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MOST FREQUENT VALUE PROCEDURES 
(A SHORT M ONOGRAPH)

Ferenc STEINER*

This monograph deals with modern statistical algorithms derived from the conception of the 
most frequent value (the latter meaning both its original and its generalized form). Modern methods 
are necessary as standard statistical procedures based on the least squares principle are not effective 
enough for the error distributions commonly occurring in the earth sciences; the occurrence of the 
sterile Gaussian distribution in these disciplines is the exception rather than the rule. The theoretical 
background is also given as a means of helping in the applications for special purposes, i.e. to further 
the development of various new algorithms for geophysical interpretation on the grounds of the 
conception of the most frequent value.

Keywords: robust statistics, efficiency, outlier, resistance, error distribution, model distribution, super­
model, most frequent value, dihesion, 1-divergence

Introduction

Algorithms for interpreting measured data sets often use certain fitting 
technique in an explicit or implicit manner; these methods of fitting or adjust­
ment can be deduced, by means of the known notion of ‘deviation’, from some 
determination method of the location where the densest values lie.

Let the (ordered) sample be the following; 7, 9, 10, 11, 13, 40 (Fig. 1). Let 
us try to answer without any preconception the question: which value can be 
regarded as the most characteristic for the gathering? In other words: if we were
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Fig. I. Arithmetic mean (E) of the sample of six elements does not indicate the most likely
value, denoted by M

1. ábra. Az ábrán bemutatott hatelemű minta számtani középértéke (£) nem a leginkább 
várható értékintervallum közepét jelöli ki. Az utóbbi sokkal inkább elfogadható Af-re

Рис. I. Среднеарифметическое по примеру из шести эелементов (Е) не попадает в центр 
наиболее вероятного интервала значений. Последний значительно более приемлем для М.
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40 F. Steiner

to continue the sampling, which is that value, where, or in what neighbourhood 
can the next value generally be expected? If we really do not have any precon­
ception, we have nothing to say against the value 10 (marked by M  on the 
figure). Visually we are inclined to accept this value, but we need an algorithm 
for computation.

If, on the basis of a sample, we wish to determine the most characteristic 
value by computation, we customarily calculate the arithmetic mean (or simply 
‘mean’), without any additional consideration. This value, however, can give a 
result which flatly contradicts the rational approach: in our example we get the 
value 15 in this way (see the arrow marked by E); it can hardly be stated that 
the next value is expected with maximum probability in the neighbourhood of 
the arithmetic mean.

It is clear that the value of the arithmetic mean is strongly influenced by 
the sample element 40 (it is indifferent if this value is a so-called outlier, or if 
the occurrence of such values has a small but finite probability in respect of the 
distribution itself, too). If we are able to determine by an exact algorithm the 
location of the densest lying points (in our case M, which can really be called 
the most frequent value), this method should fulfil the demand to be insensitive 
to points lying far away. We are forced now to anticipate notions which will 
be analysed later in this monograph.

The disadvantageous behaviour of the mean and the proper behaviour of 
the most frequent value are closely connected with the fact that the arithmetic 
mean as an estimate of location is not robust ; on the contrary, the most frequent 
value is a robust estimate for the parameter of location, e.g. for the symmetry 
point of the distribution (if the distribution is symmetrical). Since robustness 
is a very important notion, we are obliged to say more about it even in the 
introduction.

If one wishes to utilize mathematical results for practical purposes, we face 
the following structure of the mathematical theorems: 'if..., then...’. Given the 
fulfilment of the premises on the ‘if -side, we can immediately use the statement 
of the theorem.

It would be impossible that the infinite number of real situations would all 
be 'covered’ by mathematical premises. It is therefore advisable if small changes 
in the premises cause small changes of the consequences : and this is the very 
content of the notion ‘robustness’. For a given robust procedure it is sufficient 
if the premises are only approximately fulfilled. From the practical point of view 
this is of immense importance as the domain of applicability becomes unusually 
broad. Precisely because of this it is not astonishing that the number of math­
ematical articles dealing with robustness increased by more than an order of 
magnitude in the seventies (Fig. 2. ; the percentual values were calculated on the 
ground of numbers obtained from the data bank of the Dialog Information 
Services, Inc.).

Until the introduction of the notion ‘robustness’ only a few decades ago, 
engineers had implicitly supposed that mathematical statements do not change 
significantly if the premises vary only insignificantly, i.e. they supposed that
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robustness was fulfilled. Tukey, in 1960, was the first to show that robustness 
may not be fulfilled to a catastrophic extent for theorems and characteristics 
bound by arithmetic means.

Fig. 2. Rapid increase in the number of mathematical articles treating problems of robustness
over a period of about ten years

2. ábra. Alig egy évtized alatt következett be gyors emelkedés a robusztussággal foglalkozó 
matematikai dolgozatok számában

Puc. 2. Быстрый рост количества математических статей по мощности, происшедний за
десятилетие.

We shall see that the computing demand of robust methods is significantly 
greater than that of the least squares technique (the simplest case of the latter 
is the calculation of arithmetic means). Two opposite demands are therefore 
required to be fulfilled: we are obliged to exhaust the maximum information 
from our data sets, but the costs of the much greater computer time seems to 
contradict it in the sense that the question arises as to whether the cost/informa- 
tion ratio is really less by using robust methods or not. Fortunately the opera­
tion costs continuously decrease in such a drastic manner that in the near future 
standard methods, i.e. methods based on the least squares principle, will not be 
able to be applied economically, except in very special cases. Efficiency is of 
great importance precisely in the earth sciences because data are expensive to 
obtain; the application of a statistical method, say of 50% efficiency, means 
nothing other than we have thrown out half of our data.
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If it is possible we shall use or apply robust methods. The present mono­
graph shows that robust procedures on the grounds of the most frequent value 
conception are rather simple and therefore do not need too much computer 
time. The style of the monograph is similar to that of the great part of robust 
articles: we must flatly contradict some statements which are still accepted 
nowadays (and are to be read in handbooks, too). The mental attitude of the 
reader should always be (in both directions) open but critical and without any 
preconceptions. Let us recall a remark of Huxley : ‘all truths begin as heterodoxy 
and end as orthodoxy’. Really, some sentences can separately be enhanced also 
from this monograph in such a manner that orthodox statisticians will indeed 
find it to be heretical.

The first systematic monograph about robust statistics in general [Huber 
1981] appeared a few years ago but was written for mathematicians and was 
without concrete algorithms suggested for those applying them. The author of 
the present monograph is convinced that interpretation methods in the earth 
sciences (and also elsewhere) must increase effectivity as soon as possible by 
using robust procedures, and that is the very reason why the method of the most 
frequent values is the central theme of this work: the advantages of this concep­
tion are equally of theoretical, of practical and of a computertechnical nature. 
The applications of this principle (instead of the least squares one) for the 
manifold cases of practice may not be the task of only one team consisting of 
only a few members; here, however, we give all information and foundations 
for developing special algorithms to solve, economically, interpretation prob­
lems of different kinds.

The mathematical background of the reader may be very different: the 
spectrum begins with those who ‘believe’ even nowadays in the predominant 
occurrence of the Gaussian distribution, and reaches as far as to those experts 
who already know or even apply robust statistical procedures.—Therefore the 
following three tables may be of interest.

Table /  shows among other things that experts working both in practice and 
in the field of theoretical statistics have never believed in the general occurrence 
of Gaussian distribution. However, because of the poor possibilities of comput­
ing technique, it was for a long time worth while to accept this hypothesis and 
to develop practical algorithms on the grounds of the least squares principle. 
Table II shows connections, similarities and differences among different statisti­
cal procedures and hypotheses, defining the place of the conception of the most 
frequent value calculations. If the reader has some experience and theoretical 
knowledge in statistics, the author hopes that Table II is fully understandable 
(although drastic but unavoidable simplifications were made). Should this not 
be the case the preliminary details contained in Table II might serve as sign-posts 
so the reader does not lose his way in the particulars of this monograph. Table 
III lists the demands of practice which must in any case be fulfilled by every 
applied statistical procedure. The enhancement of these demands is important 
inasmuch as a great number of ‘home-made’, ‘own’ procedures can easily be 
defined (defining them either by the substituting distribution g or directly by



Some important dates and periods in 
the development of statistics

What kinds of probability distribu­
tions do occur and do not occur in 
reality? Only those experts are com­
petent who deal both with practical 
problems and with theoretical statis­
tics

If we relate the notion of optimum 
effectiveness to the costs of the whole 
complex of the measuring and com­
puting work, the assumption of the 
Gaussian error distribution in general 
cases was indeed justified for more 
than a century. The change of the opti 
mum assumption in lime

New points of view, new notions and 
new approaches in statistics:

GAUSSIAN GAUSSIAN GAUSSIAN THF. APPROPRIATE MODEL OF REALITY

In most cases the assumption of Gaussian distribution (the principle of least squares) gives optimum 
effectiveness ; nevertheless, for the most frequently occuiring distributions the least squares 
technique has. in the statistical sense, often poor efficiency

Generally, optimum effectiveness can be achieved by 
algorithms fitting the real distribution; the assump 
lion of Gaussian error distribution increasingly results 
in an unacceptably low effectiveness

Table I. Block diagram showing the most important statistical principles, statements 
concerning the relation between real probability distributions and the Gaussian one, and 

illustrating the changes in the most economically usable model of probability distributions

circa from I960
Development of robust and resistant methods, 
beginning of the elimination of harmful dogmas 
[TUKIvY. Hubi rJ

I. táblázat. Idővázlat a legfontosabb statisztikai elvekre, a gyakorlatban előforduló 
valószínűségeloszlások ill. a Gauss-eloszlás viszonyát illető véleményekre és a leghatékonyabban 

alkalmazható modelleloszlásban nemrégiben bekövetkezett változásokra vonatkozóan

Таблица I. Хронологическая схема главнейших принципов статистики, высказываний 
относительно соотношения встречающихся на практике вероятностных распределений 
с гауссовским распределением, а также изменений в моделях распределения, наиболее 

эффективных происшедших в недавнем прошлом.



Main statistical principles and some procedures; connections, 
similarities and differences

Principle :

Basic idea:

The appropriate value accord­
ing to the basic idea is that T 
value which satisfies the cor­
responding equation:

Maximum likelihood Minimization of the /-divergence

The unknown probability distribution
ical form of the densitv function (characterized by the density function fix)) is
fix) is given); based on the substituted (modelled) by the distribution

gix) with given analytical form; the loss of
ured values) that T is accepted as information is measured by the so-called /-
the appropriate value which re- divergence, and that 7 is accepted which
suits in maximal probability o f minimizes the loss of information
the sample (differentiation

1 (some known 1 and application to samples)
t  logical steps)

в/ ( V, ; 7) bgtxc T)
^  dT

> ----------  = o } ----------  = 0
J ix f.T ) fr , gix,; 7)

In practical terms, the prin­
ciples prescribe weighted mean- 
calculations in an iterative 
manner:

Alternatives for the choice of 
the model distribution g (with 
r = 0 i f  g is analytically given):

The weight function and its de­
mand on computer time

У

For which actual types of dis-' 
tributions has the method of 
/■-determination maximal effi­
ciencies? .

How is the efficiency of method 
sensitive to alterations of the 
type of distributions?

How is the method insensitive 
to outliers? (the method can be 
considered as a resistant one?)

The corresponding fitting 
method (if not only a single 
unknown value must be deter­
mined)

If the type of actual distribution and that of the substituting distribution are 
identical (that is. g= f). both principles prescribe the same procedure for the 
calculation o f T. (The parameter of location T and the parameter of scale S 
are calculated simultaneously in practice and this may cause differences in the 
procedures derived from the two principles, and in their practical advantages, 
too. It is further assumed, for the sake of simplicity, that S  is known.) If the 
distribution ol errors is characterized by a bell-shaped curve (the Gauss-curve 
is only one of the infinite possibilities) then the density function can be written

X -  T
S

Consequently the equation written above is satisfied by a T value which is the 
final result of the iterative determination of weighted means calculated with 
weights given by

lx-T) = g

Accordingly,

tp can only be calculated 
in a complicated man­
ner with a considerable 
demand on computer 
time

X - T

is the formula which 
must hold. The demand 
on computer time 
depends upon the 
analytical form of <p; 
i.e upon the choice 
of the model distri­
bution g. For simplicity, 
we assume that S=  I.

Arbitrary
f °(X) с(а)(1+дг2Г 2

fe ix )  = - L e  2
J in

________________ i _ 1
T) =

I + (* ,-  T)1 
the calculation of these weights needs 
minima! number o f operations among 
the real (i.e. not degenerated) alter­
natives for weights

Ф-Т) = I;
the weighted mean simplifies into an 
ordinary arithmetic mean, consequently 
the iteration is also superfluous

(The following ques­
tions can be answered 
only for concrete cases)

For distributions characterized by 
/„(*), these distributions (using dif­
ferent values for a) adequately model 
very different distributions occurring 
in practice

For only one single type of symmetrical 
probability distribution (namely tor the 
Gaussian distribution characterized by
fo)

For a very large interval of a-values 
the efficiency is to a great extent insen­
sitive to the type of distribution (i.e. 
the method is robust)

For a very large interval of a-values 
the procedure is resistant

Adjustment according to the most fre ­
quent values (the so-called W-fitting). 
The resulting hypersurface is deter­
mined by the points which have a 
tendency of cohesion (the procedure 
goes on without any regard to out­
liers)

The efficiency drops quickly if the actual 
distribution differs from the Gaussian 
distribution (i.e. the method is not rob­
ust)

The procedure is not resistant, the result 
can be completely distorted in the 
presence of only few outliers

The least squares adjustment (this is at 
the same time the limiting case of M-fit­
ting if a -* oo). The hypersurface (de­
monstrating the results) tends to situate 
itself so that no point should be too far 
from the surface (even if because of this, 
the surface removes itself from the den­
sest lying points)

Table II. Simplified scheme showing similarities between the maximum likelihood principle and 
the minimization of the /-divergence: both result in reweighted calculations. The correct choice 

of the weight function (or, rather of the model distribution) leads to robust, resistant and 
economical statistical procedures

II. táblázat. Egyszerűsített vázlat a legnagyobb valószínűség elve és az /-divergencia 
minimalizálása közötti hasonlóság bemutatására: bizonyos (általában teljesülő) feltételek mellett 

mindkettő iterative súlyozott számításokra vezet. A súlyfüggvény (ill. elsődlegesen 
a modclleloszlás) alkalmas megválasztásával robusztus, rezisztens és gazdaságos statisztikai

eljárásokat kapunk

Таблица II. Упрощенная схема для иллюстрации сходства между принципом 
максимальной вероятности и минимализацией /-дивергенции: при определенных, обычно 

выполняющихся условиях оба приводят в расчетам, итеративно взвешенным.
Подходящий выбор весовой функции, то-есть в первую очередь модели распределения, 

приводит к мощным, устойчивым и экономичным статистическим способам.
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giving the analytical form of the weight function tp), all being superior in 
comparison with standard statistical methods in respect, for example, of the 
insensitivity to outliers, but not fulfilling the given set of demands. The reader 
will ascertain that algorithms developed on the grounds of the conception of the 
most frequent values fulfil all the demands of Table III.
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Chapter 1
The notion of ‘robustness’ in mathematics and in practice

1.1 Probability distributions, parameters of location, estimates, distribution 
of estimates, the law of large numbers, limit distributions

The primary purpose of this monograph is to define algorithms for most 
frequent value calculations and to show how to apply this statistical conception. 
We shall refer to a number of notions and theorems of probability theory and 
statistics, without deriving or even accurately defining them. If required, all 
relevant notions not defined in detail here are to be found in Cramer [1958], 
Box et al. [1978] and Rényi [1962].

However, we shall often comment on the known results in such a manner 
that the matter is put in another light: namely, it is impossible to speak about 
robustness without some criticism of hardened opinions. (The style of articles 
about robustness is therefore very often significantly different from that of 
mathematics in general.) The secondary purpose of this monograph is to help 
the reader—if necessary—to remove any preconceptions and even dogmata 
which are wide-spread even nowadays about probability theory and statistics.

It is therefore not advisable to recall the well known notions solely by 
giving a set of defining formulae, so we will make as if we would start from the 
very beginnings.

1.1.1 The ‘expected value’, as a parameter of location and its estimation

If we have to measure some quantity, by repeated measuring (n times) we 
will in general get differing values denoted by x u x2, x t, ..., xn. What can be 
regarded as the characteristic, or even ‘true’ value of the measured quantity in 
question? (True values can really exist, e.g. if the sum of angles in a triangle are 
geodetically measured; in other cases, however, the notion of true value can be 
without any meaning, e.g. if we measure the weight of grains of wheat. Also in 
the latter case, however, the weight can be regarded as a true value but in a 
different manner modified by unavoidable effects [Baule 1963].) Which single 
value should be accepted as the most characteristic for the location of the data 
Xj, x 2, x n demonstrated on a datum line?

The first proposition of Baule [1963] is to accept that value which is 
characteristic for the gathered points (‘häufigster Wert’, i.e. most frequent 
value). If the mother distribution is symmetrical and unimodal (i.e. the density 
function has only one maximum), we can perhaps accept the arithmetic mean

1 "
E„ = -  X X;,

«.■= l
(1)

as an estimate of location, where
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E = f xf(x) dx (2)
— 00

is a possible definition of the parameter of location, and this gives (if the integral 
in Eq. (2) exists) the symmetry point. Figure 3 shows that in the cases defined 
above we get estimates calculating E„ for such a parameter of location E which 
has for the interval (E—e, E+e) maximum probability expressed by

Î / W d x  (3)
E - e

in comparison to any other interval of the same length.

Fig. 3. In a symmetrical and unimodal case the expected value E gives the most probable value 
in the sense that the occurrence of values in the interval (E—e, E + e) has maximum probability, 

i.e. for any other value V differing from E the interval ( V—e, V+e) is less probable

3. ábra. Szimmetrikus és egy maximumú esetben az E várható érték valóban a legvalószínűbb 
értéket adja abban az értelemben, hogy az (E - e , E+e) intervallumbeli értékek előfordulásának 

maximális a valószínűsége, azaz £401 különböző bármely V értékre a (V —e, V+e) 
intervallumba esés kevésbé valószínű

Puc. 3. При симметричном распределении с одним максимумом математическим 
ожиданием Е действительно определяется наиболее вероятное значение в том смысле, что 

вероятность значений, попадающих в интервал (Е -е ,  Е+е) максимальна, то-есть 
попадание в интервал (V —e, V+e), где V — любое отличное от £  значение, менее

вероятно.

Integrals in this monograph are to be understood as Lebesgue-Stieltjes integrals but a rather 
conventional notation is used (without .. .df\x), ...d £ o r £(dx)). In this sense Eq. (1) and many of 
the equations in this monograph containing summations seem to be superfluous because if we 
substitute the 'density function'

A W  = 1 X  ö(x -  X,) (4)
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in some integral formulae (ту, x t, .... x„ is the sample and ő is the Dirac function), we get the 
summation formulae (in the present case Eq. (1) from Eq, (2)). It is well known, however, that not 
Only estimates of this type exist.

The density function can really consist of Dirac functions by using digital equipment. In this
case

J(x) = Ax £  f(iAx) ■ ô (x- iA x)  (5)

holds if Ax characterizes the last digit. By proper use of the equipment the Dirac functions are to 
such a degree close to one another that their envelope curve gives d.v-times the primarily continuous 
density function, see Fig. 4.

Fig. 4. Interconnection between a continuous probability distribution and its realization as 
a sequence of Dirac functions (if we use digital devices)

4. ábra. Kapcsolat folytonos eloszlás és Dirac függvénysorozattal való realizációja között (ha
digitális műszerrel mérünk)

Puc. 4. Зависимость между непрерывным распределением вероятностей и его реализацией 
рядом Дирака-J (при производстве измерений цифровой аппаратурой).

The maximum probability shown in Fig. 3 seems to justify the technical 
term ‘expected value' for E. Speaking about the expected value for a unimodal 
distribution, we really expect the clustering of our results around this value, but 
we can face a quite other situation, too. For example Fig. 5 shows a lognormal 
density function, and the interval ( M ~ e, M + e) is much more probable than 
the interval of the same length around E :

M  +  e E + e

j  f (x)  dx > I f{x)  dx.
M - E  E - e

(It would be easy to show examples, too, where not only the relation sign > 
but also »  would be justifiable.) The name ‘expected value’ for the value E can 
therefore be highly unjustifiable but we shall consistently use this expression as 
a technical term independently of its real meaning.
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Fig. 5. Example to show that the probability belonging to the interval (E—e, E+e), i.e. around 
the expected value, can be much less probable than the probability of an interval of the same 

length around another value, e.g. around the so-called most frequent value (M)

5. ábra. Példa arra, hogy a várható érték körüli (E —e, E+e) intervallumba esés valószínűsége 
sokkal kisebb lehet, mint más érték, pl. az M leggyakoribb érték körüli, ugyanolyan hosszúságú

intervallumba esés valószínűsége

Puc. 5. Пример значительно более низкой вероятности попадания в интервал около 
математического ожидания (Е — е, Е + е), нежели в интервал такой же длины около 

наиболее частого значения М.

If our task really needs the ‘location of gathering’, then it would be 
dangerous if we were to be misled by the suggestion of the name ‘expected 
value’ : we see that there are cases in which Eq. (1) is for this purpose unusable. 
Baule [1963] (on page 4) refers to the fact that e.g. in biology, another value 
is more suitable for characterizing the totality of data than the expression in 
Eq. (1): ‘arithmetic mean lies near us because of custom but it is hereby by no 
means justified’. The objection belongs here just to the fact that arithmetic 
means do not always coincide with the most frequently occurring values.

1.1.2 Distribution of estimates, asymptotic variance, efficiency

Let us once more suppose that f{x)  is unimodal and symmetrical and that 
the integral in Eq. (2) exists: even in this case one cannot be certain that the 
arithmetic mean is effective enough to estimate the symmetry point. To what 
does the meaning of efficiency belong? Suppose that we have to compare two 
different estimation algorithms whose results are denoted by T'  and T". If we 
sample N times from the distribution f{x)  and each sample contains n data, we 
get equally N T’n and N Г" estimates; if N -* oo we get more and more
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accurately the distributions o f the estimates for both estimation procedures (and 
naturally for ri). (To enhance the difference, we often speak about ‘mother 
distribution’ in the case of the original f(x). The sample from a mother distribu­
tion does not categorically mean directly measured data: it can be a set of 
derived data, too. However, the principal thing in the statistical respect is that 
this is the ‘raw material’ of statistical procedures for estimating the parameter 
of location.)

Comparison of the variances shows which type of estimation is more 
advantageous. If n also tends to infinity, then n times the variance of the 
estimates give as the limiting value the so-called asymptotic variance (A'2 and 
A"2); the square roots are the asymptotic standard deviations (A' and A"). If
A'<A",  / Л ' 42

(6)

is the relative efficiency; if A’2 is the minimum asymptotic variance, Eq. 6 gives 
the efficiency of T" in the absolute sense. The quantity (l /e— 1) • 100 is economi­
cally very important: this gives the percentual surplus of data needed for the 
same accuracy, if we calculate according to the less effective procedure.

If we use the arithmetic mean to estimate the parameter of location, not 
only will the estimating procedure be the simplest possible but the asymptotic 
variance will also be very easy to calculate:

A\ = J ( x - E ) 2f (x)dx.  (7)
-  00

If we use sample medians (m) in the case of unimodal and symmetric 
distributions for estimating the parameter of location, i.e. the symmetry point, 
the asymptotic standard deviation (or briefly ‘asymptotic scatter’) Am can also 
be calculated for this estimation procedure very simply:

Am
1

2Д0)' (8)

1.1.3 The law of large numbers, ‘central ’ limit theorem

The expression in Eq. (7) is customarily used for the general characteriza­
tion of the mother distribution itself (and is called simply ‘variance’, without any 
specification). This expression, however, characterizes the distribution f(x)  in 
one single and in addition in a very special point of view: is Eq. (1) (i.e. the 
simplest procedure for estimation) able to give acceptable approximations for 
the parameter of location for samples from a given f (x)  probability distribu­
tion?

It is a practically important demand that the law of large numbers must be 
fulfilled, i.e. if n is greater, the estimate is more accurate. (It is well known that 
‘the law of large numbers’ means a series of theorems in probability theory, with
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well defined premises and conclusions; we have the essence of these theorems 
condensed in just a few words.)

The limit theorem, known as ‘central’, is perhaps the most beautiful the­
orem of probability theory: according to this the probability distribution of En
is of Gaussian type if n is large enough :

i.e. also given is the asymptotic distribution of the estimates.
One would perhaps say that because of the well defined distribution of 

estimates of simple analytical form it is worth while to use arithmetic means as 
estimates. We shall see in Chapter 4, however, that many more advantageous 
estimates have Gaussian limit distribution, too. Why is just the theorem given 
by Eq. (9) called ‘central’? If we decide arbitrarily to estimate always by 
arithmetic means, then Eq. (9) indeed plays a central role (and the expression 
in Eq. (7), too). By using other estimates, however, other formulae will play the 
central role, and therefore Eq. (9) will be ousted to the periphery together with 
the expression in Eq. (7).

We shall see, on the one hand, in connection with Table IV  (in Chapter 5) 
that arithmetic means can behave differently if AE= oo. On the other hand, the 
finite value of AE does not nessesarily mean at the same time that the use of 
arithmetic means as estimates is economical. The question of economy arises, 
however, concerning the results of more advantageous estimating methods too, 
and the answer depends on the probability distribution occurring in practice.

But what types of probability distributions really occur in practice? We can 
naturally suppose an arbitrarily chosen special type of distribution—but we can 
also acknowledge fairly as do Andrews et a!. [1972], that ‘we never know in 
practice what situation we face’.

It is commonplace to suppose Gaussian distribution which is also called 
‘normal’ distribution. But why? A part of the truth is contained in the witty 
remark of Poincaré [1912]: ‘mathematicians accept the normal distribution 
believing that this is the physical reality, physicists use normal distribution 
believing that this is a mathematical law’. It depends only on suitable premises 
that the occurring probability distribution really becomes a Gaussian one: if we 
deal exclusively only with such cases in which the superposition of a very large 
number of very small effects (fulfilling some mathematical demands) results in 
the statistical fluctuations, then the summing takes place simultaneously with 
the establishment of the phenomenon and therefore by the fulfilling of these 
suppositions the distribution can really be near the Gaussian one.

Mathematicians often reckon on the fulfillment of similar conditions. 
A typical citation is that of Prékopa [1962]: ‘If we want to apply the method 
of probability theory successfully, the conditions not taken into account must

(9)

where
о = AEj]jn, (9a)
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each be of relatively small effect.’ The problem is that this is unacceptable for 
geophysicists and geologists (and, I would think, for many other disciplines, 
too). If a condition is neglected because of its very sporadic occurrence (and not 
because of its negligible effect), and this causes outliers in an actual situation, 
the statistical method must also be able in such cases to give reliable results. In 
one word: the statistical procedure must be resistant.

Class
No. No. J\x) e n(e)

c

(-«<£)
о Is the law of large 

numbers fulfilled?
Hi

1
1.500 0.356 2.513

no
1

6.2691([.v2+ 1)‘ 4
00 (its reverse 

is true) 
no

(its reverse

X

1.272 0.426 1.949
1

4.5545(|/.v2+ I)1-6
X

is true)
1

1.112 0.469 1.623
no

3
.• 6 "9!(, X2 * I)18

00 (its reverse 
is true)

X

3.1/3 no
4 1.299 0.373 2.128 00 (its reverse X

8л( .vl3,2 + 1) is true)

5
1

n(.v2 + 1)
1.000 0.500 1.414 00 no X

6
1

0.683 0.419 1.055 00 no X

2 2 ,л | + » 2

4 if x  -  1
7 <

- L  ir r > 1
L 4v , w

1.240 0.561 1.655 00 no X

8 1.075 0.589 1.401 X' no X

9

10

1

2.5056([ ,v2 + l)2 4 
1

0.840

0.735

0.537

0.558

1.146

0.984

X yes X

3
2.1348([/.ï 2+ I)28

X yes X

11 0.832 0.596 1.078 X yes X

4я( A 3 + 1 )

12
1

0.662 0.573 0.875 2.236 yes 6.530
1.8873([.v2 + I)2 2

13 - L e  T  

r  ^
0.925 0.631 1.165 1.000 yes 0.737

14 ; 1 if -Ï S 1 0.719 0.681 0.871 0.577 yes 0.439
0 if A > 1

4 15 I - - ' -
0.807 0.562 1.076 1.414 yes 1.726

16
2 K q (.x ) * 0.0447 0.364 0.0741 0.35 yes 22

n 2

17
Î0.5 Î0.5 1.732 0.750 2.000 1.000 yes 0.250
-  1 0 +1

2
18 0.562 0.590 0.732 1.000 yes 1.866

л(.г2 + 1 ) 2

A'o(.v) is the so-called modified Bessel function, see e.g. JahnKE-Emdh-Lösch: Tables of Higher Functions. McGraw-Hill. I960.
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The conditions mentioned above (that result in a Gaussian error distribu­
tion) could be fulfilled in principle in the majority of cases but the real situation 
can be characterized by a short remark of T u k ey  [1977]: ‘When the underlying 
distribution, as always, is nongaussian...’. (Some similar citations have already 
been quoted in Table I). The attribute ‘normal' for the Gaussian distribution 
type is therefore unjustified (and misleading) for mother distributions (the 
question of estimates of distribution-type must be dealt with separately, this is 
quite another question). Instead of ‘normal’ we shall subsequently speak about 
Gaussian distribution (as is also done in the second half of A n d r e w s  et al. 
[1972]).

1.2 The notion of robustness with regard to practice

There are some optimum procedures in classical statistics which suppose 
the occurrence of a given distribution type. One would think perhaps that the 
efficiency of such procedures is near the optimum if similar error distribution 
occurs. (E.g. the computation of arithmetic means is optimum for the Gaussian 
distribution. This sort of estimating is perhaps near the optimum, say, also for 
similar, i.e. for symmetrical and unimodal distributions.)

The article of T u k ey  [1960] changed dramatically the opinion of appliers 
and of statisticians, too. Instead of following the original train of thought of 
Tukey, we show in the following that an estimation procedure which can be

Table IV. Some characteristics of dispersion for various types of distributions given by their 
density function f(x).  These characteristics are: dihesion (e); asymptotic scatter of the most 

frequent values (efn(e))\ asymptotic scatter of the arithmetic means (<7; the value a2 is known 
simply as ‘variance’ and is commonly but misleadingly used to characterize the original 

distributions themselves). The relative efficiencies are also given (nE/nM) : how many times more 
data are needed to achieve asymptotically the same accuracy using arithmetic means (i.e. least 

squares techniques) than by calculating most frequent values

IV. táblázat. A diszperzió néhány jellemzője különböző f (x)  sürüségfüggvényű eloszlásokra.
A jellemzők a következők: dihézió (e); a leggyakoribb értékek aszimptotikus szórása (e/fii(e)); 
a számtani átlagok aszimptotikus szórása (c; a a értéket egyszerűen „szórásinak nevezik és 

szokásosan de félrevezető módon maguknak az eredeti eloszlásoknak a jellemzésére 
használják). A relatív hatásfokok is adottak (nE/nM): hányszor annyi adat szükséges a számtani 

átlagok (azaz a legkisebb négyzetek elvének) alkalmazásakor a leggyakoribb érték-számítás 
pontosságával aszimptotikusan azonos pontosság eléréséhez

Таблица IV. Некоторые характеристики дисперсии для распределений с различными 
весовыми функциями f(x):  дигезия (е), асимптотическая дисперсия наиболее частых 

значений fiVNri), асимптотическая дисперсия среднеарифметических а (часто называемая 
просто «дисперсией» и обычно, но ошибочно используемая для характеристики 

первичных распределений). Относительные эффективности пЕ/пм также заданы, то-есть 
задано, во сколько раз больше данных необходимо при использовании 

среднеарифметических, то-есть принципа наименьших квадратов, для обеспечения 
асимптотически идентичной точности, с таковой при расчете наиболее частых значений.
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applied advantageously for a given type of distribution, can become completely 
unusable in the asymptotic sense if this distribution is changed arbitrarily small. 

Let us define the following family of distributions:

1*1 ±5*0
(O<xo<0.5) (10)

1*1 >*o-

(All distributions are symmetrical to the origin.)
For the parameter value xo = 0.4 the density function is shown in Fig. 6., 

the distribution function in Fig. 7. It is obvious that the nearer the parameter 
x0 is to the value 0.5, the longer on the one hand is the interval for which the 
distribution is uniform and, on the other hand, the smaller is the role of the 
flanks, which decrease as const. x -2 for large values of |x|. In contradiction to 
this, not only is the asymptotic variance A\ (Eq. (7)) of the arithmetic means 
infinite but also the integral in Eq. (2) is divergent, this means that even the 
expected value does not exist. Whereas the arithmetic mean gives a good 
estimate for the symmetry point of uniform distribution (with an asymptotic

/(*) =
1,

1+ n 1 * 1  ~  * (

l-2 * n

if

if

Fig. 6. Density function f (x)  given by Eq. (11) for some value of л:0. If *<,->0.5, the distribution 
f i x )  is infinitely close to the uniform distribution (i.e. the distance of f i x )  from the uniform 

distribution can be arbitrarily small); in contrast, the variance of all f ix )  distributions is infinite, 
compared to the naturally finite variance value of the uniform distribution

6. ábra. A (11) egyenlettel adott f i x )  sűrűségfüggvény valamely *0 értékre. На *„->0,5, az fix)  
eloszlás végtelenül közel jut az egyenletes eloszláshoz (azaz az f i x )  távolsága az egyenletes 

eloszlástól akármilyen kicsiny lehet), ugyanakkor az /(x)-ek szórása mindig végtelen marad, 
szemben az egyenletes eloszlás nyilvánvalóan véges szórásával

Puc. 6. Плотностная функция f ix ) ,  заданная уравнением 11 для произвольной *0. При 
хо->0,5 распределение f ix )  неограниченно приближается к равномерному распределению 

(то-есть расстояние f ix )  от равномерного распределения может быть сколь угодно 
малым), в то же время дисперсия значений функции f i x )  все время остается бесконечной 

в противоположность явно конечной дисперсии равномерного распределения.
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scatter of AE = 1/(2 |/3)) for the interval [-0 .5 ; +0.5], the same estimate can 
completely deteriorate in the asymptotic sense arbitrarily near this distribution.

It is important that the efficiency for a given estimation procedure should 
not depend seriously upon the underlying distribution type. Expressed in a 
single word : the estimation should be robust.

For what the meaning of this word is for engineers Pirkle et al. [1982] is 
cited: robust estimators are ‘those which perform well under a condition of 
nonnormality or of normality with outliers added as well as under conditions 
of normality’. The order of succession is interesting and instructive: the first 
point of view is the good behaviour at nonnormal distributions; the insensitivity 
of outliers is the second one; finally the acceptable performance at the Gaussian 
distribution is also demanded as cases may occur in which the actual distribu­
tion is near the Gaussian one.

Fig. 7. Distribution function F(x) belonging to the density function defined by Eq. (11) and
shown in Fig. 6.

7. ábra. A 6. ábrán bemutatott f(x )  sűrűségfüggvény F(x) eloszlásfüggvénye 

Рис. 7. Функция распределения F(x) плотностной функции f(x),  представленного на рис. 6.

1.3 Mathematical definition of robustness

We have spoken about distributions lying near each other (e.g. the distribu­
tion given by Eq. (10) in the case of xo«0.5, and the uniform distribution). In 
the mathematical respect, therefore, the first thing is to define the distance 
between two probability distributions.

There are some definitions for this distance. One is the Hellinger-distance 
being the L2 norm of the difference function of the square roots of the density 
functions:

I I  í f ( x ) - ] [ g ( x )  I I . ( H )
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It is clear that the Hellinger-distance of two distributions which have not too 
heavy tails (i.e., the density functions tend quickly enough to zero if |x|->oo), 
is determined mainly by those parts of the density functions which are charac­
teristic for the gathering of the data. This means that the distance of the uniform 
distribution and the distribution defined by Eq. (10) tend to zero if xo->0.5. 
Another possibility is to accept the definition of the Prohorov-distance [Huber 
1981]. The definition is more complicated than Eq. (11) but there are some 
interesting and important theorems to this sort of distance. For appliers the 
most important statement is that a great Prohorov-distance characterizes the 
case if two distributions are also practically distinguishable.

The definition of the robustness for estimates is the following: the estima­
tion is robust if  the distribution of estimates is a uniformly continuous functional 
o f the mother distribution, i.e. to near lying mother distributions belong near lying 
distributions o f estimates. Consequently, arithmetic means are not robust esti­
mates as our example has shown that to arbitrarily near lying mother distribu­
tions can belong on the one hand a distribution of estimates with finite asymp­
totic variance, and on the other hand, a distribution of estimates with infinite 
asymptotic variance (even the law of large numbers is not fulfilled in the second 
case if n is great).

Mathematicians refer to the definition of robustness mentioned above as 
a qualitative one. For quantitative investigations, the von Mises-derivative of 
the functional is mostly used. We shall get acquainted with this notion in 
Chapter 4, known as the ‘influence curve’ or IC-function; its excellent practical 
applicability will be clear in the second half of the monograph.

Chapter 2
Heuristic definition of the most frequent value and of the fitting according to

the most frequent values

2.1 Most frequent values with a weight function of fixed parameter o f scale 

2.1.1 The parameter of scale (S)

Let us first remember the notion of the parameter of scale which will 
express primarily the degree of the tendency of gathering of our data. (This

technical term originates from the fact that — /  Í — j has the same distribution

type as f ix),  only the unit of scale is changed.)
If T is the parameter of location, the density function has the general form

f i x )  =  f ( T -  S ; X ) . ( 12)
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For example, the density function of the well known Cauchy distribution is

/cW  = I s
n S2 + ( x - T ) 2 '

(13)

Figure 8 shows this density function for four (T, S)-pairs, namely for T= 10 and 
20, and for S= 2 and 4. The parameter of location T here is the symmetry point 
and S gives—independently from T—information on whether data are expected 
to be more or less dense around the actual value of T.

We can justify with simple integration that in the case of the Cauchy 
distribution 5 equals the semi-interquartile range Q (known also as probable 
error). Q has an immediate probability interpretation and therefore it would be 
advantageous in this respect to demand S= Q for all distributions, but the usual 
practice is to define such a parameter of scale S which results in a density 
function of simple analytical form.

The parameter of scale is not only a characteristic of the density functions 
but it also gives for other functions the value of the breadth in the sense that 
twice as great S means twice as bright function, etc. In the following this latter 
interpretation will be used for weight functions.

Fig. 8. Four density functions of Cauchy-type: different parameters of location define different 
symmetry points, different parameters of scale characterize different widths. (The four density 

curves are normalized to / (  T) = 1)

8. ábra. Négy Cauchy-típusú sűrűségfüggvény: különböző helyparaméterek különböző 
szimmetriapontokat definiálnak, különböző skálaparaméterek pedig különböző szélességeket. 

(A négy sűrűségfüggvény / (  T) = 1-re van normáivá)

Puc. 8. Четыре плотностных функций типа Коши: различными параметрами места 
определяются различные точки симметрии, а различными параметрами шкал — различные 

ширины. (Все четыре плотностных функции приведены к f ( T )  = 1.)

2.1.2 Outliers

If our data are visualized as points on the datum line, we should first glance 
to see whether or not we have one or more outliers. A Hungarian scientist wrote
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[T á r c z y -H o r n o c h  1956] that ‘outliers essentially differ from the other meas­
ured data’. It was customary at one time to cancel these data before calculating 
the estimate (in the simplest case the arithmetic mean).

The so-called deterministic distribution in Korn and Korn [1961] is, from the point of view 
the probability theory, undoubtedly a degenerate one. We shall use it now, however, in connection 
with a situation which is familiar to all readers. Let us suppose that the data and the operations 
to be carried out are typed onto a calculator; if—by repeating this procedure the result is the 
same—this is regarded as the ‘true result’. If not, we repeat the procedure twice more and naturally 
accept that value which is obtained three times, completely neglecting the differing value: it would 
be absurd to accept the arithmetic mean of the four results. This remark was made as classic 
statistical literature is often somewhat contemptuous at the neglecting of one or a few items of data 
but for healthy minded practicianers this is quite natural.

Is it possible somehow to ‘legalize’ from the viewpoint of probability theory 
the cancelling of the outliers?

2.1.3 Weighted means

Most books written on probability theory and/or statistics prove the the­
orem that the weighted mean:

n

L  qi*i

I  9,;= l
calculated from x it x2, x(, xn having a probability distribution f(x),  gives
the most efficient estimate if all qt weights are the same.

Supposing that the measuring conditions for all data are unaltered—dis­
regarding cases in which, because of more accurate equipment (or because of 
a similarly obvious condition), it is really justifiable to take some data with a 
greater weight into consideration—for engineers or other appliers this theorem 
seems therefore rather trivial: why would it be justifiable, say, to take the 
seventh value from a sample containing ten data with twice as great weight than 
the other data?

Instead of weights depending on the index of the sample element, a weight 
distribution derived statistically from all samples can be useful:

4i = 4i(xu x 2, ...,x„). (15)
The question posed at the end of paragraph 2.1.2 can be answered with a 
weighting system which gives zero (or nearly zero) weights to outliers.

The simple theoretical background of the cancellation of outliers is the fact 
that the occurrence of a distant point xk on the datum line is not yet probable:
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f{xk) = 0 or f ( x k) %0. We can write according to the foregoing an interesting and 
instructive but in practice a not yet applicable formula, viz.

Z /(*;) ' xt
i= 1

Z f(Xi)i= 1

(16)

We are protected now against outliers (without accepting arbitrary, ad hoc 
criteria), and we also find the behaviour of this expression sympathetic near the 
symmetry point (supposing that f{x) is unimodal and symmetrical), since the 
nearer the sample element to the symmetry point, the greater its weight.

In general, however, we know neither the type of the distribution nor the 
parameters T and S. If we knew all this information, even the sampling itself 
would be superfluous (to say nothing about the calculation of Eq. (16)). But 
using a weight function <p(x) (not too far distant from f(x)) this function also 
cancels the outliers and gives the greatest weights to the most gathering values. 
(Chapter 8 shows that even the best weight function is not always the density 
function itself.)

From the point of view of computing techniques, the simplest possible 
choice of the weight function seems to be

Ф) = e2 + ( x - M ) 1
(17)

Comparing this expression with Eq. (13), this is a weighting according to the 
Cauchy density function. (The theoretical background for using this weight 
function is dealt with in Chapters 7 and 8; a heuristic foundation is given in 
paragraph 2.4.3.)

2.1.4 Most frequent values calculated by weight functions o f fixed 
parameter o f scale

Let us suppose that e is known in the weight function tp(x). (The determina­
tion of e is dealt with in paragraph 2.2.3.)

The value of M in Eq. (17) is unknown but it is a plausible demand that 
the symmetry point T — M of the distribution f(x)  should be given as the 
weighted mean:

n

Z Ф>) ■ -v.
• ж i= 1

Z Ф дi= 1

( 18)
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or substituting Eq. (17), as

M  =
I E2X:

E2 + (х{— M)2
(18a)

i=l E2 + (X/- M)2
The corresponding integral formula for the mother distribution /(x) is clearly

e2x

e2 + (x -  M) ■fix) dx

M = (18b)

E2 + (.V— M)
fix)  dx

The value M appears on both sides of these equations, they are therefore 
practically iteration formulae. If, in the y-th step of the iteration according to 
Eq. (18a) the result is denoted by M}, in the following step

e2X:

Mj+1 =
i=l E2 + (Х,— Mj)2

n p2
у  ------- ---------

1 e2 + (x - M j)2

(18c)

is to be calculated. The iteration is stopped if there are only negligible changes 
in the M-value. In order to start the iteration, both the arithmetic mean and the 
sample median are equally acceptable.

The value M fulfilling Eq. (18b) is called the most frequent value of the 
probability distribution /(x). This is evidently a parameter of location. The 
value M (or M„) fulfilling Eq. (18a) is the most frequent value of the sample; 
this is an estimate for the just defined parameter of location. Obviously Eq. (18b) 
gives the symmetry point, if f i x)  is symmetrical, similarly to Eq. (2). In general 
cases, however, M can differ from E. The symbol M has its origin in the name 
‘most frequent value’. We have to show, however, that this name is really 
justified.

Substituting Mj=M  and Mj+ , = M + AM in Eq. (18c) we get for AM the 
expression

AM =
1

у  — — —
i=1 £2 + (x,.-M )2

;=, £2 + (x;-M )
=~ЛхГ М). (18d)

The sign of AM is determined only by the second sum. This sum is, however, 
the sum of (plus_or minus) the areas of the rectangles defined by the actual 
difference (х, — M) and the corresponding weight tpixf Two cases can occur: 
1. the sum of areas of the rectangles right and left of M are equal, AM = 0,
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therefore M = M, the iteration is finished; 2. the sum of areas of the rectangles 
is say, on the left hand side of M greater than on the other side, AM< 0, 
therefore the iteration brings M  nearer and nearer the gathering of the data. 
Both alternatives are shown in Fig. 9a and 9b for the sample -0 .2 ; 0; +0.2;

Fig. 9. Reweighted mean-calculations (with the weight function <p) approximate the value which 
can really be called the most frequent value. Namely, if the sum of the areas of rectangles 

defined by the elements of the sample left and right of the symmetry point of q> are not equal 
(see Fig. 9/a), the following iteration step will bring the value A/J+! nearer the cluster consisting 

of the majority of sample elements. The iteration is finished if the sums of the areas on both 
sides of the symmetry point are equal; this is the case for Fig. 9/b

9. ábra. A <p súlyfüggvénnyel történő iterált súlyozott átlagszámítások ahhoz az értékhez 
tartanak, amelyet joggal nevezhetünk leggyakoribb értéknek. Ha ugyanis a szimmetriaponttól 

jobbra és balra levő, a mintaelemek által definiált téglalapok területösszegei nem azonosak 
(1. pl. a 9/a ábrát), akkor a következő iterációs lépés A/J+I-et közelebb viszi a mintaelemek 
zöme által definiált tömörödési helyhez. Az iteráció leáll, ha a területösszegek egyensúlyba

jutottak (9/b ábra)

Puc. 9. Средневзвешенные, рассчитанные путем итерации с весовой функцией (р, 
приближаются значению, по праву называемому наиболее частым значением. Ибо если 
суммы площадей прямоугольников, определяемых элементами примера, находящимися 

вправо и влево от точки симметрии, не равны между собой (см. рис. 9/а), то при 
следующем шаге итерации значение MJ+i приблизится к участку сгущения, 

определяемому преобладающей частью элементов примера. Итерация 
приостанавливается, если суммы площадей уравновесятся (см. рис. 9/Ь).
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2.4. In this case 0.6 is the arithmetic mean, as the starting value of the iteration; 
the result of it is M = 0.135.

The author considers that the term ‘most frequent value’ is justifiable. It 
is certain that to an outlier belongs a long rectangle but its area is approximately 
proportional to (jc, -  M)~x. This means that in the overwhelming majority of 
cases the suppression of outliers is satisfactory.

2.2 Determination of the scale parameter of the weight function

2.2.1 The demand of maximum number of effective data around M for an 
interval o f minimum length

Let us suppose at the beginning for the sake of simplicity that the value M 
in tp is known and our task is to determine the proper value of e.

If our sample is—occasionally—symmetrical to some value (see Fig. 10) 
then the iteration according to Eq. (18a) gives with arbitrary (nonzero) value 
of e the right M  (i.e. the symmetry point). It is clear that the probability of a 
fully symmetrical sample is very small even for a symmetrical / ( jc) ,  the gathering

Fig. 10. Weight functions of different widths (i.e. with different scale parameters). If the weight 
function is too broad (1), the result of the most frequent value calculation will be similar to that 
of the arithmetic mean together with all its disadvantages. If the weight function is too narrow 

(4). some of the valuable data are practically neglected resulting in a decrease of efficiency

10. ábra. Különböző szélességű (azaz különböző skálaparaméterü) súlyfüggvények. Ha 
a súlyfüggvény túl széles (1). a leggyakoribb érték számítása az átlagképzéshez nagyon hasonló 

lesz, annak minden hátrányával. Ha a súlyfüggvény túl keskeny (4). az értékes adatok egy részét 
gyakorlatilag elhanyagoljuk, ami a hatásfok csökkenését eredményezi

Рис. К). Весовые функции различной ширины, то-есть с различными «параметрами шкал». 
При слишком большой ширине весовой функции (I), расчет наиболее частой величины 

станет весьма сходным с определением среднего со всеми соответствующими 
недостатками. При слишком малой ширине весовой функции (4) часть значимых данных 

пренебрегается, что приводит к снижению эффективности.
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of the values, however, will follow in the case of repeated sampling the law 
which is for simplicity represented by the sample of only 14 elements in Fig. 8. 
The following line of thought will also be the simplest if we make it on the 
ground of this sample.

If e were too great, we would get as the weight function a curve which is 
similar to the curve 1 in Fig. 8 : to every item of data belongs practically the same 
weight, the most frequent value according to Eq. (18a) has therefore approxi­
mately the same behaviour as has the arithmetic mean. For example, having also 
the outliers x, and x14 practically a weight near to the maximum because of the 
very great value of e, in real situations—where the supposition of the symmetry 
of the outliers would be fully absurd—the most frequent value fulfilling 
Eq. (18a) can be deteriorated in the same manner as the arithmetic mean.

The other extreme causes drawbacks of a different nature (see curve 4 in 
Fig. 10): if the value e is too small, not only will the outliers be neglected but 
also a part of the gathered values. We calculate as if we had less data. The result 
is a decrease in the accuracy as, with nearly all estimations, the increase in 
accuracy is proportional to ]jn.

We need a rational compromise but the arguments are stronger for not 
losing reliable values: we do not want to measure, say, twice as much data 
because of the too small value of £. It is certain that the disturbing effect of the 
outliers should be also negligible.

The question arises as to which analytical expression gives a suitable 
measure for the number of data playing a really significant role by the comput­
ing of M according to Eq. (18a). The weights have values of nearly unity in the 
centre of the gathering, and decrease to approximately zero for distant values, 
i.e. we have no argument against the acceptance of the sum of weight as the 
‘number of effective data’ denoted by neff(£):

«err(e) i=l £2 + (Х;-М )2
(19)

Consequently, to be in accordance with the foregoing discussions, that value of 
£ is accepted which gives the maximum value for the expression

” eff(£)
£

(20)

This means that the demand

1

£

is to be fulfilled.

If the distinction is really needed e  denotes the variable in Eq. (21 ), and e0 that maximum value 
which fulfils this condition. In other cases both are denoted by e .

V  --------- ------------
1= 1  £ 2 +  ( х ; - Л / ) 2

maximum (21)
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2.2.2 Cohesion and dihesion of the mother distribution

Getting e0 by solving Eq. (21), this value seems primarily to be the scale 
parameter of the weight function, which makes the practical calculation of the 
most frequent value unambiguous. Because for large n values the following 
equation holds

”en(e)
n -J— ---- — у f ix)  d.v = «(e),

5 '+{x~ M y (22)

the e value satisfying the condition
«2(e)----- = max.

e
(23)

can be accepted as the parameter of scale for the mother distribution itself. It is 
clear that the demand in Eq. (23) is the same as

00
f e3/2——-----— ;/(.v) dx = maximum (24)
J ez + (.v,-M )z

— 00

[Steiner 1973].
The e value satisfying Eq. (24) characterizes the tendency of cohesion of 

data, if sampling is made, in the sense that small e means considerable cohesion, 
and vice versa. Therefore we can define cohesion as

к  =
1

e
(25)

On the basis of Eq. (25) the name of the scale parameter could be ‘reciprocal 
cohesion’, too, but the cumbersomeness of this name justifies the introduction 
of an arbitrarily constructed name. We refer to this characteristic as dihesion of 
the probability distribution.

It can be shown [Csernyák 1973] that by fulfilling the condition in Eq. (24) 
the weight function <p(x) is the most similar to fix).  (Similarity is meant here 
in exactly the same sense as Bhattacharyya means the affinity between density 
functions [Mathai and Rathie 1975].

2.2.3 Practical computation of dihesion

Let us suppose that M  is known; our task is to determine the dihesion e. 
It can be shown [Csernyák and Steiner 1980] that for the dihesion
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holds (the limit case is realized by the (/-distribution, see series number 17 in 
Table IV). Starting from the right hand side of Eq. (26) as the initial e-value, 
we diminish the value of e till the expression

n 3/2

У — -------, = i e2 + (Xi -M)2
(27)

reaches its maximum value. This e is used in Eq. (17), i.e. in the weight function. 
And this value is at the same time an estimate for the dihesion of that distribu­
tion f(x)  from which the sample comes.

The procedure described above is not sufficiently fast. In practice the 
iteration

3 I ££(*;- A/)2

F 2
ь к + 1

i = i tó  + frj-A /)2]2
n p4

r -  b k
(28)

,= i [£*+(*,■- Л 0 2]2
is used giving an estimate for that e which fulfils the following equation:

£4(x-  M)2
— ----------------- /(.v) d.v
[e2 + (x— M)"]2 '

2 ~  00 
£  =  ---------- (28a)

[e2 + (x~ M)2]2f(x)  d.v

The e  satisfying Eq. (28a) fulfils the primary condition (24), too. Putting M = 0 in Eq. (24) (for 
the sake of simplicity), and differentiating according to e , we get

3/2 -е‘‘У  + 12) -  2ee3 
[r- + .v2T ~ fix)  d.v = 0.

After some regrouping the result is

f i x ) d.v = e2
I

[c2 + .V2]'
f ix )  d.v.

Expressing e2 and substituting the original (,v— M)2 instead of ,v2. we can ensure that Eq. (28a) really 
defines the dihesion and consequently iteration (28) gives an estimate for it. (Additional speeding 
of the iteration is applied, too. in the know-how of the University of Miskolc).

If we calculate integrals of such types with asymptotically zero and continuous integrands (see 
e.g. in Eq. (28a) the simplest way is approximation with the sum of areas of rectangles defined by 
an equidistantly graduated abscissa and the actual values of the integrand, resulting in a much 
greater accuracy than supposed (the causes are dealt with in Steiner and Z ilahi-Sebess [1988] 
Appendix 5).
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2.3 Simultaneous calculation of the most frequent value and the dihesion

The supposition of known M or that of known e: both are in general 
unfulfilled suppositions. In practice, the solution is the following: a twofold 
iteration is to be carried out, i.e. e 2 from Eq. (28) and M  from Eq. (18c) are to 
be calculated alternatingly. The final definition belongs therefore to a pair of 
values : the most frequent value (M) and dihesion (c) o f a probability distribution 
(defined by its density function f (x) ) are those values which simultaneously fulfil 
Eqs. (18b) and (28a).

If not a sample but f(x)  is given the just mentioned equations are also to 
be regarded as iteration rules. As the starting value for M the median and the 
so-called expected value are equally suitable, and as a first value of e it is 
convenient to use 3.1 times the semi interquartile range (Q), because the relation

е^З.0924 Q (29)
holds [Csernyák and Steiner 1980]. For samples mutatis mutandis the same 
is true: the sample median or the arithmetic mean is the first AF-value, and if 
the sample semi-interquartile range is Qtmp, the first £-value is 3.1 times (2emp.

Using digital equipment, if the value 'Г  on the last digit was chosen so that it was too great 
the «-iteration can tend to zero. This value has nothing to do with the real value of the dihesion 
and therefore the «-iteration must be stopped if «<«min («min can be given according to physical 
plausibilities). After finishing the A/-iteration a comment is appropriate, viz., that emln was reached 
and used in the last A/-steps. Another comment can be disclosed if the number of iteration steps 
is a priori fixed.

It is obvious that the calculation of an M value needs about two orders of 
magnitude more mathematical operations than the determination of an arith­
metic mean. If the latter were less effective, however, a surplus of expensive field 
measurements would be needed; on the contrary, operations on computers are 
very cheap and their costs are decreasing rapidly nowadays.

The pair of values (А/, e) informs us about the main part of the distribution : 
the values of the random variable are with relatively great probability in the 
interval (M — e, M + fi). Therefore—as figure 5 shows—the name 'expected 
value’ would be much more justifiable for M than for E. but we shall use this 
term for E with the same consistency as the whole literature of statistics.

2.4 M fitting: adjustment according to the most frequent values

2.4.1 Minimum condition fulfilled in each step of the M-iteration

It is easy to verify by differentiation that the expression of M given by 
Eq. (18a) fulfils the following condition:
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X  £2 In (е2 + (х ,-Л /)2 = min. (30)
i = l

In the same way it can be verified that Eq. (18c) corresponds to the condition

;=i E2 + (xi- M j)
(.X,-Mj+i)2 = min., (31)

where Mj and e are known values. This is, from the computing technical point 
of view, equivalent to

Yj qi(xi- M ) 2 = min. (32)
1= 1

(resulting in expression 14) as the weights are known in every iteration step. The 
condition in Eq. (32), however, is the special case of

n

X  <7; • ( x -  Пр; У,))2 = min., (33)
i= 1

where a parameter vector p = pk,p 2, ...,Pj, . . . ,p} is to be determined on the 
grounds of n (n>J) data x{ measured at given values y, = yn ,y i2, •••, У ín of the 
independent vector variable у = y x,y 2, - the analytical form of Г is a
priori given.

2.4.2 Adjustment according to the most frequent values

In Eq. (33) the weight q{ is well defined according to the conception of the 
most frequent value; then instead of (x, — M)2 in tp we obviously have to write 
(x; — T(pk ; y,))2, where pfc is the result of the( previous iteration step. We have 
then to fulfil

i= 1 1+ (* .--7Чр*;уЛ)-
;(Xi~ T(рк + 1 ; у,-))2 = min., (34)

for every iteration step; i.e. the program can be constructed on the basis of the 
weighted mean squares program, which is for different T-s ready available in 
program libraries.

Often is Г a polinomial, or more generally

П р;у) = PiTl(y) + p2T2(y) +...+pjTj(y), (35)

with Tj-s of given analytical form. In this case Eq. (35) leads to a linear algebraic 
equation system—similarly as does the principle of least squares.
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Solving this equation system we have to carry out
" eAd2

with

i=i [zl + dfl2
£m+l = „ 4" EZ,

(36)

к  [el + dlY

dt = (х(-  T(pt + 1;y,)) (36a)

(pt + 1 is already known). Evidently Eq. (28) is a special case of Eq. (36).
The parameter vector p of the same T function can be determined also 

fulfilling the demand of the least squares principle

X  (х ,-Г (р ;у ,))2 = min. (37)
i = 1

on the grounds of the same measuring data x,. In general the results of Eq. (37) 
and that of the M-fitting do not agree, therefore these results are denoted as p£ 
and pM, respectively. The index E refers to the expected value (as to the result 
of the least squares adjustment in the simplest case); for brevity, we shall refer 
to the adjustment according to the principle of least squares as .E-fitting.

2.4.3 Heuristic comparison o f the E-fitting and the M-fitting

Both fitting techniques have the same starting point: that p is declared as 
‘true’ (i.e. most probable), to which the maximum ‘reliability’ of the measured 
values X, belongs. The difference lies in the different characterization of the 
‘reliability’.

The classical train of thought measures the reliability with the quantity
(х;-7-(р;у,))2 (37a)

in the sense that x, is more reliable if this expression is smaller.
From the point of view of physics (and also of common sense) it is hardly 

acceptable that the reliability tends to infinity if expression (37a) tends to zero. 
The simplest solution for solving the problem is if we accept

е2 + (х ,.-П р;у ,))2 (38)
instead of (37a) where e is a characteristic value for the absolute value of errors. 
If the error of an x, (i.e. the absolute value of the difference (х,— Г(р; у,)) is e/10, 
and that of an xk is e/33, both are equivalently ‘very good’ values according to 
expression (38) (differing only by 1 % and l% o ,  respectively, from the minimum 
value of (38)). In flat contradiction to this, expression (37a) qualifies (without 
any real ground) xk as a much better value than x,: accepting (37a), xk seems 
more accurate by an order of magnitude than x,.
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The second step is to characterize the reliability of the whole set of data. 
This is done by the method of least squares by summarizing the characteristics 
of the separate xrs given in the form of (37a), resulting naturally in a very high 
sensitivity to outliers. To avoid similar effects and to remain as simple as 
possible, we consider the product of the characteristics given in (38) as the 
characteristic value of the whole set of data and the minimum value of this 
product is demanded :

П  [£2 + (-v, — T(p; y,))2] = min. (38a)
i — 1

After logarithmization we get the condition

X  In [e2 + (х,— Г(р; y,))2] = min. (38b)
i =  1

which is to be regarded as the generalized form of the condition given in 
Eq. (30).

Г is often given by Eq. (35) (with 7)-s of known analytical form), and after 
differentiation according to all pj-s we get
fl j

? 1е2 + (х1.-Г (р ;у 1.))2 Г‘(У,) Pi ■ Ti(yi) + P2 - T2(yi)+— + Pj- T JyJ-X i = 0

n £̂

? ,e 2 + U . - Др;у,.))2 Гг(У,)
P\ ' T1(yi) + p2- Г2(У;)+..• + Pj' T /y j - X i = 0

(39)
n gl 
^  „2 4- ("v- — Tin », \\2 Pt ' Tt(yd + p2 - T2(yi)+ ... + pj- T fy,)-x , = 0.

The unknowns (the pj-s) are also in the denominator; the iterative solution uses 
here in every step the parameter vector obtained in the preceding iteration step. 
As also Eq. (36) must be fulfilled, we have got in a very simple heuristic way 
essentially the same result as in paragraph 2.4.2 by generalizing the most 
frequent value calculations.

The M-fitting gives a hypersurface defined by the densest lying points, 
neglecting outliers. The result of the £-fitting, on the contrary, can be heavily 
influenced by the latter ones.

2.4.4 Weighted adjustment according to the most frequent values

The i/, weights given a priori express the fact that the measured data are, 
e.g. because of the different accuracy of the equipment used, not of equal worth. 
If, for example, </„Tl = 2 for л„+1, but for all other data <y,= 1 holds
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U = 1......n), then a possible solution is to take the last summand twice into
account both in Eq. (37) and in Eq. (38b) but with the weight value 1. Conse­
quently, we can interpret a qt weight as a number of equal data (even if qt is not 
an integer).

Equation (38b) can therefore be transcribed rather mechanically to 

Z  4iIni'= l
and the modified form of the iteration formula for calculating the dihesion 
(Eq. (36)) is

e2 + ( .v ,-r (p ;y ,)) ' = min. (40)

fik+i

у

i h  tó  + df]2 

h  tó  + df]2
(the dt-values are defined in Eq. (36a)).

(41)

Chapter 3 
Practical examples

Prior to more (but unavoidable) theoretical chapters let us show on some 
practical examples that M-fitting can really give quite different results from 
Zs-fitting (i.e. adjustment according to the principle of least squares). A general 
statement that M-fitting is always better than £-fitting would not be justifiable 
even by a very great number of examples -  moreover this statement is not true 
as though rarely a probability distribution can occur in the very neighbourhood 
of the Gaussian one and for treating this case the £-fitting is better (assuming 
that no outliers can occur). Only in Chapter 8 will it be absolutely clear in which 
sense is the M-fitting ‘better’.

3.1 Example for estimating the location

When calculating the most frequent value M of the sample x l5 x2, ..., x„ 
and its arithmetic mean, significant or even great differences are often found, 
and it is not easy to decide which is nearer the true value. In view of this our 
example shows a case for which the true value is known.

Figure 11 shows 25 resistivity values measured in a coal mine with the same 
electrode arrangement but at different locations; the geometrical arrangement 
relative to the coal seam was also always the same. Here, the author wishes to 
thank Dr. Á. Gyulai, University of Miskolc, Geophysical Department, for the 
data. The true value is known from many foregoing series of measurements
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carried out for the same coal seam and with the same electrode arrangement. 
This value is 0.151 ohm; we see in Fig. 11 that the difference of the arithmetic 
mean (£„) from the true value is twice as great as that of the most frequent value 
(M). The asymmetric distribution of the data is determined by the fact that 
tectonic disturbances decrease this specially measured resistance, and the extent 
of this decrease provides mining engineers with information on the nature, 
distance, etc. of the tectonic disturbance [Csókás et al. 1979]. Any increase in 
accuracy here is obviously of great practical importance.

0120 Qm 0130 0U0 0150 0150 Q
I I I I I

multiplicity 1 1 C l 1 1 1 1 5 4 2  1 2
--------------1------------------------------------------------------------1______ I__I____I____I f i l  i l __________ I_____________________ I ,

measured values x

E n M the true1 
value

Fig. II. Results of in-mine resistivity measurements with special electrode arrangement. The 
most frequent value M is significantly nearer the true value than the arithmetic mean (£„)

II. ábra. Speciális elektróda elrendezéssel mért bányabeli elektromos ellenállásmérések 
eredményei. Az M  leggyakoribb érték jelentősen közelebb van a helyes értékhez, mint az En

számtani átlag

Рис. II. Результаты подземных измерений электросопротивления со специальной 
установкой. Наиболее частое значение М значительно ближе к правильному значению, 

нежели среднеарифметическое Е.

3.2 Fitting of straight lines

We often assume a linear connection between two sets of measured values. 
In this section two examples are treated.

3.2.1 Connection between two mineral contents at different depth intervals

In this paragraph we deal with measuring data originating from a mineral 
mine (the author is indebted to K. Mészáros, geologist, for the data). Mészáros’ 
paper, read at the University of Miskolc in 1971, dealt with the same material, 
and it indicates that the investigation of such links can give valuable information 
for solving geological problems.

The two mineral contents are denoted by x and у (Fig. 12). Full lines 
indicate the results of AZ-fitting, dotted lines those of the ^-fitting. Figure 12/a 
and b belong to neighbouring depth intervals.

In Fig. 12/a there is only a negligible difference between the two straight 
lines. In contrast, in Fig. 12/b the position of the dotted line (i.e. the result of 
the F-fitting) is strongly influenced by two outliers; the result of the M-fitting 
is similar in this case to that in Fig. 12/a, indicating proportionality between x 
and y.
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Б

5 10 ж 5 10 15 20 X

Fig. 12. Interconnection of two mineral contents (denoted by x  and y) in neighbouring depth 
intervals. Full lines show the results of the adjustment according to the most frequent value, 

dotted lines correspond to least squares results. These latter may be heavily influenced by 
outliers (12/b shows that two outliers are enough to distort the results). Full lines indicate

proportionality in both cases

12. ábra. Kétféle fémtartalom (x-szel és y-nal jelölve) szomszédos mélységszakaszokra.
Folytonos egyenesek mutatják a leggyakoribb érték szerinti kiegyenlítés eredményeit, 

a szaggatottak a legkisebb négyzetek elve alapján kapott eredményeket. Az utóbbiakat 
nagymértékben befolyásolhatják kieső adatok: a 12/b ábra mutatja, hogy két ilyen adat elég 
ahhoz, hogy teljesen eltorzítsa a legkisebb négyzetes eredményeket, míg a folytonos vonallal 

rajzolt egyenesek mindkét esetben arányosságra utalnak

Puc. 12. Содержания двух различных металлов (обозначенные х  и у) по соседним 
интервалам глубин. Сплошными прямыми показаны результаты выравнивания по 

наиболее частым значениям, а пунктирными -  результаты, полученные по принципу 
наименьших квадратов. На последние сильное влияние оказывают выпадающие данные: 

по рис. 12/Ь видно, что достаточно двух таких данных, чтобы полностью исказить 
результаты с наименьшими квадратами, в то время как сплошными прямыми в обоих 

случаях отмечается пропорциональность.

3.2.2 Telluric straight lines

L a n d y  and L a n to s  [1982] carried out systematic investigations concerning 
telluric straight lines. Their statistical conclusions are very important (it is of 
no importance that the telluric method is no longer regarded as modern). The 
main content of the cited article is given in the following.

The well known connection between the telluric vector of the measuring 
station (и, V) and that of the basic station (x, y) is written [N emesi 1963] in the 
form:
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The tensor consisting of a, b, c and d depends on the geoelectric parameters 
below both stations (in the two layer model ; if the specific electric conductivity 
is negligible in the second layer, the tensor gives relative depth values). Equation 
(42) shows that the value pairs (u/y, xjy) define a straight line (as do the pairs 
(v/x, y lx)), resulting in two tensor components.

The points in Fig. 13 represent measured values; the AZ-fitting (full line) and 
the E-fitting give nearly the same result.

This situation, however, is rather exceptional. The custom sanctified both 
by time and success was the following: an experienced geophysicist had can­
celled (with a degree of subjectivity) the outliers before performing E-fitting. 
This procedure was called ‘interpretation by hand’.

Fig. 13. Interpretation of telluric measurements. Both fittings give nearly the same result 

13. ábra. Tellurikus mérések értelmezése: mindkét kiegyenlítés közel azonos eredményre vezet

Puc. 13. Интерпретация результатов измерений методом теллурических токов: 
выравнивание обоими методами приводит к одному и тому же результату.

Figure 14 shows a typical case. The result of AZ-fitting of all points (full line) 
is nearly the same as the result of E-fitting without the cancelled points. The 
E-fitting of all points gives an axial section (see Fig. 14) which results in a 
completely unrealistic depth value.

L a n d y  and L a n t o s  [1982] deal with many such cases for which classical 
procedures started to become uncertain; as well as the ‘interpretation by hand' 
both M-fitting and E-fitting were performed without cancelling the outliers. The 
question arises as to which result can be regarded as the best. The answer is not 
quite unambiguous but because of the potential character of the telluric field 
we can accept that result as the most probable which shows minimum differ­
ences in comparison with those of the neighbouring stations. Accepting this
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criterion, the consequence was the following, comparing the results of the 
M-fitting with those of the ‘interpretation by hand’ :

the results of the M-fitting are better: 44%
the results of the ‘interpretation by hand’ are better: 22%
the differences are negligible: 22%
neither the result of M-fitting, nor the result of the ‘interpreta­
tion by hand’ is acceptable: 12%
Shortly speaking, the M-fitting was in the overwhelming majority of these 

problematic cases successful whereas the E-fitting gave acceptable results only

_X_
У

Fig. 14. Interpretation of telluric measurements. The M-fitting of all points (full line) gives 
nearly the same result as the ^-adjustment without the crossed circles (dotted line). The £-fitting 

of all points gives the intercept value denoted by bE, resulting in a completely unreal depth to
basement

14. ábra. Tellurikus mérések értelmezése. Az összes pontot figyelembe vevő M-kiegyenlítés 
(folytonos vonal) közel azonos eredményre vezet, mint az áthúzott körök nélküli legkisebb 

négyzetes kiegyenlítés (szaggatott vonal). Az összes pont T-kiegyenlítése a 6£-vel jelölt 
tengelymetszetet szolgáltatja, amely viszont teljesen irreális alaphegység-mélységre vezet

Puc. 14. Интерпретация результатов измерений методом теллурических токов. 
Выравнивание М (сплошная линия), при котором во внимание принимаются все точки, 
приводит примерно к тому же результату, что и выравнивание по способу наименьших 

квадратов (пунктирная линия) без прочеркнутых кругов. Выравнивание Е по всем точкам 
приводит к осевому сечению, обозначенному ЬЕ, которое дает совершенно нереальную 

глубину залегания фундамента.
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in 33% of these cases. Acceptability is not always sufficient: we strive occa­
sionally after greater accuracy, too. This is reached if n is great enough — let 
us recall the law of large numbers.

L a n d y  and Lantos [1982] show examples of how many points define with 
the prescribed accuracy the tensor components a and b. The answer depends 
significantly upon the type of fitting chosen.

A typical example is shown in Fig. 15. Short horizontal straight lines on 
the right hand side of the figure indicate the ‘true’ a and b values obtained with 
very careful manual interpretation, taking all available points into considera­
tion. The values on the abscissa are the numbers of those points which were 
taken into consideration by carrying out both M- and £-fittings (full and dotted 
lines).
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Fig. 15. Two examples for the interpretation of telluric measurements. The same number of data 
can give much more accurate results calculating with the most frequent value (full lines) than 

with the least squares method (dotted lines). The true values are indicated on the right side with
short horizontal lines

15. ábra. Két példa tellurikus mérések értelmezésére: azonos adatszám sokkal pontosabb 
eredményre vezethet a leggyakoribb értékek szerint számolva (folytonos vonalak), mint 

a hagyományos legkisebb négyzetes módszer (szaggatott vonalak). A helyes értékeket a jobb 
szélen rövid vízszintes egyenes szakaszok jelzik

Puc. 15. Два примера интерпретации результатов измерений методом теллурических 
токов. При том же количестве данных расчет по наиболее частым значениям приводит ко 

значительно более точным результатам (сплошные линии), нежели расчет по 
традиционному методу наименьших квадратов (пунктир) Правильные значения 
обозначены на правой стороне короткими горизонтальными отрезками прямых.
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Beyond n = 60 or 80, neither a nor b varies significantly if M-fitting was 
made (in Fig. 15 the fluctuation of both quantities is about 1 % if n > 80). In the 
contrary, dotted lines show that twice as great n (nx  150) is still not enough to 
stabilize the values a and b, to say nothing about the significant differences from 
the true values even in this и-region. The author considers it superfluous to 
enhance the importance of the economical aspects by a prescribed accuracy 
—or that of the aspects of the surplus of geological information to a fixed value 
of n.

3.3 Quadratic fitting with two variables: the determination of the magnetic
normal field in Hungary

Let us deal first, in a general way, with the quadratic M-fitting with two 
variables.

3.3.1 Iteration steps o f quadratic M-fitting with two variables

If the Г-function has the analytical form

Д р ;  У) =  Р 1 + Р 2 У 1 + Р з У 2 + Р 4 У 1 + Р 5 У 1 У 2 + Р б У 2 , 

then Eq. (39) becomes the following:
n n n n n

P i X <Pi +  P 2 X Уи<р1 +  Ръ X У н Ъ + Р а X y 2u<Pi +  P s X f i d ’2i?>;+I= 1 1=1 « = 1 * = 1 1- 1
n n

+p6 X yltPi= X xi<pi
i =  1 i = 1

n n n n n

P i X yu<Pi+ P2 X yiiVi+P  3 X УиУгМ+Р* X УиЧ>̂ Ръ X У id'2iP; +
i =  1 i =  1 i =  1 i =  1  i =  1

n n

+ Рь X У и У г М  =  X x t yu < Pi
1=1 i = 1

n n n n n

P l X У г , Ъ + Р 2 X У и У 2 0 1 + Р 3 X y 22 i < P i + P 4 X У 2и У 2 i<Pi+ P 5 X У и У г & 1  +
i = 1 i = 1 i = 1 i = 1 i =  1

n n

+Рь X >’2̂.- = X
i  =  1 i =  1
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Pl X y2U<Pi + Pl X yXiVi + Pl X y\iy2i<Pi + P4 X TnPi + Ps X УЪиУиЧ>1 +
!=1 Í= 1 1=1 i= 1 1=1

n n

+ Рь X TiíTÍíÍ»; = Xi = 1
n n n n

Pi X >Т.Т2;̂ + />2 X ТиТг.̂ + ̂з X T’iúFÍ̂ +̂ 4 X уЪ иЧ>1 +

1=1

î = 1 i= 1 i= 1

+ Ps X У2иУ2и<Р1 + Рб X l'ii)']* = X х&иУ2&1i= 1 i = 1 i = 1

Pl X TÍíP;+/>2 X ТиТг.̂+Рз X y 32i<Pi+ P* X y 2ii}’22i<Pi+ Ps Z Уu y32i<Pi +
i= 1 i = 1

+?бХ yti<Pi = X -utí  ̂ (43)
where

Vi ,2 \ 2  'e2 + (xi- p l -  p2y u — Pi}’ 2i -  РаУ íi-РъУl iJ2i -  РбТг.)
(43a)

With #>,= 1 the equation system is naturally the same as by the £-fitting. 
Using this to start the procedure, the results are denoted by p\l), p2\  ■ ■■,P<6)- 
The first dt set will consequently be calculated as

/j =  „<D,, - n ( D v _ „ ( 1 ) , , 2 .
a i -v i P i  Р г  У н  P 3 У 2i P a  У н Р{51)УнУ2.-Pb'yli- (44)

The starting value of e according to Eq. (26) is

]ß
Est = y  [max(4) -  min(í/,)]. (44a)

The iteration according to Eq. (36) is to be made several times; with its result 
e and with the values p[1>, ..., р(6п the weights tpt are to be calculated according 
to Eq. (43a). Putting the tp{ values in Eq. (43), the linear algebraic equation 
system is solved once more. The results are denoted by /j(2), ...,p (62); the new 
di-set is to be calculated according to

di = x - p \ 2)- p (22)y u - . . . - p i 2)y22i. (44b)
With the last s and with the new ^-values several step are to be made according 
to Eq. (36). With the obtained value of £ and with the parameters p<2), ...,/>(62), 
the tpi-values must once more be calculated, the equation system is solved
resulting in the values p\3)......p ^ \  etc. The procedure is stopped if the pj values
vary only insignificantly.
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3.3.2 The example o f the magnetic normal field in Hungary

In this paragraph an example given by Steiner [1980] is discussed.
The normal field of all magnetic components is described in Hungary with 

quadratic polynomials of two variables. The first one is the latitude tp minus a 
fixed value <з0 = 45.5°, denoted by Atp; the second one is the longitude X minus 
X0 = 16° (both are measured in minutes). The vertical component of the normal 
magnetic field (denoted by Z„ and measured in y-s) has then the analytical form :

Z„(tp0 + Atp, X0 + AX) = Z0 + a A<p+ b AX + c(Atp)2 + d Atp AX + e(A/.)2. (45)
Obviously

Z0 = Pi, p2 = a, ...,p 6 = e.
On the basis of 296 data [Aczél and Stomfai 1968] both M-fitting and 

£-fitting was carried out. The results are the following:
A/(296) £(296)

A + 40835.9 + 40829.7
a + 10.6441 + 10.8892
b + 1.26563 + 1.24046 (46)
c 0.00570512 - 0.00268327
d 0.000726043 - 0.00412334
e + 0.000555918 + 0.00132706

Which parameter vector represents more 1closely the physical reality? From
the geomagnetic point of view, the answer to this question would need a long
discussion of very different nature in comparison with the theme dealt with in
the present monograph.

A possible solution of this problem is to carry out both fittings for only half
of the data, as a first step. The results ;îre given below:

A/( 148) £(148)
+ 40821.8 + 40793.6

a + 10.7667 + 11.4433
b + 1.43344 + 1.53378 (47)
c 0.00612962 - 0.00640111
d 0.00101322 - 0.00354293
e + 0.000022289 + 0.000204031

The second step is to calculate the differences: in what measure do the 
parameters depend upon и? As the quotients of the differences show,
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AM AE A El AM
(296-148) (296-148)

Z0 14.1 36.1 2.56
a 0.1626 0.5541 4.52
b 0.1678 0.2933 1.75
c 0.0004245 0.003718 8.76
d 0.0002872 0.0005804 2.02
e 0.0005336 0.001123 2.10

the dependence on n in the case of the M-fitting is about half or less than that 
by the E-fitting, i.e. for the M-fitting fewer data are needed to find the regu­
larity. (This important result is analogous to that dealt with in connection with 
Fig. 15.)

Ferenczy [1980] has investigated in detail the application of M-fitting to 
magnetotelluric problems. The results are very interesting but their discussion 
even in a very shortened form is beyond the scope of this monograph.

3.4 Weighted adjustments

3.4.1 General remarks

It was seen in Chapter 2 that M-fittings can be carried out as a twofold 
iteration, one of them being- mathematically—in every step a weighted .E-fit- 
ting. It is perhaps not superfluous to underline as a first general remark that 
M-fitting is not a weighted E-fitting: in the latter case the weights are a priori 
known; on the other hand, the weights used in M-fitting are dependent upon 
the sample, these weights are also results of the statistical procedure. Anal­
ogously, an irrational number remains irrational even if it is given as the limit 
of a series of rational numbers.

The second remark : if we can choose arbitrarily the values of an indepen­
dent variable (or more independent variables), we often prefer equidistancy ; e.g. 
field measurements of profiles are often made equidistantly, and if gravity 
mapping is carried out, measuring stations are mostly points of a quadratic grid. 
Figures 12-14 have shown cases in which the values of the abscissa are not 
equidistant: in these cases it would be absurd to suppose that equidistance is 
to be realized because these values are not chosen arbitrarily. Although the 
fitting has given very reliable results, the question arises: Is it not highly 
problematic when—perhaps as a consequence of some type of recording—one 
x,-value occurs, say, 10,000 times more frequently than another x2-value? This 
situation can really cause difficulties as the measured value at x2 can be ne­
glected even if this x2-value represents an important x-interval in the special 
problem studied. The solution can be a weighting, in its original sense—but the 
appropriate system of this weighting depends upon the investigated problem 
itself. Consequently the attribute ‘a priori' can have a relative sense, too.
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3.4.2 Determination of the q(H) function by means of calculating dihesions

Let us suppose the simplest case, namely T= const. In some cases the 
^.-values are trivially known: equipment number one is twice as accurate as 
equipment number two. A more frequently occurring case is, however, that we 
know that qt (the a priori weight of x t) definitely depends upon another known 
quantity, say H—but the dependence is not given even in a general analytical 
form. (H can have the meaning of temperature, pressure, etc.—by all means a 
measurable quantity.) In this case we can write q(H^) instead of </,; q(H) denotes 
the functional dependence not yet known.

To determine this q(H) function, let the first step be an ordering: after this 
Hif.H l holds if />/. The second step is the appropriate choice of two integer 
numbers: of m and r, in that manner that the relations n » m  and m ^ r  must 
be fulfilled. As third step the e; dihesions are to be determined for all x t subsets 
given by their indices as follows:

1, ..., m 
1 +r, ...,m  + r 

1 + 2r, ..., m + 2r

1 + (J -  l)r, ..., m + (J— 1 )r.
To get a reliable e, value it is obvious that m cannot be too small.

Let us denote the maximum Ej value by emax; this characterizes the 'worst' 
Xj subset. The minimum weight 1 (which could be chosen arbitrarily) belongs 
therefore to the mean value of those H -s which are defined with the indices of 
this 'worst' subset.

The already known meaning of the a priori weight allows us to interpret 
an arbitrary other subset as if its elements x, had been calculated on the grounds 
of qI pieces of 'worst' .v-values by means of some estimation (for the sake of 
simplicity, say, as arithmetic means). Because of the well known '1/(/и-law’ of 
estimates we can write

Í4}
= £f (48)

finally, the weight qj of the mean value of s corresponding to the x, subset 
in question is given by

F° m a x (48a)

The (Hp q f  points define principally the function q(H), but other secondary 
points of view can be considered, too. Commonly simple analytical forms are 
chosen for q(H).
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3.4.3 Gravity example demonstrating a priori weight calculations and to show 
the differences between results of weighted and unweighted fittings o f both 
kinds

The well known formula for the elevation correction of a gravity measure­
ment is

gtcorr) = gp) + khp (49)

where hP is the height above sea level of the measuring point P; g[P] is the 
measured g-value for the point P, other (normal and topographical) corrections 
also included; g(POTT) is the Bouguer anomaly. The value к depends in a simple 
known form upon the mean density; this latter also being unknown, it is easier 
to regard к as the unknown which is to be determined.

Stein er  [1959] has transcribed the well known graphic method of N ettleto n  
[1939] to a numerical method. The fundamental idea of Nettleton is that that 
the topographical fluctuations must not appear in the Bouguer map, neither in 
the positive nor in the negative sense. Consequently the g,corr)-values at the 
corners of an elementary quadrangle of the measuring grid define nearly a plain 
—supposing that the grid was dense enough—and if the elementary quadrangle 
is a parallelogram (see Fig. 16) then the following equation is approximately 
fulfilled:

G(corr) = g{\°u) + g(f T,) - g(2°IT) - g(f i rT} = 0.

Analogously to G(con> we introduce G(m> and H :

Gim) = g ^  + g ^ - g ^ - g ^  
H = hx + h3 — h2 — h4.

3

(50)

(50a)
(50b)

Fig. 16. Four neighbouring points of a gravimetric field measurement, lying nearly at the
comers of a parallelogram

16. ábra. Graviméteres terepmérés közelítőleg parallelogramma csúcspontjain fekvő négy
szomszédos mérőpontja

Puc. 16. Четыре соседних точки измерений гравиразведки, находящихся примерно на
вершинах параллелограммы.
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Taking Eq. (49) into account, it is obvious that the following also holds:
G400") = G{m) + kH. (51)

In the case of general quadrangles the expressions in Eqs. (50), (50a) and (50b) 
are more complicated but from Eq. (49), Eq. (51) follows in just the same 
manner [Stein er  1959]. Since <7(corr, = 0 according to Eq. (50),

kj =
Gf>

"7 (52)

gives a value for к on the grounds of the data of the г'-th elementary quadrangle.
If on the whole measuring area the quadrangles are constructed (see in 

Fig. 17 a small part of a map), Eq. (52) gives for every quadrangle a к -value. 
These data have very different weights as may also be very near zero and in 
this case the k;-value in Eq. (52) is determined only by statistical fluctuations.

By appropriate numbering of the apices of the elementary quadrangles all 
Hr s have positive values and the method dealt with in item 3.4.2 can directly 
be applied; the dependence of the weight q on H is evident.

In the following a Hungarian example will be treated [St e in e r  1982]. The 
number of quadrangles was 470; m = 100 and r = 25 were used (see paragraph 
3.4.2). Some dihesions of k^-values are given to a mean value (this latter index 
belongs to the subsets): £i =£max = 0.2102 mGal/m to Hl = 1.627 m; e2 = 
= 0.1276 mGal/m to Я2 = 2.531 m; e3 = 0.0851 mGal/m to H3 = 3.448 m, etc; 
the weights according to our agreement (i.e. that the ‘worst’ subset has the 
weight 1,) and according to Eq. (48a) are the following : ql = 1 ; q2 = 2.7 ; q3 = 6.1, 
etc.

Fig. 17. Quadrangles defined by measurement points 

17. ábra. Mérési pontok által definiált négyszögek 

Puc. 17. Четырехугольники, определяемы точками измерений.
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The points in Fig. 18 correspond to the pairs (#,, qt). Figure 18 shows that 
q can be regarded as zero in the interval 0^#iS2.5, and the points define for 
#> 2 .5  the straight line </=3.43 (# -2 .5 ). An additional point of view is, 
however, that too great weights are not wanted: in this case the final value of 
к would be determined by only a few quadrangles of very great Hj. But great 
Hj-s can occur also in cases if the quadrangle is too great (because of the 
difficulties of field measurements) and in this case G(corr) = 0 may be wrongly 
approximated. The fixation of an upper limit for the ^-values therefore seems 
to be unavoidable; it is certain that our choice <7max=100 (see Fig. 18) is 
somewhat arbitrary but the most important cause of the weighting is the 
appropriate suppression of the ^-values of poor quality—and this does not 
depend on the <ymax-value.

Fig. 18. Weight function to calculate both weighted M- and weighted £-fittings

18. ábra. Súlyfüggvény súlyozott M-, és súlyozott £-kiegyenlítés végrehajtásához

Puc. 18. Весовая функция для выполнения выравниваний по взвешенным М  и по
взвешенным Е.
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Weighted fittings were made therefore with the q(H) function :
[0 , if Hg: 2.5

q(H) = 3.43 ( t f - 2.5), if 2.5 < #^31.65  (53)
[ 100 , if H>31.65.

From the 470 kj data there were chosen 10 values randomly 200 times, as well 
as 40 values 200 times; for these 400 samples weighted and unweighted means 
as well as most frequent values were determined. Eight frequency diagrams were 
constructed for the four types of estimates for n = 10 and n = 40. Sample medians 
and sample quartiles of both types (upper and lower) were determined, see 
Fig. 19 ; the differences of the latter ones divided by 2 are equal to the probable 
error.

n = M>

I I ■ 4 weighted most frequent values

|l , I J most frequent values

I |j ■ weighted averages

■ I I I I averages

\ I - | weighted most frequent values

I t • H roost frequent values

I I I weighted averages

I , [ i i | averages

0,19 10.20 10.21 10.22 0.23 0.21 0.25 10.26 10.27 k(mGal/m) 9

<j [ t /m 3]

Fig. 19. Comparison of four statistical procedures: weighted and simple most frequent values 
and means, respectively. For n= 10 and n = 40 the medians and the interquartile ranges of the

four sorts of estimates are given

19. ábra. Négy statisztikai eljárás eredményeinek összehasonlítása: súlyozott és súlyozatlan 
leggyakoribb értékek és átlagok. Adottak a négyfajta becslési módra a mintamediánok és 

interkvartilis terjedelmek, n= 10 és n = 40 esetére

Puc. 19. Сопоставление результатов по четырем статистическим способам: взвешенные 
и не взвешенные наиболее частые значения и средние. Для всех четырех способов оценки 

даются медианы и межквартильные интервалы для п= 10 и я = 40.

The consequences are the followings:
a) the probable error of the arithmetic means does not depend on n (this 

property is well known for Cauchy-distributed data, we can therefore 
suppose that the k^-set is not far from this distribution type);
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b) arithmetic means and most frequent values significantly differ from one 
another: by « = 40 the whole interquartile interval of the most frequent 
values is far from the sample median of arithmetic means (and the 
density value of the latter is also geologically improbable in the area 
investigated) ;

cj as a consequence of the weighting, the probable error of the most 
frequent values diminishes (to achieve this visually not too great dimin­
ution a data surplus of 50% would be needed), consequently, if the 
accuracy is to increase, a weighted M-fitting is appropriate;

d) both alternatives of the most frequent values show a decrease of about 
50% with regard to their probable errors, comparing the results for 
« = 40 with those for «= 10 (i.e. the law of 1/|In holds for both types of 
M-fitting) ;

e) the weighted means are much more accurate than the arithmetic means ;
f )  for both «-values the sample median of the weighted means is near the 

medians of weighted and unweighted most frequent values (and is far 
from the median of the arithmetic means);

g) the interquartile range of weighted means is significantly less for « = 40 
than for «=10, but the decrease is more moderate than would be 
prescribed by the l/|/«-law;

h) it can be stated from the geophysical point of view that a demand to 
know the mean density о with a probable error of 0,05 t/m3 would need 
practically the whole data set (according to the l/[«-law), even if we 
calculate weighted most frequent values;

and, finally, a conclusion of fundamental importance:
i) for great n-values the probable error of unweighted most frequent values 

can be significantly less than that of the weighted means, i.e. it may occur 
that we ‘automatically’ get a more reliable result by calculating un­
weighted M-fitting than by weighted .E-fitting (as is well known, the 
determination of weights is often a cumbersome procedure).

The discussion above has clearly shown that E-fitting and M-fitting are two 
different statistical procedures, each having a weighted version, too.

Chapter 4
Main definitions and theorems 

of robust statistics

4.1 Some general remarks belonging to the theory o f robust statistics

The first publications dealing with various estimating procedures, recently 
called as robust ones, were written by those who applied them [N ew c o m b  1886]. 
This is hardly surprising since practical tasks force those dealing with them to 
search for suitable methods that are fully adequate in terms of reality. The
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developing of an exact theory, however, is naturally the territory of mathema­
ticians and statisticians. (A well known analogous case is the introduction by 
Dirac of the notion ‘delta function’. Now a mathematically correct theory of 
generalized functions is available to define correctly the Dirac delta function, 
and, moreover, it is possible on the basis of this theory even to criticize Dirac’s 
original definition. See, for example, the entry ‘Diracsches Functional’ in Naas 
and Schmid [1965]).

It is usual to reckon the development of robust statistics beginning from 
the article of Huber [1964] (who also wrote the first monograph on this topic: 
Huber [1981]). The rapid development of computing possibilities has been one 
of the causes of the rapidly growing interest in this topic. In 1972 Andrews et 
al. published a great deal of information about robust statistics (this was not 
done in fully ordered form), and the increasing interest in the seventies is 
illustrated by our Fig. 2.

The theory of robust statistics deals with the so-called M-, L- and Л-esti- 
mates, with the so-called minimax methods, etc. Our brief outline contains 
information nearly exclusively about the M-estimates (and about some notions 
of central importance in robust statistics, e.g. IC-curve, asymptotic variance). 
The reasons are the following: a) the Princeton study of various robust estimates 
[Andrews et al. 1972] has shown the advantages of M-estimates; b) we shall 
see that the most frequent value is an M-estimate, too.

4.2 Generalized maximum likelihood estimates (M-estimates)

4.2.1 Generalization of the maximum likelihood method with an arbitrary 
Q-fmCtion

Let us suppose that only the location parameter is unknown. By a given 
distribution type f(x)  and on the grounds of a sample x,, ..., x„ the demand

n

£  ln f ( x j, T) = maximum,

£  -  ln f(Xj, T) = minimum
i= 1

must be fulfilled: the resulting Г-value is the maximum likelihood estimate of 
the location parameter. The generalization of Huber [1964] is the following: we 
write Q instead of -  In /  (g is a differentiable function) ; in this case the condition

П
£  p(x„ T) = minimum (55)
i= 1

results in an estimate T for the location parameter, even if the distribution type 
/(x) is unknown. Huber [1964] has denoted this by ‘M-estimate’ since this is

(54)

(54a)
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the generalization of the maximum likelihood procedure. Юиг symbol M from 
the name 'most frequent value' can be regarded as an eventual but lucky 
coincidence: we have already mentioned above that our algorithm is a special 
A/-estimation.)

4.2.2 The у/-function and its connection with q and tp. The function

It is more practical to solve

where
I  V(*e T ) = 0
i= 1

V(x, t )
CQ(x, T) 

dT

(56)

(56a)

than to use Eq. (55) in its original form. The most important characteristics are 
commonly expressed by the (//-function; even the estimation method itself is 
often defined immediately by the ^-function.

In that T is an estimate of location, we can write instead of the general 
Eq.(55)

П
X  q ( x , — T) = minimum (56b)
; = 1

and similarly instead of Eq. (56)

Introducing
I  И Т -  T) = 0.

i — 1

И у - D  
X, -  T

(56c)

(57)

with the remark that tp{ T) is to be calculated according to the rule of l'Hospital,
we get t <P(M) ( M- T)  = 0; (58)

1= 1
its solution is

n
Z  Ф д -Xi

r =  — --------- . (58a)
X «XÙi= 1

The right hand side of Eq. (58a) is the same as that of Eq. ( 18) (in the latter 
case y> was unambiguously defined by Eq. (17) and therefore M was written in
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Eq. (18) instead of T). We see that the most frequent value is really an M-esti- 
mate.

In the case of the estimation of the scale parameter the condition
П
£  Q (xh S) = minimum (59)
;= l

is to be fulfilled (the analytical form of q  in Eq. (59) being naturally different 
from the q used in location parameter determinations). The function /  is 
analogous to у/ as here

<60)

is to be fulfilled (with a known or estimated Г-value). If both T  and S are 
unknown, that pair of values is to be accepted which simultaneously fulfils Eqs. 
(58a) and (60). (The weight function depends in general upon the S value, too; 
let us recall the weight function in Eq. (17) with S = e).

Which scale parameter is estimated by Eq. (60)? The answer is perhaps 
surprising but at the same time quite natural: the S defined by

^ f (x)  dx = 0 (60a)

is estimated. Г, however, also obtained by solving
" (  X: T \

r °  <6I)
(this is a slightly more detailed form of Eq. (56c)), is the estimate of T defined 
by

^ /(x ) dx = 0. (61a)

The functions yj and /  must have advantageous behaviour (in this sense they 
are not arbitrary); e.g. a fundamental practical demand concerning the ^-func­
tions is that they must give as T the symmetry point if /(x) is symmetrical.

4.3 IC-functions and their calculation based on y/- and /-functions

4.3.1 Definition of the IC-function

If /  is the original density function (supposed as a continuous one) and T 
is the location parameter of the distribution given in its argument, let us define
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the IC-function as

IC(x, f ,  T) = liml-> 0
T[( \ - t ) f+tô(x)] -T[ f l

t
(62)

where Ô is the Dirac function and t the probability of the (surplus) occurrence 
of the value x. (This definition was given by Hampel [1968]). In the argument 
of IC the symbol T refers to the estimation procedure studied. The symbol TC 
itself refers to the synonym ‘influence curve’.

In the theory of robust statistics the IC-function plays a central role. The 
practical applicability of it lies in the fact that if n is large then a surplus datum 
of value x  modifies the estimate T with the value

AT IC(*, F, T) 
n (62a)

The influence of outliers is therefore quantitatively given by the IC-function for 
the estimating procedure studied. But also if the distributions are ‘clean’, the 
IC-function informs us whether the value x has positive or negative, small or 
great influence on the ‘formation’ of the Г-value for a given distribution / .  This 
latter interpretation will play an important role in Section 4.4.

4.3.2 Calculation of IC-functions based on i//- and/  f  unctions

Analogously to Eq. (62) the IC-function of every other statistical parameter 
can be defined too, e.g. also the IC-function of the scale parameter. In reality 
both quantities, T and S (characterized by the y- and /-function), are simul­
taneously calculated therefore the IC-functions are also to be determined simul­
taneously for general distributions on the basis of the equation system:

IC(.v, T) I ¥ ' \ V ~  ) /( j)d y  +

+ IC(x, S) , ( y ~ T \ y - T  ,
S / 5 ./(>’) d>’ = ,S>

x - T

IC(x, T) X ( ~  J  \ f(y)  dy +

+ IC(.v, S) , ( y - T \ y - T  .
5 / 5 m  dp = 5 /

x -  T

(63)

— 00
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If the distribution is symmetrical, the IC-functions for T and 5 can be given 
separately. For simplicity, it is supposed that the symmetry point is at the origin. 
The IC-formulae have then the form (see Eq. (63)):

and

1С(л:, F, T)

IC<*. F. 5) -  -- -------- ------------/ ( § )  ■
/  v\ У '  '

(64)

(65)

Equation (64) has a greater practical importance. The denominator being a 
constant value, Eq. (64) expresses the fact that the ^-function is proportional 
to the IC-function. This statement gives the most obvious meaning of the 
^-function.

The effectiveness of the estimation of location parameters is of crucial importance for prac­
titioners. Therefore a short immediate proof of Eq. (64) is given below. Let us suppose that S= 1. 

Substituting the modified distribution

У ( х )  =  ( 1 -  t ) f ( x )  + / S ( \  -  -V0)

into Eq. (61a). we get

( 1 — r) j  y ( x - T ) f ( x )  d.ï+/(.v0- T) = 0.

Differentiating this according to t, we can express in the form:
dr

И -V'o- T)~  j  ч/(х- T) ■ f(x)  d.v
d / _ _____________ - ,

( I - / ) -  j  i//'(x -  T )/\x)  d.v + r ■ I// ( л -  T)

Taking Eq. (62) into consideration, it is clear that - equals 1C. it r--U. The second expressions

both in the numerator and in the denominator then become /его (in the first case us a consequence 
of Eq. (61a). in the second case trivially). As ,v0 was arbitrary, we can write simply .r, or. if .V# I. 
x/S  the equivalence to Eq. (64) is then obvious (for T — 0).

(Putting y{x) defined above in Eqs. (60a) and (61a) and dilferenlialing according to t. we also 
get the general equation system (63)).
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4.4 Calculation of asymptotic variances of estimates

4.4.1 A simple heuristic proof o f the general formula for the asymptotic 
variance

Let us suppose that the continuous density function /(x) characterizes a 
general (i.e. not necessarily symmetrical) probability distribution. The probabil­
ity of the event that the random variable has values around x  in the short Ax 
interval is f(x)Ax. If Ax decreases so that no distinction is possible by the given 
measurement technique in that interval, f{x)  can be substituted by a Dirac 
function of A = f(x)Ax  at point л: (Fig. 20). (If A «  1 were not fulfilled, Ax is 
to be diminished until this relation is satisfied. The value x  in the inteval Ax is 
to be situated in such a manner that the probability for greater or less values 
than x  are equally probable.)

Fig. 20. A short Ax interval can be represented by a Dirac function instead of the continuous
line of f(x)

20. ábra. Egy rövid, dx-hosszúságú intervallum Dirac-függvénnyel helyettesíthető, az f ix )  
folytonos sűrűségfüggvény megfelelő szakasza helyett

Puc. 20. Короткий интервал длиною Ах заменим о Дирака вместо соответствующего 
отрезка непрерывной плотностной функции f ix) .

The Dirac delta function in x  ‘participates’ with the value
AT -  IC(x,/ ,  T) ■ A (66)

in the ‘formation’ of the T value (see Eq. (62)). If A is really very small, the whole 
jc-axis can be divided into small intervals all having the same probability. If the 
number of intervals is n then A = l/n and Eq. (66) is the same as Eq. (62a).

If n is large, after a well known theorem of Glivenko the frequency diagram 
constructed on the basis of the sample is very near /(x). In other words, the
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distance (say, the Prohorov-distance) between the sample—as a ‘density func­
tion’ consisting of Dirac delta functions each of the measure 1/«—and the 
original /(x ) density function is negligible. Therefore the series of n = l/A 
pieces of substituting Dirac delta functions (defined above at x-locations ac­
cording to /(x)) is regarded as a sample (a so-called ‘ideal sample’). This is 
justified by the fact that we want to derive an asymptotic result for a joint effect 
of the sample elements on the resulting T.

Let us denote the deviation caused by the y-th sample element by ATj, 
whose sample variance D2 j is

Kj = - X1=1
\  i  [К ЗД ]2,
n i = 1

(67)

Every value of the x-series x l5 ..., x„, defined above as they-th sample element, 
can occur with equal probability for a given sampling.

Obviously the fluctuations of T are not caused solely by a single sample 
element. As the effects of measure ATj are summarized and since the variance 
given in Eq. (67) is clearly independent of y, applying a well known theorem for 
the variance of the sum of equally distributed random variables we get the 
variance D2 of T (estimate of location) as

D2n = n • Dlj  = \ t  [IC(Xj)]2 = -  £  [1ОД]2 - .  (68)n2 n n
The probability l/n equals f (x)  ■ Ax (being not only f (x)  but also Ax 

dependent on .v); consequently the integral form of Eq. (68) is the following:

D2n

00

1 r
n

—  00

[IC(x)]2 f (x)  dx. (69)

As the definition of the asymptotic variance A 2 is given by
A 2 = n • D2, (70)

we obtain the following very important formula for the asymptotic variance of 
estimates:

A2 = J [IC(x)]2/(x)dx . (71)

The heuristic train of thought given above shows at the same time that the 
estimates have Gaussian distribution (if п-юо) as the fluctuation of estimates 
is the sum of n equal random variables and therefore (if A2 exists) the premises 
of the so-called central limit theorem are fulfilled. (The exaxt proofs of these 
statements are to be found in Huber [1981] but the principal content is much 
more enhanced for appliers by the heuristic way followed above.) The attribute 
‘central’ is therefore just as much justified for distributions of estimates as it is 
misleading for mother distributions.
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4.4.2 Calculation of asymptotic variances of M-estimates

Substituting the expression of the IC-function given by Eq. (64) into 
Eq. (71), we get for symmetrical distributions (having their symmetry points in 
the origin) the asymptotic variance of the estimates of location parameters:

00

S2W2 ( f ) j  fix)  d.v

A 2(T, S) = -----------------------. (72)

V' f ix)  dx
— 00

In the argument of A2, T denotes the method of the estimation itself. If the 
estimation of T is carried out simultaneously with the estimation of the scale 
parameter, in Eq. (72) S denotes the other result of the twofold iteration 
(fulfilling Eq. (60a)). The symbol S can be regarded, however, as an ‘indepen­
dent variable’, too: Eq. (72) belongs in this case to a simple iteration carried out 
with constant S-value. This interpretation is evidently important in looking for 
that value of S which results in a minimum asymptotic variance.

Substituting Eq. (65) in Eq. (71) we get the asymptotic variance of the scale 
parameter, too: œ

S V  ( | W ) d *

A 2 = ^ f ------------------------ . (73)

— 00
As in the overwhelming majority of cases we have to determine T and the 
fluctuation of S  causes in general little fluctuation of T, Eq. (73) has only 
secondary importance.

Utilizing the formula for the asymptotic variance of location estimates (Eq. (72)) it is possible 
to prove shortly the famous and practically important Cramér-Rao inequality, too.

If both sides of the well known relation
W ( x ) f ( x ) \  = ц/'(х) f(x )+  ц/(х)  ('(х)

are integrated from -  oo to + oo, the left hand side gives zero as we have to take the values of the 
expression inside the square parantheses at x =  — oo and x =  oo and both are clearly zero (since J\x)  
is a density function). The integrals on the right hand side are consequently equal in the absolute 
sense, and therefore the following also holds, viz.

J y/(x)f '(x)Ax
- oo

f y/'(x) f(x )  dx
- 00

The integrand on the left hand side is the product of the square roots of the functions 

V2(x) f(x)  and ( — V I fix).  According to the Schwarz inequality it holds (also taking into 

account the equation above) that
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GO CO• Л
f i x )  f i x )  dx f i x }

2
/( ; t) dx  ^

»

f i x )  f ix )  dx
“CO — GO f i x )  _

ЭО
Writing this in the form

— QO

00
Í V2ix) f i x )  dx

- 00

—

l
00 2 — 00
Í f i x )  Д х )  dx f i x )

— 00 J f ix )
f(x )  dx

on the left hand side we have the asymptotic variance of the estimation of the location parameter 
working actually with a given ((/-function (this function defines the estimation procedure itself), and 
on the right hand side is the well known Cramér-Rao bound depending only upon /(x).

4.5 Some additional aspects and remarks on the theory of robust estimates

4.5.1 The breakdown point

The resistance of an estimation procedure means that some outliers negligibly influence the 
estimate. The question arises, however, what percentage of the data is tolerable as an outlier without 
totally spoiling the estimation (i.e. without it resulting in an estimate of location which no longer 
adequately characterizes the gathering of the data).

Instead of referring to some theoretical discussion of the question let us cite in brief an 
investigation method of ad hoc type [Kerékfy 1978]. The samples of n elements are to be con­
structed in the following way: (n - j )  data come randomly from standard Gaussian distribution, the 
other data of the sample are 1 • 100, 2100, 1) • 100, j  • 100. If jjn is constant, we can
calculate by increasing n an asymptotic value for the estimation procedure in question. If this value 
is greater than 3, the estimation is totally spoilt. Usually that pn  value is given (in per cent) as the 
‘breakdown point’, to which the limit value of 3 belongs.

The table of Kerékfy [1978] belonging to this contains limiting pn  values in the sense 
mentioned above (i.e. breakdown points) for 15 estimation types. This maximum content of outliers 
can also be 50%, too—but this is only a statistical aspect; in actual cases the applier can be much 
more rigorous (tolerating only, say, maximum 10%). On the other hand, special problems (e.g. in 
astronomy) would tolerate also even greater than 50% of outliers to find a characteristic gathering 
of the data.

The calculation of arithmetic means as estimates has a very special behaviour: its breakdown 
point of 0% means that this method can be totally spoilt by the occurrence of an arbitrary small 
percentage of outliers.

4.5.2 Some robust procedures

Some simple procedures often occur in the investigations of robust statistics:
a) the sample median;
b) the a-trimmed mean (from the ordered sample the smallest and the greatest data are 

cancelled, both being a% of the whole amount of the data, and the arithmetic mean of 
the remaining is calculated);

c) the a-winsorized mean (is calculated similarly to the a-trimmed mean but the smallest data 
of the sample are replaced by the first remaining item of data instead of cancelling them, 
the greatest data are replaced by the last remaining item of data, before the arithmetic 
mean is calculated);
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d )  the trimean of Tukey (half of the sum of the sample median and o f the arithmetic mean 
of the sample quartiles);

e) skipped methods usually calculate arithmetic means after cancelling data which are outside 
an interval, say, 1.5 or 2 times the sample interquartile range;

f )  the Hodges-Lehmann estimate (in the first step arithmetic means of pairs of data are 
calculated, composing these pairs in every possible manner; in the second step the sample 
median of these n2 means is determined).

These often cited ‘classical’ procedures are not the most effective ones. Newer and more 
sophisticated methods are unfortunately also often ad hoc procedures [see e.g. ‘Hampel's estimate 
of 14 April 1971 ‘Hogg proposal in letter to John Tukey’ in Andrews et al. 1972]. The applier 
needs, however, procedures which fulfil the demands given in Table III.

As for the nomenclature: the methods in points a)—e) above are so-called /.-estimates (linear 
combinations of order statistics), and in 0 example was given for /{-estimates (estimates derived 
from rank tests). The fundamental notion for L- and Л-estimates is also the already known 
IC-function (clearly no ^-function exists for L- and /{-estimates). Equation (71 ) also holds for these 
cases (for our heuristic proof the type of estimation is of no importance).

To enable eventual quick comparisons, firstly the formula for asymptotic variance of Hodges- 
Lehmann estimates is given :

12- J f 2(x) d.v

secondly the expression of the IC-function of a-trimmed means for symmetrical distributions:

if .V > /= 1 ( 1 — эс)

if \x\ ^  F _1( l - a )

[set e.g. in H uber 1981].

4.5.3 The If-function o f arithmetic means

If it is p(.) = (,)2 in Eq. (56b) (least squares method for T= const. = E) 
then IC(.y) = .y (according to Eqs. (56a) and (64)). The great influence of outliers 
(leading to the breakdown point of 0%) is evident. Andrews et al. [1972] do not 
indicate that any single estimation method from the investigated ones is the best, 
but they declare—no wonder that the arithmetic mean is the worst one.

GO

Substituting IC(.y) = .y in Eq. (71) we get j x 2f ( л) d.Y. (Remember that the
— oo

location parameter was assumed to be zero, for the sake of simplicity.) This 
expression is usually called ‘the variance’ and is commonly used for characteriz­
ing the original (mother) distribution f (x)  itself although this quantity charac­
terizes only the dispersion of estimates (giving the asymptotic variance of them) 
for the very special case if arithmetic means are calculated as estimates. No 
wonder that 'the variance’ a1 can have infinite values, too, even if the mother 
distribuion /(.y) shows an expressed maximum of small dispersion (i.e. the 
interquantile ranges are small); 'a1 — oo’ enhances only the fact that the mean

sign (.v) ■ F ‘( I - «)

IC(.v) =

I -2 a  '
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square technique is either unusable (if also the first moment is infinite) or its use 
is not effective (in cases of finite first moments).

Summerizing the statements above : ‘the variance’ a2 does not characterize 
the original (mother) distribution /(x) itself; only if two distributions show the 
same type (and the second moments are finite) can have о a relative meaning 
concerning the original distributions in the sense that a2/ai gives the ratio of 
the scale parameters in question (S2/S t). It is misleading if we accept any kind 
of more general meaning of a2 concerning mother distributions (unfortunately 
most handbooks written on these topics do this).

Chapter 5
Characteristics and formulae of the most frequent values

It seemed to be advantageous to deal in a separate chapter with the 
application of the theory of robust statistics to the most frequent value calcula­
tions.

5.1 Characteristic functions and asymptotic variance

5.1.1 The yj- and/  f  unctions by calculating most frequent value and dihesion, 
respectively

According to Eq. (17) the weight function has the form

?(■) =
e2 + (.)2 '

(74)

Using standardized variables, we need only write x  in the argument instead of 
( x -M) .  At the same time, however, standardization means that e=l .  The 
weight function is then

<p(x) =
1

1 +  Л-2
(75)

where x is the standardized variable.
According to Eq. (57) yj is the weight function <p multiplied by the variable, 
consequently

x
y/(x) = — (76) 

1 + xz
holds.

The /(x) function belonging to the determination of the scale parameter, 
in our case the dihesion e, is the following:
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(77)

Proof. Substitute ---- instead of x in Eq. (77). For samples Eq. (60)—with S = e—must hold,
e

i.e. the equation

(78)

is valid. Written in another form

£'
3 y  { x - M Ÿ

kl  [£2 + (.v,-M)2]2
(78a)

holds, which formula is clearly fulfilled with the same e as the iteration formula given in Eq. (28a) 
for the determination of the dihesion.

5.1.2 The IC-function for the most frequent values

Writing S=e,  supposing r = M  = 0, and substituting the ((/-function given 
in Eq. (76) and its derivate into the general expression of IC given in Eq. (64), 
we get

for symmetrical distributions. This is for |jc| >e a decreasing function in the case 
of its absolute values. The resistance to outliers is guaranteed to a degree defined 
by const./Jjc| for large values of |jcj ; this degree is satisfactory in the overwhelm­
ing majority of cases.

5.1.3 Asymptotic variance of most frequent values

Substituting the expression of the IC-function given in Eq. (79) in the 
generally valid Eq. (71), we get for distributions being symmetrical to the origin 
(and for arbitrary e) the asymptotic variance of the most frequent values in the 
form: oo

IC(x, F, M) = (79)

(80)
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If e is not arbitrary, we have to take into account Eq. (28) which defines the 
dihesion in an iterative manner. After some rearranging we get (with M = 0)

& Ь ? Л х ) Л х ~' з ( e 2  +  X 2 ) 2
fix )  dx. (80a)

Using this relation several times in both directions, we get a very simple formula 
for A2(M, ê):

(e2 +  X 2 ) 2
f ix)  dx

A2(M,e) =

, , , ~>, 2 f i x)  dx —(e + -V ) (e2 + X2)2
f ix)  dx

( e 2  +  X 2 ) 2
f ix)  dx

,  2 ■ 242 / ( - V )  d  Y _
( S  +  X  )

£
(fi2 +  X2)2

f ix)  dx

4/3 • £2
7ТАГ'xr2 fix) dx (fi + x  )

1

£2 1/3 -£2
(fi2 + x2)2 (e2 + x2)2

1

f ix) dx

+ X
(£2 +  X2) 2 ( f 2 +  X2) 2

1

f ix)  dx

1

£
nie)

e 2  +  x 2
f ix)  dx

(81)
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We have seen (see Eq. (22)) that n(e) gives the ratio of the number of effective 
data divided by n. The result is therefore not only simple but also immediately 
acceptable.

A statement of principal importance is [C sern y á k  and Stein er  1983b] that 
the expression A2 = e2/n(e) is always finite, i.e. the law of 1 /fn for the increase 
of the accuracy is proved for all symmetrical distributions. For asymmetrical 
distributions is such a theoretical result not yet known but the Monte Carlo 
investigations of extreme asymmetrical cases has also given satisfactory results 
(see paragraph 5.2.2).

5.2 Examples for comparing the asymptotic behaviour of the most frequent 
value with that of the arithmetic mean

5.2.1 Symmetrical examples for n —> cc
The density functions of 18 distributions that are symmetrical to the origin 

are contained in Table IV. For each distribution there are given the dihesion e, 
the n(e)-value (see Eq. (22)), the asymptotic scatter (the square root of the 
asymptotic variance) of the most frequent values (e/)/n(e)), the asymptotic scatter 
of the arithmetic means (a, often known as ‘the scatter’), information about the 
fulfilment of the law of large numbers for arithmetic means (as already shown 
above, for the most frequent values the fulfilment is guaranteed in the ‘best 
form', i.e. the accuracy always increases with \/jn), and, finally, the ratio of the 
asymptotic variances in question (the relative efficiency of the most frequent 
value calculations referring to that of the arithmetic means), denoted as л£/лм 
since this ratio gives at the same time (in an asymptotic sense) the ratio
of numbers of data needed to achieve the same accuracy. If the integral
00
j x2f(x ) dx is divergent, in the column for a the sign oo is written.

- 00
The classification of the 18 distributions in four groups was made based 

on the different asymptotic behaviour of arithmetic means. These four possibil­
ities are: 1) the reverse of the law of large numbers is fulfilled, i.e. the greater 
the number of data (л) the less the accuracy; 2) the law of large numbers is not 
fulfilled and the accuracy is independent of л; 3) the law of large numbers is 
fulfilled but the estimation of location has poor efficiency (being a= oo); 4) the 
law of large number is fulfilled, the accuracy increases with 1/|/я.

If nE/nM < 1, the use of arithmetic means is more economical than the 
estimating of location with the most frequent values. Distributions of such type 
(see numbers 13, 14 and 17 in Table IV) are, however, sterile in the sense of 
C sern y á k  [1984], i.e. in those cases the flanks of the distributions either com­
pletely vanish (14 and 17) or are smaller than would be a real model of 
distributions mostly occurring in the earth sciences. The Gaussian distribution 
(number 13) is an example of unreal small flanks, at least from the viewpoint
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of geophysics and geology; a surplus of 36% is needed for the same accuracy, 
using most frequent values instead of arithmetic means (the latter ones are well 
known optimal estimates in the case of Gaussian distribution). After suitable 
generalization of the concept of the most frequent values—given in Chapter 8— 
it is possible to approximate arbitrarily the efficiency of 100% even for Gaussian 
type distributions (if—rather exceptionally—approximately such a type occur­
red in the practice).

5.2.2 Monte Carlo results for symmetrical and asymmetrical distributions

Although the case of symmetrical distribution was dealt with in the 
previous paragraph, it nonetheless seams useful to show on some examples what 
the reverse fulfilment of the law of large numbers and the non-dependence on 
n mean, because these cases are not commonly known. Two asymmetrical 
examples are treated as well.

The sampling (with n= 10 and 100) was made randomly 200 times for all 
5 distributions investigated and for each sample the arithmetic mean E and the 
most frequent value M  were determined. Four frequency diagrams were con­
structed for each distribution to show the results in such a manner that the

n =100

Fig. 21. No 4 probability distribution type of Table IV. It is noteworthy that arithmetic means 
become less accurate with increasing n (see scale of abscissae of ^’-diagrams) whereas most 

frequent values become more and more accurate

21. ábra. A IV. táblázat 4. eloszlás-típusa. Az átlagok pontatlanabbakká válnak n növekedésével 
( 1. az ^-diagramok abszcissza-skáláit), míg a leggyakoribb értékek egyre pontosabbak

Puc. 21 Функция распределения 4. по таблице IV. При возрастании п средние становятся 
неточными (см. шкалы абсцисс диаграмм Е). в то время как наиболее частые 

значения все более точными.
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Figures 21-25. Results of a Monte Carlo study. The frequency diagrams are given for sample 
sizes n = 10 and n = 1 (X), and for arithmetic means (£) and most frequent values (M).

The mother distribution is given by its density function (both analytically and by showing the 
curve n — 1). Medians and interquartile ranges are marked in all cases

21-25. ábra. Egy Monte Carlo vizsgálat sorozat eredményei. A gyakorisági diagramok n = 10-re 
és 100-ra adottak mind az E számtani átlagokra, mind az M  leggyakoribb értékekre.

Az anyaeloszlás sűrűségfüggvényével adott (mind analitikusan, mind az n = 1 jelű görbével). 
Mindegyik esetben bejelöltük a mediánokat és az interkvartilis terjedelmet

Puc. 21-25. Результаты исследований методом Монте Карло. Частотные диаграммы 
приводятся для п = 10 и п= 100 как для среднеарифметических Е. так и для наиболее 

честых значений М. Материнская функция задана плотностной функцией, как 
аналитически, так и кривой «и= 1». Во всех случаях обозначены медианы 

и межквартильные интервалы.

Fig. 22. No 6 probability distribution type of Table IV. It is noteworthy that the accuracy of 
the arithmetic means does not seem to depend on n (the interquartile range is almost the same 

at n= 10 and n = 100,) whereas the accuracy of the most frequent values increases with |/л

22. ábra. A IV. táblázat 6. eloszlás-típusa. Úgy tűnik, az átlagok pontossága nem függ л-től (az 
interkvartilis terjedelem csaknem azonos n = 10-nél és 100-nál), mig a leggyakoribb értékek

pontossága l/л-nel növekszik

Puc. 22. Функция распределения 6. по таблице IV. Точность средних, видимо, не зависит 
от п (межквартильные интервалы почти одни и те же при п= 10 и п= 100), в то время как 

точность наиболее частых значений увеличивается с 1In.
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Fig. 23. No 11 probability distribution type of Table IV. The behaviour of the arithmetic means 
seems to be statisfactory in the investigated sample sizes, although the value of a1 (i.e. the 

asymptotic variance of the arithmetic means) is infinite in this case

23. ábra. A IV. táblázat 11. eloszlás-típusa. Az átlagok viselkedése kielégítőnek látszik a vizsgált 
mintaelemszámoknál, noha a a2 értéke (azaz a számtani átlagok aszimptotikus szórása) ebben

az esetben végtelen

Puc. 23. Функция распределения 11. по таблице IV. Поведение средних кажется 
удовлетворительным, хотя значение а2 (тоесть асимптотическая дисперсия 

среднеарифметических) и бесконечно в этом случае.

surface under the frequency diagram is always the same (see Figs. 21-25). The 
density function itself is also given in each figure («= 1).

Attention should be given to the scale of the abscissae: in the first and last 
example the ^-diagrams clearly show the reverse fulfilment of the law of large 
numbers. To the contrary, M-diagrams show that the most frequent values also 
behave according to the l/[/n-rule in these extreme cases.

The last example can be treated analytically, too. This type of distribution 
is called Smirnov-distribution [G n e d e n k o  and K o lm o g o r o v  1949], the density 
function of it being

fix )  = •

f 1 --L - 3  
7 =  e 2* x  2, 
\2 n

if x> 0
(82)

. o, if x ^ O

The characteristic function has the form
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(j is the unit imaginary number). According to the well known convolution 
theorem the sum of n elements has the characteristic function

exp < - n f t , • 1 n
' “ J n t ê ï (82b)

i.e. the arithmetic mean is also Smirnov-distributed with the density function

/ " ’«  =• п]/2п  W
if х>0 (82с)

. 0, if

п = 100

Fig. 24. Probability distribution type with density function given in the figure. With increasing 
n arithmetic means do not provide characteristic values for the mother distribution, in contrast 

to the situation with most frequent values

24. ábra. A számtani átlagok növekvő n-nel nem adnak az anyaeloszlást egyre 
pontosabban jellemző értéket, szemben a leggyakoribb értékek megnyugtató viselkedésével

Puc. 24. При возрастании среднеарифметические не приближаются все точнее 
к величине, характеризующей исходное распределение в противоположность хадежному 

поведению наиболее частых значений.
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n = 100

---------96 I----------------------- 1-----------------1000

Fig. 25. Probability distribution type with density function given by Eq. (82) (Smirnov-type 
distribution). The sample interquartile range increases rapidly with increasing n (see scale of 

abscissae of £-diagrams), to say nothing about the enormous right-ward trend of the median. 
On the contrary, the accuracy of most frequent values increases with increasing n

25. ábra. A (82) egyenlet szerinti sűrűségfüggvénnyel megadott eloszlás-típus 
(Szmirnov-eloszlás). Az empirikus interkvartilis terjedelem gyorsan növekszik n növekedésével 

( 1. az f-diagramok abszcissza-skáláit), nem is beszélve a médián nagymértékű jobbra 
tolódásáról. Ezzel szemben a leggyakoribb értékek egyre pontosabbak az n növekedésével

Puc. 25. Тип распределения (распределение Смирнова), заданный функцией плотности по 
уравнению (82). Эмпирическая интерквартильная широта быстро возрастает при 

возрастании п (см. шкалы по сои абсцисс на ^-диаграммах), не говоря уже 
о значительном смещении медианы вправо. В противоположность этому, наиболее частые 

значения все более точны при возрастании п.

This means that not only the interquartile range of arithmetic means increases 
proportionally with n but also their mode, median, etc. (Fig. 26). Consequently, 
the distribution of arithmetic means has nothing more to do with the original 
(or mother) distribution. The grounds of this phenomenon lie in the calculation 
of arithmetic means as an estimation procedure itself. There are not an sich 
‘wrong’ distributions: most frequent values also give in the case of the Smirnov- 
distribution with increasing n more and more accurately a value which charac­
terizes the mother distribution itself (Fig. 25).
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Fig. 26. Arithmetic mean of n values from a Smirnov distribution is also Smirnov-distributed 
but the density function is enlarged n times

26. ábra. S:mirnov-eloszlású n db érték számtani átlagának szintén Scm/rnor-eloszlása van, csak
ez utóbbi я-szeresen nyújtott

Puc. 26. Распределение среднеарифметических из n значений со смирновским 
распределением имеет также смирновский характер, но растянут по длине в п крат.

Chapter 6
Two families of probability distributions

6.1 Modelling

Vercors, in his excellent short novel entitled ‘Les animaux dénaturés’, wrote: ‘As a general 
rule, investigation, experimentation and observation increase the uncertainty.’ This feather-weight 
(and naturally exaggerated) statement with a considerable dose of salts can become a troubling 
reality if we hang fast to our accustomed statistical procedures: we have seen in the preceding 
chapter that expensive surplus data can really increase the uncertainty if we calculate according the 
principle of least squares.

This classical principle 'works’ effectively only for ‘nicely shaped’ distributions (e.g. in the very 
neighbourhood of the Gaussian). For our investigations the broadest possible families of distribu­
tions are necessary for modelling the actually occurring error distributions.
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The author hopes that the reader is not yet bound too tightly to the classical conception. Even 
in the early seventies, based on different approaches the following classification of statisticians was 
still valid (from the point of view of real distributions, cited from Andrews et al. [1972], page 128):
— ‘Messrs. One-toe-in-the-water, where contamination is admitted, but only gentle contamina­

tion...’
— ‘the wary classicist, who takes pure Gaussian as the conventional situation...’
— the realist.

The notion ‘contamination’ itself has come to be somewhat old-fashioned as a lot of actually 
occurring distributions are primarily long-tailed and not because of some secondary effect. (This 
technical term is only justifiable if the model-distribution is required to model some percentage of 
outliers, too.)

6.2 Generalized supermodel of Tukey

A family of probability distribution types defined for modelling real distributions is called for 
short ‘supermodel’. A single model distribution-type of a supermodel can then be defined by a single 
value of the type-parameter, or by two values if the supermodel has two parameters.

One of the latter types of supermodel is the f T (p .  op ,  x) family of distribution types, known 
as the generalized supermodel of Tukey:

f T( p , o c; x )  =  ( \ - p ) f c ( l ; x )  +  p f a ( o c; x )  (p< 0.5) (83)

where f G( ô \  x )  is the Gaussian distribution:

fc ,(<r- ,x )  =  - J = e  2S\  (84)
öy2n

ln o c the index refers to the ‘contamination', as a reminder of the approach mentioned above.
As f T supermodel has two parameters ( p  and o c), it is convenient to show on the ( p ,  o c) plane 

just the same quantities as in Table IV (dihesion e,  n(e ) ,  e /ÿ n ( e ) ,  a  and n E/ n M, see F ig .  2 7 - 3 1  ; the 
last of these quantities is calucalted obviously as o 2n ( e ) / e 2).

t

Fig. 27. Dihesions (s) for Tukey’s generalized supermodel of two parameters (p and oc)

27. ábra. Dihézió-értéke’-. (s) az általánosított Tukey-féle kétparaméteres (p és oc) szupermodellre
vonatkozóan

Puc. 27. Значения дигезии (e) в отношении обобщенной (р и ос) супермодели Тьюки.
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n(e)

052
054
056

v'n(E)

Fig. 28. Ratio of effective and all number of 
data (denoted by n(e)) for the generalized 

supermodel ofTukey

28. ábra. Az effektiv adatszám és a teljes 
adatszám «(fi)-nal jelölt aránya az általánosított 

Tukey-féle szupermodellre vonatkozóan

Puc. 28. Соотношение n(e) эффективного 
количества данных и полного количества 

данных в отношении обобщенной 
супермодели Тьюки.

Fig. 29. Asymptotic scatter of most frequent 
values (e/^n(e)) for the generalized supermodel 

of Tukey

29. ábra. Leggyakoribb értékek aszimptotikus 
szórása («/|Æ ) )  az általánosított Tukey-féle 

szupermodellre vonatkozóan 

Puc. 29. Асимптотическая дисперсия 
наиболее частых значений (г/|/л(г)) 

в отношении обобщенной супермодели 
Тьюки.

i

Fig. 30. Asymptotic scatter of the arithmetic 
means ('the scatter', a) for the generalized 

supermodel ofTukey

30. ábra. Az átlagértékek aszimptotikus szórása 
(„a szórás”, a) az általánosított Tukey-féle 

szupermodellre vonatkozóan
Puc. 30. Асимптотическая (обозначенная 

через ff) дисперсия средних значений 
в отношении супермодели Тьюки.
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Fig. 31. Relative efficiency (nEjnM) of the calculation of most frequent values as estimates of 
location compared with the arithmetic means for the generalized supermodel of Tukey

31. ábra. A leggyakoribb érték-számítás, mint helyparaméter-becslés relatív hatásfoka (nE/nM), 
az átlagképzéshez viszonyítva, az általánosított Tukey-féle szupermodellre vonatkozóan

Puc. 31. Относительная эффективность расчета наиболее частых значений (пЕ/пи ) 
в качестве оценки пространственных параметров в сравнении с расчетом средных, 

в отношении обобщенной супермодели Тьюки.

The thick line in Fig. 31 defines that subset of f T for which E- and M-estimates are equally 
effective; for / r -distributions on the left hand side the £-estimation is more advantageous (if the 
absence of outliers is absolutely guaranteed), and the opposite is valid for the /^distributions on 
the right hand side. The worst case for the M-estimation is the Gaussian distribution (p = 0): we 
have seen earlier that surplus data of 36% are necessary to achieve the same accuracy as has the 
optimum algorithm for this type of distribution (i.e. the mean square calculation).

Mention has already been made that the very solution inside the conception of most frequent 
calculations is given by generalizing the original algorithm, see Chapter 8,—and in this way a 
resistant procedure can be given having an efficiency arbitrary near to 100% even in the case of a 
'clean' Gaussian distribution. On the other hand, the least squares algorithm may need not just twice 
as many but possibly 5 times as many, 10 times as many (or even more) data to achieve the same 
accuracy as the Af-estimation (the maximum value of nEjnM in Fig. 31 is 30 for the illustrated part 
of the (p. ac)-plane). It is certain that the finite ст-value of all f T distributions guarantees for the whole 
supermodel the asymptotic fulfilment of the T /p-law ’ also in the case of least squares calculations 

but the efficiency (from the point of view of the appliers) may not only be unsatisfactory but also 
absolutely unacceptable.
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6.3 The supermodel f a(x)

6.3.1 Some remarks on the behaviour of arithmetic means for small samples

We shall deal in this section with small samples, too. As an introduction to this topic, the 
present paragraph will show the interesting behaviour of arithmetic means of small samples from 
/^distributions. Namely, we need not in these cases carry out Monte Carlo computations since the 
density function of the arithmetic means of such samples can also be given analytically:

f t  '(/>. Gd X) = X  * 1 -  p )"~Y galf ( n - k )  + ko f, X). (85)

As exp [-(<rf)2/2], the characteristic function of the Gaussian distribution given in Eq. (84) 
is well known, it is simple to verify Eq. (85) on the grounds of Eq. (83) and applying the convolution 
theorem. If Q„ is the probable error (semi-interquartile range) of arithmetic means of samples 
consisting of n elements and Q, denotes the probable error for the mother distribution itself, Qn/Q, 
is a measure of how the accuracy increases with n.

It is convenient to choose 1 /[/и for the abscissa since in this case the fulfilment of the l/[/n-law 
at finite и-values is indicated by the fact that points, representing (?„/(?,-values, are situated on a 
straight line through the origin.

The examples in Figs. 32 and 33 belong to the parameter-pair of (p = 0.08; ac= 10), and to 
that of (p = 0.2; <rc = 150), respectively. The straight lines in these figures connecting the origin and 
the (1; 1) point would indicate that the 1/p-law is for all finite и-values strictly fulfilled. Dotted 
straight lines indicate the asymptotic behaviour connecting the origin with the point

( 1 ; 0.6745 ■ j{ \-p )+ p o t). (86)

Instead of analysing in detail Figs. 32 and 33, we only draw some inferences.

Fig. 32. Decrease of the sample interquartile 
range of arithmetic means by increasing и for 

a model distribution of Tukey type. Dotted line 
shows the asymptotic behaviour

32. ábra. Számtani átlagok empirikus 
interkvartilis terjedelmeinek csökkenése 

növekvő n-nel, egy Tukey-féle modelleloszlás 
esetén. A szaggatott egyenes az aszimptotikus 

viselkedést mutatja

Puc. 32. Убывание эмпирических 
межквартильных интервалов 

среднеарифметических с возрастанием п для 
случая распределения согласно модели 
Тьюки. Пунктиром демонстрируется 

асимптотическое поведение.
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Fig. 33. For some of the generalized Tukey-distributions the sample interquartile ranges of 
arithmetic means with increasing n have a maximum value, before reaching that domain of 

«-values where the asymptotic behaviour becomes dominant (see the dotted line)

33. ábra. Az általánosított Tukey-eloszlások egy részénél a számtani átlagok empirikus 
interkvartilis terjedelmeinek növekvő и-nel előbb egy kifejezett maximumuk van, mielőtt elérnék 
az n értékek azon tartományát, ahol már az aszimptotikus viselkedés dominál (utóbbira nézve I.

a szaggatott egyenest)

Puc. 33. В некоторых из обобщенных распределений Тьюки эмпирические 
межквартильные интервалы среднеарифметических значений при возрастании п сначала 
обнаруживают четкий максимум перед достижением того диапазона значений п, где уже 

преобладает асимптотическое поведение (в отношении последнего см. пунктир).

First a curiosity in Fig. 33 should be mentioned: arithmetic means can show on a finite 
«-interval the reverse fulfilment of the law of large numbers, even if«  is finite. (We shall see in Fig. 39 
that most frequent values behave in accordance with the straight lines between the origin and the 
(1 ; 1) point.)

The density function of arithmetic means has the following form in the general case:

f " \ x )  = «[/(«.V)]"* (87)

where the symbol '«*’ means that convolution is to be carried out « times. Figures 32 and 33 can 
also be seen from this point of view : by increasing « the role of tails is increasingly emphasized (this 
is a consequence of one of the well known properties of the convolutions), the gathering itself can 
no longer have a significant influence on the probable error of arithmetic means.
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6.3.2 Definition and characterization of the supermodel f a{x) 

If a is the type-parameter

/«(*) =
1

c{a)\]jx2+ i]°

defines the density function f a(x) where

a> 1 (88)

c(a) = (88a)

(Г denotes the well known Г-function). Some of these (to the origin symmetri­
cal) density functions are shown for x  ̂  0 in Fig. 34. The corresponding distribu­
tion functions have the following form for integer values of a> 1 :

Fig. 34. Some probability density functions (because of symmetry shown for x > 0  only) from
supermodel f a(x)

34. ábra. Néhány / a(x)-szupermodellbeli valószínűségeloszlás sűrűségfüggvénye (a szimmetria 
miatt elég pozitív x-ekre korlátozódni)

Puc. 34. Плотностные функции некоторых из вероятностных распределений в супермодели 
f a(x) (из-за симметрии достаточно ограничиться положительными х-ами).
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Ы х)

F 3( x )

F J x )

Faix)

Fa(x)

1 1
— I—  arc tan x; 
2 n

1 *
2 + 2^1+x1 '

1 • 3 ■ .
Fa-  2ÍX) +

i a ~  4) 1

a — 2ix) +

2 . 4 . . . . . ( а - 3 ) 2 {1+х2)^  

2 - 4- ... - ( a - 4) 1 лг
3 - S : . . - ( a - 3 ) *

(88b)

(if a is odd and a ^5) 

(if a is even and a ^6).

Table V shows for some a values (i.e. for some distribution types) the 
numerical values of c(a), of the semi-interquartile range Q, of the dihesion e, of 
«(e), and of the asymptotic scatter e/|/«(e).

a cia) в E n(c)

E

|/л(£)

(1.2 11.3231 17.1756 1.8719 0.2370 3.8449)
1.4 6.2687 3.1231 1.5035 0.3566 2.5176
1.6 4.5544 1.7219 1.2732 0.4260 1.9608
2.0 3.1416 1.0000 1.0000 0.5000 1.4142
2.5 2.3963 0.7125 0.8120 0.5438 1.1011
3 2.0000 0.5774 0.6974 0.5669 0.9262
4 1.5708 0.4416 0.5616 0.5900 0.7312
5 1.3333 0.3704 0.4819 0.6012 0.6215
6 1.1781 0.3250 0.4282 0.6078 0.5493

10 0.8590 0.2342 0.3149 0.6190 0.4003
40 0.4040 0.1090 0.1492 0.6296 0.1880

100 0.2526 0.0680 0.0937 0.6331 0.1177

Table V. Characteristics of some distribution-types of supermodel fa(x) 
a — type-parameter; c(a) — normalization factor; Q — semi interquartile range; e  -  dihesion; 

e/\ln(e) — asymptotic scatter of the most frequent value

V. táblázat. Az /„(*) szupermodell néhány eloszlástípusának jellemző adatai 
a — típusparaméter; cj a ) — normálási faktor; Q — interkvartilis félterjedelem; e  — dihézió; 

E^n{e) — a leggyakoribb érték aszimptotikus szórása

Таблица V. Некоторых характерные параметры типов распределения супермодели f a(x) 
а — типовой параметр; с(а) — фактор нормирования; Q межквартильный 

полуинтервал; е — дигезия; e lfte )  — асимптотическая дисперсия наиболее частого
значения.

The types are defined in Eq. (88) in its simplest analytical form. For 
arbitrary location- and scale parameter ( T and 5) we obviously have
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The distributions 1, 2, 3, 5, 9, 10 and 12 in Table IV are clearly/,(.v)-distributions. There are 
/(.^-distributions in all four classes of Table IV ; by contrast, however, all f T distributions belong 
to the fourth class (a being always finite for all /т-s). In other words, the /(x)-family of probability 
distributions is able to model many more types of distributions occurring in geophysics and geology, 
although it has only one type-parameter. This latter fact results in a more convenient visualization 
of effectivites, of dihesions, etc., than in the case of f T (when systems of isolines are needed, see 
Figs. 27-31).

It is easy to verify that for a> 3

holds. If a -►сю, J'a(x) tends to be a Gaussian distribution; if a = 2 we get the Cauchy distribution. 
For integer values of a, the f a(.x) distributions are Student’s f-distributions with ( a -  1) degrees of 
freedom. It would therefore be possible to refer to the the supermodel f„(x) also as the class of 
generalized Student's f-distributions, as in fact, was done by Hajagos [1985a], It is pointed out, 
however, that to a certain extent this name can be misleading since Student’s f-distributions are 
introduced in close connection with the Gaussian distribution, but the use of the /,(.v)-distributions 
for modelling has nothing to do with this connection.

With /.(.redistribution a very great variety of flanks can be modelled: for great values of |x| 
the density function approximates the expression const. |лТ. To show two examples, in Fig. 35 to 
(ia = 1.4; 5 = 0.1 ) and to (a = 3.2; 5 =  1) the density functions f(x )  and f(x )  are drawn. Which is the 
more advantageous from the practical point of view? Since the probable error Q is less than that 
of Q, f(x )  can be declared as the better one. And really: also themost frequent values have a lower 
asymptotic scatter in the case of f ix )  (0.251 ) than in the case of f(x)  (0.875 ; see also Table IV). The 
fact that for arithmetic means as estimates for f (x )  the reverse of the law of large numbers is fulfilled, 
clearly qualifies the estimation procedure itself and not the distribution. Since 'the variance’ for f(x )  
is finite, in this respect /(.v) would be much more advantageous than fix ) , contradicting not only 
the numerical comparisons made above, but also our first impression on looking at the curves in 
Fig. 35. It is again verified that 'the variance' is not the characteristic of the uncertainty contained 
in the original (mother) distribution itself. This statement will also be justified in respect of the 
entropies, see Chapter 7.

The question arises as to whether or not a-values very near to 1 do model real distributions. 
The density function for a= 1.2 (Fig. 36) shows that the upper quartile Q is already far from the 
actual gathering of the values (the interval of the latter is measured by /  1 [/(0)/2]). Some (e g. 
meteorological) data can show similar distributions, too; in geophysics, however, the quotient 
f~ '[f(0)/2 \/Q  seems too small to be / 1.2(A), a model of a real distribution. To be able to judge in 
a simple way the reality of a given f a(x) for a given case from this point of view, in Fig. 37 the values 
of this quotient are shown versus 1 /(a — 1 ).

How are the /.(x)-distributions able to model the reality? The answer can be given in a 
convenient way if an analytical expression for the density function based on the measuring data is 
already given. N ewcomb [1886] had found for his astronomical data the expression:

r(“\
\2J  Sa~1

^S^ + ix -TŸT

-ii)1 (лЛ1 
f(x )  = ' 10'  + c2e W  + c 3e ' 36\

with given c.-s; this f(x )  curve is shown in Fig. 38. Points in the same figure belong to an f„(x) 
characterized by a =5.3 and 5 = 21.1.
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Although the excellent modelling in this case on the grounds of Fig. 38 is obvious, this is one 
single example, and for mathematicians it is often the case that even a great many examples are not 
convincing. Let us remember, however, that in Chapter 3 we have seen Cauchy distributed data, 
too. In other words, /„(x) with a = 2 can also be a suitable model in actual cases, and according to 
Jeffreys [cited in Kerékfy 1978], very careful measurements carried out under undisturbed con­
ditions can result in Student’s /-distributions of 5-9 degrees of freedom, i.e. in /„(.^-distributions 
characterized by 6 < a < 1 0  (this is the so-called Jeffreys interval). Exceptionally, distributions 
characterized by a> 10 also occur: e.g. the example given by Linnik [1961] for the Gaussian 
distribution]!)can be modelled by approximately / 20-type ( 12< a < 22; a more accurate determina­
tion of type is not possible in this case because of the small number and the grouping of the data). 
It can therefore be expected that the members of the f a{x) family can, under widely varying 
conditions, adequately model the actual distributions.

Fig. 35. Density functions /(x ) (/„(x) for a = 3.2 with S=  1.0) and f(x )  (f„(x) for a= 1.4 with 
5=0.1 as scale parameter). The asymptotic scatter of the most frequent value is 0.251 for f(x )  
and 0.875 for /(x), while the arithmetic mean as an estimate is inapplicable for /(se e  the first 

distribution in Table IV). It is completely misleading to consider ‘the variance’ a2 as 
a characteristic of the distribution itself

35. ábra. Az /(x)-szel jelölt sűrűségfüggvény (/„(x) a= 3,2-nél 5 = 1,0-val) és az /(x ) (amely 
5 =  0,1-es skálaparaméterű, a = 1,4-hez tartozó /„(.x)). A leggyakoribb értékek aszimptotikus 

szórása 0,251 /(x)-re és u.875 /(x)-re, a számtani átlag azonban becslésként használhatatlan / - ra 
(1. a IV. táblázat I. sorszámú eloszlását). Mindenféleképpen félrevezető a „szórást” az eredeti

eloszlás jellemzőjeként elfogadni

Puc. 35. Плотностные функции /(x ) (/„(x) при a = 3,2 c S=  1,0) и f(x )  (/„(x) при a= 1,4 
с параметром шкалы 5=0,1). Асимптотическая дисперсия наиболее частых значений 
составляет 0,251 для /(х ) и 0,875 для /(х), но среднеарифметическое не может быть 
использовано в качестве оценки /(х ) (см. распределение № 1 таблицы IV). В любом 

случае было бы ошибочно принять «дисперсию» в качестве характеристики первичного
распределения.
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Fig. 36. If a is very close to 1 the interquartile range of the f a(x) distribution is very long 
compared with the interval of maximum probabilities characterized by the value of 2/ - 1( /(0)/2)

36. ábra. Ha a túl közel van 1-hez, az f a(x) eloszlás ínterkvartilis terjedelme nagyon nagy lesz 
a legnagyobb valószinüségű értékek 2f~  ‘( /(0)/2)-vel mért intervallumhosszához viszonyítva

Puc. 36. Если а близко к 1, то межквартильный интервал распределения f a(x) становится 
слишком большим относительно длины интервала наиболее частых значений, измеренной

соотношением 2/ _1( /(0)/2).

Fig. 37. Ratio of two lengths: that of the interval of maximum probabilities and that of the 
interquartile range, versus l / ( a -  1) for supermodel f a(x)

37. ábra. A maximálisan valószínű értékek intervallumhosszának és az ínterkvartilis 
terjedelemnek az aránya. l/(a— 1) függvényében, az f j x )  szupermodellre

Puc. 37. Отношение длины интервала наиболее вероятных значений к длине 
межквартильного интервала как функция 1 /(а— 1) для супермодели f a{x).
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Fig. 38. Line: density function given by Newcomb for his experimental data sets; circles: values 
of f a(x) for the type parameter a= 5.3 and for the scale parameter 5  = 21.1

38. ábra. Folytonos vonal : Newcomb által megadott sűrűségfüggvény, amely jól leírja 
tapasztalati adatrendszereinek eloszlását; nullkörök: az ű = 5,3 típusparaméterhez és az 5=21,1 

skálaparaméterhez tartozó f a(x) értékek

Puc. 38. Сплошная линия: плотностная функция Ньюкома, с достаточной точностью 
описывающая распределение систем эмпирических данных; кружочки: значения f a(x), 

соответствующие типовому параметру а=5,3 и параметру шкалы 5=21,1.

6.3.3 Investigation of finite samples from different f a(x) distributions

The investigation of finite samples coming from / r -distributions in respect of their arithmetic 
means was convenient: Eq. (85) has given the density function of arithmetic means explicitly. In 
order to investigate most frequent values and arithmetic means for f a(x) distributions Monte Carlo 
calculations are necessary.

The distribution fa(x) for a = 1.4; 1.6; 1.8; 2.0; 2.4; 2.8 and 3.2 was randomly sampled 
200 times for n = 4; 9; 16; 25; 36; 49 and 64, the most frequent value and arithmetic mean for each 
sample calculated, and the semi-interquartile range Q„ for each set of estimates determined. The 
results are demonstrated in the ( 1/)In: Q„/Qt) system of coordinates (where {?, = Q is the scmi-inter- 
quartile range of the mother distribution), similarly to Figs. 32 and 33.

The results obtained for most frequent values are shown by vertical straight sections in Fig. 39. 
and in detail in Fig. 40. The straight line between the origin and the point (1 ; 1) indicates the most 
regular behaviour: if the mother distribution were the Gaussian one, the QJQ\ values of arithmetic
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Fig. 39. Results of a Monte Carlo study. If most frequent values are used, the interval of very 
small n-values also shows asymptotic behaviour

39. ábra. Egy Monte Carlo vizsgálat eredményei. Ha leggyakoribb értékeket használunk 
a becsléshez, a nagyon kis л-értékek tartománya is az aszimptotikus viselkedést mutatja

Puc. 39. Результаты исследования методом Монте-Карло. При использовании наиболее 
частых значений в оценках, даже область очень малых значений п обнаруживает 

асимптотическое поведение.
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means would fluctuate around this line. A very important conclusion made on the basis of Figs. 39 
and 40 is that most frequent values behave in the most regular and, at the same time, in a practically 
most advantageous manner.

What about arithmetic means calculated from the same samples? Figure 41 for n = 64 is very 
instructive: QnIQx values increase with descending a so rapidly that a logarithmic scale was 
necessary on the ordinate. The 'most regular’ behaviour would correspond clearly to the value 0 .125, 
but even at a = 3.2, where the variance is already finite, Q JQ , is significantly greater than this value.

The structure of Fig. 42 is the same as that of Fig. 40, only the Q JQ i values in Fig. 42 belong 
to the arithmetic means. For a=  2 the QJQ\ values fluctuate around the value 1—but it is 
commonplace that the accuracy of arithmetic means at the Cauchy distribution does not depend 
on n.

For a = 2.4; 2.8; 3.2 and 3.6 the law oflarge numbers is fulfilled but in very different manner. 
The behaviour of arithmetic means even at ű= 3.6 does not reach the 'most regular behaviour’, 
indicated by the straight line.

All points are above the straight line between (0; 0) and (1 ; I) in Fig. 42 and this means 
that the use of arithmetic means is economically disadvantageous. An example: to я = 64 belongs 
Q J Q \  =0.41 at a = 2.4 (upper dotted curve)—this value would belong to /j = 6 if the most regular 
behaviour were to occur (1/^6 = 0.41). This means that data of more than an order of magnitude 
are necessary to achieve the same accuracy.

In Fig. 43 the QJQ\ quotients versus \n are demonstrated. As can clearly be seen the reverse 
fulfilment of the law oflarge numbers at a = 1.8, 1.6 and 1.4 is not only an asymptotic statement 
but also valid for small samples. Let us recall (Figs. 39 and 40) that most frequent values showed 
in these cases, too, the most regular (and at the same time most advantageous) behaviour.

Fig. 41. Results of a Monte Carlo study. The 
different behaviour of the arithmetic means as 

estimates for various values of the type 
parameter a is shown for a fixed sample 

measure (л = 64). The asymptotic value is 0.125 
belonging to u->oо (this corresponds to 

Gaussian distribution)

41. ábra. Egy Monte Carlo vizsgálat 
eredményei. Fixnek felvett mintaterjedelemre 
(л = 64) adjuk meg a számtani átlagoknak az 

a típusparamétertől függő viselkedését. Az 
aszimptotikus érték 0,125 (ez az érték felel meg 

a Gauss-eloszlásnak)

Puc. 41. Результаты исследования методом 
Монте-Карло. Поведение 

среднеарифметических, зависящее от 
типового параметра а сильно варьирующее.

даются для объема данных (л = 64), 
принятого в качестве постоянной. Величина 

асимптотического значения — 0,125, 
соответствующее гауссовскому 

распределению.
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Fig. 42. Results of a Monte Carlo study. For a=2A, 2.8, 3.2 and 3.6, i.e. for some f a(x) 
distributions for which also the arithmetic mean follows the law of large numbers, the different 
types of fulfilments are shown. (Monte Carlo results are also shown for a = 2, i.e., also for the 

Cauchy distribution to demonstrate the measure of statistical fluctuation of this study)

42. ábra. Egy Monte Carlo vizsgálat eredményei. A nagy számok törvényének teljesülési módjai 
a számtani középértékekre, az a tipusparaméter 2,4; 2,8; 3,2 és 3,6 értékeire. Feltüntettük az 
a = 2, azaz a Cauchy-eloszlás esetére vonatkozó Monte Carlo eredményeket is, a vizsgálatot 

jellemző statisztikus ingadozás mértékének érzékeltetésére

Puc. 42. Результат исследования методом Монте-Карло. На рис. представлены различные 
способы выполнения закона больших чисел в отношении среднеарифметического для 

значений типового параметра а в 2,4; 2,8; 3,2 и 3,6 (на рис. приводятся также 
и результаты Монте-Карло для а= 2, то-есть для распределения Коши, с целью дать 
представление о степени статистических флюктуаций, характерных для проведенных

исследований).

Fig. 43. Results of a Monte Carlo study. The 
astonishing behaviour of the arithmetic means; 

these estimates show for a=  1.4, 1.6 and 1.8 
that the law of large numbers is inversely 

fulfilled

43. ábra. Egy Monte Carlo vizsgálat 
eredményei. A számtani átlagok meghökkentő 

viselkedése a=  1,4; 1,6 és 1,8 esetén: a nagy 
számok törvénye éppen fordítottan teljesül

Puc. 43. Результат исследования методом 
Монте-Карло. Странное поведение 

среднеарифметических при а= 1,4; 1,6 и 1,8; 
закон больших чисел выполняется 

в обратном смысле.
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Chapter 7
Deduction of formulae defining most frequent value and dihesion, based on

information theory

7.7 Entropy and Edivergence

7.1.1 The definition of entropy

The entropy of a probability distribution—defined by its density function 
f ( x )—is given by the formula

Я ( / )=  f f{x)  • log2 - Ц  dx (90)
f i x )

[R eza  1961]. We shall deal in the following only with distributions having 
positive densities for all .v-values. For these distributions the definition in 
Eq. (90) is without any comment correct; in general cases the integration is to 
be carried out only for .v-domains where /(x )> 0  holds.

The entropy does not depend upon the location parameter (see Eq. (90)); 
# ( / )  is only a characteristic of the dispersion of the mother distribution itself. 
The entropy of all f a(x) distributions—defined in Eq. (88)—is finite [H ajagos 
1982].

For distributions having finite variance the entropy is also finite [R eza 
1961]. The opposite statement, however, does not hold, e.g. the entropy of the 
Cauchy distribution characterized by the probable error Q (see Eq. (13) with 
S=Q)  is given by the expression

H(fc) = log2 (4*0), (91)
although not only the second but also the first moment is infinite.

Some remarks should be made in the following, regarding the definition in 
Eq. (90) from the viewpoint of the applier.

The entropy of the Gaussian distribution (see Eq. (84)) is given by

# (/c )  = log2 [<7 | 2ле] (92)

(where e is the base of the natural logarithm). In both Eqs. (91) and (92) the 
parameter of scale is in the argument of the logarithm function -  and this fact 
does not correspond to our demand that the characteristic of the dispersion 
must be proportional to the parameter of scale. The solution is simple: the 
characteristic defined by

B(f) = 2H(/) (93)
fulfils our demand, in addition, it does this in such a manner that relations, 
minimum or maximum properties being valid for H also remain valid for B.
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As an example, proof should be given as to whether or not В is an 
appropriate characteristic for the dispersion of the mother distribution. 
A Gaussian and a Cauchy type distribution of the same probable error are 
compared (i.e. a = <2/0.6745):

Bifc)
BUg)

47zQ
Q

0.6745 fh tt
2 ■ 0.6745 2.051. (93a)

We can accept as real that В is twice as great in the case of the Cauchy 
distribution than for the Gaussian one because of the much heavier flanks.

The entropy defined in Eq. (90) -  or В in Eq. (93) -  fulfils the requirements 
of practice, in the case of heavy flanks, but H (and В) may also be infinite. Let 
us cite an example given by C sern y á k  [1982]:

1 I A' I < 2

h(x) 1
X ■ \og\x

x |^ 2 . (94)

(It is not superfluous to mention that Monte Carlo computations of this distri­
bution also showed in this extreme case the regular increase of the accuracy of 
the most frequent values, i.e. the fulfilment of the 1 /|/й rule for the M  values.)

According to an interesting theorem of information theory, Gaussian 
distribution is characterized by the maximum entropy among all distributions 
having the same variance. At first glance it seems astonishing that the measure 
of disordination has its maximum value just at the Gaussian distribution having 
small flanks. But we have seen earlier that the variance (or its square root, the 
scatter) does not adequately characterize the original (mother) distribution 
being extremely sensitive to the ‘most far parts’ of the flanks.

It seems to be appropriate to show an example. In Fig. 44 two density 
functions (JG to <7=3 and f T to p = 0.08 and ac = 10) are shown, both clearly 
having the same variance. (For f T defined in Eq. (83) the variance is to be 
calculated according to a2 = 1 + p[af — 1].) The cited theorem shows the en­
tropy of f q to be greater than that of f T -  and we also feel according to our 
(subjective) judgement after a visual comparison of the curves in Fig. 44 that 
J g  contains more uncertainty than f T does. Consequently, the variance (being 
extremely sensitive to the ‘most far’ parts of the flanks) is always unable to 
characterize the real uncertainty contained in the distribution (not only in cases 
when the variance is infinite).
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к fix) 
0 А-l

Fig. 44. Density function of a model-distribution of Tukey-type f T(x) and that of a Gaussian 
distribution fe(x) having the same variance (i.e. asymptotic variance of arithmetic means as 
estimates). The entropy of this latter distribution is greater than that of f T(x) ( fG(x) is much 

more dispersed in its main part than is f T(x)). The variance does not characterize the dispersion
of the original distribution

44. ábra. Egy Tukey-típusú sűrűségfüggvény f A x ). valamint az azzal azonos szórású 
Gauss-eloszlás f G(x) sűrűségfüggvénye. Az utóbbi eloszlás entrópiája nagyobb mint az f T(x)-é, 
amit az f G(x) lényegesen szétterültebb volta vizuálisan is kézenfekvővé tesz. Látható, hogy „a 

szórás” nem az eredeti eloszlás jellemzője

Puc. 44. Плотностная функция типа Тьюки f T(x) и гауссовского распределения f G(x) с той 
же дисперсией. Энтропия последнего распределения существенно больше, нежели для 
f T(x), что визуально иллюстрируется значительно более расширенной формой f G(x).

Видно, что «дисперсия» не является характеристикой исходного распределения.

7.1.2 Substituting distributions, 1-divergence

The notion of ‘relative information’, commonly known as ‘/-divergence’ 
was introduced by Kullback [1959] and Perez [1967]. The /-divergence can be 
interpreted as the loss of information, too.

Let us suppose that /(x) is the density function of the actually occurring 
but analytically unknown probability distribution; f{x)  being unknown, we 
treat our case as if the density function would be the analytically known g(x). 
In this case g(x) is called the substituting distribution, and the /-divergence is 
defined as

w fix)  log f jx)
' g(x)

dx (95)

—  00

(supposing that g(x)> 0 is fulfilled for all x values).



7. Deduction o f formulae defining most frequent value and dihesion... 221

It can immediately be seen that in the case ofg(x) = f(x), Ig(f) = 0 is valid. 
It can be proved [V in c z e  1953] that I f f )  cannot be negative. If g(x) is near f(x),  
I f f )  is a small value, and the opposite is fulfilled if g(x) is far from f(x).  In this 
sense I f f ) ,  from the point of view of information theory, can be regarded as 
a distance of g measured from /  (although all the usual criteria demanded for 
‘distance’ are not fulfilled.)

It can be proved [H a jag os  1982] that when g is the Gaussian distribution 
(denoted here as G) with the scale parameter a, and the variance a2 of f  is finite 
being o2 = ö2, then

IG( f ) =  H(G)-H(f )  (96)
holds. This formula shows the connection between the notions of entropy and 
/-divergence: the distance of the Gaussian distribution from f T, both shown in 
Fig. 44, is just the difference of their entropies: H{G)- H ( f T). (It should be 
noted that the connection is not always so simple.)

It is at first glance astonishing that in cases when/has an infinite variance, 
the distance of G (i.e. of the Gaussian distribution) from / i s  infinite (indepen­
dently of the value of the scale parameter). This is, however, in close connection 
with the already known fact (see also paragraph 7.7.2) that least squares 
procedures may be completely unusable also in well treatable cases ; this circum­
stance is adequately expressed by the infinite value of this distance.

It can be shown [H a jag os  1982 and C sern y á k  1982] that when the sub­
stituting distribution is the Cauchy distribution, the /-divergence is finite for the 
whole f f x )  supermodel (and for all distributions having not heavier flanks than 
those of the f f x )  distributions). It seems therefore more advantageous- from 
the viewpoint of information theory and in respect of general applicability—to 
choose the Cauchy distribution as the substituting distribution instead of the 
Gaussian one.

7.2 Minimization of I-divergence

The practical way of using the notion of the /-divergence is the following. 
Substituting the actual but unknown distribution /  by g of known analytical 
form, that pair of T and S values playing a role in g is accepted as characteristics 
of / ,  that minimizes the loss of information (i.e. the /-divergence).

7.2.1 General formulae

We write in the following g(x; T) and I f f ;  T)—instead of g(x) and 
I f f ) —to emphasize the fact that our primary task is the determination of T. 
Let us suppose that g(x; T) is symmetrical, is to be differentiated according to 
T', and that the integration and differentiation twice according to T are inter­
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changeable. The distance of g from /  will be minimum if the following con­
ditions are fulfilled :

and

dfj f ' ,  T) 
dT

d21g(f', T) 
dT2

= 0 (97)

> 0, (97a)

i.e. by the expression for I f f  ; T) given in Eq. (95) the equation
00

dg{x\ T) f{x)
ÔT gix ; T)

dx = 0 (98)

and the relation

dgix\ T) 1
f ix)  dx -

og(x: T) J\x)
dT gix; T)

— oo — oo

must hold. Equation (98a) is surely fulfilled if
00

82gi-x; T) f ix)

d2T gix; T)
dx > 0. (98a)

d2T gix; T)
dx = 0. (99)

holds.
The simultaneous fulfilment of Eqs. (98) and (99) results in а Г and S value 

which guarantees the minimum /-divergence.

7.2.2 Minimization of the loss o f information if the substituting distribution is 
Gaussian

We need now the general form of the Gaussian distribution:
1 - b - p 2

g i x ; T )  =  — = e  ^  (100)
a \2n

Substituting this in Eq. (98) we get
oo

j (x - 7') /(.v) dx = 0 (101)
— 00

or in another form
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T = j xf(x)  dx;
—  00

on the right hand side is the well known 'expected value’ E. 
Substituting Eq. (100) in Eq. (99), we get

(-У- T)2 
=2 /(x) dx = 0,

or in another form

(101a)

( 102)

a2 = J (x— E)2J\x) dx. (102a)
— 00

As the most advantageous pair of values in g we have the expected value 
and the variance (scatter) of /(x), if the substituting distribution is the Gaussian 
one.

7.2.3 Minimization of the loss of information by substituting the Cauchy 
distribution

The general form of the Cauchy distribution is now the substituting distri­
bution :

1 Qg(x- T) =
n Q2 + (x— T)2

The form of Eq. (98) becomes
00

x -  T, /(x) dx = 0,
0 2 + (x—Г)2

but this can rearranged clearly into

Q2 + ( x - T )
f(x)  dx

1
f(x)  dx

(103)

(104)

(104a)

Q2 + ( x -  T)2
— 00

Writing M instead of T, this is the defining formula for the most frequent value.
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Putting Eq. (103) in Eq. (99), we get
XC

—  X

3(.v - M ) 2- Q 2 
[Q2 + (x — M)2]2

f{x) dx = 0

which can also be written as

(105)

О2

(.y  —  M )2

\Q 2 + (x — Ä7)2]2
f i x)  dx

X

— X

_ _  J ______
[Q2 + i x ~ M ) 2)2

f i x )dx

(105a)

If £ is written instead of Q. this is the defining formula for the dihesion.
Obviously the deduction of the formulae for the most frequent value and 

dihesion is the same in all steps as the deduction of the formulae for the expected 
value and the scatter (variance), only the substituting distributions differ from 
each other.

7.3 Short remark on the maximum likelihood principle

Clearly we get the formulae for estimating £, a. M and f. on the grounds
1 "

of the sample .v,......x,, ..., x„, if we put f ix)  = -  £  <5(x —x;) into the Eqs.
^ i = 1

(101a), (102a), (104a) and (105a):

1 "
Еп = -  I  *,•;

« ;=i

a; = 1 X ( x , - £ J 2; 
n

(101b)

(102b)

M. =
У  ---------- í------- ;
i =  i e2 + i . X i - M n)2

" 1
,?i e2n + i x - M n)2 

" (x, -  A/„)2

У: =
3_i= 1 tó + (х, -  M J2]2

V -------- -------
k 2 + (x,-M „)2)2

(104b)

(105b)
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The maximum likelihood principle starts from the sample and therefore its 
primarily given formulae are expressed by sums. There is a difference of prin­
cipal importance, viz: it is supposed that the actual error distribution is exactly 
known. The author means that modelling (substituting) is a more suitable 
procedure in practice because geophysicists and geologists never know precisely 
the type of distribution in advance.

What are the differences between the respective formulae obtained by 
applying the maximum likelihood principle and that of the minimization of the 
/-divergence?

The answer maybe surprising.
The maximum likelihood principle results in the same equations for En, <7„, 

and Mn (Eqs. (101 b), (102b) and (104b)) but instead of Eq. (105b) we get

= h  ï î  + ( x - M n)2
n 1y ------

. £„2 +  (.y , .- M „)2

(106)

Is, perhaps, the application of this formula more advantageous for deter­
mining the scale parameter than Eq. (105b)? Lack of space prevents this 
question from being discussed in detail but two references are necessary. Firstly, 
Csernyák and Steiner [1985c] showed that Eq. (105b) defines a resistant 
procedure but Eq. (106) is sensitive to outliers. Secondly, by the simultaneous 
fulfilment of Eqs. (106) and (104b) the asymptotic variance of M can be infinite, 
too, even for a symmetrical distribution [Csernyák und Steiner 1985a]; on the 
contrary, for symmetrical distributions the usual way of calculating most fre­
quent values (i.e. by using Eqs. (105b) and (104b)) is always characterized by 
a finite asymptotic variance.

Chapter 8
Generalized most frequent values

8.1 Most f requent value being optimum for a pair o f distribution types

8.1.1 Dependence of eff iciencies upon the scale parameter

It was shown in the section (7.3) that the most frequent value can also be 
regarded as the maximum likelihood estimate of the symmetry point of the 
Cauchy distribution (in a similar way to the arithmetic mean being the maxi­
mum likelihood estimate of the symmetry point of the Gaussian distribution). 
This type of estimate, however, gives an estimate of minimum asymptotic 
variance [Cramér 1958]; the conditions needed are fulfilled for the whole f a(x) 
supermodel. Consequently, investigations can also be made on the absolute effi­
ciencies.
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Our goal here is to find a factor к so that using к times the dihesion as the 
parameter of scale (S=k8), this algorithm should result in just the same effi­
ciency both for the Gaussian and for the Cauchy type distributions. The 
importance of this question is obvious as we often face situations when no a 
priori knowledge on the distribution type of error is available.

Our method is the following. As Eq. (80) is valid for arbitrary scale 
parameters, we calculate both for the Gaussian and for the Cauchy type dis­
tribution the efficiencies as a function of к according to the formula

e(k) =
i 2'm in .

A2(M, ke)
100%. (107)

The results are visualized in Fig. 45. For the Cauchy distribution the maximum 
efficiency clearly belongs to k=  1; on the other hand, for the Gaussian dis­
tribution the maximum efficiency is only asymptotically reached for k-> со 
(approximating the case of equal weights, i. e. the case of arithmetic means).

The intersection point of the curves in Fig. 45 gives the answer to our 
primary problem: approximately k=  1.9 defined that procedure which gives the 
same efficiency for both distribution types in question. We can ascertain that 
this common efficiency is greater than 90%. (Practically the same can be found 
if we use the round number k  = 2.)

Fig. 45. Efficiencies (e) as a function of к (applied in the generalized most frequent value 
calculations), for two distribution types. Using к = 1.9, the efficiencies of both Cauchy and 

Gaussian distributions are the same (and greater than 90%)

45. ábra. Hatásfokok két eloszlásra а к függvényében (ez az általános leggyakoribb értékek 
számításánál alkalmazott faktor). Ha k = 1,9-cel számolunk, a Cauchy- és a Gauss-eloszlásra 

azonos (mégpedig 90%-nál nagyobb) hatásfokot kapunk

Puc. 45. Эффективности двух распределений как функция к. являющегося фактором, 
применяемым в расчете обычных наиболее частых значений. При производстве расчетов 

с к=  1,9 эффективность распределений Коши и Гаусса оказывается одинаковой, а именно,
свыше 90%
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8,1.2 Short discussion of the estimate M'

Using 1.9e instead of e, the result is in general different from M. Denoting 
this new estimate by M', its definition is clearly

M'
I (1 .9e)2 +  ( j c - M ') 2

-  00 

00

Г 1
------------------------------------------------  f ix )J (1.9« )2 + ( x - M ' ) 2

(108)

The isolines of relative efficiencies—similarly as was shown for E and M 
in Fig. 31—are given in Fig. 46 for E and M ' and for the f T(x) supermodel. The 
relative efficiencies are also given in Fig. 47 for M and M', respectively, to 
compare these two variants of most frequent value procedures.

-ÜE.nM,

Fig. 47. Comparison of M and M' on the 
supermodel of Tukey type

47. ábra. Az M és AT összehasonlítása 
a Tukey-féle szupermodellen .

Рис. 47. Сопоставление M с Mr 
в супермодели Тьюки.

Fig. 46. Comparison of arithmetic means and 
generalized most frequent values (Л/ ' belongs to 
к = 1.9) on the supcrmodel of Tukey-type. (For 

notations, see caption of Fig. 31)

46. ábra. Számtani átlag és a k=  1,9-hez tartozó 
általánosított leggyakoribb érték (M') 

összehasonlítása a Tukey-féle szupermodellen 
(a jelöléseket illetően 1. a 31. ábrát)

Puc. 46. Сопоставление 
среднеарифметического и обобщенного 

наиболее частого значения (ЛГ) при к=  1,9 
в супермодели Тьюки (условные обозначения 

как на рис. 31.).

Аг (М) _
А2 (М’1 пм.
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8.2 Optimum estimates for an arbitrary member of the distribution family f a(x)

8.2.1 Formula for the weight function and the parameter of scale to be used. 
General most frequent values

Substituting an arbitrary element of the f a(x) supermodel in its general 
form given by Eq. (88c) into Eq. (98), i.e. minimizing the loss of information, 
we get the same, extremely simple form of weights to be used as by substituting 
the Cauchy distribution. The weight function coincides with the density func­
tion of the substituting distribution exclusively in the case of a Cauchy distribu­
tion [H a ja g o s  1985a]. (Consequently the weighting according the Cauchy 
density function is more effective for «+ 2 than the weighting according to the 
actual f a(.x) density function— see Eq. (16)—even if we were to know this density 
function in advance.)

Which value must be used as parameter of scale? The asymptotic scatter 
(Eq. (80)) is required to be minimum, and if f a(x) is the actual distribution, this 
is fulfilled by S satisfying

S2

( f l+ 1 )
( x - M k)2

,-------------,-т Да) dx?2 i / ----- \ 2 l 2  '[S2 + ( X - M J T

1
2i2[S2 + (a — M k)2]

f i x)  dx

(109)

[H a ja g o s  1985a]. (Two remarks: substituting Eq. (88c) in Eq. (99), we get the 
same formula; in the case of a = 2 Eq. (109) is equivalent with Eq. (28).)

In Eq. (109) Mk is the generalized most frequent value estimated by the 
formula

Mk

у ____ (£e)2 s
, 4  (Are)2 + (х, — M k)2 У 

у  ike)2 
, = . ike)2 + i x - M k)2

( H O )

The value к in Eq. (110) can be defined as the quotient S/e (the value S satisfies 
Eq. (109), E satisfies Eq. (28)). The resistance of the procedure on the ground 
of Eq. (109), however, becomes more and more questionable at great values of 
a. It is much more practical to determine the dihesion and to multiply it by the 
£-value calculated according to the empirical formula:

k i n I
-----  1 |/a-|/2

I fa —  \ H------
2 n |3 ia> 2). (Ill)
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(The corresponding k{a) curve is shown in Fig. 48). Consequently, if we know 
that the type of actual error distribution can be expected in the neighbourhood 
off a(x) (to a given а-value), we use with k = k{a) Eq. (110) and

3 ÿ
h [ e 2 + { x - M k)2]2 
" 1 

i? 1 [£2 + ( .v -M t)2]2

( 112)

(as a twofold iteration) to determine Mk, the general most frequent value. In 
practice, it is very important that the program for determining the general most 
frequent value (Mk) differs only in a single multiplication from the program for 
determining M.

k t»1

0 U       ,----------  --  —г  ---------. — —  - , -------------------12 ID 20 30 40 SO °

Fig. 48. Curve giving those A-values to be used to achieve an efficiency of 100% for an
/»(-^-distribution

48. ábra. A görbe azokat a A--értékeket adja meg, amelyekkel adott «-hoz tartozó/„(.v)-nél
100%-os hatásfok érhető el

Puc. 48. Значения к в виде кривой, с которыми при любом/„(х) для заданных а можно 
добиться эффективности в 100%.

We have no space here to discuss the problem of type determinations. (In 
the program library of the Geophysical Department of the University of Mis­
kolc there are programs for this purpose.) One possibility in the f a(x) super­
model should be mentioned : the sum counterpart of the integral formula given 
in Eq. (80) (see Eq. (142)) for estimating the asymptotic variance (for large n) 
can be minimized by suitable S = ke (see also Eq. (113)); divided by dihesion 
e, the к = k(a) value obtained defines the type parameter a, k(a) being a 
monotonie function. The use of the well known ‘y 2 test’, however, is dangerous 
(see Appendix III): this classical method, calculating on commonly used levels 
of significance, can lead to such great losses in efficiencies which are no longer 
acceptable.
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8.2.2 Efficiencies for the supermodel f a(x). The estimates M " and M'". Some 
conclusions

Using к = k(a) for a given a, the asymptotic variance can be calculated 
easily for the whole supermodel f a(x) as for these cases the following equation 
clearly holds (cf. Eq. (80))

A 2k{a)
[(/се)2 + X2l2/„(.v) dx

(ke)2 — X2 
[{ke)2 + X2]2

- 2
fal^) dx

(113)

On the other hand [Hajagos 1985a], the minimum variance for every a >  1 is 
given by

<114)
(In paragraph 4.4.2 the formula for the Cramér-Rao bound is given; substitut­
ing Eq. (88) in this expression, the result is Eq. (114).) Consequently, the 
absolute efficiencies of algorithms defined by к are to be calculated as

ek{a) A j ja )
Alla)

(115)

The question arises as to which values of к should be used beyond the 
alreadv chosen k=  1.9 and the original к = 1 ? Figure 49 gives the square roots

Fig. 49. Pair of curves (giving the quotient of accuracies) for defining M" (i.e. Mk for k = 2A)

49. ábra. Pontosságarányokat feltüntető görbepár az M “ definiálásához (AT azonos Mk-val
к = 2.4 esetén)

Puc. 49. Пара кривых с соотношениями точностей для определения М", равным Мк при
к = 2.4.
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of the efficiencies on the ordinate, i.e. the curves show the relative accuracies, 
otherwise Fig. 49 is the same as Fig. 45. If we ‘approve’ only 3% in the loss of 
accuracy for the Gaussian distribution (instead of 5% in the case of M') then 
k = 2.4 is to be used, and the corresponding Mk is denoted by M"; the loss of 
accuracy in the case of the Cauchy distribution is about 9%. The corresponding 
loss in efficiency is 16.8%; if the Cauchy distribution very rarely occurs, this 
efficiency of 83.2% (or even less) is also acceptable. The Mk estimate working 
with £ = 2.8 is optimum in the middle of the Jeffreys interval, i.e. at a - 8; its 
symbol is M'".

The procedure determining M' is optimum at /„(.^-distribution of a = 4.4; 
similarly the value a = 6.2 belongs to M". These density functions are shown in 
Figs. 50 and 51, respectively; / 4 4(.x) has not too heavy flanks, and in the case

Fig. 50. Density function of/„(.v) for a = 4.4, for which the A/'-estimate (using £ = 1.9) has an
efficiency of 100%

50. ábra. Az f a(x) sűrűségfüggvény a = 4,4 esetén; erre az eloszlásra 100% a k = 1,9-del számított
M' hatásfoka

Puc. 50. Плотностная функция f„(x) для а = 4,4: для данного распределения эффективность 
М’, рассчитанного для к= 1,9, составляет 100%.

Fig. 51. Density function of/„(.x) for a = 6.2, for which the M"-estimate (using k=  2.4) has
maximum efficiency

51. ábra. Az/„(.v) sűrűségfüggvény a = 6.2 esetén, amire az M"-becslés (£ = 2,4) maximális
hatásfokú

Puc. 51. Плотностная функция /„(.y) для а = 6,2, при котором оценка М" (£ = 2,4) обладает
максимальной эффективностью.
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of fe.2(x) we can already speak about short flanks (shorter than those of the 
distribution of Newcomb's data, shown in Fig. 38).

Although Figs. 52 and 53 have different abscissae (these being a and 
l/(cr — 1), respectively) both refer to the distribution type. The ordinates are the 
same these being in both figures the relative accuracy Aopl/Ak in per cent for M, 
M \ M" and also for the arithmetic mean (E). For the last of these the Aopt/E 
value can be given in a very simple analytical form (see Eqs. (89) and (114)):

(a + 2) ( a - 3) 
a(a- 1)

% (e>3). (116)

This is the limit case if a -> oo and at the same time к —► oo, i.e. least squares 
calculations can be regarded as general most frequent value calculations, too. 
The domain of great А-values, however, does not define robust procedures: as 
is clearly shown in Fig. 53 (see curve E), the relative accuracy (the square root 
of the efficiency) rapidly decreases already in the very neighbourhood of the 
Gaussian distribution. The other curves in Fig. 53., however, show excellent 
robustness the upper value being 95% (or even very near 100%) in a broad 
type-interval.

Fig. 52. Quotients of accuracies versus a (type-parameter), for arithmetic means (£) and 
different most frequent values

52. ábra. Pontosság arányok az a típusparaméter függvényében számtani átlagokra (£) és 
különböző leggyakoribb értékekre

Pia . 52. Соотношения точностей как функции типового параметра а для 
среднеарифметических (Е) и различных наиболее частых значений.
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Fig. 53. Quotients of accuracies versus 1 /(a — 1) for different estimates 

53. ábra. Pontosság arányok l / ( u -  I) függvényében különböző becslésekhez 

Рис. 53. Соотношения точностей как функции 1/(а- 1) для различных оценок.

It is obviously more advantageous to use l/(a -  1) as the abscissa than 
simply a. (Its theoretical background is that type differences measured as 
differences of l / ( a - l )  values are approximately proportional to other 'type 
differences’ defined in mathematical statistics; Csernyák [unpublished manus­
cript] deals with this problem. Using the quantity l/(a— 1) as the abscissa, the 
interval between 0 and 1 (i.e. between the Gaussian and Cauchy type) is the most 
important one, that part between 0.1 and 0.2 being by far the most interesting 
one. This is entitled 'Jeffreys interval’ already mentioned as the a interval, this 
was defined by 6 <a< 10).

Table V I  shows efficiencies for five types of general most frequent values 
(including E for к -> oo), and for the end points of the afore mentioned basic 
interval 0 < 1/(ű— 1) < 1 (i.e. for Gaussian and Cauchy types). The author 
hopes that a detailed discussion is superfluous but a particular fact must by all 
means be mentioned to be able to make real comparisons. The Princeton study 
of robust estimates [Andrews et al. 1972] dealt with 68(!) different procedures 
applied to samples coming from a great variety of distribution types. ‘No 
estimate in this study achieves 95% efficiency at normal distribution (relative to 
the mean) and33% efficiency at the Cauchy (relative to the maximum likelihood 
estimate) simultaneously for all sample sizes 5, 10, 20, 40’ [Andrews et al. 1972, 
p. 253]. Remembering the behaviour of the most frequent values at small sample 
sizes (showing approximately the asymptotic behaviour) and looking at the 
efficiencies of 96% and 77% of M'" in Table VI, the conclusion can be drawn
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that the application of the general most frequent value calculations can definite­
ly be proposed for geophysicists and geologists (and also for experts in other 
branches of science, too,) because of their robustness and other properties, see 
Table 111. The flexibility must be separately enhanced: the optimum procedure 
is defined always by only a single parameter (Л).

Estimates
Defining

factor
<*)

Efficiencies о

for Gaussian 
distribution

the estimates

for Cauchy 
distribution

M 1.0 73.7% 100 %
V/ 1.9 90.2% 90.2%
M 2.4 94.1% 83.2%
M"‘ 2.8 96.0% 77.4%
E X 100 % 0 %

Table VI. Efficiencies of various generalized most frequent value calculations (the calculation of 
arithmetic mean denoted by E as the limiting case is included), for two types of probability

distributions

VI. táblázat. Hatásfokok kétféle eloszlásra és különböző általános leggyakoribb értékekre 
(beleértve határesetként az £-vel jelölt számtani átlagképzést is)

Таблица VI. Эффективности двух распределений и обобщенного наиболее частого 
значения, включая — в качестве предельного случая среднеарифметическое Е .

8.2.3 Mk-fitlings

It is obvious that fitting problems with more than only one single unknown 
occur in practice much more frequently (as a part of our geophysical interpreta­
tion algorithms) than the simplest case. This short introductory monograph has 
not the possibility to deal with these cases in detail but after a slightly more 
detailed discussion of the generalization of the simplest case and remembering 
Sections 2.4 and 3.3, fitting problems can be treated easily.

Adjustment according to the general most frequent value can be 
generalized in the same way as the simplest case: the weights

(ke)2 + [Xi- 7Tp; y,)]2
are to be used (in every fitting step of the twofold iteration) instead of

£2 + [.v, -  Tip; y,)]2 ’

supposing that the errors of .v are distributed according to /a(x), (k = k(a), see 
Eq. (111)).

In some cases there are connections to be exactly fulfilled among the
components pv, p2, . . . ,pj......p} of the parameter vector p. (A classical example
is that the sum of the angles of a triangle must be 180°.)
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Introducing the symbol
di = x - T {  p;y,), (118)

the /-th constraint can be written as

Q p) = 0. (119)
These constraints can be taken into consideration most easily for least squares 
calculations by using the so-called Lagrange multipliers and fulfilling

X  2 , С , ( р )  +  X  df  =  m i n - ( 1 2 0 )
/=i j — l

Since, clearly,

]~] [fkef + dj] = min. (121)
i= 1

is the generalization of Eq. (38a), in the case of conditions to be fulfilled, 
analogously to Eq. (120),

exp X  а д / о_/ = l
П [(ke)2+df] = min. ( 122)

is to be solved (after logarithmization the analogy is obvious). An important 
application is that of fitting with spline functions. (The program for spline fitting 
according to the general most frequent values—also containing some results 
from the following section -is available in the Geophysical Department of the 
University of Miskolc.)

8.2.4 Calculation of errors

In close connection with Eq. (121), it should be mentioned that a possible 
measure of the error is

1

(123)

[Fkrenczy et al. 1988], if к was used during the fitting. If nothing is known 
about the type of distribution, and/or only the error itself is of interest, fitting 
is to be made using k = 2, and the following formula is applied for uncertainty:

l

U = e (123a)
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New error definitions are unavoidable as the sample variance is sensitive 
to outliers to an extreme degree, and—on the other hand—its asymptotic 
variance (the ‘error of the error’) is infinite already at f 5(x) (and naturally for 
all f a(x) distributions for which a< 5 holds [Hajagos and Steiner 1988]). These 
new error definitions give for the whole f a(x) supermodel with good approxima­
tion the value of (1/2) • [,F_1(1 -  1 /6) — 7r_ 1 ( 1 /6)] [Csernyák et. al. 1988], i.e. it 
is twice as likely that for the actual deviation \dt\ < U holds than the fulfilment 
of the relation d, > U. (N. B. the same is approximately valid for a in the case 
of Gaussian distribution.)

U and Uk obviously characterize the error of a single measurement. As for 
the errors of the general most frequent values, however, for them naturally the 
asymptotic variance or asymptotic scatter is characteristic. As Hajagos [1985a] 
has shown, in this case the formula

A{Mk) =
ke ]/«(Á£) -  n2 
ln 2 — «(/re)

(124)

holds, where «(.) is defined by Eq. (22) (with similar heuristic meaning: this is 
the effective number of data divided by «); n2 is defined by

n2

00(* (  (M 2 V
\(ke)2 + d f)

J\x) dx

(i.e. n2 is the mean of the squared weights). Equation (81) is a special case of 
Eq. (124) with k = 1 ; namely, in this case n2 = 3/4 • n(ke) holds. For the super­
model f a{x), AiMk) differs from U only by some per cent, 1.066/ = AiMk) is 
approximately valid, and on the basis of this fact it is understandable that small 
samples also behave approximately according to the asymptotic rules.

8.3 Variants with increased resistance: Mkh- and Mkc-fittings 

The IC-function of the M^-estimates has the form

IC‘W  = “ ns‘ W T ?  (l25)

(the factor depending upon fix)). For great values of |x|, |IC| is proportional 
to 1/1 jc|—but there are cases for which this degree of diminishing is not enough 
[Z il a h i- S ebess 1987]. In the following, two possibilities are shown for increasing 
the resistance (in paragraphs 8.3.1 and 8.3.2).
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8.3.1 Cutting at <pmin and its influence on the efficiencies 

Using the weight function

9k(x) = (he)2
if <pk(.y) ̂  tpmm,

9кь(х) = - (ke)2 + X 2  ’ (126)

L 0. if tpflx) < <pmm.
ICkb(.v) = 0 holds for |x| > bkc, where

h = I / - - —m— . (126a)
V 9 m  in

If / (-v) is symmetric to the origin, the corresponding asymptotic variance of the 
Mkb values obtained is given [H a jag os  and Stein er  1988] by the formula

x2(ke)4

a- —
л кЬ

-  b h :

[(Are12 + л-2]2/(*) d-Y

- bkt:

r (ke fl-x flke)2 ... . . 2 h(kefl ^ 2/(.v) d.v— - -0 - , ,, , 0  ffbke)

( 1 2 7 )

[(Ae)2 + .v2]2 (Arc) + (Me)*

Figure 54 shows the efficiency curves for t p m in  =  0 . 1  and 0 . 2 ;  in both cases 
к = 1 . 9 .  The efficiency curve is also drawn for t p m m  = 0  (i.e. also for M') for 
comparison. It is clearly seen that <pm m  = 0.1 is by all means permitted and also 
at t p m m  =  0 . 2  the decrease of efficiency is nowhere greater than 3 % .

The increase in the resistance unavoidably causes the decrease of effi­
ciencies as ‘good' data are also cut. The analogy of A n s c o m b e  [ 1 9 6 0 ]  for such 
cases is very appropriate, therefore the paragraph relating to this is cited from 
H u b e r  [ 1 9 8 1  p. 7 3 ] :  ' A n s c o m b e ' s  [ 1 9 6 0 ]  comparison of the situation with an 
insurance problem is very helpful. Typically a so-called classical procedure is 
the optimal procedure for some ideal (usually normal) model. If ... we want to 
insure against accidents caused by deviations from the model, we clearly will 
have to pay for it by sacrificing some efficiency at the model. The questions are, 
of course, how' much efficiency we are willing to sacrifice, and against how bad 
a deviation we would like to insure.'
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efficiency
ЮС”'

k = 1.9; b=2 ( / min =0.2} 

k=1.9 ; b=3 ( f m;n=0.1)

Q - 1

GAUSSIAN CAUCHY

Fig. 54. The efficiencies show not too great decrease if data with weights less than 0.1 and 0.2. 
are neglected, in order to increase the resistance

54. cibra. A hatásfokok nem csökkennek túlságosan nagy mértékben, ha a rezisztencia növelése 
céljából elhagyjuk a 0 .1-nél vagy 0.2-nel kisebb súlyú adatokat

Puc. 54. Не слишком значительное убывание эффективностей при исключении данных 
весами менее 0.1 или 0.2 с целью увеличения устойчивости.

8.3.2 Increasing the resistance by Mkc-fitting

A/t£.-fiUing is defined using the following weight function [H a ja g o s  and 
S tein er  1988]:

This is obviously a smooth weight function but it guarantees excellent resis­
tance.

A detailed discussion of this case (e.g. the formula for the corresponding 
asymptotic variance) is given by H a ja g o s  and Stein er  [1988]. Figure 55 shows 
efficiency curves for c=1.5 and c=1.0, using k= 1.9 in both cases, and tor 
comparison the efficiency curve of M (i.e. of Mk with к = 1.9) is also given.

In Fig. 55 it can clearly be seen that this way of increasing the resistance 
is always applicable for c= 1.5 and is often applicable for c= 1.0 the maximum 
decrease of the efficiency being even in the latter case only 2%.

if л < iAe;
(128)<Pkc(x)
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efficiency

0 0.5 1 _ 1_
GAISSIAN CAUCHY q-1

/'/</. 55. Efficiency curves versus l/(a — 1) of the more resistant variants M kc o f M '

55. ábra .  Hatásfok-görbék 1 / { и -  1) függvényében az A t  fokozott rezisztenciájú M kc változataira

Puc. 55. Кривые эффективностей как функций 1 /(а - 1) для вариантов М’ с повышенной
устойчивостью ( М кс).

If не know nothing about the type oj actual distribution and increased 
resistance against outliers seems to be necessary, our standard procedure of fitting 
will be defined by k=  1.9 or 2, and c= 1.5.

*  *  *

The problems treated in the Appendices are instructive and useful both for 
a deeper understanding of concept dealt with in the present short monograph, 
and for applying these concept in geophysics and in geology (or in other 
branches of science and in practical applications).

A P P E N D I X  I
Comparisons with other robust methods

C la er b o u t  and M u ir  [1973] have proposed the use of the median (or more 
generally the use of the L, norm) for geophysical purposes. The median is 
perhaps the oldest robust estimate. But what about its efficiency? The answer 
is given for the f a(x) supermodel in Fig. 56 comparing the asymptotic scatter 
of the median (m) with the optimum one. The curve for E (i.e. for the L2 norm) 
is also given. In Fig. 57 the surplus of data are shown (in per cent) needed for 
the same accuracy which characterizes the optimum algorithm. The curves for 
the median (m) and for M’ (Mk with к = 1.9) considerably differ from each other: 
we find the minimum surplus of 20% (and occasionally a surplus of greater than 
50%) too much from the economical point of view in the case of m (to say 
nothing about the less favourable calculating procedures based on the L, norm).
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hilf. 56. .4opl, A curves (square root of efficiency) 
o f  sample medians (h i) and of arithmetic means 

(E) versus 1 (n— 1 )
56. ábra. A hatásfokok gyökei 1 (и -  I) 

függvényében az m mintamediánokra és az 
E számtani átlagokra

Pue. 56. Кривые квадратного корня 
тффсктивностей как функций 1 (а -  I) для 
медиан т и для среднеарифметических Е.

Fig. 57. The curves show the percentage of 
extra data needed to achieve the same accuracy 

as by always using the optimal estimation 
procedure

57. ábra. A görbék azt mutatják, hogy hány 
százalék adattöbblet szükséges ahhoz 

viszonyítva, mintha minden closzlástípushoz az 
optimális becslési eljárást alkalmaznánk

Pite. 57. Относительное количество 
дополнительных данных (в"J  по сравнению 

с тем. что было бы необходимо при 
применении способа оптимальных оценок.

More sophisticated robust methods than the median are the a-trimmed 
mean (say, with a = 0.1) and the Hodges-Lehmann estimate, both having a 
maximum efficiency in the Jeffreys interval (Fig. 58). The basic formulae for 
the calculations are given in Chapter 4 and we get in this way e.g. for the 
efficiencies of the Hodges-Lehmann estimate, the following expression in the 
case of the fJ.x) supermodel :

_ \2(а+2)сЦ2а)
Í HX~ a (a - \)c \a )
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where c(a) is to be calculated according to Eq. (88a) (Table V). If we choose a 
most frequent value characterized by a similar place of maximum (£ = 2.8 and 
c= 1.0), the much greater robustness and the economic advantages of the most 
frequent value calculations are obvious.

The generalization of the Hodges-Lehmann procedure into a fitting method 
itself is also problematic. Problems of this nature cause no difficulties when 
using the so-called Danish method [cited, for example by Detrekőí 1986]. One 
version of this is defined by the weight function:

(129)

d{ is given in Eq. (118) and В is defined by
D ■ med dx

(129a)0.6745

efficiency
10C“'

Jeffrey
interval

GAUSSIAN
0.5 15P

CAUCHY

Fig. 58. Efficiency curves for three types of estimation and for supermodel /„(v)

58. ábra. Hatásfok-görbék háromféle becslésre és az f j x ) szupermodellre 

Puc. 58. Кривые эффективностей для трех различных оценок и для супермодели /„(*).
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The corresponding efficiency curve for D = 1.5 is shown in Fig. 59 (D-curve), 
having a maximum efficiency of about 90% [Stein er  1987]. The efficiencies of 
m, M' and E are also shown to compare them with the efficiency of the Danish 
method. The M' procedure seems to be even more advantageous than this new 
type of robust procedures.

|I e(%)

Fig. 59. Efficiency curves for the generalized most frequent value M ', for the sample median in. 
for the arithmetic mean E, and for an alternative version (D) of the so-called Danish method

59. ábra. Hatásfok-görbék az A/' általános leggyakoribb értékre, az m mintamediánra, az 
E számtani átlagra, valamint az ún. dán módszer egy változatára (D)

Puc. 59. Кривые эффективностей для обобщенного наиболее частого значения М \ для 
медианы т, для среднеарифметического Е. а также для варианта т.н. датского

способа (D).

APPENDIX II 
M*-estimates

If we use the square of the weight given in Eq. ( 117), i.e. applying the weight 
function

(ke f
[(k e f  + df]2

(130)

with dr s given in Eq. (118), a new procedure is defined. Similarly to M, M \ M" 
and M'" the symbols M*, M*\ M*" and M*'" are defined by k= 2; 3.27; 4 and 
5 (with M* having maximum efficiency at a = 2, i.e. at the Cauchy distribution, 
M* at a = 6 and M*"' at a ä 10; M*' has the same efficiency for the Gaussian 
and the Cauchy distribution).
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It is well known that the middle of the Jeffreys interval belongs to a = 8. 
For comparison, this density function is shown in Figs. 60 and 61, in which 
primarily the four variants of weight functions are shown both for cp(.) according 
to Eq. (117) (Fig. 60) and for according to Eq. (130) (Fig. 61). The much 
better resistance of the latter is obvious but for adequate investigation of this 
question the IC-curves are necessary.

Fig. 60. Weight functions belonging to standard / 8(.v) distribution and to various Af-estimates.
Dotted line: density function f s(x)

60. ábra. Standard /8(.v)-eloszláshoz és különböző ЛГ-becslésekhez tartozó súly függvények. 
Az /8(.v) sűrűségfüggvényt a szaggatott görbe mutatja

Pue. 60. Весовые функции для стандартного распределения / 8(х) и разных оценок М. 
Пунктирная линия обозначает плотностную функцию f s(x).

Fii/. 61. Weight functions belonging to standard /8(.v) distribution and to various AT*-estimates.
Dotted line: density function /8(.v)

61. ábra. Standard / 8(.v)-eloszláshoz és különböző Árbecslésekhez tartozó súlyfüggvények.
Az /8(.v) sűrűségfüggvényt a szaggatott görbe mutatja

Pue. 61. Весовые функции для стандартного распределения /8(.т) и разных оценок М*. 
Пунктирная линия осознание! плотностную функцию /8(.т).
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To calculate IC-values, first the formula of the corresponding tp*(.) must 
be given :

<p*(x) = ----(131)
(1 + x2)2

then, according to Eq. 64 (with S= ke), the IC-functions are the following for 
/ 8(x) (to be calculated by £ = 0.359):

IC(x, F8M k) =
(ke)2- y 2 

Kke)2+y2]2

1

2  4 -  ’

and

IC(x, Fs,Mt) =

(A-£)2 + .V
/ s ( J ' )  d  V

(ke)2~ y 2 
[(ke)2 + y :

[(A'£)2 + .Y2]2
M y)  dy

(132)

(133)

The corresponding IC curves are shown in Figs. 62 and 63. and for very 
large values of | x \ in Fig. 64. The resistance of A/*-methods is really much better 
than that of the original versions of the A^-fitting (original means here that 
Мц-methods were compared and not Mkh- or Mkc-methods of increased resis­
tance, see 8.3.1 and 8.3.2). But what about the efficiencies?

On the grounds of Eq. (71) and of Eq. (133) the asymptotic variance for 
M *-estimates is given by

[(Afi)2 + x 2
f j x )  d.v

A2
( A f i ) 2 - 3 . Y 2 

[(At£)2 + .Y2 ] 3

-  2

,/a (-Y ) d .V

(134)

Fig. 62. Influence curves for various M-estimates o f  the distribution / 8(.y)

62. ábra. Hatásfüggvények (IC-görbék) az / 8(.v) eloszláshoz tartozó különböző ^/-becslésekhez 

Puc. 62. Кривые эффекта для различных оценок М распределения / „ ( . y ).
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also taking Eq. (114) into consideration, the efficiency is easily calculated as 
AlpJA2.—Although on the one hand, the maximum efficiencies cannot reach 
100%, they are very near it and, on the other hand (the efficiency curves being 
slightly more flat than those of the Л/ц-estimates), the demand of robustness is 
somewhat better fulfilled in the case of M*-estimates than for M^-procedures 
(see Fig. 65).

1 IC(x,F9 i.)

0.8 -

Fig. 63. Influence curves for various A/*-estimates of the distribution / 8(.v)

63. ábra. Hatásfüggvények (IC-görbék) az / 8(х) eloszláshoz tartozó különböző V/’ -becslésekhez 

Puc. 63. Кривые эффекта для различных оценок М* распределения / 8(х).

Fig. 64. Differing resistance of the M- and 
A/*-estimates shown with IC-curves for large 

values of x

64. ábra. M  ill. Árbecslésekhez tartozó 
hatásgörbék nagy x-ekre, a rezisztenciában 

nutatkozó jelentős különbségek szemléltetésére
Puc. 64. Кривые эффекта для различных 

оценок М и М* при больших х-ах. Четко 
выявляются существенные различия 

в устойчивостях.
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Aopt M2

Fig. 65. Efficiency curves of M*-estimates for the supermodel f j x )  (the distribution type is 
characterized by l/(a -  1) and by a)

65. ábra. Hatásfok-görbék különböző Árbecslésekre és az f a(x) szupermodellre (az 
eloszlástípust 1/(ű-  1) és a egyaránt jelzi)

Puc. 65. Кривые эффективностей для различным оценок М* и для супермодели f а(х) (тип 
распределения равным образом характеризуется как 1 /(а — 1), так и а).

As a curiosity it is mentioned finally that if
n g 2

У —-------------- - (x:-M *)2 = minimum
k y  S 2 +  ( X f — M * ) 2 У '

(135)

were demanded primarily (fulfilled only step-wise in Mk iterations), after dif­
ferentiation and rearranging we get

M* =

n

1
S4xi

[S2 + (Xj — M*)2]2

Ii= 1
54

[S2 + { x -M * )2]2

(136)

which is really the iteration formula for M*-estimates (see the defining ex­
pression of weights in Eq. (130)).
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APPENDIX III 
Dangers of the ^2-test

The most commonly applied method for investigating “normality” is the 
well known / 2-test. Not only is the method itself given but also the table needed 
to perform such tests is given (for the commonly used significance levels) in all 
statistics handbooks [V in c z e  1968]. The question arises as to which values of 
a is the f a(x) distribution with a not negligible probability declared to be a 
Gaussian distribution, according to the / 2-test. According to the Monte Carlo 
investigations of H a ja g o s  [1984] ‘the normality was proved’ on the grounds of 
all samples investigated coming from the f a(x) distribution at a= 10, and the 
overwhelming majority of samples gave the same result at о = 8.

There are both economical and theoretical consequences. Concerning the 
first, if we use the least squares techniques (as “the normality is proved”), in the 
case o f /8(.v) we have—according to Eq. (116)—an efficiency of only 89%, and 
even in the case of a= 10 the efficiency is equal to 93%. Geophysical and 
geological data are too expensive for us to have to systematically throw out 
about 10% of our data.

If we regard the situation more generally, the main danger is that those 
experts can be misled on questions of normality who are cautious enough to 
make such tests, and this leads to secondary effects that are very much more 
dangerous for the great masses of appliers. In this sense we can even speak about 
the trap of the / 2-test.

APPENDIX IV 
Sterility of distributions

The notion ‘sterility of distributions’ can have various but rather trivial 
statistical meanings, jtoo: 1) there are no contaminations, 2) f(x)  = 0 holds 
outside a finite interval (‘absolute sterility’), etc.

For the applier a distribution can be called sterile if the flanks are too small 
to characterize real situations in the given discipline. As f (x)  > 0 for all ,v values 
for the commonly used models it is rather difficult to give an exact definition 
for the sterility. The definition in question cannot be a given analytical classifica­
tion of the asymptotic behaviour of the density function for large |x|-values. 
To avoid subjectivity, this notion must be defined on the grounds of prob­
ability theory, regarding at the same time the specific properties of the dis­
cipline studied. Consequently, the acceptable definition of sterility may very 
much depend on the discipline, or even on the concrete task within the given 
discipline.
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In the opinion of the author both demands are fulfilled concerning 
geophysics, if we analyse (for symmetrical distributions) the following estimate
of a symmetry point:

max (x.) + min (x.)
T = ------------------— , (137)

stating that for this estimate the law of large numbers cannot be fulfilled in the 
overwhelming majority of practical cases of geophysics and geology. In other 
words estimate in Eq. (137) is extremely sensitive even to a single outlier; 
because not all effects can be taken into consideration in the theoretical treat­
ment of geophysical problems, the probability increases with n that just such 
a neglected effect occurs—and this is equivalent with the statement that the 
reverse of the law of large numbers is fulfilled.

Csernyák  [1984] investigated this criterion of sterility for the / a(x) super­
model. He proved that the density function of the estimates defined by Eq. (137) 
is

g(z) = 2n(n -l)  J F(2z -  x) — F(x)n ~2 f(2z  — x)/(x) dx. (138)
—  00

On the basis of this formula C ser n y á k  proved in various ways that the law of 
large numbers is inversely fulfilled in a definite manner up to а-values of 5 or 
6; after an а-interval which is approximately independent of n, the law of large 
numbers is fulfilled and, in the case of a -+ oo the increase in the accuracy of 
the estimate given by Eq. (137) is already considerable. Consequently, the 
Gaussian distribution and distributions near it can really be regarded as ‘sterile’ 
from the geophysical point of view.

APPENDIX V
Permitted percentage of outliers for fittings executed according to the concept 

of the generalized most frequent value

The breakdown point was defined in Chapter 4 somewhat too arbitrarily : 
outliers were very far from each other in this model. Some actual practical cases 
need other models, too, as outliers can also occur in gathered form. Claerbout 
and Muir [1973] give a geophysical example: If line defects occur in the global 
seismological network, the value zero becomes very probable. Defects in the 
equipment however may also often cause the maximum value to occur. Conse­
quently, the asymmetric [/-distribution consisting of two Dirac functions at 
points x= + 1 and -  1 as an adequate model for many such cases seems to be 
useful (Fig. 66) : К is the ratio of the outliers.

The resulting general most frequent value estimate of the location par­
ameter is + 1 from K=0 to a given maximum value of K\ that is, this value is
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VK

Fig. 66. Asymmetrical {/-distribution

66. ábra. Aszimmetrikus {/-eloszlás 

Рис. 66. Асимметричное {/-распределение.

fully independent of outliers in this range of К values. This maximum value 
naturally depends on к or a (i.e. on the defining factors of the general most 
frequent value procedure); it also depends, to a limited degree on the choice of 
variant of the general most frequent value used. For the variant proposed in the 
present monograph this is the Kmax curve in Fig. 67, but if twofold iteration is 
carried out using

M„
it ‘1S2 + (xi- M k)2

(139)

i=i S2 + ( x - M k)2
and Eq. (109), the results are shown by the K^lx curve [FIa ja g o s  1985b], Let us 
remember that these two variants are fully equal for f a{x) distributions, but our 
present model (Fig. 66) is clearly very far from being such a distribution. In the

Fig. 67. Maximum percentage of concentrated outliers for various most frequent values Mk (full 
line). Dotted line belongs to a variant of the generalized most frequent value calculations where 

a scale parameter other than dihesion is primarily calculated

67. ábra. Koncentráltan jelentkező kieső adatok maximális aránya különböző Mk leggyakoribb 
értékekhez (folytonos vonal). A pontozott görbe az általános leggyakoribb értékszámítás azon 

variánsához tartozik, amelynél nem a dihézió-számítás a procedúra egyik alapeleme

Puc. 67. Максимальное отношение выпадающих данных, появляющихся 
концентрированно, к различным наиболее частым значениям Мк (сплошная линия). 

Пунктирная кривая принадлежит к тому варианту обобщенного расчета наиболее частого 
значения, при котором расчет дигезии не является одним из основных элементов

процедуры.
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interval 1 ^  к îg 2.8—which is also used in practice—differences are fortunate­
ly small thereby showing that when treating such problems the two variants can 
be regarded as being approximately the same.

In Eq. (109) a role is played by a therefore the meaning of the abscissa in 
Fig. 68 is the type of general most frequent value procedure used (defined by 
the type of f a{x) distribution for which the procedure in question is an optimum 
one). The known curve A^’x is once more shown in Fig. 68; no A ^x value is 
greater than 45.68% on the one hand and, on the other, Ä^*x tends to zero if 
a -* oo (i.e. if we approximate the least squares technique).

Fig. 68. Maximum percentage of concentrated outliers (/f“al), and of dispersed outliers 
(OUT“„). a in the abscissa, is the parameter used in the second variant of the generalized most 

frequent value calculations, having maximum efficiency for f a(x)

68. ábra. Koncentráltan jelentkező kieső adatok maximális aránya (/f“aj) és ugyanez, ha a kieső 
adatok nem tömörödnek (OUT“aJ . Az abszcisszában a az általános leggyakoribb értékszámitás 
második variánsában használt paramétert jelenti, amely az f a(x) eloszlásra szolgáltat maximális

hatásfokú eljárást

Puc. 68. Верхний предел процентного отношения (Ä^aJ  и то же при отсутсвии тенденции 
к концентрированию данны с грубыми ошибками (OUT^JJ. Параметр а в значении 

1 /(а -  1 ) абсцисс обозначает параметр, используемый во втором варианте расчета 
обобщенного наиболее частого значения обладающий максимальной эффективностью для

распределения /а(х).

Outliers, however, may occur in a form other than asymmetrically. If the 
dihesion e characterizes the single gathering of the data and other values occur 
arbitrarily (but without any expressed gathering), then

(a+1)2
(a+ l)2 + 4(a + 2)

OUT(a) = 1 - (140)
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gives the maximum permitted ratio of outliers in the sense that if the ratio of 
outliers of the investigated type is smaller than OUT(a), the procedure finds this 
to be a single gathering [Steiner 1985b]; a obviously refers here to the procedure 
used. The corresponding curve in Fig. 68 shows that this ratio may be greater 
than 50% (for a<3.8; that is, for 1 /(a -  1) > 0.35). Perhaps this is surprising 
but in special tasks (e.g. in astronomy) such a property can be advantageous. 
(The upper limit of OUT(e) is 75%). If, for the geophysical problem investigated 
it seems unreal to permit a greater ratio than, say, 50%, then M' (k — 1.9) can 
be proposed, at 40% the procedure M" (k = 2A) may be appropriate, and so on.

Fitting problems (with more than one single unknown) must be judged with 
an increased cautiousness from this aspect as the fitting procedure itself may 
produce a gathering of the di deviations characterized even by e = 0 if n is small, 
resulting in a simple interpolating hypersurface based on only a few points and 
completely neglecting reliable data. Therefore, if J  is the number of unknowns 
to be determined, then for the number of data relation (141) must hold with 
minimum c= 5 or 10:

Jи > г -------------
“  1 -  OUT(ű)

(141)

(In a very simple way we can say that we have c items of data for each of the 
unknowns.)

APPENDIX VI
Supermodel f j [ x )  and the possibility of increasing the efficiency

The first step in general most frequent value calculations is to fix the value 
of к to be used. If we know something about a, the к value is given by Eq. ( 111 ), 
if not (but maximum efficiency is required), primarily the type of distribution 
should be estimated. A possible solution of the problem was briefly mentioned 
in paragraph 8.2.1 : the sum counterpart of Eq. (113), i.e.

A 2
к

y  ( Xj - Mk)2
[0ke)2 + { x - M k,)2]2 

у  (ke)2- ( x -  Mk)2 ~2 
h  [{ке)2 + { х - М к)2}2_

(142)

is to be minimized according to к , and then Eq. (Il l )  defines a. But determina­
tions of this sort are not so easy to carry out in practice and we have no 
possibility here to deal in detail with such problems. It is obvious that n is 
required to be sufficiently large, as a sine qua non of whatever solution of the 
problem.

We are now interested, however, just in the /r-value to be used, i.e. we need
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that к value which minimizes the expression in Eq. (142). The sample size n must 
also be large in this case. The following details relate to a supermodel differing 
from f a(x) as for the latter distribution family this method obviously always 
results in efficiencies of 100%. The probability distributions of the f a(x) super­
model, however, are very near the distributions occurring in practice, therefore, 
from the majority of the distributions of the new supermodel the only constraint 
is that they should not be too far from the actual cases occurring in geophysics.

For the above mentioned purposes, the following supermodel is defined:

f j x )  =
л m
m (143)

The behaviour of the flanks causes no problem for whatever sort of estimates 
since all moments are finite for all distributions of the supermodel. The ex­
pression for calculating they-th moment is:

mjlmr

Г
(144)

If m (the type parameter) equals 1, JJx)  gives the Laplace distribution; for 
m = 2, f m(x) is clearly the Gaussian distribution, and if m -'cc  we get uniform 
distribution, i.e. the/m(x) supermodel contains three distributions from the most 
well-known ones. For small values of m we get distributions being even more 
peaked than the Laplace distribution (see in Fig. 69 the density function for 
w = 0.5—like the Eiffel tower). And for large values of parameter m we get 
somehow rounded off uniform distributions (see, e.g., in the same figure the 
f m(x) curve for m = 10). Figure 70 shows the curve of the dihesions e, versus 1 /m.

When discussing absolute effectivities, the formula for the Cramér-Rao 
bound (i.e. for the minimum possible asymptotic variance, see 4.4.2) must also 
be given :

If we carry out most frequent value calculations in the original form, i.e. 
with k=  1, the as>mptotic variance must be calculated according to Eq. (81) as 
e2/n(e). The formula for the efficiency is consequently

~ M (146)
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Fig. 69. Two distribution types shown by their density functions of the supermodel f m(x) 

69. ábra. Két f m(x) szupermodellbeli eloszlástípus sűrűségfüggvénye 

Рис. 69. Плотностные функции двух типов распределения в супермодели f m(x).

Fig. 70. Values of dihesion e for supermodel 
f j x )

70. ábra. Az e. dihézió értéke az f m(x) 
szupermodellre

Puc. 70. Значения дигезии с для супермодели 
f j x ) .1.0 1.5
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In Fig. 72 the thick continuous line (denoted by M) gives the eM values 
(versus 1/m). Although the most frequent value calculation is the optimum 
algorithm for the Cauchy distribution—which is extremely unusual for the 
f m{x) supermodel,—we find the maximum efficiency value of 92% to be satisfac­
tory. Since the arithmetic means calculation is the optimum algorithm for the 
Gaussian distribution (i.e. for a member of the. supermodel f m(x)), it is evident 
that the least squares efficiency curve reaches the value of 100% at m = 2 (thin 
continuous line in Fig. 72 denoted by E). These efficiencies are to be calculated 
according to

(see Eqs. (144) and (145)).
The efficiency curve of the medians (thin dotted line in Fig. 72 denoted by 

m) also reaches the maximum possible value as the Laplace distribution is also 
a member of the supermodel f m(x) (for m = 1), and the calculation of sample 
medians is the well known optimum algorithm for the Laplace distribution. In 
that the asymptotic variance for the f m(x) supermodel in the case of sample 
median calculations is given by

Our question is: How can the efficiency be increased if we use—within the 
concept of the most frequent value calculations—the к value which minimizes 
the asymptotic variance?

In our theoretical investigation, based on the f m(x) supermodel, in the first 
step those к values are to be determined which minimize the expression

e,mean (147)

A imedian (148)

the formula for efficiencies is clearly

(149)

о

( 150)
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The results are shown as к and 1 /к curves versus l/m in Fig. 71. The interval 
m> 2 is characterized by k=  oo, i.e. the least squares method is the best 
generalized most frequent value technique for these distributions, these distribu­
tions seldom occur in geophysical practice. Denoting by eM max the maximum 
possible efficiency within the concept of most frequent value calculations, we 
have to determine for all m values the minimum A2Mk value based on Eq. (150), 
Ai\n based on Eq. (145), and eM max according to

'  M , max
A 2л мк

(151)

The eM max curve is given in Fig. 72 (denoted by M). The relation

max =

trivially holds. The fact, however, that sometimes

^ M .  max ^

can be valid, calls our attention to the fact that M-calculations are to be 
regarded as a reserve possibility within the concept of the most frequent value 
calculations, to further increase the efficiency.

* * *

Fig. 71. Values of к (and 1 /к. respectively) to 
obtain minimal asymptotic variance of the 

generalized most frequent values for the 
supermodel f m(x)

71. ábra. Azoknak a к (ill. 1 /к) értékeknek 
a görbéi, amelyekkel minimális az általánosított 

leggyakoribb érték-számítás aszimptotikus 
szórása az f m(x) szupermodell closzlástipusaira

Puc. 71. Кривые значений к или \jk, при 
которых асимптотическая дисперсия 

обобщенного наиболее частого значения 
минимальна для типов распределения 

супермодели f m(x).



256 F. Steiner

Fig. 72. Efficiency curves for supermodel f m(x) and for the following estimation procedures: 
arithmetic mean (E). sample median (med), most frequent value (M).  generalized most frequent 

value minimizing the asymptotic variance (M)

72. ábra. Hatásfok-görbék az / т(л) szupermodellre és a következő becslési eljárásokra: számtani 
átlagképzés (E), mintamedián (med) számítása, leggyakoribb érték-számítás (M) és az 

aszimptotikus szórást minimalizáló általános leggyakoribb érték-képzés (M )

Puc. 72. Кривые эффективности для супермодели f m(x) и для следующих оценок: 
среднеарифметическое Е. медианы т. наиболее частое значение М и наиболее частое 

значение А/, полученное путем минимализации асимптотической дисперсии.

Epilogue

It is very much hoped that this short monograph has given a general picture 
of the principal features of the method of most frequent value procedures and 
related topics. Although formulations were more concise than detailed, suf­
ficient detail was provided to enable such statistical procedures to be creatively 
applied in the development of geophysical algorithms. Some theoretical results 
(concerning, for example, unicity and existence), and a number of complicated 
applications, were deliberately not mentioned.
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LEGGYAKORIBB ÉRTÉKEK

STEINER Ferenc

A jelen monográfia a leggyakoribb érték koncepcióján alapuló modern statisztikai algoritmu­
sokkal foglalkozik (eredeti és általánosított alakjában egyaránt értve a leggyakoribb értéket). 
Modern statisztikai eljárások azért szükségesek, mivel a legkisebb négyzetek elvén alapuló, általáno­
san használt eljárások nem elég nagy hatásfokúak a földtudományokban általában előforduló 
hibaeloszlások esetén ; a Gauss-eloszlás előfordulása inkább számít kivételnek, semmint szabálynak. 
Jelen monográfia az elméleti alapokat is tartalmazza, hogy minél több speciális alkalmazást tegyen 
lehetővé, azaz hogy elősegítse a leggyakoribb értékek koncepcióján alapuló új geofizikai értelmezési 
algoritmusok kifejlesztését.

НАИБОЛЕЕ ЧАСТЫЕ ЗНАЧЕНИЯ

Ференц ШТЕЙНЕР

В настоящей монографии рассматриваются современные статистические алгоритмы, 
основанные на представлении о наиболее частом значении (понимаемом как в первичной, так 
и в обобщенной форме). Необходимость в современных статистических способах возникает 
в связи с тем, что общепринятые способы, основанные на принципе наименьших квадратов, 
не достаточно эффективны в случае распределений ошибок, обычных в геологических науках, 
а распределение Гаусса встречается скорее в качестве исключения, нежели правила. В настоя­
щей монографии приводятся также и теоретические основы, чтобы обеспечить возможность 
как можно более обширного применения в специальных целях, то-есть, чтобы способство­
вать разработке новых алгоритмов геофизической интерпретации, основывающихся на 
представлении о наиболее частых значениях.
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