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PREFACE

A Professional Life Dedicated to Structural Opimization
Professor József Farkas Is 75 Years Old

On the occasion of his 75th birthday, his friends, colleagues
and former students, dedicate a part of this special issue
of the Journal of Computational and Applied Mechanics
to József Farkas, Professor emeritus at the University of
Miskolc. Professor Farkas graduated as a civil engineer
from the Technical University of Budapest in 1950. He
has been teaching at the University of Miskolc since
1950. Between 1950-59 he taught at the Department of
Mechanics and from 1959 at the Department of Materials
Handling, now Department of Materials Handling and
Logistics.

In the past five decades he has developed courses on
Metal Structures, Welded Structures and achieved an in-
ternational reputation. The international novelty of these courses is that they are
devoted to the design of structural components of machines and load-carrying struc-
tures. They take into account dynamic effects, stiffness and vibration damping. These
features made them suitable for the modular accademic system of the Faculty of Me-
chanical Engineering. The most important features of these courses consist in the
application of mathematics, mechanics, optimization methods and applicability in
the engineering practice. Optimum design provides a wide horizon, which is neces-
sary for engineers. On the basis of Professor Farkas’s work, the students of the faculty
can obtain a comprehensive overview of the design of metal and welded structures.

Professor Farkas was one of the first to realize the importance of the application of
computers in structural optimization. It must be pointed out that economic aspects
are also considered in optimization by means of self-developed cost functions.

The theoretical calculations are complemented in most cases by experimental mea-
surements carried out in laboratories, or in the field.

His complex approach resulting from the structural synthesis has had a great effect
not only on his students, but also on his colleagues at the university and the engineers
practising in the industry.

c©2004 Miskolc University Press
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In 1996 he retired and since 1998 he has been working as Professor emeritus contin-
uing his previous work unrelentingly. He gives lectures week by week, offers the stu-
dents advice on their design assignments and guidance on writing the theses. Related
to his tutorial activity he published a university textbook entitled Metal structures in
1974. The second and revised edition came out in 1983.

As regards his teaching activity he has been involved in the programs of welding
engineers as well as in those offered to foreign students in English since the beginnings.
He joined the PhD training at the beginning and has been the scientific advisor of
several PhD students.

His scientific activity has been continuous and undiminished for decades. He ob-
tained his Ph.D. degree in 1966. His thesis was devoted to the design of stiffened
plates. He obtained the title doctor of the Hungarian Academy of Sciences, i.e., the
DSc degree, which is equivalent to the German habilitation, for a thesis on the opti-
mum design of metal structures in 1978. After being revised and supplemented his
DSc thesis was published under the title Optimum design of metal structures by Ellis
Horwood, Chichester, UK and the Hungarian Publishing House Akadémiai Kiadó,
Budapest in 1984. The book won an academic award.

His third and fourth books Analysis and optimum design of metal structures, and
Economic design of metal structures, were published by Balkema, and Millpress Sci-
ence Publishes in Rotterdam, in 1997 and 2003, respectively. His coauthor was one
of his former students Károly Jármai. Beside the books he has published about 250
papers and studies. Half of them were written in a foreign language, mainly in English.

His expertise has been utilized by the industry as well. His main research areas
are as follows: optimum design of metal structures, residual welding distortions and
stresses, tubular structures, stiffened plates, sandwich structures, vibration damping
and stability problems of steel structures.

His five decade long activity in the field of structural optimization should be espe-
cially highlighted. His optimum design methods can be used in other disciplines as
well. He holds lectures also in English, German and Slovak languages. He covered
the application of design methods for the following materials handling machines and
equipment: cranes, crane runways, silos, bunkers, conveyor galleries, frames, cellular
plates, tubular structures. In the field of machine tools he also worked out a course
for welded structures, mainly press frames.

His main external activities are in the Welding Division of the Scientific Society
of Mechanical Engineers (GTE), the International Institute of Welding (IIW), the
International Society for Structural and Multidisciplinary Optimization (ISSMO).
The Scientific Society of Mechanical Engineers awarded him the Pattantyús Medal.
He was also awarded the Apáczai Csere János Award and the Memorial Medal of the
45 years old Technical University of Kosice. He became Dr. Honoris Causa of the
University of Miskolc in 2002.

He has attended the Annual Assemblies of IIW and the symposia on Tubular
Structures, organized by the Subcommission IIW XV-E for several years.
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His international co-operation ranges from Japan to Canada. He has established
connections with professors from all over the world as it is illustrated by the list of
participants of the International Conference on Metal Structures (ICMS’2003).

His role in the Department of Materials Handling and Logistics has been crucial.
He has been the head of the Division of Metal Structures. He has been the scientific
supervisor of several specialists in engineering optimization: Dr. Habil. Imre T́ımár,
Prof. Károly Jármai, Ferenc Orbán, Sándor Rácz, László Szabó, Ferenc Szabó. He
gave the first initiative for the research work of some professors including the member
of the Hungarian Academy of Sciences István Páczelt, Dr. Habil. Mátyás Matolcsy
and József Cselényi.

He is an excellent lecturer. He has the gift to present highly complicated ideas,
relationships, lines of thoughts in an elegant and simple manner and to make his
audience understand what at first seems to be difficult.

His personal hobby is listening to and playing classical music. He plays baroque
and classical music on the electrophonic organ.

The range of topics covered by the various contributions to this issue reflects the
scientific interests of József Farkas. In the present issue of the journal the authors
V. Chukin, Gy. Kovács, K. Jármai, I. Ecsedi and K. Dluhi, S. Jendo, Y. Savula, B.
Kovács, I. T́ımár, M. Vorel and Z. Virág have dedicated their papers to Professor
Farkas. With this volume, all his former and present colleagues, students and co-
workers wish him good health and many more active years at the University of Miskolc.

Miskolc, December 22, 2003 Károly Jármai
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VARIATIONAL THEORY FOR 2-DIMENSIONAL FREE
SURFACE FLOW: WHY ARE G.L. LIU’S VARIATIONAL

PRINCIPLES INCORRECT?

Ji Huan He
College of Science, Shanghai Donghua University

P.O. Box 471, Shanghai 20051, People’s Republic of China
jhhe@dhu.edu.cn

[Received: February 28, 2003]

Abstract. Interests in variational theory of the problem discussed have grown rapidly
in recent years, various variational formulae have appeared in literature. But some of the
variational principles are wrong. The paper illustrates how to establish variational principles
by the semi-inverse method step by step. Comparison with Liu’s results reveals that the
present technique is much more convenient and reliable. Liu’s variational formulation is
based on technical, theoretical and conceptual errors, including misrepresentations of the
semi-inverse method.

Mathematical Subject Classification: 78M30
Keywords: variational theory, free boundary problem, semi-inverse method

1. Introduction

The basic equations governing 2-D incompressible inviscid rotational flow under
gravity can be written in the form

∂u

∂x
+
∂v

∂y
= 0 , (1.1)

u
∂v

∂x
+ v

∂v

∂y
= −g − 1

ρ

∂P

∂y
, (1.2)

1

2
(u2 + v2) + gy +

P

ρ
= B(Ψ) , (1.3)

where B is the Bernoulli constant, which oes not change along the stream line, the
stream function Ψ = is also constant, u and v are velocity components in the x- and
y-directions respectively, g is gravitational acceleration, P is pressure.

Difficulty arises when we apply the finite element method to free surface problems.
In order to overcome the difficulty, an imaginary plane is introduced [1, Liu, 1995] [2,
He, 1998] since the value of the stream function Ψ on the free surface should be given

c©2004 Miskolc University Press
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according to the inlet condition. Therefore it will be convenient for us to introduce
an imaginary plane ξ −Ψ defined as

ξ = x , (1.4)
ψ = ψ(x, y) , (1.5)

where the stream function ψ takes the form
∂ψ

∂x
= −v, ∂ψ

∂y
= u . (1.6)

It is easy to find that
∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂ψ

∂Ψ

∂x
=

∂

∂ξ
− v ∂

∂ψ

and
∂

∂y
=

∂

∂ξ

∂ξ

∂y
+

∂

∂ψ

∂Ψ

∂y
= u

∂

∂ψ
.

Consequently we have the following basic equations in the imaginary plane:
∂

∂ξ
(
1

u
)− ∂

∂ψ
(
v

u
) = 0 , (1.7)

∂v

∂ξ
+

∂

∂ψ
(Π) = 0 , (1.8)

Π +
1

2
(u2 + v2) = B , (1.9)

where Π = gy + P/ρ.
Making use of equation (1.8) a general function Ω can be introduced [1, Liu, 1995]

∂Ω

∂ξ
= Π ,

∂Ω

∂ψ
= −v . (1.10)

Luke [3, 1967] first studied the variational principle for fluids with free surface in a
physical plane, and Liu [1, 1995] was the first to deduce variational principles in the
imaginary plane. Recently Liu [5, 2001] re-studied the problem by Liu’s systematic
method [6, 2000], but, unfortunately, the variational principles obtained are proved
to be wrong. We re-write two formulae for evaluation. Consider first the variational
formulations obtained by Liu:

JLiu1(Ω, v,Π, u) =

∫∫
1√

2(B −Π)− v2

{
v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π

}
dA

−
∫∫ {

aun−2(u2 + v2 + 2Π− 2B)− 2a

n
un
}

dA , (1.11)

JLiu2(Ω, u, v,Π) =

∫∫ {
v

u

∂Ω

∂Ψ
− 1

u

∂Ω

∂ξ
+
u2 + v2

u
+
B

u

}
dA

−
∫∫ {

aΠn−1(u2 + v2 + 2Π− 2B)− 2a

n
Πn

}
dA . (1.12)
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It is easy to prove that the above two functionals are wrong. As is pointed out by He
[7, 2000], Liu’s systematic method [6, 2000] contains a contradiction [8, 2000] leading
to very limited validity of this approach [9, He, 2000]. Liu’s method might result in
incorrect functionals, for example, the variational functional obtained by Liu et al.
in (Liu and Wang, [10, 1996]) is incorrect, which is corrected by He’s semi-inverse
method [11, 2000], [12, 1997].

2. Inverse problem of calculus of variations

In recent years the inverse problem of calculus of variations has brought about a
renewed interest in continuum mechanics. It emanates from the powerful applications
of the finite element methods (Zienkiewicz and Taylor [13], Liu [14]) and the meshfree
particle methods (He [15, 1999]).

In 1997, the present author proposed a powerful tool called the semi-inverse method
(He [12, 1997]) to search for various variational principles directly from the field
equations and boundary conditions. Applications of the semi-inverse method can be
found in the author’s previous publications (He [16], [17], [18]).

In 2000, Liu [6] proposed a systematic approach to the derivation of variational
principles from partial differential equations. Liu’s method consists of two major lines.
There are a number of books devoted to the issue of variational principles, e.g. the
classical monographs by Chien [19, 1983] and Hildebrand [20, 1965]. The first line of
Liu’s approach is also discussed by Chien [19, 1983] and Hildebrand [20, 1965] in great
detail. The question of determining whether a set of field equations can be derived
from a functional may be systematically elucidated by recourse to Veinberg’s theorem,
which also provides a formula for the computation of the corresponding functional.
Therefore the first line of Liu’s approach offers nothing new. The application of this
line can also be found in the literature (e.g. Meylan 2001). The key contribution
of Liu’s method lies in the second line, which provides a method for searching for a
generalized variational principle directly from field equations. But the application of
Liu’s method might lead to incorrect results.

Consider the equation system

∂u

∂x
+
∂v

∂y
= 0 , (2.1)

∂v

∂x
− ∂u

∂y
= 0 . (2.2)

By Liu’s approach one obtains the following functional [6, 2000a]

J(u, v) =

∫∫ {
v(
∂u

∂x
+
∂v

∂y
) + u(

∂v

∂x
− ∂u

∂y
)

}
dxdy . (2.3)

We cannot obtain any Euler equation from the above functional. Consequently, Liu’s
method has been proved to be incorrect for the above equations.
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In view of the semi-inverse method [12, 1997], we can suppose that there exists an
unknown functional [7, 2001]

J =

∫∫
Fdxdy (2.4)

under the constraint (2.2). By the Lagrange multiplier method, we have

J(u, v,Ψ) =

∫∫ {
F + Ψ(

∂v

∂x
− ∂u

∂y
)

}
dxdy , (2.5)

where Ψ is a Lagrange multiplier. The stationary conditions for the above functional
are as follows

∂v

∂x
− ∂u

∂y
= 0 , (2.6)

δF

δu
+
∂Ψ

∂y
= 0 , (2.7)

δF

δv
− ∂Ψ

∂x
= 0 . (2.8)

Here δF/δu is called variational derivative of F with respect to u, and is defined as

δF

δu
=
∂F

∂u
− ∂

∂x
(
∂F

∂ux
)− ∂

∂y
(
∂F

∂uy
) .

From equations (2.7) and (2.8), we have

∂

∂x
(
δF

δu
) +

∂

∂y
(
δF

δv
) = 0 , (2.9)

which should be the field equation ux + vy = 0. Hence we set

δF

δu
= u ,

and
δF

δv
= v , (2.10)

from which we identify the unknown F as follows

F =
1

2
(u2 + v2) . (2.11)

Therefore we obtain the following variational principle

J =

∫∫
1

2
(u2 + v2)dxdy (2.12)

and the following generalized variational principle

J(u, v,Ψ) =

∫∫ {
1

2
(u2 + v2) + Ψ(

∂v

∂x
− ∂u

∂y
)

}
dxdy . (2.13)

The Lagrange multiplier now has a physical meaning, i.e., the stream function. To
search for a generalized variational principle, we always begin with an energy-like
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trial functional with an unknown function F . For example, we can construct a trial
functional in the form

J(u, v,Φ) =

∫∫ {
u
∂Φ

∂x
+ v

∂Φ

∂y
+ F

}
dxdy , (2.14)

where Φ is the potential function for which

∂Φ/∂x = u, ∂Φ/∂y = v

while F is an unknown function of u, v, and their derivatives.
It is obvious that the stationary condition of the functional (2.14) with respect to

Φ results in (2.9). Calculating variation of functional (2.14) with respect to u and v,
we have

∂Φ

∂x
+
δF

δu
= 0 , (2.15)

∂Φ

∂y
+
δF

δu
= 0 . (2.16)

We search for such an F that the above two equations should become

∂Φ/∂x = u

and
∂Φ/∂y = v ,

respectively, so that we can immediately identify F as F = −(u2 + v2)/2.
There exist many alternative approaches to the construction of the trial functionals.

Illustrative examples can be found in the author’s previous publications.

3. Semi-inverse method and variational principles

We will apply the semi-inverse method (He [12, 1997]) to search for a variational
principle for the problem discussed above. The basic idea of the semi-inverse method
is to construct a trial functional with an unknown function.

If we want to establish a generalized variational principle with 4 independent vari-
ables (u, v, Ω and Π), we can construct a trialfunctional in the form

J(u, v,Ω,Π) =

∫∫ {
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
+ F

}
dξdψ , (3.1)

where F is the unknown function to be determined. We call the functional

L(u, v,Ω,Π) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
+ F (3.2)

trial-Lagrangian.
The advantage of the above trial functional is that the Euler equation with respect

to Ω is equation (1.7). Now calculating the variation of equation (3.1) with respect
to u, we obtain the following trial-Euler equation

δu : − 1

u2
∂Ω

∂ξ
+

v

u2
∂Ω

∂ψ
+
∂F

∂u
= 0 . (3.3)
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In a view of equations (1.10), we have
∂F

∂u
=

1

u2
∂Ω

∂ξ
− v

u2
∂Ω

∂ψ
=

1

u2
(Π + v2) . (3.4)

From equation (3.4), the unknown F can be identified as follows

F = − 1

u
(Π + v2) + F1 , (3.5)

where F1 is a newly introduced unknown function, which should be free of the variables
u and Ω. Inserting equation (3.5) into equation (3.2), we obtain a renewed trial-
Lagrangian, which reads

L(u, v,Ω,Π) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
− 1

u
(Π + v2) + F1 . (3.6)

Now the trial-Euler equations for δv and δΠ can be easily obtained

δv : − 1

u

∂Ω

∂ψ
− 2v

u
+
∂F1

∂v
= 0 , (3.7)

δΠ : − 1

u
+
∂F1

∂Π
= 0 . (3.8)

By means of the field equations (1.10) and (1.9), we have
∂F1

∂v
=

1

u

∂Ω

∂ψ
+

2v

u
=
v

u
=

v√
2B − v2 −Π

, (3.9)

∂F1

∂Π
=

1

u
=

1√
2B − v2 −Π

. (3.10)

From the above relations (3.9) and (3.10), we can immediately identify the unknown
F1, which reads

F1 = −
√

2B − v2 −Π . (3.11)
Finally we obtain the following Lagrangian

L(u, v,Ω,Π) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
− 1

u
(Π + v2)−

√
2B − v2 −Π . (3.12)

Liu (1995) obtained a similar Lagrangian, which reads

LLiu(u, v,Ω,Π) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
− u

2
−
v
[
2(B −Π)− u2 + v2

]
u
√

2(B −Π)− u2
. (3.13)

Supplementing the Lagrangian (3.12) or (3.13) by the field equation (1.9) as a side
condition, we obtain a constrained functional

J̃Liu1(Ω, v,Π) =

∫∫
1√

2(B −Π)− v2

{
v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π

}
dA (3.14)

and

J̃Liu2(Ω, u, v) =

∫∫ {
v

u

∂Ω

∂Ψ
− 1

u

∂Ω

∂ξ
+
u2 + v2

u
+
B

u

}
dA . (3.15)

The above two functionals are under the constrain of equation (1.9). Liu obtained
functionals (1.11) and (1.12), respectively, from the above functional (3.14) and (3.15)
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by eliminating the constraint of equation (1.9) through the so-called Liu’s systematic
method, which leads to incorrect results hereby. Our approach seems to be much more
straightforward and reliable. We can also readily obtain a variational principle with
three independent variables. For example, if we want to establish a sub-generalized
variational principle with 3 independent variables (u, v, and Ω), a trial-Lagrangian
can be constructed as follows

L1(u, v,Ω) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
+ F , (3.16)

which is assumed to be under the constraint of equation (1.9).
The trial-Lagrangian (3.16) is similar to equation (3.2). The difference is that the

variable Π in equation (3.2) is an independent variable, while it is not involved in
equation (3.16). The variation of Π depends upon equation (1.9), i.e.,

δΠ = −uδu− vδv .
The stationary conditions can be readily obtained:

δu : − 1

u2
∂Ω

∂ξ
+

v

u2
∂Ω

∂ψ
+
∂F

∂u
= 0 , (3.17)

δv :
1

u

∂Ω

∂ψ
+
∂F

∂v
= 0 . (3.18)

In view of the field equations, we have
∂F

∂u
=

1

u2
∂Ω

∂ξ
− v

u2
∂Ω

∂ψ
=

1

u2
(Π + v2) =

1

u2
(B − 1

2
u2 +

1

2
v2) , (3.19)

∂F

∂v
= − v

u
. (3.20)

Hence the unknown function F can be identified as follows

F = −B
u
− 1

2
u− v2

2u
. (3.21)

Substituting equation (3.21) into equation (3.16), we obtain the following Lagrangian:

L1(u, v,Ω) =
1

u

∂Ω

∂ξ
− v

u

∂Ω

∂ψ
− B

u
− 1

2
u− v2

2u
=

1

u

[
∂Ω

∂ξ
− v ∂Ω

∂ψ
−B − 1

2
(u2 + v2)

]
.

(3.22)
Constraining the Lagrangian (3.22) by equations (1.10), we obtain

L2(Ω) = u =

√
2(B − ∂Ω

∂ξ
)− (

∂Ω

∂ψ
)2 , (3.23)

which is valid under the constraints formed by equations (1.10) and (1.9).

4. Lagrange multiplier method and variational crises

Liu tried his best to remove the constraint of the functionals (3.14) and (3.15)
by Liu’s systematic method, but in vain. In this section we discuss the Lagrange
multiplier and its crises [19, 1, 21, 22, 23].
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Now eliminating the constraints of equations (1.10) in equation (3.23), we obtain

L̃2(Ω, u, v, λ1, λ2) = u+ λ1(
∂Ω

∂ξ
−Π) + λ2(

∂Ω

∂ψ
+ v) , (4.1)

where λ1 and λ2 are multipliers to be further determined, and the variation of Π
depends upon equation (1.9), i.e., it follows that

δΠ = −uδu− vδv .

According to the Lagrange multiplier method, the multipliers are considered as inde-
pendent variables. Thus we obtain the following Euler equations:

δλ1 :
∂Ω

∂ξ
= Π , (4.2)

δλ2 :
∂Ω

∂ψ
= −v (4.3)

δΩ : −∂λ1
∂ξ
− ∂λ2
∂ψ

= 0 , (4.4)

δu : 1 + λ1u = 0 , (4.5)
δv : λ1v + λ2 = 0 . (4.6)

Consequently, the multipliers can be determined as

λ1 = − 1

u
, λ2 =

v

u
. (4.7)

Substituting the identified Lagrange multipliers into equation (4.1) results in

L̃2(Ω, u, v) = u− 1

u
(
∂Ω

∂ξ
−Π) +

v

u
(
∂Ω

∂ψ
+ v) , (4.8)

which is under the constraint of equation (1.9). Further eliminating the constraint
(1.9), we obtain

˜̃L2(Ω, u, v,Π, λ3) = u− 1

u
(
∂Ω

∂ξ
−Π)+

v

u
(
∂Ω

∂ψ
+v)+λ3

[
Π +

1

2
(u2 + v2)−B

]
. (4.9)

Calculating variation with respect to Π, we can easily identify the multiplier, which
reads

λ3 = −1/u . (4.10)
Thus we have

˜̃L2(Ω, u, v,Π) = u− 1

u

[
∂Ω

∂ξ
−B +

1

2
(u2 + v2)

]
+
v

u
(
∂Ω

∂ψ
+ v) . (4.11)

According to the Lagrange multiplier method, the above Lagrangian contains four
independent variables ( Ω, u, v,Π). But by a careful inspection, we find the constraint,
equation (1.9), is still kept as a non-variational constraint. So the Lagrange multiplier
method is not valid in this case, and it is called by He the second variational crisis
[21, 22, 23].
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Now we apply the Lagrange multiplier method to eliminate the constraint (1.9) of
equation (3.22):

L̃1(u, v,Ω,Π, λ3) =

1

u

[
∂Ω

∂ξ
− v ∂Ω

∂ψ
−B − 1

2
(u2 + v2)

]
+ λ3

[
Π +

1

2
(u2 + v2)−B

]
. (4.12)

The stationary condition with respect to Π is

λ3 = 0 . (4.13)

Consequently the constraint cannot be eliminated by the multiplier either. This
phenomenon is called the first variational crisis [19]. The same phenomenon will
appear if we use a multiplier to eliminate the constraint of equation (1.9) or of the
functionals (3.22) and (3.23).

As it was pointed out by He [12, 21, 16] the Lagrange multiplier can finally be
expressed in the form

λ = λ(u, v,Ω,Φ) . (4.14)

Thus we can introduce an unknown function F :

F = λ(u2 + v2 + 2Π− 2B) . (4.15)

The augmented functional (4.12), therefore, can be rewritten in the form

JHe1(Ω, v,Π, u) =

∫∫
1√

2(B −Π)− v2

{
v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π

}
dA+∫∫

F (u, v,Φ,Π)dA , (4.16)

where F is the function of the variables u, v,Φ, and Π.
To eliminate the constraint of the functional (3.22), a similar augmented functional

can be constructed as follows

JHe2(Ω, u, v,Π) =

∫∫ {
v

u

∂Ω

∂Ψ
− 1

u

∂Ω

∂ξ
+
u2 + v2

u
+
B

u

}
dA+

∫∫
F (u, v,Φ,Π)dA .

(4.17)
The unknown F can be identified by the same procedure as illustrated before. The
Euler equations of the functional (4.17) are

− ∂

∂Ψ
(
v

u
) +

∂

∂ξ
(
1

u
) +

δF

δΩ
= 0 , (4.18)

− v

u2
∂Ω

∂Ψ
+

1

u2
∂Ω

∂ξ
+
u2 − v2 − 2B

2u2
+
δF

δu
= 0 , (4.19)

1

u

∂Ω

∂Ψ
+
v

u
+
δF

δv
= 0 , (4.20)

δF

δΠ
= 0 . (4.21)
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We search an F such that the above 4 equations turn out to be the 4 field equations
, i.e., equations (1.7), (1.9) and (1.10). To this end, we set

δF

δΠ
= aHn = a

[
1

2
(u2 + v2) + Π−B (Ψ)

]n
, (4.22)

where a is a nonzero constant, and n > 0. So the unknown F can be identified as

F =
a

n+ 1

[
1

2
(u2 + v2) + Π−B (Ψ)

]n+1

+ F1(u, v,Φ) , (4.23)

where F1 is an unknown function of u, v, and Φ. Substituting F into (4.18)−−(4.20)
we search for an F1 that the left equations (4.18)−−(4.20) satisfy the left field equa-
tions (1.7) and (1.10). It is clear that F1 = 0. Therefore we obtain the following
generalized variational principle:

JHE2(Ω, u, v,Π) =

∫∫ {
v

u

∂Ω

∂Ψ
− 1

u

∂Ω

∂ξ
+
u2 + v2

u
+
B

u
+

+
a

n+ 1

[
1

2
(u2 + v2) + Π−B (Ψ)

]n+1
}

dA . (4.24)

Similarly the unknown F in (4.16) can be easily determined, and the following func-
tional is arrived at:

JHE1(Ω, v,Π, u) =

∫∫ {
1√

2(B −Π)− v2

[
v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π

]
+

+
a

n+ 1

[
1

2
(u2 + v2) + Π−B (Ψ)

]n+1
}

dA . (a 6= 0, n > 1) (4.25)

In view of equation (1.3), functional (4.17) can be re-written in the form

JHE3(Ω, v,Π, u) =

∫∫ {
1

u
(v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π) + F

}
dA . (4.26)

The corresponding Euler equations are of the form

− ∂

∂Ψ
(
v

u
) +

∂

∂ξ
(
1

u
) +

δF

δΩ
= 0 , (4.27)

− 1

u2
(v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π) +

δF

δu
= 0 , (4.28)

1

u

∂Ω

∂Ψ
+
δF

δv
= 0 , (4.29)

− 1

u
+
δF

δΠ
= 0 . (4.30)

Since the above equations should satisfy the field equations, we set

δF

δΩ
=

∂

∂Ψ
(
v

u
)− ∂

∂ξ
(
1

u
) = 0 , (4.31)
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δF

δu
=

1

u2
(v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π) =

1

u2
(−v2 + 2B − 2Π) = 1 , (4.32)

δF

δv
= − 1

u

∂Ω

∂Ψ
=
v

u
=

v√
2(B −Π)− v2

, (4.33)

δF

δΠ
=

1

u
=

1√
2(B −Π)− v2

. (4.34)

From the above relations, we have

F = u− 1

2

√
2(B −Π)− v2 . (4.35)

We obtain another variational principle in the form:

JHE3(Ω, v,Π, u) =

∫∫ {
1

u
(v
∂Ω

∂Ψ
− ∂Ω

∂ξ
+ 2B −Π) + u− 1

2

√
2(B −Π)− v2

}
dA .

(4.36)

5. A modified Lagrange multiplier method

In the procedure of variation, the multipliers are also considered to be independent
variables. The present modification (He [21, 8]) considers the multipliers to be de-
pendent functions. The problem of the independent Lagrange multipliers as well as
the validity of the method are discussed in the paper [8] by He.

To overcome the problem the multipliers should be considered to be dependent
functions during the identification of the multipliers.

Now re-consider equation (4.9), where λ3 is not an independent variable. Thus the
Euler equations can be expressed as follows

1 +
1

u2

[
∂Ω

∂ξ
−Π

]
− v

u2
(
∂Ω

∂ψ
+ v) +

∂λ3
∂u

[
Π +

1

2
(u2 + v2)−B

]
+ λ3u = 0 , (5.1)

1

u
(
∂Ω

∂ψ
+ v) +

v

u
+
∂λ3
∂v

[
Π +

1

2
(u2 + v2)−B

]
+ λ3v = 0 , (5.2)

∂

∂ξ
(
1

u
)− ∂Ω

∂ψ
(
v

u
) +

∂λ3
∂Ω

[
Π +

1

2
(u2 + v2)−B

]
= 0 , (5.3)

1

u
+
∂λ3
∂Π

[
Π +

1

2
(u2 + v2)−B

]
+ λ3 = 0 . (5.4)

It is obvious that equation (5.4) vanishes completely if the multiplier is identified as
λ3 = −1/u (See equation (4.10)). In order to recover equation (1.9) from equation
(5.4), we can identify the multiplier in the following form

λ3 = − 1

u
+ C

[
Π +

1

2
(u2 + v2)−B

]
. (5.5)
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where C is a nonzero constant. In this way we obtain the following modified La-
grangian

˜̃L2(Ω, u, v,Π) = u− 1

u
(
∂Ω

∂ξ
−Π) +

v

u
(
∂Ω

∂ψ
+ v)− 1

u

[
Π +

1

2
(u2 + v2)−B

]
+

+ C

[
Π +

1

2
(u2 + v2)−B

]2
. (5.6)

The multiplier in equations (4.12) and (4.13) can be identified in a similar way. The
variational crisis can also be eliminated by the semi-inverse method, for example, we
can re-write equation (4.9) in the form

˜̃L2(Ω, u, v,Π) = u− 1

u
(
∂Ω

∂?ξ
−Π) +

v

u
(
∂Ω

∂ψ
+ v) + F . (5.7)

where F is an unknown function to be determined.

6. Conclusion

We illustrate the effectiveness and convenience of the semi-inverse method in searching
for variational principles for a physical problem, and also point out a difficulty in
Liu’s theory which leads to incorrect results. A modified Lagrange multiplier method
is suggested, i.e., the multipliers cannot be considered to be independent variables
during the procedure of their identification.
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Abstract. An approximate numerical solution for the steady laminar boundary-layer flow
over a wall of the wedge with suction or injection in the presence of species concentration and
mass diffusion has been obtained by solving the governing equations using R.K. Gill method.
The fluid is assumed to be a viscous and incompressible fluid. Numerical calculations up
to third level of truncation are carried out for different values of dimensionless parameters
and an analysis of the results obtained shows that the flow field is influenced appreciably by
the chemical reaction (consumption and generation reactant) and suction or injection at the
wall of the wedge.

Keywords: chemical reaction (consumption and generation reactant), suction or injection at
the wall of the wedge, Boussinesq’s approximation, steady laminar boundary-layer flow and
mass diffusive

1. Introduction

Combined heat and mass transfer problems with chemical reaction are of importance
in many processes and have, therefore, received a considerable amount of attention in
recent years. In processes such as drying, evaporation at the surface of a water body,
energy transfer in a wet cooling tower and the flow in a desert cooler, heat and mass
transfer occur simultaneously. Natural convection processes involving the combined
mechanisms are also encountered in many natural processes, such as evaporation,
condensation and agricultural drying, and in many industrial applications, such as
the curing of plastics, cleaning and chemical processing of materials relevant to the
manufacture of printed circuitry, manufacture of pulp-insulated cables, etc.

c©2004 Miskolc University Press
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Many practical diffusive operations involve the molecular diffusion of a species in
the presence of chemical reaction within or at the boundary. There are two types of
reactions. A homogeneous reaction is one that occurs uniformly throughout a given
phase. The species generation in a homogeneous reaction is analogous to internal
source of heat generation. In contrast, a heterogeneous reaction takes place in a
restricted region or within the boundary of a phase. It can therefore be treated as
a boundary condition similar to the constant heat flux condition in heat transfer.
The study of heat and mass transfer with chemical reaction is of great practical
importance to engineers and scientists because of its almost universal occurrence in
many branches of science and engineering. The flow of a fluid past a wedge is of
fundamental importance since this type of flow constitutes a general and wide class
of flows in which the free stream velocity is proportional to a power of the length
coordinate measured from the stagnation point.

All industrial chemical processes are designed to transform cheaper raw materials to
high value products (usually via chemical reaction). A ‘reactor’, in which such chem-
ical transformations take place, has to carry out several functions like bringing reac-
tants into intimate contact, providing an appropriate environment (temperature and
concentration fields) for adequate time and allowing for removal of products. Fluid
dynamics plays a pivotal role in establishing relationship between reactor hardware
and reactor performance. For a specific chemistry catalyst, the reactor performance
is a complex function of the underlying transport processes. The first step in any
reaction engineering analysis is formulating a mathematical framework to describe
the rate (and mechanisms) by which one chemical species is converted into another
in the absence of any transport limitations (chemical kinetics). Once the intrinsic
kinetics is available, the production rate and composition of the products can be re-
lated, in principle, to reactor volume, reactor configuration and mode of operation by
solving mass, momentum and energy balances over the reactor. This is the central
task of a reaction and reactor engineering activity. Analysis of the transport processes
and their interaction with chemical reactions can be quite difficult and is intimately
connected to the underlying fluid dynamics. Such a combined analysis of chemical
and physical processes constitutes the core of chemical reaction engineering. Recent
advances in understanding the physics of flows and computational flow modelling
(CFM) can make tremendous contributions in chemical engineering.

In these types of problems, the well-known Falkner-Skan transformation is used to
reduce boundary-layer equations into ordinary differential equations for similar flows
[1]. It can also be used for non-similar flows for convenience in numerical work because
it reduces, even if it does not eliminate, dependence on the x-coordinate. The solu-
tions of the Falkner-Skan equations are sometimes referred to as wedge flow solutions
with only two of the wedge flows being common in practice [2]. The dimensionless
parameter, m plays an important role in such type of problems because it denotes
the shape factor of the velocity profiles. It has been shown [3] that when m < 0 (
increasing pressure), the velocity profiles have a point of inflexion whereas when m
> 0 (decreasing pressure ), there is no point of inflexion. This fact is of great impor-
tance in the analysis of the stability of laminar flows with a pressure gradient. Yih [4]
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presented an analysis of the forced convection boundary-layer flow over a wedge with
uniform suction and blowing, whereas Watanabe [5] investigated the behavior of the
boundary-layer over a wedge with suction and injection in forced flow. Recently, lam-
inar boundary layer flow over a wedge with suction/injection has been discussed by
Kafoussias and Nanousis [6] and Anjali Devi and Kandasamy [7] analyzed the effects
of thermal stratification on laminar boundary layer flow over a wedge with suction
and injection.

Since no attempt has been made to analyze non-linear boundary-layer flow with
chemical reaction, heat and mass transfer over a wedge with suction or injection at the
wall in the presence of a uniform transverse magnetic field, we have investigated it in
this article. The similarity transformation has been utilized to convert the governing
partial differential equations into ordinary differential equations and then the numer-
ical solution of the problem is drawn using R.K.Gill method. Numerical calculations
up to third level of truncation were carried out for different values of dimensionless
parameters of the problem under consideration for the purpose of illustrating the re-
sults graphically. Examination of such flow models reveal the influence of chemical
reaction on velocity, temperature and concentration profiles. The analysis of the re-
sults obtained shows that the flow field is influenced appreciably by the presence of
chemical reaction (generation and consumption reactant) and suction or injection at
the wall of the wedge.

2. Mathematical analysis

Two-dimensional laminar boundary-layer flow of a viscous and Boussinesq fluid
over a wall of the wedge with suction or injection is analysed. As shown in Figure
1, the x-axis is parallel to the wedge and the y-axis is taken normal to it. The
fluid properties are assumed to be constant in a limited temperature range. The
concentration of diffusing species is very small in comparison to other chemical species,
the concentration of

Figure 1. Flow analysis along the wall of the wedge

species far from the wall, Cα = 0 is infinitesimally very small [8] and hence the Soret
and Dufour effects are neglected. The chemical reactions take place in the flow and
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the physical properties µ, D, ρ and the rate of chemical reaction, k1 are constant
throughout the fluid. Under these conditions, the governing boundary layer equa-
tions of momentum, energy and diffusion for free convection flow under Boussinesq’s
approximation are:

∂u

∂x
+
∂v

∂y
= 0 , (1)

u
∂u

∂x
+ v

∂v

∂y
= ν

∂2u

∂2x
+ U

∂U

∂X
+ gβ(T − T∞) sin

Ω

2
+ gβ∗(C − C∞) sin

Ω

2
, (2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
, (3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k1C . (4)

The boundary conditions are

u = 0 , v = vo , C = Cw , T = Tw at y = 0
u = U(x) , C = Cα , T = Tα , at y > α by y → α .

(5)

As in [6], we introduce the following change of variables

Ψ(x, y) =

(
2Uνx

1 +m

)1/2

f(x, η) , (6)

η(x, y) = y

[
(1 +m)U

2νx

]1/2
. (7)

Under this consideration, the potential flow velocity can be written [6] as

U(x) = cxm , β1 =
2m

1 +m
, (8)

where c is a constant and β1 is the Hartree pressure gradient parameter that corre-
sponds to β1 = Ω/Π for a total angle Ω of the wedge.

The velocity components are given by

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
(9)

It can be easily verified that the continuity equation (1) is identically satisfied. If we
introduce the non-dimensional form of temperature and the concentration as

θ =
T − Tα
Tw − Tα

, (10)

φ =
C − Cα
Cw − Cα

, (11)
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Rex =
x

ν
(Reynolds number) , (12)

Gr = νgβ
Tw − Tα
U3

(Grashof number) , (13)

Gc = νgβ∗
Cw − Cα

U3
(Modified Grashof number) , (14)

Pr = µ
cρ
k

(Prandtl number) , (15)

Sc =
ν

D
(Schmidt number) , (16)

S = −v0
(

(1 +m)x

2νU

)1/2

(suction or injection parameter) , (17)

γ = ν
k1
U2

(chemical reaction parameter) . (18)

Now equations (2) to (4) become

∂3f

∂η3
+ f

∂2f

∂η2
+

2m

1 +m

[
1−

(
∂2f

∂η2

)2
]

+
2m

1 +m
(GcRexφ+GrRexθ) sin (Ω/2) =

=
2x

1 +m

(
∂f

∂η

∂2f

∂x∂η
− ∂f

∂x

∂2f

∂η2

)
, (19)

∂2θ

∂η2
+ Prf

∂θ

∂η
=

2Pr
1 +m

θ
∂f

∂η
+ Pr

2x

1 +m

(
∂f

∂η

∂θ

∂x
− ∂f

∂x

∂θ

∂η

)
, (20)

∂2φ

∂η2
+ Scf

∂φ

∂η
− 2Sc

1 +m
Rexγφ =

2Sc
1 +m

φ
∂f

∂η
+

+ 2x
Sc

1 +m

(
∂f

∂η

∂φ

∂x
− ∂φ

∂η

∂f

∂x

)
. (21)

The boundary condition (5) can be written as

η = 0 ,
∂f

∂η
= 0 ,

f

2

(
1 +

x

U

dU

dx

)
+ x

∂f

∂ξ
= −vo

(
(1 +m)x

2vU

)1/2

, θ = 1 , φ = 1

η > α ,
∂f

∂η
= 1 , θ = 0 , φ = 0 .

(22)
Equations (19) to (21) and the boundary condition (22) can be written as

∂3f

∂η3
+

(
f +

1−m
1 +m

ξ
∂f

∂ξ

)
∂2f

∂η2
− 1−m

1 +m
ξ
∂2f

∂ξ∂η
+

+
2m

1 +m

(
1− ∂2f

∂η2

)
+

2

1 +m
(GcRexφ+GrRexθ) sin (Ω/2) = 0 , (23)

∂2θ

∂η2
+ Pr

(
f +

1−m
1 +m

ξ
∂f

∂ξ

)
∂θ

∂η
−
(

2Pr
1 +m

θ
∂f

∂η
− 1−m

1 +m
ξ
∂θ

∂ξ

)
∂f

∂η
= 0 , (24)
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∂2φ

∂η2
+ Scf

∂φ

∂η
− 2Sc

1 +m
RexγΦ + Sc

1−m
1 +m

(
∂φ

∂η
ξ
∂f

∂ξ
− ∂f

∂η
ξ
∂φ

∂ξ

)
−

− 2Sc
1 +m

ξ
∂f

∂ξ
= 0 , (25)

∂f

∂η
= 0 , (1 +m)

f

2
+

1−m
2

ξ
∂f

∂ξ
= S , θ = 1 , φ = 1 at η = 0

∂f

∂η
= 1 , θ = 0 , φ = 0 , at y > α by y → α ,

(26)
where S is the suction if S > 0 and injection if S < 0 and ξ = kx(1−m)/2 is the
dimensionless distance along the wedge (ξ > 0). In this system of equations f(ξ, η) is
the dimensionless stream function; θ(ξ, η) is the dimensionless temperature; Φ(ξ, η)
is the dimensionless concentration; Pr is Prandtl number, Rex is Reynolds number
etc. which are defined by equations (9) to (18). The parameter ξ indicates the
dimensionless distance along the wedge (ξ > 0). It is obvious that to retain the x-
derivative terms, it is necessary to employ a numerical scheme suitable for partial
differential equations for the solution. In addition, owing to the coupling between ad-
jacent stream-wise location through the ξ-derivatives, a locally autonomous solution,
at any given stream-wise location cannot be obtained. In such a case, an implicit
marching numerical solution scheme is usually applied proceeding the solution in the
ξ-direction, i.e., calculating unknown profiles at ξi+1 when the same profiles at ξi
are known. The process starts at ξi = 0 and the solution proceeds from ξi to ξi+1

but such a procedure is time-consuming. However, when the terms involving ∂f/∂ξ ,
∂θ/∂ξ and ∂f/∂ξ and their η derivatives are deleted, the resulting system of equations
resembles, in effect, a system of ordinary differential equations for the functions f , θ
and φ with ξ as a parameter and the computational task is simplified. Furthermore a
locally autonomous solution for any given ξ can be obtained because the stream-wise
coupling is severed. So, following the lines of [6], a recent numerical solution scheme
is utilized for obtaining the solution of the problem. Now, due to the above factors,
equations (23) to (25) are changed to

f ′′′ + ff ′′ +
2m

1 +m

[
1− (f ′)2

]
+

2

1 +m
(GcRexφ+GrRexθ) sin (Ω/2) = 0 , (27)

θ′′ + Prfθ
′ − 2Pr

1 +m
f ′θ = 0 , (28)

φ′′ + Scfφ
′ − 2Sc

1 +m
f ′φ− 2Sc

1 +m
Rexγφ = 0 (29)

with boundary conditions

f(0) =
2

1 +m
S , f ′(0) = 0 , θ(0) = 1 , φ(0) = 1 at η = 0

f ′(α) = 1 , θ(α) = 0 , φ(α) = 0 , at y > α by y → α .
(30)

Equations (27) to (29) with boundary conditions (30) are integrated using R .K Gill
method. Chemical reaction, heat and mass transfer are studied for different values of
suction/injection at the wall of the wedge and the strength of the applied magnetic
field. In the following section, we discuss the results in detail.
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3. Results and discussion

In order to get a clear insight of the physical problem, numerical results are displayed
with the help of graphical illustrations.

In the absence of mass transfer and magnetic effects, the results have been compared
with that of the previous work [6] and it is found that they are in good agreement.
The numerical results obtained are illustrated by means of Figures 2–7.

Effects due to the suction or injection with uniform chemical reaction at the wall
of the wedge over the velocity, temperature and concentration are shown through
Figures 2, 3 and 4.

Figure 2. Velocity profiles for different values of suction/injection

Figure 2 depicts the dimensionless velocity profiles f ′(η) for different values of suc-
tion parameter (S > 0) and injection parameter (S < 0), respectively. It is observed
that the velocity component of the fluid along the wall of the wedge increases with
increase of suction and decreases with increase of injection at the wall of the wedge.
On the contrary, the dimensionless temperature θ(η) and concentration φ(η) of the
fluid reduce with increase of suction and increase with increase of injection and these
are shown in Figures 3 and 4, respectively. So, the increase of suction accelerates the
fluid motion and decreases the temperature distribution and concentration of the fluid
along the wall of the wedge. On the other hand, the increase of injection decelerates
the fluid motion and increases the temperature distribution and concentration of the
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Figure 3. Temperature profiles for different values of suction/injection

Figure 4. Concentration profiles for different values of suction/injection
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fluid along the wall of the wedge. All this physical behavior is due to the combined
effects of magnetic field, suction or injection and chemical reaction.

Figure 5. Influence of chemical reaction over the velocity profiles

Figure 6. Effects of chemical reaction over the temperature profiles
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Figure 7. Effects of chemical reaction over the concentration profiles

The effects of chemical reaction over velocity, temperature and concentration of
the fluid along the wall of the wedge are shown through Figures 5, 6 and 7.

4. Conclusion

We conclude the following from the above results and discussions:

• In the presence of uniform chemical reaction, the fluid flow along the wall of
the wedge accelerates with increase of suction and decelerates with increase of
injection. On the other hand, the temperature and concentration of the fluid
reduce with increase of suction and increase with increase of injection of the
fluid along the wall of the wedge. All these facts clearly depict the combined
effects of chemical reaction and suction/injection.
• Due to the uniform magnetic field, in the case of suction, the increase of

chemical reaction decelerates the fluid motion, temperature distribution and
concentration of the fluid along the wall and for injection, it accelerates the
fluid motion, temperature distribution and concentration of the fluid along
the wall of the wedge, which affects the consumption reactions of the chemical
reaction parameter.
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Abstract. In the paper a simple fracturing model is presented using the 2D discrete element
method capable of simulating large-scale brittle fracturing. It uses the combined Mohr-
Coulomb and Rankine material model and mode I fracturing in the Rankine corner based
on the rotating crack model. In the interactions between the bodies, the Coulomb friction
model is considered by using a contact interface element and utilizing the penalty method
in its formulation. The modified central difference scheme is used to solve the above explicit
dynamic problem.
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1. Introduction

Fracturing simulation presents a challenging task in mechanical engineering. There
are various approaches [5], [11] to describe and solve the above problem, however none
of their applicabilities is in general straightforward. One of the methods to simulate
fracturing is the Discrete Element Method (DEM). Its attractiveness lies first of all in
its relatively easy mathematical formulation and computational implementation, and
it requires for its material model only a few parameters, which are in general easily
measurable. The DEM is an extension of the Finite Element Method (FEM). It can
be considered to be a FEM enriched by the contact between the discrete bodies. Due
to the contact and the possible softening in the material model and to the possibility
of having an unconstrained body among the discrete bodies during the calculation, it
requires an explicit dynamic formulation and corresponding central difference scheme
for its solution.

2. Mathematical formulation

2.1. The node facet contact based on the penalty method. The most essential
part of the DEM is the contact formulation [1],[6]. The contact problem can be

c©2004 Miskolc University Press
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viewed as a specific restraint imposition problem of the discretised continuum system
of bodies in contact. The most widespread method in restraint imposition is the
penalty method. The potential energy increase corresponding to the contact (see also
Figure 1) can be written as follows:

δAc = δ

(
1

2
αng

2
n +

1

2
αtg

2
t

)
, (2.1)

where αn, αt, gn, gt are the normal (tangential) penalties and actual normal (tangen-
tial) gaps.

Figure 1. Positive sign convention and node to facet contact 2D and
3D implementation

The principle of minimum potential energy states the contact internal force vec-
tor as the first derivative of the contact potential energy according to the contact
displacement vector given by the following formula:

f int
c =

∂Ac

∂uc
= αngn

∂gn
∂uc

+ αtgt
∂gt
∂uc

= f int
cn + f int

ct . (2.2)

2.1.1. Normal and tangential gap calculation and discretization. The discretization of
the system requires defining a pair of contact nodes given by the Euler coordinates
xS of a contractor node and the corresponding target or defense node given by xTS

as a normal projection of the contractor node to the facet. By using shape functions,
Lagrange coordinates and deflections for the actual normal and tangential gaps, the
following expressions can be written:

gn = (xS − xTS) · n = (XS + uS −
nfacet∑
i=1

Ni(Xi + ui)) · n, (2.3)

gt = (xS − xTS) · t = (XS + uS −
nfacet∑
i=1

Ni(Xi + ui)) · t. (2.4)
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By using equations (2.3) and (2.4), the derivatives for the contact force calculation
can be calculated as follows:

∂gn
∂uc

=
∂(xS − xTS)

∂uc
· n + (xS − xTS) · ∂n

∂uc
, (2.5)

∂gt
∂uc

=
∂(xS − xTS)

∂uc
· t + (xS − xTS) · ∂t

∂uc
. (2.6)

For deformations where the unit normal (tangential) vector change is negligible, fur-
ther simplifications are possible. These simplifications are assumed as a result of the
stability requirements of the central difference scheme, which require extremely small
time steps during the solution.

∂gn
∂uc

∼=
∂(xS − xTS)

∂uc
· n =


n

−N1n

−Nnfacet
n

 , (2.7)

∂gt
∂uc

∼=
∂(xS − xTS)

∂uc
· t =


t

−N1t

−Nnfacet
t

 .
By using expressions (2.7), the internal contact force vector (2.2) can be easily calcu-
lated.

The above derivation corresponds to sticking contact. If friction has to be consid-
ered between the surfaces in contact, a Coulomb plasticity model extends the contact
force derivation, which is briefly outlined in Appendix D.

2.2. Multi-surface plasticity model. In the calculation, a classical multi-surface
plasticity theory was utilized in the material model derivation [2], [3]. The following
section briefly outlines the essentials of the non-associative multi-surface plasticity
model, while a detailed derivation can be found for the combined Mohr-Coulomb and
Rankine model in Appendices A-C.

2.2.1. Plastic velocity strain. The evolution of plastic velocity strain for non-associative
multi-surface plasticity is defined as:

Dp =

m∑
α=1

γ̇α· ∂σrα(σ,q) , (2.8)

where γ̇α, rα(σ,q) are an unknown plastic multiplier and the non-associative plastic
potential function, respectively.

The evolution equations for the hardening variables can be described according to
the following formula:

q̇ = −
m∑
α=1

γ̇α · hα(σ,q), (2.9)

where hα(σ,q) = ∂q
∂γα = ∂q̇

∂γ̇α contains the instantaneous hardening modulus.
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2.2.2. Complementary and consistency requirements. The complementary conditions
state the requirements for the plastic multiplier γα calculation, and define the ad-
missible stress space Jadm := {β ∈ [1, 2, ....,madm}|fβ(σ,q) 6 0}, respectively for the
stress calculation as follows:

For α = 1, 2, ...m, γα > 0, fα(σ,q) 6 0. (2.10)

2.2.3. The consistency requirement summarize the complementary requirements in a
short form with the following formula:

For α = 1, 2, ...m, γα · fα(σ,q) ≡ 0. (2.11)

2.2.4. Plastic multiplier calculation. The active stress space condition Jact := {β ∈
Jadm|ḟβ(σ,q) = 0} implies the following formulation for the plastic multiplier calcu-
lation:

For α = 1, 2, ...madm. ,

fα(σ,q) = 0; ḟα(σ,q) = 0⇒
∑

β∈Jadm

gαβ(σ,q) · γ̇β = ∂σfα(σ,q) : CσG
el : D, (2.12)

gαβ(σ,q) = ∂σfα(σ,q) : CσG
el : ∂σrβ(σ,q) + ∂qfα(σ,q) · hβ(σ,q).

Equation (2.12) represents a system of α = mact equations with α = mact unknowns
whose solution for the plastic multipliers implies:

γ̇β = 0 , if β /∈ Jact, (2.13)

γ̇α =
∑
β∈Jact

gαβ(σ,q) · [∂σfβ(σ,q) : CσG
el : D], if α ∈ Jact , (2.14)

where: gαβ(σ,q) are the components of the [gαβ(σ,q)]-1 tensor.

2.2.5. Elastic-plastic tangent modulus. The elastic-plastic tangent modulus can be
calculated by back substitution for γ̇α as follows:

CσG
ep = CσG

el −
∑

α,β∈Jact

gαβ(σ,q)[CσG
el : ∂σrα(σ,q)]⊗[CσG

el : ∂σfβ(σ,q)], if Jact 6= 0

(2.15)
or

CσG
ep = CσG

el , if Jact = 0. (2.16)

Note: If hβ(σ,q) 6= const, then the system of equations (2.12) is non-linear and
iterations are needed to calculate the value of the plastic multiplier. The elastic-
plastic tangent modulus is then calculated as CσG

ep = ∂σ̇
∂D , after back substitution for

the plastic multiplier in σ̇.
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2.3. Stress update. Due to the non-objectivity of the stress measure used in the
updated Lagrange formulation, the stress update uses the Green-Naghdi objective
rate

σ∇G =
Dσ

Dt
−Ω.σ − σ.ΩT = R.

Dσ

Dt
.RT , (2.17)

which after the numerical integration at the midpoint of the time increment can be
expressed in the elastic case as

σtn+∆t = Rtn+∆t ·
[
CσG
el :

(
R

(tn+ ∆t
2

)T

·D(tn+ ∆t
2 ) ·R(tn+ ∆t

2 )

)
∆t+

+ RtTn · σtn ·Rtn

]
·Rtn+∆tT , (2.18)

and in the plastic case as

σtn+∆t = Rtn+∆t ·
[
CσG
el :

(
R

(tn+ ∆t
2

)T

· (D(tn+ ∆t
2 ) −Dp(tn+ ∆t

2 )) ·R(tn+ ∆t
2 )

)
∆t+

+ RtTn · σtn ·Rtn

]
·Rtn+∆tT , (2.19)

where

D̂p(tn+ ∆t
2 ) = R(tn+ ∆t

2 )TDp(tn+ ∆t
2 )R(tn+ ∆t

2 ) =

m∑
α=1

γα · ∂σrα
(
σ̂tn+∆t, q̂tn+∆t

)
(2.20)

is a co-rotational plastic velocity strain, σ̂tn+∆t, q̂
tn+∆t

and R stand for the co-
rotational Cauchy stress, the co-rotational vector of hardening variables and the ro-
tation tensor, respectively.

2.4. Fracturing. Mode I fracturing is present only in the Rankine plastic corner.
If the first principal plastic strain value reaches the critical fracturing strain value
εfc = ft

H , the fracture is inserted. The most meaningful quasi-brittle damage indicator
or so-called failure factor is the ratio of the inelastic fracturing strain εf to the critical
fracturing strain εfc . The local fail factor Fk at Gauss point k is given by

Fk =
(
εf
/
εfc
)
k
. (2.21)

The weighted-average failure factor F̄p and fracture direction θ̄p at node p are given
by

F̄p =

Nadj∑
k=1

Fkwk

/Nadj∑
k=1

wk, (2.22)

θ̄k =

Nadj∑
k=1

θkwk

/Nadj∑
k=1

wk, (2.23)

where Nadj is the number of immediately adjacent Gauss points and wk is a weighting
factor usually taken as the element volume. The fracture direction angle is allowed to
change during the whole period of softening as far as the fracture is inserted. That
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Figure 2. (a) Weighted-average nodal failure direction (b)Intra-
element fracturing (c) Inter-element fracturing

is why this kind of fracturing is designated as the rotating crack model. Contact damp-
ing can be used on the border between the bodies in contact as a further improvement.
The solution uses the modified central difference scheme [4], whose stability sets severe
criteria on the time step value.

3. Simulation of real caving

There are several material models which treat the discontinuities by introducing var-
ious parameters and do the stress update as in the classical plasticity formulation
limited to the FEM formulation. All of these models however assume homogenous
discontinuity distribution within the element. In rock fracturing this assumption is
not necessarily correct [7], [8]. Figure 3 depicts a typical sample of a rock block in re-
ality, its approximated geometry and the further simplified model geometry using two
sets of discontinuities. By using the DEM, the above problem can easily be avoided
by combining the classical model with homogenous discontinuities and the real dis-
continuities as shown in Figure 3b,c. One such typical application of the method is
the Block caving method, where, during the mining, large blocks of the mined rock
fracture into small pieces and flow as a result of the gravity forces. The flow itself is
initiated by the material integrity weakening of a supporting layer under the mined
rock by its gradual drilling and blasting.

(a) (b) (c)

Figure 3. (a) Real geometry, (b) approximated geometry, (c) model geometry
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3.1. Description of the numerical model. The 2D plane-strain model represents
a 200m x 100m rock block with two sets of discontinuities. The vertical set is composed
of 60m long discontinuities (persistence), with 30m spacing along the discontinuity
between the adjacent ends (bridges) and 2m spacing (spacing) in the perpendicular
direction between the adjacent discontinuities. The corresponding horizontal set can
be described by the following parameters: persistence x bridges x spacing = 30m x
15m x 3m. The caving initialization is realized by a gradual deactivation of supporting
elements at the bottom of the model by 10m increments in both directions from the
midline of the model. The model uses one Gauss point triangular elements with
linear shape functions. The triangular element is advantageous in fracturing, since
during the fracturing only further triangular elements can be created, which is a huge
simplification and which significantly speeds up the calculation. However, this type of
element has an obvious drawback, namely its poor performance in high stress gradient
areas.

4. Numerical Results

4.1. Material parameters and loading. The material properties [9], [10] used in
the calculation are based on the real data obtained from the South-African Palabora
copper mine and shown in the following Table:

Material property / loadings: Value:
Young’s modulus 60 GPa
Poisson’s ratio 0.25

Density 3100 kg/m3

Cohesion stress 8 MPa
Friction angle 55 deg.
Dilatancy angle 9 deg.

Tension cut off stress 1MPa
Fracture energy 70 N/m

Friction angle (between the joints) 33 deg.
Cohesion stress (between the joints) 50 000 Pa
Surface contact damping coefficient 0.5

Model size: 200 x 100 m,
Face loading 15.2 MPa
Body force 30.41 kN/ m3

Table 1. Material properties of the caved rock

Figure 4 shows the first principal stress distribution which controls the fracturing.
The undercut was gradually increased up to 160m. There is no restriction on the flow,
the material is allowed to fall freely. In the caved area the lowered density as a result
of increasing void ratio can be seen. The numerical simulation shows the extensive
fracturing in the caving zone above the undercut area. In mines where the block
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Time 1 sec. Time 1.55 sec.

Time 2.5 sec. Time 3.5 sec.

Figure 4. First principal stress distribution

Figure 5. Continuum caving scenario with fracturing at 3.5 sec
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caving method is employed, the same effect was observed, as there were not any
extremely large pieces of rocks on the operation level during the haulage.

Figure 5 shows the fractured rock flow at time 3.5 sec.

4.2. Stress states at selected points. The following Table shows some typical
stress values for the selected points in Figure 5 at time 3.5 sec.

x [m] y [m] σxx [ MPa ] σyy [ MPa ] σzz [ MPa ] σxy [ MPa ]
Node 91693 77.58 -533.76 -1.298 -1.107 -0.792 -0.611
Node 91953 67.44 -529.09 0.011 0.074 -0.335 0.087
Node 3320 51.00 -520.00 -1.535 0.015 -0.236 -0.613
Node 63098 38.20 -520.40 -9.079 -5.526 -3.651 -6.747
Node 19556 27.71 -514.65 -9.312 -34.463 -10.944 -12.985
Node 16475 16.00 -507.00 -20.551 -51.560 -18.028 -10.029
Node 12485 16.00 -495.00 -30.486 -63.564 -23.512 3.075
Node 11496 8.00 -481.00 -23.092 -17.362 -10.113 3.266
Node 1911 0.00 -478.00 -21.642 -0.274 -5.479 1.536

Table 2. Stress values at selected nodes

5. Conclusion

The biggest advantage of the method presented is the ability to model extensive
fracturing. The method allows us to model situations where the conventional finite
element method would fail. The calculation uses explicit dynamic formulation of
equations of motion and the combined Mohr-Coulomb and Rankine plasticity model
with mode I fracturing based on the rotating crack model. Due to the stability re-
quirements and the extensive contact search between the discrete bodies, even 2D
calculations with a relatively small number (several ten thousands) of elements ap-
pear to be very expensive. A similar 3D simulation without sorting out the parallel
processing of the code is thus unimaginable.

Acknowledgement. Funding provided by Rio Tinto and VEGA SR is gratefully acknowl-
edged.
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Appendix A.

In the sequel we briefly outline the combined Mohr-Coulomb and Rankine plasticity
model. Depending on which part of the plasticity surface is active the following
possibilities can be distinguished.

A.1. Mohr-Coulomb constitutive model. The Mohr-Coulomb plasticity surface
usually becomes active if the principal stresses are compressive. As a simplification
perfect plasticity was considered, which means the plasticity surface is static. The
following cases can be distinguished and are depicted in the π - plane (Figure 6):

If σ1 > σ2 > σ3 are the principal stresses and c0, ϕ, ψ are the cohesion stress,
friction angle and dilatation angle, the plasticity surface equation is given as follows:

1

2
(σ1 − σ3) +

1

2
(σ1 + σ3) sinϕ = c0 cosϕ (A.1)

Figure 6. (a) The 3-D Mohr-Coulomb yield-surface in principal stress
spaces (b) The pi-plane representation.



Fracturing with discrete element method (DEM) 43

• Plastic flow from the main plane. This is the simplest case, depicted in Figure 7.
The trial stress crosses only one stress space, and only this stress space is active
at one time. The active stress space is given by function f1, the plastic potential
function by r1 and the hardening variables by h1.

Figure 7. Main plane plasticity flow representation

mact = 1, f1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinϕ− co cosϕ = 0 (A.2a)

r1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinψ − co cosψ = 0 (A.2b)
For co = const, ϕ = const and ψ = const- these conditions ensure that the
plasticity surface is static.

qT = [ c0 ϕ ψ ] − vector of state variables, hT1 = [ 0 0 0] (A.2c)

• Plastic flow from the right corner (RHS) The corner points represent the state
where a number of stress spaces might be active at one time. At the right corner
(Fig. 8) two stress spaces are active given by functions f1, f2, the plastic potential
functions are given by r1, r2 and the hardening variables by h1, h2.

Figure 8. Right corner plasticity flow representation

mact = 2, f1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinϕ− co cosϕ = 0 (A.3a)

r1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinψ − co cosψ = 0 (A.3b)
f2 = 1

2 (σ1 − σ2) + 1
2 (σ1 + σ2) sinϕ− co cosϕ = 0 (A.3c)

r2 = 1
2 (σ1 − σ2) + 1

2 (σ1 + σ2) sinψ − co cosψ = 0 (A.3d)
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for co = const, ϕ = const and ψ = const

qT = [ c0 ϕ ψ ], hT1 = hT2 = [ 0 0 0] (A.3e)

• Plastic flow from the left corner (LHS) It is analogous to the plastic flow from
the right corner (Figure 9).

Figure 9. Left corner plasticity flow representation

mact = 2, f1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinϕ− co cosϕ = 0 (A.4a)

r1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinψ − co cosψ = 0 (A.4b)

f2 = 1
2 (σ2 − σ3) + 1

2 (σ2 + σ3) sinϕ− co cosϕ = 0 (A.4c)

r2 = 1
2 (σ2 − σ3) + 1

2 (σ2 + σ3) sinψ − co cosψ = 0 (A.4d)

for co = const, ϕ = const and ψ = const

qT = [ c0 ϕ ψ ], hT1 = hT2 = [ 0 0 0 ] (A.4e)

• Plastic flow from the apex. At the apex (Figure 10) two stress spaces correspond-
ing to the hydrostatic and deviatoric stress are active and given by functions f1, f2,
as well as the plastic potential functions by r1, r2 and the hardening variables by
h1, h2.

Figure 10. Plastic flow from the apex representation
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mact = 2, f1 = fDEVa (σ, εp) = σd = 0, (A.15)

r1 = f1; f2 = fHYDb (σ, εp) = p− co cotϕ = 0; r2 = f2, (A.16)

where σd = dev[σ] = σ − pI and p = tr[σ] = (σ1 + σ2 + σ3)/3 for

co = const , ϕ = const; qT = [ c0 ϕ ] , hT1 = hT2 = [ 0 0 ]. (A.17)

Appendix B. Rankine constitutive model

The Rankine failure model (Figure 11) governs the failure of brittle material in tension.
When fracturing is considered, the FEM applications usually distinguish between the
so-called fixed and rotating crack models.

(a) (b) (c)

Figure 11. a) Stress strain curve, b) Stress plastic strain curve, c)
Uniaxial specimen with crack band

The material behavior and the first principal stress value on the element level, is
linear up to the so-called uniaxial tension strength, then it softens as is shown in
Figure 11. The fixed crack model direction remains fixed after the peak value of the
first principal stress has been reached, while in the case of the rotating crack model
the fracture angle is allowed to change while the material softens as far as the crack
is inserted.

If σ1 > σ2 > σ3 ; mact = 1 ; f1 = σ1 − σy (εp) = 0 ; r1 = f1; (B.1)

∂ε(γ1)p

∂γ1
= 1, q = σy(εp); h1(σ, q) = h1(σ, εp) =

∂σy
∂εp
· ∂ε

p

∂γ1
= −H. (B.2)

Evolution of the tensile strength:

σy = σy (εp) = ft −Hεp . (B.3)

From the equivalence of the area, which represents the fracture energy per unit length
to create a crack surface of uniform area, the softening modulus can be calculated as
follows:
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1

2
· f

2
t

H
=

Gf
h(e)
c

⇒ H = −dσy
dεp

=
h(e)
c · f

2
t

2 ·Gf
(B.4)

where

h(e)
c ≈

√
4A(e)/π for 2 - D triangular elements and (B.5a)

h(e)
c ≈

3

√
6V (e)/π for 3 - D tetrahedral elements . (B.5b)

It is assumed, that the micro cracks in the fracture process zone are distributed over
a band of width h (Figure 11c), hence the name crack band model (CBM). The
technique, where the deformations are smeared over the element is called the smeared
crack approach. In the FEM application the following technique was used for the
equivalent crack band calculation (See Figure 12 and equations (B.5)).

Figure 12. The approximate (equivalent) element dimension for a
plane triangular element

Appendix C. Combined Mohr-Coulomb and Rankine constitutive model

It describes the plastic behavior of the model at the places where the Mohr-Coulomb
and Rankine plasticity surfaces intersect each other (see Figure 13). As can be seen in
the Figure, in compression there is always a stress space where the material remains
elastic.

Single vector return mapping to the σ1 tensile plane (for the interior of the ACD
triangle see Figure 13): It is analogous to the Rankine constitutive model.

Two vector return mapping to the intersection of the σ1 and σ2 tensile planes (for
the interior of the AD line see Figure 13) In the tensile corner it is assumed that the
yield surfaces are independent of each other so if one surface softens, the remaining
one does not change its position.
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Figure 13. Combined Mohr-Coulomb and Rankine constitutive
model representation

mact = 2; f1 = σ1 − σy1 (εp1) = 0; r1 = f1 ; f2 = σ2 − σy2 (εp2) = 0 ; r2 = f2;
(C.1)

∂ε1(γ1)p

∂γ1
= 1 ;

∂ε2(γ2)p

∂γ2
= 1; σy1 = σy1 (εp1) = ft−Hεp1; σy2 = σy2 (εp2) = ft−Hεp2;

(C.2)
qT = [ σy1 σy2 ]; hT1 = [ -H 0 ] ; hT2 = [ 0 -H ]. (C.3)

Three vector return mapping to the Rankine tensile corner apex (for point D see Figure
13):

mact = 3; f1 = σ1 − σy1 (εp1) = 0; r1 = f1; f2 = σ2 − σy2 (εp2) = 0; (C.4)

r2 = f2; f3 = σ3 − σy3 (εp3) = 0; r3 = f3; (C.5)

∂ε1(γ1)p

∂γ1
= 1 ;

∂ε2(γ2)p

∂γ2
= 1 ;

∂ε3(γ3)p

∂γ3
= 1 ; σy1 = σy1 (εp1) = ft −Hεp1; (C.6)

σy2 = σy2 (εp2) = ft −H · εp2; σy3 = σy3 (εp3) = ft −H · εp3; (C.7)

qT = [ σy1 σy2 σy3 ] ; hT1 = [ -H 0 0 ] ; (C.8)

hT2 = [ 0 -H 0 ] ; hT3 = [ 0 0 -H ]. (C.9)

Two vector return mapping to the intersection of the Mohr-Coulomb main plane and
the σ1 tensile plane (for the interior of the line AC see Figure 13):

mact = 2; f1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinϕ− co cosϕ = 0; f2 = σ1−σy(εp) = 0;
(C.10)

r1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinψ − co cosψ = 0; r2 = f2; (C.11)
for co = const, ϕ = const and ψ = const. The Mohr-Coulomb plasticity surface does
not change:

qT = [ c0 ϕ ψ σyε
p ] ; hT1 = [ 0 0 0 0 ] ; hT2 = [ 0 0 0 −H ] (C.12)
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Three vector return-mapping to the intersection of the right edge of the Mohr-Coulomb
main-plane and the σ1 tensile plane (for point C see Figure 13)

mact = 3; f1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinϕ− co cosϕ = 0; (C.13)

f2 = 1
2 (σ1 − σ2) + 1

2 (σ1 + σ2) sinϕ− co cosϕ = 0; f3 = σ1 − σy (εp) = 0; (C.14)
r1 = 1

2 (σ1 − σ3) + 1
2 (σ1 + σ3) sinψ − co cosψ = 0; (C.15)

r2 = 1
2 (σ1 − σ2) + 1

2 (σ1 + σ2) sinψ − co cosψ = 0; r3 = f3; (C.16)
for co = const, ϕ = const and ψ = const

qT = [ c0 ϕ ψ σy(εp) ] ; hT1 = [ 0 0 0 0 ]; (C.17)

hT2 = [ 0 0 0 0 ] ; hT3 = [ 0 0 0 −H ]. (C.18)

Four vector return-mapping to the intersection of the left edge of the Mohr-Coulomb
main-plane and the σ1 and σ2 tensile planes (point A see Figure 13)

mact = 4 ; f1 = 1
2 (σ1 − σ3) + 1

2 (σ1 + σ3) sinϕ− co cosϕ = 0 ; (C.19)

f2 = 1
2 (σ2 − σ3) + 1

2 (σ2 + σ3) sinϕ− co cosϕ = 0; f3 = σ1 − σy1 (εp1) = 0; (C.20)
f4 = σ2 − σy2 (εp2) = 0; r1 = 1

2 (σ1 − σ3) + 1
2 (σ1 + σ3) sinψ − co cosψ = 0 ; (C.21)

r2 = 1
2 (σ2 − σ3) + 1

2 (σ2 + σ3) sinψ − co cosψ = 0; r3 = f3; r4 = f4 ; (C.22)
qT = [ c0 ϕ ψ σy1(εp1) σy2(εp2) ]; hT1 = [ 0 0 0 0 0 ]; (C.23)

hT2 = [ 0 0 0 0 0 ] , hT3 = [ 0 0 0 −H 0 ] , hT4 = [ 0 0 0 0 −H ] .
(C.24)

Appendix D. Tangential interaction law - The Coulomb friction model

The tangential interaction law describes the friction contact if a friction slip occurs
between the bodies. It is formulated as follows:

gt = ge
t + gpt ; f int

ct = αtg
e
t t = αt (gt − gpt )t , (D.1)

where gt is the tangential gap and t is the unit tangential vector at the place of
contact.

The Coulomb friction phenomenon can be described as:

f1 =
∥∥f int
ct

∥∥− (fint
cn µ+ C0) 6 0 , (D.2)

where µ is the friction coefficient and C0 is the cohesion force.

The non-associative plastic flow (slip) potential function is:

r1 =
∥∥f int
ct

∥∥ ; ∆gpt = ∆λ
∂r1
∂f int
ct

= ∆λ
f int
ct∥∥f int
ct

∥∥ = ∆λt; ∆fint
cn = αn ∆gn (D.3)

The slipping/sticking conditions can be formulated in the discrete Kuhn-Tucker form
with the following complementary and consistency requirements:

f1 6 0, ∆λ > 0, ∆λ · f1 = 0. (D.4)



Journal of Computational and Applied Mechanics, Vol. 5., No. 1., (2004), pp. 49–64

TRANSVERSE SHEAR AND NORMAL DEFORMATION
THEORY FOR VIBRATION ANALYSIS OF CURVED BANDS

Béla Kovács
Institute of Mathematics, University of Miskolc

3515 Miskolc-Egyetemváros, Hungary
matkb@gold.uni-miskolc.hu

[Received: May 5, 2003]

Dedicated to Professor József FARKAS on the occasion of his seventyfifth birthday

Abstract. A new laminate model is presented for the dynamic analysis of laminated curved
bands. The collocation curved band is used to denote a cylinder panel in the plane strain
state. The differential equations which govern the free vibrations of a curved band and
the associated boundary conditions are derived by Hamilton’s principle considering bending,
shear and normal deformation of all layers. The author used a new iterative process to
successively refine the stress/strain field in the sandwich curved band. The model includes
the effects of transverse shear and rotary inertia. The iterative model is used to predict the
modal frequencies and damping of simply supported sandwich curved band. The solutions
for a three-layer curved band are compared to a three-layer approximate model.
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1. Introduction

Laminated composite curved beams have been used in engineering applications for
many years. Design applications of isotropic and curved bars, rings and arches of
arbitrary shape are assisted by a well-developed theory and proven design guidelines
[1 − 4]. The development of the theory and design guidelines for composite curved
beams is much less satisfactory. Earlier works are related to sandwich beams or closed
composite rings [5 − 9]. The finite element method was used to study the dynamic
response of sandwich curved beams by Ahmed [5 − 6]. Free and forced vibrations
of a three-layer damped ring were investigated by Di Taranto [7]. Lu and Douglas
[8] investigate the damped three-layered sandwich ring subjected to a time harmonic
radially concentrated load. The paper gives an analytical solution for the mechanical
impedance at an arbitrary point on the surface of the damped structure as a function
of the forcing frequency. Furthermore, an experimental procedure is employed to
measure the driving point mechanical impedance as a verification of the calculated

c©2004 Miskolc University Press
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results. Transient response was studied for three-layer closed rings by Sagartz [9].
Damping properties of curved sandwich beams with viscoelastic layer were studied by
Tatemichi et al. [10]. Viscoelastic damping in the middle core layer was emphasized.

Nelson and Sullivan [11] analyzed the complete circular ring consisting of a layer
soft viscoelastic material sandwiched between two hard elastic layers. The equations
which govern the forced vibration of a damped circular ring were solved by the method
of damped forced modes. The essence of the damped forced mode method is the use of
harmonic forcing functions which are in-phase with local velocity and proportional to
local inertia loads. The constant of proportionality is the loss factor of the composite
structure, ηn. A clear alternative to a damped forced mode solution is to set all the
forcing functions to zero and solve the resulting complex eigenvalue problem. Isvan
and Nelson [12] investigated the natural frequencies and composite loss factors of
free vibration of a soft cored circular arch simply supported at each end. Although
harmonic motion is assumed, what is not stated is that some harmonic excitation is
required to maintain such motion in the presence of damping. The dynamic eigenvalue
problem is then posed for an unforced system. Kovacs [13] solved the problem of free
vibrations of a stiff cored sandwich circular arch. All the tangential displacement
components are assumed to be piecewise linear across the thickness, thus implying
the inclusion of shear deformations and rotary inertia.

The incremental equations of motion based on the principle of virtual displace-
ments of a continuous medium are formulated using the total Lagrangian description
by Liao and Reddy [14]. They developed a degenerate shell element with a degenerate
curved beam element as a stiffener for the geometric non-linear analysis of laminated,
anisotropic, stiffened shells. Bhimaraddi et al. [15] presented a 24-d.o.f. of isopara-
metric finite element for the analysis of generally laminated curved beams. The rotary
inertia and shear deformation effects were considered in this study. Qatu developed
a consistent set of equations for laminated shallow [16] and deep arches [17] . Exact
solutions are presented for laminated arches having general boundary conditions by
Qatu and Elsharkawy [18]. The in-plane free vibrational analysis of symmetric cross-
ply laminated circular arches is studied by Yildirim [19] . The free vibration equations
are derived based on the distributed parameter model. The transfer matrix method
is used in the analysis. The rotary inertia, axial and shear deformation effects are
considered in the Timoshenko analysis by the first-order shear deformation theory.
Vaswani, Asnani and Nakra [20] derived a closed form solution for the system loss fac-
tors and resonance frequencies for a curved sandwich beam with a viscoelastic core by
the Ritz method. Rao and He [21] used the energy method and Hamilton’s principle
to derive the governing equation of motion for the coupled flexural and longitudinal
vibration of a curved sandwich beam system. Both shear and thickness deformations
of the adhesive core are included. Equations for obtaining the system modal loss
factors and resonance frequencies are derived for a system having simply supported
ends by the Ritz method.

It is well-known that the accurate determination of the stress field in the lami-
nate configurations is particularly important for ‘stress critical’ calculations such as
damping and delamination. Zapfe and Lesieutre [22] developed an iterative process to
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refine successively the shape of the stress/strain distribution for the dynamic analysis
of laminated beams. The iterative model is used to predict the modal frequencies and
damping of simply supported beams with integral viscoelastic layers.

The eigenproblem of the plane bending of circular arch shaped layered beams was
investigated by using the finite element method [23]. The finite element model of the
structure has two-two elements along the face thickness and three elements along the
thickness of the core. The two edges of the circular arch are simply supported. The
corresponding model is formed by eight node hexahedron elements (280 pcs.).

Flexure of the three-layer sandwich arch results in energy dissipation due to strains
induced in the viscoelastic layer. In a symmetrical arrangement with identical elastic
layers, most of the damping is due to shear of the viscoelastic layer. In an unsym-
metrical arrangement, with dissimilar elastic layers, one might expect damping due
to direct strain as well as shear in the viscoelastic layer, the former being known as
extensional damping and the latter as shear damping. Both these effects have been
included by Kovacs [24]. However, the stress-strain law assumed for the viscoelastic
layer was not strictly correct and was only an approximation if extensional effects were
considered. An analysis of the vibration of transversely isotropic beams, which have
small constant initial curvature was presented in Rossettos [25], Rossettos and Squires
[26]. A closed-form general solution to the governing equations was derived. Natural
modes and frequencies were determined for both clamped and simply supported end
conditions. In Khdeir and Reddy [27], an analysis of the vibration of slightly curved
cross-ply laminated composite beams is presented. Hamilton’s principle is used to
derive the equations of motions of four theories. Exact natural frequencies are deter-
mined for various end conditions using the state space concept. The combined effects
of initial curvature, transverse shear deformation, orthotropicity ratio, stacking se-
quence and boundary conditions are evaluated and discussed. Yildirim [28] offers a
comprehensive analysis of free vibration characteristics of symmetric cross-ply lami-
nated circular arches vibrating perpendicular to their planes. Governing equations of
symmetric laminated circular arches made of a linear, homogeneous, and orthotropic
material are obtained in a straightforward manner based on the classical beam theory.
The transfer matrix method is used for the free vibration analysis of the continuous
parameter system.

The present research offers a new laminated model for the dynamic analysis of
laminated curved bands, which includes both transverse shear and transverse nor-
mal effects. The differential equations which govern the free vibrations of a curved
band and the associated boundary conditions are derived by Hamilton’s principle
considering bending, shear and normal deformation of all layers. The author used
a new iterative process to successively refine the stress/strain fields in the sandwich
band. The model includes the effects of transverse shear and rotary inertia. The
current model is developed for the specific case of a simply supported curved band
with uniform properties along the length.
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2. Governing equations of motion

The geometry of interest and the notations used are shown in Figure 1. As indicated
in the Figure, the curved band ends are simply supported. The collocation curved
band is used to denote a cylinder panel in the plane strain state. Consider the curved
band with a cylinder middle surface and the radius of curvature R of the middle
surface. The curved band consists of three different layers of homogeneous materials
bonded together to form a composite structure. Subscript i, where i = 1, 2, 3 is used
to denote quantities in the various layers, starting from the outermost layer, so that
layers 1,3 represent the elastic layers while layer 2 represents the viscoelastic layer. A
state of plane strain is assumed, as well as the fact that the materials in each layer
of the band are homogeneous and isotropic. Perfect bonding of the layers and linear
elasticity are also assumed in the analysis. The composite band is lightly damped
and it is assumed that all the energy dissipated is dissipated in the viscoelastic layer.
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Figure 1. Geometry of the laminated curved band

The form of the displacement field over the domain of the curved band is

t(r, ϕ, t) = u(r, ϕ, t)eϕ + w(r, ϕ, t)er =

=

[
v0(ϕ, t)−

r −R
R

(
∂w0

∂ϕ
− v0(ϕ, t)

)
+ f(r)v1(ϕ, t)

]
eϕ+[w0(ϕ, t) + g (r)w1(ϕ, t)] er

(2.1)
where f (R) = 0 and g (R) = 0, so (v0, w0) denote the displacement of a point (R,ϕ)
of the centre-surface along the circumferential and radial directions, respectively.

The terms f(r)v1(ϕ, t) and g (r)w1(ϕ, t) can be thought to be correction to account
for transverse shear and normal deformation effects, respectively. The functions f(r)
and g (r) represent the shape of the corrections through the thickness of the curved
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band, while v1(ϕ, t) and w1(ϕ, t) determine its distribution along the circumferential
direction. The solution of a given problem requires the determination of the unknown
functions v0(ϕ, t), v1 (ϕ, t) , w0 (ϕ, t) , w1 (ϕ, t) , f(r) and g (r) . By using the standard
expressions

t = wer + ueϕ, εϕ =
1

r

∂ u

∂ϕ
+
w

r
, γrϕ =

1

r

∂ w

∂ϕ
+
∂ u

∂ r
− u

r
, εr =

∂ w

∂r
,

the strain tensor of each layer can be computed from equations (2.1):

εϕ =
1

r

[
∂v0
∂ϕ
− r −R

R

(
∂2w0

∂ϕ2
− ∂v0
∂ϕ

)
+ f(r)

∂v1
∂ϕ

+ w0 + g (r)w1(ϕ, t)

]
, (2.2)

γrϕ =

[
df

dr
− f (r)

r

]
v1(ϕ, t) +

g (r)

r

∂w1

∂ϕ
, (2.3)

εr =
dg

dr
w1(ϕ, t) , (2.4)

where

f(r) =

 f1 (r) if R1 ≤ r ≤ R2

f2 (r) if R2 ≤ r ≤ R3

f3 (r) if R3 ≤ r ≤ R4


and

g(r) =

 g1 (r) if R1 ≤ r ≤ R2

g2 (r) if R2 ≤ r ≤ R3

g3 (r) if R3 ≤ r ≤ R4


are single-valued functions defined at each point through the thickness.

From equation (2.3), it can be seen that the functions df
dr −

f
r and g

r represent the
shape of the transverse shear strain field through the thickness of the curved band at
a given ϕ -location. While the assumed form of the functions, f(r) and g (r) changes
from one iteration to the next, at any given iteration they can be treated as known
functions.

The curved band vibrates in the rϕ-plane. It is assumed that the plane strain state
occurs within the structure and thus within each i-th layer. By treating the problem
as a plane strain one and assuming that the materials in each layer are homogeneous
and isotropic, we have the following stress-strain relations:

σri =
Ei

(1− 2νi) (1 + νi)
((1− νi) εri + νiεϕi) , (2.5)

σϕi =
Ei

(1− 2νi) (1 + νi)
((1− νi) εϕi + νiεri) , (2.6)

τrϕi = Giγrϕi , (2.7)
where Ei is the Young’s modulus and Gi is the shear modulus within the i-th layer of
the structure. Also νi is the Poisson’s coefficient, which characterises the compression
in the radial direction due to tension in the circumferential direction, and vice versa.
In addition the stresses τϕzi, τrzi are equal to zero.
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The strain energy stored in the curved band is given by:

U =
b

2

3∑
i=1

ϑ∫
ϕ=0

Ri+1∫
Ri

[σriεri + σϕiεϕi + τrϕiγrϕi] rdrdϕ . (2.8)

The kinetic energy, which includes components associated with transverse, in plane
and rotary inertia, is given by

T =
b

2

3∑
i=1

ϑ∫
ϕ=0

Ri+1∫
Ri

ρi

(
·
ti

)2

rdrdϕ , (2.9)

where the dots over t1 , t2 and t3 denote the partial derivative with respect to time.
The differential equations of motion and boundary conditions are derived using Hamil-
ton’s principle. The equations of motion for the four unknown functions, w0 (ϕ, t) ,
w1 (ϕ, t) , v0 (ϕ, t) and v1 (ϕ, t) are

A11
∂ 4w0

∂ϕ4
+A12

∂ 2w0

∂ϕ2
+A13

∂ 3v0
∂ϕ3

+A14
∂ 3v1
∂ϕ3

+A15
∂ v0
∂ϕ

+A16
∂ v1
∂ϕ

+A17
∂2 w1

∂ϕ2
+

+A18w0+A19w1 = D11
∂ 4w0

∂ϕ2∂ t2
+D12

∂ 3v0
∂ϕ∂ t2

+D13
∂ 3v1
∂ϕ∂ t2

+D14
∂ 2w0

∂t2
+D15

∂ 2w1

∂t2
,

(2.10)

A21
∂ 3w0

∂ϕ3
+A22

∂ w0

∂ϕ
+A23

∂ 2v0
∂ϕ2

+A24
∂ 2v1
∂ϕ2

+A25
∂ w1

∂ϕ
+A26v1 =

= D21
∂ 3w0

∂ϕ∂ t2
+D22

∂ 2v0
∂ t2

+D23
∂ 2v1
∂ t2

, (2.11)

A31
∂ 2w0

∂ϕ2
+A32

∂ 2w1

∂ϕ2
+A33

∂ v0
∂ϕ

+A34
∂ v1
∂ϕ

+A35w0+A36w1 = D31
∂ 2w0

∂ t2
+D32

∂ 2w1

∂ t2
,

(2.12)

A41
∂ 3w0

∂ϕ3
+A42

∂ w0

∂ϕ
+A43

∂ 2v0
∂ϕ2

+A44
∂ 2v1
∂ϕ2

+A45
∂ w1

∂ϕ
=

= D41
∂ 3w0

∂ϕ∂ t2
+D42

∂ 2v0
∂ t2

+D43
∂ 2v1
∂ t2

, (2.13)

where Aij and Dij are given in the Appendix. K1−18 and M1−8 are section stiffness
and mass coefficients, given by

K[1,...,7] = b

3∑
i=1

Ri+1∫
Ri

Ei (1− νi)
(1− 2νi) (1 + νi)

[
1, r,

1

r
, fi, gi,

1

r
fi,

1

r
gi

]
dr , (2.14)

K[8,17,18] = b

3∑
i=1

Ri+1∫
Ri

Gi

[
1

r
g2i , r

(
dfi
dr
− fi
r

)2

,

(
dfi
dr
− fi
r

)
gi

]
dr , (2.15)
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K[9,...,12] = b

3∑
i=1

Ri+1∫
Ri

Ei (1− νi)
(1− 2νi) (1 + νi)

[
1

r
f2i ,

1

r
g2i ,

1

r
figi,

1

r

(
dgi
dr

)2
]
dr (2.16)

K[13,...,16] = b

3∑
i=1

Ri+1∫
Ri

Eiνi
(1− 2νi) (1 + νi)

[
r
dgi
dr
,
dgi
dr
, fi

dgi
dr
, gi

dgi
dr

]
dr , (2.17)

M[1,2,3,4,5,6,7,8] = b

3∑
i=1

Ri+1∫
Ri

ρi
[
r, r2, r3, rfi, r

2fi, rf
2
i , rgi, rg

2
i

]
dr , (2.18)

where fi = fi (r) and gi = gi (r) . The kinematic and natural boundary conditions
specified at ϕ = 0 and ϕ = ϑ , are given by

KINEMATIC NATURAL
v0 = 0 or F11

∂2 w0

∂ϕ2 + F12
∂ v0
∂ϕ + F13

∂ v1
∂ϕ + F14w0 + F15w1 = 0 ,

w0 = 0 or F21
∂ 3w0

∂ϕ3 + F22
∂2 v0
∂ϕ2 + F23

∂2 v1
∂ϕ2 + F24

∂ 3w0

∂ϕ2∂t+

+F25
∂2 v0
∂t2 + F26

∂2 v1

∂t2 = 0 ,

v1 = 0 or F31
∂2 w0

∂ϕ2 + F32
∂ v0
∂ϕ + F33

∂ v1
∂ϕ + F34w0 + F35w1 = 0 ,

∂ w0

∂ϕ = 0 or F41
∂2 w0

∂ϕ2 + F42
∂ v0
∂ϕ + F43

∂ v1
∂ϕ + F44w0 + F45w1 = 0 ,

w1 = 0 or F51
∂ w1

∂ϕ + F52v1 = 0 ,

(2.19)

where Fij are constants. For the special case of a simply supported curved band, the
first, third and fourth natural boundary conditions are combined with the kinematic
condition, w0 = w1 = 0.

3. Solution for a simply supported curved band

Sinusoidal mode shapes that satisfy the boundary conditions are assumed. Conse-
quently, the assumed displacements are:

w0(ϕ, t) =W0 · sin(knϕ)eiωnt , (3.1)

w1(ϕ, t) =W1 · sin(knϕ)eiωnt , (3.2)

v0(ϕ, t) = V0 · cos(knϕ)eiωnt , (3.3)

v1(ϕ, t) = V1 · cos(knϕ)eiωnt , (3.4)
where kn = (nπ) /ϑ. Since the motion is now harmonic, it is justified to admit hys-
teretic damping into the viscoelastic layer by putting complex moduli. The Young’s
and shear modulus of the constituent materials are represented by the complex quan-
tities

E∗
2 = E2(1 + iα2), G∗

2 = G2(1 + iβ2) , (3.5)
where α2 and β2 denote the material loss factors in extension and shear, respectively.
Since G∗

2 and E∗
2 are used as complex moduli of the middle layer, the differential equa-

tions of motion will have complex coefficients. The substitution of equations (3.1),
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(3.2), (3.3) and (3.4) into equations (2.10-2.13), will result in a set of four simulta-
neous, homogeneous algebraic equations with symmetric and complex coefficients. In
matrix form, these equations are[

−ω2
n [M ] + [Y ]

]
{U} = 0, {U} = {V0, V1,W0,W1} (3.6)

where Mij and Yij are in the Appendix. The complex eigenvalues give the desired
natural frequencies and mode shapes with their phase relations. The natural frequency
is approximately equal to the square root of the real part of the eigenvalue. The modal
loss factor for the n-th mode is approximately equal to the ratio of the imaginary part
of the eigenvalue to the real part of the eigenvalue

ηn = Im(ω2
n)/Re(ω

2
n) . (3.7)

4. Improved estimate for shear correction functions f(r) and g(r)

An improved estimate for the correction functions f(r) and g (r) is derived from the
equation of elementary stress equilibrium. The equations of motion in plane strain

∂

∂ r

[
r2τrϕ

]
+ r

∂σϕ
∂ϕ

= r2ρ
∂2u

∂t2
, (4.1)

r
∂σr
∂r

+ σr +
∂τrϕ
∂ϕ
− σϕ = rρ

∂2w

∂t2
, (4.2)

applied to the layered curved band with σϕi = Ei(εϕi + νiεri)/
(
1− ν2i

)
expressions,

are now in the form

∂

∂ r
(r2τrϕi) +

Ei (1− νi)
(1− 2νi) (1 + νi)

[
r

R

∂2v0
∂ϕ2

− r −R
R

∂3w0

∂ϕ3
+

+fi(r)
∂2v1
∂ϕ2

+
∂w0

∂ϕ
+ gi(r)

∂w1

∂ϕ

]
+ r

Eiνi
(1− 2νi) (1 + νi)

dgi
dr

∂w1

∂ϕ
=

= r2ρi

[
∂2v0
∂t2

− r −R
R

(
∂3w0

∂ϕ∂t2
− ∂2v0

∂t2

)
+ fi(r)

∂2v1
∂t2

]
, (4.3)

r
∂σr
∂r

+σr−
1

r

Ei (1− νi)
(1− 2νi) (1 + νi)

[
r

R

∂v0
∂ϕ
− r −R

R

∂2w0

∂ϕ2
+ fi(r)

∂v1
∂ϕ

+ w0 + gi(r)w1

]
−

− Eiνi
(1− 2νi) (1 + νi)

dgi
dr
w1 +

∂τrϕi

∂ϕ
= rρi

(
∂2w0

∂t2
+ gi(r)

∂2w1

∂t2

)
, (4.4)

where i = 1, 2, 3 and Ri ≤ r ≤ Ri+1.

Using equations (2.3), (3.1), (3.2), (3.3) and (3.4), it is obvious that equations (4.3)
and (4.4) can be written the following form

d

dr
(r2τ

◦

rϕi) +
Ei (1− νi)

(1− 2νi) (1 + νi)

[
− r
R
k2nV0 +

r −R
R

k3nW0 − fi(r)k2nV1 +

+ k2nW0 + gi(r)k
2
nW1

]
+ r

Eiνi
(1− 2νi) (1 + νi)

dgi
dr
knW1 =
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= −r2ρiω2
n

[
V0 −

r −R
R

(knW0 − V0) + fi(r)V1

]
, (4.5)

r
dσ

◦

ri

dr
+ σ

◦

ri (r)−
1

r

Ei (1− νi)
(1− 2νi) (1 + νi)

[
− r
R
knV0 +

r −R
R

k2nW0 − fi(r)knV1 +

+W0+gi(r)W1

]
− Eiνi
(1− 2νi) (1 + νi)

dgi
dr
W1−knτ

◦

rϕi (r) = −rρiω2
n (W0 + gi(r)W1) ,

(4.6)

where τrϕi (r, ϕ, t) = τ
◦

rϕi (r) cos(knϕ)e
iωnt and σri (r, ϕ, t) = σ

◦

ri (r) sin(knϕ)e
iωnt.

The shape of the shear stress distribution can be found by integrating equation (4.5)
through the thickness

τ
◦

rϕi (r) = −
1

r2

∫ r

Ri

{
r2ρiω

2
n

[
V0 −

r −R
R

(knW0 − V0) + fi(r)V1

]
+

+r
Eiνi

(1− 2νi) (1 + νi)

dgi
dr
knW1−

Ei (1− νi)
(1− 2νi) (1 + νi)

[
r

R
k2nV0 −

r −R
R

k3nW0 + fi(r)k
2
nV1

−k2nW0 − gi(r)k2nW1

]}
dr +

1

r2
ci , (4.7)

where
c1 = 0 , c2 = R2

2τ
◦

rϕ1 (R2) , c2 = R2
3τ

◦

rϕ2 (R3) . (4.8)

Then if equation (4.7) is used in equation (4.6), the shape of the normal stress distri-
bution can be found by integrating equation (4.6) through the thickness

σ
◦

ri (r) = −
1

r

∫ r

Ri

{
rρiω

2
n (W0 + gi(r)W1)−

Eiνi
(1− 2νi) (1 + νi)

dgi
dr
W1 − knτ

◦

rϕi (r)−

−1

r

Ei (1− νi)
(1− 2νi) (1 + νi)

[
− r
R
knV0 +

r −R
R

k2nW0 − fi(r)knV1 +W0 + gi(r)W1

]}
dr+

1

r
di ,

(4.9)
where

d1 = 0 , d2 = R2σ
◦

r1 (R2) , d2 = R3σ
◦

r2 (R3) . (4.10)

The shape of the tensile strain distribution εri is calculated using equation (4.9) and
the constitutive equation (2.5)

ε
◦

ri (r) =
(
1− ν2i

) σ◦

ri (r)

Ei
− νiε

◦

ϕi (r) , (4.11)

where εri (r, ϕ, t) = ε
◦

ri (r) sin(knϕ)e
iωnt and εϕi (r, ϕ, t) = ε

◦

ϕi (r) sin(knϕ)e
iωnt.

Upon substitution of equation (4.11) into equation (2.4), the new estimate for the
normal correction function g (r) obtained by integrating equation (2.4) through the
thickness, is given by
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g1 (r) =

∫ R2

R

1

W1
ε
◦

r2 (r) dr +

∫ r

R2

1

W1
ε
◦

r1 (r) dr, R1 ≤ r ≤ R2 , (4.12)

g2 (r) =

∫ r

R

1

W1
ε
◦

r2 (r) dr, R2 ≤ r ≤ R3 , (4.13)

g3 (r) =

∫ R3

R

1

W1
ε
◦

r2 (r) dr +

∫ r

R3

1

W1
ε
◦

r3 (r) dr, R3 ≤ r ≤ R4 . (4.14)

Evidently g (R) = g2 (R) = 0 at the reference axis.

The shape of the shear strain distribution is calculated using equation (4.7) and
the constitutive relation

γ
◦

rϕi (r) =
τ

◦

rϕi (r)

Gi
, i = 1, 2, 3 (4.15)

where γrϕi (r, ϕ, t) = γ
◦

rϕi (r) cos(knϕ)e
iωnt.

Upon substitution of equation (4.15) into equation (2.3) and using equations (4.12-
4.14), the new estimate for the shear correction function f (r) obtained by integrating
equation (2.3) through the thickness, is given by

f1 (r) = r

[∫ R2

R

1

r

[
γ

◦

rϕ2 (r)

G
− kn

W1g2 (r)

rG

]
dr +

∫ r

R2

1

r

[
γ

◦

rϕ1 (r)

G
− kn

W1g1 (r)

rG

]
dr

]
,

(4.16)
where R1 ≤ r ≤ R2

f2 (r) = r

∫ r

R

1

r

[
γ

◦

rϕ2 (r)

G
− kn

W1g2 (r)

rG

]
dr, R2 ≤ r ≤ R3

(4.17)
and

f3 (r) = r

[∫ R3

R

1

r

[
γ

◦

rϕ2 (r)

G
− kn

W1g2 (r)

rG

]
dr +

∫ r

R3

1

r

[
γ

◦

rϕ3 (r)

G
− kn

W1g3 (r)

rG

]
dr

]
(4.18)

where R3 ≤ r ≤ R4 and evidently f (R) = f2 (R) = 0 at the reference axis. The
integrals in equations (4.7-4.18) are evaluated numerically using a trapezoidal method
and f (r) and g (r) can be complex quantities. This new estimates of f (r) and g (r)
are used as the correction functions for the next iteration. As with any smeared
laminate model, there are two distinct ways to calculate the shear stress distribution:
from the material constitutive relations; or by the elementary stress equilibrium. The
ultimate goal of the iterative analysis is the determination of the functions, f (r) and
g (r), that cause the two stress distributions to be equal. This defines the convergence
point for the iterative functions f (r) and g (r), the point at which the stresses and
strains are self-consistent.
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Table 1

Variation of the lowest frequency and the loss factor with adhesive shear modulus
[20]︷ ︸︸ ︷ Present theory︷ ︸︸ ︷

G2

[
N/m2

]
f [Hz] η f [Hz] η

6,88·104 7,898 0,0644 7,508 0,0624
6,88·105 11,36 0,2504 10,72 0.248
6,88·106 20,94 0,1696 19,81 0.173
6,88·107 25,8 0,0272 24,55 0.0281
6,88·108 26,47 0,0029 25,23 0,00348

5. Results and discussion

Numerical results were generated to observe the effects of curvature, core thickness and
adhesive shear modulus on the system natural frequencies ωn and modal loss factors
ηn. Vaswani et al. [20] assembled a series of design curves for the dynamic charac-
terization of a three-layer damped circular ring segment which is simply supported
at each end, see Fig.1. The model assumes that all transverse shear deformation and
energy dissipation occurs in the core material. The dissipation is modeled using a
complex modulus formulation. The resonant frequencies and the associated system
loss factor have been experimentally determined for four sandwich beam specimens
and the values compared with those obtained theoretically. Reasonably good agree-
ment is seen between the theoretical and experimental results. However, the model
of Vaswani et al. overpredicts natural frequencies by 5%, approximately. The present
smeared laminate model was compared to the design curves of Vaswani et al. for the
first transverse modes presented in the paper by Vaswani et al., with simply supported
boundary conditions.

Table 2

Variation of the lowest frequency with adhesive thickness
[20]︷ ︸︸ ︷ Present theory︷ ︸︸ ︷

2h2 [mm] f [Hz] f [Hz]
1,0 17,981 17,028
2,0 19,1 18,125
3,0 20,09 19,04
4,0 20,94 19,81
5,0 21,66 20,47

The adhesive shear modulus plays a very important role in the damping of a sand-
wich curved band. The variations of the lowest natural frequency and the associated
loss factor with respect to the shear modulus G2 (= real part of G∗

2) are given in Table
1 for the three layer arch using the design curves of Vaswani et al. and the present
laminate model. The input data used here were h1 = h2 = h3 = 2.0 mm, υ = 1.0,
α2 = β2 = 0.5, R = 1.0 m, E1 = E3 = 6.88 ·1010 N/m2, G1 = G3 = 2.75 ·1010 N/m2,
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ρ1 = ρ3 = 2.7 · 103 kg/m3, ρ2 = ρ1/2. G2 varied from 6.88 · 104 N/m2 to 6.88 · 108
N/m2 and E2 = 2.5 ·G2. The present smeared laminate model frequency predictions
are generally consistent with the results of Vaswani et al. The slight discrepancy is
due to facesheet shear and rotary inertia, effects which the model of Vaswani et al.
does not consider. The model of Vaswani et al. overpredicts natural frequencies by
5%, approximately. The modal loss factors predicted by the present laminate model
are also in good agreement with the results of Vaswani et al. The variation of the
system loss factor η with the shear modulus G2 is similar to that obtained for straight
sandwich beams. For each core thickness, a maximum is observed which increases as
the core thickness increases and is also seen to occur at higher values of the shear mod-
ulus. At low values of the shear modulus, although the deformations are large, shear
stiffness is small, hence low damping is observed. At very high values of the shear
modulus, the shear stiffness is high and the deformations are small, again resulting
in low damping.

Table 3
Variation of the loss factor with adhesive thickness

[20]︷ ︸︸ ︷ Present theory︷ ︸︸ ︷
2h2 [mm] η η

1,0 0,0546 0.0562
2,0 0,1 0.102
3,0 0,138 0.141
4,0 0,1696 0.173
5,0 0,196 0,199

The effects of the adhesive thickness 2h2 on the system natural frequencies and loss
factors are also studied. The input data in this case were h1 = h3 = 2.0 mm, υ = 1.0,
α2 = β2 = 0.5, R = 1.0 m, E1 = E3 = 6.88 · 1010 N/m2, G1 = G3 = 2.75 · 1010
N/m2, ρ1 = ρ3 = 2.7 · 103 kg/m3, ρ2 = ρ1/2, G2 = 6.88 · 104 N/m2, E2 = 2.5 · G2.
The thickness 2h2 was increased from 1.0 mm to 5.0 mm in steps of 1.0 mm. The
variations of f and η with 2h2 are given in Tables 2-3. It can be seen from these
Tables that both f and η increase with 2h2.

Table 4

Variation of the lowest frequency with radius R
[20]︷ ︸︸ ︷ Present theory︷ ︸︸ ︷

R [mm] f [Hz] f [Hz]
800 29,75 28,1
900 24,78 23,42
1000 20,94 19,81
1100 17,9 16,95
1200 15,469 14,658
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The third parameter which effects the system natural frequencies and modal loss
factors is the radius of curvature R of the middle surface of the adhesive layer. In this
case, the angle υ is kept constant, while changing R. This means the total length of the
sandwich arch system will change with R. The variations of f and η with R are shown
in Tables 4-5. The input data was h1 = h2 = h3 = 2.0 mm, υ = 1.0, α2 = β2 = 0.5,
E1 = E3 = 6.88 ·1010 N/m2, G1 = G3 = 2.75 ·1010 N/m2, ρ1 = ρ3 = 2.7 ·103 kg/m3,
ρ2 = ρ1/2, G2 = 6.88 · 104 N/m2, E2 = 2.5 ·G2. R varied from 800 mm to 1200 mm
in steps of 100 mm. It can be seen that f decreases with R. The variations of f with
R are obvious, as the total length of the curved sandwich beam system increases with
any increase in R.

Table 5

Variation of the loss factor with radius R.
[20]︷ ︸︸ ︷ Present theory︷ ︸︸ ︷

R [mm] η f [Hz]
800 0,211 0,214
900 0,1895 0,193
1000 0,1696 0,173
1100 0,1516 0,155
1200 0,1357 0,1388

6. Conclusions

A new iterative laminate model has been presented for a thin sandwich arch that
can accurately determine the dynamic stress distribution in soft as well as hard cored
sandwich arches. This represents an advance over previous smeared laminate mod-
els, in which accurate estimates of the stress field were only possible if the assumed
displacement field was a reasonable approximation of the actual diplacement field.
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Appendix A. NOMENCLATURE

b width of the curved band
Ei elastic modulus of layer i
E∗

2 complex modulus in tension
er unit vector in the radial direction
eϕ unit vector in the transverse direction
ez unit vector in the z-direction
εϕ i tensile strain of layer i in the transverse direction
εri tensile strain of layer i in the radial direction
f(r) shear correction function
g (r) normal correction function
γrϕ i shear strain of layer i
G∗

2 complex modulus in shear
Gi shear modulus of layer i
hi half-thickness of layer i
ϕ circumferential coordinate
n mode number
r cylindrical coordinate
R radius of middle surface of the curved band
T kinetic energy
σϕ i tensile stress of layer i in the transverse direction
σr i tensile stress of layer i in the radial direction
τrϕ i shear stress of layer i
ti displacement vector of layer i
R1 radius at the bottom of the first layer
R2 radius at the top of the first layer
R3 radius at the bottom of the third layer
R4 radius at the top of the third layer
α2 material loss factor in tension of the second layer
β2 material loss factor in shear of the second layer
ηn composite loss factor for the n-th mode
ωn frequency of oscillation in radians for the n-th mode
fn frequency of oscillation in Hertz for the n-th mode
ρi density of layer i
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ϑ opening angle of the curved band
v0 tangential displacement of the middle surface
w0 radial displacement of the middle surface

Appendix B. Definitions for the various coefficients

Equations (2.10) to (2.13) in the main text contain certain Ai j and Di j terms which
are defined as follows:

A11 = K3 +K2/R
2 − 2K1/R, A12 = 2K3 − 2K1/R, A13 = −K2/R

2 +K1/R

A14 = K6 −K4/R, A15 = K1/R, A16 = K6, A17 = K14 +K7 −K13/R−K5/R

A18 = K3, A19 = K14 +K7, A21 = K4/R−K6, A22 = −K6, A23 = −K4/R,

A24 = −K9, A25 = K18 −K15 −K11, A26 = K17

A31 = −K13/R+K14 −K5/R+K7, A32 = −K8, A33 = K13/R+K5/R

A34 = K15 +K11 −K18, A35 = K7 +K14, A36 = K12 + 2K16 +K10

A41 = K2/R
2 −K1/R, A42 = −K1/R, A43 = −K2/R

2, A44 = −K4/R

A45 = −K13/R−K5/R

D11 =M1 − 2M2/R+M3/R
2, D12 =M2/R−M3/R

2, D13 =M4 −M5/R

D14 = −M1, D15 = −M7, D21 = −M4 +M5/R, D22 = −M5/R

D23 = −M6, D31 = −M7, D32 = −M8, D41 = −M2/R+M3/R
2

D42 = −M3/R
2, D43 = −M5/R.

Equation (3.6) in the main text contain Yij and Mij terms which are defined as
follows:

Y11 =
(
2k2n − 2k4n

)
K1/R+ k4nK2/R

2 +
(
1− 2k2n + k4n

)
K3

Y12 = Y21 = −knK6 + k3n (K6 −K4/R) ,

Y14 = Y41 = −knK1/R+ k3n
(
K1/R−K2/R

2
)
,

Y13 = Y31 = K14 +K7 − k2n (K14 +K7 −K13/R−K5/R) , Y22 = K17 + k2nK9

Y23 = Y32 = kn (K18 −K15 −K11) , Y24 = Y42 = k2nK4/R, Y44 = k2nK2/R
2

Y33 = K12 + 2K16 +K10 + k2nK8, Y34 = Y43 = −kn (K13/R+K5/R)

M11 =M1 + k2n
(
M1 +M3/R

2 − 2M2/R
)
, M12 =M21 = kn (M4 −M5/R)

M13 =M31 =M7, M14 =M41 = kn
(
M2/R−M3/R

2
)
, M22 =M6

M24 =M42 =M5/R, M33 =M8, M44 =M3/R
2

M23 =M32 =M24 =M42 = 0.
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Abstract. This paper discusses the possibility of detecting mechanisms with second-order
stiffness (resistance to the excitation of an infinitesimal mechanism) imposed by self-stresses
in highly symmetric structures. Coupled application of symmetry adapted first-order matrix
analysis and a second-order stiffness analysis is performed, then the symmetry adapted form
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effect of multiple states of self-stress can be analyzed. Finally, a generalized bar-and-joint
model containing new kinematic scalar constraints and variables is proposed, with respect
to their applicability in symmetry adapted and second-order analyses. The results are illus-
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1. Introduction

Living systems in nature and engineering structures - consequently, their mechanical
models as well - often show certain symmetry: it is enough to mention flowers, leaves,
micro-organisms and architectonical solutions. These models, for having some degree
of kinematical and statical indeterminacy, are usually highly indeterminate due to a
high order of symmetry. Inclusion of symmetry properties in the computation can
therefore be useful for two reasons: on the one hand, a given problem can often be re-
duced to a simpler one with less computational work by symmetry considerations, and
on the other hand, clear description and physical interpretation of a multi-parameter
system of self-stresses and displacements can hardly be made without using symmetry.

Since the first aim of this paper is to present a tool only for the detection and
categorization of these mechanisms and states of self-stress, all further arguments
and examples are based on the assumption of a perfectly rigid material behavior.

In the starting sections, a short review of existing analytical methods and a the-
oretical introduction of new ones are presented for classical bar-and-joint structures,

c©2004 Miskolc University Press
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even if this simple model is not always applicable (or practical) for many structures.
Our second aim is therefore to extend these analytical methods to generalized models
containing various kinematic constraints instead of the only classical constant bar
length, as well as to set up basic conditions for the type of extension that can match
the original symmetry adapted techniques.

2. First-order calculations in symmetry adapted coordinate systems

If a compatibility or equilibrium matrix of a structure is given in an arbitrary co-
ordinate system, it is a very simple task to determine the number of independent
infinitesimal mechanisms and states of self-stress, since it depends only on the rank
and dimensions of the matrix in case. Difficulties arise, however, when an attempt is
made to characterize these mechanisms given on a general basis, knowing that all their
linear combinations constitute another infinitesimal mechanism. A possible solution
to this problem can be the choice of a special, symmetry adapted basis in which the
compatibility matrix C (consequently, equilibrium and stiffness matrices G and R as
well) appears in a block-diagonal form according to symmetry properties.

The method of obtaining these bases was developed by Kangwai and Guest [1, 2]
and it is built upon the foundations of group representation theory. In order to justify
some of the later arguments, it is necessary to reassume the essential definitions,
theorems and notations in this field.

Connection to group theory comes from the fact that symmetry can be interpreted
as a set of symmetry operations like rotation or reflection, etc, applied to a geometrical
object. It is a trivial statement that there always exists the identity operation and if
two of all existing operations are done successively, the resultant operation is always
found to be equivalent to one operation of the original set. For any operation there
must also exist an inverse operation such that its application to the original one
results in the identity operation. Fulfilling these conditions, symmetry operations of
an object constitutes a group, and it is possible to assemble the full multiplication
table of all operations of the group [3].

Operations in general have different representations among which the most common
one is the so-called matrix representation: an operation is represented by a matrix
multiplication that can express in the most natural way, for example, a coordinate-
transformation in 3D space. It is very important, however, that any set of square
matrices that obeys the multiplication table forms a matrix representation of the
group. Among the infinite number of representations, there is, for example, a natural
representation of the geometrical object that expresses transformations of all specific
coordinates (in bar-and-joint structures, these are nodal coordinates). This represen-
tation is called external, in contrast to a similar possible representation that concerns
transformations among internal forces and internal deformations belonging to the
respective constraints. For illustration, let us consider a simple planar structure in
Figure 1 with a classical - and instructive - C3v symmetry. In this symmetry group,
there are six operations: two rotations (by 120o and 240o, denoted as C3 and C2

3 ),
three reflections (σv) and the identity (E). Concentrating on a simple operation
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Figure 1. A structure with C3v symmetry – rotation by 120o counter-clockwise

(counter-clockwise rotation by 120 degrees), one can observe what happens, for in-
stance, to force F acting at node A. Looking only at the direction, new coordinates
can be obtained from a multiplication by the matrix of rotation by 120o as follows:[

xnew
ynew

]
=

 cos 120◦ − sin 120◦

sin 120◦ cos 120◦

[ xold
yold

]
= MC3

[
xold
yold

]
. (2.1)

Transformation matrices like in (2.1) can also be generated for all other operations
in C3v - these form a 2-by-2 representation of the group C3v in general. Taking
into account that a rotation of the object also shifts the nodes, equation (2.1) needs
correction: [

xnew2

ynew2

]
= MC3

[
xold1

yold1

]
, (2.2)

and since all the three nodes move, rotation of the whole object is described by
xnew1

ynew1
...

ynew3

 =


0 0 MC3

MC3 0 0
0 MC3 0



xold1

yold1
...

yold3

 , (2.3)

where the 6-by-6 matrix is an external representation of the object under C3 operation.

If internal forces and deformations are considered, the same rotation moves bar b1
into bar b2 etc., hence  bnew1

bnew2

bnew3

 =


0 0 1
1 0 0
0 1 0


 bold1

bold2

bold3

 (2.4)

and the 3-by-3 matrix is an internal representation of the object under the same
operation. Note that general symbol b can refer to bar forces or elongations as well,
while xi, yi may equally denote nodal force or displacement coordinates.

Matrix representations - as it happens to quadratic matrices - can undergo unitary
transformations that generate another representation of the group. Some of them
have all matrices in block-diagonal form but usually it is impossible to diagonalise all
matrices of a representation with the same transformation. A set of blocks that cannot
be split into smaller blocks is called ‘irreducible representation’ but since a set of n-
by-n matrices can be operated on by further unitary transformations, the number
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of irreducible representations is still infinite. Within this infinite set, there can be
chosen only a few representations that cannot be transformed into each other by a
unitary transformation. Their name is ‘non-equivalent irreducible representation’ [3]
(note that the matrix forms of these few representations still depend on the vector
basis, therefore it is not uniquely defined unless the dimension of matrices is 1 by 1).

From the character tables for group theory [4], the number and matrix dimensions
of non-equivalent irreducible representations can be read, but beyond that, the table
itself gives the characters (traces of matrices) of each representation row by row:
in spite of the form of matrices, these are uniquely defined since left unchanged by
unitary transformations. For example, in group C3v there are three non-equivalent
irreducible representations, two of them are 1-dimensional and denoted by A1 and
A2, the third one (E) is 2-dimensional (dimension numbers of a representation are
always equal to the trace under identity in that representation). Since in C3v there
are 6 symmetry operations, it means 6 matrices and therefore 6 character values, but
some of the operations (those belonging to the same class) have regularly the same
character that is given in a single column. In our example there are three classes:
identity belongs to the first one, while two rotations and three reflections compose
the second and third ones, respectively. Thus, the character table for C3v is as shown
in Table 1:

E 2C 3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

Table 1. Character table of group C 3v

There exists a method for generating also matrix forms of multi-dimensional non-
equivalent irreducible representations that are needed for further symmetry-analysis.
It is shown in [1] that using the Great Orthogonality Theorem of group theory, it
is possible to construct quadratic matrices that transform compatibility and rigidity
matrices into a block-diagonal form, once a full set of non-equivalent irreducible rep-
resentations of the group and an arbitrary internal and external representation of the
object are given.

For instance, block-diagonalisation of a compatibility matrix can be written in the
form

CS = VT
f ·C ·Vp, (2.5)

where superscript S means symmetry adapted form, whilst Vf and Vp are orthogonal
transformation matrices of internal and external quantities with subscripts f and p
referring to internal bar force and external nodal load. The block structure of CS

is determined by the number and dimension of non-equivalent irreducible represen-
tations: each representation means as many blocks as the dimension of its matrices.
For illustration, CS of a structure with C3v symmetry will assume the form shown in
Figure 2:
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E(1)

E(2)

A2

A1

Figure 2. Block structure of compatibility matrix in symmetry
adapted form with C3v symmetry

In this symmetry adapted form it is possible to perform an independent analysis of
each block that means practically a singular value decomposition: this is because any
state of self-stress given by the left nullspace or mechanisms coming from the right
nullspace of the matrix is within an invariant subspace associated with one of the
blocks.

In addition to the reduced matrix calculations, mechanisms and self-stresses be-
longing to a given block display well-defined symmetry properties: for example, a
mechanism or state of self-stress found in a block A must be left unchanged by any of
the symmetry operations, which is why they are said to have full symmetry. Mecha-
nisms and states of self-stress categorized by symmetry provide then a system where
physical interpretation of mobility or possibilities of pre-stressing turns out to be more
straightforward.

3. Problems of higher-order rigidity

Singular value decomposition accounts only for the existence of states of self-stress
and infinitesimal mechanisms. This latter category, however, covers now three differ-
ent cases. An infinitesimal mechanism can be a [5]

a) first-order infinitesimal mechanism with additional stiffness provided by pre-
stressing,

b) first-order infinitesimal mechanism without additional stiffness or higher-order
infinitesimal mechanism that can never be stiffened by pre-stressing,

c) finite mechanism, always without additional stiffness.

We notice that an infinitesimal mechanism is of n-th order if there is at least one
bar for which in the expansion of the Taylor-series of its elongation, the order of the
first non-vanishing term is n+ 1: a typical example for (a) is a linkage supported at
two endpoints, with all nodes lying along a straight line; a first-order infinitesimal
mechanism pertaining to case (b) is presented in [6]. In accordance with mechanisms,
we define second-order stiffness: when there is a state of self-stress, and an infini-
tesimal mechanism is activated, unbalanced nodal forces appear. If the virtual work
done by this force system on the mechanism is positive, then the self-stress is said to
be able to impart second-order stiffness to the mechanism; if it holds for all possible
mechanisms, then the whole structure has second-order stiffness.
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Interestingly enough, some of the finite mechanisms can be detected even with
first-order symmetry-analysis: if a block with full symmetry contains one or more
mechanisms but no self-stress, then all displacements in the subspace spanned by
vectors of these mechanisms must be finite [7]. Even if this procedure works only for
full symmetry, it is possible to find an appropriate group for any symmetric mech-
anism where the respective mechanism is fully symmetric, and symmetry adapted
diagonalization based on this group can also be performed. It is impossible to make
a decision in this way about finiteness, however, when at least one fully symmetric
state of self-stress appears.

Another approach to the question of rigidity leads to analyses of existence of ad-
ditional stiffness: once it is proven, finiteness of the motion is ruled out. A method
developed for this purpose by Pellegrino and Calladine [8] uses the concept of ‘product
force’, defined as a nodal resultant of forces in adjacent bars when a single-parameter
state of self-stress and a mechanism is activated to the structure. For example, a
collinear linkage supported at two endpoints has a uniform tensional self-stress; mov-
ing internal nodes infinitesimally off the axis will induce also product force F1 shown
in Figure 3.

sa sb sc ss

d1 d2

F1 F2

sa
sb

sc

Figure 3. State of self-stress, mechanism and product forces

Magnitude of F1 can be computed, based on the assumption of small displacements,
as

F1 = −d1
sa
la

− d1
sb
lb

+ d2
sb
lb
. (3.1)

It can be proved in the same way that a general formula for product force at point
Pi is

Fir = −dir
∑
j

sij
lij

+
∑
j

djr
sij
lij
, (3.2)

where ro = ox, oy, oz, di denotes displacement components at point Pi, while j runs
over all adjacent nodes; sij and lij are bar forces and lengths, respectively.

Consider a structure with n nodes and b bars. Let S denote a diagonal matrix
of self-stresses containing b diagonal blocks of dimension dim equal to that of the
Euclidean space that the structure is defined in: i-th block S(i) can be obtained as

S
(i)
(dim×dim) =

si
li
E(dim×dim). (3.3)
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Now a (dim × b)-by-(dim × n) matrix T can be constructed: let a block tij be -
E(dim×dim) or E(dim×dim) if Pj is starting or endpoint of the i-th bar, respectively.
With the help of T and S, the complementary stiffness matrix (Q) of the given
structure can be defined:

Q = TT · S ·T , (3.4)

and one can verify that if d is the vector of a mechanism, the product dTQ gives
exactly the coordinates of all product forces.

Existence of stiffening by pre-stressing is tested by the following criterion: if the
external work done by a displacement on the set of product forces generated by the
same displacement vector is zero, no stiffening effect exists [9]. In terms of linear
algebra, it means a quadratic form of zero value:

w = dTQd = 0 . (3.5)

The method is applicable also with k mechanisms: if these n column vectors are
collected in a matrix D, then the product

d = Da, (3.6)

gives their general linear combination (aT = [α0
1 . . .

oαk]). For this particular mecha-
nism, the condition of zero external work (regarding that (Da)T = aTDT ) yields

aTDTQDa = 0 . (3.7)

Term DTQD is a symmetric n-by-n matrix called reduced complementary stiffness
matrix [10] and denoted by W, thus the left-hand side of (3.7) can again be written
as a quadratic form aTWa. If coefficients in a are considered to be variables, the
analysis can be extended to all possible mechanisms. In this case, there is additional
stiffness for all mechanisms if and only if matrix W is definite.

Nevertheless, there is still an open question: what happens when self-stresses are
multiple? For special two-parameter states of self-stress there can be found particular
solutions in [9] but the problem is more complex when a structure has several states
of self-stress with different symmetry properties.

4. Symmetry adapted second-order rigidity analysis

As shown, product force analysis does not require necessarily a symmetry adapted
treatment but in some cases one can make use of it. In this section, a new symmetry
adapted higher-order analysis will be described, pointing out some advantages and
restrictions of its application.

To avoid confusion, matrices S, Q and W will be indexed by serial numbers of
independent states of self-stress found in the first-order analysis. Suppose that S1 is
coming from the fully symmetric block: it is easy to see now that Q1 expresses full
symmetry as well, consequently it can be block-diagonalised with the formula

QS
1 = VT

p ·Q1 ·Vp , (4.1)
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while the transformation formula of displacement vectors di into symmetry adapted
system is

dSi = VT
p · di . (4.2)

It is possible then to perform the described matrix analysis in symmetry adapted
system where displacement vectors have all zero values except for those being in the
block of the representation where the displacement was found: in a fully symmetric
displacement vector, for instance, only the first few entries are nonzero.

Consider now a matrix DS containing vectors that belong to different blocks. The
structure of reduced complementary stiffness matrix can be illustrated by the scheme
in Figure 4:

=

Figure 4. Block structure of product (DS)T ·QS ·DS = WS

An important conclusion may be drawn at this stage: having a fully symmetric
state of self-stress, a reduced complementary stiffness matrix is always obtained in
block-diagonal form (note that WS o = oW, irrespective of intermediate steps made
in the symmetry adapted system), hence a necessary condition for the existence of a
global stiffening effect can be formulated as each set of displacements belonging to a
given block must be stiffened by self-stress S1, or in other words, blocks in W must
be definite in themselves.

Altogether, it is a true objection that a simple check for definiteness does not
justify such amount of symmetry calculations: real applicability of symmetry adapted
analysis is experienced when there are multiple states of self-stress.

Imagine a state of self-stress Sk with lower symmetry than that of S1: formula
(4.1) now will not diagonalise the original matrix Q but QS will show considerable
regularity. If there is a mechanism dl that belongs to a different representation

A1 A2 E
A1 A1 A2 E
A2 A1 E
E Ao1+o[A2]o+E

Table 2. Direct product table of group C 3v

(therefore, certainly to a different block), the product force should ‘mix’ properties of
the two symmetries. This effect can be read from direct product tables of groups [4]
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and it says what kind of representations can ever appear in a direct product of two
objects belonging to two representations. For illustration, Table 2 gives the direct
product table of group C3v.

If, for example, Sk belongs to A2 and dl to E, representation of the resultant
product force system may contain E-blocks only. This property is reflected in the
structure of Qk in a way that in two block columns pertaining to E there are nonzero
blocks only in block rows that belong to E. Matrix Qk is therefore still sparse, and it
can happen that blocks in the main block diagonal are all empty. This is not simple
coincidence, since direct product tables often rule out nonzero blocks in rows and
columns pertaining to the same representation (e.g. from Table 2, it follows that a
block pertaining to block row and column of A2 must be empty, since a mechanism
that belongs to A2 cannot generate a product force system belonging to A2 but A1).
The second reason for frequent appearance of zero diagonal blocks is that in case of
representations with multiplicity µ there is a hyperblock of µ×µ blocks pertaining all
to the same representation, hence non-empty block(s) can be located off the diagonal.

Finding a matrix Qk with empty diagonal blocks, it is easy to see from arguments
like in Figure 4 that the main diagonal of W is empty as well. Since unitary trans-
formations used for the digitalization cannot modify the trace of matrix W, among
the eigenvalues of W there must appear both positive and negative numbers, which
is a proof of indefiniteness.

Consider now a set of states of self-stress (S2,
o, . . . , oSν) for which all comple-

mentary stiffness matrices in symmetry adapted form QS
2,
o . . . , oQS

ν have empty
diagonal blocks. In this case any linear combination of matrices QS

i gives a resul-
tant matrix with empty block-diagonal, therefore the respective matrix W must also
be indefinite. In mechanical aspect it means that any linear combination of these
self-stresses is insufficient to provide additional stiffness to any linear combination of
independent displacement vectors included in DS .

5. Generalized bar-and-joint structures: extension of results

The higher-order symmetry analysis presented in the previous section uses the sup-
position of kinematic constraints being constant bar lengths. This section deals with
possible extensions of constraint types that fit both symmetry adapted and product
force analyses in order that the analysis under Section 4 can also be performed.

Theoretically, symmetry adapted first-order computations are applicable to an ar-
bitrary type of constraints, provided it does not break the symmetry of the whole
object, or in other words, if there is an internal matrix representation for the object
that gives full account of the topology. Since bar lengths are given by scalars, this
representation contained only ones and zeros, but if a definite direction had been
associated with the constraints, internal representations should contain minus ones
as well (for example, rotation of a straight line segment about a perpendicular bi-
sector seems to do nothing, while the same operation applied to an arrow reverses
its direction). From the aspect of nodal coordinates, a generalization is possible by
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introduction of single vectors. It will be useful when a folded structure is modelled:
folding lines are inclined to each other with a given angle that can be prescribed by
constant difference (or constant scalar product) of two vectors of fixed length, lying
in the direction of folds. Similarly, an angle between a vector and a bar can also be
prescribed by a scalar product or vector difference. There is, however, a necessary
additional condition that vector lengths must be kept fixed. Numerically it means a
constraint of constant vector norm.

An application of generalized constraints and nodes in first-order analysis is pre-
sented in [11, 12], here we restrict ourselves only to presenting a single example.

Consider two nodes Pi and Pj connected by a bar. Let this bar be an edge of a
rectangular plate that is determined by a vector vk in the model: length and direction
of vk is equal and parallel to the other edge of the modelled plate (Figure 5).

Pi
Pj

vk

Pi
Pj

vk
�

v

Figure 5. Bar and vector modelling a rectangular plate: difference of
vectors vk and PiPj

It can be guaranteed by three types of constraint functions:

fb =

√
(xj − xi)

2
+ (yj − yi)

2
+ (zj − zi)

2 − lij (5.1)

is for constant bar length PiPj ,

fv =
√
x2k + y2k + z2k − lk (5.2)

fixes Euclidean norm of vk (here and in the sequel, xk, yk and zk are relative vector
coordinates, in contrast to absolute coordinates indexed by i and j), while

fd =

√
(xk − (xj − xi))

2
+ (yk − (yj − yi))

2
+ (zk − (zj − zi))

2 − lij,k (5.3)

expresses the constant difference of vectors PiPj and vk, denoted as ∆v in Figure 5.
Note that if there is a C2 axis within the plane of the rectangle that shifts Pi and Pj ,
representation of fb and fv is +1 under this C 2 operation but it is -1 for fd, otherwise
the direction of the difference vector would break the symmetry.

Constraint functions in (5.1-5.2) were all generated in a form of vector difference.
This is useful when a product force test is intended to be done. Method of con-
structing matrix Q is based now on the same principles as in Section 3: vector norms
and differences in constraints of type fv and fd generate force-like quantities along
the respective directions. Their effect can now be taken into account by assembling
matrices T and S in the same way as in the case of constraints fb: a 3-by-3 diagonal
block in T, associated with a function fv and fd are filled with +1 if columns refer
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to vector coordinates, while constraint of type fd will mean an additional diagonal
block of plus or minus ones in columns of edge starting or endpoints, respectively.

Note that entries of T divided by vector norms or difference vector lengths can
also be obtained as first-order approximation of second derivatives of the respective
constraint function according to the variable in question. This approach to the prob-
lem of second-order stiffness is based on a regular second-order analysis of the original
compatibility matrix of bar-and-joint structures [13]. For example, if fd and yk belong
to m-th row and n-th column, respectively, of the compatibility matrix of a structure,
entry tmn can be obtained from

tmn = lij,k
∂2fd
∂y2k

≈ lij,k
∂
yk−(yj−yi)

lij,k

∂yk
= +1. (5.4)

An important remark: a similar extension of higher-order symmetry analysis is pos-
sible by using other constraint functions instead of vector differences (e.g. a scalar
product), but the applicability of a product force test requires an exact statical inter-
pretation of self-stress induced by the respective constraint, which is not always an
easy problem to solve.

6. Expandohedra: a numerical example

For better understanding, in this chapter two sample problems will be presented
to illustrate practical applications for the theory above. The object of the analysis
will be in both cases an assembly with icosahedral symmetry, called expandohedron
[14]. Expandohedra are constructed to model the swelling of some viruses, and the
denomination refers to a fully symmetric finite expansion.

Figure 6. Cardboard model of an icosahedral expandohedron
6.1. Single-link icosahedral expandohedron. The assembly consists of rigid pen-
tagonal prisms connected by a triangle-rectangle-triangle folded linkage of C2 sym-
metry (connections between rigid elements are all revolute hinges). In the mechanical
model, prisms were substituted by determinate bipyramidal bar-and-joint networks
built upon the inner pentagonal faces, and new constraints shown in Section 5 were
used to reduce matrix dimensions. The physical and mechanical models are sketched
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in Figure 7, B and K are vertices of a bypiramid lying on its C5-axis, the constant
length of dotted difference vector ∆v fixes the constant angle of revolute hinges along
the two edges of the triangular plates.

Figure 7. Physical (folded) and mechanical model for a single-link icosahedral
expandohedron

Irrespective of the applied numerical model, this expandohedron must have a compat-
ibility matrix with 12 rows less than the number of its columns, which means at least
12 independent displacement systems (six of them are due to rigid body motions).
Assuming a general - not fully open - configuration, first-order symmetry adapted
analysis showed that there are 9 extra mechanisms with 9 states of self-stress, in the
following distribution:

Represen- Number of
General Configuration

tation Blocks
Number of Number of States
Mechanisms of Self-stress

A 1 1 1
T 1 3 3x2 = 6 0
T 2 3 3x1 = 3 3x1 = 3
G 4 0 0
H 5 5x1 = 5 5x1 = 5

Table 3. Mechanisms and states of self-stress of a single-link icosa-
hedral expandohedron

Since there are both a fully symmetric mechanism and a state of self-stress, the finite
character of swelling motion cannot be proved by symmetry arguments (nevertheless,
there exists a geometrical proof). A simple product force test based on the fully
symmetric state of self-stress, however, accounts for the existence of additional stiff-
ness pertaining to all linear combinations of mechanisms except for that containing
only the fully symmetric one. In other words: without using serious higher-order
symmetry considerations we have proved the existence of exactly one finite (swelling)
mechanism, all others can be blocked by self-stresses.

6.2. Double-link icosahedral expandohedron. In this model adjacent pentagonal
bypiramids are connected by pairs of ball-jointed bars with C 2 symmetry.
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Figure 8. Ball-jointed connection of a double-link icosahedral expandohedron

Apart from rigid body motions, here are obtained six mechanisms again only from
counting rows and columns of matrix C. The result of first-order analysis is as follows:

Represen- Number of
General Configuration

tation Blocks
Number of Number of States
Mechanisms of Self-stress

A 1 1 0
T 1 3 3x1 = 3 0
T 2 3 0 3x1 = 3
G 4 0 0
H 5 5x1 = 5 0

Table 4. Mechanisms and states of self-stress of a double-link icosa-
hedral expandohedron

Lack of fully symmetric self-stress indicates now finite expansion directly. The sym-
metry adapted form of matrices Q based on each state of self-stress has all the empty
diagonal blocks, therefore neither of the linear combinations of self-stresses can stiffen
any linear combinations of mechanisms.

7. Conclusions

Symmetry-adapted higher-order mobility and stiffness analysis covers several sub-
methods that were partially developed earlier: the first-order matrix analysis in sym-
metry adapted coordinate system and the product force test also for asymmetric
structures are robust tools for investigation of bar-and-joint structures. It was shown,
however, that efficiency can be increased by coupling the two methods: if there exists
any, a fully symmetric state of self-stress - which is the most likely to impart second-
order stiffness to a structure - can be identified by symmetry analysis. Existence or
lack of second-order stiffness, however, can only be decided in a general case for a
given state of self-stress by second-order analysis. The symmetry adapted version of
this latter method simplifies calculations with fully symmetric states of self-stress and
in some cases it accounts for the non-existence of stiffening effect for arbitrary linear
combinations of self-stresses with lower symmetry.

A coupled symmetry and second-order stiffness analysis for bar-and-joint structures
could be generalized to more complex mechanical models containing free vectors and
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kinematic constraints formulated by a vector difference norm but it is possible to use
another type of scalar constraints once a product force can be defined and symmetry
group representations can be found.
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Abstract. This study presents the optimal design of a new complex structural model
[laminated carbon fiber reinforced plastic (CFRP) deck plates with aluminium (Al) stiffeners]
which is depicted in Figure 1. The structure was designed both for minimal cost and minimal
weight. Design constraints on maximum deflection of the total structure, buckling of the
composite plates, buckling of the Al webs, stress in the composite plates and stress in the
Al stiffeners are considered in the calculation. The Rosenbrock’s Hillclimb algorithm is used
in the optimization process.
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1. Introduction

Sandwich structures utilize the advantages of different structural components. These
components can have different structural configurations (e.g. plates or beams) or
different material properties (e.g. density or damping coefficients). In the design of
layered beams, plates and shells, one can exploit the different beneficial characteristics
of these components. Prime examples are orthotropic sandwich structures, which have
a high ratio of bending stiffness to density. Hence they are often used in light-weight
structures.

Recent literature reviews [1, 2] highlight the significant effort directed at the design,
analysis, and application of sandwich structures. Examples include a bending theory
for sandwich beams with thick faces in [3]. Notable work is reflected in [4, 5], as well
as the proceedings of international conferences on sandwich constructions [6, 7, 8, 9].
There is also a report on marine applications of sandwich construction [10].

The optimum design of specialized welded sandwich panels for ship floors was
treated in [11], while a five layer beam was analysed and optimized in [12, 13]. This

c©2004 Miskolc University Press
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beam consists of a rubber layer, two aluminium profile beams and two CFRP deck
layers.

In the present study a new structural model is investigated. Sandwich plates have
deck layers made of metal or FRP (fiber reinforced plastic) plates, and their inner
layer is usually made of foam or honeycomb. On the contrary, cellular plates consist of
metal deck plates and metal stiffeners welded into the deck plates. Our new structural
model combines sandwich and cellular plates, since it has FRP deck plates and two
or more aluminium square hollow section stiffeners riveted into the deck plates. So it
is a new combination of materials, stiffeners and fabrication technology.

The multicellular sandwich plate is constructed from a number of longitudinal
Al (aluminium) square hollow section beams and two laminated CFRP deck plates
(Figure 1). The connection between the beams and deck plates is effected through
riveting. This type of sandwich plate can be applied in many engineering load carrying
structures such as ship floors, bridges, airplanes, building floors, etc.

The main aim of the present study is to work out an optimum design procedure for
such a structural model. In doing so, design constraints are formulated on the buckling
strength of the compressed deck plate, the local buckling of the aluminium square
hollow section plate elements, stress in the composite plates and in the Al stiffeners
as well as the deflection of the simply supported beams subjected to distributed
pressure acting on the total surface.

In order to achieve cost savings in the design stage, a cost function is formulated
on the basis of material and fabrication cost analysis. The mass function used in the
optimization process includes the sum of the mass of CFRP plates and beams.

Mathematical programming methods for constrained function minimization are an
integral part of the procedure. The Rosenbrock’s Hillclimb algorithm [14] is used for
the determination of the optimal dimensions of the structural model.

2. A new multicellular sandwich plate model

The sandwich plate model under consideration is depicted in Figure 1. The CFRP
plates are constructed from laminated layers. The fiber volume fraction is 61% and

L

p

p

B

bC

td

hAl

tw

Figure 1. Multicellular sandwich plate structure
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the matrix volume fraction is 39%. All of the fibers of a layer and laminate are
arranged in the longitudinal direction. The plates are riveted to the upper and lower
flanges of the aluminium square hollow section (SHS) profiles. The calculated required
distance between the rivets is 31 mm.

The material parameters of a pre-impregnated CFRP layer are given as follows: the
thickness of a layer t = 0.2 mm, longitudinal Young’s modulus Ex = Ec = 120 GPa
and the transverse modulus Ey = 9 GPa. The mass of the CFRP plate is ρ∗ = 180
g/m2, and Poisson’s ratios are νxy = 0.25 and νyx = 0.019.

3. Optimization

3.1. Cost function. The structure is optimized with respect to minimum cost K,
which can be formulated as the sum of the material and manufacturing costs [15],

f(x) = K = KCFRP +KAl +Kheat treatment +Kmanufacturing

K(Euro) = 2(31.047n) + kAl[ns(ρAl4hAltwL)]+

+ 2n
525

528
+ kf [n14min + ns26min + 110min] ,

(1)

where n represents the number of CFRP layers, ns the number of stiffeners, ρAl the
density of the Al profile, h the height and tw thickness of the SHS Al profiles.

The main contribution to the material cost arises from the raw material for the
composite plates. In our case this cost reached 31.047 Euro/layer. The cost of the Al
profile is 4.94 Euro/kg. The specific fabrication cost is kf=0.6 Euro/min.

The cost of heat treatment depends on the volume of deck plates to be heat treated
and the type of the resin matrix. In our case these cost components can be calculated
as a function of layer number and plate dimension. The heat treatment cost of a
manufactured 220x1200x2mm CFRP plate is known, so compared to it the cost of
the examined plates based on volume can be calculated. The resulting ratio can be
seen in eq. (1).

The total fabrication cost (as the function of time [min]) is the sum of the cost
required for the manufacturing of the CFRP plates (n14min + 110min), the cutting
cost of the Al profiles (ns6min) and the total assembly costs (ns20min). The time
associated with manufacturing of the CFRP plates consists of the time lost in press
form preparation, layer cutting, layer sequencing and final working. Final assembly
consists of drilling of the CFRP plates and the Al profiles, and also riveting. Drilling
of the holes is an implicit function of the number of layers.

The design variables are the height h and thickness tw of the SHS Al profiles, the
number of layers n of the CFRP plates and the number of stiffeners ns. The fiber
orientation is fixed for all layers (0o) as described above.

3.2. Mass function. The total cost of the structure is the sum of the CFRP and Al
components:

m = 2ρc [BL(nt∗)] + nsρAl

[
L(4hAltw − 4t2w)

]
, (2)
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where t∗ is the thickness of a laminate.

3.3. Constraints.

3.3.1. Deflection of the total structure.

wmax =
5pL4

384(EcIc + EAlnsIAl)
+

5∆ML2

48(EcIc + EAlnsIAl)
≤ L

200
, (3)

where:
Ic, IAl: moment of inertia of the CFRP plate and Al profile,
Ec, EAl: reduced modulus of elasticity of the CFRP lamina and Young’s
modulus of Al profile.

There is the effect of the relative movement between the components, and is ex-
pressed as a function of the differences in predicted stresses in the middle of Al profile
and CFRP plate. Due to difference in stress (∆σ) there is a corresponding difference
in the equivalent applied moment (∆M). So the second part of the equation is the
additional deflection due to the sliding.

3.3.2. Composite plate buckling [15].(
bc
nt∗

)
≤

√
π2

6σmax(1− νxyνyx)

[√
ExEy + Exνxy + 2Gxy(1− νxyνyx)

]
, (4)

where:
bc: plate width between stiffeners,
σmax: maximum stress in the CFRP lamina,
Ex, Ey, Gxy: laminate moduli,
νxy, νyx: Poisson’s ratios.

3.3.3. Web buckling in the Al profiles [16].

hAl

tw
≤ 42

√
235EAl

240ESteel
, (5)

where: EAl, ESteel: Young’s modulus of elasticity of Al and Steel.

3.3.4. Stress in the composite plates. The moment acting on the total structure is
distributed on the components of the structure. So it can be calculated as the sum of
the distributed moment components acting on the composite plates and Al profiles.
M = XcM +XAlM

XcM

Ic

hAl + nt∗

2
≤ σCall , (6)

where:

Xc =
EcIc

EAlnsIAl + EcIc
; M =

pL2

8
; σCall =

σT
γc

σCall : allowable stress,
XcM : moment acting on composite plate,
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σT : tensile strength of composite lamina,
γc: safety factor (=2).

Because of the high number of stiffeners in the case of optimum design, the stress
due to the transversal bending moment can be neglected.

3.3.5. Stress in the Al stiffeners.
XAlM

nsIAl

hAl

2
≤ σAlall , (7)

where:
XAl =

EAlnsIAl

EAlnsIAl + EcIc
; σAlall =

fy
γAl

,

σAlall : allowable stress,

XAlM : moment acting on Al tube,

fy: yield stress of Al,

γAl: safety factor (=1.5).

3.3.6. Size constraints for the design variables.
10 ≤ hAl ≤ 100 ,
2 ≤ tw ≤ 6 ,
2 ≤ n ≤ 32 ,
7 ≤ ns ≤ 20 .

(8)

These represent physical limitations on the design variables [mm], taking economic
and manufacturing aspects into consideration.

3.4. Problem formulation. The optimum design problem under consideration is
mathematically stated as:
Find

x∗ = (x1,x2,...xn) ∈ Rn (9)
that minimizes a cost function f(x) subject to the constraints

gj(x) ≤ 0, j = 1, 2, ...m ,
hj(x) ≤ 0, j = 1, 2, ...r , (10)

where f(x), gj(x), hj(x) are scalar functions of the design variables x. The optimum
solution is denoted by x∗.

3.5. Rosenbrock’s non-linear mathematical programming method. The Rosen-
brock’s direct search non-linear mathematical programming method is used to deter-
mine the optimal geometric values, required number of Al stiffeners and the values of
the objective functions.

Rosenbrock’s method [14] is a simple but efficient mathematical programming
method, which uses derivative-free direct searches. Instead of continuous line searches,
the algorithm takes discrete steps during searches in orthogonal search directions. In
each iteration, the procedure searches successively along n linearly independent and
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orthogonal directions. When a new point is reached at the end of an iteration, a new
set of orthogonal search vectors is constructed. Boundary zones are introduced to
slow down the algorithm when it approaches the constraint boundaries.

A modified objective function, using penalty functions, is used to accommodate the
constraints. Instead of continually searching in the coordinate space corresponding
to the directions of the independent variables, the method achieves an improvement
after one cycle of coordinate searches through alignment of the search directions in an
orthogonal system. Here, the overall step of a previous stage is used as the first build-
ing block for the new set of orthogonal directions. After iteration kth, Rosenbrock’s
method locates x(k+1) after completing unidimensional searches from the previous
point x(k) along a set of orthonormal directions. The method is easy to implement,
and attractive for many problems in engineering, even though the method may con-
verge to local minima instead of the global minimum.

4. Numerical results

4.1. Mass optimization. Table 1 shows the result of mass optimization of the ex-
amined structure according to the mass function (eq. 2) and design constraints (eq.
3-8). The obtained optimal number and standard geometries of the stiffeners for the
case of different numbers of layers (12-32 pieces) of CFRP deck panels can be seen in
Table 1.

Table 1. Result of mass optimization

Number of Optimal discrete stiffener Mass
layers numbers and geometries

n [pieces] hAL [mm] tw [mm] ns [mm] [kg]
12 60 3 19 98.391
14 60 3 17 93.32
16 60 3 15 88.25
18 60 3 13 83.179
20 60 3 13 86.419
22 60 3 10 77.193
24 60 3 9 76.278
26 50 2.5 9 68.091
28 50 2.5 8 68.445
30 50 2.5 7 68.799
32 40 2.5 7 67.787

The global mass optimum is obtained in case of a laminate of 32 layers and 7
pieces (limited in size constraints) of 40x40x2.5 mm stiffeners. This optimum is a
global optimum only for the examined interval of n (Figure 2), but it is clear that the
total stiffness of the examined structure can be increased by the continuous increase
of the number of layers of the deck panel which causes a reduction in the number and
geometry of stiffeners. So a lighter structure can be constructed in this way, but the
cost will be extremely high.
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Figure 2. Mass of the structure versus number of CFRP layers

The obtained optimal mass structure of Table 1 was compared to the mass of a total
steel multicellular plate structure (Figure 3) optimized in [11]. The dimension (B,L)
of the steel structure and the applied pressure (p) are the same as in case of the
sandwich plate structure described above.

B

td

hA
tw

td

Figure 3. Steel multicellular plate structure

Table 2 summarizes the mass comparison of optimized plate structures made of steel
or sandwich.

Table 2. Mass comparison of optimized plate structures made of steel or sandwich

Optimal discrete stiffener Thickness of
Mass

Mass
numbers and geometries deck plates ratio
hS ; hAL tw ns td kg [%]
[mm] [mm] [mm] [mm]

Steel structure
40 2 6 2 517 100

(fy=355 Mpa)
Composite structure 40 2.5 7 6.4 67.787 13.11

It can be seen that an extremely high mass reduction can be achieved by the applica-
tion of a modern light-weight structure instead of a traditional steel structure. This
numerical example proves that 86.89 % mass saving can be realized by the application
of a CFRP-Al sandwich plate structure instead of a total steel structure.
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4.2. Cost optimization. Cost saving can be a prime design aim of sandwich struc-
tures because composite materials are very expensive. Table 3 shows the result of
cost optimization of the analyzed structure based on the cost function (eq. 1) and
design constraints (eqs. 3-8). The optimal number and standard geometries of the
stiffeners obtained and total costs for different numbers of layers (12-32 pieces) are as
follows:

Table 3. Result of cost optimization

Number of Optimal discrete stiffener Cost
layers numbers and geometries

n [pieces] hAL [mm] tw [mm] ns [mm] [Euro]
22 90 4 7 2072
24 60 3 9 2140
26 50 2.5 9 2226
28 60 3 7 2356
30 60 3 6 2464
32 60 3 5 2572

Table 4. Cost components

Number of Cost of CFRP Cost of Al Cost of heat Cost of Total
layers deck panels stiffeners treatment fabrication cost
[pieces] [Euro] [Euro] [Euro] [Euro] [Euro]

22 1366 302.5 43.75 360 2072.25
24 1490 194.5 48 408 2140.5
26 1614 135 52 425 2226
28 1739 151 56 410 2356
30 1863 130 60 411.6 2464
32 1987 108 64 413 2572

Table 4 and Figure 4 show the optimum values and cost components of the opti-
mized structures. It can be seen that the biggest part of the total cost is the cost of
the composite deck plates, mainly in case of a high number of layers, while the other
components are much smaller compared to it. It can also be seen that increasing the
number of deck layers will increase the plate cost to a large extent, so the material
cost of CFRP plates is the most decisive cost component. Based on these facts the
structure having the smallest layer number is considered to be the most economical.

Because of the high number of stiffeners in case of a small layer number of deck
plates a limitation should be defined for the number of stiffeners (ns ≤11). According
to this limitation stating that the minimal number of stiffeners is equal to or smaller
than 11, the optimum is a laminated plate with 18 layers and 11 pieces of 70x70x4
mm stiffeners.
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Figure 4. Cost components

The optimal cost obtained – see Table 1 – is also compared to the cost of a total
steel multicellular plate structure (Figure 3).

Table 5. Cost comparison of the optimised plate structures made of steel or
sandwich

Optimal discrete stiffener Thickness of
Cost

Cost
numbers and geometries deck plates ratio
hS ; hAL tw ns td [Euro] [%]
[mm] [mm] [mm] [mm]

Steel structure
40 2 5 2.5 1014 100

(fy=355 Mpa)
Composite structure 90 4 7 4.4 2072 204

The attainable significant mass saving achieved by the application of modern com-
posite materials causes high additional costs. In our example this extra cost of the
optimized composite structure is 104 % compared to the steel structure.

So it can be summarized as follows – based on the mass saving and the disad-
vantageous extra cost – the application of fibre reinforced laminates is recommended
in applications where mass saving is the prime design aim and cost saving is only
secondary (e.g.: space flight, air-, water- and land vehicles, building parts, etc.).

Additional advantageous characteristics of these composite structures include vi-
bration damping and corrosion resistance. Due to corrosion resistance, surface treat-
ment and painting can be neglected, which can result in significant cost saving.

5. Conclusion

A new structural model of a sandwich plate riveted from two aluminium square
hollow section rods and two CFRP deck plates is investigated by an optimization
procedure.
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In an optimum design procedure the dimensions and number of stiffeners and num-
ber of layers of sandwich plates are determined, which fulfil the design constraints and
minimize the cost and mass. It is shown that significant mass and cost savings can
be achieved in the design stage through optimization.
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Abstract. In the paper the discrete quasi–evolutionary polyoptimization process is pre-
sented and illustrated with the optimization of an orthogonal double–layer spatial truss.
The problem is solved in six cycles of evolution. During the analysis, values of the most
important design variables connected with the structure of the object are obtained. As the
result of the analysis, the cover that satisfies in the best way all considered requirements is
obtained.
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1. Introduction

A modern large–scale object must satisfy many requirements, such as load bear-
ing capacity and serviceability conditions and requirements of the investor and user.
The structure has to be light, functional, friendly to the natural environment, and
easy to maintain. All the requirements have influence on the economic aspect of the
investment, like costs of erection, exploitation and utilization. Another important re-
quirement is the attractive architecture form. The shape, dimensions and the general
appearance of the structure should make an appropriate impression. In the first stage
of the process of designing, architect’s, user’s, engineer’s and investor’s ideas of the
structure come together [1, 2]. Those ideas are most frequently contradictory and the
final concept of the structure must be a compromise that is sometimes very difficult
to achieve. In such a situation optimization becomes an indispensable tool [3–6]. But
in the case of complex problems some difficulties appear. Due to the necessity to
consider many decision variables, the feasible range of solutions is quite numerous.
Also, a considerable number of constraints must be taken into account. The choice of

c©2004 Miskolc University Press
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the best solution should be based on several criteria to make it satisfy all significant
conditions and requirements in the best way. Solving that sort of problems only with
methods based on a traditional approach to optimization may cause some difficulties.
A quasi–evolutionary approach seems to be more effective.

2. Qasi–evolutionary polyoptimization

The quasi–evolutionary approach to solving optimization problems comes from obser-
vations of the outer world. In nature as well as in the history of human civilization one
can notice continuous development, with trends to better and more complex forms.
During the evolution, solutions that are difficult, poor or less functional are elimi-
nated by stronger, lighter and more suitable ones for the purpose they are designed
for. When new solutions are created, knowledge and experience from former attempts
are applied. A similar approach may be employed when optimization problem is con-
sidered. It is useful, especially in the case of complex objects.

The quasi-evolutionary optimization process consists of few cycles, each of them
being a standard numerical problem. The term ’quasi-evolutionary’ is used here to
avoid mistaking it for the traditional evolutionary optimization procedure in which
genetic algorithms are required. In the quasi-evolutionary formulation, each solution
gives information and experience that allow one to form better assumptions, select
more effective methods of solution and help to exclude any insignificant elements of
the solution. On the basis of the former results the problem is analyzed again in the
next cycle. In this context, the quasi–evolutionary approach is similar to evolution in
the world of nature, where only better adapted forms give start to a next generation
[6].

3. Problem statement

The paper presents the process of a polyoptimal design of a cover of a sports hall.
Dimensions of the space to cover are: width – 60 m, length – 105 m, height – 8 m.
The only input requirement is that the cover should be realized as a two–layer spatial
truss made of steel tubes. Values of all remaining variables describing the structure
are to be obtained as results of the polyoptimization analysis. Since the object of the
analysis is rather complex, solving the problem formulated in a traditional way may
cause some difficulties. They can come from the fact that many decision variables
must be considered, which leads to a considerable domain of feasible solutions. In
process of design of the structure many requirements and conditions must be satisfied.
It leads to a considerable number of constraints and criteria. In order to obtain the
solution in a reasonable period of time, application of the quasi–evolutionary approach
to the polyoptimization is highly recommended.

4. Solution of the problem

4.1. General algorithm. The problem is solved in six evolution cycles. Each cycle
is a standard polyoptimization problem. In most cases the enumeration method is
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employed to analyze the problem. The objective result is a set of nondominated
evaluations and nondominated solutions. From these sets a preferred evaluation and
its inverse image – a preferred solution are selected. The preferred solution from the
former cycle is the starting point for the next one. The starting point of the first
cycle is chosen arbitrarily. In this cycle the polyoptimal catalogue is searched. In the
second one, shape of the cover and the manner of support are analyzed. The third
cycle concerns the rise of the truss, the fourth one – the depth of the truss and the
distance between nodes. The next one chooses the grade of steel and the last one
– selects catalogue again. In this way, the complex problem is divided into several
relatively simple problems coordinated naturally by the idea of evolution.

4.2. The OPTYTRUSS system. Numerical analysis of the structure is performed
by the OPTYTRUSS system. The system enables computation of internal forces in
the truss bars on the basis of the matrix displacement method, the choice of the
appropriate profile for each bar, and optimization analysis of different variants of the
structure. The profiles are selected from the catalogue provided. Such an approach
makes the problem a discrete one, because the space of solutions contains a finite
number of variants. Since every analyzed variant of structure is built of profiles that
are commercially available this way of optimum design is technologically correct.

In the system all loadings typical of the covers may be applied, i.e. deadweight,
snow load, wind load and loads arising from mounted installations or devices. The
loads are realized by several simple types of loads: uniformly distributed load, trape-
zoidal load, triangular load and concentrated load. The loads may be imposed in the
upper or lower layer. There are two means of imposing the distributed loads: they can
be vertical or normal to the surface of the cover. The concentrated load is expressed
by its three components, so the force may be imposed in any direction. Every load is
reduced to a nodal load.

There are four types of profiles available: circular tube, circular, square tube and
square (Figure 1). For every type a catalogue with cross–sections of different sizes
may be applied.

D

        t

a) b)

d

c) d)

a
a

D

t

Figure 1. Types of profiles available in the OPTYTRUSS system
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a)
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Figure 2. Analyzed shapes of the cover: a) plane, b) double slope, c)
a parabolic arc, d) circular arc, e) hyperbolic paraboloid, f) dome–
shaped with arc edges, g) four slope, h) dome–shaped with flat edges

The OPTYTRUSS system facilitates analysis of the two–layer spatial trusses based
on the orthogonal grid of nodes in both layers. There are eightshapes of analyzed cov-
ers available: plane, double slope, parabolic arc, circular arc, hyperbolic paraboloid,
dome–shaped with arc edges, four slope, and dome–shaped with flat edges (Figure
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2). Six objective functions are computed for every solution: the volume of material of
truss members per one square meter of projection of the cover, the strain energy per
one square meter of projection of the cover, the greatest displacement, average use of
cross–sections and two objective functions that may be created by the user. There
are three methods of optimization built–in: exhaustive search, crude Monte Carlo
and modified Monte Carlo. The system computes values of objective functions for
every analyzed solution, therefore other methods may also be used, but this cannot
be performed automatically. In order to choose the preferred evaluation the distance
method is applied. As a reference point the ideal evaluation or the Nadir evaluation
may be used.

4.3. The first evolution cycle. The starting point in the first evolution cycle is the
plate spatial truss with an orthogonal grid of nodes and a depth of 3 m. The distance
between nodes is 3.75 m. The truss is made of steel with the yield stress equal to
225 MPa. The cover is supported in the upper layer by posts placed on the external
longer edges of the truss. The distance between the supports is 15 m.

The first evolution cycle considers the catalogue of steel profiles. At the start, a
catalogue containing 72 elements is assumed. This catalogue is a representative sample
of the metallurgical assortment available in Poland. On the basis of the starting
catalogue, sixteen other catalogues are created. They are formed with regard to the
frequency of choice of particular profiles by the designing system. The initial catalogue
is used for designing the analyzed structure. Then the elements that are not chosen
or are rarely chosen by the designing system are discarded from the initial catalogue.
In that way the second catalogue (second solution analyzed in this evolution cycle)
is obtained. It is applied in the system during designing the analyzed structure and
the process is repeated. It is stopped when the one–element catalogue is obtained. In
this way the discrete 17–element domain of feasible solutions is obtained.

x(l) =
{
xi(l)

}
i = 1, . . . , 17 (4.1)

where the number in brackets in subscript denotes the number of the evolution cycle.

Definition of the vector of constraints is not required in this cycle, because all
created catalogues facilitate designing a structure correctly. Each solution is evaluated
with regard to three criteria of optimization that are expressed formally as the vector
of objective functions

f(l)
(
x(l)

)
=

{
f1(l)

(
x(l)

)
, f2(l)

(
x(l)

)
, f3(l)

(
x(l)

)}
(4.2)

where

f1(l)
(
x(l)

)
– mass of the structure per one square meter of projection of the

cover (in kg/m2),
f2(l)

(
x(l)

)
– the greatest displacement (in cm),

f3(l)
(
x(l)

)
– the number of profiles in the catalogue (as the technological

criterion).

All the functions are minimized. The diagram of the objective functions is presented
in Figure 3.
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Figure 3. Diagram of the objective functions

From the set of evaluations the nondominated ones are selected and normalized. Then
the preferred evaluation is chosen with the use of distance function method with the
norm ||p|| = 2 [6]. The inverse image of the preferred evaluation is the preferred
solution that determines the catalogue consisting of four elements (Table 1).

Table 1. The preferred catalogue

Number of element Diameter[mm] Thickness of the wall[mm]
1 51.0 2.9
2 88.9 3.6
3 159.0 4.5
4 323.9 8.0

The values of the objective functions for the preferred solution form the vector

fp(l) = {42.17, 20.96, 4} . (4.3)

During the analysis it has been noticed that from profiles with the same diameter
those with the thinnest walls are most frequently chosen by the designing system. It
is due to the smaller slenderness ratio of bars made of such profiles (when bars with
the same cross–sectional area are considered).

4.4. The second evolution cycle. In the second evolution cycle, the polyoptimal
manner of support and shape of the cover are selected. Four shapes are considered:
plane, double slope, parabolic arc, and circular arc (Fig. 2), and three manners of
support: one–point supports at the external edge of the upper or lower layer and
four–point supports in the lower layer (Fig. 4). Every shape (excluding the planar
one) is analyzed with three different rises of 3, 6 and 9 m in order to establish its
approximate value.
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a) b) c)

Figure 4. Analyzed manners of support: a) one–point support in the
lower layer, b) one–point support in the upper layer, c) four–point
support

The analyzed variants of the cover are represented by the vector of decision variables
x(2):

x(2) = {x1(2), x2(2)} , (4.4)

where:

x1(2) – shape of the cover,
x2(2) – manner of support.

Three criteria of evaluation are assumed: minimum of the mass of the structure per
one square meter of projection, minimum of the greatest displacement and minimum
of increase of the space volume arising from changing the shape of the cover (in
reference to the volume of the starting point structure). Minimizing the volume is
important because of maintenance costs (space that needs heating in the winter). The
vector of objective functions is presented below:

f(2)
(
x(2)

)
=

{
f1(2)

(
x(2)

)
, f2(2)

(
x(2)

)
, f3(2)

(
x(2)

)}
(4.5)

where

f1(2) = f1(1)and f2(2) = f2(1),
f3(2)(x (2)) – increase in volume in reference to the volume of the starting
point structure (in m3).

In order to solve the problem, the exhaustive search method is employed. The
feasible domain contains 30 elements. The computations are performed with the use
of the catalogue obtained as a result of the former cycle. Diagrams of the 3D–space
of evaluations are presented in Figure 5.
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Figure 5. Diagrams of the 3D space of evaluations

After the polyoptimization analysis, the preferred solution is obtained: – a double
slope cover with a rise of 3 m, supported in the lower layer by the four–point supports.
The vector of objective functions for the preferred solution is presented below:

fp(2) = {17.18, 7.72, 9450} . (4.6)

A fragment of the obtained structure is presented in Figure 6.
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Figure 6. A fragment of the structure being the result of the second
evolution cycle

4.5. The third evolution cycle. In this cycle, only one decision variable is analyzed:
the rise of the cover in order to establish its precise value. The vector of decision
variables is therefore a one–element one:

x(3) =
{
xl(3)

}
, (4.7)

where xl(3) is the rise. The decision variable is discretized and some constraints are
imposed on it:

x1(3) = n · 0.6m, n = 2, 3, ..., 8 . (4.8)

The vector of objective functions is the same as in the former cycle. The diagram of
the objective functions is presented in Figure 7.
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Figure 7. The diagram of objective functions

After the polyoptimization analysis the preferred solution is obtained:

xp(3) = {1.8} . (4.9)
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It means that a rise of 1.8 m satisfies the assumed criteria in the best way. The values
of objective functions are as follows:

fp(3) = {17.57, 9.20, 5670} . (4.10)

4.6. The fourth evolution cycle. The fourth cycle concerns the depth of the truss
and the distance between nodes. A two–element vector of decision variables is as-
sumed: The fourth cycle concerns the depth of the truss and the distance between
nodes.
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Figure 8. Diagrams of the 3D space of evaluations

A two–element vector of decision variables is assumed:

x(4) =
{
x1(4), x2(4),

}
(4.11)
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where

x1(4) – depth of the truss (in m)

x1(4) = n× 0.3m, n = 8, 9, ..., 15 (4.12)

x2(4) – distance between nodes (in m)

x2(4) = 3.00, 3.75, 5.00 m . (4.13)

In order to make a solution technologically correct, angles between a cross brace
and the layer of the truss must be included between 30o and 60o. This fact is one of
the constraints of the feasible domain.

The objective functions are analogous to those from the former cycle. The only
difference is that the considered increase of the volume arises here from changing the
value of the truss depth. In order to solve the problem, the Gauss–Seidel method is
used. Diagrams of the 3D space of evaluations are presented in Figure 8.

As a result of the analysis, the 12–element set of nondominated evaluations and
the set of nondominated solutions are obtained. The preferred solution is chosen by
the use of the distance method:

xp(4) = {3.6, 5.0} . (4.14)

The preferred evaluation is:

fp(4) = {19.85; 5.35; 22, 720} . (4.15)

4.7. The fifth evolution cycle. The aim of this cycle is the choice of the grade of
steel. Two grades of steel are considered, with the yield stress of the first equal to
225 MPa and that of the second one 210 MPa. Thus, only one decision variable is
considered here:

x(5) =
{
x1(5)

}
(4.16)

where
x1(5) = 210, 225 MPa . (4.17)

The problem is analyzed with regard to two criteria: minimum of the structure mass
and minimum of the greatest displacement, defined in the vector of objective functions

f(5)
(
x(5)

)
=

{
f1(5)

(
x(5)

)
, f2(5)

(
x(5)

)}
, (4.18)

where f1(5) = f1(4) and f2(5) = f2(4).

The evaluations of the solutions analyzed are contained in Table 2.

Table 2. Evaluations of the solutions analyzed
Yield stress Structure mass Greatest displacement

[MPa] [kg/m2] [cm]
210 20.02 4.92
225 19.85 5.35
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The preferred solution is chosen on the basis of the results discussion. Using steel
with the lower yield stress leads to an increase of structure mass of 0.9 % and a
decrease of the greatest displacement of 8.0 %. Therefore, the preferred solution is:

xp(5) = {210} (4.19)

and the preferred evaluation:

fp(5) = {18.70, 6.07} . (4.20)

4.8. The sixth evolution cycle. In this last cycle the catalogue is considered again.
24 three–, four– and five–element catalogues, similar to the one obtained in the first
cycle, are analyzed with the exhaustive search method. The criteria of evaluation are
analogous to the ones from the former cycle. After the polyoptimization analysis the
preferred catalogue is established (Tab. 3). The catalogues obtained in the first (T1)
and discussed sixth cycle (T2) are presented in Figure 9.

Table 3. The preferred catalogue

Number of element Diameter Thickness of the wall
[mm] [mm]

1 54.0 2.9
2 101.6 3.6
3 168.3 5.0
4 273.0 7.1

20.0
17.5
16.0
14.2
12.5
11.0
10.0
  8.8
  8.0
  7.1
  6.3
  5.6
  5.0
  4.5
  4.0
  3.6
  3.2
  2.9
  2.6

30
.0

31
.8

33
.7

38
.0

42
.4

44
.5

48
.3

51
.0

54
.0

57
.0

60
.3

63
.5

70
.0

76
.1

88
.9

10
1.6

10
8.0

11
4.3

13
3.0

13
9.7

15
9.0

16
8.3

19
3.7

21
9.1

24
4.5

27
3.0

32
3.9

35
5.6

40
6.4

45
7.0

50
8.0

g[mm]

D[mm]

A i

D

g

Ai

        T1
        T2

Figure 9. The catalogues obtained in the first and sixth cycles of evolution
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Figure 10. A fragment of the structure being the result of quasi–
evolutionary polyoptimization

The preferred evaluation is:

fp(6) = {17.00, 5.33} . (4.21)

5. Conclusions

The quasi–evolutionary approach to optimization problems leads to better results
than the ones obtained with a traditional analysis. In case of complex problems, it
is possible to divide them into several simple ones. The numerical example shows
that the proposed method is efficient enough to analyze large–scale truss systems
(Figure 11). The structure that fulfils the assumed criteria best is a double–sloped
truss supported by four–point supports with a rise of 1.8 m, a depth of 3.6 m and
a distance between nodes 5.0 m, made of steel with a yield stress 210 MPa and four
kinds of profiles. The fact that every next cycle is based on the information obtained
in the former ones leads to permanent development of the problem formulation. It
also facilitates analysis from general issues to details and may be easily applied in
engineering practice.
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Abstract. The ability of spongy bone, which specifies the direction of trabeculae to be
parallel to the local principal stress directions is called, Wolff’s law [1]. Based on this
statement we can create a simple model using an easy iterative method which is called
locally orthotropic femur model [2]. The gist of the iteration is the following: in an FE
model according to the actual loading, first the material directions are engaged to be parallel
to the calculated principal stress for every element, then the principal stress directions are
calculated again and the material directions are modified. (The initial material orientations
are parallel to each other, or random.) The obtained iterative method is strongly convergent,
after six iteration loops the material angles do not change more than a few tenths and after
the fifteenth iteration are practically constant. Therefore the advantages of this iterative
method are its speed, effectiveness and similarity to real bone’s trabeculae structure. We
are planning to extend the 2D model to 3D, or rather to use the model obtained to the
validation process of femur prosthesis.

Mathematical Subject Classification: 74M99,74S05
Keywords: orthotropic, femur, FEM, biomechanics

1. Introduction

Remodelling theories represent one of the most important branches of bone biome-
chanical research. They are primarily aimed at the modelling of the processes happen-
ing in cancellous bone tissue, because this part of the bone remodels approximately
six to eight times faster than compact bone tissue. Among the existing models there
are micro and macro models. Micro models attempt to model the most complex
microbiological properties of spongy bone while macro models reflect only the most
fundamental properties of bones. This obviously means that the micro models are
much more complex and therefore require a much more extensive computer capac-
ity. (Some models takes several months to run on a 16-processor supercomputer, see
Huiskes [3].)

The aim of our research team is to apply the created model to test the stability of
femur prosthesis. Due to the large number of implantations to be tested there is no
time for several months running. So we wanted to create a femur model that reflects
as many properties of the bone as possible but at the same time allows a relatively fast

c©2004 Miskolc University Press
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calculation. On the other hand, the exclusion of remodelling processes would be an
unjustifiable negligence on our part, considering the fact that this is one of the most
fundamental characteristics of bones. Accordingly, we concluded that the application
of a macro model would be most reasonable.

The structure of spongy bone and at the same time the remodelling processes were
first examined by Wolff. In his research he observed that the bone trabeculaes form
their orientation in such a way that they are parallel to the local principal stresses
at every point. He stated this observation as a law that received the name Wolff’s
law. One of the most important cconlusions of Wolff’s law is that bones build up
their internal structure according to the actual loading present for a longer period
of time. This simple but very important property can easily be incorporated into
a FEM model. The acquired model is the so-called locally orthotropic bone model,
which was developed by Thomas J. Impelluso [2]. The model is fast and can easily be
applied, therefore it was reasonable to choose it for our research. We improved this
conception for 2D and 3D generic problems and three BASIC scripts were written,
which are able to automate the iteration in Nastran for Windows systems.

2. Locally Orthotropic Bone Model

As mentioned above, the locally orthotropic bone model is aimed to apply Wolff’s law
in practice. This is achieved through a simple iteration procedure. As the name of
the model suggests, the procedure requires the application of orthotropic materials;
based on our knowledge of literature data this consideration fits well the real behavior
of the bone, thus this is a reasonable simplification. Consequently, according to the
present state of science, regarding bones as orthotropic materials we obtain a very
good approximation [1].

The steps of the iteration are as follows:

1. In an orthotropic FEM model the original material orientations are chosen
parallel to each other or even at random.

2. The principal stress directions are determined for each element according to
actual loading.

3. Material orientations are modified to be parallel to the principal stress direc-
tions in each element.

4. If the magnitude of changes in material orientation exceeds the value preset
by us, then the calculation is repeated from step 2.

3. Mathematical background

The iteration in 2D can easily be incorporated into the Nastran for Windows FEM
code on Windows platforms, because the program makes the changing of material
orientations and polling of principal stress directions possible. Consequently, creating
a relatively simple BASIC script is enough. However, in 3D it is not possible to
change material orientations and poll principal stress directions using a single BASIC
function. Therefore first principal stress directions must be determined based on the
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stress matrix, then when these are known the stiffness matrix (D) of the material
must be transformed. Jacobi-transformation was applied to determine eigenvalues
and eigenvectors, see Popper [4]. The principal stresses are obviously sorted according
to magnitude. Then the components of the unit eigenvectors of the stress matrix
give the direction cosines required for the transformation. The equation applied for
transformation is the following [5], [6]:

Dnew = TDoriginalT
T

in which the form of T rotation matrix is:

T =

[
Λ 0
0 Λ

]
with Λ being the matrix containing direction cosines:

Λ =

 cos (σ1, x) cos (σ1, y) cos (σ1, z)
cos (σ2, x) cos (σ2, y) cos (σ2, z)
cos (σ3, x) cos (σ3, y) cos (σ3, z)

 ,

where cos (σ1, x) is the cosine of the angle between σ1 principal stress direction and
the x axis that is the first component of the eigenvector belonging to the highest
eigenvalue of the stress matrix and so on. The transformation must always be carried
out with the original (not rotated) material stiffness matrix, because the eigenvectors
of the stress matrix always give the directions related to the global (x, y, z) axes. 1.
The material stiffness matrix is not part of the input data of the program, so it can
only be determined through the values appearing in it. Its form is as follows:

D =



1
E1

−ν21
E2

−ν31
E3−ν12

E1

1
E2

−ν32
E3

0
−ν13
E1

−ν23
E2

1
E3

1
G12

0 1
G23

1
G13


.

For an orthotropic material, only 9 of the 12 nonzero terms are independent, due to
the symmetry of the D tensor:

ν12
E1

= ν21
E2

ν13
E1

= ν31
E3

ν23
E2

= ν32
E3

.

We can easily modify these parameters automated after FE analysis in the Nastran
for Windows system, thus we can set the calculated material orientations. Explained
details of procession are in the next section.

4. Programming of the Nastran for Windows GUI

The Nastran for Windows system is a very effective and fast final element program
that at the same time can be easily handled. It contains its own internal BASIC
script language, which makes the running of programs written by us possible as well
as incorporates them into the menu, which makes their activation easier.

1 This way there is no need to store the angles of the previous transformation.
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Figure 1. (a). The force was applied in bilateral body posture

Figure 1. (b). The force was applied in unilateral body posture
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As already mentioned, in 2D it is possible to poll principal stress directions and to
set material orientations using simple functions. Therefore to realize local orthotro-
phy, three Basic scripts were written. The first nullifies material orientations for every
element (or sets them to any other angle), creating original material orientations par-
allel to each other. The second sets original material directions at random for every
element. The third polls the direction of the highest principal stress for each element
and modifies material orientations accordingly.

Unfortunately, in 3D the setting of material directions according to principal stress
directions is much more complicated, because in the program the direction and coor-
dinates of principal stress vectors cannot be polled, the material orientations can not
be set, so in this case the transformation mentioned earlier must be applied.

5. Results

5.1. Load states. The 2D model was tested for two fundamental load states: based
on literature data examining bilateral and unilateral body postures. The applied
forces are shown in Figure 1a.

For bilateral body posture (when we are standing on two legs) we used a very
simple model. The weight of the upper body is split equally into the two legs. The
bodyweight of an average person is 70 kg and the weight of the upper body is two
thirds of the total bodyweight, thus 50 kg, consequently 250 N acts on each leg. We
applied this load on one node in the midsection of the femur head and the hip joint.

The unilateral body posture is very similar to the bilateral body posture. When
standing on one leg we need a muscle force to keep the balance, thus based on literature
data we applied two loads: a contact force at the midsection of the femur head and
the hip joint (1884.8N) and a muscle force (1380.6N).

In both cases, the original material orientation was taken in five different ways:
parallel (0◦, 45◦, 75◦, 90◦) and randomly. The acquired results are alike, the only
difference is in the number of steps required for the final result. (The originally
parallel material orientations reached the final results in 10 or 11 iteration steps
while the random running required 12 or 13 steps.) However, in the presentation of
results only the data acquired from random original orientation are described because
‘changes’ are most striking here.

The material parameters were taken from the book [2]:
E1 = 17GPa , E2 = 11GPa , G12 = 3.3GPa , v12 = 0, 41 .

5.2. Bilateral body posture. In a bilateral body posture the bone carries smaller
loads than in a unilateral body posture, therefore the stresses in the bone are also
smaller. The result of the procedure is the decrease of stresses and ‘smoothening’
of local stress peaks in the bone model as described later. First take a look at
the distribution of material orientations as these show the method’s effectiveness to a
greater extent. Figure 2 shows the material orientation in every element, with random
original orientation (a), after the first iteration step (b), and after 20 iteration steps
(c).
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Figure 2. (a). Random material directions in the elements

Figure 2. (b). Material directions in the elements after the first iter-
ation step
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Figure 2. (c). Material directions in the elements after the 20th iter-
ation steps

As can be seen, the material orientations do not change considerably (c) compared
to the first iteration step (b). If calculations are carried out twice (only the first itera-
tion step is finished), it already gives a good approximation, therefore this procedure
provides very fast results. 15 iteration steps are enough for a very accurate calcu-
lation. Besides it also can be seen that the resulting material orientation diagram
is very similar to the Culmann-trajectory and the actual form of trabeculae in real
bones.

Figure 3 shows the above mentioned stress decreasing effect. Figure 3a shows top
major principal stresses calculated with original material orientations set at random,
while Figure 3b shows top major principal stress distribution after the 20th iteration.

The changes in stress values are more visible if a stress diagram is produced. This
is shown in Figure 4. The red diagram ‘in the background’ shows the top major
principal stress distribution with original material orientations set at random, while
the blue diagram shows the situation after the 20th iteration. In both cases the x
coordinates of the elements are on the horizontal axis and all elements are represented.
It is possible to realise that this method ‘smoothens’ and decreases by approximately
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10% the stress peaks critical for fracture, so really an effect similar to real behavior
is shown.

Figure 3. (a). Distribution of the top major principal stress with
original material directions [MPa]

Figure 3. (b). Distribution of the top major principal stress after the
20th iteration steps [MPa]
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Figure 4. Top major principal stress distribution diagram versus the
x coordinate. [MPa]

5.3. Unilateral body posture. Unilateral body posture is very similar to bilateral,
but the forces are greater. Because a force exerted by the muscles is taken into

Figure 5. (a). Random Material directions in the elements
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consideration and with this, balance can only be maintained if the forces acting at
the hip-joint are increased. The top major principal stress distributions are a little
bit different here, but their form is very similar and the evaluations of the results are
also the same. The procedure was repeated for 20 iterations here as well because in

Figure 5. (b). Material directions in the elements after the first iter-
ation step

Figure 5. (c). Material directions in the elements after the 20th
iteration step
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this case iteration converged perfectly for any original condition and any load situa-
tion. The results here also show that the method strives for the decreasing of high
stress peaks; we also emphasize that stress levels are much smoother, rounder.

Figure 6. (a). Distribution of the top major principal stress with
original material directions [MPa]

Figure 6. (b). Distribution of the top major principal stress after the
20th iteration step [MPa]
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The material orientations follow the Culmann-trajectory again, so they are very
similar to the real case. Therefore they are only shown here, because the evaluations
of the results are the same as for bilateral body posture. (Please refer to them.)

Figure 7. Top major principal Stress distribution diagram as the
function of the x coordinate [MPa].

It can be recognized that the method is not sensitive to the applied loads and con-
straints comparing the two cases of loading. As we can see in Figures 2a, b and c and
Figures 5a, b and c the evolving material orientations are similar to each other and also
to the Culmann-trajectory. So we can apply any kind of loads and constraints: nodal
forces, forces on surface, pressure, nonlinear forces, nodal constraints, constraints on
surface and any combination of these. (Note: this property of the method follows
from the way of realization.)

6. Concluding remarks

The creation steps of a local orthotropic femur model were described in detail and
the results acquired from application were analyzed for two types of load. Based
on these it can be seen that the model shows very well what we expect from it on
the basis of physiological considerations, and that the acquired material direction
‘trajectories’ obtained are very similar to the real ones and correlate well with the
most fundamental assumptions of bone biomechanics. Based on this the model is
considered suitable to be included in implantation stability investigation. In the near
future by building up the 3D model and adding properties like the separation of
the mechanical properties of solid and spongy bone tissues and their marking based
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on CT diagrams, and taking the dependence of material properties on density into
consideration (thus creating an opportunity to characterize mechanical properties as
function of position), probably one of the most detailed femur models will be acquired,
which will hopefully be a suitable basis for a numerical implantation investigation.
Obviously in the case of such a serious project we cannot rely solely on numerical
calculations, so simultaneously with these a research series is also started, which will
partly be a reference to simulations, partly provide those with material properties.
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Abstract. Optimization of internal joint connections is the inverse problem of structural
optimization. There are three types of internal joints: rigid connection, flexible connection
and no connection. A continuous function is chosen to design the type of every joint. These
functions are determined by the optimization. The methods presented in this paper can be
used for topological design as well. The paper presents the mathematical formulation. The
examples shown are compared with the usual topological optimization forms.

Mathematical Subject Classification: 74P10
Keywords: cross-section, connection, optimization, topological optimization, mathematical
programming

1. Introduction

The boundary conditions, defined as external foundations and/or internal joint con-
nections, basically determine the shape and design of structures. Earlier analysis is
presented in [1] and [2], and a summary is given in [3]. In practice the boundaries are
given, and the calculations are carried out in order to find a minimal weight design
without changing the earlier defined form and stress distribution of the structure.
The topology optimization methods modify the stress distribution by changing the
value of the cross-sectional area. By using the method the area of all unnecessary
elements will converge to zero while the other elements will approach full stress. The
disadvantage of those optimization forms – cross-section optimization in the fol-
lowing - is that they keep and use the unnecessary elements. The aim of this paper
is to define a topological optimization form based on the internal joint connections –
referred to as connection optimization in the following - and compare it to cross-
section optimization. Both optimizations are analyzed in the case of bar structures.
Section 2 presents the mathematical background. Section 3 is devoted to topological
optimization and the corresponding examples.

The analysis we have presented is based on the equilibrium and compatibility equa-
tions of bar structures. The problem formulations are based on the following precon-
ditions:

c©2004 Miskolc University Press
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• the geometrical data are known,
• the external loads are given,
• the external supports are given,
• the material is homogeneous and linearly elastic,
• the displacements are small,
• buckling is not treated.

The state equation of FEM analysis concerns the displacements only. To take the
internal forces as optimization limits into consideration, it is useful to separate the
equilibrium and compatibility equations (1.1). Thus the equation system is:[

C G
GT F

] [
v
s

]
=

[
q
0

]
, (1.1)

where C is the diagonal matrix of the displacement supports, G and its transpose
are the geometrical matrices, F is the flexibility matrix, v is the vector of node
displacements, s is the vector of the internal forces acting in the bars and q is the
external load vector [4]. We assume that there are no permanent deformations and
initial displacements at the supports: 0.

2. The connection/disconnection problem

2.1. General formulations for the connection modification. In FEM design
the connections between the nodes and elements are defined fix as default. Other
types of connections (e.g. hinge, elastic, etc. can be taken into consideration by
subtracting a suitable dyad from the stiffness matrix K:

K̃ = K− 1

kii
kik

T
i , (2.1)

where kii is an element in the main diagonal of K, ki and kT
i are the column and the

row in K that involve kii. The flexible connections are defined by the spring constants
ρi and are taken into consideration via a dyad which is also to be subtracted from K:

K̃ = K− ρi
1 + ρikii

kik
T
i . (2.2)

For ρi →∞ the limit of equation (2.2) coincides with equation (2.1) [4] – see Figure 1
for details which graphically represent the connection.

element elementnode

fix 
connection

flexible
connection

support

element elementnodeelement elementnode

fix 
connection

flexible
connection

support

Figure 1. Model of supports and connections in FEM design
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To present the same effect in the separated equation system (1.1), the symmetric
flexibility matrix F of a structural element has to be diagonalized:

F = U〈F̂〉UT , (2.3)

where 〈F̂〉 is the diagonal flexibility matrix and U and its transpose UT are the
matrices of the transformation. By adding the spring variable ρi to

〈
F̂i

〉
we have

〈F̃〉 = 〈F̂〉+ 〈ρ〉 . (2.4)

Generating the stiffness matrix we obtain (a) equation (2.1) if ρi = − 1
〈Fi〉 (b) K if

ρi = 0 and (c) equation (2.2) otherwise. The system we have generated can be used
for connection optimization design.

2.2. The example structure. The structure we shall analyze as an example is a well
known nine-bar truss [5]. The optimal form of the structure is taken from literature
[6] – see Figure 2. These two forms are used for making comparisons. The advantage
of the example structure is that the flexibility matrix is a diagonal one. Consequently,
there is no need for a diagonalization. The values of the vertical loads acting on the
nodes 2 and 3 are the same, i.e., 400kN. The Young modulus of all elements is 2.1 ·105
MPa. The initial cross-sectional area is 85 cm2, σe = 160 MPa is the elastic stress
limit and the largest bar force equals 1333 kN.
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Figure 2. The nine bar truss to be investigated and its optimal form

2.3. Cross-section modification in case of the example structure. In case of
the example structure the flexibility matrix of an element contains only one element,
〈Fi〉 = li

EAi
, where the Young modulus E and the length of the bar li are constant

values. Ai is the cross-sectional area. Multiplying the element 〈Fi〉 by ρi ∈ 1..1e4
or regarding the problem as a simple inverse one and dividing by spring variable
ρ̂i ∈ 1e− 4..1, we obtain

〈F̃i〉 = 〈Fi〉〈ρi〉 =
liρi
EAi

(2.5)
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or
〈F̃i〉 =

〈Fi〉
〈ρ̂i〉

=
li

EAiρ̂i
, i = 1..9. (2.6)

The system we have generated is adaptable for cross-section modification, thus usable
for a cross-section optimization design.

2.4. Comparison. To check formulas (2.4) and (2.5), the admissible form of the
example structure is solved in three different ways, see Figure 2 and Table 1. The
results obtained by comparing the different techniques (Section 2.1, 2.3) for the exam-
ple structure (presented in Section 2.2) show that disconnecting the elements unused
the bar forces and the displacements at the fixed points are much closer to the real
values in Table 1.

9 bar 4 bar structure
structure using

eq. (2.5)
using

eq. (2.4)
analytical
solution

1x .1333e-2 .1333e-2 .1333e-3 .1333e-2
1y -.3879e-3 -.1037e-6 -.2824e-11 0
2x -.1188 -.2974 -.2987 -.2975
2y .4027 .9385 .9426 .9387

D
is

pl
ac

em
en

ts
 (

cm
)

3x -.7124e-2 -.1629 -.1629 -.1629
3y .5847 1.235 1.240 1.235
4x .1173 .1862 .2154
4y .3743 .8034 .7621
5x -.1333e-2 -.1333e-2 -.1333e-3 -.1333e-2
5y -.4121e-3 -.7999e-3 -.8000e-4 -.8000e-3
1 -536.0 -1333. -1333. -1333.
2 168.5 .8037e-1 .1805e-4
3 529.5 .8370e-1 .2155e-4

F
or

ce
s 

in
 M

em
be

rs
(k

N
) 4 -142.1 -499.9 -500.0 -500.0

5 190.5 -.1466e-1 -.1571e-5
6 -433.2 -.1324 -.4590e-4
7 -471.4 -.1193 -.2851e-4
8 527.9 1166. 1167. 1167.
9 393.3 412.4 412.3 412.3

Table 1. Results obtained by applying different techniques

3. The optimization problem with examples

The optimization was carried out for the example structure in Figure 2 with both
methods mentioned in Section 2. The aim of the design was to find the best statically
determinate form of the structure.

The optimization is implemented by a sequential quadratic programming method
for solving nonlinear problems. The following variables are the unknowns in the
program developed:
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• ρ1..9 are the variables to be modified,
• v1..10 are the node displacements,
• s1..9 are the values of the bar forces.

obj1 =
9∑

i=1

si obj4 =
9∑

i=1

(si − ρi)

obj2 = −
9∑

i=1

ρi obj5 =
9∑

i=1

(
si − s2i

〈
F̃i

〉)
obj3 = −sT

〈
F̃
〉
s = −

9∑
i=1

s2i

〈
F̃i

〉
obj6 = −

9∑
i=1

(
s2i

〈
F̃i

〉
+ ρi

)
Table 2. The objective functions

There are six objective functions given in Table 2, defined as a summation of the
internal bar forces, of the spring variables, of the compliance and of three of their
variations, respectively.

In both cases of topological optimization, the mathematical programming problems
are formulated as follows:

obj n = min! Objective function from Table 2
Cv +Gs− q = 0 Equalities
GTv +

〈
F̃
〉
s = 0

LL ≤ ρi=1...9 ≤ 1e4 Inequalities
−1.8 ≤ vi=1...10 ≤ 1.8 [cm]
−1335 ≤ si=1...9 ≤ 1335 [kN]

(3.1)

The lower limit LL is zero for connection optimization and is equal to one for cross-
sectional optimization.

Note: The value of the variables to be modified should fall between two positive
limits. The admissible form needs a higher value. Therefore a negative sign is used
to ensure the minimal optimum.

9 bar 4 bar structure
structure using

eq. (2.5)
using

eq. (2.4)
analytical
solution

Compliance 398.8 873.0 873.6 873.6∑
si 227.0 -254.6 -253.7 -253.7∑
si, si > 0 1809.7 1578.4 1579.3 1579.3∑
si, si < 0 -1582.7 -1833.1 -1833 -1833

Table 3. Results obtained by the three different techniques

The comment on the positive and negative signs of other objective functions is in
Table 3. The compliance of a statically determinate structure is much higher than
that of an indeterminate one. A negative sign is used to present the maximum value
in a minimization process, obj3. The sum of the internal bar forces is less, negative,
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in case of a statically determinate structure. The number of bars in compression is
more than that of the bars in tension. In addition the compressive stress is quite
large. Since the bars are in compression the sign of the normal stress is neglected
when we seek for a minimum, obj1.

Results: The cross-section optimization gives four different results, three stat-
ically determinate structures and an indeterminate one – see Table 4, 6 – 14. The
statically indeterminate form is due to compliance obj3. The simple summation obj1
and obj2, and the combination obj4 are the dominant objective functions. Compliance
obj3 only slightly modifies the result.

Cross-section optimization
ρi [dimensionless] vi [cm] si [kN]

1 1 4 1 7 1 1x .133e-2 1 -725.5
2 1 5 1 8 57 1y -.451e-3 2 894.0
3 557 6 120 9 1 2x -.161 3 4.953

2y 1.32 4 -865.1
3x .031 5 -742.0
3y 1.78 6 -9.635
4x .617 7 -748.2
4y 1.17 8 41.7
5x -.133e-2 9 1335
5y -.348e-3

Table 4. Results of the mathematical programming problem (3.1)
with (2.5) and obj1 from Table 2

Connection optimization
ρi [dimensionless] vi [cm] si [kN]

1 2e-5 4 0 7 0 1x .133e-2 1 -729.0
2 0 5 0 8 .016 1y -.453e-3 2 900.6
3 .083 6 2.1 9 0 2x -.174 3 7.52

2y 1.33 4 -872.8
3x .025 5 -745.8
3y 1.8 6 -.197
4x .622 7 -755.2
4y 1.18 8 38.49
5x -.133e-2 9 1335
5y -.347e-3

Table 5. Results of the mathematical programming problem (3.1)
with (2.4) and obj1 from Table 2
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Cross-section optimization
ρi [dimensionless] vi [cm] si [kN]

1 9.4 4 1e4 7 1e4 1x .133e-2 1 -532.0
2 1e4 5 1e4 8 1 1y -.200e-3 2 .144
3 1e4 6 1 9 2 2x -1.12 3 .163

2y 1.8 4 .728
3x .156 5 -.016
3y 1.8 6 -826.0
4x .363 7 -.219
4y 1.56 8 655.7
5x -.133e-2 9 825.4
5y -.599e-3

Table 6. Results of the mathematical programming problem (3.1)
with (2.5) and obj2 from Table 2

Connection optimization
ρi [dimensionless] vi [cm] si [kN]

1 0 4 3e-5 7 0 1x .133e-2 1 -536.0
2 2e-5 5 2e-5 8 ∼ 0 1y -.388e-3 2 168.5
3 0 6 ∼ 0 9 ∼ 0 2x -.119 3 529.5

2y .406 4 -142.1
3x -.008 5 190.5
3y .593 6 -433.2
4x .117 7 -471.4
4y .374 8 527.9
5x -.133e-2 9 393.3
5y -.412e-3

Table 7. Results of the mathematical programming problem (3.1)
with (2.4) and obj2 from Table 2

Cross-section optimization
ρi [dimensionless] vi [cm] si [kN]

1 ∼ 1 4 ∼ 1 7 5.69 1x .133e-2 1 -536.0
2 13.8 5 ∼ 1 8 6.67 1y -.388e-3 2 168.6
3 ∼ 1 6 3.85 9 2.19 2x -.119 3 529.4

2y 1.8 4 -142.1
3x -.144 5 190.4
3y 1.8 6 -433.2
4x .117 7 -471.4
4y 1.41 8 527.8
5x -.133e-2 9 393.4
5y -.412e-3

Table 8. Results of the mathematical programming problem (3.1)
with (2.5) and obj3 from Table 2
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Connection optimization
ρi [dimensionless] vi [cm] si [kN]

1 0 4 ∼ 0 7 5e-5 1x .133e-2 1 -536.0
2 .008 5 .003 8 .002 1y -.388e-3 2 168.5
3 0 6 .001 9 4e-4 2x -.119 3 529.5

2y 1.8 4 -142.1
3x -.144 5 190.5
3y 1.8 6 -433.2
4x .117 7 -471.4
4y .414 8 527.9
5x -.133e-2 9 393.3
5y -412e-3

Table 9. Results of the mathematical programming problem (3.1)
with (2.4) and obj3 from Table 2

Cross-section optimization
ρi [dimensionless] vi [cm] si [kN]

1 144 4 23 7 1e4 1x .133e-2 1 -38.18
2 1e4 5 1e4 8 1 1y -.324e-3 2 .191
3 1e4 6 1 9 1 2x -1.23 3 .125

2y 1.8 4 309.3
3x -.046 5 -.082
3y 1.72 6 -1335
4x .278 7 -.238
4y 1.48 8 357.0
5x -.133e-2 9 1080
5y -.476e-3

Table 10. Results of the mathematical programming problem (3.1)
with (2.5) and obj4 from Table 2

Connection optimization
ρi [dimensionless] vi [cm] si [kN]

1 2e-5 4 0 7 0 1x .133e-2 1 -735.8
2 0 5 0 8 .012 1y -.448e-3 2 895.0
3 1.6 6 .56 9 0 2x -.176 3 .396

2y 1.33 4 -872.4
3x .025 5 -745.6
3y 1.8 6 -.735
4x .623 7 -746.1
4y .118 8 47.40
5x -.133e-2 9 1335
5y -.352e-3

Table 11. Results of the mathematical programming (3.1) with (2.4)
and obj4 from Table 2
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Cross-section optimization
ρi [dimensionless] vi [cm] si [kN]

1 1 4 1 7 1.07 1x .133e-2 1 -680.0
2 1 5 1 8 1e4 1y -.476e-3 2 923.2
3 71.1 6 1317 9 1 2x -.155 3 38.12

2y 1.36 4 -872.3
3x .025 5 -745.5
3y 1.8 6 -.895
4x .606 7 -793.2
4y 1.2 8 .243
5x -.133e-2 9 1335
5y -.324e-3

Table 12. Results for the mathematical programming problem (3.1)
with (2.5) and obj5 from Table 2

Connection optimization
ρi [dimensionless] vi [cm] si [kN]

1 0 4 0 7 3e-5 1x .133e-2 1 -705.5
2 0 5 0 8 .04 1y -.466e-3 2 908.8
3 .024 6 .04 9 0 2x -.158 3 24.76

2y 1.36 4 -864.9
3x .025 5 -741.8
3y 1.8 6 -9.99
4x .604 7 -772.8
4y 1.2 8 16.95
5x -.133e-2 9 1335
5y -.334e-3

Table 13. Results of the mathematical programming problem (3.1)
with (2.4) and obj5 from Table 2

Cross-section optimization
ρi [dimensionless] vi [cm] si [kN]

1 9.4 4 1e4 7 1e4 1x .133e-2 1 -532.0
2 1e4 5 1e4 8 1 1y -.200e-3 2 .147
3 1e4 6 1 9 2.1 2x -1.12 3 .167

2y 1.8 4 .728
3x .156 5 -.018
3y 1.8 6 -826.0
4x .373 7 -.227
4y 1.55 8 665.7
5x -.133e-2 9 825.4
5y -.600e-3

Table 14. Results of the mathematical programming problem (3.1)
with (2.5) and obj6 from Table 2
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Connection optimization
ρi [dimensionless] vi [cm] si [kN]

1 0 4 ∼ 0 7 3e-5 1x .133e-2 1 -536.0
2 .009 5 .003 8 .002 1y -.388e-3 2 168.5
3 0 6 .001 9 4e-4 2x -.119 3 529.5

2y 1.8 4 -142.1
3x -.145 5 190.5
3y 1.8 6 -433.2
4x .117 7 -471.4
4y .399 8 527.9
5x -.133e-2 9 393.3
5y -.412e-3

Table 15. Results of the mathematical programming problem (3.1)
with (2.4) and obj6 from Table 2

The connection optimization gives three different solutions: a statically deter-
minate structure and two indeterminate ones – see Tables 5, 7 and 15. In this case
the sum of internal bar forces obj1, and the compliance obj3 are the useful functions.

Figure 3. The results of limit modifications

The limits, used in inequalities, are important for the optimal form as well. In-
creasing the positive displacement limit and/or reduces the negative internal force
limit the optimal statically determinate form can change. In the case of the example
structure Figure 3 using obj4 the following happens: the result is the left figure if the
vertical displacement limit is 1.3cm and the internal bar force limit is 1335kN, the
middle structure if the displacement limit is increased to 1.8 cm, and finally the right
form if the internal force limit is changed to -1375kN.

The results of the optimization process with limits of (2.5) are presented in Tables
4 – Table 15.

4. Conclusion

The method we have presented in this paper is capable of solving the connection
– disconnection problem in structural design. From a mechanical point of view the
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problem is an inverse one. Mathematically it is a not a convex problem. The opti-
mization algorithm can find as many solutions as the number of the possible statically
determinate structures. The results of the optimization process are determined by
the objective functions. The limits set up for the displacement and the internal forces
influence the local optima.

The main objective of the analysis was to formulate and try a solution technique.
Thus the stability, safety and economy requirements are not fulfilled.

The method we have presented is developed for numerical optimization problems.
The example structure is a well–known one from the literature, and is practical for
demonstrating that the connection optimization technique developed gives good so-
lutions. The advantages of that simple structure are that the calculations can easily
be controlled, and the results obtained can easily be compared with those found in
the literature [5],[6] and [7].
Acknowledgement. The author wishes to thank Prof. Anna Vásárhelyi for the idea of
this research and her continuous support. The support provided by the Hungarian National
Research Foundation (OTKA T029638) is gratefully acknowledged.
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1. Formulation of the problem

1.1. Introductory remarks. Many structures encountered in engineering practice
consist of shell parts linked to the solid continua. In the numerical analysis these
structures cannot be approximated well with the lower dimensional theories of shells.
If the reliability and accuracy of the computed data are to be ensured, one must use
multifield modelling in numerical simulation of the structures [1]. An approach to the
analysis of multistructures, based on the asymptotic theory of shells and the theory
of elasticity was suggested in the work by P. Siarlet [2]. D - adaptive analysis of
multistructures is considered in the work by E. Stein [3]. Here we suggest another
approach to the analysis of multistructures, which is based on the Timoshenko shell
theory and the theory of elasticity.

Let the elastic continuum occupy the bounded and connected domain Ω1 ∩ Ω∗2,
(Figure 1), where Ω1,Ω

∗
2 are three-dimensional domains with the Lipshitz boundaries

Γ1,Γ
∗
2. Let us suppose, that the three-dimensional domain Ω1 is referred to a Carte-

sian coordinate system x1, x2, x3. The three mutually orthogonal unit vectors on the

c©2004 Miskolc University Press
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Figure 1. Thin shell embedded into a 3D body

boundary Γ1 are denoted by −→ν 1,
−→ν 2 ,

−→ν 3 (−→ν 1 is the outer normal to Γ1). We also
suppose that the three-dimensional domain Ω∗2 is thin, i.e., one of its dimensions, the
thickness h, is considerably smaller then the two others. We refer the domain Ω∗2 to
the curvilinear coordinate system ζ1, ζ2, ζ3

Ω∗2 =

{
ζ1, ζ2, ζ3 : ζ1, ζ2 ∈ Ω2,−

h

2
≤ ζ3 ≤

h

2

}
,

defined on the middle surface S ⊂ R3, which is an image of the set Ω2 ⊂ R2 (with
the boundary Γ2) through a map

xi = ϕi (ζ1, ζ2) , ζ1, ζ2 ∈ Ω2, i = 1, 2, 3. (1)

Let us denote the three orthogonal right–handed unit vectors on the curve ∂S (∂S
is the map of Γ2 with respect to (1)) by −→n 1,

−→n 2,
−→n 3, where −→n 1 is the unit normal to

∂Γ2 that lies in the tangent plane of the middle surface S; −→n 2 is the unit tangent to
the curve Γ2; and −→n 3 is a unit normal to the middle surface S.

1.2. Equations of the theory of elasticity. Let

u = (u1 (x) , u2 (x) , u3 (x)) , x = x1, x2, x3, (2)

be the displacement vector of the elastic continuum. The components eij (u) of the
deformation tensor are given by the relations

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2, 3. (3)
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The stress components are denoted by σij . The stress strain relations are of the form

σij =

3∑
k,l=1

cijkl (x) ekl , (4)

where cijkl stands for the elastic parameters. For a homogeneous and isotropic con-
tinuum equation (4) can be rewritten in the form

σii = λθ + 2µeii , i = 1, 2, 3; (5)

σij = 2µeij , i 6= j , i, j = 1, 2, 3;

where
θ = e11 + e22 + e33 ,

while
λ =

Eν

(1 + ν) (1− 2ν)
and µ =

E

2 (1 + ν)

are the Lame coefficients.
The components of the stress tensor satisfy the equilibrium equations

3∑
k=1

∂σik
∂xk

+ fi = 0, i = 1, 2, 3; (6)

where fi denote the components of the body forces applied to the elastic continuum
in the domain Ω1.

1.3. Equations of the Timoshenko shell theory [5]. The vector defined by the
equation

v = (v1 (ξ) , v2 (ξ) , w (ξ) , γ1 (ξ) , γ2 (ξ)) , ξ = ξ1, ξ2, (7)
involves the displacements v1 (ξ) , v2 (ξ) , w (ξ) and the angles of rotations γ1 (ξ) , γ2 (ξ)
on the middle surface.

The deformation of a shell is described by the characteristics

εαα =
1

Aα
∂αvα +

1

AαAβ
vβ∂βAα + kαw ,

2εαβ =
Aα
Aβ

∂β
vα
Aα

+
Aβ
Aα

∂α
vβ
Aβ

,

εα3 = −kαuα +
1

Aα
∂αw + γα , (8)

χαα =
1

Aα
∂αγα +

1

AαAβ
γβ∂βAα

2χαβ =
kα
Aβ

∂βγα −
kβ

AαAβ
vα∂βAα +

kβ
Aα

∂αγβ −

− kα
AαAβ

γβ∂αAβ +
Aα
Aβ

∂β
γα
Aα

+
Aβ
Aα

∂α
γβ
Aβ

,

where α, β ∈ {1, 2} ;α 6= β., ∂α = ∂
∂ζα

, Aα, kα are Lame coefficients and main
curvatures of the middle surface of the shell, respectively.
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The force and moment characteristics Tαβ , Tα3,Mαβ can be given in terms of the
deformation characteristics of the shell εαβ , εα3, χαβ , α, β ∈ {1, 2} via the material
law:

Tαα =
Eh

1− ν2
(εαα + νεββ) ,

Tαβ =
Eh

2 (1 + ν)
εαβ ,

Tα3 = k′G′hεα3 , (9)

Mαα =
Eh3

12 (1− ν2)
(χαα + νχββ) ,

Mαβ =
Eh3

12 (1 + ν)
χαβ ,

where k′ is the shear coefficient, G′ is the shear module. For isotropic materials

k′ =
5

6
, G′ =

E

2 (1 + ν)
.

The force and moment characteristics introduced should satisfy the equilibrium
equations

1

AαAβ
∂αAβTαα −

1

AαAβ
∂α(Aβ)Tββ +

1

A2
αAβ

∂βA
2
αTαβ + kαTα3+

+
1

AαAβ
∂βAαkαMαβ +

kβ
AαAβ

∂β(Aα)Mαβ + pα = 0 ,

−k1T1 − k2T2 +
1

A1A2
∂1A2T13 +

1

A1A2
∂2A1T23 + p3 = 0 ,

−Tα3 +
1

AαAβ
∂αAβMαα −

1

AαAβ
∂α(Aβ)Mββ +

1

A2
αAβ

∂βA
2
αMαβ +mα = 0,

(10)

where

pi =

(
1 + k1

h

2

)(
1 + k2

h

2

)
σ+
i3 +

(
1− k1

h

2

)(
1− k2

h

2

)
σ−i3+

+

h/2∫
−h/2

(1 + k1ζ3) (1 + k2ζ3) fidζ3 , i = 1, 2, 3;

mi =

(
1+k1

h

2

)(
1 + k2

h

2

)
h

2
σ+
j3 −

(
1− k1

h

2

)(
1− k2

h

2

)
h

2
σ−j3+

+

h/2∫
−h/2

(1 + k1ζ3) (1 + k2ζ3) fiζ3dζ3 , j = 1, 2;

(11)

in which fi stands for the components of body forces in the domain Ω2, σ+
i3, σ

−
i3 are

the components of the surface forces on the shell surfaces ζ3 = +h/2, ζ3 = −h/2 .
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1.4. Boundary and junction conditions. We shall assume that boundary Γ1 con-
sists of parts Γ

(i)
1 , that is

Γ1 =

5⋃
i=1

Γ
(i)
1 , Γ

(i)
1

5⋂
i,j=1,
i6=j

Γ
(j)
1 = ∅ . (12)

Boundary Γ∗2 of the thin domain Ω∗2 consists of the side surface Γc2 and the two face
surfaces Γ+

2 ,Γ
−
2 . The side surface Γc2 is a cylindrical one, which is generated by the

motion of the normal to the middle surface S along the boundary ∂S of the middle
surface. The boundary ∂S of the middle surface is the curve ∂S ⊂ R3, which is
the map (1) Γ2 ⊂ R2. Let us suppose that Γ2 consists of parts Γ

(i)
2 , which satisfy

conditions

Γ2 =

3⋃
i=1

Γ
(i)
2 , Γ

(i)
2

3⋂
i,j=1,
i6=j

Γ
(j)
2 = ∅. (13)

The following boundary conditions are imposed on the parts of the boundary
Γ

(1)
1 ,Γ

(2)
1 , Γ

(1)
2 ,Γ

(2)
2 :

uν1 = 0 , uν2 = 0 , uν3 = 0 , x ∈ Γ
(1)
1 ; (14)

σν11 = 0 , σν12 = 0 , σν13 = 0 , x ∈ Γ
(2)
1 ; (15)

vn1 = 0 , vn2 = 0 , w = 0 , γn1 = 0 , γn2 = 0 , ζ1, ζ2 ∈ Γ
(1)
2 ; (16)

Tn11 = 0 , Tn12 = 0 , Tn13 = 0 , Mn
11 = 0 , Mn

12 = 0 , ζ1, ζ2 ∈ Γ
(2)
2 , (17)

where uν1 , uν2 , uν3 , vn1 , vn2 , γn1 , γn2 are the normal deflections and rotation angles on
the boundaries Γ1 and Γ2; σνij , Tnαβ , T

n
α3, Mn

αβ are the normal stresses, forces and
moments on the boundaries Γ1 and Γ2.

We shall also assume that Γ
(3)
1 and Γ

(3)
2 satisfy the relations

Γ
(3)
1 =

{
ζ1, ζ2, ζ3 : ζ1, ζ2 ∈ Γ

(3)
2 ,−h

2
≤ ζ3 ≤

h

2

}
.

On this part of the boundary perfect contact of two elastic continua, which occupy
domains Ω1,Ω

∗
2, is carried out. On the part of the boundary the following relations

exist (Figure 2)
−→ν 1 = −−→n 1,

−→ν 2 = −−→n 2,
−→ν 3 = −→n 3 .

On the boundary Γ
(3)
1 we specify the following junction conditions.

Geometrical conditions:

uν1 = −vn1 − ζ3γn1 ,
uν2 = −vn2 − ζ3γn2 , (18)

uν3 = w .
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Figure 2. Junction of a thin shell to a 3D elastic body

Statical conditions:

−
∫ h/2

−h/2
σν11 (1 + kνζ3) dζ3 = Tn11 , −

∫ h/2

−h/2
σν12 (1 + kνζ3) dζ3 = Tn12 ,∫ h/2

−h/2
σν33 (1 + kνζ3) dζ3 = Tn13 , (19)

−
∫ h/2

−h/2
σν11ζ3 (1 + kνζ3) dζ3 = Mn

11 , −
h/2∫
−h/2

σν12ζ3 (1 + kνζ3) dζ3 = Mn
12 ,

where kν is the curvature of the normal section along the boundary curve of the shell.

n
ξ2

ξ1

ξ3

ν1

ν2

ν3

Figure 3. Embedding of a thin shell into a 3D elastic body on the
upper face
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Let us define junction conditions on the surfaces Γ
(4)
1 = Γ+

2 (see Figure 3). They
have the following forms:
Geometrical conditions:

uν1 = −w, uν2 = un1 +
h

2
γn1 , u

ν
3 = un2 +

h

2
γn2 . (20)

Statical conditions:
σν11 = −σ+

33, σ
ν
12 = σ+

13, σ
ν
13 = σ+

23. (21)

n
ξ2

ξ1

ξ3

ν1

ν2

ν3

Figure 4. Embedding of a thin shell into a 3D elastic body on the
lower face

We shall also define junction conditions on the surfaces Γ
(5)
1 = Γ−2 (see Figure 4).

Geometrical conditions:

uν1 = w, uν2 = un1 −
h

2
γn1 , u

ν
3 = un2 −

h

2
γn2 . (22)

Statical conditions:
σν11 = p−n , σ

ν
12 = p−1 , σ

ν
13 = p−2 . (23)

Thus heterogeneous mathematical model [6] consists of the equations (6), (3) - (5),
(8) - (10); boundary conditions (14) - (17); and junction conditions (18) - (23).

2. Variational formulation

Let us consider the function space

V =
{
U = (u,v) ,u = (u1, u2, u3) ,v = (v1, v2, w, γ1, γ2) ,u ∈W

(1)
2 (Ω1) ,

v ∈W
(1)
2 (Ω2) , conditions (14), (16), (18), (20), (22)

}
.

We shall formulate two equivalent variational problems for the heterogeneous math-
ematical model: theory of elasticity and Timoshenko shell theory in displacements.
Find a solution U which minimizes the functional (principle of the minimum of po-
tential energy)

F (U)→ min, U ∈ V (24)
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and find a U, which satisfies the variational equation (weak formulation):

a1 (u, ũ) + a2 (v, ṽ) =
(
P, Ũ

)
, U = (u,v) ∈ V, ∀Ũ = (ũ, ṽ) ∈ V . (25)

Here

F (U) = a1 (u,u) + a2 (v,v)− 2 (P,U) ,

a1 (u, ũ) = 2

∫
Ω1

W1 (u, ũ) dΩ1 ,

W1 (u, ũ) =
1

2
[e11 (u)σ11 (ũ) + ...+ e23 (u)σ23 (ũ)] ,

a2 (v, ṽ) = 2

∫
Ω2

W2 (v, ṽ) dΩ2 , (26)

W2 (v, ṽ) =
1

2
[ε11 (v)T11 (ṽ) + ε22 (v)T22 (ṽ) + ε12 (v)T12 (ṽ) +

+ε13 (v)T13 (ṽ) + ε23 (v)T23 (ṽ) + χ11 (v)M11 (ṽ) + 2χ12 (v)M12 (ṽ)] ,(
P, Ũ

)
=

∫
Ω1

3∑
i=1

uifidΩ1 +

∫
Ω2

(v1p1 + v2p2 + wp3 + γ1m1 + γ2m2) dΩ2 .

3. Penalty variational formulation

Consider a penalty variational formulation of the heterogenous mathematical model
in the following two forms:

Fε (Uε)→ min, Uε ∈ Vε, ε→ 0 (27)

and

a1 (uε, ũ) + a2 (vε, ṽ) +
1

ε
a3

(
Uε, Ũ

)
=
(
P, Ũ

)
, (28)

Uε = (uε,vε) , Uε ∈ Vε, ε > 0, ε→ 0 ,

∀Ũ ∈ Vε ,

Vε =
{
U = (u,v) ,u = (u1, u2, u3) ,v = (v1, v2, w, γ1, γ2) ,u ∈W

(1)
2 (Ω1) ,

v ∈W
(1)
2 (Ω2) , conditions (14), (16), (20), (22)

}
.

Here
Fε (Uε) = a1 (uε,uε) + a2 (vε,vε) +

1

ε
a3 (Uε,Uε)− 2 (P,Uε) ,

a3

(
Uε, Ũε

)
=

∫
Γ
(3)
1

{(uν1 + vn1 + ζ3γ
n
1 ) (ũν1 + ṽν1 + ζ3γ̃

ν
1 ) +

+ (uν2 + vn2 + ζ3γ
n
2 ) (ũν2 + ṽν2 + ζ3γ̃

ν
2 ) + (uν3 − w) (ũν3 − ṽν3 )} dΓ.

The penalty item 1
εa3 (Uε,Uε) is introduced to avoid satisfying the geometrical

conditions on the boundary Γ
(3)
1

uν1 = −vn1 − ζ3γn1 ,
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uν2 = −vn2 − ζ3γn2 ,
uν3 = w,

which are difficult to satisfy in a finite element algorithm.

4. Numerical examples

4.1. Example 1. As a test problem we shall consider a one-dimensional problem, i.r.
a plate subjected to uniform pressure p0 = const. The plate is simply supported.

It‘s well known [5], [7] that there appears the locking effect if we use the FEM to the
analysis of shells on the base of Timoshenko‘s shell theory, To remove the inaccuracy
in results generated by the locking effect, we suggest to use bubble-approximation for
the unknown displacements.
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Figure 5. Convergence of the FEM solution

We map the finite element

Ωk =
{
ζ1 : ζk−1

1 ≤ ζ1 ≤ ζk1
}

onto the standard element

Ωst = {ξ : −1 ≤ ξ ≤ 1}

with the mapping

ζ1 =
1− ξ

2
ζk−1
1 +

1 + ξ

2
ζk1 ,

and select the following shape functions [4]

ϕ1 =
1− ξ

2
, ϕ2 =

1 + ξ

2
, ϕi = Φi−1(ξ) i = 3, 4, ...m,
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Figure 6. Convergence of the FEM solution
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Figure 7. Convergence of the FEM solution

where

Φj =

√
2j − 1

2

∫ ξ

−1

Pj−1(t)dt , j = 2, 3, . . .

in which Pj is the j-th Legendre polynomial.
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Figures 5-7 illustrate the convergence of the FEM solution in energy norm for
different thicknesses (h/l) depending on the number of elements (Series 1: exact
value; Series 2: m = 2; Series 3: m = 3; Series 4: m = 4; Series 5: m = 5).

4.2. Example 2. Let us apply the heterogeneous mathematical model for the nu-
merical analysis of a tube junction (Figure 8) which is subjected to inner pressure[8].
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Figure 8. Tube junction
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Figure 9. Graphs of stresses in the tube junction
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The data are as follows:

R1 = 0.5R2 , h = 0.05R2 , l = 1.7R2 , L = 2.2R2 ,

E = 2.1× 105p , ν = 0.3 , ε = 10−4

For the analysis we used FEM with quadratic approximation on two-dimensional
(theory of shell) and three-dimensional (theory of elasticity in shaded region).

In Figure 9 the graphs of stresses σ22/p along the line ACOBD are shown. The
solid line corresponds to the analysis by the FEM based on the heterogeneous model.
The dotted line corresponds to the analysis by the FEM based on the theory of
coupled shells. The point O1 is the point where the middle surfaces meet. The value
of stresses in this point obtained using the theory of coupled shells is not adequate.
Bold dots represent the results of experimental data.

Acknowledgement. The support provided by the University of Veszprém, Hungary and
NATO grant: 3015/02/HY is gratefully acknowledged.

References

1. Quarteroni, A.: Multifields modelling in numerical simulation of partial differential
equations. GAMM - Mitteilungen, ZAMM, Heft 1, (1996), 45–63.

2. Ciarlet P. G.: Plates and Junctions in Elastic Multi-Structures. An Asymptotic Anal-
ysis. Paris, Springer–Verlag, 1990.

3. Stein, E., and Ohnimus, S.: Concept and realization of integrated adaptive finite el-
ement methods in solid and structural - mechanics. Numerical Methods in Engineering
’92, Proceedings of the First European Conference on Numerical Methods in Engineer-
ing 7-11 by ECCOMAS September 1992, Brussels, Belgium, Elsevier Science Publisher
B.V., 63-170.

4. Szabó, B. and Babuška, I.: Finite Element Analysis. John Wiley & Sons, 1991.
5. Savula Ya. H. and Fleishman, N. P.: Analysis and Optimal Control of Shells with

the Monge‘s Middle Surfaces. Lviv, 1989.
6. Grigorenko, Ya. M., Savula, Ya. H. and Mukha, I. S.: Linear and non-linear

problems of elastic deformation of shells of complicated form and method of numerical
analysis. Applied Mechanics, 36(8), (2000), 3–27.

7. Schwab, C. and Manil, M.: Locking and boundary layer effects in the finite element
approximation on the Reissner - Mindlin plate model. Proceedings of Symposia in Ap-
plied Mathematics, American Mathematical Society, 48, (1994), 367–371.

8. Savula Ya. H. and Savula, N. Ya.: Static analysis of structures on the base of a
heterogeneus model published in Metal Structures, Design, Fabrication Economy edited
by K. Jármai and J. Farkas. Millpress, Rotterdam, Netherlands, (2003), 381–385.



Journal of Computational and Applied Mechanics, Vol. 5., No. 1., (2004), pp. 141–150

CALCULATION OF STRESSES IN ISOTROPIC PLATES WITH
TWO CIRCULAR HOLES

Valentine Shchukin
Center of Mathematical Modelling, National Academy of Science of Ukraine

79005, Lviv, 15 Dudayev Str.

Imre Timár
University of Veszprém

10 Egyetem út, 8200 Veszprém, Hungary
timari@almos.vein.hu

[Received: September 4, 2003]

Dedicated to Professor József FARKAS on the occasion of his seventy-fifth birthday

Abstract. The paper presents an efficient method for the solution of the isotropic plate
problem with two circular holes. The aim of the method is the conformal mapping of the
exterior of a single circle into the domain of the plate. The paper presents some practical
examples for the elastic equilibrium of isotropic plates with two circular holes stiffened by
elastic rings. The stresses and deformations of the bodies in contact are evaluated and
illustrated. For the strength calculation of plates the theory of small deformation of thin
curved bars was used.
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1. Introduction

In engineering, solving the elastic plane problems for a plate with multiple holes is of
considerable interest [1-4]. The closed form solution to stress concentration around a
hole in an infinite orthotropic plate was first obtained by [5] and [6] using the complex
potential method. A series of analytic techniques has been devoted to treating the
problem of interacting holes in an infinite plate. The complex potentials and the
appropriate superposition procedure was used to formulate the approximate solution
for the calculation of the stress field in plates containing any number of holes [7]. In the
paper [8] the series solution to the stress concentration of finite composite laminates
with elliptical holes was proposed. Several iterative methods for the contact problems
with friction are compared in [9].

2. Mathematical background

We consider the problem of the plate containing two circular holes of the same radius
(r1 = r2) stiffened by an elastic ring. The thickness of the plate is 2h and the distance

c©2004 Miskolc University Press
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between the centers of the holes is 2l. Let the boundaries of the hole be L1 and L2

(Figure 1). The friction along the contact line can be neglected. The cross-section of
the rings is symmetrical about the central plane of the plate. The stress-strain state
of the rings is described by the theory of thin curved bars. Since the elastic rings are
in the holes of the plate, around the boundaries L1 and L2, the following equations
should be satisfied

un − u1n = ε∗1(t) ,
un − u2n = ε∗2(t) ,

σ
(i)
r1 = σ

(i)
r2 = σ

(i)
r ,

τ
(i)
rΘ1 = τ

(i)
rΘ2 = 0 ,

(1)

where un is the normal component of displacement at the contour points of the plate,
u1n and u2n are the normal components of displacements at the contour points of
rings, σ(i)

r is the normal component of contact stresses,

ε∗1(t) and ε∗2(t)

are the normal components of displacement jumps around the boundaries L1 and L2,
respectively. In this case

ε∗1(t) = ε∗2(t) = ε∗(t) ,

where t is a parameter of the arc.
In case of a symmetrically loaded plate it is sufficient to satisfy the boundary

conditions related to one (right) hole.
The unknown potential functions ϕ(z) and ψ(z) can be expressed according to [10]

as follows
ϕ(z) = ϕ∗(z) + ϕo(z),
ψ(z) = ψ∗(z) + ψo(z),

(2)

where

ϕo(z) =
∞
Σ
k=1

akr
k
1

[
(z − l)−k + (−1)k+1(z + l)−k

]
,

Ψo(z) =
∞
Σ
k=1

bkr
k
1

[
(z − l)−k + (−1)k+1(z + l)−k

]
,

(3)

The coefficients ak and bk are complex numbers. The smooth contact around the
contour of hole L1 can be expressed in integral form as follows [11]∫

L1

uF ′(t)dt = −
∫
L1

σ(i)
r F (t)dt,

∫
L1

uF ′(t)dt = −
∫
L1

σ(i)
r F (t)dt,

∫
L1

F (t)d [Re(v)] = 2G

∫
L1

F (t)d [u1n + ε(t)] ,

(4)
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where

u = ϕ(t) + tϕ′(t) + ψ(t),

v = iṫ
[
κϕ(t)− tϕ′(t)− ψ(t)

]
,

and

e−iΘ = iṫ,
·
t =

dt

ds1
= ieiΘ,

t = l + r1e
iΘ is the affix of the contour point on L1, ds1 is the increase of the arc,

F (z) is the arbitrary holomorphic function of complex variable (z = x + iy) on the
domain of the plate S1, F ′ is the derivate function, F is the conjugate function, G is
the shear modulus of the plate,

κ =
3− ν
1 + ν

is a coefficient for plane stresses and ν is the Poisson ratio.
The normal component of displacement at the contour points of the ring can be

expressed in the following way [11]

u1n = Re

iṫ
t∫

to

[
ro
r1
εo +

.
t(r1 − ro)

dΘb

dt
+ iΘb

]
dt+ ṫ const

 , (5)

where εo is the strain of the neutral line Lo (in case of simple bending), Θb is the
slope of the cross section of the ring and ro is the radius of the neutral line.

The normal stress component in the cross-section of ring can be expressed as follows

σk = E

[
ro
r
εo + (r − ro)

.
t
dΘb

dt

]
, (6)

where E is the elasticity modulus of the ring, r is the radius of an arbitrary line of
the bar.

The stress-strain relation (without an external load on the ring) for the contact
stresses is given by

σ(i)
r = − 1

2h
Re

d

dt

{
d

dt

[
EA(ro − r1)εo + EAηcr1

.
t
dΘb

dt

]
+ iEAεo

.
t

}
(7)

where A is the cross-section of the ring, ηc is the distance between the neutral line Lo
and the central axis of the ring.

Besides equation (4) we take into consideration the uniqueness condition by∫
L1

[
ro
r1
εo + (r1 − ro)

.
t
dΘb

dt
+ iΘb

]
dt = 0. (8)

Let z = ω(ζ) be the function mapping conformly the exterior of unit circle γ, (|ζ| ≥
1), onto the domain of the plate S. In this case the boundary conditions for the
transformed domain are expressed as
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∫
γ

F ′(σ) Re

{
ω′(σ)

σ |ω′(σ)|

[
κϕ(σ)− ω(σ)

ω′(σ)
ϕ′(σ)

]
dσ −Ψ(σ)

}
=

= 2G

∫
γ

F ′(σ)

{
Re

ω(σ)

σ |ω′(σ)|

σ∫
σo

[
ro
r1
εo + iΘb +

(r1 − ro)iσ
|ω′(σ)|

dΘb

dσ

]
ω′(σ)dσ−

−ico
ω(σ)

σ |ω′(σ)|

}
dσ + 2G

∫
γ

ε∗(σ)F ′(σ)dσ,

∫
γ

F ′(σ)

[
ϕ(σ) +

ω(σ)

ω′(σ)
ϕ′(σ) + ψ(σ)

]
dσ =

= −EA
2h

∫
γ

[
εo
r1
− σ

|ω′(σ)|
d

dσ

(
r1σ

|ω′(σ)|
dεo
dσ

)]
F (σ)ω′(σ)dσ, (9)

∫
γ

F ′(σ)

[
ϕ(σ) +

ω(σ)

ω′(σ)
ϕ′(σ) + ψ(σ)

]
dσ =

= −EA
2h

∫
γ

[
εo
r1
− σ

|ω′(σ)|
d

dσ

(
r1σ

|ω′(σ)|
dεo
dσ

)]
F (σ)ω′(σ)dσ,

where
σ = eiΘ

is the affix of the contour point on γ, co is a constant, Θ is the polar angle in the
transformed domain ζ and

ϕ(σ) = ϕ1 [ω(σ)] , ψ(σ) = [ω(σ)] , F (σ) = F1 [ω(σ)] .

Let εo and Θb be, respectively, the quantities in the form of complex Fourier series
describing the deformations of beam (ring) on the boundary γ

εo = αo +

∞∑
k=1

αk(σk + σ−k) ,

Θb = βo +
∞
Σ
k=1

βk(σk + σ−k) .

(10)

The arbitrary function F (σ) can also be written as

F (σ) =
∞
Σ
k=0

Ekσ
−k

where Ek are coefficients.
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Curvature of contour L1 can be calculated by

1

r1
=

1

ω′(σ)

d

dσ

[
σω′(σ)

|ω′(σ)|

]
. (11)

When equations (2), (10), (11) are substituted in equation (9) and after integration
along the contour γ, we have an infinite inhomogeneous linear algebraic equation
system.

The contact condition between the plate and ring along the contours L1 and L2 is
given as

σ(i)
r ≤ 0 .

The minimal value of fit ε∗min can be calculated, when the contact stress is zero in
one or several points of the contour L1

σ(i)
r (Θ∗) = 0,

where Θ∗ is the polar angle.

3. Illustrative examples

3.1. Data of the examples. We show some practical examples for copper plate,
containing two circular holes stiffened by an elastic steel ring with rectangular cross-
section (A = 2h∗b, where h∗ is the height and b is the width of the ring).

The main data of the examples are as follows: G = 43.4GPa; ν = 0.3; κ = 2.08,
E = 206GPa.

Figure 1. The minimal value of ring fit ε∗ versus distance between
the centres of two holes
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3.2. Stresses in a plate subjected to shear. The shear load of the plate consid-
ered is shown in Figure 1. The functions ϕ∗(z) and ψ∗(z) can be written as follows

ϕ∗(z) = 0, ψ∗(z) = iτz,
where

τ∞xy = τ , σ∞x = 0 , σ∞y = 0 .

Table 1. The tangential stresses σt around the boundary of the right-hand hole

Θ
2l/r

∞ 4 3 2.5 2.2
0 0.059 0.111 0.268 0.606 1.016

π/12 -1.911 -1.965 -1.853 -1.548 -1.158
π/6 -3.353 -3.514 -3.456 -3.201 -2.848
π/4 -3.882 -4.143 -4.158 -3.977 -3.687
π/3 -3.353 -3.701 -3.811 -3.739 -3.550
π5/12 -1.911 -2.308 -2.537 -2.622 -2.580
π/2 0.059 -0.312 -0.668 -0.963 -1.163

7π/12 2.030 1.804 1.377 0.853 0.343
2π/3 3.472 3.548 3.230 2.601 1.794
3π/4 4.000 4.476 4.588 4.268 3.464
5π/6 3.472 4.236 4.976 5.532 5.334

11π/12 2.030 2.669 3.611 4.879 5.500
π 0.059 0.134 0.398 1.167 2.973

13π/12 -1.911 -2.418 -2.906 -2.950 -1.407
7π/6 -3.353 -4.024 -4.467 -4.387 -3.620
5π/4 -3.882 -4.302 -4.247 -3.694 -2.987
4π/3 -3.353 -3.395 -2.964 -2.225 -1.589

17π/12 -1.911 -1.655 -1.108 -0.420 0.094
3π/2 0.059 0.470 0.983 1.559 1.988

19π/12 2.030 2.480 2.911 3.398 3.793
5π/3 3.472 3.889 4.241 4.673 5.066
π7/4 4.000 4.346 4.634 5.034 5.436
11π/6 3.472 3.727 3.966 4.345 4.757
23π/12 2.030 2.185 2.382 2.743 3.159

2π 0.059 0.111 0.268 0.606 1.016

Tables 1 and 2 illustrate the calculated tangential and radial stresses σt and σr (in
ratio of τ) around the boundary of the right–hand circular hole, respectively (h∗ = h
and b = 0.2r). In this case h and h∗ are the heights of plate and ring, respectively.

Figure 1 shows the minimal value of ring fit ε∗min as function of distance between
the centers of two holes (b = 0.2r). Values of fit are given in ratio of 10−11rτ .

On the basis of Figure 1 we can conclude that the minimal values of ring fit increase
as the distance between the centers of holes decreases. When the gap appears between
the ring and the boundary of the right-hand hole the angle is equal to θ∗ ∼= 10π/9.
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Table 2. The radial stresses σr around the boundary of right holes

Θ
2l/r

∞ 4 3 2.5 2.2
0 -0.059 -0.096 -0.214 -0.446 -0.683

π/12 -0.030 -0.067 -0.185 -0.418 -0.654
π/6 -0.008 -0.046 -0.165 -0.398 -0.635
π/4 0.000 -0.038 -0.158 -0.392 -0.630
π/3 -0.008 -0.045 -0.167 -0.403 -0.643

5π/12 -0.030 -0.064 -0.187 -0.426 -0.670
π/2 -0.059 -0.089 -0.207 -0.448 -0.698

7π/12 -0.089 -0.110 -0.214 -0.442 -0.685
2π/3 -0.110 -0.131 -0.208 -0.390 -0.583
3π/4 -0.118 -0.157 -0.238 -0.375 -0.495
5π/6 -0.110 -0.189 -0.359 -0.624 -0.886

11π/12 -0.089 -0.177 -0.429 -0.919 -1.360
π -0.059 -0.097 -0.221 -0.479 -0.824

13π/12 -0.030 -0.017 -0.006 0 -0.009
7π/6 -0.008 -0.003 -0.064 -0.242 -0.392
5π/4 0.0 -0.033 -0.181 -0.484 -0.891
4π/3 -0.008 -0.060 -0.214 -0.488 -0.759

17π/12 -0.030 -0.082 -0.212 -0.450 -0.685
3π/2 -0.059 -0.103 -0.221 -0.448 -0.679

19π/12 -0.089 -0.128 -0.242 -0.470 -0.704
5π/3 -0.110 -0.147 -0.262 -0.492 -0.728
7π/4 -0.118 -0.154 -0.270 -0.501 -0.738
11π/6 -0.146 -0.263 -0.495 -0.732 -0.732
23π/12 -0.089 -0.125 -0.242 -0.475 -0.711

2π -0.059 -0.096 -0.214 -0.446 -0.683

3.3. Pure bending of strip. The bending load of strip having two circular holes
considered is shown in Figure 2. The functions ϕ∗(z) and ψ∗(z)may be written as

ϕ∗(z) =
iM

8I
z2,

ψ∗(z) = − iM
8I

z2,

M∞z = M , where M is the bending moment and I is the moment of inertia of the
strip–cross section with respect to the neutral axis.
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Figure 2. The minimal value of ring fit ε∗ versus distance between
the centers of the two holes

Figure 3. The calculated radial stresses σr around the boundary of
the right-hand hole
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Figure 4. Stress distribution around the boundary of the right-hand hole
Figure 2 depicts the computed minimal values of steel ring fit as a function of

distance between the centers of two holes for any values of geometrical parameterδ =
b/r. Values of minimal fit are given in ratio of 10−11Mr2/I.

Figure 3 shows the calculated radial stresses σr around the boundary of the right-
hand hole (h∗ = h; b = 0.2r). The results indicate that the distance between the
centers of holes has an influence on the stress concentration.

3.4. Stresses in plate subjected to shear with angle. The shear load of plate
with angle π/4 is shown in Figure 4. The complex functions are as follows

ϕ∗(z) = 0, ψ ∗ (z) = −τz .

The stress components σΘ and σr around the boundary of the right-hand hole can
be expressed as follows

σΘ = −τ cos 2Θ +
∞
Σ

k=1r

〈
(k + 1)

{
ak

[
cos(k + 1)Θ +

1

2ε1
cos kΘ

]
−

−2k

[
ak cos(k + 1)Θ +

1

2
bk cos(k − 1)Θ

]
+
∞
Σ
m=1

Hk,mm {ak[(m− 1)(cos(m− 1)Θ+

+
1

2ε1
cosmΘ) + 2 cos(m− 1) Θ]− bk cos(m+ 1)Θ

}〉
,

σr = −4
∞
Σ
k=1

1

r
[kak cos(k + 1)Θ−

∞
Σ
m+1

Hk,mmak cos(m− 1) Θ]− σΘ ,

where ε1 = r/2l,
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Hk,m = (−1)k+m+1Cmk+m−1ε
k+m
1 .

and Cmk+m+1 refers to combination.
Figure 4 illustrates the stress distribution around the boundary of the right-hand

hole. The plate is made of copper and the ring is made of steel (h*=h; b=0.25r). The
dash and dot lines show the stress distribution around the boundary without ring
(2l=3r), calculated by [11].

4. Concluding remarks

The present mathematical method is very efficient for the analysis of stress concen-
tration of isotropic plates with two circular holes stiffened by elastic rings.

The radial and tangential stresses around the boundary of holes are given in Tables
1 and 2. Figure 3 and 4 illustrates the stress distribution around the boundary of the
right-hand holes.

Formulas for the strength calculation are given according to the theory of complex
potential functions.
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Abstract. A finite element model was developed for the modelling of progressive delam-
ination in a cross-ply laminate made of polymer composite layers with continuous fibres.
Three-dimensional solid elements were used to model the orthotropic layers in the macro-
mechanical model. The delamination was initiated by a sharp notch, which was placed at
the center part of a rectangular composite plate. The in-plane load was tension, applied
incrementally in time. The delamination process was modeled by the help of a meso-scale
finite element model, and special interface elements were used in the vicinity of notch tip
between the layers. The solid interface elements with special material behavior were applied
to model damage progression during the delamination of layers. The analysis predicted a
narrow delamination zone at the notch tip, also verified by experimental measurements.

Mathematical Subject Classification: 74A40, 74A45
Keywords: delamination in cross-ply laminates

1. Introduction

Damage in fibre-reinforced composites exhibits a wide range of forms. Various failure
modes, which can occur in long fibre composites, were described by Cantwell and
Morton [1]. One of the most frequent modes of failure is delamination, which could
lead to overall damage of the composite structure. Several kinds of approaches can
be found in the literature on this problem. Some authors treat the damage zone
as a crack, and apply methods of fracture mechanics. An early work was presented
by Griffith et al. [2], who investigated the splitting in a 0◦ lamina due to tension.
Another way is a progressive damage modeling, which predicts the effect of notch size
on tensile strength and the behaviour of different lay-ups. Chang and his co-worker
[3] applied this method to model the damage process. An energy approach was also
used in some models, when the strain energy release rate was investigated during the
delamination. A quite new and effective method is the interface modeling approach,
which is applied in various finite element models. Special interface elements were used
to model the progression of delamination between layers under investigation (Mi et
al. [4]). This method was also applied by Wisnom and Fu-Kuo Chang [5], creating a

c©2004 Miskolc University Press
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macro-mechanical model of a notched rectangular plate. Plane stress elements were to
represent the plies in the cross-ply laminate, and 2 node non-linear interface elements
were to represent the behavior of the inter-laminar matrix and to model the splitting
and delamination at the notch tip.

In the present paper a rectangular composite laminate with lay-up [90/0]S is inves-
tigated, and there is a sharp notch at the center (see Figure 1). The notch is extended
along all the four layers, and has no gap before loading. The in-plane load increases
tension load parallel to x-axis and perpendicular to the notch. First a macro-scale FE
model is created to determine the overall behavior of the rectangular plate. Next a
meso-scale FE model is applied in the vicinity of notch tip. The finite element analysis
is used for modelling the damage process. According to the above mentioned earlier
investigations and experimental measurements by Spearing and Beaumont [6], two
kinds of damage occur: an axial split of 0◦ layer and a delamination are progressing
near the notch tips. The aim of the analysis is to determine the relationship between
the axial load and the extent of the damaged area.

Delamination
 between 0° and 90° laminae

Tension

Splitting
in 0° lamina

Figure 1. Splitting and delamination in the laminate
The arrangement and dimensions of the plate are given in Figure 2. The x-y plane is
the mid-plane of the plate. This structure has three planes of symmetry, therefore

[90/0]S laminate

45 mm

x
24 mm  8 mm

y macro-scale
FE model

meso-scale
FE model

Figure 2. The notched laminate and the FE model
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only one eighth of the total is modelled in the macro-scale analysis. The symmetric
mechanical mechanical behavior is ensured by kinematic boundary conditions along
the planes of symmetry. The macro mechanical model consists of two orthotropic
layers of 0.14 mm thickness each, which are meshed by 8 node 3D solid elements (see
Figure 3).

Figure 3. Undeformed and deformed meshes of macro-scale model
(hundredfold distortion is for displacements)

The material properties are orthotropic linear elastic ones, for T300/914 composite
with 60% fibre volume fraction: E11 = 135 GPa, E22 = E33 = 9.6 GPa, G12 = G13 =
5.8 GPa, G23 = 3.1 GPa, ν12 = ν13 = 0.31, ν23 = 0, 38. This model does not consider
any damage process; it is to help the proper selection of borders for the meso-scale
analysis. Moreover, the stress-concentration near the notch tip - responsible for split
and delamination - can be studied this way.

notch tip
x

y

z

 90° layer

 0° layer

 interface layer

 interface layer

ux=0

ux ,
 
uy

 
= given

uy=0

uz=0
free

Figure 4. The meso-scale model with the kinematic boundary conditions
The meso-scale model relates to the part of the notch tip, where the damage is

expected. It consists of 90o and 0o layers of 0.125 mm thickness each, and an interface
layer of 0.03 mm is between them for modeling the delamination. Within the 0o layer,
another interface strip of 0.03 mm is placed for modeling the splitting (see Figure 4).
Both composite layers and the interface layers are meshed by 3D solid elements with
8 nodes. The composite layers have linear elastic, orthotropic properties with the
same elastic constants as in the macro-scale model. The interface elements have
isotropic, elasto-plastic damage material properties. Its elastic behaviour is as for
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matrix material, plastic yield limit is determined by matrix material yield test. The
elasto-plastic deformation in the interface is limited until the strain energy density
reaches its critical value. This is determined by the fracture energy density, forming an
area under the material curve (Figure 5). As the splitting and delamination processes
are controlled by mode II and mode III shear stresses, the fracture energy for those
modes is applied in the computation. Referring to Spearing’s measurement [6], 0.4
N/mm fracture energy per unit area is applied. The common nodes of the interface
elements and the composite elements work together until the damage occurs. After
having been damaged, the nodes become inactive, the nodal forces vanish for the
interface elements involved.

 Area=Fracture
energy density

 eq

 eq

 Y

 1

Figure 5. The meso-scale model with the kinematic boundary conditions
The kinematic loads on the surfaces of the meso-scale model are determined by using
the macro-scale model, and are applied incrementally starting from zero. Non-linear
static analysis was applied, using Cosmos/M software. An external procedure was
created for evaluation of the damage criterion of the interface elements, and for modi-
fication of the state (from active to inactive) of the damaged nodes, and for restarting
the computation. For each load increment, an iteration is necessary to reach an
equilibrium.

2. Results

The splitting process starts at the notch tip when the tension load is quite low. Due
to the delamination, the damaged nodal points form an increasing narrow, triangular
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domain at the notch tip as it was detected by experimental measurement [6] (see
Figure 1). As the model dimensions and material behavior parameters in this finite
element model were very close to those in the measurement, it became possible to
compare the experimental and computational results. The relationship between the
half split length and nominal stress (that is x in the 0o layer, far from the notch) is
shown for both cases (Figure 6). According to this diagram, the correlation between
the computed and measured values is good.

3. Concluding remarks

Macro- and meso-scale finite element models were created for a rectangular plate
made of cross-ply laminate with a notch in the center. Using an interface element
approach, our models were available for modelling the synchronous damage processes
at the notch tips (that is splitting in the 0◦ layer and delamination between 0◦ and
90◦ layers). While other researchers, like Mi et al., [4] applied 4 node solid elements,
or Wisnom et al., [5] did 2 node elements, we followed the damage processes by 8 node
solid finite elements. The interface elements had special elasto-plastic damage mate-
rial properties to describe the progressive splitting and delamination. Our model was
also suitable for predicting the extent of the damaged domain as function of tension
load. The shape and the extent of the delaminated region are in good agreement with
the experimental measurement, known from the paper by Spearing and Beaumont
[6].
Acknowledgement. The support provided by the Hungarian National Research Founda-
tion (project No. T037 324) is gratefully acknowledged.
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Abstract. This paper presents some ideas and doubts about some assumptions on the
validity and proofs of the Onsager–Casimir reciprocal relations. Presuming the validity
of the Onsager–Casimir reciprocal relations, exact proofs can be constructed for Newton’s
second and third laws, moreover, for the formula of the Lorentz–force. This way, the axioms
of both mechanics and electrodynamics would become theorems in a theory in which the
Onsager–Casimir reciprocal relations have been proved phenomenologically. We incline to
believe that neither the axioms mentioned nor the Onsager–Casimir reciprocal relation can
be proved, nevertheless, they are valid. The statement that if something is true then it can
be proved is false.

Mathematical Subject Classification: 70G99
Keywords: Onsager–Casimir reciprocal relations, validity, proofs

1. Introduction

The Onsager–Casimir reciprocal relations play important role in non-equilibrium ther-
modynamics [1, 2, 3, 4, 5, 6]; their validity deserves attention even if they have been
discussed several times, (see e.g. [7, 8, 9, 10, 11] and [12], especially, [13, 14, 15, 16,
17, 18, 19, 20] as weel as [21, 22]). Furthermore they are somehow related to the
celebrated and persistent problems of the increase in the entropy and thermalization
in statistical manifolds [23, 24].

The original proof based on the principle of microscopic reversibility suggests that
they hold for statistical ensembles — in accordance with the opinion that entire ther-
modynamics does — and other methods introducing them did not result in anything
new [5]. The generality and some applications hardly belonging to the realm of
statistics inspired efforts for a phenomenological proof. The attempts to prove the
reciprocal relations on a phenomenological basis have failed. One may think that the
failure proves the statistical validity. Here we show that the reciprocal relations are
closely related to very basic principles. We show here that the desired phenomeno-
logical proof of the reciprocal relations would be equivalent to a proof of fundamental
laws of physics.

c©2004 Miskolc University Press
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The equivalence of the reciprocal relations and the principle of detailed balance
are well known. What is more the latter has hardly any meaning, e.g., in particle
mechanics or in Maxwell’s theory. The thermodynamic theory of diffusion—see e.g.
[25]— shows that the reciprocal relations for the diffusion coefficients are equivalent
to Newton’s third law.

Some simple models can elucidate the intimate relation of the reciprocity to New-
ton’s laws and to the fundamental principles of electromagnetism.

2. The diffusion

The entropy production density in an isothermal multicomponent system is (see [5]
eq. XI.171, p. 265.)

σ =
1

T

n∑
k=1

Ja
k{Fk − (gradµk)T }, (2.1)

where the vectors Ja
k = ρk(vk−v) are the diffusion flows with respect to any reference

velocity (v), Fk stands for the body forces acting on the unit amount of each chemical
species in a frame travelling and accelerating together with the local center of mass,
the scalars µk are the chemical potentials, and T is the thermodynamic temperature.
Here ρk stands for the densities and vk for the velocities of the components. The
Onsager equations read

Fi − (gradµi)T =

n∑
k=1

RikJa
k. (2.2)

From the fact that a simple translation of the material does not result in any dissi-
pation,

n∑
k=1

Rikρk = 0 (2.3)

follows. Eliminating the diagonal elements from the right-hand side of equation (2.2),
we get

Fi − (gradµi)T =
∑
k 6=1

Rikρk(vk − vi). (2.4)

The right-hand side gives account of the forces exertied by the other components on
the unit amount of the i-th one. Referring to unit volume, equation (2.4) transforms
into

ρi(Fi − (gradµi)T ) =
∑
k 6=1

Rikρkρi(vk − vi). (2.5)

One can see that Onsager’s reciprocal relations follow from Newton’s third law; exactly
as Truesdell concluded [25]. To decide whether they are equivalent or not needs a
detailed axiomatic investigation difficult for such a complex system. The possibilities
are more transparent in case of simpler models.
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3. Newton’s second law

The simplest model we use is a small – point like – particle and its motion is discussed
by recalling the ideas of thermodynamics. The idea of work and Galilean relativity
are presumed but Newton’s second and third axioms are not. Remember that the idea
of work is much older than Newton’s theory (Archimedes). The reciprocal relation
and the possibility of reversible motion yields Newton’s second axiom.

Assume the conservation of energy for a particle. Heat – unlike pure mechanical
considerations – is also taken into account as friction or drag may always be present.

de

dt
= Iq + Fv. (3.1)

Here e is the energy of the thermodynamic system (i.e. the particle and its immediate
environment, e.g. in a fluid), Iq is the heat flow into, and F is the force exerted on
it. The entropy is supposed to depend on the energy and on a – not yet specified –
β-type vector variable;

s = s(e,β). (3.2)

The Morse – lemma [26] ensures that the form of the above function becomes

s = s(e− 1

2
β2) (3.3)

with a suitable independent variable. The second law of thermodynamics reads

ds

dt
=
Iq
T

+ Ps (3.4)

with non-negative entropy production;

Ps ≥ 0 .

If we do not want to take on the difficulties of discussing the possible details of heat
exchange we had better suppose reversible heat effects, which results in

∂s

∂e
=

1

T
.

The actual form of the entropy production is

Ps =
1

T

{
Fv − β

dβ

dt

}
. (3.5)

The Onsager equations are

F = R11v +R12
dβ

dt
,

−β = R21v +R22
dβ

dt
(3.6)

with Casimir’s reciprocal relation

R21 = −R12 . (3.7)
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The energy dissipation rate – TPs – is given by

TPs = R11v
2 +R22

{
dβ

dt

}2

.

In the reversible limit both R11 and R22 equal zero; Onsager’s equations turn into

F = R12
dβ

dt
,

−β = −R12v, (3.8)

which results in
F = R2

12

dv

dt
; (3.9)

obviously, the positive quantity R2
12 is m, the mass of the particle. The dropped

coefficient R11 may give account of drag if the particle moves in a fluid, while the
coefficient R22 results in a term approximating electromagnetic radiation [27] or emis-
sion of acoustic waves, etc.

The entropy function (3.3) in the reversible case is

s = s(e− 1

2
mv2) .

Newton’s second law has been shown by Onsager’s linear theory. The relativistic
formulae result in a non-linear theory.

4. Newton’s third law

Combining two particles and applying the previous result as well as the homogeneity
of space lead to the third axiom if and only if the Onsager–Casimir reciprocal relation
holds. For the sake of simplicity, suppose that no external forces act on the particles;
the change of the energy is due to heat. The first law of thermodynamics reads

de

dt
= Iq . (4.1)

Take the entropy in the form

s = s
(
e− 1

2
m1v

2
1 −

1

2
m2v

2
1, r1 − r2

)
. (4.2)

The entropy function expresses the fact that the space is homogeneous and the inter-
action of the two particles is influenced by their distance. Dropping again the heat
effects and evaluating the entropy production leads to

TPs = Γ(v1 − v2)−m1v1
dv1

dt
−m2v2

dv2

dt
or rearranged

TPs =

(
Γ−m1

dv1

dt

)
v1 −

(
Γ +m2

dv2

dt

)
v2, (4.3)

where the symbol Γ stands for the gradient of the entropy with respect to r1;

Γ =
∂s

∂(r1 − r2)
.
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The Onsager equations are(
Γ−m1

dv1

dt

)
= R11v1 +R12v2,

−
(

Γ +m2
dv2

dt

)
= R21v1 +R22v2, (4.4)

where Onsager’s reciprocity is not assumed. Galilean invariance requires

R11 +R12 = 0,

R21 +R22 = 0,

as the left hand sides of the equations (4.4) contain only differences of position vectors
and velocities—they are objective— while on the right hand sides absolute velocities
stand except the above equalities hold. The sum of the equations—after multiplying
both sides by -1—results

m1
dv1

dt
+m2

dv2

dt
= (R21 −R12)(v1 − v2), (4.5)

which leads to the conservation of the linear momentum if and only if Onsager’s
reciprocity holds.

5. Lorentz–force

The idea of the electric field and a β-type field – generated by the motion of charges – is
presumed. Onsager’s reciprocal relation gives the formula of Lorentz’s force together
with the definition for the B-vector.

The balance equation for the internal energy u = e− 1/2mv2 reads

du

dt
= Iq + qEv , (5.1)

where q is the electric charge and E is the electric field strength. The entropy function
is

s = s(u) (5.2)

and the entropy production reads

Ps =
1

T
qEv. (5.3)

The form of Onsager’s equation is

qE = Rv , (5.4)

where the resistivity tensor R depends on the aforementioned β-type field quantity
β, the tensorial order of which has not been specified. Onsager’s reciprocal relation
takes the form

RT (β) = R(−β), (5.5)
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which says that the skew-symmetric part of the resistivity tensor is an odd function
on β while the symmetric part is even. Denote the symmetric part by R+, and the
vector invariant of the skew-symmetric part by −qB. Equation (5.4) turns into

qE = R+v − qB× v. (5.6)

The last term on the right–hand side is proportional to the charge q; it can be reasoned
the same way as for the electric force qE. The quantity B is characteristic for the
field and may be accepted – trivially – as the magnetic field strength. The first term
on the right–hand side gives account of drag.

6. Conclusion

The arguments presented show clearly that a general phenomenological proof for the
Onsager–Casimir reciprocal relations would be also proof for Newton’s axioms and
for the axioms of electromagnetism.

I hardly believe that it is possible.
Acknowledgement. This work has been supported by the Hungarian National Scientific
Research Funds, OTKA (T034715).
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Abstract. In this overview of loaded stiffened plates various plate types, loadings, and
stiffener shapes are investigated. Mikami [1] and API [2] methods are used for the optimum
design and comparison of the two methods and uniaxially compressed plates stiffened by
ribs of various shapes. Both methods consider the effect of initial imperfection and residual
welding stresses, but their empirical formulae are different. The elastic secondary deflection
due to compression and lateral pressure is calculated using the Paik’s solution [3] of the
differential equation for orthotropic plates, and the self-weight is also taken into account.
Besides this deflection some more deformations are caused by lateral pressure and the shrink-
age of longitudinal welds. The unknowns are the thickness of the base plate as well as the
dimensions and number of stiffeners. The cost function to be minimized includes two kinds
of material and three kinds of welding costs.

Mathematical Subject Classification: 74K20,74P10
Keywords: stiffened plate, welded structures, stability, residual welding distortion, structural
optimization, minimum cost design

1. Introduction

Stiffened welded plates are widely used in various load-carrying structures, e.g. ships,
bridges, bunkers, tank roofs, offshore structures, vehicles, etc. They are subject to
various loadings, e.g. compression, bending, shear or combined load. The shape of
plates can be square, rectangular, circular, trapezoidal, etc. They can be stiffened in
one or two directions by stiffeners of flat, L, trapezoidal or other shape.

Various plate types, loadings and stiffener shapes have been investigated. In this
paper two kinds of loads are investigated [6], [7]. These are uniaxial compression and
lateral pressure. Structural optimization of stiffened plates has been worked out by
Farkas [8], Farkas and Jármai [9], and applied to uniaxially compressed plates with
stiffeners of various shapes [10], biaxially compressed plates [11].

This paper contains the minimum cost design of longitudinally stiffened plates us-
ing the strength calculation methods. Deflections due to lateral pressure, compression
stress and shrinkage of longitudinal welds are taken into account in the stress con-
straint. The self-weight is added to the lateral pressure. The local buckling constraint

c©2004 Miskolc University Press
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of the base plate strips is formulated as well. The cost function includes two kinds
of material and three kinds of welding costs. The unknowns are the thickness of the
base plate as well as the dimensions and number of stiffeners.

2. Geometric characteristics

The stiffened plates are shown in Figures 1 and 2. The plates are simply supported at
four edges. Geometrical parameters of plates with flat, L- and trapezoidal stiffeners
can be seen in Figures 3-5.

Figure 1. Longitudinally stiffened plate loaded by uniaxial compression

Figure 2. Longitudinally stiffened plate loaded by uniaxial compres-
sion and lateral pressure

Figure 3. Dimensions of a flat stiffener
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The geometrical parameters of the flat stiffener are calculated as follows

AS = hStS , (2.1)

hS = 14tSε, (2.2)

ε =
√

235/fy, (2.3)

yG =
hS + tF

2

δS
1 + δS

, (2.4)

δS =
AS

btF
, (2.5)

Ix =
bt3F
12

+ btF y
2
G +

h3StS
12

+ hStS

(
hS
2
− yG

)2

, (2.6)

IS = h3S
tS
3
, (2.7)

It =
hSt

3
S

3
. (2.8)

Figure 4. Dimensions of an L-stiffener
The calculations of geometrical parameters of the L-stiffener are

AS = (b1 + b2) tS (2.9)

b1 = 30tSε, (2.10)

b2 = 12.5tSε, (2.11)

yG =

b1tS
b1 + tF

2
+ b2tS

(
b1 +

tF
2

)
btF +AS

, (2.12)
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Ix =
bt3F
12

+ btF y
2
G +

b31tS
12

+

+b1tS

(
b1
2
− yG

)2

+ b2tS (b1 − yG)
2 ,

(2.13)

IS =
b31tS

3
+ b21b2tS , (2.14)

It =
b31tS

3
+
b32tS

3
. (2.15)

Figure 5. Dimensions of a trapezoidal stiffener
The calculations of geometrical parameters of the trapezoidal stiffener are

AS = (a1 + 2a2) tS , (2.16)

a1 = 90 [mm], a3 = 300 [mm], thus

hS =
(
a22 − 1052

)1/2 , (2.17)

sin2 α = 1−
(

105

a2

)2

, (2.18)

yG =
a1tS (hS + tF /2) + 2a2tS (hS + tF ) /2

btF +AS
(2.19)

Ix =
bt3F
12

+ btF y
2
G + a1tS

(
hS +

tF
2
− yG

)2

+

+
1

6
a32tS sin2 α+ 2a2tS

(
hS + tF

2
− yG

)2

, (2.20)

IS = a1h
3
StS +

2

3
a32tS sin2 α, (2.21)

It =
4A2

P∑
bi/ti

, (2.22)

AP = hS
a1 + a3

2
= 195hS . (2.23)
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3. Design constraints in case of uniaxial compression

3.1. Global buckling of the stiffened plate. According to Mikami [1] the effect of
initial imperfections and residual welding stresses is considered by defining buckling
curves for a reduced slenderness

λ = (fy/σcr)
1/2 . (3.1)

The classical critical buckling stress for a uniaxially compressed longitudinally stiff-
ened plate is

σcr =
π2D

hB2

(
1 + γS
α2
R

+ 2 + α2
R

)
for αR = L/B < αR0 = (1 + γS)1/4, (3.2)

σcr =
2π2D

hB2

[
1 + (1 + γS)

1/2
]

for αR ≥ αR0. (3.3)

Figure 6. Global buckling curve considering the effect of initial im-
perfections and residual welding stresses

When the reduced slenderness is known the actual global buckling stress can be
calculated according to Mikami [1] as follows

σU/fy = 1 for λ ≤ 0.3, (3.4)

σU/fy = 1− 0.63 (λ− 0.3) for 0.3 ≤ λ ≤ 1, (3.5)

σU/fy = 1/
(
0.8 + λ2

)
for λ > 1. (3.6)

The global buckling constraint is defined by
N

A
≤ σU

ρP + δS
1 + δS

, (3.7)

in which δS is given by Equation 2.5,

A = BtF + (ϕ− 1)AS , (3.8)
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and the factor is

ρp = 1 if σUP > σU , (3.9)
ρP = σUP /fy if σUP ≤ σU . (3.10)

Figure 7. Global buckling curve according to Mikami and API
According to API [2]

σU/fy = 1 if λ ≤ 0.5, (3.11)
σU/fy = 1.5− λ if 0.5 ≤ λ ≤ 1, (3.12)
σU/fy = 0.5/λ if λ > 1. (3.13)

The global buckling constraint can be written as follows
N

A
≤ σU . (3.14)

3.2. Single panel buckling. This constraint eliminates the local buckling of the
base plate parts between the stiffeners. From the classical buckling formula for a
simply supported panel uniformly compressed in one direction

σcrP =
4π2E

10.92

(
tF
b

)2

, (3.15)

the reduced slenderness is

λP =

(
4π2E

10.92fy

)1/2
b

tF
=

b/tF
56.8ε

; ε =

(
235

fy

)1/2

(3.16)

and the actual local buckling stress considering the initial imperfections and residual
welding stresses is

σUP /fy = 1 for λP ≤ 0.526, (3.17)

σUP

fy
=

(
0.526

λP

)0.7

for λP > 0.526. (3.18)
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The single panel buckling constraint is

N

A
≤ σUP . (3.19)

3.3. Local and torsional buckling of stiffeners. These instability phenomena
depend on the shape of stiffeners and will be treated separately for L stiffener.

The torsional buckling constraint for open section stiffeners is

N

A
≤ σUT . (3.20)

The classical torsional buckling stress is

σcrT =
GIT
IP

+
EIω
L2IP

, (3.21)

where G = E/2.6 is the shear modulus, IT is the torsional moment of inertia, IP is
the polar moment of inertia and Iω is the warping constant. The actual torsional
buckling stress can be calculated as a function of the reduced slenderness

λT = (fy/σcrT )
1/2 , (3.22)

σUT /fy = 1 for λT ≤ 0.45, (3.23)

σUT /fy = 1− 0.53 (λ− 0.45) for 0.45 ≤ λ ≤ 1.41, (3.24)

σUT /fy = 1/λ2 for λ > 1.41. (3.25)

Figure 8. Limiting curves for local plate buckling (χP ) and torsional
buckling of open section ribs (χT )
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4. Design constraints in case of uniaxial compression and lateral pressure

4.1. Calculation the deflection due to compression and lateral pressure.
Paik et al. [3] used the differential equations of large deflection orthotropic plate
theory and the Galerkin method to derive the following cubic equation for the elastic
deflection Am of a stiffened plate loaded by uniaxial compression and lateral pressure

C1A
3
m + C2A

2
m + C3Am + C4 = 0, (4.1)

where

C1 =
π2

16

(
Ex

m4B

L3
+ E

L

B3

)
; C2 =

3π2Aom

16

(
Ex

m4B

L3
+ E

L

B3

)
,

C3 =
π2A2

om

8

(
Ex

m4B

L3
+ E

L

B3

)
+
m2B

L
σxav +

π2

tF

(
Dx

m4B

L3
+ 2H

m2

LB
+D

L

B3

)
,

(4.2)

C4 = Aom
m2B

L
σxav −

16LB

π4tF
p,

Ex = E

(
1 +

nAS

BtF

)
; Ey = E. (4.3)

Since the self-weight is taken into account, the lateral pressure is modified as

p = p0 +
ρV g

BL
, (4.4)

where g is the gravitation constant, 9.81 [m/s2].
The flexural and torsional stiffnesses of the orthotropic plate are as follows:

Dx =
Et3F

12
(
1− ν2xy

) +
EtF y

2
G

1− ν2xy
+
EIx
b

,

Dy =
Et3F

12
(
1− ν2xy

) , (4.5)

νx =
ν

0.86

√√√√√√√√
E

Ex

(
Et3F
12

+ EtF y2G +
EIx
b

)
− Et3F

12

EIx
b

(
E

Ex

)2 , (4.6)

νy =
E

Ex
νx; νxy =

√
νxνy, (4.7)

H =
GxyIt
b

; Gxy =
E

2 (1 + νxy)
, (4.8)∑ bi

ti
=
a1 + 2a2

tS
+
a3
tF

. (4.9)

The deflection due to lateral pressure is

Aom =
5qL4

384EIx
; q = pb; b = B/ϕ. (4.10)
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The solution of equation (4.1) is

Am = − C2

3C1
+ k1 + k2, (4.11)

where

k1 =
3

√
−Y

2
+

√
Y 2

4
+
X3

27
; k2 =

3

√
−Y

2
−
√
Y 2

4
+
X3

27
, (4.12)

X =
C3

C1
− C2

2

3C2
1

; Y =
2C3

2

27C3
1

− C2C3

3C2
1

+
C4

C1
. (4.13)

4.2. Deflection due to shrinkage of longitudinal welds. According to [9] the
deflection of the plate due to longitudinal welds is as follows

fmax = CL2/8, (4.14)

where the curvature for steels is

C = 0.844x10−3QT yT /Ix, (4.15)

QT is the heat input, Ix is the moment of inertia of the cross-section containing a
stiffener and the base plate strip of width b, yT is the weld eccentricity

yT = yG − tF /2. (4.16)

The heat input for a stiffener is

QT = 2x59.5a2W . (4.17)

4.3. The stress constraint. The stress constraint includes several effects as follows:
the average compression stress and the bending stress caused by deflections due to
compression, lateral pressure and the shrinkage of longitudinal welds.

σmax = σxav +
M

Ix
yG ≤ σUP , (4.18)

where

M = σxav (A0m +Am + fmax) +
qL2

8
, (4.19)

According to [1], the calculation of the local buckling strength of a face plate strip
of width

b1 = max(a3, b− a3), (4.20)
is performed taking into account the effects of initial imperfections and residual weld-
ing stresses

σUP = fy when λP ≤ 0.526, (4.21)

σUP =

(
0.526

λP

)0.7

when λP ≥ 0.526, (4.22)

where

λP =

(
4π2E

10.92fy

)1/2
b1
tF

=
b1/tF
56.8ε

. (4.23)
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5. Cost function

The objective function to be minimized is defined as the sum of material and fabri-
cation costs

K = Km +Kf = kmρV + kf
∑

Ti, (5.1)

or in another form
K

km
= ρV +

kf
km

(T1 + T2 + T3) , (5.2)

where ρ is the material density, V is the volume of the structure, Km andKf as well as
km and kf are the material and fabrication costs as well as cost factors, respectively,
Ti are the fabrication times as follows:

time for preparation, tacking and assembly

T1 = Θd

√
κρV , (5.3)

where Θd is a difficulty factor expressing the complexity of the welded structure, κ is
the number of structural parts to be assembled;
T2 is time of welding, and T3 is time of additional works such as changing of

electrode, deslagging and chipping. T3 ≈ 0.3T2 , thus,

T2 + T3 = 1.3
∑

C2ia
n
wiLwi, (5.4)

where Lwi is the length of welds, the values of C2ia
n
wi can be obtained from formulae or

diagrams constructed using the COSTCOMP [4] software, aw is the weld dimension.

Welding technology aw [mm] 103C2a
n
w

SAW 0-15 0.2349a2w
SMAW 0-15 0.7889a2w

GMAW-M 0-15 0.3258a2w

Table 1. Welding times versus weld size aw [mm] for longitudinal
fillet welds, downhand position

6. Optimiztion method

Rosenbrock’s hillclimb [5] mathematical method is used to minimize the cost function.
This is a direct search mathematical programming method without derivatives. The
iterative algorithm is based on Hooke & Jeeves searching method. It starts with a
given initial value, and takes small steps in the direction of orthogonal coordinates
during the search. The algorithm is modified so that secondary searching is carried out
to determine discrete values. The procedure finishes when the convergence criterion
is satisfied or the iterative number reaches its limit.
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7. Numerical data and optimum results

7.1. Longitudinally stiffened plate loaded by uniaxial compression. The given
data are width B = 6000 [mm], length L = 3000 [mm], compression force N =
1.974 × 107 [N], Young modulus E = 2.1 × 105 [MPa] and density ρ = 7.85 × 10−6

[kg/mm3]. The yield stress is fy = 355 [MPa]. The unknowns – the thicknesses of
the base plate and the stiffener and the number of the ribs - are limited in size. For
without fabrication cost the welding cost is not considered, the material minima is
not shown in Tables 4, 5, 6 and 7.

3 ≤ tF ≤ 40[mm],
3 ≤ tS ≤ 12[mm], (7.1)
3 ≤ ϕ ≤ 10.

kf/km tF [mm] tS [mm] φ K/km [kg]
Mikami 0 22 6 10 5166

1 22 6 10 6152
2 22 6 10 7138

API 0 19 10 10 5224
1 21 7 10 6249
2 21 7 10 7367

Table 2. Optimum dimensions with L- stiffener (SAW)
kf/km tF [mm] tS [mm] φ K/km [kg]

Mikami 0 9 7 9 3424
1 12 6 9 4920
2 17 5 9 6518

API 0 9 7 9 3424
1 9 7 9 4761
2 12 6 9 6097

Table 3. Optimum dimensions with trapezoidal stiffener (SAW)
kf/km tF [mm] tS [mm] φ K/km [kg]

Mikami 1 22 6 10 7232
2 24 5 10 8846

API 1 21 7 10 7546
2 21 7 10 9960

Table 4. Optimum dimensions with L- stiffener (SMAW)
kf/km tF [mm] tS [mm] φ K/km [kg]

Mikami 1 19 4 9 6452
2 19 4 9 8538

API 1 15 5 9 6444
2 21 3 10 7955

Table 5. Optimum dimensions with trapezoidal stiffener (SMAW)
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kf/km tF [mm] tS [mm] φ K/km [kg]
Mikami 1 22 6 10 6329

2 22 6 10 7493
API 1 21 7 10 6462

2 21 7 10 7793

Table 6. Optimum dimensions with L–stiffener (GMAW-M)
kf/km tF [mm] tS [mm] φ K/km [kg]

Mikami 1 11 6 9 4992
2 16 5 9 6750

API 1 9 7 9 5099
2 16 5 9 6532

Table 7. Optimum dimensions with trapezoidal stiffener (GMAW-M)

7.2. Longitudinally stiffened plate loaded by uniaxial compression and lat-
eral pressure. The given data are width B = 4000 [mm], length L = 6000 [mm],
compression force N = 1.974 × 107 [N], Young modulus E = 2.1 × 105 [MPa]
and density ρ = 7.85 × 10−6 [kg/mm3]. There are three values of lateral pressure
p0 = 0.05, 0.1, 0.2 [MPa] and two values of yield stress fy = 255, 355 [MPa]. The
unknowns – the thicknesses of the base plate and the stiffener and the number of the
ribs - are limited in size. The results are shown in Tables 8-13. The optimum results
are given in bold type.

3 ≤ tF ≤ 40[mm],
3 ≤ tS ≤ 12[mm],

3 ≤ ϕ ≤ 10.
(7.2)

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.1 38 12 10 8014 11758
235 0.05 30 12 6 6127 8362
355 0.1 28 12 10 6568 10137
355 0.05 20 12 9 4825 7914

Table 8. Optimum dimensions with flat stiffener for kf/km = 0, the
material minima

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.1 38 12 10 8014 11758
235 0.05 30 12 6 6127 8362
355 0.1 28 12 10 6568 10137
355 0.05 21 11 8 4852 7312

Table 9. Optimum dimensions with flat stiffener for kf/km = 1.5,
the cost minima
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fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.2 31 12 5 6993 8933
235 0.1 21 12 7 5686 8230
235 0.05 20 10 7 4969 6952
355 0.2 22 12 7 6107 8641
355 0.1 18 9 10 5036 7389
355 0.05 17 7 10 4313 6302

Table 10. Optimum dimensions with L-stiffener for kf/km = 0, the
material minima

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.2 34 11 4 7132 8584
235 0.1 27 10 5 5888 7422
235 0.05 24 8 6 5162 6564
355 0.2 28 9 6 6528 8149
355 0.1 22 8 7 5247 6801
355 0.05 19 8 7 4626 6129

Table 11. Optimum dimensions with L-stiffener for kf/km = 1.5, the
cost minima

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.2 28 12 4 6974 8549
235 0.1 24 10 4 5723 6975
235 0.05 18 10 5 4993 6466
355 0.2 21 11 5 6108 7780
355 0.1 15 10 6 4944 6635
355 0.05 13 8 7 4148 5611

Table 12. Optimum dimensions with trapezoidal stiffener for
kf/km = 0, the material minima

fy p0 tF tS φ K/km [kg]
[MPa] [MPa] [mm] [mm] kf/km = 0 kf/km = 1.5
235 0.2 35 9 3 7250 8223
235 0.1 24 10 4 5723 6975
235 0.05 23 8 4 5122 6132
355 0.2 28 8 4 6530 7589
355 0.1 21 7 5 5111 6284
355 0.05 16 7 6 4264 5560

Table 13. Optimum dimensions with trapezoidal stiffener for
kf/km = 1.5, the cost minima
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8. Conclusions

• The results show that the trapezoidal stiffener is the most economic one. The
cost saving can be 69 % compared with various ribs.
• In general the Mikami method gives thinner basic plates than those given by

API.
• Materials with higher yield stress give cheaper results. The cost saving can

be 40 % compared with the lower one. Higher strength steel is 10 % more
expensive.
• In most cases the material and cost minima are different, the number of

stiffeners is smaller at cost minima due to welding cost effects. SAW is the
cheapest welding process if we do not consider investment cost.
• It can be seen from Tables 8 and 9 that there are no solutions for the highest

lateral pressure (p0 = 0.2 [MPa]) for flat stiffeners due to the size limits.
• In case of uniaxially and laterally loaded plate the ratio between material

cost and welding cost ranged from 13 % (for flat stiffener, higher yield stress
and minimum lateral pressure) to 64 % (in case of trapezoidal stiffener, lower
yield stress and maximum lateral pressure).
• For L- and trapezoidal stiffeners the number of stiffeners decreases if the

lateral pressure is increased, but it increases if the yield stress of the material
is increased.
• For flat stiffeners the number of stiffeners increases if the lateral pressure is

increased and the yield stress of the material is increased.
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AN ELECTRON BEAM WELDED WORM WHEEL

Michal Vorel and Erhard Leidich
Deptartment of Engineering Design, Technical University Chemnitz

Reichenhainer Str. 70, 09126 Chemnitz, Germany
michal.vorel@mbv.tu-chemnitz.de

[Received: November 11, 2002]

Dedicated to Professor József FARKAS on the occasion of his seventy-fifth birthday

Abstract. In this paper the finite element method was used to determine various stress
states in an electron beam welded worm wheel. These are the residual stresses due to the
welding process, stress redistribution after teeth milling and another stress redistribution
under operation load. It turned out that the maximum principal stress takes up the tan-
gential direction and not the radial direction as was originally assumed. Based on this, the
initiation of cracks in the weld can be explained. Teeth milling and applied operation loading
proved to have a limited influence on the resulting stress state. Using the time development
of residual stresses, an improved welding technology to eliminate the residual stresses was
proposed.

Mathematical Subject Classification: 74S05
Keywords: finite element method, residual stresses, worm wheel

1. Introduction

Welded parts often exhibit very complex strain that generally results from residual
stresses and stresses from external loading. This is also the case of an electron beam
welded worm wheel, the weld of which is strained due to the residual stresses and due
to the cyclic loading from the gearing. The wheel is made of a steel hub (S355J2)
and a bronze rim (CC484K, Figure 1), which utilizes advantageous wear features of
bronze while saving material costs. However, there are always large cracks completely
embedded in the weld [1], no matter what the weld depths is. Along with this problem
area, a certain minimum thickness of the bronze rim must be considered to prevent
tearing off the steel body during operation [2]. Therefore, extensive numerical analyses
were performed to explain the form and impact of the arising residual stresses. The
objective is rather complex, as the welded joint consists of two very different materials.
Furthermore, the unusual round geometry of the weld in a wheel results in even more
complicated residual stress fields.

Welding with an electron beam is successfully used in many applications [3]. One
of its important advantages is a high energy concentration in the electron beam,
which generally leads to low residual stresses in thin weldments. The stress state in
thick weldments is, however, more complex and may result in high residual stressing

c©2004 Miskolc University Press
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Figure 1. Cracks in an electron beam welded worm wheel.

induced thermally and by an unsuitable geometrical configuration. Residual stresses
can be generally determined by numerical methods [4,5] or experimentally. In this
paper the numerical method will be presented, as this enables a full description of the
residual stressing in the wheel.

2. Numerical Models

For the analyses of stresses in the worm wheel the FE-method was used. The deter-
mination of residual stresses as a result of the welding process was achieved by an
uncoupled thermal and structural analysis in the MARC program. In the thermal
analysis the electron beam advance along the welding path was simulated to calculate
the temperature fields. Those were used as boundary conditions in the subsequent
structural analysis. The electron beam was modelled as a moving heat source of a
rectangular volume. While there is a vacuum in the welding chamber, only cooling
due to convection was modelled after the welding process was finished. The models
used five different material zones [1].

Due to the temperature dependence of all material properties, the analyses were
highly non-linear. The maximum temperature change in the thermal analysis was set
for 20◦C, which resulted in many analysis increments and consequently in large result
files. Fine temperature steps were necessary for the following structural analysis,
in which a maximum allowed temperature change lay at 50◦C so that two or three
increments of the thermal result file were used at once. It turned out that with
other settings of temperature steps more iterations and hence longer computational
time were needed to reach sufficient accuracy. The structural models used updated
Lagrange formulation [6].

In order to further reduce computational costs geometric and mesh optimization
of the models was carried out. Initially a complete worm wheel was analyzed (C66),
as the resulting strain of the part is in general non-symmetrical. Because the analysis
took even with a coarse mesh extreme computational time, another analysis with a
pie wedge model (W66-o) was performed (Figure 2). It used simplified boundary
conditions of a constrained displacement at the radial cuts. This induced an unreal
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assumption that the radial boundary surfaces remain planar. However, in regions far

a) b)

HAZ bronze

HAZ steel weld

Figure 2. Coarse FE-meshes of a complete worm wheel with a detail
of the weld (C66, a) and of a pie wedge model (W66, b)

enough from those surfaces results from the pie wedge model produced absolutely the
same values as with the complete model (Figure 3). When using pie wedge models
residual stresses agreed at a point far removed from the beginning of the weld as
well as at a point of the weld overlap. With the geometrically reduced model a mesh
optimisation was performed in order to make results independent of mesh density at
a reasonable computational time. The degree of freedom (DOF) ranged from 8955
with the coarse model to 39207 with a fine meshed model. In the following analyses
the medium fine mesh with 22485 DOF was used. One analysis parallel on two SGI
R10000 computers took about 64 hours to finish.

3. Residual Stresses after Welding

In order to investigate residual stresses due to the welding process analyses with
the pie wedge model in three variations of the weld depth were conducted using the
following configurations:

• up to 66% of the wheel width welded model,
– model out of the weld overlap (W66-o),
– model at the weld overlap (W66-a),

• up to 80% of the wheel width welded model at the weld overlap (W80-a),
• up to 100% of the wheel width welded model at the weld overlap (W100-a).

The configuration with the weld overlap was mainly observed, as this region is critical
for operation reliability.

As a result a full residual stress field at the weld overlap can be presented. In
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the middle of the weld (in radial direction) the maximum principal stress coincides
mainly with the tangential direction. Similarly, the intermediate principal stress takes
a predominantly axial direction and the minimum principal stress a radial direction.
All principal stresses in the weld are positive. Shear stresses are almost zero in the
whole wheel. In conclusion, the weld acts as a pre-stressed hoop. The equilibrium can
only be established through negative stresses in the adjacent regions of the steel hub
and the bronze rim, as can be seen in Figure 4. The course of principal stresses along
the weld overlap shows an enormous fluctuation (Figure 5). This can be explained
on the grounds of the time development of the maximum principal stress (Figure 6).
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Figure 5. Principal residual stresses in the weld overlap along a tan-
gential path lying in the middle of the weld depth. Model W66-a

After the first pass of the weld beam the stress rises with a high gradient. After the
weld beam has passed along the whole wheel’s circumference, the compressive stresses
approach the tensile stresses of the already solidified weld seam and the ultimate stress
difference reaches its maximum. With further advance of the weld beam reduction of
the original tensile stresses takes place. This is caused by the frontal heat which leads
initially to local annealing and subsequently to a full melting of the weld seam. After
switching off, the weld beam goes forth for some more time, although it develops only
little heat output. Therefore, the temperature field at the weld end does not spread
uniformly during the final solidification process. Whereas during the welding process
the generated heat is conducted mainly in radial directions from the weld seam, at the
weld end the heat flux takes place in all directions. The end point cools down more
quickly than the other regions and develops a local maximum of residual stresses.
The stresses in front of the weld end are ‘annealed’ and do not recover any more to
the high values. From a comparison of residual stress distribution for the considered
models it can be concluded that the maximum stress levels virtually do not depend on
the weld depth (Figure 7). The same conclusion can be drawn for the other primary
stresses. Furthermore, residual stresses do not open the notch that exists in wheels
with reduced weld depths. The deformed meshes show small mutual penetration of
the elements at the crack faces, which implies crack closure due to compression forces.
Therefore, unlike the original assumption about the mechanism of crack growth due to
radial strain, the crack initiation and growth must depend on tangential strain. The
crack initiation takes place probably at the weld end and approximately in the middle
of the wheel width, where the principal stresses reach their highest values. This region
is damaged by a large crack, which extends over the whole weld depth and crosses
the weld root with up to 66% and 80% welded wheels. Along with this, the crack
grows only in the middle of the weld thickness and propagates in the cylindrical plane
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coinciding with the weld. Whereas the stresses at the weld overlap are high in general
and cause the crack to propagate through the whole wheel width, the stresses at other
points of the weld cause only crack propagation in the middle of the wheel width and
without any breaking through the weld root into the unwelded region. The stress
peak along the weld depth stays in the middle of the wheel width, because the bronze
rim thickness reaches its minimum there. Some preliminary numerical analyses have
shown that with initiation of a small crack the maximum primary stress (as a hoop
stress) has the effect of shear stress, i.e. the cracks grow due to Mode II and Mode III
mechanisms. Since both heat affected zones show higher hardness, the crack is forced
to remain fully within the weld material.

4. Teeth milling impact

After teeth milling the residual stress field changes. A simulation of this technological
process was performed with the following models:

• up to 66% welded model at a point out of the weld overlap (W66-om),
• up to 66% welded model at a point of the weld overlap,

– weld end under a tooth (W66-amt),
– weld end under a tooth gap (W66-amg),

• up to 100% welded model at a point of the weld overlap (W100-am)

To analyze the stress distribution due to material ablation, the FE-meshes were built
up with latent teeth. The geometry of tooth flanks was modelled only approximately.
The simulation of the milling process was achieved by a gradual deactivation of el-
ements within the tooth gaps. To keep the required accuracy only four analysis
increments were needed. The analyses were performed with models cooled to 20◦C.
Residual stress fields were retrieved using the MARC restart files. The same numerical
parameters were used during the analysis as previously. The results showed reduction
of residual stresses in general. With the W66-om model the maximum principal stress
reduces by approx. 50 N/mm2 (Figure 8). The course of the stress along the welding
path is sine shaped, with higher values under the tooth gaps. The course of the redis-
tributed minimum principal stress has a similar shape. However, the stress peaks lie
under the teeth and exhibit no decrease against the stress level before milling. The
W66-amt and W66-amg models at the weld overlap proved little stress reduction at
the weld end. This was particularly significant with the maximum principal stress.
The stresses tended to acquire a similar sine course as above. The W100-am model
showed only slightly higher stress levels then the W66-amt model. The intermediate
principal stress reduced with all models by approx. 30 N/mm2 and, unlike the other
principal stresses, it showed very little fluctuation.

5. Operation load impact

After the simulation of teeth milling the external loading was applied to examine its
influence on stress changes in the weld. Except for W66-amg, the same models as
for the previous analysis were used. The related nominal loading of 825 Nm was
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modelled by a distributed force on one tooth flank only. Although these conditions
were rather exaggerated, there were only minor changes in the final stress in the weld.
An example of the W66-amt model shows that the maximum and minimum principal
stresses change by about 30 N/mm2 at most (Figure 9). Because of tooth bending the
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stresses decrease at the point under the loaded tooth flank and they get slightly higher
at the point under the other flank of the loaded tooth. The elevated stresses do not



Numerical analysis of the stress distribution in a welded worm wheel 189

reach the values before the milling process in any way. The other models exhibited
similar stress changes and there was almost no difference between the W66-amt and
W100-am models. The intermediate principal stress did not change at all with any
model. The results correspond well to the investigations made by Schmidt [2], where
a stress change of maximum 25 N/mm2 was determined using fine meshed models
without residual stresses.

The important conclusion is that the stress levels in the weld reduce considerably
and that they change little under the external loading. This means that the cracks
in the weld, which are arrested right after the welding, become definitely stable after
the milling process and also remain stable under the external loading. However, some
ultrasonic tests have showen that the crack fronts are nonetheless strained up to the
measure, which exceeds the threshold value necessary for a fatigue crack growth: the
wheels after the operation exhibited larger cracks than before.

6. Improved welding technology

In general, welded components are often pre-heated before welding to prevent un-
wanted shrinking and high residual stresses which can also be eliminated by a sub-
sequent stress-relief annealing. Worm wheels consisting of bronze can be pre-heated
only up to limited temperatures. Refering to the ternary phase diagram Cu-Sn-Ni,
the first phase change for the composition CuSn12Ni lies at 351◦C [7]. Pre-heating
beyond this temperature results in intensive hardening of the material, which is an
unwanted feature for the weld as well as for the fatigue toughness of the teeth. Also
some advantageous wear features would be irretrievably lost. Special stress-relief an-
nealing could be introduced after the welding, but this would in no way dispose of
the already existing cracks. Based on the numerical simulations, pre-heating of only
200◦C is suggested so that the phase change temperature would not be exceeded in
the whole rim during the welding process. Time development of the maximum princi-
pal stress in the weld of a pie wedge model out of the weld overlap shows that even a
relatively small amount of pre-heating leads to some decrease of stress immediately af-
ter solidification (Figure 10). Due to natural cooling in the atmosphere after removal
from the welding chamber, the maximum principal stress grows by about 70 N/mm2.
In this model the stresses in the weld capillary were not set to zero [8]. In results
of test calculations the highly negative stresses return to the real values after about
1.2 seconds behind the weld beam. As can be seen, the residual stresses develop
immediately after the weld solidification. This is caused by a highly concentrated
electron beam heat source, which means steep temperature gradients and fast cooling
of the weld by the bordering material regions (Figure 11). Thus, the intention is to
slow down the cooling in the weld behind the welding beam. However, in an electron
beam welding chamber this is a complicated objective, which can only be achieved
by approximating the desired temperature course through applying several electron
beams with gradually reducing power successively. In an optimum case this would
result in keeping the residual stresses always at zero values. A splitting of an electron
beam into several beams is possible without high additional costs. The trade-off for
higher energy costs would be a safe worm wheel without any cracks at all.
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To prove the benefits of the suggested welding technology, comprehensive numerical
simulations were done with the W66-o pie wedge model while varying

• the number of electron beams (two, three or four),
• their intensity (100 to 30%), and
• the distance between them (3 to 15 mm).

To take advantage of pre-heating all models were considered at ambient temperature
of 200◦C. According to the above concept, the criterion for the optimized combination
of the intensity and distance between the beams was that before the pass of the last



Numerical analysis of the stress distribution in a welded worm wheel 191

beam the maximum primary stress should never exceed its zero value. In order to find
the optimum values for each number of beams, 16 simulations were done in a similar
manner as above. It proved clearly that several concentrated electron beams following
straight after each other with a 5 mm distance have a positive influence on residual
stresses in the weld and in the neighboring regions. Directly after the solidification the
maximum principal stress can be reduced by 220 N/mm2 to 50 N/mm2 when using
four beams (Figure 12). This means that with a suitable subsequent cooling procedure
the stresses would remain low and would not cause initiation of large cracks. To reach
values of residual stresses near zero, many electron beams and therefore longer welding
times would be necessary. However, this would be an inapplicable solution in terms
of production costs. By welding with three or four beams the energy costs may rise
considerably. However, with a perfect weld the wheel can be welded only up to 66%
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succesively

while taking advantage of safe operation and reduced bronze rim thickness.

7. Conclusion

In this paper theoretical work was done in order to explain stress distribution in an
electron beam welded worm wheel in different states. Extensive numerical 3D analyses
produced full residual stress field in an uncracked worm wheel. The calculated stress
fields give a good explanation for the loci of most probable crack initiation. The
important result is that crack growth depends predominantly on tangential stresses
and not on the radial stresses as was originally assumed. Through the analysis of
time development of residual stresses during the welding process an improved welding
procedure was proposed to reduce residual stresses considerably or to prevent them
completely. This is achieved by additional warming up the weld with more electron
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beams following directly after the welding beam. This technology implies higher
energy costs but as a compensation offers a perfectly welded worm wheel. Currently,
experimental tests are being conducted to verify the numerical results and prove the
new welding technology.

In further research some numerical analyses are planned to evaluate stability of
cracks in the weld under external loading. For this purpose experimental work is also
necessary to determine the threshold value for fatigue crack growth.
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Abstract. An integration technique based on the use of discontinuous functions has been
applied to obtain the natural frequencies of free flexural vibrations in beams. The two
examples presented show the logical basis of the method in a detailed form.
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1. Introduction

In this paper discontinuity functions are applied to derive the frequency equation for
the flexural vibration of light beams. The designations and the definitions of the dis-
continuity functions are borrowed from the textbook by Gere, J. M. and Timoshenko,
S. P. [1]. We will use mainly Table 7-2 of the aforementioned textbook. Two examples
illustrate how to derive the frequency equation in the form of a determinant. The
sign rules we applied are shown in Figure 1. In the state of free flexural vibration all
quantities vary with time in the following form

X̃ = X sinωt X = v, ϕ, V,M,R, ... (1.1)

The factor independent of time in equation (1.1) is referred to as the amplitude of
the quantity X.

2. Examples

2.1. The first problem is that of a light beam with uniform cross-section.
The beam is clamped at its two ends. A massm is attached to point B and a torsional
spring is fixed to point C. In the present problem the Young modulus E of the beam
is constant.

c©2004 Miskolc University Press
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Figure 1. Sign rules for shear, bending, shape and deflection

The light beam with mass and spring is shown in Figure 2, and the free-body diagram
of the beam segment AD is given in Figure 3.

A B C D

y

x

a a a

γm

Figure 2. Fixed beam

We shall apply the following designations:

RA, RB amplitudes of the reactions,
MA,MB amplitudes of reaction couples,
TB = mvBω

2 amplitude of the inertia force,
v displacement amplitude,
ω eigenfrequency of the free vibrations,
QC = −ϕC/γ amplitude of couple at the torsional spring,
γC amplitude of slope,
γ spring constant.
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Figure 3. Free-body diagram of the beam segment AD

By using the method of Clebsch-Macaulay we obtain the exact expressions for the
shear force V and the bending moment M :

V = RA +MA〈x〉−1 + TB〈x− a〉0 +QC〈x− 2a〉−1 , (2.1)

M = RAx+MA + TB〈x− a〉1 +QC〈x− 2a〉0 . (2.2)

It is well-known [1] that the bending moment satisfies the equation

IEv′′ = −M . (2.3)

Here prime denotes the derivation with respect to x, i.e., v′′ = d2v
dx2

.

Combination of equation (2.2) with equation (2.3) yields the slope ϕ = v′ and the
deflection v:

IEϕ = −
(
RA

x2

2
+MAx+ TB

〈x− a〉2

2
+QC〈x− 2a〉1

)
+ C , (2.4a)

IEv = −
(
RA

x3

6
+MA

x2

2
+ TB

〈x− a〉3

6
+QC

〈x− 2a〉2

2

)
+ Cx+D . (2.4b)

where C and D are constants of integration. From the boundary conditions

v(0) = 0 , v′(0) = 0 , (2.5a,b)

we get

C = 0 , D = 0 . (2.6a,b)

The boundary conditions v(3a) = 0 and v′(3a) = 0 at point D lead to the following
equations:

4.5a2RA + 3aMA + 2a2TB +QCa = 0 , (2.7a)

4.5a3RA + 4.5a2MA + 1.3333a3TB + 0.5a2QC = 0 . (2.7b)

In the state of free vibration the relationship between the amplitude of inertia force
and the amplitude of displacement at point B is

vB =
TB
mω2 . (2.8)
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From the definition of spring constant γ it follows that

γC = v′ = −QCγ . (2.9)

By applying the expressions for the slope and deflection – these are given by equa-
tions (2.4a,b) – we can eliminate both vB and γC from equations (2.8), (2.9). These
eliminations give

0.16666a3RA + 0.5a2MA +
IE

mω2TB = 0 , (2.10a)

2a2RA + 2aMA + 0.5a2TB − IEγQC = 0 . (2.10b)

We have four equations for the four unknown quantities RA,MA, TB , QC . Equations
(2.7a,b) and (2.10a,b) form a system of linear equations for the unknown ampli-
tudes RA,MA, TB , QC . There exists a non-trivial solution for the system of equations
(2.7a,b) and (2.10a,b) if the frequency determinant vanishes:∣∣∣∣∣∣∣∣

4.5a2 3a 2a2 a
4.5a3 4.5a2 1.3333a3 0.5a2

0.1666a2 0.5a2 IE/mω2 0
2a2 2a 0.5a2 −IEγ

∣∣∣∣∣∣∣∣ = 0 . (2.11)

2.2. The second example is that of a simply supported beam with non-
uniform cross-section. In this case the material of the beam is also homogeneous,
that is the Young modulus E is constant. The beam with a rigid disc and springs
is shown in Figure 4. The spring constants are c and γ and the mass of the disc is
m. The second moment of the disc with respect to centroidal axis b is J . The main
centroidal axis b passes through point B and is perpendicular to the plane xy.

If the beam vibrates freely, it is loaded by a force and a couple at point B. This
force-couple system arises from the inertia effects and the action of springs. The
amplitude of the resultant force at point B is

TB =

(
mω2 − 1

C

)
vB . (2.12a)

The amplitude of the resultant couple at the same point is

QB =

(
Jω2 − 1

γ

)
ϕB . (2.12b)

The free-body diagram of the beam AD is shown in Figure 5.
The shear force V and the bending momentM are given by the following formulae:

V = RA + TB〈x− a〉0 +QB〈x− a〉−1 , (2.13)

M = RAx+ TB〈x− a〉1 +QB〈x− a〉0 . (2.14)

The boundary condition for the bending moment M at point D yields

M(4a) = 4aRA + 3aTB +QB = 0 . (2.15)
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Figure 4. Simply supported beam of non-uniform cross-section

The flexural rigidity is given by the equations

EI = EI0 , 0 ≤ x < 2a , (2.16a)
EI = 2EI0 , 2a < x ≤ 4a , (2.16b)

where E and I0 are constants.
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Figure 5. Free-body diagram for the non-uniform beam segment AD

Integrating equation (2.3) we obtain

−I0Ev′ = RA
x2

2
+ TB

〈x− a〉2

2
+QB〈x− a〉1 + C1 0 ≤ x < 2a , (2.17a)

−2I0Ev′ = RA
x2

2
+ TB

〈x− a〉2

2
+QB〈x− a〉1 + C2 2a < x ≤ 4a . (2.17b)
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After a new integration we arrive at the deflection:

−I0Ev = RA
x3

6
+ TB

〈x− a〉3

6
+QB

〈x− a〉2

2
+ C1x+D1 0 ≤ x < 2a , (2.18a)

−2I0Ev = RA
x3

6
+ TB

〈x− a〉3

6
+QB

〈x− a〉3

6
+ C2x+D2 0 ≤ x < 2a .

(2.18b)

By using the displacement boundary condition v(0) = 0 we get

D1 = 0 . (2.19)

In the present case we have six unknowns, namely RA, TB , QB , C1, C2, D2. The equa-
tions which we have to use to determine the above mentioned quantities are as follows:

M(4a) = 0 , v(4a) = 0 , (2.20a,b)

v′(2a− ε) = v′(2a+ ε) ε −→ 0 , (2.20c)
v(2a− ε) = v(2a+ ε) ε −→ 0 , (2.20d)

v(a) =
TB

mω2 − 1
c

, v′(a) =
QB

Jω2 − 1
γ

. (2.20e,f)

Equations (2.20c,d) are the joint conditions for the solutions which determine the
deflection and the slope in the intervals 0 ≤ x < 2a and 2a < x ≤ 4a. These solutions
can be obtained from the formulae (2.17a,b) and (2.18a,b). The preceding equations
form a system of linear equations for the six unknowns RA, TB , QB , C1, C2, D2. From
the condition of the existence of a nontrivial solution we get the frequency equation
in the form of a determinant:∣∣∣∣∣∣∣∣∣∣∣∣

4a2 3a 1 0 0 0
0.5a2 0 I0E/(Jω

2 − 1
γ ) 1 0 0

0.16666a3 I0E/(mω
2 − 1

c ) 0 a 0 0
10.666a3 4.5a3 4.5a2 0 4a 1

2a2 0.5a2 a 2 −1 0
1.3333a3 0.16666a3 0.5a2 2a −a 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 .

(2.21)

3. Conclusion

An integration technique for the discontinuous expressions has been applied to obtain
the frequency equation of the vibrations in beams. The two examples presented show
the logical basis of the method and illustrate well the scheme to be followed in order
to get the frequency equation for flexural vibrations. It is shown that this method can
also be used if discontinuities arise in the expression of the flexural rigidity EI. The
use of Macaulay’s brackets in an analysis of the beam problems results in a unified
method which has a pedagogical value in teaching the elementary theory of beams.
As regards the Macaulay-Clebsch method, a number of applications can be found
in Wittrick’s paper [2].
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More advanced mathematical methods based on the distribution theory of Schwarz
are applied to solve the static bending problems of beams with material, geometric
and loading discontinuities in the papers by Reddy, Yavari, Sarkani [3, 4, 5].
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