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Sierpinski-like triangle-patterns in Bi- and
Fibo-nomial triangles

Antal Bege, Zoltán Kátai

Sapientia University, Romania
bege@ms.sapientia.ro
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Abstract

In this paper we introduce the notion of generalized (p-order) Sierpinski-
like triangle-pattern, and we define the Bi- and Fibo-nomial triangles (P∆,
F∆) and their divisibility patterns (P∆(p), F∆(p)), respect to p. We proof that
if p is an odd prime then these divisibility patterns actually are generalized
Sierpinski-like triangle-patterns.

Keywords: Fibonacci sequence, Binomial triangle, Fibonomial triangle, Sier-
pinski pattern

MSC: 11B39, 11B65

1. Introduction

Several authors investigated the divisibility patterns of Bi- and Fibo-nomial trian-
gles. Long (see [1]) showed that, modulo p (where p denotes a prime), Binomial
triangles (also called Pascal’s triangle) have self-similar structures (upon scaling
by the factor p). Holte proofed similar results for Fibonomial triangles (see [2, 3]).
Wells investigated (see [4]) the parallelisms between modulo 2 patterns of Bi- and
Fibo-nomial triangles. In this paper we introduce the notion of generalized (p-
order) Sierpinski-like triangle-pattern, and we proof that if p is an odd prime then
the divisibility patterns, respect to p, of the Bi- and Fibo-nomial triangles are
generalized Sierpinski-like triangle-patterns.

Annales Mathematicae et Informaticae
41 (2013) pp. 5–12

Proceedings of the
15th International Conference on Fibonacci Numbers and Their Applications

Institute of Mathematics and Informatics, Eszterházy Károly College
Eger, Hungary, June 25–30, 2012

5



2. Sierpinsky like binary triangle patterns

Definition 2.1. We define S(a, p, k) as generalized Sierpinsky-like binary triangle
pattern, where: a denotes the side-length of the starting triangle, p denotes the
order of the pattern, and k denotes the level of the pattern. The first level pattern
is an equilateral number triangle with side-lengths equal to a, and all elements
equal to 1 (row i, 1 ≤ i ≤ a, contains i elements equal to 1). We construct the
p-th order (p > 1), (k + 1)-th level pattern from the p-th order, k-th level pattern
(k ≥ 1) as follows:

• We multiply the k-th level triangle 1+2+ . . .+ p times and we arrange them
in p rows (row i, 1 ≤ i ≤ p, will contain i k-th level triangle) in such a way
that each triangle touches its neighbour triangles at a corner.

• The remaining free positions are filled by zeros.

Figure 1 shows the 3rd order, 1st, 2nd and 3rd level patterns, if the starting
side-length is 3. If we choose as starting side-length 4, then we have the patterns
from Figure 2.
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Figure 1: The 3rd order, 1st (a), 2nd (b) and 3rd (c) level patterns,
if the starting side-length is 3.

6 A. Bege, Z. Kátai



1

11

111

1111

1

11

111

1111

10001

110011

1110111

11111111

100010001

1100110011

11101110111

111111111111

1

11

111

1111

10001

110011

1110111

11111111

100010001

1100110011

11101110111

111111111111

1000000000001

11000000000011

111000000000111

1111000000001111

10001000000010001

110011000000110011

1110111000001110111

11111111000011111111

100010001000100010001

1100110011001100110011

11101110111011101110111

111111111111111111111111

1000000000001000000000001

11000000000011000000000011

111000000000111000000000111

1111000000001111000000001111

10001000000010001000000010001

110011000000110011000000110011

1110111000001110111000001110111

11111111000011111111000011111111

100010001000100010001000100010001

1100110011001100110011001100110011

11101110111011101110111011101110111

111111111111111111111111111111111111

Figure 2: The 3rd order, 1st (a), 2nd (b) and 3rd (c) level patterns,
if the starting side-length is 4.

3. Patterns in the prime-factorization of n and Fn

Definition 3.1. For any prime p ≥ 2, we define sequence x(r, p)r≥1 as the sequence
of the powers of p in the prime-factorization of n.

Let ap denote the subscript of the first natural number which is divisible by p.
Evidently, ap = p.

It is trivial that sequence x(r, p)r≥1 can be constructed as follows:

• Step 0: We start with x(r, p)r≥1 = 0

• Step 1: All ap-th elements 0 are increased with 1.

• Step 2: All p-th elements 1 are increased with 1.

• Step k: . . . All p-th elements equal to (k − 1) are increased with 1 . . .

Let nk denote the subscript of the first term of sequence x(r, p)r≥1 that is equal
to a given k ≥ 1. Evidently, nk = pk.

Definition 3.2. The well-known Fibonacci sequence is defined as follows:

F0 = 0, F1 = 1

Fr = Fr−1 + Fr−2, r > 1

Sierpinski-like triangle-patterns in Bi- and Fibo-nomial triangles 7



Definition 3.3. For any prime p ≥ 2, we define sequence y(r, p)r≥1 as the sequence
of the powers of p in the prime-factorization of Fr.

Let bp denote the subscript of the first Fibonacci number which is divisible by
p (restricted period of F (mod p)). Two well-known results (for proofs see [5, 6]):

Lemma 3.4. For any i ≥ 1, bi | r if and only if i | Fr.

Lemma 3.5. Let p be an odd prime and suppose pt divides Fr but pt+1 does not
divide Fr for some t ≥ 1. If p does not divide v then pt+1 divides Fr·v·p but pt+2

does not divide Fr·v·p.

A well-known conjecture in this subject:
Conjecture. For any prime p, Fbp is divisible by p exactly once.

Assuming the validity of the above conjecture an immediate consequence of
lemmas 3.4 and 3.5 is that sequence y(r, p)r≥1 can be constructed as follows:

• Step 0: We start with y(r, p)r≥1 = 0

• Step 1: All bp-th elements 0 are increased with 1.

• Step 2: All p-th elements 1 are increased with 1. (for p = 2 all p-th elements
1 are increased with 2)

• Step k: . . . All p-th elements appeared in step (k − 1) are increased with 1
. . .

Let mk denote the subscript of the first term of sequence y(r, p)r≥1 that is equal
to a given k ≥ 1. Evidently, m1 = bp.

Two immediate properties of sequence y are:
Property 1. Sequence y is characterized by several symmetry points: terms from
symmetric positions are identical.

yr = yj·mk−r = yj·mk+r = yp·mk−r, for any 0 < r < mk, j = 1 . . . (p− 1).

yr = yj·(mk/p)−r = yj·(mk/p)+r = ymk−r, for any 0 < r <
mk

p
, j = 1 . . . (p− 1).

Proof. Trivially results from Lemmas 3.4 and 3.5.

Property 2. For a fixed d the sum of the terms of a subsequence of length d is
minimal for the leftmost (starting with index 1) subsequence and maximal for the
rightmost (ending with index mk) one. We define

v(i, d) = yi+1−d + . . .+ yi, d = 1 . . .mk, i = d . . .mk,

u(i, d) = yi + . . .+ yi+d−1, d = 1 . . .mk, i = 1 . . . (mk + 1− d).

We have for a fixed d

8 A. Bege, Z. Kátai



a) v(i, d) < v(mk, d), for any i = d . . .mk − 1

b) u(1, d) ≤ u(i, d), for any i = 2 . . . (mk + 1− d)

Proof. (a): According to the way sequence y was built we have:

• Step 0: All terms are 0 and consequently v(i, d) = v(mk, d), for any i =
d . . .mk − 1.

• Steps 1 . . . (k − 1): Since the increasing operations take place in equidistant
positions, and the term from position mk is increased in each step, we have
v(i, d) ≤ v(mk, d), for any i = d . . .mk − 1.

• Step k: Since in this step only the term from position mk is increased, we
have v(i, d) < v(mk, d), for any i = d . . .mk − 1.

Proof. (b): According to the way sequence y was built we have:

• Step 0: All terms are 0 and consequently u(1, d) = u(i, d), for any i =
2 . . . (mk + 1− d).

• Steps 1 . . . k: The number of equidistant increases along a fixed length se-
quence decreases as the position of the first increase increases. Since in each
step the position of the first increase (if it exists) of the leftmost subsequence
of length d is maximal (relative to subsequences that start in positions i > 1),
we have u(1, d) ≤ u(i, d), for any i = 2 . . . (mk + 1− d).

Note that properties 1 and 2 hold even we do not assume the validity of the
above conjecture. Since sequences x and y were constructed in a similar way,
Lemmas 3.4 and 3.5 hold for sequence x too (mk has to be replaced by nk).

4. Bi- and Fibo-nomial triangles

Definition 4.1. We define the r rows height Binomial triangle (also called Pas-
cal triangle) (P∆(r)) as an equilateral number triangle with rows indexed by i =
0 . . . (r − 1), the elements of rows indexed by j = 0 . . . i, and term (i, j) equal to:

P∆[i, j] =

i∏
i+1−j

t

j∏
1
t

Changing t by Ft in the definition of Binomial triangle we receive the corre-
sponding Fibonomial triangle.

Definition 4.2. We define the r rows height Fibonomial triangle (F∆(r)) as an
equilateral number triangle with rows indexed by i = 0 . . . (r − 1), the elements of
rows indexed by j = 0 . . . i, and term (i, j) equal to

Sierpinski-like triangle-patterns in Bi- and Fibo-nomial triangles 9



F∆[i, j] =

i∏
i+1−j

Ft

j∏
1
Ft

Definition 4.3. We also define the mod p binary Bi- and Fibo-nomial triangles
(P∆(p), F∆(p)) as follows: term (i, j) in the binary triangle is 0, if p divide term
(i, j) in the corresponding Bi- or Fibo-nomial triangle, otherwise it is 1.

P∆(p)[i, j] =

{
0 if p | P∆(p)[i, j]
1 otherwise

F∆(p)[i, j] =

{
0 if p | F∆(p)[i, j]
1 otherwise

Figures 1 and 2 (triangles c) shows the n3 = 27 and m3 = 36 row height mod 3
binary Bi- and Fibo-nomial triangles, respectively.

5. Main result

Lemma 5.1. Considering triangle F∆(p) (p an odd prime), for any i (0 ≤ i < mk)
segments F∆(p)[i, 0 . . . i], F∆(p)[mk+ i, 0 . . . i] and F∆(p)[mk+ i,mk . . . (mk+ i)] are
identical.

Proof. For i = 0 the validity of this lemma results trivially from the definition of
F∆(p). In the case of 0 < i < mk terms F∆(p)[i, j] and F∆(p)[mk + i, j] (j = 1 . . . i)
are identical since the denominators of terms F∆(p)[i, j] and F∆(p)[mk + i, j] are
identical, and the exponents of p in the factorizations of the numerators of these
terms are also identical. These exponents,

∑mk+r
mk+r+1−i xt and

∑r
r+1−i xt , are

equals since ymk+j = yj for any j = 1 . . . r. Since both row i and row mk + i are
symmetrical, it results that the segments of the first i + 1 and last i + 1 elements
of row mk + i are identical.

Lemma 5.2. Considering triangle F∆(p) (p an odd prime), for any i and j, where
0 ≤ i < mk and i+ 1 ≤ j < mk, term F∆(p)[mk + i, j] equals zero.

Proof. With respect to the exponent of p in the factorizations of term F∆[mk+ i, j]
we have

mk+r∑

mk+r+1−i

xt −
i∑

1

xt =

mk∑

mk+r+1−i

xt −
i∑

r+1

xt > 0.

The equality results from Property 1 and the inequality results from Property 2.b.
Consequently, F∆[mk + i, j] is dividable by p.

Lemma 5.3. Considering triangle F∆(p) (p an odd prime), segments F∆(p)[mk +
i, 0 . . .mk + i] and F∆(p)[f ·mk + i, g . . . (g+mk + i)], where 0 ≤ i < mk, 1 < f < p
and 0 ≤ g < f, are identical.

10 A. Bege, Z. Kátai



Proof. With respect to the exponent of p in the factorizations of term F∆[f ·mk +
i, g + j], where 0 ≤ j ≤ mk + i, we have

f ·mk+r∑

f ·mk+r+1−(g·mk+i)

xt −
g·mk+i∑

1

xt

=

f ·mk+r−g·mk∑

f ·mk+r+1−(g·mk+i)

xt +

f ·mk∑

f ·mk+r−g·mk+1

xt +

f ·mk+r∑

f ·mk+1

xt −
g·mk∑

1

xt −
g·mk+i∑

g·mk+1

xt

=

f ·mk+r−g·mk∑

f ·mk+r+1−(g·mk+i)

xt +

f ·mk∑

f ·mk+r−g·mk+1

xt +

(f−g)·mk+r∑

(f−g)·mk+1

xt −
g·mk∑

1

xt −
g·mk+i∑

g·mk+1

xt

=

f ·mk+r−g·mk∑

f ·mk+r+1−(g·mk+i)

xt +

f ·mk∑

(f−g)·mk+1

xt −
g·mk∑

1

xt −
g·mk+i∑

g·mk+1

xt

=

f ·mk+r−g·mk∑

f ·mk+r+1−(g·mk+i)

xt −
g·mk+i∑

g·mk+1

xt

=

(f−g)·mk+r∑

(f−g)·mk+r+1−i

xt −
g·mk+i∑

g·mk+1

xt =

mk+r∑

mk+r+1−i

xt −
i∑

1

xt.

Which equals to the exponent of p in the factorizations of term F∆[mk + i, j].

Theorem 5.4. For odd prime p, P∆(p)(nk) is identical with S(n1, p, k).

The proof of this theorem follows the same train of thought as the next one.

Theorem 5.5. For odd prime p, F∆(p)(mk) is identical with S(m1, p, k).

Proof. We use mathematical induction. For k = 1 it is trivial that F∆(p)(1) is
identical with S(m1, p, 1). Assuming that F∆(p)(k) is identical with S(m1, p, k),
we prove that F∆(p) (k + 1) is identical with a S(m1, p, k + 1). Lemmas 5.1 and
5.2 show that rows [mk . . . 2 ·mk) follow the Sierpinski pattern. Lemma 5.3 shows:
since segments [j ·mk . . . (j+1)mk), (j = 2 . . . (p−1)) can be viewed as translations
of segment [mk . . . 2 ·mk), these also follow the Sierpinski pattern.
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Abstract

In Proofs that Really Count [2], Benjamin and Quinn have used “square
and domino tiling” interpretation to provide tiling proofs of many Fibonacci
and Lucas formulas. We explore this approach in order to provide tiling
proofs of some generalized Fibonacci and Lucas identities.

Keywords: Generalized Fibonacci and Lucas numbers; Tiling proofs.

MSC: 05A19, 11B39, 11B37.

1. Introduction

Let Un and Vn denote the generalized Fibonacci and Lucas numbers defined, re-
spectively, by

Un = aUn−1 + bUn−2 (n ≥ 2) , (1.1)

with the initial conditions U0 = 1, U1 = a, and by

Vn = aVn−1 + bVn−2 (n ≥ 2) , (1.2)

with the initial conditions V0 = 2, V1 = a, where a and b are non-negative integers.
In [1], the generalized Fibonacci number Un is interpreted as the number of

ways to tile a 1×n board with cells labeled 1, 2, . . . , n using colored squares (1× 1
tiles) and dominoes (1 × 2 tiles), where there are a different colors for squares
and b different colors for dominoes. In fact, there is one way to tile a empty board
(U0 = 1), since a board of length one can be covered by one colored square (U1 = a),
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so this satisfy the initial Fibonacci conditions. Now for n ≥ 2, if the first tile is
a square, then there are a possibilities to color the square and Un−1 ways to tile
1 × (n − 1) board. If the first tile is a domino, then there are b choices for the
domino and Un−2 ways to tile 1× (n− 2) board. This gives the relation (1.1).

Figure 1: Tilings of length 1, 2 and 3 using squares and dominoes

Similarly, the generalized Lucas numbers count the number of ways to tile a
circular 1 × n board with squares and dominoes (termed 1 × n bracelet). We call
a 1 × n bracelet in-phase if there is no domino occupying cells n and 1, and out-
of phase if there is a domino occupying cells n and 1. The empty bracelet can
be either in-phase or out-of phase, then V0 = 2. Since a 1 × 1 bracelet can be
tiled only by a square V1 = a. For n ≥ 2, a 1 × n bracelet can be obtained from
a 1 × (n − 1) bracelet by adding a square to the left of the first tile or from a
1× (n− 2) bracelet by adding a domino to the left of the first tile. Then for n ≥ 2
we have the relation (1.2).

Benjamin and Quinn, have used this approach to provide tiling proofs of many
Fibonacci relations. Our goal is to use this interpretation to provide tiling proofs
for the following two identities:

Un −
m−1∑

k=0

(
n− k

k

)
bkan−2k = bm

∑

0≤j≤k≤n−2m
Un−k−2m

ak

k!

[
k

j

]
mj , (1.3)

where
[
k
j

]
are the Stirling numbers of the first kind.

2Un+m−1 = VmUn−1 + VnUm−1. (1.4)

To prove these identities we need the following Lemma.

Lemma 1.1 ([2]). The number of 1×n tilings using exactly k colored dominoes is
(
n− k

k

)
bkan−2k, (k = 0, 1, . . . , bn/2c) . (1.5)

2. Combinatorial identities

Our first identity generalizes identity (1) given in [3]. It counts the number of ways
to tile a 1× (n+ 2) board with at least one colored domino

Un+2 − an+2 = b
n∑

k=0

Uka
n−k (n ≥ 0) . (2.1)
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Note that for a = b = 1, relation (2.1) gives the well known Lucas identity

fn+2 − 1 =
n∑

k=0

fk,

where fn is the shifted Fibonacci number defined recurrently by

fn = fn−1 + fn−2 (n ≥ 2) , (2.2)

with the initials f0 = f1 = 1.

The following identity counts the number of 1×n tilings with at least m colored
dominoes.

Identity 1. For m ≥ 1 and n ≥ 2m, we have

Un −
m−1∑

k=0

(
n− k

k

)
bkan−2k = bm

∑

0≤j≤k≤n−2m
Un−k−2m

ak

k!

[
k

j

]
mj .

Proof. The left hand side counts the number of tilings of length n excluding the
tilings with exactly 0, 1, . . . ,m−1 dominoes. Now, let k+1, k+2 (0 ≤ k ≤ n− 2m)
be the position of the m-th (from the right to the left) domino (see figure 2), then
there are Uk ways to tile the first k cells, b ways to color the domino at position
k+1, k+2, and there are

(
n−m−k−1

m−1
)
bm−1an−2m−k ways to tiles cells from k+3 to

n with exactly m−1 dominoes. Hence there are
(
n−m−k−1

m−1
)
Ukb

man−2m−k possible
ways to tile an 1 × n board with the m-th domino at the positions k + 1, k + 2.
Summing over all 0 ≤ k ≤ n− 2m, we obtain

bm
n−2m∑

k=0

Uka
n−k−2m

(
n− k −m− 1

m− 1

)
= bm

n−2m∑

k=0

Un−k−2mak
(
k +m− 1

m− 1

)
. (2.3)

Now, we express the binomial coefficient in terms of Stirling numbers of the first
kind:

(
k+m−1
m−1

)
= (m+k−1)···(m+1)m

k! =
∑k

j=0

[
k
j

]
mj

k! , this gives the right hand side
of the identity.

1 2 . . . k+1 k+2 . . . n

Figure 2: A 1× n tiling with the m-th domino at cells k+1, k+2

Remark 2.1. We can consider the intermediate identity (2.3), as given in the proof
without using Stirling numbers.
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Corollary 2.2. Let a = b = 1, using relation (2.3) we have for m = 1, 2, 3
respectively

n∑

k=0

fk = fn+2 − 1 (E. Lucas, 1878)

n∑

k=0

kfk = nfn+2 − fn+3 + 3 (Brother. U. Alfred, 1965)

n∑

k=0

k2fk = (n2 + 2)fn+2 − (2n− 3)fn+3 − 13 (Brother. U. Alfred, 1965)

Now, we give tiling proof for the relation (1.4), for an algebraic proof, see for
instance (V16a, pp 26, [5]).

Identity 2. For m ≥ 1 and n ≥ 1, we have

2Un+m−1 = VmUn−1 + VnUm−1.

Proof. The left hand side counts the number of ways to tile a 1×(n+m−1) board.
For the right hand side we suppose that we have a 1× (n+m− 1) tiling. There is
two cases:

Case 1. The 1 × (n + m − 1) tiling is breakable at m-th cell (there is not a
domino covering positions m and m+1), then the 1×(n+m−1) tiling can be split
into a 1×m tiling and a 1×(n−1) tiling. Now we attach the right side of the m-th
cell to the left side of the first cell of the 1×m tiling, thus we form a in-phase 1×m
bracelet. We denote the number of ways to tile an in-phase m-bracelet by V ′m.

Case 2. The 1 × (n +m − 1) tiling is not breakable at the m-th cell (there is
a domino covering positions m and m+ 1), then it is breakable at (m− 1)-th cell.
In this case, we create a 1× (m− 1) tiling and an out-of phase 1× n bracelet. We
denote the number of ways to tile an out-phase 1× n bracelet by V ′′n .

Now, we apply the same approach for the n-th cell, by considering either 1 ×
(n+m− 1) tiling is breakable at n-th cell or not. So, we obtain

2Un+m−1 = V ′mUn−1 + Um−1V
′′
n + V ′nUm−1 + Un−1V

′′
m

= Un−1(V
′
m + V ′′m) + Um−1(V

′
n + V ′′n ).

We conclude by the fact that V ′m + V ′′m = Vm and V ′n + V ′′n = Vn.

Acknowledgements. The authors thank the anonymous referee for the through-
out reading of the manuscript and valuable comments.
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Abstract

The Problem B-1 in the first issue of the Fibonacci Quarterly is the start-
ing point of an extensive exploration of conditions for factorizations of several
types of sums involving Fibonacci and Lucas numbers.

Keywords: Fibonacci number, Lucas number, factor, sum
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1. Introduction

Recall the Problem B-1 proposed by I. D. Ruggles of San Jose State College on the
page 73 in the initial issue of the journal Fibonacci Quarterly in February 1963.

Problem B-1. Show that the sum of twenty consecutive Fibonacci numbers is
divisible by F10.

In the third issue of this first volume on pages 76 and 77 there is a solution
using induction by Marjorie R. Bicknell also of San Jose State College.

With a little help from computers one can easily solve the above problem (using
Maple V or Mathematica) and discover many other similar results. It is the purpose
of this paper to present some of these discoveries. The proofs of all our claims could
be done by induction. We shall leave them as the challenge to the readers.

There are many nice summation formulas for Fibonacci and Lucas numbers in
the literature (see, for example, [1], [2], [3], [4] and [5]). We hope that the readers
will find the ones that follow also interesting.
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2. Sums of 4 i+ 4 consecutive Fibonacci numbers

In the special case (for i = 4) the following theorem provides another solution of
the Problem B-1. It shows that the sums

∑4i+3
j=0 Fk+j have the Fibonacci number

F2i+2 as a common factor.

Theorem 2.1. For integers i ≥ 0 and k ≥ 0, the following identities hold:

4i+3∑

j=0

Fk+j = F2i+2 Lk+2i+3 = Fk+4i+5 − Fk+1 = F2i Lk+2i+5 + Lk+3 =

L2i+1 Fk+2i+4 + Fk+2 = L2i Fk+2i+5 − 3Fk+3 = F2i+1 Lk+2i+4 − Lk+2.

The other identities in Theorem 1 have some importance in computations be-
cause they show that in order to get the big sum we need to know initial terms and
two terms in the middle. The second representation is not suitable as the number
Fk+4i+5 is rather large.

3. The alternating sums

It is somewhat surprising that the (opposites of the) alternating sums of 4i+ 4
consecutive Fibonacci numbers also have F2 i+2 as a common factor. Hence, the
alternating sums of twenty consecutive Fibonacci numbers are all divisible by F10.

Theorem 3.1. For integers i ≥ 0 and k ≥ 0, the following identities hold:

−
4i+3∑

j=0

(−1)j Fk+j = F2i+2 Lk+2i = Fk+4i+2 − Fk−2 = L2i Fk+2i+2 − 3Fk

= F2i+1 Lk+2i+1 − Lk−1 = F2i−1 Lk+2i+3 − 2Lk+1 = L2i−1 Fk+2i+3 + 4Fk+1.

4. Sums of 4 i+ 2 consecutive Fibonacci numbers

Similar results hold also for the (alternating) sums of 4 i+ 2 consecutive Fibonacci
numbers. The common factor is the Lucas number L2i+1. Hence, all (alternating)
sums of twenty-two consecutive Fibonacci numbers are divisible by L11.

Theorem 4.1. For integers i ≥ 0 and k ≥ 0, the following identities hold:

4i+1∑

j=0

Fk+j = L2i+1 Fk+2i+2 = Fk+4i+3 − Fk+1 = L2i−1 Fk+2i+4 + Lk+3

= L2i+2 Fk+2i+1 − Lk = F2i+3 Lk+2i − 3Fk−1 = F2i+5 Lk+2i−1 − 7Fk−3.
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−
4i+1∑

j=0

(−1)j Fk+j = L2i+1 Fk+2i−1 = Fk+4i − Fk−2 = F2i−1 Lk+2i+1 − 3Fk

= L2i Fk+2i − Lk−1 = L2i−2 Fk+2i+2 − 2Lk+1 = F2i−2 Lk+2i+2 + 4Fk+1.

5. Sums with 4 i+ 1 and 4 i+ 3 terms

One can ask about the formulas for the (alternating) sums of 4 i+ 1 and 4 i+ 3
consecutive Fibonacci numbers. The answer provides the following theorem. These
sums do not have common factors. However, they are sums of two familiar type of
products (like F2i Fk+2i+3 and F2i+1 Fk+2i).

Theorem 5.1. For integers i ≥ 0 and k ≥ 0, the following identities hold:

4i∑

j=0

Fk+j = F2i Fk+2i+3 + F2i+1 Fk+2i =

F2i Lk+2i + L2i+1 Fk+2i = Fk+4i+2 − Fk+1 = L2i+2 Fk+2i − 2Fk

= F2i−1 Lk+2i+3 − 2Fk+3 = L2i+1 Fk+2i+1 − Fk−1.

4i∑

j=0

(−1)j Fk+j = F2i−1 Fk+2i−1 + F2i+2 Fk+2i−2 =

L2i+1 Fk+2i − F2i Lk+2i = Fk+4i−1 + Fk−2 = L2i−1 Fk+2i + 2Fk.

4i+2∑

j=0

Fk+j = F2i+2 Fk+2i+4 − F2i+1 Fk+2i+1 = Fk+4i+4 − Fk+1 =

L2i+1 Fk+2i+3 + Fk = L2i+2 Fk+2i+2 − Fk+2 = F2i+2 Lk+2i+2 − Fk−1.

4i+2∑

j=0

(−1)j Fk+j = F2i+1 Fk+2i+1 + F2i+2 Fk+2i−2 =

L2i+3 Fk+2i+1 − 2F2i+2 Lk+2i = Fk+4i+1 + Fk−2 = F2i Lk+2i+1 + 2Fk.

6. Sums of consecutive Lucas numbers

The above results suggests to consider many other sums especially when they are
products or when they have very simple values.
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The first that come to mind are the same sums of consecutive Lucas numbers.
A completely analogous study could be done in this case. Here we only give a
sample of two such identities.

4i+3∑

j=0

Lk+j = 5F2i+2Fk+2i+3,

4i+1∑

i=0

Lk+j = L2i+1Lk+2i+2.

7. Sums of consecutive products

Let us now consider sums of consecutive products of consecutive Fibonacci num-
bers. For an even number of summands the Fibonacci number F2i+2 is a common
factor. Let A = (−1)k.

2i∑

j=0

Fk+j Fk+j+1 = L2i+1L2k+2i+1−A
5 ,

2i+1∑

j=0

Fk+j Fk+j+1 = F2i+2F2k+2i+2.

The same for the Lucas numbers gives the following identities:

2i∑

j=0

Lk+j Lk+j+1 = L2i+1L2k+2i+1 +A,

2i+1∑

j=0

Lk+j Lk+j+1 = 5F2i+2F2k+2i+2.

We shall get similar identities in the two cases when Fibonacci and Lucas num-
bers both appear in each summand on the left hand side.




2i∑

j=0

Fk+j Lk+j+1


+A =




2i∑

j=0

Lk+j Fk+j+1


−A = L2i+1F2k+2i+1,

2i+1∑

j=0

Fk+j Lk+j+1 =
2i+1∑

j=0

Lk+j Fk+j+1 = F2i+2L2k+2i+2.

8. Sums of squares of consecutive numbers

Our next step is to consider sums of squares of consecutive Fibonacci and Lucas
numbers. Note that once again the summation of even and odd number of terms
each lead to a separate formula. In fact, we consider a more general situation when
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multiples of a fixed number are used as indices of the terms in the sum. Only the
parity of this number determines the form of the formula for the sum.

Theorem 8.1. For all integers i, k ≥ 0 and v ≥ 1, we have

2i∑

j=0

F 2
k+2vj =

F2v(2i+1)L2k+4vi

5F2v
− 2A

5 ,

2i+1∑

j=0

F 2
k+2vj =

F4v(i+1)L2k+2v(2i+1)

5F2v
− 4A

5 ,

2i∑

j=0

L2
k+2vj =

F2v(2i+1)L2k+4vi

F2v
+ 2A,

2i+1∑

j=0

L2
k+2vj =

F4v(i+1)L2k+2v(2i+1)

F2v
+ 4A,

Theorem 8.2. For all integers i, k ≥ 0 and v ≥ 0, we have

2i∑

j=0

F 2
k+(2v+1)j =

L(2i+1)(2v+1)L2k+2i(2v+1)

5L2v+1
− 2A

5 ,

2i+1∑

j=0

F 2
k+(2v+1)j =

F2(i+1)(2v+1)F2k+(2i+1)(2v+1)

L2v+1
.

2i∑

j=0

L2
k+(2v+1)j =

L(2i+1)(2v+1)L2k+2i(2v+1)

L2v+1
+ 2A,

2i+1∑

j=0

L2
k+(2v+1)j =

5F2(i+1)(2v+1)F2k+(2i+1)(2v+1)

L2v+1
.

In particular, for v = 0 and i = 9, we conclude that the sums of squares of
twenty consecutive Fibonacci numbers are divisible by F20 and the same sums of
Lucas numbers by 5F20.

9. More sums of products

Here are some additional sums that are products or very close to the products.

2i∑

j=1

Fj Fk+j = F2i−2 Fk+2i+3 + Fk+3 = F2i Fk+2i+1,
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2i+1∑

j=1

Fj Fk+j = F2i Fk+2i+3 + Fk+1 = F2i+2 Fk+2i+1.

2i∑

j=0

Lj Lk+j = Lk+4i+1 + Lk−2 = F2i+1 Lk+2i+1 + F2i+2 Lk+2i−2,

2i+1∑

j=0

Lj Lk+j = Lk+4i+3 − Lk−1 = 5F2i+2 Fk+2i+1.

2i∑

j=0

Lj Fk+j = F2i+2 Lk+2i−1 + Fk−1 = F2i Lk+2i+1 + 2Fk =

F2i+1 Lk+2i−2 + L2i+2 Fk+2i−2 = F2i Lk+2i−1 + L2i Fk+2i,

2i+1∑

j=0

Lj Fk+j =
2i+1∑

j=1

Fj Lk+j = F2i Lk+2i+3 + Lk+1 =

L2i+1 Fk+2i+2 + Fk = F2i+2 Lk+2i+1.

2i∑

j=1

Fj Lk+j = F2i+2 Lk+2i−1 − Lk−1 = L2i+1 Fk+2i − Fk =

F2i+1 Lk+2i − Lk = L2i Fk+2i+1 − 2Fk+1 = F2i Lk+2i+1,

10. Sums of products of three numbers

In this final section we shall consider two sums of three consecutive Fibonacci and
Lucas numbers when once again the common factor appears.

Theorem 10.1. Let u be either 4i+ 1 or 4i+ 3. For all integers i ≥ 0 and k ≥ 0,
we have

u∑

j=1

Fk+j Fk+2j Fk+3j = Fu+1

[
P
4 − Q−AS

10 − AR
6

]
,

u∑

j=1

Lk+j Lk+2j Lk+3j = 5Fu+1

[
Q−2P

4 − AR
2 + AS

6

]
,
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with

P = F3k+20i+10 + F3k+12i+6 + F3k+4i+2, R = Fk+12i+12 + 4Fk+4i+4,

S = Lk+12i+12 + 2Lk+4i+4, Q = L3k+20i+10 + L3k+12i+6 + L3k+4i+2,

if u = 4i+ 1 and

P = F3k+20i+20 + F3k+12i+12 + F3k+4i+4, R = Fk+12i+12 + 4Fk+4i+4,

S = Lk+12i+12 + 2Lk+4i+4, Q = L3k+20i+20 + L3k+12i+12 + L3k+4i+4,

if u = 4i+ 3.
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Abstract

The Jacobsthal recurrence relation is extended to higher order recurrence
relations and the basic list of identities provided by A. F. Horadam [10] is
expanded and extended to several identities for some of the higher order cases.
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1. Introduction

Horadam, in [10], exhibited a plethora of identities for the second order Jacobsthal
and Jacobsthal-Lucas numbers. He then went on to explore their relationships and
those of a variety of associated and representative sequences. The aim here is to
present some additional identities and analogous relationships for numbers arising
from some higher order Jacobsthal recurrence relations.

Obtaining properties by extending the Jacobsthal sequence to the third and
higher orders depends on the choice of initial conditions. For example, this was
done in [3] by taking all of the conditions to be zero, except the last, which was
assigned the value 1. The procedure here will be to extend by using other initial
values.
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2. The second order Jacobsthal case

The second-order recurrence relations for the Jacobsthal numbers,Jn, and for the
Jacobsthal-Lucas numbers, jn, and a few of their relationships are given here for
reference. Namely,
Recurrence relations

Jn+2 = Jn+1 + 2Jn, J0 = 0, J1 = 1, n ≥ 0

jn+2 = jn+1 + 2jn, j0 = 2, j1 = 1, n ≥ 0

Table of values

n 0 1 2 3 4 5 6 7 8 9 10 . . .
Jn 0 1 1 3 5 11 21 43 85 171 341 . . .
jn 2 1 5 7 17 31 65 127 257 511 1025 . . .

Binet forms
Jn =

2n − (−1)n
3

and jn = 2n + (−1)n

Simson/Cassini/Catalan identities
∣∣∣∣
Jn+1 Jn
Jn Jn−1

∣∣∣∣ = (−1)n2n−1,
∣∣∣∣
jn+1 jn
jn jn−1

∣∣∣∣ = 9(−1)n−12n−1

Ordinary generating functions

∞∑

k=0

Jkx
k =

x

1− x− 2x2

∞∑

k=0

jkx
k =

2− x
1− x− 2x2

Exponential generating functions

∞∑

k=0

Jk
xk

k!
=
e2x − e−x

3

∞∑

k=0

jk
xk

k!
= e2x + e−x

Although these are not given in [10] the exponential generating functions are
easily obtained using the Maclaurin series for the exponential function and can be
useful in establishing identities. For example, using the method provided in [2, 12,
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p. 232ff] the following can be obtained. Let A = ex and B =
eαx − eβx
α− β where

α = 2 and β = −1. Then

B =
1

α− β

[
(α− β)x

1!
+

(α2 − β2)x2

2!
+ · · ·

]
=
∞∑

k=0

Jk
xk

k!
.

Using the well known double sum identity
∞∑

n=0

∞∑

k=0

F (k, n) =
∞∑

n=0

n∑

k=0

F (k, n− k)

found in [2, 15, p. 56] AB can be written as

AB =

∞∑

n=0

xn

n!

∞∑

k=0

Jk
xk

k!
=

∞∑

n=0

∞∑

k=0

Jk
xn+k

n!k!
=

∞∑

n=0

n∑

k=0

Jk
x(n−k)+k

(n− k)!k!

=

∞∑

n=0

(
n∑

k=0

(
n

k

)
Jk

)
xn

n!
.

In addition AB can also be written as

AB =
e(α+1)x − e(β+1)x

α− β =
e(2+1)x − e(−1+1)x

2− (−1) =
e3x − 1

3
=

1

3
· 0 +

∞∑

n=1

3n−1
xn

n!

and so it follows that
n∑

k=0

(
n

k

)
Jk = 3n−1.

Similarly with B =
eαx − eβx
α− β and A = e−3x it follows that

n∑

k=0

(
n

k

)
(−2)n−1Jk = (−3)n−1,

and if B = eαx+βx then
n∑

k=0

(
n

k

)
Jkjn−k = 2nJn.

Other summation identities can be obtained in a similar fashion.

3. The third order Jacobsthal case

First we consider extending the Jacobsthal and Jacobsthal-Lucas numbers to the
third order, denoted as J (3)

n and j(3)n respectively, with the following initial condi-
tions:
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Recurrence relations

J
(3)
n+3 = J

(3)
n+2 + J

(3)
n+1 + 2J (3)

n , J
(3)
0 = 0, J

(3)
1 = 1, J

(3)
2 = 1 n ≥ 0.

j
(3)
n+3 = j

(3)
n+2 + j

(3)
n+1 + 2j(3)n , j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5 n ≥ 0.

Table of values

n 0 1 2 3 4 5 6 7 8 9 10 . . .
J
(3)
n 0 1 1 2 5 9 18 37 73 146 293 . . .
j
(3)
n 2 1 5 10 17 37 74 145 293 586 1169 . . .

Note that we extend to 3rd order using initial conditions {0, 1, 1} in the spirit of
extending the Fibonacci initial conditions {0, 1} to Tribonacci {0, 1, 1} and those
initial conditions for the Jacobsthal-Lucas numbers in a natural way from the
second order case.
Binet forms

Using standard techniques for solving recurrence relations, the auxiliary equa-
tion, and its roots are given by

x3 − x2 − x− 2 = 0; x = 2, and x =
−1± i

√
3

2
.

Note that the latter two are the complex conjugate cube roots of unity. Call them
ω1 and ω2, respectively. Thus the Binet formulas can be written as

J (3)
n =

2

7
2n − 3 + 2i

√
3

21
ωn1 −

3− 2i
√
3

21
ωn2 ,

and

j(3)n =
8

7
2n +

3 + 2i
√
3

7
ωn1 +

3− 2i
√
3

7
ωn2 . (3.1)

Simson’s identities
∣∣∣∣∣∣∣

J
(3)
n+2 J

(3)
n+1 J

(3)
n

J
(3)
n+1 J

(3)
n J

(3)
n−1

J
(3)
n J

(3)
n−1 J

(3)
n−2

∣∣∣∣∣∣∣
= −2n−1,

∣∣∣∣∣∣∣

j
(3)
n+2 j

(3)
n+1 j

(3)
n

j
(3)
n+1 j

(3)
n j

(3)
n−1

j
(3)
n j

(3)
n−1 j

(3)
n−2

∣∣∣∣∣∣∣
= −9 · 2n+1. (3.2)

The identities above can be proved using mathematical induction. As an ex-
ample an inductive proof for the Jn case is provided: For n = 2, 3, 4 and 5, the
determinants are routinely computed to be −2,−4,−8,−16, respectively. So we
surmise the general case to be as given in (3.2). Assuming the nth case is true
and expanding that determinant by the 3rd column and expanding the (n + 1)th

determinant by the 1st column yields the following:
∣∣∣∣∣∣∣

J
(3)
n+3 J

(3)
n+2 J

(3)
n+1

J
(3)
n+2 J

(3)
n+1 J

(3)
n

J
(3)
n+1 J

(3)
n J

(3)
n−1

∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣

J
(3)
n+2 J

(3)
n+1 J

(3)
n

J
(3)
n+1 J

(3)
n J

(3)
n−1

J
(3)
n J

(3)
n−1 J

(3)
n−2

∣∣∣∣∣∣∣
+ C,
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where

C = (J
(3)
n+2 + J

(3)
n+1)

∣∣∣∣∣
J
(3)
n+1 J

(3)
n

J
(3)
n J

(3)
n−1

∣∣∣∣∣− (J
(3)
n+1 + J (3)

n )

∣∣∣∣∣
J
(3)
n+2 J

(3)
n+1

J
(3)
n J

(3)
n−1

∣∣∣∣∣

+ (J (3)
n + J

(3)
n−1)

∣∣∣∣∣
J
(3)
n+2 J

(3)
n+1

J
(3)
n+1 J

(3)
n

∣∣∣∣∣ .

By expanding C it is easy to see that the expression is 0 and so the conjecture is
valid.
Ordinary generating functions

The ordinary generating functions are obtained by standard methods [12, p
237ff] as briefly illustrated here.

Let g(x) =
∑∞
k=0 Jkx

k and h(x) =
∑∞
k=0 jkx

k. Compute (1−x−x2−2x3)g(x)
and (1 − x − x2 − 2x3)h(x) and apply the initial conditions for the third order
Jacobsthal and Jacobsthal-Lucas numbers, respectively, to obtain the following
generating functions.

∞∑

k=0

J
(3)
k xk =

x

1− x− x2 − 2x3
.

∞∑

k=0

jkx
k =

2− x+ 2x2

1− x− x2 − 2x3
.

Exponential generating functions
The exponential generating functions can be obtained from the Maclaurin series

for the exponential function as follows. Note that

1

21

(
6e2x − (3 + 2i

√
3)eω1x − (3 + 2i

√
3)eω2x

)
=

∞∑

k=0

1

21

(
6(2k)− (3 + 2i

√
3)ωk1 − (3 + 2i

√
3)ωk2

) xk
k!

=

∞∑

k=0

Jk
xk

k!
.

Also, since

(3 + 2i
√
3)eω1x + (3 + 2i

√
3)eω2x = e−

1
2x
(
(3 + 2i

√
3)e

√
3

2 ix + (3 + 2i
√
3)e

√
3

2 ix
)

= e−
1
2x

(
6 cos

√
3x

2
+ 4
√
3 sin

√
3x

2

)
,

the exponential generating function for the 3rd order Jacobsthal numbers becomes

∞∑

k=0

J
(3)
k

xk

k!
=

1

21

(
6e2x + e−

1
2x

(
6 cos

√
3x

2
+ 4
√
3 sin

√
3x

2

))
.
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Similarly the exponential generating function for the 3rd order Jacobsthal-Lucas
numbers can be written as

∞∑

k=0

j
(3)
k

xk

k!
=

1

7

(
8e2x + e−

1
2x

(
6 cos

√
3x

2
+ 4
√
3 sin

√
3x

2

))
.

4. Additional identities for third order Jacobsthal
numbers

Summation formulas

n∑

k=0

J
(3)
k =

{
J
(3)
n+1 if n 6≡ 0 mod 3

J
(3)
n+1 − 1 if n ≡ 0 mod 3

,

n∑

k=0

j
(3)
k =

{
j
(3)
n+1 − 2 if n 6≡ 0 mod 3

j
(3)
n+1 + 1 if n ≡ 0 mod 3

.

Miscellaneous identities

3J (3)
n + j(3)n = 2n+1. (4.1)

j(3)n − 3J (3)
n = 2j

(3)
n−3. (4.2)

j
(3)
n+1 + j(3)n = 3J

(3)
n+1.

(
j(3)n

)2
− 9

(
J (3)
n

)2
= 2n+1j

(3)
n−3.





j
(3)
3n−1 = J

(3)
3n+1

j
(3)
3n = J

(3)
3n+2 + 1

j
(3)
3n+1 = J

(3)
3n+3 − 1

.





j
(3)
3n−1 − 4J

(3)
3n−1 = 1

j
(3)
3n − 4J

(3)
3n = 2

j
(3)
3n+1 − 4J

(3)
3n+1 = −3

.

j(3)n − 4j
(3)
n−2 =

{
−3 if n is even
6 if n is odd

.

Squaring both sides of (4.1) and (4.2) and subtracting the results, it follows that

J (3)
n j(3)n =

1

3

(
4n −

(
j
(3)
n−3

)2)
.

Note that some observations on generating functions for the Jacobsthal poly-
nomials can be found in [7, 8]. Papers on generating functions for a variety of
sequential numbers are abundant. See, for example [1, 4, 5, 6, 9, 13, 14, 16].
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As an illustration of how ordinary generating functions can be used to derive
identities, we use the technique of Gould, see [4] and used for Fibonacci identities
in [2]. Making use of the properties of α and β for Fibonacci numbers as needed,
it follows that

∞∑

k=0

J
(3)
k Fkx

k =
∞∑

k=0

J
(3)
k

αk − βk
α− β xk

=
αx

1− αx− α2x2 − 2α3x3
+

βx

1− βx− β2x2 − 2β3x3

=
x− x3 − 2x4

1− x− 4x2 − 5x3 + 4x5 − 4x6
.

Similarly if we write (3.1) as j(3)n =
8

7
2n+

A

7
ωn1 +

B

7
ωn2 and make use of the fact that

Aω1 =
−9 + i

√
3

2
, Bω2 =

−9− i
√
3

2
, ω2

1 = ω2, and ω2
2 = ω1, ω1ω2 = ω3

1 = ω3
2 = 1

then the following generating function is obtained:

∞∑

k=0

J
(3)
k j

(3)
k =

1

7

∞∑

k=0

J
(3)
k

(
8(2x)k +A(ω1x)

k +B(ω2x)
k
)

=
13x+ 20x2 + 47x3 − 16x4 + 8x5 − 40x6 − 32x7

7(1− 2x− 4x2 − 16x3)(1 + x+ 2x2 − 5x3 − x4 − 2x5 + 4x6)
.

5. Higher order Jacobsthal numbers

As seen in [3] one way to generalize the Jacobsthal recursion is as follows.

J
(k)
n+k =

k−1∑

j=1

J
(k)
n+k−j + 2J (k)

n

with n ≥ 0 and initial conditions J (k)
i = 0, for i = 0, 1, . . . k − 2 and J (k)

k−1 = 1, has
characteristic equation (x−2)(xk−1+xk−2+ · · ·+x2+x+1) = 0 with eigenvalues
2 and ωj = e

2πim
k for j = 1, 2, . . . , k − 1, which yields the Binet form:

J (k)
n =

1
∏k−1
j=1 (2− ωj)


2n −

k−1∑

j=1

k−1∏

m 6=j

2− ωm
ωj − ωm

ωnj


 .

In this paper we generalize the Jacobsthal recursion as

J
(k)
n+k =

k−1∑

j=1

J
(k)
n+k−j + 2J (k)

n ,

Some identities for Jacobsthal and Jacobsthal-Lucas numbers . . . 33



with n ≥ 0 and initial conditions J (k)
0 = 0 and J (k)

i = 1 for i = 1, . . . k− 1. For the
kth order Jacobsthal -Lucas numbers j(k)n we use the same recursion with initial
conditions j(k)i = j

(k−1)
i for i = 0 . . . k − 1. With the change of initial conditions a

similar compact form for kth order Binet formulae appears to be unobtainable as
indicated in the examples below.
Ordinary generating function

A formula for the ordinary generating function for all generalized Fibonacci
numbers has been addressed in other papers. For example, that given in [11] for
the recurrence

an = bk−1an−1 + bk−2an−2 + · · ·+ b0an−k

with arbitrary constant coefficients, bj , and with arbitrary initial conditions is

g(x) =
a0 +

∑k−1
i=1

(
ai −

∑i
j=0 bk−i+jaj

)
xi

1−∑k
i=1 bk−ix

i
. (5.1)

Here we exhibit (5.1) for the kth order Jacobsthal case (which could also be obtained
by using the same procedure used in deriving the generating function for the 3rd

order case) namely

∞∑

i=0

J
(k)
i xi =

J
(k)
0 + (J

(k)
1 − J (k)

0 )x+ · · ·+ (J
(k)
k−1 − J

(k)
k−2 − · · · 2J

(k)
0 )xk−1

1− x− xx − · · · − 2xk
.

Examples
(1) The Fourth Order Jacobsthal and Jacobsthal–Lucas numbers
Recurrence relations

J
(4)
n+4 = J

(4)
n+3 + J

(4)
n+2 + J

(4)
n+1 + 2J (4)

n ,

where n ≥ 0 and J (4)
0 = 0, J

(4)
1 = J

(4)
2 = J

(4)
3 = 1.

j
(4)
n+4 = j

(4)
n+3 + j

(4)
n+2 + j

(4)
n+1 + 2j(4)n ,

where n ≥ 0 and j(4)0 = 2, j
(4)
1 = 1, j

(4)
2 = 5, j

(4)
3 = 10.

Table of values

n 0 1 2 3 4 5 6 7 8 9 10 . . .
J
(4)
n 0 1 1 1 3 7 13 25 51 103 205 . . .
j
(4)
n 2 1 5 10 20 37 77 154 308 613 1229 . . .

Binet form
The auxiliary equation, and its roots are given by

x4 − x3 − x2 − x− 2 = 0, x1 = 2, x2 = −1, x3 = i, x4 = −i,
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and the Binet formulas can be written as

J (4)
n =

1

8 + i

(
2n − 1

2
(1 + 8i)in +

1

2
(3 + i)(−1)n − 1

2
(4− 7i)(−i)n

)

and

j(4)n =
104(1− 3i)2n − 15(11 + 3i)in − 6(6 + 17i)(−1)n − 15(7 + 9i)(−i)n

4(16− 63i)
.

Rewriting these in terms of the roots of unity, ωj does not suggest a pattern when
compared with the 2nd and 3rd order cases.
Simson’s identity
∣∣∣∣∣∣∣∣∣

J
(4)
n+3 J

(4)
n+2 J

(4)
n+1 J

(4)
n

J
(4)
n+2 J

(4)
n+1 J

(4)
n J

(4)
n−1

J
(4)
n+1 J

(4)
n J

(4)
n−1 J

(4)
n−2

J
(4)
n J

(4)
n−1 J

(4)
n−2 J

(4)
n−3

∣∣∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣∣

j
(4)
n+3 j

(4)
n+2 j

(4)
n+1 j

(4)
n

j
(4)
n+2 j

(4)
n+1 j

(4)
n j

(4)
n−1

j
(4)
n+1 j

(4)
n j

(4)
n−1 j

(4)
n−2

j
(4)
n j

(4)
n−1 j

(4)
n−2 j

(4)
n−3

∣∣∣∣∣∣∣∣∣
= 2n−2 · 35.

Summation formulas

n∑

k=0

J
(4)
k =





J
(4)
n+1 if n ≡ ±1 mod 4

J
(4)
n+1 − 1 if n ≡ 0 mod 4

J
(4)
n+1 + 1 if n ≡ 2 mod 4

,
n∑

k=0

j
(4)
k =

{
j
(4)
n+1 − 2 if n 6≡ 0 mod 4

j
(4)
n+1 + 1 if n ≡ 0 mod 4

.

Miscellaneous fourth order identities

6J (4)
n + j(4)n =





j
(4)
n+1 + 1 if n ≡ 0 mod 4

j
(4)
n+1 + 2 if n ≡ 1 mod 4

j
(4)
n+1 + 1 if n ≡ 2 mod 4

j
(4)
n+1 − 4 if n ≡ 3 mod 4

.

j(4)n − 6J (4)
n =





2 if n ≡ 0 mod 4

−5 if n ≡ 1 mod 4

−1 if n ≡ 2 mod 4

4 if n ≡ 3 mod 4

.

J (4)
n + j(4)n =





J
(4)
n+2 if n ≡ 0 mod 4

J
(4)
n+2 + 2 if n ≡ 1 mod 4

J
(4)
n+2 − 1 if n ≡ 2 mod 4

J
(4)
n+2 − 1 if n ≡ 3 mod 4

.
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In this case the product of the Jacobsthal and Jacobsthal–Lucas functions is some-
what less appealing than in previous cases:

24J (4)
n j(4)n =





(j
(4)
n+1 + 1)2 − 4 if n ≡ 0 mod 4

(j
(4)
n+1 + 2)2 − 25 if n ≡ 1 mod 4

(j
(4)
n+2 + 1)2 − 1 if n ≡ 2 mod 4

(j
(4)
n+2 − 4)2 − 16 if n ≡ 3 mod 4

.

(2) The Fifth Order Jacobsthal and Jacobsthal–Lucas numbers
Recurrence relations

J
(5)
n+5 = J

(4)
n+4 + J

(5)
n+3 + J

(5)
n+2 + J

(5)
n+1 + 2J (5)

n ,

where n ≥ 0 and J (5)
0 = 0, J

(5)
1 = J

(5)
2 = J

(5)
3 = J

(5)
4 = 1.

j
(5)
n+5 = j

(5)
n+4 + j

(5)
n+3 + j

(5)
n+2 + j

(5)
n+1 + 2j(5)n ,

where n ≥ 0 and j(5)0 = 2, j
(5)
1 = 1, j

(5)
2 = 5, j

(5)
3 = 10, j

(5)
4 = 20.

Table of values

n 0 1 2 3 4 5 6 7 8 9 10 . . .
J
(5)
n 0 1 1 1 1 4 9 17 33 65 132 . . .
j
(5)
n 2 1 5 10 20 40 77 157 314 628 1256 . . .

Binet form
The auxiliary equation, and its roots are given by

x5 − x4 − x3 − x2 − x− 2 = 0, x1 = 2, x2 = ω1, x3 = ω2, x4 = ω3, x5 = ω4,

where for m = 1, 2, 3, 4, ωm = exp

(
2πim

5

)
. The Binet formulas can be written as

J (5)
n =

−4
33

2n − 24 + 43ω1 + 37ω2 − 59ω3 − 45ω4

155
ωn1

+
24− 59ω1 + 43ω2 − 45ω3 + 37ω4

155
ωn2 +

24 + 37ω1 − 45ω2 + 43ω3 − 59ω4

155
ωn3

− 24− 45ω1 − 59ω2 + 37ω3 + 43ω4

155
ωn4 ,

and similarly

j(5)n =
42

33
2n +

3(14− 24ω1 − 12ω2 + 25ω3 − 3ω4)

155(ω1 − ω2 − ω3 − ω4)
ωn1

+
3(14 + 25ω1 − 24ω2 − 3ω3 + 12ω4)

155(ω1 − ω2 − ω3 − ω4)
ωn2 +

3(14− 12ω1 − 3ω2 − 24ω3 + 25ω4)

155(ω1 − ω2 − ω3 − ω4)
ωn3

− 3(14− 3ω1 + 25ω2 − 12ω3 − 24ω4)

155(ω1 − ω2 − ω3 − ω4)
ωn4 ,
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Simson’s identity
∣∣∣∣∣∣∣∣∣∣∣

J
(5)
n+4 J

(5)
n+3 J

(5)
n+2 J

(5)
n+1 J

(5)
n

J
(5)
n+3 J

(5)
n+2 J

(5)
n+1 J

(5)
n J

(5)
n−1

J
(5)
n+2 J

(5)
n+1 J

(5)
n J

(5)
n−1 J

(5)
n−2

J
(5)
n+1 J

(5)
n J

(5)
n−1 J

(5)
n−2 J

(5)
n−3

J
(5)
n J

(5)
n−1 J

(5)
n−2 J

(5)
n−3 J

(5)
n−4

∣∣∣∣∣∣∣∣∣∣∣

= 2n−2 · 11.

∣∣∣∣∣∣∣∣∣∣∣

j
(5)
n+4 j

(5)
n+3 j

(5)
n+2 j

(5)
n+1 j

(5)
n

j
(5)
n+3 j

(5)
n+2 j

(5)
n+1 j

(5)
n j

(5)
n−1

j
(5)
n+2 j

(5)
n+1 j

(5)
n j

(5)
n−1 j

(5)
n−2

j
(5)
n+1 j

(5)
n j

(5)
n−1 j

(5)
n−2 j

(5)
n−3

j
(5)
n j

(5)
n−1 j

(5)
n−2 j

(5)
n−3 j

(5)
n−4

∣∣∣∣∣∣∣∣∣∣∣

= 2n−3 · 34 · 19.

Summation formulas

n∑

k=0

J
(5)
k =





J
(5)
n+1 if n ≡ ±1 mod 5

J
(5)
n+1 − 1 if n ≡ 0 mod 5

J
(5)
n+1 + 1 if n ≡ 2 mod 5

J
(5)
n+1 + 2 if n ≡ 3 mod 5

,
n∑

k=0

j
(5)
k =

{
j
(5)
n+1 − 2 if n 6≡ 0 mod 5

j
(5)
n+1 + 1 if n ≡ 0 mod 5

.

Miscellaneous fifth order identities

j(5)n + 6J (5)
n =





2n+1 if n ≡ 0 mod 5

2n+1 + 3 if n ≡ 1 mod 5

2n+1 + 3 if n ≡ 2 mod 5

2n+1 if n ≡ 3 mod 5

2n+1 − 6 if n ≡ 4 mod 5

. (5.2)

j(5)n − 6J (5)
n =





2n−1 − 3(J
(5)
n−3 − 1) if n ≡ 0 mod 5

2n−1 − 3(J
(5)
n−3 + 2) if n ≡ 1 mod 5

2n−1 − 3(J
(5)
n−3 + 2) if n ≡ 2 mod 5

2n−1 − 3J
(5)
n−3 if n ≡ 3 mod 5

2n−1 − 3(J
(5)
n−3 − 3) if n ≡ 4 mod 5

. (5.3)

If we let the right hand side of (5.2) beM and that of (5.3)N , then the following
are noted

j(5)n =
M +N

2
, J (5)
n =

M −N
12

.

j(5)n + J (5)
n =

7M + 5N

12
, j(5)n − J (5)

n =
5M + 7N

12
, J (5)
n j(5)n =

M2 −N2

24
.

Some identities for Jacobsthal and Jacobsthal-Lucas numbers . . . 37



and finally

(j(5)n )2 − 36(J (5)
n )2 =MN and (j(5)n )2 + 36(J (5)

n )2 =
M2 +N2

2
.

6. Concluding comments

The authors believe that most of these results are new but unfortunately, many
of them do not seem to fall into a convenient pattern for generalization to an nth
order case. While investigating the Simson (Cassini/Catalan) identity for higher
order Jacobsthal numbers a general Simson identity for an arbitrary nth order
recursive relation was discovered and proved. This generalized Simson identity
has resulted in a short paper that will be submitted to the Fibonacci Quarterly.
Certainly many more identities could be generated from those obtained here and
by investigating Jacobsthal and Jacobsthal-Lucas polynomials. For example, using
the methods presented in [1, 2, 6, 13, 16] a plethora of identities generated from
ordinary generating functions should be possible; and similarly using [2, 5, 12, 14],
identities obtained from the exponential generating functions should arise. Further
investigations for these and other methods useful in discovering identities for the
higher order Jacobsthal and Jacobsthal-Lucas numbers will be addressed in a future
paper.

Acknowledgments. The authors would like to thank the anonymous referee for
suggestions to improve the paper.
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Abstract
Motivated by an amazing identity by Ramanujan in his “lost notebook”,

a proof of Ramanujan’s identity suggested by Hirschhorn using an algebraic
identity, and an algorithm by Chen to find such an algebraic identity, we
will establish several identities similar to Ramanujan’s amazing identity. For
example, if ∑

n≥0

anx
n =

9 + 3609x− 135x2

1− 6888x+ 6888x2 − x3
,

∑

n≥0

bnx
n =

10− 1478x+ 172x2

1− 6888x+ 6888x2 − x3
,

∑

n≥0

cnx
n =

12 + 1146x+ 138x2

1− 6888x+ 6888x2 − x3
,

then
a3
n + b3n = c3n + 1.

Keywords: Ramanujan, identity

MSC: 11A55

1. Introduction

In his “lost notebook”, Ramanujan [4] stated the following amazing identity. If

∑

n≥0

anx
n =

1 + 53x+ 9x2

1− 82x− 82x2 + x3
,
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∑

n≥0

bnx
n =

2− 26x− 12x2

1− 82x− 82x2 + x3
,

∑

n≥0

cnx
n =

2 + 8x− 10x2

1− 82x− 82x2 + x3
,

then
a3n + b3n = c3n + (−1)n.

Hirschhorn [2] demonstrated that using the algebraic identity from the “lost note-
book”,

(x2 +7xy− 9y2)3 +(2x2− 4xy+12y2)3 = (2x2 +10y2)3 +(x2− 9xy− y2)3, (1.1)

Ramanujan could have proved his identity. Chen [1] gave an algorithm to produce
similar algebraic identities and Ramanujan-like identities. Our goal is to use this
procedure to find explicit algebraic identities and Ramanujan-like identities.

2. Third power algebraic identity to Ramanujan-like
identity

The following algebraic identity was suggested by Chen [1] and the theorem and
proof were suggested by Hirschhorn [2].

Theorem 2.1. Let

(r1x
2 + s1xy + t1y

2)3 + (r2x
2 + s2xy + t2y

2)3 (2.1)

=(r3x
2 + s3xy + t3y

2)3 + (x2 − s4xy − t4y
2)3,

be an algebraic identity in variables x and y and integer constants r1, r2, r3, s1,
s2, s3, s4, t1, t2, t3, and t4. Then if

∑

n≥0

anx
n =

r1 + (s1s4 + t1 − r1t4)x− t1t4x
2

1− (s24 + t4)x− (s24t4 + t24)x
2 + t34x

3
,

∑

n≥0

bnx
n =

r2 + (s2s4 + t2 − r2t4)x− t2t4x
2

1− (s24 + t4)x− (s24t4 + t24)x
2 + t34x

3
,

∑

n≥0

cnx
n =

r3 + (s3s4 + t3 − r3t4)x− t3t4x
2

1− (s24 + t4)x− (s24t4 + t24)x
2 + t34x

3

then
a3n + b3n = c3n + (−t4)3n.

Proof. Let w0 = 0, w1 = 1, and

wn+2 = s4wn+1 + t4wn.
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The generating function for the sequence {wn} is given by

w(x) =
∑

n≥0

wnx
n =

x

1− s4x− t4x2
.

Now, if x = wn+1 and y = wn, then

x2 − s4xy − t4y
2 = w2

n+1 − s4wn+1wn − t4w
2
n

= w2
n+1 − wn(s4wn+1 + t4wn)

= w2
n+1 − wnwn+2 = (−t4)n.

The last equality can be proved by induction on n.
Now, let

an = r1x
2 + s1xy + t1y

2 = r1w
2
n+1 + s1wn+1wn + t1w

2
n,

bn = r2x
2 + s2xy + t2y

2 = r2w
2
n+1 + s2wn+1wn + t2w

2
n,

cn = r3x
2 + s3xy + t3y

2 = r3w
2
n+1 + s3wn+1wn + t3w

2
n.

We can show that
a3n + b3n = c3n + (−t4)3n.

But, using generating function techniques, we can show that

∑

n≥0

w2
nx

n =
x− t4x

2

1− (s24 + t4)x− (s24t4 + t24)x
2 + t34x

3
,

∑

n≥0

w2
n+1x

n =
1− t4x

1− (s24 + t4)x− (s24t4 + t24)x
2 + t34x

3
,

∑

n≥0

wnwn+1x
n =

s4x

1− (s24 + t4)x− (s24t4 + t24)x
2 + t34x

3
.

Hence,

∑

n≥0

anx
n =

r1 + (s1s4 + t1 − r1t4)x− t1t4x
2

1− (s24 + t4)x− (s24t4 + t24)x
2 + t4x3

,

∑

n≥0

bnx
n =

r2 + (s2s4 + t2 − r2t4)x− t2t4x
2

1− (s24 + t4)x− (s24t4 + t24)x
2 + t34x

3
,

∑

n≥0

cnx
n =

r3 + (s3s4 + t3 − r3t4)x− t3t4x
2

1− (s24 + t4)x− (s24t4 + t24)x
2 + t34x

3
,

and the proof is complete.
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3. Search for third power algebraic identities

We will attempt to find particular integer constants involving all the r’s, s’s, and
t’s which satisfy equation (2.1) with the following procedure.

Procedure to search for third power algebraic identities

1. Pick one particular set of integers r1, r2, and r3 such that

r31 + r32 = r33 + 1. (3.1)

2. Select a collection of sets of integers t1, t2, t3, and t4 such that

t31 + t32 = t33 − t34. (3.2)

Also, select a range of integer values for s1 and s2 to search.

a. For each t1, t2, t3, t4, s1, and s2, compute s3 and s4 using the equations

s3 =
s1t

2
1 + s2t

2
2 + r21s1t

2
4 + r22s2t

2
4

r23t
2
4 + t23

,

s4 = r23s3 − r21s1 − r22s2.

Make sure these constants can be computed and that they are integers.
b. Check the following conditions.

3r1t
2
1 + 3s21t1 + 3r2t

2
2 + 3s22t2 = 3r3t

2
3 + 3s23t3 + 3t24 − 3s24t4,

6r1s1t1 + s31 + 6r2s2t2 + s32 = 6r3s3t3 + s33 + 6s4t4 − s34,

3r21t1 + 3r1s
2
1 + 3r22t2 + 3r2s

2
2 = 3r23t3 + 3r3s

2
3 − 3t4 + 3s24.

c. If all the above conditions are satisfied (every equation is true), the
resulting collection of r’s, s’s, and t’s form an algebraic identity satisfying
equation (2.1).

To prove that the procedure above will produce an algebraic identity, cube the
trinomials in (2.1) to obtain

t31y
6 + 3s1t

2
1xy

5 + (3r1t
2
1 + 3s21t1)x

2y4 + (6r1s1t1 + s31)x
3y3 (3.3)

+ (3r21t1 + 3r1s
2
1)x

4y2 + 3r21s1x
5y + r31x

6

+ t32y
6 + 3s2t

2
2xy

5 + (3r2t
2
2 + 3s22t2)x

2y4 + (6r2s2t2 + s32)x
3y3

+ (3r22t2 + 3r2s
2
2)x

4y2 + 3r22s2x
5y + r32x

6

= t33y
6 + 3s3t

2
3xy

5 + (3r3t
2
3 + 3s23t3)x

2y4 + (6r3s3t3 + s33)x
3y3

+ (3r23t3 + 3r3s
2
3)x

4y2 + 3r23s3x
5y + r33x

6

− t34y
6 − 3s4t

2
4xy

5 + (3t24 − 3s24t4)x
2y4 + (6s4t4 − s34)x

3y3
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+ (−3t4 + 3s24)x
4y2 − 3s4x

5y + x6.

Collecting like terms in (3.3), we obtain the following equation.

(t31 + t32)y
6 + (3s1t

2
1 + 3s2t

2
2)xy

5 + (3r1t
2
1 + 3s21t1 + 3r2t

2
2 + 3s22t2)x

2y4 (3.4)

+ (6r1s1t1 + s31 + 6r2s2t2 + s32)x
3y3 + (3r21t1 + 3r1s

2
1 + 3r22t2 + 3r2s

2
2)x

4y2

+ (3r21s1 + 3r22s2)x
5y + (r31 + r32)x

6

= (t33 − t34)y
6 + (3s3t

2
3 − 3s4t

2
4)xy

5 + (3r3t
2
3 + 3s23t3 + 3t24 − 3s24t4)x

2y4

+ (6r3s3t3 + s33 + 6s4t4 − s34)x
3y3 + (3r23t3 + 3r3s

2
3 − 3t4 + 3s24)x

4y2

+ (3r23s3 − 3s4)x
5y + (r33 + 1)x6.

Step 1 in the procedure insures that the coefficients of x6 in the algebraic
identity are equal. In addition, we would like r1, r2, and r3 to be positive integers.
For Ramanujan’s algebraic identity this condition is trivially true since

13 + 23 = 23 + 1.

Other trivial values of r1, r2, and r3 which satisfy (3.1) are r1 = 1 and r2 = r3 = r,
where r is a positive integer.

Appendix I gives positive integer values of r1, r2, and r3 (r1 < r2 and r2 6= r3)
which satisfy (3.1). These values were determined by a C++ program.

In step 2, we select a collection of t’s satisfying (3.4) to try. This guarantees
that the coefficients of y6 in the algebraic identity are equal. In the spirit of
Ramanujan, we assume t4 = ±1. To obtain nontrivial results, we also require that
t1 6= t2, t1 6= −t2, t1 6= −1, and t2 6= −1. Otherwise, some of the t’s could be
positive or negative integers and cancel each other. Appendix II contains some of
the t’s which satisfy (3.2). Again, this appendix was constructed with the help of
a C++ program.

Also, in step 2 we search a range of integers s1 and s2 (via a C++ program).
Some typical ranges for s1 and s2 were from −1500 to 1500. With the r’s, t’s, s1,
and s2 fixed, the constants left are s3 and s4. For step 2a, we compute integers
s3 and s4. The formulas in step 2a are equivalent to the equations equating the
coefficients in the xy5 and x5y terms in (3.4). These equations are

3s1t
2
1 + 3s2t

2
2 = 3s3t

2
3 − 3s4t

2
4,

3r21s1 + 3r22s2 = 3r23s3 − 3s4.

Step 2a merely solves them for s3 and s4 since they are linear equations in those
two variables. We also require that s4 > 0.

For step 2b, the conditions we check are the equations resulting from equating
the coefficients of the terms x2y4, x3y3 and x4y2 on each side of equation (3.4). In
step 2c, if all of these conditions are satisfied, the constants determine an algebraic
identity.
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4. Third power results

We found the following results. The constants in each row of the following table
satisfy (2.1). We include the leading coefficient of 1 in the last trinomial. Recall
that the form of the last trinomial is x2 − s4xy − t4y

2.

r1, s1, t1 r2, s2, t2 r3, s3, t3 1, s4, t4
1,556,-65601 2,-364,83802 2,-36,67402 1,756,1
1,61,-791 2,-40,1010 2,-4,812 1,83,-1
1,7,-9 2,-4,12 2,0,10 1,9,1

1,-25,135 2,-32,138 2,-36,172 1,9,1
1,-227,11161 2,-292,11468 2,-328,14258 1,83,-1
9,412,-11161 10,-180,14258 12,112,11468 1,756,1
9,-126,3753 10,236,-3230 12,96,2676 1,430,-1
9,45,-135 10,-20,172 12,12,138 1,83,-1
9,-169,791 10,-180,812 12,-220,1010 1,9,1

9,-1539,65601 10,-1640,67402 12,-2004,83802 1,83,-1
3753,-126,9 4528,200,-8 5262,84,6 1,430,-1

11161,3481,-791 11468,-1300,1010 14258,1292,812 1,6887,-1
11161,412,-9 11468,-112,12 14258,180,10 1,756,1

The bounds on s1 and s2 varied depending on the speed of the search. Note
that the third row is the algebraic identity discovered by Ramanujan. This gives
Ramanujan’s amazing identity. The eighth row gives the algebraic identity

(9x2 + 45xy − 135y2)3 + (10x2 − 20xy + 172y2)3

=(12x2 + 12xy + 138y2)3 + (x2 − 83xy + y2)3.

This produces the Ramanujan-like identity result found in the abstract. The sev-
enth row gives the algebraic identity

(9x2 − 126xy + 3753y2)3 + (10x2 + 236xy − 3230y2)3

=(12x2 + 96xy + 2676y2)3 + (x2 − 430y + y2)3.

This produces the following Ramanujan-like identity. If
∑

n≥0

anx
n =

9− 54172x+ 3753x2

1− 184899x+ 184899x2 − x3
,

∑

n≥0

bnx
n =

10 + 98260x− 3230x2

1− 184899x+ 184899x2 − x3
,

∑

n≥0

cnx
n =

12 + 43968x+ 2676x2

1− 184899x+ 184899x2 − x3
,

then
a3n + b3n = c3n + 1.
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5. Fourth power algebraic identities to Ramanujan-
like identities

McLaughlin [3] found ten sequences whose sums of their first through fifth powers
are equal. We will not be so ambitious. The following identity was suggested by
Chen [1] and the theorem and proof were suggested by Hirschhorn [2].

Theorem 5.1. Let

(x2 + s1xy + t1y
2)4 + (mx2 + s2xy + t2y

2)4 + (nx2 + s3xy + t3y
2)4 (5.1)

=(mx2 + s4xy + t4y
2)4 + (nx2 + s5xy + t5y

2)4 + (x2 − s6xy − t6y
2)4,

be an algebraic identity in variables x and y and integer constants m, n, s1, s2, s3,
s4, s5, s6, t1, t2, t3, t4, t5, and t6. Then if

∑

n≥0

anx
n =

1 + (s1s6 + t1 − t6)x− t1t6x
2

1− (s26 + t6)x− (s26t6 + t26)x
2 + t36x

3
,

∑

n≥0

bnx
n =

m+ (s2s6 + t2 −mt6)x− t2t6x
2

1− (s26 + t6)x− (s26t6 + t26)x
2 + t36x

3
,

∑

n≥0

cnx
n =

n+ (s3s6 + t3 − nt6)x− t3t6x
2

1− (s26 + t6)x− (s26t6 + t26)x
2 + t36x

3
,

∑

n≥0

dnx
n =

m+ (s4s6 + t4 −mt6)x− t4t6x
2

1− (s26 + t6)x− (s26t6 + t26)x
2 + t36x

3
,

∑

n≥0

enx
n =

n+ (s5s6 + t5 − nt6)x− t5t6x
2

1− (s26 + t6)x− (s26t6 + t26)x
2 + t36x

3

then
a4n + b4n + c4n = d4n + e4n + (−t6)4n.

Proof. The proof of this theorem is similar to the proof of Theorem 2.1.

6. Search for fourth power algebraic identities

We will attempt to find particular integer constants involving m, n, and all the s’s
and t’s which satisfy equation (5.1) with the following procedure.

Procedure to search for fourth power algebraic identities

1. Pick one particular set of integers m and n.

2. Select a collection of sets of integers t1, t2, t3, t4, t5, and t6 = ±1 such that
t41 + t42 + t43 = t44 + t45 + 1. Also, select a range of integer values for s1, s2, s3,
and s4 to search.
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a. For each t1, t2, t3, t4, t5, t6, s1, s2, s3, and s4, compute s5 and s6 using
the equations

s5 =
s1t

3
1 + s2t

3
2 + s3t

3
3 − s4t

3
4 − s1t

3
6 −m3s2t

3
6 − n3s3t

3
6 +m3s4t

3
6

n3t36 + t35
,

s6 = −s1 −m3s2 − n3s3 +m3s4 + n3s5.

Make sure these constants can be computed and that they are integers.

b. Check the following conditions.

4t31 + 6s21t
2
1 + 4mt32 + 6s22t

2
2 + 4nt33 + 6s23t

2
3

= 4mt34 + 6s24t
2
4 + 4nt35 + 6s25t

2
5 − 4t36 + 6s26t

2
6,

12s1t
2
1 + 4s31t1 + 12ms2t

2
2 + 4s32t2 + 12ns3t

2
3 + 4s33t3

= 12ms4t
2
4 + 4s34t4 + 12ns5t

2
5 + 4s35t5 − 12s6t

2
6 + 4s36t6,

6t21 + 12s21t1 + s41 + 6m2t22 + 12ms22t2 + s42 + 6n2t23 + 12ns23t3 + s43

= 6m2t24 + 12ms24t4 + s44 + 6n2t25 + 12ns25t5 + s45 + 6t26 − 12s26t6 + s46,

12s1t1 + 4s31 + 12m2s2t2 + 4ms32 + 12n2s3t3 + 4ns33

= 12m2s4t4 + 4ms34 + 12n2s5t5 + 4ns35 + 12s6t6 − 4s36,

4t1 + 6s21 + 4m3t2 + 6m2s22 + 4n3t3 + 6n2s23

= 4m3t4 + 6m2s24 + 4n3t5 + 6n2s25 − 4t6 + 6s26.

c. If all the above conditions are satisfied (every equation is true), the
resulting collection of m, n, s’s, and t’s form an algebraic identity satis-
fying equation (5.1).

The proof that this procedure yields an algebraic identity is similar to the previous
procedure.

We need to make a couple of remarks. First of all, we pick positive integers
m and n with m < n. Again, in the spirit of Ramanujan, we assume t6 = ±1.
We first note that once a solution is found, we have many other similar solutions
since every one of the t’s could be positive or negative. We list out the nontrivial
values of the t’s (1 < t1 < t2 < t3 and t1 ≤ t4) in Appendix III. This appendix was
constructed with the help of a C++ program. Some typical ranges for s1, s2, s3,
and s4 were from −20 to 20. Finally, we require that s6 > 0.

7. Fourth power results

We found the following results. The constants in each row of the following table
satisfy (5.1). Again, we include the leading coefficient of 1 in the last trinomial.
Recall that the form of the last trinomial is x2 − s6xy − t6y

2.
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m = 1 and n = 2

1, s1, t1 1, s2, t2 2, s3, t3 1, s4, t4 2, s5, t5 1, s6, t6
1,-4,4 1,-6,9 2,-10,13 1,-7,11 2,-10,12 1,3,-1
1,-3,4 1.-8,9 2,-11,13 1,-9,12 2,-11,11 1,2,1
1,-1,4 1,-2,9 2,-3,13 1,7,-12 2,-3,-11 1,10,-1
1,-4,5 1,-6,6 2,-10,11 1,-7,9 2,-10,10 1,3,-1
1,0,5 1,-2,6 2,-2,11 1,7,-9 2,-2,-10 1,9,1
1,-4,5 1,-5,6 2,-9,11 1,-7,10 2,-9,9 1,2,1
1,-5,6 1,-10,23 2,-15,29 1,-11,26 2,-15,27 1,4,-1
1,-4,6 1,-12,23 2,-16,29 1,-13,27 2,-16,26 1,3,1
1,0,6 1,-4,23 2,-4,29 1,11,-27 2,-4,-26 1,15,-1
1,-6,7 1,-7,14 2,-13,21 1,-9,18 2,-13,19 1,4,-1
1,-4,7 1,-12,14 2,-16,21 1,-13,19 2,-16,18 1,3,1
1,-4,7 1,0,14 2,-4,21 1,9,-19 2,-4,-18 1,13,-1
1,-7,8 1,-6,11 2,-13,19 1,-9,16 2,-13,17 1,4,-1
1,-5,8 1,-10,11 2,-15,19 1,-11,16 2,-15,17 1,4,-1
1,-3,8 1,0,11 2,-3,19 1,9,-16 2,-3,-17 1,12,1
1,-6,8 1,-6,11 2,-12,19 1,-9,17 2,-12,16 1,3,1

m = 2 and n = 3

1, s1, t1 2, s2, t2 3, s3, t3 2, s4, t4 3, s5, t5 1, s6, t6
1,-1,7 2,-2,14 3,-3,21 2,10,-19 3,-6,-18 1,16,-1
1,-8,8 2,-10,11 3,-18,19 2,-14,16 3,-17,17 1,3,-1
1,0,8 2,-2,11 3,-2,19 2,10,-16 3,-5,-17 1,15,1
1,-7,8 2,-9,11 3,-16,19 2,-13,17 3,-15,16 1,2,1
1,-8,10 2,-12,19 3,-20,29 2,-16,26 3,-19,25 1,3,1
1,-4,10 2,0,19 3,-4,29 2,12,-26 3,-7,-25 1,19,-1
1,-3,11 2,0,16 3,-3,27 2,12,-23 3,-6,-24 1,18,1
1,0,11 2,-4,39 3,-4,50 2,16,-46 3,-9,-45 1,25,-1
1,-8,13 2,-10,13 3,-18,26 2,-14,22 3,-17,23 1,3,-1
1,4,-13 2,0,-13 3,4,-26 2,4,-22 3,3,-23 1,1,1
1,-1,14 2,-3,41 3,-4,55 2,17,-49 3,-9,-50 1,26,1
1,-8,15 2,-12,19 3,-20,34 2,-16,30 3,-19,29 1,3,1
1,-5,16 2,-1,55 3,-6,71 2,19,-65 3,-11,-64 1,30,-1
1,-6,19 2,0,57 3,-6,76 2,20,-68 3,-11,-69 1,31,1
1,-2,21 2,-6,64 3,10,-113 2,10,-112 3,6,-69 1,22,-1

1,14,-116 2,0,-155 3,14,-271 2,12,-236 3,11,-235 1,1,-1

m = 3 and n = 5

1, s1, t1 3, s2, t2 5, s3, t3 3, s4, t4 5, s5, t5 1, s6, t6
1,-2,21 3,-4,41 5,6,-71 3,6,-69 5,4,-49 1,22,-1

Identities in the spirit of Ramanujan’s amazing identity 49



The bounds on s1, s2, s3, and s4 varied depending on the speed of the search. The
first row of the table for m = 1 and n = 2 gives the algebraic identity

(x2 − 4xy + 4y2)4 + (x2 − 6xy + 9y2)4 + (2x2 − 10xy + 13y2)4

= (x2 − 7xy + 11y2)4 + (2x2 − 10xy + 12y2)4 + (x2 − 3xy + y2)4.

This produces the following Ramanujan-like identity. If

∑

n≥0

anx
n =

1− 7x+ 4x2

1− 8x+ 8x2 − x3
,

∑

n≥0

bnx
n =

1− 8x+ 9x2

1− 8x+ 8x2 − x3
,

∑

n≥0

cnx
n =

2− 15x+ 13x2

1− 8x+ 8x2 − x3
,

∑

n≥0

dnx
n =

1− 9x+ 11x2

1− 8x+ 8x2 − x3
,

∑

n≥0

enx
n =

2− 16x+ 12x2

1− 8x+ 8x2 − x3
,

then
a4n + b4n + c4n = d4n + e4n + 1.

The row in the table for m = 3 and n = 5 gives the algebraic identity

(x2 − 2xy + 21y2)4 + (3x2 − 4xy + 41y2)4 + (5x2 + 6xy − 71y2)4

= (3x2 + 6xy − 69y2)4 + (5x2 + 4xy − 49y2)4 + (x2 − 22xy + y2)4.

This produces the following Ramanujan-like identity. If

∑

n≥0

anx
n =

1− 22x+ 21x2

1− 483x+ 483x2 − x3
,

∑

n≥0

bnx
n =

3− 44x+ 41x2

1− 483x+ 483x2 − x3
,

∑

n≥0

cnx
n =

5 + 66x+ 71x2

1− 483x+ 483x2 − x3
,

∑

n≥0

dnx
n =

3 + 66x+ 69x2

1− 483x+ 483x2 − x3
,

∑

n≥0

enx
n =

5 + 44x+ 49x2

1− 483x+ 483x2 − x3
,
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then
a4n + b4n + c4n = d4n + e4n + 1.

8. Questions

The previous data suggests several questions.

1. In the third power case, we were unable to find any nontrivial algebraic
identities like (2.1) with r1 = 1 and r2 = r3 = r where r ≥ 3. We would like
to know if any exist and if so, what are they?

2. We were unable to find any fourth power algebraic identities of the form

(r1x
2 + s1xy + t1y

2)4 + (r2x
2 + s2xy + t2y

2)4 + (r3x
2 + s3xy + t3y

2)4

= (r4x
2 + s4xy + t4y

2)4 + (x2 − s5xy − t5y
2)4,

where the r’s are positive integers and the s’s and t’s are nontrivial. Do such
identities exist?

3. In the fourth power case, we found algebraic identities for every pair we tried
where m if a positive integer and n = m+1. Is this always true? In addition,
is there any other algebraic identity where n 6= m+ 1 other than the one we
found where m = 3 and n = 5?
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Appendix I: r31 + r32 = r33 + 1

r1 r2 r3
9 10 12
64 94 103
73 144 150
135 235 249
244 729 738
334 438 495
368 1537 1544
577 2304 2316
1010 1897 1988
1033 1738 1852
1126 5625 5640
1945 11664 11682
3088 21609 21630
3097 3518 4184
3753 4528 5262
3987 9735 9953
4083 8343 8657
4609 36864 36888
5700 38782 38823
5856 9036 9791
6562 59049 59076
7364 83692 83711
9001 90000 90030
10876 31180 31615
11161 11468 14258
11767 41167 41485
11980 131769 131802
13294 19386 21279
15553 186624 186660
16617 35442 36620

r1 r2 r3
19774 257049 257088
20848 152953 153082
24697 345744 345786
26914 44521 47584
27238 33412 38599
27784 35385 40362
27835 72629 73967
30376 455625 455670
35131 76903 79273
36865 589824 589872
38305 51762 57978
39892 151118 152039
44218 751689 751740
49193 50920 63086
50313 80020 86166
59728 182458 184567
65601 67402 83802
99457 222574 229006
107258 278722 283919
135097 439312 443530
158967 312915 326033
190243 219589 259495
191709 579621 586529
198550 713337 718428
243876 547705 563370
294121 325842 391572
336820 583918 619111
372106 444297 518292
434905 780232 822898
590896 734217 844422
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Appendix II: t31 + t32 = t33 − t34

t1 t2 t3 t4
-9 6 -8 1
6 -9 -8 1
-9 8 -6 1
8 -9 -6 1
-8 -6 -9 -1
-6 -8 -9 -1
-8 9 6 -1
9 -8 6 -1
-6 9 8 -1
9 -6 8 -1
6 8 9 1
8 6 9 1
-12 9 -10 -1
9 -12 -10 -1
-12 10 -9 -1
10 -12 -9 -1
-10 -9 -12 1
-9 -10 -12 1
-10 12 9 1
12 -10 9 1
-9 12 10 1
12 -9 10 1
9 10 12 -1
10 9 12 -1
-103 64 -94 -1
64 -103 -94 -1
-103 94 -64 -1
94 -103 -64 -1
-94 -64 -103 1
-64 -94 -103 1
-94 103 64 1
103 -94 64 1
-64 103 94 1
103 -64 94 1
64 94 103 -1
94 64 103 -1

t1 t2 t3 t4
-144 71 -138 1
71 -144 -138 1
-144 138 -71 1
138 -144 -71 1
-138 -71 -144 -1
-71 -138 -144 -1
-138 144 71 -1
144 -138 71 -1
-71 144 138 -1
144 -71 138 -1
71 138 144 1
138 71 144 1
-150 73 -144 -1
73 -150 -144 -1
-150 144 -73 -1
144 -150 -73 -1
-144 -73 -150 1
-73 -144 -150 1
-144 150 73 1
150 -144 73 1
-73 150 144 1
150 -73 144 1
73 144 150 -1
144 73 150 -1
-172 135 -138 1
135 -172 -138 1
-172 138 -135 1
138 -172 -135 1
-138 -135 -172 -1
-135 -138 -172 -1
-138 172 135 -1
172 -138 135 -1
-135 172 138 -1
172 -135 138 -1
135 138 172 1
138 135 172 1
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Appendix III: t41 + t42 + t43 = t44 + t45 + 1

t1 t2 t3 t4 t5
2 31 47 14 49
2 31 47 49 14
2 35 47 19 50
2 35 47 50 19
2 47 173 71 172
2 47 173 172 71
2 148 191 56 206
2 148 191 206 56
3 6 21 16 19
3 6 21 19 16
3 7 8 2 9
3 7 8 9 2
3 7 44 24 43
3 7 44 43 24
3 21 36 2 37
3 21 36 37 2
3 24 111 77 104
3 24 111 104 77
4 9 13 11 12
4 9 13 12 11
4 18 19 6 22
4 18 19 22 6
4 41 103 58 101
4 41 103 101 58
4 49 75 25 78
4 49 75 78 25
4 76 105 54 110
4 76 105 110 54
4 83 100 32 110
4 83 100 110 32
5 6 11 9 10
5 6 11 10 9
6 14 37 22 36
6 14 37 36 22
6 19 31 9 32
6 19 31 32 9
6 23 29 26 27
6 23 29 27 26

t1 t2 t3 t4 t5
6 25 29 15 32
6 25 29 32 15
6 29 47 23 48
6 29 47 48 23
6 31 41 24 43
6 31 41 43 24
6 47 71 43 72
6 47 71 72 43
6 138 165 100 178
6 138 165 178 100
7 14 21 18 19
7 14 21 19 18
7 27 157 109 147
7 27 157 147 109
7 57 73 9 79
7 57 73 79 9
7 76 107 83 104
7 76 107 104 83
7 109 148 121 142
7 109 148 142 121
8 11 19 16 17
8 11 19 17 16
8 43 51 47 48
8 43 51 48 47
8 109 132 62 144
8 109 132 144 62
9 25 34 30 31
9 25 34 31 30
9 34 193 152 171
9 34 193 171 152
9 197 200 45 236
9 197 200 236 45
10 14 103 80 92
10 14 103 92 80
10 19 29 25 26
10 19 29 26 25
10 39 41 32 45
10 39 41 45 32

54 C. Cooper



References

[1] Chen, K.-W., Extensions of an amazing identity of Ramanujan, The Fibonacci Quar-
terly, Vol. 50 (2012), 227–230.

[2] Hirschhorn, M. D., An amazing identity of Ramanujan, Mathematics Magazine,
Vol. 68 (1995), 199–201.

[3] McLaughlin, J., An identity motivated by an amazing identity of Ramanujan, The
Fibonacci Quarterly, Vol. 48 (2010), 34–38.

[4] Ramanujan, S., The Lost Notebook and Other Unpublished Papers, New Delhi,
Narosa, 1988, p. 341.

Identities in the spirit of Ramanujan’s amazing identity 55





On h-perfect numbers

Heiko Harborth

Diskrete Mathematik, Technische Universität Braunschweig
38023 Braunschweig, Germany

h.harborth@tu-bs.de

Abstract

Let σ(x) denote the sum of the divisors of x. The diophantine equation
σ(x) + σ(y) = 2(x + y) equalizes the abundance and deficiency of x and y.
For x = n and y = hn the solutions n are called h-perfect since the classical
perfect numbers occur as solutions for h = 1. Some results on h-perfect
numbers are determined.
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1. Introduction

Let σ(n) denote the sum of the divisors of n, that is,

σ(n) =

r∏

i=1

pαi+1
i − 1

pi − 1
for n =

r∏

i=1

pαi
i .

Since the classical antiquity there exist two famous problems for σ(n).
At first it is asked for perfect numbers n fulfilling

σ(n) = 2n.

All even perfect numbers are of the form n = (2p−1)2p−1 where p is a prime number
and where 2p−1 is a so-called Mersenne prime number, too. Nearly 50 such prime
numbers are known. The existence of odd perfect numbers is still unknown.

Secondly, it is asked for amicable number pairs x, y such that

σ(x)− x = y and σ(y)− y = x.
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Several thousand pairs are known. It remains unknown whether there are infinitely
many pairs.

Nonperfect numbers n are called abundant if σ(n) > 2n and called deficient
if σ(n) < 2n. Then it may be asked for perfect number pairs x, y fulfilling the
diophantine equation

σ(x) + σ(y) = 2(x+ y), (1.1)

that is, x and y equalize abundance and deficiency.
There exist many solutions x, y of (1.1). For fixed d let X and Y be the sets

of solutions x and y of σ(x) = 2x+ d and σ(y) = 2y − d, respectively. The sets X
and Y are finite (see [1], p. 169). Then all pairs x, y with x ∈ X and y ∈ Y are
solutions of (1.1).

It may be remarked that perfect and amicable numbers are special cases of
(1.1): Perfect numbers for x = y and amicable numbers for σ(x) = σ(y).

Here it is proposed to consider the special class of solutions of (1.1) when y is
a multiple of x, that is,

σ(n) + σ(hn) = 2(n+ hn) = 2n(h+ 1). (1.2)

If h = 1 then n is a perfect number. Therefore solutions n of (1.2) may be called
h-perfect numbers. Some results on h-perfect numbers are determined in the fol-
lowing.

2. Powers of two

For h = 2t all h-perfect numbers are dependent on a sequence of certain prime
numbers being similar to Mersenne prime numbers.

Theorem 2.1. A number n is 2t-perfect, t ≥ 1, if and only if it holds
n = 2α((2t + 1)2α − 1) where (2t + 1)2α − 1 is a prime number.

Proof. Suppose that n is 2t-perfect, t ≥ 1.
If (n, 2) = 1 then equation (1.2) implies

σ(n) + σ(n2t) = σ(n)(1 + 2t+1 − 1) = σ(n)2t+1 = 2n(1 + 2t).

Since the left term of (1.2) is divisible by 2t+1 whereas the right term of (1.2) is
divisible by 2 only, odd 2t-perfect numbers do not exist.

If n = s2α, α ≥ 1, (s, 2) = 1 then equation (1.2) yields

σ(s2α) + σ(s2t+α) = 2(s2α + s2t+α).

This is equivalent to

σ(s)((2t + 1)2α − 1) = (2t + 1)2αs with s = v((2t + 1)2α − 1), v ≥ 1, (2.1)

since ((2t + 1)2α − 1, (2t + 1)2α) = 1.
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If v > 1 then equation (2.1) determines

v((2t + 1)2α − 1) + v + 1 ≤ σ(v((2t + 1)2α − 1)) = v(2t + 1)2α,

a contradiction.
If v = 1 and if s = (2t + 1)2α − 1 is a composite number then equation (2.1)

yields
(2t + 1)2α < σ((2t + 1)2α − 1) = (2t + 1)2α,

again a contradiction.
If v = 1 and if s = (2t + 1)2α − 1 is a prime number then equations (2.1) and

(1.2) are fulfilled and n = s2α is 2t-perfect.

In [2] the first 16 and 12 prime numbers p = (2t+1)2α−1 are listed for t = 1 and
t = 2, respectively. Thus 10, 44, 184, 752, 12224, 49024,. . . are the first 2-perfect
numbers. The question for odd 2t-perfect numbers, t ≥ 1, is completely answered
by nonexistence whereas it is still open in the classical case of perfect numbers.

3. Nonexistence

For some classes of values of h it can be proved that h-perfect numbers do not
exist.

Theorem 3.1. For h = c2t, (c, 2) = 1, c ≥ 3, there are no even h-perfect numbers
if c+ 2 < 2t+2 and there are no h-perfect numbers if c+ 2 < 2t+1.

Proof. For even n let n = r2α, α ≥ 1, (r, 2) = 1. Now suppose that n is c2t-perfect
for c+ 2 < 2t+2. Equation (1.2) implies

(2α+1 − 1)σ(r) + (2α+t+1 − 1)σ(cr) = r2α+1(c2t + 1).

Using σ(cr) ≥ cr + σ(r) it follows

σ(r)(2α+1 − 1 + 2α+t+1 − 1) ≤ (2α+1 + c)r.

Then σ(r) ≥ r together with α ≥ 1 determines

2t+1 ≤ 2α+t+1 ≤ c+ 2,

a contradiction.
For odd n suppose that n is c2t-perfect for c+2 < 2t+1. Equation (1.2) implies

σ(n) + (2t+1 − 1)σ(cn) = 2n(1 + c2t).

With σ(cn) ≥ cn+ σ(n) it follows

2t+1σ(n) ≤ (c+ 2)n

and with σ(n) ≥ n the contradiction

2t+1 ≤ c+ 2

is obtained.
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For h < 100 by Theorem 3.1 no h-perfect numbers occur if h = 12, 20, 24, 40,
48, 56, 72, 80, 88, or 92.

The following theorem presents another example of partial nonexistence.

Theorem 3.2. There is no even 3t-perfect number, t ≥ 1.

Proof. Suppose that n = r2α is an h-perfect number for h = 3t, t ≥ 1, α ≥ 1,
(r, 2) = 1. Equation (1.2) yields

σ(r)(2α+1 − 1) + σ(r3t)(2α+1 − 1) = r2α+1(1 + 3t). (3.1)

Case I: (r, 3) = 1. It follows

σ(r)(2α+1 − 1)(1 + (3t+1 − 1)/2) = r2α+1(1 + 3t)

and equivalently

σ(r)(2α+1 − 1)(1 + 3t+1) = r2α+2(1 + 3t).

With σ(r) ≥ r the inequality

(2α+1 − 1)(1 + 3t+1) ≤ 2α+2(1 + 3t)

is obtained being equivalent to

(3t − 1)2α+1 ≤ 1 + 3t+1.

This is a contradiction for α, t ≥ 1 excluded α = t = 1. Then, however, the left
term of (3.1) is divisible by 3 and, in the contrary, 3 does not divide the right term
of (3.1) due to (r, 3) = 1.

Case II: r = s3β , β ≥ 1, (s, 3) = 1, and (s, 2) = 1 since (r, 2) = 1. By equation
(3.1) it follows

σ(s)(2α+1 − 1)(3β+1 + 3β+t+1 − 2) = s2α+23β(1 + 3t)

and with σ(s) ≥ s

2α+13β+1 + 2α+13t+β+1 − 2α+2 − 3β+1 − 3t+β+1 + 2 ≤ 2α+23t+β + 2α+23β .

This inequality is equivalent to

(3β(1 + 3t)− 2)(2α+1 − 3) ≤ 4

yielding a contradiction for α, β, t ≥ 1.
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4. Even perfect-perfect numbers

For some values of h there exist only a small number of h-perfect numbers.

Theorem 4.1. For h = 6 only 13 is h-perfect and for any other even perfect
number h there are no h-perfect numbers.

Proof. Let h = (2p − 1)2p−1 be an even perfect number, that is, p and 2p − 1 both
are prime numbers. Suppose that n is an h-perfect number.

For even n, that is, n = r2α, α ≥ 1, (r, 2) = 1, Theorem 3.1 implies the
condition 2p + 1 ≥ 2p+1 being impossible.

For odd n two cases are distinguished.
Case I: n = r(2p− 1)α = rqα, α ≥ 1, (r, 2p− 1) = (r, q) = 1. By equation (1.2),

σ(rqα) + σ(r2p−1qα+1) = 2rqα(1 + q2p−1)

and hence

σ(r)(qα+1 − 1 + (2p − 1)(qα+2 − 1)) = r(q − 1)(2qα + 2pqα+1).

With σ(r) ≥ r and 2p − 1 = q this yields

qα+1 − 1 + qα+3 − q ≤ 2qα+1 + qα+3 + qα+2 − 2qα − qα+2 − qα+1

and thus the contradiction
2qα ≤ q + 1.

Case II: (n, 2p − 1) = (n, q) = 1. Equation (1.2) yields

σ(n) + σ(nq2p−1) = 2n(1 + q2p−1),

σ(n) + σ(n)(2p − 1)(q + 1) = n(2 + q2p),

and thus
σ(n)(1 + q(q + 1)) = n(2 + q(q + 1)).

Since (1 + q(q + 1), 2 + q(q + 1)) = 1 it is necessary that

σ(n) = v(2 + q(q + 1)) with n = v(1 + q(q + 1)), v ≥ 1. (4.1)

If v > 1 in equation (4.1) then

v(1 + q(q + 1)) + v + 1 ≤ σ(n) = v(2 + q(q + 1))

is a contradiction.
If v = 1 in equation (4.1) and if 1 + q(q + 1) is a composite number then

2 + q(q + 1) < σ(n) = 2 + q(q + 1)

is a contradiction.
It remains that v = 1 in equation (4.1) and 1 + q(q + 1) is a prime number.

This, however, is impossible for odd prime numbers p since 3 divides 1+ q(q+1) =
1 + (2p − 1)2p due to 2p ≡ −1 (mod 3). Thus p = 2 determines 1 + q(q + 1) = 13
as the unique solution of equations (4.1) and (1.2) for h = (22 − 1)22−1 = 6.
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5. Small values of h

For h ≤ 16 the discussion is completed for h = 2, 4, 6, 8, 12, and 16. For h = 3,
9, and 10 even h-perfect numbers do not exist. So far no h-perfect numbers are
known for h = 3, 9, 10, and 13. The numbers n = 14 and n = 7030 are 5-perfect,
n = 135 and n = 1365 are 7-perfect, n = 182 is 11-perfect, n = 5 and n = 118 are
14-perfect, and n = 455 is 15-perfect.

Finally, there are two corollaries for the Fibonacci number F7 = 13 as conse-
quences of Theorems 3.1 and 4.1.

Corollary 5.1. Only 13 is an h-perfect number for any even perfect number h.

Corollary 5.2. Only 13 is a 3 · 2t-perfect number for any t ≥ 1.
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Abstract

Heuristically, the base b, size a Tojaaldi sequence of size k, T (a,b)
k , is the

sequence of initial digits of the (k+1)−digit Generalized Fibonaaci numbers,
defined by F

(a)
0 = 0, F

(a)
1 = 1, F

(a)
n = aF

(a)
n−1 + F

(a)
n−2, n ≥ 2. For example,

T (1,10)
2 = 〈1, 2, 3, 6, 9〉 corresponding to the initial digits of the three-digit

Fibonacci numbers, 144, 233, 377, 610, 987. In [1] we showed that (eventually)
there are at most b Tojaaldi sequences and conjectured that there are exactly
b Tojaaldi sequences. Based on computer studies we also conjectued that the
Tojaaldi sequences are Benford distributed. We prove these two conjectures

Keywords: Tojaaldi, Fibonacci, initial digits, Benford

MSC: 11B37 11B39

1. Introduction and goals

The goal of this paper is to prove the two conjectures presented in [1]. For purposes
of completeness we will repeat the necessary definitions, conventions and theorems
from [1]. For pedagogic purposes we will also repeat key illustrative examples.
However, the reader should consult [1] for details on proofs and the well-definedness
of definitions.

An outline of this paper is as follows: In this section we present all necessary
definitions and propositions. In the next section we state the main Theorems of [1]
as well as the two conjectures. In the final section we prove the conjectures.
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Notational Conventions. Throughout this paper if {n ∈ N : P (n)} is the
set of integers with property P then we notationally indicate the sequence of such
integers (with the natural order inherited from the integers) by 〈n ∈ N : P (n)〉.
Throughout this paper discrete sequences and sets will be notationally indicated
with angle brackets and braces respectively.

Definition 1.1. For integers a ≥ 1, n ≥ 0, the generalized Fibonacci numbers are
defined by

F
(a)
0 = 0, F

(a)
1 = 1, F (a)

n = aF
(a)
n−1 + F

(a)
n−2, n ≥ 2.

The generalized Fibonacci numbers can equivalently be defined by their Binet form

F (a)
n =

αna − βna
D

,D = αa − βa =
√
a2 + 4, αa =

a+D

2
, βa =

a−D
2

. (1.1)

When speaking about the generalized Fibonacci numbers, if we wish to explicitly
note the dependence on a, we will use the phrase the a-Fibonacci numbers.

The following identity is useful when making estimates.

Lemma 1.2. For integers k ≥ 1,m ≥ 1,

F
(a)
m+k = αkaF

(a)
m + F

(a)
k βma . (1.2)

Definition 1.3. The base b, a-Tojaaldi sequence of size k is defined and notation-
ally indicated by

T (a,b)
k =

〈⌊
F

(a)
n

bk

⌋
: n ≥ 1, bk ≤ F (a)

n < bk+1

〉
, k ≥ 0. (1.3)

The base b, a-Tojaaldi set (of the a-Fibonacci numbers) is defined and notationally
indicated by

T (a,b) = {T (a,b)
k : 0 ≤ k <∞}.

Example 1.4. Heuristically, a Tojaaldi sequence is the sequence of initial digits of
all base b size a Fibonacci numbers, with a fixed number of digits. So, for example,
T (1,10)
2 = 〈1, 2, 3, 6, 9〉, corresponding to the initial digits of the 3-digit Fibonacci

numbers: 144,233,377,610,987.

Remark 1.5. The theorems of this paper carry over to the generalized Lucas num-
bers with extremely minor modifications.

The Tojaaldi sequences were initially studied by Tom Barrale who manually
compiled tables of them from 1997-2007. Michael Sluys then contributed computing
resources enabling computation of Tojaaldi sequences for the first (approximately)
half million Fibonacci numbers. This computer study was replicated by Hendel
using alternate algorithms. This computer study contains important information
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about the distribution of Tojaaldi sequences which is the basis of the conjecture
that the Tojaaldi sequences are Benford distributed.

The name Tojaaldi is an acronym formed from the initial two letters of Barrale’s
family: Thomas, Jared, Allison, and Dianne, his eldest, second eldest son, daughter
and wife respectively. (The third letter of "Thomas" was used rather than the
second because it is a vowel.)

Definition 1.6. For integers b ≥ 2, a ≥ 1, n0(a, b) is the smallest positive integer
such that

F (a)
n = i · bj , is not solvable for integers 1 ≤ i ≤ b− 1, n ≥ n0(a, b). (1.4)

Example 1.7. Clearly, n0(1, 10) = 1, n0(2, 10) = 1 and n0(1, 12) = 13.

Definition 1.8. For integer k, n(k) = n(k,a,b) is the unique integer defined by the
equation

F
(a)
n(k) < bk ≤ F (a)

n(k)+1, k ≥ 1. (1.5)

Definition 1.9. For fixed integers a ≥ 1 and b ≥ 2, j(a,b) is the unique non-
negative integer satisfying the inequality,

αj(a,b)a < b < αj(a,b)+1
a . (1.6)

Definition 1.10. Let k1(a, b) be the smallest positive integer such that for all
k ≥ k1(a, b), (i) n(k) ≥ n0(a, b), and (ii) n(k) ≥ j(a, b). An integer k ≥ k1(a, b) will
be called non-trivial while other positive integers will be called trivial. Similarly, a
Tojaaldi sequence T (a,b)

k will be called non-trivial if k is non-trivial. We notationally
indicate the set of all non-trivial, base b, a-Tojaaldi sequences, by T (a,b)

.

Lemma 1.11. For non-trivial k,

#T (a,b)
k ∈ {j(a, b), j(a, b) + 1}. (1.7)

Proof. [1, Proposition 2.5].

Example 1.12. j(1, 10) = 4, n0(1, 10) = 1, and n(1, 1, 10) = 6. Hence, by (1.7),
T (1,10)
0 is the only base 10, 1-Tojaaldi sequence with 6 elements.

Lemma 1.13. If k is non-trivial then (i) F (a)
n(k) ≤ i·bk, 1 ≤ i ≤ b−1⇒ F

(a)
n(k) < i·bk

(ii) #T (a,b)
k ∈ {j(a, b), j(a, b) + 1}, (iii) F (a)

n(k)+p > bk ⇔ αpaF
(a)
n(k) > bk, 1 ≤ p ≤

j(a, b) + 1.

Proof. [1, Proposition 2.8].

Remark 1.14. Non-triviality was introduced to avoid only a few aberrent Tojaaldi
sequences such as T (1,10)

0 . In general, restricting ourselves to non-trivial sequences
is not that restrictive. For example, k1(1, 10) = 1 and k1(1, 12) = 3.
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Definition 1.15. For fixed a, b, and x ∈ [α−1a , 1), the base b, real, a-Tojaaldi
sequence of x is defined by

T (a,b)
x = 〈bαkaxc : 1 ≤ k ≤ m, with m defined by αma x < b ≤ αm+1

a x〉.

Remark 1.16. T (a)
z has different definitions depending on whether z is an integer

or non-integer. This should cause no confusion in the sequel since the meaning will
always be clear from the context.

Definition 1.17. For integer k, a ≥ 1, and b ≥ 2,

x = x(k) = x(k, a, b) =
F

(a)
n(k)

bk
, k ≥ 1. (1.8)

Lemma 1.18. For integer k, a ≥ 1, and b ≥ 2,

T (a,b)
x(k) = T (a,b)

k , (1.9)

and
x(k) ∈ (α−1a , 1). (1.10)

Proof. [1, Proposition 2.14]

Definition 1.19. For each integer, 1 ≤ i ≤ b, e(i) = e(i,a) is the unique integer
satisfying. αe(i)−1a ≤ i < α

e(i)
a .

Definition 1.20. The (a, b)-partition refers to

〈Bi : 1 ≤ i ≤ b+ 1〉 = 〈1, i

α
e(i)
a

: 1 ≤ i ≤ b〉. (1.11)

Remark 1.21. By our notational convention on the use of angle brackets, the Bi
simply sequentially order the { j

α
e(j)
a

}1≤j≤b. Consequently, the Bi, 1 ≤ i ≤ b + 1,

partition the interval [ 1
αa
, 1), into b semi-open intervals with B1 = α−1a and Bb+1 =

1.

Example 1.22. Table 1 presents the (1,10)-parition and other useful information.

Lemma 1.23. For a fixed a ≥ 1, b ≥ 2, (a, b)− partition, 〈Bi : 1 ≤ i ≤ b+ 1〉, and
a real y ∈ [Bm, Bm+1), 1 ≤ m ≤ b,

T (a,b)
Bm

= T (a,b)
y . (1.12)

Proof. [1, Proposition 2.15].

Example 1.24. x = x(1, 1, 10) = 0.8. Inspecting Table 1,

x ∈ [B6, B7) = [0.76, 0.81).

It is then straightforward to verify, as shown in Table 1, that

T (1,10)
0.8 = 〈1, 2, 3, 5, 8〉 = T (1,10)

1 . (1.13)
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1
α

7
α5

3
α3

8
α5

5
α4

2
α2

9
α5

6
α4

10
α5

4
α3 1

0.62 0.63 0.71 0.72 0.73 0.76 0.81 0.88 0.90 0.94 1.00

11246 11247 11347 11348 11358 12358 12359 12369 1236 1246

3,888 21,250* 3,396* 2,068* 8,515 11,158** 13,980* 5,465* 8,515 10,583* 88,818

Table 1: Row 3 of this table contains the ten base 10, 1-
Tojaaldi sequences of size at least 1. Row 4 presents the nu-
merical frequencies of Tojaaldi sequences. Row 1 contains the
(1,10)-partition of [α−1, 1) by Bi, 1 ≤ i ≤ b, defined in Defini-
tion 1.17. Row 2 contains two digit numerical approximations
of the Bi. In row 4, the number of asterisks indicate the differ-
ence between (actual) observed and Benford (predicted) frequen-
cies, 88818 · log(Bi+1)−log(Bi)

log(1)−log(α−1)
. To illustrate our notation, there are

11158 occurrences of the Tojaaldi sequence 〈1, 2, 3, 5, 8〉 among the
Tojaaldi sequences of sizes 1 to 88818. The Benford densities de-
scribed in Definition 1.28 and Proposition 1.29, predict there should

be 88818 ·
(
log(9)−log(α5)

)
−
(
log(2)−log(α2)

)
log(α)

≈ 11156 occurrences, and
hence we have placed two asterisks on the 11158 entry to indicate
a difference of two between the observed and predicted frequencies.

In the sequel we will assume integers a, b are fixed. This will allow us to ease
notation and drop the functional dependency on a, b. So for example we will speak
about k1 instead of k1(a, b).

In the sequel we will speak about an integer K ≥ k1(a, b). In several proofs we
will speak about the effect of K growing arbitrarily large.

Definition 1.25. The sequence {y(k)}k≥K , is recursively defined by

y(K) = x(K) =
F

(a)
n(K)

bK
,

y(k) = y(k − 1)

{
αj+1
a

b , if y(k − 1)
αj+1
a

b < 1,
αja
b , if y(k − 1)

αj+1
a

b > 1, for k > K.
(1.14)

Definition 1.26. The sequence {ny(k)}k≥K , is defined by ny(k) = 0, for k < K,
and

ny(k) = ny = #{K ≤ i ≤ k : y(i)
αj+1
a

b
> 1}, k ≥ K. (1.15)

Lemma 1.27.

y(k) =
F

(a)
n(K)

bK

(
αja
b

)k−K
αny(k−1)a , for k ≥ K. (1.16)

Proof. A straightforward induction.
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Definition 1.28. The sequence {nx(k)}k≥K , is defind by nx(k) = 0, for k < K,
and

nx(k) = #{K ≤ i ≤ k : x(i)
αj+1
a

b
> 1}, k ≥ K. (1.17)

Remark 1.29. The definitions and propositions we have just presented are almost
identical to those in [1, Section 3]. The sole difference is that [1] restricts these
definitions and propositions to the caseK = k1 while here, we have allowedK > k1.
It is this small subtlety which will allow us to prove that most x(k) are arbitrarily
close to y(k) for large enough k > K.

Example 1.30. Let a = 1, b = 10. Then k1(a, b) = 1. By (1.14) and (1.8),

{y(1), . . . , y(4)} = {F6

10
= 0.8, 0.8872, 0.9839, 0.6744} ≈

{x(1), . . . , x(4)} = { 8
10
,
89

100
,
987

1000
,
6765

10000
}.

Note that x(i)− y(i) ≈ 0.003.

Definition 1.31. An integer k ≥ K will be called exceptional relative to (a, b) if
nx(k − 1) 6= ny(k − 1). Otherwise, k will be called non-exceptional.

Example 1.32. let a = 1, b = 10. Then j(a, b) = 4 and n(1, a, b) = 6.
By Definition 1.14, x(44) = F212

1044 = 0.9034, to four decimal places. By Definition

1.21, y(44) = 0.9006. But y(44)α
5
a

10 = 0.9988 < 1, while x(44)α
5
a

10 = 1.0019 > 1, and
consequently x(44) 6= y(44), implying by Definition 1.26 that 45 is exceptional.

Note, that by Definition 1.21, y(45) = 0.9988. while by Definition 1.14, x(45) =
0.6192.

Hence, for the exceptional value of 45, x(45) and y(45) are not close. In fact,
y(45)−x(45) > 0.37. The "spikes" in Figures 1 and 2 correspond to the exceptional
integers and show that they are rare.

Figure 1: Distribution of b 1
x(n)−y(n) +0.5c for 2 ≤ n ≤ 200, for the

1-Fibonacci numbers and base 10. The x(n) and y(n) are defined
in Definitions 1.14 and 1.21 respectively.
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Figure 2: Distribution of b 1
x(n)−y(n) +0.5c for 2 ≤ n ≤ 200, for the

2-Fibonacci numbers and base 10. The x(n) and y(n) are defined
in Definitions 1.14 and 1.21 respectively.

Definition 1.33. Let [a, b) be an interval on the real line and let
X ∼ Uniform([a, b)) be a random variable uniformly distributed over this space.
If for some constant c > 1, the random variable Y satisfies Y = cX, c > 1, over
the space [ca, cb), then we say that Y is Benford distributed over [ca, cb), and we
notationally indicate this by Y ∼ Benford([ca, cb).

Lemma 1.34. If Y ∼ Benford([ca, cb), then for ca ≤ c1 ≤ c2 ≤ cb,

P rob(c1 < Y < c2) =
logc(

c2
c1
)

b− a .

Remark 1.35. For a proof see [1, Proposition 4.3]. For general references on the
Benford distribution see the bibliography in [1]. Notice that the restriction of the
spaces and random variables Y and X to spaces of countable dense subsets of [a, b)
does not change the proposition conclusion.

Example 1.36. Table 1, which presents 88,818 Tojaaldi sequences, allows illus-
tration of the Benford sequence (and Conjecture 2).

Each of these 88,818 Tojaaldi sequences involve 4 or 5 Fibonacci numbers. Thus
the 88,818 Tojaaldi sequences involve 3888×5+21250×5+. . .+10583×4 = 424992
Fibonacci numbers. Since the Fibonacci numbers are Benford distributed, we expect
log10(

10
9 )×88818 = 19446.6 Fibonacci numbers beginning with 9. But 〈1, 2, 3, 5, 9〉

and 〈1, 2, 3, 6, 9〉 are the only Tojaaldi sequences having Fibonacci numbers begin-
ning with 9; so we observe 13980 + 5465 = 19445 Fibonacci numbers beginning
with 9.

We can repeat this numerical exercise for each digit (besides 9). We can then
compute the χ−square statistic, χ2 =

∑9
i=1

(Oi−Pi)2
Pi

= 0.0004 showing a very
strong agreement between theory and observed frequency for the Fibonacci-number
frequencies.

Similarly, as outlined in the caption to Table 1, we may compute observed and
expected Tojaaldi-sequence frequencies; the associated χ−square statistic is 0.0013,
suggesting that the Tojaaldi sequences are Benford distributed. This numerical
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study motivates Conjecture 2 which will be formally stated in the next section and
proven in the final section of this paper.

Definition 1.37. The uniform discrete measure used when making statements
about frequency of Tojaaldi sequences on initial segments of integers, is given by
the following discrete probablity measure.

PL(T (a,b)
k0

) =
#{k : T (a,b)

k = T (a,b)
k0

, 1 ≤ k ≤ L}
#{T (a,b)

k : 1 ≤ k ≤ L}
, L ≥ 1, (1.18)

with # indicating cardinality and k0, k, L are integers.

2. Main theorems and conjectures

Conjecture 1. For all b ≥ 2, a ≥ 1, #T (a,b)
= b.

Theorem 2.1. For b > 1, and arbitrary a ≥ 1,

#T (a,b) ≤ b.

Proof. [1, Theorem 2.9]

Lemma 2.2. For given (a, b) let 〈Bi : 1 ≤ i ≤ b + 1〉 be an (a, b)-partition, and
let z0 be an arbitrary point in the real space [α−1a , 1) with the continuous uniform
measure. Then

Prob(Tz = Tz0) =
µ([Bi, Bi+1))

µ([α−1a , 1))
,

where i is picked so that [Bi, Bi+1) contains z0.

Proof. [1, Theorem 4.1]

Theorem 2.3. For any integer K ≥ k1, {y(i) : i ≥ K} is Benford distributed over
the space [α−1, 1).

Proof. [1, Theorem 4.5] (with K replacing k1 throughout the proof.)

Conjecture 2. The {x(i)}i≥k1 are Benford distributed.

3. Proof of the two conjectures

In this section we prove the two main conjectures which we restate as theorems.
Prior to doing so we will need some preliminary propositions.

Lemma 3.1. {ny(k)}k≥K is non-decreasing and unbounded as k goes to infinity.
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Proof. By Definition 1.22, ny(k) is non-decreasing. Suppose contrary to the propo-
sition there is a k0 such that for all k ≥ k0, ny(k) = ny(k0). We proceed to derive
a contradiction, proving that ny(k) is unbounded as k goes to infinity.

First, we show, using an inductive argument, that y(k) ∈ (α−1a , 1), for k > K.
The base case, when k = K is established by Definition 1.21 and equation (1.10).
The induction step is established by Definitions 1.21 and 1.8.

Returning to the proof of Proposition 3.1, note that according to Definition
1.21, there are two cases to consider, according to whether y(k0)

αj+1
a

b < 1, or

y(k0)
αj+1
a

b > 1. We assume y(k0)
αj+1
a

b < 1, the treatment of the other case be-
ing almost identical. Then since we assumed ny(k) = ny(k0), k ≥ k0, we have

y(k0)
(
αj+1
a

b

)n
< 1, for all integer n ≥ 0, a contradiction, since by Definition 1.8,

(
αj+1
a

b

)n
goes to infinity as n gets arbitrary large. This contradiction shows that

our original assumption that y(k) is bounded is false. This completes the proof.

Lemma 3.2. For non-exceptional k > K

|x(k)− y(k)| ∈
(
α−2n(K)−1
a , α−2n(K)

a

)
. (3.1)

Proof. [1, Proposition 3.6] with K replacing k1 in both the proposition statement
and throughout the proof.

Remark 3.3. As noted in the previous section, because we replaced k1 by K,
the lower bound estimate of the difference in (3.1) is going to 0. Consequently
{x(i)}i≥K is asymptotically approaching {y(i)}i≥K . Formally, we have the follow-
ing Corollary.

Corollary 3.4. As k varies over non-exceptional k,

lim
k→∞

|x(k)− y(k)| = 0.

Proof. Immediate, by combining Propositions 3.1 and 3.2.

Lemma 3.5. Using Definition 1.17, let 〈Bi : 1 ≤ i ≤ b+ 1〉 = 〈1, i

α
e(i)
a

: 1 ≤ i ≤ b〉
be an (a, b)-partition. Then the #{TBi , 1 ≤ i ≤ b} = b, that is, the TBi are distinct.

Proof. Following [1, Proposition 2.15], define a b × j(a, b) + 1 matrix, A(k, l) =
Bkα

l
a, 1 ≤ k ≤ b, 1 ≤ l ≤ j(a, b) + 1, so that by Definition 1.13

TBk = 〈bA(k, 1)c, . . . , bA(k,m)c〉, and by Definitions 1.16, 1.17 and 1.8, m equals
j(a, b) or j(a, b) + 1. Recall the following facts about the matrix A :
(I) A(k, e(i(k))) = i(k); (II) no other cell entries (besides (k, e(i(k)))) can have
exact integer values; (III) A is strictly increasing as one goes from top to bottom
and left to right, that is, A(k, l) < A(k′, l′) if either (i)l < l′ or (ii) l = l′, k < k′.

Using these three facts we see that bA(k′, e(i(k))c < A(k, e(i(k)), for k′ < k,
1 ≤ k ≤ b, i(k) 6= b. Hence, TBk′ 6= TBk , for k′ < k. An almost identical argument
applies when i(k) = b. Hence the TBi are distinct as was to be shown.
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Example 3.6. We can illustrate the proof using Table 1. By Table 1, B4 = 8
α5 ,

implying that the 5th member of the sequence TB4
equals 8 and the 5th member

of the previous sequences, TBk , 1 ≤ k < 4, are strictly less than 8 as confirmed by
Table 1.

Note also the special case B9 = 10
α5 , implying that the 5th member of the

sequence TB9 is empty while the 5th member of the previous sequences, TBk , 1 ≤
k ≤ 8, are non-empty, as confirmed by Table 1.

The next three propositions show that exceptional k (as defined in Definition
1.26) are rare. First we prove the following proposition, which provides an alternate
recursive definition to x(k), defined in Definition 1.14.

Lemma 3.7. The sequence {x(k)}k≥K , is recursively defined by

x(K) =
F

(a)

n(K)

bK
,

x(k) =




x(k − 1)

α
j+1
a
b + F

(a)
j+1

β
n(k−1)
a
bk

, if x(k − 1)
α
j+1
a
b < 1,

x(k − 1)
α
j
a
b + F

(a)
j

β
n(k−1)
a
bk

, if x(k − 1)
α
j+1
a
b > 1, for k > K.

(3.2)

Proof. If k = K the proposition is true by Definition 1.14. If k > K, then by
Definitions 1.3, 1.7 and Proposition 1.10

n(k)− n(k − 1) = #T
(a,b)
k−1 ∈ {j, j + 1}.

Consequently, there are two cases to consider. We treat the case n(k) = n(k −
1) + j, the treatment of the other case, n(k) = n(k − 1) + j + 1, being similar.

But then, by Proposition 1.12,

F
(a)
n(k) = αjaF

(a)
n(k−1) + F

(a)
j βn(k−1)a .

Equation (3.2), follows by dividing both sides of this last equation by bk and ap-
plying Defintion 1.14.

Prior to stating the next two propositions, it may be useful to numerically
illustrate the proof method. The following example continues Example 1.27.

Example 3.8. Let a = 1, b = 10. Then by Definition 1.8, j(a, b) = 4. By Definitions
1.22 and 1.24,

ny(43) = nx(43),

implying by Definition 1.26, that 44 is not exceptional. By Definition 1.21, y(44) =
0.9006; by Definition 1.14, x(44) = 0.9034. Application of Defintions 1.22 and 1.24
require use of α

5
a

10 = 0.9017. Observe that

y(44) = 0.9006 < 0.9017 < 0.9034 = x(44).

Consequently,

y(44)
α5
a

10
< 1;x(44)

α5
a

10
> 1.
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Therefore, by Definitions 1.22 and 1.24

ny(44) = ny(43) + 1;nx(44) = nx(43).

Hence, by Definition 1.26, k = 45 is an exceptional value. Notice that y(44) and
x(44) are close in value as predicted by Proposition 3.2. The values of x(45) and
y(45) may now be computed using Definition 1.22 and Proposition 3.6,

y(45) = 0.9988;x(45) = 0.6192.

Here, y(45) and x(45) are not close. More precisely, y(45) is close to 1 while x(45)
is close to α−1a .

But by applying Definitions 1.22 and 1.24 we see that

ny(45) = ny(44);nx(45) = nx(44) + 1,

implying that
ny(45) = nx(45),

in other words, 46 is not exceptional. We in fact confirm that y(46) and x(46) are
indeed close as required.

y(46) = 0.6846 < 0.6867 = x(46).

We may summarize this numerical example as follows: (I) Most k are non-
exceptional. (II) For an exceptional k to occur, one of x(k − 1), y(k − 1) must be
greater than αj+1

a

b while the other is less. (III) This occurs rarely because most
k are non-exceptional and hence, by Proposition 3.2, x(k) and y(k) are usually
numerically close. (IV) If k is exceptional then x(k) will be close to α−1a while
y(k) will be close to 1. (V) Consequently k + 1 will not be exceptional and in fact
x(k + 1) and y(k + 1) will again be close to each other.

The next proposition formalizes this example.

Lemma 3.9. If k is exceptional then k − 1 and k + 1 are non-exceptional.

Proof. Assume that k is exceptional and k−1 is not exceptional. This assumption is
allowable, since by Definitions 1.21, 1.22 and 1.24, K and K+1 are not exceptional
and therefore the "first" exceptional k must be preceded by a non-exceptional value.
We proceed to show that k+1 is not exceptional. Therefore, the "2nd" exceptional
k is preceded by a non-exceptional k. Proceeding in this manner we will always
be justified if we assume the predecessor of an exceptional k is not exceptional.
Consequently, we have left to prove that k + 1 is not exceptional.

By Definitions 1.26, 1.22 and 1.24, for k to be exceptional we must have one of
x(k − 1)

αj+1
a

b and y(k − 1)
αj+1
a

b greater than one while the other is less than one.
We treat one of these cases, the treatment of the other case being similar.

Accordingly, we assume

ny(k − 2) = nx(k − 2) −→ k − 1 is not exceptional, (3.3)
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and we further assume

y(k − 1) <
(αj+1

a

b

)−1
< x(k − 1) −→ y(k − 1)

αj+1
a

b
< 1, x(k − 1)

αj+1
a

b
> 1. (3.4)

Combining Proposition 3.2 with (3.4) we obtain

y(k − 1) >
(αj+1

a

b

)−1 − 1

α
2n(K)
a

, x(k − 1) <
(αj+1

a

b

)−1
+

1

α
2n(K)
a

. (3.5)

Hence, by Definition 1.21 and Proposition 3.6,

y(k) = y(k − 1)
αj+1
a

b
, x(k) = x(k − 1)

αja
b

+ F
(a)
j

β
n(k−1)
a

bk
. (3.6)

Using equation (3.4), Definitions 1.26, 1.22 and 1.24, we confirm that

ny(k − 1) = ny(k − 2), nx(k − 1) = nx(k − 2) + 1 −→ k is exceptional. (3.7)

Again, by Definition 1.26, to decide whether k + 1 is exceptional we need to
compute ny(k) and nx(k). We first compute ny(k).

Appplying equations (3.6) and (3.5) to Definition 1.22, we have

y(k)
αj+1
a

b
= y(k − 1)

(αj+1
a

b

)2
>
αj+1
a

b
− α2j+2

a

b2α
2n(K)
a

. (3.8)

j and b are O(1) (relative to the choice of K) while we may chose K arbitrarily
large. It follows that as K goes to infinity,

y(k)
αj+1
a

b
>
αj+1
a

b
− α2j+2

a

b2α2n(K)
≈ αj+1

a

b
> 1. (3.9)

Consequently by (3.9), Definition 1.22, and (3.7)

ny(k) = ny(k − 1) + 1 = ny(k − 2) + 1. (3.10)

.
We now carry out a similar analysis on x(k). By Proposition 3.6 we have

x(k)
αj+1
a

b
=
(
x(k − 1)

αja
b

+ F
(a)
j

β
n(k−1)
a

bk
)αj+1

a

b
(3.11)

Applying the upper bound for x(k − 1) presented in (3.5) we obtain after some
straightforward manipulations

x(k)
αj+1
a

b
<
αja
b

+ α2j+1−2n(K)
a

1

b2
+ F

(a)
j α(j+1)

a

β
n(k−1)
a

bk+1
≈ αja

b
< 1. (3.12)

Hence, by Definition 1.24 and equation (3.7),

nx(k) = nx(k − 1) = nx(k − 2) + 1. (3.13)

Equations (3.10) and (3.13) together imply that nx(k) = ny(k), and hence, by
Definition 1.26, k + 1 is not exceptinoal as was to be shown.

This completes the proof.
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Lemma 3.10. Prob({k : k is exceptional}) = 0.

Proof. By Proposition 3.8, exceptional k occur as singletons (that is, two consec-
utive integers cannot be exceptional). Furthermore, by Proposition 3.2, if k is
exceptional k − 1 is non-exceptional and

x(k − 1), y(k − 1) ∈
((αj+1

a

b

)−1 −
(
α2n(K)
a

)−1
,
(αj+1

a

b

)−1
+
(
α2n(K)
a

)−1)
.

By Theorem 2.3 the {y(i)}i≥K are Benford distributed and hence the probability
of y(k − 1) being in an open interval whose width is going to 0, may be made as
small as we please.

But by Proposition 3.8 every exceptional k is uniquely associated with a non-
exceptional k.

This completes the proof.

We can now prove the two conjectures.

Theorem 3.11. The {x(n)}n≥1 are Benford distributed.

Proof. Consider an arbitrary set (of reals), B ⊂ (α−1a , 1). To prove the theorem,
we must show that Prob(B ∩ {x(n)}n≥1) equals the desired Benford-distribution
probability.

By Definition 1.28 and Proposition 1.29 we know that Prob(B ∩ {y(n)}n≥1) =
log(My)−log(my)
log(1)−log(α−1

a )
, with My = sup (B ∩ {y(n)}n≥1) and my = inf (B ∩ {y(n)}n≥1) .

Define Mx = sup (B ∩ {x(n)}n≥1) and mx = inf (B ∩ {x(n)}n≥1) . By Corollary
3.3, |My−Mx| and |my−mx| can be made arbitrarily small. The result immediately
follows.

Theorem 3.12. For all b ≥ 2, a ≥ 1, #T (a,b)
= b.

Proof. By Theorem 2.1, #T (a,b) ≤ b. It therefore suffices to prove #T (a,b) ≥ b.
The proof is constructive.

Using Definition 1.17, let 〈Bi : 1 ≤ i ≤ b + 1〉 = 〈1, i

α
e(i)
a

: 1 ≤ i ≤ b〉 be an
(a, b)-partition. For 1 ≤ i ≤ b, pick a non-exceptional x(ni) ∈ (Bi, Bi+1), for some
integer ni. x(ni) exists since by Theorem 3.7, {x(n)}n≥1} is Benford distributed
and hence dense in (α−1a , 1).

But then by Proposition 1.19, Tx(ni) = TBi ; by Proposition 3.4, the TBi are
distinct; and by Proposition 1.15, Tx(ni) = Tni . Hence, we have produced at least
b distinct Tojaaldi sequences as was to be shown.
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Abstract
We consider sums of powers of Fibonacci and Lucas polynomials of the

form
∑q

n=0 F
k
tsn (x) and

∑q
n=0 L

k
tsn (x), where s, t, k are given natural num-

bers, together with the corresponding alternating sums
∑q

n=0 (−1)n F k
tsn (x)

and
∑q

n=0 (−1)n Lk
tsn (x). We give conditions on s, t, k for express these sums

as some proposed linear combinations of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

,
m = 1, 2, . . . , tk.

Keywords: Sums of powers; Fibonacci and Lucas polynomials; Z Transform.

MSC: 11B39

1. Introduction

We use N for the natural numbers and N′ for N∪{0}. We follow the standard no-
tation Fn (x) for Fibonacci polynomials and Ln (x) for Lucas polynomials. Binet’s
formulas

Fn (x) =
1√

x2 + 4
(αn (x)− βn (x)) and Ln (x) = αn (x) + βn (x) , (1.1)

where

α (x) =
1

2

(
x+

√
x2 + 4

)
and β (x) =

1

2

(
x−

√
x2 + 4

)
, (1.2)

will be used extensively (without further comments). We will use also the identities

F(2p−1)s (x)

Fs (x)
=

p−1∑

k=0

(−1)
sk
L2(p−k−1)s (x)− (−1)

s(p−1)
, (1.3)
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F2ps (x)

Fs (x)
=

p−1∑

k=0

(−1)
sk
L(2p−2k−1)s (x) , (1.4)

FM (x)FN (x)− FM+K (x)FN−K (x) = (−1)
N−K

FM+K−N (x)FK (x) , (1.5)

where p ∈ N in (1.3) and (1.4), and M,N,K ∈ Z in (1.5). (Identity (1.5) is a
version of the so-called “index-reduction formula”; see [7] for the case x = 1.) Two
variants of (1.5) we will use in section 5 are

FM (x)LN (x)− FM+K (x)LN−K (x) = (−1)
N−K+1

LM+K−N (x)FK (x) , (1.6)
(
x2 + 4

)
FM (x)FN (x)−LM+K (x)LN−K (x) = (−1)

N−K+1
LM+K−N (x)LK (x) .

(1.7)
Given n ∈ N′ and k ∈ {0, 1, . . . , n}, the s-Fibopolynomial

(
n
k

)
Fs(x)

is defined by(
n
0

)
Fs(x)

=
(
n
n

)
Fs(x)

= 1, and

(
n

k

)

Fs(x)

=
Fsn (x)Fs(n−1) (x) · · ·Fs(n−k+1) (x)

Fs (x)F2s (x) · · ·Fks (x)
. (1.8)

(These mathematical objects were used before in [19], where we called them “s-
polyfibonomials”. However, we think now that “s-Fibopolynomials” is a better
name to describe them.)

Plainly we have symmetry for s-Fibopolynomials:
(
n
k

)
Fs(x)

=
(

n
n−k
)
Fs(x)

. We
can use the identity

Fs(n−k)+1 (x)Fsk (x) + Fsk−1 (x)Fs(n−k) (x) = Fsn (x) ,

(which comes from (1.5) with M = sn, N = 1 and K = −sk+ 1), to conclude that
(
n

k

)

Fs(x)

= Fs(n−k)+1 (x)

(
n− 1

k − 1

)

Fs(x)

+ Fsk−1 (x)

(
n− 1

k

)

Fs(x)

. (1.9)

Formula (1.9) and a simple induction argument, show that s-Fibopolynomials
are indeed polynomials (with deg

(
n
k

)
Fs(x)

= sk (n− k)). The case s = x = 1

corresponds to Fibonomials
(
n
k

)
F
, introduced by V. E. Hoggatt, Jr. [5] in 1967 (see

also [23]), and the case x = 1 corresponds to s-Fibonomials
(
n
k

)
Fs
, first mentioned

also in [5], and studied recently in [18]. We comment in passing that Fibonomials
are important mathematical objects involved in many interesting research works
during the last few decades (see [4, 8, 9, 11, 24]).

The well-known identity
q∑

n=0

F 2
n = FqFq+1 =

(
q + 1

2

)

F

, (1.10)

was the initial motivation for this work. We will see that (1.10) is just a particular
case of the following polynomial identities ((4.20) in section 4)
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(−1)
(s+1)q

Ls (x)

q∑

n=0

(−1)
(s+1)n

F 2
sn (x)

= (−1)
sq
Fs (x)

q∑

n=0

(−1)
sn
F2sn (x) = Fs(q+1) (x)Fsq (x) .

To find closed formulas for sums of powers of Fibonacci and Lucas numbers∑q
n=0 F

k
n and

∑q
n=0 L

k
n, and for the corresponding alternating sums of powers∑q

n=0 (−1)
n
F k
n and

∑q
n=0 (−1)

n
Lk
n, is a challenging problem that has been in the

interest of many mathematicians along the years (see [1, 3, 12, 13, 15, 16, 21],
to mention some). There are also some works considering variants of these sums
and/or generalizations (in some sense) of them (see [2, 10, 14, 22], among many
others).

This work presents, on one hand, a generalization of the problem mentioned
above, considering Fibonacci and Lucas polynomials (instead of numbers) and
involving more parameters in the sums. On the other hand, we are not inter-
ested in any closed formulas for these sums, but only in sums that can be written
as certain linear combinations of certain s-Fibopolynomials (as in (1.10)). More
precisely, in this work we obtain sufficient conditions (on the positive integer pa-
rameters t, k, s), for the polynomial sums of powers

∑q
n=0 F

k
tsn (x),

∑q
n=0 L

k
tsn (x),∑q

n=0 (−1)
n
F k
tsn (x) and

∑q
n=0 (−1)

n
Lk
tsn (x), can be expressed as linear combi-

nations of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

, m = 1, 2, . . . , tk, according to some
proposed expressions ((3.3), (3.15), (4.5) and (4.6), respectively). (We conjecture
that these sufficient conditions are also necessary, see remark 3.2.)

In Section 2 we recall some facts about Z transform, since some results related
to the Z transform of the sequences

{
F k
tsn (x)

}∞
n=0

and
{
Lk
tsn (x)

}∞
n=0

(obtained in
a previous work) are the starting point of the results in this work.

The main results are presented in Section 3 and 4. Propositions 3.1 and 3.3 in
section 3 contain, respectively, sufficient conditions on the positive integers t, k, s
for the sums of powers

∑q
n=0 F

k
tsn (x) and

∑q
n=0 L

k
tsn (x) can be written as linear

combinations of the mentioned s-Fibopolynomials, and propositions 4.1 and 4.3 in
section 4 contain, respectively, sufficient conditions on the positive integers t, k, s
for the alternating sums of powers

∑q
n=0 (−1)

n
F k
tsn (x) and

∑q
n=0 (−1)

n
Lk
tsn (x)

can be written as linear combinations of those s-Fibopolynomials. Surprisingly,
there are some intersections on the conditions on t and k in Proposition 3.1 and
4.1 (and also in Proposition 3.3 and 4.3), allowing us to write results for sums of
powers of the form

∑q
n=0 (−1)

sn
F k
tsn (x) or

∑q
n=0 (−1)

(s+1)n
F k
tsn (x) (and similar

sums for Lucas polynomials), that work at the same time for sums
∑q

n=0 F
k
tsn (x)

and alternating sums
∑q

n=0 (−1)
n
F k
tsn (x) as well, depending on the parity of s.

These results are presented in section 4: Corollary 4.2 (for the Fibonacci case) and
4.4 (for the Lucas case).

Finally, in Section 5 we show some examples of identities obtained as derivatives
of some of the results obtained in previous sections.
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2. Preliminaries

The Z transform maps complex sequences {an}∞n=0 into holomorphic functions
A : U ⊂ C→ C, defined by the Laurent series A (z) =

∑∞
n=0 anz

−n (also written
as Z (an), defined outside the closure of the disk of convergence of the Taylor series∑∞

n=0 anz
n). We also write an = Z−1 (A (z)) and we say the the sequence {an}∞n=0

is the inverse Z transform of A (z). Some basic facts we will need are the following:
(a) Z is linear and injective (same for Z−1).
(b) If {an}∞n=0 is a sequence with Z transform A (z), then the Z transform of

the sequence {(−1)
n
an}∞n=0 is

Z ((−1)
n
an) = A (−z) . (2.1)

(c) If {an}∞n=0 is a sequence with Z transform A (z), then the Z transform of
the sequence {nan}∞n=0 is

Z (nan) = −z d
dz
A (z) . (2.2)

Plainly we have (for given λ ∈ C, λ 6= 0)

Z (λn) =
z

z − λ. (2.3)

For example, if t, k ∈ N′ are given, we can write the generic term of the sequence{
F k
tsn (x)

}∞
n=0

as

F k
tsn (x) =

(
1√

x2 + 4

(
αtsn (x)− βtsn (x)

))k

(2.4)

=
1

(x2 + 4)
k
2

k∑

l=0

(
k

l

)
(−1)

k−l
(
αtsl (x)βts(k−l) (x)

)n
.

The linearity of Z and (2.3) give us

Z
(
F k
tsn (x)

)
=

1

(x2 + 4)
k
2

k∑

l=0

(
k

l

)
(−1)

k−l z

z − αtsl (x)βts(k−l) (x)
. (2.5)

Similarly, since the generic term of the sequence
{
Lk
tsn (x)

}∞
n=0

can be expressed
as

Lk
tsn (x) =

(
αtsn (x) + βtsn (x)

)k
=

k∑

l=0

(
k

l

)(
αtsl (x)βts(k−l) (x)

)n
, (2.6)

we have that

Z
(
Lk
tsn (x)

)
=

k∑

l=0

(
k

l

)
z

z − αtsl (x)βts(k−l) (x)
. (2.7)
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Observe that formulas

Z (Fn (x)) =
z

z2 − xz − 1
and Z (Ln (x)) =

z (2z − x)

z2 − xz − 1
, (2.8)

are the simplest cases (k = t = s = 1) of (2.5) and (2.7), respectively.
In a recent work [20] (inspired by [6], among others), we proved that expressions

(2.5) and (2.7) can be written in a special form. The result is that (2.5) can be
written as

Z
(
F k
tsn (x)

)
(2.9)

= z

∑tk
i=0

∑i
j=0 (−1)

(sj+2(s+1))(j+1)
2

(
tk + 1

j

)

Fs(x)

F k
ts(i−j) (x) ztk−i

∑tk+1
i=0 (−1)

(si+2(s+1))(i+1)
2

(
tk + 1

i

)

Fs(x)

ztk+1−i
,

and (2.7) can be written as

Z
(
Lk
tsn (x)

)
(2.10)

= z

∑tk
i=0

∑i
j=0 (−1)

(sj+2(s+1))(j+1)
2

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j) (x) ztk−i

∑tk+1
i=0 (−1)

(si+2(s+1))(i+1)
2

(
tk + 1

i

)

Fs(x)

ztk+1−i
.

From (2.9) and (2.10) we obtained that F k
tsn (x) and Lk

tsn (x) can be expressed
as linear combinations of the s-Fibopolynomials

(
n+tk−i

tk

)
Fs(x)

, i = 0, 1, . . . , tk,
according to

F k
tsn (x) (2.11)

= (−1)
s+1

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

F k
ts(i−j)(x)

(
n+ tk − i

tk

)

Fs(x)

,

and

Lk
tsn (x) (2.12)

= (−1)
s+1

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j)(x)

(
n+ tk − i

tk

)

Fs(x)

.

The denominator in (2.9) (or (2.10)) is a (tk + 1)-th degree z-polynomial, which
we denote as Ds,tk+1 (x, z), that can be factored as

tk+1∑

i=0

(−1)
(si+2(s+1))(i+1)

2

(
tk + 1

i

)

Fs(x)

ztk+1−i (2.13)

= (−1)
s+1

tk∏

j=0

(
z − αsj (x)βs(tk−j) (x)

)
.
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(See proposition 1 in [20].) Moreover, if tk is even, tk = 2p say, then (2.13) can be
written as

Ds,2p+1 (x; z) = (−1)
s+1

(z − (−1)
sp

)

p−1∏

j=0

(
z2 − (−1)

sj
L2s(p−j) (x) z + 1

)
, (2.14)

and if tk is odd, tk = 2p− 1 say, we have

Ds,2p (x; z) = (−1)
s+1

p−1∏

j=0

(
z2 − (−1)

sj
Ls(2p−1−2j) (x) z + (−1)

(2p−1)s
)
. (2.15)

(See (40) and (41) in [20].)

3. The main results (I)

Let us consider first the Fibonacci case. From (2.11) we can write the sum∑q
n=0 F

k
tsn (x) in terms of a sum of s-Fibopolynomials in a trivial way, namely

q∑

n=0

F k
tsn (x) (3.1)

= (−1)
s+1

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

F k
ts(i−j)(x)

q∑

n=0

(
n+ tk − i

tk

)

Fs(x)

.

The point is that we can write (3.1) as

q∑

n=0

F k
tsn (x) (3.2)

= (−1)
s+1

tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

F k
ts(i−j) (x)

(
q +m

tk

)

Fs(x)

+ (−1)
s+1

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

F k
ts(i−j) (x)

q∑

n=0

(
n

tk

)

Fs(x)

.

Expression (3.2) tells us that the sum
∑q

n=0 F
k
tsn (x) can be written as a linear

combination of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

, m = 1, 2, . . . , tk, according to

q∑

n=0

F k
tsn (x) (3.3)

= (−1)
s+1

tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

F k
ts(i−j)(x)

(
q +m

tk

)

Fs(x)

,
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if and only if

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

F k
ts(i−j) (x) = 0. (3.4)

Observe that from (2.5) and (2.9) we can write

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

F k
ts(i−j) (x) ztk−i (3.5)

=
1

(x2 + 4)
k
2

(
k∑

l=0

(
k

l

)
(−1)

k−l 1

z − αlts(x)β(k−l)ts(x)

)

×
(

tk+1∑

i=0

(−1)
(si+2(s+1))(i+1)

2

(
tk + 1

i

)

Fs(x)

ztk+1−i
)
.

Let us consider the factors in parentheses of the right-hand side of (3.5), namely

Π1 (x, z) =

k∑

l=0

(
k

l

)
(−1)

k−l 1

z − αlts (x)β(k−l)ts (x)
, (3.6)

and

Π2 (x, z) =
tk+1∑

i=0

(−1)
(si+2(s+1))(i+1)

2

(
tk + 1

i

)

Fs(x)

ztk+1−i. (3.7)

Clearly any of the conditions
Π1 (x, 1) = 0, (3.8)

or
Π1 (x, 1) <∞ and Π2 (x, 1) = 0. (3.9)

imply (3.4).

Proposition 3.1. The sum
∑q

n=1 F
k
tsn (x) can be written as a linear combination

of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

, m = 1, 2, . . . , tk, according to (3.3), in the
following cases

t k s

(a) even odd even
(b) odd ≡ 2 mod 4 odd
(c) ≡ 0 mod 4 odd any

Proof. Observe that in each of the three cases the product tk is even. Then,
according to (2.14) we can write

Π2 (x, z) = (−1)
s+1

(
z − (−1)

kts
2

) tk
2 −1∏

j=0

(
z2 − (−1)

sj
L2s( tk

2 −j)
(x) z + 1

)
. (3.10)
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(a) Let us suppose that t is even, k is odd and s is even. In this case the factor(
z − (−1)

kts
2

)
of the right-hand side of (3.10) is (z − 1), so we have Π2 (x, 1) = 0.

It remains to check that Π1 (x, 1) is finite. In fact, by writing k as 2k−1, and using
that t and s are even, one can check that

Π1 (x, 1) =
√
x2 + 4

k−1∑

l=0

(
2k − 1

l

)
(−1)

l+1 F(2k−1−2l)ts (x)

2− L(2k−1−2l)ts (x)
, (3.11)

so we have that Π1 (x, 1) is finite, and then the right-hand side of (3.5) is equal to
zero when z = 1, as wanted.

(b) Suppose now that t is odd, k ≡ 2 mod 4 and that s is odd. In this case the
factor

(
z − (−1)

kts
2

)
of the right-hand side of (3.10) is (z + 1), so Π2 (x, 1) 6= 0.

However, by writing k as 2 (2k − 1) and using that t and s are odd, we can see that

Π1 (x, 1) =
2k−2∑

l=0

(
2 (2k − 1)

l

)
(−1)

l − 1

2

(
2 (2k − 1)

2k − 1

)
= 0.

Thus, the right-hand side of (3.5) is equal to 0 when z = 1, as wanted.
(c) Let us suppose that t ≡ 0 mod 4, k is odd, and s is any positive integer. In

this case the factor
(
z − (−1)

kts
2

)
of the right-hand side of (3.10) is (z − 1), so we

have Π2 (x, 1) = 0. By writing k as 2k − 1, and using that t is multiple of 4, we
can see that formula (3.11) is valid for any s ∈ N, so we conclude that Π1 (x, 1) is
finite. Thus the right-hand side of (3.5) is 0 when z = 1, as wanted.

An example from the case (c) of proposition 3.1 is the following identity (cor-
responding to t = 4 and k = 1), valid for any s ∈ N

q∑

n=0

F4sn (x) (3.12)

= F4s (x)

((
q + 1

4

)

Fs(x)

+ (−1)
s+1

L2s (x)

(
q + 2

4

)

Fs(x)

+

(
q + 3

4

)

Fs(x)

)
.

Remark 3.2. A natural question about proposition 3.1 is if the given conditions
on t, k and s are also necessary (for expressing the sum

∑q
n=1 F

k
tsn (x) as a linear

combination of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

, m = 1, 2, . . . , tk, according to
(3.3)). We believe that the answer is yes, and we think that this conjecture (to-
gether with similar conjectures in propositions 3.3, 4.1 and 4.3) can be a good topic
for a future work. Nevertheless, we would like to make some comments about this
point in the case of proposition 3.1. The cases where we do not have the conditions
on t, k, s stated in proposition 3.1 are the following (e = even, o = odd)

(i) (ii) (iii) (iv) (v) (vi) (vii)
t e e o ≡ 2 mod 4 o o o
k e e e o ≡ 0 mod 4 o o
s e o e o o e o
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Thus, in order to prove the necessity of the mentioned conditions we need to
show that (3.4) does not hold in each of these 7 cases. For example, the case t = 1
and k = 3 is included in (vi) and (vii). In this case the left-hand side of (3.4) is
(for any s ∈ N)

3∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
4

j

)

Fs(x)

F 3
s(i−j) (x) = −F 3

s (x) (2Ls (x) + 1 + (−1)
s
) .

That is, (3.4) does not hold, which means that the sum of cubes
∑q

n=0 F
3
sn (x)

can not be written as the linear combination of the s-Fibopolynomials
(
q+1
3

)
Fs(x)

,(
q+2
3

)
Fs(x)

and
(
q+3
3

)
Fs(x)

proposed in (3.3). However, it is known that
∑q

n=0 F
3
n =

1
10 (F3q+2 − 6 (−1)

q
Fq−1 + 5) (see [1]). In fact, the case of sums of odd powers of

Fibonacci and Lucas numbers has been considered for several authors (see [3], [16],
[21]). It turns out that some of their nice results belong to some of the cases (i) to
(vii) above, so they can not be written as in (3.3).

Let us consider now the case of sums of powers of Lucas polynomials. From
(2.12) we see that

(−1)
s+1

q∑

n=0

Lk
tsn (x) (3.13)

=
tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j) (x)

q∑

n=0

(
n+ tk − i

tk

)

Fs(x)

,

which can be written as
q∑

n=0

Lk
tsn (x) (3.14)

= (−1)
s+1

tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j)(x)

(
q +m

tk

)

Fs(x)

+ (−1)
s+1

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j)(x)

q∑

n=0

(
n

tk

)

Fs(x)

.

Expression (3.14) tells us that the sum
∑q

n=0 L
k
tsn (x) can be written as a linear

combination of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

, m = 1, 2, . . . , tk, according to

q∑

n=0

Lk
tsn (x) (3.15)

= (−1)
s+1

tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j)(x)

(
q +m

tk

)

Fs(x)

,
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if and only if

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j) (x) = 0. (3.16)

From (2.7) and (2.10) we can write

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j)(x) ztk−i (3.17)

=

(
tk+1∑

i=0

(−1)
(si+2(s+1))(i+1)

2

(
tk + 1

i

)

Fs(x)

ztk+1−i
)

×
k∑

l=0

(
k

l

)
1

z − αlts (x)β(k−l)ts (x)
.

We have again the factor Π2 (x, z) considered in the Fibonacci case (see (3.7)), and
the factor

Π̃1 (x, z) =
k∑

l=0

(
k

l

)
1

z − αlts (x)β(k−l)ts (x)
. (3.18)

Plainly any of the conditions: (a) Π̃1 (x, 1) = 0, or, (b) Π̃1 (x, 1) < ∞ and
Π2 (x, 1) = 0, imply (3.16).

Proposition 3.3. The sum
∑q

n=0 L
k
tsn (x) can be written as a linear combination

of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

, m = 1, 2, . . . , tk, according to (3.15), in the
following cases

t k s

(a) even odd even
(b) ≡ 0 mod 4 odd any

Proof. In both cases we have tk even, so it is valid the factorization (3.10) for
Π2 (x, z).

(a) Suppose that t and s are even and that k is odd. In this case the factor(
z − (−1)

kts
2

)
in Π2 (x, z) is (z − 1), so we have Π2 (x, 1) = 0. It remains to check

that Π̃1 (x, 1) is finite. In fact, by writing k as 2k − 1 and using that t and s are
even, one can see that Π̃1 (x, 1) = 4k−1.

(b) Suppose now that t ≡ 0 mod 4, k is odd and s is any positive integer. In this
case the factor

(
z − (−1)

kts
2

)
in Π2 (x, z) is again (z − 1), so we have Π2 (x, 1) = 0.

With a similar calculation to the case (a), we can see that in this case we have also
Π̃1 (x, 1) = 4k−1.
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An example from the case (b) of proposition 3.3 is the following identity (cor-
responding to t = 4 and k = 1), valid for any s ∈ N

q∑

n=0

L4sn (x) (3.19)

= 2

(
q + 4

4

)

Fs(x)

+
(
−L4s (x) + 2 (−1)

s+1
L2s (x)

)(q + 3

4

)

Fs(x)

+ (−1)
s

(L6s (x) + L2s (x) + 2 (−1)
s
)

(
q + 2

4

)

Fs(x)

− L4s (x)

(
q + 1

4

)

Fs(x)

.

Examples from the cases (a) and (b) of proposition 3.1, and from the case (a)
of proposition 3.3, will be given in section 4, since some variants of them work also
as examples of alternating sums of powers of Fibonacci or Lucas polynomials, to
be discussed in section 4 (see corollaries 4.2 and 4.4).

4. The main results (II): alternating sums

According to (2.1), (2.5), (2.7), (2.9) and (2.10), the Z transform of the alternating
sequences

{
(−1)

n
F k
tsn (x)

}∞
n=0

and
{

(−1)
n
Lk
tsn (x)

}∞
n=0

are

Z
(
(−1)

n
F k
tsn (x)

)
=

1

(x2 + 4)
k
2

k∑

l=0

(
k

l

)
(−1)

k−l z

z + αlts (x)β(k−l)ts (x)
(4.1)

= −z

∑tk
i=0

∑i
j=0 (−1)

(sj+2(s+1))(j+1)
2

(
tk + 1

j

)

Fs(x)

F k
ts(i−j) (x) (−z)tk−i

∑tk+1
i=0 (−1)

(si+2(s+1))(i+1)
2

(
tk + 1

i

)

Fs(x)

(−z)tk+1−i
,

and

Z
(
(−1)

n
Lk
tsn (x)

)
=

k∑

l=0

(
k

l

)
z

z + αlts (x)β(k−l)ts (x)
(4.2)

= −z

∑tk
i=0

∑i
j=0 (−1)

(sj+2(s+1))(j+1)
2

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j) (x) (−z)tk−i

∑tk+1
i=0 (−1)

(si+2(s+1))(i+1)
2

(
tk + 1

i

)

Fs(x)

(−z)tk+1−i
.

By using (2.11) and (2.12) it is possible to establish expressions, for the case of
alternating sums, similar to expressions (3.2) and (3.14), namely
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q∑

n=0

(−1)
n
F k
tsn (x) = (−1)

s+1+tk+q (4.3)

×
tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i+m

(
tk + 1

j

)

Fs(x)

F k
ts(i−j) (x)

(
q +m

tk

)

Fs(x)

+ (−1)
s+1+tk

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i

(
tk + 1

j

)

Fs(x)

F k
ts(i−j)(x)

q∑

n=0

(−1)
n

(
n

tk

)

Fs(x)

,

and
q∑

n=0

(−1)
n
Lk
tsn (x) = (−1)

s+1+tk+q (4.4)

×
tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i+m

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j) (x)

(
q +m

tk

)

Fs(x)

+ (−1)
s+1+tk

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j) (x)×

×
q∑

n=0

(−1)
n (n

tk

)
Fs(x)

,

respectively. From (4.3) and (4.4) we see that the alternating sums of powers∑q
n=0 (−1)

n
F k
tsn (x) and

∑q
n=0 (−1)

n
Lk
tsn (x) can be written as linear combina-

tions of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

, m = 1, 2, . . . , tk, according to

q∑

n=0

(−1)
n
F k
tsn (x) = (−1)

s+1+tk+q (4.5)

×
tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i+m

(
tk + 1

j

)

Fs(x)

F k
ts(i−j)(x)

(
q +m

tk

)

Fs(x)

,

and
q∑

n=0

(−1)
n
Lk
tsn (x) = (−1)

s+1+tk+q (4.6)

×
tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i+m

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j)(x)

(
q +m

tk

)

Fs(x)

,

if and only if we have that
tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i

(
tk + 1

j

)

Fs(x)

F k
ts(i−j) (x) = 0, (4.7)
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and
tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j) (x) = 0, (4.8)

respectively. Observe that, according to (4.1) and (4.2), we have

(
x2 + 4

) k
2

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i

(
tk + 1

j

)

Fs(x)

F k
ts(i−j) (x) ztk−i

=

(
k∑

l=0

(
k

l

)
(−1)

k−l 1

z + αlts (x)β(k−l)ts (x)

)

×
(

tk+1∑

i=0

(−1)
(si+2(s+1))(i+1)

2 +i

(
tk + 1

i

)

Fs(x)

ztk+1−i
)
, (4.9)

and

tk∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +i

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j)(x) ztk−i

=

(
k∑

l=0

(
k

l

)
1

z + αlts (x)β(k−l)ts (x)

)

×
(

tk+1∑

i=0

(−1)
(si+2(s+1))(i+1)

2 +i

(
tk + 1

i

)

Fs(x)

ztk+1−i
)
, (4.10)

respectively. Then we need to consider now the following factors

Ω1 (x, z) =
k∑

l=0

(
k

l

)
(−1)

k−l 1

z + αlts (x)β(k−l)ts (x)
, (4.11)

Ω̃1 (x, z) =
k∑

l=0

(
k

l

)
1

z + αlts (x)β(k−l)ts (x)
, (4.12)

and

Ω2 (x, z) =

tk+1∑

i=0

(−1)
(si+2(s+1))(i+1)

2 +i

(
tk + 1

i

)

Fs(x)

ztk+1−i. (4.13)

Plainly (4.7) is concluded from any of the conditions: (a) Ω1 (x, 1) = 0, or, (b)
Ω1 (x, 1) <∞ and Ω2 (x, 1) = 0, and (4.8) is concluded from any of the conditions:
(a) Ω̃1 (x, 1) = 0, or, (b) Ω̃1 (x, 1) < ∞ and Ω2 (x, 1) = 0. In this section we give
conditions on the parameters t, k and s, that imply (4.7) (for the Fibonacci case:
proposition 4.1), and that imply (4.8) (for the Lucas case: proposition 4.3).

In the Fibonacci case we have the following result.
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Proposition 4.1. The alternating sum
∑q

n=0 (−1)
n
F k
tsn (x) can be written as a

linear combination of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

, m = 1, 2, . . . , tk, according
to (4.5), in the following cases

t k s

(a) any ≡ 0 mod 4 any
(b) any even even
(c) ≡ 2 mod 4 any odd
(d) even even any

Proof. Observe that in all the four cases we have tk even. Thus, according to (2.14)
(with z replaced by −z) we can factor Ω2 (x, z) as

Ω2 (x, z) = (−1)
s
(
z + (−1)

tsk
2

) tk
2 −1∏

j=0

(
z2 + (−1)

sj
L2s( tk

2 −j)
(x) z + 1

)
. (4.14)

(a) Suppose that k ≡ 0 mod 4 and that t and s are any positive integers. In this
case the factor

(
z + (−1)

tsk
2

)
of (4.14) is z+ 1, so we have Ω2 (x, 1) 6= 0. However,

by setting z = 1 in (4.11), with k replaced by 4k, we get

Ω1 (x, 1) =
2k−1∑

l=0

(
4k

l

)
(−1)

l
+

1

2

(
4k

2k

)
= 0.

Thus (4.7) holds, as wanted.
(b) Suppose that k and s are even, and that t is any positive integer. In this

case we have z + (−1)
tsk
2 = z + 1, and then Ω2 (x, 1) 6= 0. By setting z = 1 in

(4.11), with k and s substituted by 2k and 2s, respectively, we get

Ω1 (x, 1) =
2k∑

l=0

(
2k

l

)
(−1)

l 1

1 + α2lts (x)β(2k−l)2ts (x)

=

k−1∑

l=0

(
2k

l

)
(−1)

l
+

1

2

(
2k

k

)
(−1)

k
= 0.

Thus (4.7) holds, as wanted.
(c) Suppose that s is odd, t ≡ 2 mod 4, and k is any positive integer. If in (4.14)

we set z = 1 and replace t by 2 (2t− 1), we obtain that

Ω2 (x, 1) =
(

1 + (−1)
k
) (2t−1)k−1∏

j=0

(
(−1)

j
L2s((2t−1)k−j) (x) + 2

)
. (4.15)

We consider two sub-cases:
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(c1) Suppose that k is even. In this case we have Ω2 (x, 1) 6= 0. But if we set
z = 1 in (4.11), replace k by 2k, and use that t ≡ 2 mod 4 and that s is odd, we
obtain that

Ω1 (x, 1) =
k−1∑

l=0

(
2k

l

)
(−1)

l
+

1

2

(
2k

k

)
(−1)

k
= 0.

Thus (4.7) holds when k is even.
(c2) Suppose that k is odd. In this case we have clearly that Ω2 (x, 1) = 0. We

check that Ω1 (x, 1) is finite. If we set z = 1 in (4.11), substitute k by 2k − 1, and
use that t ≡ 2 mod 4 and that s is odd, we obtain that

Ω1 (x, 1) =
√
x2 + 4

k−1∑

l=0

(
2k − 1

l

)
(−1)

l+1 F(2k−1−2l)ts (x)

2 + L(2k−1−2l)ts (x)
.

Then we have Ω1 (x, 1) <∞, as wanted. That is, expression (4.7) holds when k is
odd.

(d) Suppose that k and t are even and s is any positive integer. In this case the
factor

(
z + (−1)

tsk
2

)
of (4.14) is (z + 1), so we have Ω2 (x, 1) 6= 0. Observe that,

replacing k and t by 2k and 2t, respectively (and letting s be any natural number)
we obtain the same expression for Ω1 (x, 1) of the case (b), namely

Ω1 (x, 1) =
2k∑

l=0

(
2k

l

)
(−1)

l 1

1 + α2lts (x)β(2k−l)2ts (x)
,

which is equal to 0. That is, in this case we have also that Ω1 (x, 1) = 0, and we
conclude that (4.7) holds.

Corollary 4.2. (a) If t is odd and k ≡ 2 mod 4, we have the following identity
valid for any s ∈ N

q∑

n=0

(−1)
(s+1)n

F k
tsn (x) = (−1)

(s+1)(tk+q) (4.16)

×
tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +(s+1)(i+m)

(
tk + 1

j

)

Fs(x)

F k
ts(i−j)(x)

(
q +m

tk

)

Fs(x)

.

(b) If t ≡ 2 mod 4 and k is odd, we have the following identity valid for any
s ∈ N

q∑

n=0

(−1)
sn
F k
tsn (x) = (−1)

s(1+tk+q)+1 (4.17)

×
tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +s(i+m)

(
tk + 1

j

)

Fs(x)

F k
ts(i−j)(x)

(
q +m

tk

)

Fs(x)

.
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Proof. (a) When t is odd and k ≡ 2 mod 4, formula (4.16) with s odd gives the
result (3.3) of case (b) of proposition 3.1 (which is valid for t odd, k ≡ 2 mod 4
and s odd). Similarly, for t odd and k ≡ 2 mod 4, formula (4.16) with s even, gives
the result (4.5) of case (b) of proposition 4.1 (which is valid for k and s even and
any t).

(b) When t ≡ 2 mod 4 and k is odd, formula (4.17) with s even, gives the
result (3.3) of case (a) of proposition 3.1 (which is valid for t even, k odd and s
even). Similarly, for t ≡ 2 mod 4 and k odd, formula (4.17) with s odd, gives the
result (4.5) of case (c) of proposition 4.1 (which is valid for t ≡ 2 mod 4, s odd and
any k).

We give examples from the cases considered in corollary 4.2. Beginning with
the case (a), by setting t = 1 and k = 2 in (4.16), we have the following identity,
valid for s ∈ N

q∑

n=0

(−1)
(s+1)(n+q)

F 2
sn (x) = F 2

s (x)

(
q + 1

2

)

Fs(x)

. (4.18)

The case t = s = x = 1 and k = 6 of (4.16) is
q∑

n=0

F 6
n =

(
q + 1

6

)

F

+

(
q + 5

6

)

F

− 11

((
q + 2

6

)

F

+

(
q + 4

6

)

F

)
− 64

(
q + 3

6

)

F

.

This identity is mentioned in [17] (p. 259), and previously was obtained in [15]
with the much more simple right-hand side 1

4

(
F 5
q Fq+3 + F2q

)
.

An example from the case (b) of corollary 4.2 is the following identity, valid for
s ∈ N (obtained by setting t = 2 and k = 1 in (4.17))

q∑

n=0

(−1)
s(n+q)

F2sn (x) = F2s (x)

(
q + 1

2

)

Fs(x)

. (4.19)

From (4.18) and (4.19) we see that

(−1)
(s+1)q

Ls (x)

q∑

n=0

(−1)
(s+1)n

F 2
sn (x) (4.20)

= (−1)
sq
Fs (x)

q∑

n=0

(−1)
sn
F2sn (x) = Fs(q+1) (x)Fsq (x) .

The simplest example from the case (a) of proposition 4.1, corresponding to
k = 4 and t = 1, is the following identity valid for any s ∈ N

q∑

n=0

(−1)
n+q

F 4
sn (x) (4.21)

= F 4
s (x)

((
q + 1

4

)

Fs(x)

+

(
q + 3

4

)

Fs(x)

+ (3 (−1)
s
L2s (x) + 4)

(
q + 2

4

)

Fs(x)

)
.
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With some patience one can see that the case x = 1 of (4.21) is

q∑

n=0

(−1)
n
F 4
sn =

(−1)
q
FsqFs(q+1)

(
LsLsqLs(q+1) − 4L2s

)

5LsL2s
,

demonstrated by Melham [13].
An example from the case (d) of proposition 4.1, corresponding to t = k = 2,

is the following identity valid for any s ∈ N
q∑

n=0

(−1)
n+q

F 2
2sn (x) (4.22)

= F 2
2s (x)

((
q + 1

4

)

Fs(x)

+ (−1)
s+1

L2s (x)

(
q + 2

4

)

Fs(x)

+

(
q + 3

4

)

Fs(x)

)
.

Now we consider alternating sums of powers of Lucas polynomials.

Proposition 4.3. The alternating sum
∑q

n=0 (−1)
n
Lk
tsn (x) can be written as a

linear combination of the s-Fibopolynomials
(
q+m
tk

)
Fs(x)

, m = 1, 2, . . . , tk, according
to (4.6), if s and k are odd positive integers and t ≡ 2 mod 4.

Proof. We will show that in the case stated in the proposition we have Ω̃1 (x, 1) <∞
and Ω2 (x, 1) = 0, which implies (4.8). Since s and k are odd, and t ≡ 2 mod 4,
the factor

(
z + (−1)

tsk
2

)
of (4.14) is (z − 1), so we have Ω2 (x, 1) = 0. Let us see

that Ω̃1 (x, 1) < ∞. If in (4.12) we set z = 1 and replace k by 2k − 1, we get for
t ≡ 2 mod 4 and s odd that Ω̃1 (x, 1) = 4k−1, as wanted.

Corollary 4.4. If t ≡ 2 mod 4 and k is odd, we have the following identity valid
for any s ∈ N

q∑

n=0

(−1)
sn
Lk
tsn (x) = (−1)

s(1+tk+q)+1 (4.23)

×
tk∑

m=1

tk−m∑

i=0

i∑

j=0

(−1)
(sj+2(s+1))(j+1)

2 +s(i+m)

(
tk + 1

j

)

Fs(x)

Lk
ts(i−j)(x)

(
q +m

tk

)

Fs(x)

.

Proof. When t ≡ 2 mod 4 and k is odd, formula (4.23) with s even, gives the result
(3.15) of case (a) of Proposition 3.3 (which is valid for t even, k odd and s even).
Similarly, if t ≡ 2 mod 4 and k is odd, formula (4.23) with s odd, gives the result
(4.6) of Proposition 4.3 (which is valid for t ≡ 2 mod 4, k odd and s odd).

An example of (4.23) is the following identity (corresponding to t = 2 and
k = 1), valid for any s ∈ N

q∑

n=0

(−1)
s(n+q)

L2sn (x) = 2

(
q + 2

2

)

Fs(x)

− L2s (x)

(
q + 1

2

)

Fs(x)

, (4.24)
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which can be written as
q∑

n=0

(−1)
s(n+q)

L2sn (x) =
1

Fs (x)
Lsq (x)Fs(q+1) (x) . (4.25)

5. Further results

To end this work we want to present (in two propositions) some examples of iden-
tities obtained as derivatives of some of our previous results. We will use the
identities

d

dx
Fn (x) =

1

x2 + 4
(nLn (x)− xFn (x)) . (5.1)

d

dx
Ln (x) = nFn (x) . (5.2)

One can see that these formulas are true by checking that both sides of each one
have the same Z transform. By using (2.2) and (2.8) we see that the Z transform
of both sides of (5.1) is z2

(
z2 − xz − 1

)−2, and that the Z transform of both sides
of (5.2) is z

(
z2 + 1

) (
z2 − xz − 1

)−2.

Proposition 5.1. The following identities hold

(−1)
(s+1)q

2Ls(x)

q∑

n=0

(−1)
(s+1)n

nF2sn(x) (5.3)

= 2qFs(2q+1) (x) + Fsq (x)Ls(q+1) (x)−
(
x2 + 4

)
Fs (x)

Ls(x)
Fs(q+1) (x)Fsq (x) .

(−1)
sq

2Fs (x)

q∑

n=0

(−1)
sn
nL2sn (x) (5.4)

= 2qFs(2q+1) (x) + Fsq (x)Ls(q+1) (x)− Ls (x)

Fs (x)
Fs(q+1) (x)Fsq(x) .

Proof. We will use (4.20), which contains two identities, namely

(−1)
(s+1)q

Ls (x)

q∑

n=0

(−1)
(s+1)n

F 2
sn (x) = Fs(q+1) (x)Fsq (x) , (5.5)

and

(−1)
sq
Fs (x)

q∑

n=0

(−1)
sn
F2sn (x) = Fs(q+1) (x)Fsq (x) . (5.6)
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By using that Lsq (x)Fs(q+1) (x) + Fsq (x)Ls(q+1) (x) = 2Fs(2q+1) (x) (see (1.6)),
we can see that

d

dx

(
Fs(q+1) (x)Fsq (x)

)

=
1

x2 + 4

(
2sqFs(2q+1) (x) + sFsq (x)Ls(q+1) (x)− 2xFs(q+1) (x)Fsq (x)

)
.

The derivative of the left-hand side of (5.5) is

d

dx

(
(−1)

(s+1)q
Ls (x)

q∑

n=0

(−1)
(s+1)n

F 2
sn (x)

)

= (−1)
(s+1)q

Ls (x)

q∑

n=0

(−1)
(s+1)n

x2 + 4
2snF2sn (x)

+

(
sFs (x)− 2xLs (x)

x2 + 4

)
1

Ls (x)
Fs(q+1) (x)Fsq (x) .

Then, the derivative of (5.5) is

(−1)
(s+1)q

Ls (x)

q∑

n=0

(−1)
(s+1)n

x2 + 4
2snF2sn (x)

+

(
sFs (x)− 2xLs (x)

x2 + 4

)
1

Ls (x)
Fs(q+1) (x)Fsq (x)

=
1

x2 + 4

(
2sqFs(2q+1) (x) + sFsq (x)Ls(q+1) (x)− 2xFs(q+1) (x)Fsq (x)

)

from where (5.3) follows.
The derivative of the left-hand side of (5.6) is

d

dx

(
(−1)

sq
Fs (x)

q∑

n=0

(−1)
sn
F2sn (x)

)

=
(−1)

sq

x2 + 4
Fs (x)

q∑

n=0

(−1)
sn

2snL2sn +
sLs (x)− 2xFs (x)

Fs (x) (x2 + 4)
Fs(q+1) (x)Fsq (x) .

Thus, the derivative of (5.6) is

(−1)
sq

x2 + 4
Fs (x)

q∑

n=0

(−1)
sn

2snL2sn +
sLs (x)− 2xFs (x)

Fs (x) (x2 + 4)
Fs(q+1) (x)Fsq (x)

=
1

x2 + 4

(
2sqFs(2q+1) (x) + sFsq (x)Ls(q+1) (x)− 2xFs(q+1) (x)Fsq (x)

)
,

from where (5.4) follows.
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Proposition 5.2. The following identity holds

(−1)
sq
Fs (x)

q∑

n=0

(−1)
sn
nF2sn (x) (5.7)

=
1

x2 + 4

(
(−1)

s+1

Fs (x)
F2sq (x) + qLs(2q+1) (x)

)
.

Proof. Identity (5.7) is the derivative of (4.25), together with

Fs (x)Ls(q+1) (x)− Ls (x)Fs(q+1) (x) = 2 (−1)
s+1

Fsq (x) ,

and (
x2 + 4

)
Fsq (x)Fs(q+1) (x) + Lsq (x)Ls(q+1) (x) = 2Ls(2q+1) (x) .

(See (1.6) and (1.7).) We leave the details of the calculations to the reader.

Acknowledgments. I thank the anonymous referee for the careful reading of
the first version of this article, and the valuable comments and suggestions.
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1. Introduction

Let n and k be positive integers. Poly-Cauchy numbers of the first kind c
(k)
n are

defined by

c(k)n =

1∫

0

. . .

1∫

0︸ ︷︷ ︸
k

(x1x2 . . . xk)(x1x2 . . . xk − 1) . . . (x1x2 . . . xk − n+ 1)dx1dx2 . . . dxk
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(see in [7]). The concept of poly-Cauchy numbers is a generalization of that of the
classical Cauchy numbers cn = c

(1)
n defined by

cn =

1∫

0

x(x− 1) . . . (x− n+ 1)dx

(see e.g. [2, 8]). The generating function of poly-Cauchy numbers ([7, Theorem 2])
is given by

Lifk(ln(1 + x)) =
∞∑

n=0

c(k)n

xn

n!
,

where

Lifk(z) =
∞∑

m=0

zm

m!(m+ 1)k

is the k-th polylogarithm factorial function. An explicit formula for c(k)n ([7, The-
orem 1]) is given by

c(k)n = (−1)n
n∑

m=0

[ n
m

] (−1)m
(m+ 1)k

(n ≥ 0, k ≥ 1) , (1.1)

where
[
n
m

]
are the (unsigned) Stirling numbers of the first kind, arising as coeffi-

cients of the rising factorial

x(x+ 1) . . . (x+ n− 1) =
n∑

m=0

[ n
m

]
xm

(see e.g. [4]).
On the other hand, M. Kaneko ([6]) introduced the poly-Bernoulli numbers

B
(k)
n by

Lik(1− e−x)
1− e−x

=

∞∑

n=0

B(k)
n

xn

n!
,

where

Lik(z) =
∞∑

m=1

zm

mk

is the k-th polylogarithm function. When k = 1, Bn = B
(1)
n is the classical Bernoulli

number with B
(1)
1 = 1/2, defined by the generating function

xex

ex − 1
=

∞∑

n=0

Bn
xn

n!
.
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An explicit formula for B(k)
n ([6, Theorem 1]) is given by

B(k)
n = (−1)n

n∑

m=0

{ n

m

} (−1)mm!

(m+ 1)k
(n ≥ 0, k ≥ 1) , (1.2)

where
{

n
m

}
are the Stirling numbers of the second kind, determined by

{ n

m

}
=

1

m!

m∑

j=0

(−1)j
(
m

j

)
(m− j)n

(see e.g. [4]).
In this paper, we show some relationships between poly-Cauchy numbers and

poly-Bernoulli numbers.

2. Main result

Poly-Bernoulli numbers can be expressed by poly-Cauchy numbers ([7, Theorem8]).

Theorem 2.1. For n ≥ 1 we have

B(k)
n =

n∑

l=1

n∑

m=1

m!
{ n

m

}{m− 1

l − 1

}
c
(k)
l .

On the other hand,

c
(k)
2 =

1

2!
B

(k)
2 +

3

2
B

(k)
1

=
1

2!
(B

(k)
2 + 3B

(k)
1 ) ,

c
(k)
3 =

1

3!
B

(k)
3 + 2B

(k)
2 +

23

6
B

(k)
1

=
1

3!
(B

(k)
3 + 12B

(k)
2 + 23B

(k)
1 ) ,

c
(k)
4 =

1

4!
B

(k)
4 +

5

4
B

(k)
3 +

215

24
B

(k)
2 +

55

4
B

(k)
1

=
1

4!
(B

(k)
4 + 30B

(k)
3 + 215B

(k)
2 + 330B

(k)
1 ) ,

c
(k)
5 =

1

5!
B

(k)
5 +

1

2
B

(k)
4 +

207

24
B

(k)
3 +

95

2
B

(k)
2 +

1901

30
B

(k)
1

=
1

5!
(B

(k)
5 + 60B

(k)
4 + 1035B

(k)
3 + 5700B

(k)
2 + 7604B

(k)
1 ) ,

c
(k)
6 =

1

6!
B

(k)
6 +

7

48
B

(k)
5 +

707

144
B

(k)
4 +

1015

16
B

(k)
3 +

13279

45
B

(k)
2 +

4277

12
B

(k)
1
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=
1

6!
(B

(k)
6 + 105B

(k)
5 + 3535B

(k)
4 + 45675B

(k)
3 + 212464B

(k)
2 + 256620B

(k)
1 ) .

In general, we have the following identity, expressing poly-Cauchy numbers c(k)n

by using poly-Bernoulli numbers B(k)
n .

Theorem 2.2. For n ≥ 1 we have

c(k)n = (−1)n
n∑

l=1

n∑

m=1

(−1)m
m!

[ n
m

] [m
l

]
B

(k)
l .

Proof. By (1.1) and (1.2), we have

RHS = (−1)n
n∑

l=1

n∑

m=1

(−1)m
m!

[ n
m

] [m
l

]
(−1)l

l∑

i=0

{
l

i

}
(−1)ii!
(i+ 1)k

= (−1)n
n∑

m=1

(−1)m
m!

[ n
m

] n∑

l=0

[m
l

]
(−1)l

l∑

i=0

{
l

i

}
(−1)ii!
(i+ 1)k

= (−1)n
n∑

m=1

(−1)m
m!

[ n
m

] n∑

i=0

(−1)ii!
(i+ 1)k

n∑

l=i

(−1)l
[m
l

]{ l

i

}

= (−1)n
n∑

m=0

(−1)m
m!

[ n
m

] (−1)mm!

(m+ 1)k
(−1)m

= (−1)n
n∑

m=0

[ n
m

] (−1)m
(m+ 1)k

= LHS .

Note that
[
m
0

]
= 0 (m ≥ 1) and

[
m
l

]
= 0 (l > m), and

m∑

l=i

(−1)m−l
[m
l

]{ l

i

}
=

{
1 (i = m);

0 (i 6= m).

3. Poly-Cauchy numbers of the second kind

Poly-Cauchy numbers of the second kind ĉ
(k)
n are defined by

ĉ(k)n =

1∫

0

. . .

1∫

0︸ ︷︷ ︸
k

(−x1x2 . . . xk)(−x1x2 . . . xk − 1)

. . . (−x1x2 . . . xk − n+ 1)dx1dx2 . . . dxk
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(see in [7]). If k = 1, then ĉ
(1)
n = ĉn is the classical Cauchy numbers of the second

kind defined by

ĉn =

k∫

0

(−x)(−x− 1) . . . (−x− n+ 1)dx

(see e.g. [2, 8]). The generating function of poly-Cauchy numbers of the second
kind ([7, Theorem 5]) is given by

Lifk(− ln(1 + x)) =
∞∑

n=0

ĉ(k)n

xn

n!
.

An explicit formula for ĉ(k)n ([7, Theorem 4]) is given by

ĉ(k)n = (−1)n
n∑

m=0

[ n
m

] 1

(m+ 1)k
(n ≥ 0, k ≥ 1) . (3.1)

In a similar way, we have a relationship, expressing poly-Cauchy numbers of
the second kind ĉ

(k)
n by using poly-Bernoulli numbers B

(k)
n . The proof is similar

and omitted.

Theorem 3.1. For n ≥ 1 we have

ĉ(k)n = (−1)n
n∑

l=1

n∑

m=1

1

m!

[ n
m

] [m
l

]
B

(k)
l .

In addition, we also obtain the corresponding relationship to Theorem 2.1.

Theorem 3.2. For n ≥ 1 we have

B(k)
n = (−1)n

n∑

l=1

n∑

m=1

m!
{ n

m

}{m
l

}
ĉ
(k)
l .

Proof. By (1.2) and (3.1), we have

RHS = (−1)n
n∑

l=1

n∑

m=1

m!
{ n

m

}{m
l

}
(−1)l

l∑

i=0

[
l

i

]
1

(i+ 1)k

= (−1)n
n∑

m=1

m!
{ n

m

} n∑

l=0

{m
l

}
(−1)l

l∑

i=0

[
l

i

]
1

(i+ 1)k

= (−1)n
n∑

m=1

m!
{ n

m

} n∑

i=0

1

(i+ 1)k

n∑

l=i

(−1)l
{m

l

}[ l
i

]
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= (−1)n
n∑

m=0

m!
{ n

m

} 1

(m+ 1)k
(−1)m

= (−1)n
n∑

m=0

{ n

m

} (−1)mm!

(m+ 1)k
= LHS .

Note that
m∑

l=i

(−1)m−l
{m

l

}[ l
i

]
=

{
1 (i = m);

0 (i 6= m).

4. Poly-Cauchy polynomials and poly-Bernoulli
polynomials

Poly-Cauchy polynomials of the first kind c
(k)
n (z) are defined by

c(k)n (z) = n!

1∫

0

. . .

1∫

0︸ ︷︷ ︸
k

(x1x2 . . . xk − z)(x1x2 . . . xk − 1− z)

· · · (x1x2 . . . xk − (n− 1)− z)dx1dx2 . . . dxk,

and are expressed explicitly in terms of Stirling numbers of the first kind ([5,
Theorem 1])

c(k)n (z) =
n∑

m=0

[ n
m

]
(−1)n−m

m∑

i=0

(
m

i

)
(−z)i

(m− i+ 1)k
.

Poly-Cauchy polynomials of the second kind ĉ
(k)
n (z) are defined by

ĉ(k)n (z) = n!

1∫

0

. . .

1∫

0︸ ︷︷ ︸
k

(−x1x2 . . . xk + z)(−x1x2 . . . xk − 1 + z)

· · · (−x1x2 . . . xk − (n− 1) + z)dx1dx2 . . . dxk,

and are expressed explicitly in terms of Stirling numbers of the first kind ([5,
Theorem 4].

ĉ(k)n (z) =
n∑

m=0

[ n
m

]
(−1)n

m∑

i=0

(
m

i

)
(−z)i

(m− i+ 1)k
.

In 2010, Coppo and Candelpergher [3], 2011 Bayad and Hamahata [1, (1.5)] intro-
duced the poly-Bernoulli polynomials B(k)

n (z) given by

Lik(1− e−x)
1− e−x

e−xz =
∞∑

n=0

B(k)
n (z)

xn

n!
,
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and
Lik(1− e−x)

1− e−x
exz =

∞∑

n=0

B(k)
n (z)

xn

n!
,

respectively, satisfying B
(k)
n (0) = B

(k)
n .

If we define still different poly-Bernoulli polynomials B(k)
n by

B(k)
n (z) = (−1)n

n∑

m=0

{ n

m

}
(−1)mm!

m∑

i=0

(
m

i

)
(−z)i

(m− i+ 1)k
,

satisfying B
(k)
n (0) = B

(k)
n (n ≥ 0, k ≥ 1), then we have relationships between the

poly-Bernoulli polynomials and poly-Cauchy polynomials similar to those between
the poly-Bernoulli numbers and the poly-Cauchy numbers.

Theorem 4.1. For n ≥ 1 we have

B(k)
n (z) =

n∑

l=1

n∑

m=1

m!
{ n

m

}{m− 1

l − 1

}
c
(k)
l (z) ,

= (−1)n
n∑

l=1

n∑

m=1

m!
{ n

m

}{m
l

}
ĉ
(k)
l (z) ,

c(k)n (z) = (−1)n
n∑

l=1

n∑

m=1

(−1)m
m!

[ n
m

] [m
l

]
B

(k)
l (z)

ĉ(k)n (z) = (−1)n
n∑

l=1

n∑

m=1

1

m!

[ n
m

] [m
l

]
B

(k)
l (z) .
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Abstract

In this paper, we establish explicit algebraic relations among infinite prod-
ucts including Fibonacci and Lucas numbers with subscripts in geometric
progressions. The algebraic relations given in this paper are obtained by
using general criteria for the algebraic dependency of such infinite products.
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Mahler functions.
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1. Introduction

Let α and β be real algebraic numbers with |α| > 1 and αβ = −1. We define

Un =
αn − βn
α− β and Vn = αn + βn (n ≥ 0). (1.1)

If α = (1 +
√

5)/2, we have Un = Fn and Vn = Ln (n ≥ 0), where the sequences
{Fn}n≥0 and {Ln}n≥0 are the Fibonacci numbers and the Lucas numbers defined,
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respectively, by Fn+2 = Fn+1 + Fn (n ≥ 0), F0 = 0, F1 = 1 and by Ln+2 =
Ln+1 + Ln (n ≥ 0), L0 = 2, L1 = 1.

Throughout this paper, we adopt the following notation. Let d ≥ 2 be a fixed
integer and ζm = e2πi/m a primitive m-th root of unity. For τ ∈ C with |τ | = 1,
we define the set Ωj(τ) :=

{
z ∈ C | zdj = τ or zd

j

= τ
}
for j = 0, 1, . . .. Let Sk(τ)

be a subset of Ωk(τ) such that for any γ ∈ Sk(τ) the numbers ζdγ and γ belong
to Sk(τ), where γ indicates the complex conjugate of γ. Namely, Sk(τ) satisfies
Sk(τ) = ζdSk(τ) and Sk(τ) = Sk(τ). For example, if d = 2, τ = 1, and k = 3 we
have Ω3(1) = {ekπi/4 | 0 ≤ k ≤ 7} and so we can choose S3(1) = {±eπi/4,±e3πi/4}.
We define the following sets that are determined depending only on Sk(τ):

Λi(τ) =
{
γd

k−i | γ ∈ Sk(τ)
}

(0 ≤ i ≤ k − 1),

Γi(τ) = {γ ∈ Ωi(τ) | γd ∈ Λi−1(τ)} \ Λi(τ) (1 ≤ i ≤ k − 1).

Then we put

Ek(τ) =

(
k−1⋃

i=1

Γi(τ)

)⋃
Sk(τ) (1.2)

and
Fk(τ) =

{
Ek(τ)

⋃{τ, τ} if τ /∈ Ek(τ),
Ek(τ) \ {τ, τ} otherwise.

In [1] we established necessary and sufficient conditions for the infinite products
generated by each of the sequences in (1.1) to be algebraically dependent over Q
and obtained the following:

Theorem 1.1. Let {Un}n≥0 be the sequence defined by (1.1) and d be an integer
greater than 1. Let a1, . . . , am be nonzero distinct real algebraic numbers. Then the
numbers ∞∏

k=0
U
dk
6=−ai

(
1 +

ai
Udk

)
(i = 1, . . . ,m)

are algebraically dependent if and only if d is odd and there exist distinct τ1, τ2 ∈ C
with |τ1| = |τ2| = 1 and Fk1(τ1),Fk2(τ2) for some k1, k2 ≥ 1 such that Fk1(τ1) ∩
Fk2(τ2) ⊂ {τ1, τ1, τ2, τ2} and {a1, . . . , am} contains

− 1

α− β (γ + γ)

for all γ ∈ (Fk1(τ1)
⋃Fk2(τ2)) \ {±

√
−1}.

Theorem 1.2. Let {Vn}n≥0 be the sequence defined by (1.1) and d be an integer
greater than 1. Let a1, . . . , am be nonzero distinct real algebraic numbers. Then the
numbers ∞∏

k=0
V
dk
6=−ai

(
1 +

ai
Vdk

)
(i = 1, . . . ,m)
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are algebraically dependent if and only if at least one of the following properties is
satisfied:

1. d = 2 and the set {a1, . . . , am} contains b1, . . . , bl (l ≥ 3) with b1 < −2
satisfying

b2 = −b1, bj = b2j−1 − 2 (j = 3, . . . , l − 1), bl = −b2l−1 + 2.

2. d = 2 and there exist τ ∈ C with |τ | = 1 and Fk(τ) for some k ≥ 1 such that
{a1, . . . , am} contains

−(γ + γ)

for all γ ∈ Fk(τ) \ {±
√
−1}.

3. d ≥ 4 is even and there exist distinct τ1, τ2 ∈ C with |τ1| = |τ2| = 1
and Fk1(τ1),Fk2(τ2) for some k1, k2 ≥ 1 such that Fk1(τ1) ∩ Fk2(τ2) ⊂
{τ1, τ1, τ2, τ2} and {a1, . . . , am} contains

−(γ + γ)

for all γ ∈ (Fk1(τ1)
⋃Fk2(τ2)) \ {±

√
−1}.

Note that Theorems 1.1 and 1.2 above are generalizations of [2, Theorems 1 and
2], respectively.

Corollary 1.3 (cf. [3]). Let d ≥ 2 be a fixed integer and a 6= 0 a real algebraic
number. Then the numbers

∞∏

k=1
U
dk
6=−a

(
1 +

a

Udk

)
and

∞∏

k=1
V
dk
6=−a

(
1 +

a

Vdk

)

are transcendental, except for only two algebraic numbers

∞∏

k=1

(
1− 1

V2k

)
=

α4 − 1

α4 + α2 + 1
,

∞∏

k=1

(
1 +

2

V2k

)
=
α2 + 1

α2 − 1
. (1.3)

Corollary 1.4. Let a be a nonzero real algebraic number with a 6= −V2k−2 (k ≥ 1).
Then the number ∞∏

k=1

(
1 +

a

V2k + 2

)

is transcendental, except when a = −3,−2; indeed

∞∏

k=1

(
1− 2

V2k + 2

)
=
α2 − 1

α2 + 1
,

∞∏

k=1

(
1− 3

V2k + 2

)
=

(α2 − 1)2

α4 + α2 + 1
. (1.4)
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Proof. Using the equality

1 +
a

V2k + 2
=

(
1 +

a+ 2

V2k

)(
1 +

2

V2k

)−1

and the second equality in (1.3), we have

∞∏

k=1

(
1 +

a

V2k + 2

)
=
α2 − 1

α2 + 1

∞∏

k=1

(
1 +

a+ 2

V2k

)
. (1.5)

By Corollary 1.3 we see that the infinite product in the right-hand side of (1.5) is
algebraic only if a = −3,−2. The equalities (1.4) follow immediately from (1.5)
with (1.3).

Applying Corollary 1.4 with α = (1 +
√

5)/2, we obtain the transcendence of

∞∏

k=1

(
1 +

a

L2k + 2

)

for any nonzero algebraic number a 6= −3,−2,−L2k − 2 (k ≥ 1), and the equalities

∞∏

k=1

(
1− 2

L2k + 2

)
=

1√
5
,

∞∏

k=1

(
1− 3

L2k + 2

)
=

1

4
. (1.6)

It should be noted that Corollaries 1.3 and 1.4 hold even if the number a is a
nonzero complex algebraic number (see [3]).

2. Algebraic dependence relations

Theorems 1.1 and 1.2 in the introduction are useful to obtain the explicit algebraic
dependence relations among the infinite products generated by the Fibonacci and
Lucas numbers as well as their transcendence degrees. We exhibit such examples
in this section and their proofs in the next section.

Example 2.1. Let a be a nonzero real algebraic number. The transcendental
numbers

s1 =
∞∏

k=0
F
3k
6=−a

(
1 +

a

F3k

)
, s2 =

∞∏

k=0
F
3k
6=a

(
1− a

F3k

)

are algebraically dependent if and only if a = ±1/
√

5. If a = 1/
√

5, then

s1s
−1
2 = 2 +

√
5.
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Example 2.2. The transcendental numbers

s1 =
∞∏

k=0

(
1 +

a1
F5k

)
, s2 =

∞∏

k=0

(
1 +

a2
F5k

)
,

s3 =

∞∏

k=0

(
1− a1

F5k

)
, s4 =

∞∏

k=0

(
1− a2

F5k

)

with a1 = (−5 +
√

5)/10, a2 = (5 +
√

5)/10 satisfy

s1s2s
−1
3 s−14 = 2 +

√
5,

while trans.degQ Q(s1, s2, s3, s4) = 3.

Remark 2.3. The infinite products
∏∞
k=0 (1 + ai/Fdk) for odd d and∏∞

k=1 (1 + ai/Ldk) for even d are easily expressed as the values at an algebraic
number of Φi(z) defined by (3.2) with b = 1, which will be shown in (3.3) of
Section 3. Hence, for simplicity, we take k ≥ 1 in the following examples.

Example 2.4. Let a 6= 2,−1 be a real algebraic number. The transcendental
numbers

s1 =
∞∏

k=1
L
2k
6=−a

(
1 +

a

L2k

)
, s2 =

∞∏

k=1
L
2k
6=a

(
1− a

L2k

)

are algebraically dependent if and only if a = ±
√

2. If a = ±
√

2, using the relation
L2
2k = L2k+1 + 2 (k ≥ 1) and the first equality in (1.6), we have

s1s2 =
∞∏

k=2

(
1− 2

L2k + 2

)
=

5

3
· 1√

5
=

√
5

3
.

Example 2.5. The transcendental numbers

s1 =

∞∏

k=1

(
1−
√

3

L4k

)
, s2 =

∞∏

k=1

(
1 +

√
3

L4k

)
,

s3 =
∞∏

k=1

(
1− 1

L4k

)
, s4 =

∞∏

k=1

(
1 +

2

L4k

)

satisfy

s1s2s3s
−1
4 =

5

8
,

while trans.degQ Q(s1, s2, s3, s4) = 3.

Example 2.6. The transcendental numbers

s1 =
∞∏

k=1

(
1− 1

L6k

)
, s2 =

∞∏

k=1

(
1 +

1

L6k

)
, s3 =

∞∏

k=1

(
1 +

2

L6k

)
,
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s4 =
∞∏

k=1

(
1 +

√
3

L6k

)
, s5 =

∞∏

k=1

(
1−
√

3

L6k

)

satisfy

s1s2s3s
−1
4 s−15 =

√
5

2
,

while trans.degQ Q(s1, s2, s3, s4, s5) = 4.

Example 2.7. The transcendental numbers

si =
∞∏

k=1

(
1 +

ai
L4k

)
(i = 1, . . . , 8),

where

a1 = −(ζ116 + ζ1516 ), a2 = −(ζ516 + ζ1116 ), a3 = −(ζ716 + ζ916), a4 = −(ζ364 + ζ6164 ),

a5 = −(ζ1364 + ζ5164 ), a6 = −(ζ1964 + ζ4564 ), a7 = −(ζ2964 + ζ3564 ), a8 = 2,

satisfy

s1s2 · · · s7s−28 =
25

7(7−
√

2−
√

2)
.

Example 2.8. The transcendental numbers

si =

∞∏

k=1

(
1 +

ai
L4k

)
(i = 1, . . . , 10),

where

a1 = −3

2
, a2 =

√
7

2
, a3 =

3

2
, a4 = −

√
7

2
, a5 =

31

16
,

a6 = − 4√
5
, a7 =

2√
5
, a8 =

4√
5
, a9 = − 2√

5
, a10 =

14

25
,

satisfy

s1s2s3s4s
−1
5 s−16 s−17 s−18 s−19 s10 =

3024

3575
,

while trans.degQ Q(s1, s2, . . . , s10) = 9.

3. Proofs of the examples

Let {Rn}n≥0 be the sequence {Un}n≥0 or {Vn}n≥0 defined by (1.1). Let d ≥ 2 be
a fixed integer and a1, . . . , am nonzero real algebraic numbers. Define

(pi, b) :=

{
((α− β)ai,−(−1)d) if Rn = Un,

(ai, (−1)d) if Rn = Vn,
(3.1)
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and

Φi(z) :=

∞∏

k=0

(
1 +

piz
dk

1 + bz2dk

)
(i = 1, . . . ,m). (3.2)

Taking an integer N ≥ 1 such that |Rdk | > max{|a1|, . . . , |am|} for all k ≥ N , we
have

Φi(α
−dN ) =

∞∏

k=N

(
1 +

piα
−dk

1 + bα−2dk

)

=

∞∏

k=N

(
1 +

pi

αdk + b(−1)dkβdk

)
=

∞∏

k=N

(
1 +

ai
Rdk

)
(i = 1, . . . ,m),

so that

∞∏

k=0
R

dk
6=−ai

(
1 +

ai
Rdk

)
= Φi(α

−dN )
N−1∏

k=0
R

dk
6=−ai

(
1 +

ai
Rdk

)
(i = 1, . . . ,m). (3.3)

We note that (3.3) is valid also for N = 0 only if d is odd and Rdk 6= −ai (k ≥ 0).

Proof of Example 2.1. First we show that s1 and s2 are algebraically dependent
only if a = ±1/

√
5, using the case of m = 2 in Theorem 1.1. If s1 and s2 are

algebraically dependent, then {τ1, τ2} = {1,−1}, since Fk(τ) consists of at least
four elements if τ 6= ±1. If d = 3, m = 2, and {τ1, τ2} = {1,−1}, it is easily seen
that F1(τ1)

⋃F1(τ2) = {ζ3, ζ3,−ζ3,−ζ3} and so {a1, a2} = {1/
√

5,−1/
√

5}.
Next we show the equality s1s−12 = 2 +

√
5 by proving a general relation which

holds for the functions Φi(z) (1 ≤ i ≤ d − 1) defined by (3.2), where d ≥ 3 is an
odd integer. Put

p1 = −(ζd + ζd), p2 = −(ζ2d + ζd
2
), . . . , p d−1

2
= −(ζ

d−1
2

d + ζd
d−1
2 )

in the equation (3.2) with b = 1. Then we have

Φ1(z) · · ·Φ d−1
2

(z)

=
∞∏

k=0

(
1

(1 + z2dk)
d−1
2

1− zdk+1

1− zdk

)
=

1

1− z
∞∏

k=0

1

(1 + z2dk)
d−1
2

.

Moreover, putting

p d−1
2 +1 = ζd + ζd, p d−1

2 +2 = ζ2d + ζd
2
, . . . , pd−1 = ζ

d−1
2

d + ζd
d−1
2 ,

we get

Φ d−1
2 +1(z) · · ·Φd−1(z)
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=
∞∏

k=0

(
1

(1 + z2dk)
d−1
2

1 + zd
k+1

1 + zdk

)
=

1

1 + z

∞∏

k=0

1

(1 + z2dk)
d−1
2

.

Hence, we have

Φ(z) :=
Φ1(z) · · ·Φ d−1

2
(z)

Φ d−1
2 +1(z) · · ·Φd−1(z)

=
1 + z

1− z . (3.4)

If d = 3, then p1 = −(ζ3 + ζ3) = 1, p2 = ζ3 + ζ3 = −1, and so

a1 =
1

α− β p1 =
1√
5
, a2 =

1

α− β p2 = − 1√
5

by (3.1). Then, by the equation (3.3) with N = 0, we have

Φ(α−1) = s1s2
−1 =

α+ 1

α− 1
= 2α+ 1 = 2 +

√
5.

Proof of Example 2.2. We consider the case of d = 5 in (3.4). Then

p1 = −(ζ5 + ζ5) =
1−
√

5

2
, p2 = −(ζ25 + ζ25 ) =

1 +
√

5

2
,

p3 = ζ5 + ζ5 =
−1 +

√
5

2
, p4 = ζ25 + ζ25 = −1 +

√
5

2
.

By (3.1) we have

a1 =
−5 +

√
5

10
, a2 =

5 +
√

5

10
, a3 =

5−
√

5

10
, a4 = −5 +

√
5

10
.

Then, by the equation (3.3) with N = 0 and (3.4), we have

Φ(α−1) =
s1s2
s3s4

=
α+ 1

α− 1
= 2 +

√
5.

Finally, we prove that trans.degQ Q(s1, s2, s3, s4) = 3, using Theorem 1.1. Let
τ1 = 1, τ2 = −1, S1(τ1) = E1(τ1) = {ζ5, ζ5, ζ25 , ζ25 , 1}, and S1(τ2) = E1(τ2) =

{−ζ5,−ζ5,−ζ25 ,−ζ25 ,−1}. Then F1(τ1) = {ζ5, ζ5, ζ25 , ζ25} and F1(τ2) =

{−ζ5,−ζ5,−ζ25 ,−ζ25}. It is enough to show that s1, s2, and s3 are algebraically
independent, which is equivalent to the fact that a1, a2, and a3 do not satisfy The-
orem 1.1 with m = 3. By (1.2) with S1(τi) = E1(τi) (i = 1, 2), considering the
number of the elements of Sk(τi) with k ≥ 2 satisfying Sk(τi) = ζ5Sk(τi) and
Sk(τi) = Sk(τi), we see that {a1, a2, a3, a4} is the minimal set of −(γ+γ)/

√
5 with

γ ∈ Fk1(τ1) ∪ Fk2(τ2) \ {±
√
−1} satisfying Theorem 1.1 with m = 4.

Proof of Example 2.4. First we prove directly that s1s2 =
√

5/3 if a = ±
√

2. Let
τ =
√
−1 and S1(τ) = E1(τ) = {ζ8, ζ8,−ζ8,−ζ8} in the property 2 of Theorem 1.2.

Then F1(τ) = {ζ8, ζ8,−ζ8,−ζ8,
√
−1,−

√
−1}. Putting

p1 = −(ζ8 + ζ8) = −
√

2, p2 = ζ8 + ζ8 =
√

2
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in the equation (3.2) with b = 1, we have

Φ1(z)Φ2(z) =

∞∏

k=0

(z2
k − ζ8)(z2

k − ζ8)(z2
k

+ ζ8)(z2
k

+ ζ8)
1

(1 + z2·2k)2

=
∞∏

k=0

1 + z2
k+2

(1 + z2k+1)2
=
∞∏

k=0

1 + z2
k+2

1 + z2k+1

1− z2k+1

1− z2k+2 =
1− z2
1 + z2

.

By the equation (3.3) with N = 1 and α = (1 +
√

5)/2, we get

s1s2 = Φ1(α−2)Φ2(α−2) =
α4 − 1

α4 + 1
.

Hence, noting that α4 = (α+ 1)2 = 3α+ 2, we have

s1s2 =
1

3
· 3α+ 1

α+ 1
=

1

3
(2α− 1) =

√
5

3
.

Conversely, if s1 and s2 are algebraically dependent for some algebraic number
a, then by the property 2 of Theorem 1.2 with m = 2 the set Fk(τ) \ {±

√
−1}

must consist of four elements, which is achieved only if τ = ±
√
−1 and k = 1.

Proof of Example 2.5. We use the property 3 of Theorem 1.2. Let τ1 = ζ3,
τ2 = 1, S1(τ1) = E1(τ1) = {ζ12, ζ12, ζ412, ζ412, ζ512, ζ512, ζ212, ζ212}, and S1(τ2) = E1(τ2) =

{1,−1,
√
−1,−

√
−1}. Then F1(τ1) = {ζ12, ζ12, ζ512, ζ512, ζ212, ζ212} and F1(τ2) = {−1,√

−1,−
√
−1}. Putting

p1 = −(ζ12 + ζ12) = −
√

3, p2 = −(ζ512 + ζ512) =
√

3, p3 = −(ζ212 + ζ212) = −1,

and p4 = 2 in the equation (3.2) with b = 1, we have

Φ1(z)Φ2(z)Φ3(z)

=

∞∏

k=0

(z4
k − ζ12)(z4

k − ζ12)(z4
k − ζ512)(z4

k − ζ512)(z4
k − ζ212)(z4

k − ζ212)
1

(1 + z2·4k)3

=

∞∏

k=0

(z4
k+1 − ζ412)(z4

k+1 − ζ412)

(z4k − ζ412)(z4k − ζ412)

1

(1 + z2·4k)3

=
1

(z − ζ412)(z − ζ412)

∞∏

k=0

1

(1 + z2·4k)3
,

and

Φ4(z) =
∞∏

k=0

1 + 2z4
k

+ z2·4
k

1 + z2·4k
=
∞∏

k=0

(1 + z4
k

)2(1 + z2·4
k

)2

(1 + z2·4k)3

=
∞∏

k=0

1

(1 + z2·4k)3

(
1− z4k+1

1− z4k

)2

=
1

(1− z)2
∞∏

k=0

1

(1 + z2·4k)3
. (3.5)
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Hence, we get

Φ(z) := Φ1(z)Φ2(z)Φ3(z)Φ−14 (z) =
(1− z)2

1 + z + z2
.

By the equation (3.3) with N = 1 and α = (1 +
√

5)/2, we have

s1s2s3s
−1
4 = Φ(α−4) =

α8 − 2α4 + 1

α8 + α4 + 1
=

7α4 − 2α4

7α4 + α4
=

5

8
,

since
α8 + 1 = (3α+ 2)2 + 1 = 21α+ 14 = 7α4. (3.6)

To prove that trans.degQ Q(s1, s2, s3, s4) = 3, it is enough to show that s2, s3,
and s4 are algebraically independent, which is equivalent to the fact that p2, p3,
and p4 do not satisfy the property 3 of Theorem 1.2 with m = 3. By (1.2) with
S1(τi) = E1(τi) (i = 1, 2), considering the number of the elements of Sk(τi) with k ≥
2 satisfying Sk(τi) = ζ4Sk(τi) and Sk(τi) = Sk(τi), we see that {−

√
3,
√

3,−1, 2}
is the minimal set of −(γ + γ) with γ ∈ Fk1(τ1)∪Fk2(τ2) \ {±

√
−1} satisfying the

property 3 of Theorem 1.2 with m = 4.

Proof of Example 2.6. We use the property 3 of Theorem 1.2. Let τ1 = 1, τ2 =
−1, S1(τ1) = E1(τ1) = {ζ6, ζ26 ,−1, ζ46 , ζ

5
6 , 1}, and S1(τ2) = E1(τ2) = {ζ12,

√
−1, ζ512,

ζ712,−
√
−1, ζ1112}. Then F1(τ1) = {ζ6, ζ26 ,−1, ζ46 , ζ

5
6} and F1(τ2) = {ζ12,

√
−1, ζ512,

ζ712,−
√
−1, ζ1112 ,−1}.

We show the equality s1s2s3s−14 s−15 =
√

5/2 by proving a general relation among
the functions Φi(z) defined by (3.2). Let d ≥ 6 be an even integer. Putting

p0 = −2, p1 = −(ζd + ζd), p2 = −(ζ2d + ζd
2
), . . . , p d

2
= −(ζ

d
2

d + ζd
d
2 ) = 2

in the equation (3.2) with b = 1, we have
(

Φ0(z) · Φ2
1(z)Φ2

2(z) · · ·Φ2
d
2−1

(z) · Φ d
2
(z)
)
· Φ−10 (z)

=
∞∏

k=0

(
1

(1 + z2dk)d−1
(zd

k+1 − 1)2

(zdk − 1)2

)
=

1

(z − 1)2

∞∏

k=0

1

(1 + z2dk)d−1
.

In the same way, putting

p d
2+1 = −(ζ2d + ζ2d), p d

2+2 = −(ζ32d + ζ2d
3
), . . . , pd = −(ζd−12d + ζ2d

d−1
),

we get

Φ2
d
2+1

(z)Φ2
d
2+2

(z) · · ·Φ2
d(z) · Φ−1d

2

(z)

=
∞∏

k=0

(
1

(1 + z2dk)d−1
(zd

k+1

+ 1)2

(zdk + 1)2

)
=

1

(z + 1)2

∞∏

k=0

1

(1 + z2dk)d−1
.
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Hence, noting that Φi(0) = 1 (1 ≤ i ≤ d), we have

Φ(z) :=
Φ1(z)Φ2(z) · · ·Φ d

2
(z)

Φ d
2+1(z)Φ d

2+2(z) · · ·Φd(z)
=

1 + z

1− z . (3.7)

Now assume that d = 6 in (3.7). Noting that p5 = 0 and putting

a1 = p1 = −1, a2 = p2 = 1, a3 = p3 = 2, a4 = p4 = −
√

3, a5 = p6 =
√

3

in the equation (3.3) with N = 1 and α = (1 +
√

5)/2, we have

Φ(α−6) =
s1s2s3
s4s5

=
α6 + 1

α6 − 1
.

Since α6 = 8α+ 5, we get

s1s2s3
s4s5

=
α6 + 1

α6 − 1
=

1

2
(2α− 1) =

√
5

2
.

The transcendence degree is obtained in the same way as in the proof of Exam-
ple 2.5.

Proof of Example 2.7. We use the property 3 of Theorem 1.2. Let τ1 =
√
−1,

τ2 = 1,
S2(τ1) = {ζ364, ζ1364 , ζ1964 , ζ2964 , ζ3564 , ζ4564 , ζ5164 , ζ6164},

and
S1(τ2) = E1(τ2) = {1,−1,

√
−1,−

√
−1}.

Then

Λ1(τ1) = {ζ316, ζ1316}, Γ1(τ1) = {ζ116, ζ516, ζ716, ζ916, ζ1116 , ζ1516}, Λ0(τ1) = {
√
−1,−

√
−1},

and so

F2(τ1) = {ζ364, ζ1364 , ζ1964 , ζ2964 , ζ3564 , ζ4564 , ζ5164 , ζ6164 , ζ116, ζ516, ζ716, ζ916, ζ1116 , ζ1516 ,
√
−1,−

√
−1},

F1(τ2) = {−1,
√
−1,−

√
−1}.

Putting

p1 = −(ζ116 + ζ1516 ), p2 = −(ζ516 + ζ1116 ), p3 = −(ζ716 + ζ916),

p4 = −(ζ364 + ζ6164 ), p5 = −(ζ1364 + ζ5164 ), p6 = −(ζ1964 + ζ4564 ), p7 = −(ζ2964 + ζ3564 )

in the equation (3.2) with b = 1, we get

Φ1(z)Φ2(z) · · ·Φ7(z)

=
∞∏

k=0

(
1

(1 + z2·4k)6
(z4

k+1 − ζ316)(z4
k+1 − ζ1316 )

(z4k − ζ316)(z4k − ζ1316 )

z2·4
k+1

+ 1

z2·4k + 1

)
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=
1

(z2 + 1)(z − ζ316)(z − ζ1316 )

∞∏

k=0

1

(1 + z2·4k)6
.

Letting p8 = 2 and using (3.5) in the proof of Example 2.5, we have

Φ(z) :=
Φ1(z)Φ2(z) · · ·Φ7(z)

Φ2
8(z)

=
(z − 1)4

(z2 + 1)(z − ζ316)(z − ζ1316 )
.

Putting ai = pi (1 ≤ i ≤ 8) in the equation (3.3) with N = 1 and α = (1 +
√

5)/2
and using (3.6), we obtain

s1 · · · s7
s28

= Φ(α−4) =
(α4 − 1)4

(α8 + 1)(α8 + 1− (ζ316 + ζ1316 )α4)

=
(7α4 − 2α4)2

7α4(7α4 − (ζ316 + ζ1316 )α4)

=
25

7(7−
√

2−
√

2)
,

since ζ316 + ζ1316 = 2 cos(3π/8) =
√

2−
√

2.

Proof of Example 2.8. Let d ≥ 2 be an integer. Let γ and η be complex numbers
with |γ| = |η| = 1. We show a general relation which holds for the functions
Φi(z) (1 ≤ i ≤ 2d+ 2) defined by (3.2). Putting

p1 = −(γ + γ), p2 = −(γζd + γζd), . . . , pd = −(γζd−1d + γζd−1d ),

and pd+1 = −(γd + γd) in the equation (3.2) with b = 1, we have

Φ1(z) · · ·Φd(z)Φ−1d+1(z)

=
∞∏

k=0

(
1

(1 + z2dk)d−1
1(

1 + pd+1zd
k + z2dk

)
d∏

i=1

(1 + piz
dk + z2d

k

)

)

=

∞∏

k=0

(
1

(1 + z2dk)d−1(zdk − γd)(zdk − γd)

d−1∏

i=0

(zd
k − γζid)(zd

k − γζid)
)

=
1

(z − γd)(z − γd)

∞∏

k=0

1

(1 + z2dk)d−1
.

Moreover, putting

pd+2 = −(η + η), pd+3 = −(ηζd + ηζd), . . . , p2d+1 = −(ηζd−1d + ηζd−1d ),

and p2d+2 = −(ηd + ηd), we get

Φ(z) :=
Φ1(z) · · ·Φd(z)

Φd+1(z)
· Φ2d+2(z)

Φd+2(z) · · ·Φ2d+1(z)
=

(z − ηd)(z − ηd)
(z − γd)(z − γd) . (3.8)
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Substituting z = α−4 into (3.8) and using (3.6), we get

Φ(α−4) =
α8 + p2d+2α

4 + 1

α8 + pd+1α4 + 1
=

7 + p2d+2

7 + pd+1
. (3.9)

For Example 2.8, we take d = 4 and

γ =
3 +
√
−7

4
, η =

2 +
√
−1√

5
.

Noting that γ4 6= η4 and taking τ1 = γ4 and τ2 = η4 in the property 3 of Theo-
rem 1.2, we have

S1(τ1) = E1(τ1) = {γ,
√
−1γ,−γ,−

√
−1γ, γ,

√
−1γ,−γ,−

√
−1γ},

S1(τ2) = E1(τ2) = {η,
√
−1η,−η,−

√
−1η, η,

√
−1η,−η,−

√
−1η},

and so

F1(τ1) = {γ,
√
−1γ,−γ,−

√
−1γ, γ,

√
−1γ,−γ,−

√
−1γ, γ4, γ4},

F1(τ2) = {η,
√
−1η,−η,−

√
−1η, η,

√
−1η,−η,−

√
−1η, η4, η4},

since γ and η are not roots of unity. Then we have

p1 = −3

2
, p2 =

√
7

2
, p3 =

3

2
, p4 = −

√
7

2
, p5 =

31

16
,

p6 = − 4√
5
, p7 =

2√
5
, p8 =

4√
5
, p9 = − 2√

5
, p10 =

14

25
,

since

γ4 = −31− 3
√
−7

32
, η4 = −7− 24

√
−1

25
.

Using (3.9), we get

s1 · · · s4
s5

· s10
s6 · · · s9

=
7 + 14/25

7 + 31/16
=

3024

3575

by the equation (3.3) with N = 1. The transcendence degree is obtained in the
same way as in the proof of Example 2.5.
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Abstract
We discuss divisibility properties of some differences of Motzkin numbers

Mn. The main tool is the application of various congruences of high prime
power moduli for binomial coefficients and Catalan numbers combined with
some recurrence relevant to these combinatorial quantities and the use of
infinite disjoint covering systems.

We find proofs of the fact that, for different settings of a and b, more and
more p-ary digits of Mapn+1+b and Mapn+b agree as n grows.

Keywords: Catalan number, Motzkin number, harmonic number, divisibility

MSC: 11B83, 11B50, 11A07, 05A19

1. Introduction

The differences of certain combinatorial quantities, e.g., Motzkin numbers, exhibit
interesting divisibility properties. Motzkin numbers are defined as the number of
certain random walks or equivalently (cf. [2]) as

Mn =
n∑

k=0

(
n

2k

)
Ck, n ≥ 0, (1.1)

where Ck is the kth Catalan number

Ck =
1

k + 1

(
2k

k

)
, k ≥ 0.

We need some basic notation. Let n and k be positive integers, p be a prime,
dp(k) and νp(k) denote the sum of digits in the base p representation of k and the
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highest power of p dividing k, respectively. The latter one is often referred to as
the p-adic order of k. For the rational n/k we set νp(n/k) = νp(n)− νp(k).

We rely on the p-adic order of the differences of Catalan numbers Capn+1+b −
Capn+b (cf. Theorems 3.8 and 3.9) with a prime p, (a, p) = 1, and n ≥ n0 for some
integer n0 ≥ 0.

As n grows, eventually more and more binary digits of Ma2n+b and Ma2n+1+b

agree, starting with the least significant bit, for every fixed a ≥ 1 and b ≥ 0, as
stated by Theorem 2.3. We also determine lower bounds on the rate of growth in the
number of matching digits in Corollary 2.4, Theorems 2.1 and 2.5. Conjecture 5.1
suggests finer details for p = 2. Conjectures 5.3 and 5.5 propose the exact value of
ν2(Ma2n+1+b−Ma2n+b) if p = 2, a = 1, and b = 0, 1, 2, as well as νp(Mapn+1−Mapn)
if p = 3 and (a, 3) = 1, or p ≥ 5 prime and a = 1, in addition to half of the odd
a values if p = 2 and n is odd. We present Conjectures 5.1-5.3 that concern upper
and lower bounds on ν2(Ma2n+1+b − Ma2n+b) and its exact value, respectively,
with special interest in the cases with a = 1, b = 0, 1, 2, 3, and more generally,
b = 2q−1, 2q, and 2q+1, q ≥ 1. Further extensions and improvements are given in
Theorems 5.6 and 5.7 (cf. [8]). All results involving the exact orders of differences
or lower bounds on them can be easily rephrased in terms of super congruences for
the underlying quantities.

Section 2 collects some of the main results (cf. Theorems 2.1 and 2.5) while
Section 3 is devoted to known results and their direct consequences regarding con-
gruential and p-adic properties of the binomial coefficients and Catalan numbers.
We provide the proofs of Theorems 2.1 and 2.5 in Sections 4 and 5, respectively.
We also prove Theorems 2.2-2.3 and state four conjectures (cf. Conjectures 5.1-5.3
and 5.5) related to Motzkin numbers in Section 5, including lower bounds on the
order of differences for all primes.

2. Main results

In this section we list our main results regarding the differences of certain Motzkin
numbers. Except for Theorem 2.3, they all determine lower bounds on the rate of
growth in the number of matching p-ary digits in the differences.

Theorem 2.1. For p = 2, n ≥ 2, a ≥ 1 odd, and b = 0 or 1, we have

ν2(Ma2n+1+b −Ma2n+b) = n− 1, if n is even

and
ν2(Ma2n+1+b −Ma2n + b) ≥ n, if n is odd.

Theorem 2.2 provides us with a lower bound on ν2(Ma2n+1+b −Ma2n+b) on a
recursive fashion in b and potentially, it can give the exact order if a = 1.

Theorem 2.2. For a ≥ 1 odd and n ≥ n0 with some n0 = n0(a, b) ≥ 1, we get
that for b ≥ 2 even

ν2(Ma2n+1+b −Ma2n+b) =
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= min{ν2(Ma2n+1+b−1 −Ma2n+b−1),

ν2(Ma2n+1+b−2 −Ma2n+b−2)} − ν2(b+ 2)

if the two expressions under the minimum operation are not equal. However, it
they are, then it is at least

ν2(Ma2n+1+b−1 −Ma2n+b−1) + 1− ν2(b+ 2).

On the other hand, if b ≥ 3 is odd then we have

ν2(Ma2n+1+b −Ma2n+b) = ν2(Ma2n+1+b−1 −Ma2n+b−1) (2.1)

if ν2(Ma2n+1+b−2 −Ma2n+b−2) + ν2(b− 1) > ν2(Ma2n+1+b−1 −Ma2n+b−1), and

ν2(Ma2n+1+b −Ma2n+b) = ν2(Ma2n+1+b−2 −Ma2n+b−2)

+ ν2(b− 1)

if ν2(Ma2n+1+b−2 − Ma2n+b−2) + ν2(b − 1) < ν2(Ma2n+1+b−1 − Ma2n+b−1), and
otherwise, it is at least ν2(Ma2n+1+b−1 −Ma2n+b−1). Note however the stipulation
that in all equalities above, if the right hand side value is at least n − 2ν2(b + 2)
then the equality turns into the inequality ν2(Ma2n+1+b−Ma2n+b) ≥ n−2ν2(b+2).

Theorem 2.2 guarantees that as n grows, eventually more and more binary
digits of Ma2n+b and Ma2n+1+b agree, starting with the least significant bit for
every fixed a ≥ 1 and b ≥ 0.

Theorem 2.3. For every a ≥ 1, b ≥ 0, and K ≥ 0 integers, there exists an
n0 = n0(a, b,K) so that ν2(Ma2n+1+b −Ma2n+b) ≥ K for all n ≥ n0.

For the asymptotic growth of the Motzkin numbers we have Mn ∼ c3n/n3/2

with some integer c > 0. Unfortunately, neither this fact nor Theorem 2.3 helps
in assessing the rate of growth of matching digits, i.e., ν2(Ma2n+1+b −Ma2n+b).
However, Theorem 2.2 and

∑′
i≤b+2 ν2(i) = ν2((b+ 2)!) = (b+ 2)− d2(b+ 2), with

the summation running through even values of i only, imply the following, although
rather coarse, lower bound.

Corollary 2.4. For a ≥ 1 odd, b ≥ 0, and n ≥ n0 with some n0 = n0(a, b) ≥ 1,
we have

ν2(Ma2n+1+b −Ma2n+b) ≥ n− (b+ 2) + d2(b+ 2).

Theorem 2.5 gives a lower bound on ν3(M3n+1+b−M3n+b) with b = 0 or 1, and
νp(Mpn+1+b −Mpn+b) for p ≥ 5 and 0 ≤ b ≤ p− 3.

Theorem 2.5. For p ≥ 3 prime and n ≥ n0 with some integer n0 = n0(p) ≥ 0,
we have

νp(Mpn+1 −Mpn) ≥ n. (2.2)
Assuming that n ≥ n0, for p = 3, we have

ν3(M3n+1+1 −M3n+1) ≥ n− 1,

and for p ≥ 5, we have
νp(Mpn+1+b −Mpn+b) ≥ n

with 0 ≤ b ≤ p− 3.
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3. Preparation

We note that there are many places in the literature where relevant divisibility and
congruential properties of the binomial coefficients are discussed. Excellent surveys
can be found in [5] and [11]. The following three theorems comprise the most basic
facts regarding divisibility and congruence properties of the binomial coefficients.
We assume that 0 ≤ k ≤ n.

Theorem 3.1 (Kummer, 1852). The power of a prime p that divides the binomial
coefficient

(
n
k

)
is given by the number of carries when we add k and n− k in base

p.

Theorem 3.2 (Legendre, 1830). We have

νp
((
n
k

))
=

n−dp(n)
p−1 − k−dp(k)

p−1 − n−k−dp(n−k)
p−1 =

dp(k)+dp(n−k)−dp(n)
p−1 .

In particular, ν2(
(
n
k

)
) = d2(k)+ d2(n− k)− d2(n) represents the carry count in the

addition of k and n− k in base 2.

From now on M and N will denote integers such that 0 ≤M ≤ N .

Theorem 3.3 (Lucas, 1877). Let N = (nd, . . . , n1, n0)p = n0 + n1p + · · · + ndp
d

and M = m0 +m1p+ · · ·+mdp
d with 0 ≤ ni,mi ≤ p− 1 for each i, be the base p

representations of N and M , respectively.
(
N

M

)
≡
(
n0
m0

)(
n1
m1

)
· · ·
(
nd
md

)
mod p.

Lucas’ theorem has some remarkable extensions.

Theorem 3.4 (Anton, 1869, Stickelberger, 1890, Hensel, 1902). Let N = (nd, . . . ,
n1, n0)p = n0 + n1p+ · · ·+ ndp

d,M = m0 +m1p+ · · ·+mdp
d and R = N −M =

r0+r1p+· · ·+rdpd with 0 ≤ ni,mi, ri ≤ p−1 for each i, be the base p representations
of N,M, and R = N −M , respectively. Then with q = νp

((
N
M

))
,

(−1)q 1

pq

(
N

M

)
≡
(

n0!

m0!r0!

)(
n1!

m1!r1!

)
· · ·
(

nd!

md!rd!

)
mod p.

Davis and Webb (1990) and Granville (1995) have independently generalized
Lucas’ theorem and its extension Theorem 3.4. For a given integer n and prime
p, we define (n!)p = n!/(pbn/pcbn/pc!) to be the product of positive integers not
exceeding n and not divisible by p, and which is closely related to the p-adic Morita
gamma function.

Theorem 3.5 (Granville, 1995 in [5]). Let N = (nd, . . . , n1, n0)p = n0 + n1p +
· · ·+ ndp

d,M = m0 +m1p+ · · ·+mdp
d and R = N −M = r0 + r1p+ · · ·+ rdp

d

with 0 ≤ ni,mi, ri ≤ p − 1 for each i, be the base p representations of N,M, and
R = N −M , respectively. Let Nj = nj + nj+1p+ · · ·+ nj+k−1pk−1 for each j ≥ 0,
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i.e., the least positive residue of bN/pjc mod pk with some integer k ≥ 1; also make
the corresponding definitions for Mj and Rj. Let εj be the number of carries when
adding M and R on and beyond the jth digit. Then with q = ε0 = νp

((
N
M

))
,

1

pq

(
N

M

)
≡ (±1)εk−1

(
(N0!)p

(M0!)p(R0!)p

)(
(N1!)p

(M1!)p(R1!)p

)
· · ·
(

(Nd!)p
(Md!)p(Rd!)p

)
mod pk

where ±1 is −1 except if p = 2 and k ≥ 3.

We also use the following generalization of the Jacobstahl–Kazandzidis [1] con-
gruences.

Theorem 3.6 (Corollary 11.6.22 [1]). Let M and N such that 0 ≤M ≤ N and p
prime. We have

(
pN

pM

)
≡





(
1− Bp−3

3 p3NM(N −M)

)(
N
M

)
mod p4NM(N −M)

(
N
M

)
, if p ≥ 5,

(1 + 45NM(N −M))
(
N
M

)
mod p4NM(N −M)

(
N
M

)
, if p = 3,

(−1)M(N−M)P (N,M)
(
N
M

)
mod p4NM(N −M)

(
N
M

)
, if p = 2,

where P (N,M) = 1+6NM(N−M)−4NM(N−M)(N2−NM+M2)+2(NM(N−
M))2.

Remark 3.7. It is well known that νp(Bn) ≥ −1 by the von Staudt–Clausen theo-
rem. If the prime p divides the numerator of Bp−3, i.e., νp(Bp−3) ≥ 1, or equiva-
lently

(
2p
p

)
≡ 2 mod p4, then it is sometimes called a Wolstenholme prime [1]. The

only known Wolstenholme primes up to 109 are p = 16843 and 2124679.

Based on the above theorems, we state some of the main tools regarding the
differences of Catalan numbers (cf. [7] for details and proofs). For the p-adic orders
we obtain the following theorem.

Theorem 3.8. For any prime p ≥ 2 and (a, p) = 1, we have

νp(Capn+1 − Capn) = n+ νp

((
2a

a

))
, n ≥ 1.

We can introduce an extra additive term b ≥ 1 into Theorem 3.8.

Theorem 3.9. For p = 2, a odd, and n ≥ n0 = 2 we have

ν2(Ca2n+1+1 − Ca2n+1) = n+ ν2

((
2a

a

))
− 1,

and in general, for b ≥ 1 and n ≥ n0 = blog2 2bc+ 1

ν2(Ca2n+1+b − Ca2n+b) = n+ ν2

((
2a

a

))
+ ν2(g(b))
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= n+ d2(a) + d2(b)− dlog2(b+ 2)e − ν2(b+ 1) + 1

where g(b) = 2
(
2b
b

)
(b+1)−1(H2b−Hb−1/(2(b+ 1))) = 2Cb(H2b−Hb−1/(2(b+ 1)))

with Hn =
∑n
j=1 1/j being the nth harmonic number.

For any prime p ≥ 3, (a, p) = 1, and b ≥ 1 we have that

νp(Capn+1+b − Capn+b) = n+ νp

((
2a

a

))
+ νp(g(b)),

with n ≥ n0 = max{νp(g(b)) + 2r − νp(Cb) + 1, r + 1} = max{νp(2(H2b − Hb −
1/(2(b+ 1)))) + 2r + 1, r + 1} and r = blogp 2bc.

In general, for any prime p ≥ 2, (a, p) = 1, b ≥ 1, and n > blogp 2bc, we have

νp(Capn+1+b − Capn+b) ≥ n+ νp

((
2a

a

))
+ νp

((
2b

b

))
− blogp 2bc − νp(b+ 1).

Note. Clearly, νp(g(b)) ≥ 0 for 1 ≤ b ≤ (p − 1)/2. We note that in general,
for b ≥ 1 we have νp(g(b)) ≥ νp(

(
2b
b

)
) − blogp 2bc − νp(b + 1) if p ≥ 2 while

ν2(g(b)) = d2(b)− dlog2(b+2)e − ν2(b+1)+ 1 = d2(b+1)− dlog2(b+2)e if p = 2.

We note that as a byproduct, we proved some generalization of the observation
from [10] that for any n ≥ 2 the remainders C2n+m−1−1 mod 2n are equal for each
m ≥ 0 (see [9], [12], and [13],too) in [7]:

Theorem 3.10. For any prime p ≥ 2, (a, p) = 1, b ≥ 0, we have that Capm+b mod
pn is constant for m ≥ n+ νp(b+ 1) + max{0, blogp 2bc}, n ≥ 1.

We also note that

ν2(Ck) = d2(k)− ν2(k + 1) = d2(k + 1)− 1 (3.1)

holds, i.e., ν2(C2n+1) = ν2(C2n) = 1. It follows that Ck is odd if and only if
k = 2q − 1 for some integer q ≥ 0.

4. The proof of Theorem 2.1

In this section we present

The proof of Theorem 2.1. We prove the case with b = 0 and then we note that
the case with b = 1 is practically identical. Thus, we assume that b = 0.

First we deal with the case with a = 1. We use the identity (1.1)

M2n =
2n∑

k=0

(
2n

2k

)
Ck,
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rely on identity (3.1) and select an infinite incongruent disjoint covering system
(IIDCS). The difference of the appropriate Motzkin numbers can be rewritten as

M2n+1 −M2n =

2n−1∑

k=1

((
2n+1

2(2k)

)
C2k −

(
2n

2k

)
Ck

)
+

2n∑

k≡1 mod 2

(
2n+1

2k

)
Ck (4.1)

after removing the superfluous term with k = 0 in the first sum. We break the first
summation in (4.1) into parts according to the IIDCS {2q (mod 2q+1)}q≥0, which
allows us to write every positive integer uniquely in the form of 2q + 2q+1K for
some q and K ≥ 0.

2n−1∑

k=1

((
2n+1

2(2k)

)
C2k −

(
2n

2k

)
Ck

)

=
n−1∑

q=0

∑

k=2q+2q+1K

0≤K≤ 2n−q−1−1
2

((
2n+1

2(2k)

)
C2k −

(
2n

2k

)
Ck

)

=
n−2∑

q=0

∑

k=2q+2q+1K

0≤K≤2n−q−2−1

((
2n+1

2(2k)

)
C2k −

(
2n

2k

)
Ck

)

+ (C2n − C2n−1).

(4.2)

We introduce the following quantities

M ′r(n,m) =
∑

k≡r mod m
1≤k≤2n

(
2n+1

2k

)
Ck

and focus on cases when m is a power of two.
The second summation in (4.1) is M ′1(n, 2). Its 2-adic order is at least n ac-

cording to

Theorem 4.1. For integers n ≥ q ≥ 1, we have

ν2(M
′
2q (n, 2

q+1)) = n+ 1− q.

If q = 0 then ν2(M
′
1(n, 2)) = n if n is odd, otherwise the 2-adic order is at least

n+ 1.

We can gain more insight into the 2-adic structure of the terms of the sum
(4.2) by checking how the 2-adic orders of the terms

(
2n

2k

)
Ck and

(
2n+1

2(2k)

)
C2k with

k = 2q + 2q+1K behave in M ′2q (n− 1, 2q+1) and M ′2q+1(n, 2q+2), respectively.
If 1 ≤ q ≤ n − 1 then both 2-adic orders are equal to n − q + d2(K). Indeed,

the range for K is 0 ≤ K ≤ 2n−q−2 − 1 if q ≤ n − 2 and K = 0 if q = n − 1 in
both cases, and more importantly, the difference Aq,K =

(
2n+1

2(2k)

)
C2k −

(
2n

2k

)
Ck =
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(
2n+1

2(2k)

)
(C2k−Ck)+

((
2n+1

2(2k)

)
−
(
2n

2k

))
Ck has 2-adic order n+d2(K) by Theorems 3.1,

3.8, and 3.6. Note that ν2(Aq,K) is determined by the 2-adic order of the first
term in the last sum, and it is given by combining ν2

((
2n+1

2(2k)

))
= n − 1 − q and

ν2(C2k −Ck) = q + d2(1 + 2K) = q + d2(K) + 1. Therefore, ν2(
∑
K Aq,K) = n for

each q ≥ 1 and it is due to the term with K = 0.
If q = 0, i.e., k = 1+2K, then A0,K =M ′2(n, 4)−M ′1(n− 1, 2) and ν2(A0,K) ≥

n− 1 since ν2
((

2n+1

4(1+2K)

)
C2+4K

)
= n− 1 + d2(3 + 4K)− 1 = n+ d2(K) and

ν2

((
2n

2(1 + 2K)

)
C1+2K

)
= n−1+d2(2+2K)−1 = n−2+d2(1+K) ≥ n−1. (4.3)

The latter minimum value is taken exactly for n− 1 values of K since in the range
0 ≤ K ≤ 2n−2−1 there are exactly n−1 terms with K = 2r−1, r = 0, 1, . . . , n−2,
leading to d2(K+1) = 1. Thus, the 2-adic order of the corresponding sum

∑
K A0,K

is n− 1 if n is even and at least n if n is odd.

The proof is now complete for the case a = 1. The proof with an arbitrary
a ≥ 1 odd is very similar except it requires a more detailed analysis of the
terms in (4.4) than we had in (4.1). In any case, the first term with q = 0 in
the right hand side of (4.2) and (4.5), i.e., A0,K = M ′2(n, 4) −M ′1(n − 1, 2) and
A0,K,a =M ′2,a(n, 4)−M ′1,a(n− 1, 2) (cf. notation below), respectively, determines
the 2-adic order.

We use the binary representation of a =
∑∞
i=0 ai2

i =
∑
i∈S 2

i with 0 ∈ S =
{i|ai = 1} since a is odd.

We rewrite the difference

Ma2n+1−Ma2n =

a2n−1∑

k=1

((
a2n+1

2(2k)

)
C2k−

(
a2n

2k

)
Ck

)
+

a2n∑

k≡1 mod 2

(
a2n+1

2k

)
Ck. (4.4)

We break the first summation in (4.4) into parts according to the covering system
used in (4.2)

a2n−1∑

k=1

((
a2n+1

2(2k)

)
C2k −

(
a2n

2k

)
Ck

)
= (4.5)

=

blog2 a2
n−1c∑

q=0

∑

k=2q+2q+1K

0≤K≤ a2n−q−1−1
2

((
a2n+1

2(2k)

)
C2k −

(
a2n

2k

)
Ck

)
.

Now we introduce

M ′r,a(n,m) =
∑

k≡r mod m
1≤k≤a2n

(
a2n+1

2k

)
Ck
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and note that the second term in (4.4) is M ′1,a(n, 2). Its 2-adic order is at least n.
In fact, for a general term in the sum M ′1,a(n, 2), we get that

ν2

((
a2n+1

2k

)
Ck

)
≥ (n+1− 1)+ (d2(2+ 2K)− 1) = n− 1+ d2(1+K) ≥ n (4.6)

with 0 ≤ k = 1 + 2K ≤ a2n, i.e., 0 ≤ K ≤ a2n−1 − 1. We want equalities in (4.6)
in order to determine ν2(M ′1,a(n, 2)). While in the case of a = 1 it trivially follows
that ν2

((
a2n+1

2k

)
) = n, now we have to deal with the possibility that 2k > 2n+1. By

Theorem 3.1, the first inequality turns into equality exactly if

K = j +
∑

i∈S′⊆S\{0}
2i+n−1

with 0 ≤ j ≤ 2n−1−1, while the second one becomes an equality when d2(K+1) =
|S′| + d2(j + 1) = 1, i.e., S′ = ∅ and j = 2r − 1 and thus, K = 2r − 1 with
r = 0, 1, . . . , n − 1. Therefore, this case turns out to be identical to that of a = 1
and hence, ν2(M ′1,a(n, 2)) ≥ n with equality if and only if n is odd. (By the way,
this argument is also used at the end of the proof of Theorem 4.1 below. Note
that Theorem 4.1 remains valid even after introducing the parameter a, i.e., if we
replace M ′2q (n, 2q+1) with M ′2q,a(n, 2q+1), cf. Theorem 4.2.)

Now we turn to the analysis of (4.5). We have three cases: either 1 ≤ q ≤ n−1,
or q ≥ n, or q = 0. We consider the difference with k = 2q + 2q+1K

Aq,K,a =

(
a2n+1

2(2k)

)
C2k −

(
a2n

2k

)
Ck

=

(
a2n+1

2(2k)

)
(C2k − Ck) +

((
a2n+1

2(2k)

)
−
(
a2n

2k

))
Ck. (4.7)

If 1 ≤ q ≤ n − 1 then it has 2-adic order n + d2(K) by Theorems 3.1, 3.8,
and 3.6. Note that ν2(Aq,K,a) is determined by the 2-adic order of the first
term in the last sum and it is given by combining ν2

((
a2n+1

2(2k)

))
= n − 1 − q and

ν2(C2k − Ck) = q + d2(1 + 2K) = q + d2(K) + 1. Therefore, ν2(
∑
K Aq,K,a) = n

for each q ≥ 1 and it is due to the term with K = 0.

If q ≥ n then both terms of the last sum in (4.7) have a 2-adic order of at least
n + 1 by Theorems 3.1, 3.8, and 3.6. For example, for the first term we see that
ν2(C2k − Ck) = q + d2(1 + 2K) ≥ n+ 1 + d2(K) ≥ n+ 1.

If q = 0, i.e., k = 1+ 2K, then ν2(A0,K,a) = n− 1 since ν2
((

a2n+1

4(1+2K)

)
C2+4K

)
=

n− 1 + d2(3 + 4K)− 1 = n+ d2(K) and

ν2

((
a2n

2(1 + 2K)

)
C1+2K

)
≥ n−1+d2(2+2K)−1 = n−2+d2(1+K) ≥ n−1. (4.8)
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In a similar fashion to (4.6), the latter minimum value is taken exactly for n − 1
values of K since in the range 0 ≤ K ≤ a2n−2−1 there are exactly n−1 terms with
K = 2r−1, r = 0, 1, . . . , n−2, leading to d2(K+1) = 1 so that ν2

((
a2n

2(1+2K)

))
= n−1.

Thus, the 2-adic order of the corresponding sum
∑
K A0,K,a is n − 1 if n is even

and at least n if n is odd.

If b = 1 then we observe that the 2-adic orders of
(
a2n+1

2k

)
and

(
a2n

2k

)
are equal.

By switching from a2n and a2n+1 to a2n+1 and a2n+1+1, respectively, the proof
is almost identical to that of the case with b = 0. Note that the only term that
requires some extra work is the second term

((
a2n+1+1
2(2k)

)
−
(
a2n+1

2k

))
Ck in the revised

version of (4.7). In fact, its 2-adic order is at least n (more precisely, after making
b1 more specific below, it is ν2

(
2k
(
a2n

2k

))
), as it follows by Theorem 3.6:

(
a2n+1 + 1

4k

)
−
(
a2n + 1

2k

)
=

=
a2n+1 + 1

a2n+1 + 1− 4k

(
a2n+1

4k

)
− a2n + 1

a2n + 1− 2k

(
a2n

2k

)

=
a2n+1 + 1

a2n+1 + 1− 4k

(
a2n

2k

)
(1 + b12

n+1)− a2n + 1

a2n + 1− 2k

(
a2n

2k

)

=

(
a2n+1 + 1

a2n+1 + 1− 4k
− a2n + 1

a2n + 1− 2k
+ b22

n+1

)(
a2n

2k

)

≡ 2k

(a2n+1 + 1− 4k)(a2n + 1− 2k)

(
a2n

2k

)
≡ a2n

(
a2n − 1

2k − 1

)

≡ 0 (mod 2n)

where bi, i = 1 and 2 are some numbers with ν2(bi) ≥ 0.

Apparently, cases with b ≥ 2 call for more refined methods. It also appears that
proving Conjecture 5.5 for p = 2 might require congruences modulo 2n+1 for both(
a2n+1

2(2k)

)
(C2k −Ck) in (4.7) and

(
a2n

2(1+2K)

)
C1+2K in (4.8). In fact, it helped proving

Theorem 5.6 (cf. Section 5 below).

Now we prove Theorem 4.1.

The proof of Theorem 4.1. For the 2-adic orders of the terms of M ′2q (n, 2q+1) with
1 ≤ q ≤ n, we get that

ν2

((
2n+1

2k

)
Ck

)
= n− ν2(k) + ν2(Ck) = n− q + d2(1 + 2q + 2q+1K)− 1

= n− q + 1 + d2(K) ≥ n− q + 1,

and the lower bound is met exactly if K = 0.
If q = 0 then we have ν2(M ′1(n, 2)) ≥ n by (4.3). In fact, as it was explained

above in the proof of Theorem 2.1 but now using n+1 rather than n and 0 ≤ k =
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1 + 2K ≤ 2n, i.e., 0 ≤ K ≤ 2n−1 − 1 in the summation resulting in M ′1(n, 2), the
minimum 2-adic value n is taken by n terms with K = 2r − 1, r = 0, 1, . . . , n − 1.
Therefore, for the 2-adic order of the sum, we get n exactly if n is odd.

We also have the following

Theorem 4.2. For integers n ≥ q ≥ 1, we have

ν2(M
′
2q,a(n, 2

q+1)) = n+ 1− q.

If q = 0 then ν2(M ′1,a(n, 2)) = n if n is odd, otherwise the 2-adic order is at least
n+ 1.

We omit the proof but mention that the case with q = 0 has already been
proven in the proof of Theorem 2.1 by using (4.6) while the case with 1 ≤ q ≤ n
can be taken care of similarly to the proof of Theorem 4.1.

5. More proofs, facts, and conjectures for Motzkin
numbers

Here we present the proofs of Theorems 2.2, 2.3, and 2.5, and four conjectures on
the order of the difference of certain Motzkin numbers including cases with any
prime p ≥ 3.

Proof of Theorem 2.2. We use a recurrence for the Motzkin numbers:

Mm =
3(m− 1)Mm−2 + (2m+ 1)Mm−1

m+ 2
,m ≥ 0, (5.1)

with m = a2n+1 + b and a2n + b. We take the difference and simplify it. It turns
out that the common denominator on the right hand side is odd when b is odd and
has 2-adic order 2ν2(b + 2) when b is even. In the numerator only the two terms
3(b−1)(b+2)

(
Ma2n+1+b−2−Ma2n+b−2

)
and (2b+1)(b+2)

(
Ma2n+1+b−1−Ma2n+b−1

)
,

and possibly two additive terms with 2-adic order at least n matter (due to the
possibility that either ν2(2n3Ma2n+1+b−1) = n or ν2(2n9Ma2n+1+b−2) = n or both).
The details are straightforward.

Proof of Theorem 2.3. We prove by induction on b for any fixed a ≥ 1 odd since it
suffices to consider only such values of a. The cases with b = 0 and 1 are covered by
Theorem 2.1. Assume that the statement is true for all values 0, 1, . . . , b− 2, b− 1.
We set K ′ = K +2ν2(b+2) and n0 = n0(a, b,K) = max{n0(a, b− 2,K ′), n0(a, b−
1,K ′)} and apply Theorem 2.2 which yields that ν2(Ma2n+1+b −Ma2n+b) ≥ K ′ −
2ν2(b+ 2) = K for n ≥ n0(a, b,K).

Further numerical evidence suggests a refinement of Corollary 2.4 on the rate
of growth (cf. Figure 1 for illustration).
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Conjecture 5.1. For all integers a ≥ 1 odd, b ≥ 0 and n sufficiently large, there ex-
ist two constants c1(a, b) and c2(a, b) so that n−c1(a, b) ≤ ν2(Ma2n+1+b−Ma2n+b) ≤
n + c2(a, b). In particular, we have c1(1, b) ≤ c log2 b with some constant c > 0,
c2(1, b) ≤ 1, and c1(1, 2q − 1) ≤ q and c2(1, 2q) ≤ −1 for q ≥ 2.

We also believe that following conjecture is true.

Conjecture 5.2. The sequences {ν2(M2n+1+b − M2n+b)}n≥n0
with b = 2q and

b = 2q + 1, q ≥ 1, become identical for some sufficiently large n0 = n0(q).

This means that, in this special case, equality (2.1) holds with a value which is
less than n in Theorem 2.2. By the way, this seems to happen in many cases when
we compare M2n+1+b −M2n+b with M2n+1+b+1 −M2n+b+1 with b even.
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agrees with a = 1, 5, 9, or 13,
and b = 0 for n ≥ 1, cf. The-
orem 2.1, Conjectures 5.3 and
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(b) p = 2, a = 1, b = 4 (which
agrees with a = 1, b = 5 for n ≥
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(d) p = 3, a = 2, b = 0, cf. Con-
jecture 5.5

Figure 1: The function νp(Mapn+1+b −Mapn+b), 0 ≤ n ≤ 12 (with
y = n and n− log2 b included for p = 2)

We have a “conditional proof” of Conjecture 5.2 under assumptions on c1(1, 2q−
1) and c2(1, 2

q). The inequalities of Conjecture 5.1 combined with equality (2.1)
would already prove Conjecture 5.2 for q ≥ 2. Indeed, in this case we have
ν2(M2n+1+2q+1 − M2n+2q+1) = ν2(M2n+1+2q − M2n+2q ) since ν2(M2n+1+2q−1 −
M2n+2q−1) + ν2(2

q + 1− 1) ≥ n− c1(1, 2q − 1) + q ≥ n > n− 1 ≥ n+ c2(1, 2
q) ≥

ν2(M2n+1+2q −M2n+2q ).
This argument would not work for q = 1, i.e., for b = 2 and 3. However, by

assuming the “right” patterns for b = 1 and 2, we can prove the case with b = 3.
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Indeed, Conjecture 5.3 and equality (2.1) immediately imply the statement of Con-
jecture 5.2 for n odd and b = 3. If n is even and b = 3 then a slight fine tuning
in the proof of Theorem 2.2 will suffice since ν2(M2n+1+2) = 1 for n ≥ 3 and
ν2(M2n+1+1) = 0 for n ≥ 1 (by Conjecture 5.3 and the facts that ν2(M18) = 1 and
ν2(M5) = 0).

We add that Theorem 2.1 states a similar fact about identical sequences with
b = 0 and 1 for a odd and n even.

Conjecture 5.3. If n ≥ 2, and b = 0 or 1 then

ν2(M2n+1+b −M2n+b) =

{
n− 1, if n is even,
n, if n is odd.

If n ≥ 3, and b = 2 then

ν2(M2n+1+b −M2n+b) =

{
n, if n is even,
n− 2, if n is odd.

Remark 5.4. The case with b = 0 or 1, and n ≥ 2 even has already been proven as
part of Theorem 2.1 (with a = 1). On the other hand, we obtained only a lower
bound if n is odd and otherwise, this case remains open. Therefore, the former case
can be left out from the conjecture and was included only for the sake of uniformity.

The case with a = 1 and b = 0 is further extended in

Conjecture 5.5. For p = 2, a ≡ 1 (mod 4), and n ≥ 2, we have

ν2(Ma2n+1 −Ma2n) = n, if n is odd.

For p = 3, (a, 3) = 1, and n ≥ n0 = n0(a) with some integer n0(a) ≥ 0, we have

ν3(Ma3n+1 −Ma3n) = n+ ν3

((
2a

a

))
.

For p ≥ 5 prime and n ≥ n0 = n0(p) with some integer n0(p) ≥ 0, we have

νp(Mpn+1 −Mpn) = n.

The panels (a) and (d) of Figure 1 demonstrate this conjecture in some cases
with 0 ≤ n ≤ 12. If p = 2, a ≥ 1 any odd, and n ≥ 2 even then the 2-adic order is
n− 1 as it has already been proven in Theorem 2.1.

The proof of Theorem 2.5. We give only a sketch of the proof.

We prove the case with b = 0 first and use the IIDCS

{ipq (mod pq+1)}i=1,2,...,p−1;q≥0

On divisibility properties of some differences of Motzkin numbers 133



which allows us to write every positive integer uniquely in the form of ipq +Kpq+1

with some integersK ≥ 0, i, and q. In a similar fashion to the proof of Theorem 2.1,
the difference of the appropriate Motzkin numbers can be rewritten as

Mpn+1 −Mpn =

pn/2∑

k=1

((
pn+1

p(2k)

)
Cpk −

(
pn

2k

)
Ck

)
+

p−1∑

i=1

( pn+1/2∑

k≡i mod p

(
pn+1

2k

)
Ck

)

=
n−1∑

q=0

p−1∑

i=1

( ∑

k=ipq+Kpq+1

0≤K≤ pn−q−2i
2p

((
pn+1

p(2k)

)
Cpk −

(
pn

2k

)
Ck

))
(5.2)

+

p−1∑

i=1

( pn+1/2∑

k≡i mod p

(
pn+1

2k

)
Ck

)
(5.3)

after removing the superfluous term with k = 0 in the first sum. The first term
(5.2) can be rewritten as

n−1∑

q=0

p−1∑

i=1

∑

k=ipq+Kpq+1

0≤K≤ pn−q−2i
2p

((
pn+1

p(2k)

)
Cpk −

(
pn

2k

)
Ck

)

=
n−1∑

q=0

p−1∑

i=1

∑

k=ipq+Kpq+1

0≤K≤ pn−q−2i
2p

((
pn+1

p(2k)

)
(Cpk − Ck) +

((
pn+1

p(2k)

)
−
(
pn

2k

))
Ck

)
.

For the p-adic order of every term in the summation, we obtain that νp(
(
pn+1

p(2k)

)
(Cpk−

Ck)) ≥ n − q + q = n by Theorem 3.8, and νp(
((
pn+1

p(2k)

)
−
(
pn

2k

))
Ck) ≥ n + 2 by

Theorem 3.6 and Remark 3.7.
Clearly, the p-adic order of every term in (5.3) is at least n+ 1.

Unfortunately, the above treatment cannot be easily extended to higher values
of b, however, recurrence (5.1) comes to the rescue. Indeed, if p = 3 and b = 1, or
p ≥ 5 and 1 ≤ b ≤ p− 3 then we use (5.1) with m = pn+1 + b and pn + b, and by
easily adapting the proof of Theorem 2.2, we prove the statement step by step for
b = 1, then for b = 2, ..., and finally for b = p − 3. In the initial case of b = 1,
the multiplying factor m − 1 of Mm−2 in (5.1) is divisible by pn in both settings
of m while the terms with Mm−1 are covered by the case of b = 0. Starting with
b = 2, we can use the already proven statement with b − 1 and b − 2. This proof
cannot be directly extended beyond b = p − 3 since the common denominator in
the recurrence has p-adic order 2νp(b+ 2), and this is the reason for the potential
drop in the 3-adic order when b = 1.

Note that we have recently succeeded in proving the following extensions and
improvements to Conjecture 5.5 and Theorem 2.5 in [8], by applying congruential
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recurrences and refining the techniques used in this paper. The last part of the
first theorem confirms Conjecture 5.5 for p = 2 and a = 1 given that n is odd. The
case with n even has been settled by Theorem 2.1.

Theorem 5.6. For p = 2, we have that

M(2n+1)−M(2n) =

{
3 · 2n−1 mod 2n+1, if n ≥ 4 and even,
2n mod 2n+1, if n ≥ 3 and odd.

For n ≥ 2, we have

ν2(M(2n+1)−M(2n)) =

{
n− 1, if n is even,
n, if n is odd.

Theorem 5.7. For any prime p ≥ 3 and integer n ≥ 2, we have that νp(M(pn+1)−
M(pn)) = n. In particular, with the Legendre symbol (p3 ), we have

M(pn+1)−M(pn) ≡
{
p−1
2 pn mod pn+1, if (p3 ) ≡ 0 or 1 mod p,(
p+1
4 + (−1)n p−34

)
pn mod pn+1, if (p3 ) ≡ −1 mod p.

Acknowledgements. The author wishes to thank Gregory P. Tollisen for his
helpful comments.
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Abstract

For a positive real number x let the Fibonacci distance ‖x‖F be the dis-
tance from x to the closest Fibonacci number. Here, we show that for integers
a > b > c ≥ 1, we have the inequality

max{‖ab‖F , ‖ac‖F , ‖bc‖F } > exp(0.034
√

log a).
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1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn for all n ≥ 0. For a positive real number x we put

‖x‖F = min{|x− Fn| : n ≥ 0}.
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In [4], it was shown that there are no positive integers a > b > c such that
ab + 1 = F`, ac + 1 = Fm and bc + 1 = Fn for some positive integers `,m, n.
Note that if such a triple would exist, then max{‖ab‖F , ‖ac‖F , ‖bc‖F } ≤ 1. This
suggests investigating the more general problem of the triples of positive integers
a > b > c in which all three distances ‖ab‖F , ‖ac‖F and ‖bc‖F are small. We have
the following result.

Theorem 1.1. If a > b > c ≥ 1 are integers then

max{‖ab‖F , ‖ac‖F , ‖bc‖F } > exp(0.034
√
log a).

We have the following numerical corollary.

Corollary 1.2. If a > b > c ≥ 1 are positive integers such that

max{‖ab‖F , ‖ac‖F , ‖bc‖F } ≤ 2,

then a ≤ exp(415.62). In fact, the solution with maximal a of the above inequality
is the following:

(a, b, c) = (235, 11, 1).

2. The proof of Theorem 1.1

2.1. Preliminary results

We put (α, β) = ((1 +
√
5)/2, (1−

√
5)/2) and recall the Binet formula

Fk =
αk − βk√

5
valid for all k ≥ 0. (2.1)

We write (Lk)k≥0 for the Lucas companion of the Fibonacci sequence (Fk)k≥0 given
by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. Its Binet formula is
Lk = αk + βk for all k ≥ 0. Furthermore, the inequalities

αk−2 ≤ Fk ≤ αk−1 and αk−1 ≤ Lk ≤ αk+1 hold for all k ≥ 1.
(2.2)

We put
M = max{‖ab‖F , ‖ac‖F , ‖bc‖F }. (2.3)

Lemma 2.1. We have M ≥ 1.

Proof. Assume that M = 0. Then

6 ≤ ab = Fn, 3 ≤ ac = Fm, 2 ≤ bc = F`

for some positive integers n > m > ` ≥ 3. If n > 12, then, by Carmichael’s
Primitive Divisor Theorem (see [2]), there exists a prime p | Fn which does not
divide Fk for any 1 ≤ k < n. In particular, p cannot divide FmF` = Fnc

2, which
is impossible. Thus, n ≤ 12. A case by case analysis shows that there is no
solution.
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We put
ab+ u = Fn, ac+ v = Fm, bc+ w = F`, (2.4)

where |u| = ‖ab‖F , |v| = ‖ac‖F and |w| = ‖bc‖F . In the above, `, m, n are positive
integers and since F1 = F2, we may assume that min{`,m, n} ≥ 2. Furthermore,

max{|u|, |v|, |w|} =M.

We treat first the case when a ≤ 4M .

Lemma 2.2. If a ≤ 4M , then

max{`,m, n} ≤ 5 log(3M).

Proof. If a ≤ 4M , then

αn−2 ≤ Fn = ab+ u ≤ 4M(4M − 1) +M < 16M2,

so

n ≤ 2 +
2 log(4M)

logα
< 2 + 2.1 log(4M)

= 2 + 2.1 log(4/3) + 2.1 log(3M)

< 2.7 + 2.1 log(3M) < 5 log(3M).

A similar argument works for ` and m.

From now on, we assume that a > 4M .

Lemma 2.3. Assume that a > 4M . Then

(i) n > max{`,m};

(ii) a >
√
Fn;

(iii) n ≥ 3.

Proof. (i) Note that

Fn = ab+ u ≥ ab−M > ac+M ≥ ac+ v = Fm,

where the middle inequality ab −M > ac +M holds because it is equivalent to
a(b−c) > 2M , which holds because a > 4M and b > c, so b−c ≥ 1. Hence, n > m.
In the same way,

Fn = ab+ u ≥ ab−M > bc+M ≥ bc+ w = F`.

The middle inequality is ab−M > bc+M , which is equivalent to b(a− c) > 2M .
If a − c ≥ 2M , then indeed b(a − c) > 2M because b > 1. If a − c < 2M , it
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follows that b > c > a− 2M > 2M (because a > 4M), and a− c > 1, so again the
inequality b(a− c) > 2M holds. This implies (i).

(ii) Here, by the previous argument, we have

a2 > ab+M ≥ ab+ u = Fn.

This implies (ii).
(iii) is a consequence of (i) and of the fact that min{`,m} ≥ 2.

Lemma 2.4. When a > 4M , it is not possible to have u = v = 0.

Proof. If u = v = 0, then, since n > m by (i) of Lemma 2.3, we have

a ≤ gcd(ab, ac) = gcd(Fn, Fm) = Fgcd(n,m) = Fn/d ≤ αn/d−1,

where d > 1 is some divisor of n and where in the above we used the second
inequality in (2.2). Hence, by (ii) of Lemma 2.3 and inequality (2.2), we get

αn/2−1 ≤
√
Fn < a ≤ αn/d−1 ≤ αn/2−1,

a contradiction.

The following lemma follows immediately by the Pigeon–Hole Principle and is
well–known (see Lemma 1 in [3], for example).

Lemma 2.5. Let X ≥ 3 be a real number. Let a and b be nonnegative integers with
max{a, b} ≤ X. Then there exist integers λ, ν not both zero with max{|λ|, |ν|} ≤√
X such that |aλ+ bν| ≤ 3

√
X.

2.2. Some biquadratic numbers
We write

Fn − u =
1√
5
(αn − βn)− u =

1√
5

(
αn − (−α−1)n

)
− u

=
α−n√

5

(
α2n −

√
5uαn − (−1)n

)

=
α−n√

5
(αn − u1,n) (αn − u2,n) . (2.5)

In the above,

ui,n =

√
5u+ (−1)i

√
5u2 + 4(−1)n

2
, i ∈ {1, 2}. (2.6)

In the same way,

Fm − v =
α−m√

5
(αm − v1,m) (αm − v2,m) , (2.7)
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where

vj,m =

√
5v + (−1)j

√
5v2 + 4(−1)m

2
, j ∈ {1, 2}. (2.8)

Observe that u2,n = (−1)n+1u−11,n and v2,m = (−1)m+1v−11,m. Furthermore, both
u1,n, u2,n are roots of the polynomial

fu,n(X) = (X2 − (−1)n)2 − 5u2X2 = X4 − (5u2 + 2(−1)n)X2 + 1.

Similarly, both v1,m and v2,m are roots of the polynomial

fv,m(X) = (X2 − (−1)m)2 − 5v2X2 = X4 − (5v2 + 2(−1)m)X2 + 1.

Put K = Q(
√
5, u1,n, v1,m). Then the degree d = [K : Q] of K over Q is a divisor

of 32. Further, K contains α, u1,n, u2,n, v1,m, v2,m and all their conjugates. It
follows easily that all conjugates u(s)i,n for s = 1, . . . , d satisfy

u
(s)
i,n =

1

2

(
±
√
5u±

√
5u2 + 4(−1)n

)
, i = 1, 2, s = 1, . . . , d,

therefore the inequality

|u(s)i,n| ≤
1

2

(√
5|u|+

√
5u2 + 4

)
≤ 1

2

(√
5M +

√
5M2 + 4

)
< 3M (2.9)

holds for i = 1, 2 and s = 1, . . . , d. Similarly the inequality

|v(s)j,m| < 3M (2.10)

holds for j = 1, 2 and s = 1, . . . , d.

2.3. The first upper bound on n

The key step of the proof is writing

a | gcd(ab, ac) = gcd(Fn − u, Fm − v),

and passing in the above relation at the level of principal ideals in OK. Using
relations (2.5) and (2.7), we can write in OK:

aOK | gcd ((αn − u1,n) (αn − u2,n)OK, (α
m − v1,m) (αm − v2,m)OK)

|
∏

1≤i≤2
1≤j≤2

gcd ((αn − ui,n)OK, (α
m − vj,m)OK) . (2.11)

Passing to the norms in K, we get

ad = NK/Q (aOK) ≤
∏

1≤i≤2
1≤j≤2

NK/Q (gcd ((αn − ui,n)OK, (α
m − vj,m)OK)) . (2.12)
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For i, j ∈ {1, 2} put

Ii,n,j,m = gcd ((αn − ui,n)OK, (α
m − vj,m)OK) . (2.13)

In order to bound the norm of Ii,n,j,m in K, we use the following lemma.

Lemma 2.6. When a > 4M , there exist coprime integers λ, ν satisfying
max{|λ|, |ν|} ≤ √n such that |nλ+mν| ≤ 3

√
n and

αnλ+mν − uλi,nvνj,m ∈ Ii,n,j,m. (2.14)

Proof. The existence of a pair of integers λ, ν not both zero such that the inequal-
ities max{|λ|, |ν|} ≤ √n and |nλ +mν| ≤ 3

√
n hold follows from Lemma 2.6 for

(a, b,X) = (n,m,X). The condition X ≥ 3 is fulfilled for our case by (iii) of
Lemma 2.3. The fact that λ and ν can be chosen to be in fact coprime follows by
replacing the pair (λ, ν) by (λ/ gcd(λ, ν), ν/ gcd(λ, ν)). Finally, observing that

αn ≡ ui,n (mod Ii,n,j,m) and αm ≡ vj,m (mod Ii,n,j,m),

exponentiating the first of the above congruences to power λ, the second to power
ν, and multiplying the resulting congruences, we get containment (2.14).

In what follows, in this section we make the following assumption:

Assumption 2.7. Assume that that pair (λ, ν) from the conclusion of Lemma 2.6
satisfies

αnλ+mν − uλi,nvνj,m 6= 0 for all i, j ∈ {1, 2}. (2.15)

The main result of this section is the following.

Lemma 2.8. Under the Assumption 2.7, when a > 4M , we have

a ≤ 24(3M)8
√
n. (2.16)

Proof. By congruence (2.14), we have

Ii,n,j,m |
(
αnλ+mν − uλi,nvνj,m

)
OK,

and taking norms in K we get

NK/Q(Ii,n,j,m) | NK/Q
(
(αnλ+mν − uλi,nvνj,m)OK

)
= NK/Q(α

nλ+mν − uλi,nvνj,m).

Since the number appearing on the right above is not zero by Assumption 2.7, we
get

NK/Q(Ii,n,j,m) ≤ NK/Q
(
αnλ+mν − uλi,nvνj,m

)
,

therefore

NK/Q(Ii,n,j,m) ≤
d∏

s=1

∣∣∣(α(s))nλ+mν − (u
(s)
i,n)

λ(v
(s)
j,m)ν

∣∣∣ .
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Inequalities (2.9) and (2.10) together with the inequalities for λ and ν from the
statement of Lemma 2.6 and the fact that α(s) ∈ {α, β} imply that

∣∣∣(α(s))nλ+mν − (u
(s)
i,n)

λ(v
(s)
j,m)ν

∣∣∣ ≤ |α|3
√
n + (3M)2

√
n < 2(3M)2

√
n,

for s = 1, . . . , d, where for the last inequality we used (3M)2 ≥ 32 > α3. Hence,

NK/Q(Ii,n,j,m) ≤ 2d(3M)2d
√
n,

Thus, by inequality (2.12), we get

ad ≤
∏

1≤i≤2
1≤j≤2

NK/Q(Ii,n,j,m) ≤ 24d(3M)8d
√
n,

giving
a ≤ 24(3M)8

√
n,

which is what we wanted to prove.

Lemma 2.8 has the following consequence.

Lemma 2.9. Under the Assumption 2.7, when a > 4M , we have

n < (41 log(3M))2. (2.17)

Proof. Combining the inequality (2.16) of Lemma 2.8 for a with (ii) of Lemma 2.3
and inequality (2.2), we get

αn/2−1 ≤
√
Fn < a ≤ 24(3M)8

√
n.

It gives

n

2
− 1 <

4 log 2

logα
+

(
8 log(3M)

logα

)√
n < 5.8 + 16.7 log(3M)

√
n,

or
n <

(
13.6

log(3M)
√
n
+ 33.4

)
log(3M)

√
n < (41 logM)

√
n,

because n ≥ 3. So
n < (41 log(3M))2,

which is what we wanted to prove.

From now on, we assume that

n ≥ (41 log(3M))2. (2.18)

Lemma 2.2 tells us that if this the case, then also the inequality a > 4M holds. In
particular, for such values of n Assumption 2.7 cannot hold. This is the case we
study next.
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2.4. General remarks when Assumption 2.7 does not hold
From now on, we study the cases when Assumption 2.7 does not hold. In this case,
there exist i0, j0 ∈ {1, 2} such that

αnλ+mν = uλi0,nv
ν
j0,m. (2.19)

In particular
(α4)nλ+mν = (u4i0,n)

λ(v4j0,m)ν . (2.20)

Observe that if u = 0, then

ui,n = (−1)i
√

(−1)n, i ∈ {1, 2},

therefore u4i0,4 = 1. Similarly, if v = 0, then v4j0,m = 1. If u 6= 0, then write

5u2 + 4(−1)n = du,ny
2
u,n,

where du,n is a positive square free integer and yu,n is some positive integer. Ob-
serve that du,n is coprime to 5 so 5du,n is square free. Observe further that 5u2

and du,ny2u,n have the same parity and

u2i,n =
1

2

(
5u2 + du,ny

2
u,n

2
+ (−1)i

√
5du,nuyu,n

)
∈ Q(

√
5du,n) = Ku,n

for i = 1, 2. Moreover, u21,n is an algebraic integer and a unit in the quadratic field
Ku,n the inverse of which is u22,n. Similarly, if v 6= 0, we write

5v2 + 4(−1)m = dv,my
2
v,m,

where dv,m is some positive square free integer and yv,m is some positive integer.
As in the case of u2i,n, we have

v2j,m ∈ Q(
√

5dv,m) = Kv,m

is a unit in the quadratic field Kv,m. We continue with the following result.

Lemma 2.10. In case when uv 6= 0, and inequality (2.18) holds, it is not possible
that Q(

√
5), Q(

√
5du,n) and Q(

√
5dv,m) are three distinct quadratic fields.

Proof. Assume that the three quadratic fields Q(
√
5), Ku,n and Kv,m were distinct.

Then du,n and dv,m are distinct square free integers larger than 1 which are coprime
to 5. By Galois theory, there is an automorphism of Q(

√
5,
√

5du,n,
√

5dv,m), let’s
call it σ, such that σ(

√
5) = −

√
5, σ(

√
du,n) = −

√
du,n and σ(

√
dv,m) = −

√
dv,m.

Observe that σ leaves both
√
5du,n and

√
5dv,m invariant, therefore σ(u2i,n) = u2i,n

and σ(v2j,m) = v2j,m for i, j ∈ {1, 2}, while σ(α) = β. Applying σ to the equation
(2.20), we get

(β4)λm+νn = (u4i0,n)
λ(v4j0,m)ν . (2.21)
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Multiplying relations (2.20) and (2.21), we get

1 = (u2i0,n)
4λ(v2j0,m)4ν or (u2i0,n)

4λ = (v2j0,m)−4ν .

Thus, u4λi0,n is in Q(
√

5du,n) ∩ Q(
√

5dv,m) = Q. Since u2i0,n is in fact a positive
unit ditinct from 1 in Ku,n, we get that λ = 0, and then also ν = 0, which is not
allowed.

We now put
U = Q(

√
5, u41,n, v

4
1,m).

If u = 0, then u41,n = 1, so that U has degree 2 or 4 over Q. The same holds when
v = 0. Finally, when uv 6= 0, then u41,n ∈ Q(

√
5du,n) and v41,m ∈ Q(

√
5dv,m), so

U ⊆ Q(
√
5,
√

5du,n,
√
5dv,m).

Lemma 2.9 implies that the field appearing in the right hand side of the above
containment cannot have degree 8 over Q. Hence, U must have degree 2 or 4 over
Q in case uv 6= 0 as well.

We shall refer to the case when [U : Q] = 4 as the rank two case, and to the
case when [U : Q] = 2 as the rank one case.

2.5. The rank two case
We start with the following result.

Lemma 2.11. Assume that inequality (2.18) holds. Then in the rank two case, we
have uv 6= 0.

Proof. Assume, for example, that u = 0. Then, since we are in the rank two case,
it follows that dv,m > 1. Now equation (2.20) implies that

(α4)nλn+mν = (u4i0,n)
λ(v4j0,m)ν = (v4j0,m)ν .

This shows that (v4j0,m)ν ∈ Q(
√
5) ∩Q(

√
5dv,m) = Q. Since v2j0,m is in fact a unit

of infinite order in Kv,m, we get that ν = 0, which implies that also nλ+mν = 0,
therefore nλ = 0. Thus, λ = ν = 0, which is not allowed. The same contradiction
is obtained when v = 0.

Lemma 2.12. Assume that inequality (2.18) holds. Then in the rank two case, we
have du,n = dv,m > 1.

Proof. If this were not so, then we would either have du,n = 1 and dv,m > 1
or du,n > 1 and dv,m = 1. Assume say that du,n = 1 and dv,m > 1. Then
u4i0,n ∈ Q(

√
5). Relation (2.20) now shows that

(α4)nλ+mν(u−4i0,n)
λ = (v4j0,m)ν .
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The above relation shows that (v4j0,m)ν ∈ Q(
√
5) ∩ Q(

√
5dv,m) = Q. This implies

easily that ν = 0. Now relation (2.20) shows that (α4)nλ = (u4i0,n)
nλ. Since λ

and ν = 0 are coprime, we get that λ = 1, and so α4n = u4i0,n. This shows that
αn = ±ui0,n. In particular,

αn = |ui0,n| < 3M

(see inequality (2.9)), so that

n ≤ log(3M)

logα
< 3 log(3M),

which contradicts inequality (2.18).

Lemma 2.13. Assume that inequality (2.18) holds. Then we cannot be in the rank
two case.

Proof. Assume that we are in the rank two case. By Lemma 2.12, we have du,n =
dv,m > 1. Put D = du,n. We then have the following relations

5u2 −Dy2u,n = 4(−1)n+1;

5v2 −Dy2v,m = 4(−1)m+1.

By a result of Nagell (see Theorem 3 in [5]), we have n ≡ m (mod 2). Further, put
ε = (−1)n+1 and let (X,Y ) = (a, b) be the minimal solution in positive integers of
the Diophantine equation

5X2 −DY 2 = 4ε. (2.22)

Then all other positive integer solutions (X,Y ) of the above equation (2.22) are of
the form √

5X +
√
DY

2
=

(√
5a+

√
Db

2

)k

for some odd positive integer k. In particular, putting ζ = (
√
5a +

√
Db)/2, we

then have
√
5|u|+

√
Dyu,n

2
= ζku and

√
5|v|+

√
Dyv,m

2
= ζkv

for some odd positive integers ku and kv. We now see invoking (2.6) that

ui,n = sign(u)

(√
5|u|+ (−1)isign(u)

√
Dyu,n

2

)
= sign(u)ζηi,uku ,

where ηi,u = 1 if sign(u) = (−1)i and ηi,u = −1 if sign(u) = (−1)i+1. Similarly,

vj,m = sign(v)ζηj,vkv
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where ηj,v ∈ {±1}. Going back to relation (2.19), we get

αnλ+mν = sign(u)λsign(v)νζηi0,uλku+ηj0,vνkv .

Since α and ζ are multiplicatively independent, we get that

nλ+mν = 0, sign(u)λsign(v)ν = 1, ηi0,uλku + ηj0,vνkv = 0.

From the left relation above we get that λ and ν have opposite signs. From the
right relation above, we get that λ/ν = −ηj0,vηi0,ukv/ku, and since λ and ν are
coprime, we get that they are both odd and that ηi0,u = ηj0,v. Finally, since λ
and ν are both odd, from the middle relation above we get that sign(u) = sign(v).
Put e = gcd(ku, kv). Writing ku = e`u, kv = e`v, and putting δ = sign(u) and
η = ηi0,u, we get that

ui0,n = δ(ζηe)`u = (δζηe)`u and vj0,m = δ(ζηe)`v = (δζηe)`v .

Writing ζ1 = δζηe, we get that

ui0,n = ζ`u1 and vj0,m = ζ`v1 .

Further, `u/`v = ku/kv = −ν/λ = n/m, so that if we put k = gcd(m,n), then
n = `uk and m = `vk. Since u1,nu2,n = ε = v1,mv2,m, it follows that if i1 and j1
are such that {i0, i1} = {j0, j1} = {1, 2}, then

ui1,n = εζ−`u1 = ζ`u2 and vj1,m = εζ−`v1 = ζ`v2 ,

where ζ2 = εζ−11 . Thus,

αn − ui0,n = (αk)`u − ζ`u1 ;

αn − ui1,n = (αk)`u − ζ`u2 ;

αm − vj0,m = (αk)`v − ζ`v1 ;

αm − vj1,m = (αk)`v − ζ`v2 .

Since `u and `v are coprime, it follows that

Ii0,n,j0,m = gcd
((

(αk)`u − ζ`u1
)
OK,

(
(αk)`v − ζ`v1

)
OK
)
= (αk − ζ1)OK. (2.23)

Similarly,

Ii1,n,j1,m = gcd
((

(αk)`u − ζ`u2
)
OK,

(
(αk)`v − ζ`v2

)
OK
)
= (αk − ζ2)OK. (2.24)

As for Ii0,n,j1,m, we have

(αk)`u ≡ ζ`u1 (mod Ii0,n,j1,m) and (αk)`v ≡ ζ`v2 (mod Ii0,n,j1,m).
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Exponentiating the first congruence above to `v and the second to `u, and com-
paring the resulting congruences, we get

ζ`u`v1 ≡ ζ`u`v2 (mod Ii0,n,j1,m)

so that
Ii0,n,j1,m | (ζ2`u`v1 − ε)OK, (2.25)

and the principal ideal on the right above is not zero. Similarly,

Ii1,n,j0,m | (ζ2`u`v2 − ε)OK. (2.26)

Hence, divisibility relation (2.11) together with relations (2.23)–(2.26) now implies

a | (αk − ζ1)(αk − ζ2)(ζ2`u`v1 − ε)(ζ2`u`v2 − ε).

Taking norms in K, we get that

ad ≤ |NK/Q(α
k − ζ1)||NK/Q(α

k − ζ2)||NK/Q(ζ
2`u`v
1 − ε)||NK/Q(ζ

2`u`v
2 − ε)|. (2.27)

Since
u
(s)
i0,n

= (ζ
(s)
1 )`u

and `u ≥ 1, it follows, by (2.9), that

|ζ(s)1 | < 3M.

Similarly, |ζ(s)2 | < 3M . Furthermore,

ζ ≥
√
5 +
√
3

2
> α.

Since
ζe`u = |ui,n| for some i ∈ {1, 2},

we get that

`u ≤ e`u ≤
log(3M)

logα
< 2.1 log(3M).

Similarly, `v ≤ 2.1 log(3M). It now follows that

|(α(s))k − ζ(s)1 | ≤ αk + 3M ≤ 6Mαk for all s = 1, . . . , d.

Similarly,

|(α(s))k − ζ(s)2 | ≤ αk + 3M ≤ 6Mαk for all s = 1, . . . , d.

Finally,

|(ζ(s)1 )2`u`v − ε| ≤ (|(ζ(s)1 )`u |)2`v + 1 = |u(s)i0,n|
2`v + 1 < 2(3M)4.2 log(3M),
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for all s = 1, . . . , d and a similar inequality holds with ζ1 replaced by ζ2. We thus
get that

|NK/Q(α
k − ζi)| < (6M)dαdk, |NK/Q(ζ

2`u`v
i − ε)| < 2d(3M)4.2d log(3M)

for i = 1, 2, which together with (2.27) gives

ad < (6M)2dα2dk22d(3M)8.4d log(3M),

or
a < 16(3M)2+8.4 log(3M)α2k. (2.28)

Observe that k = n/`u = m/`v, and n > m (by (i) of Lemma 2.3) and `u > `v are
odd and coprime. Thus, `u ≥ 3. If `u = 3, then `v = 1, so m = n/3. If this is the
case, then

a ≤ ac = Fm − v ≤ Fm +M < Fm + a/2

(because a > 4M), therefore a < 2Fm = 2Fn/3. With (ii) of Lemma 2.3 and
inequality (2.2), we get

αn/2−1 <
√
Fn < a < 2Fn/3 < 2αn/3−1,

therefore
n <

6 log 2

logα
, so n ≤ 4,

a contradiction. Thus, we conclude that it is not possible that `u = 3. Thus,
`u ≥ 5. Hence, k ≤ n/5. Inequality (2.28) together with (ii) of Lemma 2.3 and
(2.2) give

αn/2−1 <
√
Fn < a < 16(3M)2+8.4 log(3M)α2n/5.

Then

n

10
< 1 +

log 16

logα
+

(
2 + 8.4 log(3M)

logα

)
log(3M)

< 7.8 + 2.1(2 + 8.4 log(3M)) log(3M)

< 7.8 + 22(log(3M))2,

so
n < 78 + 220(log(3M))2 < 300(log(3M))2,

which contradicts inequality (2.18).

In particular, if inequality (2.18) holds, then we are in the rank one case.
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2.6. The rank one case
Lemma 2.14. Assume that (2.18) holds. We have u = ±Ft and v = ±Fs for
some nonnegative integers t, s which are either zero or satisfy n ≡ t (mod 2) and
m ≡ s (mod 2).

Proof. Since we are in the rank one case, it follows that u2i0,n ∈ Q(
√
5). So, if

u 6= 0, it follows that du,n = 1, so that 5u2 + 4(−1)n = y2u,n. In particular,
y2u,n−5u2 = 4(−1)n. It is well–known that if (X,Y ) are positive integers such that
Y 2 − 5X2 = 4(−1)k for some integer k, then X = Ft for some nonnegative integer
t ≡ k (mod 2) (and the value of Y is Lk). In particular, |u| = Ft for some integer
t which is congruent to n modulo 2. The statement about v can be proved in the
same way.

We now have

ab = Fn − u = Fn − sign(u)Ft = F(n−t1)/2L(n+t1)/2,

where t1 = εu,t,nt and εu,t,n ∈ {±1} depends on the sign of u as well as on the
residue classes of n and t modulo 4. Similarly, we have

ac = Fm − v = Fm − sign(v)Fs = F(m−s1)/2L(m+s1)/2,

and s1 = εv,m,ss for some εv,m,s ∈ {±1}. Observe also that either t = 0, or t ≥ 1
and

αt−2 ≤ Ft ≤M,

so that
t ≤ 2 +

logM

logα
< 2 + 2.1 logM < 2.1 log(3M). (2.29)

The same inequality holds with t replaced by |t1|, s, |s1|. Note also that

n± t1 ≥ n− t > (41 log(3M))2 − 2.1 log(3M) > 0.

Lemma 2.15. One of the following holds:

(i) n− t1 = m− s1;

(ii) n+ t1 = m+ s1;

(iii) s = 0, m = (n− t1)/2 and b = L(n+t1)/2c.

Proof. As a warm up, we start with the case when t = 0. Then

a ≤ gcd(ab, ac) = gcd(Fn, F(m−s1)/2L(m+s1)/2)

≤ gcd(Fn, F(m−s1)/2) gcd(Fn, L(m+s1)/2)

≤ Fgcd(n,(m−s1)/2)Lgcd(n,(m+s1)/2).
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In the above argument, we used the fact that gcd(Fp, Fq) = Fgcd(p,q) and that
gcd(Fp, Lq) ≤ Lgcd(p,q) for positive integers p and q. Put

gcd(n, (m− t1)/2) = n/d1 and gcd(n, (m+ t1)/2) = n/d2.

If d1 = 1, then n | (m− t1)/2, therefore n− t1 > m− t1 ≥ 2n, or

n ≤ −t1 ≤ t < 2.1 log(3M),

contradicting inequality (2.18). A similar inequality holds if d2 = 1. So, from now
on, we assume that min{d1, d2} ≥ 2. If min{d1, d2} ≥ 10, we then have

αn/2−1 <
√
Fn < a ≤ Fn/d1Ln/d2 ≤ αn/d1+n/d2 ≤ αn/5,

giving n/2− 1 < n/5, so n ≤ 3, a contradiction.
So, we may assume that min{d1, d2} ≤ 9. Assume that max{d1, d2} ≤ 9. Write

n/d1 = (m− s1)/d3 and n/d2 = (m+ s1)/d4. If d3 ≥ d1 + 1, we then get

m− s1 =
d3n

d1
≥ n+

n

d1
> m+

n

d1
,

so
n < −d1s1 ≤ d1s ≤ 9× 2.1 log(3M) < 20 log(3M),

contradicting inequality (2.18). Thus, max{d1, d2} ≥ 10. If min{d1, d2} ≥ 3, we
then get that

αn/2−1 <
√
Fn < a ≤ Fn/d1Ln/d2 ≤ αn/d1+n/d2 ≤ αn/3+n/10,

giving n < 15, which is impossible. Thus, min{d1, d2} = 2 giving

either n/2 = gcd(n, (m− s1)/2), or n/s = gcd(n, (m+ s1)/2).

Thus, either n/2 = (m− s1)/2d3, or n/2 = (m+ s1)/2d4 for some divisors d3 or d4
of (m− s1)/2 and (m+ s1)/2, respectively. If we are in the first case and d3 > 1,
then

m− s1 = d3n ≥ 2n > m+ n

giving n < −s1 ≤ s < 2.1 log(3M), a contradiction. The same inequality is ob-
tained if n/2 = (m+ s1)/2d4 for some divisor d4 > 1 of (m+ s1)/2. The last case
is n/2 = (m− s1)/2 (or n = m− s1), or n/2 = (m+ s1)/2 (or n = m+ s1), which
is (ii) for the particular case when t = 0.

Assume next that st 6= 0. In this case,

a ≤ gcd(ab, ac) = gcd(F(n−t1)/2L(n+t1)/2, F(m−s1)/2L(m+s1)/2)

≤ gcd(F(n−t1)/2, F(m−s1)/2) gcd(F(n−t1)/2, L(m+s1)/2)

× gcd(L(n+t1)/2, F(m−s1)/2) gcd(L(n+t1)/2, L(m+s1)/2)

≤ Fgcd((n−t1)/2,(m−s1)/2)Lgcd((n−t1)/2,(m+s1)/2)
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× Lgcd((n+t1)/2,(m−s1)/2)Lgcd((n+t1)/2,(m+s1)/2). (2.30)

Write

gcd

(
n− t1

2
,
m− s1

2

)
=
n− t1
2d1

;

gcd

(
n− t1

2
,
m+ s1

2

)
=
n− t1
2d2

;

gcd

(
n+ t1

2
,
m− s1

2

)
=
n+ t1
2d3

;

gcd

(
n+ t1

2
,
m+ s1

2

)
=
n+ t1
2d4

for some positive integers d1, d2, d3, d4. Assume thatmin{d1, d2, d3, d4} ≥ 10. Then

αn/2−1 <
√
Fn < a ≤ F(n−t1)/2d1L(n−t1)/2d2L(n+t1)/2d3L(n+t1)/2d4

< α(n−t1)/2d1+(n−t1)/2d2+(n+t1)/2d3+(n+t1)/2d4+2 ≤ α(n+t)/5+2,

giving

n <
10

3

(
3 +

t

5

)
< 10 +

4.2

3
log(3M) < 12 log(3M),

contradicting inequality (2.18). Suppose min{d1, d2, d3, d4} ≤ 9. Assume that
there exist i 6= j such that both di ≤ 9 and dj ≤ 9. Just to fix ideas, we assume
that i = 1, j = 3. Put

n− t1
2d1

=
m− s1
2d5

, and
n+ t1
2d3

=
m− s1
2d7

. (2.31)

Assume say that d5 ≥ d1 + 1. Then

m− s1 =
d5(n− t1)

d1
≥ n− t1 +

n− t1
d1

> m− t1 +
n− t1
d1

,

so
n ≤ t1 + d1(t1 − s1) ≤ t+ 9(s+ t) < 20max{s, t} < 42 log(3M),

contradicting inequality (2.18). A similar contradiction is obtained if one supposes
that d7 ≥ d3 + 1. Thus, we may assume that d5 ≤ d1 ≤ 9 and d7 ≤ d3 ≤ 9.
Equations (2.31) give

d5n− d1m = d5t1 − d1s1;
d7n− d3m = −d7t1 − d3s1.

One checks that the above system has a unique solution (m,n), and the same is
true for the other values of i 6= j in {1, 2, 3, 4}, not only for (i, j) = (1, 3). We solve
the system by Cramer’s rule getting

∣∣∣∣
d5 −d1
d7 −d3

∣∣∣∣n =

∣∣∣∣
d5t1 − d1s1 −d1
−d7t1 − d3s1 −d3

∣∣∣∣ .
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Thus, using Hadamard’s inequality,

n ≤
∣∣∣∣
d5t1 − d1s1 −d1
−d7t1 − d3s1 −d3

∣∣∣∣

≤
√
d21 + d23 ×

√
(d5t1 − d1s1)2 + (d7t1 + d3s1)2

≤ 9
√
2× 9× 2×

√
2max{s, t} < 700 log(3M),

which contradicts inequality (2.18). So, we may assume that there exists at most
one i ∈ {1, 2, 3, 4} such that di ≤ 9. If di ≥ 2, then

αn/2−1 <
√
Fn < a ≤ F(n−t1)/2d1L(n−t1)/2d2L(n+t1)/2d3L(n+t1)/2d4

≤ α(n−t1)/2d1+(n−t1)/2d2+(n+t1)/2d3+(n+t1)/2d4+2

≤ α(n+t)/4+3(n+t)/20+2,

which gives

n

10
< 3 +

2

5
t, therefore n < 30 + 4t < 30 + 8.4 log(3M) < 40 log(3M),

which contradicts inequality (2.18). Thus, it remains to consider the case di = 1.
Say i = 1. We then get (n− t1)/2 | (m− s1)/2. If (m− s1)/2 is a proper multiple
of (n− t1)/2, we then get that

(m− s1)/2 ≥ 2× (n− t1)/2 = n− t1 > m/2 + n/2− t1,

giving
n ≤ 2t1 − s1 ≤ 2t+ s ≤ 6.3 log(3M),

which contradicts inequality (2.18). Thus, it remains the consider n− t1 = m− s1.
This was when di = 1 and i = 1. For i = 2, 3, 4, we get that n−t1 = m+s1, n+t1 =
m − s1, n + t1 = m + s1, respectively. Let us see that not all four possibilities
occur.

Suppose say that n− t1 = m+ s1. Then, as we have seen,

gcd((n− t1)/2, (m− s1)/2) = gcd((n− t1)/2, (n− t1)/2− s1) | s1 | s,

gcd((n+ t1)/2, (m+ s1)/2) = gcd((n+ t1)/2, (n− t1)/2) | t1 | t,
and

gcd((n+ t1)/2, (m− s1)/2) = gcd((n+ t1)/2, (n− t1)/2− s1) | t1 + s1.

Observe that s1 + t1 6= 0, for if s1 + t1 = 0, then since also n − t1 = m + s1, or
n = m+(s1+ t1) = m+0, we would get that n = m, a contradiction. Divisibilities
(2.30) show that

a ≤ Fgcd((n−t1)/2,(m−s1)/2) gcd(F(n−t1)/2, L(m+s1)/2)Lgcd((n+t1)/2,(m−s1)/2)
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× Lgcd((n+t1)/2,(m+s1)/2) ≤ Fs × 2× Lt+s × Lt,

where we used the fact that gcd(Fk, Lk) | 2 for all positive integers k with k =
(n− t1)/2 = (m+ s1)/2. Thus,

a ≤ 2α2s+2t+1 < α3+8.4 log(3M).

Since also a >
√
Fn > αn/2−1, we get

n

2
− 1 < 3 + 8.4 log(3M), therefore n < 25 log(3M),

contradicting inequality (2.18). A similar argument applies when n+ t1 = m− s1.
Hence, we either have n− t1 = m− s1, or m+ t1 = n+ s1, which is (i).

Finally, let’s us discuss the case s = 0. We follow the previous program. We
have

a ≤ gcd(ab, ac) = gcd(F(n−t1)/2L(n+t1)/2, Fm)

≤ gcd(F(n−t1)/2, Fm) gcd(L(n+t1)/2, Fm)

≤ Fgcd((n−t1)/2,m)Lgcd((n+t1)/2,m).

As in previous arguments, put

gcd((n− t1)/2,m) = (n− t1)/2d1, and gcd((n+ t1)/2,m) = (n+ t1)/2d2.

If min{d1, d2} ≥ 5, we have

αn/2−1 < a ≤ F(n−t1)/2d1L(n+t1)/2d2 ≤ α(n−t1)/2d1+(n+t1)/2d2 ≤ α(n+t)/5,

so that
n <

10

3

(
1 +

t

5

)
< 4 +

4.2

3
log(3M) < 6 log(3M),

contradicting inequality (2.18). Assume now that both d1 ≤ 4 and d2 ≤ 4. Put d3
and d4 such that m/d3 = (n− t1)/2d1 and m/d4 = (n+ t1)/2d2. If d3 ≥ 2d1 + 1,
we then have

m =
d3
2d1

(n− t1) ≥ n− t1 +
n− t1
2d1

> m− t1 +
n− t1
2d1

,

so
n ≤ (2d1 + 1)t1 ≤ (2d1 + 1)t ≤ 9× 2.1 log(3M) < 20 log(3M),

contradicting inequality (2.18). A similar contradiction is obtained if we assume
that d4 ≥ 2d2 + 1. Thus, d3 ≤ 2d1 ≤ 8 and d4 ≤ 2d2 ≤ 8. We then get

n+ t1
n− t1

=
d2d3
d1d4

,

so that
n(d1d4 − d2d3) = −t1(d1d4 + d2d3).
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Therefore

n ≤ t(d1d4 + d2d3) ≤ 64× 2.1 log(3M) < 400 log(3M),

contradicting inequality (2.18). Assume min{d1, d2} ≤ 4 and max{d1, d2} ≥ 5. If
min{d1, d2} ≥ 2, we then get

αn/2−1 < a < α(n−t1)/2d1+(n+t1)/2d2 ≤ α(n+t)(1/4+1/10),

giving

n <
20

3

(
1 +

7

20
t

)
< 7 +

7

3
× 2.1 log(3M) < 12 log(3M),

which contradicts inequality (2.18). So, the last possibility is min{d1, d2} = 1.
Hence, we either have gcd((n − t1)/2,m) = (n − t1)/2, or gcd((n + t1)/2,m) =
(n + t1)/2. In particular, m = δ(n − t1)/2, or m = δ(n + t1)/2 for some positive
integer δ. If δ ≥ 3, we get

n > m ≥ 3(n± t1)
2

≥ 3(n− t)
2

,

giving n < 3t < 10 log(3M), a contradiction. If δ = 2, we get that m = n − t1
or m = n + t1, which is (i) because s = 0. Suppose now that δ = 1. Then either
m = (n− t1)/2, or m = (n+ t1)/2. Assume that m = (n+ t1)/2. Then

a ≤ gcd(ab, ac) = gcd(F(n−t1)/2L(n+t1)/2, F(n+t1)/2)

≤ gcd(F(n−t1)/2, F(n+t1)/2) gcd(L(n+t1)/2, F(n+t1)/2) ≤ 2Ft,

so we get that

αn/2−1 ≤ 2Ft < αt+1, therefore n < 4 + 2t < 10 log(3M),

a contradiction. Finally, in case m = (n− t1)/2, we then have

ab = F(n−t1)/2L(n+t1)/2, ac = Fm = F(n−t1)/2,

therefore
ab = (ac)L(n+t1)/2, so b = L(n+t1)/2c,

which is (iii).

We can now give a lower bound for b.

Lemma 2.16. Assume that inequality (2.18) holds. Then

b > αn/2−14 log(3M). (2.32)
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Proof. If we are in case (iii) of Lemma 2.15, then

b ≥ L(n+t1)/2 ≥ αn/2−t/2−1 ≥ αn/2−1−1.05 log(3M) ≥ αn/2−3 log(3M).

Assume next that n− t1 = m− s1 and st 6= 0. Then

gcd((n− t1)/2, (m+ s1)/2) = gcd((n− t1)/2, (n− t1)/2 + s1) | s1 | s,

gcd((n+ t1)/2, (m− s1)/2) = gcd((n+ t1)/2, (n− t1)/2) | t1 | t,
and

gcd((n+ t1)/2, (m+ s1)/2) = gcd((n+ t1)/2, (n− t1)/2 + s1) | t1 − s1.

Observe that t1 − s1 6= 0 since if t1 − s1 = 0, then n−m = t1 − s1 = 0, so n = m,
which is impossible. Now relation (2.30) shows that

a ≤ F(n−t1)/2LsLtLt+s ≤ α(n+t)/2+2s+t+2

≤ αn/2+2+3.5max{s,t} < αn/2+10 log(3M). (2.33)

Since |u| ≤M < a, it follows that

αn−2 < Fn = ab+ u ≤ ab+ |u| ≤ ab+M < 2ab < 2bαn/2+10 log(3M),

giving

b > 2−1αn/2−2−10 log(3M) > αn/2−4−10 log(3M) > αn/2−14 log(3M),

which is the desired inequality. A similar argument applies when n+ t1 = m+ s1
and st 6= 0.

Assume next that t = 0. Then n = m − s1 or n = m + s1. Assume say that
n = m− s1. Then

a ≤ gcd(Fn, F(m−s1)/2L(m+s1)/2) ≤ Fgcd(n,(m−s1)/2)Lgcd(n,(m+s1)/2

= Fn/2Lgcd(n,n/2+s1) ≤ Fn/2Ls,

so
a ≤ αn/2+s ≤ αn/2+2.1 log(3M),

which is an inequality better than (2.33). In turn, we get that inequality (2.32)
holds. A similar argument applies when t = 0 and n = m+s1, and also when s = 0
and either m = n− t1 or m = n+ t1. We give no further details here.

We now write
b ≤ gcd(ab, bc) = gcd(Fn − u, F` − w).

Write, as we did in Section 2.2,

F` − w =
α−`√
5

(
α` − w1,`

) (
α` − w2,`

)
, (2.34)
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where

wk,` =

√
5w + (−1)k

√
5w2 + 4(−1)`

2
, k ∈ {1, 2}. (2.35)

As for the numbers ui,n and vj,m (see inequalities (2.9) and (2.10)), we also have
that wk,` and all its conjugates w(s)

k,` satisfy

|w(s)
k,`| < 3M.

We put = Q(
√
5, u1,n, w1,`), and use the argument from the beginning of Section

2.3, in particular an analog of inequality (2.11) to say that

bO | gcd
(
(αn − u1,n) (αn − u2,n)O,

(
α` − w1,`

) (
α` − w2,`

)
O
)

|
∏

1≤i≤2
1≤k≤2

gcd
(
(αn − ui,n)O,

(
α` − wk,`

)
O
)
. (2.36)

Put
Ii,n,k,` = gcd

(
(αn − ui,n)O, (α` − wk,`)O

)
, i, k ∈ {1, 2}.

Using Lemma 2.6, we construct coprime integers λ′, ν′ satisfying the inequalities
max{|λ′|, |ν′|} ≤ √n, |nλ′ + `ν′| ≤ 3

√
n and furthermore

αnλ
′+`ν′ − uλ′

i,nw
ν′
k,` ∈ Ii,n,k,`.

As in Section 2.3, we make the following assumption.

Assumption 2.17. Assume that the pair (λ′, ν′) satisfies

αnλ
′+`ν′ − uλ′

i,nw
ν′
k,` 6= 0 for all i, k ∈ {1, 2}.

Then the argument of Lemma 2.8 shows that

b ≤ 24(3M)8
√
n.

Combined with Lemma 2.16, we get that

αn/2−14 log(3M) < 24(3M)8
√
n,

therefore

n/2− 14 log(3M) <
log(16)

logα
+

(
8 log(3M)

logα

)√
n < 5.8 + 16.7 log(3M)

√
n,

so
n <

(
11.6√
n

+
28 log(3M)√

n
+ 16.7 log(3M)

)√
n.

Since n satisfies inequality (2.18), we have that
√
n > 41 log(3M), therefore

11.6√
n
< 2 and

28 log(3M)√
n

< 1.
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Hence, we get that
√
n < 3 + 16.7 log(3M) < 20 log(3M),

contradicting inequality (2.18). The conclusion is:

Lemma 2.18. If inequality (2.18) holds, then Assumption 2.17 cannot hold.

Thus, there exist i1, k1 ∈ {1, 2} such that

αnλ
′+`ν′

= uλ
′
i1,nw

ν′
k1,`.

Since we already know that u2i1,n ∈ Q(
√
5) (because we are in the rank one case),

it follows that w2ν′
k1,`
∈ Q(

√
5). In particular, either w = 0, or w 6= 0 but 5w2 +

4(−1)` = y2w,` holds for some positive integer `. In particular, w = ±Fr for some
nonnegative integer r which is either 0 or is congruent to ` modulo 2. Thus

bc = F` − w = F(`−r1)/2L(`+r1)/2

where r1 = ±r. Since |w| ≤M , we also have r < 2.1 log(3M).
We now show that both m and ` are large.

Lemma 2.19. Assume that inequality (2.18) holds. Then

min{`,m} > n/2− 17 log(3M). (2.37)

Proof. Since b > αn/2−14 log(3M) by Lemma 2.16, and since n satisfies inequality
(2.18), it follows that b > 2M . Indeed, this last inequality is implied by

αn/2−14 log(3M) > 2M,

or
n/2− 14 log(3M) >

log 2M

logα
,

which in turn is implied by

n/2− 14 log(3M) > 2.1 log(3M),

which in turn is implied by n > 33 log(3M), which holds when n satisfies inequality
(2.18). Hence,

α`−1 > F` = bc+ w ≥ bc−M ≥ b−M > b/2

≥ 2−1αn/2−14 log(3M) > αn/2−2−14 log(3M),

giving

`− 1 > n/2− 2− 14 log(3M), or ` > n/2− 17 log(3M).

The same argument works for m.
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We now return to Lemma 2.15 and get the following result.

Lemma 2.20. If inequality (2.18) holds, then part (iii) of Lemma 2.15 cannot
hold.

Proof. Assume that (iii) of Lemma 2.15 holds. Then

bc = L(n+t1)/2c
2 = F(`−r1)/2L(`+r1)/2.

Since n satisfies inequality (2.18), we have that

(n+ t1)/2 > (n− t)/2 > ((41 log(3M))2 − 2.1 log(3M))/2 > 12,

therefore L(n+t1)/2 has a primitive prime factor p. Its order of appearance in the
Fibonacci sequence is n + t1. Since p | F(`−r1)/2L(`+r1)/2, it follows that either
(`− r1)/2 is a multiple of n+ t1, or `+ r1 is a multiple of n+ t1. But obviously

(`+ r1)/2 < (n+ r)/2 < n− t ≤ n+ t1,

where the middle inequality holds because it is equivalent to n > 2r + t, which is
implied by (2.18) since then

n > (41 log(3M))2 > 6.3 log(3M) > r + 2t.

Thus, the only possibility is that `+ r1 is a multiple of n+ t1. Since

2(n+ t1) ≥ 2n− 2t > n+ r > `+ r ≥ `+ r1,

it follows that the only possibility is that `+ r1 = n+ t1. Hence,

L(n+t1)/2c
2 = F(`−r1)/2L(`+r1)/2 = F(`−r1)/2L(n+t1)/2,

giving F(`−r1)/2 = c2. Since the largest square in the Fibonacci sequence is F12 =
122 (see [1] for a more general result), we get that (`− r1)/2 ≤ 12, so

` ≤ 24 + r1 ≤ 24 + r < 30 log(3M). (2.38)

However, this last inequality contradicts the inequality (2.37) because n satisfies
inequality (2.18). This shows that indeed part (iii) of Lemma 2.15 cannot happen.

We now revisit the argument of Lemma 2.15 and prove in exactly the same way
the following result.

Lemma 2.21. Assume that inequality (2.18) holds. Then one of the following
holds:

(i) n− t1 = `− r1;

(ii) n+ t1 = `+ r1.
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Proof. We follow the proof of Lemma 2.15. The relevant inequality here is, instead
of (2.30),

b ≤ gcd(ab, bc) = gcd(F(n−t1)/2L(n+t1)/2, F(`−r1)/2L(`+r1)/2). (2.39)

In the proof of Lemma 2.15 we used the lower bound a > αn/2−1, whereas here we
use the lower bound b > αn/2−14 log(3M) given by Lemma 2.16. We only go through
a couple scenarios which have not been contemplated in the proof of Lemma 2.15.

One of them is when u = w = 0. Then

αn/2−14 log(3M) < b = gcd(Fn, F`) = Fgcd(n,`).

Clearly, gcd(n, `) = n/d1 for some divisor d1 > 1 of n because ` < n. If d1 ≥ 3, we
get

αn/2−14 log(3M) < Fn/d1 < αn/d1 ≤ αn/3,
or n < 84 log(3M), contradicting inequality (2.18). Hence, gcd(n, `) = n/2, and
the only possibility is ` = n/2. But then

bc = Fn/2, ab = Fn = Fn/2Ln/2, giving a = Ln/2c.

Hence,
F(m−s1)/2L(m+s1)/2 = ac = Ln/2c

2.

Since n is large, Ln/2 has primitive divisors whose order of appearance in the
Fibonacci sequence is exactly n. We deduce that n divides either (m − s1)/2 or
m + s1. Since we have (m − s1)/2 ≤ (m + s)/2 < (n + s)/2 < n and m + s1 ≤
m + s < n + s < 2n whenever n satisfies inequality (2.18), we conclude that
the only possibility is that m + s1 = n. Thus, we get the equations Ln/2c2 =
F(m−s1)/2L(m+s1)/2 = F(m−s1)/2Ln/2, so F(m+s1)/2 = c2, giving (m + s1)/2 ≤ 12.
This gives

m ≤ 24− s1 ≤ 24 + s < 24 + 2.1 log(3M),

which contradicts inequality (2.37) of Lemma 2.19 when n satisfies inequality
(2.18).

This shows that we cannot have u and w be simultaneously zero.
Next we follow along the proof of Lemma 2.15 replacing (m, s, s1) by (`, r, r1).

Everything works out until we arrive at the analogue of (iii) of Lemma 2.15, which
for us is w = r = 0, ` = (n− t1)/2 and a = L(n+t1)/2c. But in this case

L(n+t1)/2c
2 = ac = F(m−s1)/2L(m+s1)/2.

Using again the information that (n + t1)/2 is large and L(n+t1)/2 has primitive
prime divisors, we conclude that the only possible scenario is m + s1 = n + t1,
leading to F(m−s1)/2 = c2, which gives that (m − s1)/2 is small, contradicting
inequality (2.37). We give no further details.

We can now give a lower bound for c.

160 F. Luca, L. Szalay



Lemma 2.22. Assume that inequality (2.18) holds. Then

c > αn/2−31 log(3M). (2.40)

Proof. This is very similar to the proof of Lemma 2.16. Assume, for example, that
n− t1 = `− r1 and tr 6= 0. Then

gcd((n− t1)/2, (`+ r1)/2) = gcd((n− t1)/2, (n− t1)/2 + r1) | r1 | r,

gcd((n+ t1)/2, (`− r1)/2) = gcd((n+ t1)/2, (n− t1)/2) | t1 | t,
and

gcd((n+ t1)/2, (`+ r1)/2) = gcd((n+ t1)/2, (n− t1)/2 + r1) | t1 − r1.

Observe that t1 − r1 6= 0 since if t1 − r1 = 0, then n − ` = t1 − r1 = 0, so n = `,
which is impossible. Now relation (2.39) implies that

b ≤ F(n−t1)/2LrLtLt+r ≤ α(n+t)/2+2r+t+2

≤ αn/2+2+3.5max{r,t} < αn/2+10 log(3M). (2.41)

Since |w| ≤M < b, it follows, by inequality (2.37), that

αn/2−17 log(3M)−2 ≤ α`−2 ≤ F` = bc+ w ≤ bc+M < 2bc < 2cαn/2+10 log(3M),

giving

c > 2−1αn/2−2−27 log(3M) > αn/2−4−27 log(3M) > αn/2−31 log(3M),

which is the desired inequality. A similar argument applies when n + t1 = ` + r1
and tr 6= 0.

A similar proof works when either t = 0 or r = 0 providing better lower bounds
for c. We give no further details here.

We now revisit the argument of Lemma 2.15 and prove in exactly the same way
the following result.

Lemma 2.23. Assume that inequality (2.18) holds. Then one of the following
holds:

(i) m− s1 = `− r1;

(ii) m+ s1 = `+ r1.

Proof. This is entirely similar with the proof of Lemma 2.15, except that we use
the relation

c ≤ gcd(ac, bc) = gcd(F(m−s1)/2L(m+s1)/2, F(`−r1)/2L(`+r1)/2)

and the lower bound (2.40) on c. We give no further details.
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Finally, we prove the following result.

Lemma 2.24. Inequality (2.18) does not hold.

Proof. From Lemmas 2.15, 2.21 and 2.23, one gets easily that either n− t1 = m−
s1 = `−r1 or n+t1 = m+s1 = `+r1. Assume say that N = n−t1 = m−s1 = `+r1.
Then

ab = FNLN+2t1 , ac = FNLN+2s1 , bc = FNLN+2r1 .

If U and V denote any two of the numbers N,N + 2r1, N + 2s1, N + 2t1, then
U/2 < V < 2U because n satisfies inequality (2.18). Also, all the above four
numbers exceed 12. Using again the primitive divisor theorem, we conclude that
N + 2r1 is one of the numbers {N,N + 2s1, N + 2t1}, so r1 ∈ {0, s1, t1}. But if
r1 = s1, then since also `−r1 = m−s1, we getm = `, so ac = F(m−s1)/2L(m+s1)/2 =
F(`−r1)/2L(`+r1)/2 = bc, contradicting the fact that a > b > c ≥ 1. Thus, r1 = 0.
Similarly, we get s1 = t1 = 0, therefore n = m = `, which is not allowed. A similar
argument works when n+ t1 = m+ s1 = `+ r1.

Proof of Theorem 1.1. We are now ready to finish the proof of Theorem 1.1. In-
deed,

2a ≤ ab = Fn + u ≤ Fn +M.

So, either a ≤M , or a > M in which case a ≤ 2a−M ≤ Fn < αn giving

log a

logα
< n < (41 log(3M))2.

The above inequality implies that

logM > 41−1
√
2
√

log a > 0.034
√

log a. (2.42)

In case a ≤ M , we get logM ≥ log a > 0.034
√
log a because a ≥ 3 so log a > 1.

Hence, inequality (2.42) always holds, showing that M > exp(0.034
√
log a), which

is what we wanted to prove.

3. The proof of Corollary 1.2

The condition a < exp(415.62) (coming directly from Theorem 1.1) implies n ≤
1730 via the inequalities αn−2 < Fn < a2. It is easy to see that n ≥ 8 entails n > m,
moreover from n ≥ 8 and m ≥ 7 we conclude m ≥ `. These make it possible to
apply a computer search for checking all the candidates (n,m, `). Obviously n ≥ 5
must be fulfilled, therefore we can verify individually the cases 5 ≤ n ≤ 7. Totally
222 solutions to the system (2.4) have been found in (a, b, c, u, v, w, n,m, `), the
largest a is occurring in

(a, b, c, u, v, w, n,m, `) = (235, 11, 1,−1,−2, 2, 18, 13, 8).
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Abstract

The aim of this paper is to investigate the algebraic independence between
two infinite products generated by the Fibonacci numbers {Fn}n≥0 whose
indices run in certain geometric progressions or binary recurrent sequences.
As an application, we determine all the integers m ≥ 1 such that the infinite
products

∞∏

k=1

(
1 +

1

F2k

)
and

∞∏

k=1

(
1 +

1

F2k+m

)

are algebraically independent over Q.

Keywords: Algebraic independence, Infinite products, Fibonacci numbers,
Mahler-type functional equation

MSC: 11J85

1. Introduction and the results

Let {Rn}n≥0 be the binary recurrence defined by

Rn+2 = A1Rn+1 +A2Rn, n ≥ 0, (1.1)
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where A1 and A2 are nonzero integers and the initial values R0 and R1 are integers,
not both zero. Suppose that |A2| = 1 and A2

1 + 4A2 > 0. If A1 = A2 = 1 and
R0 = 0, R1 = 1, then we have Rn = Fn (n ≥ 0), where Fn is the nth Fibonacci
number.

Let d ≥ 2 be a fixed integer. The second author [6] investigated necessary
and sufficient conditions for the infinite product generated by the sequence (1.1)
to be algebraic. As an application, the transcendence of the infinite product∏∞
k=1(1 + 1

F
dk

) was deduced. In [3], the algebraic independence over Q of the
sets of infinite products

∞∏

k=1
F
dk
6=−bi

(
1 +

bi
Fdk

)
(i = 1, . . . ,m)

was proved for any nonzero distinct integers b1, . . . , bm. In particular, the numbers

∞∏

k=1

(
1 +

1

F2k

)
and

∞∏

k=2

(
1− 1

F2k

)

are algebraically independent over Q. Recently, the authors [4] proved algebraic
independence results for the infinite products generated by two distinct binary
recurrences; for example, the two numbers

∞∏

k=1

(
1 +

1

F2k

)
and

∞∏

k=1

(
1 +

1

L2k

)

are algebraically independent over Q, where the sequence {Ln}n≥0 is the Lucas
companion of the Fibonacci sequence defined by

Ln+2 = Ln+1 + Ln (n ≥ 0), L0 = 2, L1 = 1.

In what follows, let {Rn}n≥0 be the binary recurrence given by (1.1) with
A1 = A2 = 1. Then the sequence {Rn}n≥0 is expressed as

Rn = g1α
n + g2β

n, n ≥ 0, (1.2)

where α = (1 +
√

5)/2, β = (1−
√

5)/2, and
(
g1
g2

)
=

1√
5

(
−β 1
α −1

)(
R0

R1

)
.

In this paper, we prove some algebraic independence results for the infinite
products generated by Fibonacci numbers and the sequence (1.2). We state our
results.
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Theorem 1.1. Let d ≥ 2 be a fixed integer and {Rn}n≥0 be the sequence defined
by (1.2) with (R0, R1) 6= (0, 1). Let

η :=

∞∏

k=1

(
1 +

1

Fdk

)
and ν :=

∞∏

k=1
R
dk
6=0,−1

(
1 +

1

Rdk

)
.

Then the following conditions are equivalent:
(i) The numbers η and ν are algebraically dependent over Q.
(ii) The number ν is algebraic.
(iii) d = 2 and either the condition g1 + g2 = 1 or the condition g1 = g2 = −1 is
satisfied.

Corollary 1.2. Let d ≥ 2 and {Rn}n≥0 the sequence defined by (1.2). If d ≥ 3,
then the numbers

∞∏

k=1

(
1 +

1

Fdk

)
and

∞∏

k=1
R
dk
6=0,−1

(
1 +

1

Rdk

)

are algebraically independent over Q. The same holds for the case of d = 2 and
R0 6∈ {−2, 0, 1}.

Corollary 1.3. Let d ≥ 2 be an integer and let γ 6= 1 be a nonzero rational number.
Then the infinite products

∞∏

k=1

(
1 +

1

Fdk

)
and

∞∏

k=1
F
dk
6=−γ

(
1 +

γ

Fdk

)

are algebraically independent over Q.

It should be noted that Corollary 1.3 holds even if γ is a nonzero algebraic
number (cf. [1]).

Corollary 1.4. Let d ≥ 2 and m ≥ 1 be integers. Then the infinite products

∞∏

k=1

(
1 +

1

Fdk

)
and

∞∏

k=1

(
1 +

1

Fdk+m

)
(1.3)

are algebraically dependent over Q if and only if (d,m) = (2, 1), (2, 2). In the two
exceptional cases above, we have

∞∏

k=1

(
1 +

1

F2k+1

)
=

3(
√

5− 1)

2
,

∞∏

k=1

(
1 +

1

F2k+2

)
= 6− 2

√
5.

The proofs of Theorem 1.1 and the corollaries will be given in Section 3.
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2. Lemmas

Let d ≥ 2 be a fixed integer and let {Rn}n≥0 be the sequence defined by (1.2).
Define

Φ(x) :=

∞∏

k=0

(
1 +

g−11 xd
k

1 + (−1)dg−11 g2x2d
k

)
. (2.1)

The function Φ(x) converges in |x| < 1 and satisfies the functional equation

Φ(xd) = c(x)Φ(x), (2.2)

with

c(x) =
1 + (−1)dg−11 g2x

2

1 + g−11 x+ (−1)dg−11 g2x2
.

To prove Theorem 1.1, we use the following lemma.

Lemma 2.1 (Special case of [6, Theorem 7]). Let d ≥ 2 be an integer. Let a and
b be nonzero algebraic numbers and

G(x) =
∞∏

k=0

(
1 +

axd
k

1− bx2dk

)
, |x| < 1.

Then the function G(x) is a rational function with the algebraic coefficients if and
only if d = 2 and either the condition a + b = 1 or the condition a = b = −1 is
satisfied.

Lemma 2.2. Let Φ(x) be the function given in (2.1). Then the following conditions
are equivalent:
(i) The function Φ(x) is algebraic over Q(α, x).
(ii) The function Φ(x) is a rational function with algebraic coefficients.
(iii) d = 2 and either the condition g1 + g2 = 1 or the condition g1 = g2 = −1 is
satisfied.

Proof. First we prove (i)⇒(ii). Suppose that Φ(x) is algebraic over Q(α, x). Then,
by the functional equation (2.2) and [5, Theorem 1.3] with C = Q, we see that Φ(x)
is a rational function over some algebraic number field L ⊇ Q(α). The assertions
(ii)⇒(iii) and (iii)⇒(i) follow immediately from Lemma 2.1.

Remark 2.3. If the property (iii) in Lemma 2.2 is satisfied, then the corresponding
infinite products Φ(x) are expressed as rational functions explicitly. Indeed, in the
case of d = 2 and g1 + g2 = 1, we have

Φ(x) =
∞∏

k=0

(
1 +

(1− b)x2k

1− bx2k+1

)
=
∞∏

k=0

(1 + x2
k

)(1− bx2k)

1− bx2k+1 =
1− bx
1− x (2.3)

168 F. Luca, Y. Tachiya



with b = −g−11 g2. If d = 2 and g1 = g2 = −1, then

Φ(x) =
∞∏

k=0

(
1 +

−x2k

1 + x2k+1

)
=

∞∏

k=0

(1 + ω2kx2
k

)(1 + ω−2
k

x2
k

)

1 + x2k+1

=
1− x2

(1− ωx)(1− ω−1x)
=

1− x2
1 + x+ x2

, (2.4)

where ω is a primitive cubic root of unity.

Let K be an algebraic number field. For an integer d ≥ 2, we define the subgroup
Hd of the group K(x)× of nonzero elements of K(x) by

Hd =

{
g(xd)

g(x)

∣∣∣∣ g(x) ∈ K(x)×
}
.

Let K[[x]] be the ring of formal power series with coefficients in K.

Lemma 2.4 (Kubota [2, Corollary 8]). Let f1(x), . . . , fm(x) ∈ K[[x]] \ {0} satisfy
the functional equations

fi(x
d) = ci(x)fi(x), ci(x) ∈ K(x)× (i = 1, . . . ,m). (2.5)

Then f1(x), . . . , fm(x) are algebraically independent over K(x) if and only if the
rational functions c1(x), . . . , cm(x) are multiplicatively independent modulo Hd.

Lemma 2.5 (Kubota [2], see also Nishioka [5, Theorem 3.6.4]). Suppose that
the functions f1(x), . . . , fm(x) ∈ K[[x]] converge in |x| < 1 and satisfy the func-
tional equations (2.5) with ci(x) defined and nonzero at x = 0. Let γ be an alge-
braic number with 0 < |γ| < 1 such that ci(γd

k

) are defined and nonzero for all
k ≥ 0. If f1(x), . . . .fm(x) are algebraically independent over K(x), then the values
f1(γ), . . . , fm(γ) are algebraically independent over Q.

3. Proofs of Theorem 1.1 and the corollaries

Putting g1 = −g2 = 1/
√

5 in (2.1), we have

Ψ(x) :=

∞∏

k=0

(
1 +

√
5xd

k

1− (−1)dx2dk

)
.

By Lemma 2.2, the function Ψ(x) is transcendental over K(x). Let η and ν be as
in Theorem 1.1. Take an integer N such that |Rdk | > 1 for all k ≥ N > 1. Then,
using (2.2), we get

η = pNΨ(α−d
N

) = pNΨ(α−1)

N−1∏

i=0

b(α−d
i

), (3.1)
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ν = qNΦ(α−d
N

) = qNΦ(α−1)
N−1∏

i=0

c(α−d
i

), (3.2)

where

b(x) =
1− (−1)dx2

1 +
√

5x− (−1)dx2
, c(x) =

1 + (−1)dg−11 g2x
2

1 + g−11 x+ (−1)dg−11 g2x2

and pN and qN are nonzero rational numbers given by

pN =
N−1∏

k=1

(
1 +

1

Fdk

)
, qN =

N−1∏

k=1
R
dk
6=0,−1

(
1 +

1

Rdk

)
.

Proof of Theorem 1.1. The assertion (ii)⇒(i) is trivial. If the condition (iii) holds,
then, by Remark 2.3, the function Φ(x) is a rational function as in (2.3) or (2.4).
Hence, by (3.2), we see that the number ν is algebraic and so the property (ii) is
satisfied. Thus, we have only to prove (i)⇒(iii).

Suppose that η and ν are algebraically dependent over Q. Then so are the
values Φ(α−1) and Ψ(α−1) by (3.1) and (3.2). Since Ψ(x) and Φ(x) satisfy the
functional equation (2.2), they are algebraically dependent over K(x) by Lemma
2.5. Thus, we see by Lemma 2.4, that the rational functions b(x) and c(x) are
multiplicatively dependent modulo Hd, namely, there exist integers e1, e2, not both
zero, and g(x) ∈ K(x)× such that

b(x)e1c(x)e2 = g(xd)/g(x), (3.3)

where 0 is neither a pole nor a root of g(x) because b(0)c(0) = 1. To simplify
notations, we rewrite the equation (3.3), as

F (x) :=

(
1− (−1)dx2

1 +
√

5x− (−1)dx2

)e1 (
1 + g−11 g2(−1)dx2

1 + g−11 x+ g−11 g2(−1)dx2

)e2
, (3.4)

where e1 and e2 are nonzero integers and

F (x) =
A(xd)B(x)

A(x)B(xd)
(3.5)

with A(x) and B(x) being the polynomials without common roots with algebraic
coefficients such that g(x) = A(x)/B(x). We also assume that e1 > 0, otherwise
we replace the pair of exponents (e1, e2) by the pair (−e1,−e2) and interchange
A(x) and B(x). We distinguish four cases.

Case I). e1e2 > 0. By (3.4) and (3.5), we have

A(x)B(xd)(1− (−1)dx2)e1(1 + g−11 g2(−1)dx2)e2

= A(xd)B(x)P (x)e1Q(x)e2 , (3.6)
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where e1, e2 ≥ 1 and

P (x) = 1 +
√

5x− (−1)dx2, Q(x) = 1 + g−11 x+ g1g
−1
2 (−1)dx2.

Let γ1 and γ2 be the real roots of P (x). Noting that

γ1, γ2 =
(−1)d

√
5±

√
5 + 4(−1)d

2
=





(±3 +
√

5)/2, d : even,

(±1−
√

5)/2, d : odd,
(3.7)

we may put |γ1| > 1 > |γ2|.
First we suppose |g−11 g2| > 1. Then the absolute values of the roots of the

polynomial
(1− (−1)dx2)e1(1 + g−11 g2(−1)dx2)e2

appearing in the left hand side in (3.6) are not greater than 1. Let γ (|γ| ≥ |γ1| > 1)
be the root of the polynomial appearing in the right hand side in (3.6) with the
largest absolute value. Substituting x = γ into (3.6), we have A(γ)B(γd) = 0, so
that A(γ) = 0 or B(γd) = 0. If A(γ) = 0, substituting x = γ1/d into (3.6) again
and noting that |γ1/d| > 1, we have A(γ1/d) = 0. Repeating this process, we obtain
A(γ1/d

k

) = 0 for all k ≥ 0, a contradiction. Thus we have B(γd) = 0. Substituting
x = γd into (3.6) and noting that |γd| > 1, we get B(γd

k

) = 0 for all k ≥ 0, a
contradiction.

A similar contradiction is deduced in the case of |g−11 g2| ≤ 1.

Case II). e1e2 < 0. In this case, we have

A(x)B(xd)(1− (−1)dx2)h1Q(x)h2

= A(xd)B(x)(1 + g−11 g2(−1)dx2)h2P (x)h1 , (3.8)

where h1, h2 ≥ 1.
First we prove that d is even. Suppose on the contrary that d ≥ 3 is odd. The as-

sumption (R0, R1) 6= (0, 1) in Theorem 1.1 implies that (g1, g2) 6= (1/
√

5,−1/
√

5).
Hence, at least one of the roots of P (x) is not a root of Q(x). Let γ (|γ| 6= 1)
be as in (3.7) with Q(γ) 6= 0. Then, substituting x = γ into (3.8), we have
A(γ)B(γd) = 0, so that A(γ) = 0 or B(γd) = 0. Assume that A(γ) = 0. Since
d ≥ 3 and degQ(x) = 2, there exists a determination of γ1/d such that Q(γ1/d) 6= 0.
Hence, substituting x = γ1/d into (3.8) again and noting that |γ1/d| 6= 1, we have
A(γ1/d) = 0. Repeating this process, we find a sequence {γ1/dk}k≥0 of roots of γ
such that A(γ1/d

k

) = 0 (k ≥ 0). This is a contradiction. Thus, we have B(γd) = 0.
Let ζd = e2πi/d be primitive d-th root of unity. Then the number ζdγ is neither
real nor purely imaginary because d is odd. Hence, substituting x = ζdγ into (3.8),
we have B(ζdγ) = 0, since

A(γd)(1 + g−11 g2(−1)d(ζdγ)2)P (ζdγ) 6= 0.
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Furthermore, noting that d ≥ 3 and degQ(x) = 2, we see that there exists a
complex nonreal number ζd2γ1/d such that

A(ζdγ)(1 + g−11 g2(−1)d(ζd2γ
1/d)2)P (ζd2γ

1/d) 6= 0.

Hence, substituting x = ζd2γ
1/d into (3.8), we get B(ζd2γ

1/d) = 0. Repeating this
process, we obtain B(ζdk+1γ1/d

k

) = 0 for all k ≥ 0, a contradiction.
Thus, we see that d is even and so the equation (3.8) becomes

A(x)B(xd)(1− x2)h1Q(x)h2 = A(xd)B(x)(1 + g−11 g2x
2)h2P (x)h1 . (3.9)

Comparing the orders at x = 1 of both sides of (3.9), we obtain g−11 g2 = −1 and
h1 = h2. Dividing the both sides of (3.9) by (1− x2)h1 , we have

A(x)B(xd)(1 + g−11 x− x2)h1 = A(xd)B(x)(1 +
√

5x− x2)h1 . (3.10)

Note that the polynomial Q(x) = 1 + g−11 x − x2 has the real roots ξ1, ξ2 with
|ξ1| > 1 > |ξ2|. Let γ1 and γ2 be the roots of 1 +

√
5x − x2 given by (3.7). Then

γi 6= ξj (1 ≤ i, j ≤ 2) because g−11 6=
√

5. Hence, substituting x = γ1 into (3.10),
we have A(γ1)B(γd1 ) = 0, so that either A(γ1) = 0 or B(γd1 ) = 0. Assume that
A(γ1) = 0. Since |ξ1| > 1 > |ξ2|, we can choose γ1/d1 (|γ1/d1 | > 1) such that
Q(γ

1/d
1 ) 6= 0. Thus, substituting x = γ

1/d
1 into (3.10), we have A(γ

1/d
1 ) = 0.

Continuing in this way, we create a sequence of complex numbers {γ1/dk}k≥0
which are all roots of A(x), a contradiction. In the case of B(γd1 ) = 0, sub-
stituting x = ζdγ1 ( 6= γ1) into (3.10), we get B(ζdγ1) = 0. Similarly, we obtain
B(ζdk+1γ

1/dk

1 ) = 0 for all k ≥ 0, a contradiction.

Case III). e1 = 0. By (2.2) and (3.3)

g(x)Φ(xd
k

)e2 = Φ(x)e2g(xd
k

) (k ≥ 0).

Taking the limit as k →∞, we obtain g(x) = Φ(x)e2g(0) (|x| < 1), so that Φ(x) is
algebraic over K(x). Hence, by Lemma 2.2, we see that that d = 2 and one of the
conditions g1 + g2 = 1 or g1 = g2 = −1 is satisfied, which is the property (iii) in
Theorem 1.1.

Case IV). e2 = 0. Similarly to the proof in Case III, we see that the function Ψ(x)
is algebraic over K(x). This contradicts Lemma 2.2.

Therefore the proof of Theorem 1.1 is completed.

Next we prove the corollaries. Corollaries 1.2 and 1.3 follow immediately from
Theorem 1.1. We prove Corollary 1.4.

Proof of Corollary 1.4. Let Rn := Fn+m (n ≥ 0). Then the sequence {Rn}n≥0 is
expressed as Rn = g1α

n + g2β
n, where

g1 = αm/(α− β), g2 = −βm(α− β).
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Note that g1, g2 6= −1 for any integer m ≥ 1. If the infinite products (1.3) are
algebraically dependent over Q, then the condition (iii) in Theorem 1.1 is satisfied,
namely, d = 2 and

1 = g1 + g2 =
αm − βm
α− β = Fm.

Thus, we have m = 1, 2. Conversely, if (d,m) = (2, 1) or (2, 2), then we have by
(2.3) and (3.1)

∞∏

k=1

(
1 +

1

F2k+1

)
=

3(
√

5− 1)

2
,

∞∏

k=1

(
1 +

1

F2k+2

)
= 6− 2

√
5.
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Abstract

Expanding on previous musical exploration involving the sonification of
Fibonacci-related number sequences, five contrasting stereo electro-acoustic
compositions utilizing multiple integer sequences simultaneously are pre-
sented and analyzed.
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1. Introduction

This article expands on previous research into the direct sonification of Fibonacci-
related number sequences. Direct sonification, or pure sonification, is a technique
in which the composer attempts to create a musical or sonic graph that represents
as accurate a likeness of the mathematical object sonified as is possible. In two
previous papers, a system of tunings based on the Fibonacci sequence and the
golden ratio was introduced, and various sonifications of Fibonacci-related integer
sequences and Zeckendorf representations were presented [1] [2]. In this paper, we
focus for the first time on the sonification of multiple integer sequences simultane-
ously.
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1.1. Terminology and definitions
This article makes use of the terms dynamic parameters and static parameters.
Dynamic parameters are those musical parameters that the integer sequence soni-
fied controls – those musical parameters that change according to the values of
the sequence. This can include parameters such as frequency, level of loudness,
spatial location, etc. Static parameters are, in contrast, those musical parameters
that do not change according to the sequence and remain the same throughout the
sonification. This can include many things, such as the number of audio channels
used, the timbre used or the duration attributed to each integer, etc. If a soni-
fication utilizes more than one sequence simultaneously, then dynamic and static
parameters can be either individual or global. Individual parameters are those that
pertain only to a specific sequence, whereas global pertain to all sequences that are
being simultaneously sonified.

In the following, let ϕ =
√
5−1
2 and Φ =

√
5+1
2 . Let Fn represent the Fibonacci

sequence, where F0 = 0 and F1 = 1. Let Gn represent a generalized Fibonacci
sequence. Sequences are enclosed in <> brackets.

2. Five compositions analyzed

In these analyses, we will utilize slightly modified and abridged versions of the scores
of the works for practical purposes, as we have in previous papers. The original
scores are Internet-based and in color, which can be very useful when graphing
multiple sequences and in differentiating between individual and global parameters.
It is highly recommended that the reader view and listen to the Quicktime files and
see the original scores for each composition as well, to which links are provided.
These pieces were all composed in 2011 and 2012 using the author’s Objective-C++
program Virahanka, created for composing with various types of number sequences
utilizing Csound [3] as an integrated sound synthesis engine.

2.1. ϕ and Φ signature sequences no. 3
If R is a positive irrational number and we arrange the set of all numbers i + jR
in order, where i and j are positive integers, i1 + j1R, i2 + j2R, i3 + j3R, . . . , then
〈i1, i2, i3, . . . 〉 is the signature sequence of R [4]. In the case of this composition, the
two signature sequences used are those based on the smaller and larger golden ratio
values, where R = ϕ and R = Φ, respectively (A084532 and A084531 in Sloane’s
OEIS [5]).

In this audio-visual work from Collection XI (B1237 in [6]), two signature
sequences are sonified simultaneously with a synchronized point graph. The original
score, Quicktime file (1920×1080 pixels) and other information can be found at
http://caseymongoven.com/b1237.

The synthesis technique utilized in this work is based on the short-time Fourier
transform (STFT), in which a monaural signal – in this case a wine glass from
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Daniel Gehrs Winery being struck – is broken up into many smaller overlapping
pieces of equal length and analyzed in the frequency domain as it changes over time
in order to enable frequency shifting without time-stretching (among other possible
manipulations). This means that each note articulated in this piece is derived from
spectral data of the same single original sample of a wineglass being struck.

One of the challenges with signature sequences in particular, due to the rel-
atively even distribution of the integers in such sequences, is finding a point of
termination. Generally, a point of termination at either the highest point the se-
quence has reached, or at an occurrence of the integer 1, sounds best. Regardless
of where one stops, the compositional result with signature sequences – and many
other sequences with such uniform distribution of the integers – ends up sounding
a bit as if one had suddenly torn it off at the end, reminiscent in a way of György
Ligeti’s instructions at the end of his Continuum for harpsichord: “Stop suddenly,
as though torn off.” In the case of this composition, 351 members of both sequences
were utilized, beginning with the first members of the sequences. This resulted in
a range of integers of 1-21 for the signature sequence where R = ϕ, and a range of
1-33 for the signature sequence where R = Φ.

Each integer is attributed a static duration of .05 seconds, resulting in a piece
duration of 351 ∗ .05 seconds = 17.55 seconds. Two dynamic parameters are used:
frequency and simulated location. The latter is an individual dynamic parameter
(each sequence has been given its own location),1 the former is global. The unit
interval of the tuning used in this piece is ϕ7 + 1, and the pitch orientation is de-
scending, meaning that higher integers are represented by lower pitches. Dynamic
level (loudness) is a static parameter: each piece is attributed the dynamic level
mezzo forte (medium loud). Attack and release values – also static parameters in
this composition – of .0055 and .0089 seconds were used for each integer.2

Collection XI
ϕ and Φ Signature Sequences no. 3
Casey Mongoven
October 29, 2011

classification of work: audio-visual
synthesis engine: Csound show Csound orchestra
synthesis technique: STFT-based phase vocoder

description of sequences sonified
A084532 Arranging the numbers s + jϕ in increasing order, where s and j
are positive integers, the sequence of s’s is the signature sequence of ϕ.

1The simulated location is given in degrees. 0 degrees represents straight ahead, while positive
numbers represent sound sources emanating from the right and negative values represent those
emanating from the left.

2Attack and release values are part of the so-called envelope of a note. Attack is the time in
the very beginning of the note (often on a micro-sound time scale) where it becomes louder, and
release is the part at the very end when it becomes quieter. Without attack and release values,
it is possible that a click can result using certain synthesis techniques.
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ϕ is equal to (-1 + sqrt(5))/2. 351 members used
A084531 Arranging the numbers s + jΦ in increasing order, where s and j
are positive integers, the sequence of s’s is the signature sequence of Φ.
Φ is equal to (1 + sqrt(5))/2. 351 members used

global static parameters:
offset: 1
pitch orientation: descending
temperament: phi7 + 1
number of channels: 2
note value: 0.05 seconds
piece length: 17.55 seconds
spectral data: gehrs glass seven
dynamic: mf
attack: .0055 seconds
release: .0089 seconds

global and individual dynamic parameters:
A084532

integer approximate frequency Hz simulated location degrees
1 873.0 -1.635
2 843.9 -2.394
3 815.8 -3.152
4 788.7 -3.910
5 762.4 -4.669
6 737.0 -5.427
7 712.5 -6.185
8 688.8 -6.944
...

...
...

19 474.6 -15.286
20 458.8 -16.044
21 443.5 -16.802

A084531

integer approximate frequency Hz simulated location degrees
1 873.0 25.903
2 843.9 25.144
3 815.8 24.386
4 788.7 23.628
5 762.4 22.869
6 737.0 22.111
7 712.5 21.353
8 688.8 20.594
...

...
...

31 316.1 3.152
32 305.6 2.394
33 295.4 1.635
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351 values used of Sloane’s A084532 : 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 4, 1, 3,
2, 4, 1, 3, 5, 2, 4, ..., 14, 6, 19, 11, 3, 16, 8, 21

351 values used of Sloane’s A084531 : 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3,
5, 2, 7, 4, 1, 6, 3, ..., 12, 25, 4, 17, 30, 9, 22, 1

graph of sequences: 1) A084532 , 351 values; 2) A084531 , 351 values.

Traditional European music theory has often expressed the aesthetic appeal of
contrary motion (voices moving in opposite directions) in composition. If we zoom
in and take a closer look at the beginning of the graph, we can see that the voices
exhibit consistent contrary motion; after the first two members of the sequence,
when one voice ascends, the other descends and vice versa:

In the original online version of the score, it is possible to hover over the in-
dividual integers in the graph with the cursor and view the dynamic parameters
attributed to each integer.

2.2. Min and Max Fibbit Running no. 4
I learned about the sequences used in this work (B1359 in [6]) from Ron Knott.
The first is based on the number of runs of equal bits in the Zeckendorf binary
representations [7]. For example, 100010100 (the Zeckendorf representation of the
integer 66 = 55 + 8 + 3) has six runs of equal bits, namely 1, 000, 1, 0, 1, and 00.
The following diagram shows the first 13 binary Zeckendorf representations with
the number of runs of equal bits (A104324 in [5]):
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integer Zeckendorf representation number of runs
1 1 1
2 10 2
3 100 2
4 101 3
5 1000 2
6 1001 3
7 1010 4
8 10000 2
9 10001 3
10 10010 4
11 10100 4
12 10101 5
13 10000 2
↓ ↓ ↓

Ron Knott named the first composition written with this sequence Min Fibbit Run-
ning (B101 in [6]), as the Zeckendorf representation is sometimes called the mini-
mum representation (in that it requires the smallest number of Fibonacci numbers),
bit because of the binary representation, and running because the sequence counts
runs.

The second sequence (A104325 in [5]) follows the same exact principle of count-
ing runs, only using the dual Zeckendorf binary representations, described in [8].
Whereas the standard Zeckendorf binary representations contain no consecutive
1s, the dual Zeckendorf representations contain no consecutive 0s. The dual Zeck-
endorf binary representation can be created by starting with the standard Zeck-
endorf representation and applying a left-to-right algorithm recursively in which
each occurrence of the bit string 100 is replaced with 011 until no consecutive zeros
are found in the representation. The result is as follows:

integer dual Zeckendorf representation number of runs
1 1 1
2 10 2
3 11 1
4 101 3
5 110 2
6 111 1
7 1010 4
8 1011 3
9 1101 3
10 1110 2
11 1111 1
12 10101 5
13 10110 4
↓ ↓ ↓
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In this composition, wavetable synthesis was used, a technique based on the
periodic reproduction of a single cycle of a waveform. F15−1 = 609 members of each
sequence were used; this number was chosen to preserve the symmetry of these self-
similar sequences. In contrast to signature sequences, which are relatively uniform
throughout, these sequences have clear “seams” at Fn − 1, which are convenient
points to end a sonification. In addition, both sequences will always end with the
same integer if the point of termination is Fn−1, because there is only one possible
representation of an integer Fn − 1 as a sum of Fibonacci numbers [10].

In this piece, the duration of each integer is slightly slower: .065 seconds. Loca-
tion is a static parameter – one sequence is placed on each speaker. The wavetables
were each derived from a single cycle of a wave from a viola built by Anne Cole; the
viola was named “Bluebonnet” by its maker. The tuning used is the harmonic series
with a fundamental frequency of 86 Hz, i.e. the integers of the sequence a(n) were
mapped directly to partials a(n)→ a(n) ∗ 86 Hz, which makes the highest integer
13 → 1118 Hz. Each sequence is attributed its own wavetable and therefore its
own timbre. Frequency, loudness, attack and release are the dynamic parameters
utilized in this composition – all of them are global, applying to both sequences.

In the original online scores of Collection XIII, almost any element in the score
can be hovered over with the cursor in order to gain more information and clarify
meaning.

Collection XIII
Min and Max Fibbit Running no. 4
Casey Mongoven
March 13, 2012

classification of work: audio-visual
synthesis engine: Csound show Csound orchestra
synthesis technique: wavetable with FFT resynthesis

description of sequences sonified
A104324 number of runs in the minimal Fibonacci (binary) representation of
n 609 members used
A104325 number of runs in the maximal Fibonacci (binary) representation of
n 609 members used

global static parameters:
offset: 1
temperament: series of harmonic partials
pitch orientation: ascending
number of channels: 2
note duration: 0.065 seconds
piece duration: 39.585 seconds

individual static parameters:
location:
-30◦

30◦
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wavetables:
cole bluebonnet 4
cole bluebonnet 5

global dynamic parameters:
A104324

integer frequency Hz loudness attack s release s
1 86.000000 pp 0.012300 0.014400
2 172.000000 pp 0.011908 0.013942
3 258.000000 p 0.011517 0.013483
4 344.000000 p 0.011125 0.013025
5 430.000000 p 0.010733 0.012567
6 516.000000 mp 0.010342 0.012108
7 602.000000 mp 0.009950 0.011650
8 688.000000 mp 0.009558 0.011192
9 774.000000 mf 0.009167 0.010733
10 860.000000 mf 0.008775 0.010275
11 946.000000 mf 0.008383 0.009817
12 1032.000000 f 0.007992 0.009358
13 1118.000000 f 0.007600 0.008900

A104325

integer frequency Hz loudness attack s release s
1 86.000000 pp 0.012300 0.014400
2 172.000000 pp 0.011908 0.013942
3 258.000000 p 0.011517 0.013483
4 344.000000 p 0.011125 0.013025
5 430.000000 p 0.010733 0.012567
6 516.000000 mp 0.010342 0.012108
7 602.000000 mp 0.009950 0.011650
8 688.000000 mp 0.009558 0.011192
9 774.000000 mf 0.009167 0.010733
10 860.000000 mf 0.008775 0.010275
11 946.000000 mf 0.008383 0.009817
12 1032.000000 f 0.007992 0.009358
13 1118.000000 f 0.007600 0.008900

609 values used of Sloane’s A104324 : 1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 4, 5, 2, 3,
4, 4, 5, 4, 5, 6, 2, ..., 10, 11, 12, 10, 11, 12, 12, 13

609 values used of Sloane’s A104325 : 1, 2, 1, 3, 2, 1, 4, 3, 3, 2, 1, 5, 4, 3,
4, 3, 3, 2, 1, 6, 5, ..., 4, 3, 4, 3, 3, 2, 1, 13

graph of sequences: 1) A104324 , 609 values; 2) A104325 , 609 values.
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These two sequences combined exhibit particularly beautiful contrary motion.

2.3. Q(n) and U(n) rep sequences no. 1
The first sequence used in this work (B1361 in [6]) is based on the number of pos-
sible representations of an integer n as a sum of distinct elements of the Lucas
sequence beginning 〈1, 3, 4, 7, 11, . . . 〉 (A003263 in [5]).3 For example, the integer 8
can be represented in two ways: 7 + 1 or 4 + 3 + 1, so a8 = 2. Integers that are not
representable (e.g. 2 and 6) are sonified as silence. The second sequence sonified
follows the exact same principle, but uses elements of the generalized Fibonacci
sequence 〈1, 4, 5, 9, 14, . . . 〉 instead (A103344 in [5] – called U(n) here). 1363 mem-
bers of the first sequence were used, and 1740 of the second. This means that in
this case, the first sequence has an earlier point of termination than the second.
This was done in order to highlight a certain relationship between these sequences:
if one removes all of the 0s from both sequences, which are represented as silence in
this sonification, then the sequences are identical. The musical form resulting from
the combination of these sequences is therefore a unique type of mensural canon
by augmentation.

The synthesis technique used in this composition was granular synthesis with
a resonance filter. Granular synthesis is a general sound synthesis technique that
operates on the microsound time scale in which small fragments of sound called
grains (generally lasting between 1 to 50 milliseconds) are utilized. In the soni-
fication of integer sequences, a grain can be used to represent an integer. This
technique can be highly useful because, compared to other synthesis techniques, a
much larger number of integers can be heard in a short timespan. If a resonance
filter is used to filter a grain, as it is here, then each integer can be attributed its
own resonance center frequency. Similarly, each grain can be attributed its own
location according to the sequence or its own level of loudness. The grain used
was from a different Anne Cole viola, named “1980” after the year it was made.
The note duration here is a speedy .025 seconds. The unit interval of the tuning
is again ϕ7 + 1, this time with ascending frequency orientation (higher integers are
represented by higher frequencies). The natural filtered attack of the grain was left
unaltered, but a static release value of .0089 was used at the end of each note.

As in the last composition, location is a static parameter and each sequence is
placed on an individual loudspeaker. Three global dynamic parameters are utilized:
resonance filter center frequency, resonance filter bandwidth and loudness.

3This sequence was referred to as Q(n) in Fibonacci and Related Number Theoretical Tables [9].

Sonification of multiple Fibonacci-related sequences 183



Collection XIII
Q(n) and U(n) Rep Sequences no. 1
Casey Mongoven
March 18, 2012

classification of work: audio-visual
synthesis engine: Csound show Csound orchestra
synthesis technique: granular synthesis with resonance filter

description of sequences sonified
A003263 number of possible representations of n as a sum using distinct
elements of the Lucas sequence beginning 1,3,4,7,11,... 1363 members used
A103344 number of possible representations of n as a sum using distinct
elements of the Fibonacci-type sequence beginning 1,4,5,9,14,... 1740
members used

global static parameters:
offset: 1
temperament: phi7 + 1
pitch orientation: ascending
number of channels: 2
note duration: 0.025 seconds
piece duration: 43.5 seconds
grain: cole 1980 24
release: 0.0089 seconds

individual static parameters:
location:
-30◦

30◦

global dynamic parameters:
A003263

integer resonance center frequency Hz resonance bandwidth Q factor loudness
1 850.000000 8.333333 pp
2 879.275576 8.474576 pp
3 909.559456 8.620690 pp
4 940.886370 8.771930 p
5 973.292241 8.928571 p
...

...
...

...
24 1852.076217 13.513514 ff
25 1915.865155 13.888889 ff
26 1981.851103 14.285714 ff
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A103344

integer resonance center frequency Hz resonance bandwidth Q factor loudness
1 850.000000 8.333333 pp
2 879.275576 8.474576 pp
3 909.559456 8.620690 pp
4 940.886370 8.771930 p
5 973.292241 8.928571 p
...

...
...

...
24 1852.076217 13.513514 ff
25 1915.865155 13.888889 ff
26 1981.851103 14.285714 ff

1363 values used of Sloane’s A003263 : 1, 0, 1, 2, 1, 0, 2, 2, 0, 1, 3, 2, 0, 2,
3, 1, 0, 3, 3, 0, 2, ..., 6, 12, 6, 0, 7, 7, 0, 1

1740 values used of Sloane’s A103344 : 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 0, 1, 3,
2, 0, 0, 2, 3, 1, 0, ..., 6, 0, 0, 7, 7, 0, 0, 1

graph of sequences: 1) A003263 , 1363 values; 2) A103344 , 1740 values.

. . .

The above graph of this work had to be truncated for practical reasons. The canonic
principle inherent in this work was taken to an even higher level in the eight-channel
work Rep Sequences no. 1 (B1117 in [6]), in which eight such sequences are utilized
at once, one per speaker.

2.4. Absent and unique residues no. 3
The two sequences sonified in this work (B1411 in [6]) are based on the Fibonacci
sequence under a modulus. One sequence counts the number of unique residues
absent in Fn modulo m, while the other counts the number of unique residues
present. In the diagram below, Fn modulo m has been reduced to the length of its
period.
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m Fn modulo m unique absent
1 〈0〉 1 0
2 〈0, 1, 1〉 2 0
3 〈0, 1, 1, 2, 0, 2, 2, 1〉 3 0
4 〈0, 1, 1, 2, 3, 1〉 4 0
5 〈0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1〉 5 0
6 〈0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1〉 6 0
7 〈0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1〉 7 0
8 〈0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1〉 6 2
9 〈0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1〉 9 0
10 〈0, 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, . . . , 9, 5, 4, 9, 3, 2, 5, 7, 2, 9, 1〉 10 0
11 〈0, 1, 1, 2, 3, 5, 8, 2, 10, 1〉 7 4
12 〈0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1〉 11 1
13 〈0, 1, 1, 2, 3, 5, 8, 0, 8, 8, 3, 11, . . . , 8, 5, 0, 5, 5, 10, 2, 12, 1〉 9 4
↓ ↓ ↓ ↓

The sequence of unique residues is placed on the left speaker, and the sequence of
absent residues on the right. A single grain created from the sound of pieces of raw
lump charcoal colliding together was used as a sound source – a light percussive
sound that is rich mostly in higher frequency components. The only dynamic
parameter in this work is loudness, ranging from extremely quiet to loud (pppp to
f ). In both sequences, each member lasts .074 seconds, and F16 = 987 members
are used of each sequence, resulting in a piece duration of 73.038 seconds. 0s in the
absent residues sequence were sonified as silence, resulting in periodic gaps on the
right speaker.

Collection XIV
Absent and Unique Residues no. 3
Casey Mongoven
May 18, 2012

classification of work: audio-visual
synthesis engine: Csound show Csound orchestra
synthesis technique: granular synthesis

description of sequences sonified
A066853 number of unique residues in Fibonacci sequence mod n 987 members
used
A118965 number of residues absent in Fibonacci sequence mod n 987 members
used

global static parameters:
sequence offset: 1
number of channels: 2
duration of single member of sequence: 0.074 seconds
piece duration: 73.038 seconds
grain: raw charcoal 8
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individual static parameters:
location:
-30◦

30◦

global dynamic parameters:
A066853

integer loudness
1 pppp
2 pppp
3 pppp
4 pppp
5 pppp
...

...
745 mf
750 mf
875 f

A118965

integer loudness
1 pppp
2 pppp
4 pppp
5 pppp
7 pppp
...

...
928 ff
937 ff
966 ff

987 values used of Sloane’s A066853 : 1, 2, 3, 4, 5, 6, 7, 6, 9, 10, 7, 11, 9,
14, 15, 11, 13, 11, 12, 20, 9, ..., 555, 149, 614, 739, 61, 745, 94, 21

987 values used of Sloane’s A118965 : 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 1, 4, 0,
0, 5, 4, 7, 7, 0, 12, ..., 425, 832, 368, 244, 923, 240, 892, 966

graph of sequences: 1) A003263 , 987 values; 2) A103344 , 987 values.

The graph at the end of the score had to be truncated for practical reasons. As
can be seen, these sequences also display natural contrary motion when sonified
together; however, the sequences’ relatively erratic behavior obscures this to some
degree, as does the fact that only a single dynamic parameter is used in the soni-
fication, which is not frequency.
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. . .

2.5. Stolarsky and Wythoff arrays no. 4
Unlike the preceding works, all of which utilized two integer sequences, four integer
sequences based on the Wythoff and Stolarsky arrays are sonified simultaneously in
Stolarsky and Wythoff Arrays no. 4 (B1412 in [6]). The Wythoff array can be cre-
ated by taking the non-negative integers Z≥0 and the Beatty sequence bΦ(Z≥0 + 1)c
as starting points for rows of Gn [11], as follows:

Z≥0 bΦ(Z≥0 + 1)c
0 1 1 2 3 5 8 13 21 34 55 89 →
1 3 4 7 11 18 29 47 76 123 199 322 →
2 4 6 10 16 26 42 68 110 178 288 466 →
3 6 9 15 24 39 63 102 165 267 432 699 →
4 8 12 20 32 52 84 136 220 356 576 932 →
5 9 14 23 37 60 97 157 254 411 665 1076 →
6 11 17 28 45 73 118 191 309 500 809 1309 →
7 12 19 31 50 81 131 212 343 555 898 1453 →
8 14 22 36 58 94 152 246 398 644 1042 1686 →
9 16 25 41 66 107 173 280 453 733 1186 1919 →
10 17 27 44 71 115 186 301 487 788 1275 2063 →
11 19 30 49 79 128 207 335 542 877 1419 2296 →
12 21 33 54 87 141 228 369 597 966 1563 2529 →
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↘

The portion in black is the Wythoff array.
In the Stolarsky array, the first integer in each row k is the lowest that has not

yet occurred in any row above. The integer that follows k is given by [Φ ∗ k] [12]:
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k [Φ ∗ k]
1 2 3 5 8 13 21 34 55 89 →
4 6 10 16 26 42 68 110 178 288 →
7 11 18 29 47 76 123 199 322 521 →
9 15 24 39 63 102 165 267 432 699 →
12 19 31 50 81 131 212 343 555 898 →
14 23 37 60 97 157 254 411 665 1076 →
17 28 45 73 118 191 309 500 809 1309 →
20 32 52 84 136 220 356 576 932 1508 →
22 36 58 94 152 246 398 644 1042 1686 →
25 40 65 105 170 275 445 720 1165 1885 →
27 44 71 115 186 301 487 788 1275 2063 →
30 49 79 128 207 335 542 877 1419 2296 →
33 53 86 139 225 364 589 953 1542 2495 →
35 57 92 149 241 390 631 1021 1652 2673 →
38 61 99 160 259 419 678 1097 1775 2872 →
41 66 107 173 280 453 733 1186 1919 3105 →
43 70 113 183 296 479 775 1254 2029 3283 →
46 74 120 194 314 508 822 1330 2152 3482 →
48 78 126 204 330 534 864 1398 2262 3660 →
51 83 134 217 351 568 919 1487 2406 3893 →
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↘

The sequence that gives the column in which an integer n occurs in the Wythoff
array is called the horizontal para-Fibonacci sequence; the sequence that gives the
row is called the vertical para-Fibonacci sequence (A035614 and A019586 in [5]).
One can create two more similar sequences by applying the same principle to the
Stolarsky array (A098861 and A098862 in [5]). All four of these sequences are
sonified simultaneously in this composition.

In this work, wavetable synthesis is utilized. The purity of tone using this
technique can increase clarity of representation when sonifying a significant number
of sequences simultaneously. The wavetable used for all sequences was derived from
the sound of an opening door. The dynamic parameters used here are frequency,
attack and release, and simulated location. Of these parameters, all are global
except for simulated location, which is individual for each sequence. ϕ7 + 1 is the
unit interval in the temperament used, and the frequencies in the work span from
a soaring 2355 Hz to about 119.6 Hz (the frequency orientation is descending).
A somewhat slower tempo of .12 seconds and 233 members of each sequence are
utilized, resulting in a piece duration of 27.96 seconds. A static level of loudness
of mezzo-forte (medium-loud) was chosen in order not to obscure either the lower
or higher members of the sequence.

Collection XIV
Stolarsky and Wythoff Arrays no. 4
Casey Mongoven
May 20, 2012

classification of work: audio-visual
synthesis engine: Csound show Csound orchestra
synthesis technique: wavetable with FFT resynthesis
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description of sequences sonified
A035614 gives number of column in Wythoff array that contains n 233
members used
A019586 gives number of row in Wythoff array that contains n 233 members
used
A098862 gives number of column in Stolarsky array that contains n 233
members used
A098861 gives number of row in Stolarsky array that contains n 233 members
used

global static parameters:
sequence offset: 1
temperament: phi7 + 1
frequency orientation: descending
number of channels: 2
duration of single member of sequence: 0.12 seconds
piece duration: 27.96 seconds
wavetable: door sound 1
loudness: mf

global and individual dynamic parameters:
A035614

integer frequency Hz attack s release s simulated location degrees
0 2355.000000 0.012300 0.014400 -27.665
1 2276.590020 0.012247 0.014338 -27.565
2 2200.790708 0.012193 0.014275 -27.465
3 2127.515142 0.012140 0.014213 -27.365
4 2056.679295 0.012086 0.014150 -27.265
...

...
...

...
...

9 1736.345543 0.011819 0.013838 -26.765
10 1678.533730 0.011766 0.013775 -26.665
11 1622.646767 0.011713 0.013713 -26.565

A019586

integer frequency Hz attack s release s simulated location degrees
0 2355.000000 0.012300 0.014400 -12.155
1 2276.590020 0.012247 0.014338 -12.055
2 2200.790708 0.012193 0.014275 -11.955
3 2127.515142 0.012140 0.014213 -11.855
4 2056.679295 0.012086 0.014150 -11.755
...

...
...

...
...

86 128.017015 0.007707 0.009025 -3.554
87 123.754675 0.007653 0.008962 -3.454
88 119.634250 0.007600 0.008900 -3.354

A098862
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integer frequency Hz attack s release s simulated location degrees
0 2355.000000 0.012300 0.014400 3.354
1 2276.590020 0.012247 0.014338 3.454
2 2200.790708 0.012193 0.014275 3.554
3 2127.515142 0.012140 0.014213 3.654
4 2056.679295 0.012086 0.014150 3.754
...

...
...

...
...

9 1736.345543 0.011819 0.013838 4.254
10 1678.533730 0.011766 0.013775 4.354
11 1622.646767 0.011713 0.013713 4.454

A098861

integer frequency Hz attack s release s simulated location degrees
0 2355.000000 0.012300 0.014400 18.864
1 2276.590020 0.012247 0.014338 18.964
2 2200.790708 0.012193 0.014275 19.064
3 2127.515142 0.012140 0.014213 19.164
4 2056.679295 0.012086 0.014150 19.264
...

...
...

...
...

86 128.017015 0.007707 0.009025 27.465
87 123.754675 0.007653 0.008962 27.565
88 119.634250 0.007600 0.008900 27.665

233 values used of Sloane’s A035614 : 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0,
1, 2, 0, 3, 0, 1, 6, 0, ..., 0, 1, 4, 0, 1, 2, 0, 11

233 values used of Sloane’s A019586 : 0, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 0, 5,
3, 2, 6, 1, 7, 4, 0, 8, ..., 86, 53, 12, 87, 54, 33, 88, 0

233 values used of Sloane’s A098862 : 0, 1, 2, 0, 3, 1, 0, 4, 0, 2, 1, 0, 5, 0,
1, 3, 0, 2, 1, 0, 6, 0, ..., 0, 1, 3, 0, 2, 1, 0, 11

233 values used of Sloane’s A098861 : 0, 0, 0, 1, 0, 1, 2, 0, 3, 1, 2, 4, 0, 5,
3, 1, 6, 2, 4, 7, 0, 8, ..., 86, 53, 20, 87, 33, 54, 88, 0

graph of sequences: 1) A035614 , 233 values; 2) A019586 , 233 values; 3) A098862 ,
233 values; 4) A098861 , 233 values.
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3. Ongoing research

New challenges are presented when composing sonifications of multiple integer se-
quences simultaneously. Which sequences can be sonified together and how? Which
parameters should we allow to be individual and which global? When should such
a sonification terminate? Currently, the author is working on theoretical criteria
for the sonification of integer sequences that attempt to posit potential answers to
such questions. In addition, an experiment involving more than 150 participants
is being carried out that compares various sonified Fibonacci-related mathematical
objects to analog mathematical objects more or less unrelated to Fn, in an attempt
to gain some insight into the aesthetic value of Fn and the golden ratio in musical
composition. This work is part of the author’s doctoral dissertation in the Media
Arts and Technology Department at UCSB.
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Abstract

The compositions, or ordered partitions, of integers, fall under certain
natural classes. In this expository paper we highlight the most important
classes by means of bijective proofs. Some of the proofs rely on the properties
of zig-zag graphs - the graphical representations of compositions introduced
by Percy A. MacMahon in his classic book Combinatory Analysis.
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1. Introduction

A composition of a positive integer n is a representation of n as a sequence of
positive integers which sum to n. The terms are called parts of the composition.

Denote the number of compositions of n by c(n). The formula for c(n) may be
obtained from the classical recurrence relation:

c(n+ 1) = 2c(n), c(1) = 1. (1.1)
∗Partially supported by National Research Foundation grant number 80860.

Annales Mathematicae et Informaticae
41 (2013) pp. 193–204

Proceedings of the
15th International Conference on Fibonacci Numbers and Their Applications

Institute of Mathematics and Informatics, Eszterházy Károly College
Eger, Hungary, June 25–30, 2012

193



Indeed a composition of n+ 1 may be obtained from a composition of n either by
adding 1 to the first part, or by inserting 1 to the left of the previous first part.
The recurrence gives the well-known formula: c(n) = 2n−1.

For example, the following are the compositions of n = 1, 2, 3, 4:

(1)

(2), (1, 1)

(3), (1, 2), (2, 1), (1, 1, 1)

(4), (1, 3), (2, 2), (3, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 1)

When the order of parts is fixed we obtain the partitions of n. For example, 4
has just 5 partitions – (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

This is an expository paper devoted to a classification of compositions according
to certain natural criteria afforded by their rich symmetry. We will mostly employ
the extensive beautiful machinery developed by P. A. MacMahon in his classic text
[3]. His original analysis of the properties of compositions seems to have received
scarce attention in the literature during the last half-century.

Percy Alexander MacMahon was born in Malta on 26 September 1854, the son
of brigadier general. He attended a military academy and later became an artillery
officer, attaining the rank of Major, all the while doing top-class mathematics
research.

According to his posthumous contemporary biographer, Paul Garcia [2],

“MacMahon did pioneering work in invariant theory, symmetric function the-
ory, and partition theory. He brought all these strands together to bring coherence
to the discipline we now call combinatorial analysis. . . . ”

MacMahon’s study of compositions was influenced by his pioneering work in
partitions. For instance, he devised a graphical representation of a composition,
called a zig-zag graph, which resembles the partition Ferrers graph except that the
first dot of each part is aligned with the last part of its predecessor. Thus the
zig-zag graph of the composition (5, 3, 1, 2, 2) is

• • • • •
• • •

•
• •
• •

(1.2)

The conjugate of a composition is obtained by reading its graph by columns,
from left to right: the graph (1.2) gives the conjugate of the composition
(5, 3, 1, 2, 2) as (1, 1, 1, 1, 2, 1, 3, 2, 1).

The zigzag graph possesses a rich combinatorial structure providing several
equivalent paths to the conjugate composition. The latter are outlined in Section 2.

We will sometimes write C |= n to indicate that C is a composition of n, and the
integer n will be referred to as the weight of C. A k-composition is a composition
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with k parts. The conjugate of C will be denoted by C ′.
Now following MacMahon, we define, relative to a composition C = (c1, c2, . . . , ck):

The inverse of C is the reversal composition C = (ck, ck−1, . . . , c2, c1).
C is called self-inverse if C = C.
C is inverse-conjugate if it’s inverse coincides with its conjugate: C ′ = C.
The zigzag graph of a composition C can be read in four ways to give generally

different compositions namely C,C ′, C, C
′
. Exceptions occur when C is self-inverse,

or when C is inverse-conjugate, in which case only two readings are obtained.
We deliberately refrain from applying generating function techniques in this

paper for the simple reason that the apparent efficacy of their use has largely been
responsible for obscuring the methods discussed.

2. The conjugate composition

In this section we outline five different paths to the conjugate composition.

ZG: The Zig-zag Graph, already defined above.

LG: The Line graph (also introduced by MacMahon [3, Sec. IV, Ch. 1, p. 151])
The number n is depicted as a line divided into n equal segments and separated

by n − 1 spaces. A composition C = (c1, . . . , ck) then corresponds to a choice of
k−1 from the n−1 spaces, indicated with nodes. The conjugate C ′ is obtained by
placing nodes on the other n − k spaces. Thus the line graph of the composition
(5, 3, 1, 2, 2) is

• • • • ,

from which we deduce that C ′ = (1, 1, 1, 1, 2, 1, 3, 2, 1). It follows that C ′ has
n− k + 1 parts.

SubSum: Subset Partial Sums:
There is a bijection between compositions of n into k parts and (k− 1)-subsets

of {1, . . . , n− 1} via partial sums (see also [6]) given by

C = (c1, . . . , ck) 7→ {c1, c1 + c2, . . . , c1 + c2 + · · ·+ ck−1} = L. (2.1)

Hence C ′ is the composition corresponding to the set {1, . . . , n− 1} \ L.
BitS: Encoding by Binary Strings

It is sometimes necessary to express compositions as bit strings. The procedure
for such bit-encoding consists of converting the set L into a unique bit string B =
(b1, . . . , bn−1) ∈ {0, 1}n−1 such that

bi =

{
1 if i ∈ L
0 if i /∈ L.
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The complementary bit string B′, obtained from B by swapping the roles of 1 and
0, is then the bit encoding of C ′.

DD: Direct Detection of Conjugates
There is an easily-mastered rule for writing down the conjugate of a composition

by inspection. A sequence of x consecutive equal parts c, . . . , c will be abbreviated
as cx. First, the general composition has two forms, subject to inversion:

(1) C = (1a1 , b1, 1
a2 , b2, 1

a3 , b3, . . . ), ai ≥ 0, bi ≥ 2;
(2) E = (b1, 1

a1 , b2, 1
a2 , b3, 1

a3 , . . . ), ai ≥ 0, bi ≥ 2.
The conjugate, in either case, is given by the rule:

(1c) C ′ = (a1 + 1, 1−1+b1−1, 1 + a2 + 1, 1−1+b2−1, 1 + a3 + 1, . . . )
= (a1 + 1, 1b1−2, a2 + 2, 1b2−2, a3 + 2, . . . ).

Similarly,
(2c) E′ = (1b1−1, a1 + 2, 1b2−2, a2 + 2, . . . ).

For example, (1, 3, 4, 13, 2, 12, 6)′ is given by

(1 + 1, 13−2, 1 + 1, 14−2, 1 + 13 + 1, 1 + 12 + 1, 16−1) = (2, 1, 2, 12, 5, 4, 15).

The various approaches to the conjugate composition obviously have their mer-
its and demerits. The strength of the DD method is that it often provides a general
form of the conjugate composition explicitly.

3. Special classes of compositions

We will need the following algebraic operations:
If A = (a1, . . . , ai) and B = (b1, . . . , bj) are compositions, we define the con-

catenation of the parts of A and B by
A|B = (a1, . . . , ai, b1, . . . , bj).

In particular for a nonnegative integer c, we have A|(c) = (A, c) and (c)|A = (c, A).
Define the join of A and B as

A ]B = (a1, . . . , ai−1, ai + b1, b2, . . . , bj).
The following rules are easily verified:

1. A|B = B|A.
2. (A|B)′ = A′ ]B′.

Note that (A, 0) ]B = A ] (0, B) = A|B.

3.1. Equitable decomposition by conjugation
The conjugation operation immediately implies the following identity:

Proposition 3.1. The number of compositions of n with k parts equals the number
of compositions of n with n− k + 1 parts.
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The two classes consist of different compositions except when n is odd and
k = (n+1)/2 = n− k+1. In the latter case the two classes are coincident. Indeed
since there are c(n, k) =

(
n−1
k−1
)
compositions of n with k parts, we see at once that

c(n, k) = c(n, n− k + 1).
Thus the set W (n) of compositions of n may be economically stored by keeping

only the sets W (n, k) of k-compositions, k = 1, . . . , bn+1
2 c, whereby the remaining

compositions are accessible via conjugation.
Looking closely at this idea, assume that the elements of each set W (n, k) are

arranged in lexicographic order, and list the sets in increasing order of lengths of
members as follows:

W (n, 1),W (n, 2), . . . ,W (n, bn+1
2
c)

︸ ︷︷ ︸
generates W (n) via conjugation

,W (n, bn+1
2
c+ 1), . . . ,W (n, n− 1),W (n, n). (3.1)

This arrangement implies one of the beautiful symmetries exhibited by many sets
of compositions:

If the set divisions are removed to reveal a single list of all compositions of n,
then the j-th composition from the left and the j-th composition from the right are
mutual conjugates. In other words, the j-th composition is the conjugate of the
(n− j + 1)-th composition, from either end.

This arrangement is illustrated for compositions of n = 1, 2, 3, 4 (see Section 1).

3.2. Equitable four-way decomposition
Define a 1c2-composition as a composition with the first part equal to 1 and last
part > 1. The following are analogously defined: 2c1-composition, 1c1-composition,
and 2c2-composition.

Then observe that the 2c1-compositions are inverses of 1c2-compositions, and
that the set of 2c2-compositions form the set of conjugates of the 1c1-compositions.
It turns out that the set of compositions of n splits naturally into four subsets of
equal cardinality corresponding to the four types of compositions.

Theorem 3.2. Let n be a natural number > 1. Then the following classes of
compositions are equinumerous:

(i) 1c1-compositions of n.
(ii) 1c2-compositions of n.
(iii) 2c1-compositions of n.
(iv) 2c2-compositions of n.

Each class is enumerated by c(n− 2).

Proof. By the remark immediately preceding the theorem, it suffices to establish a
bijection: (i) ⇐⇒ (ii). An object in (ii) has the form C = (1, c2, . . . , ck), ck > 1.
Deleting the initial 1 and subtracting 1 from ck gives (c2, . . . , ck − 1) = T , a
composition of n − 2. Now pre-pend and append 1 to obtain (1, c2, . . . , ck − 1, 1),
which is a unique composition in (i). Lastly, also note that the passage from C to
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T is a bijection from (i) to the class of compositions of n − 2. In other words the
common number of compositions in each of the classes is c(n− 2).

Example. When n = 5, the four classes are given by:
(i) (1, 3, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 1, 1);
(ii) (1, 4), (1, 2, 2), (1, 1, 3), (1, 1, 1, 2);
(iii) (4, 1), (2, 2, 1), (3, 1, 1), (2, 1, 1, 1);
(iv) (2, 1, 2), (2, 3), (3, 2), (5).

Remark 3.3. An Application: Since Theorem 3.2 implies c(n) = 4c(n − 2), it can
be applied to the generation of compositions of n from those of n− 2 in an obvious
way. Such algorithm is clearly more efficient than the classical recursive procedure
via the compositions of n− 1 (see (1.1)). Thus to compute the compositions of 5,
for example, it suffices to use the set W (3) = {(3), (2, 1), (1, 2), (1, 1, 1)}, together
with the quick generation procedures corresponding to the bijections in the proof
of Theorem 3.2.

A further saving of storage space can be attained by combining this four-way
decomposition with the conjugation operation. Then to store the set W (n) of
compositions of n it would suffice to hold only one half of W (n − 2), arranged as
previously described.

As a mixed refinement of Theorem 3.2 we have the following identity, which is
a consequence of conjugation.

Proposition 3.4. The number of compositions of n with one or two 1’s which can
appear only as a first and/or last part equals the number of compositions of n into
1’s and 2’s whose first and/or last part is 2.

For example, when n = 5, the two classes of compositions mentioned in the
proposition are:

(1, 4), (4, 1), (1, 2, 2), (1, 3, 1), (2, 2, 1);

(2, 1, 1, 1), (1, 1, 1, 2), (2, 2, 1), (2, 1, 2), (1, 2, 2).

3.3. Self-inverse compositions
Self-inverse compositions constitute the next easily distinguishable class of compo-
sitions. Their enumeration is usually straightforward. The number of parts of a
composition C will also be referred to as its length, denoted by `(C).

We remark that MacMahon [3] proved most of the results in this sub-section,
in the case of k-compositions, using the LG method.

Proposition 3.5.

(i) The number of self-inverse compositions of 2n is c(n+ 1).

(ii) The number of self-inverse compositions of 2n− 1 is c(n).
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Proof. We prove only part (i) (the proof of part (ii) is similar). Firstly, if C is a
self-inverse composition with `(C) odd, then C has the form:

C = (c1, . . . , ck−1, ck, ck−1, . . . , c1), where ck is even. Thus
C = (c1, . . . , ck−1, ck/2) ] (ck/2, ck−1, . . . , c1) ≡ A ]A,

where A = (c1, . . . , ck−1, ck/2) runs over all compositions of n.
If `(C) is even, then C has the form C = (c1, . . . , ck−1, ck, ck, ck−1 . . . , c1) ≡

B|B, where B = (c1, . . . , ck−1, ck) runs over all compositions of n.
It follows that there are as many self-inverse compositions of 2n into an odd

number of parts as into an even number of parts. Using the above notations, a
simple bijection is C ≡ A ]A 7→ A|A, and conversely, C ≡ B|B 7→ B ]B.

The essential results on self-inverse compositions are summarized below.

Theorem 3.6. The following sets of compositions have the same number of ele-
ments:
(i) self-inverse compositions of 2n− 1.
(ii) self-inverse compositions of 2n of odd lengths.
(iii) self-inverse compositions of 2n of even lengths.
(iv) self-inverse compositions of 2n− 2.
(v) compositions of n.

Proof. (i) ⇐⇒ (ii): if (c1, . . . , ck−1, ck, ck−1, . . . , c1) is in (i), then

(c1, . . . , ck−1, ck + 1, ck−1, . . . , c1)

is in (ii), and conversely.
(i) ⇐⇒ (iv): if (c1, . . . , ck−1, ck, ck−1, . . . , c1) and (c1, . . . , ck−1, ck, ck, ck−1, . . . , c1)
belong to (iv), then (i) contains (c1, . . . , ck−1, ck + 1, ck−1, . . . , c1) and

(c1, . . . , ck−1, ck, 1, ck, ck−1, . . . , c1),

respectively.
Lastly, since the cases (ii) ⇐⇒ (iii) ⇐⇒ (v) have been demonstrated with the
proof of Proposition 3.5, the theorem follows.

4. Inverse-conjugate compositions

Let C be a k-composition. If C is inverse-conjugate, then k = |C| − k + 1 or
|C| = 2k−1. Thus inverse-conjugate compositions are defined only for odd weights.
In fact, every odd integer > 1 has a nontrivial inverse-conjugate composition. For
instance, (1, 2k−1) and (1k−1, k) are both inverse-conjugate compositions of 2k−1.

Consider a general composition,

C = (1a1 , b1, 1
a2 , b2, . . . , 1

ar , br), ai ≥ 0, bi ≥ 2.

Then, using the DD conjugation rule in Section 2, we obtain

C ′ = (a1 + 1, 1b1−2, a2 + 2, 1b2−2, . . . , 1br−1−2, ar + 2, 1br−1).
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Thus the conditions for C to be inverse-conjugate are

br = a1 + 1, br−1 = a2 + 2, . . . , b1 = ar + 2.

Hence we have proved:

Lemma 4.1. An inverse-conjugate composition C (or its inverse) has the form:

C = (1br−1, b1, 1
br−1−2, b2, 1

br−2−2, b3, . . . , br−1, 1
b1−2, br), bi ≥ 2. (4.1)

Note that the sum of the parts is 2(b1 + · · ·+ br)− (r− 1)(2)− 1 ≡ 1 (mod 2),
as expected.

Let (c1, . . . , ck) be an inverse-conjugate composition of n > 1. For any index
j < k with cj+1 6= 1, consider the sub-composition (c1, . . . , cj). First, notice the
following relation between the two “halves” of (4.1):

(1br−1, b1, . . . , bj , 1br−j−2) = (br−j − 1, 1bj−2, br−j+1, . . . , 1
b1−2, br)

′. (4.2)

Therefore, if |C| = 2k − 1, it is possible for the weight of either side of (4.2) to be
exactly k − 1. The latter case implies an instructive dissection of C:

C = (1br−1, b1, . . . , bj , 1
br−j−2)|(1) ] (br−j − 1, 1bj−2, br−j+1, . . . , 1

b1−2, br)

= (1br−1, b1, . . . , bj , 1
br−j−2)|(1) ] (1br−1, b1, . . . , bj , 1br−j−2)′.

where the last equality follows by conjugating both sides of (4.2).
The gist of the foregoing discussion is summarized in the next theorem.

Theorem 4.2. If C = (c1, . . . , ck) is an inverse-conjugate composition of n =
2k − 1 > 1, or its inverse, then there is an index j such that c1 + · · ·+ cj = k − 1
and cj+1 + · · ·+ ck = k with cj+1 > 1. Moreover,

(c1, . . . , cj) = (cj+1 − 1, cj+2, . . . , ck)
′ (4.3)

Thus C can be written in the form

C = A|(1) ]B such that B′ = A, (4.4)

where A and B are generally different compositions of k − 1.

It follows that an inverse-conjugate composition C of n > 1 cannot be self-
inverse, even though C is also inverse-conjugate (in contrast with the so-called
self-conjugate partitions of n > 2 [1, 4]).

The theorem implies the following result of MacMahon which he demonstrated
using the LG method.

Theorem 4.3 (MacMahon). The number of inverse-conjugate compositions of an
odd integer n > 0 equals the number of compositions of n which are self-inverse.
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Proof. We describe a bijection α between the two classes of compositions by in-
voking Theorem 4.2. If C |= 2k − 1 is inverse-conjugate, then C can be written in
the form C = A|(1) ] B or C = A ] (1)|B for certain compositions A,B, of k − 1
satisfying B′ = A.

In the first case we use (4.3) to get α(C) = A|[(1) ]B]′, which is a self-inverse
composition of the type A|(1)|A.

The second case, C = A ] (1)|B, implies that there is a part m > 1 such that
C = X|(m)|B, with X |= M < k − 1. Now split m between the two compositions
as follows: X|(m− 1)] (1)|B = (X,m− 1)] (1, B), which is in the first-case form.
Hence α(C) = (X,m − 1) ] (1, B)′, giving a self-inverse composition of the type
Y |(d)|Y , with d an odd integer > 1.

Conversely given a self-inverse composition, T = (b1, . . . , br) ≡ B|(d)|B of 2k−
1, we first write T as the join of two compositions of k − 1 and k, by splitting the
middle part. The middle part, by weight, is bj+1 such that sj = b1+ · · ·+bj ≤ k−1
and sj + bj+1 ≥ k. Thus

T 7→ (b1, . . . , bj)|(k−1−sj)](k−tj)|(bj+2, . . . , br) ≡ X|(k−1−sj)](k−tj)|X,
where tj = bj+2 + · · ·+ bk.

Hence α−1(T ) = X|(k − 1− sj) ] (k − tj , X)′, which is inverse-conjugate.

Example. Consider the inverse-conjugate composition of 15 given by

C = (1, 1, 1, 2, 3, 1, 2, 4).

Then since 1 + 1 + 1 + 2 < 7 and 1 + 1 + 1 + 2 + 3 > 7, we have

C = (1, 1, 1, 2)|(3)|(1, 2, 4)→ (1, 1, 1, 2, 2)] (1, 1, 2, 4)′ = (1, 1, 1, 2, 2)] (3, 2, 1, 1, 1),

which gives T = (1, 1, 1, 2, 5, 2, 1, 1, 1), a self-inverse composition of 15. Conversely,

(1, 1, 1, 2, 5, 2, 1, 1, 1)→ (1, 1, 1, 2, 2) ] (3, 2, 1, 1, 1)′ = (1, 1, 1, 2, 2) ] (1, 1, 2, 4),

which gives back (1, 1, 1, 2, 3, 1, 2, 4).
It can also be verified that C ′ = (4, 2, 1, 3, 2, 1, 1, 1) corresponds to the self-

inverse composition (4, 2, 1, 1, 1, 2, 4) = T ′ under the bijection.

Corollary 4.4. There are as many inverse-conjugate compositions of 2n − 1 as
there are compositions of n.

Proof. The proof can be deduced from Theorem 3.6 and Theorem 4.3, but we give
a direct proof. If n = 1, the composition (1) belongs trivially to the two classes of
compositions. So assume n > 1.

Let (c1, . . . , cn) be any inverse-conjugate composition of 2n− 1. Then by (4.4)
there is an index j such that c1 + · · ·+ cj = n− 1 or ck−j+1 + · · ·+ ck = n− 1.

There are c(n−1) inverse-conjugate compositions (c, . . . , cn) in which c1+ · · ·+
cj = n− 1, n > 1, and there distinct conjugates (i.e., inverses). Since there are no
self-inverse inverse-conjugate compositions, the total number of inverse-conjugate
compositions of 2n− 1 is 2c(n− 1) = c(n), as required.
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We can also give a bijection. According to Theorem 4.2 every inverse-conjugate
composition (c1, . . . , cn) satisfies c1 + · · · + cj = n − 1 and cj+1 + · · · + cn = n
with cj+1 > 1, or c1 + · · · + cj = n and cj+1 + · · · + cn = n − 1 with cj > 1, for
a certain index j. Now with each inverse-conjugate composition of the first type
associate the composition of n given by (c1, . . . , cj , 1), and with each of the second
type associate, (c1, . . . , cj), which is already a composition of n.

This gives the required bijection.

Example. We illustrate the second part of the proof of Corollary 4.4. There are
8 inverse-conjugate compositions of 7:

(1, 1, 1, 4), (1, 1, 2, 3), (1, 2, 2, 2), (1, 3, 1, 2),

(2, 1, 3, 1), (2, 2, 2, 1), (3, 2, 1, 1), (4, 1, 1, 1).

The corresponding list of compositions of 4, under the bijection, is:

(1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 3), (2, 1, 1), (2, 2), (3, 1), (4).

5. Further consequences

The machinery developed here can be used to relate compositions directly with bit
strings, that is, finite sequences of 0’s and 1’s.

Theorem 5.1.
(i) The number of compositions of n + 1 without the part m equals the number of
n-bit strings that avoid a run of m− 1 ones.

(ii) The number of compositions of n+1 in which m may appear only as a first or
last part equals the number of n-bit strings that avoid 01m−10.

Proof. To prove part (ii) we give a bijection between the two sets, using the Sub-
Sum and BitS conjugation methods. If C = (m, c1, c2, . . . ) |= n + 1, ci 6= m > 1,
then the image of C under the bijection (2.1) is L = (m,m+ c1,m+ c1 + c2, . . . ).
Since ci 6= m for all i, no pair of consecutive terms in L are separated by m − 1
elements. So the bit encoding of C avoids 10m−11. The same conclusion obviously
holds if we start with a composition that does not contain m as a part. Thus the
desired bijection is the map that takes a composition C of n with no intermediate
m’s to the bit encoding of the conjugate C ′.

The proof of part (i) is similar.

It turns out that the two classes of compositions in Theorem 5.1 are equinu-
merous, for m = 2, provided the weights differ by unity.

Theorem 5.2. The number of compositions of n in which 2 may appear only as a
first or last part equals the number of compositions of n+ 1 without 2’s.
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Proof. We provide a recursive proof. Let dn be the number of compositions of n
in which 2 may appear only as a first or last part, and let cn be the number of
compositions of n without 2’s.

Then, we first observe that

dn = cn + 2cn−2 + cn−4, (5.1)

since dn enumerates the set consisting of compositions without 2’s, those with
exactly one 2 at either end, and those with two 2’s at both ends.

The enumerator cn fulfills the following recurrence relations.

cn = 2cn−1 − cn−2 + cn−3; (5.2)

cn = cn−1 + cn−2 + cn−4; (5.3)

with the initial values c1 = c2 = 1.
For (5.2), we note that a composition counted by cn can be found in three ways:

(i) by adding 1 to the last part of a composition counted by cn−1, provided we
exclude compositions of n− 1 with last part 1;

(ii) by appending 1 to a composition counted by cn−1; and
(iii) by appending 3 to a composition counted by cn−3, since the previous two

types exclude the latter.
The numbers of compositions of n generated are, respectively, cn−1 − cn−2, cn−1
and cn−3. Hence altogether we obtain (5.2).

For (5.3), note that compositions counted by cn with first part 1 are also counted
by cn−1; those with first part > 1, that is, first part ≥ 3, are counted by cn−2,
with the exception of those with first part equal to 4. The latter are obtained by
appending 4 to compositions of n− 4 with no 2’s. Hence the result.

Now using (5.3) and (5.2), we obtain
dn = cn+2cn−2+cn−4 = cn+2cn−2+cn−cn−1−cn−2 = 2cn−cn−1+cn−2 = cn+1,

as required.

We are presently unable to give a direct bijection between the two sets of com-
positions in Theorem 5.2. The theorem can, of course, be formulated in terms of
bit strings using the BitS conjugation method (cf. Theorem 5.1):

Corollary 5.3. The number of n-bit strings avoiding 010 is equal to the number
of (n+ 1)-bit strings avoiding isolated 1’s.

However, even in this new form, the difficulty of finding a bijective proof seems
to persist. It is possible to give a recursive proof of Corollary 5.3 that is similar to
the proof of Theorem 5.2.
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Abstract

We consider here the sequence gn defined by the non-homogeneous recur-
rence relation gn+2 = gn+1 +gn + Atn, n ≥ 0, A 6= 0 and t 6= 0, α, β where
α and β are the roots of x2 − x− 1 = 0 and g0 = 0, g1 = 1.

We give some basic properties of gn.Then using Elmore’s technique and
exponential generating function of gn we generalize gn by defining a new
sequence Gn. We prove that Gn satisfies the recurrence relation Gn+2 =
Gn+1 +Gn +Atnext.

Using Generalized circular functions we extend the sequence Gn further
by defining a new sequence Qn(x). We then state and prove its recurrence
relation. Finally we make a note that sequences Gn(x) and Qn(x) reduce to
the standard Fibonacci Sequence for particular values.

1. Introduction

The Fibonacci Sequence {Fn} is defined by the recurrence relation

Fn+2 = Fn+1 + Fn, n ≥ 0 (1.1)

with
F0 = 0, and F1 = 1.

We consider here a slightly more general non-homogeneous recurrence relation
which gives rise to a generalized Fibonacci Sequence which we call The Pseudo
Fibonacci Sequence. But before defining this sequence let us state some identities
for the Fibonacci Sequence.
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2. Some Identities for {Fn}
Let α and β be the distinct roots of x2 − x− 1=0, with

α =
(1 +

√
5)

2
and β =

(1−
√
5)

2
. (2.1)

Note that
α+ β = 1, αβ = −1 and α− β =

√
5. (2.2)

Binets formula for {Fn} is given by

Fn =
αn − βn√

5
. (2.3)

Generating function for {Fn} is

F (x) =
∞∑

n=0

Fnx
n =

x

(1− x− x2) . (2.4)

Exponential Generating Function for {Fn} is given by

E(x) =
∞∑

n=0

Fnx
n

n!
=
eαx − eβx√

5
. (2.5)

3. Elmores Generalisation of {Fn}
Elmore [1] generalized the Fibonacci Sequence {Fn} as follows. He takes E0(x) =
E(x) as in (2.5) and then defines En(x) of the generalized sequence {En(x)} as the
nth derivatives with respect to x of E0(x). Thus we see from (2.5) that

En(x) =
αneαx − βneβx√

5
.

Note that
En(0) =

αn − βn√
5

= Fn.

The Recurrence relation for {En} is given by

En+2(x) = En+1(x) + En(x).

4. Definiton of Pseudo Fibonacci Sequence

Let t 6= α, β where α, β are as in (2.1). We define the Pseudo Fibonacci Sequence
{gn} as the sequence satisfying the following non-homogeneous recurrence relation.

gn+2 = gn+1 + gn +Atn, n ≥ 0, A 6= 0 and t 6= 0, α, β (4.1)
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with g0 = 0 and g1 = 1. The few initial terms of {gn} are

g2 = 1 +A,

g3 = 2 +A+At.

Note that for A = 0 the above terms reduce to those for {Fn}.

5. Some Identities for {gn}
Binet’s formula: Let

p = p(t) =
A

t2 − t− 1
. (5.1)

Then gn is given by

gn = c1α
n + c2β

n +
Atn

t2 − t− 1
(5.2)

= c1α
n + c2β

n + ptn, (5.3)

where
c1 =

1− p(t)(t− β)
α− β , (5.4)

c2 =
p(t)(t− α)− 1

α− β . (5.5)

The Generating Function G(x) =
∞∑
n=0

gnx
n is given by

G(x) =
x+ x2(A− t)

(1− xt)(1− x− x2) , 1− xt 6= 0. (5.6)

Note from (5.6) that if A = 0

G(x) =
x

1− x− x2 ,

which, as in section (2.4), is the generating function for {Fn}.
The Exponential Generating Function E∗(x) =

∞∑
n=0

gnx
n

n! is given by

E∗(x) = c1e
αx + c2e

βx + pext, (5.7)

where c1 and c2 are as in (5.4) and (5.5) respectively. Note that if A=0 we see
from (5.3), (5.4) and (5.5) that

p = 0, c1 =
1√
5
, c2 =

−1√
5
,

so that E∗(x) reduces to eαx−eβx√
5

which, as in (2.5), is the Exponential generating
function for {Fn}.
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6. Generalization of {gn} by applying
Elmore’s Method

Let
E∗0 (x) = E∗(x) = c1e

αx + c2e
βx + pext

be the Exponential Generating Function of {gn} as in (5.7). Further, let Gn(x) of
the sequence {Gn(x)} be defined as the nth derivative with respect to x of E∗0 (x),
then

Gn(x) = c1α
neαx + c2β

neβx + ptnext. (6.1)

Note that
Gn(0) = c1α

n + c2β
n + ptn = gn, (6.2)

which, in turn, reduces to Fn if A = 0.

Theorem 6.1. The sequence {Gn(x)} satisfies the non-homogeneous recurrence
relation

Gn+2(x) = Gn+1(x) +Gn(x) +Atnext. (6.3)

Proof.
R.H.S. = c1α

n+1eαx + c2β
n+1eβx + ptn+1ext

+ c1α
neαx + c2β

neβx + ptnext +Atnext

= c1α
neαx(α+ 1) + c2β

neβx(β + 1)

+ ptnext(t+ 1) + p(t2 − t− 1)tnext.

(6.4)

Since α and β are the roots of x2 − x− 1 = 0, α+1 = α2 and β + 1 = β2 so that
(6.4) reduces to

R.H.S = c1α
n+2eαx + c2β

n+2eβx + ptn+2ext = Gn+2(x).

7. Generalization of Circular Functions

The Generalized Circular Functions are defined by Mikusinsky [2] as follows: Let

Nr,j =
∞∑

n=0

tnr+j

(nr + j)!
, j = 0, 1, . . . , r − 1; r ≥ 1, (7.1)

Mr,j =
∞∑

n=0

(−1)r tnr+j

(nr + j)!
, j = 0, 1, . . . , r − 1; r ≥ 1. (7.2)

Observe that

N1,0(t) = et, N2,0(t) = cosh t, N2,1(t) = sinh t,

M1,0(t) = e−t, M2,0(t) = cos t, M2,1(t) = sin t.

208 C. N. Phadte, S. P. Pethe



Differentiating (7.1) term by term it is easily established that

N
(p)
r,0 (t) =

{
Nr,j−p(t), 0 ≤ p ≤ j
Nr,r+j−p(t), 0 ≤ j < j < p ≤ r (7.3)

In particular, note from (7.3) that

N
(r)
r,0 (t) = Nr,0(t),

so that in general
N

(nr)
r,0 (t) = Nr,0(t), r ≥ 1. (7.4)

Further note that
Nr,0(0) = N

(nr)
r,0 (0) = 1.

8. Application of Circular functions
to generalize {gn}

Using Generalized Circular Functions and Pethe-Phadte technique [3] we define
the sequence Qn(x) as follows. Let

Q0(x) = c1Nr,0(α
∗x) + c2Nr,0(β

∗x) + pNr,0(t
∗x), (8.1)

where α∗ = α1/r, β∗ = β1/r and t∗ = t1/r, r being the positive integer. Now define
the sequence {Qn(x)} successively as follows:

Q1(x) = Q
(r)
0 (x), Q2(x) = Q

(2r)
0 (x),

and in general
Qn(x) = Q

(nr)
0 (x),

where derivatives are with respect to x. Then from (8.1) and using (7.4) we get

Q1(x) = c1αNr,0(α
∗x) + c2βNr,0(β

∗x) + ptNr,0(t
∗x),

Q2(x) = c1α
2Nr,0(α

∗x) + c2β
2Nr,0(β

∗x) + pt2Nr,0(t
∗x),

Qn(x) = c1α
nNr,0(α

∗x) + c2β
nNr,0(β

∗x) + ptnNr,0(t
∗x). (8.2)

Observe that if r = 1, x = 0, A = 0, {Qn(x)} reduces to {Fn}.

Theorem 8.1. The sequence {Gn(x)} satisfies the non-homogeneous recurrence
relation

Qn+2(x) = Qn+1(x) +Qn(x) +AtnNr,0(t
∗x). (8.3)
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Proof.

R.H.S. = c1α
n+1Nr,0(α

∗x) + c2β
n+1Nr,0(β

∗x) + ptn+1Nr,0(t
∗x)

+ c1α
nNr,0(α

∗x) + c2β
nNr,0(β

∗x) + ptnNr,0(t
∗x) +AtnNr,0(t

∗x)

= c1α
nNr,0(α

∗x)(α+ 1) + c2β
nNr,0(β

∗x)(β + 1) + tnNr,0(t
∗x)(pt+ p+A). (8.4)

Using the fact that α and β are the roots of x2 − x − 1 = 0 and (5.1) in (8.4) we
get

R.H.S. = c1α
n+2Nr,0(α

∗x) + c2β
n+2Nr,0(β

∗x) + ptn+2Nr,o(t
∗x) = Qn+2(x).

It would be an interesting exercise to prove 7 identities for Qn(x) similar to
those proved in Pethe-Phadte with respect to Pn(x) [3].

Acknowledgments. We would like to thank the referee for their helpful sugges-
tions and comments concerning the presentation of the material.
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Abstract

This paper formulates a definition of Fibonacci polynomials which is
slightly different from the traditional definitions, but which is related to the
classical polynomials of Bernoulli, Euler and Hermite. Some related congru-
ence properties are developed and some unanswered questions are outlined.
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1. Introduction

The purpose of this paper is to consider some congruences associated with a gener-
alized Fibonacci polynomial which is defined in the next section in relation to two
generalized arbitrary order (r ≥ 2) Fibonacci sequences, {un} and {vn}:

un =
∑r

j=1(−1)j+1Pjun−j n > 0

un = 1 n = 0
un = 0 n < 0

(1.1)
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and
vn =

∑r
j=1(−1)j+1Pjvn−j n ≥ r

vn =
∑r

j=1 α
n
j 0 ≤ n < r

vn = 0 n < 0

(1.2)

where the Pj are arbitrary integers and the αj are the roots, assumed distinct, of
the auxiliary equation for the recurrence relations above, namely,

0 = xr −
r∑

j=1

(−1)j+1Pjx
r−j .

For example, when r = 2 we have un = P1un−1 − P2un−2 with u0 = 1, u1 = P1,
u2 = P 2

1 −P2, and so on. These are referred to as the Lucas fundamental numbers
(see [8]). When r = 2 the {vn correspond to the Lucas primordial numbers with
v0 = 2, v1 = α1 + α2 = P1, v2 = α2

1 + α2
2 = P 2

1 − 2P2 and so on (see [5], Table 1).

n 0 1 2 3 · · ·
un 1 P1 P 2

1 − P2 P 3
1 − 2P1P2 + P3 · · ·

vn r P1 P
2
1 − 2P2 P

3
1 − 3P1P2 + rP3 · · ·

Table 1: First four terms of {un} and {vn}

In [11] the ordinary generating function

∞∑

n=0

unx
n =

r∏

j=1

(1− αjx)
−1 (1.3)

is used to show that
∞∑

n=0

unx
n = exp

( ∞∑

m=1

vm
xm

m

)
(1.4)

thus suggesting a generalized Fibonacci polynomial un(x) defined formally as

∞∑

n=0

un(x)
tn

n!
= exp

(
xt+

∞∑

m=1

vm
tm

m

)
. (1.5)

Then from (1.4) and (1.5) we get (1.6) and (1.7)

un(0) = unn! (1.6)

and thus ∞∑

n=0

un(x)
tn

n!
= ext

∞∑

n=0

un(0)
tn

n!
(1.7)

by analogy with the polynomials of Bernoulli, Euler and Hermite (see [2, 9]). Other
analogies with these polynomials can also be obtained in [12].
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We also note that there are many other ways of defining Fibonacci polynomials
and their generalizations in literature, (see [1, 3, 6]). The aim in this paper is to
extend some of the results associated with (1.5) to congruences (see [7]). Some of
these properties for Fibonacci numbers were explored in [13]. Daykin, Dresel and
Hilton also obtained some similar results by combining the roots of the auxiliary
equation to aid their study of the structure of a second order recursive sequence in
a finite field (see [4]).

2. Fibonacci polynomials

We emphasize that the concern here is with the formal aspects of the theory and in
the term-by-term differentiation of series we assume that conditions of continuity
and uniform convergence are satisfied in the appropriate closed intervals. Thus a
result we shall find useful is a recurrence relation for these Fibonacci polynomials

un+1(x) = xun(x) +
n∑

j=0

njvj+1un−j(x) (2.1)

in which nj is the falling factorial coefficient.

Proof of (2.1). Since

∞∑

n=0

un(x)
tn

n!
= exp

(
xt+

∞∑

m=1

vm
tm

m

)

and
∂

∂t

∞∑

n=0

un(x)
tn

n!
=
∞∑

n=0

un+1(x)
tn

n!

and

∂

∂t

(
exp

(
xt+

∞∑

m=1

vm
tm

m

))
=

(
x+

∞∑

m=0

vm+1t
m

)
exp

(
xt+

∞∑

m=1

vm
tm

m

)
,

we have that
∞∑

n=0

un+1(x)
tn

n!
=

(
x+

∞∑

m=0

vm+1t
m

) ∞∑

n=0

un(x)
tn

n!

=
∞∑

n=0

xun(x)
tn

n!
+

( ∞∑

m=0

vm+1t
m

)( ∞∑

n=0

un(x)
tn

n!

)

=
∞∑

n=0

xun(x)
tn

n!
+
∞∑

n=0

n∑

j=0

njvj+1un−j(x)
tn

n!

which yields the required result on equating coefficients of t.
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When x = 0 this becomes

(n+ 1)un+1 =
n∑

j=0

vj+1un−j (2.2)

since n! = nj(n− j)!. When r = 2 and P1 = −P2 = 1, equation (2.2) becomes the
known (see [5])

nFn+1 =
n−1∑

j=0

Lj+1Fn−j .

Now from (1.5) it follows that

∞∑

n=0

un(x)
tn

n!
= exp(xt) exp

( ∞∑

m=1

vm
tm

m

)

=
∞∑

k=0

xk
tk

k!

∞∑

j=0

ujt
j

=
∞∑

n=0

n∑

k=0

n!

k!
un−kx

k t
n

n!
.

So that on equating coefficients of t we get

un(x) =

n∑

k=0

n!

k!
un−kx

k (2.3)

and with (1.6)

un(x) =
n∑

k=0

n!

k!

un−k(0)
(n− k)!x

k

so that

un(x) =
n∑

k=0

(
n
k

)
un−k(0)x

k. (2.4)

Then
u0(x) = u0 = 1.

It is of interest to note another connection between these Fibonacci polynomials
and the classical polynomials. We can write equation (2.4) in the suggestive form

un(x) = (x+ un(0))
n (2.5)

which is analogous to the well-known

Bn(x) = (x+Bn(0))
n (2.6)

for the Bernoulli polynomials, and in which it is understood that after the expansion
of the right hand sides of (2.1)and (2.2), terms of the form ak are replaced by ak
as in the umbral calculus (see [10]).
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3. Fibonacci polynomial congruences

We now use induction on t and n to prove that

un+tm(x) ≡ un(x) (um(x))
t

(mod m) (3.1)

Proof of (3.1). When t = 0, the result is obvious for all n. When t = 1 and n = 1,
we note from (2.1) that u1(x) = x+ v1, and

um+1(x) = (x+ v1)um(x) +
m∑

j=1

mjvj+1um−j(x)

≡ (x+ v1)um(x) (mod m)

≡ u1(x)um(x) (mod m).

Assume the result is true for t = 1, and n = 1, 2, · · · , s; that is,

um+n(x) ≡ um(x)un(x) (mod m), n = 1, 2, · · · , s.

Then

um+s+1(x) = (x+ v1)um+s(x) +

m+s∑

j=1

(m+ s)jvj+1um+s−j(x)

≡ (x+ v1)um+s(x) +

s∑

j=1

sjvj+1um+s−j(x) (mod m)

since

(m+ s)j = (m+ s)(m+ s− 1) · · · (m+ s− j + 1)

≡ s(s− 1) · · · (s− j + 1) (mod m).

Thus

um+s+1(x) ≡ (x+ v1)um(x)us(x) +
s∑

j=1

sjvj+1us−j(x)um(x) (mod m)

= um(x)


(x+ v1)us(x) +

s∑

j=1

sjvj+1us−j(x)


 (mod m)

= um(x)us+1(x) (mod m).

So when t = 1, for all n,

un+m(x) ≡ un(x) (um(x))
1

(mod m),

when t = 2, for all n,

un+2m(x) ≡ un(x) (um(x))
2

(mod m).
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Assume the result holds for t = 3, 4, · · · , k:

un+(k+1)m(x) ≡ un+km(x)um(x) (mod m)

≡
(
un(x) (um(x))

k
)
um(x) (mod m)

≡ un(x) (um(x))
k+1

(mod m)

and this completes the proof of (3.1).

As a simple illustration of (3.1), if r = 2, m = 2, n = 3, and t = 1, then from
(2.3)

u5(x) =

5∑

k=0

5!

k!
u5−kx

k

≡ 5!

4!
u1x

4 +
5!

5!
u0x

5 (mod 2)

≡ 5x4 + x5 (mod 2)

≡ x4 + x5 (mod 2)

and similarly,

u3(x) ≡ 3x2 + x3 (mod 2)

≡ x2 + x3 (mod 2)

u2(x) ≡ x2 (mod 2)

or
u5(x) ≡ u3(x) (u2(x)) (mod 2).

It follows that for n = 2, 3, · · · ,

un(x) (um(x))
t − un+tm(x) =

tn∑

j=−ntm
Bj(n)un+j(x) (3.2)

in which the Bj(n) = Bj(n; t,m) are also polynomials in n with integer coefficients
modulo m. We may also assume that in the summation Bj(n) = 0 (−ntm ≤ j <
−n).

4. Conclusion

The {us(0)} satisfy recurrence relations with variable coefficients:

un(0) = n!un

= n!

r∑

j=1

(−1)j+1Pjun−j
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=
r∑

j=1

(−1)j+1Pj
n!

(n− j)!un−j(0).

This may be worthy of further separate investigation, as may two-dimensional
polynomials of the form {um,n(x)} to correspond with horizontal and vertical tilings
of Fibonacci numbers.
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Abstract

We all recognize 0, 1, 1, 2, 3, 5, 8, 13, . . . but what about 1, 2, 4, 6, 3, 9, 12, 8,
10, 5, 15, . . .? If you come across a number sequence and want to know if it has
been studied before, there is only one place to look, the On-Line Encyclopedia
of Integer Sequences (or OEIS). Now in its 49th year, the OEIS contains
over 220,000 sequences and 20,000 new entries are added each year. This
article will briefly describe the OEIS and its history. It will also discuss some
sequences generated by recurrences that are less familiar than Fibonacci’s,
due to Greg Back and Mihai Caragiu, Reed Kelly, Jonathan Ayres, Dion
Gijswijt, and Jan Ritsema van Eck.
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1. The Fibonacci numbers

The Fibonacci numbers have been in the On-Line Encyclopedia of Integer Se-
quences R© (or OEIS R©) right from the beginning. When I started collecting se-
quences as a graduate student in 1964, the Fibonacci numbers became sequence
A000045 (incidentally, 49 years later, sequences being added have A-numbers
around A2220001). Over 3000 sequences in the OEIS mention Fibonacci’s name in
their definition.

Some especially noteworthy variations on the Fibonacci numbers were recently
defined by Back and Caragiu [2] in the Fibonacci Quarterly. The simplest of their

1As of February 2013. Throughout this article, six-digit numbers prefixed by A refer to entries
in the OEIS [15]. As in the OEIS, we adopt the convention that a(n) denotes the nth term of the
sequence being discussed.
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examples replaces the Fibonacci recurrence by

a(n) = gpf(a(n− 1) + a(n− 2)), (1.1)

where gpf stands for greatest prime factor (A006530). If we start with 1, 1 we get

1, 1, 2, 3, 5, 2, 7, 3, 5, 2, 7, . . . (1.2)

(A175723), and the cycle 3, 5, 2, 7 repeats for ever. Back and Caragiu show that no
matter what the initial values are, (1.1) always becomes periodic and that 3, 5, 2, 7
is the only nontrivial cycle. On the other hand, consider

a(n) = gpf(a(n− 1) + a(n− 2) + a(n− 3)). (1.3)

If we start with 1, 1, 1 we get

1, 1, 1, 3, 5, 3, 11, 19, 11, 41, 71, 41, 17, 43, 101, 23, . . . (1.4)

(A177904), which after 86 steps enters a cycle of length 212. Now it is only a
conjecture that (1.3) always becomes periodic, for any initial values.

Another interesting variant of the Fibonacci sequence2 was very recently intro-
duced into the OEIS by Reed Kelly [12]. Kelly’s recurrence is

a(n) =
a(n− 1) + a(n− 3)

gcd{a(n− 1), a(n− 3)} , (1.5)

with initial values 1, 1, 1:

1, 1, 1, 2, 3, 4, 3, 2, 3, 2, 2, 5, 7, 9, 14, 3, 4, 9, 4, 2, . . . (1.6)

(A214551). This sequence appears to grow exponentially (a(n) ≈ const.·e0.123...n?),
but essentially nothing has been proved about it.

The OEIS is an endless source of lovely problems!

2. How the OEIS is used

However, the main use for the OEIS is as a reference work for identifying sequences
and telling you what is known about them. If you come across a sequence of
numbers, and you want to know if it has been studied before, there is only one
place to look, the OEIS [15] (http://oeis.org).

You enter the first few terms3, and click “Submit”. If you are lucky, the OEIS
will return one or more sequences that match what you entered, and, for each one,
it will tell you such things as:

2Or, more precisely, of another medieval sequence, the Narayana cows sequence, A000930.
3When looking up a sequence, it is recommended that you omit the first term or two, since

different people may start a sequence in different ways.
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– The definition of the sequence

– The first 10, or 10,000, or sometimes 500,000 terms

– Comments explaining further properties of the sequence

– Formulas for generating the sequence

– Computer programs for producing the sequence

– References to books and articles where the sequence is mentioned

– Links to web pages on the Internet where the sequence has appeared

– The name of the person who submitted the sequence to the OEIS

– Examples illustrating some of the terms of the sequence (for example, se-
quence A000124, which gives the maximal number of pieces that can be
obtained when cutting a circular pancake with n cuts, is illustrated with
pictures showing the pieces obtained with 1, 2, 3, 4 and 5 cuts)

– The history of each entry in the OEIS as it has evolved over time

You can also view graphs or plots of the sequence, or listen to it when it is converted
to sounds.

If your sequence is not found, you will be encouraged to submit it. This will
establish your priority over the sequence, and will help the next person who comes
across it. Only sequences of general interest should be submitted. The sequence of
primes whose decimal expansion begins with 2012 is an example of a sequence that
would not be of general interest. Published sequences are almost always acceptable.

If your sequence was not in the OEIS, you should also try sending it to our
email server Superseeker (see http://oeis.org/ol.html), which will try hard to
find an explanation for your sequence. For example, Superseeker might suggest
a recurrence or generating function for your sequence, or tell you that it can be
obtained by applying one of over a hundred different transformations to one of
the over 200,000 sequences in the OEIS. Superseeker is a very powerful tool for
analyzing sequences.

Accuracy has always been one of the top priorities in the OEIS. Its standards are
those of a mathematics reference work. Ideally, every number, formula, computer
program, etc., should be absolutely correct. Formulas that are stated uncondi-
tionally should be capable of being proved, and otherwise should be labeled as
conjectures. Of course, as the database has grown, these goals have become harder
and harder to achieve. Many non-mathematicians have difficulty in understanding
the difference between a theorem and a conjecture. (“My formula fits the first 30
terms, so obviously it must be correct.”)

The OEIS has often been called one of the most useful mathematical sites on the
Internet. There is a web page (http://oeis.org/wiki/Works\_Citing\_OEIS)
that lists over 3000 articles and books that reference it.
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3. History of the OEIS

I started collecting sequences in 1964, entering them on punched cards (the original
motivation was to find an explanation for various sequences that had arisen in
my dissertation, the simplest of which was the sequence that became A000435).
Eventually two books were published ([16] in 1973, with 2372 entries, and [17],
written with Simon Plouffe, in 1995, with 5847 sequences).

In 1996, when the number of entries had risen to 10,000, I put the database
on the Internet, calling it the The On-Line Encyclopedia of Integer Sequences or
OEIS. By 2009, the database had grown to over 150,000 entries, and was becoming
too big for one person to manage, so I set up a foundation, The OEIS Foundation
Inc (http://oeisf.org), whose goals are to own the intellectual property of the
OEIS, to maintain it, and to raise funds to support it.

With major help from Russ Cox (of Google) and my colleague David Applegate
(at AT&T), I moved the OEIS off my home page at AT&T to a commercial hosting
service, and attempted to set it up as a “wiki.” However, this proved to be extremely
difficult, and it required a tremendous amount of work by Russ Cox before it started
working properly. It was not until November 11, 2010 that the OEIS was officially
launched in its new home at http://oeis.org. This would not have been possible
without the help that Russ Cox and David Applegate provided.

The fact that the OEIS is now a wiki means that I no longer have to process
all the updates myself. Once a user has registered4, he or she can propose new
sequences or updates to existing sequences. All submissions are reviewed by a
panel of about 80 editors. Nearly two years after it was launched, the wiki system is
working well. Since November 2010 the database has grown from 180,000 sequences
to its current number of around 220,000. From 1996 to the present, the database
has grown at between 10,000 and 20,000 new sequences per year, with about an
equal number of entries that are updated.

More about the history of the OEIS can be found on the OEIS Foundation web
site, http://oeisf.org.5

4. The poster and the OEIS movie

To celebrate the creation of the the OEIS Foundation, David Applegate and I
made a poster that shows 25 especially interesting sequences (several of which will
be mentioned in this article). It can be downloaded (along with a key) from the
Foundation web site.

Also, Tony Noe made a movie that shows graphs of the first thousand terms of a
thousand sequences from the OEIS: it is quite spectacular. It runs for 8.5 minutes,

4All readers are encouraged to register: go to http://oeis.org/wiki and click “Register.”
5As President, it would be remiss of me not to mention that the OEIS Foundation is a charitable

organization and donations are tax-deductible in the USA. The web site is free, and none of the
trustees receive a salary. To make a donation, please go to http://oeisf.org.
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and it too can be found on the Foundation web site. It is also on YouTube (search
for “OEIS movie”).

5. Puzzles

One of the goals of the OEIS has always been to help people get higher scores on
IQ tests, and the database includes many sequences that have appeared as puzzles.
The following are a few examples. If you can’t solve them, you know where to find
the answers!

• 61, 21, 82, 43, . . .

• 2, 4, 6, 30, 32, 34, 36, 40, 42, 44, 46, 50, 52, 54, 56, 60, 62, 64, 66, 2000, . . .

• 0, 0, 0, 0, 4, 9, 5, 1, 1, 0, 55, 55, . . .

• 5, 8, 12, 18, 24, 30, 36, 42, 52, 60, . . .

• 1, 2, 6, 21, 85, 430, 2586, 18109, 144880, . . .

The last one is a bit tricky, but it did appear on a quiz.

6. Two sequences that agree for a long time

People often ask if it is possible for two sequences to agree for many terms yet not
be the same. Here is an extreme example. The sequences

⌊
2n

log 2

⌋
and

⌈
2

21/n − 1

⌉

both begin
2, 5, 8, 11, 14, 17, 20, 23, 25, 28, 31, 34, 37, . . .

(A078608). In fact they agree for the first 777451915729367 terms! There are
infinitely many disagreements, the positions of which form sequence A129935:

777451915729368, 140894092055857794, 1526223088619171207, 3052446177238342414, . . .

7. Theorems resulting from the OEIS

Another question that is often asked is if there are any theorems that have resulted
from the OEIS. The answer is that there are many such examples. In the list of
papers that cite the OEIS (http://oeis.org/wiki/Works\_Citing\_OEIS) one
will find numerous acknowledgments that say things like “This result was discovered
with the help of the OEIS.”
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I will give three concrete examples of theorems that were discovered with the
help of the OEIS. The first concerns the remainder term in Gregory’s series for
π/2,

π

2
= 2

∞∑

k=1

(−1)k+1

2k + 1
= 2
(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
, (7.1)

which is famous for converging very slowly. In 1987, Joseph North observed that if
one truncates the series after 50,000 terms, the answer is of course wrong. There is
an error in the fifth decimal place. Surprisingly, he noticed that the next nine digits
are correct, then there is an error, then there are nine more correct digits, another
error, and so on. Here is the decimal expansion of the truncated sum followed by
the true value of π/2 (the sequences of digits form A013706 and A019669). The
digits that differ are in bold-face.

1.570796326794896619231321691639751442098584699687 . . . (truncated)
1.570786326794897619231321191639752052098583314687 . . . (true value)

The differences between the corresponding bold-faced terms are

1,−1, 5,−61, 1385, . . . .

Jonathan Borwein looked up this sequence in [16], and found that (apart from signs)
it appeared to be the Euler numbers, A000364. The end result of this investigation
was a new theorem.

Theorem 7.1 (Borwein, Borwein and Dilcher [4]; see also [3, pp. 28–29], [5]).

π

2
− 2

N/2∑

k=1

(−1)k+1

2k + 1
∼
∞∑

m=0

Em

N2m+1
, (7.2)

where the Em are the Euler numbers (A000364):

1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, . . . .

The second example is one that I was involved with personally. It began when
Eric W. Weisstein (at Wolfram Research, and creator of MathWorld) wrote to
me about a discovery he had made. He had been classifying real matrices of 0’s
and 1’s according to various properties, and he found that the numbers of such
matrices all of whose eigenvalues were positive were 1, 3, 25, 543, 29281 for matrices
of orders 1, 2, . . . , 5. He observed that these numbers coincided with the beginning
of sequence A003024 (whose definition on the surface seemed to have nothing to do
with eigenvalues), and he conjectured that the sequences should in fact be identical.
He was right, and this led to the following theorem.

Theorem 7.2 ([14]). The number of acyclic directed graphs with n labeled vertices
is equal to the number of n×n matrices of 0’s and 1’s all of whose eigenvalues are
real and positive.
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The third example is a result of Deutsch and Sagan [8]. It is well-known that
the famous Catalan numbers

Cn :=
1

n+ 1

(
2n

n

)

(A000108) are odd if and only if n = 2k− 1 for some k. Deutsch and Sagan proved
(among other things) an analogous result for the almost equally-famous Motzkin
numbers (A001006),

Mn :=

n∑

k=1

(
n

2k

)
Ck.

Theorem 7.3 ([8]). Mn is even if and only if n ∈ 4S − 2 or 4S − 1, where

S := (1, 3, 4, 5, 7, 9, 11, 12, 13, 15, . . .)

lists the numbers whose binary expansion ends with an even number of 0’s (A003159).

8. Three unusual recurrences

The Fibonacci recurrence is very nice, but it is 800 years old. In the last section
of this article I will discuss some modern recurrences that I find very appealing.

8.1. The EKG sequence

n

a
(n

)

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

Figure 1: The first 100 terms of the EKG sequence, with successive
points joined by lines
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n

a
(n

)

800 850 900 950 1000

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

Figure 2: Terms 800 to 1000 of the EKG sequence

Jonathan Ayres contributed this to the OEIS in 2001 [1]. The first 18 terms are

1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20, . . .

(A064413), and the defining recurrence is a(1) = 1, a(2) = 2, and, for n ≥ 3,

a(n) is the smallest natural number not yet in the sequence
which has a common factor > 1 with the previous term.
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Figure 3: Scatter-plot of the first 1000 terms of the EKG sequence.
They lie roughly on three almost-straight lines.
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Thus a(3) must have a common factor with 2, i.e. it must be even, and 4 is the
smallest candidate, so a(3) = 4. The next term must also be even, so a(4) = 6.
The smallest number not yet in the sequence which has a common factor with 6
is 3, so a(5) = 3. Similarly, a(6) = 9, a(7) = 12, a(8) = 8, a(9) = 10, a(11) = 5,
a(12) = 15, and so on. Jeffrey Lagarias, Eric Rains and I studied this sequence in
[13]. We called it the EKG sequence, since it looks like an electrocardiogram when
plotted (Figs. 1, 2).

It is not difficult to show that the primes appear in increasing order, and that
each odd prime p is either preceded by 2p and followed by 3p, or is preceded by
3p and followed by 2p (as we just saw, 3 was preceded by 6 and followed by 9, 5 is
preceded by 10 and followed by 15).6

By definition, no number can can be repeated. But does every number appear?
The answer is Yes.

Theorem 8.1. The EKG sequence is a permutation of the natural numbers.

Sketch of Proof. (i) If infinitely many multiples of some prime p occur in the se-
quence, then every multiple of p must occur. (For if not, let kp be the smallest
missing multiple of p. Every number below kp either appears or it doesn’t, but
once we get to a multiple of p beyond all those terms, the next term must be kp,
which is a contradiction.) (ii) If every multiple of a prime p appears, then every
number appears. (The proof is similar.) (iii) Every number appears. (For if there
are only finitely many different primes among the prime factors of all the terms,
then some prime must divide infinitely many terms, and the result follows from
(i) and (ii). On the other hand, if infinitely many different primes p appear, then
there are infinitely many terms 2p, as noted above, so 2 appears infinitely often,
and again the result follows from (i) and (ii).)

Although the initial terms of the sequence jump around, when we look at the
big picture we find that the points lie very close to three almost-straight lines (Fig.
3). This is somewhat similar to the behavior of the prime numbers, which are
initially erratic, but lie close to a smooth curve (since the nth prime is roughly
n log n) when we look at the big picture – see Don Zagier’s lecture on “The first 50
million prime numbers” [18].

In fact, we have a precise conjecture about the three lines on which the points
lie. We believe – but are unable to prove – that almost all a(n) satisfy the asymp-
totic formula a(n) ∼ n(1 + 1/(3 log n)) (the central line in Fig. 3), and that the
exceptional values a(n) = p and a(n) = 3p, for p a prime, produce the points on
the lower and upper lines. We were able to show that the sequence has essentially
linear growth (there are constants c1 and c2 such that c1n < a(n) < c2n for all n),
but the proof of even this relatively weak result was quite difficult. It would be
nice to have better bounds.

6We conjectured that p was always preceded by 2p rather than 3p. This was later proved by
Hofman and Pilipczuk [11].
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8.2. Gijswijt’s sequence and the Curling Number Conjecture

1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2 2 2 3 2

Table 1: The first 98 terms of Gijswijt’s sequence (A090822)

We start by defining the curling number of a sequence. Let S be a finite nonempty
sequence of integers. By grouping consecutive terms, it is always possible to write
it as S = X Y Y · · · Y = X Y k, where X and Y are sequences of integers and Y is
nonempty. There may be several ways to do this: choose the one that maximizes
the value of k: this k is the curling number of S.

For example, if S = 01 2 2 1 2 2 1 2 2, we could write it as X Y 2, where X =
01 2 2 1 2 2 1 and Y = 2, or as X Y 3, where X = 0 and Y = 12 2. The latter
representation is to be preferred, since it has k = 3, and as k = 4 is impossible, the
curling number of this S is 3.

In 2004, Dion Gijswijt, then a graduate student at the University of Amsterdam
and also the puzzle editor for the Dutch magazine Pythagoras, contributed the
following sequence to the OEIS. Start with a(1) = 1, and, for n ≥ 2, use the
recurrence

a(n) = curling number of a(1), . . . , a(n− 1).

The beginning of the sequence is shown in Table 1 (it has been broken up into
sections to show where the curling number drops back to 1):

This sequence was analyzed by Gijswijt, Fokko van de Bult, John Linderman,
Allan Wilks and myself [6]. The first time a 4 appears is at a(220). We computed
several million terms without finding a 5, and for a while we wondered if perhaps
no term greater than 4 was ever going to appear. However, we were able to show
that a 5 does eventually appear, although the universe would grow cold before a
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direct search would find it. The first 5 appears at about term

1010
23
.

We also showed that the sequence is actually unbounded, and we conjecture that
the first time that a number m (= 5, 6, 7, . . .) appears is at about term number

22
34

··
·m−1

,

a tower of height m− 1.
Our arguments could be considerably simplified if the Curling Number Conjec-

ture were known to be true. This states that:

If one starts with any initial sequence of integers, and extends
it by repeatedly calculating the curling number and appending
it to the sequence, the sequence will eventually reach 1.

The conjecture is still open. One way to tackle it is to consider starting se-
quences S0 that contain only 2’s and 3’s, and to see how far such a sequence will
extend (by repeatedly appending the curling number) before reaching a 1.

Let µ(n) denote the maximal length that can be achieved before a 1 appears,
for any starting sequence S0 consisting of n 2’s and 3’s. For n = 4, for example,
S0 = 23 2 3 produces the sequence

2 3 2 3 2 2 2 3 1 . . . ,

and no other starting string does better, so µ(4) = 8. The Curling Number Conjec-
ture would imply that µ(n) <∞ for all n. Reference [6] gave µ(n) for 1 ≤ n ≤ 30,
and Benjamin Chaffin and I have determined µ(n) for all n ≤ 48 [7]. By making
certain plausible assumptions about S0, we have also computed lower bounds on
µ(n) (which we conjecture to be the true values) for all n ≤ 80. The results are
shown in Table 2 and Figure 4. The values of µ(n) also form sequence A094004 in
[15].

As can be seen from Fig. 4, up to n = 80, it appears that µ(n) increases in a
piecewise linear manner. At the values n = 1, 2, 4, 6, 8, 9, 10, 11, 14, 19, 22, 48, 68, 76,
77 (A160766), assuming that the values in Table 2 are correct, there is a jump, but
at the other values of n, µ(n) is simply µ(n − 1) + 1. Table 3 gives the starting
sequences where µ(n) > µ(n− 1) + 1 for n ≤ 48.

For example, Table 2 shows that

µ(n) = n+ 120 for 22 ≤ n ≤ 47. (8.1)

In this range one cannot do any better than taking the starting sequence for n = 22
and prefixing it by an irrelevant sequence of 47−n 2’s and 3’s. However, at n = 48
a new record-holder appears, and it seems that

µ(n) = n+ 131 for 48 ≤ n ≤ 67. (8.2)
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n 1 2 3 4 5 6 7 8 9 10 11 12
µ(n) 1 4 5 8 9 14 15 66 68 70 123 124

n 13 14 15 16 17 18 19 20 21 22 23 24
µ(n) 125 132 133 134 135 136 138 139 140 142 143 144

n 25 26 27 28 29 30 31 32 33 34 35 36
µ(n) 145 146 147 148 149 150 151 152 153 154 155 156

n 37 38 39 40 41 42 43 44 45 46 47 48
µ(n) 157 158 159 160 161 162 163 164 165 166 167 179

n 49 50 51 52 53 54 55 56 57 58 59 60
µ(n) 180 181 182 183 184 185 186 187 188 189 190 191

n 61 62 63 64 65 66 67 68 69 70 71 72
µ(n) 192 193 194 195 196 197 198 200 201 202 203 204

n 73 74 75 76 77 78 79 80 81 82 83 84
µ(n) 205 206 207 209 250 251 252 253 ? ? ? ?

Table 2: Lower bounds on µ(n), the record for a starting sequence
of n 2’s and 3’s. Entries for n ≤ 48 are known to be exact (and we

conjecture the other entries are exact).

Figure 4: Scatter-plot of lower bounds on µ(n), the record for a
starting sequence of n 2’s and 3’s. Entries for n ≤ 48 are known to

be exact (and we conjecture the other entries are exact).

We have not succeeded in finding any algebraic constructions for good starting
sequences. For more about the Curling Number Conjecture see [7].
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n Starting sequence
1 2
2 2 2
4 2 3 2 3
6 2 2 2 3 2 2
8 2 3 2 2 2 3 2 3
9 2 2 3 2 2 2 3 2 3
10 2 3 2 3 2 2 2 3 2 2
11 2 2 3 2 3 2 2 2 3 2 2
14 2 2 3 2 3 2 2 2 3 2 2 3 2 3
19 2 2 3 2 2 3 2 3 2 2 2 3 2 2 3 2 2 3 2
22 2 3 2 2 3 2 2 3 2 3 2 2 2 3 2 3 2 2 3 2 2 3
48 2 2 3 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3

Table 3: Starting sequences of n 2’s and 3’s for which µ(n) >
µ(n − 1) + 1. This is complete for n ≤ 48 and is believed to be

complete for n ≤ 67.

8.3. Van Eck’s sequence
In 2010, Jan Ritsema van Eck [9] contributed a sequence to the OEIS that is defined
by yet another unusual recurrence. Again we start with a(1) = 0, and then for
n ≥ 2,

a(n) is the number of steps backwards before the previous
appearance of a(n − 1), or a(n) = 0 if a(n − 1) has never
appeared before.

Since a(1) = 0 has never appeared before, a(2) = 0. Now 0 has appeared one
step before, at a(1), so a(3) = 1. We have not seen a 1 before, so a(4) = 0. We
had an earlier 0 at a(2), so a(5) = 4 − 2 = 2. This is the first 2 we have seen, so
a(6) = 0. And so on. The first 36 terms are shown in Table 4.

0, 0, 1, 0, 2, 0, 2, 2, 1, 6, 0, 5,
0, 2, 6, 5, 4, 0, 5, 3, 0, 3, 2, 9,
0, 4, 9, 3, 6, 14, 0, 6, 3, 5, 15, 0,
5, 3, 5, 2, 17, 0, 6, 11, 0, 3, 8, 0, . . .

Table 4: The first 48 terms of Van Eck’s sequence (A181391)

Figure 5 shows a scatter-plot of the first 800 terms. The plot suggests that
after n terms, there are occasionally terms around n, or in other words that
lim sup a(n)/n ≈ 1. This is confirmed by looking at the first million terms, and the
data also strongly suggests that every number appears in the sequence. However,
at present these are merely conjectures.
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Van Eck was able to show that there are infinitely many 0’s in the sequence,
or, equivalently, that the sequence is unbounded.

Figure 5: Scatter-plot of the first 800 terms of Van Eck’s sequence
A181391

Theorem 8.2 (Van Eck, personal communication). The sequence contains in-
finitely many 0’s.

Proof. Suppose, seeking a contradiction, that there are only finite number of 0’s in
the sequence. Then after a certain point no new terms can appear, so the sequence
is bounded. LetM be the largest term. This means that any block ofM successive
terms determines the sequence. But there are only MM different possible blocks.
So a block must repeat and the sequence is eventually periodic. Furthermore, the
period cannot contain a 0.

Suppose the period has length p, and starts at term r, with a(r) = x, . . . , a(r+
p − 1) = z, a(r + p) = x, . . . . There is another z after q ≤ p steps, which is
immediately followed by q. But this q implies that a(r − 1) = z. Therefore the
periodic part really began at step r − 1.

Repeating this argument shows that the periodic part starts at a(1). But a(1) =
0, and the periodic part cannot contain a 0. Contradiction.

It would be nice to know more about this fascinating sequence!

9. Conclusion

I will end with a few general remarks.
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• The OEIS needs more editors. If you are interested in helping, please write
to me or one of the other Editors-in-Chief. There are no formal duties,
everything is done on a volunteer basis, and you will get to see a lot of
interesting new problems.

• Everyone should register with the OEIS – see Sect. 3.

• If you write a paper that mentions a sequence in the OEIS, please do two
things. Add it to the list of papers that cite the OEIS – see Sec. 2, and add a
reference pointing to your paper to any entries in the OEIS that it mentions.

• The same thing if you come across a sequence in your work, in the library,
or on a web site: send it in to the OEIS if it is missing (it need not be your
own sequence – just mention the source) or add a reference to the source if it
is already in the OEIS. It is these cross-connections that make the database
so valuable.
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Abstract

In this paper we give rules for creating a number triangle T in a manner
analogous to that for producing Pascal’s arithmetic triangle; but all of its
elements belong to {0, 1}, and cycling of its rows is involved in the creation.
The method of construction of any one row of T from its preceding rows will
be defined, and that, together with starting and boundary conditions, will
suffice to define the whole triangle, by sequential continuation.

We shall use this triangle in order to define the so-called cycle-numbers,
which can be mapped to the natural numbers. T will be called the ‘cycle-
number triangle’.

First we shall give some theorems about relationships between the cycle-
numbers and the natural numbers, and discuss the cycling of patterns within
the triangle’s rows and diagonals. We then begin a study of figures (i.e. (0,1)-
patterns, found on lines, triangles and squares, etc.) within T. In particular,
we shall seek relationships which tell us something about the prime numbers.
For our later studies, we turn the triangle onto its side and work with a
doubly-infinite matrix C.

We shall find that a great deal of cycling of figures occurs within T and
C, and we exploit this fact whenever we can. The phenomenon of cycling
patterns leads us to muse upon a ‘music of the integers’, indeed a ‘symphony
of the integers’, being played out on the cycle-number triangle or on C. Like
Pythagoras and his ‘music of the spheres’, we may well be the only persons
capable of hearing it!
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Music is the pleasure the human mind experiences from
counting without being aware that it is counting.

G. W. Leibnitz (1646–1714)

1. Introduction

In his scholarly book on Pascal’s ‘Arithmetical Triangle’, the author AWF Edwards
[2] says of the Triangle: “It reveals patterns which delight the eye, raises questions
which tax the number-theorists, and . . . ” (he adds, quoting D. Knuth) “amongst
the coefficients there are so many relations present that, when someone finds a new
identity, there aren’t many people who get excited about it any more, except the
discoverer!”

Pascal, in his own publication on the famous triangle, in 1654, said that he was
fascinated by the mathematical richness of the patterns that he had discovered in
it, and that: “He had had to leave out more than he could put in!”

In the triangle that we are about to define, none of its elements rise above 1
(its alphabet is {0, 1}), and yet (echoing Pascal) we have found a great richness
in the geometric patterns of 0s and 1s that arise, many of which carry with them
secrets about the prime numbers. Further (again echoing Pascal), we have had to
leave out much more than we could put in.

We have called our triangle ‘the cycle-number triangle’ because of the many
cyclic phenomena involved in the (0, 1)-patterns of most interest, and because we
derive from it a new representation of the natural numbers, each one exhibiting
cyclic behaviour. We have given our triangle the general label T.

We declare that we have not seen this triangle defined before in the literature,
but, of course, it may well have been described several times in the past and pro-
duced nothing of sufficient interest to keep mathematicians using and mentioning
it. If we may quote Pascal yet again, he wrote in his autobiography, apropos his
triangle: “Let no one say I have said nothing new. The arrangement of the subject
is new. When we play tennis, we both play with the same ball, but one of us places
it better!”

Whatever is the case, we hope that our methods and studies of the cycle-number
triangle contain something new and worthy of their presentation.

2. Example, definition and construction of T

We begin by showing the cycle-number triangle T, down to row 6, in Figure 1
below. The apex triangle and directions for the central axis and i,j reference axes
are shown.

Note in Figure 1 the left- and right-boundaries of T, two sloping lines, each
containing the sequence 0, 1, 0, 0, 0. These are the given elements, to start
construction of the triangle.
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To reference an element in T we may use two coordinates (i, j), with the i, jth
element occurring at the intersection of the sloping linesRi (the ith diagonal parallel
to the right-boundary) and Lj (the jth diagonal parallel to the left-boundary).
The two directed reference lines are indicated in Figure 1 on either side of the
triangle T(6).

Figure 1: The Cycle-number Triangle T(6) (with apex triangle
defined)

The general rules for generating T now follow.

2.1. Constructing the Triangle T

(1) The apex and triangle boundaries

The cycle-number triangle T is constructed according to the following rules:

(i) The elements have alphabet {0, 1};

(ii) The apex element is 0;

(iii) The left-boundary L is (from the apex downwards to the left) 0,1,0,0,0, . . .;

(iv) The right-boundary R runs from the apex downwards to the right, with the
same (0,1)-sequence as that of L.

The rows following the apex triangle are then constructed, row by row, by
making a sequence of ‘neck-tie’ applications, as explained next.

(2) The ‘neck-tie’ figure and its uses

The figure which we use repeatedly to generate the elements of T, row-by-row,
is called a neck-tie in view of its shape. It consists of an equi-sided triangle, ∇,
supported by two long, sloping legs which are potentially infinite.

When applied to row Ri of T, the top side of the triangle is marked with the
(0, 1) elements of Ri, and the other two sides take the same markings, in order,
cycling around the triangle (see Figure 2 for an example applied to R3).
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The side-length, defined to be the number of elements on each side, increases
by one with each row application.

The neck-tie (designated ni) is completed by adding the two spreading legs from
the lowest vertex of the neck triangle. The left leg slopes down to the left, and has
the (0,1)-pattern from the right side of ∇ appearing in it, cycling ever downwards.

Similarly, the right leg slopes down to the right, with the (0,1)-pattern from the
left side of ∇, cycling ever downwards, appearing in it.

Figure 2 below shows how the Cycle-Number Triangle T is constructed, row by
row, down to row R6. It also includes an expanded view of the neck-tie which is
applied to row R3.

Notation. We designate by T(i) or Ti the sub-triangle of T which extends from
the apex down to row Ri. And ni will designate the neck-tie which is applied to
row Ri of T. It must be noted that the constructed neck-tie lines are notional.
They do not appear normally in diagrams of T.

Figure 2: Constructing triangle T row-by-row T(2) → T(6)
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(3) The cycle-numbers and their fundamental cycles (f.c.s)

Observe how the string (110) from the top of the neck-tie n3 cycles around the
neck (in both directions). It also cycles down the left and right legs. This string
is defined to be the fundamental cycle (f.c.) of the cycle-number 3. Some general
properties of cycle-numbers will now be developed.

The nth cycle-number is designated by n, and its fundamental cycle by n’.

Definition 2.1. The cycle-number n is the infinite string obtained by cycling its
fundamental cycle n’ indefinitely: e.g. 3 = 110.

Evidently, for each value of n > 0, two pictorial representations of n occur in
triangle T, cycling down the left and right legs respectively of the corresponding
neck-tie.

Definition 2.2. The infinite sequence of cycle-numbers with n > 0 will be denoted
by N. (It corresponds one-to-one with the natural number sequence N.)

Later we shall display the cycle-numbers as rows of a doubly infinite matrix C.

Since we cannot apply a neck-tie to 0 in row R0, we have to define its cycle-
number specially.

Definition 2.3. The zero cycle-number is 0 ≡ 01000 · · · = (01)0. (This is the
string on the R and L diagonals of T. It is special in that its cycling does not
begin until after (01) occurs. With all the other cycle-numbers (n > 0), the cycling
begins with the first digit of the string for n.)

With Figures 1 and 2 to guide us, we can make and prove the following general
observations, as our first theorems about the cycle-number triangle, and the cycle-
numbers derived from it.

Theorem 2.4. The first six fundamental cycles (f.c.s), taken from the rows R1
to R6 of T6, are (1), (10), (110), (1010), (11110) and (100010). Generally:

(i) Every f.c. after R0 is of length n (it has n letters);

(ii) Every f.c. after R1 begins with a 1 and ends with a 10.

Proof. The proofs of each item follow immediately from the neck-tie construction
and applications to the sequence of rows, or from each other, so they will not be
spelled out.

Note that, like 0, the cycle-number 1 = 1 is ‘special’, arising from the second
row of the apex triangle. It cycles from its f.c. 1’ indefinitely, never acquiring a 0
(c.f. Peano’s first two axioms, which are needed to establish 0, and its successor
S(0) which is later labelled 1: both ‘special numbers’).
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Theorem 2.5 (Palindrome Principles).

(i) The (0, 1)-string on the upper side of a neck-tie ∇ is a palindrome; In general,
row Ri of T is a (0, 1)-palindrome of length i+ 1, for i = 1, 2, 3, . . ..

(ii) The first n−1 elements of a fundamental cycle (after R0) form a palindrome.

Proof. The proofs of each item follow immediately from the neck-tie construction
and applications to the sequence of rows of T, or from each other, so they will not
be spelled out.

As an example, the complete (0,1)-string from the upper side of neck-tie n6 is
(0100010), which is a palindrome. And the f.c. of cycle-number 6 is 6’ = (100010),
whose first five digits form a palindrome.

N.B. The Palindrome Principles, simple though they are, turn out to be power-
ful tools in enabling us to look ahead in T to discern patterns in number sequences.

3. Some theorems on lines in T

We have shown how to define the cycle-numbers, and given a few results about
their (0, 1)-patterns, and their fundamental cycles. We now begin a study of the
(0, 1)-patterns which occur on lines in T.

Theorem 3.1. We already defined above (see Figure 1) how to reference elements
(i, j) in T using the sloping reference diagonals for i and j coordinates. As explained
above, Li is the ith sloping line in T parallel to the L-boundary, and Rj is the jth
sloping line in T parallel to the R-boundary. (Thus Ri||R and Li||L.) Then:

(i) L1 and R1 are both sequences of cycled 1s, which we designate as unit-cycle
lines;

(ii) L2 and R2 are both sequences of cycles of (1, 0) (starting after the boundary
element 0), which we designate as 2-cycle lines, having pattern 10;

(iii) L3 and R3 are both sequences of cycles of (1, 1, 0) (starting after the boundary
element 0), which we designate as 3-cycle lines, having pattern 110;

(iv) L4 and R4 are both sequences of cycles of (1, 0, 1, 0) (starting after the bound-
ary element 0), which we designate as 4-cycle lines 1010;

(v) This sequence of pairs (Li,Ri) of i-cycle lines, with Li = Ri, continues in-
definitely as i increases by 1 at each row-step in T.

Proof. The proofs of each item follow immediately from the neck-tie construction
and applications to the sequence of rows of T, or from each other, so they will not
be spelled out.
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The above theorem has shown that there is an ordered sequence of cycling (0, 1)-
strings down the left- and right- diagonals, equal in pairs. The next Theorem 3.2
will prove that the same sequences occur in vertical columns, the pairs being equi-
distant from the central axis of T. Before presenting this theorem, let us define
the Cartesian axis frame, to which we can refer elements in horizontal and vertical
directions.

3(2) The (x, y) Cartesian axes

The origin of the frame is at the apex of T so the apex is at point (0, 0). The
Cartesian y-axis is oriented vertically, with direction downwards. The Cartesian
x-axis is the horizontal through the apex, with positive direction to the right. Its
scale unit is that distance which separates the columns of T (equally spaced).

We shall use Cn to denote the nth column, which contains the (0,1)-string
which appears down the vertical line x = n, for n = 1, 2, 3, . . ..

3(3) The axis line and its (0,1) pattern

The axis line is x = 0. Thus the column C0 is the T-triangle axis, and each digit
appearing on it below the apex triangle is the lower vertex of a neck-triangle, which
in turn is a cycling of a boundary digit 0 (after n1). Hence the axis bears the same
(0, 1) pattern as do the boundaries, viz. 01000. . . .

To the left of the axis, x will take corresponding negative values.
It follows from Theorem 2.5(i) (Palindrome Principle), that we need only deal

with the columns Cn when n is positive. The corresponding columns in the neg-
ative direction will carry the same cycle-number sequence. On the few occasions
which we refer to columns to the left of the axis we shall write C(-n).

We have shown that the sets of L-diagonals and R-diagonals are equal in pairs,
w.r.t. their (0,1)-patterns. The next Figure and theorem shows that this same
phenomenon occurs in the vertical columns, when taken in pairs equidistant from
the axis of T.

Figure 3: Triangle T(7), indicating the rows Rj and cols. Cj for
j = 1, 2, 3, 4
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Theorem 3.2 (The vertical column patterns).
Diagram. Refer to Figure 3. Recall that Ri||R, where R is the right-boundary
of T.

Let us abbreviate the phrase ‘the (0,1)-pattern in column Cn’ to ‘the Cn-
pattern’.

Subsection 3(3) above proved the case C0 = R0.
Now we assert that (refer to Figure 3):

(i) The Cj-pattern is equal to the Rj-pattern, for j = 1, 2, 3, . . .
And by axis-symmetry of T the C(-j)-pattern is also equal to the Rj-pattern.

(ii) The Cj-pattern lies along both the lines x = j and x = −j.

Proof. (i) Referring to the diagram of T7 above, we construct an inductive proof,
using properties of the neck-tie triangles (see Figure 2 and 3): we begin by showing
the theorem to be true for j = 1.

We note that the (0,1) elements of C1 occur in rows R1, R3, R5, etc. (i.e. in
the odd rows). The first element of C1 is 1, by definition of the diagonal pattern
in R0.

Then the following statements are evidently true:
The second element of C1 is in row R3, which is the third element of diagonal

R1, which is equal to 1 (by Theorem 3.1(i); R1 is a unit-line).
The third element of C1 is in row R5, which is the fifth element of R1, which

equals 1 since R1 is a unit-line.
In general, the ith element of C1 is in rowR(i+2), which is the (i+2)th element

of R1 and hence is equal to 1.
The proof that the C1-pattern is a string of 1s is now easily completed by

induction, using the neck-tie construction rules. Then, by the Palindrome Principle,
we can assert that the C(-1) pattern is also a string of 1s.

We can apply the same arguments to determine that the C2-pattern is the same
as the R2-pattern, and equals the C(-2)-pattern.

Induction can now be used to generalize this overall argument, to prove the
statement that for all j > 0 the Cj-pattern is the same as the Rj-pattern, and
equals the C(-j)-pattern. This will complete the proof of Theorem 3.2, for the
(0,1)-patterns in the columns of T.

Before going on to study (0,1)-patterns in T other than those occurring in
straight lines, as treated above, we shall now present an alternative method for
generating the elements of T. The starting triangle for this method bears compari-
son with the Pascal triangle in ‘binomial coefficient form’. Moreover, it immediately
shows how the rows of T relate to the natural numbers in N (in two directions)
and their ‘coprimeness properties’.
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4. A second method for generating the cycle-number
triangle T

4.1. The enteger triangle E
The cycle-number triangle T(6) was shown in Figure 1, Section 2, and then it was
shown how to generate T generally by the neck-tie algorithm. Now we shall obtain
the triangle T(6) by writing down a triangle E of ordered pairs of integers, called
entegers, and then operating on each enteger by the so-called “coprime-function”
named kappa (κ). (N.B. We introduced the notion of ‘enteger’ in [4] and [5]. We
write nm for an enteger. Two entegers are added as with vectors.) Before defining
kappa, below we give the enteger triangle E (on the left) of entegers down to R6,
and (on the right) the triangle after the transformations by kappa have taken place.

 

R0                              00                                                                          0 

R1                          10     11                                                                  1     1 

R2                      20     21     22                        T = κκκκE                      0     1     0 

R3                  30     31     32     33                                                  0     1     1     0 

R4              40     41     42     43     44                                           0     1     0     1     0 

R5          50       51     52     53     54     55                                  0     1     1     1     1     0 

R6      60      61     62     63     64     65     66                           0     1     0     0     0     1     0 

              The enteger triangle  E(6)                          The cycle-number triangle T(6) 

 

 Figure 4: The triangle E of entegers (ordered pairs), transformed
by κ to T

We shall define E by giving its nth line, then define the function kappa, and
then establish the validity of the general transformation κE = T

Definition 4.1. The general row Rn for the enteger triangle E is:

n0, n1, n2, . . . , nn−1, nn.

(For comparison, in Pascal’s triangle the row is
(
n
0

)
,
(
n
1

)
, . . . ,

(
n

n−1
)
,
(
n
n

)
.)

Lemma 4.2. Given the triangle T(n), we can extend it to T(n+1) thus: add
10 (‘vectorial’ enteger addition) to the last enteger in each left diagonal Li for
i = 0, 1, 2, . . ., n, and add 11 to the last enteger nn of Rn.

Definition 4.3. Let e = st , with s,t ∈ N. Then the ‘coprime operator (kappa)’
is defined as follows:

κ(e) ≡
{
1, if s and t are coprime;
0, otherwise (see also special cases below).
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Special cases: κ(00) ≡ 0; κ(10) ≡ 1; κ(t0) ≡ 0 for all t > 1, where e = st is the
general notation for an enteger, with s and t written diagonally.

Without using the notion of divisibility, we can determine when a number pair
is coprime by means of the ‘repeated-pair-subtraction method’ used in the simplest
version of Euclid’s Algorithm (call it EA) (some examples of this are given in
Figure 5).

Lemma 4.4. Let kappa be applied (element-wise) to the nth row of E. Then the
result is a palindromic (0, 1)-string.

Proof. Consider the elements of Rn of E, taken in pairs symmetrically placed
relative to the axis of E. The ith pair, after applying kappa to each, is κ(ni) and
κ(nn-i). Applying only the first subtraction in Euclid’s Algorithm, we find from the
second of our pairs that after this one subtraction κ(nn-i) = κ(in) = κ(ni). This
is true for all pairs in the row (if there is a single central enteger, as in the even-
numbered rows, then it is immaterial what kappa-value it takes) so a palindromic
(0,1)-string results from the row Rn.

4.2. Relationships between E and T
We claimed in Figure 4 that κ(E) = T, the cycle-number triangle. This sub-section
is concerned with proving this claim.

We have already shown that the nth rows of both triangles κ(E) and T have
the same lengths n+1, and that these rows each consist of a (0,1)-string which is
palindromic. So both triangles are symmetric w.r.t. their axis-lines.

It is immediate that they both have the same R and L diagonals, and that in
both, the R1 and L1 diagonals are unit-lines. The two both have the same axis
lines, since in E the axis x = 0 carries the entegers 00, 21, 42, . . ., which is an A.P.
of entegers having common difference 21. (We can extend Lemma 4.2 to show that
this sequence extends indefinitely.) Applying kappa to the sequence, we get 0, 1,
0, 0, . . ., which is the axis pattern in T.

Recall that T was constructed by applying a neck-tie construction, say nn, to
each row Rn, We shall show how the same type of construction can be used to build
E, and moreover that the same type of cycling around and down the neck-ties, as
in T, then occurs in κE. The construction of neck-tie nn = ∇n for E requires the
following steps:

(i) the top side of ∇n is n0, n1, n2, . . ., nn-1, nn (see Definition 4.1)

(ii) the left side of ∇n is n0, (n+1)1, (n+2)2, . . ., (2n-1)n-1, (2n)n

(iii) the right side of ∇n is nn, (n+1)n, (n+2)n, . . ., (2n-1)n, (2n)n

(iv) the left leg is a continuation of the sequence in (iii)

(v) the right leg is a continuation of the sequence in (ii)
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To exemplify this definition of ∇n we will show the neck-tie ∇3, and on its right,
show what happens to it when certain of its elements are reduced by applying the
‘pair subtraction’ method of Euclid’s Algorithm to them (recall that such applica-
tions do not change the kappa values from those of the original pairs). We show
only the neck, and one cycle of the left leg and the right leg. It will be evident how
the leg cycles must continue.

                 30    31    32    33                  30    31    32    03                    0    1    1    0 

                    41           43                           31           13                           1          1     

                       52    53                                  32    23                                  1    1                     

                           63                                         30                                        0                    

                       73      74                                  13    31                                  1    1                     

                   83            85                           23           32                           1          1                          

                93                  96                     03                 30                     0                0                         

 

Figure 5: The neck-tie ∇3; then same with appropriate EA
changes; then κ(∇3)

Remarks. The left diagram shows the neck-tie as defined for row R3 of E. The cen-
tre diagram is attractive, found by applying EA (Euclid’s Algorithm) subtractions
appropriately, to elements of ∇3. It shows how the kappa values of elements of n3
must cycle in the desired way and become equal to corresponding values in T.

Its generalization to the neck-tie ∇n and to T is automatic.
The claim that κ(E) = T now follows by induction on ∇n. Thus, if we verify

it for n = 1 and 2, we can extend those to verify it for n = 3, and so on.

4.3. On ‘Coprimeness’ and ‘Primeness’ in the Cycle-Numbers
This is an appropriate moment for us to link the cycle-numbers to the natural
numbers with regard to the concepts of coprimeness and primeness, in such a way
that the two number systems can be said to represent one another exactly in those
regards.

Consider the two triangles T and E in Figure 4, where T = κE. It is seen
that each row of T (e.g. Rn) carries a complete record of what we shall call the
coprimeness relation of n with each of the integers i = 1, 2, 3, . . ., n. This gives rise
to the following lemma, which directly relates fundamental cycles and the totient
function of Euler:

Lemma 4.5. Let ω(n), the weight of cycle-number n, be the sum of the elements
of n’ in row Rn of T. Then ω(n) = ϕ(n), where ϕ (i.e. phi) is Euler’s totient
function.

Proof. This follows immediately from Definition 4.1, T = κE and the definition
of ϕ.
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We can with reason speak of the coprimeness of a cycle-number n and assign a
measure of it by the ratio (or index) ω(n)/n = ϕ(n)/n .

We continue these notions by coining the slogan that “coprimeness begets prime-
ness”, and presenting the following definitions to add precision to it.

Definition 4.6 (Coprimeness index, and primeness of n). We define a cycle-
number n to be prime if its coprimeness index has value (n − 1)/n = 1 − 1/n.
The value of the index can never be 1, since κ(nn) = 0.

Note that with this definition, it can be shown that n is a prime cycle-number
iff n is a prime integer. For if n is not prime, there exists some integer m < n such
that κ(nm) = 0, and the coprimeness index of n is less than 1 − 1/n, so n is not
prime.

Conversely, if n is prime, then ϕ(n) = n − 1 = ω(n), the coprimeness index is
(n-1)/n , and so n is prime.

Examples may be seen in rows 2, 3, 5, and 7 of T in Figure 3.

5. Three operations on cycle-numbers

5.1. Definitions of the operators
The following three operations and their symbols are defined on the cycle-numbers,
which allow us to discover and develop various algebraic relationships between the
cycle-numbers. We shall not report on the subsequent algebra further than we need
to, in order to study (0,1)-patterns in the triangle T and a later-derived matrix C.

The three operators and their symbols are:

(1) ‘star’ (∗) , (2) ‘add’ (‘+’), and (3) ‘multiply’ (∧).

Definition 5.1. The ‘star’ (or ‘conjoin’) operation is one of conjoinment of two
given (0,1)-vectors or strings. Thus if m and n are two (0,1)-strings, then m ∗ n
is the string obtained by writing first the m-string, and then continuing with the
n-string, thus creating a string of length m+n. Clearly this operation does not
generally commute.
It can be extended in the obvious way to deal with three or more strings.

Care must be taken when interpreting the conjoin of two f.c.s of cycle-numbers.
The result is not necessarily another cycle-number f.c.; in fact, it usually isn’t .

Definition 5.2. Two cycle-numbers m and n are added in a natural way as follows
(letting their ‘sum’ be m ‘+’ n ≡ s).
Let s = m+n (sum of the two cycle-number f.c. lengths), and find from rowR(m+n)
of the enteger triangle E the enteger string which, on applying κ to its elements,
yields s’. Using Def. 4.1 we find the required string to be (m+n)1, (m+n)2, . . . ,
(m+n)s-1, (m+n)s. Applying κ to this string yields s’, and hence s.
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Note: To make full sense of this operation, we must think of it as taking place
between rows Rm and Rn of the enteger triangle E. We are extending the triangle
in the ‘natural way’, by ‘adding’ (strictly ‘appending’) n further rows to it (down
from Rm) according to theorems previously given for patterns on the diagonal
lines.

Finally, having reached Rm+n = Rs, we drop the first element s0 and we are
left with s’ as required. (As an example, see Figure 3 and add 2 to 3 to get 5.)

Definition 5.3 (The cap product). Two cycle-numbers m and n in N (not includ-
ing 0) are ‘multiplied’ (in a not-so-natural way), as defined below. Again we carry
out the initial operations upon the two respective f.c.s, m’ and n’ and arrive at the
fundamental cycle of a new cycle-number which we shall call the Boolean Product
(B.P.), or the ‘cap product’, of the two cycle-numbers. This ‘product’ is a powerful
tool for us in our study of cycle-number patterns. Its definition is as follows:
Let mn = k. Then the Boolean Product of m and n is a cycle-number whose f.c.
is of length k, and is found from the following formula: k’ = (n ∗m’) ∧ (m ∗ n’).
The left-hand bracket contains the (0,1)-string of n conjoined cycles of the f.c. of
m, and the right-hand bracket contains the (0,1)-string of m conjoined cycles of
the f.c. of n. The cap symbol between the two bracketed terms indicates that
an element-wise product has to be computed, according to the following binary
multiplication table (Boolean): 0∧0 = 0∧1 = 1∧0 = 0, and 1∧1 = 1.

It is easy to see that the two multiplication sets from N(x) and N(∧) are
isomorphic.

A simple example will illustrate the use of the operation ∧.

Example. Let m = 2 and n = 3. Then

(n ∗m’)∧(m ∗ n’) = (101010)∧(110110).

Note that each string is of length 2x3 =6. Applying ∧ element-wise gives the result
(100010), which is the f.c. of 6.

The reader should check this result in Fig. 3, and observe how the 2-cycles and
3-cycles arrive at R6 in their respective neck-ties, with their end 0s filling three
places in 6’. If one lays either 2’ or 3’ along the length of 6’, as with two moving
rulers, one finds that each ruler cycles 6’ exactly, with regard to their end 0s. We
say (using Euclid’s language) that both 2’ and 3’ measure 6’ because of this.

It is helpful to place n ∗m’ above m ∗ n’, and apply the cap products vertically,
in the k resulting 2x1 columns. Thus, with the example:

3 ∗ 2′ = 101010

2 ∗ 3′ = 101110

∧ = 100010

Note that for a 1 to occur in the result, there must be two 1s above it. We shall
exploit this fact later.
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Before leaving our discussion of the cycle-number triangle T, we remark that
all manner of patterns can be discovered in T, based on the arrangements of the
0s and 1s, and how they are related to the cycle-numbers.

We have already discussed many of the most obvious patterns, and built def-
initions and theorems about them. We shall end this Section by presenting an
interesting theorem that demonstrates a fractal property, namely that T can prop-
erly include a copy of itself . . . indeed an infinite sequence of such copies. Our
proof will be ‘pictorial’, extending to two inclusions only.

Theorem 5.4. T ⊃ T ⊃ T ⊃ . . . (proper inclusions).

Proof. Pictorial Proof (See Figure 6).

The Figure 6 first shows T to row 10 (i.e. T(10)), with its first two neckties,
coloured black and blue respectively. The second and third Ts of the theorem are
shown below the first one.

Clearly the second two triangles have elements which map directly to themselves
and to those of the original T. They are mapped from the original neck-ties, but
with changed Euclidean shapes. They remain similar in congruent triples. In terms
of cycle-numbers their necks are still equi-sided triangles, and their legs still carry
the same (0,1)-patterns. The neck-ties undergo anti-clockwise, Euclidean rotations.

Figure 6: A fractal property of T

This sequence of included Ts and their corresponding triangles and neck-ties
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can be extended, and other Ts and sequences of Ts can be found elsewhere in the
original triangle.

6. Definition of the cycle-number matrix C

Our construction of the cycle-number triangle T enabled us to introduce the notion
of cycle-numbers and define various of their properties and operations on them.
We now wish to display all the cycle-numbers in a doubly-infinite matrix called
C, which provides a more convenient view-point of their domain for us to proceed
with their study. It is easy to produce C, for it is just a matter of turning triangle
T ‘on its side’ and ‘dropping’ the boundary diagonals R and L. Sub-section 6.1
clarifies this.

6.1. Producing C by using the f.c.s from T
To be more precise, we place the fundamental cycles of the cycle-numbers in the
rows of C, with n’ (from 1’ onwards) occupying the first n elements of row Rn.
Then we allow each number to cycle indefinitely in its row, from the leading diag-
onal (l.d.) towards the right, potentially filling all the rows of C.

To reference elements in the matrix, we shall envisage perpendicular Cartesian
axes y (vertically down) and x (horizontally across) both taking all values in positive
N. The following diagram exemplifies all these arrangements up to n = 13.

Row          y/x      1     2     3     4     5     6     7     8     9   10    11   12   13 

  R1           1         1     1     1     1     1     1     1     1     1     1     1     1     1 

  R2           2         1     0     1     0     1     0     1     0     1     0     1     0     1 

  R3           3         1     1     0     1     1     0     1     1     0     1     1     0     1 

  R4           4         1     0     1     0     1     0     1     0     1     0     1     0     1 

  R5           5         1     1     1     1     0     1     1     1     1     0     1     1     1 

  R6           6         1     0     0     0     1     0     1     0     0     0     1     0     1 

  R7           7         1     1     1     1     1     1     0     1     1     1     1     1     1 

  R8           8         1     0     1     0     1     0     1     0     1     0     1     0     1 

  R9           9         1     1     0     1     1     0     1     1     0     1     1     0     1 

  R10        10        1     0     1     0     0     0     1     0     1     0     1     0     1 

  R11        11        1     1     1     1     1     1     1     1     1     1     0     1     1 

  R12        12        1     0     0     0     1     0     1     0     0     0     1     0     1 

  R13        13        1     1     1     1     1     1     1     1     1     1     1     1     0  (l. d.) 

 

 

 Figure 7: The Cycle-Number matrix C(13)

Observe that the triangle beneath (and including) the l.d., is the cycle-number
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triangle ‘left-justified’ and with the zero-lines removed. Its rows are the fundamen-
tal cycles (f.c.s) of the cycle-numbers.

Remarks. (On the column elements in C(13).) We are now going to observe what
happens in columns C1, C2, . . . as the rows are introduced sequentially, R1 to R2
to R3 etc. In order to describe what we are doing we need to add to our vocabulary
several graphic terms and notations, such as ‘potential prime (pP)’, ‘potential twin
prime (pT or pTP)’, ‘stalactite in Cj (j-stal)’ and ‘n-sieve’ or ‘p-sieve’. Each of these
will be defined when introduced.

Observations. (Many have already been noted earlier, from T.)

(i) C is symmetric about the leading diagonal, so Rn = Cn.

(ii) The leading diagonal (l.d.) is 1, 0, 0, 0, . . .

(iii) The f.c. n’ of cycle-number n, in Rn, runs across from C1 to the l.d. Its
transpose, in Cn, is equal to it and runs from R1 down to the l.d.

(iv) All elements in R1 are 1, being placed there by 1’ as it cycles along to the
right.

(v) We say that all elements in the columns of R1 are potentially prime (pP),
and that each begins ‘growing a stalactite of 1s’ in its column (c.f. a real
stalactite, starting to grow down from the roof of a cave).

(vi) All elements in R2 are produced by 2’ cycling to the right; thus 1, 0, 1, 0, . . .
are the elements placed in R2 of columns C1, C2, etc.

(vii) We now think of the process in (vi) as being a ‘sieving’ action, thus: the 0s
are placed in the even cols., and each one ‘stops’ the stalactite above it from
growing its column of 1s any further. Thus all stalactites in the even columns
are now ‘stopped’ at R2.

(viii) The stalactite in C2 ‘has reached’ the l.d. of C, and the f.c. composition
(10) satisfies our definition of primeness. So we say that the 2-stal is prime;
sometimes we say that the stalactite in col. 2 is prime, and even that C2 is
prime (if n is prime, then Cn contains a prime stalactite). Thus ‘2 is P’.

(ix) In all even cols. after C2, the pP stalactites are stopped when the 2-sieve
cycles by; and their stalactites become nonP (or nP, or not-prime). When
this happens, we say that the stalactite has reached its final length in its
column. This length is the number of 1s acquired, plus a 1 for the final 0.

(x) Stalactites which reach the l.d. are ‘prime stals’. Their columns are ‘prime
cols’.
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(xi) In all odd columns the stalactites are not ‘stopped’ by the 2-sieve. Their
lengths all ‘grow’ by 1, and they remain as potential primes (pPs). We say
they have passed through the 2-sieve. Now we imagine the 3-sieve beginning
its cycling, and we ask how many of the remaining pP stalactites will survive
its passage.

(xii) We can carry on this process for ever, letting the row sieves pass along to the
right, here and there stopping a stalactite from growing further.

(xiii) Observe that some pairs of rows have identical (0,1)-patterns. Examples are:
R2, R4, R8; and R3, R9; and R6, R12. Conditions for this are given by:

Theorem 6.1. Two cycle-numbers m and n have the same (0, 1)-pattern in their
rows if and only if m and n have the same radical; that is, iff r(m) = r(n). In case
m < n, we have m measures n, and m’ cycles in n’.

Proof. The proof is left to the reader.

Example.

(i) 2, 4, and 8 have the same (0, 1) pattern, since r(2) = 2 = r(4) = r(8). The
f.c.s are respectively 10, 1010, and 10101010; 2’ cycles in 4’ and 8’; and 4’
cycles in 8’.

(ii) 6 and 12 have the same (0, 1) pattern, since r(6) = 6 = 2 · 3 and r(12) =
r(22 · 3) = 2 · 3. We have 6’= 100010, which cycles in 12’= 100010100010.

Definition 6.2. The relation ‘has the same (0,1)-pattern’ is denoted by ρ(rho). It
is easy to show that ρ is an equivalence relation on the rows of C. Hence the set
of rows of C is partitioned by ρ.

We now introduce a matrix derived from C, denoted by PBPS(C), and ob-
tained by sequentially computing its rows.

6.2. The PBPS matrix
A useful pictorial device is obtained by transforming the matrix C as we go along,
row by row, and placing the modified rows in a new matrix, say S ≡ PBPS(C).
The acronym stands for Partial Boolean Product (row)-Sequence. The rows of C
form the sequence N, of the cycle-numbers n. The ith partial BP of this sequence,
denoted by si, is the ith row of S. Thus the rules of the computations are as follows:

Row computation Rules:
Let n denote the nth row of C, and sn denote the corresponding row in S. Then

(i) s1 = 1 = 1; and

(ii) sn = factorial n (using BP multiplication) = primorial i (using BP multipli-
cation, and lemma 6.3 below).
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Example.

s6 = 1∧2∧3∧4∧5∧6 which reduces to
= 2∧3∧5,
= primorial 5.

(The notation for this (see [6]) is 5# where cap or BP multiplication is un-
derstood. We occasionally use a personal notation Xi for primorial pi, where X is
capital ‘chi’. Thus for example, 5# = X3 .)

The sequence of primorials rises rapidly in lengths, since pn+1#= pn+1 ∧pn#.

Lemma 6.3. factorial n = primorial pn, where pn is the greatest prime cycle-
number less than or equal to n.

Proof. Any n-sieve which is not a prime sieve cannot supply a 0 to a column which
has an unstopped stalactite in it, and hence can be ignored. For if n were not
prime, it would be measurable by one or more primes, p say, with p<n, and one
of the p-sieves arising from them would already have stopped the stalactite.

Example. In s6, the 4 and 6 cycle-numbers are not prime.

(i) Now 2 ∧ 4 ≡ 2 (in its whole (0,1)-string) so a stalactite which has passed
through the 2-sieve must also pass through the 4-sieve. Thus the 4 may be
ignored.

(ii) For 6, the other non-prime, we have 6 = 2 ∧ 3. Therefore any 0 presented to
a column in 6! by the 4-sieve or the 6-sieve will find that the stalactite has
already been stopped by either the 2-sieve or the 3-sieve. The computation
of 6’ shows how this must happen:

101010

∧ 110110

100010

The resulting PBPS matrix need show only the C1 column of 1s, and the
completed stalactites (with their final 0s) in the other columns. In the leading
diagonal we place a P in each prime column, for ease of locating prime rows. All
other entries in the matrix are 0s, and these are not shown (i.e. their cells are left
blank).

Below is the reduced matrix PBPS(C13). (See Lemma 6.3 for explanation of
why we can write factorial n for obtaining each row Rn . For each prime row, we
could write p#, and for each non-prime row we would have n! ≡ p# where p is
the greatest prime < n; and all multiplication is ∧.)
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             y/x      1     2     3     4     5     6     7     8     9   10    11   12   13 

1!         1         1     1     1     1     1     1     1     1     1     1     1     1     1 

2!         2         1     P     1     0     1     0     1     0     1     0     1     0     1 

3!         3         1            P            1            1            0            1            1 

4!         4         1                   0     1            1                          1            1 

5!         5         1                          P            1                          1            1 

6!         6         1                                 0     1                          1            1 

7!         7         1                                        P                          1            1 

8!         8         1                                               0                   1            1 

9!         9         1                                                      0            1            1 

10!      10        1                                                             0     1            1 

11!      11        1                                                                    P            1 

12!      12        1                                                                           0     1 

13!      13        1                                                                                  P 

 

 

Figure 8: The matrix PBPS(C13) (a prime rib diagram)

The reader will appreciate why we have added the bracketed phrase to the
figure’s caption. The prime and twin prime stalactites stand out like ribs in a
rib-cage.

Note in particular that when a growing stalactite acquires a 0 from a passing
sieve, it ‘stops growing’. More precisely, its pattern now ends in (1,0), and the next
∧ operation in its column is 1∧0 = 0. This happens to all stalactites eventually
(except the stal. in C1). Those which reach the l.d. become primes; whilst those
pPs which are not destined to become primes are stopped by a 0 above the l.d.

Much more can be said, and deduced from, the C and PBPS matrices. This
must all be left for a segue paper. To end this one, we shall include a Section
7 which muses upon the ‘music’ made by cycling (0,1)-patterns formed within T
and C.

7. Musings on the ‘music of the cycle-numbers’

At the head of this paper (p. 2), we gave a quote by Leibnitz which expresses very
beautifully a relationship he claims between music, man and mathematics, one
with which we whole-heartedly empathize. Here we take up his theme with some
of our own feelings (well, Turner’s anyway!) about musical images arising from
studies of the cycle-numbers in T. The author du Sautoy, in his book Music of the
Primes [1], traces many connections between mathematics and music, stemming
from work due to Pythagoras, Euler, and so on up to the present day, where his
focus of attention is on the distribution of the primes and their relations to the
zeros of the zeta function and Riemann’s Hypothesis, and on related musical ideas.

With our cycle-numbers, we have shown that each number n has an interior
pattern, or structure, with a fundamental cycle (a (0,1)-string of length n) which
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cycles around its n-necktie and down the two legs indefinitely, within the cycle-
number triangle T. Similarly, in matrix C, the cycling takes place linearly in two
(and more) directions. It is easy to compare these ‘movements’ with the vibrations
of tuned strings on a musical instrument, or on bars of a xylophone. One can even
turn the cycled patterns into music, by clapping or drumming the (0,1)-strings
using Morse-code rhythms, and accenting beats on the starts of each cycle. For
example, the number 2 has f.c. (10), which can be clapped in 2/4 time as it cycles,
thus: da-di, da-di, da-di, . . . with stresses on each da . Similarly 3, with f.c.
(110), can be clapped in 3/4 or 3/8 time as da-da-di, da-da-di, etc. with stresses
on each first da. The notion of polyphony is easily introduced via the cap product.
For example, 2 and 3 can oscillate together, as the joint vector 2 ∧ 3 = 6. This
has f.c. (100010) (clapped as da-di-di-di-da-di),which can be stressed in various
ways to produce differing rhythms and ‘sounds’.

In this manner, one can think of each twin prime having its own distinctive
rhythms and sounds; e.g. (3, 5) resonates with 15, and so on. These patterns, or
pieces of linear patterns, occur and recur in different ways and places throughout
the matrix C, causing ‘overtones’ or ‘harmonics’ in the ‘music’.

One interesting comment, about the entrance of each successive prime, will
suffice to end this musing. When a new prime arises in T, it breaks various previous
symmetries, and introduces its own distinctive rhythm into the music which is
sounding within and about its new linear ‘melodies’, on its own grid in T or C.

Perhaps, like Pythagoras and his ‘music of the spheres’, we (i.e. Turner) may
well be the only person capable of hearing the ‘music of the cycle-numbers’.
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Abstract
In this paper a new method of generating identities for Fibonacci and Lu-

cas numbers is presented. This method is based on some fundamental iden-
tities for powers of the golden ratio and its conjugate. These identities give
interesting connections between Fibonacci and Lucas numbers and Bernoulli
numbers, Catalan numbers, binomial coefficients, δ-Fibonacci numbers, etc.
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1. Introduction

The authors’ fascination with Fibonacci, Lucas and complex numbers has been
reflected in the following two nice identities (discovered independently by Rabi-
nowitz [10] and Wituła [7] and, probably, many other, former and future admirers
of the Fibonacci and Lucas numbers):

(1+ξ+ξ4)n = Fn+1+Fn(ξ+ξ
4) and (1+ξ2+ξ3)n = Fn+1+Fn(ξ

2+ξ3), (1.1)

where ξ5 = 1, ξ ∈ C and ξ 6= 1, and Fn denotes the nth Fibonacci number.

2. Basic identities

Let

α := 2 cos
π

5
=

1 +
√
5

2
and β := −2 cos

(
2

5
π

)
=

1−
√
5

2
.
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Then we have
α+ β = 1, αβ = −1 (2.1)

Fn =
αn − βn
α− β , n ∈ Z, (2.2)

Ln = αn + βn, n = 0, 1, 2, . . . , (2.3)

where Ln denotes the nth Lucas number [3, 9].
Then, identities (1.1) can be written in the form

Fn+1 + x−1Fn = xn, (2.4)

for every x ∈ {α, β}. In other words, we get the divisibility relation of polynomials

(x2 − x− 1) | (xn+1 − Fn+1x− Fn).

Similarly (by induction) we can generate the identity

Ln+1 + x−1Ln = (2x− 1)xn, (2.5)

for every x ∈ {α, β}. This implies the following divisibility relation of polynomials

(x2 − x− 1) | ((2x− 1)xn+1 − Ln+1x− Ln).

Remark 2.1. If the values Fn and Ln were defined for real subscripts n ∈ [0, 1)
(see [15]), then from formulae (2.4) and (2.5) we could easily extend these definitions
for any other real subscripts.

In particular, if functions [0, 1] 3 n 7→ Fn and [0, 1] 3 n 7→ Ln are continuous,
then from formulae (2.4) and (2.5) we could obtain the continuous extensions of
these functions. With this problem also some special problem is connected (see
Corollary 2.6 – Dobinski’s formula problem).

Immediately from identities (2.4) and (2.5) the next result follows.

Theorem 2.2 (Golden ratio power factorization theorem). Let {kn}∞n=1 be a se-
quence of positive integers. Then the following identities hold true

N∏

n=1

(
Fkn+1 +

√
5− 1

2
Fkn

)
=
(1 +

√
5

2

) N∑
n=1

kn
,

N∏

n=1

(
Fkn+1 −

√
5 + 1

2
Fkn

)
=
(1−

√
5

2

) N∑
n=1

kn
,

or in equivalent compact form

N∏

n=1

(
Fkn+1 + x−1Fkn

)
= x

N∑
n=1

kn
,
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N∏

n=1

(
Lkn + (2x− 1)Fkn

)
= 2N x

N∑
n=1

kn
,

for every x ∈ {α, β}, and
N∏

n=1

(
Lkn+1 +

√
5− 1

2
Lkn

)
=
(√

5
)N (1 +

√
5

2

) N∑
n=1

kn
,

N∏

n=1

(
Lkn+1 −

√
5 + 1

2
Lkn

)
=
(
−
√
5
)N (1−

√
5

2

) N∑
n=1

kn
,

or in equivalent compact form

N∏

n=1

(
Lkn+1 + x−1Lkn

)
= (2x− 1)Nx

N∑
n=1

kn
,

for every x ∈ {α, β}. The above identities are called "Golden Gate" relations.

We note that these identities act as links between Fibonacci and Lucas se-
quences and many other special sequences of numbers, especially many known
linear recurrence sequences. Now we will present the collection of such relations.

First let us consider the Bernoulli numbers Br defined by the following recursion
formula [6, 11]:

B0 = 1,

(
n

n− 1

)
Bn−1 +

(
n

n− 2

)
Bn−2 + . . .+

(
n

0

)
B0 = 0, n = 2, 3, . . .

(we note that B2k+1 = 0, k = 1, 2, . . .). Moreover, Bk(y) denotes here the k-th
Bernoulli polynomial defined by

Bk(y) =

k∑

l=0

(
k

l

)
Bl y

k−l.

Corollary 2.3 (A bridge between Fibonacci, Lucas and Bernoulli numbers). We
have

N−1∏

n=1

(
Fnk+1 + x−1Fnk

)
= x

N∫
0

Bk(y) dy
,

N−1∏

n=1

(
Lnk + (2x− 1)Fnk

)
= 2N−1 x

N∫
0

Bk(y) dy

and
N−1∏

n=1

(
Lnk+1 + x−1Lnk

)
= (2x− 1)N−1x

N∫
0

Bk(y) dy
,

for every x ∈ {α, β}.
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Proof. The identities result from the following known relation [6, 11]:

N−1∑

n=1

nk =

N∫

0

Bk(y) dy =
k∑

r=0

(
k

r

)
Br

Nk−r+1

k − r + 1
.

Corollary 2.4 (A bridge between Fibonacci numbers, Lucas numbers and binomial
coefficients). We have

b(n+1)/2c∏

k=1

(
F(n−k

k−1)+1 + x−1F(n−k
k−1)

)
= xFn ,

b(n+1)/2c∏

k=1

(
L(n−k

k−1)
±
√
5F(n−k

k−1)

)
= 2b(n+1)/2c

(1±
√
5

2

)Fn

,

b(n+1)/2c∏

k=1

(
L(n−k

k−1)+1 + x−1L(n−k
k−1)

)
= (2x− 1)b(n+1)/2c xFn ,

for every x ∈ {α, β}.
Proof. All the above identities follow from relation (see [9]):

Fn =

b(n+1)/2c∑

k=1

(
n− k
k − 1

)
.

Note that similar and simultaneously more general relations could be obtained
for the incomplete Fibonacci and Lucas p−numbers (see [12, 13]).

Next corollary concerns the Catalan numbers defined in the following way

Cn :=
1

n+ 1

(
2n

n

)
, n = 0, 1, . . .

Corollary 2.5 (A bridge between Fibonacci numbers, Lucas numbers and Catalan
numbers). We have

N∏

n=0

(
F1+CN−nCn

+ x−1FCN−nCn

)
= xCN+1 , (2.6)

N∏

n=0

(
LCN−nCn + (2x− 1)FCN−nCn

)
= 2N+1xCN+1 (2.7)

and
N∏

n=0

(
L1+CN−nCn + x−1LCN−nCn

)
= (2x− 1)N+1xCN+1 , (2.8)

for every x ∈ {α, β}.
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Moreover, if p is prime and p ≡ 3 (mod 4), then we have

p

√
x2F1+C p−1

2

+ xFC p−1
2

= x
2+C(p−1)/2

p , (2.9)

p2

√(
F1+ 1

2C p2−1
2

+ x−1F 1
2C p2−1

2

)(
F
1+(

p−1
p−1
2
)
+ x−1F

(
p−1
p−1
2
)

)
= x

1
2
C
(p2−1)/2

+( p−1
p−1
2
)

p2 ,

(2.10)

for every x ∈ {α, β}.
Proof. Identities (2.6)-(2.8) can be obtained from the recursive relation for Cn

CN+1 =

N∑

n=0

CN−nCn, N = 0, 1, . . .

Whereas relations (2.9) and (2.10) result from the fact that if p is prime and
p ≡ 3 (mod 4), then p|(2 + C p−1

2
) and p2|

(
1
2C p2−1

2

+
(p−1

p−1
2

))
(see [1]).

Next conclusion is connected with the Bell numbers Bn, n = 0, 1, ... [6].

Corollary 2.6 (A bridge between Fibonacci numbers, Lucas numbers and Bell
numbers). We have

N∏

n=0

(
F(Nn)Bn+1 + x−1F(Nn)Bn

)
= xBN+1 ,

N∏

n=0

(
L(Nn)Bn

+ (2x− 1)F(Nn)Bn

)
= 2N+1xBN+1 ,

N∏

n=0

(
L(Nn)Bn+1 + x−1L(Nn)Bn

)
= (2x− 1)N+1xBN+1 ,

for every x ∈ {α, β}.
Proof. All the above identities follow from the well known recursive relation

B0 := 1,

BN+1 =
N∑

n=0

(
N

n

)
Bn, N = 0, 1, . . .

We note that for the Bell numbers the following interesting relation, called
Dobinski’s formula [6], holds:

BN =
1

e

∞∑

k=0

kN

k!
, N = 0, 1, 2, . . .
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In connection with the above formula we formulate a certain problem which can
be expressed in the following way. Is it possible to generalize the definition of
Fibonacci numbers Fn onto real indices (of Lucas numbers Ln, respectively) such
that the following equality will be fulfilled:

∞∏

k=0

(
F
1+ e−1kN

k!

+ x−1F e−1kN

k!

)
= xBN ,

for every x ∈ {α, β} and N ∈ N, or

∞∏

k=0

L
1+ e−1kN

k!

+ x−1L e−1kN

k!

2x− 1
= xBN ,

for every x ∈ {α, β} and N ∈ N, respectively?
Next corollary concerns the connection with the δ-Fibonacci numbers defined

by relations (see [14]):

an(δ) =

n∑

k=0

(
n

k

)
Fk−1 (−δ)k (2.11)

and

bn(δ) =

n∑

k=1

(
n

k

)
(−1)k−1 Fk δk, (2.12)

for δ ∈ C.

Corollary 2.7 (A bridge between Fibonacci, Lucas and δ-Fibonacci numbers).
For positive integers δ and n we get

n∏

k=0

(
F1+(nk)Fk−1δk

+ x−1F(nk)Fk−1δk

)
= xan(−δ),

n∏

k=1

(
F1+(nk)Fkδk

+ x−1F(nk)Fkδk

)
= x−bn(−δ),

n∏

k=0

(
L(nk)Fk−1δk

+ (2x− 1)F(nk)Fk−1δk

)
= 2n+1 xan(−δ),

n∏

k=1

(
L(nk)Fkδk

±
√
5F(nk)Fkδk

)
= 2n x−bn(−δ),

n∏

k=0

(
L1+(nk)Fk−1δk

+ x−1L(nk)Fk−1δk

)
= (2x− 1)n+1xan(−δ),

n∏

k=1

(
L1+(nk)Fkδk

+ x−1L(nk)Fkδk

)
= (2x− 1)nx−bn(−δ),

etc., for every x ∈ {α, β}. Moreover, we define here Fn+1 = Fn + Fn−1, n ∈ Z.
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Let us note that similar relations we have for the incomplete δ−Fibonacci num-
bers an,r(δ) and bn,s(δ) where

an,r(δ) :=
r∑

k=0

(
n

k

)
Fk−1(−δ)k, 0 ≤ r ≤ n,

bn,s(δ) :=

s∑

k=1

(
n

k

)
(−1)k−1Fkδk, 1 ≤ s ≤ n.

Now we consider the r−generalized Fibonacci sequence {Gn} defined as follows

Gn =





0, if 0 ≤ n < r − 1,
1, if n = r − 1,
Gn−1 +Gn−2 + . . .+Gn−r, if n ≥ r.

Corollary 2.8 (A bridge between Fibonacci, Lucas and classic r-Fibonacci num-
bers). Let r ∈ N, r ≥ 2. Then the following identities hold true [8]:

(
F1+2r−1Gn−r

+ x−1F2r−1Gn−r

) r−1∏

k=1

(
F
1+(

r−1∑
i=k

2i−1)Gn−r−k

+ x−1F
(
r−1∑
i=k

2i−1)Gn−r−k

)

= xGn ,

for every n ≥ 2 r − 1, and

[ n∏

k=0

(
F1+G2

k
+ x−1FG2

k

)]
×
[ r−1∏

i=2

n−i∏

k=0

(
F1+GkGk+i

+ x−1FGkGk+i

)]

= xGnGn+1 ,

the special case of which is the following Lucas identity
n∏

k=1

(
F1+F 2

k
+ x−1FF 2

k

)
= xFnFn+1 ,

for every x ∈ {α, β}.
Corollary 2.9. We have also (x ∈ {α, β}):

(
FFn+1+1 + x−1FFn+1

)(
FFn−1+1 + x−1FFn−1

)
= xLn ,

(
LFn+1 ±

√
5FFn+1

)(
LFn−1

±
√
5FFn−1

)
= 4

(1±
√
5

2

)Ln

,
(
LFn+1+1 + x−1LFn+1

)(
LFn−1+1 + x−1LFn−1

)
= 5xLn ,

since Fn+1 + Fn−1 = Ln, n ∈ N. Furthermore, we have
(
FLn+1+1 + x−1FLn+1

)(
FLn−1+1 + x−1FLn−1

)
= x5Fn ,
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(
LLn+1

±
√
5FLn+1

)(
LLn−1

±
√
5FLn−1

)
= 4

(1±
√
5

2

)5Fn

,
(
LLn+1+1 + x−1LLn+1

)(
LLn−1+1 + x−1LLn−1+1

)
= 5x5Fn ,

since Ln+1 + Ln−1 = 5Fn, n ∈ N.

Remark 2.10. Note that Theorem 2.2 is connected, in some way, with the following
very important Zeckendorf’s theorem [6]:

For every number n ∈ N there exists exactly one increasing sequence 2 ≤ k1 <
. . . < kr, where r = r(n) ∈ N, such that ki+1 − ki ≥ 2 for i = 1, 2, . . . , r − 1, and

n = Fk1 + Fk2 + . . .+ Fkr .

For example, we have
1000 = 987 + 13 = F16 + F7,

that is (√
5F987 ± L987

)(√
5F13 ± L13

)
= 2L1000 ± 2

√
5F1000 =

=
(
L987 ±

√
5F987

)(
L13 ±

√
5F13

)
= 4

(1±
√
5

2

)1000
.

3. Final remark

Finally, we note that identities (2.4), considered at the beginning of this paper,
were discussed by many authors. For example, S. Alikhani and Y. Peng [2] basing
on (2.4) have proven that αn, for every n ∈ N, cannot be a root of any chromatic
polynomial. Furthermore, D. Gerdemann [5] has used the first of identities (2.4)
for analyzing the, so called, Golden Ratio Division Algorithm. Consequently, he
has discovered a semi-combinatorial proof of the following beautiful theorem.

Theorem 3.1. For nonconsecutive integers a1, . . . , ak, the following two state-
ments are equivalent (for every m ∈ N):

mFn = Fn+a1 + Fn+a2 + . . .+ Fn+ak ,

m = αa1 + αa2 + . . .+ αak .

Acknowledgements. The Authors are grateful to the valuable remarks of the
Referee which gave the possibility to improve presentation of the paper.
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Abstract
In this paper, we look at the invertible classes modulo M representable

as Fibonacci numbers and we ask when these classes, say FM , form a multi-
plicative group. We show that if M itself is a Fibonacci number, then M ≤ 8;
if M is a Lucas number, then M ≤ 7. We also show that if x ≥ 3, the number
of M ≤ x such that FM is a multiplicative subgroup is O(x/(log x)1/8).
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1. Introduction

Let {Fk}k≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and

Fk+2 = Fk+1 + Fk for all k ≥ 0,

with the corresponding Lucas companion sequence {Lk}k≥0 satisfying the same
recurrence with initial conditions L0 = 2, L1=1. The distribution of the Fibonacci
numbers modulo some positive integer M has been extensively studied. Here, we
put

FM = {Fn (mod M) : gcd(Fn,M) = 1}
and ask when is FM a multiplicative group. We present the following conjecture.
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Conjecture 1.1. There are only finitely many M such that FM is a multiplicative
group.

Shah [5] and Bruckner [1] proved that if p is prime and Fp is the entire mul-
tiplicative group modulo p, then p ∈ {2, 3, 5, 7}. We do not know of many re-
sults in the literature addressing the multiplicative order of a Fibonacci number
with respect to another Fibonacci number, although in [3] it was shown that if
FnFn+1 is coprime to Fm and Fn+1/Fn has order s 6∈ {1, 2, 4} modulo Fm, then
m < 500s2. Moreover, Burr [2] showed that Fn (mod m) contains a complete set
of residues modulo m if and only if m is of the forms: {1, 2, 4, 6, 7, 14, 3j}·5k, where
k ≥ 0, j ≥ 1.

In this paper, we prove that ifM = Fm is a Fibonacci number itself, orM = Lm,
then Conjecture 1.1 holds in the following strong form.

Theorem 1.2. If M = Fm and FM is a multiplicative group, then m ≤ 6. If
M = Lm and FM is a multiplicative group, then m ≤ 4.

We also show that for most positive integers M , FM is not a multiplicative
group.

Theorem 1.3. For x ≥ 3, the number of M ≤ x such that FM is a multiplica-
tive subgroup is O(x/(log x)1/8). In particular, the set of M such that FM is a
multiplicative subgroup is of asymptotic density 0.

2. Proof of Theorem 1.2

We first deal with the case of the Fibonacci numbers. It is well-known that the
Fibonacci sequence is purely periodic modulo every positive integer M . When
M = Fm, then the period is at most 4m. Thus, #FM ≤ 4m, Let ω(m) be the
number of distinct prime factors of m. Assume that X is some positive integer
such that

π(X) ≥ ω(m) + 4. (2.1)

Here, π(X) is the number of primes p ≤ X. Then there exist three odd primes p <
q < r ≤ X none of them dividing m. For a triple (a, b, c) ∈ {0, 1, . . . , b(4m)1/3c},
we look at the congruence class F a

p F
b
qF

c
r (mod M). There are (b(4m)1/3c+ 1)3 >

4m ≥ #FM such elements modulo M , so they cannot be all distinct. Thus, there
are (a1, b1, c1) 6= (a2, b2, c2) such that

F a1
p F b1

q F c1
r ≡ F a2

p F b2
q F c2

r (mod M).

Hence, F a1−a2
p F b1−b2

q F c1−c2
r ≡ 1 (mod M). Observe that the rational number

x = F a1−a2
p F b1−b2

q F c1−c2
r −1 cannot be zero because Fp, Fq, Fr are all larger than

1 and coprime any two. Thus, M divides the numerator of the nonzero rational
number x, and so we get

Fm =M ≤ F |a1−a2|
p F |b1−b2|q F |c1−c2|r . (2.2)
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We now use the fact that

αk−2 ≤ Fk ≤ αk−1 for all k = 1, 2 . . . ,

where α = (1 +
√
5)/2, to deduce from (2.2) that

αm−2 ≤ Fm ≤ (FpFqFr)
(4m)1/3 < (αX−1)3(4m)1/3 ,

so that
m < 3(4m)1/3X + 2− 3(4m)1/3 < 3(4m)1/3X,

therefore
m < 6

√
3X3/2. (2.3)

Let us now get some bounds on m. We take X = m1/2. Assuming X > 17 (so,
m > 172), we have, by Theorem 2 in [4], that

π(X) >
X

logX
=

2m1/2

logm
.

Since 2ω(m) ≤ m, we have that

ω(m) ≤ logm

log 2
.

Thus, inequality (2.1) holds for our instance provided that

2m1/2

logm
>

logm

log 2
+ 4,

which holds for all m > 5000. Now inequality (2.3) tells us that

m < 6
√
3m3/4, therefore m < (6

√
3)4 < 12000. (2.4)

Let us reduce the above bound on m. Since

2× 3× 5× 7× 11× 13 = 30030 > m,

it then follows that ω(m) ≤ 5, therefore it is enough to choose X = 23 to be
the 9th prime and then inequality (2.1) holds. Thus, (2.3) tells us that m ≤
6
√
3 × 233/2 < 1200. We covered the rest of the range with Mathematica. That

is, for each m ∈ [10, 1200], we took the first two odd primes p and q which do not
divide m and checked whether for some positive integer n ≤ 4m both congruences
Fn
p ≡ 1 (mod Fm) and Fn

q ≡ 1 (mod Fm). The only m’s that passed this test
were m = 10, 11. We covered the rest by hand. The only values m that satisfy the
hypothesis of the theorem are m = 1, 2, 3, 4, 5, 6.

IfM = Lm, then, the argument is similar to the one above up and we point out
the differences only. The period of the Fibonacci numbers modulo a Lucas number

When do the Fibonacci invertible classes modulo M form a subgroup? 267



Lm is at most 8m, and so #FM ≤ 8m. As before, one takes X as in (2.1), and the
triple (a, b, c) ∈ {0, 1, . . . , b2m1/3c}, implying an inequality as in (2.2), namely

Lm =M ≤ F |a1−a2|
p F |b1−b2|q F |c1−c2|r . (2.5)

Since for all k ≥ 1, αk−1 ≤ Lk ≤ αk+1, then

αm−1 ≤ Lm ≤ (FpFqFr)
2m1/3 ≤ α6(X+1)m1/3

,

and so, m < 6m1/3X + 1 + 6m1/3 < 13m1/3X, which implies

m < 133/2X3/2. (2.6)

The argument we used before with X = m1/2 works here, as well, rendering the
bound m < 136 = 4, 826, 809. We can decrease the bound by using the fact that
the product of all primes up to 19 is 9,699,690 > 4,826,809, and so, ω(m) ≤ 7,
therefore, it is enough to choose X = 31 (the 11th prime) for the inequality (2.1)
to hold. We use X = 31 in the formula before (2.6) to get m− 192 ·m1/3 − 1 < 0,
which implies m < 143 = 2744 (to see that, label y := m1/3 and look at the sign of
the polynomial y3 − 192y − 1).

To cover the range from 10 to 2744, we used the same trick as before (which
works, since by F2m = LmFm, then gcd(Fp, Lm) = gcd(Fp, F2m/Fm)| gcd(Fp, F2m)
= Fgcd(p,2m)). To speed up the computation we used the fact that one can choose
one of the primes p, q to be 5, since a Lucas number is never divisible by 5. The only
m’s that passed the test were 10, 12, 15, 21, which are easily shown (by displaying
the corresponding residues) not to generate a multiplicative group structure. The
only values of m, for which we do have a multiplicative groups structure for FM

when M = Lm are m ∈ {1, 2, 3, 4}.

3. Proof of Theorem 1.3

Consider the following set of primes

P =

{
p > 5 :

(
5

p

)
= 1,

(
11

p

)
=

(
46

p

)
= −1

}
.

Here, for an integer a and an odd prime p, we use
(
a
p

)
for the Legendre symbol

of a with respect to p. Let M be the set of M such that FM is a multiplicative
subgroup. We show that M is free of primes from P. Since P is a set of primes
of relative density 1/8 (as a subset of all primes), the conclusion will follow from
the Brun sieve (see [6, Chapter I.4, Theorem 3]). To see that M is free of primes
from p, observe that since F3 = 2, F4 = 3, and FM is a multiplicative subgroup,
it follows that there exists n such that Fn ≡ 6 (mod M). If p |M for some p ∈ P,
it follows that

Fn − 6 ≡ 0 (mod p). (3.1)
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Since
(
5
p

)
= 1, it follows that both

√
5 and α are elements of Fp. With the Binet

formula, we have

Fn =
αn − βn

√
5

.

Put tn = αn, εn = (−1)n. Thus, βn = (−α−1)n = εnt
−1
n , so congruence (3.1)

becomes
tn − εnt−1n√

5
− 6 ≡ 0 (mod p)

giving
t2n − 6

√
5 tn − εn ≡ 0 (mod p).

Thus, one of the quadratic equations t2 − 6
√
5 t ± 1 = 0 must have a solution t

modulo p. Since the discriminants of the above quadratic equations are 176 =
16 × 11 and 184 = 4 × 46, respectively, and since neither 11 nor 46 is a quadratic
residue modulo p, we get the desired conclusion.

4. Comments

The bound O(x/(log x)1/8) of Theorem 1.3 is too weak to allow one to decide via
the Abel summation formula whether

∑

M∈M

1

M

is finite or not. Of course Conjecture 1.1 would imply that the above sum is finite.
We leave it as a problem to the reader to improve the bound on the counting
function ofM∩ [1, x] from Theorem 1.3 enough to decide that indeed the sum of
the above series is convergent.

Acknowledgment. F. L. was supported in part by Project PAPIIT IN104512
and a Marcos Moshinsky Fellowship. P. S. acknowledges a research sabbatical leave
from his institution.

References

[1] G. Bruckner, Fibonacci Sequence Modulo a Prime p ≡ 3 (mod 4), Fibonacci Quart.
8 (1970), 217–220.

[2] S. A. Burr, On Moduli for Which the Fibonacci Sequence Contains a Complete
System of Residues, Fibonacci Quart. 9 (1971), 497–504.

[3] T. Komatsu, F. Luca, On the multiplicative order of Fn+1/Fn modulo Fm, Preprint ,
2012.

[4] J. B. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime
numbers, Illinois J. Math. 6 (1962), 64–94.

When do the Fibonacci invertible classes modulo M form a subgroup? 269



[5] A. P. Shah, Fibonacci Sequence Modulo m, Fibonacci Quart. 6 (1968), 139–141.

[6] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cam-
bridge University Press, 1995.

270 F. Luca, P. Stănică, A. Yalçiner



Problem proposals

compiled by Clark Kimberling

These problems were posed by participants of the Fifteenth International Con-
ference on Fibonacci Numbers and Their Applications, Institute of Mathematics
and Informatics, Eszterházy Károly College, Eger, Hungary, June 27, 2012.

Problem 1 (posed by Heiko Harborth).
For F13 = 233 and F18 = 2584, this holds:

σ(F13) + σ(F18) = 2(F13 + F18).

Are there further pairs of Fibonacci numbers equalizing their abundance and defi-
ciency?

Problem 2 (posed by Heiko Harborth).
For 5 and 14, this holds: 5 is 14-perfect and 14 is 5-perfect, where n is h-perfect if

σ(n) + σ(nh) = 2(n+ hn).

Are there further pairs a, b such that a is b-perfect and b is a-perfect?

Problem 3 (posed by Heiko Harborth).
Find numbers n that are h-perfect for more than one value of h, where n is h-perfect
if

σ(n) + σ(nh) = 2(n+ hn).

Examples: 135 is 7-perfect and 55-perfect, and 5 is h-perfect for h ∈ {14, 806, 1166}.
Problem 4 (posed by Clark Kimberling).
Let rn be the greatest eigenvalue of the nth principal submatrix of the Fibonacci
self-fusion matrix, M . Let sn be the greatest eigenvalue of the nth principal sub-
matrix of the Fibonacci self-fission matrix, M̃ . Prove or disprove:

lim
n→∞

rn+1

rn
= lim

n→∞
sn+1

sn
=

3 +
√
5

2

(The matrices M and M̃ are presented in the Online Encyclopedia of Integer Se-
quences at A202453 and A202503.)
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Problem 5 (posed by Bill Webb).
A monic polynomial, all of whose coefficients are negative, will be called a negative
polynomial. Characterize polynomials that divide some negative polynomial. (For
example, every linear polynomial divides a negative polynomial.)

Problem 6 (posed by Joseph Lahr).
Evaluate these sums:

k∑

n=1

Fn2 and
k∑

n=1

Ln2 .

These sums are comparable to
∑k

n=1 e
n2

, which occurs in the Fourier transform of
chirp-signals, as typifed by the equation Sn = A cos(an2).

Problem 7 (posed by Larry Ericksen).
Let p(n) denote the nth prime, and let nk denote the kth value of n for which
p(n)+2 is prime. Find all k such that k(k+1) divides p(nk)+1. Example: k = 8,
n8 = 20, p(20) = 71, p(20)+ 1 = 8 · 9. In other words, k(k+1) divides the average
of the twin primes p(nk) and p(nk) + 2.

Problem 8 (posed by Larry Ericksen).
Let p(m) denote the mth prime. Find all pairs (m,n) such that reversing the digits
of m yields n and reversing the digits of p(m) yields p(n). Example: m = 12,
n = 21, p(m) = 37, p(n) = 73.

Problem 9 (posed by Lawrence Somer).
Let ax2+bxy+cy2 be a binary quadratic form with a, b, c integers and discriminant
D = b2 − 4ac 6= 0. Suppose that p is a prime such that p - D.

(a) Do there exist integers x0, y0 such that
(
ax20 + bx0y0 + cy20

p

)
= −1,

where
(

n
p

)
denotes the Legendre symbol?

(b) Answer (a) with a = 1.
(c) Answer (a) with a = 1 and c = ±1.
(d) Answer (a) with a = 1 and p such that

(
−D
p

)
= 1.

Problem 10 (posed by Neville Robbins).
A Wilf partition of n is a partition such that all distinct parts have distinct mul-
tiplicities, as in 6 = 4 + 1 + 1. Let f(n) be the number of Wilf partitions of n, as
typified by

n 0 1 2 3 4 5 6 7 8 9 10 11 12
f(n) 1 1 2 2 4 5 7 10 13 15 21 28 31

and sequence A098859 in the Online Encyclopedia of Integer Sequences.
(a) Prove that f(n) is strictly increasing for n ≥ 3.
(b) Obtain an explicit formula or recurrence for f(n).
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Problem 11 (posed by Gabriele Gelatti).
Examples gleaned from visual art suggest that if N is a positive integer, then the
product

Fn−4Fn−3Fn−2Fn−1FnFn+1Fn+2Fn+3Fn+4

is equal to a polynomial function of Fn, F
2
n , . . . , F

9
n . Following the presentation of

this problem, Kristóf Huszár sketched a proof that Fn−kFn+k = F 2
n+(−1)n−k+1F 2

k ,
which implies that

Fn

k∏

i=1

Fn−iFn+i = Fn

k∏

i=1

(F 2
n + (−1)n−i+1F 2

k ),

a polynomial in Fn of degree 2k + 1. Subsequently, Bill Webb described a general
form of identity, as follows. Let k = 4t + 1, where t > 0 (or, one may also start
with k = 4t or k = 4t+ 2 or k = 4t+ 3.) For any given j1, j2, . . . , jk, the product

Fn+j1Fn+j2 · · ·Fn+jk

can be written in the form

a1Fkn + a2(−1)nF(k−2)n + a3F(k−3)n + · · ·+ a2t+1Fn

+ b1Fk(n+1) + b2(−1)nF(k−2)(n+1) + b3F(k−3)(n+1) + · · ·+ b2tFn+1. (1)

The values of ai and bi are easily calculated as solutions of k + 1 linear equations.
The terms Fr(n+1) can be replaced by Frn+si or Lrn+si , and similarly for the
terms Frn. It appears likely that the correspondence between (j1, j2, . . . , jk) and
the coefficients ai and bi includes interesting cases; for example, when is (1) “short”?

Problem 12 (posed by Clark Kimberling, Heiko Harborth, and Peter Moses).
Discuss the triangular arrangements (as indicated by the example below, or of other
sorts) of the numbers 1, 2, . . . , n(n+1)/2 that have interlacing rows; i.e., each term
in the first n− 1 rows is between the two numbers just below it. For n = 3 :

3 3 3
2 5 2 5 2 5

1 4 6 1 4 6 4 1 6

3 3
2 4 2 4

5 1 6 6 1 5

4 4 4
2 5 2 5 2 5

1 3 6 1 6 3 3 1 6

4 4
3 5 3 5

1 6 2 2 6 1
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Problem 13 (posed by Curtis Cooper).
Find, or prove the nonexistence of, an algebraic identity of the form

(r1x
2 + s1xy + t1y

2)4 + (r2x
2 + s2xy + t2y

2)4

= (r3x
2 + s3xy + t3y

2)4 + (r4x
2 + s4xy + t4y

2)4 + (r5x
2 − s5xy − t5y2)4,

where x and y are variables, ri are positive integers, si and ti are nontrivial integers,
s5 > 0, and t5 = ±1.

Problem 14 (posed by Augustine Munagi).
Give an explicit bijective proof of the following proposition. The number of com-
positions of n in which 2 may appear only as a first or last part equals the number
of compositions of n+ 1 in which 2 is not a part.

Example: A005251(n + 2) is the number of compositions of n having at most
two 2s, which may occur only at endpoints; e.g., for n = 4, the compositions are (4),
(1, 3), (3, 1), (1, 1, 1, 1), (2, 2), (1, 1, 2), (2, 1, 1). For the other kind, A005251(n+1)
is the number of compositions of n having no 2; e.g., for n = 5, the compositions
are (5), (1, 4), (4, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 1, 1, 1).
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