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Preface 

Dr. András Prékopa, full member of the Hungarian Academy of Sciences, 
Professor Emeritus of the Operations Research Department of Eötvös Loránd 
University of Sciences and of Rutgers Center of Operations Research, Széchenyi 
prize winner Hungarian mathematician, passed away in Budapest at the age of 87 
on the 18th of September 2016. In addition to being an internationally leading 
researcher he is truly the Father of operations research (OR) in Hungary. For his 
major achievements and contributions to the science of OR he was also awarded 
“Honorary Doctorate” by the Óbuda University. This volume of Acta 
Polytechnica Hungarica (APH) is devoted to his memory. 

Originally, the idea of the APH volume came from András Bakó the founding 
editor of the journal. He was assigned the position of editor-in-chief of this 
volume with two co-editors István Maros and Tamás Szántai. While the work was 
well in progress András Bakó suddenly and unexpectedly passed away. The two 
co-editors took over the job and did the rest of the work. Herewith we pay tribute 
to András Bakó for his unforgettable personality, for his original thinking, his 
contributions to the theory and practice of operations research and also for his care 
for others. 

The volume contains 13 accepted papers that have undergone the strict editorial 
procedure of APH. 

Bakó and Gáspár summarize the development procedure of the optimal 
maintenance and rehabilitation strategies (models) of roads and bridges in 
Hungary. In these models the deterioration depending on time and other 
parameters is given by Markov transition probability matrices. The paper presents 
the development phases of models concentrating not only on economic aspects but 
also environmental (sustainability) ones, as well. The Hungarian multi-periodical 
PMS model was one of the very first models applying total optimization over a ten 
years’ time horizon. 

Smidla and Maros study the possibility of improving the accuracy of certain 
additive floating point operations, especially that of the vector-vector addition and 
dot-product operations. In stabilized dot product calculations it is customary to use 
branching which makes it a bottleneck in parallel computations The authors define 
the „safe add” operation and show how it can be implemented on modern SIMD 
architecture. They show that the operations can be executed without loss of time 
and the increased accuracy dot products can be computed without branching. The 
summarized results of a computational study are also presented. 

Böröcz, Tar and Maros perform a thorough comparison of vector operations of 
open-source linear optimization kernels: CLP, GLPK and Pannon Optimizer (PO). 
Such kernels are responsible for the speed and accuracy of most optimization 
algorithms. In PO they introduce a new data type for sparse computing called 
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indexed dense vectors and point out its beneficial properties that make PO more 
than competitive among the investigated kernels. 

Szántai, on the basis of an earlier Hungarian language paper by Prékopa, Szántai 
and Zsuffa, investigates the water streamflow on probability theoretical bases. It is 
shown that under some realistic conditions its probability distribution is of gamma 
type. Then the optimal capacity of a storage reservoir is determined. In a second 
model optimal water release policy is sought, given that water demands should be 
met by a prescribed large probability. Finally, in addition to the aforementioned 
reliability type constraint an upper bound is imposed on the number of days when 
demands may not be met and the cost of the intake facility is to be minimized. 

Szántai, Kovács and Egri are dealing with forecasting of the demand during a 
sales period. They present two dynamic methodologies for calculating the quantity 
which has to be placed on the shelves at the beginning of each day such that some 
constraints expressing lower and upper bounds on the quantities are kept. Both 
methodologies are new to this field and are useful because of some specific 
properties of the problem. The new methods use historical data of the demands in 
previous promotions and the consumptions registered in the previous days. Since 
the promotion period is relatively short, other methods such as time series analysis 
can hardly be used. 

Fábián, Csizmás, Drenyovszki, van Ackooij, Vajnai, Kovács and Szántai propose 
a new algorithm for probability maximization under linear constraints by inner 
approximation. The proposed algorithm has the advantage that it can easily be 
implemented and is immune to possible noises in gradient computation. They 
prepared a simple implementation of the proposed new algorithm and show that it 
is quite reliable and robust. 

Illés and Lovrics present a new computational method for the linearly constrained 
convex multi-objective optimization (LCCMO) problem. They propose some 
techniques for finding joint decreasing directions for both the unconstrained and 
the linearly constrained case. Utilizing these techniques, they introduce a method 
using a subdivision technique to approximate the whole Pareto optimal set of the 
LCCMO problem. 

Izsák and Szeidl are dealing with species abundance models. They suppose the 
process describing the entering time points of the new species in the system to be 
Poisson process. In earlier papers the Poisson process was supposed to be 
homogeneous when the logarithmic distribution played important role in 
description of the model parameters. In the present paper the authors showed that 
in the case of inhomogeneous Poisson process the Yule distribution takes over the 
role of the logarithmic distribution. 

Bánhelyi, Csendes, Krisztin and Neumaier give an elementary derivation of a 
bounding scheme to prove Wright’s conjecture on the delay differential equation. 
Then the elaborated bounding scheme can be applied in a verified computational 



Acta Polytechnica Hungarica Vol. 15, No. 1, 2018 

 – 9 – 

algorithm for systematic checking the parameter value  in the delay differential 
equation. Earlier the authors worked out a simpler technique for doing this. By 
applying this it was possible to prove the truth of Wright’s conjecture for 

 .5706.1,5.1  The main goal of the present paper is to improve the upper limit 

point of this interval. By applying the described bounding technique the authors 
continued the computational part of the proof with unchanged theoretical 
background and they were able to increase the upper limit of the interval up to 
1.57065. However the time of computation for this was more than 466 hours 
(almost 20 days) on a quite strong PC configuration. So the authors conclude that 
additional theoretical insight should be utilized to achieve a substantial progress in 
the proven  values. 

Abaffy and Galántai present a bisection type global optimization algorithm for 
continuous real functions over a rectangle. The suggested method combines the 
branch and bound technique with an always convergent solver of underdetermined 
nonlinear equations. The paper concludes with a detailed numerical testing of the 
algorithm. 

Dombi, Jónás and Tóth elaborate a new probability distribution which they call 
epsilon probability distribution. First they introduce the concept of the n-th order 
epsilon differential equation then show that the solution of the 0-th order epsilon 
differential equation is the exponential function. They solve the 1-st order epsilon 
differential equation and its solution, which is a power function, they call epsilon 
function. As an interesting fact they show that this function is in a strong 
connection with the Dombi operators in continuous logic. Using this new function 
a new probability distribution is constructed which is called the epsilon probability 
distribution. It is proved that the epsilon probability distribution is asymptotically 
equivalent to the exponential probability distribution. The hazard function of the 
new epsilon probability distribution is determined and its advantages are shown in 
a practical example. 

London, Gera and Bánhelyi examine Markowitz portfolio selection using various 
estimators of expected returns and filtering techniques for correlation matrices. 
They use several methods to estimate expected returns. The authors conclude that 
the James-Stein estimator improves the reliability of the portfolio. It means that 
the realized risk is closer to the estimated risk in the investigated case. 

Fullér, Harmati and Várlaki summarize the measures of dependence between 
possibility distributions known in the literature. One of them is the measure of 
possibilistic correlation between marginal possibility distributions of a joint 
possibility distribution what can be defined as the weighted average of the 
probabilistic correlations between marginal probability distributions whose joint 
probability distribution is defined as uniform distribution on the level sets of their 
joint possibility distribution. Using the averaging technique they discuss three 
quantities (correlation coefficient, correlation ratio and informational coefficient 
of correlation) which are used to measure the strength of dependence between two 
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possibility distributions. They also discuss the cases when the level sets of joint 
possibility distribution are equipped with non-uniform probability distributions. 

 

Budapest, January 2018 

István Maros 
Tamás Szántai 
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Abstract: About twenty years ago, the research activities aiming at the development of the 

optimal maintenance and rehabilitation strategies (models) of roads and bridges started in 

several countries, including Hungary. In the first foreign models, the deterioration 

depending on time and other parameters was given by Markov transition probability 

matrices. Due to the inaccuracies and inconsistencies of earlier models, a continuous 

model upgrading could have been carried out by many researchers world-wide. Besides, 

basically new models appeared in the literature, which are able to describe the actual 

processes more reliably. The research work of the authors of the paper has concentrated on 

Pavement Management Systems (PMSs) and Bridge Management Systems (BMSs). Since a 

common financing of roads and bridges is typical, a combined model of road pavement and 

bridge managements was developed by the authors increasing considerably the efficient 

use of available funds. 

Keywords: Pavement Management; Bridge Management; Markov deterioration model; 

maintenance-rehabilitation and operation cost distribution (allocation) 

1 Introduction 

It was more than two decades ago that a systematic management modelling of 
transport infrastructure started in Hungary with the collaboration of experts in 
various fields (transport engineers, mathematicians, economists, meteorologists, 
etc.). The original goal was to develop cost-efficient systems for development, 
rehabilitation, maintenance and operation activities in the area. These models can 
provide effective tools for infrastructure (mainly road) managers to minimize their 
expenditures if given preconditions are fulfilled. A part of activities was the adap-
tation of various systems available and used in foreign countries; however, several 
of these are models based on Hungarian data sets, usually data time series, but 
every case, the procedure followed was the creation of the first version of a system 
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(model), and long-term monitoring of its operation, then, based on the experiences 
gained during the monitoring, a new, updated model version is developed. 

This paper presents the development phases of such a model that concentrates not 
only on economic aspects but also environmental (sustainability) ones, as well. 
(The importance of the problem can be highlighted by the fact that the net value of 
Hungarian public highway network – some 7,000 billion HUF = 28 billion EUR – 
exceeds 38% of the Hungarian national wealth). First of all, some basic infor-
mation on the Road Asset Management System is presented. The main steps of 
this development process done in Hungary are: single stage network level optimi-
zation model, multi-stage model, combined pavement/bridge model and model 
with climate-dependent parameters. 

One of the main development achievements related to multi-periodical model was 
the total optimization. Since the models available optimize various elements of the 
model separately. Because of the large size of the model, optimization algorithm 
was applied. Usually it is not true that the sum of the results of partial optimiza-
tions is equal to total optimum. (E.g. all separate elements are optimized in a sin-
gle model). For this purpose, the optimization model developed in Hungary is 
more appropriate than the packages developed and traded by various professional 
software houses. Another significant novelty is the development of combined 
pavement and bridge management systems. The main advantage of the use of this 
system comes from the fact that usually the same fund (budget) is used for the 
management (construction, maintenance, rehabilitation, operation) of both infra-
structure elements. The third important innovation is connected with the consider-
ation of the effects of climate change in the long-range model development. The 
fourth significant research outcome is the inclusion of a parameter related to the 
change in traffic characteristics in the pavement deterioration model. Then a new 
algorithm based on the results coming from PMS/BMS model had been devel-
oped. This algorithm distributes optimally the available road-bridge funds among 
the regions (counties). Finally another algorithm has been created for funds distri-
bution in the case of insufficiency of available financial means. 

2 Asset Management System 

The development, the maintenance and the operation of the high-valued road 
network can be considered as an extremely important task of the whole country 
needing a lot of money, human resources, machinery, materials, etc. Several sub-
systems were developed and being used all over the world to solve the problem 
mentioned and to allocate economically the necessary resources. However, this 
task is rather complex and the sum of the best solutions of various subsystems are 
not identical with the optimum of the operation of the whole system. That is why 
intensive research activities started in the topic some 20 years ago. It is called 
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Asset Management System for Road Sector or Road Asset Management System. 
One of the most significant relevant basic research institutions is US Department 
of Transport Federal Highway Administration, Office of Asset Management (As-
set [2]). Another important effort in this field has been done by an OECD Com-
mittee (Asset [3]). There are many definitions for this kind of asset management 
but each of them refers to a management system, a DSS (Decision Supporting 
System) and the cost efficiency on road construction, maintenance and operation, 
besides the model system has both long-term, strategic and short-term, actual 
elements (What [28]). This case, the term “asset” includes not only its actual gross 
or net value but also the funds needed for its maintenance throughout service life. 
The potential users of asset management include decision makers, road users, road 
proprietors, operators, etc. The Road Asset Management System has several com-
ponents (Hudson et al. [25]): 

 Road pavements 

 Pavement structures and connected elements 

 Bridges 

 Tunnels 

 Culverts 

 Traffic engineering facilities (traffic signs, road paintings, road lighting) 

 Traffic census facilities 

 Information and monitoring systems 

 Road construction, maintenance and operation machinery 

 Road vehicles 

 Parking and rest areas 

 Roadside building connected with road rehabilitation, maintenance and 
operation 

 Materials used and equipment for their production 

 Organisations in the field 

 Road staff 

The following subsystems are necessary for a working asset management: 

 Information Management Subsystem collects, systematizes, appraises and 
archives the basic data of modelling. It utilizes the knowledge on data 
need, data bases and their operation, archiving, hardware and software 
need, etc. 

 Assets Valuation Subsystem deals with a highly important group of basic 
data needed for the effective operation of the model. It includes also the 
methodology of the collection and evaluation of technical data, as well as, 
the maintenance of the system. 
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 Condition Evaluation and Performance Modelling Subsystem concentrates 
on the actual condition of system elements and the modelling of their ex-
pected performance. The subsystem includes the condition parameters of 
each element, the scaling of the measurement range of condition parame-
ters, as well as, the data storage in close connection with the activity of 
other subsystems. 

 Deterioration Modelling and Defect Analysis Subsystem forecasts the 
worsening of the condition of various system elements, identifies the prob-
able (expected) defect types. The condition of an element can be character-
ized by various qualifying parameters or a combined index; the deteriora-
tion curves are set accordingly. 

 Maintenance, Operation, Rehabilitation and Reconstruction Subsystem de-
fines the types and the costs of various intervention techniques. It is a very 
important supporting element for the establishment of the decision strate-
gies. 

 Whole Life Cost and Benefit Subsystem also has a significant supporting 
role for the decision process. Here, among others, the discounted values, 
the inflation rate, the interest rates are taken into consideration. 

 Decision Supporting Models Subsystem determines the use and the ap-
plicability of the whole system. Since there are a high number of elements 
in a system, a complex model creating total optimum for strategic decisions 
should be extremely aggregated. So, expert models, methods using basis 
approach, optimization models can be applied here. The already existing 
system elements (PMS, BMS, systematic condition survey, etc.) should be 
also included into the system. 

 Total Quality Management Subsystem is operational during the whole im-
plementation period of the program. It provides the results and the perfor-
mance efficiency of the intervention at the end of the period. After feed-
back, new strategic and tactical objectives are set. When their parameters 
are set, the whole decision process can be restarted. 

Over 20 years ago the systematic management modelling of transport infrastruc-
ture started in Hungary with the collaboration of experts in various fields 
(transport engineers, mathematicians, economists, meteorologists, etc.). The origi-
nal goal was to develop cost-efficient systems for development, rehabilitation, 
maintenance and operation activities in the area. These models can provide effec-
tive tools for infrastructure (mainly road) managers to minimize their expenditures 
if given preconditions are fulfilled. 

This paper presents the development phases of such a model that concentrates not 
only on economic aspects but also environmental (sustainability) ones, as well. 
(Again, the importance of the problem can be highlighted by the fact that the net 
value of Hungarian public highway network – some 7,000 billion HUF = 28 bil-
lion EUR – exceeds 38% of the Hungarian national wealth). The main steps of this 



Acta Polytechnica Hungarica Vol. 15, No. 1, 2018 

 – 15 – 

development process are: single stage network level optimization model, multi-
stage model, combined pavement/bridge model, model with climate-dependent 
parameters, model with traffic-dependent parameters, towards asset management. 

3 Single Stage Network Level Optimization Model 

The development of the first Hungarian network level pavement management 
system was preceded by the creation of an effective, large-scale road data bank 
(Bakó et al. [4]). It was decided to deal with network level pavement management 
models before project level ones since the former variants need less previous in-
formation on the roads concerned (Bakó et al. [11]). The main aim of a network 
level management model is to identify the most advantageous maintenance tech-
niques for every road subset with the same surface type, same condition parame-
ters and same traffic category. This type if model is a budget planning tool capable 
of estimating the total lengths and costs of works required on the network for 
pavement rehabilitation, resurfacing and routine maintenance. A financial plan-
ning type is generally connected with the determination of the funding level need-
ed to maintain the “health” (integrity) of the pavement network at a desirable 
level. In case of another model type, the available budget is known and the 
maintenance strategy has to be determined that fulfil the required constraint of 
pavement conditions, and optimize the total benefit of society (Gáspár et al. [18, 
22]). 

The first single-stage network level optimization model (MPMS) was developed 
in Hungary in the late 1980s (Bakó [5], Gáspár [17]). The Hungarian road admin-
istration needed quick and practical results which could not be provided by the 
“too simple” MPMS. That is why the Finnish HIPS model (Männistö [27]) was 
chosen, because there were already available several-year experiences. The new 
version, the so-called HUPMS-model was developed using the optimization pro-
cedure of MPMS and the model structure of HIPS. 

The main features of this model are: 

 Several (a maximum of 10) time periods (stages) 

 2 pavement types (asphalt concrete and asphalt macadam) 

 3 traffic categories 

 4 condition parameters (unevenness, bearing capacity, rut depth, surface 
defects) 

 Combined target function 

 Max. 8 intervention (rehabilitation) types 

In the long-term model, the optimum solution is sought for the distribution of 
pavement condition in the road network which can be attained after the optimum 
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interventions; it is called the Markov-stable condition. The target function is the 
minimum of the sum of agency and user costs (i.e. social total optimum). 

Possible interventions (rehabilitation strategies) for asphalt concrete roads are: 
routine maintenance, patching, rut repair, surface dressing, laying thin asphalt 
course, asphalt overlay, and reconstruction. The interventions for asphalt mac-
adam roads are: routine maintenance, patching, surface dressing, road profile 
repair, asphalt overlay, reconstruction. 

The Markov transition probability matrix for pavement type i, traffic category j, 
and intervention type k is designated by Qijk. The matrix size amounts to 135x135, 
since the total possible number of relevant parameters is 3x3x3x5=135. The num-
ber of Markov matrices is 2x3x8=48; thus the number of columns in the model 
amount to: 48x135=6480. 

The unknown vector of pavement type i, traffic category j, and intervention type k 
should be Xijk, which shows the proportion of road link lengths in 135 condition 
states for a given i, j, k. The number of vectors is 48, and so the total number of 
unknown factors reaches 6480. 

The unit intervention costs vector for pavement type i, traffic category j, and in-
tervention type k should be Cijk. The road user cost function for pavement type i 
and traffic category j is designated by Kij. First, the Markov-stable model was 
formulated.  

When the notation above are applied, the model is as follows. Determine the un-
known vector series Xijk is sought, which fulfils the Markov stable condition 
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and minimises the weighted sum of agency (intervention) and user costs: 

 (2) 

where E    unit matrix of size 135x135, 

     weighting factor for intervention costs, 

      weighting factor for user costs. 

Further conditions limiting the amount of intervention costs can be supplied for 
the model. This case, the Markov stable solution is looked for which fulfils all 
conditions considered. 
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4 Multi-Time Period Model 

The multi time period, (briefly multiperiod) version of the PMS, was created in 
1991 (Csicselyné [13]; Gáspár [19]; Bakó [8]). One of the objectives is to reach a 
stable model result by means of an approximation over a period of several years. 
The number of time periods is generally 10, and the model gives the necessary 
interventions in each period. Let us denote by Yijt the proportion of the length of 
the road sections of pavement type i and traffic category j after the interventions 
carried out during the year t, while bij is the proportion of the length of the road 
sections of pavement type i and traffic category j or, initially, at the beginning of 
the planning period. 

This case, the unknown vector has a further index t. Let us denote the unknown 
vector by Xijkt that belongs to the time period t. 

The first mandatory condition is connected with the distribution of pavement con-
dition states during the initial years: 

ijijk

k

bEX 


1

8

1

  ,i s1 2, ,...,  j f1 2, ,...,   (3) 

k=1 

            where E   unit matrix of size 135x135. 

The following condition supplies the proportion of road link lengths for the end of 
the first planning year. So, the proportions of length vectors Yij1 at the end of the 
first planning year are determined by the following relation: 
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The following mandatory conditions refer to the later years: 
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This condition means that the proportion of length Yijt at the end of time period t 
provides a value for the initial distribution for the period (t+1) that is it is equal to 
Xijk (t+1). 

A mandatory boundary is the cost limit, where the total intervention costs can be 
given for a year or for the planning period. The yearly intervention cost limit is as 
follows: 
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where   r       the discount factor, 

  M     the intervention cost available annually. 

The target pavement condition distribution at the end of the planning period can 
also be specified: 
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where T the number of the planning periods, 

 G, B, E  three sets the pairwise intersection of which is 0, and the sum of 
these sets is the set of the road segment, 

 G the set of the road segments which are in good condition, 

 B set of the road segments which are in bad conditions, 

 E the set of the road segments which ere in average conditions, 

 b E  the lower bound vector of the other road segment group,  

 b E  the upper bound vector of the other road segment group, 

 1  and 2  constants. 

In this case, a combined target function was selected which can be considered as 
the weighted average of the intervention cost and the user cost target function 
types: 
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If = 0, only the user costs are considered in the target function, while in the 

case of = 0, only the intervention costs are. 

In such a way, these cost function types can be arbitrarily weighted by varying 
both constants. 

5 Combined Pavement/Bridge Management 

In the majority of countries – including Hungary – the PMS (Pavement Manage-
ment System) and BMS (Bridge Management System) operate independently. 
However, their interdependence is obvious since the bridge surfacing constitutes 
part of the road pavement. Very often their financial sources are also identical 
(e.g. Road Funds) contributing to the need for more or less common management. 
Both PMS and BMS apply the same concept and application of system technology 
and require a system output function that can be optimised in relation to the bene-
fits and costs. 

Several models can be used for solving the BMS problem. It can be a mathemati-
cal programming (linear, dynamic, nonlinear, integer, etc.) model. It could be a 
stochastic model or a fuzzy approach. In all models, the most important and diffi-
cult problem is to develop a proper deterioration model. 

In Hungary, both the adapted PONTIS-H Bridge Management System and the 
HIPS-HUPMS network level Pavement Management System are based on the use 
of Markov transition probability matrices (Bakó et al., [10]). As a result, their 
identical structures allow the joint optimisation of both systems. This activity is 
especially important when the aim is the distribution of the funds available be-
tween the two infrastructure elements (road pavements and bridges). 

The mathematical-engineering model of this BMS-PMS (PBMS) a common mod-
el has already been completed. Its implementation is planned for the near future. 

As mentioned above, the deterioration sub-model of the Hungarian network level 
PMS (HUPMS) utilises Markov transition probability matrices. The bridge man-
agement model, the PONTIS, also uses them. However, a combined pavement-
bridge management model cannot be developed using them because their module 
structures are different. That is why the mathematical model (PBMS-model) of the 
network-level pavement-bridge management has been developed which optimizes 
in a single model. 

The structure of this model is presented in Figure 1. It has two columns. The first 
column (P1 and P2) contains the elements of the PMS model introduced earlier 

when discussing HUPMS (see conditions set out in Eqs. 3-5, 7).  



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In the right-hand column the relevant BMS conditions (Golabi et al [23]; Agárdy 
et al [1]) can be seen; the yearly cost boundary for the Bridge Management Sys-
tem is as follows: 
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where  Vdefgt intervention costs 

Hdefg user costs 

r discount factor 

  B yearly cost boundary 

d bridge span 

e bridge element 

f level of exposure 

g intervention type 

The object is to define a vector series which fulfils the conditions defined, and 
minimises the weighted sum of the intervention and user costs, that is: 


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where the elements of Idef related to user costs are different from 0. 

The PBMS model can also have common conditions, for example relating to the 
annual sum which is commonly available, that is, the sum of the conditions set out 
in Eqs. 6 and 9: 

TtBMrHVrXCr t

defgtdefgt

defg

t

ijkt

ijk

ijkt

t ,...2,1),()1()1()1(    (12) 

As target function, the sum of the object functions of pavement and bridge models 
is taken. The object can be here the minimisation of the intervention costs (P4 + 
B4), the minimisation of user costs (P5+B5) or the weighted sum of these costs 
when none of the weighting factors is equal to 0 (P6+B6). By varying the parame-
ters, any arbitrary combination of the target function can be produced. For exam-
ple, the minimisation of the sum of road (pavement) user costs and bridge inter-
vention costs. 

 

P1   Markov matrices for road 
pavements 

  B 

O 
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   B1 Markov matrices for bridges  U 

N 

P2  Conditions for road pave-
ments 

  D 

A 

 B2 Conditions for bridges  R 

I 

P3+B3          Conditions common to road pavements and bridges  E 

S 

    

Target functions 

P4+B4        User  costs                                    MIN! 

 

P5+B5         Intervention costs                                    MIN! 

 

P6+B6  Weighted intervention and user costs                  MIN! 

Figure 1 

Combined model of PMS and BMS 

6 Consideration of Climate Change 

Typically, road asset management models usually do not consider environmental 
load (connected with climate change consequences) (Gáspár et al. [20]). 

In case of long-term, multi-time period models, two approaches could be: 

     A) Environmental effects forecasted for the whole planning period, M+R ac-
tions are calculated accordingly, 

     B) Following forecasting in model A, environmental consequences are calcu-
lated after each time period resulting in an input of next time period (more 
accurate results)   

 (13) 

As a next step, the target function is linearized. The two artificial variables are 

denoted by ijktu  and ijktv . Besides the following equation has to be met: 
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and the new objective function in this case is 

 

(15) 

Just one of the coordinates sfptu  and sfptv , can be different to 0 any time. The 

remaining steps are identical to the ones mentioned before. The conditions (con-
straints) in Eq. 13 change in every planning time period t. 

Besides, two new Bridge Management models were also developed. The above 
mentioned PONTIS and its Hungarian version seemed to be rather far from the 
real processes. The new models could handle the deterioration process of bridge 
elements more realistically. 

7 Some Related Models 

Some other related management models were also developed that are presented 
briefly. 

7.1 Model for Funds Distribution 

One of the outputs of the network level HUPMS is the “optimal” distribution of 
available highway funds for country-wide links of Hungarian public road network. 
The next necessary step is the continuation of funds distribution (allocation), 
among others, to the road network of various counties and the motorway network. 
To solve this problem, a computerized model was developed (Bakó [6]; Bakó [7]) 
with the following features. 

First, the so-called expenditure groups (e.g. patching, grass mowing, bridge man-
agement, overhead of road management organisations, etc.) were identified. The 
task is to distribute “optimally” the available highway funds among these expendi-
ture groups. The expenditure groups are denoted by “i”, their number is “l”. The 
running index of road management units (e.g. County Highway Directorate) 
should be “j”, while their number amounts to “J”. The task is to determine an 
unknown X = (xij) matrix an element of which is xij, the sum coming from the 
funds “i” and destined to the road management unit “j”. Denote the sum available 
for the expenditure group “i” by “bi”. This sum can be determined either by the 
actual needs or by the so-called basis allocation in the previous year or, eventual-
ly, using another methodology. 

The sums to be allocated to a road management unit is influenced by its special 
quantitative parameters, like total length of the road network managed, traffic 
amount, number of traffic signs, etc. These qualitative parameters are usually 
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proportional with the works to be done and the related sum of money. The first 
qualitative parameter of the expenditure group “i” and road management unit “j” 
is designated by zij

(1), the second one by zij
(2) and the kth one by zij

(k). For the sake 
of simplicity, a special methodology was used for the calculation of a characteris-
tic rate of the road management unit in order to apply a single qualitative parame-
ter for a unit. 

In addition to the qualitative parameters, unit costs were also given for each ex-
penditure group and road management unit. These unit costs can be the same for 
each road management unit (e.g. road pavement condition evaluation), but they 
can be different for various management units as a function of their location, natu-
ral features, etc. The unit cost of the expenditure group “i” and road management 
unit “j” should be denoted by eij. It is supposed that the benefit of the activity in 
question for the expenditure group “i” and road management unit “j” amounts to 
hij for 1 HUF expenditure. The task is to perform the optimal distribution of the 
funds available. There are several solution methodologies (optimization proce-
dures resulting linear programming tasks, heuristic methods, simulation, expert 
system, etc.) depending on the targets set, the amount of inputs available and some 
other parameters. 

The linear programming model distributes (allocates) optimally the funds availa-
ble to the expenditure groups when also the benefits are known. One of the condi-
tions for the use of the model is that, in case of a fixed expenditure group, the total 
funds allocated by this title for the road management units should reach bi that is 
destined for the expenditure group: 

x bij i

j

J



 ,    i =1,2,..., I

1

 (15) 

Another constraint is the individual lower limit for each variable 

x
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, , ...,
  (16) 

The target function should be the maximization of the benefit coming from the 
maintenance-rehabilitation action. Since neither xij, nor kij are positive values, the 
task would be unlimited. That is why an additional limiting condition is defined 
for which the sum K is needed, the total financial means available for highway 
purposes. It is supposed that the following relationship between the limit given for 
an expenditure group and the sum K is valid: 

b Ki
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I
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1

 (17) 
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If this relationship is not valid, another model will be used for solving the task. 
This case, the target value is the maximization of benefit: 

h x Maxij ij

j

J

i

I


 

11

 (18) 

As a summary, the model can be defined as follows: let us determine the unknown 

matrix X=( )xij , which fulfils the following constraints: 
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and the value of target function would be maximal: 
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The above task is a linear programming model that consists of linear conditions 
and a target value. Some of the expenditure groups are not included in the optimi-
zation since they are of fixed costs, as, for example, the operation expenditures of 
the road management unit. This kind of cost item is known, so, it can be simply 
deducted from the whole sum destined to road management. Of course, a model 
can be developed also for the determination of the operation costs of these organi-
zations, and the nearly objective allocation of these sums. 

7.2 Model for the Allocation of the Operation Costs of Road 

Management Units 

Denote the operation costs needed (or actually used in the previous year) for the 
first unit by L1, for the second one by L2,….and for the jth organization by Lj. 
(Bakó [7]). Supposing that these needed or previously actually used sums of mon-
ey are not inaccurate, the following total sum has to be spent for the operation of 
road management units: 

L L j

j

J





1

 (21) 
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The allocation (distribution) of this total sum among road operators can be deter-
mined more or less objectively. The task can be solved by using the quantitative 
parameters mentioned before; some of these parameters can be: 

a) The total length of the road network managed by the organisation 

b) The sum of the road sections managed weighted by their traffic volumes 

c) Weighted operation tasks of the unit considering several qualitative parameters 
as total road length, traffic size, number, types and surfaces of bridges, number 
of traffic signs, etc. 

d) Sizes proportional to other operational tasks to be done 

The cases a.) and b.) will be presented briefly 

For the case a.), the funds needed for a road management unit can be allocated 
based on the total road length managed by the unit in question. Denote the total 
road lengths managed by the 1st, 2nd,….jth road management units by m1, m2,…..mj. 
Then the operational costs of the organization projected to 1 km road length are as 

follows: fk

L

m

L

M

j

j

J

j

j

J
 






1

1

 (22) 

The operational costs of the jth road management unit can be determined using mj: 

fk m fkj j   (23) 

where fk j  denotes the sum destined to jth road management unit in the expendi-

ture group in question (that is xlj , where i denotes the row related to the operation 

of the organisation in the matrix X). 

In the allocation variant b.), also the traffic volume As  is known for each road 

section us . The traffic volume can be characterized by AADT, ESAL or a modi-

fied ESAL (Gáspár [16]). Then the road section lengths weighted by their traffic 
volumes have to be calculated for any jth road management unit. 

m u Aj s s

s

p
' 




1   (24) 

where p is the number of homogeneous road sections managed by the jth road 
management unit 

After having calculated the weighted m j

'
 values, the sum of money for a weighted 

1km long section is to be determined using the following equation: 
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Then the funds needed by road management units can be calculated without any 

problem. The value fk '
 for 1 km road section weighted by traffic size and the 

values m j

'
 (j = 1, 2, ….J) are used in the determination of funds need: 

fk m fkj j

' ' '   (26). 

The values fk j  (j=1, 2,...,J) can be fine tuned if other tasks of the road 

management unit are included in the weighting process. 

7.3 Simultaneous Consideration of Several Quantitative 

Parameters 

It is supposed that P various quantitative parameters are related to the ith road 
management unit. It means that this expenditure group is connected with tasks on 
various quantitative parameters. For the sake of simplicity, the index i will be 

omitted, that is z j

k( )
 is used instead of zij

k( )
 (j = 1, 2,…..J, k = 1, 2,…….P). Ac-

cordingly, x j  is applied instead of xij , that is the index i is omitted. The sums 

related to quantitative parameters are nationally fixed. These values are given 
from the actual use of previous year or come from expert or professional political 
decisions. 

The task is the determination of the sum of x j  (allocated to jth road management 

unit in this expenditure group) based on the known z j

k( )
 quantitative parameters 

and the W
k( )

row sums related to the given qualitative parameters. 

Since there are several qualitative parameters in the expenditure group in question, 

the x j  can be calculated as the sum of x j

k( )
 elements related to the qualitative 

parameters k = 1, 2. ….P. The elements x j

k( )
 are calculated in the ratio of the 

connected qualitative parameters. 

The quantities x j  and x j

k( )
 have to satisfy the following relationships: 
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where the values w and w k( )
 are known.. The values x j

k( )
 are calculated, in the 

ratio of kth qualitative parameter, as follows: 
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The x j  sum of money related to jth road management unit can be even directly 

calculated using the above equations, as follows: 
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Another option for the calculation of the funds allocated to the road management 
unit, to consider the ratio between the actual expenditures in the previous year. 
The only difference from the procedure presented before is the use of following 
equation: 

x
W L
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j

l

l
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


1

 j=1, 2,...,J (30) 

It should be noted that the above algorithm can be fine-tuned by the inclusion of 
additional parameters. 

7.4 Treating with Insufficient Funds 

It is a usual situation that the sum of needed funds exceeds the available ones, 
consequently:  
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where K equals to the whole funds available. This case, another optimization 
model could be used that will be briefly shown. 

Since the sum of elements bi (actually the total demand) is above the financial 
resources available, the following constraint is set for the sum of the funds to be 
allocated: 

x Kij
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11

 (32) 

The sum of the funds to be distributed to each expenditure group cannot exceed 
the total need in the same expenditure group: 

x bij i
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 (33) 

The equality of the sums of rows is also required in the model: 

x bij j j

j
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 

1
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This case, the target function is the minimization of the needed and the allocated 
sums of rows: 


j

J

j MIN



1
  (35) 

This target function is nonlinear, that is why the task can be formulated in a non-
linear model. Following this principle, a more general model was formulated. 

In this model, it is supposed that the real value of the funds available in the previ-
ous years exceeded the funds that are presently available. Denote the funds used in 
previous (e.g. preceding) years the matrix F the element fij of which is the finan-
cial means used by the jth road management unit in the ith expenditure group. The 
sum of the row I of Matrix F, that is the funds used in ith expenditure group would 
be denoted by fi. The symbol of f(j) means the column sum j, that is the total funds 
used by the jth road management unit. Furthermore the available funds K are also 
known. It is supposed to be less than the funds used in the previous years or need-
ed in the present year. 

The task is the calculation of the matrix X=( )xij , actually the funds for ith ex-

penditure group and jth road management unit. The sum of all elements of matrix 
X has to be equal to the value of funds K: 
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If the sum of bj  j = 1. 2, ….,J is known, the following relationship has to be ful-
filled: 

x bij j
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The target is to determine a matrix that is similar to the other one as much as pos-
sible. For the measure of similarity, any of the known parameters can be applied, 
e.g. the Kulback measure (Klafszky, [26]). In the case of the vectors a=

( , ,... )a a an1 2 0  and b=( , ,...., )b b bn1 2 0  is given by the following equation: 
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Using the Kulback measure, the similarity can be determined, in the case of matri-
ces F and X, in the following cases: 

a) Similarity of the sums (that is sums of rows) allocated to expenditure groups 

b) Similarity between the funds allocated to the road management units in the 
preceding year and this year 

c) Similarity between the sums distributed in the preceding and the present year, 
actually the similarity of the matrices X and F 

So, the target function is the minimization of the measures a.)-c.). In the case of 
expenditure group comparison – version a.) –, the target function is: 
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In the case of similarity between the funds allocated to the road management units, 
– version b.) –following relationship has to be minimized: 
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In the case of the similarity between the sums distributed in various years, – vari-
ant c.) – following target function  has to be applied: 
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If all the three cases are considered, the target function is the weighted minimiza-
tion of the cases a.)-c.): 

  1 1 2 2 3 3g f x g f x g f x MINj ij

i

ij ij ij( , ) ( , ) ( , )( )    (42) 

The above target function includes the preceding ones, as well, because in case of

 2 3 0  , the target function of variant a.), in the case of  1 3 0  , the 

target function of variant b.), while in the case of  1 2 0  , the target func-

tion of variant c.) are given. The determination of the parameters  i  can be the 

result of a professional-political decision, since the primary goal and the stimulus 
have to be always considered. 

Summarizing the model, the following nonlinear task has to be solved. Determine 

the matrix X=( )xij  for which the following conditions are met: 
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and the following target function is minimal: 
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Conclusions 

As mentioned earlier, several subsystems exist already in Hungary, in the field of 
Transport Asset Management. The systematic trial section monitoring has begun 
more than a decade ago. Asset value calculations, related to bridges and roads, is 
also performed regularly. We have urban, motorway and highway PMS systems, 
as well. 

A combined PMS-BMS model has been also completed. The generalization of this 
model system is under development. 

The first version of the model family consists of the following parts: 

- The exact mathematical model (e.g. BMS + PMS) 
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- Normative model for some other elements 

- Cost/benefit type models 

The network-level multi-stage HUPMS model was developed further by applying 
climate-dependent and traffic-dependent parameters. 

Furthermore, some other related management models (model for funds distribu-
tion; allocation of the operation costs of road management units; simultaneous 
consideration of several quantitative parameters; treating with insufficient funds) 
developed were also presented briefly. 

Future plans are to develop further the above models for their inclusion into an 
effective Road Asset Management System. 
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Most floating point computations, in particular the additive operations, can have an annoying

side-effect: The results can be inaccurate (the relative error can be any large) which may

lead to qualitatively wrong answers to a computational problem. For the most prevalent

applications there are advanced methods that avoid unreliable computational results in most

of the cases. However, these methods usually decrease the performance of computations. In

this paper, the most frequently occurring vector-vector addition and dot-product operations

are investigated. We propose a faster stable add method which has been made possible by

the appropriate utilization of the advanced SIMD architecture. In this work we focus only

on the widely used Intel systems that are available for most of users. Based on it, stable

vector addition and dot-product implementations are also introduced. Finally, we show the

performance of these techniques.

Keywords: Scientific computations, Numerical accuracy, Accelerating stable methods, Heuris-

tics, Intel’s SIMD architecture, Cache techniques

1 Introduction

Several pieces of software use vector operations like vector addition and dot product.

Scientific applications require double precision floating point number representa-

tion because of the required accuracy of the computations. However, there are cases

when even this representation is not sufficient. One example is the simplex method,

where wrongly generated non-zeros can slow down the solution algorithm and can

lead to false results. One possible way to reduce the chances of the occurrence of

such events is implementations using absolute and relative tolerances in order to

mitigate numerical errors. There are several open-source linear algebraic libraries

like BLAZE, but they do not handle numerical errors. There are techniques that can

greatly improve the accuracy of floating point additive arithmetic operations [1, 2, 3]

but they are very slow. For example, sorting of the addends can increase the result’s

accuracy [4], but the drastic slow-down is unacceptable in many applications. Our

aim is to develop an efficient linear algebraic library that supports increased accu-

racy by heuristics while the incurred slowdown factor is minimal. We can achieve
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this by utilizing some future proof advanced features of Intel’s SIMD processors.

Of course, the real benefit in speed of these methods appears in computationally

demanding applications like in Gaussian elimination, matrix multiplications. Par-

ticularly, since matrix by matrix multiplication needs dot-products, this operation

can generate a significant amount of numerical error.

The paper is organized as follows. The behavior of numerical errors is shown in

Section 2. Intel’s SIMD architecture and the cache system are introduced in Section

3. We propose our simplified stable addition operation in Section 4, its SIMD imple-

mentation is also presented. The next section introduces our conditional branching

free stable dot-product technique for the C programming language, and the SIMD

based dot-product operation. In Section 6 the computational performance of the

introduced implementations is compared and explained. Finally, in Section 7 we

present our conclusions.

The introduced methods in this paper often use bit manipulation operations. One bit

can be 1 or 0. The value of a bit can be changed by hardware and/or software. If

a bit is changed to 1, we say that we set the bit. On the other hand, if we want to

ensure that the bit is 0, we say the bit is cleared.

2 Numerical errors in scientific computations

The numbers used in scientific and engineering computations can be represented in

several ways. A very reliable and accurate method is the symbolic number manip-

ulation provided by Maple [5], MATLAB’s Symbolic Math Toolbox [6], or Mathe-

matica [7, 8]. However, there are applications, where these tools are not available.

We are focusing on the floating point numbers [9, 10], which are easier to use, but

they can have accuracy problems [11]. Floating point numbers (whether single or

double precision) have three fields: Sign bit, significand and the exponent. The

number of significand bits is fixed. The painful consequence of this principle is that

the numbers with large magnitude have lower precision than smaller numbers. This

can lead to the so called rounding error. Let a and b be nonnegative numbers with

a ≫ b. If we compute the value of a+b, it can happen that the result will be just a.

The other source of errors is cancelation, also known as loss of significant digits.

If in theory a = −b, and a,b 6= 0, we expect that a+ b = 0. However, if a and b

may carry numerical inaccuracies the computed sum can be a small number ε which

is usually computational garbage. If the execution of the program depends on the

zero test of the result it can go in the wrong direction. Our primary interest is the

numerical behavior of optimization software. In this area considerable efforts have

been made to properly handle the emerging cancelation errors. Our stable vector

operations also have been designed to handle this type of error in an efficient way.

3 Intel’s SIMD architecture

The SIMD (Single Instruction, Multiple Data) architecture provides a tool to per-

form the same low level operations on multiple data in parallel [12]. It was success-

fully used in the simplex method [13], and in other numerical algorithms [14]. The
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old Intel CPUs used a stack for storing 32, 64 or 80 bit floating point numbers. This

architecture can perform the current operation only on a single data. In 1999 Intel

introduced the SSE (Streaming SIMD Extensions) instruction set in the Pentium III

processor. It contains 70 new instructions, which can operate on single precision

numbers. The processor has 8 brand new, 128 bit wide registers, named XMM0,

XMM1, . . ., XMM7. One XMM register can store 4 single precision numbers. The

arguments of the operations are the registers, and the result will be stored in such a

register. For example, if we add the content of register XMM1 to XMM0, the CPU

adds the first number in XMM0 to the first number of XMM1, and so on, as it is

shown in Figure 1.

53.0 -4.2XMM0

1.0 2.0XMM1

+

54.0 -2.2XMM0

Figure 1

Addition using XMM registers

However, SSE does not support 64 bit floating point operations. Pentium 4 intro-

duced SSE2, which supports 64 bit numbers as well. The XMM registers are still

128 bit wide, so one register can contain 2 double precision floating point numbers.

SSE3 and SSE4 processors have added some expansion to the instruction set, like

dot product and integer number support.

In 2011, Intel added the AVX (Advanced Vector Extensions) instruction set to the

CPUs. This extension doubles the size of the XMM registers to 256 bit wide. It is

called YMM. Now one register can store four 64 bit floating point numbers. More-

over, AVX’s have 16 YMM registers. The AVX2 instruction set provides some

integer operations with the new registers.

The modern Intel CPUs have one more useful feature. Namely, they have two mem-

ory ports. It means that, while the CPU calculates, they can load some other data

from the memory in parallel.

Cache

In this section a brief summary of the CPU caching is given because it has some non-

intuitive properties: The wrong utilization of the cache cannot achieve the highest

performance. The communication between the CPU and the main memory is much

slower than the speed of the CPU, i.e., while the CPU is waiting for the memory, it

can execute a lot of instructions. To keep the CPU working engineers have designed

cache memory between the CPU and the main memory. The cache uses faster circuit

elements, but it is more expensive, so the cache size is limited relative to the main

memory. Typical cache sizes are 3-10 Mbytes today, while the main memory can be
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32 Gbytes. Moreover, modern CPUs have more cache levels, where the lower levels

are smaller, but they are faster.

The memory is divided into so called cache lines, which are certain lengths of mem-

ory partitions. Typical lengths are 32 or 64 bytes. If an instruction reads some bytes

from a given memory address, the total cache line that contains the required data

moves to the cache. If later instructions load an adjacent memory address its con-

tent will already be in the faster cache, thus the reading time is reduced. However,

as the cache size is limited, the CPU has to make room for a new cache line if

the required data item is not in the cache. In this case a formerly used cache line

is dropped out and its content is written back to the main memory if it is neces-

sary. When an instruction writes to a given address, the corresponding cache line is

loaded into the cache, and the instruction writes there. In this case, the content of

that memory address has a copy in the cache, which is different. This cache line is

called dirty, but if we write this content back to memory, this flag is cleared.

There is a little intelligence in the cache controller. If the CPU senses that the

software accesses adjacent memory addresses it loads some next cache lines. So, if

we read or write a memory region from its beginning to its end, the currently needed

data will already be in the cache.

The SSE2 and AVX support bypassing the cache for memory writing. In this case

the cache line of the current memory address is not loaded and the CPU writes into

the main memory directly. We call this non-temporal writing. Obviously, this mode

is much slower in itself. However, we can keep the more important data in the cache.

What happens if we add two large vectors (larger than the cache), and the result is

stored in a third vector? Without bypassing, the CPU reads the next two terms of

the sum and it has to write the result to the memory. At first, the result is placed

into the cache. However, since the vectors are too large, and their contents fill the

cache, the CPU has to drop out an older cache line to the memory. If the cache line

of the result is not prepared for the cache the CPU has to load that cache line and,

obviously, drops out an older line too. The non-temporal writing prevents the CPU

from loading the cache-line of the destination, so it drops out older cache lines if

and only if there is no more room for the input data. Finally, the performance of this

algorithm is improved.

4 Vector addition

In computational linear algebra (on which many optimization algorithms rely) vec-

tor addition is one of the most frequently used operations.

Let a and b be two n dimensional vectors, a,b ∈ R
n. We propose our implementa-

tions of the following vector addition operation:

a := a+λb,

where λ ∈ R. In detailed form:
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Input: a,b,λ

Output: a

1: for i := 1 to n

2: ai := ai +λbi

3: end

Figure 2

Naive vector addition

If cancelation errors occur, the implementation shown in Figure 2 can generate fake

non zeros. This error can be handled with an absolute tolerance εa. If the absolute

value of the sum is smaller than the εa, we set the result to zero as in Figure 3.

Input: a,b,λ

Output: a

1: for i := 1 to n

2: ai := ai +λbi

3: if |ai|< εa then

4: ai := 0

5: end

6: end

Figure 3

Vector addition using absolute tolerance

The absolute tolerance cannot adapt to the magnitudes of the input values. The

solution can be the use of a relative tolerance εr. In 1968 William Orchard-Hays

[15] suggested the following method using this tolerance: If the sum is much smaller

relative to the largest absolute value of the input numbers the result is set to zero,

see Figure 4.

Input: a,b,λ

Output: a

1: for i := 1 to n

2: c := ai +λbi

3: if max{|ai|, |λbi|}εr ≥ |c| then

4: c := 0

5: end

6: ai := c

7: end

Figure 4

Vector addition using relative tolerance, Orchard-Hays’s method

Determining the maximum of two numbers uses conditional branching. We propose

a simplified method which uses fewer operations. It is sufficient to multiply the

absolute value of one of the input numbers by the relative tolerance. In this way

we can save an absolute value and a conditional branching step. The result can be
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close to zero if the input values have the same order of magnitude and their signs

are different. The useful value of the relative tolerance can be different from that of

the Orchard-Hays method.

Input: a,b,λ

Output: a

1: for i := 1 to n

2: c := ai +λbi

3: if |ai|εr ≥ |c| then

4: c := 0

5: end

6: ai := c

7: end

Figure 5

Vector addition using simplified relative tolerance

The implementation shown in Figure 3 requires one compare and a conditional jump

instruction. Our simplified implementation with relative tolerance uses one addition,

two multiplications, two assignments, two absolute values, one compare and one

conditional jump. Orchard-Hays’s implementation needs one more absolute value

and a conditional branching. The additional operations cause overhead in time, so

these implementations are slower than the naive one.

4.1 SIMD vector addition

Conditional jumping slows down the execution of the program because it breaks

the pipeline mechanism of the CPU. So it is worthy to try to implement the algo-

rithms in a way that avoids conditional jumps. Intel’s SIMD architecture contains

several instructions which help us design such an implementation. We will use the

following instructions:

• Move: Moves the content of a register to another register.

• Multiply: Multiplies the number pairs of two registers.

• Add: Adds the number pairs of two registers.

• And: Performs a bitwise AND between two registers.

• Compare: Compares the number pairs of two registers. If they are identical

the destination register will contain a bit pattern filled by 1’s, otherwise 0.

• Max: Chooses the larger of two numbers stored in two registers. It is used for

the implementation of Orchard-Hays’s addition method.

The detailed description of these instructions can be found in [16]. The key point of

the conditional jump aware implementations (called accelerated stable addition in

this paper) is the compare instruction. It compares the number pairs and stores the

results in a register. If the register contains two double pairs then the comparator

puts two bit patterns in the destination area. One pattern can be filled by 1 if the
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result of the comparison for the related number pair is true, otherwise 0 as it is

shown in Figure 6. These bit patterns can be used for bit masking.

53.0 -4.2XMM0

1.0 2.0XMM1

XMM0 > XMM1

111...1 000...0XMM0

Figure 6

The compare instruction of the SSE2 instruction set

Figures 7 and 8 show the flowchart of the SSE2 implementations of our stable add

operations with relative and absolute tolerances. The algorithms add two number

pairs loaded to registers XMM0 and XMM1. The final result is placed in XMM2.

The implementations have two main phases: initialization, and process. We prepare

some registers to store the value of λ (XMM7), εr (XMM4), εa (XMM6) and the

absolute value mask (XMM5). In the process phase we perform the stable add

operations for the successive number pairs, without modifying registers XMM4-

XMM7. Figures 7 and 8 show only one iteration in the processing phase. One

iteration of the absolute tolerance version stable adder performs 6 steps:

1. Multiply XMM1 and XMM7, store the result in XMM1, XMM1 will store

λbi.

2. Add XMM1 to XMM0, so XMM0 stores c = ai +λbi.

3. Move XMM0 to XMM2. We have to store the original value of c, in order to

use its absolute value in later steps.

4. Bitwise AND between XMM2 and XMM5, store the result in XMM2. There-

fore XMM2 stores |c|.

5. Now we have to compare |c| and εa. If |c|< εa, then the CPU sets the bits of

the corresponding floating point number in XMM2, otherwise clears them.

6. Bitwise AND between XMM2 and XMM0. After this step, if |c| < εa then

XMM2 stores zero, because of the cleared bit mask in XMM0, otherwise

XMM2 stores c.

The stable add operation that uses relative tolerance performs 9 steps in one itera-

tion:

1. Multiply XMM1 and XMM7, store the result in XMM1, XMM1 will store

λbi.

2. Move XMM0 to XMM2. We have to store the original value of ai and λbi, in

order to use their absolute value in the later steps.

3. Add XMM1 to XMM2, so XMM1 stores c = ai +λbi.
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4. Move XMM2 to XMM3, because we will use the absolute value of c in the

next steps, but we will need the original value of c as well.

5. Bitwise AND between XMM3 and XMM5, store the result in XMM3. There-

fore XMM3 stores |c|.

6. Bitwise AND between XMM0 and XMM5, XMM0 stores |ai|.

7. Multiply XMM0 and XMM4, and store the result in XMM0, so XMM0 stores

|ai|εr.

8. Now we have to compare |ai|εr and |c|. If |ai|εr < |c|, then the CPU sets the

bits of the corresponding floating point number in XMM0, otherwise clears

them.

9. Bitwise AND between XMM2 and XMM0. After this step, if |ai|εr ≥ |c| then

XMM2 stores zero, because of the cleared bit mask in XMM0.

Each operation above belongs to exactly one SSE2 or AVX instruction, so the reader

can easily reproduce our results. These implementations use several additional op-

erations on top of the one addition and multiplication, so they have an overhead

compared to the naive implementation. They use some additional bit masking steps,

because the Intel’s SIMD instruction sets have no absolute value operations. How-

ever, we can obtain the absolute value of a floating point number by clearing the sign

bit. Therefore, we have to apply a bit masking technique to get the absolute values,

as in the steps 5-7, in relative tolerance adder, and step 4 in absolute tolerance adder.

However, SSE2 performs every instruction between two number pairs in parallel,

so this overhead is not significant. Moreover, AVX can execute the instructions be-

tween 4 number pairs, consequently, the overhead will be even lower. In order to

improve the speed of the algorithms, our implementations utilize the two memory

ports mentioned in Section 3: While one number pair is being processed, the next

pair is loaded to other unused registers, so the delay of memory operations is de-

creased. This technique is used in our dot-product implementations. In the future,

AVX-512 processors will further increase the performance.

We modified the above relative tolerance adder procedure to implement Orchard-

Hays’s method. After step 6, two additional steps are inserted:

1. Bitwise AND between XMM1 and XMM5, XMM1 stores |λbi|.

2. Use MAX operation between XMM0 and XMM1, XMM0 stores max{|ai|, |λbi|}.

5 Vector dot-product

The dot-product between two n dimensional vectors a and b is defined as:

aT b =
n

∑
i=1

aibi.
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Figure 7

Flow chart of the stable add implementation, using absolute tolerance. Arrow numbers show the order

of the operations.

Figure 9 shows the pseudo code of its naive implementation. The problem is that

the add operation in line 3 can cause a cancelation error.

This error can be greatly reduced by using a pos and a neg auxiliary variables as

introduced by Maros and Mészáros in 1995 [17]. Positive (negative) products accu-

mulate in variable pos (neg). Finally, the result is the sum of pos and neg as shown

in Figure 10. This final add is a stable add operation introduced in Section 4.

The conditional jump in line 5 breaks the pipeline mechanism and the execution

slows down accordingly. We have developed a solution for C/C++ programs, where

the conditional jump can be avoided and substituted by pointer arithmetic. This

method can be used if the later introduced SIMD based methods are not available,

for example the AVX is disabled by the operating system. The elements of an array

are stored in adjacent memory addresses. If a pointer is increased by 1 in C/C++, it

will refer to the next object. The most significant bit in the bit pattern of a double

type variable stores the sign bit. If this bit is 1, the number is negative, otherwise

it is positive. The conditional jump free implementation uses a double type array,

where the first element stores the positive, the second one stores the negative sums.

The current product is added to one of these elements. The address of the current

sum variable is obtained by a C/C++ expression: The address of the array is shifted

by the product’s sign bit, as Figure 11 shows.
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Figure 8

Flow chart of the stable add implementation, using relative tolerance. Arrow numbers show the order of

the operations.

Input: a,b

Output: d p

1: d p := 0

2: for i := 1 to n

3: d p := d p+aibi

4: end

Figure 9

Naive dot-product

SIMD dot-product

The SIMD version of the dot product uses similar techniques introduced in Section

4.1. This implementation also has two phases, initialization and processing. We

use XMM1 to store the negative products, XMM2 stores the positive products, and

XMM4 contains zero for the comparison.

In the first step the product is loaded into XMM0. Of course, the multiplication

can be supported by SSE2. The separation of positive and negative products can be

implemented in 7 steps:
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Input: a,b

Output: d p

1: d p := 0

2: pos := 0

3: neg := 0

4: for i := 1 to n

5: if aibi < 0 then

6: neg := neg+aibi

7: else

8: pos := pos+aibi

9: end

10: end

11: d p := StableAdd(pos,neg)

Figure 10

Stable dot-product, where StableAdd is an implementation of the addition, which can use tolerances

1. In order to keep the value of the product aibi, we save the content of XMM0

to XMM5.

2. Move the content of XMM0 to XMM3, in order to perform the comparison

between zero and the product.

3. Compare XMM3 with XMM4, if aibi < 0, then the CPU sets the bits of the

corresponding floating point number in XMM3, otherwise clears them.

4. Bitwise AND between XMM5 and XMM3. If aibi < 0, then XMM5 stores

aibi, otherwise zero.

5. Add XMM5 to XMM1, i.e if aibi < 0, then we add this negative value to

XMM1, otherwise we add zero.

6. Bitwise AND between the inverse of XMM3 and XMM0. If aibi ≥ 0, then

XMM3 stores aibi, otherwise zero.

7. Add the content of XMM3 to XMM2, that is we update the positive sum.

Similarly to the SIMD accelerated vector addition, this dot product algorithm can be

improved using AVX. The stable dot product uses fewer instructions than the stable

add, so the performance of this implementation is better, as we will see in Section 6.

6 Computational experiments

In this section some benchmarking results are presented. The tests were performed

on a computer with the following parameters:

• CPU: Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz

• Level 1 cache: 32 Kbyte

• Level 2 cache: 256 Kbyte
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ai bi

*

prod

S M E

Base address

+

Negative sumPositive sum

Address

union Number {

double num;

unsigned long long int bits;

} number;

double negpos[2] = {0.0, 0.0};

[...]

const double prod = a * b;

number.num = prod;

*(negpos + (number.bits >> 63)) += prod;

Figure 11

Handling positive and negative sums with pointer arithmetic without branching, where S is the sign bit,

M is the significand and E is the exponent

• Level 3 cache: 3072 Kbyte

• Memory: 8 Gbyte

• Operating system: Debian 8, 64 bit

• Window manager: IceWM

The i5-3210M CPU has three cache levels. Intel processors have an inclusive cache

architecture. It means that the higher level caches include the lower levels, so the

test CPU has 3 Mbyte cache in total. Moreover, this CPU has two cores, where the

L1 and L2 caches are unique in each core. However, the cores share the L3 cache,

so it can happen that more than one process uses the L3 cache [18].

Our SSE2 and AVX implementations are written in assembly and compiled by

NASM, version 2.11.08. In our C language implementations we used C++11 for
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Flow chart of the stable dot product implementation. Arrow numbers show the order of the operations.

the benchmarking software, and the non-SIMD algorithm versions. The C++ com-

piler was gcc 4.9.2.

We have performed 80 measurements with different sizes of test vectors. In the se-

quel, si (0 ≤ i < 80) denotes the size of one vector in the ith test. In the first test, the

size of a vector is 1000 elements (s0 = 1000). The vector sizes grew exponentially:

si = ⌊1000 ∗ 1.1i⌋, thus the largest vector size is 1862182 elements. Since one ele-

ment is 8 bytes long, the smallest vector needs 8000 bytes, while the largest is 14.2

Mbytes long.

6.1 Vector addition

Each test was repeated 5000 times, and the execution time was measured. Based on

the vector lengths and the execution time, the performance was calculated in num-

ber of FLOPS (Floating-point Operations Per Second). We have counted only the
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effective floating point operations, i.e. the multiplication by λ and the addition. The

number of effective floating point operations expresses how long input vectors can

be processed by the current implementation. If an implementation uses additional

auxiliary floating point operations (like multiplying by a ratio), that operations do

not count.

The input vectors were randomly generated. If we add two numbers, then we have

two cases: (1) The result is stable, so we keep it, (2) or the result violates a tolerance,

so it is set to zero. Hence we have generated the input vectors in such a way that the

likelihood for setting the result to zero is 1/2. This method moderately supports the

efficiency of the CPU’s branching prediction mechanism. Moreover, if it is required

to set zero half of the results, it ensures that the non-vectorized implementations

have to execute all of their branches.

We have to distinguish two cases of the vector addition operation:

1. c = a+λb, three vectors case

2. a := a+λb, two vectors case

where the memory areas of the vectors a, b and c are different. Since these cases

use the memory in different ways we have tested them for every implementation.

6.1.1 Results for three vectors

If three different memory areas are used with cache, the cache is divided into 3 par-

titions, so the performance is decreased. However, if non-temporal memory writing

is used, then larger vectors can be placed in the cache. Moreover, if the larger cache

is still tight the non-temporal writing saves unnecessary memory operations. There-

fore, this writing mode is recommended for large vectors. Figure 13 shows the

results for the unstable implementations. It can be seen that the AVX is the best al-

ternative, because it can perform four floating point operations per CPU cycle. The

performance decreases if the vectors grow out of the available cache sizes. Since

the L3 cache is shared among the cores, our process cannot use the whole cache,

so the efficiency decreases sooner as the total vector sizes exceed the size of larger

caches.

If the vectors are too large, the non-temporal SSE2 and AVX implementations have

the same performance because they execute quick calculating operations, but the

speed of memory operations is much slower than a floating-point operation. This

holds for the cache writing implementations too, but their performance is the half of

that of the non-temporal versions, because they use slower memory operations.

Figure 14 shows the results for the stable add implementations, where relative tol-

erance is used. Since more operations are used for one stable add step, the perfor-

mance is lower than in the unstable case. If the vectors are larger then the non-

temporal writing version with AVX is a little faster than the non-temporal SSE2

because the AVX instructions have to wait fewer times to read data from memory.

While the 9 steps of the stable add are executed the CPU can read the next data into

the cache.
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Performances of the unstable add vector implementations for three vectors
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Figure 14

Performances of the stable add vector implementations, using relative tolerance, for three vectors

As Figure 15 shows, the performance of the absolute tolerance versions has a similar

behavior to the unstable implementations but, of course, in this case the performance

is lower.

6.1.2 Results for two vectors

If two vectors are used and one of them is the result the cache line of the cur-

rent result memory area is in the cache. This involves that there is no additional

communication between the cache and the memory, so the performance increases.

Obviously, bypassing the cache is not unprofitable in this case, as Figures 16, 17,
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Figure 15

Performances of the stable add vector implementations, using absolute tolerance, for three vectors

and 18 show. If the cache is not bypassed, the overall performance is better than in

the three vectors case.

1,000 10,000 100,000 1,000,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

L1 cache
2

L2 cache
2

L3 cache
2

vector size

M
F
L
O
P
S

AVX
SSE2
C

SSE2, without cache
AVX, without cache

Figure 16

Performances of the unstable add vector implementations for two vectors

6.1.3 Orchard-Hays’s relative tolerance method

Since SSE2 and AVX have a MAX operation which selects the maximum of two

numbers, Orchard-Hays’s relative tolerance test can be implemented on Intel’s SIMD

architecture. As mentioned in subsection 4.1 two additional operations are inserted

into the assembly code; the max selector and an absolute value operation. The
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Performances of the stable add vector implementations, using relative tolerances for two vectors
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Performances of the stable add vector implementations, using absolute tolerance, for two vectors

modified implementation uses 11 instructions, where the max operation requires

significant amount of execution time, as Figures 19-22 show. There were 800 mea-

surement points that compare Orchard-Hays’s and our method. In 607 cases, our

algorithm is the fastest, the highest speedup ratio was 1.245 in the 3 vector SSE2

test, using cache. Our method behaved worse in the remaining 193 test points, the

worst ratio was 0.905 in the 3 vector, AVX, and cache-free case. We mention that

this is a very extreme case, in most of the cases, if our approach is worse, the ratio

moves around 0.98. However, as we saw, a simple policy can be constructed: De-

pending on the vector’s size, and numbers (2 or 3 vectors), we can choose between

the cache and cache-free implementations. We can avoid most of the situations,
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when our method’s performance is lower than the original.
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Performance comparison of our stable add implementations and the method of Orchard-Hays, with SSE2,

using relative tolerance, for three vectors
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Performance comparison of our stable add implementations and the method of Orchard-Hays, with AVX,

using relative tolerance, for three vectors

6.2 Dot-product

The dot product requires only two vectors and the result is a scalar value. Since,

in general, the input vectors have much more than one element, writing time of

the result to the memory is irrelevant. The stable AVX implementation uses only

7 instructions in addition to the loading, multiplying, and add operations, so its
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Performance comparison of our stable add implementations and the method of Orchard-Hays, with SSE2,

using relative tolerance, for two vectors
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Performance comparison of our stable add implementations and the method of Orchard-Hays, with AVX,

using relative tolerance, for two vectors

performance is better than the stable add. As Figure 23 shows, the performance

of stable AVX dot product is close to the unstable AVX version. The stable SSE2

requires more cycles, so the performance is considerably lower than the unstable

SSE2 version. The figure shows that if there is no SIMD support, the branching-

free techniques can be very useful if the input vectors are sufficiently large.
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Performances of the dot product implementations

7 Conclusions

As the performance tests prove, our simplified stable add method is faster than

Orchard-Hays’s method. The applicability of our method is also tested by our

simplex method implementation; the test problems of NETLIB were successfully

solved. It is clear that our pointer arithmetic based stable dot-product implemen-

tation is much more efficient than the conditional branching version if the input

vectors are sufficiently large. Moreover, the tests show that using Intel’s SIMD in-

struction sets provides strong tools in order to implement the stable algorithms in an

efficient way.

Modern Intel CPUs have at least two memory ports. So, while the next data set

is loading from the memory, the CPU can execute complex computations on the

previous set. This is why the AVX is so efficient in high performance stable com-

putations.
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Optimization is a widely used field of science in many applications. Optimization problems

are becoming more and more complex and difficult to solve as the new models tend to be very

large. To keep up with the growing requirements the solvers need to operate faster and more

accurately. An important field of optimization is linear optimization which is very widely

used. It is also often the hidden computational engine behind algorithms of other fields of

optimization. Since linear optimization solvers use a high amount of special linear algebraic

vector operations their performance is greatly influenced by their linear algebraic kernels.

These kernels shall exploit the general characteristics of large-scale linear optimization prob-

lem models as efficiently as possible. To construct more efficient linear algebraic kernels the

critical implementational factors influencing operation performance were identified via per-

formance analysis and are presented in this paper. With the results of this analysis a new

kernel has been developed for the open-source linear optimization solver called Pannon Op-

timizer developed at the Operations Research Laboratory at the University of Pannonia. A

novel application of indexed dense vectors is also introduced which is designed specifically

for linear optimization solvers. Finally a computational study is performed comparing the

performance of vector operations of different linear optimization kernels to validate the high

efficiency of our kernel. It shows that in case of large scale operations the indexed dense

vector outperforms the state-of-the-art open-source linear optimization kernels.

Keywords: Linear optimization; Simplex method; Optimization software; Computational lin-

ear algebra; Sparse data structures

1 Introduction

Nowadays, there are numerous performance-critical algorithms based on linear al-

gebraic operations. As the efficiency of such algorithms is strongly influenced by

the characteristics of the used linear algebraic kernels, the usage of appropriate data

structures and their implementations are very important. In many cases it is possible

to achieve better overall performance with a kernel exploiting the characteristics of
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Péter Böröcz et al. Comparison of vector operations of open-source linear optimization kernels

the nature of the problem. A common characteristic is sparsity, which heavily ap-

pears in the field of linear optimization (LO). The implementation of data structures

used by LO solvers is not a trivial matter. Several critical factors highly influence

the performance of operations.

In this paper the key implementational factors of sparse linear algebraic data struc-

tures are gathered and analyzed. Based on these a linear algebraic kernel has been

created for the open-source simplex-based LO solver, Pannon Optimizer [1], de-

veloped by the Operations Research Laboratory at the University of Pannonia. A

specialized indexed dense vector has also been designed and implemented to max-

imize performance in such applications [2]. Usage and efficiency of such vectors

have not been published in the literature of linear optimization. The aim of this pa-

per is to show that using a specialized version of indexed dense storage can lead to

major performance improvements in linear optimization.

Besides the used data structures LO has many interesting computational aspects.

Numerical stability can be crucial depending on the nature of the problem since the

side effects of floating point numerical computations can heavily affect the perfor-

mance of the solution algorithm [3]. It can also happen that numerical errors lead

to cycling or stalling [4] of the algorithm which can prevent it from finding the op-

timal solution in reasonable time. Although these aspects play important role in the

performance of LO solvers they are out of the scope of this paper since these are

typically handled with high level logics.

The paper is structured as follows. The introduction briefly describes sparse com-

puting techniques and the commonly used linear algebraic data structures of an LO

solver. It also includes the standard form of the LO problem but it does not ex-

plain LO in a detailed manner as the focus of the paper is about the implementation

aspects of low-level data representation and usage. The second section discusses

how linear optimization solvers benefit from the sparse data structures during vector

transformations and highlight the importance of these operations. The third section

introduces appropriate tools for benchmarking these data structures, while section

four gives an overview of the most widely used open-source LO kernels and the

Pannon Optimizer. Finally, the performance of the new linear algebraic kernel and

two open-source kernels are compared using the CLP [5] and GLPK [6] solvers to

support our findings.

1.1 Sparse computing techniques

If z denotes the number of nonzero valued elements in an m dimensional vector

v the density of v is defined as: ρ(v) = z
m

. Sparsity is nothing but low density.

Vectors and matrices of real-life problems submitted to LO solvers are usually very

sparse. To provide high-performance data structures for LO solvers it is necessary to

exploit sparsity, which is a key issue for a meaningful implementation of the revised

simplex method. Stored sparse vectors generally do not explicitly keep information

about every element. They only store the index-value pairs of nonzero entries. The

storage of sparse vectors is much more efficient in this way but this representation
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lacks the direct accessibility of elements. There are many factors influencing the

performance of such data structures. As an example, element access can be speeded

up by storing the pairs in a sorted order by indices. However, the initialization and

insertion of a new element are slower due to the necessity of sorting (Table 1) [7].

Table 1

Operation complexity for different vector types

Operation Dense Sparse sorted Sparse unsorted

Access element O(1) O(log(z)) O(z)
Initialization O(m) O(z · log(z)) O(z)
Insert new element O(m) O(log(z)) O(z)

1.2 Operations of sparse linear algebraic kernels

Sparse linear algebraic kernels usually implement both dense and sparse vectors

since using sparse storage techniques on vectors with high density is very inefficient.

Because of this and the basic differences between dense and sparse vectors dense—

dense, sparse—dense and sparse—sparse operations need to be implemented sepa-

rately. The efficiency of these operations is heavily influenced by the characteristics

of the vector implementations and the algorithm that use these structures. Since

sparse—dense operations are faster most sparse—sparse operations are more effi-

cient if one of the vectors is converted to dense representation and after the operation

is executed the result is converted back to sparse.

Converting a sparse vector into dense representation is called scattering and convert-

ing a dense vector into sparse representation is called gathering. Scatter and gather

are elementary operations of sparse linear algebraic kernels.

When a high amount of sparse—sparse operations is to be executed and the maximal

dimension of the vectors is known it is more efficient to maintain a static array as

working vector and use it for scattering sparse vectors. A static array means that

it is a fixed dimension array allocated at the beginning of the algorithm and is kept

throughout the whole solution process. This working vector needs to be cleared

after every operation which can be done very efficiently if the nonzero pattern of the

vector is known.

1.3 Linear optimization problems

The history of linear optimization was originated in the 1950’s when Dantzig for-

mulated the LO problem [8]. One of the formulations of the LO problem is the

standard form:

minimize cT x,

subject to Ax = b,

x ≥ 0,
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Péter Böröcz et al. Comparison of vector operations of open-source linear optimization kernels

where A ∈ R
m×n; c,x ∈ R

n and b ∈ R
m.

The two main solution algorithms are the simplex method [9, 10, 11] and the inte-

rior point methods [12, 13] which give the global optimum of a linear optimization

problem. In this paper, we show our results using the revised simplex method from

which the main operations are highlighted in section 2. The simplex method is an

iterative algorithm. The whole process is started from an initial basis and results in

an optimal one if it exists, while the method iterates through a series of neighboring

bases of the linear equation system. During these a large amount of linear algebraic

operations must be performed. This paper is not intended to compare or evaluate

different theoretical approaches of the simplex method but focuses on implementa-

tional details, which can be commonly applied for each method.

1.4 Linear algebraic data structures of LO solvers

In the past five decades the performance of LO solvers increased by 5 orders of

magnitude. From this 3 orders of magnitude are due to the hardware development of

computers and 2 are due to algorithmic improvements. The need for further perfor-

mance improvements is still an issue, significant breakthroughs were not published

in the past decade. Since the solution time of LO problems is crucial, efficient data

structures can be exploited to achieve good optimization performance. Today’s LO

solvers generally use three different vector representations for storing operational

data as they are shown in figure 1. They have different characteristics in term of

operational complexity and memory requirements [7].

Figure 1

The storage types used in large-scale LO solvers. Note, components of a vector are indexed 0, . . . ,m−1.

Dense vectors are stored as simple arrays. This allows direct access to the elements

and an efficient way of storage if the vector is static (e.g. an auxiliary working vector

that speeds up some computations) and not very sparse. This storage is wasteful in

case of sparse vectors since zeros are stored explicitly. Furthermore dense storage

can cause serious memory issues if large-scale LO problems are considered.
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Sparse vectors are stored as index-value pairs. In this way, elements are only acces-

sible via searching, but the storage need is low if the vector is highly sparse. The

mathematical models of LO problems are generally stored in sparse format. Since

the model is nothing but a sparse matrix it can be stored as a set of sparse row or col-

umn vectors. The state-of-the-art solvers usually sacrifice some memory and store

the coefficient matrix in both ways in order to enhance computational efficiency of

the simplex method [3].

Indexed storage of vectors maintains dense and sparse representations of a vector in

parallel [14]. This enables direct element access and exploits sparsity at the same

time. However, it uses considerably more memory. Operations executed with in-

dexed vectors are even more efficient than with sparse vectors, but changing element

values is costly due to the necessity of maintaining both representations. Indexed

vectors are generally used in sparse operations that involve scattering a sparse vector

into a dense array.

A fourth storage type is based the indexed dense vector introduced in [2], the mod-

ified version of this vector used for linear optimization is introduced by the kernel

of Pannon Optimizer which is shown in figure 2 [15]. Indexed dense vectors are

similar to indexed vectors with the addition of an index pointer vector. This in-

dex pointer vector is a full-length array connecting the nonzero values of the dense

representation to their copies in the sparse representation. If the element at index

i is nonzero the index pointer vector has a pointer at index i pointing to the sparse

representation value i. With this the complexity of changing values is reduced to

constant. Indexed dense vectors generally offer better performance than traditional

indexed vectors as it will be shown in section 5. There are several differences with

our vector implementation and the previously published method. The differences of

our indexed dense implementation is as follows:

• In our case the vector uses permanent storage capacity for each indexed dense

vector while traditional methods collect the indices of nonzero pointers for

temporary usage only. In our case the pointers are stored and maintained

while temporary usage of these pointers have to be initialized at the beginning

of each vector operation.

• To utilize index pointers the temporary storage only exploits the pointers for

one operand of the vector operation.

• Traditional methods do not use index pointers to handle canceled nonzero

elements. Numerically sensitive situations often generate many zero elements

which shall be noticed to maintain the sparsity of the representation and the

efficiency of further calculations.

An LO implementation usually uses multiple vector types to store data. Matrix A

is represented using sparse storage for real-life large-scale problems because with

dense methods it can take a huge amount of memory. For example storing a matrix

with n = m = 50000 takes 20 GB of RAM using double precision floating point

numbers which makes it impossible to handle with commonly available computing

hardware. Conversely, sparse-sparse operations are not efficient on their own, be-

cause the nonzeros are usually not ordered (ordering takes computational time) and
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Figure 2

The indexed dense storage type. Note, components of a vector are indexed 0, . . . ,m−1.

searching must be used to access elements (Table 1). To avoid searching working

vectors containing dense arrays (dense, indexed or indexed dense) should be used

to scatter the elements thus making them easily available for computation. When a

series of computations should be done using the same vectors this working vector is

extremely valuable and the result can be quickly gathered to a sparse format. In sec-

tion 5 the impact of using different vector types as a working vector is investigated

in detail.

2 Computational elements of the simplex method

In this section, the most commonly used elementary linear algebraic operations of

the revised simplex method are presented. The following data structures are used

in the state-of-the-art simplex based LO solvers to achieve high performance [3].

The tools supporting the identification of critical implementational factors are per-

formance analysis tools presented in section 3.

When we deal with sparse problems the application of the revised simplex method

is inevitable which uses some special representation of the basis. The two main

representations are the Lower-Upper (LU) factorization [16] and the Product Form

of the Inverse (PFI) [17]. Most of the solvers use the LU factorization, but it has been

shown that none of them is superior because the PFI with a proper implementation

can be as good as the LU [18] in several cases. The two most time consuming

linear algebraic operations of the simplex algorithm are the FTRAN and BTRAN

operations [3]. They involve the computation of B−1a and aT B−1, where a ∈ R
m,

and B is the actual basis. In the formulas below we use the PFI form to represent

the computational aspects of vector transformations but it can be adopted to the LU

form as well.

FTRAN is a sequence of simple elementary transformations of the form [3]:














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
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


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
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which can be written in vector form as:

c = a+λb (2)

This is called a daxpy product of two vectors if double precision values are used.

Since we are dealing with sparse basis representations the daxpy product is widely

used on sparse vectors throughout the solution process.

BTRAN can be decomposed similarly. It is also a sequence of elementary steps,

which are of the form:

[a1, . . . ,ap, . . . ,am]

















1 η1

. . .
...

η p

...
. . .

ηm 1

















=

[

a1, . . . ,

m

∑
i=1

aiη
i
, . . . ,am

]

. (3)

It can be written in vector form as a dot product:

a′p = aTη (4)

Since these computations usually take > 50% of the total solution time, the perfor-

mance of them is critical and the data structures must be highly efficient.

3 Tools for performance analysis

Performance of different implementations of a given sparse linear algebraic oper-

ation can be compared by measuring the execution times on a fixed architecture.

Some open-source tools exist to make such measurements. However, creating a

comprehensive performance analysis is cumbersome due to the lack of tools to pro-

cess and display the obtained data. As a measuring engine the Blazemark bench-

mark suite of the open-source Blaze library was used [19].

The Blazemark suite has several features making it a good choice to measure perfor-

mance of sparse linear algebraic operations. It gives measurement results in million

floating point operations per second (MFLOPS) rather than execution time making

comparison between different vector sizes and the theoretical peak of the proces-

sor possible. In order to provide credible results for sparse computations as well,

only the necessary floating point operations are considered. It means that the min-

imal number of additions that must be computed in order to get the proper result.

In case of sparse-sparse addition the number of effective operations is determined

by the number of nonzero elements rather than vector dimensions. Blazemark also

makes measurements iteratively to filter out false results. It can be parameterized to

measure operations with data structures of the desired size and sparsity.

In order to extend the functionality of the Blazemark suite and support advanced

measurements and performance analysis we have created a tool called Blazemark-

Analyser [15]. It is able to configure and run the Blazemark suite, parse the test re-

sults and store them in a database. It supports library-specific parameterization such
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as tolerances or other simplex-related numerical settings. It is also able to execute

parameter sweeps and draw a plot of performance as a function of a given parame-

ter (e.g. dimension or sparsity). The software offers a graphical user interface and

can be used conveniently to interpret and compare the results. This software makes

it possible to identify how different implementational factors influence operational

performance. With the help of performance analysis a new linear algebraic kernel

was created for Pannon Optimizer.

4 Kernels of open source LO solvers

There are several open-source LO solvers from which only a few is capable of solv-

ing large-scale LO problems. The linear algebraic kernels used in them need to fulfil

the requirements of the LO solver and offer the best possible performance. This sec-

tion describes the main characteristics of the kernels of two of the most widely used

open-source LO solvers GLPK [20], CLP [21] and the Pannon Optimizer.

4.1 GNU Linear Programming Kit

The GNU Linear Programming Kit (GLPK) is a collection of ANSI C implemen-

tations of mathematical optimization solvers including linear optimization [6]. The

GLPK kernel uses computer memory very efficiently. It allocates blocks and stores

vectors in a way to minimize the caching operations of the processor. Just as

other solver algorithms it implements the revised simplex method. GLPK has a

lightweight implementation of dense, sparse and indexed vector representations

with minimal overhead. All vector types consist of only the necessary arrays and

the vector operations are also implemented without any overhead of sophisticated

implementations. This implies that it does not pay particular attention to numerical

stability at operational level.

4.2 COIN-OR Linear Program solver

The COIN-OR Linear Program solver (CLP) is an open-source large-scale opti-

mization problem solver written in C++ [5]. It includes an object-oriented imple-

mentation of the revised simplex method. The linear algebraic kernel of CLP offers

three vector types for the solver: dense, sparse and indexed representations. Dense

vectors are implemented traditionally using arrays. The sparse vector representation

is sorted by index and only used to store the mathematical model. Indexed vector

representation is used during all sparse operations. The CLP kernel is capable of

mitigating the negative effects of numerical problems by setting elementary oper-

ation results below a given threshold to a pre-determined tiny value. It should be

noted that throughout the solution process of CLP it overrides the default behavior

of its own kernel with more efficient array operations (similar to GLPK).
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4.3 Pannon Optimizer

Pannon Optimizer [1] is a large-scale LO solver using a high-level C++11 imple-

mentation of the revised simplex method [22]. It is being developed specifically

for research purposes, making the performance impact of subalgorithms measur-

able. The linear algebraic kernel of Pannon Optimizer was developed considering

the results of performance analysis with BlazemarkAnalyzer. It implements dense

and sparse vector representations as well as the indexed dense vector which is a

uniquely extended implementation of the indexed vector.

5 Computational study

This section presents the summarized results of a computational study on the linear

algebraic kernels of the solvers mentioned above. The testing environment was

a laptop computer with an Intel Core i5-3230M CPU with fixed clock speed at

2.60GHz, 3MB L3 cache and AVX (Advanced Vector Extensions) support, with 4

Gb DDR3 RAM. The operating system was an Ubuntu 14.04 64-bit system.

The theoretical peak performance of this system is 10400 MFLOPS with 4 double

precision floating point operations per clock cycle (2 additions and 2 multiplica-

tions). BlazemarkAnalyzer was used for the measurements and it also provided the

diagrams that we present in this section. All the figures show the results normalized

according to the maximal measured MFLOPS value on the Y axis of the diagrams.

The X axis showing the dimensions of the vectors uses a logarithmic scale.

The test vectors used in our performance analysis were composed in a way to mimic

the structure of real LP problems. In order to achieve this we have used different

vector patterns throughout the measurements. In case of vector additions 70% of the

operations were standard additions where the operands and result are nonzero. 10%

of the operations were cancellations, where the operands are nonzero but the result

is numerically zero. The last 20% were non-overlapping values, thus one of the

operands of these operations was zero. In case of dot product operations the vectors

did not have the same number of nonzero elements. During the measurements of dot

product operations aTb was always performed together with bTa. This measures the

effect of traversing different nonzero patterns.

In the case of dense operations such as the dense—dense vector addition (Figure

3) or the dense—dense vector daxpy product (Figure 4) low-level memory manage-

ment can result in significantly better performance. This means that simple array

implementations are the best for dense—dense operations.

In the case of sparse—sparse vector dot products kernels with sophisticated mem-

ory management perform significantly better (Figure 5). Since this operation does

not change values in either vectors and the dot product implementation is based on

the nonzero indices, the difference between using a sparse, an indexed vector or

an indexed dense vector is negligible. This is one of the most performance-critical

operations of LO solvers since it forms the foundation of an elementary step of the
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BTRAN operation. The results prove that with the application of performance anal-

ysis very high performance of linear algebraic operations can be achieved. When it

comes to large-scale simplex specific operations the performance of Pannon Opti-

mizer kernel exceeds the other two kernels which it has been compared to.

For sparse operations that result in the change of values a working vector having a

dense representation is advisable since during the FTRAN operation multiple daxpy

products are to be done using the same vector. The performance of such operations

can be significantly increased with the use of indexed dense vector instead of reg-

ular indexed vector (Figure 6). The extent of this improvement depends on the

number of newly created zero elements. Changing a nonzero element to zero in an

indexed vector has logarithmic or linear complexity depending on whether the vec-

tor is sorted or not, while in an indexed dense vector it has constant complexity. In

the case of operations with very small vectors in dimension lightweight kernels with

minimized overheads (additional computing only needed for memory management)

perform better.

It is not trivial whether the traditional indexed vector or the new indexed dense vec-

tor would perform better as a static operation vector for LO solvers. To examine

this issue, numerous measurements were made to compare the indexed dense vec-

tor of Pannon Optimizer with regular indexed vector implementations used in CLP

and GLPK. When adding a sparse vector to an indexed or indexed dense vector with

values of opposite sign where the result is expected to be a null-vector, the operation

performance of regular indexed vectors reduces logarithmically with the growth of

the dimension of the vectors. In the case of indexed dense vectors operation per-

formance does not reduce (Figure 7). This further emphasizes the efficiency of the

indexed dense vector.

When comparing the performance of traditional indexed vectors with indexed dense

vectors on the dot product operation with dense vectors the results show that when

working with small vectors regular indexed vectors are advisable to be used but in

the case of large vectors the indexed dense vector performs significantly better (Fig-

ure 8). These characteristics prove that the indexed dense vector is a very efficient

working vector of large-scale LO solvers.

Conclusions

The linear algebraic kernel of the Pannon Optimizer was developed, based on re-

sults of the performance analysis of sparse data structures and with consideration of

computationally heavy simplex-specific operations such as FTRAN and BTRAN.

This investigation led us to develop and release a high performance sparse linear

algebraic kernel that performs better than its predecessors for solving linear opti-

mization problems.

We have introduced a new kind of indexed vector based on the experiences that we

gathered from its alternatives. It appears that our vector type performs very well as

a static working vector of large-scale LO solvers, surpassing the performance of tra-

ditional indexed vector implementations that most LO solvers use. When working

with large vectors, both sparse and dense operations are faster with the new vector
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Figure 3

Performance of different implementations of the addition of two dense vectors.

Figure 4

Performance of different implementations of the daxpy product of two dense vectors.

Figure 5

Performance of different implementations of the dot product of two sparse vectors (0.1% density).
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Figure 6

Performance of different implementations of the daxpy product of two sparse vectors (0.1% density)

using an indexed (CLP, GLPK) or an indexed dense (Pannon Optimzier) static working vector.

Figure 7

Performance of the addition of a traditional indexed vector (CLP, GLPK) or an indexed dense vector

(Pannon Optimizer) (0.1% density) and a sparse vector (0.1% density) using a nonzero pattern where

the result of the addition is algebraically a null-vector.

Figure 8

The performance of the dot product operation of a traditional indexed vector (CLP, GLPK) or an

indexed dense vector (Pannon Optimizer) (0.1% density) and a dense vector.
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type that has been validated by performance analysis. As a conclusion of the perfor-

mance analysis, we highly recommend the usage of the indexed dense vector if the

dimension of the vectors is greater than 104. It can also be noted that the usage of the

indexed dense vector instead of other vector types does not affect the performance

negatively if used as a static working vector. Altogether, the overall performance of

the linear algebraic kernel of the Pannon Optimizer seems to be better than kernels

of other open-source, large-scale LO solvers.
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Abstract: In the first two sections of the paper, stream flow is investigated on a probability 

theoretical basis. We will show that under some realistic conditions its probability 

distribution is of gamma type. In the model of the third section the optimal capacity of a 

storage reservoir is determined. In the model of the fourth section optimal water release 

policy is sought, given that water demands should be met by a prescribed large probability. 

Finally, in the last fifth section, in addition to the before mentioned reliability type 

constraint an upper bound is imposed on the number of days when demands may not be met 

and the cost of the intake facility is to be minimized1. 

Keywords: reservoir capacity; release policy; stochastic programming 

1 Secondary Stochastic Processes Derived by a 
Poisson Process 

The use of Poisson type stochastic processes is frequent in hydrology. Presently, 
we assume that the sequence of rainfall events follows a Poisson process. That is, 
if  I  denotes the (random) number of rainfalls in a time interval I, then 

a) for all nII ,,1   interval systems, where any two intervals have no common 

inner points, the random variables    nII  ,,1   are independent, 

b)  I  has Poisson distribution with parameter   0I . 

                                                           
1  The problem of finding storage reservoir capacity was formulated by István Zsuffa many 

years ago. The detailed elaboration of the problem is more recent and is due to the first 
two authors who offered the Hungarian version of this paper appeared in Alkalmazott 
Matematikai Lapok 27 (2010) 175-188 to the memory of their friend and co-worker, 
István Zsuffa. The first author many years ago planned to publish the paper in English, 
too. After András Prékopa passed away last year, this task remained to the second author, 
who offers this paper to the memorial volume of Acta Polytechnica Hungarica. 

mailto:szantai@math.bme.hu
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A secondary process derived by a Poisson process means that to the random 
events of the Poisson process, in our case to the time points of rainfalls, a random 
secondary phenomenon is ordered, which is now a random flood wave. Let denote 
the random field of the secondary events Y. On this random field more probability 
measures are defined. For discussing secondary processes an appropriate tool is 
the so called product space method, see [3]. This consists of regarding the 
secondary process in the set of the element pairs (t, y), with other words in the 
product space  YT  , where T is a subset of the time axis and t is one of its 

elements. A special run of the secondary process, that is its realization means a 
random point system in the space YT  . Indeed, if  ,,,,, 2101 tttt is the 

Poisson-type point process and  ,,,,, 2101 yyyy  is the series of the appropriate 

secondary phenomena then the realization of the secondary process can be 
characterized by the 

        ,,,,,,,,, 22110011 ytytytyt   

random point system in the space YT  . 

The main theorem of the product space theory on secondary processes [3] claims 
the following.  

If the selection from the space Y of the secondary phenomena belonging to 
different points of the Poisson process is serially independent and identically 
distributed with the same probability measure  , then the random point system in 

the space YT   is also of Poisson type with parameter measure   .  

It may occur that the secondary phenomena belonging to the points of the Poisson 
process are serially independent but their probability distribution depends on t. 
This means that the recession of a flood wave depends on the time when the flood 
wave was initiated. In this case, one has to use measures t  instead of the single 

measure  . Then the parameter measure belonging to a set D of the random 

Poisson type point system in the product space, is determined by the following 
integral  

   
C

tt tD d ,        (1) 

where C is the projection of D on the set T and tD  is the intersection of the set D 

with that subset of YT   on which t is constant i.e.   DytyDt  , . 

The number of random points belonging to the set D of the product space  YT   
can be denoted as  D . So integral (1) equals to   DE  . 

For simplicity we suppose in the following that t  is independent of t. 

A different treatment of the theory of secondary processes can be found in [10]. 
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2 Streamflow Probability Model Based on the Theory 

of Secondary Processes 

Let the flow response to rainfall depth   be characterized by function  ,tf , 

where   is a random variable. One possible empirical version of this function is 

  0,e, 1  
tttf

t ,         (2) 

where  and  are positive parameters depending on watershed characteristics. 

Let the relationship between rainfall and runoff at time point it  be described by 

the function  

  iii ttttf  ,,  ,        (3) 

where the random variables i  are serially independent. Streamflow t  is 

described by the superposition of the functions (3), i.e. the function: 

  t

tt

ii

i

ttf  


, . 

We determine the probability distribution of the random variable t  for the case 

of function (2). 

From our main theorem it follows that the number of runoff events between limits 
(a,b) follows Poisson distribution with a parameter given by the integral 

      


 
t

xt
xbxtaP de

1  
.     (4) 

In the case of a=y, b=y+dy and supposing that   xx dd   , where 0  

constant, we get for this: 

    


 
t

xt
xyyxtyP dde

1  
 

 


 
0

1 dde vyyvyP
v    

 


 


0

e dde1
d

d 1

vy
y

vy
v


  




 


0

e1 dydee
1

vv
vyv

v   
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where   is exponentially distributed with expected value /1 . It is not essential 

to suppose the exponential distribution; we may use any other probability 
distribution, too. 

The probability distribution function of streamflow at time point t can be 
determined in the following way. Let denote  I  the number of individual runoff 

events in interval I. Then according to the earlier results  I  is Poisson 

distributed with parameter (4) in the case of  baI , . Accordingly, the 

characteristic function of the probability distribution we are looking for is: 

      



  













0
0

1e1

0

dydee1ed1e

ee
vvyE vvyviuyiuy 

    (5) 

In the case of 1  we get as result: 

 



0

y-

dy
e

1e

e
y

iuy






 

which is the characteristic function of a gamma distribution. Namely, if 1 , 

then the equation (5) can be continued as 

   






   










00
0

1e1 dye
1

1edydee1e

ee

yiuyvvyviuy

y
vv 




    (6) 

The form (6) of the characteristic function of gamma distribution can be found on 
page 92 of book [2]. 

Considerations applied in this section can be transferred to different, possibly 
more complicated  ,tf  functions that include rainfall-runoff relationships too. 

The result not necessarily can be expressed by a formula; however, it always can 
be calculated numerically. As a result we can always provide the probability 
distribution of t . 

3 A Stochastic Programming Model for Determining 
the Optimal Capacity of Irrigation Reservoirs 

Let us regard consecutive time sections (periods) and introduce the following 
notations:  

k  water demand in period k: kkk h   , where kh  is constant 

meaning the total amount of demand, k  is the amount of 

rainfall in period k 
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k  streamflow in period k 

m storage capacity, the decision variable 

M reasonable upper bound for the capacity m 

 mc  cost of the reservoir as a function of its capacity 

 kk m  ,min  amount of water released in period k 

kc  benefit per water unit in period k 

K number of periods 

N number of years 

0p  inflation rate supposed to be constant up to year N 

Let us suppose that the damage in period k is proportional to the amount of water 
shortage.  

The model to be discussed can be formulated for the case of nonlinearly 
increasing penalty, too. 

The random amount of damage generated in period k is described by the random 
variable 

    


 

  otherwise.,0

if, kkkkk

kkkk

c
c


  

Regarding the number of K consecutive periods, the expected value of the total 

amount of generated damages will be  


K

k

kE
1

 . If we want to minimize the 

expected value of the total amount of generated damages summarized over the 
current and the next consecutive N years, then regarding the expected present 
value of the damages, we have to solve the following optimization problem: 

   
 

Mm
p

Emc
i

N

i

K

k

k 

















 

 

0supposing,
1

1
min

0 1

  (7)  

Problem (7) is a single variable optimization problem, and the minimum of the 
objective function is sought on the interval  M,0 . We show that the sum in the 

objective function is a convex function of m. It is enough to show the convexity 
for one term of the sum. Let kG  and kF  denote the probability distribution 

function of the random variables k  resp. k , and kf  the probability density 

function according to kF . Then by definition of the random variable k  we get: 
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     kkk

k

EE
c

1
 

         


 
m

kk

m

kk zzfmEzzfzE dd
0

                  (8) 
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m

k

m
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

1d1dd1
0 0

 

Here we used the fact that if a random variable   has probability density function 

 xf , probability distribution function  xF  and its expected value exists, then it 

is easy to check by partial integration that for any real number z we have 

         


 
zz

xxFxxfzxzE d1d  

One can check the convexity of the function    kk Ec /1  by differentiating twice 

the formula (8). As Nkck ,,1,0  , it follows that  kE   and the sum of these 

is also convex. As 0p  it is clear that the expected damage summed for N years 

and transformed to present value is also a convex function of the variable m. If the 
function  mc  is also convex then the whole objective function is convex. 

However, if  mc  is not convex, then the convexity of the objective function 

cannot be proved, but in some special cases it may be convex as it can be seen 
also in our example. The optimization can be done relatively simply. The 
distribution of streamflow can be selected to be gamma and the distribution of 
water demands can be supposed to be normal or gamma, too. 

The model (7) can be extended by prescribing reliability type constraints for the 
random water demand to be met with a high probability. 

We will illustrate the model (7) with an example provided in [5] including the 
stochastic programming model applied to a serially linked water reservoir system. 
Now we regard only the first reservoir out of the two serially linked reservoirs for 
three consecutive periods (June, July and August). We suppose that the random 
variables 321 ,,  , describing the random water demands, are independent of 

each other and the random streamflow is gamma distributed with the following 
parameters: 
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Table 1 

Parameters of the gamma distributed random water demands 

 expected value (
3

m ) standard deviation(
3

m )     

1  215 760 327 120 0.000 002 016 0.435 038 479 

2  433 608 243 600 0.000 007 307 3.168 400 000 

3  484 416 214 368 0.000 010 541 5.106 426 041 

Similarly we suppose that the random variables 321 ,,  , describing random 

streamflow values are independent of each other and of the random water 
demands and have gamma distribution with the following parameters: 

Table 2 

Parameters of the gamma distributed random streamflow values 

 expected value (
3

m ) standard deviation(
3

m )     

1  464822 186984 0.000013295 6.179658245 

2  320576 266040 0.000004529 1.452005071 

3  266040 234040 0.000004857 1.292152284 

The cost in HUF of a reservoir with capacity m let be the following piecewise 
linear function 

   







500000mif,50000015050000000

500000if,100

m

mm
mc  

and let us suppose that we cannot build up any reservoir with capacity greater than 
300000025 m . 

The benefit of water/ 3
m  in the consecutive periods let be HUF2001 c , 

HUF3002 c , HUF2503 c . Let 10N  and the constant inflation rate 

05.0p . Then the single variable optimization problem (7) can be solved by 

some standard Matlab routines (gamma, gammainc, quad, dblquad, fminbnd). 

The optimal solution of the above described test problem is 3391580 mm   and 

the optimum value according to this solution equals to HUF000146523 . Fig. 1 

shows the objective function values of the optimization problem (7) for its whole 
domain.  
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Figure 1 

Diagram of the objective function values of optimization problem (7) 

4 Optimization of Reservoir Release Policy 

Let us regard consecutive periods and introduce the following notations:  

0  amount of water in the reservoir at beginning the first period 

k  amount of streamflow in period k 

)( kk ba  smallest (largest) allowed amount of water in the reservoir in 
period k 

kz  amount of release in period k, the decision variable 

N number of periods 

 Nzzf ,,1   present value of the benefit of released water Nzz ,,1   in  

consecutive periods 

m reservoir capacity 

 mc  cost of the reservoir as a function of its capacity 

K upper bound - the cost of  building the reservoir with capacity m 

p reliability level prescribed, close to one 
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The optimization problem is formulated as 

      thatsupposing,,max 1 mczzf N   

pNkbzaP k

k

j

j

k

j

jk 












 


,,1,
11

0                                                 (9) 

Nkmzk ,,1,0  . 

If m is given then we don’t regard it as a variable, otherwise the problem remains 
unchanged. If we want to build into the model the random water demands k , it 

may be done without any further as in Section 3 was discussed. The numerical 
solution of problem (9) is possible if we put some special assumptions on the 
random variables N ,,1  , see the papers [7], [8], [9]. The model (9) can be 

successfully applied to scaling the capacity value m. 

A further variant of model (9) is when the decision-maker may give an upper 
bound K on the cost of building the reservoir with capacity m, c(m). In this case it 
is not necessary to subtract the value  mc  from the objective function and the 

problem of the modified model can be formulated as 

      thatsupposing,,,max 1 mczzf N   

pNkbzaP k

k

j

j

k

j

jk 












 


,,1,
11

0                 (10) 

  NkmzKmc k ,,1,0,   

It's worth mentioning that if the probability distribution of the random variables 

N ,,1   is continuous and their density function is logarithmically concave, then 

the Nzzm ,,, 1   feasible domain of problems (9) and (10) is convex (see for 

example Prékopa [6]). So if  Nzzf ,,1   and  mc  are convex functions, then the 

problems (9) and (10) are convex. 

Let us regard a reservoir for four consecutive months, say April, May, June and 
July, as an example of Problem (10). Let streamflow data follow joint normal 
probability distribution with the following parameters: 

Table 3 

Parameters of joint normal distribution of the random streamflow values 

 expected value 

(
3610 m ) 

standard deviation 

(
3610 m ) 

correlation coefficients 

1  79.74 83.51 1.000 0.284 -0.017 0.047 

2  29.78 63.11 0.284 1.000 0.333 0.198 
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3  -4.52 73.98 -0.017 0.333 1.000 0.579 

4  -43.44 73.96 0.047 0.198 0.579 1.000 

Create the aggregated random variables 

11    

212    

3213    

43214   . 

These random variables as linear transforms of 4321 ,,,   have also normal 

distribution with the transformed expected values, standard deviations and 
correlation coefficients: 

Table 4 

Parameters of joint normal distribution of the random stream flow values 

 expected value 

(
3610 m ) 

standard deviation 

(
3610 m ) 

correlation coefficients 

1      79.740     83.510  1.000  0.859 0.670 0.542 

2    109.520 118.112  0.859 1.000  0.873 0.736 

3    105.000 149.408 0.670 0.873  1.000 0.935 

4     61.560 191.201  0.542 0.736  0.935 1.000 

Let us suppose that in the optimization problem (10) 
  43214321 50807040,,, zzzzzzzzf  , i.e. the total benefit of released water 

is a linear function. Let the cost of the reservoir of capacity m  also be linear 

function:   mmc 50 . For the smallest water level of the reservoir let be 

prescribed 100ka  in all periods 4,3,2,1k ; for the largest water level of the 

reservoir let be prescribed 1000kb  in all periods 4,3,2,1k ; and let us suppose 

that at the beginning of the first period the season starts with full reservoir. If we 
solve the arising optimization problem with different bounds on the building cost 
then the decision-maker can select the economically reasonable capacity. 
Introducing new variables for simplifying the terms inside the probability 
expressing the reliability-type constraint, we solved the following optimization 
problem for different building up cost bounds K: 

   thatsupposing50807040max 4321 zzzz   

1000100 11  zl  
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1000100 212  zzl  

1000100 3213  zzzl  

1000100 43214  zzzzl  

10001000 11  zu  

10001000 212  zzu  

10001000 3213  zzzu  

10001000 43214  zzzzu  

00.90100
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.,,,,50 4321 mzmzmzmzKm   

Notice that the probabilistic constraint has been multiplied by 100. As a result, the 
problem can be solved numerically in a more stable way. Then the only difficulty 
is the calculation of the probability values and its partial derivatives. For this we 
can write the probability value in the following form: 

   43214321

444

333

222

111

,,,,,, uuulFuuuuF

ul

ul

ul

ul

P 


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

























 

     43214321 ,,,,,, uluuFuuluF   

     43214321 ,,,,,, uullFluuuF   

     43214321 ,,,,,, luulFululF   

     43214321 ,,,,,, luluFulluF   

     43214321 ,,,,,, ulllFlluuF   

     43214321 ,,,,,, ululFlullF   

     43214321 ,,,,,, llllFllluF   

where  4321 ,,, xxxxF   denotes the joint normal probability distribution function 

of the random variables 4321 ,,,   with parameters given in Table 4. This means 
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that for the calculation of one probability value we have to calculate 1624   four 

dimensional normal probability distribution function values. 

We prepared the AMPL model of the above defined nonlinear programming 
problem. To calculate values of the multivariate normal probability distribution 
functions the numerical integration code developed by A Genz ([1]) has been 
added to the AMPLE model. Then the problem was solved by the solver LOQO 
for different values of cost bound K. The results are summarized in Table 5. 

Table 5 

Total benefit values of the test problem for different values of K 

Here m is the optimal capacity of the reservoir and zk is the optimal amount of water release in period 

k. All of them are given in 106 m3. K and the total benefit values are given in millions of HUF.   

Number K total benefit m 
1z  2z  3z  4z  

1 10000 36634.493 200.001 200.001 180.665 199.848 0.000 

2 10500 39682.114 210.011 210.011 206.903 209.975 0.010 

3 11000 41250.695 220.003 220.003 212.155 219.996 0.001 

4 11500 42270.302 230.004 230.004 209.583 229.990 0.003 

5 12000 42948.048 240.010 240.010 202.120 239.990 0.003 

6 12500 43378.927 250.012 250.012 191.146 249.973 0.009 

7 13000 43615.155 259.999 259.999 177.390 259.973 0.003 

8 13500 43741.739 269.943 268.574 162.960 269.943 0.002 

9 14000 43792.337 279.971 268.973 151.969 279.971 0.001 

10 14500 43836.424 289.895 268.947 141.354 289.895 0.000 

11 15000 43861.877 299.046 268.963 132.222 299.046 0.002 

Figure 2 represents the possible benefit values according to different cost bounds 
K. This graph may be useful for decision-makers when deciding how much should 
be spent for providing a given reservoir capacity. The graph shows the benefit 
increase of water releases if the amount of money spent for building the reservoir 
is increased. The decision should take into account, of course, that the cost of 
reservoir occurs only once and the benefit of released water can be realized for 
many years. 
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Figure 2 

The benefit of irrigation water in function of the money spent for building a reservoir  

5 Probability Constrained Stochastic Programming 
Model for an Intake Facility 

The capacity of an intake facility, say a pumping station is considered to satisfy 
random water demands (e.g. irrigation) utilizing the available streamflow. Let us 
regard a given time period which can be a month, say August of the year. We will 
prescribe that the number of days with unsatisfied water demands should not 
exceed a given value with a high probability. The model will be described for a 
time interval of n days. We introduce the notations: 

n ,,1    daily available stream flows 

n ,,1    daily rainfalls 

n ,,1    daily water demands 

m  daily capacity of the intake facility, the decision variab

M  upper bound for capacity m 

 mc   cost of the facility 

b  maximum number of days with unsatisfied water 
given time period 

p  reliability level prescribed, close to one 
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There is enough water on the k th day if and only if the following relation holds 

  kkk m  ,min .                  (11) 

Let nxx ,,1   be deterministic variables which take on values 0 and 1, only. The 

following relation doesn’t mean any constraint if 0kx , but if 1kx  it is 

equivalent to the constraint (11): 

  kkkk xm  ,min .                  (12) 

Beside (12) for all nk ,,1  prescribing the constraint  

bnxx n 1  

we require that at least bn   out of the constraints (11) be met, i.e. at least 

nxx ,,1   times the opposite of the constraint (11) be met. Then our model can be 

formulated as 

   thatsupposing,min mc  

   pbnkxmP kkkk  ,,1,,min   

bnxx n 1                   (13) 

Mmnkxk  0,,,1,1or0  . 

Like the earlier models, this model also has more variants. Among others, one can 
build into the objective function, a cost factor, that depends on the number of 
days, b. If the random variables Nkkkk ,,1,,,  have continuous joint 

probability distribution and their joint density function is logarithmically concave 
then the constraints of problem (13) except the constraints 1or0kx , define a 

convex feasible set. 
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Abstract: Sales promotion aims to capture the market and increase sales volume. 

Therefore, an important task is the forecasting of the demand during the sales period. We 

present two dynamic methodologies for calculating the quantity which has to be placed on 

the shelves at the beginning of each day such that we keep some constraints expressing 

lower and upper bounds on the quantities. Both methodologies are new to this field and are 

useful because of some specific properties of the problem. Our new methods use historical 

data of the demands in previous promotions and the consumptions registered in the 

previous days. Since the promotion period is relatively short, other methods such as time 

series analysis can hardly be used. 

Keywords: inventory control; dynamic forecasting; information driven forecasting 

1 Introduction 

Many businesses use sales promotions to increase the demand of a product or 
service. Promotions and sales are important strategies of a successful business. 
Their effects include growth within the market segment involved, the discovery of 
new products. Promotions attract new and old customers and can keep the 
company relevant when competitors appear. Price reductions can substantially 
boost the sales of the given product, but also cause brand switching. 

Effective sales promotions lead to inventory reductions, because customers buy 
more products. Therefore companies use these actions at the end of a buying 
season. For example, when Christmas Eve is past, very often, retailers offer 
discounts to make room on the shelves for other products. 

Paper [12] highlights how promotions affect the buying habits of costumers as a 
consequence of a changed price conditions. 

Some interesting statistics on demand in sales period can be found in [1]: 
“Demand during many promotions is often dramatically greater than median daily 
demand: demand in 54% of promotions is > 15 standard deviations greater than 

mailto:szantai@math.bme.hu
mailto:kovacsea@math.bme.hu
mailto:egri@math.bme.hu
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daily median demand, and demand in 3% of promotions is > 100 standard 
deviations greater than normal daily demand. However, promotion demand 
represents a relatively small percentage of total yearly demand for most products. 
For 90% of products, promotion demand is <15% of total yearly demand and 
promotion demand is <20% of total demand among 90% of the products with one 
or more promotions.” 

The time series method forecasts the new demand values, on the basis of historical 
demand data. In [11] time series forecasting models with extending an exponential 
smoothing approach were proposed. However, exponential smoothing methods 
have been criticized for their inability to capture the effects of special events such 
as promotions, announcements. When demand for an item is being driven by such 
factors as trends and seasonal patterns, time series methods tend to work quite 
well [6]. However, business data often contain responses to actions, such as 
promotions, that cannot be captured as part of the level, trend and seasonal 
components. When a significant amount of demand is being driven by these types 
of events, time series methods will not work very well. 

Fildes and Goodwin ([4]) indicated promotional and advertising activity as one of 
the main drivers behind adjustments of the statistical forecasts by managerial 
judgments. 

An alternative approach to the problem of forecasting promotional sales is to use 
regression models, which use past promotional information to formulate causal 
models, Fildes et al. [5]. 

Although the information of human judgment cannot be captured by simple 
promotional models, yet Trapero et al. in [12] showed that a simple model could 
beat judgmental forecasting. Therefore, there is a need for developing more 
sophisticated promotional models. 

In a recent paper [3], different models of forecasting the demand during a 
promotion are developed and tested, including a moving average forecast and 
several regression models. In the paper it is investigated how different factors such 
as price variation, advertising influence the demand. 

Another recent paper on the topic of forecasting demand in sales period is [7]. The 
presented method consists of the identification of potentially influential 
categories, and then of the selection of the explanatory variables by using 
multistage LASSO regression and of the use of a rolling scheme to generate 
forecasts. The success of the method is also based on dealing with high 
dimensionality which brings improvements in forecasting accuracy compared to 
other methods which used also a reduced variable space. 

In [13] Trapero et al. proposed a Principal Component Analysis based 
promotional model that overcomes the limitations caused by multicollinearity and 
high dimensionality. 
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In this paper we address the problem of stochastic inventory control during a retail 
or promotion time. The pricing of the products in sales period is also an important 
optimization problem, but in this paper we suppose the promotion price was 
already fixed. This paper is dealing with the problem of daily updating the 
quantity of a given product on the shelves during a promotion sales period. A 
specific characteristic of this problem is that, products are sold at a lower price 
during a relatively short period only. We present two methodologies for making 
decisions on the quantity of product which has to be placed on the shelves. These 
are based on historical data of similar promotions that have occurred in the past. 
To our best knowledge we are the first who introduce the following models to the 
problem of inventory management during promotional sales. 

The dynamic of our models is as follows. At the beginning of each day, a quantity 
of a given product is placed on the shelves. The demand on each day is observed 
and based on this cumulative set of information one has to decide the quantity to 
be placed on the shelves at the beginning of the next day. This way the decision is 
made day by day and uses beyond the information accumulated from the previous 
days also historical data collected from previous sales periods. In addition the 
experts may put some constraints on the quantity of products being on the shelves. 

2 Dynamic Inventory Control in Sales Periods by 
Adapting the Lake Balaton Water Level Regulation 
Model 

2.1 Preliminaries 

In paper [8] the following dynamic control model was developed for regulation of 
the water level of Lake Balaton. 

Let us introduce the following notations: 

0V  initial water content of the lake, 

k  random water input in month ,k  

kz  water quantity to be released through the channel Sio in month 

,k  





k

i

ik V
1

0   
initial water content plus the cumulated monthly random water 

inputs at the end of month ,k  

ka  lower bound for the water quantity being in the lake at the end 

of month ,k  
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kb  upper bound for the water quantity being in the lake at the end 
of month .k  

For determining the optimal decisions 
Nzz ,,1   according to the first N  months 

one should solve the following stochastic programming problem: 









 


NkbzaP k

k

i

ikk ,,1,max
1

  

supposing that                                                 (1) 

,,,1,0 NkKzk   

where K  is the monthly capacity of the channel Sio. 

The authors of paper [8] proposed to accept the optimal value  11 zz  of the first 

decision variable only, apply it as water release in the actual month and then 
formulate the next stochastic programming problem of type (1) and so on. 

If one observed the realized values nxx ,,1   of the random water inputs n ,,1   

and the realized water releases were 
nzz ,,1   in the first n  months, then the 

knowledge of these values can also be utilized in the following way. Let us 
modify the initial water content of the lake for the water content at the end of the 

n th month, i.e. let be 







n

i

i

n

i

in zxVV
11

0  and 



k

ni

ink V
1

 . Then instead 

of stochastic programming problem (1) one can regard the problem 









 


nnk

k

ni

ikk xxNnnkbzaP  ,,,,1,max 11

1

  

supposing that                                                 (2) 

.,,1,0 NnnkKzk    

Now one may accept the optimal value of the first decision variable 
  11 nn zz  

only, apply it as water release in the actual month and then formulate the next 
stochastic programming problem of type (2) and so on. 

If the random process ,, 21   is Gaussian, these stochastic programming 

problems can be solved as it was shown in [8]. In this paper the special case of 
2 Nn  was taken and the authors successfully applied this method for the 

monthly dynamic control of the water level of the Lake Balaton for a fifty years 
long time horizon. 
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2.2 Adaptation of the Lake Balaton Water Level Regulation 

Model 

Let us now regard a line of goods in a department store which is on sale for a 
fourteen days’ time period. The main difference is that while the water level of the 
Lake Balaton can be controlled only by decreasing its value, in this case the 
amount of the line on the shelves can be controlled only by increasing its value. In 
the same time while the water level of the Lake Balaton increases (changes) 
randomly and it can be decreased deterministically, in this case the amount of the 
line on the shelves decreases randomly and it can be increased deterministically. 

For describing the stochastic programming models let us now introduce the 
following notations: 

0V  the starting amount of the line on the shelves at the beginning of the 
sale, 

k  the random consumptions of the line on the k  th day of the sale,  

kz  decision variable belonging to the k  th day of the sale, this is the 

quantity of the line to be placed on the shelves when opening the 
k th day of the sale, 





k

i

ik

1

  
the cumulated daily random consumption at the end of the k th day 

of the sale, 

K  the capacity of the shelves over the sale, 

ka  lower bound for the line amounts to be placed on the shelves at the 
end of the k  th day of the sale, 

kb  upper bound for the line amounts to be placed on the shelves at the 
end of the k  th day of the sale. 

The notations above are introduced for all days 14,,2,1 k  of the sale.  

If we suppose that the line of goods is put on the shelves each day morning then 
the following inequalities must be fulfilled: 

10 zV   1b  quantity at first day opening time, 

1210  zzV  2b  quantity at second day opening time, 

   

1110  NNzzV    Nb  quantity at N  th day opening time. 

Taking into account the daily random consumption values at the end of the day the 
following inequalities must be fulfilled: 
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110  zV  1a  quantity at first day closing time, 

21210   zzV  2a  quantity at second day closing time, 

   

NNzzV    110  Na  quantity at N  th day closing time. 

For determining the optimal decisions 
Nzz ,,1   according to the first  14N  

days one should solve the following stochastic programming problem: 

The problem which accords with/corresponds to problem (1) is formally the 
following: 






































N

N

i

iN

k

k

i

ikk

k

i

i

azV

NkazVbzV

P

1

0

1

01

1

2

0 1,,1,

max



 

 

supposing that        (3) 

,011 Vbz  .0,,0,0 21  Nzzz   

If one observed the realized values nxx ,,1   of the random consumptions 

n ,,1   and the quantities 
nzz ,,1   of the line placed on the shelves on the first 

n  days of the sale, then the knowledge of these values can also be utilized in the 

following way. Let us modify the starting amount of the line on the shelves in the 

morning of the 1n  th day, i.e. let be 


 
n

i

i

n

i

in xzVV
11

0 . Then instead of 

stochastic programming problem (3) one can regard the problem 























































nnNn

Nn

ni

inNn

kn

kn

ni

inknkn

kn

ni

in

x

x

azV

NkazVbzV

P










 11

1

1

1

1

2

1,,1,

max  

supposing that        (4) 

,11 nnn Vbz   .0,,0,0 21   Nnnn zzz   

Now one may accept the optimal value of the first decision variable 
  11 nn zz  

only, apply it as quantity of the line to be placed on the shelves in the actual day 
and then formulate the next stochastic programming problem of type (4) and so 
on. 
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If the random process ,, 21   is Gaussian, these stochastic programming 

problems can be solved. For detailed calculation procedure, see paper [8]. 
Relatively small values of n  and N  (say, 2 Nn ) may be enough for 

achieving good control in this case, too. 

2.3 Application of the Algorithm 

As it can be seen in Table 1, the random consumptions had relatively large 
standard deviations according to their mean values, so the modified Lake Balaton 
inventory control model was not applicable for these data. This model could be 
applied when the standard deviation of the random consumptions is not larger than 
one third of the mean value, otherwise one should be able to interpret negative 
valued consumptions. 

3 Dynamic Inventory Control in Sales Periods by 
using Information-driven Forecasting 

3.1 Preliminaries 

Sales periods are relatively short, one or two weeks typically, therefore, the 
popular time series forecasting methods cannot be applied for the goods in 
promotion sales. 

We distinguish the following two kinds of promotional sales. The first one is the 
case of a product which already exists on the market, the second one is the sale 
promotion applied to a new product which has to be introduced into the market.  

For the second case we have no proper historical data. To overcome this 
drawback, we can search for products which are similar to the new one, and use 
their historical data. Having these we may apply our methodology.  

We consider now the case of forecasting the demand of an existing product on the 
market, for which we have earlier data registered, during the sale periods of the 
same length. We associate a random variable iX  to the daily consumption 

registered at the end of each day. We can define a random vector  dXX ,,1 X , 

where d is the length of the sales period expressed in days.  

At the end of the i  th day, 1,,1  di   we have to decide on the quantity of 

product to place on the shelves. For this we have to forecast the consumption of 
day 1i based on the consumption of the first i  days. Based on the forecasted 
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consumption we make sequential decisions on the quantity which have to be 
displayed. 

We regard now the problem of forecasting the consumption of the 1i  th day. 

We consider the random vector:  11 ,,  iXX X  which is a margin of the 

random vector  dXX ,,1 X . 

The main idea behind our method is that we use 1, 2, 3 (rarely 4) out of the 
previous days to forecast the consumption of day 1i . We emphasize here that 

we do not use necessarily the days i, i-1, i-2. Instead we will choose those days 
from all previous days which minimize the uncertainty of the day i+1. 

For this task, we use the following informational theoretical concepts. 

The uncertainty amount of a random vector can be quantified by its entropy. The 
entropy does not depend on the values of the random vector; it depends only on 
the probabilities with which the different values are taken on. 

The concept of entropy has its roots back in 1854 in a memoir of Rudolph 
Clausius. However, in this paper we will use the expression given by Claude 
Shannon published in his famous paper [10]. More general definitions for entropy 
were also given by Rényi [9]. 

We introduce the reader into some information theoretical concepts, which have to 
be reminded for the understanding of our method. The interested reader can find 
more details about these concepts in [2]. 

In the present work, we use the following formula for entropy, which is related to 
a random vector with m realizations. If i represents the range of the variable iX  

then the range of X  is a subset of i

d

i


1

 

  



m

k

kk ppH
1

lnX   

where m  indicates the number of all distinct realizations of the random vector X 

and kp  denotes the probability of the k th realization of the random vector X (the 

ordering of the realization has no importance, but is fixed). 

In order to quantify how much the uncertainty of a given random variable is 
reduced by knowing the values taken on by the other random variables we use the 
concept of conditional entropy denoted by  iViXH X| , where we use the 

notation iV X for the random vector of all random variables with indices in V 

except iX .  
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For a better understanding of the concept of conditional entropy we first define the 

following random variables. Let us fix Vi and an arbitrary realization k

iV x  of 

iV X . The conditional random variable denoted by k

iViX x|  takes on the values 

jix  by probabilities   :,,1, s

k

iViViix
ijxXPp

j
k

iVji

 


xX
x

 

k

iViX x| : 














k

iVsi
k

iVji
k

iVi

sj

xxx

iii

ppp

xxx

xxx |||
1

1




. 

Here k

iV x  stands for the k th realization of the random vector .iV X  This way a 

conditional random variable k

iViX x|  is assigned to each realization k

iV 
x , 

iVmk  ,,1 . We take now their entropies denoted by  k

iViXh x| , 

iVmk  ,,1  and define a new random variable as follows. 

       













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Vm

iV

k
iViV

V

ppp

XhXhXh
Xh

m

iVi

k

iViiVi
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, 

where   .,,1, iV

k

iViV mkPp k
iV

 


xX
x

 

Finally, we arrive to the definition of conditional entropy  iViXH X|  that is 

defined as the expected value of  iViXh X|
~

. 

From these it can be seen, that the conditional entropy  iViXH X|  quantifies the 

amount of the uncertainty of iX  when there are given the realizations of iVX  . As 

the smaller the conditional entropy is the better we can reduce the uncertainty of 

iX  by knowing realizations of iV X . 

This leads to the introduction of the concept of mutual information  iViXI X, , 

which is defined as the following difference: 

      iViiiVi XHXHXI   XX |, . 

3.2 The Central Idea of our Method 

The main idea of our method is the way we decide on the quantity which has to be 
placed on shelves next day. The decision is based on the consumptions registered 
in few previous days. These days are chosen in such a way that these minimize the 
conditional entropy of the next day’s consumption. This is equivalent with 
maximizing the information gain. 
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Since the sales period is relatively short, one or two weeks long, we use only one, 
two or three previous days in forecasting. 

From a theoretical point of view taking more than three days leads to over fitting 
and poor generalization of the model.  

3.3 The Consumption Forecasting Algorithm 

Based on the historical data we have the joint empirical probability distribution of 
the random vector  dXX ,,1 X , where the random variables diX i ,,1,   

represent the daily consumptions. 

We introduce the following notations. 

The realized consumption of the i th day in the actual sales period is denoted by 

iC . Forecasting the consumption of the i+1 th day means choosing one of the 

possible realizations of the random variable 1iX  in a certain way. Let 

11 ,,1   i

k

i skQ   denote the possible values of 1iX . The forecasted 

consumption of the i+1 th day is denoted by 1iQ . 

We introduce the following notations: 

 kk XX ,,1  ,  

  mlXXXX kmlmlk  ,,|,2  

  nmlXXXXXX knmlnmlk  ,,,|,,3  

 In the first day we usually consider the mean value of 1X  as forecasted 

consumption. This will be the quantity 1Q . 

  In the second day we can use the registered consumption 1C  of the first 

day and forecast the second day consumption by the following 
maximization: 

 1122
,,1

2 |maxarg
2

CXQXPQ
k

sk


 

 

 From i=3 to n  

Step 1: Choose a number 
f  from 1 to 3, this is the number of the 

previous days used in the forecast – this decision can be made by 
interacting with the user. 

Step2. The selection of the informative variables: 
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if 1
f ,  li

X
l XXHX

il

|minarg 1


   

if 2
f ,   

 
 mli

XX
ml XXXHXX

iml

,|minarg, 1
, 2




   

if 3
f ,   

 
 nmli

XXX
nml XXXXHXXX

inml

,,|minarg,, 1
,, 3




   

Step 3. The forecast of the consumption of day i+1: 

 



 



CX|maxarg 11
,,1

1
1

k

ii
sk

i QXPQ
i

. 

Here the notation   CX stands for 

 ll CX  , if 1
f  ,   

mmll CXCX   , , if 2
f ,   

nnmmll CXCXCX   ,, , if 2
f . 

The algorithm was implemented in such a way that the user can make interactive 
decisions when the code is running. In Step 1 the user can specify, based on the 
value of conditional entropies, how many previous days should be taken into 
account in the forecast. 

In Step 3 two, three or four dimensional marginal probability distributions are 
used, depending on conditioning one, two or three earlier days consumptions. We 
may face to the following problems: 

a) 1iX takes on more values with the same probability. In this case, we take 

their mean value as forecast. 

b) In the marginal probability distribution of the historical data never occurs 

the realization   CX . We overcome this problem by using lower marginals.  

For example, it may happen that the probability  

 nnmmll

k

ii CXCXCXQXP  
 ,,|11  

cannot be calculated since  the conditioning realization did not occur in the 
historical data. For these cases we have to apply a forecasting scheme which is 
based on lower marginal probability distributions.  

Let us denote by r the dimension of the largest marginal probability distribution of 
X  with the property that the corresponding conditioning set occurs with positive 

probability. 

If the conditioning set contains 3 variables, r can be 2 or 1.  
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For illustration let us suppose that r=2. In this case at least one of the following 
cases occurs. There exists at least one k such that 

  0,|11  
 mmll

k

ii CXCXQXP ,     (5) 

or 

  0,|11  
 nnll

k

ii CXCXQXP ,      (6) 

or 

  0,|11  
 nnmm

k

ii CXCXQXP .     (7) 

Let us denote by r

X i
P

1
the sum of the above nonzero probabilities for all 

1,...,1  isk . 

For each k we calculate a probability k
iQ

p
1
 as the sum of nonzero probabilities of 

(5)-(7) for which k

ii QX 11    is taken on, divided by r

X i
P

1
. Using these we define 

the following random variable. 
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The forecasted consumption of the i+1 th day is k
i

i
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sk

i pQ
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. 

3.4 Decision Making Procedure 

Let us suppose that we decided on the amounts of goods to be placed on shelves in 
the first i  days. We have to decide on the amount of goods to be placed on the 
shelves in the morning of the 1i  th day, based on the forecasted consumption. We 

want the end-of-day amount on display to be equal to the arithmetic mean of the 
prescribed lower and upper levels. If 1iz  denotes the quantity of the line to be 

placed on the shelves at the beginning of the 1i  th day its value have to fulfill the 

following equality: 

,
2

11
11110




 
 ii

iiii

ba
QzCCzzV      (8) 

where 0V  is the starting amount of line on the shelves at the beginning of the sale; 

izz ,,1   are the decisions applied in the first i  days; iCC ,,1   are the realized 

random consumptions in the first i  days; 1iQ  is the forecasted consumption in 

the 1i  th day, and 11,  ii ba  are the prescribed lower resp. upper bounds on the 

amount of goods placed on display at the end of the 1i  th day. 
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Solving the equation (8) we get for the optimal decision: 

   1110
11

1
2




 


 iii
ii

i QCCzzV
ba

z  . 

3.5 Data Preprocessing 

In the practical application of our model the following problem may appear which 
have to be solved before running the algorithm. 

The problem is caused by the relatively small learning data set, and the relatively 
large range of values which are taken on by each random variable. Therefore we 
decided to group the values into intervals. Based on the historical data the range of 
the consumption for each day was divided into 4 intervals as follows.  

For each day there was calculated the minimum consumption, maximum 
consumption, mean value and standard deviation. These divide the range into four 
intervals. The intervals were delimited by the minimum consumption, the mean 
value minus the standard deviation, the mean value, the mean value plus the 
standard deviation and the maximum consumption. Each interval was 
characterized by the mean value calculated from the historical data. 

First we forecasted an interval then on the basis of this we accepted the mean 
value assigned to this interval as forecast for the consumption. 

3.6 Application of the Algorithm 

Our dynamic decision making algorithm has been applied to the real-life data set 
of a 14 day sales period. We got observed data for 46 sales periods. Data of 
randomly selected 40 sales periods was used as learning data set and data of the 
remaining 6 sales periods was used as testing data set. In Table 1 there are given 
the mean values and the standard deviations of the daily consumptions and the 
prescribed lower resp. upper bounds for the amount of goods to be placed on the 
shelves. The runs of our dynamic control for the testing data sets can be seen on 
Figures 1-6. 

Table 1 

The mean values and standard deviations of the daily consumptions and the prescribed lower and upper 

bounds for the amount of goods to be placed on the shelves 

  Exp. val.  Std. dev. Lower bound Upper bound 

1 Friday 6.9500 3.5515 6 20 

2 Saturday 5.9000 3.7403 6 20 

3 Sunday 3.6000 3.3344 6 20 

4 Monday 3.2250 2.8328 6 18 
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5 Tuesday 3.9250 3.1816 5 18 

6 Wednesday 3.8250 3.2415 5 18 

7 Thursday 4.4500 3.9481 5 16 

8 Friday 3.5500 3.2734 5 16 

9 Saturday 3.1750 2.5709 5 16 

10 Sunday 2.3750 1.8904 5 14 

11 Monday 2.1000 1.7802 4 14 

12 Tuesday 3.2500 2.4469 4 14 

13 Wednesday 2.3250 1.9133 4 12 

14 Thursday 2.3250 1.9792 4 12 

 

Figure 1 

Run of the dynamic control for the first testing data set 

 

Figure 2 

Run of the dynamic control for the second testing data set 
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Figure 3 

Run of the dynamic control for the third testing data set 

 

 

 

Figure 4 

Run of the dynamic control for the fourth testing data set 
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Figure 5 

Run of the dynamic control for the fifth testing data set 

 

Figure 6 

Run of the dynamic control for the sixth testing data set 

4 Some Methods to Improve the Quality of the 
Registered Data and Ideas for Future Work 

One of the problems, which occurred, is that the registered consumption was 
messy, due the fact that there were days when at the end of the day the shelves 
were empty. In such cases the registered consumptions were considered as the 
quantities displayed at the beginning of these days. We recommend that in such 
cases the registered quantity should somehow indicate this fact, for example by 
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
iC , and this fact should be taken into account in the procedure of forecasting the 

future consumptions. 

Very often, the promotional sale for a given line, has effects on the demand of 
other goods. It would be important to investigate these effects and include them in 
the calculation. 

Conclusions 

We presented two new methods of dynamic forecasting for the consumptions 
within sales periods and a decision procedure based on the forecasted 
consumption and the prescribed levels. The first method can be applied in cases 
when the probability distribution of the random consumptions can be supposed to 
be normal, i.e. the standard deviation of the data is relatively small according to 
the mean value. 

The advantage of the second method is that it needs no hypothesis on the 
theoretical probability distribution, but for accurate forecasting, it needs a larger 
historical dataset. The dataset could be enlarged by other observed sales periods 
for similar items. 

Both methods presume that the sales periods were observed under equal market 
and advertising conditions. 
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1 Department of Informatics, GAMF: Faculty of Engineering and Computer Sci-

ence, John von Neumann University. Izsáki út 10, 6000 Kecskemét, Hungary.
2 EDF Research and Development, Department OSIRIS. 1, avenue du Général de
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Abstract: We solve probability maximization problems using an approximation scheme that

is analogous to the classic approach of p-efficient points, proposed by Prékopa to handle

chance constraints. But while p-efficient points yield an approximation of a level set of the

probabilistic function, we approximate the epigraph. The present scheme is easy to implement

and is immune to noise in gradient computation.

Keywords: stochastic programming; probabilistic constraints; applications.

1 Introduction

A probabilistic constraint is of the following type:

P(g(x,ξ )≤ 0)≥ p, (1)

where g : IRn × IRm → IRk is a mapping, ξ ∈ IRm a multivariate random vector with

associated probability measure P and p ∈ [0,1] a user defined safety level. When

k ≥ 1, the terminology joint probabilistic constraint is also frequently employed,

since we would like the random inequality system g(x,ξ ) ≤ 0 to hold with high-

enough probability.

We are interested in two general optimization problems associated with (1), namely

that of maximizing the probability function and a classic problem of optimizing
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under constraint (1). These appear under the following form:

max P(g(x,ξ )≤ 0) subject to x ∈ X , and (2)

min cT x subject to P(g(x,ξ )≤ 0)≥ p, x ∈ X , (3)

where X is a convex compact set. In many applications X is a polyhedral set

X = {x ∈ IRn : Ax ≤ b}. We will make the assumption that g is jointly-quasi con-

cave and that ξ admits a density (with respect to the Lebesgue-measure) disposing

of generalized concavity properties as well. Under these assumptions the mapping

x 7→ φ(x) := P(g(x,ξ ) ≤ 0) also disposes of generalized concavity properties. In

particular problems (2) and (3) are convex optimization problems under these as-

sumptions.

In the present paper we will deal with the special case when g(x,ξ ) = ξ −T x. Then

the problems (2) and (3) become the following:

max P(T x ≥ ξ ) subject to Ax ≤ b, (4)

and the probabilistic constrained problem

min cT x subject to P(T x ≥ ξ )≥ p, Ax ≤ b, (5)

where the decision vector is x. Given are the matrices A,T and the vectors b,c, of

corresponding sizes. The probability 1 > p > 0 is set, and the distribution of the

random vector ξ is known. We assume that the feasible domains are not empty and

are bounded. We assume that ξ has a continuous, logconcave distribution. It follows

that the cumulative distribution function F(z) = P(z ≥ ξ ) is logconcave.

Probabilistic constraints arise in many applications such as water management, tele-

communications, electricity network expansion, mineral blending, chemical en-

gineering etc. (e.g., [21, 41, 52, 53, 55, 69, 76, 78]). With the advance of info-

communication technologies, new areas of application are emerging, e.g., smart

grids and transportation systems.

For an overview of recent theory and algorithmic treatment of probabilistic con-

straints we refer to [9,49,50]. Other monographs dealing (partially) with probabilis-

tic constraints are [8,26,38] and [37], where the latter focussed more on algorithms.

A brief history of methods for solving probabilistically constrained problems

Programming under probabilistic constraints as a decision model under uncertainty,

has been introduced by [7]. In this paper the authors use the term chance constrained

programming for this model and its variants as well as extensions presented, among

others, in the paper [6]. However these early chance constrained models were based

on individual chance constraints, i.e., instead of a constraint of the type in problem

(3), the following type constraints were used: P(gi(x,ξ ) ≤ 0) ≥ pi, i = 1, . . . ,k.
Programming under probabilistic constraint with a random right hand side vector ξ
(as it stands in problem (5)), having stochastically independent components , was

first considered by [39]. The more general problem (3), where ξ is allowed to

have stochastically dependent components, was introduced by Prékopa [44, 46] and
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further investigated by him and his followers. A significant step for the numerical

treatment of probabilistic constraints was laid out when convexity statements based

on the theory of logconcave measures were developed by Prékopa [45,47] and later

generalized by [3, 4, 63]. Recent advances in convexity statements for probabilistic

constraints are based on eventual convexity and can be found in [23, 24, 70]

In [52], Prékopa and co-authors developed a model (STABIL) for a planning prob-

lem in the Hungarian electrical energy sector, which is of the form (5). The resulting

stochastic programming problem is solved by a feasible direction method of Zou-

tendijk [81]. It should be noted however that Zoutendijk’s method lacks the global

convergence property as shown in [64]. We refer to the discussion in [40] for further

information.

Cutting-plane methods were also developed for the probabilistic constrained prob-

lem, approximating the level set M(p) := {x ∈ IRn : P(g(x,ξ ) ≤ 0) ≥ p}. The

method of Prékopa and Szántai [53] applies a Slater point to determine where to

construct the next cut. (Namely, the intersection of the boundary of M(p) on the

one hand, and the interval connecting the Slater point with the current iterate on

the other hand.) The method is related to that of Veinott [79]. In his solver built

for the STABIL problem, Szántai [61] developed a careful interval bisection algo-

rithm for safely computing the intersection point on the boundary of M(p) when the

probability values defining the probability constraints cannot be calculated with ar-

bitrary high precision. He also applied Veinott’s technique of moving the Slater

point in course of the solution process, which results in faster convergence and

makes the supporting hyperplane method equivalent to a method of Zoutendijk [81].

Mayer [37] proposed a central cutting plane method, an adaptation of Elzinga and

Moore [13]. Cutting-plane methods converge in less iterations than feasible di-

rection methods do, since former gradient information is retained. These methods

obviously require that one is able to compute the gradient of φ(x) := P(g(x,ξ )≤ 0)
efficiently. Identifying conditions under which φ is differentiable has lead to the de-

velopment of two main research directions. The first direction exploits no specific

knowledge of ξ or its underlying distribution, but only differentiability properties

of its density and differentiability of g. Then under several additional assumptions,

including the assumption that B(x) := {z ∈ IRm : g(x,z)≤ 0} is bounded in a neigh-

bourhood of x, one can represent the gradient of φ as an integral over B(x) and/or its

boundary ∂B(x). We refer to [35,36,65–67] and the references contained therein for

more on this research direction. We note here, that the condition that B(x) remains

bounded around a point x rules out the study of distribution functions. The second

research direction exploits specific knowledge of the underlying distribution of ξ
and tries to build a link between any component of the gradient of φ and the evalu-

ation of a quantity akin to φ . This direction was explored in [22, 44, 54, 60, 73–75].

When combined with sophisticated software such as for instance Genz’ code [17,19]

for multivariate normal distributions, high dimensional problems can be solved with

significant efficiency (e.g., a case with k = 168 is examined in [72]).

In the supporting hyperplane method, the inaccuracy of evaluating φ needs to be

taken into account when computing the intersection point on the boundary of M(p).
We refer to [1] for such an approach. Still inaccuracy of ∇φ may result in a cut
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cutting into the level set M(p). This leads to the development of the notion of upper-

oracle in [77] and specialized proximal ( [77]) and level ( [72]) bundle methods for

probabilistically constrained problems with underlying convexity structure.

A non-standard dual formulation for problems of type (5) was proposed by Komáromi

[27, 28]. This is a max-min formulation, the inner problem being minimization of

a linear function over the level set M(p). For the solution of the dual problem, a

special feasible direction method is developed in [27].

We are going to focus on p-efficient point approaches. Other recent algorithmic

approaches for probabilistically constrained programming are the penalty approach

[14], scenario approximation [5], convex approximation [42], sample average ap-

proximation and integer programming [31–33,43], binarization approaches [29,30].

On p-efficient point approaches

When the mapping g is of the form g(x,z) := z− h(x), the probabilistic constraint

is said to be separable and properties of φ(x) = P(g(x,ξ ) ≤ 0) := Fξ (h(x)) re-

late directly to that of the multivariate distribution function Fξ . In this setting,

Prékopa [48] initiated a new solution approach by introducing the concept of p-

efficient points. A point z is p-efficient if and only if Fξ (z) ≥ p and there exists no

z′ such that z′ ≤ z, z′ 6= z, Fξ (z
′)≥ p. Prékopa, Vizvári, and Badics [56] employ this

concept in the solution of problems of the type (5), where the random parameters

have a discrete finite distribution. They first enumerate all the p-efficient points,

and based on these, propose a convex relaxation of the problem. The relaxed prob-

abilistic constraint prescribes the existence of a point z in the convex hull of the

p-efficient points such that h(x) ≥ z holds. The relaxed problem is then solved by

a cutting-plane method. In essence, the cuts generated correspond to facets of the

convex hull of the p-efficient points.

Prékopa [51] considers a problem equivalent to (5), where the random vector has

a continuous logconcave distribution. He combines the cutting-plane method of

[56] with the supporting hyperplane method of Szántai [61]. The resulting hybrid

method simultaneously constructs inner and outer approximations of the level set

M(p). The supporting hyperplane method is used to generate p-efficient points in

the course of the solution process. (More general stochastic programming models

are also proposed in [51], but in the present paper we restrict ourselves to simpler

formulations.)

Dentcheva, Prékopa, and Ruszczyński [12] consider problems of type (5), where the

random parameters are integer valued. They prove that the probabilistic constraint

is essentially convex, in case the random parameters have an r-concave distribution.

The probabilistic constraint is formulated in a split form: h(x)≥ z, where z belongs

to (a discrete version of) the level set M(p). These authors construct a Lagrangian

dual by relaxing the constraint h(x) ≥ z, and observe that the dual functional splits

into the sum of two functionals. The addend functionals are the respective opti-

mal objective value functions of two simpler problems. The first auxiliary problem

is a linear programming problem, and the second auxiliary problem is about min-

imizing a linear function over (a discrete version of) the level set M(p). Once the
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dual problem is solved, a primal optimal solution can be constructed, though tech-

nical problems may occur and need to be overcome. These authors also develop

a new specialized method which separates the generation of p-efficient points and

the solution of the approximate problem based on known p-efficient points. The

new method, called cone generation, employs the time-honoured concept of column

generation. The inherent link with integer programming is given in [80].

Dentcheva, Lai, and Ruszczyński [10] extend these results to general convex prob-

lems, and general (r-concave) distributions. The probabilistic constraint is formu-

lated in a split form, and the Lagrangian dual is constructed by relaxing the con-

straint h(x) ≥ z. The dual functional splits into the sum of two functionals, like

in the special case discussed in [12]. The first auxiliary problem, however, is a

well-structured convex programming problem, instead of the linear programming

problem of [12]. The difficult part is still the second auxiliary problem, minimizing

a linear function over M(p). These authors develop a dual method, and propose

a way of recovering a primal solution. Moreover, they extend the cone generation

method to a general primal-dual method.

Dentcheva and Martinez [11] developed a regularized version of the dual method

of [10]. Moreover they developed a progressive augmented Lagrangian method that

is a primal-dual-type method. The latter method turns out to be more efficient as it

requires the solution of fewer minimization problems over the level set M(p).

A solution framework that includes and extends various existing formulations was

developed by Van Ackooij, Berge, de Oliveira and Sagastizábal [71].

Contribution

In the present paper, we construct polyhedral approximations of the epigraphs of

the probabilistic functions in problems (4) and (5). This is analogous to the use of

p-efficient points. But while p-efficient points yield an approximation of a level set,

we approximate the epigraph. We formulate dual problems that are analogous to

those of [12,27], and [10]. The present scheme yields very convenient duals, simple

formulations using conjugate functions.

The solution approaches proposed in [12] and [10] can be adapted to the present

approximation scheme and dual formulations. Finding a new approximation point

in the present scheme is easier than finding a p-efficient point in the schemes of [12]

or [10]. – In the latter schemes, finding a p-efficient point amounts to minimization

over the level set M(p). In the present scheme, an approximation point is found by

unconstrained minimization.

The present simple models and methods expose an important contrast between col-

umn generation methods and direct cutting-plane methods. Direct cutting-plane

methods for probabilistic functions are difficult to implement due to noisy gradient

computation. A practicable implementation requires sophisticated tolerance han-

dling. In contrast, the column generation approach is immune to noise in gradient

computation.
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2 Problem and model formulation

Using the distribution function F(z), let φ(z) =− logF(z). Of course it is a convex

function, due to the logconcavity of F(z). Taking into account the monotonicity of

the distribution function, Problem (4) can be written as

min φ(z) subject to Ax−b ≤ 0, z−T x ≤ 0. (6)

This problem has an optimal solution, due to our assumption that the feasible do-

main of (4) is not empty and is bounded. Introducing non-positive multiplier vectors

y,u to the respective constraints, we formulate the Lagrangian relaxation of (6):

inf
x,z

{ φ(z)− yT (Ax−b)−uT (z−T x) }

= inf
z
{φ(z)−uT z} + inf

x
(−yT A+uT T )x + yT b.

The first addend is by definition −φ ⋆(u), where φ ⋆ is the convex conjugate of φ .

The second addend is finite iff −yT A+uT T = 0T . Hence the Lagrangian dual of (6)

can be written as

max
y,u≤0

{yT b−φ ⋆(u)} subject to − yT A+uT T = 0T . (7)

According to the theory of convex duality, this problem has an optimal solution,

since the primal problem (6) has an optimal solution.

Concerning the probabilistic constraint, let π =− log p. We formulate (5) as

min cT x subject to Ax−b ≤ 0, z−T x ≤ 0, φ(z)−π ≤ 0. (8)

This problem has an optimal solution, due to our assumption that the feasible do-

main of (5) is not empty and is bounded. Introducing the multiplier vectors −y ≥
0, −u ≥ 0, ν ≥ 0 to the respective constraints, we formulate the Lagrangian relax-

ation of (8):

inf
x,z

{ cT x− yT (Ax−b)−uT (z−T x)+ν (φ(z)−π) }

= inf
z
{νφ(z)−uT z} + inf

x
(cT − yT A+uT T )x + yT b−νπ.

The first addend is by definition −(νφ)⋆(u). The second addend is finite iff cT =
yT A−uT T . Hence the Lagrangian dual of (8) can be written as

max
{

yT b−νπ − (νφ)⋆(u)
}

subject to y,u ≤ 0, ν ≥ 0, cT = yT A−uT T. (9)

Remark. The function (ν ,u) 7→ (νφ)⋆(u) = supz {uT z−νφ(z)} is convex by defini-

tion, and given (ν̂ , û) in the effective domain, a gradient can be computed by finding

the optimal z.

In this paper we focus on unconstrained problems. The proposed algorithms can be

extended to the constrained case.
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Polyhedral models

Suppose we evaluated the function φ(z) in the points zi (i = 0,1, . . . ,k). These

result the function φk(z), an inner approximation (polyhedral convex upper approx-

imation) of φ(z), in the usual way: given z, let

φk(z) = min
k

∑
i=0

λiφ(zi) such that λi ≥ 0,
k

∑
i=0

λi = 1,
k

∑
i=0

λizi = z. (10)

If z 6∈ Conv(z0, . . . ,zk), then we have φk(z) = +∞ by definition.

The following problem is the current polyhedral model of (6):

min φk(z) subject to Ax−b ≤ 0, z−T x ≤ 0. (11)

We assume that (11) is feasible, i.e., its optimum is < +∞. This can be ensured by

the selction of the vectors z0, . . . ,zk. The convex conjugate of φk can be computed

by taking into account a finite set only, hence

φ ⋆
k (u) = max

0≤i≤k
{uT zi −φ(zi)}. (12)

– The above observation is in accordance with Chapter X Section 3.4 of Hiriart-

Urruty and Lemaréchal [25]. – Of course −φ ⋆
k is a cutting-plane approximation

(polyhedral concave upper approximation) of −φ ⋆. Hence the following problem is

a cutting-plane model of (7):

max
y,u≤0

{yT b−φ ⋆
k (u)} subject to − yT A+uT T = 0T . (13)

It is easy to check that (11) and (13), considered as linear programming problems,

form a primal-dual pair. We are going to examine the primal problem.

Linear programming formulation

Introducing the notation φi = φ(zi) (i= 0, . . . ,k), the primal model problem (11) can

be formulated as follows. – Dual variables corresponding to the different constraints

are indicated in the right-hand column.

min
k

∑
i=0

φiλi

such that λi ≥ 0 (i = 0, . . . ,k),

k

∑
i=0

λi = 1, ⊥ ϑ ∈ IR

k

∑
i=0

λizi −T x ≤ 0, ⊥ u ≤ 0

Ax ≤ b. ⊥ y ≤ 0

(14)
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Let us assume that the primal model problem (14) has a feasible solution. Let

(λ 0, . . . ,λ k, x) and (ϑ , u, y) denote an optimal solution and an optimal dual so-

lution, respectively – both existing due to our assumption. Let moreover

z =
k

∑
i=0

λ izi. (15)

Observation 1. We have φk(z) =
k

∑
i=0

φiλ i = ϑ +uT z.

Proof. The first equality follows from the equivalence of (14) on the one hand, and

(10)-(11) on the other hand.

The second inequality is a consequence of complementarity. λ i > 0 implies that the

reduced cost of the ith column is 0 in (14), hence ϑ +uT zi = φi. It follows that

k

∑
i=0

φiλ i =
k

∑
i=0

(
ϑ +uT zi

)
λ i = ϑ

k

∑
i=0

λ i + uT
k

∑
i=0

λ izi.

3 Column generation

We solve (6) by iteratively adding improving columns to the primal model (14). An

optimal dual solution (i.e., shadow price vector) of the current model problem is

(ϑ , u, y).

Given a vector z, we can add the corresponding column (1,z,0) with objective com-

ponent φ(z). This is an impoving column if its reduced cost is positive; formally, if

ρ(z)> 0 holds for

ρ(z) :=
(
ϑ ,u

)T
(1,z)−φ(z) = ϑ + uT z−φ(z). (16)

The vector yielding the best reduced cost can be found by maximizing ρ(z). Let R

denote the optimal objective value.

If R is small, then (x,z) is a near-optimal solution to (6). Otherwise an improving

column can be constructed to (14).

A practical way of finding an improving column

In order to maximize the reduced cost, we can apply a steepest descent method to

−ρ(z), a natural starting point being z. However, we found the computational effort

prohibitive. Hence we propose to perform just a single line search. As theoretical

motivation, we put forward the following well-known theorem. (It can be found

in [34] or [57].)

Theorem 1. Let the convex function f : IRn → IR be twice continuously differen-

tiable. Assume that

αI � ∇2 f (z)� ωI (z ∈ IRn), (17)
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where 0 < α ≤ ω, I is the identity matrix, and the relation U �V between matrices

means that V −U is positive semidefinite. We minimize f using a steepest descent

method, starting from a point z0. Let z1, . . . ,z j, . . . denote the iterates obtained by

applying exact line search at each step. Denoting F = minz f (z), we have

f
(
z j
)
−F ≤

(
1−

α

ω

) j [
f
(
z0
)
−F

]
. (18)

Remark. Similar results can be proven for the case when approximate minimizers

are found in the line search procedures. See a discussion on Armijo’s rule in [34].

Corollary. Provided Theorem 1 is applicable to f (z) =−ρ(z), we can construct a

fairly good improving vector in the column generation scheme. Namely, let β (0 <
β ≪ 1) be given. Taking a finite (and moderate) number of steps with the steepest

descent method, we find a vector ẑ satisfying

ρ (ẑ) ≥ (1−β ) R .

Proof. Substituting f (z) = −ρ(z) and z0 = z in (18), and introducing the notation

ρ = 1−α/ω , we get

R −ρ
(
z j
)
≤ ρ j

[
R −ρ (z)

]
. (19)

(We have F =−R by definition.) From φk(.)≥ φ(.) and Observation 1, we get

ρ (z) = ϑ + uT z−φ (z) ≥ ϑ + uT z−φk (z) = 0

Due to non-negativity, ρ (z) can be discarded in (19), and we get

ρ
(
z j
)
≥

(
1−ρ j

)
R .

Selecting j such that ρ j ≤ β yields an appropriate ẑ = z j.

Setting j = 1 always resulted in a good improving vector in our computational ex-

periments. The above discussion is only meant as motivation for performing a single

line search, showing that the procedure works in an ideal case. The condition (17)

obviously does not hold for every z with f (z) = −ρ(z). However, in the case of

normal distribution, there exists a bounded box Z such that the probability weight

outside Z can be ignored. For the sake of simplicity let us assume that the polyhe-

dron T = {T x|Ax ≤ b} is bounded, and that T ⊂ Z. Then we’ll always have z ∈ Z,

provided the primal model (14) has been properly initialized. Starting from z ∈ Z,

we perform a single line search. Due to special characteristics of the function φ(z)
and due to u ≤ 0 being boundable, this line search can be restricted to a bounded

neighborhood of Z. Such restriction would justify assumption (17). However, we

implemented a simple approximate line search without restriction, and still found

that iterates fell into a relatively small box.

4 Implementation issues

For the implementation of our method and computational study we used MATLAB

with the IBM ILOG CPLEX (Version 12.6.3) optimization toolbox.
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The master problem

We assume that the distribution is standard normal. Let r denote the number of the

components of the random vector (equal to the number of the rows of the matrix T ).

First we look for an appropriate z0 ∈ IRr vector whose inclusion makes the primal

model problem (14) feasible. This is done by solving the problem

max t

such that 1t −T x ≤ 0,

Ax ≤ b,

(20)

where t ∈ IR, and 1 ∈ IRr denotes a vector consisting of ones. If (20) has no feasible

solution then the original problem is also infeasible. On the other hand, if the objec-

tive value is not bounded then probability 1 can be achieved in the original problem.

Let z0 = 1t⋆, with t⋆ denoting an optimal solution of (20).

Let Z ⊂ IRr denote a bounded box such that the probability weight outside Z can

be ignored. In our case the distribution is standard normal, hence we consider an

r-dimensional box Z that it is symmetrical with respect to the origo. In our experi-

ments we worked with a box such that P(Z)≈ 0.99.

Let zmax = (zmax
1 , . . . ,zmax

r ) denote maximal vertex of Z. To ease the solution of the

primal model problem (14), we initialize it by adding the following vectors (besides

z0, above)

zℓ =
(

zmax
1 , . . . ,zmax

ℓ−1, 0, zmax
ℓ+1, . . . ,z

max
r

)
(ℓ= 1, . . . ,r),

zr+1 = 0,

zr+2 = zmax.

(21)

Consequently we have k = r+2 in (14).

We solved the master problem with the CPLEX simplex solver, applying the opti-

mality tolerance 1E −4.

The oracle

In accordance with Section 3, our aim is to maximize the reduced cost (16). Since

ϑ is constant in a given iteration the oracle has to find an approximate solution to

the problem maxz {uT z−φ(z)}. This problem can be reformulated as minimizing

the function φ(z)− uT z. Here φ(z) = − logF(z) and F(z) is the multidimensional

normal distribution function. φ(z) is a convex function, due to the logconcavity

of F(z). We implemented the approximate form of the steepest descent method

described in Section 3. We perform a single line search ( j = 1) and even in this

single line search, we stop with an approximate minimum. Namely, we apply the

golden section ratio, see, e.g. [34]. We perform only 1 or 2 golden section ratio

steps.
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The steepest descent direction can be found by calculating the gradient vector of the

function:

∇
(
φ(z)−uT z

)
= ∇φ(z)−u =−∇ log

(
F(z)

)
−u =−

∇F(z)

F(z)
−u. (22)

Consequently we need to calculate the function value and gradient vector of the

multidimensional normal distribution function F(z). For this computation we use

the formulas in section 6.6.4 of Prékopa’s book [49]. By using these formulas the

calculation of the gradient of a multidimensional probability distribution function

can be reduced to computing conditional distribution function values.

The numerical computation of multivariate normal distribution values was performed

with the QSIMVNV Matlab function implemented by Genz [18].

5 Computational study

Before describing test problems and discussing computational results, let us illus-

trate condition (17) with a small example.

Preliminary examinations

We illustrate the well-conditioned nature of the objective in case of a two-dimensional

standard normal distribution with moderately dependent marginals (covariance 0.5).

Figure 1

Smaller eigenvalue of the Hessian ∇2φ(z)
(−6 ≤ z1,z2 ≤+6)

We depict the eigenvalues of the Hessian matrix of φ(z) =− logF(z), where F(z) is

the distribution function. We calculated the smaller and the larger of the two eigen-

values of the Hessian, while both components of z fall into the interval [−6,+6].
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Figure 2

Larger eigenvalue of the Hessian ∇2φ(z)
(−6 ≤ z1,z2 ≤+6)

Figure 1 depicts the smaller eigenvalue. Contour lines from top right are 1e−5,1e−
4,1e− 3,1e− 2. In the area not filled with gray, the smaller eigenvalue is above

1e−5.

Figure 2 depicts the larger eigenvalue. Contour lines from top right are 1,1.2,1.4,1.6.

In the area not filled with gray, the larger eigenvalue is below 1.6.

These experiments illustrate that there is a fairly large safe domain over which φ(z)
is well-conditioned.

Test problems

First we considered eight test problems published in [62] by T. Szántai. These prob-

lems occur at a coffee company. The company is marketing three different blends

of coffee. There is a rigid set of requirements for each of the blends according their

acidity, caffeine content, liquoring value, hardness and aroma. On the first day of a

particular month the company found that its available supply of green coffees was

limited to 8 different types. These green coffees vary according to price, quantity

available and the above mentioned five taste characteristics. The demands for the

company’s 3 blends during the coming month are random variables with given ex-

pected values, standard deviations and correlation coefficients. The company is con-

fronted with the problem of determining an optimum combination of avaliable green

coffees for next month’s roasting operation. So they have to formulate a stochastic

programming problem to satisfy all of the random demands with a prescribed (high)

probability and pay the smallest possible price for the green coffees. All data and

numerical results according to probability level 0.9 can be found in the paper [62].

In this paper we will call these problems ’Coffee1’, ..., ’Coffee8’.

Secondly we considered an extended version of the coffee blending problem. In

this extension the company is marketing five different blends of coffees and so the
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multivariate normal probability distribution is five dimensional. This problem will

be called ’Coffee9’ in this paper.

Finally we considered a cash matching problem with fifteen dimensional normal

probability distribution. In this problem we are interested in investing a certain

amount of cash on behalf of a pension fund that needs to make certain payments

over the coming 15 years of time. Details of this problem can be found in [10]

and [20]. This problem will be called ’CashMatching’ in this paper.

Numerical results

We solved each test problem with different right-hand sides of the cost constraint.

Our computational results are reported in Figures 3 - 5.

Our test problems had originally been formulated as cost minimization under a prob-

abilistic constraint. We converted the problems to probability maximization. The

right hand-sides of the cost constraints had been set in such a way that the corre-

sponding optimal probability levels would be those listed in the column ’prescribed

probability level’ of our tables. For these computations we used Szántai’s computer

code [61].

Figure 3

Computational results for problems ’Coffee1’, ..., ’Coffee4’
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Figure 4

Computational results for problems ’Coffee5’, ..., ’Coffee8’

We solved each problem with two settings of the oracle, performing either 1 or 2

Golden Section Ratio (GSR) steps in course of each line search. – The correspond-

ing data are shown under the headers ’1 GSR step per iter’ and ’2 GSR steps per

iter’. In each case, we list the number of calls to the Genz subroutine (under the

header ’Genz’), the number of oracle calls (under the header ’itNum’), and the op-

timum found (under the header ’p’).

In each case, most of the computation time was spent in the Genz subroutines. In

case of the ’Coffee’ problems, performing 2 GSR steps per iteration resulted in

slightly less calls to the Genz subroutine than 1 GSR step did. Interestingly, the

’CashMatching’ problem was solved significantly faster when performing a single

GSR step per iteration, instead of two steps. All these results indicate that approxi-

mate solution of the column generation problems is sufficient.

The ẑ vectors returned by the oracle always fell into a relatively small box, thereby

remaining in the safe domains where the respective objective functions are well-

conditioned.
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Figure 5

Computational results for problems ’Coffee9’ and ’CashMatching’

6 Conclusions

The proposed probability-maximization approach is based on a polyhedral approx-

imation of the epigraph of the probabilistic function. Finding a new approximation

point in the present scheme is easier than finding a p-efficient point in the classic

scheme of Dentcheva, Prékopa and Ruszczyński [12]. In the present scheme, an

approximation point is found by unconstrained optimization. In LP terms, this is a

column generation scheme where new columns are found by maximizing reduced

cost.

The inner approximating model of the epigraph is immune to noise in gradient

computation, in the following sense. Suppose that at iteration k, the next iterate

zk+1 is just a rough approximate solution of the relevant subproblem (reduced cost-

maximization). As long as φ(zk+1) is computed with reasonable accuracy, the model

remains a true inner approximation.

Our computational experiments indicate that rough approximate solution of the sub-

problems is sufficient for convergence. We also provide theoretical explanation of

this observation. – A randomized version of the present algorithm is proposed with

convergence proof in [15].
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[21] R. Henrion and A. Möller. Optimization of a continuous distillation pro-

cess under random inflow rate. Computer & Mathematics with Applications,

45:247–262, 2003.
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[44] A. Prékopa. On probabilistic constrained programming. In H.W. Kuhn, edi-

tor, Proceedings of the Princeton Symposium on Mathematical Programming,

pages 113–138. Princeton University Press, Princeton, New Jersey, 1970.
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NSV Teaduste Akademia Toimetised, Füüsika-Matemaatika, 28:17–24, 1977.

[64] D.M. Topkis and A.F. Veinott. On the convergence of some feasible direction

algorithms for nonlinear programming. SIAM Journal on Control, 5(2):268–

279, 1967.

[65] S. Uryas’ev. Derivatives of probability functions and integrals over sets given

by inequalities. Journal of Computational and Applied Mathematics, 56(1-

2):197–223, 1994.

[66] S. Uryas’ev. Derivatives of probability functions and some applications. An-

nals of Operations Research, 56:287–311, 1995.

[67] S. Uryas’ev. Derivatives of probability and Integral functions: General Theory

and Examples. Appearing in [16]. Springer - Verlag, 2nd edition, 2009.

[68] S. Uryas’ev (ed). Probabilistic Constrained Optimization: Methodology and

Applications. Kluwer Academic Publishers, 2000.

[69] W. van Ackooij. Decomposition approaches for block-structured chance-

constrained programs with application to hydro-thermal unit commitment.

Mathematical Methods of Operations Research, 80:227253, 2014.

[70] W. van Ackooij. Eventual convexity of chance constrained feasible sets.

Optimization (A Journal of Math. Programming and Operations Research),

64:1263–1284, 2015.

[71] W. van Ackooij, V. Berge, W. de Oliveira, and C. Sagastizábal. Probabilistic
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In multi-objective optimization problems several objective functions have to be minimized
simultaneously. In this work, we present a new computational method for the linearly con-
strained, convex multi-objective optimization problem. We propose some techniques to find
joint decreasing directions for both the unconstrained and the linearly constrained case as
well. Based on these results, we introduce a method using a subdivision technique to ap-
proximate the whole Pareto optimal set of the linearly constrained, convex multi-objective
optimization problem. Finally, we illustrate our algorithm by solving the Markowitz model
on real data.
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1 Introduction

In the literature of economics and finance the measure of risk has always been a very
interesting topic, and nowadays it may be even more important than ever. One of
the first idea to be taken into consideration is the risk in financial activities coming
from Markowitz [26], who developed his famous model, where the investors make
portfolios from different securities, and try to maximize their profit and minimize
their risk at the same time. In this model, the profit was linear and the risk was
defined as the variance of the securities. The Markowitz model can be formulated
as a linearly constrained optimization problem with two objective (linear profit and
quadratic risk) functions.

In the general case, the least risky portfolio is not the most profitable one; thus
we could not optimize the two objectives at the same time. Therefore, we need to
find portfolios, where one of the goals cannot be improved without worsening the
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other. This kind of solutions are called Pareto optimal or Pareto efficient solutions
discussed by Pareto [30].

Single Pareto optimal solution of the Markowitz model can be computed by scalar-
ization methods, see Luc [23] and Miettinen [28], where the weighted sum of the
objective functions, serving as a new objective function, defines a single quadratic
objective function. Therefore, after the scalarization of the Markowitz model, the
optimization problem simplifies to a quadratic optimization problem over linear
constraints [25]. The simplified problem’s optimal solution is a single Pareto op-
timal solution of the original problem. The effect of the weights of the objective
functions determine the computed Pareto efficient solution of the original problem.
The weights might have unpredictable effects on the computed Pareto efficient so-
lution in general. Weakness of this approach is that it restricts the Pareto efficient
solution set to a single element and it’s local neighborhood. In this way, we lose
some information, like how much extra profit can be gained by accepting a larger
risk. Finding - or at least approximating - the whole Pareto efficient solution set
of the original, multi-objective problem, may lead to a better understanding of the
modeled practical problem [27].

For some unconstrained multi-objective optimization problems there are research
papers [7, 8, 13, 34] discussing algorithms applicable for approximating the Pareto
efficient solution set. However, many multi-objective optimization problems - natu-
rally - have constraints [13,14]. A simple example for a constrained multi-objective
optimization problem is the earlier mentioned Markowitz model. In this paper, we
extend and generalize the algorithm of Dellnitz et al. [7] for approximating the
Pareto efficient set of a linearly constrained convex multi-objective problem. Fliege
and Svaiter [13] obtained some theoretical results, that are similar to our approach
for finding joint decreasing directions.

In the next section, most important definitions and results of vector optimization
problems are summarized. In the third section, we discuss some results about the
unconstrained vector optimization problem. The method called subdivision tech-
nique introduced by Dellnitz et al. [7, 8] was developed to approximate the Pareto
efficient solution set of an unconstrained vector optimization problems. The subdi-
vision method uses some results described in [34]. An important ingredient of all
methods, that can approximate the Pareto optimal set of a convex vector optimiza-
tion problem, is the computation of a joint decreasing direction for all objective
functions. We show that - using results from linear optimization - a joint decreasing
direction for an unconstrained vector optimization problem can be computed.

In the fourth section, the computation of a feasible joint decreasing direction for
linearly constrained convex vector optimization problem is discussed. The set of
feasible joint decreasing directions forms a finitely generated cone and can be com-
puted, as shown in Section 4. Interesting optimality conditions of Eichfelder and
Ha [10] for multi-objective optimization problems show some similarities to those
that are used in this paper during the computations of joint decreasing directions;
however their results do not have practical, algorithmic applications yet.

Section 5 contains an algorithm, which is a generalization of the subdivision method
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for the linearly constrained convex vector optimization problem. In Section 6, we
show some numerical results obtained on a real data set (securities from Budapest
Stock Exchange) for the Markowitz model.

Comparing our method presented in Section 5, with the subdivision algorithm of
Dellnitz et al. [7, 8], clearly, our method works for unconstrained vector optimiza-
tion problems (UVOP), like that of Dellnitz et al. [7, 8], but we generate different
joint decreasing directions. Furthermore, our method is applicable to vector op-
timization problems (VOP) with convex objective functions and linear constraints,
keeping all advantageous properties of subdivision algorithm of Dellnitz et al. [7,8].

For the (VOP) there are some sophisticated scalarization methods reported in [15].
This method, as scalarization methods in general, finds a single Pareto optimal solu-
tion. The scalarization method introduced by [15] defines a weighted optimization
problem (WOP) of (VOP) with fixed weights and a feasible solution set, that de-
pends on the current feasible vector x. Thus, in each iteration of the algorithm the
actual feasible solution set is restricted to such a subset of the original feasible so-
lution set, where some Pareto optimal solutions are located.

Subdivision techniques - including ours - find a cover set of the Pareto optimal
solution set, formed by boxes used in the subdivision procedure (see Sections 5 and
6). The approximation of the whole Pareto optimal solution set is controlled by
the diameter of the covering boxes computed in the subdivision procedure of the
algorithm.

Although both the scalarization algorithm of Gianessi et al. [15] and our subdivision
algorithm have some similarities (i.e., in each iteration the feasible solution set de-
creases), there are significant differences as well. The scalarization algorithm finds
a single Pareto optimal solution under some quite general assumptions, while the
subdivision algorithm approximates the whole Pareto optimal solution set for the
(VOP) with convex objective functions and linear constraints.

We use the following notations throughout the paper: scalars and indices are denoted
by lowercase Latin letters, column vectors by lowercase boldface Latin letters, ma-
trices by capital Latin letters, and finally sets by capital calligraphic letters.

The vector, with all 1 elements is denoted by e, i.e.

eT := (1,1, . . . ,1) ∈ R
n,

for some n ∈N, where T stands for the transpose of a (column) vector (or a matrix).
Vector ei ∈ R

n is the ith unit vector of the n dimensional Euclidean space.

2 Basic Definitions and Results in Vector Optimization

In this section, we discuss some notations, define the vector (or multi-objective)
optimization problem and the concept of Pareto optimal solutions. Furthermore, we
state two well known results of vector optimization, which are important for our
approach.
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We define the unit simplex set, as,

Definition 1. Let Sk denote the unit simplex in the k dimensional vector space,
and define it as follows:

Sk := {w ∈ R
k : eT w = 1, w ≥ 0}.

Let F ⊆ R
n be a set and F : F → R

k is a function defined as

F(x) = [ f1(x), f2(x), . . . , fk(x)]
T ,

where fi : F → R is a coordinate function for all i.

The general vector optimization problem (GVOP) can be formulated as

(GVOP) MIN F(x), subject to x ∈ F .

If the set F and the function F are convex, then (GVOP) is a convex vector opti-

mization problem. We assume that F is differentiable.

Usually, different objective functions of (GVOP) describe conflicting goals, there-
fore such x ∈ F , that minimize all objective functions at the same time, is unlikely
to exist. For this reason, the following definitions naturally extend the concept of an
optimal solution for (GVOP) settings.

Definition 2. Let (GVOP) be given. We say that x∗ ∈ F is a

1. weakly Pareto optimal solution of problem (GVOP) if there does not exist a
feasible solution x ∈ F which satisfies the vector inequality F(x)< F(x∗);

2. Pareto optimal solution if does not exist feasible solution x ∈ F which satis-
fies the vector inequality F(x)≤ F(x∗) and F(x) 6= F(x∗).

Furthermore, we call the set F ∗ ⊆ F a weakly Pareto optimal set if every x∗ ∈ F ∗

is a weakly Pareto optimal solution of the (GVOP).

Our goal is to approximate the whole Pareto optimal or weakly Pareto optimal so-
lution sets for different vector optimization problems. During the approximation
procedure of the whole Pareto optimal solution set, we compute many Pareto op-
timal solutions and produce an outer approximation of the whole Pareto optimal
solution set.

The literature contains several methods that, find one of the Pareto optimal solutions,
see [9, 23, 28], but sometimes it is interesting to compute all of them, or at least as
much as we can.

One of the frequently used method to compute a Pareto optimal solution uses a
weighted sum of the objective functions to obtain a single objective optimization
problem. Let w ∈ Sk be a given vector of weights. From a vector optimization
problem, using a vector of weights, we can define the weighted optimization prob-
lem as follows
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(WOP) min wT F(x), subject to x ∈ F .

We state without proof two well-known theorems, that describe the relationship
between (GVOP) and (WOP). The first theorem shows that the (WOP) can be used
to find a Pareto optimal solution, see for instance [9, 23, 28].

Theorem 1. Let a (GVOP) and the corresponding (WOP) for a w ∈ Sk be given.
Assume that x∗ ∈F is an optimal solution of the (WOP) problem; then x∗ is a weak
Pareto optimal solution for the (GVOP).

Next theorem needs a bit more complicated reasoning, but for the convex case each
Pareto optimal solution of the (GVOP) can be found through a (WOP) using the
proper weights [9, 23, 28].

Theorem 2. Let (GVOP) be a convex vector optimization problem, and assume that
x∗ ∈ F is a Pareto optimal solution of the (GVOP); then there is a w ∈ Sk weight
vector, and a (WOP) problem, for which x∗ is an optimal solution.

The method, that will be described in section 5, decreases every coordinate function
of F at the same time and always moves from a feasible solution to another feasible
solution; hence we introduce the following useful definition.

Definition 3. Let problem (GVOP) and feasible point x ∈ F be given. Vector
v ∈ R

n, v 6= 0 is called a

1. joint decreasing direction at point x iff there exists h0 > 0 for every h ∈]0,h0]
satisfying that

F(x+hv)< F(x);

2. feasible joint decreasing direction iff it is a joint decreasing direction and
there exists h1 > 0 such that, for every h ∈]0,h1] we have x+hv ∈ F .

Example. Let the following unconstrained vector optimization problem

(GVOP1) MIN F(x1,x2) =

(

f1(x1,x2) = x2
1 + x2

2
f2(x1,x2) = (x1 −1)2 +(x2 −1)2

)

,

be given alongside a point xT = (x1,x2) = (0,1) and direction vT = (1,−1). Now
we show that v is a joint decreasing direction for the objective function F at point x.

It is easy to show that

f1(x+hv) = f2(x+hv) = h2 +(1−h)2 = 2

(

h−
1
2

)2

+
1
2

From the last form of the coordinate functions, it is easy to see that the coordi-
nate functions are decreasing on the [0; 1

2 ] interval; therefore v is a joint decreasing
direction with h0 =

1
2 .

If we add a single constraint to our example, then we obtain a new problem
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(GVOP2) MIN F(x1,x2) =

(

f1(x1,x2) = x2
1 + x2

2
f2(x1,x2) = (x1 −1)2 +(x2 −1)2

)

,

subject to x1 ≤
1
3
.

It is easy to see that v is a feasible joint decreasing direction for problem (GVOP2)
too, with h1 =

1
3 .

From now on, let us consider (GVOP) with a convex, differentiable objective func-
tion F and let us denote the Jacobian-matrix of F at point x by J(x). Then, v ∈ R

n

is a joint decreasing direction of function F at point x, if and only if

[J(x)]v < 0, (1)

as v is a decreasing direction for the ith coordinate function fi at point x, if and only
if [∇ fi(x)]

T v < 0.

3 Results for Unconstrained Vector Optimization

In this section, we review some results of unconstrained vector optimization, namely
for F = R

n. We assume that F is a differentiable function. The unconstrained
vector optimization problem is denoted by (UVOP) .

Before we show how a joint decreasing direction can be computed, we need a cri-
terion to decide wether an x is a Pareto optimal solution or not, see Schäffler et al.
[34].

Definition 4. Let J(x) ∈ R
k×n be the Jacobian matrix of a differentiable function

F : Rn → R
k at a point x ∈ R

n. An x∗ is called substationary point of F iff there
exist a w ∈ Sk, which fulfills the following equation:

wT [J(x∗)] = 0.

In the unconstrained case, point x∗ is a substationary point of the objective function
F of (GVOP), if it is a stationery point of the weighted objective function of (WOP).
From Theorem 1 and Theorem 2 we can see that in convex case, substationary points
are weak Pareto optimal solutions of the unconstrained vector optimization problem
(GVOP).

We are ready to discuss two models to find joint decreasing directions. The first
model has been discussed in [34] and uses a quadratic programming problem formu-
lation to compute joint decreasing directions. Later we show that a joint decreasing
direction can be computed in a simpler way by using a special linear programming
problem.
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Let us define the following quadratic programming problem (QOP(x)) for any x ∈
R

n, with variable w

(QOP(x)) min wT
(

J(x) [J(x)]T
)

w, subject to w ∈ Sk.

From the well known Weierstarss Theorem it follows that this problem always has
an optimal solution, since the feasible set is compact and the function

g : Sk → R, g(w) = wT
(

J(x) [J(x)]T
)

w

is a convex, quadratic, continuous function for any given x ∈ R
n.

Next theorem is an already known statement [34, Theorem 2.1], for which we give
a new and shorter proof. This shows that using the (QOP(x)) problem we can find
a joint decreasing direction of F or a certificate that x is a Pareto optimal solution of
problem (UVOP).

Theorem 3. Let a problem (UVOP), a point x ∈ R
n and the associated (QOP(x))

be given. Let w∗ ∈ R
k denote the optimal solution of (QOP(x)). We define vector

q ∈ R
n as q = [J(x)]T w∗. If q = 0, then x is a substationary point, otherwise −q is

a joint decreasing direction for F at point x.

Proof. When q = 0 then Definition 4 shows that x is substationary point. When
q 6= 0, we indirectly assume that −q is not a decreasing direction for the ith coor-
dinate function, fi of F and [∇ fi(x)]

T q 6= 0. It means that [∇ fi(x)]
T q < 0. Since

[∇ fi(x)]
T = eT

i J(x), so our indirect assumption means

[∇ fi(x)]
T q = eT

i [J(x)][J(x)]
T w∗ < 0.

We show that ei −w∗ 6= 0 is a feasible decreasing direction of g(w∗) which contra-
dicts the optimality of w∗. The ei = w∗ can not be fulfilled because it contradicts the
indirect assumption, and it is easy to see, that ei is a feasible solution of (QOP(x))
so ei −w∗ is a feasible direction at point w∗.
Since

∇g(w) = 2[J(x)][J(x)]T w

thus

[∇g(w∗)]T (ei −w∗) = 2w∗T [J(x)][J(x)]T (ei −w∗)

= 2w∗T [J(x)][J(x)]T ei −2w∗T [J(x)][J(x)]T w∗

= 2qT [∇ fi(x)]−2w∗T [J(x)][J(x)]T w∗ < 0,

where the first term of the sum is negative because of the indirect assumption, and
the second term is not positive, because [J(x)][J(x)]T is a positive semidefinite ma-
trix.

The previous result underline the importance of solving (QOP(x)) problem effi-
ciently. For solving smaller size linearly constrained convex quadratic problems
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pivot algorithms [1, 4–6, 16, 22] can be used. In case of larger size linearly con-
strained, convex quadratic problems, interior point algorithms can be used to solve
the problem (see for instance [18, 20]).

Theorem 3 shows that a joint decreasing direction can be computed as the convex
combination of the gradient vectors of coordinate functions of F . Following the
ideas discussed above, we can formulate a linear programming problem such that
any optimal solution of the linear program defines a joint decreasing direction of
problem (UVOP). Some similar results can be found in [13].

Let us define the linear optimization problem (LP(x)) in the following way:

(LP(x)) max q0, subject to [J(x)]q+q0e ≤ 0, 0 ≤ q0 ≤ 1,

where q ∈ R
n and q0 ∈ R are the decision variables of the problem LP(x). Now we

are ready to state and prove a theorem that discusses a connection between (UVOP)
and (LP(x)).

Theorem 4. Let a point x ∈ R
n, an (UVOP) and an associated (LP(x)) be given.

Then the (LP(x)) always has an optimal solution (q∗,q∗0). There are two cases for
the optimal value of the (LP(x)), either q0 = 0 thus x is a substationary point of the
(UVOP), or q0 = 1 thus q∗ is a joint decreasing direction for the function F at point
x.

Proof. It is easy to see that q = 0, q0 = 0 is a feasible solution of problem (LP(x))
and 1 is an upper bound of the objective function, which means (LP(x)) should have
an optimal solution.
Let us examine the case

[J(x)]q+q0e ≤ 0, q0 > 0. (2)

If system (2) has a solution, than
(

1
q0

q,1
)

is a solution of the system, so the optimal

value of the objective function is 1. This mean that

[J(x)]q ≤−e

so the q is a joint decreasing direction of function F .
If the system (2) has no solution then the optimal value of the objective function is
0, and from the Farkas lemma ([11, 12, 17, 22, 29, 31, 32, 35]) we know that there
exists a w which satisfies the following:

wT [J(x)] = 0, eT w = 1, w ≥ 0. (3)

It means that if the optimal value of the problem (LP(x)) is 0, than x is a substation-
ary point.

A linear programming problem (LP(x)) (and later on (LPS(x))) can be solved by
either pivot or interior point algorithms, see [21]. In case of applying pivot methods
to solve linear programming problem, simplex algorithm is a natural choice, see [24,
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29, 35]. A recent study on anti-cycling pivot rules for linear programming problem
contains a numerical study on different pivot algorithms, see [6]. Sometimes, if
the problem is well structured and small, criss-cross algorithm of T. Terlaky can
be used for solving the linear programming problem as well, see [17, 36]. More
about interior point algorithms for linear programming problems can be learnt from
[19, 24, 33].

In this section two techniques were introduced to decide whether a point x is a weak
Pareto optimal solution of problem (UVOP) or to find a joint decreasing direction.
Before we generalize this result to the linear constrained case let us compare this
technique with some known procedures. The classical scalarization technique based
on (WOP) finds a Pareto optimal solution x∗ of (UVOP). Due to the requirements
defined by the concept of the weak Pareto optimal solution, it may happen that in
some iterations of the scalarization algorithm such feasible solutions are computed
for which some objective function’s value increases. In our method this phenomena
can not happen, because in each iteration we select a joint decreasing direction.

4 Vector Optimization with Linear Constraints

In this section, we show how we can find a feasible joint decreasing direction for
linearly constrained vector optimization problems. First we find a feasible joint
decreasing direction for a special problem, where we only have sign constraints on
the variables. After that we generalize our results to general linearly constrained
vector optimization problems. Our method can be considered as the generalization
of the well known reduced gradient method to vector optimization problems. Some
similar result can be found in [13], for the feasible direction method of Zountendijk.

First we define the vector optimization problem with sign constraints (SVOP):

(SVOP) MIN F(x), subject to x ≥ 0,

where F is a convex function. From Theorem 1 we know that x∗ ≥ 0 is a Pareto
optimal solution if there exists a w ∈ Sk vector such that x∗ is an optimal solution
of

(SWOP) min wT F(x), subject to x ≥ 0.

Since Slater regularity and convexity conditions hold, from the KKT theorem [24]
we know that x∗ ≥ 0 is an optimal solution of (SWOP) iff it satisfies the following
system:

wT [J(x∗)]≥ 0, wT [J(x∗)]x∗ = 0. (4)

Let the vector x ≥ 0 be given and we would like to decide wether it is an optimal
solution of the (SWOP) problem or not. Let us define the index sets

I+ = {i : xi > 0}, and I0 = {i : xi = 0},
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that depend on the selected vector x. Using the index sets I0, I+, we partition the
column vectors of matrix J(x) into two parts. The two parts are denoted by J(x)I0
and J(x)I+ . Taking into consideration the partition, the KKT conditions can be
written in an equivalent form as

wT [J(x)]I+ = 0, wT [J(x)]I0 ≥ 0, w ∈ Sk. (5)

The inequality system (5) plays the same role for (SVOP) as (3) for (UVOP),
namely x is a Pareto-optimal solution if (5) has a solution.

Now we can define a linear programming problem corresponding to (SVOP) such
that an optimal solution of the linear programming problem either defines a joint
decreasing direction or gives a certificate that the solution x is a Pareto optimal
solution of (SVOP).

(LPS(x)) max z,

subject to [J(x)]I+u+[J(x)]I0 v+ ze ≤ 0,

v ≥ 0, 0 ≤ z ≤ 1,

where u,v and z are the decision variables of problem (LPS(x)). Now we are ready
to prove the following theorem.

Theorem 5. Let a (SVOP) and an associated (LPS(x)) be given, where x ∈ F is
a feasible point. The problem (LPS(x)) always has an optimal solution (u∗,v∗,z∗).
There are two cases for the optimal value of problem (LPS(x)), z∗ = 0 which means
that x is a Pareto optimal solution of the (SVOP), or z∗ = 1 which means that
qT = (u∗,v∗) is a feasible joint decreasing direction of function F.

Proof. It is easy to see that u = 0, v = 0, z = 0 is a feasible solution of the problem
(LPS(x)) and 1 is an upper bound of the objective function, therefore (LPS(x)) has
an optimal solution.
Let us examine the following system

[J(x)]I+u+[J(x)]I0v+ ze ≤ 0, v ≥ 0, z > 0. (6)

If system (6) has a solution, then
(

1
z u, 1

z v,1
)

is an optimal solution of the problem
(LPS(x)) with optimal value 1. Thus the vector qT = (u,v) satisfies

[J(x)]q ≤−e < 0,

so the q is a feasible joint decreasing direction for function F at x ∈ F . Vector q is
feasible because qI0 = v ≥ 0.
If the system (6) has no solution then the optimal value of the objective function is
0, and from a variant of the Farkas lemma, see [11, 12, 17, 22, 31, 32, 35] we know
that there exists a w which satisfies the following system of inequalities:

[J(x)]TI+w = 0, [J(x)]TI0 w ≥ 0, eT w = 1, w ≥ 0. (7)
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It means that if the optimal value of problem (LPS(x)) is 0, then point x is a Pareto
optimal solution of (SVOP).

We are ready to find feasible joint decreasing direction to a linearly constrained
vector optimization problem at a feasible solution x̃. Let the matrix A ∈ R

m×n and
vector b ∈ R

m be given. Without loss of generality we may assume that rank(A) =
m. Furthermore, let us assume the following non degeneracy assumption (for details
see [2]): any m columns of A are linearly independent and every basic solution is
non degenerate. We have a vector optimization problem with linear constraint in the
following form

(LVOP) MIN F(x), subject to Ax = b, x ≥ 0.

Like in the reduced gradient method, see [2], we can partition the matrix A into two
parts A = [B,N], where B is a basic and N the non-basic part of the matrix. Similarly
every v ∈ R

n vector can be partitioned as v = [vB,vN ]. We call vB basic and vN a
nonbasic vector. We can chose the matrix B such that the x̃B > 0 is fulfilled. While
Ax = b holds, we know that

BxB +NxN = b, and xB = B−1(b−NxN).

We can redefine function F in a reduced form as

FN(xN) = F(xB,xN) = F(B−1 (b−NxN) ,xN).

Let us define using the partition (B,N) and the following sign constraint optimiza-
tion problem

(SVOPB(x̃)) MIN FN(xN), subject to xN ≥ 0.

Let qN denote a feasible joint decreasing direction for (SVOPB(x̃)) at point x̃N ,
which can be found by applying Theorem 5. Let qB = −B−1NqN ; then we show
that q = [qB,qN ] is feasible joint decreasing direction for (LVOP) at point x̃. Let us
notice that

A(x̃+hq) = Ax̃+h(BqB +NqN) = b+h
(

−B(B−1NqN)+NqN
)

= b,

for every h ∈ R. So FN(x̃ + hqN) = F(x̃ + hq) and while qN is a feasible joint
decreasing direction with h1 > 0 stepsize for (SVOPB(x̃)). We can show that q is
a joint decreasing direction for problem (LVOP) with the same h1 > 0 step size.
While x̃B > 0, there exists h2 > 0, such that x̃B +h2qB ≥ 0, therefore q is a feasible
joint decreasing direction for problem (LVOP) with a step-size

h3 = min(h1,h2)> 0. (8)

We can compute h1 and h2 using a ratio-test, since x̃i +hqi ≥ 0 for all i is required,
therefore

h1 = min

{

−
x̃i

qi
: qi < 0, i ∈ N

}

> 0, and

h2 = min

{

−
x̃i

qi
: qi < 0, i ∈ B

}

> 0.
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5 The Subdivision Algorithm for Linearly Constrained
Vector Optimization Problem

In this section, we show how can we build a subdivision method to approximate
the Pareto optimal set of a linearly constrained vector optimization problem. Our
method is a generalization of the algorithm discussed in [7], where you can find
some results about convergence of the subdivision technique. The original method
can not handle linear constraints.

Our algorithm approximates the Pareto optimal solution set F ∗, using small boxes
that each contains at least one computed Pareto optimal solution. The smaller the
sets, the better approximation of the F ∗, therefore we define the following measure
of sets involved in the approximation of F ∗.

Definition 5. Let H ⊆ R
n be given; the diameter of H is defined as

diam(H ) := sup
x,y∈H

||x− y||.

Let H be a family of sets, which contains a finite number of sets from R
n; then the

diameter of H is

diam(H) = max
H ∈H

diam(H ).

Let us assume that the feasible set of our problem is nonempty, closed and bounded.
In this case Pareto optimal solution set of the problem (LVOP) is a nonempty set,
defined as,

F
∗
L = {x ∈ F : x is Pareto optimal solution of (LVOP)}.

Based on our assumption, that F is bounded set, there exists

H0 = {x ∈ R
n|l ≤ x ≤ u},

where l,u ∈ R
n are given vectors and

F
∗
L ⊆ F ⊆ H0 ∩{x ∈ R

n : Ax = b}.

Our goal is to introduce such a subdivision algorithm for (LVOP) problem, that iter-
atively defines better and better inner and outer approximation of the Pareto optimal
solution set of a problem (LVOP). The inner approximation will be an increasing
sequence of sets FP i, containing finitely many Pareto optimal solutions produced
by the algorithm. The outer approximation will be a family of sets Hi produced in
each iteration of the algorithm, that covers F ∗

L with decreasing diameter, diam(Hi).

The input of our method are data of the (LVOP) problem, namely matrix A ∈R
m×n,

vector b ∈ R
m, function F : Rn → R

k, set H0 and a constant ε > 0.

The output of our algorithm is a family of sets H, such that diam(H) < ε and each
H ∈H contains at least one Pareto optimal solution.
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The algorithm uses some variables and subroutines, too. The S P , FP are finite-
element sets of points from R

n, H ,G ⊆ F , H′,K,K′ and A are family of sets like
H.

Our algorithm in the first step defines the family of sets H, which contains only the
H0 set. The cycle in step 2 runs while the diameter of H is not small enough. The
algorithm reaches this goal in a finite number of iteration, because as you will see in
subroutine Newset(H) the diameter of H converges to zero. Nevertheless we show
that after every execution of the cycle the family of sets H contains sets H which
have Pareto optimal solutions. At the beginning it is trivial, because H contain the
whole feasible set.

Subdivision algorithm for (LVOP)

1. H= {H0}

2. While diam(H)≥ ε do

(a) H
′=Newsets(H)

(b) S P = /0

(c) While H 6= /0 do

i. H ∈H

ii. S P = S P ∪ Startpoint(H )

iii. H=H\{H }

End While

(d) FP =Points(S P,A,b,F)

(e) While H
′ 6= /0 do

i. H ∈H
′

ii. If H ∩FP 6= /0 then H=H∪{H } End If

iii. H
′ =H

′ \{H }

End While

End While

3. Output(H)

In step 2(a) we define a family of sets H′ using the subroutine Newset(H). The sets
from H

′ are smaller than sets form H and cover the same set. Therefore the result
of this subroutine has two important properties:

1. ∪H ∈H′ (H ∩F ) = ∪H ∈H (H ∩F ),

2. diam(H′) = 1
K diam(H),
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where K > 1 is a constant.

The steps in cycle 2, from step 2(b), delete the sets from H
′ which do not contain

any Pareto optimal points. Step 2(b) makes set S P empty. The cycle in step 2(c)
produces a finite number of random starting points in set H ∩{x ∈R

n : Ax = b} for
every H ∈ H using subroutine Startpoint(H ), and puts the generated points into
the set SP.

The main step of our algorithm 2(d) is the subroutine Points(S P,A,b,F) that pro-
duce a set FP which contains Pareto optimal points. This subroutine uses our
results from Section 4.

In cycle 2(e) we keep every set from H
′ which contains Pareto optimal solutions

and add those to H. Finally, we check the length of the diameter of H and repeat the
cycle until the diameter is larger than the accuracy parameter ε .

Subroutine Points(S P , A, b, F)

1. While S P 6= /0 do

(a) s ∈ S P

(b) x = s, z = 1

(c) While z = 1 do

i. (B,N) = A

ii. (xB,xN) = x

iii. (q,z)=Solve(LPS(xN))

iv. If z = 1 then

A. h3=stepsize(F , B, N, b, xN , q)

B. xN = xN +h3q

C. xB = b−B−1NxN

D. x = (xB,xN)

End If

End While

(d) S P = S P \{s}

(e) FP = FP ∪{x}

End While

2. Output(FP)

Subroutine Points uses a version of the reduced gradient method for computing
Pareto optimal solutions or joint decreasing directions, as discussed in Section 4.
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This subroutine works until from all points in S P search for a Pareto optimal point
has been executed. The cycle 1(c) runs until it finds a Pareto optimal point. As we
discussed in section 4 the cycle finishes when z = 0. In line 1(c)i the matrix A is
partitioned into a basic and a non basic parts, denoted by B and N, respectively.
The same partition is made with vector x according to 1(c)ii, and we choose the
basis such that xB > 0 should be satisfied. The LCP(xN) is solved in step 1(c)iii. If
the variable z = 0 then x is a Pareto optimal solution and we select a new starting
point from S P , unless S P is empty. Otherwise q is a feasible joint decreasing
direction for the reduced function FN . In step 1(c)ivB we compute step-size h3

which was defined in (8), and a new feasible solution x is computed.

Let us summarize the properties of our subdivision algorithm at the end of this sec-
tion. In each iteration of the algorithm, a set of Pareto optimal solutions, FP i, as
inner approximation of F ∗

L and a family of box sets Hi, with diameter diam(Hi), as
outer approximation has been produced. The input data for inner and outer approx-
imations of F ∗

L are as follows

FP0 := /0 and H0 := {H0}.

Proposition 1. Let a problem (LVOP) with nonempty, polytope F and differ-
entiable, convex objective function F be given. Furthermore, let us assume that
F ⊆ H0 holds, where H0 ⊂ R

n is a box set (i.e. generalized interval). Our subdi-
vision algorithm in iteration k produces two outputs:

a) a subset of Pareto optimal solutions FPk, and

b) a family of box sets Hk,

with the following properties

1. FP i ⊆ FP i+1 for all i = 0,1, . . . ,k−1,

2. ∪H ∈Hi+1H ⊆ ∪H ∈HiH for all i = 0,1, . . . ,k−1,

3. diam(Hi+1) =
1
K diam(Hi), where K > 1 is a constant,

4. FP i ⊂ F ∗
L , for all i = 0,1, . . . ,k,

5. F ∗
L ⊂ ∪H ∈HiH , for all i = 0,1, . . . ,k.

Dellnitz et al. [7] discussed two important issues related to subdivision methods: (i)
convergence (see Section 3), and (ii) possibility of deleting box that contains Pareto
optimal solution (see paragraph 4.2).

Convergence of subdivision methods according to Dellnitz and his coauthors fol-
lows under mild smoothness assumptions of the objective functions and compact-
ness of their domains together with some useful properties of the iteration scheme.
All these necessary properties of the objective functions and iteration scheme are
satisfied in our case, too. Convergence of our subdivision method is based on simi-
lar arguments as in case discussed by Dellnitz et al. [7].

It may occur that a box containing Pareto optimal solution is deleted during the sub-
division algorithm, as stated in [7]. This phenomenon is related to the discretization
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induced by the iteration scheme. Decision whether keep or delete a box during the
course of the algorithm depends on whether we found Pareto optimal solution in that
box or not. From each box, finite number of points are selected and tested whether
those are Pareto optimal solutions or joint decreasing direction corresponds to them.
From those test points that are not Pareto optimal solutions, using joint decreasing
direction an iterative process is started that stops with founding a Pareto optimal
solution. If all Pareto optimal solutions computed in this way lay out of the box, we
may conclude that the box under consideration does not contain Pareto optimal so-
lution. However, this conclusion is based only on finitely many test points thus there
is a chance to delete a box even if it contains Pareto optimal solution. This situa-
tion, in practice, can be handled by applying different strategies. All these strategies
decrease the opportunity of deleting a box containing Pareto optimal solution.

In [7] discussed a recovering algorithm that could be used after the diameter of
boxes reached the prescribed ε > 0 accuracy. Their recovering algorithm finds all
those boxes with the current diameter that are necessary to ensure that a cover set of
the Pareto optimal solutions is obtained. For details, see [7], recovering algorithm
(paragraph 4.2).

6 The Markowitz Model and Computational Results

Let us illustrate our method by solving the Markowitz model to find the most prof-
itable and less risky portfolios. The standard way of solving the model is to find one
of the Pareto optimal solution with an associated (WOP) see [26, 28]. The question
is whether such single Pareto optimal solution is what we really need for decision
making. Naturally, if we would like to make extra profit, we should accept larger
risk. Therefore, a single Pareto optimal solution does not contain enough infor-
mation for making a practical decision. If we produce or approximate the Pareto
optimal solution set then we can make use of the additional information for making
more established decision.

The analytical description of the whole Pareto optimal set for the Markowitz model
is known [37]. Thus as a test problem, the Markowitz model has the following
advantage: it is possible to derive its Pareto optimal solution set in an analytical
way [37], therefore the result of our subdivision algorithm can be compared with
the analytical description of the Pareto optimal solution set.

We are now ready to formulate the original Markowitz model. Our goal is to make a
selection from n different securities. Let xi denote how much percentage we spend
from our budget on security i (i = 1,2, . . . ,n), based on more approximate infor-
mation than a single Pareto optimal solution. Therefore, our decision space is the
n-dimensional unit simplex, Sn.

Let a ∈ R
n denote the expected return of the securities, while C ∈ R

n×n denotes the
covariant matrix of the securities return. It is known that the expected return of our
portfolio is equal to aT x. One of our goal is to maximize the expected return.
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It is much harder to measure the risk of the portfolio, but in this model it is equal to
the variance of the securities return, namely xTCx. Our second goal is to minimize
this value. Now we are ready to formulate our model

(MM) MIN

(

−aT x

xTCx

)

, subject to x ∈ Sn.

For computational purposes we used data from the spot market [3] and daily prices
of A category shares has been collected for a one year period from 01. 09. 2010.
to 01. 09. 2011. Let Pi,d denote the daily price of the i-th share on date d, then the
i-th coordinate of the vector a is equal to (Pi,01.09.2011.−Pi,01.09.2010.)/Pi,01.09.2010..
Thus we only work with the relative returns from the price change and do not deal
with shares dividend. We compute the daily return of the shares for every day (d)
from 01. 09. 2010. to 31. 08. 2011. as (Pi,d − Pi,d+1)/Pi,d , and C is the co-
variant matrix of this daily return. To illustrate our method we use three shares
(i = MOL, MTELEKOM, OTP) that are usually selected into portfolios because
these shares correspond to large and stable Hungarian companies. We used the fol-
lowing data:

a =





−0,1906
−0,2556
−0,1665





C = 10−5





27,1024 7,5655 17,1768
7,5655 16,4816 8,1816

17,1768 8,1816 34,2139





The input data for the Subdivision algorithm for (LVOP) are: matrix A = e ∈ R
3,

b = 1 since we have a single constraint in our model, and the objective function

F(x) =

(

−aT x

xTCx

)

. Let H0 = {0 ≤ x ≤ e}, ε = 1
26 and K = 2.

At the beginning of the algorithm in step 1 the family of set H has been defined (see
Figure 1).

Figure 1 Figure 2

At the first iteration the procedure Newsets in step 2(a), defines H′ in the following
way. First, it cuts the set H0 into eight equal pieces as you see in Figure 2. After that
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Figure 3 Figure 4

all those sets are deleted from H
′ that does not contain any point from the feasible

solution set of the problem. Thus the result of the procedure Newsets, the family of
H

′ covering the feasible solution set of the given problem has been shown in Figure
3.

Figure 5 Figure 6

The main part of the algorithm starts at step 2(c). Two hundred random points
are generated from the unit simplex (set S P). For each generated point either a
joint decreasing direction is computed and after that a corresponding Pareto optimal
solution has been identified through some iteration or it has been shown that the
generated point itself is a Pareto optimal solution of the problem. After we obtained
200 Pareto optimal solutions in set FP at step 2(d) we delete those boxes that
does not contain any point from FP at step 2(e). The result of the first iteration
can be seen in Figure 4.

From the original eight boxes remains three. For these three boxes the procedure
has been repeated in the second iteration. The results of iteration 3, 5 and 7 are
illustrated in Figures 5, 6, and 7, respectively.

These figures illustrate the flow of our computations. Finally to illustrate the con-
vergence of our method the whole Pareto optimal set was determined based on the
result of [37], and compared to the result computed in the fifth iteration, see in
Figure 8.

The summary of our computations are shown in the 1 where I stands for the iteration
number; Bin and Bout denotes the number of boxes at the beginning and at the end
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Figure 7 Figure 8

of iteration, respectively. Furthermore, T (s) is the computational time of the Ith

iteration in seconds, while d is the diameter of the family of sets, H.

I Bin T (s) Bout d
1 1 8 3 2−3

2 24 29 7 2−6

3 56 70 15 2−9

4 120 166 29 2−12

5 232 312 56 2−15

6 448 696 110 2−18

7 880 1429 228 2−21

Table 1
Computational results for Markowitz model using subdivision method.

The total computational time for our MATLAB implementation using a laptop with
the following characteristics (processor: Intel(r) Core(TM) i3 [3.3 GHZ], RAM
Memory: 4096 MB), took 2710 seconds for the subdivision algorithm for the given
Markovitz model to approximate the whole Pareto optimal solution set with the ac-
curacy ε = 2.4 10−8.

Analyzing our approximation of the Pareto optimal solution set, we can conclude
that our first option is to buy OTP shares only. From the data it can be understood
that this share has the biggest return (smallest loss in the financial crisis), so this
solution represents the strategy when someone does not care about the risk but only
about the return. From that point a line starts which represents strategies related to
portfolios based on OTP and MOL shares. Clearly, there exists a breaking point
where a new line segment starts. From the braking point the line lies in the interior
of the simplex suggesting a portfolio based on all three selected shares.
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Abstract: A significant field of species abundance distribution (SAD) has a population dynam-

ical character, in which it is supposed that the stochastic speciation process and the evolution

of different species are determined by the same linear birth and death process. The distri-

butions of the number of individuals after the speciation tend to a discrete limit distribution

depending on some condition if the observation time increases. In the earlier publications,

in general, the speciation process was supposed to be a homogeneous Poisson process. In

a more realistic case, if the speciation process is inhomogeneous Poisson, the investigation

of the model is obviously more difficult. In this paper we deal with the models, in which the

birth and death intensities are identical, the speciation rate is bounded, locally integrable

and has asymptotically power type behaviour. Limit parameters for these models, depending

on the speciation rate, are proportional to a logarithmic or (exactly or asymptotically) Yule

distribution. In connection with the sample statistics some results are derived in general and

also in special cases (logarithmic and Yule distribution), which are related to the random

choice of a species or an individual from the whole population of the system.

Keywords: population dynamic model; species abundance distribution; Kendall process;

Poisson process; logarithmic distribution; Yule distribution

1 Introduction

A frequently cited field of species abundance models possesses population dynami-

cal background. In these models continuous abundances are mostly assumed (Engen
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and Lande, 1996a, 1996b). Generally, it is supposed that the process which de-

scribes the entering time points of the new species in the system is Poisson process

(Karlin és McGregor, 1967). In this paper we consider models in which the species

abundance can take discrete values 0,1,2, ..., the evolution of the species entering

the system is determined by a linear birth and death model (Kendall (1948a, 1948b)

and as an essential enlargement of the population dynamical models, the speciation

processes are assumed from a class of inhomogeneous Poisson processes. For the

description of the model parameters, the Yule distribution plays an important role

instead of logarithmic distribution.

It is worth noting that in case when the speciation rate is varying in time, i.e. the spe-

ciation process in the model is inhomogeneous Poisson, it is more difficult to reach

concrete results. We mention here the results of Branson (1991, 2000), in which

the models lead to logarithmic distribution under special inhomogeneity condition.

In this paper we deal with a class of models which lead to distributions exactly or

asymptotically proportional to the Yule distribution.

Note that the Yule distribution with parameter ρ (> 0) is determined as pk =

= ρΓ(ρ + 1) Γ(k)
Γ(k+ρ+1) , k = 1,2, ..., for which the asymptotic relation pk =

= ρΓ(ρ + 1)k−ρ−1(1+ o(1)), k → ∞ holds and it can be interpreted as a gener-

alization of power type (Pareto type) distribution for a discrete case (see Simon

(1955), Newman (2006)).

Let us consider a system of many species on the time interval (t0 − T, t0], where

t0 ≤ 0, T > 0 and the system is empty at the initial time t0 − T , i.e. the system

does not contain any species. After passing T time we investigate the system at the

observation time t0. The time points, when the species enter in the system, are deter-

mined by the random jumping points of a homogeneous or inhomogeneous Poisson

process Π, having intensity function λ (t), t ≤ t0, which is defined on the half line

(−∞, t0] (see 4.5.§., Kingman (1993)). The process Π defines a right continuous

Poisson process NT (t), t0−T ≤ t ≤ t0 for each T > 0 on the time interval (t0−T, t0]
satisfying the condition NT (t0 − t) = 0. We mention that the process NT (t) can be

given by construction (see p. 50., Kingman (1993), p. 62., Lakatos et al. (2013)).

It is clear that the Poisson process NT (t), t0 −T ≤ t ≤ t0 has rate function which

equals λ (t) on the interval t0 −T ≤ t ≤ t0. The rate function (of formation of a new

species) λ (t) of the speciation process does not depend on the species entering the

system, but it can depend on time t. Then for any pairwise disjoint intervals (xi,yi]⊂
(t0 −T, t0], i = 1,2, ... the increments NT (yi)−NT (xi) are independent random vari-

ables with Poisson distribution of parameter E(NT (yi)−NT (xi)) =
∫ yi

xi
λ (s)ds.

Note that if we investigate the abundance distribution for the case of homogeneous

(i.e. λ (t) ≡ λ0) speciation process then we have the same distribution for any ob-

servation time t0 as T → ∞, in contrast with the inhomogeneous cases, when the

limit depends on the observation time t0. Partly, this means that if there exists the

limit abundance distribution in homogeneous cases as T → ∞ then the limit is iden-

tical with the equilibrium (stationary) distribution, while in cases of inhomogeneous

speciation process this property is no longer valid.
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Assume that the number of individuals of a species entering the system equals 1.

Moreover, the random fluctuation of the population size of a species does not depend

on others and it is determined by a continuous-time Markov chain for all species

with the same transition probabilities P1,k(s), s ≥ 0, k = 0,1, ... The state 0 (i.e. the

extinction of a species) means the absorption state. Then the number of species

Sk,T , k = 1,2, ... having exactly k, k = 1,2, ... living individuals at the observation

time t0 are independent random variables with Poisson distribution of parameters

µk,T , k = 1,2, ... which can be given in the following general form (Karlin and

McGregor, 1967)

µk,T =

t0
∫

t0−T

P1,k(t0 − t)λ (t)dt =

T
∫

0

P1,k(t)λ (−t + t0)dt, k = 1,2, ... (1)

This formula plays an important role in the computation of the parameters µk,T . In

accordance with the Kendall population dynamical model, after a species enters the

system, the random fluctuation of the population size of a species is determined by

a linear birth and death model (Kendall, 1948a, 1948b), where the birth and death

rates na and nc, respectively, depend on the actual population size n of the species

and a and c (a ≤ c) are positive constants.

It is known (see Karlin and McGregor (1967)) that if the speciation process NT (t)
is homogeneous Poisson with intensity rate λ , then the random variables Sk,T ,
k = 1,2, ... (the number of species Sk,T , k = 1,2, ... having exactly k, k = 1,2, ...
living individuals) are independent and have Poisson distribution with parameters

µk,T (see also Engen and Lande (1996a, l996b), Watterson (1974), Lange (2010),

Bowler and Kelly (2012)), where

µk,T =
λ

a

1

k
ρk

(

1− e−(c−a)T

1−ρe−(c−a)T

)k

→ µk =
λ

a

1

k
ρk, T → ∞, if ρ = a/c < 1 (2)

and

µk,T =
λ

a

1

k

(

aT

1+aT

)k

→ µk =
λ

a

1

k
, T → ∞, if a = c. (3)

From the formulas (2) and (3) it follows for the case a < c (ρ < 1) that the se-

quence µk,T , k = 1,2, ... (i.e. the expected values of the number of species having

exactly k individuals) is proportional to the logarithmic distribution with parame-

ter ρ 1−e−(c−a)T

1−ρe−(c−a)T (in the limit as T → ∞ with parameter ρ). This distribution does

not depend on the observation time t0 if the speciation process is homogeneous, i.e.

λ (t)≡ λ0.

In case a = c the sequence µk,T , k = 1,2, ... is proportional to a logarithmic distribu-

tion only if T < ∞. In that case the parameter of the logarithmic distribution equals
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aT
1+aT

. The parameters µk,T have the limit

µk = lim
T→∞

µk,T =
λ0

a

1

k
, k = 1,2, ...,

however, they will be no longer proportional to a probability distribution because

∑
∞
k=1

1
k
= ∞. From this it follows that if T → ∞, then the expected value of the

number of species having minimum one individual at time t0, tends to ∞, at the same

time the expected value of the number of species with exactly k individuals tends to

value
λ0
a

1
k
. Thus the number of species with exactly k individuals has Poisson limit

distribution with parameter
λ0
a

1
k
, k = 1,2, ...

We note that in the remaining case under the condition a > c for all k = 1,2, ...
limT→∞ ESk,T = limT→∞ µk,T = ∞ is true.

2 Results

In the present section of the paper we study two problems, as follows.

1. We consider the birth and death process under the condition that the birth and

death rates are equal (a = c), however, the rate λ (t) of the Poisson speciation

process N(t) is inhomogeneous. The problem is to give exact and asymp-

totic formulas for the behaviour of the parameters µk,T as T → ∞ under the

condition

λ (t) =
λ0

(1+α|t|)β
, −∞ < t ≤ 0 (4)

or in more general setting, if λ (t) satisfies the asymptotic condition

(1+α |t|)β

λ0
λ (t)→ 1, t →−∞, λ0,α,β > 0, −∞ < t ≤ t0 ≤ 0, (5)

where λ0,α and β are arbitrary positive numbers. This model generalizes the

above described models.

2. In connection to this model, we consider a random choice problem for Poisso-

nian distributed abundances at observation time t0. In this model, we investi-

gate a species randomly chosen from the population or an individual from the

whole population with which probability belongs to a species with k (k ≥ 1)
individuals.

2.1 Exact and asymptotic results for the parameters µk =
limT→∞ µk,T when the speciation rate λ (t) satisfies the
conditions (4) and (5)

In case of inhomogeneous Poisson speciation process, the consideration at time t0
of the parameters µk will be more difficult comparing to a homogeneous case, be-
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cause the parameters µk =
∫ t0
−∞ P1k(t0 − t)λ (t)dt, k = 1,2, ... may depend not only

on speciation rate λ (t) but also on the observation time t0.

In this section we assume that the condition (4) or (5) holds, instead of the ho-

mogeneity of the speciation rate (λ (t)≡ λ0), which makes possible a more general

framework for the modelling of the population dynamics. Here the observation time

t0 ≤ 0 can be arbitrarily chosen. Note that under the condition (4) λ (t) is a monoton-

ically increasing function which realizes monotonically increasing speciation rate.

The fact that the speciation rate can be increasing, from a biological point of view, is

referred in the paper of Rolland et al. (2014). In special cases we give exact formu-

las for the parameters µk, k = 1,2, ..., and at the same time the asymptotic formulas

will be valid for the class of bounded rate functions λ (t) satisfying the more general

condition (5), instead of (4).

In accordance with the model stated above, the dynamics (in time) of the number

of individuals of a species is described by a linear birth and death process (Kendall

process) for which the rate of birth and death are na and nc, respectively, depending

on the population size n and on the given constants a,c > 0. The initial population

size of a species is 1 and the state 0 is an absorbing one. The birth and death process

is a continuous-time Markov chain, which determines the random fluctuation of the

population size in time after speciation.

Denote the population size of species by Xt , t ≥ 0, X0 = 1, where t means the

passing time after speciation and let P1k(t) = P(Xt = k | X0 = 1), k = 0,1, ... be the

transition probability function of the process. Since the initial state of the process is

1, thus P11(0) = 1 and P1k(0) = 0, k 6= 1.

The generating function of the time-dependent transition probabilities P1k(t),
k = 0,1, ... of the Markov chain Xt , t ≥ 0 can be determined by the Kolmogorov

forward differential equations, from which the transition probabilities P1k(t) can be

given in an explicit form (Kendall, 1948a):

P1,0(t) =
at

1+at
, P1,k(t) =

(at)k−1

(1+at)k+1
, k = 1,2, ... (6)

Theorem 1. If the birth and death intensities are equal (a = c) and the intensity

function of the speciation process satisfies the condition (5), then

a) independently of the value t0 the following asymptotic relation holds

µk =
λ0

a

( a

α

)β
βΓ(β +1)

1

kβ+1
(1+(1)), k → ∞. (7)

This means that for sufficiently large k, the elements of the sequence µk of expected

values of the numbers of the species with k members are asymptotically proportional

to the elements of a Yule distribution with parameter β .
b) Under the condition (4) an exact formula holds for the sequence µk, k = 1,2, ...if
a = α > 0, β > 0 and t0 = 0 is the time of the observation. In this case the sequence

µk, k = 1,2, ... can be given with the help of the Yule distribution of parameter β
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multiplying by the constant
λ0

aβ
as follows:

µk =
λ0

aβ
β

Γ(k)Γ(β +1)

Γ(k+β +1)
, k = 1,2, ... (8)

In the special case, for β = 1 the equation µk =
λ0
a

1
k(k+1) , k = 1,2, ..., holds and for

β = 2 the equation µk =
λ0
a

2
k(k+1)(k+2) , k = 1,2, ... is true.

Proof. For simplicity, define λ (t) = λ (−t), t > 0. If the birth and death rates are

equal, i.e. a = c, then the transition probabilities P1k(t) satisfy the relations (6),

therefore by the formula (1) the numbers of species with k ≥ 1 members at the

observation time t0 (t0 ≤ 0) are independent and have Poisson distribution with pa-

rameters (expected values) as follows

µk =
∫ t0

−∞
P1k(t0 − t)λ (t)dt =

∫ 0

−∞
P1k(−t)λ (t0 + t)dt =

∫ ∞

0
P1k(t)λ (t0 − t)dt =

=

∞
∫

0

(at)k−1

(1+at)k+1
λ (t − t0)dt, k = 1,2, ... (9)

These integrals are finite because the integrands are bounded, moreover, from the

condition (5)
(1+α|t|)β

λ0
λ (t)→ 1, t → ∞ follows, then by (6) we have

P1,k(t)λ (t) =
λ0

αβ
t−β−2(1+o(1)), t → ∞,

which means that (P1,k(t)λ (t))
−1 λ0

αβ t−β−2 → 1, t → ∞. The integral in (9) can be

given in the form

µk =
λ0

a

∞
∫

0

fk(t)g(t)dt, k ≥ 1, (10)

where

fk(t) =
tk−1

(1+ t)k+1+β
, g(t) =

1

λ0
(1+ t)β λ (t/a+ |t0|).

It is clear that from the condition (5) it follows that the function g(t) satisfies the

asymptotic relation

g(t) =
(1+ t)β

[1+α (t/a+ |t0|)]
β

1

λ0
[1+α (t/a+ |t0|)]

β λ (t/a+ |t0|)→
( a

α

)β
, t → ∞.

(11)

Let us consider the asymptotic behaviour of the parameters µk as k → ∞. Firstly, we

prove that the following convergence is true

(

∫ ∞

0
fk(t)dt

)−1

µk →
λ0

a

( a

α

)β
, k → ∞. (12)
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Since the integral
∫ ∞

0 fk(t)dt, k = 1,2, ... in formula (12) can be determined by for-

mula 2.2.4.24., p. 298., Prudnikov et al. (1986) and it equals the Yule distribution

of parameter β as follows

∞
∫

0

fk(t)dt =

∞
∫

0

tk−1

(1+ t)k+1+β
dt =

Γ(k)Γ(β +1)

Γ(k+β +1)
, k ≥ 1, (13)

therefore if we prove the relations (12) and (13) we immediately have the asymptotic

relation (7) of the Theorem 1.

It is known that the gamma function has the following asymptotic property (see p.

257, Davis,.1972): for any fixed real numbers u,v

Γ(x+u)

Γ(x+ v)
= xu−v(1+o(1)), x → ∞, (14)

consequently, by (13) and (14) we have

∞
∫

0

fk(t)dt = Γ(β +1)
1

kβ+1
(1+o(1)), k → ∞. (15)

Now, we verify the relation (12). For arbitrary positive numbers γ , A and for any

0 ≤ t ≤ A

kγ

(

t

1+ t

)k

≤ kγ

(

A

1+A

)k

= exp

{

k log
A

1+A
+ γ logk

}

=

= exp

{

−k

[

log

(

1+
1

A

)

−
γ

k
logk

]}

→ 0, k → ∞

holds. It is obvious that

A
∫

0

fk(t)dt <

(

A

1+A

)k−1 A
∫

0

1

(1+ t)β+2
dt <

(

A

1+A

)k−1

→ 0, k → ∞.

Since λ (t) and consequently g(t) are bounded functions, then for γ = β +1 we have

kβ+1

A
∫

0

fk(t)g(t)dt < max
0≤t≤A

g(t) ·

(

A

1+A

)k−1

→ 0, k → ∞ (16)

and

kβ+1

A
∫

0

fk(t)dt < kβ+1

(

A

1+A

)k−1

→ 0, k → ∞. (17)

By virtue of the asymptotic relation (11) the convergence g(t) →
(

a
α

)β
, t → ∞ is

true, therefore for arbitrarily chosen ε > 0 there exists a constant Aε such that
∣

∣

∣

∣

g(t)−
( a

α

)β
∣

∣

∣

∣

< ε, t ≥ Ae. (18)
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From this it follows that

∣

∣

∣

∣

∫ ∞

Aε

fk(t)
( a

α

)β
dt −

∫ ∞

Aε

fk(t)g(t)dt

∣

∣

∣

∣

≤ ε

∫ ∞

Aε

fk(t)dt. (19)

In summary, on the basis of the relations (15), (16) and (17) from (19) it is clear that

for every ε > 0 it holds

limsup
k→∞

∣

∣

∣

∣

∣

(

∫ ∞

0
fk(t)dt

)−1 ∫ ∞

0
fk(t)g(t)dt −

( a

α

)β
∣

∣

∣

∣

∣

< ε,

thus

µk =
λ0

a

∞
∫

0

fk(t)g(t)dt =
λ0

a

( a

α

)β
Γ(β +1)

1

kβ+1
(1+o(1)), k → ∞.

The result of the second part b) of the Theorem 1 is obtained directly from the

formulas (9) and (13):

µk =
λ0

a

∞
∫

0

tk−1

(1+ t)k+1+β
dt =

λ0

a

Γ(k)Γ(β +1)

Γ(k+β +1)
.

2.2 Theorems on the random choice of a species or an individual
from the whole population related to the model considered
above

Consider a population of various species. Assume in general that the number of

species of the population is not necessarily bounded. Denote the number of species

consisting of exactly k individuals by Sk, k = 1,2, ... and suppose that the ran-

dom variables Sk are independent, having Poisson distribution with parameters µk,
k = 1,2, ... and the condition µ = ∑

∞
k=1 µk < ∞ holds. For example, the random

variables may be Sk, the number of species having k individuals at the time t0 (see

the model described earlier). Define the events Ak and Bk as follows

Ak = {randomly chosen species from the population of species consists of k

individuals},

Bk = {randomly chosen individual from the population of individuals belongs to

a species consisting of exactly k individuals}.

Let us consider the probabilities P(Ak), and P(Bk), k = 1,2, ... of the events Ak,

and Bk, respectively. Denote Sk = ∑i6=k Si and Rk =
1
k ∑i6=k iSi, k = 1,2, .... Let Rk

be the set of all possible values of the random variables kRk = ∑i6=k iSi, that is, for

k = 1,2, ...
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Rk = { ∑
i6=k

imi : mi are arbitrary natural numbers and the sum ∑
i 6=k

imi is finite}.

The random choice of a species or an individual from the population considered

above means that for all n ≥ 0, m ≥ 0, n+m > 0 and r ∈Rk the following relations

hold

P(Ak | Sk = n, Sk = m) =
n

n+m
, P(Bk | Sk = n, Rk =

1

k
r) =

kn

kn+ r
.

Using the formula of total probability we get

P(Ak) =
∞

∑
n=0

∞

∑
m=0

P(Ak | Sk = n, Sk = m)P(Sk = n, Sk = m) =

=
∞

∑
n=1

∞

∑
m=0

n

n+m
P(Sk = n, Sk = m) = E

Sk

Sk +Sk

. (20)

Taking into consideration that the random variables Sk and Sk are independent and

have Poisson distribution with parameters µk and µ − µk respectively, using the

relation (20) it is easy to determine the well-known general formula (21) for the

probability P(Ak)

P(Ak) =
µk

µ
, k = 1,2, ... (21)

The computation of the probability P(Bk), k = 1,2, ... is more difficult and leads

to an interesting formula determined by the parameters µk, µ and the generating

function (z-transform) G(z) of the sequence µk, k = 1,2, ... This formula makes the

further consideration of the probability P(Bk) as k → ∞ possible.

The number of different species possessing the population is Sk +Sk = ∑
∞
i=1 Si and

the number of individuals in the population equals kSk + kRk = ∑
∞
i=1 iSi. Using the

formula of the total probability we have

P(Bk) =
∞

∑
n=0

∑
r∈Rk

P(Bk | Sk = n, kRk = r)P(Sk = n, kRk = r) =

=
∞

∑
n=1

∑
r∈Rk

kn

kn+ r
P(Sk = n, kRk = r) = E

Sk

Sk +Rk

. (22)

It will be noted that
∞

∑
n=1

P(Bk) = 1, because

∞

∑
n=1

E
Sk

Sk +Rk

= E
∞

∑
n=1

kSk

kSk + kRk

= E
kSk + kRk

kSk + kRk

= 1.

Let us define the generating function of G(z) of the sequence µk, k = 1,2, .. as

follows

G(z) =
∞

∑
k=1

µkzk, |z| ≤ 1.
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Theorem 2. If Si, i = 1,2, ... denote the number of species containing i individuals

and the random variables S1,S2, ... are independent and they have Poisson distribu-

tion function with parameters µ1,µ2, ..., then the following relation holds

P(Bk) = µk

1
∫

0

exp

{

−
∞

∑
i=1

µi(1− xi/k)

}

dx = µk

1
∫

0

exp
{

−µ +G(x1/k)
}

dx (23)

and the probabilities P(Bk) satisfy the asymptotic relation

P(Bk) = µk(1+o(1)), k → ∞. (24)

Proof. Since the random variables Sk and Rk are independent, then using the for-

mula (22) the probability P(Bk) can be given in the form

P(Bk) = E
Sk

Sk +Rk

= E

(

E(
Sk

Sk +Rk

| Rk)

)

= E

(

∞

∑
n=1

n

n+Rk

µn
k

n!
e−µk

)

.

It is clear that P(Bk) = 0, when µk = 0 and for µk > 0

µn
k

n+Rk

= µ
−Rk

k

µk
∫

0

xRk+n−1dx.

The order of summation and integration, as well as the order of integration and

expectation can be changed in the following relation, thus we have

P(Bk) = e−µk E





∞

∑
n=1

1

(n−1)!
µ
−Rk

k

µk
∫

0

xRk+n−1dx



=

= e−µk E





µk
∫

0

µ
−Rk

k xRk

∞

∑
n=0

xn

n!
dx



= e−µk E





µk
∫

0

(

x

µk

)Rk

exdx



=

= e−µk µkE





1
∫

0

xRk eµkxdx



= e−µk µk

1
∫

0

E
(

xRk
)

eµkxdx. (25)

The expected value ExRk equals the generating function of random variable

Rk = ∑i6=k
i
k
Si in the place x1/k, which is easy to compute. Since the random vari-

ables Si (i = 1,2, ...) are independent and they have Poisson distribution with pa-

rameters µi, i = 1,2, ..., moreover, the generating function of random variable Si

has the form

ExSi = eµi(x−1), 0 < x ≤ 1,

then

ExRk = E(x1/k)∑i6=k iSi = E ∏
i6=k

(

xi/k
)Si

= exp

{

∑
i 6=k

µi(x
i/k −1)

}

= exp

{

−(µ −µk)+∑
i 6=k

µix
i/k

}

.
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From the formula (25) we get

P(Bk) = e−µk µk

1
∫

0

exp

{

−(µ −µk)+∑
i6=k

µix
i/k

}

eµkxdx =

= µk

1
∫

0

exp

{

−µ +
∞

∑
i=1

µix
i/k

}

dx = µk

1
∫

0

exp
{

−µ +G(x1/k)
}

dx,

which is the statement (23) of the Theorem.

We now prove that the asymptotic relation (24) holds. Using the formula (23) it is

enough to verify that the following convergence holds

1
∫

0

exp
{

−µ +G(x1/k)
}

dx → 1, if k → ∞. (26)

On the one hand, the generating function G(x) is continuous, monotonically in-

creasing on the interval [0,1] and has the limit value µ from left in the point 1,

then 0 ≤ µ −G(x1/k) ≤ µ −G(ε1/k), 0 ≤ ε ≤ x ≤ 1. On the other hand, for ev-

ery fixed constant ε, 0 < ε < 1 the convergence ε1/k → 1 holds as k → ∞, then

G(ε1/k)→ µ, k → ∞ and

1 ≥

1
∫

0

exp
{

−µ +G(x1/k)
}

dx =

=

ε
∫

0

exp
{

−µ +G(x1/k)
}

dx+

1
∫

ε

exp
{

−µ +G(ε1/k)
}

dx ≥

≥ εe−µ +(1− ε)exp
{

−µ +G(ε1/k)
}

.

Since the constant ε, 0 < ε < 1 can be arbitrarily chosen and

εe−µ +(1− ε)exp
{

−µ +G(ε1/k)
}

→ εe−µ +(1− ε), k → ∞,

then the statement (26) is true, which verifies the asymptotic relation (24) of the

Theorem 2.

Remark. It is worth mentioning that the asymptotic relation P(Bk) =
= P(Ak)(1 + o(1)) holds if k tends to infinity, which is a direct consequence of

the connections (21) and (24).

Remark. In special cases the formula (23) of the Theorem 2. may be computation-

ally applicable for the numerical investigation of the probabilities P(Bk) depending

on k, when the generating function of the sequence µk has known form.
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For instance, if the sequence µk equals the Fisher’s logarithmic series (Fisher et al.,

1943), which is given by µk = (α/k)ρk, where µk is the expected number of species

with k individuals, ρ is a positive number less than 1, and Fisher’s α is a positive

constant and it is often used as a measure of biodiversity. In this case we have

G(z) =
∞

∑
i=1

(α/k)ρkz1/k =−α log(1−ρz1/k), µ =
∞

∑
i=1

(α/k)ρk =−α log(1−ρ)

and consequently

P(Bk) = (α/k)ρk

1
∫

0

exp
{

−α(log(1−ρ)+ log(1−ρx1/k))
}

dx =

= (α/k)ρk

1
∫

0

exp

{

α log
1−ρx1/k

1−ρ

}

dx = (α/k)ρk

1
∫

0

(

1−ρx1/k

1−ρ

)α

dx.

Another example is the case when the members of the sequence µk in the Theorem 2.

are proportional to that of a Yule distribution with parameter β > 0, instead of log-

arithmic distribution. Let µk = αβ
Γ(β )Γ(k)

Γ(k+β+1) , k = 1,2, ... for some α > 0. Applying

the formula of generating functions of the Yule distributions (see p. 287, Johnson,

2005), then the sequence of probabilities P(Bk) can be formulated as follows

P(Bk = µk

1
∫

0

exp

{

−α +
αβ

β +1
2F1[1,1;β +2;z1/k]z1/k

}

dx,

where 2F1 denotes the generalized hypergeometric function.

Conclusions

We have dealt with the model in which a Kendall process describes the evolution of

the species after entering the system. The birth and death intensities are assumed

to be identical. We have considered inhomogeneous speciation process, for which

the speciation rate is bounded, locally integrable and has an asymptotically power

type behaviour. This model led (exactly or asymptotically) to Yule abundance dis-

tributions instead of a logarithmic one, arising in the homogeneous cases. More

precisely, in the inhomogeneous cases the parameters of the models, depending on

the speciation rate, are proportional (exactly or asymptotically) to the members of

the Yule distribution. This means an enlargement of the class of the possible limit

distributions, which can arise for the discrete population dynamical models.

In connection with the sample statistics some results are derived in general and also

in special cases (for the logarithmic and Yule distribution), which are related to the

random choice of a species or an individual from the whole population of models

considered above.
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Abstract: We provide here an elementary derivation of the bounding scheme applied for prov-

ing the Wright conjecture on delay differential equations. We also report a minor extension
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1 Introduction

In this paper we give an elementary derivation of a bounding scheme to prove

Wright’s conjecture [6] on the delay differential equation

u̇(t) =−αu(t −1)[1+u(t)], α > 0. (1)

That bounding scheme is then applied in a verified computational algorithm for

systematic checking the α values in question. If we consider only those solutions of

equation (1) which have values in (−1,∞), the transformation x = log(1+u) leads

to the equation

ẋ(t) = fα(x(t −1)) (2)

with fα(ξ ) = −α(eξ − 1), ξ ∈ R. Throughout this paper (2) will also be called

Wright’s equation.

In [2] we proved
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Theorem 1. If α ∈ [1.5,1.5706], then the zero solution of equation (2) is globally

attractive.

We used the following statement in the proof:

Theorem 2. The zero solution of (2) is globally attracting if and only if (2) has no

slowly oscillating periodic solution.

Recall that a solution x : R → R oscillates slowly if |z1−z2|> 1 for any two different

zeros of x. In [2] a theoretical proof was given for

Corollary 1. If 0 < α < π
2

and pα : R→R is a slowly oscillating periodic solution

of equation (2) then

max
t∈R

pα(t)≥ log
π

2α
> 1−

2α

π
.

The computational part of the proof of Theorem 1 proves

Theorem 3. If α ∈ [1.5,1.5706] and y : R → R is a slowly oscillating periodic

solution of (2), then maxt∈R |y(t)| ≤ 1− 2α
π .

Now, a combination of Theorem 2, Corollary 1, and Theorem 3 proves Theorem 1.

In an earlier paper [1], the first author investigated the problem with traditional ver-

ified differential equation solver algorithms [4, 5]. He found that a proof of the

conjecture along these lines would require an enormous amount of computation

time with the present technological conditions (compilers, algorithms and computer

capacities). He was able to prove only that for all α values within the tiny interval

[1.5,1.5+ 10−22] the trajectories of the solutions will reach a phase when the ab-

solute value of the solution remain below 0.075 for a time interval of a unit length.

For wider parameter intervals, or for values closer to π/2 the required CPU times

exploded. Thus traditional computer-assisted techniques involving general, inclu-

sion monotone iterative techniques for differential equations appear not suitable for

settling the conjecture.

2 The bounding scheme

Let p : R → R be a nontrivial periodic solution of (2). Set M = maxt∈R p(t) and

−m = mint∈R p(t). We skip here the technical details from Wright’s paper, and just

give the conditions obtained by him:

M ≤−α
(

e−m −1
)

+(−m)
e−m

e−m −1
−1 if α

(

e−m −1
)

≤−m, (3)

M ≤ α −
1− eα(e−m−1)

(1− e−m)
, (4)
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m ≤ α
(

eM −1
)

−M
eM

eM −1
+1. (5)

The present approach follows another line of thought, still it is a kind of direct

extension of that of Wright. Denote three subsequent zeroes of the trajectory by 0,

z1, and z2. We may assume that y(t)> 0 for t ∈ (0,z1), and y(t)< 0 for t ∈ (z1,z2).
Let us define the following functions bounding the trajectories (see Figure 1):

y
(upper)
(inc,1)

(t) : an upper bounding function for the time interval 0 ≤ t ≤ 1,

y
(lower)
(inc,1)

(t) : a lower bounding function for the time interval 0 ≤ t ≤ 1,

y
(upper)
(dec,n)

(t) : an upper bounding function for the time interval 1 ≤ t ≤ z1,

y
(lower)
(dec,1)

(t) : a lower bounding function for the time interval z1 ≤ t ≤ z1 +1,

y
(upper)
(dec,1)

(t) : an upper bounding function for the time interval z1 ≤ t ≤ z1 +1,

y
(lower)
(inc,n)

(t) : a lower bounding function for the time interval z1 +1 ≤ t ≤ z2.

The trajectory bounding functions are illustrated by dashed lines on Figure 1. Here

four consecutive time intervals will be considered defined by the zeros and by the

extremal values of the trajectory denoted by (inc,1),(dec,n),(dec,1), and (inc,n),
respectively. The length of the time intervals (inc,1) and (dec,1) are known to be

one. On the other hand the length of (dec,n), denoted as pM = z1 − 1 and that of

(inc,n), pm = z2 − z1 − 1 are unknown, it is even unclear whether these are larger

than one.

The trajectory bounding functions will be sharpened sequentially, in an iterative

way, i.e. the bounding functions of the time interval (inc,1) will be used to improve

the bounding function on the interval (dec,n), etc. Then, the bounding function

of the last interval, (inc,n) will be used to make the inequalities for the interval

(inc,1) sharper, and so on. Those bounding function improvements that are based

on a single bounding function of the earlier time interval are basically similar to

the original technique used by Wright. The sharpening steps using two bounding

functions on the argument interval apply a new, Taylor series based method to be

described later in this paper. At start we set the upper bounding functions to constant

M, the lower bounding functions to −m with the exceptions of y
(lower)
(inc,1)

= 0 and

y
(upper)
(dec,1)

= 0.

We iterate only on such cases, when the conditions (3) to (5) and that of Corollary

1 are fulfilled. The conditions we check at the end of each iteration cycle of the
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0

z1 z2

1

z1 + 1

t

y
(inc,1)
(upper) y

(dec,n)
(upper)

y
(dec,1)
(lower) y

(inc,n)
(lower)

y
(dec,1)
(upper)

y
(inc,1)
(lower)

Figure 1

The trajectory bounding functions shown as dashed lines for a full period

bounding function sharpening procedure are

y
(upper)
(inc,1)

(0+1)< M and −m < y
(lower)
(dec,1)

(z1 +1). (6)

In case at least one of these conditions are satisfied then the solution of the inves-

tigated delay differential equation cannot have a periodic solution with a maximal

value of M and the minimal value of m as assumed for the given α parameter.

3 Improved bounds for the unit width intervals

First we show how to obtain an upper bound on the periodic trajectory on the inter-

val (inc,1) based on the y
(lower)
(inc,n)

(t) function. Since y
(lower)
(inc,n)

(t) is a lower bounding

function, so y
(lower)
(inc,n)

(t) ≤ y(t) holds for all t ≤ 0. Now integrate y′ from 0 to t

(0 ≤ t ≤ 1):

y(t) = y(t)− y(0) =

−α

t
∫

0

ey(x−1)−1 dx =−α

t−1
∫

0−1

ey(x)−1 dx ≤−α

t−1
∫

0−1

e
y
(lower)
(inc,n)

(x)
−1 dx.

We can obtain a new, stronger bounding function from this bound and from the old

one for the t ≥ 0 case:

y
(upper)
(inc,1)

(t) = min



















y
(upper)
(inc,1)

(t)

−α
t−1
∫

0−1

e
y
(lower)
(inc,n)

(x)
−1 dx



















, t ∈ [0,1]. (7)

We suppress the iteration number in the bounding function, the new one on the left

hand side of the defining equation is calculated from the old function on the right
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hand side as it is usual in computer programs. We can get a new bounding function

for the lower bounding function in (dec,1) in a similar way:

y
(lower)
(dec,1)

(t) = max



















y
(lower)
(dec,1)

(t)

−α
t−1
∫

z1−1

e
y
(upper)
(dec,n)

(x)
−1 dx



















, t ∈ [z1,z1 +1]. (8)

We can obtain an improved lower bound for the trajectory on the interval (inc,1) by

y(1)− y(t) = M− y(t) =

−α

1
∫

t

ey(x−1)−1 dx =−α

0
∫

t−1

ey(x)−1 dx ≤−α

0
∫

t−1

e
y
(lower)
(inc,n)

(x)
−1 dx.

The new lower bounding function is then

y
(lower)
(inc,1)

(t) = max



















y
(lower)
(inc,1)

(t)

M+α
0
∫

t−1

e
y
(lower)
(inc,n)

(x)
−1 dx



















if t ∈ [0,1]. (9)

We can build an improved upper bound also for the time interval (dec,1) in a similar

way:

y
(upper)
(dec,1)

(t) = min



















y
(upper)
(dec,1)

(t)

−m+α
0
∫

t−1

e
y
(upper)
(dec,n)

(x)
−1 dx



















if t ∈ [0,1]. (10)

By that we have completed the description of the improved bounding functions for

the unit width time intervals.

4 Bounds for the period length

A sharp enclosure of the period length is very important for the success of the proof

for the conjecture, especially for α values close to π/2. To calculate bounds on the

period length and as a part of that bounds for the not unit length time intervals we

apply an Euler type differential equation solution method

Y (x) = Y (x0)+Y (1)([x0,x])(x− x0),

Y ([x0,x]) = Y (x0)+Y (1)([x0,x])([0,x− x0])

customized for delay equations. In these equations we used the notions of interval

calculations [5], i.e. capitals denote interval values. The implementation details will
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y

M

0 1 si = z1

z1

sj = z1

t

Figure 2

Illustration of the bounding procedure for the z1 zero of the trajectory

be discussed in the next section. To use this method we need an enclosure Y (x0)
of the trajectory in the start point, and bounds on a given number of time intervals

covering together unit length time intervals.

For these calculations we need lower and upper bounds for the trajectory on the

unit length time intervals before the investigated (dec,n) and (inc,n) phases. These

are available due to the previous subsection. The lower and upper bounds for the

zeros z1 and z2 of the trajectory will be determined using the interval enclosures

obtained on time intervals for the trajectory. Consider first the case when we follow

the trajectory from 1 to find z1, i.e. we want to find bounds for pM . Assume that as

a part of the verified integration the first interval that contains zero is Y (ti, ti + h),
where h is the step size of the numerical integration. Then there may follow some

integration steps for which the respective Y enclosures contain zero. Let the last

such be Y (t j, t j + h) (in some cases it is possible that i = j). Then [ti, t j + h] is

obviously a verified enclosing interval for z1. The same technique that is illustrated

on Figure 2 is also applicable for the bounding of pm.

Denote the enclosures of pM and pm to be calculated from the above bounds of the

zeros by PM and Pm, respectively. The lower and upper bounds of these intervals

are denoted as usual in interval calculation, with underline and overline, e.g. PM =
[PM,PM].

5 Improved bounds for the not unit width intervals

As we could see in the previous subsection, it is not easy to determine z1, as the

zero of the investigated trajectory. In the present subsection we build a valid upper

bound for the trajectory on the intervals (inc,1) and (dec,n) that can be applied

as needed also until the point z1 for calculating further improving bounds on the

interval (dec,1).
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Consider the trajectory on [0,1+PM], i.e. on the intervals (inc,1) and (dec,n). The

bounds on the trajectory are at this point obtained by the new bounds of (9) and (10)

on (inc,1), and by the verified solution of the differential equation, as described

in Section 4 on (dec,n). Let us call this complete bounding function as Y , and its

upper bound as Y . For a monotonically increasing y(t) function we have

y(t)≥ y(t −∆t) if ∆t ≥ 0

and for a monotonically decreasing y(t) function

y(t)≥ y(t −∆t) if ∆t ≤ 0.

The trajectory is known to be strictly monotonically increasing on (inc,1), while

strictly monotonically decreasing on (dec,n).

Consider first the (inc,1) time interval, here the y
(upper)
(inc,1)

gives an upper bounding

function, Y for the periodic trajectory. Since pM ≤ PM , the relation

∆t =
(

1+PM

)

− z1 = PM − pM ≥ 0

holds. Now these imply

Y (t)≥ y(t)≥ y(t −∆t) = y
(

t −
((

1+PM

)

− z1

))

.

These relations can be interpreted as Y is an upper bounding function also for y(t −
∆t), i.e. for the trajectory shifted by ∆t on the interval

[

−
((

1+PM

)

− z1

)

, 1−
((

1+PM

)

− z1

)]

=

[

−(PM − pM), 1− (PM − pM)
]

=
[

z1 −PM −1, z1 −PM

]

.

Consider now the (dec,n) phase, the verified solution will give an upper bound

for y(t) on [1,1+PM]. Here y(t) is strictly monotonically decreasing, thus due to

PM ≤ pM the relations

Y (t)≥ y(t)≥ y(t −∆t) = y(t − ((1+PM)− z1))

hold with ∆t = PM − pM ≤ 0. Here again Y is an upper bounding function also for

y(t −∆t), i.e. for the trajectory shifted by ∆t on the interval

[1− (PM − pM) , 1+PM − (PM − pM)] =

[z1 −PM,z1] .

The explanation for the above bounding technique is illustrated on Figure 3. The

first case can be understood as if the original periodic solution would be shifted in

such a way that the original z1 zero coincides with 1+PM . Since y(t) is mono-

tonically increasing on the interval (inc,1), thus the upper bounding function Y (t)
remains an upper bound of the shifted function too (upper picture of Figure 3). The
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highlighted upper bounding functions parts are presented as bounds of the y(t) tra-

jectory.

In the second case the original trajectory is shifted in such a way that the zero z1

coincides with (1+PM). The monotonically decreasing y(t) will then remain below

Y (t) on the given time interval (see the second picture of Figure 3). As it can be

seen on this figure, in the gap between the two highlighted function we consider

the constant M value. With the above considerations we have provided a bounding

function that can be used also until the unknown z1 time point.

Y (t)

y(t) ∆t∆t

PM

PM + 1

0 z11 1 + PM

Y (t)

y(t) ∆t∆t

PM

0 z11 1 + PM1 + PM

Figure 3

Illustrations of how the bounds can be obtained for the cases when the shifted z1 coincides with 1+PM

and with 1+PM , respectively

The same technique can be applied to establish such a valid lower bound for the

trajectory on the intervals (dec,1) and (inc,n), that can be applied for further bound

improvements even in the case when the necessary integration should start from the

z2 zero.

Let us see now how can we produce stronger bounds on the intervals (dec,n) and

(inc,n) before the z1 − 1, and z2 − 1 time points, respectively – on the basis of the

bounds discussed earlier in the present subsection. Consider first the (dec,n) case,

then for the present upper bounding function

y
(upper)
(dec,n)

≥ y(t).

Integrate the derivative function y′ from t to z1, where z1 −1 ≤ t ≤ z1:

−y(t) = y(z1)− y(t) =−α

z1
∫

t

ey(x−1)−1 dx =−α

z1−1
∫

t−1

ey(x)−1 dx.

In other terms

y(t)≤ α

z1−1
∫

t−1

e
y
(upper)
(dec,n)

(x)
−1 dx.
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This bounding function can be use to update the old one:

y
(upper)
(dec,n)

(t) = min



















y
(upper)
(dec,n)

(t)

α
z1−1
∫

t−1

e
y
(upper)
(dec,n)

(x)
−1 dx



















if t ∈ [z1 −1,z1]. (11)

In a similar way we can calculate a new lower bounding function on the interval

(inc,n):

y(t)≥ α

z2−1
∫

t−1

e
y
(lower)
(inc,n) −1 dx,

that implies the update

y
(lower)
(inc,n)

(t) = min



















y
(lower)
(inc,n)

(t)

α
z2−1
∫

t−1

e
y
(lower)
(inc,n)

(x)
−1 dx



















if t ∈ [z2 −1,z2]. (12)

Notice that in both cases the new, improved bound utilizes earlier bound values also

from more than 1 time unit distance to the actual right end zero of the trajectory.

This gives an explanation how improvements made at the first part of the present

subsection can improve our bounds at a much later time point.

6 The iterative improvement of the bounding functions

The lower and upper bounds derived in the earlier subsections will be applied in

an iterative procedure to make them even sharper that possibly allows to conclude

that for a given pair of M and m values the delay differential equation (1) with the

investigated interval of α parameter leads to a contradiction. The iteration cycle

begins with the time interval (inc,1), and with the integration of the right hand side

of the differential equation we update the earlier upper bound on (dec,n). This new

upper bound will then be used to improve the lower and upper bounding functions

on (dec,1), and finally the latter help us to make y
(lower)
(inc,n)

sharper.

Now the bounding functions y
(lower)
(inc,1)

, y
(upper)
(dec,1)

, y
(upper)
(inc,1)

, and y
(lower)
(dec,1)

are defined on

unit length time intervals, on [0,1] and [z1,z1 +1], respectively. In contrast to these,

in the case of y
(lower)
(inc,n)

and y
(upper)
(dec,n)

we must also calculate with their values over wider

time intervals. To be able to handle the delayed terms, we have to save bounding

function values for a unit length interval in the first case, and for two width intervals

otherwise (this later figure proved to be satisfactory for our investigation).

Due to the computer representation of reals, it is advantageous to subdivide these

time intervals into 2l , and 2l+1 subintervals for a natural number l, respectively.
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Denote these subintervals by ti, where i∈ (1, . . . ,2l), and for the (dec,n) and (inc,n)
time intervals i ∈ (1, . . . ,2l+1) in increasing order as they depart from the zero. It

is intentional that the order of the numeration for the unit length intervals is the

opposite of that for (dec,n) and (inc,n). Within such a subinterval, the respective

bounding function will be represented by a real number, i.e. we use a bounding

step function for the saved bounding functions. This step function is denoted by

Y , as also in Section 4. The right hand side of the differential equation can then

easily be bounded using the step functions both at t j and at the same time at t j −1.

The updated value of Y
(upper)
(inc,1)

(ti) (i = 1, . . . ,2l) can be calculated applying Y
(lower)
(inc,n)

according to (7):

Y
(upper)
(inc,1)

(ti) = min

{

−α
i

∑
j=1

(

e
Y
(lower)
(inc,n)

(t
2l− j+1

)
−1

)

/2l ; Y
(upper)
(inc,1)

(ti)

}

. (13)

In a similar way, we can obtain the other bounding functions updated using the

stronger bounds given as (8) to (10):

Y
(lower)
(dec,1)

(ti) = max

{

−α
i

∑
j=1

(

e
Y
(upper)
(dec,n)

(t
2l− j+1

)
−1

)

/2l ; Y
(lower)
(dec,1)

(ti)

}

, (14)

Y
(lower)
(inc,1)

(ti) = max

{

M+α
2l

∑
j=i

(

e
Y
(lower)
(inc,n)

(t
2l− j+1

)
−1

)

/2l ; Y
(lower)
(inc,1)

(ti)

}

, (15)

Y
(upper)
(dec,1)

(ti) = min

{

−m+α
2l

∑
j=i

(

e
Y
(upper)
(dec,n)

(t
2l− j+1

)
−1

)

/2l ; Y
(upper)
(dec,1)

(ti)

}

. (16)

On the basis of these bounding functions, we can calculate bounds on the trajectory

for the next, not unit length time intervals. The bounds on the trajectory will provide

lower and upper bounds on the next zero, as discussed in Section 4. Thus we obtain

lower and upper bounds on the trajectory on the time intervals [0,1+PM], and [0,1+
PM], respectively. The formal description of the algorithm for the determination of

the bounds of zeros is given as Algorithm 1. Here we bound the trajectory after the

time 1, or z1 +1, and check whether the respective Y (t j) interval contains zero. The

algorithm is able to identify lower and upper bounds within length 2 intervals, this

was satisfactory for our investigation. The reordering of the 2−l size subintervals

mentioned in Section 7 must be made after Algorithm 1 was run.

Consider now how these bounding functions can be used to improve y
(upper)
(dec,n)

. The

integration of the step function Y (ti), i ∈
(

1, . . . ,2l
)

gives with (11) and (12) the

updated upper and lower bounding functions

Y
(upper)
(dec,n)

(ti) = max

{

α
2l

∑
j=i

(

e
Y
(upper)
(dec,n)

(t
j−2l )−1

)

/2l ; Y
(upper)
(dec,n)

(ti)

}

, (17)
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Algorithm 1 Determination of PM and PM for the bounds for the period length

Input: – s: M or −m as an extremal value of the periodic trajectory,

– α: a parameter of the studied delay differential equation,

– 2l : the number of equal width subintervals in the unit length time

interval,

– L, U : lower and upper bound functions on the unit length time in-

terval.

Output: – An enclosure of the length for the not unit width interval,

bounding of the trajectory from 1 and z1 +1, respectively.

Step 1. Compute Y (ti) (i = 1, . . . ,2l) as the enclosures of the periodic solution on

subintervals of the unit length time period by using the U and L functions on

the (inc,1) and (dec,1) intervals.

Step 2. Set j = (2l +1) and Ylast = [s,s].

Step 3. Enclose Y (t j) with the expression
(

Ylast +
(

−α
(

e
Y (t

j−2l )−1
))

· [0,1/2l ]
)

.

Step 4. Set Ylast = Ylast +
(

−α
(

e
Y (t

j−2l )−1
))

/2l .

Step 5. If 0 /∈ Y (t j−1) and 0 ∈ Y (t j), then calculate the new lower bound for the

length of the not unit width interval: PM = ( j−1)/2l .

Step 6. If 0 ∈ Y (t j−1) and 0 /∈ Y (t j), then calculate the new upper bound for the

length of the not unit width interval: PM = ( j−1)/2l and STOP.

Step 7. Set j = j+1.

Step 8. If j < 2l+2, then continue with Step 3, otherwise STOP.

and

Y
(lower)
(inc,n)

(ti) = min

{

α
2l

∑
j=i

(

e
Y
(lower)
(inc,n)

(t
j−2l )−1

)

/2l ; Y
(lower)
(inc,n)

(ti)

}

. (18)

This completes the description of the iterative procedure to improve bounding func-

tions on the periodic solutions of the delay differential equation (1). The periodic

solution should reach at the time point 1 the maximal value of M, while at the end of

(dec,1) the value −m. We can use this fact as a condition to be checked, whether to

the given M,m pair a periodic solution belongs for the actual α differential equation

parameter. The corresponding inequalities are (cf. (6)):

Y
(upper)
(inc,1)

(t2n)≥ M and Y
(lower)
(dec,1)

(t2n)≤−m.

The checking algorithm is also able to decide on these conditions when the M values

are given as intervals. To exclude such possible intervals of M we apply the above

conditions for the upper bounds of the respective intervals:

Y
(upper)
(inc,1)

(t2n)< M. (19)

By this condition we can delete all points of the respective subintervals.
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7 Extension of the parameter range

In [2] the Wright conjecture was proven for α values between 1.5 and 1.5706. We

continued the computational part of the proof with unchanged theoretical back-

ground. The computational environment was a blade server with 12 cores and 24

threads, we set the algorithm parameters in the same way for all checked new subin-

tervals. In this way, the computation times in Table 1 reflect well the necessary

increasing computational complexity.

Table 1

The CPU time requirements of the proven α intervals.

Interval CPU time in hours

[1.57060,1.57061] 56.9
[1.57061,1.57062] 64.9
[1.57062,1.57063] 83.7
[1.57063,1.57064] 119.4
[1.57064,1.57065] 141.2

Seeing the data in Table 1 we can draw the conclusion that the necessary com-

putation times for proving new subintervals with unchanged algorithm parameters

grows in a highly nonlinear way. That confirms our earlier conclusion drawn in [2]

that additional theoretical insight should be utilized to achieve a substantial progress

in the proven α values. After submitting our manuscript, J. Bouwe van den Berg

and J. Jaquette published their theoretical proof on the remaining part of Wright’s

conjecture [3], that was based on our earlier computational result [2]. It confirms

indirectly, that our bounding scheme approach is justified for the larger part of the

α parameter interval in the conjecture.

Acknowledgement. The research work was partially supported by the EFOP-3.6.3-

VEKOP-16-2017-00002 project ”Integrated program for young research associates

in the fields of informatics and computer science”. The authors are grateful for the

coding and testing support given by Zsolt Bagóczki.
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Abstract: We develop and test a Bolzano or bisection type global optimization algorithm for

continuous real functions over a rectangle. The suggested method combines the branch and

bound technique with an always convergent solver of underdetermined nonlinear equations.

The numerical testing of the algorithm is discussed in detail.

Keywords: global optimum, nonlinear equation, always convergent method, Newton method,

branch and bound algorithms, Lipschitz functions

1 Introduction

In this paper we study the minimization problem

f (x)→ min ( f : Rn → R, x ∈ X =×n
i=1 [li,ui]) (1)

with f ∈C (X), and develop a method to find its global minimum. Assume that

[xsol , i f lag] = equation solve( f ,c) (2)

denotes a solution algorithm for the single multivariate equation

f (x) = c (x ∈ X) (3)

such that i f lag= 1, if a true solution xsol ∈X exists (that is f (xsol) = c), and i f lag=
−1, otherwise.

Let fmin = min{ f (x) |x ∈ X} be the global minimum of f , and let b1 ∈R any lower

bound of f such that fmin ≥ b1. Let z0 ∈ D f be any initial approximation to the

global minimum point ( f (z0)≥ b1). The suggested algorithm then takes the form:
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Data: a1 = f (z1), b1, i = 1

1 while ai −bi > tol do

2 ci = (ai +bi)/2

3 [ξ , i f lag] = equation solve( f ,ci);
4 if i f lag = 1 then

5 zi+1 = ξ , ai+1 = f (ξ ), bi+1 = bi;

6 else

7 zi+1 = zi, ai+1 = ai, bi+1 = ci;

8 end

9 i = i+1

10 end

Algorithm 1.

Using the idea of Algorithm 1 we can also determine a lower bound of f , if such a

bound is not known a priori (see later or [1]). Algorithm 1 has certain conceptual

similarities with the bisection algorithms of Shary [30], [31] and Wood [40], [41].

Theorem 1. Assume that f : Rn →R is continuous and bounded from below by b1.

Then Algorithm 1 is globally convergent in the sense that f (zi)→ fmin.

Proof. At the start we have z1 and the lower bound b1 such that f (z1) ≥ b1. Then

we take the midpoint of this interval, i.e. c1 = ( f (z1)+b1)/2. If a solution ξ exists

such that f (ξ ) = c1 (i f lag = 1), then c1 = f (z2) ≥ fmin ≥ b1 holds by the initial

assumptions. If there is no solution of f (ξ ) = c1 (i.e. i f lag =−1), then c1 < fmin.

By continuing this way we always halve the inclusion interval (bi, f (zi)) for fmin.

Hence the method is convergent in the sense that f (zi)→ fmin. �

Note that sequence {zi} is not necessarily convergent.

The performance of Algorithm 1 clearly depends on the equation solver, which for

n > 1, has to solve a sequence of underdetermined equations of the form (3).

In paper [1] we tested a version of Algorithm 1 that used a locally convergent non-

linear Kaczmarz method [38], [23], [24], [22] and a local minimizer for acceleration

as well. The algorithm showed fast convergence in most of the test problems, but in

some cases it also showed numerical instability, when ‖∇ f (zk)‖ was close to zero.

This and later experiments indicated that only ”globally convergent” and gradient

free solvers are useful in the above scheme at the price of loosing speed.

Hence in [2], for one dimensional Lipschitz functions, we developed and success-

fully tested a version of Algorithm 1 that is based on an always convergent iteration

method of Szabó [36], [37].

Here we investigate two versions of Algorithm 1 that use an always convergent

iteration method (Galántai [14]) for solving equations of the form (3). This solver

is based on continuous space-filling curves lying in the rectangle X and it has a kind

of monotone convergence to the nearest zero on the given curve, if it exists, or the

iterations leave the region in a finite number of steps.

Definition 1. Let r : [0,1] → [0,1]n (n ≥ 2) be a continuous mapping. The curve
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r = r (t) (t ∈ [0,1]) is space-filling if r is surjective.

Given a space-filling curve r : [0,1]→ [0,1]n and the rectangle X =×n
i=1 [li,ui], the

mapping

hi (t) = (ui − li)ri (t)+ li, i = 1, . . . ,n

clearly fills up the whole rectangle X .

The use of space-filling curves in optimization was first suggested by Butz [5], [6],

and later by Strongin and others (see, e.g. [34], [35], [32]).

These methods reduce problem (1) to the one dimensional problem

f (h(t))→ min (t ∈ [0,1])

using mainly the Hilbert space filling function and one dimensional global mini-

mizers. We note that Butz [8] suggested the use of Hilbert’s space-filling functions

for solving nonlinear systems as well (see also [14]). However these dimension re-

duction type minimization methods are criticized by various authors pointing out

the limited use, speed and other matters (see, e.g. Törn and Zilinskas [39] or Pintér

[28]). Using complexity results of Nemirovksy and Yudin [27] Goertzel [16] argues

in favour of such methods if f is Lipschitz. For the global minimization of Lipschitz

functions, see, e.g. Hansen, Jaumard, Lu [18], [19], [20], [21] and Pintér [28].

Our aim here is only to assess the feasibility and reliability of Algorithm 1 using

space-filling based equation solvers, which seems to be a new approach.

Instead of space-filling curves we can also use α-dense curves introduced by Cher-

ruault and Guillez (see, e.g. [9], [17] or [10]).

Definition 2. Let I = [a,b]⊂ R be an interval and X =×n
i=1 [li,ui]⊂ R

n be a rect-

angle. The map x : I → X is an α-dense curve, if for every x ∈ X, there exists a t ∈ I

such that ‖x(t)− x‖ ≤ α .

The α-dense curves are not space-filling functions. Note that the practical approxi-

mations of space-filling curves are also α-dense curves for some α . For 2D, the kth

approximating polygon of the Hilbert curve is α-dense with α ≤
√

2/22k (see, e.g.

Sagan [29]). Recently Mora [25] characterized the connection of space-filling and

α-dense curves.

In the rest of the paper we define the class of always convergent methods for solving

nonlinear equations in Section 2. Details and the results of numerical testing will be

given in Section 3. The numerical testing was performed on a set of 2D Lipschitz

continuous problems.

We close the paper with conclusions and the appendix of test problems.

2 Always convergent methods for nonlinear equations

Consider nonlinear equations of the form

f (x) = 0 ( f : Rn → R
m, x ∈ X =×n

i=1 [li,ui]) , (4)
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where f is continuous on the rectangle X .

Assume that a continuous curve Γ = {r (t) : 0 ≤ t ≤ 1} ⊂ X is given. We seek for

the solution of f (x) = 0 on the curve Γ, that is the solution of equation

f (r (t)) = 0 (t ∈ [0,1]) , (5)

which is equivalent to the real equation

‖ f (r (t))‖= 0 (t ∈ [0,1]) . (6)

Theorem 2. (Galántai [14]). Assume that f : Rn → R
m is continuous on the rect-

angle X = ×n
i=1 [li,ui] and Γ = {r (t) : 0 ≤ t ≤ 1} ⊂ X is a continuous curve. Let

ω f and ωr be the modulus of continuity of f on X and Γ on [0,1], respectively. As-

sume that ρ f ,ρr : [0,∞) → [0,∞) are continuous and strictly monotone increasing

functions so that

ρ f (0) = 0, ρ f (δ )≥ ω f (δ ) (δ ∈ [0,diam(X)]) , lim
δ→∞

ρ f (δ ) = ∞ (7)

and

ρr (0) = 0, ρr (δ )≥ ωr (δ ) (δ ∈ [0,τ]) , lim
δ→∞

ρr (δ ) = ∞ (8)

hold, respectively. Furthermore assume that

(a) F (x,y) is continuous in [0,1]× [0,∞);
(b) x ≥ 0, F (x,y) = x ⇔ y = 0;

(c) F (x,y)< x (x ∈ [0,1], y > 0);

(d) For x > ξ (x,ξ ∈ [0,1]) and 0 ≤ y ≤ x−ξ , F (x,y)≥ ξ .

(e) F (x,y) is strictly monotone increasing in x, and strictly monotone decreasing in

y;

Define ϕ (t) = ρ−1
r

(

ρ−1
f (‖ f (r (t))‖)

)

(t ∈ [0,1]). Let t0 = 1 and assume that

ϕ (1)> 0. Define

ti+1 = F (ti,ϕ (ti)) (i = 0,1,2, . . .). (9)

Then {ti} is a strictly monotone decreasing sequence that converges to ξmax if a root

ξ of ‖ f (r (t))‖ = 0 exists in [0,1]. If no root exists, then the sequence {ti} leaves

the interval [0,1] in a finite number of steps.

For the proof of theorem, see [14] or [15]. If Γ is a space-filling curve, then the

method clearly always convergent in the sense that it either converges to a solu-

tion (if exists) or it leaves the region in a finite number of iterations (if no solution

exist). If one selects a curve Γ that is not space-filling, the algorithm may fail to

find a zero. Note however that the space-filling functions used in practice are only

approximations to the true ones.

A function f is said to be Lipschitz β (0 < β ≤ 1 ) with the Lipschitz constant L,

that is f ∈LipLβ , if

‖ f (x)− f (y)‖ ≤ L‖x− y‖β (

x,y ∈ D f

)

. (10)
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Assume that f ∈LipL f
β (0 < β ≤ 1). Then ω f (δ ) ≤ L f δ β and we can select

ρ f (δ ) = L f δ β and ρ−1
f (δ ) =

(

δ
L f

)1/β
. Similarly, if curve Γ is LipLΓ

µ (µ ∈ (0,1]),

that is

‖r (s)− r (t)‖ ≤ LΓ |s− t|µ (t,s ∈ [0,τ]) , (11)

then ωr (δ ) ≤ LΓδ µ and so we can take ρr (δ ) = LΓδ µ and ρ−1
r (δ ) =

(

δ
LΓ

)1/µ
.

Thus

ϕ (t) = ρ−1
r ρ−1

f (‖ f (r (t))‖) = 1

L
1
µ

Γ

(‖ f (r (t))‖
L f

) 1
µβ

. (12)

Based upon the numerical testing [14] we select F (x,y) = x− y, and the method

ti+1 = ti −ϕ (ti) (i = 0,1, . . .) . (13)

Here we use the Hilbert space filling curve (see, e.g. [33], Butz [5], [7], [29], [3],

[35], [32]).

Lemma 1. The Hilbert mapping rH : [0,1]→ [0,1]n is space-filling, nowhere differ-

entiable and LipK µ with LΓ = 2
√

n+3 and µ = 1/n:

‖rH (s)− rH (t)‖ ≤ LΓ |s− t|1/n (s, t ∈ [0,1]) . (14)

For a proof, see, e.g. [42]. For n = 2, the Lipschitz constant LΓ = 2
√

5 can be

replaced by the sharper value LΓ =
√

6 (Bauman [4]). The following figure shows

the recursive kth approximation of the Hilbert curve for k = 6.

Similarly to space-filling functions there are many α-dense curves (see, e.g. [10]).

Here we use the α-dense curve of Cherruault [10] given by

xi (t) =
1

2
(1− cos(ωi2πt)) , i = 1, . . . ,n (15)

with ωi = σ i (for reasons, see [14]). For n = 2 and σ = 1000, α ≈ 0.0044. This

curve is smooth (µ = 1) unlike the Hilbert curve, but it has a huge Lipschitz constant

(see, e.g. [14]). The following figure shows the Cherruault curve for σ = 100 in 777

points.

3 The numerical experiments

We tested two algorithms. Namely, Algorithm 1 with given lower estimates for

the global minimum and the following modification of Algorithm1 that constructs a

lower bound for fmin.
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Hilbert curve approximation for k=6

Figure 1

Hilbert curve approximation for k = 6.

Data: a1 = f (z1), i f lag = 1, d = 1, c = a1 −d

1 while i f lag = 1 do

2 [ξ , i f lag] = equation solve( f ,c);
3 if i f lag = 1 then

4 a1 = f (ξ ), z1 = ξ , d = 2d, c = a1 −d;

5 else

6 b1 = c;

7 end

8 end

Data: i = 1

9 while ai −bi > tol do

10 ci = (ai +bi)/2

11 [ξ , i f lag] = equation solve( f ,ci);
12 if i f lag = 1 then

13 zi+1 = ξ , ai+1 = f (ξ ), bi+1 = bi;

14 else

15 zi+1 = zi, ai+1 = ai, bi+1 = ci;

16 end

17 i = i+1

18 end

Algorithm 2.

We used the numerical solver (13) with the exit condition

‖ f (r (ti))‖ ≤ tol ∨ i = itmax. (16)
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Cherruault 2D curve for sigma=100

Figure 2

Cherruault 2D curve for σ = 100.

We selected a set of two dimensional Lipschitz 1 test problems whose Lipschitz

constants were numerically estimated using standard techniques (see, e.g. [19],

[28]).

We used two versions of equation solver (13): one that is based on Hilbert’s space-

filling curve and a second one that is based on Cherruault’s α-dense curve (15).

For the computation of the 2D Hilbert curve we used the algorithm of page 52 of

Bader [3] with depth = 54, that computes the points of the curve with an error

proportional to 2−54 = 5.5511×10−17.

Since the stepsize ϕ (ti) can be arbitrarily small, it is reasonable to impose the lower

bound ϕ (ti)≥ εmachine on the iterates ti. For f ∈LipL f
1 and r ∈LipLΓ

1
2
, this holds if

and only if ‖ f (r (ti))‖≥ L f LΓε
1/2

machine ≈ 6.67×10−8L f and we have the lower bound

tol ≥ 6.67× 10−8L f for the tol parameter. The computer experiments of [14] and

also of Butz [8] indicate that tol can not be to small. Here we selected tol = 1e−3

and itmax = 1e+ 6 for the Hilbert’s curve based solver and itmax = 1e+ 5 for the

α-dense based solver.

The computations were carried out in Matlab R2011b (64 bit) on a PC with Win-

dows 7 operating system and Intel I7 processor.

The CPU times and absolute errors of Algorithms 1 and 2 using Hilbert’s curve

based solver (Bolzano-v1H, Bolzano-v2H) are shown on the following two figures.
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Figure 3

CPU time and absolute error of Algorithm 1 using Hilbert’s curve based solver.
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Figure 4

CPU time and absolute error of Algorithm 2 using Hilbert’s curve based solver.

Here we can observe extremely big computational times for both algorithms (as

expected) and only a few absolute errors greater than 10× tol. The computational

times of Algorithm 2 are somewhat less than in the case of Algorithm 1 (the average
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CPU time of Algorithm 2 is 797.89 sec. in opposition to the average CPU time of

Algorithm 1, which is 892.49 sec.). The absolute errors for Algorithm 1 exceed

10× tol = 1e−2 for the test problems number 7, 8, 14 and 22 while for Algorithm

2 the corresponding cases are the test problems number 7,8,9,14 and 22. A close

inspection of these cases reveals that the stepsize ϕ (ti) of algorithm (13) become

less than εmachine, while ti was much bigger (only for cases c≈ fmin). Hence ti+1 = ti
was repeated due to the floating point arithmetic and it was stopped only by itmax.

This problem can be overcome using multiple precision arithmetic.

The CPU times and absolute errors of Algorithms 1 and 2 using α-dense curve

based solver (Bolzano-v1C, Bolzano-v2C) are shown on Figures 5 and 6.
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Figure 5

CPU time and absolute error of Algorithm 1 using α-dense curve based solver
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Figure 6

CPU time and absolute error of Algorithm 2 using α-dense curve based solver.

For these versions of Algorithms 1 and 2, the computational times are significant

less, while the achieved precision is also better. For Algorithm 1, none of the abso-

lute errors exceeds 10× tol = 1e−2, while for Algorithm 2, there is only one case,

test number 26, when the error exceed 1e−2. It is, in fact, 0.010507.

A comparison of the four versions using the performance profile of Moré et al. [13],

[26] clearly shows the ranking of the Algorithms (see Figure 7).
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4 Conclusions

In the paper we described two general algorithms to find a global minimum of a

continuous function in an n-dimensional rectangle. The key point of our algorithms

is to solve underdetermined nonlinear equations of the form f (x) = c with such a

method that gives unambiguously if the solution exists or not. For this purpose we

used a method that exploits the Hilbert space filling function and Cherruault’s α
dense function. We tested the algorithms for 40 two dimensional well-known test

problems. The experimental results clearly indicate that the solutions obtained by

the α-dense function based algorithms are much more accurate and require much

less execution time than the corresponding algorithms using the Hilbert space filling

function. The obtained results show also the reliability of the algorithms in the

numerical implementations too. Finally we have to mention that we still need to

analyze the cases when n > 2.

5 Appendix

Here we enlist the test problems.

1. Adjiman function

f (x) = cos(x1)sin(x2)−
x1

x2
2 +1

(x ∈ [−1,2]× [−1,1]) .
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2. Alpine 1 function

f (x) =
n

∑
i=1

|xi sin(xi)+0.1xi| (x ∈ [−10,10]n) .

3. Alpine 2 function

f (x) =
n

∏
i=1

√
xi sin(xi) , (x ∈ [0,10]n) .

4. Bohachevsky 1 function

f (x) = x2
1 +2x2

2 −0.3cos(3πx1)−0.4cos(4πx2)+0.7
(

x ∈ [−1,1]2
)

.

5. Bohachevsky 2 function

f (x) = x2
1 +2x2

2 −0.3cos(3πx1)cos(4πx2)+0.3
(

x ∈ [−1,1]2
)

.

6. Bohachevsky 3 function

f (x) = x2
1 +2x2

2 −0.3cos(3πx1 +4πx2)+0.3
(

x ∈ [−1,1]2
)

.

7. Booth function

f (x) = (x1 +2x2 −7)2 +(2x1 + x2 −5)2
(

x ∈ [−10,10]2
)

.

8. Branin function

f (x) =

(

x2 −
5.1

4π2
x2

1 +
5

π
x1 −6

)2

+10

(

1− 1

8π

)

cos(x1)+10,

where x ∈ [−5,10]× [0,15].

9. Brown almost linear function

f (x) =
n

∑
i=1

f 2
i (x) , (x ∈ [−1,2]n) ,

fi (x) = xi +
n

∑
j=1

x j − (n+1) , 1 ≤ i ≤ n−1,

fn (x) =

(

n

∏
j=1

x j

)

−1.

10. Bukin 12 function

f (x) = 1000(|x1 +5−ρ cos(ρ)|+ |x2 +5−ρ sinρ|)+ρ,

ρ =

√

(x1 +5)2 +(x2 +5)2, x ∈ [−10,0]2 .
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11. Chained crescent function 1

f (x) = max

{

n−1

∑
i=1

(

x2
i +(xi+1 −1)2 + xi+1 −1

)

,

n−1

∑
i=1

(

−x2
i − (xi+1 −1)2 + xi+1 +1

)

}

,

where x ∈ [−1,1]n.

12. Chained crescent function 2

f (x) =
n−1

∑
i=1

max
{

x2
i +(xi+1 −1)2 + xi+1 −1,−x2

i − (xi+1 −1)2 + xi+1 +1
}

x ∈ [−1,1]n .

13. Chained LQ function

f (x) =
n−1

∑
i=1

max
{

−xi − xi+1,−xi − xi+1 +
(

x2
i + x2

i+1 −1
)}

(x ∈ [−1,1]n) .

14. Chained Mifflin function

f (x) =
n−1

∑
i=1

(

−xi +2
(

x2
i + x2

i+1 −1
)

+1.75
∣

∣x2
i + x2

i+1 −1
∣

∣

)

(x ∈ [−1,4]n) .

15. Chichinadze function

f (x) = x2
1 −12x1 +11+10cos

(π

2
x1

)

+8sin(πx1)−
1√
2π

e−
(x2−0.5)2

2

x ∈ [0,10]× [0,5] .

16. Cosine mixture function

f (x) =−0.1
n

∑
i=1

cos(5πxi)+
n

∑
i=1

x2
i (x ∈ [−1,1]n , −0.1 < 0 < 5π) .

17. Cross in tray function

f (x) =−0.0001







∣

∣

∣

∣

∣

∣

∣

sin(x1)sin(x2)e

∣

∣

∣

∣

∣

100−
√

x2
1
+x2

2
π

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+1







0.1

(

x ∈ [−10,10]2
)

.

18. Deb function

f (x) =−1

n

n

∑
i=1

sin6 (5πxi) (x ∈ [−1,1]n) .
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19. Egg crate function

f (x) = x2
1 + x2

2 +25
(

sin2 (x1)+ sin2 (x2)
)

(

x ∈ [−5,5]2
)

.

20. El-Attar-Vidyasagar-Dutta function

f (x) =
∣

∣x2
1 + x2 −10

∣

∣+
∣

∣x1 + x2
2 −7

∣

∣+
∣

∣x2
1 − x3

2 −1
∣

∣

(

x ∈ [−5,5]2
)

.

21. Hosaki function

f (x) =

(

1−8x1 +7x2
1 −

7

3
x3

1 +
1

4
x4

1

)

x2
2e−x2 (x ∈ [0,5]× [0,6]) .

22. Levy function

f (x) = sin2 (πy1)+
n−1

∑
i=1

(yi −1)2
(

1+10sin2 (πyi +1)
)

+

(yn −1)2
(

1+10sin2 (2πyn)
)

,

where

yi = 1+
xi −1

4
(i = 1, . . . ,n) , x ∈ [−10,10]n .

23. MAXHILB function

f (x) = max
1≤i≤n

∣

∣

∣

∣

∣

n

∑
j=1

x j

i+ j−1

∣

∣

∣

∣

∣

(x ∈ [−1,1]n) .

24. McCormick function

f (x) = sin(x1 + x2)+(x1 − x2)
2 − 3

2
x1 +

5

2
x2 +1 (x ∈ [−1.5,4]× [−3,3])

25. Michalewicz function

f (x) =−
n

∑
i=1

sin(xi)sin2m

(

ix2
i

π

)

(x ∈ [0,π]n , m = 10) .

26. Mishra 2 function

f (x) =

(

1+n− 1

2

n−1

∑
i=1

(xi + xi+1)

)n− 1
2 ∑

n−1
i=1 (xi+xi+1)

(x ∈ [0,1]n) .

27. Multimod function

f (x) =
n

∑
i=1

|xi|
n

∏
j=1

∣

∣x j

∣

∣ (x ∈ [−10,10]n) .
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28. Nesterov 2 function

f (x) =
1

4
(x1 −1)2 +

n−1

∑
i=1

∣

∣xi+1 −2x2
i +1

∣

∣ (x ∈ [0,2]n) .

29. Nesterov 3 function

f (x) =
1

4
|x1 −1|+

n−1

∑
i=1

|xi+1 −2 |xi|+1| (x ∈ [0,2]n) .

30. Parsopoulos function

f (x) = cos(x1)
2 + sin(x2)

2
(

x ∈ [−5,5]2
)

.

31. Pathological function

f (x) =
n−1

∑
i=1






0.5+

sin
(√

100x2
i + x2

i+1

)2

−0.5

1+0.001
(

x2
i −2xixi+1 + x2

i+1

)2






(x ∈ [−100,100]n) .

32. Pintér’s function

f (x) =
n

∑
i=1

ix2
i +

n

∑
i=1

isin2 (xi−1 sinxi − xi + sinxi+1)

+
n

∑
i=1

i ln
(

1+ i
(

x2
i−1 −2xi +3xi+1 − cosxi +1

)2
)

,

x0 = xn, xn+1 = x1, x ∈ [−1,1]n .

33. Powell sum function

f (x) =
n

∑
i=1

|xi|i+1 (x ∈ [−1,1]n) .

34. Trigonometric function

f (x) =
n

∑
i=1

f 2
i (x) , (x ∈ [−1,1]n) ,

fi (x) = n−
n

∑
j=1

cos(x j)+ i(1− cos(xi))− sin(xi) .

35. Ursem F1 function

f (x) =−sin(2x1 −0.5π)−3cos(x2)−0.5x1 (x ∈ [−2.5,3]× [−2,2]) .
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36. Ursem F3 function

f (x) =−sin(2.2πx1 +0.5π)
(3−|x1|)(2−|x2|)

4

− sin
(

0.5πx2
2 +0.5π

) (2−|x1|)(2−|x2|)
4

,

where x ∈ [−2,2]× [−1.5,1.5].

37. Ursem F4 function

f (x) =−3sin(0.5πx1 +0.5π)
2−
√

x2
1 + x2

2

4

(

x ∈ [−2,2]2
)

.

38. Vincent function

f (x) =−
n

∑
i=1

sin(10log(xi)) (x ∈ [0.25,10]n) .

39. W function

f (x) = 1− 1

n

n

∑
i=1

cos(kxi)e−
x2
i
2 (x ∈ [−π,π]n) ,

where k is a parameter. k = 10 for n = 2.

40. Yang function 1

f (x) =

(

e
−∑

n
i=1

(

xi
β

)2m

−2e−∑
n
i=1(xi−π)2

)

n

∏
i=1

cos2 (xi) ,

m = 5, β = 15, x ∈ [−1,4]n
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Abstract: This paper elaborates a new probability distribution, namely, the epsilon proba-

bility distribution with implications for reliability theory and management. This probability

distribution is founded on the so-called epsilon function that is introduced here. It is also

shown that the asymptotic epsilon function is just an exponential function. The properties

of this probability distribution suggest that it may serve as a viable alternative to the expo-

nential probability distribution. As the epsilon probability distribution function is a power

function, it is more convenient than the exponential probability distribution function from a

computational point of view. The main findings and a practical example indicate that the new

probability distribution can be utilized to describe the probability distribution of the time to

first failure random variable both in the second and third phases of the hazard function.

Keywords: exponential probability distribution; epsilon probability distribution; hazard func-

tion, failure rate modeling

1 Introduction

The exponential probability distribution as one of the key distributions in the theory

and practice of reliability management [3] [4] plays a significant role in analyz-

ing many data sets obtained from life-tests, and in the use of order statistics. This

distribution also appears frequently in lifetime and reaction time studies. It has sev-

eral remarkable statistical properties, most notably, its characterization through the

lack of memory property. Furthermore, it provides mathematical traceability [5].

Consequently, there is extensive literature on the theory and applications of the ex-

ponential distribution from the 1930s (e.g. [6], [7], [8]). Weibull [9] considered an
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extension of the exponential distribution referred to as Weibull distributions, includ-

ing the exponential distribution as a special case where the shape parameter equals

one. Davis [10] also discussed the analysis of failure rate data using the exponential

distribution. Characterizations of the exponential distribution originate from math-

ematicians [11] [12]. Some researchers derived characterizations of the exponential

distribution which are modifications of characterizations of the normal distribution

[13] [14]. Since then, the characterization results for the exponential distribution

have been paid significant attention [15].

In reliability analysis the negative exponential model provides simple, closed-form

solutions to many problems [16]. Weibull’s classic generalization is usually applied

for modelling systems with monotone failure rates [9]. However, according to data

in reliability analysis, the operation of a device population can generally be divided

into three distinct periods called infancy, useful life, and wear-out periods with each

region corresponding to a specific type of failure. This hazard-rate curve, which typ-

ically maps the failure rate versus time, has been verified by experience for many

types of products. In reliability theory this bathtub-shape is widely used to describe

the failure patterns of different products. The relevant literature regarding the bath-

tub curve is quite diverse. An overview of bathtub-shaped failure rate distributions

are provided by [17] and [18]. The exponential distribution is widely applied for

modeling the bathtub-shaped failure rate, mainly the useful life period [19], [20],

[22].

Models which allow only monotone failure rates might not be appropriate or ad-

equate for modeling the populations that give rise to such data. There have been

several attempts to address the need for a family of distributions which allow flex-

ibility in modeling. In this paper, a new probability distribution, namely, the ep-

silon probability distribution is introduced and its application in reliability theory

is discussed. This novel probability distribution is founded on the so-called epsilon

function which, just like the exponential function, may be deduced from the nth or-

der epsilon differential equation. The solution of the zero order epsilon differential

equation is the exponential function, while the solution of the first order epsilon dif-

ferential equation is the epsilon function. The epsilon probability distribution has

two parameters; namely a λ parameter that has the same meaning as the λ parame-

ter in the exponential probability distribution, and a d parameter that determines the

domain (0,d) where the epsilon probability distribution is defined (d > 0). Next, it

is shown that the asymptotic epsilon probability distribution is just the exponential

probability distribution, which means in practice that the exponential probability

distribution with a parameter λ can be substituted by the epsilon probability distri-

bution that has parameters λ and d. Besides the connection between the epsilon and

the exponential functions, the relationship between continuous-valued logic and the

epsilon function is also highlighted. Namely, the generator function of the Dombi

operators [20] may be considered as a special case of the epsilon function.

The remaining part of the paper is organized as follows. In Section 2 the epsilon

function, its basic properties and its connection with the exponential function are

introduced. In Section 3 we define the epsilon probability distribution and introduce

its asymptotic properties. In Section 4 its application in reliability theory is demon-
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strated through a practical example. Finally, key conclusions are drawn related to

the new probability distribution.

2 Epsilon Function

Here we introduce the nth order epsilon differential equation.

Definition 1. We define the nth order epsilon differential equation as

d f (x)

dx
= λ

(

d2

d2 − x2

)n

f (x), (1)

where λ ∈ R, λ 6= 0, d ∈ R, d > 0, x ∈ R, x 6= d, f (x)> 0, n ∈ N.

Lemma 1. If n = 0 and x ∈R, then the solution of the nth order epsilon differential

equation is

f (x) = eλx+C, (2)

where C ∈ R.

Proof. If n = 0, then the differential equation in (1) may be written as

d f (x)

dx
= λ f (x). (3)

Separating the variables in (3) results in

∫

1

f (x)
d f (x) = λ

∫

dx. (4)

When we integrate both sides of this equation, we get

ln | f (x)|= λx+C, (5)

and utilizing the fact, that f (x)> 0 means that

f (x) = eλx+C, (6)

where C ∈ R.

Note that if we wish f (x) to satisfy the condition f (0) = 1, then parameter C in (6)

needs to be set to 0.

Lemma 2. If n = 1 and x ∈ (−d,+d), then the solution of the nth order epsilon

differential equation is

f (x) =C

(

x+d

d − x

)λ d
2

, (7)

where C > 0.
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Proof. If n = 1, then the differential equation in (1) has the form

d f (x)

dx
= λ

d2

d2 − x2
f (x). (8)

This equation may be written as

d f (x)

dx
= λ

d2

(d + x)(d − x)
f (x). (9)

Since

1

(d + x)(d − x)
=

1

2d

(

1

x+d
+

1

d − x

)

, (10)

Equation (9) may be written as

d f (x)

dx
= λ

d

2

(

1

x+d
+

1

d − x

)

f (x), (11)

and separating the variables in (11) results in

∫

1

f (x)
d f (x) = λ

d

2

∫

(

1

x+d
+

1

d − x

)

dx. (12)

After integrating both sides of this equation, we get

ln | f (x)|= λ
d

2
ln |x+d|−λ

d

2
ln |d − x|+ lnC, (13)

where C > 0. Utilizing the fact, that x ∈ (−d,+d) and f (x)> 0 means that

f (x) =C

(

x+d

d − x

)λ d
2

. (14)

Note that if we wish f (x) to satisfy the condition f (0) = 1, then parameter C in

(14) needs to be set to 1. In this case, we call the solution of the first order epsilon

differential equation the epsilon function.

Definition 2. The epsilon function ελ ,d(x) is given by

ελ ,d(x) =

(

x+d

d − x

)λ d
2

, (15)

where λ ∈ R, λ 6= 0, d ∈ R, d > 0, x ∈ (−d,+d).

2.1 Some Basic Properties of the Epsilon Function

Here, we state the most important properties of the epsilon function; namely, conti-

nuity, monotonity, limits and convexity.
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Continuity. ελ ,d(x) is a continuous function in (−d,+d).

Monotonicity.

• If λ > 0, then ελ ,d(x) is strictly monotonously increasing

• If λ < 0, then ελ ,d(x) is strictly monotonously decreasing

• If λ = 0, then ελ ,d(x) has a constant value of 1

in the interval (−d,+d).

Limits.

lim
x→−d+

ελ ,d(x) =

{

0, if λ > 0

∞, if λ < 0
(16)

lim
x→+d−

ελ ,d(x) =

{

∞, if λ > 0

0, if λ < 0.
(17)

Note that if λ > 0, then ελ ,d(−d) = 0, and if λ < 0, then ελ ,d(d) = 0.

Convexity. The second derivative of ελ ,d(x) is

d2ελ ,d(x)

dx2
= λ

d2

(d2 − x2)2
ελ ,d(x)

(

2x+λd2
)

, (18)

whose sign depends on λ and 2x+λd2. Thus,

• if λ > 0 and x <−λd2

2
, then ελ ,d(x) is concave,

• if λ > 0 and x >−λd2

2
, then ελ ,d(x) is convex,

• if λ < 0 and x <−λd2

2
, then ελ ,d(x) is convex,

• if λ < 0 and x >−λd2

2
, then ελ ,d(x) is concave.

That is, ελ ,d(x) has a single inflection point at −λd2

2
. Notice that −λd2

2
lies in the

interval (−d,d), only if |λ |d < 2. Hence, ελ ,d(x) is strictly convex in (−d,d), if

|λ |d ≥ 2.

Figure 1 shows two examples of the epsilon function curve with positive and nega-

tive λ parameter values.

2.2 Connection with the Exponential Function

Lemma 1 and Lemma 2 suggest an important connection between the exponential

function and the epsilon function. Namely, the solution of the zero order epsilon

differential equation is the exponential function, while the solution of the first order
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Examples of epsilon function curves

epsilon differential equation is the epsilon function. Table 1 summarizes how the

exponential function and the epsilon function can be derived from the the nth order

epsilon differential equation.

Table 1

The exponential and epsilon functions derived from the nth order epsilon differential equation

Domain n Condition C f (x)

(−∞,∞) 0 f (0) = 1 0 eλx

(−d,+d) 1 f (0) = 1 1 ελ ,d(x)

Beyond the fact that both the exponential and the epsilon functions can be derived

from the nth order epsilon differential equation, the following theorem highlights an

additional connection between these two functions.

Theorem 1. For any x ∈ (−d,+d), if d → ∞, then

ελ ,d(x)→ eλx. (19)
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Proof. Let x have a fixed value, x ∈ (−d,+d).

lim
d→∞

ελ ,d(x) = lim
d→∞

(

x+d

d − x

)λ d
2

= lim
d→∞

(

(

d − x+2x

d − x

)d
)

λ
2

=

= lim
d→∞

(

(

1+
2x

d − x

)d
)

λ
2

.

(20)

Since x is fixed, if d → ∞, then ∆ = d − x → ∞ and so the previous equation can be

continued as follows.

lim
d→∞

(

(

1+
2x

d − x

)d
)

λ
2

= lim
∆→∞

(

(

1+
2x

∆

)∆+x
)

λ
2

=

=

(

lim
∆→∞

(

1+
2x

∆

)∆

lim
∆→∞

(

1+
2x

∆

)x
)

λ
2

=
(

e2x
)

λ
2 ·1

λ
2 = eλx.

(21)

Based on Theorem 1, we may state that with respect to parameter d (d → ∞), the

asymptotic epsilon function is just the exponential function. Actually, if x ≪ d,

then ελ ,d ≈ eλx; that is, if d is sufficiently large, then the epsilon function suitably

approximates the exponential function.

2.3 Connection with Dombi Operators in Continuous-valued
Logic

The Dombi operator [2] in continuous-valued logic is given by

oα(x1,x2, ...,xn) =
1

1+

(

n

∑
i=1

(

1−xi
xi

)α
)1/α

, (22)

where x1,x2, ...,xn are continuous-valued logic variables. If α ≥ 0, then the Dombi

operator is a conjunction operator; if α ≤ 0, then the Dombi operator is a disjunction

operator. The generator function gα(x) of the Dombi operators in continuous-valued

logic is given by

gα(x) =

(

1− x

x

)α

. (23)

Lemma 3. The generator function gα(x) can be derived from the epsilon function

ελ ,d(x) by a linear function transformation.
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Proof. Let us apply the x′ = (x+ d)/(2d) linear transformation to the variable x,

where x ∈ (−d,d), d > 0. After this transformation, the domain of x′ is the interval

(0,1), x = 2dx′−d, and

ελ ,d(x) =

(

x+d

d − x

)λ d
2

=

(

2dx′−d +d

d −2dx′+d

)λ d
2

=

(

x′

1− x′

)λ d
2

=

=

(

1− x′

x′

)−λ d
2

= gα(x
′),

(24)

where α =−λd/2.

Based on this result, the generator function of the Dombi operators may be viewed

as a special case of the epsilon function.

3 Epsilon Probability Distribution

Here, we will define the epsilon probability distribution and show how it is con-

nected with the exponential distribution.

Definition 3. The continuous random variable ξ has an epsilon probability dis-

tribution with the parameters λ > 0 and d > 0, if the probability density function

fλ ,d(x) of ξ is given by

fλ ,d(x) =







0, if x ≤ 0

λ d2

d2−x2 ε−λ ,d(x), if 0 < x < d

0, if x ≥ d,

(25)

where

ε−λ ,d(x) =

(

x+d

d − x

)−λ d
2

. (26)

In order to show that fλ ,d(x) is in fact a probability density function, we will prove

the following lemma.

Lemma 4. The function fλ ,d(x) has the following properties.

1. fλ ,d(x)≥ 0 for any x ∈ R

2.
∞
∫

−∞

fλ ,d(x)dx = 1.

Proof. The first property of fλ ,d(x) trivially follows. The second property of fλ ,d(x)
can be demonstrated by using the definition of ε−λ ,d(x) and the Lemma 2:

∞
∫

−∞

fλ ,d(x)dx =

d
∫

0

λ
d2

d2 − x2
ε−λ ,d(x)dx =

[

−ε−λ ,d(x)
]d

0
= 0− (−1) = 1. (27)
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If the random variable η has an exponential probability distribution with the param-

eter λ > 0, then the probability density function fλ (x) of η is given by

fλ (x) =

{

0, if x ≤ 0

λe−λx, if x > 0.
(28)

The next theorem tells us how the epsilon probability distribution is connected with

the exponential probability distribution.

Theorem 2. For any x ∈ R and λ > 0, if d → ∞, then

fλ ,d(x)→ fλ (x). (29)

Proof. Let x be fixed and let x ∈ R. We will distinguish the following cases.

• If x ≤ 0, then fλ ,d(x) = fλ (x) = 0 holds by definition.

• If x ∈ (0,d), d > 0, then

fλ ,d(x) = λ
d2

d2 − x2
ε−λ ,d(x). (30)

If d → ∞, then

d2

d2 − x2
→ 1, (31)

and following Theorem 1,

ε−λ ,d(x)→ e−λx. (32)

That is, if d → ∞, then

fλ ,d(x)→ λe−λx = fλ (x). (33)

The probability distribution function Fλ ,d(x) of the random variable ξ that has an

epsilon probability distribution with parameters λ > 0 and d > 0 can be derived

from the epsilon probability density function in the following way.

Fλ ,d(x) =

x
∫

−∞

fλ ,d(t)dt =

=































x
∫

−∞

fλ ,d(t)dt =
x
∫

−∞

0dt = 0, if x ≤ 0

0
∫

−∞

0dt +
x
∫

0

λ d2

d2−t2 ε−λ ,d(t)dt, if 0 < x < d

0
∫

−∞

0dt +
d
∫

0

λ d2

d2−t2 ε−λ ,d(t)+
x
∫

d

0dt, if x ≥ d.

(34)
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As

x
∫

0

λ
d2

d2 − t2
ε−λ ,d(t)dt =

[

−ε−λ ,d(t)
]x

0
=

=

[

−

(

t +d

d − t

)−λ d
2

]x

0

=−

(

x+d

d − x

)−λ d
2

− (−1) = 1− ε−λ ,d(x)

(35)

and

d
∫

0

λ
d2

d2 − t2
ε−λ ,d(t)dt = 1, (36)

Fλ ,d(x) may be written as

Fλ ,d(x) =







0, if x ≤ 0

1− ε−λ ,d(x), if 0 < x < d

1, if x ≥ d.
(37)

Note that if the random variable η has an exponential probability distribution with

the parameter λ > 0, then the probability distribution function Fλ (x) of η is given

by

Fλ (x) =

{

0, if x ≤ 0

1− e−λx, if x > 0.
(38)

Theorem 3. For any x ∈ R, λ > 0 and d > 0, if the random variable ξ has an

epsilon probability distribution with the parameters λ and d and the η random

variable has an exponential distribution with parameter λ , then

lim
d→∞

P(ξ < x) = P(η < x). (39)

Proof. Since Fλ ,d(x) = P(ξ < x) and Fλ (x) = P(η < x) for any x ∈ R, using the

definitions of Fλ ,d(x) and Fλ (x), this theorem follows from Theorem 1.

Figure 2 shows some examples of how the density function curve of epsilon prob-

ability distribution can match the density function curve of exponential probability

distribution. In each subplot of Figure 2, the left hand side scale belongs to functions

fλ (x) and fλ ,d(x), while the right hand side scale is connected with the difference

function fλ (x)− fλ ,d(x). We can see that the goodness of approximation improves

as d increases. Similar to Figure 2, Figure 3 shows some examples of how the ep-

silon probability distribution function curve can match the exponential probability

distribution function curve.

Based on Theorem 2, we may state that the asymptotic epsilon probability distribu-

tion is just the exponential probability distribution. Thus, in practical applications,

the exponential probability distribution with a parameter λ can be substituted by the
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Examples of density function curves
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Examples of probability distribution function curves

epsilon probability distribution that has the parameters λ and d, if x ≪ d. It is worth

mentioning that while the exponential probability distribution function is a transcen-

dent function, the epsilon probability distribution function is a power function. This

means that from a computational point of view, the epsilon probability distribution
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function is more convenient than the exponential probability distribution function.

This feature of the epsilon probability distribution further enhances its applicability

in problems where computation time is a critical factor.

From here on, we will use the notations ξ ∼ ε(λ ,d) and η ∼ exp(λ ) to indicate that

ξ has an epsilon probability distribution with the parameters λ > 0 and d > 0, and

η has an exponential distribution with parameter λ , respectively.

3.1 Some Asymptotic Properties of the Epsilon Probability Dis-
tribution

Here, we will show some asymptotic properties of the random variable ξ , where

ξ ∼ ε(λ ,d). Namely, we will show the asymptotic expected value and asymptotic

standard deviation of ξ , and demonstrate the asymptotic memoryless property of ξ .

Asymptotic expected value

Theorem 4. If ξ ∼ ε(λ ,d), then

lim
d→∞

E(ξ ) =
1

λ
, (40)

where E(ξ ) is the expected value of ξ .

Proof. Here, using the definition of the expected value and Theorem 2

lim
d→∞

E(ξ ) = lim
d→∞

∞
∫

0

x fλ ,d(x)dx =

=

∞
∫

0

x

(

lim
d→∞

fλ ,d(x)

)

dx =

∞
∫

0

xλe−λxdx.

(41)

The last integral is the expected value of the random variable η ∼ exp(λ ). It is

known that the expected value E(η) of η is 1/λ and so

lim
d→∞

E(ξ ) =
1

λ
. (42)

Asymptotic standard deviation

Theorem 5. If ξ ∼ ε(λ ,d), then

lim
d→∞

D(ξ ) =
1

λ
, (43)

where D(ξ ) is the standard deviation of ξ .
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Proof. Since D2(ξ ) = E(ξ 2)−E2(ξ ),

lim
d→∞

D2(ξ ) = lim
d→∞

E(ξ 2)− lim
d→∞

E2(ξ ). (44)

Using Theorem 2,

lim
d→∞

E(ξ 2) = lim
d→∞

∞
∫

0

x2 fλ ,d(x)dx =

=

∞
∫

0

x2

(

lim
d→∞

fλ ,d(x)

)

dx =

∞
∫

0

x2λe−λxdx.

(45)

The last integral can be calculated as follows.

∞
∫

0

x2λe−λxdx =
[

x2
(

−e−λx
)]∞

0
−

∞
∫

0

2x(−e−λx)dx =

=
2

λ

∞
∫

0

xλe−λxdx =
2

λ

1

λ
=

2

λ 2
.

(46)

Next, using Theorem 4,

lim
d→∞

E2(ξ ) =
1

λ 2
(47)

and so

lim
d→∞

D2(ξ ) = lim
d→∞

E(ξ 2)− lim
d→∞

E2(ξ ) =
2

λ 2
−

1

λ 2
=

1

λ 2
, (48)

from which after taking into account the fact that the λ parameter always has a

positive value, means that

lim
d→∞

D(ξ ) =
1

λ
. (49)

Asymptotic memoryless property

Definition 4. The random variable ξ is memoryless with respect to t for all ∆t > 0,

if

P(ξ > t +∆t|ξ > t) = P(ξ > ∆t). (50)

It is known that the exponential distribution is the only continuous distribution that is

memoryless. Here, we will show that ξ ∼ ε(λ ,d) is an asymptotically memoryless

random variable, if d → ∞.
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Theorem 6. If ξ ∼ ε(λ ,d), then

lim
d→∞

P(ξ > t +∆t|ξ > t) = lim
d→∞

P(ξ > ∆t). (51)

Proof. Utilizing the definition of the conditional probability and the assumption that

ξ ∼ ε(λ ,d)

P(ξ > t +∆t|ξ > t) =
P(ξ > t +∆t,ξ > t)

P(ξ > t)
=

P(ξ > t +∆t)

P(ξ > t)
=

=
1−Fλ ,d(t +∆t)

1−Fλ ,d(t)
,

(52)

and using (37)

1−Fλ ,d(t +∆t)

1−Fλ ,d(t)
=

ε−λ ,d(t +∆t)

ε−λ ,d(t)
. (53)

Furthermore, utilizing Theorem 1, equations (52) and (53),

lim
d→∞

P(ξ > t +∆t|ξ > t) = lim
d→∞

ε−λ ,d(t +∆t)

ε−λ ,d(t)
=

e−λ (t+∆t)

e−λ t
= e−λ∆t . (54)

Similarly, the right hand side of (51) may be written as

lim
d→∞

P(ξ > ∆t) = lim
d→∞

ε−λ ,d(∆t) = e−λ∆t . (55)

That is, both the left and right hand sides of (51) are equal to e−λ∆t .

4 Application in Reliability Theory

Let the continuous random variable τ be the time to first failure of a component or

system. The conditional probability that this component or system will fail the first

time in the time interval (t, t +∆t], given that it has survived up to time t, can be

calculated as follows:

P(τ ≤ t +∆t|τ > t) =
P(t < τ ≤ t +∆t)

P(τ > t)
=

=
F(t +∆t)−F(t)

1−F(t)
=

F(t +∆t)−F(t)

R(t)
,

(56)

where F(t) is the probability distribution function of τ and R(t) = 1−F(t) is the

survival function of τ . In reliability theory, the failure rate function h(t) for τ is

given by

h(t) = lim
∆t→0

F(t +∆t)−F(t)

∆tR(t)
=

f (t)

R(t)
, (57)
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where f (t) is the probability density function of τ . The hazard function h(t) is also

called the failure rate function. In practice, based on (56) and (57), the quantity

h(t)∆t represents the conditional probability that a component or a system will fail

in the time interval (t, t +∆t], given that it has survived up to time t.

A typical hazard function curve of a component or a system is ”bathtub shaped”;

that is, it can be divided into three distinct phases called the infant mortality pe-

riod, useful life, and wear-out period. During the early life (infant mortality), the

failure rate function decreases with respect to time. In this phase, the failures are

mostly caused by initial weaknesses or defects in the material, defective design, poor

quality control, poor workmanship, and damaged or missing parts in the assembly

phase. In the second phase, which is also known as the useful life, the failure rate

function is constant with respect to time. In this period only random failures occur.

These unexpected failures are caused by over-stress conditions and they cannot be

eliminated by maintenance practices. Even the best design fabrication and screen-

ing techniques cannot completely eliminate the effect of such failures. Watson [21]

gives reasons for the assumption of a constant failure rate. The third, wear-out phase

can be described by an increasing failure rate function. The wear-out period can be

postponed by introducing replacement technologies.

It is typical that the probability distribution of τ is different in the three characteristic

phases of the ”bathtub shaped” hazard function. If τ has an exponential distribution

with parameter λ , then using (57), the hazard function hλ (t) for τ is

hλ (t) =
fλ (t)

1−Fλ (t)
=

λe−λ t

e−λ t
= λ . (58)

That is, if τ ∼ exp(λ ), then the failure rate function is constant with respect to time.

Most commonly, the exponential probability distribution is utilized to describe the

probability distribution of τ in the second, constant phase of the hazard curve, while

probability distributions that result in decreasing or increasing hazard functions are

used to model the probability distribution of τ in the first and third phases of the

hazard function curve.

Now let us assume that τ has an epsilon distribution with the parameters λ and d.

In this case, the hazard function hλ ,d(t) is

hλ ,d(t) =
fλ ,d(t)

1−Fλ ,d(t)
=

λ d2

d2−t2 ε−λ ,d(t)

ε−λ ,d(t)
= λ

d2

d2 − t2
, (59)

if 0 < t < d. The hazard function hλ ,d(t) has some important properties that are

worth emphasizing here.

• If t ∈ (0,d) is fixed, then hλ ,d(t) tends to λ as d approaches infinity. In

practice, it means that if t is small compared to d, then hλ ,d(t)≈ λ . That is, if

d is sufficiently large, then the probability distribution of τ may be described

by the epsilon distribution in the second phase of the hazard function.

• The hazard function hλ ,d(t) is increasing with respect to t. If t is small com-

pared to d, then hλ ,d(t) is increasing slowly, and hλ ,d(t) tends to infinity as t

approaches d (from the left hand side).

– 211 –



J. Dombi et al. The Epsilon Probability Distribution and its Application in Reliability Theory

Based on the above properties of the hazard function hλ ,d(t), we may conclude

that the epsilon probability distribution can be utilized to describe the probability

distribution of the time to first failure random variable both in the second and in the

third phases of the hazard function. Moreover, if the second phase of a failure rate

function is slightly increasing instead of being constant with respect to time, then

the probability distribution of τ in this phase of the hazard function can be better

described by the epsilon probability distribution than by the exponential probability

distribution.

4.1 A practical example

Now we will show how the epsilon probability distribution can be utilized to model

the probability distribution of the time to first failure random variable in the second

and third phases of the hazard function.

The failure rate function h(t) can be estimated from empirical data by

h(t)≈
N(t)−N(t +∆t)

N(t)∆t
, (60)

where N(t) is the number of components or systems that have survived up to time t

from the number of components or systems N(0) that were initially put into opera-

tion. If ∆t = 1, then the estimated failure rate hi for period i may be given by

hi =
N(i)−N(i+1)

N(i)
, (61)

i = 0,1, . . . ,n, and so h0,h1, . . . ,hn may be viewed as an empirical failure rate time

series.

Here, we examined the empirical failure rate times series corresponding to the sec-

ond and third phases of the hazard function curve of an electronic product. The

investigated time series, which is shown in Figure 4, contained 120 failure rates that

had been computed from empirical data using Equation (61).

The hazard function hλ ,d(t) was fitted to the first 30, 60, 90 and 120 data values

of the empirical failure rate time series. In each case, the estimations λ ∗ and d∗

of the parameters λ and d, respectively, were identified by solving the following

minimization problem:

F (λ ,d) =
k

∑
i=0

(

hi −λ
d2

d2 − i2

)2

→ min

λ > 0,d > k.

(62)

We solved this minimization problem by applying an interior point algorithm [1]. In

order to find the global minimum of the target function F (λ ,d), the initial values

for λ0 and d0 of λ and d, respectively, were set as follows.

λ0 =
1

k

k

∑
i=0

hi

d0 = k+δ ,

(63)
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Figure 4

Hazard functions fitted to empirical failure rate time series

where δ > 0 is a number close to zero. In our implementation δ = 10−3.

In each subplot of Figure 4, the continuous red line indicates the fitted hλ ,d(t) values,

while the dashed blue line shows the predicted failure rates that were based on the

function hλ ,d(t). Table 2 summarizes the mathematical modeling results. It contains

the estimated model parameters and the Mean Square Error (MSE) values for the

fits and predictions.

Table 2

Hazard function fitting results

Input range λ ∗ d∗ MSE (Fitted) MSE (Predicted)

0–29 0.0307 1.8729 ·10152 8.7506 ·10−5 0.0022

0–59 0.0312 3.1758 ·10152 1.1538 ·10−4 0.0032

0–89 0.0283 128.3420 1.2907 ·10−4 0.0010

0–119 0.0305 131.7570 2.9315 ·10−4 ——–

Based on Figure 4 and on Table 2, the following properties of our modeling should

be mentioned here. The volatility of the analyzed failure rate time series increases

with respect to time; that is, it displays a lower variability in its quasi constant

phase than in its increasing phase. This observation is in line with the result that

the MSE of the fitted curve slightly increases as the number of input data values

increases. In the case of the first two input ranges, where the empirical hazard rate

curve is in its quasi constant phase, the estimated values for the d parameter are

very large, while the estimates for the λ parameter are very close. These results

are in line with the previously discussed theoretical ones; namely, if d is large and

t ≪ d, then the epsilon probability distribution is suitable for describing the time
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to first failure random variable in the quasi constant phase of the hazard function.

When the empirical failure rate curve is in its increasing phase, then the estimates of

parameter d are close to the total length of the time series (120 periods), while the

two estimates for the λ parameter are similar. This empirical finding supports our

theoretical results that the epsilon probability distribution can be utilized to describe

the probability distribution of the time to first failure random variable in the third,

increasing phase of the hazard function as well.

Conclusions

Here, we presented the epsilon probability distribution as a new distribution and

suggested its possible applications in reliability theory and management. This new

distribution is derived from the nth order epsilon differential equation. The solution

of the zero order epsilon differential equation is the exponential, while the solution

of the first order one is the epsilon function. Some basic properties including con-

tinuity, monotonity, limits and convexity were then stated. We also established an

important connection between the exponential and the epsilon function; namely, the

asymptotic epsilon function is just the exponential function. In practice it means that

if x ≪ d, then ελ ,d ≈ eλx; that is, if d is sufficiently large, then the epsilon function

approximates the exponential function quite well. The revealed connection between

the epsilon function and the Dombi operators in continuous-valued logic leads us to

think that the generator function of the Dombi operators may be viewed as a special

case of the epsilon function.

It should also be mentioned here that the epsilon probability distribution function is

a power function when compared to the transcendent exponential probability distri-

bution function. This feature is advantageous in cases where computation time is a

competitive factor.

Focusing on the application of epsilon probability distribution in reliability manage-

ment, this distribution can be utilized to describe the mortality and useful life period,

assuming a typical bathtub-shaped failure rate. Our practical example also suggests

that if the second phase of a failure rate function is slightly increasing rather than

being constant with respect to time, the epsilon probability distribution will better

describe the time to first failure random variable.

As for suggestions for possible future research, it might be interesting to examine

the higher order (n ≥ 1) epsilon differential equations and their connections with

other probability distributions.
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Abstract: In this study we examine the performance of the Markowitz portfolio optimization

model using stock time series data of various stock exchanges and investment period inter-

vals. Several methods are used to estimate expected returns, then different “noise” filtering

techniques are applied on the correlation matrix containing the pairwise correlations of the

time series. The performance of the methods is compared using the estimated and realized

returns and risks, respectively. The results show that the estimated risk is closer to the real-

ized risk using filtering methods in general. Bootstrap analysis shows that ratio between the

realized return and the estimated risk (Sharpe ratio) is also improved by filtering. In terms

of the expected return estimation results show that the James-Stein estimator improves the

reliability of the portfolio, which means that the realized risk is closer to the estimated risk in

this case.

Keywords: Portfolio optimization; Markowitz model; Random matrix theory; Hierarchical

clustering

1 Introduction

The portfolio optimization is one of the fundamental problems in asset management

that aims to reduce the risk of an investment by diversifying it into assets expected

to fluctuate independently [7]. In his seminal work [17], Markowitz formulated the

problem as a quadratic programming task: given the expected return of the portfolio,

the risk, a quadratic function that is measured via the covariances of the asset time

series, has to be minimized. Recently, the investigation of the correlation coefficient

matrix, that is a normalization of the covariance matrix appears in the objective

function of the model, has received a big amount of attention, see, without being

exhaustive, e.g. [4, 6, 12, 13, 22, 24]. The question of quantifying the degree of

statistical uncertainty, called “noise” especially in the statistical physics community,

present in the correlation matrix and filter the part of information which is robust

against this uncertainty has been addressed and tested [4, 10, 12, 13, 14]. Filtered
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correlation matrices have been successfully used in portfolio optimization for risk

reduction [13, 22, 24]. However, most of these studies assumed that the investor has

perfect knowledge on the future returns at the time of optimization.

In this study we investigate and test the portfolio optimization problem by using

several filtering procedures applied to the correlation matrix given by the pairwise

asset correlations. The performance of the procedures is simply measured by com-

paring the predicted and realized risk and return they provide, respectively. For

more details on performance analysis of portfolio selection, see [26] for example.

In this work the we assume that future returns are not known at the time of the in-

vestment. Moreover, besides the maximum likelihood estimator (i.e. the average of

daily returns) we try other methods to calculate the expected returns.

The structure of this paper is the following. In Section 2 we describe the Markowitz

portfolio optimization problem together with some possible estimations of the ex-

pected returns (Sec. 2.1) and several filtering procedures that can be performed on

the correlation matrices (Sec. 2.2). In Section 3 we present our results with the de-

tailed description of data sets, the experimental setup and evaluation metrics we used

(Sec. 3.1, Sec. 3.2 and Sec. 3.3). Finally we draw some conclusions and indicate

potential future work.

2 Markowitz portfolio optimization model

Given n risky assets, a portfolio composition is determined by the weights pi (i =
1, . . . ,n), such that ∑

n
i pi = 1, indicating the fraction of wealth invested in asset i.

The expected return and the variance of the portfolio p are calculated as

rp = prT =
n

∑
i=1

piri (1)

and

σ2
p = pΣpT =

n

∑
i=1

n

∑
j=1

σi j pi p j, (2)

respectively, where ri is the expected return of asset i, σi j is the covariance between

asset i and j and Σ is the covariance matrix. Vectors are considered as row vectors

in this paper. We should point out that only the proportions p1, . . . , pn are needed to

determine the performance of the portfolio. It means that the values rp and σ2
p are

the same for any investment volume if the weights are the same.

In the classical Markowitz model [17] the risk is measured by the variance providing

a quadratic optimization problem consists in finding vector p, such that ∑
n
i=1 pi = 1

which minimizes σ2
p for a given “minimal expected return” value of rp. Here, we

assume that short selling is allowed and therefore pi can be negative. The solution

of this problem, found by Markowitz, is

p∗ = λΣ−11T + γΣ−1rT , (3)
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where 1 = (1, . . . ,1) while the other parameters are

λ = (C− rpB)/D and γ = (rpA−B)/D

using the notations

A = 1Σ−11T ,B = 1Σ−1rT ,C = rΣ−1rT and D = AC−B2.

However, Eq. 3 is rarely used to solve the Markowitz portfolio optimization problem

due to numerical stability problems with matrix inversion [5]. Instead, we used the

Lagrange multiplier method for optimization (see Sec. 3.3). Next we will describe

three possible methods to calculate the expected stock returns in a given period.

2.1 Estimators for the expected returns

Considering the price time series of n assets and denoting the closure price of asset

i in time t (t = 0,1, . . . ,T ) by Pi(t), the daily logarithmic return of i is defined as

ri(t +1) = log
Pi(t +1)

Pi(t)
= logPi(t +1)− logPi(t). (4)

In case of stationary independent normal returns (as random variables) the maxi-

mum likelihood estimator is the sample mean of the past observations of ri as it was

defined by

r̂ML
i =

1

T

T

∑
t=1

ri(t). (5)

Hence, for the portfolio we define

r̂ML = (r̂ML
1 , . . . , r̂ML

n ), (6)

The maximum likelihood return estimation can be highly inefficient since assets

with high past returns are likely to contain more positive estimation errors than

others. The positive part trimming could further reduce the risk and the James-Stein

estimator [11] provides a constructive shrinkage estimator in order to do it. The

James-Stein estimation for the expected return for asset i is

r̂JS = (1−w)r̂ML +wr01, (7)

where

r0 =
1Σ−1r̂T

ML

1Σ−11T
,w =

λ

λ +T
and λ =

(n+2)(T −1)

(r̂ML − r01)Σ−1(r̂ML − r01)T
.

In this calculation, each sample mean is shrunk toward the average return of the

minimum variance portfolio r0.
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For small sample size, usually below 50, it was observed that there is no evidence

that common asset expected returns are different. If all expected returns are assumed

to be equal, the minimum-variance portfolio is efficient and

r̂MV = r01. (8)

Finally, the covariance between asset i and j is estimated by the formula

σ̂2
i, j =

1

T −1

T

∑
t=1

(ri(t)− r̂i)(r j(t)− r̂ j), (9)

where r̂i is denotes the estimated value of the with respect the estimator used.

2.2 Filtering the statistical uncertainty

Random matrix theory

The correlation coefficient between asset i and j is defined as ρi j = σi j/
√

σiσ j,

where σi = σii is the standard deviation (often called average volatility) of asset i. A

simple random matrix is a matrix whose elements are random numbers from a given

distribution [19]. In context of asset portfolios random matrix theory (RMT) can

be useful to investigate the effect of statistical uncertainty in the estimation of the

correlation matrix [24]. Given the time series of length T of the returns of n assets

and assuming that the returns are independent Gaussian random variables with zero

mean and unit variance (σ2=1), in the limit n → ∞, T → ∞ such that Q = T/n is

fixed, the distribution Prm(λ ) of the eigenvalues of a random correlation matrix

(Crm) is given by

Prm(λ ) =
Q

2πσ2

√

(λ −λmin)(λmax −λ )

λ
, (10)

where λmin and λmax are the minimum and maximum eigenvalues, respectively [23],

given in the form

λmax,min = σ2(1+
1

Q
±2

√

1

Q
). (11)

Previous studies have pointed out that the largest eigenvalue of correlation matrices

from returns of financial assets is completely inconsistent with Eq. 10 and refers

the common behavior of the stocks in the portfolio, i.e. the behavior of the market

itself. [12, 20]. Since Eq. 10 is strictly valid only for n → ∞, T → ∞, we constructed

random matrices for the certain n and T values of the data sets we used and we

compared the largest eigenvalues and the spectrum C and Crm. Since Trace(C) = n

the variance of the part not explained by the largest eigenvalue can be quantified

as σ2 = 1− λlargest/n. We can recalculate λmin and λmax in Eq. 11 and construct

a filtered diagonal matrix get by setting to zero all eigenvalues of C smaller than

λmax and transform it to the basis of C with setting the diagonal elements to one.

A possible RMT approach for portfolio optimization, following [22], is to use Σrm

(that can be easily calculated form Crm) instead of Σ in the Markowitz model.

– 220 –



Acta Polytechnica Hungarica Vol. 15, No. 1, 2018

O
R
M
E
S
T
E
R

A
LT
E
R
A

P
L
O
T
IN
U
S

N
U
T
E
X

G
S
P
A
R
K

K
U
L
C
S
S
O
F
T

O
P
IM
U
S

S
H
O
P

4
IG

E
S
T
M
E
D
IA

F
U
T
U
R
A
Q
U
A

E
N
E
F
I

N
O
R
D
T
E
L
E
K
O
M

U
P
D
A
T
E
1 M
A
S
T
E
R
P
L
A
S
T

C
S
E
P
E
L

P
V
A
LT
O

K
O
N
Z
U
M

O
T
T
1

V
IS
O
N
K
A

Z
W
A
C
K

B
IF

P
A
N
N
E
R
G
Y

C
IG
P
A
N
N
O
N
IA

E
M
A
S
Z

E
F
T
B
U
X
O
T
P

M
T
E
L
E
K
O
M

E
L
M
U

A
N
Y

M
O
L

O
T
P

R
IC
H
T
E
R

K
A
R
P
O
T

F
O
R
R
A
S
O
E

K
E
G

R
A
B
A

T
R
IN
V

E
X
T
E
R
N
E
T

F
O
R
R
A
S
T

T
W
D
IN
V
E
S
T

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

Cluster Dendrogram
H
e
ig
h
t

Minimal Spanning Tree of 40 BUX Assets

4IG

ALTERA

ANY

BIF

CIGPANNONIA

CSEPEL

EFTBUXOTP

ELMU

EMASZ

ENEFI

ESTMEDIA

EXTERNET

FORRASOE

FORRAST

FUTURAQUA

GSPARK

KARPOT

KEG

KONZUM

KULCSSOFT

MASTERPLAST

MOL

MTELEKOM

NORDTELEKOM

NUTEX

OPIMUS

ORMESTER

OTP

OTT1

PANNERGY

PLOTINUS

PVALTO

RABA

RICHTER

SHOP
TRINV

TWDINVEST

UPDATE1

VISONKA
ZWACK

Figure 1

Indexed hierarchical tree - obtained by the single linkage clustering algorithm - and the associated MST

of the correlation matrix of 40 assets of the Budapest Stock Exchange

Hierarchical clustering

Correlation based clustering can be considered as a filtering procedure transform-

ing the correlation matrix such that a smaller number of distinct elements retains.

The correlation matrix C has n(n− 1)/2 ∼ n2 element therefore it contains a large

amount of information even for a small number of assets considered in the portfo-

lio. Mantegna and others showed that the single linkage hierarchical clustering algo-

rithm (closely related to minimal spanning trees (MST) of graphs) provide meaning-

ful economic information using only n−1 elements of the correlation matrix [15].

The effectiveness of clustering methods have been shown in many studies, e.g. in

[2, 9, 18, 25]. To construct the MST, the correlation matrix C is converted into a

distance matrix D, for instance following [15, 16], using di j =
√

2(1−ρi j) ultra-

metric distance. Ultrametric distances are such distances that satisfy the inequality

di j ≤ max{dik,dk j}, which is a stronger assumption that the standard triangular in-

equality. The distance matrix D can be seen as representing a fully connected graph

of the assets with edge weights di j representing a similarity of the time series of

assets i and j. For this graph (i.e. a distance matrix) one can use the Kruskal algo-

rithm in order to obtain the MST of n− 1 elements and then construct the filtered

correlation matrix Csl using just the n− 1 correlation coefficients converted back

from the n−1 distances in the MST. Figure 1 shows an illustrative example for hi-

erarchical clustering and the associated spanning tree obtained using the Budapest

Stock Exchange data set. For portfolio optimization, we used Σsl instead of Σ in the

Markowitz model.

In [24] the authors proposed a new portfolio optimization method using another

widespread hierarchical clustering procedure, namely the average linkage algorithm.

While the single linkage clustering procedure basically follows the greedy Kruskal

MST method, the average linkage algorithm, in an iteration step, defines the dis-

tance between an element and a cluster as the average distance between the element

and each element in the cluster. For detailed description, see e.g. [1]. For portfo-
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lio optimization, we can use Σal constructed using average linkage clustering in the

Markowitz model.

3 Results

3.1 Data description

To compare the performance of the methods we analyzed two different data sets.

The first data set consists of n = 40 stocks traded in the Budapest Stock Exchange

(BSE) in the period 1995-2016, using 5145 records of daily returns per stock. The

second data set contains the stock time series of n = 48 companies of the Informa-

tion Technology sector (Hardware + Software) that are available on Yahoo Finance

(YF) (https://finance.yahoo.com/) in almost the same period as the BSE data with

5395 records of daily returns of each stock.

We consider t = t0 as the time when the optimization is performed. Since the co-

variance matrix has ∼ n2 distinct elements while the number of records used in the

estimation is nT , the length of the time series need to be T >> n to get small errors

on the covariance. On the other hand, for large T the non-stationarity of the time

series more likely appears. The problem is known as the “curse of dimensional-

ity” [27]. To handle this, we computed the covariance matrix and expected returns

using the [−T,0] interval with T = 50 ≈ n, T = 100 > n and T = 500 >> n days

preceding t = 0. The calculation of the expected returns, the covariance matrix and

filtered covariance matrices was performed using the time series data of this inter-

val. Then, the realized returns and realized risk (for each method) were calculated

using the data on the [0,T ] interval. To quantify and compare the different methods

considered, we used the measures described in the next section.

We should also mention here, that solving the Markowitz portfolio selection method

as a quadratic programming problem is particularly simple when Σ (in. Eq. 2) is pos-

itive semi-definite and the constraints are equalities (as in Eq. 1). It is not difficult to

see that the positive semi-definiteness is true for the original covariance matrix and

also for the filtered matrix obtained by the RMT method. In [1] it was proved that

the filtered correlation matrix obtained by the single linkage clustering procedure is

always positive definite if all the elements of the obtained filtered correlation matrix

are positive. This is usually the case for correlations of stock time series and it has

been observed for all the matrices we have used. Moreover, it was proved in the

same paper that the filtered correlation matrix obtained by using the average linkage

clustering method is also positive definite under the same conditions as in the case

of the single linkage procedure.

3.2 Performance evaluation

To measure the performance of a portfolio selected by the different models, we use

the following measures to investigate how the estimated and the realized quantities
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relate to each other. For portfolio p, the Sharpe ratio measures the excess return

(realized) per unit of risk (estimated):

Sp =
rp − r f

σ̂2
p

(12)

The portfolio risk, due to the estimation of the correlation matrix is calculated as

Rp =
|σ̂2

p −σ2
p |

σ̂2
p

(13)

where σ̂2
p is the predicted risk, while σ2

p is the realized risk of the portfolio.

3.3 Simulation setup and results

We implemented our simulation environment in R [21]. We are given a data set of

stock time series and the input parameters the timeInverval T , vector of

startingTimes t0 = (t1
0 , . . . , t

k
0) and rp = (r1

p, . . . ,r
ℓ
p) vector of expectedReturns

(equal steps between the average return and the maximal return over all asset by de-

fault). The simulation procedure is done via the following steps:

1. For each starting time t
j
0 the asset.solve.Complete.SelectTimes() sub-

routine checks whether the portfolio optimization can be done for that starting

time on interval [−T, t j
0 ]

• if yes, it calculates the optimal portfolio using asset.solve.Comp-

lete.R()

• if not1, it goes to the next starting time t
j+1
0

2. The subroutine stores portfolio weights and the data required for performance

evaluation

The subroutine asset.solve.Complete.R() works as follows:

1. Determines the expected returns using maximum likelihood, James-Stein and

minimum variance estimations

2. Determines the covariance matrix of stock time series

3. Calculates the filtered covariance matrices using the RMT, the single linkage

and average linkage procedures

4. Portfolio optimization is performed for each return estimation

• using the Lagrange multipliers method of the ’Rsolnp’ package [8] cal-

culates the optimal weights for each covariance matrix

• calculates the portfolio risk according to the optimal weights

1 Usually, data with lots of missing (NA) values results in a singular covariance matrix

and optimization cannot be performed
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• determines the realized risk and Sharpe-ratio

In order to improve the running times the ‘doParallel’ R package [3] was used (here

we do not describe the details of parallelization).2

To check the robustness of the methods, a standard bootstrap experiment was per-

formed. We considered 50 starting times randomly and solved the optimization

problem using the time series on the intervals [− T, t j
0 ] (T = 50,100,500, j =

1, . . . ,50). For each portfolio, the predicted risk was calculated according to Eq. 2

for fixed expected returns from the average ∑
n
i=1 ri/n to the maximum expected re-

turn max{ri : i = 1, . . . ,n} with equal spans. The Lagrange multiplier method, that

is available in ’Rsolnp’ R package, was used for the optimization. In each case, the

portfolios with realized returns in the top and bottom 10% were dropped. The re-

alized risk using the determined stock weights at t
j
0 , the realized covariance matrix

and realized returns were calculated on [t j
0 ,T ].

Fig. 2 and Fig. 3 show the ratio of the ratio of the realized risk σ2
p (continuous

line) and the predicted risk σ̂2
p (dashed line) as the function of the expected return

rp obtained by the different procedures for the BSE data set and Yahoo data set,

respectively. For each T , the time of the investment t
j
0 ( j = 1, . . . ,50) and the set of

stocks were the same.

For the BSE data set, the classic method and the RMT method provide similar real-

ized returns that are always higher using hierarchical clustering (single and average

linkage). On the other hand, the risk ratio Rp (i.e. the reliability of the portfo-

lio) is also significantly decreased (see Fig. 2, and Tab. 1 “Risk Ratio” column),

but the deviations of the realized returns were increased. The Sharpe ratio of the

hierarchical clustering methods were smaller than using the other methods, since

the estimated risk was often higher than the risk obtained when using the classic

and the RMT methods. It can be observed that each method provided better ex-

pected returns and smaller risk ratio (i.e. better reliability) for the smaller values

of T (T = 50,100, see Tab. 1). The results show that the James-Stein return esti-

mation, although it increases the deviation of the realized returns, provides smaller

risk ratios and improvements on the Sharpe ratio. The Sharpe-ratio of the minimum

variance portfolio (see Tab. 1 last four column) was the highest due to very small

expected risk the method estimated, while its reliability is significantly smaller than

using the other return estimators.

For the Yahoo data set similar is true for the realized returns as in the case of BSE

data set. Here, the smallest risk ratio was obtained when T = 100 days (Fig. 3

middle left and right). It can also be observed, that usage the James-Stein return

estimator provided better results (realized returns, Sharpe ratio), while the usage

minimum variance estimator decreased the risk ratio in some cases.

2 We used ‘doParallel’ and its dependencies to create a parallel back end for the loop

construction provided by the ‘forEach’ package.
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Conclusions

In this paper, we investigated the Markowitz portfolio selection problem using fil-

tered correlation matrices obtained using different filtering procedures, namely a

random matrix theory approach and hierarchical clustering approaches. Further-

more, we used several estimators to determine the expected return of a portfolio.

A large set of experiments have shown that using filtered covariance matrices the

classic Markowitz solution can be outperformed in terms of realized returns and re-

liability, meaning that the realized risk and the estimated risk are closer to each other

in case of filtering. Our simulations show that the different filtering procedures pro-

vide different portfolio optimization results: the most useful method can be different

depending on the risk level of the portfolio, the investment period size and reliabilty

of the risk and return estimation. We think that other filtering procedures combined

with different return estimators could also provide interesting or better results for

different parameters (e.g. expected returns, portfolio size, investment period length)

of the optimization problem.
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[26] URBÁN, A., AND ORMOS, M. Performance analysis of equally weighted portfolios:

Usa and hungary. Acta Polytechnica Hungarica 9, 2 (2012), 155–168.

[27] ZIMEK, A., SCHUBERT, E., AND KRIEGEL, H.-P. A survey on unsupervised outlier

detection in high-dimensional numerical data. Statistical Analysis and Data Mining 5,

5 (2012), 363–387.

– 226 –



Acta Polytechnica Hungarica Vol. 15, No. 1, 2018

0.000 0.002 0.004 0.006

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

6e
−

04

Return−Risk Ratios (CLASSIC)

Return

R
is

k

Classic
RMT
Cluster (Single)
Cluster (Average)

−0.00105 −0.00100 −0.00095 −0.00090 −0.00085

1e
−

04
2e

−
04

3e
−

04
4e

−
04

5e
−

04
6e

−
04

Return−Risk Ratios (JAMES−STEIN)

Return

R
is

k

Classic
RMT
Cluster (Single)
Cluster (Average)

0.000 0.001 0.002 0.003 0.004

1e
−

04
2e

−
04

3e
−

04
4e

−
04

Return−Risk Ratios (CLASSIC)

Return

R
is

k

Classic
RMT
Cluster (Single)
Cluster (Average)

−0.00029 −0.00028 −0.00027 −0.00026 −0.00025

1e
−

04
2e

−
04

3e
−

04
4e

−
04

Return−Risk Ratios (JAMES−STEIN)

Return

R
is

k

Classic
RMT
Cluster (Single)
Cluster (Average)

0.0000 0.0005 0.0010 0.0015

1e
−

04
2e

−
04

3e
−

04
4e

−
04

5e
−

04

Return−Risk Ratios (CLASSIC)

Return

R
is

k

Classic
RMT
Cluster (Single)
Cluster (Average)

−0.00025 −0.00020 −0.00015 −0.00010

1e
−

04
2e

−
04

3e
−

04
4e

−
04

5e
−

04
6e

−
04

Return−Risk Ratios (JAMES−STEIN)

Return

R
is

k

Classic
RMT
Cluster (Single)
Cluster (Average)

Figure 2

The ratio of the realized risk σ2
p and the predicted risk σ̂2

p as the function of expected portfolio return

(continuous line) and realized return (dashed line) for the different procedures as T = 50,100,500

(top-down) using the maximum likelihood estimator (left panels) and the James-Stein estimator (right

panel). The data set contains 40 BSE stocks in the period 1995-2016.
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Figure 3

The ratio of the realized risk σ2
p and the predicted risk σ̂2

p as the function of expected portfolio return

(continuous line) and realized return (dashed line) for the different procedures as T = 50,100,500

(top-down) using the maximum likelihood estimator (left panels) and the James-Stein estimator (right

panel). The data set contains 48 IT sector companies with available historical time series data in the

Yahoo finance page in the period 1995-2016
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BSE data set Average return estimator James-Stein estimator Min variance estimator

Filtering Realized Return Realized Return (sd) Sharpe ratio Risk Ratio Realized Return Realized Return (sd) Sharpe ratio Risk Ratio Realized Return Realized Return (sd) Sharpe ratio Risk Ratio

T = 50 Classic 0.00123 0.00465 8.18922 2.30546 0.00117 0.00466 6.85066 2.14136 0.00084 0.00461 298776 3.32719

RMT 0.00124 0.00465 7.92646 2.31340 0.00118 0.00466 7.14867 2.16424 0.00084 0.00461 214031 3.32716

Single linkage 0.00121 0.00304 4.77064 0.73042 0.00192 0.00502 11.82008 0.76601 0.00107 0.00452 155939 1.17548

Average linkage 0.00073 0.00189 0.51529 0.52383 0.00185 0.00475 10.52615 0.68557 0.00100 0.00447 266844 1.34028

T = 100 Classic 0.00013 0.00153 7.66392 2.01878 0.00101 0.00328 12.57921 1.99415 0.00070 0.00280 520868 3.52232

RMT 0.00015 0.00154 7.87615 2.02137 0.00099 0.00325 12.34801 2.00979 0.00069 0.00280 508169 3.52259

Single linkage 0.00119 0.00294 12.90469 1.44612 0.00164 0.00352 13.56478 1.45191 0.00080 0.00282 406972 2.65070

Average linkage 0.00017 0.00114 8.95616 1.20554 0.00133 0.00339 13.76679 1.22242 0.00072 0.00280 422477 3.28602

T = 500 Classic -0.00047 0.00121 -11.41798 3.06961 -0.00015 0.00115 -1.61974 2.70563 0.00026 0.00080 23937 4.75457

RMT -0.00052 0.00127 -14.16135 3.29680 -0.00016 0.00115 -1.86695 2.72909 0.00026 0.00080 24031 4.75513

Single linkage -0.00011 0.00121 -2.19925 2.94493 0.00013 0.00132 1.26614 2.88015 0.00034 0.00077 20362 3.17707

Average linkage -0.00053 0.00127 -13.73743 2.96084 -0.00009 0.00108 -0.25504 2.79321 0.00028 0.00075 22544 4.24691

Yahoo data set

T = 50 Classic -0.00058 0.00335 -3.76019 1.69646 -0.00055 0.00331 -3.46238 1.64100 -0.00075 0.00318 -9.20659 1.44308

RMT -0.00057 0.00334 -3.62685 1.69695 -0.00055 0.00331 -3.45527 1.64236 -0.00075 0.00317 -9.19923 1.44350

Single linkage -0.00048 0.00335 -0.55588 1.57894 -0.00049 0.00335 -0.55640 1.58649 -0.00074 0.00331 -4.67897 1.45398

Average linkage -0.00045 0.00328 0.37105 1.44763 -0.00045 0.00328 0.53901 1.45527 -0.00068 0.00318 -3.80231 1.28830

T = 100 Classic 0.00030 0.00223 1.58302 0.07236 0.00033 0.00226 1.64966 0.06094 0.00024 0.00199 0.10471 0.01050

RMT 0.00030 0.00223 1.59425 0.07074 0.00034 0.00226 1.66608 0.05837 0.00024 0.00199 0.09566 0.01217

Single linkage 0.00012 0.00213 0.62113 0.26152 0.00014 0.00219 0.55639 0.25039 0.00009 0.00187 -0.46180 0.15097

Average linkage 0.00022 0.00218 1.08339 0.16704 0.00024 0.00222 1.11380 0.15679 0.00017 0.00194 -0.33963 0.08565

T = 500 Classic -0.00030 0.00070 -1.11800 0.38939 -0.00029 0.00070 -1.05358 0.36550 -0.00024 0.00062 -0.69456 0.38257

RMT -0.00030 0.00070 -1.11424 0.38804 -0.00029 0.00070 -1.05042 0.36223 -0.00024 0.00061 -0.69082 0.38035

Single linkage -0.00032 0.00069 -1.05861 0.37295 -0.00031 0.00070 -1.03993 0.34634 -0.00027 0.00061 -0.67158 0.36608

Average linkage -0.00030 0.00068 -1.08412 0.36562 -0.00029 0.00069 -1.03587 0.35142 -0.00024 0.00059 -0.69585 0.35530

Table 1

Bootstrap experiments using 50 random samples for each value of T when the return is the mean of the average expected return of the portfolio and the maximal expected return

over all stocks
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Abstract: A measure of possibilistic correlation between marginal possibility distributions of a

joint possibility distribution can be defined as (see Fullér, Mezei and Várlaki, An improved index

of interactivity for fuzzy numbers, Fuzzy Sets and Systems, 165(2011), pp. 56-66) the weighted

average of probabilistic correlations between marginal probability distributions whose joint

probability distribution is defined to be uniform on the level sets of their joint possibility distri-

bution. Using the averaging technique we shall discuss three quantities (correlation coefficient,

correlation ratio and informational coefficient of correlation) which are used to measure the

strength of dependence between two possibility distributions. We discuss the inverse problem,

as we introduce a method to construct a joint possibility distribution for a given value of possi-

bilistic correlation coefficient. We also discuss a special case when the joint possibility distri-

bution is defined by the so-called weak t-norm and based on these results, we make a conjecture

as an open problem for the range of the possibilistic correlation coefficient of any t-norm based

joint distribution.

Keywords: possibility theory, fuzzy numbers, possibilistic correlation, possibilistic dependence.

1 Introduction

Random variables, probability distributions are widely used models of incomplete

information [23], and measuring dependence between random variables and random

sequences is one of the main tasks of applied probabilty and statistics. There are

plenty of measures of dependence, for example correlation coefficients, correlation

ration, distance correlation etc.

Possibility distributions are used to model human judgments and preferences and in

this way they are models of non-statistical uncertainties. Measuring the strength of

dependence between these non-statistical uncertain quantities is quite important, also
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from theoretical and practical point of view. In probability theory, measures of depen-

dence are usually defined by using the expected value of an appropriate function of the

random variables. In possibility theory a measure of possibilistic correlation between

marginal possibility distributions of a joint possibility distribution can be defined as

the weighted average of probabilistic measures of dependence between marginal prob-

ability distributions (fuzzy numbers) whose joint probability distribution is defined to

be uniform on the γ-level sets (a.k.a α-cuts) of their joint possibility distribution. This

approach gives us a straightforward way to adopt the notions of probability theory to

possibility distributions.

The rest of this paper is organized as follows. In Section 2 we recall the basic no-

tions of possibility correlation, in Section 2 we survey some measures of possibilistic

dependence. In Section 4 we discuss the inverse problem, i.e we construct a joint pos-

sibility distribution for a given correlation coefficient, in Section 5 we discuss the case

when the joint possibility distribution is defined by the weak t-norm.

2 Basic Notions of Possibilistic Correlation

Definition 2.1. A fuzzy number A is a fuzzy set of R with a normal, fuzzy convex and

continuous membership function of bounded support.

Fuzzy numbers can be viewed as possibility distributions. The concept and some basic

properties of joint possibility distribution were introduced in [36].

Definition 2.2. If A1, . . . , An are fuzzy numbers, then C is their joint possibility dis-

tribution if

Ai(xi) = max{C(x1, . . . , xn) | xj ∈ R, j 6= i} (1)

holds for all xi ∈ R, i = 1, . . . , n. Furthermore, Ai is called the i-th marginal

possibility distribution of C.

As a special case we define the joint possibility distribution of two fuzzy numbers

(see Fig. 1), because we investigate the measures of dependence between pairs of

fuzzy numbers.

Definition 2.3. A fuzzy set C in R
2 is said to be a joint possibility distribution of fuzzy

numbers A,B, if it satisfies the relationships

A(x) = max{C(x, y) | y ∈ R}, and B(y) = max{C(x, y) | x ∈ R}, (2)

for all x, y ∈ R. Furthermore, A and B are called the marginal possibility distribu-

tions of C.

Fuzzy numbers A1, . . . , An are said to be non-interactive if their joint possibility dis-

tribution C satisfies the relationship

C(x1, . . . , xn) = min{A1(x1), . . . , An(xn)},
for all x = (x1, . . . , xn) ∈ R

n (see Fig. 2).
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Definition 2.4. A γ-level set (or γ-cut) of a possibility distribution C is a non-fuzzy

set denoted by [C]γ and defined by

[C]γ =

{

{(x, y) ∈ R
2 | C(x, y) ≥ γ} if γ > 0

cl(suppC) if γ = 0
(3)

where cl(suppC) denotes the closure of the support of C.

3 Measures of Possibilistic Dependence

3.1 Possibilistic Correlation

Carlsson and Fullér introduced a definition of possibilistic mean and variance [2], and

then Fullér and Majlander gave the definition of weighted possibilistic mean and vari-

ance [9]. Fullér, Mezei and Várlaki introduced a new definition of possibilistic correla-

tion coefficient [10] between marginal distributions of the joint possibility distribution

that improves the earlier definition introduced by Carlsson, Fullér and Majlender [3].

Definition 3.1 (see [10]). Let f : [0, 1] → R a non-negative, monotone increasing

function with the normalization property
∫ 1

0
f(γ)dγ = 1. The f -weighted possi-

bilistic correlation coefficient of fuzzy numbers A and B (with respect to their joint

distribution C) is defined by

ρf (A,B) =

∫ 1

0

ρ(Xγ , Yγ)f(γ)dγ, (4)

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
,

and, where Xγ and Yγ are random variables whose joint distribution is uniform on

[C]γ for all γ ∈ [0, 1], and cov(Xγ , Yγ) denotes their probabilistic covariance.

As we can see, the f -weighted possibilistic correlation coefficient is the f -weighted

average of the probabilistic correlation coefficients ρ(Xγ , Yγ) for all γ ∈ [0, 1]. Since

f is an increasing function, it gives less importance to the lower levels of the possibil-

ity distribution. For detailed and illustrated examples see [8][11] and [12].

The range of the f -weighted possibilistic correlation coefficient when the marginal

possibility distribution have the same membership function was discussed in [19] and

[17].

Fuzzy numbers A and B are in perfect correlation [3], if their joint distribution is

concentrated along a line (see Fig. 3 and Fig. 4), i.e. if there exist a, b ∈ R, a 6= 0
such that their joint possibility distribution is

C(x1, x2) =

{

A(x1) if x2 = ax1 + b
0 otherwise
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B

A

C

Figure 1: Joint possibility distribution C and its marginal possibility distributions (i.e.

projections) fuzzy numbers A and B.

B

A

C

Figure 2: Joint possibility distribution C and its marginal possibility distributions

fuzzy numbers A and B when the joint distribution is defined by min(A,B). In this

case A and B are non-interactive which implies ρf (A,B) = 0.
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B

A

C

Figure 3: Joint possibility distribution C and its marginal possibility distributions A
and B when the joint possibility distribution is defined along a line with positive steep-

ness. This is the case of perfect positive correlation, which implies ρf (A,B) = 1.

B

A

C

Figure 4: Joint possibility distribution C and its marginal possibility distributions

A and B when the joint possibility distribution is defined along a line with neg-

ative steepness. This is the case of perfect negative correlation, which implies

ρf (A,B) = −1.
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If A and B have a perfect positive (negative) correlation then from ρ(Xγ , Yγ) = 1
(ρ(Xγ , Yγ) = −1) (see [3] for details), for all γ ∈ [0, 1], we get ρf (A,B) = 1
(ρf (A,B) = −1) for any weighting function f .

We should note here that while non-interactivity implies zero correlation, the reverse

direction is not necesseraly true, if the value of possibilistic correlation coefficient is

zero then this not means automatically non-interactivity. For example, if for every

γ, [C]γ is symmetrical to an axes which parallel with one the coordinate axis then

cov(Xγ , Yγ) = 0 and ρf (A,B) = 0 for any weighting function f (see [6]).

3.2 Correlation Ratio Between Fuzzy Numbers

The correlation ratio η was firstly introduced by Karl Pearson [32] as a statistical tool

and it was defined to random variables by Kolmogorov [24] as,

η2(X|Y ) =
D2[E(X|Y )]

D2(X)
,

where X and Y are random variables. It measures not only a linear, but in general a

functional dependence between random variables X and Y . If X and Y have a joint

probability density function, denoted by f(x, y), then we can compute η2(X|Y ) using

the following formulas

E(X|Y = y) =

∫

∞

−∞

xf(x|y)dx

and

D2[E(X|Y )] = E(E(X|y)− E(X))2,

where,

f(x|y) = f(x, y)

f(y)
.

In 2010 Fullér, Mezei and Várlaki introduced the definition of possibilistic correlation

ratio for marginal possibility distributions (see [7]).

Definition 3.2. Let us denote A and B the marginal possibility distributions of a given

joint possibility distribution C. Then the f -weighted possibilistic correlation ratio

ηf (A|B) of marginal possibility distribution A with respect to marginal possibility

distribution B is defined

η2f (A|B) =

∫ 1

0

η2(Xγ |Yγ)f(γ)dγ

where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ

for all γ ∈ [0, 1], and η(Xγ |Yγ) denotes their probabilistic correlation ratio.
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3.3 Informational Coefficient of Correlation

Definition 3.3. For any two continous random variables X and Y (admitting a joint

probability density), their mutual information is given by

I(X,Y ) =

∫

∞

−∞

∫

∞

−∞

f(x, y) ln
f(x, y)

f1(x) · f2(y)
dxdy

where f(x, y) is the joint probability density function of X and Y , and f1(x) and

f2(y) are the marginal density functions of X and Y , respectively.

Definition 3.4. [27] For two random variables X and Y , let denote I(X,Y ) the

mutual information between X and Y . Their informational coefficient of correlation

is given by

L(X,Y ) =
√

1− e−2I(X,Y ) .

Based on the definition above, we can define the following [13][14]:

Definition 3.5. Let us denote A and B the marginal possibility distributions of a

given joint possibility distribution C. Then the f -weighted possibilistic informational

coefficient of correlation of marginal possibility distributions A and B is defined by

L(A,B) =

∫ 1

0

L(Xγ , Yγ)f(γ)dγ

where Xγ and Yγ are random variables whose joint distribution is uniform on [C]γ

for all γ ∈ [0, 1], and L(Xγ , Yγ) denotes informational coefficient of correlation, and

f is a weighting function.

There are several other ways to translate the fundamental notions of probability theory

to fuzzy numbers (or possibilistic variables), so there are different interpretations for

the mean, variance and covariance of fuzzy numbers. Fuzzy random variables are

discussed in [26][34] and [33], the variance of fuzzy random variables in [25][31],

variance and covariance studied in [5].

Mean value of fuzzy numbers was defined in [4] and [20], the notion of independence

is studied in [1], [21] and [35], and with applications in [29], [30].

Liu and Kao [28] used fuzzy measures to define a fuzzy correlation coefficient of

fuzzy numbers and they formulated a pair of nonlinear programs to find the α-cut of

this fuzzy correlation coefficient, then, in a special case, Hong [22] showed an exact

calculation formula for this fuzzy correlation coefficient.

In [15] Fullér et al. introduced a method as a generalization of the concept described

in [10]. Here the γ-level sets are equipped with non-uniform probability distribution,

whose density function is derived from the joint possibility distribution.
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4 Joint Possibility Distribution for Given Correlation

In this section we show a simple way to construct a joint possibility distribution (and

in this way marginal possibility distributions) for a given value of the possibilistic

correlation coefficient. We recall the fact in probability theory that for any value be-

tween −1 and 1 there exists a 2-dimensional Gaussian distribution whose marginal

distributions has this value as correlation coefficient between them (for other types of

distributions it is not necesseraly true).

Let the required value of the possibilistic correlation coefficient be ρ. Define the joint

possibilistic distribution as follows:

C(x, y) = exp

( −1

2(1− ρ2)
· (x2 − 2ρxy + y2)

)

(5)

The γ-level set (remember that 0 < γ ≤ 1, so ln γ ≤ 0):

[C]γ =
{

(x, y) ∈ R
2| x2 − 2ρxy + y2 ≤ −2(1− ρ2) · ln γ

}

(6)

The γ-level set is a (maybe skew) ellipse, whose upper and lower curves are

y1 = ρx+
√

1− ρ2 ·
√

−2 ln γ − x2 (7)

y2 = ρx−
√

1− ρ2 ·
√

−2 ln γ − x2 (8)

The area of the γ-levels set is Tγ = −2π
√

1− ρ2 · ln γ. According to the definition of

possibilistic correlation coefficient, we define a two dimensional uniform distribution

on the γ-level set, so its density function is

f(x, y) =







1

Tγ

if (x, y) ∈ [C]γ

0 otherwise

(9)

Xγ and Yγ are its marginal random variables. The marginal density function of Xγ

(Yγ has the same one):

f1(x) =







−
√

−2 ln γ − x2

π · ln γ if −
√
−2 ln γ < x <

√
−2 ln γ

0 otherwise

(10)

The expected values are

M(Xγ) = M(Yγ) = 0 (11)

M(X2
γ) = M(Y 2

γ ) =
− ln γ

2
(12)

M(Xγ · Yγ) =
−ρ · ln γ

2
(13)
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So the correlation coefficient at level γ:

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)

√

var(Xγ)
√

var(Yγ)
=

−ρ · ln γ/2
− ln γ/2

= ρ (14)

Since the value of ρ not depends on γ, the value of possibilistic correlation equals this

value:

ρf (A,B) =

∫ 1

0

ρ(Xγ , Yγ)f(γ)dγ = ρ

∫ 1

0

f(γ)dγ = ρ (15)

Note 4.1. In fact the starting point was a two dimensional Gaussian probability den-

sity function:

f(x, y) =
1

2π
√

1− ρ2
· exp

( −1

2(1− ρ2)
· (x2 − 2ρxy + y2)

)

(16)

, where ρ is the correlation coefficient between the marginal random variables. So

the result we get tells us that the possibilistic and probabilistic correlation coefficient

could be the same for certain cases.

5 Correlation Coefficient for t-norm Defined

Joint Distributions

An interestinq question is the range or behaviour of the possibilistic correlation coef-

ficient when the joint possibility distribution has a special structure, i.e. it is defined

by a t-norm. According to our best knowledge there are no simple general results to

this problem. For the most widely used t-norm, the minimum t-norm the answer is

straightforward, since this is the case when the marginal distributions (fuzzy numbers)

are in non-interactive relation and this fact ensures zero correlation coefficient.

The case when the joint possibility distribution is defined by the product t-norm was

discussed in [12], where the authors pointed out that the value of the possibilistic

correlation falls between −1/2 and 1/2, including the limits.

Well-known that the following inequality holds for any t-norm:

Tw(a, b) ≤ t(a, b) ≤ min(a, b) (17)

where Tw denotes the weak (or drastic) t-norm:

Tw(a, b) =

{

min(a, b) if max(a, b) = 1,

0 otherwise.
(18)

In the following we give strict bounds for the possibilistic correlation coefficients

when the joint distribution C(x, y) = Tw(A(x), B(y)), where A and B are the

marginal distributions.
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a1

b1

b2

(a,b)

d
d

d
d

a2

Figure 5: The γ level set of the joint distribution, when C(x, y) = Tw(A(x), B(y))
(left), and its δ neighborhood (right).

Let us denote the core of fuzzy number A by a, the core of B by b, the γ level sets

by [a1(γ), a2(γ)] and [b1(γ), b2(γ)], respectively. For simplicity we use the notations:

a1 = a1(γ), a2 = a2(γ), b1 = b1(γ) and b2 = b2(γ). The γ -level sets ([C]γs)

of the joint distribution are (not necessarily symmetric) cross-shaped domains (see

Fig. 5). The correlation coefficient for this domain is determined as the limit of the

correlation coefficient computed for the δ neighborhood ([C]γδ ) (see Fig. 5). Since the

correlation coefficient is invariant under shifting and scaling (multiplying by a positive

constant) of the marginal distributions, without loss of generality we can assume that

a = b = 0, and −1 ≤ a1, b1 ≤ 0, 0 ≤ a2, b2 ≤ 1, such that at least one of the

following conditions hold: a1 = −1, b1 = −1, a1 = −1, b2 = 1, a2 = 1, b2 = 1
or a2 = 1, b1 = −1. These conditions are always feasible: we shift the cores to the

origin, then rescale A by max{|a1|, a2} and B by max{|b1|, b2}.

Xγ and Yγ are random variables, whose joint distribution is uniform on [C]γδ , the

corresponding random variables for [C]γ are X ′

γ and Y ′

γ .

The probability density function of Xγ (Yγ has the same with appropriate modification

of the parameters):

f1(x) =



























1

T
· 2δ , if a1 < x < −δ;

1

T
· (b2 − b1) , if −δ < x < δ;

1

T
· 2δ , if δ < x < a2.

where T = (a2 − a1) · 2δ + (b2 − b1) · 2δ − 4δ2 denotes the area of [C]γδ .
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Computing the expected values and after some simplifications we get:

M(Xγ) =
a22 − a21

2(a2 − a1 + b2 − b1)− 4δ
(19)

M(X ′

γ) = lim
δ→0

M(Xγ) =
a22 − a21

2(a2 − a1 + b2 − b1)
(20)

M(X2
γ) =

2

3
· a

3
2 − a31 + (b2 − b1)δ

2 − 2δ3

2(a2 − a1 + b2 − b1)− 4δ
(21)

M(X ′2
γ ) = lim

δ→0
M(X2

γ) =
2

3
· a32 − a31
2(a2 − a1 + b2 − b1)

(22)

Similar expressions hold for Yγ with appropriate modification of the parameters, of

course. The expected value of the product:

M(Xγ · Yγ) = 0 ⇒ M(X ′

γ · Y ′

γ) = 0 (23)

The correlation coefficient between X ′

γ and Y ′

γ :

ρ(X ′

γ , Y
′

γ) =
cov(X ′

γ , Y
′

γ)
√

var(X ′

γ) ·
√

var(Y ′

γ)
(24)

where

cov(X ′

γ , Y
′

γ) = M(X ′

γ · Y ′

γ)−M(X ′

γ) ·M(Y ′

γ) =
−(a22 − a21)(b

2
2 − b21)

4(a2 − a1 + b2 − b1)2
(25)

var(X ′

γ) =

4

3
· (a32 − a31) · (a2 − a1 + b2 − b1)− (a22 − a21)

2

4(a2 − a1 + b2 − b1)2
(26)

var(Y ′

γ) =

4

3
· (b32 − b31) · (a2 − a1 + b2 − b1)− (b22 − b21)

2

4(a2 − a1 + b2 − b1)2
(27)

We prove that the value of the above correlation coefficient always falls between −3/5
and 3/5. Let’s consider the case when a2 = 1 and b2 = 1 (the estimation works quite

similarly for the other three cases). We give a lower estimation for the variances using

the fact that −1 ≤ a1 ≤ 0 and −1 ≤ b1 ≤ 0, so we get an upper estimation for the
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correlation coefficient. The numerator of var(X ′

γ):

4

3
· (1− a31) · (2− a1 − b1)− (1− a21)

2 (28)

≥ 4

3
· (1− a21)

2 · (2− a1 − b1)− (1− a21)
2 (29)

= (1− a21)
2 ·

[

4

3
· (2− a1 − b1)− 1

]

(30)

≥ (1− a21)
2 ·

[

4

3
· 2− 1

]

= (1− a21)
2 · 5

3
(31)

Applying this result we get that

var(X ′

γ) ≥
(1− a21)

2 ·
5

3
4(a2 − a1 + b2 − b1)2

(32)

So we get the following bounds for the square of the correlation coefficient:

ρ2 ≤
(1− a21)

2(1− b21)
2

(1− a21)
2 ·

5

3
· (1− b21)

2 ·
5

3

=
9

25
(33)

which yields:

−3/5 ≤ ρ ≤ 3/5 (34)

These bounds are strict, since

• if a2 = b2 = 0 and a1 = b1 = −1, then ρ = −3/5;

• if a2 = b1 = 0 and a1 = −1, b2 = 1, then ρ = 3/5.

Remember that the possibilistic correlation coefficient was defined as the weighted

average of probabilistic correlation coefficients over the γ levels. We proved that

for every γ level set −3/5 ≤ ρ(Xγ , Yγ) ≤ 3/5, so these inequality holds for the

possibilistic correlation coefficient for any weighting function f :

−3/5 ≤ ρf (A,B) ≤ 3/5 (35)

Our numerical and theoretical investigations done so far led us to a conjecture that the

weak t-norm has a kind of boundary role here, which is still an open problem:

Question 5.1. Is it true that for any joint possibility distribution defined by a t-norm,

the possibilistic correlation coefficient falls between −3/5 and 3/5?
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Conclusions

We briefly surveyed the developments of probability related γ-level based possibilis-

tic measures of dependence. This level-based approach gives a useful tool to directly

generalize the notions of probability theory to possibilistic variables and it may make

a bridge between possibilistic and probabilistic ways of thinking. Although this con-

nection gaves us a chance to adopt the results of probability theory, there are still many

open questions.

We gave a short general solution to the inverse problem, namely we showed a family

of joint possibility distributions to any given value of correlation. We determined the

range of possibilistic correlation coefficient when the joint distribution is defined by

the weak t-norm. Finally, we stated an open problem for the family of t-norm defined

joint possibility distribution.
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[10] R. Fullér, J. Mezei, P. Várlaki, An improved index of interactivity for fuzzy

numbers, Fuzzy Sets and Systems 165 (2011), pp. 50-60.
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[15] R. Fullér, I. Á. Harmati, P. Várlaki, Probabilistic Correlation Coefficients for

Possibility Distributions, Fifteenth IEEE International Conference on Intelligent

Engineering Systems 2011 (INES 2011), June 23-25, 2011, Poprad, Slovakia,

[ISBN 978-1-4244-8954-1], pp. 153-158. DOI 10.1109/INES.2011.5954737

– 244 –



Acta Polytechnica Hungarica Vol. 15, No. 1, 2018
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