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Abstract. A new technique for suppressing the Karmén vortex excitation of an elastically
supported circular cylinder placed in an otherwise uniform flow is presented in this paper. By
placing another cylinder downstream of it in a cruciform arrangement with a gap s between
the two cylinders, the oscillation of the upstream cylinder can be virtually eliminated in
the range of ﬁ < 0.4, where d; is the diameter of the upstream cylinder. Compared

with conventional techniques, this offers the following advantages: i) it is unnecessary to
change the shape of the oscillating body or remodel its supporting structure, and ii) the flow
approaching the upstream body is practically undisturbed.

Keywords: Karmén vortex excitation, longitudinal vortex, circular cylinder, cruciform
arrangement.

1. Introduction

When a cylindrical bluff body is exposed to a flow, vortices are shed from both
sides of the body into the wake. This vortex shedding gives rise to a periodic lift
force acting on the body. When the frequency of vortex shedding coincides with the
natural frequency of the body, large amplitude oscillation or resonance can occur,
Bearman [4]. This phenomenon is known as Kdrmdn vortex excitation. This type
of oscillation can be observed in many engineering practices, e.g., structures placed
in the flow of air or a liquid, or flow around the tubes of heat exchangers and other
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equipment. Due to its practical importance, much effort has been devoted to clarifying
the mechanism of vortex excitation. This is of primary importance if one wishes to
predict this phenomenon and to develop methods for suppressing or controlling the
exciting forces, Sarpkaya [7], Parkinson & Wawzonek [6], Blevins [5].

Application of available techniques for reducing the amplitude of oscillation is lim-
ited since they require modifications of the oscillating body or that of its supporting
structure. Hence there is a strong demand for a technique for controlling the Karman
vortex excitation without the need for changing the body or its supporting structure.

Inspired by the work of Tomita et al. [11,12] on the acoustic effect of a downstream
cylinder, the present authors have found that the Kérmén vortex excitation can be
suppressed by a cylinder set downstream in cruciform arrangement, Shirakashi et al.
[9], Bae et al. [1-3].

The specific aim of this work is to investigate the conditions needed to facilitate
this suppression effect and to clarify its mechanism from a fluid dynamical point of
view.

Notations
61, time mean pressure coefficient, (: D/ % pU 2)
Cpp  time mean base pressure coefficient
dy diameter of the upstream cylinder
do diameter of the downstream cylinder

fnz  natural frequency of the elastically supported (upstream) cylinder
fox  frequency of Kérman vortex shedding

f- frequency of cylinder vibration
k spring constant of the elastically supported (upstream) cylinder
l effective length of upstream cylinder (see Figure 1)
effective mass of upstream cylinder
P static pressure

Re Reynolds number (= Ud; /v)

S gap between the two cylinders (see Figure 1)

Sp linear spectrum of the fluctuating pressure

Spp  peak value in the linear spectrum of the fluctuating pressure
St Strouhal number

Su linear spectrum of the velocity fluctuation

Sup  peak value in the linear spectrum of the fluctuating velocity
U free stream velocity

U velocity in z direction (see Figure 1)

Zrms Troot-mean-square value of the displacement of the elastically supported
(upstream) cylinder in z direction

angle measured from upstream stagnation point (see Figures 5 and 6)
logarithmic damping factor

kinematic viscosity of air

density of air

™ X >0
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Subscripts

00 for a single cylinder

L left

r resonance

R right

rms root-mean-square value

s separation
Superscript

—  time mean value

2. Experimental apparatus and procedure

An outline of the experimental apparatus and coordinate system is shown in Figure
1. The wind tunnel is a blowdown type with a square nozzle measuring 350 mm x
350 mm. The maximum attainable velocity is 40 m/s and the turbulence intensity
is less than 0.4%. The measuring channel is 320 mm x 320 mm in cross section and
1000 mm in length. The upstream circular cylinder which is supported elastically
is set horizontally in the central plane of the test section, and it is allowed to move
almost purely in the vertical (z) direction. Another circular cylinder is set vertically
downstream of the horizontal cylinder with a gap s between them. The diameters
of the upstream and downstream cylinders are d; and ds, respectively. The aspect
ratio of the upstream cylinder [/d; is about 12, which corresponds to the spanwise
coherent length of a Kdarm&an vortex.

The upstream cylinder passes through slots on the side walls of the test section, and
is supported by two identical plate springs outside the side walls, Shirakashi et al. [8].
This setup allows a slight change of attack angle (rotation of the cylinder about its
axis) to be superimposed on the z displacement of the cylinder. However, its influence
on the oscillation of the circular cylinder is negligible since the length of the plate
springs is very large compared with the oscillation amplitude and hence its maximum
absolute value is very small. The end plates (shown in Figure 1) are installed in
order to avoid flow through the slots. Thus the cylinder displacement is assured to
be virtually purely translational in the vertical direction. The characteristics of the
oscillating systems used in this experimental study are summarized in Table 1, where
the effective mass m, the natural frequency f, ., and the logarithmic damping factor
0 are determined through a free damping oscillation in otherwise quiescent air.

The free stream velocity U was measured by a Pitot-static tube. Hot wire probes
were used to detect the x component of the fluctuating velocity signals. The displace-
ments at both ends of the upstream cylinder, z; and zgr, were measured by using
non-contacting sensors. Since zy, and zr were identical under almost all experimental
conditions, the motion of the cylinder was assumed to be purely translational. In
this paper, the average of z;, and zg is taken as the translational displacement of the
cylinder, and the oscillation amplitude was represented by its root-mean-square value

Zrms-



178 H. M. Bae, L. Baranyi, M. Koide, T. Takahashi and M. Shirakashi

Wind Plate spring
tunnel ; Measuring
i 4 _ (4459'\ point of z;
Side wall of
X Ji measuring
u x
—> = - —
s D
gd;

7 - a:ﬁ_ End plate

() Measuring
i point of zz

N —

o350
0320

Wind .
tunnel Elastically .
supported cylinder
gd;
20
6 @ Fixed cylinder

==

\_ Traverse apparatus

Gap sensor

S

N

50

35 Opening

Section A-A View from B
Figure 1. Outline of the apparatus with a coordinate system (unit in mm)

The pressure distribution on the surface of the upstream cylinder was measured
with both upstream and downstream cylinders fixed. The geometry of the supporting
system and that of the end plates were identical with the one used when the upstream
cylinder is allowed to oscillate. The difference of the pressure on the upstream cylinder
surface and the static pressure of the free stream was measured by using pressure taps
of 0.4 mm in diameter on the surface of a hollow upstream cylinder made of acrylic
resin and having a diameter of 26 mm. The hot wire probe was located downstream
of the cylinders in a place where the spectrum of the fluctuating velocity signal had
a sharp peak. The Kdarmédn vortex shedding frequency f,x was determined as the
frequency at which the spectra of the velocity and pressure, S, and S,, both have
peak values.
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Table 1. Characteristics of the oscillating systems

Oscillating system I | Oscillating system II

Upstream cylinder diameter: d; (mm) 26.0 26.0
Downstream cylinder diameter: do (mm) 26.0 18.0 26.0 32.0
Effective length: [ (mm) 304 304
Effective mass: m (kg) 0.0858 0.0924
Spring constant: k£ (N/m) 980 2100
Natural frequency: fy,, (Hz) 17 24
Logarithmic damping factor: § (—) 0.0119 0.0166

In order to visualize the flow pattern on the cylinder surface, the oil-film method
was used. A transparent vinyl film of 0.1 mm in thickness was rolled on the surface
of the upstream cylinder, and the surface of this film was coated with a mixture of oil
and matt-black paint. After having been exposed to the flow, the vinyl film roll was
removed, and passing light from below the film made the flow pattern visible.

3. Results and discussion

3.1. Effect of free stream velocity on the vibration of the upstream cylin-
der. Figure 2 shows the variation of the Kédrmén vortex shedding frequency f,x,
the amplitude z.,,s, and oscillation frequency of the cylinder f, versus free stream
flow velocity U. In Figure 2 quantities z,.m,s, f», and f,x are made dimensionless by
diameter d; and natural frequency f, ., respectively. The Karmén vortex excitation
for the single cylinder is clearly seen in Figure 2(a). However, when the downstream
cylinder is added, although the Kdrmén vortex excitation peak appears at the same
velocity, the excitation is substantially suppressed (see Figure 2(b)). It was found
that the oscillation frequency coincided with the natural frequency, regardless of flow
velocity U. In case of the single cylinder (Figure 2(a)), the amplitude z.,,,s has its
maximum in a very small velocity interval at around 2.5 m/s. It is concluded from
the results that this vibration is a typical resonance of a system with a small damp-
ing factor, i.e., Kdrmén vortex excitation. The resonance amplitude is denoted by
[Zrms),.. Narrowing the gap between cylinders reduces the Kdrmén vortex excitation
substantially; in Figure 2(b), where the dimensionless gap s/d; = 0.75, the amplitude
of vibration is reduced to one-fourth of that of the single cylinder.

3.2. Effect of the gap between cylinders on the amplitude of oscillation.
Figure 3 shows the relationship between the amplitude of the Kérmén vortex exci-
tation [2,ms), and the dimensionless gap s/d;. The vertical bars show the range in
oscillation amplitude. Results for downstream cylinders of different diameters are
compared in this figure. It was found that [2,,,s), is almost independent of the diam-
eter of the downstream cylinder for dimensionless gap values of s/d; > 2.

By bringing the downstream cylinder closer to the upstream one, the amplitude of
oscillation of the two bigger cylinders decreases for 0.4 < s/d; < 2, and it is suppressed
completely for s/d; < 0.4. The region of s/d; with this complete suppression becomes
wider with the increase of diameter ds. As seen in Figure 3, when the diameter of the
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Figure 2. Variation of the nondimensional amplitude and frequency of vibration and
the vortex shedding frequency with the freestream velocity (oscillating system I,
probe position: z/d; = 2.0; y/dy = 1.5; z/d; = 1.0; di = dy = 26 mm)
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Figure 3. Variation of the vibration amplitude with the gap between two cylinders
(oscillating system 1)

downstream cylinder is smaller than that of the upstream one, i.e. at ds/dy = 0.69,
the amplitude of oscillation also becomes nearly zero for small enough gap values. This
means that almost complete suppression of oscillation can be achieved for downstream
cylinders of smaller diameters as well, but the range of s/d; for complete suppression
becomes narrower.

3.3. Flow around the upstream cylinder. Flow around the upstream cylinder of
the fixed system (i.e. both cylinders are fixed) was investigated to find the mechanism
of the suppression of Kdrman vortex excitation by the downstream cylinder. Figure
4 shows the flow pattern on the surface of the upstream cylinder visualized by the
oil-film method for three different s/d; values. In Figure 4(a) which shows the case of
s/dy = 0, the separation lines (indicated by arrows) are distorted into highly curved
arcs for |y/di| < 1.0. The appearance of secondary flow in the wake behind the
cylinder makes the oil-film pattern rather complex in this region. The separation lines
outside of this region are almost straight lines parallel to the axis of the upstream
cylinder. From now on the former region will be referred to as the primary effect
region, and the latter as the secondary effect region. The length of the primary effect
region along the axis of the cylinder depends on the nondimensional gap s/d;; the
region of primary effect scarcely appears on the oil-film for s/d; > 1.0.

The photographs in Figure 4 can be used for the determination of the relationship
between the separation angle as (see Figure 5) and the dimensionless distance y/d; for
different s/d; values. These relationships are shown and compared with the results of
Tomita et al. [12]. The separation lines in the secondary effect region remain parallel
with the axis of the cylinder for y/d; > 4.0, but the separation angle «y is
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Figure 4. Flow visualisation on the surface of the upstream cylinder by the oil-film
method (fixed system d; = da = 26 mm; U = 8 m/s; Re = 14700; —: separation
line)

about 5 degrees smaller in this y/d; domain than the separation angle for the single
cylinder. The distribution of the time mean pressure coefficient C}, on the surface of
the upstream cylinder is shown in Figure 6 at cross sections, specified by various y/d;
values. The distribution of @, in the primary effect region of the cylinders in cruciform
arrangement is notably different from the distribution around a single cylinder. On
the other hand, the pressure distributions are almost the same for the secondary effect
region with two cylinders and for the single cylinder. However, the pressure on the
rear part of the upstream cylinder surface is a little higher than that on the single
cylinder, and the separation line is found to move a little upstream in the former
case. The effect of the downstream cylinder on the spectra of the fluctuating velocity
and pressure S, and S, in the secondary effect region y/d; > 4.0 is shown in Figure
7. The measuring position was chosen as the one where the fluctuation component
due to the Kérman vortices is most definitely observed. When the dimensionless gap
s/dy > 2.0, the spectra S, and S, have sharp peaks at the frequency of f = 24 Hz.
The Strouhal number for this frequency is St = 0.2, indicating that the sharp peaks
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Figure 5. Variation of the separation angle with the spanwise coordinate y for
different gap values (fixed system; (a) d1 = d2 = 20 mm; Re = 27000; (b)
dy = ds = 26 mm; Re = 14700)

caused by Kérman vortices. Although the decrease of the dimensionless gap s/d;
uces the magnitude of the height of spectral peaks S, and S, the frequency of

Karmén vortex shedding f,x remains unchanged. From the results above, the main
features of the two regions for cylinders in cruciform arrangement can be summarized
as follows:

1

. The primary effect region: The mean flow field is very different from that of
the single cylinder, and is strongly three-dimensional due to the influence of
the downstream cylinder. Karmén vortex shedding is totally suppressed in this
region.

. The secondary effect region: The main flow field is basically two-dimensional in
this region, and is nearly identical with that of the single cylinder. Nevertheless,
the pressure on the rear surface of the upstream cylinder increases a little due
to the effect of the downstream cylinder, and the separation lines move slightly
upstream. While the fluctuating components of the velocity and pressure signals
u and p induced by the shedding of Kdrmén vortices are reduced with a decreased
gap between cylinders, the vortex shedding frequency is unaffected.

3.4. Mechanism for the suppression of Kdarmdn vortex excitation. Consid-
ering the results given above, possible factors in the suppression of Karmén vortex

exc

1.

itation by setting a downstream cylinder in the flow can be stated as follows:

There is no Kéarman vortex shedding in the primary effect region, leading to the

reduction of the excitation force acting on the cylinder.

. The strength of circulation of vortices and the regularity of vortex shedding are
reduced in the secondary effect region.

3. The phase of the Kdrman vortices, cut into two by the downstream cylinder, can

differ on each side.
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Figure 6. Pressure distribution on the surface of the upstream cylinder (fixed
system; dy = dg = 26 mm; Re = 14700; (0): y/dy = 0.0; (V): y/d; = 1.0; (O):
y/di =2.0; (0): y/dr = 3.0; (): y/d1 = o0)
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Figure 7. Effect of the gap between the two cylinders on the spectra of the velocity
and pressure at the point defined by the following coordinates: z/d; = 2.0;
y/dy = 4.0; z/dy = 2.0; (fixed system; d; = d2 = 26 mm; Re = 5150; pressure tap
position: a = 80°; y/d; = 4.0)
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It is obvious that the reduction of the excitation force due to factor (1) is propor-
tional to the ratio of the length of the primary effect region Is; to the effective length
of the upstream cylinder. The phenomenon, however, cannot be attributed solely to
this cause, as it cannot explain why the amplitude of the upstream cylinder oscillation
drops to almost zero for s/d; < 0.4 as found experimentally.

Factor (3) is based on the hypothesis that the correlation of the Kdrmén vortices,
shed from the left and right parts of the horizontal upstream cylinder, becomes weaker
since the downstream cylinder breaks the continuity of the Karmén vortex. Although
this hypothesis may hold true for fixed upstream cylinders, such phase shift never
occurs in an oscillating system because the Karman vortex shedding synchronizes
with the oscillation of the cylinder resulting in zero phase shift. Moreover there is
some experimental evidence that even for fixed cylinders the pressure fluctuations due
to Kdrmdan vortex shedding in the secondary effect regions are in phase on each side
of the downstream cylinder. Hence factor (3) is excluded as a possible cause of the
suppression of vibration.

) /
1.0 | ° ° ° °
[} @)
° [ ]
@]
05 - .
[ J
[ ]
O
O SSp !/ [Spp) s
[ J
O .
W) ° © ® . [Zrms]r/ [Zrmx]rw
0.0 <@ ; ;
0.0 2.0 4.0 o

S/d]

Figure 8. Variation of vibration amplitude and the spectral peak of pressure with
the gap between the cylinders (fixed system; d; = dy = 26 mm; Re = 5150; pressure
tap position: a = 80°; y/d; = 4.0)

The role of factor (2) is confirmed by looking into the correlation between the
oscillation amplitude and the peak value of spectrum S, in the secondary region.
The relationship between s/d; and the peak value Sy, of the pressure fluctuation
spectrum is shown in Figure 8, and is compared with the Kdarmén vortex excitation
amplitude [Zp,s),..
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The variables are made nondimensional by the corresponding values belonging
to the single cylinder. The relationships between S,,/[Sy,]., and s/di, further
(Zrms),. / [#rms)yoo and s/dy are similar to each other. The fact that S, is closely
related to the fluctuating lift force acting on the cylinder at the frequency of f,x (see
Figure 8) suggests that factor (2) is one of the causes of the suppression of vibration.
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Figure 9. Longitudinal vortex excitation caused by the downstream cylinder

It should be noted that a large oscillation can be induced by the downstream
cylinder. As seen in Figure 9, a high oscillation peak appears at a velocity three
times higher than that of Kdrmén vortex excitation.

This oscillation is in resonance with the longitudinal vortices shed periodically near
the crossing of the two cylinders, Shirakashi et al. [10]. Our investigations on this
new excitation have shown that not only the velocity range of its occurrence, but
also the phenomenon itself is completely different from those of the Kdarmén vortex
excitation.

4. Conclusions

Karmén vortex excitation of an elastically supported circular cylinder placed in an
otherwise uniform crossflow can effectively be suppressed by setting another cylin-
der downstream to it in a cruciform arrangement. Measurements of pressure on the
upstream cylinder surface and velocity near the crossing, together with flow visualiza-
tion, offer the following explanation for the phenomenon of suppression. Although the
shedding frequency of Kdrman vortices is unaffected by the downstream cylinder, the
strength of circulation of a vortex is reduced and the periodicity of vortex shedding
is disturbed along the whole span of the upstream cylinder due to the presence of the
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downstream cylinder. In addition, there is no Kérmén vortex shedding in the region
near to the downstream cylinder.

The advantages of this technique are: i) it requires no modification in the shape of
the oscillating body or in its supporting structure, and ii) the flow upstream of the
oscillating body is virtually undisturbed.
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Abstract. The present paper refers to the torsion of cylindrical bars, the cross section of
which is a simple or multiply connected plane domain. Examples illustrate the application
of the Bai-Shield’s identity. A lower bound relation is presented for the greatest shearing
stress developed in the twisted cylindrical bar and an upper bound relation is proven for the
plastic limit torque. Three types of the upper bound formulae are derived for the torsional
rigidity of nonhomogeneous isotropic elastic bars.
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1. Introduction

Consider a bar bounded by a cylindrical surface (”side-surface”) and two planes (”end
cross sections”), normal to the side surface. For greater generality, it is assumed that
the bar under consideration may contain longitudinal cylindrical cavities so that the
cross-section of the bar may be multiply connected. Further assumptions are that
there are no body forces present, that the side surface of the bar is free from external
stresses and that given forces (satisfying the equilibrium conditions of the body as
whole) are shearing stresses applied to the end cross sections of the bar. We also
suppose that the bar is composed of a material which is homogeneous in the axial
direction.

A three-dimensional rectangular Cartesian coordinate system (z,y, z) will be used.
The axis Oz is directed parallel to the generators of the side surface and the plane
Ozy is chosen to coincide with the “lower” end of the bar. The “upper” end of the
bar will then have the coordinate z = L, where L is the length of the bar.

Following Bai and Shield [1], we suppose that 7., and 7, are the only nonzero
stresses in the whole bar. In this case the equilibrium conditions can be formulated
as [5-6, 9]:

OTpz | OTys
ox oy

TaozNa +TysNy =0 onc (1.2)

-0 inA , (1.1)

where A is the cross-section of the cylindrical bar, c is the boundary of A and n,,n,
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are the components of the outward unit normal to the curve c.
It follows from equations (|1.1]) and (1.2]) that [1-2, 5]

X = / TezdA =0 and Y = / Ty-dA =0, (1.3)
A A

that is, there are no transverse forces on the cross-section of the bar.

The only moment acting on a cross-section is a twisting moment 7" given by

T= [ (z7y, — yTaz)dA. (1.4)
/

Bai and Shield proved [1] that each of the rectangular components of shearing stress
provides one half of the twisting moment

/ x7y,dA = —/ YTodA = Z (1.5)
A A 2

Equation (|1.5) is valid both for simply connected cross-sections and and for multiply
connected ones. It is also independent of any material properties provided that the
material properties depend on the cross-sectional coordinates x,y only.

2. Lower bound for the shearing stress

Let 7 be the greatest shearing stress in cross-section A of a cylindrical bar subjected
to a twisting moment 7. We have

T=max\/72, + 72, , (r,y)€e A=AUc . (2.1)

Regrading equation (|1.5)) as a point of departure and using the Schwarz inequality we
can write that

/ 2dA/T dA>— and / 2dA T dA>T2 (2.2)
A combination of inequality
/A(T + 7. )dA< T7A (2.3)
with inequalities 1,2 results in the following lower bound

T < I, +1,
T~ \| 4, [,A’

(2.4)

where I, and I, are the second moments of the cross-section about the axes x and y,
respectively, and A is the area of the cross-section.
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3. Upper bound for the limit plastic torque

Let us assume that the material of the cylindrical body is elastic-perfectly plastic. In
the case of fully plastic torsion we have

2 +72 =712 inAUc, (3.1)

Tz yz

where 79 = 7o(x,y) is the yield stress in pure shear, which may depend on the cross-
sectional coordinates z,y. Let Ty be the plastic torque of the cross section [4,7]. The
constant Ay is defined by

AO:/ngA. (3.2)
A

Making use of equations (2.2)); 2 and the Huber-v. Mises-Hencky yield condition ({3.1])
we obtain the following upper bound

(3.3)

Remarks to relations (2.4 and (3.3

R1. Relation (2.4) is an equality for a thin-walled circular tube with constant
thickness.

R2. Relation (3.3) is also an equality for a homogeneous thin-walled circular tube
with constant thickness.

R3. It can be proved that relation (2.4)) leads to the best lower bound for 7, and
formula (3.3) gives the sharpest upper bound for 7, if the axes x,y are principal
centroidal axes of the cross-section [3].

4. Upper bound for the torsional rigidity

In this section it is assumed that the material of the twisted bar is inhomogeneous
isotropic elastic, the equilibrium state of the bar is the pure torsion according to
Saint-Venant’s theory [3], [5-6]. A consequence of the nonhomogenity is that the
shear modulus G may depend on z,y that is G = G(z,y).

Once again we regard equation (1.5 as our point of departure and use the Schwarz
inequality. We get

T; - (/A xTysz>2 - [/A (\T/%) (+vC) dAr S/AT""QZdA/GxQdA . (41a)
T;; (/AyTg;sz)Zz [/A(\T/é) (y } / dA/ Gy?dA . (4.1b)
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The strain energy stored in the unit length of the twisted bar [5-7], [9] is given by

T2, + 712
U:/A”TGysz . (4.2)

The torque-twist relation is of the form
T=R?9, (4.3)

where R is the torsional rigidity of the cross-section and ¢ is the rate of twist [5-6],
[9]-
We shall consider a unit length of the bar. In this case

1
W= To= = (4.4)

is the work done by the twisting moment T'. According to the Clapeyron theorem [9]
we can write

T2
U=_—. 4.5
3R (4.5)
Combination of equations ({.1alb) with formula (4.2)) gives
Jo +J
>y 4.
U= 8Jydy (46)
where
Jp = / Gy*dA  and  J, = / Gr2dA (4.7)
A A

are the G-weighted second moments of the cross-section about the centroidal axes x
and y, respectively. Inserting equations (4.lalb) into inequality (4.6) we obtain the
upper bound

4JJ
R < JITZ ) (4.8)
Let Jy be defined as
Jo=Jy+ J, = /G(ac2 +y?)dA. (4.9)
A
It is clear that
(Jo = Jy)? = (Jo + Jy)? — 4Jzdy >0 (4.10)
from which we get the lower bound
Jo > zjij (4.11)

Relations (4.8]) and (4.11]) show that
R<Jy. (4.12)
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The upper bound (4.12)) is weaker than the upper bound (4.8).
Combination of inequalities (4.1alb) with the lower bounds

72 75
2U > Z2dA d 2U > HZJA
U _/A e an U_/A e

and equation (4.5 yields the Grammer type upper bound
R < min{4J,, 4J,} (4.13)

for the torsional rigidity of nonhomogeneous cylindrical bars. This estimation is used
mainly for narrow rectangular cross-sections [3].

Remarks to relations (4.8)), (4.12) and (4.13):
R1. For a homogeneous bar, estimation (4.8]) was first derived by Nicolai [8].

R2. For a homogeneous bar the upper bound (4.12)) was deduced from the theory
of Saint-Venant by Diaz and Weinstein [2].

R3. It can be proved that inequality (4.12)) gives the best upper bound if the origin
of the cross-sectional coordinate system is chosen in such a way [3] that the equations

/mG(x, y)dA=0 and /yG(w,y)dA =0 (4.14)
A A
hold.

R4. Tt is proved in [3] that inequalities (4.8) and (4.13) lead to the best upper
bound if the origin and the direction of the axes of the cross-sectional coordinate
system z,y are chosen in such a way [3] that equations (4.14) and equation

/avyG(x,y)dA =0 (4.15)
A

are all satisfied.

R5. Relations (4.8) and (4.12)) are equalities if the cross-section is bounded by two
concentric circles on which

N and 2 +y*=add

and the shear modulus depends only on the radial coordinate r = y/(z? + y?). Here,
a1 and ay are the radii of the boundary circles.

5. Conclusions

Some applications of the Bai-Shield identity for the torsion of a nonhomogeneous
cylindrical bar have been presented. A lower bound is derived for the greatest shearing
stress developed in twisted cylindrical bars and an upper bound is set up for the plastic
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limit torque. Three different upper bounds are derived for the torsional rigidity of
nonhomogeneous isotropic elastic bars. It is assumed that the material properties of
the bar do not depend on the axial coordinate.

All derivations are based on the Bai-Shield identity and the strength of materials’
approach makes it possible to avoid the use of variational methods and the application
of the procedures known from higher analysis [3].

The formulas derived are also valid for cases when the bar is a composite one made
of different homogeneous materials. These bars are compound bars and reinforced
bars. Their discontinuities in the material properties do not affect the validity of the
bounding formulas presented here.
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Abstract. Based on an examination of the liquid-vapor equilibra and of the mass and energy
transfer processes in porous systems, a theory has been developed. The mathematical model
is developed for heat and mass transfer analysis of porous media in a convective dryer.
Using the model, the calculated transient temperature of the porous material in the dryer
agrees well with the experimental values measured. Variations in temperature and moisture
content distribution are solved using the finite difference method. The effects of operation
parameters, such as temperature and humidity in the dryer, initial moisture content of the
porous material, and heat and mass transfer coefficients are examined using this model. By
theoretically simulating the drying process, it is shown that during the falling rate period
the evaporation-condensation mechanism is the governing mechanism of drying.
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1. Introduction

Convective drying is usually encountered in many industrial fields (food industry,
building industry, textile industry etc.). Therefore, the study of this type of problem
becomes very important and for several decades now has attracted the attention of
several authors [1-11]. From among the several theories so far suggested for explain-
ing migration of moisture in porous media, three have won general recognition: the
diffusion theory, the capillary flow theory, and the evaporation-condensation theory.

It is still often assumed that with constant drying conditions, a constant drying
rate only occurs when the surface of the drying medium is completely wetted, but for
porous media, this is, in general, not true.

Numerous governing equations for heat and mass transfer have been derived by
many researchers. Transient state diffusion in hygroscopic textile fibers was first
analyzed by Henry [12], who obtained an approximate analytical solution. He showed
that moisture diffuses into the porous structure of the fabric and the solid phase of
the fabric is hygroscopic. Later, Nordon and David [13] improved Henry’s model, and
they were able to solve the nonlinear differential equation of moisture transfer using
the finite difference method. Farnworth [14] introduced a model to solve transient
heat and mass transfer in a multilayered clothing system.
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Energy consumption in a convective dryer can be reduced by optimizing the drying
process using mathematical analysis of temperature and moisture distribution in the
fabric. Thus, development of a suitable mathematical model to predict the accurate
performance of the dryer is important for energy conservation in the drying process.

Beard [15] suggested a simplified mathematical model to obtain the temperature
and moisture distribution of fabrics in convective dryers. He assumed that a fabric
consists of two layers, one dry layer and one wet layer. But his analysis did not
describe details of what was going on inside the fabric. Also, he used two experimental
constants to fit his data to the experimental results of measured temperature variation
inside the dryer.

In this study, the mathematical model developed by Nordon and David to determine
the transient temperature and moisture concentration distribution of a fabric in a
convective dryer have been modified. Also, distributions of temperature and moisture
concentration were calculated using the finite difference method. The advantages of
these modifications were the possibilities of analysis of the effects of many operating
parameters such as dryer air temperature, humidity, initial moisture content of fabric,
fabric characteristics. These have been examined using the model developed in this
study.

The discussion is restricted to convective drying of non-shrinking capillary-porous
media. Therefore the solid phase is geometrically fixed; the liquid is contained in
(assumed relatively large) interconnected interstices (called the pore space); all liquid
that leaves the porous medium has to be replaced by air; the vapor pressure above
a liquid meniscus in the porous medium is virtually equal to that above a free liquid
surface.

2. Notational conventions

C4 moisture content of air in leather pores, kg/m3
C. moisture content of external air, kg/m3
Cr moisture content in leather, kg/m3

C, specific heat, kj/kg K

D diffusion coefficient, m?/s

G mass flowrate, kg/m?s

he  heat transfer coefficient, W/m? K

hm,  mass transfer coefficient, m/s

K rate constant, 1/s

k thermal conductivity, W/mK

m  mass transfer rate, kg/m?s

P,  saturation pressure, kg/m?

P, Prandtl number

q convective heat transfer rate, W/m?

R gas constant, kj/kgK

S.  Schmidt number

T temperature, K

T.  external air temperature, K
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t time

ya relative humidity of air in pores of leather
yr  relative humidity of leather

porosity

latent heat of evaporation, kj/kg

p  density, kg/m3

> ™

3. Present drying model

The configuration is that of a flat porous slab constituted with a solid phase that
is inert and rigid, a liquid phase (pure water) and a gaseous phase which contains
both air and water vapor. The theoretical formulation of heat and mass transfer in
porous media is usually obtained by a change in scale. Under constant environmental
conditions the process of drying can be divided into a “constant rate” and one or two
“falling rate” periods. When the initial moisture content is high enough, a consid-
erable amount of moisture leaves the porous medium at a very high, approximately
constant rate, which is roughly equal to the rate of evaporation from a continuous
water surface under identical environmental conditions. During this initial period the
temperature of the system also remains constant and, as a rule, equal to the wet-bulb
temperature of the environment.

The mathematical model derived by Nordon is used with small modifications. The
modification is explained further in the “solution method”.

The resulting differential equations are derived as

0Cy OCr 0Cy

Do = o "o (3.1)
and 0?2 0 oC
T T .

e TR T (32)

The boundary conditions for convective heat transfer and mass transfer at the fabric
surface are

q=he(T. = T) (3.3)

and

m = hm(C’e — CA) . (34)
The deriving force determining the rate of mass transfer inside the fabric is the differ-
ence between the relative humidities of the air in the pores and the fabric. The rate of
moisture exchange is assumed to be proportional to the relative humidity difference
in this study. Thus, the rate equation for mass transfer is

1 0Cp

7,0(1—5)? =K (ya —yr) (3-5)

Also, the relative humidities of air and fabric are assumed to be

_ C4RT

YA P,
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and

Cp
p(l—2)’
The rate constant in equation is an unknown empirical constant and the effect of
this constant can be examined. The value of the rate constant was varied from K = 0.1
to K = 10. The resulting calculated fabric surface temperatures are compared in
Figure 1.

Yr = (37)

When the rate constant is small, the evaporation rate is so small that the moisture
content decreases very slowly. Initially, the surface temperature increases rapidly,
but later this declines. When K is greater than 1.0, however, the effect of the rate
constant on the surface temperature distribution is not significant. This indicates
that when the rate constant is greater than 1.0, the evaporation rate is high and the
drying process is mainly controlled by the moisture diffusion mechanism inside the
fabric. Thus we have assumed the rate constant to be 1.0 in the following calculations.

4. Solution method

Differential equations and are solved using the explicit-difference method,
deriving the finite difference equations and applying the boundary conditions for heat
and mass transfer at the fabric surface. It is assumed that heat was transferred from
the external hot air to the fabric surface by forced convection, and moisture was
transferred from the fabric to the external air. The heat transfer coefficient between
the external air and fabric surface is obtained by using a modification of the equation
reported by Treybal [16]:

he = 0.675G%-37 (4.1)

where G is the mass flow rate of the external air impinging on the fabric surface. The
mass transfer coefficient was calculated using the analogy between heat transfer and

mass transfer: 2/3
he (Pr
_ e (Fr 4.2
h7n pCp < SC ) ( )

The temperature and moisture content were calculated using this model. In these
calculations, the parameters used for the base condition are shown in Table 1.

Table 1 - Values of parameters for base condition

Parameter Unit Value
Dryer Temp. K 450
Heat Transfer Coeff. | W/m?K 70
Mass Transfer Coeff. | m?/s 0.08

Fabric Thickness mm 0.7
Porosity - 0.9
Initial Moisture %RH 50

Drying Air Moisture | kg/m3 0.02

The convective heat and mass transfer coeflicients at the surface are important para-
meters in drying processes; they are functions of the velocity and physical properties
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of the drying medium. The transient fabric temperatures were calculated assum-
ing various values of the rate constant K. The resulting calculated fabric surface
temperatures are compared in Figure 1.

Temperature

(K]

Figure 1.

Temperature

(K]

Figure 2. Temperature variation of surface and center
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First, the transient temperatures of the surface and center of the fabric using the data
shown in Table 1 were calculated. From Figure 2, we see that the surface and center
temperatures increase rapidly in the initial stage up to the saturation temperature,
at which point the moisture in the fabric starts to evaporate. From that point, the
difference between the surface temperature and the center temperature increases due
to the different moisture contents of the surface and the center. In this stage, the
fabric starts to dry from the surface, and the moisture in the interior is transferred
to the fabric surface. Then the moisture content decreases during the drying of the
fabric. Thereafter, the surface and center temperatures converge to reach the external

air temperature.
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The moisture variations of the surface and the center of the fabric were also calcu-
lated and are shown in Figure 3.

o401+,
" +
0.30 . +
Relafive humidity . . + Surface
0.20 ** + + Center
* +
*
0.10 * +
* +
MR gt 4.
0 10 20 30 40 &0 EO
Time(s)

Figure 3. Moisture content of surface and center
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Figure 4. Effect of initial moisture content of fabric

Initially, the surface moisture content decreases rapidly, but later this rate declines
because moisture is transferred to the external air from the fabric surface. The cen-
ter moisture content remains constant for a short time, and then decreases rapidly,
because the moisture content difference between the surface and the interior of the
fabric becomes large. After drying out, both center and surface moisture contents
converge to reach the external air moisture content.

The mathematical model is used to predict the effects of many parameters on
the temperature variation of the fabric. These parameters include the operation
conditions of the dryer, such as the initial moisture content of the fabric, heat and
mass transfer coefficients, drying air moisture content, and dryer air temperature.
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Figure 4 shows the calculated results of the effect of the fabric initial moisture
content. When the initial moisture content is high, the temperature rise is relatively
small and drying takes a long time. This may be because the higher moisture content
needs much more heat for evaporation from the fabric. Also, the saturation tempera-
ture for higher moisture content is lower, and thus the temperature rise in the initial
stage is comparatively small.
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Figure 5. Effect of heat and mass transfer coefficients
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Figure 6. Effect of drying air moisture content

The fabric temperature was calculated to investigate the effects of heat and mass
transfer coefficients in the calculation. An analogy was assumed between heat and
mass transfer, and so both heat and mass transfer coefficients were determined using
this assumption. The calculated results are compared in Figure 5. When the heat
and mass transfer coefficients are high, the fabric temperature rise is great and the
time required for drying is relatively short.
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The effect of drying air moisture content, and the calculated results of the model
are shown in Figure 6. When the moisture content is high, the initial temperature rise
of the fabric also becomes high. This may be because the saturation temperature in
the initial stage largely depends on the drying air moisture content. After the initial
temperature rise, however, the temperature increase is relatively small, and thus the
time required for complete drying is comparatively long.

500 « x X K * g
*
450 « LT
+
* +
* +
Temperature 400 * +
* +
(Kj * +
* + .
3/0 , * + + Airtemp = 450K
K. e * Ajr temp = BO0K

300

0 10 20 o 40 &0 BO
Time(s)
Figure 7. Effect of dryer air temperature

The effect of dryer air temperature was also investigated and the calculation results
are shown in Figure 7. When the dryer air temperature is high, the temperature rise
of the fabric is great.

When a very wet porous material is dried by a convective medium, three drying
rate periods are often observed, the constant rate period, the first falling rate period
and the second falling rate period. In the constant rate period and the first falling rate
period, the material remains wet, and only the model of the wet region is used. Since
evaporation takes place almost entirely at the surface, the drying rate is controlled
by the convective heat and mass transfer. If the temperature gradient within the
material is negligible, the surface temperature is almost constant and its value is very
close to wet bulb temperature of the air flow.

5. Conclusions

The aim of this study is to describe heat and mass transfer in drying by forced convec-
tion of porous media.The mathematical model developed in this study is very compre-
hensive and can be used to predict transient variations in temperature and moisture
content distribution of fabrics in the dyer with reasonable accuracy. Simplistic as-
sumptions have been avoided, especially insofar as the effect of gaseous pressure is
concerned. The effect of temperature and humidity of the dryer, the initial moisture
content of the fabric and the heat and mass transfer coefficients can be predicted for
fabrics using the model. With the model predictions, energy consumption may be
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reduced by optimizing the drying conditions of the dryer.

On the other hand, for a fully wetted surface, the areas for heat and mass transfer
temperature are close to the wet bulb temperature; for a partly wetted surface, the
effective area for mass transfer decreases with the surface moisture content.

It was noted that the intercellular spaces, like the voids in porous materials, are
interconnected and filled with air and a certain amount of free water. The cells
themselves also contain water, which is also defined here as bound water.

Finally, when a porous material is exposed to a convective surface condition, three
main mechanisms of internal moisture transfer are assumed to prevail: capillary flow
of free water, movement of bound water and vapor transfer. If the initial moisture
content of the porous material is high enough, the surface is covered with a continuous
layer of free water and evaporation takes place mainly at the surface.
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1. Introduction

1.1. Components of tensors at a point of space can be transformed from one co-
ordinate system into another by making use of the general transformation rules of
tensors. If the coordinate systems move with respect to each other, one speaks about
time dependent transformations.

If the motion of the coordinate systems relative to each other is arbitrary (one of the
coordinate systems is deformed with respect to the other) then the transformation is
also referred to as arbitrary, otherwise, i.e., for a rigid body motion as relative motion
of the coordinate system, the transformation is an orthogonal one and in both cases
time dependent.

From this point of view those tensors (including some time rate of tensors) which
can be defined independently of the choice of coordinate systems moving arbitrarily
with respect to each other, i.e., which are invariant under any arbitrary and time de-
pendent transformations, will be referred to as physically (or materially) objective, or,
for the sake of brevity, objective tensors or objective rates. (We remark that in the lit-
erature criteria of physical objectivity are valid mostly for orthogonal transformation
only.)

Fulfillment of physical objectivity is a necessary (but not sufficient) condition for
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tensors (and time rates of tensors) fulfilling the criterion of material objectivity and
disregards the issue of establishing constitutive equations.

1.2. The first objective time rate, the Jaumann stress rate [1] is related to a
coordinate system rotating together with the spin tensor of continuum. Later on the
Jaumann stress rate was also derived by other authors - for example by Fromm [2],
Zaremba [3], Thomas [4], Noll [5] and Hill [6]. These authors have not referred to
Jaumann’s work. In the literature, however, the Jaumann’s stress rate is generally
accepted although Atluri [7] associates it with the names Zaremba - Jaumann - Noll.

A detailed description of some objective time rates is presented, among others, by
Sedov [8], Prager [9], Naghdi and Wainwright [10], Atluri [7], Masur [11], Dubey [12],
Szabé and Balla [13], Haupt and Tsakamakis [14].

There are some famous objective time rates beside the Jaumann stress rate men-
tioned above. Using convective coordinates objective time rates of tensors with con-
travariant or covariant components were set up by Oldroyd [15], Trusdell [16], Cotter
and Rivlin [17] and with all possible subscripts and superscripts by Sedov [8] and
Atluri [7]. Atluri also gave the objective time rates in a fixed coordinate system. The
stress rate introduced by Trusdell [16] is that of the II.Piola - Kirchhoff stress tensor.
The objective time rates defined by Green and Naghdi [18], Green and McInnis [19],
Dienes [20] and Atluri [7] are all regarded in a coordinate system rotating together
with the spin tensor of the rotation tensor obtained from the polar decomposition of
the deformation gradient. The objective time rate of Sowerby and Chu [21] is related
to a coordinate system rotating with the spin tensor taken in the principal axis of the
strains in the present configuration.

The objective time rates in [1] an [15]-[21] are all that of the stress tensor and
invariance under orthogonal transformation is considered as a criterion for material
objectivity.

References [7]-[14] offer not only a survey on the objective time rates but also
a sort of systematization. The latter is grounded on the fact that the objective
time rates are defined with the aid of a certain movement of the continuum, usually
by the mapping of the reference configuration onto the present configuration or by
the transformation between the fixed and convected coordinate systems or by the
motion of the principal axis of strains. In some cases invariance under orthogonal
transformations is a requirement, in the remaining cases, however, it is not.

After a wide mathematical foundation the book [22] by Marsden and Hughes also
deals with the physically objective time rates pointing out that "All so called objective
rates of second order tensors are in fact Lie derivatives."

1.3. Part I. and Part II. of the present paper are aimed to introduce physically
objective time rates on the basis of mechanical (kinematical) considerations only
and makes the introduction of the concept independent of the possible motions of
continuum.

To accomplish this goal the paper investigates tensors and time rates of tensors
in coordinate systems moving arbitrarily with respect to each other or, which is the
same thing, in coordinate systems which are deformable. We regard alternatively one
of the two coordinate systems as fixed; the other is then in motion with respect to
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the fixed one.

1.4. Part I of the present paper investigates the motion of two distinct continua.
One of the two continua is the coordinate system moving in the fixed coordinate
system as a fictitious purely geometrical continuum. The other is the actual material
continuum itself. At the same time the motion of the actual material continuum
can be viewed both from the fixed coordinate system and from the one moving with
respect to it.

In a particular case the convected coordinate system can also be regarded as a
moving coordinate system or a fixed one (see, for example, Section 4). If this is the
case, one should keep in mind that the continuum is at a relative rest in the convected
coordinate system.

1.5. The next section investigates coordinate systems moving arbitrarily with
respect to each other. Metric tensors, velocities, time derivatives of base vectors are
also discussed.

Section 3 is devoted to the motion of a continuum in coordinate systems moving
arbitrarily with respect to each other.

In Section 4 material time rates are defined in various coordinate systems including
the fixed coordinate system, the coordinate system moving arbitrarily with respect to
the fixed one and the convected coordinate system. The various time rates of the same
tensor are related to each other and the corresponding relations are also presented.

1.6. We shall use both the indicial notations of tensors and the symbolic or direct
notational system. The coordinate systems are arbitrary and curvilinear.

In accordance with the general rules of indicial notations - no matter whether the
indices are minuscule or majuscule - indices range over the integers 1,2 and 3; sum-
mation over repeated indices is implied and the subscripts proceeded by a [comma]
{semicolon} denotes [partial] {covariant} differentiation with respect to the corre-
sponding variable. Underscore of indices suspends summation. 67 stands for the
Kronecker symbol.

As regards symbolic notations the dot product is denoted in the usual manner, i.e.,
by a dot placed between the factors, while no operation sign is employed to denote
tensor products. If necessary, small asterisks are used to show where the indices stand,
for example A*, = @%g;g' in which g and g' are the base vectors. (In the case of
indicial notations it is obvious where the indices are.)

The transpose of a tensor is denoted by T. We shall utilize the fact that the
covariant derivatives are defined independently of a coordinate system.

Time is common for all sets of variables. At the points of time ¢, and ¢ > ¢, (oth-
erwise ¢ is arbitrary) the state of continuum is referred to as reference configuration
and present configuration, respectively.

Further notations and notational conventions are presented at their first occurrence
in the text.
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2. Arbitrary motion of two coordinate systems with respect to each other

2.1. First let the coordinate system {zP} be the fixed one. The corresponding base
vectors and the covariant metric tensor are

or
gp (z',2%,2%) = S g’ (z', 2%, 2%) and Gpq (2',2°%,2%) (2.1)
where r is the position vector of a point P in space.

Let the coordinate system moving arbitrarily with respect to the coordinate system
{zP} be denoted by {fk} . The motion of the coordinate system {f’“} relative to the
coordinate system {aP} can be given in the form
9(G) gz

9ok #0. (2.2)

Here and in the sequel a subscript in paranthesis to the left of the variable is of
informative nature.
The base vectors in the coordinate system {fk} are of the form

a? = (GgP (31,72%,2%1), where (9] = det

or or 0@ gp 9@y o'
= (Al 22 A3\ _ _ Sl(al 22 230, q
& (T 05 %) = o = o e = o &0 B (0LTLTN) = g e
(2.3)
The transformation matrices also depend on time and the matrix ,3(807%;;: is the inverse
of the matrix a(aci),f"p.
The covariant metric tensor in the coordinate system{ffk'} is
9(G) p §(G) 1a
~ ~1 ~2 ~3 2,3
gkl (IIJ y L ;t) = ngpqv YIpq (a:l,x L ) : (2.4)

As can be seen with ease neither g, nor g,, depend on time for an observer being in the
coordinate system {aP} while, on the contrary, both g and gx; are time dependent.

Components of a tensor A = a” g,g7 = aklgkgl regarded in the coordinate systems
{a?} and {Z"} obey the transformation rule which follows from (2.3):

07 9@

lewwa q (25)

2.2. Secondly let the coordinate system {fk} be the fixed one. In this case - for
an observer in the coordinate system {551‘} - neither the base vectors g,g' nor the
corresponding metric tensor gx; depend on time:

(Al A2 A Or Al (Al A2 A Al A2 A
gk ($1,$2,$3) = @a gl ($1,$2,.’E3) ’ 9kl (331,.732,333) . (26)
For the motion of the coordinate system {7} relative to the coordinate system {z*}

we can write

a(F){B\k

£0. (2.7)

k= Mgk (ml,x2,x3;t) , ) J = det
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In this case the base vectors in the coordinate system {zP} are

or or oF)gk  o)zk x4
1,2 3., _ 9r  or _ = a (.1 .2 3.4 _ ~
gp (':E y Ly & 7t) 9P o7k 0P P &k g (.’I/' y Ly T at) oE) 7l .
(2.8)
The covariant metric tensor in the coordinate system {aP} takes the form
oMzt ozl oAl A2 A
9pq ($17x27x3;t = WWQM; gkl (m17x27x3) . (2.9)

. . . . P . .
The transformation matrices also depend on time and the matrix % is the inverse

. (F)zk
of the matrix 86 -
x

The apparent contradiction between the formulae and giving the metric
tensors follows from the fact that time dependence of tensor components depends on
which coordinate system is regarded as a fixed one. If the coordinate system {zP}
is the fixed one, gp, is independent of time, but gy; is time dependent and, on the
contrary, if {i?k} is the fixed coordinate system g, is independent of time while gpq
is a function of time.

2.3. In the sequel - unless the opposite is stated - we shall always assume that the
coordinate system {zP} is a fixed one while the coordinate system {f’“}, which will be
referred to as grid, is the moving one. [Use of the letter " F” (fixed) and ”G” (grid)
for the motions and implies this convention tacitly.]

This general convention means no limitation either on the arbitrariness of the
motion of coordinate systems relative to each other or on the general validity of the
conclusions we hope to come to.

In what follows

— the motion of a material continuum with respect to the fixed coordinate system
{zP} will be referred to simply as motion or absolute motion,

— the motion of a material continuum with respect to the coordinate system {:?k},
i.e., to the grid will be referred to as relative motion

— and the motion of the coordinate system {ﬁf\k}, i.e., that of the grid with respect
to the fixed coordinate system {zP} will be called the motion of grid or grid
motion.

2.4. Velocity of a point with coordinates Z* of the grid with respect to {z?} follows

from the grid motion :

dr 9 gp

or
(Gx)y, — = = (Gppg — (Gx)phe 2.10
V0, 0 Bt |- v 8 v 8k (2.10)
(@) (@)
(G gp oz*
(Gx), p __ (Gx)~k __ (Gx),,p
where W= - and U= S v (2.11)

are the components of the velocity vector (“®)v in the coordinate systems {27} and
{ik} Here and in the sequel a subscript placed to the right of a vertical line — the
latter is a right delimiter — refers to the fact that the corresponding coordinates are
constants when one determines a time derivative.
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With regard to all that has been said about the coordinate systems {27} and {z"*}
it is obvious that their roles are interchangeable. Comparison of (2.2) and (2.7 yields
an identity

@ = @7 (31 (212, 0%) 32 ()3 () 5t] = a?

which is valid at any point of the grid and from which, taking into account that the
points {#P} do not move at all, a further identity follows:

» (@) g4 (@) p §F)Zk
%i _o=? 8:6 +LaA,f Lax (2.12)
t () L l@ Z b @)
(F) ok _
where 2| = (FRgk, (2.13)
ot (@)

Let 2P be a point of the coordinate system {a?}. After substituting (2.13) and (2.11)
into (2.12)) we obtain the velocity (¥®)v of the point zP with respect to the grid — that
is to the coordinate system {z*}:

(FR)~k _ oz* @x).p _ _ (Gx)mk - (FR)., _ _ (Cx)
(o P v, e, v = V. (2.14)
x

2.5. From the velocity vector field of the grid (4®)v we can obtain, in the usual
manner, the velocity gradient, the strain rate tensor and the spin tensor for the grid
motion:

(Gx) [ — (GX)lpqugq — (GX)VV, (GX)lpq _ (GvX)vp;q7

(2.15)

X X ]' X X X ]' X X
©9p — @) g g1~ ((G L+ © >LT)’ ©oqr, = 2 ((G e+ (© )qu),
(2.16)
X X 1 X X X 1 X X
(@) W = (yp g ot — 5 ((G )[_ (@ >LT>7 (), — = ((G - (@ >qu).
(2.17)

By making use of the transformation rule (2.5) we can readily obtain the components
(Gx) I, (G”‘)dpq7 (Gx)ﬁpq as well, i.e., the components of the previous tensors in the
coordinate system {':f’“}

Recalling the definition of (G¥) L — see equation (2.15) — , we have

0
5 (dr)

=d ((GX)V) = (G . dr. (2.18)
@

2.6. In accordance with (2.18]) it also holds that

(=) 8/g\l

“ ogy og'
ot

— G9r.¢
ot

- gka

(@)

=—g. L. (2.19)
©)
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3. Motion of a body in the absolute coordinate system and the grid

3.1. Let {X K } be the convected coordinate system. Further let the motion of the
body with respect to the coordinate system {Ek} be

B)z
/x\k — (B)?L'\k (X17X2,X3;t) , (B)J = det aaXK # 0. (31)
This motion is the relative motion of the body. By
(B) 4P
o= P (X X2 X00), T =det Do 40 (32)

we denote the motion of the body with respect to {z?} — absolute motion of the body.
With the relative motion of the body it follows that

2P — (B)p (X1, X2 X3¢) = (G) pp {(B)gl (X1, X2, X3 ¢) B2y B ;t}

(3.3)
o(B) pp 9(G) xp HB) ZF @) + (B
and J = det -7 = det ———— - = (D7 B0,
3.2. The base vectors of the coordinate system {X*} assume the form
N 0 or OB yp a(B) p ~ oxL
Gr=-o=22 2 2 2o  G-i= g7, (3.4)
OXK gz XK OXK OB) g4
from which using ([2.3)) and (3.3)) we obtain
. o®Bgr gzF _ 9@gr 9Bzl gzk _ 9BIzk ~ OXE
Gg = 8k = = 8k = 8k G = — =8
XK 9(G)gp ozt XK §(G)gp XK 0Bz (l )
3.5
The transformation matrices are again time dependent and the matrices % and

8?%); are respectively inverses of the matrices aa(?}ip and a;;f?k .
Using 1) and lb for the covariant metric tensor of the coordinate system {X K }
we can write
~ OB P H(B) za OBk 9(B) 3

GrL =5y GxL I~ gxr axL M

In view of 1) and 1} the components of a tensor A = a” g,g7 = akgrg! =

a¥; G GE, which is regarded in the fixed coordinate system {zP} and the coordinate
systems {55’“} and {X K } each moving with respect to the fixed one, should follow
the transformation rules

(3.6)

OXK 9B ga OXE 9Bz
a = 9B)p HXL a’y dBIZK 9XL aq (3.7)




212 1. Kozdk

Without entering into further details, we mention that for the case when the con-
vected coordinate system { X%} is chosen as a fixed one

Gr (X1, X2, X%) = a?gK’ Gl (X', X% Xx?). (3.8)

are the base vectors observed from the coordinate system itself.

3.3 The quantities we have defined so far are associated with the current configura-
tion and are regarded at the spatial point P. The quantities that are regarded at the
points of the reference configuration will be denoted by barred letters (for example
Gy or dr).

Motion is a mapping of the reference configuration onto the current configu-
ration. The deformation gradient

B)gp XK
F = 0w GL and its inverse F ' = 0

OXL 8p a(B)xqéKgq (3'9)

represent a linear mapping and remapping between the line elements d¥ = dXXG g
and dr = dzPg, regarded, respectively, in the reference and current configurations:

dr=F.dr, dr=F""'.dr. (3.10)

With the line elements dr = dse€ and dr = dse, in which € and e are unit vectors
in the reference and current configurations, one can define stretches in the directions
€ and e:

d 1
° M=¢c.F' F.e=

)\e:%’ ‘ e-(Fﬁl)T-Ffl-e'

(3.11)

3.4. By using the polar decomposition theorem, the deformation gradient F (detF =
J # 0) can be decomposed into the dot product of the rotation tensor

R=R'gG , R'=R" (3.12)
with the right and left stretch tensors
T=U,GG", V=Vrgg"
=U, GG, =V7e8 (3.13)
in a unique fashion: o
F=R-U=V-R. (3.14)

Here the tensors U and V are defined in the reference and current configurations and
are both positive definite and symmetric tensors while the tensor R is orthogonal.
Let n, and n, be orthonormal eigenvectors directed along the principal axes of
the stretch tensors U and V, respectively. The coordinate systems constituted by
the principal axes of the right and left stretch tensors are denoted by {7”} and {v?}.
It can be shown that
n,=R-fn, 1,=R" 'n, (3.15)
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The tensors U and V have the same eigenvalues (denoted by A,). In the coordinate
systems {7”} and {vP} we have

_ o — 1 1. _ 1
U=XNonmn!, U = )\—pégnpnq, V =X\dgnpni, V b= )\—péfl’npnq.
N © (3.16)
In addition we define the Hencky strain tensor in the coordinate system {v?}
In V =InA,0¢n,n?. (3.17)

3.5. The velocity vector of the moving continuum at the point with coordinates
XK observed from the coordinate system {zP} can be obtained from the motion (3.2)):

or 9B)yp

_ _ ®
(X) oxP Ot

B
= Wrg,, )P = ae i
(X) ot

(X)V o ar

=2 (3.18)

(X)

From the velocity vector field ®)v of the moving continuum we can derive the velocity
gradient, the strain rate tensor and the spin tensor:

CO) A (X)lpqugq: Myy, Cp = Ky (3.19)

q 9’

1
C)p = CVgp g g7 = 3 ((X)L+ (X)LT), CIgr — (<">lpq+ (x)lqp)7 (3.20)

1

2
1 1

COW = CDyp g g — 5 ((x) L— ™ LT) , Coyp = 5 ((x)lpq _ (x)lqp> . (3.21)

The velocity vector at the point with coordinates X ¥ of the continuum being now
observed from the coordinate system {Ek} (from the grid), i.e., the relative velocity
of the continuum follows from the the relative motion (3.1]):

- or 9Bk < < oz*
®v — — ®pks Gk = 22 ) 3.22
M T v Bk YT o (3:22)

(X)

From the relative velocity vector field of the continuum we can obtain the relative
velocity gradient, the relative strain rate tensor and the relative spin tensor:

X< X ~ 8 b -~ X X) A
L= g = o (< )v) g, O = Mgk, (3.23)
- T R - 1 /2 o
®p = ®gigg = > (<x>L+ <x>LT)7 & = > ((x)ﬁfl+ (X)llk), (3.24)
®) Rdks sl L(®7_ @17 ®ok _ L (@% _ @7k
W = wlgkg=§( L— L), wl=§( ll_ ll) (325)

It follows from the nature of things that the velocity at the point XX of the
continuum with respect to the convected coordinate system {X K } vanishes: Xv =0,
XK = 0.

Similarly, it can be checked with ease that L= XD = W = 9.
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3.6. Velocities of the points of continuum defined in the coordinate systems {z?}
and {ﬁk} can be related to each other by using the motion 1D of the grid and the
relative motion (3.1)) of continuum:

(X ))

= @y 4 @pp op Wy = G0y 4 @y (3.26)

9@ pp 9Bk
oz ot

or
My — 27
M

or [ 9G)gp
ot

(x) OxP @)

Substituting (2.10]) and (3.22]) we arrive at the result

G
(gp = (@¥)yp 4 ijxp @)k

From equation ([3.26)), which relates the various velocities to each other, taking
equations ([2.15)-(2.17), (3.19)-(3-21) and (3-23))-(3.25) into account, we can readily
establish further equations for the velocity gradients, the strain rate tensors and the
spin tensors:

X _ (Gx X X _ (Gx X
= G ®p ()lpq_ ( )l”q—l— ()lpq7 (3.27)
®p= (@Ip4 Op, W = @Igp 4 Qgp (3.28)
X _ (Gx X X _ (Gx X
COw = @Iw 4 Ow, Gy = @Iyr 4 Ryr (3.29)

The component forms of equations (3.27))-(3.29) can be written not only in the coor-
dinate system {zP}, but also in the coordinate system {E"’} and {XK}.

3.7. On the analogy of equation (2.19) we can obtain the time derivatives [measured
in the coordinate system {aP}] of the base vectors Gx and G:

)
: aGK

(x

)
~ . L
= BL.Gg, 1 9G

ot

= GF. ™L. (3.30)
(X)

Similarly, for the time derivatives of the base vectors G and éL[measured in the

coordinate system {z*}] we have:

®

33’4 - OL.Gx, %
4 (X) t

= - GF. O (3.31)
(X)

4. Material time rates of tensors

4.1. First, we shall separately define material time derivatives in the coordinate
systems {zF}, {z"} and {X®}. Then we are seeking relations between the material
time derivatives so introduced. Special care will be given to the metric tensor.
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Consider the tensor fields

A =a,g’g?, = bg C = ¢k GEGL,
ap (2',2°,2%t), g (ml,xz,xi”%
bkl (a: 22,78 t) gt (§1,§2,§3) ,
oxr (X' X2 X%, G (X', X2, Xx3).

written in the various coordinate systems as if they were fixed coordinate systems. By
material time derivatives defined in the coordinate systems introduced, and for the
tensors listed above we mean the time rate of change of the given tensor with respect
to the coordinate system in which the tensor is defined and taken at the material
point identified by the convected coordinates {X K }

Taking the possibilities one by one

- if {2} is the defining coordinate system in which the continuum moves according
to equation and with the velocity ®v given by equation then

(x)
B)..s
® 4 = (X)dpqugq - - 88714 — agpq D q % a(a)x ’ (4.1)
tlx) bl @ O
0
+€es (X)dpq - g:q (2) T Gpg;s Sy, (4.2)

- if {Ek} is the defining coordinate system with respect to which the continuum

moves according to (3.1) and with the with velocity ®)v given by equation (3.22)
then

®

_ - . 0A b, OB| 0®zm
OB = @igg = 17 =N ghgle o) T (@)
b, -
ie., ®p, = akl + bz D™, (4.4)
t @)

- if {X K } is the defining coordinate system in which the continuum does not move,
i.e., the velocity X)v = 0 then

x)
aen . 9C ¢, RN
Mo = M5, GG = T = Ca’“ GKGL, (4.5)
tlix) t oo
N 9
ie., Mg = Caft“ . (4.6)
x)

Making use of the previous results, material time derivatives can be established for
second-order tensors with position of indices other than above and for any tensor of
higher order.
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The material time derivatives obey the derivation rules valid for the sum and
product of tensors.

Being real tensors the material time derivatives follow the general transformation
laws of tensors. According to (2.5) for example:

~k G
(x)’:\k o0z 8( )xq (z)

a, = aP, . (4.7)

G gp 97! d

4.2 The material time derivatives of the independent tensors A, B and C, which
we have defined in a given coordinate system and discussed so far, are also independent
of each other.

We are, however, faced with a distinct case when we consider the material time
derivatives of the same tensor in various coordinate systems which move with respect
to each other, i.e., if the tensor in question is defined independently of a coordinate
system since, on the contrary, the material time derivative itself is always defined in
a given coordinate system, as is the case, for instance, in respect of the material time
derivatives of the tensor

A= apqugq = 6kl§k§l = aKLGKGL. (48)

Depending on what the coordinate system is, the material time derivative of a
tensor will be referred to as

- material time derivative if it is defined in the coordinate system {zP},
- relative material time derivative if it is defined in the coordinate system {Ek},
- convected material time derivative if it is defined in the coordinate system {X*}.

In addition, relations can be established between the various material time deriva-
tives.

Assuming that formulae , and are valid for the tensor field given by
, we obtain for the tensor A, the material time derivative, the relative material
time derivative and the convected material time derivative:

da
T PR (19)
RN D
® (akl) = Wkl + akiym ( )U R (410)
(@)

~ oa

X) (GgL) = (“)I;L ) (4.11)
(X)

The preceding equations could be used with minor changes concerning the position
of indices for second-order tensors with indices positioned differently and for a tensor
of any order.

4.3. Material time derivatives, defined respectively in the coordinate systems {x?}
and {Ek} , {P} and {XK}, and finally in the coordinate systems {@k} and {XK}
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can be related to each other by means of the motion of grid and continuum in the
coordinate system {aP}, provided that the coordinate system {aP} is fixed.

Indeed, the material time derivative of the tensor defined independently of
the choice of a coordinate system can also be determined in the following manner:

(x)
~ kgl
A = O (A(3,323%1)) = 5;)(“’7; g)

(X)

(€9)
: a(akzgkgl)' n oA 9Blgm
T PR R

S ()
98" i gk OB
Ot | (a) Ot |z

0A 9Bz

Oart| o
a0t |y

= ot Agg—i—akz

(4.12)

Substituting equations (4.10) and (2.19]) we obtain
A = ®(A,) - ©ILT. 4-4.

where (69 L is the velocity gradient for the motion of grid. The asterisks which
indicate the positions of indices, refer to the fact that the relation between the two
material time derivatives depends on the positions of indices in the grid coordinate
system {f’“ }

We may notice that the difference between ® A" and ® A follows from the change
of the base vectors g* and g’ of the grid coordinate system {Ek} in the fixed coordinate
system {aP}.

By repeating the above procedure for other positions of indices and gathering then
the results we may write

I ®,)=®a 4+ GIgT. 44 4. @, (4.13)

I ) = ®a - @I A4+ 4. @I, (4.14)

M. ® A7) = ®a 4 @I 4. O[T (4.15)

V. ®(4™) = &4 - ©@Ip. g4 4. @ILT (4.16)

In the case (G D = 0, i.e., if the grid has a rigid bod motlon (G = GOwW,

where () W is the spin tensor of the grid, equations (4.13] . lead to the equa-
tions

®(A.) = D7) = Oy = Oy = Da, (4.17)

@A = ®@a - Ow.A+4. w. (4.18)

It is clear that the latter equation, which relates material time derivatives defined
in the coordinate systems {f’“} and {z?}, is independent of the position of indices.
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4.4. Apply all that has been said above to the metric tensors. In the case when
{aP} is the fixed coordinate system then, according to (2.4), g,4 does not depend on
time but gi; does, and conversely, when {Ek} is the fixed coordinate system, then
gr; does not depend on time but g, does. Accordingly if, for instance, {xP} is the
fixed coordinate system, then on the basis of equation it follows

iy (@ P 9(G) pa
Ik oat
Le. ® (G) = @9 + O], =2 Ngy,. (4.19)

=0= O @) — ©Gg — Grs T,

Similarly, on the basis of equation (4.16]) we have

®) @kl)' —_9 (Gx)gfcl.

4.5. Consider now the case of two grids moving arbitrarily with respect to each
other. Let {55’“} and {577} be the two grids. Further let €0 L = )L — (G L where

€I [ and (S L are the velocity gradients in the coordinate systems {?’} and {f’“}

being measured in the coordinate system {zP}. In other words (X L is the gradient
of the velocity ¥v = )y — (G¥y  which we measure observing the motion of

the coordinate system {@} from the coordinate system {%k} Writing the equations

4.13))-(4.16]) both for the coordinate system {ﬁk} and for the coordinate system {@7}

and then subtracting the equations resulting from each other we obtain:

L DA = ®@,)+ LT . 4+4. & (4.20)
I @)y = ®U,)y - ®L.Aa+A. &L, (4.21)
. @A)y = ®@ar)y+ LT A—Aa. LT (4.22)
v, @™y = ®@>y - @p. 44 LT (4.23)

The results implied in equations (4.13)-(4.16)) and (4.20)-(4.23) can be summarized
as follows:

If the material time derivative of a tensor defined in a given - say, in the first -
coordinate system is known, then the material time derivative of the tensor defined
in another - say, the second - coordinate system (moving arbitrarily with respect to
the first one) is obtained by adding such an expression to the first material time
derivative which is a linear combination of products involving as factors the gradient
of the velocity vector field — measured observing the motion of the second coordinate
system relative to the first one — and the tensor itself. The terms involved in the
linear combination depend on the order of the tensor and the positions of indices.

4.6. On the basis of the above rule it holds for time rate of change of tensors
defined in the convected coordinate system (without detailing the equations with
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mixed positions of indices) that

L ®(A.) = @A+ O[T A4+ 4. 9L, (4.24)

V. ®@™y =04 _ ®r.4-4. 0L, (4.25)
where ® L is the velocity gradient for the velocity vector field ®v, and

L M) =®4a4+ LT 444 Of, (4.26)

V. X4y = ®a - Op. 4. OfT (4.27)

where ®) I is the velocity gradient for the velocity vector field ®v.
4.7. Relations between the time derivatives can be given, of course, in indicial

notations. Considering relation (4.14), for example, we may write
ozk 9 za
0G)gr o7t

® (Gk) = ((x)dp — (@ g 4, (Gx)lsq)

, (4.28)

The results obtained can also be generalized for a tensor of any order. Considering
a third-order tensor A = a,7"gPg,g, = @,/ 8"88m, for example, we shall find

oGgr ozt o™

X) (o Im\" _ [((x); qr (Gx)ys , qr _ ,, sr (Gx)jq _ . gs (Gx)jr
(ak ) —( a," + I"pa a, I —a, ls> 95k 9 pd 50"
(4.29)
4.8. Dependence of material time derivatives on position of indices can also be

shown in indicial notations. For this purpose we write equation (4.28) in the form

(X)a,r. o 8(G).'Er (Tl'\l

q ozm 9(G)ga

(®) (aml) + (Gx)lrsasq _ ars (Gx)lsq ]

Multiplying both sides by g, and manipulating then the first term on the right side
into

0@z ozt . . L '
Gpr o T (®) (GM) = G e e — ®) (M) =
Proggm  9(G)pa 9(G) zp 9(G) 4
ozk 07! -
_ 7 P (® (. amy (5 - ~m
(G zp §(G) 1q ( (Grma™) (Grm) @ l) ,

we obtain, also with regard to equation (4.19)) that

ozt ozl 4 .
g — ® (G,,) = s ¢ g (Gx)s
Upq = 3Gy 5@ pa (@rr) IPpasq — aps ,

which is identical to equation (4.13]).
4.9. Now we shall consider a covariant and a contravariant vector:

®a, = ®Wa+ a 9L, ®a = @Wa_ G . 4 (4.30)
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4.10. Let ®a and ®a* be the accelerations of the point XX in the coordinate
systems {zP} and {Z"}. For completeness we shall give how these accelerations are
related to each other.

By definition
(g — ) ((x)v)' and ®a=® (@)v)' , (4.31)

It follows from equation (3.26) that

(g = ((x)v)‘ Y ((Gx)v+ (%)V)'7

where
() (x
. . Gy . 96Xy 9(Gx)y 9Bk
() ((Gx)v) _ _ + —
ot (X) ot @) or ot (X)
— Gy 4 ((Gx)vv). ®y .
According to equation (4.30) we have
) ((i)v)' - ® (&)‘,)‘ FR(cCO) ANC
On the basis of the above equations we get from equation (4.31))
Mg = ®a* 4 (GXg 4 2. Ry, (4.32)

For our latter considerations we remark that neither the velocity ®)v nor the accel-
eration Ma are physically objectiv quantities.
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Abstract. The paper investigates stress-strain state in the most important parts of a
plough - mouldboard and ploughshare. The mouldboard consists of three layers, while
the ploughshare is homogeneous. Two software packets were used to solve the problem.
AutoCAD enables us to create the quadrangle curvilinear surfaces of the mouldboard and
the ploughshare. It has been achieved by using a special AutoLISP procedure, which must
be run under AutoCAD release 15.0. In the environment of ANSYS 5.6 thickness of layers
and material properties were added to these quadrangles. The loads according to Goryachev
formulae have been added. This way we can find the most dangerous regions where the
stress intensity reaches its maximum value. The dependence of displacements on thickness
of mouldboard has also been found.

Keywords: Mouldboard, ploughshare, AutoCAD, AutoLISP, ANSYS

1. Symbols used

a — processing depth of a plough

b — grab width of a plough

¢ — distance between the top working surface of mouldboard and the plane Y Z
d — distance between the lower edge of mouldboard and turned soil layer

H — height of working surface at the top nearest to the field unploughed

Ab — grab width overlap

a, B, v, € — angles to set the form of plough body

2 — horizontal co-ordinate, perpendicular to furrow

y — horizontal co-ordinate towards the motion of plough

z — vertical co-ordinate

2. Introduction

The textbook by A. Reintam [1] is devoted to the theoretical treatment of the issue
how to design mouldboards and ploughshares by making use of graphical methods.
These methods are quite troublesome and inaccurate. The main objective of the
present paper is to show how to design mouldboards and ploughshares on the screen
of a computer. The building process of the virtual models for a mouldboard and a
ploughshare in the environment of the Finite Element Package ANSYS is bulky. The
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present paper uses an alternative possibility with more flexible modelling possibilities
for creating virtual models in the environment provided by the package AutoCAD.
The automatic procedure is written in the AutoCAD environment by using the special
AutoLISP language for drawing a mesh of the plough body consisting of tetragonal
elements.

The parameters are entered through a dialog box on the screen of the computer.
Every parameter has its own interval for the numerical values to be entered and the
default value is the mean value in this interval.

The plough body is divided into elements which can be used to calculate the
strength of the working bodies of a plough. Using ANSYS, which is powerful software
based on the finite element method, one can perform these calculations. It is expected
that one can make some recommendations to choose the initial parameters for creat-
ing a mesh of the plough body. Here it is worthy of mention that the thicknesses of
the tetragonal elements in AutoCAD environment are considered to be equal to zero:
the thicknesses should be added under ANSYS only. The thickness of an element can
either be constant or vary and the elements may consist of several layers.

3. Description of the drawing procedure

To design a mesh for a plough body, the AutoLisp procedure must be loaded and run
under AutoCAD. A loaded procedure can be started repeatedly. A procedure can be
loaded with aid of various menus or by entering text
(load “plough”)

(the brackets here are obligatory; plough is the filename of the corresponding pro-
cedure without the extension Ilsp). To run the procedure we enter PLOUGH (or
plough). If the procedure “plough.lsp” should be loaded and/or run repeatedly, it is
useful to create an icon under AutoCAD.

Now we describe the procedure plough.lsp and demonstrate how it functions. The
theoretical base to draw a plough body is described by A. Reintam [1]. However,
the graphical methods in the textbook [1] are not suitable for computer aided design,
therefore all necessary co-ordinates of a plough body must be calculated prior to
drawing.

In addition, the left-hand co-ordinates must be changed to right-hand co-ordinates,
because AutoCAD uses only a right-hand co-ordinate system. Another reason is that
in the left-hand co-ordinate system some parameters may have opposite signs (so-
called pseudo-scalars and pseudo-vectors [2]). To adjust the theory [1] to a right-hand
co-ordinate system it is sufficient to interchange the axes X and Y.

The program we have developed for the design of a plough body performs seven
steps:
1. Constructing the contours of the projection on the plane XZ (a view of the
plough body along furrow, as is described in [1] — see Figure 8a);
2. Formation of the three-dimensional directrix;
3. Drawing a set of horizontal straight lines through the points lying in the directrix;
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4. Finding the intersection points of the lines with the cylinder which is parallel to
the axis Y and passes through the contours found in the 15 step);

5. Using the points found in the previous step, the contours of the mouldboard

and the ploughshare are formed (both closed contours should consist of exactly

4 edges);

Drawing the curvilinear meshes on these three-dimensional contours;

7. Exploding the meshes formed into single quadrangular elements. (The edges

and the vertices of the neighboring elements should coincide.)

In fact the first four steps are executed without drawing anything. Only the cor-
responding calculations are accomplished and the results are saved into the main
memory of the computer. However, the contour in the 5" step must be drawn, be-
cause without a closed contour AutoCAD cannot execute the 6t step. All steps must
be performed both for the mouldboard and for the ploughshare, with a mutual unison
in order to avoid a crack between mouldboard and ploughshare.
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Figure 1. The front view of a plough body and two furrows

Now we discuss these steps in more details. The performance of the 1°¢ step is
illustrated in Figure 1. The values of the parameters a, b, ¢, d, Ab and H are entered
by the keyboard input, radii 1 and ro are calculated by the formulae

leb, T2=\/@2+b2.

The closed line that consists of straight segments through points 5, 10, 9, 14 and 15,
is the projection of mouldboard on plane X Z. For the ploughshare this line passes
through points 0, 18, 9 and 10. The rest of the numbered points in Figure 1 are
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auxiliary points for the computation process. The rectangle with vertices 1, 2, 3 and
4 is a turned non-disintegrated furrow (beneath it is a fragment of a previous furrow).

Our AutoLisp procedure uses two standard functions to find the co-ordinates. The

standard function
(inters py py p3 panil)
finds the intersection point of two lines, where p; and ps are the end points of the
first line, and p3 and p, are the end points of the second line. If parameter nil exists,
then inters returns the point where the lines intersect, even if that point is off the
end of one or both lines. The standard function
(polar starting-point angle distance)

returns the point at a specified angle and distance from a starting-point. Here the
angle is measured in radians relative to the axis X, with respect to the current con-
struction plane in the counter-clockwise direction.

/

&

Figure 2. Parabolic directrix

Then the three-dimensional directrix is found, as is in the textbook [1], though the
graphical methods are here replaced by appropriate analytical methods. It is known
that a parabola is uniquely defined, when three points of the parabola and the slope
angle of the axis of symmetry are given. In Figure 2 this angle is equal to g9 and the
end points of the parabola are points 3 and 4. The intermediate point 8 can be found
as the intersection of two lines. One of these lines connects point 3 with the midpoint
6 of the line passing through points 4 and 5; the other line connects point 4 with the
midpoint 7 of the line passing through points 3 and 5. If we rotate now the parabola
by the angle £y (clockwise), the axis of symmetry of the parabola becomes parallel to
the axis X7 — see Figure 3 — and the equation of the parabola takes the form

z1 = A2 + B2+ C,

where the coefficients A, B and C should be chosen in such a way that the parabola
passes through points 3, 8 and 4. In this way we obtain a system of linear equations
with A, B and C as unknowns. After finding A, B and C the parabola is rotated
back into the previous position.
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It is essential to say that the directrix lies in a vertical plane, the dihedral of this
plane and the plane X Z is equal to the known angle v, — see Figure 3. As soon as the
directrix has been formed, the horizontal generators are drawn. All the generators
pass the directrix at different heights (the heights are measured along the axis Z).
Besides, every generator lies under different angle v = f(z) towards the plane YZ. In
the case of a semi-digger plough body it is recommended [1] that the angle v follow
the parabolic law

(2 — 2.)?
= "¢ . 3.1
Here z. is the height where the mouldboard and the plough body contact. The
parameters v,,,;, and v,,.. are then entered; the latter corresponds to the value of
at the maximum height z,,,, of the mouldboard. These relations allow us to find an

appropriate value for the parameter p in equation (3.1).

. >
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Figure 3. Top view of the directrix

In the next step the intersection points of the horizontal generators and the cylin-
drical surface (the latter was designed in the 1%t step), are found. Since the surface
of mouldboard contains five planes each being parallel to axis Y (see Figure 1 for
details), every generator has up to five intersection points. However, we should use
only those intersection points lying in the closed contour which passes through points
5,10, 9, 14, 15 and 5, and should disregard the other intersection points (such as the
points in the segment between points 15 and 12).

The intersection point of a three-dimensional plane and a line is given by a formula
of the handbook [4]. Namely, let us assume, that the plane is given by the equation

Az +By+Cz+D =0 (3.2)
and the line drawn through the points (z1,y1, 21) and (x2,ys, 22) by the equation

r — X :y_yl :Z—Zl (33)
To—T1  Yoa—Y1 22— 21 )
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Then the coordinates of the intersection point (Z,§, Z) can be calculated as
T=x —lp, Y=y —mp, Z=z —np,

where
T2 — X1 Y2 — 1 22 — 21
[= —— m=-—— n=—— —

d '’ d ’ d

are the direction cosines,

d= \/(xz - 3:1)2 + (y2 — y1)2 + (22 — 21)2

is the distance between two points and

A1+ By1 +Cx + D

Al+ Bm+Cn (3-4)

is the distance of the intersection point (Z, g, z) from the point (z1,y1,21).

The intersection point (Z, 7, Z) does not exist if the denominator in equation (3.4)
is equal to zero. In such a case the plane (3.2) and the line (3.3) are mutually parallel.
Incidentally, such is the case for the plane through points 10 and 9 — see Figure 1.

If we have found a sufficient number of intersection points, these must be ordered in
such a manner that they form a closed contour consisting of exactly four (curvilinear)
edges. It is worthy of mention that for the mouldboard one of these edges connects
points 5, 15 and 14 — see again Figure 1.

Now it is necessary to determine the densities of meshes towards two alternative di-
rections. These values must be set by two system variables of AutoCAD: SURFTAB1
and SURFTAB2. The AutoLisp function

(command “EDGESURE” e; ez e3 e4)

constructs a three-dimensional polygon mesh approximating a Coons surface patch
mesh from four adjoining edges e;, es, e3 and e4. Here e; is an edge of the mould-
board in vertical direction; and es, e3 and ey are the other three edges. A Coons
surface patch mesh is a bicubic surface interpolated between four adjoining edges
(which can be general space curves). The Coons surface patch mesh not only meets
the corner of the defining edges, but also touches each edge, providing control over
the boundaries of the generated surface patch. The same operations must be done
for the ploughshare as well. We should ensure that the two densities along the joint
edges of the mouldboard and the ploughshare are equal.

After forming the meshes we do not need the edges any more and they can be
deleted. As a last step both two-dimensional meshes should be exploded into tetrag-
onal surface elements. The edges and vertices of two neighbouring elements coincide.
Exploding does not change the appearance of the mesh, but without exploding the
formed mesh cannot be inserted into ANSYS to accomplish the finite element calcu-
lations.

In Figures 4 - 6 the same mouldboard and ploughshare are shown in three different
views. The view direction in Figure 4 is determened by two angles: the angle in the
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Figure 6. Right view of a plough

plane XY from the axis X is equal to 40°, the angle from the plane XY is equal to
80°. The processing depth a and the grab width b are equal to 36 cm and 22 cm,
respectively. The mesh densities in both directions are equal to 25. Consequently we
have altogether 625 quadrangle elements.

4. Creation of finite elements

To create a finite element model of the plough body, the ANSYS5.6 linear layered
structural shell elements SHELL99 have been used. In these applications up to 100
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LN = Layer Number
NL = Total Number of Layers

Figure 7. Up to 100-layer shell element SHELL99 with eight nodes

different layers are permitted. Every element has eight nodes: four (I, J, K and L)
at the vertices and four (M, N, @ and R) at the midpoints of edges — see Figure
7. Naturally, the neighbouring elements must have common nodes - which insures
against the disconnection of the virtual model of element SHELL99. If this property
does not exist, the plough body disintegrates into single elements under the loads.

Figure 8. The soil reaction forces acting on the plough body

Every node of the element SHELL99 has six degrees of freedom: three displace-
ments towards the coordinate axes X, Y and Z and three rotations around the same
axes. The soil’s influence on the plough body has been taken into account by the
formulae of Goryachkin. The components of the resultant force R in the coordinate
system (X,Y, Z) — see Figure 8 for details — are given by

R, = G+ (Kp + &,/2,)ab; R, = Ry tanp,,; R, = Rytanp,, . (4.1)
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Table 1. The parameters in the formulae of Goryachkin

Symbol | Meaning Unit | Value
Ky specific resistance to deformation of furrow slice kPa 35
€0 factor, taking into account the form of the plough | kg/m? | 250

body and the type of soil
U velocity of moving the plough m/s 2
a depth of the furrow cm 26
b width of the furrow cm 40
f summary friction coefficient 0.5
G gravity of plough per one plough body kN 2
Z’”’ inclination angles of the resultant force R (Figure 8) deg 12
Yz

The parameters in formula (4.1) are explained in Table 1 and Figure 8 (the plough
moves towards the axis Y'). The typical values for these parameters are also given
there. The permitted values of these parameters can be found in the textbook [1].
We should mention here that these values may change over wide intervals, and it
is difficult to get the exact value. Since the forces R,, R, and R, are directed as
shown in Figure 8, they are taken with the negative sign. These components should
be distributed among the elements of SHELL99. As is well known, forces can be
applied at the nodes only. For simplicity we assume that only the vertex nodes I, J,
K and L are taken into account (Figure 7). As the actual distributions of the force
components (3.1) along the plough body are unknown, we shall consider two possible
distributions of the applied forces.

Y A

X

Figure 9. Projections of a quadrangle round a node

First, every force component (4.1) will be distributed uniformly along the projection
of the plough body in the plane which is perpendicular to the selected coordinate
axis. For instance, the component R, will be distributed along the projection of
the plough body on the plane XZ. As is well known from mathematical statistics,
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uniform distribution is the best statistical distribution if the real distribution of some
quantity is unknown. In the present case additional justification is given by the fact
that real applied forces in a ploughing process are relatively incidental. Therefore,
in this case no special cutting forces are applied along the edges of the plough body.
This model is the first and best choice for soft soils (e.g. potato fields in autumn).

In the second case we shall try to take the cutting forces also into account. These
are distributed along the cutting edge of the ploughshare and along the front edge
of the plough body (only beneath the soil surface). At the other nodes the force
components (4.1) are distributed uniformly (as in the previous case), although the
intensities of the forces are different for these cases. To get a uniform distribution
of forces, the weighting function for the force component applied at a node must be
proportional to the area of quadrangle surrounding that node. For a node 0 this
quadrangle is defined by the vertices 1, 2, 3 and 4 (Figure 9). The projections of the
four neighboring elements on the plane XY are also shown (one of these has vertices
a, b, ¢ and d), surrounding the node 0. For the projections on coordinate planes Y Z
and ZX this will be done analogously. The projection of the area of a triangle with
vertices 1, 2 and 3 (Figure 9) can be calculated by the formula [4]

r1 oy 1
Siss=3| 22 y2 1
3 yz 1

If we add the vertex 4, the last formula yields the projection of the quadrangle area
in terms of the coordinates of the vertices 1, 2, 3 and 4:

So =3 [(x1 —x3) (Y2 — ya) — (@2 — 24) (y1 — y3)] -

If the vertices 1, 2, 3 and 4 are oriented towards the positive direction (as shown at
the lower left corner in Figure 9), then the calculated area will be positive, otherwise
it will be negative (or equal to zero). If the node 0 lays on the edge of the plough
body (or at a vertex), one (or two) node(s) 1, 2, 3 or 4 coincide(s) with the central
node 0.

The value of edge forces can be found by the following argumentation. In case of
uniform distribution of forces based on formulae of theoretical mechanics it is possible
to evaluate the centre of the parallel forces. In case of distributed edge forces for the
axis X we can use the following formulae

{ R, +RI=R,

RLX(, + RIXS = R, Xc, (4.2)

where the latter corresponds to the weighted average of the centre of forces. Here R/,
and R/ are resultant edge force and remainder resultant uniform force, X/ and X/
are centres of distributed edge forces and remainder uniform forces, and R, is given
by (4.1). According to the textbook [1] the coordinates of the application point of
force R are equal to X¢ = 0.35b and Zc = 0.33a. The system of equations (4.2)
enables us to find the quantities of R/, and R//. Similar formulae are valid for axis Z.
As the textbook [1] does not give Y, the distributed edge forces towards the axis Y’
are not applied.
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Figure 10 shows a typical uniform distribution of force projections R, (horizontal)
and R, (vertical) (a view along the furrow). In the same figure we can see the six
bolts where the plough body is fixed to the anchor of the plough [3].

: 111111 F
TN L q:
AR

1

Figure 10. Applied forces and constrained elements (uniform distribution)

At every bolt the five neighboring nodes are fixed so that the number of degrees
of freedom is equal to zero, which corresponds to rigid support. An analogous dis-
tribution of forces can be obtained for the case of edge forces. Although these two
distributions are relatively different, the results of the calculations, as we can see later,
are not as different.

5. Results of calculations and conclusions

Stress and displacement distributions were obtained through calculations using AN-
SYS 5.6. Due to the limited volume of this paper, we confine ourselves to one set of
input parameters (velocity of plough movement and the properties of soil and materi-
als of the plough body). Only the thickness of the mouldboard layers and ploughshare
vary.

Table 2. The parameters of layers

Young’s Elastic Poisson’s
Location modulus limit ratio
(GPa) (GPa)
cutting edge of ploughshare 210 0.471
ploughshare 175 0.373
bottom layer of mouldboard 200 0.471 0.29
middle layer of mouldboard 170 0.373
top layer of mouldboard 210 0.471
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Parameters from Goryachkin formulae (4.1), which correspond to loam as a soil form,
have been described in Table 1, properties of different materials in Table 2, and
the thicknesses of plough body in the left five columns of Table 3. In reality the
thickness of the ploughshare is uneven, but a thick rib behind the cutting edge has
been ignored. It is not dangerous because by ignoring this only the calculated stress
intensities increase. The model SHELL99 enables us to introduce only ribs with
bilateral symmetry, but

Table 3. Parameters to design the surface of the plough body

. Displacement Stress inten-
Thickness (mm) (mm) sity (GPa)
cutting | bottom | middle | top | sum | uniform | with uniform | with
edge layer layer layer | to- load edge load edge
tal loads loads
0.25 0.25 1.5 0.25 | 2.0 78.8 77.3 0.606 0.621
04 0.5 2.0 0.5 3.0 38.9 38.5 0.339 0.349
0.6 1.0 3.0 1.0 5.0 15.8 15.8 0.155 0.160
0.8 1.5 4.5 1.5 7.5 7.62 7.67 0.0825 | 0.0852
1.0 2.0 6.0 2.0 10.0 | 4.48 4.54 0.0529 | 0.0553

the upper rib is clearly inappropriate.

The model SHELL99 (part of ANSYS 5.6) enables us to find the distributions of
stress intensities (naturally also that of the stress components) and the displacements
(and the rigid body rotations about the coordinate axes) either as numerical values
for all (or selected) nodes or in various graphical forms. These parameters can be
found for every layer: by selecting the bottom, middle or top surface of a layer.

- .
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Figure 11. Stress intensities along the bottom surface of the bottom layer

Now we fix the thickness of the plough body at 5 mm (Table 3). Figure 11 illustrates
the distribution of stress intensity along the bottom surface of the bottom layer of the
plough body under uniform loading. Black areas represent the areas of high stress
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intensity (measured in pascals). The most dangerous areas are those surrounding the
two fixed points of the mouldboard and the region between them, while the stresses
inside the ploughshare are relatively small. Analogous distribution is illustrated in
Figure 12. Here along the top surface of the top layer, the dangerous region is at
the upper edge of the mouldboard. It appeared that the distributions of the stress
components are clearly different from each other and also from the stress intensities.
These distributions are not represented in these figures. As the maximum values of
stress intensities occur at two fixed points of the mouldboard, it may be useful to
increase the thickness of the lower layer of the mouldboard near these regions, or to
use a complementary support under the free end of the mouldboard (some plough
types have such support).

158411
L1 _y7oes08
4 Bl 5icea0n
s

Figure 12. Stress intensities along the top surface of the top layer
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Figure 13. Displacements in the direction X

The distributions of displacements were found in the same manner — see Figure 13.
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It is expected that the maximum displacement magnitudes occur at the free end of the
mouldboard. Displacements are predominately negative (only vertical displacements
towards the axis Z at some nodes may be positive, compared with the distribution of
vertical forces in Figure 10).

If we investigate the stress and displacement distribution in the case of distributed
edge forces, we obtain similar pictures (see Figures 11 - 13). It is interesting to
note that these distributed edge forces are insignificant for the distributions of stress
intensities, while the stress components may be more different in comparison with the
case where the edge forces are absent.

The four right columns of Table 3 give a numerical comparison of these two load
cases. The table shows the maximum displacements and the stress intensities, which
take place at the right-most point of the mouldboard (see Figure 13).

Table 3 shows also that if the thickness of the mouldboard is too small, the dis-
placements and stress intensities can be quite large. According to formulae (4.1) the
load of a plough body increases with the hardness of soil. Let us remember that our
calculations are carried out for loam, which is not a very hard soil. Even though the
elastic limit is not exceeded, such large deformations are not proper for a plough.
Besides, there exists a risk to exceed the elastic limit, which gives rise to residual
deformations. This happens when the total thickness of the mouldboard is equal to
2 mm only (see Table 3). The 3 mm thickness is also dangerous. However, such thin
ploughs are not proper for the ploughing process.

Thus the creating of the virtual model in the AutoCAD environment, entering this
model into an ANSYS environment for creating the finite element model and carrying
the results of computations were successful. This alternative possibility is suitable for
AutoCAD users, who wish to use the finite element method.

Acknowledgement. The authors are grateful to the Estonian Science Foundation for their
support (grant No. 4098).
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Abstract. The present paper is devoted to the plane problem of elastostatics assuming that
the governing equations are given in terms of stress functions of order one. After clarifying
the conditions of single valuedness we have constructed the fundamental solution for the dual
basic equations. Then the integral equations of the direct method have been established.
Numerical examples illustrate the applicability of the integral equations.
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1. Introduction, Preliminaries

In spite of a great number of publications devoted to plane problems there are only a
few dealing with plane problems in terms of stress functions of order one. As regards
classical elasticity we refer to the paper [1] and the book [2] by Jaswon and Smith
in which the unknown biharmonic function (stress function of order two) is given in
terms of two harmonic functions as a single layer potential and the authors set up a
pair of integral equations for the unknown source densities.

Application of stress functions of order one was initiated by Frejis de Veubeke in
a new complementary energy based finite element procedure [3,4] since the use of
C° continuous stress functions of order one guarantees continuous surface tractions
and makes possible to construct isoparametric elements. Further applications with an
emphasis on three dimensional problems and laminated structures are due to Bert6ti
— see [5,6].

If one uses stress functions of order one calculation of stresses requires determina-
tion of first derivatives (in contrast to stress functions of order two from which stresses
can be obtained in terms of second derivatives) and this property makes them attrac-
tive in boundary element applications though a further equation is needed to ensure
that the stresses be symmetric.

As regards the derivation of integral equations for plane problems it is worth citing
the papers by Heise [7,8], in which altogether 32 + 16 different integral equations are
obtained with the aid of the singularity method. The reader taking an interest in
the various formulations made by Heise is referred to these works and the references
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listed therein.

In the present paper we confine ourselves to the direct formulation within the

framework of classical elasticity. Our aims are as follows:

1. Clarifying the conditions of single valuedness for a class of mixed boundary value
problems assuming multiply connected regions.

2. Derivation of the fundamental solutions for the stress functions of order one.

3. Setting up the dual Somigliana relations (both for inner regions and for outer
ones) from which the boundary integral equations of the direct method can be
derived.

4. Presentation of some results obtained by solving the integral equations of the

direct method. .
We remark that some results of the paper can be found in the work [9].

2. Dual equations in terms of stress functions of order one

Throughout this paper 1 = x and xo = y are rectangular Cartesian coordinates,
referred to an origin O. The totality of z; = x and zo = y is denoted by =z.
{Greek}[Latin subscripts] are assumed to have the range {(1,2)}[(1,2,3)], summation
over repeated subscripts is implied. The triple connected region under consideration
is denoted by A; — inner region — and is bounded by the outer contour

Lo=L ULy ULzULyy

and the inner contours which — partly or wholly — consist of the arcs Ls1, Li3, L5
and 'CuZ, 'Cu47 £u6'

Pt4:Pu4
9,

Figure 1

Further the inner contours £ and L5 lie wholly in the interior of the outer contour Ly
and they have no points in common. We stipulate that each contour has a continuously
turning unit tangent 7, and admits a nonsingular parametrization in terms of its arc
length s. The outer normal is denoted by n,. In accordance with the notations
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introduced 4, is the Kronecker symbol, J,, stands for the derivatives with respect to
Zo and €3, is the permutation symbol. The {symmetric}[skew] part of a tensor, say
the tensor t,y, is denoted by {t(.x)}t[en]:

Assuming plane strain, let u,, esn and t,\ be the displacement field and the in
plane components of stress and strain, respectively. The stress functions of order one
are denoted by F,.

For homogenous and isotropic material the plane strain problem of classical elas-
ticity in dual system is governed by the dual kinematic equations

tox = erSanp + T x € Al (21)

o
(txx is the particular solution that belongs to non-zero body forces), the inverse form
of Hook’s law

exx = o (t(en) = VEpudnn) € A (2.2)

1
2p
(1 is the shear modulus of elasticity, v is the Poisson number), the dual balance
equations

6/@p3e/\fiap + QOSa)\ = €kp3 (6)\& - 5)\»@34103) 6/) =0 LAY (23)

(equations of compatibility for a simply connected region; o3 is the rigid body rota-
tion) and the symmetry condition

€3uatir =0 x e A; (2.4)

(equation of rotational equilibrium). If this equation is fulfilled, then one of the
equations can be omitted. In this way we have nine equations for the nine
unknowns Fi, Fo, t11, t12 = t21, t22, €11, €12 = €21, €22 and 3.

The field equations , , and should be associated with appro-
priate boundary conditions. If a contour is not divided into parts, then either trac-
tions or displacements are imposed on it. If a contour is divided, then it is assumed
to consists of arcs of even number on which displacements and tractions are im-
posed alternately. In the present case {tractions}|[displacements| are given on the arc
{Ly =L ULzU L5} Ly = Lua U Lyg U Lyg]. We remark that hatted letters stand
for the prescribed values.

Upon substitution of the equation into the traction boundary condition nyt,, =
t, we arrive at the differential equation

dF,

ds

i, —t, = nuersFody = (2.5)

o o
where t, = nytr,. One can readily check that the solution on the arcs of £; assumes
the form

ﬁp(s):/P‘ i) ~too)] o sely. i=135.
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Let the constants (C) » be that of integration. The condition
ti

Fo(s) =Fp(s)+ (C)p 1=1,3,5 (2.6)
ti
is equivalent to the boundary condition (2.5)) and conversely.
REMARK 1.: Observe that the number of undetermined constants of integration is
two times as much as the number of those arcs on which tractions are imposed.
Since the displacements do not belong to the unknowns of the dual system one has

to clarify what boundary conditions can be prescribed on the arcs constituting £,,.
Let

1
K=K(ter, ¢3) = —%

/ tRABHAdA+/ n,ﬁt,@)\'&)\d57/ tHAEK)\gﬁpgdA (27)
2 Ja, c A

i u i

be a modified form of the complementary energy functional. (The modification is a
must in order to keep up the rotational equilibrium.) Solution to the problem posed
can be sought by making use of the stationary condition

5K =0 (2.8)

since the latter equation should ensure all the conditions the strains e,y and the rigid
body rotation 3 are to meet in order to be kinematically admissible. In the functional
exx 1S given in terms of the stresses t,) via Hook’s law while the stresses t,)
should satisfy the equilibrium equation and the traction boundary condition though
it is not necessary for them to be symmetric. Consequently, the variations of stresses
can not be arbitrary but should meet the conditions

0ten0x =0 re A and N0ty =0 zeLly. (2.9)

Both conditions are satisfied if dt, is given in terms of the variations of stress func-
tions

Otrx = €xp30F20, (2.10)
where §F) is arbitrary on A;. However, with regard to (2.6]) it follows that on £,

6Fy(3)=6C, (i=1,3,5). (2.11)
t1

Derivation of the conditions the strains e,y and the rigid body rotation should meet
in order to be kinematically admissible requires the transformation of the stationary
condition

oK = —/ € O dA+/ T, 0t Ty ds—/ 5t,€)\€,$)\3<p3dA—/ tHA65A35<p3dA =0.
A A ;
(2.12)

i Ly A;
The main steps of the transformations are as follows:
1. Substitution of the condition (2.10]) into the first and second surface integrals

and substitution of ([2.1)) into the third surface integral.
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2. Substitution of the relation
doFy

n,.ie,ipgtgf)ﬂ =

into the line integral taken on L,,.

3. Application of the Green-Gauss theorem [10] to the first and second surface
integrals.

4. Performation of partial integrations on the arcs constituting £, taking into ac-
count the validity of at the extremities of the arcs.

5. Division of the line integrals obtained by the application of the Green-Gauss
theorem by using the relation

then substitution of (2.11)) into the line integrals taken on L;.
6. Transformation of the result making use of the equation

Np€rp3 = —Tx - (2.13)
After performing the steps listed above

0K = / (clipfﬁel-c)\ap + QDgaA) 0F\dA — / (f¢8¢) 59036[14
A;

i

di
+ Z /LM {nﬂ'[eﬂ'm?yen)\ - 57r/\903] - dS/\} 5-7:)\ds

i=2,4,6
+ Z nﬂ'[e‘n'm3en)\ - 57r>\<p3]d3 - @A\?’.Hl 0 O A= 0
Li; . ()
i=1,3,5 i

is the stationary condition. Since the variations are arbitrary from this condition it
follows the compatibility condition (2.3)), the symmetry condition (2.4)) — in the latter
tx is given in terms of Fy —, the strain boundary condition

du
TS)\ =MNx [67'(%36}?)\ - 57&')\(;03] 5 (214)

the compatibility condition in the large
/ N [€xn3ern — Onapslds = 0 (2.15)
L
and the supplementary condition of single valuedness
. (P .
/ Nrl€xnzerr — Omapalds — x|p " =0 (1=1,3). (2.16)
Li;

REMARK 2.: The strain boundary condition can also be obtained if one regards
the primal kinematic equation

1
e\ = 5(%4% + ux0x)
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on the contour, multiplies it by n e x3 = 7, taking into account that u[,{@\] =
—E€RrA3P3-

REMARK 3.: Both the compatibility condition in the large and the supple-
mentary condition of single valuedness can be set up by integrating the strain
boundary condition appropriately.

REMARK 4.: It can be shown that only two of the three conditions (as a matter of
fact three times two conditions) and are independent of each other. In
accordance with this, one can set one times two of the three times two undetermined

constants of integration (C)p, say (C) p, 10 zero since there belong no stresses to the

ti t1

stress function 7, = C , = constant. In other words, we have as many indepen-
t1

dent macro conditions of single valuedness as there are undetermined constants of
integration.

3. Basic equations and fundamental solutions

Here and in the sequel we shall assume that there are no body forces. Substitut-
ing the dual kinematic equation (2.1) into Hook’s law (2.2 and the result into the
compatibility equations ([2.3)) we have

1 1.1

QILL(l — V)Aj:l — ﬂ(§ — V)(]-'181 + ]—'282)81 + 903(91 =0, (313)
1 1
E(l —V)AFy — ﬂ(i — V) (F101 + F202)02 + 302 = 0. (3.1b)

These equations are associated with the symmetry condition in terms of F,:
F101 + F202 = 0. (3.1¢)

Upon substitution of into b) the latter, two equations become much sim-
pler. In spite of that and for the sake of a comparison with the plane orthotropic
case, the work on that problem is in progress, we do not change the above equations.
Introducing the notations

1 11 11

(I—V?lAl— ﬂ(i —V)alal ) —E(i —11/)?182 —81
D] = Lt Nz _ Lt _
2/L(2 u)8281 2,LL<1 V)A 2u(2 V)agag 82
-0 —0o 0
(3.2a)
and
up = (F1, F2, —p3) (3.2b)

the basic equation takes the form

@ikuk =0. (33)



Integral equations in terms of stress functions of order one 243

Let Dy; be the cofactor of D y:

1
*8282 (91(92 7(1 - V)A81
[Dkl] = 8281 —(9181 %(1 — V)A@g . (34)
1 1
It is obvious that
Dix®p = Dix Dy = det(Dj1) o (3.5)
where )
det(®;;) = fﬁ(l —V)AA. (3.6)
If we introduce a new unknown x; [11], [12] defined by the equation
w, = Dyixi (3.7)

and substitute it back into the equation we have an uncoupled system of differ-
ential equations

Dirur =D Drixy = det(@jl)xi =0. (3.8)
Let Q(&1,&2) and M (z1,22) be two points in the plane of strain (the source point
and the point of effect). Further let e with components e; be a unit vector at Q. We
shall assume temporarily that the point @ is fixed. The distance between @ and M is
R, the position vector of M relative to @ is r,. Solution to the differential equation

Dt + 6(M — Q)e; =0

is referred to as fundamental solution. It is clear from all that has been said — see (3.7]),
(3.8) and (3.5) — that the fundamental solution is obtainable from the fundamental
solution for the Galorkin functions, i.e., from the solution of the differential equation

1
det(Dj1)xi + 0(M — Q)e; = _ﬂ(l —V)AAx; + (M —Q)e; =0. (3.9
Making use of the fundamental solution
I 2
(M,Q) = —F R2InR - 1)e; 3.10
GLQ) = e R R - 1)e (3.10)
valid for the plane biharmonic equation [2] we have
w, = U (M, Q)er(Q) (3.11)
where
—2InR -3 - 2722 2 %(l—u)%
ror T 2 T
[ﬂkl(M7Q)]:ﬁ 2 ;; —2InR—3-2 11%21 ﬁ(l_”)R%
20-np 21-n72 0
I Y Re I Y Re
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REMARK 5.: The fundamental solution $4x; (M, Q) satisfies the symmetry conditions

U (M, Q) = (M, Q) = Uy (Q, M) = Uy (Q, M) . (3.13)

Consequently
w, = (M, Q)e(Q) = erl(Q)thk (M, Q) . (3.14)

REMARK 6.: Each row and column of (M, Q) as a three dimensional vector
satisfies the basic equation (3.3) both in M and in Q.
Substituting the columns of (M, Q) into (2.1)) and recalling that the particular

solution for stresses is assumed to be zero, we have the fundamental solution for
stresses

rs Arir2 4 T
—6rg + 4R—22 2r; — ]%22 ——(1- l/)%
?1 I 9 47“%7"1 9o+ 47“%7‘2 2 (lf )r% - 7‘% zl
= — ry— —2r —(1—-v
| T ar(i— )R TR TR R? o
o+ I gy gl LD
> R? VT Re 1 R?
(3.15)

It can be shown that t19 = t97.
With the aid of Hook’s law ([2.2)) one obtains the fundamental solution for strains

3 2
5 175 4 172
—2(3 -2 422 2(1—2v)ry —4 22 —Z(1-—u) L2
o ) (B—2v)ra+4dps 2(1-2v)n jip u( v) .
_C drir, driry 2 r3—r3
Z;z = ﬁ 2r1 — R2 —27r9 + R2 ;(1 — V) R2 22
7’%7‘2 ril” 4 r17r2 3
—2(1—-2v)r2 +4 2 23 —2v)r; — 4@ ;(1 —v) 2
(3.16a)
. 1
C=——7——. 3.16b
8m(l —v) ( )
For our later considerations we shall introduce the notation
dU)\
Hh=——" 3.17
= (3.17)

where the vector ty is referred to as displacement derivative. Comparing (2.14]),
(3.16alb) and (3.17)) for the vector t) from the fundamental solution we get

o

6 (M) = el (Q)Ti (M, Q) (3.180)
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where
_ 2 2 -
niri (4]%2 —-2(3-— 21})) —nary (4R2 +2(1 - 2v)>
r3 r?
+narg | 4—5 —2(3 — 2v) —niry 4? —2(1—2v)
r? r?
i ¢ —niry (4R2 +2(1 - 2v)> naTo <4R2 —2(3— 2v))
lA( 7@) - ﬁ 7"% 7"%
—nary (425 — 2(1 — 2v) +nir 4? —2(3—2v)

2 _ g2 4 LT
EL—T3 = itz
21 —n1—(1—v)
n1 fl V) R2 2,[14 2R2 )
17 r{ —r3
(1 — )2 ‘-
i ma, (=) T e (=)=

(3.18b)
Here and in the sequel the small circle over the letters M and/or @ has the meaning
that the corresponding point is located on the contour. The normal n) is taken at
the point ]\04 .

REMARK 7.: Recalling that in the circle of the boundary value problems considered
either the stress functions or the derivative of the displacements with respect to the
arc coordinate can be prescribed at a point on the contour for our later consideration,
it is worth giving the value of the stress functions from the fundamental solution on
the boundary:

wy = e (Q)tn (M, Q) . (3.19)

The displacement derivative from the fundamental solution is given by (3.18alb).

4. Somigliana identity and formulae in dual system — inner region

Here and in the sequel it is assumed that the region A; under consideration is simply
connected and lies wholly in finite. The contour £y is divided into arcs of even number
on which displacements (or their derivatives with respect to s) and tractions (or stress
functions) can be imposed alternately. In Figure 2 the region A; is divided into four
arcs though this fact does not play any role in the transformations.

The functions Fy, tex, eqx and @3 are referred to as an elastic state of the region

A; provided that they satisfy the field equations (2.1)), (2.2), (2.3) and (2.4). Let

*

* * *
'7:1#7 tn/\a €rrs P3 and f’d)a tli)\) €y P3

be two elastic states of the region A;. Applying the Green—Gauss theorem and taking
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o
1' into account (since there are no body forces ¢,y = 0) one can write

/ [enpserndy + 2300 FadA — / (Fydy) f3dA = (4.1)
A; .

i i

= % nﬂ"[eﬂ'ﬁgeﬁ)\ - 677)\903]‘7:/\d5
L,

- / (fd;aw) (p3dA - / (Fwaw) &JgdA

REMARK 7.: Observe that the first surface integral and the sum of the last two
surface integrals on the right side do not depend on the placement of the asterisk
which can be put over the first or the second factor of the corresponding products.

L

t3

Figure 2

If we replace the asterisk over the letters denoting the first elastic state and subtract
(4.1) from the resulting equation, then we get the dual Somigliana identity for plane
problems

/A [Enpgéﬁ)\ap + :038)\].7:)\(1/1 — /A <f¢aw> p3dA (4.2)
- / (enpsenrdy + pa0n] FrdA — / (Fu0y) oadA =

= \%ﬁ Ny [Eﬂli3zl{>\ - 67r)\(*;03}f)\d5 - f uzs [677/@36:1)\ - 577)\503]f)\d5~
On the left side we have the integrals of the basic equations. As regards the right
side, we have the integrals of those quantities one can prescribe on the boundary.
Recalling the relations b,c), b), giving the basic equations and the
notation in which the derivative is given by 7 one can cast the Somigliana
identity into a form similar to the Green identity [2]

/A {uk (@klﬁl) Y (@klul)} dA :7{ b — tiata] ds. (4.3)

Lo
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REMARK 8.: When deriving 1D we have never taken into consideration that i
and uy, are compatible, i.e., fulfill the basic equation (3.3]). Consequently, the equation
(4.3) is really an identity which is always valid if iklk and uy are differentiable as many
times as required — in other respects both functions can be arbitrary.

In order to establish the dual Somigliana relations it is assumed that ftk is an elastic
state given by (3.11)) and (3.12). Quantities in the line integrals are defined by (3.19))

and (3.18a}b).

In what follows we shall utilize that u; is also an elastic state.

Since the state identified by the asterisk is singular at the point @ (at the source
point), we distinguish three cases depending on the location of @ with respect to the
region A;.

1. If @ € A;, then the neighborhood of () with radius R., which is denoted by
A, and is assumed to lie in A;, is removed from A; and we apply the dual
Somigliana identity to the double connected domain A" = A; \ A.. We remark
that the contour L. of A. and the arc C; of the contour L. within A; coincide
with eac}é other.

2. If Q@ = Q € 0A; = L,, then the part A; N A, of the neighborhood A. of @
is removed from A; and we apply the dual Somigliana identity to the simply
connected region A" = A; \ (4; N A.). If this is the case, the contour of the
simply connected region consists of two arcs, the arc E; left from L, after the
removal of A, and the arc E/E, i.e., the part of L. that lies within A;.

3. If Q ¢ (A; U L,), we apply the Somigliana identity to the original region A;.

Since both uy and uy are elastic states, the surface integrals in are identically
equal to zero. In what follows we regard the three cases one by one focusing attention
on the line of thought.

1. Making use of all that has been said above for Q) € A;, it follows from that

% [Tkx(f\%v Q)uAU\O@ - ﬂk/\(ﬂz Q)fx(]\(;[)] ds o (4.4)

o

+% [Tk)\(M, Q)u,\(M) —ilk)\(M, Q)t)\(M)] dsyr =0.

€

It can be shown that

j{ Tn(M,Q) dspr = drx (4.5a)

‘cs

I%imo Taa(M, Q) [ur(M) —ux(Q)] dspr =0, (4.5b)
e L.

]{ Tar(M, Q) ds _ 11 27Tcos dp =0 (4.5¢)
.. 3 5 M_47T/J:R5 0 pyap = 5 .

(The latter equation is fulfilled for any R. # 0. Consequently, if R, — 0 the
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limit of the integral is also zero.)

Jim T (M, @) (M)~ ur(Q)] oy = (4.5d)
8Ll)\ 8u,\ o
{‘%\ 373)\ M Q) laxl 87562 QT2‘| dsyr +IE(RE)} =
471_ (t21 - t12) + Rlirilo IE(RE) =0 )

(Since uy (M) is an elastic state, the stress tensor is symmetric and the expression
I. is homogenous in R..)

RhmO }JM(M Qt(M)dsy =0, (4.5¢)
(The relation

. Oouy BuA dr1  Ouy dxs

A = ——- —_— . — —

0s 8331 ds Oxy ds

has been applied here and it should also be applied in the following transforma-
tion. In addition one should take the limit limp,_,o R. In R, = 0 into considera-
tion.)

i - Usx (M, Q) (M) dsyr = 3] = —usg, - (4.5f)

If we take the limit of the equation (4.4)) as R. — 0 and substitute the formulae
(4.5al...,e), we obtain the first dual Somigliana relation:

a-1 (. Qi1 g, ~ f Tl Quatinas . (46)

2. IfQ = 52 € 0A = L,, it follows from 1' by the steps leading to 1) that

[ 5L Q) — s (i1, QD) as, (47)

o

+A/ [gﬁA(M,é)u)\(M) —u,{)\(M,é)t)\(M)] dspyr =0.

€

It can be shown that

lim [ (M, Q) dsar = enr(Q) (4.82)
R-.—0 [:;

o o
where c,) (Q) = 0,1 /2 if the contour £, is smooth at the point Q. If the contour
o
is not smooth, then ¢, (Q) depends on the angle formed by the tangents to the
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o
contour at (.
It can also be proved that

lim [ Ta(M,Q) [uA(M) - uA(CO))] dsar =0, (4.8b)
R-—0 E/
thil L[H)\(M Q)t,\( Ydsy =0 (4.8¢)

If we take the limit of equation (4.7) as R. — 0 and substitute the formulae
(4.8alb,c) we obtain the second dual Somigliana relation:

o @ur(@) = § 4 (1.QuED sy~ § Ta(1. Q1) ds - (49)

REMARK 9.: The two line integrals in (4.9)) should be taken in principal value.
REMARK 10.: The integral equation 1
ty(M) on L; is that of the direct method.

.9) with unknowns uA(]\L}[) on £, and

I Q ¢ (AUL,), then the line integral in the identity (4.3) is taken on £, (the

surface integrals on the right side are ab ovo equal to zero) and by repeating the
steps leading to (4.4)) we have the third dual SOMIGLIANA formula:

0~ a1 Qi as g, - f ST Qi dsy, . (w10

Making use of the first dual Somigliana formula (4.6) and the dual kinematic equation
(2.1) (in the latter case one has to recall that there are no body forces, consequently the

part

icular solution is zero) one obtains the formula for the stresses sx = (t11, t12,t22)

by performing the corresponding derivations

al(@ = . DulrQuinds, - § SuLQuinds, @

o

where the elements of Dk,\(]\(;[, Q) and Sk,\(]\oL Q) are given by

and

S

o . /’L ~ o

DiAn(M,Q) = R sy Dia(M, Q) (4.12a)

. Y 67y — 473 / R? —271 + 473 | R?
Dian(M,Q) = | —2r1 +4rir3/R*  2ry —driry/R? (4.12b)

2ry — dr?ry/R?  —6r) + 413/ R?
S(V,Q) = — 8, (11,Q), (4.13)
kA ; - St (1 — V)R2 kA ) .
1 2

11 = ?(nlrl + 77,27‘2) 6@ — 4(5 - 2V) :| — No l: Ri (3 - 21/) s (413b)
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2 1 T3
S12 = n1 4@ — 2(1 — 21/) ﬁng’l‘l 16@ — 4(1 + 21/)7‘2
— T {16%22 —4(1 - 21/)1«2} , (4.13¢)
So1 =S40, (4.13d)
3 2
Sop = %nlm [16% —4(3 — 21/)7‘1} + %TLQT1 {161}22 —4(1— 21/)1"2]

2
—ng {4—22 +2(1— 21/)} ; (4.13¢)
Sa1 = Sas , (4.13f)

3 2
g0 = %(nm + nara) {16% —4(5— 21/)1«1] —n [4;12 —2(3— 21/)} . (4.13g)

o
We remark that the normal is taken at M.

5. Somigliana formulae in dual system — outer region

By the outer region A, we mean the region outside the contour L£y. We shall assume
that the stresses are constants at infinity. These are denoted by

tll(OO), t12(OO) = tgl(OO) and tQQ(OO).

We shall also assume that there is no rigid body rotation at infinity, that is,

¢3(00) =0. (5.1)

Observe that the strains obtainable from the stresses at infinity via Hook’s law are
compatible for they satisfy the compatibility condition (2.3). The corresponding stress
functions are of the form

ﬁ)\(Q) - €a3p€at)\p(oo) + C)\(OO) (52)

where ¢y (00) is a constant vector to which there belong no stresses. Further let
u3(Q) = —p3(o0) =0. (5.3)

When deriving the dual Somigliana formula for the outer region A., we shall follow
the line of thought of the previous section with an emphasis placed on the difference.
It is assumed again that ftk is the elastic state described by the fundamental solutions
and . Further, uy is also an elastic state arbitrary at finite but it is to
meet the conditions
u, =1uy and u3 =u3 =0

at infinity. Depending on the location of the point @), we distinguish three cases in
the same way as we did for the inner region A;. It is assumed that the origin O is
within the region A;.
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1. If Q € A, we shall consider the triple connected region A’ bounded by the
contours Ly, L. and the circle Lr with radius .R and center at O. Here L. is
the contour of the neighborhood A. of @ with radius R. while R is sufficiently
large to involve both Ly, and L.. In addition, A, is to lie wholly in A,. Now
we apply the dual Somigliana identity to the region A’ and take the limit of the
resulting equation

¢ 5007, Qu (D) - (T Qi) s, (5.4)
Lo

—I-]{C [‘IkA(M Q)u,\( ) — ilk,\(M Q) (M )]ds]\(;[

€

"'%LR[TI@/\(M Q)UA( ) — ukA(M Q)t,\( )]ds&:()

as R. — 0 and .R — 00. As regards the sum of the first two integrals observe,
that the limit is formally the same as that of the integrals in (4.4)):

?{ <+ lim ---Zuk(Q)-&-]{ [Tk,\(M Q)ux(M ) ilk,\(M Q)t\(M )]ds]\%.
Lo c

RE—>O Ls
(5.5)

o

For the limit of the third integral we obtain

lim c=— 0 (Q) (5.6)

e R— 00 Lr

By making use of the results (5.5) and (5.6 we shall find from (5.4 for the first
dual Somigliana identity on the outer region that

w(@ =@+ Wil Q0N s~ § Tt Qua(inasy, - 67
L,
REMARK 11.: Derivation of the relation (5.7) requires long formal transforma-
tions. First one has to approximate ) and T, with one series in terms of
R to the power 1,0, —1, —2 etc. This transformation relies upon the use of the
relations:

T (M) = Rno (M), ro(M, Q) = za(M) - £4(Q) (5.82)
11 10 (M6a(@)  16a(Q)6a(@)
Rk \'"T R T2 .m T (5.8b)

11 na(D&GQ)  1&4(Q6(Q)

In—=In—+

R R R 2 - R?

1
naE o (Gang t k) +o (580

+- (5.8¢)

TaTp
R?

xR nang + 2ng

Further one has also to utilize the following:
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(a) For the outward unit normal and unit tangent in terms of ¢, we may write

ng = (sinp, cos @), To = (—cos, sin p) (5.9a)
(¢ is the polar angle).
(b) For (R — oo — see (3.17)), (2.15), (2.14) and (2.2)) -

o du 1
(M) = = =2 = Toepn = T 25 (tna(00) = vt (00)dn) - (5:9)

ds

and
dsj\} = Rdyp . (5.9¢)

(¢) Since the stresses (consequently the strains as well) tend to constant value
as . R — oo the coefficients of R always assume the form: an expression
constant at infinity and multiplied by

2m
/ sin™ ¢ cos® o df
0

where the powers n and k are natural numbers and depend on the term
considered, but the integral is of zero value.

(d) The structure of the terms being the coefficients of . R to the power zero is
similar, but they involve &, and the trigonometric integrals are not neces-
sarily equal to zero.

(e) Tt holds that
f T (M, Q) ds o = —6,» . (5.9d)
Lr M

(The same relation holds for any simply connected contour provided that
@ is an inner point.)

For keeping the extent of the paper below a reasonable limit we have omitted
the transformations leading to (5.7).

Q= 52 € 0A = L,, we shall consider the double connected region A/ bounded

by L., L. and L where L is the part of £, that is left after the removal of A,
and L. is the part of £, that lies within A.. Applying again the dual Somigliana
identity to A/ and taking the limit as as R. — 0 and .R — oo, we get the
second dual Somigliana relation for the outer region A.:

(@@ =@+ § (i1, Q (1) ds — § T Qun(T) ds
Lo c
(5.10)
REMARK 12.: The integral equation 1) with unknowns uy(M) on £, and
t\(M) on L; is that of the direct method for outer regions.
REMARK 13.: We have omitted again the details since the limit of the integral

on Lg is the same as that for Q € A, while the other terms can be derived letter
by letter in the same way as for the integral equation (4.9).

o
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3. It is obvious on the basis of all that has been said above that for @ € A; the
third dual Somigliana relation for the outer region is of the form

0= (@) + 7( T (L Qu(M)ds, . (5.11)

A Uer (M, Q)tx (M) ds o — jé

Lo
Let
gk = (tn(OO), tlg(OO), tQQ(OO)) . (512)

By repeating the line of thought leading to (4.11) we obtain the formula for the
stresses at the internal points of the outer region A.:

(@ =5(@ + § DG QD dsy, - f[; S (M, Qua(M)ds . (5.13)

o

where DkA(]\L;[, Q@) and Sk)\(]\(;[, Q) are given by (|4.123b,. .. ,d4.13g|).

6. Examples

We have applied the usual and well known procedure — see for instance [13] — for the
solution of the boundary integral equation of the direct method . The program
was written in Fortran 90.

In what follows we detail the main features of the algorithm.

We have used partially discontinuous quadratic elements by mapping the element
onto the interval n € [—1, 1]. The corresponding shape functions are Lagrange poly-
nomials

N'(n) = o= 772)1(771 ey (n—n*)(n—n% ,
N*(n) = (7727773)1(772 7771)(77—773)(77—771), (6.1)
N3(n) = o= 771)1(773 ey (n—n")(n—n%

with local nodal points n', n? and n® where ' = —1 and —1 < %2 < 73 < 1 are

regarded as previously fixed parameters if the discontinuity occurs at n = 1 while
73 = 1and —1 < n' < n? < 1 are regarded again as previously fixed parameters
if the discontinuity occurs at n = —1. For n' = —1 72 = 0 and n® = 1 the above
polynomials give the usual isoparametric approximation.

Let ny, be the number of nodal points. Further let nye be the number of boundary

elements. The elements are denoted by L. —e=1,..., npe.
Let ) )
ul t] )
ujz[ Jl} and tj:{ Jl} ji=1,...,np, (6.2)
L) t

be the stress functions and the displacement derivative —du)/ds at the nodal point
j. The matrices of the stress functions u and that of the displacement derivatives t
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are defined by

u’ = [uw g g g ] (6.3a)
uf’  uf om
th =g a|ge]... |t gm]. (6.3b)

Let there be constructed a function a(j, e) giving the local node number of the node
on element e with global node number j. For our latter considerations we introduce
the integrals

i, — / Tor (@i, M) NG (1)1 () d (6.4)
. Ee

ecy

and

by = / U (@1, NG (). (1) diy (6.5)
3 EE

ecy

where the summation is taken over those elements containing the nodal point with
number j, @; is the i-th nodal point (collocation point) and J(n) is the Jacobian.

With the notations (6.2)),. .. ,,

cii = [car(Qi)] (6.6)
and ~
h”‘ + Cj; ha i= j
h;; =< % Y 6.7
J { h;; ha i#j (6.7)

it follows from the second dual Somigliana formula (4.9)) taken at the collocation point
Q = Q; that

up t1
t
[hi b o by |2 | =[ba b o by, ]2
Uny,, tnbn

= 1, SN 7% (68)

After uniting these equations we have

hi; hi2 <o+ hig,, ug b1 bi2 -+ bin, t1

ho; hoo <o hag,, us | ba: ba2 <o ban,, to

hnbnl hnbn2 e hnbn"bn unbn b”bnl b’nan e bnbnnbn t"bn
(6.9)

or in a more compact form
Hu =Bt . (6.10)
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After solving the above system of linear equations we have the nodal values of the
unknown stress functions uy on £,, and the nodal values of the unknown displacement
derivatives ty on L;.

In the knowledge of the nodal values stresses at the internal points are computed
by using . Stresses on £, are computed element by element by substituting the
local approximation of the stress functions into ([2.5)).

Since there belong no stresses to the constant stress functions they are determined
with the accuracy of a constant vector. Consequently

' duy, dx”®
= ——_— = — 76 K
A ds ®3 ds 3K\

where 3 is the rigid body rotation which is to be constant if there are no stresses
and strains. Therefore it can be set to zero. If this is the case then t = 0 and if we

take the constant stress functions as ux, =1 (k= 1,...,npy,), then we have
2Npn 2npn
Z H;; =0 or, which is the same thing, H;; = — Z Hy;  1=1,2,...,2ny,,
j=1 j=1
(i#£3)

(6.11)
where H;; is an element of the matrix H. By using this property one can avoid the
numerical integration of strongly singular integrals.

If the region under consideration is an outer one, then there are some changes in
the final equation system. Let the matrix u be defined by

ST 11252 ~Tn Mo
' =[uyug|uyaz| ... |uyte agte] (6.12)
——
i’  ag ay,
where 1, is the matrix that involves u,, at the nodal point Q; (j =1,...,np,). With

this notation the equation system to be solved for the unknown nodal values takes
the form

Hu = i + Bt. (6.13)

Computation of strongly singular integrals can be avoided if we use the relation

Hii:—ZHin i=1,2,....2npn . (6.14)

Equation (6.14]) can be established in the same way as (6.11). ¢, in @1; — see (5.2) —

is set to zero.

Three examples are presented. The region under consideration including its matter,
is the same for the first two cases. ro = 10[mm], u = 8 - 10*[MPa], v = 0.3
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y
L I,
P Af uN) r
C X \C B X

Figure 3.

Problem 1. On arc BC the radial stress (normal stress) is o, = 100 [MPa] (there are
no shear stresses). On arc C'B the radial displacement is u, = (1 —2v)0o,7/2p (there
is no tangential displacement). One can check with ease that these values determine
a homogeneous state of stress of the region. The exact solutions are given by the
equations

.7:1 :.7:w:O'Oy:O'OT’SiI’lgD7 f2:fy:_aox:_UOTCOSQO,
Oxx = Oyy = Oo Txy:07
1—-2v 1-2v .
Uy = O = OoTsing |
21 21
1-2v 1-2v
Uy = ooy = O,T COS
y 2 oY 2% o ¥
where r and ¢ are polar coordinates. On arc BC' and CB
uz:fx:UoroSin@7 Uy:f = —0,To COS Y
and
¢ du, 1-2v . ¢ du, 1—-2v
—t; = = ——0,sin —t, = —= = 0o COS
z ds 2% oSy, y ds 2% o ¥

are the boundary conditions. The contour was divided into 16 equidistant elements.

The table below contains the numerical results for the stresses

X [mm] | y [mm] | o4, [MPa] | 75, [MPa] | o, [MPa]
-7.50 0.00 99.99927 | 0.0001113 99.99983
-5.00 0.00 99.99912 | 0.0000478 99.99988
-2.50 0.00 99.99917 | 0.0000182 99.99983
0.00 0.00 99.99918 | 0.0000000 99.99982
2.50 0.00 99.99917 | 0.0000182 99.99983
5.00 0.00 99.99912 | 0.0000478 99.99988
7.50 0.00 99.99927 | 0.0001112 99.99983
7.50 5.00 99.98317 | 0.0048330 | 100.00853
5.00 7.50 | 100.00854 | 0.0048269 99.98308
9.00 1.00 99.96938 | 0.0122755 | 100.02786
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Problem 2. The region is subjected to a pair of compressive forces with magnitude
100.0 N/mm. Consequently the boundary conditions on the arcs AB and BC' are

Fo=P=-100, F,=0

and
Fe=0, Fy =0,

respectively. With the notations of Figure 4

2P [cos3 9 N cos® 192} P

Ogy = )
™ T1 T2 7o
2P [sin®; cos®d;  sinds cos? dq
Ty = —— — 7
™ T1 T2

2P [sin2 Y1 cosd;  sin? V5 cos 192} P
Oyy = —— +
s

T1 T2 7o

are the exact solutions [14]. Figures 4 to 6 represent the exact and the numerical
solutions. The latter is denoted by diamonds. In this case the contour was divided
into 40 equidistant elements. The pairs of elements that meet at A and B are partially
discontinuous.

Sigma-xx
160

140
‘IEIII;
mn—f
a0-

B0

401

"-a""-5""-4'"'-2""0""2""4}{ B B8

Figure 4. Exact and numerical solution — o,, along the horizontal diameter
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Sigrma-yy
A

8 B 4 2 2 4,6 8

Figure 5. Exact and numerical solution — oy, along the horizontal diameter

Sigma-xx

0 8 B -4 0 2 2 4 B 8 10

Figure 6. Exact and numerical solution — o,, along the vertical diameter
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Sigrma-yy

-10 -8 r: -4 2 2 4 B g 10

Figure 7. Exact and numerical solution — oy, along the vertical diameter

Problem 3. Though the contour £, and the material are the same as in the previous
examples the region under consideration is the outer one for which a constant stress
state 044(00) = 100[MPal, 0,,(00) = 0y (00) = 0yy(00) = 0 is prescribed at infinity.

y
A
O X
Ty
6 () |*+— D —»| 0 ()

Figure 8. Outer region bounded by a circle with radius r, = 10 [mm] and centered

at O
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It is well known that the formulae

Oz (00) r2 3ré 4r?
Opr = % [(1 - r;> + (1+ 7“40 — 7“20 cos2p| ,
UTT(OO) 7’2 37"4
Opp = 5 {(14—73)— <1+r40> cos2<p] ,
o 3 4 2 2
Orp = 2 2(00) [(1 Ty ;;) Sin2<p]

r4

written in polar coordinates give the exact solution to this problem [15], [14]. The
table below shows both the stresses we computed and the exact solution on the y
axis. The contour was divided into 16 equidistant element.

x mm] | y [mm] | 0., [MPa] | 7, [MPa] | o, [MPa]

0.00 10.00 300.0395 | 0.0000000 0.001035
300.0000 | 0.0000000 0.000000
0.00 11.00 243.7623 | 0.0000000 21.51840
243.7743 | 0.0000000 21.51494
0.00 12.00 207.0554 | 0.0000000 31.82829
207.0602 | 0.0000000 31.82870
0.00 13.00 182.1018 | 0.0000000 36.23794
182.1049 | 0.0000000 36.23823
0.00 14.00 164.5539 | 0.0000000 37.48413
164.5564 | 0.0000000 37.48438
0.00 15.00 151.8498 | 0.0000000 37.03671
151.8518 | 0.0000000 37.03704

7. Concluding remarks

In accordance with our aims we have clarified what the supplementary conditions of
single valuedness are for a class of mixed boundary value problems in the dual system
of plane elasticity assuming multiply connected domains.

The fundamental solutions for the stress functions of order one have also been
constructed. In the knowledge of the fundamental solutions we have established the
dual Somigliana relations both for inner regions and for outer ones, which involve the
equations of the direct method. It has been shown that the system matrix H has the
same properties as in the primal system that is the sum of the elements in a row is
equal to zero (inner region) or to one (outer region). A program has been developed
in Fortran 90 for the numerical solution by using partially discontinuous quadratic
boundary elements. The three examples illustrate the applicability of the algorithm.

Two advantages of the algorithm are worthy of mention (a) calculation of stresses
requires the knowledge of the first derivatives of stress functions (b) concentrated
forces can be handled. It is, however a disadvantage that the supplementary conditions
of single valuedness should be taken into account on multiply connected domains. The
present program has not been capable of handling multiply connected domains.
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It can be shown, though the proof is not presented here, that the integrand in the
boundary integral equations is divergence free. Therefore it is possible to develop the
boundary contour method in a dual system as well [16].
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Abstract. By using the method of direct integration for solving the differential equations
of plane elasticity in a semi-plane, continuous and integrable solutions are found for the
boundary value problems when tractions, displacements or mixed boundary conditions are
imposed on the boundary. Single-valued relations are established between the tractions and
displacements on the boundary of the semi-plane. To ensure the correctness of the solutions,
the necessary integral equilibrium conditions for the tractions and a compatibility condition
for the displacements are formulated.
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1. Introduction

As is well known, the biharmonic Airy and Love functions are widely used [1,2,3] to
solve two-dimensional quasi-static boundary value problems of elasticity in infinite
regions by which we mean plane problems in a plane, semi-plane, and infinite strip
or axisymmetric problems in a space, semi-space, and infinite layer. By applying for
their construction the most powerful, as Gakhov aptly indicated in his famous treatise
[4], method of integral transforms [4,5], one can ascertain that the biharmonic func-
tions mentioned exist in the original space and belong to the class of continuous and
bounded functions, if the equilibrium conditions are satisfied by the loads. The reason
for this is that the integrals, in terms of which these functions are determined, are non-
convergent. This phenomenon is due to the discontinuity of the integrands for s = 0,
where s is the parameter of the integral transformation. We consider the Airy func-
tion for a plane elasticity problem in the semi-plane D = {z € (—o00,0), y € [0,00)}
as an example. This function can be given in the form

1 T 1 S
© [p—i— <p+i q> sy] exp(—|sly +isx) ds, i=+v—1.

27 52 s
— 00

Here p and g are the integral Fourier transforms [4,5] of the normal and shear tractions
p(x) and ¢(z) imposed on the boundary of the semi-plane. The correctness of the
representation above can be checked by inserting the formulae for stresses, which
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will be derived below, into the expressions giving the stresses in terms of the Airy
function. The previous formula shows that the integrand has a pole of order two if
s = 0. However, we are able to remove it by forcing the tractions p and ¢ to satisfy
the static equilibrium conditions

/pdx: /xpdx: /qdaﬁ:(). (1.1)

In view of the definition [4,5]

o
def

7,0 / (P, q) exp(—isz)d,

— 00

conditions (|1.1)) are equivalent to the following ones in the transformed space:
p(0) = p'(0) = q(0) = 0. (1.2)

It is proved in the well-known treatise [6] by Muskhelishvili that fulfillment of the static
equilibrium conditions (1.1)); 3 by the external forces is necessary for the displacements
to be bounded.

Note that the static equilibrium conditions, i.e., making the resultant vector and
the moment of the external forces about a given point equal to zero, are natural
preconditions the loads should meet in the theory of elasticity if the region under
consideration is a finite one. However, when we consider infinite regions, e.g., a semi-
plane or semi-space, in many cases the infinitely remote parts of the body are unloaded
though the resultant vector and moment of the total load are different from zero. It
is obvious that this leads to the violation of conditions (1.1). The vivid example for
such a problem is that of a semi-plane subjected to the pressure p = const, z €
[—a,a]l, a <o0; p=0, z€(—o00,—a)U(a,0), and ¢ =0, = € (—00,00) on its
boundary.

As a matter of fact, when one establishes the problem of finding continuous and
bounded solutions for the stresses and displacements in infinite regions under the
supplementary conditions of integrability of the functions in question in their domain
of definition, — these conditions, among others, follow from the requirement that
the strain energy should also be bounded — then in order that correct solutions [7]
of these problems could exist it is necessary that the tractions and body forces are
self-equilibrated as is the case for bounded regions. Besides, we shall require that
the correct solution of the boundary value problem of the classical elasticity theory
should be within the framework of an appropriate mathematical model: the stress
tensor should be symmetric and the model should adequately reflect the properties
of continua, i.e., integral equilibrium conditions deduced below for the stresses and
the integral compatibility conditions for the displacements and strains should all be
satisfied.

Making use of the method of direct integration of equilibrium equations, the paper
presents a correct solution of a plane elasticity problem in a semi-plane provided that
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tractions are imposed on the boundary. Single-valued relationships are set up between
the tractions and displacements on the region’s boundary. Utilizing these relations
and the solution in terms of stresses, we can easily find solutions for such problems
when displacements are prescribed on the boundary as well as under mixed boundary
conditions. It is proved that the solution of a plane problem in a semi-plane is correct
if the tractions satisfy the equilibrium conditions and one component of the
displacement vector satisfies the so-called integral compatibility condition.

2. Solution of the problem if tractions are imposed on the boundary

In the absence of body forces the plane strain state in a homogeneous and isotropic
semi-plane D = {z € (—00,0), y € [0,00)} is governed by [1,2]
the equilibrium equations:

0oy 004y 00y %

=0, =0, 2.1
ox y ox oy (2.1)
the compatibility equation in terms of stresses:
02 02
Ao =0, o0=o0;+0y, A:ﬁ—ka—yy (2.2)
the physical relations (e, = 0):
2Ge, = (1 —v)o, —voy o, =Vv0, (2.3a)
2Gey = (1 —v)o, —vo, , Gegy = 0gy (2.3b)
and the Cauchy compatibility equations (relations):
ou Ov Oou Ov
r = ) = =) T = — - . 2.4
¢ or’ Y dy Coy Jy + oz (24)

Here (z,y) are dimensionless coordinates; o; (i = x,y, 2), 0y, and €; (I = 2,y, 2), €ay
denote the components of the stress tensor and strain tensor, respectively; G and v
are the shear modulus and Poisson’s ratio; u and v are dimensionless displacements
(referred to ).

Let us assume that both the tractions

Uy(x7 0) = —p(az), Umy(xﬂ 0) = Q(x) (2‘5)

imposed on the boundary of the semi-plane and the stresses vanish if |z|,y — oo .
Under this condition the Fourier transforms of the solution

Gp=6G—0y, 0= 2(p+zfq)exp( Isly),

s
g

)I Iy} exp(—|[s|y), (2.6)

oy = |7 @ i05) I y] exp(~|s])
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can be obtained from the differential equations (2.1)), — see [8] for details — by
the method of direct integration. Formulae ([2.6)) can easily be transformed back into
the original space [4,5].

As the solutions of equations 1] are sought in the class of functions deriv-
able continuously — see equations ({2.1), 7 and (2.4) — the tractions p(z) and
q(z) should be continuous and absolutely integrable functions. The continuity re-
quirements for the tractions on the boundary are also caused by the fact that — as
an analysis of the solutions found by Muskhelishvili [6] shows — the stresses are un-
bounded at the point of the boundary where the normal tractions have a discontiniuty
of the first kind. In addition, the shear stress does not fulfill the symmetry condition.
If we suppose that the shear traction is discontinuous, the violation of the symmetry
law is obvious at the point of discontinuity. Moreover, as follows from the second
equilibrium equation for such a case, discontinuity of the shear traction on the
line y = 0 leads the mathematical model of the problem out of the classical theory into
the theory of generalized functions [9]. This follows from the fact that the derivative

doy|  _ _dg
y yzoi dx

should be considered in a generalized sense. Therefore, when the discontinuity of the
tractions p(z) and g(x) violates the symmetry of the stress tensor, in order that the
solution could be correct under given piecewise continuos tractions on the boundary,
we should expand our mathematical model to the so called micropolar or unsymmetric
theory of elasticity [2].

Integrability of the corresponding functions and the existence of the double integrals
[10] which involve the components of the stress tensor demand that these functions
should belong to the class L(D), i.e., the class of absolutely integrable functions
in their domain of definition D. By integrating the equilibrium equations and
taking the boundary conditions into account, one can prove that the components
of the stress tensor should satisfy the integral equilibrium conditions

Q/UIdy: /qsign(x—n) dn, /Jydx: /Jyxdxzo,

0 —00 —0o0 —o00
Z/U,Eydy:f/pkc—?ﬂdn, /Umydx:(), 2/omydy:f/psign(:rf17) dn
0 —o0 —oo 0 —o0

as necessary conditions. Making use of the boundary conditions (2.5)), it is easy to
obtain the equilibrium conditions (1.1]) the tractions should meet from the conditions
we have set up above for o, and o4, provided that y = 0.

After the stresses have been found, the strains are determined by relations
(2.3). Then integrating any two of the three equations , one can find the displace-
ments. The easiest way for such a procedure is to give the displacements in terms
of the longitudinal strains e; (i = x,y). Consequently, under the condition that the
displacements vanish at the infinitely remote points of the semi-plane, we find from
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equations (2.4); 2 the displacements

2u = / eysign(x —n) dn, 2v=wv; + /ey sign (y — &) d§, wv1 =wv(z, 0), (2.7)
—oo 0

whence the conditions

/ ezdz =0, and v = —/ey dy (2.8)
—o0 0

follow if x — oo and y = 0, respectively. The first one expresses the compatibility
condition for the strain e,, and the second one determines the displacement v; of the
boundary of the semi-plane in terms of the strain e,.

Inserting equations (2.7) into equation (2.4)3, we obtain the initial compatibility
equation

o [ ) o
2exy:8—y/exs1gn(m—n) dn—l—% v1+/ey81gn(y—§) d¢|. (2.9)
—o00 0

Differentiating with respect to = and y, we get that the latter equation implies the
well-known compatibility equation
D?ery, 0%, D%y

= 2.1
0z 0y 0y? + Ox? (2.10)

under the necessary equivalence condition

dvy T e, (0) .
2 o = 2e44(0) — 9y sign (z —n) dn, (2.11)
whence -
. 0e, (0
201 = / [619(0) sign (z —n) — 68:5 ) |z —n|| dn. (2.12)

For the sake of brevity here and in the sequel we employ the notational convention
ezy(0) = egy(z, 0), etc. Observe that the equivalence condition (2.11) has been
obtained by an appropriate integration of equation with the purpose of reducing
it to equation and by further comparison of the two expressions obtained.

It follows from expressions (2.8)2 and that the strain e, should satisfy the
compatibility condition

i ——Ooe ign (r — _863:(0)3:_
2O/eydy— Zo[wm)sg( n- 200yl a. ey
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By integrating equation (2.4)3 and taking the solution (2.7) for the displacement u
into account, we obtain the integral compatibility condition for the shear strain

(oo}

//Dezydwdy: /xe$(0)dx. (2.14)

— 00

For our analysis to be complete, we also give the two integral compatibility con-
ditions for the displacement vector components. These are easily obtainable by inte-
grating formulae (2.7) and utilizing conditions ([2.8)):

oo o0 o0 oo

/udmz—/xegcdx, /vdy:—/yeydy. (2.15)
0 0

— 0o — 00

Consequently, in the case of a plane problem of mechanics of deformable solids in
a semi-plane the strains and displacements should satisfy the integral compatibility
conditions (2.8), (2.13)-(2.15).

Using the physical relations for the longitudinal strains and the solution
for the stresses and taking the conditions into account, we can express the
displacements in terms of the tractions imposed on the boundary:

1 (o)
4Gu = — / [<p+ z|s|q) Isly — (1 —2v)p —2(1 — Z/)Z.|S|q:| exp(—|sly + zsaz:)g ,
7r s s is
(2.16a)
LT/ sl 1 i .
4Gv = -~ D+ i—a)y +2(1 - V)Hp +(1- 2u);q exp(—|sly + isx)ds.
(2.16b)

These formulae show that the integrands have a singularity of the first order at s = 0.
In other words, for the integrals and simultaneously the solutions of the problem
(2-1)—(2.5) — including the solutions for the displacements as well - to exist in the form
of continuous and bounded functions the singularity of the integrals should be
removed. If we require that p(0) = g(0) = 0, then the singularity is removed. This
condition is equivalent to making the resultant vector of the tractions equal zero.

It can also be proved that vanishing of the resultant moment of the traction p
is necessary for fulfilling the integral condition and the existence of the integrals
lﬁllment of conditions is sufficient for the validity of conditions
and (2.13)).

Therefore, it follows from the equilibrium equations (2.1)) and the compatibility ones
that for the solution of the plane elasticity problem to exist in the class of
continuous and integrable functions, the tractions imposed on the boundary should
satisfy the equilibrium conditions , i.e., they should be self-equilibrated. In the
opposite case neither the stresses nor the strains are integrable and the displacements
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do not belong to the class of bounded functions. In other words, solutions of elasticity
problems when the tractions on the boundary or the body forces are given in the form
of the Dirac delta-function should be considered only as Green’s functions [11]. The
latter represent some generalized functions [9] (from a mathematical point of view),
which have a physical sense on a par with given “good” functions in the form of
an integral convolution. In our case, this is the convolution with self-equilibrated
tractions on the boundary of the semi-plane. On the basis of formulae and
they can be presented in a final form similar to that in [5].

It should be emphasized that according to our investigations the stresses
in a semi-plane subjected to tractions being not self-equilibrated are the asymptotic
solution of a plane elasticity problem in an infinite strip under the same tractions
exerted on one side of the boundary and the Winkler conditions on the opposite one,
the latter tending to infinity. If this is the case, both the displacements and the elastic
strain energy are unbounded and thus lose their physical sense.

3. Solution of the problem if displacements are imposed on the boundary

Let us assume that the field equations ([2.1)—(2.4) are associated with the boundary
conditions

U(J}, 0) = ’U,l(l'), v(:c, O) = 1)1(1'), (31)

where the functions u(z) and v;(z) are continuous together with their first deriva-
tives, absolutely integrable and vanish if |z| — co. Using formulae (2.16)), we can give
the displacements on the boundary in terms of the tractions p and ¢:

—2Gisu; = (1 —2v)p+2(1 — z/)i%q, (3.2a)
2G|s|v; =2(1 —v)p+ (1 — 2v)i % (3.2b)
or vice versa:
~ 2G . .
P=s— [(1—2v)isuy +2(1 — v)|s|o1], (3.3a)
i=; 2_6;” (1 — 2)istr — 2(1 — v)]slin] (3.3b)

.6)), we have the bOluthIl of problem ({2.1])—

(2.4) under the boundary conditions . Smce relations and . are one-
to-one, the solution of problem 7, ) has been reduced to the solution
of problem 7. By using the integral Fourier transformation of generalized
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functions [12], these relations can also be presented in the original space:

o0 o0

1 2
2Gu1:—§(1—21/)/psign(ac—n) dn+;(1—u)/qln|x—n|dn, (3.4a)
—o0 —o0
1 T 2 r
2Gv1:f§(172u)/q51gn(x777) dnf;(lfu)/plnh:f?ﬂdn; (3.4b)
26 dup 2 [ w
- 1-20)S _ 21— L S .
e (WP 20w [ il @)
2G dvg | 2 [ w
= 1-2v)—+—(1 - ———dn]| . .5b
1= (G- 2w [ T (3.50)

If the functions p(z) and ¢(x) are even, we see from that the displacement wuy
depends on the traction ¢ only, and the displacement v; — on p. In the absence of
one traction, i.e.,if ¢ =0, p # 0 or p = 0, ¢ # 0 it follows from or that the
displacements on the boundary are interdependent and the non-zero tractions can be
given in terms of the displacements in a very simple form

_ 26 dw o 26G duy
1—owde’ 17 12wz

p:

Note that the second integrals in the expressions (3.4) giving the displacements can
be determined by integrations by parts:

oo n 0 n
. d
/(p, Q)ln\w—n\dn=n@wlnlw—nl/ (P, q) dm + / ﬁ/ (P, q) dm,

n

whence it follows that, by forcing the functions [ (p, ¢)dm to satisfy the Holder
— 00

conditions, the Cauchy integrals in the above expressions exist in the sense of the

Cauchy principal value [6], and the limits are equal to zero if conditions (1.1)) are

satisfied. If the tractions p and ¢ are not self-equilibrated, these limits are equal to

infinity, which confirms again the above assertion concerning the absence of a correct

solution for problem 7 when conditions are violated.

As regards the existence of a correct solution of problem 7, the tractions
p and ¢ should satisfy conditions , and there exist relations — see — between
the tractions and displacements u; and v;. In addition one has to check whether
additional conditions should be prescribed on these displacements so that an unam-
biguous solution of problem ([2.1)—(2.4)), can exist. Inserting the expressions for
tractions into conditions (|1.1)) (or expressions into conditions (1.2)), we

easily ascertain that they are satisfied identically by the resultant vector. However,
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for condition (1.1)) or condition (|1.2))s in the transformed space to be satisfied by the
resultant moment the equality @;(0) = 0 should be fulfilled. In the original space, the
latter is equivalent to the additional compatibility condition:

[ee]

/ updr =0. (3.6)

— 00

Consequently, for a solution of problem 7, to exist in the class of con-
tinuous and integrable functions, it is also necessary that the displacement u; of the
boundary of the semi-plane should satisfy the integral compatibility condition (3.6]).
This fact does not mean that there exist no solution of the elasticity equations men-
tioned if the boundary condition u(z, 0) = us(x) violates the integral condition (3.6).
However, such a violation leads to dissatisfying the necessary condition (1.1) for the
resultant moment. This makes the fulfillment of conditions and (2.15) impos-
sible; the solution becomes an incorrect one for the mechamcs of deformable solids
because it does not satisfy the conditions of compatibility of continua. However, the
integral compatibility condition is not an unexpected one typical only of the
problem under consideration. As the research in connection with the existence of
solutions for some other one- and two-dimensional elasticity problems for which dis-
placements are imposed on the boundary (e.g. a two-dimensional non-axisymmetric
problem in a hollow cylinder) has shown, the displacements cannot be given in an
arbitrary way — they should satisfy some integral condition.

4. Solution of the problem if mixed conditions are imposed on the

boundary

Let us consider finally the solution to the problem (2.1))—(2.4]) in a semi-plane, when
the mixed boundary conditions

(¢ #0) oy(z, 0) = —p(x), u(z, 0) = uy(z), (4.1)

or
(p # O) O—my(xa O) = Q(I)v U('Ta O) = 'Ul(x) (42)

are imposed on the boundary. If equations (4.1)) are the boundary conditions, then, by
making use of the relation (3.2a)), we determine the Fourier transform of the unknown
shear traction ¢ on the boundary in terms of the given functions p and u:

1

g= 501 [(1 —2v)isignsp — 2G|s|aq] . (4.3)
Inserting expression 1-) into formulae we obtain the solution of the boundary
value problem (2.1)—(2.4)) for the case of mlxed boundary conditions (4.1] . In a similar
manner we can also get the solution for the case of the mixed boundary conditions
(4.2): from the relation (3.2b]) we determine the transform p in terms of the prescribed

functions on the boundary ¢ and v; and insert that expression into formulae ([2.6)).
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It is obvious that for the correctness of the solutions the functions imposed on the
boundary of the semi-plane should satisfy the integral conditions (1.1)) and ({3.6]).

The paper does not intend to seek solutions for the problem 7 in a semi-
plane under such mixed boundary conditions when tractions are prescribed on a part
of the boundary, and the displacements are prescribed on the complementary part,
or if different versions of the conditions and are imposed on separate parts
of the boundary.

5. Conclusions

Using the method of direct integration, continuous and integrable solutions are found
for the equations of plane elasticity in a semi-plane provided the tractions are imposed
on the boundary. Making use of the one-to-one relations set up between the tractions
and the displacements taken on the boundary of the semi-plane, boundary value prob-
lems of the plane theory of elasticity with displacement or mixed boundary conditions
are reduced to the solution of the problem when the tractions are prescribed on the
boundary. Integral equilibrium conditions for the tractions and a compatibility con-
dition for the displacements are established to ensure the correctness of the solutions
we have constructed.
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Abstract. The inverse problem of the variational calculus is discussed in the present paper.
We shall show step by step how to find a Lagrangian for the large deflections of a rhombic
plate from the nonlinear partial differential equation proposed by Banerjee.
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1. Introduction

It is well known from the literature [1] that a system of differential equations has a
variational representation if it is self-adjoint, but it is very difficult to identify the
variational model in a traditional way. If the system of equations is not self-adjoint
there is no simple way to find an equivalent variational model.

For example, first let us consider the following equation

"

%—l—a:O, u' (z) #0, (1.1)

which is clearly self-adjoint [1]. As we have just mentioned, it is difficult to find an
equivalent variational model in the traditional way. By applying the semi-inverse
method [2, 3, 4, 5], however, we can easily obtain the corresponding variational func-
tional.

Let us assume that the Lagrangian of equation (|1.1) can be expressed as
L(z,u,u’) =vInu' + F (z,u) , (1.2)

where F' is an unknown function to be determined. Therefore we obtain the following
Euler equation

N
— (Ilnu/) — (Z) + 2—5 —0, (1.3)
or /l 8F
u
-5 =0 (1.4)
If we set OF
OF _ _, (1.5)
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then equation (|1.4)) coincides with the original equation ([1.1]). It follows from equation
(1.5) that the unknown function F' has the form

F=—au. (1.6)

Consequently, we have obtained the following functional for equation ([1.1)):

J(u) = /(u’ Inv — au) dz. (1.7)
Howerer, if equation ([1.1)) is written in the form
w4+ au =0, (1.8)

then it is clearly not self-adjoint.
According to He’s semi-inverse method [2, 3, 4, 5], a Lagrangian assumes the form

L(z,u,v) = F (x,u)u?, (1.9)

where F' is an unknown function. The corresponding Euler equation can be written

as
oF

%u’2 —2(Fu) =0, (1.10)
from where by performing the derivation we have
oF ,, oF ,, OF , ”
—u“ -2 — — F = 1.11
au " ( out Tt T 0, (L.11)
and oF OF
" / 2
=0. 1.12
ut Foz " + 2Fou 0 ( )
If we assume that OF OF
— d — = 1.1
For % ™ gpge =0 (1.13)

from equations (1.13]) that the unknown functional has the form

then equation (|1.12)) coincides with equation (|1.8). In addition it immediately follows

F=Ce™, (1.14)

where C is a nonzero constant. In other words, the variational representation for
equation (|1.8]) can be expressed as

J(u) = /Ce‘“”u’2 dz. (1.15)

In the present paper, we shall propose a straightforward approach to the inverse prob-
lem of the calculus of variations, and seek a Lagrangian for the differential equation
which describes the large deflections of rhombic plates [6]. We should remark that we
shall neglect the question of boundary conditions.
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2. Mathematical formulae for small displacement theory

Consider a rhombic plate made of an elastic, isotropic material and having a uniform
thickness h. Let the size of each side of the skew plate be sufficiently large compared
to h. The origin of the rectangular Cartesian coordinate system (x,y) is located at
one of the corners of the skew plate.

Y

Figure 1. Skew plate

Following Banerjee’s hypothesis [7], the differential equation which describes the
large deflection of plates is a complex nonlinear 4th order partial differential equation
[6,7]:

12A
Viw — W (Waz + VWyy) —
6A 2 2 2 2 q
0z (3wmwz + Bwyywy + Wazwy + Wyywy + 4wmywmwy) =D (2.1)

where E is the modulus of elasticity, D is the flexural rigidity, h is the thickness of

the plate, ¢ is the load intensity, v is the Poisson ratio of the plate material, A = v2,

A is a constant, w is the deflection normal to the middle plane of the plate.
First we shall consider the biharmonic equation

Viw =0. (2.2)

The Lagrangian of equation (2.2)) can be found with ease:

1
Ly (w) = 3 (V2w)? . (2.3)
To proceed, we regard the equation
Way + VWyy =0, (2.4)
for which obviously
1
Ly (w) = ~5 (w2 + 'Uwz) (2.5)
is the Lagrangian. Now we consider the Lagrangian
Lo 2
Lz (w) = —sw; +wy, (2.6)

2



276 Ji-Huan He

since the corresponding Euler equation reads
(), + (wyu2), =0 1)

or which is the same
Wag W, + Wyy Wi + AW Wy Wy = 0. (2.8)
It is obvious that the left side of equation (2.8)) is involved in equation (2.1)).
Now we take the following Lagrangian

Ly (w) = w (waaw} + wyywy) - (2.9)

The corresponding Euler equation reads

WWypw? + (wwi)m — 2 (Wwgpwy), + wwyywi + (ww?) =2 (wwy,w,)

D 0. (2.10)

y =
By a simple manipulation, equation.(2.10) can be transformed into the form

3wepw? + 3wyyw§ =0. (2.11)

which is again a part of equation (2.1). Making use of equations (2.3)), (2.5) (2.6)) and
(2.7)), we obtain

12A 6 3
L(w) = Ly (w) — N5 Ly (w) — 2 <L3 + 4L4> (2.12)
1 2 6A 3\ 9A
=5 (Vw)™ + T (wfc + vwi) + ﬁwiwi ~ ot (wmwi + wyywi) )

as the Lagrangian of equation (2.1)). It can easily be checked by determining the Euler
equation of the functional (2.12]) that the former really coincides with equation ({2.1]).

3. Conclusion

We have found a Lagrangian for the Banerjee equation which describes the large
deflections of a rhombic plate. However, the paper has dealt neither with the issue
of the boundary conditions nor with the effect the skew angle in the rhombic has on
the solutions. As regards the issue how to involve boundary conditions in the model,
we refer the reader to paper [8]. At the same time we remark that the singularities
due to discontinuous distributions of bending moments can be taken into account by
applying the method proposed in the book by Washizu [9].
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