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Abstract: This paper develops the “best” rank one approximation matrix to a general pairwise

comparison matrix (PCM) in a least-squares sense. Such quadratic matrices occur in the multi-

criteria decision making method called the analytic hierarchy process (AHP). These matrices

may have positive entries only. The lack of uniqueness of the stationary values of the associated

nonlinear least-squares optimization problem is investigated. Sufficient conditions for the non-

uniqueness of the solution to the derived system of nonlinear equations are given. Results are

illustrated through a great number of numerical examples. 
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1   Introduction
                                                                                                                                    

Let A=[aij] denote an n×n matrix with all entries positive numbers. A is called a
symmetrically reciprocal (SR) matrix if the entries satisfy aijaji=1 for i…j, i,j=1,2, ...,n,

and aii=1, i=1,2, ...,n. These matrices were introduced by Saaty [1] in his multi-criteria
decision making method called the analytic hierarchy process (AHP). Here an entry
aij represents a ratio, i.e. the element aij indicates the strength with which decision
alternative Ai dominates decision alternative Aj with respect to a given criterion. Such
a pairwise comparison matrix (PCM) is usually constructed by eliciting experts’
judgements. Then the fundamental objective is to derive implicit weights, w1,w2, ...,wn,
for the given set of decision alternatives according to relative importance (priorities)
measured on a ratio-scale.



B W ee W==== ====








 ====−−−−1 1 2T , , , , ..., .

w

w
i j n

j

i

   (1)

BW e W e−−−− −−−−====1 1
n .   (2)

Let B=[bij] denote an n×n matrix with all entries positive numbers. B is called a
transitive matrix if bijbjk=bik, for i,j,k=1,2, ...,n. In [2] it is proven that any transitive
matrix is necessarily SR and has rank one. Two strongly related notations will be used
for the weights: W=diag[wi], i=1,2, ...,n, is the diagonal matrix with the diagonal
entries w1,w2,...,wn, and the (column) vector from ún with elements w1,w2, ...,wn is
denoted by w. Thus, W is a positive definite diagonal matrix if and only if w is an
elementwise positive column vector. With these notations, and defining the n vector
eT=[1,1, ...,1] to be the row vector of ún, any transitive matrix B can now be written
in the form

Using (1) it is easy to show that

From (2) it is seen that the only nonzero (dominant) eigenvalue of B is n and its
associated Perron-eigenvector is W!1e, i.e. a vector whose elements are the reciprocals
of the weights. 

In decision theory, a transitive matrix B is termed consistent matrix. Otherwise
a PCM is termed inconsistent. Saaty [1] showed that the weights for a consistent PCM
are determined by the elements, ui, i=1,2, ...,n, of the principal right eigenvector u of
matrix B, if B is a consistent matrix, i.e. if it is transitive. This solution for the weights
is unique up to a multiplicative constant. Hence, this Perron-eigenvector becomes
u=W!1e. (In the applications of the AHP these components are usually normalized so
that their sum is unity.)

During the last decades several authors have advocated particular best ways for
approximating a general (not transitive) SR matrix A. There are various possible ways
to generate approximations for A in some sense. Saaty [3] proposed the eigenvector
approach for finding the weights, even if A is an inconsistent PCM. Extremal methods
have also been considered, like the direct least-squares method [4], the weighted least-
squares method [5],[6], the logarithmic least-squares method [7],[8], furthermore, the
logarithmic least-absolute-values method [9]. A graphical technique that is based on
the construction of the Gower-plots was also proposed which produces the “best”
rank two matrix approximation to A [10]. The most comprehensive comparative study
that has appeared thus far both in terms of the number of these scaling methods and
the number of the evaluation criteria used was presented by Golany and Kress [11].
They concluded that these methods have different weaknesses and advantages, hence,
none of them is dominated by the other. 
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2   The Least-Squares Optimization Method

The authors have developed a method that generates a “best” transitive (rank one)
matrix B to approximate a general SR matrix A, where the “best” is assessed in a
least-squares (LS) sense [12]. There it is shown that a common procedure to find a
positive vector of the weights can be done by minimizing the expression  

(Here, the subscript F denotes the Frobenius norm; the square root of the sum of
squares of the elements, i.e. the error.)  

Given the subjective estimates aij for a particular PCM, it is always desired that
aij.wj /wi. In other words, the weights wi, and thus the consistency adjustments, aij!bij,
i,j=1,2, ...,n, should be determined such that the sum of the consistency adjustment

error, S, is minimized. In [12], with appropriately chosen initial values, the Newton-
Kantorovich (NK) method was applied for this optimization procedure due to its
computational advantages. There the authors asserted that a stationary value w, of the
error functional S2(w), called a stationary vector, satisfies the following homogeneous

nonlinear equation 

where 

is a variable dependent, skew-symmetric matrix. In [13] it is shown that expression (5)
can be more generally used in the approximation of merely positive matrices (which
are not necessarily SR).
  In the present paper, with regard to the basic properties of a PCM, investigations
are made for general symmetrically reciprocal (SR) matrices A with positive entries.
If matrix A is in SR, the homogeneous system of n nonlinear equations (4) can be
written in the form



f w w w
a

w a w

w

w

w

w
w i nn

ik

i ik k

i

k

k

i

k

k

n

==== ==== ++++ −−−− ++++






























==== ====
====
∑∑∑∑( , ,..., ) , , , ..., .1 2

2 2 3 3
1

1
2 0 1 2   (6)

f cw cw cw c f w w w i n
i n i n
( , , ..., ) ( , , ..., ), , ,..., ,1 2 1 2 1 2==== ====ν     (7)

1 1
2 0 1 2

2 2 3 3
1c

a

w a w

w

w

w

w
w i nik

i ik k

i

k

k

i

k

k

n

++++ −−−− ++++






























==== ====
====
∑∑∑∑ , , , ..., .   (8)

c w R w w 0T
*, ( ) , , .==== ==== ≠≠≠≠ ≤≤≤≤ ≤≤≤≤1 1k k j k n            (9)

Note that each of the n equations in (6) represents a type of homogeneous function in
the variables as

where c is an arbitrary constant and ν=!1 is the degree of the homogeneous function
in (6). Substituting (7) for the set of equations (6) we get

It is apparent from (8) that any constant multiple of the solution to the homogeneous
nonlinear system (4) would produce an other solution. To circumvent this difficulty,
equation (4) can be reformulated, as any one of its n scalar equations can be dropped
without affecting the solution set [12]. Denoting the jth row of any matrix M by Mj*

and introducing the nonzero vector c0ún, let (4) have a positive solution w normalized
so that cTw=1. Then, for any j, 1#j#n, apparently, the stationary vector w is a solution
to the following inhomogeneous system of n equations

Here it is convenient to use j=1. Thus  cT=[1,0, ...,0], i.e. the normalization condition
in (9) is then w1=1.

Although a great number of numerical experiments showed that authors strategy
always determined a convergent process for the NK iteration, however, a possible
non-uniqueness of this solution (local minima) have also experienced. The occurrence
of such alternate stationary vectors for a PCM was first reported by Jensen [4, p.328].
He argued that it is possible to specify PCMs  “that have certain symmetries and high
levels of response inconsistency that result in multiple solutions yielding minimum
least-squares error.” Obviously, an eventual occurrence of a possible multiple solution
may not seem surprising since it is well-known in the theory of nonlinear optimization
that S2(w) does not necessarily have a unique minimum. In what follows now, some
respective results of the authors is discussed for this problem.
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3   On the Non-Uniqueness of the Solution to the Least- 
      Squares Optimization Problem

In this Section sufficient conditions for a multiple solution to the inhomogeneous
system of n equations (9) are given. The following matrices will play an important
role in this subject matter:

Definition 1  An n×n matrix Z=[zij] is said to be persymmetric if its entries satisfy 

i.e., if its elements are symmetric about the counterdiagonal (secondary diagonal).

Definition 2  An n×n matrix Pn is called a permutation matrix and is described by
where the n numbers in the indices, p=(j1 j2 ... jn), indicate aP e e e

n j j jn
==== [ ... ],

1 2

particular permutation from the standard order of the numbers 1,2, ...,n.

It is easy to see that any permutation matrix Pn is an orthogonal matrix, since

where In denotes the n×n identity matrix.

Definition 3  An n×n matrix M=[mij], i,j=1,2, ...,n, is called a symmetric permutation

invariant (SPI) matrix if there exists an n×n permutation matrix Pn such that

is satisfied [14].

Definition 4  By a circulant matrix, or circulant for short, is meant an n×n matrix
C=[cjk], j,k=1,2, ...,n, where
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The elements of each row of C in (13) are identical to those of the previous row,
but are moved one position to the right and wrapped around. Thus, the whole circulant
is evidently determined by the first row as

It is meaningful to use a different notation for a special class of the permutation
matrices. Among the permutation matrices the following matrix plays a fundamental
role in the theory of circulants. This refers to the forward shift permutation, that is to
the cycle p=(1,2, ...,n) generating the cyclic group of order n, since its factorization
consists of one cycle of full length n (see in [15]). 

Definition 5  The special n×n permutation matrix �1 of the form

is said to be the elementary (primitive) circulant matrix, i.e. �1 = circ[0, 1, 0, ..., 0].
The other n×n circulant permutation matrices �k of the form

are the powers of matrix �1 defined by (15). 

Notice in (16) that the relation �k = �1
k, holds for all k=1,...,n!1, and, obviously,

�1
n =In. It follows from (14) that a circulant C is invariant to a cyclic (simultaneous)

permutation of the rows and the columns, hence

where �k is a particular circulant permutation matrix. Thus, by Definition 3, any
circulant matrix is an SPI matrix. Also, it can be readily shown that a circulant C may
be expressed as a polynomial of the elementary circulant matrix in the form of 
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Definition 6  The special n×n permutation matrix Kn, which has 1's on the main
counterdiagonal and 0's elsewhere, i.e.,

is called a counteridentity matrix. 

Using (19), it may be easily shown that the following expression,

holds for a persymmetric SR matrix A.

Remark 1  The special n×n permutation matrices, �k and Kn, defined by (16) and (19),
respectively, are persymmetric matrices.

In the sequel we will provide sufficient conditions for the occurrence of multiple
solutions to the inhomogeneous system of n equations (9).

Proposition 1  Let A=[aij] be an n×n SR matrix with positive entries. Let a (positive)
stationary vector of the error functional (3) be derived and be denoted by w*. If A is
a symmetric permutation invariant (SPI) matrix to a certain permutation matrix Pn,
then Pn

Tw* produces an alternate stationary vector, provided that Pn
Tw* and w* are

linearly independent. If this permutation is consecutively repeated (not more than n

times over) then the vectors,  represent alternate stationaryP w P w P w
n n n

T * T * T *, , , ...
2 3

vectors, provided that they are linearly independent.

Proof.  Write the Frobenius norm of the nonlinear LS optimization problem (3) in the
form
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Let Pn be an arbitrary n×n permutation matrix. Considering the fact that the sum of
squares of the elements of a matrix is not affected by any permutation of the rows and
the columns of this matrix the Frobenius norm does not vary by postmultiplying the
matrix (A!W!1eeTW) by an arbitrarily chosen permutation matrix Pn, and then by
premultiplying it by its transpose Pn

T. Therefore,

Observe that in (22) Pn
Te = e and eTPn = eT. For an SPI matrix A, by (12), Pn

TA Pn =A
holds. Thus,

In (23), the terms Pn
TWPn and Pn

TW!1Pn represent the permutations of the elements
of W and W!1, respectively. After they have been permuted by the permutation matrix

the elements of Pn
TWPn (and the elements of Pn

TW!1Pn) are:P e e e
n j j jn

==== [ ... ],
1 2

(and their inverses). If the derived stationary vector, w* is linearlyw w w
j j jn1 2

, , ... , ,

independent of the vector Pn
T w*, i.e., if Pn

T w*… c w*, where c is an arbitrary constant,
then 

becomes an alternate stationary vector. By repeating this procedure we may get 

which constitutes an other stationary vector, provided that this solution is linearly
independent of both of the previous solutions. This way, the process can be continued
as long as new linearly independent solutions are obtained. This completes the proof.�

Corollary 1  If an n×n SR matrix A is a circulant matrix then its factorization consists
of one cycle of full length by the circulant permutations, �kw

*, k=1,2, ...,n, (i.e. if Pn
T

is an elementary circulant matrix) and the total number of alternate stationary vectors
of the error functional (9) is n.

It is well-known that any permutation, p=(j1 j2 ... jn), may be expressed as the
product of the circulant permutations, p=(p1)(p2 )(p3) ... (pr), where pi is a circulant
permutation of si elements called a cyclic group, where �r

i=1 si = n. Thus, after an
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appropriate rearrangement of the rows and the columns, any permutation matrix Pn

may be written in the form of a block diagonal matrix with the circulants �(si) of order
si, i=1,2, ...,r, being placed on its main diagonal as follows

Using this notation, after performing an appropriate rearrangement of the rows and
the columns, it implies that any SPI matrix M, defined by (12), can be partitioned in
the form

where every si×sj block, i,j=1,2, ...,r, satisfies the relation M
ij
,    

                                              
Apply now the above considerations to an SPI matrix A, which is in SR. Perform a
(simultaneous) rearrangement of the rows and the columns of A. Let the resulting
matrix be denoted by Ã. Then, obviously, for Ã the following relation holds           
   

Hence, in case of si=sj, the matrix Ã has circulant SR matrices of order si for the

blocks, on the main diagonal, where the order si is odd  (otherwise an SR matrix
~

,Aii    

cannot be a circulant), or all elements of are equal to 1, if the order si is even.
~
A

ii
   

It follows from the definition of an SR matrix that any other block, (i…j, si=sj),
~

,Aij    
might be a circulant of order si satisfying



ΩΩΩΩ ΩΩΩΩ( ) ( )T ~ ~s

ij

s

ij
i jA A====            (28)

w*T( )

*( ) *( )
, , ..., ,2

1
1

2
1

1 1
1====











−−−− −−−−w w
n n

           (29)

w w w i n
n i n i

*( ) *( ) *( )( )( ), , , ..., .1 1
1
1 1 2≠≠≠≠ ====++++ −−−−            (30)

S
F

2 1 2
( ) .Tw A W ee W==== −−−− −−−−            (31)

where �r
i=1si=n and denotes the transpose of the block containing the reciprocals
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of the elements of If for any pair (i,j), si…sj, i,j=1,2, ...,r, then the off-diagonal
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block, is an si×sj rectangular block. Since for si…sj,
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holds, a sufficient condition for is that its elements are equal. 
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Corollary 2   Let Ã be an n×n positive SR matrix whose rows and columns have been
appropriately rearranged to be an SPI matrix. Let a (positive) stationary vector of the
error functional (3) be determined. Let this solution be denoted by w*. Then the

permutations  are also solutions, where Pn
T is defined by (24).P w P w P w

n n n

T * T * T *, , , ...
2 3

The total number of the alternate stationary vectors as solutions to equation (9) cannot
exceed the least common multiple of s1,s2, ...,sr. (see the proof in [13].)

Proposition 2   Let A=[aij] be an n×n SR matrix with positive entries. Let a (positive)
stationary vector of the error functional (3) be determined and let this solution of eq.

(9) be denoted by If A is a persymmetric matrix, thenw*T( ) *( ) *( )[ , , ..., ].1
2

1 11==== w w
n

is an alternate stationary vector as an other solution of equation (9), provided that the
latter solution w*(2) is linearly independent of w*(1), i.e., if 

Proof.  Write the Frobenius norm of the nonlinear LS optimization problem (3) in the
form

Consider the n×n counteridentity (permutation) matrix, Kn defined by (19). Since Kn
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is an involutory matrix, therefore, Kn
2 =In. Let Pn be an arbitrary n×n permutation

matrix. Recognize that In = Pn Pn
T = PnKnKnPn

T. Now apply the same technique that
was used for the proof of Proposition 1. Thus, one may write that

Making use of (20), the transpose of the matrix in the right hand side of (32) is,
apparently, 

It is obvious from (33) that the elements of the matrix KnW
!1Kn are composed of the

elements of a vector w*(2), which also constitutes a stationary vector. If this solution
is linearly independent of w*(1), then it must represent an alternate stationary vector as

the entries of KnW
!1Kn are: If (30) is satisfied, then they are linearly

1 1
1

1
1

2
1

w w
n n−−−− −−−−
*( ) *( )

, , ..., .    
   

independent. This completes the proof.                                                                    �

Corollary 3  Suppose that for the stationary vector w*(1) the equality 

is satisfied, i.e., the relation

holds. Then, (34) provides one solution to the nonlinear optimization problem (3). In
this case no trivial alternate stationary vector can be found. It should be noted,
however, that one might not call this solution a unique solution until the necessary

conditions for the non-uniqueness problem of the solution of equation (9) have not
been found, because, at this point, the existence of an other stationary value cannot
be excluded.

To summarize the results of the developments made in this Section the following
theorem gives sufficient conditions for the occurrence of a non-unique stationary
vector of the error functional (3) as a solution to equation (9).
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Theorem 1  Let A be a general n×n SR matrix with positive entries.

(i)     If A is a circulant matrix, or 
(ii)  if A=[Aij] is a block SR matrix with si×sj blocks, where Aii are circulant SR

matrices, Aij are circulant matrices for i…j, si = sj and Aij has equal entries for  i…j,
si…sj and all blocks satisfy (27), or

(iii)  if A is a persymmetric matrix, and for a given solution the relation  

is satisfied, and 
(iv) if a (positive) solution to equation (9), under the condition (i), or (ii), or (iii),

represents a stationary vector w*=[1,w2
*, ...,wn

*] (a local minimum),

then, this solution, w*, of the nonlinear least-squares optimization problem (3) is a
non-unique stationary point.
                                                                                                                                     

4   Numerical Illustrations
                                                                                                                                    

The illustrations presented in this Section were selected to demonstrate the results of
our paper. The numerical computations are made by “Mathematica”. Seven examples
for given positive SR matrices, A, (PCMs) are discussed in some detail below. For
these examples Saaty’s reciprocal nine-point scale: [1/9, ...,1/2, 1, 2, ..., 9] is used for
the numerical values of the entries of A. The numerical experiments reported below
include computation of the Hessian matrices. In every case they were found to be
positive definite, thus ensuring that each stationary value computed was a local
minimum.   

EXAMPLE 1.  The first example concerns data of a 5 ×5 PCM and demonstrates the
occurrence of alternate optima, if A is a circulant matrix. Since matrix A is in SR by
definition, for sake of simplicity the entries below the main diagonal are not depicted.
This response matrix A1 is specified as
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Let a=9.  Applying the (elementary) circulant  permutation matrix, Pn = �k, k=1,2, ..,5,
the following linearly independent solutions (five alternate minima) are obtained (see
Corollary 1):

 w*T( ) [ , . , . , . , . ],1 1 0 3354 19998 05000 2 9814====

 w*T( ) [ , . , . , . , . ],2 1 59623 14909 8 8890 2 9814====

w*T( ) [ , . , . , . , . ],3 1 59623 19998 0 6708 39993====

w*T( ) [ , . , . , . , . ],4 1 0 3354 01125 0 6708 01677====

w*T( ) [ , . , . , . , . ],5 1 0 2500 14909 05000 01677====

with the same error, S i
i( ) . , , , ..., .* ( )w ==== ====238951 1 2 5

Since each of the above stationary vectors, w*(i), i=1,2, ...,5, directly gives the first
rows of their corresponding “best” approximating (rank one) transitive matrices, thus
these approximation matrices, B1

(i), i=1,2, ...,5, to A1 could now be easily constructed.

EXAMPLE 2. The second example refers to a 6×6 PCM whose rows and columns
have been rearranged appropriately. This response matrix Ã2 is specified as

Observe that Ã2 contains two 3×3 circulant SR block matrices along its main diagonal.
Note that Ã2 consists of a circulant off-diagonal block of size 3×3 as well. Using an
appropriate permutation matrix, Pn, consisting of two circulant permutation matrices
along its main diagonal the following linearly independent solutions (three alternate
minima) are obtained:



~

/ /
/ /

/ /

/ / /

/ / /
/ / /

/ / /

.A3

1 9 1 9 9 1 9 1 9
1 9 1 9 9 1 9 1 9

9 1 9 1 9 9 1 9 1

1 9 1 9 1 9 1 9 9 9

1 9 1 9 1 9 1 9 1 9
1 9 1 9 1 9 1 9 1 9

9 1 9 1 1 9 9 1 9 1

====































� �

� �

� �

� � � � � � � � �

� �

� � � � � � � � �

� �

� �

� �

w*T ( ) [ , . , . , . , . , . ],1 1 55572 19022 58397 39612 2 5166====

w*T ( ) [ , . , . , . , . , . ],2 1 05257 2 9215 13230 30700 2 0825====

w*T ( ) [ , . , . , . , . , . ],3 1 0 3423 01799 0 7128 0 4529 10508====

with the same error,  S i
i( ) . , , , .* ( )w ==== ====18 7968 1 2 3

 
As for EXAMPLE 1, the “best” approximating transitive matrices, B2

(i),  i=1,2,3, to
Ã2 could readily be constructed. EXAMPLE 2 demonstrates the occurrence of a
multiple solution for an SR matrix Ã2 which is neither circulant nor persymmetric.
The reason that even in such a case alternate stationary vectors may occur is attributed
to the SPI property (see Definition 3) of the SR matrix Ã2, which could be permuted
by elementary circulants since it consists of cyclic groups.

EXAMPLE 3. The third example contains data of a 7×7 PCM whose rows and
columns have been rearranged appropriately. This response matrix Ã3 is specified as

Observe that Ã3 consists of two 3×3 circulant block matrices along its main diagonal
and a single element on its midpoint. Note that Ã3 has a 3×3 circulant off-diagonal
block with the same entries as those of the block matrices along the main diagonal.
Using an appropriate permutation matrix, Pn, consisting of two circulant permutation
matrices on its main diagonal and the unity at the midpoint (in other words, there are
three cyclic groups here: two of size three and one fix-point), the following linearly
independent solutions (six alternate minima) are obtained:
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w *T( ) [ , . , . , . , . , . , . ],1 1 2 6729 21324 08259 17821 7 6524 4 9210====

w*T( ) [ , . , . , . , . , . , . ],2 1 0 4689 12535 0 3873 2 3077 08357 35886====

w*T( ) [ , . , . , . , . , . , . ],3 1 0 7978 0 3741 0 3090 2 8629 18410 0 6667====
 

w*T( ) [ , . , . , . , . , . , . ],4 1 0 6431 2 7613 59584 2 3077 18410 4 9210====

w*T( ) [ , . , . , . , . , . , . ],5 1 4 2940 15551 9 2657 2 8629 7 6524 35886====

w*T( ) [ , . , . , . , . , . , . ],6 1 0 3621 0 2329 21578 17821 08357 0 6667====

with the same error,   S i
i( ) . , , ..., .* ( )w ==== ====32 0030 1 6

Similarly to the previous examples the “best” approximating transitive matrices, B3
(i),

i=1, ...,6, to Ã3 may be constructed easily. 

EXAMPLE 4. The fourth example shows data of a 8×8 PCM whose rows and
columns have been rearranged appropriately. This response matrix Ã4 is specified as

Observe here that Ã4 contains two circulant block matrices along its main diagonal of
size 3×3 and 5×5, respectively. Note that Ã4 consists of a rectangular off-diagonal
block of size 3×5 with identical entries. It represents a “trivial”circulant matrix. By
applying an appropriate permutation matrix, Pn, which consists of two circulant
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permutation matrices along its main diagonal, then the following linearly independent
solutions (fifteen alternate minima) are obtained:

w*T( ) [ , . , . , . , . , . , . , . ],1 1 11943 10028 33427 2 0231 59230 53371 5 9300====

w*T( ) [ , . , . , . , . , . , . , . ],2 1 0 9972 11910 2 0175 59066 53224 5 9136 33334====

w*T( ) [ , . , . , . , . , . , . , . ],3 1 0 8396 08373 4 9593 4 4687 4 9651 2 7988 16939====
  
  �  

w*T ( ) [ , . , . , . , . , . , . , . ],15 1 0 8396 0 8373 4 9651 2 7988 16939 4 9593 4 4687====

with the same error,  S i
i( ) . , , ..., .* ( )w ==== ====29 3584 1 15

Now, the “best” approximating transitive matrices, B4
(i),  i=1, ...,15, to Ã4 may be

constructed easily. 

EXAMPLE 5. The fifth example exhibits data of a 5×5 PCM. Since A is in SR by
definition, for sake of simplicity the entries below the main diagonal are not depicted.
This response matrix A5 is specified as

Observe that A5 is a persymmetric SR matrix. Applying Proposition 2, the following
linearly independent solutions (two alternate minima) are obtained:

 w*T( ) [ , . , . , . , . ],1 1 0 9988 0 6409 05834 4 4176====

w*T( ) [ , . , . , . , . ],2 1 7 5719 68926 4 4229 4 4176====

with the same error,  S i
i( ) . , , .* ( )w ==== ====16 0449 1 2
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The “best” approximating transitive matrices, B5
(i),  i=1,2, to A5 are:

and

Observe here that neither B5
(1) nor B5

(2) is a persymmetric matrix. The two independent
solutions, w*(1) and w*(2), are in the first rows and they also appear in the last columns
of B5

(1) and B5
(2) in opposite order.

EXAMPLE 6. The sixth example shows data of a 6×6 PCM. Since A is in SR by
definition, for sake of simplicity the entries below the main diagonal are not depicted.
This response matrix A6 is specified as

Observe that A6 is a persymmetric SR matrix. By applying Corollary 3, the following
solution (a local minimum) is obtained:

 w*T [ , . , . , . , . , . ],==== 1 0 8753 17818 30458 6 2006 54271

with the error,  S( ) . .*w ==== 18 8874
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The “best” approximating transitive matrix, B6, to A6 is: 

Observe here that now B6 is a persymmetric matrix, i.e. its entries are symmetric about
its counterdiagonal (secondary diagonal). Therefore, in such a case, no trivial alternate
stationary vector can be found. It is easy to check that each of  the conditions (35) for
the elements of the stationary vector (which are in the first row and in opposite order
in the last column of matrix B6) holds. 

EXAMPLE 7.  The authors carried out a comprehensive analysis for a large set of
different 3×3 SR matrices A. Although in the applications of the AHP these matrices
represent the simplest cases only, yet they seem to be adequate to show us a certain
tendency of the occurrences of non-unique solutions to the nonlinear LS optimization
problem (3). For this purpose we utilize some of our results presented in Section 3.
Let these response matrices A7 be given in the form

Observe that A7 is persymmetric. Here the entries a correspond to a12=a23 and
entry b corresponds to a13. Using Saaty’s nine-point scale for a great number of
appropriately chosen 3×3 PCMs the multiple stationary vectors (global minima) have
been determined and are displayed in Figure 1 over the entire range of the possible
values of these entries (recall that the respective entry in A expresses the relative
strength with which decision alternative Ai dominates alternative Aj). Here a particular
solution represents, in fact, a global minimum. Namely, by the NK method, applying
a heuristics approach all solutions were generated and examined in a numerical way
for each interval by using  “Mathematica”. Consider now Figure 1. Here the selected
scale-values of the entries, a12=[1, 2, ...  ,9] (or for a12=[1/9,1/8, ... ,1]) are plotted as
function of the NE corner entry, a13. The locations of the black dots indicate the
numerical values with which a 3×3 PCM, A7 becomes a circulant matrix (here at these
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Figure 1. Domains of multiple optima for 3x3 SR matrices A (PCMs)
 



points there are three alternate optima). The intervals drawn by heavy lines indicate
the regions over which linearly independent solutions occur (here, there are two
alternate optima). The regions drawn by solid lines indicate the intervals over which
there is one solution (a global minimum). Bozóki [16] used the resultant method for
analyzing the non-uniqueness problem of 3×3 SR matrices. It is interesting to note
that on applying our method to EXAMPLE 7 exactly the same results are obtained;
giving confidence in the appropriateness of both approaches. 

Figure 1 exhibits a remarkable tendency concerning the likelihood of a multiple
solution. Note that with a growing level of inconsistency (as the entries a12=a23 are
increased relative to the entry a13) the range of values over which a multiple solution
occurs will be greater and greater. Note that for a12=9, only multiple solution occurs
within the whole possible range of the values of entry a13. One may recognize from
this chart that initially (i.e. at low levels of inconsistency of the matrix A7) the optimal
solution (global minimum) is unique. It is interesting to note that up to a turning point
the solution yields w*T=[1,1,1] evaluated at the entries of a and b=1/a. If, however,
the entries of A7 are increased to: a12=a23=3.6215 and a13=1/a12=1/a23= 0.2761, then
three other independent stationary vectors achieve the minimum in (3) also (thus at
this intersection point there are four alternate optima). For A7, the numerical values
of the entries a12=a23 and a13 when a unique solution switches to a multiple solution,
or reversed, when it switches back to a unique one, can be determined explicitly (see
in the Appendix the formulation of the system of nonlinear equations which considers
a more general case than is discussed by EXAMPLE 7). 

Conclusions
                    

A system of nonlinear equations has been used to determine the entries of a transitive
matrix which is the best approximation to a general pairwise comparison matrix in a
least-squares sense. The nonlinear minimization problem as the solution of a set of
inhomogeneous equations has been examined for its uniqueness properties. Sufficient
conditions for possible non-uniqueness of the solution to this optimization problem
have been developed and the related proofs have also been presented. For a great
number of different sized positive SR matrices having certain properties, the results
have been demonstrated by the numerical experiments. Further research will include
the investigation for finding the necessary conditions for the non-uniqueness of the
solution to the nonlinear optimization problem.
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Appendix
            

Suppose that the positive n × n SR matrix A is specified as 

Let the entries of A be denoted by a=a1j=ajn, j=2,...,n!1, and b=a1n, the linearly independent
solutions to equation (9) given in Proposition 2, by w*(1) and w*(2), respectively, and the solution
(34) by v*. At a stationary point of S2(w) where a multiple optima occurs the elements of the
unknown vectors w*(1), w*(2), v* and the entries of A can be determined by solving the following
constrained nonlinear optimization problem [for a particular problem, the size of matrix A has
to be properly adjusted, the weights vi and vk should be inserted in the equations according to
relation (35) and recall that w*(2) can be obtained from (29)]:

where  wT:={w1,w2, ...,wn},  vT:={v1,v2, ...,vn}, and  cT:={1,0,0, ...,0}.
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Abstract: 

In this paper the applicability of an adaptive control based on a novel branch of 

Computational Cybernetics is illustrated for two different, imperfectly and 

inaccurately modeled particular physical sytems. One of them is a water tank 

stirring cold and hot water as input and releasing the mixture through a long pipe. 

The mass flow rate and the temperature are prescribed at the free end of the exit 

pipe while the taps at the input side can diretly be controlled. Due to the 

incompressibility of the fluid the variation of the mass flow rate of the output is 

immediately observableat the pipe’s end and is related to the control action at the 

input taps, while its effect on the temperature becomes measurable at the free end 

of the pipe only after a delay time needed for the fluid to flow through the pipe. 

This results in asymmetric and non-constant delay time. The other paradigm is the 

thermal decay of the molecular nitrogen during a throttling down process. As is 

well known chemical reactions hav very drastic non-linearities and it is not easy 

to construct their “exact” or satisfacorily avccurate model. The fundamental 

principles of this new branch of Computational Cybernetics are briefly presented 

in the paper. To some extent it is similar to the traditional Soft Computing, but by 

using a priori known, uniform, lucid structure of reduced size, it can evade the 

enormous structures so characteristic to the usual approach. Clumsy 

deterministic, semi-stochastic or stochastic machine learning is replaced by 

simple, short, explicit algebraic procedures especially fit to real time applications. 

The costs of these advantages may manifest themselves in the expected limitation 

of the applicabilityof this new approach. However, the simulation results 

exemplify the applicability of the new method in the control of systems of strong 

non-linearities and asymmetric delay time.  
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1 Introduction 

A new approach for the adaptive control of imprecisely known dynamic systems 

under unmodeled dynamic interaction with their environment was initiated in [1]. 

In the family of the adaptive control methods this new one lays between the linear 

PID/ST and the parameter identification approaches.  

Instead of the supposed analytical model's parameters the control is tuned as in the 

PID/ST, but it offers the possibility of using several parameters of some abstract 

Lie groups fit to the needs of the „non-linear control”. In the same time these 

parameters may be considered as that of the system model's, though they are not 

the part of its detailed analytical description. This „non-analytical modeling” is 

akin to the Soft Computing philosophy.  

In this approach adaptivity means that instead of the simultaneous tuning of 

numerous parameters, a fast algorithm finding some linear transformation to map 

a very primitive initial model based expected system-behavior to the observed one 

is used. The so obtained „amended model” is step by step updated to trace changes 

by repeating this corrective mapping in each control cycle. Since no any effort is 

exerted to identify the possible reasons of the difference between the expected and 

the observed system response, it is referred to as the idea of "Situation-Dependent 

Partial System Identification". This anticipates the possibility for real-time 

applications. 

Regarding the appropriate linear transformations several possibilities were 

investigated and successfully applied. E.g. the „Generalized Lorentz Group” [2], 

the „Stretched Orthogonal Group”, the “Partially Stretched Orthogonal 

Transformations” [3], and a special family of the „Symplectic Transformations” 

[4] can be mentioned. 

The key element of the new approach is the formal use of the „Modified 

Renormalization Transformation”. The „original” transformation was widely used 

e.g. by Feigenbaum in the seventies to investigate the properties of chaos [5-7]. Its 

useful property from our special point of view is that this (originally scalar) 

transformation modifies the solution of an x=f(x) fixed-point problem, since the 

adaptive control was formulated as a fixed-point problem, too [8]. The 

modification of the original transformation was necessary due to 

phenomenological reasons. Satisfactory conditions of the complete stability of the 

so obtained control for Multiple Input-Multiple Output (MIMO) systems were also 

highlighted in [8] by the means of perturbation calculation. This means the most 

rigorous limitation regarding the circle of possible application of the new method. 

To release this restriction to some extent “ancillary” but simple interpolation 

techniques and application of “dummy parameters” were also introduced in [8].  

The applicability of the method was investigated for electro-mechanical and 

hydrodynamic systems via simulation [9-10]. These systems were exempt of any 
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kind of delay or lag. In this paper a quite simple but lucid typical non-linear 

paradigm, a water tank of open outlet is chosen to be the subject of the new type 

adaptive controller. It contains continuous non-linearities due to the velocity-

dependent resistance of the pipelines, saturated (bounded) non-linearities set by 

the temperature of the „warm” and the „cold” input water to be mixed in the tank, 

and the open input of the tank making it impossible for the fluid to flow back in 

the input pipes. Further non-linear limitation is that the velocity of the flow 

leaving the tank is unique function of the density and full mass of the fluid exiting 

the tank, so it cannot be directly controlled: only the mass flow rate of the cold 

and warm input is controllable. Furthermore, since the mass flow rate and the 

temperature of the required output is defined and measured only at the end of the 

pipe serving as the outlet, while the input is directly controllable at the location of 

the tank, the temperature signal contains considerable lag. (Due to the 

incompressibility of the liquid the velocity signal of the flow doesn’t suffer from 

considerable delay.)  

In the sequel at first the basic principles of the adaptive control are described, then 

the models and the simulation results for the particular paradigms considered are 

given. Following the presentation of the typical simulation results the conclusions 

are drawn. 

2 The basic principles of the adaptive control 

From purely mathematical point of view the control task can be formulated as 

follows. There is given some imperfect model of the system on the basis of which 

some excitation is calculated to obtain a desired system response id as e=ϕ(id). The 

system has its inverse dynamics described by the unknown function  

ir=ψ(ϕ(id))=f(id) and resulting in a realized response ir instead of the desired one, 

id. Normally one can obtain information via observation only on the function f() 
considerably varying in time, and no any possibility exists for directly 

"manipulaing" the nature of this function: only id as the input of f() can be 

“deformed” to id* to achieve and maintain the id=f(id*) state. [Only the model 

function ϕ() can directly be manipulated.] On the basis of the modification of the 

method of renormalization widely applied in Physics the following "scaling 

iteration" was suggested for finding the proper deformation: 
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in which the Sn matrices denote some linear transformations to be specified later. 

As it can be seen these matrices maps the observed response to the desired one, 

and the construction of each matrix corresponds to a step in the adaptive control. It 

is evident that if this series converges to the identity operator just the proper 
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deformation is approached, therefore the controller „learns” the behavior of the 

observed system by step-by-step amendment and maintenance of the initial model. 

(The response arrays may contain a „dummy”, that is physically not interpreted 

dimension of constant value, in order to evade the occurrence of the 

mathematically dubious 0→0, 0→finite, finite→0 cases.) 

Since (1) does not unambiguously determine the possibly applicable quadratic 

matrices, we have additional freedom in choosing appropriate ones. The most 

important points are fast and efficient computation, and the ability for remaining 

as close to the identity transformation as possible. In the present paper an 

orthogonal transformation is created which transforms the realized vector into a 

vector parallel with the desired one while leaves the orthogonal sub-space of these 

two vectors unchanged. Then proper stretching/shrinking factor is calculated 

which makes the absolute value of the realized vector equal to that of the desired 

one. On this basis two linear operators are created which apply the appropriate 

stretches/shrinks in the “realized” one-dimensional sub-spaces, rotate them to be 

parallel to the “desired” directions, and leave the orthogonal sub-spaces 

unchanged [3]. This operation evidently equals to the identity operator if the 

desired response just is equal to the desired one, and remains in the close vicinity 

of the unit matrix if the non-zero desired and realized responses are very close to 

each other. In the application of the above method it was implicitly supposed that 

practically the „desired” and the „observed” responses were simultaneously 

observable/available. 

3 Description of the water tank 

The water tank considered is an open vessel into which hot and cold water of fixed 

temperatures T1=10 °C, and T2=90 °C is purred from the top. The mass flow rates 

of the input components 
21

, MM  [kg/s] are directly controllable via electric 

valves. According to [11] the density of the water in the above temperature range 

is 999.7 kg/m
3 within 3.4 % precision, so it is approximated with the mean value 

over this interval as ρ=982.48 kg/m
3 as a constant. The cross-sectional area of the 

tank is A=1 m2, and it is supposed to be high enough to contain all the amount of 

the liquid occurring in the calculations. At the bottom level of the tank a pipe of 

diameter D=1.8×10-1 m, length L=10 m, and relative internal surface roughness of 

krel=1.5×10-2 is attached. The pressure increase with respect to the environmental 

pressure, that is the actual pressure difference driving the water flow in the pipe is 

Δp=M(t)g/A Pa if g=9.87 m/s
2 is the gravitational acceleration, and M(t) in kg 

units denotes the actual mass of the fluid in the tank. By neglecting the minor 

pressure losses at the exit at the tank and the free end of the pipe, the velocity of 

the flow in the pipe, u is determined by the equation 
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in which f is the non-dimensional friction factor, and μ denotes the dynamic 

viscosity of the fluid. The viscosity mainly depends on the fluid temperature, and 

in the given range it varies within the range of [3.11×10-4, 1.3×10-3] kg/(m×s). The 

non-dimensional expression Re:=ρuD/μ defines the Reynolds Number. The 

f(Re,krel) function is given in the well-known Moody Diagram [12]. At the given 

numerical value of krel f practically is constant (1.21×10-2) if Re is greater than  

10-5. Allowing Mmin=100 kg minimum mass of water in the tank and supposing 

that f=1.21×10-2 (1) yields the minimum seeped of water flow as umin=0.86 m/s to 

which the Re≅1.16×105 values belongs if the maximum value of the viscosity in 

the given range is taken into account. Therefore, if the mass of the fluid in the tank 

remains over 100 kg, the flow in the pipe will be fully turbulent with a constant 

f=1.21×10-2 friction factor. For the given pipe length a delay time of about a few 

seconds can be expected for the temperature signal. 

Regarding the mixing of the cold and warm water, the heat capacity of the fluid 

mainly depends on the temperature and varies in the interval [4.193, 4.208] 

kJ/(kg×°K), that is it can also be considered to be constant. 

Under the above conditions the operation of the tank can be approximated by the 

following differential equations: 
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in which T denotes the temperature of the mixed fluid in the tank, and 
3

M  means 

the mass flow rate at the output. While T  can directly be controlled by the valves 

at the input, the output mass flow rate cannot. This gives the system a kind of 

„inertia”. Only the time-derivative of the output mass flow rate can be directly 

controlled due to the conservation of the mass of the fluid as 
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For the directly controllable quantities therefore the following pair of equations is 

obtained: 
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in the integration of which (4) and (6) can also be used. Regarding the problem of 

the delay of observation, the quantities in (4-7) are to be taken in common time 

instant if they are measured/observed immediately at the tank. However, if the 

temperature is measured at the outlet of the pipe, one has to distinguish between 

the actual values in the tank and in the outlet. It can be stated, that if t is the time 

of the observation, and the input valves are controlled by fast electronic signals, 

than 

 ( ) ( )( )ttTtT
TankObs δ−=  (8) 

n which the lag δ(t) is determined by the equation 
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Due to the incompressibility of the liquid and the fast electric signals the mass 

flow rates are immediately observable and no such distinction has to be 

done.Principles of the adaptive control 

However, in the case of the present paradigm the effect of the control action 

immediately can be observed on the output mass flow rate, but its observation 

suffers from a lag δ(t) as far as temperature is concerned. This „asymmetry” is 

tackled in the control in the following way. If a P-type controller is applied, an 

exponentially asymptotic trajectory reproduction is prescribed by defining certain 

„desired” time-derivatives in the following manner: 
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where the indices D, N, and R refer to the „desired”, „nominal”, and the „realized” 

(actual) values, and α controls the speed of the desired error-relaxation. In the 

adaptive version, in the lack of any time lag, the matrices in (10) were constructed 

from the pair 
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where C denotes the „dummy” parameter introduced due to pure technical reasons 

only. In the „asymmetric” case, if t measures the time at the outlet of the pipe the 

error term fed back in (11) can be replaced by 
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expressing the fact that the actual response observable at the end of the pipe at 

time „t” can be related to a control action based on a desired derivative computed 

previously at t-δ(t), since the observed values at t correspond to the available 

„freshest” information on that control action. On the same basis, the S matrices of 

the adaptive law at time t are calculated from the pair of vectors 
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In similar way, if instead of a P-type a PI-type control becomes necessary to 

calculate the desired derivatives in the linear control approach, it is reasonable to 

compute the integrated error with the same delay as above, and the adaptive 

matrices have to be computed from the so obtained counterpart of (12). 

Since amongst the conditions for which the convergence of the method was 

proved near-identity transformations were supposed in the perturbation theory, a 

parameter ξ measuring the „extent of the necessary transformation”, a „shape 

factor” s, and a „regulation factor” λ can be introduced in a linear interpolation 

with small positive ε1, ε2 values as 
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This interpolation reduces the task of the adaptive control in the more critical 

session and helps to keep the necessary linear transformation in the vicinity of the 

identity operator. 

4 Simulation results for the water tank 

In the simulations the non-adaptive and the adaptive controls’ results are 

compared to each other α=0.25 1/s proportional, and β=10-3×α s
-2, that is with a 

very small integrating coefficient in Fig. 1. As a rough system model, as an 

analogy of (6), constant coefficients a, b, c, and d were used as 

( ) dMMcMMbMaT −+=+= 21321 , . 
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Figure 1. The operation of the simple PID (left column) and the adaptive (right 

column): prescribed and simulated mass flow rate [kg/s], prescribed and simulated 

temperature [°C], and the angle of the necessary step-by-step abtsract rotation (for 

the non-adaptive version it is calculated only without being used) vs. time [s] 
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In Fig. 2 the mass flow rate and temperature tracking error, the delaya time, and 

the regulating factor λ are given for the adaptive controller to reveal some details. 

It can be seen that adaptivity causes considerable amendment in the accuracy of 

the control. 

5 Thermal decay of the molecular nitrogen 

The simplest examples of the chemical reactions are the reactions taking place in 

the mixtures of ideal gases. The thermodynamic model of these gases can be 

reconstructed by the use of certain “basic data” belonging to the temperture 

dependence of the equilibrium constant, the stoichiometric coefficients of the 

 

 

Figure 2. The tracking error for the mass flow rate [kg/s] and the temperature [°C], 

the time delay [s], and the regulating factor λ of the adaptive controller vs. time 

[s]. 
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reaction and the chemical potential of the appropriate components in the mixture. 

If the chemical reaction is written in the form using positive or negative rational 

stoichiometric coefficients νi and symbolic notations for the components Ai as 

 ∑ ⇔
i

ii A 0ν , (15) 

and the model of the components is built up from the temperature-dependence of 

the molar heat of the gas cv(T) at constant volume by using the functions  
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(R denotes the universal gas constant, T denotes the actual temperature in [°K] 

units, and T0 is an arbitrary positive starting point of integration), the internal 

energy and the entropy of the mixture take the form as 
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It can clearly be seen that ii s00 ,ε  denote the molar internal energy and entropy of 

the components at temperature T0. The pair of equations (16) and (17) makes it 

possible to deduce all the thermal data of the mixture. Via applying the 2nd 

Postulate of Thermodynamics for the thermal equilibrium of the mixture we 

obtain the socalled “Mass Action Law” stating that the exclusively temperature-

dependent “equilibrium constant” K(T) and the full pressure of the system p 

imposes a restriction to the possible chemical composition of the mixture.  
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On one hand, by measuring the temperature, the pressure, and the chemical 

composition of the mixture validity of (19) can be verifyed and K(T) can be 

tabulated. On the other hand it is related to the model of the mixture in the 

following form: 
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The chemical potential of the “pure” components just are equal to their molar 

Gibbs potential also related to the model. By the use of tabulated data describing 

the molar Gibbs potential of certain components the individual model functions of 

these components can be found as, e.g. for the molecular nitrogen as 
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If our mixture consists of atomic and molecular nitrogen only (20) and (21) 

togeher determines ψN, too, for the atomic nitrogen. Since the entropy constants 

are built in in the ψ functions, and for since for the internal energy constants the 

relation 
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can be deduced, too, the energy constants of the atomic nitrogen can also be 

computed rom that of the molecular one. 

Whenever a well defined amount of mixture of N and N2 gases is in thermal 

equilibrium at a given temperature and pressure is throttled down to a prescribed 

pressure p, its full enthalpy H(T,p,NN2,NN), and its full mass M(NN2,NN) is 

conserved, furthermore the mixture has to satisfy the Mass Action Law at this 

lower pressure p. These three equations determine the new value of T, NN2, and NN 

at this lower pressure. Via applying various numerical fitting techniques no 
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Figure 3. The mole fraction of the atomic nitrogen [non-diemnsional] 

during the process of throttlin down at low pressure [Pa] and high 

temperature 
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detailed here, by the use of the MICROSOFT EXCEL’s SOLVER a third order 

polynomial was fitted to the xN(p) mole fraction of the atomic component of the 

mixture. The result is illustrated in Fig. 3. 

6 Adaptive control of the thermal decay 

In this case the controller’s task is to giarantee an appropriate p(t) function to 

produce a gas of nominal xN
N(t) composition. For this purpose the time derivative 

of the p(t) function can directly be controlled. As a rough system model a constant 

value serving as the estimation of the pxN ∂∂  derivative is used. Being a SISO 

system, for the control of this reaction scalar multiplication factors are used in the 

following form: 
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in which ε is a very small number of about 10-25 order of magnitude to avoid both 

division and multiplication by zero in the control algorithm. 

In Fig. 4 the nominal and simulated mole fraction values are described for the the 

non-adaptive and the adaptive approach, while Fig. 5 describes the tracking error 

in more details. It is evident that the adaptive completion of the control 

significantly increases the quality of the control. 

To reveal details in Fig. 6 describes the desired and simulated speed of change in 

the pressure for the non-adaptive and the adaptive control. The differences are 

quite significant in the non-adaptive case. 

Finally, in Fig. 7 the variation of the adaptive parameter (the scalar s(n) 

multiplication factors) are described for the non-adaptive [not used but calculated 

only] and the adaptive cases. It is evident that the consecutive corrections of the 

adaptive control are very close to 1, while the similar graph pertaining to the non-

adaptive case conveys information on the modeling errors and inaccuracies. 

5 Conclusions 

In this paper the behavior of the conventional PID and that of an adaptive control 

based on a novel branch of Computational Cybernetics were compared to each 
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other in the case of controlling an approximately modeled non-linear system 

having considerable and non-constant delay time.  

The simulation results made it clear that a simple increase in the integrating 

coefficient can cause considerable improvement in the control but cannot 

approach the accuracy of the adaptive control when the delay time is important.  

The here presented approach evades the sizing and learning problems having 

central significance in the rather traditional branch of soft computing [e.g. 14-20] 

by applying simple uniform operations in finite number of algebraic steps. The 

 

 

Figure 4. The nominal and the simulated mole fraction of atomic nitrogen in 

the non-adaptive and the adaptive case 
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size of the vectors and matrices used by it is simply determined by the modeled 

number of the degree of freedom of the system to be controlled. The “costs” of 

these advantages appear in the relatively limited class of problems for which the 

novel method can be applied.  

The critical point is the proper convergence of the series of the linear 

transformations.  

However the here-investigated paradigms suggests that from practical point of 

view the class of problems for which the new approach can be applied may be 

quite wide and may have drastic non-linearities, and time lag, too. 

 

 

Figure 5. The tracking error of the non-adaptive and the adaptive control 

 

 

 

Figure 5. The tracking error of the non-adaptive and the adaptive control 
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Figure 6. The desired and simulated speed of change in the pressure for the 

non-adaptive and the adaptive control  
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Figure 7. The adaptive variable in the case of the non-adaptive and the 

adaptive control (calculated only but not used in the non-adaptive case) 
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Abstract: 

Environments with large number of interrelated information uses several advanced concepts as 

computer description of different aspects of modeled objects in the form of feature based 

models. In this case a set of features is defined then used for the purpose of modification of an 

initial model to achieve a final model as a description of an instance of a well-defined complex 

object from a real world environment. Utilization this approach and some relevant methods 

have been investigated by the authors to establish course modeling in virtual university 

environments. The main objective is definition generic model entities for courses and instance 

model entities for student course profiles. Course model entities describe virtual university 

activities. The modeling can be applied generally but it is being developed for the domain of 

higher education in virtual technologies. The paper introduces some virtual university related 

concepts and the approach of the authors to virtual university. Following this feature driven 

associative model of virtual course developed by the authors is explained. Some issues about 

the conceptualized application oriented virtual course features are discussed as a contribution 

to implementation of a virtual classroom model proposed by the authors. Finally, possibilities 

of integration of the university model with engineering modeling systems are discussed taking 

into account present day virtual universities and possibilities to communicate with prospective 

students both in professional design and home computer environments. 

1 Introduction 

Spending days, weeks even months for attending campus courses is impossible for 
most of the people engaged in industrial employment as engineers. At the same time, 
substantial changes in knowledge in some domains, changes in demands by employers 
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against employees, changes in field of activities of humans and other motivation of 
humans to improve their knowledge in some of the possible directions resulted a 
demand lifetime learning for more and more people. This is why distance learning has 
been expanded in recent years. However, conventional forms of distance learning in 
higher education have a lot of drawbacks in comparison to campus courses. If students 
can not attend the campus the campus should be brought to students. This has made 
possible by development of Internet technology and virtual classroom models as 
proposed by the authors. Virtual classrooms can be established as special purpose 
portals. Numerous virtual classrooms and universities offer excellent programs on the 
Internet. The related amount and complexity of teaching information and classroom 
activities make design and maintenance of these portals very difficult. At the same 
time the flexibility of classroom programs demanded by potential students are hard to 
provide by the existing portals [4]. The authors analyzed the related problems and 
decided investigations on application of advanced computer modeling together with 
well proved knowledge technology on the basis of Internet technology for the purpose 
of virtual classroom. 

Internet portals for advanced distance learning are often called as virtual universities. 
Virtual universities offer services similar as of conventional universities but their 
purpose is not simply a solution to replace them [3]. Existing virtual universities have 
been established for different purposes and programs in higher education. The authors 
would like to contribute to methodology basics of virtual universities by following a 
model-based approach. Different aspects of a comprehensive virtual university 
concept and methodology by the authors are included in [1] and [2] as earlier results 
utilized by the reported research. 

Existing virtual classroom methods do not offer direct tools for customization of 
existing course models. The author’s approach involves description of effects of new 
components on modified course models. This needs description both of the 
consequences of modifications and the modified relationships. An obvious solution is 
feature driven associative modeling. The research reported in this paper is about the 
above-mentioned approach to virtual classroom in higher education especially in the 
field of education in engineering. The only solution is taking the advance of computer 
modeling. Authors decided to establish virtual classroom model by using of advanced 
concepts as knowledge intensive feature and associativity based modeling for 
description of virtual classroom objects. It is the main topic of this paper. 

The extending field of virtual universities motivated the authors to adapt virtual 
university principles to teaching an other large group of virtual technologies. The 
authors propose in the paper a representation that describes virtual university and can 
be integrated with virtual engineering modeling systems. Internet technologies and 
proven methods of computer based training are used as a basis of this research.  
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The paper introduces some virtual university related concepts and the approach of the 
authors to virtual university. Following this feature driven associative model of virtual 
course developed by the authors is explained. Some issues about the conceptualized 
application oriented virtual course features are discussed as a contribution to 
implementation of a virtual classroom model proposed by the authors. Finally, 
possibilities of integration of the university model with engineering modeling systems 
are discussed taking into account present day virtual universities and possibilities to 
communicate with prospective students both in professional design and home 
computer environments. 

2 Virtual University 

Platform-independent Internet software enhances advanced forms of distance learning. 
This requires substantial computer resources both on university and student sides. 
Engineers are working in a similar system in their every day company practice so that 
university activities can be done in the same system as professional engineering 
activities. Students from the non-professional area can join to this system. Finally, 
companies engaged in development, production or consult of engineering modeling, 
in common sense words CAD/CAM systems are interested in participation at higher 
education systems and may offer substantial computing and knowledge resources. 
Virtual university offers services similar as of conventional university using this 
environment for this purpose of campus and distance type of higher education [3]. 

The outline of the scene of virtual university can be seen on Fig. 1. Teachers are 
operating virtual university services. Virtual university is installed on a computer 
system that can provide the necessary services to students through network. Students 
use local services, e. g. at a company, or services of some providers. The virtual 
system establishes both off line and on line communication amongst teachers and 
students. 

Virtual universities are extended learning communities and constitute virtual 
campuses on the basis of advanced communication tools as World Wide Web and 
telephone systems [7]. Motivated, keen instructors, classroom helpers, etc. share their 
knowledge with students in a large computer system. Dramatic development of 
distance communication technologies and virtual technologies are anticipated. The 
authors think that this is the high time to make research in the above outlined topic. 
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Fig. 1 Essential connections 

The VU concept is growing from advanced distance learning [6], [8]. The main 
resources of a virtual university are published lectures, course materials, assignments 
for homework, on-line conferencing or consultation and live chats. Materials are 
browseable and a lot of links are inserted for background information. Virtual systems 
open new possibilities for the virtual university [5], [4]. Special education versions of 
modeling procedures can behave as instructor with navigation, correction and 
explanation features. Advanced commercial modeling systems can be tailored for this 
purpose. Lectures can be illustrated by live modeling etudes. Virtual laboratory makes 
it possible for students to login from remote computers within the virtual university. 
Individual and group work tasks, directed drills and case studies can be made 
available for students. The engineering model is created and annotated by the student 
then evaluated and annotated by the teacher. Exam questions can be assigned for 
solution by the using of modeling procedures. Video materials can be applied to carry 
records of modeling procedures and can be displayed step by step at learning. Where 
virtual laboratory can not be accessed on line, special education versions of modeling 
procedures can be downloaded by students of these special virtual courses. 

Multimedia lectures can be applied by hyperstructure to give explanations on different 
levels of knowledge. More detailed lectures can be chosen by students who are 
interesting in a given topic. 
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3 An approach to Model Based Virtual University 

In the author’s approach for virtual university [1] teachers operate virtual university 
functions and provide the necessary services to students through computer network. 
Students use local services, e. g. at a company, or services of some outside providers. 
Both off line and on line communications are to be operated amongst teachers and 
students. Virtual university constitutes virtual campus [5]. Motivated, keen instructors, 
classroom helpers, etc. share their knowledge with students using advanced functions 
offered by large computer systems. Virtual classroom can be considered as an up-to-
date solution for distance learning. 

Strongly interrelated information structure about virtual classroom objects to be 
represented is to be created and handled in computer systems. It is obvious that the 
only way for handling this information in computer is establishment of a well 
structured, attributed and related description. 

An approach to modeling of the related virtual university activities has been outlined 
in [1]. Model of a virtual university consists of a set of function entities grouped 
according to tasks and connected by relationships defined between them. Managers 
(Fig. 2.) handle function entities. A manager consists of a set of computer procedures 
for handling creation, modification and application of well-defined function entities. 
Course manager handles modules of the teaching program. Enrollment manager does 
credit and fee related affairs. Communication manager supervises communication 
tools available for teachers and students. Teaching material manager downloads 
materials, offers on line video service, sends materials as E-mail attachments 
automatically and establishes links to outside sources of materials. Process manager 
deals with processes in managing of courses. There are several other managers as it 
can be seen on the Fig. 1. 

The another important problem area is modeling courses (Fig. 2). In the approach by 
the authors to virtual classroom model structure, a course is a sequence or network of 
modules. In other words the main structural elements of courses are modules. A 
module consists of blocks. A block involves topics. A topic consists of topic related 
procedures for handling principles, methods, relationships, examples, questions, 
materials and instructor activities. Links can be defined to other topics and outside 
world objects. Modules are arranged in courses or can be applied individually. Core 
studies contain basic and essential knowledge. They are modules or blocks. A course 
offers a choice of modules, blocks and topics. 
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Fig. 2 Functional structure of a virtual university 

Background analysis of virtual classroom revealed its components as curriculum, 
teaching processes, credits, students and virtual laboratories [2] (Fig. 3.). Curriculum 
as an organized learning experience involves content of a degree program, provides 
conceptual structure and time frame to get that degree. The course is an organized 
learning experience in an area of the education. A curriculum can be composed using 
courses or courses can be defined according to predefined curriculum. Virtual 
laboratories are composed using software modules, software arrangements for 
assignments as well as results of student work as assignments and degree works. 

Virtual classroom is active in an environment where students, teachers and related 
humans and objects from the outside world are integrated (Fig. 3.). Classroom model, 
course instance model and outside world model communicate teachers, students and 
outside sites through the Internet. 
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Fig. 3 Virtual classroom and its environment 

The above outlined approach to virtual university and virtual classroom constitutes 
basic considerations for modeling of virtual classroom by the authors. 

4 Model of Virtual Course 

The course model as proposed by the authors uses structure of its elements, feature 
driven construction of modules and associativities between course elements. Track has 
been introduced as a course element comprising a set of modules for a well-defined 
purpose. Tracks and modules can be involved in different courses as instances. In this 
case model descriptions are not duplicated. 

In the feature driven modeling approach a module is considered as a base feature 
modified by module modification features to create a customized module instance. 
Content of a module is defined by the teachers engaged in the related teaching 
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program and customized on the basis of student demands. Consequently, generic 
models are applied and used at creation their instances. At the same time types of base 
and module modification features with basic model related characteristics are defined 
by course modeling experts. In this context base and module modification feature 
types are frames final content of which are defined in feature instances. 
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Fig. 4 Construction of feature based course models 

Basic construction schema of feature based course models is summarized by Fig. 4. 
Generic or frame model entities are launched then stored in libraries, as it will be 
explained in chapter IV of this paper. A course entity is selected then related with 
track and module entities or customized by appropriate changes. Customization covers 
selection then adaptation purpose configuration. Track models also created or 
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configured. Module entities are created by modification of a base feature by 
appropriate module modification feature entities selected from the choices stored in 
appropriate libraries. 

Predefined classroom features are used for modification of modules to create module 
instance for customary higher education teaching programs. Fig. 5 summarizes a 
possible set of classroom features. A module is modified feature by feature if it has 
necessary places and surfaces to create the modification. In other words information 
carried by the feature should be accepted by the description structure of the actual 
module instance. Features have been grouped according to their requirements for 
place and surface of modification. Structural, contact, assessment, content and 
handout groups of features have been defined by the authors. 
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Fig. 5 A possible set of classroom features 
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Structural feature modifies structure of a module by introducing a new block or topic. 
Contact features place course elements on the module to establish contact activities 
between students and teachers. Consulting and discussion are inherently interactive. 
Lectures, laboratories and seminars can be also interactive. Semi interactive contact 
features substitutes teacher by using of sets of typical answers and explanations 
together with effective searching. Content feature contributes to teaching content of 
the module by purposeful explanations, description of principles and methods, 
representative examples, putting questions with or without answers and relating things 
by relationships. Assessment features complete module by description of 
requirements, composition of assessment, assignment, marking schemas and 
examinations. Finally handout features include materials, instructions, literatures and 
links to outside materials. 

Surface for a feature can be placed on the module or on one of the existing module 
modification features according to the group of the feature and the decisions for 
modifications. Some of the features can modify only the base feature (module) 
whereas others can also modify previously placed module modification features. 

Fig. 6 shows two examples for placing features on modules at initial stage of their 
creation. Base feature on Fig. 6/a has been defined to provide surfaces for placing of 
structural, handout and assessment features. Topic A modifies base feature as a 
structural feature. Topic A has been defined to provide surfaces for placing of contact 
and content features. Feature Lecture B is placed at the contact feature surface of 
feature Topic A. Fig. 6/b illustrates an alternative solution when feature Lecture B is 
placed at the contact feature surface defined directly on the base feature. Feature 
Lecture B has surface for placing contact features. 

Assessment featureHandout feature

Content feature

Structural feature

Contact feature

Base feature (Module)

Topic A

Lecture B Content feature

Assessment featureHandout feature

Contact feature

Lecture B

a) b)

Base feature (Module)

Surface

Feature

 

Fig. 6 Placing module modification features 
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Modules are built into a structure defined for a course or a track. Conventional course 
plans relate modules each other only by information for other modules that act as 
preliminary study requirements. However, generally not a complete module but only 
its some elements are necessary to understand given element of an other module. If the 
module instance configure omit that element, preliminary requirement is no more 
exist. To achieve a flexible description and avoid unnecessary preliminary study 
requirements, modules are integrated by relationship entities defined in a course or a 
track (Fig. 7). The course or tack model defined by using of this method is brief and 
consistent without redundancies. Consistency can be checked by an appropriate 
computer procedure. 

Module A

Module B

List of relationships

Module C

List of relationships

Module D

List of relationships

Course A
 

Fig. 7 Integration of modules by relationships 

Associativities are also defined within modules. Basically, the structure of 
modification describes associativities. Other associativities can be defined between 
features or between any description elements in their content. Similarly, associativities 
can be defined between the modules and their lower level elements and the outside 
world in the form of links. Associativity describes dependency while a simple link 
only points to something. In case of change in an element, the associative elements 
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change according to the existing associativity definitions. Associativities are often 
defined for the purpose of saving teacher intent. 

5 Application Oriented Virtual Course Features 

An absolute free definition of features would require unreal amount of analyses on 
features to reveal these characteristics. It is impossible to define a complete set of 
virtual course features that can be applied in all possible courses in all possible fields 
and purposes of higher education. On the other hand feature-processing procedures 
must be informed on some basic feature characteristics. The solution in the author’s 
approach is application oriented feature definition in the course model relied upon 
general feature type definitions (Fig. 8). This method has been proved in engineering 
modeling at solutions for similar problems. 

An other problem to be solved is the high amount of custom feature variants that can 
be anticipated in the higher education practice. It is impossible to define them as 
individual features. Instead, configurable generic features are applied. Instance 
features can be easily configured by adaptation of generic features. Generic entities 
are also applied on the levels of module, track and course. Modules and features can 
be suppressed or their parameter values can be changed in order to gain purposefully 
configured instances of module modification features, modules, tracks and courses. 

Feature type
Generic application

Generic course
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Configurable course
entities

Feature definition
for the modeling system

Custom configuration

Demands for the modeling from the teaching environment

Generic entity definition

feature

 

Fig. 8 Concept of configurable course model 

It is very important to emphasize that all features on the application level are defined 
by teachers who do the education program. Also teachers define generic modules and 
courses. Configuration just simplifies work of a teacher or group of teachers at the 
definition of flexible customer oriented courses and modules. It would be a bad idea to 
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define entities on the application level by teachers or researchers other than doing the 
offered courses and modules. The knowledge and teaching skill are of personal nature. 
Teachers must describe them for computer models to make the use of computer 
system at education. One of the main advances of the above outlined application 
oriented modeling is that teachers can define entities without any advanced skill in 
course modeling. 

6 Teaching Engineering Modeling in Virtual University 

Quick development of modeling principles, methods and systems requires frequent 
training of engineers. Product related training courses at companies are not 
appropriate to deliver new higher education related topics. Consequently the proposed 
virtual university concept is most important for further education in the industry, 
however they can be utilized with equally success in undergraduate and graduate 
courses. A concept of configurable course model is outlined in Fig. 9. 

Modeling tools are organized in comprehensive Computer Aided Design/Computer 
Aided Manufacturing (CAD/CAM) systems in the present day engineering design 
practice. Users of modeling procedures use company support through Internet and 
Internet communication with other users. On the application site on line help, tutorials 
and manuals are available as knowledge and practice sources (Fig. 10). This 
environment can be used in virtual university environment as a courtesy of 
CAD/CAM manufacturers.  
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Fig. 9 Concept of configurable course model 

Virtual university managers connect laboratory with industrial modeling support and 
application environments. Industrial application environments offer real world 
examples and case studies for the virtual university and use training services from the 
virtual university. 

modeling
systems

industrial

modeling
applications

Industrial

Virtual university managers

CAD/CAM
procedures

Laboratory

Laboratory

Open
architecture

modeling
systems support

Industrial

Solutions Training

 

Fig. 10 Concept of configurable course model 

7 Conclusions 

The authors have proposed a model aimed as a contribution to the dream of virtual 
university. Using this model an advanced application and utilization of Internet is 
realized in a manner that opens the system for the teachers to make custom configured 
course, track, module and module modification feature model entities by the method 
of configuration instance entities using generic entities.  

A concept and an approach have been outlined for a virtual university system in this 
paper. The purpose is to model a virtual university that is appropriate for teaching 
virtual technologies for engineering design. The proposed virtual university model 
consists of functions that are handled by functional managers. Modeling methods are 
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modeled as topics. Topics are organized in modules and modules are organized in 
courses. The involved teachers also define generic entities. The same teachers use 
these entities then for creating instance entities on the basis of student demands. 
Making and application of course entities are tied closely to teachers to save the 
personal nature of teaching and outstanding performances of teacher individuals. 
Wide application of associativities guarantees saving intent of teachers. The proposed 
course model consists of module entities. Modules are constructed as series of 
modifications by module modification features. Modules are organized into tracks and 
courses by relating them using relationships. 
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Abstract: In order to characterize quantitatively the local topological structure of cellular 

systems a new method has been developed. First, we analyzed the topological properties of 

infinite periodic cellular structures, and then the general theoretical results obtained have 

been adapted to the local topological characterization of 2-dimensional finite cellular 

surface systems. The concept of this new approach is based on the use of the so-called 

double toroidal embedding (DT embedding) by which a finite cellular system defined on a 

torus can be generated from an infinite periodic cellular system. The DT embedding is a 

special mapping, which enables to preserve all the local topological properties of the 

original infinite periodic cellular system. As a result of performing a DT embedding, so-

called neighborhood coefficients can be generated. The neighborhood coefficients are 

scalar topological invariants, by which the local topological structure of cellular systems 

can be quantitatively evaluated and compared. Moreover, by investigating the relationship 

between the neighborhood coefficients and other local topological quantities, we verify that 

the validity of the Weaire-Fortes identity can be extended to a broad class of infinite 

periodic cellular systems and 2-d finite cellular surface systems (i.e. generalized fullerene-

like surface structures). Finally, it has been shown that the traditional definition of 

fullerenes can be generalized by introducing the notion of the cellular fullerene, which is 

considered as a finite cellular system defined on a 2-d unbounded, closed and orientable 

surface. 

Keywords: cell, embedding, toroidal graphs, Weaire-Fortes identity, corona, fullerene 

1. Introduction  

In various fields of material sciences, many interesting 2- and 3-dimensional 
structures (fullerenes, nanotubes, froths, metal foams, polycrystals) can be 
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modeled by a special arrangement of space filling polygons and polyhedra (i.e. 2- 
or 3- dimensional polytopes) and thus can be considered as finite or infinite 
cellular systems. Over the past two decades, most studies have concentrated on 2-
d cellular structures which may be represented by infinite, planar networks, 
usually with trivalent vertices (i.e. three edges at each vertex) [1-6].  This paper 
presents a general method, which is designated primarily to the topological 
evaluation of infinite periodic and finite cellular systems composed of d-
dimensional polyhedra (polytopes) where d ≥ 2. 

The proposed method is based on the application of a double toroidal embedding 
(DT embedding) by which a finite space-filling cellular system defined on a torus 
can be generated. The DT embedding is considered as a one-to-one mapping of 
the topological types, which enables to preserve all the local topological properties 
of the original infinite periodic cellular system. It will be shown that, after 
performing a DT embedding, so-called neighborhood coefficients can be 
computed, by which the local topological structure of periodic cellular systems 
can be simply analyzed and compared. Additionally it will be verified that the 
validity of the Weaire-Fortes identity [2-4] playing a key role in the topological 
description of 2-dimensional random cellular patterns, could be extended to finite 
dimensional periodic cellular systems. The fundamental results concerning the 
extension of the Weaire-Fortes identity are represented by Eqs. (33 and 34). 
Finally, it is shown that the traditional definition of fullerenes can be generalized 
by introducing the notion of the cellular fullerene, which is considered as a finite 
cellular system defined on a 2-d unbounded, closed and orientable surface. 

2. Locally finite periodic cellular systems  

The most important type of infinite d-dimensional cellular systems is the so-called 
countable cellular system [7]. A countable cellular system is considered as a face-
to-face tiling  (tessellation) of d-dimensional Euclidean space denoted by E(d) by a 
countable set of d-dimensional compact combinatorial polyhedra (polytopes). 
Each d-dimensional polyhedron called a cell is topologically equivalent 
(homeomorfic) to a d-dimensional sphere. A countable cellular system denoted by 
Ωd is defined by taking into consideration the fulfillment of the following 
requirements: 

i. Ωd can be represented as 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=∈= (d)
d EΩ ∪

j
jPj A...and...IjA            (1) 

where IP is the index set of positive integers, Aj is the jth cell (polyhedron) in  Ωd. 
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ii. The k-dimensional faces of polyhedra included in Ωd (k=0,1,2,…,d-1) are also 
compact  combinatorial polyhedra, and the maximum number of k-dimensional 
faces is less then γk, where γk  are finite positive integers for k=0,1,2,…d-1. (The 
0-dimensional and 1-dimensional faces of polyhedra are called vertices and edges, 
respectively.)  

iii. Polyhedra can be included in a d-dimensional sphere with a finite radius, 
which guaranties that the “size” of cells is finite [7]. 

iv. All of the k-dimensional faces of a d-dimensional polyhedron have a positive 
k-dimensional volume (measure) for k=1,2,…d. 

v. Each (d-1) -dimensional face between cells is the common face of two different 
cells (polyhedra) exactly. 

vi. Additionally it is assumed that Ωd is locally finite [7]. By definition, a 
countable cellular system is called locally finite if there exists a positive number ρ 
for any arbitrary point Px in  E(d), such that every d-dimensional sphere  G(Px,ρ) 
with radius ρ and center point Px, contains finite number cells from Ωd only. This 
definition implies that there are no singularity points of cells in the cellular 
system. For each vertex X (0-dimensional face) in Ωd the number of edges (1-
dimensional faces) incident to X is called the valency of  X, denoted by r (or r(X)). 
If all of the vertices of have the same valency R, then Ωd is said to be a regular, or 
R-valent cellular system.  

For purposes of our investigations the most important groups of locally finite 
cellular systems are the periodic cellular systems. A locally finite cellular system 
Ωd is called periodic, if there exists a d-dimensional parallelepiped Πd represented 
by a linearly independent vector system (v1, v2,… vk, ....vd) for which  
relationships 

  { }dd ΩΠ ∈⊂ jj AA∪                    (2a) 

and 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈εε+== ε
=

∑ I,... k

d

1k
k kdvv

(d) vΠBBE ∪           (2b) 

are fulfilled, where εk are integers for k  = 1,2,….d, and  Iε is the set of integers 
[7].   

In the following, it is supposed that Ωd is a locally finite periodic cellular system 
(LFPC system). From the previous considerations it follows, that parallelepiped 
Πd can be covered by the union of a finite set of cells belonging to Ωd. This 
implies that a LFPC system is generated from a finite set of polyhedra of 
combinatorially different types.  
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It will be shown that the topological description of a locally finite periodic cellular 
system (LFPC system) can be traced back to the topological characterization of an 
appropriately constructed finite cellular system. Parallelepiped Πd has been chosen 
in such a way, that it has a minimum volume. It should be emphasized that this 
parallelepiped Πd is not uniquely defined. They can be constructed in different 
manners; however, their common property is that their d-dimensional volumes are 
identical.  

There is no loss in generality in assuming the following: By using an appropriately 
selected homogenous linear transformation, parallelepiped Πd can be mapped into 
a d-dimensional unit cube. This unit cube Πd,U which is called “a unit domain” in 
the classical crystallography is given by  

  Πd,U = {x = (x1, x2,…xk,…xd) | 0 ≤ xk ≤ 1 and k = 1,2,…d} (3) 

This simple transformation makes it possible to replace the original LFPC system 
by a “standardized” periodic cellular system generated by translations of Πd,U. The 
only difference is that the standardized LFPC system is composed of unit cubes 
instead of parallelepipeds. Since a linear transformation represents a “topology 
preserving” onto-to-one mapping, this implies that the original and the 
transformed periodic cellular systems are topologically equivalent. In the further 
investigations, it will be supposed that the LFPC system Ωd is a standardized 
cellular system. 

3. Finite cellular systems constructed by using a double 

toroidal embedding 

From a LFPC system, finite cellular systems of a toroidal type can be constructed 
in several ways. In the following, it will be demonstrated that starting with a d-
dimensional LFPC system and by using the so-called double toroidal embedding, 
it is always possible to construct a uniquely defined finite cellular system 
represented by a torus in the (d+1) dimensional Euclidean space, which is  
advantageously applicable to the local topological evaluation of infinite periodic 
cellular systems. 

In order to generate a finite cellular system from a standardized LFPC system, 
consider a unit domain Πd,U defined by Eq. (3). As a first step, let us construct a 
so-called identification region Sd, which is composed of 2d unit domains, as 
follows 

 Sd = {x = (x1, x2,…xk,…xd) | 0 ≤ xk ≤ 2 and k = 1,2,…d} (4) 

As can be stated, Sd is also a d-dimensional cube with edge length of 2. As a 
second step, let us construct a finite toroidal cellular system Rd (FTC system) by 
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gluing (identifying) the opposing k-dimensional face pairs (edges, vertices, etc.) of 
Sd (k=0,1,2,….d-1). 

Fig.1 The 3-dimensional, periodic Weaire-Phelan cellular system 

This mapping is called the double toroidal embedding (DT embedding) of the d-
dimensional LFPC system, because Rd represents a torus in the (d+1)- 
dimensional Euclidean space. As an example, Fig. 1 shows a two-component, 
space-filling periodic polyhedral system. In this 3-dimensional LFPC system that 
was discovered by Weaire and Phelan, the space-filling unit domain consists of six 
tetrakaidecahedra (14-sided Goldberg polyhedra) and two irregular pentagonal 
dodecahedra (12-sided polyhedra) [8].  

Fig.2 Identification region S3 generated by 8 unit domains to the DT embedding of 
a 3-d LFPC system 

In Fig. 2, the construction of the identification region of a 3-dimensional LFPC 
system is illustrated. As can be seen, this is the union of 8 unit domains.  The 
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arrows a, b and c are used to specify a direction for the edges, and this direction 
must be respected when gluing is done. The eight vertex points of the 
identification region S3 are joined to form a single point ω of the resulting toroidal 
system.   

Fig. 3 demonstrates the general concept of the DT embedding of a 2-dimensional 
LFPC system.  As an example, in Fig. 4., the DT embedding is shown for a 2-d 
periodic cellular system, which includes 4- and 8-sided polygons. The resulting 
FTC system is also composed of four 4-sided and four 8-sided cells (See Fig 4.c). 
The number of cells is 8, the number of edges is 24, and the number of vertices is 
16. As it is expected, the Euler-characteristic of this finite system defined on the 
torus surface is zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Principle of the DT embedding of a 2-d LFPC system (a) The 2-d 
identification region S2 composed of 4 unit domains, (b) The corresponding FTC 

system defined on a torus  
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Fig.4 Example of the toroidal embedding of a 2-d LFPC system (a) The unit 
domain Π2,U, (b) The corresponding identification region S2, (c) The DT 

embedding performed on the torus, (d) The traditional toroidal embedding of the 
2-d LFPC system by using a single unit domain only  

The basic properties of the DT embedding and of FTC systems are as follows: 

a. The total number of cells in Sd is equal to Nd,U x 2d, where Nd,U denotes 
the  number of cells in the unit domain. 

b. The resulting FTC system preserves all the topological properties of the 
original LFPC system. This is due to the following fact: In cellular 
systems generated by a DT embedding, each (d-1)-dimensional face is 
shared by two different neighbor cells exactly. Since a DT embedding is 
a topology preserving one-to-one mapping between the LFPC and FTC 
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system this implies that an LFPC system can be unambiguously 
reconstructed from the corresponding FTC system generated by a DT 
embedding. It should be noted, that using a single unit domain could also 
perform a toroidal embedding. Unfortunately, in certain cases, if we use 
only one unit domain to generate a finite toroidal cellular system, as a 
result of this procedure the local topological properties characterizing the 
neighborhood structure of cells can change radically. Consequently, the 
classical toroidal embedding cannot be applicable to every case. As an 
example, this is illustrated in Fig 4.d.  Due to the toroidal embedding 
with a single unit domain, the original topological structure of the 2-
dimensional LFPC system depicted in Fig. 4.a, has been degenerated. In 
this case, the number of cells is 2, the number of edges is 6, and the 
number of vertices is 4, the Euler-characteristic is zero.  As it can be 
stated Fig 4.d shows the conventional 2-cell embedding of the complete 
graph K4 in the torus, where one of the two cells is 4-sided, while the 
other is 6-sided. This is explained by the fact that in this toroidal cellular 
system there exist two edges, which belong to the same 6-sided cell. This 
implies that the original LFPC system shown in Fig. 4.a, cannot be 
reconstructed from the finite graph depicted in Fig 4.d. 

c. Every FTC system generated by the DT embedding of a 2-dimensional 
LFPC system can be represented by a finite toroidal graph. (i.e. 2-
dimensional FTC systems are considered as a subset of toroidal graphs). 
This implies that the topological analysis of 2-dimensional LFPC systems 
can be reduced to the characterization of traditional toroidal graphs 
embedded on a genus 1 surface. 

4. Topological properties of FTC systems  

In order to simplify the treatment of problems to be outlined, we introduce some 
definitions. Let us denote by Nd,k  the number of k-dimensional faces of FTC 
system Rd where k=0,1,2,…d. By definition, Nd,d is the number of cells 
(polyhedra),  Nd,0 is the total number of vertices, Nd,1 is the total number of edges, 
Nd,2 is the total number of traditional faces of cells.  

The finite toroidal cellular system Rd generated by space filling polyhedra 
(polytopes) can be represented as 

 Rd = {An,i⏐i=1,2,..Nn, nmin ≤ n ≤ nmax, n∈ IR}. (5) 

In Eq.(5), An,i denotes the ith cell (d-dimensional polyhedron) with n-faces, where 
i= 1,2,...Nn and Nn is the total number of d-dimensional, n-faceted cells in Rd. By 
definition, an n-faceted cell stands for a d-dimensional cell having (d-1) 
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dimensional faces of number n. It is supposed that nmin≥2 and nmax >nmin are 
positive integers, IR is a finite index set for n.  

The total number Nd,d of cells is Nd,d= ∑ nN where n=2,3,... nmax. The fraction 

(or frequency) pn of n-faceted cells is pn = Nn/Nd,d , where pn>0. Consequently, 

∑ np =1.  For a FTC system, the mean number of (d-1) dimensional faces per 

cell denoted by 〈n〉 can be calculated as ∑=〉〈 nnpn . Generally, in the cell 

statistics, expression 〈U(n)〉 is the average value of the quantity U(n) with 

frequency pn, i.e. ∑=〉〈 )n(Up)n(U n  by definition.  

Since any (d-1) dimensional face is a common face of two different neighbor cells, 
this implies that 
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where  Nd,d-1 is the total number of (d-1) dimensional faces, and ed-1(n,k) is the 
number of the common (d-1) dimensional faces of n-faceted and k-faceted 
neighbor cells.   

In a FTC system, vertices do not all have the same valency, consequently, we may 
define an average valency [r] as follows: 

 ∑=
r

)d(
r

0,d

rV
N

1
]r[  (8) 

where )d(
rV  is the number of r-valent vertices in Rd and ∑=

r

)d(
r0,d VN . For 

every FTC system we have 

 ∑==
r

)d(
r0,d1,d rVN]r[N2  (9) 

which is due to the fact, that each edge has two different ends (endvertices). 

The component number of a FTC system is defined by ∑=Φ )psgn( n . It 

follows from the definition that Φ≥1. On the other hand, Φ=1, if and only if the 
FTC system is a so-called face-homogenous system which is composed only of 
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polyhedra with identical face numbers. It should be noted that there exist face-
homogenous LFPC systems including combinatorially different cells (i.e. 
topologically non-equivalent polyhedra) with identical face numbers. (The 
simplest 3-dimensional LFPC system of such type is composed of two 
combinatorially different 5-sided polyhedra.) 

4.1 Euler-equation for FTC systems 

It is has been shown, that the traditional Euler-formula can be extended to the 
topological description of FTC systems [7, 9-11]. This modified Euler-equation, 
which valid even for a d-dimensional FTC system can be formulated as follows:  

For an arbitrary FTC system Rd where all the k-dimensional faces are 
topologically equivalent to a k-dimensional sphere, the equality  

 ( ) ( )∑
=

=−=χ
d

0k
k,d

k 0N1dR  (10) 

is valid. In Eq.(10), χ(Rd) is the Euler-characteristic of the finite toroidal cellular 
system Rd. Particularly, for the case of d=2, we have 

 0NNN 0,21,22,2 =+−  (11) 

while for the case of d=3, 

 0NNNN 0,31,32,33,3 =+−+−  (12) 

yields.  

Because the unit domain Πd,U representing the corresponding LFPC system has a 
minimum volume, it follows that the total numbers of k-dimensional faces in Rd  
(k=0,1,2,…d), i.e. quantities Nd,k  in Eqs. (10-12) are uniquely defined positive 
integers.   

For the 2-dimensional case, identity (11) coincides with Euler’s theorem for the 
torus [7,9].  For the 3-dimensional case, Eq.(12) has been proven by Kinsey [10], 
who verified that if R3 is a compact connected 3-manifold without a boundary 
then χ(R3) = 0.  The proof of the general case is based on the following concept: 
Considering the Euler-characteristic of a d-dimensional torus, we argue as 
follows: The d-dimensional torus can be represented as the direct product of d 
circles (meaning d circular arcs). Since the Euler-characteristic is multiplicative 
with respect to direct products and the Euler-characteristic of a circle is zero, this 
implies that the Euler-characteristic of a d-dimensional torus is zero, as well.  (See 
Exercise B4 on page 205 in Ref. [11]). 
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4.2 Cell coronas  

The analysis of local topological properties can be traced back to the evaluation of 
the correspondences between the individual cells and their first neighbor cells.  
Cells A and B are called adjacent (neighbors) if they have common (d-1) 
dimensional faces. The cell corona C(A) of a cell A in Rd  is the union of neighbor 
cells of A.  According to this definition, cell A is not included in C(A).    

FTC systems can also be characterized on the basis of the topological properties of 
their cell coronas. For this purpose, we define the corona frequency vector fA (CF-
vector) of cell A included in Rd as follows:  

 ( ))A(

maxn
)A(

k
)A(

3
)A(

2 f....f,...f,f=Af  (13) 

where component 
)A(

kf  is the number of  (d-1) dimensional, k-faceted cells in 

C(A), and index nmax denotes the maximum (d-1) dimensional face number of 

cells included in Rd. It is obvious that for any k and 
)A(

kf relationships 0≤ )A(
kf  ≤ 

nmax and nmin=2≤ k ≤nmax are valid, and )A(
kf = 0 if and only if, there is no k-

faceted neighbor cell in C(A). It is clear that, if A is an n-faceted cell, then the sum 
of components of fA is equal to n. 

Consider two n-faceted cells An and Bn characterized by their corresponding CF-
vectors denoted by fA,n and  fB,n. Cells An and Bn are called topologically similar, if  
fA,n≡fB,n is fulfilled. As can be stated, this topological similarity is an equivalence 
relation by which all the cells of a FTC system can be classified into disjoint 
subsets.  

This implies that all the topologically similar n-faceted cells denoted by 
)j,nR(

j,n
)2(
j,n

)1(
j,n A,...,A,A   are the elements of the same configuration set Rn,j  

defined as 

 Rn,j { })j,nR(
j,n

)2(
j,n

)1(
j,n A,....,A,A =  (14) 

where Rn,j is the number of topologically similar n-faceted cells in Rn,j 
(j=1,2,…J(n)). It follows that Rd   can be described as a union of disjoint subsets  

 ∪∪
n

)n(J

1j=

= jn,d RR             (15) 

where J(n) stands for the number of configuration sets including topologically 
similar, n-faceted cells. It is obvious that cells belonging to Rn,j is characterized by 
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the same FC-vector 
jn,Rf . Let us denote by pn,j the fraction of topologically 

similar n-faceted cells included in Rn,j. Because pn,j= Rn,j/Nd,d it follows that 

 1pp
n n

n

)n(J

1j
j,n ==∑ ∑∑

=

 (16) 

It is easy to see that pn,j and 
jn,Rf are unambiguously defined quantities which are 

independent of the particular choice of the unit domain of the LFPC system. It 
follows that the total number J of possible configuration sets Rn,j can be calculated 
as 

 ∑∑∑ ==
n j

j,n
n

)psgn()n(JJ  (17) 

It is obvious that for any FTC system inequality J≥Φ is fulfilled. This means that 
the total number of possible configuration sets is not less than the component 
number Φ of the FTC system. The quotient ϕ=Φ/J ≤1 which is called the 
complexity index of the cellular system, gives information on the fraction of 
topologically distinct cell coronas in the LFPC and the corresponding FTC system. 

4.3 Face-coordination number  

The face-coordination number mA of an arbitrary n-faceted cell A belonging to the 
configuration set Rn,j  is defined as 

 ∑=
k

)j,nR(
kA kf

n

1
m  (18) 

where  
)j,nR(

kf  is kth component of the CF-vector 
jn,Rf . 

The face-coordination number mA is the mean number of (d-1) dimensional faces 
of the neighbors of A. It should be emphasized that mA is a local topological 
parameter, which gives some information on the arrangement of the cells included 
in the cell-corona. For the FTC system Rd which is composed of cells An,i 
(i=1,2,..Nn), the mean face-coordination number m(n) of n-faceted cells is defined 
as  

 ∑
=

=
nN
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i,nA

n

m
N

1
)n(m  (19) 

where 
i,nAm  is the face coordination number of  cell An,i. 
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Knowing the set of FC-vectors 
jn,Rf  and the corresponding fractions pn,j of 

topologically similar cells, the mean face-coordination number m(n) of n-faceted 
cells can be calculated as 

 ∑ ∑
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⎬
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Starting with Eqs.(19 and 20) we define the total face-coordination number 〈m(n)〉 
of  Rd as follows 
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It is conjectured that for all FTC systems inequality 〈m(n)〉  ≥ 〈n〉 holds, and  
〈m(n)〉 = 〈n〉 if and only if, the cellular system is a face-homogenous system 
including cells with identical face numbers only (i.e. Φ = 1 is fulfilled). 

4.4 Neighborhood coefficients  

Now, let us define quantities denoted by H(n,k) as  
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where nmin ≤ n,k ≤ nmax. Quantities H(n,k) are called the neighborhood coefficients 
of the FTC system. The neighborhood coefficients are non-negative numbers, 
which have a special property of symmetry 
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The neighborhood coefficients can be interpreted geometrically as follows: 
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where Nd,d is the number of d-dimensional cells, and ed-1(n,k) is the number of the 
common (d-1) dimensional faces of n-faceted and k-faceted neighbor cells. 
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Especially, for the case of d=2, we have 
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where N2,2 is the number of 2-dimensional cells (polygons), and e1(n,k) is the 
number of the common edges (i.e. 1-dimensional faces) of n-sided and k-sided 
neighbor cells.  

For the case of d=3,   
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where  N3,3 is the number of 3-dimensional cells (polyhedra) and  e2(n,k) is the 
number of the common 2-dimensional faces of n-faceted and k-faceted neighbor 
polyhedra. 

It is easy to verify, that for quantities H(n,k) the following relationships are valid: 
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where  z is an arbitrary integer. Additionally, from Eq.(6), identity 
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yields.  For the case of d=2 we have 
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where N2,1 is the total number of edges (i.e. 1-dimensional faces) and 〈n〉 is the 
mean number of  edges  per cell in R2.  For the case of d=3 
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yields, where N3,2 is the total number of 2-d faces and 〈n〉 is the mean number of 
faces  per cell in R3. As an example of application of these ideas, we consider the 
3-dimensional, periodic Weaire-Phelan cellular system shown in Fig.1.  This 2-
component and 4-valent polyhedral system (i.e. Φ=2, R=4) consisting of 12- and 
14-sided polyhedra is characterized by the following topological quantities: 
p12=1/4, p14=3/4, 〈n〉=27/2=13.5, 〈n2〉=183, ϕ=Φ/J=2/3=0.667, H(12,12)=1, 
H(12,14) = H(14,12)=2 and H(14,14)=17/2=8.5. 

5. A fundamental property of LFPC and FTC systems 

Neighborhood coefficients H(n,k) play a key role in the topological 
characterization of LFPC systems. In the following a fundamental property of 
LFPC and FTC systems will be presented which can be formulated in the 
following statements:  

On the one hand 
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on the other hand 
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where  z is an arbitrary integer, and 
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by definition. As it can be stated, Eq. (35) is the generalization of Eq.(20). As a 
special case, when z=1, from Eq.(35) we obtain the mean face coordination 
number m(n) of n-faceted cells which is defined by Eq.(20). Consequently, 
identity m(n)=m(1,n) is fulfilled.  



 74

Proof of Eq. (33) is based on the following concept. Starting with Eqs.(24 and 29), 
we have 
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Additionally, from Eq. (30) it follows  
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Substituting Eq.(37) into Eq.(36) we have 
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It is important to note that Eq.(38) can be interpreted geometrically as follows: Let 
us denote by q(n,k)=ed-1(n,k)/Nd,d-1 the relative frequency of the common faces of 

n-faceted and k-faceted neighbor cells, for which ∑ = 1)k,n(q . Additionally, 

let us define quantities denoted by w(z,n,k)= (nz + kz)/2, which are considered as 
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positive weights belonging to the (d-1) dimensional common face of n- and k-
faceted neighbor cells. Now, Eq.(38) can be rewritten in the form 
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It is worth noting, when  z = -1, from Eqs.(37 and 38)  the identity 
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yields. 

The second statement represented by Eq.(34) can be proved as follow: By using 
Eq.(35) and Eq.(23) incorporating the definitions of quantities m(z,n) and  H(n,k), 
we have 
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In particular cases, when z =1, from Eq.(41) we obtain the well-known identity 
formulated as 〈nm(n)〉 = 〈n2〉 which were considered by Weaire and Fortes [2,3] 
for random 2-d cellular systems, and by Fortes for random 3-d cellular systems 
[4]. 

In the following it will be demonstrated that the general concept used for the 
topological description of locally finite periodical cellular systems can be 
efficiently applicable to the structural characterization of fullerene solids 
represented by finite cellular surface systems. 

6. Cellular fullerenes  

The discovery of fullerene molecules and related forms of carbon such as 
nanotubes has generated an explosion of activity in physics, chemistry and 
material science. As it is known, the topological properties of fullerenes play a key 
role in a classification of possible fullerene structures and in predicting their 
various physical and chemical behaviors.  
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In chemistry, the traditional definition is that a fullerene is an all-carbon molecule 
in which the atoms are arranged on a pseudospherical framework made up entirely 
of hexagons and pentagons. Based on the concept outlined in Refs. [12-14], define 
a fullerene in the wider sense as follows: A fullerene is considered as a simple 
finite cellular system (SFC system) defined on an unbounded, closed and oriented 
surface, and composed of a finite set of combinatorial polygons (called cells), 
where cells are simply connected regions and all common edges are shared only 
by two different neighbor cells. Fullerenes of such types will be referred to as 
cellular fullerenes. According to this general definition, the closed nonotubes with 
negative curvature and the so-called onion-like structures are also considered as 
fullerenes [13,14]. Taking into consideration the decisive role of the Euler 
characteristic (χ) in the topological analysis of unbounded, closed and oriented 
surfaces, cellular fullerenes with χ=2 are called spherical, while cellular fullerenes 
with χ=0 are called toroidal fullerenes. 

6.1 Non-polyhedral spherical fullerenes 

Cellular spherical fullerenes generated by the tessellation of the surface of the unit 
sphere can be classified into two classes. Spherical fullerenes represented by 
convex polyhedra are called polyhedral fullerenes, while the others, which cannot 
be represented by convex polyhedra, are called non-polyhedral fullerenes. It 
should be noted that, the Schlegel diagram of a polyhedral fullerene is considered 
as a polyhedral graph. According to the Steinitz’s theorem, a finite graph is 
polyhedral if and only if it is planar and 3-connected [16]. This implies that the 
Schlegel diagram of a non-polyhedral spherical fullerene is represented by a 2-
connected graph. It is important to note, that among the spherical fullerenes there 
exist several topologically distinct isomers, which can be of polyhedral and non-
polyhedral types. 
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Fig.5 Schlegel diagrams of  non-polyhedral, trivalent fullerenes: (a) a generalized 
triangular T8,is  fullerene with 8 vertices, (b) a generalized triangular T12,is  

fullerene with 12 vertices 

Deza et al. investigated some special types of polyhedral fullerenes, namely, the 
so-called triangular fullerenes composed of triangles and hexagons only [15]. A 
triangular fullerene is defined as a simple polyhedron with trivalent vertices, for 
which the k vertices are arranged in 4 triangles and (k/2-2) hexagons (and 3k/2 
edges). Triangular fullerenes denoted by Tk can be constructed for all k≡0 (mod 4) 
except k=8. Examples of such polyhedra are the tetrahedron T4, the truncated 
tetrahedron T12 and the chamfered tetrahedron T16 [15]. By extending the 
definition of triangular fullerenes we can construct spherical and trivalent isomers, 
which are of non-polyhedral types. In Fig.5 the corresponding Schlegel diagrams 
of two non-polyhedral triangular fullerenes denoted by T8,is and T12,is  are shown. 
It is worth noting that T8,is is the smallest non-polyhedral trivalent fullerene 
because T8,is has no isomers of polyhedral types. 

6.2 Global topological properties of cellular fullerenes  

In a SFC system, the total number E of edges is related to the total number Nt of 
cells, the number V of vertices, the average valency [r] and the mean number of 
sides per cell 〈n〉 
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r
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where Nn is the number of n-sided polygons. The number V of vertices is 

V=∑ rV where Vr is the number of r-valent vertices, the total number Nt of cells 
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(polygons) is Nt=∑ nN where n=2,3,... nmax, and the fraction pn of n-sided cells 

is pn=Nn/Nt, for  pn>0. 

Assuming that all the cells are simply connected regions, Euler’s equation can be 
formulated as 

 g22VEN t −=+−=χ  (43) 

where χ is the Euler-characteristic, g is the genus of the surface [16]. The genus  
of the surface, which can be an arbitrary non-negative integer, is identical to the 
number of handles that are attached to the sphere to obtain a surface. For the 
sphere χ=2 and g=0,  for the torus (donut) χ= 0 and g=1,  for the double torus,  χ = 
- 2 and g=2, for the triple torus, χ = -4 and g=3, respectively. It is worth noting 
that identity (43) is a possible generalization of Eq.(11), because for the torus 
(where equalities χ=0 and g=1 are fulfilled), from Eq.(43) we obtain Eq.(11) as a 
special case. Taking into consideration, that for a SFC system equalities 〈n〉 = 
2E/Nt and [r]= 2E/V are fulfilled, from Eqs.(42 and 43), we have 
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Additionally, from Eqs. (42 - 44) it follows 

 

E

V
1

N
1

2
N

1
2]r[

]r[2
n t

t −

χ
−

=
⎭
⎬
⎫

⎩
⎨
⎧ χ

−
−

=  (45) 

 ( ) 2/2]r[VN t −+χ=  (46) 

and 

 ( ) ( )
V

VE
2

V

N
2u2rV2r

V

1 t

r
r

r
r

−
=

χ−
=−=− ∑∑  (47) 

where  ur =Vr/V is the fraction of r-valent vertices, for which ∑ = 1u r  and 

∑ = ]r[ru r    are fulfilled. An immediate consequence of Eq.(45) is that for 

trivalent SFC systems, equality 〈n〉=6(1-χ/Nt) = 6-12χ/(2χ+V) is valid. Depending 
on the particular choice of the Euler–characteristic χ, as particular cases, we get 
〈n〉<6 for a sphere (case χ=2), 〈n〉=6 for a torus (case χ=0) and 〈n〉>6 for a double 
torus (case χ=-2), respectively. 
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6.3 Local topological properties of cellular fullerenes 

First of all, it is important to emphasize that general formulae derived for d-
dimensional LFPC systems (see formulae given by Eqs.(6 - 41))  can be applied to 
arbitrary fullerenes represented by simple finite cellular systems. It is easy to see 
that the fundamental identities given by Eqs.(33 and 34) remain valid for any SFC 
system (i.e. for cellular fullerenes). 

In the following, by introducing the notion of the so-called vertex corona, we will 
demonstrate that the vertex corona distribution can be efficiently used to the local 
topological characterization of regular (R-valent) cellular fullerenes represented 
by SFC systems. 

In a SFC system, cells A and B are called diagonally adjacent (diagonal 
neighbors) if they have a common vertex X. Vertex corona CV(X) of an arbitrary 
vertex X is defined as a union of diagonal neighbor cells having a common vertex 
X. For a finite cellular system characterized by the sequence of vertices Xk (k 
=1,2, …V)  

 ∪
j
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where Xk is a common vertex of cells Aj(Xk).  

Vertex corona distribution of a cellular fullerene represented by a regular SFC 
system has an interesting property. Consider a finite cellular system, where Xr,k 
denotes the kth and r-valent vertex, and define the topological quantity 
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where M(r,k) stands for the mean number of sides of cells in CV(Xr,k) for k = 
1,2,…V. The local topological parameter M(r,k) is called the vertex coordination 
number of Xr,k while Mv is said to be the total vertex coordination number of the 
FTC system. 

Now, we will verify that for regular, R-valent FTC systems (i.e. cellular 
fullerenes), identity 
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is valid. Proof of Eq. (50) is based on the following considerations: Let us denote 

by )B(n )k(
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Starting with Eq.(51), we have  
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It is easy to see that formula (50) can be generalized as follows: If z is an arbitrary 
integer, then identity 
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is valid for regular SFC systems, where 
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by definition. As it can be stated, when z = 1, this implies that Eq. (53) is 
simplified to Eq. (50). This is due to the fact, in the case of z=1, it follows that 
M(R,k,1)= M(R,k) and MV(1) = MV, respectively. 

For trivalent and 2-component cellular fullerenes, (i.e. for the case of Φ=2 and 
R=3), which include α-sided and β-sided cells with frequencies pα and pβ = 1- pα  
(where α<β), there exist only four possible types of vertex coronas denoted by 
Cα,α,α, Cα,α,β, Cα,β,β and Cβ,β,β respectively.  This implies that in this particular case, 
Eq.(50) can be reduced to the form  
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where M1=(α+α+α)/3, M2=(α+α+β)/3, M3=(α+β+β)/3 and M4 =(β+β+β)/3 are 
the vertex coordination numbers of the four possible types of vertex coronas, and  
si (i=1,2,3,4) are the corresponding relative fractions of the vertex coronas,  for 

which ∑ = 1s i  holds. Using identity (56) facilitates the computation of vertex 

fractions si (i=1,2,3,4), which are topological invariants. (For example, if 
quantities s1 and s2 are known, then s3 and s4 can be directly calculated.) 
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Fig.6  The four possible vertex coronas in a 2-component, trivalent fullerene (case 
α=5 and β=6). 

6.4 Application: Topological characterization of C60 fullerenes 

As we have mentioned previously, the analysis of the distribution of vertex 
coronas of different types plays a significant role in algorithms for the perception 
and classification of topological properties of fullerenes. Balaban et al. have used 
this concept in order to classify the C60 isomers on the basis of topological 
properties of their vertex coronas [17]. Since C60 fullerene isomers are composed 
of 12 pentagons and 20 hexagons, in this particular case, we have: α=5, β=6, and 
p5=12/32, p6=20/32, 〈n〉=45/8=5.625, 〈n2〉=255/8 and MV=17/3=5.667. The 
corresponding vertex coordination numbers are: M1=15/3, M2=16/3, M3=17/3 and 
M4 =18/3. As Balaban et al. [17] pointed out, the 1812 structural isomers of C60 
fullerenes could be partitioned into 42 equivalence classes (subclasses) on the 
basis of the four types of vertex coronas C5,5,5, C5,5,6, C5,6,6 and C6,6,6 which are 
illustrated in Fig. 6.  

To characterize the local topological structure of cellular fullerenes, we defined 
the topological descriptor IS calculated on the basis of the neighborhood 
coefficients: 

∑=
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The topological descriptor IS which is called the isolation index can be simply 
computed  for C60 isomers 
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where si (i=1,2,3,4) are the relative fractions of the corresponding vertex coronas. 
(See Fig.6.) Based on the calculated results the following conclusions can be 
drawn: 

By using the isolation index the 1812 C60 isomers can be partitioned into 18 
subclasses. Calculated values of isolation index IS are in the interval  1.875 to 
4.375.  

The buckminster-fullerene denoted by C60B (containing 12 isolated pentagons) is 
the sole isomer which is characterized by the minimum value of IS (namely 
IS=15/8 =1.875). The computed neighborhood coefficients are: H(5,5) = 0, H(5,6) 
= H(6,5) = H(6,6) =15/8). It should be noted that it is supposed that fullerene 
structures with isolated pentagons are likely to be more stable than structures 
containing fused five-membered rings [18].   

On the other hand, we found that the maximum value of IS belongs to C60W 
isomer (IS= 4.375). (See the corresponding Schlegel diagram of C60W  shown in 
Fig.1 in Ref.[17]). It is important to emphasize that C60W is judged to be the least 
stable C60 isomer [17], for which the corresponding neighborhood coefficients are: 
H(5,5) = 10/8, H(5,6) = H(6,5) = 5/8 and H(6,6) =25/8.  

We have also observed that the discriminating performance of the topological 
index IS is determined (and limited) primarily by the local neighborhood structure 
of the cellular system. For cellular systems characterized by a topologically 
similar first neighbor structure, the neighborhood dependent isolation index has 
only a limited ability for discrimination. The main advantage of using the isolation 
index lies in the fact that IS can be generally applied to the topological 
characterization of any cellular system, not only fullerene-like but also arbitrary 
infinite periodical cellular structures.  

7. Summary and conclusions 

A general method has been developed to characterize and compare infinite and 
finite cellular systems on the basis of quantitative topological criteria. First, we 
analyzed the global and local topological properties of infinite periodic cellular 
structures, and then the theoretical results obtained have been adapted to the local 
topological characterization of 2-dimensional finite cellular surface systems. The 
general concept of this new approach is based on the use of the so-called double 
toroidal embedding (DT embedding) by which a finite cellular system defined on 
a torus can be generated from an infinite periodic cellular system.  

As a result of performing a DT embedding, so-called neighborhood coefficients 
can be generated. The neighborhood coefficients H(n,k) are simple scalar 
topological invariants, by which the local topological structure of cellular systems 
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can be quantitatively evaluated and compared. Moreover, by investigating the 
relationship between the neighborhood coefficients and other local topological 
quantities, we have verified that the validity of the Weaire-Fortes identity (playing 
a key role in the topological description of 2-dimensional random cellular 
patterns), could be extended to infinite periodic cellular systems and 2-d finite 
cellular surface systems (i.e. generalized fullerene-like structures). It has been also 
shown that the traditional definition of fullerenes can be generalized by 
introducing the notion of the cellular fullerene, which is considered as a finite 
cellular system defined on a 2-d unbounded, closed and orientable surface. 

From the previous considerations it follows that the fundamental Eqs. (33 and 34) 
remain valid not only for cellular systems consisting of combinatorial polyhedra 
(which are topologically equivalent to a d-dimensional ball), but  

- for finite cellular systems defined on an unbounded, closed and 
orientable surface (sphere, torus, double torus , etc.), 

- for infinite triply periodic 3-d surface systems, in which the internal 
surface represented by “infinite tunnels” is composed of polygons 
[19].  (Typical examples are the so-called zeolitic structures [20]), 

- for all “pseudo-random” cellular systems which are artificially 
generated by the tessellation of the d-dimensional unit cube using 
periodic boundary conditions. Due to the periodic boundary 
extension, these pseudo-random structures are also considered as 
infinite periodic cellular systems. A well-known example is the 
computer simulation of the Poisson Voronoi cells where the periodic 
boundary condition is used to avoid edge effects [1, 21]. 

Finally, it should be emphasized that Eqs. (33 and 34) remain valid for such cases 
when the space-filling polyhedra are not equivalent topologically to d-dimensional 
balls, provided that the cellular system is generated from a finite set of d-
dimensional cells with (d-1)-dimensional faces in such a way that all common 
faces are shared by two different neighboring cells. 
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Abstract: The Ce
4+

/ Ce
3+

 redox system was studied to initiate the grafting of idustrial 

cellulose pulp with vinyl acetate monomer. The parameters of the copolymerization 

reaction (reaction time, temperature, monomer and initiator contentration, freeness, 

chemical composition of the cellulose) were investigated and their effects are discussed. 

Keywords: cellulose, copolymerization, vinyl acetate, ceric ion redox system, parameters. 

1. Introduction 

The chemical modification of cellulose by graft copolymerization has generated 

interest among researches because few comonomer molecules change significantly 

a number of characteristics of the original natural polymer. Thus new areas of the 

application might be opened for the modified cellulose-type materials. 

Being a polymer itself, cellulose can be copolymerized only with block or grafting 

procedures. The block copolymerization of cellulose essentially modifies its 

physical structure, and therefore cannot be used. A graft copolymer is a system 

comprised of a backbone material to which a second polymer is attached at 

intervals along the chain. The pulp cellulose modified by grafting 

copolymerization does not change its fibrous structure, which is very 

advantageous for further use. 

Most of graft copolymerization examined so far [1,2,3,4,5,6] described the use of 

cotton or regenerated cellulose as the substrate, and there are only few papers 

about the grafting of cellulose pulp used in the paper industry [7] 

Recently we examined the grafting of industrial cellulose with vinyl acetate 

monomer initiated with cerium(IV)salts [8]  
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The rather complex action of Ce4+on cellulose can be formulated so: 

 

(1) 

2. Experimental 

The graft copolymerization was carried out in a 500 cm3, three-necked, round 

flask equipped with a mechanical stirrer, a reflux condenser and a thermometer, 

which was immersed in a thermostat water bath. First the definite amount of 

cellulose was pulped for 30 minutes, then the required concentrations of cerium-

ammonium-sulphate initiator solution and vinyl acetate monomer were added 

sucessively to the reaction system. At the end of the reaction time we stopped the 

reaction by L-ascorbic acid.  

After the completion of the reaction, the rough products were first precipiated in 

an excess of acetone and then separated by filtration. To obtain the pure graft 

copolymer, we used carbon-tetrachloride to extract the homopolymer that might 

be produced during the polymerization. Extracting for 6 hours was sufficient to 

remove the polyvinyl acetate homopolymer. 

Then the graft copolymer was dried in the air to a constant weight. On the basis of 

gravimetric measurements, the grafting parameters were determined as follows: 
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where G is the grafting percentage (2), and GM the grafting conversion of the 

monomer (3).  Wp, Wo are the weights of the purified graft copolymer and the 

cellulose, M is the weight of the vinyl acetate monomer. 

The applicability of grafted copolymers in the paper industry depends strongly on 

the percent grafting (G%) reached. If this G% is too small, the properties of the 
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paper are not improved sufficiently, if it is too big, the pulp becomes unsuitable 

for paper making. 

2.1. Effect of temperature and reaction time on grafting 
efficiency 

As the rate of chemical reactions can be regulated with variation of temperature, 

experiments indicated that an inccrease in the temperature had a very strong effect 

on G % (Fig.1) At 20 oC (293 K) there was practically no reaction.  Increase the 

temperature improved G % dramatically, but the difference between 50 and 60 oC 

(323 and 333 K) was only a few percent. This latter can be explaned by the low 

boiling point (72,3 oC) of the monomer. From these results, 50 oC (323 K) can be 

proposed for the grafting temperature of this system. 
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Figure 1. Effect of temperature on grafting efficiency 

As to the time dependence of the grafting reaction, G % increased rapidly in the 

first 40 minutes of the process (Fig.2.). Longer durations did not significantly 

improve the efficiency of grafting. 
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Figure 2. Effect of reaction time on grafting efficiency 

2.2. Effect of initiator concentration on grafting efficiency  

Graft copolymerization was studied at various cerium-ammonium-sulphate 

initiator concentration (10-3 - 5.10-3 mól/dm3) (Fig.3.).  
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Figure 3. Effect of initiator concentration on grafting efficiency 

It has been observed that G% increases on increasing the initiator concentration up 

to 2.10-3 mól/dm3, beyond which it decreases. The increase of percent grafting 
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with increasing initiator concentration may be ascribed to the increase of active 

sites on the backbone of the cellulose fiber. The retarding effect of G% with 

initiator concentration beyond 2.10-3 mól/dm3 may be due to predominancy of 

homopolymerization over grafting and termination of growing grafted chains by 

excess of primary radicals formed from the initiator. From these results  2.10-3 

mól/dm3 cerium-ammonium-sulphate can be proposed for the optimal grafting 

efficiency. 

2.3. Effect of monomer concentration on grafting efficiency 

G% depends, first of all, on the applied monomer concentration. The change in 

G% as the function of the monomer amount at a fixed initiator concentration 

(2.10-3 mol/dm3) is shown by a curve with a maximum peak (Fig.4.). This 

maximum occured because over a given concentration the termination is preferred 

reaction among other reactions. 1 mol/dm3 vinyl-acetate concentration can be 

proposed for the adequate grafting efficiency. 
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Figure 4. Effect of monomer concentration on grafting efficiency 

2.4. Effect of freeness on grafting efficiency 

Graft copolymerization occured on the surface of the pulp, so the efficiency of 

grafting depends strongly on this surface. Increasing the pulping time the freeness 

and the externel specific surface of the cellulose is increased ( Table I. and Fig.5.) 
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Pulping time (min) Freeness (SRo) External specific surface (m2/g) 

0 15 1,056 

10 20 1,472 

20 22 2,112 

30 27 2,752 

40 34 5,632 

50 44 8,512 

60 56 11,232 

Table I. Effect of the pulping time and freeness on the specific surface of the 

cellulose 
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Figure 5. Effect of pulping time on the specific surface of the cellulose 

The change in G% with increasing the specific surface of the cellulose is shown 

by a curve with a maximum peak (Fig.6.). 
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Figure 6. Effect of specific surface on grafting efficiency 

Increasing the specific surface of the cellulose  increased G %, but after 5 m2/g 

grafting efficiency decreased. This latter can be explaned by the decrease of the 

amount of radicals formed on the same surface at a fixed initiator concentration. 

So the best grafting efficiency can be reached with 35 min pulping time, when the 

the specific surface of the cellulose was  4,4 m2/g. 

2.5. Effect of chemical composition of the cellulose 

The chemical composition of idustrial cellulose pulp has also a strong effect on 

grafting efficiency. Although G% depends, first of all, on the lignin content of the 

applied cellulose pulp only a few papers can be found about the investigation of 

this effect [9]. 

To decrease the lignin content of an unbleached cellulose we treated the samples 

in 5 steps with sodium hypochlorite for 5, 10, 30, 60 and 90 minutes. The change 

of lignin content during the bleaching time - measured with Kőnig-Komarov 

method - is shown in Table II. 

Bleaching time(min) Lignin content(%) 

0 12,0 

5 10,3 

15 5,8 

30 3,5 
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60 2,1 

90 0,5 

Table II. Effect of bleaching time on lignin content of the cellulose 

After the bleaching treatment the cellulose samples were grafted with vinyl acetate 

for 40 minutes at three different temperatures applying the adequate monomer and 

initiator concentration (Fig 7.). 
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Figure 7. Effect of lignin content of the cellulose on grafting efficiency 

Increasing the lignin content of the cellulose decreased G % and after 12 % lignin 

content the grafting efficiency becomes 0 %. This latter can be explaned by the 

inhibitor role of lignin in the grafting reaction /9/. The industrial cellulose which is 

suitable for grafting copolimerization may contain maximum 2 % of lignin. 

To investigate the induction period of grafting reaction causing by the presence of 

lignin the cellulose sample which has the maximum lignin content (12%) was 

grafted with vinyl acetate for 20, 40, 60, 70,  80, 100 and 120 minutes (Fig. 8.) 
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Figure 8. The induction period of grafting reaction causing by lignin  

Until 70 minutes there was practically no reaction, but beyond 80 minutes reaction 

time increased G % dramatically, so the induction period of grafting reaction in 

this case is seen to be between 70-80 minutes. This is in agreement with the results 

of other authors investigated the same problem [7]. 

The effect of hemicellulose content of the cellulose pulp was also investigated, but 

as it is shown in Figure 9. the change in grafting efficiency causing by the 

different hemicellulose content of the samples not so significant as the effest of 

lignin content of the same sample. 
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Figure 9. Effect of hemicellulose content of the cellulose on grafting efficiency 

At the end of our research work the unmodified and grafted cellulose samples 

were analyzed by IR spectroscopy, thermal analysis and scanning electron 

microscopy. 

Conslusions 

In this work the graft copolimerization of vinyl acetate onto industrial cellulose 

pulp by Ce4+/ Ce3+ redox system is characterized by maximum graft yield at 

varying temperature, reaction time, specific surface and chemical compositions of 

the cellulose and at different concentrations of monomer and initiator. This 

method is suitable for producing binder fibers applied in special synthetic papers. 
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Abstract 

A decision model for pavement management has been developed  herein based on linear 

programming formulation. Markov transition probability matrices are introduced to model 

the deterioration process of the road sections. To every type of road surfaces and class of 

traffic amount belongs a certain Markov matrix. The presented model and methodology is 

used to determine the optimal rehabilitation and maintenance policy in network level. 

Depending on the objective function two types of problems could be solved by the model : 

the necessary funds calculation and the optimal budget allocation for the entire network. 

We have developed the computer program  on microcomputer and it has been used by the 

Ministry of Transport who is responsible for the 30000 km road network of Hungary.   

Keywords: Markov process, Decision Support System, Pavement Management System, 

Network - Level Model, Linear Programming, 

1. INTRODUCTION 

The current budget condition in the Eastern European Countries needs an effective 
economical politics. It is true about Hungary too. We try to use the most powerful 
optimization models in every possible field. 

In this paper we present an optimal decision supporting model that is used to 
maintain our highway network. Its length  is 30000 kilometres. The works began 
some years ago. First a large scale Road Data Bank was developed ( [1] ). The 
second step was to develop a network level Pavement Management System,  PMS 
([2], [7], [8], [13]). 
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Concerning the PMS problem several types of models are known. One of them is 

the network level model, the other is a project level one. The network level model 

deals with the whole network.  Its aim is to determine the most advantageous 

maintenance technique for every subset of the road having the same type of 

surface,  the same condition parameters and the same traffic category. This type of 

model is a budget planning tool capable of estimating the total lengths and costs of 

works required on the network for pavement rehabilitation, resurfacing and 

routine maintenance. One type of financial planning is generally connected with 

the determination of the level funding needed to maintain the health of the 

pavement network at a desirable level. In the other type of model the available 

budget is given and we have to determine the maintenance politics that fulfil the 

required constraint of conditions and optimize the total benefit of the society. In 

the project level model a maintenance and rehabilitation program are determined 

for each pavement section. We usually use this model in a district [6]. 

Several types of solution algorithms can be used  depending on the given task, the 

available data, the budget constraints, etc.( [3], [4], [5] ). Two main types are the 

heuristic and the optimization algorithms. The heuristic technique is usually used 

in project level, but it could be used in network level too. The optimization models 

are solved by the traditional optimization algorithms. Depending on the problem   

to be solved we use integer  ( [14] ), a linear ( [11] ) or a dynamic  programming 

algorithm( [7] ). 

Our model is a linear programming one which has some stochastic elements. 

Namely the road deterioration process is described by the Markov transition 

probability matrices. In the second chapter we describe this probability 

supposition. The third chapter deals with the model formulation. In the last chapter 

we summarise the applied model itself. The engineering part of the  model was 

developed by Gaspar ( [9] ), the program system was written by  Szantai, ( [13] ). 

Similar model was proposed in  Arizona  and in Finland ( [14] ). 

2. Markov transition probability matrix 

In the model we will use the theory of Markov chains (Prekopa, [12] ). To 
demonstrate this let us suppose that the pavement conditions  are described by a 
certain discrete state. This state contains a discrete set. Let us denote these states 
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by numbers 1,2,..The change of the system condition  in time is probabilistic, and 
we fix  these states in the time t=1,2,... 

The probabilistic variables x0,,x1,... are defined in the following way : xn=i when 

the system is in state i in time period t=n. The system conditions are described by 
the x0 ,x1,...variables.  

We can suppose, that the initial state e.g. xo is fixed. The set of x=(xo,x1, ...) is 

called a Markov chain, when any integer time set  to < t1 < ... < tn+1 and states 

k1, k2, ..., kn+1 the following condition is satisfied: 

P(xtn+1
=kn+1 | xt1

=k1, xt2
=k2, ... xtn

=kn)=P(xtn+1
=kn+1 | xtn

=kn)          (1). 

This condition means that the probability that the system in time tn+1 is in state 

kn+1 depends on only the previous state, and independent from the earlier states. 

Now we define the Markov transition matrix. The r-step homogenous transition 
probability is defined by 

    qik

r( )  = P (xn+r=k | xn=i) 

The qik

r( )  values are ordered into a matrix Qr which is called the transition 

probability matrix.  
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This matrix is a stochastic matrix because it is quadratic its element are non 
negative and the sum of the columns is equal to 1. It could be shown that the 
product of two stochastic matrices is also stochastic. We will use this result later.  

It can be proved the r-step transition probability matrix equal to the rth power of 
the one-step transition probability matrix: 

    Qr=Qr     (3) 

The system is ergodic, we can reach every state by positive probability. On the 
basis of this theorem we build up the matrix which is used in our model. In this 
case a state corresponds to a certain condition of a set of sections which has the 
same type of surface, amount of traffic and quality. The number of rows (and 
columns) is equal to the number of discrete road states. The qij∈Q is the 

probability that the road being in state j will be in state i at the end of the planning 
period. 

Let us suppose that the initial distribution X=(X01, X02, ..., X0m) is known. We 

compute the distribution X1 at the end of the planning period using the Markov 

matrix Q: 
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    X1=XoQ   (4) 

If there is m planning period, t=1, 2, ..., m, then the corresponding distributions 
X1, X2, ..., Xm are determined by a recursive procedure: 

   X1=QX0, 

   X2=QX1=QQX0=Q2X0, 

   X3=QX2=QQ2X0=Q3X0,   (5) 

   ... ... ... ... 

   Xm=QXm-1=QmX0. 

3. Model formulation 

The Markov matrix depends on the pavement type, the volume of traffic and the 
maintenance actions.  

In the model we suppose that there are s different type of pavement, f class of 
traffic volume and t type of maintenance politics. In this case we have s*f*t 

different Q matrix. Let us denote the Markov matrix by Qsft, which belongs to the 

pavement type s, traffic class f and maintenance politics t.  

There are several constraints to be fulfilled. We will denote the unknown variable 
by xijk which belongs to the pavement type i, to the traffic volume j and to the 

maintenance politics. The solution have to be Markov stabile. The Markovian 
stability constraint is 

   ( ) 0
1 1 1

=−∑∑∑
= = =

ijk

s

i

f

j

t

k

ijk xEQ ,   (6) 

where E is a unit matrix. 

Because the equality is usually not fulfilled or not desirable, we use ≤ or ≥ relation 
instead of equality in (6). There are several further constraints which are 
connected with other suppositions. We suppose that the traffic volume will not 
change during the planning period: 

  
x b i sijk

k

t

ij

=
∑ = =

1

1 2, , ,....,
,    (7) 

            j=1,2,....,f, 
where bij belongs to the pavement type i and the traffic volume j.  
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The total area of the road surface type i will remain the same at the end of the 
planning period 

   x dijk

k

t

j

f

i

==
∑∑ =

11

 , i=1, 2, ... s,  (8) 

where di  belongs to the pavement type i and 
i

s

id
=
∑ =

1

1 

We have to apply one of the maintenance politics on every road section 

   xijk

k

t

j

f

i

s

===
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111

1    (9) 

We divide the segments into 3 groups: acceptable (good), unacceptable (bad) and 
the rest. Let us denote the tree set by J (good) by R (bad) and by E (rest of the 
segments) and by H the whole set of segments. The relations for these sets are 
given by  

    J∩R=∅, J∩E=0, 

     R∩E=∅,    J∪R∪E=H. 

The following conditions are related to these sets 

   
i j k J

ijk Jx v
, , ∈
∑ ≥ , 

   
i j k R

ijk Rx v
, , ∈
∑ ≤ ,    (10) 

   v x vE ijk E≤ ≤∑ , 

where J, R, E are given above, and 

 vj the total length of the good road after the planning period 

 vR the total length of the bad road after the planning period 

 vE the lower bound of the other road 

 vE  the upper bound of the other road 

The meaning of the first condition is that the amount of good segment have to be 
greater than or equal to a given value. The second relation does not allow more 
bad roads than it is fixed in advance. The third relation gives an upper and lover 
limit to the amount of the rest road.  

Let us denote by cijk the unit cost of the maintenance politic k on the pavement 

type i and traffic volume j. Our objective is to choose such an X which: 

 - fulfils the conditions given above, 

 - with minimal rehabilitation cost.  
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The objective is 

    
i

s

j

f

k

t

ijk ijkx c
= = =
∑ ∑ ∑ →

1 1 1

min!  

Let us denote this value by C. The budget C* which is available for the 
maintenance purpose is usually less than C, so C*<C. In this case we modify our 
model: the above mentioned rehabilitation cost function becomes constrained: 

   x c Cijk ijk ≤∑ *,   (11) 

and we use another objective. Let us denote the benefit by hijk where this is the 

benefit of the societies when we apply on the pavement type i and with the traffic 
volume j the maintenance politics k.  

Our aim is to determine such a solution X which fulfils the constraints (6)-(10) 
and (11) and maximises the total benefit of the society.  

The objective in this case is  

x hijk ijk∑ → max!   (12) 

4. Two types of optimization models 

We could build up two different types of models using the element given above. 
One of them is the Necessary Funds Model (NFM), the other is the Budget Bound 
Model (BBM). In the NFM model we determine the necessary funds needed for 
ensuring a given condition level of roads with minimal cost. The BBM model is 
used to distribute a certain amount of money with the given constraints and 
maximises the benefit of the road users.  

The NFM model  

Let us determine the unknown variable matrix X=(xijk) that fulfils the following 

conditions 

  
i j k

ijk ijkQ E x
, ,

( )∑ − = 0 , 

  
k

ijk ijx b∑ = ,  i=1,2,.....,s, 

     j=1,2,.....,f, 

  
jk

ijk ix d∑ = ,  i=1,2,.....,s,  (13) 

  
i j k

ijkx
, ,
∑ =1, 
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  x vijk R∑ ≤ , 
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, 
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The Budget Bound Model 

Determining the unknown matrix X=(xijk) which fulfils the condition (13) and the 

following budget limit condition: 

   x c Cijk

i j k

ijk

, ,
∑ ≤  

and 

   x hijk

i j k

ijk

, ,

max!∑ →  

5. Application  

The two models have been applied for solving the Hungarian network level 
Pavement Management System. The road network is divided into smaller groups 
which depend on the pavement type, the traffic volume and the maintenance 
action. Two pavement types were taken into consideration, the asphalt concrete 
and the asphalt macadam. Three traffic classes were chosen. These are low, 
medium and high traffic category. In our model we use three type maintenance 
actions. Theoretically 2x3x3=18 different categories were formed but two of them 
are unrealistic. So the aim was to elaborate the 16 categories. One Markov matrix 
belongs to each category.  

The condition of a road section is described by 3 parameters: bearing capacity (5 
classes), longitudinal unevenness note (3 classes), pavement surface quality note 
(5 classes). The number of the condition states are 3x5x5=75. For practical reason 
and simplification we reduce this number to 41.  

The NFM model was used to determine the necessary funds needed to held the 
road network a desired condition level. The available budget for that purpose was 
lower, that is why we use the BBM model with a fixed budget limit. Instead of the 
benefit hijk, we apply the vehicle operating cost in the objective.  

Firstly we distribute the available budget country-wide according to the 
maintenance actions, pavement types, and traffic categories. There after we 
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distribute the result among regional traffic agencies. This distribution was based 
on the area shares of sections with given characteristics (traffic volume, pavement 
type, pavement condition).  

Both problems can be solved by a linear program package. This package consists 
of two parts: data generation and optimization. The data generation uses the 
Hungarian Road Data Bank. Depending on the constraints a selection and a data 
aggregation is used to generate the proper data to the model.  

The size of the matrix is quite large 

 - the number of columns in both models is 734 (18x41), 

 - the number of rows in  

   NFM model is 91 

   BBM model is 92. 

The computer solves the problem in 1-3 minutes (on IBM PC PENTIUM)  
depending on the output and the structure of the matrix. The LP code was written 
in FORTRAN by  Szantai(1990). 

For the  funds need calculation optimization model two strategies have been tested 
first. 

Strategy 1. The proportion of 20 pavement surfaces with wrong condition 
level can not be increased. 

Strategy 2. As Strategy 1. and the proportion of 4 pavement surfaces with 
the best condition levels should be increased. 

The following table shows results  according to the two strategies: 

                        Strategy 1.          Strategy 2. 

routine maintenance    610 million HUF    422 million HUF 

                           (29.3 %)             (2.8 %) 

surface dressing       646 million HUF    264 million HUF 

                           (31.0 %)             (1.7 %) 

new asphalt layer(s)   826 million HUF    14.410 million HUF 

                           (39.7 %)           (95.5 %) 

total funds need       2.082 million HUF   15.096 million HUF 
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It can be seen from the above table that if we want to preserve the proportion of 
the pavement surfaces with the best conditin levels,  the cost of the new asphalt 
overlay will extremely increase and the total funds need becomes also very high. 
On the base of these results it was decided to develop five new strategies. These 
are: 

Strategy 1. Proportion of 20 wrong variants can not be  

            increased. 

Strategy 2. Proportion of 16 wrong variants can not be  

            increased and the 4 worst ones should   be 

            decreased by 5 %. 

Strategy 3. As  Strategy 2  with 10 %. 

Strategy 4. As  Strategy 2  with 15 %. 

Strategy 5. As  Strategy 2  with 20 %. 

In these cases the total funds need went from 2.000 million HUF and they were 
acceptable for the administration. 

When applying the funds split model it was first solved for the whole country, 
then for several regions (counties) separately. 

When the optimal ratios (proportions) of various maintenance techniques in case 
of selected funds available ( 2000 million HUF, 3000 million HUF, 4000 million 
HUF, 5000 million HUF, 6000 million HUF, 7000 million HUF) the following 
main results were obtained: 

- in case of the allocation of 3.0x109 HUF funds only one-third of the 
financial means was used for asphalt overlays, the highest share is spent for 
surface dressings, 

- increasing the funds available, the financial means allocated to asphalt 
overlay considerably grow while the shares of other two intervention types, 
evidently, decrease; 

- among the areas of various intervention types not so high percentage changes 
can be observed since the unit costs of routine maintenance and surface dressing 
gradually decrease accordingly, as - together with the increase of total funds - 
asphalt overlay is applied on the worst sections that obtained earlier only patching 
or surface dressing. 
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When comparing the splits according to the previous and the optimized model 
(various levels of funds were considered here) it could be seen that a significant 
changing in shares of some counties presented itself as a consequence of the use of 
the new model. The funds available had a minor effect on the shares destinated to 
the counties. 

It was also analysed how the funds, increased by 1.0x109 HUF steps, influence the 
vehicle operating costs. There was a definite tendency that the "savings" (reduced 
fuel costs) werw smaller and smaller as the total funds grow. This statement was, 
naturally, not surprising at all, because the extra funds permited to repair not only 
the very poor but also the less bad sections. In the latter case, evidently, a lower 
fuel costs reduction could be attained by the interventions. 
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Abstract 

Wear experiments and measurements were performed to study surface microtopography 

changes. Investigations extended to wear in the course of the non-lubricated sliding friction 

of ground bronze-steel sliding pairs. In the knowledge of 3D microtopography, asperities 

were statistically processed. Asperities were replaced by paraboloid and pyramidal 

surfaces, in order to determine the distribution of the direction angle of asperities, the 

height distribution of the peak points, the radius distribution of the peak curvatures, and 

slope angle distribution. These can be properly used for characterizing microtopography 

changes in the course of the wear process. It was also examined what additional 

information was provided by SEM recordings of surfaces on surface structure, with 

particular regard to tribological phenomena. 

Key words: microtopography, asperities, wear, statistical analysis 

1. Introduction  

The operation, reliability, and lifetime of parts produced in different ways greatly 
depend on the quality of machined surfaces as well. Higher quality criteria require 
adequate accuracy of manufacturing as well as a deeper analysis of surface 
microtopography. Surface quality includes surface microgeometry discrepancies, 
such as roughness and waviness as well as the physical and chemical conditions of 
the surface layer, the latter including plastic deformation in the course of 
machining, hardness of the surface layer, residual stress, texture, and chemical 
composition [1]. 

The relationship between surface quality and the wear process has been studied by 
Whitehouse [2], Hirst and Hollander [3] and others; however, no general 
correlation has been managed to be established. Nevertheless, practical research is 
characterized by investigation of the wear of particular material pairs under certain 
conditions. However, in the literature available [4, 5, 6], these studies trace the 
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changes of only few surface roughness parameters (ex. average roughness). In 
most cases only the impact of initial surfaces of varying roughness is investigated 
there as well.  

This study involves surface microgeometry investigations. The aim is to trace 
microgeometry changes on surfaces in the course of the wear process. In our 
work, the results of tests by stylus instrument and scanning electron microscope 
were processed to characterize the wear process on surfaces. For evaluation, 
surface asperities were replaced by paraboloids and pyramids and the distribution 
function changes of the surfaces received this way were studied.  

2. Test and evaluation procedures for studying the 
wear process  

2.1. Wear experiments  

The aim of the experiments performed was to model the friction / wear process of 
machine elements under certain circumstances by wear experiments simple to be 
performed by which the changes of surface microtopography can be obtained. 

Steel track

Clamp

Bronz specimen
Screw

spindle

 
Figure 1. Arrangement of the experiment 

A steel sliding track was used for the tests, where bronze specimens were slid 
(Figure 1). Both materials had ground surfaces. On the steel track, there were 
grooves of grinding in the direction of relative displacement, while those on the 
specimens were perpendicular thereto. The length of the sliding track was 700 mm 
and the nominal load of the specimens examined was 0.0125 MPa (10 N). 
Specimens were managed to be slid down by setting the slope using a screwed 
spindle. The environment temperature was 21 °C and there was no considerable 
warming between the surfaces in the course of the tests. This can be explained by 
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the small number of cycles, low load, and low sliding speed. No lubrication was 
applied; the only layer of lubrication was produced by the atmosphere of the lab. 

2.2. Measurement technique 

Specimen microtopography was recorded at 2 different places using a Perthen 
Concept type stylus instrument. The size of the surface measured was 1x1 mm, 
with a sampling distance of 0.5 and 2 μm (2000x500 points), respectively. There 
was no use of higher resolution due to the 1 μm tip radius of the stylus needle and 
the error probability of lateral shift. An inaccuracy of the stylus instrument is that 
it ”flattens” real surfaces, therefore it provides a ”filtered” image. However, the 
characteristics of scanned surfaces can be quantified in the form of various 
parameters. Measurements were performed on identical surface section in each 
phase of the wear process, therefore the changes of a given surface section can be 
traced accurately, not only statistically, in the course of the wear process.  

Surfaces were also recorded by a JEOL JSM 5310 type scanning electron 
microscope. Electron microscope recordings can present the smallest details of a 
surface, therefore certain phenomena can be explained and the “microscopic 
world” of surfaces can be explored.  

2.3. Surface microtopography evaluation  

One of the most frequently applied evaluation techniques is the use of statistical 
functions and parameters. It is obvious to use due to the statistical nature of 
surface topography data. Initially, only the scalar parameters known from 
mathematical statistics were used; by now, however, further parameters have been 
defined. Surfaces can be characterized by functions well-known from statistics: 
the distribution function, showing the distribution of measurement points around 
the mean-plane and the density function, yielding the value of material partition at 
a given height level. 

Additionally to the statistical parameters known from the literature, regular 
surfaces substituting asperities were used for processing the cluster of points 
yielded by measurements. A significant benefit of this processing technology is 
that well-defined mathematical functions need to be examined this way instead of 
processing a ”disordered” cluster of points. Obviously, this processing technology 
has an inherent modeling error, namely the kind of surface to replace asperities. 
Paraboloid and pyramid surfaces proved to be the most suitable ones. They were 
used for defining the distribution of the direction angle of asperities, the height 
distribution of the peak points, the radius distribution of the peak curvatures and to 
determine slope angle distribution.  
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3. Results  

3.1. Visual characterization of the wear process  

Figure 2 illustrates the changes of bronze sliding surfaces in various phases of the 
wear process. It can be observed that in the initial phase of the wear process (wear 
cycle 110) the higher asperities (crests) partly disappear, being somehow 
”stumped”, and the asperities of the countering surface are ”finely” copied to this 
surface in accordance with the direction of relative movement.  

Original surface
(”0000”)

Mashining direction

Mashining direction

Mashining direction

Mashining direction

Slid
in
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n
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n

After 77 m sliding
(”0110”)

After 525 m sliding
(”0750”)

After 3500 m sliding
(”5000”)  

Figure 2. Wear process of a bronze specimen 

This copying is partial since not a perfect copy of the track surface is generated 
but only grooves formed by the highest crests and peaks, the size of which 
probably strongly depends on the load. This phenomenon can be interpreted as a 
deformation process, where ”deformation resistance” depends on the depth of the 
grooves and the material, while the deforming force is in proportion with the 
surface load. The new pattern on the surface is generated as a balance between 
these two quantities. In the next phase of the process (wear cycle 750), some 
deeper scratches appear on the surface in the direction of sliding. This may be 
explained by the fact that some particles separated from the bronze surface and 
embedded to the steel surface have left their grooves on the countering surface. In 
this phase of the wear process, minor bronze deposits became visible on the steel 
surface, and a small amount of wear particles were to be observed at the bottom of 
the slope. In the meantime, the size of the contour contact area reached the size of 
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the nominal contact area and the wear process considerably decreased. If these 
wear groves are compared to the wear grooves in the figure representing to wear 
cycle 110, it can be established that a finer pattern is generated in the later state. 
This corresponds to the deformation theory outlined above as the deformation 
force mentioned there is constant in the course of the process, but ”deformation 
resistance” may only remain constant as the number of grooves increases if the 
depth thereof is reduced. At wear cycle 5000, only some very deep grooves 
remained from the original grinding: an almost completely new pattern was 
formed on the surface.  

20 μm 5 μmSliding direction  

Figure 3. SEM recordings of the bronze surface after 5000 wear cycles 

In order to further observe the wear process, SEM photos were also made of the 
surfaces to illustrate the final worn condition (Figure 3). The scratches in the 
direction of sliding can be properly observed on the ”new” surface mentioned 
above, with the original grooves of machining almost completely disappeared. 
There is a rough scratch along the middle of the image, probably formed by a hard 
particle. The rest of the scratches, however, are really fine. It can also be observed 
that the material is smearing into the grooves. This considerable strain can be 
explained by a high contact pressure. Since the size of the real contact area took 
up only a small part of the nominal contact area, the real contact pressure was a 
much greater then the nominal contact pressure. It can be seen that the grooves of 
machining are partly covered with worn particles, and even deeper are formed in 
the course of the wear process. In the highly enlarged image, two small wear 
particles can be observed, deposited on the surface and almost entirely embedded. 
”Having escaped” later on, they can give rise to new deep scratches.  
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3.2. Characterization of the wear process based on the 
characterization of asperities 

The quantitative evaluation of experimental results was performed by 
characterization with distribution functions rather than by the traditionally applied 
parametric evaluation technique. The benefit thereof lies in its broader information 
content as surface characteristics are defined by their respective distribution 
functions rather than by an average scalar parameter. 

3.2.1. The high distribution curve and the bearing area curve 

A number of functions and parameters can be used for characterizing surface 
topography [7]. Figure 4 shows the height distribution of the original and worn 
surface. In the course of the analysis of height distribution curves, the problem of 
adjustment arose, namely how to place the curves pertaining to particular wear 
phases into the same diagram to refer to actual changes.  

It would be an error to perform adjustments according to mean-plane as the wear 
process brings about more dominant changes in the upper layers of the surface, in 
the proximity of asperities. The formation of observable plateaux entails a 
”downward” displacement of mean-plane. 

The most realistic option for adjustment seems to be adjustment according to the 
lowermost point. However, lowermost points cannot be considered to be constant, 
either. This is explained by the following reasons:  

 In the course of the wear process, new deep grooves may be formed, the 
depth of which may exceed the depth of the lowermost point of the 
original (or previous) surface. Therefore lowermost points go lower.  

 Major plastic deformations frequently occur in the course of the wear 
process. This may mean that the asperities wearing off are not removed 
in the form of wear particles but they are ”smeared” into the valleys, or 
the valleys themselves are filled up by wear particles; thereby 
considerably affecting the lower part of the height distribution curve.  

Opportunities provided by visual display (particularly SEM), answering questions 
on the nature of the wear process, may offer guidelines in clarifying the problem. 
In our investigations, we came to the conclusion that the depth of new scratches 
does not exceed the depth of the original pattern, and ”smearing” into the valleys 
is not of such degree that it would exert a dominant influence on results, therefore 
adjustment according to the lowermost point can be accepted.  
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Figure 4. The height distribution curves (a) and the bearing area curves (b) fitted by the 
lowermost points 

In the course of adjustment, an increasing adjustment displacement was necessary 
as the wear process progressed. Compared to the mean-plane of the original 
surface, the mean-plane was displaced by 0.1, 0.3, and 0.7 μm at wear cycles 110, 
750, and 5000, respectively, assuming that the lowermost point of the curves was 
physically the same point. The mean-planes pertaining to each distribution 
function are indicated in Figure 4.  

It can be established that peaks go lower as the wear process progresses, with the 
highest peaks wearing away. In the course of the process, the height distribution 
curve becomes ever more “acute” and asymmetrical. This means that 
measurement points are agglomerated at a given height level, where there are 
many surface points, therefore the ”plateaux” observed earlier are formed. The 
fact that the asymmetry of the curve is also increased indicates that primarily the 
”upper” layers were changed in the course of the formation of the new surface, 
with asperities disappearing from there and replaced by a new pattern consisting 
of lower peaks. At the end of the wear process studied the new surface is almost 
entirely below the mean of the initial surface. This obviously results in a 
refinement of the surface as well as in the fact that a considerable part of the 
original pattern completely disappears, therefore the surface is not only 
transformed but an entirely new microtopography is generated.  

In Figure 4b the bearing area curve was also fitted by the lowest point. It can be 
observed that the curve not only moves down, but the gradient of it becomes 
smaller. That is why the load bearing ability of the formed plateaux-like surfaces 
is better. 
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3.2.2. Asperity analysis 

A number of methods have spread for defining and examining asperities (8-point 
method [8], contour mapping [9, 10], etc.), indicating that the experts involved in 
this subject have not yet found an advisable method which would be generally 
applicable and acceptable. In the present case, our attention is directed to wear 
processes; this is the reason why investigations are focused on the characterization 
of asperities. As regards wear processes in the event of dry friction, dominant 
changes from the viewpoint of surface quality occur in the proximity of asperities. 
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Figure 5. Height distribution of 
a.) smaller asperities (area less than 40 μm2) 

b.) larger asperities (area greater than 40 μm2) 

Studying the measured microtopography, a new procedure was applied instead of 
filtering in the traditional sense. Essentially, the ”filtering” process is based on the 
principle that only asperities larger than a certain size have a significant impact on 
the wear process. Results are distorted by minor peaks on the surface of these 
asperities. Therefore asperities with a smaller area than the one specified were 
jointed by the algorithm into dominant asperities and evaluation was performed 
using those. Thus, each “elevation” located over the mean-plane, with a local 
maximum and an area exceeding a certain size was defined as an asperity. Figure 
5 shows that the significance of asperities with an area lower than 10 cells (40 
μm2) is negligible: they do not have a dominant impact on the microtopography, 
particularly in the initial phases of the wear process. By studying the height 
distribution curve, it can also be established that the consideration of peaks 
smaller than 10 cell sizes may yield to false results because their number is 
comparable to the number of major peaks, while their area is much smaller.  

Figure 6 shows distribution of peak points of asperities. The peak point of 
asperities are continuously reduced as the wear process progresses, and the ”even” 
distribution, characteristic of the initial phase, is eliminated. It can also be 
observed that upper peaks disappear and many new peaks are formed at a lower 
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level. Also taking into consideration the adjustment by height of the curves, it can 
be established that the asperities of the worn surface generated have been lowered 
below the mean-plane of the original surface. Therefore the asperities originally 
defined have completely disappeared, with a new surface formed in their place 
which can be characterized by different asperities. As the topmost point of 
asperities does not only go lower but is approaching to the mean-plane, this also 
indicates that asperities themselves have got lower.  
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Figure 6. Distribution of peak points of asperities fitted by the lowermost point 

The distribution curve in Figure 7 describes the direction of the major axis of the 
paraboloids substituting asperities. In the initial state, the curve reflects anisotropy 
characterizing ground surfaces. As the wear process is started (as a result of 
transversal sliding), this orientation discontinues. Although some orientation is 
shown in the direction of sliding as the process progresses, but this cannot be 
taken as dominant. The curves rather refer to a non-oriented isotropic surface.  
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Figure 7. Asperity orientation distribution curve 

It can also be observed that while considerable discrepancies were experienced in 
terms of wear cycle numbers in height distribution curves, the curves pertaining to 
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wear cycles 750 and 5000, respectively, are almost completely identical in the 
case of orientational distribution curves, therefore the direction of asperities – the 
new surface – is formed earlier on.  

Figure 8 shows the peak curvature radius of the substitute paraboloids to be 
defined according to major and minor axes. It can be observed that the radius of 
the peak curvatures pertaining to the major axis does not change considerably as 
the wear process progresses. On the other hand, the peak curvature radius of the 
minor axis increases in the course of the wear process. The shape of asperities 
changes. This is in relation with the fact that the original peaks caused by grinding 
are replaced by ”smeared” peaks. 
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Figure 8. Radius distribution curve of the major (a.) and minor (b.) peak curvatures of the 
paraboloids substituting asperities 

Initial asperities – with well-defined orientation and elongated in the direction of 
orientation – are replaced by less elongated asperities with larger radii. Larger 
radius represents better contact conditions. Therefore, in the course of operation, 
the surface changes in a way that the new surface formed will have more favorable 
contact conditions.  

When examining slope angles (Figure 9) using pyramid substitution, two arrays of 
curves can be produced, which characterize the longitudinal and transversal 
directions peak by peak. It can be observed that the slope angle is always an 
obtuse angle. In displaying the microtopography the scale in height direction is 
usually greater than the one defined in the other two directions, however, it is 
misleading as regards the slope angle as this latter is considerably distorted. This 
fact may cause mistakes in the interpretation and explanation of wear processes.  
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Figure 9. Slope angles pertaining to the major (a.) and minor (b.) axes 

This set of curves is similar to the previous one characterizing the radius of the 
peak curvatures in that the curves indicate increased obtuseness and stumpiness of 
peaks here as well. 

Conclusions, experiences  
As a result of wear tests, the surface microtopography undergoes two 

fundamental changes. One of them is the increasingly disappearance of the 
original pattern, simultaneously with the formation of a new surface texture. 
Formation of the new pattern is considerably influenced by the direction of 
sliding, “deposits” developing on the surface, and wear particles between the 
surfaces.  

The technique using distribution curves developed for characterizing asperities 
is suitable for studying the wear behavior of surfaces in the course of dry friction 
as well as for tracing surface changes.  

In the wear experiments presented, an originally anisotropic surface was 
converted into an isotropic surface. By adjusting distribution curves, it was made 
possible to establish that initially existing asperities disappeared almost 
completely and were replaced by a new pattern.  

In the course of the wear process, the surface changed in a way that contact and 
load bearing characteristics improved, with their slope radius increasing, their 
peak angle becoming more obtuse; therefore the surface change developed in the 
direction of reducing the effects generating such surface change.  
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Abstract: In benchmarking
1
 we often come across with parameters being difficult 

to measure while executing comparisons or analyzing performance, yet they have 

to be compared and measured so as to be able to choose the best practices. The 

situation is similar in the case of complex, multidimensional evaluation as well, 

when the relative importance and order of different dimensions, parameters to be 

evaluated have to be determined or when the range of similar performance 

indicators have to be decreased with regard to simpler comparisons. In such 

cases we can use the ordinal or interval scales of measurement elaborated by S.S. 

Stevens. 

1. Ordinal scale 

In case of ordinal scale the entities can be compared by the desired features, by 
means of it we can achieve relations like for example: better than ..., more useful 
than ..., bigger than ..., or their opposites: worse, less useful, smaller, etc. When 
measuring with ordinal scale entities must be comparable and transitive by one 
common criterion. 

To indicate comparison the so called preference relation is used. Preference 
relation shows the rank order of the entities. A prefers to B ( BA ;  ) means that 
A can be regarded as better with regard to the actual criterion. For indication the 
natural numbers are used in an increasing or decreasing order. By means of it the 
above transitive criterion can be formulated as follows. 

If BA ;  and CB ; , entity A is better than B and B is better than C, then A is 
also better than C. 

                                                 
1 Comptetitive benchmarking involves analyzing the performance and practices of best-in-
class companies. Their performance becomes a benchmark to which a firm can compare its 
own performance and their practices are used to improve that firm's practices. 
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Assignment of rank numbers can be carried out in an increasing sequence in the 
following way. We allocate 3 to A, 2 to B, 1 to C. 

A→3 
B→2 
C→1 

Only the ranking is important while allocating. We can not state that entity A is 
twice as good as B or C is three times better. The allocation of numbers is totally 
arbitrary with the exception of sticking to the sequence, it is just a matter of 
decision that the first three natural numbers have been used. Differences and 
ratios between the values of the scale tell nothing about real differences and 
proportions, they only establish the sequence. The scale will remain untouched by 
any sequence preserving transformation. 

Measuring by ordinal scale can be carried out in two ways in accordance with 
practical requirements. In the example presented so far no ecriterion has been 
permitted, the preference between the two entities had to be decided. In case of 
such rules we deal with a so called strong preference. In case we permit ecriterion 
between the entities, the sequence can be regarded as a so called weak preference. 
A sequence can significantly limit the applicable evaluating statistic methods. On 
the ordinal scale natural numbers are usually used. The entities on the scale are 
not at identical intervals, they are not of the same magnitude. In this case only 
those operations can be accomplished which do not presume the identical 
magnitude of intervals. With regard to ordinal measuring we have to speak about 
the problems of multidimensional comparisons as it is important from the point of 
view of performance evaluation. As mentioned, comparisons can be accomplished 
only if entities have at least one common criterion. If comparison is executed only 
by one well defined criterion we have to do with a one dimensional  comparison. 
However, we are well aware that a product, a process or a company may have 
theoretically infinite number of criterians. With regard to benchmarking [5] 
analysis not all the criterians can be taken into consideration, so we choose only 
some important ones. The selected set of criterians serve also as a base for the 
evaluation of products, processes and companies, so the criterians can be termed 
as evaluation factors as well. If comparison is accomplished with several 
criterians and evaluation factors we are faced with a multidimensional 
comparison. In this case specific problems arise that are not easy to solve. Some 
evaluation factors can be measured by ordinal, others by interval scales. The 
problem is how to compare the different dimensions.  

In product comparison investigations in the so called “criterion range” provide 
solutions in case of ratio scales, but their practical applications are significantly 
limited by extremely difficult mathematical operations. Some criterians to be 
evaluated can not be measured on ratio scales. Besides solving the dimensional 
and measuring problems of comparisons, priorities between evaluation factors 
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have also to be established. For this we have to be familiar with the importance of 
evaluation factors with regard to each other. 

2. Interval scale 

The interval scale possesses the characteristics of the ordinal scale and the range 
between two numbers is known and has a definite value. This scale can be 
regarded as a measuring scale in its traditional sense. The differences in a 
numerical sense show equal differences in reality as well. Measuring units, the 0 
point can be determined arbitrarily. So linear transformation (x’ = ax + b) can be 
permitted. Adding up proportions and quantities make no sense as both change 
according to the position of 0 point. But if the differences of the entities are 
considered, the entities have additive properties and as such they are suitable for 
comparisons. In this case the “b” constant of the relation “ax+b” is eliminated and 
as a consequence the 0 point is also eliminated so the different entities can be 
regarded as an absolute quantity. 

So the proportion of any two intervals is independent from measurement units and 
0 point on the interval scale. Several criterians can be measured on the interval 
scale in benchmarking, but this is much more difficult than on the ordinal scale. 
The elaboration of a proper interval scale for measuring a criterion of a 
phenomenon often means a complicated scale designing technique. Data gained 
from ordinal scales can be transformed into interval scales by using specific 
measuring methods. 

The axioms of ecriterion (1., 2., 3.) and the axioms of rank ordering are valid (4., 
5.,) on ordinal scales. Newer axioms can not be provided for the interval scales in 
the above described axiom system, but it must be noted that the axioms of 
additivity (6., 7., 8., 9.,) are valid for the differences of values on the scales. [1] 

1. Or a=b or a≠b 

2. If a = b, then b = a      ecriterion 

3. If a = b and  b = c, then a = c 

4. If a > b, then  a b �          

5. If a > b and b > a, then a > c  (ordinal axioms) 

6. If a = p and b > 0, then a + b > p 

7. a + b = b + a    additivity 

8. If a = p and b = q, then a + b = p + q 

9. (a + b) + c = a + ( b + c) 
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3. Pairwise Comparison 

The comparative method of pairs means comparing the criterians of the entities in 
pairs and establishing the preference between two things (or dimensions of 
multidimensional comparison). The comparison, as stated earlier , may be one or 
multidimensional. Of course usually not two but several entities are compared and 
the limits of our ability to process the information may cause problems as the 
number of comparisons increases. 

If we meet the requirements of transitivity (see ordinal scale ) a consistent opinion 
or priority order is formulated. In the opposite case inconsistent result is obtained 
that can be described as follows: If BA ; and CB ; , that AC ; . 

An inconsistent decision impairs or makes impossible the transformation from the 
ordinal scale into the interval scale. 

As a great number of pairs must be compared in the course of analyzing 
performance in benchmarking, the control of consistency, the determination of 
non parametric factors for evaluation is an essential condition. Indicators for 
consistency can be formulated by establishing the inconsistent decision: 

nn
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Where: 

n= the number of compared entities 

d= the number of inconsistent triads. 

The inconsistent triads is shown by Figure.  
  A     A 

 

 B  C   B  C 

   Figure 1.: Inconsistent triads 

Results obtained by pairwise comparisons are usually demonstrated in a 
preference matrix, where lines and bars mean all compared entities. Such a 
preference matrix is shown in Table 1. with regard to seven compared entities 
with large evaluation factor. Number 1 in row A and bar B means that is entity. A 
was found preferable with regard to entity B ( BA ; ). Table 1. contains the result 
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of comparing in pairs with the final result of the following:  
 CGFEDBA ;;;;;;  

pairwise comparison provide possibility only for creating ordinal scales. The 
preference numbers obtained on the basis of preference matrix containing the 
results of the comparisons supply only ordinal scales without determining the 
magnitudes of intervals on the scales. 

 A B C D E F G Preference 

numbers 

A - 1 1 1 1 1 1 6 

B 0 - 1 1 1 1 1 5 

C 0 0 - 0 0 0 0 0 

D 0 0 1 - 1 1 1 4 

E 0 0 1 0 - 1 1 3 

F 0 0 1 0 0 - 1 2 

G 0 0 1 0 0 0 - 1 

Table 1.: contains the result of comparing in pairs with the final result 

If ordinal scales are obtained by putting them in priority order end not by 
comparing in pairs, then numbers can be allocated directly to the entities in an 
increasing or decreasing order. Of course in this way no information is given 
about the differences of scale values in reality. 

In case of consistent decisions the preference matrix contains consistent partial 
square matrixes at all diagonals. For example: if 3,4,5, etc. square matrixes are 
chosen along the diagonal of the matrix in case of a ten-element matrix, the partial 
matrixes will be consistent. Let us see that in the case of a consistent matrix how 
many relations are needed between two elements to get a matrix. For example in a 
matrix where N=6, we have fifteen possible pairwise comparisons. This is the 
maximal number of comparisons but supposing the matrix is being consistent 5 
pairwise comparisons will determine the remaining 10 preferences  and the matrix 
can be filled in. In general it can be stated that a consistent matrix containing N 
elements can be determined by N-1 definite, not arbitrary comparisons. 

An important problem of pairwise comparisons from the point of view of  our  
investigation can be regarded as quantitative. If the number (N) of element to be 
compared exceed 8-10 the following problems may arise. The consistency of the 
decision makers will impair, matrixes will contain inconsistent decisions leading 
to ecriterians on interval scales and it will decrease the efficiency of the analyses. 
pairwise comparisons to the performed will drastically increase with the 
proliferation of entities.  
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While in case of N=4 the number of pairwise comparisons is 6, then in case of 10 
elements it is 45, in case of 20 elements is as many as 190 [2]. The priority 
statistic and graphic methods provide possibility to determine the priority order of  
evaluation factors the basis of limited comparisons or to choose the ones 
belonging to the same set of criterians, this way the multidimensional evaluation 
can be simplified. This method can be very useful when establishing consumer 
preferences or when analyzing performance with benchmarking. 

Let us consider the following example of purchasing a car, it is easily 
understandable for everyone, namely what comparisons occur most frequently. 

Among the criterians mentioned we can find both expert and consumer 
preferences. By means of pairwise comparisons the following preference priority 
order of the pairs were obtained.  

Preferences are marked by:   ;  

Final Speed ;  Comfort   Function ;  Appearance 

Braking Distance ;  Acceleration  Acceleration ;  Comfort 

Design ;  Image    Safety ;  Consumption 

Consumption ;  Final Speed  Comfort ;  Appearance 

Final speed ;  Function   Slowing Down ;  Final Speed 

Comfort ;  Image   Appearance ;  Image 

Function ;  Design   Safety ;  Acceleration 

Consumption ;  Braking Distance  Maximal performance ;  Function 

Safety ;  Slowing Down   Slowing Down ;  Max. performance 

Comfort ;  Design 

In graphic theory the problem can be formulated as follows. Let us consider 
criterians, features as a set where certain criterians end features are more 
important than others. We would like to set up a priority order so as to meet all 
preferences. 

We would like to note that in case of 12 factors we ought to perform 66 pairwise 
comparisons. 

T1; T5,  T1; T8,  T2; T9,  T2; T10, T2; T11 

T4; T11, T5; T3,  T5; T7,  T5; T12, T6; T8 

T7; T3,  T8; T7,  T8; T12, T9; T1,  T9; T6 

T10; T1, T10; T4, T11; T5, T12; T3 
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These 12 criterians and their 19 relevant requirements can be represented by a 
graph where peaks substitute criterians and (TI,TJ) curve is shown in the graph if 
TI≺  TJ [3]. 

T1 

T12   T2 

T11     T3 

T10      T4 

T9     T5 

T8   T6 

T7 

Figure 2.: 12 criterians and their 19 relevant requirements 

It must be noted that this graph can not contain a cycle as in that case one event 
would precede itself and this can not happen because of the nature of the 
investigated matter. 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12  V0 V1 V2 V3 V4 V5 V6 

T1     1   1      2 2 2 0 x x x 

T2         1 1 1   3 3 3 3 2 1 0 

T3              0 x x x x x x 

T4           1   1 1 1 1 0 x x 

T5   1    1     1  3 2 0 x x x x 

T6        1      1 1 1 0 x x x 

T7   1           1 0 x x x x x 

T8       1     1  2 2 0 x x x x 

T9 1     1        2 2 2 2 0 x x 

T1 1   1          2 2 2 2 1 0 x 

T1     1         1 1 1 0 x x x 

T1   1           1 0 x x x x x 

              T3 
 
 
0 

T7 
T12
 
1 

T5 
T8 
 
2 

T1 
T6 
T11 
3 

T4 
T9 
 
4 

T10 
 
 
5 

T2 
 
 
6 

Table 2.: Matrix 
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Let us take now the matrix representing the earlier graph. This matrix has been 
enlarged with a certain number of bars, will speak about it later. For better 
transparency deliberately no 0-s were written in the matrix where according to the 
definition we ought to have written them. Let us mark the column vectors of the 
matrix by VT1, VT2, …, VT12. 

First we can calculate vector 

VVVV TTT 12210 ...+++=  

and the result is written in bar V0. In this vector 0 can be found in the place 
corresponding to row T3 indicating that this  peak (i.e. criterion) is not followed 
by any other. 

So we can state that the level of T3 is 0. 

Now let us calculate vector 

VVV T301 −=  

and let’s write x in the T3 row of vector V1. We find a new 0 in rows of T7 and 
T12 of bar V1; so if T3 is omitted T7 and T12 are not followed by any peaks. 
Therefore, we state that the level of T7 and T12 is one. Now we calculate vector 

VVVV TT 12312 −−=  

and we write x in vector V2 in all places where 0 was to be found in the earlier 
vector, etc. 

At least the 12 peaks were divided into 7 levels: N0, N1, N2, …., N6. These 
levels define what we call: graph priority function free of circular triads [4] [6]. 

The next figure (Figure 3.) shows the representation of this level determination: 
numbering was started at T2, we also could have made it in the reverse direction 
starting from T3. The figure shows the priority order of criterians and 
characteristics: they are shown not only in relation to each other but with regard to 
the whole structure. 

It is obvious that operation T3 is the last, it is preceded by T7 and T12 (their 
priority between each other is not important), then they are preceded by T5 and 
T8 (again priority can be neglected) and so on. 
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 N6  N5  N4  N3  N2  N1  N0 

Figure 3.: Representation of the whole structure 

Let us be aware that an other priority function would have been obtained if we 
had worked with the inverse relation “TI follows TJ”. In this case we would have 
dealt with the row vectors of the matrix and we would have gained a priority 
function different from the previous one. However, all peaks have an arrangement 
that is compatible with all priority functions. On the basis of above said we can 
formulate the preference groups (consumer or benchmarking expert) determining 
the choice or comparison. 

The previously obtained 19 preferencies are the following (Figure 4.): 

 

    Preference order 
 

Figure 4.: The previously obtained 19 preferencies 
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