# MÖDSZERTANI Közlemēnyek

DOLOMITOSODÁS-DEDOLOMITOSODÁS-REKALCITOSODÁS HIDROTERMÁLIS KERETEK KÖZÖTT Lektor: DR. ORAVECZ JÁNOS

> Írta: DR. KISS JÁNOS

# Technikai szerkesztő: HORVÁTHNÉ OLLÁRY GABRIELLA

Szakszerkesztő: DR. DEÁK MARGIT

Kiadja a Magyar Állami Földtani Intézet Felelős kiadó: DR. HÁMOR GÉZA igazgató Készült a Magyar Állami Földtani Intézet nyomdájában, IBM Composer szedőgépen, rotaprint sokszorosítással Felelős vezető: Dékány Albert Ívterjedelem: 5,6 A/5. Példányszám: 500. Engedélyszám: 59426/81. ISSN 0324-4571

#### 1. BEVEZETÉS

A mészkőzetek metaszomatikus folyamatával kiterjedt irodalom foglalkozik. Az utóbbi évtizedek laboratóriumi modell-kísérletei az átalakulásnak (a kalcitrácsnak dolomittá, MgCO<sub>3</sub>-, MnCO<sub>3</sub>-, FeCO<sub>3</sub>-, ZnCO<sub>3</sub>-, CoCO<sub>3</sub>-, CdCO<sub>3</sub>-tá stb.) számos mozzanatát világították meg. A dolomitrács kialakulására ("dolomitosodás") egynéhány ellentmondó és további vizsgálatokra késztető tényadattal találkozhatunk. Ez idő szerint még mindig kérdéses a dolomitnak "normál" üledékföldtani keretek közötti a priori "primér-szingenetikus" képződése. Laboratóriumi modell-kísérleteink a címben megfogalmazott kérdést a "szilárd fázis : oldatrendszer" = CaCO<sub>3</sub>(s):MgCl<sub>2</sub>(aq) etc. vizsgálata vonalán közelíti meg. Értékeli a fázis-átalakulásoknak kémiai, kristálykémiai jellemzőit, a folyamat fizikokémiai paraméterei közül elsősorban a hőmérséklet hatását és szerepét elemzi. A modellkísérletek zárt rendszerben, autoklávban történtek. A kialakult kristályfázisok kémiai változásait, kristálykémiai-röntgendiffrakciós adatait táblázatok összesítik. Figyelmet érdemelnek a különböző hőfokon előállt fázisok  $\delta_0$  és  $\delta_c$  relatív izotópváltozásai.

Az alábbi binér-rendszerek vizsgálatára került sor:

a) CaCO<sub>3</sub> (kalcit) : MgCl<sub>2 (aq)</sub>;

b) CaMg(CO<sub>3</sub>)<sub>2</sub> porlódolomit : MgCl<sub>2(aq)</sub>;

T<sup>°</sup> = 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 350 <sup>°</sup>C.

Az oldat magnézium-koncentrációját úgy választottuk meg, hogy a szilárd-fázis kalciumjához az arányok Ca : Mg = 1 : 1,60; 70 : 30; 50 : 50; és 30 : 70 legyenek. A vázolt binér rendszerek dolomit (protodolomit), magnezit-barringtonit képződését (,,dolomito-sodás'', ,,magnezitesedés'') írja le.

A kalcitrács majdnem teljes  $Ca^{2+}$ -pozíciója lecserélődhet. A fázisok nonsztöchiometrikusak, többnyire anionhiányosak voltak. A  $CaCO_{3(s)}$ :MgCl<sub>2(aq)</sub>-rendszerben 175 °C volt a dolomitképződés optimális hőmérséklete, e fölött zömmel MgCO<sub>3</sub> (magnezitrács) keletkezett. A dolomit (porló) Ca<sup>2+</sup> pozícióinak nagyobb fokú lecserélését híg Mg-oldatkoncentrációk mozdítják elő, Mg-dús oldatok ellenkező hatást fejtenek ki, a dolomitnak legfeljebb 30%-a alakul át magnezitté.

c/ MgCO<sub>3(s)</sub>-magnezit: CaCl<sub>2(aq)</sub>;

d) CaMg(CO<sub>3</sub>)<sub>2</sub>-porlódolomit : CaCl<sub>2 (aq)</sub>.

Dr. Kiss János: "Dolomitosodás-dedolomitosodás-rekalcitosodás" folyamata . .

A hőmérséklet a-b-hez hasonló, az oldatkoncentrációk 1,0–2,5 mólosak voltak 2 : 1; 1 : 1 és 1 : 2 kationarányokkal.

e) "Meszes dolomit" : 2,5 mólos CaCl<sub>2 (ag)</sub>

A MgCO<sub>3(s)</sub>:CaCl<sub>2(aq)</sub>-rendszer kalcit, aragonit, vaterit, dolomit és triklin MgCO<sub>3</sub> · 2 H<sub>2</sub>O fázisokból állt. Ezek mennyiségi részvétele és a kristályfázisok rendezett-sége hőmérsékletfüggő (=,,rekalcitosodás'').

A CaMg(CO<sub>3</sub>)<sub>2</sub>:CaCl<sub>2(aq)</sub>-rendszer vizsgálata a "dedolomitosodás" folyamatát kívánta követni és tisztázni. A hőmérséklet nagyságától függően korlátozott mennyiségű kalcit, aragonit, vaterit (?), MgCO<sub>3</sub> és MgCO<sub>3</sub> • 2 H<sub>2</sub> O képződött. Természetes körülmények között alacsony hőmérsékleten a "dedolomitosodás" folyamata aligha játszódhat le, nagyobb hőfokon is korlátozott ennek lehetősége. A "rekalcitosodás" és a "dedolomitosodás" folyamatának korlátozott esetei a magnezit-dolomitnak kalcitnál nagyobb rácsenergiáival, kisebb callméreteivel, kisebb hőfokon bekövetkező entalpia-változásaival is kapcsolatba hozhatók.

A címben megjelölt rendszerek kristályfázisai a karbonátos kőzetek és a hidrotermális ércképződéssel járó kőzetelváltozások (dolomitosodás, magnezitesedés) egyik legtöbbet vizsgált ásványai. Képződésük esetei ellentmondó elemet tartalmaznak, az üledékföldtan vegyi üledékképződés egyik legvitatottabb és legtöbbet vizsgált kérdése. A dolomitmagnezit alapvetően abban különbözik a kalcittól, hogy a Mg–O kötései inkább kovalensek, a Ca–O kötelékek pedig 30–50%-ban ionos és kovalens kötéssel rendeződnek a rácsban. A dolomit Mg<sup>2+</sup>-helyettesítése Fe<sup>2+</sup>-, Mn<sup>2+</sup>-, Zn<sup>2+</sup>-, Pb<sup>2+</sup>-, Co<sup>2+</sup>-, Ca<sup>2+</sup>-ionokkal korlátozott (Zn-dolomit; Pb-dolomit), a Ca<sup>2+</sup>-helyettesítése Mg<sup>2+</sup>-Fe<sup>2+</sup>-Mn<sup>2+</sup>-ionokkal érzékeny cellatérfogat változásával jár.

GRAF D. L.-GOLDSCHMITH J. R. (1955, 1956, 1958b, 1960) a szobahőmérsékleten előállított Mg-kalcitot metastabilnak találta. A kalcitrács maximálisan 9% MgCO<sub>3</sub>-ot tartalmazhat 600 °C körül (GOLDSCHMITH J. R. 1959, 1961), más szerzők ezt 2%-ban rögzítették.

A  $Mg^{2*}$  oldhatósága (Ca,Mg)O-ban nagyobb, mint a  $Ca^{2*}$ -(Mg,Ca)O-ban, ennélfogva a CaMg<sub>3</sub> (CO<sub>3</sub>)<sub>4</sub> - huntit - a stabilabb a Ca<sub>3</sub>Mg/CO<sub>3</sub>-nál. RETZIUS (1975) ismertette konit (Ca<sub>3</sub>Mg/CO<sub>3</sub>)<sub>4</sub> átmeneti fázis csupán, természetes körülmények között ez dolomit és magnezit keveréke. A CaMg<sub>2</sub> (CO<sub>3</sub>) összetételű leesbergit is elegykristály.

MEDLIN W. L. (1959) a MgCl<sub>2</sub>-CaCl<sub>2</sub>+urea+CO<sub>2</sub>-rendszerben az alábbi fázisokat állította elő:

 $\begin{array}{rcl} 120-150\ ^{\circ}C & = \ aragonit \\ 120-200\ ^{\circ}C & = \ 5\ MgO(CO_2)_4\ 5\ H_2O \\ 200\ ^{\circ}C & = \ f\"{o}leg\ dolomit \\ 200-250\ ^{\circ}C & = \ kalcit,\ dolomit,\ magnezit\ és\ bázisos\ Mg\cdotkarbonát\ képződött. \end{array}$ 

Kevés NaCl jelenlétében a dolomit 210–230 °C között keletkezett, 6–7% NaCl jelenlétében nagyobb hőmérsékleten a következőképp módosult:

> 150 °C = aragonit, bázisos Mg-karbonát 150–210 °C = dolomit, kevés bázisos Mg-karbonát 230–350 °C = kalcit, dolomit, magnezit

A mintegy 230 kontrollkísérlettel kiegészült modellezést Ca : Mg = 1 : 1,60 és 70 : 30; 50 : 50; 30 : 70 rendszerekben végeztük 25 °C-300-(350) °C között.



# 2. "DOLOMITOSODÁS-MAGNEZITESEDÉS" PROBLÉMAKÖRE

2.1.  $CaCO_{3(s)}$ -KALCIT+MgCl<sub>2</sub>-H<sub>2</sub>O-RENDSZER (A kalcit dolomitosodása, magnezitesedése

2.1.1.  $CaCO_{3(s)} - Mg^{2+} = 1 : 1,60$ 

A dolgozat a vegyelemzések mellett a kristálykémiai számításokat, a röntgendiffrakciók adatsorát és scanning felvételeket értékeli. A röntgendiffrakciók tételes-táblázatos közlése meghaladja a dolgozat kereteit. A kristálykémiai értékelések figyelembevételével a kalcitrács magnézium felvétele az oldat koncentárciójától függően 175–200 °C-tól hirtelen megnő, a kristályfázis CaO-értékei rohamosan csökkennek. Legszembetűnőbb változás a Ca : Mg = 1 : 1,60 rendszerben 150 °C-tól kezdődően érzéklődik, ahol a kalcium kilépését a magnéziumnak majdnem azonos mértékű beépülése, ill. kristályos fázis képződése követi.

A vegyelemzési, röntgen- és mikroszkópos vizsgálatok alapján a kalcitrács magnéziumfelvétel 100 °C-ig korlátozottan a kalcitrács összeroppanása nélkül történik. 50 °C és 75 °C között az uralkodó kalcit mellett átmeneti fázisként MgCO<sub>3</sub> · 2 H<sub>2</sub>O és Ca-dolomit (protodolomit) jelenléte igazolható. A kalcitrács összeroppanása 175–200 °C között következik be, helyét MgCO<sub>3</sub> és CaMg(CO<sub>3</sub>)<sub>2</sub> veszi át, amelyek a kiindulási anyag (kalcit) szemcseösszetételét is észrevehetően megváltoztatják.

Az elemzésekből értékelhető sztöchiometriai képlet alapjául a kalcium atomkvociensei a mérvadók:

| 25 °C  | = | $ = CaCO_3, CaMg_3(CO_3)_4?$                                                                                       |
|--------|---|--------------------------------------------------------------------------------------------------------------------|
| 50 °C  | = | $Ca_{0,987}Mg_{0,011}CO_3 = CaCO_3, CaMg_3(CO_3)_4?$                                                               |
| 75 °C  | = | $Ca_{0,987}Mg_{0,021}CO_3 = CaCO_3, CaMg_3(CO_3)_4?$                                                               |
| 100 °C | ~ | $Ca_{0,962}Mg_{0,036}CO_3 = CaCO_3$ , $CaMg_3$ ( $CO_3$ ) <sub>4</sub> , $CaMg$ ( $CO_3$ ) <sub>2</sub> , $MgCO_3$ |
| 125 °C | = | $Ca_{0,947}Mg_{0,036}CO_3 = CaCO_3, CaMg(CO_3)_2, MgCO_3$                                                          |
| 150 °C | = | $Ca_{0,642}Mg_{0,419}CO_3 = CaCO_3, MgCO_3, CaMg(CO_3)_2$                                                          |
| 175 °C | = | $Ca_{0,253}Mg_{0,885}CO_3 = CaCO_3, MgCO_3, CaMg(CO_3)_2$                                                          |
| 200 °C | = | $Ca_{0,137}Mg_{1,017}CO_3 = CaCO_3, MgCO_3, CaMg(CO_3)_2$                                                          |
| 250 °C | = | $Ca_{0,369}Mg_{0,757}CO_3 = MgCO_3, CaMg(CO_3)_2$                                                                  |
| 300 °C | = | $Ca_{0,216}Mg_{0,947}CO_3 = MgCO_3, CaMg(CO_3)_2$                                                                  |
|        |   |                                                                                                                    |

Izotópvizsgálatok alapján a  $\delta_o$  egyértelműen követi a  $\delta_c$  ingadozásait, ezek egyrészt az anyafázis (CaCO<sub>3</sub>)--Ca<sup>2+</sup>, másrészt Ca<sup>2+</sup>/Mg<sup>2+</sup> változásaival korrelálhatók. A természe-

tes dolomit és MgCO<sub>3</sub>  $\delta_{O}$  és  $\delta_{C}$  rendkívül nagymérvű szóródásai egyértelműen nem értelmezhetők, aligha lehet a feltárásuk során – esetleg – fellépő izotóphígulás–differenciálódás rovására írni. Az 50–300 °C-on keletkezett kristályfázisok  $\delta_{O} - \delta_{C}$  értékei a hőmérséklet növekedésével csökkennek. A Ca<sup>2+</sup>, Mg<sup>2+</sup> és Ca/Mg-mal történő összefüggéseket az 1. ábrán tüntettük fel.

2.1.2.  $CaCO_{3(s)}-Mg^{2+}=70:30$ 

A rendszer összesített vegyelemzés adatsorát az 1. táblázat tartalmazza.

2.1.2.1. Vegyelemzések értékelése (1., 2. táblázat)

50-100 °C = CaCO-MgO %-ban alig észrevehető változás
125 °C = A kiindulási anyagból -1,20% CaO-veszteség; +0,13% MgO
150 °C = -3,35% CaO-csökkenés és 2,97% MgO-növekedés
175 °C = Rohamos CaO % csökkenés, hasonló mérvű MgO-növekedés. A kiinduláshoz viszonyítva = -35,39% CaO és +16,99% MgO
200-225 °C = Átlagosan 47,25%-os CaO-csökkenés és +23,28% MgO-növekedés
250 °C = 55,04%-os CaO-csökkenés és 25,16% MgO-többlet
275 °C = 49,82%-os CaO
300 °C = Elvileg az egész kalcium lecserélődik, a szilárd-fázis mindössze CaO = = 1,23%-ot tartalmaz. A kristályfázis lényegében MgCO<sub>3</sub>-ból áll, 47,87% MgO-tartalommal + MgCO<sub>3</sub> • 2 H<sub>2</sub>O

(Irodalmi MgCO<sub>3</sub> = 45,43% MgO)

2.1.2.2. Kristályfázisok

- 50-150 °C = CaCO<sub>3</sub> (kalcit) uralkodó MgCO<sub>3</sub> · 2 H<sub>2</sub>O (barringtonit) szennyezés és huntit 125 °C-ig feltételezett komponens.
  - 175 °C CaCO<sub>3</sub> (kalcit) és dolomit kb. azonos eloszlású, a MgCO<sub>3</sub> és MgCO<sub>3</sub> •2 H<sub>2</sub> O járulékos komponens.
  - 200 °C = A dolomit a legrendezettebb kristályfázis, mennyisége a MgCO<sub>3</sub>-t felülmúlja, a MgCO<sub>3</sub> • 2 H<sub>2</sub>O alárendelt, a kalcit eltűnik.
- 225–250 °C = A MgCO<sub>3</sub> az uralkodó fázis, mennyisége a dolomitét 3–5%-ban haladja meg. A MgCO<sub>3</sub> · 2 H<sub>2</sub>O állandó kísérő komponens, a CaMg<sub>3</sub> (CO<sub>3</sub>)<sub>4</sub> (huntit) jelenléte kétséges.
  - 300 °C = Uralkodó MgCO<sub>3</sub> 1,23% CaO-szennyezéssel és a kristályok felületén MgCO<sub>3</sub> 2 H<sub>2</sub>O-val.

Az 50 °C-on kimutatott bázisos Mg-karbonát (MgCO<sub>3</sub> • 2 H<sub>2</sub>O) minden kisérleti mintában kis mennyiségben jelentkezett, amely scanning-felvételek alapján a kísérlet befejeztével mellékkomponensként keletkezett epigén termék, nem tekinthető a dolomit és a MgCO<sub>3</sub> (magnezit) átmeneti fázisának.



# "Dolomitosodás-magnezitesedés" problémaköre

| Kísérlet    |                                          | Ca : Mg | c°  | ELEMZÉS |                |       |      |      |  |
|-------------|------------------------------------------|---------|-----|---------|----------------|-------|------|------|--|
| jele        | Hendszer                                 | Ca:Mg   | C   | CaO %   | MgO %          | CO2 % | C  % | Н,0% |  |
| Ca- 1       |                                          | 70 - 30 | 50  | 56.00   | 0.34           | 43.29 | 0.05 | 0.42 |  |
| $C_{2} = 2$ | $C_{2}CO_{3}(sz) + M_{2}Cl_{2}(aq)$      | 50 : 50 | 50  | 56.24   | 0,04           | 43,25 | 0,03 | 0,42 |  |
| C2 3        | $C_{a}CO_{3}(s_{z}) + M_{a}Cl_{2}(aq)$   | 20.70   | 50  | 50,34   | 0,14           | 43,20 | 0,04 | 0,49 |  |
|             | $C_{a}CO_{3}(s_{z}) + M_{a}Cl_{2}(aq)$   | 30.70   | 30  | 55,80   | 0,14           | 43,25 | 0,04 | 0,49 |  |
|             | $C_{aCO_{3}(s_{z})}$ + $M_{aCl_{2}(aq)}$ | 70:30   | 75  | 56,53   | -              | 43,46 | 0,03 | 0,19 |  |
|             | $CaCO_{3}(sz) + MgCI_{2}(aq)$            | 50 : 50 | /5  | 56,25   | 0,03           | 43,14 | 0,02 | 0,11 |  |
| Ca- 6       | $CaCU_{3}(sz)+MgCl_{2}(aq)$              | 30 : 70 | /5  | 56,02   | 0,06           | 43,66 | 0,02 | 0,03 |  |
| Ca- 7       | $CaCO_{3(sz)}+MgCI_{2(aq)}$              | 70 : 30 | 100 | 55,39   | 0,21           | 43,36 | 0,02 |      |  |
| Ca- 8       | $CaCO_{3(sz)} + MgCl_{2(aq)}$            | 50 : 50 | 100 | 55,01   | 0,25           | 43,70 | 0,02 |      |  |
| Ca- 9       | $CaCO_{3}(sz) + MgCI_{2}(aq)$            | 30 : 70 | 100 | 55,20   | 0,15           | 43,31 | 0,01 |      |  |
| Ca-10       | $CaCO_{3(sz)}+MgCl_{2(aq)}$              | 70 : 30 | 125 | 54,20   | 0,15           | 43,31 | 0,01 |      |  |
| Ca-11       | $CaCO_{3(sz)}+MgCl_{2(aq)}$              | 50 : 50 | 125 | 54,90   | 0,61           | 43,51 | 0,02 |      |  |
| Ca-12       | $CaCO_{3(sz)}+MgCl_{2(aq)}$              | 30 : 70 | 125 | 48,89   | 6,26           | 44,49 | 0,02 | 0,15 |  |
| Ca-13       | $CaCO_{3(sz)}+MgCl_{2(aq)}$              | 70 : 30 | 150 | 52,65   | 2,97           | 43,89 | 0,02 |      |  |
| Ca-14       | $CaCO_{3(sz)} + MgCl_{2}(aq)$            | 50 : 50 | 150 | 46,40   | 8,42           | 43,39 | 0,01 | 0,09 |  |
| Ca-15       | $CaCO_{3(sz)} + MgCl_{2(aq)}$            | 30 : 70 | 150 | 33,15   | 19,61          | 46,58 | 0,03 | 0,11 |  |
| Ca-16       | $CaCO_{3}(s_{z})+MgCl_{2}(aq)$           | 70:30   | 175 | 36,18   | 16 <b>,9</b> 9 | 44,44 | 0,20 | 0,04 |  |
| Ca-17       | $CaCO_{3(sz)}+MgCl_{2(aq)}$              | 50 : 50 | 175 | 18,27   | 32,31          | 46,62 | 0,20 | 0,23 |  |
| Ca-18       | $CaCO_{3(sz)} + MgCI_{2(aq)}$            | 30 : 70 | 175 | 4,87    | 44,08          | 50,30 | 0,10 | 0,04 |  |
| Ca-19       | $CaCO_{3(sz)}+MgCl_{2(aq)}$              | 70 : 30 | 200 | 30,12   | 23,23          | 45,24 |      | 0,24 |  |
| Ca-20       | $CaCO_{3(sz)} + MgCI_{2(aq)}$            | 50 : 50 | 200 | 16,65   | 34,00          | 43,04 |      | 6,51 |  |
| Ca-21       | $CaCO_{3(sz)}+MgCl_{2(aq)}$              | 30 : 70 | 200 | 0,95    | 48,12          | 47,86 |      | 0,31 |  |
| Ca-22       | $CaCO_{3}(s_{z})+MgCl_{2}(aq)$           | 70 : 30 | 225 | 28,95   | 23,12          | 45,65 | 0,28 | 0,15 |  |
| Ca-22/2     | $CaCO_{3(sz)}+MgCl_{2(aq)}$              |         |     |         |                |       |      |      |  |
| Ca-23       | $CaCO_{3(sz)} + MgCl_{2(aq)}$            | 50 : 50 | 225 | 13,50   | 35,56          | 47,81 | 0,2  | 0,25 |  |
| Ca-23/2     | $CaCO_{3}(s_{z}) + MgCl_{2}(aq)$         |         |     |         |                |       |      |      |  |
| Ca-24       | $CaCO_{3}(sz) + MgCl_{2}(aq)$            | 30:70   | 225 | 1,88    | 45,83          | 47,20 | 0,2  | 0,43 |  |
| Ca-24/2     | $CaCO_{3(sz)}+MgCl_{2(aq)}$              |         |     |         | -              |       |      |      |  |
| Ca-26       | $CaCO_{3}(sz) + MgCl_{2}(aq)$            | 70 : 30 | 250 | 25,18   | 25,16          | 42,77 | 0,2  | 0,27 |  |
| Ca-26/2     | $CaCO_{3}(sz) + MgCl_{2}(aq)$            |         |     |         |                |       |      |      |  |
| Ca-25       | $CaCO_{3}(sz) + MgCl_{2}(aq)$            | 50 : 50 | 250 | 2,66    | 45,47          | 48,63 | 0,2  | 0,24 |  |
| Ca-25/2     | $CaCO_{3}(s_{z})+MgCl_{2}(aq)$           |         |     |         |                |       |      |      |  |
| Ca-27       | $CaCO_{3}(s_{z})+MgCl_{2}(aq)$           | 30 : 70 | 250 | 1,52    | 45,24          | 45,55 | 0,2  | 0,36 |  |
| Ca-27/2     | $CaCO_{3(s_{z})}+MgCI_{2(aq)}$           |         |     |         |                |       |      |      |  |

| A                | TOM              | кνос   | CIEN   | s                | C-0 : M-0  | C-2+ + M-2+ | Kristályfázisok             |  |  |
|------------------|------------------|--------|--------|------------------|------------|-------------|-----------------------------|--|--|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-   | CI-    | H <sub>2</sub> O | CaO - MigO | Ca . wig    | Kristalytazisok             |  |  |
| 0,9985           | 0,0084           | 0,9836 | 0,0014 | 0,0233           | 164,7      | 118,8       | Ca-1 <mg-2< td=""></mg-2<>  |  |  |
| 1,0046           | 0,0034           | 0,9827 | 0,0011 | 0,0271           | 402,4      | 295,4       | Ca-1                        |  |  |
| 0,9960           | 0,0034           | 0,9827 | 0,0011 | 0,0271           | 399,0      | 292,9       | Ca-1>Mg-2                   |  |  |
| 1,0080           | -                | 0,9875 | 0,0008 | 0,0105           | -          | -           | Ca-1>Mg-2                   |  |  |
| 1,0030           | 0,0007           | 0,9802 | 0,0005 | 0,0061           | 187,5      | 143,2       | Ca-1>Mg-2                   |  |  |
| 0,9989           | 0,0014           | 0,9220 | 0,0005 | 0,0016           | 933,6      | 713,5       | Ca-1>Mg-2                   |  |  |
| 0,9876           | 0,0052           | 0,9852 | 0,0005 |                  | 263,7      | 189,9       | Ca-1>Mg-2                   |  |  |
| 0,9809           | 0,0062           | 0,9929 | 0,0005 |                  | 220,0      | 158,2       | Ca-1>Mg-1>Mg-2              |  |  |
| 0,9843           | 0,0037           | 0,9840 | 0,0002 |                  | 368,0      | 266,0       | Ca-1>Mg-1>Mg-2              |  |  |
| 0,9664           | 0,0037           | 0,9840 | 0,0002 | _                | 361,3      | 261,1       | Ca-1>Mg-2>H? +(?)           |  |  |
| 0,9789           | 0,0151           | 0,9886 | 0,0005 |                  | 90,0       | 64,82       | Ca-1>Mg-1>Mg-2              |  |  |
| 0,8718           | 0,1552           | 0,0108 | 0,0005 | 0,0083           | 7,81       | 5,62        | Ca-1>Mg-1>Mg-2              |  |  |
| 0,9388           | 0,0736           | 0,9972 | 0,0005 |                  | 17,72      | 12,75       | Ca-1>Mg-2                   |  |  |
| 0,8273           | 0,2088           | 0,9858 | 0,0002 | 0,0049           | 5,51       | 3,96        | Ca-1>Mg-1>Mg-2              |  |  |
| 0,5911           | 0,4863           | 1,0583 | 0,0008 | 0,0061           | 1,69       | 1,21        | Ca-1>Mg-1>Mg-2              |  |  |
| 0,6451           | 0,4213           | 1,0097 | 0,0056 | 0,0022           | 2,129      | 1,531       | Ca-1≈D; Mg-1>Mg-2           |  |  |
| 0,3257           | 0,8013           | 1,0592 | 0,0056 | 0,0127           | 0,565      | 0,406       | D>Mg-1>(Mg-2>Ca-1)          |  |  |
| 0,0868           | 1,0932           | 1,1428 | 0,0028 | 0,0022           | 0,1104     | 0,079       | D <mg-1>Mg-2&gt;Ca-1</mg-1> |  |  |
| 0,5371           | 0,5761           | 1,0279 |        | 0,0133           |            |             | D>Mg-1>Mg-2                 |  |  |
| 0,2969           | 0,8432           | 0,9779 |        | 0,3616           |            |             | Mg−1≈D>Mg−2                 |  |  |
| 0,0169           | 1,1870           | 1,0874 |        | 0,0133           |            |             | Mg-1≽Mg-2+D(?)              |  |  |
| 0,5158           | 0,5734           | 1,0372 | 0,0078 | 0,0083           | 1,252      | 0,899       | Mg−1≈D>Mg−2+H?              |  |  |
|                  |                  |        |        |                  |            | 1000        |                             |  |  |
| 0,2407           | 0,9061           | 1,063  | 0,0056 | 0,0138           | 0,360      | 0,265       | Mg-1>Ca-1+Mg-2              |  |  |
|                  |                  |        |        | _                |            | -           |                             |  |  |
| 0,0335           | 1,1366           | 1,0724 | 0,0056 | 0,0238           | 0,041      | 0,0294      | Mg-1>Mg-2>Ca-1              |  |  |
|                  |                  |        |        |                  |            |             |                             |  |  |
| 0,4490           | 0,6240           | 0,9718 | 0,0056 | 0,0150           | 1,0007     | 0,7195      | Mg−1≈D>Mg−2+H?              |  |  |
|                  |                  |        |        |                  |            |             |                             |  |  |
| 0,0470           | 1,1277           | 1,1049 | 0,0056 | 0,0133           | 0,0585     | 0,0416      | Mg-1>Mg-2                   |  |  |
|                  |                  |        |        |                  |            | -           |                             |  |  |
| 0,0271           | 1,1220           | 1,0349 | 0,0056 | 0,0200           | 0,0335     | 0,0241      | Mg-1>Mg-2                   |  |  |
|                  |                  |        |        |                  |            |             |                             |  |  |

11

1. táblázat

| Kísérlet |                                     |         | g:Ca C° | ELEMZÉS |       |                   |      |      | T |
|----------|-------------------------------------|---------|---------|---------|-------|-------------------|------|------|---|
| jele     | Hendszer                            | Mg : Ca |         | CaO %   | MgO % | CO <sub>2</sub> % | СІ % | Н20% |   |
| Ca-28    | $CaCO_{s(sz)} + MgCl_{2(aq)}$       | 70 : 30 | 275     | 28,10   | 23,41 | 44,24             |      | 0,89 | I |
| Ca-29    | $CaCO_{3}(sz) + MgCl_{2}(aq)$       | 50 : 50 | 275     | 7,67    | 42,24 | 50,07             |      | -    |   |
| Ca-30    | $CaCO_{3}(s_{z}) + MgCl_{2}(a_{q})$ | 30 : 70 | 275     | 1,07    | 46,25 | 46,76             |      | -    |   |
| Ca-31    | $CaCO_{3(sz)} + MgCl_{2(aq)}$       | 70 : 30 | 300     | 1,23    | 47,87 | 48,70             |      | -    |   |
| Ca-33    | $CaCO_{3(sz)} + MgCl_{2(aq)}$       | 50 : 50 | 300     | 29,80   | 22,48 | 47,68             |      |      |   |
| Ca-32    | $CaCO_{3}(s_{z}) + MgCl_{2}(a_{q})$ | 30 : 70 | 300     | 0,71    | 48,09 | 50,00             |      | -    |   |
| Ca-34    | $CaCO_{3(sz)} + MgCl_{2(aq)}$       | 70:30   | 350     | 30,67   | 26,88 | 41,93             |      | 0,31 |   |
| Ca-35    | $C_{aCO_{3}(sz)} + MgCl_{2}(aq)$    | 50 : 50 | 350     | 25,31   | 27,30 | 43,16             |      | 0,32 |   |
| Ca-36    | $CaCO_{3(sz)} + MgCl_{2(aq)}$       | 30:70   | 350     | nyom    | 60,70 | 21,40             |      | 0,56 |   |

2.1.3.  $CaCO_{3(s)} - Mg^{2+} = 50:50$ 

2.1.3.1. Vegyelemzések értékelése (1., 2. táblázat)

50– 75 °C = CaO–MgO %-os eloszlásában nincs alapvető változás

100-125 °C = 1,91-2,10% CaO-csökkenés és +0,25-0,61% MgO-növekedés

150 °C = -9,60% CaO-csökkenéssel és +8,42% MgO-növekedéssel határozott szerkezeti átrendeződés indul, a 70 : 30 rendszerhez hasonlóan 175 °Con exponenciális jellegűvé válik

175 °C = 37,73%-os CaO-csökkenés és +32,31% MgO-növekedés

200-225 °C = 39,35-44,50% CaO-csökkenés és 34,00-36,56% MgO-növekedés

250 °C = Ca<sup>2+</sup> lecserélése és Mg<sup>2+</sup> beépülése tovább fokozódik (-53,34% CaO, +45,57% Mg)

275–300 °C = Megtorpan a Ca<sup>2+</sup> további lecserélése és új MgCO<sub>3</sub> képződése. Növekvő Ca<sup>2+</sup> szennyezettségű (7,67–29,80%) MgCO<sub>3</sub> mellett a dolomit újraképződik (300°)

A Ca : Mg = 50 : 50 rendszerben nagyobb hőintervallumban nagyobb a  $Mg^{2^+}$ -beépülés mint a 70 : 30 rendszerben. Optimális mértéke ennek 250 °C-on, Ca : Mg = 70 : 30-ban 300 °C-on volt. A 300 °C-on tapasztalt –46,86% CaO-csökkenés és 22,48% MgO-növekedés feltehetően korrekcióra szorul.

2.1.3.2. Kristályfázisok

50 °C = CaCO<sub>3</sub> (kalcit) a kizárólagos elegyrész

 $75 \degree C = CaCO_3$  (kalcit) >MgCO\_3 • 2 H<sub>2</sub>O (barringtonit) jellemzi

100–150 °C = Kalcit >MgCO<sub>3</sub> (magnezit) >MgCO<sub>3</sub> • 2 H<sub>2</sub>O. A magnezit képződése 100 °C-on indul, a 70 : 30 rendszerben 175 °C-on tapasztaltuk.

175 °C = Ca,Mg(CO<sub>3</sub>)<sub>2</sub> >MgCO<sub>3</sub> >MgCO<sub>3</sub> · 2 H<sub>2</sub>O >kalcit a fázisok sorrendje.

"Dolomitosodás-magnezitesedés" problémaköre

|                  | том              | ĸvod   | IEN | s      |   | Ca <sup>2+</sup> · Ma <sup>2+</sup> |                 |  |  |  |
|------------------|------------------|--------|-----|--------|---|-------------------------------------|-----------------|--|--|--|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-   | CI- | н,0    |   | Ca=* : Mg=*                         | Kristályfázisok |  |  |  |
| 0,5011           | 0,5806           | 1,0052 | -   | 0,4944 |   |                                     | Mg-1≈Ca-1>Mg-2  |  |  |  |
| 0,1367           | 1,0476           | 1,0624 |     |        |   |                                     | Mg-1>Mg-2       |  |  |  |
| 0,0190           | 1,1470           | 1,0624 |     |        | _ |                                     | Mg-1>Mg-2       |  |  |  |
| 0,0219           | 1,1872           | 1,1065 |     |        |   |                                     | Mg-1>Mg-2       |  |  |  |
| 0,5313           | 0,5575           | 1,0833 |     |        |   |                                     | Mg-1>D>Mg-2     |  |  |  |
| 0,0126           | 1,1927           | 1,1361 |     |        |   |                                     | Mg-1>Mg-2+H?    |  |  |  |
| 0,5468           | 0,6666           | 0,9527 |     | 0,0172 |   |                                     |                 |  |  |  |
| 0,4513           | 0,6770           | 0,9806 |     | 0,0177 |   |                                     |                 |  |  |  |
| -                | 1,5054           | 0,4862 |     | 0,0811 |   |                                     |                 |  |  |  |

1. táblázat folytatása

*Megjegyzés:* A Ca : Mg = 70 : 30 rendszerben 175 °C-on a dolomit a kalcittal közel egyensúlyban levő fázisok voltak, itt a MgCO<sub>3</sub> + CaCO<sub>3</sub>-mal kb. azonos eloszlású.

225 °C = MgCO<sub>3</sub> > kalcit >MgCO<sub>3</sub> • 2 H<sub>2</sub>O. A dolomit teljesen kimarad!

250-275 °C = A MgCO<sub>3</sub>-képződés optimális hőtartománya epigén MgCO<sub>3</sub> • 2 H<sub>2</sub>O-val, dolomit és kalcit nélkül

 $300 \degree C = MgCO_3 > Ca, Mg(CO_3)_2 + MgCO_3 \cdot 2 H_2O$ 

A dolomitnak újabb megjelenése arra utal, hogy képződésének legnagyobb stabilitása – zárt rendszerben – 175 °C, és 300 °C hőtartományok területére esik.

2.1.4.  $CaCO_{3(s)} - Mg^{2+} = 30:70$ 

2.1.4.1. A vegyelemzések értékelése (1., 2. táblázat)

- 50–100 °C = Az előző rendszerekhez közel azonos szinten mozgó CaO-veszteség, ill. MgO-növekedés (0,06–0,15%)
  - 125 °C = Első nagyobb mérvű változás = 12,70%-os CaO-csökkenés és +6,26% MgO-növekedés

150 °C = 40,80%-os CaO-csökkenés és +19,61% MgO-növekedés

- 175 °C = A kristályfázis összetétele: MgO = 44,08%, CaO = 4,87% A MgCO<sub>3</sub> képződése az optimum felé közelít!
- 225–275 °C = A kristályfázis középértékben MgO = 45,77%, CaO = 1,49%-ot tartalmazott
  - $300 \degree C = A \ képződött \ MgCO_3 + MgCO_3 \cdot 2 \ H_2O + CaMg(CO_3)_2 \cdot et \ CaO = 0,71\%, MgO = 48,09\%, CO_3 = 50,00\% jellemzi$

A CaCO<sub>3(sz)</sub>-MgCl<sub>2(aq)</sub> leghígabb (30 : 70) rendszerekben 300 °C-on, az 50 : 50-ban 250 °C-on, a legtöményebb (30 : 70) rendszerekben már 175–300 °C volt az optimális magnezitképződés.

2. táblázat

| Ca <sup>2+</sup> /Mg <sup>2+</sup> | 70     | 30     | 50       | : 50     | 30 : 70        |        |  |
|------------------------------------|--------|--------|----------|----------|----------------|--------|--|
| C°                                 | CaO %  | MgO %  | CaO %    | MgO %    | CaO %          | MgO %  |  |
|                                    |        |        |          |          |                |        |  |
| 50°                                | - 0,14 | + 0,34 | + 0,46   | + 0,14   | - 0,39         | + 0,14 |  |
| 75°                                | - 0,80 | + 0,30 | + 0,30   | + 0,03   | - 0,07         | + 0,06 |  |
| 100°                               | - 1,23 | + 0,21 | - 1,91   | + 0,25   | - 1,57         | + 0,15 |  |
| 125°                               | - 3,55 | + 0,15 | - 2,10   | + 0,61   | -12,82         | + 6,26 |  |
| 150°                               | - 6,12 | + 2,97 | -17,36   | + 8,42   | - <b>40,89</b> | +19,61 |  |
| 175°                               | -35,49 | +16,99 | -67,42   | +32,31   | -91,32         | +44,08 |  |
| 200°                               | -46,29 | +23,23 | -70,39   | +34,00   | -98,31         | +48,12 |  |
| 225°                               | -48,38 | +23,12 | -75,66   | +36,57   | <i>_96,65</i>  | +45,83 |  |
| 250°                               | -55,10 | +25,16 | -97,25   | +45,47   | -97,29         | +45,24 |  |
| 275°                               | -49,90 | +23,41 | 86,35    | +42,24   | -98,09         | +46,25 |  |
| 300°                               | -97,81 | +47,87 | (-46,86) | (+22,48) | -98,73         | +48,09 |  |
|                                    |        |        |          |          |                |        |  |

#### 2.1.4.2. Kristályfázisok jellemzése

14

 $\begin{array}{rcl} 50-100\ ^{\circ}C &= CaCO_{3}\ (kalcit) > MgCO_{3} \cdot 2\ H_{2}O \\ 125-150\ ^{\circ}C &= CaCO_{3}\ (kalcit) > MgCO_{3} + MgCO_{3} \cdot 2\ H_{2}O \\ 175\ ^{\circ}C &= MgCO_{3} > dolomit + MgCO_{3} \cdot 2\ H_{2}O \\ 200\ ^{\circ}C &= MgCO_{3} \cdot 2\ H_{2}O + dolomit\ (?) \\ 225-275\ ^{\circ}C &= MgCO_{3} + MgCO_{3} \cdot 2\ H_{2}O\ és\ 225\ ^{\circ}C\ on\ kalcitszennyezés \\ 300\ ^{\circ}C &= MgCO_{3} + [MgCO_{3} \cdot 2\ H_{2}O + CaMg(CO_{3})_{2}?] \end{array}$ 

BABČAN J. (1977) a magnezit-képződés alsó határait 30–50 °C-on, a dolomitét >30 °C-on észlelte, ill. tételezi fel természetes körülmények között. A kalcit : Mg<sup>2+</sup>-rendszerek <100 °C kísérletek fázisai között a fentieket sosem tapasztaltuk. A dolomitnak magnezitté alakulása (metaszomatozisa) viszont már 50 °C-on is bekövetkezhet.

A NaCl bebelső standard-del korrigált röntgendiffrakciók adataiból értékelt kalcit-dolomit-magnezit rácsparamétereit a 3. táblázat tartalmazza. A kisérleti fázisoknak hexagonális cellára számított  $a_o - c_o$ , ill.  $c_o/a_o$  értékei az irodalmi adatokhoz viszonyítva tendenciózusan ingadoznak Összehasnolítás alapjául GOLDSCHMITH J. R.-GRAF D. L.-HEARD H. C. adatait vettük figyelembe:

|                            | a <sub>0</sub> (Å) | с <sub>о</sub> (Å) | c <sub>o</sub> /a <sub>o</sub> (Å) |
|----------------------------|--------------------|--------------------|------------------------------------|
| Kalcit                     | 4,990              | 17,061             | 3,419                              |
| Magnezit                   | 4,633              | 15,016             | 3,241                              |
| Dolomit (rácshibás)        | 4,8050             | 16,045             | 3,3392                             |
| Dolomit (kation rendezett) | 4,8079             | 16,010             | 3,3299                             |

A CaCO<sub>3(s)</sub>-Mg<sub>(aq)</sub> = 70 : 30-rendszer kalcit kristálya c<sub>o</sub>-szerint nyúlt cella, amely emelkedő hőmérsékleten – ingadozásokkal – egyértelműen nagyobb GOLDSCHMITH J. R.

et al. adatainál. Legnagyobb cellatérfogat növekedést 100–125 °C tartományokban tapasztaltunk (370,607–371,904), míg nagyobb hőmérsékletek tartományaiban jól kivehető csökkenést észleltünk. A 175 °C-tól keletkező rácshibás dolomit a<sub>o</sub> szerint nyúltabbnak, c<sub>o</sub> irányban torzult cellának bizonyult. A dolomittal együtt keletkezett MgCO<sub>3</sub> a<sub>o</sub>-c<sub>o</sub>, valamint c<sub>o</sub>/a<sub>o</sub> értékei növekvő hőmérsékleten keletkezett kristályaiban kissé torzult cellára utalnak.

A CaCO<sub>3(s)</sub>-Mg<sub>(aq)</sub> = 50 : 50 rendszer kalcit fázisainak a<sub>o</sub>-c<sub>o</sub> adatai irodalmi értékekkel szemben egyértelműen nagyobbak, a c<sub>o</sub>/a<sub>o</sub> értékek is nyúlt cellát jeleznek. A 175 °Con uralkodó fázisként képződött dolomit cellája a<sub>o</sub> és c<sub>o</sub> szerint kissé nyúlt, a c<sub>o</sub>/a<sub>o</sub> alapján a kation-rendezett cellától alig különbözik ( $\Delta = -0,009$  Å). A 100 °C-on képződött MgCO<sub>3</sub> a<sub>o</sub>-c<sub>o</sub> értékei ideálisan megközelítik az irodalmi adatokat; legnagyobb ingadozásokat a 125–150 °C és a 175 °C-on keletkezett magnezit fázisaiban tapasztaltunk (c<sub>o</sub>/a<sub>o</sub> = +0,26Å, ill. -0,079 és -0,058Å). A hőmérséklet növekedésével a magnezit c<sub>o</sub>-a<sub>o</sub> alapján fokozatosan torzuló cellatípus felé mutat.

A CaCO<sub>3(s)</sub>-Mg<sub>(aq)</sub> = 30 : 70 rendszer kalcitfázisainak cellatorzulása tovább fokozódik, legnagyobb fokú deformálódást a 150 °C-on keletkezett kristályok a<sub>o</sub>-c<sub>c</sub> értékeiben észleltük; általában c<sub>o</sub> szerinti megnyúlások jellemzik.

A 175 °C-on képződött (Ca : Mg = 30 : 70 rendszer) dolomitfázis a kevés d/Å alapján nem értékelhetők. A MgCO<sub>3</sub>-fázisok a<sub>o</sub> cellaélhosszai az irodalmi értékeknél rövidebb, a c<sub>o</sub>/a<sub>o</sub> alapján lapult-torzult cellatípusok.

A 2. táblázat a Ca : Mg,= 70 : 30; 50 : 50; 30 : 70 rendszerek kristályfázisainak %-ban kifejezett CaO-veszteségét, ill. MgO-felvételét összesíti a kiindulási CaCO<sub>3</sub>-hoz viszonyítva.

A Ca : Mg = 1 : 1,6 és Ca : Mg = 70 : 30; 50 : 50 és 30 : 70 rendszerű vizsgálatok MEDLING W. J. (1959) és mások eredményeivel (dolomit-magnezitképződés) összhangban megerősítik a korábbi feltevést, hogy a dolomit a mészkővel (kalcit) szingenetikusan, a vegyi üledékképződés ("szobahőmérséklet") során aligha (nem) képződhet. A kalcitrács magnézium beépülésének toleranciája szobahőmérsékleten korlátozott, az üledékképződés hőmérsékletén a mészkő (kalcit) Mg "szennyezése" metastabil – átmeneti, huntit, ill. "protodolomit" alakban lehet jelen, amely a mészkőnek nagyobb geotermikus körülmények közé kerülésével diagenetikusan alakulhat át dolomittá. A Mg<sup>2+</sup>-tartalmú oldatok hatására a mészkő 100 °C fölötti hőmérsékleten (magnézium ionkoncentrációjától függően) a kalcitrács "zsugorodásával" közvetlenül dolomittá, ill. magnetitté alakulhat. Ilyen földtani miliőt termosztatált hőfluxus biztosíthat (pl. tenger alatti exhaláció, Mg<sup>2+</sup>-dús oldatok).

A mészkővel ritmusosan változó dolomitpadok képződése a fentiek figyelembevételével több tényezővel magyarázható.

a) A "dolomitpadok" a priori "protodolomit" összetételűek voltak, a "Mg-dús" mészkő Ca/Mg rendezetlen kaclitból állt, diagenetikusan rendeződött dolomittá.

*b)* A ,,dolomittá'' alakult mészkőpadok – a priori – több nagyságrenddel kisebb szemcseméretű és rácshibás kalcit (1074) síkjai ,,nagyobb'' magnéziumfelvételt biztosíthatnak, ezek dolomitszerkezetbe rendeződtek.

Dr. Kiss János: "Dolomitosodás-dedolomitosodás-rekalcitosodás" folyamata . . .

| . Kadalaa | 1                                             |                | 0   | KALCIT  |          |                                |            |  |  |  |
|-----------|-----------------------------------------------|----------------|-----|---------|----------|--------------------------------|------------|--|--|--|
| jele      | Rendszer                                      | Mg : Ca        | c°  | ao      | co       | c <sub>o</sub> /a <sub>o</sub> | V          |  |  |  |
| Ca- 1     | CaCO <sub>3 (sz)</sub> MgCl <sub>2 (aq)</sub> | 70 : 30        | 50  | 4,99618 | 17,09576 | 3,42178                        | 369,568    |  |  |  |
| Ca- 4     | $CaCO_{3}(sz)MgCl_{2}(aq)$                    | 70 : 30        | 75  | 4,98614 | 17,06785 | 3,42306                        | 367,483    |  |  |  |
| Ca- 7     | CaCO <sub>3(sz)</sub> MgCl <sub>2(aq)</sub>   | 70 : 30        | 100 | 4,98982 | 17,18751 | 3,44451                        | 370,607    |  |  |  |
| Ca-10     | CaCO <sub>3 (sz)</sub> MgCl <sub>2 (aq)</sub> | 70 : 30        | 125 | 5,00404 | 17,14977 | 3,42718                        | 371,904    |  |  |  |
| Ca-13     | CaCO <sub>3 (sz</sub> )MgCl <sub>2 (aq)</sub> | 70 : 30        | 150 | 4,89835 | 17,05140 | 3,48105                        | 354,315    |  |  |  |
| Ca-16     | CaCO <sub>3 (sz</sub> )MgCl <sub>2 (aq)</sub> | 70 : 30        | 175 | 4,99421 | 17,09755 | 3,42347                        | 369,316    |  |  |  |
| Ca-19     | CaCO <sub>3 (sz</sub> )MgCl <sub>2 (aq)</sub> | 70 : 30        | 200 |         |          |                                |            |  |  |  |
| Ca-22     | CaCO <sub>3 (sz</sub> )MgCl <sub>2 (aq)</sub> | 70 : 30        | 225 |         |          |                                |            |  |  |  |
| Ca-26     | CaCO <sub>3 (sz</sub> )MgCl <sub>2 (aq)</sub> | 70 : 30        | 250 |         |          |                                |            |  |  |  |
| Ca-28     | $CaCO_{3(sz)}MgCl_{2(aq)}$                    | 70 : 30        | 275 |         |          |                                |            |  |  |  |
| Ca-31     | CaCO <sub>3 (sz</sub> )MgCl <sub>2 (aq)</sub> | 70 : 30        | 300 |         |          |                                |            |  |  |  |
| Ca-34     | CaCO <sub>3 (sz</sub> )MgCl <sub>2 (aq)</sub> | 70 : 30        | 350 |         |          |                                |            |  |  |  |
| Ca- 2     | CaCO <sub>3 (sz)</sub> MgCl <sub>2 (aq)</sub> | 50 : 50        | 50  | 4,99686 | 17,06451 | 3,41505                        | 368,993    |  |  |  |
| Ca- 5     | CaCO <sub>3 (sz)</sub> MgCl <sub>2 (aq)</sub> | 50 : 50        | 75  | 5,16890 | 16,22175 | 3,13834                        | 375,339    |  |  |  |
| Ca- 8     | CaCO <sub>3 (sz)</sub> MgCl <sub>2 (aq)</sub> | 50 : 50        | 100 | 5,13900 | 18,13548 | 3,52899                        | 567,615(?) |  |  |  |
| Ca-11     | CaCO <sub>3 (sz)</sub> MgCl <sub>2 (aq)</sub> | 50 : 50        | 125 | 4,99497 | 17,13571 | 3 <b>,4</b> 3112               | 370,252    |  |  |  |
| Ca-14     | CaCO <sub>3 (sz</sub> )MgCl <sub>2 (aq)</sub> | 50 : 50        | 150 | 4,99973 | 17,10280 | 3,42074                        | 370,247    |  |  |  |
| Ca-17     | CaCO 3 (sz) MgCl <sub>2</sub> (aq)            | 50 : 50        | 175 |         |          |                                |            |  |  |  |
| Ca-20     | CaCO <sub>3</sub> (sz)MgCl <sub>2</sub> (aq)  | 50 : 50        | 200 |         | •        |                                |            |  |  |  |
| Ca-23     | CaCO 3 (sz) MgCl 2 (aq)                       | 50 : 50        | 250 |         |          |                                |            |  |  |  |
| Ca-25     | CaCQ <sub>3</sub> (sz)MgCl <sub>2</sub> (aq)  | 50 : 50        | 275 |         |          |                                |            |  |  |  |
| Ca-29     | $CaCO_{3}(s_{z})MgCl_{2}(aq)$                 | 50 : 50        | 300 |         |          |                                |            |  |  |  |
| Ca-32     | $CaCO_{3}(sz)MgCl_{2}(aq)$                    | 50 : 50        | 350 |         |          |                                |            |  |  |  |
| Ca- 3     | CaCO <sub>3</sub> (sz)MgCl <sub>2</sub> (aq)  | 30 : 70        | 50  | 5,00079 | 17,10521 | 3,42050                        | 370,456    |  |  |  |
| Ca- 6     | CaCO <sub>3 (sz</sub> )MgCl <sub>2 (aq)</sub> | 30 : 70        | 75  | 4,99695 | 17,15753 | 3,43360                        | 371,018    |  |  |  |
| Ca- 9     | CaCO 3 (sz) MgCl 2 (aq)                       | 30 : 70        | 100 | 4,99719 | 17,08837 | 3,41959                        | 369,569    |  |  |  |
| Ca-12     | $CaCO_{3}(s_{z})MgCl_{2}(aq)$                 | 30 : 70        | 125 | 4,98584 | 17,13987 | 3,43771                        | 368,990    |  |  |  |
| Ca-15     | $CaCO_{3}(s_{z})MgCl_{2}(aq)$                 | 30 : 70        | 150 | 5,87302 | 19,48851 | 3,31831                        | 482,146    |  |  |  |
| Ca-18     | $CaCO_{3(sz)}MgCl_{2(aq)}$                    | <b>30</b> : 70 | 175 |         |          |                                |            |  |  |  |
| Ca-21     | $CaCO_{3}(s_{z})MgCl_{2}(aq)$                 | 30 : 70        | 200 |         |          |                                |            |  |  |  |
| Ca-24     | $CaCO_{3}(s_{z})MgCl_{2}(aq)$                 | 30 : 70        | 225 |         |          |                                |            |  |  |  |
| Ca-27     | $CaCO_{3(sz)}MgCl_{2(aq)}$                    | 30 : 70        | 250 |         |          |                                |            |  |  |  |
| Ca-30     | CaCO <sub>3(sz)</sub> MgCl <sub>2(aq)</sub>   | <b>30</b> : 70 | 275 |         |          |                                |            |  |  |  |
| Ca-33     | $CaCO_{3(sz)}MgCl_{2(aq)}$                    | 30 : 70        | 300 |         |          |                                |            |  |  |  |
| Ca-36     | $CaCO_{3(sz)}MgCl_{2(aq)}$                    | 30 : 70        | 350 |         |          | •                              |            |  |  |  |

"Dolomitosodás-magnezitesedés" problémaköre

17 3. téblézet

|         | DOL                                            | OMIT    |         |                | MAG      | NEZIT   |            |
|---------|------------------------------------------------|---------|---------|----------------|----------|---------|------------|
| ao      | co                                             | co/ao   | v       | a <sub>o</sub> | co       | co/ao   | v          |
|         |                                                |         |         |                |          |         |            |
|         |                                                |         |         |                |          |         |            |
| -       |                                                |         |         |                |          |         | +          |
|         |                                                |         |         |                |          |         |            |
|         |                                                |         |         |                |          | -       |            |
| 4 83061 | 15 97073                                       | 3 30615 | 322 745 | 4 59349        | 15 04297 | 3 27478 | 274 884    |
| 4,83001 | 13,37073                                       | 3,30013 | 522,745 | 4,55545        | 13,04237 | 0,21410 | 2/4,004    |
| 4 81165 | 16 03585                                       | 3.33271 | 321.522 | 4.62022        | 14,98238 | 3.24278 | 276.973    |
| 4.77795 | 15,96640                                       | 3.34171 | 315.662 | 4.63042        | 14,96236 | 3.23132 | 277.824    |
|         |                                                |         |         |                |          |         |            |
|         |                                                |         |         |                | +        |         | +          |
|         |                                                |         |         |                | -        |         | -          |
|         |                                                |         |         | +              |          |         |            |
|         |                                                |         |         | 4,67085        | 15,18404 | 3,25081 | 286,886    |
|         | +                                              |         |         | 4,62398        | 15,00705 | 3,24549 | 277,880    |
|         | <u>  · · · · · · · · · · · · · · · · · · ·</u> |         |         | 4,71022        | 15,38937 | 3,26723 | 272,457    |
|         | · · · ·                                        |         |         | 5,09033        | 16,09081 | 3,16106 | 361,077(7) |
| 4,82589 | 16,06534                                       | 3,32898 | 324,023 | 4,66003        | 14,83471 | 3,18339 | 278,989    |
|         |                                                |         |         |                |          |         | 1          |
|         |                                                |         |         | 4,65215        | 14,99093 | 3,22236 | 280,975    |
|         |                                                |         |         | 4,64578        | 14,89591 | 3,20633 | 278,429    |
|         |                                                |         |         |                | 1        |         |            |
|         |                                                |         |         |                |          |         | 1          |
|         |                                                |         |         | 4,58112        | 14,96200 | 3,26601 | 271,935    |
|         |                                                |         |         |                | -        |         |            |
|         |                                                |         |         |                |          |         |            |
|         |                                                |         | 1       | 4,65467        | 15,08031 | 3,23984 | 282,953    |
|         |                                                |         |         | 4,66542        | 15,06883 | 3,22990 | 284,048    |
|         |                                                |         |         | 4,73069        | 15,14805 | 3,20208 | 293,587    |
|         |                                                |         |         |                |          |         |            |
|         |                                                |         |         | 4,63192        | 15,01028 | 3,24061 | 278,896    |
|         |                                                |         |         | 4,64082        | 15,00621 | 3,23352 | 279,893    |
|         |                                                |         |         |                |          |         |            |
|         |                                                |         |         |                |          |         |            |
|         |                                                |         |         |                |          |         |            |

Az élő szervezetek (pl. mészalgatelepek) = 25-29% MgCO<sub>3</sub>-ot tartalmazhatnak, ennek akkumulálása elsősorban bázisos MgCO<sub>3</sub> alakban történhet (CHAVE K. E. 1952). Elképzelhető, hogy a bázisos Mg-karbonátoknak valamelyik metastabil változata mészdús környezetben (mészpadok, algatelepek, mészkő és brine közvetítésével keletkező bázisos Mg-karbonát rétegek váltakozása) Ca-felvétellel diagenetikusan dolomittá rendeződik(?).

#### 2.2. PORLÓ DOLOMIT + $MgCl_2 - H_2O$ -RENDSZER

A kísérleteket viszonylag tiszta pilisvörösvári porló dolomit anyagán végeztük. A porló dolomit vegyelemzési adatai a "szennyező" kísérőkkel és kristályfázis képlete az alábbi:

| SiO <sub>2</sub> | 0,18%  |
|------------------|--------|
| $Al_2O_3$        | 0,22%  |
| $Fe_2O_3$        | 0,08%  |
| CaO              | 30,16% |
| MgO              | 21,60% |
| $Na_2O$          | 1,55%  |
| K <sub>2</sub> O | 0,04%  |
| $-H_2O$          | 0,05%  |
| CO2              | 46,41% |
|                  | 00 29% |

 $SiO_2$ ,  $AI_2O_3$ ,  $Na_2O$ ,  $K_2O$  és  $-H_2O$  levonásával (= -2,12%) az összetétele az alábbi:

| CaO | 30,72%   |
|-----|----------|
| MgO | 22,00%   |
| CO2 | 47,28%   |
|     | 100,00%, |

képlete  $Ca_{0,5456}Mg_{0,5456}C_{1,0743}$ )<sub>2</sub> összességében kationhiányos ( $Ca^{2+}+Mg^{2+}$ ) dolomit. A kationhiányos (lényegében  $Mg^{2+}$ -hiány) kiindulási anyag "rendezetlen" dolomitrácsú volt.

Az irodalmi adatok összesítésével

- a magnezit = a) zömmel  $Fe^{2+}>Ca^{2+}>Mn^{2+}$ -szennyezéssel 50%-ban kation hiányos b)  $Ca^{2+}>Fe^{2+}>Mn^{2+}$ -szennyezés esetén 50%-ban anionhinyáos
- a dolomit = a) 75%-ban kationtöbblettel rendelkezik (=anionhiány)  $Fe^{2+}$  és  $Fe^{2+}+Mn^{2+}$ nyomelemekkel és
  - b) 25%-ban aniontöbbletű Fe<sup>2+</sup>-Mn<sup>2+</sup> szennyezésekkel. Úgy tűnik, hogy a "szennyezésmentes" dolomit inkább kationhiányos.

A szilárdfázis-oldat vizsgálatok következő rendszerekben folytak:

- a)  $CaMg(CO_3)_{2(s)} + MgCl_{2(aq)}; Ca : Mg = 70 : 30$
- b)  $CaMg(CO_3)_{2}$  + MgCl<sub>2 (aq)</sub>; Ca : Mg = 70 : 50
- c)  $CaMg(CO_3)_{2(s)} + MgCl_{2(aq)}; Ca : Mg = 30 : 70$

T = 50, 75, 100, 125, 175 200, 250, 300 °C.

# **2.2.1. Porló dolomit : Mg<sup>2+</sup> = 70 : 30** (4., 5. táblázat)

#### 2.2.1.1. Vegyelemzések értékelése

- 50-150 °C = 2% alatti ingadozásokkal középértékben 0,79% CaO-veszteséggel és 0,70% MgO-növekedéssel járó hőtartomány
  - 175 °C = Alapvető változás: a CaCO<sub>3</sub> + MgCl<sub>2</sub>-rendszerben ez volt a dolomitképződés optimális hőfoka. Itt 17,95% a CaO-csökkenés (a CaO = 58,43%-a) és 16,13% a MgO-növekedés (73,32%-kal) jelentkezett
  - 200 °C = A kationcsere mértéke kissé megtorpan, középértékben 6,27% a CaOcsökkenés és 6,25% a MgO-növekedés
- 225-300 °C = A porló dolomitból középértékben 29,94% CaO (=97,46%-kal) oldódott ki és átlagosan további 25,25% MgO épült be. 300 °C-on a dolomitból a kalcium majdnem teljesen (=99,15%) kioldódott, az új fázis MgO-mennyisége 22,0%-ról 48,61%-ra nőtt.

#### 2.2.1.2. Kristályfázisok

- 50-150 °C = A dolomit az uralkodó fázis, a MgCO<sub>3</sub> + MgCO<sub>3</sub> · 2 H<sub>2</sub>O 1-2%
  - 175 °C = A MgCO<sub>3</sub> mennyisége közel azonos a dolomittal + MgCO<sub>3</sub> 2 H<sub>2</sub>O. A CaCO<sub>3</sub> + MgCl<sub>2</sub> = 70 : 30 rendszerben itt észleltük a dolomit első megjelenését.
  - 200 °C = A Ca,Mg(CO<sub>3</sub>)<sub>2</sub> a MgCO<sub>3</sub>-ot meghaladó mennyiségben van jelen, a MgCO<sub>3</sub> · 2 H<sub>2</sub>O alárendelt
- 225-300 °C = A MgCO<sub>3</sub> az uralkodó kristályfázis, a dolomit és a MgCO<sub>3</sub> 2 H<sub>2</sub>O járulékos komponens

2.2.2. Porló dolomit : Mg<sup>2+</sup> = 50 : 50 (4., 5. táblázat)

- 2.2.2.1. Vegyelemzések értékelése
- 50-150 °C = Középértékben 0,56% CaO-csökkenés és 0,45% MgO-növekedés jellemzi
  - 175 °C = A kationcsere kb. 1/3-a a 70 : 30-rendszerhez viszonyítva. A CaO = = 5,90%-kal csökkent, a MgO 6,52%-kal nőtt
  - 200 °C = CaO = 15,86% (=51,63%-os) csökkenés és 14,45% MgO (=65,68%-os) növekedés jellemzi. 200 °C-tól nagyobb hőmérsékleten rohamos változás tapasztalható, de 200-300 °C között ez az érték nem éri el a 70 : 30-rendszer nagyságát
  - 225 °C = 21,09% kal kisebb a CaO- és 19,22% kal nagyobb a termék MgO-tartalma (=68,65% os a CaO-csökkenés és 87,36% os a MgO-növekedés)
  - 250 °C = A kiindulási anyagban (porló dolomit) 70,15%-os C₂O-csökkenés és 86,82%-os MgO-növekedés jelentkezett

|                   |                                           |         |     | ELEMZÉS |                |       |      |      |   |
|-------------------|-------------------------------------------|---------|-----|---------|----------------|-------|------|------|---|
| K ísérlet<br>jele | Rendszar                                  | Mg : Ca | c°  | CaO %   | MgO %          | CO, % | CI % | Н20% |   |
| Mg-40             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(ag)}$       | 70 : 30 | 50  | 30,08   | 22,43          | 47,46 |      | -    |   |
| Mg-43             | $CaMg(CO_3)_{2}(sz) + MgCl_{2}(ag)$       | 70 : 30 | 75  | 28,99   | 23,25          | 47,80 |      | _    | 1 |
| Mg-46             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 70 : 30 | 100 | 30,66   | 22,25          | 47,37 | 1    | -    | 1 |
| Mg_49             | $CaMg(CO_3)_{2}(sz) + MgCl_{2}(aq)$       | 70:30   | 125 | 29,93   | 22,58          | 47,81 |      | -    | 1 |
| Mg-52             | $CaMg(CO_3)_{2(s_2)} + MgCl_{2(a_q)}$     | 70 : 30 | 150 | 30,00   | 22,99          | 46,79 |      | 0,16 | 1 |
| Mg55              | $CaMg(CO_3)_{2}(sz) + MgCl_{2}(ag)$       | 70 : 30 | 175 | 12,77   | 38,13          | 49,16 |      | -    | 1 |
| Mg-58             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 70 : 30 | 200 | 24,45   | 28,25          | 44,99 |      | 0,33 | 1 |
| Mg-61             | $CaMg(CO_3)_{2(s_2)} + MgCl_{2(aq)}$      | 70:30   | 225 | 0,75    | 48,58          | 46,36 |      | 0,16 | 1 |
| Mg-66             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 70 : 30 | 250 | 1,25    | 44,16          | 40,95 | -    | 7,08 | l |
| Mg-69             | $CaMg(CO_3)_{2(sz)}+MgCI_{2(aq)}$         | 70:30   | 275 | 0,75    | 47,63          | 41,18 |      | 0,69 | 1 |
| Mg-70             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 70 : 30 | 300 | 0,36    | 48,61          | 30,97 |      | 2,21 | I |
| Mg-73             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 70 : 30 | 350 | -       | -              | -     |      | -    |   |
| Mg-41             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 50 : 50 | 50  | 29,63   | 22,78          | 47,95 |      | _    |   |
| Mg-44             | $CaMg(CO_3)_{2(s_2)} + MgCl_{2(aq)}$      | 50 : 50 | 75  | 30,09   | 22,36          | 47,62 |      | _    |   |
| Mg-47             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 50 : 50 | 100 | 30,43   | 22,25          | 47,70 |      | -    |   |
| Mg-50             | $CaMg(CO_3)_{2(s_2)} + MgCl_{2(aq)}$      | 50 : 50 | 125 | 30,55   | 22,25          | 15,72 |      | -    |   |
| Mg-53             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 50 : 50 | 150 | 30,19   | 22,60          | 45,36 |      | 0,24 |   |
| Mg-56             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 50 : 50 | 175 | 24,82   | 26,52          | 46,46 |      | -    |   |
| Mg-59             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 50 : 50 | 200 | 14,86   | 36,45          | 46,58 |      | 0,31 |   |
| Mg-62             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 50 : 50 | 225 | 9,63    | 41,22          | 49,06 |      | -    |   |
| Mg-65             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 50 : 50 | 250 | 9,17    | 41,10          | 43,81 |      | -    |   |
| Mg-68             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 50:50   | 275 | 0,91    | 40,59          | 36,69 |      | 0,82 |   |
| Mg-71             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 50 : 50 | 300 | 0,25    | 47,66          | 32,08 |      | 2,22 |   |
| Mg-74             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 50 : 50 | 350 | _       |                | -     |      | _    |   |
| Mg-42             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 30:70   | 50  | 29,74   | 22,61          | 47,81 |      | _    |   |
| Mg-45             | $C_{a}Mg(CO_{3})_{2}(s_{z})+MgCl_{2}(aq)$ | 30 : 70 | 75  | 29,76   | 22,63          | 48,02 |      | -    |   |
| Mg-48             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 30 : 70 | 100 | 30,40   | 22,08          | 47,73 |      | -    |   |
| Mg-51             | $CaMg(CO_3)_{2(sz)}+MgCl_{2(aq)}$         | 30 : 70 | 125 | 30,00   | 22,55          | 47,88 |      | -    |   |
| Mg-54             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 30 : 70 | 150 | 29,94   | 22,75          | 47,04 |      | -    |   |
| Mg-57             | $CaMg(CO_3)_{2(s_2)} + MgCl_{2(aq)}$      | 30 : 70 | 175 | 27,96   | 23,83          | 46,36 |      | 1,20 |   |
| Mg-60             | $CaMg(CO_3)_{2(s_2)} + MgCl_{2(aq)}$      | 30 : 70 | 200 | 21,07   | 30,22          | 45,26 |      | 0,16 |   |
| Mg-63             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 30 : 70 | 225 | 19,97   | 32, <b>9</b> 4 | 44,73 |      | -    |   |
| Mg64              | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 30 70   | 250 | 24,54   | 26,51          | 42,88 |      | 0,52 |   |
| Mg-67             | $CaMg(CO_3)_{2(s_2)} + MgCl_{2(aq)}$      | 30 : 70 | 275 | 20,80   | 29,99          | 41,33 |      | 0,58 |   |
| Mg-72             | $CaMg(CO_3)_{2(sz)} + MgCl_{2(aq)}$       | 30 : 70 | 300 | 20,43   | 30,58          | 35,37 |      | 1,43 |   |

Dr. Kiss János: "Dolomitosodás-dedolomitosodás-rekalcitosodás" folyamata ...

 $Mg-1 = MgCO_3$ ;  $Mg-2 = MgCO_3 + 2H_2O$ ;  $D = Ca, Mg(CO_3)_2$ ;  $Ca-1 = alfa-CaCO_3$ ;  $Ca-2 = béta-CaCO_3$ 

#### "Dolomitosodás-magnezitesedés" problémaköre

| 4. | tá | íЬ | lá | zə | t |
|----|----|----|----|----|---|

21

| ATOMKVOCIENS     |                  |        |     |        | 10 C 10   |             |                         |  |
|------------------|------------------|--------|-----|--------|-----------|-------------|-------------------------|--|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-   | CI- | н,0    | CaO : MgO | Ca** : Mg** | Kristályfázisok         |  |
| 0,5363           | 0,5563           | 1,0784 |     |        |           |             | D>Mg-1+Mg-2             |  |
| 0,5169           | 0,5766           | 1,0861 |     |        |           |             | D>Mg-1+Mg-2             |  |
| 0,5467           | 0,5518           | 1,0763 |     |        |           |             | D>Mg-1+Mg-2             |  |
| 0,5337           | 0,5600           | 1,0863 |     | -      |           |             | D>Mg-1+Mg-2             |  |
| 0,5349           | 0,5701           | 1,0631 |     | 0,0088 |           |             | D>Mg-1+Mg-2             |  |
| 0,2277           | 0,3167           | 1,1170 |     |        |           |             | Mg−1≈D>Mg−2             |  |
| 0,4359           | 0,7006           | 1,0222 |     | 0,0183 |           | -           | Mg-1 <d>Mg-2</d>        |  |
| 0,0134           | 1,2048           | 1,0533 |     | 0,0088 |           |             | Mg-1>D>Mg-2             |  |
| 0,0222           | 1,0952           | 0,9304 |     | 0,5821 |           |             | Mg-1>D>Mg-2             |  |
| 0,0133           | 1,1812           | 0,9356 |     | 0,0574 |           |             | Mg-1>Mg-3+(D)           |  |
| 0,0064           | 1,2056           | 0,7037 |     | 0,1839 |           |             | Mg-1>Mg-2+Mg-3          |  |
| -                | -                | _      |     | -      |           |             | -                       |  |
| 0,5283           | 0,5650           | 1,0895 |     |        |           |             | D>Mg-1>Mg-2             |  |
| 0,5365           | 0,5545           | 1,0820 |     |        |           |             | D>Mg-1+Mg-2             |  |
| 0,5426           | 0,5518           | 1,0838 |     |        |           |             | D>Mg-1+Mg-2             |  |
| 0,5447           | 0,5518           | 1,0388 |     |        |           |             | D>Mg-1+Mg-2+Ca-1        |  |
| 0,5383           | 0,5605           | 1,0306 |     | 0,0133 |           |             | D>Mg-1+Mg-2             |  |
| 0,4426           | 0,6156           | 1,0556 |     |        |           |             | D>Mg-1+Mg-2+Ca-2        |  |
| 0,2649           | 0,9040           | 1,0584 |     | 0,0172 |           |             | Mg-1>D>Mg-2             |  |
| 0,1717           | 1,0223           | 1,1147 |     | -      |           | -           | Mg-1>D>Mg-3+Ca-2        |  |
| 0,5023           | 0,5729           | 0,9943 |     | -      |           |             | $Mg-1>D>Ca-1+Mg_2+Ca_2$ |  |
| 0,0162           | 1,0066           | 0,8336 |     | 0,0682 |           |             | Mg-1>D+Mg-2             |  |
| 0,0044           | 1,1820           | 0,7289 |     | 0,1847 |           |             | Mg-1>Mg-3+(D)           |  |
| -                | -                | -      |     | -      |           |             | -                       |  |
| 0,5303           | 0,5607           | 1,0863 |     | -      |           |             | D>Mg-1>Ca-1             |  |
| 0,5306           | 0,5612           | 1,0911 |     | -      |           |             | D>Mg-1+Mg-2 Ca-1        |  |
| 0,5420           | 0,5476           | 1,0845 |     | -      |           |             | D>Mg-1+Mg-2 Ca-1        |  |
| 0,5349           | 0,5476           | 1,0879 |     | -      |           |             | D>Mg-1 Ca-1+Mg-2        |  |
| 0,5339           | 0,5642           | 1,0688 |     | -      |           |             | D>Mg-1+Mg-2             |  |
| 0,4986           | 0,5910           | 1,0533 |     | 0,0666 |           |             | D>Mg-1-Mg-2             |  |
| 0,3757           | 0,7495           | 1,0284 |     | 0,0088 |           |             | Mg−1≥D>Mg−2             |  |
| 0,3564           | 0,8169           | 1,0093 |     | -      |           |             | Mg-1>D>Mg-2             |  |
| 0,4376           | 0,6574           | 0,9743 |     | 0,0432 |           |             | Mg-1>D>Mg-2+Ca-2        |  |
| 0,3709           | 0,7437           | 0,9391 |     | 0,0482 |           |             | Mg-1>D+Mg-2+Mg-3        |  |
| 0,3643           | 0,7584           | 0,8036 |     | 0,1190 |           |             | Mg>D                    |  |

 $Mg-1 = MgCO_3; Mg-2 = MgCO_3 + 2H_2O; Mg-3 = MgCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = alfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3)_2; Ca-1 = adfa-CaCO_3 + 2H_2O; D = Ca, Mg(CO_3$ 

275-300 °C = Közel teljes értékű a kationcsere, 275 °C = CaO = 0,91% (=-94,04% Ca), MgO = 40,59% (+84,50%), 300 °C = CaO = 0,25% (-99,19%-a); MgO = 47,66% (+116,63%).

#### 2.2.2.2. Kristályfázisok

- 50–150 °C = Dolomit az uralkodó fázis, a MgCO<sub>3</sub> és MgCO<sub>3</sub> 2 H<sub>2</sub>O járulékos komponens. Kalcit csak 125 °C-on képződött
  - 175 °C = Dolomit az uralkodó, a MgCO<sub>3</sub>-MgCO<sub>3</sub> 2 H<sub>2</sub>O + aragonit járulékos komponens
- 200-225 °C = MgCO<sub>3</sub> ≥ dolomit + MgCO<sub>3</sub> · 2 H<sub>2</sub>O (200 °C-on)  $\therefore$ MgCO<sub>3</sub> · 2 H<sub>2</sub>O + + nesquehonit (225 °C-on) + aragonit (225 °C-on)
  - 250 °C = MgCO<sub>3</sub> ≥ dolomit, a kalcit, aragonit és MgCO<sub>3</sub> 2 H<sub>2</sub>O alárendelt fázisok
  - $275 \degree C = MgCO_3 + 1 2\% \text{ dolomit} + MgCO_3 \cdot 2 H_2 O$
  - $300 \degree C = 95-96\% MgCO_3 + 4-5\% MgCO_3 \cdot 2 H_2O + MgCO_3 \cdot 2 H_2O + Ca,Mg(CO_3)_2 szennyezés.$
  - 2.2.3. Porló dolomit : Mg<sup>2+</sup> = 30 : 70 (4., 5. táblázat)

#### 2.2.3.1. Vegyelemzések értékelése

A CaO változása alapján öt, magnézium szerint négy csoportba sorolható binérrendszerre tagolható.

A CaO-változások középértékei

| 50–75 °C (1)               | = a dolomitból középértékben | 0,97% CaO (=3,15%)         |  |
|----------------------------|------------------------------|----------------------------|--|
| 100–125 °C (2)             | = a dolomitból középértékben | 0,52% CaO (=1,69%)         |  |
| 150–175 <sup>°</sup> C (3) | = a dolomitból középértékben | 1,77% CaO (=5,76%)         |  |
| 200–225 °C (4/a)           | = a dolomitból középértékben | 9,65% CaO, ill.            |  |
|                            |                              | 10,75% CaO (=31,41-34,99%) |  |
| 250 °C (5)                 | = a dolomitból középértékben | 6,18% CaO (=20,12%)        |  |
| 275–300 °C (4/b)           | = a dolomitból középértékben | 9,92% CaO, ill.            |  |
|                            |                              | 10,29% CaO (=32,27-33,59%) |  |
|                            |                              |                            |  |

távozott.

A MgO-változások középértékei

 $50-175 \ ^{\circ}C (1) = 0.75\% (=+ 3.37\%)$   $200 \ ^{\circ}C (2/a) = 8.22\% (=+37.36\%)$   $225 \ ^{\circ}C (3) = 10.94\% (=+49.72\%)$   $250 \ ^{\circ}C (4) = 4.51\% (=+20.50\%)$   $275 \ ^{\circ}200 \ ^{\circ}C (2/b) = 8.20\% (=+23.69\%)$ 

275-300 °C (2/b) = 8,29% (=+37,68%) MgO-növekedés állt elő.

Nagy Mg<sup>2+</sup>-koncentráció (30 : 70 = Ca<sup>2+</sup>: Mg<sup>2+</sup>) – meglepően – fékezi a dolomit Ca<sup>2+</sup>lecserélését, ez a tendencia már a 50 : 50 = Ca<sup>2+</sup>: Mg<sup>2+</sup>-rendszerben is tapasztalható volt. Geokémiai-kristálykémiai jelentősége a dolomit-Mg<sup>2+</sup>-oldat tanulmányozásának az, hogy kis Mg<sup>2+</sup> ionkoncentrációk (Mg<sup>2+</sup> : Ca<sup>2+</sup> = 30 : 70) már elégségesek a dolomit Ca<sup>2+</sup> ionjainak teljes lecseréléséhez, amely 225°C-tól elvileg teljessé válhat.

#### 2.2.3.2. Kristályfázisok

- 50-175 °C = Dolomit az uralkodó, a MgCO<sub>3</sub> 50-175 °C-on, a kalcit 75, 100 és 125 °C-on, a MgCO<sub>3</sub> 2 H<sub>2</sub>O 75-175 °C-on keletkezett
- 200-250 °C = MgCO<sub>3</sub> nem éri el a bruttó dolomitmennyiség felét. MgCO<sub>3</sub> 2 H<sub>2</sub>O 200-225-250 °C-on, az aragonit 250 °C-on képződött
- 275-300 °C = Dolomit-túlsúly 15-18% MgCO részvétellel. A MgCO<sub>3</sub> 2 H<sub>2</sub>O 275--300 °C-on, a MgCO<sub>3</sub> • 2 H<sub>2</sub>O 275 °C-on képződött

A porló dolomit + MgCl<sub>2</sub>-rendszer a várttól eltérő eredményekkel zárult:

a/ A legnagyobb hígítású (Ca : Mg = 70 : 30) oldatok 225 °C-tól optimális Ca<sup>2+</sup> ← Mg<sup>2+</sup> cseréjét mozdítják elő, ahol

> 225 °C-on = 0,75% CaO 250 °C-on = 1,25% CaO 275 °C-on = 0,75% CaO 300 °C-on = 0,36% CaO

szennyezésű MgCO<sub>3</sub> képződik (természetes magnezit CaO%-a 0,33–1,66% között mozog)

*b)* A Ca : Mg = 50 : 50 = porló dolomitrendszerben a kationcsere optimumát 275– 300 °C között tapasztaltuk: MgCO<sub>3</sub> 0,91%, ill. 0,25% CaO-t tartalmazott.

c/ A nagy Mg<sup>2+</sup> oldatkoncentrációk a Ca<sup>2+</sup> cseréjét fékezik, a porló dolomit Ca<sup>2+-</sup> nak kb. 1/3-a cserélhető le. Az uralkodó fázis dolomit marad; a MgCO<sub>3</sub>, MgCO<sub>3</sub>• 2 H<sub>2</sub>O, MgCO<sub>3</sub>• 3 H<sub>2</sub>O, kalcit + aragonit alárendelt szerepűek.

2.3. A KALCIT +  $Mg^{2+}$  ÉS DOLOMIT +  $Mg^{2+}$  OLDATRENDSZER GENETIKAI ÉRTELMEZÉSE

a) Mészkőnek magnezitté alakulását nagy Mg<sup>2+</sup> koncentrációjú hidrotermák mozdítják elő.

b) A dolomit (porló dolomit) Ca<sup>2+</sup>-cseréjét rendkívül hig Mg<sup>2+</sup> hidrotermák is elvégezhetik. A Mg forrásául bázisos-ultrabázisos kőzetek szerpentinesedésével felszabaduló Mg<sup>2+</sup>, ill. evaporit Mg<sup>2+</sup> anyalúg-oldatának mélyebb övekbe szivárgása-vándorlása jelölhető meg.

c) "Dedolomitosodásról" mint kationcserével járó "szilárdfázis : oldatrendszer" folyamatáról csak a "Dolomit :  $Mg^{2+}$ -rendszer" alapján beszélhetünk. Ennek ellentétes folyamata már nem, vagy korlátozottan következhet be (magnezit dolomitosodása = lásd később). A folyamat éppoly irreverzibilis, mint a közismert "Kalcit :  $Mg^{2+}$ -rendszerekben" tapasztalható. Az 5. táblázat összesíti a vizsgált rendszerekben képződött kristályfázis CaO-veszteségét, ill. MgO-mennyiség növekedését a porló dolomit CaO (=30,72%), ill. a MgO (=22,00%) %-os eloszlásához viszonyítva.

| Ca <sup>2+</sup> /Mg <sup>2+</sup> | 70               | 70:30            |                  | : 50             | 30 : 70          |                  |  |
|------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|
| C°                                 | CaO %            | MgO %            | CaO %            | MgO %            | CaO %            | MgO %            |  |
| 50<br>75                           | - 2,08<br>- 5,63 | + 1,95<br>+ 5,68 | - 3,55<br>- 2,05 | + 3,55<br>+ 1,64 | - 3,15<br>- 3,13 | + 2,77<br>+ 2,86 |  |
| 100                                | - 0,20           | + 1,14           | - 0,94           | + 1,14           | - 1,05           | + 0,36           |  |
| 125                                | - 2,64           | - 0,55           | - 0,55           | + 1,14           | - 2,34           | + 2,50           |  |
| 150                                | - 2,24           | + 4,50           | - 1,73           | + 2,73           | - 2,54           | + 3,41           |  |
| 175                                | -58,43           | + 73,32          | -19,21           | + 20,55          | - <i>8,98</i>    | + 8,32           |  |
| 200                                | -20,41           | + 28,41          | -51,62           | + 66,14          | -31,41           | +37,36           |  |
| 225                                | -97,56           | +120,82          | -68,65           | + 87,36          | -34,99           | +49,73           |  |
| 250                                | -95,93           | +100,73          | -70,45           | + 91,36          | -20,12           | +20,50           |  |
| 275                                | -97,56           | +116,50          | -97,04           | + 84,50          | -32,29           | +36,32           |  |
| 300                                | -98,83           | +121,05          | -99,19           | +116,53          | -33,59           | +39,00           |  |

5. táblázat

# 3. "DEDOLOMITOSODÁS-REKALCITOSODÁS" PROBLÉMAKÖRE

3.1. MgCO<sub>3</sub> (MAGNEZIT) + CaCl<sub>2</sub> -H<sub>2</sub>O-RENDSZER (A magnezit ,,rekalcito-sodása)

A vizsgálatokhoz St. Kathrein (Bruck am Mur, Ausztria) lelőhelyről származó hófehér, pátos magnezitet használtunk fel. Az előállított "termékek" kémiai, kristálykémiai változásainak követésére – a modellrendszerek kivitelezése előtt – az etalon anyagát teljes kémiai és röntgendiagnosztikai vizsgálatoknak vetettük alá. (A vegyelemzést a M. Áll. Földtani Intézetben Nemes L.-né és Guzy K.-né végezték.)

Magnezit - St. Kathrein

| SiO2              | = | 0,81%   |
|-------------------|---|---------|
| $AI_2O_3$         | = | 0,42%   |
| $Fe_2O_3$         | = | 0,99%   |
| MgO               | = | 47,02%  |
| CaO               | = | 0,64%   |
| Na <sub>2</sub> O | = | 0,11%   |
| K₂O               | = | 00,04%  |
| CO2               | = | 49,96%  |
| H₂O               | = | 0,04%   |
|                   |   | 100,03% |

A szennyező elemek levonása után (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O, K<sub>2</sub>O, H<sub>2</sub>O = = 2,41%) a magnezit elvi összetétele:

| MgO             | = | 48,17%  |
|-----------------|---|---------|
| CaO             | = | 0,65%   |
| CO <sub>2</sub> | = | 51,18%  |
|                 |   | 100,00% |

képlete =  $Mg_{1.195}Ca_{0.011}C_{1.163}O_3$  = kationdeficites szerkezetre utal.

A kísérleteket 1,0 és 2,5 mólos  $CaCl_2$  oldattal bonyolítottuk le, melyben a  $Mg^{2+}: Ca^{2+}=2:1, 1:1, 1:2$  voltak.

3.1.1. MgCO<sub>3(s)</sub>: Ca<sup>2+</sup>= 2 : 1 (1,0 mólos oldat)

3.1.1.1. Vegyelemzések értékelése (6. táblázat)

Az új kristályfázisok kémiai összetétele CaO-ra nézve jól definiálható mezőkbe sorolható:

50-100 °C = 0,86-3,21% CaO 125-175 °C = 4,47-4,60% CaO 200-225 °C = 5,39-5,38% CaO 250-300 °C = 7,54-7,73% CaO

Középértékben az etalon megnezithez képest

50-100 °C = +2,31% CaO 125-175 °C = +4,02% CaO 200-225 °C = +4,74% CaO 250-300 °C = +7,00% CaO

növekedést tükröz, ami nem a magnezit rácsába épült pozicionális betöltést jelent, hanem a magnezit kristályaira települt különböző CaCO<sub>3</sub>-modifikációkból állt.

Tendenciában az MgO %-a a kalciumoxidhoz viszonyítva nem equiparciális középértékekkel ellentétesen viselkedik:

> 50-100 °C = 46,45%, azaz 1,72% MgO-hiány 125-175 °C = 43,68%, azaz 4,49% MgO-hiány 200-225 °C = 41,15%, azaz 7,02% MgO-hiány 250-300 °C = 38,69%, azaz 9,48% MgO-hiány

Az elemzések arra utalnak, hogy a magnezitből valamivel több Mg oldódik ki, mint amennyi kalcium az anyalúg-oldatból önálló fázis alakban kiválik.

A kristálytermékek CO<sub>2</sub>-mennyisége a hőmérséklet emelkedésével némileg csökken. Szembetűnő csökkenés 200 °C-on van (-4,42% CO<sub>2</sub>), egyidőben a kristályfázisok H<sub>2</sub>Oés CI-tartalma megnő. Ezt részben a bázisos (MgCO<sub>3</sub> • 2 H<sub>2</sub>O) képződése indokolja, a klór feltehetően anionpótló (?) szerepet tölt be.

**3.1.2.** MgCO<sub>3(s)</sub>: Ca<sup>2+</sup> = 1 : 1 (1,0 mólos oldat)

3.1.2.1. Vegyelemzések értékelése (6. táblázat)

A szilárd fázis és az oldat kationarányát alapul véve a magnézium elvileg teljes egészében kalciummal lecserélhető. A kristályfázisok vegyi összetételében a 2 : 1 rendszerhez viszonyítva nagyobb változás tapasztalható:

a) Első szembetűnő különbség 50–75 °C-on jelentkezik: 50 °C-on 0,89% CaO-,
 75 °C-on 3,38% CaO-többlet jelentkezik, 100 °C-tól 25 °C-onként 300 °C-ig mennyisége
 kb. 1%-kal nő.

b) MgO 50 °C-on jelentősebben csökken, mint Mg : Ca = 2 : 1-ben, 75 °C-tól
1% fölötti csökkenésekkel; 150–175 °C és 225–250 °C között gyakorlatilag azonos,
275–300 °C között további 1% tölötti MgO-csökkenések mutatkoznak.

Az etalon megnezithez középértékben alábbi képet fest:

CaO: 50-100 °C = +2,71% CaO-többlet 125-175 °C = +7,38% CaO-többlet 200 °C = +7,98% CaO-többlet 225-250 °C = +9,79% CaO-többlet 275-300 °C = +9,04% CaO-többlet MgO: 50-100 °C = -3,09% MgO-hiány 125-175 °C = -7,45% MgO-hiány 200 °C = -9,35% MgO-hiány 225-250 °C = -12,72% MgO-hiány 275-300 °C = -14,67% MgO-hiány

A kristályfázis H<sub>2</sub>O-tartalma 175 °C-tól 1% fölötti érték a bázisos Mg-karbonát képződése miatt. Ezzel szemben 175 °C-tól a CO<sub>2</sub>-nak nagyobb vesztesége tapasztalható, ami nincs arányban a klór "feltöltésével".

**3.1.3.** MgCO<sub>3(s)</sub>: Ca<sup>2+</sup> = 1 : 2 (1,0 mólos oldat)

#### 3.1.3.1. Vegyelemzések értékelése (6. táblázat)

A magnezit és az oldat kationarányainak további növekedésével egyes hőmérsékleteken jelentősebb tagozódások jelentkeztek. Középértékben:

> CaO: 50-100 °C = + 3,49% CaO-többlet 125-175 °C = +11,25% CaO-többlet 200 °C = +12,98% CaO-többlet 225 °C = + 8,64% CaO-többlet 250-300 °C = +13,47% CaO-többlet MgO: 50-100 °C = - 3,95% MgO-hiány 125-175 °C = -10,54% MgO-hiány 200 °C = -14,51% MgO-hiány 225 °C = -12,56% MgO-hiány 250-300 °C = -18,82% MgO-hiány

A H<sub>2</sub>O-eloszlások:

50-75 °C = 1,23-0,91% 100-175 °C = 0,80-0,52% 200-275 °C = >2,0%,

ami a bázisos Mg-karbonátnak jelentősebb képződésére vall. A CO<sub>2</sub> %-eloszlása 175 °C-ig kisebb mértékben (47–49%) ingadozik, 200 °C alatt 39–40% alá szorul. Ezzel szemben a kristályfázis kloridtartalma 40 °C fokon előállított kivételével 0,1% nagyságrendű, nagyobb hőtartományokban 0,4% fölötti érték.

Ha a három különböző kationarányú rendszer elemzéseit (2 : 1, 1 : 1, 1 : 2 = Mg : Ca) egy hőmérsékleten belül értékeljük szembetűnő összefüggések rajzolódnak ki:

# Dr. Kiss János: "Dolomitosodás-dedolomitosodás-rekalcitosodás" folyamata . .

| K ísériet |                                                         |       |      | ELEMZÉS |       |       |      |      |
|-----------|---------------------------------------------------------|-------|------|---------|-------|-------|------|------|
| jele      | Hendszer                                                | Ng:Ca | C    | CaO %   | MgO % | CO2 % | CI % | H20% |
| 79.       | $MgCO_3 + 1 m CaCl_2$<br>(magnezit)                     | 2 : 1 | 50   | 0,86    | 47,69 | 49,28 | 1,94 | 1,24 |
| 80.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:1   | 50   | 0,89    | 47,15 | 49,48 | 0,09 | 1,11 |
| 81.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:2   | 50   | 2,13    | 45,82 | 48,76 | 0,77 | 1,23 |
| 82.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 2 : 1 | 75   | 1,85    | 46,70 | 49,23 | 0,11 | 1,11 |
| 83.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:1   | 75   | 3,38    | 45,29 | 49,01 | 0,26 | 1,05 |
| 84.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:2   | 75   | 3,23    | 45,26 | 49,68 | -    | 0,91 |
| 85.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 2 : 1 | 100  | 3,21    | 44,95 | 48,81 | 0,25 | 0,80 |
| 86.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:1   | 100  | 5,80    | 42,80 | 49,20 | 0,19 | 0,98 |
| 87.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:2   | 100  | 7,07    | 41,59 | 48,11 | 0,17 | 0,78 |
| 88.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 2:1   | 125  | 4,47    | 43,58 | 49,57 | 0,04 | 0,64 |
| 89.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:1   | 125  | 6,81    | 41,82 | 48,70 | 0,19 | 0,80 |
| 90.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:2   | 125  | 10,72   | 38,55 | 48,65 | 0,07 | 0,68 |
| 91.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 2 : 1 | .150 | 4,93    | 43,38 | 46,07 | 0,09 | 0,81 |
| 92.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:1   | 150  | 8,69    | 40,08 | 48,15 | 0,16 | 0,80 |
| 93.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 1:2   | 150  | 13,21   | 36,76 | 46,91 | 0,42 | 0,83 |
| 94.       | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit) | 2 : 1 | 175  | 4,60    | 44,07 | 48,36 | 0,32 | 0,75 |
| 95.       | $MgCO_3 + 1 m CaCl_2$<br>(magnezit)                     | 1:1   | 175  | 8,58    | 40,25 | 47,67 | 0,38 | 1,01 |
| 96.       | $MgCO_3 + 1 m CaCl_2$<br>(magnezit)                     | 1:2   | 175  | 11,76   | 37,58 | 46,93 | 0,52 | 0,57 |
| 97.       | $MgCO_3 + 1 m CaCl_2$<br>(magnezit)                     | 2:1   | 200  | 5,39    | 41,42 | 43,75 | 0,32 | 0,72 |
| 98.       | $MgCO_3 + 1 m CaCl_2$<br>(magnezit)                     | 1:1   | 200  | 8,63    | 38,82 | 42,73 | 0,46 | 2,12 |
| 99.       | $MgCO_3 + 1 m CaCl_2$<br>(magnezit)                     | 1:2   | 200  | 13,63   | 33,66 | 39,67 | 0,34 | 2,56 |

#### 6. táblázat

| ATOMKVOCIENS     |                  |        |      | S                |           | C-2+ . M-2+                      |                                                                                         |  |
|------------------|------------------|--------|------|------------------|-----------|----------------------------------|-----------------------------------------------------------------------------------------|--|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO32-  | рН   | H <sub>2</sub> O | CaO : MgO | Ca <sup>-</sup> : Mg <sup></sup> | Kristalytazisok                                                                         |  |
| 0,0153           | 1,1828           | 1,1197 | 6,7  |                  | 0,018     | 0,012                            | $Mg_1 > Ca_1 - (Ca_2 - Ca_3)?$                                                          |  |
| 0,0159           | 1,1693           | 1,1243 | 6,5  | 1                | 0,019     | 0,013                            | Mg <sub>1</sub> > Ca <sub>2</sub>                                                       |  |
| 0,0380           | 1,1364           | 1,1079 | 6,8  |                  | 0,046     | 0,033                            | $Mg_1 > Ca_1 - Ca_2 - (Ca_3)?$                                                          |  |
| 0,0330           | 1,1582           | 1,1186 | 6,05 |                  | 0,039     | 0,027                            | Mg <sub>1</sub> > Mg <sub>2</sub> - Ca <sub>2</sub>                                     |  |
| 0,0603           | 1,1233           | 1,1136 | 7,05 |                  | 0,074     | 0,053                            | Mg <sub>1</sub> > Mg <sub>2</sub> - Ca <sub>2</sub>                                     |  |
| 0,0576           | 1,1225           | 1,1288 | 6,6  |                  | 0,071     | 0,051                            | Mg <sub>1</sub> >Ca <sub>2</sub>                                                        |  |
| 0,0572           | 1,1148           | 1,1090 | 7,15 |                  | 0,071     | 0,051                            | $Mg_1 > Ca_2 - Ca_3 - Mg_2$                                                             |  |
| 0,1034           | 1,0615           | 1,1179 | 6,8  |                  | 0,135     | 0,097                            | $Mg_1 > Ca_2 - Ca_1 - (Ca_3)?$                                                          |  |
| 0,1260           | 1,0315           | 1,0931 | 6,5  |                  | 0,169     | 0,122                            | Mg,>Ca,-Ca,-Ca,                                                                         |  |
| 0,0797           | 1,0808           | 1,1263 | 6,3  |                  | 0,102     | 0,073                            | Mg <sub>1</sub> >Ca <sub>2</sub> -Ca <sub>3</sub> -Mg <sub>2</sub>                      |  |
| 0,1214           | 1,0372           | 1,1065 | 6,7  |                  | 0,162     | 0,117                            | Mg, >Ca2-(Mg2)?                                                                         |  |
| 0,1911           | 0,9561           | 1,1054 | 5,4  |                  | 0,278     | 0,199                            | Mg <sub>1</sub> >Ca <sub>2</sub> -Ca <sub>3</sub> -Mg <sub>2</sub>                      |  |
| 0,0879           | 1,0759           | 1,0468 | 6,1  |                  | 0,113     | 0,081                            | Mg <sub>1</sub> >Ca <sub>1</sub> -Ca <sub>3</sub> -Mg <sub>2</sub>                      |  |
| 0,1550           | 0,9940           | 1,0940 | 6,55 |                  | 0,217     | 0,155                            | Mg,>Ca,-Ca,-Ca,                                                                         |  |
| 0,2355           | 0,9117           | 1,0658 | 6,6  |                  | 0,359     | 0,258                            | Mg,>Ca,                                                                                 |  |
| 0,0820           | 1,0930           | 1,0988 | 6,7  |                  | 0,104     | 0,075                            | $Mg_1 > Ca_1 - Ca_2$                                                                    |  |
| 0,1529           | 0,9982           | 1,0831 | 6,9  |                  | 0,213     | -0,153                           | Mg <sub>1</sub> >Ca <sub>1</sub> -Ca <sub>2</sub> -(Ca <sub>3</sub> -Mg <sub>2</sub> )? |  |
| 0,2097           | 0,9320           | 1,0663 | 6,25 |                  | 0,312     | 0,224                            | $Mg_1 > D > Ca_1 - Ca_2 - Ca_3$                                                         |  |
| 0,0961           | 1,0272           | 0,9940 | 6,3  |                  | 0,130     | 0,093                            | Mg <sub>1</sub> >D>Ca <sub>1</sub> -Ca <sub>2</sub>                                     |  |
| 0,1538           | 0,9627           | 0,9708 | 6,6  |                  | 0,222     | 0,159                            | $Mg_1 > Ca_2 - Mg_2$                                                                    |  |
| 0,2430           | 0,8348           | 0,9013 | 6,2  |                  | 0,404     | 0,291                            | $Mg_1 > Ca_1 - Ca_2$                                                                    |  |

| Kísérlet |                                                               |         | ~   |       | ELEMZÉS |       |      |                    |  |
|----------|---------------------------------------------------------------|---------|-----|-------|---------|-------|------|--------------------|--|
| jele     | Hendszer                                                      | Mg : Ca | C   | CaO % | MgO %   | co,%  | CI % | H <sub>2</sub> O % |  |
| 100.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 2 : 1   | 225 | 5,38  | 40,87   | 40,93 | 0,36 | 2,38               |  |
| 101.     | $MgCO_3 + 1 m CaCl_2$<br>(magnezit)                           | 1:1     | 225 | 9,55  | 35,62   | 40,34 | 0,26 | 2,53 -             |  |
| 102.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 1:2     | 225 | 9,29  | 35,61   | 37,87 | 0,53 | 3,06               |  |
| 103.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub> 2 : 1<br>(magnezit) |         | 250 | 7,67  | 39,39   | 42,26 | 0,47 | 2,57               |  |
| 104.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 1:1     | 250 | 11,33 | 35,28   | 40,04 | 0,77 | 3,10               |  |
| 105.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 1:2     | 250 | 15,54 | 29,96   | 37,60 | -    | 4,33.              |  |
| 106.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 2:1     | 275 | 7,54  | 38,96   | 42,10 | 0,46 | 2,28               |  |
| 107.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 1:1     | 275 | 10,38 | 34,45   | 36,71 | 0,73 | kevés a.           |  |
| 108.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 1:2     | 275 | 16,38 | 26,78   | 28,61 | -    | 5,15               |  |
| 109.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 2:1     | 300 | 7,73  | 37,72   | 37,47 | 0,61 | kevés a.           |  |
| 110.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 1:1     | 300 | 9,00  | 32,54   | 24,54 | -    | kevés a.           |  |
| 111.     | MgCO <sub>3</sub> + 1 m CaCl <sub>2</sub><br>(magnezit)       | 1:2     | 300 | 10,43 | 31,30   | 22,03 | -    | kevés a.           |  |

D = dolomit; Mg<sub>2</sub> = MgCO<sub>3</sub> + 2 H<sub>2</sub>O (barringtonit); Ca<sub>1</sub> =  $\alpha$  -CaCO<sub>3</sub> (kalcit); Ca<sub>2</sub> =  $\beta$  -CaCO<sub>3</sub> (aragonit);

*a)* A kristályfázisok MgO%-a egyugyanazon hőmérsékleten belül úgy viszonylik az oldat Ca<sup>2+</sup>-koncentrációjához, hogy a Mg : Ca = 2 : 1-től a 1 : 2-ig kétszeres, háromszoros MgO-hiányban fejeződik ki.

*b)* A kristályfázisok bruttó CaO%-a nagy vonásokban követi a szilárdfázis : oldat = = Mg : Ca arányait; hígabb oldatkoncentrációk esetén kevesebb, nagyobb Ca<sup>2+</sup>-oldatok esetén növekvő mennyiségben tartalmazzák.

Növekvő Ca<sup>2+</sup> oldatkoncentrációk – Ca<sup>2+</sup> beépülése nélkül – fokozzák a Mg<sup>2+</sup> kioldását anélkül, hogy ez utóbbi epigén kristályképződése is fokozódna.

3.1.1. MgCO<sub>3(s)</sub>: Ca<sup>2+</sup>= 2:1 kristályfázisai (1,0 mólos oldat)

50 °C = Mg<sub>1</sub>  $\gg$  Ca<sub>1</sub> (Ca<sub>2</sub> - Ca<sub>3</sub>)? 75 °C = Mg<sub>1</sub>  $\gg$  Mg<sub>2</sub> - Ca<sub>2</sub>

|     | <b>6</b> . | táblázat folytatása |
|-----|------------|---------------------|
| < r | ist        | ályfázisok          |

| /                | атом             | куос    | IENS | 5   | C+0 + M+0 | C-2+ . 14-2+ | Kalmálutáslask                                                                          |  |
|------------------|------------------|---------|------|-----|-----------|--------------|-----------------------------------------------------------------------------------------|--|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-    | рН   | H20 | CaO : MgO | Ca : Mig     | Kristalytazisok                                                                         |  |
| 0,0959           | 1,0136           | 0,9299  | 6,35 |     | 0,131     | 0,095        | Mg <sub>1</sub> >Ca <sub>1</sub> -Ca <sub>2</sub>                                       |  |
| 0,1702           | 0,8834           | 0,9165  | 6,35 |     | 0,268     | 0,192        | Mg <sub>1</sub> >Ca,-Ca <sub>2</sub>                                                    |  |
| 0,1656           | 0,8831           | 0,8604  | 5,70 |     | 0,260     | 0,019        | Mg,>Ca,-Ca,                                                                             |  |
| 0,1367           | 0,9769           | 0,9602  | 6,20 |     | 0,194     | 0,139        | Mg <sub>1</sub> >Ca <sub>2</sub>                                                        |  |
| 0,2020           | 0,8750           | 0,9097  | 6,8  |     | 0,321     | 0,230        | Mg <sub>1</sub> >D-Ca <sub>1</sub> -(Ca <sub>2</sub> )?                                 |  |
| 0,2771           | 0,7430           | 0,8543  | 6,6  |     | 0,518     | 0,373        | $D>Mg_1>(Mg_2-Ca_1-Ca_3)?$                                                              |  |
| 0,1344           | 0,9662           | 0,8852  | 5–6  |     | 0,193     | 0,139        | Mg <sub>1</sub> >Ca <sub>1</sub> -Ca <sub>2</sub> -(Ca <sub>3</sub> -Mg <sub>2</sub> )? |  |
| 0,1850           | 0,8544           | 0,8341  | 56   |     | 0,301     | 0,216        | $Mg_{3} > Ca_{3} - Mg_{2} - (D)$                                                        |  |
| 0,2920           | 0,6641           | 0\$6084 | 5-6  |     | 0,611     | 0,439        | Mg <sub>1</sub> > Mg <sub>2</sub> -D                                                    |  |
| 0,1378           | 0,9355           | 0,8570  | 5–6  |     | 0,204     | 0,147        | $Mg_1 > Ca_2 - Mg_2 - (Ca_3)?$                                                          |  |
| 0,1604           | 0,8074           | 0,5577  | 5–6  |     | 0,276     | 0,198        | $Mg_1 > D - Mg_2 - (Ca_3)?$                                                             |  |
| 0,1860           | 0,7763           | 0,5006  | 5–6  |     | 0,333     | 0,239        | $D>Mg_1-Ca_1-Ca_2$                                                                      |  |

 $Ca_3 = \gamma - CaCO_3$  (vaterit)

 $D = Ca,Mg(CO_2)_2$ ,  $Mg_1 = MgCO_3$ ,  $Ca_1 = kalcit$  (trigonális),  $Ca_2 = aragonit$  (rombos),  $Ca_3 = vaterit$  (hexagonális),  $Mg_2 = MgCO_3 \cdot 2 H_2O$  (triklin).

A felsorolásból kitűnik, hogy a MgCO<sub>3</sub> mindvégig (50–300 °C-ig) a legstabilabb uralkodó fázis. Dolomitfázis csak 200 °C-on képződik, de részvétele alatta marad az anyafázis MgCO<sub>3</sub>-mennyiségének. A magnéziumkarbonát kristályairól lehasadt Mg<sup>2+</sup> helyébe korlátolt Ca<sup>2+</sup>-beépülés történik. Az oldatba került Mg<sup>2+</sup> a Ca<sup>2+</sup>-mal egyaránt különálló, epigén kristályfázisokban rögzítődik, Aragonitrácsú Ca<sub>2</sub> 150 °C kivételével minden hő-mérsékleten, vaterit (Ca<sub>3</sub>) 100–150 °C között, kalcitrácsú Ca<sub>1</sub> = 50 °C, 150, 175, 200, 225 és 275 °C-on képződött.

Bázisos Mg-karbonát (=MgCO<sub>3</sub> · 2 H<sub>2</sub>O – barringtonit) 100–150 °C között és 300 °C-on biztosan kimutatható, 275 °C-on jelenléte bizonytalan: 50–75 °C és 175– 250 °C között nem képződött. Az anyafázis (MgCO<sub>3</sub>) mellett fellépő járulékos elegyrészek az oldatban levő ionok kristályfázisai. Anyafázisra települt epigén kiválások, a szorosan vett,,,metaszomatózis"-ban nem vettek részt. Erre a kérdésre a földtani interpretáció során még visszatérünk.

3.1.2. MgCO<sub>3(s)</sub>: Ca<sup>2+</sup> = 1 : 1 kristályfázisai (1,0 mólos oldat)

 $\begin{array}{l} 50\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{2}\\ 75\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Mg_{2}-Ca_{2}\\ 100\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{2}-Ca_{1}-(Ca_{3})?\\ 125\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{2}-(Mg_{2})?\\ 150\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{1}-Ca_{2}-Ca_{3}\\ 175\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{1}-Ca_{2}-(Ca_{3}-Mg_{2})?\\ 200\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{2}-Mg_{2}\\ 225\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{1}-Ca_{2}\\ 250\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Mg_{1}-Ca_{1}-(Ca_{2})?\\ 275\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Mg_{1}-Ca_{1}-(Ca_{2})?\\ 275\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{2}-Mg_{2}-D\\ 300\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ D-Mg_{2}-(Ca_{3})?\\ \end{array}$ 

 $Mg_1 = MgCO_3$ , D = dolomit, Ca<sub>1</sub> = kalcit, Ca<sub>2</sub> = aragonit, Ca<sub>3</sub> = vaterit.

Nagyobb Ca<sup>2+</sup>-koncentráció nem segíti elő a MgCO<sub>3</sub> szerkezeti átalakulását, továbbra is a magnéziumkarbonát az uralkodó fázis. Mint a vegyelemzésekből egyértelműen kitűnik, fokozatos CaO%-növekedés tapasztalható a kristályfázisok összetételében, amely A Mg : Ca = 1 : 2 rendszerekben érte el a maximumot. A felsorolás alapján az aragonitrácsú Ca<sub>2</sub> – 300 °C kivételével – minden hőfokon előállt. Kalcitrácsú Ca<sub>2</sub>-t 150, 175, 225, 250 °C-on kaptunk, míg a hexagonális vaterit (Ca<sub>3</sub>) 150 °C-on képződött, 100, 175 és 300 °C-on jelenléte bizonytalan. Dolomitot: 250 és 275 °C-on észleltünk, mennyisége a magnezit mellett alárendelt.

3.1.3. MgCO<sub>3(s)</sub>: Ca<sup>2+</sup> = 1 : 2 kristályfázisai (1,0 mólos oldat)

50 °C = Mg<sub>1</sub>  $\gg$  Ca<sub>1</sub> -Ca<sub>2</sub> -(Ca<sub>3</sub>)? 75 °C = Mg<sub>1</sub>  $\gg$  Ca<sub>2</sub> 100 °C = Mg<sub>1</sub>  $\gg$  Ca<sub>1</sub> -Ca<sub>2</sub> -Ca<sub>3</sub> 125 °C = Mg<sub>1</sub>  $\gg$  Ca<sub>2</sub> -Ca<sub>3</sub> -Mg<sub>2</sub> 150 °C = Mg<sub>1</sub>  $\gg$  Ca<sub>2</sub> 175 °C = Mg<sub>1</sub>  $\gg$  D-Ca<sub>1</sub> -Ca<sub>2</sub> -Ca<sub>3</sub> 200 °C = Mg<sub>1</sub>  $\gg$  Ca<sub>1</sub> -Ca<sub>2</sub>  $\begin{array}{l} 225 \ ^{\circ}C = Mg_{1} \geqslant Ca_{1} - Ca_{2} \\ 250 \ ^{\circ}C = D \geqslant Mg_{1} - (Mg_{2} - Ca_{1} - Ca_{3})? \\ 275 \ ^{\circ}C = Mg_{1} > Mg_{2} - D \\ 300 \ ^{\circ}C = D \geqslant Mg_{1} - Ca_{1} - Ca_{2} \end{array}$ 

 $Mg_1 = MgCO_3$ , D = dolomit,  $Ca_1 = kalcit$ ,  $Ca_2 = aragonit$ ,  $Ca_3 = vaterit$ .

A röntgenértékelések arra utalnak, hogy nagyobb Ca<sup>2+</sup>-koncentrációk egyes hőmérsékleten kedveznek a dolomitrács kialakulásának (175, 250, 275, 300 °C), esetenként a dolomit mennyisége az anyafázis magnezitét meghaladhatja (250 °C, 300 °C). Ezzel szemben a porló dolomitnak magnezitté történő átrendeződését híg Mg<sup>2+</sup>-koncentrációjú oldatok mozdították elő. (A kristálytermékek mikroszkópos képeit lásd VI. tábla 4–5., VII. tábla 1–4., VIII. tábla 1–4. képein.)

A fentiekből egyértelműen arra következtethetünk, hogy az oldatban levő és az oldatba került kationok zöme különálló kristályokban rögzítődnek, esetenként az anyafázis (magnezit) romboéder síkjaiból mintegy "kirügyezve" hozzánőnek. Más esetekben önálló idiomorf képletek pszeudohexagonális lécek, oszlopok (pl. aragonit). Az esetek többségében jól kivehetők a magnezit-romboédereknek oldásos-rezorbeált alakzatai és hozzá tapadó CaCO<sub>3</sub>-nak valamelyik modifikációból és bázisos Mg-karbonátból álló xenomorf "bekérgezései".

Nagyobb hőmérsékleten (200–300 °C) gyakran megfigyelhetők az uralkodó magnezit mellett pikkelyes-lemezes képletek (VI. tábla, 1–2. kép), melyek oldatból kivált dolomit-bázisos Mg-karbonátnak finom tömörüléseiből állnak. Ezekben helyenként még felismerhetők a Mg-karbonátnak (anyafázis) még érintetlen romboéderei is (VII. tábla, 25. kép).

3.1.4. MgCO<sub>3(s)</sub>: Ca<sup>2+</sup>= 2:1 (2,5 mólos oldat)

#### 3.1.4.1. Vegyelemzések értékelése (7. táblázat)

A kristályfázisok vegyelemzési adatai 1,0 mólos CaCl<sub>2</sub>-rendszerhez viszonyítva bruttó értékekben kiegyensúlyozottabb adatsorokkal jellemezhetők:

| CaO: 50-125 °C           | = +3,23% CaO-többlet |
|--------------------------|----------------------|
| 150—175 °C               | = +4,08% CaO-többlet |
| 200– <mark>225</mark> °C | = +5,25% CaO-többlet |
| 250–300 °C               | = +6,49% CaO-többlet |
| MgO: 50-125 °C           | = -1,77% MgO-hiány   |
| 150–175 °C               | = -4,04% MgO-hiány   |
| 200–225 °C               | = -6,21% MgO-hiány   |
| 250–300 °C               | = -8,25% MgO-hiány   |

A kettő összehasonlításából kitűnik, hogy 50–175 °C között gyakorlatilag annyi magnézium távozik el a rendszerből (oldatba kerül!), mint amennyi kalcium az oldatból szilárd fázisként rögzítődik! 200 °C fölött a MgO-veszteség a CaO % többletéhez viszonyítva 1–2%.

# Dr. Kiss János: "Dolomitosodás-dedolomitosodás-rekalcitosodás" folyamata . . .

| K ísárlet<br>jele | Rendszer                                                  | Mg : Ca | c°  | ELEMZÉS |       |       |      |      |  |
|-------------------|-----------------------------------------------------------|---------|-----|---------|-------|-------|------|------|--|
|                   |                                                           |         |     | CaO %   | MgO % | co, % | CI % | Н,0% |  |
| 118.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 2:1     | 50  | 1,52    | 46,89 | 49,43 | 0,40 | 0,53 |  |
| 119.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:1     | 50  | 1,12    | 47,59 | 48,18 | 0,31 | 0,51 |  |
| 120.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:2     | 50  | 1,69    | 48,30 | 48,50 | 0,80 | 0,28 |  |
| 121.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 2:1     | 75  | 2,21    | 46,42 | 49,68 | 0,66 | 0,24 |  |
| 122.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:1     | 75  | 2,15    | 46,55 | 49,51 | 0,82 | 0,79 |  |
| 123.              | MgCO,+ 2,5 m CaCl <sub>2</sub><br>(magnezit)              | 1:2     | 75  | 2,24    | 46,51 | 49,39 | 0,24 | 0,48 |  |
| 124.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 2:1     | 100 | 3,95    | 45,14 | 48,80 | 0,68 | 0,68 |  |
| 125.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>3</sub><br>(magnezit) | 1:1     | 100 | 6,06    | 43,51 | 48,53 | 0,28 | 0,62 |  |
| 126.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:2     | 100 | 7,23    | 42,19 | 48,64 | 1,13 | 0,20 |  |
| 127.              | $MgCO_3 + 2,5 m CaCl_2$<br>(magnezit)                     | 2:1     | 125 | 3,96    | 45,16 | 48,72 | 0,83 | 0,23 |  |
| 128.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1.: 1   | 125 | 7,64    | 42,07 | 48,42 | 0,21 | 0,26 |  |
| 129.              | MgCO <sub>3</sub> +2,5 m CaCl <sub>2</sub><br>(magnezit)  | 1:2     | 125 | 11,37   | 38,69 | 48,46 | 0,63 | 1,33 |  |
| 130.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 2:1     | 150 | 4,72    | 43,95 | 48,54 | 0,56 | 0,30 |  |
| 131.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:1     | 150 | 8,48    | 40,93 | 47,57 | 0,22 | 0,34 |  |
| 132.              | $MgCO_3 + 2,5 m CaCl_2$<br>(magnezit)                     | 1:2     | 150 | 14,53   | 35,96 | 46,84 | 0,70 | 0,36 |  |
| 133.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 2:1     | 175 | 4,73    | 44,30 | 48,40 | 0,43 | 0,46 |  |
| 134.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:1     | 175 | 8,29    | 40,65 | 46,43 | 0,56 | 0,83 |  |
| 135.              | MgCO <sub>3</sub> +2,5 m CaCl <sub>2</sub><br>(magnezit)  | 1:2     | 175 | 14,86   | 37,62 | 46,60 | 0,39 | 0,64 |  |
| 136.              | MgCO <sub>3</sub> +2,5 m CaCl <sub>2</sub><br>(magnezit)  | 2 : 1   | 200 | 6,32    | 42,43 | 47,36 | 0,50 | 0,66 |  |
| 137.              | $MgCO_3 + 2,5 m CaCl_2$<br>(magnezit)                     | 1:1     | 200 | 7,30    | 41,29 | 45,94 | 0,46 | 1,06 |  |
| 138.              | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:2     | 200 | 13,30   | 35,95 | 44,90 | 0,45 | 0,87 |  |

"Dedolomitosodás-rekalcitosodás" problémaköre

|                  |                  |        |      |     |           |                                     | 7: (UD/UEC                                           |  |  |
|------------------|------------------|--------|------|-----|-----------|-------------------------------------|------------------------------------------------------|--|--|
| ATOMKVOCIENS     |                  |        |      | s   |           | - 24 24                             | Kalandi, 44-11                                       |  |  |
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-   | рН   | H20 | CaO : MgO | Ca <sup>21</sup> : Mg <sup>21</sup> | K ristalytazisok                                     |  |  |
| 0,0271           | 1,1629           | 1,1231 | 5,8  |     | 0,032     | 0,023                               | Mg,≻Ca,Ca,                                           |  |  |
| 0,0199           | 1,1803           | 1,0947 | 5,8  |     | 0,023     | 0,017                               | Mg,≽Ca,∼Ca,                                          |  |  |
| 0,0301           | 1,1979           | 1,1019 | 5,6  |     | 0,034     | 0,025                               | Mg₁>Ca₃-Ca₂                                          |  |  |
| 0,0934           | 1,1512           | 1,1288 | 5,6  |     | 0,047     | 0,081                               | Mg <sub>1</sub> >Ca <sub>2</sub>                     |  |  |
| 0,0383           | 1,1545           | 1,1249 | 5,87 |     | 0,046     | 0,033                               | Mg,≥Ca₂-Ca₃                                          |  |  |
| 0,0399           | 1,1535           | 1,1222 | 5-6  |     | 0,048     | 0,034                               | Mg,≽Ca₂-Ca₃                                          |  |  |
| 0,0705           | 1,1195           | 1,1088 | 5,0  |     | 0,087     | 0,063                               | $Mg_1>Ca_2-Ca_3-(D)?$                                |  |  |
| 0,1080           | 1,0791           | 1,1026 | 5,9  |     | 0,139     | 0,100                               | $Mg_1 > Ca_2 - (Ca_3)?$                              |  |  |
| 0,1289           | 1,0463           | 1,1051 | 5,5  |     | 0,171     | 0,123                               | Mg <sub>1</sub> ≥ Ca <sub>2</sub> - Ca <sub>1</sub>  |  |  |
| 0,0706           | 1,1200           | 1,1069 | 6,3  | _   | 0,087     | 0,063                               | Mg <sub>1</sub> >Ca <sub>2</sub>                     |  |  |
| 0,1362           | 1,0434           | 1,1002 | 6,15 |     | 0,181     | 0,130                               | Mg <sub>1</sub> >Ca <sub>2</sub> -Mg <sub>2</sub> -D |  |  |
| 0,2027           | 0,9595           | 1,1010 | 6,00 |     | 0,294     | 0,211                               | Mg <sub>1</sub> >Ca <sub>3</sub> -D-Ca <sub>3</sub>  |  |  |
| 0,0841           | 1,0900           | 1,1029 | 5-6  |     | 0,107     | 0,077                               | Mg,>Ca,-Ca,                                          |  |  |
| 0,1512           | 1,0151           | 1,0808 | 5-6  |     | 0,207     | 0,148                               | Mg <sub>1</sub> >Ca <sub>2</sub>                     |  |  |
| 0,2590           | 0,8918           | 1,0642 | 5,75 |     | 0,404     | 0,290                               | Mg,>Ca,-Ca,                                          |  |  |
| 0,0843           | 1,0987           | 1,0997 | 5–6  |     | 0,106     | 0,076                               | Mg,>Ca,-Ca,                                          |  |  |
| 0,1478           | 1,0081           | 1,0549 | 5,45 |     | 0,203     | 0,146                               | $Mg_1 > Ca_1 - (Ca_2 - Mg_2)?$                       |  |  |
| 0,2649           | 0,9330           | 1,0588 | 5,75 |     | 0,395     | 0,283                               | Mg <sub>1</sub> > Mg <sub>2</sub>                    |  |  |
| 0,1126           | 1,0523           | 1,0760 | 5–6  |     | 0,148     | 0,107                               | Mg <sub>1</sub> >Ca <sub>2</sub>                     |  |  |
| 0,1301           | 1,0240           | 1,0438 | 5,4  |     | 0,176     | 0,127                               | Mg <sub>2</sub> >Ca <sub>2</sub> -D                  |  |  |
| 0,2371           | 0,8916           | 1,0201 | 5,15 | -1  | 0,369     | 0,265                               | Mg <sub>1</sub> >Ca <sub>1</sub> -Ca <sub>2</sub>    |  |  |

35

7. táblázat

| Kísérlet | Rendszer                                                  | Mg : Ca | c°  |       | EL    | EMZ   | ÉS    |          |
|----------|-----------------------------------------------------------|---------|-----|-------|-------|-------|-------|----------|
| jele     |                                                           |         |     | CaO % | MgO % | CO2 % | CI %  | Н20%     |
| 139.     | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 2 : 1   | 225 | 5,48  | 41,48 | 44,25 | 0,50  | 1,60     |
| 140.     | $MgCO_3 + 2,5 m CaCl_2$<br>(magnezit)                     | 1:1     | 225 | 9,28  | 36,66 | 40,89 | 0,45  | 2,53     |
| 141.     | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:2     | 225 | 12,80 | 32,82 | 37,64 | 0,28  | 3,95     |
| 142.     | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 2 : 1   | 250 | 7,57  | 40,44 | 45,74 | 0,30  | 0,88     |
| 143.     | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:1     | 250 | 8,87  | 38,90 | 44,40 | 0,45  | 1,55     |
| 144.     | $MgCO_3 + 2,5 m CaCl_2$<br>(magnezit)                     | 1:2     | 250 | 16,21 | 29,83 | 37,33 | -     | -        |
| 145.     | $MgCO_3 + 2,5 m CaCl_2$<br>(magnezit)                     | 2 : 1   | 275 | 7,27  | 39,55 | 40,98 | -     | 2,28     |
| 146.     | $MgCO_3 + 2,5 m CaCl_2$<br>(magnezit)                     | 1:1     | 275 | 14,02 | 31,52 | 35,33 | -     | kevés a. |
| 147.     | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:2     | 275 | 13,66 | 30,83 | 32,45 | 1,001 | kevés a. |
| 148.     | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 2 : 1   | 300 | 6,59  | 39,79 | 40,50 | 0,28  | kevés a. |
| 149.     | MgCO <sub>3</sub> + 2,5 m CaCl <sub>2</sub><br>(magnezit) | 1:1     | 300 | 7,58  | 38,08 | 39,04 | 1,008 | kevés a. |
| 150.     | $MgCO_3 + 2,5 m CaCl_2$<br>(magnezit)                     | 1:2     | 300 | 11,80 | 29,98 | 21,97 | -     | kevés a. |

#### 36 Dr. Kiss János: "Dolomitosodás-dedolomitosodás-rekalcitosodás" folyamata ...

3.1.5.  $MgCO_{3(s)}: Ca^{2+} = 1:1$  (2,5 mólos oldat)

3.1.5.1. Vegyelemzések értékelése (7. táblázat)

A vegyelemzések adatai a Ca : Mg = 2 : 1 rendszerhez viszonyítva más hőmérsékleti csoportosításokban összesíthetők:

| CaO: 50- 75 °C | = + 0,99% CaO-többlet |
|----------------|-----------------------|
| 100–200 °C     | = + 6,72% CaO-többlet |
| 225–250 °C     | = + 8,43% CaO-többlet |
| 275–300 °C     | = +10,15% CaO-többlet |
| MgO: 50- 75 °C | = - 1,10% MgO-hiány   |
| 100–200 °C     | = - 6,48% MgO-hiány   |
| 225–250 °C     | = -10,39% MgO-hiány   |
| 275 °C         | = -16,65% MgO-hiány   |
| 300 °C         | = -10.09% MgO-hiány   |
| 4                | том              | кνос   | IENS | 3   | CaO · MnO | Ca <sup>2+</sup> · Ma <sup>2+</sup> | Kristályfázisok                                   |
|------------------|------------------|--------|------|-----|-----------|-------------------------------------|---------------------------------------------------|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-   | рН   | Н₂О |           |                                     |                                                   |
| 0,0977           | 1,0287           | 1,0054 | 56   |     | 0,937     | 0,094                               | $Mg_1 > Ca_2 - Ca_1 - (Mg_2)?$                    |
| 0,1654           | 0,9092           | 0,9290 | 5–6  |     | 0,253     | 0,181                               | Mg <sub>1</sub> >Ca <sub>2</sub>                  |
| 0,2282           | 0,8139           | 0,8552 | 4,85 |     | 0,390     | 0,280                               | Mg <sub>1</sub> >Ca <sub>1</sub> -Ca <sub>2</sub> |
| 0,1349           | 1,0029           | 1,0392 | 5–6  |     | 0,187     | 0,134                               | Mg <sub>1</sub> > Ca <sub>2</sub>                 |
| 0,1581           | 0,9647           | 1,0088 | 56   |     | 0,228     | 0,163                               | Mg <sub>1</sub> >Ca <sub>2</sub> -(D)?            |
| 0,2890           | 0,7398           | 0,8481 | 5,8  |     | 0,543     | 0,390                               | Mg <sub>1</sub> > Ca <sub>2</sub>                 |
| 0,1296           | 0,9809           | 0,9311 | 5–6  |     | 0,183     | 0,132                               | Mg₁ >Ca₂                                          |
| 0,2500           | 0,7817           | 0,8027 | 5–6  |     | 0,444     | 0,319                               | $D\approxMg_1-(Ca_2)?$                            |
| 0,2435           | 0,7646           | 0,7373 | 5–6  |     | 0,443     | 0,318                               | $Mg_1 > Mg_2 - (D)?$                              |
| 0,1175           | 0,9868           | 0,9202 | 5–6  |     | 0,165     | 0,119                               | $Mg_1 > (Ca_2 - Mg_2) - (D)?$                     |
| 0,6790           | 0,9444           | 0,8870 | 5–6  |     | 0,199     | 0,718                               | $Mg_1 > (Ca_1 - Ca_2)$                            |
| 0,2104           | 0,7435           | 0,4991 | 5–6  |     | 0,393     | 0,282                               | $Mg_1 \approx D - (Ca_2 - Mg_2)$                  |

7. táblázat folytatás

A középértékben növekvő magnéziumcsökkenés mellett növekvő az új kristályos fázisok kalciummennyisége is. 50–200 °C között a CaO növekedése paritásban van a magnézium oldatba menetelével, 225 °C-tól 2,36–3,27%-kal több magnézium oldódik ki, mint amennyi kalcium az oldatból szilárd fázis alakban kiválik!

3.1.6. MgCO<sub>3(s)</sub>: Ca<sup>2+</sup>= 1:2 (2,5 mólos oldat)

## 3.1.6.1. Vegyelemzések értelmezése (7. táblázat)

A hígabb rendszereknél tapasztaltuk, hogy minél nagyobb a szilárd fázis (MgCO<sub>3</sub>) és az oldat kationjainak aránya, a képződött kristályfázisok mennyiségi elosztásai nagyjából ezt a trendet követik.

> CaO: 50-75 °C = + 1,32% CaO-többlet 100 °C = + 6,58% CaO-többlet 125-225 °C = +12,72% CaO-többlet

250 °C = +15,56% CaO-többlet 275-300 °C = +12,08% CaO-többlet MgO: 50- 75 °C = - 0,76% MgO-hiány 100 °C = - 5,98% MgO-hiány 125-225 °C = -11,96% MgO-hiány 250 °C = -18,34% MgO-hiány 275-300 °C = -17,76% MgO-hiány

Középértékben továbbra is nagyobb a Mg oldatba menetele.

Ha a 7. táblázatban feltüntetett sorrendben értékeljük a vegyelemzéseket, jó összehasonlítás kínálkozik a különböző Mg : Ca arányú rendszerek tanulmányozására adott hőmérsékleten belül.

Ezek szerint az 50–70 °C közötti rendszerek kristályfázisainak CaO és MgO%-a Ca : Mg-tól függően alig változik (pl. CaO% = 1,52–1,69%, ill. MgO% = 2,21%, ill. MgO% = 2,24%). A hőmérséklet emelkedésével (100%-tól) a kisebb Ca<sup>2+</sup>-koncentrációjú (arányú) oldatok hatására a kristályfázis CaO%-a 2–3-szor kisebb azon fázisok CaO%-értékeinél, melyeket a szilárd fázis bruttó Mg-hoz (MgCO<sub>3</sub>) viszonyítva kétszeres (Ca : Mg = 2 : 1) Ca<sup>2+</sup>-tartalmú oldatkezelés fázisaiban tapasztaltunk.

3.1.4. MgCO<sub>3(s)</sub>: Ca<sup>2+</sup>=2:1 kristályfázisai (2,5 mólos oldat)

$$\begin{array}{l} 50\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{2}\ -\ Ca_{3}\\ 75\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{2}\\ 100\ ^{\circ}C\ =\ Mg_{1}\ \geqslant\ Ca_{2}\ -\ Ca_{3}\ -\ (D?\ )\\ 125\ ^{\circ}C\ =\ Mg_{1}\ >\ Ca_{2}\\ 150\ ^{\circ}C\ =\ Mg_{1}\ >\ Ca_{2}\ -\ Ca_{3}\\ 175\ ^{\circ}C\ =\ Mg_{1}\ >\ Ca_{2}\ -\ Ca_{3}\\ 175\ ^{\circ}C\ =\ Mg_{1}\ >\ Ca_{2}\ -\ Ca_{1}\\ 200\ ^{\circ}C\ =\ Mg_{1}\ >\ Ca_{2}\\ 225\ ^{\circ}C\ =\ Mg_{1}\ >\ Ca_{2}\\ 225\ ^{\circ}C\ =\ Mg_{1}\ >\ Ca_{2}\\ 250\ ^{\circ}C\ =\ Mg_{1}\ >\ Ca_{2}\\ 275\ ^{\circ}C\ =\ Mg_{1}\ \ >\ Ca_{2}\\ 275\ ^{\circ}C\ =\ Mg_{1}\ \ \ Ca_{2}\\ 300\ ^{\circ}C\ =\ Mg_{1}\ \ \ D(?\ )\ -\ (Ca_{2}\ -\ Mg_{2}\ )? \end{array}$$

 $Mg_1 = MgCO_3$ , D = dolomit,  $Ca_2 = aragonit$ ,  $Ca_3 = vaterit$ ,  $Mg_2 = MgCO_3 \cdot 2 H_2O$ .

A kristáłyfázisok összetétele, eloszlása egyértelműen jelzi a Mg<sup>2+</sup> pozícióknak Ca<sup>2+</sup> mal történő korlátozott lecserélhetőségét. Növekvő hőmérsékleten egyes rendszerekben (pl. 1 : 1 és 1 : 2 = Mg : Ca) növekvő ugyan a Mg<sup>2+</sup> lehasadása (0,66 Å) az anyafázis rácssíkjairól, helyébe a nagyobb ionrádiuszú Ca<sup>2+</sup> (0,99 Å) aligha épülhet be, legfeljebb azokban a tömegpontokban, melyek Mg<sup>2+</sup> szomszédságában levő vakancia növeli a rácspont méreteit. Dolomitnak, mint átmeneti fázisnak képződése magnezitből korlátozott, a CaCO<sub>3</sub> különböző fázisai sem metaszomatikus képletek, hanem oldatból keletkezett képződmények.

Jellemzője a Mg : Ca = 2 : 1 rendszer kristályfázisainak, hogy romboéderes (kalcit) Ca-karbonát – 175–225 °C kivételével – nem keletkezett, helyette szignifikánsan rombos (aragonit) CaCO<sub>3</sub> vált ki, míg hexagonális (vaterit) CaCO<sub>3</sub>-t 50, 100 és 150 °C-on jelent meg. Meglepő a bázisos MgCO<sub>3</sub> · 2 H<sub>2</sub>O jelenlétének bizonytalan volta. Az anyafázisról lehasadt magnézium jelentős hányada kloridkomplexként oldatban maradt.

3.1.5. MgCO<sub>3(s)</sub>: Ca<sup>2+</sup>= 1: 1 kristályfázisai (2,5 mólos oldat)

 $\begin{array}{l} 50 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} - Ca_{3} \\ 75 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} - Ca_{3} \\ 100 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} - (Ca_{3})? \\ 125 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} - Mg_{2} - D \\ 150 \ ^{\circ}C = Mg_{1} > Ca_{2} \\ 175 \ ^{\circ}C = Mg_{1} > Ca_{1} - (Ca_{2} - Mg_{2})? \\ 200 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} - D \\ 225 \ ^{\circ}C = Mg_{1} > Ca_{2} \\ 250 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} (D)? \\ 275 \ ^{\circ}C = D \approx Mg_{1} - Ca_{2}? \\ 300 \ ^{\circ}C = Mg_{1} \geqslant (Ca_{1} - Ca_{2}) \end{array}$ 

 $Mg_1 = MgCO_3$ , D = dolomit,  $Ca_1 = kalcit$ ,  $Ca_2 = aragonit$ ,  $Ca_3 = vaterit$ .

A Mg : Ca = 1 : 1 rendszer termékeit a MgCO<sub>3</sub>-túlsúly mellett aragonitrácsú CaCO<sub>3</sub> és ritkábban a hexagonális vaterit-típusú CaCO<sub>3</sub> járulékos elegyrészek jellemzik. Romboéderes kalcit-típusú CaCO<sub>3</sub>-t 175 és 300 °C-on tapasztaltunk. A 125 és 250 °C-on kimutatott dolomit vonalai protodolomitéhoz közelállóak, 275 °C-on viszont mennyisége magnezitével vetekszik. Bázisos Mg-karbonát 125 és 175 °C-on jelentkezett kis mennyiségben (4–5%).

3.1.6. MgCO<sub>3(s)</sub>: Ca<sup>2+</sup>=1:2 kristályfázisai (2,5 mólos oldat)

Alapvető vonásaiban az előző rendszerektől alig különbözik:

 $\begin{array}{c} 50 \ ^{\circ}C = Mg_{1} \geqslant Ca_{3} - Ca_{2} \\ 75 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} - Ca_{3} \\ 100 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} - Ca_{1} \\ 125 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} - D - Ca_{3} \\ 150 \ ^{\circ}C = Mg_{1} > Ca_{2} - Ca_{1} \\ 175 \ ^{\circ}C = Mg_{1} > Mg_{2} \\ 200 \ ^{\circ}C = Mg_{1} > Mg_{2} \\ 200 \ ^{\circ}C = Mg_{1} \geqslant Ca_{1} - Ca_{2} \\ 225 \ ^{\circ}C = Mg_{1} \geqslant Ca_{1} - Ca_{2} \\ 250 \ ^{\circ}C = Mg_{1} \geqslant Ca_{2} \\ 275 \ ^{\circ}C = Mg_{1} > Mg_{2} (D?) \\ 300 \ ^{\circ}C = Mg_{1} \approx D - (Ca_{2} - Mg_{2}) \end{array}$ 

 $Mg_1 = MgCO_3$ , D = dolomit,  $Mg_2 = MgCO_3 \cdot 2 H_2O$ ,  $Ca_1 = kalcit$ ,  $Ca_2 = aragonit$ ,  $Ca_3 = vaterit$ .

A Mg : Ca = 1 : 1 rendszerhez viszonyítva egyik különbség, hogy dolomit itt 300 °Con van kb. egyensúlyban a magnezittel, ezen kívül 175 és 250 °C-on két fázisból áll a rendszer. Előzőben a magnezit mellett bázisos Mg-karbonát, az utóbbiban pedig aragonit volt a kísérő elegyrész (175 °C = MgCO<sub>3</sub> + MgCO<sub>3</sub> • 2 H<sub>2</sub>O; 250 °C = MgCO<sub>3</sub> + aragonit). A CaCO<sub>3</sub> módosulatai közül az aragonit szignifikáns, a kalcit-vaterit pedig csak egyes hőmérsékleten jelentkezett. Az előállított kristályfázisok mikroszkópi felvételei a VI., VII., VIII. tábla képein láthatók.

Mikroszkópi felvételeink alapján egy esetben sem találkoztunk a  $CaCO_{3(s)} + Mg^{2+}_{(aq)}$  rendszerekben tapasztalt jelenséggel, hogy ti. a kalcit-romboéderek  $Mg^{2+}$  beépülésével fokozatosan MgCO<sub>3</sub>-mal helyettesítődnek. A Ca<sup>2+</sup>-nak nagyobb sebességű oldatfázis felé vándorlásával a Mg<sup>2+</sup> beépülése lassúbb, a romboéderek üregessé váltak, majd a dekreszcencia-elvét mintázva MgCO<sub>3</sub>-romboéderekkel töltődtek fel anélkül, hogy az anyafázis (CaCO<sub>3</sub>) teljes egészében feloldódott volna (VI. tábla 1–2. kép). Átmeneti esetekben gyakori volt a jelenség, hogy a MgCO<sub>3</sub> képkeret mintájára övezte a kalcit-romboédert.

A 2,5 mólos CaCl<sub>2</sub> modell-kísérletekben hasonló jelenséget tapasztaltunk, mint a hígabb (1,0 mólos) oldatrendszereknél, legfeljebb a kísérő Ca<sub>1</sub>, Ca<sub>2</sub>, Ca<sub>3</sub>, Mg<sub>2</sub>-fázisok arányaiban azok rendezettségi fokában és szemcseméreteiben voltak különbségek.

Leggyakoribb jelenség a MgCO<sub>3</sub>-romboéder síkjából kirügyező Ca<sub>2</sub>-Ca<sub>3</sub>-képletek (VII. tábla, 1–4. képek), közöttük az aragonit (Ca<sub>2</sub>) gyakran tűs-léces megjelenésű (VIII. tábla, 1. kép).

Nagyobb hőmérsékleten (pl. 250 °C) egy-két esetben a MgCO<sub>3</sub> újrakristályosodása is megfigyelhető, amit többnyire finomszemcsés aragonit övez (VIII. tábla, 3–4. kép).

A MgCO<sub>3(s)</sub>-CaCl<sub>2(ao)</sub>-rendszer vizsgálata két pontban összegezhető:

 a) Kalcittá történő visszaalakulás ("rekalcitosodás") metaszomatikus jelleggel két okból nem lehetséges: A Mg–O kötései a MgCO<sub>3</sub>-ban zömmel kovalensek, a Ca–O 1/3; 1/2-e gyengébb ionos.

*b)* Ca<sup>2+</sup> beépülése a nagyobb ionrádiusz miatt nagyobb hőmérsékleten rács dilatációjával következhetne be, ami a vizsgált hőfokon rendkívül kismérvű, nem éri el a Ca<sup>2+</sup> rádiuszának nagyságát. A Mg-ionok a magnezit romboéder síkjairól a hőmérséklet emelkedésével növekvő tendenciával, de korlátozottan, diszlokált helyekről hasíthatók le (adott pH-jú oldatokban), ez zömmel kloridos kötésben oldatban marad, kisebb töredéke epigén módon instabil MgCO<sub>3</sub> • 2 H<sub>2</sub>O alakban rögzítődik.

Litológiai értelmezésben a MgCO<sub>3</sub> feloldódhat ugyan, de metaszomatikus átalakulása – elsősorban dolomittá, majd kalcittá – erősen korlátozott, csak nagyobb hőmérsékletű, zárt földtani rendszerben képzelhető el.

3.2. PORLÓ DOLOMIT-CaCl<sub>2</sub>-H<sub>2</sub>O-RENDSZER (dedolomitosodás-rekalcitosodás'')

3.2.1. Porló dolomit : Ca<sup>2+</sup>= 2 : 1 (1,0 mólos oldat)

3.2.1.1. Vegyelemzések értékelése (8. táblázat)

Etalon anyagként a dolomit + MgCl<sub>2(aq)</sub>-rendszerben használt porló dolomitot alkalmaztunk. A vegyelemzések adatait és kristálykémiai értékelését a 8. táblázat tartalmazza. A CaO %-eloszlásai három hőtartományba csoportosíthatók, ezek középértékei: CaO:  $50-125 \ ^{\circ}C = +1,17\% \ CaO-többlet$   $150-275 \ ^{\circ}C = +0,21\% \ CaO-többlet$   $300 \ ^{\circ}C = -1,36\% \ CaO-hiány$ MgO:  $50-125 \ ^{\circ}C = -0,68\% \ MgO-hiány$   $150-275 \ ^{\circ}C = -0,96\% \ MgO-hiány$  $300 \ ^{\circ}C = -2,70\% \ MgO-hiány$ 

A dolomitrács 150 °C fölötti CaO%-a alig módosul, a magnézium lehasadása valamivel nagyobb fokú: 50-125 °C között 1% alatti, 150–275 °C között gyakorlatilag 1%, 300 °C-on a legnagyobb = -2,70%.

**3.2.2.** Porló dolomit :  $Ca^{2+} = 1 : 1$  (1,0 mólos oldat)

3.2.2.1. Vegyelemzések értékelése (8. táblázat)

A kristályfázisok CaO %-eloszlásaiban 50–300 °C között alapvető változás nincs, a MgO %-adatai középértékben öt hőtartományba illeszthetők.

CaO:  $50-275 \degree C = +1,62\%$  CaO-többlet (= -1,50\% MgO)  $300 \degree C = -0,68\%$  CaO-hiány MgO:  $50-75 \degree C = -0,71\%$  MgO-hiány  $100-175 \degree C = -1,25\%$  MgO-hiány  $200-225 \degree C = -2,55\%$  MgO-hiány  $250-275 \degree C = -1,49\%$  MgO-hiány  $300 \degree C = -3,69\%$  MgO-hiány

A vegyelemzések szerint a Mg : Ca = 1 : 1 rendszerek anyafázisából (porló dolomit) elsősorban magnézium oldódik ki nagyobb mértékben (200–225 °C között –2,55% és 300 °C-on –3,69% MgO).

3.2.3. Porló dolomit : Ca<sup>2+</sup> = 1 : 2 (1,0 mólos oldat)

3.2.3.1. Vegyelemzések értékelése (8. táblázat)

A vegyelemzések CaO %-értékei öt, a MgO%-ai pedig hat hőmérsékleti mezőben összpontosíthatók:

CaO:  $50-100 \degree C = +1,96\%$  CaO-többlet  $125-150 \degree C = +3,23\%$  CaO-többlet  $175 \degree C = +0,56\%$  CaO-többlet  $200-275 \degree C = +2,11\%$  CaO-többlet  $300 \degree C = -2,32\%$  CaO-hiány MgO:  $50-75 \degree C = -1,15\%$  MgO-hiány  $100-150 \degree C = -2,32\%$  MgO-hiány  $175 \degree C = -0,73\%$  MgO-hiány  $200-225 \degree C = -3,22\%$  MgO-hiány

| <u> </u>   | 1                                                                              |        |      | T     |       |       |       |            | r |
|------------|--------------------------------------------------------------------------------|--------|------|-------|-------|-------|-------|------------|---|
| Kísérlet   | Cisérlet Rendszer                                                              |        | 1 c° |       | E     | LEMZ  | : É S |            |   |
| jele       | Cienci szer                                                                    | Mg. Ca |      | CaO % | MgO % | CO2 % | C1 %  | H20%       |   |
| 1.         | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 2:1    | 50   | 32,50 | 21,07 | 46,49 | 0,19  | 0,0        |   |
| 2.         | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 1 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:1    | 50   | 32,20 | 21,49 | 46,68 | 0,14  | 0,10       |   |
| 3.         | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2    | 50   | 33,15 | 21,00 | 46,04 | 0,14  | erős nyom  |   |
| 4.         | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 2:1    | 75   | 31,18 | 21,41 | 46,26 | -     | 1,31       |   |
| 5.         | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 1m<br>CaCl <sub>2</sub> (porló dolomit)  | 1:1    | 75   | 32,55 | 21,09 | 46,15 | 0,14  | 0,05       |   |
| <b>6</b> . | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2    | 75   | 32,96 | 20,69 | 45,90 | 0,14  | 0,47       |   |
| 7.         | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 2:1    | 100  | 32,16 | 21,14 | 46,00 | 0,09  | 0,09       |   |
| 8.         | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1    | 100  | 32,70 | 20,85 | 46,70 | 0,11  | gyenge ny. |   |
| 9.         | $C_{a}Mg(CO_{3})_{2} + 1 m$<br>$C_{a}Cl_{2}$ (porló dolomit)                   | 1:2    | 100  | 31,92 | 19,59 | 46,03 | 0,33  | 0,77       |   |
| 10.        | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 2:1    | 125  | 31,70 | 21,66 | 46,38 | 0,11  | 0,04       |   |
| 11.        | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2 (porló dolomit)$                               | 1:1    | 125  | 32,57 | 20,95 | 46,41 | 0,11  | 0,09       |   |
| 12.        | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2    | 125  | 34,17 | 19,69 | 46,16 | 0,09  | 0,10       |   |
| 13.        | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 2:1    | 150  | 30,45 | 22,03 | 45,80 | 0,05  | 0,58       |   |
| 14.        | $CaMg(CO_3)_2 + 1 m$<br>CaCl <sub>2</sub> (porló dolomit)                      | 1:1    | 150  | 32,56 | 20,74 | 45,96 | 0,07  | 0,05       |   |
| 15.        | $CaMg(CO_2)_2 + 1 m$<br>CaCl <sub>2</sub> (porló dolomit)                      | 1:2    | 150  | 33,73 | 19,75 | 46,32 | 0,07  | 0,05       |   |
| 16.        | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 2:1    | 175  | 31,37 | 21,45 | 46,24 | 0,04  | 0,05       |   |
| 17.        | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1    | 175  | 32,03 | 20,45 | 45,29 | 0,02  | nyom       |   |
| 18.        | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 1 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:2    | 175  | 31,28 | 21,27 | 45,37 | 0,007 | 0,05       |   |
| 19.        | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 1 m<br>CaCl <sub>2</sub> (porló dolomit) | 2:1    | 200  | 30,68 | 20,42 | 43,55 | 1,76  | 0,15       |   |
| 20.        | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 1 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:1    | 200  | 32,24 | 19,09 | 42,48 | 0,34  | 0,67       |   |
| 21.        | $CaMg(CO_3)_2 + 1 m$<br>CaCl <sub>2</sub> (porló dolomit)                      | 1:2    | 200  | 33,81 | 17,67 | 42,28 | 0,24  | 0,29       |   |

"Dedolomitosodás-rekalcitosodás" problémaköre

| 40 |
|----|
| 43 |
|    |

8. táblázat

| A                        | TOM                       | K V O C | LENS      | S L O            | CaO:MgO | Ca <sup>2+</sup> : Mg <sup>2+</sup> | Kristályfázisok                                     |
|--------------------------|---------------------------|---------|-----------|------------------|---------|-------------------------------------|-----------------------------------------------------|
| Ca <sup></sup><br>0,5795 | Mg <sup>-</sup><br>0,5226 | 1,0563  | рп<br>5-6 | п <sub>2</sub> 0 | 1,54    | 1,109                               | $D \gg Ca_1 - Ca_2 - (Mg_2)$                        |
|                          | -                         |         |           |                  |         |                                     |                                                     |
| 0,5742                   | 0,5330                    | 1,0606  | 6,35      |                  | 1,50    | 1,077                               | D≫Ca <sub>1</sub> -Mg <sub>2</sub>                  |
| 0,5911                   | 0,5208                    | 1,0461  | 6,42      |                  | 1,58    | 1,135                               | D≫Ca₁-Ca₂-Mg₂                                       |
| 0,5599                   | 0,5310                    | 1,0510  | -         |                  | 1,46    | 1,045                               | $D \gg Mg_2 - (Ca_2 - Ca_3)$                        |
| 0,5804                   | 0,5231                    | 1,0486  | 6,55      |                  | 1,54    | 0,109                               | $D > Ca_1 - Ca_2 - Mg_2 - (Ca_3)?$                  |
| 0,5877                   | 0,5131                    | 1,0429  | 6,65      |                  | 1,59    | 1,145                               | $D > Ca_1 - Mg_3 - (Ca_3)?$                         |
| 0,5735                   | 0,5243                    | 1,0452  | 5–6       | 8                | 1,52    | 1,094                               | $D > Ca_1 - Ca_2 - Ca_3 - Mg_2$                     |
| 0,5831                   | 0,5171                    | 1,0610  | 6,1       |                  | 1,57    | 1,128                               | D>Ca₁−Ca₂                                           |
| 0,5692                   | 0,4859                    | 1,0459  | 5-6       |                  | 1,62    | 1,171                               | $D > Ca_1 - Ca_2 - Mg_2 - (Ca_3)?$                  |
| 0,5653                   | 0,5372                    | 1,0538  | 5-6       |                  | 1,46    | 1,052                               | D>Ca₁≈Ca₂                                           |
| 0,5808                   | 0,5196                    | 1,0545  | 6,45      |                  | 1,55    | 1,118                               | $D > Mg_2 - Ca_1 - Ca_2 - (Ca_3)?$                  |
| 0,6093                   | 0,4883                    | 1,0488  | 6,16      |                  | 1,73    | 1,248                               | D≽Ca, –(Ca₂)?                                       |
| 0,5429                   | 0,5464                    | 1,0406  | 5–6       |                  | 1,38    | 0,994                               | D>Ca,-Ca <sub>2</sub> -Mg <sub>2</sub>              |
| 0,5806                   | 0,5144                    | 1,0443  | 6,19      |                  | 1,57    | 1,129                               | D>Mg <sub>2</sub> -Ca <sub>1</sub> -Ca <sub>2</sub> |
| 0,6015                   | 0,4898                    | 1,0525  | 5,96      |                  | 1,71    | 1,228                               | $D > Mg_2 - (Ca_1 - Ca_2)?$                         |
| 0,5594                   | 0,5320                    | 1,0506  | 5–6       |                  | 1,46    | 1,051                               | $D > Ca_1 - Mg_2 - (Ca_2 - Ca_3)?$                  |
| 0,5711                   | 0,5072                    | 1,0291  | 6,05      |                  | 1,57    | 1,226                               | D≽Ca,+?                                             |
| 0,5578                   | 0,5275                    | 1,0309  | 6,15      |                  | 1,47    | 1,057                               | $D>Ca_{1}-Mg_{2}-(Ca_{2}-Ca_{3})?$                  |
| 0,5470                   | 0,5064                    | 0,9895  | 5,90      |                  | 1,50    | 1,080                               | $D > Ca_1 - (Ca_2 - Ca_3 - Mg_2)?$                  |
| 0,5749                   | 0,4735                    | 0,9652  | 5–6       |                  | 1,69    | 1,214                               | $D > Ca_1 - (Ca_2 - Mg_2)?$                         |
| 0,6029                   | 0,4382                    | 0,9607  | 5,45      |                  | 1,91    | 1,376                               | $D \ge Ca_1 - Ca_2 - (Ca_3)?$                       |

| Kisérlet | Prove day                                                                      |         | C <sup>o</sup> | ELEMZÉS |       |       |       |      |  |
|----------|--------------------------------------------------------------------------------|---------|----------------|---------|-------|-------|-------|------|--|
| jele     | Hendszer                                                                       | Mg : Ca | C              | CaO %   | MgO % | CO, % | C1 %  | H20% |  |
| 22.      | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 1 m<br>CaCl <sub>2</sub> (porló dolomit) | 2 : 1   | 225            | 30,19   | 19,62 | 40,67 | 0,24  | 0,74 |  |
| 23.      | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 1 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:1     | 225            | 31,89   | 19,81 | 43,50 | -     | 0,09 |  |
| 24.      | $CaMg(CO_3)_1 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2     | 225            | 32,13   | 17,88 | 39,32 | -     | 0,90 |  |
| 25.      | $C_{a}Mg(CO_{3})_{2} + 1 m$<br>$C_{a}Cl_{2}$ (porló dolomit)                   | 2:1     | 250            | 31,06   | 21,41 | 43,14 | 0,36  | 1,48 |  |
| 26.      | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1     | 250            | 32,64   | 20,54 | 44,70 | 1,32  | 0,83 |  |
| 27.      | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 1 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:2     | 250            | 33,06   | 19,02 | 41,40 | 0,44  | 1,63 |  |
| 28.      | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 2 : 1   | 275            | 31,80   | 21,32 | 44,81 | 0,94  | 0,64 |  |
| 29.      | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1     | 275            | 32,00   | 20,48 | 44,13 | 5,91? | 1,70 |  |
| 30.      | $CaMg(CO_3)_2 + 1 m$<br>CaCl <sub>2</sub> (porló dolomit)                      | 1:2     | 275            | 32,33   | 19,60 | 41,69 | 0,42  | 1,63 |  |
| 31.      | $CaMg(CO_3)_2 + 1 m$<br>CaCl <sub>2</sub> (porló dolomit)                      | 2:1     | 300            | 29,36   | 19,30 | 34,08 | 0,83  | 2,38 |  |
| 32.      | $CaMg(CO_3)_2 + 1 m$<br>CaCl <sub>2</sub> (porló dolomit)                      | 1:1     | 300            | 30,04   | 18,31 | 32,45 | -     | 3,66 |  |
| 33.      | $CaMg(CO_3)_2 + 1 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2     | 300            | 28,40   | 17,68 | 27,30 | 0,43  | 3,45 |  |

## 250-275 °C = -2,69% MgO-hiány 300 °C = -4,32% MgO-hiány

Nagyobb Ca<sup>2+</sup>-koncentrációk esetén (pl. Mg : Ca = 1 : 2) a vizsgált rendszerek kristályfázisai CaO%-ban viszony lag gazdagabbak (300 °C kivételével), ugyanakkor nagyobb MgO-hiányokkal jellemezhetők.

Ha az elemzéseket a 8. táblázatban követhető sorrendben vizsgáljuk, azt tapasztaljuk, hogy az eltérőek a kationviszonyok: adott hőmérsékleten belül – kisebb ingadozásokkal – a kristályfázisok CaO–MgO-eloszlásai követik a szilárd fázis (porló dolomit) és az oldat kationarányait. A Ca<sup>2+</sup>-túlsúllyal rendelkező oldatok hatására Ca-ban "gazdagabb" és Mg-ban "szegényebb" kristályfázisok képződnek.

3.2.1. Porló dolomit : Ca<sup>2+</sup>= 2 : 1 kristályfázisai (1,0 mólos oldat)

50  $^{\circ}C = D \gg Ca_1 - Ca_2 - (Mg_2)$ ? 75  $^{\circ}C = D \gg Mg_2 - (Ca_2 - Ca_3)$ 

| - A              | том              | кчо    | CIEN | s   | C-0 1 M-0 | Ca <sup>2+</sup> Ma <sup>2+</sup> | K sizzálu (dejze)                                       |  |
|------------------|------------------|--------|------|-----|-----------|-----------------------------------|---------------------------------------------------------|--|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-   | рН   | н,о |           | Ca : Mg                           | Kristaryrazisok                                         |  |
| 0,5383           | 0,4866           | 0,9241 | 5-6  |     | 1,54      | 1,106                             | D≫Ca, -{Ca₂-Ca₃-Mg₂)?                                   |  |
| 0,5686           | 0,4913           | 0,9884 | 5-6  |     | 1,61      | 1,157                             | $D \gg Ca_1 - (Ca_3 - Mg_2)?$                           |  |
| 0,5729           | 0,4434           | 0,8934 | 5,57 |     | 1,80      | 1,292                             | $D>Ca_{1}-(Ca_{2}-Mg_{2})?$                             |  |
| 0,5538           | 0,5310           | 0,9802 | 6,15 |     | 1,45      | 1,042                             | D≫Mg₂-(Ca₁)                                             |  |
| 0,5820           | 0,5094           | 1,0156 | 5-6  |     | 1,59      | 1,142                             | $D \gg Mg_2 - (Ca_2)?$                                  |  |
| 0,5895           | 0,4717           | 0,9406 | 5-6  | -   | 1,74      | 1,249                             | $D \gg Mg_2 - (Ca_2 - Ca_3)?$                           |  |
| 0,5670           | 0,5287           | 1,0181 | 56   |     | 1,49      | 1,072                             | D≫Mg₂-Ca₂                                               |  |
| 0,5706           | 0,5079           | 1,0027 | 5–6  |     | 1,56      | 1,123                             | D≫Mg,-Ca,-(Ca,)?                                        |  |
| 0,5764           | 0,4861           | 0,9472 | 5-6  |     | 1,65      | 1,185                             | $D \gg Mg_2(-Ca_1 - Ca_3)?$                             |  |
| 0,5235           | 0,4786           | 0,7743 | 5–6  |     | 1,52      | 1,093                             | D≫(Mg₂-Ca₂(-Ca₁-Mg₁)?                                   |  |
| 0,5356           | 0,4541           | 0,7373 | 56   |     | 1,64      | 1,179                             | D≫Mg <sub>2</sub> -Ca <sub>2</sub> -(Ca <sub>3</sub> )? |  |
| 0,5064           | 0,4384           | 0,6202 | 5–6  |     | 1,61      | 1,155                             | D≽(Ca₁−Ca₂)                                             |  |

8. táblázat folytatása

 $100 \ ^{\circ}C = D \gg Ca_{1} - Ca_{2} - Ca_{3} - Mg_{2}$   $125 \ ^{\circ}C = D > Ca_{1} - Ca_{2}$   $150 \ ^{\circ}C = D > Ca_{1} - Ca_{2} - Mg_{2}$   $175 \ ^{\circ}C = D \gg Ca_{1} - Mg_{2} - (Ca_{2} - Ca_{3})?$   $200 \ ^{\circ}C = D \gg Ca_{1} - (Ca_{2} - Ca_{3} - Mg_{2})?$   $225 \ ^{\circ}C = D \gg Ca_{1} - (Ca_{2} - Ca_{3} - Mg_{2})$   $250 \ ^{\circ}C = D \gg Mg_{2} - (Ca_{1})$   $275 \ ^{\circ}C = D \gg Mg_{2} - Ca_{2}$   $300 \ ^{\circ}C = D \gg (Mg_{2} - Ca_{2}) - (Mg_{1} - Ca_{1})?$ 

D = dolomit, Ca<sub>1</sub> = kalcit, Ca<sub>2</sub> = aragonit, Ca<sub>3</sub> = vaterit, Mg<sub>2</sub> = MgCO<sub>3</sub>  $\cdot$  2 H<sub>2</sub>O, Mg<sub>1</sub> = MgCO<sub>3</sub>.

A röntgen- és vegyelemzések tanúsítják, hogy a vizsgált körülmények között Catúlsúlyú oldat nem hat alapvető módon a dolomitrács átrendeződésére. A stabil dolomitrács felületéről korlátozott a kationlehasadás – elsősorban magnézium – anélkül, hogy az oldat kationja (Ca<sup>2+</sup>) jelentősebb mértékben helyébe lépne. Legfeljebb arról lehet szó,

hogy a dolomit korlátozott mértékben ún. meszes dolomittá ("protodolomit") alakul, ami keretként övezi az anyafázis (porló dolomit) kristályait. Az oldatban levő Ca<sup>2+</sup> és a Mg<sup>2+</sup> epigén fázisként rögzítődik. A "dedolomitosodás", "rekalcitosodás" abban fejeződik ki, hogy az anyafázist a kalcit-aragonit-vaterit filmszerűen, hártyaként vonja be, vagy a dolomit-romboéderek felületén kristályok sarjadzanak. A lefolytatott modellkísérletek tükrében nem beszélhetünk kationcserével járó szilárd fázisú metaszomatózisról.

A MgCO<sub>3</sub> + CaCl<sub>2</sub>-H<sub>2</sub>O-rendszerekkel szemben a kalcit az aragonitnál szignifikánsabb CaCO<sub>3</sub>. Kalcitrácsú CaCO<sub>3</sub>-t 250 °C-ig észlelünk, vaterit (hexagonális CaCO<sub>3</sub>) jelenlétére az esetek többségében csak 2–3 d/Å vonala utal.

3.2.2. Porló dolomit : Ca<sup>2+</sup>= 1 : 1 kristályfázisai (1,0 mólos oldat)

 $\begin{array}{c} 50\ ^{\circ}C = D \geqslant Ca_{1} - Mg_{2} \\ 75\ ^{\circ}C = D \geqslant Ca_{1} - Ca_{2} - Mg_{2} - (Ca_{3}\,?\,) \\ 100\ ^{\circ}C = D \geqslant Ca_{1} - Ca_{2} \\ 125\ ^{\circ}C = D \geqslant Mg_{2} - Ca_{1} - Ca_{2} - (Ca_{3}\,?\,) \\ 150\ ^{\circ}C = D \geqslant Mg_{2} - Ca_{1} - Ca_{2} \\ 175\ ^{\circ}C = D \geqslant Ca_{1} + ? \\ 200\ ^{\circ}C = D \geqslant Ca_{1} - (Ca_{2} - Mg_{2}\,)? \\ 225\ ^{\circ}C = D \geqslant Ca_{1} - (Ca_{3} - Mg_{2}\,)? \\ 250\ ^{\circ}C = D \geqslant Mg_{2} - (Ca_{2}\,)? \\ 275\ ^{\circ}C = D \geqslant Mg_{2} - Ca_{2}\,(Ca_{3}\,?\,) \\ 300\ ^{\circ}C = D \geqslant Mg_{2} - Ca_{2} - (Ca_{3}\,?\,) \end{array}$ 

D = dolomit,  $Ca_1 = kalcit$ ,  $Ca_2 = aragonit$ ,  $Ca_3 = vaterit$ ,  $Mg_2 = MgCO_3 \cdot 2 H_2 O$ .

Az előző kísérleti modellhez viszonyítva elsősorban az epigén-járulékos elegyrészek arányaiban van különbség. Az aragonit és a vaterit szerepe csökken, 50-225 °C között kalcit az uralkodó CaCO<sub>3</sub>, 250 °C-tól aragonit szerepe szignifikáns.

3.2.3. Porló dolomit : Ca<sup>2+</sup>= 1 : 2 kristályfázisai (1,0 mólos oldat)

 $50 \ ^{\circ}C = D \gg Ca_1 - Ca_2 - Mg_2$   $75 \ ^{\circ}C = D \gg Ca_1 - Mg_2 - (Ca_3?)$   $100 \ ^{\circ}C = D \gg Ca_1 - Ca_2 - Mg_2 - (Ca_3?)$   $125 \ ^{\circ}C = D \gg Ca_1 - (Ca_2)$   $150 \ ^{\circ}C = D \gg Mg_2 - (Ca_1 - Ca_2)?$   $175 \ ^{\circ}C = D \gg Ca_1 - Mg_2 - (Ca_2 - Ca_3)?$   $200 \ ^{\circ}C = D \gg Ca_1 - (Ca_2 - Mg_2)?$   $250 \ ^{\circ}C = D \gg Mg_2 - (Ca_2 - Ca_3)?$   $275 \ ^{\circ}C = D \gg Mg_2 - (Ca_1 - Ca_3?)$   $300 \ ^{\circ}C = D \gg (Ca_1 - Ca_2)$ 

D = dolomit,  $Ca_1$  = kalcit,  $Ca_2$  = aragonit,  $Ca_3$  = vaterit,  $Mg_2$  =  $MgCO_3 \cdot 2 H_2 O$ .

A röntgenértékelésekből és vegyelemzésekből egyértelműen kitűnik, a porló dolomitnak rendkívül korlátozott az oldódása a vizsgált paraméterek között. A metaszomatikus kationcserével járó teljes szerkezeti átalakulása pedig nem következik be! Természetes dolomit-környezetben (pl. anizuszi–nóri dolomitszintek) a CaCO<sub>3</sub> valamelyik módosulatának jelenléte két tényezővel lehet kapcsolatos:

- a) az aszcendens-deszcendens oldatok Ca(HCO<sub>3</sub>)<sub>2</sub> dehidratációjával,
- b) a dolomit részbeni oldódásából származó Ca<sup>2+</sup>-ionjai hatására zárt földtani keretek között, ill. nyílt rendszerekben "szénsavdús" a CO<sub>2</sub>-nak relatív nagy parciális nyomása alatt.

## **3.2.4.** Porló dolomit : $Ca^{2+} = 2 : 1$ (2,5 mólos oldat)

### 3.2.4.1. Vegyelemzések értékelése (9. táblázat)

Az elemzések középértékei alapján a CaO% hat, a MgO% pedig négy hőmérsékleti kategóriába csoportositható (elemzések és a kristálykémiai számítások a 9. táblázatban).

CaO:  $50-75 \degree C = +1,34\%$  CaO-többlet  $100 \degree C = +0,02\%$  CaO-többlet  $125 \degree C = +1,41\%$  CaO-többlet  $150-225 \degree C = -0,31\%$  CaO-hiány  $250 \degree C = -2,43\%$  CaO-hiány  $275-300 \degree C = -0,55\%$  CaO-hiány

Fentiekből arra következtethetünk, hogy – az elemzési hibahatárokat is figyelembe véve – 100, 150--225 °C között és 300 °C-on a porló dolomit CaO%-os mennyisége alig változik, dolomitból mobilizált Ca<sup>2+</sup>-Mg<sup>2+</sup> az esetek többségében oldatban marad.

MgO:  $50-100 \degree C = -0,64\%$  MgO-hiány 125-225 °C = -1,19% MgO-hiány 250-275 °C = -0,58% MgO-hiány 300 °C = -0,26% MgO-hiány

3.2.5. Porló dolomit : Ca<sup>2+</sup>= 1 : 1 (2,5 mólos oldat)

3.2.5.1. Vegyelemzések értékelése (9. táblázat)

CaO: 
$$50-100 \degree C = +1,84\%$$
 CaO-többlet  
 $125-225 \degree C = +0,13\%$  CaO-többlet  
 $250 \degree C = -1,35\%$  CaO-tibblet  
 $275 \degree C = +0,62\%$  CaO-többlet  
 $300 \degree C = -1,32\%$  CaO-tiány

## Dr. Kiss János: "Dolomitosodás-dedolomitosodás-rekalcitosodás" folyamata . . .

| Kísérlet    |                                                                                  |         |     |       | ELÉMZÉS |       |      |                   |  |  |  |
|-------------|----------------------------------------------------------------------------------|---------|-----|-------|---------|-------|------|-------------------|--|--|--|
| jele        | Hendszer                                                                         | Mg : Ca | C   | CaO % | MgO %   | CO2 % | CI % | H <sub>2</sub> 0% |  |  |  |
| 40.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 2:1     | 50  | 32,03 | 21,55   | 46,29 | 1,07 | nyom              |  |  |  |
| 41.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1     | 50  | 32,93 | 20,84   | 46,39 | 1,02 | nyom              |  |  |  |
| 42.         | $C_{a}Mg(CO_{3})_{2} + 2,5 m$<br>$C_{a}Cl_{2}$ (porló dolomit)                   | 1:2     | 50  | 31,78 | 21,45   | 46,25 | 0,85 | 0,17              |  |  |  |
| 43.         | $C_{a}Mg(CO_{3})_{2} + 2,5 m$<br>$C_{a}Cl_{2}$ (porló dolomit)                   | 2 : 1   | 75  | 32,08 | 21,31   | 46,09 | 0,71 | 0,32              |  |  |  |
| 44.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1     | 75  | 32,78 | 20,45   | 45,85 | 1,97 | erős nyom         |  |  |  |
| 45.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2     | 75  | 33,43 | 20,20   | 45,96 | 1,58 | 0,09              |  |  |  |
| 46.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 2 : 1   | 100 | 30,74 | 21,23   | 46,74 | 0,37 | 0,50              |  |  |  |
| 47.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | .1 : 1  | 100 | 31,98 | 21,36   | 46,06 | 0,83 | 0,09              |  |  |  |
| 48.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2     | 100 | 33,03 | 20,62   | 46,03 | 0,80 | 0,10              |  |  |  |
| 49.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 2:1     | 125 | 32,13 | 20,94   | 45,93 | 0,81 | 0,12              |  |  |  |
| 50.         | $C_{a}Mg(CO_{3})_{2} + 2,5 m$<br>$C_{a}Cl_{2}$ (porló dolomit)                   | 1:1     | 125 | 30,87 | 20,49   | 46,77 | 0,53 | 0,34              |  |  |  |
| 51.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2     | 125 | 32,35 | 19,62   | 46,04 | 0,51 | erős nyom         |  |  |  |
| 52.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 2:1     | 150 | 30,58 | 20,93   | 46,38 | 0,47 | 0,33              |  |  |  |
| 53.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1     | 150 | 31,22 | 20,41   | 46,36 | 0,49 | 0,06              |  |  |  |
| 54.         | $CaMg(CO_3)_2 + 2,5 m$<br>CaCl <sub>2</sub> (porló dolomit)                      | 1:2     | 150 | 32,62 | 18,99   | 46,14 | 0,45 | erős nyom         |  |  |  |
| 55.         | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 2,5 m<br>CaCl <sub>2</sub> (porló dolomit( | 2:1     | 175 | 30,62 | 20,87   | 46,24 | 0,49 | nyom              |  |  |  |
| 56.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1     | 175 | 30,91 | 20,72   | 45,78 | 0,68 | 0,52              |  |  |  |
| 57.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2     | 175 | 32,40 | 19,44   | 45,56 | 0,46 | 0,40              |  |  |  |
| 58.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 2 : 1   | 200 | 30,19 | 20,64   | 44,57 | 0,55 | 0,59              |  |  |  |
| <b>59</b> . | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1     | 200 | 30,94 | 19,10   | 43,20 | 0,12 | 2,12              |  |  |  |
| 60.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:2     | 200 | 32,02 | 18,17   | 43,41 | 0,40 | 0,43              |  |  |  |

•

### 9. táblázat

| ۵                | TOM              | кvос   | 1 E N 3 | s   | Ca0 : Ma0 | Q-2+ 1 M-2+         | Maintái udánian k                                  |
|------------------|------------------|--------|---------|-----|-----------|---------------------|----------------------------------------------------|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-   | pН      | н,0 | CaU : MgU | Ca <sup></sup> : mg | K fistalytazisok                                   |
| 0,5711           | 0,5345           | 1,0518 | 5–6     |     | 1,49      | 1,068               | $D \gg Ca_1 - Ca_2 - (Ca_3 - Mg_2)?$               |
| 0,5872           | 0,5169           | 1,0540 | 5–6     |     | 1,58      | 1,136               | $D \gg Ca_1 - Ca_2 - (Mg_2)?$                      |
| 0,5667           | 0,5320           | 1,0509 | 5,3     |     | 1,48      | 1,065               | $D \gg Ca_1 - Ca_2 - (Ca_3 - Mg_2)?$               |
| 0,5720           | 0,5285           | 1,0472 | 5-6     |     | 1,51      | 1,082               | $D \gg Mg_2 - Ca_1 - (Ca_2 - Ca_3)?$               |
| 0,5845           | 0,5072           | 1,0418 | 5–6     |     | 1,60      | 1,152               | $D \gg Ca_1 - Ca_2 - (Ca_3)?$                      |
| 0,5961           | 0,5010           | 1,0443 | 5-6     |     | 1,65      | 1,190               | $D \gg Ca_1 - Ca_2 - (Ca_3 - Mg_2)?$               |
| 0,5481           | 0,5265           | 1,1302 | 5–6     |     | 1,45      | 1,041               | $D \gg Ca_1 - Mg_2 - (Ca_3)?$                      |
| 0,5702           | 0,5298           | 1,0466 | 5–6     |     | 1,50      | 1,076               | $D \gg Ca_1 - Mg_2 - (Ca_3)?$                      |
| 0,5890           | 0,5114           | 1,0459 | 5,65    |     | 1,60      | 1,151               | D≽Ca₁−Ca₃                                          |
| 0,5729           | 0,5193           | 1,0436 | 5–6     |     | 1,53      | 1,103               | $D \ge Ca_1 - Mg_2 - (Ca_2 - Ca_3)?$               |
| 0,5505           | 0,5082           | 1,0627 | 5–6     |     | 1,51      | 1,083               | D≽Ca,-Ca₂-Mg₂                                      |
| 0,5768           | 0,4866           | 1,0461 | 5,45    |     | 1,65      | 1,185               | $D > Ca_1 - (Ca_2 - Mg_2)$                         |
| 0,5453           | 0,5190           | 1,0538 | 5–6     |     | 1,46      | 1,050               | D≽Ca₁-Ca₂-Mg₂                                      |
| 0,5567           | 0,5062           | 1,0533 | 5–6     |     | 1,53      | 1,099               | $D \gg Ca_1 - Mg_2 - (Ca_2 - Ca_3)$                |
| 0,5817           | 0,4710           | 1,0484 | 5–6     |     | 1,72      | 1,235               | $D > Ca_1 - Mg_2 - (Ca_2 - Ca_3)?$                 |
| 0,5460           | 0,5176           | 1,0506 | 56      |     | 1,47      | 1,054               | $D>Ca_{1}-Mg_{2}-(Ca_{2}-Ca_{3})?$                 |
| 0,5512           | 0,5139           | 1,0401 | 56      |     | 1,49      | 1,072               | $D \gg Ca_2 - Ca_1 - (Ca_3)?$                      |
| 0,5777           | 0,4821           | 1,0352 | 5–6     |     | 1,67      | 1,198               | $D>Ca_{1}-(Ca_{2}-Ca_{3})?$                        |
| 0,5383           | 0,5119           | 1,0127 | 5–6     |     | 1,46      | 1,051               | $D \mathrel{\triangleright} (Ca_1 - Ca_3 - Mg_2)?$ |
| 0,5517           | 0,4737           | 0,9816 | 5–6     |     | 1,62      | 1,164               | $D \gg Ca_1 - Ca_2 - (Ca_3 - Mg_2)?$               |
| 0,5710           | 0,4506           | 0,9863 | 5–6     |     | 1,76      | 1,267               | $D \triangleright Ca_1 - (Ca_3 - Mg_2)?$           |

| Kísérlet    | Bondesor                                                                         | Ma . C- | ° c | ELEMZÉS |       |                   |      |             |  |
|-------------|----------------------------------------------------------------------------------|---------|-----|---------|-------|-------------------|------|-------------|--|
| jele        | Hendszer                                                                         | Mg:La   |     | CaO %   | MgO % | CO <sub>2</sub> % | CI % | H20%        |  |
| 61.         | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 2,5 m<br>CaCl <sub>2</sub> (porló dolomit) | 2 : 1   | 225 | 30,23   | 20,65 | 44,41             | 0,45 | 0,76        |  |
| 62.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 1:1     | 225 | 30,30   | 19,07 | 42,08             | 0,81 | 2,15        |  |
| 63.         | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 2,5 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:2     | 225 | 30,85   | 17,60 | 39,66             | 4,08 | 2,67        |  |
| 64.         | $CaMg(CO_3)_2 + 2,5 m$<br>CaCl <sub>2</sub> (porló dolomit)                      | 2:1     | 250 | 28,29   | 21,43 | 43,32             | -    | 1,99        |  |
| 65.         | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 2,5 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:1     | 250 | 29,37   | 21,27 | 45,08             | 0,26 | 0,43        |  |
| 66.         | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 2,5 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:2     | 250 | 32,77   | 18,65 | 40,34             | 1,69 | kevés anyag |  |
| 67.         | $CaMg(CO_3)_2 + 2,5 m$<br>$CaCl_2$ (porló dolomit)                               | 2 : 1   | 275 | 30,35   | 21,41 | 43,30             | 0,63 | 1,50        |  |
| <b>68</b> . | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 2,5 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:1     | 275 | 31,34   | 21,17 | 44,20             | 1,14 | 1,22        |  |
| <b>69</b> . | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 2,5 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:2     | 275 | 31,55   | 20,09 | 42,97             | 0,25 | 1,08        |  |
| 70.         | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 2,5 m<br>CaCl <sub>2</sub> (porló dolomit) | 2:1     | 300 | 30,02   | 21,74 | 42,73             | 0,05 | 1,00        |  |
| 71.         | $CaMg(CO_2)_2 + 2,5 m$<br>CaCl <sub>2</sub> (porló dolomit)                      | 1:1     | 300 | 29,40   | 21,36 | 39,70             | 0,16 | 1,61        |  |
| 72.         | CaMg(CO <sub>3</sub> ) <sub>2</sub> + 2,5 m<br>CaCl <sub>2</sub> (porló dolomit) | 1:2     | 300 | 30,93   | 20,61 | 39,99             | 0,30 | 1,37        |  |

D = dolomit; Ca<sub>1</sub> = kalcit; Ca<sub>2</sub> = aragonit; Ca<sub>3</sub> = vaterit; Mg<sub>2</sub> = MgCO<sub>3</sub> • 2 H<sub>2</sub>O

MgO: 50-75 °C = -1,35% MgO-hiány 100 °C = -0,64% MgO-hiány 125-175 °C = -1,46% MgO-hiány 200-225 °C = -2,91% MgO-hiány 250-300 °C = -1,73% MgO-hiány

A "porló dolomit" :  $Ca^{2+} = 2 : 1$  és 1 : 1 rendszerek vegyelemzési adatainak egybevetésével egy "sajátos" anomália vonalait véljük felfedezni. A Mg<sup>2+</sup>:  $Ca^{2+} = 2 : 1$  rendszer 150–300 °C tartományaiban az oldatfázis  $Ca^{2+}$  jelenléte ellenére a keletkezett kristályfázisok 0,31–2,43% CaO-hiánnyal jellemezhetők. A MgO-veszteség ezzel szemben valamivel kisebb. A Mg<sup>2+</sup>:  $Ca^{2+} = 1 : 1$  rendszerben (az oldatfázis növekvő kalcium koncentrációja) 250 °C és 300 °C-on tapasztaltunk CaO-hiányt (–1,35%, ill. 1,32%), a többi tartományok CaO%-os növekedése egy-két eset kivételével (50 °C–100 °C és 225 °C) alig közelítette meg a "porló dolomit" :  $Ca^{2+} = 1 : 1$  rendszer CaO-értékeit, ahol mindvégig egyértelmű kalciumnövekedést tapasztaltunk.

"Dedolomitosodás-rekalcitosodás" problémaköre

| 4                | том              | куос   | IEN | s                | C-0. M-0 | C-2+ 14-2+ | Krietálufázirok                      |  |
|------------------|------------------|--------|-----|------------------|----------|------------|--------------------------------------|--|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-   | pН  | H <sub>2</sub> O |          | Ca : Mig   | Kristalytazisok                      |  |
| 0,5390           | 0,5121           | 1,0091 | 5–6 |                  | 1,46     | 1,052      | $D \gg Ca_2 - Ca_1 - (Ca_3 - Mg_2)?$ |  |
| 0,5403           | 0,4730           | 0,9561 | 5-6 |                  | 1,59     | 1,142      | $D > Ca_2 - Ca_1 - (Ca_3)?$          |  |
| 0,5501           | 0,4365           | 0,9011 | 5–6 |                  | 1,75     | 1,260      | $D > Ca_1 - Ca_2 - (Ca_3 - Mg_2)?$   |  |
| 0,5044           | 0,5314           | 0,9842 | 5-6 |                  | 1,32     | 0,949      | D>Mg <sub>2</sub>                    |  |
| 0,5237           | 0,5275           | 1,0242 | 5–6 |                  | 1,38     | 0,992      | $D>Mg_2-(Ca_3)?$                     |  |
| 0,5843           | 0,4625           | 0,9165 | 5-6 |                  | 1,76     | 1,263      | $D>Mg_2-(Ca_1-Ca_2)?$                |  |
| 0,5411           | 0,5310           | 0,9838 | 5-6 |                  | 1,42     | 1,019      | $D \ge Mg_2 - (Ca_1 - Ca_3 - Mg_1)?$ |  |
| 0,5588           | 0,5243           | 1,0042 | 5–6 |                  | 1,48     | 1,065      | D>Mg <sub>2</sub>                    |  |
| 0,5625           | 0,4982           | 0,9763 | 5–6 |                  | 1,57     | 1,129      | $D > Mg_2 - (Ca_1 - Ca_2)$           |  |
| 0,5353           | 0,5391           | 0,9708 | 5–6 |                  | 1,38     | 0,992      | $D > Ca_1 - (Ca_3 - Ca_2)?$          |  |
| 0,5242           | 0,5297           | 0,9020 | 5–6 |                  | 1,37     | 0,989      | $D > Ca_2 - Ca_3 - (Ca_2)?$          |  |
| 0,5515           | 0,5111           | 0,9886 | 5-6 |                  | 1,50     | 1,079      | $D > Ca_2 Ca_3 - (Ca_1)?$            |  |

9. táblázat folytatása

3.2.6. Porló dolomit : Ca<sup>2+</sup>= 1 : 2 (2,5 mólos oldat)

3.2.6.1. Vegyelemzések értékelése (9. táblázat)

CaO: 50 °C = +1,06% CaO-többlet 75-100 °C = +2,55% CaO-többlet 125-200 °C = +1,63% CaO-többlet 225 °C = +0,13% CaO-többlet 250 °C = +2,05% CaO-többlet 275-300 °C = +0,52% CaO-többlet MgO: 50-100 °C = -1,24% MgO-hiány 125-200 °C = -1,94% MgO-hiány 225 °C = -4,40% MgO-hiány 250 °C = -3,35% MgO-hiány 275-300 °C = -1,65% MgO-hiány

A két elem közötti különbségek 125 °C-tól érzéklődnek intenzívebben, legnagyobb mérvű MgO-hiány 225 és 250°C-on tapasztalható.

3.2.4. Porló dolomit : Ca<sup>2+</sup> = 2 : 1 kristályfázisai (2,5 mólos oldat)

 $\begin{array}{l} 50\ ^{\circ}C = D \geqslant Ca_{1} - Ca_{2} - (Ca_{3} - Mg_{2})?\\ 75\ ^{\circ}C = D \geqslant Mg_{2} - Ca_{1} - Ca_{2} - (Ca_{3})?\\ 100\ ^{\circ}C = D \geqslant Ca_{1} - Mg_{2} - (Ca_{3})\\ 125\ ^{\circ}C = D \geqslant Ca_{1} - Mg_{2} - (Ca_{2} - Ca_{3})?\\ 150\ ^{\circ}C = D \geqslant Ca_{1} - Ca_{2} - Mg_{2}\\ 175\ ^{\circ}C = D \geqslant Ca_{1} - Mg_{2} - (Ca_{2} - Ca_{3})?\\ 200\ ^{\circ}C = D \geqslant Ca_{1} - Ca_{3} - Mg_{2})?\\ 225\ ^{\circ}C = D \geqslant Ca_{2} - Ca_{1} - (Ca_{3} - Mg_{2})?\\ 250\ ^{\circ}C = D \geqslant Mg_{2}\\ 275\ ^{\circ}C = D \geqslant Mg_{2} - (Ca_{1} - Ca_{2} - Mg_{1})\\ 300\ ^{\circ}C = D \geqslant Ca_{1} - Ca_{3} - (Ca_{2})?\\ \end{array}$ 

D = dolomit, Ca<sub>1</sub> = kalcit, Ca<sub>2</sub> = aragonit, Ca<sub>3</sub> = vaterit, Mg<sub>2</sub> = MgCO<sub>3</sub>  $\cdot$  2 H<sub>2</sub>O, Mg<sub>1</sub> = MgCO<sub>3</sub>.

Szembetűnő a Ca<sub>1</sub> (kalcit)-nak – 250 °C kivételével – minden hőmérsékleti modellben való fellépte, míg az aragonit-vaterit a legtöbb esetben kérdőjeles komponens (50, 75, 100, 125, 175, 225, 300 °C) volt. Bázisos Mg-karbonát 100, 125, 175, 250 °C-on biztosan kimutatható, míg 275 °C-on a MgCO<sub>3</sub>-t gyenge intenzitásvonalak képviselik.

**3.2.5.** Porló dolomit :  $Ca^{2+} = 1 : 1$  kristályfázisai (2,5 mólos oldat)

 $\begin{array}{l} 50 \ ^{\circ}C = D \geqslant Ca_{1} - Ca_{2} - (Mg_{2})? \\ 75 \ ^{\circ}C = D \geqslant Ca_{1} - Ca_{2} - (Ca_{3})? \\ 100 \ ^{\circ}C = D \geqslant Ca_{1} - Mg_{2} - (Ca_{3})? \\ 125 \ ^{\circ}C = D \geqslant Ca_{1} - Ca_{2} - Mg_{2} \\ 150 \ ^{\circ}C = D \geqslant Ca_{1} - Mg_{2} - (Ca_{2} - Ca_{3})? \\ 175 \ ^{\circ}C = D \geqslant Ca_{2} - Ca_{1} - (Ca_{3})? \\ 200 \ ^{\circ}C = D \geqslant Ca_{2} - Ca_{1} - (Ca_{3} - Mg_{2})? \\ 225 \ ^{\circ}C = D \geqslant Ca_{2} - Ca_{1} - (Ca_{3})? \\ 250 \ ^{\circ}C = D \geqslant Mg_{2} - (Ca_{3})? \\ 275 \ ^{\circ}C = D \geqslant Mg_{2} \\ 300 \ ^{\circ}C = D \geqslant Ca_{2} - Ca_{3} - (Ca_{1})? \end{array}$ 

D = dolomit, Ca<sub>1</sub> = kalcit, Ca<sub>2</sub> = aragonit, Ca<sub>3</sub> = vaterit, Mg<sub>2</sub> = MgCO<sub>3</sub>  $\cdot$  2 H<sub>2</sub>O.

A kalcit (Ca<sub>1</sub>) 225 °C-ig minden kísérlet anyagában jelentkezett, 250–275 °C-on a bizonytalan vaterit kivételével önálló CaCO<sub>3</sub>-fázis nem volt, 300 °C-on az aragonit– vaterit jelenléte igazolható, a kalcit bizonytalan. Bázisos Mg-karbonát, mint túlsúlyban levő járulékos komponens 250 °C és 275 °C-on jelentkezett, a többi hőmérsékleten alárendeltebb szerepű volt.

3.2.6. Porló dolomit : Ca<sup>2+</sup>= 1 : 2 kristályfázisai (2,5 mólos oldat)

 $\begin{array}{l} 50\ ^{\circ}C=D \geqslant Ca_{1}-Ca_{2}-(Ca_{3}-Mg_{2})?\\ 75\ ^{\circ}C=D \geqslant Ca_{1}-Ca_{2}-(Ca_{3}-Mg_{2})\\ 100\ ^{\circ}C=D \geqslant Ca_{1}-Ca_{3}\\ 125\ ^{\circ}C=D \geqslant Ca_{1}-(Ca_{2}-Mg_{2})?\\ 150\ ^{\circ}C=D \geqslant Ca_{1}-(Ca_{2}-Ca_{3})?\\ 175\ ^{\circ}C=D \geqslant Ca_{1}-(Ca_{2}-Ca_{3})?\\ 200\ ^{\circ}C=D \geqslant Ca_{1}-(Ca_{3}-Mg_{2})?\\ 225\ ^{\circ}C=D \geqslant Ca_{1}-Ca_{2}-(Ca_{3}-Mg_{2})?\\ 250\ ^{\circ}C=D \geqslant Mg_{2}-(Ca_{2}-Ca_{3})?\\ 275\ ^{\circ}C=D \geqslant Mg_{2}-Ca_{1}-Ca_{2}\\ 300\ ^{\circ}C=D \geqslant Ca_{2}-Ca_{3}-(Ca_{1})?\\ \end{array}$ 

A kristályfázisok eloszlása az előzővel (Mg : Ca = 1 : 1) lényegében azonos, kalcit itt is a domináns kísérő komponens, míg a Mg<sub>2</sub> 250–275 °C-on jelentkezett határozottabban.

A porló dolomit +  $CaCl_2 - H_2O$  kémiai, röntgen- és mikroszkópi vizsgálata nem igazolja az irodalomban szereplő ,,dedolomitosodás--rekalcitosodás'' folyamat tényét, a modellkísérletekkel analóg paraméterek között a természetben aligha van rá mód.

A dolomit kismérvű oldódását, rezorpcióját követően a mikroszkópi megfigyelések alapján sincs jelentős  $Ca^{2+}$ -beépülés, legfeljebb arról lehet szó, hogy a  $Ca^{2+}$ -ot többnyire meghaladó  $Mg^{2+}$  lehasadásával a "normál" dolomit ún. protodolomittá (=meszesdolomit) alakul, amely a normál dolomit romboéder (R) peremét filmszerű hártyaként vonja be. A  $Ca^{2+}$  jelentős része epigén-karbonátokban ( $Ca_1 - Ca_2$ ) rögzítődik, közülük a  $Ca_2$ -nek (aragonit) voltak jól definiált kristályalakzatai (VII. tábla 2. és VIII. tábla 1. képek).

3.3. "MESZES DOLOMIT" + CaCl<sub>2</sub> –  $H_2O$  RENDSZER

A modellkísérletek alapjául pilisvörösvári "meszes dolomit" kőzetanyagot használtunk. A kőzet vegyelemzési adatai:

| SiO2      | 0,19%  |
|-----------|--------|
| $AI_2O_3$ | 0,13%  |
| $Fe_2O_3$ | 0,04%  |
| FeO       | 0,06%  |
| CaO       | 32,05% |
| MgO       | 20,90% |
| K₂O       | 0,04%  |

| K ísérlet |                                                    |         |      | ELEMZÉS |       |       |      |                   |  |
|-----------|----------------------------------------------------|---------|------|---------|-------|-------|------|-------------------|--|
| jele      | Hendszer                                           | Mg : Ca |      | CaO %   | MgO % | CO2 % | CI % | H <sub>2</sub> 0% |  |
| 158.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 50   | 33,23   | 20,30 | 45,58 | -    | nyom              |  |
| 159.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 75   | 32,25   | 21,15 | 46,14 | 0,57 | 0,74              |  |
| 160.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 100  | 33,86   | 20,15 | 45,86 | -    | nyom              |  |
| 161.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 125  | 33,67   | 19,99 | 45,30 | -    | nyom              |  |
| 162.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 150  | 33,80   | 19,52 | 45,51 | -    | erős nyom         |  |
| 163.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 1.75 | 33,98   | 19,68 | 44,67 | 2,23 | erős nyom         |  |
| 164.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 200  | 33,52   | 19,39 | 42,76 | 0,29 | 0,85              |  |
| 165.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 225  | 33,19   | 19,42 | 40,86 | 1,32 | 1,74              |  |
| 166.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 250  | 34,09   | 18,75 | 43,43 | 0,44 | 1,47              |  |
| 167.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 275  | 26,09   | 25,21 | 44,07 | 0,31 | 0,79              |  |
| 168.      | Meszes dolomit +<br>+ 3 ml 2,5 m CaCl <sub>2</sub> | -       | 300  | 30,04   | 18,31 | 32,45 | 0,59 | 3,66              |  |

D = dolomit; Ca<sub>1</sub> = kalcit; Ca<sub>2</sub> = aragonit; Ca<sub>3</sub> = vaterit; Mg<sub>2</sub> = MgCO<sub>3</sub> • 2 H<sub>2</sub>O

| Na <sub>2</sub> O              | 0,21%   |  |  |
|--------------------------------|---------|--|--|
| H₂O                            | 1,42%   |  |  |
| CO₂                            | 45,51%  |  |  |
|                                | 100,55% |  |  |
| SiO2                           | 0,19%   |  |  |
| Al <sub>2</sub> O <sub>3</sub> | 0,13%   |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | 0,04%   |  |  |
| K₂O                            | 0,04%   |  |  |
| Na <sub>2</sub> O              | 0,21%   |  |  |
| H₂O                            | 1,42%   |  |  |
|                                | 2,03%   |  |  |

Levonások:

| ATOMKVOCIENS     |                  |        | Co0 : Ma0        | Ca <sup>2+</sup> · Ma <sup>2+</sup> | K siezály fázlen k |      |                                                     |
|------------------|------------------|--------|------------------|-------------------------------------|--------------------|------|-----------------------------------------------------|
| Ca <sup>2+</sup> | Mg <sup>2+</sup> | CO3-   | H <sub>2</sub> O | рН                                  |                    |      | Kristaryrazisuk                                     |
| 0,5721           | 0,5034           | 1,0356 |                  | 56                                  | 1,64               | 1,14 | D≽Mg₂-Ca₂(?)                                        |
| 0,5750           | 0,5245           | 1,0483 |                  | 5-6                                 | 1,52               | 1,10 | D≽(Ca₁-Ca₂)                                         |
| 0,6037           | 0,4997           | 1,0420 |                  | 5-6                                 | 1,68               | 1,21 | $D \gg Mg_2 - (Ca_2 - Ca_3)?$                       |
| 0,6003           | 0,4957           | 1,0292 |                  | 5-6                                 | 1,68               | 1,21 | D>Mg <sub>2</sub>                                   |
| 0,6027           | 0,4841           | 1,0340 |                  | 5-6                                 | 1,73               | 1,24 | $D > Mg_2 - Ca_2(?)$                                |
| 0,6059           | 0,4880           | 1,0149 |                  | 56                                  | 1,73               | 1,24 | $D>Ca_1-Ca_3-Ca_2$                                  |
| 0,5977           | 0,4809           | 0,9715 |                  | 5-6                                 | 1,73               | 1,24 | $D>Ca_1-Mg_2-Ca_3(?)$                               |
| 0,5918           | 0,4816           | 0,9284 |                  | 5-6                                 | 1,70               | 1,23 | D>Mg <sub>2</sub> -Ca <sub>1</sub> -Ca <sub>2</sub> |
| 0,6078           | 0,4650           | 0,9867 | 4                | 5-6                                 | 1,82               | 1,31 | $D > Ca_1 - Mg_2$                                   |
| 0,4652           | 0,6252           | 1,0013 |                  | 5-6                                 | 1,03               | 0,74 | D≥Ca₁-Mg₂                                           |
| 0,5356           | 0,4541           | 0,7382 |                  | 5-6                                 | 1,64               | 1,18 | D>Ca,-Mg,                                           |

10. táblázat

Levonások után:

CaO 32,53% = 0,580 (atomkvociens), MgO 21,21% = 0,526 (atomkvociens), FeO 0,06% = 0,001 (atomkvociens), CO<sub>2</sub> <u>46,19%</u> <u>99,99%</u>

Elemző: Tolnai V. MÁFI

Képlete Ca<sub>0.580</sub>Mg<sub>0.526</sub>Fe<sub>0.001</sub>CO<sub>3</sub>-ban adható meg.

A vegyelemzések és a röntgenelemzések Mg-deficites, meszes dolomitra utalnak. A kísérleteket csak dolomit + 3 ml 2,5 mólos  $CaCl_{2(aq)}$ -rendszerben vizsgáltuk, közelítőleg Ca : Mg = 2 : 1-nek felelt meg.

3.3.1. "Meszes dolomit" + Ca<sup>2+</sup>-rendszer termékeinek vegyelemzési értékelései (10. táblázat)

CaO: 
$$50 \degree C = 33,23\% = +0,70\%$$
 CaO-többlet  
75 °C =  $32,25\% = -0,28\%$  CaO-tiány  
100 °C =  $33,86\% = +1,33\%$  CaO-többlet  
125 °C =  $33,67\% = +1,14\%$  CaO-többlet  
150 °C =  $33,80\% = +1,27\%$  CaO-többlet  
175 °C =  $33,98\% = +1,45\%$  CaO-többlet  
200 °C =  $33,52\% = -0,99\%$  CaO-tiány  
225 °C =  $33,19\% = +0,66\%$  CaO-többlet  
250 °C =  $34,09\% = +1,56\%$  CaO-többlet  
275 °C =  $26,09\% = -6,44\%$  CaO-tiány  
300 °C =  $30,04\% = -2,49\%$  CaO-hiány

Fentiek alapján 100–175 °C között nincs alapvető változás, 200–225 °C között a CaO %-eloszlásai ingadozók, 250–275 °C-ig és 300 °C-on határozottan CaO-deficit tapasztalható.

MgO: 50 °C = 20,30% = -0,91% MgO-hiány 75 °C = 21,15% = -0,06% MgO-hiány 100 °C = 20,15% = -1,06% MgO-hiány 125 °C = 19,99% = -1,22% MgO-hiány 150 °C = 19,52% = -1,69% MgO-hiány 175 °C = 19,68% = -1,53% MgO-hiány 200 °C = 19,39% = -1,82% MgO-hiány 225 °C = 19,42% = -1,79% MgO-hiány 250 °C = 18,75% = -2,46% MgO-hiány 275 °C = 25,21% = +4,00% MgO-hiány 200 °C = 18,31% = -2,90% MgO-hiány

A vegyelemzések adatsorai arra utalnak, hogy  $Mg^{2+}$ -ban erősebben deficites,  $Ca^{2+}$ -ban valamivel gazdagabb dolomitot sem lehet arra késztetni, hogy  $Ca^{2+}$ -felvétellel "dedolomitosodjék", "rekalcitosodjék". Nagyobb fokú változás 275–300 °C között jelentkezik, ez esetben is a meszes-dolomit ("proto-dolomit") Ca<sup>+</sup>-vesztéssel rendezettebb, "normál dolomit" összetétel felé közelít. A 250 és 300 °C-on fellépő 2,46–2,90% Mg<sup>2+</sup>-hiány oldatban maradt, ill. töredéke MgCO<sub>3</sub> • 2 H<sub>2</sub>O-ban rögzítődött. A 275°C+ 4,00% MgO-többlete feltehetően korrekcióra szorul annál is inkább, mert kristályfázisai között a MgCO<sub>3</sub> • 2 H<sub>2</sub>O jelenléte is bizonytalan!

3.3.2. "Meszes dolomit": Ca<sup>2+</sup>-rendszer kristályfázisai

50 °C = D  $\gg$  Mg<sub>2</sub>-(Ca<sub>2</sub>)? 75 °C = D  $\gg$  (Ca<sub>1</sub>-Ca<sub>2</sub>) 100 °C = D  $\gg$  Mg<sub>2</sub>-(Ca<sub>2</sub>-Ca<sub>3</sub>)?

 $\begin{array}{l} 125 \ ^{\circ}C = D > Mg_{2} \\ 150 \ ^{\circ}C = D \ge Mg_{2} - (Ca_{2})? \\ 175 \ ^{\circ}C = D \ge Ca_{1} - Ca_{3} - Ca_{2} \\ 200 \ ^{\circ}C = D \ge Ca_{1} - Mg_{2} - (Ca_{3})? \\ 225 \ ^{\circ}C = D \ge Mg_{2} - Ca_{1} - Ca_{2} \\ 250 \ ^{\circ}C = D \ge Ca_{1} - Mg_{2} \\ 275 \ ^{\circ}C = D \ge Ca_{1} - Mg_{2} \\ 300 \ ^{\circ}C = D \ge Ca_{1} - Mg_{2} \end{array}$ 

ahol D = dolomit, Ca<sub>1</sub> = kalcit, Ca<sub>2</sub> = aragonit, Ca<sub>3</sub> = vaterit, Mg<sub>2</sub> = MgCO<sub>3</sub> • 2 H<sub>2</sub>O. A "meszes dolomit" – a porló dolomithoz hasonlóan – a Ca<sup>2+</sup>-dús oldatok hatására metaszomatikusan nagyobb hőmérsékleten sem alakul át kalcittá, de nem zárja ki, hogy részleges-teljes feloldásával a felszabaduló Ca<sup>2+</sup> valamelyik karbonát alakban in situ rögzítődjék. Epigén fázisai itt elsősorban kalcit, az aragonit-vaterit jelenléte bizonytalan, ill. háttérbe szorul. Utóbbiakhoz hasonló szerepű a MgCO<sub>3</sub> • 2 H<sub>2</sub>O is. Ilyen alapon beszélhetünk ugyan "rekalcitosodott" dolomitról, ez azonban kívül esik a "metaszomatózis" definícióját meghatározó folyamaton, polifázisos rendszerek aszinkron termékeiről van szó.



## 4. KRISTÁLYFÁZISOK MORFOGENETIKAI ÉRTÉKELÉSE

A szemcsék 10–30  $\mu$ -os mérete fénymikroszkópos értékelést korlátozottan tesz lehetővé. A több ezres nagyítást biztosító pásztázó optika (scanning) a morfológiai-szerkezeti változások egész sorát tárja fel, a kristályszerkezeti átrendeződés egyes mozzanatai is jól követhetők. A változások legszembetűnőbb esetét a CaCO<sub>3(s)</sub>-Fe<sup>2+</sup>-rendszeren mutatjuk be (I. tábla, 1–2. kép), de CaCO<sub>3(s)</sub>-Mg<sup>2+</sup><sub>(aq)</sub> 300 °C, 15 000X nagyítású felvételen is hasonló morfogenetikai mechanizmus olvasható ki. A szilárdfázis-oldatrendszer kation-cseréje (metaszomatózis) több lépcsős folyamat, elvileg a szilárd fázis teljes R<sup>2+</sup>-cseréje bekövetkezhet az "anyaszerkezet" feloldása nélkül:

$$\begin{array}{l} {\sf Ca}^{2^+} \longrightarrow {\sf Fe}^{2^+} \\ {\sf Ca}^{2^+} \longrightarrow {\sf Mn}^{2^+} \\ {\sf Ca}^{2^+} \longrightarrow {\sf Mg}^{2^+} \mbox{ etc.} \end{array}$$

esetenként ez a csere korlátozott, okául mindkét esetben a kationok méretei, kovalensionos jellegei, az "anyaszerkezet" stabilitása tűnik meghatározónak. Míg pl. a kalcitrács  $Ca^{2+}$ -ja Mg<sup>2+</sup>-Fe<sup>2+</sup>-Mn<sup>2+</sup>-nal teljes mértékben lecserélhető ( $Ca^{2+} = 0.99 \text{ Å} \rightarrow Mg^{2+} =$ = 0,66 Å; vagy  $Ca^{2+} = 0.99 \rightarrow Fe^{2+} = 0.74 \text{ Å}$ ), ennek fordítottja már korlátozott, pl.

$$Ca,Mg(CO_3)_2 \rightarrow Ca_{(aq)}^{2+}$$
 (Mg<sup>2+</sup> helyébe).

A kationcsere intenzitása egyes "sávokban" (romboédersík) fokozottabb, ugyanazon öv többi síkjai érintetlenek. Előbbiek diszlokációs-, elektrosztatikusan kiegyenlítetlen rácssíkok helyei rácsparaméter-változás nélkül rendeződtek az anyafázis romboéder síkjában: ekkor sávosan, ha anélkül (pl. inkoherens rácshibák) a kristálylap (romboéder) különböző pontjain jelennek meg a "kioldások és a kationcserék" intenzívebb helyei. Ennek eredménye a "cserélhetőbb" kation kilépésének az oldat felé áramlásának felgyorsulása. Ilyformán a lassúbb kation beépülése miatt a kristály (romboéder) üregessé válik. Az "üreges" kristály vázát a még anyafázisú kalcit új fázisának (FeCO<sub>3</sub>, MgCO<sub>3</sub>) néhány  $\mu$ -os romboéder kerete rögzíti, az üregeket pedig a dekreszcencia-elv analógiáját mintázva az új fázis (MgCO<sub>3</sub>, FeCO<sub>3</sub>) romboéderei lépcsőzetesen töltik fel. Az I. tábla 1. kép CaCO<sub>3(s)</sub>-Fe<sup>2+</sup><sub>(aq)</sub> = 1 : 2 szobahőmérsékleten (3 év – zárt rendszer) előállított üregeskitöltelen FeCO<sub>3</sub> romboédert mutat be. Az I. tábla 2. kép ugyanaz a rendszer hosszabb kezeléssel (5 év – zárt rendszer) előállított közel teljesen "feltöltött" FeCO<sub>3</sub>-romboédert mutat be, a felületén  $\alpha$ -FeOOH + vaterittel. Az I. tábla, 3. képén  $CaCO_{3(s)} + Mg_{(aq)}^{2+} = 70$ : 30 rendszer 50 °C-on kezelt  $CaCO_3$  (kalcit) és romboéderei láthatók, a síkok felületére tapadt krisztallítok triklin  $MgCO_3 \cdot 2 H_2O$  (barringtonit).

Az oldat  $Mg^{2^*}$ -koncentráció növelésével [CaCO<sub>3(s)</sub>- $Mg^{2^*}_{(aq)} = 50:50$ ] ugyanazon a hőfokon (50 °C) fokozódik a MgCO<sub>3</sub> · 2 H<sub>2</sub>O képződése, a kalcit felületén jól kivehetők a kioldott diszlokációs foltok, mezők (I. tábla, 4. kép) 9000X.

A  $CaCO_{3(s)}-Mg_{(aq)}^{2^{*}} = 70: 30, 125 °C-on kezelt kalcit-romboéderben nagyobb kitöl$ tetlen üreg. A kristály alsó peremén jól kivehető sáv és lemezke = MgCO<sub>3</sub> (II. tábla, 1. kép). $A <math>Ca^{2^{+}}: Mg^{2^{+}} = 30: 70: 150 °C-on kalcit kisebb (\mu\phi) kristályai CaMg(CO_3)_2, ill. MgCO_3$  $má alakultak, nagyobb (40–50 <math>\mu$ ) kalcit-romboéderek részben üregesek, részben MgCO<sub>3</sub>--CaMg(CO<sub>3</sub>)<sub>2</sub> filmszerűen kérgezi (II. tábla, 2. kép). A 175 °C Ca<sup>2+</sup>: Mg = 70: 30 rendszerben képződött dolomit (,,protodolomit'') kristály II. tábla, 3. kép. A határozatlan körvonalú képletek epigén MgCO<sub>3</sub> · 2 H<sub>2</sub>O (barringtonit), de MgCO<sub>3</sub> jelenléte is igazolható.

A  $CaCO_{3(s)}-Mg_{(aq)}^{2+} = 70$ : 30 rendszerben 200 °C-on jól definiált  $Ca,Mg(CO_3)_2$  dolomit-romboéderek képződtek, üreges-diszlokációs mezőkkel (11. tábla, 4. kép).

A  $Mg^{2*}$ -ionkoncentráció és a hőmérséklet növekedése fokozza a  $MgCO_3$ , fékezi a Ca, $Mg(CO_3)_2$  képződését. A  $CaCO_{3(s)}-Mg^{2+}=30:70,200$  °C-rendszerben 0,95% CaO-szennyezésű  $MgCO_3$  képződött (III. tábla, 1. kép). Az előző rendszer  $MgCO_3$  romboéder ikerösszenövéssel és a felületén epigén  $MgCO_3 \cdot 2 H_2O$ -val = (III. tábla, 2. kép).

A  $CaCO_{3(s)}-Mg^{2+}_{(aq)} = 30:70$  rendszerben 225 °C-on 1,77% CaO-t tartalmazó MgCO<sub>3</sub> romboéderek képződtek, felületükön MgCO<sub>3</sub> · 2 H<sub>2</sub>O kristályai láthatók = III. tábla, 3. kép.

A  $Ca^{2+}: Mg^{2+} = 50: 50$  rendszerben 275 °C-on üreges és vázszerű MgCO<sub>3</sub>-romboéderek keletkeztek = (III. tábla, 4. kép).

MgCO<sub>3</sub>-mal lépcsőzetesen feltöltődő romboéderüreg : Ca<sup>2+</sup>: Mg<sup>2+</sup> = 50 : 50-rendszer, 275 °C-on = IV. tábla, 1. kép. A IV. tábla 2. kép az előző rendszer (Ca<sup>2+</sup>: Mg<sup>2+</sup> = = 50 : 50, 275 °C-on) ép MgCO<sub>3</sub>-romboédereket mutatja be.

MgCO<sub>3</sub>-romboéderes vázkristályokból álló romboéderüreg kivehető kisebb fokú visszaoldódás nyomaival a IV. tábla, 3. képén követhető.

A porló dolomit +  $Mg_{laq}^{2+} = 70:30$  rendszerben 50 °C-on a dolomit diszlokációs romboéder síkjai részleges oldódással üergessé-lemezessé válnak, a lemezkék felületén  $MgCO_3 \cdot 2 H_2O$ -ból álló foltok, csoportosulások keletkeznek = IV. tábla, 4. kép. A hőmérséklet növekedésével fokozódik a (hohl) síkok fellazulása, a diszlokált rácssíkok részleges leoldásával a dolomit lemezesebbé válik, fokozódik a  $MgCO_3 \cdot 2 H_2O + MgCO_3$  képződése, de ezek a dolomittól még független képletek, epigén kiválások.

Dolomit +  $Mg^{2*} = 50$  : 50, 100 °C-on = V. tábla, 1. kép. Hőmérséklet és  $Mg^{2*}$ -ion-koncentráció növekedése esetén nincs alapvető változás (vö. IV. tábla 4. és V. tábla 2. kép).

175 °C a dolomit stabilitásának hőtartománya. A porló dolomit kristályai Ca<sup>2+</sup> kilépésével és Mg<sup>2+</sup>-beépüléssel jól definiált MgCO<sub>3</sub> + dolomit romboéderekké rendeződnek = dolomit + Mg<sup>2+</sup><sub>(aq)</sub> = 30 : 70, 175 °C V. tábla, 3. kép. Előző rendszer 16 100× nagyítással készült MgCO<sub>3</sub> + dolomit romboédereit az V. tábla 4. képe mutatja. A dolomit + + Mg<sup>2+</sup><sub>(aq)</sub> = 70 : 30 rendszerben 225 °C-on 0,75% CaO-tartalmú MgCO<sub>3</sub>-kristályok képződtek jól kivehető visszaoldódás nyomaival = VI. tábla, 1. kép. Ennek felületén kicsapódott

epigén MgCO $_3 \cdot 2 H_2 O$  krisztallitokat 30 000X nagyításban a VI. tábla 2. képe mutatja.

A "rekalcitosodást" modellező rendszerek egymástól független, önálló fázisok rendszere, főleg oldódás (kioldódás) történik, *kationcserével átkristályosodó mechanizmus morfológiailag sem követhető*. A VI. tábla 3. kép a MgCO<sub>3</sub> (magnezit) romboéder felületén képződött kalcit-csoportosulásokat és aragonit-lemezkéket mutatja be (MgCO<sub>3(s)</sub>+ Ca<sup>2+</sup><sub>(aq)</sub> = = 1 : 2). A VI. tábla 4. felvétele a MgCO<sub>3(s)</sub> + Ca<sup>2+</sup><sub>(aq)</sub> = 1 : 2 rendszer 250 °C-on kezelt anyagából készült. A sejt–hártyaszerű képletek vegyesen = MgCO<sub>3</sub> • 2 H<sub>2</sub>O + kalcit + aragonit.

A "dedolomitosodás–rekalcitosodás" témakör fázisainak morfológiai változásait kőzetoptikai módszerrel követtük, nagyításai is nagyságrenddel (nagyságrendekkel) kisebbek, morfogenetikai változások így is meggyőző módon követhetők. A  $MgCO_{3(s)}-Ca_{(aq)}^{2+} = 2:1$  rendszer 50 °C-on (a VII. tábla 1. képe) érintetlen magnezit hasadási romboédert mutat be. A felületén levő morfológiailag kevéssé definiált képletek aragonit–vaterit elegyei. Ugyanezen a hőmérsékleten, de  $Mg^{2+}: Ca^{2+} = 1:2$  rendszerben a magnezittől teljesen izolált CaCO<sub>3</sub> (aragonit) kristályok képződtek, az anyafázis (magnezit) érintetlennek tűnik. Az aragonit képződését a magnezit rácssíkjáról lehasadó ( $CO_2$ )<sup>2–</sup> biztosította. Mivel a kezelt anyafázis többszörös átmosás után 0,80 Cl<sup>-</sup>-t tartalmazott, a némelyek tagadó álláspontjával szemben mégis feltételezhető a klórnak valamiféle rácspozicionális szerepe. Az aragonit kristályt a VII. tábla 2. felvétele mutatja be.

A VII. tábla 3. felvétele a  $MgCO_{3(s)} + Ca_{(aq)}^{2+} = 1 : 2$  rendszernek 125 °C-on kezelt magnezit romboéderét mutatja be víztiszta, de annál valamivel nagyobb kettőstörést jelző dolomitnak ("protodolomit") perimorfózaszerű ránövésével.

Növekvő hőmérséklettel sem tapasztalható a szilárd fázisnak olyan átrendeződése, mint  $Mg^{2^+}$ -oldatok hatására a kalcit, ill. a dolomit rácsában. Úgy tűnik a  $Ca^{2^+}$  túl nagy ahhoz, hogy a korlátozott mértékben lehasadó  $Mg^{2^+}$  helyébe lépjen. Ez utóbbival az anyafázistól függetlenül, inkább önálló epigén fázisban rögzítődik. A VII. tábla 4. kép  $MgCO_{3(s)}-Ca^{2+}_{(aq)} = 2:1$  rendszer 175 °C-on kezelt magnezit romboédert mutat be perimorfózaszerű továbbnövekedéssel, önálló epigén kristályfázisokkal (aragonit + kalcit). Ugyanezen a hőfokon Mg : Ca = 1 : 1 rendszer sem hoz alapvető változást, a kristálytermék CaO%-a arányosan viszonylik a rendszer Mg/Ca-hoz. A 2 : 1-ben +4,73% CaO, az 1 : 2-ben ennek közel kétszeresét kaptuk (+8,29% CaO), mely utóbbi epigén kalcit + aragonitban stabilizálódott. A VIII. tábla 1. képe aragonittű és kalcit kirügyezéseket rögzít magnezit romboéder felületén.

A VIII. tábla 2. felvétel a VII. tábla 3. képhez hasonló helyzetet rögzít azzal az eltéréssel, hogy a magnezit peremét szegélyező dolomit felületén aragonit kirügyezések képződtek (MgCO<sub>3(s)</sub>-Ca<sup>2+</sup><sub>lag1</sub> = 1 : 1, 200 °C).

A 275 °C-on kezelt rendszer (Mg : Ca = 1 : 1) feloldódott, majd hűlés után kristályosodott részlege mozaik szerkezetű aragonit + MgCO<sub>3</sub> + dolomit szemcsehalmazt mutat be, ebben romboéderré rendeződött MgCO<sub>3</sub>-? -Ca,Mg(CO<sub>3</sub>)<sub>2</sub>-? kristály (VIII. tábla, 3. kép).

A VIII. tábla 4. felvételén "anyafázisú" magnezitből 300 °C-on epigén sarjadzású víztiszta MgCO<sub>3</sub> romboéder látható, az oldat Ca<sup>2+</sup> egy része a képen nem látható kalcit + + aragonitrácsban stabilizálódott.

A porló dolomit +  $Ca_{(aq)}^{2+}$ -rendszerben a Mg $CO_{3(s)}$  +  $Ca_{(aq)}^{2+}$ -hoz hasonló jelenség ta-

pasztalható: A Mg<sup>2+</sup>-pozíciók korlátozottan emelhetők ki a rácsból, ez utóbbi – minden bizonnyal – diszlokációs helyekre korlátozódik.

A IX. tábla 1. képen ép, bontatlan dolomit romboéderek láthatók epigén kalcit, MgCO<sub>3</sub>· 2 H<sub>2</sub>O + (aragonit-vaterit?) kivirágzások követhetők (porló dolomit –  $Ca_{(aq)}^{2+}$  = 1 : 2, 150 °C).

A IX. tábla 2–3. felvételeken szembetűnő a dolomit romboéderek felületét borító kalcit + aragonit + vaterit (?) epigén kirügyezés. MgCO<sub>3</sub> • 2 H<sub>2</sub>O jelenléte röntgendiffrakcióval kevés d/Å-mel jellemezhető = porló dolomit –  $\operatorname{Ca}_{(an)}^{2+} = 1 : 1.$  A IX. tábla 2. felvétele 175 °C, a IX. tábla 3. képe pedig 200 °C-on kezelt anyagról készült. A IX. tábla 4. felvétel további igazolást szolgál a korábbi megállapításhoz, hogy kationcserével járó szilárd fázisú átkristályosodása a magnezit-dolomitnak nem következhet be, "dedolomitosodásról" – "rekalcitosodásról" nem beszélhetünk. A felvételen élesen elválik a "dolomitanyafázis" a perimorfózaszerűen rátelepült kalcit + aragonit + vaterit (?) rétegtől.

## 5. ÖSSZEFOGLALÁS

A tanulmányozott rendszerek ásványtani és földtani értékelése az alábbi pontokba foglalhatók:

| 1. CaCO3-kalcit (mészkő)                        | Mg <sup>2+</sup> felvétellel                                                     | <ul><li>Dolomit</li><li>dolomitosodás</li></ul>                               |
|-------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 2. CaCO3-kalcit (mészkő)                        | Mg <sup>2+</sup> felvétellel                                                     | <ul> <li>Magnezit</li> <li>magnezitesedés</li> </ul>                          |
| 3. CaMg(CO <sub>3</sub> ) <sub>2</sub> -dolomit | Mg <sup>2+</sup> felvétellel                                                     | <ul> <li>Magnezit</li> <li>magnezitesedés</li> <li>dedolomitosodás</li> </ul> |
| 4. CaMg(CO <sub>3</sub> ) <sub>2</sub> -dolomit | Ca <sup>2+</sup> felvétele korlátozott,<br>rácsszerkezetileg nem<br>lehetséges   | <ul> <li>Nincs ,,dedolomitoso-<br/>dás'', ,,rekalcitosodás''</li> </ul>       |
| 5. MgCO3-magnezit                               | Ca <sup>2+</sup> felvétele korlátozott,<br>rácsszerkezetileg nem le-<br>hetséges | = Nincs "dolomitosodás"                                                       |
| 6. MgCO3 -magnezit                              | Ca <sup>2+</sup> felvétele korlátozott,<br>rácsszerkezetileg nem le-<br>hetséges | = Nincs ,,rekalcitosodás''                                                    |

A ,,dedolomitosodás' mint folyamat a ,,Dolomit : Mg<sup>2+</sup>-rendszer' esetében használható csak, ahol egy dolomitösszlet Mg-oldatok hatására magnezitté alakulhat (,,dedolomitosodik''). Ennek ellenkezője már nem következhet be, a folyamat elvileg irreverzibilis.

A dolomitnak Ca-felvétele korlátozott, a dolomitosodás irreverzibilis folyamat  $[CaMg(CO_3)_2 \xrightarrow{+++} CaCO_3]$ , a dolomit nem "rekalcitosodhat" – "dedolomitosodhat" kalcium-oldatok hatására. A "dedolomitosodás" irodalmi használata "Dolomit— $Mg^{2+}$ -rendszerre"

alkalmazható csak, "Dolomit—kalcium oldatrendszerre" ez nem érvényes. Egy dolomitösszlet kalcit komponense epigén oldatból kivált fázis, s nem a dolomitnak a Mg→Ca cseréjével előállt kristályos termék.

\* \* \*

Köszönetnyilvánítás: A kísérletsorozat a Központi Földtani Hivatal Elnökének és DR. VARJU GYULA oszt. vezetőnek támogatásával készült. A mintegy 230 kémiai elemzést DR. EMSZT MIHÁLY, NEMES GYULÁNÉ, GUZY KÁROLYNÉ és DR. TOLNAY VERA készítették. A stabil izotóp (oxigén-szén) meghatározásokat DR. CORNIDES ISTVÁN osztályvezető végezte. Fogadják érte köszönetemet.

### 6. IRODALOM

- BABČAN J. 1974: Die Modelierung der Niedertemperatur-Metasomatose von Karbonaten durch Siderit, – Geol. Zbor. Geol. Carpathica 21. (1): 53.
- BABČAN J. 1977: Modelirovanie nizkotemperaturnogo matasomaticeskogo obrazovanija magnezita. Materiali XI. Kongressa Karpato-Balkanskoji geologiceskoji associacii. 179.
- BARON G. 1958: Précipitation de la giobertite et de la dolomie a partir des solutions de chlorures de magnesium et de calcium. – Compt. Rend. 247.: 1606–1608.
- BRADLEY W. F. et al. 1953: Crystal chemistry and differential thermal effects of dolomite. Amer. Min. 38.: 207.
- BUDNIKOV P. P.-BOBROVNIK D. P. 1938: The influence of admixtures on the decarbonation of dolomite. – Journ. Applied. Chem. SSSR. 11.: 115.

CHAVE K. E. 1952: A solid solution between calcite and dolomite. - Journ. Geol. 60.: 190.

- CHAVE K. E. 1954: Aspects of biochemistry of magnesium; Calcareous sediments and rocks. Journ. Geol. 62.: 587.
- CLAYTON R. N. 1959: Osygen isotope fractionation in the system calcium carbonate-water. Journ. Chem. Physics. 30.: 1246.
- DEFFEYES K. S. et al. 1965: Dolomitization of Recent and Plio-pleistocene sediments by marine evaporite waterson, Bornaire, Netherlands Antilles. – Soc. Econ. Paleont. Min. Spec. Publ. 13.: 71–88.
- FAUST G. T. 1944: The differentiation of magnesite from dolomite in concentrations and drieling. Econ. Geol. 39.: 142.
- FAUST G. T. 1949: Dedolomitization and its relation to a possible derivation of a magnesium rich hydrothermal solution. Amer. Min. 34.: 789.
- GAINES A. M. 1974: Protodolomite synthesis at 100 °C and atmospheric pressure. Science. 183.: 518-520.

GOLDSMITH J. R. 1956: Exsolution of dolomite from calcite. - Bull. Geol. Soc. Amer. 67.: 1699.

- GOLDSMITH J. R. 1959: Some aspects of the geochemistry of carbonates. in Researches in Geochemistry, John Wiley, New York.
- GOLDSMITH J. R.-GRAF D. L. 1958a: Relation between lattice constants and composition of the Ca-Mg carbonates. Amer. Min. 43.: 84.
- GOLDSMITH J. R.-GRAF D. L. 1958b: Structural and compositional variation in some natural dolomites. Journ. Geol. 66.: 678.
- GOLDSMITH J. R.-GRAF D. L. 1960: Subsolidus relation in the system CaCO<sub>3</sub>-MgCO<sub>3</sub>-MnCO<sub>3</sub> - Journ. Geol. 68.: 324.

- GOLDSMITH J. R.-GRAF D. L.-HEARD H. C. 1961a: Lattice constants of the calcium-magnesium carbonates. Amer. Min. 46.
- GOLDSMITH J. R.-HEARD H. C. 1961b: Subsolidus phase relation in the system CaCO<sub>3</sub>-MgCO<sub>3</sub> Journ. Geol. 69.: 45-74.
- GOLDSMITH J. R.-NEWTON R. C. 1969: PTX-relations in the system CaCO<sub>3</sub>-MgCO<sub>3</sub> at hight temperatures and pressures. Am. Journ. Sci. 267-A.: 160-190.
- GRAF D. L. 1961: Crystallographic tables for the rhombohedral carbonates. Amer. Min. 46.: 1283.
- GRAF D. L. 1969: Crystallographic tables for the rhombohedral carbonates: a correction. Amer. Min. 54.: 325.
- GRAF D. L.-GOLDSMITH J. R. 1955: Dolomite-magnesian calcite relations at elevated temperatures and CO<sub>3</sub>-pressures. Geochim. et Cosmochim. Acta. 7.: 109.
- GRAF D. L.-GOLDSMITH J. R. 1956: Some hydrothermal syntheses of dolomite and protodolomite. – Journ. Geol. 64.: 173–186.
- GRAF D. L.-LAMAR J. E. 1955: Properties of calcium and magnesium carbonates and their hearing on some uses of carbonate rocks. - Econ. Geol. 50th Anniv. p: 639.
- HARKER R. I.-TUTTLE O. F. 1955a: Studies in the System CaO-MgO-CO<sub>2</sub> I. The thermal dissociation of calcite, dolomite and magnesite. Amer. Journ. Sci. 253.: 209.
- HARKER R. I.-TUTTLE O. F. 1955b: Studies in the System CaO-MgO-CO<sub>2</sub>. II. Limits of solid solution along the binary joine CaCO<sub>3</sub>-MgCO<sub>3</sub>. Amer. Journ. Sci. 253.: 274.
- HIGGS D. V.-HANDIN J. 1959: Experimental deformation of dolomite single crystals. Bull. Geol. Soc. Amer. 70.: 245.
- HURLBUT C. S. jr. 1957: Zincian and plumbian dolomite from Tsumeb, South-West Africa. Amer. Min. 42.: 798.
- IWAI S. J. et al. 1971: Reaction of magnesium carbonate by direct X-ray diffraction under hydrothermal conditions. – Amer. Min. 56.: 628.
- KATZ A. 1968: Ca-dolomites and dedolomitization. Nature. 217.: 439-440.
- KAZAKOV A. V. et al. 1957: Carbonate equilibrum system (dolomite, magnesite). Trudy Inst. Geol. Nauk. Akad. Nauk. SSSR. 152. Ser. Geol. 64.: 13.
- KEYSER, W. L.-DE-DEOUELDRE, L. 1950: Contribution a l'étude de la formation de la calcite, aragonite et vaterite. Bull. Soc. Chim. Belg. 59.: 40-71.
- KISS J. 1973: Hidrotermális kristályfázisok (25–300 °C) ércgenetikai vizsgálata és értelmezése. (Kézirat).
- KISS J. 1974: A CaCO<sub>3</sub>-Mg<sup>2+</sup> és "porló dolomit" + Mg<sup>2+</sup>-rendszerek vizsgálata, különös tekintettel a MgCO<sub>3</sub> helyettesítésére alkalmas nyersanyag mesterséges előállítására. – KFH jelentés (Kézirat).
- KISS J. 1975: A dedolomitosodás problémaköre. KFH jelentés (Kézirat).
- KRYNINE P. D. 1957: Dolomites Bull. Geol. Soc. Amer. 68.: 1757.
- LERMAN A. 1965: Paleoecological problemes of Mg and Sr in biogenic calcites in the light of recent thermodynamic data. Geochim. et Cosmochim. Acta 29.: 977–1002.
- LIPPMANN F. 1973: Sedimentary Carbonate Minerals. Springer Verlag, Berlin-Heidelberg-New York.
- MEDLIN W. J. 1959: Preparation of synthetic dolomite. Amer. Min. 44.: 979.
- RIVIERE A. 1939: Sur la dolomitisation des sédiments calcaires. Com pt. Rend. Ac. Sci. Paris 209.: 597.
- ROSENBERG P. E.-HARKER R. I. 1956: Studies in the system CaCO<sub>3</sub>-MgCO<sub>3</sub>-FeCO<sub>3</sub> I. Limits of solid solution along the binary join, CaCO<sub>3</sub>-FeCO<sub>3</sub> Bull. Geol. Soc. Amer. 67.: 1728.
- RUSSEL K. L. et al. 1967: Marine dolomite of unusual composition. Science. 155.: 189.

SAYLES F. L.-TYFE W. S. 1973: The crystallization of magnesite from aqueous solution. - Geochem. et Cosmochim. Acta 37.: 87-89.

SCHLOEMER H. 1953: Hydrothermale Entdolomitisierung. - Fortschr. Min. 32.: 64.

- SPANGENBERG K. 1949: Zur Genesis der Magnesitlagerstätte vom Galgenberg bei Zobten (Schlesien). Neues Jahrbuch Min. Monatsh. Abt. A.: 177.
- STEINFINK H.-SANS F. J. 1959: Refinement of the crystal structure of dolomite. Amer. Min. 44.: 679.
- STRAHOV N. M. 1958: Facts and hypotheses on the question of the formation of dolomite rocks. Izv. Ak. Nauk. SSSR. Ser. Geol.: 3-22.
- SUREAU J. F. 1974: Étude experimentale de la dolomitisation de la calcite. Bull. Soc. Fr. Min. Crist. 97.: 300.
- TENNANT C. B.-BERGER R. W. 1957: X-ray determination of the dolomite-calcite ratio of a carbonate rock. - Amer. Min. 42.: 23.
- TÓTH Á.-T. GECSE É. 1980: Másodlagos mészkő (dedolomit) telérek a Nagyegyházi-medence felsőtriász dolomit aljzatában. – (Kézirat).
- USDOWSKI H. E. 1967: Die Genese von Dolomit in Sedimenten. Springer Verl. Berlin-Heidelberg-New York.
- WINCHELL H. 1956: The unit cells of calcite. Amer. Journ. Sci. 254.: 65; 270.
- WYCKOFF R. W.-MERWIN H. E. 1924: The crystal structure of dolomite. Amer. Journ. Sci. 5th Ser. 8.: 447.
- ZELLER E. J. et al. 1959: Laboratory precipitation of dolomitic carbonate. Bull. Geol. Soc. Amer. 70.: 1704.



# SCANNING- ÉS FÉNYMIKROSZKÓPOS FELVÉTELEK





71




Tábla. 3. CaCO<sub>3</sub>(<sub>5</sub>)−Mg<sup>2+</sup> = 70 : 30; 175 °C. Dolomit vázkristályok, űreges romboéderek, MgCO<sub>3</sub> • 2 H<sub>2</sub>O pikkelyek. 9000X.
4. CaCO<sub>3</sub>(<sub>5</sub>)−Mg<sup>2+</sup>(<sub>aq</sub>) = 70 : 30; 200 °C. Dolomit romboéderek. 27 000X



III. Tábla. 1. CaCO<sub>3</sub>(s)-Mg<sup>2\*</sup>(aq) = 30 : 70; 200°C. Különböző méretű MgCO<sub>3</sub> romboéderekből álló kristálycsoport. 7200×. 2. CaCO<sub>3</sub>(s)-Mg<sup>2\*</sup>(aq) = 30 : 70; 200°C. MgCO<sub>3</sub> romboéder, felületén MgCO<sub>3</sub>•2 H<sub>2</sub>O; 8500X



III. Tábla. 3.  $CaCO_{3(s)} - Mg^{2^{+}(aq)} = 30$ : 70; 225 °C. MgCO<sub>3</sub> romboéderek. 8200X. 4.  $CaCO_{3(s)} - Mg^{2^{+}(aq)} = 50$ : 50; 275 °C. Üreges MgCO<sub>3</sub> romboéderek visszaoldás képletekkel. 8400X





IV. Tábla. 3.  $CaCO_3(s)-Mg^{2*}(aq) = 30 : 70; 275 °C. MgCO_3 romboéder üreg, belsejében jól kivehető fokozatos feltöltődés. A MgCO_3 poli édereken visszaoldódás nyomai láthatók. 15 000X. 4. Porló dolomit-Mg^{2*}(aq) = 70 : 30; 50 °C. Dolomit romboéder diszlokált síkjain indul$ az átalakulás, a romboéder lemezessé válik. 7200X



V. Tábla. 1. Porló dolomit– $Mg^{2*}(aq) = 50$ : 50; 100 °C. Ua. mint IV. Tábla, 4. kép. 7200X. 2. Porló dolomit– $Mg^{2*}(aq) = 50$ : 50; 125 °C. Ua. mint IV. Tábla 1. kép. 7200X



V. Tábla. 3. Porló dolomit $-Mg^{2+}(aq) = 30 : 70; 175 °C.$  Dolomit + MgCO<sub>3</sub> romboéderek. 9800X. 4. Porló dolomit $-Mg^{2+}(aq) = 30 : 70; 175 °C.$ Dolomit-MgCO<sub>3</sub> romboéderek. 16 000X











4. MgCO<sub>3 (s)</sub>Ca<sup>2+</sup> (aq) = 2 11, 175 °C (2,5 mólos oldat). Tetőző forma epigén kialakulása magnezit felületén kalcit+aragonit kiválásokkal. 157X









## TARTALOM

| 1. | Beve | zetés                                                                                                                                                | 3  |
|----|------|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | "Do  | lomitosodás-magnezitesedés" problémaköre                                                                                                             | 7  |
|    | 2.1. | $CaCO_{3(s)}$ -kalcit + MgCl <sub>2</sub> -H <sub>2</sub> O rendszer (A kalcit dolomitosodása, mag-                                                  |    |
|    |      | nezitesedése)                                                                                                                                        | 7  |
|    |      | $2.1.1.\text{CaCO}_{3(s)} - \text{Mg}^{2+} = 1 : 1,60$                                                                                               | 7  |
|    |      | $2.1.2. CaCO_{3(s)} - Mg^{2+} = 70: 30 \dots $ | 8  |
|    |      | 2.1.2.1. Vegyelemzések értékelése (1., 2. táblázat)                                                                                                  | 8  |
|    |      | 2.1.2.2. Kristályfázisok                                                                                                                             | 8  |
|    |      | $2.1.3. \text{CaCO}_{3(s)} - \text{Mg}^{2+} = 50:50\ldots$                                                                                           | 12 |
|    |      | 2.1.3.1. Vegyelemzések értékelése (1., 2. táblázat)                                                                                                  | 12 |
|    |      | 2.1.3.2. Kristályfázisok                                                                                                                             | 12 |
|    |      | $2.1.4. \text{CaCO}_{3(s)} - \text{Mg}^{2*} = 30:70$                                                                                                 | 13 |
|    |      | 2.1.4.1. A vegyelemzések értékelése (1., 2. táblázat)                                                                                                | 13 |
|    |      | 2.1.4.2. Kristályfázisok jellemzése                                                                                                                  | 14 |
|    | 2.2. | Porló dolomit + MgCl <sub>2</sub> - H <sub>2</sub> O rendszer                                                                                        | 18 |
|    |      | 2.2.1.Porló dolomit : Mg <sup>2+</sup> =70 : 30 (4., 5. táblázat)                                                                                    | 19 |
|    |      | 2.2.1.1. Vegyelemzések értékelése                                                                                                                    | 19 |
|    |      | 2.2.1.2. Kristályfázisok                                                                                                                             | 19 |
|    |      | 2.2.2.Porló dolomit : Mg <sup>2+</sup> = 50 : 50 (4., 5. táblázat)                                                                                   | 19 |
|    |      | 2.2.2.1. Vegyelemzések értékelése                                                                                                                    | 19 |
|    |      | 2.2.2.2. Kristályfázisok                                                                                                                             | 22 |
|    |      | 2.2.3.Porló dolomit : Mg <sup>2+</sup> = 30 : 70 (4., 5. táblázat)                                                                                   | 22 |
|    |      | 2.2.3.1. Vegyelemzések értékelése                                                                                                                    | 22 |
|    |      | 2.2.3.2. Kristályfázisok                                                                                                                             | 23 |
|    | 2.3. | A kalcit + Mg <sup>2+</sup> és dolomit + Mg <sup>2+</sup> oldatrendszer genetikai értelmezése                                                        | 23 |
| 3. | "Ded | lolomitosodás–rekalcitosodás" problémaköre                                                                                                           | 25 |
|    | 3.1. | MgCO <sub>3</sub> (magnezit) + CaCl <sub>2</sub> - H <sub>2</sub> O rendszer (A magnezit ,,rekalcitosodása'')                                        | 25 |
|    |      | $3.1.1.MgCO_{2(4)}: Ca^{2+} = 2:1$ (1,0 mólos oldat)                                                                                                 | 26 |
|    |      | 3.1.1.1. Vegyelemzések értékelése (6. táblázat)                                                                                                      | 26 |
|    |      | 3.1.2 MaCO <sub>2</sub> : Ca <sup>2+</sup> = 1 : 1 (1.0 mólos oldat)                                                                                 | 26 |

|                                             |                                              | 3.1.2.1. Vegyelemzések értékelése (6. táblázat)                                                                                                                                     | 26 |  |  |
|---------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|                                             |                                              | 3.1.3.MgCO <sub>3(s)</sub> : Ca <sup>2+</sup> = 1 : 2 (1,0 mólos oldat)                                                                                                             | 27 |  |  |
|                                             |                                              | 3.1.3.1. Vegyelemzések értékelése (6. táblázat)                                                                                                                                     | 27 |  |  |
|                                             |                                              | 3.1.1.MgCO <sub>3(s)</sub> : Ca <sup>2+</sup> = 2 : 1 kristályfázisai (1,0 mólos oldat)                                                                                             | 30 |  |  |
|                                             |                                              | 3.1.2. MgCO <sub>3(s)</sub> : Ca <sup>2+</sup> = 1 : 1 kristályfázisai (1,0 mólos oldat)                                                                                            | 32 |  |  |
|                                             |                                              | 3.1.3. MgCO <sub>3(s)</sub> : Ca <sup>2+</sup> = 1 : 2 kristályfázisai (1,0 mólos oldat)                                                                                            | 32 |  |  |
|                                             |                                              | 3.1.4. $MgCO_{3(s)}$ : Ca <sup>2+</sup> = 2 : 1 (2,5 mólos oldat)                                                                                                                   | 33 |  |  |
|                                             |                                              | 3.1.4.1. Vegyelemzések értékelése (7. táblázat)                                                                                                                                     | 33 |  |  |
|                                             |                                              | 3.1.5. $MgCO_{3(s)}$ : Ca <sup>2+</sup> = 1 : 1 (2,5 mólos oldat)                                                                                                                   | 36 |  |  |
|                                             |                                              | 3.1.5.1. Vegyelemzések értékelése (7. táblázat)                                                                                                                                     | 36 |  |  |
|                                             |                                              | 3.1.6. $MgCO_{3(s)}$ : Ca <sup>2+</sup> = 1 : 2 (2,5 mólos oldat)                                                                                                                   | 37 |  |  |
|                                             |                                              | 3.1.6.1. Vegyelemzések értelmezése (7. táblázat)                                                                                                                                    | 37 |  |  |
|                                             |                                              | 3.1.4. MgCO <sub>3(s)</sub> : Ca <sup>2+</sup> = 2 : 1 kristályfázisai (2,5 mólos oldat)                                                                                            | 38 |  |  |
|                                             |                                              | 3.1.5. MgCO <sub>3(s)</sub> : Ca <sup>2+</sup> = 1 : 1 kristályfázisai (2,5 mólos oldat)                                                                                            | 39 |  |  |
|                                             |                                              | 3.1.6. MgCO <sub>3(s)</sub> : Ca <sup>2+</sup> = 1 : 2 kristályfázisai (2,5 mólos oldat)                                                                                            | 39 |  |  |
|                                             | 3.2.                                         | Porló dolomit–CaCl <sub>2</sub> –H <sub>2</sub> O rendszer ("dedolomitosodás–rekalcitosodás")                                                                                       | 40 |  |  |
|                                             |                                              | 3.2.1. Porló dolomit : $Ca^2 = 2 : 1 (1,0 \text{ mólos oldat}) \dots \dots \dots$                                                                                                   | 40 |  |  |
|                                             |                                              | 3.2.1.1. Vegyelemzések értékelése (8. táblázat)                                                                                                                                     | 40 |  |  |
|                                             |                                              | 3.2.2. Porló dolomit : Ca <sup>2</sup> = 1 : 1 (1,0 mólos oldat)                                                                                                                    | 41 |  |  |
|                                             |                                              | 3.2.2.1. Vegyelemzések értékelése (8. táblázat)                                                                                                                                     | 41 |  |  |
|                                             |                                              | 3.2.3. Porló dolomit : Ca <sup>2</sup> = 1 : 2 (1,0 mólos oldat)                                                                                                                    | 41 |  |  |
|                                             |                                              | 3.2.3.1. Vegyelemzések értékelése (8. táblázat)                                                                                                                                     | 41 |  |  |
|                                             |                                              | 3.2.1. Porló dolomit : Ca <sup>2+</sup> = 2 : 1 kristályfázisai (1,0 mólos oldat)                                                                                                   | 44 |  |  |
|                                             |                                              | 3.2.2. Porló dolomit : Ca <sup>2+</sup> = 1 : 1 kristályfázisai (1,0 mólos oldat)                                                                                                   | 46 |  |  |
|                                             |                                              | 3.2.3. Porló dolomit : Ca <sup>2+</sup> = 1 : 2 kristályfázisai (1,0 mólos oldat)                                                                                                   | 46 |  |  |
|                                             |                                              | 3.2.4. Porló dolomit : $Ca^2 = 2 : 1$ (2,5 mólos oldat)                                                                                                                             | 4/ |  |  |
|                                             |                                              | 3.2.4.1. Vegyelemzések értékelése (9. táblázat)                                                                                                                                     | 4/ |  |  |
|                                             |                                              | 3.2.5. Porlo dolomit : $Ca^{-1} = 1 : 1$ (2,5 molos oldat)                                                                                                                          | 4/ |  |  |
|                                             |                                              | 3.2.5.1. Vegyelemzések értékelése (9. tablazat)                                                                                                                                     | 4/ |  |  |
|                                             |                                              | 3.2.6. Porio dolomit : $Ca^{-} = 1 : 2 (2,5 \text{ molos oldat}) \dots \dots$ | 51 |  |  |
|                                             |                                              | 3.2.6.1. Vegyelemzesek ertekelese (9. tablazat)                                                                                                                                     | 51 |  |  |
|                                             |                                              | 3.2.4. Porto dolomit : Ca = 2 : 1 kristalytazisal (2,5 molos oldat)                                                                                                                 | 52 |  |  |
|                                             |                                              | 3.2.5. Porto dolomit: $Ca^2 = 1.1$ Kristalylazisai (2,5 molos oldat)                                                                                                                | 52 |  |  |
|                                             | 22                                           | $3.2.0.$ FOR 0 0000000 $\therefore Ca = 1.2$ Kristaly (2,5 molos ordat) $\therefore \ldots$                                                                                         | 53 |  |  |
|                                             | 3.3.                                         | , meszes dolomit + CaCl <sub>2</sub> - $\Pi_2$ O renuszer                                                                                                                           | 55 |  |  |
|                                             |                                              | lásai (10. táblázat)                                                                                                                                                                | 56 |  |  |
|                                             |                                              | 3.3.2 Meszes dolomit" : Ca <sup>2+</sup> rendszer kristályfázisai                                                                                                                   | 56 |  |  |
| ٨                                           | K .:                                         |                                                                                                                                                                                     | EO |  |  |
| 4.                                          | 4. Kristalytazisok morfogenetikai értékelése |                                                                                                                                                                                     |    |  |  |
| 5.                                          | Ossze                                        | foglalás                                                                                                                                                                            | 63 |  |  |
| 6. Irodalom                                 |                                              |                                                                                                                                                                                     |    |  |  |
| 7. Scanning- és fénymikroszkópos felvételek |                                              |                                                                                                                                                                                     |    |  |  |



