
Contents
T. Ásványi, Representation transformations of ordered lists 5
Á. Baran, Gy. Terdik, Power spectrum estimation of spherical random

fields based on covariances . 15
M. Cserép, D. Krupp, Component visualization methods for large legacy

software in C/C++ . 23
J. H. Davenport, Solving computational problems in real algebra/geomet-

ry . 35
J. H. Davenport, What does Mathematical Notation actually mean, and

how can computers process it? . 47
G. Dévai, Lightweight simulation of programmable memory hierarchies . . . 59
I. Fazekas, S. Pecsora, A generalization of the Barabási-Albert random

tree . 71
Z. Gál, T. Tajti, Gy. Terdik, Surprise event detection of the supercom-

puter execution queues . 87
G. Horváth, N. Pataki, Clang matchers for verified usage of the C++

Standard Template Library . 99
P. Kasza, P. Ligeti, Á. Nagy, On a secure distributed data sharing system

and its implementation . 111
Gy. Kocsisné Szilágyi, A. Kocsis, A special localization algorithm in

Wireless sensor networks for telemetry application 121
A. London, T. Németh, A. Pluhár, T. Csendes, A local PageRank

algorithm for evaluating the importance of scientific articles 131
G. Rácz, Z. Pusztai, B. Kósa, A. Kiss, An improved Community-based

Greedy algorithm for solving the influence maximization problem in
social networks . 141

T. Radványi, Cs. Biró, S. Király, P. Szigetváry, P. Takács, Survey
of attacking and defending in the RFID system 151

Z. Ruzsa, Zs. Parisek, R. Király, T. Tómács, T. Szakács, H. Haja-
gos, Building of a mathematics-based RFID localization framework . . 165

J. R. Sendra, S. M. Winkler, Optimization of coefficients of lists of
polynomials by evolutionary algorithms 177

J. Sütő, S. Oniga, A. Buchman, Real time human activity monitoring . . 187
P. Takács, Z. E. Csajbók, T. Mihálydeák, Boundaries of membrane in

P systems relying on multiset approximation spaces in language R . . . 197
A

N
N

A
L
E
S

M
A

T
H

E
M

A
T

IC
A

E
E
T

IN
F
O

R
M

A
T

IC
A

E
44

.
(2

01
5)

ANNALES
MATHEMATICAE ET

INFORMATICAE

TOMUS 44. (2015)

COMMISSIO REDACTORIUM
Sándor Bácsó (Debrecen), Sonja Gorjanc (Zagreb), Tibor Gyimóthy (Szeged),
Miklós Hoffmann (Eger), József Holovács (Eger), László Kovács (Miskolc),
László Kozma (Budapest), Kálmán Liptai (Eger), Florian Luca (Mexico),

Giuseppe Mastroianni (Potenza), Ferenc Mátyás (Eger),
Ákos Pintér (Debrecen), Miklós Rontó (Miskolc), László Szalay (Sopron),

János Sztrik (Debrecen), Gary Walsh (Ottawa)

HUNGARIA, EGER

Annales Mathematicae et Informaticae borító külső oldala

ANNALES MATHEMATICAE ET INFORMATICAE

International journal for mathematics and computer science

Referred by
Zentralblatt für Mathematik

and
Mathematical Reviews

The journal of the Institute of Mathematics and Informatics of Eszterházy Károly
College is open for scientific publications in mathematics and computer science,
where the field of number theory, group theory, constructive and computer aided
geometry as well as theoretical and practical aspects of programming languages
receive particular emphasis. Methodological papers are also welcome. Papers sub-
mitted to the journal should be written in English. Only new and unpublished
material can be accepted.

Authors are kindly asked to write the final form of their manuscript in LATEX. If
you have any problems or questions, please write an e-mail to the managing editor
Miklós Hoffmann: hofi@ektf.hu

The volumes are available at http://ami.ektf.hu

Annales Mathematicae et Informaticae borító belső oldala

ANNALES
MATHEMATICAE ET

INFORMATICAE

VOLUME 44. (2015)

EDITORIAL BOARD

Sándor Bácsó (Debrecen), Sonja Gorjanc (Zagreb), Tibor Gyimóthy (Szeged),
Miklós Hoffmann (Eger), József Holovács (Eger), László Kovács (Miskolc),
László Kozma (Budapest), Kálmán Liptai (Eger), Florian Luca (Mexico),

Giuseppe Mastroianni (Potenza), Ferenc Mátyás (Eger),
Ákos Pintér (Debrecen), Miklós Rontó (Miskolc), László Szalay (Sopron),

János Sztrik (Debrecen), Gary Walsh (Ottawa)

INSTITUTE OF MATHEMATICS AND INFORMATICS
ESZTERHÁZY KÁROLY COLLEGE

HUNGARY, EGER

Selected papers of the

9th International Conference

on Applied Informatics

HU ISSN 1787-5021 (Print)
HU ISSN 1787-6117 (Online)

A kiadásért felelős az
Eszterházy Károly Főiskola rektora

Megjelent az EKF Líceum Kiadó gondozásában
Kiadóvezető: Czeglédi László

Műszaki szerkesztő: Tómács Tibor
Megjelent: 2015. június Példányszám: 30

Készítette az
Eszterházy Károly Főiskola nyomdája

Felelős vezető: Kérészy László

Representation transformations
of ordered lists∗

Tibor Ásványi

Eötvös Loránd University, Faculty of Informatics
Budapest, Hungary

asvanyi@inf.elte.hu

Submitted September 15, 2014 — Accepted March 5, 2015

Abstract
Search and update operations of dictionaries have been well studied, due

to their practical significance. There are many different representations of
them, and some applications prefer this, the others that representation. A
main point is the size of the dictionary: for a small one a sorted array can
be the best representation, while for a bigger one an AVL tree or a red-black
tree might be the optimal choice (depending on the necessary operations and
their frequencies), and for an extra large one we may prefer a B+-tree, for
example.

Consequently it can be desirable to transform such a collection of data
from one representation into another, efficiently. There is a common feature
of the data structures mentioned: they can be considered strictly ordered
lists. Thus in this paper we start a new topic of interest: How to transform a
strictly ordered list form one representation into another, efficiently? What
about the time and space complexities of such transformations?

Keywords: strictly increasing list, representation-transformation, data struc-
ture (DS), linear, array, binary tree (BT), balanced, search tree

MSC: 68P05, 68P10, 68P20, 68Q25

1. Introduction

In this paper we consider strictly increasing lists. They can be represented in
several different ways. For example, with a linear data structure (LDS) (e.g. array,

∗Supported by Eötvös Loránd University, Faculty of Informatics.

Annales Mathematicae et Informaticae
44 (2015) pp. 5–13
http://ami.ektf.hu

5

linked list, sequential file), with a binary search tree (BST) (e.g. unbalanced BST,
AVL tree, red-black tree), with a B-tree, B+-tree, etc. [1, 2, 3].

Their common features are that they can be traversed increasingly in Θ(n)
time: the linear traversal of a LDS has linear operational complexity; similarly, the
inorder traversal of a tree needs Θ(n) time. And the search-and-update operations
can run in O(n) time. [1, 2]

In this paper we use three asymptotic computational complexity measures (each
time we consider the worst case by default): O(g(n)) (upper bound), Ω(g(n)) (lower
bound), and Θ(g(n)) = O(g(n)) ∩ Ω(g(n)) [2].

Sorted arrays support only the search with O(log(n)) operational complexity,
but for the balanced search tree1 representations each of the search, insert, delete
operations have this complexity. On linked lists, and sequential files we cannot
perform any search-and-update operation in O(log(n)) time. Thus we concentrate
on the sorted array, and balanced search tree representations of such lists. The
search, insert, delete operations have been well studied. Sometimes we have to
transform these lists from one representation into another. Consequently we pay
attention to these representation-transformations. We ask, how to transform a
strictly ordered list L from one representation into another, efficiently?

Undeniably, the operational complexity of such a transformation is Ω(n): each
item must be processed. In some cases, it is also O(n): Undoubtedly, a linear
representation of L can be produced in O(n) time, because the input representation
of L can be traversed also in O(n) time. Thus, regardless of the input representation
of L, a linear representation of L can be generated with Θ(n) atomic operations.
Besides, a balanced search tree representation of L can be generated in O(n log(n))
time, because a single insert needs O(log(n)) atomic operations. Nevertheless this
method does not use the information that the input is sorted.

Consequently this is our question: Given an input representation of L, when and
how can we produce a balanced search tree representation of it, with an operational
complexity Θ(n), or at least better than Θ(n log(n))? We give a partial answer to
this question. We invent three algorithms. With operational complexity Θ(n), we
transform (1) a strictly increasing array into an AVL tree; (2) a strictly increasing
array into a red-black tree; (3) an AVL tree into a red-black tree.

2. Main results

In order to expound these algorithms (a) we define size-balanced BSTs, and an
algorithm transforming a strictly increasing array into such a size-balanced BST;
(b) we prove that a size-balanced BST is almost complete, and so (c) it is an AVL
tree; (d) we colour the almost complete BSTs as red-black trees; (e) we find a special
property of AVL trees, and invent an algorithm colouring them as red-black trees.

(a-c) are needed for transforming a strictly increasing array into an AVL tree
(Section 2.1). (a,b,d) result in the transformation of a strictly increasing array into

1AVL tree, red-black tree, SBB-tree, rank-balanced tree, B-tree, B+-tree, etc.

6 T. Ásványi

a red-black tree (Section 2.2). The theorems and algorithm of (e) in Subsection 2.3
form the high point of this section.

2.1. Strictly increasing array to AVL tree

First we enumerate the necessary notions. By trees we mean rooted ordered trees
[2]. Remember that NIL is the empty tree. The leaves of a nonempty tree have
no child. The non-leaves are the internal nodes.

If t 6= NIL is a binary tree (BT), left(t) is its left and right(t) is its right subtree.
If t is a BT, s(t) is its size, i.e. s(t) = 0, if t = NIL; s(t) = 1 + s(left(t)) +

s(right(t)), otherwise. h(t) is its height, i.e. h(t) = −1, if t = NIL; h(t) =
1 + max(h(left(t)), h(right(t))), otherwise.

If r is the root node of a BT t 6= NIL, left(r) = left(t), right(r) = right(t),
and root(t) = r. Provided that t is a BT, n ∈ t, iff t 6= NIL ∧ (n = root(t) ∨ n ∈
left(t) ∨ n ∈ right(t)).

dt(n) is the depth of node n in BT t. If t 6= NIL, dt(root(t)) = 0. If n is a node
of a BT t and left(n) 6= NIL, dt(root(left(n))) = dt(n) + 1. If right(n) 6= NIL,
dt(root(right(n))) = dt(n) + 1. Node n is strictly binary (SB(n)), iff left(n) 6=
NIL ∧ right(n) 6= NIL.

Clearly, h(t) = max{dt(n) | n ∈ t}, if t 6= NIL. A BT t is complete, iff
(∀n ∈ t)(dt(n) < h(t)→ SB(n)).

Notice that for any leaf n of a complete BT t, d(n) = h(t); and s(t) = 2h(t)+1−1.
A BT t is almost complete (AC(t)), iff (∀n ∈ t)(dt(n) < h(t)− 1→ SB(n)).

Notice that a BT is AC, iff compared to the appropriate complete BT, nodes
may be missing only from its lowest level: Figure 1 shows such a tree. Clearly, for
a leaf n of an AC BT t, dt(n) ∈ {h(t), h(t)− 1}. The nodes of t at depth h(t)− 1
may have one or two children, or may be leaves. s(t) ∈ [2h(t), 2h(t)+1 − 1].

------------7----------
/ \

-----4----- ---10----
/ \ / \

2 5 9 12
/ \ / \ / \ / \

1 3 NIL NIL 8 NIL 11 NIL

Figure 1: almost complete BST: the places of the missing nodes
are shown by NILs

A node n of a BT is height-balanced, iff |h(right(n)) − h(left(n))| ≤ 1. A BT
t is height-balanced, iff (∀n ∈ t), n is height-balanced. An AVL tree is a height-
balanced BST.

A node n of a BT is size-balanced, iff |s(right(n))− s(left(n))| ≤ 1. A BT t is
size-balanced, iff (∀n ∈ t), n is size-balanced.

Representation transformations of ordered lists 7

We transform a strictly increasing array into an equivalent size-balanced BST
in linear time:

We take the middle item of a nonempty array. This will label the root node
of the tree. Next we transform the left and right sub-arrays into the appropriate
subtrees, recursively. An empty array is transformed into an empty tree.

The resulting size-balanced BST is also an AVL tree, as it follows from the next
two theorems.

Theorem 2.1. A size-balanced binary tree is also almost complete (AC).

Proof. We use mathematical induction with respect to the height h(t) of the size-
balanced tree t. If h(t) = −1, then t is empty, and AC(t). Let us suppose that
we have this property for trees with h(t) ≤ h. Let h(t) = h + 1. Then t 6=
NIL ∧ h(left(t)) ≤ h ∧ h(right(t)) ≤ h. It follows by induction that left(t) and
right(t) are almost complete. Also | size(left(t))−size(right(t))| ≤ 1. (Furthermore,
remember that a complete binary tree of height h has the size 2h+1 − 1, and an
almost complete binary tree with size in [2h+1, 2h+2−1] has height h+1.) Now we
enumerate the possible cases about the subtrees of t, and prove that AC(t) in each
case. If the two (almost complete) subtrees have the same size, their heights are
also equal, and AC(t). If the smaller subtree is complete, then the bigger one has
an extra leaf at its extra level, and AC(t). If the smaller subtree is not complete,
then the bigger one has the same height, and AC(t).

Theorem 2.2. An almost complete binary tree is also height-balanced.

Proof. We can suppose t 6= NIL. First, if AC(t), the leaves of t have depth
h(t) or h(t) − 1. Thus h(left(t)), h(right(t)) ∈ {h(t) − 1, h(t) − 2}. Consequently,
|h(right(t))− h(left(t))| ≤ 1. As a result, root(t) is balanced. Next, let us suppose
that lr(t) ∈ {left(t), right(t)}. Now, if AC(t), then (∀n ∈ lr(t))(dt(n) < h(t)− 1→
SB(n)). Therefore (∀n ∈ lr(t))(dlr(t)(n) < h(t) − 2 → SB(n)). We also have
h(lr(t)) ≤ h(t)−1. For these reasons (∀n ∈ lr(t))(dlr(t)(n) < h(lr(t))−1→ SB(n)).
As a result, AC(lr(t)). Thus each (direct or indirect) subtree of t is AC, and
if a subtree is nonempty, its root node is balanced. Finally, each node of t is
balanced.

Corollary 2.3. A size-balanced BST is also an AVL tree.

Proof. A size-balanced BST is almost complete, thus height-balanced.

Consequently, the algorithm we defined above transforms a strictly increasing
array into an equivalent AVL tree. It takes Θ(n) time, because each item of the
array is processed once. Besides the Θ(n) size of its output, it needs Θ(log(n))
working memory: this is the height of the recursion. Provided that we need the
heights of the nonempty subtrees in their root nodes (as it is usual with AVL trees),
we can return the height of a subtree when we return from the appropriate recursive
call, and compute the height of a subtree with a given root node from the heights
of the two subtrees of that node.

8 T. Ásványi

2.2. Strictly increasing array to red-black tree

We have an algorithm transforming a strictly increasing array into an almost com-
plete BST. We also have the height of the tree. Here we need an additional flag
showing whether the tree is complete or not. Clearly, a nonempty BT is complete,
iff its too subtrees are also complete, and their heights are the same. Thus the
computation of this flag is also easily merged into the algorithm above.

Next, if we prove that an almost complete BST (with its height and flag) can
be coloured in linear time, as a red-black tree, then we have also the algorithm
transforming a strictly increasing array into such a tree.

Definition 2.4. A red-black tree is a BST with red and black nodes: The root
node is black. We regard NILs as pointers to black, external leaves. For each node,
all simple paths from the node to descendant NIL-leaves contain the same number
of black nodes. If a node is red, then both its children are black. [2] (See Figure 2.)

---------BLACK---------
/ \

----red---- --BLACK--
/ \ / \

BLACK BLACK red NIL
/ \ / \ / \

NIL NIL NIL NIL NIL NIL

Figure 2: Red-black tree

Based on this definition, the algorithm of colouring is simple: consider the
complete levels of an almost complete BST, and paint the nodes black. If the
tree is not complete, the nodes at the lowest, partially filled level remain, and we
paint them red. (See Figure 3.) Unquestionably this procedure needs Θ(n) time
and Θ(log(n)) working memory. The algorithm computing its input (the almost
complete tree, its height, and flag) has the same measures. Consequently, the whole
transformation has these time and space requirements.

----------BLACK---------
/ \

---BLACK--- --BLACK--
/ \ / \

red red red NIL
/ \ / \ / \

NIL NIL NIL NIL NIL NIL

Figure 3: Almost complete tree painted as red-black tree

Representation transformations of ordered lists 9

2.3. AVL tree to red-black tree
We colour an AVL tree t as a red-black tree. We use a postorder and a preorder
traversal. As a result, our procedure needs Θ(n) time and Θ(log(n)) (proportional
to the height of t) working memory [1].

Definition 2.5. Minimal height of a binary tree t: m(t) = −1, if t = NIL;
1 + min(m(left(t)),m(right(t))), otherwise.

Theorem 2.6. If t is a height-balanced tree then m(t) ≤ h(t) ≤ 2m(t) + 1.

Proof. It comes with mathematical induction with respect tom(t). Ifm(t) = −1⇒
t = NIL ⇒ h(t) = −1 ⇒ m(t) ≤ h(t) ≤ 2m(t) + 1. Let us suppose that we have
this property for trees with m(t) = k. Let m(t) = k + 1. We can suppose that
m(left(t)) = k. By induction: k ≤ h(left(t)) ≤ 2k+1. The tree t is height-balanced.
Therefore h(right(t)) ≤ 2k + 2. Thus k + 1 ≤ 1 + max(h(left(t)), h(right(t))) =
h(t) ≤ 2k + 3 = 2(k + 1) + 1. As a result: m(t) ≤ h(t) ≤ 2m(t) + 1. (Notice that
m(t) ≤ h(t) for any binary tree.)

In the colouring algorithm, first we calculate m(t). Based on the definition, this
can be done with a postorder traversal of t. In a typical AVL tree, for each non-NIL
subtree s of t, the h(s) attributes are already present. (If not, the computation of
the h(s) values can be easily merged into the postorder traversal.)

Next, with a preorder traversal of t, we colour t. (See Figure 4). We paint
m(t) + 1 nodes black on each simple path from the root to a NIL-leaf. (The NIL-
leaves are also considered black, but we do not paint them.)

PreCondition of the first call:
I0: t is AVL tree and b = m(t)+1 and

h(s) is calculated for each subtree s of t

procedure colour(t : BinTree; b : integer)
/* I1: b>=0 and b-1 =< m(t) and h(t) =< 2*b */
if(t \= NIL) {
/* Note: paint b nodes black on each branch of t */

if(h(t) < 2*b) {
colour(t) := black
b := b-1 }

else /* I2: 0 =< b =< m(t) and h(t) = 2*b */
colour(t) := red

colour(left(t),b)
colour(right(t),b) }

end of procedure colour

Figure 4: Colouring an AVL tree t as a red-black tree

Now we are going to prove the correctness of the colouring algorithm in Figure 4.

10 T. Ásványi

Terminology: In the rest of this section we use I0 (i.e. the PreCondition), invari-
ants I1, I2, and other logical statements. Let us suppose that Ij, Ik ∈ {I0, I1, I2};
P , Q are arbitrary statements. When we say that Ij with P induces Ik with Q, we
mean: If Ij and P are true when the program is at the place of Ij, then Ik and Q
will hold when the run of the program next time arrives at the place of Ik.

Lemma 2.7. I0 induces I1 with h(t) < 2b.

Proof. Based on the definition of m(t), m(t) ≥ −1. Consequently b = m(t) + 1
implies b ≥ 0 ∧ b − 1 ≤ m(t). Theorem 2.6 implies h(t) ≤ 2m(t) + 1. Considering
b = m(t)+1 we receive h(t) ≤ 2m(t)+1 = 2(b−1)+1 = 2b−1. Thus h(t) < 2b.

Lemma 2.8. I1 with t 6= NIL ∧ h(t) < 2b induces I1 in both recursive calls.

Proof. Let s(t) be the left or right subtree parameterizing the appropriate recursive
call. Thus we need to prove I1b←b−1,t←s(t) i.e. that the following three conditions
hold:

(1) b − 1 ≥ 0: We know that h(t) ≥ 0 (since t 6= NIL) and h(t) < 2b. Conse-
quently, b > 0, and therefore b− 1 ≥ 0.

(2) b − 2 ≤ m(s(t)): From I1, b − 1 ≤ m(t). From the definition of m(t),
m(t) ≤ 1 +m(s(t)). As a result, b− 1 ≤ 1 +m(s(t)), i.e. b− 2 ≤ m(s(t)).

(3) h(s(t)) ≤ 2(b − 1): h(t) < 2b, i.e. h(t) ≤ 2b − 1; h(s(t)) ≤ h(t) − 1; thus
h(s(t)) ≤ 2b− 2.

Lemma 2.9. I1 with t 6= NIL ∧ h(t) ≥ 2b induces I2.

Proof. h(t) ≤ 2b and h(t) ≥ 2b implies h(t) = 2b. 0 ≤ b remains true. Considering
Theorem 2.6 we have 2b ≤ 2m(t) + 1; thus b ≤ m(t) + 1/2 i.e. b ≤ m(t).

Lemma 2.10. I2 induces I1 with h(t) < 2b in both recursive calls.

Proof. Let s(t) be the left or right subtree parameterizing the appropriate recursive
call. Thus we have to prove (I1 ∧ h(t) < 2b)t←s(t) i.e. b ≥ 0 ∧ b − 1 ≤ m(s(t)) ∧
h(s(t)) < 2b. b ≥ 0 remains true. From b ≤ m(t) and m(t) ≤ 1 +m(s(t)) we have
b− 1 ≤ m(s(t)). h(t) = 2b implies h(s(t)) < 2b.

Theorem 2.11. Provided that the precondition I0 holds, procedure colour paints
the nodes of tree t so that t becomes a red-black tree.

Proof. Lemmas 2.7, 2.8, 2.9, and 2.10 imply that I1 and I2 are invariants of the
program. I1 means that when we arrive at an external leaf, i.e. t = NIL, 0 ≤ b ≤
m(t) + 1 = −1 + 1, as a result b = 0. In the program b is decreased (by 1), exactly
when a node is painted black. Because b is decreased to zero on each branch of
any subtree while we go to a NIL-leaf, we have the same number of black nodes
on these paths. Lemma 2.7 implies that the root node of the tree is painted black.
Lemma 2.10 makes sure that both children of a red node will also be black. These
have the effect of receiving a red-black tree.

Representation transformations of ordered lists 11

Let a crb-tree be a BST which can be coloured as a red-black tree. Then an
AVL tree is also a crb-tree. This also follows from both of the following results.

(1) Bayer proved that the class of SBB-trees properly contains the AVL trees [4],
and we know from 4.7.2 in [3] that the SBB-trees and the red-black trees are
structurally equivalent.

(2) Rank-balanced trees are a relaxation of AVL trees, and form a proper subclass
of crb-trees [5].

Our achievements and these results are unrelated. In this subsection our contribu-
tions are the notion of the minimal height of an AVL tree, theorems 2.6 and 2.11,
and our efficient colouring algorithm proved.

3. Conclusions

This was our question: How to transform a strictly increasing list L from one
representation into another, efficiently?

Summarizing this paper, we already know that given an input representation
of L, we can produce another representation of it in Θ(n) time, if this other rep-
resentation is a linear data structure, an AVL or red-black tree. In some cases we
have direct transformations, in other cases we need a temporary array.

In three cases we invented the necessary algorithms, theorems, lemmas, and
proofs. The first two, (sorted array → balanced BST) programs create new trees;
but the second half of the second algorithm, and the third (AVL tree → red-black
tree) procedure do not make structural changes on the actual tree, just paint its
nodes black, and red. Each of the three programs needs Θ(log(n)) working memory.

Our algorithms and theorems imply three relations among four classes of BSTs:
size-balanced BSTs ⊂ almost complete BSTs ⊂ AVL trees ⊂ crb-trees. Actually,
each of the first three classes is a proper subclass of the next one. For exam-
ple2 BST (((1)2(3))4(5)) is almost complete, but not size-balanced; AVL tree
((((1)2)3(4))5(6(7))) is not almost complete; red-black tree ((1b)2b((3b)4r(5b(6r))))
is not height-balanced.

Open questions: If L is transformed into another type of balanced search trees
(not into an AVL or red-black tree); for example, into a B-tree, we know that the
operational complexity of the transformation is Ω(n), and O(n log(n)). Here we
still need more sharp results. Maybe, from a strictly increasing list, each kind of
balanced search trees can be generated in Θ(n) time? Are there some cases, when
the time complexity is more than Θ(n), but less than Θ(n log(n))?

If the input representation of L is a search tree (or a linked list or a sequential
file), and the output is an AVL or red-black tree, we can make the transformation
in Θ(n) time, but – with the exception of the AVL tree → red-black tree program

2Using the notation (left-subtree root right-subtree) where the empty subtrees are omitted.

12 T. Ásványi

– we actually need a temporary array, thus Θ(n) working space. We ask: In which
cases can we reduce the memory needed?

References

[1] Weiss, Mark Allen, Data Structures and Algorithm Analysis, Addison-Wesley,
1995, 1997, 2007, 2012, 2013.

[2] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., Introduction to Algo-
rithms, The MIT Press, 2009. (Ebook: http://bit.ly/IntToAlgPDFFree)

[3] Wirth, N., Algorithms and Data Structures, Prentice-Hall Inc., 1976, 1985, 2004.
(Ebook: http://www.ethoberon.ethz.ch/WirthPubl/AD.pdf)

[4] Bayer R., Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms,
Acta Informatica 1, 290–306 (1972), Springer-Verlag, 1972.

[5] Haeupler B., Sen S., Tarjan R.E., Rank-Balanced Trees, Algorithms and Data
Structures: 11th International Symposium, WADS 2009, Banff, Canada, August 2009,
pp 351–362, Springer-Verlag, LNCS 5664, 2009.

Representation transformations of ordered lists 13

Power spectrum estimation of spherical
random fields based on covariances∗

Ágnes Baran, György Terdik

Faculty of Informatics, University of Debrecen
baran.agnes@inf.unideb.hu

terdik.gyorgy@inf.unideb.hu

Submitted September 15, 2014 — Accepted November 20, 2014

Abstract

A Gaussian isotropic stochastic field on a 2D-sphere is characterized by
either its covariance function or its angular spectrum. The object of this
paper is the estimation of the spectrum in two steps. First we estimate
the covariance function, secondly we approximate the series expansion of the
covariance function with respect of Legendre polynomials. Simulations show
that this method is fast and precise.

Keywords: Angular correlation, angular spectrum, isotropic fields on sphere,
estimation of correlation

MSC: 60G60, 62M30

1. Introduction

There are several physical phenomena which can be described with the help of a
spherical random processes. A typical example of random data measured on the
surface of a sphere is the cosmic microwave background radiation (CMB). Similar
random fields arise in medical imaging, in analysis of gravitational and geomagnetic
data etc.. These fields are characterized by a series expansion with respect to the
spherical harmonics. Under assumption of Gaussianity both the covariance function
and the angular power spectrum describe completely the probability structure of

∗The publication was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The
project has been supported by the European Union, co-financed by the European Social Fund.

Annales Mathematicae et Informaticae
44 (2015) pp. 15–22
http://ami.ektf.hu

15

an isotropic stochastic field. The estimated spectrum can be used to check the
underlying physical theory, while the possible non-Gaussianity can be investigated
by estimating the higher order angular spectra.

1.1. Notations

Let S2 denote the surface of the unit sphere in R3, and X(L) be a random field on
S2, where the location L = (ϑ, ϕ), and ϑ ∈ [0, π] is the co-latitude, while ϕ ∈ [0, 2π]
is the longitude. If the spatial process X(L) is mean square continuous, then it has
a series expansion in terms of spherical harmonics Y m` . Spherical harmonics are
defied by the Legendre polynomials

P`(x) =
1

2``!

d`

dx`
(x2 − 1)`, x ∈ [−1, 1],

(` = 0, 1, 2, . . .) and the associated Legendre functions

Pm` = (−1)m(1− x2)m/2
dm

dxm
P`(x),

of degree ` and order m, where ` = 0, 1, 2, . . . , and m = −`, . . . , `. Now the
complex valued spherical harmonics of degree ` and order m (` = 0, 1, 2, . . . , and
m = −`, . . . , `) are given by

Y m` (ϑ, ϕ) = λm` (cosϑ)eimϕ,

where

λm` (x) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (x), if m ≥ 0,

and
λm` (x) = (−1)mλ

|m|
` (x), if m < 0,

that implies
Y −m` (ϑ, ϕ) = (−1)mY m` (ϑ, ϕ).

Using these notations the spherical harmonics expansion of the random field
X(L) ∈ L2(S2) is

X(L) =
∞∑

`=0

∑̀

m=−`
Zm` Y

m
` (L),

where the coefficients

Zm` , ` = 0, 1, . . . , m = −`, . . . , `

are complex valued centered random variables, while putting EZ0
0 = µ implies that

EX(L) = µ and the coefficients are given by

Zm` =

∫

S2

X(L)Y m` (L)dL, (1.1)

16 Á. Baran, Gy. Terdik

and
Zm` = (−1)mZ−m` .

2. Spectrum

Definition. The random field X(L) is called strongly isotropic if all finite dimen-
sional distributions of {X(L), L ∈ S2} are invariant under the rotation g for every
g ∈ SO(3), where SO(3) denotes the special orthogonal group of rotations defined
on S2.

If the spatial process X is strongly isotropic, then

E(Zm1

`1
Zm2

`2
) = f`1δ`1`2δm1m2

for `1, `2 ∈ N, and mi = −`i, . . . , `i, where δ`k = 1 if ` = k and zero otherwise,
while

E(Z0
0Z

m
`) =

(
f0 + E(Z0

0)2
)
δ0`δ0m, f0 = V ar

(
Z0
0

)
.

f` = V ar (Zm`), ` = 0, 1, 2, . . . , are nonnegative real numbers, and (f`, ` ∈ N0) is
called the angular power spectrum of the random field X. Note E(X) = µ, hence
C2(L1, L2) = E(X(L1)− µ)(X(L2)− µ) is the covariance function of the isotropic
field X(L). Due to the isotropy the covariance C2(L1, L2) depends on the angular
distance γ of the locations L1 and L2 only (where cos γ = L1 · L2). That means

C2(L1, L2) = C2(gL2L1
L1, N) =: C(cos γ),

where gL2L1 is the rotation which takes L2 into the north pole N and L1 into the
plane xOz.

It is straightforward (see [5]) that

C(cos γ) =

∞∑

0

f`
2`+ 1

4π
P`(cos γ). (2.1)

For the practical computation of the spectrum fk the orthogonality of the Legendre
polynomials can be used: with t = cos(γ) from (2.1) follows

1∫

−1

C(t)P`(t)dt = f`
2`+ 1

4π

1∫

−1

[P`(t)]
2dt = f` ·

1

2π
,

that is

f` = 2π

1∫

−1

C(t)P`(t)dt, (2.2)

for ` = 0, 1, 2,

Power spectrum estimation of spherical random fields based on covariances 17

Example (Lapalce-Beltrami model on S2). Consider the homogeneous isotropic
field X on R3 according to the equation

(
4− c2

)
X = ∂W,

where 4 = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3
, denotes the Laplace operator on R3. Its spectrum,

see ([6]), is

S (λ) =
2

(2π)
2

λ2

(λ2 + c2)
2 , λ2 = ‖(λ1, λ2, λ3)‖2 ,

with covariance of Matérn Class

C (r) =
1

(2π)
3/2

(cr)
1/2

K1/2 (cr)

2c
,

where K1/2 is the modified Bessel (Hankel) function, see [1].
Now according to the Lapalce-Beltrami operator, which is the restriction of 4 onto
the unit sphere S2,

4B =
1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂ϕ2
,

we consider the stochastic model
(
4B − c2

)
XB = ∂WB ,

on sphere. The covariance function C0 of XB is the restriction of the covariance
function C of X on sphere and C0 (cos γ) = C (2 sin (γ/2)), i.e.

C0 (cos γ) =
1

(2π)
3/2

√
sin (γ/2)

2c
K1/2 (2c sin (γ/2)) .

We apply the Poisson formula when Φ (dλ) = S (λ) dλ, and we obtain the spectrum
for XB

f` = 2π2

∞∫

0

J2
`+1/2 (λ)

1

λ

2

(2π)
2

λ2

(λ2 + c2)
2 dλ

=

∞∫

0

J2
`+1/2 (λ)

λ

(λ2 + c2)
2 dλ.

3. HEALPix

The most widely used pixelisation of the sphere for sampling and analyzing CMB
data is the HEALPix (Hierarchical, Equal Area and isoLatitude Pixelization), see

18 Á. Baran, Gy. Terdik

[2]. Actually the CMB data are given on the surface of a unit ball at the discrete
points defined by HEALPix. Here in the base resolution partitioning the surface of
the sphere is divided into 12 quadrilateral pixels of same area, and in each further
resolution the pixels are subdivided into 4 equal area pixels. Denoting by Nside
the resolution parameter, the total number of pixels equals 12N2

side, and the pixel
centers are located on 4Nside − 1 isolatitude rings. Unfortunately, the pixelisation
is not rotational invariant, the pixel centers can be rotated into each other in the
case of some rotations around the north-south axes only.

4. Computational results

Let us suppose that we are given an observation of an isotropic field on the sphere,
more precisely for each HEALPix pixel L we have a value X(L). The estimator of
the spectrum of the field can be based either on (1.1) or on (2.1). It means that
we can approximate the integral (1.1), then for each fixed ` we estimate f` as the
variance of approximated Zm` , m = −`, . . . , `. In this case one can not expect good
result for small `, since the estimator of the variance f` based on 2` + 1 values.
The alternative method is based on the estimation of covariance function first then
use the expansion (2.1) according to the Legendre polynomials for estimating f`.
The advantage of this later one is that there are many distances between pixels in
which the estimation of the covariance is possible.

For further improvement of this computations we are going to apply some sam-
pling theorems concerning on spherical harmonics and Legendre polynomials. We
show this method through simulations.

In our simulations we consider random fields not only with zero mean but with
f0 = 0 as well. The reason is that we have only one realization and when we
center the observation the sample mean contains a value of Z0

0 hence f0 can not be
identified.

To the numerical approximation of the integral (2.2) denote by t1, t2, . . . , tn the
nodes of the quadrature (−1 ≤ ti ≤ 1), and for a given i let (Li1j , L

i
2j), j = 1, . . . , N ,

be pairs of pixels which have angular distance ti. Considering the samples

X1, X2, . . . , XN , where Xj = X(Li1j),

and
Y1, Y2, . . . , YN , where Yj = X(Li2j),

we use the empirical covariance

Ĉi =
1

N

N∑

j=1

XjYj

to estimate the value C(ti), i = 1, . . . , n.
In the program we used only pixels located in the equatorial area (i.e. pixel

centers with co-latitude − 1
3 ≤ cosϑ ≤ 1

3). E.g. in the case of Nside = 16 these

Power spectrum estimation of spherical random fields based on covariances 19

pixels determine nearly 9000 different values for t. In the equatorial zone each
ring contains the same number of pixels (4Nside), moreover the pixel centers are
equidistant located. In order to calculate the possible values of t = cos γ we
considered the first pixel center on each ring in the north equatorial belt together
with the pixel centers located on and below the actual ring. More precisely it is
suffices to consider on each ring only the half of the pixels. After that for a given
t to collect the pixel-pairs having distance t we can use the rotation symmetry.
Depending on the location of the original pixel-pair (L1, L2), which was used to
compute t, there exist 4Nside, 8Nside or 16Nside pairs having the given distance.
If both of the pixels lie on the equator, or θ1 = π − θ2 and ϕ1 = ϕ2 (where
L1 = (θ1, ϕ1), L2 = (θ2, ϕ2)), that is the locations are symmetric to the equator,
then the number of pairs is equal to 4Nside. In the case of θ1 = θ2 6= π

2 and in the
case of θ1 6= π − θ2 and ϕ1 = ϕ2, moreover if θ1 = π − θ2 and ϕ1 6= ϕ2, there are
8Nside pairs. In all other cases there exist 16Nside pairs corresponding to the given
distance.

By the numerical calculation of (2.2) using the Gaussian quadrature instead of
the built-in Matlab function trapz enables a more efficient calculation, since these
method requires much less evaluations of empirical covariances, however, this could
be subject of further investigations.

Test example 1. (See Figure 1.) As a first example we considered the spatial
process

X(L) =
100∑

`=1

√
f`
∑̀

m=−`
Zm` Y

m
` (L), (4.1)

where Zm` ∼ N (0, 2) are i.i.d. random numbers and

f` =
1

(`(`+ 1) + 4)2
, ` = 1, 2, . . .

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 1: A random field described in Test example 1

20 Á. Baran, Gy. Terdik

By the discretization of the sphere we used Nside = 16 as resolution parameter,
which results 3072 pixels located on 63 isolatitude rings.

The estimated and theoretical correlations can be seen on Figure 2 such that
f0 = f1 = 0.

−1 −0.5 0 0.5 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Estimated correlation in Test example 1

Let us denote by f̂`, ` = 1, . . . , 100 the estimated spectrum, then we obtained

100∑

`=1

(f` − f̂`)2 ≈ 1.93 · 10−4

and
max

1≤`≤100
|f` − f̂`| = 4.2 · 10−3.

Test example 2. In the second example we investigated the field defined by the
sum (4.1) taking

f` =
4π

2`+ 1
0.8`, ` = 1, 2, . . .

The covariance is estimated from the generated field, and the theoretical correlation

C (γ) =
1√

1− 1.6 cos γ + 0.82
− 1;

are shown on Figure 3.

Power spectrum estimation of spherical random fields based on covariances 21

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Estimated correlation in Test example 2

References

[1] Abramowitz, M., Stegun, I.A., Handbook of mathematical functions with formu-
las, graphs and mathematical tables, Dover Publications Inc., New York, (1992)

[2] Górski, K.M., Hivon, E., Banday, A. J., Wandelt, B.D., Hansen, F.K.,
Reinecke, M., Bartelmann, M., HEALPix: A framework for high-resolution dis-
cretization and fast analysis of data distributed on the sphere, The Astrophysical
Journal, Vol. 622 (2005), 759–771.

[3] Lang, A., Schwab, C., Isotropic Gaussian Random Fields on the Sphere, Regularity,
Fast Simulation, and Stochastic Partial differential Equations, arXiv:1305.1170v1

[4] Marinucci, D., Peccati, G., Random fields on the Sphere, Cambridge University
Press, Cambridge, (2011)

[5] Terdik, Gy., Angular Spectra for non-Gaussian Isotropic Fields, arXiv:1302.4049v2,
to appear Brazilian Journal of Probability and Statistics, http://imstat.org/bjps/
papers/BJPS249.pdf

[6] Yadrenko, M. I., Spectral theory of random fields, Optimization Software Inc. Pub-
lications Division, New York, (1983)

22 Á. Baran, Gy. Terdik

Component visualization methods for large
legacy software in C/C++

Máté Cserépa, Dániel Kruppb

aEötvös Loránd University
mcserep@caesar.elte.hu

bEricsson Hungary
daniel.krupp@ericsson.com

Submitted August 28, 2014 — Accepted February 24, 2015

Abstract
Software development in C and C++ is widely used in the various in-

dustries including Information Technology, Telecommunication and Trans-
portation since the 80-ies. Over this four decade, companies have built up a
huge software legacy. In many cases these programs, implementing complex
features (such as OS kernels, databases) become inherently complicated and
consist of millions lines of code. During the many years long development, not
only the size of the software increases, but a large number (i.e. hundreds) of
programmers get involved. Mainly due to these two factors the maintenance
of software becomes more and more time consuming and costly.

To attack the above mentioned complexity issue, companies apply various
source code cross-referencers to help in the navigation and visualization of the
legacy code. In this article we present a visualization methodology that helps
programmers to understand the functional dependencies of artifacts in the
C++ code in the form similar to UML component diagrams. Our novel graph
representation reveals relations between binaries, C/C++ implementation
files and headers. Our technique is non-intrusive. It does not require any
modification of the source code or any additional documentation markup. It
solely relies on the compiler generated Abstract Syntax Tree and the build
information to analyze the legacy software.

Keywords: code comprehension, software maintenance, static analysis, com-
ponent visualization, graph representation, functional dependency

MSC: 68N99

Annales Mathematicae et Informaticae
44 (2015) pp. 23–33
http://ami.ektf.hu

23

1. Introduction

One of the main task of code comprehension software tools is to provide naviga-
tion and visualization views for the reusable elements of the source code, because
humans are better at deducing information from graphical images [2, 7]. We can
identify reusable software elements in C/C++ language on different abstraction
levels of modularity. At a finer granularity, functions provide reusable implemen-
tation of a specific behavior, while on a higher scale (in C++) classes defines the
next level, where a programmer can collect related functions and data that belong
to the same subject-matter. At the file level, header files group related functions,
variables, type declarations and classes (in C++ only) into a semantic unit.

State of the art software comprehension and documentation tools implement
various visualization methods for all of these modularization layers. For example,
on the function level call graph diagrams can show the relations between the caller
and the called functions [9], while on the class level, one can visualize the contain-
ment, inheritance and usage relations by e.g. UML diagrams. On the file level,
header inclusion diagrams help the developers in code comprehension [8].

However, our observations showed that the state of the art file level diagrams are
not expressive enough to reveal some important dependency relationships among
implementation and header files. In this paper, we describe a new visualization
methodology that exposes the relations between implemented and used header
files and the source file dependency chains of C/C++ software.

This paper is structured as follows. Section 2 consist of a brief overview of
the state of the art literature with special focus on static software analysis. In
Section 3 we describe the shortfalls of the visualization methods in the current
software comprehension tools, then in Section 4 we present our novel views that
can help C and C++ programmers in understanding legacy source code. Section 5
demonstrates our results by showing examples on real open-source projects, and
finally in Section 6 we conclude the paper and set the directions for future work.

2. Background

Researchers have proposed several software visualization techniques and various
taxonomies have been published over the past years. They address one or more
of three main aspects (static, dynamic, and evolutional) of a software. The visu-
alization of the static attributes focuses on displaying the software at a snapshot
state, dealing only with the information that is valid for all possible executions
of the software, assisting the comprehension of the architecture of the program.
Conversely, the visualization of the dynamic aspects shows information about a
particular execution of the software, therefore helps to understand the behavior of
the program. Finally, the visualization of the evolution – of the static aspects – of a
software handles the notion of time, visualizing the alternations of these attributes
through the lifetime of the software development. For a comprehensive summary
of the current state of the art see the work of Caserta et al.[3]

24 M. Cserép, D. Krupp

The static analysis of a software can be executed on different levels of granularity
based on the level of abstraction. Above a basic source code level, a middle –
package, class or method – level, and an even higher architecture level exists.
In each category a concrete visualization technique can focus on various different
aspects. A summary of categorization is shown on Table 1, classifying some of the
most known and applied, as well as a few interesting new visualization techniques.

Kind Level Focus Techniques

Time T
Visualization

Line Line properties Seesoft
Class Functioning, Metrics Class BluePrint

Architecture

Organization Treemap

Relationship

Dependency
Structure Matrix
UML Diagrams
Node-link Diagrams
3D Clustered Graphs

Visualizing Evolution

Table 1: Categorization of visualization tools

This article focuses on assisting the code comprehension through visualizing
the relationships between architectural components of a software. The relevant
category not only contains various prevalent and continuously improved visualizing
techniques like the UML diagrams [4], but also recently researched, experimental
diagrams like the three dimensional clustered graphs [1]. This technique aims to
visualize large software in an integral unit, by generating graphs in a 3D space
and grouping remote vertices and classes into clusters. The visibility of the inner
content of a cluster depends dynamically on the viewpoint and focus of the user
who can traverse the whole graph.

Our novel solution uses the classical node-link diagram in two dimensional space
for visualization, which was formerly used at lower abstraction levels primarily.

3. Problems of visualization

Modularity on the file level of a software implementation in C/C++ is expressed
by separating interfaces and definition to header and implementation (source) files.
Interfaces typically contain macro and type definitions, function and member dec-
larations, or constant definitions; while implementation files usually contain the
definition of the functions declared in the headers. This separation allows the
programmers to define reusable components in the form of – static or dynamic –
libraries. Using this technique, the user of a library does not need to have infor-
mation about the implementation details in order to use its provided services.

Separation of these concerns is enforced by the C/C++ preprocessor, compiler
and linker infrastructure. When a library is to be used, its header file should be

Component visualization methods for large legacy software in C/C++ 25

included (through the #include preprocessor directive) by the client implemen-
tation or the header files. Implementation files should almost never1 be included
in a project where the specification and implementation layers are properly sepa-
rated. Unfortunately naming conventions of the header and implementation files
in C/C++ are not constrained (like calss and file-naming in Java). Thus, based on
a name of a file, it is not possible to find out the location, where the methods of
a class are declared or implemented. Furthermore, the implementation of the class
members declared in a header file can be scattered through many implementation
files that makes the analysis even more difficult.

When a programmer would like to comprehend the architecture of a software,
the used and provided (implemented) interface of a library component or the im-
plementers of a specific interface should be possible to be fetched.

Problem 3.1. As an example let us analyze the commonly presented header in-
clusion graph of a fileset in Figure 1. We assume that lib.h is an interface of
a software library and that there are many users of this component, thus several
files includes this header. If the programmer would like to comprehend where the
functions declared in the header are implemented, the header inclusion graph is
not helpful, since it does not unveil which C/C++ files are only using, and which
are implementing the lib.h interface.

Figure 1: Implementation decision problem between component(s)
and an interface.

As a solution we propose a so-called Interface diagram that is similar to the
well-known header inclusion graph, but refines the include relation into uses and
provides relationships. For this purpose we defined that a C/C++ file provides a
header file when it contains its implementation, while it only uses it if the mentioned
file refers to at least one symbol in the header, but does not implement any of them.
A proper and precisely defined description of this diagram is given in Section 4.2.

1A few exceptions may exist, i.e. in some rare cases of template usage.

26 M. Cserép, D. Krupp

4. Definition of relationships and diagrams

In this section first we introduce the commonly used basic terms of relationships
defined between the C/C++ source files and the binary objects (see Figure 2),
then present our more complex relationship definitions to describe the connections
between the various kind of files in a software project at a higher abstraction level.

4.1. Preliminaries
Definition 4.1 (Relations between source files). At the level of the abstract syntax
tree [6], the main artifacts of a C/C++ source code are the user defined symbols2,
which can be declared, defined or referred/used by either the source files (.c/.cc)
or the header files (.h/.hh). A C/C++ symbol might have multiple declarations
and references, but can be defined only once in a semantically correct source code.
To enforce the separation of the specification and implementation layer, header
files should mainly consist of declarations, whose definitions are in the appropriate
source files.3 From our perspective only those C/C++ symbols are important,
which are declared in a header file and are defined or referred by a source file.

Figure 2: Relations between compilation artifacts.

2From our viewpoint only the function (and macro) symbols and their declaration, definition
and usage are significant, although a similar classification for other symbol types can be established
without difficulties.

3In some cases, headers may contain definition and source file may also consist forward decla-
rations as an exception.

Component visualization methods for large legacy software in C/C++ 27

Definition 4.2 (Relations between binaries). The source files of a project are com-
piled into object files, which are then statically linked into archive files (.lib/.a),
shared objects or executable binaries. Shared objects are linked dynamically into
the executables at runtime. To extract this information and visualize the relation-
ship of binaries together with the relations declared between the C/C++ files, the
analysis of the compilation procedure of the project is required beside the static
analysis of the source code.

For the purpose of the presented visualization views in this paper the different
kind of binary relationships is irrelevant, therefore they will be collectively referred
as the contains relation henceforward (see Figure 2).

4.2. Extended classification

The basic include relationship among the implementation and header C/C++ files
have already been introduced in Section 4.1, however in order to solve the problem
raised in Section 3, the definitions of the proposed uses and provides relations have
to be separated.

Definition 4.3 (Provides relationship from implementation c to header h). We
say that in a fileset a implementation file c provides the interface specified by the
header file h, when c directly includes h and a common symbol s exists, for which
h contains the declaration, while c consists the definition of it.

Definition 4.4 (Uses relationship from implementation c to header h). Similarly
to the previous provides relationship definition, we state that in a fileset an imple-
mentation file c uses the interface specified by the header file h, when c directly
includes, but does not provides h and a common symbol s exists, which c refers
and h contains the declaration of it.

Definition 4.5 (Interface graph (diagram) of implementation file c). Let us
define a graph with the set of nodes N and set of edges E. Let P be the set of
header files which are provided by c and U the set of header files used by c, and B
the set of binary files which contain c. We define that N consists of c, the elements
of P , U , and B. E consists the corresponding edges to represent the relationships
between the nodes in N .

Figure 2 shows the illustration for the above mentioned definitions. Based
on the idea of the Interface diagram defined in Definition 4.5, which shows the
immediate provides, uses and contains relations of the examined file, we defined
the following more complex file-based views.

The nodes of these diagrams are the files themselves and the edges represent the
relationships between them. A labeled, directed edge is drawn between two nodes
only if the corresponding files are in either provides, uses or contains relationship.
The label of the edges are the type of their relationship and they have the same
direction as the relation they represent.

28 M. Cserép, D. Krupp

Definition 4.6 (Used components graph (diagram) of source c). Let us define
a graph with the set of nodes N and set of edges E, and let S be the set of
implementation files which provides an interface directly or indirectly used by c.
We define that N consists of c, the elements of S and the files along the path from
c to the elements of S. Binaries containing any implementation file in S are also
included in N . E consists the corresponding edges to represent the relationships
between the nodes in N .

Intuitively we can say if source t is a used component of c, then c is using some
functionality defined in t.

Definition 4.7 (User components graph (diagram) of source c). Let us define
the graph with the set of nodes N and set of edges E, and similarly to the previous
definition, let S be the set of implementation files which directly or indirectly uses
the interface(s) provided by c. We define that N consists of c, the elements of S
and the files along the path from c to the elements of S. Binaries containing any
implementation file in S are also included in N . E consists the corresponding edges
to represent the relationships between the nodes in N .

Intuitively we can say if source t is a user component of c, then c is providing
some functionality used by t.

5. Experimental results

In order to implement the views defined in Section 4, we created a diagram visual-
izing tool was created as part of a larger code comprehension supporting project –
named CodeCompass. The software is developed in cooperation at Eötvös Loránd
University and Ericcson Hungary. The tool provides an interactive graph layout
interface, where the users are capable of requesting more information about the
nodes representing files and can also easily navigate between them, switching the
perspective of the view they are analyzing.

Figure 3: Interface diagram of tinyxml.cpp.

Component visualization methods for large legacy software in C/C++ 29

For demonstration purposes in this paper, the open-source TinyXML parser
project[10] was selected. In this section altogether three examples for the use of
our tool is shown and information retrievable from them is examined.

Example 5.1. Figure 3 displays an Interface diagram, showing the immediate re-
lations of a selected file with other files in the software. As the image shows, the
C++ implementation file in the middle (tinyxml.cpp) includes two header files,
but the special connection of implementation (provides) is distinguished from the
mere uses relation. This diagram not only presents the connections between C++
source and header files, but also displays in which object file the focused imple-
mentation file was compiled into through the compilation process of the project.

Figure 4: Used components by tinyxml.cpp.

Example 5.2. Figure 4 presents the Used components diagram of the implemen-
tation file tinyxml.cpp at the top. The goal of this visualization is to determine

30 M. Cserép, D. Krupp

which other files and compilation units the selected file depends on. As it is de-
picted in the figure, the interface specification for the tinyxml.cpp implementation
file is located in the tinyxml.h header. This header file on the one part is pro-
vided by the tinyxmlparser.cpp, and on the other hand uses the tinystr.h. The
latter header file is provided by the tinystr.cpp source. Hence the implication
can be stated that the original tinyxml.cpp indirectly uses and depends on the
tinyxmlparser.cpp and the tinystr.cpp file.

Example 5.3. Parallel to Figure 4, the following example deduces the compilation
artifacts depending on the same selected source tinyxml.cpp. The User compo-
nents diagram displays (see Figure 5) that this implementation file implements an
interface contained by the tinyxml.h header. This header is used or provided by
three sources (tinyxmlparser.cpp, xmltest.cpp and tinyxmlerror.cpp), there-
fore they are the users of tinyxml.cpp.

Figure 5: User components of tinyxml.cpp.

6. Conclusions and future work

In large legacy software projects a huge codebase can easily be built up because
of the extended development time, while fluctuation among programmers can also
often be a significant problem. Code comprehension support addresses these ques-
tions through assisting – both experienced and newcomer – developers with visu-
alization views to better understand the source code. In this paper we discussed

Component visualization methods for large legacy software in C/C++ 31

what kind of file-level views are missing from the current code comprehension tools,
regarding the relationships between different type of compilation artifacts. We de-
fined our novel graph view as a solution to this problem, and demonstrated the
practical use of our technique through examples on an open-source C++ project.
The new visualization techniques were found helpful and applicable for legacy soft-
ware in supporting code comprehension.

Above the file-level granularity, a higher level of modularity can also be defined,
considering that related files can form the interface of a reusable binary component
and are often grouped together physically (i.e. contained in a directory) or virtu-
ally (e.g. using packages or namespaces). Future development will generalize and
expand the file-based dependency relationship definitions introduced in this paper
to be applicable for modules containing multiple files.

Further work will also include the examination of how the information retrieved
by our definition rules can be used in the field of architecture compliance checking.
Software systems often impose constraints upon the architectural design and im-
plementation of a system, for example on how components are logically grouped,
layered and how they may interact with each other. In order to keep the main-
tainability of a software system through a long development time with a large
programmer team, it bears extreme importance that the design and implementa-
tion are compliant to its intended software architecture. Due to the complexity of
large software systems, guaranteeing the compliance by manual checking is almost
impossible, hence automated support is required, which is still not a completely
solved issue nowadays [5].

References

[1] Balzer, M., Deussen, O., Level-of-detail visualization of clustered graph lay-
outs, Proceedings of the 6th International Asia-Pacific Symposium on Visualization,
(2007), 33–140.

[2] Biederman, I., Recognition-by-components: a theory of human image understand-
ing, Psychological review, Vol. 94 (1987), 115–147.

[3] Caserta, P., Zendra, O., Visualization of the static aspects of software: a survey,
IEEE Transactions on Visualization and Computer Graphics, Vol. 17 (2011), 913–
933.

[4] Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert, S., Mutzel, P.,
A new approach for visualizing UML class diagrams, Proceedings of the 2003 ACM
Symposium on Software Visualization, (2003), 179–188.

[5] Pruijt, L., Koppe, C., Brinkkemper, S.,, On the accuracy of architecture com-
pliance checking support: Accuracy of dependency analysis and violation reporting,
IEEE 21st International Conference on Program Comprehension, (2013), 172–181.

[6] Salomaa, A., Formal Languages, Academic Press Professional, Inc., (1987).

[7] Spence, I., Visual psychophysics of simple graphical elements, Journal of Experi-
mental Psychology: Human Perception and Performance, Vol. 16 (1990), 683–692.

32 M. Cserép, D. Krupp

[8] Doxygen Tool: http://www.stack.nl/~dimitri/doxygen/.

[9] Understand Source Code Analytics & Metrics, http://www.scitools.com/.

[10] TinyXML parser, http://www.grinninglizard.com/tinyxml/.

Component visualization methods for large legacy software in C/C++ 33

Solving computational problems in real
algebra/geometry

James H. Davenport∗

University of Bath (U.K.)
J.H.Davenport@bath.ac.uk

Submitted September 16, 2014 — Accepted January 26, 2015

Abstract

We summarise some computational advances in the theory of real algebra/
geometry over the last 15 years, and list some areas for future work.

Keywords: Real algebraic geometry, cylindrical algebraic decomposition

1. Introduction

Real Algebra and Geometry have many computational applications. In theory they
solve many problems of robot motion planning [34], though practice is not so kind
[38]. Understanding the (real) geometry of branch cuts [16] is crucial to issues
of complex function simplification [3]. A very powerful technique in computation
real geometry is Cylindrical Algebraic Decomposition, introduced in [12] to solve
problems of Quantifier Elimination.

Notation 1.1. We assume that the initial problem posed has m polynomials, of
degree (in each variable separately) at most d, in n variables.

∗Thanks to Russell Bradford, Matthew England, Nicolai Vorobjov, David Wilson (Bath); Chris
Brown (USNA); Scott McCallum (Macquarie); Marc Moreno Maza (UWO) and Changbo Chen
(CIGIT), and to the referees. This talk grew out of an invitation to speak at ICAI 2014 in Eger,
and the author is grateful to the organisers. The underlying work was supported by EPSRC grant
EP/J003247/1.

Annales Mathematicae et Informaticae
44 (2015) pp. 35–46
http://ami.ektf.hu

35

2. Quantifier elimination

A key technique we are going to use is Quantifier Elimination: throughout, Qi ∈
{∃,∀}. Given a statement

Φ := Qk+1xk+1 . . . Qnxnφ(x1, . . . , xn),

where φ is in some (quantifier-free, generally Boolean-valued) language L, the
Quantifier Elimination problem is that of producing an equivalent

Ψ := ψ(x1, . . . , xk) : ψ ∈ L.
In particular, k = 0 is a decision problem: is Φ true?

The Quantifier Elimination problem is critically dependent on the language L
and the range of the variables xi. For example

∀n : n > 1⇒ ∃p1∃p2 (p1 ∈ P ∧ p2 ∈ P ∧ 2n = p1 + p2)

[where m ∈ P ≡ m > 1 ∧ ∀p∀q (m = pq ⇒ p = 1 ∨ q = 1)]

is a statement of Goldbach’s conjecture in the language of the natural numbers
with, naïvely, seven quantifiers (five will do if we use the same quantifiers for the
two instances of P).

In fact, quantifier elimination is impossible over the natural numbers [29].
From this it follows that it is impossible over the real numbers if we allow un-
restricted1 trigonometric transcendental functions in L, since n ∈ Z is equivalent
to sin(nπ) = 0. The function sin satisfies a second-order (or coupled pair of first-
order) differential equation(s), and there are positive results provided we restrict
ourselves to Pfaffian functions, i.e. solutions of triangular systems of first-order
partial differential equations with polynomial coefficients. Exploring this is beyond
the scope of this paper: see [24].

However, quantifier elimination is possible for semi-algebraic (polynomials and
inequalities) L over R [35]. Note that we need to allow inequalities: the quantifier-
free form of ∃y : y2 = x is x ≥ 0, and ∃y : xy = 1 has the quantifier-free form x 6= 0.
Formally we define the language of real closed fields, LRCF, to include the natural
numbers, +,−,×,=, > and the Boolean operators. Then ∃y : y2 = x eliminates
the quantifier to (x > 0) ∨ (x = 0) and ∃y : xy = 1 eliminates the quantifier to
(x > 0) ∨ (0 > x).

It is worth noting that in practice we nearly always treat 6= as a first-class
citizen, and indeed this is necessary when proceeding via regular chains (Section
3.3).

3. Cylindrical algebraic decomposition

Unfortunately, the complexity of Tarski’s method is indescribable (in the sense that
no tower of exponentials can describe it) and we had to wait for [12] for a remotely

1Note that the undecidability comes from the fact that the function sin : R→ R has infinitely
many zeros. Restricted versions are a different matter: see [24, (h) p. 214].

36 J. H. Davenport

plausible method.

3.1. Collins’ method
Collins proceeds via a cylindrical algebraic decomposition, which is (almost) what
it says: a decomposition of Rn into cells Ci indexed by n-tuples of natural numbers
(so Rn =

⋃
i Ci and i 6= j ⇒ Ci ∩ Cj = ∅), which is (semi-)algebraic in the sense

that every Ci is defined by a finite set of equalities and inequalities of polynomials
in the xi and which is cylindrical, meaning that, for all k < n, if πk is the projection
operator onto the first k coordinates, then, for all i, j, πk(Ci) and πk(Cj) are either
equal or disjoint. Collins constructs a cylindrical algebraic decomposition which
is sign-invariant for the polynomials in φ, i.e. on each cell, every polynomial is
identically zero, or everywhere positive, or everywhere negative.

The construction and use of such a decomposition is roughly2 described below.

1 Let Sn be the polynomials in φ (m polynomials, degree ≤ d, n variables).

2 Compute Sn−1 (Θ(d3m2) polynomials, degree Θ(2d2), n− 1 variables), such
that, over a cylindrical algebraic decomposition of Rn−1 sign-invariant for
the polynomials in Sn−1, the polynomials in Sn are collectively delineable,
meaning each branch of each of them is defined by a continuous algebraic
function of x1, . . . , xn−1, and the branches of all polynomials are either equal
or disjoint;

3 and Sn−2 (Θ((2d2)3(d3m2)2) polynomials, degree Θ(2(2d2)2), n−2 variables)
satisfying a similar condition;

... continue

n and S1 (≤ (2d)3
n

m2n−1

polynomials, degree ≤ 1
2 (2d)2

n−1

, 1 variable) satisfy-
ing a similar condition.

n+ 1 Isolate the N1 roots of S1, decomposing R1 into N1 zero-dimensional points
and N1 + 1 one-dimensional regions. Pick a sample point in each one-
dimensional region.

n+ 2 Over each root, or at the sample points for each interval between roots,
isolate roots of S2, and pick a sample point between each adjacent pair of
roots.

... continue

2n Over each cell in the decomposition ofRn−1, isolate roots of Sn, pick a sample
point between each adjacent pair of roots, and hence make our decomposition
of Rn.

2For example, we ignore the growth in coefficient sizes. This can be (and is in [12]) tracked in
detail, but doesn’t affect the general argument.

Solving computational problems in real algebra/geometry 37

So Sn has invariant signs on each region of Rn, and φ(x1, . . . , xn) has invariant
truth on each region. Therefore all questions about φ reduce to the values of
φ at the sample points.

2n+ 1 Evaluate the truth of Φ on each region R of (x1, . . . , xk)-space, by looking
at the values of φ at the sample points lying above the sample point of R,
and combining them according to the quantifiers in Φ.

2n+ 2 The quantifier-free form Ψ of Φ is then the disjunction of the definitions of
those regions of (x1, . . . , xk)-space for which Φ is true.

The time complexity ends up being bounded [12, Theorem 16] by

O
(
m2n+6

(2d)2
2n+8

)
.

While running time is one measure of complexity, it depends on the various
sub-algorithms, and in practice depends on a lot of implementation details. A
more refined analysis [15] of the complexity of step n+ 1 (and its knock-on effects
on the subsequent steps), for example, reduces the complexity bound3 (not the

actual time) toO
(
m2n+/64

(2d)2
2n+/86

)
. Hence practitioners in the field of cylindrical

algebraic decomposition tend to concentrate on the number of cells in the final
decomposition. This has several advantages [6].

• It can be directly compared across systems, irrespective of hardware or soft-
ware details.

• Most applications do significant amounts of post-processing on the cells, so
the complexity of the post-processing is dependent on the number of cells
(and on the complexity of the descriptions of the cells and their sample points,
which a simple count doesn’t capture directly: however experience shows that
if algorithm A generates more cells than algorithm B on a given problem,
algorithm A’s descriptions are at least as complex).

• For a given problem and software/hardware system, the number of cells and
the processing time tend to be closely correlated: a point first made explicitly
in [18].

• The known lower bounds on complexity [17, 4] are in fact lower bounds on
the number of cells.

The number of cells produced by Collins’ method is bounded, by an analysis similar
to [6], by

O
(
m2n(2d)2·3

n
)
.

3This may seem like a trivial improvement. In fact, the new bound is the fourth root of the
old one, an improvement that would be viewed as massive in other contexts.

38 J. H. Davenport

3.2. McCallum’s improvements

Definition 3.1. The order of f at a point x is the least k such that at least one
partial derivative of f of order k does not vanish at x.

McCallum [30] introduced a new projection operator for producing Si−1 from
Si. In fact, he constructs a stronger cylindrical algebraic decomposition, order-
invariant for the polynomials in φ, i.e. on each cell, every polynomial is identically
zero of constant order, or everywhere positive, or everywhere negative. Clearly
every order-invariant decomposition is sign-invariant, but the converse is not true.
This approach has three major features.

pro Despite the fact that we are constructing a richer final object, the new pro-
jection sets are much smaller, and our analysis [6], based on the key result
[30, Lemma 6.1.1] shows that the number of cells is bounded by

2n2
n−1

m2n−1dn2
n−1

,

where the key improvement4 is in the exponent of d, being of the form n2n

rather than 3n.

con The projection might not always work. There is a technical condition, known
as well-oriented in [30], which is only discovered in phases n+ 2, . . . , 2n− 1,
when a polynomial in Sk turns out to vanish identically on a cell of nonzero
dimension. In these circumstances we can either revert to using an improve-
ment [26] of the full Collins method (with its attendant costs), or, as suggested
in [30] but to the best of the author’s knowledge never implemented, when-
ever, in the projection phases, an Si contains a polynomial that might nullify,
add its partial derivatives with respect to each variable to the set Si. Again
to the best of the author’s knowledge, the complexity of this has never been
analysed.

In theory, well-orientedness ought to occur “with probability 1”. However,
humans don’t pose random problems, and the experience of the author and
his Bath colleagues is that well-orientedness can frequently fail to occur,
especially when solving problems coming from simplification, as in [3].

odd Step 2n+ 2 may run into difficulties, a problem first pointed out in [8]. The
roots of S1 isolated in step n+ 1 are of the form “the (unique) root α of p(x)
lying in (β, γ)”, where β, γ ∈ Q (in practice ∈ Z[1/2]). This statement is in
our language LRCF (p(x) = 0 ∧ x > β ∧ γ > x). However, the branches of
S2 (and other Si) are in the form “that branch of p(x1, x2) such that p(α, x2)
lies in (β, γ)”, where β, γ ∈ Q, and this is not in LRCF. We could equally

4An improved analysis of [30, Lemma 6.1.1] in fact gives

22
n+1−2n(md)2

n−1, (3.1)

reducing the exponent of d further.

Solving computational problems in real algebra/geometry 39

describe it as “the third real branch of p(x1, x2) when x1 ∈ (α1, α2)”, but
again this statement is not in LRCF. Now by Thom’s Lemma [14], we can
describe this branch in terms of the signs of p and its derivatives, but, whereas
these derivatives are in the Collins projection, they are not in the McCallum
projection. However, when it comes to step 2n+ 2, we can just add these, so
the additional cost is negligible.

3.3. Regular chains methods

The production of Cylindrical Algebraic Decompositions by Regular Chains was first
introduced in [11], and an improved version (essentially of the first step) was pre-
sented in [9]. Unlike the previous methods, they go via complex space, essentially
as:

1. construct a cylindrical decomposition of Cn which is zero/nonzero-invariant
for the polynomials in φ;

2. refine this to a cylindrical algebraic decomposition of Rn, which will therefore
be sign-invariant for the polynomials in φ;

3. for the same reasons as those described under odd in the previous section, if
necessary add extra derivatives to be able to express the quantifier-free result
in LRCF [10].

Not much is known about the theoretical complexity of regular chain computation
in general, but this method does seem to be5 at least competitive with, and often
better than, our implementation [22] of [30] using the same Maple technology and
libraries6.

4. Equational constraints

It is often the case that φ contains equations: can we make use of these? [31] (based
on [13]) was the first to show how. He defined an equational constraint h = 0 as
an equality logically implied by φ, i.e. φ(x1 . . . , xn) ⇒ h(x1, . . . , xn) = 0. For the
sake of simplicity, we assume that φ actually has the form (h = 0) ∧ φ̂, and that φ̂
involves m − 1 polynomials gi (therefore m in all). We will not ask for an order-
invariant decomposition, but rather an equationally sign-invariant decomposition:
one where the signs of f and the gi are constant on every cell where f = 0 — it
is quite possible that cells where f 6= 0 have a mixture of behaviours of the gi. We
also need h to have main variable xn. Compared with equation (3.1), this generates
[6] at most

22
n+1−2n(m+ 1)2

n−1−1d2
n−1

5Compare the columns RC-Inc-CAD and PL-CAD in [19, Table 1].
6www.regularchains.org.

40 J. H. Davenport

cells: replacing m2 by m+ 1 in a single projection, and hence reducing the double
exponent in the overall complexity.

This process is generalised in [5] to consider φ of the form

(f1 = 0 ∧ g1,1 > 0 ∧ · · ·)︸ ︷︷ ︸
φ1

∨ (f2 = 0 ∧ · · ·)︸ ︷︷ ︸
φ2

∨ · · · ∨ (fk = 0 ∧ gk,1 > 0 ∧ · · ·)︸ ︷︷ ︸
φk

. (4.1)

This does have an equational constraint, viz.
∏
i fi = 0, but this is of degree

kd if the fi have degree d. What [5] produces is rather a Truth Table Invariant
decomposition (TTICAD), in which the truth of each φi is invariant on each cell.
Practically this shows further savings, and the complexity is analysed in [6]. It
uses a strict subset of the projection sets Si generated with the equation constraint∏
i fi = 0 (for example not having resxn(f2, g1,1)), so is clearly an improvement.
This method is further generalised in [6] to the case where not every φi in (4.1)

has an equality. The savings are less spectacular than when every φi has an equality,
but much more spectacular than the McCallum projection. The complexity [6]
depends on the shape of φ.

These methods have also been applied to the Regular Chains approach to con-
structing cylindrical algebraic decompositions [2], again with good experimental
results, but no complexity analysis. However, a curious feature comes up here.
The method of [9] is incremental: one starts with the trivial decomposition, in-
variant for ∅, and adds polynomials. [2] build on this, but prune the cylindrical
decomposition being created according to the Boolean structure of φ. This means
that the same φ, but processed in a different order, can produce different cylindrical
algebraic decompositions, and different (though of necessity logically equivalent)
quantifier-free forms. This is analysed in [19].

5. So I have a problem in LRCF: what do I do?

A first remark is that this is a common phenomenon: according to [1], 47% of
the problems in the Tokyo University mathematics entrance examination can be
posed in LRCF. Most of these, however, are actually posed in terms of elementary
geometry, and translating these into forms involving the fewest number of variables
(note how all the complexity formulae are doubly-exponential in n, as are the lower
bounds [17, 4]) is non-trivial: an obvious translation might have twelve variables,
whereas we “really only need” three.

There are also many choices of the precise way the problem is formulated: see
[7] in general for projection-based methods, [19] for Regular Chains methods, and
[38] for a specific example in robot motion planning.

Even after doing this, in fact, you probably have a problem that can be ex-
pressed in LRCF in many ways. If our goal is quantifier elimination, then step
2n + 1 implies that the variables must be projected (in terms of the cylindricity
property, even if we are using Regular Chains methods) in the order implied by the
quantifiers. But this still leaves much unspecified, e.g. x1, . . . , xk can be projected

Solving computational problems in real algebra/geometry 41

in any order, and we can apply ∀x∀y ≡ ∀y∀x (and its ∃ equivalent). Other appli-
cations, such as robot motion planning [34] and simplification [3] impose no con-
straints on the variable order. Hence an LRCF-problem with n variables may have
up to n! possible instantiations as a cylindrical algebraic decomposition problem.
This problem was first studied systematically in [18], who produced and evaluated
various heuristics to pick the best order. Having observed that no one heuristic is
best for all problems, [25] used machine learning on a large set of problems (using
McCallum-style methods) to see if machine learning could predict which heuristic
to use in a given setting, and found that this did indeed do better than any fixed
choice of heuristic. [21] explored the choice of variable ordering for Regular Chains
methods. The theoretical importance of variable ordering is shown by [4, Theorem
7] who produce a family of systems that has doubly-exponentially many cells in
one ordering, and a constant number (independent of n) in another. Conversely
[4, Theorem 8] there are problems that are doubly exponential for all orders.

If a problem involves equalities, then, as well as the simplifications in Section 4,
we can also use the equalities to perform algebraic simplification of each other, and
of the appropriate inequalities. This was first noticed in the case of branch cuts by
Phisanbut [33, 32], where a simple cut like <(z) < 0 ∧ =(z) = 0 becomes f<(z) <
0 ∧ f=(z) = 0, but f<(z) is only relevant when f=(z) = 0. This was generalised in
[36], who observed that it is often helpful, but not always. They evaluated several
heuristics, including those from [18], to determine which formulation of a given
problem to solve.

In the case of Projection/Lifting methods, whether Collins or McCallum, it is
nearly always the case that the lifting step (n + 1, . . . , 2n) are by far the most
expensive. Within these, it is the lifting of cells of non-full dimension that is
the most expensive component, since in general this will involve algebraic number
manipulations. Hence [37] suggest using a variant of these steps that only lifts
the full-dimensional cells, picking the ordering (or other formulation choices) that
minimises this, and then recovering the lower-dimensional cells. Further improved
lifting techniques in the presence of equational constraints are described in [20].

6. Conclusion

6.1. Overview

In the fifteen years since [31], there has been a great deal of work on algorithms
for cylindrical algebraic decomposition, both for quantifier elimination and other
problems. Notably the Regular Chains method [11, 9] has appeared as a competitor
to the traditional Projection/Lifting approach of [12] and his school. Nevertheless,
there are at least as many open questions as there were before, and some are given
below.

42 J. H. Davenport

6.2. Open questions
1. Produce some complexity results for the Regular Chains method (Section

3.3). It follows from the work of that section, and the fact that quantifier
elimination is doubly exponential [17, 4] that Regular Chain computation (of
the kind used in these computations) must be, but this has not been explored
systematically.

2. Formalise the “we only need” issue of writing LRCF formulae expressing prob-
lems with as few variables as possible. A lot of this seems to be a variation
on “without loss of generality”, for example a naïve algebraicisation of

Given a triangle ABC

might be

Given a triangle ABC where A is at (ax, ay), B is at (bx, by) and C
is at (cx, cy)

but a mathematician using coordinates is more likely to write

Given a triangle ABC where, without loss of generality, A is at (0, 0),
B is at (0, 1) and C is at (cx, cy)

thus reducing the number of free variables by four, and more if we then need
to choose a point on AB.

3. Extend the machine learning approach of [25] to a wider class of problems, and
also a wider set of choices, not just variable ordering but also preconditioning
[36] and formulation [19].

4. The method of [37], which seems to be the most accurate predictor of the
“best formulation”, is only applicable to Projection/Lifting methods. Can the
fundamental idea be applied to Regular Chains methods as well?

5. The lower bounds for quantifier elimination are based on a construction which
alternates quantifiers, e.g. [4] uses ∃∀∀︸︷︷︸

block

. . . ∃∀∀︸︷︷︸
block

. There are theoretical meth-

ods [23] which are doubly-exponential only in the number a of alternations
of quantifiers: (md)n

O(a)

. To the best of the author’s knowledge, these have
never been implemented. Note, however, that since all the Projection/Lifting
algorithms we have shown are doubly-exponential in n (just in the Projection
phases), this means that cylindrical algebraic decomposition is theoretically
not the best tool.

6. This point is borne out by [27, 28], who solve the purely existential version
of quantifier elimination, more precisely

∃x1∃x2 . . . ∃xnφ(x1, . . . , xn), (6.1)

Solving computational problems in real algebra/geometry 43

by a method which can be thought of as a blend of the algebra underpinning
cylindrical algebraic decomposition with the methodology of modern SAT-
solvers. It currently seems to be impossible to generalise beyond (6.1), even
to a single alternation, but again this is a topic crying out for progress.

References

[1] N.H. Arai, T. Matsuzaki, H. Iwane, and H. Anai. Mathematics by Machine. In
K. Nabeshima, editor, Proceedings ISSAC 2014, pages 1–8, 2014.

[2] R.J. Bradford, C. Chen, J.H. Davenport, M. England, M. Moreno Maza, and D.J.
Wilson. Truth Table Invariant Cylindrical Algebraic Decomposition by Regular
Chains. In Proceedings CASC 2014, pages 44–58, 2014.

[3] R.J. Bradford and J.H. Davenport. Towards Better Simplification of Elementary
Functions. In T. Mora, editor, Proceedings ISSAC 2002, pages 15–22, 2002.

[4] C.W. Brown and J.H. Davenport. The Complexity of Quantifier Elimination and
Cylindrical Algebraic Decomposition. In C.W. Brown, editor, Proceedings ISSAC
2007, pages 54–60, 2007.

[5] R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and D.J. Wilson. Cylin-
drical Algebraic Decompositions for Boolean Combinations. In Proceedings ISSAC
2013, pages 125–132, 2013.

[6] R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and D.J. Wilson. Truth
Table Invariant Cylindrical Algebraic Decomposition. http://arxiv.org/abs/1401.
0645, 2014.

[7] R.J. Bradford, J.H. Davenport, M. England, and D.J. Wilson. Optimising Problem
Formulation for Cylindrical Algebraic Decomposition. In J. Carette et al., editor,
Proceedings CICM 2013, pages 19–34, 2013.

[8] C.W. Brown. Guaranteed Solution Formula Construction. In S. Dooley, editor,
Proceedings ISSAC ’99, pages 137–144, 1999.

[9] C. Chen and M. Moreno Maza. An Incremental Algorithm for Computing Cylindrical
Algebraic Decompositions. http://arxiv.org/abs/1210.5543, 2012.

[10] C. Chen and M. Moreno Maza. Quantifier Elimination by Cylindrical Algebraic
Decomposition Based on Regular Chains. In K. Nabeshima, editor, Proceedings
ISSAC 2014, pages 91–98, 2014.

[11] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing Cylindrical Algebraic
Decomposition via Triangular Decomposition. In J. May, editor, Proceedings ISSAC
2009, pages 95–102, 2009.

[12] G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition. In Proceedings 2nd. GI Conference Automata Theory & Formal
Languages, pages 134–183, 1975.

[13] G.E. Collins. Quantifier elimination by cylindrical algebraic decomposition — twenty
years of progess. In B.F. Caviness and J.R. Johnson, editors, Quantifier Elimination
and Cylindrical Algebraic Decomposition, pages 8–23. Springer Verlag, Wien, 1998.

44 J. H. Davenport

[14] M. Coste and M.-F. Roy. Thom’s Lemma, the Coding of Real Algebraic Numbers
and the Computation of the Topology of Semi-Algebraic Sets. J. Symbolic Comp.,
5:121–129, 1988.

[15] J.H. Davenport. Computer Algebra for Cylindrical Algebraic Decomposition. Tech-
nical Report TRITA-NA-8511 NADA KTH Stockholm (Reissued as Bath Computer
Science Technical report 88-10), 1985.

[16] J.H. Davenport. The geometry of Cn is important for the algebra of elementary
functions. In M. Jowsig and N. Takayama, editors, Algebra Geometry and software
systems, pages 207–224. Springer, 2003.

[17] J.H. Davenport and J. Heintz. Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

[18] A. Dolzmann, A. Seidl, and Th. Sturm. Efficient Projection Orders for CAD. In
J. Gutierrez, editor, Proceedings ISSAC 2004, pages 111–118, 2004.

[19] M. England, R. Bradford, C. Chen, J.H. Davenport, M.M. Maza, and D.J. Wilson.
Problem formulation for truth-table invariant cylindrical algebraic decomposition by
incremental triangular decomposition. In S.M. Watt et al., editor, Proceedings CICM
2014, pages 45–60, 2014.

[20] M. England, R. Bradford, and J.H. Davenport. Improving the use of equational
constraints in cylindrical algebraic decomposition. http://arxiv.org/abs/1501.
04466, 2015.

[21] M. England, R. Bradford, J.H. Davenport, and D.J. Wilson. Choosing a Variable
Ordering for Truth-Table Invariant Cylindrical Algebraic Decomposition by Incre-
mental Triangular Decomposition. In Proceedings ICMS 2014, pages 450–457, 2014.

[22] M. England, D.J. Wilson, R. Bradford, and J.H. Davenport. Using the Regular
Chains Library to build cylindrical algebraic decompositions by projecting and lifting.
In Proceedings ICMS 2014, pages 458–465, 2014.

[23] N. Fitchas, A. Galligo, and J. Morgenstern. Precise sequential and parallel complexity
bounds for the quantifier elimination over algebraic closed fields. J. Pure and Applied
Algebra, 67:1–14, 1990.

[24] A. Gabrielov and N. Vorobjov. Complexity of computations with Pfaffian and
Noetherian functions. In Normal Forms, Bifurcations and Finiteness Problems in
Differential Equations, pages 211–250. Kluwer, 2004.

[25] Z. Huang, M. England, D. Wilson, J.H. Davenport, L.C. Paulson, and J. Bridge.
Applying machine learning to the problem of choosing a heuristic to select the vari-
able ordering for cylindrical algebraic decomposition. In S.M.Watt et al., editor,
Proceedings CICM 2014, pages 92–107, 2014.

[26] H. Hong. An Improvement of the Projection Operator in Cylindrical Algebraic De-
composition. In S. Watanabe and M. Nagata, editors, Proceedings ISSAC ’90, pages
261–264, 1990.

[27] D. Jovanović and L. de Moura. Solving Non-Linear Arithmetic. In Proceedings
IJCAR 2012, pages 339–354, 2012.

[28] D. Jovanović and L. de Moura. Solving non-linear arithmetic. ACM Communications
in Computer Algebra, 46(3/4):104–105, 2013.

Solving computational problems in real algebra/geometry 45

[29] Yu.V. Matiyasevich. Enumerable sets are Diophantine. Soviet Math. Doklady 2,
11:354–358, 1970.

[30] S. McCallum. An Improved Projection Operation for Cylindrical Algebraic Decom-
position. Technical Report 548 Computer Science University Wisconsin at Madison,
1985.

[31] S. McCallum. On Projection in CAD-Based Quantifier Elimination with Equational
Constraints. In S. Dooley, editor, Proceedings ISSAC ’99, pages 145–149, 1999.

[32] N. Phisanbut, R.J. Bradford, and J.H. Davenport. Geometry of Branch Cuts. Com-
munications in Computer Algebra, 44:132–135, 2010.

[33] N. Phisanbut. Practical Simplification of Elementary Functions using Cylindrical
Algebraic Decomposition. PhD thesis, University of Bath, 2011.

[34] J.T. Schwartz and M. Sharir. On the “Piano-Movers” Problem: II. General Tech-
niques for Computing Topological Properties of Real Algebraic Manifolds. Adv. Appl.
Math., 4:298–351, 1983.

[35] A. Tarski. A Decision Method for Elementary Algebra and Geometry. 2nd ed., Univ.
Cal. Press. Reprinted in Quantifier Elimination and Cylindrical Algebraic Decompo-
sition (ed. B.F. Caviness & J.R. Johnson), Springer-Verlag, Wein-New York, 1998,
pp. 24–84., 1951.

[36] D.J. Wilson, R.J. Bradford, and J.H. Davenport. Speeding up Cylindrical Algebraic
Decomposition by Gröbner Bases. In J. Jeuring et al., editor, Proceedings CICM
2012, pages 279–293, 2012.

[37] D.J. Wilson, R.J. Bradford, J.H. Davenport, and M. England. Cylindrical Algebraic
Sub-Decompositions. Mathematics in Computer Science, 8:263–288, 2014.

[38] D.J. Wilson, J.H. Davenport, M. England, and R.J. Bradford. A “Piano Movers”
Problem Reformulated. In Proceedings SYNASC 2013, pages 53–60, 2013.

46 J. H. Davenport

What does Mathematical Notation actually
mean, and how can computers process it?∗

James H. Davenport

University of Bath (U.K.)
J.H.Davenport@bath.ac.uk

Submitted September 14, 2014 — Accepted November 14, 2014

Abstract

Mathematical Notation is generally though of as universal and constant.
This is not as true as the layman thinks, and Notation is in fact an evolving,
subject-specific, collection of sub-notations, where the same symbol can mean
different things in different parts of the same sentence. This paper surveys
the various ways computers process, and help humans to process, the varieties
of notation.

Keywords: Mathematical Notation, MathML, OpenMath

MSC: 00A35, 68A30, 68C20

1. Notation: the perception and the reality

The outsiders’ perception of mathematical notation is that it is unambiguous, un-
changing, precise, and world-wide (or more so1). One need merely Google for the
phrase “mathematically precise” to see many instances of this view. And indeed
there is a lot of truth in this belief: the author has seen mathematicians be unable
to speak to each other, having no human language in common, but be able to
communicate by writing mathematics.

This is not just a popular belief: the computing discipline of “Formal Methods”,
which employs tens of thousands of people in industry, as well as many academics,

∗Thanks to many people: typesetters, editors, OpenMath and MathML colleagues, TEXnicians.
1Witness various science-fiction stories where, e.g., Pythagoras’ Theorem is used as a demon-

stration of intelligence.

Annales Mathematicae et Informaticae
44 (2015) pp. 47–57
http://ami.ektf.hu

47

Idea Anglo-Saxon French German
half-open interval (0, 1]]0, 1] varies

single-valued function arctan Arctan arctan
multi-valued function Arctan arctan Arctan

{0, 1, 2, . . .} N N N ∪ {0}
{1, 2, 3, . . .} N \ {0} N \ {0} N

Table 1: Cultural Notation Differences

tries to reduce computer programming to mathematics/logic, and has substantial
success in doing so.

However, mathematical notation is certainly not unchanging. Few except the
scholars of the history of notation would recognise in

1cu.m.6ce.p.11co. equale 6ni

[2, attributed to [17]] the modern x3 − 6x2 + 11x = 6.

The + sign is less than 500 years old [19] (this text also introduced − and
√

).

The = sign is slightly younger [18].

Recorde [18] wrote 2a+ b: 2(a + b) is later, but the parenthetic notation won
because it is (much!2) easier for manual typesetting.

Calculus had from the origin, and still has, two very different notations for ordi-
nary differentiation: ẋ versus dx

dt , which have given rise to uxxt versus ∂3u
∂2x∂t .

Relativity introduced the summation convention [7]:
∑3
i=1 cix

i is abbreviated as
cix

i (but cµxµ is short for
∑3
µ=0 cµx

µ, i.e. the range of summation depends
on the alphabet from which the index is drawn).

Mathematical notation is also not quite as international as the layman believes:
see Table 1. The examples there are drawn from relatively advanced mathematics,
but the differences can be more basic – [13, p. 2] lists five different forms of writing
9,435,671 found in Houston schools. These issues can spread to the description
of algorithms such as division, as in Figure 1. Indeed MathML [22] recognises
10 such formats, such as stackedleftlinetop: see http://www.w3.org/Math/
draft-spec/mathml.html#chapter3_presm.mlongdiv.ex.

Mathematical notation is also subject-specific: while the mathematician writes
i for

√
−1, the electrical engineer writes j, reserving i for current. A more chaotic

2The author, in the 1960s, used to typeset mathematics using “cold lead” technology: 2(a+ b)
involved selecting six characters from the cases of symbols, while 2a+ b would have involved
cutting a raised piece of lead to form the overline and two “sleepers” – unraised pieces of lead –
to sit either side of it to ensure that the overline was over the right characters. Furthermore, any
change in the paragraph which moved the a+ b horizontally would involve cutting new sleepers.

48 J. H. Davenport

Figure 1: Division (from [13, p. 7])

example of notational clash between subjects can be seen in [5], where the alge-
braist uses [. . .] to indicate a polynomial ring extension, and the biochemist uses
[. . .] to indicate “concentration of”. Hence computations were being conducted in
C[[P][S][E]]. The fact that “reaction scheme” notation uses + to indicate combi-
nation of reagents rather than mathematical addition is a further complication for
the reader.

The mathematician also knows (without, possibly, having articulated it) that
notation is area-specific within mathematics. For example (2, 4) might be, depend-
ing on the area, any of:

Set Theory The ordered pair “first 2, then 4”;

(Geometry) The point x = 2, y = 4;

(Vectors) The 2-vector of 2 and 4;

Calculus Open interval from 2 to 4;

Group Theory The transposition that swaps 2 and 4;

Number Theory The greatest common divisor of 2 and 4;

What does Mathematical Notation actually mean, and . . . ? 49

In general, these expressions, whilst written identically, are spoken differently by
the mathematician: the written text “we draw a line from (2, 4) to (3, 5)” is spoken
“we draw a line from the point (2, 4) to the point (3, 5)”. This can apply even within
a given sentence3: every group theorist would read

Since Hi ≤ G for i ≤ n (1.1)

as “Since H sub i is a subgroup of G for i less than or equal to n” without, probably,
even noticing that the two instances of ≤ had been pronounced very differently.
This issue is a major challenge for mathematics “text-to-speech” renderers.

2. Imperfections in notation

Mathematical notation has evolved over the centuries, and some innovations were,
with hindsight, less than ideal.

2.1. “Landau” Notation
This notation, apparently actually due to Bachmann [3], has two components. The
first is not controversial: we use O(f(n)) to denote those functions that “grow no
faster than f(n)” – formally (though rarely stated as such)

O(f(n)) = {g(n)|∃N,A : ∀n > N |g(n)| < Af(n)} , (2.1)

and similarly with o, Ω, ω and Θ. The second component of this notation is the
use of “=” with this, as in log2 n = O(log n). This is not the traditional use of
the = sign, as the relation is not symmetric: we can’t write O(log n) = log2 n, for
example, and while we might stretch the notation to O(n2) = O(n3), it is certainly
not the case that O(n3) = O(n2). Again, the spoken language gives a clue: the
(English-speaking) mathematician would say “is” not “equals”.

If we were honest with (2.1), we would write O(log n) ∈ log2 n, but to the best
of the author’s knowledge, [12] is the only textbook to be consistently honest in
this area using ∈, though [9] does refer to O(f) as a set, and is careful to use
neither = nor ∈. Being honest with (2.1) has another advantage: we can write
Θ(f(n)) = O(f(n)) ∩ Ω(f(n)), as [9] does.

2.2. Iterated Functions
No-one could quarrel with any of the following:

sin(x2) square x, then apply sin

(sinx)2 apply sin to x, then square the result

sin(sin(x)) apply sin to x, then apply sin again
3I owe this example to Ieuan Evans of Bath.

50 J. H. Davenport

The problem comes with sin2 x, which is generally used to mean (sinx)2, whereas,
if anything, it should mean sin(sin(x)), since this is the sense in which we write
sin−1(x) – apply the inverse operation of sin, not 1/ sin(x). The author is not the
first to object to this notation: “[This] is by far the most objectionable of any”
[2]. The author has not encountered a definitive explanation of the origin of this
notation, which was clearly common by the time of Babbage, but his experience of
manual printing leads him to believe that it was economy of printing:

sin2 θ + φ

2
versus

(
sin

θ + φ

2

)2

obviates searching for the very large brackets, and building up an exponent to a
non-standard height.

2.3. Continued Fractions
The “correct” notation for continued fractions, as in

π = 3 +
1

7 + 1
15+ 1

1+ 1

292+

...

(2.2)

is nearly always reduced to

π = 3 +
1

7+

1

15+

1

1+

1

292+
· · · , (2.3)

which is much easier for (manual) typesetting4, and uses less space – still a relevant
consideration. Furthermore, if the individual terms of the continued fraction are
complicated, as in

α = a0 +
1

a1 + 1
a2+

1

a3+ 1

a4+

...

,

the alternative notation is probably more readable, at least when the reader is used
to it.

2.4. Conclusion
We actually see that the same printed notation can mean very different mathe-
matical objects, and that the same mathematical object can be displayed in many
different styles. This has led to a conceptual split between the computerisation
of the presentation, how the mathematics looks, and the computerisation of the
content (or semantics), i.e. what the mathematics means. This is formalised in the
MathML standard, which has different chapters, and even different basic tokens,
for the two approaches.

4As we (LATEX) have written it (2.2) uses three sizes of digits, while (2.3) only uses one. Most
“Hot metal” printers only had two available, so the result would not be as attractive as (2.2).

What does Mathematical Notation actually mean, and . . . ? 51

3. Computer Displays of Mathematics

Let us first look at how computers mediate the presentation of mathematical for-
mulae.

3.1. Display of Mathematics
We can distinguish various (overlapping) periods in the computer display of math-
ematics.

1. Images – generally GIF or JPEG formats, though others have been used, and
SVG has become more desirable [20]. The fundamental problem with an im-
age is that it is precisely an image – all machine-processable information has
been lost. In HTML, it is possible to include an ALTernative representation,
and this might be the LATEX source, which at least conveys some information
to a text-to-speech renderer.

2. Computer processing – as photocomposition replaced “hot metal” technology
in typesetting shops, so these photocomposers became computer-controlled.
Various programs, notably troff [16] and the associated mathematics pre-
processor eqn [10], were developed to take advantage of this capability, and
the author’s PhD thesis was ported as [6] to the IBM equivalent program –
YFL [8].

3. A major breakthrough came with Knuth’s TEX [11]. One fundamental de-
velopment here over its predecessors was the principle of boxes with width,
height and depth. The requirement to know the explicit depth of a box is
fundamental, as in (2.2). This has become the de facto gold standard for
mathematical typesetting.

4. The original HTML did not support mathematics, much to its designer’s
regret, and MathML–Presentation 1.0 [21] soon appeared to fill this gap.
However, the browsers of the period did not support the concept of ‘depth’ for
boxes, and this can still be a problem today (Chrome’s support for MathML
has been intermittent, largely for this reason). A further challenge with many
browsers5 is the lack of fonts available.

5. MathJax [14] has emerged as a pragmatic solution to the vagaries of browsers,
and is discussed further in [20].

3.2. Line Breaking
All systems the author knows of make a fundamental distinction between “in-line”
and “display” mathematics, and the user has to state which is required, e.g. $...$
versus $$...$$ in TEX. TEX and its derivatives provide so support for automatic

5And other software: PowerPoint has often given users problems here.

52 J. H. Davenport

breaking of lines if a displayed formula overflows the line width, and not much
support for in-line formulae6. In the author’s experience, a significant fraction of
the effort in converting a paper from one format to another is in reflowing the
equations, and maybe converting from display to in-line or vice versa.

However, the author of a web page has no control over the width within which
it is displayed, and hence the browser must do something about linebreaking. This
is also a problem for the various kinds of e-book readers, and partially accounts
for the relative difficulty of handling mathematics, or technical text in general, on
these devices. The MathML standard [23, §3.1.7] provides a suggested algorithm,
but, as it says there:

This algorithm takes time proportional to the number of token elements
times the number of lines.

This problem, with its blend of algorithmics and aesthetics, is at least as difficult
as, but less-researched than, the problem of table layout, as discussed in [15]

3.3. MathML-Presentation

While it is possible to regard MathML-Presentation as “LATEX with pointy brack-
ets”, this view in fact does it a disservice. While f(x), written as f(x) in TEX,
could be written as

<mrow> <mi> f </mi> <mo> (</mo> <mi> x </mi> <mo>) </mo> </mrow>

it would best be represented in MathML as

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>

<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>

In this representation, the function application, and precisely what the argument
is, are clearly apparent. This matters for speech rendering – “f of x”, as well as
semantic analysis. However, it is still presentation, and cannot solve the sort of
problem seen in (1.1).

6TEXnically speaking, the mathematics has been converted into a list of boxes by the time
it is realised that line-breaking is needed, hence rules like “break at the outermost operator” no
longer make sense.

What does Mathematical Notation actually mean, and . . . ? 53

4. Computer Representation of Mathematical Con-
tent

Originally, there were two different approaches to the description of mathemati-
cal content: OpenMath and MathML-Content. We describe each, and then the
convergence process.

4.1. OpenMath
The OpenMath movement grew out of the Computer Algebra community’s wish
to move formulae between systems. An early document is [1], which emphasises
the importance of extensibility. Indeed, OpenMath is not so much an encoding as
a framework for encoding, and the Standard [4] does not of itself specify how to
transmit anything more complicated than integers. In fact it defines only a few
basic concepts, listed here as their XML encodings.

OMOBJ The basic constructor, whose argument is an OpenMath objects. This exists
so that OpenMath can be embedded in other documents, as formulae are in
text. It’s opposite is OMFOREIGN, indicating that we have some non-OpenMath
constructs (such as Presentation MathML) embedded in an OpenMath ob-
ject.

OMS This indicates an “OpenMath Symbol”, an object to which the OpenMath
process assigns a definite meaning. The arguments are the name of the sym-
bol, e.g. sin, and the location of the “Content Dictionary” in which that
definition can be found. This location can be either a simple name (transc1
would indicate the standard Content Dictionary for basic transcendental func-
tions) or a complete URL.

OMA This indicates an “OpenMath Application”, where the first argument is to be
considered an operator applied to the remaining arguments.

OMBIND This indicates an “OpenMath Binding”, where the first argument is some
operator to bind the variables specified in the second argument in the use of
the third argument. A typical first argument would be
<OMS name="forall" cd="quant1"/> to indicate ∀.

OME This indicates an “OpenMath Error Object” (such as “divide by zero”): the
first argument is the ‘name’ of the error, as an OMS, and the rest are additional
arguments depending on the error.

OMATTR This indicates an “OpenMath Attribution”: the first argument has various
attributes, such as color being red.

OMR This indicates an “OpenMath Reference” and allows us to build directed
acyclic7 graphs, rather than just trees.

7There is an explicit ban on cycles in the OpenMath standard.

54 J. H. Davenport

Basic objects are encoded by any of OMV (variables), OMI (integers), OMB (byte
arrays), OMSTR (Unicode strings) or OMF (IEEE floating-point numbers).

4.2. MathML-Content
This was introduced at the start of the MathML process, with a view to being
“an explicit encoding of the underlying mathematical meaning of an expression,
rather than any particular rendering for the expression” [23]. Equally, as have we
have seen, renderings can be ambiguous, and one aim of MathML-Content is to
remove this ambiguity. Consider (F + G)x: this could be either multiplication or
function application: see Figure 2. We note that there is no need for brackets, as

<apply><times/> <apply>
<apply><plus/> <apply><plus/>

<ci>F</ci> <ci>F</ci>
<ci>G</ci> <ci>G</ci>

</apply> </apply>
<ci>x</ci> <ci>x</ci>

</apply> </apply>

Figure 2: Alternative MathML-Content for (F +G)x

<apply>. . . </apply> groups, and the meaning is explicit: in the first we have an
application of <times/> while in the second we are applying F +G.

The original aim in MathML (version 1) was to handle “school” mathematics,
otherwise “K–12”, or Kindergarten to 12th-grade. However, this became a moving
target, as constructs like <div> were introduced.

4.3. Convergence
The reader will have noticed that there is a strong similarity between OpenMath
and MathML-Content, with <apply> corresponding to <OMA>, and <ci> constructs
corresponding to <OMV name= constructs. The difference is that <plus/> is part
of the MathML specification, whereas <OMS name="plus" cd="arith1"/> is just
a symbol in an OpenMath content dictionary. This difference is also the source of
the greater expressivity of OpenMath: MathML needed to charge to accommodate
<div/>, whereas OpenMath just added the veccalc1 content dictionary.

MathML version 2 therefore added the ability to use OpenMath symbols, thus
buying into the expressivity of OpenMath. In MathML version 3, the authors went
further, and defined MathML-Content in terms of OpenMath as follows.

[In §4.2] a core collection of elements comprising Strict Content Markup
are described. Strict Content Markup is sufficient to encode general
expression trees in a semantically rigorous way. It is in one-to-one

What does Mathematical Notation actually mean, and . . . ? 55

correspondence with OpenMath element set. OpenMath is a standard
for representing formal mathematical objects and semantics through
the use of extensible Content Dictionaries. [23, §4.1.1].

<plus/> is then defined to be a shorthand for <OMS name="plus" cd="arith1"/>,
etc.

5. Conclusion

In terms of reproducing via computers the intricate two-dimensional layouts of
mathematical notation, created (at considerable expense) by cold-metal printers,
the TEX engine [11] has no equal. However, all it does is express how to lay out
the symbols, and says nothing about their meaning. The invisible operator after)
in the LATEX (F+G)x could be either function application or multiplication.

Although it is possible to write MathML-presentation that conveys no more in-
formation than the LATEX, well-written MathML-presentation can convey far more,
as the invisible operator should be either ⁡ or ⁢.

However, presentation MathML can only go so far in encoding meaning, and
is still unable to resolve the two uses of ≤ in (1.1) for example. For this, we
need a representation of the semantics ,either OpenMath or MathML-Content.
Fortunately, the two have converged so much that they are essentially isomorphic
structures, and we can look forward to greater convergence in the future.

References

[1] J.A. Abbott, A. Díaz, and R.S. Sutor. OpenMath: A Protocol for the Exchange of
Mathematical Information. SIGSAM Bulletin 1, 30:21–24, 1996.

[2] C. Babbage. Article “Notation”. Edinburgh Encyclopaedia, 15:394–399, 1830.

[3] P. Bachmann. Die analytische Zahlentheorie. Teubner, 1894.

[4] S. Buswell, O. Caprotti, D.P. Carlisle, M.C. Dewar, M. Gaëtano, and M. Kohlhase.
The OpenMath Standard 2.0. http://www.openmath.org, 2004.

[5] J.P. Bennett, J.H. Davenport, M.C. Dewar, D.L. Fisher, M. Grinfeld, and H.M.
Sauro. Computer algebra approaches to enzyme kinetics. In Gérard Jacob and
Françoise Lamnabhi-Lagarrigue, editors, Algebraic Computing in Control, volume
165 of Lecture Notes in Control and Information Sciences, pages 23–30. Springer
Berlin Heidelberg, 1991.

[6] J.H. Davenport. On the Integration of Algebraic Functions, volume 102 of Springer
Lecture Notes in Computer Science. Springer Berlin Heidelberg New York (Russian
ed. MIR Moscow 1985), 1981.

[7] A. Einstein. Die Grundlage der allgemeinen Relativitaetstheorie (The Foundation
of the General Theory of Relativity). Annalen der Physik Fourth Ser., 49:284–339,
1916.

56 J. H. Davenport

[8] A.M. Gruhn. The Yorktown Formatting Language: User Guide. Technical Report
RC 6994 IBM Research, 1979.

[9] M. Hetland. Python algorithms: Mastering Basic Algorithms in the Python Language
(2nd ed.). Apress, 2014.

[10] B.W. Kernighan and L.L. Cherry. A System for Typesetting Mathematics. Comm.
ACM, 18:151–157, 1975.

[11] D.E. Knuth. The TEXbook: Computers and Typesetting Vol. A. Addison–Wesley,
1984.

[12] A. Levitin. Introduction to the design and analysis of algorithms. Pearson Addison–
Wesley, 2007.

[13] N.R. Lopez. Mathematical Notation Comparisons between U.S. and Latin Ameri-
can Countries. https://sites.google.com/site/algorithmcollectionproject/
mathematical-notation-comparisons-between-u-s-and-latin-american-
countries, 2008.

[14] MathJax Consortium. MathJax: Beautiful math in all browsers. http://www.
mathjax.org/, 2011.

[15] Kim Marriott, Peter Moulder, and Nathan Hurst. Html automatic table layout.
ACM Trans. Web, 7(1):4:1–4:27, March 2013.

[16] J.F. Ossanna. Nroff/Troff User’s Manual. Technical Report 54 Bell Labs, 1976.

[17] Luca Pacioli. Summa de arithmetica, geometria, proportioni et proportionalita.
Venice, 1494.

[18] R. Recorde. The Whetstone of Witte. J. Kyngstone, London, 1557.

[19] Stifelius [Michael Stifel]. Arithmetica Integra. Iohan Petreius, Norimberg, 1544.

[20] M. Schubotz and G. Wicke. Mathoid: Robust, Scalable, Fast and Accessible Math
Rendering for Wikipedia. http://arxiv.org/abs/1404.6179, 2014.

[21] World-Wide Web Consortium. Mathematical Markup Language: First Public Draft.
http://www.w3.org/TR/WD-math-970515/, 1997.

[22] World-Wide Web Consortium. Mathematical Markup Language (MathML) Version
3.0: W3C Recommendation 21 October 2010. http://www.w3.org/TR/2010/REC-
MathML3-20101021/, 2010.

[23] World-Wide Web Consortium. Mathematical Markup Language (MathML) Version
3.0: second edition. http://www.w3.org/TR/2014/REC-MathML3-20140410/, 2014.

What does Mathematical Notation actually mean, and . . . ? 57

Lightweight simulation of programmable
memory hierarchies∗

Gergely Dévai

Eötvös Loránd University, Fac. of Informatics
deva@elte.hu

Submitted September 15, 2014 — Accepted May 13, 2015

Abstract

In most performance critical applications the bottleneck is data access.
This problem is mitigated by applying memory hierarchies. There are appli-
cation domains where the traditional, hard-wired cache control mechanisms
are not satisfactory and the programmer is given full control where to place
and when to move data. A known optimization technique on these kind of
architectures is to do block-transfer of data instead of element-by-element
access.

This contribution presents a lightweight library, written in and for C, to
support experiments with algorithm performance on simulated programmable
memory hierarchies. The library provides functions and macros to define
memory layers, available block-transfer operations and data layout. The
algorithm then can be run on a simple desktop computer and the library
combines its real runtime with simulated memory access penalties.

Keywords: Memory hierarchy, block transfer, simulation

MSC: 68U20

1. Introduction

Memory access is the performance bottleneck of many computer architectures,
because memory is an order slower than processors. This is mitigated by applying
a memory hierarchy ranging from very fast but small to slow but large memory
layers. If data is loaded to the faster layers by an automatic policy hidden from

∗Supported by EITKIC 12-1-2012-0001.

Annales Mathematicae et Informaticae
44 (2015) pp. 59–69
http://ami.ektf.hu

59

the programmer we speak about cache layers. In some application areas, however,
these policies do not perform well enough. In these cases the programmer is given
control over the faster memory layers: She or he is in charge of which data to store
in which layer and when to move data between the layers.

Platforms with programmable memory hierarchy usually provide special block
copy operations: These can move given amount of data (typically 8, 16 or 32 bytes)
from one layer to another. The cost of these operations in terms of waiting for the
memory is similar to a single byte memory access. These operations make the so
called bulk access optimization possible: A large array is stored in slow memory
that needs to be processed elementwise. This task can be done by copying chunks
of the array using block copy operations one by one to fast memory and process
the chunks there. If the processing involves modification of the array then the
processed chunk is copied back to its original location by a second block copy.

The goal of the created C library is to provide means of experimentation with
bulk access and related optimizations without actually having a hardware platform
with programmable memory hierarchy. Detailed requirements:

• The library has to provide means to define the memory hierarchy, together
with the access costs.

• It has to provide means to define which object is placed in which layer.

• To be able to use the library to measure memory-related performance of an
existing C program should only require minimal changes to the program.

• The library does not have to provide cycle accurate results of a given platform,
instead it has to enable estimations for any platform with a memory hierarchy
configured by the user of the library.

In the next section, related work is presented. Then, section 3 describes how
to use our C library, followed by the implementation details in section 4. Section 5
presents measurement results of various experiments using the simulation library.

2. Related work

The theoretical background of architectures featuring storage elements with dif-
ferent access costs and providing block copy like instructions has been established
decades ago [1]. Regarding the technical aspects of such architectures, paper [4]
describes the details of efficiently using the memory hierarchies. However, this pa-
per mainly concentrates on traditional cache systems, as opposed to programmable
memory hierarchies, which is the main focus of our work.

Software controlled memory hierarchies generated a large amount of research
about related optimization problems. Let us mention a few of these: [9] discusses
heuristics to find good data layout, [10] concentrates on the optimization of energy
consumption and also deals with allocation instructions. Paper [6] shows a dynamic
memory management solution.

60 G. Dévai

Complementary to the optimization aspect, there have been experiments to in-
crease the abstraction level of programming software controlled memory hierarchies.
Several extensions to existing programming languages [2, 3] or newly proposed lan-
guages [5] emerged. However, in practice, C is still the most widely used language
to program these performance oriented platforms. For this reason C is selected as
the base language of the simulation solution of this paper.

Simulation of program behavior on special hardware is important because it
enables software evaluation without actual deployment. Another use case is the
pre-evaluation of not yet existing hardware. There are simulators targeting specific
hardware platforms accurately or aiming at the simulation of many different aspects
of software behavior, eg. [8]. The XMSIM system [7] uses code transformations
and C++ to evaluate memory hierarchies. It is, in many aspects, similar to the
work presented in this paper. The main differences are that our solution uses C,
and it is much simpler and lighter weight.

3. Users’ perspective

This section presents the API provided by our library. Figures 1 and 2 show a possi-
ble architecture definition and a program using it. The API elements demonstrated
by these examples are explained in the following subsections in detail.

1 #ifndef __EXAMPLE_ARCHITECTURE_H
2 #define __EXAMPLE_ARCHITECTURE_H
3
4 enum memory { s c ra t ch = 10 , ram = 100 } ;
5
6 enum copy_size { _8bytes = 8 ,
7 _16bytes = 16 ,
8 _32bytes = 32
9 } ;
10
11 #endif

Figure 1: Example memory architecture definition
(example_architecture.h)

3.1. Architecture definition
The first step of using the library is to describe the basic properties of the mem-
ory hierarchy to be simulated in a header file, see figure 1. Types memory and
copy_size have to be defined as enumeration types, like in the following example.

enum memory { scratch = 10, ram = 100 };

Lightweight simulation of programmable memory hierarchies 61

1 #define ARCHITECTURE " example_architecture . h"
2 #include "memory . h"
3 #include <s td i o . h>
4
5 void ca l i b r a t i on_ func t i on () {
6 stat ic int i , data [1 2 8] ;
7 for (i =0; i <128; ++i)
8 data [i] = i ;
9 }
10
11 int main () {
12 c a l i b r a t e (&ca l i b ra t i on_func t i on , 4∗128) ;
13 int i ;
14 char sum ;
15 char _a [8] ;
16 #de f i n e a a c c e s s (_a, s c ra t ch)
17 char _b[2 5 6] ;
18 #de f i n e b ac c e s s (_b, ram)
19 for (i =0; i <256; ++i)
20 b [i] = i ;
21 s t a r t () ;
22 sum = 0 ;
23 for (i =0; i <256; ++i)
24 sum += b [i] ;
25 long long e lapsed = stop () ;
26 p r i n t f ("Simple ␣ s o l u t i o n : ␣%l l d ␣microseconds . \ n" ,
27 e lapsed) ;
28 s t a r t () ;
29 sum = 0 ;
30 for (i =0; i <256; i+=_8bytes) {
31 block_copy (_a, scratch ,&(_b[i]) , ram , _8bytes) ;
32 sum += a [0] + a [1] + a [2] + a [3]
33 + a [4] + a [5] + a [6] + a [7] ;
34 }
35 e lapsed = stop () ;
36 p r i n t f ("Block␣copy␣ s o l u t i o n : ␣%l l d ␣microseconds . \ n" ,
37 e lapsed) ;
38 return 0 ;
39 }

Figure 2: Summing an array with and without block copying

62 G. Dévai

enum copy_size { _8bytes = 8, _16bytes = 16, _32bytes = 32 };

Here, two memory layers are defined: scratch is a relatively fast memory, its access
costs ten cycles, while accessing ram takes 100 clock cycles. The example also
defines three different block copy widths: 8, 16 and 32 bytes respectively.

3.2. Importing the architecture
The next step is to implement the algorithms to be measured in some C source
file(s). Let us assume that the header file example_architecture.h defines the
simulated architecture. One can refer to it from the source files as seen in lines 1-2
of figure 2:

#define ARCHITECTURE "example_architecture.h"
#include "memory.h"

The ARCHITECTURE symbol defines the name of the header file describing the archi-
tecture, and memory.h is the header file providing the block copy operations and
utility functions to measure simulated execution time.

3.3. Variable definition and access
Lines 15-18 of the example uses special notation to declare the variables that we
want to store in one of the simulated memory layers.

char _a[256];
#define a access(_a,scratch)

The previous two lines define a character array of length 256 stored on the memory
layer called scratch. The real name of this object, seen by the C compiler is _a.
Using a macro definition, we create a synonym (a) for this variable and specify
a memory layer (scratch) for it. Whenever the algorithm accesses the data of
this object, the synonym has to be used. This enables the simulation library to
incorporate the configured memory access cost in the execution time results. On the
other hand, if the object is used without data access, for example, as an argument
of the sizeof or the & operators, the real variable name (_a) has to be used.

3.4. Block copy operations
Block copy operations are simulated by calling the following function:

void* block_copy(void* destination, enum memory dest_mem,
void* source, enum memory src_mem,
enum copy_size size);

Destination and source are two addresses to copy to and from respectively. Param-
eters dest_mem and src_mem are memory layers of the destination and the source:
these can be values of the memory enumeration type as given in the architecture

Lightweight simulation of programmable memory hierarchies 63

description. The last parameter, size, is one of the values of the copy_size enu-
meration type as given in the architecture description: It defines the number of
bytes to copy.

Line 31 of figure 2 demonstrates a call to this function. It copies 8 bytes from
array b in RAM to array a stored on the scratchpad.

3.5. Performance measurement
Before starting the first measurement cycle it is important to call the

double calibrate(void (*f)(), long long cycles);

function. The parameters are a calibration function and the number of clock cycles
the function would take on the simulated hardware to execute. The calibrate
function calculates the execution time of simulated clock cycle on the current ma-
chine. See line 12 of figure 2, where this calibration takes place.

In order to get the simulated execution time of a piece of code, it needs to
be surrounded by calls to the start() and stop() functions. The latter one
returns the simulated execution time in clock cycles. Figure 2 performs two such
measurements, between lines 21-25 and 28-35.

4. Implementation

The C library is implemented in a single header file in terms of macros and inline
functions. It first includes the header file indicated by the ARCHITECTURE symbol
to get access to the configuration of the simulated platform.

The calibrate function executes the calibration function in its first parameter,
measures its execution time, which is then divided by the number of clock cycles
in the second parameter. The result is the amount of time that a clock cycle of the
simulated machine takes on the simulator machine. This is saved for later use.

The start function initializes timeval structures from the sys/time.h stan-
dard header to measure execution time up to the execution of the stop function.
This amount of time is converted to simulated machine clock cycles according to
the ratio given by the calibration. This is one component of the end result.

The other component is the simulated memory access cost. Each object syn-
onyme (see section 3.3) in the program is expanded to a call to the access macro.
Its definition is as follows:

#define access(var,mem) (*(stall(mem),&var))

This is an expression composed by the comma (sequencing) operator of C. First,
the stall function is called with the actual memory layer. Recall that each layer
is an element in an enumeration type, and its integer value is the number of clock
cycles the memory access takes on the simulated platform. The stall function
simply accumulates these simulated stall times, which is the second component of
the simulation’s result. The left hand side of the comma operator defines the value

64 G. Dévai

of the expression, which is the address of the accessed variable. The dereferencing
operator (*) takes this address and returns the variable itself (var).

The reason for using the combination of the operators & and * instead of simply
writing (stall(mem),var) is that the latter expression is not a left-value and
would not allow the programmer to use the object synonyms on the left-hand side
of assignment operations, for example.

The block_copy function computes the maximum stall of the destination and
source memory layers and uses this maximum as the parameter to the stall func-
tion. The functionality of the operation is implemented by a standard memcpy
call.

5. Experiments

The measurements were carried out on an Acer TravelMate 8572TG laptop with
Intel Core i5-460M processor (2.53 GHz, 3MB L3 cache) and 4 GB DDR3 mem-
ory. The following diagrams show the simulated clock cycles translated back to
microseconds according to the capabilities of this machine.

5.1. Proof-of-concept

In the first, basic experiment we have implemented the summation of a 1024 byte
long unsigned character array two different ways. The array is configured to be
stored in a memory layer causing 100 cycles average stall time at each access.

The first solution processes the array element-by-element. The second one
copies array chunks to faster memory and processes data there. The buffer used
to store the chunks has 10 cycles average stall time and the block-copy operations
used are 32 bytes wide.

In this setup, the block copy solution results in more than 4 times speedup,
according to our simulation. That is, block copying array chunks to faster memory
and processing data there is faster than element-wise processing of the original
array in slow memory.

5.2. Slowdown caused by increasing memory access penalties

This experiment examines the effect of increasing stall time to the run time of
summing the elements of a 1024 element character array. The computation is done
element-by-element, without block copy operations. The stall time of the memory
layer storing the array was increased from 2 cycles up to 256.

The diamonds on the graph show linear slowdown for reference. The runtime
results (squares) show that slowdown is smaller than linear in case of low stall
times and it converges to linear slowdown as stall time increases. This is because,
in the first case, the stall is not overwhelming the overall runtime of the algorithm.
As stalls get longer, they become the most significant factor. This observation

Lightweight simulation of programmable memory hierarchies 65

Figure 3: Slowdown caused by increasing memory access penalties

suggests the next experiment that examines the stall time versus the computation
time of algorithms.

5.3. Stall – computation ratio

This experiment examines the effect of increasing the number of arithmetic instruc-
tions while keeping the stall time constant. The processed array is 3000 bytes long
with unsigned character elements. Each arithmetic instruction is multiplication,
and no block copying is used. Two memory layers were tested, with stall time of 2
and 256 cycles respectively.

Figure 4: Memory access vs. computation

In case of small number of arithmetic instructions the stall time is the most
significant factor of runtime, therefore there is considerable difference between the
fast and slow memory layers. Increasing the number of arithmetic instructions
causes sub-linear slowdown in this case. As more and more computation over-
whelms stall time, slowdown tends to be linear and the difference between memory
layers disappears.

66 G. Dévai

5.4. The effect of changing block-copy size

This experiment examines the effect of increasing block-copy width. The algorithm
used is scalar product working on two unsigned character arrays of 1024 elements
length each. These are stored in a memory layer with 128 cycles long stall, while the
buffer used is stored in memory with only 8 cycles long stall time. The block-copy
width was increased from 1 byte to 32 bytes.

(a) Normal scale (b) Logarithmic scale

Figure 5: Effect of increasing buffer size

The results show that block-copying only single bytes chunks actually degrades
performance compared to the element-wise solution. This is expected and shows the
pure cost of the complication of the algorithm caused by block copying. Copying 2
array elements in each iteration already worth it. Figure 5b shows the speedup on
logarithmic scale with the triangles depicting linear speedup for reference. Speedup
is close to linear in the beginning, but using more and more powerful block-copy
instructions result in sub-linear speedups, but still decreasing runtime consider-
ably. The reason for sub-linearity is that the constant non-stall related cost of the
algorithm gets more and more significant as stall time is successfully reduced by
more and more effective block-copy instructions.

5.5. Array-of-structs vs. struct-of-arrays

Block-copy related optimizations often require data layout changes. A typical
example is the array-of-structs to struct-of-arrays transformation. This experi-
ment uses an algorithm that counts the RGB-coloured pixels with red component
stronger than a threshold. The first data layout is array-of-structs: An array with
1024 structs, each storing the RGB values of a pixel. The array is stored in a
memory layer with 100 instructions stall time. The first implementation processes
the array element-wise, the second one uses 32 bytes wide block-copy operations.
This is expected to result in considerable speedup, however, it copies the green
and blue components of the RGB structs superfluously. In order to improve the
solution further, a data layout change is needed: The second layout uses a struct
of three arrays, storing the 1024 red, green and blue components respectively. In
this case the red components are adjacent in memory, leading to much effective

Lightweight simulation of programmable memory hierarchies 67

block-copying.
The simulation data showed almost 3.5 times speedup due to the introduction

of block copying on the first data layout. The layout change results in more than
1.5 times speedup between the two block-copying implementations. At this point,
one could expect more than 1.5 speedup, considering that 2/3 of data copying is
spared. In applications using structs with more fields this speedup could certainly
be increased.

6. Summary

This paper presented a light-weight library, written in C, that allows programmers
to simulate programmable memory hierarchies. The memory hierarchy, its stall
times and the data layout of the program can be freely configured. Only minor
changes are required in existing C code to make the simulation possible.

The paper discussed the API of the library, the implementation details and
presented five different experiments carried out by using the library. On one hand,
the results of the experiments are interesting because they reveal behavioral features
of memory hierarchies in detail. On the other hand, the results can be understood
and explained, which increases confidence in the simulation library itself.

References

[1] Alok Aggarwal, Ashok K Chandra, and Marc Snir. Hierarchical memory with block
transfer. In 28th Annual Symposium on Foundations of Computer Science, pages
204–216. IEEE, 1987.

[2] Alex Aiken, Phil Colella, David Gay, Susan Graham, Paul Hilfinger, Arvind Kr-
ishnamurthy, Ben Liblit, Carleton Miyamoto, Geoff Pike, Luigi Semenzato, et al.
Titanium: A high-performance Java dialect. Concurrency: Practice and Experience,
10:11–13, 1998.

[3] David E Culler, Andrea Dusseau, Seth C Goldstein, Arvind Krishnamurthy, Steven
Lumetta, Steve Luna, Thorsten von Eicken, and Katherine Yelick. Introduction to
Split-C. 1995.

[4] Ulrich Drepper. What every programmer should know about memory. Red Hat, Inc,
11, 2007.

[5] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J Knight, Larkhoon Leem, Mike
Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J Dally,
et al. Sequoia: programming the memory hierarchy. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 83. ACM, 2006.

[6] Mahmut Kandemir, J Ramanujam, J Irwin, Narayanan Vijaykrishnan, Ismail Ka-
dayif, and Amisha Parikh. Dynamic management of scratch-pad memory space. In
Proceedings of the 38th annual Design Automation Conference, pages 690–695. ACM,
2001.

68 G. Dévai

[7] Theodoros Lioris, Grigoris Dimitroulakos, and Kostas Masselos. Xmsim: Extensible
memory simulator for early memory hierarchy evaluation. In VLSI 2010 Annual
Symposium, pages 199–216. Springer, 2011.

[8] Peter Magnusson and Bengt Werner. Efficient memory simulation in simics. In
Simulation Symposium, 1995., Proceedings of the 28th Annual, pages 62–73. IEEE,
1995.

[9] Preeti Ranjan Panda, Nikil D Dutt, and Alexandru Nicolau. Efficient utilization of
scratch-pad memory in embedded processor applications. In Proceedings of the 1997
European conference on Design and Test, page 7. IEEE Computer Society, 1997.

[10] Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel. Assigning program
and data objects to scratchpad for energy reduction. In Design, Automation and Test
in Europe Conference and Exhibition, 2002. Proceedings, pages 409–415. IEEE, 2002.

Lightweight simulation of programmable memory hierarchies 69

A generalization of the Barabási-Albert
random tree∗

István Fazekas, Sándor Pecsora

Faculty of Informatics, University of Debrecen
fazekas.istvan@inf.unideb.hu

pecsora89@kmf.uz.ua

Submitted September 9, 2014 — Accepted January 20, 2015

Abstract
In this paper a random graph evolution rule is defined which can be con-

sidered as a generalization of the Barabási-Albert random tree. The evolution
is a combination of the preferential attachment method and the interactions
of 2 vertices. Our model is similar to the 3-interactions model studied in [2].
We describe the asymptotic behaviour of the degrees and the weights of the
vertices.

Keywords: Random graph, preferential attachment, scale-free, power law

MSC: 05C80, 60G42

1. Introduction

Several real life networks are scale-free (see [4, 7]). A random graph is called scale-
free, if it has a power law degree distribution, that is P (d) ∼ d−γ as d→∞, where
P (d) is the probability that a vertex is of degree d. The well-known Barabási-Albert
preferential attachment model produces a scale-free sequence of random graphs.

The Barabási-Albert model

The preferential attachment model was suggested by Barabási and Albert in [4].
See also the paper of Yule [17] for trees. The graph evolution rule given in [4] is

∗The first author was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The
project has been supported by the European Union, co-financed by the European Social Fund.
The second author was supported by the Collegium Talentum and Edutus College.

Annales Mathematicae et Informaticae
44 (2015) pp. 71–85
http://ami.ektf.hu

71

the following. The starting point is a graph with a small number of vertices. At
every time step a new vertex is added with m edges that link the new vertex to m
different vertices already present in the graph. The preferential attachment means
that the probability p(i) that the new vertex will be connected to vertex i depends
on the degree of that vertex, so that p(i) = ki/

∑
j kj , where kj denotes the degree

of vertex j. According to [5], the model is not defined precisely by this definition.
A precise definition of the model and a rigorous proof of the scale-free property was
given in [5] (see also [7, 16]). The simplest case of the model is the Barabási-Albert
random tree, when m = 1.

In [6] a generalization of the Barabási-Albert model was introduced. In [6]
besides the preferential attachment method, uniform choice of vertices are allowed,
moreover, new connections can be grown between old vertices. For the recent
results in the preferential attachment model see [16, 13, 10].

The 3-interactions model

In [2] the following graph evolution was introduced. We start with a single triangle.
This graph contains 3 vertices and 3 edges. Each of these objects has initial weight
1. The evolution of the graph is based on the interactions of three vertices. At
each step we consider three vertices and we draw all non-existing edges between
them. So we obtain a triangle. The weight of this triangle and the weights all of
its edges and vertices are increased by 1.

At a fixed time the evolution is the following. Independently of the past, with
probability p, a new vertex is born which interacts with 2 old vertices. That is
they form a triangle. The two old vertices can be chosen in two different ways.
With probability r we choose an edge from the existing edges according to their
weights. The two vertices of that edge will interact with the new vertex. On the
other hand, with probability 1−r, we choose 2 from the existing vertices uniformly.
They will interact with the new vertex. Independently of the past, with probability
1− p, we do not add a new vertex, but three of the old vertices interact. To select
the three old vertices we have two options. With probability q we choose one out
of the existing triangles according to their weights. The vertices of the triangle
chosen will interact. On the other hand, with probability 1− q, we choose from the
existing vertices uniformly (that is all three vertices have the same chance).

The power law degree distribution in that model was proved in [2] and [3].
The model and the results were extended to N -interactions model in [8] and [9], if
N ≥ 4.

The goal of this paper

In this paper a random graph evolution mechanism is defined. The evolution of
the graph is a combination of the preferential attachment and the interaction of
2 vertices. A vertex in our graph is characterized by its degree and its weight.
The weight of a given vertex is the number of the interactions of the vertex. The
asymptotic behaviour of the graph is studied. Scale-free properties both for the de-

72 I. Fazekas, S. Pecsora

grees and the weights are proved. The proofs are based on discrete time martingale
theory.

Our model is a special case of the N -interactions model of [8] and [9]. However,
our result can not be obtained as a particular case of the general results of [8] and
[9] because the basic equation for the 2-interactions model is not a special case of
the basic equation for the N -interactions model with N ≥ 3. In this paper we
follow the method elaborated by Backhausz and Móri in [2, 3]. We do not present
detailed proofs because they are similar to the ones in [2, 3, 8, 9] .

2. The 2-interactions random graph model and the
main results

In this paper we study the following version of the Barabási-Albert random tree.
At time n = 0 we start with two connected vertices. The initial weights of the

Figure 1: n = 0, the initial state

two vertices and the initial weight of the edge are equal to one. The weights of
the non-existing edges and vertices are always considered to be 0. The evolution of
the graph is based on the interactions of 2 vertices. At each step n = 1, 2, . . . we
consider 2 vertices and if they are not connected, then we draw the edge between
them. The weights of the two vertices and the weight of the edge connecting them
are increased by 1.

The evolution of the graph is the following. On the one hand, with probability
p, we add a new vertex, that will interact with 1 old vertex. On the other hand,
with probability (1− p), we do not add any new vertex, but 2 old vertices interact.

(a) If we add a new vertex, then we choose 1 old vertex which will interact with
the new one. To choose the old vertex we have two possibilities. With probability
r we choose a vertex from the existing vertices according to the weights of the
vertices. That is a vertex k with weight wk has chance wk/(

∑
l wl). On the other

hand, with probability 1 − r, we choose from the existing vertices uniformly, that
is any vertex has the same chance.

(b) At the step when we do not add a new vertex, then 2 old vertices interact.
To select the 2 old vertices we have two options. With probability q we choose one
edge from the existing edges according to their weights. That is the probability
that we choose an edge is proportional to its weight. Then the two vertices of that
edge will interact. On the other hand, with probability 1 − q, we choose two out
of the existing vertices uniformly. That is all two vertices have the same chance.

Figure 2 shows an example for the graph evolution. At the initial step n = 0
we have an edge and two vertices. At step n = 1 we add a new vertex with initial
weight 1, choose an old vertex and connect them using a new edge. The initial

A generalization of the Barabási-Albert random tree 73

Figure 2: An example for the graph evolution

weight of the new edge is 1 and we increase the weight of the old vertex by 1. Step
2 is similar to step 1. However, at step n = 3, we do not add a new vertex, but 2
old vertices interact. We choose two out of the existing vertices, then increase the
weights of the vertices and the weight of the edge connecting them by 1. So we
can see that the weight of a given vertex is the number of the interactions of the
vertex.

Our results are confined to the 2-interactions model. To describe the main
results we need the following notation. Throughout the paper 0 < p < 1, 0 ≤ r ≤ 1,
0 ≤ q ≤ 1 are fixed numbers. LetX(n, d, w) denote the number of vertices of weight
w and degree d after the nth step. Let Vn denote the number of vertices after the
nth step.

Each vertex has initial weight 1 and initial degree 1. When a vertex takes part
in an interaction, then its weight is increased by 1 and its degree may increase by
0 or 1. So X(n, d, w) can be positive only for 1 ≤ w ≤ n+ 1 and 1 ≤ d ≤ w.

Let
α1 = (1− p) q, α2 = pr/2, α = α1 + α2,

β = (1− r) + 2 (1− p) (1− q)/p. (2.1)

The following theorem describes the limiting behaviour of the relative frequency
of vertices with a fixed weight and a fixed degree.

Theorem 2.1. Let 0 < p < 1, q > 0. Assume that at least one of the following
three conditions are satisfied: r > 0 or r < 1 or q < 1. Then for any fixed w and
d with 1 ≤ w and 1 ≤ d ≤ w we have

X (n, d, w)/Vn → xd,w (2.2)

almost surely as n → ∞, where xd,w are fixed positive numbers. Furthermore, the
numbers xd,w satisfy the following recurrence relation

x1,1 = 1/(α+ β + 1) > 0, xd,1 = 0, for d 6= 1,

xd,w =
1

αw + β + 1
[α1 (w − 1)xd,w−1 + (α2 (w − 1) + β)xd−1,w−1] , (2.3)

for w ≥ 2, 1 ≤ d ≤ w. If 1 ≤ d ≤ w is not satisfied, then xd,w = 0.

74 I. Fazekas, S. Pecsora

The following lemma states that the numbers xd,w, d = 1, . . . , w, w = 1, 2, . . . ,
form a (proper) two-dimensional discrete probability distribution. Moreover, its
marginal distributions will be the limiting distributions of the weights and the
degrees, respectively.

Lemma 2.2. Let p > 0 and define xw = x1,w +x2,w + · · ·+xw,w for w = 1, 2,
Then xw, w = 1, 2, . . . , are positive numbers satisfying the following recurrence
relation

x1 =
1

α+ β + 1
, xw =

α (w − 1) + β

αw + β + 1
xw−1, if w > 1. (2.4)

xw, w = 1, 2, . . . , is a discrete probability distribution. Moreover, xd,w, d =
1, . . . , w, w = 1, 2, . . . , is a two-dimensional discrete probability distribution.

Next theorem shows the scale-free property of the weights of the vertices.

Theorem 2.3. Let X (n,w) denote the number of vertices of weight w after n steps.
Assume that the conditions of Theorem 2.1 are satisfied. Then for all w = 1, 2, . . .
we have

X (n,w)/Vn → xw (2.5)

almost surely, as n → ∞, where xw, w = 1, 2, . . . , are positive numbers satisfying
the recurrence relation (2.4). Moreover,

xw ∼ Cw−(1+ 1
α) as w →∞ (2.6)

with C = Γ
(

1 + β+1
α

)/(
αΓ
(

1 + β
α

))
.

Our main result is the scale-free property of the degrees.

Theorem 2.4. Assume that the conditions 0 < p < 1, q > 0, and r > 0 are satis-
fied. Let us denote by U (n, d) the number of vertices of degree d after n steps, that is
U (n, d) =

∑
w:d≤w≤n+1X (n, d, w). Then, for any d ≥ 1 we have

U (n, d)

Vn
→ ud (2.7)

a.s. as n→∞, where ud =
∑
w xd,w, d = 1, 2, . . . , are positive numbers. Further-

more,

ud ∼
Γ
(

1 + β+1
α

)

α2Γ
(

1 + β
α

)
(
α

α2

)−(1+ 1
α)
d−(1+ 1

α) as d→∞. (2.8)

3. Proofs and auxiliary results

The following lemma contains the basic equation of the paper. Let Fn−1 denote the
σ-algebra of observable events after (n − 1) steps. We compute the conditional
expectation of X(n, d, w) with respect to Fn−1 for w ≥ 1.

A generalization of the Barabási-Albert random tree 75

Lemma 3.1.

E(X(n, d, w)|Fn−1) = X(n− 1, d, w)

(
1− αw

n
− β p

Vn−1

)
+ (3.1)

+X(n− 1, d, w − 1)(1− p)
[
q
w − 1

n
+ (1− q) d(

Vn−1

2

)
]

+

+X(n− 1, d− 1, w − 1)

[
p

[
r
w − 1

2n
+ (1− r) 1

Vn−1

]
+ (1− p)(1− q)Vn−1 − d(

Vn−1

2

)
]

+

+ pδd,1δw,1.

Here δa,b denotes the Dirac-delta.

Proof. The probability that an old vertex of weight w takes part in the interaction
at step n is

p

(
r
w

2n
+ (1− r) 1

Vn−1

)
+ (1− p)

(
q
w

n
+ (1− q)Vn−1 − 1(

Vn−1

2

)
)

=
w

n
α+

p

Vn−1
β,

where α and β are defined by (2.1). So the terms at the right hand side of (3.1)
correspond to the following cases. The first term covers the case when neither the
degree nor the weight of a vertex change. Its probability is 1 −

(
αw
n + β p

Vn−1

)
.

The second term covers the case when the degree does not change but the weight
is increased by 1, while the third term correspond to the case when both the
degree and the weight are increased by 1. A new vertex always takes part in the
interaction. At each step, with probability p, a new vertex with weight 1 and with
degree 1 is born. This explains term pδd,1δw,1 in (3.1).

We shall need the following results on discrete time martingales. Let {Zn,Fn}
be a submartingale. Its Doob-Meyer decomposition is Zn = Mn + An, where
{Mn,Fn} is a martingale and {An,Fn} is an increasing predictable process. Here,
up to an additive constant,

An = EZ1 +
n∑

i=2

(E(Zi|Fi−1)− Zi−1).

We see that {M2
n,Fn} is again a submartingale. Let

M2
n = Yn +Bn

be the Doob-Meyer decomposition of M2
n. Here, up to an additive constant,

Bn =
n∑

i=2

D2(Zi|Fi−1) =
n∑

i=2

E
{

(Zi − E(Zi|Fi−1))2|Fi−1
}
.

76 I. Fazekas, S. Pecsora

Proposition 3.1 (Propositions VII-2-3 and VII-2-4 of [12]). Let M1 = 0. On
the set {B∞ < ∞} the martingale Mn almost surely converges to a finite limit.
Moreover, Mn = o(B

1/2
n logBn) almost surely on the set {Bn →∞}.

A consequence of the above proposition is the following.

Proposition 3.2 (Proposition 2.3 of [1]). Let {Zn,Fn} be a square integrable non-
negative submartingale. If B1/2

n logBn = O(An), then Zn ∼ An as n→∞, almost
surely on the set {An →∞}.

Proof of Theorem 2.1. Applying the Marcinkiewicz strong law of large numbers to
the number of vertices, we obtain

Vn = pn+ o
(
n1/2+ε

)
(3.2)

almost surely, for any ε > 0. Let

c(n,w) =
n∏

i=1

(
1− αw

i
− βp

Vi−1

)−1
.

Then (3.2) and Taylor’s expansion imply that

c(n,w) ∼ awnαw+β (3.3)

almost surely as n→∞, where aw is a positive random variable.
Let Z(n, d, w) = c(n,w)X(n, d, w). Then, by (3.1), (Z(n, d, w),Fn) is a non-

negative submartingale. We shall apply the Doob-Meyer decompositions Zn =
Mn +An and M2 = Yn +Bn. Then

A(n, d, w) = EZ(1, d, w)+

+
n∑

i=2

c(i, w)X(i− 1, d, w − 1)(1− p)
(
q
w − 1

i
+ (1− q) d(

Vi−1

2

)
)

+

+
n∑

i=2

c(i, w)X(i− 1, d− 1, w − 1)×

×
[
p

(
r
w − 1

2i
+ (1− r) 1

Vi−1

)
+ (1− p)(1− q)Vi−1 − d(

Vi−1

2

)
]

+

+
n∑

i=2

c(i, w)pδd,1δw,1. (3.4)

Moreover

B (n, d, w) =

n∑

i=2

D2 (Z (i, d, w) |Fi−1) ≤

A generalization of the Barabási-Albert random tree 77

≤
n∑

i=2

c (i, w)
2 E{(X (i, d, w)−X (i− 1, d, w))

2 |Fi−1} ≤

≤ 4
n∑

i=2

c (i, w)
2

= O
(
n2(αw+β)+1

)
. (3.5)

We use induction on w. Let w = 1. We see that a vertex of weight 1 took part
in an interaction only when it was born. Therefore its degree must be equal to 1.
By (3.4),

A (n, 1, 1) ∼ p
n∑

i=2

c (i, 1) ∼ p
n∑

i=2

a1i
α+β ∼ pa1

nα+β+1

α+ β + 1
(3.6)

a.s. as n→∞. By (3.5), B (n, 1, 1) = O
(
n2(α+β)+1

)
and therefore

(B (n, 1, 1))
1
2 logB (n, 1, 1) = O (A (n, 1, 1)) .

It follows from Proposition 3.2 that

Z (n, 1, 1) ∼ A (n, 1, 1) a.s. on the event {A (n, 1, 1)→∞} as n→∞. (3.7)

As, by (3.6), A(n, 1, 1) → ∞ a.s., therefore using the asymptotic behaviour of Vn
and c(n,w), relation (3.7) implies

X (n, 1, 1)

Vn
=
Z (n, 1, 1)

c (n, 1)Vn
∼ A (n, 1, 1)

c (n, 1)Vn
∼
pa1

nα+β+1

α+β+1

a1nα+βpn
=

1

α+ β + 1
= x1,1 > 0

almost surely. So (2.2) is valid for w = 1.
Suppose that the statement is true for all weights less than w and for all possible

degrees. It implies that X(n, d, w − 1) ∼ xd,w−1np.
Then by (3.2), (3.3) and using the induction hypothesis, we have for any w > 1

A (n, d, w) ∼
n∑

i=2

[
c (i, w)xd,w−1pi (1− p) qw − 1

i
+

+ c (i, w)xd−1,w−1pi

(
pr

(w − 1)

2i
+
p (1− r)

pi
+

2 (1− p) (1− q)
pi

)]
∼

∼
n∑

i=2

awi
αw+β

[
xd,w−1p (1− p) q (w − 1) +

+ xd−1,w−1

(
1

2
p2r (w − 1) + p (1− r) + 2 (1− p) (1− q)

)]
∼

∼ paw
nαw+β+1

αw + β + 1

[
(1− p) q (w − 1)xd,w−1+

+

(
1

2
pr (w − 1) + (1− r) +

2 (1− p) (1− q)
p

)
xd−1,w−1

]
. (3.8)

78 I. Fazekas, S. Pecsora

In the above computation we deleted all terms having asymptotically smaller degree
than the largest one.

Formula (3.8) implies A(n, d, w) ∼ pawn
αw+β+1xd,w → ∞, because xd,w > 0,

where, by (3.8),

xd,w =
1

αw + β + 1
[α1 (w − 1)xd,w−1 + (α2 (w − 1) + β)xd−1,w−1] ,

with α1, α2, α and β defined by (2.1). Therefore (B (n, d, w))
1
2 logB (n, d, w) =

O (A (n, d, w)). So, using Proposition 3.2, we have Z (n, d, w) ∼ A (n, d, w). There-
fore

X (n, d, w)

Vn
=
Z (n, d, w)

c (n,w)Vn
∼ A (n, d, w)

c (n,w)Vn
∼ pawn

αw+β+1xd,w
awnαw+βpn

= xd,w (3.9)

a.s. as n→∞.

Proof of Lemma 2.2. If α = 0, then the statement is obvious. Now assume α 6= 0.
As xd,w is defined as xd,w = 0 for d /∈ {1, 2, . . . , w}, therefore xw =

∑
d xd,w. From

the recurrence relation (2.3) we obtain

xw =
w∑

d=1

xd,w =
∑

d

xd,w =

=
1

αw + β + 1

[
α1 (w − 1)

∑

d

xd,w−1 + (α2 (w − 1) + β)
∑

d

xd−1,w−1

]
=

=
α (w − 1) + β

αw + β + 1
xw−1.

Using this recursive formula for xw, we obtain

xw = x1

w∏

j=2

α (j − 1) + β

αj + β + 1
=

1

αw + β + 1

w−1∏

j=1

β
α + j
β+1
α + j

=

=
Γ
(

1 + β+1
α

)

αΓ
(

1 + β
α

)
Γ
(
w + β

α

)

Γ
(
w + β+1

α + 1
) . (3.10)

By [15], we have the following formula:

n∑

k=0

Γ (k + a)

Γ (k + b)
=

1

a− b+ 1

[
Γ (n+ a+ 1)

Γ (n+ b)
− Γ (a)

Γ (b− 1)

]
.

Therefore, by some calculation, we obtain
∑n
w=1 xw → 1 as n→∞. So

∑∞
w=1 xw =

1. As
∑
d xd,w = xw, so

∑∞
w=1

∑w
d=1 xd,w = 1 and therefore xd,w, d = 1, 2, . . . , w,

w = 1, 2, . . . , is a (proper) two-dimensional discrete probability distribution.

A generalization of the Barabási-Albert random tree 79

Proof of Theorem 2.3. As

X (n,w) = X (n, 1, w) +X (n, 2, w) + · · ·+X (n,w,w) ,

Theorem 2.1 and Lemma 2.2 imply (2.5). Using (3.10), the Stirling formula gives
(2.6).

The following representation of the joint distribution of degrees and weights
is useful to prove scale-free property for degrees. Let W be a random variable
with distribution P (W = w) = xw, w = 1, 2, Let ξ1 ≡ 1 and ξ2, ξ3, . . . be
independent random variables being independent of W , too. For w ≥ 2 let ξw have
the following distribution:

P (ξw = 0) =
α1 (w − 1)

α (w − 1) + β
, P (ξw = 1) =

α2 (w − 1) + β

α (w − 1) + β
.

Let Sw = ξ1 + ξ2 + · · ·+ ξw.

Lemma 3.2. P (SW = d,W = w) = xd,w for all w = 1, 2, . . . , d = 1, 2, . . . , w.

Proof. It is easy to see that the sequence P (SW = d,W = w) satisfies the same
recursion (2.3) as xd,w.

To obtain scale-free property for degrees, we need the following local limit theo-
rem. Let X1, X2, . . . be independent, integer valued random variables. Let pj,m =
P(Xj = m) be the distribution, while pj,mj = maxm pj,m be the maximal value of
the distribution. Let Sn =

∑n
i=1Xi be the partial sum, Pn(N) = P(Sn = N) be its

distribution, Mn =
∑n
i=1 EXi be the expectation, and Bn =

∑n
i=1 E(Xi − EXi)

2

be the variance of Sn.

Proposition 3.3 (Theorem 5 and its consequence in Section VII, 2 of [14]). As-
sume that the greatest common divisor of the values

m :

1

log n

n∑

j=1

pj,mjpj,m+mj →∞

is equal to 1. Moreover,

lim inf
Bn
n

> 0, lim sup
1

n

n∑

i=1

E|Xi − EXi|3 <∞.

Then

sup
N

∣∣∣∣
√
BnPn(N)− 1√

2π
exp

(
− (N −Mn)2

2Bn

)∣∣∣∣ = O

(
1√
n

)
.

If we apply Proposition 3.3 to the random variables ξk in Lemma 3.2, then we
obtain the following result which will play an important role in the proof our main
theorem.

80 I. Fazekas, S. Pecsora

Proposition 3.4. Suppose that α1 > 0 and α2 > 0. Then

xd,w = xw
α√

2πα1α2w

[
exp

(
− (d− ESw)

2

2D2Sw

)
+ O

(
w−

1
2

)]
as w →∞, (3.11)

where the error term O
(
w−

1
2

)
does not depend on d.

Proof. We follow the method of Theorem 4.2 in [3]. Let w > 1. Then we have

Eξw =
α2 (w − 1) + β

α (w − 1) + β
=
α2

α
+

α1β

α (α (w − 1) + β)
,

hence
ESw = Eξ1 + · · ·+ Eξw = w

α2

α
+ O (logw) (3.12)

as w →∞. By simple computation, we obtain

D2ξw =
α1α2

α2
+ O

(
1

w

)
, D2Sw =

α1α2

α2
w + O (logw) (3.13)

as w →∞.
Now, we apply Proposition 3.3 for Sw. The conditions of that proposition are

satisfied, therefore we have

sup
d∈Z

∣∣∣∣∣DSw P (Sw = d)− 1√
2π

exp

(
− (d− ESw)

2

2D2Sw

)∣∣∣∣∣ = O

(
1√
w

)
. (3.14)

Using (3.13) and (3.14), we obtain
∣∣∣∣DSw −

√
α1α2w

α

∣∣∣∣P (Sw = d) = O
(
w−

1
2

)
.

Therefore (3.14) implies that

sup
d∈Z

∣∣∣∣∣

√
α1α2w

α
P (Sw = d)− 1√

2π
exp

(
− (d− ESw)

2

2D2Sw

)∣∣∣∣∣ = O

(
1√
w

)
. (3.15)

By the independence of W and ξi, we see that xd,w = P (SW = d,W = w) =
P (Sw = d)xw. So the result follows from (3.15).

The well-known Hoeffding’s inequality is the following.

Proposition 3.5 (Theorem 2 of [11]). Let X1, X2, . . . , Xn be independent random
variables, ai ≤ Xi ≤ bi (i = 1, 2, . . . , n). Let X̄ = (X1+X2+ · · ·+Xn)/n, µ = EX̄.
Then for any t > 0

P(X̄ − µ ≥ t) ≤ exp

(−2n2t2∑n
i=1(bi − ai)2

)
.

A generalization of the Barabási-Albert random tree 81

Proof of Theorem 2.4. Theorem 2.1 and Lemma 2.2 will imply (2.7). Hoeffding’s
inequality, Lemma 3.2 and Proposition 3.4 will imply (2.8).

By Theorem 2.1 and Lemma 3.2,
X (n, d, w)

Vn
converges almost surely to the

distribution xd,w = P (SW = d,W = w). But the cardinalities of terms in the sum∑
w:d≤w≤n+1X (n, d, w) are not bounded when n→∞. However, using that xd,w,

d = 1, 2, . . . , w, w = 1, 2, . . . is a proper two-dimensional discrete distribution, the
convergence of the marginal distributions is a consequence of the convergence of
the two-dimensional distributions. So we obtain (2.7).

To obtain (2.8), we can apply the method of Theorem 4.3 in [3]. Let

f =
α

α2
d , H = Hd =

{
w : f − f 1

2+ε ≤ w ≤ f + f
1
2+ε
}
,

H− = H−d =
{
w : w < f − f 1

2+ε
}
, H+ = H+

d =
{
w : w > f + f

1
2+ε
}

with some fixed 0 < ε < 1/6.
Using (3.12) and Proposition 3.5, we obtain for w ∈ H−

P (Sw = d) ≤ P (Sw ≥ d) ≤ P
(
Sw − ESw ≥ d−

α2

α
w −O (logw)

)
≤

≤ exp

{
− 2

w

(
d− α2

α
w −O (logw)

)2}
= exp

{
−2
(α2

α

)2 (f − w −O (logw))
2

w

}
.

Now w ∈ H− implies that

(f − w −O (logw))
2

= (f − w)
2 − 2 (f − w) O (logw) + (O (logw))

2 ≥
≥ f1+2ε −O (f log f) .

Therefore in the case when w ∈ H− we obtain

P (Sw = d) ≤ exp

{
−2
(α2

α

)2 f1+2ε −O (f log f)

f

}
=

= exp

{
−2
(α2

α

)2
f2ε + O (log f)

}
.

This implies that

P
(
SW = d,W ∈ H−

)
=
∑

w∈H−
P (Sw = d,W = w) ≤

∑

w∈H−
P (Sw = d) ≤

≤ f exp

{
−2
(α2

α

)2
f2ε + O (log f)

}
= o

(
f−(1+ 1

α)
)
. (3.16)

In the case when w ∈ H+, by Hoeffding’s inequality, we have

P (Sw = d) ≤ P (Sw ≤ d) ≤ P
(
Sw − ESw ≤ d−

α2

α
w
)
≤

82 I. Fazekas, S. Pecsora

≤ exp

{
− 2

w

(
d− α2

α
w
)2}

= exp

{
−2
(α2

α

)2 (f − w)
2

w

}
.

Because w ∈ H+ and 1
2 + ε < 1, we obtain 2 (w − f) ≥ f

1
2+ε + w − f ≥ f

1
2+ε +

(w − f)
1
2+ε ≥ w 1

2+ε. So

P (Sw = d) ≤ exp

{
−2
(α2

α

)2 w1+2ε

4w

}
= exp

{
−1

2

(α2

α

)2
w2ε

}
.

Therefore

P
(
SW = d,W ∈ H+

)
≤

∑

{w : f<w}
exp

{
−1

2

(α2

α

)2
w2ε

}
= o

(
f−(1+ 1

α)
)
. (3.17)

Now turn to the case of w ∈ H = Hd. Consider the set

B = {(d,w) : w ≥ 1, d ≥ 1, w ∈ Hd} .

It is easy to see that

if d→∞ and (d,w) ∈ B, then
w

d
→ 1.

As w ∈ H, so we have w = f + O
(
f

1
2+ε
)
. Then (with ε1 > 0 arbitrarily small)

− (d− ESw)
2

2D2Sw
= −

(
d− wα2

α
−O (logw)

)2

2
α1α2

α2
w + O (logw)

= −α2

α1

(f − w −O (logw))
2

2w + O (logw)
=

= −α2

α1

(f − w)
2

+ O
(
f

1
2+ε+ε1

)

2w + O (logw)
= −α2

α1

(f − w)
2

2f
+ O

(
f−

1
2+3ε

)
(3.18)

as d→∞. Here the error term does not depend on w. By (3.11), (2.6) and (3.18),
we obtain

xd,w ∼

∼ Cw−(1+ 1
α) α√

2πα1α2w

[
exp

{
−α2

α1

(f − w)
2

2f
+ O

(
f−

1
2+3ε

)}
+ O

(
w−

1
2

)]
∼

∼ Cf−(1+ 1
α) α

α2

1√
2πα1

α2
f

exp

{
− (f − w)

2

2α1

α2
f

}

as d→∞ and w ∈ H, where C = Γ
(

1 + β+1
α

)
/
(
αΓ
(

1 + β
α

))
. Therefore

∑

w∈H
xd,w ∼

∑

f−f 1
2
+ε<w<f+f

1
2
+ε

Cf−(1+ 1
α) α

α2

1√
2πα1

α2
f

exp

{
− (f − w)

2

2α1

α2
f

}
=

A generalization of the Barabási-Albert random tree 83

= Cf−(1+ 1
α) α

α2

∑

−f 1
2
+ε<k<f

1
2
+ε

1√
2πα1

α2
f

exp

{
− k2

2α1

α2
f

}
=

= A
∑

−fε< k√
f
<fε

1√
f

1√
2πα1

α2

exp

−

(
k√
f

)2

2α1

α2

→

→ A

+∞∫

−∞

1√
2πα1

α2

exp

{
− x2

2α1

α2

}
dx = A,

where

A =
Γ
(

1 + β+1
α

)

α2Γ
(

1 + β
α

)
(
αd

α2

)−(1+ 1
α)
.

So we obtain

P (SW = d,W ∈ H) ∼
Γ
(

1 + β+1
α

)

α2Γ
(

1 + β
α

)
(
αd

α2

)−(1+ 1
α)

(3.19)

as d→∞. Finally, by (3.16), (3.17) and (3.19), we obtain

ud ∼
Γ
(

1 + β+1
α

)

α2Γ
(

1 + β
α

)
(
α

α2
d

)−(1+ 1
α)

as d→∞.

References

[1] Backhausz, Á., Analysis of random graphs with methods of martingale theory. PhD
thesis, Eötvös Loránd University, Budapest, 2012.

[2] Backhausz, Á., Móri, T. F., A random graph model based on 3-interactions.
Ann. Univ. Sci. Budapest. Sect. Comput. Vol. 36 (2012), 41–52.

[3] Backhausz, Á., Móri, T. F., Weights and degrees in a random graph model based
on 3-interactions. Acta Math. Hungar. Vol. 143 (2014), no. 1, 23–43.

[4] Barabási, A.L., Albert, R., Emergence of scaling in random networks. Science,
Vol. 286 (1999), 509–512.

[5] Bollobás, B., Riordan, O., Spencer, J., Tusnády, G., The degree sequence
of a scale-free random graph process. Random Structures Algorithms, Vol. 18 (2001),
279–290.

[6] Cooper, C., Frieze, A., A general model of web graphs. Random Structures Al-
gorithms, Vol. 22 (2003), 311–335.

84 I. Fazekas, S. Pecsora

[7] Durrett, R., Random graph dynamics. Cambridge University Press, Cambridge
UK, 2007.

[8] Fazekas, I., Porvázsnyik, B., Scale-free property for degrees and weights in a
preferential attachment random graph model. Journal of Probability and Statistics,
Vol. 2013 (2013), Article ID 707960.

[9] Fazekas, I., Porvázsnyik, B., Scale-free property for degrees and weights in an
N -interaction random graph model. arXiv:1309.4258v1 [math.PR] 17 Sep. 2013.

[10] Grechnikov, E., An estimate for the number of edges between vertices of given
degrees in random graphs in the Bollobás-Riordan model. Mosc. J. Comb. Number
Theory, Vol. 1 (2011), no. 2, 40–73.

[11] Hoeffding, W., Probability inequalities for sums of bounded random variables. J.
Amer. Statist. Assoc., Vol. 58 (1963), 13–30.

[12] Neveu, J., Discrete-parameter martingales. North-Holland, Amsterdam, 1975.

[13] Ostroumova, L., Ryabchenko, A., Samosvat, E., Generalized preferen-
tial attachment: tunable power-law degree distribution and clustering coefficient.
arXiv :1205.3015v1 [math.CO] 14 May 2012.

[14] Petrov, V. V., Sums of Independent Random Variables. Akademie-Verlag, Berlin,
1975.

[15] Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I., Integrals and series.
Gordon & Breach Science Publishers, New York, 1986.

[16] van der Hofstad, R., Random Graphs and Complex Networks. Eindhoven Univer-
sity of Technology, The Netherlands, rhofstad@win.tue.nl, 2013.

[17] Yule, G. U., A Mathematical Theory of Evolution, Based on the Conclusions of Dr.
J. C. Willis, F.R.S. Phil. Transact. Royal Society London, Ser. B, Vol. 213 (1925),
21–87.

A generalization of the Barabási-Albert random tree 85

Surprise event detection of the
supercomputer execution queues∗

Zoltán Gála, Tibor Tajtib, György Terdika

aUniversity of Debrecen, Debrecen, Hungary
zgal@unideb.hu,terdik.gyorgy@inf.unideb.hu

bEszterházy Károly College, Eger, Hungary
tajti@aries.ektf.hu

Submitted September 14, 2014 — Accepted February 10, 2015

Abstract
Huge amount of data is generated by and collected from the IoT (Inter-

net of Things) physical and virtual devices. These sets of data series ref-
lect in complex form the state of a given system in multidimensional space.
Healthiness evaluation of a given system implies state analysis with enhanced
methods. Special events can appear during the execution of jobs in a su-
percomputer (HPC – High Performance Computer) system. Depending on
the HPC architecture hundreds or even thousands of computation nodes are
working in parallel. The scheduler of the HPC front-end node manages dif-
ferent queues (parallel, serial, test, etc.) of the job execution. The multitude
of data series captured periodically with several tens of thousands of sam-
ples creates a set of several dozen variables for each computation node. The
healthiness of the whole HPC system is a temporal concept in the term of
2D or 4D multidimensional time-space domains. In this paper we propose a
healthiness evaluation method for each execution queue of two different HPC
system with 20 TFLOP/s and 5 TFLOP/s computation capacities, respec-
tively. Time independent community structure is determined and controlled
based on multiple similarity measures and ANN (Artificial Neural Network)
based SOM (Self-Organized Map) algorithm. For each cluster of variables is

∗This work was partially supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 (FIRST
– Future Internet Research, Services and Technology) project. This project has been supported
by the European Union, co-financed by the European Social Fund. This work was also partially
supported by the European Union and the European Social Fund through project Supercomputer,
the national virtual lab (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0010).

Annales Mathematicae et Informaticae
44 (2015) pp. 87–97
http://ami.ektf.hu

87

determined a representing variable, including time specific and global char-
acteristics of the own cluster. The resulting set of representing variables
contains less than ten dissimilar time series. Wavelet methods are used for
extreme event detection in time of each representing variable. The surprise
event detection in time of the HPC execution queues is based on the simul-
taneity of extreme events’ fingerprints.

Keywords: High Performance Computer, Sensors/actuators, IoT, Complex
Event Processing, Event Stream Processing, SOM, FFT, STFT, Wavelets,
Artificial Neural Networks

MSC: 91A28, 65C60, 60G35

1. Introduction

The Internet of Things (IoT) contains sensor and actuator devices connected by
special network technologies providing services for different fields of the Information
Society [1]. Classical network applications are extended establishing new, intelli-
gent services based on the data generated by these devices. Conform to the current
IoT conception of the European Union any usage of the IoT includes one of the
following five areas: smart cities, smart energy, smart health, smart manufacturing
and smart transport. The Machine-to-Machine (M2M) communication technology
becomes more and more important in this aspect and creates huge amount of data
every day. The sensor data has origin of different small physical or logical objects.
These sensor objects are sampled periodically to capture the values or can force
self-transmission of extra values asynchronously in case of special event occurrences.

The definition of special event term depends on the programmed threshold value
of a given variable. The usability of the generated data depends on the type of
measured variable. In some cases all the captured data should be archived (i.e.
health or finance system monitoring) for offline processing possibility, but for the
real time applications (i.e. process controlling) only the online filtered information
has serviceable character. In any cases we are facing with the big data paradigm
[2]. Efficient compressing and filtering algorithms are needed to process the data
produced by the IoT. The online filtering and compressing mechanisms in IoT
environment should take in consideration the energy usage, as well. The relation
among the faithful of the data, the energy consumption of the sensor network and
the capturing delay of the data is not trivial. Having complex aspects that need
to be taken in consideration, lot of work is invested to find the optimal solution to
this problem.

In this paper we are focusing on the data reduction mechanisms to decrease
the amount of data captured from high number of sensor nodes with huge number
of variables and significantly stored at the sink node of the sensor network. Two
different architecture supercomputer systems are analysed to detect the surprise
events during the execution time. In chapter 2 we present related work to the data
clusterization methods and the surprise event detection based on wavelets. The
measurement scenario in Massive Parallel Processing (MPP) and cluster architec-

88 Z. Gál, T. Tajti, Gy. Terdik

ture High Performance Computer (HPC) systems with different job schedulers will
be given in chapter 3. The mechanisms discussed previously will be applied, com-
paring the two HPC architectures. Chapter 4 concludes the analysis and gives
possible continuation of the work.

2. Related work

One of the IoT benefit is the detection possibility of the actual events in the real
world. A multitude of physical and logical sensors generate data about the analysed
complex system and can be real-time analysed by the evaluation server [3]. Special
events of a whole or a part of the system can happen in any interval of the execution
time. Having several hundred or thousands of controllers with tens of variables
each, makes necessary identification of the essential status variables. This reduction
of the variables makes possible online identification of the special status events
of the analysed system. Without the reduction of the number of variables huge
computation capacity is reclaimed making very expensive the analysing hardware
and software tool. The overall goal of the surprise event detection is to identify
online the anomalies of the analysed system with minimum amount of computation
capacity. The essence of three methods are presented shortly in this chapter because
in the research work of surprise event detection these methods are not familiar, yet.

2.1. SOM clustering algorithm

Self-organizing map (SOM) is an Artificial Neural Network (ANN) based method
to create two-dimensional picture where correlated elements are placed in physical
vicinity [6]. This method allows a set of high-dimensional data to be represented
on a single topographic map. The method has two phases (training, mapping)
and four components (initialization, competition, cooperation, adaptation). In the
training phase after a random initialization a vector quantization is executed by
competition. In the mapping phase the new input vector is classified. Each element
gets associated a weight vector with diameter equal to the number of elements and
is placed on the map near to the elements with closest distance metric.

Two elements are considered to belong to the same cluster if their weight vectors
are similar. To be more suggestive the weight vector itself is represented on two
dimensional patterns with colored hexagon object for each weight. On Figure 1
the upper and the left hand patterns are similar, but they are dissimilar to the
right hand side pattern. This is why Element1 and Element2 belong to the same
cluster, but Element3 does not.

2.2. DBSCAN clustering algorithm

Because of the high amount of captured data with only a small percentage of usable
information, efficient clustering of the variables is proposed for special event detec-
tion of such systems [4], [5]. The clustering algorithm DBSCAN (Density-Based

Surprise event detection of the supercomputer execution queues 89

Figure 1: Cluster creation by SOM

Spatial Clustering of Applications with Noise) is the most cited one, it is efficient
method to identify data clusters. It uses just two parameters: EPS, MIN_EL.
EPS stands for the radius of the vicinity of a given element, and MIN_EL gives
the minimum number of elements forming a cluster. If a number of MIN_EL ele-
ments are in a region of diameter EPS, then a cluster is started. If a given element
does not belong to any cluster, then it is considered noise and remains alone.

Figure 2: Cluster creation by SOM

This algorithm evaluates each element as cluster candidate and test the ad-
herence to the existing clusters. The complexity of the algorithm for n elements
is O[n log(n)] and the necessary memory capacity is O(n). The cluster elements
can be shaped arbitrarily. Having notion of noise element makes this algorithm
robust. As a disadvantage is that the border elements of a given cluster can take
part in multiple clusters. The cluster creation depends on the distance measure

90 Z. Gál, T. Tajti, Gy. Terdik

applied. Euclidian measure is used for scalar elements. For high-dimensional data
other distance measures (cosine similarity, Sorensen-Dice coefficient, parametrized
correlation index, Hamming distance, Jaccard index, Tanimoto similarity) can be
used. For D-dimensional data the estimation of parameter MIN_EL is given by
the following formula:

MIN_EL ≥ D + 1

Best value for parameter EPS is the maximum value that influence mostly the
number of created clusters. If EPS is too small, then lot of noise elements will
remain. If EPS is too large, then the majority of elements will belong to the same
cluster. In Figure 2 three elements in the upper right corner can be included into
a 2D sphere with 2xEPS diameter, but they do not form a cluster because the
minimum number of elements in this case MIN_EL = 4. Enhanced variant of
this algorithm is the generalized DBSCAN (GDBSCAN) where the values of the
parameters are determined by the algorithm itself [5].

2.3. Special event detection by CWT
Fourier Transform (FT) is a useful tool for detecting global characteristics of a time
series using spectral analysis. Identification in time of a given event is not possible
by the FT or Fast Fourier Transform (FFT). Short-Time Fourier Transform (STFT)
and Wavelet Transform (WT) makes possible to detect special events in time by
the time-frequency representation of the analysed data series. Continuous Wavelet
Transform (CWT) divides the continuous time into small waves named wavelets.
A wavelet grows and decays in a limited time period. A detailed overview of the
CWT can be found in [8] and [9]. Let f (t) be a periodically sampled signal. The
continuous wavelet coefficients Ca,b of the signal f (t) and wavelet ψa,b(t) are given
by:

Ca,b (f (t) , ψa,b (t)) =

∞∫

−∞

f (t)ψa,b (t) dt =

∞∫

−∞

f (t)
1√
a
ψ

(
t− b
a

)
dt,

where a is the scaling parameter,b is the time shifting parameter and ψ (t) is a
mother wavelet function (i.e. Haar, Daubechies, Symlet, Coiflet, etc.). Any mother
wavelet ψ (t) is square integrable function with the following properties:

∞∫

−∞

ψ (t) dt = 0, and
∞∫

−∞

ψ2 (t) dt = 1.

An abrupt transition in signal produce large absolute values of the wavelet co-
efficients Ca,b. Wavelet coefficients Ca,b localize the discontinuity best at small
scales. The singularity of the original signal f (t) only affects a small set of wavelet
coefficients Ca,b.

On Figure 3, top part signal f (t) can be seen being a discontinued function by
shifting modification at t1 = 0.3 and t2 = 0.7 of the function g (t) = 4sin(4πt).

Surprise event detection of the supercomputer execution queues 91

Figure 3: Special event identification by CWT

The bottom part of the figure shows the effects of this discontinuity on the
CWT diagram. If periodicity exists in scaling dimension, then the original signal
has fractal property [8].

3. Measurement scenario and analysis

The methods presented in the previous section were applied to analyse two dif-
ferent supercomputer (HPC) systems. The artificially cognitive capability of the
dedicated sensor subsystem placed in HPC system measures different states of the
compute nodes and transmits these values to the interpretation and processing
machine [10]. There were captured state variables of the both HPC systems in
production utilized by several hundred of users.

The detailed description and evaluation of the Massive Parallel Processing
(MPP) architecture system is well presented in [11] and [12]. The second HPC
architecture was cluster based with 32 compute nodes. The computation capacity
of these two systems is 20 TFLOP/s (MPP) and 5 TFLOP/s (cluster), respectively.
The MPP system was running SGE (Sun Grid Engine) job scheduler and the cluster
system was scheduled by the open-source software SLURM (Simple Linux Utility
for Resource Management).

SGE operates with three separated job queues but SLURM has only one queue.
The number of captured variables differs only at the memory modules temperatures
because the cluster HPC system has more RAM for each compute node. Each MPP
CN has six RAM DIMMs, which number is sixteen at the cluster CN. The epoch
time is T = 10 sec for both systems but the number of epochs was different because
of the different continuous working times: NMPP = 55, 341; Ncluster = 37, 884.
The measurement time intervals were 6.4 days and 4.4 days, respectively.

Both HPC systems were running hundreds of jobs and other high number of
jobs was waiting in the queue during the measurement. HPC systems have a given
set of variables able to be captured by a dedicated controller based subsystem.
In our case this hardware and software tool was Ganglia [11], [12]. The captured

92 Z. Gál, T. Tajti, Gy. Terdik

MPP HPC Cluster HPC
No. of Compute Nodes (CN) 128 32
No. of CPUs/CN 2 2
No. of Cores/CPU 6 12
RAM/CN 48 GB 64 GB
Job Scheduler SGE SLURM
Functional Queues SERIAL, PARALLEL, TEST 1

Table 1: Physical characteristics of the analysed HPC systems

variables are produced by to two types of sensors. Logical sensors (see Table 2.)
measure capacity while physical sensors (see Table 3.) measure energy usage of
the analysed systems. These variables are given by the Ganglia capturing tool
depending on the HPC architecture type. Applying ANN based SOM algorithms
it was found that for MPP system seven clusters can be created.

MPP and System Variable Meaning
1. Load_one Reported system load, averaged over one minute
2. Load_five Reported system load, averaged over five minute
3. Proc_run Number of running processes
4. Proc_total Number of total processes
5. Pkts_in Number of packets read from all non-loopback inter-

faces
6. Pkts_out Number of packets written to all non-loopback inter-

faces
7. Bytes_in Number of bytes read from all non-loopback interfaces
8. Bytes_out Number of bytes written to all non-loopback interfaces
9. Mem_free Memory free capacity
10. CPU_user Percentage of CPU cycles spent in user mode
11. CPU_system Percentage of CPU cycles spent in non-user mode

Table 2: Captured HPC logical variables by the Ganglia tool

Each cluster has representing variable including special characteristics of the
represented group of variables. The same result was obtained with the DBSCAN
algorithm, as well.

The seven variable clusters are: A(1,. . . , 4), B(5,. . . , 8), C(9), D(10), E(11),
F(12,. . . , 14), G(15,. . . , 20), where the numbers are representing the index of the
variables [12]. For cluster architecture having only one job queue the number
of clusters is nine (see Figure 4): A(1,. . . , 3), B(4), C(5,. . . , 8), D(9), E(10),
F(11), G(12), H(13,. . . , 14,29,. . . , 30), I(15,. . . , 28). This result shows that for the
detection of extreme events of the HPC system the number of variables captured
can be decreased by ∼ 70% even the variable clusters of the two HPC architectures
is different.

From the faithfulness point of view can be determined three different classes of

Surprise event detection of the supercomputer execution queues 93

MPP System Variable Cluster System Variable Meaning
12. System_Temp Server temperature [0 C] Server tempera-

ture [0 C]
13. CPU1_Temp CPU1 temperature CPU1 tempera-

ture
14. CPU2_Temp CPU2 temperature CPU2 tempera-

ture
15. P1_DIMM1A_ Temp Memory modules tempera-

ture
Memory modules
temperaturel

17. P1_DIMM3A_ Temp Memory modules tempera-
ture

Memory modules
temperature

18. P2_DIMM1A_ Temp Memory modules tempera-
ture

Memory modules
temperature

20. P2_DIMM3A_ Temp Memory modules tempera-
ture

Memory modules
temperature

Table 3: Captured HPC physical variables by the Ganglia tool

variables: a) Faithful variables are forming strong clusters for both architectures
(i.e. 1. Load_one, 2. Load_five, 3. Proc_run or 5. Pkts_in, 6. Pkts_out,
7. Bytes_in, 8. Bytes_out); b) Migrant variables are shifting from one vari-
able cluster to other when the HPC architecture changes (i.e. 13. CPU1_Temp,
14. CPU2_Temp); c) Isolating variables remain alone independently of the HPC
architecture type (i.e. 4. Proc_total, 9. Mem_free, 10. CPU_user, 12. Sys-
tem_Temp).

Faithful variables form clusters with relatively high number of participants.
This property reduces significantly the necessary sampled variables for extreme
event detection task. The class of migrant variables contains only reduced number
of candidates and characterizes the difference between the two HPC architectures.
The isolating variables do not depend on the HPC architecture and are strong
characterizing elements of the HPC execution state. Using CWT it was found that
the different class of variables has different wavelet transform.

On Figure 5 can be seen that there were three short time intervals for variable 1.
Load_one at the CN5 with significant changes. The same three time intervals can
be seen on Figure 6 for variable 4. Mem_free of the same node. In these moments
the cluster architecture HPC had surprise event detected by the CWT. The signif-
icant changes of the two different variables are detected in this way. Coincidence
of several variable changes can be detected by the CWT in the same manner.

Even different classes of variable have different CWT, extreme events are de-
tected by every variable cluster because the fingerprint of the surprise events (ver-
tical lines on the CWT maps for different isolating variables) matches. In our case
these surprise events appeared at around three epoch numbers: b1 = 2.3×106, b2 =
3.3× 106, b3 = 3.6× 106.

94 Z. Gál, T. Tajti, Gy. Terdik

Figure 4: SOM maps for Cluster architecture HPC, CN5

Figure 5: CWT of Cluster architecture HPC,
variable CN5,1.Load_one

Figure 6: CWT of Cluster architecture HPC,
variable CN5,4:Mem_free

Surprise event detection of the supercomputer execution queues 95

4. Conclusions

SOM and DBSCAN are useful methods to create variable clusters of the data
sampled from sensor networks. This clusterization of the variables reduces the
analysed amount of data with ∼ 70%. By analysing variables of MPP and cluster
based HPC systems three classes of variables are proposed: faithful, migrant and
isolating one. Each class has special role in the minimizing method of the number
of HPC state variables necessary to detect special events. Even several jobs were
waiting for the execution with SGE scheduler some of the hardware resources were
out of work. The occurrence of surprise events at the HPC system execution can
be detected by the constant wavelet transform (CWT) of a representive element of
the variable clusters. Further analysis needs to find the exact characteristics of the
variable classes proposed.

References

[1] Vermesan, O., Friess, P., Internet of Things – Converging Technologies for Smart
Environments and Integrated Ecosystems, River Publishers, 2013.

[2] Smith, J. G.,Vermesan, O., Friess, P. Furness, A., The Internet of Things
2012: New Horizons, Halifax Publisher, ISBN: 978-0-9553707-9-3, 2012.

[3] Jain, A. K., Murty, M. N., Flynn, P. J. , Data Clustering: A Review, ACM
Computing Surveys, 31 (3), 264-323, 1999.

[4] Ester, M., Kriegel, H.-P., A density-based algorithm for discovering clusters in
large spatial databases with noise, Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, AAAI Press. 226–231. ISBN 1-57735-004-
9., 1996

[5] JIANG, D., Pei, J., Zhang, A., DHC: A Density-Based Hierarchical Clustering
Method for Time Series Gene Expression Data, BIBE, 393-400, 2003

[6] Kohonen, T., Self-organized formation of topologically correct feature maps,
Springer-Verlag, Biological Cybernetics, Volume 43, Issue 1 , 59-69, 1982

[7] Mallat, S., G., A theory for multiresolution signal decomposition: the wavelet
representation, IEEE Transactions on Pattern Recognition and Machine Intelligence,
11 (7): 674–693, 1989.

[8] Percival, D., B., Walden, A. T., Cambridge Series in Statistical and Probabilis-
tic Mathematics: Wavelet Methods for Time Series Analysis, Cambridge University
Press, 2006.

[9] Sadek, S. A., Michaelis, A. B., Sayed, U., A statistical framework for real-
time traffic accident recognition, Journal of Signal and Information Processing, Vol.
1, 70–81, 2010.

[10] Special Issue on Cognitive Infocommunications, Journal of Advanced Computational
Intelligence and Intelligent Informatics, (2012) 16: 2.

[11] Terdik, Gy., Gal, Z. , Advances and practice in Internet of Things: A case study,
Proceedings of 4th IEEE International Conference on Cognitive Infocommunications

96 Z. Gál, T. Tajti, Gy. Terdik

(CogInfoCom 2013), Budapest, Hungary, December 2-5, 2013, ISBN: 978-1-4799-
1544-6, 435-440.

[12] Gal, Z., Tajti, T., Complex Event Processing in Supercomputer Environment:
Sensor and Neural Network Based Analysis, Proceedings of IEEE 4th International
Conference on Cognitive Infocommunications (CogInfoCom 2013), Budapest, Hun-
gary, December 2-5, 2013, ISBN: 978-1-4799-1544-6, 735-740.

Surprise event detection of the supercomputer execution queues 97

Clang matchers for verified usage of the
C++ Standard Template Library∗

Gábor Horváth, Norbert Pataki

Department of Programming Languages and Compilers
Eötvös Loránd University, Budapest, Hungary
xazax.hun@gmail.com, patakino@elte.hu

Submitted July 20, 2014 — Accepted March 5, 2015

Abstract

The C++ Standard Template Library (STL) is the exemplar of generic
libraries. Professional C++ programs cannot miss the usage of this standard
library because it increases quality, maintainability, understandability and
efficacy of the code. However, the usage of C++ STL does not guarantee
error-free code. Contrarily, incorrect application of the library may intro-
duce new types of problems. Unfortunately, there is still a large number of
properties are tested neither at compilation-time nor at run-time. It is not
surprising that in implementation of C++ programs so many STL-related
bugs are occurred.

We match patterns on abstract syntax trees (AST) with the help of pred-
icates. The predicates can be combined and define an embedded language.
We have developed a tool which finds the potential missuses of the STL as a
validation of our approach. The software takes advantage of the Clang AST-
Matcher technology. The tool is in-use in Ericsson. We advise new matchers
that have get into the Clang code base.

Keywords: C++ STL, generic programming, Clang, AST, static analysis,
code validation

MSC: 68N19 Other programming techniques

∗This study/research was supported by a special contract No. 18370-8/2013/TUDPOL with
the Ministry of Human Resources.

Annales Mathematicae et Informaticae
44 (2015) pp. 99–109
http://ami.ektf.hu

99

1. Introduction

The C++ Standard Template Library (STL) was developed by generic program-
ming approach [2]. In this way containers are defined as class templates and many
algorithms can be implemented as function templates [1]. Furthermore, algorithms
are implemented in a container-independent way; so one can use them with differ-
ent containers [22]. C++ STL is widely-used because it is a very handy, standard
library that contains beneficial containers (like list, vector, map, etc.), a lot of
algorithms (like sort, find, count, etc.) among other utilities.

The STL was designed to be extensible [3]. We can add new containers that
can work together with the existing algorithms. On the other hand, we can extend
the set of algorithms with a new one that can work together with the existing
containers. Iterators bridge the gap between containers and algorithms. The ex-
pression problem is solved with this approach [23]. STL also includes adaptor types
which transform standard elements of the library for a different functionality [14].
By design, STL is implemented with application of C++ templates to ensure the
efficiency. A runtime model of this approach is available [20].

However, the usage of C++ STL does not guarantee bug-free or error-free code
[5]. Contrarily, incorrect application of the library may introduce new types of
problems [10].

One of the problems is that the error diagnostics are usually complex and very
hard to figure out the root cause of a program error [24, 25]. Violating requirement
of special preconditions (e.g. sorted ranges) is not checked, but results in runtime
bugs [19]. A different kind of stickler is that if we have an iterator object that
pointed to an element in a container, but the element is erased or the container’s
memory allocation has been changed, then the iterator becomes invalid. Further
reference of invalid iterators causes undefined behaviour [4].

Another common mistake is related to algorithms which are deleting elements.
The algorithms are container-independent, hence they do not know how to erase
elements from a container, just relocate them to a specific part of the container,
and we need to invoke a specific erase member function to remove the elements
physically. Therefore the remove and unique algorithms, for example, do not
actually remove any element from a container [9].

The aforementioned unique algorithm has uncommon precondition. Equal el-
ements should be in consecutive groups. In general case, using sort algorithm is
advised to be called before the invocation of unique. However, unique cannot
result in an undefined behaviour but its result may be counter-intuitive.

Some of the properties are checked at compilation time. For example, the
code does not compile if one uses sort algorithm with the standard list container
because the list’s iterators do not offer random accessibility [18]. Other properties
are checked at runtime. For example, the standard vector container offers an at
method which tests if the index is valid and it raises an exception otherwise [16].

Unfortunately, there is still a large number of properties are tested neither at
compilation-time nor at run-time. Observance of these properties is in the charge

100 G. Horváth, N. Pataki

of the programmers. Lint-like tools are based on static analysis for detect some
kind of missuses that can be compiled but at runtime they cause problems.

Associative containers (e.g. multiset) use functors exclusively to keep their el-
ements sorted. Algorithms for sorting (e.g. stable_sort) and searching in ordered
ranges (e.g. lower_bound) are typically used with functors because of efficiency.
These containers and algorithms need strict weak ordering [17]. Containers be-
come inconsistent, if the used functors do not meet the requirement of strict weak
ordering [12].

In this paper we argue for a new approach based on static analysis. Our ap-
proach matches patterns on abstract syntax trees with predicates written in func-
tional style. We have created a tool as a validation of the approach. This tool
detects many kind of missuses of the C++ STL in the source code. The tool uses
the Clang architecture [8]. Our tool is utilized by our industrial partner.

This paper is organized as follows. In section 2 we analyze how our approach
works, in section 3 the overview of our system is detailed. We briefly present our
tool in section 4. We present the core of some checkers as an example in section
5. We summarize other approaches that are based on static analysis in section 6.
Finally, this paper concludes in section 7.

2. Pattern matching on syntax trees

Our approach is based on pattern matching on the syntax tree of the analyzed
program source code. We use the syntax tree that is generated by the Clang [8]
compiler. The syntax tree of a compiler contains sufficient amount of information
to answer several questions regarding the source code.

However, in order to parse the source of the program we need to know the exact
compiler arguments that were used to compile that application. This is necessary
because the compiler arguments can modify the semantics of the source code; for
example macros can be defined using compiler arguments.

To collect the compilation arguments the most efficient and portable way is to
use fake compilers that are logging their parameters and forward them to a real
compiler afterwards. This way the logging itself is independent of the build system
that is used. The source code is parsed with the same compilation parameters that
were logged.

After we retrieved the syntax tree of the analyzed program from the compiler
the pattern matching process begins. Multiple patterns are matched lazily on the
syntax tree with only one traversal. The source positions for the matched nodes in
the syntax tree are collected.

The source positions in the collected results are filtered based on exclude lists
that contains of the false positive matches. These exclude lists have to be main-
tained by the user of the tool. Afterwards the positions are translated into user-
friendly warning messages.

One of the downsides is that, the compiler can only parse one translation unit at
a time. Some useful information might reside in a separate translation unit making

Clang matchers for verified usage of the C++ Standard Template Library 101

it impossible to detect some class of issues. Fortunately due to the structure of
STL most of the library code is available in system header files. For this reason
if a translation unit is utilizing some STL features, the corresponding headers are
likely to be the part of that unit. This structure mitigates the limitations of the
compiler, translation unit boundaries are not likely to be a problem when analyzing
STL misuse patterns.

The solutions presented in this paper are not utilizing any symbolic execution
or other path sensitive data. Several patterns can be detected using only pattern
matching on the AST and this pattern matching procedure is more efficient than
symbolic execution.

3. Overview of the architecture

Each of the checkers that are able to detect certain class of bad smells are imple-
mented as a predicate on the syntax tree. These predicates are loosely coupled.
We focus on the extendibility, thus it is very easy to add further checkers to our
tool.

Each predicate has two states representing whether it is activated in the cur-
rent invocation of the tool or not and a list of matches (that was marked as false
positives) that should be ignored. The predicates should not contain other states,
because a new predicate object will be instantiated for each translation unit that
is checked. There is no efficient way to preserve states between those invocations
mainly because the user is allowed to invoke multiple instance of our checker tool
on multiple translation units at the same time. If a predicate is activated it consists
of a matcher and a callback. The matcher is an ASTMatcher object that is built by
an embedded domain specific language available in the Clang ASTMatcher library.
This is a first filter on the syntax tree and it can be retrieved by the getMatcher
method. The callback can do further filtering to decide whether the match found by
the ASTMatcher object is suitable to be reported to the user. The callback is the
override of the matches method. The callback essential because while the matchers
are extremely useful they can not express any possible patterns on the AST. The
getMatcher method is never invoked on inactive checkers, the matcher expression
will not be generated and the callback will never be called. The MatcherProxy
returned by the getMatcher method is necessary because there are different kind
of matchers for declarations, statements and types. The MatcherProxy is a dis-
criminated union of fundamental matcher types from which the original type can
be retrieved later.

Code 1: Predicate interface
struct Predicate {
Predicate() : _active(false) {}
virtual ~Predicate() {}

virtual bool matches(const MatchResult &result_) = 0;
virtual void configure(std::string conf_) = 0;

102 G. Horváth, N. Pataki

virtual std::string getErrorMsg() = 0;
virtual std::string getID() = 0;
virtual std::string getBoundID() = 0;
virtual MatcherProxy getMatcher() = 0;
virtual std::vector<MatchPosition>& getExcludes() {
return _excludes;

}
virtual bool isActive() { return _active; }
virtual void setActive(bool active_) { _active = active_; }

protected:
bool _active;
std::vector<MatchPosition> _excludes;

};

Each predicate is configurable. This is necessary to make sure the predicates
can adapt to wide variety of code bases. The ASTMatcher object and the callback
function can make decisions based on configuration values. The predicates get only
plain text as configuration because it is hard to predict what kind of configuration
data is needed for future predicates. This gives some flexibility to the implementers.
However, some basic tools are provided to parse key/value pairs.

Unfortunately static analysis tools are prone to false positive results. The users
must be able to suppress the false positive warnings. The _excludes vector con-
tains these locations. The exclude list is unique to all of the predicates. The
exclude list is parsed after the configuration file was processed.

All of the predicates can be identified by a unique identifier. That identifier
is used to determine whether a predicate must be active in an invocation, what
configuration values belong to that predicate, and which excludes should be added
to its exclude list. The identifier can be gathered by invoking the getID method.

Every predicate can have a unique error message that is displayed when a match
is found. This message is emitted for every source location that is detected by the
given predicate.

The predicates can match not only a single node of the syntax tree but a subtree.
In case of a subtree is matched it is ambiguous which node should be used to retrieve
the source location of the match. The getBoundID can be used to identify which
node should be used as a source location to generate the warning report. For
example if the subtree is a function call, there must be a way to determine what
source location of the function call should be reported: the whole function call or
one of its arguments.

Code 2: Registering checkers
Config::Config(BuildLogParser& log_parser) :
_log_parser(log_parser) {
ADD_MATCHER(StlBoolVectorPred);
// ...
ADD_MATCHER(StlPolimoContPred);

}

Clang matchers for verified usage of the C++ Standard Template Library 103

When a new checker is implemented it must be the subtype of the Predicate
class. After all of the pure virtual methods are implemented the checker must be
registered with a configuration class that handles the instantiation of the checker
objects. The registration of the checker is done in the constructor of the configura-
tion class. To avoid the necessity of modifying an unrelated file when implementing
a new checker, the code that is responsible for registering checkers can be auto-
matically generated by an external script that is inspecting the implementation
files.

4. Matchers for STL usage validation

The architecture we developed proved to be useful. We implemented 14 checkers
to detect STL specific errors or suspicious code snippets. We tried to focus on
patterns that are most likely to appear in real world applications. These checkers
are the following:

• Bool Vector checker warns about usages of vector of booleans. The reason is
that std::vector<bool> is a template specialization that does not fulfil the
requirements of std::vector [13].

• Container of std::auto_ptrs is a dangerous construct in C++. The
std::auto_ptr is a smart pointer that manages its own resource by deleting
the pointer it wraps in its destructor. The problem is that its copy constructor
transfer the ownership of the pointer from the source of the copy to the target
of the copy. When the user of the STL have a container that contains such
pointers and use an algorithm on the container that involves copying then
some pointers may reclaim their resources in an unintended way [13].

• Invoking the std::find and std::count algorithm on an associative con-
tainer in STL is not efficient. The general std::find and std::count al-
gorithms have no information about the internal representation of the con-
tainers. This is the reason why they cannot utilize that the objects in an
associative container are ordered. The programmer should use the find and
count methods of the associative container instead.

• One can get the wrapped iterator from a reverse iterator through the base
method. However, using this method requires extra attention from the pro-
grammer, because the iterator retrieved this way is not pointing to the same
object as the reverse iterator does [15].

• The functors used with STL algorithms and containers should be derived from
some specific STL types that adds some typedefs to the functor to make it
possible to inspect the return type and the argument types of the functor. It
is very error prone to define those types multiple times. This checker warns
if the types do not match.

104 G. Horváth, N. Pataki

• Allocators should not have any state in C++98/C++03 codes.

• Functors used as predicates with STL algorithms should not have any state.
This is important because it is undefined by the standard how many times
may the functor object be copied.

• Functors are passed by value to algorithms. The polymorphism only works
through pointers and references. Developers should not use virtual methods
in functor classes and it can be the indicator of an error.

• The emptiness of a container should be checked with the empty method in-
stead of using the size method. The empty method can be implemented
more efficiently for most of the containers. Moreover more containers sup-
port the empty method than the size method. In a code base using empty
for emptiness check the container types can be swapped more easily.

• The capacity and the number of elements in std::vector is not the same.
The capacity defines how much memory the vector uses and it can be much
more than the required. To optimize the memory consumption it is a common
trick to copy the contents of the vector to a temporary object and swap the
vector with that temporary afterwards. Since the C++11 standard there is
a much more comprehensible and better performing way to achieve the same
result is using the shrink_to_fit method. This checker warns the user to
replace the copy and swap tricks with a shrink_to_fit method call.

• Algorithms that remove elements from a container will not delete the elements
from the container. They will only overwrite the elements that need to be
removed with other elements from the end of the container. After running
such algorithm at the end of the container there will be some redundant
elements that needs to be erased using the erase method of the container.

• Copying algorithms cannot guarantee that the target container have sufficient
size to store all of the elements that is in the source container. It is advised to
use iterator adaptors for example the back inserter iterator adaptor to avoid
buffer overflows.

• The containers in the STL are not designed to be the part of a class hierarchy.
Using the containers in a polymorphic way is an error and should be avoided.

• Because of implicit type conversions a number can be assigned to a
std::string object. In most cases this is a programming error and there is
a missing explicit conversion to string.

Some of the bad smells and coding style advices that are found by our tool
is not detected by other static analysis tools available at the time of writing this
article. We found defects in the codebase of our industrial partner, however they
did not provide us with any data on the number of defects they found.

Clang matchers for verified usage of the C++ Standard Template Library 105

5. Example

In this section we briefly present two checkers’ implementation as an example. We
focus on the technology and our approach.

Our tool analyzes if a programmer calls the find or count algorithm on a sorted
container because this causes efficiency loss at runtime. The algorithm is a function
template, thus it can called on the set or multiset object because the algorithm
has a template parameter for the iterator. The heart of the checker takes advantage
of Clang architecture. The following code snippet validates the usage of the find
or count algorithm:

Code 3: Inefficient Algorithm: ASTMatcher
MatcherProxy StlFindCountPred::getMatcher() {
return
callExpr(

callee(functionDecl(
anyOf(hasName("std::find"),

hasName("std::count")))),
hasArgument(0,
hasDescendant(expr(hasType(typedefType(hasDecl(
matchesName(
"std::(multiset|set).*"
"::(const_iterator|iterator)"
)))))))).bind("id");

}

This code checks if the parsed source code is a call expression, where the called
function is one of enumerated standard algorithms and it is called on the sorted
container. The code analyzes the type of algorithm’s first argument. If the name
of type matches to the arbitrary inner type iterator or const_iterator of set
or multiset our tool reports warning to the user. However, this code is written in
C++ but with functional approach.

The STL containers are not prepared to be used polymorphically. If a user
decide to inherit from a container and cast a pointer to the derived type to a
pointer to the container type it is probably the indicator of an issue.

Code 4: Polimorphic container: ASTMatcher
MatcherProxy StlPolimoContPred::getMatcher()
{
DeclarationMatcher container = unless(anything());
for(const auto& e : gContainers)
container = anyOf(recordDecl(hasName(e)),

container);

return
implicitCastExpr(hasImplicitDestinationType(
pointsTo(container))).bind("id");

}

106 G. Horváth, N. Pataki

The gContainers variable contains the list of the containers in the STL. The
codesnippet above shows the power of creating matchers dynamically on the fly.
We want to warn the user, if there is an implicit cast to a pointer to a container.

Code 5: Polimorphic container: Callback
bool StlPolimoContPred::matches
(const MatchFinder::MatchResult &result_)

{
const ImplicitCastExpr* cast =
result_.Nodes.getDeclAs<ImplicitCastExpr>("id");

return cast->getCastKind () == CK_DerivedToBase;
}

There can be several types of casts, but we are only interested in those types
of implicit casts, that involves derived to base conversion. There is no matcher
to ensure the cast type. For this reason we have implemented a small callback to
check the type of the cast.

6. Related work

There are some approaches to discover the erroneous STL usage with static analysis.
STLlint was the first application that analyses source code for detecting inaccurate
application of the library [7]. STLlint first parsed C++ code (with Edison Design
Group C++ Front End [6]) and then transformed it into a simpler internal rep-
resentation language called “Semple”. During this transformation process, STLlint
replaced the implementation of STL components with simplified models that spec-
ify the interface (but not the implementation) of the components. The resulting
program was then passed to the Semple static analysis engine that “executed” the
program symbolically, checking that assertions (part of the component specifica-
tions) always prove true. Unfortunately, the support, maintenance and availability
of this tool have been cancelled. CppCheck is a static analysis tool that also have
some limited STL support [26].

C++ template metaprogramming is an emerging new paradigm that is able to
add further validation to the compiler [21]. This approach effectively can be used
for evaluating the semantic usage of the STL. First, it is enough to parse the source
code once. Second, this approach supports the extendibility of the library which
is a major feature of the generic programming paradigm. However, this approach
has disadvantages, as well. In the metaprogramming realm there is no AST or
something high-level approach of the source code. Metaprogram developers usually
deal with template instantiations to trigger compilation failures or warnings [17].

Some of the STL-related issues are detected in a metaprogram-driven way: over-
come of stateful allocators and reverse iterators are implemented in [15], proper
usage copying algorithms is verified in [17]. The usage of vector<bool> and con-
tainers of auto pointers can be detected [13]. The semantic check of functors are
detailed in [11, 12].

Clang matchers for verified usage of the C++ Standard Template Library 107

7. Conclusion

We have developed a static analysis tool based on Clang technologies that is easy
to extend. The success of the architecture is proven by the 14 checker that we
implemented. Some of the checkers are implementing new guidelines that was
not published nor checked before. During the development we contributed several
patches to the Clang ASTMatcher library. The tool is utilized by our industrial
partner.

References

[1] Alexandrescu, A.: “Modern C++ Design”, Addison-Wesley (2001)

[2] Austern, M. H.: “Generic Programming and the STL: Using and Extending the C++
Standard Template Library”, Addison-Wesley (1998)

[3] Czarnecki, K., Eisenecker, U. W.:“Generative Programming: Methods, Tools and
Applications”, Addison-Wesley (2000)

[4] Dévai, G., Pataki, N.: Towards verified usage of the C++ Standard Template Library,
in Proc. of the 10th Symposium on Programming Languages and Software Tools,
(SPLST) 2007, pp. 360–371.

[5] Dévai, G., Pataki, N.: A tool for formally specifying the C++ Standard Template
Library, Ann. Univ. Sci. Budapest. Comput., 31 (2009), pp. 147–166.

[6] Gibbs, T. H., Malloy, B. A., Power, J. F.: Progression Toward Conformance for C++
Language Compilers, Dr. Dobbs Journal 28(11) (2003), pp. 54-60.

[7] Gregor, D., Schupp, S.: STLlint: Lifting static checking from languages to libraries,
Software – Practice & Experience, 36(3) (2006), pp. 225–254.

[8] Lattner, C.: LLVM and Clang: Next Generation Compiler Technology, The BSD
Conference, 2008.

[9] Meyers, S.: “Effective STL - 50 Specific Ways to Improve Your Use of the Standard
Template Library”, Addison-Wesley (2001)

[10] Pataki, N.: C++ Standard Template Library by Ranges, in Proc. of the 8th Interna-
tional Conference on Applied Informatics (ICAI 2010), Volume 2, pp. 367–374.

[11] Pataki, N.: C++ Standard Template Library by Safe Functors, in Proc. of 8th Joint
Conference on Mathematics and Computer Science, MaCS 2010, Selected Papers,
pp. 363–374.

[12] Pataki, N.: Advanced Functor Framework for C++ Standard Template Library, Stu-
dia Universitatis Babeş-Bolyai, Informatica, LVI(1) (2011), pp. 99–113.

[13] Pataki, N.: C++ Standard Template Library by template specialized containers, Acta
Universitatis Sapientiae, Informatica 3(2) (2011), pp. 141–157.

[14] Pataki, N.: Safe Iterator Framework for the C++ Standard Template Library, Acta
Electrotechnica et Informatica, Vol. 12(1) (2012), pp. 17–24.

108 G. Horváth, N. Pataki

[15] Pataki, N.: Compile-time Advances of the C++ Standard Template Library, An-
nales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sec-
tio Computatorica 36 (2012), Selected papers of 9th Joint Conference on Mathemat-
ics and Computer Science MaCS 2012, pp. 341–353.

[16] Pataki, N., Porkoláb, Z., Istenes, Z.: Towards Soundness Examination of the C++
Standard Template Library, in Proc. of Electronic Computers and Informatics, ECI
2006, pp. 186–191.

[17] Pataki, N., Porkoláb, Z.: Extension of Iterator Traits in the C++ Standard Template
Library, in Proc. of the Federated Conference on Computer Science and Information
Systems, FedCSIS 2010, pp. 911–914.

[18] Pataki, N., Szűgyi, Z., Dévai, G.: C++ Standard Template Library in a Safer Way,
In Proc. of Workshop on Generative Technologies 2010 (WGT 2010), pp. 46–55.

[19] Pataki, N., Szűgyi, Z., Dévai, G.: Measuring the Overhead of C++ Standard Tem-
plate Library Safe Variants, Electronic Notes in Theoret. Comput. Sci., 264(5)
(2011), pp. 71–83.

[20] Pirkelbauer, P., Parent, S., Marcus, M., Stroustrup, B.: Runtime Concepts for the
C++ Standard Template Library, in Proc. of the 2008 ACM symposium on Applied
computing, pp. 171–177.

[21] Porkoláb, Z.: Functional Programming with C++ Template Metaprograms, Lecture
Notes in Comput. Sci., 6299 (2010), pp. 306–353.

[22] Stroustrup, B.: “The C++ Programming Language”, Addison-Wesley (1999)

[23] Torgensen, M.: The Expression Problem Revisited – Four new solutions using gener-
ics, Lecture Notes in Comput. Sci., 3286 (2004), pp. 123–143.

[24] Zolman, L.,: An STL message decryptor for visual C++, C/C++ Users Journal,
19(7) (2001), pp. 24–30.

[25] Zólyomi, I., Porkoláb, Z.: Towards a General Template Introspection Library, Lecture
Notes in Comput. Sci., 3286 (2004), 266–282.

[26] Joshi, A., Tewari, A., Kumar, V., Bordoloi, D.: Integrating Static Analysis Tools
for Improving Operating System Security, International Journal of Computer Science
and Mobile Computing, Vol. 3(4), (2014), pp. 1251–1258.

Clang matchers for verified usage of the C++ Standard Template Library 109

On a secure distributed data sharing
system and its implementation

Péter Kasza, Péter Ligeti, Ádám Nagy

Eötvös Loránd University
Department of Computeralgebra

pkasza@caesar.elte.hu, turul@cs.elte.hu, spigy88@inf.elte.hu

Submitted September 23, 2014 — Accepted February 10, 2015

Abstract

In this paper we propose a decentralized privacy-preserving system which
is able to share sensible data in an encrypted way, that only predefined sub-
sets of authorized entities can recover the data after getting an additional
alarm message. In the paper we give a short description of the necessary
cryptographic building blocks and the communication protocol. Further-
more, we present the main communication channels and the implementation
of the proposed data sharing system. The proposed system achieves the de-
sired functionalities by using secret sharing and two communication networks:
an ordinary P2P network where the encrypted information is stored, and a
smaller private P2P network called friend-to-friend network, which consists
of the authorized parties and handles messages that are necessary to the de-
cryption. The main part of the paper concentrates on the implementation of
the system.

Keywords: private P2P network, secret sharing, symmetric cryptography

MSC: 94A62, 68P25

1. Introduction

1.1. Motivation

The number and role of smart devices show an intensive growth nowadays, they
are collecting, storing and sending a large amount of sensitive data about the

Annales Mathematicae et Informaticae
44 (2015) pp. 111–120
http://ami.ektf.hu

111

owner of the device. Communication devices, like smartphones or tablets can
have several built-in sensors, such as accelerometers, digital compasses, gyroscopes,
GPS trackers, microphones and cameras. Dedicated self-tracking devices measuring
various medical data of the user, like blood-pressure, pulse, blood-sugar level, etc.
The sensible data collected by these devices are often handled (additionally stored
and analyzed) by a central entity, usually a mobile or cloud service provider, raising
serious privacy concerns. The main goal of this paper is to propose a privacy-
preserving communication framework, wherein the sensible data is not stored by
a singular trusted third party, but instead distributed to some predefined subset
of users such that large coalition of users is necessary to recover the data. In
the proposed solution the encrypted data packages are stored within an open P2P
network and the necessary decryption key is distributed in a private network called
friend-to-friend (or F2F) network. In order to decrease the communication and
space consumption of the users and avoid a possible adversarial tracking, it is
required that the original data can be recovered only in the presence of a special
event, called an alarm message. Examples of such alarm messages are extremities
in medical data, S.O.S. signals in case of a physical attack or stroke, etc.

1.2. Communication building blocks: P2P and F2F networks

A peer-to-peer (P2P) network is a type of decentralized and distributed network
architecture in which the individual nodes of the network (called peers) act both as
suppliers and consumers of resources, in contrast to the client-server model where
client nodes request access to resources provided by central servers. In our protocol
the P2P architecture is used for file sharing; the participants are able to search,
upload and download messages from the P2P network.

A friend-to-friend (or F2F) computer network is a type of private peer-to-peer
network in which the users only make direct connections with people they know.
Unlike other kinds of private P2P networks, the users in a friend-to-friend network
cannot find out who else is participating beyond their own circle of friends, so F2F
networks can grow in size without compromising their users’ anonymity. Many F2F
networks support indirect anonymous or pseudonymous communication between
users who do not know or trust one another. For example, a node in a friend-to-
friend overlay can automatically forward a file (or a request for a file) anonymously
between two friends, without telling either of them the other’s name or IP address.
These friends can in turn automatically forward the same file (or request) to their
own friends, and so on. Historically, the first F2F system was Turtle [3], recent
examples of popular implementations are RetroShare [6] and OneSwarm [5]. For
the underlying P2P system we chose the BitTorrent protocol’s DHT network and
implemented our own friend-to-friend scheme on top of it by creating encrypted
communication channels between the nodes.

112 P. Kasza, P. Ligeti, Á. Nagy

1.3. Cryptographic primitives: secret sharing and symmetric
cryptography

A secret sharing scheme is a method of distributing secret data among a set of par-
ticipants so that only specified qualified subsets of participants are able to recover
the secret from its parts of information called shares. In addition, if the unqualified
subsets collectively yield no extra information, i.e. the joint shares are statistically
independent of the secret, then the scheme is called perfect. For a given positive
integer t a secret sharing scheme is called t-threshold, if every subset of participants
with cardinality at least t can recover the secret.

Secret sharing was first introduced independently by Blakley [1] and Shamir
[7]. In both papers the authors constructed perfect t-threshold schemes. Here
we present the method of Shamir, which can be easily implemented due to its
simplicity.

Example 1.1 (Shamir). Let the participants indexed by the non-zero elements
of a finite field F and let p be polynomial of degree at most t − 1 over F chosen
uniformly at random. The share of participant i is p(i) and the secret is the the
constant term of p(x), i.e. p(0).

In the proposed protocol we assume that at least some of our friends in the
F2F network are trustful i.e. can be expected to follow the protocol. We use
the pairwise secret channels between the participants for communication. The
security of these end-to-end communication channels are guaranteed by symmetric
cryptographic primitives, especially by symmetric encryption schemes. Informally,
a symmetric encryption scheme consist of three algorithm: the key-generation,
where the common secret key is established and sent on a secret channel; the
encryption where the sender computes the ciphertext of a given message using
the symmetric key and the decryption, where the receiver computes the message
from the ciphertext using the symmetric key. A message (key) of an encryption
scheme is computationally secure if any probabilistic polynomial time adversary is
able to learn some information about the message (key) with negligible probability
only. Note that, this is rather an informal definition, but here we just highlight
the main cryptographic ideas and results: we use that most of the widely used
encryption schemes are proven to be computationally secure. For example, in the
case of the OneSwarm network, RSA is used: every user generates a 1024 bit
public/private RSA key pair when installing the client, with the public key serving
as its identity. After a key-exchange between the friends, the participants can
connect to one another using secure sockets (SSLv3) bootstrapped by their RSA
key pairs. Furthermore forward security can be achieved by establishing ephemeral
Diffie-Hellman keys between the participants.

On a secure distributed data sharing system and its implementation 113

2. Protocol description

Within this section we present an informal description of the proposed protocol
together with the desired security requirements. This paper concentrates on the
communication channels and the implementation details, hence the exact protocol
description and the proof of security is contained in a separate paper [4].

2.1. Parameters

The participants of the protocol are the following: Alice, the sender of the data
and the alarm message, Alice’s friends in the F2F network and further participants
using an open P2P network. We suppose two communication channels: a F2F
network consists of Alice and her friends and a P2P network. Alice is able to make
a digital signature for integrity protection and the encryption for every message
and key. Alice has a secret symmetric key with every friend of her in the F2F
network.

2.2. Protocol description

The protocol has three main phases: the first one is Uploading, where the sender
first generates a temporary key and uploads the encrypted message in the P2P
network. Next, the sender distributes the collection of encrypted temporary keys
together with the list of identifiers of other shares and the message according to a
t-threshold secret sharing scheme. Finally, the shares are sent to her friends in the
F2F network.

The second step is the Downloading phase, in which the alarm message is sent
first to the friends. After getting the alarm signal, the friends distribute their
encrypted shares into the P2P network and then download the remaining parts
from the P2P network based on the identifiers of the shares and the message.

The last stage is the Message recovery step, where every friend checks the in-
tegrity and authenticity of the downloaded packages, computes the encrypted tem-
porary key from the correct shares and decrypt the session key with the symmetric
key and the original message with this decrypted key as well.

2.3. Security model

We suppose two opposite user behaviors. The first kind of participants is called
honest, meaning that they always follow the steps of the protocol and compute/send
nothing more. The other extremity is a malicious participant who is not supposed
to send messages according to the protocol, but is not able to interrupt the com-
munication. Because the connections in a F2F network are based on real personal
relationships and trust, we will suppose that the honest friends are in majority.

Intuitively, we need that if there are “many good friends” then every friend is
able to get the message when the protocol finishes (even the “bad” ones). Further-
more, it is necessary that no small subset of participants can learn any information

114 P. Kasza, P. Ligeti, Á. Nagy

about session key (including non-friends) as long as Alice doesn’t send the alarm
signal and any subset of entities out of the F2F network learns nothing about
the message. Here we collect the precise security requirements that the proposed
scheme has to satisfy:

• Correctness: if there is a set of at least t honest friends, then every friend
can recover the original message at the end of the protocol.

• Key Privacy: the session key used for encryption/decryption of the message
is computationally secure against any coalition of participants of cardinality
less than t, before getting the alarm message.

• Message Privacy: the message is computationally secure against any coali-
tion of participants who are not friends of the sender in the F2F network.

2.4. Security analysis

Here we only present the main theorems providing the above requirements without
proofs, the particular analysis can be found in [4].

Theorem 2.1. If Alice uses a perfect t-threshold secret sharing scheme in the
Uploading then the system fulfills the Correctness requirement.

Theorem 2.2. If Alice uses a perfect t-threshold secret sharing scheme in the
Uploading and a computationally secure encryption scheme, then the system fulfills
the Key Privacy requirement.

Theorem 2.3. If Alice use a computationally secure encryption scheme, then the
system fulfills the Message Privacy requirement.

From the implementation point of view, it is enough to use a perfect secret
sharing scheme, like Shamir’s scheme 1.1 and computationally secure encryption
in the implementation of the used F2F network.

3. Implementation details

The created application – called Siren – realizes the requirements described above:
the users can send and receive encrypted information (location, special message,
etc.) to and from their friends and it can be restored by them if and only if the
communication breaks unexpectedly or there is an alarm message. In the case of
emergency (i.e. some friend sent or triggered an alarm message) the application
will automatically put out the known shared pieces to the peer-to-peer network and
will try to gather enough piece to restore the key for the encrypted information.
The decrypted information will be shown to the user as a pop-up warning message
on the device.

On a secure distributed data sharing system and its implementation 115

3.1. Structure

Each instance of the Siren application is made up of a Signaling, a Processor, a F2F
network layer and a P2P network layer module. The modules are responsible for
different aspects of the program. The Signaling and Processor modules implement
the core protocol described above in 2.2. The F2F and P2P layers provides a simple
socket based interface to the underlying friend-to-friend and peer-to-peer network.

Siren

Processor

Alarm

Store

Signaling F2F
layer

P2P
layer

Help from third party

DHT

F2F

P2P

Figure 1: Modules of the Siren application

3.1.1. Signaling

The Signaling module interacts with the user through a graphical interface, makes
and distributes heartbeat messages as specified in the Uploading phase or sends a
panic signal if requested. After starting the module it keeps making and distribut-
ing heartbeat messages with a given frequency until the user stops the module or
it becomes impossible to send any message. When the user stops the module, it
will send a special closing message to the friends (not an alarm), hence they will
don’t start the Upload phase.

The heartbeat messages contain shared pieces of an unique key – which was
used to encrypt information about the user – as well as some parameters about
when and how the alarm message will be sent or should be triggered. Among
others every message contains an expiration time and a deadline too. After the
expiration time the receiver’s Processor module will drop the message; while after
the deadline an alarm will be triggered unless another newer message arrives from
the sender.

3.1.2. Processor

The Processor module has two important tasks. The first task is to store the mes-
sages sent by friends from both F2F and P2P networks. It will organize and keep
the messages until they are expired (the expiration time sent within the heartbeat
message) and can announce them on the peer-to-peer network.

116 P. Kasza, P. Ligeti, Á. Nagy

The other task of this module is to listen to alarm messages. If a friend has sent
or triggered such message then it will gather the shared data from the P2P network,
decrypt the information after recovering its key as described in the Message recovery
phase in 2.2 and show it to the user. Because there can be more non-expired
message from the same sender, the module will simultaneously try to gather all the
required number of pieces for every message. Hence if there is a chance to recover
a message that is not expired then it will be.

3.1.3. F2F Layer

The F2F layer abstracts away the F2F network, providing a simple socket interface
where the individual nodes can be addressed by their identifiers calculated from
their public keys.

To build up communication between two F2F nodes, their network addresses
has to be resolved first. In our case, the node addresses are resolved used the
BitTorrent DHT network. The network address for each node consists of an (IP
address, port) pair. These pairs are identified by the SHA-256 hash of the node’s
public key. The F2F layer maintains a cache of these (id,IP,port) triples to speed
up connection requests. Between two nodes, if only one node’s network address
changes, this node can notify the other one of its new address. The DHT only
needs to be checked if the node identifier is not found in the cache or if both
node’s addresses change simultaneously. The nodes must however continuously
keep advertising their network addresses through the DHT network, because the
DHT has a tendency to “forget” information as old nodes leave and new ones enter
the cloud.

Once the network address for a node is known, an encrypted channel can be
established using the public key for the node. Through this channel, the nodes
negotiate an ephemeral Diffie-Hellman key, which they use to encrypt their further
messages. This provides better performance then using the asymmetric encryption
and also achieves forward security.

Having a fully functional P2P layer, one can calculate and advertise F2F node
identifier. The identifier of a F2F node is the SHA-256 hash of the node’s public
key. The calculation of these keys are done in two step. Firstly at the first start of
the application it generates a new RSA keypair to sign messages and identify the
host1 and send/receive invites. When a friend’s identifier known it can check out
his address from the DHT and start the Diffie–Hellman key exchange. At the last
phase of the key exchange it receives the public key of the friend with some data
(like name, etc.) and calculates the common key for the communication channel.

Separating this functionality from the main application promotes modularity
and encourages reuse. We hope that our implementation of the F2F layer will
provide a guideline for developing similar cryptographic software.

1It uses this hash calculated from the public key as identifier in the distributed hash table too.

On a secure distributed data sharing system and its implementation 117

User time

Friend

1 1

2

2

3 4 5

Communication
via

encrypted channel

1 Sending invitation

2 Get address from DHT

3 Key exchange 1st phase

4 Key exchange 2nd phase

5 Authentication

Figure 2: The process of establishing communication channel

3.1.4. P2P Layer

Bootstrapping the P2P layer. As seen in figure 1, the modules are highly
interdependent, with the P2P layer being the most fundamental part of the ap-
plication. The P2P layer provides a reliable address resolution mechanism for the
F2F network. Because of this, the application needs to bootstrap the P2P network
first to be able to use the F2F network. Bootstrapping from a handful of nodes
can take some time to finish (it usually takes a few minutes), however in most
cases we only need to find a few nodes only, because the addresses of the nodes are
cached and stored between sessions. The cache contains a selected subset of the
P2P nodes. The node selection based on their uptime and node identifier.

The nodes’ uptime is usually thought of as a decreasing failure rate system
(see [2]) in which the nodes with a longer uptime have a higher probability of
being available for some fixed amount of time from now. If the cache is empty, we
bootstrap the DHT from the following “master” nodes:

• udp://router.bittorrent.com:6881

• udp://router.utorrent.com:6881

• udp://dht.transmissionbt.com:6881

Communication via P2P. This implementation uses the peer-to-peer network
for simple data announcing too. The encrypted data – which key was shared via
the F2F network – is sent to the P2P network as well as all of the key pieces when
a friend is in an emergency.

3.2. Key management

Our keypair is generated on the first run of the application and stored on the local
disk for further use. The program manages a contact list of friends in the F2F
network, which contains the hash of partners’ public keys so that their network
addresses can be resolved. The actual public keys are not stored, but they can be
retrieved from an alive node after the Diffie-Hellman key exchange. One can add
new friends to the contact list by sending a special invitation message which can
take the form of an URL or a QR code. The invitation contains the hash of the

118 P. Kasza, P. Ligeti, Á. Nagy

public key and an initial network address. Both of them are signed with the private
key. This prevents forgeries and guarantees the authenticity of the invitation.

3.2.1. User interface

The application was made for Android operation systems so it can be used on the
majority of mobile devices. The user interface can be separated into three parts:
main, friends and settings.

• In the main part of the UI the user can start/stop the signaling module and
can see some numerical information how: many friend added to his network,
how many is active and how many turned on the signaling module. Also the
other interfaces can be reached from here.

• The friends UI was made to handle friends so here the user can add, delete,
invite or disable2 friends. Reached this interface the user will see a list which
items contain friends and their connection information like invitation states
(sent/received) and that the friend is active or sending heartbeat messages.

• With the settings UI the user can set the parameters of Signaling module, the
F2F and P2P networks and also can change the information of the encrypted
message that the others will known in case of emergency.

Figure 3: The three main graphical interfaces of the application

Acknowledgements. The research was carried out as part of the EITKIC_12-
1-2012-0001 project, which is supported by the Hungarian Government, managed
by the National Development Agency, financed by the Research and Technology In-
novation Fund and was performed in cooperation with the EIT ICT Labs Budapest
Associate Partner Group. (www.ictlabs.elte.hu). This research has been par-
tially supported by the Lendület program of the Hungarian Academy of Sciences.
The second author was partially supported by the grant OTKA PD-100712.

2Disable friends means they won’t participant in the user’s secret sharing but the application
will receive messages from them and will warning the user if they are in emergency.

On a secure distributed data sharing system and its implementation 119

References

[1] Blakley, G. R., Safeguarding cryptographic keys Proceedings of the National Com-
puter Conference Vol. 48 (1979) pp. 313–317.

[2] Carrda, D., Building a Reliable P2P System Out of Unreliable P2P Clients:
The Case of KAD (2007) http://www.eurecom.fr/fr/publication/2430/download/
ce-carrda-071210.pdf

[3] Isdal, T., Piatek, M., Krishnamurthy, A., Anderson, T., Privacy-preserving
P2P data sharing with OneSwarm http://www.oneswarm.org/f2f_tr.pdf

[4] Kasza, P., Nagy, Á., Ligeti, P., Siren: secure data-sharing over P2P and F2F
networks submitted to Studia Scientiarum Mathematicarum Hungarica

[5] Popescu, B.C., Crispo, B., Tanenbaum, A. S., Safe and Private Data Sharing
with Turtle: Friends Team-Up and Beat the System 12th International Workshop on
Security Protocols (2004).

[6] RetroShare: secure communications with friends, available online at http://
retroshare.sourceforge.net/

[7] Shamir, A., How to share a secret Communications of the ACM Vol. 22 (1) (1979)
pp. 612–613.

120 P. Kasza, P. Ligeti, Á. Nagy

A special localization algorithm in Wireless
sensor networks for telemetry application

Gyöngyi Kocsisné Szilágyia, Attila Kocsisb

aDepartment of Programming Languages and Compilers
Eötvös Loránd University, Budapest

szilagyi@inf.elte.hu
bbI-QRS International Ltd., Budapest

atkocsis@iqrs.hu

Submitted July 18, 2014 — Accepted March 5, 2015

Abstract
Accurate positioning [1] in Wireless sensor networks [3] is an impor-

tant and emerging technology for many research areas, such as health care,
telemedicine [2], sports, commercial, public-safety and military applications.
This paper presents an exact positioning approach for a telemetry system
in ad hoc sensor network measuring patients’ vital and motion parameters.
The telemetry system includes two kinds of wireless data-gathering devices
(sensors) neither of which knowing their own positions: 1. reference point de-
vices, which retain fix positions, and are uniformly distributed over an area of
interest, 2. all the other sensors (mobile nodes) which are allowed to change
their positions during the measurements. The presented algorithm is based
on measurements of distances between sensor nodes with 4 Hz sampling fre-
quency. The aim is to compute the exact positions of the nodes in some fixed
coordinate system. The measurements of distances between sensor nodes are
not sufficiently accurate. The developed algorithm at first estimates the exact
position of the reference points from initial measuremets based on the min-
imization of the localization error. During the measurements the positions
of the reference points do not change. The mobile nodes localize themselves
continuously with the help of location references received from the reference
points using trilateration.

Keywords: Wireless Sensor Networks, Localization algorithms, Telemetry sys-
tem

MSC: AMS classification numbers

Annales Mathematicae et Informaticae
44 (2015) pp. 121–130
http://ami.ektf.hu

121

1. Introduction

A wireless sensor network [3] consist of spatially distributed autonomous sensor
nodes for data acquisition. Each node is able to sense the environment, perform
simple computations and communicate with its other sensors or with the central
unit.

Accurate localization of sensor nodes is a strong requirement in a wide area
of applications such as health care, telemedicine, sports, rescue, disaster relief,
commercial and military and applications [2].

This paper describes an algorithm for localization of sensor nodes using range
measurements, trilateration and heuristic geometrical approach.

The paper is organized as follows. Section 2 presents the basic problem, the for-
mulation of localization problem in wireless sensor networks, and the applied exact
positioning approach for the I-QRS Telemetry system. In section 3 the developed
localization algorithm is presented. In section 4 the applied heuristic and the im-
plementation results are described. Future and Related work has been discussed
in section 5 and 6, respectively.

2. The basic problem

2.1. Wireless sensor networks (WSN)

A wireless sensor network (WSN) [3] has important applications such as remote
environmental monitoring, health monitoring and target tracking. The type of
wireless sensor network investigated here refers to a group of sensors, or nodes,
that are equipped with wireless interfaces through which they can communicate
with one another to form a network. Each node is able to sense the environment,
monitor physical or environmental conditions (such as temperature, sound, pres-
sure, etc). The sensors perform simple computations, and cooperatively pass their
data through the network to a main location. The design of a WSN depends signif-
icantly on the application, and can vary from a simple star network to an advanced
multi-hop wireless mesh network.

2.2. Localization algorithms

The theoretical background of localization is presented briefly in this section. Please
find more details on the topic in references [1, 7]. The goal of localization is to
determine the physical coordinates of a group of sensor nodes. Many methods have
been proposed in the literature and used in practice to localize wireless devices.

Localization algorithms can be classified into exact and approximative localiza-
tion.

Exact localization is based on precise measurements of distances or angles be-
tween sensor nodes not knowing their own position and nodes with preinstalled

122 Gy. Kocsisné Szilágyi, A. Kocsis

localization systems. These methods result high precision of position determina-
tion but need extensive calculations.

Approximative algorithms do not require extensive calculations and result in less
network traffic. From network managemenet aspect the research can be classified
into two categories: centralized and distributed localization.

In the centralized localization it is not necessary to compute each node. Sensor
nodes gather environmental data and pass it to a base station. After analysis the
computed positions are transported back into the network. Disadvantage of this
method is high communication costs.

In the case of distributed localization algorithms all computations are done on
the nodes. The sensor nodes communicate with each other to get their positions
in a network.

In the network model, the nodes are located in distinct physical locations in
some region of space. We assume below that nodes have some means by which
they can measure the distance between themselves.

A wireless ad-hoc network can be modeled by a distance graph G = (V,E,D),
where V is the set of wireless nodes, E is the set of links, and D(u, v) denotes the
distance measurements between a pair of nodes u and v. An important question is
whether or not a network is localizable by given its distance graph.

Let N be a network in R2 with nodes labeled 0, 1, ..., n, and assume G has a
bilateration ordering. A sensor network with a total number of n nodes consists
of k sensor nodes and b beacons (anchors) (b << k), where beacons are able to
determine their own position, and the positions of sensor nodes are not known.
Note that the distance between any two anchors is known since the positions of
all of the anchors are known. The positioning error of these localization systems
depends on the quality of the used localization devices.

2.3. The applied exact positioning approach

This paper presents an exact centralized positioning approach. The presented al-
gorithm is based on measurements of distances between sensor nodes with 4 Hz
sampling frequency. None of the nodes knows their own position, so there are not
beacons, but there are two kinds of sensor nodes: reference points (fix) and
mobile nodes (changing its position continuously). The reference points do
not know their own position, and the measurements of distances between sensor
nodes are not sufficiently accurate, but during the measurement their positions are
fixed. The first step is to compute the exact positions of the reference nodes in
some fixed coordinate system. After getting the positions of the reference points,
they are fixed during the measurements, and the mobile nodes localize themselves
continuously with the help of distance measurements received from the reference
points. The aim is to compute the exact positions of the reference points and
mobile nodes in some fixed coordinate system.

A special localization algorithm in Wireless sensor networks. . . 123

2.4. The I-QRS Telemetry System

The IQRS Sport Telemetry System [10] monitors the vital and motion signs of
the player continuously. It records and transmits data in real-time by wearing a
chest belt. The local computer receives the signals, uses automatic data-analysis
and alarm algorithms, and transfers the signals through a data channel (mobile
phone, broadband internet, or other similar connections) to an internet connected
server, where an expert system further processes the signals. The trainers and
doctors may use a web-based system to access the data. The motion analysis and
animation module of the system is based on the positioning algorithm presented in
this paper. With the help of the animation module the movement of players and
their techniques can be monitored and also played back in 3D format after the
trainings. In the system the number of reference points is smaller then 10, and the
number of mobile nodes is bellow 100, and the size of the sport field is about 250
meter.

3. The developed exact positioning algorithm

The developed positioning algorithm is optimized for the I-QRS Telemetry system.
The aim was to develop a sufficient algorithm for each step of the telemetry system’s
process, starting from the setting up of the device, during the whole measurements
until the analysis ends. Our aim was not to develop a new optimal algorithm for
large networks, but to analyze the existing techniques, combine and modify them,
and develop a new heuristic according to the needs of the telemetry system for
daily use. The developed algorithm consists of two main steps.

Algorithm I. : Localisation of the reference points

The developed algorithm at first estimates the exact position of the reference
points from initial measurements based on the minimization of the localization er-
ror. During the measurements the positions of the reference points do not change.

Algorithm II. : Localisation of the mobile nodes

The mobile nodes localize themselves continuously with the help of location
references received from the reference points using trilateration.

3.1. Algorithm I.: Localisation of the reference points

This iterated algorithm can be used to provide the locations of the reference points.
In each iteration an initial set of two nodes is fixed and used to define a coordi-
nate system, and each node uses distance estimates to each other to solve a set
of circle-circle intersection problems, solved through a coordinate geometric for-
mulation. The computed possible positions of the reference nodes form polygons.

124 Gy. Kocsisné Szilágyi, A. Kocsis

The resulting polygons of the iterations are transformed to a common coordinate
system, where the exact positions of the nodes are computed with respect to the
minimization of the localisation error. The examples are presented for 8 reference
point, since the I-QRS Telemetry system uses 8 reference nodes.

Figure 1: Octagons

Figure 2: Trilateration

Input: Measurements of distances between reference nodes (Ref1, . . . , Refn)
with 4 Hz sampling frequency

Output: The exact positions of the reference points in a fixed coordinate system

3.1.1. Step 1. Initialization

• collect a few thousand distance measurements:

distances[Refi, Refj](0 ≤ i, j ≤ n)

• for all pair of the reference points (Refi, Refj) do average the values, and
filter the outliers

• the output is a distance matrixD, whereD(Refi, Refj) denotes the distance
between reference points Refi and Refj

3.1.2. Step 2. Computing the polygons

for all pair of the reference points (Refi, Refj) do

A special localization algorithm in Wireless sensor networks. . . 125

• Estimate the coordinates of the other nodes (Refk : 0 ≤ k ≤ n, k 6= i, j) using
coordinate geometry of circles, solving the circle-circle intersection problem

• Two circles may intersect in two imaginary points (throw away), a single
degenerate point (good), or two distinct points (k1(x1, y1) and k2(x2, y2)-
the choice is based on the minimization of the localization error)

u = d(i, k)2 − d(j, k)2 + x2i + x2j − 2xixj − y2i + y2j ; v = xj − xi;w = yi − yj

ky1/2 =
−4(uw − 2v2yi)±

√
4(uw − 2v2yi)2))

2 ∗ 4(w2 + v2)
−

−4(uw − 2v2yi)±
√
−4 ∗ 4(w2 + v2)(u2 − 4v2(d(i, k)− y2i))

2 ∗ 4(w2 + v2)

kx1/2 =
x2j − x2i − ((ky1/2 − yi)2 − d(i, k)2) + ((ky1/2 − yi)2 − d(j, k)2)

2v

For every iteration the result is a polygon. The number of iteration step is
n ∗ (n− 1)/2.

3.1.3. Step 3. Transformation of the polygons in a common coordinate
system

The identification number of the reference points, and the polygons angels and side
lengths are known, so they can be transformed to a common coordinate system
(Refi is in the origo and the coordinate of Refj is (D(Refi, Refj), 0)) for some
fixed i and j. The output is a set of polygons, and a set of computed possible
coordinate for each reference point (Figure 1).

3.1.4. Step 4. Find the exact positions

The aim is to find the exact position for every reference point. The goal is
to minimize the sum of squares of the errors between the real positions of the
references and their computed possible positions with respect to the measured
distances (D(Refi, Refj)) and distances computed from the possible positions
(D̄(Refi, Refj)).

min
∑

i,j,i<j

(D̄(Refi, Refj)−D(Refi, Refj))

Since the search space is too large we can calculate the average of the possible
positions or apply beam search or other searching techniques to solve this problem.
In the implementation we have used a special heuristic described in Section 4.

126 Gy. Kocsisné Szilágyi, A. Kocsis

3.2. Algorithm II.: Localisation of the mobile nodes
The mobile nodes localise themselves continuously with the help of distance mea-
surements received from the reference points using trilateration (Figure 2.). The
trilateration algorithm is applied for every set of three reference nodes in Step 1,
the result of this step is a set of possible mobile node positions. In Step 2 the
optimal positon is computed based on the set of possible mobile nodes positions.
The input of the algorithm is set of distance measurements between the mobile
node and reference points, and the output is the exact position of the mobile node.

3.2.1. Step 1. Trilateration for every set of three reference nodes

Denote P (x, y) the coordinate of the mobile node have to be positioned, , r] the
measured distances from the three actual reference nodes indexed by i].

for each mobile nodes do for each set of three reference nodes do

• The trilateriation part (Figure 2): format the matrixes based on Pythagoras
theorem

(x− xi1)2 + (y − yi1)2

(x− xi2)2 + (y − yi2)2

(x− xi3)2 + (y − yi3)2

 =

r2i1
r2i2
r2i3

• The least square algorithm: derive the matrix above to get the format: (H ∗
P (x, y) = Z). To do this subtract the first equations from the others. After
some algebric manipulation we get the following:

[
2x1 − 2x2 2y1 − 2y2
2x1 − 2x3 2y1 − 2y3

] [
x
y

]
=

[
r22 − r21 + x21 − x22 + y21 − x22
r23 − r21 + x21 − x23 + y21 − y23

]

This is a least square system (H ∗ P (x, y) = Z) which has the following
solution for x and y

HT ∗H ∗ P = HT ∗ Z
(HT ∗H)−1 ∗ (HT ∗H) ∗ P = (HT ∗H)−1 ∗HT ∗ Z

P = (HT ∗H)−1 ∗HT ∗ Z
The output of this step is for each mobile node a set of possible position
P (x, y).

3.2.2. Step 2. Choose the optimal position

This step compute the optimal position for each mobile node from a set of computed
positions of the mobile nodes.

1. filter the to the outliers from the set of computed positions P (x, y)

2. for each set of three reference nodes do compute the following

• erri = |r2i − ((x− xi)2 + (y − yi)2)|(i = 1, 2, 3)

A special localization algorithm in Wireless sensor networks. . . 127

• err = err1 + err2 + err3

3. The position having the minimal value of err is the output

3.3. Analysis and Optimization of the algorithm

The algorithm described above is a general solution. The exact identification of
the class of network types that can be completely localized using this algorithm is
a task of the future work. In the implementation a special heuristic is used during
the computation of the polygons in order to reduce the integration errors. The
implementation results show that the localizability depends on the quality of the
distance measurements and on the shapes of the polygons formed by the reference
points. Different optimization approaches can be applied to improve the accuracy
of the positions.

• Iterated trilateration [4] can be used for three reference points instead of
solving the circle-circle intersection problem for two reference nodes in each
iteration

• The polygons can be weighted according to an error function

• Error model can be used which depends on the quality of the used localization
devices (Temperature, Power, Clock skew, Moisture, Reflection, Constant
error)

4. Implementation results

The localization algorithm is optimized for the I-QRS Telemetry system [10], in
which the number of the reference points is smaller then 10, and the number of the
mobile nodes is bellow 100. In the localisation of the reference nodes (Algorithm I.)
a special heuristic is used. The polygons are created in a special order iteratively
and they are weighted according to the iteration number. For all reference point
triplets a triangle is created, and the triangle with the largest area is choosed
in the first iteration to create the polygon (solving the appropiate circle-circle
intersection problems). In the second iteration step in similar way the triangles
having common side with the first triangle are chosen to create the polygons. This
method is done for three iteration (Figure 4). After transforming and rotating
the polygons in a common coordinate system, the final positions of the reference
points are calculated with respect to the weights computed in the different iteration
steps. We first evaluated the performance of the algorithms with generated precise
distance measurements. The result was very good, the accuracy is lower than 0,001
meter.

The distance measurements of the I-QRS telemetry system in everyday use are
often very noisy (the average accuracy is 3 meter), and on many sport fields the
reflexion (the measured distance is about double of the real distance) is very high.

128 Gy. Kocsisné Szilágyi, A. Kocsis

The test results of the algorithm show that the accuracy of the reference points
positioning algorithm is about 0,3 meter, and of the mobiles nodes calculation
algorithm is about 1,2 meter. To improve further the quality of the system, the
calculated positions are filtered using different kinds of filtering methods.

5. Future work

An exact centralized positioning approach was presented in order to determine
positions on the basis of distance measurements. An important goal of the further
work is to improve the accuracy of the positioning algorithm. Two promising
approaches are the application of quaternion based algorithm presented in [5],
and using Klaman filters [6] based on the information of other sensors (gyroscope,
accelemrometer, magnetometer). Figure 3 shows the work under development.

Figure 3: Three iteration

Figure 4: Future work

6. Related Work

Localization in WSN is an active area of research and so there are some existing
literature surveys [1,7] on this topic. A promising class of approach for precise
localization is fine-grained localization [8].

This paper presents an exact centralized positioning approach. The idea of
the presented algorithm is related to simple iterated trilateration and the so called
Sweeps algorithm [9]. In iterated trilateration, an initial set of three nodes is fixed

A special localization algorithm in Wireless sensor networks. . . 129

and used to define a coordinate system. At each stage of the algorithm, there is a set
of localized nodes and a set of unlocalized nodes. If an unlocalized node has distance
measurements to at least three localized nodes, its position will be alculated and
it will be added to the set of localized nodes. Simple iterated trilateration is sub-
optimal in that there are many localizable networks which it cannot localize. In
[9] a class of algorithms is described for fine-grained localization called Sweeps.
Sweeps correctly finitely localizes all nodes in bilateration networks. Sweeps also
handles angle measurements and noisy measurements. The algorithm presented
in this paper is based range measurements, trilateration and heuristic geometrical
approach. Some step of the developed algorithm shows similarities to the mentioned
approaches above, but our algorithm covers each step of the telemetry system’s
process, starting from the setting up of the device, during the whole measurements
until the analysis ends. We developed a new heuristic optimized to the needs of
the telemetry system for daily use.

References

[1] Amitangshu, P., Localization Algorithms in Wireless Sensor Networks: Current
Approaches and Future Challenges, Network Protocols and Algorithms, Vol. 2 (2010),
No. 1., ISSN 1943–3581.

[2] Rashid, L. B., On the Definition and Evaluation of Telemedicine, Telemedicine
Journal, Vol. 1(1) (1995), 19–30.

[3] Jennifer, Y., Biswanath, M., Dipak G., Wireless sensor network survey, Com-
puter Networks, Vol. 52 (2008), Issue 12, 2292-–2330.

[4] Zheng, Y., Yunhao L., Confidence-Based Iterative Localization. Parallel Distrib.
Syst., IEEE Transactions 21(5) (2010), 631–640.

[5] MAHONY, R., HAMEL, T., Pflimlin, Jean-Michel, Nonlinear Complemen-
tary Filters on the Special Orthogonal Group, Automatic Control, IEEE Transac-
tions, Vol. 53 (2008), Issue 5, 1203-–1218.

[6] Chen H., A robust location algorithm with biased extended Kalman filtering of
TDOA data for wireless sensor networks, International Conference on Wireless Com-
munications, Networking and Mobile Computing, Proceedings, Vol. 2 (2005), 883—
886.

[7] J., Bachrach, C., Taylor, Localization in Sensor Networks, Handbook of Sensor
Networks: Algorithms and Architectures, (I. Stojmenovic, Ed.), (2005)

[8] J., Albowicz, A., Chen, L., Zhang, Recursive position estimation in sensor
networks. In Proceedings of the 9th International Conference on Network Protocols
(2001.), 35-–41.

[9] David, K., Goldenberg et. all, Localization in Sparse Networks using Sweeps,
MobiCom ’06, Proceedings of the 12th annual international conference on Mobile
Computing and Networking, 110–121.

[10] http://www.iqrs.hu/

130 Gy. Kocsisné Szilágyi, A. Kocsis

A local PageRank algorithm for evaluating
the importance of scientific articles∗

András London†‡, Tamás Németh
András Pluhár, Tibor Csendes

Institute of Informatics, University of Szeged, Hungary
london@inf.u-szeged.hu

Submitted July 15, 2014 — Accepted March 5, 2015

Abstract

We define a modified PageRank algorithm and the PR-score to measure
the influence of a single article by using its local co-citation network. We
also calculate the reaching probability and RP -score of a paper starting at
an arbitrary article of its co-citation network for the same purpose. We
highlight the advantages of our methods by applying them on the celebrated
paper of Jenő Egerváry that is underrated by the standard indices.

Keywords: Scientometric, PageRank, Ranking algorithms, Co-citation net-
works

1. Introduction

The relevance of scientometrics – aiming at measuring the productivity and quality
of scientific research – has long been widely discussed in the academic domain.
Among the most popular measures used are scientific citation indices due to their
easy accessibility. Several of these indices have been introduced such as h-index
(or Hirsch-index) proposed by Hirsch [14], the g-index proposed by Egghe [11],

∗This work was partially supported by the European Union and the European Social Fund
through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).
†The first author was supported by the European Union and the State of Hungary, co-financed

by the European Social Fund in the framework of TAMOP-4.2.4.A/2-11-1-2012-0001 ’National
Excellence Program’.
‡Corresponding author: london@inf.u-szeged.hu

Annales Mathematicae et Informaticae
44 (2015) pp. 131–140
http://ami.ektf.hu

131

the w-index and maximum-index both proposed by Woeginger [27]. All of these
indices are based on the citation records of the researchers. These indices have
been extensively criticized since they are much dependent on the scientific field
(e.g. number of researchers and available journals, popularity of the area, gender
ratio, etc., see e.g. [1, 19, 26]). Another drawback is that the number of citations
does not give a clear picture on the influence and quality of a single paper.

Several studies have been addressed this problem using network approach. Co-
citation networks, in which nodes represent single articles and a directed edge
represents a citation from a citing article to a cited article, describes the relation
between citations of different papers have been widely studied previously[6, 15, 20].
Chen et al. [7] applied the PageRank algorithm [5] (developed by the founders of
Google) for co-citation networks, later Raddichi et al. [23] defined an iterative rank-
ing method analogous to different ranking algorithms such as PageRank, CiteRank
[25] and HITS [16] in order to evaluate the influence of single articles by using
co-authorship networks (where nodes represent publications and weighted edges
represent the number of common authors of them). Several modifications and vari-
ants of the network models have been designed in the context of scientometrics (see
e.g. [12, 21, 24, 28]).

More recently, the Eigenfactor Score and the Article Influence Score [4] have
been developed to estimate the relative influence of single articles based on citation
networks as well. Furthermore the underlying algorithms can also be applied to
journals, authors, and institutions.

Following the network approach, our main goal is to measure the influence of a
single article regardless of the specialties of the field. Based on the previous results
of Csendes and Antal [9] and by applying the experimental results of Chen et al.
[8] that is later mathematically proved to be efficiently applicable for many classes
of graphs by Bar-Yossef and Mashiach [2], we use a local PageRank estimating
method for this purpose. It is important to note that we do not want to attempt
to determine the scientific value of the articles (which will be probably judged in
the future).

This article is organized as follows: in Section 2 we give a brief mathematical
overview of the PageRank algorithm. In Section 3, we describe how a local Page-
Rank method can be applied to determine the scientific influence of a research
paper. Finally in Section 4 we compute the local PageRank values of the articles
in the co-citation graph of the famous paper of Jenő Egerváry [10] and highlight
the main advantages of our approach from the scientometric point of view.

2. Methods

In this section, we give a short mathematical overview of the PageRank algorithm.
We describe the main notions, definitions, and theoretical results of a local PageR-
ank method that we used. We omit the proofs of the theorems that can be found
in [2].

132 A. London, T. Németh, A. Pluhár, T. Csendes

2.1. Overview of the PageRank method
The PageRank algorithm was originally designed to provide a good approximation
of the importance of web pages. Since it works on directed graphs, it is a natural
idea to use the PageRank method for ranking the articles in co-citation graphs.

Let G = (V,E) be a directed graph of N nodes. Let d−(i) (i = 1, 2, . . . , N) be
the number of outgoing edges from a node i and N+(i) = {j ∈ V : j → i exists},
i.e. the set of nodes having an edge to node i. PageRank of a node i ∈ V is defined
then by the following recursion formula [5]:

PR(i) =
λ

N
+ (1− λ)

∑

j∈N+(i)

PR(j)

d−(j)
, (2.1)

where λ ∈ [0, 1] is a free parameter (usually set between 0.1 and 0.2).
The PageRank formula defined by equation (2.1) can be written in vector equa-

tion form, and then the PageRank vector PR is defined as

PR =
λ

N
[I − (1− λ)AD−1]−11, (2.2)

where A is the adjacency matrix of G, D is a diagonal matrix such that Dii =∑N
`=1Ai` and Dij = 0, if i 6= j, I is the N ×N identity matrix and finally 1 is the

N -dimensional vector having each component equals to 1.
Assuming that 1PR = 1, Eq. (2.2) implies, that

PR = [
λ

N
11

T − (1− λ)AD−1]PR, (2.3)

which shows, that PR is the eigenvector of the matrix λ
N 11

T −(1−λ)AD−1 due to
the fact that an eigenvalue equals to 1, which is the largest eigenvalue of this matrix
by a consequence of the Frobenius-Perron theorem for row-stochastic matrices [22].

More intuitively, let us consider a random walk on the nodes of the graph.
Starting from a node i, a random surfer selects one of the node’s outgoing edges
randomly with uniform distribution, moves to the end node j of that edge, and
repeat this process from j, etc. The parameter λ can be understood as a “damping”
factor which guarantees that the random walk restarts in a random node of the
graph, chosen uniformly random, almost surely in every 1/λ-th step. This can
guarantee, that the process would not stop by reaching a node with an out-degree
zero. If the surfer reaches a node, the number of visits of that node increases by
one. The damping factor ensures that each node receives a contribution λ/N at
each step. Thus, the PageRank of a node i can be considered as the long-term
fraction of time spent in node i during the random walk. The steady-state of the
random walk is given by the solution of Eq. (2.3).

2.2. Local PageRank approximation
Although in many applications PageRank scores are needed to be computed for all
nodes of the graph, there are situations in which one is interested in computing

A local PageRank algorithm for evaluating the importance of scientific articles 133

PageRank scores only for a small subset of the nodes. Chen et al. [8] developed
an algorithm to approximate the PageRank score of a target node of the graph
with high precision. Their algorithm crawls backwards a small subgraph around
the target node(s) and applies various heuristics to calculate the PageRank scores
of the nodes at the boundary of this subgraph and then computes the PageRank of
the target node(s) by using only the crawled subgraph. By using simulations, they
showed that this algorithm gives a good approximation on average. On the other
hand, they also pointed out that high in-degree nodes could make the algorithm
very expensive and incorrect.

From now in this section, we use the same notions as in [2]. An algorithm is
said to be an ε-approximation of the PageRank, if for a graph G = (V,E), a target
node i ∈ V and a given error parameter ε > 0, the algorithm outputs a value
PR′(i) satisfying

(1− ε)PRG(i) ≤ PR′(i) ≤ (1 + ε)PRG(i). (2.4)

For a directed path p = (k1, . . . , kt) from node k1 to kt, let w(p) =
∏t−1
i=1

1
d−(ki)

,
that is the reaching probability of kt from k1 in a given path, where the transition
probabilities are proportional to the number of outgoing edges. Let pt(i, j) be the
set of all directed path of length t from i to j. Then, the influence of node i on the
PageRank of node j at radius t is defined as

It(i, j) =
∑

p∈pt(i,j)
w(p), (2.5)

and thus, the total influence of i on j is

I(i, j) =
∞∑

t=0

It(i, j). (2.6)

By using the definition of influence, PageRank of node j at radius r can be defined
as

PRrG(j) =
λ

N

r∑

t=0

∑

i∈V (G)

(1− λ)tIt(i, j). (2.7)

It can be proved that for every node j ∈ G, PRG(j) = limr→∞ PRrG(j) holds (the
proof can be found e.g. in [2]). The interesting question is that how small the radius
r can be such that the PageRank approximation would even be appropriate.

In [2] it was proved, that the hardness and inappropriate nature of local ap-
proximation of PageRank on certain graphs (constructed examples) is caused by
two factors: the existence of high in-degree nodes and the slow convergence of
PageRank iteration algorithm. We shall see, that in our case (and in most of the
co-citation graphs in scientometrics) these properties does not hold.

It was also shown, that the several variants of the approximation algorithms
proposed by Chen et al. are still efficient on graphs having bounded in-degrees and
admitting fast PageRank convergence.

134 A. London, T. Németh, A. Pluhár, T. Csendes

Let us be given a G = (V,E) graph, node j ∈ V and the approximation param-
eter ε. The point-wise influence mixing time of j is defined as

T εG(j) = min{r ≥ 0 :
PRG(j)− PRrG(j)

PRG(j)
< ε}. (2.8)

The algorithm we use computes PRrG(j) for a given node j (see in Section 4)
and it follows from the definitions that it runs with r = T εG(j) and gives an ε-
approximation of PR. To complete the description of the theoretical background,
we should see the upper bound on T εG(j) (or radius r).

For graph G = (V,E) with j ∈ G and r ≥ 0 the crawl size at radius r is defined
as

CrG(u) = #{i ∈ G : ∃pt(i, j) with t ≤ r}. (2.9)

It is immediate from the definition, that if the local PageRank algorithm runs for
r iteration, its cost is CrG(u). A trivial upper bound for the crawl size is that
CrG(u) < dr, where d is the maximum in-degree of G.

Finally, it was also proved that for any G directed graph, node j ∈ G and ε > 0
it holds that a radius r = O(log(1/PRG(u))) is always sufficient (while in practice
a much lower radius could be enough).

2.3. Reaching Probabilities

A possible simplification of the PageRank method is to consider only the reaching
probabilities of the nodes in the network. We would like to know the probability
of reaching a node j starting from an arbitrary chosen node i of the network. The
reaching probability, RP of node j can be defined as

RP (j) =
∑

i∈N+(j)

pijRP (i), (2.10)

where pij is the reaching probability of node j from a neighbor node i. It is
natural to assume, that each possible selection of a neighbor of node i has equal
probability, thus we can write pij = 1/d−(i) in Eq. (2.10). By this choice, Eq.
(2.10) is the PageRank equation without the damping factor. However, in contrast
to the calculation of PageRank, we do not want to evaluate the vector RP in the
steady-state. Instead, we only determine the reaching probability of a given node
j, which can be calculated as

RP (j) =
1

N

∑

i∈V
I(i, j), (2.11)

where I(i, j) is as defined in (2.6). In the point of view of published articles, RP
can be interpreted as the probability of a given article can be found by someone
(e.g. a scientist), who starts the search at any article and goes to another randomly
chosen article cited by the current one.

A local PageRank algorithm for evaluating the importance of scientific articles 135

3. Application to scientometrics

In the last decade, co-citation networks have been investigated aiming to measure
the importance of a scientific article. A co-citation network is defined as a directed
graph G = (V,E) of N nodes, where each node i ∈ V refers to an article and there
is a directed edge i→ j ∈ E from node i to node j if article j is cited in article i.
Our method, that aims to measure the “influence” of a scientific article, is based
on the following three phases, by applying some experimental results of [8]:

1. Subgraph building: Starting form certain target nodes (articles), for which
we are interested in measuring their scientific impact, and expanding back-
ward by following reversely the nodes having out-going links to the target
nodes. The procedure stops after a fixed number of levels. This can be done
by an iterative deepening depth-first search. In this work, the graphs contain
all nodes, from which the target nodes can be reached in at most three steps
and we consider the induced subgraph of that nodes.

2. Estimating the PR of the boundary: We use a heuristic to estimate the
individual PR: in each iteration turn, we add an extra term to the PR value
of each boundary node that equals to the fraction of its in-coming edges to
all edges in the subgraph.

3. Calculating the PR and RP : On one hand, we run the PageRank algo-
rithm on the subgraph, in each step we use the estimated PR value of the
boundary nodes adding the λ/N damping factor to each node. On the other
hand, we also calculate the reaching probability, RP , of the target node(s) in
the subgraph.

The idea behind the necessity of the second phase is that, although the PageRank
values cannot be calculated exactly without having run the algorithm on the full
graph, still the estimation heuristic we defined gives an acceptable approximation
for the constructed subgraph as it has been already proven in [2], and tested by
simulations [8]. We also note that the convergence of the PageRank is guaranteed
by this method opposite to that one defined by Csendes and Antal for the same

Algorithm 1: Local PageRank method for a scientific article
Input : Scientific article ID A.
Output: The PR-score of the article from its local co-citation network,
Build the article’s local co-citation network with radius r1

Fix the PageRank values of each boundary node v as2

PR(v) = |N+(v)|/|E(G)|
Calculate PR-scores of each node in the subgraph by using the PageRank3

algorithm
Return PR(A).4

136 A. London, T. Németh, A. Pluhár, T. Csendes

purpose. We set the radius size r = 3 from the target nodes because of two
reasons: the first is that the number of nodes in the fourth layer is O(N) and the
in-degrees are bounded with a constant, thus, with respect to PageRank algorithm,
it is enough to consider the number of in-coming links to the boundary nodes from
this layer, and not to consider the linking structure between them to get a good
approximation of the PR-scores. The second reason is that we assume, that the
articles at a distance more than three (with respect to the co-citation graph) do not
have much impact on the target articles in scientific sense (which may be acceptable
in scientometrics).

4. Results and discussion

As it is known, Harold Kuhn developed an algorithm for solving the assignment
problem [18] and he named it as the Hungarian method acknowledging the contri-
bution of Jenő Egerváry and Dénes Kőnig [10, 17]. The paper of Egerváry received
just a few citations (probably because it was written in Hungarian) while some of
the citing papers received much more: for Egerváry’s paper 38 citations can be
found in the ISI Web of Knowledge database, while the artice of Kőnig and Kuhn
received there 215 and 726, respectively. In contrast to classic scientometrics that
only takes into account the direct number of citations, we shall see that the net-
work based methods show a more realistic picture of the importance of Egerváry’s
paper.

We constructed a network which contains the following articles as nodes: the
famous paper of Jenő Egerváry: On combinatorial properties of matrices (published
in Hungarian, 1931), the three articles which referred in Egerváry’s paper, the
articles that cite Egerváry’s one, all articles that cite at least one of the previous
ones and all articles that cite articles on the “second level”. We consider the network
that is induced by these nodes as described in the first phase; it contains N = 1155
nodes and 1923 edges. Figure 1 shows the network, where the paper of Egerváry
highlighted with big black square.

We applied the modified PageRank algorithm (with λ = 0.1, 0.15, 0.2, 0.25)
described in Section 3 for this network and also calculate the reaching probabilities
of the nodes. We observed that the PageRank method is robust against the choice
of λ. The results (with λ = 0.2) are summarized in Table 1 for four notable
publications in the co-citation network.

Publication PR-Score PR-rank RP -score RP -rank #Cites Cite rank
Egervári [10] 0.891 4 0.009 2 39 65
Kuhn [18] 1.189 1 0.042 1 726 1
Ford, Fulkerson [13] 0.525 8 0.004 9 39 65
Bellman [3] 0.399 11 0.003 10 18 158

Table 1: PR-score (with λ = 0.2), reaching probabilies and number
of citations of the famous publications in the Egerváry co-citation

graph. PR-score is multiplied by 102

A local PageRank algorithm for evaluating the importance of scientific articles 137

Figure 1: Local co-citation network containing the famous paper
of Egerváry (highlighted with big square)

First, we observed that the choice of the damping factor λ does not influence
the final ranking of the first ten publications, only small changes can be noticed
in the rest of the ranking. The ranks and the relative values of the papers to each
other show a more realistic picture of the importance of them. It is not surprising,
that Kuhn’s paper PR value is the highest by far, the 726 citations for this paper is
outstanding in the field. The second and third articles in the PR rank became D.
Kőnig: Graphs and their applications for the theory of determinants and sets (in
Hungarian, 215 citations) and G. Frobenius : Über zerlegbare Determinanten (11
citation), respectively. Both articles were cited in Egerváry’s paper which became
the fourth highest ranked paper although it only received 39 citations and that
it is only in the 65th place in the citation ranking. The very high position of
Forbenius’s paper in the ranking is definitely due the reputation it obtains from
Egerváry’s article. It is worth highlighting that Ford and Fulkerson’s article, which
received the same number of citations as that of Egerváry, was ranked lower but it
is still in the top ten. This two facts also indicate the advantages of the PageRank
based evaluation, since this paper was also quite important in the development
of operation research. We also point out, that the similarly important paper of
Bellman was ranked 11th (although it received just 18 citations) which shows a
much clearer picture of its impact (in contrast to its citation rank). It is also
interesting to observe, that the RP -rank of Egerváry’s article is two, which means
that a random searcher who checks the articles of the field finds that paper with

138 A. London, T. Németh, A. Pluhár, T. Csendes

the second highest probability.
We hope that network-based ranking methods gain more space in scientometric

since they show a more objective picture of the impact of scientific publications. It
follows from the implementation of the PageRank algorithm that citations received
from more important papers contribute more to the ranking of the cited paper
than those coming from less important ones. Furthermore, simplicity and fast
computability of this method are also advantageous. On the other hand, co-citation
networks give a more detailed contextual information (compared to the number of
citations) for evaluating the impact of an article.

Acknowledgment The authors are grateful to Elvira Antal for constructing the
network and for her respective contribution.

References

[1] Alonso, S., Cabrerizo, F., Herrera-Viedma, E., and Herrera, F. H-index:
A review focused in its variants, computation and standardization for different sci-
entific fields. Journal of Informetrics 3, 4 (2009), 273–289.

[2] Bar-Yossef, Z., and Mashiach, L.-T. Local approximation of pagerank and
reverse pagerank. In Proceedings of the 17th ACM conference on Information and
knowledge management (2008), ACM, pp. 279–288.

[3] Bellman, R. Mathematical aspects of scheduling theory. Journal of the Society for
Industrial & Applied Mathematics 4, 3 (1956), 168–205.

[4] Bergstrom, C., West, J., and Wiseman, M. The eigenfactor metrics. The
Journal of Neuroscience 28, 45 (2008), 11433–11434.

[5] Brin, S., and Page, L. The anatomy of a large-scale hypertextual web search
engine. Computer networks and ISDN systems 30, 1 (1998), 107–117.

[6] Chen, C. Visualising semantic spaces and author co-citation networks in digital
libraries. Information Processing & Management 35, 3 (1999), 401–420.

[7] Chen, P., Xie, H., Maslov, S., and Redner, S. Finding scientific gems with
google’s pagerank algorithm. Journal of Informetrics 1, 1 (2007), 8–15.

[8] Chen, Y.-Y., Gan, Q., and Suel, T. Local methods for estimating pagerank
values. In Proceedings of the 13th ACM International conference on Information and
knowledge management (2004), pp. 381–389.

[9] Csendes, T., and Antal, E. Pagerank based network algorithms for weighted
graphs with applications to wine tasting and scientometrics. In Proceedings of the
8th International Conference on Applied Informatics (2010), pp. 209–216.

[10] Egerváry, J. Mátrixok kombinatorikus tulajdonságairól (On combinatorial prop-
erties of matrices, in Hungarian)). Matematikai és Fizikai Lapok 38 (1931), 16–28.

[11] Egghe, L. An improvement of the h-index: The g-index. ISSI Newsletter 2, 1
(2006), 8–9.

[12] Fiala, D., Rousselot, F., and Ježek, K. Pagerank for bibliographic networks.
Scientometrics 76, 1 (2008), 135–158.

A local PageRank algorithm for evaluating the importance of scientific articles 139

[13] Ford, L. R., and Fulkerson, D. Solving the transportation problem. Manage-
ment Science 3, 1 (1956), 24–32.

[14] Hirsch, J. An index to quantify an individual’s scientific research output. In Pro-
ceedings of the National Academy of Sciences of the USA (2005), vol. 102, pp. 16569–
16572.

[15] Jeong, H., Néda, Z., and Barabási, A. Measuring preferential attachment in
evolving networks. Europhysics Letters 61, 4 (2007), 567–572.

[16] Kleinberg, J. Authoritative sources in a hyperlinked environment. Journal of the
ACM 46, 5 (1999), 604–632.

[17] König, D. Über graphen und ihre anwendung auf determinantentheorie und men-
genlehre. Mathematische Annalen 77, 4 (1916), 453–465.

[18] Kuhn, H. W. The hungarian method for the assignment problem. Naval research
logistics quarterly 2, 1-2 (1955), 83–97.

[19] Kumar, M. Evaluating scientists: Citations, Impact factor, h-index, Online page
Hits and What Else? IETE Technical Review 26, 3 (2009), 165–168.

[20] Lehmann, S., Lautrup, B., and Jackson, A. Citation networks in high energy
physics. Physical Review E 68, 2 (2003), 026113.

[21] Liu, X., Bollen, J., Nelson, M., and Van de Sompel, H. Co-authorship
networks in the digital library research community. Information processing & man-
agement 41, 6 (2005), 1462–1480.

[22] Norris, J. R. Markov chains. Cambridge University Press, 1998.

[23] Radicchi, F., Fortunato, S., Markines, B., and Vespignani, A. Diffusion
of scientific credits and the ranking of scientists. Physical Review E 80, 5 (2009),
056103.

[24] Su, C., Pan, Y., Zhen, Y., Ma, Z., Yuan, J., Guo, H., Yu, Z., Ma, C., and
Wu, Y. Prestigerank: A new evaluation method for papers and journals. Journal
of Informetrics 5, 1 (2011), 1–13.

[25] Walker, D., Xie, H., Yan, K., and Maslov, S. Ranking scientific publica-
tions using a model of network traffic. Journal of Statistical Mechanics: Theory and
Experiment 2007, 06 (2007), P06010.

[26] Wendl, M. C. H-index: however ranked, citations need context. Nature 449 (2007),
403.

[27] Woeginger, G. An axiomatic characterization of the Hirsch-index. Mathematical
Social Sciences 56, 2 (2008), 224–232.

[28] Yan, E., and Ding, Y. Discovering author impact: A pagerank perspective. In-
formation Processing & Management 47, 1 (2011), 125–134.

140 A. London, T. Németh, A. Pluhár, T. Csendes

An improved Community-based Greedy
algorithm for solving the influence

maximization problem in social networks∗

Gábor Rácz, Zoltán Pusztai, Balázs Kósa, Attila Kiss

Eötvös Loránd University
{gabee33,puzsaai,balhal,kiss}@inf.elte.hu

Submitted September 15, 2014 — Accepted March 30, 2015

Abstract

The influence maximization problem is to find a subset of vertexes that
maximize the spread of information in a network. The Community-based
Greedy algorithm (CGA) is one of the many that approximates the opti-
mal solution of this problem. This algorithm divides the social network into
communities, and then it takes into account for each node only its influence
inside the cluster to which it belongs. Our method improves this algorithms
with two modifications. We replace the clustering method of the CGA with
a commonly used algorithm, namely the Louvain method, which runs by
even one magnitude faster. We performed measurements to test how this
replacement affects the running time and the precision of the algorithm. The
results show that our variant significantly reduces the running time and the
precision loss is less than five percent.

Keywords: influence spread, social network, community detection

MSC: AMS classification number(s): 91D30, 91C20, 51E23

∗This work was partially supported by the European Union and the European Social Fund
through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013). This work
was completed with the support of the Hungarian and Vietnamese TET (grant agreement no.
TET 10-1-2011-0645).

Annales Mathematicae et Informaticae
44 (2015) pp. 141–150
http://ami.ektf.hu

141

1. Introduction

Over the last few years a large variety of on-line social networks has become avail-
able. There are general purpose social networks such as Facebook1 or VK2 which
provide medium to their users for sharing thoughts or talk about their everyday
life. Other social networks have special interests such as the business-orientated
LinkedIn3 or the music-oriented Last.fm4. In addition to the above mentioned
ones, social networks can be constructed based on email communications, phone
call records, or co-authorship of scientific papers. The diversity and the volume
of these networks have posed serious challenges to the scientists, however, they
also offer great opportunity to understand human relationships. One interesting
question among many others is to find a fixed number of vertexes through which
the largest possible part of a network can be reached. This problem is mainly
referred as influence maximization problem. It has a lot of practical usages, for
example, in case of viral marketing the question is who should be targeted with
sample products or who should be conceivably paid in a marketing campaign in
order to influence as many members of the network as it is possible. In addition, if
the most influential members of the network are found, it can be investigated why
they are the most influential members [10].

In [1], Kempe et al. introduced two basic models, namely the Independent
Cascade Model and the Linear Threshold Model for representing the diffusion of
influence in networks. The influence maximization was considered as a discrete
optimization problem. It was proven that the problem is NP-hard in both cases;
nevertheless, it was also shown that based on submodularity of the scoring func-
tion the simple greedy algorithm assuredly approaches the optimal solution by a
factor of 1 − 1

e . However, a serious drawback of this algorithm is that the influ-
ence of the candidate sets should be evaluated in each turn, which owing to the
non-deterministic nature of the process is accomplished by using Monte Carlo sim-
ulations. As for large graphs these simulations can be very time consuming, several
improvements were introduced since the greedy algorithm was published. In this
paper, we focus on the Independent Cascade Model only.

In [5], a Cost-Effective Lazy Forward (CELF) optimization was presented
that can significantly reduce the number of evaluations by exploiting the submod-
ularity of the scoring function.CELF results a candidate set that has the same
influence spread as the original greedy algorithm but is much faster (even 700
times faster [5]). Chen et al. in [2] proposed the NewGreedy algorithm that
is an improvement of the original method in which at the beginning of an iter-
ation each edge of the input graph is deleted with a certain probability. In this
way the original problem can be converted into a reachability problem where the
influence spread of a node set S is measured as the number of reachable nodes
from S. It constructs a candidate set that has the same influence as the original

1https://facebook.com
2https://vk.com
3https://www.linkedin.com
4http://www.last.fm

142 G. Rácz, Z. Pusztai, B. Kósa, A. Kiss

greedy algorithm but it has shorter running time. In [3], Wang et al. introduced
the Community-based Greedy algorithm, referred as CGA, which consists of
two phases, a clustering and a dynamic programming phase. Their main idea is
to divide the network into communities. The influence degree of a node in the
community approximates its influence degree in the whole network. In addition, a
dynamic programming method is used to select which cluster should contain the
next member of the candidate set in each turn.

In this paper we present a solution for the influence maximization problem
which relies on the CGA. In our solution, the clustering method of the CGA is
replaced by a community detection algorithm, called Louvain method [4], which
is a simple method and it can be computed extremely fast even in the case of large
networks. However, in contrast to the original one, this method does not provide
theoretical bound to the precision loss that the approximation can cause. Moreover,
the dynamic programming phase is also simplified in our solution. Namely, in each
turn only those nodes are re-evaluated which belong to the community that contains
the previously selected member of the candidate set. We evaluated how these
changes affect the running time and the precision of the algorithm in comparison
with the CGA and to the NewGreedy algorithms. Our results show that the
modified algorithm can run ten times faster than NewGreedy three times faster
than CGA and its precision loss is less than five percent.

2. Background

A social network is modeled as an undirected graph G = (V,E), where nodes
represent individual persons while an edge between two nodes models some sort of
relationships. The influence maximization problem is to find an S subset of V with
cardinality k, where k is a fixed constant, that maximize the σ influence function
which assigns a non-negative real value to each subset of V . Two basic diffusion
models were introduced in [1] by means of which the influence function can be
calculated. In both models, each node has an active or an inactive state, where
the active nodes represent influenced persons who themselves can also influence
others.
In the Linear Threashold Model, a node v has a random threshold θv, and v is
influenced by its neighbour w according to a weight bvw such that∑
w neighbours of v

bvw ≤ 1. The diffusion process starts from an arbitrary set of nodes

S, called seeds and the process unfolds in discrete steps: in step t, all the active
nodes remain active, and any v node becames active for which the total weight of
its active neighbors is at least θv, formally

∑
w active,w neighbours of v

bvw ≥ θv.
In the Independent Cascade Model, the diffusion process also starts from an

arbitrary set of nodes S and it unfolds in discrete steps: in the (i+ 1)th step, each
node that has become active in the ith step has a single attempt to influence its
currently non-active neighbours. More precisely, for such a node the connected
edges are taken one after the other with a fixed activation probability p. If an edge

An improved Community-based Greedy algorithm . . . 143

was chosen, then the other endpoint is also get activated. The process stops if no
new node has become active in a round or every node has been activated. The
influence of S will be the number of activated nodes. In the rest of this paper, we
focus on only the latter diffusion model.

In [1], it was shown that the influence function is submodular and monotone
in the Independent Cascade Model. In other words, for each S ⊆ V and a node
v: σ(S) ≤ σ(S ∪ {v}). Moreover, the marginal gain of adding the same node to
a growing set decreases as the set becomes larger, i.e. for each S ⊆ H ⊆ V and
a node v: σ(S ∪ {v}) − σ(S) ≥ σ(H ∪ {v}) − σ(S). With these properties, it can
be guaranteed that the result of the greedy algorithm is less than (1− 1

e) times of
the optimal solution. Formally, σ(Sgreedy) ≥ (1− 1

e)σ(Sopt), where Sgreedy denotes
the result of the greedy algorithm, while Sopt the optimal solution respectively.
Owing to the non-deterministic nature of the diffusion model in practice the values
of σ are approximated by means of Monte Carlo simulations. For a given node
v, usually 10.000 simulations are performed to approximate σ(S ∪ {bv}), where S
denotes the set of nodes selected in the previous steps of the algorithm, therefore
the algorithm is time consuming in case of large networks.

An improvement was introduced in [2], in which at the beginning of an iteration
each edge of the original graph is deleted with probability 1−p. Then, the influence
of a set of nodes S can be measured by the number of reachable nodes from S.
In addition, the computation of the marginal gain of a node v with respect to an
S ⊆ V can be seen as a reachability problem which is defined in the following way:

σ(S ∪ {v})− σ(S) =

{
0, if v ∈ R(S),

|R({v})| otherwise,

where R(S) denotes the set of the reachable nodes from S.
In this paper, we focus on the Community-based Greedy algorithm that

was introduced in [3]. Its approach is orthogonal with the improvement applied
in NewGreedy, it is based on graph partition. The algorithm consists of two
phases, a clustering and dynamic programming phase. In the first phase, a com-
munity detection algorithm is performed on the input graph, this algorithm has two
subphases, namely a label propagation and a combination step. Initially, each node
has a unique community label. Next, for each node the set of its influenced neigh-
bours are computed using the Independent Cascade Model. Then the community
labels are propagated iteratively in τ rounds (where τ is given in advance) through
the network. The main principle of the propagation is that a node v should belong
to the community that contains the majority of its influenced neighbors. Formally,
v.ct = maxCMT (w1.c

t−1, ..., wk.c
t1−1), where t denotes the tth round, w1, ..., wk

are the neighbours of v, v.c denotes the community label of v, and maxCMT is to
compute the majority of the labels.

In the combination phase, the algorithm combines community Cl and Cm, if the
combination entropy of Cl to Cm is above a given threshold. This phase helps to
reduce the difference between the node’s influence degree in its community and its
influence degree in the whole network. The Combination entropy was introduced

144 G. Rácz, Z. Pusztai, B. Kósa, A. Kiss

to measure the connection between two communities and it is defined as:

CoEntropy(Cl, Cm) = maxv∈Cm,u∈Cl,isLive(euv)
R̄m({u})
Rm({v}) ,

where Rm({v}) is the influence degree of v in Cm, R̄m({u}) is the influence degree
of u outside Cm. isLive(euv) denotes that the node u and the node v are connected
with a live edge. An (u, v) ∈ E edge is a live edge, if the node v influenced the
node u, namely u becomes active from inactive for at least Q/r times out of Q
simulations of the previous step. (In the original paper, the r was set to 2, however,
during the evaluation we experiments additional values.) The second phase of the
CGA algorithm is a dynamic programing method for selecting the communities
which includes the best candidates. To mine the kth seed, the method chooses the
community that will yield the largest increase of influence degree. Any existing
algorithms can be used to calculate the influence in the chosen community. The
CGA algorithm is the basis of our solution which is described in the next section.

3. LouvainGreedy

In this section, we present our solution, namely the LouvainGreedy algorithm,
to solve the influence maximization problem. Our algorithm is based on the
Community-based Greedy algorithm with two modifications.

First, the clustering phase was replaced by a lately introduced community de-
tection method called Louvain method presented in [4]. The Louvain method
is a hierarchical agglomerative community detection algorithm which uses modu-
larity maximization. The modularity measures the quality of a partition; and it is
defined as in the following:

Q =
1

2m

∑

i,j

[Aij −
kikj
2m

]δ(ci, cj),

where A denotes the weighted adjacency matrix of the graph,

Aij =

{
weight(eij), if eij = (vi, vj) ∈ E
0 otherwise.

ki =
∑

j Aij denotes the degree of node vi, m = 1
2

∑
ij Aij denotes the total weight

of the edges, and ci, cj denotes the cluster of the node vi and vj respectively, δ is
the Kronecker delta

δ(ci, cj) =

{
1, if ci = cj ,

0 otherwise.

The algorithm consists of a label propagation and a node merging step. Initially,
each node has a unique label. Next, each node adopts the community label of its
neighbors, if the overall modularity increasing with the label adoption. Namely, for

An improved Community-based Greedy algorithm . . . 145

all neighbors j of a node i, the gain of modularity are evaluated mean by removing
i from ci and by placing it into cj . Then node i is placed in the community for
which the gain is maximum, but only if it is positive. This propagation step is
repeated until a local maximum has been obtained. (Note, that the propagation
may depend on in the order the nodes are processed.)

When a local maximum has been obtained, the nodes with the same community
label are merged into one single node keeping the outgoing edges and transforming
the inside edges into weighted self-loops. After the merging step, the label propaga-
tion starts again. These two steps are repeated iteratively. The process terminates
when each node has a different label at the end of the label propagation step, since
in that case, there are no more merge-able nodes. The process results a hierarchical
decomposition of the input graph. Because of the simplicity of the algorithms, it
can be computed extremely fast even in case of large graphs. Moreover, according
to [8], it is one of the best modularity based community detection algorithm.

The second important modification that we made on the CGA is the replace-
ment of the dynamic programming phase. In our solution, after a graph has been
partitioned into communities, the most influential node is computed within each
community using the NewGreedy algorithm. The node with the maximum in-
fluence degree is selected as the first member of the candidate set. Then, in the
community that belongs to the selected node, the influence degree of the nodes are
recomputed. The process is repeated until all the seeds are selected.

Note, that if in the kth turn, a node v has been selected from the cluster
Cv, then in the (k + 1)th turn, the marginal gain of nodes that are not members
of Cv remain unchanged. That is because we compute the influence of a node
inside the cluster only. Therefore, for each u that Cu 6= Cv the following holds
σCu(S ∪ {u}) = σCu(S ∪ {v} ∪ {u}), where S denotes the candidate set in the kth
turn and σCu denotes the influence of a set inside Cu.

Algorithm 1 shows the pseudo code of our solution. Initialy, the seed set S is
empty, and the Louvain mehod is called to compute the clusters or communities
(line 2). Next, for each cluster (line 3-7) the subGraph submethod computes
the subgraph which belongs to the cluster. A subgraph contains the nodes of a
cluster and the edges among them, but the outgoing edges are not included. After
the subgraphs are computed, the NewGreedy algorithm assigns the influence
degree to each node within each subgraph. The node that has the maximum
influence degree in the cluster is recorded by C.max. After this initialization, a
process is repeated k times (the cardinality of the candidate set). The process
(line 8-13) selects the cluster (max_cluster) containing the most influential node
(max_cluster.max) in each step. The most influental node is added to the seed
set S, and then the marginal gains of nodes in max_cluster are recomputed. The
node with the maximum marginal gain within the cluster is refreshed. At the end
of the process, the algorithms returns S which contains the selected seeds.

146 G. Rácz, Z. Pusztai, B. Kósa, A. Kiss

Algorithm 1 LouvainGreedy

Input: G = (V,E,W), number of seeds k, activation probability p, MC count r;
Output: list of seeds S;
1: S ← the empty list
2: Clusters = Louvain(G) . community detection
3: for all C ∈ Clusters do
4: C.SG← subGraph(G,C)
5: NewGreedy(C.SG, p, r) . assign marginal gain to each node in cluster C
6: C.max← argmaxv∈C{v.influence}
7: end for
8: for i← 1, k do
9: max_cluster ← argmaxC∈Clusters{C.max.influence}

10: S = S ∪ {max_cluster.max}
11: NewGreedy(max_cluster.SG, p, r) . refresh marginal gains in cluster C
12: max_cluster.max← argmaxv∈C{v.influence}
13: end for
14: return S

4. Results and discussion

We compared our LouvainGreedy (LG) algorithm with the NewGreedy (NG)
and the Community-based Greedy Algorithm to reveal how our modifica-
tions on CGA affect the running time and precision. Section 4.1 describes our
experiments and Section 4.2 discusses the precision of the methods in details.

4.1. Experiments

In the comparison process, two real-life networks were used. The first, which is
called NetPHY, is extracted from the arXiv5 academic collaboration network by
Wei Chen et al. [2]. It is constructed using the full paper list of Physics section from
1991 to 2003. Each node represents an author and an edge is added between two
authors whenever they jointly wrote a paper. The numbers of nodes and edges are
respectively 37 154 and 231 584. The second data set, which is referred EmailEnr6,
is derived from the Enron email network, which consists of around half million
emails. Nodes represent email addresses and if an address i has sent at least one
email to address j, then an undirected edge between i and j is contained in the
graph. It consists of 36 692 nodes and 183 831 edges. The experiments were done
on a server with 12-core 2.67 GHz Intel Xeon CPU and 24 GB memory.

All the three algorithms were re-implemented in Java 1.7. In the combination
step of (CGA) we computed the live edges as follows. We performed the edge-
deleting part of the NewGreedy algorithm 100 times and we recorded for each

5http://arXiv.org
6It is available at http://research.microsoft.com/enus/people/weic/graphdata.zip

An improved Community-based Greedy algorithm . . . 147

edge that how many times it was not deleted in the resulted graphs. If an edge
has remained intact at least 1/8 part of the simulation count, then the edge was
marked as a live edge. In addition, we used the Gephi Toolkit7 [9] implementation
of the Louvain community detection algorithm in our solution.

Table 1 contains the results belonging to the NetPHY data set where the car-
dinality of the seed sets was 20, the activation probability was 0.02. In the greedy
steps 10 000 Monte Carlo simulations were performed. The running times of the
algorithms consist of a clustering and a greedy phase. The clustering phase can be
performed in advance as a pre-processing step and its result is reusable afterwards.
As the table shows, the main differences among the running times of the investi-
gated algorithms are in the lengths of the greedy phases. That is because the size
distributions of the resulted communities are significantly different in each clus-
tering algorithm which affect the running time of the greedy phases as the greedy
algorithms run faster on smaller graphs.

Running time (sec) Influence
clustering greedy all relatively average relatively

LG 7 373 380 9.5% 890 97.2%
CGA 21 1203 1224 30.0% 915 99.9%
NG − 4021 4021 100% 916 100%

Table 1: NetPHY, k = 20, p = 0.02,MC = 10 000

The quality of results was tested by starting with 10, 000 random cascade dif-
fusion processes and taking the average number of the influenced nodes at the end
of the processes. It can be seen in Table 1, that our LouvainGreedy algorithm
ran ten times faster than the NewGreedy and its precision loss was less then 3%
of the result of the NewGreedy.

Running time (sec) Influence
clustering greedy all relatively average relatively

LG 5 564 569 10.7% 4500 99.0%
CGA 524 4555 5079 95.1% 4535 99.7%
NG − 5339 5339 100% 4547 100%

Table 2: EmailEnr, k = 20, p = 0.02,MC = 10 000

Table 2 includes the results on EmailEnr data set with the same parameters
as above. As can be seen, CGA is much slower on this data set. It is because
EmailEnr network has one and a half times more edges than NetPHy. Moreover,
the clustering steps of CGA results a cluster that contains approximately two-
thirds of the nodes, therefore the running time of the greedy algorithm could not
be decreased. However, our algorithm was ten times faster than NewGreedy with
1% loss of precision using this data set as well.

7http://gephi.github.io/toolkit/

148 G. Rácz, Z. Pusztai, B. Kósa, A. Kiss

4.2. Precision

In [3], Wang et al. proved that using the CGA algorithm, the influence degree of
the resulted set R(I) (where I is the resulted set) is (1 − e− 1

1+4d∗θ) approximate
by the influence degree of the optimal solution, denoted by R(I*), where θ is the
threshold used in the combination step and 4d is the maximal difference between
the number of nodes affected by a node in the network and that in its community.
That is R(I) ≥ (1− e− 1

1+4d∗θ)R(I*).
As can be seen, the approximation highly depends on the threshold of the com-

bination phase, where the communities are combined based on the combination
entropy. Therefore, we conducted experiments by applying the combination step
of the CGA algorithm on the communities that are resulted by the Louvain com-
munity detection method. However, these experiments gives very similar running
times and precisions as the original algorithm. This is because in the combination
step many communities were merged as they combination entropy was above the
threshold. The threshold was set to 0.3 as in the original paper.

However, our experiments described in the previous section show that the Lou-
vainGreedy algorithm can achieve high precision without the combination step.
We suppose that is because the other factor of the approximation, the 4d that is
the maximal difference between the influence degree of nodes affected by a node
in the whole network and that in the community, remains low when the Louvain
method is used. It suggests the nodes did not effect each other across the resulted
communities.

As we saw in Section 3, the Louvain method is based on modularity maximiza-
tion, which is a measure of the quality of a graph partition. Therefore, to give
theoretical bound to the approximation factor of the LouvainGreedy algorithm, we
should describe how the modularity affects the result. But it remains an open ques-
tion. Although our experimental results are promising, without such a theoretical
bounds, we can not be sure how precise result we have got.

5. Summary and future plans

We presented a new method for solving influence maximization problem which
is based on the Community-based Greedy algorithm. Our method combines
the Louvain method, a wildly used community detection algorithm, with the
NewGreedy which is a greedy algorithm that approximates the optimal solution
of the problem.

We compared the presented algorithms w.r.t. running time and quality of their
results measured by the number of influenced nodes at the end of random cascade
processes starting from the resulted seed sets. The experiments show that Lou-
vainGreedy can run ten times faster than NewGreedy and the precision loss
is less than five percent. However, our solution can not provide theoretical bound
to the goodness of its result. Thus, we tested the Louvain community detection
algorithm along with the combination step of the CGA, which merges communities

An improved Community-based Greedy algorithm . . . 149

if their combination entropy is above a threshold. The tests showed that in the
combination step a large community is formed because of the community merg-
ing. this has a significant effect on the running time as the greedy step is time
consuming on large clusters.

In the future, we would like to improve the presented algorithms using paral-
lization. The most consuming part of the presented algorithms is the performance
of Monte Carlo simulations. Running these simulations in parallel can significantly
reduce the computation time of the greedy steps. Currently, Apache Hadoop [6]
and the Pregel [7] systems are under investigation for this purpose.

References

[1] Kempe, D., Kleinberg, J., and Tardos, É., Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’03, pp. 137–146. ACM,
2003.

[2] Chen, W., Wang, Y., and Yang, S., Efficient influence maximization in so-
cial networks. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 199-208. ACM, 2009.

[3] Wang, Y., Cong, G., Song, G., and Xie, K., Community-based greedy algorithm
for mining top-k influential nodes in mobile social networks. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 1039–1048. ACM, 2010.

[4] Blondel, V. D., Guillaume, J., Lambiotte, R., and Lefebvre, E., Fast un-
folding of communities in large networks. In Journal of Statistical Mechanics: Theory
and Experiment, Vol. 10 (2008): P10008.

[5] Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J.,
and Glance, N., Cost-effective outbreak detection in networks. In Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’07, pp. 420-429. ACM, 2007.

[6] White, T., Hadoop: The Definite Guide. O’Reailly Media, 2009.

[7] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser,
N., and Czajkowski, G., Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, pp. 135-146. ACM, 2010.

[8] Lancichinetti, A., and Fortunato, S., Community detection algorithms: a com-
parative analysis. Physical review E, Vol. 80(5) (2009): 056117.

[9] Bastian, M., Heymann, S. and Jacomy, M., Gephi: an open source software
for exploring and manipulating networks. In Proceedings of the third International
Conference on Weblogs and Social Media, pp. 361-362, 2009.

[10] Kósa, B., Rácz, G., Pinczel, B. and Kiss, A., Properties of the Most Influ-
ential Social Sensors. In Proceedings of 2013 IEEE 4th International Conference on
Cognitive Infocommunications (CogInfoCom), pp. 469-474. IEEE, 2013.

150 G. Rácz, Z. Pusztai, B. Kósa, A. Kiss

Survey of attacking and defending in the
RFID system

Tibor Radványi, Csaba Biró, Sándor Király,
Péter Szigetváry, Péter Takács

Eszterházy Károly College, Eger, Hungary
radvanyi.tibor@ektf.hu
birocs@aries.ektf.hu
ksanyi@aries.ektf.hu
takip@aries.ektf.hu

szigipet@aries.ektf.hu

Submitted October 5, 2014 — Accepted May 5, 2015

Abstract

In this article we are dealing with the connections between nowadays
most dynamically improving automatic identification-related RFID technol-
ogy and cryptographic algorithms. You are going to be introduced to the
possibility of attacks against RFID systems and the ways to defeat them. We
are also dwelling on the suitable and non-suitable cryptographic algorithms
among the well known and frequently used ones. The type of the RFID tag
highly influences the group of the suitable algorithms. The size of the tag’s
integrated memory matters a lot, as well as the fact that it uses its own
intelligence or we are working with a cheap passive tag.

Keywords: RFID, data security, cryptography, Gen2, AES, DES, RSA

MSC: 68U35, 68M01, 90B18, 94A860, 68P25

1. Introduction

Nowadays widespread forms of identification systems are in use. It means such
code- and communication systems which identify people and objects uniquely.
The most dynamically improving state-of-the-art identification system is the RFID

Annales Mathematicae et Informaticae
44 (2015) pp. 151–164
http://ami.ektf.hu

151

(radio-frequency identification), using more channels in the electromagnetic fre-
quency interval between 125KHz and 2.4GHz to carry out its functions. We can
expand the basic frequency to the 2.4–5.8GHz range. This range is called SHF.
The reading distance here is above 3m.

Paired with different types of sensors or location systems it can be used in many
fields. This technology is employed in motor vehicle production, logistics, pharma-
ceutical and army technology, and in a lot of other areas. Modern passports, digital
identifiers, and the newest ways of payment all take advantage of its identification
and security opportunities. [12, 13]

2. The RFID Systems and the direction of their de-
velopment

In this section we will be presenting the part of RFID focused on the transponders
and readers. Because they are exposed to attacks.

The RFID has a great advantage over the bar code systems, that it does not
require a direct view of the reading. When we want to read the barcode, we need
to catch all products, on witch there is label or vignette. It is a very slow task and
it requires a lot of human resources. Therefore it is expensive. At the same time we
can read a lot of transponders. If we have due RFID reader with a well positioned
special antenna, we can realize long-distance reading too. Storage capacity depends
on the integrated chip’s capacity. It can range from a couple of dozen bytes to a
few megabytes.

The RFID system can be partitioned to isolated sections of equipments. These
are the transponders, named tags, readers with transmitting and receiver aerials,
middle-ware, database and the user applications. The user application can be
developed to smart-phones, to tablets and to PCs. The primary targets for attacks
are the tags, which store the identification and descriptive data. The readers and
aerials are the other side of electro-magnetic communication. The readers can be
attacked with software tools. If the attack is successful, through the software of
the middleware the database can be infected. In this case the danger escalates,
because all information can be lost or worse, if it falls into the wrong hands.

2.1. Passive tags

The passive tags are low-cost and can store large quantities of data. They do not
have an active transmitter, so they can not radiate data independently. They use
the radiated energy from the reader. They collect the energy out of the reader wave
and with own aerials send back the modulated wave to the reader. The aerials must
be well set and tuned, because the energy will be spread and the aerial of reader
will not detect it. The usability is increased by special or hard housing in industrial
applications. This method can increase the costs too. So the industrial hard tags
are used identification of valuable objects . Typically these tags are used in LF

152 T. Radványi, Cs. Biró, S. Király, P. Szigetváry, P. Takács

(125KHz), HF (13.5MHz), UHF (900MHz) and microwave (2.4GHz). Standards
direct for their distribution. But these might vary from country to country. [1]

2.2. Active tags

Active tags have a independent transmitter with energy source. They can radiate
the stored data continuously. The energy source is usually a battery that could last
for some years. Sometimes the active tags contain an energy harvesting chip, which
collects the energy from the background radiation. These tags use the 433MHz,
2.4GHz and 5.2–5.8GHz frequency. The reading distance can be around 100m.
One or two order of magnitude can be the difference compared to the passive tags.
The UHF passive tag can be read from a distance of 1–3m, but the active tag can
be read from 100m. Their price can be very high, but it can fluctuate depending
on the size of the memory, the life of battery and the kind of their wrapping.
The active tags are appropriated by high-value containers, rail cars. If the tags
are collected and reused at the end of the logistics process, you can save a lot in
termsof cost. [1]

2.3. The RFID operation principle

Those RFID technologies , which use the LF and HF/NFC frequency, are charac-
terized with the small distance reading. Between the tag and the aerial an inductive
coupling builds up. There is a coil-antenna in the antenna of the reader and the
tag. They create together an electro-magnetic field. The tag collects energy from
this common EM field and with the help of it the tag can radiate back the stored
data. Therefore the tag and the aerial of the reader must be near to each other.
That means a couple of inches. These systems are less sensitive to interference
caused by liquid and metal. So the LF and HF/NFC tags can be used better and
more efficiently in these environments.

The passive UHF tags apply the propagation coupling. This coupling uses the
backscatter communication method. Backscattering has important applications in
astronomy, photography and medical ultrasonography. In this way the reader and
the tag don’t constitute a combined EM field. The tag uses the energy emitted by
the reader to radiate back an altered (modulated) wave.

2.4. Fields of application

Application, where we can use RFID technology.

• Access Control Systems

• Identification of people and animals

• Identification of things

• Products, tracking vehicles

Survey of attacking and defending in the RFID system 153

We can use it in toll systems, because it is fast, reliable and we can write back
to the memory of the tag a timestamp or validating data. This technology can
be well used in the following important cases: for retail sale, for the library and
timing sport events. It is in the e-passport too. It is frequently used and very
necessary while travelling, but as such, it is at serious risk. It can become the main
target of attacks, primarily cloning attacks. The e-passport to expand requires
additional means of protection or identification capabilities. This can be biometric
identification, for example fingerprint, or retinal scanner.

3. Researching and improving the RFID in order to
increase its efficiency; security or efficiency

Today’s RFID protocols are formed in such a way that optimizing efficiency has
become more highlighted than consumers’ data security. We insist on using so-
called cryptographic protocols to be able to save all the pieces of information in a
trustworthy manner. Our aim is to broaden the tasks and only affect efficiency in
a minimized way.Through this procedure communication with identification could
be made more efficient and safe.

The RFID based identify-and-follow systems used in the retail trade environ-
ment are the living examples of this hidden working principle. However, there are
numerous danger factors regarding this method. We can picture it the way that
the personal tools, used by the consumers, contain invisible microchips. Via them
smooth, discreet checks can be taken through different procedures. As during these
checks data streams and exchanges are going on in the system, outsiders and users
might get others’ personal information. These problems are really important and
require an swift solution as nowadays the protection of personal information is the
top priority during the operation of a computer system. Some experiments have
been done, some of them are used in practice, but sometimes the technology is
unsafe even with them.

Finally, the priority of safe and clear information handling has been accepted
and the importance of efficiency has been overtopped. We also agree with the thesis
that the data security is our top most priority, especially in the case of systems
where privacy is paramount. For example, bank services should rather be slower
but safer, than faster with the possibility of less security.

4. Main attack possibilities

Algorithmic attacks: performed through the transfer channel. We separate active
and passive ways of attacking. The passive method means that the attacker gets
hidden messages by bugging a public channel. Contrary to the passive, during
an active attack the attacker distributes on the channel himself. We can see the
attacks on the figure 1. In this figure we can see some attacks against the RFID
system. You can see the attacks can come from many directions. The attack can

154 T. Radványi, Cs. Biró, S. Király, P. Szigetváry, P. Takács

be aimed at the transponder, the communication channel and at the software and
hardware system. The destruction and detachment are danger factors too, but
they cannot be taken advantage of. [6, 7]

Figure 1: Attacks against the RFID system

4.1. Cloning a tag
If the RFID tag is not protected with encryption and we know its command set,
function, and the memory partitioning, well, it is very easy to copy it or replace
it with a copy. It causes problems if the system does not pay attention to the
persistence of duplicated tags.

There are different complex solutions for storing data on tags. The simplest
one is the read-only tag- it just contains an invariant unique identifier. If the read-
only transponder gets close enough to the reader’s field, it instantly wakes up and
starts to radiate its identifier number. The attacker can easily create a clone which
contains the exact same code. It is not necessary to get in physical touch with the
transponder, we only need a reader which is able to read the identifier and write it
to another. In more serious and complicated systems, where security is paramount
we should avoid using read-only transponders and insecure data storage.

When working with more complex systems we should avoid using read-only
transponders and unencrypted data storage. By default the transfer medium, in
this case radio waves, transfer the data without encryption. Reading is not recorded
on the transponder, so readings can be repeated without authorization.

Of course the transfer channel might be encrypted with the well-known encryp-
tion methods (DES, block encryption, RSA). Due to the small data quantity the

Survey of attacking and defending in the RFID system 155

transponder is able to store the key is usually small, so in case someone has the
required amount of information the key can be decoded.

4.2. The Malware
Malware is malicious software, and its aim is to break and interfere with computer
systems. RFID malware is a malware spreading through RFID tags.

A totally different type of threat comes to life when hackers and criminals
make RFID tags work unexpectedly and maliciously. Through the queries of the
computer-connected or the mobile readers hackers do it for the RFID tags’ unique
identifier, or for the data stored on the tag, which is usually the key for the database,
or evokes a real action.

Until now everybody who works on RFID technology, silently claimed that read-
ing the RFID tag cannot modify the background software, especially in a harmful
way. Unfortunately they all were wrong. During a research it was proven that the
RFID software has a weak point. A tag intentionally can be infected with a virus
and the virus is able to infect the background database the RFID software uses.
After that the virus can easily spread to other RFID tags.

For example: The perpetrator only needs to purchase a cheap item from the
supermarket, which has a tag attached. After paying for the good he goes home
and cuts off or destroys the tag. Then he puts an infectious tag on the product.
Goes back to the supermarket, to the cash desk, and pays for the item again. But
when the tag is scanned it infects the supermarket’s product database, potentially
inflicting any kind of damage, like changing the prices. But it means a far higher
risk at airports. The virus might help drug smugglers or terrorists hide their
packages. Furthermore, the infected database and luggage can infect other airports’
databases as well. As a result of the virus packages might get to entirely different
destinations than they ought to.

By this time the general structure of the problem has become clear. When
an unsuspicious reader scans an infected tag, there is a risk that the tag takes
advantage of a vulnerability in the middleware to evoke unwanted actions, like
infecting the database. [10]

Classes of RFID malware:

1. The RFID exploit is a malicious tag data, using the parts of the RFID system
it gets in touch with. RFID systems are as sensitive to hacker attacks as
traditional computer systems. When a reader reads an RFID tag, it expects
to get some information in a given format. However, someone can write a
piece of data, the format and content of which are both so unexpected that it
can influence the software, or potentially, the database of the RFID reader,
too.

2. The RFID worm is an RFID-based exploit, taking advantage of the network
connection to gain the ability of self-replication. RFID worms multiply by
using the online RFID services, but they are able to spread themselves on
tags as well. RFID worms make the unsuspicious RFID servers download

156 T. Radványi, Cs. Biró, S. Király, P. Szigetváry, P. Takács

and out some files and carry out the instructions in them. This file aims to
compromise the RFID middleware server the way most of the internet-based
malwares do. The worm-infected RFID software is able to infect other RFID
tags by overwriting their pieces of data with a replication of the RFID worm
code.

3. The RFID virus is such an RFID-based exploit that replicates its code by itself
to other tags without network access. RFID viruses might have contents that
can interfere with or modify the RFID system’s work in the background. As
a freshly infected enters the world it infects other RFID systems (provided
they use a common software system). Then these RFID systems infect other
RFID tags, which infect other RFID software systems and so on.

4.3. Attack through the RF interface
Other types of attacks against RFID systems come through the RF interface. RFID
systems communicate with the help of radio systems and electromagnetic waves
both over short and long distance. This way the attacker has a chance to attack
the RFID system through the radio frequency interface, as there is no need to
get into physical connection with the reader or the transponder. One type of this
attack is well known, so in the following paragraph We would like to explain it.

4.4. Eavesdropping
All kinds of wireless communications can be eavesdropped on a device which re-
strictive is made up of RFID technology. The attacker does not need energy and
physical contact with the reader and the tag. Consequently, the attack can be per-
formed from longer distances. The attacker has to catch the transmitted signals
before the system stores it.

Eavesdropping occurs between the reader and the transponder. The effective
range of the RFID systems vary between a few centimetres (e.g.: 13,56MHz) to
more meters (e.g.: 868MHz). A radio’s antenna requires a far smaller output
voltage to get usable signals, so communication can be eavesdropped from a large
distance.

Finke and Kelter have appointed that the 13.56MHz inductively charged system
can be eavesdropped from 3 meters. The receiver can sense the reader’s motionless
signals from hundreds of meters on a few kHz range. From a greater distance the
signal might be disturbed by metal objects like fences, aluminium objects, or huge
buildings. [14]

What does the success of eavesdropping our devices (reader and transponder)
depend on? The number of influential factors is high.

• Depends on the characteristics of the RF space. This defines the geometry,
structure and output power of the antenna.

• Interfering object between the reader and transponder and the size and loca-
tion of metal objects are also an important factor.

Survey of attacking and defending in the RFID system 157

• It is influenced by the quality, structure and geometry of the attacker’s device,
and also depends on the power emitted by the reader.

• It is also an important factor that passive or active transponders are used
in the RF communication. If the tag is passive, it uses the power generated
by the reader, this way the reflected useful information participates in the
communication with lower energy usage. In the case of UHF tags (868MHz
– 915MHz) 1–3 meter. If the tag is active or semi-passive so it has its own
power source this range can be increased up to 10–30 meters. In case of active
tags the emitted information is easier to catch due to its energy and easier
to hide in larger attack areas. The at-tack area is a space where the attacker
sets his eavesdropping device until he can perform a successful attack.

The following attacks may occur during eavesdropping:

• Secret or personal data may get into unauthorized hands. In this case the
attack does not effect the communication, and it is almost impossible to detect
the attack. Using cryptographic protocols may help defending the data.

• The attacker modifies the eavesdropped data and the false information is
transmitted to the reader. This act requires a specific device and it is really
hard to perform.

• Another possibility is that the attacker does not modify the data but replaces
it. This could happen when the transponder sends a lot of information to
the reader, so the communication requires much more time. In these cases
of eavesdropping the attacker may get detected and his data blocked. Using
control data, cryptographic algorithms and combinations of protocols may
help detecting the attacker.

• The “relay attack” is a much more complicated type of eavesdropping and
it also requires serious technical preparation. In this case the attacker does
not only gather data but also transmits it on another channel. eg.: WIFI
-– longer range. In the other place the data could get processed by an-other
device eg.: during a purchase. This attack is really hard to block due to
the properties of contactless payment methods. For the time being combined
with other identifying methods it provides a good possibility. The simplest
way is using a pin code but any personal or stationary biometric identification
can be used. [15, 16]

It is clear that eavesdropping can be performed really easily sometimes. It holds a
lot of possibilities for the attacker and it is really hard to detect and block. In order
to protect data, if we can not secure the communication channel, we should make
the information difficult to process in case of an attack. Cryptographic protocols
provide data protection during in-formation exchange.

158 T. Radványi, Cs. Biró, S. Király, P. Szigetváry, P. Takács

5. Cryptographic protocols - can be used?

Creating security in low-cost RFID systems is very difficult. Due to limited re-
sources, strong ciphers are difficult or sometimes impossible to implement, so ex-
tremely simple algorithms and protocols need to be designed that take into account
the limitations of passive systems. [8, 9, 11]

CrySys (Laboratory of Cryptography and Systems Security) recommends the
XOR, and RSA.

The basic concept of development started out of the following:

R→ T : x⊕ k = a

T → R : f(x)⊕ k = b

I(h, k) = H(x⊕ f(x))
where the

H(x⊕ f(x)) entropy of the x⊕ f(x)

5.1. The XOR protocol
The structure of the XOR protocol is similar to the previous example, but it uses
different keys in different directions. One option to achieve this the XOR key
generation, where R randomly chooses a new k (i) , does XOR encryption, and
performs k (i-1) key. We get the following protocol:

R→ T : x⊕ k1 = a

T → R : f(x)⊕ k2 = b

We need a secure key-updating scheme.

R→ T : a(i) = x(i) ⊕ k(i), k(i) ⊕ k(i+1)

T → R : b(i) = x(i) ⊕ k(i)

where i = 2, 3, . . . a counter, which is increased in every run, x(i) the i-th
random numeric and k(0) and k(1) shared keys are pre-set . k(1), k(2), . . . sequence
does not change randomly, but the attacker cannot follow their value.

5.2. Other possibilities for defeating attacks
RFID systems are under different types of attacks.In several of these cases we need
to protect the tag itself, but in other cases we have to inhibit the tag from being
read and modified. In some countries where the e-passports are in use no copy-
protection is provided for the users. We can prohibit cloning or attach-connected
attacks with second level identification like a PIN code or biometric identification.
Communication attacks are relatively easy to defeat with cryptographic methods
as the messages can be encrypted with different algorithms.

Survey of attacking and defending in the RFID system 159

6. Authentication

6.1. Legitimation based on derived keys

The main disadvantage of the legitimation mentioned above is that every transpon-
der uses the same k encryption key. This feature means a potential danger factor
for every similar application- which uses a very large number of transponders. Tak-
ing into consideration the fact that these transponders are available for everyone
we have to consider the possibility of the key getting compromised. In this case the
procedure becomes totally useless. To provide it, every transponder gets a unique
key, increasing their security this way.

6.2. Encrypted data connection

We expand the previous situation with a potential attacker. Here the attackers can
be divided into two groups. The first –Attacker1- tries to stay in the background
and get useful information from the data store by eavesdropping and other passive
methods. On the other hand Attacker2 actively takes part in the communication
and modifies its content for his (or for someone else’s) good. The cryptographic
methods provide a solution against both attackers. The data which needs to be
transferred (plain text) is encrypted so the attacker will not be able to reveal its
original content. Random number generation is possible in such small sizes as the
chip.Taking advantage of this, it is possible to expand cheap passive tags in order
to implement the above mentioned encryption algorithms. [18]

6.3. Hash based access control

In case of the cheap smart labels it is necessary to provide a simple security
scheme based on simple hash functions. The implementation of the algorithm
is implemented in hardware. With this method the tags operating in closed and
opened state are separating small slices from the memory in order to store so called
metaIDs. The algorithms are relatively simple. The hash functions need to be im-
plemented in the transponders. The scheme is flexible so it can be extended by
multiple access or write authorizations. The meta-IDs are simple to query in this
way the background database provides an easy building opportunity to third-party
manufacturers. Furthermore the uniqueness of the meta-IDs may provide an easy
identification.

6.4. Asymmetric key checking

Finally among the encryption methods the asymmetric key checking method needs
to be emphasized. In this method when a reader wants to send data to a selected
transponder (the message is v) it is enough for the tag generates a r random number
during the transfer of listening-sensitive data and then sends it back to the reader.
From this value the reader calculates the v⊕r then sends it to the tag. The listener

160 T. Radványi, Cs. Biró, S. Király, P. Szigetváry, P. Takács

who is out of the range of the backward channel just hears this v⊕r and he cannot
conclude to value of the original v. [5]

Against eavesdropping we should detail and confirm the processes mentioned:

• The reader transmits a request to the tag.

• The tag identifies itself to the reader.

We try to force the defense to the communication between the tag and the
reader, assuming that the inner data transmission between the reader and the
background server is al-ready safe.

Of course the following protocol highly depends on the use of active or passive
tags in the communication. The existing requirements are already different and
the available computing capacity also shows a huge difference. Take a look at the
communication scheme on figure 2.

Figure 2: Reader and transponder communication

As shown we use a XOR function in the encryption which can be easily imple-
mented on hardware level, so there is no difficulty in using it in passive tags. The
XOR protocol uses different keys in different directions.

Also an S function appears which requires a little detail. First, consider the
so-called P and S boxes. These are the basis of cryptographic algorithms. Their
advantage is that they are easy to implement electro-technically. This way they
can be integrated to the passive tag’s limited set of tools. In case of active tags this
is not a problem, because the tag contains intelligence, a programmable processor
so the whole AES algorithm is feasible at a relatively low energy input and short
time.

Survey of attacking and defending in the RFID system 161

In case of passive tags we use the combination of P and S boxes. The P box
is a function that creates an 8 bit output from and 8 bit input. A fast and simple
electro-technical de-vice, and it’s inverse function can be easily generated if we
know the P box’s assignment rule. It is responsible for mixing the 8 bit and a
creating a bit permutation.

Figure 3: A possible P box

The S box is a device that implements a nonlinear function which creates 4 bit
output from 6 bit input. [17] The operation of the S box is described by a table
of 4 rows and 16 columns. Each S box has a different table. These tables allow
us to encode the S box. Out of the incoming 6 bits the 1st and 6th gives the row
indexes, while the other 4s decimal equivalent gives the column indexes. This way
we get the 4 output bits based on the table cells.

Figure 4: A possible S box

Shows the S function, which generates the memory content of the user S(data),
and transmits it to the reader. This is a complex function that contains S and P
boxes. As we know the used tables of S and P boxes.

S−1(S(data)) = data

Based on this we get back the data stored in the tags. The use of S and P
boxes is defined by the reader’s key. The reader is a specific computer which
has the computing and storage capacity that is required for generating keys and

162 T. Radványi, Cs. Biró, S. Király, P. Szigetváry, P. Takács

decrypting S(data). The tags are the electronic realizations of S and P boxes.
For data control we create a digest from the stored data. The well-known HASH
functions are suitable for solving this problem. We implement one of the HASH
functions in the tags, eg.: SHA1 function. Using this method we are able to check
the data after decrypting. This provides extra defense against data modifying, or
data insertion attacks.

7. Conclusion

A product is exposed to many dangers during the way from the manufacturer to
the costumer. From the factory it goes to a temporary storage, from there to a
wholesale storage, from there to a retail distribution centre and finally the shelves
of the supermarkets. This is a long process; during this the products can be lost,
accidentally interchanged or stolen. EU regulations are pushing the responsibility
of the manufacturer further and further so the traceability is becoming more and
more important which can be implemented by RFID technology completely. Dur-
ing the production the way of the product is traceable, the technological orders,
work phases and persons who took part in production or any other data. Use of
RFID systems are changing nowadays. Many new technology are coming out, man-
ufacturers and multinational companies are to carry these technologies to the users.
Transponders come out from factories day by day cheaper and smaller; this helps
their spread. Thanks to them being widespread, these systems can be found in
more and more segments, so their vulnerability has to be considered scrutinously.
Nowadays in Hungary reconciliation is in progress about mobile payment possi-
bilities. Their spread might be a milestone for development. The users are not
aware of the dangers of these. Most of them cannot or does not want to deal with
this problem. So the manufacturers have to pay attention to the security, consider
those possibilities that can cause any defect or data theft in systems surrounding
users. Due to the decreasing production costs the data storage limit specific to
cheap passive RFID systems is becoming irrelevant sooner or later. A move is in
progress to active labels which can be used with more security and we don’t have
to create special algorithms in order to work on simple systems.

Acknowledgements. Tibor Radványi’s research was supported by the European
Union and the State of Hungary, co-financed by the European Social Fund in the
framework of TÁMOP-4.2.4.A/ 2-11/1-2012-0001 “National Excellence Program”.

The research of Csaba Biró, Sándor Király, Péter Szigetváry, Péter Takács was
supported by the European Union and the State of Hungary, co-financed by the
European Social Fund in the framework of the TAMOP-4.2.2.C-11/1/KONV-2012-
0014, title: The developing possibilities of RFID/NFC technology by the conception
of “Internet of Things”.

Survey of attacking and defending in the RFID system 163

References

[1] Klaus Finkezeller, RFID Handbook, Third Edition(2010).
[2] Ziv Kfir and Avishai Wool, Picking Virtual Pockets using Relay Attacks on

Contactless Smartcard Systems, http://eprint.iacr.org/2005/052.pdf.
[3] Jeongkyu Yang, Jaemin Park, Hyunrok Lee, Kui Ren, Kwangjo Kim ,

KOMSCO, ICU, WPI Mutual Authentication Protocol for Low-cost RFID, 2005.
[4] Sebastien Canard, Iwen Coisel ,(Orange Labs RD, Caen, France) Data Syn-

chronization in Privacy-Preserving RFID Authentication Schemes , 2008.
[5] Hee-Jin Chae, Daniel J. Yeager, Joshua R. Smith, and Kevin Fu , (Uni-

versity of Massachusetts) Maximalist Cryptography and Computation on the WISP
UHF RFID Tag, 2007.

[6] Sindhu Karthikeyan and Mikhail Nesterenko, RFID Security without Exten-
sive Cryptography, 2005.

[7] M. McLoone and M.J.B. Robshaw, Public Key Cryptography and RFID Tags,
2008.

[8] Markku-Juhani O. Saarinen, Daniel Engels A Do-It-All-Cipher for RFID:
Design Requirements IACR Cryptology ePrint Archive 2012, 317.

[9] SAARINEN, M.-J. O., Cryptanalysis of Hummingbird-1., In FSE 2011 (2011), A.
Joux, Ed., vol. 6733 of LNCS, Springer, pp. 328—341.

[10] KROVETZ, T., AND ROGAWAY, P, The software performance of
authenticated-encryption modes. In FSE 2011 (2011), A. Joyx, Ed., vol. 6733 of
LNCS, Springer, pp. 306—327.

[11] ENGELS, D., SAARINEN, M.-J. O., SCHWEITZER, P., AND SMITH, E.
M., The Hummingbird-2 lightweight authenticated encryption algorithm. In RFID-
Sec 2011 (2011), A. Juels and C. Paar, Eds., vol. 7055 of LNCS, Springer, pp. 19-–31.

[12] Biró Csaba, Radványi Tibor, Takács Péter, Szigetváry Péter, RFID rend-
szerek sebezhetőségének vizsgálata, MAFIOK 2013. ISBN: 978-963-358-035-6, 15–24
oldal.

[13] Radványi Tibor, Adatbiztonság az RFID alkalmazásakor, Acta Carolus Robertus
3(1) pp: 121–127, Gyöngyös, ISBN-978-963-269-201-2, 2012.

[14] Ernst Haselsteiner, Klemens Breitfuß, Security in Near Field Communica-
tion (NFC) Philips Semiconduc-torsMikronweg 1, 8101 Gratkorn, Austria.

[15] S. Yu, K. Ren, W. Lou, A privacy-preserving lightweight authentication protocol
for low-cost RFID tags, in: IEEE MILCOM 2007, October 2007, pp. 1-–7.

[16] Y.-C. Lee, Y.-C. Hsieh, P.-S. You, T.-C. Chen, An improvement on RFID
authentication protocol with privacy protection, in: Third International Conference
on Convergence and Hybrid Information Technology – ICCIT 2008, vol. 2, November
2008, pp. 569-–573.

[17] Lauren De Meyer, Beg Bilgin, and Bart ,Extended Analysis of DES S-boxes,
Proceedings of the 34rd Symposium on Information Theory in the Benelux, 30-31
May 2013, Leuven, Belgium, pp. 140–146.

[18] Vikram Belur Suresh,On-Chip True Random Number Generation, Thesis, 2012,
University of Massachusetts Amherst, Department of Electrical and Computer En-
gineering.

164 T. Radványi, Cs. Biró, S. Király, P. Szigetváry, P. Takács

Building of a mathematics-based RFID
localization framework∗

Zoltán Ruzsab, Zsolt Parisekb, Roland Királya

Tibor Tómácsa, Tamás Szakácsa, Henrik Hajagosa

aEszterházy Károly College, Institute of Mathematics and Informatics
kiraly.roland@ektf.hu, tomacs@ektf.hu, szakacstam@gmail.com,

hajagos.henrik@gmail.com
bBay Zoltán Nonprofit Ltd. for Applied Research

ruzsaz@gmail.com, parisek@gmail.com

Submitted September 4, 2014 — Accepted March 5, 2015

Abstract
In this article, we examine problems related to RFID systems in which

the antennas and the connected readers are able to find a transponder with
greater precision and are able to locate their position with a greater proba-
bility.

The central problem is how to cover a relatively large area, such as an air-
port terminal or a railway station’s waiting room, with the smallest possible
number of RFID antennas.

The second important question of the research is what infrastructure and
mathematical apparatus are required to decide the location of the transpon-
der within an area under question, with the highest possibility.

1. RFID based localization and the problems of the
presence sensors

Firstly, as part of localization problems and the possibilities of expanding percep-
tion, let us define what we can see with a perception sensor and what we mean by

∗Their RFID research project was supported by the European Union and the State of Hungary,
co-financed by the European Social Fund in the framework of TÁMOP-4.2.2.C-11/1/KONV-2012-
0014.

Annales Mathematicae et Informaticae
44 (2015) pp. 165–176
http://ami.ektf.hu

165

an RFID based perception-sensor. This is important, because both the localization
problem and the mathematical model are based on the examination of perception.

An RFID Presence sensor is a device capable of detecting the presence of a spe-
cific object and relaying this presence as binary information (whether it is present
or not).

There are countless applications for sensors and sensor networks based on WIFI,
RFID and NFC technologies in real life. Producing information regarding the
position and motion of the perceived object by means of connected perception
sensors (sensor network) has been the topic of a number of researchers [4, 5, 6, 7].

Several researches [8] also utilize the strength of the perceived signal to better
determine the position of the object or a person. A good example of the situation
underlined above is an office building where each door requires verification by an
entrance card for passing.

The entrance card is, in reality, an RFID transponder, while the doors are
outfitted with RFID readers.

These readers, along with their connected antennas measure whether the trans-
ponder is in their range of perception or not at preset time intervals. If the
transponder is far away, the outcome is most likely negative, but positive read-
ing are not always guaranteed even when the transponder is closer. However, the
possibility of positive feedback is higher than in the previous case.

In case somebody is standing between the transponder and the antenna, his
body water blocks the spread of the signal, resulting in a negative reading. Another
possibility is that the RFID tag is situated on the periphery of the reception range.
In this case, the outcome of the reading depends on other uncertainty figures such
as humidity, temperature, etc.

Perception-based localization complicates the problem even further, as the cur-
rently used systems are not suited to handle this task.

The fact is that transponder localization is uncertain on a smaller area and
the problems mentioned before soon make the use of current RFID based devices
problematic.

We can safely conclude then with using only perception sensors and RFID based
systems, it is relatively difficult to accurately decide the position of an object. How-
ever, we can see possibilities of expanding the perception capabilities of mentioned
devices (RFID reader, antenna, antennas networks) with the implementation of
intelligent algorithms and mathematics based computational models what these
algorithms are based upon.

Problem (Extending of the RFID based localization). One of the central problems
of our research is how to cover a relatively large area, such as an airport terminal
or a railway station’s waiting room, with the smallest possible number of RFID
antennas, and to estimate the exact location of as many objects tagged with RFID
tags as possible with the greatest likelihood. We would also like to find a solution to
expand the perception process to permanently or temporarily uncovered areas also
by upgrading current RFID technologies.

166 Z. Ruzsa, Zs. Parisek, R. Király, T. Tómács, T. Szakács, H. Hajagos

As a part of the solution for the problem described above, we present the math-
ematical model used to expand the perception capabilities of the localization pro-
cess along with the functioning of the software background, that is, the framework
which provides estimations regarding the whereabouts of the transponders using
the mathematics based subsystem.

2. Planning the measurement process and calibrat-
ing the test environment

In order to create and produce the mathematical model, and to prepare the con-
trolling algorithms for the new antenna, we need to measure the characteristics of
the antennas used in our test environment and the coverage of the test area by
RFID readers.For the calibration of antennas and readers, we took measurements
of the signal strength RSSI perceivable by the antennas within the discrete areas
covered by each antenna, first by an accuracy of 50, then by 25 centimeters. Tak-
ing constructive and destructive interference into account, we created the map of
coverage.

We have used similar measurements to determine the perception characteristics
of the transponders what we used for localization (see in Figure 1).

Figure 1: Characteristic of the rotated UHF transponder

Building of a mathematics-based RFID localization framework 167

Parallel to these, to construct a mathematical model, we rotated the transpon-
der in a given position under the same conditions. For about 1000 times/position,
we measured how many times the transponder was visible (sufficiently perceiv-
able) to the reader connected to the antenna. Comparing the results to the RSSI
values measured before proved that the reading ratio of the antennas influenced
perception frequency. It is also clear that specific space segments show relatively
unique values depending on reading frequency. We excluded the possibility of any
obstruction between the antenna and the reader (for example: aqueous medium or
the passing of a metal-based object).

It was under these circumstances that we had to design the mathematical ap-
paratus responsible for predicting where a transponder (outside of visibility range)
is located inside a known but yet uncovered area.

Provided that the mathematical model is working as intended, and that the
system is able to estimate the most probable position of the tag, this extra infor-
mation can be used to decide the real position of the transponder (in order to make
the search attempts more efficient).

3. The mathematical foundations of the extension of
localization

Let (Ω,F , P) be a probability space where Ω is the set of factors that define the
location of the tag or rather the outcome of the detection attempts made by an-
tennas.

The Borel-measurable space part in which the tag should be located is denoted
by H ⊂ Rk and let H1, H2, . . . ,Hm be partitions of the Borel-measurable sets.
These Hi sets are undivided sectors in which the presence of the tag should be
detected. In practice H ⊂ R2 is a rectangle, sets of Hi are the cells of a grid.

Let θt : Ω → H denote a probability variable the position of an object at time
moment t.

LetXit : Ω→ {0, 1} probability variable (i = 1, . . . , n, t ≥ 0) be 1, if the antenna
i detects the tag at time t be 0 if it does not. Assume, that X1tiX2t2 , . . . , Xntn are
independent of each other in case of arbitrary values t1, . . . , tn. Let

p(i, j, 1) = P (Xit = 1 | θt ∈ Hj) and p(i, j, 0) = 1− p(i, j, 1),

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m and t ≥ 0. Assume that p(i, j, 1) is indepen-
dent from t, therefore the probability of antenna i detecting the tag is p(i, j, 1) if it
is located in the space part j, and it is p(i, j, 0) if it does not. These values are not
known, so in practice p(i, j, 1) is replaced by p̂(i, j, 1), the relative frequency of the
event {Xit = 1} assuming that θt ∈ Hj . Likewise p(i, j, 0) is replaced by p̂(i, j, 0).

3.1. The case of simultaneous measurements
The most manageable, but unrealistic case is when all the antennas try to detect
the tag at a time instant t = t0. Let x1, x2, . . . , xn be the measurement results.

168 Z. Ruzsa, Zs. Parisek, R. Király, T. Tómács, T. Szakács, H. Hajagos

Similar to the principle of maximum likelihood estimates, as the current estimated
place of the object the sector Hj is accepted in which the achieved x1, x2, . . . , xn
measurements are the most likely to occur. Therefore the maximum point of the
function

P (X1t0 = x1, X2t0 = x2, . . . , Xnt0 = xn | θt0 ∈ Hj)

in j is required to be found. Due to the independence

P (X1t0 = x1, X2t0 = x2, . . . , Xnt0 = xn | θt0 ∈ Hj) =
n∏

i=1

p(i, j, xi).

Here the p(i, j, xi) values are not known, instead their p̂(i, j, xi) estimation will be
used. Thus, if the

n∏

i=1

p̂(i, j, xi)

function has only one maximum point, j0, then set Hj0 will be accepted as the
estimated position of the object. (If the maximum value of the function is taken
of the arguments of j1, j2, . . . , jz, then the estimation will be the union of the
corresponding sets Hj1 , . . . ,Hjz .)

3.2. The case of separate measurements made at various times

Take some measurements by sensor i at time moments ti1, ti2, . . . , tiki close to time
t0.

As a result, the measured value recorded Xiti1 , Xiti2 , . . . , Xitiki
probability vari-

ables can not be considered independent therefore the results of the measurements
by the antennas must be aggregated. Denote the results with xiti1 , xiti2 , . . . , xitiki

.
Assume that, there exists a K : R→ R+ function, what

P

(
ki⋂

l=1

{Xitil = xitil}
∣∣∣ θt0 ∈ Hj

)
=

∑ki
l=1K(t0 − til)p(i, j, xitil)∑ki

l=1K(t0 − til)
.

Due to the independence

P

(
n⋂

i=1

ki⋂

l=1

{Xitil = xitil}
∣∣∣ θt0 ∈ Hj

)
=

n∏

i=1

∑ki
l=1K(t0 − til)p(i, j, xitil)∑ki

l=1K(t0 − til)
.

Again, similar to the principle of maximum likelihood estimation the sector of Hj

is accepted as the estimation of the location of the object at time t0 where in case
of being there the probability value of the test results is maximal. Therefore if the
previously obtained

n∏

i=1

∑ki
l=1K(t0 − til)p(i, j, xitil)∑ki

l=1K(t0 − til)

Building of a mathematics-based RFID localization framework 169

function has its maximum value in j at j0, the sector Hj0 will be accepted as the
estimation of the object’s location. (If the function has its maximum at j1, j2, . . . jz
simultaneously at the same time, similarly to the previous cases the estimation of
the object’s location will be the union of sets Hj1 , . . . Hjz).

In practical terms, the existence of an unification kernel K that can unify the
measurements made by the same antenna at close time instants cannot be proven.
What is even more unpleasant, K function above cannot even be determined by
measurements. The rightness of core function of

K(t) =

(
1−

(
t
τ

)2)2 if |t| < τ,

0, otherwise,

used in the implementation can be supported only when using the calculated po-
sition proves to be sufficiently accurate. (The variable τ ≥ 0 appearing in the
function is used to adjust the time interval from which measurements are used to
determine the position of the object. This value is defined during the process of
fine-tuning. In practical tests τ = 6 was used.)

3.3. Probability of being in a given sector
Now we are looking for the answer to with what probability the tag was at time
t0 in a designated Hj sector. Assume that the tag could be in any sector with the
same probability before the measurement, namely

P (θt ∈ Hj) = P (θt ∈ Hr) ∀j, r = 1, . . . ,m.

The probability of

P

(
θt0 ∈ Hj

∣∣∣
n⋂

i=1

ki⋂

l=1

{Xitil = xitil}
)

should be determined. Based on the Bayes’ theorem, this equals:

P
(⋂n

i=1

⋂ki
l=1{Xitil = xitil}

∣∣ θt0 ∈ Hj

)
P (θt0 ∈ Hj)

∑m
r=1 P

(⋂n
i=1

⋂ki
l=1{Xitil = xitil}

∣∣ θt0 ∈ Hr

)
P (θt0 ∈ Hr)

=

=

∏n
i=1

∑ki
l=1K(t0−til)p(i,j,xitil

)
∑ki

l=1K(t0−til)
∑m
r=1

∏n
i=1

∑ki
l=1K(t0−til)p(i,r,xitil

)
∑ki

l=1K(t0−til)

≈

∏n
i=1

∑ki
l=1K(t0−til)p̂(i,j,xitil

)
∑ki

l=1K(t0−til)
∑m
r=1

∏n
i=1

∑ki
l=1K(t0−til)p̂(i,r,xitil

)
∑ki

l=1K(t0−til)

.

3.4. The implementation
For testing a virtual test environment has been created. The basic set in which the
localization of the tag was carried out was considered a square divided into 10×10
grid. These squares in the grid become the sets Hj .

170 Z. Ruzsa, Zs. Parisek, R. Király, T. Tómács, T. Szakács, H. Hajagos

For the sake of simplicity the elementary grid squares are indexed by {0, 1, . . . , 9}
×{0, 1, . . . , 9} as their coordinates. Three virtual antennas were created, A1, A2,
A3, and probabilities p(1, j, 1), p(2, j, 1), p(3, j, 1) were defined being associated
with their corresponding antennas (j ∈ {0, 1, . . . , 9}×{0, 1, . . . , 9}). Figure 2 illus-
trates this.

Figure 2: The detection probability of antennas A1, A2, A3. The
probability is 1 in the black squares and 0 in the white ones

3 testroutes are generated that represent the roaming of the tag (see Figure 3).
All 3 testroutes take 30 seconds and considering that the 3 antennas try to read
the tag in every second, so t ∈ {0, 1, . . . , 29}.

Figure 3: The three virtual test routes (test tracks). The notches
indicate the position of the tag in integer minutes

After each detection attempt when the antenna Ai tried to read the tag at time
t the position (xt, yt) of the tag during the route at time t was checked against
the associated probability of p(i, (xt, yt), 1) and a random p number with uniform
distribution has been chosen from the interval of [0, 1] and the

xit =

{
1, if p < p(i, (xt, yt), 1),

0, otherwise,

virtual series of measurement has been created. The reading results of the antennas

Building of a mathematics-based RFID localization framework 171

during the traversal path were simulated this way. For the resulting sets of mea-
surements xit (i ∈ {1, 2, 3}, t ∈ {0, 1, . . . , 29}) the positioning algorithm outlined
above was performed, and the estimated (x̂t, ŷt) coordinates by the algorithm were
checked how accurately they approach the tag’s exact coordinates of (xt, yt).

Figure 4: The route 1 (continuous curve) and a characteristics es-
timation (dotted line). Actual and estimated position in the same
time moments are connected by arrows. Squared error for the esti-

mate is 5.8

To quantify the results the squared error of the route estimate

1

30

29∑

t=0

(
(xt − x̂t)2 + (yt − ŷt)2

)

has been calculated. The method above was repeated 1000 times and the average
of the square errors was recorded. The considered values during the route can be
seen in the Table 1. As a reference the squared errors of the random guess (uni-
form distribution independently considered (xt, yt) coordinates) and the constant
estimation (5, 5) were also determined.

The results show that the algorithm works best when the path is close to the
antennas and the movement of the tag is slow (Route 1) while the detection is
less accurate when the the tag is roaming in the middle of the area covered by the
antennas (Route 2). Not surprisingly, the estimate of constant (5, 5) provides a
lesser error in this case.

172 Z. Ruzsa, Zs. Parisek, R. Király, T. Tómács, T. Szakács, H. Hajagos

route 1 route 2 route 3
squared error of algorithm 6.953 15.707 10.732
squared error of random estimate 38.947 27.893 32.351
squared error of constant estimate(5,5) 21.500 12.500 17.900

Table 1: Squared errors of the three route estimates

3.5. The localization framework

We have two large expectations, regarding the localization framework: One being
for it to be able to provide an interface for the middlewares, that control the
antennas, on which they can relay their detections to the system. It is expected to
be able to store the information, gathered using this method, permanently.

The other being, that the system should be able to calculate the coordinates
of the transponder (or maybe even a moving reader in the future), that is fixed in
the system. These calculations are based on the previously stored detections.

As a solution for the aforementioned expectations, we have implemented a web-
service, coded in Java programming language. Designing and implementing of the
webservice was done while abiding the policies of REST (Representational State
Transfer) [10]. We have chosen JBoss (Jboss AS 7.1.0.Final) [11] as our service’s
application-server, for it is strongly supported by REST. For the forming of the
interfaces, we employed the javax.ws.rs [12] (High-level interfaces and annotations
used to create RESTful service resources) package, introduced by Java EE 6, mak-
ing the usage of all these independent from language and platform. This property
is nearly indispensable for a system capable of integrating heterogeneous hardware,
like this one.

We can upload a detection to the framework, by employing a simple HTTP-
POST [13] method, assuming that the detection we would like to upload is written
in a specified XML structure. The first step of processing an uploaded detection is
the serialisation of the given xml, which will result in the creation of a Detection
objectitem. The Detection class indicates between which transponder and reader
did the detection occur, and optionally, through which RSSI value did the commu-
nication between the two happening. Among the Detection items exists a special
item, which represents negative detection. The middlewares present a negative de-
tection when the reader attempts to locate the transponders in their environment,
but no answer is given to it.

The permanent storing of the Detection items is done inside a database, in
our case, this is a PostgreSQL 9.3 [14] released database-item. Communication
between the database and the server application is accomplished by the help of
an ORM (Object/Relational Mapping) [15] tool, which makes our job a lot more
easier, during the upgrading of the framework. Our choice for an ORM tool fell
upon Hibernate (Hibernate ORM 4.3.1. Final Release), for the reason that JBoss
AS 7 provides native support in case of using Hibernate ORM.

Further expectations of the localization framework include, for it to be able

Building of a mathematics-based RFID localization framework 173

to make calculations using different localization algorithms, simultaneously. This
property of the system allows the upgrading of the localization algorithms to be
quick and simple, in parallel with different project team’s different expectation
systems, if need be.

3.6. The software component from client side

The task of the client side control is to communicate with the RFID reader then
transmit the acquired data to the server. To incorporate the functions of the reader,
we have developed an interface, that is able to convert the parameterized function
calls into XML structures that are compatible with the reader, deliver them, and
transform the given answer into a serviceable form, then return it to the location
at which the call was made.

Communication with the server is also done by an interface, that is similar to
the one before, having the task of converting the given data into an XML structure
that is compatible with the server then processing the answer returned to it by the
server.

Along with keeping up the connection with the server, the client also serves
as a controlling role a controlling function, for it is able to work with more than
one antenna, that are connected to the reading mechanism, simultaneously, while
also having the ability to clearly identify them too. This way, we can transmit
information regarding from which antenna the data came from. On top of all this,
(with the help of this), we can also monitor the “GPIO status” of the nodding
antennas (what kind of status was the given antenna in last time), because the dif-
ferent statuses are handled with different kinds of antenna identifications. (In order
to conduct indoor localization, we are using a certain type of intelligent antenna,
which can change the antenna characteristics, by determining the current status
of the transponders and using three integrated patch antennas. The antenna is
able to locate the transponders in a given location, by turning into the appropriate
direction (without mechanical movement).

The client decides exactly which reader, and which antenna should read with
what kind of specifications, while during runtime by switching between these, it
also governs the scanning of the given location. If necessary, it is able to modify
the signal strength of the reading, the reading modes, and controls the GPIO ports
of the antennas.

4. Conclusion

We can solve a lot of problems that affect or inhibit the use of RFID by extending
the software in this direction and by the application of mathematical estimate, and
we can give proper answer to the problem, what has been presented previously in
this article.

In our opinion the system constructed by us can be used to the extension of
localization processes based on RFID, and we can achieve a goal presented in the

174 Z. Ruzsa, Zs. Parisek, R. Király, T. Tómács, T. Szakács, H. Hajagos

introduction, so we can cover quite large areas by using a smaller amount of readers,
and this way we can use much less resources and smaller expenses.

With the help of the above stated model we can estimate the position of those
transponders that are temporarily uncovered, but they are known to be positioned
within the examined area. The implemented version can decide where most proba-
bly the object to be localized is, among the temporarily or permanently uncovered
discreet areas.

The arguments and the implemented algorithms presented by us help the de-
velopment and realization of the IOT (Internet of Things) conception since we will
be able to identify the devices and their positions as well as the routes that they
have covered.

References

[1] Bánlaki, J., Hoffmann, M., Juhász, T., UHF RFID tags with user interface
– the ability of individual control and a new source of information, RFID Journal,
2014.

[2] Intelliflex On-Demand Data Visibilty – Intelliflex Readers, http://www.
intelleflex.com/Products.asp

[3] Intermec By Honeywell, http://www.intermec.com/

[4] Qiang Le and Lance M Kaplan., Design of operation parameters to resolve
two targets using proximity sensors. In Information Fusion (FUSION), 2010 13th
Conference on, pages 1–8. IEEE, 2010.

[5] Qiang Le and Lance M Kaplan., Target localization using proximity binary
sensors. In Aerospace Conference, 2010 IEEE, pages 1–8. IEEE, 2010.8

[6] J Miguez and A Artes-Rodriguez., Monte carlo algorithms for tracking a ma-
neuvering target using a network of mobile sensors. In Computational Advances in
Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on, pages
89–92. IEEE, 2005.

[7] Ruixin Niu and P Varshney., Target location estimation in wireless sensor net-
works using binary data. In Proceedings of the 38th Annual Conference on Informa-
tion Sciences and Systems, Princeton, NJ, 2004.

[8] Ruşen Öktem and Elif Aydin., An rfid based indoor tracking method for navi-
gating visually impaired people. Turk J Elec Eng and Comp Sci, 18(2),2010.

[9] Mahesh Vemula, Joaquín Miguez and Antonio Artes-Rodriguez., A sequen-
tial monte carlo method for target tracking in an asynchronous Positioning, Naviga-
tion and Communication, 2007. WPNC ’07. 4th Workshop on, 22-22 March 2007,
pages.: 49 - 54, E-isbn: 1-4244-0871-7, Printed ISBN: 1-4244-0871-7. Location.:
Hannover

[10] The REST protocoll - Representational State Transfer. https://www.
ics.uci.edu/~fielding/pubs/dissertation/rest/

[11] JBoss AS 7.1 http://jbossas.jboss.org/

Building of a mathematics-based RFID localization framework 175

[12] Java EE 6 javax.ws.rs Package High-level interfaces and annotations used to
create RESTful service resources http://docs.oracle.com/javaee/6/api/javax/
ws/rs/package-summary.html

[13] Hypertext Transfer Protocol http://www.w3.org/Protocols

[14] PostgreSQL 9.3 http://www.postgresql.org/about/news/1481/

[15] Object/Relational Mapping http://hibernate.org/orm/

176 Z. Ruzsa, Zs. Parisek, R. Király, T. Tómács, T. Szakács, H. Hajagos

Optimization of coefficients of lists of
polynomials by evolutionary algorithms

J. Rafael Sendraa, Stephan M. Winklerb

aUniversity of Alcalá, Department of Physic and Mathematics
Rafael.Sendra@uah.es

bUpper Austria University of Applied Sciences,
Heuristic and Evolutionary Algorithms Laboratory

Stephan.Winkler@fh-hagenberg.at

Submitted July 30, 2014 — Accepted December 12, 2014

Abstract

We here discuss the optimization of coefficients of lists of polynomials
using evolutionary computation. The given polynomials have 5 variables,
namely t, a1, a2, a3, a4, and integer coefficients. The goal is to find integer
values αi, with i ∈ {1, 2, 3, 4}, substituting ai such that, after crossing out
the gcd (greatest common divisor) of all coefficients of the polynomials, the
resulting integers are minimized in absolute value. Evolution strategies, a
special class of heuristic, evolutionary algorithms, are here used for solving
this problem. In this paper we describe this approach in detail and analyze
test results achieved for two benchmark problem instances; we also show a
visual analysis of the fitness landscapes of these problem instances.

Keywords: Optimization of parametrizations, symbolic computation, evolu-
tionary computation, evolution strategies.

MSC: 65K10, 68T05, 68W30

1. Problem statement

In this section, trying to avoid as much as possible mathematical technicalities, we
describe the problem, and we explain its interest in the field of mathematics.

Annales Mathematicae et Informaticae
44 (2015) pp. 177–185
http://ami.ektf.hu

177

The problem statement. We are given a list with infinitely many (at least 3)
non-constant polynomials (L = [p1; p2; . . . ; pn]). These polynomials have 5 vari-
ables, namely t, a1, a2, a3, a4, and integer coefficients. The problem consists in
finding integer values α1, α2, α3, and α4 for a1, a2, a3, and a4 such that:

1. α1α4 − α2α3 6= 0

2. We substitute a1 = α1, a2 = α2, a3 = α3, a4 = α4, in L. This yields L′(α), a
list of polynomials with one variable, namely t, and integer coefficients. We
cross out the greatest common divisor (gcd) of all non-zero coefficients of the
polynomials in L′(α) to get a new list L′′(α).

The goal is to find that substitution ai = αi, i ∈ {1, 2, 3, 4}, so that the maximum
of the absolute values of all the coefficients of all polynomials in L′′(α) is minimum.

An illustrating example. We consider the list with three polynomials L =
[p1; p2; p3] where

p1(t) = 13923t2a1
2 + 5474t2a1a3 − 1904t2a3

2 + 27846ta1a2 + 5474ta1a4

+ 5474ta2a3 − 3808ta3a4 + 13923a2
2 + 5474a2a4 − 1904a4

2

p2(t) = 7564t2a1
2 − 10298t2a1a3 − 990t2a3

2 + 15128ta1a2 − 10298ta1a4

− 10298ta2a3 − 1980ta3a4 + 7564a2
2 − 10298a2a4 − 990a4

2

p3(t) = 15845t2a1
2 − 106t2a1a3 + 2146t2a3

2 + 31690ta1a2 − 106ta1a4

− 106ta2a3 + 4292ta3a4 + 15845a2
2 − 106a2a4 + 2146a4

2

If we substitute a1 = 1, a2 = 1, a3 = 1, a4 = 1 we get

L′(α) = [17493t2+34986t+17493;−3724t2−7448t−3724; 17885t2+35770t+17885]

Since gcd(17493, 34986, 17493,−3724,−7448,−3724, 17885,35770, 17885) = 49, one
gets L′′(α) = 1/49L′(α), that is

L′′(α) = [357t2 + 714t+ 357;−76t2 − 152t− 76; 365t2 + 730t+ 365]

and the maximum, in absolute value, is 730. However, if we take a1 = 45, a2 =
11, a3 = 31, a4 = −122 the new list is

L′(α) = [34000561t2 − 34000561; 68001122t; 34000561t2 + 34000561].

The corresponding gcd is now 34000561. Therefore

L′′(α) =
1

34000561
L′(α) = [t2 − 1; 2t; t2 + 1]

whose maximum, in absolute value, is 2.

178 J. R. Sendra, S. M. Winkler

The mathematical origin of the problem. This optimization question, we
are dealing with, comes from a central problem in the field of the symbolic com-
putation of algebraic curves (see [6] for further details), appears in many compu-
tational aspects of the practical applications of curves and is, to our knowledge,
not solved. Let us first motivate the problem: In many practical applications, such
as in computed aided geometric design, in physics, etc., one deals with parametric
representations of a curve. For instance, if we have to compute a line integral along
an arc of the curve of equation y3 = x2, we might use the parametric representation
x = t3, y = t2 of the curve. In general a rational parametrization of a curve, say
for simplicity planar, is a nonconstant pair

(
p1(t)

q(t)
,
p2(t)

q(t)

)

where p1, p2, q are polynomials in the variable t. The difficulty here is the fol-
lowing: If we replace t by a polynomial or by a rational function, then we get
another parametrization of the same object; for instance, in the example above,
(1000t3, 100t2) and ((t2 + 1)3, (t2 + 1)2) are also parametrizations of y3 = x2.
Thus, we have infinitely many possibilities, but some parametrizations are more
complicated and increase the computational time when using them. The question
is how to choose the simplest parametrization. Achieving an optimal degree in the
polynomials is solved by means of symbolic deterministic algorithms (see [6]). How-
ever, the question of determining a parametrization with the smallest (in absolute
value) integer coefficients is open. Here, in this paper, we show how to approach
the problem by means of evolutionary algorithms.

In order to translate the original parametrization problem into the the prob-
lem stated above, we use Lüroth’s theorem that establishes how all parametriza-
tions, with optimal degree, are related. More precisely, if P(t) = (P1(t)

Q(t) ,
P2(t)
Q(t)) is

a parametrization with optimal degree and integer coefficients, then all the other
parametrizations with optimal degree and integer coefficients are of the form

P
(
a1t+ a2
a3t+ a4

)
=

P1

(
a1t+ a2
a3t+ a4

)

Q

(
a1t+ a2
a3t+ a4

) ,
P2

(
a1t+ a2
a3t+ a4

)

Q

(
a1t+ a2
a3t+ a4

)

 ,

where a1, a2, a3, a4 are integers such that a1a4−a2a3 6= 0. Simplifying this expres-
sion, we get the three polynomials in the variables t, a1, a2, a3, a4.

Revisiting the illustrating problem. We are given the parametrization

P(t) =
(
13923 t2 + 5474 t− 1904

15845 t2 − 106 t+ 2146
,
7564 t2 − 10298 t− 990

15845 t2 − 106 t+ 2146

)

Performing the formal substitution t = a1t+a2

a3t+a4
, simplifying expressions and collect-

ing numerators and denominators in a list we get the list L = [p1; p2; p3] of the three

Optimization of coefficients of lists of polynomials by evolutionary algorithms 179

polynomials shown above. Now, after taking a1 = 45, a2 = 11, a3 = 31, a4 = −122,
we get the parametrization

P
(

45t+ 11

31t− 122

)
=

(
t2 − 1

t2 + 1
,

2t

t2 + 1

)
.

The parametrization in this example corresponds to the unit circle x2 + y2 = 1.

2. Parameter optimization by evolutionary
algorithms

Evolution strategies (ES; [4], [5]), beside genetic algorithms (GA; [2], [1]) the second
major representative of evolutionary computation, are here used for optimizing
α1, . . . , α4. ES are population based, i.e., each optimization process works with
a population of potential solution candidates that are initially created randomly
and then iteratively optimized. In each generation, new solution candidates are
generated by randomly selecting parent individuals and forming new individuals
applying mutation and (optionally) crossover operators; λ children are produced
by µ parent individuals.

By offspring selection, the best children are chosen and become the parents of
the next generation. Typically, parent selection in ES is performed randomly with
no regard to fitness; survival in ESs simply saves the µ best individuals, which is
only based on the relative ordering of their fitness values. Basically, there are two
selection strategies for ESs:

• The (µ, λ)-strategy (“comma selection”): µ parents produce λ children; the
best µ children are selected and form the next generation’s parents.

• The (µ+λ)-strategy (“plus selection”): µ parents produce λ offspring; parents
and children form a pool of potential new parents, and the best µ individuals
are selected from this pool to become the next generation’s parents.

Thus, the main driving forces of optimization in ESs are offspring selection
and mutation. For the optimization of vectors of real values, mutation is usually
implemented as additive Gaussian perturbation with zero mean or multiplicative
Gaussian perturbation with mean 1.0. Mutation strength control [4] is based on
the quotient of the number of the successful mutants (i.e., those that are better
than their parents): If this quotient is greater than 1/5, then the mutation variance
is to be increased; if the quotient is less than 1/5, the mutation variance should be
reduced.

180 J. R. Sendra, S. M. Winkler

Encode the

problem

Create

(random) initial

population

Evaluate

individuals

Evaluate

individuals

Parent

Selection
Mutation (Crossover)

Offspring

Selection

End

Termination

criterion

fulfilled?

Create new generation

Yes

No

Figure 1: The main workflow of an evolution strategy

3. Test series

3.1. Problem instances
We have used the following two test instances:

• The example (Ex1) introduced in Section 1

• The second example (Ex2) is defined as L2 = [p1; p2; p3] with

p1 = 1685t2a1
2 + 2252t2a1a3 + 769t2a3

2 + 3370ta1a2 + 2252ta1a4

+ 2252ta2a3 + 1538ta3a4 + 1685a2
2 + 2252a2a4 + 769a4

2

p2 = −627t2a12 − 1148t2a1a3 − 481t2a3
2 − 1254ta1a2 − 1148ta1a4

− 1148ta2a3 − 962ta3a4 − 627a2
2 − 1148a2a4 − 481a4

2

p3 = 2467t2a1
2 + 3235t2a1a3 + 1069t2a3

2 + 4934ta1a2 + 3235ta1a4

+ 3235ta2a3 + 2138ta3a4 + 2467a2
2 + 3235a2a4 + 1069a4

2

For this example, taking α1 = −25, α2 = 12, α3 = 34, α4 = −23 (note that
α1α4 − α2α3 = 167 6= 0) we get

L′ = [27889t2 + 27889; 27889t2 − 27889; 27889t2 + 27889t+ 27889].

The gcd is 27899 and L′′ = [t2 +1; t2− 1; t2 + t+1] and the maximum of the
absolute values is 1, which is clearly optimal.

3.2. Algorithm configurations
The following 10 algorithm variants have been used for solving the problems defined
in the previous section:

Optimization of coefficients of lists of polynomials by evolutionary algorithms 181

Population Number of Selection
size (µ) children (λ) mechanism

Settings 1 100 1,000 comma
Settings 2 100 10,000 comma
Settings 3 100 1,000 plus
Settings 4 100 10,000 plus
Settings 5 1,000 10,000 comma
Settings 6 1,000 100,000 comma
Settings 7 1,000 10,000 plus
Settings 8 1,000 100,000 plus
Settings 9 10,000 100,000 comma
Settings 10 10,000 100,000 plus

Table 1: Algorithm parameter settings used for solving the here
discussed coefficients optimization problem.

The range of values for initial solution candidates was set to ±200. For cre-
ating offspring we have used multiplicative mutation: The average value of the
multiplication factors µ was set to 1.0, the standard deviation σ was initially set
to 1.0 and according to the 1/5 success rule updated after each generation (with
multiplicative factor / divisor 0.9).

3.3. Results

We have executed ES test series using all parameter configurations defined previ-
ously; each algorithm configuration was executed 5 times independently, and for
guaranteeing a fair comparison of results the maximum number of evaluations used
as termination criterion was set to 1,000,000. Thus, the number of generations ex-
ecuted was not equal for all test configurations.

The results achieved in these test series are summarized in Table 2.

We see that the success rate for small populations is very low, when using bigger
populations (with size 1,000 or 10,000) the results are significantly better; when
using populations of size 1,000, then significantly better results are achieved using
higher selection pressure, i.e. selecting the 1,000 best out of 100,000 offspring each
generation.

Problem Ex1 seems to be harder for the algorithm than Ex2. For Ex1 the
algorithm was able to find the optimal solution at least once using settings 8 and
10; for Ex2 the algorithm was successful in finding the optimum in 4 or 5 out of 5
runs using the settings 6, 8, 9, and 10.

182 J. R. Sendra, S. M. Winkler

Problem instance Ex1 Problem instance Ex2
Settings 1 4807.4 483.6
Settings 2 1270.6 402.2
Settings 3 2136.6 671.0
Settings 4 438.2 3.8
Settings 5 854.4 110.6
Settings 6 160.0 1.0
Settings 7 120.4 21.2
Settings 8 58.2 1.2
Settings 9 230.8 1.4
Settings 10 35.4 1.6

Table 2: Test results. For each algorithm configuration we give
the average result qualities achieved for problem instances Ex1 and

Ex2.

Fitness Landscape analysis [3] methods can be used for estimating an optimiza-
tion problem’s hardness. As we see in Figures 2 and 3, the fitness landscape of the
here used problem instances Ex1 and Ex2 are very rugged, which makes it very
hard for optimization algorithms to find optimal solutions.

Figure 2: Fitness landscape analysis for example Ex1. We have
created 40,000 solution candidates for Ex1 that are arranged on
the x-y-plane; the optimal solution discussed in Section 1 (a1 =
45, a2 = 11, a3 = 31, a4 = −122) is positioned at (1,1), and at all
other cells are assigned solution candidates that are produced by
mutating one of their neighbors (using σ = 1.0). On the z-axis
we draw the fitness of the so created solution candidates for Ex1.
We see high fluctuations of the fitness values which indicates that

fitness values of neighboring solutions vary significantly.

Optimization of coefficients of lists of polynomials by evolutionary algorithms 183

Figure 3: Fitness landscape analysis for example Ex2. All possible
solution candidates for the here used problem with α1 and α3 set
optimally (α1 = −25, α3 = −34) are created, their fitness is drawn
on the z-axis. We see that even when setting two of four parameters

optimally, the resulting fitness landscape is very rugged.

4. Conclusion, outlook

Future work will concentrate on the improvement of mutation and selection opera-
tors for this problem class in order to solve problem instances involving significantly
bigger coefficients. Additionally, we are working on strategies to decrease the search
space. We are also working on the integration of the here discussed class of prob-
lems in HeuristicLab [7], a framework for heuristic and evolutionary algorithms that
is developed by members of the Heuristic and Evolutionary Algorithms Laboratory
(HEAL).

Acknowledgements. The authors thank Franz Winkler at the Research Insti-
tute for Symbolic Computation, Johannes Kepler University Linz, for his advice.
R. Sendra is partially supported by the Spanish Ministerio de Economía y Competi-
tividad under the project MTM2011-25816-C02-01 and is a member of the Research
Group ASYNACS (Ref. CCEE2011/R34). The authors also thanks members of
the Heuristic and Evolutionary Algorithms Laboratory as well as of the Bioinfor-
matics Research Group, University of Applied Sciences Upper Austria, for their
comments.

184 J. R. Sendra, S. M. Winkler

References

[1] M. Affenzeller, S. M. Winkler, S. Wagner, and A. Beham. Genetic Algorithms and
Genetic Programming - Modern Concepts and Practical Applications. Chapman &
Hall / CRC, 2009.

[2] J. H. Holland. Adaption in Natural and Artifical Systems. University of Michigan
Press, 1975.

[3] E. Pitzer. Applied Fitness Landscape Analysis. PhD thesis, Institute for Formal Models
and Verification, Johannes Kepler University Linz, 2013.

[4] I. Rechenberg. Evolutionsstrategie. Friedrich Frommann Verlag, 1973.

[5] H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolu-
tionsstrategie. Birkhäuser Verlag, Basel, Switzerland, 1994.

[6] J. R. Sendra, F. Winkler, and S. Perez-Díaz. Rational Algebraic Curves: A Com-
puter Algebra Approach. Algorithms and Computation in Mathematics. Volume 22.
Springer-Verlag Heidelberg, 2007.

[7] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer,
S. Vonolfen, M. Kofler, S. Winkler, V. Dorfer, and M. Affenzeller. Advanced Meth-
ods and Applications in Computational Intelligence, volume 6 of Topics in Intelligent
Engineering and Informatics, chapter Architecture and Design of the HeuristicLab
Optimization Environment, pages 197–261. Springer, 2014.

Optimization of coefficients of lists of polynomials by evolutionary algorithms 185

Real time human activity monitoring∗

József Sütő, Stefan Oniga, Attila Buchman

University of Debrecen
Faculty of Informatics

suto.jozsef@inf.unideb.hu

Submitted August 28, 2014 — Accepted January 24, 2015

Abstract

Human activity monitoring is one of those research areas whose impor-
tance and popularity have notably increased in recent years. The popularity
of this topic increased in the previous years. Most of the used movement
analysis techniques in the area are based on the measurement of the acceler-
ation change of different parts of the body. This is done by attaching one or
more little devices with an accelerometer to the body of the observed patient.
Usually, the role of the body-attached devices are only data acquisition, the
processing of the acquired data happens offline. This article presents a new
solution for this task which combines digital time-frequency signal processing
with a parallel programming approach.

Keywords: movement analysis, Raspberry Pi, accelerometer, signal process-
ing, parallel programming

MSC: 92C50

1. Introduction

Accelerometer-based activity monitoring devices are becoming more popular. By
activity monitoring, we can obtain information about the health and mental status
of the observed person. Many articles deal with the possibilities of the informa-
tion which comes from the accelerometers [1-6]. Those studies demonstrate that
movement classification is possible by accelerometers. Sometimes the sensors are
attached to the fix points of the body: chest, hip, etc. In this case, the center of

∗The publication was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The
project has been supported by the European Union, co-financed by the European Social Fund.

Annales Mathematicae et Informaticae
44 (2015) pp. 187–196
http://ami.ektf.hu

187

the observation is the whole body and one sensor is enough [1, 2]. In other cases,
when we examine walking patterns or postures, the sensors are attached to different
parts of the body: head, trunk, foot, tibia [3, 4, 5, 6].

Activity analysis is a very extended research area. It includes the monitoring of
patients who suffer from fall, back pain, overweight, physiological tremors, mental
disorders and other kinds of diseases (Parkinson disease, osteoarthritis) [2, 4, 6].
Another research field of this topic is movement pattern recognition. It includes
the main activities of daily living: sitting, standing, walking, jogging, running and
climbing stairs. Beyond the main activities, the importance of the unexpected
events such as different kinds of fall rises at elderly patients [7, 8, 9, 10]. The
movement analysis can help support elderly people in their everyday life. The
number of ageing population is rapidly growing thus the demand of assisted living
systems will gradually increase [1].

The aim of this study is to present a method of activity classification, and in
addition, to create a real time system which monitors the daily activities of an
observed patient. The observed patient should wear the device during the day.
Therefore, the device have to be portable and small. One of the most important
criteria of the device is the cost. Since the system consists of only one data collector
device, the cost of the system is low. Obviously, more data collector devices and
sensors require higher cost. Another criteria is independence. This means that
hospital environment is not necessary to the observation. The system facilitates
self-care and enhances the independence of the patients against the public health
systems.

The data collector device is a Raspberry Pi (RPi) with an ADXL345 (3-axis)
accelerometer and a Roving RN-171 WIFI module. The device was fixed into a
thin plate which provides stable position on the chest. There is a Linux operation
system on the RPi, therefore the developer can easily create high level programs.
Figure 1 shows the constructed device.

The disadvantage of most analysis techniques is the offline mode [1-6]. In this
case, the analysis take place after the data acquisition on a computer by some well
known software (Matlab, Labview, etc.). In contrast, our method works in real
time. This is the first difference between previous techniques and our method. The
same device performs the data acquisition and data evaluation simultaneously, the
two tasks run in parallel on the device.

In our system an individual pattern recognition technique was applied for this
problem which works better than the correlation or artificial neural network based
pattern recognition techniques [11]. This simple technique runs an ideal pattern
through the time varying signal and calculates the shifted and summarised square
error (SSE). Every activity has an own rhythm which describes a periodical pattern.
If an algorithm can recognise the patterns, then it can define the current movement.

188 J. Sütő, S. Oniga, A. Buchman

Figure 1: The applied data collector device

2. Parallel operation

On the RPi a C++ program performs the data acquisition and data evaluation. In
the C++ code the POSIX thread or Pthread library allows parallel programming
[12]. Pthread is a set of C programming types and procedure calls. The data acqui-
sition and the analysis are independent tasks which can be executed concurrently.
The analyser program uses two threads. The main thread collects the measured ac-
celeration components and an auxiliary thread performs the data analysis. Figure
2 illustrates the parallelized data collection and evaluation.

While the device is active, the data acquisition function runs continuously and
stores the collected data in buffers. Currently, the data acquisition frequency is
100 Hz and the buffer size is 28. Consequently, the analyser method splits the
continuous signal to short parts (about 2.5 seconds long) and tries to decide the
current activity. When the buffers are full, the auxiliary thread starts and gets
a void* structure which includes the buffers. Pthread permits to pass only one
argument to the new thread, therefore every argument have to be embedded into
a structure. The auxiliary thread will call the digital signal processing (DSP) and
pattern recognition functions. Furthermore, the auxiliary thread is responsible for
the storage and notification.

If the data analysis finishes, the decision about the movement will be stored in
a file and sent to a server in IP packet. A strict rule, that the auxiliary thread have
to be faster than the data acquisition process. Thereby, the program can avoid
thread collision.

Real time human activity monitoring 189

Figure 2: The structure of parallel operation. The *x, *y, *z are
buffers which contain the x, y, z components of the accelerometer
and *G buffer includes the normalised acceleration magnitude.

3. Description of the method

The activity analysis is based on time-frequency signal processing. First, the algo-
rithm categorises the acquired signal in the frequency domain. In the next step,
according to the frequency category, it will search the possible patterns which be-
long to the assigned category. The detected pattern will identify the movement
type. Figure 3 illustrates the flowchart of the applied algorithm.

On figure 3 there is an unknown activity state. It means that, if the examined
signal contains an incomprehensible sequence, the algorithm will not give decision.

During the acquisition process, the program calculates the normalised acceler-
ation magnitude (G[i]) from the collected parameters (x, y, z).

G[i] =

√
x[i]2 + y[i]2 + z[i]2

1g

where 1g depends on the resolution of the accelerometer. The G characterises the
change in the movement, thus it will be the key in the analysis [1, 7]. Firstly, the
frequency coefficients of the G signal will be calculated. Before the fast Fourier
transformation (FFT), the signal was diluted and windowed with a Blackman-
Nuttall window in order to minimize the leakage and separate the closely spaced
frequencies [15, 16]. The length of the signal influences the frequency resolution.
Consequently, if the frequency resolution is higher, then the frequency categorisa-
tion is easier. The real signal size is 28 which will be diluted to 29 with zeros. After
the dilution the extended signal will be multiplied with the window function.

In order to the auxiliary thread can analyse the G signal faster than the data
acquisition (less than 2.5 seconds), we created an optimized FFT algorithm to

190 J. Sütő, S. Oniga, A. Buchman

Figure 3: The flowchart of the algorithm

calculate the frequency coefficients [13]. Since, the signal length is fix and the FFT
runs periodically in the program therefore worth to store the “twiddle-factors” into
memory as pre-defined constants. Generally the radix-2 FFT can be written as,

X(k) = E(k) +W k
NO(k) k = 0, 1, . . . ,

N

2
− 1

X(k) = E(k − N

2
)−W k

NO(k − N

2
) k =

N

2
, . . . , N − 1.

In the equation E(k) and O(k) contain the frequency coefficients to the even and
odd elements and W k

N for k = 0, ..., N − 1 is the N ′th root of unity [18]. If we take
advantage of the relations between W k

N factors (3.1), we will save memory because
it is enough to store one-fourth of factors.

W
k+N

4

NIm
= −W k

NRe

Real time human activity monitoring 191

W
k+N

4

NRe
=W k

NIm

W
k+N

2

N = −W k
N (3.1)

In the above formulas Re and Im refer to the real and imaginary parts of a complex
number. The Euler’s formula (3.2) allows the decomposition of theW k

N factors into
real and imaginary parts thus the real and imaginary parts of the factors will be
stored separately in the program.

W k
N = cos

(
k
2π

N

)
− i sin

(
k
2π

N

)
(3.2)

After the frequency coefficients are available, the algorithm searches the max-
imum value inside a specified frequency interval. The frequency categories bound
an interval between 0.8 Hz and 3.8 Hz. The maximum value defines the activity
category. Table 1 contains the applied frequency categories and an approximate
frequency interval. Actually, the data is stored in binary form thus the frequency
intervals are based on the indexes (bins) of the frequency vector.

Categories Min frequency Max frequency
1. 0.0 Hz 0.8 Hz
2. 0.81 Hz 2.25 Hz

2. - 3. 2.26 Hz 2.5 Hz
3. 2.51 Hz 2.65 Hz

3. - 4. 2.66 Hz 2.8 Hz
4. 2.81 Hz 3.8 Hz

Table 1: Frequency categories

According to the category, the appropriate pattern detection functions will be
used on the G signal. Therefore, the number of operations greatly decreases. Un-
fortunately, between some categories there is a narrow overlapping. In that case,
if the maximum coefficient is in the common area of two categories, then the algo-
rithm will search each patters which belong to the two adjacent categories. Figure
4 illustrates the frequency spectrum of some main activities.

The maximum frequency coefficient should higher than an appropriate ampli-
tude limit. In this case, a reliable limit is between 14.5 and 16.5. On the above
figure the blue lines indicate the frequency interval and the amplitude limit. If the
maximum is lower than the limit, then the movement is static. According to the
position the algorithm concludes the frequency category.

3.1. Pattern recognition

The pattern recognition starts with a median filtering with a seven samples length
window to reduce the noise on the G signal before the recognition [6, 7]. In the

192 J. Sütő, S. Oniga, A. Buchman

Figure 4: Frequency spectrum of some main activities

literature, one of the most common pattern recognition technique is the correla-
tion [17].

(f · g)[n] :=
N−1∑

m=0

f [m]g[m+ n]

where f and g are real vectors. However, in some cases the correlation does not
provide acceptable result. Consequently, we developed a simple and individual
pattern recognition method. The method is a combination of the square error and
the correlation. It can be characterized as a shifted and summarised square error
(SSE).

SSE(f, g)[n] :=
N−1∑

m=0

(f [m]− g[m+ n])2

In both cases, an ideal pattern (or kernel) with a special shape will pass through
the examined signal. In a correlated signal the peak(s) are higher when the simi-
larity between the pattern and the examined signal is large. However, in the SSE
the low parts indicate the high similarity. The difference between the correlation
and the SSE can be visualised with a simple example. The example compares two
similar activities: walking and the climbing of stairs. In the example the climbing
stairs pattern was used on the two activity sequences. In ideal case, if the sought

Real time human activity monitoring 193

Figure 5: Comparison of the two pattern recognition techniques

pattern does not appear in the signal, all resulted points have to be less or higher
as a well defined limit, according to the applied technique. Figure 5 presents the
result where the blue lines are imaginary limits to the two pattern recognition tech-
niques. As the example shows, the correlation can not separate the activities with
the used kernel. For instance, if we use the 76 (blue line) as limit, the same number
of points will be higher than the limit in both cases. In contrast, the SSE separates
the activities well. On figure 5 a lot of points belong under 5 of the climbing stairs
sequence while in the walk sequence every point is higher than 5.

4. Conclusion

The presented technique is well applicable for activity recognition. If an activity
describes an individual and periodic acceleration change then the presented recog-
nition algorithm will find the patterns. As figure 3 shows, if we know the frequency
interval and the described pattern of an activity, we can easily past the new ac-
tivity into the method. Obviously, an unexpected event such as a fall is similarly
recognizable because a fall (regardless of the direction) has a suddenly ascending
and then decaying acceleration fluctuation.

The ability to evaluate the movement types provides an exceptional source of
knowledge to doctors to diagnose patients. The movement analysis is a useful aid to

194 J. Sütő, S. Oniga, A. Buchman

detect potential causes of gait and lifestyles abnormalities [14]. As was mentioned
at the beginning of the article, human movement is researched in relation to a
lot of diseases, such us reduced mobility disorders (stroke, obesity), sclerosis and
Parkinson’s disease [2, 4, 14]. To sum up, human movement analysis provides much
information about the health condition of the observed patient.

Today, as the importance of research in the area of Future Internet is increasing,
applications of the so called Internet of Things (IoT) are becoming more and more
popular. The IoT is a network of different types of objects (people, sensors, devices,
etc.) which can communicate with each other via the Internet [19, 20, 21, 22]. The
presented solution to the activity recognition problem belongs to this branch of
research which is expected to be determinative in the following years.

References

[1] Smith, T.F., Waterman, M.S., Elderly activities recognition and classification
for applications in assisted living, Expert Systems with Applications, Vol. 40 (2013),
1662-1674.

[2] Godfrey, A., Bourke, K.A., Ólaighin, M.G., Ven de van, P., Nelson, J.,
Activity classification using a single chest mounted tri-axial accelerometer, Medical
Engineering & Physics, Vol. 33 (2011), 1127-1135.

[3] Lyons, M.G, Culhane, M.K., Hilton, D., Grace, A.P., Lyons, D., A descrip-
tion of an accelerometer-based mobility monitoring technique, Medical Engineering
& Physics, Vol. 27 (2005), 497-504.

[4] Kavanagh, J.J, Menz, B.H., Accelerometry: A technique for quantifying move-
ment patterns during walking, Gait & Posture, Vol. 28 (2008), 1-15.

[5] Forester, F., Smeja, M., Fahrenberg, J., Detection of posture and motion by
accelerometry: a validation study in ambulatory monitoring, Computers in Human
Behavior, Vol. 15 (1999), 571-583.

[6] Lugade, V., Fortune, E., Morrow, M., Kaufman, K., Validity of using tri-
axial accelerometers to measure human movement—Part I: Posture and movement
detection, Medical Engineering & Physics, Vol. 36 (2014), 169-176.

[7] Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jamsa, T., Compar-
ison of low-complexity fall detection algorithms for body attached accelerometers,
Gait & Posture, Vol. 28 (2008), 285-291.

[8] Chern-Sheng Lin, Hung Chun Hsu, Yun-Long Lay, Chuang-Chien Chiu,
Chi-Shih Chao, Wearable device for real-time monitoring of human falls, Measure-
ment, Vol. 40 (2007), 831-840.

[9] Bourke, K.A., O’Brien, V.J., Lyons, M.G., Evaluation of a threshold-based tri-
axial accelerometer fall detection algorithm, Gait & Posture, Vol. 26 (2007), 194-199.

[10] Ge Wu, Distinguishing fall activities from normal activities by velocity characteris-
tics, Journal of Biomechanics, Vol. 33 (2000), 1497-1500.

[11] Suto, J., Oniga, S., Testing artificial neural network for hand gesture recognition,
Creative Mathematics and Informatics, Vol. 22 (2013), 223-228.

Real time human activity monitoring 195

[12] Buttlar, D., Farrell, J., Nichols, B., PThreads Programming. O’Reilly Media,
USA (1996).

[13] Suto, J., Oniga, S., Hegyesi Gy., A simple fast Fourier transformation algorithm
to microcontrollers and mini computers, IEEE 18th International Conference on
Intelligent Engineering Systems, (2014), 61-65.

[14] Godfrey, A., Conway, R., Meagher, D., Ólaighin, G., Direct measurement of
human movement by accelerometry, Medical Engineering & Physics, Vol. 30 (2008),
1364-1386.

[15] Smith, W.S., The Scientist and Engineer’s Guide to Digital Signal Processing. Cal-
ifornia Technical Publisher, USA (1999).

[16] Lyons, G.L., Understanding Digital Signal Processing. Prentice Hall PTR, USA
(2001).

[17] Kammler, D.W., A First Course in Fourier Analysis. Cambridge University Press,
UK (2008).

[18] Mertins, A., Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms
and Applications. John Wiley & Sons, England (1999).

[19] Lung, C., Oniga, S., Buchman, A., Tisan, A., Wireless data acquisition system
for IoT applications, Carpathian Journal of Electronic and Computer Engineering,
Vol. 6 (2013), 64-67.

[20] Suto, J., Oniga, S., Orha, I., Microcontroller based health monitoring system,
IEEE 19th International Symposium for Design and Technology in Electronic Pack-
aging (SIITME), (2013), 227-230.

[21] Terdik, Gy., Gal, Z., Advances and practice in Internet of Things: A case study,
IEEE 4th International Conference on Cognitive Infocommunications, (2013), 435-
440.

[22] Berczes, T., Sztrik, J., Orosz, P., Moyal, P., Limnios, N., Georgiadis, S.,
Tool supported modeling of sensor communications networks by using finite-source
priority retrial queues, Carpathian Journal of Electronic and Computer Engineering,
Vol. 5 (2012), 13-18.

196 J. Sütő, S. Oniga, A. Buchman

Boundaries of membrane in P systems
relying on multiset approximation spaces

in language R

Péter Takácsa, Zoltán Ernő Csajbóka, Tamás Mihálydeákb

aDepartment of Health Informatics, Faculty of Health, University of Debrecen
{takacs.peter,csajbok.zoltan}@foh.unideb.hu

bDepartment of Computer Science, Faculty of Informatics, University of Debrecen
mihalydeak.tamas@inf.unideb.hu

Submitted September 11, 2014 — Accepted May 13, 2015

Abstract

Membrane computing is an area within computer science which aims to de-
velop a new computational model through the study of the characteristics of
biological cells. It is a distributed and parallel computing model. Commu-
nication between regions through membranes, as well as membrane system
and its environment, plays an important role in the process. Combination of
P system with multiset approximation space leads to the abstract concept of
‘to be close enough to a membrane’. The designated goal is to perform calcu-
lations in this two-fold system by the help of language R. Some packages can
perform calculations with multisets in R (such as ‘sets’ package), but they are
more closely linked to fuzzy systems. In this paper a new program library in
language R is initiated which had been created to encourage some fundamen-
tal calculations in membrane systems combined with multiset approximation
spaces. Data structures and functions are illustrated by examples.

Keywords: multiset approximation spaces, membrane computing, R language

MSC: 68U20

Annales Mathematicae et Informaticae
44 (2015) pp. 197–210
http://ami.ektf.hu

197

1. Introduction

The classical set theory does not enable multiply occurrences of the same objects.
However, the multiset theory provides the opportunity to do so [2, 14]. Membrane
computing also works with multisets [8, 9, 10, 11]. In [4, 5], the authors developed
an abstract concept of the ‘to be close enough to a membrane’. They used a
generalization of classical Pawlakian rough set theory for multisets which is called
the Pawlakian multiset approximation space (MAS). One part of the work is to
carry out related calculations in MAS quickly and accurately.

There are several packages in language R (e.g., package ‘sets’ [15]), which allows
multiset calculations. However, by the use of these applications, it is difficult to
perform MAS calculations. The goal of this paper is to present R functions which
facilitate in a quick and easy manner to perform all the most important calculations
in membrane system combined with MAS. In Section 2, some initial relations
and operations for multisets with illustrative R examples are described. Then,
in Section 3 and 4, R functions for Pawlakian multiset approximation spaces are
introduced in order to apply them to membrane computing.1

2. Multiset functions in R

2.1. Multisets

Let U be a finite nonempty set called the universe. A multiset (or mset) M over
U is a mapping M : U → N∪{∞} (N is the set of natural numbers). For instance,
if a ∈ U and M is a multiset with three occurrences of a, then M(a) = 3. This
fact is often referred to as a3. In general, if more than one element are repeated
in a multiset, it is usually expressed in power form. For example, M = a3b2 is a
multiset with three a’s and two b’s. M is empty multiset, denoted by ∅, ifM(a) = 0
(a ∈ U).

Let MS(U) denote the set of all multisets over U . M ∈ MS(U) is finite, if
M(a) <∞ (a ∈ U). A macroset M is a set of finite multisets [3]. In the framework
the following two fundamental macrosets are used:

• MSn(U) (n ∈ N) is the set of all multisets M such that M(a) ≤ n (a ∈ U);

• MS<∞(U) =
⋃∞

n=0MSn(U).

Let us note thatMS0(U) = ∅ andMSn(U) $MSn+1(U) (n = 0, 1, 2, . . .).
Some basic R functions over MS<∞(U) have been developed to calculate the

multiset relations and operations. Let M , M1, M2 ∈MS<∞(U).
Set-theoretical relations for multisets implemented in R are the following:

• Multiplicity relation: a E M (a ∈ U) if M(a) ≥ 1.

1There is no room here to describe R functions in code level. We send it to everyone who is
interested in.

198 P. Takács, Z. E. Csajbók, T. Mihálydeák

• Equality relation is: M1 =M2 if M1(a) =M2(a) (a ∈ U).

• Inclusion relation: M1 vM2 if M1(a) ≤M2(a) (a ∈ U).

Set-theoretical operations for multisets implemented in R are the following:

• Set-type union: (M1 tM2)(a) = max{M1(a),M2(a)} (a ∈ U).

• Intersection: (M1 uM2)(a) = min{M1(a),M2(a)} (a ∈ U).

• Multiset addition: (M1 ⊕M2)(a) =M1(a) +M2(a) (a ∈ U).

• n-times addition (n ∈ N): it is given by the following inductive definition:

1. ⊕0M = ∅
2. ⊕1M =M

3. ⊕nM = ⊕n−1M ⊕M (n > 1).

• Multiset subtraction: (M1 	M2)(a) = max{M1(a)−M2(a), 0} (a ∈ U).

By the help of n-times addition, a new multiset relation can be defined:

• n-times inclusion relation (n ∈ N): Let M1 6= ∅. M1 vn M2 if ⊕nM1 v M2

but ⊕n+1M1 6vM2.

2.2. Implementation of multiset relations
Throughout our implementation, it is assumed that the universe U is finite, fixed
and its elements are totally ordered.

Implemented R functions are demonstrated by the help of a running example.
To this end, first, let U = {a, b, c, d, e} with the natural English alphabet ordering.
It will be given as the fixed universe with the following command:

> U <- c("a","b","c","d","e").
Remark 2.1. Here and later on, ’>’ denotes the R prompt. c() is the concatenation
function in R. Therefore, the universe U in R can be viewed as the string "abcde".

Each multiset is described in Parikh vector representation form. This means
that the elements which are not actually included in the multiset are indicated by
zero exponent. For instance, let us take the multisetM = ce5. Its R representation
in Parikh vector form is a0b0c1d0e5, whereas its R realization is:

> M <- c(0,0,1,0,5).
Remark 2.2. M in R can be viewed as the string "00105".

Turning to the implementation of multiset relations, the first function is a tech-
nical one. It is a verification function which is called for every relation and opera-
tion.

mcheck(mS, SU)
Parameters: multiset mS; universe SU.

Boundaries of membrane in P systems relying on multiset approximation spaces. . . 199

Description: This function checks the number of elements of multiset mS. If the
cardinality of distinct elements in mS is equal to the cardinality of SU, the func-
tion returns 1, otherwise it returns 0.

The next three functions realize the set-theoretical relations for multisets.

min(mS, o, SU) – Multiplicity relation
Parameters: multiset mS, object o ∈ SU; universe SU.
Description: This function checks the membership of o in mS. It returns 1 if
mS(o) ≥ 1, otherwise it returns 0.

Example 2.3. Multiplicity relation
> M <- c(1,2,3,0,0) M = ab2c3

> min(M,"a",U)
[1] 1 a E M
> min(M,"e",U)
[1] 0 e 6E M

Remark 2.4. Result of R command, if any, is located in its underlying row beginning
with ’[1]’ sign. ’|’ is a selector line which separates the mathematical formulae (the
second column) from their implementations in R (the first column).

mequal(mS1, mS2, SU) – Equality relation
Parameters: multisets mS1, mS2; universe SU.
Description: This function checks the equality relation of two multisetsmS1,mS2.
It returns 1 if mS1 and mS2 are equal, otherwise it returns 0.

Example 2.5. Equality relation
> M1 <- c(0,0,1,0,5) M1 = ce5

> M2 <- c(3,2,0,1,0) M2 = a3b2d
> mequal(M1,M1,U)
[1] 1 M1 = ce5 = ce5 =M1

> mequal(M1,M2,U)
[1] 0 M1 = ce5 6= a3b2d =M2

mpartof(mS1, mS2, SU) – Inclusion relation
Parameters: multisets mS1, mS2; universe SU.
Description: This function checks whether mS1 is included in mS2 or not. It
returns 1 if the multiset mS1 is part of the multiset mS2, otherwise it returns 0.

Example 2.6. Inclusion relation
> M3 <- c(0,0,2,1,5) M3 = c2de5

> mpartof(M1,M3,U)
[1] 1 M1 = ce5 v c2de5 =M3

> mpartof(M1,M2,U)
[1] 0 M1 = ce5 6v a3b2d =M2

200 P. Takács, Z. E. Csajbók, T. Mihálydeák

2.3. Implementation of basic multiset operations
In demonstration examples, these multisets will be used in the following:

> W1 <- c(0,0,1,0,5) W1 = ce5

> W2 <- c(3,2,0,1,0) W2 = a3b2d
> W3 <- c(1,2,3,4,0) W3 = ab2c3d4

> W4 <- c(3,1,0,0,0) W4 = a3b
> W5 <- c(1,1,2,3,0) W5 = abc2d3

munion(mS1, mS2, SU) – Set-type union
Parameters: multisets mS1, mS2; universe SU.
Description: This function computes the set-type union of multisets mS1, mS2.

Example 2.7. Set-type union
> munion(W4,W5,U)
[1] 3 1 2 3 0 W4 tW5 = a3bc2d3

mintersec(mS1, mS2, SU) – Intersection
Parameters: multisets mS1, mS2; universe SU.
Description: This function computes the intersection of multisets mS1, mS2.

Example 2.8. Intersection
> mintersec(W2,W3,U)
[1] 1 2 0 1 0 W2 uW3 = ab2d

madd(mS1, mS2, SU) – Multiset addition
Parameters: multisets mS1, mS2; universe SU.
Description: This function computes the multiset addition of multisetsmS1, mS2.

Example 2.9. Multiset addition
> madd(W4,W5,U)
[1] 4 2 2 3 0 W4 ⊕W5 = a4b2c2d3

mnadd(mS, n, SU) – n-times addition
Parameters: multiset mS, n ∈ N; universe SU.
Description: This function computes n-times addition of multiset mS.

Example 2.10. n-times addition
> mnadd(W1,0,U)
[1] 0 0 0 0 0 ⊕0W1 = ∅
> mnadd(W1,1,U)
[1] 0 0 1 0 5 ⊕1W1 = ce5

> mnadd(W1,3,U)
[1] 0 0 3 0 15 ⊕3W1 = c3e15

Boundaries of membrane in P systems relying on multiset approximation spaces. . . 201

mdiff(mS1, mS2, SU) – Multiset subtraction
Parameters: multisets mS1, mS2; universe SU.
Description: This function computes the multiset subtraction of multisets mS1,
mS2.

Example 2.11. Multiset subtraction
> mdiff(W3,W2,U)
[1] 0 0 3 3 0 W3 	W2 = c3d3

mnpartof(mS1, mS2, SU) n-times inclusion relation
Parameters: multisets mS1(6= ∅), mS2; universe SU.
Description: This function determines how many times mS1 is included in mS2.
It returns n(∈ N) if ⊕nmS1 vmS2 but ⊕n+1mS1 6vmS2.

Example 2.12. n-times inclusion relation
> M <- c(0,0,0,0,0) M = ∅
> M1 <- c(0,0,1,3,0) M1 = cd3

> M2 <- c(0,0,1,3,1) M2 = cd3e
> M3 <- c(1,0,3,11,1) M3 = ac3d11e
> mnpartof(M3,M,U)
[1] 0 M3 v0 M = ∅
> mnpartof(M1,M2,U)
[1] 1 M1 v1 M2 (i.e., M1 vM2)
> mnpartof(M1,M3,U)
[1] 3 M1 v3 M3

3. Calculation in Pawlakian multiset approximation
spaces

3.1. Pawlakian multiset approximation spaces
To define the abstract notion of boundaries in membrane systems, rough set theory
(RST) should be a plausible opportunity [12, 13]. However, RST works within
the traditional set theory, while regions in membrane systems are represented by
multisets. Thus, to be able to apply the notions of RST, first, we have to generalize
them for multisets.

Such a generalized multiset approximation space has four basic components:

• Domain: a set of multisets whose members are approximated.

• Base system: a set of some distinguished multisets (called base multisets) of
the domain as the basis of approximations. Members of the base system are
primary tools of the approximation process. Definable sets describe how they
are combined, whereas approximation primitives give an account of how they
are utilized in this process.

202 P. Takács, Z. E. Csajbók, T. Mihálydeák

• Definable multisets: a set of multisets. They are

– derived from base multisets (all base multisets are definable);
– candidates for possible approximations and boundaries of the members

of the domain.

• Approximation primitives: they determine lower/upper approximations and
boundaries of the domain members using definable multisets.

Let U be a nonempty set. The 6-tuple MAS(U) = 〈MS<∞(U),B,DB, l, b, u〉
is a multiset approximation space if

• (domain)MS<∞(U) ⊆MS(U);

• (base system) B(6= ∅) ⊆MS<∞(U) and if B ∈ B, then B 6= ∅;
• (definable multisets) B ⊆ DB; ∅ ∈ DB; if B ∈ B, ⊕nB ∈ DB (n = 1, 2, . . .);

• (approximation primitives) functions l, b, u :MS<∞(U)→MS<∞(U) meet
the following requirements:

(i) l(MS<∞(U)), b(MS<∞(U)), u(MS<∞(U)) ⊆ DB (definability);
(ii) the functions l and u are monotone (monotonicity);
(iii) u(∅) = ∅ (normality of u);
(iv) if M ∈MS<∞(U), then l(M) v u(M) (weak approximation property);
(v) b(M) u M 6= ∅ but b(M) 6v M and b(M) 	 M 6= ∅, provided that

b(M) 6= ∅ (M ∈MS<∞(U)) (Janus-faced nature of boundary).

By historical reasons, lower and upper approximations together is called the
approximation pair and denoted by 〈l, u〉. With the above properties, it is said
that 〈l, u〉 is a weak approximation pair.

A number of important and interesting variations of MAS(U) can be formed.
For our aim, the most interesting case is when MAS(U) is Pawlakian type.

Let B⊕ = {⊕nB | B ∈ B, n = 1, 2, . . . }. MAS(U) is a strictly set-union type
multiset approximation space if DB is given by the following inductive definition:

1. ∅ ∈ DB, B⊕ ⊆ DB, and

2. if B′ ⊆ B⊕, then
⊔

B′ ∈ DB.

Let MAS(U) be a strictly set-union type multiset approximation space. Then,
l, u, b : MS<∞(U) → MS<∞(U) form a Pawlakian multiset approximation pair
〈l, u〉 and a Pawlakian boundary b if for any multiset M ∈MS<∞(U)

1. l(M) =
⊔{⊕nB | n ∈ N+, B ∈ B and B vn M},

2. b(M) =
⊔{⊕nB | B ∈ B, B 6vM, B uM 6= ∅ and B uM vn M},

3. u(M) = l(M) t b(M).

In this case, MAS(U) is called a Pawlakian multiset approximation space.

Boundaries of membrane in P systems relying on multiset approximation spaces. . . 203

3.2. R functions in Pawlakian multiset approximation spaces

Let MAS(U) be a Pawlakian multiset approximation space. Any member of the
domainMS<∞(U) can be represented in Parikh vector form by the concatenation
function c() as usual.

Of course, it is assumed that the number of base multisets is finite. Base system
is represented in matrix form. It can be formed in three steps with the help of R
functions c() and matrix():

1. defining base multisets by c() (it is assumed that the number of base multisets
is n, where n(> 0) ∈ N);

2. forming a base vector from base multisets by c();

3. building the base matrix from the base vector by matrix().

Let U = {a, b, c, d, e} as above. The previous process is illustrated by the
following example:

1. Defining base multisets:

> B1 <- c(2,0,0,0,0) B1 = a2

> B2 <- c(1,1,0,0,0) B2 = ab
> B3 <- c(0,1,0,0,0) B3 = b
> B4 <- c(0,0,1,1,1) B4 = cde
> n <- 4 n = 4

2. Forming the base vector:

> Base_vect <- c(B1,B2,B3,B4)

3. Building the base systems in matrix form from the base vector:

> B <- matrix(Base_vect, nrow=n, ncol=length(U), byrow=T) .

That is, the matrix B represents the base system as follows: B has 4 rows
(the number of base multisets) and 5 columns (the cardinality of U). The ith
row contains the components of the Parikh vector representation of the ith
base multiset.

plow(mS, BASE, SU) – Lower approximation
Parameters: multiset mS ; base system BASE; the universe SU.
Description: This function computes the lower approximation of the multiset mS
over the base system BASE.

204 P. Takács, Z. E. Csajbók, T. Mihálydeák

Example 3.1. Lower approximation
> plow(W1,B,U)
[1] 0 0 0 0 0 l(W1) = ∅
> plow(W2,B,U)
[1] 2 2 0 0 0 l(W2) = a2b2

> plow(W3,B,U)
[1] 1 2 0 0 0 l(W3) = ab2

> plow(W4,B,U)
[1] 2 1 0 0 0 l(W4) = a2b
> plow(W5,B,U)
[1] 1 1 0 0 0 l(W5) = ab

pbound(mS, BASE, SU) – Boundary
Parameters: multiset mS, base system BASE; the universe SU.
Description: This function computes the boundary of the multiset mS over the
base system BASE.

Example 3.2. Boundary
> pbound(W1,B,U)
[1] 0 0 1 1 1 b(W1) = cde
> pbound(W2,B,U)
[1] 0 0 1 1 1 b(W2) = cde
> pbound(W3,B,U)
[1] 2 0 3 3 3 b(W3) = a2c3d3e3

> pbound(W4,B,U)
[1] 0 0 0 0 0 b(W4) = ∅
> pbound(W5,B,U)
[1] 2 0 2 2 2 b(W5) = a2c2d2e2

pupp(mS, BASE, SU) – Upper approximation
Parameters: multiset mS, base system BASE; the universe SU.
Description: This function computes the upper approximation of the multiset mS
over the base system BASE.

Example 3.3. Upper approximation
> pupp(W1,B,U)
[1] 0 0 1 1 1 u(W1) = cde
> pupp(W2,B,U)
[1] 2 2 1 1 1 u(W2) = a2b2cde
> pupp(W3,B,U)
[1] 2 2 3 3 3 u(W3) = a2b2c3d3e3

> pupp(W4,B,U)
[1] 2 1 0 0 0 u(W4) = a2b
> pupp(W5,B,U)
[1] 2 1 2 2 2 u(W5) = a2bc2d2e2

Boundaries of membrane in P systems relying on multiset approximation spaces. . . 205

4. Calculations of boundaries in membrane systems

In this section the relationship between multiset approximation spaces and mem-
brane systems is presented.

4.1. Membrane systems
Membrane system, or P system for short, was invented by Gheorghe Păun about
2000 [8, 9]. It was inspired by the architecture and functioning of living cells in
order to formulate a model of computation.

Formally, a P system of degree m(≥ 1) is a tuple

Π = 〈U, µ,w1, . . . , wm, R1, . . . , Rm〉.

Membranes delimit regions w1, . . . , wm

separating “inside” from “outside”.

Regions are arranged in a hierarchical
structure µ.
Each region is
• represented by multisets over
a finite set of objects U ;
• endowed with two sets of rules.
Evolutions rules regulate the events
taking place in the regions.
Communication rules regulate
movements of objects through
membranes.

Figure 1: A P system represented as a set of nested membranes
(m = 5)

4.2. Membrane boundaries
Let the P system Π = 〈U, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm〉 be given. Further, let
MAS(Π) = 〈MS<∞(U),B,DB, l, b, u〉 be a Pawlakian mset approximation space.
Then, MAS(Π) is called a joint (multiset) approximation space of Π. It should be
noted that both the P system Π and the joint approximation space MAS(Π) are
defined over the same universe.

Regions in P system Π are represented by multisets w1, w2, . . . , wm. Therefore,
putting w1, w2, . . . , wm into the joint approximation space of Π, they can be ap-
proximated, i.e., their Pawlakian lower/upper approximations and boundaries can
be determined.

206 P. Takács, Z. E. Csajbók, T. Mihálydeák

Pawlakian lower approximations of all regions follow the membrane structure.
Furthermore, Pawlakian upper approximation and the boundary of the skin mem-
brane completely lie within the environment. However, the upper approximations
and boundaries of not skin membranes do not obey the membrane structure in
general. Thus, these Pawlakian boundaries have to be adjusted to the membrane
structure. This adjustment can be carried out as follows.

Let Π be a P system and MAS(Π) be its joint approximation space. First, let
us determine the following quantities. If B ∈ B and i = 1, 2, . . . ,m, let

N(B, i) =

0, if B v wi or B u wi = ∅;
n, if i = 1 and B u w1 vn w1;
min{k, n | B u wi vk wi, B 	 wi vn wparent(i)}, otherwise.

Then, the functions membrane boundaries, outside and inside membrane bound-
aries are defined as follows (i = 1, . . . ,m):

bnd(wi) =
⊔{⊕N(B,i)B | B ∈ B};

bndout(wi) = bnd(wi)	 wi;

bndin(wi) = bnd(wi)	 bndout(wi).

4.3. Calculations of membrane boundaries
First, let us give the regions in matrix form. The membrane structure µ is given
in vector form in which the ith element defines the parent of the ith region.

Let us illustrate this process by the following example (it is assumed that the
multisets W1,W2,W3,W4,W5 represent regions, and the multisets B1, B2, B3, B4

which were given earlier form the base system):

1. Giving regions:
> Region <- c(W1,W2,W3,W4,W5)
> m <- 5
> R <- matrix(Region, nrow=m, ncol=length(U), byrow=T)

2. Giving the membrane structure:
> MU <- c(0,1,1,1,4)

MU follows the membrane structure which is depicted in Figure 1: W1 is the skin
membrane; W2,W3,W4 are nested in W1, and W5 is nested in W4.

The first function is an auxiliary one in order to be able to calculate the quan-
tities N(B, i)’s. It will be called the NBi() function.

NB(REGION, i, BASE, j, SU, SMU) – Calculating N(B, i) for fixed base
multiset and region
Parameters: regions in matrix form REGION, ith region, base system BASE,
jth base multiset, the universe SU, membrane structure SMU.
Description: This function calculates the quantity N(B, i) for the ith region and
the jth base multiset.

Boundaries of membrane in P systems relying on multiset approximation spaces. . . 207

Example 4.1. Calculating N(B1, 3)
> NB(R,3,B,1,U,MU)
[1] 0 N(B1, 3) = 0

NBi(i) – Calculating N(B, i)’s for the ith region and all base multisets
Parameters: region i.
Description: This function calculates the quantities N(B, i)’s for the ith region and
all base multisets. It calls the NB() function.

Example 4.2. Calculating all N(B, i)’s
> NBi(1)
[1] 0 0 0 1 N(B1, 1) = 0, N(B2, 1) = 0, N(B3, 1) = 0, N(B4, 1) = 1
> NBi(2)
[1] 0 0 0 1 N(B1, 2) = 0, N(B2, 2) = 0, N(B3, 2) = 0, N(B4, 2) = 1
> NBi(3)
[1] 0 0 0 3 N(B1, 3) = 0, N(B2, 3) = 0, N(B3, 3) = 0, N(B4, 3) = 3
> NBi(4)
[1] 0 0 0 0 N(B1, 4) = 0, N(B2, 4) = 0, N(B3, 4) = 0, N(B4, 4) = 0
> NBi(5)
[1] 1 0 0 0 N(B1, 5) = 1, N(B2, 5) = 0, N(B3, 5) = 0, N(B4, 5) = 0

Having obtained the quantities N(B, i)’s, the membrane boundaries can be
calculated.

bnd(REGION, i, BASE, SU) – Calculating membrane boundary
Parameters: regions in matrix form REGION, ith region, base system BASE;
the universe SU.
Description: This function calculates the boundary of the ith region, i.e., the ith
membrane boundary.

Example 4.3. Calculating all membrane boundaries
> bnd(R,1,B,U)
[1] 0 0 1 1 1 bnd(W1) = cde
> bnd(R,2,B,U)
[1] 0 0 1 1 1 bnd(W2) = cde
> bnd(R,3,B,U)
[1] 0 0 3 3 3 bnd(W1) = c3d3e3

> bnd(R,4,B,U)
[1] 0 0 0 0 0 bnd(W1) = ∅
> bnd(R,5,B,U)
[1] 2 0 0 0 0 bnd(W1) = a2

Last, the outside/inside membrane boundaries are calculated.

bndout(REGION, i, BASE, SU) – Calculating outside membrane boundary
Parameters: regions in matrix form REGION, ith region, base system BASE;

208 P. Takács, Z. E. Csajbók, T. Mihálydeák

the universe SU.
Description: This function calculates the outside boundary of the ith region, i.e.,
the ith outside membrane boundary.

Example 4.4. Calculating all outside membrane boundaries
> bndout(R,1,B,U)
[1] 0 0 0 1 0 bndout(W1) = d
> bndout(R,2,B,U)
[1] 0 0 1 0 1 bndout(W2) = ce
> bndout(R,3,B,U)
[1] 0 0 0 0 3 bndout(W3) = e3

> bndout(R,4,B,U)
[1] 0 0 0 0 0 bndout(W4) = ∅
> bndout(R,5,B,U)
[1] 1 0 0 0 0 bndout(W5) = a

bndin(REGION, i, BASE, SU) – Calculating inside membrane boundary
Parameters: regions in matrix form REGION, ith region, base system BASE;
the universe SU.
Description: This function calculates the inside boundary of the ith region, i.e.,
the ith inside membrane boundary.

Example 4.5. Calculating all inside membrane boundaries
> bndin(R,1,B,U)
[1] 0 0 1 0 1 bndin(W1) = ce
> bndin(R,2,B,U)
[1] 0 0 0 1 0 bndin(W2) = d
> bndin(R,3,B,U)
[1] 0 0 3 3 0 bndin(W3) = c3d3

> bndin(R,4,B,U)
[1] 0 0 0 0 0 bndin(W4) = ∅
> bndin(R,5,B,U)
[1] 1 0 0 0 0 bndin(W5) = a

5. Summary

In this paper such R functions have been presented which allow us to carry out
calculations in membrane systems combined with multiset approximation spaces.
In this framework membrane boundaries (even inside and outside) can be deter-
mined. The calculations are illustrated with examples mainly coming from [6, 7].
The results presented in this paper also prove the usability of R language in mem-
brane computing. Further research direction may be the implementation of mem-
brane communication rules in R in order to show how maximal parallelism can
actually be controlled with the help of generated membrane boundaries [1, 6].

Boundaries of membrane in P systems relying on multiset approximation spaces. . . 209

References

[1] Csajbók, Z.E., Mihálydeák, T., Maximal parallelism in membrane systems with
generated membrane boundaries. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K.
(eds.) Language, Life, Limits. 10th Conference on Computability in Europe, CiE
2014, Budapest, Hungary, June 23-27, 2014. Proceedings. LNCS, vol. 8493 (2014),
Springer International Publishing, Switzerland, 103–112.

[2] Girish, K.P., John, S.J., Relations and functions in multiset context. Information
Sciences 179(6) (2009), 758–768.

[3] Kudlek, M., Martín-Vide, C., Păun, Gh., Toward a formal macroset theory. In
Calude, C., Păun, Gh., Rozenberg, G., Salomaa, A., eds.: WMP. LNCS, vol. 2235
(2001), Berlin Heidelberg, Springer-Verlag, 123–134.

[4] Mihálydeák, T., Csajbók, Z.E., Membranes with boundaries. In: Csuhaj-Varjú,
E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) Membrane Comput-
ing. CMC 2012, Budapest, Hungary, August 28-31, 2012, Revised Selected Papers.
LNCS, vol. 7762 (2013), Springer-Verlag, Berlin Heidelberg, 277–294.

[5] Mihálydeák, T., Csajbók, Z.E., Partial approximation of multisets and its ap-
plications in membrane computing. In: Lingras, P., Wolski, M., Cornelis, C., Mitra,
S., Wasilewski, P. (eds.) Rough Sets and Knowledge Technology, 8th International
Conference, RSKT 2013, Halifax, NS, Canada, October 11-14, 2013, Proceedings.
LNCS-LNAI, vol. 8171 (2013), Springer-Verlag, Berlin, Heidelberg, 99–108.

[6] Mihálydeák, T., Csajbók, Z.E., Takács, P., On the Membrane Computations
in the Presence of Membrane Boundaries. Journal of Automata, Languages and Com-
binatorics 19(1-4) (2014), 227–238.

[7] Mihálydeák, T., Csajbók, Z.E., Takács, P., Communication rules controlled
by generated membrane boundaries. In: Alhazov, A., Cojocaru, S., Gheorghe, M.,
Rogozhin, Y., Salomaa, A. (eds.) Membrane Computing, 14th International Con-
ference, CMC 2013, Chişinău, Republic of Moldova, August 20-23, 2013, Revised
Selected Papers. LNCS, vol. 8340 (2014), Springer, Berlin Heidelberg, 265–279.

[8] Păun, Gh., Computing with membranes. Journal of Computer and System Sciences
61(1) (2000), 108–143

[9] Păun, Gh., Membrane Computing. An Introduction. Springer-Verlag, Berlin, (2002)
[10] Păun, Gh., Rozenberg, G., An introduction to and an overview of membrane

computing. In: Păun et al. [11], 1–27.
[11] Păun, Gh., Rozenberg, G., Salomaa, A., The Oxford Handbook of Membrane

Computing. Oxford University Press, Inc., New York, NY, USA (2010)
[12] Pawlak, Z., Rough sets. International Journal of Computer and Information Sci-

ences 11(5) (1982), 341–356.
[13] Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer

Academic Publishers, Dordrecht (1991)
[14] Syropoulos, A., Mathematics of Multisets, Multiset Processing, Mathematical,

Computer Science, and Molecular Computing Points of View, Workshop on Mul-
tiset Processing. Curtea de Arges, Romania, August 21-25, 2000. (2000), 347–358.

[15] Meyer, D., Hornik, K., Generalized and Customizable Sets in R. Journal of
Statistical Software, Vol. 31 (2009), 1–27.

210 P. Takács, Z. E. Csajbók, T. Mihálydeák

