
E
S

Z
T

E
R

H
Á

ZY KÁROLY
C

O
L

L
E

G
E

EGER 1774

ANNALES MATHEMATICAE ET INFORMATICAE borító külső oldala

Contents
M. Ahmia, H. Belbachir, A. Belkhir, The log-concavity and log-con-

vexity properties associated to hyperpell and hyperpell-lucas sequences . 3
S. Bácsó, R. Tornai, Z. Horváth, On geodesic mappings of Riemannian

spaces with cyclic Ricci tensor . . . . . . . . . . . . . . . . . . . . . . . 13
M. Bahşi, I. Mező, S. Solak, A symmetric algorithm for hyper-Fibonacci

and hyper-Lucas numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A. Bremner, A. Macleod, An unusual cubic representation problem . . . 29
Chak-On Chow, Shi-Mei Ma, T. Mansour, M. Shattuck, Counting

permutations by cyclic peaks and valleys . . . . . . . . . . . . . . . . . . 43
P. Csiba, F. Filip, A. Komzsík, J. T. Tóth, On the existence of the

generalized Gauss composition of means . . . . . . . . . . . . . . . . . . 55
T. Glavosits, Á. Száz, Divisible and cancellable subsets of groupoids . . . 67
T. Juhász, Commutator identities on group algebras . . . . . . . . . . . . . 93
E. Kılıç, Y. T. Ulutaş, I. Akkus, N. Ömür, Generalized binary recurrent

quasi-cyclic matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
L. Németh, L. Szalay, Coincidences in numbers of graph vertices corre-

sponding to regular planar hyperbolic mosaics . . . . . . . . . . . . . . . 113
W. Schreiner, T. Bérczes, J. Sztrik, Probabilistic model checking on

HPC systems for the performance analysis of mobile networks . . . . . . 123
E. Troll, Constrained modification of the cubic trigonometric Bézier curve

with two shape parameters . . . . . . . . . . . . . . . . . . . . . . . . . 145

Methodological papers

N. K. Bilan, I. Jelić, On intersections of the exponential and logarithmic
curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

R. Nagy-Kondor, Importance of spatial visualization skills in Hungary and
Turkey: Comparative Studies . . . . . . . . . . . . . . . . . . . . . . . . 171

P. Szlávi, L. Zsakó, IT Competences: Modelling the Real World . . . . . . 183

A
N

N
A

L
E
S

M
A

T
H

E
M

A
T

IC
A

E
E
T

IN
F
O

R
M

A
T

IC
A

E
43

.
(2

01
4)

TOMUS 43. (2014)

COMMISSIO REDACTORIUM
Sándor Bácsó (Debrecen), Sonja Gorjanc (Zagreb), Tibor Gyimóthy (Szeged),
Miklós Hoffmann (Eger), József Holovács (Eger), László Kovács (Miskolc),
László Kozma (Budapest), Kálmán Liptai (Eger), Florian Luca (Mexico),

Giuseppe Mastroianni (Potenza), Ferenc Mátyás (Eger),
Ákos Pintér (Debrecen), Miklós Rontó (Miskolc), László Szalay (Sopron),

János Sztrik (Debrecen), Gary Walsh (Ottawa)



ANNALES MATHEMATICAE ET INFORMATICAE borító belső oldala

ANNALES MATHEMATICAE ET INFORMATICAE

International journal for mathematics and computer science

Referred by
Zentralblatt für Mathematik

and
Mathematical Reviews

The journal of the Institute of Mathematics and Informatics of Eszterházy Károly
College is open for scientific publications in mathematics and computer science,
where the field of number theory, group theory, constructive and computer aided
geometry as well as theoretical and practical aspects of programming languages
receive particular emphasis. Methodological papers are also welcome. Papers sub-
mitted to the journal should be written in English. Only new and unpublished
material can be accepted.

Authors are kindly asked to write the final form of their manuscript in LATEX. If
you have any problems or questions, please write an e-mail to the managing editor
Miklós Hoffmann: hofi@ektf.hu

The volumes are available at http://ami.ektf.hu



ANNALES
MATHEMATICAE ET

INFORMATICAE

VOLUME 43. (2014)

EDITORIAL BOARD

Sándor Bácsó (Debrecen), Sonja Gorjanc (Zagreb), Tibor Gyimóthy (Szeged),
Miklós Hoffmann (Eger), József Holovács (Eger), László Kovács (Miskolc),
László Kozma (Budapest), Kálmán Liptai (Eger), Florian Luca (Mexico),

Giuseppe Mastroianni (Potenza), Ferenc Mátyás (Eger),
Ákos Pintér (Debrecen), Miklós Rontó (Miskolc), László Szalay (Sopron),

János Sztrik (Debrecen), Gary Walsh (Ottawa)

INSTITUTE OF MATHEMATICS AND INFORMATICS
ESZTERHÁZY KÁROLY COLLEGE

HUNGARY, EGER



HU ISSN 1787-5021 (Print)
HU ISSN 1787-6117 (Online)

A kiadásért felelős az
Eszterházy Károly Főiskola rektora

Megjelent az EKF Líceum Kiadó gondozásában
Kiadóvezető: Czeglédi László

Műszaki szerkesztő: Tómács Tibor
Megjelent: 2014. december Példányszám: 30

Készítette az
Eszterházy Károly Főiskola nyomdája

Felelős vezető: Kérészy László



The log-concavity and log-convexity
properties associated to hyperpell and

hyperpell-lucas sequences

Moussa Ahmiaab, Hacène Belbachirb, Amine Belkhirb

aUFAS, Dep. of Math., DG-RSDT, Setif 19000, Algeria
ahmiamoussa@gmail.com

bUSTHB, Fac. of Math., RECITS Laboratory, DG-RSDT,
BP 32, El Alia 16111, Bab Ezzouar, Algiers, Algeria

hacenebelbachir@gmail.com or hbelbachir@usthb.dz
ambelkhir@gmail.com or ambelkhir@usthb.dz

Submitted July 22, 2014 — Accepted December 12, 2014

Abstract

We establish the log-concavity and the log-convexity properties for the
hyperpell, hyperpell-lucas and associated sequences. Further, we investigate
the q-log-concavity property.

Keywords: hyperpell numbers; hyperpell-lucas numbers; log-concavity; q-log-
concavity, log-convexity.

MSC: 11B39; 05A19; 11B37.

1. Introduction

Zheng and Liu [13] discuss the properties of the hyperfibonacci numbers F [r]
n and

the hyperlucas numbers L[r]
n . They investigate the log-concavity and the log convex-

ity property of hyperfibonacci and hyperlucas numbers. In addition, they extend
their work to the generalized hyperfibonacci and hyperlucas numbers.
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The hyperfibonacci numbers F [r]
n and hyperlucas numbers L[r]

n , introduced by
Dil and Mező [9] are defined as follows. Put

F [r]
n =

n∑

k=0

F
[r−1]
k , with F [0]

n = Fn,

L[r]
n =

n∑

k=0

L
[r−1]
k , with L[0]

n = Ln,

where r is a positive integer, and Fn and Ln are the Fibonacci and Lucas numbers,
respectively.

Belbachir and Belkhir [1] gave a combinatorial interpretation and an explicit
formula for hyperfibonacci numbers,

F
[r]
n+1 =

bn/2c∑

k=0

(
n+ r − k
k + r

)
. (1.1)

Let {Un}n≥0 and {Vn}n≥0 denote the generalized Fibonacci and Lucas se-
quences given by the recurrence relation

Wn+1 = pWn +Wn−1 (n ≥ 1), with U0 = 0, U1 = 1, V0 = 2, V1 = p. (1.2)

The Binet forms of Un and Vn are

Un =
τn − (−1)nτ−n√

∆
and Vn = τn + (−1)nτ−n; (1.3)

with ∆ = p2 + 4, τ = (p+
√

∆)/2, and p ≥ 1.
The generalized hyperfibonacci and generalized hyperlucas numbers are defined,

respectively, by

U [r]
n :=

n∑

k=0

U
[r−1]
k , with U [0]

n = Un,

V [r]
n :=

n∑

k=0

V
[r−1]
k , with V [0]

n = Vn.

The paper of Zheng and Liu [13] allows us to exploit other relevant results.
More precisely, we propose some results on log-concavity and log-convexity in the
case of p = 2 for the hyperpell sequence and the hyperpell-lucas sequence.

Definition 1.1. Hyperpell numbers P [r]
n and hyperpell-lucas numbers Q[r]

n are
defined by

P [r]
n :=

n∑

k=0

P
[r−1]
k , with P [0]

n = Pn,

4 M. Ahmia, H. Belbachir, A. Belkhir



Q[r]
n :=

n∑

k=0

Q
[r−1]
k , with Q[0]

n = Qn,

where r is a positive integer, and {Pn} and {Qn} are the Pell and the Pell-Lucas
sequences respectively.

Now we recall some formulas for Pell and Pell-Lucas numbers. It is well know
that the Binet forms of Pn and Qn are

Pn =
αn − (−1)nα−n

2
√

2
and Qn = αn + (−1)nα−n, (1.4)

where α = (1 +
√

2). The integers

P (n, k) = 2n−2k
(
n− k
k

)
and Q(n, k) = 2n−2k

n

n− k

(
n− k
k

)
, (1.5)

are linked to the sequences {Pn} and {Qn} . It is established [2] that for each fixed
n these two sequences are log-concave and then unimodal. For the generalized se-
quence given by (1.2) , also the corresponding associated sequences are log-concave
and then unimodal, see [3, 4].

The sequences {Pn} and {Qn} satisfy the recurrence relation (1.2), for p = 2,
and for n ≥ 0 and n ≥ 1 respectively, we have

Pn+1 =

bn/2c∑

k=0

2n−2k
(
n− k
k

)
and Qn =

bn/2c∑

k=0

2n−2k
n

n− k

(
n− k
k

)
. (1.6)

It follows from (1.4) that the following formulas hold

P 2
n − Pn−1Pn+1 = (−1)n+1, (1.7)

Q2
n −Qn−1Qn+1 = 8(−1)n. (1.8)

It is easy to see, for example by induction, that for n ≥ 1

Pn ≥ n and Qn ≥ n. (1.9)

Let {xn}n≥0 be a sequence of nonnegative numbers. The sequence {xn}n≥0 is
log-concave (respectively log-convex ) if x2j ≥ xj−1xj+1 (respectively x2j ≤ xj−1xj+1

) for all j > 0, which is equivalent (see [5]) to xixj ≥ xi−1xj+1 (respectively
xixj ≤ xi−1xj+1) for j ≥ i ≥ 1.

We say that {xn}n≥0 is log-balanced if {xn}n≥0 is log-convex and {xn/n!}n≥0
is log-concave.

Let q be an indeterminate and {fn(q)}n≥0 be a sequence of polynomials of q.
If for each n ≥ 1, f2n(q)− fn−1(q)fn+1(q) has nonnegative coefficients, we say that
{fn(q)}n≥0 is q-log-concave.

In section 2, we give the generating functions of hyperpell and hyperpell-lucas
sequences. In section 3, we discuss their log-concavity and log-convexity. We
investigate also the q-log-concavity of some polynomials related to hyperpell and
hyperpell-lucas numbers.

The log-concavity and log-convexity properties . . . 5



2. The generating functions

The generating function of Pell numbers and Pell-Lucas numbers denoted GP (t)
and GQ(t), respectively, are

GP (t) :=

+∞∑

n=0

Pnt
n =

t

1− 2t− t2 , (2.1)

and

GQ(t) :=

+∞∑

n=0

Qnt
n =

2− 2t

1− 2t− t2 . (2.2)

So, we establish the generating function of hyperpell and hyperpell-lucas num-
bers using respectively

P [r]
n = P

[r]
n−1 + P [r−1]

n and Q[r]
n = Q

[r]
n−1 +Q[r−1]

n . (2.3)

The generating functions of hyperpell numbers and hyperlucas numbers are

G
[r]
P (t) =

∞∑

n=0

P [r]
n tn =

t

(1− 2t− t2) (1− t)r , (2.4)

and

G
[r]
Q (t) =

∞∑

n=0

Q[r]
n t

n =
2− 2t

(1− 2t− t2) (1− t)r . (2.5)

3. The log-concavity and log-convexity properties

We start the section by some useful lemmas.

Lemma 3.1. [12] If the sequences {xn} and {yn} are log-concave, then so is their
ordinary convolution zn =

∑n
k=0 xkyn−k, n = 0, 1, ....

Lemma 3.2. [12] If the sequence {xn} is log-concave, then so is the binomial
convolution zn =

∑n
k=0

(
n
k

)
xk, n = 0, 1, ....

Lemma 3.3. [8] If the sequence {xn} is log-convex, then so is the binomial con-
volution zn =

∑n
k=0

(
n
k

)
xk, n = 0, 1, ....

The following result deals with the log-concavity of hyperpell numbers and
hyperlucas sequences.

Theorem 3.4. The sequences
{
P

[r]
n

}
n≥0

and
{
Q

[r]
n

}
n≥0

are log-concave for r ≥ 1

and r ≥ 2 respectively.

6 M. Ahmia, H. Belbachir, A. Belkhir



Proof. We have

P [1]
n =

1

4
(Qn+1 − 2) and Q[1]

n = 2Pn+1. (3.1)

When n = 1,
(
P

[1]
n

)2
− P [1]

n−1P
[1]
n+1 = 1 > 0. When n ≥ 2, it follows from (3.1)

and (1.8) that
(
P [1]
n

)2
− P [1]

n−1P
[1]
n+1 =

1

16

[
(Qn+1 − 2)

2 − (Qn − 2) (Qn+2 − 2)
]

=
1

16

(
Q2

n+1 −QnQn+2 − 4Qn+1 + 2Qn + 2Qn+2

)

=
1

4

(
2(−1)n−1 +Qn+1

)
≥ 0.

Then
{
P

[1]
n

}
n≥0

is log-concave. By Lemma 3.1, we know that
{
P

[r]
n

}
n≥0

(r ≥ 1) is log-concave.
It follows from (3.1) and (1.7) that

(
Q[1]

n

)2
−Q[1]

n−1Q
[1]
n+1 = 4

(
P 2
n+1 − PnPn+2

)
= 4 (−1)

n
= ±4 (3.2)

Hence
{
Q

[1]
n

}
n≥0

is not log-concave.

One can verify that

Q[2]
n =

1

2
(Qn+2 − 2) = 2P

[1]
n+1. (3.3)

Then
{
Q

[2]
n

}
n≥0

is log-concave. By Lemma 3.1, we know that
{
Q

[r]
n

}
n≥0

(r ≥ 2) is log-concave. This completes the proof of Theorem 3.4.

Then we have the following corollary.

Corollary 3.5. The sequences
{∑n

k=0

(
n
k

)
P

[r]
k

}
n≥0

and
{∑n

k=0

(
n
k

)
Q

[r]
k

}
n≥0

are

log-concave for r ≥ 1 and r ≥ 2 respectively.

Proof. Use Lemma 3.2.
Now we establish the log-concavity of order two of the sequences

{
P

[1]
n

}
n≥0

and
{
Q

[2]
n

}
n≥0

for some special sub-sequences.

Theorem 3.6. Let be for n ≥ 1

Tn :=
(
P [1]
n

)2
− P [1]

n−1P
[1]
n+1 and Rn :=

(
Q[2]

n

)2
−Q[2]

n−1Q
[2]
n+1.

Then {T2n}n≥1, {R2n+1}n≥0 are log-concave, and {T2n+1}n≥0, {R2n}n≥1 are log-
convex.

The log-concavity and log-convexity properties . . . 7



Proof. Using respectively (3.3) and (1.8) , we get
(
Q[2]

n

)2
−Q[2]

n−1Q
[2]
n+1 = 2(−1)n +Qn+1,

and thus, for n ≥ 1,

Tn =
1

4

(
2 (−1)

n−1
+Qn

)
and Rn = 2(−1)n +Qn+1. (3.4)

By applying (3.4) and (1.8), for n ≥ 1 we get

Q2
2n −Q2n−2Q2n+2 = −32 and Q2

2n+1 −Q2n−1Q2n+3 = 32. (3.5)

Then

T 2
2n − T2(n−1)T2(n+1) =

1

16

(
Q2

2n −Q2n−2Q2n+2 − 4Q2n + 2Q2n−2 + 2Q2n+2

)

= 4(Q2n − 4) > 0.

and

R2
2n+1 −R2n−1R2n+3 =

(
Q2

2n+2 −Q2nQ2n+2 − 4Q2n+2 + 2Q2n + 2Q2n+4

)

= 64(Q2n+2 − 4) > 0.

Then {T2n}n≥1 and {R2n+1}n≥0 are log-concave.
Similarly by applying (3.4) and (3.5), we have

T 2
2n+1 − T2n−1T2n+3 = −1

2
Q2n+1 < 0,

and
R2

2n −R2(n−1)R2(n+1) = −8Q2n+1 < 0.

Then {T2n+1}n≥0 and {R2n}n≥1 are log-convex. This completes the proof.

Corollary 3.7. The sequences
{∑n

k=0

(
n
k

)
T2k
}
n≥0 and

{∑n
k=0

(
n
k

)
R2k+1

}
n≥0 are

log-concave.

Proof. Use Lemma 3.2.

Corollary 3.8. The sequences
{∑n

k=0

(
n
k

)
T2k+1

}
n≥1 and

{∑n
k=0

(
n
k

)
R2k

}
n≥1 are

log-convex.

Proof. Use Lemma 3.3.

Lemma 3.9. Let an :=
∑n

k=0

(
n
k

)
Pk+1, where {Pn}n≥0 is the Pell sequence. Then

{an}n≥0 satisfy the following recurrence relations

an = 3an−1 +
n−2∑

k=0

ak and an = 4an−1 − 2an−2.

8 M. Ahmia, H. Belbachir, A. Belkhir



Proof. Let be bn :=
∑n

k=0

(
n
k

)
Pk, where {Pn}n≥−1 is the Pell sequence extended

to P−1 = 1.
Using Pascal formula and the recurrence relation of Pell sequence together into

the development
∑n

k=0

(
n
k

)
Pk+1 we get an = 3an−1 + bn−1, then by bn = bn−1 +

an−1. By iterated use of this relation with the precedent one, we get an = 3an−1 +∑n−2
k=0 ak (with b0 = 0 and a0 = 1), thus an = 4an−1 − 2an−2.

Theorem 3.10. The sequences
{
nQ

[1]
n

}
n≥0

and
{∑n

k=0

(
n
k

)
Q

[1]
k

}
n≥0

are log-

concave and log-convex, respectively.

Proof. Let be

Sn := n2
(
Q[1]

n

)2
− (n2 − 1)Q

[1]
n−1Q

[1]
n+1 and Kn :=

n∑

k=0

(
n

k

)
Q

[1]
k ,

with the convention that K<0 = 0.
From (3.2), we have

Sn = 4(n2 − 1) (−1)
n

+
(
Q[1]

n

)2

= 4
[
(n2 − 1) (−1)

n
+ P 2

n+1

]
≥ 4

[
(n2 − 1) (−1)

n
+ (n+ 1)2

]
> 0.

Then
{
nQ

[1]
n

}
n≥0

is log-concave.

Using Lemma 3.9, we can verify that

Kn = 4Kn−1 − 2Kn−2. (3.6)

The associated Binet-formula is

Kn =

(
1 +
√

2
)
αn −

(
1−
√

2
)
βn

α− β , with α, β = 2±
√

2,

which provides
K2

n −Kn−1Kn+1 = −2n+1 < 0.

Then
{∑n

k=0

(
n
k

)
Q

[1]
k

}
n≥0

is log-convex.

Remark 3.11. The terms of the sequence {Kn}n satisfy Kn = 2(n+2)/2Pn+1 if n is
even, and Kn = 2(n−1)/2Qn+1 if n is odd.

Theorem 3.12. The sequences
{
n!P

[1]
n

}
n≥0

and
{
n!Q

[2]
n

}
n≥0

are log-balanced.

Proof. By Theorem 3.4, in order to prove the log-balanced property of
{
n!P

[1]
n

}
n≥0

and
{
n!Q

[2]
n

}
n≥0

we only need to show that they are log-convex. It follows from

the proof of Theorem 3.4 that
(
P [1]
n

)2
− P [1]

n−1P
[1]
n+1 =

1

4

(
2 (−1)

n−1
+Qn+1

)
, (3.7)

The log-concavity and log-convexity properties . . . 9



and from the proof of Theorem 3.6 that
(
Q[2]

n

)2
−Q[2]

n−1Q
[2]
n+1 = 2 (−1)

n
+Qn+1. (3.8)

Let

Mn := n
(
P [1]
n

)2
− (n+ 1)P

[1]
n−1P

[1]
n+1,

Bn := n
(
Q[2]

n

)2
− (n+ 1)Q

[2]
n−1Q

[2]
n+1,

from (3.3), (3.7) and (3.8), we get

Mn =
(n+ 1)

4

(
2 (−1)

n−1
+Qn+1

)
− 1

4
(Qn+1 − 2)2,

Bn = (n+ 1) (2 (−1)
n

+Qn+1)− 1

4
(Qn+2 − 2)2.

Clearly Bn ≤ 0 for n = 0, 1, 2. We have by induction that for n ≥ 1, Qn ≥ n + 1.
This gives

Bn ≤ (Qn+1 − 1) (2 (−1)
n

+Qn+1)− 1

4
(2Qn+1 +Qn − 2)2 < 0.

Also, Mn ≤ 0 for n = 2 and for n ≥ 3, Qn ≥ n + 6. This gives n + 1 ≤ Qn+1 − 6,
and

Mn ≤
1

4

[
(Qn+1 − 6)

(
2 (−1)

n−1
+Qn+1

)
− (Qn+1 − 2)2

]

=
1

4

[(
−2 + 2 (−1)

n−1
)
Qn+1 − 4− 12 (−1)

n−1
]
< 0.

Hence {n!P
[1]
n }n≥0 and {n!Q

[2]
n }n≥0 are log-convex. As the sequences {P [1]

n }n≥0
and {Q[2]

n }n≥0 are log-concave, so the sequences {n!P
[1]
n }n≥0 and {n!Q

[2]
n }n≥0 are

log-balanced.

Theorem 3.13. Define, for r ≥ 1, the polynomials

Pn,r(q) :=
n∑

k=0

P
[r]
k qk and Qn,r(q) :=

n∑

k=0

Q
[r]
k q

k.

The polynomials Pn,r(q) (r ≥ 1) and Qn,r(q) (r ≥ 2) are q-log-concave.

Proof. When n ≥ 1, r ≥ 1,

P 2
n,r(q)− Pn−1,r(q)Pn+1,r(q)

=

(
n∑

k=0

P
[r]
k qk

)2

−
(

n−1∑

k=0

P
[r]
k qk

)(
n+1∑

k=0

P
[r]
k qk

)

10 M. Ahmia, H. Belbachir, A. Belkhir



=

(
n∑

k=0

P
[r]
k qk

)2

−
(

n∑

k=0

P
[r]
k qk − P [r]

n qn

)(
n∑

k=0

P
[r]
k qk + P

[r]
n+1q

n+1

)

=
(
P [r]
n qn − P [r]

n+1q
n+1
) n∑

k=0

P
[r]
k qk + P [r]

n P
[r]
n+1q

2n+1

=
n∑

k=1

(
P

[r]
k P [r]

n − P [r]
k−1P

[r]
n+1

)
qk+n.

When n ≥ 1, r ≥ 2, through computation, we get

Q2
n,r(q)−Qn−1,r(q)Qn+1,r(q) =

n∑

k=1

(
Q

[r]
k Q

[r]
n −Q[r]

k−1Q
[r]
n+1

)
qk+n +Q[r]

n q
n.

As
{
P

[r]
n

}
and

{
Q

[r]
n

}
(r ≥ 2) are log-concave, then the polynomials Pn,r(q)

(r ≥ 1) and Qn,r(q) (r ≥ 2) are q-log-concave.
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Abstract

An n-dimensional Riemannian space V n is called a Riemannian space
with cyclic Ricci tensor [2, 3], if the Ricci tensor Rij satisfies the following
condition

Rij,k +Rjk,i +Rki,j = 0,

where Rij the Ricci tensor of V n, and the symbol ”,” denotes the covariant
derivation with respect to Levi-Civita connection of V n.

In this paper we would like to treat some results in the subject of geodesic
mappings of Riemannian space with cyclic Ricci tensor.

Let V n = (Mn, gij) and V
n
= (Mn, gij) be two Riemannian spaces on

the underlying manifold Mn. A mapping V n → V
n is called geodesic, if it

maps an arbitrary geodesic curve of V n to a geodesic curve of V n.[4]
At first we investigate the geodesic mappings of a Riemannian space with

cyclic Ricci tensor into another Riemannian space with cyclic Ricci tensor.
Finally we show that, the Riemannian - Einstein space with cyclic Ricci

tensor admit only trivial geodesic mapping.

Keywords: Riemannian spaces, geodesic mapping.

MSC: 53B40.
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1. Introduction

Let an n-dimensional V n Riemannian space be given with the fundamental tensor
gij(x). V n has the Riemannian curvature tensor Rijkl in the following form:

Rhijk(x) = ∂jΓ
h
ik(x) + Γαik(x)Γhjα(x)− ∂kΓhij(x)− Γαij(x)Γhkα(x), (1.1)

where Γijk(x) are the coefficients of Levi-Civita connection of V n.
The Ricci curvature tensor we obtain from the Riemannian curvature tensor

using of the following transvection: Rαjkα(x) = Rjk(x)1.

Definition 1.1. [2, 3] A Riemannian space V n is called a Riemannian space with
cyclic Ricci tensor, if the Ricci tensor of V n satisfies the following equation:

Rij,k +Rjk,i +Rki,j = 0, (1.2)

where the symbol ”,” means the covariant derivation with respect to Levi-Civita
connection of V n.

Definition 1.2. [4] Let two Riemannian spaces V n and V
n
be given on the un-

derlying manifold Mn . The maps: γ : V n → V
n
is called geodesic (projective)

mappings, if any geodesic curve of V n coincides with a geodesic curve of V
n
.

It is wellknown, that the the geodesic curve xi(t) of V n is a result of the second
order ordinary differential equations in a canonical parameter t:

d2xi

dt2
+ Γiαβ(x)

dxα

dt

dxβ

dt
= 0. (1.3)

We need in the investigations the next:

Theorem 1.3. [4] The maps: V n → V
n
is geodesic if and only if exits a gradient

vector field ψi(x), which satisfies the following condition:

Γ
i

jk(x) = Γijk(x) + δijψk(x) + δikψj(x), (1.4)

and

Definition 1.4. [1] A Riemannian space V n is called Einstein space, if exists a
ρ(x) scalar function, which satisfies the equation:

Rij = ρ(x)gij(x). (1.5)

1The Roman and Greek indices run over the range 1, . . . , n; the Roman indices are free but
the Greek indices denote summation.
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2. Geodesic mappings of Riemannian spaces with
cyclic Ricci tensors

It is easy to get the next equations [4]:

Rij = Rij + (n− 1)ψij , (2.1)

where ψij = ψi,j − ψiψj and

Rij,k =
∂Rij
∂xk

− Γ
α

ik(x)Rαj − Γ
α

jk(x)Rαi, (2.2)

where Γ
α

ik(x) are components of Levi-Civita connection if V
n
.

At now we suppose, that V
n
in a Riemannian space with cyclic Ricci tensor,

that is
Rij,k +Rjk,i +Rki,j = 0. (2.3)

Using (2.2) we can rewrite (2.3) in the following form:

∂Rij
∂xk

− Γ
α

ik(x)Rαj − Γ
α

jk(x)Rαi+

∂Rjk
∂xi

− Γ
α

ji(x)Rαk − Γ
α

ki(x)Rαj+

∂Rki
∂xj

− Γ
α

kj(x)Rαi − Γ
α

ij(x)Rαk = 0.

(2.4)

From (1.4) and (2.1) we can compute:

∂(Rij + (n− 1)ψij)

∂xk
− (Γαik(x) + ψi(x)δαk + ψk(x)δαi )(Rαj + (n− 1)ψαj)−

−(Γαjk(x) + ψj(x)δαk + ψk(x)δαj )(Rαi + (n− 1)ψαi)+

∂(Rjk + (n− 1)ψjk)

∂xi
− (Γαji(x) + ψj(x)δαi + ψi(x)δαj )(Rαk + (n− 1)ψαk)−

−(Γαki(x) + ψk(x)δαi + ψi(x)δαk )(Rαj + (n− 1)ψαj)+

∂(Rki + (n− 1)ψki)

∂xj
− (Γαkj(x) + ψk(x)δαj + ψj(x)δαk )(Rαi + (n− 1)ψαi)−

−(Γαij(x) + ψi(x)δαj + ψj(x)δαi )(Rαk + (n− 1)ψαk) = 0.

That is

∂Rij

∂xk − Γαik(x)Rαj − Γαjk(x)Rαi+

+
∂Rjk

∂xi − Γαji(x)Rαk − Γαki(x)Rαj+

+∂Rki

∂xj − Γαkj(x)Rαi − Γαij(x)Rαk+




Rij,k +Rjk,i +Rki,j
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+(n− 1)
∂ψij
∂xk

− (n− 1)Γαik(x)ψαj − ψi(x)Rkj − (n− 1)ψi(x)ψkj−

−ψk(x)Rij − (n− 1)ψk(x)ψij − (n− 1)Γαjk(x)ψαi − ψj(x)Rki−

−(n− 1)ψj(x)ψki − ψk(x)Rji − (n− 1)ψk(x)ψji+

+(n− 1)
∂ψjk
∂xi

− (n− 1)Γαji(x)ψαk − ψj(x)Rik − (n− 1)ψj(x)ψik−

−ψi(x)Rjk − (n− 1)ψi(x)ψjk − (n− 1)Γαki(x)ψαj − ψk(x)Rij−

−(n− 1)ψk(x)ψij − ψi(x)Rkj − (n− 1)ψi(x)ψkj+

+(n− 1)
∂ψki
∂xj

− (n− 1)Γαkj(x)ψαi − ψk(x)Rji − (n− 1)ψk(x)ψji−

−ψj(x)Rki − (n− 1)ψj(x)ψki − (n− 1)Γαij(x)ψαk − ψi(x)Rjk−

−(n− 1)ψi(x)ψjk − ψj(x)Rik − (n− 1)ψj(x)ψik = 0.

If we suppose, that V n has cyclic Ricci tensor we have:

(n− 1)

(
∂ψij
∂xk

− Γαik(x)ψαj − Γαjk(x)ψαi

)
+

+(n− 1)

(
∂ψjk
∂xi

− Γαji(x)ψαk − Γαki(x)ψαj

)
+

+(n− 1)

(
∂ψki
∂xj

− Γαkj(x)ψαi − Γαij(x)ψαk

)
+

−4ψi(x)Rjk − 4ψj(x)Rki − 4ψk(x)Rij−

−(n− 1)(4ψi(x)ψjk + 4ψj(x)ψki + 4ψk(x)ψij) = 0.

That is

(n− 1)(ψij,k + ψjk,i + ψki,j)−
−4(ψi(x)Rjk + ψj(x)Rki + ψk(x)Rij)−

−4(n− 1)(ψi(x)ψjk + ψj(x)ψki + ψk(x)ψij) = 0.

(2.5)

Theorem 2.1. V n and V
n
Riemannian spaces with cyclic Ricci tensors have com-

mon geodesics, that is V n and V
n
have a geodesic mapping if and only if exists a

ψi(x) gradient vector, which satisfies the condition:

(n− 1)(ψij,k + ψjk,i + ψki,j)−

−4(ψi(x)Rjk + ψj(x)Rki + ψk(x)Rij)−

−4(n− 1)(ψi(x)ψjk + ψj(x)ψki + ψk(x)ψij) = 0.
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3. Consequences

A) If ψij = 0, then Rij = Rij , and ψi,j = ψiψj , so we obtain:

ψi(x)Rjk + ψj(x)Rki + ψk(x)Rij = 0. (3.1)

B) If the V n is a Riemannian space with cyclic Ricci tensor and at the same time
is a Einstein space, then we get

ρψi(x)gjk + ρψj(x)gki + ρψk(x)gij = 0

that is
nψi(x) + 2ψi(x) = 0, (3.2)

so
(n+ 2)ψi(x) = 0. (3.3)

It means

Theorem 3.1. A Riemannian-Einstein space V n with cyclic Ricci tensor admits
into V

n
with cyclic Ricci tensor only trivial (affin) geodesic mapping.
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Abstract

In this work we study some combinatorial properties of hyper-Fibonacci,
hyper-Lucas numbers and their generalizations by using a symmetric algo-
rithm obtained by the recurrence relation ak

n = uak−1
n + vak

n−1. We point
out that this algorithm can be applied to hyper-Fibonacci, hyper-Lucas and
hyper-Horadam numbers.

Keywords: Hyper-Fibonacci numbers; hyper-Lucas numbers

MSC: 11B37; 11B39; 11B65

1. Introduction

The sequence of Fibonacci numbers is one of the most well known sequence, and
it has many applications in mathematics, statistics, and physics. The Fibonacci
numbers are defined by the second order linear recurrence relation: Fn+1 = Fn +
Fn−1 (n ≥ 1) with the initial conditions F0 = 0 and F1 = 1. Similarly, the Lucas
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numbers are defined by Ln+1 = Ln + Ln−1 (n ≥ 1) with the initial conditions
L0 = 2 and L1 = 1. There are some elementary identities for Fn and Ln. Two
of them are Fs+ Ls = 2Fs+1 and Fs− Ls = 2Fs−1. These will be generalized in
section 2 (see Theorem 2.5).

The Fibonacci sequence can be generalized to the second order linear recurrence
Wn(a, b; p, q), or briefly Wn, defined by

Wn+1 = pWn + qWn−1,

where n ≥ 1, W0 = a and W1 = b. This sequence was introduced by Horadam [7].
Some of the special cases are:

i) The Fibonacci number Fn =Wn(0, 1; 1, 1),

ii) The Lucas number Ln =Wn(2, 1; 1, 1),

iii) The Pell number Pn =Wn(0, 1; 2, 1).

In [4], Dil and Mező introduced the “hyper-Fibonacci” numbers F (r)
n and “hyper-

Lucas” numbers L(r)
n . These are defined as

F (r)
n =

n∑

k=0

F
(r−1)
k with F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1,

L(r)
n =

n∑

k=0

L
(r−1)
k with L(0)

n = Ln, L
(r)
0 = 2, L

(r)
1 = 2r + 1,

where r is a positive integer, moreover Fn and Ln are the ordinary Fibonacci and
Lucas numbers, respectively. The generating functions of hyper-Fibonacci and
hyper-Lucas numbers are [4]:

∞∑

n=0

F (r)
n tn =

t

(1− t− t2) (1− t)r ,
∞∑

n=0

L(r)
n tn =

2− t
(1− t− t2) (1− t)r .

Also, the hyper-Fibonacci and hyper-Lucas numbers have the recurrence relations
F

(r)
n = F

(r)
n−1 + F

(r−1)
n and L(r)

n = L
(r)
n−1 +L

(r−1)
n , respectively. The first few values

of F (r)
n and L(r)

n are as follows [2]:

F (1)
n : 0, 1, 2, 4, 7, 12, 20, 33, 54, . . . , F (2)

n : 0, 1, 3, 7, 14, 26, 46, 79, . . .

L(1)
n : 2, 3, 6, 10, 17, 28, 46, 75, . . . , L(2)

n : 2, 5, 11, 21, 38, 66, 112, . . . .

Now we introduce the hyper-Horadam numbers W (r)
n defined by

W (r)
n =W

(r)
n−1 +W (r−1)

n with W (0)
n =Wn, W

(n)
0 =W0 = a

whereWn is the nth Horadam number. Some of the special cases of hyper-Horadam
number W (r)

n are as follows:
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i) If W
(0)
n = Fn = Wn(0, 1; 1, 1) and W (n)

0 = W0 = F0 = 0, then W (r)
n is the

hyper-Fibonacci number, that is, W (r)
n = F

(r)
n .

ii) If W
(0)
n = Ln = Wn(2, 1; 1, 1) and W (n)

0 = W0 = L0 = 2, then W (r)
n is the

hyper-Lucas number, that is, W (r)
n = L

(r)
n .

iii) If W (0)
n = Pn = Wn(0, 1; 2, 1) and W

(n)
0 = W0 = P0 = 0, then W

(r)
n is the

hyper-Pell number, that is, W (r)
n = P

(r)
n .

The paper is organized as follows: In Section 2 we give some combinatorial
properties of the hyper-Fibonacci and hyper-Lucas numbers by using a symmetric
algorithm. In Section 3 we generalize the symmetric algorithm introduced in section
2 and, in addition, we generalize the hyper-Horadam numbers as well.

2. A symmetric algorithm

The Euler–Seidel algorithm and its analogues are useful in the study of recurrence
relations of some numbers and polynomials [2, 3, 4, 5]. Let (an) and (an) be two real
initial sequences. Then the infinite matrix, which is called symmetric infinite matrix
in [4], with entries akn corresponding to these sequences is determined recursively
by the formulas

a0n = an, an0 = an (n ≥ 0) ,

akn = ak−1n + akn−1 (n ≥ 1, k ≥ 1) ,

i.e., in matrix form



. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . ak−1n
↓

. . .

. . . akn−1 → akn . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .




.

The entries akn (where k is the row index, n is the column index) have the following
symmetric relation [4]:

akn =

k∑

i=1

(
n+ k − i− 1

n− 1

)
ai0 +

n∑

s=1

(
n+ k − s− 1

k − 1

)
a0s. (2.1)

Dil and Mező [4], by using the relation (2.1), obtained an explicit formula for
hyperharmonic numbers, general generating functions of the Fibonacci and Lucas
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numbers. By using relation (2.1) and the following well known identity [6, p. 160]

c∑

t=a

(
t
a

)
=

(
c+ 1
a+ 1

)
, (2.2)

we have some new findings contained in the following theorems.

Theorem 2.1. If n ≥ 1, r ≥ 1 and m ≥ 0, then

F (m+r)
n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
F (m)
s .

Proof. Let a0n = F
(m)
n+1 and an0 = F

(m+n)
1 = 1 be given for n ≥ 1. If we calculate the

elements of the corresponding infinite matrix by using the recursive formula (2.1),
it turns out that they equal to




F
(m)
1 F

(m)
2 F

(m)
3 F

(m)
4 . . .

F
(m+1)
1 F

(m+1)
2 F

(m+1)
3 F

(m+1)
4 . . .

F
(m+2)
1 F

(m+2)
2 F

(m+2)
3 F

(m+2)
4 . . .

...
...

...
...

. . .



. (2.3)

From relation (2.1) it follows that

ar+1
n+1 =

r+1∑

i=1

(
n+ r − i+ 1

n

)
+

n+1∑

s=1

(
n+ r − s+ 1

r

)
F

(m)
s+1

=
r∑

i=0

(
n+ r − i

n

)
+

n∑

s=0

(
n+ r − s

r

)
F

(m)
s+2

=

r∑

k=0

(
n+ k
n

)
+

n∑

b=0

(
r + b
r

)
F

(m)
n−b+2,

where k = r − i and b = n− s. From (2.2), we have

ar+1
n+1 =

(
n+ r + 1
n+ 1

)
+

n∑

b=0

(
r + b
r

)
F

(m)
n−b+2 =

n+1∑

b=0

(
r + b
r

)
F

(m)
n−b+2.

Then the matrix (2.3) yields

arn−1 = F (m+r)
n =

n−1∑

b=0

(
r + b− 1
r − 1

)
F

(m)
n−b =

n∑

s=0

(
n+ r − s− 1

r − 1

)
F (m)
s .

Thus the proof is completed.

We then can easily deduce an expression for the hyper-Fibonacci numbers which
contains the ordinary Fibonacci numbers.
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Corollary 2.2. If n ≥ 1 and r ≥ 1, then

F (r)
n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
Fs

where Fs is the sth Fibonacci number.

The corresponding theorem for the hyper-Lucas numbers is as follows.

Theorem 2.3. If n ≥ 1, r ≥ 1 and m ≥ 0, then

L(m+r)
n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
L(m)
s .

Proof. Let a0n = L
(m)
n and an0 = L

(m+n)
0 = 2 be given for n ≥ 1. This special case

gives the following infinite matrix:



L
(m)
0 L

(m)
1 L

(m)
2 L

(m)
3 . . .

L
(m+1)
0 L

(m+1)
1 L

(m+1)
2 L

(m+1)
3 . . .

L
(m+2)
0 L

(m+2)
1 L

(m+2)
2 L

(m+2)
3 . . .

...
...

...
...

. . .



. (2.4)

From the relation (2.1) we get that

arn =
r∑

i=1

(
n+ r − i− 1

n− 1

)
2 +

n∑

s=1

(
n+ r − s− 1

r − 1

)
L(m)
s

= 2
r−1∑

i=0

(
n+ r − i− 2

n− 1

)
+

n−1∑

s=0

(
n+ r − s− 2

r − 1

)
L
(m)
s+1

= 2

r−1∑

k=0

(
n+ k − 1
n− 1

)
+

n−1∑

b=0

(
r + b− 1
r − 1

)
L
(m)
n−b,

where k = r − i− 1 and b = n− s− 1. From (2.2), we have

arn = 2

(
n+ r − 1

n

)
+

n−1∑

b=0

(
r + b− 1
r − 1

)
L
(m)
n−b =

n∑

b=0

(
r + b− 1
r − 1

)
L
(m)
n−b.

Then the matrix (2.4) yields

arn = L(m+r)
n =

n∑

b=0

(
r + b− 1
r − 1

)
L
(m)
n−b =

n∑

s=0

(
n+ r − s− 1

r − 1

)
L(m)
s ,

this completes the proof.
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Corollary 2.4. If n ≥ 1 and r ≥ 1, then

L(r)
n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
Ls,

where Ln is the nth Lucas number.

Theorem 2.5. If n ≥ 1 and r ≥ 1, then

i) F
(r)
n + L

(r)
n = 2F

(r)
n+1,

ii) F
(r)
n − L(r)

n = 2F
(r−1)
n+1 .

Proof. From Corollaries 2.2 and 2.4, we have

F (r)
n + L(r)

n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
(Fs + Ls)

=

n∑

s=0

(
n+ r − s− 1

r − 1

)
(2Fs+1) = 2F

(r)
n+1

and

F (r)
n − L(r)

n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
(Fs − Ls)

=

n∑

s=0

(
n+ r − s− 1

r − 1

)
(2Fs−1) = 2F

(r−1)
n+1 .

Theorem 2.6. If n ≥ 1 and r ≥ 1, then

r∑

s=0

F (s)
n = F

(r)
n+1 − Fn−1.

Proof. From Corollary 2.2, we have

r∑

s=1

F (s)
n =

r∑

s=1

(
n∑

t=0

(
n+ s− t− 1

s− 1

)
Ft

)
=

n∑

t=0

(
Ft

r∑

s=1

(
n+ s− t− 1

s− 1

))
.

From (2.2), we obtain

r∑

s=1

F (s)
n =

n∑

t=0

(
n+ r − t
r − 1

)
Ft =

n+1∑

t=0

(
n+ r − t
r − 1

)
Ft − Fn+1 = F

(r)
n+1 − Fn+1.

Thus
r∑

s=0

F (s)
n = F

(r)
n+1 − Fn−1.
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Theorem 2.7. If n ≥ 1 and r ≥ 1, then

r∑

s=0

L(s)
n = L

(r)
n+1 − Ln−1.

Proof. The proof is similar to the proof of Theorem 2.6.

3. A generalized symmetric algorithm

In this section we generalize the algorithm for determining akn in the symmetric
infinite matrix. To this end we fix two arbitrary, nonzero real numbers u and v.
Then our new algorithm reads as

a0n = an, an0 = an (n ≥ 0) ,

akn = uak−1n + vakn−1 (n ≥ 1, k ≥ 1) .

That is, the symmetric infinite matrix now can be constructed in the following way:



. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . uak−1n
↓

. . .

. . . vakn−1 → akn . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .




.

It can easily be seen that (2.1) generalizes to

akn =
k∑

i=1

vnuk−i
(
n+ k − i− 1

n− 1

)
ai0 +

n∑

s=1

vn−suk
(
n+ k − s− 1

k − 1

)
a0s. (3.1)

As an application, we can generalize the hyper-Horadam number as

W (r)
n (u, v) = uW (r−1)

n + vW
(r)
n−1

where u and v are two nonzero real parameters and the initial conditions are
W

(0)
n (u, v) =Wn(a, b; p, q) =Wn and W (n)

0 (u, v) =W0(a, b; p, q) = a. Some special
cases of the hyper-Horadam numbers W (r)

n (u, v) are:
i) If W (0)

n (u, v) = F
(0)
n (u, v) = Fn and W

(n)
0 (u, v) = F

(n)
0 (u, v) = 0, then we

have the generalized hyper-Fibonacci numbers defined as

F (r)
n (u, v) = uF (r−1)

n + vF
(r)
n−1,
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ii) If W (0)
n (u, v) = L

(0)
n (u, v) = Ln and W

(n)
0 (u, v) = L

(n)
0 (u, v) = 2, we have

the generalized hyper-Lucas number defined as

L(r)
n (u, v) = uL(r−1)

n + vL
(r)
n−1,

iii) If W (0)
n (u, v) = P

(0)
n (u, v) = Pn and W (n)

0 (u, v) = P
(n)
0 (u, v) = 0, we have

the generalized hyper-Pell number defined as

P (r)
n (u, v) = uP (r−1)

n + vP
(r)
n−1.

By using (3.1), Theorem 2.1 generalizes to the following Theorem.

Theorem 3.1. If n ≥ 1, r ≥ 1 and m ≥ 0, then

W (m+r)
n (u, v) = a

(
v

1− u

)n [
1− rBu(r, n)

(
n+ r − 1
n− 1

)]

+ ur
n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
W (m)

s (u, v).

where Bu(r, n) is the incomplete beta function [1].

Proof. The incomplete beta function Bu(r, n) appears when we would like to eval-
uate the sum

r−1∑

k=0

(
n+ k − 1

k

)
uk.

This sum equals to

1

(1− u)n
[
1− rBu(r, n)

(
n+ r − 1
n− 1

)]
.

This is the most compact form we could find. The other parts of the proof are
the same as the proof of Theorem 2.1, if we use relation (3.1) and assume that
a0n =W

(m)
n (u, v) and an0 =W

(m+n)
0 = a.

Corollary 3.2. If n ≥ 1 and r ≥ 1, then

W (r)
n (u, v) = a

(
v

1− u

)n [
1− rBu(r, n)

(
n+ r − 1
n− 1

)]

+ ur
n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
Ws.

From these results we have some particular results for the hyper-Fibonacci,
hyper-Lucas, hyper-Pell numbers and their generalizations such as

F (r)
n (u, v) = ur

n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
Fs,
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L(r)
n (u, v) = 2

(
v

1− u

)n [
1− rBu(r, n)

(
n+ r − 1
n− 1

)]

+ ur
n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
Ls,

P (r)
n (u, v) = ur

n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
Ps,

P (r)
n =

n∑

s=1

(
n+ r − s− 1

r − 1

)
Ps,

where Fs, Ls and Ps is the sth Fibonacci, Lucas and Pell number, respectively.
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Abstract
For a non-zero integer N , we consider the problem of finding 3 integers

(a, b, c) such that

N =
a

b+ c
+

b

c+ a
+

c

a+ b
.

We show that the existence of solutions is related to points of infinite order on
a family of elliptic curves. We discuss strictly positive solutions and prove the
surprising fact that such solutions do not exist for N odd, even though there
may exist solutions with one of a, b, c negative. We also show that, where a
strictly positive solution does exist, it can be of enormous size (trillions of
digits, even in the range we consider).

Keywords: cubic representation, elliptic curve, rational points.

MSC: Primary 11D25 11G05, Secondary 11Y50

1. Introduction

Several authors have considered the problem of representing integers N (and in par-
ticular, positive integers N) by a homogeneous cubic form in three variables. See,
for example, the papers of Bremner & Guy [1], Bremner, Guy, and Nowakowski [2],
Brueggeman [3]. Analysis for cubic forms is made possible by the fact the the re-
sulting equation is that of a cubic curve, and hence in general is of genus one.

In this note, we shall study the representation problem

N =
a

b+ c
+

b

c+ a
+

c

a+ b
, (1.1)
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where a, b, c are rationals. Equivalently, by homogeneity, we may consider a, b, c ∈
Z.

Studying numerical data, it was observed that, when N is odd, there seem never
to exist “positive” solutions of (1.1), that is, solutions with a, b, c > 0, even though
there may indeed exist solutions with one of a, b, c negative. This fact precludes
a simple congruence argument to show the non-existence of positive solutions. In
contrast, when N is even, there may or may not be positive solutions. The proof
we give of non-existence of positive solutions, for N odd, depends on local consid-
erations at judiciously chosen primes.

In investigating the existence of solutions to (1.1), and more specifically, exis-
tence of positive solutions, we discovered that on occasion solutions exist, but the
smallest positive solution may be rather large. For example, when N = 896, the
smallest positive solution has a, b, c with several trillion digits (we do not list it
explicitly).

2. The cubic curve

We consider the following problem, that of representing integers N in the form

N =
a

b+ c
+

b

c+ a
+

c

a+ b

for rationals (or, by homogeneity, integers) a, b, c.
For fixed N , the homogenization is a cubic curve

CN : N(a+ b)(b+ c)(c+ a) = a(a+ b)(c+ a) + b(b+ c)(a+ b) + c(c+ a)(b+ c)

in projective 2-dimensional space which has a rational point, for example, (a, b, c) =
(1,−1, 0). The curve is therefore elliptic, and a cubic model is readily computed in
the form

EN : y2 = x3 + (4N2 + 12N − 3)x2 + 32(N + 3)x.

Setting s = a+ b+ c, maps are given by

a

s
=

8(N + 3)− x+ y

2(4− x)(N + 3)
,

b

s
=

8(N + 3)− x− y
2(4− x)(N + 3)

, (2.1)

and
c

s
=
−4(N + 3)− (N + 2)x

(4− x)(N + 3)
,

with inverse

x =
−4(a+ b+ 2c)(N + 3)

(2a+ 2b− c) + (a+ b)N
, y =

4(a− b)(N + 3)(2N + 5)

(2a+ 2b− c) + (a+ b)N
.

The curve has discriminant

∆(EN ) = 214(N + 3)2(2N − 3)(2N + 5)3
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so ∆ > 0 for all integers N except −3,−2,−1, 0, 1. Thus, other than for these
five values, the defining cubic has three real roots, and the elliptic curve has two
components. There is an unbounded component with x ≥ 0, and a bounded com-
ponent with x < 0 (frequently referred to as the “egg”).

Lemma 2.1. The torsion subgroup of EN is isomorphic to Z/6Z, except when
N = 2, when it is isomorphic to Z/2Z⊕ Z/6Z.

Proof. The point (0, 0) is clearly of order 2.
For there to be three rational points of order 2, necessarily there must be rational

roots of
x2 + (4N2 + 12N − 3)x+ 32(N + 3) = 0,

implying (2N − 3)(2N + 5) = (2N + 1)2− 16 = �, with the only integer possibility
N = 2.

Points of order 3 are points of inflexion of the curve EN , and it is a standard
exercise in calculus that

(4,±4(2N + 5))

is such a point.
Points of order 2 and of order 3 imply a point (x, y) of order 6, which by the

duplication formula, must satisfy

(x2 − 32(N + 3))2

4(x3 + (4N2 + 12N − 3)x2 + 32(N + 3)x)
= 4

giving the points ±T0 of order 6, where

T0 = ( 8(N + 3), 8(N + 3)(2N + 5) ).

Note: the corresponding torsion point in CN (Q) is the point (−1, 1, 1).
Further, there can be no point of order 12. For such can arise only when T0

is divisible by 2, implying 8(N + 3) = �. Then from the duplication formula, the
following equation

(U2 − 32(N + 3))2 = 32(N + 3)(U3 + (4N2 + 12N − 3)U2 + 32(N + 3)U)

must have a rational root for U . Substituting N = 2K2 − 3,

(U2 + 8K(1− 4K − 4K2)U + 64K2)(U2 + 8K(−1− 4K + 4K2)U + 64K2) = 0,

which demands

K(2K − 1)(2K + 1)(2K + 3)(2K − 3) = 0,

leading to singular curves.
Thus the torsion group is cyclic of order 6 when N 6= 2, and is isomorphic to

Z/2Z⊕ Z/6Z when N = 2.
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Remark 2.2. The torsion points themselves lead to singular solutions to the original
problem, so we need points of infinite order for a finite non-trivial solution. Thus
the rank of EN must be at least 1. The first example, for positive N , is N = 4 with
a generator for E4(Q) given by G = (−4, 28). The formulae above give the integer
solution a = 11, b = 4 and c = −1. We have (−4, 28) + (0, 0) = (−56,−392) which
gives a = −5, b = 9 and c = 11. Adding the other four torsion points gives cyclic
permutations of these basic solutions. The point 9G is the smallest multiple of G
that corresponds to a positive solution (in which a, b, c ∼ 1080).
Remark 2.3. The torsion points for N > 0 all lie on the unbounded component of
EN .
Remark 2.4. In the group CN (Q), the inverse of the point (a, b, c) is the point
(b, a, c). Further, adding the torsion generator (−1, 1, 1) to (a, b, c) gives rise to the
order six automorphism φ of C given by

φ(a, b, c) =
(
a2 + ab− ac+ bc− 2c2 − (b2 − c2)N,

a2 + 3ab+ 2b2 + 3ac+ bc+ 2c2 − (b+ c)(2a+ b+ c)N,

(a+ b)(a− 2b+ c) + (b2 − c2)N
)
.

Then φ2(a, b, c) = (b, c, a), φ4(a, b, c) = (c, a, b).
Remark 2.5. The torsion group of EN (Q) is cyclic of order 6, and so there exist
isogenies of EN of degrees 2, 3, 6, which are readily computed from the formulae
in Vélu [8] and which we record here in the following Lemma.

Lemma 2.6. For i = 2, 3, 6, there are the following isogenies φi : EN → E
(i)
N of

degree i.

1. E
(2)
N : Y 2 = X3 − 2(4N2 + 12N − 3)X2 + (2N − 3)(2N + 5)3X,

φ2(x, y) = (y2/x2, (x2 − 32(N + 3))y/x2);

2. E
(3)
N : Y 2 = X3 + (4N2 + 60N + 117)X2 + 128(N + 3)3X,

φ3(x, y) = (x(x− 8(N + 3))2/(x− 4)2,

(x− 8(N + 3))(x2 + 4(2N + 3)x+ 32(N + 3))y/(x− 4)3);

3. E
(6)
N : Y 2 = X3 − 2(4N2 + 60N + 117)X2 + (2N − 3)3(2N + 5)X,

φ6(x, y) = ((x2 + 4(2N + 3)x+ 32(N + 3))2y2/(x(x− 4)(x− 8(N + 3)))2,

p1(x)p2(x)p3(x)y/(x2(x− 4)3(x− 8(N + 3))3)),

where

p1(x) = x2 − 32(N + 3), p2(x) = x2 + 4(2N + 3)x+ 32(N + 3),

p3(x) = x4 − 32(N + 3)x3 − 32(N + 3)(4N2 + 12N − 1)x2 − 1024(N + 3)2x

+ 1024(N + 3)2.
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3. Rational solutions for N > 0

We computed the rank of EN in the range 1 ≤ N ≤ 1000, and in the case of
positive rank, attempted to compute a set of generators. The existence of 2-, 3-,
and 6-isogenies was particularly helpful when treating the curves with generators
of large height, in that we could focus on the curve where the estimated size of a
generator was minimal.

In the range of N we consider, the curve with generator of largest height is E616,
where the rank is one, and a generator has height ∼ 672.28. This was discovered
by finding a point of height ∼ 224.09 on a 3-isogenous curve. Most of these rank
computations were feasible using programs written in Pari-GP; the very largest
points were found with the help of Magma [5]. The rank results are summarized
in the following table.

# rank 0 # rank 1 # rank 2 # rank 3
436 485 76 3

Table 1: Rank distribution for 1 ≤ N ≤ 1000

Rank one examples occur for N = 4, 6, 10, 12, . . . , rank two examples for N =
34, 94, 98, 111, . . . , and rank three examples for N = 424, 680, 975.

4. Positivity

Henceforth, we assume that N > 0. A natural question is do positive solutions
a, b, c of the original equation exist? In particular, how do we recognise points
(x, y) ∈ EN (Q) that correspond to positive solutions of (1.1)?

Theorem 4.1. Suppose (a, b, c) ∈ CN corresponds to (x, y) ∈ EN (Q). Then
a, b, c > 0 if and only if either

(3−12N−4N2−(2N+5)
√
4N2+4N−15

2 < x < −2(N + 3)(N +
√
N2 − 4), (4.1)

or

−2(N + 3)(N −
√
N2 − 4) < x < −4

(
N + 3

N + 2

)
. (4.2)

Proof. Suppose a, b, c > 0. From (2.1),

0 <
ab

s2
=

(4−x)(x2+4N(N+3)x+16(N+3)2)
4(N+3)2(4−x)2 , (4.3)

so necessarily x < 4; and then c/s > 0 implies

x < −4

(
N + 3

N + 2

)
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(and, in particular, the point (x, y) lies on the egg). By symmetry in a, b, we may
suppose y > 0. From (2.1),

a

s
=

8(N + 3)− x+ y

2(4− x)(N + 3)
> 0.

It remains to ensure that b/s = 8(N+3)−x−y
2(4−x)(N+3) > 0. But from (4.3), b/s > 0 precisely

when
x2 + 4N(N + 3)x+ 16(N + 3)2 > 0;

and this latter happens when

either x < −2(N + 3)(N +
√
N2 − 4), or x > −2(N + 3)(N −

√
N2 − 4).

Putting these results together, necessary conditions for a, b, c to be positive are the
following:

1

2
(3− 12N − 4N2 − (2N + 5)

√
4N2 + 4N − 15) < x < −2(N + 3)(N +

√
N2 − 4),

where the left inequality is automatic, arising from y2 > 0, or

−2(N + 3)(N −
√
N2 − 4) < x < −4

(
N + 3

N + 2

)
.

It is straightforward to see that these conditions on x, y are now also sufficient for
the positivity of a, b, c.

It follows that positive solutions can only come from rational points on the egg
component of the curve.

5. N odd

Analyzing solutions found from computation, it was observed that when N is odd
(in contrast to the case N even) there seem never to be points on the curve EN

with x < 0. We show that this is indeed the case.

Theorem 5.1. Suppose N ≡ 1 mod 2. Then (x, y) ∈ EN (Q) implies x ≥ 0.

Proof. Set N + 3 = 2M , M ≥ 2, so that the curve EN takes the form

EM : y2 = x(x2 + (16M2 − 24M − 3)x+ 64M).

A point (x, y) ∈ EM (Q) satisfies x = dr2/s2, for d, r, s ∈ Z, (r, s) = 1, with
d | 64M , and without loss of generality, d squarefree. Then

dr4 + (16M2 − 24M − 3)r2s2 +
64M

d
s4 = �.
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The claim is that this quartic can have no points r, s when d < 0.

On completing the square
(
2dr2 + (16M2 − 24M − 3)s2

)2 − (4M − 1)3(4M − 9)s4 = 4d �, d | 2M.

Case I: d < 0, d odd.
Let d = −u, u > 0, u odd, with M = um. We now have

−ur4 + (16M2 − 24M − 3)r2s2 − 64ms4 = �,

equivalently,

(−2ur2 + (16M2 − 24M − 3)s2)2 − (4M − 1)3(4M − 9)s4 = −4u�.

Note that the Jacobi symbol
( −u

4M − 1

)
=

( −1

4M − 1

)(
u

4M − 1

)
= −

(
4M − 1

u

)
(−1)(u−1)/2

= −
(−1

u

)
(−1)(u−1)/2 = −1.

However, if every prime p dividing 4M − 1 satisfies
(
−u
p

)
= +1, then the Jacobi

symbol
(
−u

4M−1

)
= +1 by multiplicativity of the symbol. In consequence, there

exists a prime p dividing 4M − 1 satisfying
(
−u
p

)
= −1. Then for such a prime p,

−2ur2 + (16M2 − 24M − 3)s2 ≡ 0 mod p,

−2ur2 − 8s2 ≡ 0 mod p,

4s2 ≡ −ur2 mod p,

forcing r ≡ s ≡ 0 mod p, contradiction.

Case II: d < 0, d even.
Let d = −2u, u > 0, u odd, with M = um. We now have

−2ur4 + (16M2 − 24M − 3)r2s2 − 32ms4 = �,

equivalently

(−4ur2 + (16M2 − 24M − 3)s2)2 − (4M − 1)3(4M − 9)s4 = −8u �.

Subcase (i): M even.
Now
( −2u

4M − 1

)
=

( −2

4M − 1

)(
4M − 1

u

)
(−1)(u−1)/2 = −

(−1

u

)
(−1)(u−1)/2 = −1,
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and arguing as above, there exists a prime p dividing 4M − 1 with
(
−2u
p

)
= −1.

Then

−4ur2 + (16M2 − 24M − 3)s2 ≡ 0 mod p,

−4ur2 − 8s2 ≡ 0 mod p,

4s2 ≡ −2ur2 mod p,

forcing r ≡ s ≡ 0 mod p, contradiction.

Subcase (ii): M odd (so in particular, m odd).
In this case, the equation is 2-adically unsolvable, as follows. We have

−2ur4 + (16M2 − 24M − 3)r2s2 − 32ms4 = �

implying s is odd. Modulo 4, r cannot be odd, and thus r is even. Then

−3(r/2)2 ≡ � mod 8

so that r/2 is even; and now

−3(r/4)2 − 2m ≡ � mod 4,

−3(r/4)2 − 2 ≡ � mod 4,

impossible.

Corollary 5.2. If N is odd and EN is of positive rank, then generators for EN (Q)
lie on the unbounded component of EN .

Consequently, in the situation of Corollary 5.2, there are no rational points on
the egg, so no positive solutions of (1.1) exist. This happens when the rank is one
for N = 19, 21, 23, 29, . . . , when the rank is two, for N = 111, 131, 229, 263, . . . ,
and when the rank is three, for n = 975. It can also occur that when N is even,
all generators for EN (Q) lie on the unbounded component of EN , so that there
are no rational points on the egg. This situation occurs for rank one examples
N = 40, 44, 50, 68, . . . , rank two examples N = 260, 324, 520, 722, . . . , and the rank
three example N = 680.
Hence there exist even N , namely N = 40, 44, 50, 68, . . . where there exist solutions
to (1.1), but there do not exist positive solutions. In contrast, we have the following
result.

Theorem 5.3. There exist infinitely many positive even integers N such that (1.1)
has positive solutions.

Proof. The proof is immediate, using the parameterization N = t2 + t+ 4 with the
point on the egg of EN given by

(x, y) =
(
−4(t2 + t+ 1)2, 4(2t+ 1)(t2 + t+ 1)(3t2 + 3t+ 7)

)
.
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Remark 5.4. It is straightforward to show that this point corresponds to

a = (t2 + 1)(3t3 + 8t2 + 14t+ 11), b = −(t2 + 2t+ 2)(3t3 + t2 + 7t− 2),

c = t6 + 3t5 + 11t4 + 17t3 + 20t2 + 12t− 1;

with no (real) value of t making a, b, c > 0; so some multiple of the point will be
needed to obtain a positive solution.

6. Size of positive solutions

A positive solution of (1.1) demands the existence of a point in EN (Q) that lies on
the egg; and in particular not all generators for EN (Q) can lie on the unbounded
branch of the curve. For a positive solution, therefore, a generator in EN (Q) must
lie on the egg.

–400

–200

200

400

–100 –50

Figure 1: Region for a, b, c > 0 on E4(Q)

We consider curves EN of rank one in the range 1 ≤ N ≤ 1000, where there
is a generator P of EN (Q) lying on the egg. For these curves, we computed
the smallest integer m such that one of the points mP + T , T ∈ Tor(EN (Q)),
satisfies (3), (4).

We then computed the maximum number of digits in a, b, c. The results for
1 ≤ N ≤ 200 are given in the following table.

N m # digits
4 9 81
6 11 134
10 13 190
12 35 2707
14 47 1876
16 11 414
18 49 10323
24 107 33644
28 121 81853
32 65 14836
38 659 1584369
42 419 886344
46 201 198771

N m # digits
48 311 418086
58 221 244860
60 61 9188
66 107 215532
76 65 23662
82 157 85465
92 321 252817
102 423 625533
112 223 935970
116 101 112519
126 75 196670
130 707 8572242
132 461 3607937

N m # digits
136 65 26942
146 307 259164
156 353 12046628
158 1211 15097279
162 457 1265063
178 2945 398605460
182 853 2828781
184 851 20770896
186 643 5442988
196 701 11323026
198 121 726373
200 2957 71225279

For comparison, the twenty volume second edition of the Oxford English Dic-
tionary is estimated to contain 350 million printed characters (see [6]), a little

Figure 1: Region for a, b, c > 0 on E4(Q)

Such a point may not satisfy the inequalities (4.1), (4.2), of course, but a result of
Hurwitz [4] implies that rational points on EN are now dense on both components
of EN , so that there will indeed exist points in EN (Q) that satisfy (4.1), (4.2). The
width of the interval at (4.1) tends to 1 as N → ∞, and the width of the interval
at (4.2) tends to 0. The width of the egg however is O(N2). Thus if the rank of the
curve EN is equal to one, with a generator P on the egg regarded as lying essentially
at random on the egg, then the smallest integer m such that mP satisfies (4.1),
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(4.2), may be very large. If we assume equidistribution of random points on the
egg, then a crude estimate of arc length shows that there is probability O( 1

N ) that a
random point of the egg lies within the region defined by (4.1), (4.2). In Figure 1 we
sketch the graph for N = 4, indicating the region corresponding to positive a, b, c,
representing the intervals −106.9046 < x < −104.4974, −7.5026 < x < −4.6667.
We consider curves EN of rank one in the range 1 ≤ N ≤ 1000, where there is a
generator P of EN (Q) lying on the egg. For these curves, we computed the smallest
integer m such that one of the points mP + T , T ∈ Tor(EN (Q)), satisfies (4.1),
(4.2).

We then computed the maximum number of digits in a, b, c. The results for
1 ≤ N ≤ 200 are given in Table 2.

N m # digits N m # digits N m # digits
4 9 81 48 311 418086 136 65 26942
6 11 134 58 221 244860 146 307 259164
10 13 190 60 61 9188 156 353 12046628
12 35 2707 66 107 215532 158 1211 15097279
14 47 1876 76 65 23662 162 457 1265063
16 11 414 82 157 85465 178 2945 398605460
18 49 10323 92 321 252817 182 853 2828781
24 107 33644 102 423 625533 184 851 20770896
28 121 81853 112 223 935970 186 643 5442988
32 65 14836 116 101 112519 196 701 11323026
38 659 1584369 126 75 196670 198 121 726373
42 419 886344 130 707 8572242 200 2957 71225279
46 201 198771 132 461 3607937

Table 2: The maximum number of digits in a, b, c in the range
1 ≤ N ≤ 200

For comparison, the twenty volume second edition of the Oxford English Dic-
tionary is estimated to contain 350 million printed characters (see [6]), a little less
than the number of digits in each of a, b, c when n = 178.

It is not practical to compute points on elliptic curves with heights that begin
to exceed those of the previous table. For example, when N = 896, the curve
E896 has rank one, and the smallest multiple of the generator P (which itself has
height 128.76) such that mP corresponds to a positive solution at (1.1), is given
by m = 161477.

Remark 6.1. Such computations were performed using high-precision real arith-
metic. Computing a multiple mP takes O(log2(m)) operations, so in the com-
puted range where m ≤ 161477, precision is not a problem. For safety however,
and because the computation took only slightly longer, we worked with 106 digits
of precision.
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7. Size bounds on positive solutions

We proceed to determine a crude lower bound for the number of digits in the pos-
itive solution a, b, c from a knowledge of the canonical height of the corresponding
point on EN .

Suppose that P (x, y), where x < 0, is a point on EN giving rise to a positive
a, b, c. So one of the inequalities (4.1), (4.2) holds, and in particular x is negative
(in fact, x < −4).

Theorem 7.1. Let (a, b, c) ∈ CN (Q) correspond to P (x, y) ∈ EN (Q), and suppose
that a, b, c > 0. Then

max(log(a), log(b)) >
3

2
h(P )− 6 log(N)− 10,

where h denotes the canonical height function on EN .

Proof. The mapping EN → CN is given by

a : b : c = −x+ y + 8(N + 3) : −x− y + 8(N + 3) : −2x(N + 2)− 8(N + 3).

Write x = −u/w2, y = v/w3, where u > 0, w > 0, and (u,w) = (v, w) = 1. Since
x < −1, we have u > w2, and the naive height H(P ) of P is equal to u.

Either inequality (4.1), (4.2), implies

u/w2 <
1

2
(−3 + 12N + 4N2 + (2N + 5)(2N + 1)) = 4N2 + 12N + 1 < (2N + 3)2.

Write

ah = uw + v + 8(N + 3)w3,

bh = uw − v + 8(N + 3)w3,

ch = 2uw(N + 2)− 8(N + 3)w3,

where h is the greatest common divisor of the three expressions on the right.
Now ah+ bh = 2(u+ 8(N + 3)w2)w so that

ah+ bh = 2(u+ 8(N + 3)w2)w > 2(1 +
8(N + 3)

(2N + 3)2
)uw

=
2(4N2 + 20N + 33)

(2N + 3)2
uw

>
2(4N2 + 20N + 33)

(2N + 3)3
u3/2

>
1

N
H(P )3/2.

Thus necessarily either ah or bh (and by choice of sign of y, we may assume
this is ah) is at least equal to 1

2NH(P )3/2.
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We now estimate h. We have (a− b)h = 2v, (a+ b)h = −2uw + 16(N + 3)w3,
(a+b+2c)h = −2uw(2N +5), so that ((N +2)(a+b)−c)h = 8(N +3)(2N +5)w3.
Thus h | 8(N+3)(2N+5)w3. Now if p is a prime dividing (h,w), necessarily p | 2v,
so that p = 2, since (v, w) = 1. But w even implies v odd, so that 2‖h. Moreover,
in the case that w is odd, then (h,w) = 1. It follows that h | 8(N + 3)(2N + 5),
and in particular, h ≤ 8(N + 3)(2N + 5). This bound is best possible, in that in
our range of computation, there are several instances where h = 8(N + 3)(2N + 5).
Consequently, a is at least equal to H(P )3/2/(16N(N + 3)(2N + 5)).

There are known bounds on the difference between the canonical height and
the logarithm of the naive height, in the form

c1 ≤ logH(P )− h(P ) ≤ c2,

for constants c1, c2. The following estimate for c1 is taken from Silverman [7,
Theorem 1.1], where ∆(EN ) and j(EN ) denote the discriminant and j-invariant of
EN , respectively.

c1 = − 1

12
log |∆(EN )j(EN )| − 1

2
log |4N

2 + 12N − 3

3
| − 1

2
log(2)− 1.07

= −1

4
log | (2N+3)(8N3+36N2+6N−93)(4N2+12N− 3)2

9
| − 3

2
log(2)− 1.07

> −1

4
log(226N8)− 3

2
log(2)− 1.07 (for N ≥ 4)

> −2 log(N)− 3.47.

Thus,

log a >
3

2
logH(P )− log(16N(N + 3)(2N + 5))

>
3

2
h(P ) +

3

2
c1 − log(16N(N + 3)(2N + 5))

>
3

2
h(P )− 3 log(N)− 5.20− log(92N3) (for N ≥ 4)

>
3

2
h(P )− 6 log(N)− 10.

Remark 7.2. In the case where (4.2) holds, the above bound may be improved to
log a > 3

2h(P )− 4 log(N)− 9.
When N = 896, with multiple m = 161477, then x(161477P ) ∼ −4.0133512, so

that (4.2) holds. Now h(P ) = 3357394890723.0389 and the above estimate gives
log a > 5036092336048.36658. That is, a has in excess of 2.187 trillion digits (which
amounts to about 6250 OED units).
Remark 7.3. This estimate is very crude. For example, when N = 178, with
multiple 2945, then h(P ) = 265736973.117 and the above estimate gives log(a) >
398605418.5847, that is, a has in excess of 173112134 digits. From the table in
section 4, we see that the actual number of digits is equal to 398605460.
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8. Rational solutions for N < 0

The motivation has been to study the case N > 0 because of our interest in positive
solutions. But in the course of the investigation we also computed ranks and
generators for all −1 ≥ N ≥ −1000 (N 6= −3). The rank results are summarized
in the following table.

# rank 0 # rank 1 # rank 2 # rank 3
393 471 126 9

Table 3: Rank distribution for −1000 ≤ N ≤ −1, N 6= −3

Rank one examples occur for N = −5,−8,−9, . . . , rank two examples for N =
−17,−29,−38, . . . , and rank three examples for N = −181,−365,−369, . . . . The
generator of greatest height occurs for N = −994, where the height is ∼ 690.84.
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1. Introduction

Let Sn denote the set of all permutations of [n], where [n] = {1, 2, . . . , n}. Let
π = π(1)π(2) · · ·π(n) ∈ Sn. A peak in π is defined to be an index i ∈ [n] such that
π(i−1) < π(i) > π(i+1), where we take π(0) = π(n+1) = 0. Let pk (π) denote the
number of peaks in π. A left peak (resp. an interior peak) in π is an index i ∈ [n−1]
(resp. i ∈ [2, n− 1] = {2, 3, . . . , n− 1}) such that π(i− 1) < π(i) > π(i+ 1), where
we take π(0) = 0. Let lpk (π) (resp. ipk (π)) denote the number of left peaks (resp.
interior peaks) in π.

Combinatorial statistics on cycle notation have been extensively studied in re-
cent years from several points of view (see, e.g., [7, 8, 9, 10, 14]). We say that π is a
circular permutation if it has only one cycle. The notions of cyclic peak and cyclic
valley are defined on circular permutations as follows. Let A = {x1, x2, . . . , xk}
be a finite set of positive integers with k ≥ 1, and let CA be the set of all cir-
cular permutations of A. We will write a circular permutation w ∈ CA by using
the canonical presentation w = y1y2 · · · yk, where y1 = minA, yi = wi−1(y1) for
2 ≤ i ≤ k and y1 = wk(y1). The number cpk (w) of cyclic peaks (resp. cval (w) of
cyclic valleys) of w is defined to be the number of indices i ∈ [2, k − 1] such that
yi−1 < yi > yi+1 (resp. yi−1 > yi < yi+1).

The organization of this paper is as follows. In Section 2, we study the generat-
ing functions for the number of cyclic peaks or valleys, providing explicit expressions
in both cases. In Section 3, a new combinatorial interpretation for the Pell numbers
is obtained by considering the sign-balance of the cyclic valley statistic on the set
of derangements. Our argument may be extended to yield a simple sign-balance
formula for the entire symmetric group.

We now recall some prior results which we will need in our derivation of the
generating function formulas for cyclic peaks and valleys. Define

P (Sn; q) =
∑

π∈Sn

qpk (π),

IP (Sn; q) =
∑

π∈Sn

qipk (π),

LP (Sn; q) =
∑

π∈Sn

qlpk (π).

For convenience, set P (S0; q) = IP (S0; q) = LP (S0; q) = 1. It is well known (see
[4, ex. 3.3.46] and [11, A008303, A008971]) that

IP (S; q, z) =
∑

n≥1
IP (Sn; q)

zn

n!
=

sin(z
√
q − 1)√

q − 1 cos(z
√
q − 1)− sin(z

√
q − 1)

,

LP (S; q, z) =
∑

n≥0
LP (Sn; q)

zn

n!
=

√
q − 1√

q − 1 cos(z
√
q − 1)− sin(z

√
q − 1)

.

See also the related generating function formula found earlier by Entringer [3].
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The complement map π 7→ πc, defined by πc(i) = n + 1 − π(i), shows that
pk (πc) = 1 + ipk (π), upon considering cases as to whether there is one more, one
less, or the same number of interior peaks as valleys in the permutation π. Thus

P (Sn; q) = qIP (Sn; q)

for n ≥ 1. From the preceding, we conclude that

P (S, q, z) =
∑

n≥0
P (Sn; q)

zn

n!
= 1 +

q sin(z
√
q − 1)√

q − 1 cos(z
√
q − 1)− sin(z

√
q − 1)

.

2. Generating functions

Let Cn = C[n]. For each w ∈ Cn, we define w′ by the mapping

Φ : w = 1y2 · · · yn 7→ w′ = (y2 − 1)(y3 − 1) · · · (yn − 1).

One can verify the following result.

Lemma 2.1. For n ≥ 2, the mapping Φ is a bijection of Cn onto Sn−1 having the
properties:

cpk (w) = lpk (w′), cval (w) = pk (w′)− 1.

Define

CP (Cn; q) =
∑

w∈Cn
qcpk (w); CP (C; q, z) =

∑

n≥1
CP (Cn; q)

zn

n!
;

CV (Cn; q) =
∑

w∈Cn
qcval (w); CV (C; q, z) =

∑

n≥1
CV (Cn; q)

zn

n!
.

By Lemma 2.1, we have

CP (C; q, z) = z +
∑

n≥2
CP (Cn; q)

zn

n!

= z +
∑

n≥2
LP (Sn−1; q)

zn

n!

=
∑

n≥0
LP (Sn; q)

zn+1

(n+ 1)!

=

z∫

0

LP (S; q, z)dz.

Along the same lines, we obtain

qCV (C; q, z) = qz + q
∑

n≥2
CV (Cn; q)

zn

n!
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= qz +
∑

n≥2
P (Sn−1; q)

zn

n!

=

z∫

0

P (S; q, z)dz + z(q − 1).

With the aid of Maple, we can find expressions for the following two antideriva-
tives:

∫
a

a cos(az)− sin(az)
dz =

1

2
√

1 + a2
ln

√
1 + a2 + cos(az) + a sin(az)√
1 + a2 − cos(az)− a sin(az)

+ C,

∫
sin(az)

a cos(az)− sin(az)
dz =

1

1 + a2

(
−z + ln

a

a cos(az)− sin(az)

)
+ C.

Therefore, we get

CP (C; q, z) =
1

2
√
q

ln

[(√
q − 1
√
q + 1

)(√
q + cos(z

√
q − 1) +

√
q − 1 sin(z

√
q − 1)

√
q − cos(z

√
q − 1)−√q − 1 sin(z

√
q − 1)

)]
,

CV (C; q, z) =
1

q
ln

√
q − 1√

q − 1 cos(z
√
q − 1)− sin(z

√
q − 1)

+ z

(
1− 1

q

)
.

We write π ∈ Sn as the product of disjoint cycles: π = w1w2 · · ·wk. When
each of these cycles is expressed in canonical form, we define

cpk (π) := cpk (w1) + cpk (w2) + · · ·+ cpk (wk),

cval (π) := cval (w1) + cpk (w2) + · · ·+ cval (wk).

Both µ1 : π 7→ qcpk (π) and µ2 : π 7→ qcval (π) are multiplicative, in the sense that

µi(π) = µi(w1)µi(w2) · · ·µi(wk), i = 1, 2.

Using the exponential formula [12, Corollary 5.5.5], we have

∑

n≥0

zn

n!

∑

π∈Sn

µi(π) = exp


∑

n≥1

zn

n!

∑

w∈Cn
µi(w)


 .

Define

CP (Sn; q) =
∑

w∈Sn

qcpk (w);

CV (Sn; q) =
∑

w∈Sn

qcval (w).

Accordingly,

CP (S; q, z) =
∑

n≥0
CP (Sn; q)

zn

n!
= exp(CP (C; q, z)),
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CV (S; q, z) =
∑

n≥0
CV (Sn; q)

zn

n!
= exp(CV (C; q, z)).

Combining the prior observations yields the following result.

Theorem 2.2. We have

CP (S; q, z)

=

[(√
q − 1
√
q + 1

)(√
q + cos(z

√
q − 1) +

√
q − 1 sin(z

√
q − 1)

√
q − cos(z

√
q − 1)−√q − 1 sin(z

√
q − 1)

)] 1
2
√

q

, (2.1)

CV (S; q, z) = ez(1−1/q)
( √

q − 1√
q − 1 cos(z

√
q − 1)− sin(z

√
q − 1)

) 1
q

. (2.2)

We say that π ∈ Sn changes direction at position i if either π(i− 1) < π(i) >
π(i + 1) or π(i − 1) > π(i) < π(i + 1), where i ∈ [2, n − 1]. We say that π has k
alternating runs if there are k − 1 indices i such that π changes direction at these
positions. Let R(n, k) denote the number of permutations in Sn with k alternating
runs. It is well known that the numbers R(n, k) satisfy the recurrence relation

R(n, k) = kR(n− 1, k) + 2R(n− 1, k − 1) + (n− k)R(n− 1, k − 2)

for n, k > 1, where R(1, 0) = 1 and R(1, k) = 0 for k > 1 (see [11, A059427]).
Let Rn(q) =

∑
k>1R(n, k)qk. There is an extensive literature devoted to the

polynomials Rn(q). The reader is referred to [5, 6, 13] for recent progress on this
subject.

In [1], Carlitz proved that

H(q, z) =
∞∑

n=0

zn

n!

n∑

k=0

R(n+ 1, k)qn−k =

(
1− q
1 + q

)(√
1− q2 + sin(z

√
1− q2)

q − cos(z
√

1− q2)

)2

.

Consider
R(q, z) =

∑

n>0

Rn+1(q)
zn

n!
.

It is clear that R(q, z) = H( 1
q , qz). Hence

R(q, z) =

(
q − 1

q + 1

)(√
q2 − 1 + q sin(z

√
q2 − 1)

1− q cos(z
√
q2 − 1)

)2

.

There is an equivalent expression for R(q, z) (see [2, eq. (20)]):

R(q, z) =

(
q − 1

q + 1

)(
q + cos(z

√
q2 − 1) +

√
q2 − 1 sin(z

√
q2 − 1)

q − cos(z
√
q2 − 1)−

√
q2 − 1 sin(z

√
q2 − 1)

)
. (2.3)

By Theorem 2.2, we can now conclude the following result.
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Corollary 2.3. We have

CP (S; q, z) = R(
√
q, z)

1
2
√

q ,

CV (S; q, z) = ez(1−1/q)LP (S; q, z)
1
q .

Corollary 2.4. For n > 2, the total number of cyclic peaks in all the members of
Sn is given by

n!(4n+ 1− 6Hn)

12
,

and the total number of cyclic valleys in all the members of Sn is given by

n!(2n+ 5− 6Hn)

6
,

where Hn =
∑n
j=1

1
j is the n-th harmonic number.

Proof. It follows from Theorem 2.2 that

d

dq
CP (S; q, z) |q=1 =

(z3 − 3z2 + 6z + 6(1− z) ln(1− z))
12(1− z)2

=
z3 − 3z2 + 6z

12(1− z)2 +
ln(1− z)
2(1− z)

=
∑

n>2

(4n+ 1− 6Hn)
zn

12
,

d

dq
CV (S; q, z) |q=1 =

(−z3 − 3z2 + 6z + 6(1− z) ln(1− z))
6(1− z)2

=
−z3 − 3z2 + 6z

6(1− z)2 +
ln(1− z)

1− z

=
∑

n>2

(2n+ 5− 6Hn)
zn

6
,

as required.

Note that
CP (Sn; 0) = #{π ∈ Sn : cpk (π) = 0}.

Consider a permutation

π = (π(i1), . . .)(π(i2), . . .) · · · (π(ij), . . .)

counted by CP (Sn; 0). Replacing the parentheses enclosing cycles with brackets,
we get a partition of [n] with j blocks. Therefore, we obtain

CP (Sn; 0) = Bn, (2.4)
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where Bn is the nth Bell number [11, A000110], i.e., the number of partitions of
[n] into non-empty blocks.

We present now a generating function proof of (2.4). Note that
∑

n>0

CP (Sn; 0)
zn

n!

= lim
q→0

[(√
q − 1
√
q + 1

)(√
q + cos(z

√
q − 1) +

√
q − 1 sin(z

√
q − 1)

√
q − cos(z

√
q − 1)−√q − 1 sin(z

√
q − 1)

)] 1
2
√

q

.

Denote the limit on the right by L. It is easy to see that L is of the indeterminate
form 1∞. So, by l’Hôpital’s rule, we have

lnL = lim
q→0

1

2
√
q

ln

[(√
q − 1
√
q + 1

)(√
q + cos(z

√
q − 1) +

√
q − 1 sin(z

√
q − 1)

√
q − cos(z

√
q − 1)−√q − 1 sin(z

√
q − 1)

)]

= cosh z + sinh z − 1 = ez − 1.

Consequently, ∑

n>0

CP (Sn; 0)
zn

n!
= ee

z−1,

the right-hand side being the exponential generating function of Bn, thus prov-
ing (2.4).

3. A new combinatorial interpretation for the Pell
numbers

Recall that the Pell numbers Pn are defined by the recurrence relation Pn = 2Pn−1+
Pn−2 for n > 2, with initial values P0 = 0 and P1 = 1 (see [11, A000129]). The
Pell numbers are also given, equivalently, by the Binet formula

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√

2
, n > 0,

which implies

Pn =
∑

06r6bn−1
2 c

(
n

2r + 1

)
2r, n > 1.

By a fixed point of a permutation π, we mean an i ∈ [n] such that π(i) = i.
A fixed point free permutation is called a derangement. Let Dn denote the set of
derangements of [n].

Our next result reveals a somewhat unexpected connection between derange-
ments and Pell numbers.

Theorem 3.1. For n > 1, we have
∑

σ∈Dn

(−1)cval (σ) = Pn−1. (3.1)
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Combinatorial proof of Theorem 3.1

Let us assume n > 3 and let D+
n and D−n denote the subsets of Dn whose members

contain an even or odd number of cyclic valleys, respectively. To show (3.1), we
will define a cval -parity changing involution of Dn whose survivors belong to D+

n

and have cardinality Pn−1. We will say that a permutation is in standard form if
the smallest element is first within each cycle, with cycles arranged in increasing
order of smallest elements. Let D∗n consist of those members π = C1C2 · · ·Cr of Dn
in standard form whose cycles Ci satisfy the following two conditions for 1 6 i 6 r:

(a) Ci consists of a set of consecutive integers, and

(b) Ci is either increasing or contains exactly one cyclic peak but no cyclic valleys.

Note that D∗n ⊆ D+
n and in the lemma that follows, it is shown that |D∗n| = Pn−1.

We now proceed to define an involution of Dn −D∗n. Given π = C1C2 · · ·Cr ∈
Dn − D∗n in standard form, let j0 denote the smallest index j such that cycle Cj
violates condition (a) or (b) (possibly both). Let us assume for now that j0 = 1.
Then let i0 be the smallest index i such that either

(I) i is the middle letter of some cyclic valley of C1, or

(II) i fails to belong to C1 with at least one member of [i+ 1, n] belonging to C1.

Observe that if (I) occurs, then C1 may be decomposed as

C1 = 1αγδβ,

where α is a subset of [2, i0 − 1] and is increasing, β is a subset of [2, i0 − 1] and is
decreasing, the union of α and β is [2, i0−1] with α or β possibly empty, γ consists
of letters in [i0+1, n], and δ starts with the letter i0. Note in this case that i0 being
the middle letter of some cyclic valley implies γ is non-empty and δ has length at
least two. Next observe that if (II) occurs, then C1 = 1αρβ, where α and β are
as before and ρ is non-empty. Note that the second cycle C2 must start with i0 in
this case.

We define an involution by splitting the cycle C1 into two cycles L1 = 1αγβ,
L2 = δ if (I) occurs, and by merging cycles C1 and C2 such that the letters of C2 go
between ρ and β if (II) occurs. Note that the former operation removes exactly one
cyclic valley (namely, the one involving i0) since all of the letters of γ are greater
than those of β with β decreasing, while the latter operation is seen to add exactly
one cyclic valley. Furthermore, the standard ordering of the cycles is preserved by
the former operation, by the minimality of i0.

For j0 > 1 in general, perform the operations defined above using the cycle Cj0
and its successor, treating the letters contained therein as those in [`] for some `
and leaving the cycles C1, C2, . . . , Cj0−1 undisturbed. Let π′ denote the resulting
derangement. Then it may be verified that the mapping π 7→ π′ is an involution of
Dn −D∗n such that π and π′ have opposite cval parity for all π.
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For example, if n = 20 and π = D20 −D∗20 is given by

π = (1, 3, 5, 4, 2), (6, 7), (8, 10, 11, 18, 13, 15, 9), (12, 17, 14, 20), (16, 19),

then j0 = 3 and

π′ = (1, 3, 5, 4, 2), (6, 7), (8, 10, 11, 18, 13, 15, 12, 17, 14, 20, 9), (16, 19).

Lemma 3.2. If n > 1, then |D∗n| = Pn−1.

Proof. Recall that Pm counts the tilings of length m− 1 consisting of squares and
dominos such that squares may be colored black or white (called Pell tilings). To
complete the proof, we define a bijection f between D∗n and the set of Pell tilings
of length n − 2, where n > 3. Suppose π = C1C2 · · ·Cr ∈ D∗n. If 1 6 i < r, then
we convert the cycle Ci into a Pell subtiling as follows. First assume i = 1 and
let t denote the largest letter of cycle C1. If j ∈ [2, t − 1] and occurs to the left
(resp. right) of t in C1, then let the (j−1)-st piece of f(π) be a white (resp. black)
square. To the resulting sequence of t − 2 squares, we append a domino. Thus
C1 has been converted to a Pell subtiling of the same length ending in a domino.
Repeat for the cycles C2, C3, . . . , Cr−1, at each step appending the subtiling that
results to the current tiling. For cycle Cr, we perform the same procedure, but this
time no domino is added at the end. Let f(π) denote the resulting Pell tiling of
length n− 2. It may be verified that the mapping f is a bijection. Note that f(π)
ends in a domino if and only if cycle Cr has length two and that the number of
dominos of f(π) is one less than the number of cycles of π.

In the remainder of this section, we present a comparable sign-balance result for
Sn. Let i =

√
−1. Note that cosh(x) = cos(ix) and sinh(x) = −i sin(ix). Setting

q = −1 in (2.2), we obtain

∑

n>0

zn

n!

∑

π∈Sn

(−1)cval (π) =
∑

n>0

CV (Sn;−1)
zn

n!

=
1√
2
e2z(
√

2 cosh(
√

2z)− sinh(
√

2z)).

Equating coefficients yields the following result.

Theorem 3.3. For n ≥ 1, we have

∑

π∈Sn

(−1)cval (π) =
1

2
((2 +

√
2)n−1 + (2−

√
2)n−1)

=
∑

06r6bn−1
2 c

(
n− 1

2r

)
2n−1−r. (3.2)
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Combinatorial proof of Theorem 3.3

Let S+
n and S−n denote the subsets of Sn whose members contain an even or odd

number of cyclic valleys. To show (3.2), we seek an involution of Sn which changes
the parity of cval . Indeed, we define a certain extension of the mapping used in the
proof of (3.1). Let S∗n consist of those members π = C1C2 · · ·Cr of Sn in standard
form all of whose cycles satisfy the following two properties:

(a) Ci is either a singleton or if it is not a singleton, it comprises a set of consec-
utive integers when taken together with all singleton cycles between it and
the next non-singleton cycle (if there is one), and

(b) Ci is either increasing or contains exactly one cyclic peak but no cyclic valleys.

Note that S∗n ⊆ S+
n and below it is shown that |S∗n| =

∑
r

(
n−1
2r

)
2n−1−r.

We now define an involution of Sn −S∗n. Given π = C1C2 · · ·Cr ∈ Sn −S∗n
in standard form, let j0 denote the smallest index j such that cycle Cj violates
condition (a) or (b) (possibly both). Let us assume for now that j0 = 1, the
general case being done in a similar manner as will be apparent. Let i0 denote
the smallest index i satisfying conditions (I) or (II) in the proof above for (3.1),
where in (II) we must now add the assumption that i belongs to a non-singleton
cycle. The involution π 7→ π′ is then defined in an analogous manner as it was
in the proof of (3.1) above except now, in the merging operation, a non-singleton
cycle is moved to the first non-singleton cycle which precedes it (with possibly some
singletons separating the two).

For example, if n = 20 and π = S20 −S∗20 is given by

π = (1, 3, 5, 4), (2), (6, 7), (8, 18, 13, 15, 11), (9), (10), (12, 17, 14), (16, 20), (19),

then j0 = 4 and

π′ = (1, 3, 5, 4), (2), (6, 7), (8, 18, 13, 15, 12, 17, 14, 11), (9), (10), (16, 20), (19).

We now seek the cardinality of S∗n. To do so, we will first define a bijection
between S∗n and the set An−1 consisting of sequences s1s2 · · · sn−1 in [4] such that
s1 = 1 or 2, with the strings 13 and 24 forbidden. To define it, first observe that
members of S∗n, n > 1, may be formed recursively from members of S∗n−1 (on the
alphabet [2, n]) by performing one of the following operations:

(i) adding 1 as (1),

(ii) either replacing the 1-cycle (2), if it occurs, with (1, 2) or replacing the cycle
(2c1c2 · · · ) with the two cycles (1c1c2 · · · ), (2),

(iii) replacing the cycle (2c1c2 · · · cs), if it occurs where s > 1, with (12c1c2 · · · cs),
or

(iv) replacing the cycle (2c1c2 · · · cs), if it occurs where s > 1, with (1c1c2 · · · cs2).
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Note that (iii) or (iv) cannot be performed on a member of S∗n−1 if 2 occurs
as a 1-cycle, that is, if (i) has been performed in the previous step. Let Bn−1
denote the set of sequences in [4] of length n − 1 having first letter 1 or 2, with
the strings 13 and 14 forbidden. Thus, adding 1 to a member of S∗n−1 as de-
scribed to obtain a member of S∗n may be viewed as writing the final letter of
some member of Bn−1. From this, we see that members of Bn−1 serve as encod-
ings for creating members of S∗n, starting with the letter n and working down-
ward. For example, the sequence w = 21123412243 ∈ B11 would correspond to
π = (1, 2, 5, 3), (4), (6, 8, 9, 7), (10), (11, 12) ∈ S∗12. Note that replacing any occur-
rence of the string 24 within a member of Bn−1 with the string 14 is seen to define
a bijection with the set An−1.

Taking the composition of the maps described from S∗n to Bn−1 and from Bn−1
to An−1 yields the desired bijection from S∗n to An−1.

The following lemma will imply |S∗n| is given by the right-hand side of (3.2)
and complete the proof.

Lemma 3.4. If m > 1, then |Am| =
∑bm2 c
r=0

(
m
2r

)
2m−r.

Proof. The r = 0 term of the sum clearly counts all of the binary members of Am,
so we need to show that the cardinality of all π ∈ Am containing at least one 3 or
4 is given by

∑bm2 c
r=1

(
m
2r

)
2m−r.

Note that π may be decomposed as

π = S1S2 · · ·S`, ` > 2, (3.3)

where the odd-indexed Si are maximal substrings containing only letters in {1, 2}
and the even-indexed Si are maximal substrings containing only letters in {3, 4}.
If ` = 2r is even in (3.3), then choose a sequence of length 2r − 1 in [2,m], which
we will denote by i2 < i3 < · · · < i2r for convenience with i1 = 1. We wish to
create members π = π1π2 · · ·πm ∈ Am such that the initial letter of the block Sj
is in position ij for 1 6 j 6 2r. To do so, we first fill in the positions of π whose
indices correspond to elements of [i2j−1, i2j − 1] with letters from {1, 2} for each
j ∈ [r]. Next, we fill the positions of π in [i2j , i2j+1 − 1] for j ∈ [r − 1], along with
the positions in [i2r, n], with letters from {3, 4}. Note that the letters in positions
i2j , j ∈ [r], are determined by the choice of last letter for the block S2j−1, since
the 13 and 24 strings are forbidden. Thus, there are

(
m−1
2r−1

)
2m−r members of Am

such that ` = 2r in (3.3). By similar reasoning, there are
(
m−1
2r

)
2m−r members

of Am such that ` = 2r + 1 in (3.3). Combining these two cases, it follows that
there are

((
m−1
2r−1

)
+
(
m−1
2r

))
2m−r =

(
m
2r

)
2m−r members of Am for which ` = 2r or

` = 2r + 1 in (3.3). Summing over r > 1 gives the cardinality of all members of
Am containing at least one 3 or 4 and completes the proof.
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Abstract

The paper deals with the generalized Gauss composition of arbitrary
means. We give sufficient conditions for the existence of this generalized
Gauss composition. Finally, we show that these conditions cannot be im-
proved or changed.

Keywords: means, power means, Gauss composition of means, Archimedean
composition of means
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1. Introduction

In this part we recall some basic definitions. Denote by N and R+ the set of all
positive integers and positive real numbers, respectively.

Let I ⊂ R be a non-empty open interval. A function M : I2 → I is called a
mean on I if for all x, y ∈ I

min{x, y} ≤M(x, y) ≤ max{x, y}.
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It is obvious that M(x, x) = x for all x ∈ I.
The mean M : I2 → I is called symmetric if

M(x, y) = M(y, x)

for all x, y ∈ I.
The mean M : I2 → I is called a strict mean on I if it is continuous on I2 and

for all x, y ∈ I with x 6= y

min{x, y} < M(x, y) < max{x, y}.

The mean M : (R+)
2 → R+ is called homogeneous if

M(zx, zy) = zM(x, y),

for all x, y, z ∈ R+.
Classical examples for two-variable strict means on R+ are:
– The arithmetic, the geometric and the harmonic mean

A(x, y) :=
x+ y

2
, G(x, y) :=

√
xy, H(x, y) :=

2xy

x+ y
.

– The power means, also called Hölder means, of exponent p

Mp(x, y) :=





(
xp+yp

2

) 1
p

if p 6= 0

lim
p→0

(
xp+yp

2

) 1
p

if p = 0 .

The case p = 1 corresponds to the arithmetic mean, p = 0 to the geometric mean,
and p = −1 to the harmonic mean. It is well known that

lim
p→−∞

Mp(x, y) = lim
p→−∞

(
xp + yp

2

) 1
p

= min{x, y}

and

lim
p→∞

Mp(x, y) = lim
p→∞

(
xp + yp

2

) 1
p

= max{x, y} .

These means are called the minimum and maximum mean, respectively.
– The logarithmic mean

L(x, y) :=

{ y−x
ln y−ln x if x 6= y

x if x = y .

This area has been studied by many mathematicians. For this paper we were
inspired by [2, 3, 4, 5, 7].
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Let M,N : I2 → I be means on I and a, b ∈ I. Consider the sequences (an)
and (bn) defined by the Gauss iteration in the following way:

a1 := a, b1 := b,

an+1 := M(an, bn), bn+1 := N(an, bn) (n ∈ N).
(1.1)

If the limits limn→∞ an, limn→∞ bn exist and

lim
n→∞

an = lim
n→∞

bn,

then this common limit is called the Gauss composition of the means M and N for
the numbers a and b, and is denoted byM⊗N(a, b). We say that the meansM and
N are composable in the sense of Gauss (or G-composable). For some applications
of Gauss composition see for example [7] or [8].

We can similarly define the Archimedean composition mean of the means M
and N (see [11, pp. 77–78]): consider the sequences (an) and (bn) defined by

a1 := a, b1 := b,

an+1 := M(an, bn), bn+1 := N(an+1, bn) (n ∈ N).
(1.2)

If the limits limn→∞ an, limn→∞ bn exist and

lim
n→∞

an = lim
n→∞

bn,

then this common limit is called the Archimedean composition mean of the means
M and N for the numbers a and b, and is denoted byM�N(a, b). We say that the
means M and N are composable in the sense of Archimedes (or A-composable).

There is a known relation between Gauss composition of means and Archime-
dean composition mean of means (see in [11], p. 79):

M �N(a, b) = M ⊗N(M,Π2)(a, b), (1.3)

where Π2(a, b) = b and N(M,Π2)(a, b) = N(M(a, b),Π2(a, b)).
It is known (see [1], [6]) that if M,N are strict means on I, then M ⊗N(a, b)

exists for every a, b ∈ I.
In this paper we generalise this result. We will show the following: if the means

M1,M2 (not necessarily continuous) may be bounded ”from one direction” by strict
means then their Gauss composition exists. Finally, a counter-example will show
that the continuity of the bounding mean cannot be omitted.

2. Results

Theorem 2.1. Let M,N be means on I and let L1, L2 be continuous means on I
such that for each x, y ∈ I with x 6= y

L1(x, y) > min{x, y} (2.1)
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and
L2(x, y) < max{x, y} . (2.2)

If any of the following conditions is fulfilled,

a) for each pair of real numbers x, y ∈ I: L1(x, y) ≤ M(x, y) and L1(x, y) ≤
N(x, y),

b) for each pair of real numbers x, y ∈ I: L2(x, y) ≥ M(x, y) and L2(x, y) ≥
N(x, y),

c) for each pair of real numbers x, y ∈ I: L1(x, y) ≤M(x, y) ≤ L2(x, y),

then the means M and N are G-composable, i.e. the mean M ⊗N(a, b) exists.

Proof. Let us define the sequences (an) and (bn) by (1.1) and the sequences (cn)
and (dn) by

cn = min{an, bn} and dn = max{an, bn} .
Then, evidently, the limits

lim
n→∞

cn = c and lim
n→∞

dn = d

exist, and c ≤ d. It is sufficient to prove that c = d.
All three cases will be proved by contradiction. Hence assume

c < d . (2.3)

a) From the definitions of (cn) and (dn) it follows that at least one of the
following two statements is true.

I. The sequence (cn) has a subsequence (cnk)∞k=1 such that cnk = ank for each
k ∈ N.

II. The sequence (cn) has a subsequence (cnk)∞k=1 such that cnk = bnk for each
k ∈ N.

In case I., from (2.1), (2.3) and from the continuity of L1, we get the inequality

c < L1(c, d) = lim
n→∞

L1(cn, dn) = lim
k→∞

L1(cnk , dnk) = lim
k→∞

L1(ank , bnk). (2.4)

On the other hand, from condition a) and the definition of the sequence (cn), we
get the inequality

L1(ank , bnk) ≤ min{M(ank , bnk), N(ank , bnk)} = min{ank+1, bnk+1} = cnk+1.

Substituting this back to (2.4) we get the inequality

c < lim
k→∞

cnk+1 = c
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and this is a contradiction.
In case II., we similarly get the inequality

c < L1(d, c) = lim
n→∞

L1(dn, cn) = lim
k→∞

L1(dnk , cnk) = lim
k→∞

L1(ank , bnk) (2.5)

and

L1(ank , bnk) ≤ min{M(ank , bnk), N(ank , bnk)} = min{ank+1, bnk+1} = cnk+1 .

Substituting this back to the (2.5) we get the contradiction

c < lim
k→∞

cnk+1 = c .

b) The proof is analogous to the proof of case a).
c) From the definitions of (cn) and (dn) it follows that at least one of the

following three statements is true: the sequence (cn) has a subsequence (cnk)∞k=1,
where for each k ∈ N,

I.
cnk = ank and cnk+1 = ank+1

II.
cnk = ank and cnk+1 = bnk+1

III.
cnk = bnk and cnk+1 = bnk+1.

In case I., from (2.1), (2.3), continuity of L1 and the condition c), we obtain

c < L1(c, d) = lim
n→∞

L1(cn, dn) = lim
k→∞

L1(cnk , dnk) =

= lim
k→∞

L1(ank , bnk) ≤ lim
k→∞

M(ank , bnk) =

= lim
k→∞

ank+1 = lim
k→∞

cnk+1 = c ,

which is a contradiction.
In case II., from (2.2), (2.3), continuity of L2 and the condition c), we obtain

d > L2(c, d) = lim
n→∞

L2(cn, dn) = lim
k→∞

L2(cnk , dnk) =

= lim
k→∞

L2(ank , bnk) ≥ lim
k→∞

M(ank , bnk) =

= lim
k→∞

ank+1 = lim
k→∞

dnk+1 = d ,

which is a contradiction, too.
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Finally, in case III., from (2.2), (2.3) and the continuity of L2 and the condition
c), we have

d > L2(d, c) = lim
n→∞

L2(dn, cn) = lim
k→∞

L2(dnk , cnk) =

= lim
k→∞

L2(ank , bnk) ≥ lim
k→∞

M(ank , bnk) =

= lim
k→∞

ank+1 = lim
k→∞

dnk+1 = d ,

a contradiction.

From the relation (1.3) we obtain a similar result for the Archimedean compo-
sition.

Corollary 2.2. If the conditions of Theorem 2.1 hold, then the means M and N
are A-composable.

As a consequence of Theorem 2.1 we immediately get the following result (see
also [6] and [10]).

Corollary 2.3. Let M be a strict mean and N an arbitrary mean defined on the
interval I. Then the means M and N are G-composable.

Corollary 2.4. Let M be an arbitrary power mean or the logarithmic mean, and
N an arbitrary mean defined on the interval R+. Then the means M and N are
G-composable.

Proof. The power means and the logarithmic mean are strict means, hence our
statement immediately follows from the previous corollary.

Remark, that the composition of means defined by non-continuous means may
exist if one of them can be bounded by a strict mean.

Corollary 2.5. Let f be a bounded function on (R+)
2. Let

M(x, y) = Mf(x,y)(x, y) =





(
xf(x,y)+yf(x,y)

2

) 1
f(x,y)

if f(x, y) 6= 0
√
xy if f(x, y) = 0

,

and N be an arbitrary mean defined on R+. Then there M⊗N(a, b) exists for each
pair of real numbers a, b ∈ R+.

If one of the means is bounded by a strict mean, and the other is the maximum-
mean (minimum-mean), then from the fact of convergence we can obtain the limit
value as well:

Corollary 2.6. Let L be a continuous mean defined on I, such that for each pair
of numbers x, y ∈ I, where x 6= y,

L(x, y) > min{x, y} ,
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moreover, let M be an arbitrary mean on I, such that for each pair of numbers
x, y ∈ I: L(x, y) ≤ M(x, y). For every a, b ∈ I, where a < b, define the sequence
(a∗n)∞n=1 as follows: a∗1 = a and for each n ∈ N, a∗n+1 = M(a∗n, b). Then

lim
n→∞

a∗n = b .

Proof. The assertion immediately follows from case a) of Theorem 2.1 for the means
M and N , where N(a, b) = max{a, b}.

We will show that the continuity condition in Theorem 2.1 cannot be omitted.
Apart from trivial means (minimum- and maximum means) there exist other means
that are not G-composable.

It is not difficult to construct non-continuous means M and N which are not
G-composable.

For a ∈ (0, 1) and b ∈ (2, 3) define

M(a, b) =
a+ 1

2
and N(a, b) =

2 + b

2
.

Then, for the sequences (an) and (bn) defined by Gauss’ iteration, we have an ∈
(0, 1) and bn ∈ (2, 3) for n = 1, 2, 3, ... . So, M ⊗N(a, b) does not exist.

The means M , N constructed above are not homogeneous.
On the other hand, we have:

Theorem 2.7. There exist symmetric, homogeneous means H,K defined on R+

such that for each pair of real numbers x, y ∈ R+ with x 6= y

min{x, y} < H(x, y) ≤ K(x, y) < max{x, y},

however, H ⊗ K(a1, b1) does not exist for any pair of real numbers a1, b1 ∈ R+,
where a1 6= b1.

Proof. Define the function f : R+ → R+ as follows:

f(x) =





ln 4
ln x

2
if x ∈ (2,∞)

ln 4

ln
(k+1)x
k+2

if x ∈ (k+2
k+1 ,

k+1
k ] for all k ∈ N

1 if x = 1
f
(
1
x

)
if x ∈ (0, 1)

For each pair of positive real numbers x, y put

K(x, y) = Mf( xy )
(x, y) =





(
x
f( x
y

)
+y

f( x
y

)

2

) 1
f( x
y

)

if f(xy ) 6= 0
√
xy if f(xy ) = 0

,
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and

H(x, y) = M−f( xy )(x, y) =





(
x
−f( x

y
)
+y

−f( x
y

)

2

)− 1
f( x
y

)

if f(xy ) 6= 0
√
xy if f(xy ) = 0

.

Using the fact that the power mean is symmetric and homogeneous along with
f(xy ) = f( yx ) we get that the means H and K are symmetric and homogeneous,
too.

Now, let a1, b1 be arbitrary positive real numbers. Without loss of generality
we may assume

a1 < b1 and a1b1 = 1 . (2.6)

Contruct the sequences (an), (bn) by

an+1 = H(an, bn) and bn+1 = K(an, bn) .

Evidently the sequence(an) is strictly increasing and bounded and the sequence
(bn) is strictly decreasing and bounded. Due to these facts the limits

lim
n→∞

an = a and lim
n→∞

bn = b

exist and
a1 < a ≤ b < b1 . (2.7)

Denote αn = f
(
an
bn

)
. Then

an+1bn+1 =

(
a−αnn + b−αnn

2

) 1
−αn

(
aαnn + bαnn

2

) 1
αn

=

(
aαnn + bαnn
1
aαnn

+ 1
bαnn

) 1
αn

= anbn .

We immediately obtain that for each positive integer n

anbn = a1b1 = 1 (2.8)

and hence
ab = a1b1 = 1 . (2.9)

It follows that H ⊗K(a1, b1) exists if and only if a = b = 1.
Consider the function

g(x) =



(
1
x

)f(x2)
+ xf(x

2)

2




1
f(x2)

.
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From (2.8) and (2.9) it follows that

g(bn) =




(
1
bn

)f(b2n)
+ b

f(b2n)
n

2




1
f(b2n)

=


a

f( bnan )
n + b

f( bnan )
n

2




1

f( bnan )
= bn+1 .

(2.10)

Let I1 = (
√

2,∞). For each positive integer k ≥ 2, define Ik = (
√

k+1
k ,
√

k
k−1 ] .

Then evidently
∞⋃

k=1

Ik = (1,∞) (2.11)

and
Ik ∩ Il = ∅ if k 6= l . (2.12)

Now we will prove the following implication:

if x ∈ Ik then g(x) ∈ Ik . (2.13)

Let k be an arbitrary positive integer, and x a real number such that x ∈ Ik. So

2 =
k + 1

k
< x2 if k = 1 ,

or
k + 1

k
< x2 ≤ k

k − 1
if k ≥ 2 .

From the definition of the function f we obtain in both cases that

f
(
x2
)

=
ln 4

ln x2k
k+1

.

Consequently,

f
(
x2
)

ln
x2k

(k + 1)
= ln 4

(
x2k

k + 1

)f(x2)
= 4

x2f(x
2) = 4

(
k + 1

k

)f(x2)

xf(x
2) = 2

(√
k + 1

k

)f(x2)
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Thus,

g(x) =



(
1
x

)f(x2)
+ xf(x

2)

2




1
f(x2)

>

(
xf(x

2)

2

) 1
f(x2)

=




2

(√
k+1
k

)f(x2)

2




1
f(x2)

=

√
k + 1

k
.

On the other hand, from 1
x < x and the fact that g(x) is the power mean of the

numbers x and 1
x , we obtain g(x) < x. Thus, g(x) ∈ Ik.

Finally, we will show that H ⊗K(a1, b1) does not exist. According to (2.9) it
is sufficient to show that b > 1.

In view of (2.6) and (2.11), there exists a well defined positive integer k such
that b1 ∈ Ik. However, by (2.10) and (2.13),

bn ∈ Ik

for each positive integer n; thus,

bn >

√
k + 1

k
.

It follows that

b = lim
n→∞

bn ≥
√
k + 1

k
> 1 ,

which concludes the proof.
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Abstract

In this paper, after listing some basic facts on groupoids, we establish
several simple consequences and equivalents of the following basic definitions
and their obvious counterparts.

For some n ∈ N, a subset U of a groupoid X is called

(1) n-cancellable if nx = ny implies x = y for all x, y ∈ U ,

(2) n-divisible if for each x ∈ U there exists y ∈ U such that x = ny.

Moreover, for some A ⊂ N, the set U is called A-divisible (A-cancellable)
if it is n-divisible (n-cancellable) for all n ∈ A.

Our main tools here are the sets n−1x =
{
y ∈ X : x = ny} satisfying

n
(
n−1x

)
⊂ {x} ⊂ n−1

(
nx

)
for all n ∈ N and x ∈ X. They can be used

to briefly reformulate properties (1) and (2), and naturally turn a uniquely
N-divisible commutative group into a vector space over Q.
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1. A few basic facts on groupoids

Definition 1.1. If X is a set and + is a function of X2 to X, then the function +
is called a binary operation on X, and the ordered pair X(+) = (X,+) is called a
groupoid.

Remark 1.2. In this case, we may simply write x + y in place of +(x, y) for all
x, y ∈ X. Moreover, we may also simply write X in place of X(+).

Instead of groupoids, it is more customary to consider only semigroups (as-
sociative grupoids) or even monoids (semigroups with zero). However, several
definitions on semigroups can be naturally extended to groupoids.

Definition 1.3. If X is a groupoid, then for any x ∈ X and n ∈ N, we define

nx = x if n = 1 and nx = (n− 1)x+ x if n > 1.

Now, by induction, we can easily prove the following two basic theorems.

Theorem 1.4. If X is a semigroup, then for any x ∈ X and m,n ∈ N we have
(1) (m+ n)x = mx+ nx,
(2) (nm)x = n(mx).

Proof. To prove (2), note that if (nm)x = n(mx) holds for some n ∈ N, then by
(1) we also have

((n+ 1)m)x = (nm+m)x = (nm)x+mx = n(mx) +mx = (n+ 1)(mx).

Theorem 1.5. If X is a semigroup, then for any m,n ∈ N and x, y ∈ X, with
x+ y = y + x, we have
(1) mx+ ny = ny +mx,
(2) n(x+ y) = nx+ ny.

Proof. To prove (1), note that if x + ny = ny + x holds for some n ∈ N, then we
also have

x+ (n+ 1)y = x+ ny + y = ny + x+ y = ny + y + x = (n+ 1)y + x.

While, to prove (2), note that if n(x+ y) = nx+ny holds for some n ∈ N, then
by (1) we also have

(n+ 1)(x+ y) = n(x+ y) + x+ y = nx+ ny + x+ y =

= nx+ x+ ny + y = (n+ 1)x+ (n+ 1)y.

Definition 1.6. If in particular X is a groupoid with zero, then we also define
0x = 0 for all x ∈ X.

Moreover, if more specially X is a group, then we also define (−n)x = n(−x)
for all x ∈ X and n ∈ N.
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Lemma 1.7. If X is a group, then for any x ∈ X and n ∈ N we also have
(−n)x = −(nx).
Proof. By using −x+ x = 0 = x+ (−x) and Theorem 1.5, we can at once see that
n(−x) + nx = n(−x + x) = n0 = 0. Therefore, n(−x) = −(nx), and thus the
required equality is also true.

Now, we can also easily prove the following counterparts of Theorems 1.4 and
1.5.

Theorem 1.8. If X is a group, then for any x ∈ X and k, l ∈ Z we have
(1) (kl)x = k(lx),
(2) (k + l)x = kx+ lx.

Theorem 1.9. If X is a group, then for any k, l ∈ Z and x, y ∈ X, with x+ y =
y + x, we have
(1) kx+ ly = ly + kx,
(2) k(x+ y) = kx+ ky.

Proof. To prove (2), note that by Lemma 1.7, Theorem 1.5 and assertion (1) we
have

(−n)(x+ y) = −
(
n(x+ y)

)
= −(nx+ ny)

= −(ny) +
(
−(nx)

)
= (−n)y + (−n)x = (−n)x+ (−n)y

for all n ∈ N. Moreover, 0(x+ y) = 0 = 0x+ 0y also holds.

Remark 1.10. The latter two theorems show that a commutative groupX is already
a module over the ring Z of all integers.

2. Operations with subsets of groupoids

Definition 2.1. If X is a groupoid with zero, then for any U ⊂ X we define

U0 = U ∪ {0} if 0 /∈ U and U0 = U \ {0} if 0 ∈ U.
Remark 2.2. In the sequel, this particular unary operation will mainly be applied
to the subsets N, Z and Q of the additive group R of all real numbers.

Definition 2.3. If X is a groupoid, then for any A ⊂ N, and U, V ⊂ X we define

AU =
{
nu : n ∈ A, u ∈ U

}
and U + V =

{
u+ v : u ∈ U, v ∈ V

}
.

Remark 2.4. Now, by identifying singletons with their elements, we may simply
write nU = {n}U , Au = A{u}, u + V = {u} + V , and U + v = U + {u} for all
n ∈ N and u, v ∈ X.

The notation nU may cause some confusions since in general we only have
nU ⊂ (n− 1)U +U for all n > 1. However, assertions 1.4(1),(2) and 1.5(1) can be
generalized to sets.
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Remark 2.5. If in particular, X is a group, then we may quite similarly define AU
for all A ⊂ Z and U ⊂ X.

Moreover, we may also naturally define −U = (−1)U and U − V = U + (−V )
for all V ⊂ X. However, thus we have U −U = {0} if and only if U is a singleton.
Remark 2.6. Moreover, if more specially if X is a vector space over K, then we
may also quite similarly define AU for all A ⊂ K and U ⊂ X.

Thus, only two axioms of a vector space may fail to hold for P(X). Namely, in
general, we only have (λ+ µ)U ⊂ λU + µU for all λ, µ ∈ K.

The corresponding elementwise operations with subsets of various algebraic
structures allow of some more concise treatments of several basic theorems on
substructures of these structures.
Remark 2.7. For instance, a subset U of a groupoid X is called a subgroupoid of
X if U is itself a groupoid with respect to the restriction of the addition on X to
U × U .

Thus, U is a subgroupoid of X if and only if U is superadditive in the sense
U + U ⊂ U . Moreover, if U is a subgroupoid of X, then U is in particular N-
superhomogeneous in the sense that NU ⊂ U .

Concerning subgroups, we can prove some more interesting theorems.

Theorem 2.8. If X is a group, then for a nonvoid subset U of X the following
assertions are equivalent:
(1) U is a subgroup of X,
(2) −U ⊂ U and U + U ⊂ U ,
(3) U − U ⊂ U .
Remark 2.9. Note that if U is a subset of a group X such that −U ⊂ U , then U is
already symmetric in the sense that −U = U .

While, if U is a subset of a groupoid X with zero such that U + U ⊂ U and
0 ∈ U , then U is already idempotent in the sense that U + U = U .

Therefore, as an immediate consequence of Theorem 2.8, we can also state

Corollary 2.10. A nonvoid subset U of a group X is a subgroup of X if and only
if it is symmetric and idempotent.

In addition to Theorem 2.8, we can also easily prove the following

Theorem 2.11. If X is a group, then for any two symmetric subsets U and V of
X the following assertions are equivalent:
(1) U + V = V + U ,
(2) U + V is symmetric.

Proof. If (1) holds, then −(U + V ) = −V + (−U) = V +U = U + V , and thus (2)
also holds.

While, if (2) holds, then U + V = −(U + V ) = −V + (−U) = V + U , and thus
(1) also holds.
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Remark 2.12. If U and V are idempotent subsets of a semigroup X such that (1)
holds, then

U + V + U + V = U + V + V + U = U + V + U = U + U + V = U + V,

and thus U + V is also an idempotent subset of X.

Therefore, as an immediate consequence of Theorem 2.11 and Corollary 2.10,
we can also state

Theorem 2.13. If X is a group, then for any two subgroups U and V of X the
following assertions are equivalent:
(1) U + V = V + U ,
(2) U + V is a subgroup of X.

Hence, it is clear that in particular we also have the following

Corollary 2.14. If U and V are commuting subgroups of a group X, then U + V
is the smallest subgroup of X containing both U and V .

Remark 2.15. In the standard textbooks, Theorem 2.13, or its corollary, is usually
proved directly without using Theorems 2.8 and 2.11. (See, for instance, Sott [13,
p. 18] and Burton [4, p. 118].)

3. Direct sums of subsets of groupoids

Analogously to Fuchs [6, p. 3.15], we may naturally introduce the following

Definition 3.1. If U , V and W are subsets of a groupoid X such that for every
x ∈W there exists a unique pair (ux, vx) ∈ U × V such that

x = ux + vx,

then we say that W is the direct sum of U and V , and we write W = U ⊕ V .

Remark 3.2. Thus, in particular we have W = U + V . Hence, if in addition X has
a zero such that 0 ∈ V , we can infer that U ⊂W .

Moreover, in this particular case for any x ∈ U we have x = x + 0. Hence, by
using the unicity of ux and vx, we can infer that ux = x and vx = 0.

Remark 3.3. Therefore, if W = U ⊕ V and in particular X has a zero such that
0 ∈ U ∩ V , then in addition to W = U + V we can also state that U ∪ V ⊂W and
U ∩ V = {0}.

Namely, by Remark 3.2 and its dual, we have U ⊂ W and V ⊂ W , and thus
U ∪ V ⊂ W . Moreover, if x ∈ U ∩ V , i.e., x ∈ U and x ∈ V , then we have vx = 0
and ux = 0, and thus x = ux + vx = 0.

In this respect, we can also easily prove the following
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Theorem 3.4. If U and V are subgroups of a monoid X, with 0 ∈ U ∩ V , then
the following assertions are equivalent:

(1) X = U ⊕ V ;

(2) X = U + V and U ∩ V = {0}.

Proof. If x ∈ X such that x = u1 + v1 and x = u2 + v2 for some u1, u2 ∈ U and
v1, v2 ∈ V , then u1 + v1 = u2 + v2, and thus −u2 + u1 = v2 − v1. Moreover, we
also have −u2 + u1 ∈ U and v2 − v1 ∈ V . Hence, if the second part of (2) holds,
we can infer that −u2 + u1 = 0 and v2 − v1 = 0. Therefore, u1 = u2, and v1 = v2
also hold.

Remark 3.5. Note that if U and V are subgroups of a monoid X, with 0 ∈ U ∩ V ,
such that X = U + V , then for any x ∈ X there exist u ∈ U and v ∈ V such that
x = u+ v. Hence, by taking y = −v− u, we can see that x+ y = 0 and y+ x = 0.
Therefore, −x = y, and thus X is also a group.

Remark 3.6. Note that if G is a group, then the Descartes product X = G × G,
with the coordinatewise addition, is also a group. Moreover,

U =
{
(x, 0) : x ∈ G

}
and V =

{
(0, y) : y ∈ G

}

are subgroups of X such that X = U + V and U ∩ V = {(0, 0)}. Therefore, by
Theorem 3.4, we also have X = U ⊕ V .

Furthermore, it is also worth noticing that the sets U and V are elementwise
commuting in the sense that u+ v = v + u for all u ∈ U and v ∈ V .

The importance of elementwise commuting sets is apparent from the following

Theorem 3.7. If U and V are elementwise commuting subgroupoids of a semigroup
X such that X = U ⊕ V , then the mappings

x 7→ ux and x 7→ vx,

where x ∈ X, are additive. Thus, in particular, they are N-homogeneous.

Proof. If x, y ∈ X, then by the assumed associativity and commutativity properties
of the addition in X we have

x+ y = (ux + vx) + (uy + vy) = (ux + uy) + (vx + vy).

Therefore, since ux + uy ∈ U and vx + vy ∈ V , the equalities

ux+y = ux + uy and vx+y = vx + vy

are also true.
Moreover, by induction, it can be easily seen that if f is an additive function of

one groupoid X to another Y , then f(nx) = nf(x) for all n ∈ N and x ∈ X.
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Remark 3.8. Note that if in particular X has a zero such that 0 ∈ V , then by
Remark 3.2 the mapping x 7→ ux, where x ∈ X, is idempotent. Moreover, if 0 ∈ U
also holds, then u0 = 0. Thus, the above mapping is also zero-homogeneous.

Remark 3.9. In this respect, it is also worth noticing that if in particular X is a
monoid, and U and V are subgroups of X, with 0 ∈ U ∩ V , then by Remark 3.5
X is also a group, and thus the mappings considered in Theorem 3.7 are actually
Z-homogeneous.

Remark 3.10. If in particular X is a vector space, then by using Zorn’s lemma [14,
p. 38] it can be shown that for each subspace U of X there exists a subspace V of
X such that X = U ⊕ V .

In the standard textbooks, this fundamental decomposition theorem is usually
proved with the help of Hamel bases. (See, for instance, Cotlar and Cignoli [5,
p. 15] and Taylor and Lay [14, p. 43].)

4. Some further results on elementwise commuting
sets

The importance of elementwise commuting sets is also apparent from the following

Theorem 4.1. If U and V are elementwise commuting, comutative subsets of a
semigroup X, then U + V is also commutative.

Proof. Namely, if x, y ∈ U + V , then there exist u, ω ∈ U and v, w ∈ V such that
x = u+ v and y = ω + w. Hence, we can already see that

x+ y = u+ v + ω +w = u+ ω + v +w = ω + u+w + v = ω +w + u+ v = y + x.

Therefore, the required assertion is also true.

Remark 4.2. Conversely, we can also easily note that if U and V are subsets of a
groupoid X such that U + V is commutative and U ∪ V ⊂ U + V , then U and V
are commutative and elementwise commuting.

Therefore, as an immediate consequence of Theorem 4.1, we can also state

Corollary 4.3. If U and V are subsets of monoid X such that 0 ∈ U ∩ V , then
the following assertions are equivalent:
(1) U + V is commutative,
(2) U and V are commutative and elementwise commuting.

Remark 4.4. Note that if U and V are elementwise commuting subsets of a groupoid
X, then we have not only U+V = V +U , but also u+V = V +u and U+v = v+U
for all u ∈ U and v ∈ V .

Therefore, it is of some interest to note that we also have the following
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Theorem 4.5. If U and V are subsets of a groupoid X such that U +V = U ⊕V ,
then the following assertions are equivalent:
(1) U and V are elementwise commuting,
(2) u+ V = V + u and v + U = U + v for all u ∈ U and v ∈ V ,
(3) u+ V ⊂ V + u and v + U ⊂ U + v for all u ∈ U and v ∈ V ,
(4) V + u ⊂ u+ V and U + v ⊂ v + U for all u ∈ U and v ∈ V .

Proof. Namely, if for instance (3) holds, then for any u ∈ U and v ∈ V we have
u + v ∈ u + V ⊂ V + u. Therefore, there exists w ∈ V such that u + v = w + u.
Moreover, again by (3), we can see that w+ u ∈ w+U ⊂ U +w. Therefore, there
exists ω ∈ U such that w + u = ω + w. Thus, we also have u+ v = ω + w. Hence,
by using that U + V = U ⊕ V , we can infer that u = ω and v = w. Therefore,
u+ v = v + u, and thus (1) is also true.

Remark 4.6. In this respect, it is also worth noticing that if U is a subset and V
is a subgroup of a monoid X, then the following assertions are also equivalent:
(1) U + v = v + U for all v ∈ V ,
(2) U + v ⊂ v + U for all v ∈ V ,
(3) v + U ⊂ U + v for all v ∈ V .

Namely, if for instance (2) holds, then we have

v + U = v + U + 0 = v + U + (−v) + v ⊂ v + (−v) + U + v = 0 + U + v = U + v

for all v ∈ V , and thus (1) also holds.
Concerning elementwise commuting sets, by Theorems 1.5 and 1.9, we can at

once state the following two theorems.

Theorem 4.7. If U and V are elementwise commuting sets of a semigroup X,
then the sets NU and NV are also also elementwise commuting.

Theorem 4.8. If U and V are elementwise commuting subsets of a group X, then
the sets ZU and ZV are also also elementwise commuting.

Moreover, concerning elementwise commuting sets, we can also easily prove

Theorem 4.9. If U and V are elementwise commuting subsets of a semigroup X
such that U is commutative, then U and U + V are also elementwise commuting.

Proof. Suppose that x ∈ U and y ∈ U + V . Then, there exist u ∈ U and v ∈ V
such that y = u+v. Moreover, by the assumed commutativity properties of U and
V , we have

x+ y = x+ u+ v = u+ x+ v = u+ v + x = y + x.

Therefore, the required assertion is also true.

Remark 4.10. The importance of elementwise commuting subsets will also be well
shown by the forthcoming theorems of Section 10.
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5. Divisible and cancellable subsets of groupoids

Analogously to Hall [10, p. 197], Fuchs [6, p. 58] and Scott [13, p. 95], we may
naturally introduce the following

Definition 5.1. A subset U of a groupoid X is called n-divisible, for some n ∈ N,
if U ⊂ nU .

Now, the subset U may also be naturally called A-divisible, for some A ⊂ N, if
it is n-divisible for all n ∈ A.
Remark 5.2. Thus, U is n-divisible if and only if it is n-subhomogeneous. That is,
for each x ∈ U there exists y ∈ U such that x = ny.

Therefore, the set U may be naturally called uniquely n-divisible if for each
x ∈ U there exists a unique y ∈ U such that x = ny.

Moreover, the subset U may also be naturally called uniquely A-divisible if it
is uniquely n-divisible for all n ∈ A.

Now, in addition to Definition 5.1, we may also naturally introduce the following
definition which has also been utilized in [8].

Definition 5.3. A subset U of a groupoid X is called n-cancellable, for some
n ∈ N, if nx = ny implies x = y for all x, y ∈ U .

Now, the set U may also be naturally called A-cancellable, for some A ⊂ N, if
it is n-cancellable for all n ∈ A.
Remark 5.4. Thus, if U is both n-divisible and n-cancellable, then U is already
uniquely n-divisible.

Namely, if x ∈ U such that x = ny1 and x = ny2 for some y1, y2 ∈ U , then we
also have ny1 = ny2, and hence y1 = y2.
Remark 5.5. Moreover, by using some obvious analogues of Definitions 5.1 and 5.3,
we can also see that if U is a both k-divisible and k-cancellable subset of a group
X, for some k ∈ Z, then U is already uniquely k-divisible.

In this respect, it is worth noticing that the following two theorems are also
true.

Theorem 5.6. If U is an n-superhomogeneous subset of a groupoid X, for some
n ∈ N, then the following assertions are equivalent:
(1) U is uniquely n-divisible,
(2) U is both n-divisible and n-cancellable.

Proof. Namely, if (1) holds and x, y ∈ U such that nx = ny, then because of nx ∈ U
and (1) we also have x = y. Therefore, U is n-cancellable, and thus (2) also holds.
The converse implication (2) =⇒ (1) has been proved in Remark 5.4.

Theorem 5.7. If U is a k-superhomogeneous subset of a group X, for some k ∈ Z,
then following assertions are equivalent:
(1) U is uniquely k-divisible,
(2) U is both k-divisible and k-cancellable.
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By using the corresponding definitions and Theorems 1.4 and 1.8, we can easily
prove the following two theorems.

Theorem 5.8. If U is an n-divisible subset of a semigroup X, for some n ∈ N , and
p, q ∈ N such that n = pq and U is q-superhomogeneous, then U is also p-divisible.

Proof. If x ∈ U , then by the n-divisibility of U there exists y ∈ U such that
x = ny. Now, by using Theorem 1.4, we can see that x = ny = (pq)y = p(qy).
Hence, because of qy ∈ U , it is clear that U is also p-divisible.

Theorem 5.9. If U is an k-divisible subset of a semigroup X, for some k ∈ Z, and
p, q ∈ Z such that k = pq and U is q-superhomogeneous, then U is also p-divisible.

In addition to the latter two theorems, it is also worth proving the following

Theorem 5.10. For a subset U of a monoid X, the following assertions are equiv-
alent:
(1) U ⊂ {0},
(2) U is 0-divisible,
(3) U is N0-divisible.

By using the corresponding definitions and Theorems 1.4 and 1.8, we can also
easily prove the following counterparts of Theorems 5.8, 5.9 and 5.10.

Theorem 5.11. If U is an m-superhomogeneous, both n- and m-cancellable subset
of a semigroup X, for some m,n ∈ N, then U is also nm-cancellable.

Proof. If x, y ∈ U such that (nm)x = (nm)y, then by Theorem 1.4 we also have
n(mx) = n(my). Hence, by using the n-cancelability of U , and the fact that
mx,my ∈ U , we can infer that mx = my. Now, by the m-cancelability of U , we
can see that x = y. Therefore, U is also nm-cancellable.

Theorem 5.12. If U is an l-superhomogeneous, both k- and l-cancellable subset
of a group X, for some k, l ∈ N, then U is also kl-cancellable.

Theorem 5.13. For a subset U of a monoid X, the following assertions are equiv-
alent:
(1) card(U) ≤ 1,
(2) U is 0-cancellable,
(3) U is N0-cancellable.

In addition to Theorems 5.8 and 5.9, we can also prove the following two theo-
rems.

Theorem 5.14. If U is a uniquely n-divisible, n-superhomogeneous subset of a
semigroup X for some n ∈ N , and p, q ∈ N such that n = pq and U is q-
superhomogeneous, then U is also uniquely p-divisible.
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Proof. By Theorem 5.8 and Remark 5.4, we need only show that now U is also
p-cancellable.

For this, note that if x, y ∈ U such that px = py, then by Theorem 1.4 we also
have nx = (qp)x = q(px) = q(py) = (qp)x = ny. Moreover, by Theorem 5.6, U is
now n-cancellable. Therefore, we necessarily have x = y.

Theorem 5.15. If U is a uniquely k-divisible, k-superhomogeneous subset of a
group X, for some k ∈ Z, and p, q ∈ Z such that n = pq and U is q-superhomo-
geneous, then U is also uniquely p-divisible.

Remark 5.16. Note that in assertion (3) of Theorem 5.10 we may also write
“uniquely N0-divisible” instead of “N0-divisible”.

6. Some further results on divisible and cancellable
sets

Theorem 6.1. If U is a k-divisible, symmetric subset of a group X, for some
k ∈ Z, then U is also −k-divisible.

Proof. If x ∈ U , then by the k-divisibility of U there exists y ∈ U such that x = ky.
Now, by using Theorem 1.8, we can see that

x = ky =
(
(−k)(−1)

)
y = (−k)

(
(−1)y

)
= (−k)(−y).

Hence, since now we also have −y ∈ −U = U , it is clear that U is also −k-
divisible.

From this theorem, it is clear that in particular we also have

Corollary 6.2. If U is an N-divisible, symmetric subset of a group X, then U is
Z0-divisible.

Analogously to Theorem 6.1, we can also easily prove the following

Theorem 6.3. If U is a k-cancellable subset of a group X, for some k ∈ Z, then
U is also −k-cancellable.

Proof. If x, y ∈ U such that (−k)x = (−k)y, then by Theorem 1.8 we also have

kx =
(
(−1)(−k)

)
x = (−1)

(
(−k)x

)
= (−1)

(
(−k)y

)
=
(
(−1)(−k)

)
y = ky.

Hence, by the assumption, it follows that x = y, and thus the required assertion is
also true.

From this theorem, it is clear that in particular we also have

Corollary 6.4. If U is an N-cancellable subset of a group X, then U is also Z0-
cancellable.
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Now, as an immediate consequence of Theorems 6.1 and 6.3 and Remark 5.5,
we can also state

Theorem 6.5. If U is a uniquely k-divisible, symmetric subset of a group X, for
some k ∈ Z, then U is also uniquely −k-divisible.

Hence, it is clear that in particular we also have

Corollary 6.6. If U is a uniquely N-divisible, symmetric subset of a group X,
then U is also uniquely Z0-divisible.

Remark 6.7. By using some obvious analogues of Definition 5.1 and Remark 5.2,
we can also easily see that a subset U of a vector space X over K is k-divisible
(uniquely k-divisible), for some k ∈ K0, if and only if k−1x ∈ U for all x ∈ U .
That is, k−1U ⊂ U .

Remark 6.8. If U is an n-cancellable subset of a groupoid X with zero, for some
n ∈ N, such that 0 ∈ U , then nx = 0 implies x = 0 for all x ∈ U .

Namely, if x ∈ U such that nx = 0, then by the corresponding definitions we
also have nx = n0, and hence x = 0.

Remark 6.9. Quite similarly, we can also see that if U is a k-cancellable subset of
a group X, for some k ∈ Z, such that 0 ∈ U , then kx = 0 implies x = 0 for all
x ∈ U .

Now, by using the letter observation and Corollary 6.4, we can also easily prove

Theorem 6.10. If U is an N-cancellable subset of a group X such that 0 ∈ U ,
then kx = lx implies k = l for all k, l ∈ Z and x ∈ U0.

Proof. Assume on the contrary that there exist k, l ∈ Z and x ∈ U0 such that
kx = lx, but k 6= l. Then, by using Theorem 1.8, we can see that

(k − l)x =
(
k + (−l)

)
x = kx+ (−l)x = lx+ (−l)x =

(
l + (−l)

)
x = 0x = 0.

Hence, by using Corollary 6.4 and Remark 6.9, we can infer that x = 0. This
contradiction proves the theorem.

From the above theorem, by taking l = 0, we can immediately derive

Corollary 6.11. If U is an N-cancellable subset of group X such that 0 ∈ U , then
kx = 0 implies k = 0 for all k ∈ Z and x ∈ U0.

In addition to Remark 6.9, we can also easily prove the following

Theorem 6.12. If X is a commutative group, then for each k ∈ Z the following
assertions are equivalent:
(1) X is k-cancellable;
(2) kx = 0 implies x = 0 for all x ∈ X.
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Proof. From Remark 6.9, we can see that (1) =⇒ (2) even if the group X is not
assumed to be commutative.

Moreover, if x, y ∈ X such that kx = ky, then by using Theorem 1.9 we can
see that

k(x− y) = k(x+ (−y)) = kx+ k(−y) = ky + k(−y) = k(y + (−y)) = k0 = 0.

Hence, if (2) holds, then we can already infer that x − y = 0, and thus x = y.
Therefore, (1) also holds.

From this theorem, by using Corollary 6.4, we can immediately derive

Corollary 6.13. If X is a commutative group such that nx = 0 implies x = 0 for
all n ∈ N and x ∈ X, then X is Z0-cancellable.

Remark 6.14. By using an obvious analogue of Definition 5.3, we can also easily
see that every subset U of a vector space X over K is K0-cancellable. Moreover,
kx = lx implies k = l for all k, ∈ K and x ∈ X0.

7. Characterizations of divisible and cancellable sets

Definition 7.1. If X is a groupoid, then for any x ∈ X and n ∈ N we define

n−1x =
{
y ∈ X : x = ny

}
.

Remark 7.2. Now, having in mind the definition of the image of a set under a
relation, for any U ⊂ X, we may also naturally define n−1U =

⋃
x∈U n

−1x.
Thus, we can easily see that n−1U =

{
y ∈ X : ny ∈ U

}
. Namely, if for

instance, y ∈ n−1U , then by the above definition there exists x ∈ U such that
y ∈ n−1x. Hence, by Definition 7.1, it already follows that ny = x ∈ U .

By using Definition 7.1, we can also easily prove the following

Theorem 7.3. If X is a groupoid, then for any x ∈ X and n ∈ N we have
(1) n

(
n−1x

)
⊂ {x},

(2) {x} ⊂ n−1
(
nx
)
.

Proof. Since nx = nx, it is clear that x ∈ n−1
(
nx
)
. Therefore, (2) is true.

Moreover, if z ∈ n
(
n−1x

)
then there exists y ∈ n−1x such that z = ny. Hence,

since y ∈ n−1x implies ny = x, we can infer that z = x. Therefore, (1) is also
true.

Remark 7.4. Now, by using this theorem, for any U ⊂ X, we can also easily prove
that n

(
n−1U

)
⊂ U ⊂ n−1

(
nU
)
.

For instance, by using Theorem 7.3 and Remark 7.2, we can easily see that

U =
⋃

x∈U
{x} ⊂

⋃

x∈U
n−1(nx) = n−1

(⋃

x∈U
{nx}

)
= n−1

(
nU
)
.
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By using an obvious analogue of Definition 7.1, we can also easily prove the
following

Theorem 7.5. If X is a group, then for any x ∈ X and k ∈ Z we have

(1) k
(
k−1x

)
⊂ {x},

(2) {x} ⊂ k−1
(
kx
)
.

Remark 7.6. Now, by using this theorem, for any U ⊂ X, we can also easily prove
that k

(
k−1U

)
⊂ U ⊂ k−1

(
kU
)
.

However, it is now more important to note that, by using the corresponding
definitions, we can also easily prove the following three theorems.

Theorem 7.7. If X is a groupoid, then for any U ⊂ X and n ∈ N the following
assertions are equivalent:

(1) U is n-divisible,

(2) U ∩ n−1x 6= ∅ for all x ∈ U .

Theorem 7.8. If X is a groupoid, then for any U ⊂ X and n ∈ N the following
assertions are equivalent:

(1) U is uniquely n-divisible,

(2) card
(
U ∩ n−1x

)
= 1 for all x ∈ U .

Theorem 7.9. If X is a groupoid, then for any U ⊂ X and n ∈ N the following
assertions are equivalent:

(1) U is n-cancellable,

(2) card
(
U ∩ n−1(nx)

)
≤ 1 for all x ∈ U .

Proof. If x ∈ X and y1, y2 ∈ U ∩ n−1(nx), then y1, y2 ∈ U and y1, y2 ∈ n−1(nx),
and thus ny1 = nx = ny2. Hence, if (1) holds, we can infer that y1 = y2, and thus
(2) also holds.

Conversely, if x, y ∈ U such that nx = ny, then by Definition 7.1 we have
y ∈ n−1(nx). Moreover, by Theorem 7.3, we also have x ∈ n−1(nx). Therefore,
x, y ∈ U ∩ n−1(nx). Hence, if (2) holds, we can infer that x = y. Therefore, (1)
also holds.

Analogously to the latter three theorems, we can also easily prove the following
three theorems.

Theorem 7.10. If X is a group, then for any U ⊂ X and k ∈ Z the following
assertions are equivalent:

(1) U is k-divisible,

(2) U ∩ k−1x 6= ∅ for all x ∈ U .
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Theorem 7.11. If X is a group, then for any U ⊂ X and k ∈ Z the following
assertions are equivalent:
(1) U is uniquely k-divisible,
(2) card

(
U ∩ k−1x

)
= 1 for all x ∈ U .

Theorem 7.12. If X is a group, then for any U ⊂ X and k ∈ Z the following
assertions are equivalent:
(1) U is k-cancellable,
(2) card

(
U ∩ k−1(kx)

)
≤ 1 for all x ∈ X.

Moreover, as a simple reformulation of Theorem 6.12, we can also state

Theorem 7.13. A commutative group X, then for any k ∈ Z the following asser-
tions are equivalent:
(1) X is k-cancellable,
(2) k−10 ⊂ {0},
(3) k−10 = {0}.

Remark 7.14. Quite similarly, by Remark 6.8, we can also state that if U is an
n-cancellable subset of groupoid X with zero, for some n ∈ N, such that 0 ∈ U ,
then U ∩ n−10 = {0}.
Remark 7.15. Moreover, by Remark 6.9, we can also state that if U is a k-
cancellable subset of group X, for some k ∈ Z, such that 0 ∈ U , then U ∩ k−10 =
{0}.

In addition to Theorem 7.13 and Remarks 7.14 and 7.15, it is also worth proving

Theorem 7.16. The following assertions hold:
(1) If X is a commutative group, then k−10 is a subgroup of X for all k ∈ Z.
(2) If X is a commutative monoid, then n−10 is a submonoid of X for all n ∈ N0.

However, it is now more important to note that in addition to Theorems 7.7,
7.10, 7.9 and 7.12, we can also easily prove the following four theorems.

Theorem 7.17. If X is a groupoid, then for any n ∈ N the following assertions
are equivalent:
(1) X is n-divisible,
(2) {x} ⊂ n

(
n−1x

)
for all x ∈ X,

(3) {x} = n
(
n−1x

)
for all x ∈ X.

Proof. If (1) holds, then by Theorem 7.7, for every x ∈ X, we have n−1x 6= ∅,
and thus n

(
n−1x

)
6= ∅. Moreover, by Theorem 7.3, we also have n

(
n−1x

)
⊂ {x}.

Therefore, (3) also holds. The implication (2) =⇒ (1) is even more obvious by
Theorem 7.7.
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Theorem 7.18. If X is a group, then for any k ∈ Z the following assertions are
equivalent:

(1) X is k-divisible,

(2) {x} ⊂ k
(
k−1x

)
for all x ∈ X,

(3) {x} = k
(
k−1x

)
for all x ∈ X.

Theorem 7.19. If X is a groupoid, then for any n ∈ N the following assertions
are equivalent:

(1) X is n-cancellable,

(2) n−1
(
nx
)
⊂ {x} for all x ∈ X,

(3) n−1
(
nx
)
= {x} for all x ∈ X.

Proof. If (1) holds, then by Theorem 7.9, for every x ∈ X, we have

card
(
n−1(nx)

)
≤ 1.

Moreover, by Theorem 7.3, we also have {x} ⊂ n−1(nx). Therefore, (3) also holds.
The implication (2) =⇒ (1) is even more obvious by Theorem 7.9.

Theorem 7.20. If X is a group, then for any k ∈ Z the following assertions are
equivalent:

(1) X is k-cancellable,

(2) k−1
(
kx
)
⊂ {x} for all x ∈ X,

(3) k−1
(
kx
)
= {x} for all x ∈ X.

Now, as some immediate consequences of the latter four theorems, and Theo-
rems 5.6 and 5.7, we can also state the following two theorems.

Theorem 7.21. If X is a groupoid, then for any n ∈ N the following assertions
are equivalent:

(1) X is uniquely n-divisible,

(2) n−1
(
nx
)
⊂ {x} ⊂ n

(
n−1x

)
for all x ∈ X,

(3) n−1
(
nx
)
= {x} = n

(
n−1x

)
for all x ∈ X.

Theorem 7.22. If X is a group, then for any k ∈ Z the following assertions are
equivalent:

(1) X is uniquely k-divisible,

(2) k−1
(
kx
)
⊂ {x} ⊂ k

(
k−1x

)
for all x ∈ X,

(3) k−1
(
kx
)
= {x} = k

(
k−1x

)
for all x ∈ X.
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8. Some further results on the sets n−1x and k−1x

In addition to Theorem 7.3, we can also prove the following

Theorem 8.1. If X is a semigroup, then for any x ∈ X and m,n ∈ N we have:
(1) m

(
n−1x

)
⊂ n−1

(
mx
)
,

(2) m−1
(
n−1x

)
⊂ (mn)−1x,

(3) m
(
(mn)−1x

)
⊂ n−1x,

(4) n−1x ⊂ (mn)−1(mx).

Proof. If y ∈ n−1x, then by Definition 7.1 we have x = ny. Hence, by using
Theorem 1.4, we can infer that

mx = m(ny) = (mn)y = (nm)y = n(my).

Thus, by Definition 7.1, we also have

y ∈ (mn)−1(mx) and my ∈ n−1(mx).

Hence, we can already see that (4) and (1) are true.
On the other hand, if y ∈ (mn)−1x, then by Definition 7.1 and Theorem 1.4 we

have
x = (mn)y = (nm)y = n(my).

Thus, by Definition 7.1, we also have my ∈ n−1x. Hence, we can already see that
(3) is also true.

Finally, if y ∈ m−1
(
n−1x

)
, then by Remark 7.2, we have my ∈ n−1x. Hence,

by using Definition 7.1 and Theorem 1.4, we can infer that

x = n(my) = (nm)y = (mn)y.

Thus, by Definition 7.1, we also have y = (mn)−1x. Hence, we can already see
that (2) is also true.

From this theorem, by Theorem 7.8, it is clear that in particular we also have

Corollary 8.2. If X is a uniquely N-divisible semigroup, then for any x ∈ X and
m,n ∈ N we have:
(1) m

(
n−1x

)
= n−1

(
mx
)
,

(2) m−1
(
n−1x

)
= (mn)−1x,

(3) m
(
(mn)−1x

)
= n−1x,

(4) n−1x = (mn)−1
(
mx
)
.

Analogously to Theorem 8.1, we can also prove the following
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Theorem 8.3. If X is a group, then for any x ∈ X and k, l ∈ Z we have:
(1) k

(
l−1x

)
⊂ l−1

(
kx
)
,

(2) k−1
(
l−1x

)
⊂ (kl)−1x,

(3) k
(
(kl)−1x

)
⊂ l−1x,

(4) l−1x ⊂ (kl)−1
(
kx
)
.

Hence, by Corollary 6.6 and Theorem 7.11, it is clear that in particular we have

Corollary 8.4. If X is a uniquely N-divisible group, then for any x ∈ X and
k, l ∈ Z0 we have:
(1) k

(
l−1x

)
= l−1

(
kx
)
,

(2) k−1
(
l−1x

)
= (kl)−1x,

(3) k
(
(kl)−1x

)
= l−1x,

(4) l−1x = (kl)−1
(
kx
)
.

In addition to Theorem 8.1, we can also prove the following

Theorem 8.5. If X is a commutative semigroup, then for any x, y ∈ X and n ∈ N
we have

n−1x+ n−1y ⊂ n−1(x+ y).

Proof. If z ∈ n−1x and w ∈ n−1y, then by using Definition 7.1 and Theorem 1.5,
we can see that

x+ y = nz + nw = n(z + w).

Therefore, by Definition 7.1, we also have z + w ∈ n−1(x + y). Hence, we can
already see that the required inclusion is also true.

From this theorem, by Theorem 7.8, it is clear that in particular we also have

Corollary 8.6. If X is a uniquely N-divisible commutative semigroup, then for
any x, y ∈ X and n ∈ N we have

n−1(x+ y) = n−1x+ n−1y.

Analogously to Theorem 8.5, we can also prove the following

Theorem 8.7. If X is a commutative group, then for any k ∈ Z and x, y ∈ X we
have

k−1x+ k−1y ⊂ k−1(x+ y).

Hence, by Corollary 6.6 and Theorem 5.11, it is clear that in particular we also
have

Corollary 8.8. If X is a uniquely N-divisible commutative semigroup, then for
any k ∈ Z0 and x, y ∈ X we have

k−1(x+ y) = k−1x+ k−1y.
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Remark 8.9. In the latter two theorems and their corollaries, the commutativity
assumptions on X can be weakened.

For instance, in Theorem 8.5 it would be enough to assume only that the sets
n−1x and n−1y are elementwise commuting.

9. Uniquely N-divisible semigroups

In addition to Corollary 8.2, we can also easily prove the following

Lemma 9.1. If X is a uniquely N-divisible semigroup and m,n, p, q ∈ N such that
m/n = p/q, then for every x ∈ X we have

m
(
n−1x

)
= p
(
q−1x

)
.

Proof. By Theorem 7.21, we have

n
(
n−1x

)
= {x} = q

(
q−1x

)
.

Hence, by using that mq = pn, we can infer that

(mq)
(
n
(
n−1x

))
= (pn)

(
q
(
q−1x

))
.

Now, by using Theorem 1.4, we can also see that

(nq)
(
m
(
n−1x

))
= (nq)

(
p
(
q−1x

))
.

Hence, by using Theorem 5.6 and 5.11, we can see that the required equality is also
true.

Analogously to this lemma, we can also prove the following

Lemma 9.2. If X is a uniquely N-divisible group and n, q ∈ N and m, p ∈ Z such
that m/n = p/q, then for every x ∈ X we have

m
(
n−1x

)
= p
(
q−1x

)
.

Because of the above lemmas, we may naturally introduce the following two
definitions.

Definition 9.3. If X is a uniquely N-divisible semigroup, then for any x ∈ X and
m,n ∈ N we define (

m/n
)
x = m

(
n−1x

)
.

Definition 9.4. If X is a uniquely N-divisible group, then for any x ∈ X, n ∈ N
and m ∈ Z we define (

m/n
)
x = m

(
n−1x

)
.

By using Definition 9.3 and Corollary 8.2, we can easily prove the following
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Theorem 9.5. If X is a uniquely N-divisible semigroup, then for any x ∈ X and
r, s ∈ Q, with r, s > 0, we have
(1) (r + s)x = rx+ sx,
(2) (rs)x = r(sx).

Proof. By the definition of Q, there exists m,n, p, q ∈ N such that r = m/n and
s = p/q. Now, by using Theorems 7.8 and 1.4 and Corollary 8.2, we can see that

(r + s)x =
(
(m/n) + (p/q)

)
x =

(
(mq + pn)/(nq)

)
x

= (mq + pn)
(
(nq)−1x

)
= (mq)

(
(nq)−1x

)
+ (pn)

(
(nq)−1x

)

= m
(
q
(
(nq)−1x

))
+ p

(
n
(
(nq)−1x

))
= m

(
n−1x

)
+ p
(
q−1x

)

= (m/n)x+ (p/q)x = rx+ sx

and

(rs)x =
(
(m/n)(p/q)

)
x =

(
(mp)/(nq)

)
x = (mp)

(
(nq)−1x

)

= m
(
p
(
(nq)−1x

))
= m

(
p
(
n−1

(
q−1x

)))
= m

(
n−1

(
p
(
q−1x

)))

= m
(
n−1

(
(p/q)x

)))
= (m/n)

(
(p/q)x

))
= r(sx).

Analogously to this theorem, we can also prove the following

Theorem 9.6. If X is a uniquely N-divisible group, then for any x ∈ X and
r, s ∈ Q we have
(1) (r + s)x = rx+ sx,
(2) (rs)x = r(sx).

By using Definition 9.3 and Corollary 8.6, we can also easily prove the following

Theorem 9.7. If X is a uniquely N-divisible commutative semigroup, then for any
x, y ∈ X and r ∈ Q, with r > 0, we have

r(x+ y) = rx+ ry.

Proof. By the definition of Q, there exist m,n ∈ N such that r = m/n. Now, by
using Corollary 8.6 and Theorem 1.5, we can see that

r(x+ y) = (m/n)(x+ y) = m
(
n−1(x+ y)

)
= m

(
n−1x+ n−1y)

)

= m
(
n−1x

)
+m

(
n−1y

)
= m

(
n−1x

)
+m

(
n−1y

)

= (m/n)x+ (m/n)y = rx+ ry.

Analogously to this theorem, we can also prove the following

Theorem 9.8. If X is a uniquely N-divisible commutative group, then for any
x, y ∈ X and r ∈ Q, we have

r(x+ y) = rx+ ry.
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Now, as an immediate consequence of Theorems 9.6 and 9.7, we can also state

Corollary 9.9. If X is a uniquely N-divisible commutative group, then X, with
the multiplication given in Definition 9.4, is a vector space over Q.

Remark 9.10. Note that, by Remark 6.7, every vector space X over Q is uniquely
Q0-divisible.

Now, by using Corollary 9.9, from the basic decomposition theorem of vector
spaces, mentioned in Remark 3.10, we can immediately derive the following

Theorem 9.11. If X is a uniquely N-divisible commutative group, then for each
N-divisible subgroup U of X there exists an N-divisible subgroup V of X such that
X = U ⊕ V .

Remark 9.12. Note that now, by Theorem 5.6, X is N-cancellable, and thus actually
both U and V are also uniquely N-divisible. Moreover, by Corollary 6.6, U , V and
X are uniquely Z0-divisible.

Remark 9.13. To see that the N-divisibility of U is an essential condition in the
above theorem, we can note that Z is an additive subgroup of the field Q such that,
for any N-superhomogeneous subset V of Q with Z ∩ V ⊂ {0}, we have V ⊂ {0},
and thus Z+ V ⊂ Z.

Namely, if x ∈ V , then since V ⊂ Q there exist m ∈ Z and n ∈ N such that
x = m/n. Moreover, since V is N-superhomogeneous, we have

m = n(m/n) = nx ∈ V.

Hence, since m ∈ Z and Z ∩ V ⊂ {0} also hold, we can infer that m = 0, and thus
x = 0. Therefore, V ⊂ {0}, and thus Z+ V ⊂ Z+ {0} = Z.

In addition to Remark 9.13, it is also worth proving the following

Theorem 9.14. If X is an N-cancellable group and a ∈ X, then U = Za is a
commutative subgroup of X such that, for every N-divisible symmetric subset V of
X \ {a}, we have U ∩ V ⊂ {0}.

Proof. By Theorems 1.8, 1.9 and 2.8, it is clear that U is a commutative subgroup
of X. Therefore, we need only prove that U ∩ V ⊂ {0}.

For this, assume on the contrary that there exists x ∈ U ∩ V such that x 6= 0.
Then, by the definition of U , there exists k ∈ Z such that x = ka. Hence, since
x 6= 0, we can infer that k 6= 0. Therefore, by Corollary 6.2, there exists v ∈ V such
that x = kv. Thus, we have ka = kv. Hence, by using Corollary 6.4, we can infer
that a = v, and thus a ∈ V . This contradiction proves the required inclusion.

From this theorem, by using Theorem 3.4, we can immediately derive

Corollary 9.15. If X and U are as in Theorem 9.14, then for every N-divisible
subgroup V of X with a /∈ V and X = U + V we have X = U ⊕ V .
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Remark 9.16. Concerning Theorem 9.11, it is also worth mentioning that Baer [1]
in 1936 already proved that if U is an N-divisible subgroup of a commutative group
X, then there exists a subgroup V of X such that X = U ⊕ V .

Moreover, Kertész [11] in 1951 proved that if X is a commutative group such
that the order of each element ofX is a square-free number, then for every subgroup
U of X there exists a subgroup V of X such that X = U ⊕ V .

Surprisingly, the above two results were already considered to be well-known
by Baer in [1, p.1] and [3, p. 504]. Moreover, it is also worth mentioning that Hall
[9], analogously to Kertész [11], also proved an "if and only if result".

10. Operations with divisible and cancellable sets

Theorem 10.1. If U is an n-divisible subset of a semigroup X, for some n ∈ N,
then for every m ∈ N the set mU is also n-divisible.

Proof. If x ∈ mU , then by the definition of mU there exists u ∈ U such that
x = mu. Moreover, by the n-divisibility of U , there exists v ∈ U such that u = nv.
Hence, by using Theorem 1.4, we can see that x = mu = m(nv) = n(mv). Thus,
since mv ∈ mU , the required assertion is also true.

Moreover, as a certain converse to this theorem, we can also prove

Theorem 10.2. If U is an m-cancellable, n-superhomogeneous subset of a semi-
group X, for some m,n ∈ N, such that mU is n-divisible, then U is also n-divisible.

Proof. If x ∈ U , then by the definition mU we also have mx ∈ mU . Therefore,
by the n-divisibility of mU , there exists v ∈ mU such that mx = nv. Moreover,
by the definition of mU , there exists y ∈ U such that v = my. Now, by using
Theorem 1.4, we can see that mx = nv = n(my) = m(ny). Hence, by using the
m-cancellability of U and the fact that ny ∈ U , we can already infer that x = ny.
Therefore, the required assertion is also true.

Quite similarly to Theorems 10.1 and 10.2, we can also prove the following two
theorems.

Theorem 10.3. If U is a k-divisible subset of a group X, for some k ∈ Z, then
for every l ∈ Z the set lU is also k-divisible.

Theorem 10.4. If U is an l-cancellable, k-superhomogeneous subset of a group
X, for some l, k ∈ N, such that lU is k-divisible, then U is also k-divisible.

In addition to Theorem 10.1, we can also easily prove the following

Theorem 10.5. If U and V are elementwise commuting, n-divisible subsets of a
semigroup X, for some n ∈ N, then U + V is also n-divisible.
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Proof. If x ∈ U + V , then by the definition of U + V there exist u ∈ U and v ∈ V
such that x = u + v. Moreover, since U and V are n-divisible, there exist ω ∈ U
and w ∈ V such that u = nω and v = nw. Hence, by using Theorem 1.5, we can
see that x = u + v = nω + nw = n(ω + w). Thus, since ω + w ∈ U + V , the
required assertion is also true.

Moreover, as a certain converse to this theorem, we can also prove

Theorem 10.6. If U and V are elementwise commuting, n-superhomogeneous
subsets of a monoid X, for some n ∈ N, such that U + V is n-divisible, and
U + V = U ⊕ V and 0 ∈ V , then U is also n-divisible.

Proof. If x ∈ U , then because of 0 ∈ V we also have x ∈ U + V . Thus, by the
n-divisibility of U + V , there exists y ∈ U + V such that x = ny. Moreover, by the
definition of U + V , there exist u ∈ U and v ∈ V such that y = u + v. Now, by
using Theorem 1.5, we can see that

x = ny = n(u+ v) = nu+ nv.

Moreover, we can also note that x ∈ U + V , nu ∈ U and nv ∈ V . Hence, since
x = x+0 also holds with x ∈ U and 0 ∈ V , by using the assumption U+V = U⊕V ,
we can already infer that x = nu. Therefore, U is also n-divisible.

Quite similarly to Theorems 10.5 and 10.6, we can also prove the following two
theorems.

Theorem 10.7. If U and V are elementwise commuting, k-divisible subsets of a
semigroup X, for some k ∈ Z, then U + V is also k-divisible.

Theorem 10.8. If U and V are elementwise commuting, k-superhomogeneous
subsets of a group X, for some k ∈ Z, such that U +V is k-divisible, and U +V =
U ⊕ V and 0 ∈ V , then U is also k-divisible.

Hence, by Theorem 3.4, it is clear that in particular we also have

Corollary 10.9. If U and V are elementwise commuting subgroups of a group X
such that U + V is k-divisible, for some k ∈ Z such that U ∩ V = {0}, then U and
V are also n-divisible.

In addition to Theorem 10.5, we can also prove the following

Theorem 10.10. If U and V are elementwise commuting, n-superhomogeneous
subsets of a semigroup X, for some n ∈ N such that U and V are n-cancellable
and U + V = U ⊕ V , then U + V is also n-cancellable.

Proof. For this, assume that x, y ∈ U + V such nx = ny. Then, by the definition
of U + V , there exist u, ω ∈ U and v, w ∈ V such that x = u + v and y = ω + w.
Hence, by using Theorem 1.5, we can see that

nu+ nv = n(u+ v) = nx = ny = n(ω + w) = nω + nw.
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Moreover, we can also note that nu, nω ∈ U and nv, nw ∈ V , and thus nu +
nv, nω + nw ∈ U + V . Now, by using that U + V = U ⊕ V , we can see that
nu = nω and nv = nw. Hence, by using the n-cancellability of U and V , we can
already infer that u = ω and v = w. Therefore, x = u+ v = ω + w = y, and thus
the required assertion is also true.

Remark 10.11. Now, as a trivial converse to this theorem, we can also state that if
U and V subsets of a monoid X such that U + V is n-cancellable, for some n ∈ Z,
and 0 ∈ U ∩ V , then U and V are also n-cancellable.

Quite similarly to Theorem 10.10, we can also prove the following

Theorem 10.12. If U and V are elementwise commuting, k-superhomogeneous
subsets of a group X, for some k ∈ Z such that U and V are k-cancellable and
U + V = U ⊕ V , then U + V is also k-cancellable.

Hence, by Theorem 3.4, it is clear that in particular we also have

Corollary 10.13. If U and V are elementwise commuting subgroups of a group
X such that U and V are k-cancellable for some k ∈ Z, and U ∩ V = {0}, then
U + V is also k-cancellable.

Remark 10.14. In an immediate continuation of this paper, by using the notion of
the order

na = inf
{
n ∈ N : na = 0

}

of an element a of a monoid ( resp. group ) X, we shall investigate the divisi-
bility and cancellability properties of the set N0a + V (resp. Za + V ) for some
substructures V of X.

Acknowledgements. The authors are indebted to the anonymous referee for
pointing out several grammatical errors and misprints in the original manuscript.
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Abstract

Let K be a field of characteristic p > 2, and G a nilpotent group with
commutator subgroup of order pn. Denote by (KG)∗ the set of symmetric
elements of the group algebra KG with respect to an oriented classical in-
volution. Then KG satisfies all Lie commutator identities of degree pn + 1
or more. We will show that (KG)∗ satisfies a Lie commutator identity of
degree less than pn + 1 if and only if G′ is not cyclic. Consequently, if G′ is
cyclic, then the Lie nilpotency index and the Lie derived length of (KG)∗ are
just the same as of KG, namely pn +1 and dlog2(pn +1)e, respectively. The
corresponding results on the set of symmetric units of KG are also obtained.

Keywords: Group ring, involution, polynomial identity, group identity, de-
rived length, Lie nilpotency index, nilpotency class
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1. Introduction

The Lie derived length and the Lie nilpotency index of group algebras and their
certain subsets have been studied separately for many decades. Both of these prop-
erties can be characterized by specific polynomial identities, where the polynomials
are multilinear Lie monomials. In this paper we investigate group algebras satis-
fying general multilinear Lie monomial (Lie commutator) identities, and from that
draw conclusions about the above properties.
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Let KG denote the group algebra of a group G over a field K. Then KG, with
the Lie commutator [x, y] = xy − yx serving as the Lie bracket, can be considered
as a Lie algebra. Let S be a nonempty subset of KG. We will consider the elements
of S as Lie commutators of weight 1 on S, and inductively, an element [x, y] of KG,
where x and y are Lie commutators of weight u and v on S with u+ v = r, will be
called a Lie commutator of weight r on S.

Denote by K〈x1, . . . , xm〉 the polynomial ring in the non-commuting indeter-
minates x1, . . . , xm over K. The set S is said to satisfy a polynomial identity if
there exists a nonzero polynomial in K〈x1, . . . , xm〉 such that f(s1, . . . , sm) = 0 for
all s1, . . . , sm ∈ S. Let now X be the set of the indeterminates in K〈x1, . . . , xm〉.
A Lie commutator of weight r on X is called a multilinear Lie monomial of de-
gree r, if it is linear in each of its indeterminates. We will say that the subset S
of KG satisfies a Lie commutator identity of degree r, if there exists a nonzero
multilinear Lie monomial f of degree r in K〈x1, . . . , xm〉 with f(s1, . . . , sm) = 0
for all s1, . . . , sm ∈ S. Then we also say: S satisfies the Lie commutator iden-
tity f(x1, . . . , xm) = 0. We will denote by f(S) the image of the set S under the
polynomial function f .

For subsets V,W ⊆ KG, by the symbol [V,W ] we mean the subspace of KG
generated by all Lie commutators [v, w] with v ∈ V,w ∈W . Set γ1(S) = δ[0](S) =
S, and by induction, let γn+1(S) = [γn(S), S] and δ[n+1](S) = [δ[n](S), δ[n](S)]. S
is said to be Lie nilpotent, if γn(S) = 0, and Lie solvable, if δ[n](S) = 0 for some
integer n. The first such n is called the Lie nilpotency index or the Lie derived
length of S and denoted by tL(S) and dlL(S), respectively. It is obvious that S is
Lie nilpotent of index n, or Lie solvable of derived length n, if and only if it satisfies
the polynomial identity

[x1, . . . , xn] = 0, (1.1)

or
[x1, . . . , x2n ]

◦ = 0, (1.2)

respectively, where the Lie commutators on the left-hand sides are defined induc-
tively to be

[x1, . . . , xn] = [[x1, . . . , xn−1], xn]

and
[x1, . . . , x2n ]

◦ = [[x1, . . . , x2n−1 ]◦, [x2n−1+1, . . . , x2n ]
◦]

with [x1, x2]
◦ = [x1, x2], and n is the least such integer.

Besides Lie nilpotence and Lie solvability, many other properties can be originated
from Lie commutator identities. For example, KG is said to be Lie centre-by-
metabelian (or Lie centrally metabelian), if δ[2](KG) is central in KG, or, equiva-
lently, KG satisfies the Lie commutator identity

[[[x1, x2], [x3, x4]], x5] = 0 (1.3)

of degree 5. However, as we will see, the identities (1.1) and (1.2) play special roles.
For a prime p we say that G is p-abelian, if its commutator subgroup G′ is a

finite p-group. By definition, the 0-abelian groups are the abelian groups. In what
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follows, p will always denote the characteristic of the field K. According to [7],
KG satisfies a polynomial identity if and only if G has a p-abelian subgroup of
finite index. Now, assume that the Lie ideal L of KG satisfies the Lie commutator
identity f(x1, . . . , xm) = 0. If f is of degree 1, then f(x1, . . . , xm) = xi for some
i ∈ {1, . . . ,m}, so L = δ[0](L) = f(L). Suppose that there exists k such that
δ[k](L) ⊆ f(L) whenever f is of degree less than r. Let now f be of degree r. Then
f can be expressed as the Lie commutator of the multilinear Lie monomials f1 and
f2 of degrees less than r. By the inductive hypothesis, there exist k1, k2 such that
δ[k1](L) ⊆ f1(L) and δ[k2](L) ⊆ f2(L). Assume that k1 ≤ k2, and let k = k2 + 1.
Then

δ[k](L) = [δ[k2](L), δ[k2](L)] ⊆ [δ[k1](L), δ[k2](L)]

⊆ [f1(L), f2(L)] = f(L).

We have just proved that if L satisfies a Lie commutator identity, then L is Lie
solvable. The converse is trivial.

The Lie solvable group algebras are described in [6]: KG is Lie solvable if
and only if one of the following conditions holds: (i) p 6= 2, and G is p-abelian;
(ii) p = 2, and G has a 2-abelian subgroup of index at most 2. Consequently,
for p = 0, KG satisfies a Lie commutator identity precisely if G is abelian, and
then, of course, KG satisfies all Lie commutator identities of degree at least 2.
Therefore, in the sequel we can restrict ourselves to the case only when p > 0 and
G is nonabelian. In [6], a necessary and sufficient condition can also be found for
the Lie nilpotence of the group algebra KG: KG is Lie nilpotent if and only if G is
nilpotent and p-abelian. It is easy to check that if S ⊆ KG is Lie nilpotent of class
n (in other words, S satisfies (1.1)), then S satisfies all Lie commutator identities
of degree at least n.

Applying Theorems 3 and 6 of [5], it is not so hard to derive that on group
algebras, all Lie commutator identities of degree r are equivalent while r ≤ 4.
Nevertheless, according to [9], the group algebra F3D6, where F3 denotes the field
of three elements and D6 the dihedral group of order 6, satisfies the identity (1.3),
but, by [6], it does not satisfy (1.1) for n = 5. It is worth mentioning here that
the question of the equivalence of Lie commutator identities of the same degree is
raised in the “Dniester Notebook: Unsolved Problems in the Theory of Rings and
Modules” (see Problem 2.6 in [8, p. 482]).

Let now ∗ be an involution of the group algebra KG, and let (KG)∗ = {x ∈
KG : x∗ = x} the set of symmetric elements with respect to ∗. Evidently, (KG)∗
is a subspace of KG, but not always closed under Lie commutator. Although
the classification of all involutions of group algebras is still open, the exploration
of the algebraic properties of symmetric elements is an extensively studied area
of group algebras. Most of the results are known with respect to the so-called
classical involution, which sends every element of G into its inverse. By ∗ we will
understand a more general involution introduced by S. P. Novikov. Let σ : G →
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{±1} a homomorphism and let ∗ : KG→ KG be given by

∑

g∈G
αgg



∗

=
∑

g∈G
αgσ(g)g

−1.

This involution is called oriented classical involution of KG. According to [3], it
can happen that (KG)∗ satisfies a Lie commutator identity, but the whole KG
does not satisfy the same identity.

Now, we will assign group commutators to Lie monomials. Let τ be the map-
ping from the set of all Lie commutators on the subset X = {x1, . . . , xm} of
K〈x1, . . . , xm〉 into the free group F with generators u1, . . . , un, given by τ(xi) =
ui, and for the Lie commutator [x, y] of weight r > 1 on X, let τ([x, y]) be the
group commutator of τ(x) and τ(y). The word w in F will be called a multilinear
group commutator of degree r, if it is the image of a multilinear Lie monomial of
degree r under τ . Denote by U(S) the set of units of the set S ⊆ KG. We will say
that U(S) 6= ∅ satisfies a group commutator identity of degree r, if there exists a
nontrivial multilinear group commutator w(u1, . . . , un) of degree r in the free group
with generators v1, . . . , vn such that w(h1, . . . , hn) = 1 for all h1, . . . , hn ∈ U(S).

We will say that U(S) is nilpotent of class n − 1, or solvable of length n, if
U(S) satisfies the group commutator identity (v1, . . . , vn) = 1, or (v1, . . . , v2n)◦ =
1, respectively, where the group commutators (v1, . . . , vn) and (v1, . . . , v2n)

◦ are
defined by induction, analogously to (1.1) and (1.2), and n is the first such integer.
The nilpotency class and the derived length of U(S) will be denoted by cl(U(S))
and dl(U(S)), respectively.

Our main theorem is the following.

Theorem 1.1. Let K be a field of characteristic p > 2, and let G be a nilpotent
p-abelian group with cyclic commutator subgroup. Then:

(i) (KG)∗ satisfies no Lie commutator identity of degree less than |G′|+ 1;

(ii) provided that G is torsion, U∗(KG) satisfies no group commutator identity of
degree less than |G′|+ 1.

By Theorem 1 of [2], if G′ is not cyclic, then tL(KG) ≤ |G′|, or in other words,
KG satisfies all Lie commutator identities of degree at least |G′|. Combining this
result with Theorem 1.1, we can state the next corollary.

Corollary 1.2. Let K be a field of characteristic p > 2, and let G be a nilpotent
p-abelian group. Then the group algebra KG satisfies all Lie commutator identities
of degree |G′|+1 or more, and U(KG) satisfies all group commutator identities of
degree |G′|+1 or more. Furthermore, (KG)∗ satisfies a Lie commutator identity of
degree less than |G′|+ 1 if and only if G′ is not cyclic. Provided that G is torsion,
U∗(KG) satisfies a group commutator identity of degree less than |G′| + 1 if and
only if G′ is not cyclic.
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Finally, we draw conclusions about the Lie nilpotency index and the Lie derived
length of (KG)∗, such as the nilpotency class and derived length of U∗(KG).

Corollary 1.3. Let K be a field of characteristic p > 2, and let G be a nilpotent
p-abelian group. Then tL((KG)∗) ≤ |G′| + 1, with equality if and only if G′ is
cyclic. Provided that G is torsion, cl(U∗(KG)) ≤ |G′|, with equality if and only if
G′ is cyclic.

Corollary 1.4. Let K be a field of characteristic p > 2, and let G be a nilpotent
p-abelian group with cyclic commutator subgroup. Then

dlL((KG)∗) = dlL(KG) = dlog2(|G′|+ 1)e.

In addition, if G is torsion, then dl(U∗(KG)) = dlL(KG).

2. Proof of Theorem 1.1

Let G be a finite p-group with cyclic commutator subgroup of order pn, where
p is an odd prime, and let K be a field of characteristic p. We will denote by
ω(KG) and ω(KG′) the augmentation ideals of KG and KG′, respectively. The
assumption guarantees that they are nilpotent ideals, and by Lemma 3 of [1], the
relations

[ω(KG′)m, ω(KG)l] ⊆ ω(KG)l−1ω(KG′)m+1;

[ω(KG)k, ω(KG)l] ⊆ ω(KG)k+l−2ω(KG′);

[ω(KG)kω(KG′)m, ω(KG)lω(KG′)n] ⊆ ω(KG)k+l−2ω(KG′)n+m+1

(2.1)

hold for all k, l,m, n ≥ 1. By definition, ω(KG)0 = KG.
We will also use the following well-known identity: for any g ∈ G and integer k

gk − 1 ≡ k(g − 1) (mod ω(KG)2). (2.2)

Let Ir denote the ideal ω(KG)3ω(KG′)r−1+KGω(KG′)r of KG, and let S be the
subspace of KG spanned by the elements

(a− 1)(a−1 − 1), (b− 1)(b−1 − 1), (ab− 1)((ab)−1 − 1),

with a, b ∈ G such that the commutator x = (a, b) is of order pn. For the multilinear
Lie monomial f we will denote by wf the multilinear group commutator τ(f).

Lemma 2.1. S satisfies no Lie commutator identity of degree less than pn + 1,
and 1 + S satisfies no group commutator identity of degree less than pn + 1.

Proof. We show that for arbitrary multilinear Lie commutator f(x1, . . . , xm) of
degree r, and for any element v of the set V = {(a − 1)2, (b − 1)2, (a − 1)(b − 1)}
there exist s1, . . . , sm ∈ S such that

f(s1, . . . , sm) ≡ wf (1 + s1, . . . , 1 + sm)− 1 ≡ v(x− 1)r−1 (mod Ir).
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This goes by induction on r. If r = 1, then f(S) = S, and using (2.2) we have

−(a− 1)(a−1 − 1) ≡ (a− 1)2 (mod ω(KG)3),

−(b− 1)(b−1 − 1) ≡ (b− 1)2 (mod ω(KG)3)

and

−(ab− 1)((ab)−1 − 1) ≡ (ab− 1)2 = ((a− 1)(b− 1) + (a− 1) + (b− 1))2

≡ (a− 1)2 + (b− 1)2 + 2(a− 1)(b− 1) (mod ω(KG)3).

Hence,

2−1((a− 1)(a−1 − 1) + (b− 1)(b−1 − 1)− (ab− 1)((ab)−1 − 1))

≡ (a− 1)(b− 1) (mod ω(KG)3).

As ω(KG)3 ⊆ I1, the claim is true for r = 1. Assume the claim for all Lie commu-
tator identity of degree less than r, and let f be a multilinear Lie commutator of
degree r. Then f can be expressed as a Lie commutator of the multilinear Lie com-
mutators f1 and f2 of degree d and r−d, respectively. By the inductive hypothesis,
for all v1, v2 ∈ V there exist s1, . . . , sm ∈ S such that

f1(s1, . . . , sm) ≡ wf1(1 + s1, . . . , 1 + sm)− 1 ≡ v1(x− 1)d−1 (mod Id),

f2(s1, . . . , sm) ≡ wf2(1 + s1, . . . , 1 + sm)− 1 ≡ v2(x− 1)r−d−1 (mod Ir−d).

Now we can apply (2.1) and the equality

KGω(KG′)k = ω(KG′)k + ω(KG)ω(KG′)k

which holds for any k ≥ 1 to get that both [Is, It] and [ω2(KG)ω(KG′)s−1, It] are
subsets of Is+t for any s, t ≥ 1. Then

f(s1, . . . , sm) ≡ [v1(x− 1)d−1, v2(x− 1)r−d−1] (mod Ir),

furthermore,

[v1(x− 1)d−1, v2(x− 1)r−d−1]

= v1[(x− 1)d−1, v2(x− 1)r−d−1] + [v1, v2(x− 1)r−d−1](x− 1)d−1

= v1[(x− 1)d−1, v2](x− 1)r−d−1 + [v1, v2](x− 1)r−2,

and by using the first relation of (2.1) we have

f(s1, . . . , sm) ≡ [v1, v2](x− 1)r−2 (mod Ir). (2.3)

It remains to compute the Lie commutators [v1, v2] for all possible v1 and v2.
According to [1] (see p. 4911),

[(a− 1)2, (b− 1)2] ≡ 4(a− 1)(b− 1)(x− 1) (mod I2),

[(a− 1)2, (a− 1)(b− 1)] ≡ 2(a− 1)2(x− 1) (mod I2),

[(b− 1)2, (a− 1)(b− 1)] ≡ 2(b− 1)2(x− 1) (mod I2).

(2.4)

98 T. Juhász



For the sake of completeness, we confirm here the first congruence, the other two
can be obtained similarly. Clearly,

[(a− 1)2, (b− 1)2] = (a− 1)[a, (b− 1)2] + [a, (b− 1)2](a− 1)

= (a− 1)(b− 1)[a, b] + (a− 1)[a, b](b− 1)

+ (b− 1)[a, b](a− 1) + [a, b](b− 1)(a− 1).

Furthermore, [a, b] = ba(x − 1) = (ba − 1)(x − 1) + (x − 1) and (g − 1)(h − 1) =
(h − 1)(g − 1) + hg((g, h) − 1) for any g, h ∈ G, so every summand on the right
hand side is congruent to (a−1)(b−1)(x−1) modulo I2. This implies the required
congruence.

So, by (2.4), for any v ∈ V we can choose v1 and v2 such that

f(s1, . . . , sm) ≡ αv(x− 1)r−1 (mod Ir),

for some α ∈ K \ {0}.
For the sake of brevity, we write 1 + s instead of (1 + s1, . . . , 1 + sm). Then

wf (1 + s) = (wf1(1 + s), wf2(1 + s))

= 1 + wf1(1 + s)−1wf2(1 + s)−1[wf1(1 + s), wf2(1 + s)]

≡ 1 + wf1(1 + s)−1wf2(1 + s)−1f(s1, . . . , sm)

≡ 1 + αv(x− 1)r−1 (mod Ir).

Let k be an integer for which xk divides the polynomial f(x1, . . . , xm); let s′k =
α−1sk, and s′i = si for all i 6= k. Then

f(s′1, . . . , s
′
m) ≡ wf (1 + s′1, . . . , 1 + s′m)− 1 ≡ v(x− 1)r−1 (mod Ir),

and the induction is done.
Now, applying the results of [4] we show that w = v(x− 1)r−1 6∈ Ir for r = pn.

Denote by t the weight of the element x−1. Then t ≥ 2, and w ∈ ω(KG)2+t(r−1) \
ω(KG)3+t(r−1). Since ω(KG)i has a basis over K consisting of regular elements
of weight not less than i, we have that Ir = ω(KG)3ω(KG′)r−1 ⊆ ω(KG)3+t(r−1).
Consequently, w 6∈ Ir. This means that f(S) contains a nonzero element for any
Lie commutator identity f of degree pn or less.

As every element of G has odd order, the orientation σ has to be trivial, so
all elements of S belong to (KG)∗, further 1 + S ⊆ U∗(KG). This implies the
following statement.

Lemma 2.2. Let K be a field of characteristic p > 2, and let G be a finite p-group
with cyclic commutator subgroup. Then

(i) (KG)∗ satisfies no Lie commutator identity of degree less than |G′|+ 1;

(ii) U∗(KG) satisfies no group commutator identity of degree less than |G′|+ 1.
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Now, we are ready to prove our main theorem. We will use that the subspace
(KG)∗ of KG is spanned by the set {g + σ(g)g−1 : g ∈ G}.

Proof of Theorem 1.1. Let f(x1, . . . , xm) be a multilinear Lie commutator of degree
less than |G′|+ 1.

According to Theorem 1.7 of [10], the FC-groupG is isomorphic to a subgroup of
the direct product of the torsion FC-group G/A and the torsion-free abelian group
G/T , where A is a maximal torsion free central subgroup, and T is the torsion part
of G. Hence, G′ ∼= (G/A)′. Assume that A ⊆ kerσ. Then the involution ∗ induces
the involution 

 ∑

g∈G/A

αgg




?

=
∑

g∈G/A

αgσ(g)g
−1,

on K[G/A], which is also an oriented classical involution, and the elements of
(K[G/A])? are exactly the homomorphic images of the elements of (KG)∗ under the
natural homomorphism ϕ : KG→ K[G/A]. Choose the elements g, h ∈ G/A such
that (G/A)′ = 〈(g, h)〉. As a finitely generated torsion nilpotent group, H = 〈g, h〉
is finite, and it is the direct product of its Sylow subgroups. Denote by P the Sylow
p-subgroup of H. Since G′ is a p-group, we have that P ′ = H ′ ∼= G′. By applying
(i) of Lemma 2.2 for the finite p-group P , we obtain that there exist elements
s1, . . . , sm ∈ (KG)∗ such that ϕ(s1), . . . , ϕ(sm) ∈ (KP )? and

f(ϕ(s1), . . . , ϕ(sm)) 6= 0.

Then ϕ(f(s1, . . . , sm)) 6= 0, and f(s1, . . . , sm) 6= 0, as desired.
In the remaining case when A 6⊆ kerσ, let us take an element a from A \ kerσ.

Then G = kerσ ∪ a kerσ, and as a is central in G, it follows that (kerσ)′ = G′.
Now we may repeat the proof to have that (K kerσ)∗ does not satisfy f . Since
(K kerσ)∗ ⊆ (KG)∗, the first part of the theorem is proved.

Assume that G is torsion, and denote by P the Sylow p-subgroup of the finite
nilpotent group H = 〈g, h〉, where g, h ∈ G such that 〈(g, h)〉 = G′. Then P ′ = G′,
and by (ii) of Lemma 2.2, U∗(KP ) satisfies no Lie commutator identity of degree
less than |G′|+ 1, so is U∗(KG).
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Abstract

In this paper, we obtain solutions to infinite family of Pell equations of
higher degree based on the more generalized Fibonacci and Lucas sequences
as well as their all subsequences of the form {ukn} and {vkn} for odd k > 0.
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1. Introduction

The generalized Fibonacci and Lucas sequences are defined by

un+1 = Aun +Bun−1 (1.1)

and
vn+1 = Avn +Bvn−1, (1.2)
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where u0 = 0, u1 = 1 and v0 = 2, v1 = A, respectively.
For k ≥ 0 and n > 1, the sequences {ukn} and {vkn} satisfy the recursions (see

[1]):

ukn = vkuk(n−1) − (−B)kuk(n−2) and vkn = vkvk(n−1) − (−B)kvk(n−2). (1.3)

The Binet formulae are

un =
αn − βn
α− β and vn = αn + βn,

where α, β = A±
√
A2 + 4B.

By the Binet formulae note that for a fixed k > 0,

u−kn = (−1)kn+1ukn and u2kn = vknukn. (1.4)

A n× n quasi-cyclic matrix R (D;x1, x2, ...xn) (or shortly R) has the form (see
[2, 4, 5]):

R =




x1 Dxn Dxn−1 ... Dx3 Dx2
x2 x1 Dxn ... Dx4 Dx3
... ... ... ... ... ...
... ... ... ... ... ...

xn−1 xn−2 xn−3 ... x1 Dxn
xn xn−1 xn−2 ... x2 x1



.

The classical Pell equation x2 − dy2 = ±1 (d ∈ Z) can be rewritten as

det

(
x dy
y x

)
= ±1.

By means of quasi-cyclic determinants, the equation

det




x1 Dxn Dxn−1 ... Dx3 Dx2
x2 x1 Dxn ... Dx4 Dx3
... ... ... ... ... ...
... ... ... ... ... ...

xn−1 xn−2 xn−3 ... x1 Dxn
xn xn−1 xn−2 ... x2 x1




= ±1

is called Pell’s equation of degree n.
In [2], the author gave a method to generalize the classical Pell equation whose

degree is n = 2 to a Pell equation of degree n ≥ 2 by some n × n quasi-cyclic
determinants. In particular, the author proved that for n ≥ 2,

det (R (Ln;F2n−1, F2n−2, ..., Fn)) = 1, (1.5)

where Ln and Fn denote the nth Lucas and Fibonacci number, respectively. Further
it was showed that

det (R (Ln;F2n−1+k, F2n−2+k, ..., Fn+k)) = (−1)n−1
LnF

n
k + Fnk−1,
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where k is an integer.
In [3], the author generalized the results given in [2] by giving a relationship

between certain Pell equations of degree n and general Fibonacci and Lucas se-
quences. For example, for k = 1 in (1.3) and (1.4) and n > 1, we have

det (R (vn;u2n−1, u2n−2, ..., un)) = Bn(n−1), (1.6)

where B is defined as before.
From [4, 5], the following two propositions are known:

Proposition 1. For n > 0,

det (R) =

n−1∏

k=0

(
n∑

i=1

xid
i−1εk(i−1)

)
, (1.7)

where d = n
√
D, ε = e2πi/n and each factor

∑n
i=1 xid

i−1εk(i−1) of the RHS of (1.7)
is an eigenvalue of the matrix R.

Proposition 2. Let n and D be fixed. Then the sum, differences, and product of
two quasi-cyclic matrices is also quasi-cyclic. The inverse of a quasi-cyclic matrix
is quasi-cyclic.

In this paper, we generalize the results of [2, 3] and so obtain solutions to infinite
family of Pell equations of higher degree based on more generalized Fibonacci and
Lucas sequences as well as their all subsequences of the form {ukn} and {vkn} ,
for odd k > 0.

2. Quasi-cyclic matrices via the generalized
Fibonacci and Lucas numbers

We obtain some results about infinite family of Pell equations of higher degree by
using certain quasi-cyclic determinants with the generalized Fibonacci and Lucas
numbers. We give some auxiliary results for further use and denote (−B)

k by b for
easy writing.

Lemma 2.1. For positive integers k and n,

vkuk(2n−1) − vknukn = buk(2n−2),

b
(
uk(2n−1) − vknuk(n−1)

)
= bnuk,

u2kn − uk(n+1)uk(n−1) = b(n−1)u2k.

Proof. The claimed identities follows from the Binet formulae.

Theorem 2.2. For n ≥ 2,

det
(
R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

))
= bn(n−1)unk . (2.1)
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Proof. For n = 2,

det (R (v2k;u3k, u2k)) =

∣∣∣∣
u3k v2ku2k
u2k u3k

∣∣∣∣ = u23k − v2ku22k = b2u2k.

For n > 2, consider the upper triangular matrix

T =




1 −vk b 0

1 −vk
. . .

. . . . . . b
1 −vk

1



. (2.2)

From a matrix multiplication and by Lemma 2.1, we get

RT =




uk(2n−1) −buk(2n−2) bnuk 0 . . . 0

uk(2n−2) −buk(2n−3) 0 bnuk
. . .

...
...

...
... 0

. . . 0
...

...
...

...
. . . bnuk

uk(n+1) −bukn 0 0 . . . 0
ukn −buk(n−1) 0 0 . . . 0




. (2.3)

Then we write

detR = (detR) (detT ) = det (RT )

=
(
bu2kn − buk(n+1)uk(n−1)

)
det




bnuk 0 · · · 0

0 bnuk
. . .

...
...

. . . . . . 0
0 · · · 0 bnuk




=
(
bu2kn − buk(n+1)uk(n−1)

)
(bnuk)

n−2

= bn(n−1)unk ,

as claimed.

Corollary 2.3. For n ≥ 2,

n−1∏

k=0




n∑

j=1

uk(2n−j) ( n
√
vkn)

j−1
εk(j−1)


 = bn(n−1)unk ,

where n
√
vkn is the nth complex root of vkn and ε = e2πi/n.

We shall need the following identities:
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1. −buk(2n−3) + vkuk(2n−2)− uk(2n−1) = 0, ...,−bukn+ vkuk(n+1)− uk(n+2) = 0,

2. uk(2n−1) − vknuk(n−1) = bn−1uk,

3. En+1
n = vknEn and Enn = vknIn, where

En =




0 0 · · · 0 vkn
1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0



.

Theorem 2.4. For n ≥ 3, the matrix R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
is invert-

ible and its inverse matrix R−1 is given by

R−1
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
= − 1

ukbn
(
−bIn + vkEn − E2

n

)
, (2.4)

where In is the n× n identity matrix and the matrix En is defined as before.

Proof. Since det
(
R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

))
6= 0 by Theorem 2.2, its in-

verse exists. It is easy to see that

R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
=
(
uk(2n−1)In + uk(2n−2)En + ...+ uknE

n−1
n

)
.

Hence,

R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
R−1

(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)

=
(
uk(2n−1)In + uk(2n−2)En + ...+ uknE

n−1
n

)( −1
ukbn

)(
− (−B)

k
In + vkEn − E2

n

)

= (−buk(2n−1)In + (u2kn − uknvkn)En +
(
vkukn − uk(n+1)

)
vknIn)

( −1
ukbn

)

= −b
(
uk(2n−1) − vknuk(n−1)

)
In

( −1
ukbn

)

= −b
(
b(n−1)uk

)
In

( −1
ukbn

)
= In,

as claimed.

3. The determinants of quasi-cyclic matrices

For all integer t, define the n× n quasi-cyclic matrix Rk,n,t as

Rk,n,t = R
(
vkn;uk(2n−1+t), uk(2n−2+t), ..., uk(n+t)

)
.

By Theorem 2.2, we have

det (Rk,n,0) = bn(n−1)unk .
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For detRk,n,1, detRk,n,2,..., detRk,n,−1, detRk,n,−2,..., we can obtain correspond-
ing results.

Define the n× n matrices gk,n,t and hk,n,t as shown:

gk,n,t =




uk(2n+t−1) −buk(2n+t−2) −bn+1uk(t−1) 0

uk(2n+t−2) −buk(2n+t−3) bnukt
. . .

...
... 0

. . . −bn+1uk(t−1)

uk(n+t+1) −buk(n+t)
...

. . . bnukt
uk(n+t) −buk(n+t−1) 0 . . . 0




and

hk,n,t=




uk(2n+t−1) bnukt −bn+1uk(t−1) 0
uk(2n+t−2) 0 bnukt −bn+1uk(t−1)

...
... 0 bnukt

. . .
...

...
... 0

. . . −bn+1uk(t−1)

uk(n+t+1) 0 0 . . .
. . . bnukt

uk(n+t) 0 0 . . . . . . 0




.

We give some auxiliary Lemmas before the proof of main Theorem.

Lemma 3.1. (The recurrence of det gk,n,t)

det gk,n,t = (−1)n b(n2−n+t)ukuk(n−1)u
n−2
kt − b(2n−1)uk(t−1) det gk,n−1,t. (3.1)

Proof. Clearly

det gk,n,t

= −bn(n−2)+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk(2n+t−1) uk(2n+t−2) −buk(t−1) 0 ... 0

uk(2n+t−2) uk(2n+t−3) ukt −buk(t−1)

. . .
...

...
... 0 ukt

. . . 0
...

...
... 0

. . . −buk(t−1)

uk(n+t+1) uk(n+t)
...

...
. . . ukt

uk(n+t) uk(n+t−1) 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By subtracting the second column of gk,n,t from the first column by multiplying
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vk gives us

det gk,n,t

= −bn(n−2)+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

buk(2n+t−3) uk(2n+t−2) −buk(t−1) 0 ... 0

buk(2n+t−4) uk(2n+t−3) ukt −buk(t−1)

. . .
...

...
... 0 ukt

. . . 0
...

...
... 0

. . . −buk(t−1)

uk(n+t−1) uk(n+t)
...

...
. . . ukt

buk(n+t−2) uk(n+t−1) 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

So on after n+ t− 1 subtractions between the two columns, we get finally

det gk,n,t

= −bn(n−2)+n+t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ukn uk(n−1) −buk(t−1) 0 ... 0

uk(n−1) uk(n−2) ukt −buk(t−1)

. . .
...

...
... 0 ukt

. . . 0
...

...
... 0

. . . −buk(t−1)

u2k u1
...

...
. . . ukt

uk u0 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expanding the determinant above with respect to the first row and by u0 = 0,
we get

det gk,n,t = b(n
2−n+t)uk(n−1)

∣∣∣∣∣∣∣∣∣∣∣

uk(n−1) ukt ...
...

... 0 ... −buk(t−1)

...
... ... ukt

uk 0 ... 0

∣∣∣∣∣∣∣∣∣∣∣

+ bn
2−n+t+1uk(t−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

uk(n−1) uk(n−2) −buk(t−1) 0 0

uk(n−2) uk(n−3) ukt ...
...

...
... 0 ... −buk(t−1)

...
...

... ... ukt
uk u0 0 ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n bn2−n+tuk(n−1)uku
n−2
kt + bn

2−n+t+1uk(t−1)

( −1
bn2−3n+t+2

)
det gk,n−1,t

= (−1)n bn2−n+tuk(n−1)uku
n−2
kt − b2n−1uk(t−1) det gk,n−1,t.

Thus we have the conclusion.
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Lemma 3.2. For odd k > 0,

det gk,n,t =
(−1)kn
uk

[
bn

2−n+1uk(n−1)u
n
kt + bn

2

unk(t−1)uk − bn
2−n+1uk(t−1)uknu

n−1
kt

]

(3.2)

Proof. (Induction on n) When n = 2, we have

det gk,2,t =

∣∣∣∣
u(3+t) −bu(2+t)
u(2+t) −bu(1+t)

∣∣∣∣ = −b
(
u(3+t)u(1+t) − u2(2+t)

)
= bt+2u2k.

Substituting n = 2 in the RHS of (3.2), we get

(−1)2k
uk

[
b3uku

2
kt + b4u2k(t−1)uk − b3uk(t−1)u2kukt

]

= b3
(
u2kt + bu2k(t−1) − uk(t−1)vkukt

)

= b3
(
u2kt − uk(t+1)uk(t−1)

)
= bt+2u2k,

as claimed. We assume that the claim is true for n − 1. Now we prove that the
claim is true for n. By the induction hypothesis and (3.1), we write for odd integer
k,

det gk,n,t

= (−1)n bn2−n+tuk(n−1)uku
n−2
kt − b2n−1uk(t−1)

(−1)k(n−1)

uk

×
[
bn

2−3n+3uk(n−2)u
n−1
kt + b(n−1)2un−1

k(t−1)uk − bn
2−3n+3uk(t−1)uk(n−1)u

n−2
kt

]

= (−1)k(n−1)+1
bn

2

unk(t−1) + (−1)k(n−1)
bn

2−n+1uk(t−1)u
n−1
kt ukn

uk
+

+ un−2
kt uk(n−1)

[
(−1)kn bn2−n+tuk − (−1)k(n−1)

bn
2−n+1uk(t+1)uk(t−1)

uk

]

= (−1)k(n−1)+1
bn

2

unk(t−1) + (−1)k(n−1)
bn

2−n+1uk(t−1)u
n−1
kt ukn

uk
+

+ (−1)kn bn2−n+1u
n−2
kt uk(n−1)

uk

[
bt−1u2k + uk(t+1)uk(t−1)

]

=
(−1)kn
uk

[
bn

2−n+1uk(n−1)u
n
kt + bn

2

unk(t−1)uk − bn
2−n+1uk(t−1)uknu

n−1
kt

]
.

Thus the proof is complete.

Lemma 3.3. For n > 1,

dethk,n,t = (−1)n+1
bn(n−1)uk(n+t)u

n−1
kt .
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Proof. Expanding dethk,n,t with respect to the last row gives us

dethk,n,t

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk(2n+t−1) bnukt −bn+1uk(t−1) 0 ... 0

uk(2n+t−2) 0 bnukt −bn+1uk(t−1)

. . .
...

...
... 0 bnukt

. . . 0
...

...
... 0

. . . −bn+1uk(t−1)

uk(n+t+1) 0
...

...
. . . bnukt

uk(n+t) 0 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= uk(n+t) (−1)n+1
(bnukt)

n−1

= (−1)n+1
bn(n−1)uk(n+t)u

n−1
kt ,

as claimed.

Lemma 3.4. For n > 1 and k, t > 0,

vkn =
(
vkukn − 2buk(n−1)

)
/uk,

uk(n+t) =
(
uk(n+1)ukt − buknuk(t−1)

)
/uk.

Proof. The claims are obtained from the Binet formulae of {un} and {vn} .

Theorem 3.5. For n ≥ 2 and all integer t,

detRk,n,t = bn(n−1)
(
(−1)kn−1

vknu
n
kt + (−1)kn bnunk(t−1)

)
, (3.3)

where k is an odd integer.

Proof. From the definitions of gk,n,t and hk,n,t, we see that

detRk,n,t = det gk,n,t + dethk,n,t.

So the proof follows from Lemmas 3.2, 3.3 and 3.4.

When t = n in (3.2) and (3.3), we have the following result.

Corollary 3.6. For n > 1,

det gk,n,n = (−1)kn bn2

unk(n−1),

detRk,n,n = (−1)kn bn(n−1)
(
−vknunkn + bnunk(n−1)

)
.
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Abstract

The aim of this paper is to determine the elements which are in two pairs
of sequences linked to the regular mosaics {4, 5} and {p, q} on the hyperbolic
plane. The problem leads to the solution of diophantine equations of certain
types.

Keywords: regular planar hyperbolic mosaics, linear recurrences, diophantine
equations.
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1. Introduction

Consider a regular mosaic on the hyperbolic plane. Such a mosaic is characterized
by the Schläfli’s symbol {p, q}. It is known that we can define belts of cells around
a given vertex of the mosaic (see [4]). Let’s say that belt B0 is the aforesaid fixed
vertex itself denoted by B0. The first belt B1 consists of the cells which connect
to B0. Assume now that the belts Bi−1 and Bi are known (i ≥ 1). Let belt Bi+1

be created by the cells that have common point (not necessarily common vertex)
with Bi, but not with Bi−1. Figure 1 shows the first three belts in the mosaic
corresponding to {4, 5}. One important question is to study the phenomenon of
the growing of belts ([1], [2], [3]), even in higher dimensions, too.
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Figure 1: Trees of the mosaic {p, q} = {4, 5}

Take vertex B0 as a main root of a will-be-graph (this is level 0). In general, let
the outer boundary of belt Bi be called level i. Connect the vertices of level 1 to B0

along the edges between the two levels of the lattice. By this way we have started
to build trees. Then use always the maximum number of edges between level (i−1)
and level i. All vertices on level i are connected to only one vertex of the previous
level, such that no unconnected leaves on level (i − 1) are remained. We never
connect edges on the same level. The rest vertices on layer i will be roots of new
trees. In this way, we obtain infinitely many trees, each of them contains infinitely
many vertices. Let Ā denote the set of roots and B̄ the set of other vertices. In
Figure 1 and 2 the thick edges show the trees from level 0 to level 4. (We remark,
that the dual problem is when we establish trees by connecting the centres of the
cells of the mosaic.)

The case q = 3 provides no any tree since only one edge is not enough to connect
the consecutive levels. If p = 3 the algorithm, apart from B0, does not give roots.
Therefore we may assume p ≥ 4, q ≥ 4, and since (p−2)(q−2) = 4 is the Euclidean
lattice we also suppose (p− 2)(q − 2) > 4.

Let ai and bi denote the number of the vertices of Ā and B̄ on level i, respec-
tively. In this paper, we compare the terms ai (and later bi) of sequences belonging
to different Schläfli’s symbols {p, q}.

In the following, we recall some properties of the sequences ai and bi correspon-
ding to hyperbolic planar lattice {p, q} (see [4]). Simple geometric consideration
shows a1 = q, b1 = (p− 3)q, further the recursive system

an = (q − 3)an−1 + (q − 2)bn−1, (1.1)

bn =
(
(q − 3)(p− 3)− 1

)
an−1 +

(
(q − 2)(p− 3)− 1

)
bn−1 (1.2)

holds (n ≥ 2, p ≥ 4, q ≥ 4).
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Figure 2: Trees of the mosaic {5, 4}, dual of mosaic {4, 5}

It is easy to separate the sequences {an} and {bn}, and it turns out that

an = κan−1 − an−2 and bn = κbn−1 − bn−2, (1.3)

where κ = (p − 2)(q − 2) − 2 (κ ≥ 4). Thus both sequences satisfy the same
recurrence relation of order two, and they differ in their initials values. Indeed,
to use (1.3) we need also the terms a2 and b2. Obviously, by (1.1) and (1.2),
a2 = (κ + 1)q, b2 = (κ(p − 3) − 1)q, and (a1, a2) 6= (b1, b2). Later we also use the
term a3 = (κ2 + κ − 1)q. Although a0 and b0 have no geometrical meaning, (1.3)
provides the values a0 = −q, b0 = q, and this sometimes makes the calculations
easier.

To achieve the investigations, we introduce the sufficient notations and recall
some facts from the theory of linear recurrences. In general, let r and s denote
arbitrary complex numbers. The sequence {G}∞n=0 given by the initial values G0 ∈
C and G1 ∈ C, and by the recursive relation

Gn = rGn−1 + sGn−2 (n ≥ 2), (1.4)

is called binary recurrence. For brevity, we often write G(r, s,G0, G1) to indicate
the parameters of the sequence {G}.

For any binary recurrence G(r, s,G0, G1), the associate sequence of {G} is the
sequence H(r, s,H0, H1) with

H0 = 2G1 − rG0 and H1 = rG1 + 2sG0. (1.5)

Put CG = G2
1−rG0G1−sG2

0. It is known that the terms of a binary recurrence
{G} and its associate sequence {H} satisfy the equality

H2
n −DG2

n = 4CG(−s)n, (1.6)

where D = r2 + 4s.
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2. Preparation and results

By (1.3) it follows that the coefficients of the investigated linear recurrences are
r = κ and s = −1. Thus D = κ2 − 4, moreover

Ca = a21 − ra0a1 − sa20 = (κ+ 2)q2

and
Cb = b21 − rb0b1 − sb20 = ((p− 3)2 − κ(p− 3) + 1)q2.

Now we fix a mosaic given by {p̃, q̃} = {4, 5}. Then κ̃ = 4, ãn = 4ãn−1 − ãn−2,
ã1 = 5, ã2 = 25, and b̃n = 4b̃n−1 − b̃n−2, b̃1 = 5, b̃2 = 15, moreover D̃ = 12. The
first ten terms of the sequences are given by the following table.

i 1 2 3 4 5 6 7 8 9 10

ãi 5 25 95 355 1325 4945 18455 68875 257045 959305

b̃i 5 15 55 205 765 2855 10655 39765 148405 553855

Table 1: Numbers of leaves and roots on level i connected with
mosaic {4, 5}

The associate sequences of {ãn} and {b̃n} satisfy

Ãn = 4Ãn−1 − Ãn−2 with Ã1 = 30, Ã2 = 90, (2.1)
B̃n = 4B̃n−1 − B̃n−2 with B̃1 = 10, B̃2 = 50, (2.2)

respectively. Since Cã = 150, Cb̃ = −50, by (1.6) we obtain the identities

Ã2
n − 12ã2n = 600 and B̃2

n − 12b̃2n = −200. (2.3)

In this paper, we target to solve

I. the diophantine equation ak = ã` in k and ` for certain mosaics {p, q} (Sec-
tion 3); further

II. the equations aε = ã` in ` if ε ∈ {1, 2, 3} and one of p and q is fixed (Section 4
and 5).

For the sequence {bn} analogous problems are examined.
The first question leads to simultaneous Pellian equations. The second problem

requires different approaches depending on ε and the sequence {an} (or {bn}).
The observations are contained in the following theorems and Result 2.2. We

always assume that
{p, q} 6= {4, 4}, {4, 5}.
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Theorem 2.1. (1) Let 4 ≤ p ≤ 25 and 4 ≤ q ≤ 18. Then the equation ak = ã`
has only the trivial solution a1 = ã1 = 5 for q = 5 and any p.
(2) If 4 ≤ p, q ≤ 10, or 11 ≤ p ≤ 25 and 4 ≤ q ≤ 8, then the equation bk = b̃`
possesses only the solutions
• {p, q} = {6, 5}, b1 = b̃2 = 15,
• {p, q} = {10, 5}, b2 = b̃5 = 765,
• {p, q} = {14, 5}, b1 = b̃3 = 55.

Result 2.2. (1) If 4 ≤ p ≤ 1 600, then a2 = ã` is satisfied by
• {p, q} = {26, 5}, a2 = ã4 = 335,
• {p, q} = {90, 29}, a2 = ã8 = 68 875,
• {p, q} = {332, 5}, a2 = ã6 = 4 945,

(2) In case of 4 ≤ q ≤ 10 000, a3 = ã` has no non-trivial small solution (i.e. p ≤
10 000).
(3) Assume 4 ≤ p ≤ 10 000 or 4 ≤ q ≤ 2 800. Then {p, q} = {10, 5}, b2 = b̃5 = 765
satisfy the equation b2 = b̃`.

Theorem 2.3. (1) All the solutions to a2 = ã`, with 5 ≤ q ≤ 25 are given by
• q = 5, ` = 2 + 2t (t ∈ N+),
• q = 19, ` = 58 + 90t and ` = 78 + 90t (t ∈ N),
• q = 23, ` = 28 + 88t (t ∈ N),
• q = 25, ` = 32 + 33t (t ∈ N).

(2) All the solutions to b1 = b̃`, with 5 ≤ q ≤ 25 are given by
• q = 9, ` = 5 + 18t and ` = 14 + 18t (t ∈ N),
• q = 11, ` = 3 + 10t and ` = 8 + 10t (t ∈ N),
• q = 15, ` = 2 + 6t and ` = 5 + 6t (t ∈ N),
• q = 17, ` = 5 + 18t and ` = 14 + 18t (t ∈ N).

3. Type I: ak = ã` and bk = b̃` with certain p and q
(Proof of Theorem 2.1)

It is known that the binary recurrence sequences are periodic modulo any positive
integer. A simple consideration shows that the terms ãn are never divisible by 2,
3, 7, 11, 13, 17 (primes up to 25), while b̃n are never a multiple of 2, 7, 13, 19,
23 (primes also up to 25). On the other hand, q | an and q | bn hold for any n.
Consequently, there is no solution to the equation ak = ã` unless q = 5, 19, 23, 25.
Indeed, by q | an, one needs only to check one period of {ãn} modulo q. Similarly,
bk = b̃` may possess solution only when q = 5, 9, 11, 15, 17, 25. Unfortunately, we
could achive the computations only for q = 5 regarded to ak = ã`, and for q = 5
and q = 9 regarded to bk = b̃` since the time demand of evaluation of the algorithm
decribed below seemed to be too much for larger q values.

Suppose that p and q are given, and consider ak = ã`. Assume that x = ak
satisfies this equation. Then, by (1.6)

y2 − (κ2 − 4)x2 = 4(κ+ 2)q2 (3.1)

Coincidences in numbers of graph vertices corresponding . . . 117



holds for some positive integer y. On the other hand, in the virtue of (2.3) (the
source of (2.3) is (1.6)), x = ã` is also a zero of the equation

z2 − 12x2 = 600 (3.2)

for some positive suitable integer z. Clearly, (3.1) and (3.2) form a system of
simultaneous Pellian equations. The PellianSystem() procedure, developed in [6]
and implemented in MAGMA [5] is able to solve such a system if the coefficients
are not too large.

If we take bk = b̃`, then (3.1) and (3.2) must be replaced by

y2 − (κ2 − 4)x2 = 4((p− 3)2 − κ(p− 3) + 1)q2 (3.3)

and
z2 − 12x2 = −200, (3.4)

respectively.
We have checked the solutions of the appropriate system of Pellian equations

by MAGMA, and the result of the computations is reported in Theorem 2.1.
To illustrate the time demand of the computations, we note that the MAGMA

server needed approximately 21 days to show that bk = b̃` has no solution in the
case {p, q} = {8, 9} (this was the worst case we considered).

4. Type II: aε = ã`, bε = b̃`, part 1. (Background be-
hind Result 2.2)

This section is devoted to deal with the equations above in the specific cases

1. a2 = ã`, when parameter p of {an} is fixed in the range 4 ≤ p ≤ 1 600,

2. a3 = ã`, when parameter q of {an} satisfies 4 ≤ q ≤ 10 000,

3. b2 = b̃`, when p ∈ [4; 10 000],

4. b2 = b̃`, when q ∈ [4; 2 800].

The common background behind the four problems is that all of them are linked
to hyperelliptic diophantine equations of degree four. Observe, that a2 and b2 is a
quadratic polynomial in q, similarly a3 and b2 has degree two in p.

Consider first
a2 = ã`

with fixed p. Then, by the first identity of (2.3), a2 satisfies

y2 − 12a22 = 600,
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where a2 = f(q) = (κ+ 1)q is a quadratic polynomial of q. Consequently we need
to solve the quartic hyperelliptic equation

y2 = 12f2(q) + 600. (4.1)

We use the IntegralQuarticPoints() procedure of MAGMA package to handle
(4.1). Note that if the constant term of the polynomial on the right hand side
of (4.1) is not a full square, then the procedure requires a solution (as input)
to the equation to determine all solutions. In this case we scanned the interval
J = [−10 000; 10 000] for q to find a solution. It might occur that there is a
solution outside J and not inside J , but we found no example to this.

If once we have determined a q, then we search back the corresponding sub-
script `.

The analogy to the other 3 cases of this section is obvious: in the right hand
side of (4.1) the polyomial f is being replaced by f(p) = (κ2 + κ − 1)q, f(q) =
(κ(p− 3)− 1)q and f(p) = (κ(p− 3)− 1)q, respectively.

Solutions we found are listed in Result 2.2 (the list might be not full in accor-
dance with the basic interval J which was used for finding a solution).

5. Type III: aε = ã`, bε = b̃`, part 2. (Proof of The-
orem 2.3)

Here we study the title equation in a few cases with small ε, which differ from
the previous section. Recall that both of the sequences {ãn} and {b̃n} are purely
periodic for any positive integer modulus.

Since a1 = q the equation a1 = ã` has, trivially, infinitely many solutions.
The next problem is a2 = ã` with fixed q. (The case with fixed p has already

been studied in Section 4.) Recall that a2 = (κ+ 1)q, more precisely

a2 = q(q − 2)(p− 2)− q

is linear in p. Therefore we need to determine the common terms of an arithmetic
progression and the sequence {ãn}. The situation does not change if we consider
b1 = b̃` with either fixed p or fixed q. Indeed, b1 = (p − 3)q is linear both in p
and q.

Obviously, a2 ≡ −q (mod q(q − 2)). Consequently, the equation a2 = ã` is
soluble if and only if we find at least one element in the sequence {ãn}, which is
congruent −q modulo q(q−2). Because of the periodicity, one must check only one
period of {ãn} modulo q(q − 2).

Assume first that q = 5. Then for the modulus q(q−2) = 15 we have ã2+2t ≡ −5
(the cycle’s length is 2, and t ∈ N). Hence a2 = ã2+2t, further

p =
ã2+2t + q

q(q − 2)
+ 2.
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t 0 1 2 3 4 5

a2 = ã2+2t 25 355 4945 68875 959305 13361395

p 4 26 332 4594 63956 890762

Table 2: First few solutions to a2 = ã` when q = 5

The first six t values yield the following solutions. (If t = 0 then the two sequences
{an} and {ãn} coincide.)

If q > 5 the first non-trivial solution is occurred when q = 19. Here the length
of the cycle is 90, and q(q − 2) | ã58 + 19, q(q − 2) | ã78 + 19. That is a2 = ã58+90t

and a2 = ã78+90t (t ∈ N) provide all solutions for suitable values p. For instance,
t = 0 gives

p = 8 437 940 669 128 098 583 408 551 589 590

and
p = 2 318 394 927 973 629 460 854 893 981 169 574 319 067 870,

respectively.
The treatment is similar for b1 = b̃`. If q = 5, then solution always exists since

b1 = (p − 3)q, 5 | b̃`, therefore p = b̃`/5 + 3. (b̃2 and b̃3 give back solutions have
already been appeared in Theorem 2.1.) Now b1 ≡ 0 (mod q), and fixing q ≥ 6 the
first solution appears for q = 9, when the cycle length is 18 (modulo q), and we
have b1 = b̃5+18t and b1 = b̃14+18t (t ∈ N). These results can be directly converted
the results corresponding to p, therefore we omit the appropriate analysis.

The results we obtained are summarized in Theorem 2.3.
Finally, we examine the equation a3 = ã` with fixed q, further b3 = b̃` when

exactly one of p and q is given. In each case we have a polynomial of degree three,
let say φ(x), and we look for the common values of the polynomial and a binary
recurrence. By (1.6), the problem leads to the hyperelliptic equation

y2 = 12φ2(x) + c

of degree 6, where the constant c is either 600 or −200. Since the leading coefficient
on the right hand side is not a square, there is no genearal algorithm to solve. For
example, p = 5 provides now

y2 = 12q2(9q2 − 45q + 55)2 + 600.

After dividing by 4, we have

y21 = 243q6 − 2430q5 + 9045q4 − 14850q3 + 9075q2 + 150,

and the techique of the solution is not known.

Acknowledgements. The authors thank P. Olajos for his valuable help in using
MAGMA package.
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Abstract
We report on the use of HPC resources for the performance analysis of

the mobile cellular network model described in “A New Finite-Source Queue-
ing Model for Mobile Cellular Networks Applying Spectrum Renting” by Tien
Van Do et al. That paper proposed a new finite-source retrial queueing model
with spectrum renting that was analyzed with the MOSEL-2 tool. Our re-
sults show how this model can be also appropriately described and analyzed
with the probabilistic model checker PRISM, although at some cost consid-
ering the formulation of the model; in particular, we are able to accurately
reproduce most of the analytical results presented in that paper and thus
increase the confidence in the previously presented results. However, we also
outline some discrepancies which may hint to deficiencies of the original anal-
ysis. Moreover, by applying a parallel computing framework developed for
this purpose, we are able to considerably speed up studies performed with
the PRISM tool. The investigations are illustrated by figures and conclusions
are drawn.

1. Introduction

We report in this paper on the application of high performance computing (HPC)
resources for the performance analysis of mobile networks. We use the mobile
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cellular network system that was introduced in [4] where a number of sources (cell
phone subscribers) compete for access to a number of servers (channels). Sources
produce requests at rate λ; a free server processes these requests at rate µ. However,
the number of available channels varies: if it gets to small, the cell phone operator
may rent additional frequency blocks from another operator, partition these blocks
into channels, and add these new channels to its own pool. If sufficiently many
channels have become free again, the rented blocks may be released. This model
is an extension of the mobile cellular network model presented in [2] which for the
first time considered the renting of frequencies that are organized in blocks but
did not yet consider the retrial phenomenon; in [3], the phenomenon of impatient
customers waiting in the orbit was further investigated.

In [4], this model was originally analyzed with the help of the performance
modeling tool MOSEL-2 [1] which is however not supported any more. Our own
results are derived with the help of the probabilistic model checker PRISM [6, 7]
which is actively developed and has been used for numerous purposes, among them
the performance analysis of computing systems. In [9], we have developed an initial
version of the model in PRISM which was subsequently refined and corrected in [8].
Furthermore, we have in [8] described a parallel computing framework that we
applied to analyze the PRISM model with the use of HPC resources, i.e., we have
sped up the analysis of our model by running experiments on a massively parallel
non-uniform memory architecture (NUMA).

However, in [9, 8] only a small number of experiments were performed, some
of which derived different results than were originally reported in [4]. This paper
complements our work by presenting all experiments that were also described in [4]
and illustrating for the whole set of experiments the speedup that can be achieved
by their execution in our parallel computing framework. Tool supported analysis
of cellular networks with finite-source retrial queuing system was treated in [5],
too.

The remainder of this paper is structured as follows: to make this paper self-
reliant, we summarize in Section 2 the previously introduced model and the parallel
execution framework. In Section 3, we present our new results and contrast them
to those reported in [4]. Section 4 presents our conclusions and open issues for
further work.

2. The model

Appendix B presents the PRISM model that was introduced in [9]: it applies the
concept of spectrum renting for mobile cellular networks introduced in [4]. However,
that paper also shows results for a corresponding model (that is not described
in detail there) without spectrum renting. In order to repeat the corresponding
experiments, we give in Appendix A a version of our PRISM model from which
spectrum renting has been stripped but which is otherwise identical.

The experiments of this paper were performed with the execution script listed
in Appendix C; it applies the parallel execution framework (command parallel)
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introduced in [9]. This command is implemented by a C program with the help of
the POSIX multithreading API; it uses a manager/worker scheme to execute an
arbitrary number of commands by a fixed number of processes. In detail, when
started as parallel T , the program creates a pool of T worker threads and then
starts an auxiliary thread that reads an arbitrary number of command lines from
the standard input stream into an internal queue. At the same time the main thread
acts as the manager and schedules the execution of the commands among the T
worker threads: whenever a worker thread becomes idle, the manager removes one
command from the queue and assigns it to the thread which then spawns (by the
Unix system call) a process to execute that command, waits for its termination, and
becomes free again to receive another command. Additionally the manager thread
prints out status information for every command whose execution has terminated.
If the command is executed on a multi-core/multi-processor system, the commands
are thus executed by at most T processor cores.

The experiments were performed on an SGI Altix UltraViolet 1000 supercom-
puter installed at the Johannes Kepler University Linz. This machine is equipped
with 256 Intel Xeon E78837 processors with 8 cores each which are distributed
among 128 nodes with 2 processors (i.e. 16 cores) each; the system thus supports
computations with up to 2048 cores. Access to this machine is possible via interac-
tive login; by default every user may execute threads on 4 processors with 32 cores
and 256 GB memory. Since PRISM is implemented in Java, we applied the execu-
tion script prism-java described in [9] which calls java with memory allocation
and optimization optimized for execution on a NUMA system.

3. The analysis

With the help of our parallel execution framework, we have performed for our
PRISM model all the experiments that were also reported in [4]; the results are
depicted in Figures 2 to 10 (with references to the corresponding figures presented
in [4]). The experiments shown in Figure 2 (corresponding to Figure 2 in [4]) are
performed in the model without spectrum renting (see Appendix A); all other ones
are performed in the model with spectrum renting (see Appendix B); in the later
case appropriate variants of the model were used as required by the different sets
of parameters with varying respectively fixed values.

From the 29 experiments (comprising in total 920 PRISM runs to produce the
various data points of each experiment), 25 show results that are virtually identical
to those presented in [4]. This correspondence strongly increases the confidence in
both the original MOSEL-2 model and in our PRISM model. However, there are
also four notable discrepancies:

• As already stated in [8], in Figure 3 (corresponding to Figure 3 of [4]) the two
bottom diagrams show in our model (especially for low traffic intensity ρ0) a
lower mean number of rented blocks mB and a lower mean number of busy
channels mC than originally reported (while the overall shape of the curves

Probabilistic model checking on HPC systems. . . 125



P tp (s) Tp (s) Sp

1 3813 3788 3792 3798 1.0
2 1949 1950 1944 1948 1.9
4 1028 1025 1018 1024 3.7
8 559 561 560 560 6.8
16 334 328 329 330 11.5
32 252 252 244 249 15.3

Sp

1

2

4

8

16

32

1 2 4 8 16 32

S
p

p

Figure 1: Execution Times and Speedups

are similar).

• Figures 9 and 10 (corresponding to Figures 9 and 10 of [4]) reporting on the
impact of retrials on the average profit rate (APR) and on the average number
of busy channels (mC) show for the first parameter set ρ0 = 0.4, pio = 0.8
the same results as originally reported; however for the two other parameter
sets our experiments report significantly lower figures, i.e., the three lines are
much farther apart than in [4].

Since in all other cases the results are identical to the other reports and we have
both carefully checked our model and the deviating experiments, the possibility
remains that the errors are in solvers of the MOSEL and PRISM. One should
know that these details are hidden and we have no information about the solution
methods.

As for the time needed for executing the analysis, Figure 1 lists the times (in
seconds) for performing all the 920 PRISM runs illustrated in Figures 2–10 with
P processes, 1 ≤ P ≤ 32 (the maximum number of processor cores available to
us for this experiment). The analysis was performed five times from which we
have excluded the fastest and the slowest run. This leads to three values for the
execution time tp with average execution time Tp; the speedup for this average is
reported as Sp.

We see that significant speedups up to a maximum of 15.3 can be achieved.
The main reason that from P = 16 to P = 32 the speedup does not grow so
much any more is that we have have attached to every Java thread that executes
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Figure 2: Performance Measures Without Renting (cf. Fig. 2
from [4])

one instance of PRISM by the command line option -XX:ParallelGCThreads a
number of garbage collection threads that concurrently reclaim the memory of
objects that are not accessible any more; since the experiment was performed
on only 32 processor cores; the number of concurrently executing threads thus
significantly exceeded the number of cores. With more cores available, we can
expect also for P = 32 a considerably higher speedup.

4. Conclusions

We have shown in this report how the PRISM analysis of a non-trivial mobile
cellular network can be efficiently performed on a modern high performance com-
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Figure 3: Performance Measures for t2 = 6 (cf. Fig. 3 from [4])
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Figure 4: Further Performance Measures for t2 = 6 (cf. Fig. 4
from [4])

puting system and how by this analysis the results performed with the older (and
not any more supported) MOSEL-2 tool can be essentially confirmed. However,
as already reported in [8], a crucial difference between MOSEL-2 and PRISM (the
existence respectively lack of zero-time/infinite-rate transitions) makes the PRISM
model somewhat more unhandy than originally thought; more efforts are needed
in PRISM to express the desired models in an economical way.

Furthermore, while most of the originally reported results (25 of 29 experiments)
could be confirmed, still some discrepancies (in 4 experiments) have to be resolved.
While the error may well be in the PRISM model or its analysis, it might as
well be true that there are errors in the originally reported results (we have asked
one author of the original paper for a re-examination of these experiments). This
demonstrates that the performance analysis of computing systems by analyzing
system models alone cannot give full confidence in the correctness of the results:
further verification (by comparison against measurements of the actual system) or
validation (by comparison with the analysis of another model by another tool) is
highly recommended.
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Figure 5: Performance Measures for ρ0 = 0.6 (cf. Fig. 5 from [4])
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Figure 6: APR vs. t1 and d for ρ0 = 0.6 (cf. Fig. 6 from [4])
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Figure 7: APR vs. t1 and d for ρ0 = 4.6 (cf. Fig. 7 from [4])
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Figure 9: Impact of retrials on APR (cf. Fig. 9 from [4])
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A. The PRISM model without spectrum renting
// ------------------------------------------------------------------
// Spectrum0.prism
// A model for mobile cellular networks.
//
// The model serves as the comparison basis for the improvements
// introduced by the application of "spectrum renting" in
//
// Tien v. Do, Patrick Wüchner, Tamas Berczes, Janos Sztrik,
// Hermann de Meer: A New Finite-Source Queueing Model for
// Mobile Cellular Networks Applying Spectrum Renting,
// September 2012.
//
// Use for fastest checking the "Sparse" engine and the "Gauss-Seidel"
// solver and switch off "use compact schemes".
//
// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
// Copyright (C) 2013, Research Institute for Symbolic Computation
// Johannes Kepler University, Linz, Austria, http://www.risc.jku.at
// ------------------------------------------------------------------

// continuous time markov chain (ctmc) model
ctmc

// ------------------------------------------------------------------
// system parameters
// ------------------------------------------------------------------

// bounds
const int K = 100; // population size
const int n; // number of servers/channels

// rates
const double rho; // normalized traffic intensity
const double mu = 1/53.22; // service rate
const double lambda = rho*n*mu/K; // call generation rate
const double nu = 1; // retrial rate
const double eta = 1/300; // rate of queueing users

// getting impatient
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// probabilities
const double p_b = 0.1; // prob. that user gives up

// (-> sources)
const double p_q = 0.5; // prob. that user presses button

// (-> queue)
const double p_o = 1-p_b-p_q; // prob. that user retries later

// (-> orbit)
const double p_io = 0.8; // prob. that impatient user retries

// later (-> orbit)
const double p_is = 1-p_io; // prob. that impantient user gives up

// (-> sources)

// ------------------------------------------------------------------
// system model
// note that the order of the modules influences model checking time
// heuristically, this seems to be the best one
// ------------------------------------------------------------------

// available servers accept requests
module Servers

servers: [0..n] init 0;
[sservers] servers < n -> (servers’ = servers+1);
[oservers] servers < n -> (servers’ = servers+1);
[ssources1] servers > 0 & queue = 0 ->

servers*mu : (servers’ = servers-1);
[ssources2] servers > 0 ->

servers*mu : true ;
endmodule

// generate requests at rate sources*lambda
module Sources

sources: [0..K] init K;
[sservers] sources > 0 ->

sources*lambda : (sources’ = sources-1);
[sorbit] sources > 0 & servers = n ->

sources*lambda*p_o : (sources’ = sources-1);
[squeue] sources > 0 & servers = n ->

sources*lambda*p_q : (sources’ = sources-1);
[ssources1] sources < K -> (sources’ = sources+1);
[ssources2] sources < K -> (sources’ = sources+1);
[qsources] sources < K -> (sources’ = sources+1);
[osources] sources < K -> (sources’ = sources+1);

endmodule

// if no server is available, requests are redirected
// with probability p_o to the orbit
formula orbit = K-(sources+servers+queue); // make variable virtual
module Orbit

// orbit: [0..K-n] init 0;
[sorbit] orbit < K-n -> true;
[qorbit] orbit < K-n -> true;
[oservers] orbit > 0 -> orbit*nu : true;
[oqueue] orbit > 0 & servers = n -> orbit*nu*p_q : true;
[osources] orbit > 0 & servers = n -> orbit*nu*p_b : true;

endmodule
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// if no server is available, requests are redirected
// with probability p_q to the queue
module Queue

queue: [0..K-n] init 0;
[squeue] queue < K-n -> (queue’ = queue+1);
[oqueue] queue < K-n -> (queue’ = queue+1);
[qorbit] queue > 0 & servers = n ->

queue*eta*p_io : (queue’ = queue-1);
[qsources] queue > 0 & servers = n ->

queue*eta*p_is : (queue’ = queue-1);
[ssources2] queue > 0 -> (queue’ = queue-1);

endmodule

// ------------------------------------------------------------------
// system rewards
// ------------------------------------------------------------------

// mean number of active requests
rewards "mM"

true : max(0, orbit)+queue+servers;
endrewards

// mean number of calls in orbit
rewards "mO"

true : max(0, orbit);
endrewards

// mean number of calls in queue
rewards "mQ"

true: queue;
endrewards

// mean number of active calls
rewards "mC"

true: servers;
endrewards

// ------------------------------------------------------------------
// Spectrum0.props
// ------------------------------------------------------------------

// mean number of active requests
"mM" : R{"mM"}=? [ S ] ;

// mean number of active sources
"mK" : K-"mM" ;

// mean throughput (served and unserved)
"m1" : "mK"*lambda ;

// mean number of active calls
"mC" : R{"mC"}=? [ S ] ;

// mean goodput
"m1good" : "mC"*mu ;
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// probability that arriving customer gets served
"Pgood" : "m1good"/"m1" ;

// mean response time (served and unserved)
"mT" : "mM"/"m1" ;

// mean number of idle servers
"mAS" : n-"mC" ;

// utilization of available servers
"Sutil" : "mC"/n ;

// blocking probability
"Pblock" : S=? [ servers = n ] ;

// mean queue length
"mQ" : R{"mQ"}=? [ S ] ;

// mean time spent in queue
"mTQ" : "mQ" / "m1" ;

// mean orbit length
"mO" : R{"mO"}=? [ S ] ;

// mean time spent in orbit
"mTO" : "mO" / "m1" ;

B. The PRISM model with spectrum renting

// ------------------------------------------------------------------
// Spectrum.prism
// A model for mobile cellular networks applying spectrum renting.
//
// The model is described in
//
// Tien v. Do, Patrick Wüchner, Tamas Berczes, Janos Sztrik,
// Hermann de Meer: A New Finite-Source Queueing Model for
// Mobile Cellular Networks Applying Spectrum Renting,
// September 2012.
//
// Use for fastest checking the "Sparse" engine and the "Gauss-Seidel"
// solver and switch off "use compact schemes".
//
// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
// Copyright (C) 2013, Research Institute for Symbolic Computation
// Johannes Kepler University, Linz, Austria, http://www.risc.jku.at
// ------------------------------------------------------------------

// continuous time markov chain (ctmc) model
ctmc

// ------------------------------------------------------------------
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// system parameters
// ------------------------------------------------------------------

// renting tresholds
const int t1; // block renting treshold
const int t2 = 6; // block release treshold

// bounds
const int K = 100; // population size
const int r = 8; // number of servers/channels per block
const int m = 5; // maximum number of blocks that can be rented
const int n = 2*r; // minimum number of servers/channels
const int M = n+r*m; // maximum number of simultaneous calls

// rates
const double rho; // normalized traffic intensity
const double mu = 1/53.22; // service rate
const double lambda = rho*n*mu/K; // call generation rate
const double nu = 1; // retrial rate
const double eta = 1/300; // rate of queueing users getting

// impatient
const double lam_r = 1/5; // block renting rate
const double nu_r = 1/7; // block rental retrial rate
const double mu_r = 1; // block release reate

// probabilities
const double p_b = 0.1; // prob. that user gives up (-> sources)
const double p_q = 0.5; // prob. that user presses button

// (-> queue)
const double p_o = 1-p_b-p_q; // prob. that user retries later

// (-> orbit)
const double p_io = 0.8; // prob. that impatient user retries

// later (-> orbit)
const double p_is = 1-p_io; // prob. that impantient user gives up

// (-> sources)
const double p_r = 0.8; // block rental success probability
const double p_f = 1-p_r; // block rental failure probability

// ------------------------------------------------------------------
// system model
// note that the order of the modules influences model checking time
// heuristically, this seems to be the best one
// ------------------------------------------------------------------

// number of currently available servers/channels
formula servAvail = n+blocks*r;

// blocks are rented at rate lam_r and released at rate mu_r
// renting is successful with probability p_r and fails with
// probability p_f retrying a failed attempt is performed at rate nu_r
module Blocks

blocks: [0..m] init 0;
trial: [0..1] init 0;
[success1] trial = 0 & servAvail-servers <= t1 & blocks < m & queue=0 ->

lam_r*p_r: (blocks’ = blocks+1);
[success2] trial = 0 & servAvail-servers <= t1 & blocks < m ->
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lam_r*p_r: (blocks’ = blocks+1);
[failure] trial = 0 & servAvail-servers <= t1 & blocks < m ->

lam_r*p_f: (trial’ = 1);
[retrial1] trial = 1 & servAvail-servers <= t1 & blocks < m & queue=0 ->

nu_r*p_r : (trial’ = 0) & (blocks’ = blocks+1) ;
[retrial2] trial = 1 & servAvail-servers <= t1 & blocks < m ->

nu_r*p_r : (trial’ = 0) & (blocks’ = blocks+1) ;
[interrupt] trial = 1 & servAvail-servers > t1 ->

9999 : (trial’ = 0); // "immediately"
[release] servAvail-servers >= t2+r & blocks > 0 ->

mu_r : (blocks’ = blocks-1);
endmodule

// available servers accept requests
module Servers

servers: [0..M] init 0;
[sservers] servers < servAvail -> (servers’ = servers+1);
[oservers] servers < servAvail -> (servers’ = servers+1);
[success2] servers < M -> (servers’ = servers+1);
[retrial2] servers < M -> (servers’ = servers+1);
[ssources1] servers > 0 & queue = 0 ->

servers*mu : (servers’ = servers-1);
[ssources2] servers > 0 ->

servers*mu : true ;
endmodule

// generate requests at rate sources*lambda
module Sources

sources: [0..K] init K;
[sservers] sources > 0 ->

sources*lambda : (sources’ = sources-1);
[sorbit] sources > 0 & servers = servAvail ->

sources*lambda*p_o : (sources’ = sources-1);
[squeue] sources > 0 & servers = servAvail ->

sources*lambda*p_q : (sources’ = sources-1);
[ssources1] sources < K -> (sources’ = sources+1);
[ssources2] sources < K -> (sources’ = sources+1);
[qsources] sources < K -> (sources’ = sources+1);
[osources] sources < K -> (sources’ = sources+1);

endmodule

// if no server is available, requests are redirected
// with probability p_o to the orbit
formula orbit = K-(sources+servers+queue); // make variable virtual
module Orbit

// orbit: [0..K-n] init 0;
[sorbit] orbit < K-n -> true;
[qorbit] orbit < K-n -> true;
[oservers] orbit > 0 -> orbit*nu : true;
[oqueue] orbit > 0 & servers = servAvail -> orbit*nu*p_q : true;
[osources] orbit > 0 & servers = servAvail -> orbit*nu*p_b : true;

endmodule

// if no server is available, requests are redirected
// with probability p_q to the queue
module Queue
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queue: [0..K-n] init 0;
[squeue] queue < K-n -> (queue’ = queue+1);
[oqueue] queue < K-n -> (queue’ = queue+1);
[qorbit] queue > 0 & servers = servAvail ->

queue*eta*p_io : (queue’ = queue-1);
[qsources] queue > 0 & servers = servAvail ->

queue*eta*p_is : (queue’ = queue-1);
[ssources2] queue > 0 -> (queue’ = queue-1);
[success2] queue > 0 -> (queue’ = queue-1);
[retrial2] queue > 0 -> (queue’ = queue-1);

endmodule

// ------------------------------------------------------------------
// system rewards
// ------------------------------------------------------------------

// mean number of active requests
rewards "mM"

true : max(0, orbit)+queue+servers;
endrewards

// mean number of calls in orbit
rewards "mO"

true : max(0, orbit);
endrewards

// mean number of calls in queue
rewards "mQ"

true: queue;
endrewards

// mean number of active calls
rewards "mC"

true: servers;
endrewards

// mean number of active blocks
rewards "mB"

true: blocks;
endrewards

// ------------------------------------------------------------------
// Spectrum.props
// ------------------------------------------------------------------

// mean number of active requests
"mM" : R{"mM"}=? [ S ] ;

// mean number of active sources
"mK" : K-"mM" ;

// mean throughput (served and unserved)
"m1" : "mK"*lambda ;

// mean number of active calls
"mC" : R{"mC"}=? [ S ] ;
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// mean goodput
"m1good" : "mC"*mu ;

// probability that arriving customer gets served
"Pgood" : "m1good"/"m1" ;

// mean response time (served and unserved)
"mT" : "mM"/"m1" ;

// mean number of rented blocks
"mB" : R{"mB"}=? [ S ] ;

// mean number of available servers
"mS" : n+"mB"*r ;

// mean number of idle servers
"mAS" : "mS"-"mC" ;

// utilization of available servers
"Sutil" : "mC"/"mS" ;

// blocking probability
"Pblock" : S=? [ servers = servAvail ] ;

const int B;

// probability that B blocks are partially utilized
"Pb" : S=? [ n+r*(B-1) < servers & servers <= n+r*B ] ;

// mean queue length
"mQ" : R{"mQ"}=? [ S ] ;

// mean time spent in queue
"mTQ" : "mQ" / "m1" ;

// mean orbit length
"mO" : R{"mO"}=? [ S ] ;

// mean time spent in orbit
"mTO" : "mO" / "m1" ;

const int d;

// average profit rate
"APR" : "mC" - (r/d) * "mB" ;

C. The parallel execution script

#!/bin/sh

# the program locations
export PRISM_JAVA="prism-java"
PRISM="prism"
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PARALLEL="./parallel"
TIME="time"

# the input/output locations
MODELFILE="Spectrum.prism"
MODELFILE0="Spectrum0.prism"
MODELFILE2="Spectrum2.prism"
MODELFILE3="Spectrum3.prism"
PROPSFILE="Spectrum.props"
PROPSFILE0="Spectrum0.props"
RESULTDIR="Results"
LOGDIR="Logfiles"
LOGFILE="LOGFILE"

# the checker settings
PRISMOPTIONS="-sparse -gaussseidel -nocompact"

# the number of processes to be used
for PROC in 1 2 4 8 16 32 ; do

(

# the properties to be checked and the parameters for the experiment

# Figure 2
for PROPERTY in Pblock mO mTO mQ mTQ mAS ; do

for RHO in $(seq 0.6 0.5 4.6) ; do
for N in 8 16 24 32 ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE0 $PROPSFILE0 -prop $PROPERTY \
-const rho=$RHO,n=$N \
-exportresults $RESULTDIR/Fig2-$PROPERTY-$N-$RHO \
> $LOGDIR/Fig2-$PROPERTY-$N-$RHO"

done
done

done

# Figure 3
for PROPERTY in Pblock mO mTO mB mQ mTQ mC mAS ; do

for RHO in $(seq 0.6 0.5 4.6) ; do
for T1 in $(seq 1 1 4) ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1 \
-exportresults $RESULTDIR/Fig3-$PROPERTY-$T1-$RHO \
> $LOGDIR/Fig3-$PROPERTY-$T1-$RHO"

done
done

done

# Figure 4
PROPERTY="Pb"
for B in $(seq 1 1 4) ; do

for RHO in $(seq 0.6 0.5 4.6) ; do
for T1 in $(seq 1 1 4) ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE $PROPSFILE -prop $PROPERTY \
-const B=$B,rho=$RHO,t1=$T1 \
-exportresults $RESULTDIR/Fig4-$PROPERTY-$B-$T1-$RHO \
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> $LOGDIR/Fig4-$PROPERTY-$B-$T1-$RHO"
done

done
done

# Figure 5
RHO="0.6"
for PROPERTY in mB Pblock mQ mO mTQ mTO ; do

for T1 in $(seq 0 1 4) ; do
for T2 in $(seq 5 1 8) ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE2 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2 \
-exportresults $RESULTDIR/Fig5-$PROPERTY-$T1-$T2 \
> $LOGDIR/Fig5-$PROPERTY-$T1-$T2"

done
done

done

# Figures 6-7
PROPERTY="APR"
for RHO in 0.6 4.6 ; do

for T1 in $(seq 0 1 4) ; do
for T2 in 5 8 ; do

for D in 1 2 4 8 ; do
echo "$PRISM $PRISMOPTIONS $MODELFILE2 $PROPSFILE -prop $PROPERTY \

-const rho=$RHO,t1=$T1,t2=$T2,d=$D \
-exportresults $RESULTDIR/Fig67-$PROPERTY-$T1-$T2-$D-$RHO \
> $LOGDIR/Fig67-$PROPERTY-$T1-$T2-$D-$RHO"

done
done

done
done

# Figure 8, T1 apparently 2
PROPERTY="APR"
T1=2
for RHO in $(seq 0.6 0.5 4.6) ; do

for T2 in 5 8 ; do
for D in 1 8 ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE2 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D \
-exportresults $RESULTDIR/Fig8-$PROPERTY-$T2-$D-$RHO \
> $LOGDIR/Fig8-$PROPERTY-$T2-$D-$RHO"

done
done

done

# Figures 9,10
PROPERTY="APR"
T1=2
T2=5
D=2
for PROPERTY in "APR" "mC" ; do

PO=0.2
PIO=0.4
for RHO in $(seq 4.55 0.01 4.6) ; do
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echo "$PRISM $PRISMOPTIONS $MODELFILE3 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D,p_o=$PO,p_io=$PIO \
-exportresults $RESULTDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO \
> $LOGDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO"

done
PO=0.4
PIO=0.8
for RHO in $(seq 4.55 0.01 4.6) ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE3 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D,p_o=$PO,p_io=$PIO \
-exportresults $RESULTDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO \
> $LOGDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO"

done
PO=0.000000001
PIO=0.000000001
for RHO in $(seq 4.55 0.01 4.6) ; do

echo "$PRISM $PRISMOPTIONS $MODELFILE3 $PROPSFILE -prop $PROPERTY \
-const rho=$RHO,t1=$T1,t2=$T2,d=$D,p_o=$PO,p_io=$PIO \
-exportresults $RESULTDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO \
> $LOGDIR/Fig910-$PROPERTY-$PO-$PIO-$RHO"

done
done

# execute the experiments in parallel with PROC processes
) | $TIME -p $PARALLEL $PROC > $LOGDIR/$LOGFILE 2>&1

done
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Abstract

A new type of cubic trigonometric Bézier curve has been introduced in
[1]. This trigonometric curve has two global shape parameters λ and µ. We
give a lower boundary to the shape parameters where the curve has lost the
variation diminishing property. In this paper the relationship of the two shape
parameters and their geometric effect on the curve is discussed. These shape
parameters are independent and we prove that their geometric effect on the
curve is linear. Because of the independence constrained modification is not
unequivocal and it raises a number of problems which are also studied. These
issues are generalized for surfaces with four shape parameters. We show that
the geometric effect of the shape parameters on the surface is parabolic.

Keywords: trigonometric curve, spline curve, constrained modification

MSC: AMS classification numbers

1. Introduction

Although classical polynomial curves, such as Bézier curve and B-spline curve still
play central role in computer aided geometric design, several new curves have been
developed in the last decade. The basic principle of curve design is still valid: the
curve is given by user-defined points (so-called control points) which are combined
with predefined basis functions. Keeping this principle in mind, the generalizations
show various directions of possible improvements in theory and practice as well,
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applying basis functions different from the polynomial ones. In several cases the
reason for this is either to provide a curve description method which can exactly
describe (and not only approximate) important classical curves, which cannot be
done by polynomial basis functions, or to simplify the computation of the curves
and their properties. The most well-known generalization is the rational Bézier
and B-spline curve [5], where rational functions are applied as basis functions, but
deriving these functions one can obtain high degree rational polynomials, which
may cause stability problems computing higher order derivatives.

The other way to improve the abilities of such a curve is the application of
trigonometric functions. Trigonometric spline curves can also represent important
curves, such as circle, lemniscate, etc. exactly, which cannot be done by polynomial
curves. The theoretical fundamentals for this kind of curves have been laid in
[10]. C-Bézier and uniform CB-spline curves are defined by means of the basis
{sin t, cos t, t, 1}, that was generalized to {sin t, cos t, tk−3, tk−4, . . . , t, 1} [11, 12,
13]. NUAT B-spline curves introduced by Wang et al. in [15], the non-uniform
generalizations of CB-spline curves. The other basic type is the HB-spline curve,
the basis of which is {sinh t, cosh t, t, 1}, and {sinh t, cosh t, tk−3, tk−4, . . . , t, 1} in
higher order [14, 10].

Another, not necessarily independent direction of generalization is the incor-
poration of shape parameters to the basis functions in order to provide additional
freedom in shape adjustment. One of the earliest methods in this way is β-spline
curve with two global parameters [7, 8]. Further methods have been provided by
direct generalization of B-spline curves as αB-splines in [9] and [6] and recently as
GB-splines in [4]. A spline curve with exponential shape parameters is defined and
studied in [28]. Some alternative spline curves with shape parameters can be found
in [2, 3, 29]. HB-spline curves, CB-spline curves and the uniform B-spline curves
have been unified under the name of FB-spline curves in [16, 17]. The evaluation
of these trigonometric spline curves are more stable than that of NURBS curves
[18, 19].

In the above mentioned papers the new curve types are defined and essential
properties are proved, but the more detailed geometric analysis of the curve has
not been provided, however, it is of great importance in applications. ‘How the
shape parameters influence the shape of the curve?’ and ‘How the curve can be
applied for interpolation problems?’ are just two of these questions. Constrained
modification of the curves is also a central issue of applications. These questions
are studied in several papers [20, 23, 24, 28, 26, 27].

The aim of this paper is to study the geometrical properties of a recently defined
new curve type. Our methods for finding paths of the curve points (Section 3) and
describing constrained modification (Section 4) follow the techniques developed in
[21] and [22] for B-spline and NURBS curves.

In [1] the authors defined a new type of curves called T-Bézier curve as follows.

Definition 1.1. For two arbitrarily selected real values of λ and µ, where λ, µ ∈
[−2, 1], the following four functions of t (t ∈ [0, 1]) are defined as cubic trigonometric

146 E. Troll



Bézier (i.e. T-Bézier) basis functions with two shape parameters λ and µ:
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In the following sections we study the variation diminishing property, the effect
of the shape parameters for the curve and the constrained modification abilities of
this curve. Finally, the curve type is generalized for surfaces.

2. Variation diminishing

In the following, we will discuss new properties of the T-Bézier curve. In CAD
systems the variation diminishing property is necessary for a Bézier curve. When we
define a control polygon for a curve then we expect that the number of intersections
with the produced curve will be less than or equal to the number of intersections
with the defined control polygon.

Theorem 2.1. If λ < −2 or µ < −2 than the T-Bézier curve has lost its variatonal
diminishing property.

Proof. The derivatives of the basis functions with respect to a variable t are
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With the control points p0,p1,p2,p3 the tangent vectors at the points at t = 0
and t = 1 are π

(
1
2λ+1

)
(p1−p0) and π

(
1
2µ+1

)
(p3−p2) respectively, therefore if

λ < −2, than the direction of the tangent vector at the point at t = 0 is opposite
to the vector (p1−p0), and if µ < −2 , then the direction of the tangent vector at
the point at t = 1 is opposite to the vector (p3 − p2). The theorem follows.

Figure 1: The tangent vectors at points at t = 0 with λ = −1, 5
on the top left, t = 0 with λ = −2, 2 on the bottom left, t = 1 with
µ = −1, 5 on the top right and t = 1 with µ = −2, 2 on the bottom

right

3. The geometric effect of the shape parameters

The basis functions of the cubic trigonometric Bézier curve are contain two arbi-
trarily selected real values λ and µ as shape parameters. When these parameters
are changing the shape of the curve is altered too. If we have a given knot vector
t0 and one of the shape parameters is fix, than we can examine the path of the
T(t, λ, µ) point of the curve while the other shape parameter is varies between its
boundaries.

Theorem 3.1. If t ∈ [0, 1] and µ ∈ [−2, 1] is a constant, then the geometric effect
of the shape parameter λ is linear.

148 E. Troll



Proof. Those basis function segments which does not include the shape parameter
λ, we can expect as constants. Let

c0λ,t = sin
π

2
t,

c1λ,t = 1− sin
π

2
t,

c2λ,t = cos
π

2

(
1− cos

π

2

)(
2 + µ− µ cos π

2
t
)
,

c3λ,t =
(
1− cos

π

2
t
)2(

1− µ cos π
2
t
)
.

With these constants we can express the basis functions of the quadratic trigono-
metric polynomial curve:

b0(t) = c21λ,t(1− λc0λ,t) = c21λ,t − λc0λ,tc21λ,t
b1(t) = c0λ,tc1λ,t(2 + λ− λc0λ,t) = 2c0λ,tc1λ,t + λc0λ,tc1λ,t − λc20λ,tc1λ,t
b2(t) = c2λ,t
b3(t) = c3λ,t

The theorem follows.

Figure 2: The geometric effect of the shape parameter λ

Theorem 3.2. If t ∈ [0, 1] and λ ∈ [−2, 1] is a constant, then the geometric effect
of the shape parameter µ is linear.

Proof. Those basis function segments which does not include the shape parameter
µ, we can expect as constants. Let

c0µ,t = cos
π

2
t,

c1µ,t = 1− cos
π

2
t,

c2µ,t = sin
π

2

(
1− sin

π

2

)(
2 + λ− λ sin π

2
t
)
,

c3µ,t =
(
1− sin

π

2
t
)2(

1− λ sin π
2
t
)
.
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With these constants we can express the basis functions of the quadratic trigono-
metric polynomial curve:

b0(t) = c3µ,t
b1(t) = c2µ,t

b2(t) = c0µ,tc1µ,t(2 + µ− µc0µ,t) = 2c0µ,tc1µ,t + µc0µ,tc1µ,t − µc20µ,tc1µ,t
b3(t) = c21µ,t(1− µc0µ,t) = c21µ,t − µc0µ,tc21µ,t

The theorem follows.

Figure 3: The geometric effect of the shape parameter µ

The two shape parameters are independent of each other so they modify the
shape of the curve in separated ways. In a specific case we can examine the effect
of the two parameters when they simultaneously changing their value.

Theorem 3.3. If t ∈ [0, 1] is a constant and we run both of the shape parameters
at the same time, then the geometric effect of the shape parameters is linear.

Proof. Let k ∈ R, λ, µ ∈ [−2, 1] and µ = kλ, and consider the constants

c1λ,t , c2λ,t

from Theorem 3.1. With these constants we can express the basis functions of the
quadratic trigonometric polynomial curve:

b0(t) = c22λ,t(1− λc1λ,t) = c22λ,t − λc1λ,tc22λ,t
b1(t) = c1λ,tc2λ,t(2 + λ− λc1λ,t) = 2c1λ,tc2λ,t + λc1λ,tc2λ,t − λc21λ,tc2λ,t
b2(t) = c1λ,tc2λ,t(2 + kλ− kλc1λ,t) = 2c1λ,tc2λ,t + kλc1λ,tc2λ,t − kλc21λ,tc2λ,t
b3(t) = c22λ,t(1− kλc1λ,t) = c22λ,t − kλc1λ,tc22λ,t

The theorem follows.
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Figure 4: The shape parameters’ geometric effect

4. Constrained modification

If a point p is given, than we need to find the values of the shape parameters
λ, µ ∈ [−2, 1] with which the curve interpolates the point. Let the curve be

T(t, λ, µ) =
3∑

i=0

bi(t)pi,

where pi, i ∈ 0, 1, 2, 3 are the control points.

From the inordinate case when µ is fixed and only the value of λ is changing
to that case when λ is fixed every λ = kµ, k ∈ R paths are intersects the curve.
Within the boundaries the curve can interpolate the point p and the appropriate
value of the running parameter depends on the values of the shape parameters.

Figure 5: The appropriate section of the curve for interpolation

On the other hand, when we fix a point on the curve, then we can examine the
paths we discussed above. In this case we can show the permissible area of the
point of the curve.

Constrained modification of the cubic trigonometric Bézier curve . . . 151



Figure 6: The permissible area of a point of the curve

If we consider the union of the permissible areas for every point of the curve,
than we get the permissible area of the whole curve.

Figure 7: The admissible area of the curve

As regards the above the constrained modification is unequivocal only when
λ = µ. In this case with a numerical method we can produce the appropriate value
of the running parameter t0, whereby the produced line interpolate the given point
p. Finally, the value of the shape parameters are given from

T(t0, λ, µ) = p,

where λ = µ.

Figure 8: Constrained modification of the curve

While we discussed the algorithm of the constrained modification, we have
assumed that the shape parameters are equivalent λ = µ. This condition isn’t
necessary, but if λ 6= µ, the count of the cases when the curve can interpolate a
given point p is infinite.
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Figure 9: Constrained modification of the curve with different
shape parameter values

5. Extension to surfaces

The cubic trigonometric Bézier surface made from the basis functions of the T-
Bézier curve. The shape parameters also modify the face of the surface with their
value, like in the case of the curve. In three dimension we expect only the case
when one of the two shape parameter is fix. In the other case (when we change the
other shape parameters) the proof is the same.

Theorem 5.1. If t, u ∈ [0, 1] and µ ∈ [−2, 1] is a constant, then the geometric
effect of the shape parameter λ is parabolic.

Proof. The cubic trigonometric Bézier surface is

T(t, u) =
3∑

i,j=0

bi(t)bj(u)pi,j ,

where

pi,j , i, j ∈ 0, 1, 2, 3

are the control points. Now we can express the coefficients.

b0(t)b0(u) = c21λ,tc
2
1λ,u

(c0λ,tc0λ,uλ
2 − (c0λ,t + c0λ,u)λ+ 1),

b0(t)b1(u) = c0λ,uc
2
1λ,t

c1λ,u(c0λ,t(c0λ,u − 1)λ2 − (2c0λ,t + c0λ,u − 1)λ+ 2),

b0(t)b2(u) = c21λ,tc2λ,u(−c0λ,tλ+ 1),

b0(t)b3(u) = c21λ,tc3λ,u(−c0λ,tλ+ 1),

b1(t)b0(u) = c0λ,tc1λ,tc
2
1λ,u

(c0λ,u(c0λ,t − 1)λ2 − (c0λ,t + 2c0λ,u − 1)λ+ 2),

b1(t)b1(u) = c0λ,tc0λ,uc1λ,tc1λ,u((c0λ,t(c0λ,u − 1)− c0λ,u + 1)λ2

− (2c0λ,t + 2c0λ,u − 4)λ+ 4),

b1(t)b2(u) = c0λ,tc1λ,tc2λ,u((1− c0λ,t)λ+ 2),

b1(t)b3(u) = c0λ,tc1λ,tc3λ,u((1− c0λ,t)λ+ 2),

b2(t)b0(u) = c21λ,uc2λ,t(−c0λ,uc2λ,tλ+ 1),
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b2(t)b1(u) = c0λ,uc1λ,uc2λ,t((1− c0λ,u)λ+ 2),

b2(t)b2(u) = c2λ,tc2λ,u ,

b2(t)b3(u) = c2λ,tc3λ,u ,

b3(t)b0(u) = c21λ,uc3λ,t(−c0λ,uc3λ,tλ+ 1),

b3(t)b1(u) = c0λ,uc1λ,uc3λ,t((1− c0λ,u)λ+ 2),

b3(t)b2(u) = c3λ,tc2λ,u ,

b3(t)b3(u) = c3λ,tc3λ,u ,

where c0λ,t , c1λ,t , c2λ,t , c3λ,t are presented in Theorem 3.1, and

c0λ,u = sin
π

2
u,

c1λ,u = 1− sin
π

2
u,

c2λ,u = cos
π

2

(
1− cos

π

2

)(
2 + µ− µ cos π

2
u
)
,

c3λ,u =
(
1− cos

π

2
u
)2(

1− µ cos π
2
u
)
.

The theorem follows.

Figure 10: The geometric effect of the shape parameter λ
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Abstract

We consider the curves y = ax and y = loga x and their intersecting
points for various bases a. Although this problem belongs to the elementary
calculus, it turns out that the problem of determining number of these points,
for a ∈ 〈0, 1〉 , is overlooked, so far. We prove that this number can be 0, 1, 2
or, even, 3, depending on the base a.

Keywords: exponential function, inflection, stationary point, homeomorphism

MSC: 26A06, 26A09.

1. Introduction

We consider the problem of determining the number of intersecting points of the
graphs of the functions f (x) = ax and g (x) = loga x depending on the base a.
This problem is reduced to the study of solutions of the system

{
y = ax

y = loga x
(1.1)

which is equivalent to the equation

ax = loga x (1.2)

depending on a, a ∈ R+\ {1}.
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Although this problem belongs to the elementary calculus, usually, it was not
considered in sufficient detail in the calculus courses on universities worldwide.
Moreover, students of mathematics and many professional mathematicians are
likely to think that these curves do not intersect, for a > 1, and meet at only
one point, for a ∈ 〈0, 1〉. This impression is caused by many calculus books, math
teachers or professors who usually take nice bases a = 2, e, 10.. as standard exam-
ples for the exponential and logarithmic curves. However, in [1] and [2] can be
found a solution of this problem for a > 1. However, for a ∈ 〈0, 1〉 , in [1] can be
found an incorrect claim (Proposition 1) that the graphs y = ax and y = loga x
always meet at only one point. The author’s conclusion seems correct at the first
glance. Indeed, if we considered these curves for some standard bases 1

2 , e
−1 . . . or if

we try to make a sketch of the graphs of the functions f (x) = ax and g (x) = loga x,
a ∈ 〈0, 1〉, the inference, suggested by the picture, would be the same. Unexpect-
edly, this is not the case. Counterexample which was a motivation for this work is
the base a = 1

16 . Namely, it holds

log 1
16

1

4
=

1

2
,

(
1

16

) 1
4

=
1

2
,

log 1
16

1

2
=

1

4
,

(
1

16

) 1
2

=
1

4
.

This means that
(
1
4 ,

1
2

)
and

(
1
2 ,

1
4

)
are common points of the graphs of the functions

g (x) = log 1
16
x and f (x) =

(
1
16

)x. Since the both curves must meet the line y = x

at the same point we infer that there are (at least) 3 intersecting points.
The main goal of this paper is to prove:

Theorem 1.1. The equation (1.2):
has no solutions, provided a ∈ 〈 e√e,+∞〉 ,
has exactly one solution, provided a ∈

[
1
ee , 1

〉
∪ { e√e},

has exactly two solutions, provided a ∈ 〈1, e√e〉 ,
has exactly three solutions, provided a ∈

〈
0, 1

ee

〉
.

In order to eliminate any intuitive concluding and to avoid any possible am-
biguity and incorrect inferences, which a shallow considering of the graphs might
cause, we will conduct the proof of this theorem very strictly (in the mathematical
sense). A necessary mathematical tool needed for the proof belongs to elementary
calculus and to topology. We will split the proof of the theorem into two separate
cases: a > 1 and a < 1. In the both cases we need the following corollary which is
an immediate consequence of the Intermediate value theorem and some elementary
facts of mathematical analysis (see e.g. [3]).

Corollary 1.2. Let u : [c, d]→ R be a continuous function such that u (c)u (d) ≤ 0.
(i) If u (c)u (d) < 0, then u has at least one zero x0 ∈ 〈c, d〉.
(ii) If u is a strictly monotonic function, then u has exactly one zero x0 ∈ [c, d].
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Hereinafter, for a real function which is given by a formula we understand that
the function domain is the (maximal) natural domain of that formula.

We will consider two (in)equations to be equivalent provided their solution sets
coincide.

2. The case a > 1

The proof of this case can be given as an assignment to students of mathematics in
some elementary courses. It is based on the following, several, auxiliary lemmata
whose proofes we leave to the reader. Acctually, proving of these claims could be
a good exercise for students in higher classes of a secondary school, providing they
have sufficently ambitious math teacher.

Lemma 2.1. If (x0, y0) is a solution of the system (1.1), for a > 1, then x0 = y0.

Lemma 2.2. If a > 1, the equation (1.2) is equivalent to the equation

ax = x, (2.1)

and thus, the solution sets of (1.2) and (2.1) coincide with the set of zeros of the
function χa(x) = ax − x.
Lemma 2.3. If a > 1, the function χa is continuously differentiable. It is strictly
decreasing on the interval

〈
−∞, 1

ln a ln(
1

ln a )
〉
, while it is strictly increasing on the

interval
〈

1
ln a ln(

1
ln a ),+∞

〉
. It reaches the global minimum at the point x∗a =

1
ln a ln(

1
ln a ).

Lemma 2.4. Let a > 1. Then the equation (1.2) has: no zeros if and only if
χa(x

∗
a) > 0; a unique zero if and only if χa(x∗a) = 0; exactly two zeros if and only

if χa(x∗a) < 0.

Let us interpret the previous result in term of the base a, i.e., how does a value
χa(x

∗
a) depend on a. Since the procedure is the same for all cases, it is sufficient

to consider the case χa(x∗a) < 0. This is equivalent to ax
∗
a < x∗a, which means

a
1

ln a ln( 1
ln a ) <

1

ln a
ln

(
1

ln a

)
.

Now, one obtains, in several steps, the following mutually equivalent inequalities

1

ln a
ln

(
1

ln a

)
ln a < ln

(
1

ln a
ln

(
1

ln a

))
⇔ ln

(
1

ln a

)
< ln

(
1

ln a
ln

(
1

ln a

))

1

ln a
<

1

ln a
ln

(
1

ln a

)
⇔ 1 < ln

(
1

ln a

)
⇔ ln a < e−1 ⇔ a < ee

−1

.

Thus, the equation (1.2) has: exactly two solutions whenever a ∈ 〈1, e√e〉 , exactly
one solution whenever a = e

√
e (the solution is x0 = e), no solutions whenever

a ∈ 〈 e√e,+∞〉.
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Example 2.5.

(a) a = 4
3
y = ax, y = loga x (b) a = e

√
e y = ax, y = loga x

3. The case 0 < a < 1

Unlike the previous case, the proof of this case is rather nontrivial. In order to
make this proof easier to follow, we will split it into nine simpler claims.

Lemma 3.1. Let 0 < a < 1. then the curve y = ax (y = loga x) and the line
y = x meet at a single point (ξa, ξa), ξa ∈ 〈0, 1〉. The point ξa is the solution of the
equation (1.2). The function ζ : 〈0, 1〉 → 〈0, 1〉 , ζ (a) = ξa, which assigns the point
ξa to each base a, is an increasing homeomorphism whose inverse is given by the
rule aξ = ζ−1 (ξ) = ξ

1
ξ .

Proof. Let λ be the real function given by λ (x) = ax − x, for every 0 < a < 1.
Since λ (0) = 1 and λ (1) < 0, we may apply Corollary 1.2 on the function λ to infer
that the curve y = ax intersects the line y = x. It remains to prove that they meet
at exactly one point. Suppose that

(
ξ, ξ = aξ

)
and

(
ξ′, ξ′ = aξ

′
)
are two different

intersection points. There is no loss of generality in assuming ξ < ξ′. Since the
function ax is strictly decreasing (a < 1) it follows that aξ = ζ > ζ ′ = aξ

′
, which is

an obvious contradiction.
Given an x ∈ 〈0, 1〉 , it is clear that, for a = x

1
x , it holds ax = x. By examining

limits lim
x→0+

x
1
x = 0, lim

x→1
x

1
x = 1,and the first derivative y′ = x

1
x
1−ln x
x2 of the function

y(x) =

{
0, x = 0,

x
1
x , 0 < a < 1,

one infers that it is a strictly increasing mapping on the interval [0, 1] and it maps
the interval [0, 1] onto itself. Therefore, it is a homeomorphism and its inverse
restricted to the interval 〈0, 1〉 is the function ζ : 〈0, 1〉 → 〈0, 1〉 , ζ (a) = ξa, exactly
as asserted.

Lemma 3.2. If 0 < a < 1, the solution set of the equation (1.2) is a nonempty
subset of the interval 〈0, 1〉. If that set is finite, then its cardinality is odd.
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Proof. Let 0 < a < 1. Then, obviously, since the equation (1.2) is defined only for
x > 0, it has no solution on the interval 〈−∞, 0]. Further, it holds that ax > 0,
loga x ≤ 0, for every x ∈ [1,+∞〉. Therefore, the equation (1.2) has no solution
on the interval [1,+∞〉. Consequently, by Lemma 3.1, the solution set of (1.2) is a
nonempty subset of the interval 〈0, 1〉. Let us assume that (x0, y0), x0 6= y0, is an
intersection point of the curves y = ax and y = loga x. Then, since these curves are
mutually symmetric regarding the line y = x, they also meet at the point (y0, x0).
Therefore, if there are only finitely many intersecting points of these curves, the
number of those points which do not belong to the line y = x is even. Now the
statement follows by Lemma 3.1.

Lemma 3.3. If 0 < a < 1, the solution set of the equation (1.2) coincides with the
solution set of the equation

aa
x

= x, (3.1)

i.e., it coincides with the set of zeros of the real function Ha(x) = aa
x − x.

Proof. Notice that there are no solution of (3.1) outside of the domain 〈0,∞〉 of
the equation (1.2). Because of the injectivity of the exponential function, it is clear
that (1.2) is equivalent to (3.1).

Let us examine the functions Ha(x) = aa
x − x and ϕa(x) = aa

x

which are,
obviously, both continuously differentiable.

Lemma 3.4. Let 0 < a < 1. The function ϕa is strictly increasing, and the lines
y = 1 and y = 0 are its horizontal asymptotes (from the right side and left side,
respectively). The functions ϕa and Ha are convex on the interval 〈−∞, xa〉, and
the both are concave on the interval 〈xa,∞〉, where

xa = loga loga e
−1

is the common inflection point satisfying ϕa(xa) = e−1.

Proof. Since 0 < a < 1, it holds that lim
x→+∞

aa
x

= a0 = 1 and lim
x→−∞

aa
x

= a∞ = 0.
Hence, the lines y = 1 and y = 0 are horizontal asymptotes of the function ϕa
indeed.

Since, ϕ′a(x) = aa
x

ax ln2 a > 0, for every x ∈ R,it follows that ϕa is strictly
increasing. Further,

H ′′a (x) = ϕ′′a(x) = aa
x

ax(ln2 a)ax ln2 a+ aa
x

ax ln3 a =

= ϕ′′a(x) = aa
x+x

︸ ︷︷ ︸
>0

ln3 a︸︷︷︸
<0

(ax ln a+ 1) .

Therefore, H ′′a (x) = 0 (ϕ′′a(x) = 0) if and only if ax ln a+ 1 = 0. Consequently,

xa =
1

ln a
ln(
−1
ln a

) = loga loga e
−1 and ϕa(xa) = aa

loga loga e
−1

= e−1.

Now, it is trivial to check that H ′′a (x) = ϕ′′a(x) > 0, for every x ∈ 〈−∞, xa〉 and
H ′′a (x) = ϕ′′a(x) < 0, for every x ∈ 〈xa,∞〉, which completes the proof.
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In the figures below, the graphs of the functions ϕa and Ha, for several bases a,
0 < a < 1, are shown. In order to emphasize the inflection

(
xa, e

−1) and solutions
of the equation (3.1), the graph of the function ϕa is presented along with the lines
y = x and y = e−1.

(a) ϕa=0.3(x) = 0.30.3
x

(b) Ha=0.3(x) = 0.30.3
x − x

(a) ϕa=0.001(x) = 0.0010.001
x

(b) Ha=0.001(x) = 0.0010.001
x − x

(a) ϕa= 1
16
(x) =

(
1
16

)( 1
16 )

x

(b) Ha= 1
16
(x) =

(
1
16

)( 1
16 )

x

− x

Lemma 3.5. If 0 < a < 1 the function Ha has at most two stationary points in
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the interval 〈0, 1〉, i.e., the equation

H ′a(x) = 0

has 0, 1 or 2 solutions in the interval 〈0, 1〉. If a < e−1, Ha has at most two
stationary points, while if a ≥ e−1, Ha has at most one stationary point.

Proof. First,
H ′a(x) = 0 if and only if aa

x

ax ln2 a− 1 = 0.

Thus,

aa
x+x =

1

ln2 a
if and only if ax + x =

1

ln a
ln(

1

ln2 a
).

We need to determine the number of solutions of the equation

ax + x =
1

ln a
ln(

1

ln2 a
) (3.2)

on the interval 〈0, 1〉. Given an 0 < a < 1, let us define the real function ua by
ua(x) = ax + x. It holds u′a(x) = ax ln a + 1. Now, one can easily verify that
u′a (xa) = 0, and conclude that the function ua is strictly increasing on the interval
〈xa,∞〉 and that it is strictly decreasing on the interval 〈−∞, xa〉. Notice that

xa > 0 (xa < 0) if and only if a < e−1 (a > e−1)

and that xa = 0 for a = e−1. We infer that the function ua reaches its global
minimum at xa, and that

ua(xa) = axa + xa = aloga loga e
−1

+ xa =
−1
ln a

+ xa.

Hence, for a = e−1(xa = 0), we have u(xa) = 1.
Now, we infer that the number of intersection points of the curve y = ua (x) , for
x ∈ 〈0, 1〉, and the line y = 1

ln a ln(
1

ln2 a
) coincide with the number of solution of

the equation (3.2) in the interval 〈0, 1〉. Thus, by assuming a ≥ e−1, we obtain
the strict monotonicity of the restriction of function ua to the interval 〈0, 1〉, which
implies that there are only 0 or 1 intersection points. Suppose that a < e−1.
Then, since the function ua is strictly decreasing on the interval 〈0, xa] and strictly
increasing on the interval [xa, 1〉 , there are 0, 1 or 2 intersection points.

Lemma 3.6. If 0 < a < 1, the equation (1.2) has either one or three solutions.

Proof. If we assume that (1.2) has infinitely many solutions, then, by Lemmata 3.2
and 3.3, the function Ha has infinitely many zeros in the interval 〈0, 1〉. Now, by
applying Rolle’s theorem, one infers that Ha has infinitely many stationary points
in 〈0, 1〉 which contradicts Lemma 3.5. Therefore, by Lemma 3.2, the number of
solutions of the equation (1.2) is finite and odd. That number cannot exceed 3
because, by Rolle’s theorem, in such a case the function Ha would have at least
four stationary points in 〈0, 1〉 which is, according to Lemma 3.5, impossible.

On intersections of the exponential and logarithmic curves 165



Lemma 3.7. Let 0 < a < 1. If the equation (1.2) has three solutions, then it holds
a < e−e.

Proof. If the equation (1.2) has 3 solutions then, by Lemmata 3.2, 3.3 and Rolle’s
theorem, the function Ha has at least two stationary points in 〈0, 1〉. Now, by
Lemma 3.5, it follows that there are exactly two stationary points of the function
Ha in 〈0, 1〉. It implies that the equation (3.2) has two solutions in 〈0, 1〉 and
a < e−1. Consequently, for x ∈ 〈0, 1〉, the line y = 1

ln a ln(
1

ln2 a
) meets the curve

y = ua(x) at exactly two points, which is equivalent to

ua(xa) <
1

ln a
ln

(
1

ln2 a

)
< 1, a ∈

〈
0, e−1

〉
. (3.3)

We propose to find solutions of this system of inequalities, i.e., to solve the system
(3.3) in the terms of a. Let us put

t = − 1

ln a
. (3.4)

Notice that this substitution defines a bijective correspondence between a ∈ 〈0, e−1〉
and t ∈ 〈0, 1〉. The replacement with t in (3.3) yields the system

t− t ln t < −t ln t2 < 1, t ∈ 〈0, 1〉 , (3.5)

which we need to solve in terms of t. Now, from the first inequality t − t ln t <
−t ln t2, one obtains the following, mutually equivalent, inequalities

t < −t ln t⇔ t(1 + ln t) < 0⇔ 1 + ln t < 0⇔ t < e−1.

Now, by (3.4), one infers that − 1
ln a < e−1 which is equivalent to ln a < −e. It

follows that a < e−e, which means that the solutions of the first inequality of the
system (3.3) are all a ∈ 〈0, e−e〉.

Further, the second inequality −t ln t2 < 1 of the system (3.5) is equivalent to

−t ln t < 1

2
, (3.6)

which is fulfilled for every t ∈ 〈0, 1〉. Indeed, by examining the function w(t) =
−t ln t and its derivative w′(t) = − ln t − 1, one can straightforwardly verify that
w reaches the global maximum at the point t0 = e−1. Therefore, w(e−1) = e−1 <
1
2 implies (3.6), for every t ∈ 〈0, 1〉. Consequently, the solutions of the second
inequality of the system (3.3) are all a ∈

〈
0, e−1

〉
. Finally, the solution of the

system (3.3) is the interval
〈
0, e−e

〉
=
〈
0, e−e

〉
∩
〈
0, e−1

〉
.

Lemma 3.8. For every a ∈ [e−e, 1〉 , the equation (1.2) has a unique solution.
Especially, for a = e−e the solution is e−1.
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Proof. By Lemma 3.6 and 3.7, it follows that, for a ≥ e−e, (1.2) has only one
solution. According to Lemma 3.1, that solution is the point ξa such that aξa =

ξa = loga ξa. Especially, for a = e−e, it holds ξa = e−1. Indeed, (e−e)
e−1

=

(e−e)
1
e = e−1.

Lemma 3.9. If a ∈ 〈0, e−e〉, then the equation (1.2) has exactly three solutions.

Proof. According to Lemma 3.6, for every a ∈ 〈0, e−e〉 the equation (1.2) has 1 or
3 solutions. Let us prove that the value of an inflection point xa of the function
Ha and ϕa ranges from 0 to e−1, for every a ∈ 〈0, e−e〉. By using L’Hospital’s rule,
one easily evaluates the following limits:

lim
a→0+

xa = lim
a→0+

ln( −1ln a )

ln a
=

[ ∞
−∞

]
= lim
a→0+

− ln(a)( 1
ln2 a

) 1a
1
a

= lim
a→0+

−1
ln a

= 0,

lim
a→e−e

xa =
1

−e ln
−1
−e =

1

e
.

We are claming that the function ν : 〈0, e−e〉 → R,

ν (a) = xa =
1

ln a
ln

( −1
ln a

)
,

is an increasing mapping. Indeed, from its first derivative

ν′(a) =
−1− ln(− a

ln a )

a ln2 a
,

one infers that

ν′(a) > 0 if and only if − 1− ln

(
− 1

ln a

)
> 0,

which is equivalent to

e−1 > − 1

ln a
⇔ ln a < −e⇔ a < e−e.

Hence, ν′(a) > 0, for every a ∈ 〈0, e−e〉. It follows that the function ν is an
increasing and bijective mapping onto its image ν (〈0, e−e〉) =

〈
0, e−1

〉
. Conse-

quently, xa < e−1, for every a ∈ 〈0, e−e〉. Now, by Lemma 3.4, it follows that
xa < ϕa (xa) = e−1, which implies that Ha (xa) > 0, for every a ∈ 〈0, e−e〉. On the
other hand, it holds

Ha (1) = ϕa (1)− 1 = aa − 1 < 0.

Therefore, by Corollary 1.2 and Lemma 3.3, there exists a solution x1 of the equa-
tion (1.2), a ∈ 〈0, e−e〉, such that x1 ∈ 〈xa, 1〉. We propose to show that, beside
x1, there exists another solution x0 of (1.2), a ∈ 〈0, e−e〉, such that x0 < xa. It
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is sufficient to show that ξa < xa. First notice that ξa < e−1. Indeed, since the
function ζ : 〈0, 1〉 → 〈0, 1〉 is an increasing bijection, and

ζ−1
(
e−1
)
=
(
e−1
) 1

e−1 = e−e,

by Lemma 3.1, it follows that ζ (〈0, e−e〉) =
〈
0, e−1

〉
. Now, from aξa = ξa <

1
e , it

follows that
loga a

ξa = ξa = aξa > loga e
−1,

which implies that
loga a

ξa = ξa < loga loga e
−1 = xa.

Hence, if a ∈ 〈0, e−e〉, the equation (1.2) has two different solutions x1 and ξa.
Therefore, by Lemma 3.6, (1.2) has exactly three solutions.

Remark 3.10. Notice that the point (ξa, ξa) is the common intersection point of
the curves y = ϕa (x) , y = ax and y = loga x. It is interesting to consider what is
happening with the inflection point

(
xa,

1
e

)
of ϕa and with the intersection point

(ξa, ξa) , and how xa is related to the ξa and other solutions of (1.2), depending
on a base a ∈ 〈0, 1〉. By the proof of Lemma 3.9, it is clear that, for a ∈ 〈0, e−e〉,
there exist three different solutions x2, ξa and x1 of (1.2), such that

x2 < ξa < xa < x1.

By Lemma 3.1 and by the proof of Lemma 3.9, it follows that, while a ranges from
0 to e−e, xa and ξa tents from 0 to 1

e . For a = e−e, all the solutions and inflection
merge into one point. Namely, ξa = xa = 1

e is the unique solution of (1.2), while
the inflection point and intersection point coincide with the point

(
1
e ,

1
e

)
. “After

that”, for a > e−e, they separate and xa moves to the left and ξa moves to the
right.

Figure 5: y = x, y = 1
e
, y = ϕa (x), a = e−10, e−5, e−e

If a ranges from e−e to 1, since ω : 〈e−e, 1〉 →
〈
−∞, e−1

〉
ω (a) = xa =

1
ln a ln(

−1
ln a ), is a decreasing bijective mapping, it follows that ω (a) = xa tends
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from e−1 to −∞ and the unique solution ξa of (1.2), by Lemma 3.1, tends from
e−1 to 1.

Figure 6: y = x, y = 1
e
, y = ϕa (x) , a = e−1.5, e−1, e−0.7

In the figures below an initial problem (1.1) is visualized for the bases a =
0.3, 1

16 , 0.001.

Figure 7: a = 0.3 y = ax, y = loga x

Figure 8: a = 1
16

y = ax, y = loga x
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Figure 9: a = 0.001 y = ax, y = loga x

The problem considered in this paper motivate us to study the equation

ax = logb x,

for a, b ∈ 〈0,∞〉\ {1} and to state the following problem:

Problem. Determine the number of all intersecting points of the curves y = logb x
and y = ax depending on bases a and b.
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Abstract

The goal of this paper is to review research results and compare spatial
abilities of prospective elementary mathematics teachers from Hungary and
Turkey. The tests in a way that it contained the important components of the
spatial ability (imaginary manipulation of the object, projection description
and projection reading, reconstruction, transparency of the structure) were
used; such as Mental Cutting Test, Purdue Spatial Visualization Test and
Heinrich Spatial Visualization Test. By right of the curriculum of the two
countries it can be said that for teaching the spatial geometry small time has
left in both countries. The results of the survey verify that many students
have problems with imagining a spatial figure and therefore to solve the
spatial geometry exercises. As a future study, it is being planned to make
special interactive worksheets to develop of spatial ability.

Keywords: Spatial ability, Mathematics education, Spatial tests

MSC: G20, G30, G40

1. Introduction

Spatial visualization skills are very important to success in many fields of science.
Students with high scores on a mental rotation test systematically score higher
on anatomy examinations [32]. According to previous studies spatial visualisation
ability is a predictor for success in technical education, spatial ability development
is importance in engineering training, especially for architects [1, 4, 12, 13, 20, 17,
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18, 21, 22]. This ability is not determined genetically, but rather a result of a long
learning process [23].

Spatial ability can be defined as the abilities of imagine the visualization of an
object from different viewpoints, rotation of it and blend or integrate of the parts
of the given object [9, 15, 20].

McGee [15] defines spatial ability as “the ability to mentally manipulate, rotate,
twist or invert pictorially presented stimuli”, McGee [15] and Maier [14] classify five
components of spatial skills as

• Spatial perception: the vertical and horizontal fixation of direction regardless
of troublesome information;

• Spatial visualization: it is the ability of depicting of situations when the
components are moving compared to each other;

• Mental rotation: rotation of three dimensional solids mentally;

• Spatial relations: the ability of recognizing the relations between the parts of
a solid;

• Spatial orientation: the ability of entering into a given spatial situation.

Spatial thinking has an important role in the teaching and learning of math-
ematics process. Studies showed that this ability has positive correlations with
geometry and mathematics education [3, 29, 30]. Considering its important role
in mathematics education, development of spatial ability by the aid of Information
and Communication Technologies had great attention in the reviewed literature,
especially with Dynamic Geometry Systems [6, 11; 16, 19, 26, 29].

The measurement of spatial abilities is standardized by international tests,
among which the Mental Rotation Test (MRT) is introduced by Vanderberg and
Kuse [31] and the Mental Cutting Test (MCT) are of greatest importance. MRT
presents a criterion figure shown along with four candidate figures, two of which
represent the criterion figure in a rotated position. MCT presents a 3D object with
an imaginary cutting plane and five possible solutions for the cross-section shape.
Heinrich Spatial Visualization Test (HSVT) and Purdue Spatial Visualization Test
– Visualization of Rotation (PSVT-R) are widely used for testing the spatial ability.

Much work has been reported an analysis of MCT [1, 13, 21, 22, 25, 27], MRT
[1, 4, 13, 18, 23], HSVT [5, 10, 28] and PSVT-R [1, 2, 7, 24] results of engineering
students or prospective mathematics teachers, with emphasis on gender differences
and attempted to find possible reasons of gender difference, concluding, that typical
mistakes play central role in it. Most US researchers have used the PSVT-R to
measure visualization skills; MRT and MCT are widely used in Europe and Japan.

One of paper-and-pencil test was selected to measure spatial visualization abi-
li-ty of prospective elementary mathematics teachers: a reduced version of HSVT.
This test was developed by Heinrich [10] to examine the spatial abilities of engi-
neering graphics students. The original HSVT includes two major expert skills in
spatial visualization: synthesis and decomposition. For each two basic skills she
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hypothesized that when mental rotation was added to these tasks at three hierarchi-
cal levels of complexity, this would render the spatial problem solving progressively
more difficult [5, p.2].

The original HSVT consists of 48 items divided into 6 scales:

• synthesis without rotation;

• decomposition without rotation;

• synthesis with one-step rotation;

• decomposition with one-step rotation;

• synthesis with two-step rotation;

• decomposition with two-step rotation.

Example items of the test are given in the following figures ([28, p. 173]).

Figure 1: Example item for Synthesis section

Figure 1 expresses an example about the part of "Synthesis". Synthesize four
pieces, adjusting Probe X to fit piece # and selecting one of 5 options A, B, C, D,
E to replace the question mark [5, p. 3].

Figure 2: Example item for Decomposition section

In the Figure 2, decompose given pattern three pieces, X+?+Y, where probes
X,Y may need to be adjusted, and after selecting one of 5 options, A, B, C, D, E
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to replace the question mark. The reduced test includes 15 items for the part of
“synthesis”, and 10 items for the part of “decomposition”. In our work [28], following
theoretical aspects of the HSVT, we used 25 items of it due to administering to the
junior level prospective elementary mathematics teachers. Now it can be compared
that HSVT performances [28] with new performances of PSVT-R.

Guay developed the PSVT in 1976 to determine student’s ability to visualize,
recognize orthograpic drawings. The PSVT includes three sections: developments,
object rotations and views [8]. Most researchers and the autors use only the object
rotations portion. The rotations section shows an object in two different positions.
The first object is rotated on the X, Y or Z-axis, to show the rotation pattern. A
second object is presented with five alternative views, one represents the second
object subjected to te same rotation as the example. In our study coordinate
axes were added to the first and second stimulus objects, but they were not added
to the five solution choices [2]. The first stimulus object was shown in its new,
rotated position. Figure 3 expresses an example about the part of PSVT-R (with
coordinate axes).

Figure 3: Example item for visualization of rotations test

In the light of the existing literature, we investigate and compare spatial vi-
sualization test PSVT-R and HSVT performances of two samples of junior level
prospective elementary mathematics teachers from Hungary and Turkey enrolled
to teacher training departments with the variables of gender and age. So, this work
posed the following question:

• What are prospective Hungarian and Turkish elementary mathematics teach-
ers’ spatial visualization ability levels?

• Is there a significant relationship between prospective Hungarian and Turkish
mathematics teachers’ Heinrich and Prudue spatial visualization ability?

In the second section we report about the circumstances of the survey. The
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third section contains the results of the survey. The last section is the summary of
the article and our experiences.

2. Background

Elementary mathematics teachers had been graduating from 3 years’ education
since the establishment of the Republic of Turkey (1923) to 1982. Secondary school
mathematics teachers graduated from Teacher Traning Colleges and Universities.

After 1982, all education program areas came to be updated and standardized
according to the framework programs of developed countries. In order to train
major teachers national universities opened new teaching programs. From 1982
to 1997, mathematics teachers graduated from mathematics education programs
of the Department of Science Education. Moreover, researchers graduating from
the Faculty of Sciences got a mathematics teacher’s degree by taking a pedagogical
program organized by the education faculty.

After 1997, the mathematics education program (it was a part of science edu-
cation) was divided into two teaching programs, namely elementary and secondary
mathematics (four and five years long). Nowadays, it is also possible to be a sec-
ondary school mathematics teacher also for students who graduate from the faculty
of sciences and get a teacher’s degree after a pedagogical traning process (Figure
4).

Mathematics Teacher Training Program in Hungary can be found at the fol-
lowing website: http://www.math.unideb.hu/index.php?p=007&pa=000

3. The comparative survey

We made our comparative survey at the Eskişehir Osmangazi University and Uni-
versity of Debrecen, among prospective elementary mathematics teachers. 73 Hun-
garian students and 85 Turkish students took the test. All data were collected
during the spring semester of 2012. Standard instructions were given to samples
of junior level prospective elementary mathematics teachers from Hungary and
Turkey. For the entire test, 25 minutes were given to the each sample to fill the
whole HSVT test [28], and 20 minutes were given to the each sample to fill the
PSVT-R test.

The tasks of PSVT-R focus on the imaginary manipulation of the solid. The
task is to follow the phases of the objective activity that consist of the complex
spatial transformation of the solid. The first task is the identification of the figure,
and the second task is the manipulation of mental representations. Each problem is
composed of a criterion figure, two one alternative and four incorrect alternatives.
Correct alternative is structurally identical to the criterion, but shown in a rotated
position. The subjects are asked to find the correct alternative. The PSVT-R
(coordinate axes) contains 30 items of increasing level of difficulty.
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Figure 4: Mathematics Teacher Training Program in Turkey ([28,
p. 178])

Data were analysed using the SPSS statistical analysis program. The perfor-
mance of the students, correct responses given to each item of PSVT-R is presented
in the Figure 5.

Figure 5: Students’ performance
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As it is shown, the most items are marked correctly: item1 with 92% (Hungar-
ian students) and 89% (Turkish students) correct response rate; item4 with 95%
(Hungarian students) and 95% (Turkish students) correct response rate; item2 with
95% (Hungarian students) and 74% (Turkish students) correct response rate and
item9 with 85% correct response rate by Hungarian students and item4 with 82%
correct response rate by Turkish students. The difference is remarkable between
Hungarian students and Turkish students: item25 with 38%; item24 with 37% dif-
ference rate. Turkish sample performed better than Hungarian sample in items 4,
5 (the biggest difference rate is 1%).

Hungarian sample’s performance is better than Turkish sample do is the dis-
tribution of the PSVT-R scores. Figure 6 gives us the results with respect to
distribution of the scores.

Figure 6: Distribution of the scores PSVT-R

Figure 6 shows that, while there are 27 Hungarian junior prospective elementary
mathematics teachers performed 25 and greater scores, in Turkish sample there are
12 prospective teachers. And none of Turkish prospective teachers did give correct
responses for the whole PSVT-R while 3 Hungarian did.

Means, standard deviations of spatial visualization ability and statistical dif-
ferences of each group are analyzed in terms of descriptive statistics. The results
appear in the Figure 7.

Figure 7: Mean scores of each sample and statistical differences

Investigating of each sample’s and all subjects’ means and standard deviations,
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we find that Hungarian junior level prospective elementary mathematics teachers
mean score of PSVT-R is 22.26 (SD=4.33), and mean score of Turkish sample
is 18.82 (SD=5.36). According to these results, it can be said that Hungarian
and Turkish prospective elementary mathematics teachers have adequate spatial
visualization ability.

Figure 7 also shows that there is a significant difference (p<.05) between mean
scores of spatial visualization of Hungarian and Turkish junior level prospective
elementary mathematics teachers. Hungarian sample performed better than those
Turkish did at PSVT-R.

Additionally, there is a significant relationship between elementary mathematics
teachers’ scores in PSVT-R and HSVT (p<.01).

We found significant difference between prospective Hungarian and Turkish
elementary mathematics teachers’ scores of PSVT-R in favor of Hungarian sample.
We think that one of the reasons may be teacher training programs. We give
mathematics area courses in Figure 4. We compared the syllabi, one can see that
Hungarian sample takes more lectures related to computer and geometry which
may develop their geometrical and spatial reasoning. Similar findings are also
observed in our previous study interpreted by HSVT [28] and MCT [27]. Moreover,
results of the present study support the related literature. It is well known that
to develop spatial ability, researchers suggest activities including isometric and
technical drawings, computer applications and use of geometric manipulative in
the teaching process [11, 16, 19, 20, 26]. In the mentioned courses there are a lot
of applications need the use of spatial thinking. Therefore, suffice it to say that
the related literature supports results of the present study.

4. Conclusion

In this work, we compared PSVT-R and HSVT performances of prospective Hun-
garian and Turkish mathematics teachers. There was a significant difference be-
tween mean scores of spatial visualization of Hungarian and Turkish students. As
a consequence, the following conclusions were obtained.

The results of the survey verify that many students have problems with imagin-
ing a spatial figure and therefore to solve the spatial geometry, PSVT-R exercises.
So it would be very useful in the high schools and in the university training as
well, if we devote more time for spatial ability, for summarizing the spatial ge-
ometry knowledge, for solving spatial geometry tasks. According to these results,
mathematics teacher curriculums may be updated.

In the related literature there are various factors effecting spatial ability. In
order to make further interpretations about the obtained results, we will analyse
each group’s data qualitatively in terms of prepared spatial visualization, mental
rotation and spatial orientation tasks. Studies suggest that interactive animation
and virtual solids are promising tools for training spatial thinking in undergraduates
[11, 16, 19, 24, 26]. Similar studies were conducted and concluded that students’
education of preschool, primary, middle and secondary school are also important
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in the development of spatial ability [3, 26, 30]. Future work will be comparing of
curriculums from preschool to university level and deal with another variables such
as preschool education and spatial experience. It would be useful to focus on task
based student interviews to reveal the student’s spatial problems. Moreover, some
comparative studies with self-report measures [26] may yield concrete elements to
evaluate the overviewed results.
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Abstract

We often understand real-world phenomena through their models. To
be able to do this, we need to be aware of the basics and the operation of
modelling and the methods of its application. Modelling should be used not
only for understanding but also for predicting real-world phenomena. The
IT-specific peculiarity of modelling is that even the operation of models is a
complex creative process.

Keywords: Model, Simulation, IT Competences, Elementary and Secondary
School
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Having IT competences means that one is able to apply the basic IT tools
and methods for getting information and solving problems in one’s everyday life,
both at home and at the workplace. People with such skills are able to use their
knowledge practically, to learn and operate new technologies and methods, to solve
problems, to reach individual and social goals, and to make informed decisions in
our information society. [1, 2]

The important IT competences are the following1:

• Algorithmic thinking [3]

• Data modelling

• Modelling real-world phenomena

• Problem-solving
1The majority of these competences appear in other disciplines as well.
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• Communication skills

• Application skills

• Teamwork, cooperation skills

• Creativity

• Information literacy

• Systemic thinking

Modelling is of course not an IT competence only. Models are used in several
disciplines of science, such as mathematics (for phenomena like the point, which has
no dimensions, the line, which has no thickness, or infinity), physics (for phenomena
like friction or entities moving without air resistance).

Blum, referring to modelling as a mathematical competence, writes: “Modelling
competence includes the following: to structure, to mathematize, to interpret and
to solve problems and it includes as well the ability to work with mathematical
models: to validate the model, to analyze it critically and to assess the model and
its results, to communicate the model and to observe and to control selfadjustingly
the modelling process.” [4]

Nevertheless, three basic differences need to be pointed out that make IT special
among the school subjects:

• In IT students can make models based on real-world systems (this is possible
in mathematics, and only in very rare cases in physics, too [4, 5, 6, 7]2);

• In IT models can even be made real with the computer (and often the real-
ization is more important than the usage of the model);

• The very operation of IT models is a complex creative activity.

In other words, IT has a tool (the computer) for making models. As a conse-
quence, the IT models are based on data (determined by the features of real-world
objects), with which the computer algorithm performs calculations, and these re-
sults inform us about the specific real-world system. [8]

One of the most efficient tools of cognition is modelling. Those who are able to
clearly describe a process they experience using abstract terms are on the right track
to say: “We have understood the phenomenon.” By operating the model, they can
gather abstract experiences, which can serve as bases for real-world experiments.
Those experiments then enable them to polish the model, thus, their knowledge.

Modelling is a “schematic process,” which calls for the consideration of the fol-
lowing. First, we need to define the abstract objects of the model, which are the

2Gabriella Ambrus wrote the following about mathematical modelling: “When solving a mod-
elling task, the focus is put on the process and procedure(s) the student has to find and implement
in order to create a relation between a non-mathematical problem and some mathematical con-
tent.”
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“metaphors” of the objects (or classes of objects) in the real-world system. Later,
we need to determine the set of states of the objects, (one of) which will charac-
terize them during their operation. Finally, we set the rules of state change with
the appropriate algorithms. [9, 10]

Their levels:

• Defining the models of reality

• Operating the models of reality

• Comprehending reality through the models

• Making the models of reality

• Learning model making

• Predicting real-world phenomena through the use of the models

• Analyzing the models

The competence levels of mathematical modelling is more thoroughly described
by Herbert Henning and Mike Keune [11]:

Level 1 – Recognize and understand modelling – is characterized by the ability:
to recognize and
to describe the modelling process,
to characterize, to distinguish and to localize phases of the modelling process.

Level 2 – Independent modelling – is characterized by the ability:
to analyze and to structure problems and to abstract quantities,
to adopt different perspectives,
to set up mathematical models,
to work on models,
to interpret results and statements of models,
to validate models and the whole process.

Level 3 – Meta-reflection on modelling – is characterized by the ability:
to critically analyze modelling,
to characterize the criteria of model evaluation,
to reflect on the cause of modelling,
to reflect on the application of mathematics.

1. Where Do We Find IT Modelling in Public Edu-
cation?

Modelling can occur in many forms.
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1.1. Data Modelling

“Data modelling is an abstraction process, in which the real-(micro)world facts and
the data about the relations between these facts are collected and are converted in a
format applicable for computer adaptation, that is, in so-called data models. Data
modelling is concerned with the internal structure and relations of the data, but not
with their specific values.” [12]

1.2. Problem-Solving: The Models of Problems

During the process of problem–solving, we need to define the model that describes
the problem, as the initial step. [13] Let us demonstrate the series of steps of
modelling through a task made for a qualifier for the student olympiad (in 2012).

A farmer had three cans of milk of different capacity measures. When they are
full, they have the capacity of A, B, and C liter of milk. The farmer knows that by
pouring milk from one can to the other, it is possible to measure a specific quantity
of milk. All the farmer needs to do is keep in mind how much milk is left in the one
used for pouring and how much milk is filled in the one used to contain the pouring.
In the beginning all the cans contain some milk, but the farmer wants to have all the
milk for sale to be in can A. In order to minimize the time used, the farmer needs
to know that the time spent on filling equals the amount of milk poured. Make a
program that calculates the time and the amount of milk, the measurement of which
takes the most time. [14]

In the beginning the three cans contain (a, b, c) liter of milk. We can only pour
from a can that is not empty and pour into a can that is not full. After every
pouring either the can, used for pouring, becomes empty, or the can, used for
containing, becomes full. That is, a state (a, b, c) can turn into a (0, b + a, c) or
(a − (B − b), B, c) state, for example. The model of the problem, therefore, is a
graph, whose points are the states describing the current states of the cans and the
edges are the regular pourings.

Figure 1: The graph model of the problem

The model of the problem is a data model. It is this onto which we can build a
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calculation model, that is, an algorithm, with whose implementation the problem
can be solved in the case of any initial state.

1.3. Robots as the Models of Technical Systems

It can be a task even in grades 1 to 4 to move robots (cars, for example). These
cars can resemble real cars, as they can move forward and backwards, or turn left
and right. Nevertheless, they can be different as well: often their turning is not
executed by manipulating a steering wheel but by switching the engine of the side
wheels on and off.

In the case of managing toy trains and traffic lights, a very similar technical
system model is in operation. As the main focus is on their operation, not on their
structure, the robots can be models not only of technical but biological systems as
well.

This issue is relevant in IT when we want to program robots. In such a case,
a sensor of the robot converts the signs perceived from the environment into data,
then our program makes a calculation, and the results will be used to control the
robot.

1.4. Simulation Models

To understand the operation of real-world systems, we are often able to use simu-
lation models. [9] Simulation models operate very similarly to real-world systems,
but they function within a virtual world, not in reality, as opposed to the previous
type. While technical models require us to build the model, simulation models
require us to write a program.

What do we mean by computer simulation? Its essence, in short, is the follow-
ing: it is the model of an examined universe (may that be biological, chemical, or
relating to any other scientific discipline, including economic micro-worlds), which
lies on the stochastic state changes of a discrete object and gets embodied in a
program. In other words, the program is the tool which the users, that is, the
experimenters hold in their hands to compare the ideas of the modeller with the
facts of reality.

It is worth to note that simulation has a significant “advantage” compared to
the regular, abstract tool of mathematical modelling. In the latter, a serious ab-
straction process is involved to obtain the mathematical variables, among which
some kind of formal mathematical relation needs to be found, which is another ab-
straction process. (In addition, based on the number and relation of the different
parameters and variables we need to recognize which specific mathematical subfield
is to be utilized, starting from linear equations and equations systems, through the
non-linear, to the ordinary and partial differential equation, or the tools of stochas-
tic processes.) Contrary to this, simulation modelling “only” requires us to “copy”
real-world relations. A further difference is that the model keeps the dynamics and
naturalness of the real-world system; it is interaction that expands the possibilities
of the model through the temporal changeability of the context.
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1.5. Computer Model

A model that models the computer itself is useful because it can demonstrate and
help understand its operation, of course if it adapts to the level of the audience.
One such model is exemplified by [15]. Two “peculiarities” can be spotted in its
adaptation:

1. The model in reality is a series of models, as it aims to demonstrate the
real “evolution” of the computer, following the principle of historicity in the
enumeration of the different computer models.

2. The models go beyond technical “novelties”; they touch upon several seem-
ingly “secondary” features. They mention, for example, the programming
process, the relevance and role of operation systems, and some of the prob-
lems of parallel calculation (in a level still comprehensible for kids).

1.6. Network Models

The physical manifestation of computer networks are partly covered by network
topologies (ring, hub, etc.), which are basically graph models of the network struc-
ture. [16]

1.7. Communication Models

A classical network communication model is the ISO OSI (Open System Intercon-
nection) model, which describes the relations of the specific machines within the
computer systems on several levels. Even though today the protocols used are not
directly connected to this model anymore, it is still very useful for understanding
communication and reviewing tasks. [16]

1.8. Computer Games as Real-World Models

While in the case of simulation models, as analyzed in chapter 1.4, we can control
the model from an omnipotent position, changing the parameters that character-
ize the modelled world, the genre of computer games grants us with a more or
less cooperational position in shaping the modelled events. When talking about
computer games, we mean both online, multi-peered applications and “regular”
programs. Among the participants we can find real people, next to a compulsory
artificial intelligence, who is either only a mediator of the “messages” of the human
players or functions as a real playmate, fighting for the same goals.

These games are models of the real world, idealized for a certain goal. This goal
can be to manage within a human community, but it can also be to survive within
an abstract world organized around certain rules. To quote examples to the former
type, we could list the myriads of online role-play games, for instance the well-
known WoW (World of Warcraft). As the other extreme of computer games, we
could mention programs simulating natural or social processes (SimEarth, SimCity,
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and Civilization, among others) or the computerized versions of “classical” board
and card games.

Note that the above listed “social” games do resemble reality, but often times
they lack the intention, characteristic of modelling, to mimic real conditions. In
this sense, they are not models of reality. They are simulations, but the world we
build for the simulation to take place is virtual (where events and objects are called
the same as in the real world, and they might even look alike). Since the context
is virtual, the results do not have to be related to real conditions. Despite this, the
experiences are still useful.

Computer games are worth mentioning for two reasons. On the one hand,
they are playful and as such highly motivating; thus, they can serve as specifically
effective educational tools. On the other hand, they can be used as programming
tasks. Adjusted to the programming competence of the students, we can set tasks
related to the game, which students will be enthusiastic to solve given its playful
nature.

2. The Methodology of Modelling

The simulation models and the models of technical systems (which also
function to simulate operation) can be used within the subject of IT as the models
of real-world processes. Therefore, we are going to deal with them when modelling
the real world.

A model is a schematic notion made generally for understanding the operation
of a complicated, not thoroughly known system, from which new correlations can
be drawn, or which enables us to describe the phenomena of this system mathemat-
ically. The model usually reflects only the main features of the real-world system,
in a simplified way. Which counts as the main features depends always on the pur-
pose of the model. Therefore, by models we mean – mathematical – constructions
that describe the observed phenomena. Such – mathematical – constructions are
justified exclusively and exactly by their operation.

In the following we are going to use the notions of modelling and simulation
always according to what aspects we want to refer to modelling from.

Modelling: the process of making a model. Simulation: the process of using
a model.

The modern “model method” relates very closely to reality. The first usable and
successful models were made in physics; such was the ideal gas, the perfect liquid,
the point-like particle, the mathematical pendulum, or the atomic model. Physics
was followed a lot later by chemistry, biology, and earth sciences.

The steps of modern model method [17]:

• Gathering experiences through observation.

• Making a model to understand the experiences.

• Predicting the unknown phenomena with the help of the model.
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• Checking the validity of the prediction with experiments and determining the
validity limit of the model.

• Solving practical tasks with the help of the model within its validity limit.

• Developing, modifying, or replacing the model for understanding the phenom-
ena beyond the validity limit.

The model, naturally, needs to be monitored. What is even more important
than this, however, is that it needs to be adjusted and changed if new aspects come
up.

In the digital world, it is not surprising if we add the making of the computer
model (that is, the program) to this and perform the prediction with the help of
operating this computer model. Our activity is characterized by a process which
consists of the following objects and operations [9]:

Figure 2: The process of understanding through simulation

Note: In a general sense the whole process can be called simulation. We can
find a similar figure in the Werner Blum’s (1996) article [18], which has been widely
quoted ever since:

Figure 3: The process of mathematical modelling according to
Blum

In every step of our activity we have to make sure that the features of the
object created match those they refer to (for example, if the program has all the
characteristics we expect from the model), and that the given objects themselves are
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valid. The final decision can be made after the comparison, which is when we can
evaluate our entire activity. If the results of the simulation meet our expectations,
we have reached our goal. If not, we have to check in which step we made a mistake,
and correcting it, we go through the above described process again.

During modelling we use the observed data to describe the system with the help
of – generally mathematical – methods, from which we can draw conclusions about
the characteristics of the real-world system; we can even predict its behavior. There
exist numerous examples to such formalisms (like ordinary or partial differential
equations, difference equations, finite state machines, or Markov chains), but as
they involve complicated mathematical apparatuses, we avoid using them in public
education.

The model itself can never be the goal of modelling. The model needs
to be suitable for the analysis of the modelled; thus, it must be functional and
operational. Before moving on to the next activity, we always need to make sure
the model fits our goal. If we apply some mathematical method, we need to check,
by solving the mathematical task or providing a partial solution, if we get the
expected results (which is why it was important to set the expected results in
advance).

If the goal of our model is demonstration, for the sake of the result it is
acceptable for the internal structure of the model to have some relations that are
certainly different from the real phenomenon, because in this case only the result
matters. (Naturally, the relations must not concern the essential mechanism of the
model’s operation; that is, we cannot suggest false ideas.) If, however, the goal is
some kind of analysis, the model must follow our conceptions of the real-world
system, avoiding “false analogies” (which is how the term of horror vacui, suggesting
that bodies fall downwards due to a fear of the empty, was born).

Before making the model, we observe and gather information, formulating hy-
potheses about the modelled system, regarding its objects, their relations, their
states, their changes, the external forces, and the overall state of the modelled
system.

In the case of regular mathematical models, creating the model means defining
the mathematical correlations between the parameters and state changes of the
system, while for constructive methods there are other – easier – ways.

As the first step of model making, we need to define the abstract objects of
the model, which correspond to the objects (or classes of objects) in the real-world
system. This correspondence usually involves the correspondence of their states as
well. To be able to speak about them on their own (like in the real-world system),
they require individual existence, which is replaced by setting their state. As the
next step, we need to make the algorithm describing the state changes (change
in number, change in state) of the objects.

The significant difference from mathematical models lies in the circumstance
that it is not the mathematical variables, defined as a result of serious abstrac-
tion efforts, that we need to find a mathematical relation for (which is another
abstraction process). Our task is to “copy” the relations of the much more easily
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understandable real-world system. A further difference is that the model keeps the
dynamic structure, results, and naturalness of the real world.

It is a very frequent mistake in model making that our observations are inad-
equate, inaccurate, and not goal-oriented enough. This actually is an inevitable
obstacle in every case; therefore, we need to address it. If we refuse to acknowledge
these inadequacies and inaccuracies, we can cause great damage to ourselves and
– if the goal of modelling is demonstration – to others too.

The algorithm correctly describes the operation of the real-world system if:

• we take a random state of the system,

• we do the correspondences in the model,

• we create a future state of the model with the help of the algorithm,

• we find the real-world correspondent of the model state (result),

• and the result “matches” the real-world state (in deterministic cases it means
equation, while in stochastic cases it is equal distribution).

The model–modelled relation is similarity: the model is similar to the modelled
only from a certain aspect. The existence of such a similarity is crucial, since this
guarantees that by knowing the state of the model we can define the state of the
modelled too (certainly or with great probability – statistic models).

Of “whole models,” resembling the modelled completely, there exists only one;
the modelled itself. As a consequence, we always need to determine from which
aspect the model needs to resemble the modelled. It can also occur that modelling
is possible only through a very rough approximation, but this, as Hans-Wolfgang
Henn points out, is not a problem. “Models for a real problem can be more or
less suitable. One should never talk about ‘right’ or ‘wrong’. For example, it does
not make sense to call Newton’s model of physics ‘incorrect’ and Einstein’s model
‘correct’.” [19]

It is an important quality that the above similarity is equivalence relation,
mathematically speaking. As a consequence, the model of the model is the model
of the modelled too, provided that we followed the same principles when making
it. Like this, we can guarantee, even in the case of a long abstraction process, that
we are still talking about reality. Another expected quality is that the modelled
is the model of its own model, which means that the relation is valid only if the
events of the model can take place in the real-world system as well.

3. Modelling for Different Age Groups

Development of the models: the older the students are, the more realistic, the more
profound, and the more structured the models in use will be.
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3.1. Tasks for Grades 1 to 4

The models of the first four grades come from the world of games: Lego, toy cars,
and model railways are natural models for children.

In other words, models of technical systems (like Lego robots) can be used for
this age group. These models can be grouped into two major types: moving robots
or robots parking objects.

Both types can be controlled, first without any perception of the external world.
As a second step, we can equip them with sensors, so we make their operation
dependent of some external condition (for example, the car should not bump into
the wall; the car should follow a path on the floor; the robot that parks cars should
load objects of certain height on top of each other).

The shared characteristic of these models is that they are all programmable.
Programmability, however, can mean a simple puzzle game, in which we graphically
edit the program units together in order to form the appropriate program. [20]

3.2. Tasks for Grades 5 to 6

The modelling of reality, suitable for this age group, can be of two kinds. On the
one hand, we can continue the application of robots as the models of real-world
systems, within more complex tasks, possibly involving programming solutions as
well. Our model (in this case, the robot) operates within a real-world environment,
reacting to all changes and events of it. Nevertheless, the robot can be perceived
like a limited automaton: it is exposed to the effects of the environment, to which it
reacts with the change in its state components; this, in turn, affects its environment.

On the other hand, computer simulation models, more distant from reality, can
also appear; their function is to simulate some kind of phenomenon with the help of
the computer. To be able to do this, the application of random number generators
is indispensable. The computer modelling of simple random phenomena (like dice,
screen-walk, and random figures) becomes possible.

Note that we consider it important that the simulation of random phenomena,
or even more random games, precedes the simulation of non-random events.

Here the simulation model does not relate to a real-world system, at least not
directly.

3.3. Tasks for Grades 7 to 8

The models, used for understanding the operation of real-world systems, not for
the joy of playing, can come to the foreground with this age group. We can even
begin to introduce the computer modelling of simple random – and non-random –
natural phenomena.

For this age group, the model becomes the simplified copy of reality (as we try
to mimic reality as closely as possible); we deal primarily with defining the model
and realizing it with the help of the computer.
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Extending the tasks with robots requires us to introduce o new terminology,
namely, the “model of the model.” It is difficult – not only time-consuming but
occasionally even dangerous – to test complicated programs with robots. This is
when it is useful to simulate robots with the help of the computer. Only when we
tested several types of robot control and eliminated the occurring mistakes can we
begin to test the finalized program with the robot. In other words, the robot is a
simplified model of a real-world object, while the robot simulation program is the
model of the model.

Side-note: In the case of both controlling robots and simulating natural phe-
nomena, the structure of the algorithm (program) varies significantly from what we
are first introduced to in the classical programming education. Traditionally, we
assume a deterministic, sequential implementation, whereas robots and interactive
simulations react to the effects coming from the environment. According to the
classical program structure, the program is composed of three elements: scanning
data, calculating results, and showing results. Both robot control and simulation
are based on online algorithms, which means that we obtain and communicate new
data during the calculation.

According to Eigen and Winkler’s book, we can interpret the computer simula-
tion of natural phenomena like a board game: “Play is a natural phenomenon that
has guided the course of the world from its beginnings. It is evident in the shaping
of matter, in the organisation of matter into living structures, and in the social
behaviour of human beings. . . . Every game has its rules that set it apart from the
surrounding world of reality and establish its own standards of value.” [21] The ele-
ments of the real-world systems we want to model can be grouped into classes, and
the number of these elements (and sometimes the spatial distribution and pattern
of the classes) determines the state of the system.

The specific units of the system can be in a finite state (discrete state model),
and the number of units can also be only finite. The future (next moment) state of
each unit is determined by the current state of the elements and the parameters of
the system. We need to store information about the specific units, for which tables
would be appropriate. If the spatial location of the units is irrelevant, we can use
vectors; if the physical proximity of the units is relevant, however, two-dimensional
tables (matrices) would be the better choice. We need to fill out the table based
on some initial distribution, generally randomly. After this the changes, that is,
the events can start.

We can define the future state deterministically, provided that we have a direct
rule for calculation, or randomly. In the latter case, several calculation rules can
be assigned to the specific units, coupled with a calculation rule about how likely
its application should be.

The challenge of translating the parallelism of real-world systems into the se-
quential von Neumann computer can be overcome in two ways:

• Event stepping: we constantly monitor the on-going events. In a given mo-
ment one (or more) event(s) can occur. The question is how we choose that
one event.

194 P. Szlávi, L. Zsakó



• Time stepping: we monitor the events with discrete intervals. In a given
moment every unit of the system is “in an action.” The challenge is to set an
adequate order to the events.

It could be interesting for students of the Logo programming languages to get
acquainted with the simulation environment of NetLogo. [21]

3.4. Tasks for Grades 9 to 10

For this age group, the scientific simulation can extend and cover all subjects of
science, including biology, chemistry, physics, and geography. The obvious question
arises: Which subject should deal with such simulations? Our answer is that
both IT and the specific science subject. To explain IT’s part we should note
that simulation applies general patterns which are independent from the specific
discipline, such is Eigen and Winkler’s classical book [22]. In essence, its realization
is primarily a programming task.

In addition to the simulation of random phenomena, we can also introduce the
simulation of deterministic events too. As a start, it is wise to choose phenomena
whose temporal display is spectacular. A possible example for a very simple task
is to move a point on the screen with a given speed in a given direction, make the
point bounce off at the edges of the screen, due to friction make it get slower and
slower, apply the downward force of gravitation. . . and the instructions can go on.

The idea behind such simulations is that we have a given number of elements,
with a given set of characteristics about their motion. We break up the time into
smaller units and we calculate each element’s state in the next time unit. We delete
the previous position of the elements from the screen and draw them in their new
one. And then comes the next time unit. (This approach can lead us also to
simulation games, where, for example, a player has to catch the point, described
in the previous task, using some kind of tool.)

The operation of models can serve the goal not only of understanding but also
of experimenting (“what if”). [23] This type of simulation, however, belongs more
to the specific discipline, not IT.

The realization of the model, with the help of the computer, is perhaps more
important for this age group than experimenting with the help of the model. Ex-
perimentation becomes much more enjoyable with simulation games.

3.5. Tasks for Grades 11 to 12

It is worth continuing with subject-specific simulations but primarily in classes
where students specialize in the given subject, studying it in higher weekly hours.

For this age group, two subjects, linked much more closely to real-world ap-
plications, can appear in the curriculum: Simulation of transportation systems;
EconoNumbermic simulation.

Interestingly enough, it is very often the case that these grow out of the world
of computer games (skill-based games, car race, strategic games).
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Furthermore, prediction can be introduced as another goal of simulation for
11th and 12nd graders. An example for this is the demographic simulation based
on the Leslie matrix we can see below.

Figure 4: Demographic prediction with the help of the Leslie ma-
trix

The above figure, just like the one below, shows that we can skip illustrating
the “participants” of the simulation.

A very interesting experiment can be shown to this age group: the use of
special software systems, not necessarily developed but applicable for simulation
(take GeoGebra [25, 26] and spreadsheet [27] for example).

The following task, the simulation of the vibration of an object with M weight,
on an “ideal” spring of 0 weight and D elastic modulus, can be easily solved with
spreadsheet. We know the initial deflection (s0), the acceleration of gravity, and
the drag coefficient (d). The simulation’s principle is that if we choose short dT in-
tervals (assuming that the changes of the parameters are negligible during these dT
intervals), the important state variables can be easily calculated and (for example)
a state diagram can be drawn:

F force: F = Fs + Fd + G, Fs = D · s (spring), Fd = k · v (drag
coefficient), G =M · g

a acceleration: a =
F

M

v speed: v = a · dT

s deflection: s = v · dT

s0 initial deflection: s0 =
M · g
D

⇐ M · g = s0 · D

The relevance of modelling is well demonstrated by the fact that there have been
robot programming competitions, organized for high school students, for years now,
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Figure 5: State diagram about spring motion

and even traditional programming competitions embrace more and more simulation
tasks.

At the Imre Gyula Izsák Mathematics–Physics–Informatics Competition, ini-
tiated in 1992, it has been a practice to include, as part of the IT assignment, a
simulation task connected to physics (for example, motion in the gravitational field
– 1995, refraction and reflection – 1996, and so on). [28]

In 2012 even the two major national competitions in IT (Nemes Tihamér OITV,
OKTV) introduced the first simulation tasks (transportation simulations - inter-
section and pedestrian crossing), which, despite their novelty, not only became the
favorites of the competitors, but they were also solved successfully by many). [29]

4. Conclusions

The question might arise why it is the IT classroom that has to make room for all
these, and why it is IT teachers, not physics, biology, literature, etc. teachers, that
have to teach the above described skills. We may answer this question, partially,
with a cultural historical analogy, which we attribute to Győző Kovács:

The Christian religion spread not all by itself, and it is not the Roman Pope or
the 20–30 bishops whose role was the most significant in its dissemination. Instead,
it was thanks to the small chapels and missionaries that the religion, with the related
technological and cultural knowledge, reached every village. The “missionaries” of
the IT applications are the IT teachers; only they can be able to convince the other
95% of the teachers about the possibility and the need to incorporate IT in the wide
range of school subjects.

On the other hand, the majority of the models can be schematized. It means
that we can make model frames (in a more trendy word, templates) that help
shorten and simplify the modelling process. In addition to this, templates can
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enable us to categorize models according to their qualitative behavior; we can
distinguish, for example, specific basic models and basic growth models. [9, 21] We
believe model making, especially computer-based model making, is an important
and clearly IT field; consequently, it belongs in IT education.

Computer simulation can lead to monumental tasks, which often require serious
discipline-related knowledge as well. As a consequence, it facilitates project work
in larger groups, where both IT competence and discipline-specific knowledge are
needed.
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