respectively (3.10), respectively (3.11) there is
the term − 1

3𝑣𝑚
3, respectively 1

2𝑚
2𝑣, respectively − 1

3𝑣
3𝑚 there does not exist any

function 𝑓𝑖(0, 0,𝑚) and ℎ𝑖(0, 𝑣, 𝑤), 𝑖 = 1, 2, 3, respectively 𝑓𝑖(0, 𝑙,𝑚), 𝑖 = 1, 3, and
ℎ𝑗(0, 𝑣, 0), 𝑗 = 1, 2, 3, satisfying equation (3.9), respectively (3.10), respectively
(3.11).

Taking in 𝐺𝑖, 𝑖 = 8, 13, 14, the elements

𝑎 = 𝑔(ℎ1(0, 0, 𝑤), ℎ2(0, 0, 𝑤), 0, ℎ3(0, 0, 𝑤), 0, 𝑤) ∈ 𝐴,

𝑏 = 𝑔(𝑓1(𝑘, 0,𝑚), 𝑓2(𝑘, 0,𝑚), 𝑘, 𝑓3(𝑘, 0,𝑚), 0,𝑚) ∈ 𝐵,

respectively in 𝐺19 the elements

𝑎 = 𝑔(ℎ1(0, 0, 𝑤), 0, ℎ2(0, 0, 𝑤), 0, ℎ3(0, 0, 𝑤), 𝑤) ∈ 𝐴,

𝑏 = 𝑔(𝑓1(𝑘, 0,𝑚), 𝑘, 𝑓2(𝑘, 0,𝑚), 0, 𝑓3(𝑘, 0,𝑚),𝑚) ∈ 𝐵,

respectively in 𝐺20 the elements

𝑎 = 𝑔(ℎ1(0, 0, 𝑤), ℎ2(0, 0, 𝑤), 0, 0, ℎ3(0, 0, 𝑤), 𝑤) ∈ 𝐴,

𝑏 = 𝑔(𝑓1(𝑘, 0,𝑚), 𝑓2(𝑘, 0,𝑚), 𝑘, 0, 𝑓3(𝑘, 0,𝑚),𝑚) ∈ 𝐵

we have 𝑎−1𝑏−1𝑎𝑏 ∈ 𝐾𝑖 precisely if for 𝑖 = 8 the equation

𝑤𝑘 = 𝑒𝑤(1 − 𝑒𝑚)[(𝑎2 + 𝑎3𝑤)ℎ2(0, 0, 𝑤) + 𝑎3ℎ3(0, 0, 𝑤) + ℎ1(0, 0, 𝑤)]

+ 𝑒𝑚(𝑒𝑤 − 1)[(𝑎3𝑚 + 𝑎2 − 𝑘)𝑓2(𝑘, 0,𝑚) + 𝑎3𝑓3(𝑘, 0,𝑚) + 𝑓1(𝑘, 0,𝑚)]

+ 𝑒𝑚+𝑤[𝑎3𝑤𝑓2(𝑘, 0,𝑚) + (2𝑘 − 𝑎3𝑚)ℎ2(0, 0, 𝑤)], (3.12)

for 𝑖 = 13 the equation

𝑤𝑘 = 𝑒𝑤(1 − 𝑒𝑚)[( 1
2𝑤

2 + 𝑎2 + 𝑎3𝑤)ℎ2(0, 0, 𝑤) + (𝑎3 + 𝑤)ℎ3(0, 0, 𝑤) + ℎ1(0, 0, 𝑤)]

+ 𝑒𝑚(𝑒𝑤 − 1)[( 1
2𝑚

2 − 𝑘 + 𝑎3𝑚 + 𝑎2)𝑓2(𝑘, 0,𝑚)

+ (𝑚 + 𝑎3)𝑓3(𝑘, 0,𝑚) + 𝑓1(𝑘, 0,𝑚)]

+ 𝑒𝑚+𝑤[((𝑚 + 𝑎3)𝑤 + 1
2𝑤

2)𝑓2(𝑘, 0,𝑚) + (2𝑘 − 1
2𝑚

2 − (𝑤 + 𝑎3)𝑚)ℎ2(0, 0, 𝑤)]

+ 𝑒𝑚+𝑤(𝑤𝑓3(𝑘, 0,𝑚) −𝑚ℎ3(0, 0, 𝑤)), (3.13)

for 𝑖 = 14 the equation

1
2𝑤

2𝑘 + 𝑚𝑤𝑘 + 𝑤𝑓3(𝑘, 0,𝑚) −𝑚ℎ3(0, 0, 𝑤)

= 𝑒𝑤(1 − 𝑒𝑚)(ℎ1(0, 0, 𝑤) + 𝑎2ℎ2(0, 0, 𝑤))

+ 𝑒𝑚(𝑒𝑤 − 1)(𝑓1(𝑘, 0,𝑚) + 𝑎2𝑓2(𝑘, 0,𝑚)) − 𝑒𝑚+𝑤𝑘ℎ2(0, 0, 𝑤), (3.14)
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for 𝑖 = 19 the equation

𝑤𝑘 = 𝑒𝑤(1 − 𝑒𝑚)ℎ3(0, 0, 𝑤) − 𝑒𝑚(1 − 𝑒𝑤)𝑓3(𝑘, 0,𝑚) − 𝑒𝑎(𝑚+𝑤)𝑘ℎ2(0, 0, 𝑤)

+ 𝑒𝑎𝑤(1 − 𝑒𝑎𝑚)(ℎ1(0, 0, 𝑤) + 𝑎2ℎ2(0, 0, 𝑤))

− 𝑒𝑎𝑚(1 − 𝑒𝑎𝑤)(𝑓1(𝑘, 0,𝑚) + 𝑎2𝑓2(𝑘, 0,𝑚)), (3.15)

for 𝑖 = 20 the equation

−𝑤𝑘 = 𝑒𝑤(1 − 𝑒𝑚)(ℎ1(0, 0, 𝑤) + 𝑎2ℎ2(0, 0, 𝑤) + (𝑤 + 𝑎3)ℎ3(0, 0, 𝑤))

+ 𝑒𝑚(1 − 𝑒𝑤)((𝑘 − 𝑎2)𝑓2(𝑘, 0,𝑚) − 𝑓1(𝑘, 0,𝑚) − (𝑚 + 𝑎3)𝑓3(𝑘, 0,𝑚))

+ 𝑒𝑚+𝑤(𝑘ℎ2(0, 0, 𝑤) −𝑚ℎ3(0, 0, 𝑤) + 𝑤𝑓3(𝑘, 0,𝑚)) (3.16)

is satisfied for all 𝑘,𝑚,𝑤 ∈ R, 𝑎2, 𝑎3 ∈ R. Putting into (3.12)

ℎ1(0, 0, 𝑤) = ℎ′
1(0, 0, 𝑤) − (𝑎3𝑤 + 𝑎2)ℎ2(0, 0, 𝑤) − 𝑎3ℎ3(0, 0, 𝑤),

𝑓1(𝑘, 0,𝑚) = 𝑓 ′
1(𝑘, 0,𝑚) + (𝑘 − 𝑎3𝑚− 𝑎2)𝑓2(𝑘, 0,𝑚) − 𝑎3𝑓3(𝑘, 0,𝑚),

respectively into (3.13)

ℎ1(0, 0, 𝑤) = ℎ′
1(0, 0, 𝑤) − ( 1

2𝑤
2 + 𝑎3𝑤 + 𝑎2)ℎ2(0, 0, 𝑤) − (𝑎3 + 𝑤)ℎ3(0, 0, 𝑤),

𝑓1(𝑘, 0,𝑚) = 𝑓 ′
1(𝑘, 0,𝑚) + (𝑘 − 1

2𝑚
2 − 𝑎3𝑚− 𝑎2)𝑓2(𝑘, 0,𝑚) − (𝑚 + 𝑎3)𝑓3(𝑘, 0,𝑚),

𝑓3(𝑘, 0,𝑚) = 𝑓 ′
3(𝑘, 0,𝑚) − (𝑚 + 𝑎3)𝑓2(𝑘, 0,𝑚),

ℎ3(0, 0, 𝑤) = ℎ′
3(0, 0, 𝑤) − (𝑤 + 𝑎3)ℎ2(0, 0, 𝑤),

respectively into (3.14)

ℎ1(0, 0, 𝑤) = ℎ′
1(0, 0, 𝑤) − 𝑎2ℎ2(0, 0, 𝑤),

𝑓3(𝑘, 0,𝑚) = 𝑓 ′
3(𝑘, 0,𝑚) −𝑚𝑘,

𝑓1(𝑘, 0,𝑚) = 𝑓 ′
1(𝑘, 0,𝑚) − 𝑎2𝑓2(𝑘, 0,𝑚),

respectively into (3.15)

ℎ1(0, 0, 𝑤) = ℎ′
1(0, 0, 𝑤) − 𝑎2ℎ2(0, 0, 𝑤),

𝑓1(𝑘, 0,𝑚) = 𝑓 ′
1(𝑘, 0,𝑚) − 𝑎2𝑓2(𝑘, 0,𝑚),

respectively into (3.16)

ℎ1(0, 0, 𝑤) = ℎ′
1(0, 0, 𝑤) − 𝑎2ℎ2(0, 0, 𝑤) − (𝑤 + 𝑎3)ℎ3(0, 0, 𝑤),

𝑓1(𝑘, 0,𝑚) = 𝑓 ′
1(𝑘, 0,𝑚) + (𝑘 − 𝑎2)𝑓2(𝑘, 0,𝑚) − (𝑚 + 𝑎3)𝑓3(𝑘, 0,𝑚)

in order equations (3.12), (3.13), (3.14), (3.15), (3.16) reduce in case 𝑖 = 8 to

𝑤𝑘 = 𝑒𝑤(1 − 𝑒𝑚)ℎ′
1(0, 0, 𝑤) + 𝑒𝑚(𝑒𝑤 − 1)𝑓 ′

1(𝑘, 0,𝑚)

+ 𝑒𝑚+𝑤[𝑎3𝑤𝑓2(𝑘, 0,𝑚) + (2𝑘 − 𝑎3𝑚)ℎ2(0, 0, 𝑤)], (3.17)
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in case 𝑖 = 13 to

𝑤𝑘 = 𝑒𝑤(1 − 𝑒𝑚)ℎ′
1(0, 0, 𝑤) + 𝑒𝑚(𝑒𝑤 − 1)𝑓 ′

1(𝑘, 0,𝑚)

+ 𝑒𝑚+𝑤[ 12𝑤
2𝑓2(𝑘, 0,𝑚) + (2𝑘 − 1

2𝑚
2)ℎ2(0, 0, 𝑤)

+ 𝑤𝑓 ′
3(𝑘, 0,𝑚) −𝑚ℎ′

3(0, 0, 𝑤)], (3.18)

in case 𝑖 = 14 to

1
2𝑤

2𝑘 + 𝑤𝑓 ′
3(𝑘, 0,𝑚) −𝑚ℎ3(0, 0, 𝑤)

= 𝑒𝑤(1 − 𝑒𝑚)ℎ′
1(0, 0, 𝑤) + 𝑒𝑚(𝑒𝑤 − 1)𝑓 ′

1(𝑘, 0,𝑚) − 𝑒𝑚+𝑤𝑘ℎ2(0, 0, 𝑤), (3.19)

in case 𝑖 = 19 to

𝑤𝑘 = 𝑒𝑤(1 − 𝑒𝑚)ℎ3(0, 0, 𝑤) − 𝑒𝑚(1 − 𝑒𝑤)𝑓3(𝑘, 0,𝑚) − 𝑒𝑎(𝑚+𝑤)𝑘ℎ2(0, 0, 𝑤)

+ 𝑒𝑎𝑤(1 − 𝑒𝑎𝑚)ℎ′
1(0, 0, 𝑤) − 𝑒𝑎𝑚(1 − 𝑒𝑎𝑤)𝑓 ′

1(𝑘, 0,𝑚), (3.20)

and in case 𝑖 = 20 to

−𝑤𝑘 = 𝑒𝑤(1 − 𝑒𝑚)ℎ′
1(0, 0, 𝑤) + 𝑒𝑚(𝑒𝑤 − 1)𝑓 ′

1(𝑘, 0,𝑚)

+ 𝑒𝑚+𝑤(𝑘ℎ2(0, 0, 𝑤) −𝑚ℎ3(0, 0, 𝑤) + 𝑤𝑓3(𝑘, 0,𝑚)). (3.21)

Since on the left hand side of (3.17), (3.18), (3.20), (3.21), respectively of (3.19)
is the term 𝑤𝑘, respectively 1

2𝑤
2𝑘 there does not exist any function 𝑓𝑖(𝑘, 0,𝑚),

ℎ𝑖(0, 0, 𝑤), 𝑖 = 1, 2, 3, satisfying equation (3.17), (3.18), (3.20), (3.21), respectively
(3.19).

Taking in 𝐺15 the elements

𝑎 = 𝑔(ℎ1(0, 0, 𝑤), ℎ2(0, 0, 𝑤), 0, ℎ3(0, 0, 𝑤), 0, 𝑤) ∈ 𝐴,

𝑏 = 𝑔(𝑓1(0, 𝑙,𝑚), 𝑓2(0, 𝑙,𝑚), 0, 𝑓3(0, 𝑙,𝑚), 𝑙,𝑚) ∈ 𝐵

the product 𝑎−1𝑏−1𝑎𝑏 lies in 𝐾15 if and only if the equation

𝑤𝑙 = 𝑒𝑤(1 − 𝑒𝑚)[ℎ2(0, 0, 𝑤) + (𝑎3 + 2𝑤𝜀)ℎ3(0, 0, 𝑤) + 𝑎1ℎ1(0, 0, 𝑤)]

+ 𝑒𝑚(𝑒𝑤 − 1)[𝑓2(0, 𝑙,𝑚) + (𝑙 + 𝑎1)𝑓1(0, 𝑙,𝑚) + (𝑎3 + 2𝑚𝜀)𝑓3(0, 𝑙,𝑚)]

+ 𝑒𝑚+𝑤[2𝑤𝜀𝑓3(0, 𝑙,𝑚) − 2𝑙ℎ1(0, 0, 𝑤) − (𝑙2 + 2𝑚𝜀 + 𝑎1𝑙)ℎ3(0, 0, 𝑤)] (3.22)

is satisfied for all 𝑚, 𝑙, 𝑤 ∈ R. Substituting into (3.22)

ℎ1(0, 0, 𝑤) = ℎ′
1(0, 0, 𝑤) − 1

2𝑎1ℎ3(0, 0, 𝑤),

ℎ2(0, 0, 𝑤) = ℎ′
2(0, 0, 𝑤) − 𝑎1ℎ1(0, 0, 𝑤) − (𝑎3 + 2𝑤𝜀)ℎ3(0, 0, 𝑤),

𝑓2(0, 𝑙,𝑚) = 𝑓 ′
2(0, 𝑙,𝑚) − (𝑙 + 𝑎1)𝑓1(0, 𝑙,𝑚) − (𝑎3 + 2𝑚𝜀)𝑓3(0, 𝑙,𝑚),

we obtain

𝑤𝑙 = 𝑒𝑤(1 − 𝑒𝑚)ℎ′
2(0, 0, 𝑤) + 𝑒𝑚(𝑒𝑤 − 1)𝑓 ′

2(0, 𝑙,𝑚)
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+ 𝑒𝑚+𝑤[2𝑤𝜀𝑓3(0, 𝑙,𝑚) − 2𝑙ℎ′
1(0, 0, 𝑤) − (𝑙2 + 2𝑚𝜀)ℎ3(0, 0, 𝑤)]. (3.23)

On the left hand side of equation (3.23) is the term 𝑤𝑙 hence there does not exist
any function 𝑓𝑖(0, 𝑙,𝑚), 𝑖 = 2, 3, and ℎ𝑗(0, 0, 𝑤), 𝑗 = 1, 2, 3 such that equation
(3.23) holds.

Theorem 3.3. Let 𝐿 be a connected simply connected topological proper loop of
dimension 3 such that its multiplication group is a 6-dimensional solvable indecom-
posable Lie group having 5-dimensional nilradical. Then the pairs of Lie groups
(𝐺𝑖,𝐾𝑖), 𝑖 = 1, . . . , 7, are the multiplication groups 𝑀𝑢𝑙𝑡(𝐿) and the inner map-
ping groups 𝐼𝑛𝑛(𝐿) of 𝐿.

Proof. The sets

𝐴 = {𝑔(𝑘, 1 − 𝑒𝑚, 𝑙,𝑚𝑒−𝑚, 2𝑙,𝑚); 𝑘, 𝑙,𝑚 ∈ R},
𝐵 = {𝑔(𝑢,𝑤, 𝑣, 2𝑣𝑒−𝑤, 1 − 𝑒𝑤, 𝑤);𝑢, 𝑣, 𝑤 ∈ R},

respectively

𝐶 = {𝑔(𝑘, 𝑙, 1 − 𝑒𝑚,𝑚𝑒−𝑚,−2𝑙,𝑚); 𝑘, 𝑙,𝑚 ∈ R},
𝐷 = {𝑔(𝑢, 𝑣, 𝑤,−2𝑣𝑒−𝑤, 1 − 𝑒𝑤, 𝑤);𝑢, 𝑣, 𝑤 ∈ R}

are 𝐾1,1-, respectively 𝐾1,2-connected left transversals in 𝐺1. The sets

𝐴 = {𝑔(𝑘, 𝑙, 𝑙,𝑚𝑒−𝑚, 𝑙2 − 1 + 𝑒𝑚,𝑚); 𝑘, 𝑙,𝑚 ∈ R},
𝐵 = {𝑔(𝑢, 𝑣, 𝑣,−𝑤𝑒−𝑤, 𝑣2 + 1 − 𝑒𝑤, 𝑤);𝑢, 𝑣, 𝑤 ∈ R}

are 𝐾2-connected left transversals in 𝐺2. The sets

𝐴 = {𝑔(𝑘, 1
2𝑚

2 − 𝑙, 𝑙, 𝑒𝑚 − 1 −𝑚( 1
2𝑚

2 − 𝑙),𝑚𝑒−𝑚,𝑚); 𝑘, 𝑙,𝑚 ∈ R},
𝐵 = {𝑔(𝑢, 1

2𝑤
2 − 𝑣, 𝑣, 1 − 𝑒𝑤 − 𝑤( 1

2𝑤
2 − 𝑣),−𝑤𝑒−𝑤, 𝑤);𝑢, 𝑣, 𝑤 ∈ R},

respectively

𝐶 = {𝑔(𝑘, 𝑙, 1
2𝑚

2 + 𝑒𝑚 − 1,−𝑙𝑚 + 𝑚, 𝑙𝑒−𝑚,𝑚); 𝑘, 𝑙,𝑚 ∈ R},
𝐷 = {𝑔(𝑢, 𝑣, 1

2𝑤
2 − 𝑒𝑤 + 1,−𝑣𝑤 + 𝑤,−𝑣𝑒−𝑤, 𝑤);𝑢, 𝑣, 𝑤 ∈ R}

are 𝐾3,1-, respectively 𝐾3,2-connected left transversals in 𝐺3. The sets

𝐴 = {𝑔((𝑙 + 𝑎1)(1 − 𝑒𝑚) + 𝑙, 𝑘,−𝑒−𝑚( 1
2 𝑙

2 + 𝜀𝑚), 1 − 𝑒𝑚, 𝑙,𝑚); 𝑘, 𝑙,𝑚 ∈ R},
𝐵 = {𝑔((𝑣 + 𝑎1)(𝑒𝑤 − 1) + 𝑣, 𝑢, 𝑒−𝑤( 1

2𝑣
2 + 𝜀𝑤), 𝑒𝑤 − 1, 𝑣, 𝑤);𝑢, 𝑣, 𝑤 ∈ R}

are 𝐾4-connected left transversals in 𝐺4. The sets

𝐴 = {𝑔(𝑙𝑒−𝑘(𝑎2 − 𝑙 + 1),𝑚,−𝑙𝑒−𝑘, 1 − 𝑙𝑒𝑘 − 𝑒𝑘, 𝑙, 𝑘); 𝑘, 𝑙,𝑚 ∈ R},
𝐵 = {𝑔(𝑣𝑒−𝑢(𝑣 − 1 − 𝑎2), 𝑤, 𝑣𝑒−𝑢, 𝑣𝑒𝑢 + 𝑒𝑢 − 1, 𝑣, 𝑢);𝑢, 𝑣, 𝑤 ∈ R}
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are 𝐾5-connected left transversals in 𝐺5. The sets

𝐴 = {𝑔((𝑙 − 𝑎2)𝑙 + (𝑙 + 𝑚)𝑒−𝑚, 𝑘, 𝑙, 𝑒𝑚 − 1, 𝑙,𝑚); 𝑘, 𝑙,𝑚 ∈ R},
𝐵 = {𝑔((𝑣 − 𝑎2)𝑣 − (𝑣 + 𝑤)𝑒−𝑤, 𝑢, 𝑣, 1 − 𝑒𝑤, 𝑣, 𝑤);𝑢, 𝑣, 𝑤 ∈ R}

are 𝐾6-connected left transversals in 𝐺6. The sets

𝐴 = {𝑔((𝜀− 𝑘)𝑚𝑒−𝑚,−𝑚𝑒−𝑚, 𝑘,−𝑘𝑒𝑚, 𝑙,𝑚), 𝑘, 𝑙,𝑚 ∈ R},
𝐵 = {𝑔((𝑢− 𝜀)𝑤𝑒−𝑤, 𝑤𝑒−𝑤, 𝑢, 𝑢𝑒𝑤, 𝑣, 𝑤), 𝑢, 𝑣, 𝑤 ∈ R}

are 𝐾7-connected left transversals in 𝐺7. For all 𝑖 = 1, . . . , 7, the sets 𝐴, 𝐵,
respectively 𝐶, 𝐷 generate the group 𝐺𝑖. According to Proposition 2.1 the pairs
(𝐺𝑖,𝐾𝑖), 𝑖 = 1, . . . , 7, are multiplication groups and inner mapping groups of 𝐿
which proves the assertion.

Corollary 3.4. Each 3-dimensional connected topological proper loop 𝐿 having a
solvable indecomposable Lie group of dimension 6 as the group 𝑀𝑢𝑙𝑡(𝐿) of 𝐿 has
1-dimensional centre and 2- or 3-dimensional commutator subgroup.

Proof. If 𝐿 has a 6-dimensional indecomposable nilpotent Lie group as its multi-
plication group, then the assertion follows from case b) of Theorem in [6]. If it has
a 6-dimensional indecomposable solvable Lie group with 4-dimensional nilradical,
then the assertion is proved in Theorem 16 in [4]. If it has a 6-dimensional inde-
composable solvable Lie group with 5-dimensional nilradical, then Theorems 3.6
and 3.7 in [5] and Theorem 3.3 give the assertion.
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Abstract

We introduce an algorithm for the generation of complement-free sets of
binary 𝑚-tuples, where 𝑚 is even. We also provide an implementation for
this algorithm for 𝑚 = 12. Such complement-free sets are needed for the
generation of a new class of error-correcting codes, which were introduced
by Hannusch and Lakatos. These codes build the fundamental improvement
in the cryptographic system of Dömösi, Hannusch and Horváth. Therefore
the generation of complement-free sets will be important for cryptographic
applications. In the end of the paper we give some interesting facts about
complement-free sets as combinatorial objects.

Keywords: algorithmic computation, discrete sets

MSC: 03D32, 97N70

1. Introduction and notation

Let 𝑚 be an even number, thus 𝑚 = 2𝑘 for some 𝑘 ∈ N. Then let 𝑋 be the set of
all binary 𝑚-tuples with exactly 𝑘 pieces of 1-s and 𝑘 pieces of 0-s.

Definition 1.1. Let 𝑥 ∈ 𝑋 be an arbitrary element. Further we denote the whole-1
tuple of length 𝑚 by 1. Then we say that 1− 𝑥 is the complement of 𝑥.
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Definition 1.2. Let 𝑌 ⊂ 𝑋, such that 𝑦 ∈ 𝑌 implies 1− 𝑦 /∈ 𝑌 . Then 𝑌 is called
complement-free subset of 𝑋. If 𝑌 has order 1

2

(︀
𝑚
𝑘

)︀
, then we say that 𝑌 is a maximal

complement-free subset.

In this paper, we give an algorithm for generating a maximal complement-free
set randomly. Such sets are used in [3] for the construction of self-dual error-
correcting codes of length 2𝑚 and with minimum distance 2𝑘. These codes are called
HL-codes and they are used in the cryptographic system of Dömösi, Hannusch
and Horváth in [1]. In order to develop an effective implementation of the DHH-
cryptosystem [2], it is necessary to generate a complement-free set effectively.

The DHH-crypotosystem is using the HL-code for 𝑚 = 12, therefore we provide
an implementation of our algorithm for 𝑚 = 12 in C++ under the following link:

https://arato.inf.unideb.hu/hannusch.carolin/alg.cpp

2. The algorithm

We fix 𝑚 = 2𝑘.

Input: number 𝑙 with 0 ≤ 𝑙 ≤ 1
2

(︀
𝑚
𝑘

)︀
− 1

Output: maximal complement-free set 𝑌

Step 1:

∙ Let 𝐴 be the list of all binary 𝑚-tuples with 𝑘 pieces of 1-s, where the first
coordinate is 1.

∙ Let 𝐵 be the list of all binary 𝑚-tuples where 𝐵[𝑖] = 1 −𝐴[𝑖].

Step 2: for 𝑖 from 1 to 1
2

(︀
𝑚
𝑘

)︀
+ 𝑙 − 1 mod 1

2

(︀
𝑚
𝑘

)︀
do

𝑖 := 0 or 1 randomly; end for;

Step 3: if 𝑖 = 0 then 𝑌 [𝑖] := 𝐴[𝑖]; else 𝑌 [𝑖] := 𝐵[𝑖]. end for;

Continue Step 2 until 𝑜𝑟𝑑𝑒𝑟(𝑌 ) = 1
2

(︀
𝑚
𝑘

)︀
.

This algorithm provides one possibility to create a complement-free set. Fur-
ther research step will be the use of this algorithm (esp. the implementation) in
an implementation of the DHH-cryptosystem. A fast algorithm with low memory-
need is a necessary part of a competetive DHH-cryptosystem. The provided al-
gorithm generates 100 complement-free sets of order 462 in 2.7 seconds and 1000
complement-free sets of order 462 in 15.8 seconds on Intel(R) Core(TM)2 Duo CPU
at 2.93 GHz.
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3. Additional facts about complement-free sets

The ordering of the list 𝐴 in Step 1 of the algorithm introduced in Section 2 should
be kept secret. This will improve the security of the algorithm when it is used in
Cryptography. For 𝑚 = 12 the list 𝐴 has 462 elements, which means there are 462!
possible orders of the elements of 𝐴 and since

462! > 101032,

this cannot be brute-forced.
So, let us now assume that 𝐴 is secret. For the random value of 𝑖 in Step 2

of the algorithm we need a random generator with almost 50% possibility that if
𝑖 = 0, then 𝑖 + 1 = 1 and vice versa. Applying such a random generator we have
a probability of

(︀
1
2

)︀462 that we generate the same complement-free set twice. A
good random generator can be found e.g. in [4].

Some more interesting things can be investigated in relation to complement-free
sets if we have a more detailed look at one set itself. Given a complement-free set
𝑌 , each element 𝑦 ∈ 𝑌 consists of 𝑚 coordinates. We will count the 1-s in a fixed
coordinate for all 𝑦 ∈ 𝑌 . For example, let 𝑌 = {(1, 1, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1)}.
Then we have two 1-s in each four positions. Thus we will say that 𝑌 is of type
(2, 2, 2, 2) according to the following definition:

Definition 3.1. We say that the complement-free set 𝑌 is of type 𝜈 = (𝑛1, . . . , 𝑛𝑚),
if

𝑛𝑖 =
∑︁

𝑦∈𝑌

𝑦𝑖,

i.e. 𝑛𝑖 is the number of 1-s in the 𝑖-th coordinate of all binary strings in 𝑌 .

Remark 3.2. We have
∑︀𝑚

𝑖=1 𝑛𝑖 = 𝑘 · 1
2

(︀
𝑚
𝑘

)︀
.

Let us denote
∑︀𝑚

𝑖=1 𝑛𝑖 by 𝑁 . Then it is clear, that if 𝜈 is the type of a
complement-free set, then 𝜈 is also a partition of 𝑁 . This statement is not true
in the other way, since e.g. for 𝑚 = 6 we have 𝑁 = 30 and (7, 7, 5, 3, 3, 1) is a
partition, but there is no complement-free set of such a type.

Proposition 3.3. For fix 𝑚 = 2𝑘 there exist at least 1
4

(︀
𝑚
𝑘

)︀
+ 1 different types of

complement-free sets.

Proof. We may assume 𝑛1 ≥ 𝑛2 ≥ · · · ≥ 𝑛𝑚. Then there exists exactly one type
with 𝑛1 = 1

2

(︀
𝑚
𝑘

)︀
(namely the complement-free set consists of all elements of the list

𝐴 in this case). Now imagine, that we change one element of the set from 𝐴[𝑖] to
𝐵[𝑖]. Thus the new complement-free set has type 𝑛1 = 1

2

(︀
𝑚
𝑘

)︀
− 1. We continue this

step until the descending order 𝑛1 ≥ 𝑛2 ≥ · · · ≥ 𝑛𝑚 can be fulfilled. Since 𝑘 · 1
2

(︀
𝑚
𝑘

)︀

is divisible by 𝑚 there exists exactly one type with 𝑛1 = 1
4

(︀
𝑚
𝑘

)︀
.

Computations of all types of complement-free sets for small values of 𝑚 let us
conjecture that the distribution of types with 1

4

(︀
𝑚
𝑘

)︀
≤ 𝑛1 ≤ 1

2

(︀
𝑚
𝑘

)︀
is close to Gaus-

sian distribution. Further, it turns out that computing all types of complement-free
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sets for 𝑚 = 8 needs a lot of computation and cannot be done fast. Thus we come
to the following open problems.

Problem 3.4. Determine all types of complement-free sets for fix 𝑚!

Problem 3.5. Show the distribution of complement-free sets with respect to the
largest value in the type! (Is it Gaussian distribution?)
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Abstract
We provide exact formulae for the rational Bézier representation of caus-

tics of planar Bézier curves of degree greater than one.
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1. Introduction

In optics a caustic is the envelope of light rays reflected or refracted by an object.
We consider only that special case when the rays are parallel and are reflected by
a planar curve.

Recently, caustics of control point based planar curves were studied in [6], how-
ever the special properties of basis functions in use were not exploited. In the
present contribution we concentrate on the caustics of planar Bézier curves, the
basis functions of which are the Bernstein polynomials.

2. Caustic curve

Without the loss of generality we can assume that the direction of the light rays is[︀
1 0

]︀𝑇 , since this only results in an isometric transformation of the curve. We
consider the sufficiently smooth curve

r (𝑡) =

[︂
𝑟𝑥 (𝑡)
𝑟𝑦 (𝑡)

]︂
, 𝑡 ∈ [𝑎, 𝑏] .
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The direction of the reflected ray at the point r (𝑡) is

v (𝑡) =

⎡
⎣ 1− 2�̇�2𝑦(𝑡)

�̇�2𝑥(𝑡)+�̇�2𝑦(𝑡)
2�̇�𝑥(𝑡)�̇�𝑦(𝑡)
�̇�2𝑥(𝑡)+�̇�2𝑦(𝑡)

⎤
⎦ , 𝑡 ∈ [𝑎, 𝑏]

and the caustic c of the curve r can be written in the form

𝑐𝑥 (𝑡) = 𝑟𝑥 (𝑡) +

(︀
�̇�2𝑥 (𝑡)− �̇�2𝑦 (𝑡)

)︀
�̇�𝑦 (𝑡)

2 (�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡))
,

𝑐𝑦 (𝑡) = 𝑟𝑦 (𝑡) +
�̇�𝑥 (𝑡) �̇�

2
𝑦 (𝑡)

�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡)
.

An equivalent of the above formula for the caustic was also derived in [6].
The caustic may have point(s) at infinity, i.e., the curve can be composed of

several branches. This happens where the denominator �̇�𝑥 (𝑡) 𝑟𝑦 (𝑡) − 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡)
vanishes, i.e., where the curvature of r is zero. The asymptote at such a point is
the reflected ray r (𝑡) + 𝜆v (𝑡) , 𝜆 ∈ R itself. In Fig. 1 there is a quartic Bézier
curve the caustic of which has two points at infinity.

Figure 1: A quartic Bézier curve along with its caustic, which has
two points at infinity. The arrow indicates the light direction.

94 I. Juhász



From here on, we will study the caustics of planar Bézier curves

r (𝑡) =

𝑛∑︁

𝑖=0

𝐵𝑛
𝑖 (𝑡)b𝑖, 𝑡 ∈ [0, 1] , 𝑛 ≥ 2,

where the sequence of points {b𝑖}𝑛𝑖=0 are called control points and 𝐵𝑛
𝑖 denotes the

𝑖th Bernstein polynomial of degree 𝑛. (The case 𝑛 = 1 is out of interest, since then
the curve degenerates to a straight line segment and the reflected rays are parallel.)

3. Caustic of a Bézier curve

At first, we reformulate the caustic c to have a common denominator of the the
coordinate functions, yielding

𝑐𝑥 (𝑡) =
2 (�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡)) 𝑟𝑥 (𝑡) + �̇�2𝑥 (𝑡) �̇�𝑦 (𝑡)− �̇�3𝑦 (𝑡)

2 (�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡))
, (3.1)

𝑐𝑦 (𝑡) =
2 (�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡)) 𝑟𝑦 (𝑡) + 2�̇�𝑥 (𝑡) �̇�

2
𝑦 (𝑡)

2 (�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡))
. (3.2)

Obviously, numerators of the above expressions are polynomials of degree 3 (𝑛− 1)
and the common denominator is of degree (2𝑛− 3), therefore these coordinate
functions are rational functions of degree 3 (𝑛− 1). In what follows we provide the
rational Bézier representation of such caustics. We introduce notations

ṙ (𝑡) =

𝑛−1∑︁

𝑖=0

𝐵𝑛−1
𝑖 (𝑡)a𝑖, 𝑡 ∈ [0, 1] , a𝑖 = 𝑛 (b𝑖+1 − b𝑖) , 𝑖 = 0, 1, . . . , 𝑛− 1,

r̈ (𝑡) =
𝑛−2∑︁

𝑖=0

𝐵𝑛−2
𝑖 (𝑡)d𝑖, 𝑡 ∈ [0, 1] , d𝑖 = (𝑛− 1) (a𝑖+1 − a𝑖) , 𝑖 = 0, 1, . . . , 𝑛− 2.

Making use of the identity

𝐵𝑛
𝑖 (𝑡)𝐵𝑚

𝑗 (𝑡) =

(︀
𝑛
𝑖

)︀(︀
𝑚
𝑗

)︀
(︀
𝑛+𝑚
𝑖+𝑗

)︀ 𝐵𝑛+𝑚
𝑖+𝑗 (𝑡)

of Bernstein polynomials (cf. [1]), we can derive an identity for the product of two
linear combinations

∑︀𝑛
𝑖=0 𝐵

𝑛
𝑖 (𝑡) 𝑎𝑖 and

∑︀𝑚
𝑗=0 𝐵

𝑚
𝑗 (𝑡) 𝑏𝑗 can be written in the form

𝑛∑︁

𝑖=0

𝐵𝑛
𝑖 (𝑡) 𝑎𝑖

𝑚∑︁

𝑗=0

𝐵𝑚
𝑗 (𝑡) 𝑏𝑗 =

𝑛+𝑚∑︁

ℓ=0

𝐵𝑛+𝑚
ℓ (𝑡)

1(︀
𝑛+𝑚

ℓ

)︀
𝑚∑︁

𝑘=0

(︂
𝑛

ℓ− 𝑘

)︂(︂
𝑚

𝑘

)︂
𝑎ℓ−𝑘𝑏𝑘, (3.3)

provided 𝑛 ≥ 𝑚.
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Now, we study the common denominator. By means of identity 3.3, its first
term is of the form

�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡) =

𝑛−1∑︁

𝑖=0

𝐵𝑛−1
𝑖 (𝑡) 𝑎𝑥,𝑖

𝑛−2∑︁

𝑗=0

𝐵𝑛−2
𝑗 (𝑡) 𝑑𝑦,𝑗

=
2𝑛−3∑︁

ℓ=0

𝐵2𝑛−3
ℓ (𝑡)

1(︀
2𝑛−3

ℓ

)︀
𝑛−2∑︁

𝑘=0

(︂
𝑛− 1

ℓ− 𝑘

)︂(︂
𝑛− 2

𝑘

)︂
𝑎𝑥,ℓ−𝑘𝑑𝑦,𝑘.

The second term can analogously be expressed, yielding

�̇�𝑦 (𝑡) 𝑟𝑥 (𝑡) =
2𝑛−3∑︁

ℓ=0

𝐵2𝑛−3
ℓ (𝑡)

1(︀
2𝑛−3

ℓ

)︀
𝑛−2∑︁

𝑘=0

(︂
𝑛− 1

ℓ− 𝑘

)︂(︂
𝑛− 2

𝑘

)︂
𝑎𝑦,ℓ−𝑘𝑑𝑥,𝑘

and the denominator has the form

2 (�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡)) =

2𝑛−3∑︁

ℓ=0

𝑤ℓ𝐵
2𝑛−3
ℓ (𝑡) , (3.4)

where

𝑤ℓ =
2(︀

2𝑛−3
ℓ

)︀
𝑛−2∑︁

𝑘=0

(︂
𝑛− 1

ℓ− 𝑘

)︂(︂
𝑛− 2

𝑘

)︂
(𝑎𝑥,ℓ−𝑘𝑑𝑦,𝑘 − 𝑎𝑦,ℓ−𝑘𝑑𝑥,𝑘) . (3.5)

We elevate the degree of (3.4) by 𝑛, using the general degree elevation formula

𝑠∑︁

𝑖=0

𝐵𝑠
𝑖 (𝑡)𝑤𝑖 =

𝑠+𝑧∑︁

𝑖=0

𝐵𝑠+𝑧
𝑖 (𝑡)𝑤

[𝑧]
𝑖 , 𝑧 > 0, (3.6)

𝑤
[𝑧]
𝑖 = 𝑤

[𝑧−1]
𝑖 +

𝑖

𝑠+ 𝑧

(︁
𝑤

[𝑧−1]
𝑖−1 − 𝑤

[𝑧−1]
𝑖

)︁
, 𝑖 = 0, 1, . . . , 𝑠+ 𝑧

𝑤
[0]
𝑖 = 𝑤𝑖, 𝑖 = 0, 1, . . . , 𝑠.

with substitutions 𝑠 = 3 (𝑛− 1) and 𝑧 = 𝑛.
The degree elevated denominator is

3(𝑛−1)∑︁

ℓ=0

𝑤
[𝑛]
ℓ 𝐵

3(𝑛−1)
ℓ (𝑡) , 𝑡 ∈ [0, 1] .

The numerator of the 𝑥 coordinate function is

2 (�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡)) 𝑟𝑥 (𝑡) + �̇�2𝑥 (𝑡) �̇�𝑦 (𝑡)− �̇�3𝑦 (𝑡) .

Its first term can be expressed as

2 (�̇�𝑥 (𝑡) 𝑟𝑦 (𝑡)− 𝑟𝑥 (𝑡) �̇�𝑦 (𝑡)) 𝑟𝑥 (𝑡)
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=

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡)

1(︀
3(𝑛−1)

ℓ

)︀
(︃

𝑛∑︁

𝑘=0

(︂
2𝑛− 3

ℓ− 𝑘

)︂(︂
𝑛

𝑘

)︂
𝑤ℓ−𝑘𝑏𝑥,𝑘

)︃

and the second one as

�̇�2𝑥 (𝑡) �̇�𝑦 (𝑡) =

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡)

1(︀
3(𝑛−1)

ℓ

)︀

×
𝑛−1∑︁

𝑘=0

(︃(︂
𝑛− 1

𝑘

)︂
𝑎𝑦,𝑘

𝑛−1∑︁

𝑧=0

(︂
𝑛− 1

ℓ− 𝑘 − 𝑧

)︂(︂
𝑛− 1

𝑧

)︂
𝑎𝑥,ℓ−𝑘−𝑧𝑎𝑥,𝑧

)︃

while the third one as

�̇�3𝑦 (𝑡) =

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡)

1(︀
3(𝑛−1)

ℓ

)︀

×
𝑛−1∑︁

𝑘=0

(︃(︂
𝑛− 1

𝑘

)︂
𝑎𝑦,𝑘

𝑛−1∑︁

𝑧=0

(︂
𝑛− 1

ℓ− 𝑘 − 𝑧

)︂(︂
𝑛− 1

𝑧

)︂
𝑎𝑦,ℓ−𝑘−𝑧𝑎𝑦,𝑧

)︃
.

Thus, the numerator of Eq. (3.1) can be written in the form

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡) 𝑞𝑥,ℓ,

where

𝑞𝑥,ℓ =
1(︀

3(𝑛−1)
ℓ

)︀
(︃

𝑛∑︁

𝑘=0

(︂
2𝑛− 3

ℓ− 𝑘

)︂(︂
𝑛

𝑘

)︂
𝑤ℓ−𝑘𝑏𝑥,𝑘 +

𝑛−1∑︁

𝑘=0

(︂
𝑛− 1

𝑘

)︂
𝑎𝑦,𝑘

×
𝑛−1∑︁

𝑧=0

(︂
𝑛− 1

ℓ− 𝑘 − 𝑧

)︂(︂
𝑛− 1

𝑧

)︂
(𝑎𝑥,ℓ−𝑘−𝑧𝑎𝑥,𝑧 − 𝑎𝑦,ℓ−𝑘−𝑧𝑎𝑦,𝑧)

)︃
. (3.7)

Analogously, we can obtain the numerator of (3.2) in the form

3(𝑛−1)∑︁

ℓ=0

𝐵
3(𝑛−1)
ℓ (𝑡) 𝑞𝑦,ℓ,

where

𝑞𝑦,ℓ =
1(︀

3(𝑛−1)
ℓ

)︀
(︃

𝑛∑︁

𝑘=0

(︂
2𝑛− 3

ℓ− 𝑘

)︂(︂
𝑛

𝑘

)︂
𝑤ℓ−𝑘𝑏𝑦,𝑘 + 2

𝑛−1∑︁

𝑘=0

(︂
𝑛− 1

𝑘

)︂
𝑎𝑥,𝑘

×
𝑛−1∑︁

𝑧=0

(︂
𝑛− 1

ℓ− 𝑘 − 𝑧

)︂(︂
𝑛− 1

𝑧

)︂
𝑎𝑦,ℓ−𝑘−𝑧𝑎𝑦,𝑧

)︃
. (3.8)
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Finally, the rational Bézier representation of the caustic curve is

c (𝑡) =

3(𝑛−1)∑︁

ℓ=0

𝑤
[𝑛]
ℓ 𝐵

3(𝑛−1)
ℓ (𝑡)

∑︀3(𝑛−1)
𝑘=0 𝑤

[𝑛]
𝑘 𝐵

3(𝑛−1)
𝑘 (𝑡)

qℓ, 𝑡 ∈ [0, 1]

where weights
{︁
𝑤

[𝑛]
ℓ

}︁3(𝑛−1)

ℓ=0
are the coefficients obtained by the degree elevation of

the denominator, and control points are specified by

qℓ =
1

𝑤
[𝑛]
ℓ

[︂
𝑞𝑥,ℓ
𝑞𝑦,ℓ

]︂
, ℓ = 0, 1, . . . , 3 (𝑛− 1) . (3.9)

Figure 2: A quartic Bézier curve and its caustic along with the
reflected rays. The control polygon of the rational Bézier represen-
tation (which is of degree 9) is also displayed. The arrow indicates

the light direction.

Now, we summarize our results.

Proposition 3.1. The caustic of a Bézier curve of degree 𝑛 (if exists) is a rational
Bézier curve of degree 3 (𝑛− 1). Its weights and control points are specified by (3.5),
(3.6) and (3.7), (3.8), (3.9), respectively.

Remark 3.2. The caustic of a quadratic Bézier curve (𝑛 = 2) (if exists) is a cubic
polynomial curve, since in this case the common denominator of (3.1) and (3.2) is
the constant

1∑︁

ℓ=0

𝐵1
ℓ (𝑡)

(︃
2

1∑︁

𝑘=0

(︀
2−1
ℓ−𝑘

)︀(︀
0
𝑘

)︀
(︀
1
ℓ

)︀ (𝑎𝑥,ℓ−𝑘𝑑𝑦,𝑘 − 𝑎𝑦,ℓ−𝑘𝑑𝑥,𝑘)

)︃

= 2
1∑︁

ℓ=0

𝐵1
ℓ (𝑡) (𝑎𝑥,ℓ𝑑𝑦,0 − 𝑎𝑦,ℓ𝑑𝑥,0)
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= 2 (𝑎𝑥,0𝑎𝑦,1 − 𝑎𝑥,1𝑎𝑦,0)
(︀
𝐵1

0 (𝑡) +𝐵1
1 (𝑡)

)︀

= 2 (𝑎𝑥,0𝑎𝑦,1 − 𝑎𝑥,1𝑎𝑦,0) ,

therefore the caustic is a cubic polynomial curve. It is well-known that the caustic
of a parabola is a Tschirnhausen cubic, if the rays are not parallel to the axis of
the parabola, we have just obtained its Bézier representation.

Figure 3: A quintic Bézier curve the caustic of which has two
cusps. The control polygon of the rational Bézier representation of
the caustic is also shown. The arrow indicates the light direction.

Remark 3.3. The cusp(s) of the caustic may be of interest. The caustic c has a cusp
at 𝑡0 ∈ [0, 1], if ‖ċ (𝑡0)‖ = 0, i.e., if the tangent vector vanishes, that we can find
numerically. Actually, it is a root finding problem, which can be solved efficiently
with high precision and stability, since the polynomials are specified in Bernstein
basis (cf. [2, 5]).

In Fig. 2 there is a quartic Bézier curve and its caustic, along with the control
polygon of the rational Bézier representation of the caustic. Fig. 3 shows such a
quintic Bézier curve whose caustic has two cusps.

4. Conclusions

We have provided ready to implement exact formulae for the rational Bézier rep-
resentation of caustics (if exist) of planar Bézier curves of degree greater than
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one. This method can be extended to other control point based curves, i.e., curves
described in the form

c (𝑡) =
𝑛∑︁

𝑖=0

𝐹𝑛
𝑖 (𝑡)d𝑖, 𝑡 ∈ [𝑎, 𝑏] .

We assume that function system ℱ := {𝐹𝑖 | 𝐹𝑖 : [𝑎, 𝑏] → R}𝑛𝑖=0 consists of suffi-
ciently smooth non-negative functions, forming a partition of unity. Additional
requirements are the existence of degree elevation and product formulae in the ba-
sis ℱ . These requirements are fulfilled by the B-basis of trigonometric (cf. [3]) and
that of hyperbolic polynomials (cf. [4]), besides the Bernstein basis.
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Abstract

Let (𝐹𝑚)𝑚>0 and (𝑃𝑛)𝑛>0 be the Fibonacci and Padovan sequences given
by the initial conditions 𝐹0 = 0, 𝐹1 = 1, 𝑃0 = 0, 𝑃1 = 𝑃2 = 1 and the
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equation
𝑃𝑛 − 𝐹𝑚 = 𝑃𝑛1 − 𝐹𝑚1

in non-negative integers (𝑛,𝑚, 𝑛1,𝑚1) with (𝑛,𝑚) ̸= (𝑛1,𝑚1).

Keywords: Fibonacci, Padovan sequences, Pillai’s type problem, Linear form
in logarithms.

MSC: 11B39, 11D45, 11D61, 11J86.

1. Introduction

Let 𝑎, 𝑏 be fixed positive integers and consider the Diophatine equation

𝑎𝑛 − 𝑏𝑚 = 𝑎𝑛1 − 𝑏𝑚1 (1.1)

in positive integers 𝑛,𝑚, 𝑛1,𝑚1 with (𝑛,𝑚) ̸= (𝑛1,𝑚1). In particular, we look for
the integers which can be written as a difference of a power of 𝑎 and a power of 𝑏 in
at least two distinct ways. In [11], Herschfeld proved that in the case (𝑎, 𝑏) = (2, 3)
equation (1.1) has only finitely many solutions. In [15], Pillai extended this result
to the case 𝑎, 𝑏 > 2 being coprime integers. Both results are ineffective. In [16],
Pillai conjectured that in the case (𝑎, 𝑏) = (2, 3) the only solutions of equation (1.1)
are (3, 2, 1, 1), (5, 3, 3, 1) and (8, 5, 4, 1). This conjecture remained open for about
37 years and was confirmed in [20] by Stroeker and Tijdeman by using Baker’s
theory on linear forms in logarithms.

Recently, the above problem now known as the Pillai problem, was posed
in the context of linear recurrence sequences. Namely, let U := (𝑈𝑛)𝑛>0 and
V := (𝑉𝑚)𝑚>0 be two linearly recurrence sequences of integers and look at the
diophantine equation

𝑈𝑛 − 𝑉𝑚 = 𝑈𝑛1 − 𝑉𝑛1 (1.2)

in positive integers 𝑛,𝑚, 𝑛1,𝑚1 with (𝑛,𝑚) ̸= (𝑛1,𝑚1). This reduces to determin-
ing the integers which can be written as a difference of an element of U and an
element of V in at least two distinct ways. This version was started by Ddamulira,
Luca and Rakotomalala in [8] where they considered U as being the Fibonacci
sequence and V as being the sequence of powers of 2. Many other cases have
been studied, see for example [3, 6, 7, 10, 12, 13]. In [5], there is a general result,
namely that if U and V satisfy some natural conditions, then equation (1.2) has
only finitely many solutions which furthermore are all effectively computable. We
recall that the Fibonacci sequence (𝐹𝑚)𝑚>0 is given by 𝐹0 = 0, 𝐹1 = 1 and the
recurrence formula

𝐹𝑚+2 = 𝐹𝑚+1 + 𝐹𝑚 for all 𝑚 > 0.

Its first few terms are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, . . .
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Now, let (𝑃𝑛)𝑛>0 be the Padovan sequence, named after the architect R. Padovan,
given by 𝑃0 = 0, 𝑃1 = 𝑃2 = 1 and the recurrence formula

𝑃𝑛+3 = 𝑃𝑛+1 + 𝑃𝑛 for all 𝑛 > 0.

This is the sequence A000931 in [18]. Its first few terms are

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, . . .

In this note, we study another case of equation (1.2) namely with the Fibonacci
and the Padovan sequences. More precisely, we solve the equation

𝑃𝑛 − 𝐹𝑚 = 𝑃𝑛1 − 𝐹𝑚1 (1.3)

in non-negative integers (𝑛,𝑚, 𝑛1,𝑚1) with (𝑛,𝑚) ̸= (𝑛1,𝑚1). To avoid numerical
repeated solutions we assume that 𝑛 ̸= 1, 2, 4 and 𝑛1 ̸= 1, 2, 4. That is whenever
we think of 1 and 2 as members of the Padovan sequence que think of them as
being 𝑃3 and 𝑃5, respectively. In the same way, 𝑚 ̸= 1 and 𝑚1 ̸= 1. With this
conventions, our result is the following:

Theorem 1.1. All non-negative integer solutions (𝑛,𝑚, 𝑛1,𝑚1) of equation (1.3)
belong to the set
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3, 2, 0, 0), (3, 3, 0, 2), (3, 4, 0, 3), (5, 2, 3, 0), (5, 3, 3, 2),
(5, 3, 0, 0), (5, 4, 3, 3), (5, 4, 0, 2), (5, 5, 0, 4), (6, 2, 5, 0),
(6, 3, 5, 2), (6, 3, 3, 0), (6, 4, 5, 3), (6, 4, 3, 2), (6, 4, 0, 0),
(6, 5, 3, 4), (6, 5, 0, 3), (6, 6, 0, 5), (7, 2, 6, 0), (7, 3, 6, 2),
(7, 3, 5, 0), (7, 4, 6, 3), (7, 4, 5, 2), (7, 4, 3, 0), (7, 5, 5, 4),
(7, 5, 3, 3), (7, 5, 0, 2), (7, 6, 3, 5), (8, 2, 7, 0), (8, 3, 7, 2),
(8, 3, 6, 0), (8, 4, 7, 3), (8, 4, 6, 2), (8, 4, 5, 0), (8, 5, 6, 4),
(8, 5, 5, 3), (8, 5, 3, 2), (8, 5, 0, 0), (8, 6, 5, 5), (8, 6, 0, 4),
(8, 7, 0, 6), (9, 3, 8, 0), (9, 4, 8, 2), (9, 4.7, 0), (9, 5, 8, 4),
(9, 5, 7, 3), (9, 5, 6, 2), (9, 5, 5, 0), (9, 6, 7, 5), (9, 6, 5, 4),
(9, 6, 3, 3), (9, 6, 0, 2), (9, 7, 5, 6), (10, 3, 9, 0), (10, 4, 9, 2),
(10, 5, 9, 4), (10, 5, 8, 2), (10, 5, 7, 0), (10, 6, 7, 4), (10, 6, 6, 3),
(10, 6, 5, 2), (10, 6, 3, 0), (10, 7, 7, 6), (10, 7, 3, 5), (10, 8, 3, 7),
(11, 4, 10, 0), (11, 5, 10, 3), (11, 5, 9, 0), (11, 6, 10, 5), (11, 6, 9, 4),
(11, 6, 8, 2), (11, 6, 7, 0), (11, 7, 9, 6), (11, 7, 7, 5), (11, 7, 5, 4),
(11, 7, 3, 3), (11, 7, 0, 2), (11, 8, 7, 7), (12, 5, 11, 2), (12, 6, 10, 2),
(12, 7, 8, 3), (12, 7, 7, 2), (12, 7, 6, 0), (12, 8, 6, 6), (12, 8, 0, 5),
(12, 9, 6, 8), (13, 5, 12, 0), (13, 6, 12, 4), (13, 7, 12, 6), (13, 7, 10, 2),
(13, 8, 8, 5), (13, 8, 6, 4), (13, 8, 5, 3), (13, 8, 3, 2), (13, 8, 0, 0),
(13, 9, 0, 7), (13, 10, 0, 9), (14, 6, 13, 2), (14, 7, 12, 2), (14, 8, 11, 5),
(14, 8, 10, 3), (14, 8, 9, 0), (14, 9, 9, 7), (14, 9, 5, 6), (14, 10, 9, 9),
(15, 8, 13, 5), (15, 8, 12, 0), (15, 9, 12, 7), (15, 9, 8, 3), (15, 9, 7, 2),
(15, 9, 6, 0), (15, 10, 12, 9), (15, 10, 6, 8), (15, 11, 6, 10), (16, 7, 15, 2),
(16, 8, 14, 0), (16, 9, 14, 7), (16, 9, 12, 2), (16, 10, 14, 9), (16, 10, 9, 7),
(16, 10, 5, 6), (17, 8, 16, 5), (17, 10, 11, 3), (18, 8, 17, 0), (18, 9, 17, 7),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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⎧
⎪⎪⎨
⎪⎪⎩

(18, 10, 17, 9), (18, 11, 8, 6), (18, 11, 5, 5), (18, 11, 0, 4), (19, 11, 14, 4),
(19, 12, 7, 9), (20, 11, 17, 4), (20, 12, 14, 8), (20, 12, 11, 5), (20, 12, 10, 3),
(20, 12, 9, 0), (20, 13, 9, 11), (20, 14, 9, 13), (21, 11, 19, 4), (21, 13, 3, 9),
(22, 13, 15, 5), (23, 11, 22, 4), (25, 15, 10, 4), (25, 15, 9, 2)

⎫
⎪⎪⎬
⎪⎪⎭

The set of integers which can be written as the difference of a Padovan number
and a Fibonacci number in at least two distinct ways is

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−226, −82, −52, −34, −33, −30, −27, −18, −13,
−12, −9, −8, −6, −5, −4, −3, −2, −1,

0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 13, 15, 16, 20, 25, 28,
31, 32, 36, 44, 52, 62, 65, 111, 262.

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

All such representations of each of these numbers are

−226 = 𝑃20 − 𝐹14 = 𝑃9 − 𝐹13;

−82 = 𝑃20 − 𝐹13 = 𝑃9 − 𝐹11;

−52 = 𝑃15 − 𝐹11 = 𝑃6 − 𝐹10;

−34 = 𝑃13 − 𝐹10 = 𝑃0 − 𝐹9;

−33 = 𝑃21 − 𝐹13 = 𝑃3 − 𝐹9;

−30 = 𝑃19 − 𝐹12 = 𝑃7 − 𝐹9;

−27 = 𝑃14 − 𝐹10 = 𝑃9 − 𝐹9;

−18 = 𝑃12 − 𝐹9 = 𝑃6 − 𝐹8 = 𝑃15 − 𝐹10;

−13 = 𝑃13 − 𝐹9 = 𝑃0 − 𝐹7;

−12 = 𝑃10 − 𝐹8 = 𝑃3 − 𝐹7;

−9 = 𝑃11 − 𝐹8 = 𝑃7 − 𝐹7;

−8 = 𝑃8 − 𝐹7 = 𝑃0 − 𝐹6;

−6 = 𝑃16 − 𝐹10 = 𝑃14 − 𝐹9 = 𝑃9 − 𝐹7 = 𝑃5 − 𝐹6;

−5 = 𝑃12 − 𝐹8 = 𝑃6 − 𝐹6 = 𝑃0 − 𝐹5;

−4 = 𝑃10 − 𝐹7 = 𝑃7 − 𝐹6 = 𝑃3 − 𝐹5;

−3 = 𝑃18 − 𝐹11 = 𝑃8 − 𝐹6 = 𝑃5 − 𝐹5 = 𝑃0 − 𝐹4;

−2 = 𝑃6 − 𝐹5 = 𝑃3 − 𝐹4 = 𝑃0 − 𝐹3;

−1 = 𝑃11 − 𝐹7 = 𝑃9 − 𝐹6 = 𝑃7 − 𝐹5 = 𝑃5 − 𝐹4 = 𝑃3 − 𝐹3 = 𝑃0 − 𝐹2;

0 = 𝑃13 − 𝐹8 = 𝑃8 − 𝐹5 = 𝑃6 − 𝐹4 = 𝑃5 − 𝐹3 = 𝑃3 − 𝐹2 = 𝑃0 − 𝐹0;

1 = 𝑃10 − 𝐹6 = 𝑃7 − 𝐹4 = 𝑃6 − 𝐹3 = 𝑃5 − 𝐹2 = 𝑃3 − 𝐹0;

2 = 𝑃9 − 𝐹5 = 𝑃8 − 𝐹4 = 𝑃7 − 𝐹3 = 𝑃6 − 𝐹2 = 𝑃5 − 𝐹0;

3 = 𝑃15 − 𝐹9 = 𝑃12 − 𝐹7 = 𝑃8 − 𝐹3 = 𝑃7 − 𝐹2 = 𝑃6 − 𝐹0;

4 = 𝑃11 − 𝐹6 = 𝑃10 − 𝐹5 = 𝑃9 − 𝐹4 = 𝑃8 − 𝐹2 = 𝑃7 − 𝐹0;

5 = 𝑃9 − 𝐹3 = 𝑃8 − 𝐹0;

6 = 𝑃25 − 𝐹15 = 𝑃10 − 𝐹4 = 𝑃9 − 𝐹2;
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7 = 𝑃20 − 𝐹12 = 𝑃14 − 𝐹8 = 𝑃11 − 𝐹5 = 𝑃10 − 𝐹3 = 𝑃9 − 𝐹0;

8 = 𝑃13 − 𝐹7 = 𝑃12 − 𝐹6 = 𝑃10 − 𝐹2;

9 = 𝑃11 − 𝐹4 = 𝑃10 − 𝐹0;

10 = 𝑃17 − 𝐹10 = 𝑃11 − 𝐹3;

11 = 𝑃12 − 𝐹5 = 𝑃11 − 𝐹2;

13 = 𝑃13 − 𝐹6 = 𝑃12 − 𝐹4;

15 = 𝑃16 − 𝐹9 = 𝑃14 − 𝐹7 = 𝑃12 − 𝐹2;

16 = 𝑃15 − 𝐹8 = 𝑃13 − 𝐹5 = 𝑃12 − 𝐹0;

20 = 𝑃14 − 𝐹6 = 𝑃13 − 𝐹2;

25 = 𝑃19 − 𝐹11 = 𝑃14 − 𝐹4;

28 = 𝑃16 − 𝐹8 = 𝑃14 − 𝐹0;

31 = 𝑃18 − 𝐹10 = 𝑃17 − 𝐹9;

32 = 𝑃22 − 𝐹13 = 𝑃15 − 𝐹5;

36 = 𝑃16 − 𝐹7 = 𝑃15 − 𝐹2;

44 = 𝑃17 − 𝐹8 = 𝑃16 − 𝐹5;

52 = 𝑃18 − 𝐹9 = 𝑃17 − 𝐹7;

62 = 𝑃20 − 𝐹11 = 𝑃17 − 𝐹4;

65 = 𝑃18 − 𝐹8 = 𝑃17 − 𝐹0;

111 = 𝑃21 − 𝐹11 = 𝑃19 − 𝐹4;

262 = 𝑃23 − 𝐹11 = 𝑃22 − 𝐹4 .

In [19], Stewart notes that 3, 5 and 21 are both Fibonacci and Padovan num-
bers and asks whether there are any others. This problem was solved by De Weger
in [21], where he proves that all integers which are both Fibonacci and Padovan
numbers are 0, 1, 2, 3, 5, 21. Actually, he proves that the distance between Fi-
bonacci and Padovan numbers growths exponentially. We remark that as a partic-
ular case of our result, we also have a solution of Stewart problem.

2. Tools

In this section, we gather the tools we need to prove Theorem 1.1. Let 𝛼 be an
algebraic number of degree 𝑑, let 𝑎 > 0 be the leading coefficient of its minimal
polynomial over Z and let 𝛼(1), . . . , 𝛼(𝑑) denote its conjugates. The logarithmic
height of 𝛼 is defined as

ℎ(𝛼) =
1

𝑑

(︃
log 𝑎 +

𝑑∑︁

𝑖=1

log max
{︁
|𝛼(𝑖)|, 1

}︁)︃
.

This height satisfies the following basic properties. For 𝛼, 𝛽 algebraic numbers
and 𝑚 ∈ Z we have
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∙ ℎ(𝛼 + 𝛽) 6 ℎ(𝛼) + ℎ(𝛽) + log(2),

∙ ℎ(𝛼𝛽) 6 ℎ(𝛼) + ℎ(𝛽),

∙ ℎ(𝛼𝑚) = |𝑚|ℎ(𝛼).

Now, let L be a real number field of degree 𝑑L, 𝛼1, . . . , 𝛼ℓ positive elements of
L and 𝑏1, . . . , 𝑏ℓ ∈ Z ∖ {0}. Let 𝐵 > max{|𝑏1|, . . . , |𝑏ℓ|} and

Λ = 𝛼𝑏1
1 · · ·𝛼𝑏ℓ

ℓ − 1.

Let 𝐴1, . . . , 𝐴ℓ be real numbers with

𝐴𝑖 > max{𝑑L ℎ(𝛼𝑖), | log𝛼𝑖|, 0.16}, 𝑖 = 1, 2, . . . , ℓ.

The first tool we need is the following result due to Matveev in [14] (see also
Theorem 9.4 in [4]).

Theorem 2.1. Assume that Λ ̸= 0. Then

log |Λ| > −1.4 · 30ℓ+3 · ℓ4.5 · 𝑑2L · (1 + log 𝑑L) · (1 + log𝐵)𝐴1 · · ·𝐴ℓ.

In this note we always use ℓ = 3. Further, L = Q(𝛾, 𝛼) has degree 𝑑L = 6,
where 𝛾 and 𝛼 are defined at the beginning of Section 3. Thus, once and for all we
fix the constant

𝐶 := 1.43908 × 1013 > 1.4 · 303+3 · 34.5 · 62 · (1 + log 6)

The second one, is a version of the reduction method of Baker-Davenport based
on Lemma in [1]. We shall use the one given by Bravo, Gómez and Luca in [2] (See
also Dujella and Pethő [9]). For a real number 𝑥, we write ‖𝑥‖ for the distance
from 𝑥 to the nearest integer.

Lemma 2.2. Let 𝑀 be a positive integer. Let 𝜏, 𝜇,𝐴 > 0, 𝐵 > 1 be given real
numbers. Assume that 𝑝/𝑞 is a convergent of 𝜏 such that 𝑞 > 6𝑀 and that 𝜀 :=
‖𝑞 𝜇‖ −𝑀‖𝑞 𝜏‖ > 0. Then there is no solution to the inequality

0 < |𝑛𝜏 −𝑚 + 𝜇| < 𝐴

𝐵𝑤

in positive integers 𝑛,𝑚 and 𝑤 satisfying

𝑛 6 𝑀 and 𝑤 > log(𝐴𝑞/𝜀)

log𝐵
.

Finally, the following result will be very useful. This is Lemma 7 in [17].

Lemma 2.3. If 𝑚 > 1, 𝑇 > (4𝑚2)𝑚 and 𝑇 > 𝑥/(log 𝑥)𝑚. Then

𝑥 < 2𝑚𝑇 (log 𝑇 )𝑚.
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3. Proof of Theorem 1.1

We start with some basic properties of our sequences. For a complex number 𝑧 we
write 𝑧 for its complex conjugate. Let 𝜔 ̸= 1 be a cubic root of 1. Put

𝛾 :=
3

√︃
9 +

√
69

18
+

3

√︃
9 −

√
69

18
, 𝛿 := 𝜔

3

√︃
9 +

√
69

18
+ 𝜔

3

√︃
9 −

√
69

18
,

and

𝛼 :=
1 +

√
5

2
, 𝛽 :=

1 −
√

5

2
.

It is clear that 𝛾, 𝛿, 𝛿 are the roots of the Q-irreducible polynomial 𝑋3 −𝑋 − 1. It
can be proved, by induction for example, that the Binet formulas

𝐹𝑛 =
𝛼𝑛 − 𝛽𝑛

√
5

and 𝑃𝑛 = 𝑐1𝛾
𝑛 + 𝑐2𝛿

𝑛 + 𝑐3𝛿
𝑛

hold for all 𝑛 > 0, (3.1)

where
𝑐1 =

𝛾(𝛾 + 1)

2𝛾 + 3
, 𝑐2 =

𝛿(𝛿 + 1)

2𝛿 + 3
, 𝑐3 = 𝑐2.

The first formula in (3.1) is well known. The second one follows from the general
theorem on linear recurrence sequences since the above polynomial is the charac-
teristic polynomial of the Padovan sequence. Further, the inequalities

𝛼𝑛−2 6 𝐹𝑛 6 𝛼𝑛−1, 𝛾𝑛−3 6 𝑃𝑛 6 𝛾𝑛−1 (3.2)

also hold for all 𝑛 > 1. These can be proved by induction. We note that

𝛾 = 1.32471 . . . , |𝛿| = 0.86883 . . . , 𝑐1 = 0.54511 . . . , |𝑐2| = 0.28241 . . . ,

and
𝛼 = 1.61803 . . . , |𝛽| = 0.61803 . . .

Now we start with the study of our equation (1.3) in non-negative integers
(𝑛,𝑚, 𝑛1,𝑚1) with (𝑛,𝑚) ̸= (𝑛1,𝑚1) where, as we have said, 𝑛, 𝑛1 ̸= 1, 2, 4,
𝑚,𝑚1 ̸= 1. We note, if 𝑚 = 𝑚1 then 𝑃𝑛 = 𝑃𝑛1 which implies 𝑛 = 𝑛1, a con-
tradiction. Thus, we assume that 𝑚 > 𝑚1. Rewriting equation (1.3) as

𝑃𝑛 − 𝑃𝑛1 = 𝐹𝑚 − 𝐹𝑚1 (3.3)

we observe the right-hand is positive. So, the left-hand side is also positive and
therefore, 𝑛 > 𝑛1. Now, we compare both sides of (3.3) using (3.2). We have

𝛾𝑛−8 6 𝑃𝑛 − 𝑃𝑛1
= 𝐹𝑚 − 𝐹𝑚1

6 𝐹𝑚 6 𝛼𝑚−1.

Indeed, the left-hand side inequality is clear if 𝑛1 = 0. If 𝑛1 = 3, 𝑛 > 5. For 𝑛 = 5
it is also clear and for 𝑛 > 6 we have 𝑃𝑛−𝑃𝑛1 > 𝑃𝑛−𝑃𝑛−1 = 𝑃𝑛−5 > 𝛾𝑛−8. Thus,
𝛾𝑛−8 6 𝛼𝑚−1. In a similar way,

𝛾𝑛−1 > 𝑃𝑛 − 𝑃𝑛1
= 𝐹𝑚 − 𝐹𝑚1

> 𝛼𝑚−4.
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where the inequality at the right-hand side is clear for both 𝑚1 = 0 and 𝑚1 ̸= 0.
Thus,

(𝑛− 8)
log 𝛾

log𝛼
6 𝑚− 1 and (𝑛− 1)

log 𝛾

log𝛼
> 𝑚− 4. (3.4)

Since log 𝛾/ log𝛼 = 0.584357 . . . we have that if 𝑛 6 540 then 𝑚 6 318. A brute
force search with Mathematica in the range 0 6 𝑛1 < 𝑛 6 540, 0 6 𝑚1 < 𝑚 6 318,
with our conventions, we obtained all solutions listed in Theorem 1.1.

From now on, we assume that 𝑛 > 540. Thus, from (3.4), we have that 𝑚 > 311
and also that 𝑛 > 𝑚. From Binet’s formula (3.1), we rewrite our equation as

⃒⃒
⃒⃒𝑐1𝛾𝑛 − 𝛼𝑚

√
5

⃒⃒
⃒⃒ 6 2|𝑐2||𝛿|𝑛 +

1√
5

+ 𝛾𝑛1−1 + 𝛼𝑚1−1 < max{𝛾𝑛1+6, 𝛼𝑚1+4}.

Dividing through by 𝛼𝑚/
√

5 we get
⃒⃒
⃒
√

5𝑐1𝛾
𝑛𝛼−𝑚 − 1

⃒⃒
⃒ < max{𝛾𝑛1−𝑛+16, 𝛼𝑚1−𝑚+6}, (3.5)

where we have used 𝛾𝑛−8 6 𝛼𝑚−1,
√

5 < 𝛼𝛾2 and
√

5 < 𝛼2. Let Λ be the expression
inside the absolute value in the left-hand side of (3.5). Observe that Λ ̸= 0. To see
this, we consider the Q-automorphism 𝜎 of the Galois extension K := Q(𝛼, 𝛾, 𝛿)
over Q defined by 𝜎(𝛾) := 𝛿, 𝜎(𝛿) := 𝛾 and 𝜎(𝛼) := 𝛼. We note that 𝜎(𝛿) = 𝛿 and
𝜎(𝛽) = 𝛽. If Λ = 0 then 𝜎(Λ) = 0 and we get

𝛼𝑚

√
5

= 𝜎(𝑐1𝛾
𝑛) = 𝑐2𝛿

𝑛.

Thus,
𝛼𝑚

√
5

= |𝑐2||𝛿|𝑛 < 1,

which is absurd since 𝑚 > 311. So, Λ ̸= 0. We apply Matveev’s inequality to Λ by
taking

𝛼1 =
√

5𝑐1, 𝛼2 = 𝛾, 𝛼3 = 𝛼, 𝑏1 = 1, 𝑏2 = 𝑛, 𝑏3 = −𝑚.

Thus, 𝐵 = 𝑛. Further, ℎ(𝛼2) = log 𝛾/3, ℎ(𝛼3) = log𝛼/2. For 𝛼1 we use the
properties of the height to conclude

ℎ(𝛼1) 6 log 𝛾 + 7 log 2.

So we take 𝐴1 = 30.8, 𝐴2 = 0.57, 𝐴3 = 1.45. From Matveev’s inequality we obtain

log |Λ| > −𝐶(1 + log 𝑛) · 30.8 · 0.57 · 1.45 > −3.66336 × 1014(1 + log 𝑛),

which, compared with (3.5) we obtain

min{(𝑛− 𝑛1) log 𝛾, (𝑚−𝑚1) log𝛼} 6 3.66337 × 1014(1 + log 𝑛).

Now we study each one of these two possibilities.
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Case 1. min{(𝑛− 𝑛1) log 𝛾, (𝑚−𝑚1) log𝛼} = (𝑛− 𝑛1) log 𝛾.

In this case, using Binet’s formulas (3.1), we rewrite our equation as
⃒⃒
⃒⃒𝑐1(𝛾𝑛−𝑛1 − 1)𝛾𝑛1 − 𝛼𝑚

√
5

⃒⃒
⃒⃒ 6 4|𝑐2||𝛿|𝑛1 + 1 + 𝛼𝑚1−1 < 2 · 𝛼𝑚1+2 6 𝛼𝑚1+4.

Thus, ⃒⃒
⃒𝑐1

√
5(𝛾𝑛−𝑛1 − 1)𝛾𝑛1𝛼−𝑚 − 1

⃒⃒
⃒ < 1

𝛼𝑚−𝑚1−6
. (3.6)

Let Λ1 be the expression inside the absolute value in the left-hand side of (3.6). We
note that Λ1 ̸= 0. For if not, we apply the above 𝜎 to it and we have 𝜎(Λ1) = 0.
Thus,

𝛼𝑚

√
5

= |𝜎(𝑐1)(𝛿𝑛 − 𝛿𝑛1)| 6 2|𝑐2| < 1,

which is absurd since 𝑚 > 311. We apply Matveev’s inequality to Λ1 and for this
we take

𝛼1 =
√

5𝑐1(𝛾𝑛−𝑛1 − 1), 𝛼2 = 𝛾, 𝛼3 = 𝛼, 𝑏1 = 1, 𝑏2 = 𝑛1, 𝑏3 = −𝑚.

We have 𝐵 = 𝑛. The heights of 𝛼2 and 𝛼3 are already calculated. For 𝛼1 we use
the height properties and we get

ℎ(𝛼1) 6 3.66338 × 1014(1 + log 𝑛)

3
.

Thus, we can take 𝐴1 = 7.32676 × 1014(1 + log 𝑛) and 𝐴2, 𝐴3 as above. From
Matveev’s inequality we obtain

log |Λ1| > −𝐶(1 + log 𝑛) · (7.32676 × 1014(1 + log 𝑛)) · 0.57 · 1.45,

which compared with (3.6) gives

(𝑚−𝑚1) log𝛼 < 8.71446 × 1027(1 + log 𝑛)2.

Case 2. min{(𝑛− 𝑛1) log 𝛾, (𝑚−𝑚1) log𝛼} = (𝑚−𝑚1) log𝛼.

To this case, we rewrite our equation as
⃒⃒
⃒⃒𝑐1𝛾𝑛 − (𝛼𝑚−𝑚1 − 1)𝛼𝑚1

√
5

⃒⃒
⃒⃒ < 𝛾𝑛1−1 + 2|𝑐2| + 1 < 𝛾𝑛1+4.

Thus, ⃒⃒
⃒⃒1 −

(︂
𝛼𝑚−𝑚1 − 1√

5𝑐1

)︂
𝛾−𝑛𝛼𝑚1

⃒⃒
⃒⃒ < 1

𝛾𝑛−𝑛1−7
, (3.7)

where we have used 1 < 𝑐1𝛾
3 . Let Λ2 be the expression inside the absolute value

in the left-hand side of (3.7). We note that Λ2 ̸= 0. Indeed, if it is not the case
then by applying the above 𝜎 to it we obtain 𝜎(Λ2) = 0. Thus

1 <
𝛼𝑚−1(𝛼− 1)√

5
6 𝛼𝑚 − 𝛼𝑚1

√
5

=
√

5|𝑐2||𝛿|𝑛 <
√

5|𝑐2| < 1,
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where the left-hand side inequality holds since 𝑚 > 311, which is absurd. So,
Λ2 ̸= 0 and we apply Matveev’s inequality to it. To do this, we take

𝛼1 =
𝛼𝑚−𝑚1 − 1√

5𝑐1
, 𝛼2 = 𝛾, 𝛼3 = 𝛼, 𝑏1 = 1, 𝑏2 = −𝑛, 𝑏3 = 𝑚1.

Thus, 𝐵 = 𝑛. The heights of 𝛼2 and 𝛼3 are already calculated. From the properties
of the height for 𝛼1 we obtain

ℎ(𝛼1) 6 3.66338 × 1014(1 + log 𝑛)

2
.

Thus, we can take 𝐴1 = 1.09901 × 1015(1 + log 𝑛) and 𝐴2, 𝐴3 as above. Hence,
from Matveev’s inequality we obtain

log |Λ2| > −𝐶(1 + log 𝑛) ·
(︀
1.09901 × 1015(1 + log 𝑛)

)︀
· 0.57 · 1.45,

which compared with (3.7) we get

(𝑛− 𝑛1) log 𝛾 < 1.30717 × 1028(1 + log 𝑛)2.

So, from the conclusion of the two cases we have that

max{(𝑛− 𝑛1) log 𝛾, (𝑚−𝑚1) log 2} < 1.30717 × 1028(1 + log 𝑛)2.

Now we get a bound on 𝑛. To do this we rewrite our equation as
⃒⃒
⃒⃒𝑐1(𝛾𝑛−𝑛1 − 1)𝛾𝑛1 − (𝛼𝑚−𝑚1 − 1)𝛼𝑚1

√
5

⃒⃒
⃒⃒ < 4|𝑐2| + 1 < 2.2.

Thus,
⃒⃒
⃒⃒
(︂√

5𝑐1
𝛾𝑛−𝑛1 − 1

𝛼𝑚−𝑚1 − 1

)︂
𝛾𝑛1𝛼−𝑚1 − 1

⃒⃒
⃒⃒ < 2.2 ·

√
5

𝛼𝑚 − 𝛼𝑚1
6 6.6 ·

√
5

𝛼𝑚
<

1

𝛾𝑛−16
, (3.8)

where we have used 𝛾𝑛−8 < 𝛼𝑚−1 and 6.6 ·
√

5 < 𝛼𝛾8. Let Λ3 be the expression
inside the absolute value in the left-hand side of (3.8). As above, if Λ3 = 0 we
apply the above 𝜎 and we obtain 𝜎(Λ3) = 0. Then

1 <
𝛼𝑚−1(𝛼− 1)√

5
6 𝛼𝑚 − 𝛼𝑚1

√
5

= |𝑐2(𝛿𝑛 − 𝛿𝑛1)| 6 2|𝑐2| <
2

3
,

and as above, we get a contradiction. Thus, Λ3 ̸= 0 and we apply Matveev’s
inequality to it. To do this, we take

𝛼1 =
√

5𝑐1
𝛾𝑛−𝑛1 − 1

𝛼𝑚−𝑚1 − 1
, 𝛼2 = 𝛾, 𝛼3 = 𝛼, 𝑏1 = 1, 𝑏2 = 𝑛1, 𝑏3 = −𝑚1.
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Hence, 𝐵 = 𝑛. The height of 𝛼2 and 𝛼3 have already been calculated. For 𝛼1 we
use the properties of the height to conclude that

ℎ(𝛼1) 6 log 𝛾 + (𝑛− 𝑛1)
log 𝛾

3
+ (𝑚−𝑚1)

log𝛼

2
+ 9 log 2

<
6.53586 × 1028(1 + log 𝑛)2

6
.

Thus, we can take 𝐴1 = 6.53586 × 1028(1 + log 𝑛)2 and 𝐴2, 𝐴3 as above. From
Matveev’s inequality we get

log |Λ3| > −𝐶 ·
(︀
(1 + log 𝑛) · 6.53586 × 1028(1 + log 𝑛)2

)︀
· 0.57 · 1.45,

which compared with (3.8) yields 𝑛 < 2.2116×1043(log 𝑛)3. Thus, from Lemma 2.3
we obtain

𝑛 < 1.75894 × 1050. (3.9)

Now we reduce this upper bound on 𝑛. To do this, let Γ be defined as

Γ = 𝑛 log 𝛾 −𝑚 log𝛼 + log
(︁√

5 𝑐1

)︁
,

and we go to (3.5). Assume that min{𝑛 − 𝑛1,𝑚 − 𝑚1} > 20. Observe that
𝑒Γ − 1 = Λ ̸= 0. Therefore Γ ̸= 0. If Γ > 0, then

0 < Γ < 𝑒Γ − 1 = |Λ| < max{𝛾𝑛1−𝑛+16, 𝛼𝑚1−𝑚+6}.

If Γ < 0, we then have 1 − 𝑒Γ = |𝑒Γ − 1| = |Λ| < 1/2. Thus, 𝑒|Γ| < 2 and we get

0 < |Γ| < 𝑒|Γ| − 1 = 𝑒|Γ||Λ| < 2 max{𝛾𝑛1−𝑛+16, 𝛼𝑚1−𝑚+6}.

So, in both cases we have

0 < |Γ| < 2 max{𝛾𝑛1−𝑛+16, 𝛼𝑚1−𝑚+6}.

Dividing through log𝛼 we get

0 < |𝑛𝜏 −𝑚 + 𝜇| < max

{︂
374

𝛾𝑛−𝑛1
,

75

𝛼𝑚−𝑚1

}︂
,

where

𝜏 :=
log 𝛾

log𝛼
, 𝜇 :=

log
(︀√

5 𝑐1
)︀

log𝛼
.

We apply Lemma 2.2. To do this we take 𝑀 := 1.75894 × 1050 which is the upper
bound on 𝑛 by (3.9). With the help of Mathematica we found that the convergent

𝑝111
𝑞111

=
10550181102903844192795827490150215250922708545039517997

18054337085897707605265391296915471978898809258369491754
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of 𝜏 satisfies that 𝑞111 > 6𝑀 and that 𝜀 := ‖𝑞111𝜇‖ −𝑀‖𝑞111𝜏‖ = 0.450294 > 0.
Thus, by Lemma 2.2 with 𝐴 := 374, 𝐵 := 𝛾 or 𝐴 := 75, 𝐵 := 𝛼, we get that either

𝑛− 𝑛1 6 476 or 𝑚−𝑚1 6 275.

Now we study each one of these two cases. We first assume that 𝑛− 𝑛1 6 476
and 𝑚−𝑚1 > 20. In this case, we consider

Γ1 = 𝑛1 log 𝛾 −𝑚 log𝛼 + log(
√

5𝑐1(𝛾𝑛−𝑛1 − 1))

and we go to (3.6). We see that 𝑒Γ1 −1 = Λ1 ̸= 0. Thus, Γ1 ̸= 0 and, with a similar
argument as the previous one we obtain

0 < |Γ1| <
2𝛼6

𝛼𝑚−𝑚1
.

Dividing through log𝛼 we get

0 < |𝑛1𝜏 −𝑚 + 𝜇| < 75

𝛼𝑚−𝑚1
,

where 𝜏 is the same one as above and

𝜇 :=
log(

√
5𝑐1(𝛾𝑛−𝑛1 − 1))

log𝛼
.

We note that 𝑛1 > 0, since otherwise we would have 𝑛 6 476 which contradicts
𝑛 > 540. Thus, we can apply Lemma 2.2. Consider

𝜇𝑘 :=
log(

√
5𝑐1(𝛾𝑘 − 1))

log𝛼
, 𝑘 = 1, 2, . . . , 476.

With the help of Mathematica we found that the denominator of the 111-th con-
vergent above of 𝜏 is such that 𝑞111 > 6𝑀 and 𝜀𝑘 > 0.00129842 > 0 for all
𝑘 = 1, 2, . . . , 476. Thus, by Lemma 2.2 with 𝐴 := 75, 𝐵 := 𝛼 we obtain that
the maximum value of log(𝑞111 · 75/𝜀𝑘)/ log𝛼, 𝑘 = 1, 2, . . . , 476, is less than 287.
Therefore 𝑚−𝑚1 6 287.

In a similar way we study the other case. Assume that 𝑚 − 𝑚1 6 275 and
𝑛− 𝑛1 > 20. In this case we consider

Γ2 = 𝑛 log 𝛾 −𝑚1 log𝛼 + log

(︃ √
5𝑐1

𝛼𝑚−𝑚1 − 1

)︃

and we go to (3.7). Observe that 1 − 𝑒−Γ2 = Λ2 ̸= 0. Hence, Γ2 ̸= 0 and, with an
argument as above we conclude that

0 < |Γ2| <
2𝛾7

𝛾𝑛−𝑛1
,
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Dividing through by log𝛼 we get

0 < |𝑛𝜏 −𝑚1 + 𝜇| < 30

𝛾𝑛−𝑛1
.

where 𝜏 is as above and

𝜇 :=
log
(︀√

5𝑐1/(𝛼𝑚−𝑚1 − 1)
)︀

log𝛼
.

We note that 𝑚1 > 0. Indeed, for if not, we get 𝑚 6 275 which contradicts
𝑚 > 311. Thus, we can apply Lemma 2.2 again. Consider

𝜇ℓ :=
log
(︀√

5𝑐1/(𝛼ℓ − 1)
)︀

log𝛼
, ℓ = 1, . . . , 275.

Again, with Mathematica we quickly found that the same 111-th convergent
of 𝜏 satisfies 𝑞111 > 6𝑀 and 𝜀ℓ > 0.000693865 > 0 for all ℓ = 1, . . . , 257. Thus,
from Lemma 2.2 with 𝐴 := 30, 𝐵 := 𝛾 we obtain that the maximum value of
log(𝑞111 · 30/𝜖ℓ)/ log 𝛾, ℓ = 1, . . . , 257 is 6 490. Hence, 𝑛− 𝑛1 6 490.

Summarizing what we have done, we first got that either 𝑛 − 𝑛1 6 476 or
𝑚 − 𝑚1 6 257. Assuming the first one we obtained that 𝑚 − 𝑚1 6 287, and
assuming the second one we obtained 𝑛 − 𝑛1 6 490. So, altogether we have that
𝑛− 𝑛1 6 490, 𝑚−𝑚1 6 287. It remains to study this case.

Consider

Γ3 = 𝑛1 log 𝛾 −𝑚1 log𝛼 + log

(︂√
5𝑐1

𝛾𝑛−𝑛1 − 1

𝛼𝑚−𝑚1 − 1

)︂
,

and we go to (3.8). Note that 𝑒Γ3 − 1 = Λ3 ̸= 0. Thus, Γ3 ̸= 0 and since 𝑛 > 540
with an argument as before we get

0 < |Γ3| <
2𝛾16

𝛾𝑛
.

Dividing through by log𝛼 we obtain

𝑜 < |𝑛1𝜏 −𝑚1 − 𝜇| < 374

𝛾𝑛
,

where 𝜏 is as above and

𝜇 :=
log
(︀√

5𝑐1 (𝛾𝑛−𝑛1 − 1/𝛼𝑚−𝑚1 − 1)
)︀

log𝛼
.

As above we note that 𝑛1 and 𝑚1 are positives. We apply Lemma 2.2 again.
Consider

𝜇𝑘,𝑙 :=
log
(︀√

5𝑐1
(︀
𝛾𝑘 − 1/𝛼ℓ − 1

)︀)︀

log𝛼
, 𝑘 = 1, . . . , 490 ℓ = 1, . . . , 287.
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With Mathematica we find that the same 111-th convergent above of 𝜏 works
again. That is, 𝑞111 > 6𝑀 and 𝜀𝑘,ℓ ≥ 5.28933−8 > 0 for all 𝑘 = 1, . . . , 490 and
ℓ = 1, . . . , 287. Thus, by Lemma 2.2 with 𝐴 := 374 and 𝐵 := 𝛾 we obtain that
the maximum value of log(𝑞111374/𝜀𝑘,ℓ)/ log 𝛾, 𝑘 = 1, . . . , 490 and ℓ = 1, . . . , 287,
is 6 533. Thus, 𝑛 6 533 which contradicts our assumption on 𝑛. This completes
the proof of Theorem 1.1.
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Abstract

We present a new algorithm to reconstruct the volumetric flux in the
aorta. We study a simple 1D blood flow model without viscosity term and
sophisticated material model. Using the continuity law, we could reduce the
original inverse problem related to a system of PDEs to a parameter iden-
tification problem involving a Riccati-type ODE with periodic coefficients.
We implemented a block-based optimization algorithm to recover the model
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parameters. We tested our method on real data obtained using CG-gated CT
angiography imaging of the aorta. Local flow rate was calculated in 10 cm long
aorta segments which are located 1 cm below the heart. The reconstructed
volumetric flux shows a realistic wave-like behavior, where reflections from ar-
teria iliaca can also be observed. Our approach is suitable for estimating the
main characteristics of pulsatile flow in the aorta and thereby contributing
to a more accurate description of several cardiovascular lesions.

Keywords: Haemodynamics, pulse wave propagation, one-dimensional mod-
eling, periodic Ricatti equation

MSC: 92C50, 92C10, 92C35, 76B99

1. Introduction

Pulsatile flow in blood vessels has been studied for more than 300 years. Euler
initiated the theory of pressure wave propagation in the vascular system in 1775
[6]. The first modern mathematical model of pulsatile flow in blood vessels was
developed by Korteweg and Lamb [10, 12]. It is widely accepted that, flow wave-
form carries valuable information about the physical properties of the circulatory
system [1]. Moreover, it allows to calculate patient-specific estimates of haemod-
inamical quantities like blood pressure in the aorta that are difficult to measure
non-invasively. Consequently, haemodynamical simulations have become increas-
ingly popular in the last few decades. Blood flow modeling techniques can be
divided into three main types: 0D or lumped parameter models, 1D and 3D mod-
els. Each of these has its own advantages and limitations. For example, 0D models
are computationally inexpensive, but they are not suitable to study pulse wave
propagation phenomena or complex flows [2]. Similarly, 3D are capable of repre-
senting complex velocity profiles. However, the main drawback of 3D simulations
is their huge computational cost. The accuracy of these modeling frameworks have
been evaluated against in vivo data [2]. It turned out that average relative errors
are smaller than 7% between simulated and in vivo waveforms. The survey paper
[1] gives a good overview with plenty information about numerical, theoretical and
experimental efforts and recent developments made in this field.

The main objective of the present work is to demonstrate that the volumetric
flux rate in the aorta can be reconstructed from the changes of the sectional area.
Dumas demonstrated the possibility of the determination of volumetric flux by
fitting a 1D model with results of 3D computations or with experimental values
[4]. In this work we offer a new method independent from 3D simulations and
thus keeping the computational cost down. State-of-the-art investigations of the
disorders of human arterial sections apply 3D numerical fluid–structure interaction
simulations involving the calculation of the blood flow field inside the lumen, the
necessary boundary conditions of which are the time-dependent pressure profile
at the outlet and volumetric flow rate at the inlet cross-section. The protocol
to determine these functions non-invasively is the measurement of both on the
arm followed by transforming them to the section under scrutiny by a 1D system
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model of the circulatory system. Our method offers a different and easy to use
procedure to formulate the inlet boundary condition without Doppler velocimetry,
thus facilitating 3D simulations.

The paper is organized as follows. Section 2 deals with data acquisition tech-
nologies. Section 3 is divided into three main parts. In the first part, the 1D pul-
satile blood flow model used in this study is introduced. The second part contains
some analytical considerations about the existence and the stability of periodic
solutions with prescribed bounds on the average volumetric flux. Furthermore, we
show that the periodic solutions can be obtained by solving a first order Riccati
type ODE. In the last part of this section, we present a new algorithm to solve
the corresponding inverse problem. Section 4 is devoted to the presentation and
discussions of numerical results.

2. Material and methods

In this Section, we present the techniques used in this study to acquire in vivo data.
First, we give a brief overview of the ECG-gated computed tomography angiog-
raphy. After this, we describe the details of the examinations and measurements.
At least we specify the entire chain of data post-processing including the segmen-
tation of 4D CT data and the strategies implemented to mitigate the impact of
measurement errors.

2.1. Imaging of the aorta
The imaging of a pulsatile organ is a highly demanding application for any cross-
sectional imaging modality. Computed tomography (CT) imaging of the heart
became widely available with the introduction of multi-detector CT (MDCT) scan-
ners with four-slice detector arrays and 500 ms minimum rotation time [3]. Still
images of the moving heart was generated using retrospective ECG-gating: slow
table motion during spiral scanning and simultaneous acquisition of the slices and
the digital ECG trace provided oversampling of scan projections [3]. After the
exposure, slices recorded in the same phase of the ECG trace are matched to gen-
erate a 3D dataset of the volume of interest, representing either systole or diastole.
A drawback of this method is the higher radiation dose compared to the normal
non-oversampled spiral acquisition [5]. An important advantage is the possibility
to reconstruct multiphase datasets of the same volume, resulting in motion images
of the same slices. This allows us the functional analysis of the moving organs
such as the heart or the great vessels. Recent advances in CT technology (256–320
detector rows, 270 ms minimum rotation time) allow for rapid ECG-gated CTA of
the whole aorta during a single breath-hold.

Imaging of the aorta was performed in 5 patients (5 men, mean age 68.2 ± 6.1
years, see Table 1) with a 256-slice MDCT (Philips Brilliance iCT, Koninklijke
Philips N.V., Best, The Netherlands) using a retrospectively ECG-gated protocol
tailored for the imaging of the aorta. Investigations were performed on images read-

Volumetric flow rate reconstruction in great vessels 119



ily available from patients with suspected aortic disease. Low-dose (tube voltage:
100 kV) native scan was followed by a retrospective ECG-gated CT angiography
of the whole aorta (100 kV) with a reduced field of view to maximize spatial reso-
lution. Nonionic contrast agent was injected into an antecubital vein at a flow rate
of 4-5 ml/s using a power injector. Images were reconstructed using a sharp con-
volution kernel and iterative reconstruction algorithm (iDose4, Koninklijke Philips
N.V., Best, The Netherlands) with a slice thickness of 1 mm and an increment
of 1 mm. Multiphase images were reconstructed corresponding every 10% of the
R-R cycle resulting in ten series of images for each patient. Patients gave written
informed consent before the CT examination was performed. Experimental pro-
tocol and informed consent was approved by the Regional Ethical Committee of
Semmelweis University (133/2011).

No. Age BMI HR DLP
1. 69 29.1 60 3504
2. 67 23.9 52 2690
3. 62 28.9 86 2756
4. 65 19.3 59 2161
5. 78 24.7 67 2300

Table 1: Patient data: Age (years), BMI (kg/m2), HR (bpm), DLP
(mGycm)

2.2. Data post-processing
In order to measure the section area at any longitudinal position and time, we
have to locate the arterial lumen on a huge amount of bitmap images. This can be
carried out by some sort of image segmentation algorithm. We wrote a program
that implements a version of the Actice Contour Model (ACM) to perform this
task. For more information about the Active Contours, we refer the reader to [9]
and [14]. As the result of the segmentation process, we get the coordinates of the
internal vessel wall for each slice perpendicular to z axis in the region of interest
and for all phases in time.

To mitigate spatial measurement error, we fitted a bi-cubic smoothing spline to
the point cloud resulting from the active contour method in each time step. This
way the increase of temporal resolution also became possible exploiting the affine
covariance of B–splines and ensuring the periodic movement of the control points
by trigonometric approximation using the first 3 harmonics of the heart rate [13].
Generated meshes corresponding to the first phase are presented in Figure 1. The
cross-sectional area is defined as the area of the section perpendicular to the center
line of the fitted surface.
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Figure 1: 3D mesh models of a non-branching vessel segments in
the thoracic aorta

3. Presentation and resolution of the inverse prob-
lem

In this Section, we introduce the 1D blood flow model used in this study. We define
the class of physically admissible solutions. We show that the volumetric flux can
be calculated by solving a Riccati type ODE. We demonstrate that a physically
admissible solution is not necessarily asymptotically stable. We will see that vessel
wall motions do not provide enough information about the wall elasticity to recover
the volumetric flux. We present a block-based optimization algorithm to resolve
this problem.

3.1. Governing equations
To make our exposition self-contained and understandable for the largest possible
audience, we present some laws of continuum mechanics: the conservation laws for
mass and momentum. In addition, empirical constitutive laws are needed to relate
certain unknown variables such as relations between stress and strain. Although
there are one-dimensional models which also take into account fluid viscosity and
wall viscoelasticity [15], we examine a simpler model using Euler’s equation for the
non-viscose case. However, our approach can be generalized to more sophisticated

Volumetric flow rate reconstruction in great vessels 121



models involving damping effects. We assume that the vessel wall is thin and elastic.
Owing to the pressure gradient the artery wall deforms and the elastic restoring
force of the wall makes it possible for waves to propagate and so it maintains a
pulsating motion of the artery.

Now, we consider a non-branching cylindric vessel segment of length 𝐿. The
section area 𝑆(𝑡, 𝑧) and averaged flow velocity 𝑢(𝑡, 𝑧) vary in time along the artery
𝑧 ∈ [0, 𝐿]. We define the volumetric flux as 𝑞 = 𝑢𝑆. Assuming that blood is
homogeneous and incompressible, we obtain from the law for conversation of mass
that

𝜕𝑡𝑆 + 𝜕𝑧𝑞 = 0.

Additionally, the law for conservation of momentum has the following form

𝜕𝑡𝑢 + 𝑢𝜕𝑧𝑢 = −𝜕𝑧𝑝

𝜌
, (3.1)

where 𝜌 denotes the blood density and 𝑝(𝑡, 𝑧) is the local blood pressure. We use
the Hook’s law to relate stress and strain rates. Let ℎ be the vessel wall thickness,
assumed to be much smaller than the vessel radius, and Young’s modulus will be
denoted by 𝐸. The change in tube radius must be caused by the blood pressure.
The elastic strain due to the lengthening of the circumference is

𝑟(𝑡, 𝑧) − 𝑟0(𝑧)

𝑟0(𝑧)
,

where 𝑟0(𝑧) stands for the equilibrium radius. The change is elastic force must be
balanced by the changing in pressure force 2𝑟(𝑡, 𝑧)𝑝(𝑡, 𝑧), hence the desired relation
between pressure and radius has the following form.

𝑝(𝑡, 𝑧) =

(︂
1

𝑟0(𝑧)
− 1

𝑟(𝑡, 𝑧)

)︂
ℎ𝐸

For the right-hand side in (3.1), we obtain

𝑅𝛼(𝑡, 𝑧)
def.
= −1

𝜌
𝜕𝑧𝑝 = 𝛼

(︂
𝑆′
0(𝑧)

𝑆0(𝑧)3/2
− 𝜕𝑧𝑆

𝑆(𝑡, 𝑧)3/2

)︂

where 𝛼 = 0.5ℎ𝐸𝜋1/2𝜌−1 is called wall compliance parameter and it is assumed
to be constant during the cardiac cycle. By the conservation law for mass, the
momentum transport equation can be expressed by means of the volumetric flux
as follows:

𝜕𝑡𝑞 + 𝜕𝑧
(︀
𝑞2/𝑆

)︀
= 𝑆(𝑡, 𝑧)𝑅𝛼(𝑡, 𝑧). (3.2)

3.2. Physically admissible solutions
Assuming that 𝑆, 𝑆0 and 𝛼 are known, we are looking for special solutions of (3.2).
We will assume in the sequel that blood flows from 𝑧 = 0 to 𝑧 = 𝐿.
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Definition 3.1. A solution 𝑞 of (3.2) is said to be physiologically admissible if it
is periodic with period 𝑇 and

𝑞min <
1

𝑇

𝑇∫︁

0

𝑞(𝑡, 𝑧) d𝑧 < 𝑞max

holds for 𝑧 ∈ [0, 𝐿], where 𝑞min and 𝑞max are the minimal and maximal average
flow rate which may occur under physiological conditions.

Using the continuity law again, we can express the volumetric flux as

𝑞(𝑡, 𝑧) = 𝑞(𝑡, 0) + Φ(𝑡, 𝑧),

where 𝑄(𝑡) = 𝑞(𝑡, 0) and Φ(𝑡, 𝑧) = −
𝑧∫︀
0

𝜕𝑡𝑆(𝑡, 𝑦) d𝑦. Note that the periodicity of

𝑆 implies that 𝑞 is physiologically admissible if and only if 𝑄 satisfies itself the
conditions of admissibility.

After substituting the expression we have recently got for 𝑞 into (3.2) and
integrating both sides from 0 to 𝐿, we get a Riccati type ODE with periodic
coefficients

�̇� = 𝐴𝑄2 + 𝐵𝑄 + 𝐶, (3.3)

where dot denotes the time derivative and for the coefficients we have

𝐴(𝑡) = − 1

𝐿

[︂
1

𝑆(𝑡, 𝐿)
− 1

𝑆(𝑡, 0)

]︂

𝐵(𝑡) = − 2

𝐿

Φ(𝑡, 𝐿)

𝑆(𝑡, 𝐿)

𝐶(𝑡) = − 1

𝐿

⎡
⎣Φ2(𝑡, 𝐿)

𝑆(𝑡, 𝐿)
+

𝐿∫︁

0

𝑆(𝑡, 𝑧) + 𝑅𝛼(𝑡, 𝑧) d𝑧

⎤
⎦

It is a well known fact that the general solution of a scalar Riccati equation can
be obtained by quadrature whenever at least one particular solution 𝑄0 is known.
After substituting 𝑄 = 𝑄0 − 1/𝑊 into the original equation, we get a linear ODE
for 𝑊 :

�̇� = −(2𝑄0𝐴 + 𝐵)𝑊 + 𝐴

which general solution can be written as

𝑊 (𝑡) = 𝐾𝑊1(𝑡) + 𝑊2(𝑡),

where 𝐾 is an arbitrary constant, 𝑊1(0) = 1 and 𝑊2(0) = 0. Periodicity of
𝑄 requires that 𝑄(0) = 𝑄(𝑇 ) which holds if and only if 𝐾 solves the quadratic
equation:

𝑄0(𝑇 )𝐾2 +

(︂
𝑄0(𝑇 )

𝑊2(𝑇 )

𝑊1(𝑇 )
− 𝑊1(𝑇 ) − 1

𝑊1(𝑇 )

)︂
𝐾 − 𝑊2(𝑇 )

𝑊1(𝑇 )
= 0 (3.4)
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where we assumed that 𝑄0(0) = 0. We can conclude that the original Riccati
equation has 0, 1 or 2 periodic solutions depending on the discriminant of equation
(3.4). However, we need to know 𝑊1(𝑇 ), 𝑊2(𝑇 ) and 𝑄0(𝑇 ) in order to calculate
the discriminant and that can be done just for a given case.

Leon Kotin demonstrated the existence and uniqueness of a positive and of a
negative periodic solution of a periodic Riccati equation in which the coefficients
satisfy certain general condition. Moreover, any solution which is everywhere con-
tinuous lies between these two solutions, and every solution is asymptotic to one of
these as the independent variable increases or decreases [11]. More precisely, the
following is true.

Theorem 3.2. If coefficients in (3.3) are continuous everywhere, 𝐴 is continuously
differentiable and 𝐴𝐶 < 0 holds, then equation (3.3) has a unique positive solution
𝑄+ and a unique negative solution 𝑄− which are periodic with period 𝑇 and any
solution behaves asymptotically like 𝑄+ or 𝑄− as 𝑡 → ∞.

It is clear that if conditions of Kotin’s theorem are satisfied, then 𝑄+ can be
the unique physically admissible solution. However, the average volumetric flux
calculated from 𝑄+ may not fall into the acceptance interval. Moreover, nothing
guarantees that 𝑄+ is asymptotically stable. For example, consider the case when
𝐶 < 0 and 𝑄 is an arbitrary perturbation of 𝑄+. From the uniqueness of the
positive solution, we can conclude that there exists 𝑡0 ∈ R where 𝑄 vanishes and
𝑄 can have only one root, since at 𝑄 = 0 the right-hand side of (3.3) is equal to 𝐶
which is negative. As a consequence, we get that the physically admissible solution
is not necessarily asymptotically stable.

3.3. Calculation of model parameters
For any fixed 𝛼, we can calculate 𝑊1, 𝑊2 and 𝑄0 numerically thus for the periodic
solutions of (3.3)

𝑄1,2(𝑡) = 𝑄0(𝑡) − 1

𝐾1,2𝑊1(𝑡) + 𝑊2(𝑡)

yields, 𝐾1 where and 𝐾2 are solutions of (3.4). However, we do not have a priori
information about the wall compliance parameter hence the problem is undeter-
mined.

In order to reconstruct the volumetric flux from changes of the section area, we
consider two adjacent vessel segment of length 𝐿 that are narrow enough to neglect
the longitudinal changes in the artery wall compliance parameter. Now, we follow
the notations of Figure 2, where 𝑧𝐶 − 𝑧𝐵 = 𝑧𝐵 − 𝑧𝐴 = 𝐿 and changes in between
and are negligible.

If 𝛼 is fixed, then 𝑞𝛼,1 denotes the volumetric flow rate calculated from changes
of the section area between 𝑧𝐴 and 𝑧𝐵 while 𝑞𝛼,2 stands for the volumetric flux
obtained from the second vessel segment. For the true 𝛼, 𝑞𝛼,1(𝑡, 𝑧𝐵) and 𝑞𝛼,2(𝑡, 𝑧𝐵)
should be equal to each other for 𝑡 ∈ [0, 𝑇 ]. To measure the goodness of 𝛼, we
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Figure 2: Blood flow in an arterial segment

introduce the so-called internal consistency functional

𝐼𝛼 =

𝑇∫︁

0

(𝑞𝛼,1(𝑡, 𝑧𝐵) − 𝑞𝛼,2(𝑡, 𝑧𝐵))
2

d𝑡

that penalizes the difference between volumetric flow rates at 𝑧𝐵 obtained for the
first and second vessel segment. We also introduce the notation

𝑉𝛼 =
1

2𝑇

𝑇∫︁

0

𝑞𝛼,1(𝑡, 𝑧𝐵) + 𝑞𝛼,2(𝑡, 𝑧𝐵) d𝑡

for the average volumetric flux at 𝑧𝐵 . Therefore, we can formulate the original
problem as a constrained minimization of 𝐼𝛼.

min
𝛼

𝐼𝛼

subject to 𝑞min < 𝑉𝛼 < 𝑞max,

where the prescribed constraint ensures the physical admissibility of the solution.
The domain of 𝐼𝛼 consists of positive 𝛼 values for which Riccati equations

related to the first and second vessel segment admits periodic solutions i.e. the
discriminant of the corresponding quadratic equation is positive. Obviously, 𝑉𝛼

depends smoothly on 𝛼 hence the feasibility set of the optimization problem is an
open set in (0,∞) which is a collection of open intervals. At this point, we do
not have any further information about the structure of this set. We just assume
during the simulations that it is connected i.e. it is an open interval. We will see
in the next section that this assumption is justified by simulation results. So, we
first solve non-linear scalar equations

𝑉𝛼 = 𝑞min, 𝑞max

for 𝛼 and get 𝛼min and 𝛼max. After this, we calculate 𝛼opt = arg min
𝛼∈(𝛼min,𝛼max)

𝐼𝛼. At

least, the volumetric flux for the whole arterial segment can be obtained as

𝑞(𝑡, 𝑧) =
1

2

(︀
𝑞𝛼opt,1(𝑡, 𝑧) + 𝑞𝛼opt,2(𝑡, 𝑧)

)︀
.

Volumetric flow rate reconstruction in great vessels 125



In our MATLAB implementation, we used the ode45 function to solve ini-
tial value problems, fzero function to solve non-linear equations for values cor-
responding to the minimal and maximal flow rate. At least, we applied the
fminbnd function to find the global minimum of on. More information about
these MATLAB solvers is available in the online MATLAB documentation: https:
//www.mathworks.com/help/matlab/.

4. Results

Numerical simulations were performed on a 10 cm long non-branching segment in
the descending aorta, where the 𝑧 = 0 level is located 1 cm below the heart. In order
to minimize the disturbing effect of moving organs, we chose the last 2×1 cm region
which means that we set 𝑧𝐴 = 8 cm, 𝑧𝐵 = 9 cm and 𝑧𝐶 = 10 cm. According to the
medical literature, cardiac output lies between 4 dm3/min and 6 dm3/min hence
we set the maximal and minimal average flow rate to 66.7 cm3/s and 100 cm3/s,
respectively. We defined the equilibrium cross-sectional area as

𝑆0(𝑧) = min
𝑡∈[0,𝑇 ]

𝑆(𝑡, 𝑧).

We summarize the simulation results in Table 2, where mean squared error is
defined as MSE =

(︀
𝐼𝛼opt/𝑇

)︀1/2 and it characterizes the goodness of the optimum.

No. 𝛼min 𝛼max 𝛼opt MSE Kotin
1. 2.72 7.56 2.75 2.25 +
2. 2.47 6.87 2.47 3.42 +
3. 2.67 7.42 2.68 3.82 +
4. 2.81 7.99 2.88 3.06 +
5. 5.81 15.8 6.82 2.12 -

Table 2: Wall compliance parameter values (103cm3/s2) , mean
squared error (cm3/s) and conditions of Kotin’s theorem – satisfied

(+) or not (-)

We can see that conditions of Kotin’s theorem are satisfied in all cases except
for the oldest participant. We present phase portraits of the Riccati equation
corresponding to the youngest and oldest participants (Figure 3A and 3B). Phase
portrait presented in Figure 3a exhibits the typical behavior. We got similar results
for patient No. 1, 2 and 4. In this case, we can realize that the only positive and
physiologically admissible solution is unstable which is contrary to intuition. It is
not clear at this point if exists any relationship between the qualitative behavior
of solutions and arterial wall rigidity. Such connection would be helpful in order to
gain information about the condition of the circulatory system and detect vascular
diseases.

We calculated the volumetric flux at three different longitudinal position along-
side the artery segment: 𝑧1 = 1 cm, 𝑧2 = 5 cm and 𝑧3 = 9 cm. Simulation results
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Figure 3: Phase portrait of the typical and non-typical behavior

for patient No. 3 are presented in Figure 4. As we are getting further from the
beating heart and approaching the aortic bifurcation, initial peak in the volumet-
ric flux slowly disappears and reflections from the arteria iliaca became even more
dominant.
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Figure 4: Volumetric flux
(︀
cm3/s

)︀
vs. time (% of the cardiac cycle):

blue–𝑧1 = 1 cm, green–𝑧2 = 5 cm, red–𝑧3 = 9 cm

The remaining part of this section is devoted to the analysis of the velocity
profile inside the aorta by means of Reynolds and Womersley numbers. For the
sake of completeness, we give here the definitions of these dimensionless numbers.
The Reynolds number is a dimensionless number in fluid mechanics that is defined
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as the ratio of inertia forces to viscous forces, expressed in tubular flows as

Re =
2𝑣𝑟𝜌

𝜂
,

where 𝑣 is the flow velocity, 𝑟 is the vessel radius, 𝜌 is the blood density and 𝜂 is
the dynamical viscosity of blood. The Womersley number in biofluid mechanics
relates the transient inertial forces to viscous effects. It is defined by

Wh = 2𝑟

√︂
𝜔𝜌

𝜂
,

where 𝜔 is the angular frequency of the oscillations. In accordance with the litera-
ture [7, 8], in our calculations blood density was set to 1.06 g/cm3 and the kinematic
viscosity of blood to 3.5 × 10−3 Pas. Estimations for Reynolds and Womersley
numbers along the artery segment are illustrated in common coordinate system in
Figure 5.
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Figure 5: Time average of Reynolds and Womerseley numbers

The Womersley number is a dynamic similarity measure of oscillatory flows
relating inertia and viscous forces. In rigid pipes for laminar incompressible flows
small values (approx. Wh < 1) allow the development of the parabolic velocity
profile of the steady state solution and the flow is almost in phase with the pressure
gradient, while large values (approx. Wh > 10) indicate a flat velocity profile
with a good approximation and the flow follows the pressure gradient by about
90 degrees in phase. In the presented examples – as seen in Figure 5 – the values
lie in between, yielding a complex time-dependent velocity profile. The Reynolds
number is another dynamic similarity measure relating inertia and viscous forces.
In rigid pipes small values (approx. Re < 2100) indicate laminar flow, while large
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values (approx. Re > 4000) correspond to turbulent flow. In the transition zone,
where also our example is situated, the behavior strongly depends on the existing
disturbances in the flow.

5. Conclusions

The inverse problem for volumetric flow rate reconstruction in large arteries has
been successfully solved. We demonstrated that in the majority of cases periodic so-
lutions are unstable even though the changes of the cross-sectional area is supposed
to be periodic in time. Our approach makes possible to calculate the aortic flow
on a routine ECG-gated CT angiography dataset. This is of huge clinical poten-
tial, as the knowledge of haemodynamic parameters could significantly improve the
diagnostic performance of CT imaging in several cardiovascular pathologies, such
as aortic coarctation or dissection. However, further verifications and comparative
studies are needed to validate our method in a clinical cohort.
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Abstract

For a positive integer 𝑑 which is not a square, we show that there is at
most one value of the positive integer 𝑋 participating in the Pell equation
𝑋2 − 𝑑𝑌 2 = ±4 which is a rep-digit, that is all its base 10 digits are equal,
except for 𝑑 = 2, 5, 13.
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1. Introduction

Let 𝑑 be a positive integer which is not a perfect square. It is well-known that the
Pell equation

𝑋2 − 𝑑𝑌 2 = ±4 (1.1)

has infinitely many positive integer solutions (𝑋,𝑌 ). Furthermore, putting (𝑋1, 𝑌1)
for the smallest such solution (solution with minimal value for 𝑋), all the positive
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integer solutions are of the form (𝑋𝑛, 𝑌𝑛) for some positive integer 𝑛 where

𝑋𝑛 +
√
𝑑𝑌𝑛

2
=

(︃
𝑋1 +

√
𝑑𝑌1

2

)︃𝑛

.

There are many papers in the literature which solve Diophantine equations involv-
ing members of the sequences {𝑋𝑛}𝑛≥1 or {𝑌𝑛}𝑛≥1 being squares, or perfect powers
of larger exponents of some other integers, etc. (see, for example, [4, 5]).

Let 𝑔 ≥ 2 be an integer. A natural number 𝑁 is called a base 𝑔 rep-digit if all
of its base 𝑔-digits are equal; that is, if

𝑁 = 𝑎

(︂
𝑔𝑚 − 1

𝑔 − 1

)︂
, for some 𝑚 ≥ 1 and 𝑎 ∈ {1, 2, . . . , 𝑔 − 1}.

When 𝑔 = 10, we omit the base and simply say that 𝑁 is a rep-digit. Diophantine
equations involving rep-digits were also considered in several papers which found all
rep-digits which are perfect powers, or Fibonacci numbers, or generalized Fibonacci
numbers, and so on (see [1–3, 7, 9, 11–15, 17] for a sample of such results). In this
paper, we study when can 𝑋𝑛 be a rep-digit. This reduces to the Diophantine
equation

𝑋𝑛 = 𝑎

(︂
10𝑚 − 1

9

)︂
, 𝑚 ≥ 1 and 𝑎 ∈ {1, . . . , 9}. (1.2)

Of course, for every positive integer 𝑋, there is a unique square-free integer 𝑑 ≥ 2
such that

𝑋2 − 𝑑𝑌 2 = −4.

Namely 𝑑 is the product of all prime factors of 𝑋2+4 which appear at odd exponents
in its factorization. In particular, taking 𝑋 = 𝑎(10𝑚 − 1)/9, we get that any rep-
digit is the 𝑋-coordinate of the Pell equation (1.1) corresponding to some specific
square-free integer 𝑑. If 𝑋 > 2, we can instead look at 𝑋2 − 4 and write it as 𝑑𝑌 2

for some positive integers 𝑑 and 𝑌 with 𝑑 squarefree, and then

𝑋2 − 𝑑𝑌 2 = 4.

In particular, we can take 𝑋 = 𝑎(10𝑚−1)/9 with 𝑎 ∈ {1, . . . , 9} and 𝑚 ≥ 1, where
we ask in addition that 𝑎 ≥ 3 when 𝑚 = 1. Here, we study the square-free integers
𝑑 such that the sequence {𝑋𝑛}𝑛≥1 contains at least two rep-digits. Our result is
the following.

Theorem 1.1. Let 𝑑 ≥ 2 be square-free. The Diophantine equation

𝑋𝑛 = 𝑎

(︂
10𝑚 − 1

9

)︂
, 𝑚 ≥ 1 and 𝑎 ∈ {1, . . . , 9} (1.3)

has at most one positive integer solution 𝑛 except when 𝑑 = 2, 5, 13 for which we
have

22 − 2 · 22 = −4, 62 − 2 · 42 = 4,

12−5·12 = −4, 32−5·12 = 4, 42−5·22 = −4 72−5·32 = 4, 112−5·52 = −4,

and
32 − 13 · 12 = −4, 112 − 13 · 32 = 4.
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2. Linear forms in logarithms

We need some results from the theory of lower bounds for nonzero linear forms in
logarithms of algebraic numbers. We start by recalling Theorem 9.4 of [4], which is
a modified version of a result of Matveev [16]. Let L be an algebraic number field
of degree 𝑑L. Let 𝜂1, 𝜂2, . . . , 𝜂𝑙 ∈ L not 0 or 1 and 𝑑1, . . . , 𝑑𝑙 be nonzero integers.
We put

𝐷 = max{|𝑑1|, . . . , |𝑑𝑙|, 3},
and

Γ =

𝑙∏︁

𝑖=1

𝜂𝑑𝑖
𝑖 − 1.

Let 𝐴1, . . . , 𝐴𝑙 be positive integers such that

𝐴𝑗 ≥ ℎ′(𝜂𝑗) := max{𝑑Lℎ(𝜂𝑗), | log 𝜂𝑗 |, 0.16}, for 𝑗 = 1, . . . 𝑙,

where for an algebraic number 𝜂 of minimal polynomial

𝑓(𝑋) = 𝑎0(𝑋 − 𝜂(1)) · · · (𝑋 − 𝜂(𝑘)) ∈ Z[𝑋]

over the integers with positive 𝑎0, we write ℎ(𝜂) for its Weil height given by

ℎ(𝜂) =
1

𝑘

⎛
⎝log 𝑎0 +

𝑘∑︁

𝑗=1

max{0, log |𝜂(𝑗)|}

⎞
⎠ .

The following consequence of Matveev’s theorem is Theorem 9.4 in [4].

Theorem 2.1. If Γ ̸= 0 and L ⊆ R, then

log |Γ| > −1.4 · 30𝑙+3𝑙4.5𝑑2L(1 + log 𝑑L)(1 + log𝐷)𝐴1𝐴2 · · ·𝐴𝑙.

When 𝑙 = 2 and 𝜂1, 𝜂2 are positive and multiplicatively independent, we can
do better. Namely, let in this case 𝐵1, 𝐵2 be real numbers larger than 1 such that

log𝐵𝑖 ≥ max

{︂
ℎ(𝜂𝑖),

| log 𝜂𝑖|
𝑑L

,
1

𝑑L

}︂
𝑖 = 1, 2,

and put

𝑏′ :=
|𝑑1|

𝑑L log𝐵2
+

|𝑑2|
𝑑L log𝐵1

.

Furthermore, let
Λ = 𝑑1 log 𝜂1 + 𝑑2 log 𝜂2.

Note that Λ ̸= 0 when 𝜂1 and 𝜂2 are multiplicatively independent.
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Theorem 2.2. With the above notations, assuming that L is real, 𝜂1, 𝜂2 are
positive and multiplicatively independent, then

log |Λ| > −24.34𝑑4L

(︂
max

{︂
log 𝑏′ + 0.14,

21

𝑑L
,

1

2

}︂)︂2

log𝐵1 log𝐵2.

Note that 𝑒Λ−1 = Γ, so Γ is close to zero if and only if Λ is close to zero, which
explains the relation between Theorems 2.1 and 2.2.

3. The Baker-Davenport lemma

Here, we recall the Baker-Davenport reduction method (see [8, Lemma 5a]), which
turns out to be useful in order to reduce the bounds arising from applying Theorems
2.1 and 2.2.

Lemma 3.1. Let 𝜅 ̸= 0 and 𝜇 be real numbers. Assume that 𝑀 is a positive
integer. Let 𝑃/𝑄 be the convergent of the continued fraction expansion of 𝜅 such
that 𝑄 > 6𝑀 and put

𝜉 = ‖𝜇𝑄‖ −𝑀 · ‖𝜅𝑄‖,
where ‖ · ‖ denotes the distance from the nearest integer. If 𝜉 > 0, then there is no
solution to the inequality

0 < |𝑚𝜅− 𝑛 + 𝜇| < 𝐴𝐵−𝑘

in positive integers 𝑚, 𝑛 and 𝑘 with

log (𝐴𝑄/𝜉)

log𝐵
≤ 𝑘 and 𝑚 ≤ 𝑀.

4. Bounding the variables

We assume that (𝑋1, 𝑌1) is the minimal solution of the Pell equation (1.1). Set

𝑋2
1 − 𝑑𝑌 2

1 =: ±4

and
𝑥𝑛 =

𝑋𝑛

2
, 𝑦𝑛 =

𝑌𝑛

2
for all 𝑛 ≥ 1.

We have
𝑥2
𝑛 − 𝑑𝑦2𝑛 =: 𝜀𝑛, 𝜀𝑛 ∈ {±1}.

Put

𝛿 := 𝑥1+
√︁
𝑥2
1 − 𝜀1 = 𝑥1+

√
𝑑𝑦1, 𝜂 := 𝑥1−

√
𝑑𝑦1 = 𝜀1𝛿

−1, with 𝛿 ≥ (1+
√

5)/2.
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Then, we get

𝑥𝑛 =
1

2
(𝛿𝑛 + 𝜂𝑛),

or, equivalently,
𝑋𝑛 = 𝛿𝑛 + 𝜂𝑛.

We start with some general considerations concerning equation (1.2). From equa-
tion (1.2), we have

𝑋𝑛 = 𝑎

(︂
10𝑚 − 1

9

)︂
> 𝑎(1 + 10 + · · · + 10𝑚−1) > 10𝑚−1.

We get
10𝑚−1 ≤ 𝑋𝑛 < 10𝑚. (4.1)

Furthermore,

2𝛿𝑛 > 𝛿𝑛 + 𝜂𝑛 = 𝑋𝑛 ≥ 𝛿𝑛 − 𝛿−𝑛 ≥ 𝛿𝑛

2
,

where the last inequality follows because 𝑛 ≥ 1 and 𝛿 ≥ (1 +
√

5)/2 >
√

2. So,

𝛿𝑛

2
≤ 𝑋𝑛 < 2𝛿𝑛 holds for all 𝑛 ≥ 1. (4.2)

Using now the equations (4.1) and (4.2), we have

10𝑚−1 ≤ 𝑋𝑛 < 2𝛿𝑛 and
𝛿𝑛

2
≤ 𝑋𝑛 ≤ 10𝑚.

Hence, we obtain

𝑛𝑐1 log 𝛿 − 𝑐2 ≤ 𝑚 ≤ 𝑛𝑐1 log 𝛿 + 𝑐2 + 1, 𝑐1 := 1/ log 10, 𝑐2 := 𝑐1 log 2. (4.3)

From the left-hand side inequality of (4.3), we also deduce that

𝑛 log 𝛿 < 𝑚 log 10 + log 2. (4.4)

Since 𝛿 ≥ (1 +
√

5)/2, we get that

𝑛 ≤ 𝑚
log 10

log((1 +
√

5)/2)
+

log 2

log((1 +
√

5)/2)
< 4.8𝑚 + 2.

If 𝑚 ≥ 2, the last inequality above implies that 𝑛 < 6𝑚. If 𝑚 = 1, then 𝑋𝑛 ≤ 9,
so 𝛿𝑛 ≤ 18 by (4.2). Since 𝛿 ≥ (1 +

√
5)/2, we get that 𝑛 ≤ 6, so the inequality

𝑛 ≤ 6𝑚 holds also when 𝑚 = 1. We record this as

𝑛 ≤ 6𝑚. (4.5)

Next, using (1.3), we get

𝛿𝑛 + 𝜂𝑛 = 𝑎

(︂
10𝑚 − 1

9

)︂
.
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Put 𝑏 := 𝑎/9. We have

𝛿𝑛𝑏−110−𝑚 − 1 = −𝑏−110−𝑚𝜂𝑛 − 10−𝑚.

Thus,

⃒⃒
𝛿𝑛𝑏−110−𝑚 − 1

⃒⃒
≤ 1

𝑏10𝑚𝛿𝑛
+

1

10𝑚
=

1

10𝑚

(︂
1 +

9

𝑎𝛿𝑛

)︂

<
6

10𝑚
,

using that 𝑎 ≥ 1, 𝑛 ≥ 1 and 𝛿 ≥ (1 +
√

5)/2. Thus,

⃒⃒
𝛿𝑛𝑏−110−𝑚 − 1

⃒⃒
<

6

10𝑚
. (4.6)

We now assume that 𝑚 ≥ 2 and search for an upper bound on it. Since 𝑚 ≥ 2, it
follows that the right-hand side in (4.6) above is < 1/2. Put

Λ := 𝑛 log 𝛿 − log 𝑏−𝑚 log 10.

Since |𝑒Λ − 1| < 1/2, it follows that

|Λ| < 2|𝑒Λ − 1| < 12

10𝑚
.

Let us return to (4.6) and put

Γ := 𝑒Λ − 1 = 𝛿𝑛𝑏−110−𝑚 − 1.

Note that Γ is nonzero. Indeed, if it were zero, then 𝛿𝑛 = 𝑏10𝑚. Hence, 𝛿𝑛 ∈ Q.
Since 𝛿 is an algebraic integer and 𝑛 ≥ 1, it follows that 𝛿𝑛 ∈ Z. Since 𝛿 is a unit,
we get that 𝛿𝑛 = 1, so 𝑛 = 0, which is a contradiction. Thus, Γ ̸= 0. We apply
Matveev’s theorem. If 𝑎 ̸= 9 (so, 𝑏 ̸= 1), we then take

𝑙 = 3, 𝜂1 = 𝛿, 𝜂2 = 𝑏, 𝜂3 = 10, 𝑑1 = 𝑛, 𝑑2 = −1, 𝑑3 = −𝑚, 𝐷 = max{𝑛,𝑚}.

Clearly, L = Q[
√
𝑑] contains all the numbers 𝜂1, 𝜂2, 𝜂3 and has degree 𝑑L = 2. We

have
ℎ(𝜂1) = (1/2) log 𝛿, ℎ(𝜂2) ≤ log 9 and ℎ(𝜂3) = log 10.

Thus, we can take

𝐴1 = log 𝛿, 𝐴2 = 2 log 9 and 𝐴3 = 2 log 10.

Now, Theorem 2.1 tells us that

log |Γ| > −1.4 × 306 × 34.5 × 22(1 + log 2)(1 + log𝐷)(log 𝛿)(2 log 9)(2 log 10).
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Comparing the above inequality with (4.6), we get

𝑚 log 10 − log 6 < 1.4 × 306 × 34.5 × 24(1 + log 2)(1 + log𝐷)(log 𝛿)(log 9)(log 10).

Thus,

𝑚 < 1.4 × 306 × 34.5 × 24 × (log 9)(1 + log 2) × (log 𝛿) · (1 + log𝐷)

or
𝑚 < 8.6 · 1012(1 + log𝐷) log 𝛿.

Since 𝐷 ≤ 6𝑚 (see (4.5)), we get

𝑚 < 8.6 · 1012(1 + log(6𝑚)) log 𝛿. (4.7)

This was when 𝑏 ̸= 1. In case 𝑏 = 1, we take 𝑙 = 2 and apply the same inequality
(except that now 𝜂2 := 1 is no longer present) getting a better result. Finally, this
was under the assumption that 𝑚 ≥ 2 but if 𝑚 = 1 then inequality (4.7) also holds.
Let us record what we have proved so far.

Lemma 4.1. Denoting by 𝛿 := 𝑥1 +
√
𝑑𝑦1, all positive integer solutions (𝑚,𝑛) of

equation (1.2) satisfy

𝑚 < 8.6 · 1012(1 + log(6𝑚)) log 𝛿.

All this is for the equation 𝑋𝑛 = 𝑎(10𝑚 − 1)/9. Now we assume that

𝑋𝑛1
= 𝑎1

(︂
10𝑚1 − 1

9

)︂
and 𝑋𝑛2 = 𝑎2

(︂
10𝑚2 − 1

9

)︂
.

where 𝑎1, 𝑎2 ∈ {1, . . . , 9}.
To fix ideas, we assume that 𝑛1 < 𝑛2, so 𝑚1 ≤ 𝑚2. We put as before 𝑏𝑖 := 𝑎𝑖/9

for 𝑖 = 1, 2. From the above analysis, assuming that 𝑚1 ≥ 2, we have that

|𝑛𝑖 log 𝛿 − log 𝑏𝑖 −𝑚𝑖 log 10| < 12

10𝑚𝑖
holds for 𝑖 ∈ {1, 2}. (4.8)

The argument proceeds in two steps according to whether 𝑏1𝑏2 < 1 or 𝑏1𝑏2 = 1.

Suppose now that 𝑏1𝑏2 < 1.

We multiply the equation (4.8) for 𝑖 = 1 with 𝑛2 and the one for 𝑖 = 2 with 𝑛1,
subtract them and apply the absolute value inequality to get

|𝑛2 log 𝑏1 − 𝑛1 log 𝑏2 + (𝑛2𝑚1 − 𝑛1𝑚2) log 10| (4.9)
= |𝑛1(𝑛2 log 𝛿 − log 𝑏2 −𝑚2 log 10) − 𝑛2(𝑛1 log 𝛿 − log 𝑏1 −𝑚1 log 10)|
≤ 𝑛1|𝑛2 log 𝛿 − log 𝑏1 −𝑚2 log 10| + 𝑛2|𝑛1 log 𝛿 − log 𝑏1 −𝑚1 log 10|

≤ 12𝑛1

10𝑚2
+

12𝑛2

10𝑚1
≤ 24𝑛2

10𝑚1
.
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If the right-hand side above is at least 1/2, we then get

10𝑚1 ≤ 48𝑛2 < 300𝑚2,

giving
𝑚1 < 𝑐1 log(300𝑚2). (4.10)

Assume now that the right-hand side in (4.9) is smaller than 1/2. Putting,

Λ0 := 𝑛2 log 𝑏1 − 𝑛1 log 𝑏2 + (𝑛2𝑚1 − 𝑛1𝑚2) log 10,

we get |Λ0| < 1/2. Putting

Γ0 := 𝑏𝑛2
1 𝑏−𝑛1

2 10𝑛2𝑚1−𝑛1𝑚2 − 1,

we get that

|Γ0| = |𝑒Λ0 − 1| < 2|Λ0| <
48𝑛2

10𝑚1
, (4.11)

where the middle inequality above follows from the fact that |Λ0| < 1/2. We apply
Matveev’s theorem to estimate a lower bound on Γ0. But first, let us see that it is
nonzero. Assuming Γ0 = 0, we get

𝑏𝑛2
1 𝑏−𝑛1

2 = 10𝑛2𝑚1−𝑛1𝑚2 . (4.12)

Assume first that 𝑛2𝑚1 − 𝑛1𝑚2 = 0. Then 𝑏𝑛2
1 = 𝑏𝑛1

2 . Thus, 𝑏1 and 𝑏2 are
multiplicatively independent and they belong to the set

{︂
1

9
,

2

9
,

1

3
,

4

9
,

5

9
,

2

3
,

7

9
,

8

9
, 1

}︂
.

They are not both 1 and 𝑛1 and 𝑛2 are both positive. So, the only possibilities are
that 𝑏1 = 𝑏2, or

{𝑏1, 𝑏2} =

{︂
1

9
,

1

3

}︂
,

{︂
2

3
,

4

9

}︂
. (4.13)

If 𝑏1 = 𝑏2, then 𝑏𝑛1
1 = 𝑏𝑛2

2 implies 𝑛1 = 𝑛2, which together with 𝑛2𝑚1 = 𝑛1𝑚2

leads to 𝑚1 = 𝑚2. Thus, (𝑛1,𝑚1) = (𝑛2,𝑚2) and 𝑎1 = 𝑎2 (because 𝑏1 = 𝑏2), and
this is not convenient for us. If {𝑏1, 𝑏2} is one of the two sets from (4.13), then one
of 𝑏1, 𝑏2 is the square of the other one. Thus, since 𝑏𝑛1

1 = 𝑏𝑛2
2 and 𝑛2 > 𝑛1, we get

𝑛2 = 2𝑛1. Since also 𝑛2𝑚1 = 𝑛1𝑚2, we have 𝑚2 = 2𝑚1. Hence, also 𝑏2 = 𝑏21 and
𝑏1 ∈ {1/3, 2/3}. So, we get the pair of equations

𝑋𝑛1 = 𝑏110𝑚1 − 𝑏1 and 𝑋2𝑛1 = 𝑏21102𝑚1 − 𝑏21.

Since in fact

𝑋2𝑛 = 𝛿2𝑛 + 𝜂2𝑛 = (𝛿𝑛 + 𝜂𝑛)2 − 2(𝛿𝜂)𝑛 = 𝑋2
𝑛 ± 2,
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we get that

𝑏21102𝑚1 − 𝑏21 = 𝑋2𝑛1 = 𝑋2
𝑛1

± 2 = (𝑏110𝑚1 − 𝑏1)2± 2 = 𝑏21102𝑚1 − 2𝑏2110𝑚1 + 𝑏21± 2,

which leads to
2𝑏2110𝑚1 = 2𝑏21 ± 2,

so
10𝑚1 = 1 ± 𝑏−2

1 .

The last equation above is impossible for 𝑚1 ≥ 2. For 𝑚1 = 1 we get 10 = 1± 𝑏−2
1 ,

which gives 𝑏1 = 1/3. Hence,

𝑋𝑛1 =
10 − 1

3
= 3, and 𝑋2𝑛1

=
102 − 1

9
= 11.

Since 𝑋2𝑛1 = 𝑋2
𝑛1

± 2, it follows that the sign is +, so 𝑋2
𝑛1

− 𝑑𝑌 2
𝑛1

= −4, giving
𝑑𝑌 2

𝑛1
= 13, so 𝑑 = 13, 𝑌1 = 1, 𝑛1 = 1. These solutions are among the ones

mentioned in the statement of the main theorem.
This deals with the case when 𝑛2𝑚1 − 𝑛1𝑚2 = 0. Assume next that 𝑛2𝑚1 −

𝑛1𝑚2 ̸= 0. Then in the right-hand side of (4.12), both primes 2 and 5 are involved
at a nonzero exponent. Thus, they should be also involved with nonzero exponents
in the left-hand side of (4.12). Thus, one of 𝑏1, 𝑏2 is 5/9 and the other is in
{2/9, 4/9, 2/3, 8/9}. A minute of reflection shows that in all cases the exponents
of 2 and 5 in the left-hand side of (4.12) have opposite signs, whereas in the right
they have the same sign, and this is impossible.

Thus, Γ0 ̸= 0. Hence, we are entitled to apply Matveev’s theorem in order to
find a lower bound on Γ0. In case 𝑏1 ̸= 1 and 𝑏2 ̸= 1, we take

𝑙 = 3, 𝜂1 = 𝑏1, 𝜂2 = 𝑏2, 𝜂3 = 10, 𝑑1 = 𝑛2, 𝑑2 = −𝑛1, 𝑑3 = 𝑛2𝑚1 − 𝑛1𝑚2.

Clearly, L = Q contains all the numbers 𝜂1, 𝜂2, 𝜂3 and has degree 𝑑L = 1. Further,
𝐷 = max{|𝑑1|, |𝑑2|, |𝑑3|} ≤ 𝑛2𝑚2 ≤ 6𝑚2

2. We have

ℎ(𝜂1) ≤ log 9, ℎ(𝜂2) ≤ log 9 and ℎ(𝜂3) = log 10.

Thus, we can take

𝐴1 = log 9, 𝐴2 = log 9, 𝐴3 = log 10.

Now, Theorem 2.1 tells us that

log |Γ0| > −1.4 × 306 × 34.5(1 + log𝐷)(log 9)2(log 10).

Combining this with estimate (4.11) and using the fact that 48𝑛2 < 300𝑚2 (see
inequality (4.5)) we get

𝑚1 log 10 ≤ log 300 + log𝑚2 + 1.6 × 1012(1 + log(6𝑚2
2)),
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giving
𝑚1 < 7 × 1011(1 + log(6𝑚2

2)). (4.14)

The right-hand side of inequality (4.14) is larger than the right-hand side of in-
equality (4.10). So, regardless whether 24𝑛2/10𝑚1 is at least 1/2 or smaller than
1/2, estimate (4.14) holds. From equation (4.4), we get

log 𝛿 < (𝑚1 + 1) log 10 < 1.7 × 1012(1 + log(6𝑚2
2)),

which together with Lemma 4.1 gives

𝑚2 <
(︀
8.6 × 1012(1 + log(6𝑚2))

)︀ (︀
1.7 × 1012(1 + log(6𝑚2

2))
)︀
,

so
𝑚2 < 1.5 × 1025(1 + log(6𝑚2))(1 + log(6𝑚2

2)).

This gives 𝑚2 < 1.5 × 1029. This was if both 𝑏1 and 𝑏2 are different than 1. If one
of them is 1, we simply apply Matveev’s theorem with 𝑙 = 2 getting an even better
bound for 𝑚2.

Suppose now that 𝑏1 = 𝑏2 = 1.

We return to (4.11) getting that 8/9 ≤ 24𝑛2/10𝑚1 , which leads to (4.10), un-
less 𝑛1𝑚2 = 𝑛2𝑚1. In this last case, we get that 𝑛2/𝑚2 = 𝑛1/𝑚1. Thus, writ-
ing 𝑛1/𝑚1 = 𝑟/𝑠 in reduced terms, we get that (𝑛1,𝑚1) = (ℓ1𝑟, ℓ1𝑠) and that
(𝑛2,𝑚2) = (ℓ2𝑟, ℓ2𝑠) for some positive integers ℓ1 < ℓ2. Hence, we have

𝑋𝑟ℓ1 = 10𝑠ℓ1 − 1, 𝑋𝑟ℓ2 = 10𝑠ℓ2 − 1.

The greatest common divisor of the right hand sides above is 10𝑠 − 1 ≥ 9. The
greatest common divisor of the left-hand sides above is 𝑋𝑟 if ℓ1ℓ2 is odd and 1 or
2 otherwise. Thus, ℓ1ℓ2 must be odd and

𝑋𝑟 = 10𝑠 − 1.

Consequently,

𝛿𝑟 − 10𝑠 = −𝜂𝑟 − 1 and 𝛿ℓ2𝑟 − 10ℓ2𝑠 = −𝜂ℓ2𝑟 − 1.

From the two equations above we get

𝛿(ℓ2−1)𝑟 + 𝛿(ℓ2−2)10𝑠 + · · · + 10(ℓ2−1)𝑠 =
−𝜂ℓ2𝑟 − 1

−𝜂𝑟 − 1
.

The last relation above is impossible since its left-hand side is > 10 and its right
hand side is

≤ 2

1 − 2
1+

√
5

< 10,

a contradiction.
In conclusion, (4.10) holds, which is stronger than (4.14), and the above argu-

ments imply that 𝑚2 < 1.5 × 1029. Hence, we have the following result.
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Lemma 4.2. The inequality

𝑚2 < 1.5 × 1029

holds.

Now one needs to apply LLL to the bound

|Λ0| <
24𝑛2

10𝑚1
<

24 × 6 × 1.5 × 1029

10𝑚1
<

1

10𝑚1−32

to get a reasonably small bound on 𝑚1.

∙ First, we will consider the case 𝑏1 = 𝑏2 := 𝑏; i.e., 𝑎1 = 𝑎2 := 𝑎 or

{𝑏1, 𝑏2} ∈
{︂

1

9
,

1

3

}︂
,

{︂
2

3
,

4

9

}︂
.

In
Λ0 := 𝑛2 log 𝑏1 − 𝑛1 log 𝑏2 + (𝑛2𝑚1 − 𝑛1𝑚2) log 10, (4.15)

we set 𝑋 := 𝑛1 − 𝑛2 or 𝑋 := 2𝑛2 − 𝑛1, and 𝑌 := 𝑛2𝑚1 − 𝑛1𝑚2 and divide both
sides by 𝑌 log 𝑏 (with 𝑏 = 𝑏1 = 𝑏2 ∈ {1/9, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 8/9}) to get

⃒⃒
⃒⃒ log 10

log 𝑏
− 𝑋

𝑌

⃒⃒
⃒⃒ < 1

𝑌 (log(1/𝑏))10𝑚1−32
. (4.16)

We assume that 𝑚1 is so large that the right-hand side in (4.16) is smaller than
1/(2𝑌 2). This certainly holds if

10𝑚1−32 > 2(log(1/𝑏))−1𝑌. (4.17)

Since |𝑌 | < 1.5×1059, it follows that the last inequality (4.17) holds provided that
𝑚1 ≥ 92 in all cases, which we now assume. In this case, 𝑋/𝑌 is a convergent of
the continued fraction of 𝜂 := log 10/ log 𝑏 and 𝑋 < 1.5 × 1059. Writing

𝑎 = 1, 𝜂 := [−2, 1, 19, 1, 5, 1, 6, 2, 5, 15, 3, . . . , 7, 2, 121, 1, . . . , 2, 569, 1, 2, 27, 7, . . .]

𝑎 = 2, 𝜂 := [−2, 2, 7, 1, 1, 2, 4, 2, 99, . . .]1, 292, 1, 6, 1, 3, 3, 2, 2, 5, . . . , 1, 1, 1, 42, . . .]

𝑎 = 3, 𝜂 := [−3, 1, 9, 2, 2, 1, 13, 1, 7, 18, . . . , 2, 10, 3, 1, 1, 1, 1, 1, 6, . . . , 1, 284, 2, . . .]

𝑎 = 4, 𝜂 := [−3, 6, 4, 2, 1, 1, 1, 1, 45, 89, 1, 6, 1, 9, 1, 2, 625, . . . , 2, 2, 1, 1716, 1, 1, . . .]

𝑎 = 5, 𝜂 := [−4, 12, 9, 1, 1, 1, 1, 1, 2, 1, . . . , 10, 1, 1, 12, 8860, 4, 13, 1, 1, 5, 3, 9, 1, . . .]

𝑎 = 6, 𝜂 := [−6, 3, 8, 1, 3, 3, 22, 1, 1, 44, . . . , 1, 1, 38, 1, 5, 1, 857, 1, 3, 1, 3, 1, 2, 1, . . .]

𝑎 = 7, 𝜂 := [−10, 1, 5, 6, 118, 2, 8, 1, 2, 1, . . . , 8, 23, 1, 30, 2, 2, 8, 1, 4, 2, 1, 1, 255, . . .]

𝑎 = 8, 𝜂 := [−20, 2, 4, 1, 1, 3, 2, 7, 1, 2, 1, 9, 2, 6, . . . , 1, 2, 1332, 1, 12, 1, 5, 1, 1, 2, . . .]
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for the continued fraction of 𝜂 and 𝑝𝑘/𝑞𝑘 for the 𝑘th convergent, we get that
𝑋/𝑌 = 𝑝𝑗/𝑞𝑗 for some 𝑗 ≤ 122 in all cases. Furthermore, putting 𝑀 := max{𝑎𝑗 :
0 ≤ 𝑗 ≤ 122}, we get 𝑀 = 8860 (for 𝑎 = 5). From the known properties of the
continued fractions, we then get that

1

8862𝑌 2
=

1

(𝑀 + 2)𝑌 2
≤
⃒⃒
⃒⃒𝜂 − 𝑋

𝑌

⃒⃒
⃒⃒ < 1

𝑌 (log 𝑏)10𝑚1−32
,

giving
10𝑚1−32 < 8862(log 𝑏)−1𝑌 < 8862(log 𝑏)−1(1.5 × 1059),

leading to 𝑚1 ≤ 96.
∙ We now consider the remaining cases. We transform the linear form (4.15)

into one of the following forms:

Λ1 = (𝑚1𝑛2 −𝑚2𝑛1 + 𝛿1𝑛1 + 𝛿2𝑛2) log 2 + (𝜆1𝑛1 + 𝜆2𝑛2) log 3

+(𝑚1𝑛2 −𝑚2𝑛1 + 𝜇1𝑛1 + 𝜇2𝑛2) log 5,

Λ2 := (𝜆1𝑛1 + 𝜆2𝑛2) log 3 + (𝜈1𝑛1 + 𝜈2𝑛2) log 7 + (𝑚1𝑛2 −𝑚2𝑛1) log 10,

Λ3 = (𝑚1𝑛2 −𝑚2𝑛1 + 𝛿1𝑛1 + 𝛿2𝑛2) log 2 + (𝜆1𝑛1 + 𝜆2𝑛2) log 3

+(𝑚1𝑛2 −𝑚2𝑛1 + 𝜇1𝑛1 + 𝜇2𝑛2) log 5 + (𝜈1𝑛1 + 𝜈2𝑛2) log 7,

where |𝛿𝑖| ≤ 3, |𝜆𝑖| ≤ 2, |𝜇𝑖| ≤ 1, |𝜈𝑖| ≤ 1, for 𝑖 = 1, 2.
Now, we will estimate lower bounds for Λ𝑖, 𝑖 = 1, 2, 3 via the LLL algorithm

(see Proposition 2.3.20 in [6]). One knows that Λ𝑖 ̸= 0, 𝑖 = 1, 2, 3 by what is done
above. We set 𝑋1 = 𝑋3 := 1060 as upper bounds for |𝑚1𝑛2 −𝑚2𝑛1 + 𝛿1𝑛1 + 𝛿2𝑛2|,
|𝑚1𝑛2 −𝑚2𝑛1 + 𝜇1𝑛1 + 𝜇2𝑛2| and 𝑋2 = 𝑋4 := 1031 as upper bounds for |𝜆1𝑛1 +
𝜆2𝑛2|, |𝜈1𝑛1 + 𝜈2𝑛2|. We take 𝐶 := (3𝑋1)3 for Λ1, Λ2 and 𝐶 := (4𝑋1)4 for Λ3.
Moreover, we consider the lattice Ω spanned by

𝑣1 := (1, 0, ⌊𝐶 log 2⌋), 𝑣2 := (0, 1, ⌊𝐶 log 3⌋), 𝑣3 := (0, 0, ⌊𝐶 log 5⌋),

for Λ1

𝑣1 := (1, 0, ⌊𝐶 log 3⌋), 𝑣2 := (0, 1, ⌊𝐶 log 7⌋), 𝑣3 := (0, 0, ⌊𝐶 log 10⌋),

for Λ2

𝑣1 := (1, 0, 0, ⌊𝐶 log 2⌋), 𝑣2 := (0, 1, 0, ⌊𝐶 log 3⌋),
𝑣3 := (0, 0, 1, ⌊𝐶 log 5⌋), 𝑣4 := (0, 0, 0, ⌊𝐶 log 7⌋),

for Λ3. Then, we compute 𝑄,𝑇, 𝑐1,𝑚 according to Proposition 2.3.20 in [6] and we
obtain:

5.5 · 10−122 < |Λ1| <
1

10𝑚1−32
⇒ 𝑚1 ≤ 153;

3.2 · 10−122 < |Λ2| <
1

10𝑚1−32
⇒ 𝑚1 ≤ 153;
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8.1 · 10−183 < |Λ3| <
1

10𝑚1−32
⇒ 𝑚1 ≤ 214.

Hence, we have the following numerical result.

Lemma 4.3. The estimate 𝑚1 ≤ 214 holds.

For 𝑎1 ∈ {1, 2, . . . , 9}, 1 ≤ 𝑛1 ≤ 1284, 1 ≤ 𝑚1 ≤ 214, we solve the equations

𝑥𝑛1 = 𝑃𝑛1(𝑥1) = 𝑎1

(︂
10𝑚1 − 1

9

)︂

to see for which values of the triple (𝑛1,𝑚1) it has a solution 𝑥1 = 𝑋1/2 with
positive integer 𝑋1, where

𝑥𝑛 = 𝑃𝑛(𝑋/2) =

(︃
𝑋 +

√
𝑋2 ± 4

2

)︃𝑛

+

(︃
𝑋 −

√
𝑋2 ± 4

2

)︃𝑛

.

We used a program written in Maple to see that 𝑛1 = 1 in all cases. Here, 𝑃𝑛(𝑋) is
one of the two polynomials giving 𝑥𝑛 in terms of 𝑥1 for the equation 𝑥2−𝑑𝑦2 = ±4.

From equation (4.8), for 𝑖 = 2 we get
⃒⃒
⃒⃒𝑛2

log 𝛿

log 10
− log 𝑏2

log 10
−𝑚2

⃒⃒
⃒⃒ < 12

(log 10)10𝑚2
, (4.18)

where 𝛿 = 𝑥1 + 𝑦1
√
𝑑 = 𝑥1 +

√︀
𝑥2
1 ± 4, 𝑥1 = 𝑎1(10𝑚1 − 1)/9, and 𝑏2 = 𝑎2/9 with

𝑎1 ̸= 𝑎2. To apply Lemma 3.1 to inequality (4.18), we put

𝜅 =
log 𝛿

log 10
, 𝜇 =

log 𝑏2
log 10

, 𝐴 =
12

log 10
, 𝐵 = 10, and 𝑀 = 1.5 · 1029.

The program was developed in PARI/GP running with 200 digits, for 1 ≤ 𝑚1 ≤
214. For the computations, if the first convergent such that 𝑞 > 6𝑀 does not
satisfy the condition 𝜂 > 0, then we use the next convergent until we find the one
that satisfies the conditions. In a few minutes, all the computations were done. In
all cases, after the first run we obtained 𝑚2 ≤ 35. We set 𝑀 = 35 and the second
run of the reduction method yields 𝑚2 ≤ 8. In conclusion, we have

𝑛1 = 1, 1 ≤ 𝑚1 ≤ 8, 1 ≤ 𝑚2 ≤ 8, 1 ≤ 𝑛2 ≤ 48.

Now a verification by hand yields the final result.
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Abstract

We introduce the arithmetic subderivative of a positive integer with re-
spect to a non-empty set of primes. This notion generalizes the concepts
of the arithmetic derivative and arithmetic partial derivative. In order to
generalize these notions a step further, we define that an arithmetic function
𝑓 is Leibniz-additive if there is a nonzero-valued and completely multiplica-
tive function ℎ𝑓 satisfying 𝑓(𝑚𝑛) = 𝑓(𝑚)ℎ𝑓 (𝑛) + 𝑓(𝑛)ℎ𝑓 (𝑚) for all positive
integers 𝑚 and 𝑛. We study some basic properties of such functions. For ex-
ample, we present conditions when an arithmetic function is Leibniz-additive
and, generalizing the well-known bounds for the arithmetic derivative, we
establish bounds for a Leibniz-additive function.

Keywords: arithmetic derivative, Leibniz rule, additivity, multiplicativity

MSC: 11A25, 11A05

1. Introduction

We let P, Z+, N, Z, and Q stand for the set of primes, positive integers, nonnegative
integers, integers, and rational numbers, respectively.
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Let 𝑛 ∈ Z+. There is a unique sequence (𝜈𝑝(𝑛))𝑝∈P of nonnegative integers
(with only finitely many positive terms) such that

𝑛 =
∏︁

𝑝∈P
𝑝𝜈𝑝(𝑛). (1.1)

We use this notation throughout.
Let ∅ ̸= 𝑆 ⊆ P. We define the arithmetic subderivative of 𝑛 with respect to 𝑆

as
𝐷𝑆(𝑛) = 𝑛′

𝑆 = 𝑛
∑︁

𝑝∈𝑆

𝜈𝑝(𝑛)

𝑝
.

In particular, 𝑛′
P is the arithmetic derivative of 𝑛, defined by Barbeau [2] and

studied further by Ufnarovski and Åhlander [10]. Another well-known special case
is 𝑛′

{𝑝}, the arithmetic partial derivative of 𝑛 with respect to 𝑝 ∈ P, defined by
Kovič [7] and studied further by the present authors and Mattila [4, 5].

We define the arithmetic logarithmic subderivative of 𝑛 with respect to 𝑆 as

ld𝑆(𝑛) =
𝐷𝑆(𝑛)

𝑛
=
∑︁

𝑝∈𝑆

𝜈𝑝(𝑛)

𝑝
.

In particular, ldP(𝑛) is the arithmetic logarithmic derivative of 𝑛. This notion was
originally introduced by Ufnarovski and Åhlander [10].

An arithmetic function 𝑔 is completely additive (or c-additive, for short) if
𝑔(𝑚𝑛) = 𝑔(𝑚)+𝑔(𝑛) for all 𝑚,𝑛 ∈ Z+. It follows from the definition that 𝑔(1) = 0.
An arithmetic function ℎ is completely multiplicative (or c-multiplicative, for short)
if ℎ(1) = 1 and ℎ(𝑚𝑛) = ℎ(𝑚)ℎ(𝑛) for all 𝑚,𝑛 ∈ Z+. The following theorems
recall that these functions are totally determined by their values at primes. The
proofs are simple and omitted.

Theorem 1.1. Let 𝑔 be an arithmetic function, and let (𝑥𝑝)𝑝∈P be a sequence of
real numbers. The following conditions are equivalent:

(a) 𝑔 is c-additive and 𝑔(𝑝) = 𝑥𝑝 for all 𝑝 ∈ P;

(b) for all 𝑛 ∈ Z+,
𝑔(𝑛) =

∑︁

𝑝∈P
𝜈𝑝(𝑛)𝑥𝑝.

Theorem 1.2. Let ℎ be an arithmetic and nonzero-valued function, and let (𝑦𝑝)𝑝∈P
be a sequence of nonzero real numbers. The following conditions are equivalent:

(a) ℎ is c-multiplicative and ℎ(𝑝) = 𝑦𝑝 for all 𝑝 ∈ P;

(b) for all 𝑛 ∈ Z+,
ℎ(𝑛) =

∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝 .
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We say that an arithmetic function 𝑓 is Leibniz-additive (or L-additive, for
short) if there is a nonzero-valued and c-multiplicative function ℎ𝑓 such that

𝑓(𝑚𝑛) = 𝑓(𝑚)ℎ𝑓 (𝑛) + 𝑓(𝑛)ℎ𝑓 (𝑚) (1.2)

for all 𝑚,𝑛 ∈ Z+. Then 𝑓(1) = 0, since ℎ𝑓 (1) = 1. The property (1.2) may be
considered a generalized Leibniz rule. Substituting 𝑚 = 𝑛 = 𝑝 ∈ P and applying
induction, we get

𝑓(𝑝𝑎) = 𝑎𝑓(𝑝)ℎ(𝑝)𝑎−1 (1.3)

for all 𝑝 ∈ P, 𝑎 ∈ Z+.
The arithmetic subderivative 𝐷𝑆 is L-additive with ℎ𝐷𝑆

= 𝑁 , where 𝑁 is the
identity function 𝑁(𝑛) = 𝑛. A c-additive function 𝑔 is L-additive with ℎ𝑔 = 𝐸,
where 𝐸(𝑛) = 1 for all 𝑛 ∈ Z+. The arithmetic logarithmic subderivative ld𝑆 is
c-additive and hence L-additive.

This paper is a sequel to [6], where we defined L-additivity without requiring
that ℎ𝑓 is nonzero-valued. We begin by showing how the values of an L-additive
function 𝑓 are determined in Z+ by the values of 𝑓 and ℎ𝑓 at primes (Section 2)
and then study under which conditions an arithmetic function 𝑓 can be expressed
as 𝑓 = 𝑔ℎ, where 𝑔 is c-additive and ℎ is nonzero-valued and c-multiplicative
(Section 3). It turns out that the same conditions are necessary for L-additivity
(Section 4). Finally, extending Barbeau’s [2] and Westrick’s [11] results, we present
some lower and upper bounds for an L-additive function (Section 5). We complete
our paper with some remarks (Section 6).

2. Constructing 𝑓(𝑛) and ℎ𝑓(𝑛)

An L-additive function 𝑓 is not totally defined by its values at primes. Also, the
values of ℎ𝑓 at primes must be known.

Theorem 2.1. Let 𝑓 be an arithmetic function, and let (𝑥𝑝)𝑝∈P and (𝑦𝑝)𝑝∈P be as
in Theorems 1.1 and 1.2. The following conditions are equivalent:

(a) 𝑓 is L-additive and 𝑓(𝑝) = 𝑥𝑝, ℎ𝑓 (𝑝) = 𝑦𝑝 for all 𝑝 ∈ P;

(b) for all 𝑛 ∈ Z+,
𝑓(𝑛) =

(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑥𝑝

𝑦𝑝

)︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝 .

Proof. (a) ⇒ (b). Since 𝑓(1) = 0, (b) holds for 𝑛 = 1. So, let 𝑛 > 1. Denoting

{𝑝1, . . . , 𝑝𝑠} = {𝑝 ∈ P | 𝜈𝑝(𝑛) > 0}

and
𝑎𝑖 = 𝜈𝑝𝑖

(𝑛), 𝑖 = 1, . . . , 𝑠,
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we have

𝑓(𝑛) =
𝑠∑︁

𝑖=1

ℎ𝑓 (𝑝1)
𝑎1 · · ·ℎ𝑓 (𝑝𝑖−1)

𝑎𝑖−1𝑓(𝑝𝑎𝑖
𝑖 )ℎ𝑓 (𝑝𝑖+1)

𝑎𝑖+1 · · ·ℎ𝑓 (𝑝𝑠)
𝑎𝑠

=
𝑠∑︁

𝑖=1

ℎ𝑓 (𝑝1)
𝑎1 · · ·ℎ𝑓 (𝑝𝑖−1)

𝑎𝑖−1𝑎𝑖𝑓(𝑝𝑖)ℎ𝑓 (𝑝𝑖)
𝑎𝑖−1ℎ𝑓 (𝑝𝑖+1)

𝑎𝑖+1 · · ·ℎ𝑓 (𝑝𝑠)
𝑎𝑠

=
∑︁

𝑝∈P

(︁
𝜈𝑝(𝑛)𝑓(𝑝)ℎ𝑓 (𝑝)

𝜈𝑝(𝑛)−1
∏︁

𝑞∈P
𝑞 ̸=𝑝

ℎ𝑓 (𝑞)
𝜈𝑞(𝑛)

)︁

=
∑︁

𝑝∈P

(︁
𝜈𝑝(𝑛)

𝑓(𝑝)

ℎ𝑓 (𝑝)

∏︁

𝑞∈P
ℎ𝑓 (𝑞)

𝜈𝑞(𝑛)
)︁

=
(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑥𝑝

𝑦𝑝

)︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝 .

The first equation can be proved by induction on 𝑠, the second holds by (1.3), and
the remaining equations are obvious.

(b) ⇒ (a). We define now

ℎ(𝑛) =
∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝 .

Let 𝑚,𝑛 ∈ Z+. Then

𝑓(𝑚𝑛) =
(︁∑︁

𝑝∈P
𝜈𝑝(𝑚𝑛)

𝑥𝑝

𝑦𝑝

)︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚𝑛)
𝑝

=
(︁∑︁

𝑝∈P
(𝜈𝑝(𝑚) + 𝜈𝑝(𝑛))

𝑥𝑝

𝑦𝑝

)︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚)+𝜈𝑝(𝑛)
𝑝

=
(︁∑︁

𝑝∈P
(𝜈𝑝(𝑚) + 𝜈𝑝(𝑛))

𝑥𝑝

𝑦𝑝

)︁(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚)
𝑝

)︁(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝

)︁

=
(︁∑︁

𝑝∈P
𝜈𝑝(𝑚)

𝑥𝑝

𝑦𝑝

(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚)
𝑝

)︁)︁(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝

)︁

+
(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑥𝑝

𝑦𝑝

(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝

)︁)︁(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚)
𝑝

)︁

= 𝑓(𝑚)ℎ(𝑛) + 𝑓(𝑛)ℎ(𝑚).

So, 𝑓 is L-additive with ℎ𝑓 = ℎ. It is clear that 𝑓(𝑝) = 𝑥𝑝 and ℎ𝑓 (𝑝) = 𝑦𝑝 for all
𝑝 ∈ P.

Next, we construct ℎ𝑓 from 𝑓 . Let us denote

𝑈𝑓 = {𝑝 ∈ P | 𝑓(𝑝) ̸= 0}, 𝑉𝑓 = {𝑝 ∈ P | 𝑓(𝑝) = 0}.
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If 𝑓 = 𝜃, where 𝜃(𝑛) = 0 for all 𝑛 ∈ Z+, then any ℎ𝑓 applies. Hence, we now
assume that 𝑓 ̸= 𝜃. Then 𝑈𝑓 ̸= ∅.

Since
𝑓(𝑝2) = 2𝑓(𝑝)ℎ𝑓 (𝑝)

by (1.3), we have

ℎ𝑓 (𝑝) =
𝑓(𝑝2)

2𝑓(𝑝)
for 𝑝 ∈ 𝑈𝑓 .

The case 𝑝 ∈ 𝑉𝑓 remains. Let 𝑞 ∈ P. Then (1.2) implies that

𝑓(𝑝𝑞) = 𝑓(𝑝)ℎ𝑓 (𝑞) + 𝑓(𝑞)ℎ𝑓 (𝑝) = 𝑓(𝑞)ℎ𝑓 (𝑝).

Therefore,

ℎ𝑓 (𝑝) =
𝑓(𝑝𝑞)

𝑓(𝑞)
for 𝑝 ∈ 𝑉𝑓 , (2.1)

where 𝑞 ∈ 𝑈𝑓 is arbitrary. Now, by Theorem 1.2,

ℎ𝑓 (𝑛) =
(︁ ∏︁

𝑝∈𝑈𝑓

(︁𝑓(𝑝2)
2𝑓(𝑝)

)︁𝜈𝑝(𝑛))︁(︁ ∏︁

𝑝∈𝑉𝑓

(︁𝑓(𝑝𝑞)
𝑓(𝑞)

)︁𝜈𝑝(𝑛))︁
, (2.2)

where 𝑞 ∈ 𝑈𝑓 is arbitrary. (If 𝑉𝑓 = ∅, then the latter factor is the “empty product”
one.) We have thus proved the following theorem.

Theorem 2.2. If 𝑓 ̸= 𝜃 is L-additive, then ℎ𝑓 is unique and determined by (2.2).

3. Decomposing 𝑓 = 𝑔ℎ

Let 𝑓 be an arithmetic function and let ℎ be a nonzero-valued and c-multiplicative
function. By Theorem 2.1, 𝑓 is L-additive with ℎ𝑓 = ℎ if and only if

𝑓(𝑛) =
(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑓(𝑝)

ℎ(𝑝)

)︁∏︁

𝑝∈P
ℎ(𝑝)𝜈𝑝(𝑛) =

(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑓(𝑝)

ℎ(𝑝)

)︁
ℎ(𝑛). (3.1)

The function
𝑔(𝑛) =

∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑓(𝑝)

ℎ(𝑝)

is c-additive by Theorem 1.1.
We say that an arithmetic function 𝑓 is gh-decomposable if it has a gh decom-

position
𝑓 = 𝑔ℎ,

where 𝑔 is c-additive and ℎ is nonzero-valued and c-multiplicative. We saw above
that L-additivity implies 𝑔ℎ-decomposability. Also, the converse holds.
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Theorem 3.1. Let 𝑓 be an arithmetic function. The following conditions are
equivalent:

(a) 𝑓 is L-additive;

(b) 𝑓 is 𝑔ℎ-decomposable.

Proof. (a) ⇒ (b). We proved this above.
(b) ⇒ (a). For all 𝑚,𝑛 ∈ Z+,

𝑓(𝑚𝑛) = 𝑔(𝑚𝑛)ℎ(𝑚𝑛) = (𝑔(𝑚) + 𝑔(𝑛))ℎ(𝑚)ℎ(𝑛)

= 𝑔(𝑚)ℎ(𝑚)ℎ(𝑛) + 𝑔(𝑛)ℎ(𝑛)ℎ(𝑚) = 𝑓(𝑚)ℎ(𝑛) + 𝑓(𝑛)ℎ(𝑚).

Consequently, 𝑓 is L-additive with ℎ𝑓 = ℎ.

Corollary 3.2. Let 𝑓 ̸= 𝜃 be an arithmetic function. The following conditions are
equivalent:

(a) 𝑓 is L-additive;

(b) 𝑓 is uniquely 𝑔ℎ-decomposable.

Proof. In proving (a) ⇒ (b), ℎ𝑓 is unique by Theorem 2.2. Since ℎ𝑓 is nonzero-
valued, also 𝑔 = 𝑓/ℎ𝑓 is unique.

For example, if 𝑓 = 𝐷𝑆 , then 𝑔 = ld𝑆 and ℎ = 𝑁 .
By Theorem 2.2, an L-additive function 𝑓 ̸= 𝜃 determines ℎ𝑓 uniquely. We

consider next the converse problem: Given a nonzero-valued and c-multiplicative
function ℎ, find an L-additive function 𝑓 such that ℎ𝑓 = ℎ.

Theorem 3.3. Let (𝑥𝑝)𝑝∈P be a sequence of real numbers and let ℎ be nonzero-
valued and c-multiplicative. There is a unique L-additive function 𝑓 with ℎ𝑓 = ℎ
such that 𝑓(𝑝) = 𝑥𝑝 for all 𝑝 ∈ P.

Proof. If at least one 𝑥𝑝 ̸= 0, then apply Theorem 2.1 and Corollary 3.2. Otherwise,
𝑓 = 𝜃.

We can now characterize 𝐷𝑆 and ld𝑆 .

Corollary 3.4. Let 𝑓 be an arithmetic function and ∅ ≠ 𝑆 ⊆ P. The following
conditions are equivalent:

(a) 𝑓 is L-additive, ℎ𝑓 = 𝑁 , 𝑓(𝑝) = 1 for 𝑝 ∈ 𝑆, and 𝑓(𝑝) = 0 for 𝑝 ∈ P ∖ 𝑆;

(b) 𝑓 = 𝐷𝑆.

Corollary 3.5. Let 𝑔 be an arithmetic function and ∅ ≠ 𝑆 ⊆ P. The following
conditions are equivalent:

(a) 𝑔 is c-additive, 𝑔(𝑝) = 1/𝑝 for 𝑝 ∈ 𝑆, and 𝑔(𝑝) = 0 for 𝑝 ∈ P ∖ 𝑆;

(b) 𝑔 = ld𝑆.
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4. Conditions for L-additivity

Let 𝑓 ̸= 𝜃 be L-additive and 𝑎, 𝑏 ∈ N.
First, let 𝑝 ∈ P. By (1.3),

𝑓(𝑝𝑎+1) = (𝑎+ 1)𝑓(𝑝)ℎ𝑓 (𝑝)
𝑎, 𝑓(𝑝𝑏+1) = (𝑏+ 1)𝑓(𝑝)ℎ𝑓 (𝑝)

𝑏, (4.1)

and, further,

𝑓(𝑝𝑎+1)𝑏 = (𝑎+ 1)𝑏𝑓(𝑝)𝑏ℎ𝑓 (𝑝)
𝑎𝑏, 𝑓(𝑝𝑏+1)𝑎 = (𝑏+ 1)𝑎𝑓(𝑝)𝑎ℎ𝑓 (𝑝)

𝑏𝑎. (4.2)

Assume now that 𝑝 ∈ 𝑈𝑓 . Then the right-hand sides of the equations in (4.1) are
nonzero and 𝑓(𝑝𝑎+1), 𝑓(𝑝𝑏+1) ̸= 0. Therefore, by (4.2),

𝑓(𝑝𝑎+1)𝑏

𝑓(𝑝𝑏+1)𝑎
=

(𝑎+ 1)𝑏𝑓(𝑝)𝑏

(𝑏+ 1)𝑎𝑓(𝑝)𝑎

or, equivalently, (︁ 𝑓(𝑝𝑎+1)

(𝑎+ 1)𝑓(𝑝)

)︁𝑏
=
(︁ 𝑓(𝑝𝑏+1)

(𝑏+ 1)𝑓(𝑝)

)︁𝑎
.

Second, assume that 𝑈𝑓 has at least two elements. If 𝑝, 𝑞 ∈ 𝑈𝑓 , then (1.2) and
(1.3) imply that

𝑓(𝑝𝑎𝑞𝑏) = 𝑓(𝑝𝑎)ℎ𝑓 (𝑞
𝑏) + 𝑓(𝑞𝑏)ℎ𝑓 (𝑝

𝑎)

= 𝑓(𝑝𝑎)ℎ𝑓 (𝑞)
𝑏 + 𝑓(𝑞𝑏)ℎ𝑓 (𝑝)

𝑎 =
𝑓(𝑝𝑎)𝑓(𝑞𝑏+1)

(𝑏+ 1)𝑓(𝑞)
+

𝑓(𝑞𝑏)𝑓(𝑝𝑎+1)

(𝑎+ 1)𝑓(𝑝)
.

Third, assume additionally that 𝑉𝑓 ̸= ∅. Let 𝑝 ∈ 𝑉𝑓 and 𝑞1, 𝑞2 ∈ 𝑈𝑓 . By (2.1)
and the fact that ℎ𝑓 is nonzero-valued,

𝑓(𝑝𝑞1)

𝑓(𝑞1)
=

𝑓(𝑝𝑞2)

𝑓(𝑞2)
̸= 0.

In other words, we can “cancel” 𝑝 in

𝑓(𝑝𝑞1)

𝑓(𝑝𝑞2)
=

𝑓(𝑞1)

𝑓(𝑞2)
̸= 0.

Fourth, both the nonzero-valuedness of ℎ𝑓 and (2.2) imply that

𝑓(𝑝2) ̸= 0 for all 𝑝 ∈ 𝑈𝑓 .

We have thus found necessary conditions for L-additivity.

Theorem 4.1. Let 𝑓 ̸= 𝜃 be L-additive and 𝑎, 𝑏 ∈ N.

(i) If 𝑝 ∈ 𝑈𝑓 , then
(︁ 𝑓(𝑝𝑎+1)

(𝑎+ 1)𝑓(𝑝)

)︁𝑏
=
(︁ 𝑓(𝑝𝑏+1)

(𝑏+ 1)𝑓(𝑝)

)︁𝑎
.
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(ii) If 𝑝, 𝑞 ∈ 𝑈𝑓 , then

𝑓(𝑝𝑎𝑞𝑏) =
𝑓(𝑝𝑎)𝑓(𝑞𝑏+1)

(𝑏+ 1)𝑓(𝑞)
+

𝑓(𝑞𝑏)𝑓(𝑝𝑎+1)

(𝑎+ 1)𝑓(𝑝)
.

(iii) If 𝑝 ∈ 𝑉𝑓 and 𝑞1, 𝑞2 ∈ 𝑈𝑓 , then

𝑓(𝑝𝑞1)

𝑓(𝑝𝑞2)
=

𝑓(𝑞1)

𝑓(𝑞2)
̸= 0.

(iv) If 𝑝 ∈ 𝑈𝑓 , then
𝑓(𝑝2) ̸= 0.

The question about the sufficiency of these conditions remains open.
To find sufficient conditions for L-additivity, we study under which conditions

we can apply the procedure described in the proof of Theorem 2.2 to a given
arithmetic function 𝑓 ̸= 𝜃. The function ℎ, defined as ℎ𝑓 in (2.2), must be (𝛼)
well-defined, (𝛽) c-multiplicative, and (𝛾) nonzero-valued. Condition (𝛼) follows
from (iii), (𝛽) is obvious, and (𝛾) follows from (iii) and (iv). If the function 𝑔 = 𝑓/ℎ
is also c-additive, then 𝑓 is L-additive by Theorem 3.1. So, we have found sufficient
conditions for L-additivity, and they are obviously also necessary.

Theorem 4.2. An arithmetic function 𝑓 ̸= 𝜃 is L-additive if and only if (iii) and
(iv) in Theorem 4.1 are satisfied and the function 𝑓/ℎ is c-additive, where

ℎ(𝑛) =
(︁ ∏︁

𝑝∈𝑈𝑓

(︁𝑓(𝑝2)
2𝑓(𝑝)

)︁𝜈𝑝(𝑛))︁(︁ ∏︁

𝑝∈𝑉𝑓

(︁𝑓(𝑝𝑞)
𝑓(𝑞)

)︁𝜈𝑝(𝑛))︁
, 𝑞 ∈ 𝑈𝑓 .

5. Bounds for an L-additive function

Let us express (1.1) as
𝑛 = 𝑞1 · · · 𝑞𝑟, (5.1)

where 𝑞1, . . . , 𝑞𝑟 ∈ P, 𝑞1 ≤ · · · ≤ 𝑞𝑟. We first recall the well-known bounds for 𝐷(𝑛)
using 𝑛 and 𝑟 only.

Theorem 5.1. Let 𝑛 be as in (5.1). Then

𝑟𝑛
𝑟−1
𝑟 ≤ 𝐷(𝑛) ≤ 𝑟𝑛

2
≤ 𝑛 log2 𝑛

2
. (5.2)

Equality is attained in the upper bounds if and only if 𝑛 is a power of 2, and in the
lower bound if and only if 𝑛 is a prime or a power of 2.

Proof. See [2, pp. 118–119], [10, Theorem 9].

The first upper bound can be improved using the same information. Westrick
[11, Ineq. (6)] presented in her thesis the following bound without proof.
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Theorem 5.2. Let 𝑛 be as in (5.1). Then

𝐷(𝑛) ≤ 𝑟 − 1

2
𝑛+ 2𝑟−1. (5.3)

Equality is attained if and only if 𝑛 ∈ P or 𝑞1 = · · · = 𝑞𝑟−1 = 2.

Proof. If 𝑟 = 1 (i.e., 𝑛 ∈ P), then (5.3) clearly holds with equality. So, assume that
𝑟 > 1.

Case 1. 𝑞1 = · · · = 𝑞𝑟−1 = 2. Then

𝐷(𝑛) = 𝑛
(︁𝑟 − 1

2
+

1

𝑞𝑟

)︁
=

𝑟 − 1

2
𝑛+

𝑛

𝑛/2𝑟−1
= rhs(5.3),

where “rhs” is short for “the right-hand side”.
Case 2. 𝑞1 = · · · = 𝑞𝑟−2 = 2 (omit this if 𝑟 = 2) and 𝑞𝑟−1 > 2. Since

1

𝑞𝑟−1
+

1

𝑞𝑟
=

1

2
+

4− (𝑞𝑟−1 − 2)(𝑞𝑟 − 2)

2𝑞𝑟−1𝑞𝑟
<

1

2
+

2

𝑞𝑟−1𝑞𝑟
,

we have

𝐷(𝑛) < 𝑛
(︁𝑟 − 2

2
+

1

2
+

2

𝑞𝑟−1𝑞𝑟

)︁
=

𝑟 − 1

2
𝑛+

2𝑛

𝑛/2𝑟−2
= rhs(5.3).

Case 3. 𝑞𝑟−2 > 2. Then 𝑟 ≥ 3 and

𝐷(𝑛) ≤ 𝑛
(︁𝑟 − 3

2
+

1

3
+

1

3
+

1

3

)︁
=

𝑟 − 1

2
𝑛 < rhs(5.3).

The claim with equality conditions is thus verified. Because

𝑟𝑛

2
−
(︁𝑟 − 1

2
𝑛+ 2𝑟−1

)︁
=

𝑛

2
− 2𝑟−1 ≥ 2𝑟

2
− 2𝑟−1 = 0,

the upper bound (5.3) indeed improves (5.2).

We extend the upper bounds (5.2) and (5.3) under the assumption

ℎ𝑓 (𝑝) ≥ 𝑝 for all 𝑝 ∈ 𝑈𝑓 . (5.4)

Let 𝑛 in (5.1) have 𝑞𝑖1 , . . . , 𝑞𝑖𝑠 ∈ 𝑈𝑓 . We denote

𝑝1 = 𝑞𝑖1 , . . . , 𝑝𝑠 = 𝑞𝑖𝑠 (5.5)

and
𝑀 = max

1≤𝑖≤𝑟
𝑓(𝑞𝑖) = max

1≤𝑖≤𝑠
𝑓(𝑝𝑖). (5.6)

Theorem 5.3. Let 𝑓 ̸= 𝜃 be nonnegative and L-additive satisfying (5.4). Then

𝑓(𝑛) ≤ 𝑠𝑀

2
ℎ𝑓 (𝑛) ≤

𝑀 log2 𝑛

2
ℎ𝑓 (𝑛), (5.7)

where 𝑠 is as in (5.5) and 𝑀 is as in (5.6). Equality is attained if and only if 𝑛 is
a power of 2.
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Proof. By (3.1) and simple manipulation,

𝑓(𝑛) = ℎ𝑓 (𝑛)
𝑟∑︁

𝑖=1

𝑓(𝑞𝑖)

ℎ𝑓 (𝑞𝑖)
= ℎ𝑓 (𝑛)

𝑠∑︁

𝑖=1

𝑓(𝑝𝑖)

ℎ𝑓 (𝑝𝑖)
≤ ℎ𝑓 (𝑛)𝑀

𝑠∑︁

𝑖=1

1

𝑝𝑖

≤ ℎ𝑓 (𝑛)𝑀
𝑠∑︁

𝑖=1

1

2
= ℎ𝑓 (𝑛)𝑀

𝑠

2
≤ ℎ𝑓 (𝑛)𝑀

𝑟

2
≤ ℎ𝑓 (𝑛)𝑀

log2 𝑛

2
.

The equality condition is obvious.

Theorem 5.4. Let 𝑓 ̸= 𝜃 be nonnegative and L-additive satisfying (5.4). Then

𝑓(𝑛) ≤
(︁𝑠− 1

2
ℎ𝑓 (𝑛) + ℎ𝑓 (2

𝑠−1)
)︁
𝑀, (5.8)

where 𝑠 is as in (5.5) and 𝑀 is as in (5.6). Equality is attained if and only if 𝑛 ∈ P
or 𝑝1 = · · · = 𝑝𝑠−1 = 2 = ℎ𝑓 (2).

Proof. If 𝑠 = 1 (i.e., 𝑛 ∈ P), then (5.8) clearly holds with equality. So, assume that
𝑠 > 1.

Case 1. 𝑝1 = · · · = 𝑝𝑠−1 = 2. Then

𝑓(𝑛) = 𝑓(2𝑠−1𝑝𝑠) = 𝑓(2𝑠−1)ℎ𝑓 (𝑝𝑠) + 𝑓(𝑝𝑠)ℎ𝑓 (2
𝑠−1)

= (𝑠− 1)𝑓(2)ℎ𝑓 (2
𝑠−2)ℎ𝑓 (𝑝𝑠) + 𝑓(𝑝𝑠)ℎ𝑓 (2

𝑠−1)

≤
(︀
(𝑠− 1)(ℎ𝑓 (2

𝑠−2)ℎ𝑓 (𝑝𝑠) + ℎ𝑓 (2
𝑠−1)

)︀
𝑀

≤
(︁
(𝑠− 1)ℎ𝑓 (2

𝑠−2)ℎ𝑓 (𝑝𝑠)
ℎ𝑓 (2)

2
+ ℎ𝑓 (2

𝑠−1)
)︁
𝑀

=
(︁𝑠− 1

2
ℎ𝑓 (𝑛) + ℎ𝑓 (2

𝑠−1)
)︁
𝑀.

Case 2. 𝑝1 = · · · = 𝑝𝑠−2 = 2 (omit this if 𝑠 = 2) and 𝑝𝑠−1 > 2. If 𝑠 ≥ 3, then

𝑓(𝑛) = 𝑓(2𝑠−2𝑝𝑠−1𝑝𝑠) = 𝑓(2𝑠−2)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) + 𝑓(𝑝𝑠−1𝑝𝑠)ℎ𝑓 (2
𝑠−2)

= (𝑠− 2)𝑓(2)ℎ𝑓 (2
𝑠−3)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) + 𝑓(𝑝𝑠−1𝑝𝑠)ℎ𝑓 (2

𝑠−2)

=
𝑠− 2

2
𝑓(2)ℎ𝑓 (2

𝑠−2)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) +
(︀
𝑓(𝑝𝑠−1)ℎ𝑓 (𝑝𝑠) + 𝑓(𝑝𝑠)ℎ𝑓 (𝑝𝑠−1)

)︀
ℎ𝑓 (2

𝑠−2)

≤
(︁𝑠− 2

2
ℎ𝑓 (2

𝑠−2)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) + (ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))ℎ𝑓 (2
𝑠−2)

)︁
𝑀

=
(︁𝑠− 2

2
ℎ𝑓 (𝑛) + (ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))ℎ𝑓 (2

𝑠−2)
)︁
𝑀

=
(︁𝑠− 1

2
ℎ𝑓 (𝑛) + (ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))ℎ𝑓 (2

𝑠−2)− 1

2
ℎ𝑓 (𝑛)

)︁
𝑀.

The last expression is obviously an upper bound for 𝑓(𝑛) also if 𝑠 = 2. If

(ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))ℎ𝑓 (2
𝑠−2)− 1

2
ℎ𝑓 (𝑛) ≤ ℎ𝑓 (2

𝑠−1),
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i.e.,
2(ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))− ℎ𝑓 (𝑝𝑠−1)ℎ𝑓 (𝑝𝑠) ≤ 2ℎ𝑓 (2),

then (5.8) follows. Since

ℎ𝑓 (𝑝𝑠−1)ℎ𝑓 (𝑝𝑠)− 2(ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠)) + 4 = (ℎ𝑓 (𝑝𝑠−1)− 2)(ℎ𝑓 (𝑝𝑠)− 2)

≥ (𝑝𝑠−1 − 2)(𝑝𝑠 − 2) > 0,

we actually have a stronger inequality

2(ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))− ℎ𝑓 (𝑝𝑠−1)ℎ𝑓 (𝑝𝑠) < 4.

Case 3. 𝑝𝑠−2 > 2. Then 𝑠 ≥ 3 and

𝑓(𝑛) = 𝑓(𝑝1)ℎ𝑓 (𝑝2 · · · 𝑝𝑠) + 𝑓(𝑝2 · · · 𝑝𝑠)ℎ𝑓 (𝑝1)

= 𝑓(𝑝1)
ℎ𝑓 (𝑛)

ℎ𝑓 (𝑝1)
+ 𝑓(𝑝2 · · · 𝑝𝑠)ℎ𝑓 (𝑝1)

≤ 𝑀ℎ𝑓 (𝑛)

2
+ 𝑓(𝑝2 · · · 𝑝𝑠)ℎ𝑓 (𝑝1).

Since

𝑓(𝑝2 · · · 𝑝𝑠)ℎ𝑓 (𝑝1) =
(︀
𝑓(𝑝2)ℎ𝑓 (𝑝3 · · · 𝑝𝑠) + 𝑓(𝑝3 · · · 𝑝𝑠)ℎ𝑓 (𝑝2)

)︀
ℎ𝑓 (𝑝1)

= 𝑓(𝑝2)
ℎ𝑓 (𝑛)

ℎ𝑓 (𝑝2)
+ 𝑓(𝑝3 · · · 𝑝𝑠)ℎ𝑓 (𝑝1𝑝2)

≤ 𝑀ℎ𝑓 (𝑛)

2
+ 𝑓(𝑝3 · · · 𝑝𝑠)ℎ𝑓 (𝑝1𝑝2),

we also have
𝑓(𝑛) ≤ 2

𝑀ℎ𝑓 (𝑛)

2
+ 𝑓(𝑝3 · · · 𝑝𝑠)ℎ𝑓 (𝑝1𝑝2).

Similarly,

𝑓(𝑛) ≤ 𝑠− 3

2
𝑀ℎ𝑓 (𝑛) + 𝑓(𝑝𝑠−2𝑝𝑠−1𝑝𝑠)ℎ𝑓 (𝑝1 · · · 𝑝𝑠−3). (5.9)

Because

𝑓(𝑝𝑠−2𝑝𝑠−1𝑝𝑠) = 𝑓(𝑝𝑠−2)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) + 𝑓(𝑝𝑠−1)ℎ𝑓 (𝑝𝑠−2𝑝𝑠) + 𝑓(𝑝𝑠)ℎ𝑓 (𝑝𝑠−2𝑝𝑠−1)

≤ 𝑀ℎ𝑓 (𝑝𝑠−2𝑝𝑠−1𝑝𝑠)
(︁ 1

𝑝𝑠−2
+

1

𝑝𝑠−1
+

1

𝑝𝑠

)︁

≤ 𝑀ℎ𝑓 (𝑝𝑠−2𝑝𝑠−1𝑝𝑠)
(︁1
3
+

1

3
+

1

3

)︁
= 𝑀ℎ𝑓 (𝑝𝑠−2𝑝𝑠−1𝑝𝑠),

it follows from (5.9) that

𝑓(𝑛) ≤ 𝑠− 3

2
𝑀ℎ𝑓 (𝑛) +𝑀ℎ𝑓 (𝑛) =

𝑠− 1

2
𝑀ℎ𝑓 (𝑛).

In other words, (5.8) holds strictly.
The proof is complete. It also includes the equality conditions.
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If we do not know 𝑠 (but know 𝑟), we can substitute 𝑠 = 𝑟 in (5.7) and (5.8).
We complete this section by extending the lower bound (5.2).

Theorem 5.5. Let 𝑓 be nonnegative and L-additive, and let 𝑛 be as in (5.1) with

ℎ𝑓 (𝑞1), . . . , ℎ𝑓 (𝑞𝑟) > 0.

Then
𝑓(𝑛) ≥ 𝑟𝑚ℎ𝑓 (𝑛)

𝑟−1
𝑟 ,

where
𝑚 = min

1≤𝑖≤𝑟
𝑓(𝑞𝑖).

Equality is attained if and only if 𝑛 is a prime or a power of 2.

Proof. By (3.1) and the arithmetic-geometric mean inequality,

𝑓(𝑛) = ℎ𝑓 (𝑛)

𝑟∑︁

𝑖=1

𝑓(𝑞𝑖)

ℎ𝑓 (𝑞𝑖)
≥ ℎ𝑓 (𝑛)𝑚

𝑟∑︁

𝑖=1

1

ℎ𝑓 (𝑞𝑖)
≥ ℎ𝑓 (𝑛)𝑚

𝑟

(ℎ𝑓 (𝑞1) · · ·ℎ𝑓 (𝑞𝑟))
1
𝑟

= ℎ𝑓 (𝑛)𝑚
𝑟

ℎ𝑓 (𝑞1 · · · 𝑞𝑟) 1
𝑟

= ℎ𝑓 (𝑛)𝑚
𝑟

ℎ𝑓 (𝑛)
1
𝑟

= 𝑟ℎ𝑓 (𝑛)
1− 1

𝑟𝑚.

The equality condition is obvious.

6. Concluding remarks

According to the common custom, we credited in Section 1 the arithmetic derivative
to Barbeau [2]. However, Mingot Shelly [8] considered it as early as in 1911. His
paper has been overlooked for a long time and is found only recently [1, 9]. The
only reference to it that we know from the past decades is in Dickson [3].

A nice introduction to the arithmetic derivative is Balzarotti and Lava [1] (writ-
ten in Italian, but an English reader understands its formulas and mathematical
terms). There is an extensive literature about this topic, but much work is still left
to be done. For example, there is only a few results about “arithmetic integration”
and, more generally, about “arithmetic differential equations”.

For another example, let us define 𝐷 = 𝐷P as a function Q → Q by allowing
𝜈𝑝(𝑛) ∈ Z in (1.1). What do we know about this function? Not much. We
are currently investigating whether 𝐷 (and, more generally, 𝐷𝑆) is discontinuous
everywhere and, if so, how strongly.

The arithmetic partial derivative 𝐷𝑝 = 𝐷{𝑝} has received less attention than 𝐷
and, according to our knowledge, the arithmetic subderivative 𝐷𝑆 is a new concept.
An overall question related to this notion is: Which properties of 𝐷 and 𝐷𝑝 can in
some way be extended to 𝐷𝑆? Probably the cases of finite 𝑆 and infinite 𝑆 must
then be studied separately.

As an extension of 𝐷𝑆 , we defined the concept of an L-additive function 𝑓 . For
simplicity, we stated (contrary to [6]) that ℎ𝑓 must be nonzero-valued. If we allow
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ℎ𝑓 to be zero, it turns out that we only meet extra work without gaining anything
significant in results. Anyway, a very general question arises: Which properties
of 𝐷𝑆 can be extended to 𝑓? In Section 5, we found the generalizations of the
classical upper and lower bounds of 𝐷. But what about other properties? This
remains to be seen.
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Abstract
Let 𝑎 and 𝑏 be two distinct fixed positive integers such that min{𝑎, 𝑏} > 1.

We show that the equation in the title with 𝑏 ≡ 3 (mod 12) and 𝑎 even has
no solution in positive integers (𝑛, 𝑥). This generalizes a result of Szalay [9].
Moreover, we show that this equation in the title with (𝑎 ≡ 4 (mod 10) and
𝑏 ≡ 0 (mod 5)) has no solution in positive integer (𝑛, 𝑥). We give a necessary
and sufficient condition for Diophantine equation (𝑎𝑛 − 1)(𝑏𝑛 − 1) = 𝑥2 with
(𝑎 ≡ 4 (mod 5) and 𝑏 ≡ 0 (mod 5)) or (𝑎 ≡ 3 (mod 4) and 𝑏 ≡ 0 (mod 2))
to have positive integer solutions. Finally, we prove that the equation with 𝑎
even, 𝜗2(𝑏− 1) = 1 and 5 | 𝑏 has no solution in positive integer (𝑛, 𝑥), where
𝜗2 is the 2-adic valuation.

Keywords: Pell equation, exponential Diophantine equation.

MSC: 11D41, 11D61

1. Introduction

Let N+ be the set of all positive integers. Let 𝑎 > 1 and 𝑏 > 1 be different fixed
integers. The exponential Diophantine equation

(𝑎𝑛 − 1)(𝑏𝑛 − 1) = 𝑥2, 𝑥, 𝑛 ∈ N+ (1.1)
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has been studied by many authors in the literature since 2000. First, Szalay [9]
studied equation (1.1) for (𝑎, 𝑏) = (2, 3) and showed that this equation has no
positive integer solutions. He also proved that equation (1.1) has only the positive
integer solution (𝑛, 𝑥) = (1, 2), for (𝑎, 𝑏) = (2, 5) and there is no solution, for
(𝑎, 𝑏) = (2, 2𝑘) with 𝑘 ≥ 2 except when 𝑛 = 3 and 𝑘 = 2. Hajdu and Szalay [3]
proved that equation (1.1) has no solution for (𝑎, 𝑏) = (2, 6) and for (𝑎, 𝑏) = (𝑎, 𝑎𝑘),
there is no solution with 𝑘 ≥ 2 and 𝑘𝑛 > 2 except for the three cases (𝑎, 𝑛, 𝑘) =
(2, 3, 2), (3, 1, 5), (7, 1, 4). So their result generalized Theorem 3 of [9]. This result
was extended by Cohn [2] to the case 𝑎𝑘 = 𝑏𝑙 (see RESULT 1). Cohn also proved
that there are no solutions to (1.1) when 4 | 𝑛, except for {𝑎, 𝑏} = {13, 239} with
𝑛 = 4. Walsh and Luca [7] proved equation (1.1) has finitely positive solutions
for fixed (𝑎, 𝑏) and showed that the equation has no solution with 𝑛 > 2 for some
pairs (𝑎, 𝑏) in the range 1 < 𝑎 < 𝑏 ≤ 100. Theorem 1.1 completes this result ( [7,
Theorem 3.1] ) for some special cases. Since then, many authors studied equation
(1.1) by introducing some special contraints to 𝑎 or 𝑏 (see for examples [4, 6, 8, 10,
11]). Yuan and Zhang [11] showed that equation (1.1) has no solution with 𝑛 > 2
if (𝑎 ≡ 2 (mod 3) and 𝑏 ≡ 0 (mod 3)) or (𝑎 ≡ 4 (mod 5) and 𝑏 ≡ 0 (mod 5)) or
(𝑎 ≡ 3 (mod 4) and 𝑏 ≡ 0 (mod 2)). But this proof was not complete because
Lemma 2 in their paper is not correct. The authors and Z. Zhang completed the
proof of this theorem (see [8]). In 2013, Xiaoyan [10] showed that equation (1.1)
has no solution with 𝑛 > 2 and 2 | 𝑛 when 𝜗2(𝑎−1) and 𝜗2(𝑏−1) have the opposite
parity. In 2016, Ishii [4] gave a necessary and sufficient condition for equation (1.1)
with the conditions (𝑎 ≡ 5 (mod 6) and 𝑏 ≡ 0 (mod 3)) to have positive integer
solutions. Theorem 1.4 and Theorem 1.5 give a necessary sufficient condition for
Diophantine equation (1.1) with (𝑎 ≡ 4 (mod 5) and 𝑏 ≡ 0 (mod 5)) or (𝑎 ≡ 3
(mod 4) and 𝑏 ≡ 0 (mod 2)) to have positive integer solutions with 𝑛 ≥ 2. In 2018,
Keskin [5] showed that equation (1.1) has no solution in positive integer with 2 | 𝑛
when 𝑎 and 𝑏 have the opposite parity. Recently, the authors of [8] showed that
equation (1.1) has no solution in positive integer when 𝑎 is even and 𝑏 ≡ 3 (mod 8)
with 𝑏 a prime number.

In this paper, we will show that equation (1.1) has no positive solution (𝑛, 𝑥)
under some contraints on 𝑎 and 𝑏. Our main results are the following.

Theorem 1.1. Let 𝑎, 𝑏 ∈ N such that 𝑎, 𝑏 > 1. Suppose that one of the following
conditions is satisfied:

∙ 𝑎 ≡ 0 (mod 2) and 𝑏 ≡ 3 (mod 12);

∙ 𝑎 is even, 𝜗2(𝑏− 1) = 1 and 5 | 𝑏.
Then, equation (1.1) has no solution in positive integers (𝑛, 𝑥).

This result generalizes the main result of Szalay [9]. A consequence of the above
theorem is the following result.

Corollary 1.2. Let 𝑏 ∈ {15, 35, 55, 75, 95, 3, 27, 39, 51, 63, 87, 99}. Then the equa-
tion

((2𝑘)𝑛 − 1)(𝑏𝑛 − 1) = 𝑥2

160 A. Noubissie, A. Togbé



has no solution in positive integers (𝑘, 𝑛, 𝑥).

Theorem 1.3. Let 𝑎, 𝑏 ∈ N such that 𝑎, 𝑏 > 1. Suppose that 𝑎 ≡ 4 (mod 10)
and 𝑏 ≡ 0 (mod 5). Then, equation (1.1) has no solution in positive integers
(𝑛, 𝑥).

Theorem 1.4. Suppose that 𝑎 ≡ 4 (mod 5) and 𝑏 ≡ 0 (mod 5). Then equation
(1.1) has a positive integer solution (𝑛, 𝑥) if and only if (𝑎, 𝑏) = (𝑢𝑟, 𝑢𝑠) with non-
square 𝑑 ≡ ±1 (mod 5) satisfying 𝑢1 ≡ 0 (mod 5), 𝑟 ≡ 2 (mod 4) and 𝑠 is odd. In
this case, the solution is (𝑥, 𝑛) = (𝑑𝑣𝑟𝑣𝑠, 2).

Theorem 1.5. Suppose that 𝑎 ≡ 3 (mod 4) and 𝑏 ≡ 0 (mod 2). Then equation
(1.1) has positive integer solutions (𝑛, 𝑥) if and only if (𝑎, 𝑏) = (𝑢𝑟, 𝑢𝑠) with non-
square 𝑑 ≡ 3 (mod 4) satisfying 𝑢1 ≡ 0 (mod 2), 𝑟 ≡ 2 (mod 4) and 𝑠 is odd. In
this case, the solution is (𝑥, 𝑛) = (𝑑𝑣𝑟𝑣𝑠, 2).

Remark 1.6. Using the Theorem 1.4 and the fact that there exist 𝑑 ≡ ±1 (mod 5)
with 𝑢1 ≡ 0 (mod 5). For example, 𝑢1 = 2543295 for 𝑑 = 94. We deduce that

(𝑎2 − 1)(𝑏2 − 1) = 𝑥2

has infinitely many solutions (𝑎, 𝑏, 𝑥) with 𝑎 ≡ 4 (mod 5) and 𝑏 ≡ 0 (mod 5).

The proof of the first theorem using the method in [8]. We organize this paper as
follows. To prove the above results, we need some results on divisibility properties
of the solutions of Pell equations and some known results. See Section 2. The proof
of Theorem 1.1 is done in Section 3. We prove Theorem 1.3 in Section 4 and the
proof of Theorem 1.4 in Section 5. For similar reason, the proof of Theorem 1.5 is
also left to the reader.

2. Preliminaries

In this section, we recall some results which will be very useful for the proofs.
Let 𝑑 be a positive integer which is not a square. Then, by the theory of Pell

equations, one knows that the equation

𝑢2 − 𝑑𝑣2 = 1, 𝑢, 𝑣 ∈ N+

has infinitely many solutions and all its positive solutions (𝑢, 𝑣) are given by

𝑢𝑛 + 𝑣𝑛
√
𝑑 = (𝑢1 + 𝑣1

√
𝑑)𝑛,

for some positive integer 𝑛, where (𝑢1, 𝑣1) is the smallest positive solution.
The following result is well-known. As a reference (see [6, Lemma 1].

Lemma 2.1. Let 𝑑 be a positive which is not square.

1. If 𝑘 is even, then each prime factor 𝑝 of 𝑢𝑘 satisfies 𝑝 ≡ ±1 (mod 8).
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2. If 𝑘 is odd, then 𝑢1 | 𝑢𝑘 and 𝑢𝑘/𝑢1 is odd.

3. If 𝑞 ∈ {2, 3, 5}, then 𝑞 | 𝑢𝑘 implies 𝑞 | 𝑢1.

The following lemma can be deduced from [1, Proposition 1].

Lemma 2.2. Let 𝑝 > 3 be a prime. Then, the equation

𝑥𝑝 = 2𝑦2 − 1, 𝑥, 𝑦 ∈ N

has the only solution (𝑥, 𝑦) = (1, 1) in positive integers and the equation

𝑥3 = 2𝑦2 − 1, 𝑥, 𝑦 ∈ N

has the only solutions (𝑥, 𝑦) = (1, 1), (23, 78) in positive integers.

The last result to recall is [10, Lemma 2.1].

Lemma 2.3. For a fixed 𝑑, if 2 | 𝑢𝑟 and 2 - 𝑢𝑠, then 2 - 𝑟 and 2 | 𝑠.

3. Proof of Theorem 1.1

We prove only the first part of the statement, the proofs of the other part is similar
and left to the reader. Suppose that equation (1.1) has a solution in positive integer
𝑛, 𝑥 with 𝑎 ≡ 0 (mod 2) and 𝑏 ≡ 3 (mod 12). Then we have

𝑎𝑛 − 1 = 𝐷𝑦2 𝑎𝑛𝑑 𝑏𝑛 − 1 = 𝐷𝑧2,

where 𝐷 = (𝑎𝑛 − 1, 𝑏𝑛 − 1). 𝐷 can be written as 𝐷 = 𝑑𝑤2, with a square-free
integer 𝑑. If 𝑑 = 1, then 𝑛 must be odd. Indeed, if 𝑛 is even, then we obtain
(𝑎𝑚)2 − (𝑦𝑤)2 = 1 with 𝑛 = 2𝑚 and 𝑦𝑤 integers. This is impossible. So 𝑛 is odd.
As

𝑏𝑛 − 1 = (𝑏− 1)(𝑏𝑛−1 + · · ·+ 𝑏+ 1) (3.1)
and 2 | (𝑏𝑛 − 1), it follows that 2 | 𝑧2. This implies that 2 | 𝑧. Hence, 4 | (𝑏𝑛 − 1),
which is a contradiction to equation (3.1) (as 𝜗2(𝑏−1) = 1). So 𝑑 ≥ 2 and 𝐷 is not
square. Using the equation 𝑎𝑛 − 1 = 𝐷𝑦2 and the fact that 𝑎 is even, we deduce
that 𝐷 is odd. Moreover, 2 | 𝑧2 by the equation 𝑏𝑛 − 1 = 𝐷𝑧2. This implies that
4 | (𝑏𝑛 − 1) and by equation (3.1) we conclude that 𝑛 is even. Put now 𝑛 = 2𝑚,
we obtain

(𝑎𝑚)2 −𝐷𝑦2 = 1 𝑎𝑛𝑑 (𝑏𝑚)2 −𝐷𝑧2 = 1.

The pairs
{(𝑎𝑚, 𝑦), (𝑏𝑚, 𝑧)}

are two solutions of the corresponding Pell equation 𝑢2 −𝐷𝑣2 = 1. So there exist
distinct positive integers 𝑟 and 𝑠 such that

(𝑎𝑚, 𝑦) = (𝑢𝑟, 𝑣𝑟) and (𝑏𝑚, 𝑧) = (𝑢𝑠, 𝑣𝑠),

where (𝑢1, 𝑣1) is the fundamental solution of this Pell equation. Since 3 | 𝑏 and 3
not congruent to ±1 modulo 8. Lemma 2.1 tells us that 𝑠 is odd. As 2 | 𝑎 and
2 - 𝑏, it follows (by Lemma 2.3) that 𝑟 is odd and 𝑠 is even. This contradicts the
fact that 𝑠 is odd and thus completes the proof of Theorem 1.1.
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4. Proof of Theorem 1.3

The aim of this section is to prove Theorem 1.3. Thus, let 𝑎 ≡ 4 (mod 10) and
𝑏 ≡ 0 (mod 5). Suppose that (𝑛, 𝑥) is a solution to equation (1.1). Put 𝐷 =
(𝑎𝑛 − 1, 𝑏𝑛 − 1). By this equation, we have

𝑎𝑛 − 1 = 𝐷𝑦2, 𝑏𝑛 − 1 = 𝐷𝑧2, 𝑥 = 𝐷𝑦𝑧, 𝐷, 𝑦, 𝑧 ∈ N.

Since 5 | 𝑏, by 𝑏𝑛 − 1 = 𝐷𝑧2, it follows that

𝐷 ≡ ±1 (mod 5) and 5 - 𝑧.

Now, we consider two cases according to the fact that 5 divides 𝑦 or not.
Case 1: Suppose that 5 - 𝑦. Then 𝑦2 ≡ ±1 (mod 5) and we get

𝑎𝑛 ≡ 𝐷𝑦2 + 1 ≡ ±𝐷 + 1 ≡ 0, 2 (mod 5).

This contradicts the fact that 𝑎 ≡ 4 (mod 5).
Case 2: Assume now that 5 | 𝑦. Since 𝑎 ≡ 4 (mod 5), by 𝑎𝑛 − 1 = 𝐷𝑦2, we

obtain
4𝑛 ≡ 𝑎𝑛 ≡ 𝐷𝑦2 + 1 ≡ 1 (mod 5).

We deduce that 𝑛 is even. Put 𝑛 = 2𝑚. Therefore, 𝐷 cannot be a square and the
pairs

{(𝑎𝑚, 𝑦), (𝑏𝑚, 𝑧)}
are two solutions of the corresponding Pell equation 𝑢2 − 𝐷𝑣2 = 1. Since 𝑎 ̸= 𝑏,
there exist distinct positive integers 𝑟 and 𝑠 such that

(𝑎𝑚, 𝑦) = (𝑢𝑟, 𝑣𝑟) and (𝑏𝑚, 𝑧) = (𝑢𝑠, 𝑣𝑠),

where (𝑢1, 𝑣1) is the fundamental solution of this Pell equation. By Lemma 2.1
and as 5 | 𝑏 and 𝑏𝑚 = 𝑢𝑠, one can see that 2 - 𝑠 and 5 | 𝑢1. Therefore, 2 | 𝑎 and
𝑎𝑚 = 𝑢𝑟 implies that 2 | 𝑢𝑟 and so 𝑟 is odd. By Lemma 2.1 (2), it follows that
𝑢1 | 𝑢𝑟. For above, we deduce that 5 | 𝑢𝑟 and thus 5 | 𝑎, which contradicts the fact
that 𝑎 ≡ 4 (mod 5). This completes our proof.

5. Proof of Theorem 1.4

In this section, we will prove Theorem 1.4. Let 𝑎 ≡ 4 (mod 5) and 𝑏 ≡ 0 (mod 5)
and suppose that (𝑛, 𝑥) is a solution to equation (1.1). Put 𝐷 = (𝑎𝑛 − 1, 𝑏𝑛 − 1).
By this equation, we have

𝑎𝑛 − 1 = 𝐷𝑦2, 𝑏𝑛 − 1 = 𝐷𝑧2, 𝑥 = 𝐷𝑦𝑧, 𝐷, 𝑦, 𝑧 ∈ N.

We similarly proceed as in the proof of Theorem 1.3 and obtain that 𝑛 is even. Put
𝑛 = 2𝑚. Therefore, 𝐷 cannot be a square and the corresponding Pell equation
𝑢2 −𝐷𝑣2 = 1 has two solutions

(𝑢, 𝑣) = (𝑎𝑚, 𝑦), (𝑏𝑚, 𝑧).
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Since 𝑎 ̸= 𝑏, there exist distinct positive integers 𝑟 and 𝑠 such that

(𝑎𝑚, 𝑦) = (𝑢𝑟, 𝑣𝑟) 𝑎𝑛𝑑 (𝑏𝑚, 𝑧) = (𝑢𝑠, 𝑣𝑠),

where (𝑢1, 𝑢1) is the fundamental solution of this Pell equation. By Lemma 8 (1)
and 5 | 𝑏, we obtain that 2 - 𝑠 and 5 | 𝑢1. On the other hand, 𝑎 ≡ 4 (mod 5), which
together with 5 | 𝑢1 and Lemma 8 (2), shows that 2 | 𝑟. Put 𝑟 = 2𝑡, we get

𝑎𝑚 = 𝑢2𝑡 = 2𝑢2
𝑡 − 1.

Now we distinguish two cases. Firstly, if 2 | 𝑚, then 4 | 𝑛 and so RESULT 2 in [2]
implies that (𝑎, 𝑏) = (13, 239), with contradicts 5 | 𝑏. Now, we assume that 2 - 𝑚
and 𝑚 > 3, Lemma 9 shows that we have a contradiction since 𝑎 > 1. If 𝑚 = 3,
then we get 𝑎3 = 2𝑢2

𝑡 − 1 and by Lemma 9, we obtain 𝑎 = 23 and 𝑢𝑡 = 78, which
contradicts the fact that 𝑎 ≡ 4 (mod 5). So 𝑚 = 1, then 𝑛 = 2𝑚 = 2. Now suppose
that 𝑟 ≡ 0 (mod 4). Then 𝑡 is even and hence 𝑢𝑡 not congruent to 0 modulo 5 by
Lemma 8 (1). Then 𝑎 = 𝑢𝑟 = 2𝑢2

𝑡 −1 ≡ 1, 2 (mod 5), which contradicts that 𝑎 ≡ 4
(mod 5). Conversely, suppose that (𝑎, 𝑏) = (𝑢𝑟, 𝑢𝑠) with 𝑑 ≡ ±1 (mod 5), 𝑢1 ≡ 0
(mod 5), 𝑟 ≡ 2 (mod 4) and 𝑠 is odd. Therefore, equation (1.1) has the solution
(𝑥, 𝑛) = (𝑑𝑣𝑟𝑣𝑠, 2). Notice that 𝑏 ≡ 𝑢𝑡 ≡ 0 (mod 5) by Lemma 8 (2) and hence
𝑎 = 𝑢𝑟 = 2𝑢2

𝑡 − 1 ≡ 4 (mod 5). This completes the proof of Theorem 1.4.

Acknowledgements. The authors are grateful to the anonymous referee’s com-
ments that lead to a more precise version of this paper.
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Abstract
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𝐵𝑥

𝑛+1 −𝐵𝑥
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1. Introduction

The first definition of balancing numbers is essentially due to Finkelstein [3], al-
though he called them numerical centers. A positive integer 𝑛 is called a balancing
number if

1 + 2 + · · · + (𝑛− 1) = (𝑛 + 1) + (𝑛 + 2) + · · · + (𝑛 + 𝑟)

holds for some positive integer 𝑟. Then 𝑟 is called the balancer corresponding to the
balancing number 𝑛. For example, 6 and 35 are balancing numbers with balancers
2 and 14, respectively. The 𝑛-th term of the sequence of balancing numbers is
denoted by 𝐵𝑛. The balancing numbers satisfy the recurrence relation

𝐵𝑛 = 6𝐵𝑛−1 −𝐵𝑛−2, for all 𝑛 ≥ 2,

where the initial conditions are 𝐵0 = 0 and 𝐵1 = 1. Its first terms are

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, . . .

It is well-known that

𝐵2
𝑛+1 −𝐵2

𝑛 = 𝐵2𝑛+2, for any 𝑛 ≥ 0.

In particular, this identity tells us that the difference between the square of two
consecutive Balancing numbers is still a Balancing number. So, one can ask if this
identity can be generalized?

Diophantine equations involving sum or difference of powers of two consecutive
members of a given linear recurrent sequence {𝑈𝑛}𝑛≥1 were also considered in
several papers. For example, in [5], Marques and Togbé proved that if 𝑠 ≥ 1 an
integer such that 𝐹 𝑠

𝑚 + 𝐹 𝑠
𝑚+1 is a Fibonacci number for all sufficiently large 𝑚,

then 𝑠 ∈ {1, 2}. In [4], Luca and Oyono proved that there is no integer 𝑠 ≥ 3 such
that the sum of 𝑠th powers of two consecutive Fibonacci numbers is a Fibonacci
number. Later, their result has been extended in [8] to the generalized Fibonacci
numbers and recently in [7] to the Pell sequence.

Here, we apply the same argument as in [4] to the Balancing sequence and prove
the following:

Theorem 1.1. The only nonnegative integer solutions (𝑚,𝑛, 𝑥) of the Diophantine
equation

𝐵𝑥
𝑛+1 −𝐵𝑥

𝑛 = 𝐵𝑚 (1.1)

are (𝑚,𝑛, 𝑥) = (2𝑛 + 2, 𝑛, 2), (1, 0, 𝑥), (0, 𝑛, 0).

Our proof of Theorem 1.1 is mainly based on linear forms in logarithms of
algebraic numbers and a reduction algorithm originally introduced by Baker and
Davenport in [1]. Here, we will use a version due to Dujella and Pethő in [2, Lemma
5(a)].
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2. Preliminary results

2.1. The Balancing sequences

Let (𝛼, 𝛽) = (3 + 2
√

2, 3 − 2
√

2) be the roots of the characteristic equation 𝑥2 −
6𝑥 + 1 = 0 of the Balancing sequence (𝐵𝑛)𝑛≥0. The Binet formula for 𝐵𝑛 is

𝐵𝑛 =
𝛼𝑛 − 𝛽𝑛

4
√

2
, for all 𝑛 ≥ 0. (2.1)

This implies that the inequality

𝛼𝑛−2 ≤ 𝐵𝑛 ≤ 𝛼𝑛−1 (2.2)

holds for all positive integers 𝑛. It is easy to prove that

𝐵𝑛

𝐵𝑛+1
≤ 5

29
(2.3)

holds, for any 𝑛 ≥ 2.

2.2. Linear forms in logarithms
For any non-zero algebraic number 𝛾 of degree 𝑑 over Q, whose minimal polynomial
over Z is 𝑎

∏︀𝑑
𝑖=1

(︀
𝑋 − 𝛾(𝑖)

)︀
, we denote by

ℎ(𝛾) =
1

𝑑

(︃
log |𝑎| +

𝑑∑︁

𝑖=1

log max
(︁

1,
⃒⃒
⃒𝛾(𝑖)

⃒⃒
⃒
)︁)︃

the usual absolute logarithmic height of 𝛾.
With this notation, Matveev proved the following theorem (see [6]).

Theorem 2.1. Let 𝛾1, . . . , 𝛾𝑠 be real algebraic numbers and let 𝑏1, . . . , 𝑏𝑠 be nonzero
rational integer numbers. Let 𝐷 be the degree of the number field Q(𝛾1, . . . , 𝛾𝑠) over
Q and let 𝐴𝑗 be positive real numbers satisfying

𝐴𝑗 = max{𝐷ℎ(𝛾𝑗), | log 𝛾𝑗 |, 0.16}, for 𝑗 = 1, . . . , 𝑠.

Assume that
𝐵 ≥ max{|𝑏1|, . . . , |𝑏𝑠|}.

If 𝛾𝑏1
1 · · · 𝛾𝑏𝑠

𝑠 − 1 ̸= 0, then

|𝛾𝑏1
1 · · · 𝛾𝑏𝑠

𝑠 − 1| ≥ exp(−1.4 · 30𝑠+3 · 𝑠4.5 ·𝐷2(1 + log𝐷)(1 + log𝐵)𝐴1 · · ·𝐴𝑠).
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2.3. Reduction algorithm
Lemma 2.2. Let 𝑀 be a positive integer, let 𝑝/𝑞 be a convergent of the continued
fraction expansion of the irrational 𝛾 such that 𝑞 > 6𝑀 , and let 𝐴,𝐵, 𝜇 be some
real numbers with 𝐴 > 0 and 𝐵 > 1. Let

𝜀 = ||𝜇𝑞|| −𝑀 · ||𝛾𝑞||,

where || · || denotes the distance from the nearest integer. If 𝜀 > 0, then there is no
solution of the inequality

0 < 𝑚𝛾 − 𝑛 + 𝜇 < 𝐴𝐵−𝑘

in positive integers 𝑚,𝑛 and 𝑘 with

𝑚 ≤ 𝑀 and 𝑘 ≥ log(𝐴𝑞/𝜀)

log𝐵
.

3. The proof of Theorem 1.1

3.1. An inequality for 𝑥 versus 𝑚 and 𝑛

The case 𝑛𝑥 = 0 is trivial so we assume that 𝑛 ≥ 1 and that 𝑥 ≥ 1. Observe that
since 𝐵𝑛 < 𝐵𝑛+1 − 𝐵𝑛 < 𝐵𝑛+1, the Diophantine equation (1.1) has no solution
when 𝑥 = 1.

When 𝑛 = 1, we get 𝐵𝑚 = 6𝑥 − 1. In this case, we have that 𝑚 is odd. Thus,
using the Binet formula (2.1), we obtained the following factorization

6𝑥 = 𝐵𝑚 + 1 = 𝐵𝑚 + 𝐵1 = 𝐵(𝑚+1)/2𝐶(𝑚−1)/2,

where {𝐶𝑚}𝑚≥1 is the Lucas Balancing sequence given by the recurrence 𝐶𝑚 =
6𝐶𝑚−1 − 𝐶𝑚−2 with initial conditions 𝐶0 = 2, 𝐶1 = 6. The Binet formula of the
Lucas Balancing sequence is given by 𝐶𝑛 = 𝛼𝑛 + 𝛽𝑛. This shows that the largest
prime factor of 𝐵(𝑚+1)/2 is 3 and by Carmichael’s Primitive Divisor Theorem we
conclude that (𝑚+ 1)/2 ≤ 12, so 𝑚 ≤ 23. Now, one checks all such 𝑚 and gets no
additional solution with 𝑛 = 1.

So, we can assume that 𝑛 ≥ 2 and 𝑥 ≥ 3. Therefore, we have

𝐵𝑚 = 𝐵𝑥
𝑛+1 −𝐵𝑥

𝑛 ≥ 𝐵3
3 −𝐵3

1 = 215,

which implies that 𝑚 > 4. Here, we use the same argument from [4] to bound
𝑥 in terms of 𝑚 and 𝑛. Since most of the details are similar, we only sketch the
argument.

Using inequality (2.2), we get

𝛼𝑚−1 > 𝐵𝑚 = 𝐵𝑥
𝑛+1 −𝐵𝑥

𝑛 ≥ 𝐵𝑥
𝑛 > 𝛼(𝑛−2)𝑥
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and
𝛼𝑚−2 < 𝐵𝑚 = 𝐵𝑥

𝑛+1 −𝐵𝑥
𝑛 < 𝐵𝑥

𝑛+1 < 𝛼𝑛𝑥.

Thus, we have
(𝑛− 2)𝑥 + 1 < 𝑚 < 𝑛𝑥 + 2. (3.1)

Estimate (3.1) is essential for our purpose.
Now, we rewrite equation (1.1) as

𝛼𝑚

4
√

2
−𝐵𝑥

𝑛+1 = −𝐵𝑥
𝑛 +

𝛽𝑚

4
√

2
. (3.2)

Dividing both sides of equation (3.2) by 𝐵𝑥
𝑛+1, taking absolute value and using the

inequality (2.3), we obtain

⃒⃒
⃒𝛼𝑚(4

√
2)−1𝐵−𝑥

𝑛+1 − 1
⃒⃒
⃒ < 2

(︂
𝐵𝑛

𝐵𝑛+1

)︂𝑥

<
2

5.8𝑥
. (3.3)

Put
Λ1 := 𝛼𝑚(4

√
2)−1𝐵−𝑥

𝑛+1 − 1. (3.4)

If Λ1 = 0, we get 𝛼𝑚 = 4
√

2𝐵𝑥
𝑛+1. Thus 𝛼2𝑚 ∈ Z, which is false for all positive

integers 𝑚, therefore Λ1 ̸= 0.
At this point, we will use Matveev’s theorem to get a lower bound for Λ1. We

set 𝑠 := 3 and we take

𝛾1 := 𝛼, 𝛾2 := 4
√

2, 𝛾3 := 𝐵𝑛+1, 𝑏1 := 𝑚, 𝑏2 := −1, 𝑏3 := −𝑥.

Note that 𝛾1, 𝛾2, 𝛾3 ∈ Q(
√

2), so we can take 𝐷 := 2. Since ℎ(𝛾1) = (log𝛼)/2,
ℎ(𝛾2) = (log 32)/2 and ℎ(𝛾3) = log𝐵𝑛+1 < 𝑛 log𝛼, we can take 𝐴1 := log𝛼, 𝐴2 :=
log 32 and 𝐴3 := 2𝑛 log𝛼. Finally, inequality (3.1) implies that 𝑚 > (𝑛− 2)𝑥 ≥ 𝑥,
thus we can take 𝐵 := 𝑚. We also have 𝐵 := 𝑚 ≤ 𝑛𝑥 + 2 < (𝑛 + 2)𝑥. Hence,
Matveev’s theorem implies that

log |Λ1| ≥ −1.4 × 306 × 34.5 × 22 × (1 + log 2)(log𝛼)(log 32)(2𝑛 log𝛼)(1 + log𝑚)

≥ −2.1 × 1013𝑛(1 + log𝑚). (3.5)

The inequalities (3.3), (3.4) and (3.5) give that

𝑥 < 1.2 × 1013𝑛(1 + log𝑚) < 2.1 × 1013𝑛 log𝑚,

where we used the fact that 1 + log𝑚 < 1.7 log𝑚, for all 𝑚 ≥ 5. Together with
the fact that 𝑚 < (𝑛 + 2)𝑥, we get that

𝑥 < 2.1 × 1013𝑛 log((𝑛 + 2)𝑥).
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3.2. Small values of 𝑛

Next, we treat the cases when 𝑛 ∈ [2, 37]. In this case,

𝑥 < 2.1 × 1013𝑛 log((𝑛 + 2)𝑥) < 7.8 × 1014 log(46𝑥)

so 𝑥 < 4 × 1016.
Now, we take another look at Λ1 given by expression (3.4). Put

Γ1 := 𝑚 log𝛼− log(4
√

2) − 𝑥 log𝐵𝑛+1.

Thus, Λ1 = 𝑒Γ1 − 1. One sees that the right-hand side of (3.2) is a number in the
interval [−𝐵𝑥

𝑛,−𝐵𝑥
𝑛 + 1]. In particular, Λ1 is negative, which implies that Γ1 is

negative. Thus,

0 < −Γ1 <
2

5.8𝑥
,

so

0 < 𝑥

(︂
log𝐵𝑛+1

log𝛼

)︂
−𝑚 +

(︃
log(4

√
2

log𝛼

)︃
<

2

5.8𝑥 log𝛼
. (3.6)

For us, inequality (3.6) is

0 < 𝑥𝛾 −𝑚 + 𝜇 < 𝐴𝐵−𝑥,

where

𝛾 :=
log𝐵𝑛+1

log𝛼
, 𝜇 =

log(4
√

2)

log𝛼
, 𝐴 =

2

log𝛼
, 𝐵 = 5.8.

We take 𝑀 := 4 × 1016.
The program was developed in PARI/GP running with 200 digits. For the com-

putations, if the first convergent such that 𝑞 > 6𝑀 does not satisfy the condition
𝜀 > 0, then we use the next convergent until we find the one that satisfies the
condition. In one minute all the computations were done. In all cases, we obtained
𝑥 ≤ 77. A computer search with Maple revealed in less than one minute that there
are no solutions to the equation (1.1) in the range 𝑛 ∈ [3, 37] and 𝑥 ∈ [3, 77].

3.3. An upper bound on 𝑥 in terms of 𝑛
From now on, we assume that 𝑛 ≥ 38. Recall from the previous section that

𝑥 < 2.1 × 1013𝑛 log((𝑛 + 2)𝑥). (3.7)

Next, we give an upper bound on 𝑥 depending only on 𝑛. If

𝑥 ≤ 𝑛 + 2, (3.8)

then we are through. Otherwise, that is if 𝑛 + 2 < 𝑥, we then have

𝑥 < 2.1 × 1013𝑛 log 𝑥2 = 4.2 × 1013𝑛 log 𝑥,
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which can be rewritten as
𝑥

log 𝑥
< 4.2 × 1013𝑛. (3.9)

Using the fact that, for all 𝐴 ≥ 3

𝑥

log 𝑥
< 𝐴 yields 𝑥 < 2𝐴 log𝐴,

and the fact that log(4.2 × 1013𝑛) < 10 log 𝑛 holds for all 𝑛 ≥ 38, we get that

𝑥 < 2(4.2 × 1013𝑛) log((4.2 × 1013𝑛) (3.10)

< 8.4 × 1013𝑛(10 log 𝑛)

< 8.4 × 1014𝑛 log 𝑛.

From (3.8) and (3.10), we conclude that the inequality

𝑥 < 8.4 × 1014𝑛 log 𝑛 (3.11)

holds.

3.4. An absolute upper bound on 𝑥

Let us look at the element
𝑦 :=

𝑥

𝛼2𝑛
.

The above inequality (3.11) implies that

𝑦 <
8.4 × 1014𝑛 log 𝑛

𝛼2𝑛
<

1

𝛼𝑛
, (3.12)

where the last inequality holds for any 𝑛 ≥ 23. In particular, 𝑦 < 𝛼−38 < 10−31.
We now write

𝐵𝑥
𝑛 =

𝛼𝑛𝑥

32𝑥/2

(︂
1 − 1

𝛼2𝑛

)︂𝑥

and

𝐵𝑥
𝑛+1 =

𝛼(𝑛+1)𝑥

32𝑥/2

(︂
1 − 1

𝛼2(𝑛+1)

)︂𝑥

.

We have
0 <

(︂
1 − 1

𝛼2𝑛

)︂
< 𝑒𝑦 < 1 + 2𝑦,

because 𝑦 < 10−31 is very small. The same inequality holds if we replace 𝑛 by
𝑛 + 1. Hence, we have that

max

{︂⃒⃒
⃒⃒𝐵𝑥

𝑛 − 𝛼𝑛𝑥

32𝑥/2

⃒⃒
⃒⃒ ,
⃒⃒
⃒⃒𝐵𝑥

𝑛+1 −
𝛼(𝑛+1)𝑥

32𝑥/2

⃒⃒
⃒⃒
}︂

<
2𝑦𝛼(𝑛+1)𝑥

32𝑥/2
.
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We now return to our equation (1.1) and rewrite it as

𝛼𝑚 − 𝛽𝑚

4
√

2
= 𝐵𝑚 = 𝐵𝑥

𝑛+1 −𝐵𝑥
𝑛

=
𝛼(𝑛+1)𝑥

32𝑥/2
− 𝛼𝑛𝑥

32𝑥/2
+

(︂
𝐵𝑥

𝑛+1 −
𝛼(𝑛+1)𝑥

32𝑥/2

)︂
−
(︂
𝐵𝑥

𝑛 − 𝛼𝑛𝑥

32𝑥/2

)︂
,

or
⃒⃒
⃒⃒ 𝛼𝑚

321/2
− 𝛼𝑛𝑥

32𝑥/2
(𝛼𝑥 − 1)

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒ 𝛽𝑚

321/2
+

(︂
𝐵𝑥

𝑛+1 −
𝛼(𝑛+1)𝑥

32𝑥/2

)︂
−
(︂
𝐵𝑥

𝑛 − 𝛼𝑛𝑥

32𝑥/2

)︂⃒⃒
⃒⃒

<
1

𝛼𝑚
+

⃒⃒
⃒⃒𝐵𝑥

𝑛+1 −
𝛼(𝑛+1)𝑥

32𝑥/2

⃒⃒
⃒⃒+

⃒⃒
⃒⃒𝐵𝑥

𝑛 − 𝛼𝑛𝑥

32𝑥/2

⃒⃒
⃒⃒

<
1

𝛼𝑚
+ 2𝑦

(︂
𝛼𝑛𝑥(1 + 𝛼𝑥)

32𝑥/2

)︂
.

Thus, multiplying both sides by 𝛼−(𝑛+1)𝑥32𝑥/2, we obtain that
⃒⃒
⃒𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2 − (1 − 𝛼−𝑥)

⃒⃒
⃒ < 32𝑥/2

𝛼𝑚+(𝑛+1)𝑥
+ 2𝑦(1 + 𝛼−𝑥)

<
1

2𝛼𝑛
+

396𝑦

197
<

3

𝛼𝑛
, (3.13)

where we used the fact that 32𝑥/2/(𝛼(𝑛+1)𝑥) ≤ (4
√

2/𝛼38)𝑥 < 1/2, 𝑚 ≥ (𝑛− 2)𝑥 ≥
𝑛 and 𝛼𝑥 ≥ 𝛼3 > 197, as well as inequality (3.12). Hence, we conclude that

⃒⃒
⃒𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2 − 1

⃒⃒
⃒ < 1

𝛼𝑥
+

3

𝛼𝑛
≤ 4

𝛼𝑙
, (3.14)

where 𝑙 := min{𝑛, 𝑥}. We now set

Λ2 := 𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2 − 1 (3.15)

and observe that Λ2 ̸= 0. Indeed, for if Λ2 = 0, then 𝛼2((𝑛+1)𝑥−𝑚) = 32𝑥−1 ∈ Z
which is possible only when (𝑛 + 1)𝑥 = 𝑚. But if this were so, then we would get
0 = Λ2 = 32(𝑥−1)/2 − 1, which leads to the conclusion that 𝑥 = 1, which is not
possible. Hence, Λ2 ̸= 0. Next, let us notice that since 𝑥 ≥ 3 and 𝑚 ≥ 38, we have
that

|Λ2| ≤
1

𝛼3
+

1

𝛼38
<

1

2
, (3.16)

so that 𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2 ∈ [1/2, 3/2]. In particular,

(𝑛 + 1)𝑥−𝑚 <
1

log𝛼

(︂
(𝑥− 1) log 32

2
+ log 2

)︂
< 𝑥

(︂
log 32

2 log𝛼

)︂
< 𝑥 (3.17)

and

(𝑛 + 1)𝑥−𝑚 >
1

log𝛼

(︂
(𝑥− 1) log 32

2
− log 2

)︂
> 0.9𝑥− 1.4 > 0. (3.18)
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We lower bound the left-hand side of inequality (3.15) using again Matveev’s the-
orem. We take

𝑠 := 2, 𝛾1 := 𝛼, 𝛾2 := 4
√

2, 𝑏1 := 𝑚− (𝑛 + 1)𝑥, 𝑏2 := 𝑥− 1,

𝐷 := 2, 𝐴1 := log𝛼, 𝐴2 := log 32, and 𝐵 := 𝑥.

We thus get that

log |Λ2| > −1.4 × 305 × 24.5 × 22(1 + log 2)(log𝛼)(log 32)(1 + log 𝑥). (3.19)

The inequalities (3.14) and (3.19) give

𝑙 < 4 × 1010 log 𝑥.

Treating separately the case 𝑙 = 𝑥 and the case 𝑙 = 𝑛, following the argument in
[4] we have that the upper bound

𝑥 < 7 × 1028

always holds.

3.5. Reducing the bound on 𝑥

Next, we take

Γ2 := (𝑥− 1) log(4
√

2) − ((𝑛 + 1)𝑥−𝑚) log𝛼.

Observe that Λ2 = 𝑒Γ2 − 1, where Λ2 is given by (3.15). Since |Λ2| < 1
2 , we have

that 𝑒|Γ2| < 2. Hence,

|Γ2| ≤ 𝑒|Γ2| ⃒⃒𝑒Γ2 − 1
⃒⃒
< 2 |Λ2| <

2

𝛼𝑥
+

6

𝛼𝑛
.

This leads to
⃒⃒
⃒⃒
⃒
log(4

√
2)

log𝛼
− (𝑛 + 1)𝑥−𝑚

𝑥− 1

⃒⃒
⃒⃒
⃒ <

1

(𝑥− 1) log𝛼

(︂
2

𝛼𝑥
+

6

𝛼𝑛

)︂
. (3.20)

Assume next that 𝑥 > 100. Then 𝛼𝑥 > 𝛼100 > 1033 > 104𝑥. Hence, we get that

1

(𝑥− 1) log𝛼

(︂
2

𝛼𝑥
+

6

𝛼𝑛

)︂
<

8

𝑥(𝑥− 1)104 log𝛼
<

1

2200(𝑥− 1)2
. (3.21)

Estimates (3.20) and (3.21) lead to
⃒⃒
⃒⃒
⃒
log(4

√
2)

log𝛼
− (𝑛 + 1)𝑥−𝑚

𝑥− 1

⃒⃒
⃒⃒
⃒ <

1

2200(𝑥− 1)2
. (3.22)
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By a criterion of Legendre, inequality (3.22) implies that the rational number ((𝑛+
1)𝑥−𝑚)/(𝑥− 1) is a convergent to 𝛾 := log(4

√
2)/ log𝛼. Let

[𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, . . .] = [0, 1, 57, 1, 234, 2, 1, . . .]

be the continued fraction of 𝛾, and let 𝑝𝑘/𝑞𝑘 be it’s 𝑘th convergent. Assume that
((𝑛 + 1)𝑥 −𝑚)/(𝑥 − 1) = 𝑝𝑘/𝑞𝑘 for some 𝑘. Then, 𝑥 − 1 = 𝑑𝑞𝑘 for some positive
integer 𝑑, which in fact is the greatest common divisor of (𝑛 + 1)𝑥−𝑚 and 𝑥− 1.
We have the inequality

𝑞54 > 7 × 1028 > 𝑥− 1.

Thus, 𝑘 ∈ {0, . . . , 53}. Furthermore, 𝑎𝑘 ≤ 234 for all 𝑘 = 0, 1, . . . , 53. From the
known properties of the continued fraction, we have that
⃒⃒
⃒⃒𝛾 − (𝑛 + 1)𝑥−𝑚

𝑥− 1

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒𝛾 − 𝑝𝑘

𝑞𝑘

⃒⃒
⃒⃒ > 1

(𝑎𝑘 + 2)𝑞2𝑘
≥ 𝑑2

236(𝑥− 1)2
≥ 1

236(𝑥− 1)2
,

which contradicts inequality (3.22). Hence, 𝑥 ≤ 100.

3.6. The final step
To finish, we go back to inequality (3.13) and rewrite it as

⃒⃒
⃒𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2(1 − 𝛼−𝑥)−1 − 1

⃒⃒
⃒ < 3

𝛼𝑛(1 − 𝛼−𝑥)
<

4

𝛼𝑛
.

Recall that 𝑥 ∈ [3, 100] and from inequalities (3.17) and (3.18), we have that

0.9𝑥− 1.4 < (𝑛 + 1)𝑥−𝑚 < 𝑥.

Put 𝑡 := (𝑛+1)𝑥−𝑚. We computed all the numbers
⃒⃒
𝛼−𝑡32(𝑥−1)/2(1 + 𝛼−𝑥)−1 − 1

⃒⃒

for all 𝑥 ∈ [3, 100] and all 𝑡 ∈ [⌊0.9𝑥− 1.4⌋, ⌊𝑥⌋] . None of them ended up being
zero and the smallest of these numbers is > 10−1. Thus, 1/10 < 3/𝛼𝑛, or 𝛼𝑛 < 30,
so 𝑛 ≤ 3 which is false.
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Abstract

In this paper a Marcinkiewicz–Zygmund type strong law of large num-
bers is proved for non-negative random variables with multidimensional in-
dices, furthermore we give its an application for multi-index sequence of non-
negative random variables with finite variances.
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1. Introduction

The Kolmogorov theorem and the Marcinkiewicz–Zygmund theorem are two fa-
mous theorems on the strong law of large numbers for 𝑋𝑛 (𝑛 ∈ N) sequence of
independent identically distributed random variables (see e.g. Loève [8]). By Kol-
mogorov theorem, there exists a constant 𝑏 such that lim𝑛→∞ 𝑆𝑛/𝑛 = 𝑏 almost
surely if and only if E |𝑋1| < ∞, where 𝑆𝑛 =

∑︀𝑛
𝑘=1 𝑋𝑘. If the latter condition is

satisfied then 𝑏 = E𝑋1. By Marcinkiewicz–Zygmund theorem, if 0 < 𝑟 < 2 then
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lim𝑛→∞(𝑆𝑛 − 𝑏𝑛)/𝑛1/𝑟 = 0 almost surely if and only if E |𝑋1|𝑟 < ∞, where 𝑏 = 0
if 0 < 𝑟 < 1, and 𝑏 = E𝑋1 if 1 ≤ 𝑟 < 2.

Etemadi [1] proved that the Kolmogorov theorem holds for identically dis-
tributed and pairwise independent random variables, furthermore Kruglov [7]
extended the Marcinkiewicz–Zygmund theorem for pairwise independent case if
𝑟 < 1.

Several papers are devoted to the study of the strong law of large numbers for
multi-index sequence of random variables (see e.g. Gut [4], Klesov [5, 6], Fazekas
[2], Fazekas, Tómács [3]). For example, Theorem 3.1 of Fazekas, Tómács [3]
extends Theorem 2 of Kruglov [7] for multi-index case.

In this paper the main result is Theorem 3.1, which is a Marcinkiewicz–Zygmund
type strong law of large numbers for non-negative random variables with multidi-
mensional indices. It is a generalization of Theorem 3.1 of Fazekas, Tómács [3]
in case n → ∞. Furthermore we give an application (see Theorem 4.1) for multi-
index sequence of non-negative random variables with finite variances. A special
case of this result gives Theorem of Petrov [9].

2. Notation

Let N𝑑 be the positive integer 𝑑-dimensional lattice points, where 𝑑 is a positive
integer. For n,m ∈ N𝑑, n ≤ m is defined coordinate-wise, (n,m] = (𝑛1,𝑚1] ×
(𝑛2,𝑚2] × · · · × (𝑛𝑑,𝑚𝑑] is a 𝑑-dimensional rectangle and |n| = 𝑛1𝑛2 · · ·𝑛𝑑, where
n = (𝑛1, 𝑛2, . . . , 𝑛𝑑), m = (𝑚1,𝑚2, . . . ,𝑚𝑑).

∑︀
n will denote the summation for

all n ∈ N𝑑. We also use 1 = (1, 1, . . . , 1) ∈ N𝑑 and 2 = (2, 2, . . . , 2) ∈ N𝑑. Denote
the integer part of 𝑥 real number by [𝑥].

We shall say that limn→∞ 𝑎n = 0, where 𝑎n (n ∈ N𝑑) are real numbers, if for
all 𝛿 > 0 there exists N ∈ N𝑑 such that |𝑎n| < 𝛿 ∀n ≥ N.

We shall assume that random variables 𝑋n (n ∈ N𝑑) are defined on the same
probability space (Ω,ℱ ,P). E and Var stand for the expectation and the variance.

Remark that a sum or a minimum over the empty set will be interpreted as
zero (i.e.

∑︀
n∈𝐻 𝑎n = minn∈𝐻 𝑎n = 0 if 𝐻 = ∅).

3. The result

The following result is a generalization of Theorem 3.1 of Fazekas, Tómács [3]
in case n → ∞.

Theorem 3.1. Let 𝑋n (n ∈ N𝑑) be a sequence of non-negative random variables,
let 𝑏n (n ∈ N𝑑) be a sequence of non-negative numbers, 𝐵n =

∑︀
k≤n 𝑏k, 𝑆n =∑︀

k≤n 𝑋k, 𝑐 > 0, 𝐾 ∈ N and 0 < 𝑟 ≤ 1. If

𝐵n −𝐵m ≤ 𝑐(|n| − |m|) ∀n,m ∈ N𝑑,n ≥ m, |n| − |m| ≥ 𝐾 (3.1)
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and ∑︁

n

1

|n| P
(︁
|𝑆n −𝐵n| > 𝜀|n|1/𝑟

)︁
< ∞ ∀𝜀 > 0, (3.2)

then
lim

n→∞
𝑆n −𝐵n

|n|1/𝑟 = 0 almost surely.

Proof. Let 𝛿 > 0, 1 < 𝛼 <
(︀

𝛿
2𝑐 + 1

)︀1/3𝑑
and 0 < 𝜀 < 𝛿

2

(︀
𝛿
2𝑐 + 1

)︀−1/𝑟
, which imply

𝜀𝛼3𝑑/𝑟 + 𝑐(𝛼3𝑑 − 1) < 𝛿. (3.3)

Let 𝑘𝑛 = [𝛼𝑛] (𝑛 ∈ N) and kn = (𝑘𝑛1
, 𝑘𝑛2

, . . . , 𝑘𝑛𝑑
), where n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ∈

N𝑑. It follows from the inequalities

∑︁

n

1

|n| P
(︁
|𝑆n −𝐵n| > 𝜀|n|1/𝑟

)︁

≥
∑︁

n

∑︁

h∈(kn,kn+1]

1

|h| P
(︁
|𝑆h −𝐵h| > 𝜀|h|1/𝑟

)︁

≥
∑︁

n

∑︁

h∈(kn,kn+1]

1

|kn+1|
min

k∈(kn,kn+1]
P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁

=
∑︁

n

|kn+1 − kn|
|kn+1|

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁

and condition (3.2) that

∑︁

n

|kn+1 − kn|
|kn+1|

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁
< ∞. (3.4)

Since lim𝑛→∞
(︀
1 − 1

𝛼𝑛+1 − 1
𝛼

)︀
= 1 − 1

𝛼 > 0, so
(︀
1 − 1

𝛼𝑛+1 − 1
𝛼

)︀
> 𝛼−1

2𝛼 except for
finitely many 𝑛 ∈ N. This implies that there exists N0 ∈ N𝑑 such that

0 <

(︂
𝛼− 1

2𝛼

)︂𝑑

<
𝑑∏︁

𝑖=1

(︂
1 − 1

𝛼𝑛𝑖+1
− 1

𝛼

)︂
=

𝑑∏︁

𝑖=1

𝛼𝑛𝑖+1 − 1 − 𝛼𝑛𝑖

𝛼𝑛𝑖+1

≤
𝑑∏︁

𝑖=1

[𝛼𝑛𝑖+1] − [𝛼𝑛𝑖 ]

[𝛼𝑛𝑖+1]
=

|kn+1 − kn|
|kn+1|

∀n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ≥ N0.

Hence
(︂
𝛼− 1

2𝛼

)︂𝑑 ∑︁

n≥N0

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁

≤
∑︁

n≥N0

|kn+1 − kn|
|kn+1|

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁
.
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By this inequality and (3.4), it follows that
∑︁

n≥N0

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁
< ∞. (3.5)

If n ≥ N0 then there exists mn ∈ N𝑑 such that mn ∈ (kn,kn+1] and

P
(︁
|𝑆mn −𝐵mn | > 𝜀|mn|1/𝑟

)︁
= min

k∈(kn,kn+1]
P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁
.

Therefore, by (3.5) we have
∑︁

n≥N0

P
(︁
|𝑆mn −𝐵mn | > 𝜀|mn|1/𝑟

)︁
< ∞. (3.6)

By the Borel–Cantelli lemma, (3.6) implies that there exist N1 ∈ N𝑑 and 𝐴 ∈ ℱ
such that N1 ≥ N0, P(𝐴) = 1 and

|𝑆mn(𝜔) −𝐵mn |
|mn|1/𝑟

≤ 𝜀 ∀n ≥ N1, ∀𝜔 ∈ 𝐴. (3.7)

Henceforward let 𝜔 ∈ 𝐴 be fixed.
If n ≥ N1 and t ∈ (kn+1,kn+2], then by t ∈ (mn,mn+2], (3.7) and

|mn+2|1/𝑟 ≥ |mn|1/𝑟 ≥ |mn|

we have

𝑆t(𝜔) −𝐵t

|t|1/𝑟 ≥ 𝑆mn(𝜔) −𝐵mn+2

|mn+2|1/𝑟

=
𝑆mn(𝜔) −𝐵mn

|mn|1/𝑟
|mn|1/𝑟

|mn+2|1/𝑟
− 𝐵mn+2 −𝐵mn

|mn+2|1/𝑟

≥ −𝜀− 𝐵mn+2 −𝐵mn

|mn|
. (3.8)

If n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ≥ N0 and mn = (m
(1)
n ,m

(2)
n , . . . ,m

(𝑑)
n ) then

[𝛼𝑛𝑖 ] < m(𝑖)
n ≤ [𝛼𝑛𝑖+1].

On the other hand m
(𝑖)
n ∈ N, hence we get

𝛼𝑛𝑖 < m(𝑖)
n ≤ 𝛼𝑛𝑖+1. (3.9)

This inequality implies

|mn+2| − |mn| >
𝑑∏︁

𝑖=1

𝛼𝑛𝑖+2 −
𝑑∏︁

𝑖=1

𝛼𝑛𝑖+1
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= (𝛼𝑑 − 1)

𝑑∏︁

𝑖=1

𝛼𝑛𝑖+1

> (𝛼𝑑 − 1)𝛼𝑛1 ∀n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ≥ N0.

Since lim𝑛→∞ 𝛼𝑛 = ∞, therefore 𝛼𝑛 ≥ 𝐾(𝛼𝑑−1)−1 except for finitely many values
of 𝑛 ∈ N. Hence there exists N2 ∈ N𝑑 such that N2 ≥ N1 and

|mn+2| − |mn| > (𝛼𝑑 − 1)
𝐾

𝛼𝑑 − 1
= 𝐾 ∀n ≥ N2.

This inequality implies by (3.1), that

𝐵mn+2 −𝐵mn ≤ 𝑐(|mn+2| − |mn|) ∀n ≥ N2. (3.10)

Using (3.9) we have

|mn+2|
|mn|

≤
𝑑∏︁

𝑖=1

𝛼𝑛𝑖+3

𝛼𝑛𝑖
= 𝛼3𝑑 ∀n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ≥ N2. (3.11)

Hence (3.8), (3.10), (3.11) and (3.3) imply, that if n ≥ N2 and t ∈ (kn+1,kn+2],
then

𝑆t(𝜔) −𝐵t

|t|1/𝑟 ≥ −𝜀− 𝐵mn+2 −𝐵mn

|mn|
≥ −𝜀− 𝑐

(︂ |mn+2|
|mn|

− 1

)︂

≥ −𝜀− 𝑐(𝛼3𝑑 − 1) ≥ −𝜀𝛼3𝑑/𝑟 − 𝑐(𝛼3𝑑 − 1) > −𝛿. (3.12)

If n ≥ N2 and t ∈ (kn+1,kn+2], then by t ∈ (mn,mn+2], |mn|1/𝑟 ≥ |mn|, (3.7),
(3.11), (3.10) and (3.3), we have

𝑆t(𝜔) −𝐵t

|t|1/𝑟 ≤ 𝑆mn+2(𝜔) −𝐵mn

|mn|1/𝑟

=
𝑆mn+2(𝜔) −𝐵mn+2

|mn+2|1/𝑟
|mn+2|1/𝑟
|mn|1/𝑟

+
𝐵mn+2 −𝐵mn

|mn|1/𝑟

≤ 𝑆mn+2(𝜔) −𝐵mn+2

|mn+2|1/𝑟
|mn+2|1/𝑟
|mn|1/𝑟

+
𝐵mn+2 −𝐵mn

|mn|

≤ 𝜀𝛼3𝑑/𝑟 + 𝑐

(︂ |mn+2|
|mn|

− 1

)︂
≤ 𝜀𝛼3𝑑/𝑟 + 𝑐(𝛼3𝑑 − 1) < 𝛿.

This inequality and (3.12) imply

|𝑆t(𝜔) −𝐵t|
|t|1/𝑟 < 𝛿 ∀n ≥ N2, t ∈ (kn+1,kn+2]. (3.13)

If t ≥ kN2+1 + 1, then there exists n ≥ N2 such that t ∈ (kn+1,kn+2]. Hence
(3.13) implies

|𝑆t(𝜔) −𝐵t|
|t|1/𝑟 < 𝛿 ∀t ≥ kN2+1 + 1.

Therefore the statement is proved.
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4. An application for multi-index sequence of non-
negative random variables with finite variances

In this section we give an application of Theorem 3.1. In case 𝑑 = 𝑟 = 1, this result
gives Theorem of Petrov [9].

Theorem 4.1. Let 𝑋n (n ∈ N𝑑) be a sequence of non-negative random variables
with finite variances, 𝑆n =

∑︀
k≤n 𝑋k, 𝑐 > 0, 𝐾 ∈ N and 0 < 𝑟 ≤ 1. If

E𝑆n − E𝑆m ≤ 𝑐(|n| − |m|) ∀n,m ∈ N𝑑,n ≥ m, |n| − |m| ≥ 𝐾 (4.1)

and ∑︁

n

Var𝑆n

|n|1+2/𝑟
< ∞, (4.2)

then
lim

n→∞
𝑆n − E𝑆n

|n|1/𝑟 = 0 almost surely.

Proof. With notation 𝑏k = E𝑋k and 𝐵n =
∑︀

k≤n 𝑏k = E𝑆n, (4.1) implies (3.1).
On the other hand, if 𝜀 > 0, then the Chebyshev inequality and (4.2) imply

∑︁

n

1

|n| P
(︁
|𝑆n −𝐵n| > 𝜀|n|1/𝑟

)︁
≤
∑︁

n

1

|n|
Var 𝑆n

|n|1/𝑟

𝜀2
= 𝜀−2

∑︁

n

Var𝑆n

|n|1+2/𝑟
< ∞.

Therefore (3.2) holds. Hence, using Theorem 3.1, we have that the statement is
true.
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Abstract

Unexpected growth of high-throughput sequencing platforms in recent
years impacted virtually all areas of modern biology. However, the ability to
produce data continues to outpace the ability to analyze them. Therefore,
continuous efforts are also needed to improve bioinformatics applications for
a better use of these research opportunities. Due to the complexity and diver-
sity of metagenomics data, it has been a major challenging field of bioinfor-
matics. Sequence-based identification methods such as using DNA signature
(unique k-mer) are the most recent popular methods of real-time analysis
of raw sequencing data. DNA signature discovery is compute-intensive and
time-consuming.

Hadoop, the application of parallel and distributed computing is one of
the popular applications for the analysis of large scale data in bioinformatics.
Optimization of the time-consumption and computational resource usages
such as CPU consumption and memory usage are the main goals of this
paper, along with the management of the Hadoop cluster nodes.

Keywords: hadoop, optimization, next-Generation Sequencing, DNA signa-
ture, resource management
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1. Introduction

Since the announcement of the human genome project completion in 2003 [8], Next-
Generation Sequencing (NGS) technologies have revolutionized exploration of the
secrets in the life science. Due to extraordinary progress in this field, massively
parallel sequencing of the microbial genomes in the complex communities has led
the advent of metagenomics techniques.

Metagenomics, a high-throughput culture-independent technique has provided
the ability to investigate the entire community of microorganisms of an environment
with analyzing their genetic content obtained directly from their natural residence
[9, 15].

Along with technical advances of sequencing, mining the enormous and ever-
growing amount of data generated by sequencing technologies is now one of the
fastest growing fields of big data science, but there are still a lot of difficulties
and challenges ahead. Real-time identification of microorganisms from raw read
sequencing data is one of the key problems of current metagenomics and next-
generation sequencing analysis. It has a pivotal role for pathogenic diagnostics
assays to consider an early treatment.

Sequence-based identification of the species can be classified into two groups:
Assembly and alignment-based approaches and alignment-free approaches [7].

Due to the difficulties, technical challenges, and computational complexity of
alignment and assembly-based approaches, they are not applicable for complex
sequencing data such as metagenomics data. Moreover, they are expensive and
time-consuming.

Reads generated by high-throughput sequencing technology are short in length
and large in volume, very noisy and partial, with too many missing parts [9, 19].
They contain sequencing errors caused by the sequencer machines. Another chal-
lenge is repetitive elements in the DNA sequence of species. As an example, about
half of the human genome is covered by repeats [16]. These challenges cause inca-
pability and unreliability of the results in alignment-based identification. Thus, it
is necessary to develop efficient alignment-free methods for phylogenetic analysis
and rapid identification of species in Metagenomics and clinical diagnostics assays,
based on the sequence reads. Several alignment-free methods have been proposed
in the literature to address this problem. One of the latest methods is using DNA
signature that plays the role of fingerprints for microbial species.

DNA signature is a unique short fragment (k-mer) of DNA, which is specific
for a species that is selected from a target genome database. DNA signature can
be obtained for every individual species in the genome databases by screening
and counting the frequency of k-mers through the entire database. The term k-
mer refers to the existence of all the possible substrings of length k in a genome
sequence. Each k-mer that appears once in a genome database is a unique DNA
signature for the related sequence containing that k-mer. Since comparing k-mers
frequencies are computationally easier than sequence alignment, the method can
also be used as a first stage analysis before an alignment [10].
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Considering the large size of genome databases, searching the unique DNA
signatures (k-mers) needs powerful computational resources and it is still time-
consuming. This problem can be solved by incorporating parallel and distributed
computing.

Several tools and algorithms of k-mers frequency counting and DNA signature
discovery have been proposed in the literature. Some of them use the applications
of parallel and distributed computing. Hadoop and MapReduce are among these
applications. The Apache Hadoop software [18], is a platform for parallel and
distributed computing of large data set and MapReduce [3] is a programming model
for parallel and distributed data processing.

In this paper, we have proposed optimization techniques to reduce time-consum-
ing and to use less computational resources. Accordingly, we designed the nodes
and managed the performance of the nodes in the Hadoop cluster. Managing the
CPU consumption and memory usage according to the size of data and the number
of maps, monitoring and comparing the running time of the maps were other issues
that we have considered in this study.

The aim of this research is to enhance the possibility of using ordinary computers
as a distributed system, in order to allow the process of searching DNA signatures
and k-mers frequency to be applicable for the entire research community.

2. Background

This section contains a brief overview of the basic concepts that are used in this
paper.

2.1. Next-Generation Sequencing (NGS)
Next-generation sequencing (NGS) refers to methods that have emerged in the
last decade. NGS technologies allow simultaneous determination of nucleotide se-
quences of a variety of different DNA strands. It provides reading of billions of
nucleotides per day. NGS is also known as massive parallel sequencing. The NGS
has dramatically improved in recent years, making the number of bases that can
be sequenced per unit price has grown exponentially. Therefore the new platforms
are distinguished by their ability to sequence millions of DNA fragments parallel
to a much cheaper price per base. In this technology, experimental advances in
chemistry, engineering, molecular biology and nanotechnology are integrated with
high-performance computing to increase the speed at which data is obtained. Its
potential has allowed the development of new applications and biological diagnos-
tic assays that will revolutionize, in the near future, the diagnosis of genetic and
pathogenic diseases [1, 12–14, 17, 20].
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2.2. Metagenomics
For the first time, the word “metagenomics” appeared in 1998 in the article written
by Jo Handelsman [6]. Metagenomics is the study of the entire genetic material
of microorganisms obtained directly from the environment. The main goals of
metagenomics are to determine the taxonomic (phylogenetic) and functional com-
position of microbial communities and understanding that how they interact with
each other in the term of metabolism. Historically, the bacterial composition was
determined by culturing bacterial cells, but the majority of bacteria are simply not
cultivated. You can isolate a separate species and study its genome, but this is
long, since there are many species together as a diverse community [5, 19].

2.3. Alignment-based analysis
One of the most effective and convenient methods for classification and identi-
fication of sequence similarity is an alignment method. Alignment of the new
sequences with already well-studied makes it possible to quantify the level of simi-
larity of these sequences, as well as to indicate the most likely regions of similarity
structures. The most commonly used programs for the comparison of sequences are
BLAST, FASTA and the Smith-Waterman (SW) is the most sensitive and popular
algorithm is used. The applications of sequence alignment are limited to apply for
closely related sequences, but when the sequences are divergent, the results cannot
be reliable. Alignment-based approaches are computationally complex, expensive,
and time-consuming and therefore aligning large-scale sequence data is another
limitation [11]. Inability of this method becomes more visible when facing massive
sequencing reads in metagenomics.

2.4. Alignment-free analysis
Alignment-free methods are an alternative to overcome various difficulties of tra-
ditional sequence alignment approaches, they are increasingly used in NGS se-
quence analysis, such as searching sequence similarity, clustering, classification of
sequences, and more recently in phylogeny reconstruction and taxonomic assign-
ments [2, 4]. They are much faster than alignment-based methods. The recent
most common alignment-free methods are based on k-mer/word frequency. DNA
signature is a unique short fragment (k-mer) of DNA, which is specific for a species
that is selected from a target genome database. DNA signature can be obtained
for every individual species in the genome databases by screening and counting the
frequency of k-mers through the entire database [10].

3. System model

In our investigation we create a cluster which consists of three computers (N1, N2,
N3). The next table (see Table 1) shows the main components of them.
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Node Processor Memory Hard disk
N1 Intel Core i3-2120 (3.3 GHz) 4 GB ST1500DL003-9VT16L (1.5 TB)
N2 Intel Core i7-3770K (3.5 GHz) 16 GB WDC WD20EZRX-00DC0B0 (2 TB)
N3 Intel Core i7-4771 (3.5 GHz) 16 GB TOSHIBA DT01ACA200 (2 TB)

Table 1: Main components of the nodes

To run Hadoop, Java is required to be installed and we use version of 1.8.0-
111. Throughout the investigation on each computer runs Ubuntu 14.04.5 Server
(64-bit) and to collect information of utilization of cpu, memory, I/O of the nodes
we choose collectl tool which is suitable for benchmarking, monitoring a system’s
general heath, providing lightweight collection of device performance information.
In this paper the input data is part of the genome database which contains k-mers.
In our case k is 18, so that each file contains lines of 18 character lengths. We
configure block size as the input for running the maps to be exactly 1GB so after
loading the data into HDFS it will be divided into 1GB parts. We considered 1GB
of RAM to each map process. We downloaded the bacterial genome database in
FASTA format from the National Center for Biotechnology Information (NCBI)
database. The size of this database is 9.7 GB after decompression. In order to
generate k-mers from the FASTA files, we used GkmerG software to generate all
the possibilities of 18-mers from individual bacterial genomes of the whole database
with a total size of 177.35 GB. The result is a file containing a single column of
k-mers with length 18. The length of k-mers can differ according to the needs.
Since, the aim of this paper is optimizing the process of searching the frequency of
k-mers, the large file must be split in the same size (1GB) for each map to compare
the running time of the maps, therefore we assume that the large file is pre-sorted
and the same k-mers is not located in different files after splitting. For the real
data processing we have to split the large file in an intelligence manner.

During our investigation we use one of the example program on the input data
called grep that extracts matching strings from text files and counts how many
time they occurred.

Hadoop is designed to scale up from single servers to thousands of machines,
each proposing local computation and storage, giving the opportunity to the system
to be highly-available. Usually in practice the chosen machine, which is the master
node, does not store any data so it does not do the job of datanode. In our case
there is only one “real” datanode (N3) which is opposite of Hadoop’s principles.
However, in our scenario in that way we can focus on the efficiency of the utilization
of resources during running Hadoop and also with that configuration we decrease
network traffic as low as possible. Because YARN only supports CPU and memory
reservation with our setting we can discover the crucial point of the system. The
nodes of the cluster are configured in the following way: N1 is the master node
(Resourcemanager runs on it), on every occasion only the applicationmaster (AM)
runs on N2 because 15 GB RAM is given to AM and on N3 the default setting
remains (1536MB) and Hadoop chooses N2 to start running AM. 14GB is given to
yarn on N3 meaning that maximum 14 maps can run simultaneously. Every block
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is located physically on N3 and every container (so every map process) runs on N3
except the AM.

The following table (see Table 2) includes the main features of Cases.

Case Number of map Size of the block Size of dataset Given memory to N3
a 1 1 GB 1 GB 14 GB
b 2 1 GB 2 GB 14 GB
c 3 1 GB 3 GB 14 GB
d 4 1 GB 4 GB 14 GB
e 5 1 GB 5 GB 14 GB
f 6 1 GB 6 GB 14 GB
g 7 1 GB 7 GB 14 GB
h 8 1 GB 8 GB 14 GB
i 9 1 GB 9 GB 14 GB
j 10 1 GB 10 GB 14 GB
k 11 1 GB 11 GB 14 GB
l 12 1 GB 12 GB 14 GB
m 13 1 GB 13 GB 14 GB
n 14 1 GB 14 GB 14 GB

Table 2: Scenario A

4. Numerical results

4.1. Scenario A
As it is indicated earlier we use collectl to get information about the utilization of
resources of the nodes. It works under linux operating system and basically reads
data from /proc and writes its results into a file or on the terminal. It is capable
of monitoring any of a broad set of subsystems which currently include buddyinfo,
cpu, disk, inodes, infiniband, lustre, memory, network, nfs, processes, quadrics,
slabs, sockets and tcp. Collectl output can also be saved in a rolling set of logs
for later playback or displayed interactively in a variety of formats. The command
can be run with lots of arguments and it can be freely customized in which mode
collectl runs or how its output is saved. Below (see Table 3) we can see some
results about running times. The first column indicates the whole running time
of the application, the second one shows the mean running time of the map jobs,
the third one the initialization period which means after hadoop starts some time
is needed before launching map jobs (e.g. deciding which node will be the master
node). The last column represents the whole running time divided by the number
of map jobs.

It can be seen that as more map processes are running in parallel the average
processing time of 1 GB data starts to decrease then it remains around a constant
value.
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Running time Average running time of the maps Initialization period Average processing time of 1 GB data
a 33 22 11 33 sec
b 39 26 13 19.5 sec
c 61 49 12 20.33 sec
d 78 65 13 19.5 sec
e 92 80 12 18.4 sec
f 109 96 13 18.17 sec
g 129 117 12 18.43 sec
h 150 137 13 18.75 sec
i 161 149 12 17.89 sec
j 187 174 13 18.7 sec
k 204 191 13 18.54 sec
l 226 213,4 12 18.83 sec
m 242 230 12 18.61 sec
n 267 255 12 19.07 sec

Table 3: Results in connection with running times

4.1.1. Results in connection with the node where AM is located

As mentioned earlier the AM runs on this node on every occasion. Because of
the rounding and the way of configuring collectl figures might not demonstrate the
exact beginning of the running process but the deviation is very little. Because of
the lots of data the graphs would be unclear so the achieved results are divided
into two groups according to the number of processed blocks:

∙ Number of processed blocks are odd (1,3,5,7,9,11,13)

∙ Number of processed blocks are even (2,4,6,8,10,12,14)

Figure 1: CPU usage of N2

On Figure 1 the data of cpu usage of N2 node is shown. As on N2 just the AM
runs it can be seen after the jobs are initiated CPU usage increases to about 35%,
it lasts for a while then it remains almost 0% till the application runs. Some jumps
can be observable at the end of the Cases which are caused by the fact that map
jobs come to an end.

Figure 2 shows the utilization of disk capacity on N2 node. Similarly to cpu
usage when the jobs are initiated usage of disk rises then it drops independently of
the number of map processes and also some jumps occur at the end of Cases when
map jobs are finished.
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Figure 2: Speed of disk reading of N2

Figure 3: Size of reserved memory of N2

Figure 3 displays the memory usage of N2 node. Size of the reserved memory
is independent of the number of initiated map processes.

4.1.2. Results in connection with the node where the “real” datanode is
located

Figure 4: Cpu usage of N3

Figure 4 represents the cpu usage of N3 node. When one map is running (Case
a) it reserves one of the four cores so cpu usage barely passes 25%. When two
maps are running (Case b) it reserves two of the four cores so the maximum cpu
usage can not step over 50% but it is around 40%. Whenever three or more maps
are running simultaneously apart from the initial jump cpu usage stabilizes around
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30%. The reason for this is the limit of disk reading capability as Figure 6 will
prove that statement.

Figure 5: Speed of disk reading of N3

Figure 5 represents the utilization of capability of disk reading of N3 node.
In case of 1 map to read 1 GB it uses approximately the half of disk capability

because only 1 core is reserved which is fully loaded.
When two maps are running two cpu cores are reserved and around 3/4 of disk

capability is used. To read 2 GB into the memory lasts almost the same as in
the first case but the speed of disk reading is almost twice as much as in Case
a. Furthermore whenever three or more maps are running the limit of I/O arises
because of the emerging congestion in the system. That is why cpu usage does not
increase after Case b.

Figure 6: Comparison of cpu usage

We investigate the scenario when we preload the necessary dataset into the
memory so there is no I/O procedure during the running of the map tasks and
the program reaches the data directly from the memory. From Figure 6 it can be
observed when the data is reachable from the memory CPU usage reach the theoret-
ical maximum in all Cases (Case_a_cache, Case_b_cache and Case_c_cache)
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so it is clear that the cross section point is the I/O capability (reading).

Figure 7: Size of reserved memory of N3

Figure 7 shows the size of reserved memory of N3. As time goes by the amount
of memory usage increases.

4.2. Scenario B
From the obtained results it appears that in Case a limit of cpu usage arises while
in the other Cases limit of I/O capability restricts the performance. So in the
next scenario the system is changed a little bit. Almost everything is the same as
in Scenario A except that instead of 14 GB 2 GB RAM is given to yarn on N3
(see Table 4). This little modification has a remarkable effect on the operation of
Hadoop, in Scenario B 2 maps can run in parallel at the same time altogether.

Case Number of parallel maps Number of total maps Size of dataset Given memory to N3
a 1 1 1 GB 2 GB
b 2 2 2 GB 2 GB
c 2 3 3 GB 2 GB
d 2 4 4 GB 2 GB
e 2 5 5 GB 2 GB
f 2 6 6 GB 2 GB
g 2 7 7 GB 2 GB
h 2 8 8 GB 2 GB
i 2 9 9 GB 2 GB
j 2 10 10 GB 2 GB
k 2 11 11 GB 2 GB
l 2 12 12 GB 2 GB
m 2 13 13 GB 2 GB
n 2 14 14 GB 2 GB

Table 4: Scenario B

Below (see Table 5) some results about running times can be noticeable, this
table is the same as Table 3 with the results of Scenario B:

The same tendency takes place here as in Scenario B namely as more map
processes are running in parallel the average processing time of 1 GB data starts
to decrease then it remains around a constant value.
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Running time Average running time of a map Initialization period Average processing time of 1 GB data
a 34 22 12 34 sec
b 48 36 12 24 sec
c 58 25 12 19.33 sec
d 68 28 12 17 sec
e 85 26,4 11 17 sec
f 92 26,1666667 12 15.33 sec
g 115 27 11 16.43 sec
h 126 28,5 11 15.75 sec
i 133 24,333 13 14.77 sec
j 142 25,5 11 14.2 sec
k 157 23,818181 13 14.27 sec
l 173 26,08333 13 14.42 sec
m 190 25,384615 12 14.62 sec
n 191 24,47143 13 13.64 sec

Table 5: Results in connection with running times

4.2.1. Results in connection with the node where AM is located

As mentioned earlier the AM runs on this node on every occasion.
We use the same style as previously so the achieved results are divided into two

groups according to the number of processed blocks:

∙ Number of processed blocks are odd (1,3,5,7,9,11,13)

∙ Number of processed blocks are even (2,4,6,8,10,12,14)

Figure 8: CPU usage of N2

On Figure 8 we can see the data of CPU usage of N2. We get back almost the
same result as in Scenario A even the values are practically identical.

We can see the speed of disk reading of N2 on Figure 9. The situation is the
same as in case of Scenario A. These figures also imply the fact that the little
modification does not change the utilization of the resources of N2.

Figure 10 present the memory usage of N2. It is evident that the size of reserved
memory depends a little on the number of launched map processes.

4.2.2. Results in connection with the node where the “real” datanode is
located

Figure 11 demonstrates the CPU usage of N3. It is noticeable that in particular
intervals the CPU usage boosts. These phenomena can by explained by the fact
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Figure 9: Speed of disk reading of N2

Figure 10: Size of reserved memory of N2

Figure 11: CPU usage of N3

that 2 map processes can run in parallel at the same time so when 3 GB or more
data are processed launching a new map process requires some time. In these
intervals the CPU usage is greater. Another interesting situation is observable in
cases of odd numbered processed blocks because at the end of the running of the
last map process CPU usage decreases to about 25% as only one map is running
at that time.

Figure 12 shows the speed of disk reading of N3. The same tendency can be
observed as in CPU usage. Here we reserve less resources compare to the other
scenario. Just 2 maps can run at the same time in parallel so the factor of congestion
is smaller but we do lose some time whenever a map finishes/starts. Despite that
fact it still results greater speed of disk reading in overall compared to Scenario A.
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Figure 12: Speed of disk reading of N3

Figure 13: Comparison of cpu usage

Figure 13 presents the situation when the necessary dataset is available from
memory. The difference is still there among the appropriate Cases (like between
Case b and Case_b_cache or Case c and Case_c_cache) but it is smaller than in
Scenario A.

Figure 14: Size of reserved memory of N3

Figure 14 show the size of reserved memory of N3. As time goes by the amount
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of memory usage increases.
Let introduce the following notations:

∙ n(t): at time 𝑡 the number of parallelly running maps

∙ T: entire running time of the map in seconds

∙ g: the cost of required resource of one map

∙ K: the cost of the entire running time

Then
𝑇∑︁

𝑡=0

(𝑔 * 𝑛(𝑡)).

In the Table 6 we used the following formula: 𝐾 = 𝑇 * 𝑛 * 𝑔, where n is the
maximum number of executable maps.

The next table compares the investigated scenarios where 𝑔 = 0.9:

∙ We gave 14 GB memory to YARN so the whole dataset can be executable in
parallel. The number of parallelly executable maps are 14 (MAP14).

∙ We gave 2 GB memory to YARN. The number of parallelly executable maps
are 2 (MAP2).

Number of blocks Running time (Scenario A) Cost (Scenario A) Running time (Scenario B) Cost (Scenario B)
1 33 29,7 34 30,6
2 39 70,2 48 86,4
3 61 164,7 58 104,4
4 78 280,8 68 122,4
5 92 414 85 153
6 109 588,6 92 165,6
7 129 812,7 115 207
8 150 1080 126 226,8
9 161 1304,1 133 239,4
10 187 1683 142 255,4
11 204 2019,6 157 282,6
12 226 2440,8 173 311,4
13 242 2831,4 190 342
14 267 3364,2 191 343,8

Table 6: Comparison of the scenarios

5. Conclusion

This paper addressed optimization techniques for reducing the time-consumption
and computational resource usage in a Hadoop cluster. Running time, CPU us-
age, memory usage, and Speed of disk reading of the nodes are the subjects that
have been screened in the Hadoop cluster to examine the proposed optimization
techniques for searching the frequency of DNA signatures (k-mers) in the genomic
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data. The obtained results show that using all the resources (CPU, memory) is
not always the best solution and our scenarios is a prime example of it. Managing
the maps according to the size of data and memory is critical. Our results also
indicate that the speed of I/O greatly affects the effectiveness of performance. To
get a better and faster operation, optimizing the configurations and parameters of
Hadoop is also required in order to reduce the data transfer and communication
between nodes of the cluster. Comparing two Scenarios show another remarkable
result; running the maps in parallel causes shorter processing time. The aim of this
research is to enhance the possibility of using ordinary computers as a distributed
computing system for the entire research community to analyze large-scale dataset.
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Abstract

With the accelerated development of science and innovation, as well as the
invasion of digital systems there is a growing need for science teachers who
can provide short, precise and clear explanations on scientific issues. In addi-
tion, it is essential for teachers to know how to use new systems, information
technology and how to help their students in evaluating and sharing informa-
tion responsibly. They need to become active data explorers who can plan
for, acquire, manage, analyse, and infer from data. The goal is to use data
to describe the world and answer puzzling questions while playing roles in
different situations so students can playfully prepare for today’s data-driven
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society. On the other hand the time of students and teachers is precious;
hence, one of the teacher’s crucial tasks is to find methods and techniques in
order to motivate students to learn and to make the learning as effective as
possible. The freedom in teaching enables teachers to develop an innovative
learning environment and effective teaching techniques for students to work
well together and be successful at learning. Our approach is to explore new
forms of teaching and learning to allow students to think critically without
relying on their teacher’s answers. In this research, using methods that also
improve communication skills in the form of situation games with the help of
drama pedagogy and observing what makes the method more effective can
help in productive innovation.

Keywords: mathematics education, innovative learning environment, primary
teacher training, didactical methodology, situation games, drama pedagogy.

1. Introduction

The problem of low mathematical skills of students is caused by many reasons
such as unsuitable teaching and learning environment, few teaching methods, neg-
ative attitude of pupils and parents towards mathematics, shortage of good quality
teaching and learning materials, negative interaction between teachers and pupils
to mention few (Michael, 2013).

All learners are different. However, most educational materials are the same
for all. In terms of teaching methods, a teacher has plenty of great possibilities to
use, learning environment arrangement, visual aids, etc. This freedom in teaching
provides a good chance to use an enormous number of ideas in the classrooms
(Boumová, 2008).

According to a report by Open University in 2017, ten innovations are already
in currency but have not yet had a profound influence on education. A short list of
these new pedagogies is: spaced learning, learners making science, open textbooks,
people need to be able to evaluate and share information responsibly, intergroup
empathy, immersive learning, student-led analytics, big-data inquiry, learning with
internal values, humanistic knowledge-building communities (Ferguson, 2017).

2. Theoretical background

Since the time of Socrates, philosophers have questioned the purpose of education
and they have proposed four answers. Education is intended to train people for
employment, to develop good citizens, to socialise people within a community, and
to develop happy, rounded individuals.

As Kenneth T. Henson claims, some teaching purposes such as understanding,
knowledge transfer usually determines the methods to use; however, there never
exists the best method for everything (Henson, 1980).

Mathematics can provide the necessary knowledge and skills to empower a per-
son to process a mass of information every day. Students are required to learn a
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considerable amount of complex and diverse mathematical knowledge accumulated
during thousands of years. However, instead of expanding the curriculum another
dimension such as the didactical point of view is to be considered and integrated
into it. Students need to be engaged in activities encouraging learning and inves-
tigation. Carefully designed teaching methodology and entirely new organisations
of tasks provide opportunities for students to develop their epistemic value (also
Artigue, 2010, p. 467) and to take part in problem solving activities while learning
how to apply their knowledge to real-life situations. In the present project, this
means that students’ work with the designed situations should be related to, and
support, their work with theory and so facilitate the transition between abstract
and real life mathematics.

One of the most important principles is gaining experience based on specific
activity, using tools, and inserting games and playful activities in classroom lessons.
The emphasis should be on understanding, on the process and on creating efficient
learners rather than on the product (Carr, 2011).

The Hungarian endeavours characterised by names such as Zoltán Dienes and
Tamás Varga were part of the worldwide education reform, but in many respects,
they diverged from the dominant foreign trends. “According to Tamás Varga,
young people are able to learn new topics if it is done playfully. Teaching tools were
recommended for primary school teachers, for example, how to improve space-vision
with the building game Babylon, or the Dienes-set for teaching number systems”
(Reményi, 2007).

According to Jim Scrivener, the teacher’s main role is to “help learning to hap-
pen,” which means “involving” students in what is going on “by enabling them to
work at their own speed, by not giving long explanations, by encouraging them to
participate, talk, interact, do things, etc.” (Scrivener, 2005).

Another vital aspect is context and purpose. This is supported by the opinion
expressed by Jill and Charles Hadfield who claim, that activities which mirror
real life situations and which have a goal, for example finding a rule, are “more
interesting and motivating for the learners (Hadfield, 2003).

Significant changes are needed in the pedagogical support of the university
curriculum, filling it with teaching methods providing the training of future spe-
cialists with the required comprehensive result. Modern education should focus
on students’ independent activities, the organisation of self-learning environments
and experimental and practical training that encourage students’ interest in the
profession, promote the efficient acquisition of training materials, form patterns
of conduct, provide high motivation, strengthen knowledge, team spirit and free-
dom of expression, and most importantly, contribute to the complex competence
of future specialists (Nadezhda, 2014).

3. Framework of the research

It has long been known that we learn facts better in a series of short sections of the
education material with gaps between them, rather than in a long teaching session
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such as a lecture. Situation games can provide gaps necessary for successful spaced
learning.

Learners need the skills and knowledge to solve problems, evaluate evidence and
make sense of data encountered in a complex and constantly changing world. A
strong understanding of Science, Technology, Engineering, Arts and Mathematics
(STEAM) topics can develop these skills. These changes can be achieved through
participation and contribution to science activities in different situations that are
personally relevant, help critical thinking and reflection. In situation games, learn-
ers can experience how science is made and can enhance their content knowledge.

In situation games, students from different backgrounds interact with each
other. This means that skills such as communication, teamwork and empathy
are important. Drama pedagogy provides the theoretical framework of situations
used for educational purposes. Activities designed to promote intergroup empathy
can provide effective responses and help to reduce tensions.

Learning based on experience in learning situations and exploration can be
intensified through immersion. It can enable people to experience a situation as if
they were there, applying their knowledge to solve a problem or practice a skill. The
learning comes from integrating vision, sound and movement. Immersion requires
learners to act out scenarios or take part in investigations, pretending to be actors
to stimulate reality.

Learning should be rooted in students’ own needs and interests and shaped by
their internal values. However, students need to learn a set of external values from
the national curriculum. We have made efforts to design and develop situations
that can meet this challenge. The main approach is to offer students a choice of
what role they can play and how they learn. At the same time, it equips them with
means to develop appropriate skills and way of thinking in order to support their
learning.

Another goal of situation games is to help students become open to experience,
creative and self-directed. This is a person centred approach. The curriculum
contains collective knowledge of a community. This is an idea-centred approach.
We focus on combining the two approaches. Research shows that students who can
find a balance between the two approaches develop their knowledge in integrated
and transformative ways.

Through a discussion of the results of the present action research, we can share
some interesting first results with practicing primary school student teachers.

The new direction in curriculum development is to link methodology of teaching
mathematics to subjects taught in primary schools. In this way, students can gain
practical knowledge in their future teaching job and they see what mathematics
topics are necessary to teach and how to teach those in primary schools.

The first author teaches mostly mathematics and methodology in a teacher
training college (now part of a teacher training university) since 2004 in a small
town Sárospatak, in Hungary. In 2017 she became responsible for the practical
training of teaching students in the second and third year. Therefore the first au-
thor carried out research work with students teaching mathematics at II. Rákóczi
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Ferenc elementary training school collecting potentials and disadvantages of situa-
tion games in teaching. Data were collected by student questionnaires.

The second author teaches mathematics combined with methodology at Eszter-
házy Károly University in Eger. In this experiment she taught Functions, elements
of analysis for students in the second year. In the previous terms students did not
use situation games during their mathematics lessons. However, they used them
when they were learning Functions, elements of analysis. We compare students’
average results at the end of the first three terms with those at the end of the last
term.

The third author is the inventor of the new communication methods closely
related to situation games, such as the MATHeatre method and the MATHFactor
method and recently the SCIENCEtheatre and the SCIENCEFactor (Makrides,
2017). He is also the founder of the new THALES programme for developing ana-
lytical skills in pupils of ages 8-15 through a short programme that involved word
problems relating to real life situation, mathematics communication and memory
development actions. The later includes also the new THALESTM testing for com-
petence (C test) and for mathematical ability (M test).

All three of us trust in applying innovative teaching methods building on pupils’
and university students’ activities. Love of mathematics and interest motivate
learning more than any other factor. It is important to differentiate in the teaching
process, to take into account differences of individuals, to let make mistakes without
punishment, to play games at home and in the lessons for pedagogical purposes.

4. Findings and interpretations

Our aim is to educate university students to become proficient learners and later on
teachers. These skills include understanding the nature of knowledge, assessing the
validity of claims, and forming sound arguments. They include the development
of reliable processes and strategies for making sense of the world – such as the
scientific method. They include the ability to empathise with others and to judge
the merit of different perspectives and narratives. Recent research in neuroscience
has uncovered the detail of how we produce long-term memories. A study of
spaced learning shows a significant increase in learning compared to a typical lesson.
(Ferguson, 2017). This has led us to design a similar teaching method of spaced
repetition that occurs in the following order for university students: (1) the lesson
begins with a revision of 5 minutes (2) the teacher gives information for 20 minutes;
(3) students take a break of 10 minutes to participate in a connected practical
activity such as playing situation games, modelling; (4) students are asked to recall
key information for 10 minutes with the help of situations where they applied their
new knowledge. The first two authors applied situation games during their lessons
for university students and built on students’ active participation in problem solving
activities. Students acted a certain problem in a situation and then solved it by
creating a mathematical model. The principles of teaching management include the
methodological diversity, the encouragement of group and individual work instead
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of the previously dominating frontal form of work.
Some examples of problems solved with the help of situation games are shown

below. We used problems of elementary level to show university students how to
make learning mathematics more experimental, effective and to raise their pupils’
motivation level. We tried to find less abstract examples being useful for future
elementary school teachers to apply in their teaching practice. The first problem
concerns sets and set operations. Function is involved in the second and geometric
sequences in the third.

Example 1

For the situation game we choose five students. Four will be shopkeepers and one of
them will be the customer. There are four shops a bookshop, a music shop, a shoe
shop and a bicycle shop. The customer wants to buy something from each of these
shops. The customer lives in a small village and needs to travel to a neighbouring
town to buy these things in those shops. The customer knows when they are open
and he/she needs to find when all four shops are open at the same time and to find
out how much time he/she has to get to each of these shops. The shopkeepers will
tell the customer the opening hours of the four shops and what they sell and then
they play their roles:

1. 8.00–14.30

2. 9.00–15.30

3. 9.30–16.30

4. 8.00–12.00 and 13.00–17.30

This task found in a textbook has been transformed into a situation game.

Example 2

Two students want to go on a treasure hunt tour. They got a small map with the
ratio of the zoom and they need to find out the distances in reality. They calculate
that if they leave at 9 o’clock in the morning they need to walk 3 hours in a forest
to reach a view point 10 km from the starting point. They have a rest for an hour
and have lunch. After lunch they walk 18 km further for another 4 hours, and they
get to a tree where they need to dig to find the treasure. The other students are
drawing the graph of the trip as a function of time.

Example 3

The following problems can be solved in groups. Some students are chosen to be
bank managers giving offers to a student who has money and wants to find the
most advantageous investment offer. Geometric sequences can be practiced with
these real world problems. If we want to challenge students we can even ask them
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to find the current best investment. They can use the internet during problem
solving. In this way everybody who has some capital is interested to find the best
offer to gain as much money as possible.

1. Which investment is the most advantageous, A, B or C if we want to put a
given amount of money to gain interest in a bank,

A: at 4% interest, compounded annually at the end of 3 years;

B: at 12% simple interest at the end of a year;

C: at 6% interest, compounded annually at the end of 2 years?

Solution:

In the case A you need to multiply the given amount of money by 1.043 which
is approximately 1.125.
In the case B: the same amount is multiplied by 1.12.
In the case C: you need to multiply the same amount of money by 1.062 which
is approximately 1.124.
Therefore the most advantageous investment is in the case A.

2. We have 1,000,000 Ft and two investment opportunities to invest our capital
for five years:

A: at 10% interest compounded annually;

B: at a simple interest gaining 120,000 Ft annually.

Is the investment B more advantageous?

Solution:

In the case A 1,000,000 · 1.15 = 1,610,510 Ft is the returned amount.
In the case B 1,000,000 + 120,000 · 5 = 1,600,000 Ft. Hence the statement is
false, B is not more advantageous than A.

3. Which investment is more advantageous A or B if we place a given amount
of money in a bank.

A: at 4% interest compounded annually in the first 3 years then the grown
amount is put at 6% interest compounded annually at the end of the
next 3 years;

B: at 5% interest compounded annually in 6 years;

C: at 6% interest compounded annually in the first 3 years then the grown
amount is put at 4% interest compounded annually in the next 3 years?

Solution: B
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Figure 1 presents mathematics result of the same group of students in the last 2
years. The second author was their teacher in the last term. 17 students took part
in the research and they learnt Thinking methods (Sets, logic and combinatory),
Algebra and number theory, Geometry, Functions, elements of analysis.

Figure 1: Results of students in Mathematics

Figure 2 shows that 59% of students improved their results at mathematics.
Hence, most students progressed during the teaching experiment. Seeing these
results we wanted to find out why the results of 29% of students got worse. In
order to answer this question we asked students to fill in a questionnaire.

Figure 2: Number of students

5. Student questionnaire

It is not surprising that students with an overall low performance will not be
considerably improved. Our aim was not to make easy tasks but to include tasks

212 E. Gyöngyösi-Wiersum, Z. Makó Czapné, G. Makrides



in the form of situation games. The easier alternative, structured interviews based
on selected topics, had to be given up because there were not a sufficient number of
volunteers (exam period followed the term). However, interesting evidence is found
in student questionnaires, done in writing during the exam period and with student
replies being anonymous. Three questions concerned the lessons where situation
games were used as a teaching method during the term. In the first, students were
asked if they improved their results in the last term. Then in the second and third
questions, students were asked to indicate reasons for the changes in their results
and to comment how situation games contributed to their progress. Students could
give open field responses. As many as 17 students have responded; they cannot be
considered – representative but they represent strong opinion on the matter. Here
are some examples of the students’ responses (translated from Hungarian):

“My results did not improve. Situation games make lessons fun and interactive.
I intend to use this method in the future.”

“My results improved as I am more motivated to get a scholarship. I can use
situation games in my future teaching practice.”

“My results improved as I attended lessons more often. Situation games made
mathematics more understandable. As the group is small we had more time to talk
about what we did not understand.”

“My results improved. Situation games involved us more into the topic. Math-
ematics makes much more sense, it we are playing an everyday situation.”

“My results did not improve, however, I liked situation games. I find them
useful and funny. The curriculum was processed differently and not with the usual
boring methods.”

“My results improved. We could learn Mathematics while playing and having a
good time and everything was more understandable.”

“My results did not get better, however, I found situation games very useful.
Not only the numeracy skills, but other important competences like problem solving
in real life situations can be improved.”

The first author collected benefits and disadvantages of the method situation
games from students in their third year of training performing teaching in a practic-
ing primary school. In the first term the method of situation games was not focused
on, however, it was shown to students via videos on the internet. In the second
term students were asked to write lesson plans containing at least one mathematics
problem to solve with situation games. Most students used this method during
their teaching practice at the elementary practicing school during this research.
There were two questions on the questionnaires as follows.

1. What are the benefits of the method situation games?

2. What are the disadvantages of it?

Here are some examples of the comments of 15 students (translated from Hungar-
ian):
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Benefits Disadvantages
Situation games make lessons more
enjoyable for pupils. This method
makes mathematics more practical,
less abstract. Situation games help
the learner to understand and mem-
orise concepts. Pupils can have
practical life education. Thus, more
competence areas can be developed.

It is time consuming and requires
more preparation, a deeper ref-
lection on the part of the teacher.

It is fun and easy to build team
spirit. It helps to overcome shy-
ness. It helps to learn how to share
tasks and to prepare for real life. It
teaches behavioural rules and class-
mates get to know each other better.

Good planning is needed.

It improves logical thinking and
problem solving strategies. It helps
socialisation. With experience-
based situation games it is easier to
gain knowledge.

Shy pupils find it more difficult to
play rules and show themselves.

Attention-grabbing, interesting, and
fun for the students. Furthermore,
many interesting things can be built
in the lesson (fairy tale stories, ani-
mals, etc.)

it requires lots of extra work, imag-
ination and time. I do not see a lot
of disadvantages in it.

Students love to play. They are ac-
tively learn and not just passively
listen to the teacher. The teacher
can differentiate while giving prob-
lems or choosing rules for students
to play. A game can be designed for
several problems or for different top-
ics in the curriculum. A concept can
be easily recalled with the game.

The success of situation games can-
not be predicted for certain (stu-
dents can argue about the rules or
they do not understand the prob-
lem).

Students who never liked mathemat-
ics can develop a positive attitude
toward mathematics.

I do not think that situation games
would be a disadvantage, perhaps
certain situation games require more
space than we have in the classroom.

With life-like situations it is an ex-
tremely effective element of the les-
son.

Table 1
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6. Concluding remarks

This paper contributes to our understanding of how difficult it is to master math-
ematics concepts, problem solving strategies and methodology for students to be-
come successful primary school teachers. Reasons for this difficulty are cited in the
first two sections.

In today’s education, the knowledge-centred approach is still dominant, often
lacking a system approach, real-life applications. In different situations, students
interact with a real or simulated world to support their learning process. Their
mind and body work together so that physical and mental activities reinforce learn-
ing. In a classroom or lecture theatre, the context enables students to learn from
experience. By interpreting new information in the context of where and when it
occurs and relating it to what we already learnt, students come to understand its
relevance and meaning.

Situation games can be played formally or informally. An effective method is
for a teacher to propose a question in the classroom, then for learners to explore
that question at home or on a field trip collecting information, then share their
findings back in the class to produce individual or group answers. Learning in
informal settings can link educational content with everyday life.

Students can advance their understanding of science and mathematics by ar-
guing in ways similar to professional scientists and mathematicians in different
situations with educational purposes. Argumentation helps students attend to
contrasting ideas, which can deepen their learning.

Incidental learning is unplanned or unintentional learning. It may occur while
carrying out an activity that is seemingly unrelated to what is learned. Situation
games provide many opportunities for incidental learning.

Another advantage of teaching in the form of situation games is to provide
time for teachers to observe their students. Eye tracking and facial recognition
help teachers in analysing how students learn. One thing is certain students are
hungry for wisdom but they need to see how the educational content is benefit for
them. If students are lacking the content they are about to learn how it would hurt
their future success? The better a student is at Mathematics the better they’ll be
able to solve problems of everyday life or to invest their capital, create innovative
businesses and reach their aims.

During role-playing games students can collect data about players’ actions and
strategies in order to present new challenges. This idea of applying knowledge in a
simulated learning environment is now one of the 10 innovative learning strategies
for modern pedagogy.

Results of our research show that mathematical knowledge of 59% of students
has improved and even those students whose results got worse or remained stag-
nant find the innovative method ‘situation games’ very useful. We offered mod-
ern teaching methods developing students’ critical thinking, problem solving and
decision-making skills. However, repetition and memorisation of information to
educate students cannot be avoided in today’s education. As with most things, it
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is all about balance. We need to understand when different methods work best
and when it is right to try new and innovative approaches. The needs and work
of students have to be studied more intensively than we were able to do it in this
study.
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Abstract

We examined the evolution of the van Hiele level of some study groups
specialized in mathematics from 2015 to 2018, then selected two of these
groups and measured the students’ proof skills by Zalman Usiskin’s proof
test. We examined whether students were able to read from the text of the
statement the given fact and the fact to be proved, whether they were able
to draw a figure and, using the labels, whether they were able to perform a
simple proof requiring 2-3 steps.

Keywords: van Hiele levels, reasoning and proving, specialized mathematics
education, given fact, fact to be proved, role of figures.

MSC: D74, E54, G44.

1. Introduction

The elementary geometry is one of the most appropriate areas of mathematics for
developing students’ proving abilities, because it is complex and expressive. Con-
structing a reasoning chain consisting of 1-2 steps does not require hard abstraction;
that is why this area can be studied and developed from grades 6-7.
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Teaching geometry curriculum in secondary school includes many challenges
for teachers and students alike, as solving geometric problems often goes beyond
recalling well-practiced patterns. The first author’s own experience shows that
the most difficult part of geometry education is the development of students’ rea-
soning and proving skills. He currently works as a secondary school mathematics
teacher in Hungary and teaches students specialized in mathematics. The number
of their mathematics lessons are more than average, and in addition to the normal
requirements, they also acquire special topics. These students, who are particu-
larly interested in mathematics, have to take an entrance exam in this form of
education. Although they are talented in mathematics, they still have difficulty in
solving problems that require proof. Their educational program will be discussed
later.

Since 2005, there has been a two-tier graduation system in Hungary. This means
that students can take higher or standard level school leaving examination. One of
the main goals of the specialized mathematics education is to provide students with
the adequate knowledge to pass an advanced school leaving examination. In this
examination there have often appeared such tasks that require construction of a
short, simple proof. Instructions of graduation and the framework of mathematics
curriculum require from students to be able to produce an exact logical chain by
means of their thoughts and aquired knowledge to solve some simple problems and
to conceive and write the solution in a clear form. Therefore, it is of high priority
to examine and analyze the difficulties that students face in solving tasks which
aquire proof in order to be able to integrate experiences into the teaching process.

The present study is a part of a longitudinal research. In a previous study we
followed up the evolution of van Hiele level of students specialized in mathematics
from 2015 to 2018 (Győry & Kónya, 2018). Two of the study groups were selected
for deeper examination, in which the mean of the students’ van Hiele level reached 4,
that is, according to the theory they were able to implement a few-step proof. Now
we examine what proving ability they actually have, how they can formulate their
thoughts in writing, and what typical mistakes they make. This article is about
the obtained results which we will use in the future to accomplish a developmental
teaching experiment.

2. Theoretical background

“The teaching of mathematical proof appears to be a failure in almost all coun-
tries, no matter how this teaching is organized. . . in USA mathematical proofs are
taught only to students who take the geometry course. . . ” (Balacheff, 2017, p. 1)
Because of the importance of the topic, a number of studies has been made on the
examination of students’ reasoning-proving skills (Stylianides, 2008; G. Hanna &
M. de Villiers, 2008; Balacheff, 2017, D. S. Hong & K. M. Choi, 2018). Perhaps
the main difficulty is that most students consider the proofs construction only a
necessary task required by the teacher. It is a long teaching process until the con-
struction of proof becomes an intrinsic need of students, rather than just meeting
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the theacher’s expectation.
In our opinion one of the biggest mistakes a mathematics teacher can make

is to teach concepts and statements without motivating which establishes them.
Accordingly students need to be led to see definitions and statements not only as
things prescribed by mathematicians, but to try to look for the root causes of them.
To achieve this, the teacher has to educate the students on their own independent
and critical thinking, which is esential for them to create a mathematical proof
successfully. In connection with this, Lakatos wrote quite sharply in the ’70s:
“It has not yet been sufficiently realised that present mathematical and scientific
education is a hotbed of authoritarianism and is the worst enemy of independent
and critical thought.” (Lakatos, 1976, p. 152)

Teaching of proofs is also a hard task because it requires, on the one hand,
students to have a thorough knowledge of previous learning, additionally to be able
to make a corollary based on some facts and to operate with abstract concepts.
According to Ambrus (2004), the teaching of proof has three phases: (1) assumption
of statements; (2) finding and executing an idea of proof based on previous proofs’
strategies and methods; (3) description of the proof.

In Hungarian mathematics education the last two phases are the most em-
phasized, but in the special mathematics educational form the first phase is also
expected. In this paper we deal with the last two phases in more detail. In elemen-
tary school, mathematical statements are often considered by students as absolute
truth, which later makes it difficult to understand the need for mathematical proof.
Only a minority of the students are then concerned with the question “Why?”. It ag-
grevates the difficulty of the mathematics teacher that he/she needs use statements
without proof in the teaching process, as students’ understanding of mathematical
concepts and their thinking are often not ready for the proper execution of a proof.
The use of these so-called “school axioms” is essential for the proper development of
thinking. (Szendrei, 2005) It is an additional problem for students to read clearly
from the text of the statement the conditions and the fact to be proved. This is
especially problematic when the statement is not given in the form “If . . . then
. . . ”. (Ambrus, 2004)

Geometry tasks often include figures, but in most cases students have to draw
their own figures. In the latter case, the student must correctly represent the
concepts used in the task. This can be a pitfall in solving the problem, because
a poorly drawn figure can steer the process of thinking in the wrong direction. A
frequent mistake is that the student is able to spell out the definition correctly,
but is unable to apply it in the solution. (Fishbein, 2012) If a figure is attached
to the task, it serves to understand the task in some cases, that is to say it is an
integral part of the task, but there are also cases where it serves merely to illustrate
the task by reason of better understanding. However, even in the latter case, it is
possible that the figure may lead to an unestablished or inaccurate conclusion for
students. (Dvora, Dreyfus, 2004) We did not intend to investigate these aspects
in the current research, but we will briefly touch on it in relation to one of the
problems that suggests a false conclusion.
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Balacheff distinguishes three categories of proof that are built on each other
(Balacheff, 2017). These are the following:

∙ explanation: an individual intends to establish for somebody else the validity
of a statement;

∙ proof: an explanation which is accepted by a community at a given time;

∙ mathematical proof: a proof which is accepted by mathematicians.

In secondary school, generally accepted proof is the second type described by
Balacheff.

Stylianides categorized reasoning and proving in a so-called analytic framework
in which he describes two types of proofs (Stylianides, 2008):

∙ generic example: it is a proof that uses a particular case seen as representative
of the general case;

∙ demonstration: it is a proof that does not rely on the “representativeness” of
a particular case.

In secondary school we use both methods of proving.
We relied on the van Hiele theory to examine proof skills. According to van Hiele

theory, students’ geometric thinking is evolved through sequential and hierarchical
levels. Five different levels are distinguished and somebody can only reach the
level n if he or she has achieved the criteria of all the levels below level 𝑛. In
many papers, van Hiele levels are scaled from 0 to 4, but we will scale from 1 to 5.
Achieving level 4 is a requirement for proving in secondary school. This is the level
of formal deduction. At this level students understand the meaning of deduction.
(Usiskin, 1982) According to the theory, at this level students are able to formulate
causality, construct simpler proofs, and realise the need of proofs. They are aware
of the concept of generalization, and they know and use different methods of proof
(constructive, contrapositive, induction etc.). They are able to distinguish between
necessary and sufficient condition. They are not yet able to provide a full proof
and tend to treat statements requiring proof as fundamental truths. Based on
our previous research (Győry & Kónya, 2018) the mean of van Hiele level of the
examined students was around 4, so grounded in the theory and Usiskin’s results
we assumed that they were able to perform a 2-3 step proof.

3. Research question

In our research, we were curious about the reasoning ability of secondary school
students talented in mathematics, how they express themselves in writing, and
what typical mistakes they make.
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4. Research methodology

4.1. The circumstances of the survey
The students took part in special mathematics program. This is an unusual form
of education progresses in ten secondary schools in Hungary at the present time.
Following the entrance examination, students study mathematics in small groups
(12-20 students per group). A further feature of this program is that students study
mathematics on average 6-8 hours per week, usually with two subject teachers per
study group. One of the teachers teaches geometry and the other teaches algebra.
One of the main aims of this form of education is to teach solving mathematical
problems on their own. The students could be said to be motivated, talented, and
many of them extremely outstanding. Students in the specialized mathematics
program, on the one hand, acquire deeper mathematics skills and, on the other
hand, learn certain topics faster than students in normal mathematics training.
This form of education thus contains elements of the so-called acceleration and
enrichment programs designed specifically for talented students. (Poli, 2018) We
mention as an important difference that the Hungarian education system does not
provide an opportunity for a specially talented student to learn subject of higher
grade.

In a previous study we kept track of the Hiele levels of several study groups
from 2015 to 2018. Two of the study groups were selected for deeper analysis. One
group took part in a four-grade (Grade 9-12) and the other a six-grade (Grade 7-12)
system of education. Hereinafter we will denote the four-class group with N, while
the six-class group will be denoted by H. The number of examined students was
27, 14 of them from the group N and 13 from the group H. Initially, the members
of the groups were more, but by reason of the longitudinal monitoring we only
considered the performance of the students who wrote each test. The van Hiele
levels of the two groups were already measured in grade 9, in 2015. The results
achieved by the students were averaged. The mean for the group N was 3.80 and
the mean for the group H was 4.25. (We scaled the van Hiele levels from 1 to 5.)

The result obtained shows that the students are roughly at level 4 of the hi-
erarchical theory, which is the level of formal deduction. We repeatedly measured
the van Hiele level of the same students over the years, and each time we got a
mean of 3.5-4 (Győry & Kónya, 2018). Since the mean of van Hiele levels of the
two groups was quite similar, the results of the measurements will not be devided
into groups, but will be aggregated.

To assess proof skills we took as a basis the proof test can be found in the
paper van Hiele Levels and Achievement in Secondary School Geometry by Zalman
Usiskin (1982). The proof test from this article was conducted in April 2018, when
both groups were in 12th grade in some weeks before the final examination.
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4.2. The proof test
Usiskin and his colleagues, who dealt extensively with the van Hiele theory, were
curious about how this theory can describe and predict the geometric achievement
of secondary school students, including proving, and at what level students are
able to describe their proof. They found that at level 4 students are able to in-
dependently create simpler proofs, whereas in case of lower van Hiele levels they
are not. That is, the van Hiele level is a good predictor. In our work, we do not
aim to discover the relationship between the 4th van Hiele level and proof skills.
Based on the results of Usiskin, we assumed that our students would be able to
perform some simple proofs consisting of one or two steps at this level. After se-
lecting one of the 3 proof tests in Usiskin’s paper (Usiskin, 1982, pp. 173–177.), we
examined systematic mistakes, proof ideas, how to draw figures and the written
communication.

The test consists of 6 exercises, and requires the following prior knowledges
from geometry curriculum in Hungary up to grade 10.

∙ Knowledge of angle pairs.

∙ Basic properties of triangles. Basic cases of congruence and similarity of
triangles.

∙ Knowledge and use of Pythagorean theorem.

∙ Knowledge of properties of parallelograms.

It should be noted that the first task of the original test asked students to make
solution in the two-column style prevalently used in the US. As this method is not
well known in Hungary and is completely unknown to students, we did not ask
for a two-column description of the proof in the Hungarian translation in contrast
with the original version.1

The writing conditions were very similar to those of the Usiskin. We differred
only in one case from them: our working time was 45 minutes in contratry to the
35 minutes. We did this because, on the one hand, we did not give help steps in
our first task, and on the other hand, we feared that students might run out of
time, which would have significantly affected the in-depth analysis of the tasks.

5. Discussion

We will discuss in detail three of the six tasks: Task 2, Task 4 and Task 6. Why
did we just choose these tasks?

1. The second of the six tasks is the only one that does not have to be proved,
and no figure is attached to it. Furthermore, the formulation of this statement
differs from all other tasks’ one. The condition and the corollary are not given

1The English version of the test we have written can be found in the Appendix.

222 Á. Győry, E. Kónya



in two separate sentences, but in a single “If . . . then . . . ” type sentence. In
case of all other tasks have been attached figures and the statement must be
proved.

2. Task 4 is the only one where the attached figure is only for illustrative pur-
poses and does not play a role in understanding and may even be omitted.

3. The structure of tasks 1, 3, 5 and 6 is completely the same. In these state-
ments, the condition and the corollary are included in separate sentences,
and there is a figure in all of them that is necessary to understand the text of
the statement. We chose Task 6 of these because the figure may even suggest
false information.

Task 2
Statement : If an altitude is drawn to the base of an isosceles triangle, then it bisects
the vertex angle.

a. Draw a figure and label it.

b. Write, in terms of your figure, what is given and what is to be proved in this
statement.

The solution

a.

b. Given: 𝐶𝐴 = 𝐶𝐵; 𝐶𝑇 ⊥ 𝐴𝐵.
To prove: 𝐴𝐶𝑇^ = 𝐵𝐶𝑇^.
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What were we able to examine by means of this task?

(1) Is the student able to draw a figure for the task?

(2) Is the student able to read from the text what is given and what is to be
proved, i.e. what fact do we infer from which fact (height =⇒ bisector)?

(3) Is the student able to use symbols properly?

We can see that Task 2 was given in the form “If . . . then . . . ”, so the condition
and the corollary were detached well. This made the students’ job a little easier.

Results

About a quarter of the students could only answer correctly (Table 1).

Good solution Wrong solution
Number of students 7 20

Table 1: Results (Task 2)

Let’s look at the statistics for the parts of the task one after the other.

(1) The students did not have a problem with drawing the figures and introducing
the labels.

(2) Reading the given fact (condition) from the text (Table 2).

Good solution Wrong solution
Number of students 10 17

Table 2: What is given? (Task 2)

Only about one-third of the students were able to solve this part. We found
a typical mistake: more than two-thirds of the students who gave the wrong
solution could not separate the condition, the corollary and the statement
itself, and confused them (Table 3).

To be written
what to be

proved

To be written
the whole
statement

Other

Number of students 6 6 5

Table 3: Wrong sulitions (Task 2)
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(3) Reading the fact must be proved from the text (Table 4).

Good solution Wrong solution
Number of students 18 9

Table 4: What to prove? (Task 2)

Already two thirds of the students have succeeded in this section.
As a typical mistake we could note that most students confuse the concept
of the given fact, the fact to be proved and the statement, as to be shown in
Ádám’s solution below.
Given: “If the triangle 𝐴𝐵𝐶 is isosceles, then 𝑚𝑐 bisects the side “𝑐” (splits
it into 2 pieces of “𝑥” parts); The legs are of equal length.”2

To be proved: “The above assumption is true only if the angle at 𝐶 is bisects
by altitude (2 pieces of 𝛼 angle are created).”

Conclusion

1. There is a need to clarify the distinction between the condition and what is
to be proved from each other and from the statement itself.

2. Emphasis should be placed on transforming a statement into an “If . . . then
. . . ” sentence throughout the teaching process.

Task 4
We know about the following figure: 𝐴𝐵𝐶𝐷 is a rectangle.

Prove that the diagonals are congruent.

Use the labels to describe what is given.

Use the labels to describe what is to be proved.
2In Hungary 𝑚𝑐 denotes the altitude to the side 𝑐.
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A possible solution:

Given: 𝐴𝐵 = 𝐶𝐷 and 𝐷𝐴𝐵^ = 90∘.

To be proved: 𝐴𝐶 = 𝐵𝐷.

Proof:
The 𝐷𝐴𝐵 and 𝐶𝐵𝐴 triangles are congruent because two pairs of sides of these
triangles and the included angles are equal (𝐴𝐵 = 𝐵𝐴, 𝐴𝐷 = 𝐵𝐶, 𝐷𝐴𝐵^ =
𝐶𝐵𝐴^).

So the third sides of the two triangles are equal in length: 𝐷𝐵 = 𝐴𝐶, which we
just wanted to prove.

What were we able to examine by means of this task?

1. Is the student able to read from the text of the statement what is given and
what is to be proved, i.e. what fact do we infer from which fact and

2. is he/she able to describe these with his/her own notions?

3. Is the student able to create a simple reasoning?

Results

1. Reading the given fact from the text (Table 5).

Good solution Incompleted solution
Number of students 17 10

Table 5: What is given? (Task 4)

Students who did not solve this part flawlessly, without exception, forgot
about the angles (that is, each angle of the quadrilateral ABCD is a right
angle), but they demanded the equality of the opposite sides. Probably this
little mistake was made due to the figure attached to the problem, because
of it they considered the equality of angles as obvious fact.
It is important to note that this task is very different in its formulation from
Task 2, as in this case the condition and the corollary are given in separate
sentences. Based on our findings, it can be claimed that if the task is set in
this style, the students are able to read the condition from the text of the
task.

2. Reading the fact must be proved from the text. (Table 6)

Good solution Wrong solution
Number of students 24 3

Table 6: What to prove? (Task 4)
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Overall, this part did well for the students probably due to the style of the
formulation.

3. Execution of proof (Table 7).

Good
solution

with
Pythagorean

theorem

Good
solution

with
elementary
geometry

way

Nearly
good

solution

Wrong
solution

Number of students 17 4 2 4

Table 7: The way of proving (Task 4)

We can say that the students passed this subtask successfully, because 21
out of 27 students reasoned correctly (Table 7). It is interesting to note that
only 4 of the 21 students chose purely geometric proofs, while the other 17
reasoned with Pythagorean theorem, suggesting an algebraic approach. We
conceive it is due to the fact that students associate the Pythagoras theorem
with a right triangle immediately because of its central role in secondary
school calculations. Kitti’s solution demonstrates this way of proving:

“𝐵𝐷2 = 𝐵𝐶2 +𝐷𝐶2, 𝐴𝐶2 = 𝐴𝐵2 +𝐵𝐶2.

Since 𝐷𝐶 = 𝐴𝐵 =⇒ 𝐴𝐶2 = 𝐷𝐶2 +𝐵𝐶2 =⇒ 𝐵𝐷2 = 𝐴𝐶2.

Since 𝐵𝐷 and 𝐴𝐶 are also positive, hence 𝐵𝐷 = 𝐴𝐶.”

We considered two solutions as “nearly good”, because the students stopped,
though there was only one step left to complete the proof.

Of the 3 students who were not able to read the corollary from the statement
(Table 6), 2 students were not able to successfully complete the proof either.
The additional student proved also well, but he described his proof to the
part to be proved. So he understood what the task demanded from him as
proof, but he was probably careless or the formulation was perhaps unusual
to him. Of the 4 students , who could not prove the statement (Table 7), 2
students were able to separate the fact to be proved from the statement well.
We have thus got that it is essential for the correct implementation of the
proof that the individual can sharply separate the part to be proved from the
statement.

Of the students who were unable to prove the statement (4 in total, Table 7),
two students abandoned the solution after one step, one student initially
started from the fact to be proved, and one student tried to write trigono-
metric relations, no avail.
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Conclusion

∙ If we give a statement for the student in “separate” style, that is, the given
fact and the fact to be proven are expressed in separate sentences, they will
be able to read out the condition and the corollary from the statement. This
means that the formulation “If . . . then . . . ” is also worth splitting at first
into two sentences.

∙ The students use his labels well in the formulation of the condition and the
corollary.

∙ A simple reasoning of no more than 2-3 steps was not a problem for the
students. This ascertaining is consistent with the result of Usiskin, who
obtained similar results for students at van Hiele level 4.

Task 6
We know about the following figure: 𝐵 is the midpoint of the 𝐴𝐶 section. 𝐴𝐵 =
𝐵𝐷. Prove that the angle 𝐶𝐷𝐴 is a right angle.

A possible solution:

According to the conditions: 𝐴𝐵 = 𝐵𝐷 = 𝐵𝐶.

This means that the triangles 𝐴𝐵𝐷 and 𝐷𝐶𝐵 are isosceles.

Since in an isosceles triangle the angles opposite the legs are equal, accordingly
𝐵𝐴𝐷^ = 𝐵𝐷𝐴^ and 𝐵𝐷𝐶^ = 𝐵𝐶𝐷^.

From this we can conclude that

𝐶𝐷𝐴^ = 𝐵𝐷𝐴^+𝐵𝐷𝐶^ =
2 ·𝐵𝐷𝐴^+ 2 ·𝐵𝐷𝐶^

2
=

=
𝐵𝐴𝐷^+𝐵𝐷𝐴^+𝐵𝐷𝐶^+𝐵𝐶𝐷^

2
=

𝐶𝐴𝐷^+𝐴𝐷𝐶^+𝐴𝐶𝐷^
2

=
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=
180∘

2
= 90∘.

The structure of the text is similar to that of Task 4, that is, the given fact and
the fact to be proved are clearly separated in two sentences.

What were we able to examine by means of this task?

∙ Is the student able to interpret the figure?

∙ Is the student able to construct a proof which consists more than 3 simple
steps?

∙ How do the students reason? What do they refer to?

∙ What level of detail do the students reason? How do they use the language
of mathematics?

Results

How did they manage to create the proof? (Table 8)

Good solution Wrong solution
Number of students 13 14

Table 8: Creating the proof (Task 6)

Overall, about half of the students succeeded in making the proof. In order to draw
conclusions, we analyzed the good and the wrong solutions.

Good solutions (13 students)

The proof was correctly described by 10 students. It is important to note that none
of these students referred to the fact that “there are equal angles opposite congruent
sides”. This is the point, where the problem already mentioned in the introduction
arises, which is one of the dilemmas of mathematics education in secondary school.
Namely, how to distinguish between statements requiring proof and so-called basic
truths to be treated as fact.

One of the 13 students described the proof in a fairly short way: he added to
the given figure a semicircle with centre 𝐵 and with radius 𝐵𝐶 (which lies on the
points 𝐴,𝐷, and 𝐶 due to the condition), and then wrote that “the angle 𝐶𝐷𝐴 is
right angle by reason of Thales’ theorem.”

There were 2 students who worked on the figure. In such cases the train of
thought of a proof is difficult to follow, not to mention that in the case of a false
reasoning it is difficult to determine where a failure was commetted.

Figure 1 shows István’s solution, where the chain of reasoning is relatively easy
to follow.
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Figure 1: Solution on the figure

The student’s steps could have been as follows (repeatedly using the sum of the
interior angles of a triangle is 180∘):

1. He described the given fact: 𝐴𝐵 = 𝐵𝐷 = 𝐵𝐶, then denoted the length of
these segments in the figure by 𝑥.

2. He denoted the measure of the angle 𝐴𝐵𝐷 by 𝛽.

3. Since the triangle 𝐴𝐷𝐵 is isosceles, its angles at 𝐴 and 𝐷 are equal: 180∘−𝛽
2 .

4. Because the angles at 𝐵 are adjacent angles, hence 𝐷𝐵𝐶^ = 180∘ − 𝛽.

5. The triangle 𝐷𝐶𝐵 is isosceles, so its angles at 𝐷 and 𝐶 are equal:
180∘−(180∘−𝛽)

2 = 𝛽
2 .

6. Since he had already determined the two angles at 𝐷, he wrote that 𝐴𝐷𝐶^ =
180∘−𝛽

2 + 𝛽
2 = 180∘−𝛽+𝛽

2 = 180∘

2 = 90∘.

Although he did not write it, he proved the claim.
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Wrong solutions (14 students)

Three of the 14 students did not begin the solution, left the sheet blank. There
was one student who began the solution in a good way, but after a certain point,
he stopped reasoning. In the case of two students, the train of thought could not
be followed and the reasoning described was chaotic. However, for the remaining
eight students, we observed a typical, repeating mistake. These students drew a
false inference grounded in the figure, namely equality of certain angles (𝐵𝐴𝐷^ =
𝐵𝐷𝐴^ = 𝐵𝐷𝐶^ = 𝐵𝐶𝐷^). This is illustrated by Éva’s solution in Figure 2.

Figure 2: A typical wrong solution3

3𝐴𝐵𝐷 and 𝐷𝐵𝐶 triangles are isosceles.
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Conclusions

∙ During the teaching process, the teacher must make sure that the students
do not just write the proof in the figure, but use the appropriate notations
to describe their reasoning in adequate detail.

∙ It is necessary to clarify with the students, what facts require reasoning and
what facts do not in a proof. Anyway this is a very problematic element of
the teaching process.

∙ It should be emphasized that information suggested by the figure should not
be accepted without doubt. This is well illustrated by the typical mistake of
solutions of Task 6 (Figure 2).

6. Summary

The research described in this article is a part of a comprehensive series of experi-
ments. As a first phase, we examined the evolution of the Hiele level of several study
groups specialized in mathematics from 2015 to 2018. Two of the study groups were
selected and we measured the students’ proof skills, in 2018, by Usiskin’s proof test.

During teaching proofs, strong emphasis must be placed on the ability of stu-
dents to pick out the given fact and the fact to be proven from the statement. To
do this, it seems to be to follow the sequence below.

(1) The teacher should give the statement to the students in such a form that the
given fact and the fact to be proven are in two separate sentences. For exam-
ple: “Let’s consider a rhombus. Prove that its diagonals are perpendicular to
each other.”

(2) The teacher should give the statements in the “If. . . then. . . ” structure to
the students and should clarify where the given fact and where the fact to be
proved appear. It is worthwhile to reword the statements, which are given in
such a way like we saw in (1), with the students themselves. “If a quadrilateral
is a rhombus, then its diagonals are perpendicular to each other.”

Of course, statements made with the help of quantifiers and other means also
occur in lessons. (“Every rhombus’ diagonals are perpendicular to each other.”
“The diagonals of a rhombus are perpendicular to each other.” Etc.). The study
of these cases will be a part of a later study.

Students in specialized mathematics education, reaching van Hiele level 4, are
able to complete a simple proof, which requires at most 2 or 3 steps, but many of
them have problems with multi-step proofs, so these need much more practice.

The teacher should pay special attention to the figures, too, in teaching of
proofs, as well. It should be made clear to the students that they ought to make a
clear figure with appropriate labels. The teacher should emphasize that students
ought not to accept the facts suggested by the figure unless they have actually
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reasoned the validity of these facts. The important thing is that the teacher should
make sure that the students do not write the proof only in the figure, but that they
formulate their thoughts based on the labels in the figure and write them down
using mathematical language.

One of the most difficult parts of teaching of proofs is that the teacher clarifies
with students what fact needs to be reasoned and what fact does not in secondary
school. This is, of course, a long process, which demands a huge problem-solving
routine that can only be achieved through lots of practice.

Based on the results, we also designed a series of developmental experiments
in a study group, specialized in mathematics, at grade 9 (this group takes part in
4-form education, ie. this is its first school year in the secondary school).

7. Appendix

Tasks of our version of the proof test.

1. From the figure below we know the following:

The angle at 𝑊 is equal to the angle at 𝑍 and the length of the segment WX
is equal to the length of the segment 𝑌 𝑍.

Prove that the angle denoted by 1 is equal to the angle denoted by 3!

Solution:

2. Statement : If an altitude is drawn to the base of an isosceles triangle, then
it bisects the vertex angle.

a. Draw a figure and label it.

b. Write, in terms of your figure, what is given and what is to be proved in
this statement.

Figure:

Given:
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To prove:

Do not prove the statement.

3. From the figure below we know the following:

𝑀 is the midpoint of the segment 𝐴𝐵.

𝑀 is the midpoint of the segment 𝐶𝐷.

Prove that the triangles 𝐴𝐶𝑀 and 𝐵𝐷𝑀 are similar!

Solution:

4. We know about the following figure: 𝐴𝐵𝐶𝐷 is a rectangle

Prove that the diagonals are congruent.
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Solution:
Use the labels to describe what is given.
Use the labels to describe what is to be proved.
Proof:

5. From the following figure we know: 𝐴𝐵 = 𝐷𝐶,𝐴𝐷 = 𝐵𝐶. 𝑀 is the midpoint
of the segment 𝐷𝐵. 𝑀 lies on the segment 𝐸𝐹 . Prove that 𝐹𝑀 = 𝑀𝐸!

Solution:

6. We know about the following figure: 𝐵 is the midpoint of the 𝐴𝐶 section.
𝐴𝐵 = 𝐵𝐷. Prove that the angle 𝐶𝐷𝐴 is a right angle.

Solution:
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