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Abstract. The magneto-hydrodynamic (MHD) and joule heating effect on a laminar mi-
cropolar fluid boundary layer past a continuous, linearly stretching, non-isothermal sheet
(with prescribed wall heat flux) is considered. The study considers the effects of viscous
dissipation and internal heat generation. The governing momentum, angular momentum
and energy equations are solved to evaluate the details of the velocity and temperature fields
including heat transfer rate. Graphs are presented for the velocity and temperature fields for
various micropolar fluid parameters and magnetic field with variable electric conductivity.
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1. Introduction

In recent years, the dynamics of micropolar fluids, originating from the theory of
Eringen [1], has been a popular area of research. This theory takes into account the
effect of local rotary inertia and couple stresses arising from practical microrotation
action. This theory is applied to suspensions, liquid crystals, polymeric fluids and
turbulence. This behavior is familiar in many engineering and physical applications.
Many stages in nuclear reactors and MHD generators working under the influence of
external magnetic fields could be examined and controlled using the present model. Na
and Pop [2] investigated the boundary layer flow of a micropolar fluid past a stretching
wall. Desseaux and Kelson [3] studied the flow of a micropolar fluid bounded by a
stretching sheet. Hady [4] studied the solution of heat transfer to micropolar fluid
from a non-isothermal stretching sheet with injection. In all the above studies, the
authors took the stretching sheet to be oriented in horizontal direction. Abo-Eldahab
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4 W. A. Aissa, A. A. Mohammadein

and Ghonaim [5] investigated convective heat transfer in an electrically conducting
micropolar fluid at a stretching surface with uniform free stream.

Mohammadein and Gorla [6] studied the heat transfer characteristics of a laminar
boundary layer of a micropolar fluid over a linearly stretching sheet with prescribed
uniform surface temperature or prescribed wall heat flux and viscous dissipation and
internal heat generation. However, of late, the effects of a magnetic field on the mi-
cropolar fluid problem are very important. Mohammadein and Gorla [7] presented
a numerical study for the boundary layer of a horizontal plate placed in a microp-
olar fluid. They analyzed the effects of a magnetic field with vectored surface mass
transfer and induced buoyancy streamwise pressure gradients on heat transfer. They
investigated the impact of the magnetic field, mass transfer, buoyancy, and material
parameters on the surface friction and heat transfer rates.

Siddheshwar and Pranesh [8] investigated magneto-convection in a micropolar fluid.

The present work investigates the effects of joule heating on a laminar micropolar
fluid with variable electric conductivity past a linearly stretching, continuous sheet
in the presence of a uniform magnetic field. The study considers the surface with
prescribed wall heat flux varying with distance using a numerical technique based on
the shooting method.

The effects of the magnetic parameter (Mn), suction parameter (fw), Eckert num-
ber (E) and microrotation parameter (∆) on the velocity of the fluid, temperature
distribution and angular velocity of microstructures as well as the coefficient of heat
flux and shearing stress at the plate are investigated at specific values of Prandtl num-
ber (Pr = 0.72), (B1 = 0.1). Different values of physical parameters are tabulated
and discussed numerically and graphically.

2. Formulation of the problem

A steady, incompressible laminar two-dimensional boundary layer of an incompressible
electrically conducting micropolar fluid spreading over a permeable plane surface is
considered. The applied magnetic field is primarily in the y-direction and varies in
strength as a function of x and is defined as:

B
−

= (0, B(x)) . (2.1)

Let us consider the Cartesian coordinates (x, y) introduced for the description of the
magneto-hydrodynamic flow (Figure 1). The sheet is located at y = 0 and its leading
edge is the origin of the Cartesian coordinate system.

The external electric field is assumed to be zero and the magnetic Reynolds number
is assumed to be small. Hence, the induced magnetic field is small compared with the
external magnetic field. Moreover, the electrical conductivity σ is assumed to have
the form:

σ = σ0u , (2.2)

where σ0 is a constant.
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Figure 1. Flow model and coordinate system

The fluid of density (ρ) is at rest and the motion is created by stretching the
sheet with a speed proportional to the distance from the fixed origin (x = 0). The
viscosity coefficient (µ) remains constant, the pressure gradient and body forces are
negligible in the presence of viscous dissipation and internal heat generation. The
effects of uniform mass and heat transfer characteristics in stationary surroundings are
investigated. Under these assumptions, the governing equations within the boundary
layer are given by:

1. Continuity equation:
∂u

∂x
+
∂v

∂y
= 0 , (2.3)

2. Momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= (ν +

K

ρ
)
∂2u

∂y2
+
K

ρ

∂N

∂y
− σ (B (x))

2
u

ρ
, (2.4)

3. Angular momentum:

u
∂N

∂x
+ v

∂N

∂y
=

γ

ρj

∂2N

∂y2
− K

ρj
(2N +

∂u

∂y
) , (2.5)

where u and v are the velocity components along the x and y axes, respectively, N
is angular velocity, K is vortex viscosity, ν is kinematic viscosity, γ is spin gradient
viscosity, and j is the micro inertia per unit mass.

For the flow under study, it is relevant to assume that the applied magnetic field
strength; B (x) has the form [9]:

B (x) =
B0√
x
, B0 is constant. (2.6)

The third term in equation (2.4), taking into account equations (2.2) and (2.6) can
be rewritten as:

σ (B (x))
2
u

ρ
=
σ0B

2
0u

2

ρx
. (2.7)
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By substituting from equation (2.7) in equation (2.4), the momentum equation can
be rewritten as:

u
∂u

∂x
+ v

∂u

∂y
= (ν +

K

ρ
)
∂2u

∂y2
+
K

ρ

∂N

∂y
− σ0B

2
0

ρx
u2 . (2.8)

The appropriate boundary conditions are given by:

u = Cx, v = vw, N = −s∂u
∂y

at y = 0 & u = 0, N = 0 as y →∞ . (2.9)

Positive and negative values for vw indicate blowing and suction respectively, while
vw = 0 corresponds to an impermeable sheet.

A comment on the boundary conditions used for the microrotation term will be
made here. When s = 0, we obtain from the boundary condition (2.9) for the mi-
crorotation that N(x, 0) = 0, which represents the case of concentrated particle flows
in which the microelements close to the wall are not able to rotate as was stated by
Jena and Mathur [10]. The case corresponding to s = 1/2 results in the vanishing of
the antisymmetric part of the stress tensor and represents weak concentrations and
the case corresponding to s =1 is representative of turbulent boundary layer flows.

A stream function ψ(x, y) is now defined which satisfies the continuity equation
(2.3) with

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.10)

Proceeding with the analysis, the following transformations are introduced:

η =

√
C

υ
y, ψ =

√
Cυxf(η), N = C

√
C

υ
xg(η) . (2.11)

Hence,
u = Cxf ′(η), v = −

√
Cυf(η) , (2.12)

where primes denote differentiation with respect to η, and the velocity components u
and v satisfy the continuity equation (2.3).

The momentum and angular momentum equations can be rewritten as:

(1 + ∆) f ′′′ + ∆g′ + ff ′′ −Mn [f ′]
2

= 0 , (2.13)

λg′′ −∆B1 (2g + f ′′)− gf ′ + fg′ = 0 , (2.14)
where

∆ =
K

µ
, Mn = 1 +

σ0B
2
0

ρ
, λ =

γ

µj
, B1 =

ν

Cj
, (2.15)

in which Mn is the magnetic parameter and ∆ is the microrotation parameter. The
latter represents a measure of the relative importance of microrotation and viscous
effects.

The corresponding boundary conditions are

f (0) = − vw√
Cυ

= fw , f ′ (0) = 1 , g (0) = 0 , (2.16)

f ′ (∞) = 0 and g (∞) = 0 . (2.17)
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The case corresponding to fw < 0 (vw > 0) implies blowing, fw > 0 (vw < 0) implies
suction and fw = 0 (vw = 0) corresponds to an impermeable stretching sheet.

The shearing stress at the sheet is given by:

τw =

[
(µ+K)

∂u

∂y
+KN

]
y=0

= µC

√
C

υ
x [(1 + ∆) f ′′(0) + ∆g(0)] . (2.18)

It is clear that the wall shear stress will increase with increasing x. The skin friction
coefficient Cf takes the form:

Cf = − τw
1
2ρ (Cx)

2 =
−2

(Rex)
1/2

[(1 + ∆)f ′′(0) + ∆g(0)] , (2.19)

where

Rex =
Cx2

ν
(2.20)

is the local Reynolds number.
4. Energy equation:

Including the microrotation dissipation effects, which are quite important in the
thermal boundary layer region, modifies the energy equation:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCP

∂2T

∂y2
+

(µ+K)

ρCP

(
∂u

∂y

)2

+
σ (B (x))

2

ρCP
u2 , (2.21)

where T is temperature, k is thermal conductivity, CP is specific heat at constant
pressure.

The viscous dissipation term ν
CP

(
∂u
∂y

)2
in equation (2.21) is valid for a viscous fluid

in the boundary layer:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCP

∂2T

∂y2
+

(µ+K)

ρCP

(
∂u

∂y

)2

+
σ0B

2
0

ρCPx
u3 . (2.22)

The thermal boundary conditions depend on the type of heating process being con-
sidered, which is prescribed heat flux.

The boundary conditions are

− k
(
∂T

∂y

)
= qw(x) = bxm at y = 0 & T = T∞ as y →∞ . (2.23)

Defining the temperature distribution as

T − T∞ =
D

k

√
υ

C

( x
L

)2
θ(η) , (2.24)

where T∞ is a constant temperature of the ambient fluid far from the sheet.

Using the similar variables in equations (2.11) and (2.12), the energy equation
(2.22) can be transformed into an ordinary differential equation with the aid of the
boundary conditions (2.23) and non-dimensional temperature (2.24) to get

1

Pr
θ” + E(1 + ∆) (f ′′)

2 − 2θf ′ + fθ′ + E(Mn− 1) (f ′)
3

= 0 , (2.25)
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in which the Eckert number is defined as

E =
k

D

L2

√
Cυ

C3

Cp
. (2.26)

The transformed boundary conditions may be written as

θ′ (0) = − b

D
L2xm−2, θ (∞) = 0 . (2.27)

But as θ́(0) must be equal to -1, this implies (as could be concluded from equation
(2.27)) that m = 2 and b should satisfy the following relation

b = D/L2 . (2.28)

The set of transformed governing equations (2.13-2.14) and (2.25) are solved using a
fourth order Runge-Kutta method of numerical integration.

In order to start a solution, the values of boundary conditions at η = 0 are substi-
tuted and integration must be carried out up to some large η to see if the boundary
conditions at infinity are satisfied.

3. Results and discussion

The present work generalized the problem of joule heating effects on a boundary layer
of a micropolar fluid over a stretching sheet with variable electric conductivity in the
presence of a magnetic field. After some transformations, a numerical solution has
been obtained by the fourth order Runge-Kutta method. Results are obtained for
a range of Eckert number, magnetic, joule heating and microrotation parameters by
applying a numerical technique based on the Shooting method. The sheet is assumed
to be non-isothermal with prescribed heat flux varying with length.

The velocity (f ′), microrotation (g) and temperature gradient (θ’) are plotted
versus η for various values of ∆ and specific values of the physical parameters [fw =
0.2, E = 0.5, Mn = 1.0] in Figures 2-4, for various values of Mn and [∆ = 1.5,
fw = 0.2, E = 0.5] in Figures 5-7 and for various values of fw and [∆ = 0.0, E = 0.01,
Mn = 0.5] in Figures 9-11. The temperature gradient (θ’) is plotted versus η for
various values of Eckert number (E) and (∆ = 0.5, fw = 0.2, Mn = 1.0) in Figure 8.
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Figure 2. Velocity variation (fw = 0.2,
E = 0.5, Mn = 1.0)
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Figure 3. Microrotation variation (fw =
0.2, E = 0.5, Mn = 1.0)
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Figure 4. Temperature gradient variation
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Figure 5. Velocity variation (∆ = 1.5,
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Figure 6. Microrotation variation (∆ =
1.5, fw = 0.2, E = 0.5)
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Figure 7. Temperature gradient variation
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Figure 8. Temperature gradient variation
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Figure 10. Temperature gradient varia-
tion (∆ = 0.5, fw = 0.2, Mn = 1.0)
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Figure 11. Velocity variation (∆ = 0.0,
E = 0.0.01, Mn = 0.5)

Table 1. Wall values of temperature and gradients of velocity and microrotation
gradient.

∆ fw E Mn −f ′′(0) θ(0) g′(0)

0.0 0.83 0.9257 0
0.5 0.0 0.01 0.5 0.6755 0.8695 0.0408
1.5 0.5155 0.8309 0.0935
0.0 1.0001 0.9543 0
0.5 0.0 0.01 1.0 0.8141 0.8906 0.0438
1.5 0.6219 0.8456 0.1018
0.0 0.9051 0.9931 0
0.5 -0.2 0.01 1.0 0.7501 0.9394 0.0384
1.5 0.5829 0.8968 0.0892
0.0 0.9421 0.8946 0
0.5 0.2 0.01 0.5 0.7497 0.8263 0.0466
1.5 0.56 0.7849 0.107
0.0 1.105 0.9201 0
0.5 0.2 0.01 1.0 0.8836 0.8444 0.0493
1.5 0.6635 0.7972 0.1149
0.0 0.83 1.095 0
0.5 0.0 0.5 0.5 0.6755 1.0462 0.0408
1.5 0.5155 1.0244 0.0935
0.0 1.0001 1.0789 0
0.5 0.0 0.5 1.0 0.8141 1.0204 0.0438
1.5 0.6219 0.9878 0.1018
0.0 0.9421 1.0755 0
0.5 0.2 0.5 0.5 0.7497 1.0096 0.0466
1.5 0.56 0.9826 0.107
0.0 1.105 1.0616 0
0.5 0.2 0.5 1.0 0.8836 0.9859 0.0493
1.5 0.6635 0.9483 0.1149
0.0 0.9051 1.1025 0
0.5 -0.2 0.5 1.0 0.7501 1.0576 0.0384
1.5 0.5829 1.0297 0.0892
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It may be concluded from Figures 4 and 8 that the absolute value of the temperature
gradient (θ‘) decreases with increasing η and increases with increasing ∆ and Eckert
number (E). Figure 7 illustrates that the temperature gradient (θ‘) decreases with
increasingMn up to a certain η (∼ 2.4). For further increase in η,Mn has no effect on
the temperature gradient. The transition value of η increases with increasing ∆. It
may be remarked from Figure 11 that the absolute value of the temperature gradient
in the case of blowing is greater than that of suction. It may be concluded also from
the results that the Eckert number (E) does not affect f ’, g, f ”.

It may be remarked that in generalMn has an adverse effect to that of ∆. This may
be attributed to the fact that Mn has the same effect on the flow field as increasing
viscosity.

The dimensionless wall values of velocity, temperature gradient and microrotation
gradient are shown in Table 1 for various parameters, ∆, Mn, E and fw.

It may be noted that the wall temperature (θ(0)) decreases as ∆ increases, which
agrees with findings mentioned in [6].

The skin friction (Cf ), which is a physical quantity of a great practical interest,
can be obtained from equation (2.19) by specifying the local Reynolds number (Rex)
which is in Table 2.

Table 2. Variation of Cf
√
Rex

E fw Mn ∆ = 0.0 ∆ = 0.5 ∆ = 1.5
-0.2 1.8102 2.2503 2.9145

0.01 0 0.5 2.0002 2.4423 3.1095
0.2 1.8842 2.2491 2.8

0.5 0.2
0.5 1.8842 2.2491 2.8
1 2.21 2.6508 3.3175

It is clear that the Eckert number has no effect on skin friction (Cf ), and that Cf
is dependent on ∆ and Mn. The increase of ∆ or Mn leads to an increase in the skin
friction coefficient of the sheet. Increasing ∆ leads to an increase in buoyancy force,
which increases the wall shear stress hence increasing the skin friction coefficient. This
is a consequence of the existence of a favorable pressure gradient above the sheet due
to the buoyancy effects and the wall shear stress is larger than the non-buoyant case.
This matches the conclusion by Mohammadein and Gorla [6]. The increase of skin
friction is due to the increase in the magnetic field, which may be attributed to the
fact stated earlier that an increasing magnetic field is comparable to increasing the
flow viscosity, which leads to skin friction increase. This coincides with findings by
Helmy [11].

4. Concluding remarks

In this work, the equations governing the MHD and joule heating effects on the wall
jet flow of a laminar micropolar fluid past a linearly stretching, continuous sheet are



12 W. A. Aissa, A. A. Mohammadein

solved. The sheet is assumed to be non-isothermal with a prescribed wall heat flux
varying with distance. The effects of the magnetic parameter, suction parameter,
Eckert number and microrotation parameter are investigated. It was found that the
velocity decreases with increasing magnetic parameter, and increases with increasing
microrotation parameter. It may be concluded that the increase in the magnetic
field has the same influence on the flow field as increasing viscosity. The skin friction
coefficient, which is an important physical quantity, increases with increasing both the
microrotation parameter and the magnetic field parameter, which effect is analogous
to increasing of viscous effect. It is evident that the temperature increases with an
increasing Eckert number and magnetic parameter.
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NOMENCLATURE

B(x) Strength of the transverse
magnetic field

x Distance measured along
the surface

B0 A constant which first occurs
in equation (2.6)

y Distance measured perpen-
dicularly to the surface

C A constant which first occurs
in equation (2.9)

∆ Microrotation parameter

Cf Local skin friction coefficient γ Spin gradient viscosity
Cp Specific heat at constant pres-

sure
η Similarity space variable

D A constant which first occurs
in equation (2.24)

µ Viscosity coefficient

E Eckert number ν Kinematic viscosity
f Dimensionless velocity func-

tion
θ Non - dimensional temper-

ature
g Dimensionless microrotation ρ Fluid density
J Micro inertia per unit mass σ Electrical conductivity of

the fluid
k Thermal coductivity σ0 A constant which first oc-

curs in equation (2.2)
K Vortex viscosity τ Shear stress
L Characteristic length ψ Stream function
m Exponent in the power law

variation of the surface heat
flux

Mn Magnetic parameter
N Angular velocity Subscripts
Pr Prandtl number w Surface conditions
q Heat flux. ∞ Conditions away from the

surface
Rex Local Reynolds number
T Temperature Superscripts
u Velocity component in the x

direction
′ Differentiation with respect

to η
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Abstract. In this paper a similarity analysis is made for the forced and free convection
boundary layer flow in a semi-infinite expanse of an electrically conducting viscous incom-
pressible fluid past a semi-infinite non-conducting porous plate with suction. A uniform
magnetic field is applied normal to the plate. A time dependent suction is also introduced.
The governing equations of the problems are then reduced to linear similarity equations,
which are made local by introducing suitable similarity parameters. These local similarity
equations are solved numerically by an adapting shooting method which uses the Nachtsheim-
swigert interaction technique. Effects of various parameters on the velocity and temperature
fields across the boundary layer are investigated. Numerical results for the velocity and
temperature distributions are shown graphically.
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1. Introduction

Magneto-hydrodynamics (MHD) is the branch of continuum mechanics which deals
with the flow of electrically conducting fluids in electric and magnetic fields. Many
natural phenomena and engineering problems are worth being subjected to an MHD
analysis. Magneto-hydrodynamic equations are ordinary electromagnetic and hydro-
dynamic equations modified to take into account the interaction between the motion

c©2004 Miskolc University Press
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of the fluid and the electromagnetic field. The formulation of the electromagnetic
theory in a mathematical form is known as Maxwell’s equation.

The effect of the gravity field is always present in forced flow heat transfer as a
result of the buoyancy forces connected with the temperature differences. Usually
they are of a small order of magnitude so that the external forces may be neglected.

There has recently been a considerable interest in the effect of body forces on
forced convection phenomena. The effect of the gravity field is always present in
forced flow heat transfer as a result of the buoyancy forces caused by temperature
differences. Usually they are small and can be neglected. In certain engineering
problems, however, they cannot be left out of consideration. It is important to realize
that the heat transfer in mixed convection can be significantly different from that
both in pure natural convection and in pure forced convection.

The study of forced and free convection flow and heat transfer for electrically
conducting fluids past a semi-infinite porous plate under the influence of a magnetic
field has attracted the interest of many investigators in view of its applications in
many engineering problems such as geophysics, astrophysics, boundary layer control
in the field of aerodynamics (Soundalgekar et al. 1977 [1]). The physical model and
geometrical coordinates are shown in Figure 1.

∞U ∞T

g

0v

w
T

0B

y

x

Figure 1. The physical model

In many practical fields, we found significant temperature differences between the
surface of the hot body and the free stream. These temperature differences cause
density gradients in the fluid medium and in presence of gravitational forced free
convection effects become important. by applying transverse magnetic field Agrawal
et al. [2] found that the rate of heat transfer from the plate to the fluid decreases as
the suction velocity increases and the skin friction decreases with increasing Hartman
number. Georgantopulos et al. [3], Raptis et al. [4, 5], Soundalgekar and Takher
[1] and many others elucidated the various aspects of MHD free convection flows
with suction. Some of the earlier works were done by Sparrow et al. [6], Lloyad
and Sparrow [7], Wilks [8], Chen et al. [9], Tingwei et al. [10], and Raju et al.
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[11]. In addition to the above, studies about convective flows in a porous medium
have attracted considerable interest owing to their applications in geophysical and
geothermal problems. Theoretical studies of such a flow under free convection were
done among others by Bestmen [12, 13], Raptis [4, 5] and Perdikis [14]. Sattar [15]
obtained an analytic solution of the free and forced convection flow through a porous
medium near the leading edge by a perturbation method adopted by Singh and Dikshit
[16]. Soundalgekar et al. [17], Perdiks [14], Sattar [18] made analytical studies on the
combined forced and free convection flow in a porous medium. In these studies it has
been generally recognized that γ = Gr/R

2
e (where Gr is the Grashof number and Re is

the Reynolds number) is the governing parameter for a vertical plate. In the present
work, therefore the effect of the large suction on the MHD forced and free convection
flow past a vertical porous plate is studied. Solutions to the problem posed are found
numerically for the whole range of the buoyancy parameter γ that is considered to be
the driving force of the whole range of the combined forced and free convection.

2. Governing equations of the flow and mathematical analysis

Consider the forced and free convection flow of an incompressible viscous and electri-
cally conducting fluid past a heated semi-infinite vertical porous plate.

The fluid is permeated by a strong magnetic field ~B = [0, B0(x), 0]. T∞, U∞ are
the temperature and velocity of the uniform flow, respectively. The induced magnetic
field is assumed to be negligible. This assumption is justified by the fact that the
magnetic Reynolds number is very small. Further, since no external electric field is
applied, the effect of polarization of the ionized fluid is negligible and it may also be
assumed that the electric field ~E = 0. Regarding the convection as a result of the
effects of thermal diffusion, the equations of motion without Hall effects can be put
into the following forms:

The continuity equation:
∂u

∂x
+
∂v

∂y
= 0 . (1)

The momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2
+ gβ (T − T∞) +

σ0B
2
0(x)

ρ
(U∞ − u) . (2)

The energy equation:

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρCp

∂2T

∂y2
. (3)

The boundary conditions for the present problem are as follows

u = 0, v = v0(x), T = Tw, if y = 0 ;
u = U∞, v = 0, T = T∞, if y →∞ ,

(4)

where v0(x) is the velocity of suction and U∞ is the free steam velocity.
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Equations (1)-(3) constitute the basic equations which govern the physical problem
considered here. Our next task is to make an approach that will lead to the solutions
of these equations provided that the boundary conditions are given by equations (4).

In order to attain a similarity solution to our problem, the following transformations
are applied:

lllη = y

√
U∞
2υx

, u =U∞f
′(η), fw = v0(x)

√
2x

υU∞
,

θ =
T − T∞
TW − T∞

,

(5)

where fw is the transpiration parameter.

We now introduce the following dimensionless local parameters in the above equa-
tion:

Grx =
U∞gβ (Tw − T∞)x2

υv20 (x)
, Rex =

U∞x

υ
, fw = v0(x)

√
2x

υU∞
,

γ =
Grx
R2
ex

, M =
σ0B

2
0 (x) 2x

U∞ρ f2w
.

After performing the transformations we obtain the differential equations

f ′′′ + ff ′′ + f2wM(1− f ′) = −γf2wθ , (6)

θ′′ + Prfθ
′ = 0 . (7)

Making use of the dimensionless variables (5) the boundary conditions (4) can be
manipulated into form

f = fw, f ′ = 0, θ = 1 if η = 0 ;
f ′ = 1, θ = 0, if η →∞ .

(8)

It is interesting to note that when suction is absent, i.e. fw = 0, equation (6)
reduces to the ordinary Blasius equation. The solutions of the Blasius equation are
referred to as the Blasius solutions. They have also been studied by Schlichting [19].

On the other, hand if γ → 0, Re is large and the forced convection is dominating,
equation (6) corresponds to the ordinary Falkner and Skan equation. In this case
the boundary conditions differ largely from those of the original Falkner and Skan
equation.

3. Numerical scheme and procedure:

Equations (6) and (7) with boundary conditions (8) are solved numerically using
a standard initial value solver, i.e., the shooting method. For the purpose of this
method, we applied the Nacthsheim-Swigert iteration technique (Nachtsheim & Swigert,
1965).

In a shooting method, the missing (unspecified) initial condition at the initial point
of the interval is assumed and the differential equation is integrated numerically as
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an initial value problem to the terminal point. The accuracy of the assumed missing
initial condition is then checked by comparing the calculated value of the dependent
variable at the terminal point with its given value there. If a difference exists, another
value of the missing initial condition must be assumed and the process is repeated.
This process is continued until the agreement between the calculated and the given
condition at the terminal point is within the specified degree of accuracy. For this
type of iterative approach, one naturally inquires whether or not there is a systematic
way of finding each succeeding (assumed) value of the missing initial condition.

The boundary conditions (8) associated with the linear ordinary differential equa-
tions (6) and (7) of the boundary layer type are of the two-point asymptotic class.
Two-point boundary conditions have values of the dependent variable specified at two
different values of the independent variable. Specification of an asymptotic boundary
condition implies the value of velocity approaches to unity and the value of temper-
ature approaches to zero as the outer specified value of the independent variable is
approached. The method of numerically integrating two-point asymptotic boundary
value problem of the boundary layer type, the initial value method, requires that the
problem be recast as an initial value problem. Thus it is necessary to set up as many
boundary conditions at the surface as there are at infinity. The governing differen-
tial equations are then integrated with these assumed surface boundary conditions.
If the required outer boundary condition is satisfied, a solution has beeen achieved.
However, this is not generally the case. Hence a method must be devised to logically
estimate the new surface boundary conditions for the next trial integration. Asymp-
totic boundary value problems such as those governing the boundary layer equations
are further complicated by the fact that the outer boundary condition is specified at
infinity. In the trial integration infinity is numerically approximated by some large
value of the independent variable. There is no a priori general method of estimating
this value. Selection of too small a maximum value for the independent variable may
not allow the solution to asymptotically converge to the required accuracy. Selecting
a large value may result in divergence of the trial integration or in slow convergence of
surface boundary conditions required satisfying the asymptotic outer boundary con-
dition. Selecting too large a value of the independent variable is expensive in terms
of computer time. Nachtsheim-Swigert developed an iteration method, which over-
comes these difficulties. Extension of the Nachtsheim-Swigert iteration shell to above
equation system of differential equations (6) and (7) is straightforward. In equation
(8) there are two asymptotic boundary conditions and hence two unknown surface
conditions f ′ (0) and θ′ (0).

4. Results and discussion

In this paper we have attempted to solve the combined free and forced convection flow
in a semi-infinite vertical porous plate with suction. Locally similar solutions of this
problem have been obtained by introducing a similarity parameter taken to be a time
dependent scale. The suction velocity is taken to be a function of time. Under these
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conditions the solutions to the problem are finally obtained by employing a numerical
technique.

 

Figure 2. Dimensionless velocity for different values of γ and Pr =
0.71, fw = 0.5, M = 2.0

 

Figure 3. Dimensionless velocity for different values of fw and Pr =
0.71, γ = 1.0, M = 2.0

For the purpose of discussing the numerical solutions, the effects of various parame-
ters on the flow behavior have been determined for different values of the buoyancy pa-
rameter γ, suction/ injection parameter fw, Prandtl number Pr and magnetic param-
eter M . Since there are four parameters of interest in the present problem, which can
be varied, we have focused attention on the values γ = 0.0, 0.5, 1.0, 3.0, 5.0, 10.0;
fw = 0.0, 0.5, 1.0, 1.5, 2.0; Pr = 0.71, 1.0, 7.0 and M = 2, 4, 6.
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In Figure 2, the effects of the driving parameter γ on the velocity profiles are shown.
It is obvious from this Figure that the velocity increases with the increasing values of γ,
which signifies that the velocity is higher in the case of pure free convection than

 

Figure 4. Dimensionless velocity for different values of M and Pr =
0.71, γ = 1.0, fw = 0.5

 

Figure 5. Dimensionless velocity for different values of Pr and M =
2.0, γ = 1.0, fw = 0.5

for pure forced convection. Moreover, in the case of pure free convection, the velocity
is found to overshoot.

In the case of mixed convection (γ = 1) a rise in fw (suction) causes a rise in the
velocity as shown in Figure 3. As is shown in the Figure, if suction increases, there
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is a decrease in the boundary layer growth, which indicates that suction destabilizes
the boundary layer.

Figure 6. Dimensionless temperature for different values of γ and
M = 2.0, Pr = 0.71, fw = 0.5

Figure 7. Dimensionless temperature for different values of fw and
M = 2.0, Pr = 0.71, γ = 1.0

The effects of the magnetic parameter on the velocity profiles are displayed in
Figure 4, which shows that the velocity increases with the increase of the magnetic
parameter.

In Figure 5 the effects of the Prandtl number on the velocity profiles are shown. It
can be seen from this Figure that the velocity profiles decrease due to the increasing
values of the Prandtl number.
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In Figure 6, the effects of the buoyancy parameter γ on the temperature profiles
are shown. From this Figure it can be seen that the temperature decreases with the
increase of γ.

Figure 8. Dimensionless temperature for different values of M and
Pr = 0.71, γ = 1.0, fw = 0.5

Figure 9. Dimensionless temperature for different values of Pr and
γ = 1.0, fw = 0.5, M = 2.0

In Figure 7, the effects of the suction parameter on the temperature profiles are
shown. From this Figure it can be seen that the temperature decreases with the
increase of the suction parameter.
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In Figure 8, the effects of the magnetic parameter on the temperature profiles are
shown. From this Figure it can be seen that the temperature decreases with the
increase of magnetic parameter.

The effects of the Prandtl number on the temperature are depicted in Figure 9.
From this Figure it can be noted that the temperature profiles decrease with the
increase in the Prandtl number. These effects are the same as those for velocity
profiles.

5. Conclusion

We have examined the governing equations for an unsteady incompressible fluid past
a semi-infinite vertical porous plate embedded in a porous medium and subjected
to the presence of a transverse magnetic field. Numerical results are presented to
illustrate the details of the various parameters. The values of driving parameter γ
as shown above, however, correspond to three regimes, namely the predominantly
forced convection regime, the mixed convection regime and the predominantly free
convection regime. For γ=0,the gravity induced free convection is absent and the flow
is completely forced over the surface. For low values of γ (0 < γ < 1), the forced
convection dominates and the local similarity solutions are the same as those in the
case of forced convection only, which was studied by Narain and Uberoi [20]. The
large values of γ � 1) are interesting from a physical point of view. For this purpose,
value of γ = 5 can be essentially treated as the free convection representation.

Appendix A. Nomenclature

x, y, z cartesian coordinates g gravitational acceleration
t time Gr Grashof number
fw transpiration parameter Cp specific heat
u, v fluid velocities Rex Reynolds number
V0 velocity of suction T temperature
µ kinematics viscosity γ buoyancy parameter
η similarity variable Tw plate temperature
υ coefficient of kinematics viscosity T∞ free steam temperature
θ dimensionless temperature T0 reference temperature
ρ fluid density κ heat diffusivity coefficient
−→
B magnetic field U∞ free steam velocity

β coefficient of volume expansion η = y
√

U∞
2υx similarity variable

−→
E electric field θ = T−T∞

Tw−T∞
dimensionless temperature
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Abstract. The study of heat and mass transfer on nonlinear hydromagnetic flow is of
great practical importance to engineers because of its almost universal occurrence in many
branches of science and engineering and hence a large amount of research work has been
reported in this field. In particular, the study of heat and mass transfer with heat source
and thermal stratification is of considerable importance in chemical and hydrometallurgical
industries and this work deals with a problem of such study. Steady flow of an incompressible,
viscous, electrically conducting and Boussinesq fluid over an accelerating vertical plate with
heat source and thermal stratification effect is considered in the presence of an uniform
transverse magnetic field. The problem is considered to be of MHD laminar boundary
layer type. The similarity transformation has been utilized to convert the governing partial
differential equations into ordinary differential equations and then the numerical solution of
the problem is drawn using R.K.Gill method. The velocity, temperature and concentration
of the fluid are shown graphically to observe the effects of parameters entering the problem.
Finally a sufficient discussion of different results is presented.

Mathematical Subject Classification: 80A20, 76W05
Keywords: heat and mass transfer, hydromagnetic flow, laminar boundary layer, similarity
transformation

1. Introduction

Mixed convection flow occurs frequently in nature. The temperature distribution
varies from layer to layer and these types of flows have wide applications in industry,
agriculture and oceanography. Further, they are especially used in dyeing-industries.

c©2004 Miskolc University Press
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One of the most significant types of flow which has many practical applications in
industrial manufacturing processes is the boundary layer behavior over a continuous
moving solid surface. For example, heat treated material travelling on a conveyor belt
possesses the characteristics of a continuous moving surface.

Heat and mass transfer for an electrically conducting fluid flow under the influence
of a magnetic field is considered to be of significant importance due to its application
in many engineering problems such as nuclear reactors and those dealing with liquid
metals. MHD flows have been of much interest to the engineering community only
since the introduction of liquid metal heat exchangers, whereas the thermal instability
investigations are directly applicable to the problems in geophysics and astrophysics.

The effects of power-law surface temperature and power-law surface heat flux in the
heat transfer characteristics of a continuous linear stretching surface were investigated
by Chen and Char [1]. Processes involving the mass transfer effect have long been
recognized as important, principally in chemical processing equipment. Crane [2],
Vlegger [3] and Gupta and Gupta [4] analyzed the temperature distribution for the
problem of a stretching surface. Georgantopoulos et. al [5]have studied the effects of
free convection and mass transfer in a conducting liquid, when the fluid is subjected to
a transverse magnetic field. Recently, Acharya et. al [6] have studied heat and mass
transfer on an accelerating surface subjected to both power-law surface temperature
and power-law heat flux variations with a temperature dependent heat source in the
presence of suction and blowing.

2. Nomenclature

B2
o Magnetic field of strength Pr Prandtl number

C Species concentration in the fluid Re Reynolds number

C∞
Species concentration in the fluid
away from the surface

Sc Schmidt number

Cw Species concentration near the surface Tw Temperature of the wall

cp Specific heat at constant pressure T∞
Temperature far away from the
wall

D Chemical molecular diffusivity u, v Velocity components
g Acceleration due to gravity α Thermal diffusivity

Gr Grashof number β
Coefficient of volumetric thermal
expansion

Gc Modified Grashof number ν Kinematic viscosity
K Thermal conductivity ρ Density of the fluid

Heat and mass transfer on MHD laminar boundary-layer flow over an accelerating
surface with internal heat source and thermal stratification effects is investigated in
the present work. The fluid is assumed to be viscous, incompressible and electrically
conducting with a magnetic field applied transversely to the direction of the flow. The
similarity transformation has been utilized to convert the governing partial differen-
tial equations into ordinary differential equations and then the numerical solution of
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the problem is drawn using R.K.Gill method. This method has the following advan-
tages over other available methods: (i) It utilizes less storage registers. (ii) It controls
the growth of rounding errors and is usually stable. (iii) It is computationally eco-
nomical. In the absence of chemical reaction and magnetic effects, the results are in
excellent agreement with those in [6]. Numerical calculations for different values of
dimensionless parameters entering the problem under consideration are carried out
for the purpose of illustrating the results graphically. Examination of such flow mod-
els reveals the influence of the Schmidt number, thermal stratification and magnetic
field on flow field.

3. Mathematical analysis

Consider a steady, viscous, incompressible and electrically conducting fluid flowing
over an accelerating surface in the presence of a temperature dependent heat source.
The problem is considered to be of laminar boundary layer type and two-dimensional.
According to the coordinate system, the x-axis is parallel to the vertical surface and
the y-axis is chosen normal to it. A transverse magnetic field of strength Bo is ap-
plied parallel to the y-axis. The fluid properties are assumed to be constant in a
limited temperature range. The concentration of species far from the wall, C∞ is
infinitesimally very small [8] and hence the Soret and Dufour effects are neglected.
The physical properties ρ , µ and D are constant throughout the fluid. In writing
the following equations, it is assumed that the induced magnetic field, the external
electric field and the electric field due to the polarization of charges are negligible.
Under these conditions, the governing boundary layer equations of momentum, en-
ergy and diffusion for free convection flow with Joule’s dissipation (neglecting viscous
dissipation) and under Boussinesq’s approximation are:

∂u

∂x
+
∂v

∂y
= 0 , (1)

u
∂u

∂x
+ v

∂v

∂y
= v

∂2u

∂y2
+ gβ (T − T∞) + gβ∗ (C − C∞)− σB2

o

ρ
u , (2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
β1u

ρcp
(T∞ − T ) , (3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
. (4)

The boundary conditions are

u = ax , v = 0 , C = C∞ +Aox
r , T = T∞ +A1x

r at y = 0 ;
u = 0 , C = C∞ , T = T∞(x) = (1− n)To + nTw(x) at y → 0 ;

(5)
where n is constant, such that 0 ≤ n < 1. The parameter n is defined as thermal
stratification parameter and is equal tom1/(1+m1) – see [7] – wherem1 is a constant.
To is a constant reference temperature, say T∞(0). The suffixes w and ∞ denote
surface and ambient conditions, a is a constant and r is the temperature parameter.
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Ao, A1 and β are also constants, β is the volumetric coefficient of thermal expansion,
β∗ is the volumetric coefficient with concentration and σ is electrical conductivity.

We introduce the following new variables

Ψ(x, y) = (υa)
1/2

f (η) , η (x, y) = y

√
a

υ
, (6)

where f (η) is the dimensionless stream function. If the velocity components are given
by

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
(7)

one can easily verify that the continuity equation (1) is identically satisfied and thus
the concentration of species far from the wall is infinitesimally small. The following
non-dimensional quantities are introduced

θ =
T − T∞
Tw − T∞

, (8)

φ =
C − C∞
Cw − C∞

, (9)

δ =
β1
ρcp

x (longitudinal coordinate) , (10)

Re =
U√
aυ

(Reynolds number) , (11)

Gr =
νgβ

U3
(Tw − T∞) (Grashof number) , (12)

Gc =
νgβ∗

U3
(Cw − C∞) (modified Grashof number) , (13)

Pr =
µcρ
k

(Prandtl number) , (14)

Sc =
υ

D
(Schmidt number) , (15)

M2 =
σB2

o

ρcK2
(magnetic parameter) . (16)

Making use of equations (6)–(16) we obtain from equations (2)–(4) that

f ′′′ +GcReφ+GrReθ + ff ′′ − (f ′)
2 − M2

Re
(1− f ′) = 0 , (17)

θ′′ − Pr
(
θ − n

1− n

)
f ′ − Prθ (r + δ) f ′ + Prfθ

′ = 0 , (18)

φ′′ − Scf ′φr + Scfφ
′ = 0 . (19)

These equations are associated with the following boundary conditions
f(0) = 0 , f ′(0) = 1 , φ(0) = 1 , θ(0) = 1 ,
f ′(∞) = 0 , φ(∞) = 0 , θ(∞) = 0 .

(20)

Equations (17) to (19) with boundary conditions (20) are integrated using the Runge-
Kutta Gill method. Results of the problem are obtained for different values of the
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Schmidt number, magnetic and thermal stratification parameters and they are dis-
cussed in detail in the following section.

4. Results and discussion

In order to get a clear insight of the physical problem, numerical results are displayed
with the help of graphical illustrations. In the absence of chemical reaction and
magnetic effects, the results have been compared with those in a previous work [6]
and it is found that they are in good agreement. The numerical results we have
obtained are illustrated by means of Figures 1-12.

Figure 1. Effect of Schmidt number over the velocity profiles

Figure 2. Influence of Schmidt number over the temperature profiles
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Figure 3. Effects of Schmidt number over the concentration profiles

In the presence of a uniform thermal stratification parameter with constant magnetic
field, it is clear that the velocity and the concentration decrease and the temperature
of the fluid increases with increase of the Schmidt number and these are displayed
through the Figures 1, 2 and 3, respectively.

Figure 4. Influence of magnetic field over the velocity profiles
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Figure 5. Effect of magnetic field over the temperature profiles

Figure 6. Influence of magnetic field over the concentration profiles

In the presence of a uniform Schmidt number and thermal stratification parameter,
it is seen that the increase in the strength of a magnetic field, leads to a fall in the
velocity of the fluid and a rise in the temperature and concentration of the fluid along
the accelerating surface and are shown in Figures 4, 5 and 6, respectively.
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Figure 7. Effect of Prandtl number over the velocity profiles

Figure 8. Influence of Prandtl number over the temperature profiles

Figure 9. Effect of Prandtl number over the concentration profiles
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Figure 7 depicts the dimensionless velocity profiles for different values of the Prandtl
number with constant Schmidt number and magnetic field. It is observed that the
velocity of the fluid decreases. The temperature and concentration of the fluid increase
along the accelerating surface with increase of the Prandtl number and these are
displayed through Figures 8 and 9.

Figure 10. Effect of thermal stratification over the velocity profiles

Figure 11. Influence of thermal stratification over the temperature profiles
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Figure 12. Effect of thermal stratification over the concentration profiles

In the case of the constant Schmidt number with a uniform magnetic field, it is
observed that the increase of thermal stratification parameter accelerates the fluid
motion and decelerates the temperature and concentration of the fluid along the
accelerating surface and these are vivid through Figures 10, 11 and 12, respectively.

5. Conclusions

• In the presence of a uniform Schmidt number and magnetic field, the velocity
decreases and the temperature and concentration of the fluid increase with an
increase of the Prandtl number.
• Due to the constant thermal stratification parameter with a uniform magnetic

field, the velocity and the concentration decrease and the temperature of the
fluid increases with an increase of the Schmidt number.
• An increase in the strength of a magnetic field leads to a fall in the velocity

and rise in the temperature and concentration of the fluid along the surface.
• The velocity increases and the temperature and concentration of the fluid de-

crease with increase of the thermal stratification parameter.
• In the presence of water vapour (Sc = 0.62) and the uniform magnetic field,

it is noted that the velocity of the fluid increases and the temperature and
concentration of the fluid decrease near the plate, respectively.
• In the presence of air (Pr = 0.71), it is interesting to note that the velocity of

the fluid increases near the plate and thereafter decreases.
• The temperature and concentration of the fluid decrease at a very fast rate in

the case of water (Pr = 7.0) in comparison to air (Pr = 0.71).
• In the case of a uniform thermal stratification parameter, it is noted that the

velocity of the fluid increases and the temperature and concentration of the
fluid decrease at a fast rate near the plate.
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• In the presence of a uniform magnetic field and air (Pr = 0.71 ), the velocity of
the fluid increases due to an increase in Sc showing that it decreases gradually
as it is replaced by hydrogen (Sc = 0.22), by water vapor (Sc = 0.62) and
ammonia (Sc = 0.78).
• The temperature and concentration decrease due to increase in Sc indicating

that it increases as it is replaced by hydrogen (Sc = 0.22), by water vapor
(Sc = 0.62) and ammonia (Sc = 0.78).
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Abstract. The Kirchhoff rod is a widely used model in describing configurations of DNA
chains. In the simplest case of such research the molecule-chain is represented by a twisted-
bent rod. In this paper we will present an application of this rod model for describing the
shapes of the DNA chain in a special configuration. Here, two finite segments of the rod are
in contact with each other. The contact region is closed on each end by terminal loops. These
configurations can be represented by four parameters. The equilibrium path is computed in
the four-dimensional space of the parameters using the path-following simplex method. The
paper shows the system of equations applied during the path-following, equilibrium path
from a generalized solution, and some numerical results with different rod lengths. At last
we show how our results should be connected to configurations of former research.
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Keywords: twisted ring, large displacements, DNA

1. Introduction

Let us consider an initially straight rod a with circular cross-section of radius r. The
rod is long, i.e. L >> r, where L is the length of the rod. The rod is made of a
homogenous, linearly elastic material with the modulus of elasticity E and the shear
modulus of elasticity G. Bending stiffness is characterized by the constant A = EIx,
where Ix = r4π

4 , and the twist stiffness by C = GIp, where Ip = r4π
2 . The rod is

supposed to be inextensible and unshearable. First, the rod is bent to a ring with
a pair of moments acting on the end-sections. Then the end-sections are twisted in
the opposite direction, while they stay in contact. By a small twist rate the ring
holds its planar shape. Above a critical value of twist, the ring loses its stability,
and the rod takes a spatial shape. The critical value of twist rate was first estimated
by Zajac [1]. Dichmann et al. [2] presents critical values even for overlapping rings.
Another, symmetry-based examination of all configurations of self-penetrable rods
was presented by Domokos [3]. If the rod is impenetrable, self-contact can arise. The
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contact may destroy some symmetry properties of the solutions. The self-contact
can arise in contact points, or along a contact-line. Coleman et al. [4] determined
equilibrium paths of the rod with self-contact, with detailed analysis of the stability of
solutions. In addition to the classification of different contact configurations, Swigon
et al. [5] derived the differential equation of the generalized helix, which occurs in
the case of self-contact along a line, and its analytical solution. An extension of their
work was made by Thompson et al. [6], where the generalized helix is loaded by a
wrench.

In the above mentioned research the elastic rod is treated as a continuous mechani-
cal model of DNA molecules, where the rod axis is equivalent to the duplex axis of the
DNA. This modelling is validated through similarity between computed rod shapes
and real DNA configurations taken from electron-microscope photos.

In this paper we want to give an extension to the former results. The first con-
figuration on the first non-trivial equilibrium path of the impenetrable rod has one
point of contact. In a contact point a concentrated contact force arises. This con-
figuration is denoted by A1, where A means the first non-trivial path, while 1 is the
number of contact point(s). The following shapes on this path have 2 and 3 contact
points, these are denoted by A2 and A3. Further increasing of the twist leads to
the A4 configuration. The A4 configuration differs from the previous configurations
in a contact line between the inner contact points. In the contact line a distributed
contact force arises. However, a contact line contains an infinite number of contact
points. We refer to a point as a contact point only if there a concentrated (finite)
force arises. Further increasing of the twist rate leads to a longer contact line, while
the free segment between the outer and inner contact points decreases, so does the
length of the terminal loop. We suspect that at extreme high twist the free segment
disappears. Then we will have a configuration with two contact points, but, unlike
the A2 configuration, there will be a contact line between the contact points. So, we
will refer to this configuration as A2+. Our goal is to find the equilibrium path of this
configuration. We do not deal with the stability of the solutions.

Figure 1. (a) Sketch of the analyzed configuration with the global
reference system. (b) Intensity of the assumed distributed (q(s)) and
concentrated (Q) contact forces along the contact line
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The axis of an A2+ configuration is sketched in the Figure 1a. The configuration
is symmetric to the contact line, we refer to this axis by z. We set its 0 to the middle
of the contact line. So, the rod axis crosses the plane z = 0 in two points. Through
these points goes axis x, which is also an axis of symmetry. The third axis of our
reference system will be axis y. The coordinate system [xyz] is a right-handed one,
therefore axis y points out of the plane in Figure 1a.

Every configuration can be represented by the space curve of the rod axis. This
curve will be given by the co-ordinates in the system [xyz], as a function of the arc
length s. The point s = 0 should be where the rod axis crosses the plane z = 0 at
a positive value of x. The rod is directed in such a way that a small increase in the
arc-length parameter leads to a point in the positive eighth of the reference system.
(This happens if we twist the rod in clockwise direction.) In the contact region the
rod axis describes a generalized helix. The rise angle (α(s)) of this helix depends on
s, and is defined as the angle between the tangent of the rod axis and a plane normal
to z. In the examined configuration it is sufficient to examine the segment from s = 0
to s = L/4. The last point is the top of the closing loop on the right side.

We divide the examined part of the A2+ configuration into two different parts. The
first is the helix, where the rod is in contact with another part of the rod. On the
contact line arises the distributed contact force q(s), which points from axis z to the
rod axis. The last cross-section of contact is at the arc-length sP . The second part is
the terminal loop. In the loop there are no external forces acting on the rod. At the
common boundary of these two parts a concentrated contact force (Q) arises (Figure
1b.).

In Section 2 we will show the differential equations used for finding a rod shape,
then, in Section 3 we will present the equation system to be solved for the equilibrium
path. In Section 4 the applied numerical methods of computation will be introduced.
Numerical results and their conclusions will be presented in Section 5.

2. Differential equations applied

2.1. Differential equation of the generalized helix. The differential equation of
the generalized helix is derived from the geometrical, equilibrium and constitutive
equations of the rod. The whole derivation can be found in [5], [6] and [7], inter-
ested readers are directed to those works. Here we only present the start-up and the
definitions of the terms used.

The turn of the rod around the contact line is measured through the function ϕ(s),
as it is shown in Figure 2a. So the co-ordinates of the rod axis at the arc-length s
are:

r(s) =

 r · cosϕ(s)
r · sinϕ(s)

z(s)

 .
Figure 2b helps us to write the first and second derivatives of r(s). The length of the
latter is the curvature of the curve.
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Figure 2. Geometry of generalized helix. View of an elementary seg-
ment (a) from axis z (b) from a radial direction

The simplest way of writing the six differential equations of equilibrium is to use
a cylindrical reference system. We have only three equations of material behavior,
because the effect of normal and shear forces is neglected. The first one is the rela-
tionship between the twist ω and the torque MT :

ω =
MT

C
, (2.1)

the second one describes the relationship between the curvature κ and the bending
moment MB

κ =
MB

A
, (2.2)

and the third one states that the moment vector M is orthogonal to the principal
normal vector r

′′
:

M · r
′′

= 0, (2.3)
where ′ denotes differentiation with respect to s.

From these equations one can derive the differential equation of the generalized
helix:

0 = α
′′′

+ α
′ 2r2α

′′
sin 2α+ 8 cos6 α− 12 cos4 α+ 6 cos2 α

r2 cos 2α
. (2.4)

This differential equation can be written in a second order form, where the constant
torque appears as a free parameter:

α′′ =
MT · cos 2α

A · r
− sin 2α · cos2 α

r2
. (2.5)

2.2. System of differential equations of a free segment. In the case of a free
segment the first step of the computation of the shape (namely the function r(s)) is
to compute the inner forces and moments. There are no external forces acting on the
rod, so the equilibria of a segment of arbitrary length causes the resultant of the inner
forces to be constant along the segment. This resultant will be reduced to the origin
of the reference system, and the force and moment components will be denoted by
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vectors P0 and M0. The effect of normal and shear forces is neglected, so we need
the moments in the cross-sections only. Their vector can be computed by the form:

M(s) = M0 + P0 × r(s). (2.6)

It is a well-known fact that the torque and the specific twist are constant in the
initially straight rod of homogenous cross-section. So the twist of a segment can be
computed from the specific twist and the length. The bending part of the moment
vector causes a change in the tangent of the rod, which can be computed from:

r
′′
(s) =

1

A
M(s) × r

′
(s). (2.7)

3. Closing conditions of rod

3.1. Equation system of closing. We use the symmetry of the rod in our compu-
tation, so we examine only a quarter of the whole rod. The shape of a rod can be
specified by four parameters. Three of these parameters are connected to the helix,
the fourth parameter belongs to the contact point. In the point s = 0 the initial value
of the rise angle (α0) and its first and second derivatives (α

′

0 and α”
0) determine the

shape of the helix. The symmetry causes α
′

0 = 0, so here we have only α0 and α”
0 as

free initial values. The third parameter of the helix is its length, denoted by sP . The
fourth parameter is the concentrated contact force Q at the end of the helix. The
function of the inner forces in the helix can be computed from the three parameters
α0, α”

0 and sP , their radial force component is modified at the end point by Q.

Any set of the above parameters allows the computation of a rod shape. First
the helix-form must be computed as an initial value problem from s = 0 up to
s = sP . Then the radial component of the inner forces must be modified by Q, and
the system of differential equations of the closing loop must be solved until s = L/4.
The parameters lead to a closed rod, if this point is the top of the loop, namely the
rod crosses axis z in this point orthogonally. This can be mathematically formulated
with three equations: x(L/4) = 0, y(L/4) = 0 and z

′
(L/4) = 0.

(Note: The helix has a third-order differential equation, so the whole helix can be
defined by four values, the length of the helix and three initial values. The same helix
could be defined by other values, for example by the length, the rise angle in the end
points, and the first derivative in the start-point. Naturally, the latter must be equal
to zero, as before.)

3.2. Possible shapes. On the basis of the previous subsection, four parameters de-
fine a rod shape. We call this rod shape a mathematically possible solution, if the
three equations for closing are satisfied.

Physically acceptable solutions are those mathematically possible solutions for
which the following conditions are fulfilled:

• the rod does not cross itself,
• no tension arises in contacts.
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The first condition is satisfied, if the largest curvature is smaller than the reciprocate
of the radius of the rod, and the rise angle of the helix causes no self-intersection
(which in [8] occurs at α = 45◦). The second condition means, that Q and the
minima of q cannot be negative.

4. Numerical method of solution

The first step of the solution is to find the mathematically possible shapes, then
the physically unacceptable solutions will be filtered out. The units of lengths and
forces are chosen to have r = 1 and A = 1.

4.1. The Path-Following Simplex Algorithm. In order to determine the math-
ematically possible shapes, we have to find the common zero places of n − 1 = 3
functions, depending on n = 4 parameters. The number of functions and parameters
suggests that the solution set is a one dimensional set in the space of parameters.
This type of problems can be easily solved by the Path-Following Simplex Algorithm
[9]. We set a simplex in the space of the parameters with one side over a known
solution. Then we compute the values of the error-functions (the left sides of the
closing equations, i.e. x(L/4), y(L/4) and z

′
(L/4)) in the vertices of the simplex

and interpolate them. So, each function will have a solution set of n− 1 dimensional
hyperplane. The common crossing line of these planes will be a line. This way we
linearize the solution. The linearization gives a good approximation of the solution
inside the simplex. The linearized solution crosses two simplex sides. One side is
where the known result lies, the other one is a new solution point. We mirror the
simplex on this side, then we have a new simplex with a solution on one of its sides.
Now we can linearize the solution inside this simplex, just as we did with the previous
one, but now we have to compute the error-functions in only one vertex, because the
mirroring does not change the position of the mirroring side. The persistent use of
the above steps leads to a whole solution (or, at least its good approximation by a
piecewise linear curve).

The path following requires a starting point. Domokos and Szeberényi [10] present
a method, where the path following is combined with scanning the parameter space.
We can also fix the value of one parameter, then, an iterative method provides one
solution point of the equation system. The drawback of this method is that a change
in the length of the rod causes change in the initial solution.

A different reading of parameters can result an universal solution point. If the
rise angle of the helix is constant (providing α0 = αP ), then the internal forces
and moments are also constant. So they do not depend on the length of the helix,
and the terminal loop is also independent of L. In other words, the value of sP
changes, but L/4 − sP remains unattended. So we have to compute the free segment
of length L/4 − sP connecting to a helix of constant rise angle α0 with the inner
forces determined by the helix and the modifier contact force Q. The three variables
mentioned above have to be computed according to the connecting equations.
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The problem can be solved even with two unknown parameters only, if we compute
the free segment until the third equation, namely z

′
(L/4) = 0 comes true. Then we

only have to solve the equation system x = 0, y = 0 for the variables α0 and Q,
while L/4 − sP will be the arc-length, belonging to the solution. The result of this
computation is:

α0 = 0.9733982, L/4 − sP = 3.5773973, Q = 0.3212820.

These data determine the starting point of the path following. But this starting
point is only a mathematically possible solution, because on the top of the loop the
rod would have too high a curvature. This would lead to an overlap at the top of the
loop, as can be seen in Figure 3.

Figure 3. The physically non-acceptable terminal loop at universal
starting point

4.2. Finite differences of variable length.

4.2.1. Reason of using FDVL. The generalized helix has a third-order differential
equation. In order to compute the error-functions of the simplex path-following,
one has to solve this differential equation. The analytical solution of the differential
equation is given in the paper by Coleman et al. [11]. This solution contains elliptic
integrals, and has singularity at our desired starting point and is numerically instable
in its neighborhood. That is the reason why we choose a numerical method for solving
the boundary value problem of the helix. The helix is then determined through its
length sp, its rise angles in start and end-points (α0, αP ) and the first derivatives of
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the rise angle (which is equal to 0). The differential equation can be transformed into
a first-order form:

(α
′
)2 =

MT · sin 2α

A · r
+

cos4 α

r2
− MT · sin 2α0

A · r
− cos4 α0

r2
. (4.1)

This form contains MT as an unknown parameter, and satisfies the α
′

0 = 0 condition.
From the analytical solution of the helix one can show, that the function α(s) changes
monotonous in the interval [0, sP ], so the sign of the first derivatives equals to the
difference of αP − α0. The function does not leave the interval of α0 and αP , as
another consequence of monotony.

4.2.2. Computational form of the finite differences. We divide the interval s = [0, sp]
into Nd sections. The length of the ith section is denoted by ∆si. The analytic
solution shows that the function changes less at small s; a sketch of the function
can be found in the paper by Thompson et al. [6]. It is preferable to choose the
sections so that the changees of the function over the sections are approximately the
same in size. This condition needs longer sections at smaller changes of function and
shorter sections at greater changes of function. Let the lengths of sections ∆si make
a geometrical series. The quotient of two consecutive sections’ length ∆si+1/∆si is
denoted by q ≤ 1, so the last (the Ndth) section’s length is Ω = q(Nd−1) times the
first section’s length. So the sum of all sections, i.e. the length of the helix is:

sP = ΣNd
i=1∆si = ∆s1 · ΣNd

i=1q
i−1,

while the length of first section (∆s1) is:

∆s1 = sp ·
1 − q

1 − qNd
.

We want to compute the function values αi in the end-points of the sections. (This
notation leaves α0 unchanged, as a continuation of the series, while at the end of the
helix αNd

= αP .) There are Nd − 1 unknown αi values in the divider points, and
we do not know MT yet. One can write Nd − 1 equations with the finite differences
(one for each divider point), and one more for the start-point of the helix, using the
symmetry of function α(s).

We write the difference equation of the ith divider point. The truncated Taylor-
series of α at that point is:

α(si + S) = αi + α
′

i · S + α
′′

i · S
2

2
,

so we can write αi−1 and αi+1:

αi−1 = αi − α
′

i · ∆si + α
′′

i · ∆s2i
2
,

αi+1 = αi + α
′

i · ∆si · q + α
′′

i · ∆s2i
2

· q2.

These lead to the following expression for α′′i:

αi
′′ =

2

q · (q + 1) · ∆s2i
(q · αi−1 − (q + 1) · αi + αi+1) ,
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which must be equal to the formula given by (2.5), i.e.

MT · cos 2αi − sin 2αi · cos2 αi = (4.2)

=
2

q · (q + 1) · ∆s2i
· (q · αi−1 − (q + 1) · αi + αi+1) . (4.3)

This equation can be written for Nd− 1 points. In the ‘zeroth’ point a fictitious −1st
point helps to write the following equation:

MT · cos 2α0 − sin 2α0 · cos2 α0 =
2

∆s21
· (α1 − α0). (4.4)

The helix is computed by the solution of equations (4.2) and (4.4). The Nd equations
are solved with an iterative method.

4.2.3. Iterative solution of the equation system of finite differences. The function val-
ues in the divider points can be set initially in order to make a second order parabola.
Initial values of αi-s will be

αi = α0 +

(
Σij=1∆sj

sp

)2

(αP − α0),

and the initial value of MT is computed from Eq. (4.4). In every iteration step we
change

• αi-s by the formula

αnewi =
q · αi−1 + αi+1

q + 1
− (MT · cos 2αi − sin 2αi · cos 2αi) ·

q · ∆s2i
2

, (4.5)

i = 1, ..., Nd−1, which was expressed from Eq. (4.2) (where on the right side
we use the modified value of αi−1, but the old values of αi and αi+1),

• MT from Eq. (4.4).

If the greatest change of αi-s is smaller than a prescribed limit ∆α, we stop the
iteration.

α
′
(s), α

′′
(s) and the internal forces can be computed at the end-point of the helix

from the accepted values of αi-s.

5. Numerical results

5.1. Equilibrium paths and configurations. We choose the length of the rod to
L = 244, and C = 2/3, in order to reach comparable results with previous results in
[4]. The helix was divided into 250 sections, the quotient of the largest and smallest
section was 30, i.e. q = 30−1/249 ≈ 0.9864334. Figure 4. shows two dimensional
projections of the mathematically possible solutions. On the upper vertical axes the
rise angles are in the middle of the helix, on the lower axes are the lengths of the
half-loop. The horizontal axes represent the rise angle at the end-point of the helix
on the left side, and the contact force on the right side.
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Figure 4. Two dimensional projections of the equilibrium path of the
rod with A = 1, L = 244r.

We mark four points in each diagram. Point A is the starting point of the path
following procedure. The smallest curvature is 1 in point B, and the minimum of
the distributed contact force is 0 in point D. Physically acceptable shapes belongs to
points of segment BD. One example for that is point C.

Figure 5a-d represents four rod shapes from the equilibrium path, namely the
configurations in points A, B, C and D, respectively. The series of the presented
shapes can be reached through an unloading process during which the twist rate
decreases from B to D. (It decreases even from A, but those are physically non-
acceptable solutions, hence they are out of our interest.) But the smaller twists are
still very high, as the following short computation will show.

We calculate the characteristic values of the space curve of the configuration of
Figure 5c. In this configuration the torque equals MT = −0.533444, the rise angle
of the helix in its mid-point is α0 = 1.021554 and the arc-length of the helix is
sP = 56.269746. The characteristic values are the twist (Tw), the writhe (Wr) and
the link (Lk). Their meanings for a space curve and a rod can be found in the works
by White [12] and Fuller [13]. The twist can be computed from the torque, and, as
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Figure 5. Equilibrium shapes of the rod, corresponding to the points
A,B,C,D of the eq. path

already mentioned, it is constant along the rod, so it can be computed via

Tw =
MT

C

L

2π
. (5.1)

C depends on the material of the rod, and until now it has not had any influence on
the computation. The earlier mentioned C results Tw = −31.08.

The writhe is computed with an approximate method presented by Thompson et
al. in [6]. We assume that the bulk of writhe is in the helix, and neglect the writhe
that would be computed from the loop. We can also neglect the small change of the
rise angle, so we compute the writhe on a helix of constant rise angle α0 via:

Wr =
2sP cos2 α0

π
= −9.77 . (5.2)

The link number is the measure of the twist of the end sections against each other:

Lk = Tw +Wr = −40.85 . (5.3)

Comparing these results with the graphs of Coleman et al. in [11] one can prove the
intuition that our analyzed shapes arise at a very high twist.

5.2. Connection to former results. The characteristic values of the configuration
D can be computed in the same way, as we did in the previous subsection. Then
we had the link number Lk = −34.05. In this configuration the minimum of dis-
tributed contact force equals zero. Further decreasing of the twist results in the need
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Figure 6. Change of distributed contact forces (a) in D state, (b) in
a physically non-acceptable state after decreasing the twist, (c) in a
possible new configuration (A4)

of tensional forces between the strands of the helix. Since this is not a physically
acceptable configuration, no A2+ configuration exists with a lower link number than
configuration D.

We present some theoretical considerations on what kind of configuration may arise
if we decrease the twist in state D. The twist of the end-sections against each other is
measured with the link number. Decreasing the twist means decreasing the link, i.e.
the rod has to change to a new configuration, but this new configuration has nearly
the same link number.

The character of the intensity of the distributed contact force is sketched on Figure
6. Configuration D with vanishing contact force at its end is in Figure 6a., while
Figure 6b. shows the necessary distribution, when the twist is decreased and we
use the same equations. In physically acceptable solutions no negative contact force
arises, so a part of the rod will shove off its contacting part. We suspect that the
contact ends in the hatched region, and at the end of the remaining contact a second
concentrated force arises instead of the contact forces of the hatched region. This
force is denoted by R in Figure 6c. That means that the follower configuration in
the un-twisting process could have a line contact, closed by the concentrated contact
force R, then a skip-fly segment, followed by the force Q′′, then it is closed by the
terminal loop. In short, this will be an A4 configuration with link number −34.05.

As we presented the analyzed A2+ configuration arises only at very high twist
values. In this state a secondary buckled shape is also possible. In the resulting
configuration the double helix wraps around itself. This would be the third helical
form, as the rod itself is the model of the double-helix of the DNA, it creates the gen-
eralized helix we have presented, and the generalized helix produces a more complex
helix with a very complicated contact situation.
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Figure 7. The rise angle in the middle (a) and at the end (b) of the
helix in terms of the function of rod length. The upper and lower
linse represent states D and B, respectively.

5.3. Effect of change in the rod length. We analyzed the effect of rod length.
Figure 7 shows two graphs of results. Both graphs present a change of the rise angle
as a function of the rod length, Figure 7a at the middle of helix, while Figure 7b at
the end. The physically unacceptable universal starting point of path following has a
constant value of 0.9733982. From there all angles are increasing until state B, which
is the lower graph in both figures. The maximum of attainable angles arises in state
D, which are shown by the upper lines.

The rod length was changed between 40 and 280. It can be seen that the interval
of physically acceptable states increases with increasing rod length. We can see from
the graphs that for long rods the angles vary only by a small value and it seems that
all four curves have a horizontal asymptote. This is valid for relatively long rods,
where the twisted part is long enough to result in very small derivatives even in case
of larger difference between the rise angle in the middle and at the end of the helix.
Moreover, the longer the rod is, the longer part of it lies in the helix, in accordance
with the assumption made by the approximate computation of the writhe.

In the case L = 4 · 3.5773973 = 14.3095892 the length of the contact line would
be equal to 0. The un-twisting process should decrease this length, but it cannot be
negative, so this is a theoretical lower end of the diagrams. This configuration could
also be treated as an A1 configuration of a short rod. However, this configuration is
physically non-acceptable, as its curvature is greater than 1/r; an unloading process
of the rod can reach possible shapes of the rod, but this is beyond the scope of this
paper.

5.4. Conclusions. We presented the numerical computation of a twisted elastic ring
in a configuration with self-contact along a line, where no skip-fly segment arises
between the contact line and the terminal loop. The equilibrium path of the rod
shape was computed with the Path-Following Simplex Algorithm in the space of the
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parameters defining the rod shape. An universal starting point, independent of the rod
length was given to the path-following. Using an approximate method for computing
the twist and writhe of the spatial curve, we proved that the assumed configuration
arises at very high twist rates beyond the interests of former research work.
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Domokos and the support of the Hungarian Grants FKFP-0177/2001 and OTKA-T37880.
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Abstract. In the paper the formulation and application of the subregion boundary el-
ement method (BEM) to static and dynamic analysis, optimization and identification of
two-dimensional bodies are presented. The subregion method allows modeling of composite
structures by assuming different material properties of particular regions. The governing
BEM equations for all regions are combined using the condition of compatibility of displace-
ments and equilibrium of tractions between the common interfaces. The transient problem
is solved using the dual reciprocity method (DRM). The problem of optimization or iden-
tification is solved by the evolutionary algorithm (EA). Numerical examples showing the
application of the combined BEM and EA are presented. The position of the interface in a
two-zone composite plate is optimized in order to minimize support or interface tractions.
The position and length of a crack between two materials are identified.
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1. Introduction

Structures which consist of two or more different materials, are called composite ma-
terials. In recent years a great interest in composite materials having new properties
has been observed. They usually have better mechanical properties than the tradi-
tional homogenous materials, for example, high stiffness, strength and simultaneously
small weight. Nowadays, composite materials are very often used in modern struc-
tures, especially in the aircraft industry, where light and highly resistant structures
are required. New methods of analysis of such materials are still developed.

In the present paper composite structures are analyzed using the subregion method
[1,2] and the dual reciprocity boundary element method (DRBEM) [3]. The DRBEM
is the fastest approach in the dynamic analysis by the BEM [4] and it has been applied
in different fields of mechanics mainly to homogeneous materials. The subregion BEM

c©2004 Miskolc University Press
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allows modeling of composite structures by dividing a body into subregions of differ-
ent material properties. Each subregion is considered separately and the equations
for the whole structure are combined using the condition of compatibility of displace-
ments and equilibrium of tractions between the common interfaces. The method can
be used in the analysis of cracked homogeneous and composite structures. High con-
centrations of stresses are usually present at the interface between different materials
in composites. The subregion BEM allows the determination of displacements and
stresses at the interface very accurately because they are directly incorporated in the
formulation of the method. The application of the DRBEM and the subregion method
in the static and dynamic analysis of composite structures is presented in [5,6,7]. A
comparison of the BEM results with analytical solutions and computed by the finite
element method (FEM) is presented in [5,6] showing a very good agreement.

The identification and optimization of composite structures are important prob-
lems of mechanical engineering. Good properties of composites can be additionally
improved by a proper choice of materials and their structure using the optimization
process. The application of the subregion BEM to optimization and identification
of statically loaded structures was presented in several works [8,9,10]. The problems
were solved using gradient methods, which require sensitivities of objective functions.

The shape optimization of the interface between different materials for plane and
axisymmetrical problems is presented in [8]. The problem was solved using sensitivity
analysis and the shape variation was represented using the material derivative concept.
The functionals depending on displacements, tractions and the von Mises stresses at
the interface were used as criteria of optimization. The optimal shape of the interface
of endosseous implants in dentistry was searched for.

The identification of shape and material properties in two-dimensional finite bodies
is presented in [9]. The method was based on the minimization of the least square
errors between measured and computed displacements. The regularization function
was added to the error function in order to overcome ill-posedness of the inverse
problem. The problem was solved by recursive quadratic programming with the line
search method. The method was applied in identification of different shapes and
material properties of inclusions and crack-like voids.

The identification and optimization of the position of a deformable inclusion is
presented in [10]. The aim of optimization was the maximization of stiffness of the
matrix-inclusion system characterized by its strain energy. The gradient of the objec-
tive function was computed by implicit differentiation.

Recently optimization and identification problems are solved using the evolution-
ary methods, which imitate evolutionary processes in nature [11,12]. Contrary to
the gradient methods of optimization, the evolutionary methods can be simply im-
plemented because they need only the values of objective functions. Examples of
optimization of statically and dynamically loaded homogeneous bodies using the evo-
lutionary methods are presented for instance in [13]. Examples of maximization of
stiffness of composite structures by the combined DRBEM and the EA are presented
in [6,14]. The results of minimization of support and interface tractions are presented
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in [7,15]. The results of identification of material defects in the form of inclusions and
cracks are presented in [6,16] and [7], respectively.

In the present work the formulation and application of the subregion DRBEM and
the EA for problems of analysis, optimization and identification are presented. Several
numerical examples are shown, in which statically or dynamically loaded rectangular
plates consisting of different materials are considered. The aim of optimization is the
minimization of tractions at the fixed boundary or at the interface. The aim of iden-
tification is to find the position and length of a crack between two different materials.
The constraints on design variables defining geometry of composites are imposed.
The variation of tractions or displacements on design variables is investigated by the
systematic search method.

2. Subregion dual reciprocity boundary element method

In many cases bodies consist of several homogeneous and isotropic domains. Such
structures subjected to dynamic loads can be analyzed using the subregion DRBEM.
Consider a linear-elastic body subjected to dynamic load and consisting of two isotropic
and homogeneous materials as shown in Figure 1. The materials occupy domains Ω1

and Ω2, the external boundaries are Γ1 and Γ2 and the internal boundary (interface)
is Γ12. On the external boundary Γ = Γ1 ∪ Γ2 the displacement field U(x, t) and the
traction field P(x, t) are prescribed.

Figure 1. A body made of two different materials

In DRBEM the numerical solution is obtained after dividing a body into boundary
elements. For some problems more accurate results can be obtained by using addi-
tional internal points. The DRBEM allows the formulation of the system of equations
of motion in a matrix form, similar to the FEM. For a simple connected region the
equation system to be solved is:

MÜ + HU = GP, (1)

where H and G are the BEM coefficient matrices, M represents the mass matrix, U,
Ü and P are displacement, acceleration and traction vectors of all boundary nodes,
respectively. The elements of matrices H , G and M depend on the geometry of
a structure and material properties. Contrary to the FEM, the matrices are non-
symmetric and fully populated.
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The subregion DRBEM requires discretization of the boundary displacements, trac-
tions and coordinates of all regions, including the interfaces which separate them. For
the structure in Figure 1, equation (1) is applied to each subregion in turn as if they
were independent of each other. The final set of equations for the whole structure is
assembled using the condition of compatibility of displacements and equilibrium of
tractions between the common interface Γ12:

U12 = U21, P12 = −P21. (2)

Using the above conditions, the whole system of equations for the composite structure
in Figure 1 can be rearranged as:

[
M1 M12 0
0 M21 M2

]
Ü1

Ü12

Ü2

+

[
H1 H12 0 −G12

0 H21 H2 G21

]
U1

U12

U2

P12

 =

=

[
G1 0
0 G2

]{
P1

P2

}
(3)

where the superscripts 1, 2 and 12 (21) denote the matrices that correspond to the
appropriate boundaries. The above system of equations is rearranged according to
the boundary conditions and solved step-by-step giving the unknown displacements
and tractions on the external boundary and the interface at each time step. The
total number of unknowns is equal to the number of nodal degrees of freedom over
the external boundaries plus twice the number of nodal degrees of freedom over the
internal boundary. On the basis of the procedure described, a computer program
which solves the multi-domain problems for the external time dependent tractions
has been implemented.

3. Evolutionary algorithm

Evolutionary methods imitate evolutionary processes in nature. These methods are
based on evolution of species and survival of the best individuals. The class of al-
gorithms which is based on evolution principles is called genetic algorithms (GAs),
evolutionary algorithms (EAs) or evolutionary programs (EPs) [11,12]. In such algo-
rithms a population of individuals (chromosomes) is modified using genetic operators
like crossovers and mutations. All chromosomes in a population are estimated using
a fitness function which is the value of an objective function. The next populations
are created using a selection. The individuals which are well adapted (better value of
a fitness function) have a greater chance to form the next population.

In the paper a modified simple genetic algorithm (SGA) is used [11]. The classi-
cal SGA uses binary coding, crossover and mutation. A modified SGA, which is also
called the EA or EP, uses the floating point coding for representation of the population
of chromosomes. The classical binary genetic operators (simple crossover and simple
mutation) are modified in accordance with the floating point coding. In the evolu-
tionary algorithms usually new genetic operators are also formulated (evolutionary
operators).



Analysis, optimization and identification of composite structures using BEM 57

The choice of parameters of the EA (probability of evolutionary operators, number
of chromosomes) is arbitrary and finding their optimal values is not easy because
they usually depend on a problem, for instance the number of design variables and
the form of an objective function.

Figure 2. Evolutionary program

A scheme of the EP used in the paper for the optimization and identification is
presented in Figure 2. It consists of two main blocks: 1) the block of the EA, in
which the operations on the population of chromosomes are performed and 2) the
block of the BEM, in which the value of a fitness function is evaluated using the
subregion DRBEM.

The initial population of chromosomes is randomly generated from the feasible
domain in the first block. Each chromosome consists of genes (design variables) and
represents one potential solution of the problem. Appropriate constraints are imposed
on genes. The design variables of each chromosome define the shape of one composite
structure. The structures are analyzed in the second block by the subregion DRBEM
and the values of displacements and tractions on the external boundary and the
interface are obtained. The value of a fitness function (an objective function) for
each chromosome in the population is evaluated using boundary displacements or
tractions (stresses). Then the next population is created using the genetic operators
and the selection. The mutation changes the value of genes of the chromosome and
the crossover exchanges genes between different chromosomes. This procedure is
repeated until the optimal solution is reached. The best chromosome of all generations
represents the solution of the problem and its genes define the geometry of the optimal



58 R. Górski, P. Fedelinski

structure. The process of optimization is usually stopped after a fixed number of
generations.

4. Numerical examples

In order to demonstrate the applications and accuracy of the proposed method in the
analysis, optimization and identification, three numerical examples are presented. The
linear-elastic and non-homogeneous rectangular plates subjected to static or dynamic
(Heaviside function) loads as shown in Figure 3 are considered.

a) b)

Figure 3. Composite plates: a) two-zone cantilever plate, b) two-zone
plate with a crack

Position H1 of the straight interface in the plate in Figure 3a is optimized. The
objective function – the maximum resultant traction Tb at the fixed boundary or
Ti at the interface (for statics and dynamics) – is minimized with respect to design
variable H1.

Position X and length L1 of the crack in the plate in Figure 3b is identified.
The objective function is minimized with respect to design variables X and L1. It
depends on the difference between the measured and the computed values of boundary
displacements (for statics and dynamics). The measurement is simulated numerically.
Sensor points, in which displacements are measured along the y axis, are placed at
all nodes on the upper and lower boundary of the plate (where the non-zero tractions
are prescribed).

During the optimization and identification, the number of boundary elements is
constant and their size changes, which simplifies the boundary discretization. In
order to avoid significant differences in the size of the elements, which can decrease the
accuracy of the solution, appropriate constraints are imposed. In order to investigate
the influence of the initial populations on the final results, five tests are performed
for each problem.

The length and the height of each plate is 10 cm and 5 cm respectively. The
interface in the plate in Figure 3a is defined by design variable H1 and the interface
is at half of the height in the plate in Figure 3b. The value of variable H1 belongs to
the interval from 1 to 4 cm. The coordinate of the center of the crack is X and its
length is L1. Variables X and L1 belong to the intervals from 2.5 to 7.5 cm and 1 to 4
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cm, respectively. The value of the load is 1 MPa. The time of BEM analysis (Houbolt
scheme) is 600 µs and the time step is ∆t = 2µs. The values of the material properties
for the zone Ωl (aluminum) and Ω2 (steel) are: modulus of elasticity E1 = 70GPa
and E2 = 210GPa, Poisson’s ratio ν1 = 0.34 and ν2 = 0.3, density ρ1 = 2700 kg/m3

and ρ2 = 7860 kg/m3, respectively. Plane strain state is assumed. The total number
of boundary elements is 50 and 52 (with 10 and 8 elements on the interface) for the
plates in Figure 3a and Figure 3b, respectively.

In the present evolutionary algorithm the following evolutionary operators with
the corresponding values of probability are used: Gauss mutation (62.5%), uniform
mutation (25%), arithmetic and simple crossover (6.25%). In all examples the number
of chromosomes in the population is 10.
Example 1: minimization of the support tractions. The composite plate

shown in Figure 3a is considered. The results of the static and dynamic analysis
and the optimization are presented. The criterion of optimization is minimization of
tractions at the fixed boundary with respect to position of the interface H1.

The distribution of static tractions Tb(y) along the fixed boundary for different
positions of the interface H1 is presented in Figure 4.
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Figure 4. Distribution of static tractions Tb(y) along the fixed
boundary for different positions of the interface H1

The value of traction increases at point A, decreases at point B and does not change
at point C (see Figure 3a) when the variable H1 increases. Due to different material
properties of the two subregions connected at the interface, jumps in the tractions
at point B can be observed. The tractions are greater on the boundary of the stiffer
material (steel) and they increase when the area of this material increases. It can be
noticed that the traction is minimum at point A for H1=1 cm and the value of the
objective function is Tb = 29.88MPa.



60 R. Górski, P. Fedelinski

The time history of tractions Tb(y, t) at point A for three positions of the interface
is presented in Figure 5. The dynamic tractions are also maximum at point A and the
peak values are about two times greater than the static ones for the corresponding
positions of the interface. The optimal solution is for H1 = 1 cm and the value of the
objective function is Tb = 54.72MPa for time t = 462µs.
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Figure 5. Dynamic tractions Tb(y, t) at point A for three positions
of the interface H1

The results of optimization after 10 generations obtained by the EA are compared
with the exact solution obtained by the systematic search method and are presented
in Table 1. The convergence of the solutions is very fast because only one design
variable is used and the range of its variability is small. The results in Table 1 are the
exact solutions (see Figures 4 and 5). It can be observed that one of the constraints
imposed on the variable H1 is active.

Test No.
Statics Dynamics

H1 [cm] Tb [MPa] H1 [cm] Tb [MPa]
1 1.00 29.88 1.00 54.72
2 1.00 29.88 1.00 54.72
3 1.00 29.88 1.00 54.72
4 1.00 29.88 1.00 54.72
5 1.00 29.88 1.00 54.72

Exact 1.00 29.88 1.00 54.72

Table 1. Results of optimization – minimization of the support tractions

Example 2: minimization of the interface tractions. The composite can-
tilever plate shown in Figure 3a is considered. The results of the static analysis
and the optimization are presented. The criterion of optimization is minimization of
tractions at the interface with respect to its position H1.
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The distribution of static tractions Ti(x) along the interface for its different posi-
tions H1 is presented in Figure 6. The greatest values of tractions are obtained at the
nodes close to the fixed boundary. The optimum obtained by the systematic search
method is at the point for which the coordinate x = 1 cm and the position of the
interface is H1 = 3.5 cm (see Figure 6).

Figure 6. Static tractions Ti(x) along the interface for its different
positions H1

The results of optimization after 10 and 100 generations obtained by the EA for the
static and dynamic problems are presented in Table 2. As in the previous example, the
convergence of the solutions is very fast. The solutions obtained after 100 generations
are more precise than the results after 10 generations but the difference between them
is small. In this example the constraints imposed on design variable H1 are not active.

Test
Statics Dynamics

No.
10 generations 100 generations 10 generations 100 generations

H1 [cm] Ti [MPa] H1 [cm] Ti [MPa] H1 [cm] Ti [MPa] H1 [cm] Ti [MPa]

1 3.5040 2.4535 3.4895 2.4487 3.5580 4.6710 3.5576 4.6708
2 3.4936 2.4501 3.4878 2.4482 3.5575 4.6708 3.5575 4.6708
3 3.4956 2.4507 3.4882 2.4483 3.5515 4.6730 3.5571 4.6708
4 3.4966 2.4511 3.4918 2.4495 3.5690 4.6760 3.5573 4.6708
5 3.4977 2.4515 3.4877 2.4481 3.5535 4.6723 3.5563 4.6712

Table 2: Results of optimization – minimization of the interface tractions

Example 3: identification of the crack. The composite plate with the crack
shown in Figure 3b is considered. The results of the static and dynamic analysis and
the identification are presented. Position X and length L1 of the crack between two
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materials are identified by minimization of difference between the measured and the
computed boundary displacements.

Figure 7. The variation of the static displacement at point A with
respect to position X and length L1 of the crack

The influence of the center of the crack X and its length L1 on the static displace-
ment at point A is presented in Figure 7. For a fixed value of the variable X or L1,
the variation of displacement is great when the crack is long or it is near the center of
the plate, respectively. If length L1 is small and the crack is near the left or the right
boundary of the plate, the values of displacement at point A are small. The form of
the variation function for a middle node located on the lower boundary is very similar
to that in Figure 7. In this case greater values of displacements are obtained due to
the smaller stiffness of aluminum.
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The static and dynamic displacements are computed for nodes B and C (see Figure
3b). The analysis is performed for X = 5 cm and L1 = 2 cm. The values of the static
displacements along the y axis obtained for these points are uB = 1.64 and uC = −1.87
[10−5 cm], respectively. It can be noticed that due to the applied boundary conditions
as shown in Figure 3b, the crack surfaces are not in contact (values of displacements
have opposite signs). The time history of the dynamic displacements at points B and
C along the y axis is presented in Figure 8. In this case the crack is also open during
the whole time of the analysis. Fast oscillations of displacements, especially at point
C (aluminum), can be observed during the initial period of time.

The results of identification after 10 and 100 generations obtained by the EA for
the static and dynamic problems are presented in Table 3. The convergence of the
solutions is fast. As in the previous example, the solutions obtained after 10 and 100
generations are good. The results after 1000 generations (not included in the paper)
are very precise and for most of them the real solution (exact) is reached.

TestNo.
Statics Dynamics

10 generations 100 generations 10 generations 100 generations
X [cm] L1 [cm] X[cm] L1 [cm] X [cm] L1[cm] X [cm] L1 [cm]

1 4.9606 2.0156 5.0014 2.0014 4.9885 1.9464 5.0007 1.9989
2 5.0070 1.9747 4.9991 1.9971 4.9858 1.9893 4.9986 2.0004
3 5.0098 1.9842 4.9983 2.0000 5.0115 2.0111 5.0009 1.9989
4 4.9649 1.9830 4.9953 2.0000 4.9854 1.9531 5.0064 1.9993
5 4.9664 1.9521 4.9994 1.9970 4.9999 2.0071 4.9999 1.9996

Real sol. 5.0000 2.0000 5.0000 2.0000 5.0000 2.0000 5.0000 2.0000

Table 3. Results of identification of the crack

5. Conclusions

In the paper the subregion dual reciprocity boundary element method and the evo-
lutionary algorithm are used in the static and dynamic analysis, optimization and
identification of composite structures. The transient problem is solved using the dual
reciprocity method. The problem of optimization or identification is solved by the
evolutionary algorithm.

The composite cantilever plate and the plate with a crack consisting of different
materials (steel and aluminum) are analyzed. The static or dynamic tractions and
displacements for selected points of structures are presented. For the cantilever com-
posite plate the tractions at the fixed boundary are about one order of magnitude
greater than the tractions at the interface and the value of the prescribed load. The
maximal support tractions are present at the corner point which belongs to the stiffer
material (steel). The maximal interface tractions are present at nodes close to the
fixed boundary. The crack in the second composite plate is located on the interface
between two materials. The influence of the position and length of the crack on dis-
placements at boundary nodes located at half of the length of the plate is investigated.
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The variation of static displacements is great when the crack is long and it is at the
center of the plate.

The numerical results of optimization and identification (for one or two design
variables) obtained by the evolutionary algorithm are shown. The position of the
horizontal interface in the cantilever composite plate defined by one design variable is
optimized using two criteria: 1) the minimization of tractions at the fixed boundary
and 2) the minimization of tractions at the interface. The support tractions are
minimum when the area of steel is maximum. The interface tractions are minimum
when the area of aluminum is greater than the area of steel (but not maximum).
The interface crack defined by two design variables is identified by the evolutionary
algorithm very accurately.

The numerical examples considered are simple therefore the evolutionary algorithm
results can be compared with the known solutions obtained by investigation of the
objective functions by the systematic search method. The influence of the initial
populations of chromosomes (which are random) on the solutions obtained by the
evolutionary algorithm is investigated by solving five tests for each problem. For all
numerical tests of the particular problem the accuracy of the results is very good.
Generally, in the presented examples the initial populations do not influence the final
results obtained by the algorithm but usually a greater number of generations is
required to obtain more accurate results.

The examples of optimization and identification show that the boundary element
method is very useful in problems which require many changes of boundaries. The
modification of boundary discretization and the preparation of all needed data are
very simple. The results obtained by the evolutionary algorithm for a small number
of design variables (one or two) are very accurate and the convergence of the results
to the exact solutions is fast. The advantage of the evolutionary methods is that
they can be implemented simply because they require only the values of objective
functions.
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Abstract. The present paper investigates the properties of the second harmonics of
monochromatic symmetrical normal waves. The analytical representations for nonharmonic
distortion of normal waves with a free propagation direction in the plane of a cubic anisotropic
monocrystal germanium layer have been obtained. The intensity of the second harmonics and
the wave motion forms have been analyzed for nonelastic equivalent propagation directions.
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1. Introduction

In the present paper nonlinear effects, which appear when stationary stress waves
spread in elastic mediums, have been investigated. One of the widely used conceptions
of such a study is the determination of the so-called higher orders harmonics, which
describe nonlinear, i.e., nonharmonic effects. This conception is effectively used to
investigate nonlinear elastic waves with low intensity, and on its base a great number of
fundamental scientific and applied results are obtained. The most important features
of this conception can be found in papers [1-3]. The procedure we apply is based on
the representation of the elastic wave displacements in a series in terms of the acoustic
Mach number, which can be regarded as a small parameter.

We obtain appropriate equations for the different members of the series from the
nonlinear equations of dynamics written in terms of displacements. The solutions
to these equations are referred to as second, third and fourth order harmonics, re-
spectively. By applying this approach we want to determine the second harmonics of
monochromatic elastic waves, which belong to one of the wave motions mode for the
waveguide considered, or the compound second harmonics of linear waves. The latter
belong to two different waveguide modes. In the second case, the question about the
normal waves’ three-phonon interaction deserves special attention.
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Works [1-9] are devoted to the solution methods and provide a number of results
for the propagation of the second harmonics of elastic waves in anisotropic bodies. In
these works a geometrically nonlinear model is selected and the effect of the propaga-
tion medium on the equations of motion is also clarified. The issues of how to obtain
the solutions, how to describe the second harmonics and the basic physical-mechanical
effects for the nonlinear wave phenomena have all been analyzed both theoretically
and experimentally. In the above works the second harmonics of longitudinal and shift
bulk waves in isotropic mediums, the second harmonics of compound monochromatic
waves in crystalline mediums in a number of crystal systems have been obtained.
The questions about three-phonon interaction of bulk elastic waves in anisotropic
and isotropic mediums have also been considered. In paper [10] the second harmonics
are found for Relay-type surface waves in an isotropic medium.

There are only a few works devoted to the problem of how to obtain and analyze
the second harmonics of normal waves in waveguides of different geometry with cross-
section dimension, restricted at least on one coordinate. For example, in paper [11]
the analysis of nonharmonic effects for the propagation of flexure elastic waves in a
thin isotropic lamina is considered.

2. The model and basic equations of the wave process

Indicial notations are employed in a Cartesian coordinate system throughout this
paper. In accordance with the general rules of indicial notations summation over
repeated indices is implied and subscripts preceded by a colon denote differentiation
with respect to the corresponding coordinate. Latin indices range over the integers
1, 2 and 3.

Nonlinear elastic wave propagation has been investigated in an arbitrary direction
in the plane of the waveguide. The volume V under consideration is given by

V = {−∞ < x1, x2 <∞, |x3| ≤ h} , (2.1)

where x1, x2 and x3 are non-dimensional coordinates.

The body under consideration is homogenous and anisotropic. The problem is
a dynamic one. Components εij of the Lagrange deformation tensor in terms of
displacements ui are given by the equation

εij =
1

2
(ui,j + uj,i + ul,iul,j) . (2.2)

It is assumed that the elastic potential has the form

U =
1

2
cijklεijεkl +

1

6
cijklmnεijεklεmn, (2.3)

in which cijkl and cijklmn are the tensors of elastic constants. The second Piola–
Kirchoff stress tensor σjq can be divided into two parts:

σjq = ∂U/∂(uj,q) = σ
(l)
jq + σ

(n)
jq , (2.4)
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where

σ
(l)
jq = cjqikui,k, σ

(n)
jq = 1

2cjqikul,iul,k + cpqikuj,pui,k + 1
2cjqiklmui,kul,m. (2.5)

The density and elastic properties of the Oh class monocrystal cubic system layer
under consideration are characterized by the following second and third order nonzero
elastic constants:

ρ̃ = ρρ∗; c̃11 = c̃22 = c̃33 = c11c∗;

c̃12 = c̃13 = c̃21 = c̃23 = c̃31 = c̃32 = c12c∗;

c̃44 = c̃55 = c̃66 = c44c∗; c̃111 = c̃222 = c̃333 = c111c∗;

c̃112 = c̃113 = c̃122 = c̃133 = c̃223 = c̃233 = c112c∗;

c̃144 = c̃255 = c̃366 = c144c∗; c̃123 = c123c∗; c̃456 = c456c∗;

c̃155 = c̃166 = c̃244 = c̃266 = c̃344 = c̃355 = c155c∗,

(2.6)

where the values of the normalizing parameters are c∗ = 1010 Pa, ρ∗ = 103 kg/m3.

The elastic potential in quadratic and cubic terms of ui,j for the monocrystal layer
has the form

U = 1
2c11

∑3
k=1 u

2
k,k + 1

2c44
∑3

k,l=1, k 6=l u
2
k,l +

+c44
∑3

k,l=1, k<l uk,lul,k + c12
∑3

k,l=1, k<l uk,kul,l +

+ 1
2∆3

∑3
k,l=1, k 6=l uk,ku

2
l,k + 1

2∆2

∑3
k,l=1, k 6=l uk,ku

2
k,l +

+∆6

∑3
k,l,m=1, k 6=l,m, l<m uk,luk,m(ul,m + um,l) +

+ 1
6∆1

∑3
k=1 u

3
k,k + 1

2∆5

∑3
k,l=1, k 6=l uk,ku

2
l,l +

+ 1
2∆7

∑3
k,l,m=1, k 6=l,m, l 6=m uk,ku

2
l,m +

+c144
∑3

k,l,m=1, k 6=l,m, l<m uk,kul,mum,l +

+∆4

∑3
k,l=1, k<l uk,kuk,lul,k +

+
∑3

k,l,m=1, k 6=l,m, l 6=m uk,luk,mum,l +

+c456
∑3

l,m=2, l 6=m u1,lul,mum,1,

(2.7)

where

∆1 = 3 c11 + c111; ∆2 = c12 + 2 c44 + c155; ∆3 = c11 + c155;

∆4 = c44 + c155; ∆5 = c12 + c112; ∆6 = c44 + c456; ∆7 = c12 + c144.
(2.8)

The equations of motion in terms of displacements are obtained from the equation of
motion

σij,j = ρ0üi (2.9)
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and have the form

ρ0üj −∆8(ul,lj + uk,kj)− c44(uj,ll + uj,kk)− c11uj,jj =

= ∆1uj,juj,jj + ∆2(2uj,luj,lj + 2uj,kuj,kj + uj,juj,ll + uj,juj,kk)+

+∆3(ul,jul,jj + uk,juk,jj + ul,luj,ll + uj,lul,ll + uk,kuj,kk + uj,kuk,kk)+

+∆4(2ul,juj,lj + uj,lul,jj + 2uk,juj,kj + uj,kuk,jj + ul,jul,ll + uk,juk,kk)+

+∆5(ul,luj,jj + uk,kuj,jj)+

+∆9(uk,lul,kj + ul,kuk,lj + uk,jul,kl + ul,juk,lk)+

+∆10(uk,kul,lj + ul,luk,kj)+

+∆6(uk,juk,ll + 2uk,luj,kl + uj,kuk,ll + 2ul,kuj,lk + uj,lul,kk + ul,jul,kk)+

+∆7(uk,kuj,ll + ul,luj,kk)+

+(∆4 + ∆5)(ul,lul,lj + uj,jul,lj + uj,juk,kj + uk,kuk,kj)+

+(∆6 + ∆7)(ul,kul,kj + uk,luk,lj + uj,k ul,kl + uj,luk,lk) (j = 1, 3),

(2.10)

where

l =

 1, j = 2, 3;

2, j = 1;
k =

 3, j = 1, 2;

2, j = 3;
(2.11)

∆8 = c12 + c44; ∆9 = c144 + c456; ∆10 = c123 + c144. (2.12)

Our main objective is to find the analytical representations for second harmonics of
normal three-partial waves. More precisely we would like to determine what forms
the linear three-partial waves’ second harmonics have and to investigate the intensity
levels of the second harmonics.

3. Analytical solution of a homogeneous problem for linear waves

After giving the elastic displacements uj as a sum of the linear harmonic terms u(l)j

and its inharmonic distortion u(n)j – the latter is proportional to the acoustic Mach
number of the first degree – we can determine the expressions for u(l)j and u(n)j from
the first and the second boundary value problems:

ρ0ü
(l)
j − cjsrku

(l)
s,k = 0,

(c3srku
(l)
r,k)x3=±h = 0;

(3.1)
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ρ0ü
(n)
j − cjdiku(n)i,dk = cjdiku

(l)
l,dku

(l)
l,i + cpdik(u

(l)
j,dpu

(l)
i,k+

+u
(l)
i,dku

(l)
j,p) + cjdiklmu

(l)
i,dku

(l)
l,m,

(c3diku
(n)
i,k )x3=±h = −( 1

2c3diku
(l)
l,iu

(l)
l,k+

+cpdiku
(l)
3,pu

(l)
i,k + 1

2c3diklmu
(l)
i,ku

(l)
l,m)x3=±h.

(3.2)

Partial displacement functions of the linear normal waves, which propagate in the
waveguide plain in an arbitrary direction characterized by the angle ϕ and the vector
n, can be represented in a complex exponential form

u
(l)
j (x1, x2, x3, t) = fj(x3) exp{−i(ωt− k(n1x1 + n2x2))} (j = 1, 3), (3.3)

where

fj(x3) is the complex amplitude function;

ω is the circular frequency of the wave;

k is a non-dimensional normalized wave number;

n1 = cosϕ and n2 = sinϕ are the components of the wave vector n.

Equations for the amplitude functions fj(x3) are obtained from (3.1):
f ′′1 (x3) +A11f1(x3) +A12f2(x3) +A13f

′
3(x3) = 0,

A21f1(x3) + f ′′2 (x3) +A22f2(x3) +A23f
′
3(x3) = 0,

A31f
′
1(x3) +A32f

′
2(x3) + f ′′3 (x3) +A33f3(x3) = 0;

(3.4)


(in1f3(x3) + f ′1(x3))x3=±h = 0,

(in2f3(x3) + f ′2(x3))x3=±h = 0,

(c12i(n1f1(x3) + n2f2(x3)) + c11f
′
3(x3))x3=±h = 0.

(3.5)

In the above equations Aij are the elements of the Christoffel matrix for the cubic
medium:

A11 = (Ω2 − k2(c11n
2
1 + c44n

2
2))/c44,

A22 = (Ω2 − k2(c44n
2
1 + c11n

2
2))/c44,

A33 = (Ω2 − c44k2(n21 + n22))/c44,

A12 = A21 = −k2n1n2∆8/c44,

A13 = A31 = −ikn1∆8/c44,

A23 = A32 = −ikn2∆8/c44.

(3.6)
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Here Ω2 = ρω2R2
∗/C∗ (C∗ = h m) is the non-dimensional frequency parameter.

The characteristic equation for the equation system (3.4) takes the form∣∣∣∣∣∣∣∣∣∣
λ2 +A11 A12 A13

A12 λ2 +A22 A23

A13 A23 λ2 +A33

∣∣∣∣∣∣∣∣∣∣
= 0 . (3.7)

We will assume such a material for the layer that the characteristic equation (3.7) has
three different roots λ1, λ2, λ3 with nonzero real parts. Then the solution to problem
(3.4)-(3.5) can be represented as

fj(x3) =

3∑
m=1

βjm exp(λmx3). (3.8)

The relations between the coefficients βj,m (j = 2, 3) and β1m follow from equation
(3.7) and are

βjm =
Qjm

Dm
β1m (j = 1, 3), (3.9)

where
Q1m = Dm = (λ2m +A22)(λ2m +A33)−A2

23,

Q2m = A13A23 −A12(λ2m +A33),

Q3m = A12A23 −A13(λ2m +A22).

(3.10)

Substitution of representation (3.8) into the boundary conditions (3.5) results in a
system of linear algebraic equations for the constants β1m (m = 1, 3)

B · (β11, β12, β13)T = 0. (3.11)

The elements of the coefficient matrix B are
B1m = in1 exp(hλm)(Q3mD

−1
m + λm);

B2m = in2 exp(hλm)(Q2mD
−1
m + λm);

B3m = exp(hλm)(ic12(n1 + n2Q2mD
−1
m ) + c11λmQ3mD

−1
m ) (m = 1, 3).

(3.12)

The coefficients β1m can be expressed from equations (3.11) as

β1m =
Gm

M
gm (m = 1, 3), (3.13)

where
G1 = M = B22B33 −B23B32,

G2 = B23B31 −B21B33,

G3 = B21B32 −B22B31,

(3.14)
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and gm are arbitrary integration constants.

Equation (3.11) has non-trivial solutions if

detB = 0 . (3.15)

Vanishing of the above determinant yields a transcendental equation for Ω and k, i.e.,
for the spectrum.

Finally, the complex displacement functions for the normal symmetrical linear
waves which propagate in the waveguide plane in an arbitrary direction (n1, n2) and
belong to the mode q, are

u
(l)
jq (x1, x2, x3, t) = [M−1q

∑3
m=1D

−1
mqgmqQjmqGmqβjmq exp(λmqx3)]×

× exp(−i(ωt− kq(n1x1 + n2x2))) (j = 1, 3).

(3.16)

4. Analytical solution of a heterogeneous problem for a nonharmonic
distortion

After determining the amplitude functions of linear waves, it becomes possible to
obtain the analytical representations for the nonharmonic distortion u(n)jq from (3.2):

ρ0ü
(n)
jq − cjdiku

(n)
iq,dk =

∑3
l,m=1 µjlmq exp(−2i(ωt−

−kq(n1x1 + n2x2)) + (λlq + λmq)x3);

(4.1)

(c3diku
(n)
iq,k)x3=±h =

∑3
l,m=1 ηjlmq exp(−2i(ωt−

−kq(n1x1 + n2x2)) + (λlq + λmq)x3) (j = 1, 3).

(4.2)

In these relations the constants µjlmq (j = 1, 2) can be written as

µjlmq = almq
jljmikqnj [2k

2
q(n2j∆1 + 3n2k∆2)− (λ2lq + 4λlqλmq + λ2mq)∆2] +

+almq
lmmlikq[2k2qnk(n2j (2∆4 + ∆5) + n2k∆3)−

−nk(λ2lq∆6 + λlqλmq (3∆6 + ∆7) + λ2mq∆7)] +

+almq
llmmikq[2k2qnk(n2j (2∆4 + ∆5) + n2k∆3)−

−nk(λ2lq∆7 + λlqλmq (3∆6 + ∆7) + λ2mq∆6)] +

+almq
klkmikqnj [2k

2
q(n2j∆3 + n2k(2∆4 + ∆5))−

−λ2lq∆7 − 2λlqλmq(∆6 + ∆7)− λ2mq∆6] +
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+almq
3l3mikqnj [2k

2
q(n2j∆3 + n2k(2∆6 + ∆7))− (4.3)

−λ2lq∆4 − 2λlqλmq(∆4 + ∆5)− λ2mq∆5] +

+almq
jm3lk

2
q [(n2j (∆4 + 2∆5) + n2k(∆6 + 2∆7))λlq +

+3(n2j∆4 + n2k∆6)λmq − λlqλmq(λlq + λmq)∆3] +

+almq
jl3mk

2
q [3(n2j∆4 + n2k∆6)λlq + (n2j (∆4 + 2∆5) +

+n2k(∆6 + 2∆7))λmq − λlqλmq(λlq + λmq)∆3] +

+almq
km3lk

2
qn1n2[λlq(∆9 + 2∆10) + 3λmq∆9] +

+almq
kl3mk

2
qn1n2[3λlq∆9 + λmq(∆9 + 2∆10)] .

If j = 3 we have

µ3lmq = 2almq
1m3likqn1[k2q(n21∆3 + n22(2∆6 + ∆7))−

−λ2lq∆5 − λlqλmq(3∆4 + ∆5)− λ2mq∆4] +

+2almq
1l3mikqn1[k2q(n21∆3 + n22(2∆6 + ∆7))−

−λ2lq∆4 − λlqλmq(3∆4 + ∆5)− λ2mq∆5] +

+2almq
2m3likqn2[k2q(n22∆3 + +n21(2∆6 + ∆7))−

−λ2lq∆5 − λlqλmq(3∆4 + ∆5)− λ2mq∆4] +

+2almq
2l3mikqn2[k2q(n22∆3 + n21(2∆6 + ∆7))−

−λ2lq∆4 − λlqλmq(3∆4 + ∆5)− λ2mq∆5] +

+almq
1l1m(λlq + λmq)[k2q(n21(2∆4 + ∆5) + (4.4)

+n22(2∆6 + ∆7))− λlqλmq∆3] +

+almq
2l2m(λlq + λmq)[k2q(n21(2∆6 + ∆7) +

+n22(2∆4 + ∆5))− λlqλmq∆3] +

+(almq
1m2l + almq

1l2m)(λlq + λmq)k2qn1n2(2∆9 + ∆10) +

+almq
3l3m(λlq + λmq)(3k2q(n21 + n22)∆2 − λlqλmq∆1).
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The constants ηjlmq (j = 1, 2) in the boundary conditions (4.2) are

ηjlmq = (almq
jm3l + almq

jl3m)[k2q(n1nj∆3 + n2k∆6)− λlqλmq∆4]+

+(almq
km3l + almq

kl3m)k2qn1(nj∆7 + n2∆6)−

−(almq
jljmn1∆4 + almq

klkmnj∆6 + almq
3l3mnj∆2)ikq(λlq + λmq)−

−almq
jllmikq(c144n1λlq + +c456nkλmq)− almq

jmmlikq(c456nkλlq + c144n1λmq) .

(4.5)

If j = 3 we have

η3lmq = almq
1l1m[k2q(n21∆5 + n22∆7)− λlqλmq∆3]+

+almq
2l2m[k2qn

2
1(∆5 + ∆7)− λlqλmq∆3]+

+(almq
1m2l + almq

1l2m)k2qn1(c123n1 + c144n2)+

+almq
3l3m[k2q(n21 + n22)∆2 − λlqλmq∆1]−

−almq
1m3likqn1(λlq∆5 + λmq∆4)− almq

1l3mikqn1(λlq∆4 + λmq∆5)−

−almq
2m3li× kq(n1λlq∆5 + n2λmq∆4)− almq

2l3mikq(n2λlq∆4 + n1λmq∆5).

(4.6)

In equations (4.3)-(4.5)

almq
dpsr = −(2M2

qDlqDmq)−1glqgmqGlqGmqQdpqQsrqβdpqβsrq; (4.7)

nk =

n1, j = 2;

n2, j = 1.
(4.8)

Problem (4.1) has the analytical solution of the following structure:

u
(n)
jq = [

∑3
l,m=1 γj1lmq exp((λlq + λmq)x3)+

+
∑3

m=1(γj2mq + γj3mqx3) exp(2λmqx3)+

+
∑3

m=1(γj4mq + γj5mqx1 + γj6mqx2) exp(2λmqx3)]×

× exp(−2i(ωt− kq(n1x1 + n2x2))).

(4.9)

The coefficients γj1lmq are determined from the linear equation system

L(l,m) · (γ11lmq, γ21lmq, γ31lmq)T = (µ1lmq, µ2lmq, µ3lmq)T (l 6= m), (4.10)
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where the elements of the matrix L(l,m) are

L
(l,m)
11q = 4k2q(c11n

2
1 + c44n

2
2)− c44(λlq + λmq)2 − 4Ω2;

L
(l,m)
22q = 4k2q(c44n

2
1 + c11n

2
2)− c44(λlq + λmq)2 − 4Ω2;

L
(l,m)
33q = 4k2qc44(n21 + n22)− c11(λlq + λmq)2 − 4Ω2;

L
(l,m)
12q = L

(l,m)
21q = 4k2qn1n2∆8;

L
(l,m)
13q = L

(l,m)
31q = −2ikqn1(λlq + λmq)∆8;

L
(l,m)
23q = L

(l,m)
32q = −2ikqn2(λlq + λmq)∆8.

(4.11)

The coefficients γj2mlq (j = 1, 3) are obtained as

γj2mq = γ12mqZ
(2)
jmq(P

(2)
mq )−1, (4.12)

where
Z

(2)
1mq = P

(2)
mq = L

(m,m)
22q L

(m,m)
33q − (L

(m,m)
23q )2;

Z
(2)
2mq = [L

(m,m)
33q (µ2mmq + χ1mq − L(m,m)

12q γ12mq)−

−L(m,m)
23q (µ3mmq + χ2mq − L(m,m)

13q γ12mq)]γ−112mq;

Z
(2)
3mq = [L

(m,m)
22q (µ3mmq + χ2mq − L(m,m)

13q γ12mq)−

−L(m,m)
23q (µ2mmq + χ1mq − L(m,m)

12q γ12mq)]γ−112mq.

(4.13)

The coefficients L(m,m)
srq are defined in the same way as in equation (4.11); γ12mq are

arbitrary integration constants;

χ1mq = 2ikqn2γ33mq∆8 + 4c44γ23mqλmq;

χ2mq = 2ikq(n1γ13mq + n2γ23mq)∆8 + 4c11γ33mqλmq.
(4.14)

The coefficients γj3mq (j = 1, 3) have the structure

γj3mq = γ13mqZ
(3)
jmq(P

(3)
mq )−1, (4.15)

where
Z

(3)
1mq = P

(3)
mq = Z

(2)
1mq;

Z
(3)
2mq = L

(m,m)
13q L

(m,m)
23q − L(m,m)

12q L
(m,m)
33q ;

Z
(3)
3mq = L

(m,m)
12q L

(m,m)
23q − L(m,m)

13q L
(m,m)
22q ,

(4.16)

and γ13mq are arbitrary integration constants. The coefficients γj4mq (j = 2, 3) are

γj4mq = γ14mqZ
(4)
jmq(P

(4)
mq )−1, (4.17)
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where
Z

(4)
1mq = P

(4)
mq = Z

(2)
1mq;

Z
(4)
2mq = [L

(m,m)
33q (ν1mq − L(m,m)

12q γ14mq)−

−L(m,m)
23q (ν2mq − L(m,m)

13q γ14mq)]γ−114mq;

Z
(4)
3mq = [L

(m,m)
22q (ν2mq − L(m,m)

13q γ14mq)−

−L(m,m)
23q (ν1mq − L(m,m)

12q γ14mq)]γ−114mq,

(4.18)

where the constants νsmq (s = 1, 2) have the structure

ν1mq = 2ikq(n1γ16mq + n2γ15mq)∆8+

+4ikq(n1γ25mqc44 + n2γ26mqc11) + 2γ36mqλmq∆8,

ν2mq = 4ikqc44(n1γ35mq + n2γ36mq) + 2λmq(γ15mq + γ26mq)∆8.

(4.19)

The representations for the coefficients γjsmq (s = 5, 6) are

γjsmq = γ1smqZ
(s)
jmq(P

(s)
mq)−1,

Z
(s)
1mq = P

(s)
mq = Z

(2)
1mq; Z

(s)
jmq = Z

(3)
1mq (j = 2, 3).

(4.20)

The coefficients γ1s1q (s = 5, 6) are arbitrary integration constants. The coefficients
γ1smq (s = 5, 6, m = 2, 3) assume the forms

γ1s2q = (d11qd22q − d212q)−1(d22qθ1sq − d12qθ2sq);

γ1s3q = (d11qd22q − d212q)−1(d11qθ2sq − d21qθ1sq),
(4.21)

where
θ1sq = −i exp(2hλ1q)(kqn1γ3s1q + λ1qγ1s1q)−

−ikqn1[exp(2hλ2q)γ3s2q + exp(2hλ3q)γ3s3q];

θ2sq = −c12kq exp(2hλ1q)(n1γ1s1q + n2γ2s1q)−

−c12kqn2[exp(2hλ2q)γ2s2q + exp(2hλ3q)γ3s3q]+

+ic11[λ1q exp(2hλ1q)γ3s1q + λ2q exp(2hλ2q)γ3s2q+

+λ3q exp(2hλ3q)γ3s3q];

(4.22)

and
d1rq = λ(r+1)q exp(2hλ(r+1)q);

d2rq = c12kqn1 exp(2hλ(r+1)q) (r = 1, 2).
(4.23)



78 K. Kurennaya and V. Storozhev

Finally, the constants γ14sq (s = 1, 3) are obtained from the linear equations system

H · (γ141q, γ142q, γ143q)T = (ξ1q, ξ2q, ξ3q)T , (4.24)

where the matrix H is defined as

H1jq = 2c44 exp(2hλjq)(ikqn1Z
(4)
3jq(P

(4)
jq )−1 + λjq);

H2jq = 2c44 exp(2hλjq)(P
(4)
jq )−1(ikqn2Z

(4)
3jq + λjqZ

(4)
2jq);

H3jq = 2 exp(2hλjq)(ikqc12(n1 + Z
(4)
2jq(P

(4)
jq )−1n2)+

+c11Z
(4)
3jq(P

(4)
jq )−1) (j = 1, 3).

(4.25)

The elements ξjq (j = 1, 3) of the right side (4.24) are

ξjq =
∑3

l,m=1(ηjlmq − 2ic44kqnjγ31lmq−

−c44(λlq + λmq)γj1lmq) exp((λlq + λmq)h) (j = 1, 2);

ξ3q =
∑3

l,m=1(η3lmq − 2ic12(n1γ11lmq + n2γ21lmq)−

−c11γ31lmq)(λlq + λmq) exp((λlq + λmq)h).

(4.26)

Finally, we have obtained closed analytical representations for the second harmonics
of normal three-partial waves. These solutions allow us to carry out a detailed analysis
of the nonlinear effects for the anisotropic waveguide considered.

5. Numerical results

Numerical computations have been made for the cubic system monocrystal germa-
nium layer for waves propagating in the plain Ox1x2 along the nonelastoequivalent
direction of the crystal, characterized by the angle ϕ = 15◦.

The analysis of some nonlinear effects for waves which belong to two low linear
modes with zero locking frequency has been performed.

For a germanium monocrystal the density and the second and third order nonzero
normalized elastic constants have the following values:

ρ = 5, 32; c11 = 12, 92; c12 = 4, 79; c44 = 6, 70;

c111 = −7, 10; c112 = −3, 89; c144 = −2, 3;

c155 = −2, 92; c123 = −0, 18; c456 = −0, 53.

(5.1)

The evaluation of the correlation between the longitudinal and cross horizontal
components in the second harmonics of monochromatic normal waves with different
frequencies Ω1 = Ω4 = 6.92, Ω2 = Ω5 = 9.23, Ω3 = Ω6 = 11.53 has been obtained.
The points j in Figure 1 correspond to the waves with frequencies Ωj (they have
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Figure 1. Linear waves spectrum for monocrystal germanium layer

Figure 2. Displacements ul distributions for x3 = 1/2

been analyzed). These correlations are compared with the correlations between the
longitudinal and cross horizontal components in the linear waves.

The longitudinal and cross horizontal components of the normal waves considered
are calculated by using the formulas

ul = u1 cosϕ+ u2 sinϕ; ut = −u1 sinϕ+ u2 cosϕ, (5.2)

where u1, u2 are the displacements in linear waves or the second harmonics of linear
waves; ϕ is the angle between the wave propagation direction in the middle waveguide
plane and Ox1 is a coordinate direction.

In Figure 2 the wave functions ull, u
n
l for the waveguide section {|x1| ≤ 4h, x2 =

0, x3 = h} and h = 1/2 and at time t = 1 are depicted. Computations have been
made for those waves which belong to the linear spectrum second mode; the curves j
correspond to the waves j in Figure 1. The analogous distributions for the waveguide
section {|x1| ≤ 4h, x2 = 0, x3 = 0} are presented in Figure 3. The values ull, u

n
l are

obtained as

ull = Re[u
(l)
l /Ω2

∗]; unl = 105Re[u
(n)
l /Ω2

∗]; Ω2
∗ = ρΩ2/ρ∗. (5.3)
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Figure 3. Displacements ul distributions for x3 = 0

Figure 4. Displacements ut distributions for x3 = 1/2

In Figures 4 and 5 the wave functions ult, unt are shown for the different waveguide
sections x3 = 1/2 and x3 = 0. Here

ult = Re[u
(l)
l /Ω2

∗]; unt = 105Re[u
(n)
l /Ω2

∗]; Ω2
∗ = ρΩ2/ρ∗. (5.4)

Both for linear waves and for their second harmonics the increasing of frequency
leads to an increasing of the displacement maximum. For linear waves and for a non-
harmonic distortion the increase in frequency and the changeability of the coordinate
x3 have little influence on ul and ut. In case of ul the more intensive displacements
appear in the waveguide area x3 = 0 for linear waves, but the second harmonics are
more vividly expressed on the layer surface while x3 = 1/2. For ut the displacements
in linear waves have higher levels on the layer surface x3 = 1/2, but the characteristics
for the second harmonics are almost equal.

The graphs in Figure 6 show the distributions of the ratio unl /u
n
t for the waves which

correspond to points 1 and 4 in Figure 1, that is for waves with similar frequencies,
but belonging to different linear spectrum modes. Computations have been made for
the waveguide area {|x1| ≤ 2h, |x2| ≤ 2h, x3 = 0}. It was found that in linear waves
the first mode is the pseudotransverse mode, and the second is pseudolongitudinal.
From the correlations obtained it is clear that in both cases the second harmonics are
the pseudolongitudinal waves, that is the component unl is dominant; for the case of
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Ω1 frequency the dependence is monotonic, and for Ω4 frequency case the dependence
is not continuous.

Figure 5. Displacements ut distributions for x3 = 0

Figure 6. Distributions of u(n)l /u
(n)
t for x3 = 0

Figure 7. Frequency dependencies of u(n)l for x1 = 0

In Figure 7 the dependencies unt on frequency for the waveguide section {|x1| ≤
4h, x2 = 0, |x3| ≤ h} are shown. The first figure corresponds to frequency Ω1, the
second to frequency Ω2. From the given data it follows that an increase in the first
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mode leads to a decrease in the maximum of unt . The displacements themselves are
almost constant.

6. Conclusions

The method presented in the paper allows us to analyze the nonlinear normal wave
propagation in an arbitrary direction in the plane of anisotropic elastic layer waveg-
uides. We have obtained and analyzed how the frequencies depend on the displace-
ment characteristics, what the distributions for the amplitude characteristics of the
linear normal waves are and what second harmonics they have. The data, obtained
by this method, could be helpful while using a new class of nonlinear devices for signal
information study.

The paper was presented at the 9th International Conference on Numerical Meth-
ods in Continuum Mechanics, Zilina, Slovakia, 9-12 September 2003 and its shortened
version was published in the Conference CD Proceedings.
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Abstract. This paper deals with a new bar element with varying cross-sectional area which
can be used for geometric non-linear analysis. Shape functions of the bar element include
transfer functions and transfer constants, which respect variation of cross-sectional area.
Main FE equations are assembled using non-incremental non-linearized method. The von
Mises two bar structure with varying cross-sectional area was analyzed. The results obtained
with our new element were compared with ANSYS bar element results.
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Keywords: bar element, variation of cross-sectional area, geometric non-linear analysis, finite
element method

1. Introduction

Even though the solution of geometric non-linear problems is possible, a great deal of
time and effort is spent on improving effectiveness and accuracy of non-linear analyses.
Commonly used FEM programs use incremental methods, where the Green-Lagrange
strain tensor is linearized in total as well as in updated formulation [1]. Furthermore
constitutive law is often linearized - relationship between increment of stress tensor
and increment of strain tensor.

A new non-incremental Lagrange formulation without linearization has recently
been published in [2]. Non-incremental equations are simpler and contain full non-
linear stiffness matrices.

In our paper, we use these non-incremental equations to derive a full non-linear
stiffness matrix and a full non-linear tangent matrix for a bar element with variation
of the cross-sectional area. Variation of the cross-sectional area is defined as poly-
nomial. New shape functions are used - shape functions which reflect variation of
cross-sectional area exactly [3].

c©2004 Miskolc University Press
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2. The basic equations set up in a local co-ordinate system

The Green-Lagrange strain tensor of finite deformation in Lagrange formulation can
be written as

Eij =
1

2
(ui,j + uj,i + uk,iuk,j) = eij + ηij , (1)

where eij is the linear part of the Green-Lagrange strain tensor and ηij is its non-
linear part. ui represents the i-th component of displacement and ui,j is the gradient
of displacement ui.

The constitutive law can be written as

Sij = CijklEkl , (2)

where Cijkl is the tensor of elastic constants and Sij is II. Piola-Kirchhoff stress tensor.

The principle of virtual work can be written as

δW int = δW ext , (3)

where δW int and δW ext are the internal and external virtual works. The internal
virtual work assumes the form

δW int =

∫
V 0

Sij δEij dV . (4)

For the external virtual work we can write

δW ext =

∫
A0

Fi δui dA+ F̂k δqk (5)

where Fi is the i-th surface load and δui is the appropriate virtual displacement, F̂k

is discrete load at a node and δqk is the virtual displacement at the same node. The
integration is done through the initial volume V 0 and the initial area A0.

Applying equations (4) and (5) to (3) and considering the displacement as

ui = φik qk , (6)

where φik are shape functions and qk is nodal displacement, we obtain the classical
FEM equation

K(q) q = F . (7)

Matrix K(q) is a full non-linear stiffness matrix, q is the vector of local displacements
and F is the vector of external local loads.

The full non-linear stiffness matrix has a linear and a non-linear part

K(q) = KL + KNL(q) = KL + KNL1(q) + KNL2(q) + KNL3(q) . (8)
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The nm-th members of the single matrices can be written in the forms

KL
nm =

1

4

∫
V 0

Cijkl(φkm,l + φlm,k)(φin,j + φjn,i) dV , (9a)

KNL1
nm =

1

4

∫
V 0

Cijklφpm,kφpr,l(φin,j + φjn,i)qr dV , (9b)

KNL2
nm =

1

2

∫
V 0

Cijklφpr,iφpn,j(φkm,l + φlm,k)qr dV , (9c)

KNL3
nm =

1

2

∫
V 0

Cijklφpm,kφpv,lφrq,iφrn,jqvqq dV , (9d)

where φpm,k is the first derivative of shape function φpm with respect to the k-th
coordinate. Other derivatives in the previous equations have a similar meaning.

3. Stiffness matrices of bar element with variation of cross-section

3.1. Introductory remarks. The matrices, which were derived above, are valid for
all types of elements whose displacements are described by equation (6). That means
that we can use these equations also for a bar element with variation of cross-sectional
area.
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1 q0

2
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y
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qi1
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y

qi
2

u x( )q
i
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+
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1

2

2

2

Figure 1. Local nodal displacements and forces in single iterations

In the classical FE codes (e.g. ANSYS), linear interpolation is used for shape
functions. But such functions do not respect variation of the element’s cross-sectional
area and in a very coarse mesh they are responsible for an increase in inaccuracy.
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This behavior of bar elements with variation of cross-section with classical linear
shape function is also included in linear theory [4].

Figure 1 shows a bar element in a local co-ordinate system with local forces and
local displacements in single iterations. The vectors of local displacements and forces
have the forms

q =
[
q1 q2

]T
(10)

F =
[
Fq1 Fq2

]T
(11)

The variation of cross-sectional area A0(x) is defined as

A0(x) = A0
1ηA(x) = A0

1

(
1 +

p∑
k=1

ηAkx
k
)

(12)

where A0
1 is cross sectional area at node 1 and polynomial ηA(x) describes variation

of the cross-sectional area (ηAk are the coefficients of the polynomial ηA(x)).

3.2. Shape functions for bar element with variation of cross-sectional area.
New shape functions for a bar element with variation of cross-sectional area are de-
rived from the direct stiffness method and the whole procedure is published in [3].
The new shape functions contain the transfer functions and transfer constants, which
characterize the solution of the linear differential equation with non-constant param-
eters [5] and depend on polynomial ηA(x). For displacement in location x in the local
co-ordinate system, we can write

u(x) = u1 −
d′N2(x)

d′N2

u1 +
d′N2(x)

d′N2

u2 , (13)

where u1 and u2 are displacements in node 1 and 2, respectively, d′N2(x) is transfer
function and d′N2 is transfer constant (transfer constant is transfer function for x = L
and L is length of element).

From equation (13) we can write for shape functions

φ11 = 1 − d′N2(x)

d′N2

φ12 =
d′N2(x)

d′N2

(14)

and their derivatives

φ11,1 = −d
′′
N2(x)

d′N2

φ12,1 =
d′′N2(x)

d′N2

(15)

3.3. Full non-linear stiffness matrix. Members of single matrices of a full non-
linear stiffness matrix for a bar element with variation of cross-sectional area also
have the forms (9a), (9b), (9c) and (9d). Shape functions and their derivations are
defined by (14) and (15). For bar elements with linear elastic deformation the tensor
of elastic constants Cijkl is characterized by the Young modulus of elasticity E and
dV can be written as A0dx, where A0 is undeformed cross-sectional area, which is
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defined by equation (12). Considering all these equations, we can write for members
of KL

KL
mn = A0

1E

∫
L0

ηA(x)φ1m,1φ1n,1dx . (16)

After the integration [3] for the whole matrix KL we can write

KL =
A0

1E

d′N2

 1 −1

−1 1

 . (17)

For member of KNL1 we obtained

KNL1
nm =

1

4
A0

1E

∫
L0

ηA(x)φ1m,1 (φ11,1q1 + φ12,1q2) 2φ1n,1dx (18)

and for the whole matrix KNL1

KNL1(q) =
1

2

A0
1E

(d′N2)3

 1 −1

−1 1

 (q2 − q1) d̄′N2 . (19)

Similarly we can derive KNL2 and KNL3

KNL2(q) =
A0

1E

(d′N2)3

 1 −1

−1 1

 (q2 − q1) d̄′N2 (20)

KNL3(q) =
1

2

A0
1E

(d′N2)4

 1 −1

−1 1

 (q2 − q1)
2 ¯̄d′N2 (21)

The final full non-linear stiffness matrix (8) can be written using (17), (19), (20) and
(21) as

K(q) = (kL + kNL)

 1 −1

−1 1

 , (22)

where

kL =
A0

1E

d′N2

, (23)

kNL = kL

[
3

2
(q2 − q1)

d̄′N2

(d′N2)2
+

1

2
(q2 − q1)2

¯̄d′N2

(d′N2)3

]
. (24)

As can be seen from the previous equations, the full non-linear stiffness matrix of a
bar element with variation of the cross-sectional area contains transfer constant d′N2

and two new modified transfer constants d̄′N2 and ¯̄d′N2. Numerical computation of
transfer constant d′N2 is described in the Appendix, the modified transfer constants
d̄′N2 and ¯̄d′N2 are the same transfer constants as d′N2, but the polynomial ηA(x) is
changed to (ηA(x))2 and (ηA(x))3, respectively.
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3.4. Full non-linear tangent matrix. The system of equations (7) with stiffness
matrix in form (22) is non-linear, which is usually solved using the Newton-Raphson
method. This iteration method makes use of derivatives of single functions of a system
whose solution is being found, and that is why the full tangent stiffness matrix is
required to be built.

In the formal way, the tangent stiffness matrix can be derived as

KT (q) =
∂F

∂q
=
∂K(q)

∂q
q + K(q) =

∂KNL(q)

∂q
q + KNL(q) + KL

= KL + KNLT (q)

(25)

Using equations (22), (23), (24) and (25) we can write the full non-linear stiffness
matrix for a bar element with variation of cross-sectional area as

KT (q) = (kL + kNLT )

 1 −1

−1 1

 , (26)

where kL is defined by equation (23) and

kNLT = kL

[
3(q2 − q1)

d̄′N2

(d′N2)2
+

3

2
(q2 − q1)2

¯̄d′N2

(d′N2)3

]
(27)

For the evaluation of the efficiency of the iteration procedure, we use the Euclidean
norm of residual forces, which is compared with the norm of external nodal forces
multiplied by a very small coefficient ε.

4. Implementation

The whole process of a bar element with variation of cross-sectional area for geomet-
ric non-linear problems was prepared in Fortran language. Solution for the transfer
functions were taken from our program RAM3D [7], which was designed for linear
problems and handled the beam element with variation of cross-sectional character-
istics.

For the evaluation of the efficiency of the iteration procedure, we use the Euclidean
norm of residual forces, which is compared with the norm of external nodal forces
multiplied by the coefficient ε. More details about internal forces, residual forces,
norms of residual forces and iteration process are published in [3].

5. Numerical experiments

The convenience of our new bar element with variation of cross-sectional area for
geometric non-linear problems is illustrated in the next example. Figure 2 shows a
simple arch structure assembled of two bar elements with variation of cross-sectional
area - a well-known snap-through problem.

The material properties of the bars are defined by the Young modulus of elasticity
E = 2.1 × 1011 Pa. The geometry is given by the parameters L0 = 1 m and α = 15o.
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a

b

c

ub
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A x
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Figure 2. Snap-through problem

We considered four types of cross-sectional area A(x) - from linear polynomial to
fourth order polynomial. These have the following forms

type A
A(x) = 0.005 − 0.0047x ,

type B
A(x) = 0.005 − 0.0094x+ 0.0047x2 ,

type C
A(x) = 0.005 − 0, 0141x+ 0.0141x2 − 0.0047x3 ,

type D

A(x) = 0.005 − 0.0188x+ 0.0282x2 − 0.0188x3 + 0.0047x4 .

All cross-sectional areas are shown in Figure 3.

0 0,2 0,4 0,6 0,8 1
x[m]0

0,001

0,002

0,003

0,004

0,005

A x( ) [m ]2

Area - type AA
Area - type BA
Area - type CA
Area - type DA
Average area for
element LINK1

Figure 3. All types of cross-sectioal areas A(x) considered

The goal is to find dependence between displacement ub and load Fb.

The solution was obtained by our program NelinPrut, in which the new bar element
is implemented, and comparative results were obtained from program ANSYS.
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In our NelinPrut program, each bar was represented by one element only, but the
variation of cross-sectional area was described exactly. In program ANSYS, there are
two suitable elements - the classical bar element LINK1 or the beam element with
variation of cross-sectional characteristics BEAM54. But the bar element LINK1 is
developed for constant cross-sectional area and that is why we should compute some
average area according to [6] (see Figure 3). In LINK1 we use also one element only.
Element BEAM54 is more suitable, because it is developed for varying cross-sections
and because we could refine mesh. But this element does not describe variation of
the cross-section exactly, either.

ANSYS results

NelinPrut results

NelinPrut - bar element

ANSYS - BEAM54 - 100 elements

ANSYS - LINK1

u
b
[m]

0,1 0,2 0,3 0,4 0,50

-2 10x
6

-1 10x
6

0

1 10x
6

2 10x
6

-3 10x
6

3 10x
6

F
b
[N]

Figure 4. Snap-through problem: dependence between ub and Fb for
type D

Figure 4 shows results for cross-sectional area type D. In this Figure, there are
3 equilibrium paths. The equilibrium paths of the new bar element and BEAM54
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with 100 elements are very similar but the equilibrium path of LINK1 is different.
Differences between our results and BEAM54 and LINK1 results are caused by lin-
earization of the Green-Lagrange strain tensor and also by variation of cross-sectional
area. While our new bar element has shape functions which respect variation of
cross-sectional area, BEAM54 and LINK1 use classical shape functions, which do not
respect variation of cross-section. BEAM54 results are more accurate than LINK1
results because BEAM54 allows refinement: there are 100 elements and then variation
of cross-sectional area is described more suitable than in LINK1.

ANSYS-BEAM54
Variation NelinPrut 100 elements
Type ub [mm] IT ub [mm] IT
A 6.6510 7 6.6171 8
B 12.872 8 12.750 10
C 17.958 9 17.744 11
D 21.872 10 21.574 12

Table 1. Snap-through problem: displacement ub and number of iter-
ations IT for load Fb = 0, 3×106 N for single types of cross-sectional
areas A

ANSYS-BEAM54
Variation NelinPrut 100 elements
Type ub [mm] IT ub [mm] IT
A 13.927 9 13.777 10
B 28.490 12 27.854 13
C 42.165 15 40.811 17
D 54.635 19 52.290 21

Table 2. Snap-through problem: displacement ub and number of iter-
ations IT for load Fb = 0, 6×106 N for single types of cross-sectional
areas A

Tables 1 and 2 show displacement ub as function of Fb for all four types of cross-
section variation for the new bar element and BEAM54. Table 1 shows results for
load Fb = 0, 3×106 N and Table 2 for load Fb = 0, 6×106 N. As can be seen from the
Tables, the difference between our and ANSYS results grows with increasing load,
where the linearization of the Green-Lagrange strain tensor has more influence on
result accuracy. The numbers of iterations IT are nearly equal.

Influence of mesh refinement is shown in Figure 5. We can see that for cross-
sectional area type D – this is the most complicated variation –, ANSYS results
for BEAM54 are not exactly the same as our new bar element results, neither for
refinement. The difference is caused by linearization of the strain tensor mentioned
above.
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Figure 5. Snap through problem: influence of mesh refinement of
BEAM54 element, cross-sectional area type - D

ANSYS - BEAM54
Nelem ub [mm] IT

1 5.0394 5
2 15.648 7
4 19.808 9
6 20.754 9
8 21.106 10
10 21.273 10
20 21.500 10
50 21.565 11
100 21.574 12

NelinPrut
Nelem ub [mm] IT

1 21.872 10

Table 3. Snap-through problem: displacement ub and the number of
iterations IT for load 0Fb = 0.3 × 106 N for type D as mesh density
function
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ANSYS - BEAM54
Nelem ub [mm] IT

1 10.383 6
2 35.157 11
4 46.778 15
6 49.677 16
8 50.786 17
10 51.320 18
20 52.051 18
50 52.260 21
100 52.290 21

NelinPrut
Nelem ub [mm] IT

1 54.635 19

Table 4. Snap-through problem: displacement ub and number of it-
erations IT for load Fb = 0, 6 × 106 N for type D as mesh density
function

Furthermore Tables 3 and 4 show a difference between our results and ANSYS
results in the increasing number of BEAM54 elements in ANSYS.

6. Conclusion

The bar element with variation of cross-sectional area presented was derived without
any linearization of the Green-Lagrange strain tensor or constitutive law. The method
of solution is non-incremental.

As can be seen from the results, the linearization of the terms mentioned has
influence on result accuracy also in refinement of mesh, because the main equations,
which are used as equilibrium equations, are still linearized: the difference between
our results for one bar element and 100 BEAM54 elements of ANSYS. Shape functions
also have an influence on results: difference between our results for one bar element
with the new shape functions and one bar LINK1 element of ANSYS, but this influence
can be eliminated by refinement.

Numerical experiments confirm the applicability of the new bar element with vari-
ation of cross-sectional area with new shape functions for non-linear problems and it
could be an alternative to the classical bar element with linear shape functions.

We remark that the paper was presented at the 9th International Conference on
Numerical Methods in Continuum Mechanics, Zilina, Slovakia, 9-12 September 2003
and its shorter version was published in the Conference CD Proceedings.
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APPENDIX

Determination of the transfer functions and transfer constants occurring in the stiff-
ness matrix and shape functions is based on the following expression

d′′Nj+2(x) =
aj(x)

ηA(x)
,

where the function aj(x) = xj

j! for j ≥ 0 , and for j ≤ 0, a0 = 1, aj = 0. Closed
solutions for the 1st and 2nd integrals of the function d′′Nj+2(x) are known only for
lower degree polynomials ηA(x). For their numerical solution, which is more general,
a recurrance rule was derived

d
(n)
Nj (x) = aj−n(x) −

m∑
k=1

ηAk
(j − 2 + k)!

(j − 2)!
d
(n)
Nj+k(x) for j ≥ 2 , n = 0 a 1 .

After some manipulation we get

d
(n)
Nj (x) = aj−n(x)

∞∑
t=0

βt,0(x) ,

where βt,0(x) is expressed by

βt,0(x) = −
m∑

k=1

[
ηAkβt,k(x)

−1∏
r=−k

(s− 1 + r)

]
with parameters

s = 1 + t e =
x

s− n
βt,k = eβt−1,k−1 for k = 1, ...m

and initial values

β0,0 = 1 β0,k = 0 for k = 1, ...m .
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Abstract. Prediction of the airfoil characteristics, particularly for large incidence angles
when stall occurs, depends on the prediction of separation. Turbulent flow around NACA
0012 airfoil in the range of incidence angles from 0o up to stall angle at Re = 2.8 106 is
calculated by applying the finite volume method with modified k − ε turbulence model. A
grid independent solution is achieved on the C-type grid around airfoil with 1664*320 control
volumes for the finest grid in multigrid procedure. Inclusion of the laminar part by prescrib-
ing transition is required in order to bring the calculated data closer to the experimental
ones. Very good agreement is obtained between the calculated and the experimental values
of the lift-drag coefficients and the pressure coefficient distribution at moderate incidence
angles. The peak values of the lift coefficient in the stall area are underpredicted. Trailing
edge separation bubble appears at 180.

Mathematical Subject Classification: 76F99
Keywords: turbulent flow, finite volume method

1. Introduction

Operation of turbomachines at off-design conditions (even close to the best efficiency
point) is frequently accompanied by stall. This is due to design aspirations for high
specific outputs and consequently high lift coefficients. An increase of the inflow angle
α at off-design conditions causes the stalling of the lift curve cL(α) and its decline
further on (deep stall).

Aerodynamic characteristics of axial turbomachines, particularly of those with low
rotor ‘solidity’, are largely determined by their airfoil characteristics. Airfoil stall
controls most of the blade stall smeared by 3D effects at the root and tip areas.

Accurate prediction of airfoil stall depends on accurate prediction of the separation
point, i.e. the size of the separation area. Separation deteriorates pressure distribu-
tion on the airfoil suction side and diminishes lift. The difference between experiments
and computation, characterized by delay in predicting separation, indicates that sep-
aration is quite sensitive to the correct modelling of flow in the area upstream to the
separation point [1]. This area is characterized by a strong adverse streamwise pres-

c©2004 Miskolc University Press
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sure gradient and vanishing shear stress, i.e., skin friction. Transition from laminar
to turbulent flow also frequently precedes trailing edge separation. Modifications con-
tributing to a better prediction of skin friction are expected to improve stall predicting
capabilities.

Symmetrical NACA 0012 airfoil is chosen for testing numerical predictability of
airfoil flow because of rather comprehensive data on its integral and local aerodynamic
characteristics measured by various researchers in different wind tunnels. Most of the
available data on local characteristics: pressure distribution, location of separation
and transition points, comes from the measurements of Gregory [2] . Lift characteristic
of Gregory at moderate incidence angles is almost identical with measurements of
Abbot [3] and the results compiled by Lazauskas [4]. The latter is mostly based on
the SANDIA Report 80-2114, Sheldahl (1981). Experiments with NACA 00 series at
Re≈1.5·106 [5] indicate that separation starts at the trailing edge and moves towards
the airfoil leading edge. Separation appears at larger incidence angles for thinner
airfoils. However, its streamwise expansion with increasing incidence angle is more
sudden for thinner airfoils. Gregory [2] reports on a thin and small leading edge
separation bubble that vanishes close to the stall and appears again in post stall.
Accordingly, the stall is provoked by the trailing edge separation expansion.

The Reynolds number at which airfoil flow is calculated equals that of the experi-
ments Re=2.88 106 [2] allowing for straightforward comparison.

2. Numerical modelling

The academic research computer program CAFFA [6,7], which is based on the finite
volume method, is used in the flow analysis. Transport equations are developed in
the Cartesian coordinate directions with Cartesian velocity components v̄j :

∂

∂xj
(ρv̄jΦ̄ − ΓΦ

∂Φ̄

∂xj
) = SΦ , (2.1)

where

Φ̄ = [1, ū, v̄, k̄, ε̄] , (2.2a)
ΓΦ = [0, µ` + µt, µ` + µt, µ` + µt/σk, µ` + µt/σε] (2.2b)

are the transport variables, the diffusion coefficients and

SΦ = [S1, Su, Sv, Sk, Sε] , (2.2c)

S1 = 0, Su = −∂p̄
∂x

+
∂

∂x
(µE

∂ū

∂x
) +

∂

∂y
(µE

∂v̄

∂x
) ,

Sv = −∂p̄
∂y

+
∂

∂y
(µE

∂v̄

∂y
) +

∂

∂x
(µE

∂ū

∂y
), Sk = ρP̄k − ρε̄ ,

Sε =
ρε̄

k̄
(Cε1P̄k − Cε2ε̄)

are the source-sink terms, respectively. The transport equations are integrated over
the body-fitted curvilinear non-staggered grid. Convective terms in the transport
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equations are linearized according to Picard and discretized by upwind differencing
scheme blended with deferred central differencing scheme. Variables are stored in the
central nodes [8]. Standard k−ε turbulence model with wall functions is used. Calcu-
lation of the average value of turbulence kinetic energy production P̄k and dissipation
ε̄ in the wall volumes is modified. Modification is based on the boundary layer DNS
data [9] and asymptotic analysis and it accounts for non-equilibrium between produc-
tion P̄k and dissipation ε̄ in viscous and buffer sublayer. Values of the constants Cµ,
Cε1, Cε2, σk, σε in the turbulence model are 0.09, 1.44, 1.92, 1.0, 1.3. The coupling
procedure in solving momentum and continuity equation is of the SIMPLE type.

Standard k− ε model of turbulence is surpassed by models that are more complex.
However, simplicity-robustness still makes this model a part of many CFD packages
for engineering applications. Computation of separating flows using k−ε model over-
predicts skin friction upstream of separation [10] and consequently may fail to predict
location of zero skin friction, i.e. point of separation. Modifications to standard k− ε
model to be described here were tested on channel flow [11]. Slightly lower values of
channel skin friction, which agree better with experiments, were obtained with the
modified k − ε model. It is expected that these modifications will contribute to a
better prediction of separated airfoil flow. Deficiency of k−ε model lies among others
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Figure 1. Dissipation of turbulence kinetic energy ε+ near the wall
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ave – average value in the wall volume (volume height 2y+)

in inadequate modelling of terms of the k and ε equation in the near wall region.
The problem is bridged over by means of the wall functions. The local equilibrium of
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turbulence kinetic energy production P̄k and dissipation ε̄ is the basic assumption of
the wall functions, which is valid only in the log layer ū+ = 1

κ ln(Ey+).

Scarce measurements and DNS (direct Navier Stokes solver) data [9],[12],[13],[14]
indicate that P̄k and ε̄ behavior in the near wall region is far from equilibrium and
far from log formulation ε̄+

log = P̄+
k log

(y+) = 1/(κy+) as well, Figure 1.

Effect of modifying near wall production and dissipation in k equation are closely
related to their contribution to the discretized form of k equation in the finite volume
method:

a
(t1)
Pk

k̄P =
∑
nb

anbk k̄nb + S
(t1)
k , (2.3)

where k̄P , k̄nb represent values of turbulence kinetic energy in the central node of the
wall volume and the neighboring nodes. Source term S

(t1)
k absorbs right-hand terms

of equation (2.1), i.e. their integral contribution over the control (wall) volume:∫
∆V

ρP̄k dV −
∫

∆V

ρε̄dV = ρP̄kave
∆V − ρε̄ave∆V (2.4)

Average values of production/dissipation P̄kave/ε̄ave [6] are calculated explicitly
based on the values from the previous iteration step. Assumption of local equilib-
rium (P̄k = ε̄) and representation of average values with central node values [6],[7]

make S(t1)
k insensitive to the modelling of dissipation and production. However, dis-

sipation term is rearranged ε̄ave∆V ≈ (ε̄ave/k̄
(o)
P )k̄P ∆V and central node coefficient

a
(t1)
Pk

is corrected to aPk
= a

(t1)
Pk

+ ρε̄ave/k̄
(o)
P ∆V . This computational redistribution

aimed to provide positive values of turbulence kinetic energy leaves production P̄k as
a single contributor to the source term of k equation. Accurate representation of P̄k
and ε̄ averages therefore becomes important also from the computational standpoint.

Average values of dissipation and production are calculated using DNS data P̄+
k (y+),

ε̄+(y+) [9] and assuming that distribution of dissipation/production in dimensionless
coordinates P̄+

k = P̄k/(u
4
τw/νl), ε̄+ = ε̄/(u4

τw/νl) is independent of Re number. As
far as production is concerned this is supported by experiments for boundary layer
flows with zero pressure gradient [15].

Outside the near wall region, DNS data exhibit an equilibrium between production
and dissipation, which follows log formulation. Asymptotic analysis supports the
finite value of dissipation as predicted by DNS on the wall balanced with viscous
diffusion of the turbulence kinetic energy. Near the wall dissipation changes slowly,
almost linearly.

In order to make it easier to implement modifications into existing k − ε models,
where ε̄ave = ε̄log, a correction function fε is introduced:

ε̄ave = ε̄logfε fε =
1

2

[
1 + ln

y+
P

y+
oε

+ ln 2

]
, (2.5)

y+
oε limits the near wall region in which the constant value of dissipation up to the
wall is assumed. y+

oε ≈ 17 provides best fit to DNS data in Figure 2.
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The modification of production is analogous to the modification of dissipation. Con-
stant y+

ok
in the correction function P̄+

kave
/P̄+

klog
= fPk

≈ 1
2

[
cPk

+ ln(y+/y+
ok) + ln 2

]
corresponds to the maximum of production in the near wall region according to DNS
data. cPk

equals 0.5 assuming linear steep rise of production from the wall to y+
ok
and

log formulation further on. Approximation of DNS data gives cPk
≈ 0.8.

Figure 3. a) C-grid around airfoil, b) computational space- space of
indices

The grid generated around airfoil is C-type with the cut along the airfoil wake,
Figure 3. Open side boundaries (A-B, C-D) and exit boundary (A-D) are generated
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as simple straight lines located 4-5 c and 7c (c-chord length) respectively, far from the
airfoil. The grid is kept fixed and the incidence angle is varied by skewing the incidence
flow. It is assumed that location of side boundaries 4-5 c from the airfoil allows for
prescribing inlet boundary conditions along A-B-C-D for all incidence angles between
0-200. Interior grid points are generated by applying two - boundaries technique.

Arrangement of the grid points along the airfoil leading edge is of great concern
due to high curvature and expected high pressure/shear stress gradients. Preliminary
‘panelization’ of the airfoil is based on the conformal mapping of a circle into foil.
Chordwise location x/c of mapped points is initially the same as for an infinitely thin
airfoil, Eppler [16] .

Mapping is presented in Figure 4.a where θ indicates location of the points on the
original circle. Equidistant distribution of original points along (semi)circle (Npan=50)
provides satisfactory panelization of the airfoil leading edge. Stretching of the airfoil
panels ∆s(i)/∆s(i − 1) shown in Figure 4b, however, indicates excessive shrinking
around the airfoil tail. Slightly better results are obtained by increasing the number

0
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0,6

0,8

1

1,2

0 0,5 1x/c

y/c

3

2

1  θ

∆s( i )/

∆s( i-1 )

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,5 1 1,5

s/c

2.1

2.2

3.2

  2.1

1 – airfoil contour 2.1 – Npan=50,
2 – x/c = 0.5(1 − cos θ) 2.2 – Npan=100
3 – x/c = 1 − cos θ 3.2 – Npan=100

Figure 4. a) Generation of grid points x/c along airfoil by mapping
semi (quarter) circle, b) stretching of the grid panels ∆s(i)/∆s(i-1)
along NACA 0012 airfoil, x/c – location of grid points along air-
foil chord, ∆s(i) – panel length, Npan-number of ‘panels’, i.e. wall
volumes along airfoil

of original points on a circle (Npan=100), however without improving distribution
near tail, line 2.2 in Figure 4b . Algebraic mapping of the quarter circle remedies
accumulation of grid points near trailing edge, lines 3 and 3.2 in Figure 4ab. Finer
grid in multigrid procedure is generated by ‘halving’ the previous, coarse, grid. This
results in Npan=1024 panels along the airfoil for the finest grid (finesse index kg=6)
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and Nc=Nw=320 panels along the wake cut (G-H) and wake outlet section (A-H)
respectively. The total number of control volumes on the finest grid without local
refinement amounts to 0.5 106.

The effects of grid local refinement on flow prediction are tested on coarser grid
(kg=5) where only near wall control volumes are refined. Calculation of the laminar
flow converged to the values obtained on the finest grid (kg=6) with considerable
computational time saving. Testing of the locally refined grid for the calculation of
turbulent flow, unfortunately, showed instability. Results in Section 3 are obtained
on the finest grid (kg=6) with 1664*320 control volumes.

Various boundary conditions along open side boundaries (A-B, C-D, in Figure 3):
inlet, outlet and symmetrical, are tested by calculating flow at incidence angle α = 00.
Outlet boundary conditions correspond best to reality; values of the flow variables
are not prescribed on the outlet boundary, but extrapolated from the neighboring
interior points located upstream to the boundary. Inlet boundary conditions ū =
v0, v̄ = 0, k̄ = k̄0, ε̄ = ε̄0 ‘overdetermine’ flow development, particularly with
reference to the neglected velocity components normal to the boundary. Testing
of various boundary conditions proves that they have negligible effect on calculated
pressure and shear stress distribution along airfoil and lift/drag coefficients as well.
Calculation of the flow at incidence angle α = 30 with inlet boundary conditions along
B-C-D (ū = v0 cosα, v̄ = v0 sinα, k̄ = k̄0, ε̄ = ε̄0) and outlet boundary conditions
along A-B diverged. All calculations further on are performed with the prescribed
inlet boundary conditions along A-B and C-D boundaries.

3. Prediction of airfoil flow

Potentials of the original program in predicting separation are tested by calculating
airfoil flow around NACA 0012 at Re = 104 and α = 00, when the airfoil boundary
layer is entirely laminar. Calculated distribution [11] of the pressure coefficient (not
presented in the paper) cp = 2(p−p0)/ρv2

0 near the leading edge x/c 6 0.3 agrees well
with the results of calculation by Rhie-Mehta [8] (no experimental data are available).
Position of the separation point xs/c ≈ 0.85 is the same as in [8]; however, downstream
recovery of the velocity-pressure in the trailing region is faster.

Pressure distribution at α = 00 and Re=2.88 106, shown in Figure 5a, is calcu-
lated by assuming fully turbulent flow (ignoring laminar flow in the development of
the airfoil boundary layer) and agrees well with the experimental data of Gregory
[2]. Better prediction with comparison with the Rhie calculation [8] can be partly
explained by the finer grid. The deficiency of the model, which ignores the laminar
character of the flow in the boundary layer (occupying 40% of the airfoil chord length)
has little impact on the correct flow prediction. Capturing of viscous effects negligibly
affects calculation of the pressure distribution at a small incidence angle. Grid finesse
contributes to better prediction only near the leading edge, i.e. of the peak pressure.

Correct prediction of pressure distribution reflects upon airfoil lift characteristic,
lines 5 and 6 in Figure 6, which coincide with the experimental results at small



102 Z. Milas

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

x/c

cp

1

2

3

1

2

3, 4

-1

1

3

5

7

9

0 0,2 0,4 0,6 0,8 1x/c

cp
1

3

4

4

3

1 – exp. Gregory [2] 3 – calc. k-ε model+wall functions, 1664*320
control volumes, fully turbulent flow [11]

2 – calc. Rhie [8] 4 – same as 3) except prescribed transition
from laminar to turbulent [11]

Figure 5. Pressure distribution along NACA 0012: a) α=00, b)
α=120, Re=2.8 106

incidence angles. This is expected because lift coefficient cL, being calculated by
means of normal cy and tangential cx force coefficients:

cL = cy cosα− cx sinα (3.1)

is dominated by cy = cpy + cτy, i.e. the integral contribution of pressure along the
airfoil contour:

cpy =

∮
sa

cp d(x/c) .

Excessive values of drag coefficient cD at small incidence angles, lines 5 and 6 in
Figure 7, in comparison with the experimental ones, indicate inadequate modelling of
the flow as fully turbulent. Large values of cD:

cD = cy sinα+ cx cosα (3.2)

for small incidence angles α can be attributed to the large values of wall shear stress
τw, i.e. skin friction coefficient cf (= 2τw/ρv

2
0), and its integral contribution

cτx =

∮
sa

cfx d(s/c)

to the tangential force coefficient cx = cpx + cτx.

The computer program is modified by suppressing turbulence, i.e. turbulent stress
in the laminar region. Location of transition on the upper-lower part of airfoil xtr/c
is prescribed on the basis of experimental data [2]. Zero value of turbulent viscosity
µt = 0 and very small value of turbulence kinetic energy k̄ are imposed on all nodes
in the laminar region in every step of the global iteration procedure.
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Figure 6. Lift coefficients of NACA 0012 airfoil
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Figure 7. Drag coefficient of NACA 0012 airfoil (for legend see Figure 6.)

Small value of k̄ is prescribed in order to avoid divergence of the numerical proce-
dure that is noticed for initially prescribed zero values of k̄.

Favorable effect of prescribing laminar-turbulent transition is evident in Figures 6
and 7, line 7.

Underprediction of the lift coefficient is reduced. Maximum of the lift is more
distinguished and analysis of the flow pattern indicates presence of separation near
the trailing edge at α 6 180, Figure 8. Drag coefficient perfectly matches experimental
values for smaller incidence angles. Significant reduction of drag is due to smaller skin
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friction in the laminar part of the boundary layer that extends along almost the entire
lower part of the airfoil.
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Figure 8. Flow pattern near NACA 0012 trailing edge at Re=2.88
106, α=180 [11]
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Figure 9. Pressure coefficient cp along NACA 0012 airfoil leading
edge (suction side) at Re=2.88 106, α=120 [11]: t- calc. assuming
fully turbulent flow, l+t- calc. with prescribed transition laminar-
turbulent, kg-grid finesse index

Increase of the lift occurs mainly due to higher (under) pressure along the airfoil
suction side. Figure 9 shows that increase in the peak pressure is quite discernible
(∆cp ≈ 0.5 for α = 120) and calculated values no longer fall short of the experimental
ones as much as before.

4. Conclusions

Numerical prediction of the airfoil aerodynamic characteristics is improved by intro-
ducing prescribed transition from laminar to turbulent. Stall is predicted and accom-
panied by a trailing edge separation bubble at the incidence angle slightly higher than
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the experimental one. Underprediction of pressure near the leading edge is responsi-
ble for disagreement between the calculated and experimental values of the lift/drag
coefficients at higher incidence angles.
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Abstract. A generalized variant of the finite difference method [2, 3, 4] is used for numerical
modelling of non-steady and non-linear thermal diffusion problems. In order to simplify the
considerations the 1D problem (infinite plate) is discussed, but the way of 2D algorithm
construction is very similar. In the first part of the paper the governing equations are
presented, in the second one, some details connected with the numerical algorithm and an
example of computations can be found.
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1. Introduction

The 1D heat diffusion that takes place in the domain of a plate is described by the
equation

0 < x < L c(T )
∂T (x, t)

∂t
=

∂

∂x

[
λ(T )

∂T

∂x

]
+ qv(x, t) , (1.1)

where c(T ) is volumetric specific heat, λ is thermal conductivity, qv(x, t) is the capac-
ity of internal heat sources, L is thickness of the plate, T , x, t denote temperature,
spatial co-ordinate and time.

For x = 0 and x = L the boundary conditions are given in the form

x = 0 : Φ1

[
T (x, t),

∂T (x, t)

∂n

]
= 0 ,

x = L : Φ2

[
T (x, t),

∂T (x, t)

∂n

]
= 0 ,

(1.2)

where ∂T (x,t)
∂n is the derivative with respect to the outward normal.

c©2004 Miskolc University Press
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The initial condition
T (x, 0) = T0 (1.3)

is also known. For our further considerations equation (1.1) is written in the following
form

0 < x < L c(T )
∂ T (x, t)

∂ t
=

dλ(T )

dT

[
∂ T (x, t)

∂ x

]2
+ λ(T )

∂2T

∂ x2
+ qv(x, t) . (1.4)

2. A numerical model

The domain [0, L] is covered by a 1D geometrical mesh. The step hj can be optional
and variable. The points forming the geometrical mesh ∆k can be arbitrary. Now we
define the sets of the nodes, which form the successive stars. The star is created by
the central node and a certain number of nodes from its neighborhood. In this place
two approaches can be taken into account. The star is generated using the criterion
concerning the number of points e.g. 5-point star - as in Figure 1, or on the basis of
the condition that determines the distance between the central node xi and adjacent

 

 x 
N

x  

 L 

i
x  

0
x  

 0 

Figure 1. Nodes and stars

nodes xj . The position of the central node determines the type of the star. If the point
xi belongs to the interior of the domain Ω, then an internal star is considered and the
FDM equation resulting from (1.4) is constructed. If the point xi is a boundary one
(for 1D problems xi corresponds to x1 or xN ), then we consider the boundary star for
which the FDM equation results from the boundary condition given at point xi. For
the sake of further mathematical manipulations, we introduce the local numeration
of nodes forming the arms of the star: j = 1, 2, . . . , n. For non-steady problems the
time grid ∆t must also be introduced:

0 = t0 < t1 < t2 < ... < tf < tf+1 < ... < tF <∞ , ∆ t = tf+1 − tf (2.1)

The Cartesian product ∆h ⊗ ∆t creates a spatial-time grid. In order to find an
approximation for the first and second derivatives of the function T at the point xi
(they are involved in equation (1.4) and conditions (1.2)), we expand the function
T
(
x, tf

)
(explicit scheme [1]) into Taylor’s series with an accuracy to the terms

containing derivatives of the second order

T
(
x, tf

) ∼= T
(
xi, t

f
)

+

(
∂ T

∂ x

)f
i

(x− xi) +

(
∂2T

∂ x2

)f
i

(x− xi)2

2 !
. (2.2)
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In particular, for x = xi we have

T fj
∼= T fi + (Tx)

f
i hj + 0.5 (Txx)

f
i h

2
j , (2.3)

where hj = xj−xi, while the partial derivatives of the function T at the central point
xi for the point of time tf are denoted by (Tx)

f
i and (Txx)

f
i . The following quality

criterion can be set up [2, 3, 4]:

J =

n∑
j=1

{[
T fi − T

f
j + (Tx)

f
i hj + 0.5 (Txx)

f
i h

2
j

] 1

ρmj

}2

= min , (2.4)

where ρj = |xj − xi| = |hj |, m is a natural number, n is the number of nodes creating
the star considered, 1/ρmj are the tapering functions introduced in order to take
into account the influence of the node xj distance to the star center xi, and its
‘participation’ in the approximation of derivatives.

The minimum condition for the functional J is to make the derivatives ∂J

∂(Tx)
f
i

and
∂J

∂(Txx)
f
i

equal to zero. Consequently,{ ∂J

∂(Tx)
f
i

= 0 ,
∂J

∂(Txx)
f
i

= 0 .
(2.5)

These conditions lead to the system of equations
n∑
j=1

[
T fi − T

f
j + (Tx)

f
i hj + 0.5 (Txx)

f
i h

2
j

]
hj

ρ2mj
= 0 ,

n∑
j=1

[
T fi − T

f
j + (Tx)

f
i hj + 0.5 (Txx)

f
i h

2
j

]
h2
j

2ρ2mj
= 0 .

(2.6)

Equations (2.6) can be rewritten in a matrix form
n∑
j=1

h2
j

ρ2mj

n∑
j=1

h3
j

2ρ2mj

n∑
j=1

h3
j

2ρ2mj

n∑
j=1

h4
j

4ρ2mj


[

(Tx)
f
i

(Txx)
f
i

]
=


n∑
j=1

hj

ρ2mj

(
T fj − T

f
i

)
n∑
j=1

h2
j

2ρ2mj

(
T fj − T

f
i

)
 , (2.7)

from where

[
(Tx)

f
i

(Txx)
f
i

]
=


n∑
j=1

h2
j

ρ2mj

n∑
j=1

h3
j

2ρ2mj

n∑
j=1

h3
j

2ρ2mj

n∑
j=1

h4
j

4ρ2mj


−1 

n∑
j=1

hj

ρ2mj

(
T fj − T

f
i

)
n∑
j=1

h2
j

2ρ2mj

(
T fj − T

f
i

)
 . (2.8)

If the elements of the inverse matrix in equation (2.8) are denoted by gij we have

[
(Tx)

f
i

(Txx)
f
i

]
=

[
g11 g12
g21 g22

]
n∑
j=1

hj

ρ2mj

(
T fj − T

f
i

)
n∑
j=1

h2
j

2ρ2mj

(
T fj − T

f
i

)
 . (2.9)
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The system of equations (2.9) allows us to find the optimal local approximations for
the first and second derivatives at the point xi and for the time tf . Therefore

(Tx)
f
i =

n∑
j=1

ẑjT
f
j − T

f
i

n∑
j=1

ẑj , (2.10)

where

ẑj =
1

ρ2mj

[
g11hj +

1

2
g12h

2
j

]
(2.11)

and

(Txx)
f
i =

n∑
j=1

zjT
f
j − T

f
i

n∑
j=1

zj , (2.12)

in which

zj =
1

ρ2mj

[
g21hj +

1

2
g22h

2
j

]
. (2.13)

To determine the time derivative for t ∈ [tf , tf+1] we shall use the simple differential
quotient

∂T (xi, t)

∂t
∼=
T
(
xi, t

f+1
)
− T

(
xi, t

f
)

∆t
=
T f+1
i − T fi

∆t
. (2.14)

The local approximation of equation (1.4) for internal node xi is the following

c
(
T fi

) T f+1
i − T fi

∆t
=

(
dλ
dT

)f
i

[
(Tx)

f
i

]2
+ λ

(
T fi

)
(Txx)

f
i + (qv)

f
i (2.15)

from which the temperature T f+1
i can be found.

Substituting equations (2.10) and (2.12) into equation (2.15) we have

c
(
T fi

) T f+1
i − T fi

∆t
=

(
dλ
dT

)f
i

 n∑
j=1

ẑjT
f
j − T

f
i

n∑
j=1

ẑj

2

+

+ λ
(
T fi

) n∑
j=1

zjT
f
j − T

f
i

n∑
j=1

zj

+ (qv)
f
i (2.16)

and

T f+1
i = T fi +

∆ t

c
(
T fi

) ( dλ
dT

)f
i

 n∑
j=1

ẑjT
f
j − T

f
i

n∑
j=1

ẑj

2

+

+
λ
(
T fi

)
∆ t

c
(
T fi

)
 n∑
j=1

zjT
f
j − T

f
i

n∑
j=1

zj

+
∆ t

c
(
T fi

) ( qv)
f
i . (2.17)
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This formula can be written in the form

T f+1
i =

λ
(
T fi

)
∆ t

c
(
T fi

) n∑
j=1

zjT
f
j + T fi

1−
λ
(
T fi

)
∆ t

c
(
T fi

) n∑
j=1

zj

+
∆ tQfi

c
(
T fi

) , (2.18)

where

Qfi =

(
dλ
dT

)f
i

 n∑
j=1

ẑjT
f
j − T

f
i

n∑
j=1

ẑj

2

+ ( qv)
f
i . (2.19)

The stability condition of the scheme discussed is the following

1−
λ
(
T fi

)
∆ t

c
(
T fi

) n∑
j=1

zj > 0 . (2.20)

The equations for x = 0 and x = L result directly from the approximation of the
boundary conditions.

3. Example of computations

We consider a plate (5 cm) for which the thermal conductivity is assumed to be a
linear function: λ = aT+b, where a = −0.04023, b = 60.916, while the specific heat is
approximated by the function: c = AT 2 +BT +C, where A = 1.6187, B = 290.9286.
C = 3692954.4. For x = 0 the no-flux condition is assumed, for x = L the Robin
condition is taken into account.

The plate is cooled in the conditions of natural convention and radiation. The
heat transfer coefficient is the sum of convective component αk = 10W/m2K and the
radiant one given by the formula

αr = 10−4εCC

[(
T

100

)2

+

(
Ta
100

)2
]

(T + Ta) (3.1)

where ε = 0.8 is thermal emissivity, CC = 5.67W/m2K4, Ta is the ambient tempera-
ture. The initial temperature equals 900 0C, Ta = 300C (303 K).

The problem was solved in several variants. In Figures 2 to 3 the temperature
profiles in the domain considered are shown.

The first solution has been obtained for the regular mesh, 3-point stars and an
exponent m = 0. The domain is covered by the set of 51 nodes in which x0 and x50
are the boundary nodes. The results are shown in Figure 2.

In the same Figure the numerical solution is compared with the results obtained
using the control volume method (symbols marked in Figure 2) and the differences
between these solutions are less than 3K.

In Figure 3 the temporary temperature field for the points of time 2, 4, 6, 8 and
10 minutes (the same times as in Figure 2) are presented. This simulation is carried
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Figure 2. Solution for regular mesh

Figure 3. Solution for ‘chaotic’ mesh
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out for the ‘chaotic’ mesh (see points along x axis), 5-point stars and exponent m = 1.
The results shown in the Figures discussed are practically the same.

The generalized FDM can be also efficiently used in the case of 2D problems and
the details of the algorithm can be found among others in [4, 5, 6, 7]. The GFDM
was tested for different thermal diffusion problems and we did not find limitations to
the method applications.

4. Final remarks

The generalized variant of the finite difference method constitutes a very effective
tool for numerical solution of the large class of thermal diffusion problems. The
very essential disadvantage of the FDM consists in the limitations resulting from the
necessity of regular meshes construction. It causes, as a rule, that the real shape
of the domain is approximated inexactly. In the case of GFDM this inconvenience
does not appear. The theoretical and numerical aspects of FDM for the steady state
problems are sufficiently described in literature. In this paper we discuss the problems
connected with the method application in the case of transient heat diffusion, at the
same time both the governing equation and the boundary conditions are non-linear.
The GFDM algorithm is more complex than the FDM one, but is not an essential
obstruction for its practical applications.

Note. The paper was presented at the 9th International Conference on Numerical
methods in Continuum Mechanics, Zilina, Slovakia, 9-12 September 2003 and its
shorter version was published in the Conference CD Proceedings.
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Abstract. The paper examines the transverse vibrations of belts and the impact of the
vibration modes on unstable speed ranges. Supposing large deformations, it produces a
more general non-linear motion of equation for the vibrations, which may be suitable for
the examination of further linear and non-linear vibrations. It is shown that in the course
of the belt motion, parametrically excited non-linear vibrations develop. The parametrical
excitation is caused by the change in length of the belts resulting from the eccentricity of one
of the belt pulleys. Next the paper examines the impact of vibration modes developing during
the transverse vibrations of the belts on the main instability range. A first approximation
of a closed form is developed for the main instability ranges of transverse vibrations. It is
shown that the instability ranges belonging to the higher vibration modes become wider and
tend to move towards higher numbers of revolutions.
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1. Introduction

Belt drives are extensively used in mechanical engineering practice for the transmis-
sion of moments and power between axles located far away from each other. Its
widespread application – in the automobile industry, a number of branches of the
light industry, general engineering and machine tool industry, etc. – can be explained
by its inexpensive realisation, quiet operation, easy mounting, favourable vibration
damping, and last but not least by its good efficiency. The theory of belt drive design
has been known and applied in engineering practice for a long time. Today renowned
belt manufacturers support graphical dimensioning of belts based on diagrams. The
basis of these selection and dimensioning procedures is provided by strength calcula-
tions.

In applications requiring higher accuracy – for example the main and feed drives of
machine tools – it is not sufficient to dimension the particular machine elements, in
particular belts, exclusively in terms of strength. In such cases it is also essential
to apply a knowledge of vibrations that will facilitate the solution or elimination

c©2004 Miskolc University Press
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of dynamic problems in the design phase. When designing belt drives, basically
two kinds of dynamic tasks are to be solved. One of them is an examination of
the problems arising from the longitudinal vibrations of the belts. The other is an
examination of the transverse vibrations of the belts. It is known both from the
literature and from practical experience that at a certain running speed the belts lose
their stability and develop transverse vibrations. These vibrations exert a detrimental
influence on the life of the belt and in some cases on that of the machine, and – in the
case of machine tools – may exert a non-desirable effect on the machining process and
the manufacturing accuracy. Therefore it is expedient and important to determine in
the design phase the instability ranges where the non-desirable vibrations mentioned
above may develop. The following is a stability analysis of transverse vibrations.

2. The system of equations of motion of a single belt

2.1. The mechanical model. On the basis of the understanding of the literature it
is expedient in the analysis of certain types of vibrations arising in the application of
belt drives to consider the non-linear material properties of the belt (cf. e.g. [3]). One
possible way to do so is to approximate the characteristic curve of the belt with a third
degree polynomial. Accordingly, the material law applying to the belt is supposed to
have the following form

σx = Eεx + βε3x, (2.1)
where σx is the tensile stress arising in the belt, εx is the strain in direction x, E and
β are material constants, which have to be determined by means of measurements.
In the derivation of the equations of motion the following are supposed to hold:

• the belt moves only in plane xz according to Figure 1,
• only the force stretching the belt acts on the belt,
• the cross-sectional area of the belt is constant, its material properties do not

change along the axis x,
• in the beginning the internal damping of the belt is neglected,
• the effects of the belt separating from and being stretched on the discs are

neglected in accordance with [4].

Figure 1. Mechanical model of the drive
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As usual, the line connecting the centres of gravity of the cross-sectional areas is called
the centre line of the belt. The displacement of the point with abscissa x of the belt
centre line in direction x is denoted by u (x, t), and that in direction z is denoted by
w (x, t). In accordance with our supposition, the displacement in direction y is zero,
therefore the strain of the center line according to [1, 3] is approximated by

εx0 =
∂u

∂x
+

1

2

[(
∂u

∂x

)2

+

(
∂w

∂x

)2
]
. (2.2)

On the basis of experience
(
∂u
∂x

)2
in (2.2) may be negligible as related to the very

small ∂u∂x , but
∂w
∂x may be large as compared with ∂u

∂x . Therefore on the basis of [1]
the approximation

εx0 =
∂u

∂x
+

1

2

(
∂w

∂x

)2

(2.3)

is used. If the curvature of the center line is approximated by ∂2w
∂x2 , then the axial

strain of an arbitrary fibre in the belt can be written in the form

εx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

− z ∂
2w

∂x2
. (2.4)

2.2. Equations of motion. The equations of motion are derived by means of the
Hamilton principle. Therefore the following can be written

δ

∫ t2

t=t1

(W − T ) dt = 0 .

After the calculations detailed in Appendix A the following equations of motion are
obtained:

%A∂2u
∂t2 −

∂
∂x

{
AE

[
∂u
∂x + 1

2

(
∂w
∂x

)2]
+ β

{
A
[
∂u
∂x + 1

2

(
∂w
∂x

)2]3
+

+3Iy

[
∂u
∂x + 1

2

(
∂w
∂x

)2] · (∂2w
∂x2

)2
− 2I3y

[
∂u
∂x + 1

2

(
∂w
∂x

)2] · (∂2w
∂x2

)3}}
= 0 (2.5)

%A∂2w
∂t2 −

∂
∂x

{
∂w
∂x

{
AE

[
∂u
∂x + 1

2

(
∂w
∂x

)2]
+ β

{
A
[
∂u
∂x + 1

2

(
∂w
∂x

)2]3
+

+3Iy

[
∂u
∂x + 1

2

(
∂w
∂x

)2] · (∂2w
∂x

)2
− 2I3y

[
∂u
∂x + 1

2

(
∂w
∂x

)2] · (∂2w
∂x2

)3}}}
+

+ ∂
∂x2

{
∂2w
∂x2

{
IyE + β

{
3Iy

[
∂u
∂x + 1

2

(
∂w
∂x

)2]2 · (∂2w
∂x2

)
−

−3I3y

[
∂u
∂x + 1

2

(
∂w
∂x

)2]2 · (∂2w
∂x2

)2
+ I4y

(
∂w
∂x

)3}}}
= 0 , (2.6)

(cf. [5]) where % is the density, A is the cross-sectional area, Iy is the moment of
inertia of the cross-section calculated for the axis y, Iny, n = 3, 4 are the higher order
moments of the cross-sectional area, L is the length of the belt between the belt
pulleys, E is the linear part of the modulus of elasticity, β is the non-linear part of
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the modulus of elasticity. Equations of motions (2.5) and (2.6) describe the general
motion of a single belt. When supplemented with the right fitting and boundary
conditions, they are suitable for performing general dynamic analyses. Later on the
above equations of motion (2.5) and (2.6) are regarded as our starting point for further
research.

3. Analysis of transverse vibrations

When analyzing transverse vibrations, the non-linear partial differential equation sys-
tem (2.5) and (2.6) is used as the starting point. Their accurate solution, suitable for
engineering work, is not known yet. The method to be presented, based on Kirchhoff
[2] and Kauderer [1], was used by Faragó [3] and Patkó [5] for belts as follows. In
order to produce simpler equations of motion, the suppositions in [2] were used in
(2.5), (2.6) according to which in the expression of the kinetic energy the coordinate(
∂u
∂t

)
in direction x of the velocity vector of the belt element performing the trans-

verse vibration may be neglected beside the component
(
∂w
∂t

)
in direction z. Thus,

instead of (2.5) and (2.6) a simpler partial differential equation system is obtained.
Relying on the train of thoughts by Kauderer and on the basis of the measurement
results by Faragó, it is acceptable, as a first approximation in an analysis of trans-
verse vibrations, to approximate the function σx = σx (ε) by its linear part. Using
the approximations mentioned, the system of the equations of motion (2.5) and (2.6)
of the belt can be written in the form

∂
∂x

{
AE

[
∂u
∂x + 1

2

(
∂w
∂x

)2]}
= 0 (3.1)

%A∂2w
∂t2 + ∂2

∂x2

(
∂2w
∂x2 IyE

)
− ∂

∂x

{
∂w
∂x

{
AE

[
∂u
∂x + 1

2

(
∂w
∂x

)2]}}
= 0. (3.2)

Comparing equations (3.1) and (3.2) with (2.3) shows that the elongation of the center
line of the belt does not depend on place x, therefore it can only depend on time t.
Integrating (3.1) according to variable x gives the form

AE

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]

= F (t) . (3.3)

Equation (3.3) is again integrated along length L of the belt from x = 0 to x = L,
which gives

AE

L

[
u (L, t)− u (0, t) +

1

2

∫ L

x=0

(
∂w

∂x

)2

dx

]
= F (t) . (3.4)

Thus supposing a constant belt cross-sectional area from (3.2) and (3.4) for the func-
tion w = w (x, t) describing the transverse vibrations gives the following integro-
differential equation

%A
∂2w

∂t2
+IyE

∂4w

∂x4
−∂

2w

∂x2

{
AE

L

[
u (L, t)− u (0, t) +

1

2

∫ L

x=0

(
∂w

∂x

)2

dx

]}
= 0. (3.5)
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There are time-dependent boundary conditions belonging to (3.5). If the coordinate
system xyz is taken so that axis x passes through the current points of contact between
the belt and the belt plates, then these boundary conditions can be formulated in the
following forms

w (vt, t) = 0

and
w (vt+ L, t) = 0,

where v = constant, the velocity of the belt in the coordinate system xyz. Let us

Figure 2. Mechanical model of the drive after transformation of coordinates

attach a coordinate system ξης according to Figure 2 to the belt side in motion so
that there should only be a translation in direction x between the coordinate systems
xyz and ξης. Let us transform differential equation (3.5) into the coordinate system
ξης that the time dependence of the boundary conditions will be eliminated. Let us
introduce the transformation

x = ξ + v · t (3.6)

according to Figure 2, thus the equation of motion is transformed into the form

%A∂2w
∂t2 − 2%vA ∂2w

∂ξ∂t + %Av2 ∂
2w
∂ξ2 + IyE

∂4w
∂ξ4 −

−∂
2w
∂ξ2

{
AE
L

[
u (L, t)− u (0, t) + 1

2

∫ L
0

(
∂w
∂ξ

)2
dξ

]}
= 0 (3.7)

and the boundary conditions are transformed into the time-independent forms

w (0, t) = 0 (3.8)

and
w (L, t) = 0. (3.9)

Equation (3.7) is a non-linear partial integro-differential equation. In the analysis of
certain types of non-linear vibrations the Galerkin method is widely used [6]. On
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the basis of observations and experience the solution of the above integro-differential
equation (3.7) is looked for in the following trigonometric series

w (ξ, t) =

∞∑
n=1

qn (t) sin
(nπ
L
ξ
)
, (3.10)

the members of which are orthogonal in the interval [0, L] and satisfy the boundary
conditions (3.8) and (3.9). Then

q̈k +
(
kπ
L

)2{(kπ
L

)2 Iy
A
E
% − v

2 + E
%L

[
u (L, t)− u (0, t) + π2

4L

p∑
m=1

(
m2q2m

)]}
qk = 0

(k = 1, 2, 3, . . . , p) (3.11)

is obtained. A detailed presentation of the calculations can be found in Appendix B.
Let us introduce the notations

Qk (ξ) = sin

(
kπ

L
ξ

)
(k = 1, 2, 3, . . . , p)

where the functions Qk (ξ) are from now on called vibration modes. On the basis
of experience (cf. [7]) it can be supposed that the arising vibrations in the first
approximation have the property that there is a dominant vibration mode Qk (ξ)
and a dominant frequency belonging to them, beside which the amplitudes qm (t)
belonging to the other Qm (ξ) (m 6= k) are mostly negligibly small. Based on the
above, in (3.11) only one such function qk (t) considered to be dominant is kept. Thus
instead of (3.11) it is sufficient to analyse the differential equation

q̈k +
(
kπ
L

)2 {(kπ
L

)2 Iy
A
E
% − v

2 + E
%L

[
u (L, t)− u (0, t) +

(
kπ
2

)2 1
Lq

2
k

]}
qk = 0

(k = 1, 2, 3, . . . , p) . (3.12)

4. Stability analysis

4.1. The exciting effect. In order to investigate the stability of belt, let us linearise
(3.12) at qk0 = 0, which gives

q̈k +

(
kπ

L

)2
{(

kπ

L

)2
Iy
A

E

%
− v2 +

E

%L
[u (L, t)− u (0, t)]

}
qk = 0 . (4.1)

It can be seen from the equation of motion that one possible cause of the transverse
vibrations of belts is the longitudinal elongation of the belt, which changes in time.
Let us examine the case when the longitudinal displacement of the ends of the belts
is caused by the eccentricity of one of the belt pulleys. Let us suppose that in the
coordinate system ξηζ one end of the belt does not get displaced, that is

u (0, t) = 0, (4.2)

and its other end gets displaced by the value u0 resulting from the pre-tensioning
and the transferred moment, then performs an oscillatory motion described by the
function uL = e2 cos (νt) in direction ξ due to the eccentricity of one of the belt pulleys
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Figure 3. The model of a drive with eccentricity

(in this case the driven one), where e2 is the eccentricity of the driven belt pulley, ν
is its angular velocity, and using them gives

u (L, t) = u0 + e2 cos (νt) . (4.3)

The velocity of the belt can be expressed in terms of the angular velocity of the driving
plate denoted by 1 and gives

v = R1ν, (4.4)
where ν is the angular velocity of the driving plate and R1 is the radius of the driving
plate – see Figure 3. Substituting equations (4.2)-(4.4) into (4.1), let us introduce the
dimension-free time coordinate

τ =
1

2
νt , (4.5)

and we get

q
′′

k + 4

(
kπ

L

)2
{(

kπ

L

)2

κ (h)
E

%ν2
−R2

1 +
E

%ν2L
[u (L, τ)− u (0, τ)]

}
qk = 0

(k = 1, 2, 3, . . . , p) , (4.6)

where the comma denotes differentiation according to τ and κ (h) =
√

Iy
A is the

inertia-radius. Let us furthermore introduce the notations

λk = 4
(
kπ
L

)2 { E
%ν2

[(
kπ
L

)2
κ (h) + u0

L

]
−R2

1

}
, (4.7)

µk = −2
(
kπ
L

)2 E
L%ν2 e2 . (4.8)

Thus (4.6) will take the form

q
′′

k + (λk − 2µk cos (2τ)) qk = 0 (k = 1, 2, 3, . . . , p) . (4.9)

The stability ranges of the above Mathieu-type differential equations are known from
the literature [1, 8]. The case λk < 0 is of no importance for practical belt drives.
Among the instability ranges what is called the main instability range is the most
dangerous, for here even for small µk values may arise stability loss in a wide interval
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λk. The other instability ranges are of smaller significance due to the dampings not
taken into account here. Therefore this paper is limited to an analysis of the main
instability range. It should be noted here that due to the damping present in the
system, but not taken into account now, the sizes of the instability ranges decrease.

4.2. First approximation of the main instability ranges. Practical calculations
show that the values µk in belt drives are small, therefore in the first approximation

unstable

stable

stable

–1

0

1

2

3

λ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

μ

Figure 4. First approximation of the main instability range of the
Mathieu equation

it is sufficient to approximate the main instability range by its tangents. Accordingly,
the main instability range of (4.9) is approximated – see Figure 4. – in the form

λk = 1± µk . (4.10)

Substituting the variables (4.7)-(4.8) into (4.10) and solving the expression obtained
for angular velocity ν of the belt plates, the relationship

ν = 2kπ

√
E
[
k2π2Iy + LA

(
u0 ± e2

2

)]
%AL2 (4k2π2R2

1 + L2)
(4.11)

is obtained. It means that the unstable angular velocities are in the region

2kπ

√
E
[
k2π2Iy + LA

(
u0 − e2

2

)]
%AL2 (4k2π2R2

1 + L2)
< ν < 2kπ

√
E
[
k2π2Iy + LA

(
u0 + e2

2

)]
%AL2 (4k2π2R2

1 + L2)
. (4.12)

It describes the first approximation of the main instability range as depending on the
further belt parameters. The following is an analysis of how the positions of the main
instability ranges change for different vibration patterns.
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4.3. Analysis of the impact of vibration patterns. It can be seen from equation
(4.11) as well as from the Figures that when number k of the vibration pattern
being analysed is increased, the instability range moves towards the higher revolution
numbers. It can be observed and can also be seen from relationship (4.11) that for
higher values of k and for the usual belt parameters the ranges become slightly wider.
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Figure 5. First approximations of the main instability domains for
k = 1, 2, 3, e2 = 3 · 10−3[m], Iy = 3.2 · 10−11[m4], % = 2 · 103[kg/m3],
E = 1.5·109[N/m2], A = 2.1·10−7[m2], R1 = 0.1[m], u0 = 6·10−3[m]
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Figure 6. First approximations of the main instability domains for
k = 1, 2, 3, L = 1[m], Iy = 3.2 · 10−11[m4], % = 2 · 103[kg/m3], E =
1.5 · 109[N/m2], A = 2.1 · 10−7[m2], R1 = 0.1[m], u0 = 6 · 10−3[m]

Figure 5 shows the boundaries of the instability ranges calculated from (4.11) with
the values k = 1, 2, 3. In the diagrams of Figure 5 the instable angular velocity range
is drawn versus length L of the belt. In the diagrams of Figure 6 the unstable angular
velocity range is drawn versus eccentricity e2 of the pulley. It can be seen from the
Figures that certain revolution number ranges may become dangerous even for differ-
ent vibrations. Relationship (4.12) lends itself to further noteworthy conclusions. The
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formula shows what impact the belt parameters exert on the positions and dimensions
of unstable ranges.

5. Concluding remarks

The paper has shown more general equations of motion of transverse vibrations of
belts than those known from the literature. These are the equations of motion (2.5),
(2.6), (3.5) and (3.11), which take into account the non-linear behaviour of the belts
and also provide a basis for further research. Based on the above, it can be stated that
one possible cause of the transverse vibrations of belts is the eccentricity of the belt
pulleys. In that case the transverse vibrations are described by a differential equation
system with a non-linear variable coefficient. The stability analysis of the belt has
also been presented. The first approximation of the main instability range has been
performed versus the angular velocity of the belt pulley. It has been investigated how
the main instability domains of the transverse vibrations of a belt change with the
different vibration patterns. It was found that the main instability ranges belonging
to the higher vibration patterns move towards the higher numbers of revolution and
become slightly wider.
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Appendix A. Derivation of the equations of motion

The Hamilton integral is

H =

∫ t2

t=t1

(W − T ) dt, (A.1)
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whereW represents the strain work of the belt, and T is its kinetic energy. Let us first
determine the strain work resulting from the flexible displacements in the transverse
and longitudinal directions of the belt cross-sections. Let U be the strain work of the
belt for unit volume. Then, using (2.1)

Ū =

∫ εx

εx=0

(
Eεx + βε3x

)
dεx =

1

2
Eε2x +

1

4
βε4x (A.2)

can be written. The strain work of the belt for unit length can be calculated by using
(2.4) and (A.2) according to

U =

∫∫
A

Ūdydz, (A.3)

where A is the cross-section of the belt. Giving details of expression (A.3)

U = 1
2E
∫∫
A

[
∂u
∂x + 1

2

(
∂w
∂x

)2 − z ∂2w
∂x2

]2
dydz +

+ 1
4βE

∫∫
A

[
∂u
∂x + 1

2

(
∂w
∂x

)2 − z ∂2w
∂x2

]4
dydz (A.4)

is obtained. When U is known, the strain work accumulated in the belt can be
calculated as

W =

∫ L

x=0

Udx,

which is detailed to give the following integral

W = 1
2

∫ L
x=0

{
E

{
A
[
∂u
∂x + 1

2

(
∂w
∂x

)2]2
+ Iy

(
∂2w
∂x2

)2}
+

+ 1
2β

{
A
[
∂u
∂x + 1

2

(
∂w
∂x

)2]4
+ 6Iy

[
∂u
∂x + 1

2

(
∂w
∂x

)2]2 (∂2w
∂x2

)2
−

− 4I3y

[
∂u
∂x + 1

2

(
∂w
∂x

)2]2 (∂2w
∂x2

)3
+ I4y

(
∂2w
∂x2

)4}}
dx. (A.5)

In the integration of function Ū the facts that the first moment Sy =
∫∫
A
zdydz of

the belt cross-section calculated for its centroidal axis is zero and that the quantity∫∫
A
zidydz was designated Iiy (i = 3, 4) were made use of.

Let us now turn to calculating the kinetic energy of the elementary belt. Let the
mass of the belt per unit length be denoted by m0 = %A. The velocity of one point
of the central line of the belt is calculated according to

v0 =

√(
∂u

∂t

)2

+

(
∂w

∂t

)2

. (A.6)

If the moments of inertia of the individual belt elements are neglected - and thus the
kinetic energy resulting from the angular velocities of the revolutions of the cross-
sections is also neglected - then the kinetic energy can be written as

T =
1

2
m0

∫ L

x=0

[(
∂u

∂t

)2

+

(
∂w

∂t

)2
]

dx. (A.7)



On transverse vibrations of belts 127

If now the relationships (A.5) and (A.7) are substituted into (A.1), this gives the
integral of form

H =
∫ t2
t=t1

∫ L
x=0

F
(
∂u
∂t ; ∂u∂x ; ∂w∂t ; ∂w∂x ; ∂

2w
∂x2

)
dxdt (A.8)

from which the Euler-Lagrange equations

∂
∂x

∂F

∂( ∂u
∂x )

+ ∂
∂t

∂F

∂( ∂u
∂t )

= 0 (A.9)

∂w
∂x

∂F

∂( ∂w
∂x )
− ∂2

∂x2
∂F

∂
(

∂2w
∂x2

) + ∂
∂t

∂F

∂( ∂w
∂t )

= 0 (A.10)

can be derived [1] on the basis of the Hamilton variation principle (δH = 0). Com-
pleting the differentiations designated gives the differential equations (2.5) and (2.6)
describing the motion of the belt.

Appendix B. Details of the calculations using the Galerkin method

According to (3.7) the equation of motion can be written in the form

%A
∂2w

∂t2
− 2%vA

∂2w

∂ξ∂t
+ %Av2

∂2w

∂ξ2
+ IyE

∂4w

∂ξ4
−

− ∂2w

∂ξ2

{
AE

L

[
u (L, t)− u (0, t) +

1

2

∫ L

0

(
∂w

∂ξ

)2

dξ

]}
= 0 (B.1)

and the boundary conditions are transformed into the time-independent forms

w (0, t) = 0 (B.2)

and

w (L, t) = 0. (B.3)

The solution of equation (B.1) is sought following Galerkin’s method in the form

w (ξ, t) =

∞∑
n=1

qn (t) sin
(nπ
L
ξ
)

(B.4)

which satisfies the boundary conditions (B.2) and (B.3). Substituting (B.4) in the
equation of motion (B.1) results in equation

∞∑
n=1

{{
%Aq̈n − %Av2

n2π2

L2
qn + IyE

n4π4

L4
qn +

(
n2π2
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+
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4
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(
k2π2

L2
q2k

)]}}
sin
(nπ
L
ξ
)}

= 0 . (B.5)
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Let us multiply equation (B.5) by the expression sin
(
iπ
L ξ
)
, then integrate it on the

interval [0, L]. In accordance with Galerkin’s method, the equation
∞∑
n=1

{{
%Aq̈n − %Av2

n2π2

L2
qn + IyE
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)
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)
dξ = 0 (B.6)

can be written. Completing the integrations designated gives equation

%Aq̈i +
i2π2

L2

[
IyE

i2π2

L2
− %Av2 +

AE

L

(
uL (t) +
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)]
qi = 0. (B.7)
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Abstract. The hole drilling technique is one of the most frequently used methods of resid-
ual stress determination. This technique is based on drilling a small hole in the material.
Relieved strain around the hole is measured and the residual stress is then evaluated us-
ing calibration coefficients. Possibilities of calibration coefficient computation using finite
element method (FEM) are presented in this paper. Analyses of computation parameters
influence are performed: the solver used and its parameters, finite element types, model
type, mesh density and sample shape. An efficient method using a script-based model for
the calibration function determination is introduced.
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1. Introduction

Residual stress is defined as stress in a material without the action of external forces.
It occurs practically in all technical materials as a consequence of their manufactur-
ing, treatment or usage. Residual stress influences detrimentally or beneficially the
resulting properties: toughness or fatigue and corrosion characteristics for example.
Residual stress represents one of the important material state characteristics together
with microstructure and texture, hence a great care is given to its determination.

Experimental techniques play the main role in residual stress determination. Sev-
eral destructive or nondestructive experimental methods based on different physical
principles are developed [3]. Frequently used ones include diffraction (x-ray, neutron)
techniques, ultrasonic techniques, bending methods or destructive techniques based
on residual stress relieving measurement. The hole-drilling residual stress measure-
ment method [2,3,6,7,11] is a destructive technique based on the original residual
stress relieving by drilling a small hole into the material surface. The method is la-
belled as semi-destructive, as the material damage is very small and often removable.
The response of the relaxed stress-relieved strain is measured during incremental hole
drilling and the original residual stress is evaluated based on this measurement. Strain

c©2004 Miskolc University Press
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gauge or optical [8] methods are most often used for strain measurement. The stan-
dard ASTM E837 [12] has been adopted as the basic concept of the method, however,
many modifications and improvements have been developed.

Generally, a blind hole and a non-uniform stress field is considered. The relaxed
strains measured are related to the acting residual stress with so-called influence
function or calibration coefficients (discrete form) in this case. The influence function
depends on the material properties, hole and strain gauges geometry, hole depth and
the position of the residual stress acting in the hole. In some cases (uniform stress
field, homogeneous isotropic material, etc.) an experimentally evaluated influence
function is sufficient. However, in most cases a numerical calibration of the method
is necessary.

Numerical techniques are used both for residual stresses prediction or as an ex-
perimental method support. The residual stress calibration coefficient can also be
determined using the numerical modeling [4,5,9]. This allows more accurate influence
function determination and the hole drilling residual stress measurement problem
analysis. In this way, calibration coefficients can be efficiently obtained for different
materials, the influence of sample shapes (some analysis provided in [1]) and proper-
ties as well as other factors can be investigated. Therefore, the numerical simulation
appears an efficient tool, which can help to enhance the experimental method com-
patibilities and the generalization of its application.

2. Hole drilling residual stress measurement method

The semi-destructive hole drilling residual stress measurement technique is based on
drilling a small hole to the material surface measured. The principle of the method
is schematically shown in Figure 1. A conical shaped mill is used for the drilling;
the original residual stress relaxation response that is the relieved strain is measured
usually by a strain gauge rosette with 3 gauge elements.

drilling mill

strain gauge rosette element

(1) (2)

Figure 1. Schematic photograph of the drilling mill and strain gauge
rosette (1), principle of the hole drilling residual stress measurement
technique before drilling (2a); after drilling (2b).
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The relationship between the residual stress relaxation and the surface relieved strain
is based on equation

εr = A (σx + σy) +B (σx − σy) cos(2θ) , (1)

where εr is the relieved radial strain at angle θ, σx and σy are the residual stress
components in principal directions and A, B are calibration coefficients. Equation (1)
is analytically derived by Kirsch (1898) for through-hole and the coefficient definitions
are

A = −1 + ν

2E

1

R2
(2)

and

B = −1 + ν

2E

(
4

1 + ν

1

R2
− 3

R4

)
. (3)

where ν and E are Poisson ratio and Young elasticity modulus of the measured ma-
terial and R is the measuring position for r relative to the hole-radius ra:

R =
r

ra
. (4)

Equation (1) stands for a homogeneous isotropic material with linear elastic stress-
strain relationship. Strain measurement in 3 independent directions (θ, θ + 45o,
θ + 90o for the ASTM E837 strain gauge rosette) allows determination of the two
principal residual stress components and their directions. The analytical derivation
is performed assuming an infinite plate with a small hole in 2-dimensional simplifi-
cation for a constant stress-depth profile. If these conditions are not fulfilled, such
simplification is not possible.

Let us suppose the frequently assumed case of a homogeneous, isotropic and linear
elastic material, a blind hole and a non-uniform stress profile. Similar form of the
stress-strain relationship as in the case of equation (1) is considered. However, the
stresses σx(H) and σy(H) are additionally a function of position in the hole H; εr(h)
is a function of hole depth h; calibration coefficients A(h,H), B(h,H) are functions
of the whole hole depth h and the position H. Then the dependence (1) for θ = 0
and θ = 90o can be written (integral form proposed by Schajer [8])

εr(x,y)(h) =

h∫
0

A(h,H) [σx(H) + σy(H)]±B(h,H) [σx(H)− σy(H)] dH (5)

Severel residual stress evaluation schemes based on different simplifications have been
developed (integral method, power series method, etc.). A discrete form of equation
(5) is used for the numerical evaluation of the calibration functions (A, B). Such
equation is the basis for the integral evaluation method [7] and can be written as

~εr(x,y) = [A]~σA ± [B]~σB , (6)

where ~εr is the vector of radial surface strain by discrete depths hi in the directions
θ = 0 or θ = 90o, ~σ is the stress vector (σA = σx + σy, σB = σx − σy) while [A], [B]
are lower triangular coefficient matrices.
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In this way the calibration coefficients are evaluated based on given ‘residual’ stress
(boundary condition) and strain at the strain gauge rosette elements’ position (com-
putation result). The common form of the coefficients is the dimensionless cumulative
strain relieving function:

aij =
2E

1 + ν

Hj∫
0

A(hi, H)dH , (7a)

bij = 2E

Hj∫
0

B(hi, H)dH . (7b)

These dimensionless coefficients are considered material independent (only small de-
pendence up to 2% on Poisson ratio ν is observed [11]) and thus they are functions of
the hole and strain gauge rosette geometry only (with respect to the above mentioned
conditions).

3. Numerical model - solvers’ comparison

The blind-hole analysis is generally a 3 dimensional problem. In some cases a 2
dimensional approximation can be used. The numerical finite element method (FEM)
system Cosmos/M [10] offers three possible models (linear static analysis):

• 3D model
• 2D axially symmetric model
• 2D axially symmetric model (geometry) with asymmetric loading (NAL-model)

Standard numerical solvers (SPARSE or SKYLINE) or the fast FFE solver developed
by SRAC (Structural Research & Analysis Corp.) can be used for both 2D and 3D
models (except the NAL-model).

symmetry

axis

boundary

pressure

near-

hole

area
far-hole area

L

T

rm

ra

Figure 2. Through-hole linear static problem analysis scheme.

An axially symmetric through-hole problem is modeled according to the schema shown
in Figure 2 for the solvers/models comparison. The model parameters are presented
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in Table 1. The hole radius and measuring point position are considered in accordance
with the HBM (Hottinger Baldwin Messtechnik) drilling mill used and strain gauge
rosette dimensions. The steel material is considered. Constant radial pressure σr,b is
set as the boundary condition to simulate the relieved tensile residual stress.

The most often used scale is the strain gauge rosette mean radius (rm - rosette
strain gauge element center radius), however, dimensions in this paper are presented
relative to the hole radius, which is the main scale of the problem.

Table 1. Through-hole linear static analysis problem parameters
(element size values are only approximate, the program can adapt
the mesh during automatic mesh generation)

Parameter Value Unit
Hole radius (ra) - reference size 0.90 mm
Strain gauge rosette mean radius (Rm = rm/ra) 2.83 -
Sample length (L/ra) 20.00 -
Sample thickness (T/ra) 5.00 -
Element size ratio (by 3D model) 1.20 -
Near hole area length (by 2D model, L1/ra) 5.67 -
Minimum size of elements (emin/ra) 0.10 -
Maximum size of elements (emax/ra) 0.50 -
Boundary pressure (σr,b) 100.00 MPa
Density (ρ) 7700.00 kg/m3

Elasticity modulus (E) 210.00 GPa
Poisson ratio (ν) 0.28 -

Generated mesh types are shown in Figure 3. The object is divided into two
parts by the 2D problem mesh (see Figure 2). The near-hole part of the length
L1 = 5.67ra = 2rm is meshed by constant element size emin, the far-hole part is
meshed with increasing element size from emin up to emax at the object boundary. The
triangular (TRIANG) 3-node element mesh with 2 translational degrees of freedom
per node is used for the axially symmetric problem.

The principle of the symmetric model with asymmetric loading (NAL-solver) is
based on the load F (θ) decomposition to the sum of several harmonic components of
the Fourier series

F (θ) = P0 + P1 cos(θ) + ...+ Pn cos(nθ) +Q0 +Q1 sin(θ)+
...+Qn sin(nθ) .

(8)

Then a 2D problem can be solved for each component and the particular solutions
are superposed (linear static analysis). The load is defined as a function of angle
(definition curve) and the decomposition is done automatically in the Cosmos/M
system. This NAL-solver does not support triangular mesh and thus PLANE2D 4-
node quadrilateral element mesh is used (two nodes can be coincident). In the general
case 3 translational degrees of freedom per node are considered.
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a)

b)

c)

Figure 3. Through-hole linear static analysis mesh – (a) 3-node tri-
angular 2D mesh, (b) 4-node 2D quadrilateral mesh , (c) 3D 8-node
isoparametric solid mesh

8-node SOLID elements are generated for 3D analysis (special cases are prism and
pyramid elements), where translational degrees of freedom per node are considered.
The near-hole part is meshed with increasing element size from emin up to emax and
the far-hole part element size emax is constant with regard to mesh size requirements.

Both 2D and 3D solvers except the NAL-solver make it possible to use the first
(linear) order or the second (parabolic) order elements. As an example, middle nodes
on TRIANG 2nd order elements straight edges are considered in the analysis. This
feature is not supported by the NAL-solver, where the mesh has to be refined manu-
ally.

The radial stress σr,m at the mean strain gauge rosette radius is considered to be
the value to be compared. The results are presented relatively to the boundary stress
σr,b. Results of the SPARSE solver with 2nd order element option are considered to
be a base for the percentage differences expression. Results for an axially symmetric
through-hole problem are in Table 2.

The results show that there is only a small difference up to 0.4% between all 2D
models. Similar solution times correspond to the number of equations solved and
do not exceed one minute (data given by Cosmos/M output file). No considerable
differences in accuracy or solution-time requirements are observed between SPARSE
and FFE solvers.

The results of 3D models are significantly influenced by increasing elements size
in the near-hole area. In this case the difference (error) can reach up to 20% by
disabling the 2nd order element option. By enabling this option both the SPARSE
and FFE results are comparable with 2D solution (∆σr,m = 0.1 and 3.2%). The
requirements (number of solved equations) of 3D solution are significantly higher
than 2D simplification, thus the solution times are also longer. A huge solution time
requirement increase can be seen in 3D STAR 2nd order element solution. This is
caused by disc swapping due to the insufficient computer operating memory (512 MB
RAM). Using the FFE solver can reduce the solution time significantly, however, the
result accuracy is worse (difference about 3%).
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Table 2. Result and parameter comparison for different computa-
tional models - axially symmetric through-hole problem. Comp. PC
x86 533MHz, 512 MB RAM

Option σr,m/σr,b |∆σr,m|
Number of Solution Element

(-) (%)
eqns. elements corner time (s) type

nodes
2D Sym.,
SPARSE,

0.0 26299 6505 3365 8 TRIANG2nd order el. -0.12231
(base)
2D Sym.,

0.4 6645 6505 3365 2 TRIANGSPARSE -0.12284
2D Sym., FFE,

0.0 26468 6505 3365 4 TRIANG2nd order el. -0.12233
2D Symmetric,

0.4 6730 6505 3365 2 TRIANGFFE -0.12278
3D, SPARS,

0.1 154016 15266 9512 5438 SOLID2nd order el. -0.12249

3D, SPARS 19.9 26654 15266 9512 78 SOLID-0.14669
3D, FFE

3.2 134193 15266 9512 110 SOLID2nd order el. -0.11845

3D, FFE 19.3 28536 15266 9512 28 SOLID-0.14597
2D Asymmetric
(SPARSE), 0.1 24053 7920 8067 15 PLANE2D

high el. dens. -0.12238
2D Asymmetric

0.1 10572 3453 3561 8 PLANE2D(SPARSE) -0.12239

The NAL-solver provides accurate enough results (∆σr,m = 0.1 %). The solution
time is comparable with axially symmetric solvers, but it is influenced by other solver-
settings (see later).

The 3D solution is much more space- and time-consuming for similar result ac-
curacy in comparison with the 2D model, especially in case of disc swapping mode
transition. The 2D axially symmetric model with asymmetric loading solver appears
to be an efficient way to solve such problems.

4. Model parameter influence

The surface stress/strain sensitivity related to the relieved residual stress due to the
hole drilling is relatively small (about 12% by through-hole, see Table 2), hence the
highest possible coefficient accuracy, i.e. computational accuracy, is required. The
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results can be influenced not only by incorrect solver parameters, but also due to
the real sample and model geometry differences. Thus an analysis of mesh density,
asymmetric loading curve value density, sample length and thickness is performed.

Assuming the parameters according to Table 1 (through-hole) the results obtained
making use of the numerical model are compared to the analytic solution by Kirsch
in Table 3. It can be seen that the results do not agree (difference about 2%) for
the sample length 20·ra used in previous analysis. This length is insufficient to the
approximate an infinite sample dimension considered by analytical derivation. The
approximation is significantly better (difference about 0.3%) for 100·ra sample length
setting.

Table 3. Asymmetric loading through-hole analysis results

Sample length (L/ra) σr,m/σr,b(-) ∆σr,m (%)
Analytic (infinite) -0.12457 0.0
20 -0.12231 1.8
100 -0.12426 0.3

In numerical modeling the infinite sample approximation is not necessary, but
the demonstration of the sample dimensions’ influence and the results’ analytical
verification is important. Let us further consider the more general case of a blind
hole and an asymmetric residual stress profile, i.e. asymmetric loading boundary
conditions. The model parameters correspond to those in Table 1, additional or
changed parameters are in Table 4. The 2D symmetric solver with asymmetric loading

Table 4. Blind-hole linear static analysis basic model parameters;
asymmetric loading (a supplement to Table 1)

Parameter Value Unit
Hole depth (h/ra) 1.00 -
Sample length (L/ra) 50.00 -
Sample thickness (T/ra) 50.00 -
FCOEF curve values 73.00 -
Boundary pressure (σx,b) 100.00 MPa
Boundary pressure (σy,b) 0.00 MPa

(NAL-solver) is used for simulations. Hole depth h is chosen to be the same as the
hole radius ra; sample length and thickness are both 50ra for the basic case. The
tensile residual stress profile in x direction (100 MPa) is considered, i.e. a boundary
pressure σx,b = 100MPa is set. The boundary pressure is divided into a radial and a
tangential component

σr = σx cos2 θ , (9a)
τθr = −σx sin θ cos θ . (9b)
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Separate simulations are performed for each radial and tangential load case. The
results are superposed (solver requirements). Equations (9a,b) define the angle de-
pendent load, which is set in form of an angle-load dependence curve (FCOEF) from
−180o to 180o. The number of FCOEF entered values, i.e. the ∆θ angle step should
correspond to the function tangential changes intensity. FCOEF=73 (∆θ = 5o) is
chosen as the basic case.

The number of Fourier series components n used in equation (8), i.e. the number
of a particular solution computed, is one of the parameters that control the solution
time-requirements. The system Cosmos/M allows function decomposition up to 1000
Fourier series components, however, use of the first three is sufficient in this case
regarding the dependencies given by equations (9a,b).

The mesh shown in Figure 4 is constructed similarly to the through-hole case:
the near-hole area (5.66ra in radial direction, 4.25ra in axial direction) is meshed by
constant element size emin, the far-hole area is meshed with increasing element size
from emin to emax at the object boundary. The mesh density influence near the hole
is shown in Figure 5. The results show that mesh density influences the stress/strain
field in the hole close vicinity above all. Using an element size smaller than 0.2ra
produces a maximum error of about 0.2%, increasing of the element size can cause
an inaccuracy up to a few percents. The results, however, are hole-depth dependent
and the smallest possible elements are required especially by incremental hole-drilling
simulation. Each increment is significantly smaller than the overall hole-depth, thus
the element size should be comparable or smaller than the increment size. Moreover,
the strain value needed for the calibration coefficient evaluation should correspond to
an integral strain value over the whole strain gauge element area, contrary to one-
point stress value used for this comparison. Thus, regarding the increasing error in
the hole vicinity as shown in Figure 5b, the sparse-mesh caused errors can be higher
than those presented in Figure 5a.

Near-hole

area

Far-hole

area

Figure 4. PLANE2D mesh generated for the blind-hole analyses
(symmetric geometry, asymmetric loading)

One of the NAL-solver parameters is the load-angle dependence curve definition. This
parameter acts as one of numerical parameters similar to element size because of the
interpolation between the separate values. Simulations for FCOEF = 10, 19, 37 and
73 values ( ∆θ = 40o, 20o, 10o, 5o) are performed. As shown in Figure 6, the relative
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error up to 10% can occurs by insufficient FCOEF curve density and it decreases
exponentially with angle step decreasing ∆θ (increasing number of FCOEF values).

The sample shape and dimensions influence the stress/strain response as shown
in [2,4] and also in Table 3 (numerical/analytical results comparison). Thus, the
calibration functions are influenced as well. Simulation for different sample length
(radius) and thickness is performed to investigate this dependence. The results are
shown in Figure 7.

It can be seen that both the sample length and thickness play important role in
dimensions comparable with the hole dimension. In the case of a small sample length
(to 10ra) the strain relieved around the hole is influenced by a relieved strain at the
sample boundaries as well. Than the error can reach values exceeding 20%. The
difference decreases exponentially by increasing the sample length and at dimensions
greater than 30ra the error is negligible (less then 0.1%). Similar behavior can be
observed for thickness variation. The error is not significant for the sample thickness
greater than 30ra (less then 0.1%). However, the error increases exponentially and
can reach a few tens of percent (30% by T = 1.2ra) by further sample thickness
reduction.

The presented results demonstrate a model parameters influence on the relieved
stress/strain response on the sample surface, thus on the computed calibration co-
efficients values as well. Similarly, any surface shape changes [1] or material in-
homogeneities (by surface coating analysis for example) have an important role and
should be considered by calibration coefficients determination and using. These fea-
tures should be taken into account by the residual stress hole drilling method analysis
and conditions of the calibration coefficients computation should correspond to a real
analysed problem. Considering of standard ASTM coefficients should cause deter-
mined errors.

5. Calibration coefficients evaluation

A dependence of the strain εr(h) on the (residual) stress σ(H) is needed for the
coefficients evaluation according to equation (5) and (6). The strain on the material
surface is defined as

ε =
ur(r2)− ur(r1)

r2 − r1
(10)

where ri is radial position (distance from the hole) and ur(r) is displacement. Both
the distance (r2 + r1)/2 and difference r2 − r1 should correspond to the strain gauge
rosette main radius rm and gauge element length lsg. The displacement is a non-linear
function of r, hence an incorrect setting of these parameters by strain evaluation
influences the computed calibration coefficients.

An example of strain gauge rosette element length (lsg) influence on the cumulative
calibration coefficients according to equations (7a,b) are shown in Figure 8. The
computation is performed for h = H = 0.5rm = 1.42ra and the strain gauge main
radius is rm/ra = 2.83, other model parameters agree with those in Table 1 and 4.
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The gauge element length lsg/ra varies from 0.56-2.78 (lsg/ra = 1.67 for used HBM
1,5/120RY61S residual stress rosettes). The coordinates and displacements of nodes
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ents computation model scheme.

on principal axes at the interval of supposed grid lengths (from rm − lsg/2 to rm +
lsg/2) are saved and approximated with a spline function, which is further used for
strain computation according equation (10). The transverse gauge element grid size
is omitted.

It can be seen from Figure 8 that the variations lsg can cause differences up to a few
tens percent. The true element length setting is also necessary for correct calibration
coefficient computation and usage for given strain gauge rosette. Consideration of
transverse gauge dimensions as shown in [3] can bring an further enhancement of
result accuracy.

The coefficients A,B can be obtained by solving equation (6) for the boundary
stress σx, (σy = 0) and computed strains εx, εy. It is better to compute the cumulative
coefficients directly, according to Figure 9. The strain εi by given hole depth hi is
computed for acting stress σj , that is set to a whole depth region from 0 to Hj . The
cumulative dimensionless coefficients are then computed according equations (7a,b).

aij =
E

1 + ν
·
(
σ−1
x,j εx,i + σ−1

x,j εy,i
)

(11a)

bij = E ·
(
σ−1
x,j εx,i − σ

−1
x,j εy,i

)
(11b)

Such computation is performed for all depths from hi = 0 to hi = hres and for
all combination Hj 6 hi by each discrete depth hi. Thus the required calibration
coefficients matrices aij and bij respectively are obtained (lower triangular matrices -
coefficients are not defined for H > h).

The computational procedures are time consuming because of repeated geometry
generation, boundary conditions changes and results processing for each depth. There-
fore an efficient computational procedure is investigated. Utilization of Cosmos/M
FEM system appears to be a suitable solution due to its internal script language.
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This language makes possible to solve of the whole problem, including parametric
geometry generation, boundary condition setting, results saving, etc.
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Figure 10. Calibration coefficients computational cycle scheme.

Figure 11. Dimensionless calibration coefficients a, b graphical rep-
resentation as a function of hole depth h and stress acting depth H

The computational algorithm is shown in Figure 10. All parameters used in the
program, the geometry and mesh generation and numerical parameters setting are
defined in the program/script heading. The "hole-area" is divided in finite number
of discrete increments (see Figure 9) that represent increments to be drilled out. In
the main program cycle the elements in drilled area (from h = 0 to hi) are deleted.
The boundary conditions changes (boundary stress from 0 to Hj), computation and
partial results savings for each increments Hj are provided by two nested loops for
shear and normal stress component respectively according to equations (9a,b) (the
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SGAL-solver does not support multiple load case definition). After the final depth
hres is achieved, the data matrix (monitored points/nodes coordinate, hole dept hi,
stress depth Hj and corresponding displacement values) are saved to disc and can
be used for calibration coefficients evaluation. All the computational process is fully
automatic. A user set only the problem parameters definition (hole radius, strain
gauge rosette mean radius, elements density, etc.) in the script heading.

Calibration coefficients matrices graphical representation as a function f(h,H) is
shown in fig.11 as an example. Both h and H depths are related to rm , what is
more traditional. The computation is performed for ra= 0.353rm, lsg= 0.588rm and
rm=2.55 mm (HBM 1,5/120RY61S strain gauge rosette).

6. Concluding remarks

The model of the residual stress relieving due to the drilling a hole is made. A num-
ber of experimental computations are performed to test different model parameters.
The solvers offered by the FEM system Cosmos/M are compared on the through-hole
problem. The results show the error can reach up to 20% by insufficient mesh den-
sity for 3D model. On the contrary, geometrically symmetric model with asymmetric
loading gives good results (difference about 0.1%) by significantly less computational
requirements. Numerical results are verified by comparison with the analytical solu-
tion. The difference does not exceed several tenths of percent.

The influence of mesh density, sample length and thickness, asymmetric loading
definition curve density and strain gauge element grid finite area is investigated. The
error due to the insufficient mesh density can be several percent at strain gauge
rosette mean radius position, but substantial dependence on distance from the hole
is observed. Low density of the asymmetric loading definition curve can cause an
error even 10% and so it appears as one of numerical important parameters like
the mesh. An incorrect sample dimensions setting can cause an error up to 20%.
Sample (surface) shape changes are supposed to be of the same influence, thus the
model geometry should correspond to the real measured sample. The strain gauge
element length, i.e. its finite dimensions, can also significantly influence the evaluated
calibration coefficients in terms of non-linear displacement spatial dependence. This
fact should not be omitted and the real strain gauge element length of a rosette used
by measurement should be considered.

An efficient way in calibration coefficient computations appears to be using Cos-
mos/M script language. The procedure presented provides an automatic computation
of the incremental drilling problem based on parameters defined in the script head-
ing. Further research goal will be to adapt the coefficients computation technique to
the hole drilling residual stress measurement method generalization. It can bring the
method usage enhancement to inhomogeneous and an-isotropic materials for example
or to include possible non-linear material behaviour during relaxation processes.

Acknowledgement. This paper is based upon work sponsored by the Ministry of Education
of the Czech Republic under research and development project LN00B084.
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Book Review

Farkas, J. and Jármai, K. Economic design of metal structures. Rotter-
dam, Millpress, 2003.
This book is a continuation of the authors’ previous book Analysis and Optimum
Design of Metal Structures (Rotterdam, Balkema, 1997), since they have extended
their research work to other interesting structural models and industrial problems and
collected them from their studies in conference papers and journal articles published
in recent years. The authors have developed a structural optimization system, the
main components of which are the design constraints, fabrication aspects and econ-
omy. Economy is achieved by minimization of a cost function taking into account
constraints on design and fabrication.
Chapter 1 describes the mathematical methods of optimization such as the genetic
algorithm, the particle swarm method and the leap-frog algorithm. Chapter 2 covers
cost calculation. The cost function is formulated according to the fabrication sequence
and includes the costs of material, cutting and grinding of strut ends, assembly,
welding, additional welding works and painting.
The structural models investigated and their specialties are as follows (Chapters 3-8):

• welded I- and box beams, including hollow flange I-beams as well as the
economy of post-welding treatments to improve the fatigue strength of welded
joints;

• tubular trusses, including a detailed minimum cost design of a triangular
tubular truss to find the optimum truss height;

• sandwich structures, including the optimum design of a five-layer sandwich
beam, which contains a central rubber layer for better vibration damping
glued between two aluminium square box rods and two fiber-reinforced plastic
laminates for decreasing the displacements;

• frames, including the cost comparison of welded and bolted beam-to-column
connections;

• welded stiffened plates, including the optimization of the position of horizontal
stiffeners in plates loaded by hydrostatic pressure; and

• welded stiffened shells, including the derivation of the radial deformation of
a cylindrical shell due to the shrinkage of circumferential welds as well as the
minimum cost design of a ring-stiffened cylindrical shell subject to external
pressure.

The following industrial problems are treated (Chapters 9-12):
• Welded steel bridge decks;
• welded aluminium truck floors;
• welded steel punch presses for the light industry;
• square bunkers welded from stiffened steel plates.

The basic problem of the optimum design is the selection of suitable parameters
(variables) to be optimized, for by changing of these variables better solutions can
be achieved. In order to facilitate the selection, the characteristics of each structural
type are given.
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Since the problems are complicated, they can be treated only numerically. Therefore
the validity of conclusions is somewhat restricted, but, in spite of this, many important
lessons can be learned from the calculations elaborated. It can be concluded that each
problem should be worked out considering the given special aspects and numerical
data.
The book gives an insight into the latest research results in the field of structural
optimization worthy of the attention of civil and mechanical engineers, designers,
researchers, manufacturers, and undergraduate and postgraduate students.
It can be concluded that the structural optimization system developed by the au-
thors is very flexible and gives designers a good basis for the consideration of all the
important engineering aspects in developing modern structural versions.

Ferenc Orbán
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