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MOST FREQUENT VALUE PROCEDURES
(A SHORT MONOGRAPH)

Ferenc STEINER*

This monograph deals with modern statistical algorithms derived from the conception of the
most frequent value (the latter meaning both its original and its generalized form). Modern methods
are necessary as standard statistical procedures based on the least squares principle are not effective
enough for the error distributions commonly occurring in the earth sciences; the occurrence of the
sterile Gaussian distribution in these disciplines is the exception rather than the rule. The theoretical
background is also given as a means of helping in the applications for special purposes, i.e. to further
the development of various new algorithms for geophysical interpretation on the grounds of the
conception of the most frequent value.

Keywords: robust statistics, efficiency, outlier, resistance, error distribution, model distribution, super-
model, most frequent value, dihesion, 1-divergence

Introduction

Algorithms for interpreting measured data sets often use certain fitting
technique in an explicit or implicit manner; these methods of fitting or adjust-
ment can be deduced, by means of the known notion of ‘deviation’, from some
determination method of the location where the densest values lie.

Let the (ordered) sample be the following; 7, 9, 10, 11, 13, 40 (Fig. 1). Let
us try to answer without any preconception the question: which value can be
regarded as the most characteristic for the gathering? In other words: if we were

M E
— S — - _——
1 1 I I I I I
10 15 20 25 30 35 40

Fig. 1. Arithmetic mean (E) of the sample of six elements does not indicate the most likely
value, denoted by M

1 abra. Az abran bemutatott hatelem({ minta szamtani kozépértéke (£) nem a leginkabb
varhat6 értékintervallum kdzepét jeldli ki. Az utobbi sokkal inkabb elfogadhatd Af-re

Puc. 1. CpeaHeapudmeTyeckoe No NpumMepy M3 wwectu senemeHToB (E) He NonagaeT B LEHTP
Han6onee BePOATHOrO MHTepBana 3HaueHuin. MocneaHuit 3HaunTeNbHO Gonee npuemnem ans M.

* Department of Geophysics, Technical University for Heavy Industry, Miskolc-Egyetemvaros,
H-3515, Hungary
Manuscript received: 10 April, 1987
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to continue the sampling, which is that value, where, or in what neighbourhood
can the next value generally be expected? If we really do not have any precon-
ception, we have nothing to say against the value 10 (marked by M on the
figure). Visually we are inclined to accept this value, but we need an algorithm
for computation.

If, on the basis of a sample, we wish to determine the most characteristic
value by computation, we customarily calculate the arithmetic mean (or simply
‘mean’), without any additional consideration. This value, however, can give a
result which flatly contradicts the rational approach: in our example we get the
value 15 in this way (see the arrow marked by E); it can hardly be stated that
the next value is expected with maximum probability in the neighbourhood of
the arithmetic mean.

It is clear that the value of the arithmetic mean is strongly influenced by
the sample element 40 (it is indifferent if this value is a so-called outlier, or if
the occurrence of such values has a small but finite probability in respect of the
distribution itself, too). If we are able to determine by an exact algorithm the
location of the densest lying points (in our case M, which can really be called
the most frequent value), this method should fulfil the demand to be insensitive
to points lying far away. We are forced now to anticipate notions which will
be analysed later in this monograph.

The disadvantageous behaviour of the mean and the proper behaviour of
the most frequent value are closely connected with the fact that the arithmetic
mean as an estimate of location is not robust ; on the contrary, the most frequent
value is a robust estimate for the parameter of location, e.g. for the symmetry
point of the distribution (if the distribution is symmetrical). Since robustness
is a very important notion, we are obliged to say more about it even in the
introduction.

If one wishes to utilize mathematical results for practical purposes, we face
the following structure of the mathematical theorems: 'if..., then...”. Given the
fulfilment of the premises on the ‘if -side, we can immediately use the statement
of the theorem.

It would be impossible that the infinite number of real situations would all
be ‘covered’ by mathematical premises. It is therefore advisable if small changes
in the premises cause small changes of the consequences : and this is the very
content of the notion ‘robustness’. For a given robust procedure it is sufficient
if the premises are only approximately fulfilled. From the practical point of view
this is of immense importance as the domain of applicability becomes unusually
broad. Precisely because of this it is not astonishing that the number of math-
ematical articles dealing with robustness increased by more than an order of
magnitude in the seventies (Fig. 2. ; the percentual values were calculated on the
ground of numbers obtained from the data bank of the Dialog Information
Services, Inc.).

Until the introduction of the notion ‘robustness’ only a few decades ago,
engineers had implicitly supposed that mathematical statements do not change
significantly if the premises vary only insignificantly, i.e. they supposed that
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robustness was fulfilled. Tukey, in 1960, was the first to show that robustness

may not be fulfilled to a catastrophic extent for theorems and characteristics
bound by arithmetic means.

Fig. 2. Rapid increase in the number of mathematical articles treating problems of robustness
over a period of about ten years

2. dbra. Alig egy évtized alatt kdvetkezett be gyors emelkedés a robusztussaggal foglalkoz6
matematikai dolgozatok szaméaban

Puc. 2. BbICTpbIA POCT KOAMYECTBA MaTeEMaTUYECKMX CTaTell Mo MOLLHOCTU, NPOUCLUEAHMI 3a
JecsaTUneTme.

We shall see that the computing demand of robust methods is significantly
greater than that of the least squares technique (the simplest case of the latter
is the calculation of arithmetic means). Two opposite demands are therefore
required to be fulfilled: we are obliged to exhaust the maximum information
from our data sets, but the costs of the much greater computer time seems to
contradict it in the sense that the question arises as to whether the cost/informa-
tion ratio is really less by using robust methods or not. Fortunately the opera-
tion costs continuously decrease in such a drastic manner that in the near future
standard methods, i.e. methods based on the least squares principle, will not be
able to be applied economically, except in very special cases. Efficiency is of
great importance precisely in the earth sciences because data are expensive to
obtain; the application of a statistical method, say of 50% efficiency, means
nothing other than we have thrown out half of our data.



142 F. Steiner

If it is possible we shall use or apply robust methods. The present mono-
graph shows that robust procedures on the grounds of the most frequent value
conception are rather simple and therefore do not need too much computer
time. The style of the monograph is similar to that of the great part of robust
articles: we must flatly contradict some statements which are still accepted
nowadays (and are to be read in handbooks, too). The mental attitude of the
reader should always be (in both directions) open but critical and without any
preconceptions. Let us recall a remark of Huxley : “all truths begin as heterodoxy
and end as orthodoxy’. Really, some sentences can separately be enhanced also
from this monograph in such a manner that orthodox statisticians will indeed
find it to be heretical.

The first systematic monograph about robust statistics in general [Huber
1981] appeared a few years ago but was written for mathematicians and was
without concrete algorithms suggested for those applying them. The author of
the present monograph is convinced that interpretation methods in the earth
sciences (and also elsewhere) must increase effectivity as soon as possible by
using robust procedures, and that is the very reason why the method of the most
frequent values is the central theme of this work: the advantages of this concep-
tion are equally of theoretical, of practical and of a computertechnical nature.
The applications of this principle (instead of the least squares one) for the
manifold cases of practice may not be the task of only one team consisting of
only a few members; here, however, we give all information and foundations
for developing special algorithms to solve, economically, interpretation prob-
lems of different kinds.

The mathematical background of the reader may be very different: the
spectrum begins with those who ‘believe’ even nowadays in the predominant
occurrence of the Gaussian distribution, and reaches as far as to those experts
who already know or even apply robust statistical procedures.—Therefore the
following three tables may be of interest.

Table / shows among other things that experts working both in practice and
in the field of theoretical statistics have never believed in the general occurrence
of Gaussian distribution. However, because of the poor possibilities of comput-
ing technique, it was for a long time worth while to accept this hypothesis and
to develop practical algorithms on the grounds of the least squares principle.
Table 11 shows connections, similarities and differences among different statisti-
cal procedures and hypotheses, defining the place of the conception of the most
frequent value calculations. If the reader has some experience and theoretical
knowledge in statistics, the author hopes that Table 11 is fully understandable
(although drastic but unavoidable simplifications were made). Should this not
be the case the preliminary details contained in Table Il might serve as sign-posts
so the reader does not lose his way in the particulars of this monograph. Table
111 lists the demands of practice which must in any case be fulfilled by every
applied statistical procedure. The enhancement of these demands is important
inasmuch as a great number of ‘home-made’, ‘own’ procedures can easily be
defined (defining them either by the substituting distribution g or directly by



Some important dates and periods in
the development of statistics

What kinds of probability distribu-
tions do occur and do not occur in
reality? Only those experts are com-
petent who deal both with practical
problems and with theoretical statis-
tics

If we relate the notion of optimum
effectiveness to the costs of the whole
complex of the measuring and com-
puting work, the assumption of the
Gaussian error distribution in general
cases was indeed justified for more
than a century. The change of the opti
mum assumption in lime

New points of view, new notions and
new approaches in statistics:

GAUSSIAN GAUSSIAN GAUSSIAN THF. APPROPRIATE MODEL OF REALITY

Generally, optimum effectivenesscan be achieved by
algorithms fitting the real distribution; the assump
lion of Gaussian error distribution increasingly results
in an unacceptably low effectiveness

In most cases the assumption of Gaussian distribution (the principle of least squares) gives optimum
effectiveness ; nevertheless, for the most frequently occuiring distributions the least squares
technique has. in the statistical sense, often poor efficiency

Development of robust and resistant methods,
circa from 1960 beginning of the elimination of harmful dogmas
[TUKIVY. Hubi rJ

Table I. Block diagram showing the most important statistical principles, statements
concerning the relation between real probability distributions and the Gaussian one, and
illustrating the changes in the most economically usable model of probability distributions

I. tdblazat. Id6vazlat a legfontosabb statisztikai elvekre, a gyakorlatban el6fordulé
valészinlségeloszlasok ill. a Gauss-eloszlas viszonyat illetd véleményekre és a leghatékonyabban
alkalmazhaté modelleloszlasban nemrégiben bekdvetkezett valtozasokra vonatkozéan

Tabauua |. XpoHonoruyeckas cxema rnaBHeiWnMX NPUHLMNOB CTAaTUCTUKM, BbICKa3blBaHWIA
OTHOCMTENbHO COOTHOLLEHWS BCTPEYAIOLLMXCSH Ha MPaKTUKe BEPOATHOCTHLIX pacrpeseneHunii
C rayCCOBCKUM pacrnpefeneHviemM, a TakKe U3MEHEHWA B MOAensax pacnpegeneHus, Hanbonee

3PMEKTUBHLIX NPOUCLLEALINX B HEAABHEM MPOLLIOM.



Principle :

Basic idea:

The appropriate value accord-
ing to the basic idea is that T
value which satisfies the cor-
responding equation:

Main statistical principles and some procedures; connections,

similarities and differences

Maximum likelihood

ical form of the densitv function
fix) is given); based on the

ured values) that T isaccepted as
the appropriate value which re-
suits in maximal probability of

the sample
1 (some known
t logical steps)
B/ (V;
P
Jixf.T)

Minimization of the /-divergence

The unknown

probability  distribution

(characterized by the density function fix)) is
substituted (modelled) by the distribution
gix) with given analytical form; the loss of
information is measured by the so-called /-
divergence, and that 7 is accepted which
minimizes the loss of information

(differentiation

1 and application to samples)

bgtxc T)
A dT
t}r, gix,; 7)

In practical terms, the prin-
ciples prescribe weighted mean-
calculations in an iterative

manne

r

Alternatives for the choice of

the mo
r=0if

The

del distribution g (with
g isanalytically given):

The weight function and its de-
mand on computer time

For which actual types of dis-"

tributions has the method of
/m-determination maximal effi-
ciencies?

How is the efficiency of method
sensitive to alterations of the
type of distributions?

How is the method insensitive
to outliers? (the method can be
considered as a resistant one?)

corresponding  fitting

method (if not only a single
unknown value must be deter-

mined)

If the type of actual distribution and that of the substituting distribution are
identical (that is. g=f). both principles prescribe the same procedure for the
calculation of T. (The parameter of location T and the parameter of scale S
are calculated simultaneously in practice and this may cause differences in the
procedures derived from the two principles, and in their practical advantages,
too. It is further assumed, for the sake of simplicity, that S is known.) If the
distribution ol errors is characterized by a bell-shaped curve (the Gauss-curve
is only one of the infinite possibilities) then the density function can be written

X-T
S

Consequently the equation written above is satisfied by a T value which is the

final result of the iterative determination of weighted means calculated with
weights given by

Ix-T) =g X1

Accordingly, is the formula which
must hold. The demand
on computer time
depends upon the
analytical form of g

i.e upon the choice

of the model distri-
bution g. For simplicity,
we assume that S= .

Arbitrary

tpcan only be calculated
in a complicated man-
ner with a considerable
demand on computer
time

(The following ques-
tions can be answered
only for concrete cases)

foX)  c(a)(l+arar 2

i_
T) =
I+(*,- T)1
the calculation of these weights needs
minima! number of operations among
the real (i.e. not degenerated) alter-
natives for weights

For distributions characterized by
1,,(*), these distributions (using dif-
ferent values for a) adequately model
very different distributions occurring
in practice

For a very large interval of a-values
the efficiency is to a great extent insen-
sitive to the type of distribution (i.e.
the method is robust)

For a very large interval of a-values
the procedure is resistant

Adjustment according to the mostfre-
quent values (the so-called W-fitting).
The resulting hypersurface is deter-
mined by the points which have a
tendency of cohesion (the procedure
goes on without any regard to out-
liers)

feix) = -Le 2
Jin

1
O-T) =1

the weighted mean simplifies into an
ordinary arithmetic mean, consequently
the iteration is also superfluous

For only one single type of symmetrical
probability distribution (namely tor the
Gaussian distribution characterized by
fo)

The efficiency drops quickly if the actual
distribution differs from the Gaussian
distribution (i.e. the method is not rob-
ust)

The procedure is not resistant, the result
can be completely distorted in the
presence of only few outliers

The least squares adjustment (this is at
the same time the limiting case of M-fit-
ting if a -* 00). The hypersurface (de-
monstrating the results) tends to situate
itself so that no point should be too far
from the surface (even if because of this,
the surface removes itself from the den-
sest lying points)

Table Il. Simplified scheme showing similarities between the maximum likelihood principle and
the minimization of the /-divergence: both result in reweighted calculations. The correct choice
of the weight function (or, rather of the model distribution) leads to robust, resistant and
economical statistical procedures

Il. tablazat. Egyszer(sitett vazlat a legnagyobb valészin(iség elve és az /-divergencia
minimalizalasa kdzotti hasonlésdg bemutatasara: bizonyos (altalaban teljestild) feltételek mellett
mindkettd iterative stlyozott szdmitasokra vezet. A sulyfiggvény (ill. els6dlegesen
a modclleloszlas) alkalmas megvalasztasaval robusztus, rezisztens és gazdasagos statisztikai
eljarasokat kapunk

Ta6nmua I, YNpoleHHas cxema ans WAMKCTPaLyMu CXOACTBA MEXAY MPUHLMMNOM
MaKCUManbHO BEePOSTHOCTU W MUHUMaNM3auueli /-MBepreHuyUn: npu onpeaeneHHbIX, 06bIUYHO
BbIMOMHAIOLMXCA YCMOBUAX 06a NPUBOAST B pacyeTam, UTEPATUBHO B3BELLEHHbIM.
MoaxoAswmii BbIGOP BECOBOW (DYHKLMM, TO-eCTb B MEPBYIO OYepedb MOAENN PacrpeneneHus,
NPUBOANT K MOLLHbIM, YCTORUMBLIM 1 3KOHOMUYHbLIM CTATUCTUYECKUM CMOCO6GaM.
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giving the analytical form of the weight function tp), all being superior in
comparison with standard statistical methods in respect, for example, of the
insensitivity to outliers, but not fulfilling the given set of demands. The reader
will ascertain that algorithms developed on the grounds of the conception of the
most frequent values fulfil all the demands of Table IlI.
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Chapter 1
The notion of ‘robustness’ in mathematics and in practice

1.1 Probability distributions, parameters of location, estimates, distribution
of estimates, the law of large numbers, limit distributions

The primary purpose of this monograph is to define algorithms for most
frequent value calculations and to show how to apply this statistical conception.
We shall refer to a number of notions and theorems of probability theory and
statistics, without deriving or even accurately defining them. If required, all
relevant notions not defined in detail here are to be found in Cramer [1958],
Box et al. [1978] and Reényi [1962].

However, we shall often comment on the known results in such a manner
that the matter is put in another light: namely, it is impossible to speak about
robustness without some criticism of hardened opinions. (The style of articles
about robustness is therefore very often significantly different from that of
mathematics in general.) The secondary purpose of this monograph is to help
the reader—if necessary—to remove any preconceptions and even dogmata
which are wide-spread even nowadays about probability theory and statistics.

It is therefore not advisable to recall the well known notions solely by
giving a set of defining formulae, so we will make as if we would start from the
very beginnings.

111 The ®xpected value’, as a parameter of location and its estimation

If we have to measure some quantity, by repeated measuring (n times) we
will in general get differing values denoted by xu x2, x t, ..., xn. What can be
regarded as the characteristic, or even ‘true’ value of the measured quantity in
question? (True values can really exist, e.g. if the sum of angles in a triangle are
geodetically measured; in other cases, however, the notion of true value can be
without any meaning, e.g. if we measure the weight of grains of wheat. Also in
the latter case, however, the weight can be regarded as a true value but in a
different manner modified by unavoidable effects [Baule 1963].) Which single
value should be accepted as the most characteristic for the location of the data
Xj, x2, x ndemonstrated on a datum line?

The first proposition of Baule [1963] is to accept that value which is
characteristic for the gathered points (‘hdufigster Wert’, i.e. most frequent
value). If the mother distribution is symmetrical and unimodal (i.e. the density
function has only one maximum), we can perhaps accept the arithmetic mean

1
E,=- XX, )

«m=|
as an estimate of location, where
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E= f xf(x)dx 2
is a possible definition of the parameter of location, and this gives (if the integral
in Eq. (2) exists) the symmetry point. Figure 3 shows that in the cases defined
above we get estimates calculating E,, for such a parameter of location E which
has for the interval (E—e, E+e) maximum probability expressed by

/W dx (©)

E-e

in comparison to any other interval of the same length.

Fig. 3. In a symmetrical and unimodal case the expected value E gives the most probable value
in the sense that the occurrence of values in the interval (E—e, E +€) has maximum probability,
i.e. for any other value V differing from E the interval (V—e, V+e) is less probable

3. dbra. Szimmetrikus és egy maximumu esetben az E varhat6 érték valoban a legvalészin(ibb
értéket adja abban az értelemben, hogy az (E -e, E+e) intervallumbeli értékek el6fordulasanak
maximalis a valdszinlisége, azaz £401 kilonbdz6 barmely V értékre a (V—e, V+e)
intervallumba esés kevéshé valdszindi

Puc. 3. Mpu CUMMETPUYHOM pacnpeaeneHny ¢ OAHUM MAaKCUMyMOM MaTeMaTUuecKum
oXuaaHuem E aeiicTBUTENbHO onpeaenseTcs Hanbonee BEPOSTHOE 3HaUYeHWe B TOM CMbIC/E, UYTO
BEPOATHOCTb 3HAaYeHWii, nonagalowWwmx B uHTepsan (E-e, E+e) MakcMMaibHa, TO-eCTb
nonagaHvie B uHTepBan (V—e, V+e), rae V— nto6oe 0TAMYHOE OT £ 3HauyeHue, MeHee
BEPOSTHO.

Integrals in this monograph are to be understood as Lebesgue-Stieltjes integrals but a rather
conventional notation is used (without ...df\x), ...d£or £(dx)). In this sense Eq. (1) and many of
the equations in this monograph containing summations seem to be superfluous because if we
substitute the 'density function'

AW = 1X 6(x- X) @)
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in some integral formulae (Ty, xt, .... X, is the sample and & is the Dirac function), we get the
summation formulae (in the present case Eq. (1) from Eq, (2)). It is well known, however, that not
Only estimates of this type exist.

The density function can really consist of Dirac functions by using digital equipment. In this
case

J(x) = Ax £ f(iAx) mO(x-iAx) (5)

holds if Ax characterizes the last digit. By proper use of the equipment the Dirac functions are to
such a degree close to one another that their envelope curve gives d.v-times the primarily continuous
density function, see Fig. 4.

Fig. 4. Interconnection between a continuous probability distribution and its realization as
a sequence of Dirac functions (if we use digital devices)

4. dbra. Kapcsolat folytonos eloszlas és Dirac fiiggvénysorozattal valo realizacioja kozott (ha
digitalis mdszerrel mériink)

Puc. 4. 3aBUCUMOCTb MeXy HemnpepbiBHbIM pacnpefeneHMeM BepOSTHOCTEA 1 ero peanusauueit
psagom [Oupaka-J (npy Npou3BOACTBE M3MEPEHWUIA LM(POBOIA annapaTypoit).

The maximum probability shown in Fig. 3 seems to justify the technical
term ‘expected value' for E. Speaking about the expected value for a unimodal
distribution, we really expect the clustering of our results around this value, but
we can face a quite other situation, too. For example Fig. 5 shows a lognormal
density function, and the interval (M ~e, M +e¢) is much more probable than
the interval of the same length around E:

M+e E+te

j f(x)dx > 1 f{x) dx.

M-E E-e
(It would be easy to show examples, too, where not only the relation sign >
but also » would be justifiable.) The name ‘expected value’ for the value E can
therefore be highly unjustifiable but we shall consistently use this expression as
a technical term independently of its real meaning.
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Fig. 5. Example to show that the probability belonging to the interval (E—e, E+e), i.e. around
the expected value, can be much less probable than the probability of an interval of the same
length around another value, e.g. around the so-called most frequent value (M)

5. dbra. Példa arra, hogy a varhaté érték korili (E—e, E+e) intervallumba esés val6szinlisége
sokkal kisebb lehet, mint mas érték, pl. az M leggyakoribb érték korili, ugyanolyan hosszlsagu
intervallumba esés val6szinlisége

Puc. 5. MpuMep 3HaUMTENbHO GOMlee HU3KOI BEPOSTHOCTM MOMafaHKs B UHTEPBAN OKO/I0
mMaTeMaTnueckoro oxuaaHus (E—e, E+€), HeXenn B MHTepBan Takoi e A/IMHbI OKO/O
Hambonee 4acToro 3HaueHus M.

If our task really needs the ‘location of gathering’, then it would be
dangerous if we were to be misled by the suggestion of the name ‘expected
value’: we see that there are cases in which Eq. (1) is for this purpose unusable.
Baule [1963] (on page 4) refers to the fact that e.g. in biology, another value
is more suitable for characterizing the totality of data than the expression in
Eq. (1): ‘arithmetic mean lies near us because of custom but it is hereby by no
means justified’. The objection belongs here just to the fact that arithmetic
means do not always coincide with the most frequently occurring values.

1.1.2 Distribution of estimates, asymptotic variance, efficiency

Let us once more suppose that f{x) is unimodal and symmetrical and that
the integral in Eqg. (2) exists: even in this case one cannot be certain that the
arithmetic mean is effective enough to estimate the symmetry point. To what
does the meaning of efficiency belong? Suppose that we have to compare two
different estimation algorithms whose results are denoted by T' and T". If we
sample N times from the distribution f{x) and each sample contains n data, we
get equally N Thand N I estimates; if N -* oo we get more and more
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accurately the distributions of the estimates for both estimation procedures (and
naturally for ri). (To enhance the difference, we often speak about ‘mother
distribution’ in the case of the original f(x). The sample from a mother distribu-
tion does not categorically mean directly measured data: it can be a set of
derived data, too. However, the principal thing in the statistical respect is that
this is the ‘raw material’ of statistical procedures for estimating the parameter
of location.)

Comparison of the variances shows which type of estimation is more
advantageous. If n also tends to infinity, then n times the variance of the
estimates give as the limiting value the so-called asymptotic variance (A'2and
A"2; the square roots are the asymptotic standard deviations (A' and A"). If
A'<A", /N"42

(6)

is the relative efficiency; if A’2is the minimum asymptotic variance, Eq. 6 gives
the efficiency of T" in the absolute sense. The quantity (1/e—1) « 100 is economi-
cally very important: this gives the percentual surplus of data needed for the
same accuracy, if we calculate according to the less effective procedure.

If we use the arithmetic mean to estimate the parameter of location, not
only will the estimating procedure be the simplest possible but the asymptotic
variance will also be very easy to calculate:

A\ = J (x-E)Z(x)dx. @)
If we use sample medians (m) in the case of unimodal and symmetric
distributions for estimating the parameter of location, i.e. the symmetry point,
the asymptotic standard deviation (or briefly ‘asymptotic scatter’) Amcan also
be calculated for this estimation procedure very simply:
1

1.1.3 The law of large numbers, Ttentral’limit theorem

The expression in Eq. (7) is customarily used for the general characteriza-
tion of the mother distribution itself (and is called simply ‘variance’, without any
specification). This expression, however, characterizes the distribution f(x) in
one single and in addition in a very special point of view: is Eqg. (1) (i.e. the
simplest procedure for estimation) able to give acceptable approximations for
the parameter of location for samples from a given f(x) probability distribu-
tion?

It is a practically important demand that the law of large numbers must be
fulfilled, i.e. if n is greater, the estimate is more accurate. (It is well known that
‘the law of large numbers’ means a series of theorems in probability theory, with
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well defined premises and conclusions; we have the essence of these theorems
condensed in just a few words.)

The limit theorem, known as ‘central’, is perhaps the most beautiful the-
orem of probability theory: according to this the probability distribution of En
is of Gaussian type if n is large enough :

9)

where
o = AFlin (9a)

i.e. also given is the asymptotic distribution of the estimates.

One would perhaps say that because of the well defined distribution of
estimates of simple analytical form it is worth while to use arithmetic means as
estimates. We shall see in Chapter 4, however, that many more advantageous
estimates have Gaussian limit distribution, too. Why is just the theorem given
by Eq. (9) called ‘central’? If we decide arbitrarily to estimate always by
arithmetic means, then Eq. (9) indeed plays a central role (and the expression
in Eq. (7), too). By using other estimates, however, other formulae will play the
central role, and therefore Eq. (9) will be ousted to the periphery together with
the expression in Eq. (7).

We shall see, on the one hand, in connection with Table IV (in Chapter 5)
that arithmetic means can behave differently if AE=o00. On the other hand, the
finite value of AEdoes not nessesarily mean at the same time that the use of
arithmetic means as estimates is economical. The question of economy arises,
however, concerning the results of more advantageous estimating methods too,
and the answer depends on the probability distribution occurring in practice.

But what types of probability distributions really occur in practice? We can
naturally suppose an arbitrarily chosen special type of distribution—but we can
also acknowledge fairly as do Andrews et al. [1972], that ‘we never know in
practice what situation we face’.

It is commonplace to suppose Gaussian distribution which is also called
‘normal’ distribution. But why? A part of the truth is contained in the witty
remark of Poincaré [1912]: ‘mathematicians accept the normal distribution
believing that this is the physical reality, physicists use normal distribution
believing that this is a mathematical law’. It depends only on suitable premises
that the occurring probability distribution really becomes a Gaussian one: if we
deal exclusively only with such cases in which the superposition of a very large
number of very small effects (fulfilling some mathematical demands) results in
the statistical fluctuations, then the summing takes place simultaneously with
the establishment of the phenomenon and therefore by the fulfilling of these
suppositions the distribution can really be near the Gaussian one.

Mathematicians often reckon on the fulfillment of similar conditions.
A typical citation is that of Prékopa [1962]: ‘If we want to apply the method
of probability theory successfully, the conditions not taken into account must
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each be of relatively small effect.” The problem is that this is unacceptable for
geophysicists and geologists (and, | would think, for many other disciplines,
too). If a condition is neglected because of its very sporadic occurrence (and not
because of its negligible effect), and this causes outliers in an actual situation,
the statistical method must also be able in such cases to give reliable results. In
one word: the statistical procedure must be resistant.

c

Class Is the law of large 4

No. No. %) e @@ ©  humbers fulfilled?
1 no
1 X 1.500 0.356 2513 00 (its reverse x
6.2691([.v2+ 1) 4 is true)
1 no
1272 0.426 1.949 X (its reverse
4.5545(//\2+ 1)16 is true)
1 no
3 " 1112 0.469 1623 00 (its reverse x
+6"91(, X2 * 1)18 is true)
no
4 318 1.299 0.373 2.128 00 (its reverse x
8n( .vI32+ 1) is true)
5 L 1000 0500 1414 0 no
| : . x
n(v2+ 1)
6 L 0683 0419 1055 ) no x
2,0l +»2
2
4 if x-1
7 < 1240 0561 1.655 00 no x
-L ir r>1
L 4 ,
8 1075 0.589 1401 x no x
1
9 0840 0537 1146 es
2.5056( \2+ 1)24 x 4 x
1
10 0735 0558  0.984 es
s 2.1348([/:1 2+ 1)28 * Y x
il 0832 059 1078 x yes x
49( A 3+ )
1
2 0662 0573 0875  2.236 yes 6.530
1.8873([v2+ )22
3 -Le T 0925 0631 1165  1.000 yes 0.737
N
r
14 Loif st 0719 068 0871 0577 yes 0.439
0 if As1
4 15 N 0807 0562 1076 1414 yes 1726
16 2rator 00447 0364 00741 035 yes 2
n2
10.5 0.5
17 1732 0750 2000 1000 es 0.250
10 +1 4
2
18 0562 0590 0732 1000 yes 1.866
n(.r2+ 1)2

Ao(v) is the so-called modified Bessel function, see e.g. JahnKE-Emdh-Lésch: Tables of Higher Functions. McGraw-Hill. 1960.
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The conditions mentioned above (that result in a Gaussian error distribu-
tion) could be fulfilled in principle in the majority of cases but the real situation
can be characterized by a short remark of Tukey [1977]: “When the underlying
distribution, as always, is nongaussian...”. (Some similar citations have already
been quoted in Table I). The attribute ‘normal’ for the Gaussian distribution
type is therefore unjustified (and misleading) for mother distributions (the
guestion of estimates of distribution-type must be dealt with separately, this is
quite another question). Instead of ‘normal” we shall subsequently speak about
Gaussian distribution (as is also done in the second half of Andrews et al.
[1972]).

1.2 The notion of robustness with regard to practice

There are some optimum procedures in classical statistics which suppose
the occurrence of a given distribution type. One would think perhaps that the
efficiency of such procedures is near the optimum if similar error distribution
occurs. (E.g. the computation of arithmetic means is optimum for the Gaussian
distribution. This sort of estimating is perhaps near the optimum, say, also for
similar, i.e. for symmetrical and unimodal distributions.)

The article of Tukey [1960] changed dramatically the opinion of appliers
and of statisticians, too. Instead of following the original train of thought of
Tukey, we show in the following that an estimation procedure which can be

Table 1V. Some characteristics of dispersion for various types of distributions given by their
density function f(x). These characteristics are: dihesion (e); asymptotic scatter of the most
frequent values (efn(e))\ asymptotic scatter of the arithmetic means (&; the value a2 is known
simply as ‘variance’ and is commonly but misleadingly used to characterize the original
distributions themselves). The relative efficiencies are also given (nEnM): how many times more
data are needed to achieve asymptotically the same accuracy using arithmetic means (i.e. least
squares techniques) than by calculating most frequent values

IV. tablazat. A diszperzié néhany jellemzéje killénb6z6 f(x) suriuségfiiggvényl eloszlasokra.
A jellemz6k a kovetkez6k: dihézid (e); a leggyakoribb értékek aszimptotikus szérasa (e/fii(e));
a szamtani atlagok aszimptotikus szorasa (c; a a értéket egyszeriien ,,szérasinak nevezik és

szokdsosan  de félrevezet6 mddon  maguknak az eredeti eloszlasoknak a jellemzésére
hasznaljak). A relativ hatasfokok is adottak (nEnM): hanyszor annyi adat szilkséges a szamtani
atlagok (azaz a legkisebb négyzetek elvének) alkalmazasakor a leggyakoribb érték-szamitas
pontossagaval aszimptotikusan azonos pontossag eléréséhez

Tabnauua IV. HekoTopble XapakTepucTUKU aucnepcun Ans pacnpefeneHuii ¢ pasmyuHbIMu
BECOBbIMM (hyHKumaAmMKM f(X): auresms (e), acMMNTOTMYECKasA ANCNEPCUN Hanbosee YacTbIX
3HaveHuin fiVNri), acumnToTMyeckas gvucnepcms cpefHeapnMeTnyeckmx a (4acTto HasbliBaeMas
npocTo «aucnepcueli» 1 06bIYHO, HO OLUMBGOYHO MCMONb3yeMas AN XapaKTepUCTUKM
NepBUYHbIX pacnpefeneHuid). OTHOCUTeNbHbIE 3((eKTMBHOCTY NENM TakXkKe 3ajaHbl, TO-eCTb
3a/laHo, BO CKOMbKO pa3 60/blle AaHHbIX HE06XOAMMO MPU UCNOMb30BaHNUM
cpefHeapuMeTMUeCKMX, TO-eCTb NPUHLMMNA HAMMEHbLUUX KBaApaToB, Ans 06ecrneyeHus
acMMNTOTUYECKU WAEHTWYHOW TOYHOCTM, C TAaKOBOW Npu pacuyeTe Hambosee YacTbiX 3HAYEHWIA.
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applied advantageously for a given type of distribution, can become completely
unusable in the asymptotic sense if this distribution is changed arbitrarily small.
Let us define the following family of distributions:

1 if 14500
1(*) = (O<x0<0.5) (10)
if 1 >*0-
[
n
[-2*n
(All distributions are symmetrical to the origin.)

For the parameter value xo= 0.4 the density function is shown in Fig. 6.,
the distribution function in Fig. 7. It is obvious that the nearer the parameter
x0is to the value 0.5, the longer on the one hand is the interval for which the
distribution is uniform and, on the other hand, the smaller is the role of the
flanks, which decrease as const. x-2 for large values of |x|. In contradiction to
this, not only is the asymptotic variance A\ (Eq. (7)) of the arithmetic means
infinite but also the integral in Eqg. (2) is divergent, this means that even the

expected value does not exist. Whereas the arithmetic mean gives a good
estimate for the symmetry point of uniform distribution (with an asymptotic

1+

Fig. 6. Density function f(x) given by Eq. (11) for some value of n0. If *<,->0.5, the distribution
fix) is infinitely close to the uniform distribution (i.e. the distance of fix) from the uniform
distribution can be arbitrarily small); in contrast, the variance of all fix) distributions is infinite,
compared to the naturally finite variance value of the uniform distribution

6. dbra. A (11) egyenlettel adott fix) slrliségfliggvény valamely *0 értékre. Ha *,->0,5, az fix)
eloszlas végtelendl kozel jut az egyenletes eloszlashoz (azaz az fix) tavolsaga az egyenletes
eloszlastél akarmilyen kicsiny lehet), ugyanakkor az /(x)-ek szérasa mindig végtelen marad,
szemben az egyenletes eloszlas nyilvanval6an véges szorasaval

Puc. 6. MnoTHocTHas ¢yHKums fix), 3agaHHas ypaBHeHvem 11 ana npoussonbHoW *0. Mpu
x0->0,5 pacnpegeneHue fix) HeorpaHMYeHHO NPUBANKAETCA K PpAaBHOMEPHOMY pacnpefeneHuio
(To-ecTb paccTosiHue fix) OT paBHOMEPHOro pacnpefenieHnst MOXeT GbiTb CKOMb YTOAHO
MasibiM), B TO e Bpems AWCrepcus 3HaveHnin yHkumm fix) Bce Bpemsi ocTaeTcsi 6eCKOHEYHOM
B NPOTUBOMO/IOXHOCTb SIBHO KOHEUHOW AWCnepcuy paBHOMEPHOTO pacnpefeneHus.
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scatter of AE = 1/(2 |/3)) for the interval [-0.5; +0.5], the same estimate can
completely deteriorate in the asymptotic sense arbitrarily near this distribution.

It is important that the efficiency for a given estimation procedure should
not depend seriously upon the underlying distribution type. Expressed in a
single word : the estimation should be robust.

For what the meaning of this word is for engineers Pirkle et al. [1982] is
cited: robust estimators are ‘those which perform well under a condition of
nonnormality or of normality with outliers added as well as under conditions
of normality’. The order of succession is interesting and instructive: the first
point of view is the good behaviour at nonnormal distributions; the insensitivity
of outliers is the second one; finally the acceptable performance at the Gaussian
distribution is also demanded as cases may occur in which the actual distribu-
tion is near the Gaussian one.

Fig. 7. Distribution function F(x) belonging to the density function defined by Eq. (11) and
shown in Fig. 6.

7. dbra. A 6. abran bemutatott f(x) sdrlségfiggvény F(x) eloszlasfiggvénye

Puc. 7. ®yHKums pacnpegeneHns F(x) NNOTHOCTHOR (yHKuum f(x), npeAcTaBneHHOro Ha puc. 6.

1.3 Mathematical definition of robustness

We have spoken about distributions lying near each other (e.g. the distribu-
tion given by Eq. (10) in the case of x0«0.5, and the uniform distribution). In
the mathematical respect, therefore, the first thing is to define the distance
between two probability distributions.

There are some definitions for this distance. One is the Hellinger-distance
being the L2 norm of the difference function of the square roots of the density
functions:

lif(x)-10g (x) | (H)
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It is clear that the Hellinger-distance of two distributions which have not too
heavy tails (i.e., the density functions tend quickly enough to zero if |x|->00),
is determined mainly by those parts of the density functions which are charac-
teristic for the gathering of the data. This means that the distance of the uniform
distribution and the distribution defined by Eq. (10) tend to zero if x0->0.5.
Another possibility is to accept the definition of the Prohorov-distance [Huber
1981]. The definition is more complicated than Eq. (11) but there are some
interesting and important theorems to this sort of distance. For appliers the
most important statement is that a great Prohorov-distance characterizes the
case if two distributions are also practically distinguishable.

The definition of the robustness for estimates is the following: the estima-
tion is robust if the distribution of estimates is a uniformly continuous functional
of the mother distribution, i.e. to near lying mother distributions belong near lying
distributions of estimates. Consequently, arithmetic means are not robust esti-
mates as our example has shown that to arbitrarily near lying mother distribu-
tions can belong on the one hand a distribution of estimates with finite asymp-
totic variance, and on the other hand, a distribution of estimates with infinite
asymptotic variance (even the law of large numbers is not fulfilled in the second
case if n is great).

Mathematicians refer to the definition of robustness mentioned above as
a qualitative one. For quantitative investigations, the von Mises-derivative of
the functional is mostly used. We shall get acquainted with this notion in
Chapter 4, known as the ‘influence curve’ or IC-function; its excellent practical
applicability will be clear in the second half of the monograph.

Chapter 2
Heuristic definition of the most frequent value and of the fitting according to
the most frequent values

2.1 Most frequent values with a weight function offixed parameter of scale

2.1.1 The parameter of scale (S)

Let us first remember the notion of the parameter of scale which will
express primarily the degree of the tendency of gathering of our data. (This

technical term originates from the fact that — [ —j has the same distribution

type as fix), only the unit of scale is changed.)
If T is the parameter of location, the density function has the general form

fix) = f(T- S;x). (12
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For example, the density function of the well known Cauchy distribution is

I s
feW = 0 s24 (x-T)2" 1)
Figure 8 shows this density function for four (T, S)-pairs, namely for T= 10and
20, and for S= 2 and 4. The parameter of location T here is the symmetry point
and S gives—independently from T—information on whether data are expected
to be more or less dense around the actual value of T.

We can justify with simple integration that in the case of the Cauchy
distribution 5 equals the semi-interquartile range Q (known also as probable
error). Q has an immediate probability interpretation and therefore it would be
advantageous in this respect to demand S= Q for all distributions, but the usual
practice is to define such a parameter of scale S which results in a density
function of simple analytical form.

The parameter of scale is not only a characteristic of the density functions
but it also gives for other functions the value of the breadth in the sense that
twice as great S means twice as bright function, etc. In the following this latter
interpretation will be used for weight functions.

Fig. 8. Four density functions of Cauchy-type: different parameters of location define different
symmetry points, different parameters of scale characterize different widths. (The four density
curves are normalized to /( T) = J)

8. abra. Négy Cauchy-tipusu siriiségfiggvény: kilénb6z6 helyparaméterek kilonb6zé
szimmetriapontokat definialnak, kiilénb6z6 skalaparaméterek pedig kiillonbozd szélességeket.
(A négy slrlségfiggvény /( T) = 1-re van normaiva)

Puc. 8. YeTbipe NMNOTHOCTHLIX (YHKUMIA TUNa Kowu: pa3nMuHbIMU napameTpamu MecTa
OMpesenstoTCs PasNMUHble TOUKM CUMMETPUM, a Pa3IMYHbIMK NapaMeTpamMu LWKan — pasfinyHble
LWMPUHBI. (Bce yeTbipe MAOTHOCTHbIX QYHKUMK npueedeHbl Kf(T) = 1)

2.1.2 Outliers

If our data are visualized as points on the datum line, we should first glance
to see whether or not we have one or more outliers. A Hungarian scientist wrote
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[Tarczy-Hornoch 1956] that ‘outliers essentially differ from the other meas-
ured data’. It was customary at one time to cancel these data before calculating
the estimate (in the simplest case the arithmetic mean).

The so-called deterministic distribution in Korn and Korn [1961] is, from the point of view
the probability theory, undoubtedly a degenerate one. We shall use it now, however, in connection
with a situation which is familiar to all readers. Let us suppose that the data and the operations
to be carried out are typed onto a calculator; if—by repeating this procedure the result is the
same—this is regarded as the ‘true result’. If not, we repeat the procedure twice more and naturally
accept that value which is obtained three times, completely neglecting the differing value: it would
be absurd to accept the arithmetic mean of the four results. This remark was made as classic
statistical literature is often somewhat contemptuous at the neglecting of one or a few items of data
but for healthy minded practicianers this is quite natural.

Is it possible somehow to ‘legalize’ from the viewpoint of probability theory
the cancelling of the outliers?

2.1.3 Weighted means

Most books written on probability theory and/or statistics prove the the-
orem that the weighted mean:

n

L qi*i

calculated from xit x2,  x(,  xnhaving a probability distribution f(x), gives
the most efficient estimate if all gt weights are the same.

Supposing that the measuring conditions for all data are unaltered—dis-
regarding cases in which, because of more accurate equipment (or because of
a similarly obvious condition), it is really justifiable to take some data with a
greater weight into consideration—for engineers or other appliers this theorem
seems therefore rather trivial: why would it be justifiable, say, to take the
seventh value from a sample containing ten data with twice as great weight than
the other data?

Instead of weights depending on the index of the sample element, a weight
distribution derived statistically from all samples can be useful:

4i = 4i(XU X2, ...,X,,). (15)

The question posed at the end of paragraph 2.1.2 can be answered with a
weighting system which gives zero (or nearly zero) weights to outliers.

The simple theoretical background of the cancellation of outliers is the fact
that the occurrence of a distant point xk on the datum line is not yet probable:
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f{xk)= 0or f(xk) %0. We can write according to the foregoing an interesting and
instructive but in practice a not yet applicable formula, viz.

Z A%
Z.%0

We are protected now against outliers (without accepting arbitrary, ad hoc
criteria), and we also find the behaviour of this expression sympathetic near the
symmetry point (supposing that f{x) is unimodal and symmetrical), since the
nearer the sample element to the symmetry point, the greater its weight.

In general, however, we know neither the type of the distribution nor the
parameters T and S. If we knew all this information, even the sampling itself
would be superfluous (to say nothing about the calculation of Eq. (16)). But
using a weight function <p(X) (not too far distant from f(x)) this function also
cancels the outliers and gives the greatest weights to the most gathering values.
(Chapter 8 shows that even the best weight function is not always the density
function itself.)

From the point of view of computing techniques, the simplest possible
choice of the weight function seems to be

(16)

= 17
) e2+(x-M)1 an
Comparing this expression with Eq. (13), this is a weighting according to the
Cauchy density function. (The theoretical background for using this weight
function is dealt with in Chapters 7 and 8; a heuristic foundation is given in
paragraph 2.4.3.)

2.1.4 Most frequent values calculated by weight functions offixed
parameter of scale

Let us suppose that e is known in the weight function tp(X). (The determina-
tion of e is dealt with in paragraph 2.2.3.)

The value of M in Eq. (17) is unknown but it is a plausible demand that
the symmetry point T—M of the distribution f(x) should be given as the
weighted mean:

. Lorm
408
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or substituting Eq. (17), as BE2X
B+ (x{—M)2
M = (x{—M) (182)
i= B+ (X/- M)2
The corresponding integral formula for the mother distribution /(x) is clearly
o2 mfix) d
e2+ (x- M) ) dx
M = (18b)
2+ ( ) fix) dx

The value M appears on both sides of these equations, they are therefore
practically iteration formulae. If, in the y-th step of the iteration according to
Eq. (18a) the result is denoted by M}, in the following step

e2X
i= B2+ (X—Mj)2
mjr1= 1 2O (180)

y
1e2+(x - M j)2

is to be calculated. The iteration is stopped if there are only negligible changes
in the M-value. In order to start the iteration, both the arithmetic mean and the
sample median are equally acceptable.

The value M fulfilling Eqg. (18b) is called the most frequent value of the
probability distribution /(x). This is evidently a parameter of location. The
value M (or M,,) fulfilling Eqg. (18a) is the most frequent value of the sample;
this is an estimate for the just defined parameter of location. Obviously Eq. (18b)
gives the symmetry point, iffix) is symmetrical, similarly to Eqg. (2). In general
cases, however, M can differ from E. The symbol M has its origin in the name
‘most frequent value’. We have to show, however, that this name is really
justified.

Substituting Mj=M and Mj+, = M +AM in Eq. (18c) we get for AM the
expression 1

AM = =~JIxI" M). (18d)
=, £2+ (x;-M)
i=1 £2+ (x,.-M)2
The sign of AM is determined only by the second sum. This sum is, however,
the sum of (plus_or minus) the areas of the rectangles defined by the actual
difference (x, —M) and the corresponding weight tpixf Two cases can occur:
1 the sum of areas of the rectangles right and left of M are equal, AM =0,
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therefore M =M, the iteration is finished; 2. the sum of areas of the rectangles
is say, on the left hand side of M greater than on the other side, AM<Q,
therefore the iteration brings M nearer and nearer the gathering of the data.
Both alternatives are shown in Fig. 9a and 9b for the sample -0.2; 0; +0.2;

Fig. 9. Reweighted mean-calculations (with the weight function <) approximate the value which
can really be called the most frequent value. Namely, if the sum of the areas of rectangles
defined by the elements of the sample left and right of the symmetry point of g=are not equal
(see Fig. 9/a), the following iteration step will bring the value A/J+! nearer the cluster consisting
of the majority of sample elements. The iteration is finished if the sums of the areas on both
sides of the symmetry point are equal; this is the case for Fig. 9/b

9 abra. A sulyfuggvénnyel térténd iteralt silyozott atlagszamitasok ahhoz az értékhez
tartanak, amelyet joggal nevezhetiink leggyakoribb értéknek. Ha ugyanis a szimmetriaponttol
jobbra és balra levd, a mintaelemek altal definialt téglalapok teriiletdsszegei nem azonosak
(@ pl. a 9/a abrat), akkor a kovetkezd iteracios 1épés A/J+1-et kdzelebb viszi a mintaelemek
zOme altal definialt tomdorddési helyhez. Az iteracid leall, ha a teriiletdsszegek egyenstlyba
jutottak (9/b abra)

Puc. 9. CpeaHeB3BeLLeHHbIE, paccunTaHHble NyTeM WTepauuy ¢ BECOBOW (hyHKUuel (@
NpubNMXKaTCA 3HAYeHUIO, MO NpaBy Ha3biBAEMOMY Hambonee YacTbiM 3HaueHueM. 160 ecnu
CYMMbl Miowaseidi NpsIMOYroNbHUKOB, OMNpeAenseMblX 3eMeHTaMy NpUMepa, HaxoasLWuMucs

BMNPaBO W BAEBO OT TOYKM CUMMETPMM, He paBHbl MeXay co6oi (cm. puc. 9/a), To npn

crnefytolleM Liare utepauuy 3HaveHne MJ+H NpuBAM3NTCA K YYacTKy CryLLeHus,
onpesensieMoMy npeobnafarolLeil YacTbio 3NeMeHTOB npumMepa. WTepaums
npyvocTaHaB/MBAETCS, eCM CyMMbl Nollafeil ypaBHosecaTcs (cM. puc. 9/b).
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2.4. In this case 0.6 is the arithmetic mean, as the starting value of the iteration;
the result of it is M =0.135.

The author considers that the term ‘most frequent value’ is justifiable. It
is certain that to an outlier belongs a long rectangle but its area is approximately
proportional to (jg- M)~x. This means that in the overwhelming majority of
cases the suppression of outliers is satisfactory.

2.2 Determination of the scale parameter of the weight function

2.2.1 The demand of maximum number of effective data around M for an
interval of minimum length

Let us suppose at the beginning for the sake of simplicity that the value M
in fpis known and our task is to determine the proper value of e.

If our sample is—occasionally—symmetrical to some value (see Fig. 10)
then the iteration according to Eq. (18a) gives with arbitrary (nonzero) value
of e the right M (i.e. the symmetry point). It is clear that the probability of a
fully symmetrical sample is very small even for a symmetrical/ ( i), the gathering

Fig. 10. Weight functions of different widths (i.e. with different scale parameters). If the weight

function is too broad (1), the result of the most frequent value calculation will be similar to that

of the arithmetic mean together with all its disadvantages. If the weight function is too narrow
(4). some of the valuable data are practically neglected resulting in a decrease of efficiency

10. abra. Kilonboz6 szélességli (azaz kiillonb6z6 skalaparaméterl) sulyfliggvények. Ha
a sulyfuggvény tal széles (1). a leggyakoribb érték szamitasa az atlagképzéshez nagyon hasonlé
lesz, annak minden hatranyaval. Ha a sulyfiiggvény tal keskeny (4). az értékes adatok egy részét
gyakorlatilag elhanyagoljuk, ami a hatasfok cstkkenését eredményezi

Puc. K). BecoBble (hyHKLMU pa3fIMuHOM LUMPKHBI, TO-€CTb C Pa3NIMYHbIMU «napaMeTpamuy LUKan».
Mpy cAnMWKoOM 60nNbLIORA WKpWHe BecoBoi yHKuun (1), pacyeT Hambonee 4acToi BENYMHBI
CTaHeT BeCbMa CXO[HbIM C OMpefieNleHNeM CPeAHEro Co BCEMU COOTBETCTBYIOLLMMU
HegocTaTkamu. [py CAWLLKOM Manoii LWUpWHE BECOBOM (DYHKUMM (4) YacCTb 3HAUYUMbIX JaHHbIX
npeHeGperaeTcs, YTO NPUBOAUT K CHUXKEHWIO 3DGEKTUBHOCTM.
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of the values, however, will follow in the case of repeated sampling the law
which is for simplicity represented by the sample of only 14 elements in Fig. 8.
The following line of thought will also be the simplest if we make it on the
ground of this sample.

If e were too great, we would get as the weight function a curve which is
similar to the curve 1in Fig. 8:to every item of data belongs practically the same
weight, the most frequent value according to Eq. (18a) has therefore approxi-
mately the same behaviour as has the arithmetic mean. For example, having also
the outliers x, and x 14 practically a weight near to the maximum because of the
very great value of e, in real situations—where the supposition of the symmetry
of the outliers would be fully absurd—the most frequent value fulfilling
Eqg. (18a) can be deteriorated in the same manner as the arithmetic mean.

The other extreme causes drawbacks of a different nature (see curve 4 in
Fig. 10): if the value e is too small, not only will the outliers be neglected but
also a part of the gathered values. We calculate as if we had less data. The result
is a decrease in the accuracy as, with nearly all estimations, the increase in
accuracy is proportional to Jjn

We need a rational compromise but the arguments are stronger for not
losing reliable values: we do not want to measure, say, twice as much data
because of the too small value of £ It is certain that the disturbing effect of the
outliers should be also negligible.

The question arises as to which analytical expression gives a suitable
measure for the number of data playing a really significant role by the comput-
ing of M according to Eq. (18a). The weights have values of nearly unity in the
centre of the gathering, and decrease to approximately zero for distant values,
i.e. we have no argument against the acceptance of the sum of weight as the
‘number of effective data’ denoted by neff(£):

19
«rr(e) =1 £24 (X:-M)2 19
Consequently, to be in accordance with the foregoing discussions, that value of
£ is accepted which gives the maximum value for the expression

" eff(£) (20)
£

This means that the demand

1 :
Ve e maximum (21)

£ 1=1 £2+ (x;-N /)2

is to be fulfilled.

If the distinction is really needed e denotes the variable in Eq. (21), and e0that maximum value
which fulfils this condition. In other cases both are denoted by .
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2.2.2 Cohesion and dihesion of the mother distribution

Getting €0 by solving Eq. (21), this value seems primarily to be the scale
parameter of the weight function, which makes the practical calculation of the
most frequent value unambiguous. Because for large n values the following
equation holds

en(e) T _
0 sls Myflx) dv = «e), (22)
the e value satisfying the condition
5(-%@: max. (23)

can be accepted as the parameter of scalefor the mother distribution itself. It is
clear that the demand in Eqg. (23) is the same as

®

P32 _ vy dx = maximum (24)
J ez+(.v,-M)z

[Steiner 1973].
The e value satisfying Eq. (24) characterizes the tendency of cohesion of

data, if sampling is made, in the sense that small e means considerable cohesion,
and vice versa. Therefore we can define cohesion as

1

K= (25)

On the basis of Eqg. (25) the name of the scale parameter could be ‘reciprocal

cohesion’, too, but the cumbersomeness of this name justifies the introduction

of an arbitrarily constructed name. We refer to this characteristic as dihesion of
the probability distribution.

It can be shown [Csernyak 1973] that by fulfilling the condition in Eq. (24)
the weight function <p(¥) is the most similar to fix). (Similarity is meant here
in exactly the same sense as Bhattacharyya means the affinity between density
functions [Mathai and Rathie 1975].

2.2.3 Practical computation of dihesion

Let us suppose that M is known; our task is to determine the dihesion e.
It can be shown [Csernyak and Steiner 1980] that for the dihesion
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holds (the limit case is realized by the (/-distribution, see series number 17 in
Table 1V). Starting from the right hand side of Eqg. (26) as the initial e-value,
we diminish the value of e till the expression

n 3/2

....... 7)

reaches its maximum value. This e is used in Eq. (17), i.e. in the weight function.
And this value is at the same time an estimate for the dihesion of that distribu-
tion f(x) from which the sample comes.
The procedure described above is not sufficiently fast. In practice the
iteration
EE(*;- AV)2

I=i t6 +frj-A/)22
+1 rr] Eﬁ

=i [E*H(*m-110 22
is used giving an estimate for that e which fulfils the following equation:

(28)

................. ((.v) dv
R (28a)

62+ (x~ M)2]2f(x) dv

The e satisfying Eq. (28a) fulfils the primary condition (24), too. Putting M =0 in Eq. (24) (for
the sake of simplicity), and differentiating according to ., we get

32-e"Y +12)- 23

[r-+ T~ fix) dv = 0.

After some regrouping the result is

fix)dv = e2 ' fix) dv.
[c2+ M2

Expressing e2and substituting the original (,v—M)2instead of V2. we can ensure that Eq. (28a) really
defines the dihesion and consequently iteration (28) gives an estimate for it. (Additional speeding
of the iteration is applied, too. in the know-how of the University of Miskolc).

If we calculate integrals of such types with asymptotically zero and continuous integrands (see
e.g. in Eq. (28a) the simplest way is approximation with the sum of areas of rectangles defined by
an equidistantly graduated abscissa and the actual values of the integrand, resulting in a much
greater accuracy than supposed (the causes are dealt with in Steiner and Zilahi-Sebess [1988]
Appendix 5).
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2.3 Simultaneous calculation of the most frequent value and the dihesion

The supposition of known M or that of known e: both are in general
unfulfilled suppositions. In practice, the solution is the following: a twofold
iteration is to be carried out, i.e. .2 from Eq. (28) and M from Eq. (18c) are to
be calculated alternatingly. The final definition belongs therefore to a pair of
values : the most frequent value (M) and dihesion (c) of a probability distribution
(defined by its densityfunction f(x)) are those values which simultaneously fulfil
Egs. (18b) and (28a).

If not a sample but f(x) is given the just mentioned equations are also to
be regarded as iteration rules. As the starting value for M the median and the
so-called expected value are equally suitable, and as a first value of e it is
convenient to use 3.1 times the semi interquartile range (Q), because the relation

e73.0924 Q (29)

holds [Csernyak and Steiner 1980]. For samples mutatis mutandis the same
is true: the sample median or the arithmetic mean is the first AF-value, and if
the sample semi-interquartile range is Qtnp, the first £-value is 3.1 times (2emp.

Using digital equipment, if the value 'I" on the last digit was chosen so that it was too great
the «-iteration can tend to zero. This value has nothing to do with the real value of the dihesion
and therefore the «-iteration must be stopped if «<«nin («nin can be given according to physical
plausibilities). After finishing the A/-iteration a comment is appropriate, viz., that eninwas reached
and used in the last A/-steps. Another comment can be disclosed if the number of iteration steps
is a priori fixed.

It is obvious that the calculation of an M value needs about two orders of
magnitude more mathematical operations than the determination of an arith-
metic mean. If the latter were less effective, however, a surplus of expensive field
measurements would be needed; on the contrary, operations on computers are
very cheap and their costs are decreasing rapidly nowadays.

The pair of values (A/, ) informs us about the main part of the distribution :
the values of the random variable are with relatively great probability in the
interval (M —e, M+ fi). Therefore—as figure 5 shows—the name ‘expected
value’ would be much more justifiable for M than for E. but we shall use this
term for E with the same consistency as the whole literature of statistics.

2.4 Mfitting: adjustment according to the most frequent values
2.4.1 Minimum conditionfulfilled in each step of the M-iteration

It is easy to verify by differentiation that the expression of M given by
Eq. (18a) fulfils the following condition:
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_XI £21n (e2+ (x,-N1/)2= min. (30)
1=
In the same way it can be verified that Eqg. (18c) corresponds to the condition

X,-Mj+i)2 = min.,

=i 2+ i-M j) M (3D)
where Mj and e are known values. This is, from the computing technical point
of view, equivalent to

Yj qi(xi-M )2 = min. 32
i =M ) (32

(resulting in expression 14) as the weights are known in every iteration step. The
condition in Eqg. (32), however, is the special case of

i§n1<7,-(x- Mp; ¥)))2 = min,, (33)

where a parameter vector p = pkp2, ...,Pj, ...,p} is to be determined on the
grounds of n (n>J) data x{measured at given values y, = yn,yi2, s, ¥in of the
independent vector variable y = yxy?2, - the analytical form of I is a
priori given.

2.4.2 Adjustment according to the most frequent values

In Eqg. (33) the weight g{is well defined according to the conception of the
most frequent value; then instead of (x, —M)2 in tpwe obviously have to write
(x;—T(pk;y,))2 where ptis the result of the(previous iteration step. We have
then to fulfil

=1 I+ (*---7l-lp*;yj'p-;(Xi~ T(pc+1;y,)2 = min., (34)

for every iteration step; i.e. the program can be constructed on the basis of the
weighted mean squares program, which is for different T-s ready available in
program libraries.

Often is I" a polinomial, or more generally

Mpiy) = PiTI(y) +p2T2y) +...+pjTj(y), (35)

with Tj-s of given analytical form. In this case Eq. (35) leads to a linear algebraic
equation system—similarly as does the principle of least squares.
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Solving this equation system we have to carry out

" eAd2
emi = |"=| [zl +dfl2 (36)
K [el+dlY
with
dt = (x(- T(pt+1y,) (36a)

(pt+1is already known). Evidently Eq. (28) is a special case of Eq. (36).
The parameter vector p of the same T function can be determined also
fulfilling the demand of the least squares principle

X (x,-T(p3y,))2= min. (37)
1=1

on the grounds of the same measuring data x,. In general the results of Eq. (37)
and that of the M-fitting do not agree, therefore these results are denoted as p£
and pM respectively. The index E refers to the expected value (as to the result
of the least squares adjustment in the simplest case); for brevity, we shall refer
to the adjustment according to the principle of least squares as .E-fitting.

2.4.3 Heuristic comparison of the E-fitting and the M-fitting

Both fitting techniques have the same starting point: that p is declared as
‘true’ (i.e. most probable), to which the maximum ‘reliability” of the measured
values X belongs. The difference lies in the different characterization of the
‘reliability’.

The classical train of thought measures the reliability with the quantity

(x;-7-(p:y))2 (372)

in the sense that x, is more reliable if this expression is smaller.

From the point of view of physics (and also of common sense) it is hardly
acceptable that the reliability tends to infinity if expression (37a) tends to zero.
The simplest solution for solving the problem is if we accept

e2+ (x,.-Mp;y,))2 (38)

instead of (37a) where e is a characteristic value for the absolute value of errors.
Ifthe error of an x, (i.e. the absolute value of the difference (x,— (p; v,)) is €/10,
and that of an xk is e/33, both are equivalently ‘very good’ values according to
expression (38) (differing only by 1%and %o, respectively, from the minimum
value of (38)). In flat contradiction to this, expression (37a) qualifies (without
any real ground) xk as a much better value than Xx,: accepting (37a), xk seems
more accurate by an order of magnitude than x,.
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The second step is to characterize the reliability of the whole set of data.
This is done by the method of least squares by summarizing the characteristics
of the separate xrs given in the form of (37a), resulting naturally in a very high
sensitivity to outliers. To avoid similar effects and to remain as simple as
possible, we consider the product of the characteristics given in (38) as the
characteristic value of the whole set of data and the minimum value of this
product is demanded :

M2+ &, —T(p; y.))4 = min. (38a)
|
After logarithmization we get the condition

X In[e2+ (xX,—(p; ¥,))4 = min. (38b)
which is to be regarded as the generalized form of the condition given in
Eqg. (30).

I" is often given by Eq. (35) (with 7)-s of known analytical form), and after
differentiation according to all pj-s we get

i J
o ] N L —o
? 12+ (xI-T (p;y D2 F“Y) Pi mTi(yi) +P2- TQyi)+—+Pj- TJyJ-Xi
n N
P\ TAy)+p2-TAY;)+..«+Pj' T/yj-Xi =0
?,e2+U .- Op;y,.)2T(Y,) Ay +p ;) i yj-Xi
(39)
n gl
AN 24 (F—Tin »\2 Pt ' Tt(yd +p2- TAyi)+ ... +pj- Tfy,)-x, =0.

The unknowns (the pj-s) are also in the denominator; the iterative solution uses
here in every step the parameter vector obtained in the preceding iteration step.
As also Eg. (36) must be fulfilled, we have got in a very simple heuristic way
essentially the same result as in paragraph 2.4.2 by generalizing the most
frequent value calculations.

The M-fitting gives a hypersurface defined by the densest lying points,
neglecting outliers. The result of the £-fitting, on the contrary, can be heavily
influenced by the latter ones.

2.4.4 Weighted adjustment according to the most frequent values
The i/, weights given a priori express the fact that the measured data are,

e.g. because of the different accuracy of the equipment used, not of equal worth.
If, for example, <,1 = 2 for n,+1, but for all other data <y=1 holds
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U= 1... n), then a possible solution is to take the last summand twice into
account both in Eq. (37) and in Eqg. (38b) but with the weight value 1 Conse-
quently, we can interpret a gt weight as a number of equal data (even if gt is not
an integer).

Equation (38b) can therefore be transcribed rather mechanically to

ié|4iln e2+ (.v,-r(p;y,))" = min. (40)

and the modified form of the iteration formula for calculating the dihesion
(Eq. (306)) is

y

ih té +df]2
fik+ fl (42)

h té +df]2
(the dt-values are defined in Eq. (36a)).

Chapter 3
Practical examples

Prior to more (but unavoidable) theoretical chapters let us show on some
practical examples that M-fitting can really give quite different results from
Zsfitting (i.e. adjustment according to the principle of least squares). A general
statement that M-fitting is always better than £-fitting would not be justifiable
even by a very great number of examples - moreover this statement is not true
as though rarely a probability distribution can occur in the very neighbourhood
of the Gaussian one and for treating this case the £-fitting is better (assuming
that no outliers can occur). Only in Chapter 8 will it be absolutely clear in which
sense is the M-fitting ‘better’.

3.1 Examplefor estimating the location

When calculating the most frequent value M of the sample xI5x2, ..., X,
and its arithmetic mean, significant or even great differences are often found,
and it is not easy to decide which is nearer the true value. In view of this our
example shows a case for which the true value is known.

Figure 11 shows 25 resistivity values measured in a coal mine with the same
electrode arrangement but at different locations; the geometrical arrangement
relative to the coal seam was also always the same. Here, the author wishes to
thank Dr. A. Gyulai, University of Miskolc, Geophysical Department, for the
data. The true value is known from many foregoing series of measurements
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carried out for the same coal seam and with the same electrode arrangement.
This value is 0.151 ohm; we see in Fig. 11 that the difference of the arithmetic
mean (£,,) from the true value is twice as great as that of the most frequent value
(M). The asymmetric distribution of the data is determined by the fact that
tectonic disturbances decrease this specially measured resistance, and the extent
of this decrease provides mining engineers with information on the nature,
distance, etc. of the tectonic disturbance [Csokas et al. 1979]. Any increase in
accuracy here is obviously of great practical importance.

0120 Qm 0130 ouo 0150 0150 Q
| I | | |
multiplicity 1 1 Cl 1 1 11542 1 2
1 1 L fil il 1 [
measured values x
En M the truel
value
Fig. 11. Results of in-mine resistivity measurements with special electrode arrangement. The

most frequent value M is significantly nearer the true value than the arithmetic mean (£,,)

1. &bra. Specialis elektroda elrendezéssel mért banyabeli elektromos ellenallasmérések
eredményei. Az M leggyakoribb érték jelent6sen kozelebb van a helyes értékhez, mint az En
szamtani atlag

Puc. 1. Pe3ynbTaTbl NOA3EMHbIX M3MEPEHUI 3N1eKTPOCONPOTMBEHNUS CO CNeLmManbHoi
yCTaHOBKOW. Han6onee 4yacToe 3HadeHne M 3HAUNTENLHO BAMXKE K MPaBUILHOMY 3HAYEHUIO,
HEXeNn cpeaHeapugpmeTmyeckoe E.

3.2 Fitting of straight lines

We often assume a linear connection between two sets of measured values.
In this section two examples are treated.

3.2.1 Connection between two mineral contents at different depth intervals

In this paragraph we deal with measuring data originating from a mineral
mine (the author is indebted to K. Mészéaros, geologist, for the data). Mészaros’
paper, read at the University of Miskolc in 1971, dealt with the same material,
and it indicates that the investigation of such links can give valuable information
for solving geological problems.

The two mineral contents are denoted by x and y (Fig. 12). Full lines
indicate the results of AZ-fitting, dotted lines those of the ~-fitting. Figure 12/a
and b belong to neighbouring depth intervals.

In Fig. 12/a there is only a negligible difference between the two straight
lines. In contrast, in Fig. 12/b the position of the dotted line (i.e. the result of
the F-fitting) is strongly influenced by two outliers; the result of the M-fitting
is similar in this case to that in Fig. 12/a, indicating proportionality between x
and y.
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5 10 x 5 10 15 20 X

Fig. 12. Interconnection of two mineral contents (denoted by x and y) in neighbouring depth
intervals. Full lines show the results of the adjustment according to the most frequent value,
dotted lines correspond to least squares results. These latter may be heavily influenced by
outliers (12/b shows that two outliers are enough to distort the results). Full lines indicate
proportionality in both cases

12, dbra. Kétféle fémtartalom (x-szel és y-nal jel6lve) szomszédos mélységszakaszokra.
Folytonos egyenesek mutatjak a leggyakoribb érték szerinti kiegyenlités eredményeit,

a szaggatottak a legkisebb négyzetek elve alapjan kapott eredményeket. Az utébbiakat
nagymeértékben befolyasolhatjak kiesé adatok: a 12/b abra mutatja, hogy két ilyen adat elég
ahhoz, hogy teljesen eltorzitsa a legkisebb négyzetes eredményeket, mig a folytonos vonallal

rajzolt egyenesek mindkét esetben aranyossagra utalnak

Puc. 12. CofepxaHus BYX pas/MyHbIX MeTannos (0603HaYeHHbIE X 1Y) MO COCeAHNM
MHTepBanam rny6uH. CnaoWHbLIMK NPSAMbIMI MOKa3aHbl Pe3yNbTaTbl BbiPAaBHUBAHUA MO
Hanbonee YacTbiM 3HAYEHWAM, 8 NYHKTUPHLIMUA - Pe3y/bTaThl, NOyYeHHbIE MO NPUHLMMY
HaMMeHbLUMX KBaApaToB. Ha nocnefHue CUNbHOE BAKSIHWME OKa3blBAlOT BbiMajatolLne fjaHHbIe:
no puc. 12/b BUAHO, YTO OCTATOYHO ABYX TaKWUX flaHHbIX, YTOGbI MOMHOCTBIO WCKA3UThL
pe3ynbTaTbl C HAMMEHBLIMMW KBaZpaTaMu, B TO BPEMs Kak CM/IOLIHbIMW NPAMbIMU B 060MX
Cnyyasx 0TMe4aeTcsi NPONoPLUOHANLHOCTb.

3.2.2 Telluric straight lines

Landy and Lantos [1982] carried out systematic investigations concerning
telluric straight lines. Their statistical conclusions are very important (it is of
no importance that the telluric method is no longer regarded as modern). The
main content of the cited article is given in the following.

The well known connection between the telluric vector of the measuring
station (1, \j and that of the basic station (X, y) is written [Nemesi 1963] in the
form:
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The tensor consisting of a, b, ¢ and d depends on the geoelectric parameters
below both stations (in the two layer model ; if the specific electric conductivity
is negligible in the second layer, the tensor gives relative depth values). Equation
(42) shows that the value pairs (uly, xjy) define a straight line (as do the pairs
(v/x, yIx)), resulting in two tensor components.

The points in Fig. 13 represent measured values; the AZ-fitting (full line) and
the E-fitting give nearly the same result.

This situation, however, is rather exceptional. The custom sanctified both
by time and success was the following: an experienced geophysicist had can-
celled (with a degree of subjectivity) the outliers before performing E-fitting.
This procedure was called ‘interpretation by hand’.

Fig. 13. Interpretation of telluric measurements. Both fittings give nearly the same result
13. abra. Tellurikus mérések értelmezése: mindkét kiegyenlités kdzel azonos eredményre vezet

Puc. 13. MHTepnpeTauus pe3ynbTaToB M3MEpeHuii MeTo4oM Tenypuyecknx TOKOB:
BblpaBHMBaHME 060MMM METOAAMW MPUBOAUT K OAHOMY M TOMY Xe pe3y/bTary.

Figure 14 shows a typical case. The result of AZ-fitting of all points (full line)
is nearly the same as the result of E-fitting without the cancelled points. The
E-fitting of all points gives an axial section (see Fig. 14) which results in a
completely unrealistic depth value.

Landy and Lantos [1982] deal with many such cases for which classical
procedures started to become uncertain; as well as the ‘interpretation by hand’
both M-fitting and E-fitting were performed without cancelling the outliers. The
guestion arises as to which result can be regarded as the best. The answer is not
quite unambiguous but because of the potential character of the telluric field
we can accept that result as the most probable which shows minimum differ-
ences in comparison with those of the neighbouring stations. Accepting this
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criterion, the consequence was the following, comparing the results of the
M-fitting with those of the ‘interpretation by hand’:

the results of the M-fitting are better: 44%
the results of the ‘interpretation by hand’ are better: 22%
the differences are negligible: 22%
neither the result of M-fitting, nor the result of the ‘interpreta-

tion by hand’ is acceptable: 12%

Shortly speaking, the M-fitting was in the overwhelming majority of these
problematic cases successful whereas the E-fitting gave acceptable results only

Fig. 14. Interpretation of telluric measurements. The M-fitting of all points (full line) gives
nearly the same result as the ~-adjustment without the crossed circles (dotted line). The £-fitting
of all points gives the intercept value denoted by bE, resulting in a completely unreal depth to
basement

14. dbra. Tellurikus mérések értelmezése. Az 0sszes pontot figyelembe vevé M-kiegyenlités
(folytonos vonal) kozel azonos eredményre vezet, mint az athtzott korok nélkili legkisebb
négyzetes kiegyenlités (szaggatott vonal). Az 6sszes pont T-kiegyenlitése a 6£-vel jelolt
tengelymetszetet szolgaltatja, amely viszont teljesen irrealis alaphegység-mélységre vezet

Puc. 14. NHTepnpeTauus pe3y/bTaToB M3MePEHWUA METOA0M TENyPUYHECKNX TOKOB.
BblpaBHMBaHVe M (CMIOLWHAs MHWSA), MPU KOTOPOM BO BHMMaHWE MPUHUMAOTCA BCE TOUKM,
NpUBOAUT MPUMEPHO K TOMY >Xe pe3ynbTaTy, UTO U BbipaBHMBaHWE MO CMOCO6Y HaMMEHbLUUX

KBafpaToB (MyHKTUPHas NUHUA) 6e3 NpoYepKHYTLIX KPyroB. BhlpaBHMBaHWE E Mo BceM Toukam
NpUBOAMUT K OCEBOMY CeYeHMto, 0603HauYeHHOMY bE, KOTOpoe faeT COBEpLUEHHO HepeaslbHYto
rnybuHy 3aneraHus yHgameHTa.
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in 33% of these cases. Acceptability is not always sufficient; we strive occa-
sionally after greater accuracy, too. This is reached if n is great enough —Ilet
us recall the law of large numbers.

Landy and Lantos [1982] show examples of how many points define with
the prescribed accuracy the tensor components a and b. The answer depends
significantly upon the type of fitting chosen.

A typical example is shown in Fig. 15. Short horizontal straight lines on
the right hand side of the figure indicate the ‘true’a and b values obtained with
very careful manual interpretation, taking all available points into considera-
tion. The values on the abscissa are the numbers of those points which were
taken into consideration by carrying out both M- and £-fittings (full and dotted
lines).

0.08
006
006

002

-0.02
-0.06
25 50 7 100 125 150 175 N
092
090 1
080 b
0861
0.841
082
080

Fig. 15. Two examples for the interpretation of telluric measurements. The same number of data
can give much more accurate results calculating with the most frequent value (full lines) than
with the least squares method (dotted lines). The true values are indicated on the right side with
short horizontal lines

15. dbra. Két példa tellurikus mérések értelmezésére: azonos adatszam sokkal pontosabb
eredményre vezethet a leggyakoribb értékek szerint szamolva (folytonos vonalak), mint
a hagyomanyos legkisebb négyzetes modszer (szaggatott vonalak). A helyes értékeket a jobb
szélen rovid vizszintes egyenes szakaszok jelzik

Puc. 15. [lBa npMMepa MHTepnpeTaLuyu pe3ynbTaToB W3MepeHWii METOAOM TeNnypUUecKnx
TOKOB. IpK TOM >e KO/MYECTBE flaHHbIX pacyeT Mo HauGosnee YacTbIM 3HAUEHUSIM MPUBOAUT KO
3HaunTeNbHO 60/1ee TOUHLIM pe3y/bTaTam (Cr/IOLIHbIE IMHWN), HEXENU pacyeT Mo
TPAANLMOHHOMY METOAY HaMMEHbLIMX KBaApaToB (MyHKTUP) [paBU/bHble 3HAUEHUS
0603HaYeHbl Ha NpaBoii CTOPOHE KOPOTKUMMW FOPU3OHTaNbHLIMW OTPe3KaMu NpsiMbIX.
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Beyond n=60 or 80, neither a nor b varies significantly if M-fitting was
made (in Fig. 15 the fluctuation of both quantities is about 1% if n>80). In the
contrary, dotted lines show that twice as great n (nx 150) is still not enough to
stabilize the values aand b, to say nothing about the significant differences from
the true values even in this u-region. The author considers it superfluous to
enhance the importance of the economical aspects by a prescribed accuracy
—or that of the aspects of the surplus of geological information to a fixed value
of n.

3.3 Quadraticfitting with two variables: the determination of the magnetic
normalfield in Hungary

Let us deal first, in a general way, with the quadratic M-fitting with two
variables.

3.3.1 Iteration steps of quadratic M-fitting with two variables

If the -function has the analytical form

Op; Y) = P1+P2Y1+P3Y2+P4Y1+P5Y1Y2+P6Y2,

then Eqg. (39) becomes the following:

n n n
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43a
e2+(xi-p |- pyu—Pi}2- PaYii-PvYlidzi- P6TT.) 38

With #>=1the equation system is naturally the same as by the £-fitting.
Using this to start the procedure, the results are denoted by p\l), p2\ mmpPg)-
The first dt set will consequently be calculated as

57w e 6%, WPY, A Dy2 pryyny2 -PhyIi- (44)
The starting value of e according to Eq. (26) is

B = 3/8 [max(4) - min(i/,)]. (44a)

The iteration according to Eq. (36) is to be made several times; with its result
e and with the values p[%; ..., p@1 the weights it are to be calculated according
to Eq. (43a). Putting the tp{ values in Eq. (43), the linear algebraic equation
system is solved once more. The results are denoted by /j(@), ...,p &); the new
di-set is to be calculated according to

di = x-p\2-p@yu-...-pi2y2i (44b)
With the last s and with the new "-values several step are to be made according
to Eg. (36). With the obtained value of £and with the parameters p<2, ..../>@),
the tpi-values must once more be calculated, the equation system is solved

resulting in the values p\3)......p"\ etc. The procedure is stopped if the pj values
vary only insignificantly.



176 F. Steiner

3.3.2 The example of the magnetic normalfield in Hungary

In this paragraph an example given by Steiner [1980] is discussed.

The normal field of all magnetic components is described in Hungary with
quadratic polynomials of two variables. The first one is the latitude tp minus a
fixed value <0=45.5°, denoted by Atp; the second one is the longitude X minus
X0= 16° (both are measured in minutes). The vertical component of the normal
magnetic field (denoted by Z,, and measured in y-s) has then the analytical form:

Z,(tp0+ Atp, X0+ AX) = Z0+ a Apt+b AX+c(Atp)2+ d Alp AX+e(Al)2  (45)
Obviously
Z0=Pi,p2=4a,....p6=¢e

On the basis of 296 data [Aczél and Stomfai 1968] both M-fitting and
£-fitting was carried out. The results are the following:

AJ(296) £(296)
A +408359 +40829.7
a + 106441 + 108892
b + 126563 + 124046 (46)
c 0.00570512 - 0.00268327
d 0.000726043 - 0.00412334
e +  0.000555918 +  0.00132706

Which parameter vector represents more closely the physical reality? From
the geomagnetic point of view, the answer to this question would need a long
discussion of very different nature in comparison with the theme dealt with in
the present monograph.

A possible solution of this problem is to carry out both fittings for only half
of the data, as a first step. The results fre given below:

A(148) £(148)
+40821.8 +40793.6
a + 107667 + 114433
b+ 14334 + 153378 (47)
c 0.00612962 - 0.00640111
d 0.00101322 - 0.00354293
e +  0.000022289 +  0.000204031

The second step is to calculate the differences: in what measure do the
parameters depend upon n? As the quotients of the differences show,
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AM AE AEIAM
(296-148) (296-148)

70 141 36.1 2.56

a 01626 0.5541 452

b 0.1678 0.2933 175

¢ 0.0004245 0.003718 8.76

d  0.0002872 0.0005804  2.02

e  0.0005336 0.001123 2.10

the dependence on n in the case of the M-fitting is about half or less than that
by the E-fitting, i.e. for the M-fitting fewer data are needed to find the regu-
:;a_rity.1 5(')I'his important result is analogous to that dealt with in connection with
ig. 15.
Ferenczy [1980] has investigated in detail the application of M-fitting to
magnetotelluric problems. The results are very interesting but their discussion
even in a very shortened form is beyond the scope of this monograph.

3.4 Weighted adjustments

3.4.1 General remarks

It was seen in Chapter 2 that M-fittings can be carried out as a twofold
iteration, one of them being- mathematically—in every step a weighted .E-fit-
ting. It is perhaps not superfluous to underline as a first general remark that
M-fitting is not a weighted E-fitting: in the latter case the weights are a priori
known; on the other hand, the weights used in M-fitting are dependent upon
the sample, these weights are also results of the statistical procedure. Anal-
ogously, an irrational number remains irrational even if it is given as the limit
of a series of rational numbers.

The second remark : if we can choose arbitrarily the values of an indepen-
dent variable (or more independent variables), we often prefer equidistancy ;e.g.
field measurements of profiles are often made equidistantly, and if gravity
mapping is carried out, measuring stations are mostly points ofa quadratic grid.
Figures 12-14 have shown cases in which the values of the abscissa are not
equidistant: in these cases it would be absurd to suppose that equidistance is
to be realized because these values are not chosen arbitrarily. Although the
fitting has given very reliable results, the question arises: Is it not highly
problematic when—perhaps as a consequence of some type of recording—one
X,-value occurs, say, 10,000 times more frequently than another x2-value? This
situation can really cause difficulties as the measured value at x2 can be ne-
glected even if this x2-value represents an important x-interval in the special
problem studied. The solution can be a weighting, in its original sense—but the
appropriate system of this weighting depends upon the investigated problem
itself. Consequently the attribute ‘a priori' can have a relative sense, too.
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3.4.2 Determination of the q(H) function by means of calculating dihesions

Let us suppose the simplest case, namely T=const. In some cases the
~.-values are trivially known: equipment number one is twice as accurate as
equipment number two. A more frequently occurring case is, however, that we
know that qt (the a priori weight of x{t) definitely depends upon another known
quantity, say H—but the dependence is not given even in a general analytical
form. (H can have the meaning of temperature, pressure, etc.—by all means a
measurable quantity.) In this case we can write q(H") instead of </,; q(H) denotes
the functional dependence not yet known.

To determine this g(H) function, let the first step be an ordering: after this
Hif.H I holds if />/. The second step is the appropriate choice of two integer
numbers: of m and r, in that manner that the relations n»m and m”r must
be fulfilled. As third step the e; dihesions are to be determined for all xt subsets
given by their indices as follows:

L....m
1+r, ....m +r
1+2r, ..., m+2r

1+ @3- Dr, ..., m+(J—7Dr.

To get a reliable e, value it is obvious that m cannot be too small.

Let us denote the maximum g value by enax this characterizes the ‘worst'
X subset. The minimum weight 1 (which could be chosen arbitrarily) belongs
therefore to the mean value of those H -s which are defined with the indices of
this ‘worst' subset.

The already known meaning of the a priori weight allows us to interpret
an arbitrary other subset as if its elements x, had been calculated on the grounds
of gl pieces of 'worst' .v-values by means of some estimation (for the sake of
simplicity, say, as arithmetic means). Because of the well known '1/(/u-law’ of
estimates we can write

. = ff (48)
14}
finally, the weight gj of the mean value of s corresponding to the X, subset
in question is given by

F
e (48a)

The (Hp qf points define principally the function q(H), but other secondary
points of view can be considered, too. Commonly simple analytical forms are
chosen for g(H).
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3.4.3 Gravity example demonstrating a priori weight calculations and to show
the differences between results of weighted and unweightedfittings of both
kinds

The well known formula for the elevation correction of a gravity measure-
ment is

goar) = gp) +khp (49)

where hP is the height above sea level of the measuring point P; gP]is the
measured g-value for the point P, other (normal and topographical) corrections
also included; gPay is the Bouguer anomaly. The value kK depends in a simple
known form upon the mean density; this latter also being unknown, it is easier
to regard k as the unknown which is to be determined.

Steiner [1959] has transcribed the well known graphic method ofN ettieton
[1939] to a numerical method. The fundamental idea of Nettleton is that that
the topographical fluctuations must not appear in the Bouguer map, neither in
the positive nor in the negative sense. Consequently the g,com-values at the
corners of an elementary quadrangle of the measuring grid define nearly a plain
—supposing that the grid was dense enough—and if the elementary quadrangle
is a parallelogram (see Fig. 16) then the following equation is approximately
fulfilled:

G(am) = gf*u+ gt T)- ge°Mm- ofif = O. (50)
Analogously to G@®we introduce Gfwand H:
Gm=g~+g”"-g"-g*" (50a)
H = hx+h3—h2—h4. (50b)
3

Fig. 16. Four neighbouring points of a gravimetric field measurement, lying nearly at the
comers of a parallelogram

16. abra. Graviméteres terepmérés kozelitéleg parallelogramma cstcspontjain fekvé négy
szomszédos mérdpontja

Puc. 16. YeTbIpe COCEHNX TOUKM M3MEPEHUI rpaBMpasBefKu, HaxoAsLMXCS NPUMEPHO Ha
BEpLUMHAX Napannenorpammsl.



180 F. Steiner

Taking Eqg. (49) into account, it is obvious that the following also holds:
G0) = G{m+kH. (51)

In the case of general quadrangles the expressions in Egs. (50), (50a) and (50b)
are more complicated but from Eqg. (49), Eq. (51) follows in just the same
manner [Steiner 1959]. Since <faar,= 0 according to Eq. (50),
Gf>
kj = ll7
gives a value for k on the grounds of the data of the ~th elementary quadrangle.

If on the whole measuring area the quadrangles are constructed (see in
Fig. 17 a small part of a map), Eq. (52) gives for every quadrangle a K -value.
These data have very different weights as  may also be very near zero and in
this case the k;-value in Eq. (52) is determined only by statistical fluctuations.

By appropriate numbering of the apices of the elementary quadrangles all
Hrs have positive values and the method dealt with in item 3.4.2 can directly
be applied; the dependence of the weight q on H is evident.

In the following a Hungarian example will be treated [Steiner 1982]. The
number of quadrangles was 470; m= 100 and r = 25 were used (see paragraph
3.4.2). Some dihesions of k”-values are given to a mean value  (this latter index
belongs to the subsets): £i =£nax=0.2102 mGal/m to HI=1627 m; e2=
=0.1276 mGal/m to A42=2531 m; e3=0.0851 mGal/m to H3=3.448 m, etc;
the weights according to our agreement (i.e. that the ‘worst’ subset has the
weight 1) and according to Eq. (48a) are the following:ql =1;92=2.7;93=6.1,
etc.

(52)

Fig. 17. Quadrangles defined by measurement points

17. dbra. Mérési pontok altal definialt négyszogek
Puc. 17. YeTblpexyronbHUKKN, onpeaensiemMbl TOHKaMN U3MeEPEHUIA.
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The points in Fig. 18 correspond to the pairs (#,, gt). Figure 18 shows that
g can be regarded as zero in the interval 0"#iS2.5, and the points define for
#>2.5 the straight line </=3.43 (#-2.5). An additional point of view is,
however, that too great weights are not wanted: in this case the final value of
K would be determined by only a few quadrangles of very great Hj. But great
Hj-s can occur also in cases if the quadrangle is too great (because of the
difficulties of field measurements) and in this case G(ar)= 0 may be wrongly
approximated. The fixation of an upper limit for the ~-values therefore seems
to be unavoidable; it is certain that our choice <rex=100 (see Fig. 18) is
somewhat arbitrary but the most important cause of the weighting is the
appropriate suppression of the ~-values of poor quality—and this does not
depend on the gnaxvalue.

Fig. 18. Weight function to calculate both weighted M- and weighted £-fittings
18. dbra. Sulyfiiggvény sulyozott M-, és stlyozott £-kiegyenlités végrehajtasahoz

Puc. 18. BecoBas (hyHKUMA AN BbIMONHEHUA BblpaBHUBaHWIA NO B3BELIEHHbIM M 1 no
B3BELLEHHbIM E.
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Weighted fittings were made therefore with the g(H) function :

[0 , if Hg:25
q(H) = 343 (tf-25), if 25<#"31.65 (53)
[ 100 ., if H>31.65.

From the 470 kj data there were chosen 10 values randomly 200 times, as well
as 40 values 200 times; for these 400 samples weighted and unweighted means
as well as most frequent values were determined. Eight frequency diagrams were
constructed for the four types of estimates for n= 10and n=40. Sample medians
and sample quartiles of both types (upper and lower) were determined, see
Fig. 19; the differences of the latter ones divided by 2 are equal to the probable
error.

Im 4 weighted most frequent values
I ) J most frequent values

li L] weighted averages

L] | averages

vl weighted most frequent values

I tH roost frequent values
| | weighted averages

1 , [ i | averages

0,19 10.20 10.21 10.22 0.23 0.21 0.25 10.26 1027 k(mGal/m) 9

<j [t/m 3]

Fig. 19. Comparison of four statistical procedures: weighted and simple most frequent values
and means, respectively. For n= 10 and n=40 the medians and the interquartile ranges of the
four sorts of estimates are given

19. dbra. Négy statisztikai eljaras eredményeinek 6sszehasonlitasa: stlyozott és stlyozatlan
leggyakoribb értékek és atlagok. Adottak a négyfajta becslési mddra a mintamedianok és
interkvartilis terjedelmek, n= 10 és n= 40 esetére

Puc. 19. ConocTaBneHue pe3ynbTaToB Mo YeTbipeM CTAaTUCTUYECKUM CNoco6am: B3BeLLEeHHble
1 He B3BELLIEHHbIE Hanbonee YacTble 3HaUYeHWs W cpeaHne. [Ns BCeX YeTbIpeX Croco60B OLEHKU
[A0TCA MeAnaHbl Y MEXKBapTU/bHbIE MHTepBanbl Ans n= 10 u s = 40.

The consequences are the followings:
a) the probable error of the arithmetic means does not depend on n (this
property is well known for Cauchy-distributed data, we can therefore
suppose that the k”-set is not far from this distribution type);
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b) arithmetic means and most frequent values significantly differ from one
another: by «=40 the whole interquartile interval of the most frequent
values is far from the sample median of arithmetic means (and the
density value of the latter is also geologically improbable in the area
investigated) ;

cj as a consequence of the weighting, the probable error of the most
frequent values diminishes (to achieve this visually not too great dimin-
ution a data surplus of 50% would be needed), consequently, if the
accuracy is to increase, a weighted M-fitting is appropriate;

d) both alternatives of the most frequent values show a decrease of about
50% with regard to their probable errors, comparing the results for
«=40 with those for «= 10 (i.e. the law of 1/|In holds for both types of
M-fitting) ;

e) the weighted means are much more accurate than the arithmetic means;

f) for both «-values the sample median of the weighted means is near the
medians of weighted and unweighted most frequent values (and is far
from the median of the arithmetic means);

g) the interquartile range of weighted means is significantly less for «=40
than for «=10, but the decrease is more moderate than would be
prescribed by the I/|/«-law;

h) it can be stated from the geophysical point of view that a demand to
know the mean density o with a probable error of 0,05 t/m3would need
practically the whole data set (according to the I/[«-law), even if we
calculate weighted most frequent values;

and, finally, a conclusion of fundamental importance:

i) for great n-values the probable error of unweighted mostfrequent values
can be significantly less than that of the weighted means, i.e. it may occur
that we ‘automatically’ get a more reliable result by calculating un-
weighted M-fitting than by weighted .E-fitting (as is well known, the
determination of weights is often a cumbersome procedure).

The discussion above has clearly shown that E-fitting and M-fitting are two

different statistical procedures, each having a weighted version, too.

Chapter 4
Main definitions and theorems
of robust statistics

4.1 Some general remarks belonging to the theory of robust statistics

The first publications dealing with various estimating procedures, recently
called as robust ones, were written by those who applied them [Newcomb 1886].
This is hardly surprising since practical tasks force those dealing with them to
search for suitable methods that are fully adequate in terms of reality. The
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developing of an exact theory, however, is naturally the territory of mathema-
ticians and statisticians. (A well known analogous case is the introduction by
Dirac of the notion ‘delta function’. Now a mathematically correct theory of
generalized functions is available to define correctly the Dirac delta function,
and, moreover, it is possible on the basis of this theory even to criticize Dirac’s
original definition. See, for example, the entry ‘Diracsches Functional’ in Naas
and Schmid [1965]).

It is usual to reckon the development of robust statistics beginning from
the article of Huber [1964] (who also wrote the first monograph on this topic:
Huber [1981]). The rapid development of computing possibilities has been one
of the causes of the rapidly growing interest in this topic. In 1972 Andrews et
al. published a great deal of information about robust statistics (this was not
done in fully ordered form), and the increasing interest in the seventies is
illustrated by our Fig. 2

The theory of robust statistics deals with the so-called M-, L- and J1-esti-
mates, with the so-called minimax methods, etc. Our brief outline contains
information nearly exclusively about the M-estimates (and about some notions
of central importance in robust statistics, e.g. 1C-curve, asymptotic variance).
The reasons are the following: a) the Princeton study of various robust estimates
[Andrews et al. 1972] has shown the advantages of M-estimates; b) we shall
see that the most frequent value is an M-estimate, too.

4.2 Generalized maximum likelihood estimates (M-estimates)

4.2.1 Generalization of the maximum likelihood method with an arbitrary

Q-fmCtion
Let us suppose that only the location parameter is unknown. By a given
distribution type f(x) and on the grounds of a sample x,, ..., X,, the demand
£ Inf(xj, T) = maximum, (54
_£1- Inf(Xj, T) = minimum (54a)
=

must be fulfilled: the resulting I-value is the maximum likelihood estimate of
the location parameter. The generalization of Huber [1964] is the following: we
write Qinstead of - In/ (g is a differentiable function) ; in this case the condition
M
_£1p(x,, T) = minimum (55)
1=
results in an estimate T for the location parameter, even if the distribution type
/(x) is unknown. Huber [1964] has denoted this by ‘M-estimate’ since this is
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the generalization of the maximum likelihood procedure. FOur symbol M from
the name 'most frequent value' can be regarded as an eventual but lucky
coincidence: we have already mentioned above that our algorithm is a special
AJ-estimation.)

4.2.2 The y/-function and its connection with g and tp. The function

It is more practical to solve

i|_ 1V(*e T)=0 (56)
where -
V(X t) OQSX’T D (56a)

than to use Eqg. (55) in its original form. The most important characteristics are
commonly expressed by the (//-function; even the estimation method itself is
often defined immediately by the ~-function.
In that T is an estimate of location, we can write instead of the general
Eq.(55)
M
X a(x,—T) = minimum (56b)

and similarly instead of Eq. (56)

| NT-T) =0 (56¢)
i—1
Introducing
Ny-D
57
X - T S

with the remark that §{ T) is to be calculated according to the rule of I'Hospital,
we get

t K| (M-T) =0; (58)
=1
its solution is
n
Z & n-X
r= — - : (58a)
X «XU

The right hand side of Eq. (58a) is the same as that of Eg. (18) (in the latter
case y>was unambiguously defined by Eq. (17) and therefore M was written in
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Eqg. (18) instead of T). We see that the most frequent value is really an M-esti-
mate.
In the case of the estimation of the scale parameter the condition

.
EI Q(xh'S) = minimum (59)

is to be fulfilled (the analytical form of 4 in Eq. (59) being naturally different
from the g used in location parameter determinations). The function / is

analogous to y/ as here

<0)

is to be fulfilled (with a known or estimated I-value). If both T and S are
unknown, that pair of values is to be accepted which simultaneously fulfils Egs.
(58a) and (60). (The weight function depends in general upon the S value, too;
let us recall the weight function in Eq. (17) with S =e).

Which scale parameter is estimated by Eq. (60)? The answer is perhaps
surprising but at the same time quite natural: the S defined by

Af(x) dx = 0 (60a)

is estimated. I, however, also obtained by solving
(X T\
r° <6l)
(this is a slightly more detailed form of Eq. (56c)), is the estimate of T defined
by

AM(x)dx =0 (61a)
The functions yj and / must have advantageous behaviour (in this sense they

are not arbitrary); e.g. a fundamental practical demand concerning the ~-func-
tions is that they must give as T the symmetry point if /(x) is symmetrical.

4.3 IC-functions and their calculation based on y/- and /-functions

43.1 Definition of the IC-function

If/ is the original density function (supposed as a continuous one) and T
is the location parameter of the distribution given in its argument, let us define
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the IC-function as

IC(x £, T) = lllgb T[(\-t)f+tt6(x)]-T[fI (62)

where Qis the Dirac function and t the probability of the (surplus) occurrence
of the value x. (This definition was given by Hampel [1968]). In the argument
of IC the symbol T refers to the estimation procedure studied. The symbol TC
itself refers to the synonym ‘influence curve’.

In the theory of robust statistics the 1C-function plays a central role. The
practical applicability of it lies in the fact that if n is large then a surplus datum
of value x modifies the estimate T with the value

IC*,F T)
n

AT (62a)
The influence of outliers is therefore quantitatively given by the IC-function for
the estimating procedure studied. But also if the distributions are ‘clean’, the
IC-function informs us whether the value x has positive or negative, small or
great influence on the “formation’ of the -value for a given distribution /. This
latter interpretation will play an important role in Section 4.4.

4.3.2 Calculation of IC-functions based on i//- and/f unctions

Analogously to Eg. (62) the IC-function ofevery other statistical parameter
can be defined too, e.g. also the IC-function of the scale parameter. In reality
both quantities, T and S (characterized by the y- and /-function), are simul-
taneously calculated therefore the IC-functions are also to be determined simul-
taneously for general distributions on the basis of the equation system:

IC(v, T) 1 ¥'\V~ )/(j)dy +

(y~T\y-T X-T

+ 1C(x, S) s | s IG)d>= S

(63)

ICx, ) X (~J \f(y) dy+

STAY-T . T
+1C(v, 9) ’(y5 \/y5 modp=5/

—
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If the distribution is symmetrical, the IC-functions for T and 5 can be given
separately. For simplicity, it is supposed that the symmetry point isat the origin.
The IC-formulae have then the form (see Eq. (63)):

1Cpr, R, T) (64)

and

IC<*F.5) - — - /(§) m (65)
IV\Y '

Equation (64) has a greater practical importance. The denominator being a
constant value, Eq. (64) expresses the fact that the ~-function is proportional
to the IC-function. This statement gives the most obvious meaning of the
~-function.

The effectiveness of the estimation of location parameters is of crucial importance for prac-
titioners. Therefore a short immediate proof of Eq. (64) is given below. Let us suppose that S= 1
Substituting the modified distribution

y(x) = (1- t)f(x) +/s(\- \D)
into Eq. (61a). we get

(1= j y(x-T)f(x) d.i+/(.v0- T) = 0.

Differentiating this according to t, we can express ar in the form:

d/ M-VoT)~ j u/(x-T) m(x) dv

(1-1)- j ilx- T)\x) dv+rmif (n- T)

Taking Eq. (62) into consideration, it is clear that - equals 1C. it r--U. The second expressions

both in the numerator and in the denominator then become /ero (in the first case us a consequence
of Eqg. (61a). in the second case trivially). As M0 was arbitrary, we can write simply .r, or. if V# 1.

x/S the equivalence to Eq. (64) is then obvious (for T—0).
(Putting y{x) defined above in Egs. (60a) and (61a) and dilferenlialing according to t. we also

get the general equation system (63)).



4. Main definitions and theorems of robust statistics 189
4.4 Calculation of asymptotic variances of estimates

4.4.1 A simple heuristic proof of the generalformula for the asymptotic
variance

Let us suppose that the continuous density function /(x) characterizes a
general (i.e. not necessarily symmetrical) probability distribution. The probabil-
ity of the event that the random variable has values around x in the short Ax
interval isf(x)Ax. If Ax decreases so that no distinction is possible by the given
measurement technique in that interval, f{x) can be substituted by a Dirac
function of A = f(x)Ax at point 1 (Fig. 20). (If A« 1were not fulfilled, Ax is
to be diminished until this relation is satisfied. The value x in the inteval Ax is
to be situated in such a manner that the probability for greater or less values
than x are equally probable.)

Fig. 20. A short Ax interval can be represented by a Dirac function instead of the continuous
line off(x)

20. abra. Egy rovid, dx-hosszlUsagu intervallum Dirac-fiiggvénnyel helyettesithetd, az fix)
folytonos s(riségfiiggvény megfelel6 szakasza helyett

Puc. 20. KopoTkuii uHTepBan AnnHOW Ax 3aMeHUM 0 [lypaka BMecTO COOTBETCTBYHLLErO
0Tpe3Ka HernpepbiBHON NAOTHOCTHOW yHKuMM fix).

The Dirac delta function in x ‘participates’ with the value
AT - IC(x,/, T) WA (66)

in the ‘formation’ of the T value (see Eq. (62)). IfA is really very small, the whole
jc-axis can be divided into small intervals all having the same probability. If the
number of intervals is n then A = I/n and Eq. (66) is the same as Eq. (62a).
Ifnis large, after a well known theorem of Glivenko the frequency diagram
constructed on the basis of the sample is very near /(x). In other words, the
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distance (say, the Prohorov-distance) between the sample—as a ‘density func-
tion” consisting of Dirac delta functions each of the measure 1l/«—and the
original /(x) density function is negligible. Therefore the series of n = I/A
pieces of substituting Dirac delta functions (defined above at x-locations ac-
cording to /(x)) is regarded as a sample (a so-called ‘ideal sample’). This is
justified by the fact that we want to derive an asymptotic result for ajoint effect
of the sample elements on the resulting T.

Let us denote the deviation caused by the y-th sample element by ATj,
whose sample variance D2j is

= _ . 6
Ki=-% \ i [K3A2 )

Every value of the x-series xI5 ..., X, defined above as they-th sample element,
can occur with equal probability for a given sampling.

Obviously the fluctuations of T are not caused solely by a single sample
element. As the effects of measure ATj are summarized and since the variance
given in Eq. (67) is clearly independent ofy, applying a well known theorem for
the variance of the sum of equally distributed random variables we get the
variance D2 of T (estimate of location) as

D@ = neDlj = >12t [ICX)]2 = ; £ [1O'D']2F1' (68)
The probability 1/n equals f(x) wAx (being not only f(x) but also Ax
dependent on .v); consequently the integral form of Eq. (68) is the following:

00

DA i " IC012f(x) dx. 69)

- 00

As the definition of the asymptotic variance A2 is given by
A2=ne+D2 (70)

we obtain the following very important formula for the asymptotic variance of
estimates:

A2 = J [1C()]2/(x)dx. (71)

The heuristic train of thought given above shows at the same time that the
estimates have Gaussian distribution (if n-t00) as the fluctuation of estimates
is the sum of n equal random variables and therefore (if A2 exists) the premises
of the so-called central limit theorem are fulfilled. (The exaxt proofs of these
statements are to be found in Huber [1981] but the principal content is much
more enhanced for appliers by the heuristic way followed above.) The attribute
‘central’ is therefore just as much justified for distributions of estimates as it is
misleading for mother distributions.
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4.4.2 Calculation of asymptotic variances of M-estimates

Substituting the expression of the IC-function given by Eg. (64) into
Eqg. (71), we get for symmetrical distributions (having their symmetry points in
the origin) the asymptotic varian%e of the estimates of location parameters:

S2W2 (f)j fix) dv
AT, S) = : (72)

% fix) dx
@

In the argument of A2, T denotes the method of the estimation itself. If the
estimation of T is carried out simultaneously with the estimation of the scale
parameter, in Eqg. (72) S denotes the other result of the twofold iteration
(fulfilling Eg. (60a)). The symbol S can be regarded, however, as an ‘indepen-
dent variable’, too: Eq. (72) belongs in this case to a simple iteration carried out
with constant S-value. This interpretation is evidently important in looking for
that value of S which results in a minimum asymptotic variance.

Substituting Eq. (65) in Eqg. (71) we get the asymptotic variance of the scale
parameter, too: 3

SV (W )d *
A2=" f . (73)

@

As in the overwhelming majority of cases we have to determine T and the
fluctuation of S causes in general little fluctuation of T, Eq. (73) has only
secondary importance.

Utilizing the formula for the asymptotic variance of location estimates (Eq. (72)) it is possible
to prove shortly the famous and practically important Cramér-Rao inequality, too.

If both sides of the well known relation

W) FeON = W) f(X)+ wx) ('(x)

are integrated from - 0o to + 00, the left hand side gives zero as we have to take the values of the
expression inside the square parantheses at x= —oo and x = 00 and both are clearly zero (since J\x)
is a density function). The integrals on the right hand side are consequently equal in the absolute
sense, and therefore the following also holds, viz.

J yl(x)f'(x)Ax f y/'(x) f(x) dx
- -@
The integrand on the left hand side is the product of the square roots of the functions

vx) f(x) and (—V | fix). According to the Schwarz inequality it holds (also taking into

account the equation above) that
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(.D 2 »
fix) fix)dx X} oycydx A fix) fix) dx
“© —@ M- @
Writing this in the form

_I(DVZX)fIX) dx |
0] 2— @
i fix) Ax) dx fix)
' ) 4x) f(x) dx

3 fix)

on the left hand side we have the asymptotic variance of the estimation of the location parameter
working actually with a given ((/-function (this function defines the estimation procedure itself), and
on the right hand side is the well known Cramér-Rao bound depending only upon /(x).

4.5 Some additional aspects and remarks on the theory of robust estimates

45.1 The breakdown point

The resistance of an estimation procedure means that some outliers negligibly influence the
estimate. The question arises, however, what percentage of the data is tolerable as an outlier without
totally spoiling the estimation (i.e. without it resulting in an estimate of location which no longer
adequately characterizes the gathering of the data).

Instead of referring to some theoretical discussion of the question let us cite in brief an
investigation method of ad hoc type [Kerékfy 1978]. The samples of n elements are to be con-
structed in the following way: (n-j) data come randomly from standard Gaussian distribution, the
other data of the sample are 1+100, 2100, 1) « 100, j = 100. If jjn is constant, we can
calculate by increasing n an asymptotic value for the estimation procedure in question. If this value
is greater than 3, the estimation is totally spoilt. Usually that pn value is given (in per cent) as the
‘breakdown point’, to which the limit value of 3 belongs.

The table of Kerékfy [1978] belonging to this contains limiting pn values in the sense
mentioned above (i.e. breakdown points) for 15 estimation types. This maximum content of outliers
can also be 50%, too—but this is only a statistical aspect; in actual cases the applier can be much
more rigorous (tolerating only, say, maximum 10%). On the other hand, special problems (e.g. in
astronomy) would tolerate also even greater than 50% of outliers to find a characteristic gathering
of the data.

The calculation of arithmetic means as estimates has a very special behaviour: its breakdown
point of 0% means that this method can be totally spoilt by the occurrence of an arbitrary small
percentage of outliers.

4.5.2 Some robust procedures

Some simple procedures often occur in the investigations of robust statistics:

a) the sample median;

b) the a-trimmed mean (from the ordered sample the smallest and the greatest data are
cancelled, both being a% of the whole amount of the data, and the arithmetic mean of
the remaining is calculated);

¢) the a-winsorized mean (is calculated similarly to the a-trimmed mean but the smallest data
of the sample are replaced by the first remaining item of data instead of cancelling them,
the greatest data are replaced by the last remaining item of data, before the arithmetic
mean is calculated);
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d) the trimean of Tukey (half of the sum of the sample median and of the arithmetic mean
of the sample quartiles);

e) skipped methods usually calculate arithmetic means after cancelling data which are outside
an interval, say, 1.5 or 2 times the sample interquartile range;

f) the Hodges-Lehmann estimate (in the first step arithmetic means of pairs of data are
calculated, composing these pairs in every possible manner; in the second step the sample
median of these n2 means is determined).

These often cited ‘classical’ procedures are not the most effective ones. Newer and more
sophisticated methods are unfortunately also often ad hoc procedures [see e.g. ‘Hampel's estimate
of 14 April 1971 ‘Hogg proposal in letter to John Tukey’ in Andrews et al. 1972]. The applier
needs, however, procedures which fulfil the demands given in Table Il

As for the nomenclature: the methods in points a)—e) above are so-called /.-estimates (linear
combinations of order statistics), and in 0 example was given for /{-estimates (estimates derived
from rank tests). The fundamental notion for L- and Jl-estimates is also the already known
IC-function (clearly no ~-function exists for L- and /{-estimates). Equation (71)also holds for these
cases (for our heuristic proof the type of estimation is of no importance).

To enable eventual quick comparisons, firstly the formula for asymptotic variance of Hodges-
Lehmann estimates is given :

12- J f2Ax) dv

secondly the expression of the IC-function of a-trimmed means for symmetrical distributions:

sign (v) mF *(1- « if V> /= (1—=)

IC(v) =

l-2a " if W\~ F_1(l-a)

[set e.g. in Huber 1981].

45.3 The If-function of arithmetic means

Ifitis p(.) = (,)2in Eqg. (56b) (least squares method for T= const. =E)
then 1C(.y)= y(according to Egs. (56a) and (64)). The great influence of outliers
(leading to the breakdown point of 0%) is evident. Andrews et al. [1972] do not
indicate that any single estimation method from the investigated ones is the best,
but they declare—no wonder that the arithmetic mean is the worst one.

GO

Substituting IC(.y)= yin Eq. (71) we get j xZ(n) dY. (Remember that the

—00
location parameter was assumed to be zero, for the sake of simplicity.) This
expression is usually called ‘the variance’and is commonly used for characteriz-
ing the original (mother) distribution f(x) itself although this quantity charac-
terizes only the dispersion of estimates (giving the asymptotic variance of them)
for the very special case if arithmetic means are calculated as estimates. No
wonder that 'the variance’ alcan have infinite values, too, even if the mother
distribuion /(.y) shows an expressed maximum of small dispersion (i.e. the
interquantile ranges are small); ‘al—oo’ enhances only the fact that the mean
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square technique is either unusable (if also the first moment is infinite) or its use
is not effective (in cases of finite first moments).

Summerizing the statements above : ‘the variance’ a2 does not characterize
the original (mother) distribution /(x) itself; only if two distributions show the
same type (and the second moments are finite) can have o a relative meaning
concerning the original distributions in the sense that a2ai gives the ratio of
the scale parameters in question (S2/St). It is misleading if we accept any kind
of more general meaning of a2concerning mother distributions (unfortunately
most handbooks written on these topics do this).

Chapter 5
Characteristics and formulae of the most frequent values

It seemed to be advantageous to deal in a separate chapter with the
application of the theory of robust statistics to the most frequent value calcula-
tions.

5.1 Characteristic functions and asymptotic variance

5.1.1 The yj- and/f unctions by calculating most frequent value and dihesion,
respectively

According to Eq. (17) the weight function has the form

?2(m) = (74)
e2+(.)2'

Using standardized variables, we need only write x in the argument instead of

(x-M). At the same time, however, standardization means that e=1. The
weight function is then

1
- 75
<p(X) 1+ 12 ( )

where x is the standardized variable.
According to Eq. (57) yj is the weight function  multiplied by the variable,

consequently

X

yix) = —

76
1+xz (79

holds.
The /(x) function belonging to the determination of the scale parameter,

in our case the dihesion e, is the following:
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(77)

Proof. Substitute . instead ofx in Eq. (77). For samples Eq. (60)—with S =e—must hold,

i.e. the equation

(78)

is valid. Written in another form
3y {x-MY

kI [2+(y-M)22

£ (78a)

holds, which formula is clearly fulfilled with the same e as the iteration formula given in Eq. (28a)
for the determination of the dihesion.

5.1.2 The IC-functionfor the most frequent values

Writing S=e, supposing r=M =0, and substituting the ((/-function given
in Eq. (76) and its derivate into the general expression of IC given in Eq. (64),
we get

IC(x, F, M) = (79)

for symmetrical distributions. This is for |jd >e a decreasing function in the case
of its absolute values. The resistance to outliers is guaranteed to a degree defined
by const./Jjd for large values of |igj ; this degree is satisfactory in the overwhelm-
ing majority of cases.

5.1.3 Asymptotic variance of most frequent values

Substituting the expression of the IC-function given in Eg. (79) in the
generally valid Eq. (71), we get for distributions being symmetrical to the origin
(and for arbitrary €) the asymptotic variance of the most frequent values in the
form: ®

(80)
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If e is not arbitrary, we have to take into account Eq. (28) which defines the
dihesion in an iterative manner. After some rearranging we get (with M =0)

& b ? Nx)Nx~'3

fix) dx. (80a)

(e2+ X 2)2

Using this relation several times in both directions, we get a very simple formula

for A2(M, &):

(e2+ x2)2

A2Me) =
@ *"-\fiz fix) dx—

(e2 + X 2)2

(s20 21V dY

4/3 «£2
ZﬁT&rX'XlJZ fix) dx
1

13 -£2
(€2+x2)2

£2
(fi2+ x2)2

1

+
(E2+ X2)2 (f2+ X2)2

1 £
1 nie)
fix) dx

fix) dx

fix) dx
(e2+ X292

fix) dx

_ fix) dx
(fi2+ X2)2

fix) dx

fix) dx

(81)
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We have seen (see Eq. (22)) that n(e) gives the ratio of the number of effective
data divided by n. The result is therefore not only simple but also immediately
acceptable.

A statement of principal importance iS [Csernyak and Steiner 1983b] that
the expression A2 = e2n(e) is alwaysfinite, i.e. the law of 1/fn for the increase
of the accuracy is proved for all symmetrical distributions. For asymmetrical
distributions is such a theoretical result not yet known but the Monte Carlo
investigations of extreme asymmetrical cases has also given satisfactory results
(see paragraph 5.2.2).

5.2 Examplesfor comparing the asymptotic behaviour of the most frequent
value with that of the arithmetic mean

5.2.1 Symmetrical examplesfor n —cc

The density functions of 18 distributions that are symmetrical to the origin
are contained in Table IV. For each distribution there are given the dihesion e,
the n(e)-value (see Eg. (22)), the asymptotic scatter (the square root of the
asymptotic variance) of the most frequent values (e/)/n(e)), the asymptotic scatter
of the arithmetic means (a, often known as ‘the scatter’), information about the
fulfilment of the law of large numbers for arithmetic means (as already shown
above, for the most frequent values the fulfilment is guaranteed in the ‘best
form’, i.e. the accuracy always increases with \/jn), and, finally, the ratio of the
asymptotic variances in question (the relative efficiency of the most frequent
value calculations referring to that of the arithmetic means), denoted as ne/nm
since this ratio gives at the same time (in an asymptotic sense) the ratio
0(15) numbers of data needed to achieve the same accuracy. If the integral

j x2Z(x) dx is divergent, in the column for a the sign oo is written.

The classification of the 18 distributions in four groups was made based
on the different asymptotic behaviour of arithmetic means. These four possibil-
ities are: 1) the reverse of the law of large numbers is fulfilled, i.e. the greater
the number of data () the less the accuracy; 2) the law of large numbers is not
fulfilled and the accuracy is independent of n; 3) the law of large numbers is
fulfilled but the estimation of location has poor efficiency (being a= 00); 4) the
law of large number is fulfilled, the accuracy increases with 1/|/s.

If nEnM < 1, the use of arithmetic means is more economical than the
estimating of location with the most frequent values. Distributions of such type
(see numbers 13, 14 and 17 in Table 1V) are, however, sterile in the sense of
Csernyak [1984], i.e. in those cases the flanks of the distributions either com-
pletely vanish (14 and 17) or are smaller than would be a real model of
distributions mostly occurring in the earth sciences. The Gaussian distribution
(number 13) is an example of unreal small flanks, at least from the viewpoint
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of geophysics and geology; a surplus of 36% is needed for the same accuracy,
using most frequent values instead of arithmetic means (the latter ones are well
known optimal estimates in the case of Gaussian distribution). After suitable
generalization of the concept of the most frequent values—given in Chapter 8—
it is possible to approximate arbitrarily the efficiency of 100% even for Gaussian
type distributions (if—rather exceptionally—approximately such a type occur-
red in the practice).

5.2.2 Monte Carlo resultsfor symmetrical and asymmetrical distributions

Although the case of symmetrical distribution was dealt with in the
previous paragraph, it nonetheless seams useful to show on some examples what
the reverse fulfilment of the law of large numbers and the non-dependence on
n mean, because these cases are not commonly known. Two asymmetrical
examples are treated as well.

The sampling (with n= 10 and 100) was made randomly 200 times for all
5 distributions investigated and for each sample the arithmetic mean E and the
most frequent value M were determined. Four frequency diagrams were con-
structed for each distribution to show the results in such a manner that the

n=100

Fig. 21. No 4 probability distribution type of Table IV. It is noteworthy that arithmetic means
become less accurate with increasing n (see scale of abscissae of ~-diagrams) whereas most
frequent values become more and more accurate

21. abra. A IV. tablazat 4. eloszlas-tipusa. Az atlagok pontatlanabbakka valnak n névekedésével
(1. az ~-diagramok abszcissza-skalait), mig a leggyakoribb értékek egyre pontosabbak

Puc. 21 dyHkuma pacnpegenenms 4. no tabnuue IV. Mpu Bo3pacTaHWM N cpeaHMe CTaHOBATCA
HeTOYHbIMK (CM. LWKanbl abecumuce gnarpaMmm E). B TO Bpems Kak Hambonee yacTble
3HayeHus Bce 60n1ee TOUHbIMU.
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Figures 21-25. Results of a Monte Carlo study. The frequency diagrams are given for sample
sizes n= 10 and n= 1(X), and for arithmetic means (£) and most frequent values (M).
The mother distribution is given by its density function (both analytically and by showing the
curve n—1). Medians and interquartile ranges are marked in all cases

21-25. abra. Egy Monte Carlo vizsgalat sorozat eredményei. A gyakorisagi diagramok n= 10-re
és 100-ra adottak mind az E szamtani atlagokra, mind az M leggyakoribb értékekre.
Az anyaeloszlas slriiségfiiggvényével adott (mind analitikusan, mind az n= 1jeld gorbével).
Mindegyik esetben bejeldltik a medianokat és az interkvartilis terjedelmet

Puc. 21-25. Pe3ynbTaThl nccnegoBaHuii metogqom MoHTe Kapno. HYacToTHble gnarpammsl
npusogatca ansa n=10 n n= 100 kaK Ans cpegHeapugpmeTnyecknx E. Tak n ana Hambonee
YEeCTbIX 3HayeHMn M. MaTtepuHcKas PYHKLUMA 3afaHa NNOTHOCTHOM (hyHKLMER, Kak
aHa/IMTUYECKMN, TaK W KPUBOW «mn= 1». Bo Bcex cnyyasx 0603HaYeHbl MeAnaHbl
N MEXKBapTU/IbHbIE UHTEPBASbI.

Fig. 22. No 6 probability distribution type of Table IV. It is noteworthy that the accuracy of
the arithmetic means does not seem to depend on n (the interquartile range is almost the same

at n= 10 and n= 100,) whereas the accuracy of the most frequent values increases with |/n

22. &bra. A V. tablazat 6. eloszlas-tipusa. Ugy tlinik, az atlagok pontosséaga nem fiigg n-t6l (az
interkvartilis terjedelem csaknem azonos n= 10-nél és 100-nal), mig a leggyakoribb értékek

pontossaga ln-nel novekszik

Puc. 22. dyHKUMsA pacnpegeneHns 6. no Taébnuue IV. TOYHOCTb CPEAHMX, BUAUMO, He 3aBUCUT
0T N (MEXKBapTU/bHbIE UHTEPBa/bl MOYTU OAHU U Te e npu n= 10 u n= 100), B TO BPeMs KaK

TOYHOCTb Hambonee YacTbIX 3HAYEHWIA yBenuymeaetcs ¢ in.
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Fig. 23. No 11 probability distribution type of Table IV. The behaviour of the arithmetic means
seems to be statisfactory in the investigated sample sizes, although the value of al (i.e. the
asymptotic variance of the arithmetic means) is infinite in this case

23. abra. A IV. tablazat 11 eloszlas-tipusa. Az atlagok viselkedése kielégitének latszik a vizsgalt
mintaelemszamoknal, noha a a2 értéke (azaz a szamtani atlagok aszimptotikus szorasa) ebben
az esetben végtelen

Puc. 23. dyHKums pacnpegeneHus 11 no tabnuue IV. MoBegeHne CPeaHUX KaXKETCH
YL0BNETBOPUTENbHBLIM, XOTA 3HayeHue a2 (TOeCTb acMNTOTMYEeCKas Aucnepcums
cpefHeapuMMeTMYecknx) N 6ECKOHEYHO B 3TOM Clyyae.

surface under the frequency diagram is always the same (see Figs. 21-25). The
density function itself is also given in each figure («= 1).

Attention should be given to the scale of the abscissae: in the first and last
example the ”~-diagrams clearly show the reverse fulfilment of the law of large
numbers. To the contrary, M-diagrams show that the most frequent values also
behave according to the I/[/n-rule in these extreme cases.

The last example can be treated analytically, too. This type of distribution
is called Smirnov-distribution [Gnedenko and Kolmogorov 1949], the density
function of it being

f 1 --L -3 .
1=e 2x 2 if x>0
fix) =« \2n (82)
. 0, if x"0O

The characteristic function has the form
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( is the unit imaginary number). According to the well known convolution
theorem the sum of n elements has the characteristic function

, *1 n
exp <-n ft La g tei (82b)

i.e. the arithmetic mean is also Smirnov-distributed with the density function

/II % —e rl]/2|'| W (820)

n=100

Fig. 24. Probability distribution type with density function given in the figure. With increasing
n arithmetic means do not provide characteristic values for the mother distribution, in contrast
to the situation with most frequent values

24, abra. A szamtani atlagok novekvd n-nel nem adnak az anyaeloszlast egyre
pontosabban jellemzd értéket, szemben a leggyakoribb értékek megnyugtatd viselkedésével

Puc. 24. Mpwn Bo3pacTaHUWU cpeaHeapuiMeTUYECKIe He NPUBNMKAIOTCSA BCE TOUYHee
K Be/MUMHe, XapaKTepuaytollieil UCXOAHOoe pacrnpeaeneHme B NPOTUBOMOMOXHOCTb XafAeXHOMY
NOBEEHNI0 HanBonee YacTbiX 3HAUEHWIA.
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Fig. 25. Probability distribution type with density function given by Eq. (82) (Smirnov-type

distribution). The sample interquartile range increases rapidly with increasing n (see scale of

abscissae of £-diagrams), to say nothing about the enormous right-ward trend of the median.
On the contrary, the accuracy of most frequent values increases with increasing n

25. abra. A (82) egyenlet szerinti s(r(iségfiiggvénnyel megadott eloszlas-tipus
(Szmirnov-eloszlas). Az empirikus interkvartilis terjedelem gyorsan novekszik n névekedésével
(1. az f-diagramok abszcissza-skalait), nem is beszélve a médian nagymeérték( jobbra
tolodasardl. Ezzel szemben a leggyakoribb értékek egyre pontosabbak az n névekedésével

Puc. 25. Tun pacnpepeneHuns (pacnpegeneHne CMUpHOBA), 3afjaHHbIA PYHKLMEA NAOTHOCTU MO
ypaBHeHWO (82). SMnupuyeckas UHTEPKBApPTU/bHAA WKPOTa GbICTPO BO3pacTaeT Mpu
BO3pacTaHMM N (CM. LUKanbl MO coM abcumce Ha "-AuarpaMmmax), He roBOpPS YXKe
0 3HAUYNTENIbHOM CMELLEHUM MeAnaHbl BNpaBo. B MpoTWBOMOMOXHOCTL 3TOMY, Haubosnee yacTble
3HaueHUs Bce 6oniee TOUHbI MPU BO3pacTaHUM .

This means that not only the interquartile range of arithmetic means increases
proportionally with n but also their mode, median, etc. (Fig. 26). Consequently,
the distribution of arithmetic means has nothing more to do with the original
(or mother) distribution. The grounds of this phenomenon lie in the calculation
of arithmetic means as an estimation procedure itself. There are not an sich
‘wrong’ distributions: most frequent values also give in the case of the Smirnov-
distribution with increasing n more and more accurately a value which charac-
terizes the mother distribution itself (Fig. 25).
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Fig. 26. Arithmetic mean of n values from a Smirnov distribution is also Smirnov-distributed
but the density function is enlarged n times

26. abra. S:mirnov-eloszlasu n db érték szamtani atlaganak szintén Scm/rnor-eloszlasa van, csak
ez utébbi s-szeresen nyuijtott

Puc. 26. PacnpegeneHue cpegHeapumMeTUUecKX U3 N 3HaUeHUin CO CMUPHOBCKUM
pacnpefieneHnem UMeeT TakKe CMUPHOBCKUI XapaKTep, HO pacTAHYT Mo f/MHe B N Kpar.

Chapter 6
Two families of probability distributions

6.1 Modelling

Vercors, in his excellent short novel entitled ‘Les animaux dénaturés’, wrote: ‘As a general
rule, investigation, experimentation and observation increase the uncertainty.” This feather-weight
(and naturally exaggerated) statement with a considerable dose of salts can become a troubling
reality if we hang fast to our accustomed statistical procedures: we have seen in the preceding
chapter that expensive surplus data can really increase the uncertainty if we calculate according the
principle of least squares.

This classical principle 'works’effectively only for ‘nicely shaped’ distributions (e.g. in the very
neighbourhood of the Gaussian). For our investigations the broadest possible families of distribu-
tions are necessary for modelling the actually occurring error distributions.
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The author hopes that the reader is not yet bound too tightly to the classical conception. Even
in the early seventies, based on different approaches the following classification of statisticians was
still valid (from the point of view of real distributions, cited from Andrews et al. [1972], page 128):
— ‘Messrs. One-toe-in-the-water, where contamination is admitted, but only gentle contamina-

tion...”
— ‘the wary classicist, who takes pure Gaussian as the conventional situation...’

— the realist.
The notion ‘contamination’ itself has come to be somewhat old-fashioned as a lot of actually

occurring distributions are primarily long-tailed and not because of some secondary effect. (This
technical term is only justifiable if the model-distribution is required to model some percentage of
outliers, t0o0.)

6.2 Generalized supermodel of Tukey

A family of probability distribution types defined for modelling real distributions is called for
short ‘supermodel’. A single model distribution-type ofa supermodel can then be defined by a single
value of the type-parameter, or by two values if the supermodel has two parameters.

One of the latter types of supermodel is the f T(p. op, X) family of distribution types, known
as the generalized supermodel of Tukey:

fT(p,oc;x) = (\-p)fc(l;x)+p f a(oc;x) (p<0.5) (83)

where f G(6\ x) is the Gaussian distribution:
fe,(<r-,x) = E\].ﬂ: e 29 (84)
n

In oc the index refers to the ‘contamination’, as a reminder of the approach mentioned above.
Ast T supermodel has two parameters (p and oc), it is convenient to show on the (p, oc) plane

just the same quantities as in Table IV (dihesion e, n(e), e/yn(e), a and nEnM, See Fig. 27-31 ; the
last of these quantities is calucalted obviously as o 2n(e)/e2).

t

Fig. 27. Dihesions (s) for Tukey’s generalized supermodel of two parameters (p and oc)

27. dbra. Dihézio-értékex (s) az altalanositott Tukey-féle kétparaméteres (p és oc) szupermodellre
vonatkozo6an

Puc. 27. 3HayeHus gureaun (e) B OTHOLEHNM 0606LLeHHON (p 1 0C) cynepmoaeni ThHKM.
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Fig. 28. Ratio of effective and all number of
data (denoted by n(e)) for the generalized
supermodel ofTukey

28. adbra. Az effektiv adatszam és a teljes
adatszam «(fi)-nal jelolt aranya az altalanositott
Tukey-féle szupermodellre vonatkozoan

Puc. 28. CooTHoLweHne n(e) 3 heKTMBHOIO
KOMMYECTBa faHHbIX U MOSIHOr0 KOMMYecTBa
[aHHbIX B OTHOLUEHMN 0606LLEHHOIA
cynepmogenn ThioKu.

205
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Fig. 29. Asymptotic scatter of most frequent
values (e/*n(e)) for the generalized supermodel
of Tukey

29. abra. Leggyakoribb értékek aszimptotikus
szorasa («/|[/£ )) az altalanositott Tukey-féle
szupermodellre vonatkozdan

Puc. 29. AcumnToTu4yeckas gucriepcus
Hambonee YacTbix 3HayeHwin (r/|/n(r))

B OTHOLUEHUN 0606LLEHHOI CynepMogenm
TbloKW.

Fig. 30. Asymptotic scatter of the arithmetic
means (‘the scatter’, a) for the generalized
supermodel ofTukey

30. abra. Az atlagértékek aszimptotikus szdrasa

(,,a szOras”, a) az altalanositott Tukey-féle
szupermodellre vonatkozo6an

Puc. 30. AcumnToTuueckas (0603HadYeHHast
uepes ff) aucnepcust cpefHUX 3HaUeHWNI
B OTHOLUEHWUW Cynepmoaeni ThioKu.
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Fig. 31. Relative efficiency (ngnM) of the calculation of most frequent values as estimates of
location compared with the arithmetic means for the generalized supermodel of Tukey

31. éabra. A leggyakoribb érték-szamitas, mint helyparaméter-becslés relativ hatasfoka (nEnM),
az atlagképzéshez viszonyitva, az altalanositott Tukey-féle szupermodellre vonatkozéan

Puc. 31. OTHocuTeNbHasA aPPEKTUBHOCTL pacyeTa Hanbonee YacTbix 3HadeHuid (NEnn)
B Ka4yecTBe OLEHKU NPOCTPAHCTBEHHbIX NapaMeTpPOB B CPaBHEHWUU C pacyeTOM CpefHbIX,
B OTHOLWIEHMM 0600LLeHHOI cynepmogenn ThloKu.

The thick line in Fig. 31 defines that subset of f T for which E- and M-estimates are equally
effective; for / r-distributions on the left hand side the £-estimation is more advantageous (if the
absence of outliers is absolutely guaranteed), and the opposite is valid for the /~distributions on
the right hand side. The worst case for the M-estimation is the Gaussian distribution (p=0): we
have seen earlier that surplus data of 36% are necessary to achieve the same accuracy as has the
optimum algorithm for this type of distribution (i.e. the mean square calculation).

Mention has already been made that the very solution inside the conception of most frequent
calculations is given by generalizing the original algorithm, see Chapter 8,—and in this way a
resistant procedure can be given having an efficiency arbitrary near to 100% even in the case of a
'clean’ Gaussian distribution. On the other hand, the least squares algorithm may need not just twice
as many but possibly 5 times as many, 10 times as many (or even more) data to achieve the same
accuracy as the Af-estimation (the maximum value of nGnMin Fig. 31 is 30 for the illustrated part
of the (p. ac)-plane). It iscertain that the finite crvalue of all f Tdistributions guarantees for the whole

supermodel the asymptotic fulfilment of the T/p-law also in the case of least squares calculations
but the efficiency (from the point of view of the appliers) may not only be unsatisfactory but also
absolutely unacceptable.



6. Twofamilies of probability distributions 207

6.3 The supermodel f ax)

6.3.1 Some remarks on the behaviour of arithmetic meansfor small samples

We shall deal in this section with small samples, too. As an introduction to this topic, the
present paragraph will show the interesting behaviour of arithmetic means of small samples from
/~distributions. Namely, we need not in these cases carry out Monte Carlo computations since the
density function of the arithmetic means of such samples can also be given analytically:

ft(>GdX) = X *1- p)"~Ygalf(n-k) +kof, X). (85)

As exp [-(<rf)2/2], the characteristic function of the Gaussian distribution given in Eq. (84)
is well known, it is simple to verify Eq. (85) on the grounds of Eq. (83) and applying the convolution
theorem. If Q, is the probable error (semi-interquartile range) of arithmetic means of samples
consisting of n elements and Q, denotes the probable error for the mother distribution itself, QnQ,
is a measure of how the accuracy increases with n.

It is convenient to choose V[ for the abscissa since in this case the fulfilment of the I/[/n-law
at finite n-values is indicated by the fact that points, representing (?,,/(?,-values, are situated on a
straight line through the origin.

The examples in Figs. 32 and 33 belong to the parameter-pair of (p=0.08; ac= 10), and to
that of (p=0.2; «c= 150), respectively. The straight lines in these figures connecting the origin and

the (1; 1) point would indicate that the 1/p-law is for all finite n-values strictly fulfilled. Dotted
straight lines indicate the asymptotic behaviour connecting the origin with the point

(1; 0.6745 m{\-p)+pot). (86)

Instead of analysing in detail Figs. 32 and 33, we only draw some inferences.

Fig. 32. Decrease of the sample interquartile
range of arithmetic means by increasing u for
a model distribution of Tukey type. Dotted line
shows the asymptotic behaviour

32. abra. Szamtani atlagok empirikus
interkvartilis terjedelmeinek csokkenése
novekvé n-nel, egy Tukey-féle modelleloszlas
esetén. A szaggatott egyenes az aszimptotikus
viselkedést mutatja

Puc. 32. Y6bIBaHWE 3MMUPUYECKNX
MeXKBapPTU/bHbIX WHTEPBaNOB
cpefHeapuMeTUYeCKUX C Bo3pacTaHWeM n Ans
cnyyas pacnpefeneHus cornacHo Mogenu
TbtoKK. TyHKTMPOM LeMOHCTpUpyeTcs
acvMNTOTMYECKOe NOBeAeHMe.
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Fig. 33. For some of the generalized Tukey-distributions the sample interquartile ranges of
arithmetic means with increasing n have a maximum value, before reaching that domain of
«-values where the asymptotic behaviour becomes dominant (see the dotted line)

33. abra. Az altalanositott Tukey-eloszlasok egy részénél a szamtani atlagok empirikus
interkvartilis terjedelmeinek ndvekvé u-nel el6bb egy kifejezett maximumuk van, miel6tt elérnék
az n értékek azon tartomanyat, ahol mar az aszimptotikus viselkedés dominal (utébbira nézve I.

a szaggatott egyenest)

Puc. 33. B HEKOTOPbIX M3 06061LEHHbIX pacnpeaeneHnii ToIoKU ammnupuyeckme
MEXKBapTU/bHbIE UHTEPBa/bl CPeAHeapUPMETUUECKMX 3HAUYEHWI NPU BO3pacTaHWM N cHavana
0GHapyXXUBaOT YeTKWii MaKCUMyM Mepef AOCTUXKEHWEM TOTO Anana3oHa 3HaudeHuid m, rae yxe

npeo6nagaeT acCUMNTOTMYECKOE MOBeAEHWUE (B OTHOLIEHUU MOCNEAHEr0 CM. MYHKTMP).

First a curiosity in Fig. 33 should be mentioned: arithmetic means can show on a finite
«-interval the reverse fulfilment of the law of large numbers, even if« is finite. (We shall see in Fig. 39
that most frequent values behave in accordance with the straight lines between the origin and the
;1) point.)

The density function of arithmetic means has the following form in the general case:

f"\x) = «/(«V)]"™* 87)

where the symbol '«*” means that convolution is to be carried out « times. Figures 32 and 33 can
also be seen from this point of view : by increasing « the role of tails is increasingly emphasized (this
is a consequence of one of the well known properties of the convolutions), the gathering itself can
no longer have a significant influence on the probable error of arithmetic means.
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6.3.2 Definition and characterization of the supermodelf ax)

If a is the type-parameter

*) — a> 1 88
M) = crantie+ i° 9

defines the density function fa(x) where
c(@) = (88a)

(I" denotes the well known I"-function). Some of these (to the origin symmetri-
cal) density functions are shown for x ~ 0 in Fig. 34. The corresponding distribu-
tion functions have the following form for integer values of a> 1:

Fig. 34. Some probability density functions (because of symmetry shown for x>0 only) from
supermodel f ax)

34. abra. Néhany / a(x)-szupermodellbeli valoszinlségeloszlas slrlségfiiggvénye (a szimmetria
miatt elég pozitiv x-ekre korlatozodni)

Puc. 34. MNOTHOCTHbIE (YHKLMM HEKOTOPbIX M3 BEPOSTHOCTHBLIX pacrpefeneHunii B cynepMojenu
fax) (U3-3a CUMMeTPUN JOCTATOYHO OFPaHUYMTLCA MNONOXKUTENbHBIMU X-aMu).
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1 1
bl x) Z—I—n arc tan x;

1 *
F3(x)
2+ 27N +x1!

(88b)

FJx)

_ ) le3m  ia-4) 1 e A
Faix)  Fa-200+ 5 4. (a-3)2{1+x2)" (ifais odd and a 75)

2-4- ... -(a-4 1 T

Fa(x) a—2iX) + (ifais even and a "6).
3

-S:..-(a-3)*

Table V shows for some a values (i.e. for some distribution types) the
numerical values of c(a), of the semi-interquartile range Q, of the dihesion e, of

«(e), and of the asymptotic scatter e/|/«(e).

E

E n(c;

a cia) s (c) in®)

(.2 11.3231 17.1756 1.8719 0.2370 3.8449)
14 6.2687 31231 1.5035 0.3566 2.5176
16 4.5544 17219 12732 0.4260 1.9608
20 3.1416 1.0000 1.0000 0.5000 14142
25 2.3963 0.7125 0.8120 0.5438 11011
3 2.0000 0.5774 0.6974 0.5669 0.9262
4 1.5708 0.4416 0.5616 0.5900 0.7312
5 1.3333 0.3704 0.4819 0.6012 0.6215
6 11781 0.3250 0.4282 0.6078 0.5493
10 0.8590 0.2342 0.3149 0.6190 0.4003
40 0.4040 0.1090 0.1492 0.6296 0.1880
100 0.2526 0.0680 0.0937 0.6331 0.1177

Table V. Characteristics of some distribution-types of supermodel fa(x)
a — type-parameter; c(@) — normalization factor; Q — semi interquartile range; e - dihesion;
el\in(e) — asymptotic scatter of the most frequent value

V. tablazat. Az /,,(*) szupermodell néhany eloszlastipusanak jellemz6 adatai
a — tipusparaméter; ga)—normalasi faktor; Q — interkvartilis félterjedelem; ¢ — dihézid;
E”n{e) — a leggyakoribb érték aszimptotikus szorasa

Tabnuua V. HeKoTOpbIX XapaKTepHble MapaMeTpbl TUMOB pacnpefeneHus cynepmogen fa(x)
a — TUMoBOI napameTp; c(a) — (hakTop HOPMMPOBaHUS; Q  MEXKBapTU/bHbIN
nofyuHTepBan; e — auresus; elfte) — acumnToTUYeckas gucnepcus Hanbonee 4acToro
3HaueHus.

The types are defined in Eg. (88) in its simplest analytical form. For
arbitrary location- and scale parameter (T and 5) we obviously have
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The distributions 1, 2, 3, 5,9, 10 and 12 in Table IV are clearly/,(.v)-distributions. There are
/(N-distributions in all four classes of Table 1V ; by contrast, however, all f T distributions belong
to the fourth class (a being always finite for all /T-s). In other words, the /(x)-family of probability
distributions is able to model many more types of distributions occurring in geophysics and geology,
although it has only one type-parameter. This latter fact results in a more convenient visualization
of effectivites, of dihesions, etc., than in the case of f T (when systems of isolines are needed, see
Figs. 27-31).

It is easy to verify that for a>3

holds. If a-»aqg Jax) tends to be a Gaussian distribution; if a=2 we get the Cauchy distribution.
For integer values of a, the fa(.x) distributions are Student’s f-distributions with (a- 1) degrees of
freedom. It would therefore be possible to refer to the the supermodel f,,(x) also as the class of
generalized Student's f-distributions, as in fact, was done by Hajagos [1985a], It is pointed out,
however, that to a certain extent this name can be misleading since Student’s f-distributions are
introduced in close connection with the Gaussian distribution, but the use of the /,(.v)-distributions
for modelling has nothing to do with this connection.

With /.(.redistribution a very great variety of flanks can be modelled: for great values of |x|
the density function approximates the expression const. [nT. To show two examples, in Fig. 35 to
(@a=1.4;5=01)and to (a=3.2; 5= 1) the density functions f(x) and f(x) are drawn. Which is the
more advantageous from the practical point of view? Since the probable error Q is less than that
of Q, f(x) can be declared as the better one. And really: also themost frequent values have a lower
asymptotic scatter in the case offix) (0.251 ) than in the case of f(x) (0.875; see also Table V). The
fact that for arithmetic means as estimates for f(x) the reverse of the law of large numbers is fulfilled,
clearly qualifies the estimation procedure itselfand not the distribution. Since 'the variance’ for f(x)
is finite, in this respect /(.v) would be much more advantageous than fix), contradicting not only
the numerical comparisons made above, but also our first impression on looking at the curves in
Fig. 35. It is again verified that 'the variance' is not the characteristic of the uncertainty contained
in the original (mother) distribution itself. This statement will also be justified in respect of the
entropies, see Chapter 7.

The question arises as to whether or not a-values very near to 1do model real distributions.
The density function for a= 1.2 (Fig. 36) shows that the upper quartile Q is already far from the
actual gathering of the values (the interval of the latter is measured by / 1[/(0)/2]). Some (e g.
meteorological) data can show similar distributions, too; in geophysics, however, the quotient
f~'[f(0)/2\/Q seems too small to be / 1.2(A), a model of a real distribution. To be able to judge in
a simple way the reality of a given f ax) for a given case from this point of view, in Fig. 37 the values
of this quotient are shown versus 1/(a—1).

How are the /.(x)-distributions able to model the reality? The answer can be given in a
convenient way if an analytical expression for the density function based on the measuring data is
already given. Newcomb [1886] had found for his astronomical data the expression:

-i)l (UL
f(x) = '10 +c2 W +c& '

with given c.-s; this f(x) curve is shown in Fig. 38. Points in the same figure belong to an f,,(x)
characterized by a=5.3 and 5=21.1.
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Although the excellent modelling in this case on the grounds of Fig. 38 is obvious, this is one
single example, and for mathematicians it is often the case that even a great many examples are not
convincing. Let us remember, however, that in Chapter 3 we have seen Cauchy distributed data,
too. In other words, /,,(x) with a=2 can also be a suitable model in actual cases, and according to
Jeffreys [cited in Kerékfy 1978], very careful measurements carried out under undisturbed con-
ditions can result in Student’s /-distributions of 5-9 degrees of freedom, i.e. in /,,(.*-distributions
characterized by 6<a<10 (this is the so-called Jeffreys interval). Exceptionally, distributions
characterized by a> 10 also occur: e.g. the example given by Linnik [1961] for the Gaussian
distribution]!)can be modelled by approximately / 20-type (12< a< 22;a more accurate determina-
tion of type is not possible in this case because of the small number and the grouping of the data).
It can therefore be expected that the members of the fa{x) family can, under widely varying
conditions, adequately model the actual distributions.

Fig. 35. Density functions /(x) (/,,(x) for a=3.2 with S= 1.0) and f(x) (f,,(x) for a= 1.4 with
5=0.1 as scale parameter). The asymptotic scatter of the most frequent value is 0.251 for f(x)
and 0.875 for /(x), while the arithmetic mean as an estimate is inapplicable for/(see the first
distribution in Table 1V). It is completely misleading to consider ‘the variance’ a2 as
a characteristic of the distribution itself

35. abra. Az /(x)-szel jeldlt s(rségfiggvény (/,,(x) a= 3,2-nél 5= 1,0-val) és az /(x) (amely
5= 0,1-es skalaparaméter(i, a= 14-hez tartozé /,(x)). A leggyakoribb értékek aszimptotikus
szorasa 0,251 /(x)-re és u.875 /(x)-re, a szamtani atlag azonban becslésként hasznalhatatlan /-ra
(L a IV. tablazat I. sorszamu eloszlasat). Mindenféleképpen félrevezetd a ,,szOrast” az eredeti
eloszlas jellemz6jeként elfogadni

Puc. 35. MnoTHocTHble dyHKummM /(x) (/,,(X) npu a=3,2 ¢ S= 1,0) n f(x) (/,,(x) npn a= 1,4
¢ napameTpoM LWKanbl 5=0,1). AcMMNTOTUYECKas AuUCrepcUs Hanbonee YacTbIX 3HAYeHWI
coctasnsieT 0,251 ans /(x) v 0,875 gna /(x), HO cpeaHeapuMeTUUYECKOe He MOXET ObiTb
MCNo/b30BaHO B KayecTBe oLeHKM /(X) (cm. pacnpegeneHue Ne 1Tabnauubl 1V). B nto6om
cnyyae 66110 6bl OLIMOBOUYHO NPUHATL «AUCMNEPCUIO» B KAYeCTBE XapaKTePUCTUKM NepPBUYHOIO
pacnpeseneHus.
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Fig. 36. If a is very close to 1the interquartile range of the fa(x) distribution is very long
compared with the interval of maximum probabilities characterized by the value of 2/ - 1(/(0)/2)

36. abra. Ha a tul kozel van 1-hez, az fa(x) eloszlas interkvartilis terjedelme nagyon nagy lesz
a legnagyobb valoszinliségl értékek 2f~ “(/(0)/2)-vel mért intervallumhosszahoz viszonyitva

Puc. 36. Ecnn a 611M3Ko K 1, TO MeXKBapTU/IbHbIA MHTepBan pacnpefeneHus fa(x) craHoBuTcA
CNULIKOM GONbLIMM OTHOCUTENBHO ANMHBI MHTEpBana Haumbonee YacTbiX 3HAYEHWUIA, N3MEPEHHOM
cooTHoweHnem 2/ _1(/(0)/2).

Fig. 37. Ratio of two lengths: that of the interval of maximum probabilities and that of the
interquartile range, versus 1/(a- 1) for supermodel fa(x)

37. é&bra. A maximalisan valdszin(i értékek intervallumhosszanak és az interkvartilis
terjedelemnek az aranya. 1/(a—1) fiiggvényében, az fjx) szupermodellre

Puc. 37. OTHOLEHWE ANMHBI MHTEpPBana Hambonee BePOATHBIX 3HAYEHWIA K AnuHe
MEXKBapTU/bHOTO MHTepBana Kak yHkums 1/(a—1) gns cynepmogenu fa{x).
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Fig. 38. Line: density function given by Newcomb for his experimental data sets; circles: values
of fa(x) for the type parameter a= 5.3 and for the scale parameter 5=21.1

38. abra. Folytonos vonal : Newcomb altal megadott sr(ségfiiggvény, amely jol leirja
tapasztalati adatrendszereinek eloszlasat; nullkdrék: az = 5,3 tipusparaméterhez és az 5=21,1
skalaparaméterhez tartozé f a(x) értékek

Puc. 38. CnsiolwHas AMHWA: NAOTHOCTHASA (hYHKUMA HbOKOMA, C 4OCTaTOYHOW TOUYHOCTLIO
OMMCbIBaIOLLAas pacnpegeneHme cMCTeM IMMUPUYECKMX JaHHbIX; KPYXOUKM: 3HaveHus fax),
COOTBETCTBYHOLIME TUMOBOMY MapaMeTpy a=5,3 n napameTpy wkansl 5=21,1.

6.3.3 Investigation offinite samples from differentfax) distributions

The investigation of finite samples coming from / r -distributions in respect of their arithmetic
means was convenient: Eqg. (85) has given the density function of arithmetic means explicitly. In
order to investigate most frequent values and arithmetic means for f a(x) distributions Monte Carlo
calculations are necessary.

The distribution fa(x) for a = 1.4; 1.6; 1.8; 2.0; 2.4; 2.8 and 3.2 was randomly sampled
200 times for n = 4; 9; 16; 25; 36; 49 and 64, the most frequent value and arithmetic mean for each
sample calculated, and the semi-interquartile range Q, for each set of estimates determined. The
results are demonstrated in the (1)In: Q,,/Qt) system of coordinates (where {?, = Q is the scmi-inter-
quartile range of the mother distribution), similarly to Figs. 32 and 33.

The results obtained for most frequent values are shown by vertical straight sections in Fig. 39.
and in detail in Fig. 40. The straight line between the origin and the point (1; 1) indicates the most
regular behaviour: if the mother distribution were the Gaussian one, the QJQ\ values of arithmetic
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Fig. 39. Results of a Monte Carlo study. If most frequent values are used, the interval of very
small n-values also shows asymptotic behaviour

39. abra. Egy Monte Carlo vizsgalat eredményei. Ha leggyakoribb értékeket hasznalunk
a becsléshez, a nagyon kis n-értékek tartomanya is az aszimptotikus viselkedést mutatja

Puc. 39. Pe3ynbTathl nccnegoBaHns Metogqom MoHTe-Kapno. Mpu ncnonb3oBaHny Hanbonee
4acTbIX 3HaYeHWii B OLEHKax, faxe 06/1aCTb OYeHb Ma/bIX 3HAYEHWA N 06HapyXuBaeT
aCUMMTOTUYECKOE MOBeAeHMe.
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means would fluctuate around this line. A very important conclusion made on the basis of Figs. 39
and 40 is that most frequent values behave in the most regular and, at the same time, in a practically
most advantageous manner.

What about arithmetic means calculated from the same samples? Figure 41 for n=64 is very
instructive: QnlQx values increase with descending a so rapidly that a logarithmic scale was
necessary on the ordinate. The 'most regular’ behaviour would correspond clearly to the value 0.125,
but even at a = 3.2, where the variance is already finite, Q JQ, is significantly greater than this value.

The structure of Fig. 42 is the same as that of Fig. 40, only the QJQi values in Fig. 42 belong
to the arithmetic means. For a= 2 the QJQ\ values fluctuate around the value 1—but it is
commonplace that the accuracy of arithmetic means at the Cauchy distribution does not depend
on n.

Fora = 2.4; 2.8; 3.2 and 3.6 the law oflarge numbers is fulfilled but in very different manner.
The behaviour of arithmetic means even at ¢= 3.6 does not reach the 'most regular behaviour’,
indicated by the straight line.

All points are above the straight line between (0; 0) and (1; I) in Fig. 42 and this means
that the use of arithmetic means is economically disadvantageous. An example: to 5= 64 belongs
Quq\ =0.41 at a= 2.4 (upper dotted curve)—this value would belong to /j = 6 if the most regular
behaviour were to occur (1/6 = 0.41). This means that data of more than an order of magnitude

are necessary to achieve the same accuracy.
In Fig. 43 the QJQ\ quotients versus \n are demonstrated. As can clearly be seen the reverse

fulfilment of the law oflarge numbers at a = 1.8, 1.6 and 1.4 is not only an asymptotic statement
but also valid for small samples. Let us recall (Figs. 39 and 40) that most frequent values showed
in these cases, too, the most regular (and at the same time most advantageous) behaviour.

Fig. 41. Results of a Monte Carlo study. The
different behaviour of the arithmetic means as
estimates for various values of the type
parameter a is shown for a fixed sample
measure (1=64). The asymptotic value is 0.125
belonging to u->00 (this corresponds to
Gaussian distribution)

41 abra. Egy Monte Carlo vizsgalat
eredményei. Fixnek felvett mintaterjedelemre
(n=64) adjuk meg a szamtani atlagoknak az

a tipusparamétert6l fiigg6 viselkedését. Az
aszimptotikus érték 0,125 (ez az érték felel meg
a Gauss-eloszlasnak)

Puc. 41. PesynbTaThbl UccnefoBaHNs MeToLoM
MoHTe-Kapno. NMoBegeHne
cpefHeapuMMETUYECKNX, 3aBUCALLEee OT
TUMOBOr0 napameTpa a CU/IbHO BapbupytoLLee.
farTcsa ans obbema faHHbIx (n=64),
NPUHATOrO B Ka4eCTBe MOCTOSHHOW. BenuunHa
ACUMMNTOTMYECKOro 3HauyeHnss — 0,125,
COOTBETCTBYIOLLEE FaYCCOBCKOMY
pacnpegeneHuio.
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Fig. 42. Results of a Monte Carlo study. For a=2A, 2.8, 3.2 and 3.6, i.e. for some fax)
distributions for which also the arithmetic mean follows the law of large numbers, the different
types of fulfilments are shown. (Monte Carlo results are also shown for a=2, i.e., also for the

Cauchy distribution to demonstrate the measure of statistical fluctuation of this study)

42. &bra. Egy Monte Carlo vizsgalat eredményei. A nagy szamok térvényének teljesiilési modjai
a szamtani kdzépértékekre, az a tipusparaméter 2,4; 2,8; 3,2 és 3,6 értékeire. Feltlintettik az
a=2, azaz a Cauchy-eloszlas esetére vonatkoz6 Monte Carlo eredményeket is, a vizsgalatot

jellemzd statisztikus ingadozas mértékének érzékeltetésére

Puc. 42. Pe3ynbTaT uccnefoaHus metogoM MoHTe-Kapno. Ha puc. npeactasieHbl pasfiMyHble
Cnocobbl BbINOMHEHUA 3aKOHA BOMbLUMX YMCEN B OTHOLUIEHWU CpefHeapMMeTUUECKOro Ans
3HaYeHWn TMNOBOro napameTpa a B 2,4; 2,8; 3,2 1 3,6 (Ha puc. NPUBOAATCA TaKxkKe
1 pesynbTatbl MoHTe-Kapno gns a= 2, To-ectb A1 pacnpegenenms Kowuu, ¢ uenbio gatb
npescTaBneHne 0 CTENeHW CTaTUCTUYECKUX (DIOKTYaLWi, XapakTepHbIX 418 NPoBeAeHHbIX
ncecnefoBaHuii).

Fig. 43. Results of a Monte Carlo study. The
astonishing behaviour of the arithmetic means;
these estimates show for a= 14, 1.6 and 1.8
that the law of large numbers is inversely
fulfilled

43. abra. Egy Monte Carlo vizsgalat
eredményei. A szamtani atlagok meghokkent6
viselkedése a= 1,4; 1,6 és 1,8 esetén: a nagy
szamok tdrvénye éppen forditottan teljestl

Puc. 43. Pe3ynbTaT uccnefoBaHns MeTo40M
MoHTe-Kapno. CTpaHHOe noBsefeHue
cpepHeapudmeTmnyecknx npu a= 14; 1,6 n 18;
3aKOH 60/MbLUNX YNCEN BbLIMONHAETCA
B 06paTHOM CMbIC/eE.
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Chapter 7
Deduction of formulae defining most frequent value and dihesion, based on
information theory

7.7 Entropy and Edivergence

7.1.1 The definition of entropy

The entropy of a probability distribution—defined by its density function
f(x)—is given by the formula

A= f f{x) «log2-L, dx (90)
fix)

[Reza 1961]. We shall deal in the following only with distributions having
positive densities for all .v-values. For these distributions the definition in
Eqg. (90) is without any comment correct; in general cases the integration is to
be carried out only for .v-domains where /(x)>0 holds.

The entropy does not depend upon the location parameter (see Eq. (90));
# (/) is only a characteristic of the dispersion of the mother distribution itself.
The entropy of all fax) distributions—defined in Eg. (88)—is finite [Hajagos
1982].

For distributions having finite variance the entropy is also finite [Reza
1961]. The opposite statement, however, does not hold, e.g. the entropy of the
Cauchy distribution characterized by the probable error Q (see Eg. (13) with
S=Q) is given by the expression

H(fc) = log2(4*0), (91)
although not only the second but also the first moment is infinite.

Some remarks should be made in the following, regarding the definition in

Eqg. (90) from the viewpoint of the applier.
The entropy of the Gaussian distribution (see Eqg. (84)) is given by

#(/c) = log2[<| 2ne] 92)

(where e is the base of the natural logarithm). In both Egs. (91) and (92) the
parameter of scale is in the argument of the logarithm function - and this fact
does not correspond to our demand that the characteristic of the dispersion
must be proportional to the parameter of scale. The solution is simple: the
characteristic defined by

B(f) = 2H() (93)

fulfils our demand, in addition, it does this in such a manner that relations,
minimum or maximum properties being valid for H also remain valid for B.
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As an example, proof should be given as to whether or not B is an
appropriate characteristic for the dispersion of the mother distribution.
A Gaussian and a Cauchy type distribution of the same probable error are
compared (i.e. a = <2/0.6745):

i a7
Bifc) Q 2 w0.6745 2.051. (934)
BUg) Q thtt

0.6745

We can accept as real that B is twice as great in the case of the Cauchy
distribution than for the Gaussian one because of the much heavier flanks.

The entropy defined in Eg. (90) - or Bin Eq. (93) - fulfils the requirements
of practice, in the case of heavy flanks, but H (and B) may also be infinite. Let
us cite an example given by Csernyak [1982]:

1 A< 2

h(x) 1 XIA2. (94)
X mog\x

(It is not superfluous to mention that Monte Carlo computations of this distri-
bution also showed in this extreme case the regular increase of the accuracy of
the most frequent values, i.e. the fulfilment of the 1/|/i1 rule for the M values.)

According to an interesting theorem of information theory, Gaussian
distribution is characterized by the maximum entropy among all distributions
having the same variance. At first glance it seems astonishing that the measure
of disordination has its maximum value just at the Gaussian distribution having
small flanks. But we have seen earlier that the variance (or its square root, the
scatter) does not adequately characterize the original (mother) distribution
being extremely sensitive to the ‘most far parts’ of the flanks.

It seems to be appropriate to show an example. In Fig. 44 two density
functions (JGto <7=3 and f T to p=0.08 and ac= 10) are shown, both clearly
having the same variance. (For f T defined in Eqg. (83) the variance is to be
calculated according to a2 = 1+p[af —1].) The cited theorem shows the en-
tropy of f q to be greater than that of f T- and we also feel according to our
(subjective) judgement after a visual comparison of the curves in Fig. 44 that
3¢ contains more uncertainty than f T does. Consequently, the variance (being
extremely sensitive to the ‘most far’ parts of the flanks) is always unable to
characterize the real uncertainty contained in the distribution (not only in cases
when the variance is infinite).
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fiX)

Fig. 44. Density function of a model-distribution of Tukey-type f T(x) and that of a Gaussian
distribution fe(x) having the same variance (i.e. asymptotic variance of arithmetic means as
estimates). The entropy of this latter distribution is greater than that of f T(x) (f@x) is much
more dispersed in its main part than is f T(x)). The variance does not characterize the dispersion
of the original distribution

44, abra. Egy Tukey-tipusuy s(rlségfiiggvény fA x). valamint az azzal azonos sz6rasu
Gauss-eloszlas f Qx) sdr(iségfliggvénye. Az utobbi eloszlas entrdpiaja nagyobb mint az f T(x)-¢,
amit az f Qx) lényegesen szétteriiltebb volta vizualisan is kézenfekvévé tesz. Lathatd, hogy ,.a

sz6ras” nem az eredeti eloszlas jellemz6je

Puc. 44. MnoTHocTHas (yHkuma Tuna Totokm f T(x) u rayccoBckoro pacnpegeneHus f Gx) c Toi
Xe fucnepcueil. SHTPONUSA MOCNeAHEro pacnpefeneHuns CyLecTBeHHO 60MblUe, HEXEeNu Ans
f T(x), 4TO BM3yanbHO UNNKOCTPUPYETCA 3HAUYMTENbHO 6oniee paclumpeHHol gopmoit f QXx).
BuaHo, UTO «aucnepcus» He ABNSAETCA XapaKTepUCTUKOW MCXOLHOTO pacrpefeneHus.

7.1.2 Substituting distributions, 1-divergence

The notion of ‘relative information’, commonly known as ‘/-divergence’
was introduced by Kullback [1959] and Perez [1967]. The /-divergence can be

interpreted as the loss of information, too.
Let us suppose that/(x) is the density function of the actually occurring

but analytically unknown probability distribution; f{x) being unknown, we
treat our case as if the density function would be the analytically known g(x).
In this case g(x) is called the substituting distribution, and the /-divergence is
defined as
. fjx)
W fix) log , dx (95)
B 90)

(supposing that g(x)> 0 is fulfilled for all x values).
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It can immediately be seen that in the case ofg(x) = f(x), Ig(f) = Oisvalid.
It can be proved [Vincze 1953] that I ff) cannot be negative. If g(x) is near f(x),
Iff) isa small value, and the opposite is fulfilled if g(x) is far from f(x). In this
sense Iff), from the point of view of information theory, can be regarded as
a distance of g measured from / (although all the usual criteria demanded for
‘distance’ are not fulfilled.)

It can be proved [Hajagos 1982] that when g is the Gaussian distribution
(denoted here as G) with the scale parameter a, and the variance a2 off is finite
being 02=02, then

Iqf)= H(G)-H() (96)

holds. This formula shows the connection between the notions of entropy and
/-divergence: the distance of the Gaussian distribution from f T, both shown in
Fig. 44, is just the difference of their entropies: H{G)- H(fT). (It should be
noted that the connection is not always so simple.)

It is at first glance astonishing that in cases when/has an infinite variance,
the distance of G (i.e. of the Gaussian distribution) from/is infinite (indepen-
dently of the value of the scale parameter). This is, however, in close connection
with the already known fact (see also paragraph 7.7.2) that least squares
procedures may be completely unusable also in well treatable cases ; this circum-
stance is adequately expressed by the infinite value of this distance.

It can be shown [Hajagos 1982 and Csernyak 1982] that when the sub-
stituting distribution is the Cauchy distribution, the /-divergence is finite for the
whole ffx) supermodel (and for all distributions having not heavier flanks than
those of the ffx) distributions). It seems therefore more advantageous- from
the viewpoint of information theory and in respect of general applicability—to
choose the Cauchy distribution as the substituting distribution instead of the
Gaussian one.

7.2 Minimization of I-divergence

The practical way of using the notion of the /-divergence is the following.
Substituting the actual but unknown distribution / by g of known analytical
form, that pair of T and S values playing a role in g is accepted as characteristics
of /, that minimizes the loss of information (i.e. the /-divergence).

7.2.1 Generalformulae

We write in the following g(x; T) and Iff; T)—instead of g(x) and
I ff)—to emphasize the fact that our primary task is the determination of T.
Let us suppose that g(x; T) is symmetrical, is to be differentiated according to
T, and that the integration and differentiation twice according to T are inter-
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changeable. The distance of g from / will be minimum if the following con-
ditions are fulfilled :

dfjf', T) _

T 0 97
and
d2Ag(f', T)
7
at2 > ° (972)

i.e. by the expression for | ff; T) given in Eqg. (95) the equation

00

dg{ix\ T)  {x)

OT  gix; T x=0 (%)
and the relation
dgix\ T) 1 . og(x: T) J\x)

dT gix: T) fix) dx- 4ot gix: T) dx > 0. (98a)

must hold. Equation (98a) is surely fulfilled if

®
8xix; T) fix)

=0. 99
g2t gix,m) X0 )

holds.
The simultaneous fulfilment of Egs. (98) and (99) resultsina I and S value

which guarantees the minimum /-divergence.

7.2.2 Minimization of the loss of information if the substituting distribution is
Gaussian

We need now the general form of the Gaussian distribution:

_ 1 -b-p2
gix;T) = —=e 7 (100)
a\2n

Substituting this in Eq. (98) we get
j (x-7)/(v)dx =0 101
i ( )/(v) (101)

or in another form
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T = j xf(x) dx; (1014)

0

on the right hand side is the well known 'expected value’ E
Substituting Eg. (100) in Eqg. (99), we get

D2 jxydx = o, (102)

or in another form

a2= J (x—E)2\x) dx. (102a)

— 00

As the most advantageous pair of values in g we have the expected value
and the variance (scatter) of/(x), if the substituting distribution is the Gaussian
one.

7.2.3 Minimization of the loss of information by substituting the Cauchy
distribution

The general form of the Cauchy distribution is now the substituting distri-
bution :

1 Q
-T) = 103
9D n Q2+ (x—T)2 (103)
The form of Eqg. (98) becomes

00

x-T
= 104
02+ (x—r)2 ) X =0 (104
but this can rearranged clearly into
Q2+(x-T) f(x) dx
(104a)
f(x) dx
2+(x- T)2
g @

Writing M instead of T, this is the defining formula for the most frequent value.
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Putting Eq. (103) in Eg. (99), we get

g
AV-M)2-Q2 1y = 0 (105)
[Q2+ (x—M)2]2

— X

which can also be written as

(v- M)2

. fix) dx
\Q2+ (Xx—A7)2)2

(105a)

02 X
J

[Q2+ix~M)22

fix)dx

If £is written instead of Q. this is the defining formula for the dihesion.
Obviously the deduction of the formulae for the most frequent value and

dihesion is the same in all steps as the deduction of the formulae for the expected

value and the scatter (variance), only the substituting distributions differ from

each other.
7.3 Short remark on the maximum likelihood principle

Clearly we get the formulae for estimating £, a. M and £ on the grounds
of the sample .v,.....X,, ..., X,,, if we put fix) = - £ 1€(xe<;) into the Egs.
1=

(101a), (102a), (104a) and (105a):

En= .1 | *e (101b)
« =]
a; = %X (x,-£J2; (102b)
Y ;
M. = .=". e2+ |.X1|-Mn)2 (104b)
21 eB+ix-M n2
" (% - AYL)2
v = 3i=1t6 + (x,- MJZ2 (105b)
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The maximum likelihood principle starts from the sample and therefore its
primarily given formulae are expressed by sums. There is a difference of prin-
cipal importance, viz: it is supposed that the actual error distribution is exactly
known. The author means that modelling (substituting) is a more suitable
procedure in practice because geophysicists and geologists never know precisely
the type of distribution in advance.

What are the differences between the respective formulae obtained by
applying the maximum likelihood principle and that of the minimization of the
/-divergence?

The answer maybe surprising.

The maximum likelihood principle results in the same equations for En <7,
and Mn(Egs. (101b), (102b) and (104b)) but instead of Eqg. (105b) we get

=h MT+(x-Mn2 (106)

B2+ (y..-M )2

Is, perhaps, the application of this formula more advantageous for deter-
mining the scale parameter than Eq. (105b)? Lack of space prevents this
question from being discussed in detail but two references are necessary. Firstly,
Csernyak and Steiner [1985c] showed that Eqg. (105b) defines a resistant
procedure but Eq. (106) is sensitive to outliers. Secondly, by the simultaneous
fulfilment of Egs. (106) and (104b) the asymptotic variance of M can be infinite,
too, even for a symmetrical distribution [Csernyak und Steiner 1985a]; on the
contrary, for symmetrical distributions the usual way of calculating most fre-
guent values (i.e. by using Egs. (105b) and (104b)) is always characterized by
a finite asymptotic variance.

Chapter 8
Generalized most frequent values

8.1 Most frequent value being optimum for a pair of distribution types
8.1.1 Dependence of efficiencies upon the scale parameter

It was shown in the section (7.3) that the most frequent value can also be
regarded as the maximum likelihood estimate of the symmetry point of the
Cauchy distribution (in a similar way to the arithmetic mean being the maxi-
mum likelihood estimate of the symmetry point of the Gaussian distribution).
This type of estimate, however, gives an estimate of minimum asymptotic
variance [Cramér 1958]; the conditions needed are fulfilled for the whole f ax)
supermodel. Consequently, investigations can also be made on the absolute effi-
ciencies.
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Our goal here is to find a factor k so that using Kk times the dihesion as the
parameter of scale (S=k8), this algorithm should result in just the same effi-
ciency both for the Gaussian and for the Cauchy type distributions. The
importance of this question is obvious as we often face situations when no a
priori knowledge on the distribution type of error is available.

Our method is the following. As Eqg. (80) is valid for arbitrary scale
parameters, we calculate both for the Gaussian and for the Cauchy type dis-
tribution the efficiencies as a function of k according to the formula

nfin.
A2M, ke) 1009%. (107)
The results are visualized in Fig. 45. For the Cauchy distribution the maximum
efficiency clearly belongs to k= 1; on the other hand, for the Gaussian dis-
tribution the maximum efficiency is only asymptotically reached for k->co
(approximating the case of equal weights, i. e. the case of arithmetic means).

The intersection point of the curves in Fig. 45 gives the answer to our
primary problem: approximately k= 1.9 defined that procedure which gives the
same efficiency for both distribution types in question. We can ascertain that
this common efficiency is greater than 90%. (Practically the same can be found
if we use the round number k =2.)

e(k) =

Fig. 45. Efficiencies (e) as a function of k (applied in the generalized most frequent value
calculations), for two distribution types. Using k= 1.9, the efficiencies of both Cauchy and
Gaussian distributions are the same (and greater than 90%)

45, abra. Hatasfokok két eloszlasra a k fliggvényében (ez az altalanos leggyakoribb értékek
szamitasanal alkalmazott faktor). Ha k = 1,9-cel szdmolunk, a Cauchy- és a Gauss-eloszlasra
azonos (mégpedig 90%-nal nagyobb) hatasfokot kapunk

Puc. 45. 3heKTMBHOCTM ABYX pacnpefeneHnin Kak QyHKUMS K. SBASIOLLErocs (hakTopoM,
NPUMeHSEMbIM B pacyeTe 06blYHbIX Hanbonee 4acTbIX 3HaueHuid. [py NPOU3BOACTBE pacyeToB
¢ K= 1,9 ahpeKTMBHOCTL pacnpeseneHnin Kowm n Maycca okas3blBaeTcs OAMHAKOBON, a UMEHHO,

csbiwe 90%
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8,1.2 Short discussion of the estimate M'

Using 1% instead of e, the result is in general different from M. Denoting
this new estimate by M, its definition is clearly

(1.9e)2+ (jc-M )2
Mo (108)

00

I 1
J @92+ (x-M*)2

fiX)

The isolines of relative efficiencies—similarly as was shown for E and M
in Fig. 31—are given in Fig. 46 for E and M' and for the f T(x) supermodel. The
relative efficiencies are also given in Fig. 47 for M and M’, respectively, to
compare these two variants of most frequent value procedures.

W\/l Fig. 46. Comparison of arithmetic means and
generalized most frequent values (JI' belongs to
k= 1.9) on the supcrmodel of Tukey-type. (For

notations, see caption of Fig. 31)

46. dbra. Szamtani atlag és a k= 1,9-hez tartozé
altalanositott leggyakoribb érték (M')
Osszehasonlitasa a Tukey-féle szupermodellen
(a jeloléseket illetéen 1 a 31. abrat)

Puc. 46. ConocTasneHune
cpeaHeapugmMeTU4ecKoro 1 0606LeHHOro
Hanbonee yacTtoro 3HaveHust (JIM) npn k= 19
B cynepmogeny TbioKu (YCNoBHble 0603HaueHNs

Kak Ha puc. 31.).

AM _
AML m

Fig. 47. Comparison of M and M' on the
supermodel of Tukey type

47. dbra. Az M és AT osszehasonlitasa
a Tukey-féle szupermodellen

Puc. 47. ConoctaBneHne M ¢ Mr
B cynepmogenu TbHOKM.
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8.2 Optimum estimates for an arbitrary member of the distribution family f &x)

8.2.1 Formulafor the weightfunction and the parameter of scale to be used.
General most frequent values

Substituting an arbitrary element of the fa(x) supermodel in its general
form given by Eg. (88c) into Eqg. (98), i.e. minimizing the loss of information,
we get the same, extremely simple form of weights to be used as by substituting
the Cauchy distribution. The weight function coincides with the density func-
tion of the substituting distribution exclusively in the case of a Cauchy distribu-
tion [Hajagos 19853]. (Consequently the weighting according the Cauchy
density function is more effective for «+ 2 than the weighting according to the
actualf a(.x) density function—see Eqg. (16)—even if we were to know this density
function in advance.)

Which value must be used as parameter of scale? The asymptotic scatter
(Eq. (80)) is required to be minimum, and if f ax) is the actual distribution, this

is fulfilled by S satisfying

(fl+1) [@1‘76({2'@3-% fa) dx
52 (109)

[S2+ (a— MK2ZF fix) dx

[Hajagos 1985a]. (Two remarks: substituting Eq. (88c) in Eq. (99), we get the
same formula; in the case of a=2 Eq. (109) is equivalent with Eq. (28).)
In Eg. (109) Mk is the generalized most frequent value estimated by the

formula

y (Ee)2 S
A4 (Ae)2+ (x,— MK2Y
Mk ( ) (_X ) (HO)
y ike)2

. ike)2+ix - M K2

The value K in Eg. (110) can be defined as the quotient S/e (the value S satisfies
Eg. (109), Esatisfies Eq. (28)). The resistance of the procedure on the ground
of Eqg. (109), however, becomes more and more questionable at great values of
a It is much more practical to determine the dihesion and to multiply it by the
£-value calculated according to the empirical formula:

----- 1|/a-|/2
kinl  Fa— \ H-----

a2 i
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(The corresponding k{a) curve is shown in Fig. 48). Consequently, if we know
that the type of actual error distribution can be expected in the neighbourhood
off ax) (to a given a-value), we use with k =k{a) Eqg. (110) and

3y
h[e2+{x-MKZP
" 1
i? 12+ (.v-M1)2]2
(as a twofold iteration) to determine MK, the general most frequent value. In
practice, it is very important that the programfor determining the general most
frequent value (MK) differs only in a single multiplication from the program for
determining M.

(112

P

. [N I T T T o

Fig. 48. Curve giving those A-values to be used to achieve an efficiency of 100% for an
/»(-~-distribution

48. abra. A gorbe azokat a A--értékeket adja meg, amelyekkel adott «-hoz tartoz6/,,(.v)-nél
100%-0s hatésfok érhetd el

Puc. 48. 3HayeHns K B BMAe KpUBOW, C KOTOPbIMK Mpu Nt060M/,,(X) ANA 3afaHHbIX a MOXHO
[06uTbes adhdpekTmBHOCTU B 100%.

We have no space here to discuss the problem of type determinations. (In
the program library of the Geophysical Department of the University of Mis-
kolc there are programs for this purpose.) One possibility in the f ax) super-
model should be mentioned : the sum counterpart of the integral formula given
in Eq. (80) (see Eq. (142)) for estimating the asymptotic variance (for large n)
can be minimized by suitable S = ke (see also Eq. (113)); divided by dihesion
e, the Kk = k(a) value obtained defines the type parameter a, k(a) being a
monotonie function. The use of the well known ‘y 2 test’, however, is dangerous
(see Appendix I11): this classical method, calculating on commonly used levels
of significance, can lead to such great losses in efficiencies which are no longer

acceptable.
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8.2.2 Efficienciesfor the supermodelf ax). The estimates M" and M'. Some
conclusions

Using k = k(a) for a given a, the asymptotic variance can be calculated
easily for the whole supermodel fa(x) as for these cases the following equation
clearly holds (cf. Eq. (80))

[(oe)2+ x22/-(V) dX

AR{a) (113)
(ke)2—X2
[{ke)2+ x2p2 A1) Ox

On the other hand [Hajagos 1985a], the minimum variance for every a> 1is
given by

<114)

(In paragraph 4.4.2 the formula for the Cramér-Rao bound is given; substitut-
ing Eg. (88) in this expression, the result is Eg. (114).) Consequently, the
absolute efficiencies of algorithms defined by k are to be calculated as

Ajja)
Alla) (113)

The question arises as to which values of k should be used beyond the
alreadv chosen k= 1.9 and the original k = 1? Figure 49 gives the square roots

ek{a)

Fig. 49. Pair of curves (giving the quotient of accuracies) for defining M" (i.e. Mk for k=2A)

49, dbra. Pontossagaranyokat feltiintetd gorbepar az M ““definialasahoz (AT azonos Mkval
K = 2.4 esetén)

Puc. 49. Mapa KpuMBbLIX C COOTHOLUEHUAMW TOYHOCTeW Ans onpegeneHms M", paBHbIM MK npu
K=24.
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of the efficiencies on the ordinate, i.e. the curves show the relative accuracies,
otherwise Fig. 49 is the same as Fig. 45. If we ‘approve’ only 3% in the loss of
accuracy for the Gaussian distribution (instead of 5% in the case of M") then
k=24 is to be used, and the corresponding Mk is denoted by M"; the loss of
accuracy in the case of the Cauchy distribution is about 9%. The corresponding
loss in efficiency is 16.8%; if the Cauchy distribution very rarely occurs, this
efficiency of 83.2% (or even less) is also acceptable. The Mk estimate working
with £=2.8 is optimum in the middle of the Jeffreys interval, i.e. at a - 8; its
symbol is M™.

The procedure determining M" is optimum at /,,(.~-distribution of a=4.4;
similarly the value a= 6.2 belongs to M". These density functions are shown in
Figs. 50 and 51, respectively; /44(x) has not too heavy flanks, and in the case

Fig. 50. Density function of/,,(.v) for a=4.4, for which the A/-estimate (using £ = 1.9) has an
efficiency of 100%

50. abra. Azf a(x) slr(iségfiiggvény a=4,4 esetén; erre az eloszlasra 100% a k = 1,9-del szamitott
M' hatésfoka

Puc. 50. MnoTHocTHaa ¢yHkuma f,,(x) ona a=4,4: ons faHHOro pacnpegeneHns apgeKTUBHOCTb
M’, paccumTtaHHoro ana k= 1,9, coctasnsetr 100%.

Fig. 51. Density function of/,,(.x) for a=6.2, for which the M"-estimate (using k= 2.4) has
maximum efficiency

51. dbra. Az/,(.v) slriségfiiggvény a = 6.2 esetén, amire az M"-becslés (£ = 2,4) maximalis
hatasfoku

Puc. 51. MnoTHocTHas dyHKuma /,,(.y) ans a= 6,2, Nnpu KOTopom oueHka M" (£ = 2,4) obnagaeT
MaKCUMabHONM 3((eKTUBHOCTbIO.
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of fe.2(x) we can already speak about short flanks (shorter than those of the
distribution of Newcomb's data, shown in Fig. 38).

Although Figs. 52 and 53 have different abscissae (these being a and
I/(cr—1), respectively) both refer to the distribution type. The ordinates are the
same these being in both figures the relative accuracy Agd/Akin per cent for M,
M\ M" and also for the arithmetic mean (E). For the last of these the AqWE
value can be given in a very simple analytical form (see Egs. (89) and (114)):

(@+2)(a-3),
a(a- ] '

This is the limit case if a -> oo and at the same time K —»oo, i.e. least squares
calculations can be regarded as general most frequent value calculations, too.
The domain of great A-values, however, does not define robust procedures: as
is clearly shown in Fig. 53 (see curve E), the relative accuracy (the square root
of the efficiency) rapidly decreases already in the very neighbourhood of the
Gaussian distribution. The other curves in Fig. 53., however, show excellent
robustness the upper value being 95% (or even very near 100%) in a broad
type-interval.

(e>3). (116)

Fig. 52. Quotients of accuracies versus a (type-parameter), for arithmetic means (£) and
different most frequent values

52. dbra. Pontossag aranyok az a tipusparaméter fliggvényében szamtani atlagokra (£) és
kilénboz6 leggyakoribb értékekre

Pia. 52. COOTHOLUEHMS! TOYHOCTeW Kak (DyHKLMM TUMOBOrO napaMmeTpa a ans
cpeaHeapugmeTnyecknx (E) n pasnnuHbix Hanbonee YacTbiX 3HAUYEHWIA.
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Fig. 53. Quotients of accuracies versus 1/(a—1) for different estimates
53. dbra. Pontossag aranyok 1/(u- 1) fliggvényében kiilonb6z6 becslésekhez

Puc. 53. CooTHOLWIEHMS TOYHOCTelN Kak (hyHKuum 1/(a- 1) Ans pasnmMyHbIX OLEHOK.

It is obviously more advantageous to use l/(a- 1) as the abscissa than
simply a (Its theoretical background is that type differences measured as
differences of 1/(a-1) values are approximately proportional to other 'type
differences’ defined in mathematical statistics; Csernyak [unpublished manus-
cript] deals with this problem. Using the quantity |I/(a—1) as the abscissa, the
interval between 0and 1(i.e. between the Gaussian and Cauchy type) is the most
important one, that part between 0.1 and 0.2 being by far the most interesting
one. This is entitled 'Jeffreys interval’ already mentioned as the a interval, this
was defined by 6<a< 10).

Table vi shows efficiencies for five types of general most frequent values
(including E for k -> 00), and for the end points of the afore mentioned basic
interval 0 < 1/(d—0 < 1 (i.e. for Gaussian and Cauchy types). The author
hopes that a detailed discussion is superfluous but a particular fact must by all
means be mentioned to be able to make real comparisons. The Princeton study
of robust estimates [Andrews et al. 1972] dealt with 68(!) different procedures
applied to samples coming from a great variety of distribution types. No
estimate in this study achieves 95% efficiency at normal distribution (relative to
the mean) and33% efficiency at the Cauchy (relative to the maximum likelihood
estimate) simultaneously for all sample sizes 5, 10, 20, 40’ [Andrews et al. 1972,
p. 253]. Remembering the behaviour of the most frequent values at small sample
sizes (showing approximately the asymptotic behaviour) and looking at the
efficiencies of 96% and 77% of M'" in Table VI, the conclusion can be drawn
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that the application of the general most frequent value calculations can definite-
ly be proposed for geophysicists and geologists (and also for experts in other
branches of science, t0o,) because of their robustness and other properties, see
Table 111 The flexibility must be separately enhanced: the optimum procedure
is defined always by only a single parameter (/).

Efficiencies o the estimates

Defining

Estimates factor for Gaussian for Cauchy
<9 distribution distribution

M 10 73.7% 100 %
\ 19 90.2% 90.2%
M 24 94.1% 83.2%
M™* 28 96.0% 771.4%
E X 100 % 0 %

Table VI. Efficiencies of various generalized most frequent value calculations (the calculation of
arithmetic mean denoted by E as the limiting case is included), for two types of probability
distributions

VI. tablazat. Hatasfokok kétféle eloszlasra és kiillonb6z8 altalanos leggyakoribb értékekre
(beleértve hataresetként az £-vel jel6lt szamtani atlagképzést is)

Tabnmua VI. 9htheKTUBHOCTU ABYX pacnpedeneHnii n 0606WeHHOro Hanbonee 4acToro
3HaYeHWs, BKIOYas — B KAYeCTBE MPeAenbHOro cayyas  CpeAHeapuhmMeTUyeckoe E.

8.2.3 Mkitlings

It is obvious that fitting problems with more than only one single unknown
occur in practice much more frequently (as a part of our geophysical interpreta-
tion algorithms) than the simplest case. This short introductory monograph has
not the possibility to deal with these cases in detail but after a slightly more
detailed discussion of the generalization of the simplest case and remembering
Sections 2.4 and 3.3, fitting problems can be treated easily.

Adjustment according to the general most frequent value can be
generalized in the same way as the simplest case: the weights

(ke)2+[Xi- 7Tp; y,)]2
are to be used (in every fitting step of the twofold iteration) instead of

£2+ [v,- Tip; v,))]2°
supposing that the errors of .vare distributed according to /a(x), (k = k(a), see
Eqg. (111)).
In some cases there are connections to be exactly fulfilled among the
components pv, p2, ...,pj......p} of the parameter vector p. (A classical example
is that the sum of the angles of a triangle must be 180°.)
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Introducing the symbol

the /-th constraint can be written as
Qp) =0 (119)

These constraints can be taken into consideration most easily for least squares
calculations by using the so-called Lagrange multipliers and fulfilling

)iiZ,C,(p)‘F ><_|_df= min- (120)
Since, clearly,
]~1 [fkef +dj] = min. (121)

is the generalization of Eqg. (38a), in the case of conditions to be fulfilled,
analogously to Eq. (120),

P X anso [ [(ke)2+df] = min. (122

is to be solved (after logarithmization the analogy is obvious). An important
application is that of fitting with spline functions. (The program for spline fitting
according to the general most frequent values—also containing some results
from the following section -is available in the Geophysical Department of the
University of Miskolc.)

8.2.4 Calculation of errors

In close connection with Eqg. (121), it should be mentioned that a possible
measure of the error is

1
(123)
[Fkrenczy et al. 1988], if k was used during the fitting. If nothing is known

about the type of distribution, and/or only the error itself is of interest, fitting
is to be made using k =2, and the following formula is applied for uncertainty:

c
1
@

(1233)
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New error definitions are unavoidable as the sample variance is sensitive
to outliers to an extreme degree, and—on the other hand—its asymptotic
variance (the ‘error of the error’) is infinite already at f 5(x) (and naturally for
all f a(x) distributions for which a< 5 holds [Hajagos and Steiner 1988]). These
new error definitions give for the whole f a(x) supermodel with good approxima-
tion the value of (1/2) «[F_1(1- 1/6) —7r_1(1/6)] [Csernyak et. al. 1988], i.e. it
is twice as likely that for the actual deviation \dt\ < U holds than the fulfilment
of the relation d, > U. (N. B. the same is approximately valid for a in the case
of Gaussian distribution.)

Uand Ukobviously characterize the error of a single measurement. As for
the errors of the general most frequent values, however, for them naturally the
asymptotic variance or asymptotic scatter is characteristic. As Hajagos [19853a]
has shown, in this case the formula

ke J«(AE) - n2 124

AIMK In2—«(/re) (124

holds, where «(.) is defined by Eq. (22) (with similar heuristic meaning: this is
the effective number of data divided by «); n2is defined by

(P( (M2 V

J\X) dx
\(ke)2+df)

n2

(i.e. n2 is the mean of the squared weights). Equation (81) is a special case of
Eq. (124) with k= 1; namely, in this case n2 = 3/4 *n(ke) holds. For the super-
model fa{x), AiMK) differs from U only by some per cent, 1.066/ = AiMK) is
approximately valid, and on the basis of this fact it is understandable that small
samples also behave approximately according to the asymptotic rules.

8.3 Variants with increased resistance: MKy and Micittings

The IC-function of the M”-estimates has the form

IC'W = “ns'w T ? (125)

(the factor depending upon fix)). For great values of |x|, |IC]| is proportional
to v1jcl—but there are cases for which this degree of diminishing is not enough
[Zitani-S ebess 1987]. In the following, two possibilities are shown for increasing
the resistance (in paragraphs 8.3.1 and 8.3.2).
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8.3.1 Cutting at {min and its influence on the efficiencies

Using the weight function

(he)2 .
= f
o) = - T ez ! By . (126)
L 0. if )< pm.
ICKa(v) = 0 holds for |x| > bkc, where
h=1/--—m. (1264)

\Y 9m in

If / () is symmetric to the origin, the corresponding asymptotic variance of the
MM values obtained is given [Hajagos and Steiner 1988] by the formula

x Ake)4
[(Ae2+ 12)2

- — -bh:
a (127)

- bkt: ) A
r(kefl-xflke)2 (kefl ok 2

. 2
[Pe+ g2 Y d'V_ZArcSSI M

1(*) Y

Figure 54 shows the efficiency curves for wmin = 0.1 and o.2; in both cases
K=1.9. The efficiency curve is also drawn for wnm = o (i.e. also for M') for
comparison. It is clearly seen that <.~ = 0.1 is by all means permitted and also
at wmn = o.2 the decrease of efficiency is nowhere greater than s« .

The increase in the resistance unavoidably causes the decrease of effi-
ciencies as ‘good’ data are also cut. The analogy of A nscombe 119607 fOr such
cases is very appropriate, therefore the paragraph relating to this is cited from
Huber [1981 P. 73]: 'Anscombe's [1960] COMparison of the situation with an
insurance problem is very helpful. Typically a so-called classical procedure is
the optimal procedure for some ideal (usually normal) model. If ... we want to
insure against accidents caused by deviations from the model, we clearly will
have to pay for it by sacrificing some efficiency at the model. The questions are,
of course, how much efficiency we are willing to sacrifice, and against how bad
a deviation we would like to insure.’
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eE‘Fiency

k=19; b=2 (/nin=0.2}

k=1.9; b=3 (fnmn=0.1)

Q-1
GAUSSIAN CAUCHY

Fig. 54. The efficiencies show not too great decrease if data with weights less than 0.1 and 0.2.
are neglected, in order to increase the resistance

54. cibra. A hatasfokok nem cstkkennek tdlsagosan nagy mértékben, ha a rezisztencia novelése
céljabol elhagyjuk a 0.1-nél vagy 0.2-nel kisebb sulyl adatokat

Puc. 54. He cnuiiKoM 3HaunTenbHOe y6biBaHWe SM(EKTUBHOCTEN MPK UCKNIOUEHUM JaHHbIX
Becamu MeHee 0.1 mam 0.2 ¢ LieNbO YBENNYEHNS YCTOMUMBOCTH.

8.3.2 Increasing the resistance by Mkc-fitting

AE-fiUing is defined using the following weight function [Hajagos and
Steiner 1988]:

if n < iAeg;
(128)

<Pke(x)

This is obviously a smooth weight function but it guarantees excellent resis-
tance.

A detailed discussion of this case (e.g. the formula for the corresponding
asymptotic variance) is given by H ajagos and Steiner [1988]. Figure 55 shows
efficiency curves for ¢c=1.5 and ¢=1.0, using k= 19 in both cases, and tor
comparison the efficiency curve of M (i.e. of Mkwith k = 1.9) is also given.

In Fig. 55 it can clearly be seen that this way of increasing the resistance
is always applicable for c= 15 and is often applicable for c= 1.0 the maximum
decrease of the efficiency being even in the latter case only 2%.
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efficiency

0 05 1 1
GAISSIAN cALTHY a1

[<l. 55. Efficiency curves versus |/(a—1) of the more resistant variants M kc of M*
55. abra. Hatasfok-gorbék L{u- 1) fliggvényében az At fokozott rezisztenciaju M kc valtozataira

Puc. 55. KpuBble ahhekTMBHOCTEN Kak QyHKumiA 1/(a- 1) gns BapmaHToB M’ C MOBbILLIEHHOM
YCTOWUYMBOCTbLIO (M kKc).

If He know nothing about the type oj actual distribution and increased
resistance against outliers seems to be necessary, our standard procedure offitting
will be defined by k= 1.9 or 2, and c= 15.

* * *

The problems treated in the Appendices are instructive and useful both for
a deeper understanding of concept dealt with in the present short monograph,
and for applying these concept in geophysics and in geology (or in other
branches of science and in practical applications).

APPENDIX |
Comparisons with other robust methods

Ctaerbout and M uir [1973] have proposed the use of the median (or more
generally the use of the L, norm) for geophysical purposes. The median is
perhaps the oldest robust estimate. But what about its efficiency? The answer
is given for the f ax) supermodel in Fig. 56 comparing the asymptotic scatter
of the median (m) with the optimum one. The curve for E (i.e. for the L2norm)
is also given. In Fig. 57 the surplus of data are shown (in per cent) needed for
the same accuracy which characterizes the optimum algorithm. The curves for
the median (m) and for M’ (Mkwith k = 1.9) considerably differ from each other:
we find the minimum surplus of 20% (and occasionally a surplus of greater than
50%) too much from the economical point of view in the case of m (to say
nothing about the less favourable calculating procedures based on the L, norm).
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hilf. 56. .4qd, A curves (square root of efficiency)
of sample medians (ni) and of arithmetic means
(E) versus 1(n—1)

56.  abra. A hatasfokok gyokei 1 (- I)
fiiggvényében az m mintamedianokra és az
E szamtani atlagokra

Pue. 56. KpvBble KBagpaTHOro KOpHS
TCKTMBHOCTEN Kak (yHKumin 1(a- 1) ans
MeAuaH T ¥ Ans cpefHeapudmeTmyeckux E.

Fig. 57. The curves show the percentage of
extra data needed to achieve the same accuracy
as by always using the optimal estimation
procedure

57. abra. A gorbék azt mutatjak, hogy hany
szazalék adattobblet szilkséges ahhoz
viszonyitva, mintha minden closzlastipushoz az
optimalis becslési eljarast alkalmaznank

Pite. 57. OTHOCMTENbHOE KOMMYECTBO
[OMONHUTENbHbIX AaHHbIX (B"J MO CpaBHEHWIO
C TeM. YTO 6bIN0 6bl HEOO6XOAUMO NpK
NpYMeHeHUN cnocoba ONTUMaNbHbIX OLEHOK.

More sophisticated robust methods than the median are the a-trimmed
mean (say, with a=0.1) and the Hodges-Lehmann estimate, both having a
maximum efficiency in the Jeffreys interval (Fig. 58). The basic formulae for
the calculations are given in Chapter 4 and we get in this way e.g. for the
efficiencies of the Hodges-Lehmann estimate, the following expression in the
case of the fJ.x) supermodel :

_ \2(a+2)clU2a)

[HX~ a(a-\)c\a)
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where c(a) is to be calculated according to Eq. (88a) (Table V). If we choose a
most frequent value characterized by a similar place of maximum (£ = 2.8 and
c= 1.0), the much greater robustness and the economic advantages of the most
frequent value calculations are obvious.

The generalization of the Hodges-Lehmann procedure into a fitting method
itself is also problematic. Problems of this nature cause no difficulties when
using the so-called Danish method [cited, for example by Detreksi 1986]. One
version of this is defined by the weight function:

(129)

d{is given in Eq. (118) and B is defined by
D mmed dx

0.6745 (1292)

efficiency
1oc

lJeffrey
interval

05
GAUSSIAN CAUCHY

Fig. 58. Efficiency curves for three types of estimation and for supermodel/,,(v)
58. abra. Hatasfok-gorbék haromféle becslésre és azf j x ) szupermodellre

Puc. 58. KpuBble athdeKTMBHOCTEW ANs Tpex pasnnyHbIX OUEHOK W gna cynepmogenn /,,(*).
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The corresponding efficiency curve for D= 15 is shown in Fig. 59 (D-curve),
having a maximum efficiency of about 90% [Steiner 1987]. The efficiencies of
m, M" and E are also shown to compare them with the efficiency of the Danish
method. The M" procedure seems to be even more advantageous than this new
type of robust procedures.

leoy

Fig. 59. Efficiency curves for the generalized most frequent value M', for the sample median in.
for the arithmetic mean E, and for an alternative version (D) of the so-called Danish method

59. abra. Hatasfok-gorbék az A/" altalanos leggyakoribb értékre, az m mintamedianra, az
E szamtani atlagra, valamint az an. dan mddszer egy valtozatara (D)

Puc. 59. Kpusble aththeKTMBHOCTER A5 0606LEHHOr0 Hanbonee YacToro 3HaveHns M\ ans
MefMaHbl T, ANa cpefHeapugmMeTnyeckoro E. a Takoke 41 BapuaHTa T.H. JATCKOro
cnocoba (D).

APPENDIX 1l
M=*-estimates

Ifwe use the square of the weight given in Eq. (117), i.e. applying the weight
function
(kef
[kef +df]2
with dr s given in Eq. (118), a new procedure is defined. Similarly to M, M\ M"
and M™ the symbols M*, M*\ M*" and M*" are defined by k= 2; 3.27; 4 and
5 (with M* having maximum efficiency at a=2, i.e. at the Cauchy distribution,
M* at a=6 and M*" at a a 10; M*' has the same efficiency for the Gaussian
and the Cauchy distribution).

(130)
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It is well known that the middle of the Jeffreys interval belongs to a=8.
For comparison, this density function is shown in Figs. 60 and 61, in which
primarily the four variants of weight functions are shown both for g{.) according
to Eq. (117) (Fig. 60) and for according to Eq. (130) (Fig. 61). The much
better resistance of the latter is obvious but for adequate investigation of this
question the IC-curves are necessary.

Fig. 60. Weight functions belonging to standard / 8(.v) distribution and to various Af-estimates.
Dotted line: density function f s(x)

60. abra. Standard /8(.v)-eloszlashoz és kiilonb6z8 JT-becslésekhez tartozo sulyfiggvények.
Az /8(v) slirliségfliggvényt a szaggatott gérbe mutatja

Pue. 60. BecoBble yHKLMM ANs CTaHAAPTHOrO pacnpegeneHus / 8(x) 1 pasHbIX OLEHOK M.
MyHKTUPHaA NMHUA 0603HaYaeT NAOTHOCTHY yHKUMto fs(X).

Fii/. 61. Weight functions belonging to standard /8(v) distribution and to various AT*-estimates.
Dotted line: density function /8(v)

61. abra. Standard / 8(.v)-eloszlashoz és kiilénb6z6 Arbecslésekhez tartozé sulyfiggvények.
Az /8(v) slirliségfiiggvényt a szaggatott gdrbe mutatja

Pue. 61. BecoBble (hyHKUUN Ans cTaHAapTHOro pacnpegenenus /8(.1) v pasHbIX OUEHOK M*.
MyHKTUPHAA NMHUA 0CO3HaHMe! MAOTHOCTHYIO yHKUmio /8(T).
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To calculate 1C-values, first the formula of the corresponding tp*(.) must

be given :
P = 55

then, according to Eq. 64 (with S=ke), the IC-functions are the following for
/ 8(x) (to be calculated by £=0.359):

IC(x, F8M K) = , (132)
(ke)2-y 2 (AgRs v
Kke)2+y2J2' =0 ¢V
and .
IC(x, Fs,Mt) = . (133)
(ke)2~y 2 [(AD2+ N2J2
key2+y: MYV

The corresponding IC curves are shown in Figs. 62 and 63. and for very
large values of |x \in Fig. 64. The resistance of A/*-methods is really much better
than that of the original versions of the AM-fitting (original means here that
Mu-methods were compared and not MK+ or Micmethods of increased resis-

tance, see 8.3.1 and 8.3.2). But what about the efficiencies?
On the grounds of Eg. (71) and of Eqg. (133) the asymptotic variance for

M *-estimates is given by

A2+ X2 fijx) dv
A2 (134)

(Afi)2-3.Y 2

[(AE)2+ a3 Ja(-Y) d.v

Fig. 62. Influence curves for various M-estimates of the distribution/ 8(y)
62. abra. Hatasfliggvények (IC-gorbék) az / 8(v) eloszlashoz tartozé kiilonb6zé ~/-becslésekhez

Puc. 62. Kpusble ahheKTa AN Pas3nnuHbiX OLEHOK M pacrnpeneneHus /. (.y).
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also taking Eqg. (114) into consideration, the efficiency is easily calculated as
AlpJA2—Although on the one hand, the maximum efficiencies cannot reach
100%, they are very near it and, on the other hand (the efficiency curves being
slightly more flat than those of the JVu-estimates), the demand of robustness is
somewhat better fulfilled in the case of M*-estimates than for M”-procedures
(see Fig. 65).

1 IC(x,F9i.)

08-

Fig. 63. Influence curves for various A/*-estimates of the distribution / 8(.v)
63. abra. Hatasfliiggvények (IC-gorbék) az / 8(x) eloszlashoz tartozé kiillonb6z6 V/° -becslésekhez

Puc. 63. KpuBble ahhekTa Ansi pas3nunyHbiX oueHok M* pacnpegeneHus/ §Xx).

Fig. 64. Differing resistance of the M- and
A/*-estimates shown with IC-curves for large
values of x

64. abra. M ill. Arbecslésekhez tartozé
hatasgorbék nagy x-ekre, a rezisztenciaban
nutatkozo jelentds killénbségek szemléltetésére

Puc. 64. KpuBble aththekTa AN pasnmnyHbIX
oueHoK M 1 M* npu 6onbwnx x-ax. YeTko
BbISIBNAOTCA CYLLECTBEHHbIE Pa3NNyns
B YCTOMAYMBOCTAX.
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Fig. 65. Efficiency curves of M*-estimates for the supermodel fjx ) (the distribution type is
characterized by I/(a- 1) and by a)

65. 4&bra. Hatasfok-gorbék killénbozé Arbecslésekre és azf ax) szupermodellre (az
eloszlastipust Y(d- 1) és a egyarant jelzi)

Puc. 65. KpuBble ahtheKTMBHOCTEA ANA pas3nnyHbIM OUeHOK M* n ana cynepmogenm f ax) (tvn
pacnpefieneHuns paBHbIM 06pa3oM xapaktepuayeTca Kak 1/(a—1), Tak u a).

As a curiosity it is mentioned finally that if

Y - (x:-M*)2 = minimum (135)

Ky S2+ (Xf—M*)2Y '

were demanded primarily (fulfilled only step-wise in Mk iterations), after dif-
ferentiation and rearranging we get

n S4xi
L b [Sat Mz
M* = L (136)

i=I1 [S2+{x-M *)2]2

which is really the iteration formula for M*-estimates (see the defining ex-
pression of weights in Eq. (130)).
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APPENDIX Il
Dangers of the ~2-test

The most commonly applied method for investigating “normality” is the
well known / 2-test. Not only is the method itself given but also the table needed
to perform such tests is given (for the commonly used significance levels) in all
statistics handbooks [Vincze 1968]. The question arises as to which values of
a is the fa(x) distribution with a not negligible probability declared to be a
Gaussian distribution, according to the / 2-test. According to the Monte Carlo
investigations of Hajagos [1984] ‘the normality was proved’ on the grounds of
all samples investigated coming from the fa(x) distribution at a= 10, and the
overwhelming majority of samples gave the same result at 0=8.

There are both economical and theoretical consequences. Concerning the
first, if we use the least squares techniques (as “the normality is proved”), in the
case of/8(.v) we have—according to Eq. (116)—an efficiency of only 89%, and
even in the case of a= 10 the efficiency is equal to 93%. Geophysical and
geological data are too expensive for us to have to systematically throw out
about 10% of our data.

If we regard the situation more generally, the main danger is that those
experts can be misled on questions of normality who are cautious enough to
make such tests, and this leads to secondary effects that are very much more
dangerous for the great masses of appliers. In this sense we can even speak about
the trap of the / 2-test.

APPENDIX IV
Sterility of distributions

The notion ‘sterility of distributions’ can have various but rather trivial
statistical meanings, jtoo: 1) there are no contaminations, 2) f(x) = 0 holds
outside a finite interval (‘absolute sterility’), etc.

For the applier a distribution can be called sterile if the flanks are too small
to characterize real situations in the given discipline. Asf(x) > 0 for all vvalues
for the commonly used models it is rather difficult to give an exact definition
for the sterility. The definition in question cannot be a given analytical classifica-
tion of the asymptotic behaviour of the density function for large |x|-values.
To avoid subjectivity, this notion must be defined on the grounds of prob-
ability theory, regarding at the same time the specific properties of the dis-
cipline studied. Consequently, the acceptable definition of sterility may very
much depend on the discipline, or even on the concrete task within the given
discipline.
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In the opinion of the author both demands are fulfilled concerning
geophysics, if we analyse (for symmetrical distributions) the following estimate
of a symmetry point:

T = ommommorooeooe , (137)

stating that for this estimate the law of large numbers cannot be fulfilled in the
overwhelming majority of practical cases of geophysics and geology. In other
words estimate in Eg. (137) is extremely sensitive even to a single outlier;
because not all effects can be taken into consideration in the theoretical treat-
ment of geophysical problems, the probability increases with n that just such
a neglected effect occurs—and this is equivalent with the statement that the
reverse of the law of large numbers is fulfilled.

Csernyak [1984] investigated this criterion of sterility for the 7 a(x) super-
model. He proved that the density function of the estimates defined by Eq. (137)
is

g(z) = 2n(n-1) J F(2z- x)—F(x)n~2f(2z —x)/(x) dx. (138)
On the basis of this formula Csernyak proved in various ways that the law of
large numbers is inversely fulfilled in a definite manner up to a-values of 5 or
6; after an a-interval which is approximately independent of n, the law of large
numbers is fulfilled and, in the case of a -+ oo the increase in the accuracy of
the estimate given by Eq. (137) is already considerable. Consequently, the
Gaussian distribution and distributions near it can really be regarded as ‘sterile’
from the geophysical point of view.

APPENDIX V
Permitted percentage of outliers for fittings executed according to the concept
of the generalized most frequent value

The breakdown point was defined in Chapter 4 somewhat too arbitrarily :
outliers were very far from each other in this model. Some actual practical cases
need other models, too, as outliers can also occur in gathered form. Craerbout
and Muir [1973] give a geophysical example: If line defects occur in the global
seismological network, the value zero becomes very probable. Defects in the
equipment however may also often cause the maximum value to occur. Conse-
quently, the asymmetric [/-distribution consisting of two Dirac functions at
points x= + land - 1as an adequate model for many such cases seems to be
useful (Fig. 66) : K is the ratio of the outliers.

The resulting general most frequent value estimate of the location par-
ameter is + 1 from K=0 to a given maximum value of K\ that is, this value is
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Fig. 66. Asymmetrical {/-distribution
66. abra. Aszimmetrikus {/-eloszlas

Puc. 66. AcummeTpuuHoe {/-pacnpeaeneHue.

fully independent of outliers in this range of K values. This maximum value
naturally depends on K or a (i.e. on the defining factors of the general most
frequent value procedure); it also depends, to a limited degree on the choice of
variant of the general most frequent value used. For the variant proposed in the

present monograph this is the Knax curve in Fig. 67, but if twofold iteration is
carried out using

v t1S2H(xi-M K2 (130

i=i S2+(x - M K2

and Eg. (109), the results are shown by the K*Ixcurve [Flajagos 1985b], Let us
remember that these two variants are fully equal for f &x) distributions, but our
present model (Fig. 66) is clearly very far from being such a distribution. In the

Fig. 67. Maximum percentage of concentrated outliers for various most frequent values Mk (full
line). Dotted line belongs to a variant of the generalized most frequent value calculations where
a scale parameter other than dihesion is primarily calculated

67. abra. Koncentraltan jelentkez6 kiesé adatok maximalis aranya kiilénb6zé Mk leggyakoribb
értékekhez (folytonos vonal). A pontozott gorbe az altalanos leggyakoribb értékszamitas azon
variansahoz tartozik, amelynél nem a dihézi6-szamitas a proceddra egyik alapeleme

Puc. 67. MakcumMasnbHOe OTHOLEHWE BbIMafatoLnX AaHHbIX, MOABASIOLUXCS
KOHLIEHTPMPOBAHHO, K Pa3NNuHbiM Hanbosnee YacTbiM 3HAUEHWUAM MK (CMOLWHas NNHKS).
MyHKTUpHAas KpuUBas NpUHAANEXUT K TOMY BapuaHTy 0606LieHHOr0 pacueta Hambonee 4acToro
3Ha4YeHWs!, NPy KOTOPOM pacyeT AUresnn He ABNSETCS OAHUM U3 OCHOBHbIX 3/1EMEHTOB
npoLeaypbl.
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interval 1~ k 1g 2.8—which is also used in practice—differences are fortunate-
ly small thereby showing that when treating such problems the two variants can
be regarded as being approximately the same.

In Eq. (109) a role is played by a therefore the meaning of the abscissa in
Fig. 68 is the type of general most frequent value procedure used (defined by
the type of f ax) distribution for which the procedure in question is an optimum
one). The known curve A”’xis once more shown in Fig. 68; no A”xvalue is
greater than 45.68% on the one hand and, on the other, A™xtends to zero if
a -* oo (i.e. if we approximate the least squares technique).

Fig. 68. Maximum percentage of concentrated outliers (/f“al), and of dispersed outliers
(OUT*,)). a in the abscissa, is the parameter used in the second variant of the generalized most
frequent value calculations, having maximum efficiency for fa(x)

68. abra. Koncentraltan jelentkezd kies6 adatok maximalis aranya (/f“aj) és ugyanez, ha a kies
adatok nem tomorddnek (OUT*“al. Az abszcisszaban a az altalanos leggyakoribb értékszamitas
masodik variansaban hasznalt paramétert jelenti, amely az fa(x) eloszlasra szolgaltat maximalis
hatasfok( eljarast
Puc. 68. BepxHuii npegen NpoLeHTHOro oTHowWweHNa (A”a) 1 To e Npu OTCYTCBUM TeHAEHLMM
K KOHLEHTPUPOBaHWIO AaHHbI C rpyobiMu owmnbkamm (OUTAJJ. MapameTp a B 3HaYeHUn
Y(a- 1) abcumcc o603HayvaeT napameTp, UCMO/b3yeMbIi BO BTOPOM BapuaHTe pacyeTa
0606LeHHOr0 Hanbosee 4acToro 3HayeHMs 06n1afaloWNIA MaKCUManbHON 3P(EKTUBHOCTLIO ANA
pacnpeaenexnuns /ax).

Outliers, however, may occur in a form other than asymmetrically. If the
dihesion e characterizes the single gathering of the data and other values occur
arbitrarily (but without any expressed gathering), then

(a+1)2 (140)

OUT@ = 1 14 )2+ 4(a+2)
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gives the maximum permitted ratio of outliers in the sense that if the ratio of
outliers of the investigated type is smaller than OUT (@), the procedure finds this
to be a single gathering [Steiner 1985b]; a obviously refers here to the procedure
used. The corresponding curve in Fig. 68 shows that this ratio may be greater
than 50% (for a<3.8; that is, for ¥(a- 1) > 0.35). Perhaps this is surprising
but in special tasks (e.g. in astronomy) such a property can be advantageous.
(The upper limit of OUT ) is 75%). If, for the geophysical problem investigated
it seems unreal to permit a greater ratio than, say, 50%, then M' (k —1.9) can
be proposed, at 40% the procedure M" (k =2A) may be appropriate, and so on.

Fitting problems (with more than one single unknown) must be judged with
an increased cautiousness from this aspect as the fitting procedure itself may
produce a gathering of the dideviations characterized even by e= 0 if n is small,
resulting in a simple interpolating hypersurface based on only a few points and
completely neglecting reliable data. Therefore, if J is the number of unknowns
to be determined, then for the number of data relation (141) must hold with
minimum c=5 or 10:

I 141

“ 1- OUTEO (141)

(In a very simple way we can say that we have c items of data for each of the
unknowns.)

APPENDIX VI
Supermodel fj[x) and the possibility of increasing the efficiency

The first step in general most frequent value calculations is to fix the value
of Kk to be used. If we know something about a, the k value is given by Eq. (111),
if not (but maximum efficiency is required), primarily the type of distribution
should be estimated. A possible solution of the problem was briefly mentioned
in paragraph 8.2.1 : the sum counterpart of Eqg. (113), i.e.

y (Xj-MR2

[Oke)2+{ x - M k)2]2
‘ y (ke)2- (x- MK2 ~2

h  [{ke)2+{x-MrgZ2_
is to be minimized according to k, and then Eq. (I111) defines a. But determina-
tions of this sort are not so easy to carry out in practice and we have no
possibility here to deal in detail with such problems. It is obvious that n is
required to be sufficiently large, as a sine qua non of whatever solution of the

problem.
We are now interested, however, just in the /r-value to be used, i.e. we need

(142)
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that K value which minimizes the expression in Eq. (142). The sample size n must
also be large in this case. The following details relate to a supermodel differing
from f&a(x) as for the latter distribution family this method obviously always
results in efficiencies of 100%. The probability distributions of the fax) super-
model, however, are very near the distributions occurring in practice, therefore,
from the majority of the distributions of the new supermodel the only constraint
is that they should not be too far from the actual cases occurring in geophysics.

For the above mentioned purposes, the following supermodel is defined:

am

fix) = m (143)

The behaviour of the flanks causes no problem for whatever sort of estimates
since all moments are finite for all distributions of the supermodel. The ex-
pression for calculating they-th moment is:

mjinr
(144)
r

If m (the type parameter) equals 1, JJx) gives the Laplace distribution; for
m =2, fm(x) is clearly the Gaussian distribution, and if m-'cc we get uniform
distribution, i.e. the/n{x) supermodel contains three distributions from the most
well-known ones. For small values of m we get distributions being even more
peaked than the Laplace distribution (see in Fig. 69 the density function for
w = 0.5—Ilike the Eiffel tower). And for large values of parameter m we get
somehow rounded off uniform distributions (see, e.g., in the same figure the
fm(x) curve for m = 10). Figure 70 shows the curve of the dihesions e, versus I/m.

When discussing absolute effectivities, the formula for the Cramér-Rao
bound (i.e. for the minimum possible asymptotic variance, see 4.4.2) must also
be given:

If we carry out most frequent value calculations in the original form, i.e.
with k= 1, the as>mptotic variance must be calculated according to Eq. (81) as
e2in(e). The formula for the efficiency is consequently

M (146)
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Fig. 69. Two distribution types shown by their density functions of the supermodel f n{x)
69. abra. Két fm(x) szupermodellbeli eloszlastipus sr(iségfiiggvénye

Puc. 69. MNOTHOCTHbIE (YHKLMM ABYX TMMOB pacnpegeneHus B cynepmogeny fn(x).

Fig. 70. Values of dihesion e for supermodel
fix)
70. abra. Az e dihézi6 értéke az fm(x)
szupermodellre

Puc. 70. 3HaueHuns guresun c s cynepmogent
10 15 ij) X
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In Fig. 72 the thick continuous line (denoted by M) gives the eM values
(versus 1/m). Although the most frequent value calculation is the optimum
algorithm for the Cauchy distribution—which is extremely unusual for the
f m{x) supermodel,—we find the maximum efficiency value 0f 92% to be satisfac-
tory. Since the arithmetic means calculation is the optimum algorithm for the
Gaussian distribution (i.e. for a member of the. supermodel f m(x)), it is evident
that the least squares efficiency curve reaches the value of 100% at m =2 (thin
continuous line in Fig. 72 denoted by E). These efficiencies are to be calculated
according to

Emean (147)

(see EQs. (144) and (145)).

The efficiency curve of the medians (thin dotted line in Fig. 72 denoted by
m) also reaches the maximum possible value as the Laplace distribution is also
a member of the supermodel fm(x) (for m=1), and the calculation of sample
medians is the well known optimum algorithm for the Laplace distribution. In
that the asymptotic variance for the fn(x) supermodel in the case of sample
median calculations is given by

Ari]edian (148)
the formula for efficiencies is clearly

(149)

Our question is: How can the efficiency be increased if we use—within the
concept of the most frequent value calculations—the k value which minimizes

the asymptotic variance?
In our theoretical investigation, based on the f m(x) supermodel, in the first
step those K values are to be determined which minimize the expression

(150)
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The results are shown as k and 1k curves versus I/m in Fig. 71. The interval
m> 2 is characterized by k= oo, i.e. the least squares method is the best
generalized most frequent value technique for these distributions, these distribu-
tions seldom occur in geophysical practice. Denoting by eM na the maximum
possible efficiency within the concept of most frequent value calculations, we
have to determine for all m values the minimum ARk value based on Eq. (150),
Ai\n based on Eg. (145), and eM na according to

(151)

*'M, max

ARk
The eMmax curve is given in Fig. 72 (denoted by M). The relation

max =

trivially holds. The fact, however, that sometimes
M. max 7

can be valid, calls our attention to the fact that M-calculations are to be
regarded as a reserve possibility within the concept of the most frequent value
calculations, to further increase the efficiency.

* * %

Fig. 71. Values of k (and 1. respectively) to
obtain minimal asymptotic variance of the
generalized most frequent values for the
supermodel fmx)

71. abra. Azoknak a k (ill. Vk) értékeknek
a gorbéi, amelyekkel minimalis az altalanositott

leggyakoribb érték-szamitas aszimptotikus
szorasa az fm(x) szupermodell closzlastipusaira

Puc. 71. KpuBble 3HayeHuniA Kk nnm \jk, npu
KOTOpbIX aCMMNTOTMYECKas Aucnepcus
0606L1EHHOr0 Hanbonee 4acToro 3Ha4yeHus
MUHUMAaNbHa ANS TUNOB pacnpeaeneHus
cynepmogenu fm(x).
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Fig. 72. Efficiency curves for supermodel fm(x) and for the following estimation procedures:
arithmetic mean (E). sample median (med), most frequent value (M). generalized most frequent
value minimizing the asymptotic variance (M)

72. &bra. Hatasfok-gorbék az /T(n) szupermodelire és a kdvetkez6 becslési eljarasokra: szamtani

atlagképzés (E), mintamedian (med) szamitasa, leggyakoribb érték-szamitas (M) és az
aszimptotikus szoérast minimalizal6 altalanos leggyakoribb érték-képzés (M)

Puc. 72. Kpusble athhekTBHOCTM Ansa cynepmogenn fn(x) n gna cnegyroumx OLeHOK:
cpefHeapugMeTnyeckoe E. MeauaHbl T. Haumbonee yacToe 3HayeHMe M u Hambonee 4yactoe
3HaueHue A/, MoMyyeHHOe MyTeM MUHUMANM3aLUM acMMNTOTUYECKON Aucnepcuu.

Epilogue

It is very much hoped that this short monograph has given a general picture
of the principal features of the method of most frequent value procedures and
related topics. Although formulations were more concise than detailed, suf-
ficient detail was provided to enable such statistical procedures to be creatively
applied in the development of geophysical algorithms. Some theoretical results
(concerning, for example, unicity and existence), and a number of complicated
applications, were deliberately not mentioned.
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LEGGYAKORIBB ERTEKEK
STEINER Ferenc

A jelen monogréfia a leggyakoribb érték koncepcidjan alapulé modern statisztikai algoritmu-
sokkal foglalkozik (eredeti és altalanositott alakjaban egyarant értve a leggyakoribb értéket).
Modern statisztikai eljarasok azért sziikségesek, mivel a legkisebb négyzetek elvén alapuld, altalano-
san hasznalt eljardsok nem elég nagy hatasfoklak a féldtudomanyokban altalaban el6fordulo
hibaeloszlasok esetén ; a Gauss-eloszlas eléfordulasa inkabb szamit kivételnek, semmint szabalynak.
Jelen monogréafia az elméleti alapokat is tartalmazza, hogy minél tobb specialis alkalmazast tegyen
lehetévé, azaz hogy el6segitse a leggyakoribb értékek koncepcidjan alapul6 (j geofizikai értelmezési
algoritmusok kifejlesztését.

HAVBOJIEE YACTbIE 3HAUEHUA
®epeny, LUTEVHEP

B HacToslLLeli MOHOrpathun paccmMaTpuBalOTCS COBPEMEHHbIE CTAaTUCTUYECKME anroOpUTMbl,
OCHOBaHHbIe Ha NPe/ACTaBNeHNN 0 HaMboee YacTOM 3HaueHUM (MOHUMAaeMOM KaK B NEPBUYHOINA, TaK
1 B 06006LLeHHOI (hopme). He06X0ANMMOCTb B COBPEMEHHbIX CTaTUCTUYECKMX CNOCO6axX BO3HUKaeT
B CBA3U C TEM, YTO O6LLEMNPUHSATLIE CNOCOBLI, OCHOBaHHbIE HA MPUHLMMNE HAMMEHbLUNX KBaApaToB,
He ;0CTaTOYHO 3hheKTUBHLI B C/lyYae pacnpeaeneHunii onGoK, 06bIUHbIX B FE0NOMMYECKUX HayKax,
a pacnipeseneHuve aycca BCTpevaeTcs CKOpee B KAYECTBE UCK/HOUEHUS, HEXeNN npaBuna. B HacTos-
Leli MOHOTpamu NPUBOAATCS TaKXKE U TEOPETUYECKME OCHOBbI, YTO6LI 06ECNEUnTL BOSMOXKHOCTb
KaK MOXHO 60/iee 06LIMPHOrO NMPUMEHEHUSI B CMELNa/bHbIX LEnsx, T0-eCTb, YT06bI CNOCO6GCTBO-
BaTb pa3paboTKe HOBbIX aNrOPUTMOB TreoU3MYecKol WHTepnpeTaluuu, OCHOBbIBAIOLLMXCA Ha
NpeACTaBNeHNN O Hanbosee YacTbIX 3HAUYEHUsIX.
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