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PREFACE

A professional life dedicated to Mechanics
Professor Gyula Béda is 70 years old

South of Budapest, by the Danube bank, in the small city
of Ráckeve, the 3rd Finno-Ugric Conference on Mechan-
ics had a Béda Session. This session was dedicated to my
predecessor, Professor Gyula Béda, the former head of the
Department of Applied Mechanics at the former Technical
University of Budapest. In 2001, this conference gave the
opportunity to celebrate his 70th birthday, when his col-
leagues, friends, former and present students gathered from
Budapest, Miskolc, Bratislava, Vienna, Karlsruhe, Tallinn,
Kiev, Blacksburg, Cleveland, and so on.

Professor Béda was awarded his degree in mechanical
engineering in Miskolc in 1953, and started his academic
carrier there, at the Department of Mechanics. Soon, he
had become a promising young researcher in the famous Sályi-school at the Depart-
ment of Mechanics. In 1967, he accepted a professorship at the Department of Applied
Mechanics at the Technical University of Budapest, where he became the head of the
department, in 1970. This led to substantial changes both in his professional life
and in that of the department. The new theoretical approach introduced by him in
teaching and research in Mechanics, like the application of tensor calculus or the the-
ory of differential equations, met with the essential engineering traditions represented
by the name of Professor Muttnyánszky, and the internationally most respected re-
search work of Professor Reuss in plasticity. While he renewed all the basic courses
in Mechanics from Statics to Vibrations, and introduced new courses like Contin-
uum Mechanics and Analytical Mechanics, Professor Béda also started building a
postgraduate school in the sense of the modern university structure of our present
days.

When Professor Béda served as a Dean of the Faculty of Mechanical Engineering
for 9 years, he had the opportunity and the courage to introduce a new specialization
in mechanical engineering. With the aid of the Department of Mathematics, the
so-called mathematical-engineering school selected the best students in mathematics
with a definite interest in applying their knowledge in the hard-core problems of
mechanical engineering. Through these undergraduate and doctoral students, he
exerted an important influence on the mechanical engineering education in Budapest.
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He served as a head of department for 25 years, and apart from the 9-year service
as a dean, he also directed the mathematics departments for 8 years to lead them
into a unified Institute of Mathematics in 1995. He was the leader of an academic
research group on Continuum Mechanics till his recent retirement at the age of 70.

His best professional research results are related to Continuum Mechanics, but
he is always open for discussion on basic theoretical problems in any field from fluid
mechanics to thermodynamics – and his colleagues and students still use this openness
either during lunchtime discussions or international seminars at the department. His
4 research books and 10 textbooks represent his activity, while the book Continuum
Mechanics published in English with his respected colleagues and friends, Professor
Kozák and Professor Verhás, has received a very positive feedback worldwide. The
international reputation of his research activity is also represented by his membership
in the ICF Council, conference and seminar invitations, and many other national
professional institutions and journal editorial boards.

In the present issue of the journal, 6 papers are dedicated to Professor Gyula Béda.
The scientific papers by P. Béda, S. R. Choi, J. P. Gyékényesi, I. Kozák, T. Szabó,
I. Páczelt, A. Baksa, G. Stépán, S. Thangjitham and R. Heller were presented at the
above mentioned conference to celebrate Professor Béda’s 70th birthday. With this
volume, all of his former and present students, colleagues an co-workers wish him
good health and many more active years to come with research and education work
at the university.

Budapest, 6th June, 2002.
Gábor Stépán

Head of the Department of Applied Mechanics

Budapest University of Technology and Economics
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Dedicated to my father, Professor Gyula Béda, on the occasion of his seventieth birthday

Abstract. In continuum mechanics dynamical effects are usually connected to waves. Such
studies lead to the wave dynamical theory of constitutive equations. In stability analysis,
the terms of the theory of dynamical systems are valuable tools. Most of the material
instability investigations published deal with small deformations and static or quasi-static
loading conditions. To study dynamical effects and finite deformations as well we need first of
all appropriate constitutive equations. In order to take second gradient dependent materials
widely used for numeric investigations of post-localization into account we shall assume that
a jump exists in the derivative of the acceleration field and this singular surface propagates
with finite velocities (generalized wave). From that assumption conditions are obtained for
example for the second order derivatives of the variables of the constitutive equations. In
material instability problems we prescribe that the loss of stability should be a generic one in
terms of the theory of dynamical systems. There are two main points. Firstly, in the generic
case the multiplicity of the critical eigenvalue should be one or at least finite, moreover the
two basic types of stability loss should not be coexistent. Secondly, we would require a
finite dimensional critical eigenspace. These lead to further conditions for the constitutive
equations.

Mathematical Subject Classification: 74H14
Keywords: material instability, dynamical systems, finite deformations

1. Introduction

In recent years several new results of the theory of dynamical systems [1, 19] have
already been successfully used in various fields of mechanics [7, 18]. This paper is
to analyze material instability by considering solid continua as dynamical systems
[6, 8]. This kind of investigation is closely related to perturbation analysis [8, 20].
In the theory of dynamical systems the definition of material stability/instability is
based on the Lyapunov stability concept of the theory of dynamical systems (see
[12] for details), for this reason we call it ”dynamic material instability”. The linear
concept of the stability loss of a state of the system means that the real part of
certain eigenvalues of the linear operator describing its behavior changes its sign.
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The eigenvectors connected to them are called in applications the critical eigenmodes
[9].

Unfortunately, for the classical setting [14, 15] it is not possible to obtain specific
critical eigenmodes at the onset of material instability. On the other hand, in the
finite element calculation of material instability problems the classical formulation
of the basic equations of solid continua results in a definite mesh dependence [11,
16, 17]. These are very similar phenomena. In those papers mesh dependence was
eliminated by the inclusion of rate dependence or nonlocality (second gradient effects)
into the constitutive equations. Most of the investigations published deal with small
deformation and static or quasi-static loading conditions. If dynamical effects are to
be taken into account, we need appropriate constitutive equations. Such materials
were studied by postulating the existence of a (second order) acceleration wave with
finite wave speed [2]. This approach is called the wave dynamical theory of constitutive
equations [3, 4, 6]. However, such constitutive theory based on second order waves
cannot treat the cases of non-locality like second gradient materials [11, 20].

The aim of the paper is to study non-local material instability problems in case of
finite deformation. We assume for the solid body that a generalized wave exists in
the derivative of the acceleration field and this singular surface propagates forwards
and backwards with finite velocities. From that assumption conditions are obtained
for the second order derivatives of the variables of the constitutive equations [5].
Additionally we prescribe that the loss of stability should be a generic [1] one in
terms of the theory of dynamical systems [19], which is essential in dealing with
instability problems. There are two main points here. One is quite practical: a
numerical solution of the material instability problems in the non-generic case may
suffer serious technical difficulties (loss of convergence, mesh sensitivity [11] etc.). The
other is of theoretical significance. By modelling physical phenomena we should have
a set of equations which is typical (or generic), that is, differs only a little from the
”exact unknown mathematical model”.

The second section presents the set of the fundamental equations of the solid con-
tinuum assuming large deformations. It consists of the Cauchy equations of motion,
the kinematic equation (for large displacements) and the constitutive equations. Such
physically objective quantities are the Lie derivative of the stress gradient tensor, the
Lie derivative of the (Euler) strain gradient tensor and the second covariant derivative
of the stress and strain tensors.

In the next section we perform a material instability investigation for finite dis-
placements with an appropriate constitutive equation in a uniaxial case. In this
section the wave speed equation is a scalar third order algebraic one and should have
real nonzero solutions [2]. By using the dynamical systems theory we should have
a generic behavior (as it is defined in the theory of dynamical systems [8]) at the
loss of stability because of the aforementioned general modelling concept of physical
phenomena. There are two different ways for the loss of stability of a dynamical
system [18]. These are the so-called static and dynamic bifurcations and should be
completely different phenomena.



A dynamic theory of material instability 7

2. The set of basic equations for finite deformations

First of all we need the equations of motion

tkp;p + qk = ρv̇k, tkp = tpk . (2.1)

Here, and in all further equations and expressions Roman indices run from 1 to 3.

For finite deformation
vij = Lv (aij) , (2.2)

where
Lvaij ≡ ȧij + aipv

p
;j + apjv

p
;i .

The notations are: qk denotes body force, ρ is mass density, XK
,p is the deformation

gradient, gpq, GKL are metric tensors in the current and the initial configurations, vi

and vi;j are velocity and velocity gradient, vij is the deformation rate tensor. Cauchy
stress tensor is denoted by tpk and

aik =
1

2

(
gik −XK

,i X
L
,kGKL

)
denotes Euler strain tensor, respectively. A semicolon means covariant derivative and
an overdot indicates material time derivative:

v̇i =
∂vi

∂τ
+ vkvi;k

where τ denotes time. Note that the brackets used to distinguish Lie derivative can
have upper and lower indices as in (2.2), we use them to show clearly for which variable
it is applied. (For example Lv

(
tkp`

)
is the Lie derivative of the covariant derivative of

the stress tensor tkp and not the covariant derivative of the Lie derivative.) Assume
that the constitutive equation has the form

fα

(
Lv

(
tkp;`

)
, Lv (aij;`) , t

kp
;`m, aij;`m

)
= 0, (2.3)

where α = 1, 2, . . . , 6. We use physically objective quantities such as

– the Lie derivative of the stress gradient tensor

Lv

(
tkp;`

)
=
(
tkp;`

)·
− tqp;`v

k
;q − t

kq
;`v

p
;q + tkp;qv

q
;`

– the Lie derivative of the (Euler) strain gradient tensor

Lv (aij;k) = (aij;k)
·
+ aqj;kv

q
;i + aiq;kv

q
;j + aij;qv

q
;k

– the second covariant derivative of the stress tensor tkp;`m,
– the second covariant derivative of the strain aij;`m .

The set of equations (2.1), (2.2) and (2.3) has as many scalar variables as the
number of equations in the set thus it can be considered to be the set of fundamental
equations. We remark that the continuity equation for ρ can also be taken into
account, but it is not necessary for the following calculations.
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In the next section we perform several simplifications. One is the assumption that
a uniaxial case is considered. Then, instead of the tensorial variables tpk, aij , vi,
the scalar variables a, t, v can be used. They denote the first component (the x
component) of the corresponding tensorial variables and depend obviously on x only.
Additionally, we restrict the form of the constitutive equation to a quasi-linear one.

3. Material instability in the uniaxial case

Now we perform a material instability investigation of state S0 of the solid body by
considering finite displacements in the uniaxial case with an appropriate constitutive
equation of type (2.3)

Lv (t,x) +K1Lv (a,x) +K2t,xx +K3a,xx = 0 (3.1)

where partial derivatives of a function g are denoted by g,x = ∂g
∂x , or g,τ = ∂g

∂τ and
coefficients K1,K2,K3 are considered to be piecewise constants. Let us substitute the
uniaxial forms of the Lie derivatives into (3.1). After some rearrangements

ṫ,x = t,xv,x −K1 (ȧ,x + 3a,xv,x)−K2t,xx −K3a,xx (3.2)

where the uniaxial material time derivatives are v̇ = v,τ + vv,x and ȧ = a,τ + va,x.

The wave dynamical theory of constitutive equations [4] leads to the following third
degree polynomial equation

ρc3 − ρK2c
2 −K1(2a− 1)c+K3(2a− 1) = 0, (3.3)

which should have real nonzero wave-speed solutions c [2]. Assume that S0 is described
by values a0, t0, v0 of the field variables. Then these values should satisfy the nonlinear
system of fundamental equations formed by (3.2) and the uniaxial forms of (2.1) and
(2.2):

v̇ =
1

ρ
t,x, ȧ = v,x − 2av,x . (3.4)

Lyapunov stability investigates the response of a mechanical system to arbitrary small
perturbations, thus the perturbed quantities a0 + ∆a, t0 + ∆t, v0 + ∆v should be
substituted into (3.2) and (3.4). Note that the use of small perturbations is not a
restriction in the sense of stability because of its local nature [12, 18, 19]. Having
done the necessary calculations and by linearizing the set of equations (3.2) and (3.4)
at S0 a system of differential equations is obtained for the perturbations

v,ττ = C1v + C2a,x + C3a+ C4v,x+

+C5v,xx + C6a,xx + C7v,xτ , (3.5)
a,τ = D1v +D2a,x +D3a+D4v,x
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where ∆ is omitted for the sake of simplicity and the following notations are used:

C1 = −2v0,xτ − 2v0,xxv0 , C2 =
2K1

ρ
v0,x ,

C3 =
2K1

ρ
v0,xx , C4 =

2K1

ρ
a0,x −K2 ,

C5 = v20 −
K1

ρ
+

2K1

ρ
a0 , C6 = −K3

ρ
, C7 = 2v0 ,

D1 = −a0,x , D2 = −v0 , D3 = −2v0,x , D4 = −2a0 + 1 .

Let us introduce new variables y1 = a, y2 = v, y3 = v,τ a vector y = [y1, y2, y3] and
an operator

H :=

 H1 H2 0
0 0 1
H3 H4 H5

 ,
where the elements

H1 = D2
∂

∂x
+D3, H2 = D4

∂

∂x
+D1, H3 = C6

∂2

∂x2
+ C2

∂

∂x
+ C3,

H4 = C5
∂2

∂x2
+ C4

∂

∂x
+ C1, H5 = C7

∂

∂x

are differential operators. Then a dynamical system

∂

∂τ
y = Hy. (3.6)

can be attached to (3.5) [8]. The characteristic equation of (3.6) reads

λy = Hy. (3.7)

and the linear Lyapunov stability condition of state S0 is: Reλ ≤ 0 for all eigenvalues
of (3.7). Stability boundary is at Reλ = 0. The loss of stability can be classified as a
static bifurcation (or divergence) type instability (Reλ = 0, Imλ = 0) or a dynamic
one (Reλ = 0, Imλ 6= 0) [12]. To find the eigenvalues of equation (3.7) requires the
solution of a boundary value problem, which may cause serious difficulties and needs
numerical computations.

To continue using analytic methods we should perform simplifications: the use of
small periodic perturbations. While stability is considered here as a local property of
a state the small perturbation technique is quite obvious, but not its periodicity. It
is really a restriction, but used widely in the engineering literature of the linear case
[20]. (A detailed study on that restriction is presented in [8].) While perturbations
are small, aτ = vx and then equations (3.5) can be transformed into the velocity field,

v,τττ = C1v,τ + C2v,xx + C3v,x + C4v,xτ + C5v,xxτ + C6v,xxx + C7v,xττ ,

vxτ = D1v,τ +D2v,xx +D3v,x +D4v,xτ . (3.8)

By assuming periodic perturbations

v = exp (iωx) (3.9)
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in a similar way as it was done in the general case with (3.7) the characteristic equation
results in a set of algebraic equations

λ3 = C1λ− C2ω
2 − C5ω

2λ2 ,

0 = C3 + C4λ− C6ω
2 + C7λ

2 , (3.10)

0 = D1λ−D2ω
2 ,

λ = D3 +D4λ ,

and the static bifurcation condition is the existence of a λ = 0 solution of (3.10).
Then we obtain the following relations

D3 = 0, ⇐⇒ ∂v0
∂x

= 0, (3.11)

D2 = 0, ⇐⇒ v0 = 0, (3.12)

C2 = 0, ⇐⇒ K2
∂v0
∂x

= 0, (3.13)

and finally equations

C3 = 0, ⇐⇒ K1
∂2v0
∂x2

= 0, (3.14)

and
C6 = 0, ⇐⇒ K3 = 0, (3.15)

or

C3 − C6ω
2 = 0, ⇐⇒ 2K1

∂2v0
∂x2

+K3ω
2 = 0, (3.16)

should be satisfied. Obviously (3.11) implies (3.13), thus there is a static bifurcation
if

A: (3.11), (3.12), (3.14) and (3.15), or
B: (3.11), (3.12), and (3.16) are valid.

Case A does not meet the conditions originated by wave dynamics: there is a zero
wave speed solution c of (3.3). If K3 = 0 from (3.15) is substituted into (3.3)

(
ρc2 − ρK2c−K1(2a− 1)

)
c = 0

is obtained thus c = 0 is a solution. In the classical material instability concept [14,
15] it means localization. On the other hand, if (3.15) holds, the constitutive equation
(3.1) has no second strain gradient dependent term, which corresponds to the fact
that there is a stationary singular surface (a localization zone of zero width). Thus
we have exactly the classical result of Rice [15]. However, in case B from equation
(3.16)

ω2 = −2K1

K3

∂2v0
∂x2

,
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if 2K1

K3

∂2v0
∂x2 < 0. This means that there is a critical eigenfunction to the zero eigenvalue,

that is, we have a critical periodic perturbation (3.9)

vcr = exp

ix√−2K1

K3

∂2v0
∂x2


at which state S0 undergoes a static bifurcation.

Let us now study the dynamic bifurcation case. Then we need λ2 < 0 solution of
equation (3.10). The conditions are (3.11), (3.12) and

C5 = 0 ⇐⇒ v20 −
K1

ρ
+

2K1

ρ
a0 = 0 , (3.17)

C4 = 0 ⇐⇒ 2K1

ρ
a0,x −K2 = 0 , (3.18)

D1 = 0 ⇐⇒ a0,x = 0 , (3.19)

D4 = 1 ⇐⇒ a0 = 0 . (3.20)

Then from (3.17), (3.12) and (3.20)

K1 = 0, (3.21)

and from (3.18) and (3.19)
K2 = 0. (3.22)

Moreover, the second equation of (3.10) and (3.18) with (3.12) imply (3.15)

K3 = 0.

Finally from the first equation of (3.10) substituting (3.12), (3.11) and (3.17) we have

λ2 = −2
∂2v0
∂x∂τ

(3.23)

thus there is a dynamical bifurcation if conditions (3.11), (3.12), (3.15), (3.19), (3.20),
(3.21), (3.22) are satisfied and

∂2v0
∂x∂τ

> 0. (3.24)

Unfortunately this is not a generic dynamical bifurcation. We can easily see that
(3.21) implies (3.14), consequently a dynamical bifurcation is coexistent with a static
bifurcation of case A. Moreover, if (3.15), (3.21) and (3.22) are valid, equation (3.3)
has a zero solution c = 0, that is, if at least one of conditions (3.19), (3.20), (3.22)
or (3.24) fails (because then no coexistent dynamical bifurcation is present), we may
speak about a stationary discontinuity as a static bifurcation type instability phe-
nomenon. We remark that this result forms a bridge between the dynamical systems
approach [8] and the wave dynamical theory because it can be obtained from both of
them [10].
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4. Conclusions

By using a second order constitutive equation of form (3.1) for finite deformations
both types A and B of the static bifurcation instability are generic in the sense of
dynamical systems theory because there is no coexistent dynamical bifurcation. More-
over, a nice (and useful [7]) property of the small deformation case of second strain
gradient dependent materials was preserved: the dimension of the critical eigenspace
at static bifurcation remains finite (case B). When this term (case A) is neglected,
we cannot find a unique critical eigenfunction but a ”stationary discontinuity”: the
jump (discontinuity surface in the higher derivatives of the field variables) stops at
the conditions of instability.

Acknowledgement. This work was supported by the National Scientific Research Fund of
Hungary (under contract OTKA T034535)
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Abstract. Strength of three continuous fiber-reinforced ceramic composites, including
SiC/CAS-II, SiC/MAS—5 and SiC/SiC, was determined as a function of test rate in air
at 1100 to 1200˚ C. All three composite materials exhibited a strong dependency of strength
on test rate, similar to the behavior observed in many advanced monolithic ceramics at el-
evated temperatures. The application of the preloading technique as well as the prediction
of life from one loading configuration (constant stress-rate) to another (constant stress load-
ing) suggested that the overall macroscopic failure mechanism of the composites would be
the one governed by a power-law type of damage evolution/accumulation, analogous to slow
crack growth commonly observed in advanced monolithic ceramics. It was further found that
constant stress-rate testing could be used as an alternative to life prediction test methodol-
ogy even for composite materials, at least for a short range of lifetimes and when ultimate
strength is used as the failure criterion.

Keywords : ceramic matrix composites, ultimate tensile strength, life prediction testing, slow
crack growth/damage accumulation analysis

1. Introduction

The successful development and design of continuous fiber-reinforced ceramic com-
posites (CFCCs) are dependent on a thorough understanding of basic properties such
as fracture and delayed failure (slow crack growth, fatigue, or damage accumulation)
behavior. Particularly, accurate evaluation of delayed failure behavior under specified
loading/environment conditions is a prerequisite to ensure accurate life prediction of
structural components.

This paper describes the effect of load rate on elevated-temperature ultimate ten-
sile strength of three different NicalonTMfiber-reinforced ceramic composites. For
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each composite material, strength was determined in air as a function of test rate
at elevated temperature of 1100 ˚ C (SiC/CAS and SiC/MAS) or 1200˚ C (SiC/SiC).
This type of testing, when used for monolithic ceramics, is called “constant stress-
rate”or “dynamic fatigue”testing [1 to 3]. The loading rate dependency of strength
was analyzed with the power-law (damage) propagation, conventionally utilized for
monolithic ceramics and glass. Preloading tests were conducted to better understand
the governing failure mechanism(s) of the materials. Finally, the result of elevated-
temperature constant stress (“static fatigue”or “stress rupture”) testing was obtained
for each material and compared with that of constant stress rate testing. This was
done to further verify the overall failure mechanism of the materials and to establish
constant stress-rate testing as a means of life prediction test methodology for CFCCs.
It should be noted that few studies on these subjects have been done for continuous
fiber-reinforced ceramic composites at elevated temperatures, except some limited
room-temperature study [4].

2. Experimental procedure

All the matrices of the three test composites were reinforced by ceramic-grade NicalonTM

fibers with a fiber volume fraction of about 0.39. The nominal fiber diameters
ranged from 10 to 15 µm. The three composite materials included NicalonTM uni-
directionally (1D) fiber-reinforced calcium aluminosilicate (designated SiC/CAS-II),
NicalonTMcrossply (2D) magnesium aluminosilicate (designated SiC/MAS—5), and
NicalonTMplain-woven (2D) silicon carbide composites. SiC/CAS-II and SiC/MAS—5
were fabricated by Corning, Inc., through hot-pressing followed by ceraming of the
composites by a thermal process. The designation “—5”in SiC/MAS—5 indicates that
the matrix was doped with 5 vol% fraction of borosilicate glass. The silicon carbide
matrix in the SiC/SiC composites was fabricated by the DuPont Company through
chemical vapor infiltration (CVI) into the fiber preform. SiC/CAS-II and SiC/MAS—5
laminates were 18 and 16 plies thick, respectively, with a nominal thickness of about
3 mm. The plain-woven laminates of the SiC/SiC composite were supplied in 12 plies
(normally 3.5 mm) thick. More detailed information regarding the test composite
materials can be found elsewhere [5]. The SiC/CAS-II material has been used in a
previous, preliminary study on test rate-effect on tensile strength [6]. The dogboned
tensile test specimens measuring 152.4 mm (length) × 12.7 mm (width) were ma-
chined from the composite laminates, with the gage section of about 30 mm long, 10
mm wide and 3.0 to 3.5 mm thick (as-furnished). The design of the dogboned tensile
test specimen was the result of previous finite element analysis [7].

Monotonic tensile testing was conducted in air at 1100˚ C for both SiC/CAS-II and
SiC/MAS—5 and at 1200 ˚ C for SiC/SiC, using a servohydraulic test frame (Model
8501, Instron, Canton, MA). A total of three to four different loading rates (in load
control), corresponding to stress rates ranging from 50 to 0.005 MPa/s, were em-
ployed with typically 3 test specimens tested at each loading rate. Detailed experi-
mental procedure on tensile testing and related induction-heating equipment can be
found elsewhere [5]. Preloading or accelerated testing technique, applied primarily
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to monolithic ceramics and glass [8,9], was also conducted at test temperatures using
0.5 MPa/s (for SiC/CAS-II) or 0.005 MPa/s (for SiC/MAS—5 and SiC/SiC) in an
attempt to better understand the governing failure mechanism of the materials. Pre-
determined preloads, corresponding to about 80 to 90 percent of the failure strength
determined at 0.5 or 0.005 MPa/s with zero preload (regular testing), were applied
quickly to the test specimens prior to testing and their corresponding strengths were
measured. Typically two to three test specimens were used in preload testing. Tensile
testing was performed in accordance with ASTM Test Standard, ASTM C 1359 [10].

Constant stress (“static fatigue”or “stress rupture”) tensile testing was also per-
formed in air for the three composite materials using the same test specimen geometry,
test fixture, test frame and same test temperatures that were used for monotonic ten-
sile testing. The limited availability of test materials confined the testing to four to
nine test specimens, depending on material. Four different static loads were applied
to test specimens and their corresponding times to failure were determined.

3. Results

3.1. Constant Stress-Rate Testing. The results of monotonic tensile strength
testing with different test rates are presented in Figure 1, where ultimate strength
was plotted as a function of applied stress rate for each composite material using
log-log scales. Each solid line in the figure indicates a best-fit regression line based
on the log (ultimate strength) versus log (applied stress rate) relation. The decrease
in ultimate strength with decreasing stress rate, which represents a susceptibility to
damage accumulation or delayed failure, was significant for all the composite materi-
als. The strength degradation was 51, 31 and 62 percent, respectively, for SiC/CAS-II,
SiC/MAS—5 and SiC/SiC when the stress rate decreased from the highest to the low-
est. Fracture patterns for the SiC/CAS-II composite showed some fiber pullout with
jagged faceted matrix cracking often propagating along the test-specimen length, as
shown in Figure 2(a). For a given stress rate, however, the difference in strength
between different fracture patterns was not obvious. No appreciable difference in the
mode of failure was observed for SiC/MAS—5 and SiC/SiC, where most specimens
tested at either high or low stress rate exhibited relatively flat fracture surfaces (see
Figure 2(b) and 2(c)), possibly called brittle fracture.

3.2. Preload testing. The results of preloading tests are also shown in Figure 1,
where the ultimate strength with 80 to 90 percent preloads is compared with the
regular testing results without preload. The difference in strength between the two
preloads (0 and 80 to 90%) was negligibly small for each material: 211 MPa (no
preload) and 209 MPa (for 85% preload) for SiC/CAS-II; 142 MPa (0 and 80%
preload) for SiC/MAS—5; 77 MPa (no preload) and 80 MPa (90%) for SiC/SiC.
Hence, the maximum strength difference, exhibited by SiC/SiC, was about 4 percent.
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Figure 1. Results of ultimate tensile strength as a function of stress rate for (a)
SiC/CAS II, (b) SiC/MAS 5, and (c) SiC/SiC composites at elevated temperatures
in air. The solid lines represent the best-fit regression lines. Error bar indicates ±1.0
standard deviation. The results of preloading tests are also indicated.
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Figure 2. Fracture patterns for (a) SiC/CAS II, (b) SiC/MAS 5, and (c) SiC/SiC
composites subjected to elevated temperature tensile testing. The upper and lower
pictures for a given composite material indicate the specimen tested at the lowest and
highest load rates, respectively.
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Figure 3. Results of constant stress (“static fatigue”or “stress rupture”) testing for
(a) SiC/CAS II, (b) SiC/MAS 5, and (c) SiC/SiC composites at elevated temperatures
in air. The solid lines represent the predictions based on the results of constant stress
rate testing (Figure 1).
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This indicates that any significant damage that would control the ultimate strength
of the material did not occur below the applied load level up to 80 to 90 percent of
the fracture load. Conversely, the damage to control final failure would have occurred
when applied load or test time was greater than 80 to 90 percent of fracture load or
total test time. The theory explaining results of preload testing will be described in
the discussion section.

3.3. Constant stress (“stress rupture”) testing. A summary of results of con-
stant stress or stress rupture testing at elevated temperatures is presented in Figure
3, where time to failure was plotted against applied stress for each composite material
using log-log scales. A significant decrease in time to failure with increasing applied
stress, which represents a susceptibility to damage accumulation or delayed failure,
was evident for all the composite materials tested. Each solid line in Figure 3 indi-
cates prediction results based on the constant stress-rate data (Figure 1), which will
be discussed in a later section. The mode of fracture in constant stress testing was
very similar to that in constant stress-rate testing. Brittle failure was exemplified
for SiC/MAS—5 (2D) and SiC/SiC (2D), while somewhat jagged matrix cracking was
observed for SiC/CAS-II (1D).

4. Discussion

The strength dependency on test rate exhibited by the three composite materials
(Figure 1) is very similar to that observed in advanced monolithic ceramics at ambient
or elevated temperatures. The strength degradation with decreasing stress rate has
been known to be due to slow crack growth (delayed failure or fatigue) of an initial
crack, typically governed by the following empirical power-law relation [1 to 3]:

ν = A (KI/KIC)
n (4.1)

where v, KI and KIC are crack velocity, mode I stress intensity factor and fracture
toughness, respectively. A and n are called slow crack growth (SCG) parameters.
Based on this power-law relation, the strength (σf ) can be derived as a function of
applied stress rate (σ̇) [1 to 3].

σf = D [σ̇] 1/n+1 (4.2)

where D is another SCG parameter associated with inert strength, n and crack geom-
etry.
Equation (4.2) can be expressed in a more convenient form by taking logarithms of
both sides

log σf =
1

n+ 1
log σ̇ + log D (4.3)

Constant stress-rate (“dynamic fatigue”) testing based on Eqs. (4.2) or (4.3) has
been established as ASTM Test Methods (C1368 [2] and C1465 [3]) to determine
SCG parameters of advanced monolithic ceramics at ambient and elevated temper-
atures. It has been recommended to use units of MPa for σf nd MPa/s for [2 to
3]. As can be seen in Figure 1, the data fit to equation (4.3) is very reasonable with
the correlation coeffi cients (rcoef ) all greater than 0.980, indicating that the damage
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evolution/accumulation or delayed failure of the composite materials would be ade-
quately described by the power-law type relation, equation (4.1). Assuming this, the
apparent parameters n′ and D′ for the composites were determined using a linear
regression analysis based on equation (4.3) with the data in Figure 1. Values of n’=
9.0 and D’= 226, n’= 18 and D’= 185, and n’= 6 and D’= 158 were obtained
for SiC/CAS-II, SiC/MAS—5 and SiC/SiC, respectively (The prime was used here for
composite materials to distinguish them from monolithic ceramic counterparts.). It is
noteworthy that the value of n′, a measure of susceptibility to damage, was very low for
both SiC/CAS-II and SiC/SiC, but intermediate for SiC/MAS—5. Typical monolithic
silicon nitrides and silicon carbides at high temperatures >1200 ˚ C exhibit n > 20.
Hence, compared with monolithic ceramics, the SiC/CAS-II and SiC/SiC composites
exhibited a significantly higher susceptibility to damage evolution/accumulation.

The preload or accelerated test technique has been developed for monolithic ce-
ramics in order to save test time in constant stress-rate testing [8, 9]. Based on
the power-law SCG relation of equation (4.1 with some mathematical manipulation,
strength of a test specimen under a preload (α) was derived as a function of preloading
factor [2, 3, 8, 9]:

σfp = σf
(
1 + αn+1

) 1
n+1 (4.4)

where σfp is strength with a preload and α is a preloading factor (0 ≤ α ≤ 1 or
0 ≤ α ≤ 100% in percentage) in which a preload stress (applied to the test specimen)
is normalized with respect to the strength with zero preload. Equation (4.4) indicates
that strength with a preload is sensitive to the magnitude of preload particularly
at lower n and higher α values. A theoretical prediction of ultimate strength as a
function of preload, based on Eq. (4.4) with estimated values of n’from Figure 1,
is shown in Figure 4. The prediction (solid lines) is in excellent agreement with the
experimental data for all the three composite materials tested, as seen in the figure.
This result obtained for the composite materials is also analogous to that observed in
advanced monolithic ceramics and glass [8, 9]. Damage, mainly SCG, of monolithic
ceramics occurs substantially close to 90 percent of total failure time because of their
higher n (>20) value [8, 9]. The applicability of the preloading analysis for the
composite materials strongly suggests that major damage evolution/accumulation
process would be the one governed by the power-law relation (equation (4.1)) and
that the damage would have occurred after a long incubation time, at least after 80
percent of total test time.

For the case that a single delayed failure mechanism (SCG) is predominant, a
life prediction (for monolithic ceramics) from one loading configuration to another
can be made analytically or numerically, depending on the complexity of loading
configurations concerned. A life prediction under constant stress loading can be made
based on equation (4.1) using constant stress-rate testing data as follows [11]:

tf =

[
Dn+1

n+ 1

]
σ−n (4.5)
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Figure 4. Result of preloading test (ultimate strength as a function of preloading) for
(a) SiC/CAS II, (b) SiC/MAS 5, and (c) SiC/SiC composites at elevated temperatures
in air. A theoretical line based on equation (4) [8, 9] is included for comparison for
each composite material.
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where tf and σ are time to failure and applied stress, respectively. Use of equation
(4.5) together with n’and D’determined in constant stress-rate testing allows one
to predict life in constant stress loading. The results thus predicted are presented in
Figure 3 as solid lines. Except for some discrepancy in the SiC/CAS-II composite, the
overall prediction is in reasonable agreement with experimental data, at least for short
periods of life. This indicates that the governing failure mechanism of SiC/MAS—5
and SiC/SiC was identical in both constant stress rate testing and constant stress
testing. Since the prediction (equation (4.5)) was made based on the power-law rela-
tion, it is certain that the distinct failure mechanism of the two composite materials
would be governed by the power-law type of damage evolution/accumulation (SCG
or delayed failure).

The strength dependency on test rate, the applicability of preloading technique
and the reasonable life prediction from one loading configuration (constant stress-
rate testing) to another (constant stress or stress rupture testing) all support that
the damage evolution/accumulation of the composite materials tested was controlled
by a process very similar to the power-law type of SCG of monolithic ceramics, and
that the failure mechanism was almost independent of loading configuration either
in monotonically increased or in constant loading. This indicates that the constant
stress-rate testing, commonly utilized in determining life prediction parameters of
monolithic ceramics, could be applicable even to composite materials. The merit
of constant stress rate testing is enormous in terms of simplicity and test economy
(short test time) over other stress rupture or cyclic fatigue testing, especially for short
lifetimes. A continuing effort to establish a database in constant stress rate testing at
elevated temperatures is in progress using more ceramic matrix composites. A more
detailed study regarding microscopic failure mechanisms [4, 12—15] associated with
matrix/fiber interaction, matrix cracking and its effect on slow crack growth, and
delayed failure of sustaining fibers near fracture, etc. is needed. Finally, the results
of this work also suggest that care must be exercised when characterizing elevated-
temperature strength of composite materials. This is due to the fact that elevated-
temperature strength has a relative meaning if a material exhibits rate dependency:
the strength simply depends on the selected test rate (Fig. 1). Therefore, at least two
test rates (high and low) are recommended to better characterize the high-temperature
strength behavior of a composite material.

5. Conclusions

Elevated-temperature strength of three continuous fiber-reinforced ceramic com-
posites, including SiC/CAS-II, SiC/MAS—5, and SiC/SiC, exhibited a strong depen-
dency on test rate, similar to the behavior observed in many advanced monolithic
ceramics at elevated temperatures. The applicability of the preloading technique as
well as the predictability of life from one loading configuration (constant stress-rate)
to another (constant stress loading) suggested that the distinct, overall failure mech-
anism of the composite materials would be a process primarily governed by a power-
law type of damage evolution/accumulation, analogous to the mechanism observed in
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monolithic counterparts. It was further found that constant stress-rate testing could
be utilized as a means of life prediction test methodology even for composites when
short lifetimes are expected.
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Abstract. The paper presents the fundamental solutions established for the equations of
motion written in terms of displacements in the theory of elasticity of crystalline systems and
the hydromechanics of ideal liquids provided that the loading is harmonic and considering 2D
and 3D problems as well. On the basis of the results obtained we have found the displacement
field in an infinite elastic medium for the corresponding problems. Then the propagation of
plane harmonic waves in the three-dimensional infinite elastic medium is investigated in the
absence of mass forces.
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1. Introduction

The equations of motion in terms of displacements are established in paper [1] within
the framework of the theory of elasticity of crystalline systems and the hydromechan-
ics of ideal liquids. These equations are obtained on the basis of the principle of
“smoothing” the equations of motion for a single particle interacting with the nearby
particles according to the Lennard-Johns law. These equations have the form

µui,jj + (λ+ µ)uj,ij − γui,jjpp − kuj,ijpp − q,i + Fi = ρüi (1.1)

and describe a process of deformation of amorphous bodies and non-viscous liquids
which are isotropic media. These equations differ from the classical ones by the
presence of fourth-order derivatives affecting the short-wave processes. The Lame
constants λ, µ and the additional coefficients γ, k are all determined by the Lennard-
Johns potential and by the distances of the particles. Note that γ > 0, k > 0. The
term q,i in equation (1.1) specifies the temperature fluctuation. In the paper the
fundamental solutions of the equations of motion (1.1) are constructed on the basis
of the theory of generalized functions provided that the load is harmonic and the
problems considered are 2D and 3D ones. The propagation of plane harmonic waves
in the three-dimensional infinite elastic medium is investigated in the absence of mass
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forces. Henceforth we assume that all processes except for mechanical displacements
are neglected. The coefficients in equation (1.1) are all constants.

2. Fundamental solutions. Displacement fields

2.1. Taking into account the aforementioned assumptions, the equations of motion
(1.1) can be written as follows:

µui,jj + (λ+ µ)uj,ij − γui,jjpp − kuj,ijpp + Fi = ρüi . (2.1)

Note that Fi = Fi(~x, t), ui = ui(~x, t); ~x ∈ Rn (n = 2, 3), i = 1, n; t > 0. For many
practical problems it is important to know the dynamical behavior of the solid body
subjected to harmonic loading. Assuming that the transient process is finished and
the system is in a steady-state mode, the initial conditions can be neglected. If this is
the case the reaction depends on the frequency of the applied loading. Let us consider
an infinite elastic medium. Suppose that the mass forces Fi(~x, t) = F i(~x)e−iωt are
harmonic in time. Then the displacements are also harmonic in time, i.e., can be
written as ui(~x, t) = ui(~x)e−iωt. Consequently, equation (2.1) assumes the form

(µui,jj + (λ+ µ)uj,ij − γui,jjpp − kuj,ijpp + F i)e
−iωt = −ρω2uie

−iωt .

Since e−iωt 6= 0 ∀ t > 0, we obtain from the last equation that

µui,jj + (λ+ µ)uj,ij − γui,jjpp − kuj,ijpp + ρω2ui + F i = 0 . (2.2)

In order to find solutions to equations (2.2), one has to construct the fundamen-
tal solutions of these equations. Note that the differential operator that determines
equation (2.2) is self-adjoint. The tensor with components Uki = Uki (~x), i, k = 1, n is
called the tensor of fundamental solutions of equations (2.2) if its components satisfy
the equations

µUki,jj + (λ+ µ)Ukj,ij − γUki,jjpp − kUkj,ijpp + ρω2Uki + δikδ(~x) = 0 (2.3)

where δ(~x) is the generalized Dirac function, δikδ(~x) is a unit force exerted at the
origin and acting in the direction of the axis xk. To solve equations (2.3) we shall
apply the n-dimensional (n = 2, 3) exponential Fourier transformation [2]

f̃(~x) = F [f(~x)] =

∫
Rn

f(~x)ei(~α,~x)d~x, ~x ∈ Rn (2.4)

to these equations. Here ~α is a complex number and (~α, ~x) = α1x1 + · · · + αnxn is
the scalar product in the corresponding n-dimensional space. Then we have

µαjαjF [Uki ] + (λ+ µ)αiαjF [Ukj ] + γαjαjαpαpF [Uki ]+

+ kαiαjαpαpF [Ukj ]− ρω2F [Uki ]− δik = 0 (2.5)

Let s = αpαp. Multiply equation (2.5) by αi and perform a summation with respect
to the index i. After some simple manipulations we have

αjF [Ukj ] =
αk

(k + γ)s2 + (λ+ 2µ)s− ρω2
. (2.6)
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Upon substitution of equation (2.6) into (2.5) we obtain

F [Uki ] =
δik

γs2 + µs− ρω2
− αiαk(λ+ µ+ ks)

[(k + γ)s2 + (λ+ 2µ)s− ρω2] [γs2 + µs− ρω2]
. (2.7)

Resolve the right-hand side of equation (2.7) into simple fractions

F [Uki ] = Aδik

[
1

s+ s22
− 1

s+ s21

]
−

− αiαk
[
A

s21

1

s+ s21
− A

s22

1

s+ s22
− B

s23

1

s+ s23
+
B

s24

1

s+ s24

]
(2.8)

where

s1 =

[√
µ2 + 4γρω2 + µ

2γ

] 1
2

; s2 = i

[√
µ2 + 4γρω2 − µ

2γ

] 1
2

;

A =
1

γ(s21 − s22)
; s3 =

[√
(λ+ 2µ)2 + 4(k + γ)ρω2 + λ+ 2µ

2(k + γ)

] 1
2

;

(2.9)

B =
1

(k + γ)(s23 − s24)
; s4 = i

[√
(λ+ 2µ)2 + 4(k + γ)ρω2 − (λ+ 2µ)

2(k + γ)

] 1
2

.

Useful inverse Fourier transforms are given below

– both in two-dimensional space:

F−1
[

1

s+ a2

]
=
K0(ar)

2π
, r =

√
xixi, i = 1, 2 (2.10)

– and in three-dimensional space:

F−1
[

1

s+ a2

]
=
e−aR

4πR
, R =

√
xixi, i = 1, 3 (2.11)

where K0(z) is the modified Bessel function of second kind and zero order. Accord-
ingly, the fundamental solutions of equations (2.2) have the forms

Uki (~x) =
Aδik
2π

[K0(s2r)−K0(s1r)]−

− 1

2π

∂2

∂xi∂xk

[
AK0(s1r)

s21
− AK0(s2r)

s22
− BK0(s3r)

s23
+
BK0(s4r)

s24

]
(2.12)

and

Uki (~x) =
Aδik
4πR

[
e−s2R − e−s1R

]
−

− 1

4π

∂2

∂xi∂xk

[
1

R

(
Ae−s1R

s21
− Ae−s2R

s22
− Be−s3R

s23
+
Be−s4R

s24

)]
, (2.13)
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respectively. If the unit force is applied at point ~ξ, then the fundamental solution
is denoted by Uki (~x, ~ξ), and the radii r and R in expressions (2.12) and (2.13) are
determined by the formulas

r =
√

(xi − ξi)(xi − ξi) i = 1, 2; R =
√

(xi − ξi)(xi − ξi) i = 1, 3 .

It is well known [2] that the derivative in terms of generalized functions contains
functions which do not belong to the class C(m), m = 1, 2, 3 . . ., therefore it differs
from the derivative taken in the ordinary sense. Let us investigate the derivative in
equation (2.12). Since [3] K0(r) ∼ ln 1

r as r → 0, the function K0(ar) is discontinuous
at r = 0. We find [2]

∂2

∂xi∂xk

(
ln

1

r

)
=

∂̃2

∂xi∂xk

(
ln

1

r

)
− πδikδ(~x) i, k = 1, 2 (2.14)

The tilde over the derivative sign on the right-hand side of equation (2.14) stands for
a derivative taken in ordinary sense. The term πδikδ(~x) is called singularity function.
It follows from the aforementioned considerations that the singularity functions in

∂2

∂xi∂xk

(
ln

1

r

)
and

∂2

∂xi∂xk
(K0(ar))

coincide. Let us find the singular part Uk(sing)i (i, k = 1, 2) of expression (2.12) :

U
k(sing)
i =

1

2π
(−πδikδ(~x))

[
A

s21
− A

s22
− B

s23
+
B

s24

]
= 0 . (2.15)

Consequently, the singular part Uk(sing)i of expression (2.12) is equal to zero. This
means that derivatives in the fundamental solution for plane problems are derivatives
taken in ordinary sense. Analogously we can investigate the singular part of expres-
sion (2.13). Since e−aR

R ∼ 1
R as R → 0, the singular parts of ∂2

∂xi∂xk

(
e−aR

R

)
and

∂2

∂xi∂xk

(
1
R

)
coincide. We find [2]

∂2

∂xi∂xk

(
1

R

)
=

∂̃2

∂xi∂xk

(
1

R

)
− 4π

3
δikδ(~x) . (2.16)

Therefore the singular part of expression (2.13) is also equal to zero:

U
k(sing)
i =

1

4π

(
−4π

3
δikδ(

−→x )

)[
A

s21
− A

s22
− B

s23
+
B

s24

]
= 0 . (2.17)

This means that the derivatives in the fundamental solution for 3D problems are
derivatives taken in ordinary sense. The absence of functions of singularities in ex-
pressions (2.12) and (2.13) indicates the correctness of the results obtained. Note
that analogous results are correct for fundamental solutions, obtained in the case
when unit force is applied at a point ~ξ.
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2.2. Now we can find displacement fields for 2D and 3D problems. As it was
mentioned above, ui(~x, t) = ui(~x)e−iωt, where ui(~x) is calculated as a convolution:

ui(~x) = Uki (~x) ∗ Fk(~x) =

∫
Rn

Uki (~y)Fk(~x− ~y)d~y . (2.18)

Therefore the displacement field is ui(~x, t) = (Uki (~x)e−iωt) ∗ Fk(~x). Taking formulas
(2.9) into account, we have the displacements in two-dimensional space:

ui(~x, t) =

{
Aδike

−iωt

2π

[
K0

(
i

[√
µ2+4γρω2−µ

2γ

] 1
2

r

)
−K0

([√
µ2+4γρω2+µ

2γ

] 1
2

r

)]

− e−iωt

2π

∂2

∂xi∂xk

[
A

s21
K0

([√
µ2+4γρω2+µ

2γ

] 1
2

r

)
− A

s22
K0

(
i

[√
µ2+4γρω2−µ

2γ

] 1
2

r

)
−

− B

s23
K0

([√
(λ+2µ)2+4(k+γ)ρω2+λ+2µ

2(k+γ)

] 1
2

r

)
+

+
B

s24
K0

(
i

[√
(λ+2µ)2+4(k+γ)ρω2−(λ+2µ)

2(k+γ)

] 1
2

r

)]}
∗ Fk(~x) . (2.19)

The displacement field in three-dimensional space can be written as follows

ui(~x, t) =

Aδik4πR

e−i
([√

µ2+4γρω2−µ
2γ

] 1
2
R+ωt

)
− e
−
[√

µ2+4γρω2+µ
2γ

] 1
2
R−iωt

−
− 1

4π

∂2

∂xi∂xk

 1

R

A

s21
e
−
[√

µ2+4γρω2+µ
2γ

] 1
2
R−iωt

− A

s22
e
−i
([√

µ2+4γρω2−µ
2γ

] 1
2
R+ωt

)
−

− B

s23
e
−
[√

(λ+2µ)2+4(k+γ)ρω2+λ+2µ
2(k+γ)

] 1
2
R−iωt

+

+
B

s24
e
−i
([√

(λ+2µ)2+4(k+γ)ρω2−(λ+2µ)
2(k+γ)

] 1
2
R+ωt

)

 ∗ Fk(~x) . (2.20)

Note that genuine displacements for 2D and 3D problems are given by real or imag-
inary components of expressions (2.19) and (2.20), respectively. Let us consider the
solutions obtained for two-dimensional space. They differ from the classical ones by
the presence of additional terms. These are modified Bessel functions of second kind
and zero order with real arguments. It is known [3] that if the argument of function
K0(z) is a real value and it increases, then the function is damped exponentially. On
the other hand, K0(r) ∼ ln 1

r as r → 0. It follows from the previous considerations
that the additional terms have a great influence on the behavior of the displacement
field near the perturbation source and it gradually vanishes as r increases. Let us
consider solutions (2.20). The presence of additional terms influences the behavior



32 Y. Kabish, V. Lavrenyuk

of the displacement field near the perturbation source (i. e., as R → 0). In contrast
to the classical case, the solutions obtained do not tend to infinity as R → 0. In
other words, the influence of these terms on the displacement field as R increases is
insignificant. Note that solutions, obtained for 3D problems, tend to zero as R→∞.
This behaviour confirms again the correctness of the results. It is worthy of mention
that we obtain the classical solutions for 2D and 3D problems if k → 0, and γ → 0.

3. Propagation of plane harmonic waves

3.1. Let us investigate the propagation of plane harmonic waves, described by (2.1),
in an infinite elastic medium in the direction of axis x1. This means that uj =
uj(x1, t), j = 1, 3. Suppose that the mass forces are absent. Then equation (2.1) can
be written as follows:

(k + γ)
∂4u1
∂x41

− (λ+ 2µ)
∂2u1
∂x21

+ ρü1 = 0

γ
∂4u2
∂x41

− µ∂
2u2
∂x21

+ ρü2 = 0

γ
∂4u3
∂x41

− µ∂
2u3
∂x21

+ ρü3 = 0

(3.1)

where the first equation describes propagation of longitudinal waves. The second and
third equations describe the propagation of transverse waves. Taking into account
that these three equations differ only in their coefficients we can write

∂4uj
∂x41

− C(1)
∂2uj
∂x21

+ C(2)üj = 0, j = 1, 3 (3.2)

where

C(1) =


λ+ 2µ

k + γ
– for longitudinal waves

µ

γ
– for transverse waves

(3.3)

C(2) =


ρ

k + γ
– for longitudinal waves

ρ

γ
– for transverse waves

(3.4)

Solutions of equations (3.2) assume the form

uj(~x1, t) = ei(kx1−ωt), j = 1, 3 (3.5)

where k is the wave number and ω is the frequency. Substituting expression (3.5) into
equation (3.2) we obtain the characteristic equation

k4 + C(1)k
2 − C(2)ω

2 = 0 (3.6)
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from which

k(1) =


√
C2

(1) + 4C(2)ω2 − C(1)

2


1
2

k(2) = −


√
C2

(1) + 4C(2)ω2 − C(1)

2


1
2

k(3) = i


√
C2

(1) + 4C(2)ω2 + C(1)

2


1
2

k(4) = −i


√
C2

(1) + 4C(2)ω2 + C(1)

2


1
2

.

(3.7)
Two of the roots obtained are complex values. However, they are not wave numbers
although they both occur in the general solution of equation (3.2). Besides, |k(1)| =
|k(2)|. This means that one velocity is the velocity of propagation for longitudinal
waves and the other is the velocity of propagation for transverse waves. The general
solution of equation (3.2) is of the form

uj(x1t) = D1e
i

[√C2
(1)

+4C(2)ω
2−C(1)

2

] 1
2

x1−ωt


+D2e

−i

[√C2
(1)

+4C(2)ω
2−C(1)

2

] 1
2

x1+ωt


+

+D3e
−iωte

−
[√

C2
(1)

+4C(2)ω
2+C(1)

2

] 1
2

x1

+D4e
−iωte

[√
C2
(1)

+4C(2)ω
2+C(1)

2

] 1
2

x1

(3.8)

where Dj are constants, j = 1, 4. Let us analyze the solutions we have obtained. The
first and third terms in (3.8) represent a wave moving to the right (in the positive
direction of axis x1). The second and fourth terms in (3.8) represent a wave moving
to the left (in negative direction of x1). Note that the vibrations determined by the
third and fourth terms damp quickly while the first and second terms characterize
harmonic vibrations. Solutions (3.8) clearly show that in a negligible neighborhood of
the perturbation source the vibrations are non-stationary, and they gradually become
harmonic waves. Let us investigate the dependence between wave number k and
frequency ω. From equation (3.7) we have

k =

√√√√√C2
(1) + 4C(2)ω2 − C(1)

2
. (3.9)

From the last equality we obtain

ω = k

√
C(1)

C(2)

√
1 +

k2

C(1)
. (3.10)

Note that √
C(1)

C(2)
=


c1 =

√
λ+ 2µ

ρ
– for longitudinal waves

c2 =

√
µ

ρ
– for transverse waves

(3.11)
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It is known that c1 and c2 are the classical velocities of propagation for the longitudinal
and transverse waves, respectively. Equality (3.10) determines a quadratic dependence
between the wave number and the frequency. Note that as n→ 0 we obtain a linear
dependence between these values. Indeed, if we expand the right-hand side of equation
(3.10) we have

ω = k

√
C(1)

C(2)

(
1 +

k2

2C(1)
− k4

8C2
(1)

+ · · ·

)
. (3.12)

Neglecting the terms of third and higher degrees we obtain the classical dependence
between the wave number and the frequency. We deduce from the last equality
that the longer the wave the less the difference between the results obtained from
the classical and specified equations. This fact lets us conclude that the specified
equations are more suitable to describe short-wave processes.

3.2 If the direction of propagation of a plane harmonic wave does not coincide
with the axis x1, the displacement field is described by more complicated formulas,
although the physical picture remains the same. Let us consider a common case of
propagation of plane harmonic waves in a three-dimensional infinite elastic medium
in the direction of vector ~n with velocity c. Consequently, the components of the
displacement vector are functions of one parameter, i.e., ui = ui(Z), Z = ~n ~r − ct,
where ~n is the normal to the plane Z = const. If we introduce a coordinate system
x́1x́2x́3, where x́1 is perpendicular to the plane Z = const, and the positive direction
of this axis coincides with the direction of vector ~n, then in the new coordinate system
all the results concerning the propagation of plane harmonic waves in the direction of
axis x1 are valid.

4. Conclusions

In the paper the fundamental solutions of the specified equations of motion are con-
structed assuming 2D and 3D problems and harmonic loading. On the basis of the
results obtained we have found the displacement fields in an infinite elastic medium
for the corresponding problems. An analysis of the results shows that the solutions
of 2D and 3D problems include additional terms, influencing the behavior of the dis-
placement field near the perturbation source. The propagation of plane harmonic
waves in the three-dimensional infinite elastic medium in absence of mass forces has
also been investigated. The presence of fourth-order derivatives in the equations of
motion makes it possible to investigate short-wave processes more accurately. When
the wave-length is large, the classical equations and the specified equations lead to
the same results.
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Abstract. A generalization of the well-known Nanson’s formula for solids has been set up
for shells. These formulae relate a surface element vector taken either on the base surface
or on the side surface in the reference configuration to any surface element vector in the
instantaneous configuration. The characteristic quantities can be given by their truncated
Taylor expansions with respect to the control parameter. In this way, the work increment
done by a deformation dependent traction can always be calculated through integrals taken
in the reference configuration, i.e., for shells on the base surface or on the side surface.
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1. Introduction

In order to solve a statical problem, calculation of the work increment done by
the loads either during an increment in the kinematically admissible displacement or
during an increment in the effective displacement is frequently required. This situation
arises, for example, in the application of the incremental form of the principle of virtual
work (see, e.g., Molk et al [1], Kozák and Szabó [2]). This is also the case in the course
of the solution of stability problems when the work increment done by the loads of an
equilibrium configuration during a small perturbation in displacements is calculated.

In this paper the applied normal tractions are deformation dependent and are
always perpendicular to the instantaneous surface of the body. The aim of this paper
is to calculate the work increment done by the loads of any equilibrium configuration
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through an arbitrary displacement increment, both for an arbitrary body and for
shells. Large strains are assumed.

In Section 2 three coordinate systems are introduced: namely, the first is defined
in the instantaneous configuration, the second is given in the reference configuration
of an arbitrary body and the third is associated with the base surface of the shell
also in the reference configuration. The geometrical characteristics of the coordinate
systems are also presented together with the applied notations.

In Section 3 relationships are established for the surface element vectors concerning
both arbitrary solids and shells in an instantaneous configuration and in a reference
one. For shells we distinguish a surface element on the base surface from a surface
element on the side surface.

Section 4 gives the forces exerted on surface elements at the points of an instanta-
neous configuration by means of surface elements at the points of the base surface of
a shell.

Section 5 details the formulation of the work increment done by the deformation
dependent tractions during an arbitrary increment in the displacements. The charac-
teristic quantities are expanded in truncated Taylor series written in an equilibrium
configuration with respect to a control parameter. Then the power of the loads is cal-
culated for each intermediate state of a displacement increment, and finally the work
increment is given by integrating the power with respect to the control parameter. As
a matter of fact the work increment is given by surface integrals, which are calculated
by making use of those quantities defined in the reference configuration. In case of
shells the integrals are taken on the base surface or on the side surface.

Invariant and indicial notations are used throughout this paper.

In invariant notation vectors and tensors are denoted by bold lower case letters
and upper case letters, respectively. A dot denotes the scalar product, e.g. Q ·dA.
In case of indicial notations the coordinate systems we use are assumed to be curvi-

linear ones. Latin and Greek indices range over the integers 1,2,3 and 1,2. A subscript
preceded by a (comma)[semicolon] denotes (partial)[covariant] differentiation with re-
spect to the corresponding coordinate. δlk is the Kronecker delta while eklm and epqr

stand for the permutation symbols.

2. Configurations

2.1. Let us denote the stress and deformation-free reference configuration and the
present or instantaneous configuration by (B) and (B), respectively. Configuration
(B) is an equilibrium one for the actual load level.

In order to extend our investigations for shells, we introduce a base surface (A◦)
bounded by a closed curve (g◦) in the reference configuration (B).

Body forces are neglected, only distributed normal tractions exerted on instanta-
neous outer surfaces are considered (deformation dependent loads or follower loads).
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It is assumed that the kinematical boundary conditions are independent of defor-
mations.

Let us denote the various coordinate systems, a point, the position vector, the local
base vectors and the metric tensors in the three different configurations as follows:

— in the current configuration (B):

{xp} , P , r, gp, gq, gpq, grs,
— at the arbitrary point P of the reference configuration (B):{

xk
}
, P, r, gk, g

l, gkl, g
mn,

— on the base surface (A◦) of the shell in the reference configuration (B):

{x◦a} , P ◦, r◦, g◦a, g◦b, g◦ab, g◦cd.

REMARK 2.1. The curvilinear coordinate systems introduced are arbitrary except
the one defined for shells in the reference configuration (B).

2.2. For shells in the reference configuration (B) (see Figure 1) we have at the
point P ◦ of the base surface (A◦) for which x3 = 0 that:

g◦α =
∂r◦

∂x◦a
, g◦3 = g◦3 =

g◦1 × g◦2
|g◦1 × g◦2|

. (2.1)

If we regard an arbitrary point P
(
x3 6= 0

)
then

r = r◦ + g◦3x
3, (2.2)

gα = g◦α − b◦βα g◦βx3 =
(
δβα − b◦βα x3

)
g◦β = µβ

◦

α g
◦
β , g3 = g◦3 (2.3)

where b◦βα = − g◦3,α · g◦β is the tensor of curvature on the surface (A◦) and

µβ
◦

α = δβα − b◦βα x3, µβ
◦

3 = 0, µ3◦

3 = 1 (2.4)

where µb
◦

a are the coordinates of a shifter. The inverse shifter is denoted by µdc◦ .

REMARK 2.2. The coordinates xα and x◦α of the points P and P ◦ are identical
for shells xα = x◦α, however the corresponding coordinates x3 are different.

2.3. The permutation tensors taken at the point

P̄ are denoted by εpqr =
√
gepqr, εrst =

1√
g
erst,

(
g = det gpq

)
, (2.5)

P are denoted by εklm =
√
geklm, εlmn =

1
√
g
elmn, (g = det gkl) , (2.6)

P ◦ are denoted by ε◦abc =
√
g◦eabc, ε◦bcd =

1√
g◦
ebcd. (g◦ = det g◦ab) . (2.7)

2.4. In accordance with the notations introduced the following conventions are
applied. In case of invariant notations a barred letter, a single letter, or a letter with
a small circle as a superscript identifies the point from the triplet P , P or P ◦, at
which the quantity denoted by the letter is defined. In addition to this, when indicial
notations are used the same tensor or vector can be written in the local coordinate
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Figurre 1. Base vectors and urface element vectors of shells

system of different points, e.g., the surface element vector defined at point P can be
written as:

dA = dApg
p = dAkg

k = dAa◦g
◦a. (2.8)

The displacement vector of an arbitrary point can be defined at point P and also
at point P , and it can be given by the base vectors of point P ◦ as well:

u = upg
p = ukg

k = u =ua◦g
◦a. (2.9)

For our later considerations we shall distinguish the arbitrary coordinate system in
the reference configuration (B) from the one defined for shells in the same configura-
tion.

3. Surface element vectors

3.1. A geometrical representation. For shells Figure 1 shows the three surface
element vectors defined at points P , P and P ◦:

P : dA = dApg
p = drI × drII, dAp = εpqrdx

q
I dxrII, (3.1)

P : dA = dAkg
k = drI × drII, dAk = εklmdxlIdx

m
II , (3.2)

P ◦ : dA◦ = dA◦ag
◦a = dr◦I × dr◦II, dA◦a◦ = ε◦abcdx

◦b
I dx◦cII (3.3)

where drI, drI, dr◦I , . . . are line elements at points P , P and P ◦, respectively.

REMARK 3.1. The surface element vector dA◦ can be oriented arbitrarily in
comparison with the base surface (A◦).

Let us set ourselves a task to derive three relationships for an arbitrary body and
arbitrary shells between the following pairs of surface element vectors

dA and dA, dA and dA◦, dA and dA◦.

3.2. An arbitrary coordinate system in configuration (B). The mapping
between the configurations (B) and (B) is given either by the function of motion or
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by the displacement field

xp = xp(x1, x2, x3; t), J = det
∂xp

∂xk
6= 0, (3.4)

r = r+ u, u = u(x1, x2, x3; t). (3.5)

For the line element dr we can write the following relationships:

dr = gqdx
q =

∂r

∂xq
dxq =

∂(r+ u)

∂xl
∂xl

∂xq
dxq = (δls + ul;s)dx

sgl, (3.6)

where

dxs =
∂xs

∂xq
dxq

which follows from the inverse function of motion xs = xs(x1, x2, x3; t) .

Using equation (3.6) for the line elements drI and drII, the surface element vector
given by equation (3.1) can be written as:

dA = drI × drII = gkεklm(δls + ul;s)(δ
m
t + um;t)dx

s
I dxtII. (3.7)

Making use of the identity

εklm(δls + ul;s)(δ
m
t + um;t) =

1

2
eklme

hij(δli + ul;i)(δ
m
j + um;j)εhst (3.8)

the surface element vector can be expressed as

dA = gkQ h
k dAh, Q h

k =
1

2
eklme

hij(δli + ul;i)(δ
m
j + um;j) (3.9)

where dAh is the surface element at point P given by (3.2).

The surface element vector dA at the point P given by (3.9) can be related to the
surface element vector dA:

dA = dAqg
q = dAkg

k = Q · dA, Q = Q h
k g

kgh, (3.10)

dAk = Q h
k dAh. (3.11)

REMARK 3.2. Relationships (3.9)-(3.11) are always satisfied.

REMARK 3.3. Relationships (3.9) and (3.10) can be manipulated into a different
form by the use of the Nanson formula (see, e.g., Béda et al [3], Mason [4]):

dA = J

√
g

g

(
F−1

)T · dA,
where F−1 is the inverse of the deformation gradient and T denotes the transpose.

3.3. A coordinate system for shells in configuration (B). For shells one can
shift the surface element vector dA to point P ◦ by the aid of an inverse shifter µka◦

dAa◦ = µka◦dAk. (3.12)

In accordance with Remark 2.2. we shall assume at points P ◦ and P that

dx◦b = dxb. (3.13)
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and using (3.12), (3.2), we have

dAa◦ = µka◦εklmdxlIdx
m
II = ε◦abcµ

b◦

l µ
c◦

mdxlIdx
m
II . (3.14)

Introducing the notations

eabcµ
a◦

k µ
b◦

l µ
c◦

m = Deklm, D = det
∣∣∣µa◦l ∣∣∣ (3.15)

and utilizing equation (3.14) we can write:

dAk = µa
◦

k dAa◦ = ε◦abcµ
a◦

k µ
b◦

l µ
c◦

mdxlIdx
m
II = DdA◦k◦ , (3.16)

where with regard to (3.3) and (3.13)

dA◦k◦ = ε◦klmdxlIdx
m
II . (3.17)

As a consequence the surface element vector dA at point P can be given with the
aid of dA◦ at point P ◦. With a view to (3.8) and (3.16), it follows from (3.14) that:

dA = dAkg
k = dAa◦g

◦a = W ◦ · dA◦, W ◦ = W ◦ h◦
a◦ g◦ag◦h, (3.18)

dAa◦ = W ◦ h◦
a◦ dA◦h◦ , W ◦ h◦

a◦ =
1

2
eabce

hijµb
◦

i µ
c◦

j , (3.19)

dAk = DdA◦k◦ . (3.20)

REMARK 3.4. Relationships (3.18)-(3.20) are valid independently of the orienta-
tion of dA◦.

Derivation of the third relationship we planned to set up at the beginning of Section
3 can be carried out as follows. Writing equation (3.7) as

dA = g◦aε◦abcµ
b◦

l (δls + ul;s)µ
c◦

m(δmt + um;t)dx
s
I dxtII

and introducing the notations

u = ulgl = ub
◦
g◦b , µb

◦

l u
l
;s = ub

◦

;s (3.21)

ub
◦

;α = ub
◦

,α + Γb
◦

α◦n◦u
n◦ , ub

◦

;3 = ub
◦

,3 (3.22)

we obtain, with a view to (3.8), the following relation:

dA = dAa◦g
◦a = g◦aQ◦ h

◦

a◦ dA◦h◦ , Q◦ h
◦

a◦ =
1

2
eabce

hij(µb
◦

i + ub
◦

;i)(µ
c◦

j + uc
◦

;j). (3.23)

where dA◦h◦ can be calculated from (3.17).

Finally we have a formula which relates dA taken at point P to dA◦ taken at point
P ◦:

dA = dAqg
q = dAkg

k = dAa◦g
◦a = Q◦ · dA◦, Q◦ = Q◦ h

◦

a◦ g◦ag◦h, (3.24)

dAa◦ = Q◦ h
◦

a◦ dA◦h◦ . (3.25)

Then combining (3.11) and (3.20) we obtain:

dAk = Q h
k dAh = DQ h

k dA◦h◦ . (3.26)
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For shells we distinguish two special cases for the location of the surface element
dA◦. In the first case the surface element dA◦ is on the base surface (A◦) and in
accordance with equation (3.3) we get

dA◦ = dA◦3◦g
◦3 = ε◦3στdxσI dxτIIg

◦3 (3.27)

and

dA = dAa◦g
◦a, dAa◦ = Q◦ 3◦

a◦ dA◦3◦ =
1

2
eabce

3ηϑ(µb
◦

η + ub
◦

;η)(µc
◦

ϑ + uc
◦

;ϑ)dA◦3◦ .

(3.28)
In the second case the surface elements dA, dA and dA◦ are situated on the side

surface
(
A
∗)
, or (A∗). Let us denote the surface elements by dA

∗
, dA∗ and dA◦∗

and the corresponding points by P
∗
, P ∗ and P ◦∗, respectively. (A∗) is determined by

the normal vector of the base surface (A◦) on the boundary curve (g◦). Assume that
xϑ = xϑ (s◦) is the equation of the boundary curve (g◦) on the base surface (A◦).
Then we can write the unit tangent and the unit normal to the surface (A∗) as

t◦ =
dr◦

ds◦
=
∂r◦

∂xϑ
dxϑ

ds◦
= t◦ϑg◦ϑ, n◦ = t◦ × g◦3 = ε◦ηϑ3t

◦ϑg◦η = n◦ηg
◦η. (3.29)

The surface element at point P ◦ of the curve (g◦) on the side surface (A∗) is given
by

dA◦∗ = (t◦ds◦)×
(
g◦3dx3

)
= n◦ds◦dx3 = dA◦∗η◦g

◦η (3.30)

dA◦∗η◦ = n◦η◦ds◦dx3 = ε◦ηϑ3t
◦ϑds◦dx3. (3.31)

Similarly, at an arbitrary point P
∗
of the side surface

(
A
∗)
the surface element

can be obtained from (3.25) and (3.26) and can be written as

dA
∗
a◦ = Q◦∗η

◦

a◦ dA◦∗η◦ , dA
∗
k = D∗Q∗ηk dA◦∗η◦ . (3.32)

4. Deformation dependent tractions

4.1. An arbitrary coordinate system in configuration (B). We define the
traction on the surface part

(
At
)
of an arbitrary present configuration

(
B
)
as

p̃ = pp̃◦, x ∈
(
At
)
, (4.1)

where p is the load parameter and p̃◦ is a reference traction regarded as positive if
the traction points out of the surface.

The surface part
(
At
)
corresponds to (At) in configuration (B).

In accordance with (3.10) the force acting on the corresponding surface element is
given by the formulae:

dF = p̃dA = p̃Q · dA , (4.2)

dF q = p̃dAq, dF k = p̃dAk = p̃Q p
k dAp . (4.3)
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REMARK 4.1. Tractions can be exerted on two or more surface parts simultane-
ously.

4.2. A coordinate system for shells in configuration (B). The shell in
configuration (B) is bounded by a top surface (A+) and a bottom surface (A−),
which are given by the equations b+ = b+

(
x1, x2

)
, b− = b−

(
x1, x2

)
, and a side

surface (A∗). The values of b+ and b− are measured along the normal vector g◦3 of
the base surface (A◦): b+ ≥ x3 ≥ b−. The thickness of the shell is b = b+ − b−.

In the present configuration
(
B
)
the surfaces

(
A

+
)
,
(
A
−)

and
(
A
∗)
correspond

to the top surface (A+), bottom surface (A−) and side surface (A∗).

We define the tractions on the surface parts
(
A

+

t

)
and

(
A
∗
t

)
of an arbitrary present

configuration
(
B
)
of the shell by

p̃+ = p+p̃+
◦ , x ∈

(
A

+

t

)
, (4.4)

p̃∗ = p∗p̃∗◦, x ∈
(
A
∗
t

)
, (4.5)

where p+ and p∗ are load parameters, and p̃+
◦ and p̃

∗
◦ are reference tractions regarded

as positive, if the traction is directed out of the surface.

REMARK 4.2. Loads can be exerted on the bottom surface (A−) as well.

In accordance with equations (3.10), (3.11) and (3.22), (3.23), the forces acting on
the corresponding surface elements are given by the formulae:

dF
+

= p̃+dA
+

= p̃+Q+ · dA+ = p̃+Q◦+ · dA◦+, (4.6)

dF
+

q = p̃+dA
+

q , dF
+

k = p̃+dA
+

k = p̃+Q+ p
k dA+

k , dF
+

a◦ = p̃+dA
+

a◦ = p̃+Q◦+ h◦

a◦ dA◦h◦
(4.7)

dF
∗

= p̃∗dA
∗

= p̃∗Q∗ · dA∗, (4.8)

dF
∗
q = p̃∗dA

∗
q , dF

∗
k = p̃∗dA

∗
k = p̃∗Q∗ hk dA∗h. (4.9)

5. Calculation of the work increment

5.1. We apply the Lagrangian formulation in the reference configuration (B).

Let us introduce a control parameter τ and its increment ∆τ to describe a small
change of an equilibrium configuration

(
B
)
in the interval 0 ≤ τ ≤ ∆τ. The con-

trol parameter can be either a load parameter (e.g. p, p+, p∗) or a displacement
parameter.

We assume on the initiation made by Marcinowsky [5] that the variables in a small
neighborhood of the equilibrium configuration

(
B
)
can be given by truncated Taylor

expansions with respect to the control parameter (asymptotic numerical method).
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The control parameter is regarded as quasi-time. In our problem

uk (τ) = ukB + ∆ukB = ukB + u̇kBτ +
1

2
ükBτ

2 +
1

6

...
u kBτ

3 + · · · , (5.1)

p (τ) = pB + ∆pB = pB + ṗBτ +
1

2
p̈Bτ

2 +
1

6

...
pBτ

3 + · · · , (5.2)

Q p
k (τ) = Q h

Bk + ∆Q h
Bk = Q h

Bk + Q̇ h
Bk τ +

1

2
Q̈ h

Bk τ
2 +

1

6

...
Q

h
Bk τ

3 + · · · , (5.3)

where a dot (or dots) above a variable denotes differentiation with respect to a control
parameter, ∆τ belongs to the displacement increment ∆ukB, which determines the
configuration

(
B + ∆B

)
. The subscript B means that the quantity in question is

defined in the equilibrium configuration
(
B
)
.

In accordance with equation (3.9) we can write

Q p
Bk =

1

2
eklme

pqr(δlq + u l
B ;q)(δ

m
r + u m

B ;r), (5.4)

Q̇ p
Bk = eklme

pqr(δlq + u l
B ;q)u̇

m
B ;r, (5.5)

Q̈ p
Bk = eklme

pqr
[
(δlq + u l

B ;q)ü
m

B ;r + u̇ l
B ;qu̇

m
B ;r

]
, (5.6)

...
Q

p
Bk = eklme

pqr
[
(δlq + u l

B ;q)
...
u m

B ;r + 3ü l
B ;qu̇

m
B ;r

]
. (5.7)

5.2. An arbitrary coordinate system in configuration (B). Using formulae
(4.2), (4.3) and (5.1), (5.3) for the power of the traction (4.1) in the equilibrium
configuration

(
B
)
and in the interval 0 ≤ τ ≤ ∆τ we can writte

P (τ) = pB

∫
(At)

p̃◦u̇ (τ) · dA = P (τ) = pB

∫
(At)

p̃◦u̇ (τ) · dA =

= pB

∫
(At)

p̃◦u̇ (τ) ·Q (τ) · dA = pB

∫
(At)

p̃◦u̇
k (τ)Q p

k (τ) dAp =

= pB

∫
(At)

p̃◦

(
u̇kB + ükBτ +

1

2

...
u kBτ

2 + · · ·
)(

Q p
Bk + Q̇ p

Bk τ +
1

2
Q̈ p

Bk τ
2 + · · ·

)
dAp .

(5.8)

The work increment of the traction in interval 0 ≤ τ ≤ ∆τ can be determined by
integrating the power P (τ) with respect to τ :

∆W =

∫ ∆τ

τ=0

P (τ) dτ =

= pB

[∫
(At)

p̃◦u̇
k
BQ

p
Bk dAp

]
∆τ+

+pB

[∫
(At)

p̃◦

(
u̇kBQ̇

p
Bk + ükBQ

p
Bk

)
dAp

]
1

2
(∆τ)

2
+

+pB

[∫
(At)

p̃◦

(
u̇kBQ̈

p
Bk + 2ükBQ̇

p
Bk +

...
u kBQ

p
Bk

)
dAp

]
1

6
(∆τ)

3
+ · · · . (5.9)
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If one applies a finite element discretization ∆W can be given —in a view of (5.4)-
(5.7) and (5.9) —in terms of tB and its derivatives ṫB, ẗB,

...
t B, · · · taken with respect

to the displacement parameter t
¯
.

5.3. A coordinate system for shells in configuration (B). Geometrically
nonlinear shell theories differ from each other mainly in the applied kinematic as-
sumptions (see, e.g., Basar and Ding [6], Parisch [7], Sansour and Kollmann [8]). In
this paper the analysis of the geometrically nonlinear shells is out of scope, therefore
we adopt a displacement field without reasoning. Let the displacement be given at
an arbitrary point P of the configuration (B) as

u = ukgk = ua
◦
g◦a,

u = v◦ +w◦x3 + q◦
(
x3
)2

+ s◦
(
x3
)3
,

ua
◦

= v◦a
◦

+ w◦a
◦
x3 + q◦a

◦ (
x3
)2

+ s◦a
◦ (
x3
)3

(5.10)

where the functions v◦, w◦, q◦ and s◦ are defined on the base surface (A◦). With a
view to (5.1) and (5.3) we can write

ua
◦

(τ) = ua
◦

B + ∆ua
◦

B = ua
◦

B + u̇a
◦

B τ +
1

2
üa

◦

B τ2 +
1

6

...
u a

◦

B τ3 + · · · , (5.11)

Q◦ h
◦

a◦ (τ) = Q◦ h◦

Ba◦ + ∆Q◦ h◦

Ba◦ = Q◦ h◦

Ba◦ + Q̇◦ h◦

Ba◦ τ +
1

2
Q̈◦ h◦

Ba◦ τ2 +
1

6

...
Q
◦ h◦

Ba◦ τ3 + · · ·
(5.12)

and in accordance with (3.23) it follows

Q◦ h◦

Ba◦ =
1

2
eabce

hij(µ b◦

Bi + u b◦

B ;i)(µ
c◦

Bj + u c◦

B ;j), (5.13)

Q̇◦ h◦

Ba◦ = eabce
hij(µ b◦

Bi + u b◦

B ;i)u̇
c◦

B ;j , (5.14)

Q̈◦ h◦

Ba◦ = eabce
hij
[
(µ b◦

Bi + u b◦

B ;i)ü
c◦

B ;j + u̇ b◦

B ;iu̇
c◦

B ;j

]
, (5.15)

...
Q
◦ h◦

Ba◦ = eabce
hij
[
(µ b◦

Bi + u b◦

B ;i)
...
u c◦

B ;j + 3ü b◦

B ;iu̇
c◦

B ;j

]
, (5.16)

where, e.g.,

u̇a
◦

B = v̇◦a
◦

B + ẇ◦a
◦

B x3 + q̇◦a
◦

B

(
x3
)2

+ ṡ◦a
◦

B

(
x3
)3
. (5.17)

5.3.1. The loaded surfaces
(
A

+

t

)
,
(
A+
t

)
and

(
A◦+t

)
belong together. Making

use of equations (4.7) and (5.11), (5.12) for the power of the traction (4.4) acting

on the surface part
(
A

+

t

)
in the equilibrium configuration

(
B
)
and in the interval
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0 ≤ τ ≤ ∆τ we can write

P (τ) = p+
B

∫
(Ā+

t )
p̃+
◦ u̇

+ (τ) · dA = p+
B

∫
(A◦+

t )
p̃+
◦ u̇

+a◦ (τ)Q◦+h
◦

a◦ (τ) dA◦h◦ =

= p+
B

∫
(A◦+

t )
p̃+
◦

(
u̇+a◦

B + ü+a◦

B τ +
1

2

...
u+a◦

B τ2 + · · ·
)
·

·
(
Q◦+ h◦

Ba◦ + Q̇◦+ h◦

Ba◦ τ +
1

2
Q̈◦+ h◦

Ba◦ τ2 + · · ·
)

dA◦h◦ , (5.18)

where in accordance with (5.17), e.g.,

u̇+a◦

B = v̇◦a
◦

B + ẇ◦a
◦

B b+ + q̇◦a
◦

B

(
b+
)2

+ ṡ◦a
◦

B

(
b+
)3
, (5.19)

and with a view to (5.14), (2.4) and (5.10), (5.17) we have e.g.,

Q̇◦+ h◦

Ba◦ = eabce
hij
{[
δbi − b◦bi b+ + v◦b

◦

B ;i + w◦b
◦

B ;ib
+ + q◦b

◦

B ;i

(
b+
)2

+ s◦b
◦

B ;i

(
b+
)3] ·

·
[
v̇◦c

◦

B ;j + ẇ◦c
◦

B ;jb
+ + q̇◦c

◦

B ;j

(
b+
)2

+ ṡ◦c
◦

B ;j

(
b+
)3]}

. (5.20)

The work increment of the traction in the interval 0 ≤ τ ≤ ∆τ can be obtained by
integrating the power P (τ) with respect to τ :

∆W =

∫ ∆τ

τ=0

P (τ) dτ. (5.21)

This formula can also be detailed if we take equations (5.10) and (5.13)-(5.16) into
account.

5.3.2. In the special case when the side surface
(
A
∗)
is subjected to tractions we

can also set up the required relationships. Using formula (3.25) for the power of the

traction (4.5) exerted on the surface part
(
A
∗
t

)
in the equilibrium configuration

(
B
)

and in the interval 0 ≤ τ ≤ ∆τ we obtain

P (τ) = p∗B

∫
(Ā∗

t )
p̃∗◦u̇

∗ (τ) · dA∗
= p∗B

∫
(A∗

t )

p̃∗◦u̇
∗a◦ (τ)Q◦∗η

◦

a◦ (τ) dA◦∗η◦ .

In view of (3.31), the surface integral can be decomposed into two line integrals.
Integration is performed in two steps, first along the thickness and then on the part
(g◦t ) of the boundary curve (g◦) —this part belongs to (A∗t ):

P (τ) = p∗B

∫
(g◦t )

[∫
(b)

p̃∗◦u̇
∗a◦ (τ)Q◦∗h

◦

a◦ (τ) dx3

]
ε◦ηϑ3t

◦ϑds◦ . (5.22)
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The work increment ∆W is obtained by integrating the power P (τ) with respect
to τ in the interval 0 ≤ τ ≤ ∆τ :

∆W =

∫ ∆τ

τ=0

P (τ) dτ =

= p∗B

∫
(g◦t )

{∫
(b)

p̃∗◦

[∫ ∆τ

τ=0

u̇∗a
◦

(τ)Q◦∗h
◦

a◦ (τ) dτ

]
dx3

}
ε◦ηϑ3t

◦ϑds◦. (5.23)

In order to detail the integration across the thickness in (5.22) we should use
equations (5.11), (5.12), (5.13)-(5.16) and (5.10).

REMARK 5.1. It is worth emphasizing that calculation of the work increment done
by the tractions in an equilibrium configuration

(
B
)
during a kinematically admissible

displacement∆ukB is determined by the derivatives u̇
k
B, ü

k
B,
...
u kB,. . . in (5.1). Numerical

computations can be performed e.g., by the finite element method.

REMARK 5.2. When the computation of∆W is to be performed on an equilibrium
path by means of the incremental form of the principle of virtual work, we have to
determine u̇kB, ü

k
B,
...
u kB,. . . in advance as functions of ṗB, p̈B,

...
pB,. . . which define

∆pB. The computations can also be carried out by the finite element method.

6. Conclusions

The well-known Nanson formula gives a relationship between the surface elements dA
and dA taken at the points P and P of the reference configuration (B) and present
configuration

(
B
)
, respectively.

Making use of the Nanson formula a relationship has been found for shells between
the surface elements dA◦ and dA. The surface element dA◦ with an arbitrary orienta-
tion is associated with the point P ◦ of the base surface (A◦) of a shell in configuration
(B) while the surface element dA is associated with the point P of configuration

(
B
)
.

As a special case we have investigated what happens when dA◦ is loacated either on
the base surface (A◦) or on the side surface (A∗) .

The geometric variables in a small neighborhood of the equilibrium configuration(
B
)
can be given by truncated Taylor expansions with respect to a control parameter.

The control parameter is regarded as quasi-time. In this way the displacement field
and the surface element vectors can be regarded as functions of a control parameter
(control parameters) in a small neighborhood of the configuration

(
B
)
. We have

preferred the total Lagrangian formulation in which the variables are defined at the
points of the reference configuration (B) .

Using the relationship set up for the surface element vectors calculation of the
work increment ∆W done by the deformation dependent normal traction p̃ during a
displacement increment ∆u requires calculation of integrals taken on the surface of
configuration (B) . The traction p̃ is exerted on the surface part

(
At
)
of configuration(

B
)
, and the displacement increment ∆u is measured in a small neighborhood of

configuration
(
B
)
.
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In special cases, i.e., for shells the surface integrals are calculated either on the base
surface (A◦) or on the side surface (A∗) depending on which surface part is loaded.
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Abstract. The autofrettage of thick-walled cylinders with variable thickness is considered on
the basis of a variational formulation of the corresponding elastic-plastic contact problem.
The numerical solution is determined by the use of the finite element method. We have
chosen a material model which takes kinematic hardening and the ideal Baushinger effect
into account. The optimum geometric parameters for the bandage and the initial gap are
both determined in a way that a favorable distribution of residual stresses will develop and
the bandage is removed after unloading.
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1. Introduction

Thick-walled cylinders subjected to high impulsive pressure are wide-spread as ele-
ments of many important constructions. When the magnitude of pressure is com-
mensurable with the yield point of the material, a raise of strength can be reached
by the special methods of the autofrettage. In an outcome of the intended plastic
deformations caused by the interior pressure acting in the cylinders a favourable field
of residual stresses is developed.

In works [1-3] the process of forming residual stresses is investigated for a broad
class of materials with various types of deformation diagrams.

The magnitude of residual stresses depends on what sizes the areas of plastic de-
formations have and on the differences in character between the stress distributions
in plastic and elastic conditions.

The possibilities for the autofrettage are frequently limited by the strength of the
cylinders during plastic loading. Such a restriction is especially essential for cylinders
with various wall thicknesses because the creation of irregular technological pressure
for the autofrettage entails significant engineering diffi culties.

It is expedient to apply technological bandages for restriction of strains of cylinders
in areas with a smaller thickness of walls for raising the effectiveness of autofrettage



52 G. Lvov and S. Lysenko

Figure 1. Finite element model of a composite construction

in cylinders of a variable thickness. The scheme of such an autofrettage with uniform
pressure and one restraining bandage is shown in Figure 1.

2. Description of investigation of autofrettage

The theoretical analysis of a process of autofrettage is reduced to the solution of an
elastic-plastic problem which includes loading and unloading by taking the contact
interaction of the cylinder and technological bandage into consideration.

Let’s consider such a problem for two bodies of revolution assuming axisymmetric
deformations. During loading and unloading the stress increments dσ11, . . . , dσ13 of
the deformed solid bodies should satisfy the equilibrium equations

∂

∂x1
(dσ11) +

∂

∂x3
(dσ31) +

dσ11 − dσ22
x1

= 0 , (2.1a)

∂

∂x3
(dσ33) +

∂

∂x1
(dσ31) +

1

x1
dσ13 = 0 . (2.1b)

The surface S of each body can be presented as a union of two surfaces: S = SF ∪SK ,
where SF is the surface on which the increments of the exterior forces are given, and
SK is the contact region between the cylinder and the bandage.

The exterior surface of the cylinder is given by the parametrical equations x1 =
x1(α), x3 = x3(α), where α is the length of the meridian curve in initial condition.

The interior surface of the bandage, where contact is possible, is given by the
equation f(x1, x3) = 0. The kinematic condition on the displacement increments
dUC and dUB in the cylinder and bandage due to the interaction assumes the form
of an inequality:

f(x1, x3) + grad f · (UC + dUC)− grad f · (UB + dUB) 6 0 . (2.2)

Condition (2.2) is equality in the contact zone.
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The strain increments dε11, . . . , dε13 are related to the displacements u1, u3 via
linear equations:

dε11 =
∂

∂x1
(du1) , dε22 =

1

x1
(du1) , (2.3a)

dε33 =
∂

∂x3
(du3) , dε13 =

1

2

[
∂

∂x1
(du3) +

∂

∂x3
(du1)

]
. (2.3b)

The deformation trajectories in the autofrettage processes have a complicated charac-
ter. During unloading secondary plastic deformations may emerge with an opposite
sign. Under the conditions of contact interaction the loading process will not be
simple even for a monotone increase of the exterior load.

For an adequate description of the plastic deformations it is necessary to use phys-
ical relations reflecting the Baushinger effect and the directed character of hardening.
As the physical relations satisfying the conditions mentioned for one cycle of loading
and unloading we have selected the theory of plasticity with anisotropic hardening
[4,5]. The increment of plastic deformations dεpij is determined by the law

dεpij = dλ · ∂ϕ
∂σij

, (2.4)

in which dλ is a parameter to be determined,

ϕ =
3

2
(Sij − ρij) · (Sij − ρij)− σ2y = 0 (2.5)

is the surface of plasticity, Sij = σij − δijσ0 denotes the stress deviator (σ0 is the first
scalar invariant of the stress tensor), σy is the yield stress in the initial state. The
character of directed hardening is determined by the deviator ρij obtained from the
accumulated plastic deformations:

ρij =

∫
C (εpi ) dε

p
ij . (2.6)

The integral is calculated on the loading path. If C is constant the hardening is linear.
The multilinear law of hardening corresponds to a discrete combination of the values
Ck (ε

p), where Ck has a constant value for every separate section of approximation
for the deformation diagram.

The position of a surface of plasticity is determined by the history of plastic defor-
mations, but the hardening is transmitted which corresponds to the ideal Baushinger
effect.

The increment of plastic deformations can be given in terms of the stress increments

dεpij =
(Smn − ρmn) · dσmn

3 · C · (Skl − ρkl) · (Skl − ρkl)
(Sij − ρij) . (2.7)

If the conditions for active loading are not satisfied, the increment of plastic deforma-
tions is equal to zero.

For each stage of the autofrettage process determination of the displacement, stress
and strain increments requires the integration of a boundary value problem defined by
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the field equations (2.1), (2.3) and (2.7), which should be associated with appropriate
boundary conditions and the kinematic restriction for the contact interaction (2.2).

The problem is a nonlinear one since during the solution it is necessary to determine
the boundaries of the contact area and the character of loading for both cylinders.

For a numerical solution by the finite element method the problem is reduced
to an extremum problem for a functional defined on the kinematically admissible
displacement increments which should also satisfy inequality (2.2):

min J (dUC , dUB) =
1

2

∫∫∫
VC +VB

dσij dεij dV −
∫∫
SF

dUC dp dS. (2.8)

In this functional dεij is determined by the kinematic relations (2.3) and dσij is
obtained from the inverse of relation (2.7). Equivalence of the extremum problem
(2.8) to the contact problem follows from the theory of variational inequalities [6, 7].

3. Results

The numerical solution is determined by the finite element method for an axisym-
metric autofrettage of the cylinder. The bandage has a cylindrical form. The initial
geometric parameters of the construction have the following values (see Figure 1):

— the interior radius of cylinder R1= 0.06 m;
— the exterior small radius of cylinder R2 = 0.092 m;
— the exterior large radius of cylinder R3 = 0.138 m;
— the interior radius of bandage Rb1 = 0.093 m;
— the exterior radius of bandage Rb2 = 0.16 m;
— the length of cylinder L = 0.525 m; the length of bandage Lb = 0.247m;
— the initial gap between the surfaces of the cylinder and bandage δ= 0.001 m.
— the residual gap between the surfaces of the cylinder and bandage β=0.052
mm.

The finite element model of the composite construction is made of axisymmetric
solid elements with four nodal points which have two degrees of freedom (Ux1, Ux3).
The coordinate x3 corresponds to the rotational axis, and the coordinate x1 is mea-
sured in the radial direction. The second order shape functions are used. For mod-
elling the contact interaction between the surfaces of the cylinder and bandage, which
in the initial non-loaded condition are separated by a gap δ, the axisymmetric three-
nodal contact elements of the type ”a knot to a surface” were used. The contact
surface is modelled with the help of the pseudo-element technology. This surface can
interact during the elasto-plastic loading and unloading. In Figure 1 the finite element
model is shown. This includes 2058 axisymmetric elements (1538 for the cylinder and
480 for bandage), and also 38 contact elements between surfaces of the cylinder and
the bandage.

The technological autofrettage process is produced by the interior hydraulic pres-
sure exerted on the inner surface of the cylinder.
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For carrying out the computations we have chosen the following data for the mate-
rials of the cylinder and bandage: modulus of elasticity E = 0.21 · 106 MPa; Poisson’s
constant ν = 0, 29; yield stress σy = 1200MPa; the strength σB = 1500MPa. The de-
formation diagram σ (ε) is assumed to be multilinear. The four sections of the diagram
are given by point: σk = 1200, 1400, 1500, 1900 MPa; εk = 0, 0057, 0, 02, 0, 05, 0, 43.

The step by step loading of the cylindrical pipe by pressure autofrettage was applied
in an interactive procedure with adjusting the loading steps automatically to solve the
physically and structurally non-linear problem. In addition, we have assumed that
the load follows a linear law in each step. Such a solution procedure for non-linear
problems ensures fast convergence of the Newton-Raphson method (from 3 up to 10
iterations) and makes it possible to reflect the history of loading.

Figure 2. Distribution of radial stresses.

When one considers the contact autofrettage of the cylinders with the use of aux-
iliary bandages, one of the principal problems is to find the most appropriate values
for the initial gap and the geometric parameters of the bandage. If the value of the
initial gap meets the condition δ > 0.002 m and the cylinder has a smaller thickness
(h = 0.032 m) dangerous residual plastic deformations —up to 10% —can develop.
In this case the bandage does not keep the strains under a reasonable limit. If the
initial gap is too small (δ < 0.0007 m), the residual plastic deformations in the cylin-
der prevent the full unloading in the bandage, therefore a residual pressure develops
between the bandage and cylinder. Then the bandage cannot be removed from the
cylinder. Moreover, the magnitude of the initial gap should ensure the release of the
surfaces of the cylinder and bandage after unloading taking the residual gap β into
consideration. Increasing the exterior radius of the bandage up to Rb2 = 0.192 m,
it is possible to significantly redistribute the stresses acting on the contact surfaces
and to achieve a more uniform distribution of the residual radial displacements on
the same surfaces after unloading. However, numerical experiments have shown that
a big increase in the bandage thickness h > 0.1 m is ineffective. A repeated variation
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of the geometric parameters resulted in the values: δ = 0.001 m, Rb1 = 0.093 m,
Rb2 = 0.16 m, which seem to be the best for an appropriate autofrettage.

The computational results we are going to present have all been obtained by the
use of the above mentioned best parameters.

In the interactive regime of the computations of an autofrettage, seven loading con-
ditions of the construction from the initial pressure D = 500 MPa up to a maximum
value D = 950 Mpa are fixed.

Figure 3. Distribution of equivalent stresses under of $P=950$ MPa

Figure 4. Distribution of stresses in the 1-st radial cut



Contact problem of autofrettage thick cylinders 57

Figure 5. Distribution of stresses in the 2-nd radial cut

Figure 6. Distribution of residual stresses in the 1-st cut under P = 0.
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Under the initial load the zones of plastic deformation in the second part of the
cylinder are small and the surfaces of the cylinder and bandage do not contact yet.
Contact zones appear if the load reaches the value P = 650 MPa.

For P= 700 MPa, Figure 2 shows the zone of contact interaction. The final dis-
tribution of the Mises equivalent stresses when the construction is subjected to the
maximum load P= 950 MPa is represented in Figure 3. It is seen from those level
lines of stresses which reached the yield stress of the material σy = 1200 MPa that
the second part of the cylinder is in a plastic condition, while in the first one it is less
than 600 MPa. As the character of the stress distributions in the two parts they are
significantly different and for this reason it is expedient to investigate the regularities
of the stress distributions along the thickness in the cross-sections: 1) x3 = 0.15 m;
2) x3 = 0.4 m.

Figure 4 shows the distributions of the equivalent σeqv, circular σX2 and radial
σX1 stresses due to the maximum load P = 950 MPa for the first cross-section. The
same stresses are given in the second cross-section, which passes through the cylinder
and the bandage (Figure 5). If the circular stresses are discontinuous on the common
boundary of the bodies, the radial stresses are continuous.

Figure 7. Distribution of the residual stresses in the 2-nd cut under P= 0.

In the last step the load was completely removed. Figure 6 shows the distribution of
the residual stresses in the first cross-section. The circular stress reaches its maximum
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|σX2| = 824.5 MPa on the interior surface of the cylinder. As regards the second cross-
section (Figure 7), the stress distributions essentially differ and the circular stress on
the interior surface has a sizeable magnitude σX2 = - 642 MPa. The distribution of the
equivalent residual stresses is shown for the whole structure in Figure 8. The bandage
is completely unloaded and the residual radial displacements on the exterior contact
surface of the pipe in the second cross-section are less than the initial gap: UX1 =
0.938 mm. Then the actual gap after unloading is δ = 0.062 mm, which exceeds the
supposed value β, therefore the bandage can be removed from the cylinder.

Figure 8. Distribution of equivalent residual stresses.

4. Conclusions

The results of the study allow us to project of autofrettage processes for real ele-
ments of constructions which have a complex shape. On the basis of these results the
parameters can be calculated for loading and technology tools which do not admit
of failure of construction. The procedure we have presented allows us to determine
rational parameters for the contact autofrettage under which highly uniform fields of
residual stresses on the interior surface of the cylinder are achieved.
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Abstract. A system of elastic bodies is examined. It is assumed that the displacements
and deformations are small. Firstly, the minimum of maximum pressure and other me-
chanical values (torque, frictional power loss) are sought by controlling the distribution of
contact pressure. Secondly, the optimization problem for roller bearings in rolling state will
be discussed and the optimization problem for the wearing process will be formulated as
well. For the solution of the optimization problems special iterational algorithms have been
developed. In order to solve the contact problem we use both the total potential energy with
augmented Lagrangian technique and the modified complementary energy. The p-version
of the finite element method is applied for the first problem type, while in the second case
an iterational algorithm is developed which includes Kalker’s KOMBI program. Numerical
examples demonstrate the efficiency of the proposed iterational procedure.
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1. Introduction

The stress state of machine parts is strongly influenced by their geometrical shapes
and forms. The optimum design of elements of different bearings, machine tool
guides, bars, etc., needs special considerations to avoid singularities and to improve
the strength endurance. In optimization problems the design parameters are usu-
ally concerned with material parameters, shape, characteristic dimensions, supports,
loads, inner links, reinforcement and topology (see Mróz [1]). In engineering practice,
connections between machine elements are frequently modelled as unilateral contact
problems. Comparatively few studies can be found in the literature for contact op-
timization [2], [3]. The thorough mathematical investigation of the subject can be
found in [4]. The controlling technique of contact pressure distribution is employed
for the shape optimization problem of cylindrical bodies using h- and p-version of the
finite element method without friction in [5], [6] and with friction in [7]. Work [8]
gives a contribution to the solution for practical problems by controlling the contact
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pressure distribution when one of the bodies has rigid body translation and rotation.
The question of round off is examined in [9] for roller bearings without friction.

Contact pressure optimization is studied for the problem of an elastic punch and
a rigid target within the framework of linear elasticity in [10]-[13]. In many earlier
works [14]-[16] the maximum contact pressure was chosen to be the objective function,
but it was not differentiable. Articles [10], [11], [13] and [17] use the total potential
energy as a cost function and the integral of the gap function as the ISO-parametric
constraint.

Approximately constant contact pressure distribution has been achieved in [15],
[16] by appropriate shape optimization for axially symmetric bodies, assuming that
the change in radius has no effect on the stiffness and compliance matrices.

Discretization of the domain with p-version finite elements is advantageous [18],
since it results in fast convergence, and high order mapping assures accurate geometry
for shape optimization.

Five types of mechanical contact problems will be examined:

1. Minimization of the maximum of contact pressure.
2. Maximization of rigid body displacement.
3. Maximization of torque or the contact resultant force between the bodies.
4. Minimization of frictional power loss (wearing values) between machine ele-

ments.
5. Optimization of roller shape by controlling the contact pressure distribution.

In case 5 the effect of frictional stress, which arises during the rolling motion, is
taken into account. In cases 2, 3 and 5 the Mises equivalent stress is kept under a
prescribed limit in addition to the control of contact pressure.

In the optimization of roller shape, the influence matrix is derived from the solution
of the elastic half-space problem [19], and the mirror technique is also applied in this
program [9].

The p-version of the finite element method is used in the first four types of the
optimization problems.

2. Contact conditions

The contact of two elastic bodies (α = 1, 2) is examined here. It is assumed that the
displacements and deformation are small. The body volumes V α are bounded by
surfaces Sα, which can be separated into Sαp , Sαu – on which the surface traction is
p̃ and the displacement u0 is given – and into Sαc on which there could be unilateral
contact (see Figure 1). The Signorini type contact conditions are assumed in normal
direction nc, where nc = −n2 =̃n1.

The normal stress on the surface Sαc is σαN = nα · σα · nα, where σα is the stress
tensor. After deformation the gap in the direction nc is

d = u2
N − u1

N + h (2.1)
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Figure 1. The contact between two bodies

where uαN = uα · nc and h is the initial gap – see Figure 2 for further details.

Let
p = −σ1

N = −σ2
N (2.2)

be the contact pressure. It is clear that there is contact if the following conditions are
fulfilled

d = 0 , p ≥ 0 x ∈ Ωp , (2.3a)
and there is separation if

d ≥ 0 , p = 0 x ∈ Ω0 , (2.3b)

that is
p · d = 0 , x ∈ Sc = Ω = Ωp ∪ Ω0 . (2.3c)

To calculate the effects of friction, the slip between the contacting bodies is also to
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Figure 2. Contact and separation

be defined. The Coulomb dry friction model is employed henceforth. The relative
slip in tangential direction is formulated as

u̇τ = u̇1
τ − u̇2

τ , (2.4)
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where u̇ατ is the tangential velocity in the body α. The adhesion zone of the contact
region is characterized by the following conditions

‖pτ‖ ≤ µ p , u̇τ = 0 , (2.5a)

where
pτ = −σ1 · n1 − pnc = σ2 · nc − pnc ≡ p− pnc . (2.5b)

In the slip domain the traction in tangential direction is given as

pτ = µ p
u̇τ
‖u̇τ‖

, (2.5c)

where pτ is calculated for the lower body, namely the second body in our case.

The boundary value problem is solved by making use of variational principles [20]
by which we mean the modified complementary energy and potential energy with
augmented Lagrangian technique [8], [24].

3. Optimization problems

3.1. Control of the contact pressure. The expected aim is achieved by changing
the shape of the proposed zone of contact domain in the types of contact optimization
tasks considered. Some works can be found in the references where the shape of the
contacting bodies is changed on the surfaces which are out of the contact zone, such
as [21], [22] and [23].

In our optimization problems it is assumed that the bodies are in contact in the
whole sub-domain Ωc of the contact zone Sc = Ω, where Ωc is called the control
sub-domain. The contact surface is modified so that the following function holds true
for the contact pressure

p(x) = v(x) pmax , x ∈ Ωc , (3.1)

where the control function we have chosen must satisfy the condition 0 ≤ v(x) ≤ 1,
and

pmax = max p(x) , x = [s, t] , (3.2)
where s and t are surface co-ordinates in the region Ω. In the sub-domain Ωnc (Ω =
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Figure 3. V (s) function
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Ωc ∪ Ωnc), where the pressure is not controlled, the fulfillment of the following in-
equality is required

χ(x) = v(x)pmax − p(x) ≥ 0, x ∈ Ωnc. (3.3)

Let us define a function V (s) of class C1 in the sub-region Ωc (see Figure 3)

V ∗ = V ∗(s) = f2 + (f3 − f2)
s− L2

L3 − L2
(3.4)

V (s) = 0 , 0 ≤ s ≤ L1

V (s) = V ∗

{
3

[
s− L1

L2 − L1

]2

− 2

[
s− L1

L2 − L1

]3
}
, L1 ≤ s ≤ L2

V (s) = V ∗, L2 ≤ s ≤ L3

V (s) = V ∗

{
1− 3

[
s− L3

L4 − L3

]2

+ 2

[
s− L3

L4 − L3

]3
}
, L3 ≤ s ≤ L4

V (s) = 0 , L4 ≤ s ≤ L,
where parameters f2, f3, Lj , j = 1, . . . , 4 are fixed or some of these are calculated
in the optimization process. In this case dV

ds = 0 at s = L1, s = L4, and also if
f2 = f3 = 1 at points s = L2, s = L3.

For two dimensional contact problems v(s) = V (s) in Ω. For three- dimensional
problems it is assumed that the upper body has a translation and a rigid body rota-
tion, Ωc is a line s, and the rotation vector is perpendicular to this line. The control
function along the curve s has the following form

v(s) = V (s)
[
1 +B

( s
L

)n]
, (3.5)

and along direction t ṽ(t) = 1, that is

v(x) = v(s)ṽ(t). (3.6)

Value B is calculated from equilibrium equations for the first body, where 10 ≤ n ≤ 15
[8].

3.2. Contact optimization for axisymmetric bodies.

3.2.1. Solving the contact problems with iteration. Firstly, the arising equivalent stress
is not taken into account in most of the tasks investigated. The optimal shape is
determined besides the prescribed parameters (Li, i = 1, . . . , 4).

The solution of the problem is found with the iterational method, introduced in
[8]. This method is labelled as 1st type iteration.

Secondly, the Mises equivalent stress σeq must be under a prescribed ultimate
stress σU

σeq ≤ σU . (3.7)
When the optimization problem includes (3.7) as an additional condition, the solution
requires another iteration, labelled as 2nd type iteration. These problems are classified
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into two main groups. The first one is when a kinetic or dynamic quantity is maxi-
mized (for example the displacement of the upper punch or the contact force between
the bodies). The second one is when one of the control parameters (see Figure 3) is
minimized or maximized.

The 2nd type iteration is built up in the following way. The quantity searched for
is f . During the iteration the value of f is changed. The iteration variable is istep,
and the value of f is calculated by

f = f0 · istep , (3.8)

where f0 is chosen in advance. The optimization problem is solved by the 1st type
iteration with the fixed f . In each istep a new shape is determined for the upper
body.

The Mises equivalent stress σeq is calculated in the Gaussian integral points of
the finite elements and in the border points as well: (ξ = −1, ξ

1
, . . . , ξ

NG
, 1), (η =

−1, η
1
, . . . , η

NG
, 1), where ξ, η are the local normal co-ordinates, and NG is the

number of integration points along the direction ξ or η. When σeq > σU in any
control points, then f = f∗∗ and in the previous step f = f∗. The optimal fopt is
searched for in the interval f∗ < fopt < f∗∗ by the following linearization process:

fopt
(i)

= f∗ + (f∗∗
(i)

− f∗) ·
σU − σ∗

eq

σ∗∗(i)

eq − σ∗
eq

i = 1, 2, . . . (3.9)

where f∗∗
(1)

= f∗∗, σ∗∗(1)

eq = σ∗∗
eq , σ

∗
eq is the maximum value of the Mises equivalent

stress calculated by f∗ similarly to the value of σ∗∗
eq . The iterational process will run

until ∣∣∣σU − σ∗∗(i)

eq

∣∣∣
σU

≤ 0.015. (3.10)

3.2.2. Optimization problems examined. In the present examination axisymmetric
bodies (see Figure 4) are discretized by p-extension elements [18].

The following problems have been analyzed:

P1: The vertical displacement w0 is prescribed on the top surface of the punch.
Using the control function with given parameters Lj , (j = 1, . . . , 4), the shape
optimization is performed on the punch keeping its unloaded original length that
is fixed in axial direction. Introducing a new variable s = R − Rb, and ∆h for
the gap function, the optimization problem [8] is formulated as

min
{
pmax

∣∣∣ p ≥ 0, d = d(p,∆h) = 0 ,

χ = v(s) pmax − p(s) = 0, min ∆h = 0
}
.

(3.11)

The problem is solved by the 1st type iteration.

P2: This is the problem where the additional constraint (3.7) is to be satisfied during
the optimization process. So the value of displacement w0 on the top surface
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Figure 4. Punch problem of axially symmetric bodies

of the upper body must be maximized, thus the problem to be solved can be
described as follows

max
{
w0

∣∣∣ min
{
pmax

∣∣ p ≥ 0, d = d(p,∆h) = 0 ,

χ = 0, min ∆h = 0
}
, σeq ≤ σU

}
.

(3.12)

in which the inner optimization problem is calculated by the 1st type iteration,
while the 2nd type iteration is used for solving the outer task. In equation (3.9)
the quantity searched for is f = w0.

P3: Applying the given displacement w0 and the control function of problem P1,
shape optimization is performed on the punch resulting in a given value of com-
pressing force Fp [8].

min
{
pmax

∣∣∣ p ≥ 0, d = d(p,∆h) = 0, χ = 0, Fp = 2π

Rk∫
Rb

RpdR
}
. (3.13)

P4: When the constraint of the Mises equivalent stress is kept, the value of Fp cannot
be chosen at will, its maximum value will be presented as an additional unknown
variable. The problem to be solved is therefore the following

max
{
Fp

∣∣∣ min
{
pmax

∣∣ p ≥ 0, d = d(p,∆h) = 0, χ = 0
}
, σeq ≤ σU

}
. (3.14)

Figure 5 shows an example for this problem, with the following material prop-
erties: Young modulus: E = 2·105MPa, Poisson ratio: ν = 0.3 and geometrical
data Rb = 20mm, Rk = 120mm, R

(2)
k = 140mm, b = b(2) = 50mm. The pa-

rameters of the control function in (3.4) are L1 = 0mm, L2 = 4mm, L3 =
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96mm, L4 = 100mm. The prescribed displacement on the top surface of
the upper body is w0 = 0.1mm. Let the value of f0 in equation (3.8) be

Figure 5. Gap and stress distribution for Problem P4

f0 = F0 = 5000 kN fir which the contact force is Fp = F0 · istep in the 2nd type
iteration. In Figure 5 the upper left picture illustrates the gap during the it-
erations (k = istep). σeq < σU in the first two iterations (k = 1, 2), but for
k > 2 then σeq is significantly more than σU . In this example the number of
iterations in (3.9) is two. The result shows that the height of the upper part
must be extended, i.e., the initial gap between the bodies is a negative value in
the interval 20 ≤ R ≤ 110. The maximum of the compressing force Fp is also
calculated and is equal to = 10092 kN .

P5: The punch is loaded by a constant pressure p̃ on its top surface. The resultant
is F0 = π(R2

k −R2
b)p̃. The torque M

T
should be maximized

MT

µ
=

Rk∫
Rb

2πR2 dR , (3.15)

where µ is the coefficient of friction. It is evident that the maximum torque
is achieved when only the outer corner of the punch (R = Rk) is in contact,
and the minimum value is observed if any of the inner corners of the punch
(R=Rb) is in contact. In order to have a smooth stress distribution the shape of
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the punch is determined using a control function given in terms of the parameters
(L2−L1), L3 where the latter has a fixed value and L4 is also fixed. The control
of the discretization of contact pressure is calculated from the following equation:

χ = χ(s, p, L1) =v(s, L1, L2(L1), L3 andL4 are fixed) pmax

− p(s, L1) = v(s, L1) pmax − p(s, L1) = 0 ,
(3.16)

that is
p(s, L1) = v(s, L1) pmax . (3.17)

The equilibrium equation for the upper body is

F = F (L1, pmax is fixed) = F0 − 2π

Rk∫
Rb

Rv(R−Rb, L1) pmax dR = 0 . (3.18)

The value of L1 can be determined from equation (3.18) because the maximum
value of the contact pressure pmax is prescribed.

The optimization problem is formulated as follows

max
{MT

µ

∣∣∣ p = p(s, L1) ≥ 0, d = d(p,∆h) = 0 ,

χ = χ(s, p, L1) = 0, F = F (L1, pmax is fixed), min ∆h = 0
}
,

(3.19)

where parameters L1, ∆h, p are unknown [8].

P6: When the additional stress condition (3.7) is kept, the value of pmax cannot be
fixed in advance. The solution should be searched for by maximizing length L1,
and the problem to be solved is formulated as follows

max
L1

{MT

µ

∣∣∣ p = p(s, pmax(L1)) ≥ 0, d = d(p,∆h) = 0, χ = χ(s, p, L1) = 0 ,

F = F (pmax(L1)) = 0, min ∆h = 0, , σeq ≤ σU
}
.

(3.20)

During the optimization process the distance L1 is changed by ∆L1 = L3−L1

10 =
96−4

10 , where L3, L4 are the control parameters in the initial state, i.e. (istep =

1). The optimal length is Lopt1 , which is computed in the L∗
1 < Lopt1 < L∗∗

1 in-
terval using the iteration with linear approximation according to (3.9).

Figure 6 shows the results of a numerical example and Figure 7 shows the
shape of the punch during the iteration. The load of the upper body is p̃ =
100MPa. After the solution of the optimization problem the results are the
following, Lopt

1 = 19.42mm, L2 = Lopt
1 + 4, MT

µ = 377.68 · 106Nmm. Figure
6 shows the solution for the original construction, i.e., when there is no initial
gap between the contacting bodies. The number of iterations istep varies from
0 to 6. If (istep = 1), the control parameters are L1 = 0mm, L2 = 4mm, L3 =
96mm, L4 = 100mm.

Since the elements around the point with co-ordinates R = Rk, z = b(2) in
the lower body are not small, the solution cannot give as a high value for σeq in
istep = 0 as is expected. Theoretically this point shows singularity with respect
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Figure 6. Results of optimization problem P6 (Number of iterations
= istep + 1)

to the stress state. In our investigation the control of the contact pressure gives
the stress state without any singularity, so large elements are applicable.

Choosing different loads p̃ the results are shown in Table 1. It is observed
that the pressure p̃ is changing linearly however the torque is not increased in
that way. The 2nd type iteration is controlled by keeping the inequality (3.10).

p̃ [MPa] L1 [mm] MT

µ · 10−6 [Nmm] pmax [MPa] maxσeq [MPa]

40 48.932 169.646 62.968 249.98
60 33.454 238.869 77.468 252.69
80 24.569 307.771 95.210 248.12
100 19.418 377.677 114.480 249.35

Table 1. Results for problem P6 with different loads

P7: The relative angular velocity ω of the punch is given. The shape of the contact
surface is optimized in order to minimize the frictional power loss by applying the
control function with parameters L1 = 0mm, L2 is a fixed value and L4−L3 are
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Figure 7. Gaps during the optimization problem P6

given values. The power loss is written as

D =

Rk∫
Rb

2πRω µRdR = MT ω . (3.21)

The closer the location of the resultant of the contact pressure to radius Rb the
smaller the frictional power loss, so the optimization problem [8] is expressed as

min
{ D

µω

∣∣∣ p = p(s, L4) ≥ 0, d = d(p,∆h) = 0, F = F (L4, pmax is fixed) = 0 ,

χ = v(s, L1, L2 is fixed, L3(L4), L4) pmax − p(s, L4) = 0, min ∆h = 0
}
,

(3.22)

where parameters L4, ∆h and p are unknown if pmax is given.

P8: In this case the additional condition (3.7) is valid, and the length L4 is minimized
during the process of optimization.

min
L4

{ D

µω

∣∣∣ p = p(s, pmax(L4)) ≥ 0, d = d(p,∆h) = 0, χ = χ(s, p, L4) = 0 ,

F = F (pmax(L4)) = 0, min ∆h = 0, , σeq ≥ σU
}
.

(3.23)

The train of thought in this iteration is the same as for problem P6. The results
are shown in Figure 8. Stress distribution is illustrated in Figure 9. The applied
load is p̃ = 100MPa and the results are the following: optimized length is
L4 = 93, 90mm, L1 = L2 = 0mm, L3 = L4 − 4 and D

µω = 337.09 · 106Nmm.
During the calculations the initially uniform finite element mesh is modified

automatically by the program. To ensure the oscillation-proof results for stress
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Figure 8. Results of optimization problem P8

distribution intervals L3 ≤ s ≤ L4 and L4 ≤ s ≤ L are divided into small
elements. The contact zone is monitored from the right border point of the
second finite element starting at the outer radius of the upper body.

p̃ [MPa] L4 [mm] D
µω · 10−6 [Nmm] pmax [MPa] maxσeq [MPa]

40 78.15 116.839 63.29 249.18
60 86.81 190.064 79.34 247.47
80 91.27 263.595 97.06 247.64
100 93.90 337.091 115.45 250.46

Table 2. Results for problem P8 with different loads

For different loads p̃ the results are shown in Table 2. The initial control
parameters for optimization are L1 = L2 = 0mm, L3 = 96mm, L4 = 100mm.

P9: In the wearing process the wearing velocity has the following form

ẇ = c(µ p)a||u̇τ ||b, x ∈ Sc , (3.24)

where a, b, c are parameters resulting from experiment [25] and u̇τ stores the
relative velocity in the tangential direction. The rate of wear is calculated by
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Figure 9. Stress distribution of optimization problem P8

the following formula

Ẇ =

∫
Sc

ẇ dS . (3.25)

If ||u̇τ || = Rω and a = b = 1, then

Ẇ =
D

c
(3.26)

that is, the minimization problem for Ẇ is equivalent to formula (3.23). In
another case a strongly nonlinear optimization problem is obtained because the
objective function is nonlinear as well.

3.3. Optimal shape design of rollers. Rolling elements can be found in a number
of engineering equipment. Their long overall lifetime requires keeping stresses at a
low and smooth value.

A number of papers [9], [25]-[28] are devoted to the issue of roller rounding-off. In
these papers, except for the last one, the radius of rounding-off is given, which results
in a generally non-smooth contact pressure distribution.

In paper [8] the optimum shape of a roller bearing is determined by the control
function according to formulae (3.3)-(3.5), in which f2 = f3 = 1. The roller has a
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translation and rigid body rotation. In the optimization process the rolling state of
the roller has not been taken into account, that is, there is no friction.
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Figure 10. Roller load and geometrical properties

A roller is loaded by the force F0, which can be replaced by an equivalent force
couple system F0 and M0 on the axis x. The geometry and the load of a roller can be
found in Figure 10. The elastic half-space model is applied to produce the influence
function for the roller, taking the mirror technique [9] into account. Z = 0 on the
surface of the half-space and the rectangular contact region (Sct × Scs) is divided
into small rectangles (Dt ×Ds).

Elements of the influence matrix are computed by applying a unit normal load or
a unit tangential load in the direction X in the sub-region Dt ×Ds. The formulae
can be found in Kalker’s book [19]. In order to eliminate shearing stresses at the ends
of the roller, the mirror technique is taken into account.

The present work enhances the previous results in two ways.

1. Firstly, if the load is not applied along the center of the roller, that is Y0 <
Scs

2 ,
an algorithm should be applied, which is based on the following formula

M∗ = Y0

∫
Ω

p dS −
∫
Ω

Y p dS , (3.27)

which should be minimized to zero.
In this case there are two possibilities.
• The first is to search for the end of the control function, that is s = L4,

when f2 = f3 = 1 and the value of B is practically zero. The result
is that the contact pressure is carried by the 0 ≤ s ≤ L4 interval of the
roller.

• The second is to ensure contact along the roller’s full length. In this case
the problem is to search for the value f3 < 1, while f2 = 1.

2. Secondly, the tangential components of stress are taken into account while
optimizing the shape of the roller, when the roller is loaded in its center.
The pressure distribution is controlled by parameters Lj , j = 1, . . . , 4 during
optimization, using the control functions defined under (3.4).



Examination of contact optimization and wearing problems 75

To solve the rolling problem Kalker’s program [30] is used, which is written in
FORTRAN. The calculations use the KOMBI subroutine of Kalker’s program,
which gives a prescribed F0 load, and a prescribed displacement in direction
X. The theoretical background of the program can be found in work [19].

3.3.1. Examples for non-centrally loaded rollers. The radius of the roller is R0 =
60mm. The roller is subjected to loads of F0 = 5000N andM0 = 33000Nmm; Y0 =
13.2mm. The material properties are as follows: Young modulus: E = 1.97·105MPa,
Poisson ratio: µ = 0.28.

Figure 11. Optimized shape and pressure distribution in the 2nd solution

The proposed contact region is divided into 10 · 60 rectangular elements, L1 =
0mm, L2 = 4mm, L4 − L3 = 4mm. In this case n = 12 (see formula (3.5))

• First solution: The problem can be solved by making use of an algorithm pub-
lished in [8]. At the end of the calculationsM∗ = −77.7Nm, B = −0.999, L4 =
26.86mm and pmax = 369.1MPa.
• Second solution: For the first case the value of L4is determined by positive

pressure. However, for the the second case L4 is determined by the minimiza-
tion of the moment M∗. The algorithm developed gave the following results:
M∗ = −6.65Nm, B = −0.68 · 10−3, L4 = 26.44mm and pmax = 368.9MPa.
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Figure 12. Optimized shape and pressure distribution in the 3rd solution

Figure 11 shows the initial gap, the pressure distribution in the central lon-
gitudinal section of the roller, and the pressure over the whole domain before
and after optimization.
• Third solution: The value of moment M∗ is minimized by changing the pa-

rameter f3, while equation L4 = Scs is kept. Results of the calculation are
M∗ = 47.58Nm, B = 0.39 · 10−3 and pmax = 425MPa. Figure 12 shows the
initial gap and the stress-state for this optimization prioblem.

Comparing these results, it can be realized that the second solution is the
best according to the objective function (min pmax).

3.3.2. Optimization of centrally loaded rollers when rolling. The equilibrium equa-
tions for the roller are of the form

F = F0 −
∫
Ω

p dS = 0 , M = M0 −
∫
Ω

R× p dS = 0 , (3.28)

where p is the contact stress acting on the second body, R is the position vector,
F0, M0 are the resultant and moment resultant of the load exerted on the roller. The
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optimization problem can be written as follows

min
{
pmax

∣∣∣ p ≥ 0, d ≥ 0, p · d = 0, Coulomb frict. cond., x ∈ Ω ,

χ = 0, x ∈ Ωc, χ ≥ 0, x ∈ Ωnc, F = 0, M = 0
}
,

(3.29)

where friction conditions are taken into consideration in the rolling motion.

Minimization is solved by using an iteration process. The effect of tangential stress,
which is calculated in the rolling problem, is taken into account when determining
the displacement in the normal direction during the minimization of the maximum
pressure. Therefore the normal displacement from tangential stress pτ along the
direction X is

ũαN (x) = (−1)α
∫
Ω

H(α)NT (x, s) pτ (s) dS , α = 1, 2, (3.30)

where H(α)NT (x, s) is the Green-influence function in the αth body.

The normal displacement due to the pressure is as follows

uαN (x) = (−1)α
∫
Ω

H(α)NN (x, s) p(s) dS . (3.31)

The displacement difference along normal direction can be written as

u2
N − u1

N =

∫
Sc

(
H(1)NN (x, s) +H(2)NN (x, s)

)
p(s) dS + ũ

(2)
N − ũ

(1)
N − u

1
rigid =

(3.32)

=

2∑
α=1

∫
Sc

H(α)NN (x, s) p(s) dS +

2∑
α=1

∫
Sc

H(α)NT (x, s) pτ (s) dS − u1
rigid .

where u1
rigid is the normal displacement from the rigid body motion of the roller

(translation along z and rotation around X).

The radius of the roller is
R = R(t), (3.33)

which is used to determine the initial gap h(x) = h(x, t) = h(x,R(t)) between the
bodies. The optimization problem is solved by the iterational method. The following
sub-optimization problem is defined, in which the optimized shape is calculated with
the control of the contact pressure, where the effect of the tangential stress pτ on the
normal displacement is taken into account. The rolling problem is calculated with
the use of the optimized shape, then pτ is determined and is used to solve the sub-
optimization problem again. The optimization problem for calculating the change in
radius can be written in the following way

min
{
pmax

∣∣∣ p ≥ 0, d = d(p, pτ is fixed, R) ≥ 0, p · d = 0 ,

χ(p) ≥ 0, F = 0, M = 0
}
.

(3.34)
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In this task p, pmax and R are unknown variables. The discretized problem is
solved by using the iteration recommended in [9].

In the pressure control the change in radius will only be significant in the sub-
domain ΩE , which is associated with the end of the roller. In this domain the resultant
tangential stress is

T =

∫
ΩE

pτ dS . (3.35)

The iteration continues until the following error limit holds true

|T (irol) − T (irol−1)|
|T (irol)|

100 ≤ 0.05 . (3.36)

The iterational algorithm has the following structure

LOOP over rolling: irol=1,...,k convergence
if (irol .eq. 1) call pressure optimization loop
Solving the Rolling contact problem with Kalker’s program.
LOOP over pressure optimization: igap=1,..., convergence

Solving the optimization problem (3.34)
END LOOP
Convergence: when tolerance (3.36) holds true

END LOOP

3.3.3. Numerical example. The roller and an elastic half-space are observed. The
radius of the roller is R = 60mm. The roller is subjected to loads of F0 = 5 kN
and M0 = 87.5 kNmm. The proposed zone of the contact region is given by Sct =
1mm×Scs = 35mm, and it is divided into 18×30 rectangular elements, f2 = f3 = 1,
L1 = 0mm, L2 = 4mm, L4 − L3 = 4mm. The static and kinetic coefficient of
friction is µ0 = 0.2in this example. The displacement of the roller’s centerline along
the direction X is prescribed as ux = 0.005mm.

Figure 13 the pressure distribution can be seen with and without optimization.
The optimized gap is illustrated in section a.) of the Figure.

Figure 14 shows the contact stress, pressure (p), tangential stress (Tau ≡ pτ ) in
the direction X and the slip function in the contact region. The slip function (ŝ),
illustrated in Figure 14, is calculated by Kalker’s routines, which provide the function
with reference to the velocity of the roller’s center point, and ŝ has a value with no
dimension. The radius of the roller is R0, and the velocity of the roller’s center point
is V0, i.e. ω = V0

R0
.

4. Optimization of roller shape and wear

The rolling element and the base are in contact and there is a slip area between
them, since the surface of the contacting elements undergoes wear. The speed of wear
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Figure 13. Optimized gap, control function and pressure with and
without optimization

is defined by
ẇ = Cµp||u̇τ || = Cµp ŝ V0 = Cµp ŝR0 ω , (4.1)

where C is a material property and ŝ is the slip, when the rolling velocity is equal
to one.

Since the roller rotates while moving forward, the total wear is calculated by the
time integration of equation (4.1) by taking the rotational time (tω = 2π

ω ) into account.
During time t∗ the total wear which exerts an influence on changing the radius is

W =

t∗
tω∫

0

∫
Ω

CµpŝR0ω dΩ dτ =

t∗
tω∫

0

∫
Ω

C̃µ pŝ dΩ dτ , (4.2)

where C̃ = CR0 ω. During the rolling motion the roller is moving along direction
X. It is supposed that the wear is evaluated for a Y co-ordinate of the roller by the
integral of the µ p and ŝ quantities which can change along the direction X, that is

W =

t∗
tω∫

0

Scs∫
0

Sct∫
0

Cµp(s, t)ŝ(s, t) dt ds dτ . (4.3)
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Figure 14. Optimized pressure p, pτ and slip distribution in rolling state

The contact region is divided into small rectangles with size Ds × Dt. There are
KX, along the direction X, and KY, along the direction Y , pieces of rectangles. All
of the rectangles may have various contact stresses and relative speeds, which are
calculated in the middle of these small areas. These quantities are supposed to be
constant within the rectangles. In this way the formula (4.3) can be rewritten as

W =

t∗
tω∫

0

( KY∑
j=1

KX∑
i=1

Cµpij ŝijDsDt

)
dτ, (4.4)

where pij = p(si, tj), and ŝij = ŝ(si, tj).

During the time integration it is supposed that the pressure and slip vary linearly
between τn and τn+1 time, which define an interval n+1

n∆ = τn+1 − τn. Introducing
the parameter 0 ≤ Θ ≤ 1 the pressure is formulated as

pij = (1−Θ)pnij + Θ pn+1
ij , (4.5)
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where pnij , p
n+1
ij are pressure at time τn, τn+1. Similar equation can be written for

slip too. With the use of (4.5) the following formula can be written
τn+1∫
τn

pij ŝij dτ = n+1
n∆
[1

3

(
pnij ŝ

n
ij + pn+1

ij ŝn+1
ij

)
+

1

6

(
pnij ŝ

n+1
ij + pn+1

ij ŝnij
)]

≡ n+1
n∆ n+1

nBij

(4.6)

Figure 15. Change in the radius roller

The change in the radius of the roller is

n+1
n(∆Rj) =

KX∑
i=1

n+1
nBijĈDsDt , j = 1, . . . ,KY, (4.7)

where Ĉ = n+1
n∆ C̃, and it is calculated in section sj and n+1

n ∆ time-interval.

After wear the new radius of the roller can be written as follows
n+1Rj = nRj − n+1

n(∆Rj), j = 1, . . . ,KY. (4.8)

Figure 15 illustrates the results of a numerical calculation for the wearing process.
In sub-figures the symbols stand for the times steps. In a.) and b.) chars have the
following meanings; −: optimal shape, . .: 1st time step, −−: 2nd time step, + +:
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3rd time step, ◦ ◦: 4th time step, . . . : 5th time step. In of diagrams c.) and
d.) symbols have the meaning: −: optimal shape, . . . : 5th time step, −−: 6th time
step, + +: 7th time step, ◦ ◦: 8th time step, •−: 9th time step, the value of
parameter Ĉ is 0.025.

5. Conclusion

Contact optimizations using the control of contact pressure have been performed
for many problems. Three groups of contact optimization tasks have been examined.

• In the first group axially symmetric contact problems have been solved by p-
extension finite elements. Discretization of the domain with these elements
is advantageous, since it results in fast convergence, and high order mapping
assures accurate geometry for shape optimization.

The following contact optimization problems have been solved for axisym-
metric bodies:
1. Minimizing the maximum of contact pressure (Problems P1, P3)
2. Maximizing the rigid body displacement (Problem P2)
3. Maximizing the contact resultant force (Problem P4)
4. Maximizing the torque due to friction (Problems P5, P6)
5. Minimizing the frictional power loss (Problems P7, P8)
6. Minimizing the wearing velocities (Problem P9)

• In the second group of optimization problems an optimal shape design of the
roller has been carried out. A new control function and three algorithms are
proposed.

• In the third group of optimization problems the roller is loaded centrally and
the rolling state has been taken into account. A special iterational algorithm
has been developed for solving the rolling contact optimization problem. The
rolling problem has been solved with Kalker’s subroutines in order to calcu-
late the shearing stresses. The influence of friction is not significant and the
examples demonstrate the effectiveness of the proposed algorithms.

Finally, a numerical method is developed for solving the problem of wear.
The wearing process is analyzed for a moving roller with optimized shape.

Acknowledgement. We thank professor J. Kalker for the opportunity to utilize the source
code calculating the rolling problem. Financial support for this paper was provided by
Grants FKFP 0040/1999 and OTKA T025172.
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Abstract. The spatial motion of elastically supported wheels rolling on rough plane sur-
faces is an old and well-studied problem of classical mechanics. The recent development
of nonlinear vibrations theory, the appearance of bifurcation theory, and the description
of chaotic motions drew the attention again to this classical problem, reconsidering several
partial results we know. This study investigates the lowest degree-of-freedom mechanical
model of a shimmying wheel that still exhibits unstable stationary rolling and even chaos.
An explanation of the instability is given considering the energy flow in the system with or
without the presence of viscous damping.
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1. Introduction

Since the appearance of Newtonian mechanics, rolling wheels have always been one
of the most studied non-trivial problems of classical mechanics. This is due to the
practical importance of the problem in engineering, mainly in transportation. The
road accidents related to the sometimes unpredictable motion of trucks, articulated
buses, trailers, motorcycles still call the attention to the unresolved problems related
to the nonlinear dynamics of rolling.

The simplest mechanical models consider a rigid wheel rolling along a straight line
in a fixed vertical plane. The rigid wheel has a single contact point with the rigid
surface it rolls on, and their connection is described by the so-called Coulomb friction.
The distinction between the dynamics induced by the different cases of sticking and
sliding friction is now a well-understood task in basic dynamics courses. Vibrations
can occur neither in these systems nor in the corresponding mechanical models.

The lateral vibrations of rolling wheels can, however, be experienced during the
motion of simple structures like the towed wheels of shopping carts, wheelchairs,
trailers, or on the front wheels of bicycles and motorcycles. These vibrations are
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often called ‘shimmy’. The common meaning of the word shimmy is a dance back
in the early thirties of the last century. This shows that the phenomenon named by
the same word, shimmy, has been studied for several decades already. The earliest
scientific study the author could find is that of Schlippe et al. (1941). The mechanical
models of shimmy contain wheels that are towed via a shaft about which they can
rotate. This way, the wheels can choose the direction of their rolling and this direction
can change during the course of the motion. In these mechanical models the wheel is
not constrained to remain in a single prescribed vertical plane.

The subsequent chapters present the simplest mechanical model that describes
shimmy, then the construction of the Appell-Gibbs equations of motion, the results
of their linear and nonlinear analysis, and conclusions regarding the energy flow in
the system.

2. Mechanical model

The model presented in Figure 1 has the lowest number of degrees of freedom that
still describes the shimmy phenomenon. The model has four essential elements: the
vehicle of mass mv, the king pin supported by springs of overall stiffness s, the caster
of mass mc and of length l, and the wheel of mass mw and of radius R. The vehicle is
modelled as a rigid body running straight with a constant velocity v on the horizontal
plane (x, y). Clearly, the towed wheel can exhibit only the straight stationary running
if the king pin is rigidly supported.

In vehicle dynamics, this model is considered to be realistic for rigid wheels without
pneumatic tyres at low running speed v (see Plaut, 1996, O’Railley, 1999, Coleman et
al., 1999). In other cases, the elasticity of the wheel is usually more relevant than that
of the king pin. The tyre/ground contact can be modelled by means of the so-called
creep force (see Pacejka, 1988, Kalker, 1990, Böhm et al. (1989)). Although the creep
force is a stationary idea, it can still be used successfully in linear calculations: Scheidl
et al. (1985) can be mentioned here for tractor-semi-trailer systems, the analysis of
Sharp and Jones (1980) and Limebeer et al. (2001) for motorcycles, and that of
Fratile et al. (1995) for caravans.

Although, the model in Figure 1 has limited value in studying engineering problems
in practice, we still go ahead with its detailed analysis since it draws attention to some
important physical conclusions regarding the nonlinear vibrations of these systems.

There are several constraints in this system. The vehicle can move in the x direction
only, the king pin can move in the lateral direction y relative to the vehicle body, the
caster can rotate about the vertical axis by the angle ψ relative to the vehicle, and
the wheel can rotate about the horizontal axis η by the angle ϕ. These stationary
geometrical constraints leave four degrees of freedom for this chain of four rigid bodies
described by the four scalar state variables x, y, ψ and ϕ.

There are further constraints. The constant speed of towing can be modelled as a
non-stationary (simple, but still time dependent) geometrical constraint:

x− vt = 0 . (2.1)
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As a consequence, the system is rheonomic. There is also a stationary but kinematical
constraint, namely the rolling condition

vP =

(
vPx
vPy

)
=

(
v + lψ̇ sinψ −Rϕ̇ cosψ

ẏ − lψ̇ cosψ −Rϕ̇ sinψ

)
=

(
0
0

)
. (2.2)

As a consequence, the system is non-holonomic. The constraining equation (2.1)
decreases the number of degrees of freedom by one. The two scalar kinematical
constraints in (2.2) provide two scalar first order differential equations. These result
in an overall decrease in the degrees of freedom by another one. Thus, the system has
only two degrees of freedom left, the corresponding state space is four dimensional,
and the equations of motion can be arranged into a system of four first order ordinary
differential equations. Due to the simple form of the non-stationary constraint (2.1),
these equations are still autonomous.

In spite of the fact that the only active force has the usual time-independent poten-
tial function of a linear spring, this system is not conservative due to its non-holonomic
rheonomic nature.

3. Equations of motion

Because of the geometrical constraint (2.1), only three general coordinates are chosen:
y, ψ and ϕ. In order to construct the simplest form of the equations of motion, we
present the construction of the Appell-Gibbs equations (see Gantmacher, 1975). To
do so, so-called pseudo velocities have to be chosen. The number of these velocities is
equal to the difference between the number of the general coordinates and the number
of the kinematical constraints, that is, 3− 2 = 1. The simplest choice for this pseudo
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velocity is the angular velocity ω of the caster:

ψ̇ = ω . (3.1)

The kinematical constraints (2.2) and the pseudo velocity definition (3.1) can be
arranged into a system of linear algebraic equations:0 l sinψ −R cosψ

1 −l cosψ −R sinψ
0 1 0

 ẏψ̇
ϕ̇

 =

−v0
ω

 . (3.2)

The solution of these equations gives a unique description of the general velocities by
the pseudo velocity and the general coordinates themselves: ẏψ̇

ϕ̇

 =


v tanψ +

l

cosψ
ω

ω
v

R cosψ
+

l

R
ω tanψ

 . (3.3)

The general accelerations can also be expressed by the same general coordinates, the
pseudo velocity ω and the pseudo acceleration ω̇: ÿψ̈

ϕ̈

 =


v

cos2 ψ
ω +

l tanψ

cosψ
ω2 +

l

cosψ
ω̇

ω̇
v tanψ

R cosψ
ω +

l

R cos2 ψ
ω2 +

l

R
ω̇ tanψ

 . (3.4)

With the help of the above general accelerations, the so-called acceleration energy
S can be calculated. The formula of the total acceleration energy of the system
consists of the partial acceleration energies of the caster and the wheel, where the
corresponding accelerations of the centres of gravity are aB and aC , the angular
velocities are Ωc and Ωw, while the angular accelerations are Ω̇c and Ω̇w:

S =
1

2
mca

2
B +

1

2
Ω̇T
c JBΩ̇c + (Ω̇c ×Ωc)

T (JBΩc)+

+
1

2
mwa2C +

1

2
Ω̇T
wJCΩ̇w + (Ω̇w ×Ωw)T (JCΩw) + . . . . (3.5)

In this formula, the dots refer to terms that do not contain the pseudo acceleration
ω̇, the superscript T refers to transposed vectors, and JB,C are the corresponding
matrices of mass moments of inertia. In the calculations, only the simplified elements

JBz =
1

12
mcl

2 , JCη =
1

2
mwR

2 , JCz =
1

4
mwR

2

are used.

Using the formulae (3.3) and (3.4), the kinematical analysis of the structure gives
the accelerations, angular velocities and angular accelerations as functions of the
general coordinates, the pseudo velocity and the pseudo acceleration. Actually, only
the angle ψ of the caster will appear among the general coordinates, and the final
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formula of the acceleration energy assumes the form:

S(ω̇, ω, ψ) =

1

2
mcl

2

(
ω̇2
(

1

cos2 ψ
− 2

3

)
+ ω̇ω

v

l

(
2

cos3 ψ
− 1

cosψ

)
+ 2ω̇ω2

sinψ

cos3 ψ

)
+

+
1

2
mwl

2

(
ω̇2
(

3

2
tan2 ψ +

R2

4l2

)
+ 3ω̇ω

v

l

sin2 ψ

cos3 ψ
+ 3ω̇ω2

sinψ

cos3 ψ

)
+ . . . . (3.6)

This formula provides the left hand side of the Appell-Gibbs equation. In the right
hand side, the so-called pseudo force Π has to be calculated via the virtual power of
the single active force caused by the springs at the king pin A. If δ denotes virtual
quantities, this calculation gives

δP = FTAδvA =
(
0 −sy 0

)
δ

 0
−ẏ
vt

 = −syδẏ =

− syδ
(

l

cosψ
ω + v tanψ

)
= −sy l

cosψ
δω = Πδω , (3.7)

that is, the pseudo force depends only on the general coordinates y and ψ as follows:

Π(y, ψ) = −sl y

cosψ
. (3.8)

The four dimensional system of first order ordinary differential equations of the
two degree of freedom system consists of the single scalar Appell-Gibbs equation

∂S

∂ω̇
= Π , (3.9)

and the 3 scalar equations (3.3) of the general velocities:

ω̇ = −

v

l

( 1

cos2 ψ
− 1

2
+

3mw

2mc
tan2 ψ

)
ω +

s

mcl
y +

(
1 +

3mw

2mc

) sinψ

cos2 ψ
ω2(1

3
+ tan2 ψ

)
cosψ +

mw

4mc

(R2
l2

+ 6 tan2 ψ
)

cosψ

ẏ = v tanψ + l
ω

cosψ

ψ̇ = ω

ϕ̇ =
v + lω sinψ

R cosψ
.

(3.10)

Since the general coordinate ϕ appears neither in the acceleration energy S nor
in the pseudo force Π, this coordinate takes the role of a so-called cyclic coordinate,
and the corresponding last scalar equation of (3.10) can be separated from the first
three equations. Thus, the system can uniquely be described in the three dimensional
phase space of the pseudo velocity ω (i.e. the angular velocity of the caster), the
lateral displacement y of the king pin, and the angle ψ of the caster.
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4. Stability and nonlinear vibrations

The stationary running of the towed wheel is characterised by the following solution
of the equations of motion (3.10):

ω ≡ 0 , y ≡ 0 , ψ ≡ 0 , ϕ =
v

R
t+ ϕ0

If the first three equations of (3.10) are linearised about their trivial zero solution with
respect to the small perturbations x1, x2 and x3, a three dimensional linear ODE is
obtained in the form:

ẋ = Ax

with the coeffi cient matrix

A =

−
6 vl

4 + 3mw

mc

R2

l2

−
12 s

mcl

4 + 3mw

mc

R2

l2

0

l 0 v
1 0 0

 . (4.1)

The characteristic equation det(λI−A) = 0 can be transformed into the 3rd degree
polynomial equation(

4 + 3
mw

mc

R2

l2

)
λ3 + 6

v

l
λ2 + 12

s

mc
λ+ 12

s

mc

v

l
= 0 . (4.2)

The real parts of all the three characteristic roots λ1,2,3 are negative, and the station-
ary running of the towed wheel is asymptotically stable, if and only if the conditions of
the Routh-Hurwitz criterion are fulfilled. Since all the coeffi cients of (4.2) are positive,
the only condition to be satisfied is the positivity of the Hurwitz determinant:

det

(
6 vl 12 s

mc

v
l

4 + 3mw

mc

R2

l2 12 s
mc

)
> 0 ,

that is,
l

R
>

√
3

2

mw

mc
. (4.3)

The physical meaning of the result is clear: the longer the caster is, the more stable
the structure is.

However it is not obvious at this point, how the nonlinear vibrations develop when
the stationary running is unstable. Where does the system take the energy from to
increase its kinetic energy during its oscillations?

The nonlinear analysis of the system does not give an answer to this. As it was
shown in the paper of Stépán (1991), Hopf bifurcation occurs at the limit of stabil-
ity defined by the equality in (4.3). Physically, self-excited nonlinear vibrations are
expected there. However, a tedious algebraic calculation proves that the sense of the
Hopf bifurcation is subcritical. This means that an unstable periodic motion exists
around the stable stationary motion of the towed wheel, that is, even the domain of
attraction of stable running is finite. As a numerical simulation also confirms, there is
an attractor neither outside the unstable periodic oscillation, nor outside the unstable
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stationary motion of the rolling system – the rolling system looks globally unstable.
Although the change of the dynamics of the rolling wheel to the dynamics of a slid-
ing wheel at large vibration amplitudes explains the presence of an either periodic,
quasi-periodic or chaotic attractor outside the unstable rolling (see Stépán, 1999), the
question on the energy flow of the unstable rolling system is not answered this way.

5. Conclusions

The rheonomic non-holonomic system of the simplest shimmying wheel structure for
pure rolling shows instability. The increasing vibrations have to be excited by an
external force having an overall positive work. The only active force in the system
is the linear spring force. The pseudo force Π in the Appell-Gibbs equation is also
related to the presence of this spring force. It has a potential function, so it cannot
be the source of the energy input.

All the constraining forces that provide the kinematical constraint of rolling are
ideal in the sense that their virtual power, and their actual power is also zero, since
the velocity of their point of application P is prescribed to be zero. All the other
stationary geometrical constraining forces are ideal, and their power is also zero.

The non-stationary geometrical constraining force Fv that provides the constant
running speed v of the vehicle is also ideal since its virtual power is zero again:

δPv = FTv δv = Fv,x0 = 0 .

Thus, all the constraining forces are ideal, and neither of them appear in the most
dense Appell-Gibbs equations of motion. But the constraining force Fv that pulls the
vehicle has non-zero real power:

Pv = FTv v = Fv,xv 6= 0 .

This power may change in time, naturally. This non-stationary constraint is the
source of the external energy that can excite the system.

This explanation of the energy flow in case of unstable stationary running, that is,
in case of a shimmy, can be confirmed also experimentally. When a shopping cart is
towed, the force we apply alternates as the wheel oscillates. The increasing vibration
amplitudes make the cart increasingly diffi cult to pull. This shows clearly, that the
violent vibrations related to shimmy are supported by the constraining force that tries
to provide the constant running speed of the cart.

As it was already pointed out in the introduction, the above rheonomic non-
holonomic system is not conservative, in spite of the fact that its equations of motion
are autonomous, all the active forces have time-independent potential functions, and
all the constraints are ideal.

Acknowledgement. The author wishes to thank for the useful discussions with Professor
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by the Hungarian National Science Foundation under Grant No. OTKA T030762/99.
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Abstract. The size effects in reliability problems of porous materials and structures are
considered in this study. The proposed analysis relies on a modified Weibull distribution with
mean strength-volume relations obtained from experiments. The procedure is then applied
to finite plates with circular holes of increasing diameters. Because of the nonlinearity of the
stressed volume in the vicinity of the holes, the volume dependence of the strength becomes
pronounced. The probability of survival of such plates is calculated and indicates a strong
dependence on the stressed volume of the plate.
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1. Introduction

It is common knowledge that engineering materials are prone to size effects. Care-
fully prepared laboratory size specimens are usually stronger than full size structural
components. This occurrence is especially true for brittle and porous materials such
as ceramics and concrete. In previous studies, this phenomenon was treated on the
basis of the Weakest Link Theory and the Weibull distribution [1-2]. According to
the analysis, a component is assumed to be composed of a large number of elements
(characteristic volume) of random strength that are connected in a series combina-
tion. The random variation of the element strength is mainly characterized by the
number and geometry of initial flaws contained in the element. The failure of the
component is assumed to occur when any one of the elements fails. The reliability
of the component decreases, therefore, as the number of the elements (material vol-
ume) increases. Consequently, the reliability approaches unity as the volume of the
material is reduced to zero and approaches zero as the volume increases. While this
type of analysis gives reasonable results for intermediate size elements, it predicts an
unlimited increase in strength as the volume approaches zero [3-8].
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Recent researches have been focused on the development of mathematical models
to predict size effects in materials [9-14]. Both micro- and macro-mechanical models
have been proposed to relate material and geometrical parameters to size effects.
However, no unified relation applicable to a large class of materials has yet been
established. Instead, many empirical models have been used to extrapolate size effects
in laboratory specimens to size effects in practical components.

A hyperbolic function has been used to define the size effect phenomenon [9-11] in
ceramics and cementitious materials. Such a relationship assumes that the smallest
volume is strongest while for large volumes the strength diminishes to zero. Ob-
servations on porous materials, however, indicate that strength does not increase
monotonically for small volumes. As the volume approaches the size of the pores, its
strength becomes weaker. A maximum strength, on the other hand, is observed for
intermediate sizes, diminishing again to a nonzero value for structural components.
As a result, a hyperbolic function for size effect, where strength is monotonically
increasing with decreasing volume, is no longer applicable. To account for such ob-
servations, a modified size effect function is introduced and is used in the reliability
analysis of porous structures.

2. Size Effect Function

The mean strength of a given volume v, r̄(v), is expressed in terms of the characteristic
mean strength, r̄c, and the size effect function ξ(ρ) as

r̄(v) = r̄cξ(ρ) (2.1)

where ρ = v/vc is the volume ratio with vc the characteristic volume of the material.
Size effect is modelled as a combination of a classical hyperbolic relationship [11] and
a Rayleigh type function

ξ(ρ) = α∞ +
α1√

1 + β1ρ
+ α2 exp[−β2 (ln ρ− γ2)2] (2.2)

with α∞ the minimum value asymptotically approached for larger volumes, α1 and β1
the parameters for the classical hyperbolic size effect function, and α2, β2, and γ2 the
parameters for the Rayleigh type size effect function. These parameters characterize
the size effects of materials such that

lim
ρ→0

ξ (ρ) = α∞ + α1 =
r̄0
r̄c

(micro mean strength) (2.3)

lim
ρ→∞

ξ (ρ) = α∞ =
r̄∞
r̄c

(macro mean strength) (2.4)

lim
ρ→1

ξ (ρ) = α∞ +
α1√

1 + β1
+ α2e

−β2γ22 = 1 (characteristic strength) (2.5)

where r̄0, r̄∞, and r̄c are the micro-, macro-, and characteristic mean strengths of
materials, respectively.

For the purposes of illustration, the following coeffi cients α∞ = 0.3587, α1 =
0.5380, α2 = 0.2690, β1 = 0.2, β2 = 0.3, γ2 = 2 are used. Figure 1 shows the
variations of the size effect function ξ (ρ) and of the hyperbolic function.
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Figure 1. Size effect ξ (ρ) as a function of volume ratio ρ = v/vc.

The parameters in the above equations are obtained from experiments on specimens
of various sizes where mean strength and dispersion (standard deviation) are mea-
sured. To analyze the reliability of a component with a given size, its mean strength
is obtained from (2.2) and is then used in a two parameter Weibull distribution given
as

fR(r, ρ) =
η

λ

( r
λ

)η−1
exp

[
−
( r
λ

)η]
(2.6)

where the parameters η and λ are obtained as

1

Γ
[
1 + 1

η

]2
(

Γ

[
1 +

2

η

]
− Γ

[
1 +

1

η

]2)
− δ2 = 0 , (2.7)

λ(ρ) =
r̄cξ(ρ)

Γ
[
1 + 1

η

] (2.8)

where δ is the coeffi cient of variation and Γ[.] is the gamma function.

The corresponding reliability function for a given level of induced stress, σ, is
obtained as

L(σ, ρ) = exp
[
−
(σ
λ

)η]
(2.9)

As an illustration, a set of density functions, fR(r, ρ) is presented in Figure 2 for a
characteristic mean strength, r̄c = 30 MPa, a coeffi cient of variation, δ = 0.2 and
various volume ratios, ρ = v/vc. Figure 3 is a three dimensional plot of the density
function fR (r, ρ). Reliability functions are plotted in Figure 4.
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Figure 2. Probability densities fR (r, ρ) as functions of strength, r, for various
volume ratios, ρ.

Figure 3. Variations of probability densities fR (r, ρ) as functions of strength, r, and
volume ratio, ρ.
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Figure 4. Reliabilities, L (σ, ρ), as functions of applied stress, σ, for various volume
ratios, ρ.

It is seen that the reliability of a component is volume dependent, first increasing
and then decreasing with increasing volume. The reliabilities for a uniform plate
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subjected to far-field applied uniform stress σ0 along the x2-direction (Figure 5 as
a→ 0), are plotted in Figure 6 as functions of plate volume ratios ρ for various values
of applied stress.
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r
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Figure 5. Plate geometry.
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Figure 6. Reliabilities as functions of plate volume ratio, ρ, for various levels of
applied stress σ0.

3. Analysis of Plates with Circular Holes

Plates of unit thickness with various hole sizes, as shown in Figure 5, are analyzed.
As the hole diameter is varied, the stressed volume of material in the vicinity of the
hole also changes.

Stresses in terms of the stress functions, Φ (r, θ), in polar coordinates (r, θ) are
given by

σrr (r, θ) =
1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
, (3.1)

σθθ (r, θ) =
∂2Φ

∂r2
, (3.2)

σrθ (r, θ) = − ∂

∂r

(
1

r

∂Φ

∂θ

)
. (3.3)

The general solution for the stress function

Φ (r, θ) = φ0 + φ1e
iθ +

∞∑
n=1

φne
inθ (3.4)
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where

φ0(r) = a0 + b0 ln r + c0r
2 + d0r

2 ln r , (3.5)

φ1 (r) = a1r + b1r
−1 + c1r

3 + d1r ln r , (3.6)

φn (r) = anr
−n + bnr

2−n + cnr
n + dnr

2+n (3.7)

with integration constants an, bn, cn, and dn; n = 0, 1, 2, . . ., to be evaluated by
applying the proper boundary conditions.

For an infinite plate subjected to far-field uniaxial stress, σ0, in the x2-direction,
equations (3.1)-(3.3) are reduced to

σrr (r, θ) =
1

2
σ0

[(
1− a2

r2

)
−
(

1− 4
a2

r2
+ 3

a4

r4

)
cos 2θ

]
, (3.8)

σθθ (r, θ) =
1

2
σ0

[(
1 +

a2

r2

)
+

(
1 + 3

a4

r4

)
cos 2θ

]
, (3.9)

σrθ (r, θ) =
1

2
σ0

(
1 + 2

a2

r2
− 3

a4

r4

)
sin 2θ . (3.10)

The stress functions φn; n = 0, 1, 2, . . . , for a semi-infinite plate (Figure 5), also
loaded with far-field uniaxial stress σ0, in the x2-direction, satisfying the traction-free
boundary conditions at the hole surface of radius a, are given as

φ0(r) = a0 + b0

(
ln r − r2

2a2

)
, (3.11)

φ1 (r) = a1r + b1

(
a4 + r4

a4r

)
, (3.12)

φn (r) = an
(
r−n − (n+ 1) a−2nrn + na−2(n+1)rn+2

)
+

bn
(
r2−n − (n+ 1) a−2(n−1)rn + na−2nrn+2

)
.

(3.13)

It is noted that only two integration constants (an and bn) remain to be determined
by the traction-free boundary conditions on the free edges at x1 = ±b and the far-field
stress boundary conditions at x2 →∞.
Because of symmetry of loading and plate geometry, the stress function is reduced

to

Φ (r, θ) = φ0 +

∞∑
n=2,4,6,...

φn (r) einθ . (3.14)

Depending on the level of accuracy required, the stress function is truncated to a
finite number of N functions, φn; n = 0, 1, 2, . . . , N . This leads to a total number
of 2N + 1 constants (a0 is not required in the stress expressions) that need to be
evaluated. To accomplish this, the method of least squared boundary collocation is
used.
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The rectangular stress components, σ11, σ22, and σ12 are obtained as

σ11 (r, θ) =
σrr + σθθ

2
+
σrr − σθθ

2
cos 2θ − σrθ sin 2θ , (3.15)

σ22 (r, θ) =
σrr + σθθ

2
− σrr − σθθ

2
cos 2θ + σrθ sin 2θ , (3.16)

σ12 (r, θ) =
σrr − σθθ

2
sin 2θ + σrθ cos 2θ . (3.17)

The average normal stress in the net area (b− a) is calculated as

σavg =
1

b− a

∫ b

a

σrr(r, 0)dr . (3.18)

4. Probability Analysis of Plates with Holes

The stresses in semi-infinite plates with various widths (2b) and hole sizes (2a) have
been calculated using (3.11)-(3.17). The average stress has also been obtained from
(3.18). In order to examine the volume effects created by the presence of holes,
average stresses were calculated for applied stresses σ0 of 20 MPa and 25 MPa and
their reliabilities were computed from (2.9).

The results are plotted in Figs. 7 and 8 as functions of the plate volume ratio ρ for
several plate width to hole size ratios, b/a. The effective plate volume, ve, per unit
length along the x2-direction, corresponding to a finite hole size is greater than the
actual plate volume per unit length along the x2-direction of the plate. This effective
volume is given as

ve = κv (4.1)

where the non-dimensional factor κ is computed using the average stress

κ =
σavg
σ0

. (4.2)
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Figure 7. Reliabilities as functions of plate volume ratio, ρ, for various hole size
ratios, b/a, subjected to applied stress σ0 = 20 MPa
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Figure 8. Reliabilities as functions of plate volume ratio, ρ, for various hole size
ratios, b/a, subjected to applied stress σ0 = 25 MPa

Table 1 presents the conventional stress concentration factor, k = σmax/σ0 and the
effective volume ratio κ.

Table 1. Stress concentration factor, k, and effective volume factor, κ, for
various plate width to hole diameter ratios, b/a

b/a
2 3 4 5 6 ∞

k 4.141 3.444 3.224 3.133 3.082 3
κ 1.999 1.501 1.339 1.256 1.204 1

Because this effective volume, ve, is greater than the actual volume, v, the size
effect (larger size is weaker) is apparent. As the hole size ratio, b/a, increases, the
curves approach the reliability function of a solid plate.

5. Conclusions

Experimentally observed size effects have been modelled by a modified hyperbolic
function that indicates strength variations as a function of stressed volume. Applied
to the reliability of porous materials, these reliability functions also show the effects
of volume. The analysis of plates containing circular holes of various sizes indicates
that as the plate width to hole diameter ratio increases, i.e., as the hole becomes
smaller, the reliability of the plate increases. This is due to the fact that the critical
stressed volume around the hole is also smaller. Experiments are needed in order to
determine the coeffi cients of the size effect relationships.
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Péter BÉDA: A dynamic theory of material instability 5–13

Sung R. CHOI and John P. GYEKENYESI: Effect of load rate on ultimate
tensile strength of ceramic matrix composites at elevated tempera-
tures 15–26

Yura KABISH and Vasil LAVRENYUK: Investigation of the equations of
motion in terms of displacements, constructed on the basis of the
Lennard-Johns law, under the action of harmonic loading 27–35
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