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Magyar Allami Edtvés Lorand Geofizikai Intézet
GEOFIZIKAI KOZLEMENYEK
2%

GRAVITATIONAL MODEL CALCULATIONS

A. PINTER*-R. STOMFAI*

1. Introduction

The terms “regional” and “residual anomalies” are as old as gravimetry itself. Fol-
lowing the classical works of Peters et al. in the late 1940%es and 1950’es, the computation
and interpretation of the anomalies of the vertical derivative have also become wide-
spread. In present-day practice it is customary to denote the derivatives and the results of
low-cut filtering as residual anomalies as well. Some authors prefer the term filtered ano-
maly, obtained by low-cut or high-cut filters. Filtered or derivated anomalies are some-
times referred to as transformed anomalies. The same term can also be used for a down-
ward or upward continued anomaly map, or to a contour map, if it had been derived
from a gravity anomaly map.

The term filtered anomaly will only refer, in what follows, to the particular compu-
tation by which the anomaly map had been constructed. It does not express the character
of the map or its geological meaning.

Generally, any practiced interpreter can tell, whether a certain map—obtained by
some low-cut filter matrix—is more similar to a residual or to a derivative anomaly map.
Otherwise, there is not too much chance to give any meaningful geological interpretation
to the map.

Residual anomalies have clear-cut geological meaning. If a slowly changing gravita-
tional effect exists, which distorts the gravity field of the body explored it can be eli-
minated by an appropriate low-cut filter. The result will be, at least theoretically, a resi-
dual anomaly map. In reality, of course, the residual anomalies (their shape and magni-
tude) strongly depend on the particular procedures by which they have been determined.

If there is a significant difference between the dimensions of the explored body and
that of the regional one, i.e. ifthere is a visiblefrequency difference between their effects on
the Bouguer anomaly map, then their separation is in principle unambiguous. Otherwise,
the separation of the two effects is uncertain ; i.e. we either “cut off’ some of the effects of
the explored body or we spare some distortions from the regional effect.

Any kind of formal separation can be performed by filter-matrices, to separate a
Bouguer anomaly map to formal regional and formal residual anomalies. There are no
exact rules for the selection of the filter parameters, they only depend on the experience of
the interpreting geophysicist.

Vertical-derivative-like anomaly maps do not have such clear-cut geological mean-
ing as the residual maps, even though they reveal much more about the shape of the body

* Hungarian Geophysical Institute ‘Roland E6tvos’, Budapest
Manuscript received 13. 5. 1978



6 A. Pintér-R. Stomfai

to an experienced interpreter than a Bouguer anomaly map. As a rule, vertical-derivative-
like anomaly maps are rather complex, many times they have to undergo further transfor-
mations to be applicable for geological interpretation.

It will be illustrated by a series of model-experiments that the anomaly maps trans-
formed by the low-cut filter-matrices of Meskoé (1965, 1966) frequently become vertical-
derivative-like, at least for grid-sizes applied in field practice. It will also be shown that
there exists a suitable linear combination of the Bouguer- and vertical-derivative-like
anomalies which approximates sufficiently well the shape of the body (Pintér and Stom-
fai, 1974). If independent auxiliary depth data (from bore-holes, seismics etc.) are avail-
able, a realistic contour map of the basement can be obtained by such a procedure.

2. Gravitational Model Calculations—Basic Ideas

Let us compute the gravity effect Ag and its vertical derivatives of a two-dimensional
body, and—starting out from these Ag values—the anomalies m(s, x) calculated by
means of the low-cut filters of Mesko. Grid-size s and the parameter x is continously
changed (Fig. 1). (Here s denotes sampling distance, x is a constant characterizing the
fall-off of the weight function of the filter. m(s, x) refers to anomalies obtained by low-cut
filters.)

The effect of the polyhedral two-dimensional body shown in Fig. 1 can be obtained
as a sum of the effects of faults. Since the effect of a single fault can be described by an
analytical formula, the same holds true for their sum (or difference). So, we can compute
by a single program the Ag, gz, g:: values on the surface along arbitrarily densely spaced
grid-points (at every 1 m. e.g.).

Low-cut filtering of the Ag curve has been performed by the matrices m(s, x), by let-
ting s assume values from 25 m to 300 m, and for any given s taking x=3, 4 and 6. (In
practice the Mesko filters with x=3. 4 and 6 proved to be the most efficient.)

It can be observed on Fig. 1that (for any x) the transformed anomalies gradually
become first-, then second-vertical-derivative-like, as s decreases. Extrapolating what has
been observed on the Figure we can state that for increasing values of s the regional ano-
malies approach a straight line, i.e. a constant value. If the value ofs, that is to say the size
of the matrix, is too large compared to the dimensions of the anomalies, the regional ano-
maly reduces to a single average constant, while the residual anomaly will be equal to the
Ag map minus this constant. By gradually changing (decreasing or increasing) the para-
meter s, we can obtain any possible transition between the Ag anomaly and the second-
vertical-derivative-like anomaly.

Another interesting fact which is evident on the Figure is that the depth of the ano-
malous body is related to the Ag curve, while the changes of its shape are more evident on
the vertical-derivative- (first of all the second-vertical-derivative)- like curves.

It can also be observed that for derivative-like anomalies (i.e. for sufficiently small
values of s) the variation of x influences first of all the amplitudes of the resulting curves,
the locations of their zero lines and extreme values do not change.

The presented model is, of course, an oversimplification of the actual geological con-
ditions: the body itself had been assumed two-dimensional, the density contrast between
the anomalous body and the overlying medium was a constant Aa=0.4 g/cm3and any
disturbing effects due to other, regional or local bodies had been neglected.

To approach the more complicated conditions as our next step the Ag, gz, gz and
m(s, x) values, corresponding to 3-dimensional bodies of arbitrary shape were computed.



Gravitational model calculations

Density contrast Acs was kept constant, as above, and regional or local disturbing effects
were neglected.

The main difficulty in this task is that the Ag, g,, or gz effects due to three-dimen-
sional bodies of an arbitrary shape cannot be expressed analytically. Such bodies must be

Fig. 1 Ag, gz, gzz and m(s, X) anomalies due to a two-dimensional model
1 abra. Kétdimenziés modell Ag, gz, gzz és m(s, X) anomaliai
Puc. 1. AHomanumn Ag, g:,g~2 1 m (S. K), Bbl3BaHHble JBYMEPHON MOAENbIO



8 A Pintér-R. Stomfai

dissected to appropriate elementary parts of simple geometry, and the effects of these ele-
mentary mass-units should be summed at the points of the plane representing the surface.
The computation is the more accurate, the smaller the gridsize on the surface and the
more distant mass-units are taken into account in the sums. The computational facilities,
of course, set a natural limit to the over-refinement of the calculations. We hope, however,
that the results to be presented will still be applicable in practice.

Depth contours of the three-dimensional model were read out along the points of a
grid of size s. Parameter s has been kept fixed throughout the experiments. It would have
been easy, of course, to use larger s-values, by simply leaving out some of the samples, but
since we have not been concerned with the filtering out of regional effects, this had no
geophysical meaning. On the other hand, an s value smaller than by which the depth con-
tours had been sampled could only have been obtained by formal interpolation.

In the model experiments the shape and depth of the anomalous body were changed
within rather wide limits, while—as already mentioned—s was kept unchanged. For each
model we computed the corresponding Ag, gz, gz effects and the transformed anomalies
m(3), m(4), m(6) obtained by the respective low-cut type filter-matrices (s= const, x =3, x =
=4 and x =6).

Naturally, the computed Ag values correspond to the usual Bouguer anomaly maps,
while the m(s, x) anomalies to the transformed anomalies obtained by low-cut filters from
the Bouguer-anomaly map.

As well known, the quantities gz, gz can not be directly measured in practice. The
model experiments, however, will reveal the interconnection between the gzand gz values
and the anomalies m(s, X).

We have already seen that the Ag curves—exempted from regional effects—are
related to the depth of the anomalous body, while the characteristic variations of the
shape of this body is reflected by the vertical-derivative-like (first of all, second-vertical-
derivative-like) anomalies. On the basis of this idea a new interpretation method was ela-
borated to unite the informations contained in these anomaly maps about the depth and
topography of the anomalous bodies. The gist of the method is to find a linear combina-
tion of the different anomaly maps by appropriately chosen weight factors so that the
resulting map should as closely approximate the relief of the anomalous body as possible.
As auxiliary conditions for the determination of the weight factors seismic (or any other,
independent) depth data are used. In our practice this interpretation method has been
termed in the last few years optimized depth calculation.3

3. Gravitational Model Calculations—Details

Fig. 2 presents a vertical cross-section of the three-dimensional body used in the
model. From the horizontal surface down to the boundary of the body there is an homo-
geneous medium of density ov The body itself is also homogeneous of density 02, and
02>01 Since there are no vertical faults or overthrusts on the upper boundary of the
body, its depth is a continuous and unique function of the surface coordinates.

The horizontal dimensions of the model were taken as 80 x 80 km. The relief of the
model, i.e. its upper boundary had been represented by depth contour-lines of 10 m steps,
and these depth values were sampled along the points of a rectangular grid of 500 x 500 m
size. The accuracy of depth determination is about +10 m, even at steeper parts of the
model.

The gravitational anomalies due to the model were determined for three different
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Fig. 2 A vertical cross section of the three-dimensional Model A
2. dbra. A haromdimenziés A modell egy fligg6leges metszete
Puc. 2. BepTukanbHOe MomnepeyHoe ceveHne TpexmepHon mogenn A

cases. First (Model A, Fig. 2) the deepest point on the body’s boundary was 2000 m, its
average depth 1400 m. Model B was placed deeper by 2000 m. Next, as it seemed rather
arbitrary that the peaks of the model were steeper than its troughs, the mirror image of
the basement of Model A was taken related to the horizontal plane at 1400 m depth, and
used this as Model C.

To compute the Ag anomalies at the surface due to the respective models, numerical
integration had to be used. The mass units of the numerical integration were vertical
prisms of cross-section a2 and density a. The mass contained in such a prism was sup-
posed to be compressed to a vertical thread and, the effects due to these material threads
or sticks have been summarized. There is a very simple formula for the gravitational effect
of such a stick: j aa2

Ag = @
where r is the distance of the uppermost point of the stick from the point where the effect
is observed. Since in numerical integration the effect of neighbourhood within 5000 m has
been taken into account, the Ag values were computed over an area of 70x70 km2

By using vertical sticks as mass units the vertical derivatives of the field strength are

r

given by: h
g =f°a2 ©
J h2 \1
32z = faa[3~-1 « ©)

where h is the depth of the mass unit, a is its density.(In our computations this density
was 0.1 g/cm3)

The experiments were performed with bodies of different depths. Thp anomalous
body, e.g. of Fig. 2, extends from an upper boundary of variable depth down to a plane at
a constant depth of 2000 m. It would be straight-forward to use variable-length mass ele-
ments for the computations, starting from the upper, and reaching down to the lower
boundary. From the computational point of view, however, it is much more simple to use
stick-like mass elements reaching down to infinite depths. This way, of course, a conslant
term is added to the computed effect at each point, which should be subtracted from the
final results.
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At the first stage of the model experiments, however, when we were mainly con-
cerned with the connection between gravitational and depth data, we were only interested
in the relative variation of the gravitational quantities from point to point, i.e. addition or
subtraction of a constant term had no meaning whatever. Further, we did always assign
rigorous dimensions to the computed physical quantities (plotted on maps of Fig. 4), but
these dimensions have no relevance in the interpretation.

When we want to determine the relationship between depth and the gravitational
quantities, we will simply deal with linear combinations of different sets of numerical
values and will not keep in mind the physical dimensions of these numbers. The weight
factors of linear combinations have dimensions of their own, but these are not even
marked as only their numerical values have any relevance.

The maps used for the model experiments cover an area of 80 x 80 km2, and are con-
sisting of 160 X 160 points along a rectangular grid. But Ag values could be computed for
140 x 140 points only (a 10 points wide rim is cut off). After filtering a further 10 points
wide rim falls off, i.e. the filtered maps will consist of 120 x 120 points. The contour map
of this latter area is shown in Fig. 3. It is divided into 4x4 equal squares and further
experiments will be performed on these 16 maps, each consisting of 30 x 30 points. Deri-
vatives have only been computed for these 16 sub-areas. A series of maps referring to the
same sub-area is shown in Fig. 4/1-4/11.*

Fig. 3 Contour-map of Model A, with the 16 sub-areas
3. dbra. Az A modell domborzati térképe
Puc. 3. KapTa usonuHunin gns mogenn A c 16 yyacTkamu

* Figs. 4/1-4/11 are to be found ill the folder of the back cover
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To understand the basic ideas of optimized depth calculations let us recall two-di-
mensional gravity calculations (along a profile).

Suppose, e.g., that there is a fault in the deeper, high density material. Fig. 5 shows
the Ag anomaly above the fault, together with the anomaly-curve m obtained by low-cut
filtering.

Fig. 5 Hlustration of the optimization principle
5. dbra. Az ,,optimalizaciés” kisérlet szemléltetése
Pite. 5. MantocTpaymsa npuHUMna ontTumaymm

the Ag anomaly above the fault, together with the anomalycurve m obtained by low-cut
filtering.

The Ag curve smoothes out the exact location of the fault but gives indication of its
height. On the other hand, the filtered curve m reflects fairly well its exact location but
does not tell too much about the height of the fault. It is an evident idea to try to con-
struct a new curve from these two, which would better indicate the fault than either the
Ag or the filtered m curve. By approximating the (exact) depth curve hg by a linear

combination:
hg ~ kgAg +kmm @

there exists a pair of coefficients kg, kmfor which this approximation is optimal. To com-
pute these coefficients, we sample the depth values at possibly uniform steps in a suffi-
ciently large vicinity of the fault, and read out the Ag and m curves at the same points.
Thus we arrive at three sets of data:

hi, h2, .., hh .. h,
Agi, Ag2, ..., Agh ..., Ag, ®
ffij, m2, .., mt, ..., m,

Since both the Ag and h curves contain a constant term which has no influence whatever
on the shape of these curves let us denote the mean values of these curves by hand Ag and
use, in what follows, the (similarly denoted) new values instead of the original ones:

hi = hj—h

K =h,,-h ©)
Agi = Agr—Ag
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Then, by the least mean squares principle, those coefficients kg, kmwill be adopted as opti-
mum which minimize the mean square error:
n

X, [(MSi+~hM h]2 U]

Next, the gravitational depth:
K.i= kgA9i+ kmmi ®)

and the deviation:

Ahi =K i~ hi ©
is computed with the optimum coefficients for every sampling point.

As usually, the accuracy 6f the approximation is measured by the standard devia-
tion:

D = @)

Of course, if we use a greater number of gravity anomaly curves of substantially different
character the approximation would improve and the deviation (10) decrease.

As we have seen, the approximate depth values computed by Eq. (8) differ from the
real depths by a constant term. In some of the formulae which follow this constant will be
included, ifit is neglected it means we do not need it for the subsequent considerations.

All what have been said above about optimized depth-calculations along profiles can
be applied without any change to three-dimensional models. The optimization method
studied on models, however, can only be used for practical interpretation if the depth
data (e.g. seismic, geoelectric or bore-hole data) coincide with the gravitationally explor-
able body. If so, the above procedure should be performed for each point, and also the
deviation, Aht between the given and the gravitationally computed depths data deter-
mined. Where the deviations are small, the gravity results prove the correctness of the
other geophysical methods. Any significant deviation, however, requires a methodologi-
cal or geological explanation.

It should be realized that seismic or geoelectric measurements are performed at cer-
tain points or along selected lines of the surface, thus the correlation of the results of dif-
ferent methods can be examined along these profiles only. If a fair correlation was
achieved by means of optimally chosen coefficients kg, km between the computed gravita-
tional depths and the seismic depth data along profiles, we could hope that this correla-
tion would also hold true in the neighbourhood of the profiles, i.e. that these same coeffi-
cients could be used to get gravitational depth data at places where there had not been
seismic measurements. This implies that the relatively inexpensive gravity method could
fill in the gaps between the more expensive seismic profiles. There is a theoretical implica-
tion as well: having obtained the optimal coefficients kg, km, we can determine a unique
map-transforming matrix which vyields the gravitational depth values directly from the
anomaly map.

It should be emphasized, that this matrix is not identical to any of the various
matrices named as optimal or sub-optimal in existing literature. Nevertheless, this matrix
is certainly optimal in a sense that by its use we can optimally fit the measured anomaly
values to the independently obtained depth data.

In other similar experiments, instead of the filtered anomalies the vertical derivatives
have been used, together with Ag. As will be shown in the next section, depth values com-
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puted from the Ag and m(s, x) values, and those computed from Ag, gzand gzz, agree quite
well. This fact should be emphasized, since a prerequisite of the use of filtered gravity data
for practical depth computations is that the filtered anomaly maps should be similar to
the derivative map.

4. Discussion of the Results of the Model Computations

We computed the gravitational effect Ag, the first and second vertical derivatives gz
and gz, and the transformed anomalies m(3), m(4), m(6) (obtained by the low-cut filter

Fig. 6 Results of computations along the diagonal of the second sub-area of Model A
6. dbra. Az A modell 2. részteriiletének egy atldja mentén végzett szamitasok eredményei
Puc. 6. Pe3ynbTaTbl BblYMCAEHUIA MO AMaroHany BTOPOro yyacTka mogenu A
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matrices m(s =500, %= 3, 4, 6)) corresponding to the three models of different depth and
topography, described in section 3. Each model had been given by 160 x 160 depth values.

The computed results are represented as maps. Detailed results for a section of the
map of Model A are shown in Figs. 4/1.-4/6.

It has been found from the figures that in any particular sub-area with the s value
applied there was a striking similarity between the vertical derivatives (above all the
second-vertical-derivative anomalies) and the anomalies obtained by low-cut filter
matrices (Figs. 4/4,4/5 and Fig. 6). As it has been mentioned already, the s value (sampling
distance) used in the model computations agreed with the generally applied station inter-
val in the field practice of Hungary: i.e. for bodies deeper than —1000 m, s= 500 m, for
bodies between —300 and —1000 m, s= 250 m. Consequently, it is expected that the
filters applied to the transformation of actual measured data would also result in vertical-
derivative-like maps.

Let us consider the series of maps in Figs. 7/1, 2, 3, presenting a detail of an actual anomaly
map series. The map of Fig. 7/3 has got a striking resemblance to a derivative map. The belts of
asymmetric maxima and minima along the zero lines of the anomaly map (profile A-A) do not cor-
respond to local horsts, and grabens, rather, they represent typical derivative-like anomalies refer-
ring to the strike of a fault.

Fig. 7/1 Bouguer anomaly map of the Ajkarendek-Kisl6d area (grid density appr. 6 station/km2)
7. abra. Ajkarendek-Kisléd kornyékének Bouguer-anomalia térképe (a gravitacids ponthal6zat
s(ir(isége kb. 6 all/km2)

Pite. 7jl. Kapta aHomanuin Byre paiioHa AlikapeHgek-Kuwnég (nnoTHOCTL ceTn - npubn. 6
cTaHuni/km2)



Gravitational model calculations

Taumuy-waFHadexuy eHoued Tarmuy-nefHadexny eHoyed sul (¢) xiaHTogenodu edaiyedex
X19HTogenodu xiqHduexmnLdas edaixedex uuuewoHe erdey ‘g/. -ond NMUeWOHE (¢) XI9HhOLleL20 eLrdex seHHegodLrqumdodl] Zr/ ond
adgyJa1-eljRWOUR UNZS adagxJgrelpWOUR UNZS
nbayial ygALIap sIgIBA XaugdpAuIQy poIsiy-Yepusiely eiqe .6/, nbajial (¢(reAusp () dapelew >aupnAulQy posix- Yepualexly eiqe
offy o . » P =< By
coo8m UE 8 A Hu SO X ® o

<L



16 A. Pintér-R. Stomfai

The similarity of transformed anomaly maps, obtained by low-cut filter matrices, to
the derivative anomalies leads us to assume that they are in a similar relationship with the
shape of the anomalous bodies as the vertical derivatives.

Let the relief of the anomalous body be given by the depth values  On the strength
of Eq. (7) the connection between gravity anomalies and basement topography can be
written for both derivatives and filtered anomalies in the same form:

n

_Xl(KA9i+K292, i+KzQzz,hi)2 = min, (11)
1=

n

X (kgA9i+ k3 ™(3)i+ k"m{A)i+ k6m(6)i- h f = min. (12)
i=1

Computations have been performed for all 16 sub-areas of Models A, B, C (i.e. for a total
of 48 sub-areas). Each sub-area consisted of 30x30 points («=900). Computational
results for Model A are compiled in Tables | and Il. Depth values estimated by the res-
pective formulae

Mg, i= K a9i+ Kdz. i +kzz9zz, i (13)
and
hg,i = kgA9i+k3m(3)i + k4m(4);+ k6w(6); 14
and the depth deviations
Ah'= Hgi-hl (15)
Ah = hgi—hi (16)

for two sub-areas of Model A are shown in Figs. 4/8, 9, 10, 11.

The computed depth values are deviations from the average depth of the particular
sub-area. To obtain real depth values, this average should be added to the computed
values:

Hgi = k'gAgi + Kg” i+k'zzgzz t+h )
and
hg,i = kgAgt+k3m(3)i + fAw(4); + k6T (6)(+ h (18

If, in practical cases, we want to extend the results of the calculations performed along seismic
profiles to a part of the Bouguer map between profiles, we—of course—have to subtract the average
value of the Bouguer anomalies along the profiles from the Bouguer map.

The data compiled in the Tables show that both kinds of depth values, computed
either via the vertical derivatives or via the derivative-like transformed anomalies, agree
fairly well with the real depths of the model: the standard deviations of both Ah' or Ah (£
and D) are very small, of the order of 10-20 m.

Along some profiles of Model A we have tried to approximate hg by the Ag map
alone. From the condition

X (kdgt-hi)2 = min. (19)
i—

we get the approximate values of
hg,i » kA9i. (20)
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Table 1 (Model A)

h h/s K K Kr D
1 -1130 2.25 2.6 16 0.1 1
132V - 860 1.70 25 17 0.0 10
3 -1250 2.50 2.8 0.5 0.5 14
4 -1550 3.10 3.2 -1.4 10 4
5 - 970 1.90 25 17 0.2 5
6 -1070 2.15 29 0.6 0.2 9
7 -1290 2.60 2.7 13 0.2 14
8 -1670 335 41 -5.5 15 4
9 -1230 245 3.0 -0.6 0.5 3
10 -1390 2.75 29 0.6 0.7 5
n -1345 2.70 2.7 18 0.3 n
12 -1645 3.30 3.0 0.9 0.6 8
13 -1400 2.80 35 -2.6 10 3
14 -1545 3.10 3.7 -4.0 14 4
15 -1745 3.50 438 -9.5 21 5
16 -1700 3.40 39 -5.2 17 4
1 3 4 h s (meter)
Kg (meter/10-2 mgal)
Kz (meter/ICT1E)
5 6 7 8 Kz (meter/10-7 E cm~*)

D' (meter)
Ja (0.1 g/cm3)

13 14 15 16

But it was found that the scatter of the error Ahi = hg i—hi is generally larger by 50%
than when derivative-like transformed anomalies have also been involved in the compu-
tations. As an example, Tab'e Ill/a shows the averaged results of computations per-
formed along 10 different profiles. Consequently, it is necessary to incorporate the deriva-
tive-like transformed anomalies into the quantitative determination of the relief of the
anomalous body.

The respective deviations D' and D of Ah\ and Ahtare nearly equal on all the 48 sub-
areas (Fig. 8), although the scatter of the Ah'; values is somewhat smaller. This proves
that, for any fixed s, the transformed anomalies obtained by low-cut filter matrices have
essentially the same role in mapping the relief of the model as the vertical derivatives.

The depth errors are practically independent of the average depth of the area (Fig. 9).
The relatively larger scatters in case of Model B are due to the relatively smaller solid
angles.

Indeed, from among the approximations and negiections adopted in the calculations, that is
the most important, that depth-data beyond a distance of 5000 m have not been taken into account
at all. While for Models A and C the computed errors prove that this neglecting has been justified, in
case of Mode! B—due to its maximum depth of —4000 m—the solid angle corresponding to a
neighbourhood of 5000 m seems to be too small.
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hls K ~3 k4 *G
-1130 2.25 3.0 -1.6 6.4 48
-860 170 29 17 -4.5 125
-1250 2.50 3.0 -10.4 23.0 11.3
-1550 3.10 32 3.6 91 34
-970 1.90 29 -1.9 76 6.2
-1070 2.15 3.0 -3.5 7.7 75
-1290 2.60 31 -2.7 7.0 12.8
-1670 3.35 31 37 11.8 48
-1230 2.45 3.0 24 7.0 10
-1390 2.75 31 -3.7 16.0 75
-1345 2.70 33 -1.5 6.0 138
-1645 3.30 3.0 15 81 79
-1400 2.80 31 72 30 -1.7
- 1545 3.10 32 4.2 85 33
-1745 3.50 32 11 16.3 54
-1700 3.40 32 9.8 6.6 -2.7
W 3 4 *K,, = Ky+0J1K"+0AK®.
h, s (meter)
kg, k3, k4, k6, km(meter/1072 mgal)
6 7 8 D (meter)
Ao (0.1 g/cm3)
10 u 12
14 15 16
Table 11
hg = 3.4Ag
hg= 1.5Ag + 1.3g:
hg = 2.9Ag + 0.6g,,
hg= 2.5Ag + 1.8g. + 0.5¢,,
(b*= UHz + O.lg«
hg = 2.9Ag + 10.6m(3)
= 2.9/ky + 15.0m(4)
hg = 2.9dg + 25.8»i(6)
j9 = 2.9/Ig + 1.5m(3) + 9.1ra(4) + 7.7m(6)
if. m(4) ~ 0.7m(3) and m(6) ~ 0.4m(3)

A Pintér-R. Stomfai

Table Il (Model A)

then: Lpa~ 0.7kgy —0.4km
ie:

hg ~ 2.9dg + 10.5m(3)

hg ~ 2.9Ag-\- 10.3w(3)

/r, ~ 2.9d3 + 10.9m(3)
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Fig. 8 Standard deviations of the depth calculations from both the Ag—vertical derivatives (D)
and the Ag—filtered anomalies (D)
8. abra. A Ag és a vertikalis derivaltak, valamint a dg és a sz(irt anomalidk bevonasaval végzett
mélységszamitasok szoérasai
Puc. 8. CpefiHeKBaZpaTUUHble OTK/IOHEHWUS MOACUMTAHHBIX TNYGUH OT BEPTUKANbHbIX
npousBogHbixX Ag, (D') u oT npotunbTpoBaHHbIX aHoManuii Ag, (D)

The areal distribution of the errors obey the same rules for all three models: the
more varied the topography, the greater the scatter (Fig. 10). At such locations a more
accurate depth calculation can be expected from reduced sampling distances only.

A series of experiments have been performed along several profiles to investigate the
effect of incorporating of one or more derivatives or filtered anomalies into the depth
computations. The results are compiled in Table Ill. It can be stated that, for a given s,
the result of depth transformation is practically independent of the particular kind of the
derivative-like transformed anomaly combined with the Ag map. In practice, for a given s,
it seems to be sufficient to combine a single derivative-like filtered anomaly with Ay. If we
use a greater number of derivative-like (s = const, x) anomalies, their corresponding
coefficients will be seemingly random (Fig. 11), although a closer scruting reveals that
they do obey some rules.
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Fig. 10 Areal distribution of the errors of gravitationally computed depth values for models A,
B, and C. D means the average of the standard deviations of depth values computed from
Ag and m(s, x) data for each model, D means the average of the three models.
For comparison D\ computed from depth calculations ajpplying Ag. g2and gz. anomalies
is given as well. The areal distribution of D and D' is similar: values above
average (shaded) coincide with sharp topography.
10. dbra. A gravitacios mélységértékek szérasanak teriileti eloszlasa az A, Bés C modellnél. D jelent
a Ag és az m(s, x) adatokbol szamitott mélységek szérasait az egyes modelleknél,
D a harom modell atlagszdrasat. Osszehasonlitasul a Ag, gz és gz-b6i szamitott
D-1is kozoljik. A D és a D' teriileti eloszlasa hasonlo jelleg(, az atlagnal nagyobb szérast
(vonalkazott teriilet) ott tapasztalunk, ahol a topografia a legvaltozatosabb
Puc. 10. TeppuTOopuanbHOe pacnpejeneHne NOrpewwHocTeld rnyouH, NOACUYMTaHHbIX MO
rpaBUMeTPUYECKUM JaHHbIM, Ana mogeneii A, B u C. O 03HauyaeT CpefHIO0 BEUYUHY
CpeAHeKBaAPaTUYHbIX OTKAOHEHWIA rny6uH, NOACUMTaHHbLIX NO AaHHbIM Ag U T (S, K), Ans
KaXgoh u3 mogeneid; D - cpefHio0 ANa Tpex Mogeneld BenuuuHy. [ns conocTasfeHms
nprBeAeHbl TaKXXe BeNMUMHbl D'. nogcynTaHHble MO BbIYUCNEHUAM [yOUH C UCNO/b30BAHVEM
aHomanuii Ag, g: ng--. TepputopnanbHoe pacnpegeneHve D n D' oka3sbiBaeTcs NOJOOHbIM:
BE/IMUMHBI, MPEeBbILAOWMe CPeAHIo (LUTPUXOBKA), COBNAAAlOT C PE3KO pacyuneHeHHOM
Tonorpaguei
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Fig. 11 Behaviour of the coefficients corresponding to different kinds of filtered maps, for the 16
sub-areas of Model A, as a function of average depth.

km= k3+0.7k4+0J1k6

11. dbra. A kiléonbdz6 x paraméter( sz(irt anomalidk szorzoinak alakulasa mélység szamitasanal
az A modell 16 részteriiletén (a résztertiletek atlagmélységének fliggvényében)

km= f3+0,7fc4-t-0,4k6

Puc. 11. 3aBMCUMOCTb KO3((MLMEHTOB, COOTBETCTBYIOLNX PA3IMUHBIM BUAAM
NpoUNbTPOBAHHBLIX KapT, ANs 16 y4acTKOB MOAEnM A, 0T rny6uHbl

KT = JT3+ 0,07a'4+ 0,04/T'6
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Indeed, for any given s, the “amplitudes” of the derivative-like filtered anomalies m(x) decrease
as Xincreases. Taking the m(3) amplitudes as 100%, the m(4) anomalies will be around 70%, the w(6)
anomalies some 40%. (This can be checked on the maxima of Figs. 1,4/5,4/6,4/7, or by direct calcu-
lations.) This means that the coefficients k4 and k6 will be proportionally larger. By reducing the
coefficients k4 and k6 by the appropriate factors we get back almost exactly the value of k3 (Table
111/b). Applying this to the areal results compiled in Table Il, i.e. by reducing the k4 and k6 weights

in that Table to their 70% and 40% fractions, and summing these new coefficients | km= k3+

we obtain a single weight factor kmwhich can be applied for the combination of

the single derivative-like transformed anomaly m(s = const, x= 3) with the Ag map.

Now let us plot kmand kgas a function of depth (Fig. 12). It is apparent that both
values grow with increasing depth. Of course, the actual values of both coefficients
depend on the density contrast Aa as well. To be able to draw conclusions which are inde-
pendent of Aa and of the distance unit, let us plot the ratio k jk , as a function of distance,
where distance is measured in s units (Fig. 13).

Fig. 13shows an approximately linear relationship in the range ofs = 0.5—4.0. The
relatively large scatter of Model B might be due to the small solid angles used in the com-
putations. By means of the linear section we can construct a preliminary depth map in
practical cases, if the two-layer model is approximately valid. More exactly, let us express
the average depth of the anomalous body (i.e. of the basement) in terms of s, where s is the
parameter of the m(s, 3) filter.

If, say s= 250 m, and the average depth of the basin floor from the surface is 600 m, we will put
fi=2.45 s. According to Fig. 13 the corresponding k jk gratio is 2.5. If, say kg= 1then km=25. Let us
multiply each point of our m(250, 3) map by km=2.5 and add it to the original Bouguer anomaly
map. Thus, we obtain a corrected Bouguer anomaly map (Bk = B + km-m).

If there are available bore-hole, seismic, or geoelectric data, we can construct a Bk=f(h) func-
tion to transform the Bkmap to depth-dimension. This last step is advisable only if there is no suffi-
cient amount of depth-data for the accurate determination of kg, kKand km.

If we have an abundance of seismic and geoelectric depth data for the exploration
site, there is a possibility for a more accurate determination of the constants kBand km.
Such a case is presented in Table IV, for some of the peripheral or inner basins of the
Transdanubian Central Range. The computed k Jk Bratios as a function of average depth,
expressed in s units, are plotted in Fig. 13 as full squares. There is a very good agreement
between the results obtained from the model experiments and from actual field measure-
ments.

Calculations were carried out to determine the number of data necessary for a suffi-
ciently accurate determination of the k coefficients. For sub-area 2 of Model A we have
determined these constants from n = 900 points, then—along certain profiles—from 90
points, along a diagonal from 30 points, afterwards from each second diagonal point (i.e.
from 15-15 points), and finally from 8-8 points (Table V.). It can be seen that the con-
stants can be determined fairly accurately, even from very few points. In practical cases, of
course, the correlation conditions are not that simple and it is advisable to use several
hundred points in the least squares fit.
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Fig. 12 The values of kgand kmas a function of depth
12. dbra. A kgés a kmértékek a mélység fiiggvényében
Puc. 12. 3aBNCMMOCTb BEIMYUH Kg M KT OT ry6uHbI.
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Fig. 13 The ratio kjkg as a function of average depth. Depth values are expressed in s units.
Full squares represent values computed from data measured on different areas of Hungary.
13. dbra. A kjkgértékek az atlagmélységfiiggvényben (méretaranytol és dcer-tél figgetlen
diagram, amely alkalmas a modellszamitasi és gyakorlati eredmények @sszevetésére)
Puc. 13. 3aBncumocTb OTHOLWeHUA km'kg oT cpegHein rny6uHbl. FNy6uHbI BblpaXeHbl B
eauHunuax s. Keagpatbl NpeAcTaBnsoT cO60M BeUUMHbI, MOACYUTAHHbIE MO JaHHbIM,
NOyYeHHbIM B Pa3/IMUHbIX paiioHax BeHrpuu.

Average values for Model A

Az A modell atlagértéke

29=01  h9=3.08(AA- d<))+ 9.01m(3) —1360
154

0.2 = 4.50
0.3 =102 3.00
04 =0.77 225
05 =0.62 1.80
0.6 =051 150
0.7 =044 128
0.8 =0.38 112

Values computed from field results
Meérési adatokbol szdmitott értékek

KOCS-SZEND
TARJAN-SZOMOR
MAGYARPOLANY
CSOLNOK
BAKONYSARKANY
KISBER

4 =0.49(0 -B) +0.53m(3) -400

=0.64

= 0.64
=0.29
=0.52
=0.36

+0.70
+0.88
+0.90
+ 142
+2.99

-450
-350
-550
-475
-700

kJK
2.89

1.08
1.09

3.10
2.73
8.30

h/s (s= 500)
2.72

1,60 (s= 250)
1.80
1.40
2.20
1.90
2.80
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Table V
n Ag h m K km D kjkg
900 892 -860 0.80 29 35 10 12
90 870 -900 0.65 29 4.0 n 13
30 831 -947 0.53 29 43 13 15
15 826 -952 0.13 29 41 13 14
15 835 -942 0.93 29 4.8 n 16
8 827 -951 36 34 -1.4 14 _
8 815 -963 -0.25 29 4.8 10 16
Aa (0.1 g/cm3
AL (10'2 mgal)
h  (meter)
in (10'2 mgal)
K  (10'2 mgal/m)
D (meter)

In case of the model experiments the Ah maps (Figs. 4/10, 4/11) reflect the error of
depth calculation only. Large Ah values occur at those places, where the relief abruptly
changes. It should be anticipated that these errors would increase for a more appropriate
(smaller) s value. Certainly, the exact solution in case ofx = 3, s= 1,0.5 and 0.25 should be
sought in the form:

Y [kgAgi+ kIm(l-,3)i+ k2m(0.5-,3)i+ k3m(0.25;3)i—hl 2 = min. (19
i—2

These experiments will definitely add to our understanding of the optimal sampling dis-
tance and filtersize.

In practical cases the Ah errors do not depend on the accuracy of depth compu-
tations alone. The Ah values characterize—besides the accuracy of the original Bouguer
anomalies and of the depth data applied—the changes in the geological build-up. This
means that it is advisable to exclude any other inaccuracies influencing the Ah errors, to
be able to predict changes in the geological set up. To achieve this, practical calculations
should be performed in several stages. First, accepting the a priori depth-data, we deter-
mine the coefficients kHand km, and, by means of these, the errors Ahj. By analysing the
areal distribution of the Ah{values, we try to separate the technical errors from those of
possible geological significance. In some cases even the seismic (geoelectric) interpre-
tation should be reviewed. If the areal distribution of the Ahrs is inhomogeneous, we
might decide to determine separate weight factors for certain sub-areas.

That is, the final values of kBand kmare obtained as follows: after a thorough check-up of the
input data and, if necessary, by dividing the site into sub-areas, we leave out those points for which
Ah{> 150 m; then we make a further approximation and leave out points for which zJi,.> 100 m;
then, after a final approximation, we leave out points for which d/i,.>50 m. Using the final values of
kBand kmwe compute again the depths hgi, and the deviations Ah;, for all points. If the computa-
tional and measurement errors are indeed negligible, the areal distribution of the AW values
obtained will have a definite geological meaning.
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Finally, we should assign a place to our new method between the more familiar map
transformations. The depth-transformation, as defined above, can be considered in a
sense as a special kind of downward continuation, where the appropriate constants of con-
tinuation are not fixed, but are always taylored to the actual exploration task. Or we can
try the frequency-domain terminology; frequencies necessary for the solution of the geo-
logical task are picked from the Bouguer map, get amplified and then fed back. But no
matter what point of view we adopt, the sampling distance retains its crucial role. In the
present practice the sampling distance s used in map transformations is determined by
the average station interval. Generally we do not apply matrices with s values substan-
tially smaller than the average separation of stations because otherwise the map transfor-
mation would largely depend on interpolated values.

Since, due to the well known features of the gravity field, the positive anomalies have
a stronger effect than the negative ones it would be a straightforward generalization of the
presented method to determine separate weight factors for the positive and negative
in(s, x) anomalies.

5. Conclusions

1 Anew method has been elaborated for the calculation of the gravity effect of arbitrari-
ly complex geological models.

2. Applying a series of low-cut filter-matrices to a Bouguer anomaly map with gradually
decreasing sampling distances, we obtain, in turn, a residual anomaly map being
almost identical to the Bouguer map, then a more realistic residual anomaly map,
and, finally, vertical derivative-like maps. By appropriate filters we can produce any
formal transition between geologically interpretable maps. (Up to now, there is no un-
biassed critérium for the appropriate choice of the sampling distance (parameter s),
except the obvious rule of thumb that it certainly should be less than the explored
depth.)

3. For sufficiently small s values the gravity anomalies obtained via low-cut filtering are
similar to the vertical-derivative anomalies.

4. Vertical-derivative-like anomalies bear information on the shape of the anomalous
bodies, while the regional-free Bouguer anomalies are related to the depth of these
bodies. There exists a suitable linear combination of the Bouguer and vertical-deriva-
tive-like anomalies which—under suitable geological conditions—yields a directly in-
terpretable contour-map.

5. During the calculations of depth maps each point of the gravity maps (i.e. both the
Bouguer and the filtered, vertical-derivative-like maps) get a quantitative meaning.

6. By means of model experiments we obtained empirical formulae for the preparation
of preliminary depth maps, if the average depth of the area is known.

7. In order to construct more accurate depth maps, the transformation constants should
be determined for each particular area. For this purpose we need a relatively few, but
accurate (bore-hole or geophysical) depth data.

8 The model experiments have proved that the accuracy of depth calculation is in-
fluenced first of all by the complexity of the relief of the anomalous body, rather than
by its average depth.

9. Any significant deviation between gravitationally computed and geophysically-geolo-
gically obtained depth values has a definite geological meaning.

10. The depth computation as presented in this paper has been optimally tailored to pre-
sent-day field practice, interpretation and computational methods.
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11. The method of depth calculation presented can be considered as a special kind of
downward continuation, where the transformation constants are not fixed in advance
but are always adjusted to the actual exploration task.

12. The model experiments presented ask for further research, of both theoretical and
practical nature.
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PINTER ANNA—STOMFAI ROBERT

GRAVITACIOS MODELLSZAMITASOK

A gravitacios térképekre alkalmazott sz(ir6k matematikai tulajdonsagaival az irodalom kime-
ritéen foglalkozik. Ajelen cikkben ismertetett gravitacios modellkisérlet célja az volt, hogy — elfo-
gadva egy, az irodalomban javasolt sz(rési eljarast — a sz(irt anomaliak foldtani értelmezési lehet6-
ségeire keressiink maodot.

Eredményeinket a kovetkez6kben foglalhatjuk ossze:

1 Kidolgoztunk olyan haromdimenzids hatasszamitasi eljarast, amelyeknek segitségével elvileg
tetszés szerinti bonyolultsagu féldtani modell gravitacios hatasa kiszamithato.

2. A Bouguer-anomalia térképbdl az alulvago szlrématrixokkal a mintavételi tavolsag fokozatos
csokkentésével a Bouguer-anomalia térképt6l alig eltér6 maradékanomalia térkép, majd realis
maradék anomalia térkép, s végil vertikalis derivalt jellegl térképek allithatok el6. A redlis,
foldtanilag értékelhet6 térképek kozott minden formalis atmenet eldallithatd. (A mintavételi ta-
volsag (s érték) megvalasztasara nincs objektiv kritérium. Némi tdimpontot jelent az, hogy a min-
tavételi tavolsagnak a kutatasi mélységnél feltétlenil kisebbnek kell lennie.)

3. Az alulvago szlrématrixokkal szamitott gravitacios anomalidk elegend6en kicsiny s érték mel-
lett vertikalis derivalt jellegli anomaliak.

4. Avertikalis derivalt jellegli anomalidk a hatd alakjanak leképzésénél jatszanak szerepet — mig a
regionalis hatastél mentes Bouguer-anomalidk a haté mélységével vannak szorosabb kapcsolat-
ban. A Bouguer és a vertikalis derivalt jellegli anomalidk alkalmas kombinaci6javal a foldtani
kutatas szempontjabol kozvetleniil értelmezhetd mélységtérképet allithatunk eld, kedvezd fold-
tani folépitési tertleten.
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5. A mélységtérkép szamitasakor minden egyes (tehat a gyakorlatban sok ezer) Bouguer-, és min-
den egyes vertikalis derivalt jellegl sz(irt anomaliaérték kvantitativ értelmet kap. Ezt eddig
egyetlen eljaras sem biztositotta.

A modellkisérletek alapjan el6zetes mélységtérkép készitéséhez — a teriilet varhat6 atlagmélysé-

gének fliggvényében — el6zetes transzformalé konstansokat adhatunk.

7. Pontosabb mélységtérkép el6allitasahoz alkalmas transzformacié konstansait minden egyes te-
ruletre (terlletrészre) kilon kell megallapitani. Ehhez viszonylag kevés, de meghizhat6 (farasi
vagy geofizikai) mélységadat szlikséges.

8. A modellkisérletek szerint a mélységszamitas megbizhat6saga gyakorlatilag nem annyira a teri-

let atlagmélységétél, hanem sokkal inkabb a hat6 (aljzat) domborzat bonyolultsagatdl fiigg.

A gravitaciés adatokbél szamitott mélységek és az egyéb, foldtani-geofizikai mélységértékek ko-

z0tti eltérésekbdl az aljzatra vagy a fedére vonatkozd féldtani tébbletinformacidt nyerhetiink.

10. A mélységszamitasi eljarast a gyakorlatban alkalmazott mérési, kiértékelési és szamitasi techni-
kahoz optimalizaltuk.

11. Az ismertetett mélységszamitasi eljaras olyan analitikus lefelé folytatdsként értelmezhetd, amely-
nél a lefelé folytatdshoz szilkséges konstansokat nem egyszer s mindenkorra rogzitjik, hanem
magukbol a mérési adatokbdl esetenként hatarozzuk meg.

12. A modellkisérletek a gyakorlati kutatdsok szamara és a modellezés tovabbfolytatdsahoz is
konkrét és egyértelm(i iranyt mutatnak.

o
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A. MAHTEP-P. LULTOM®AN

MOAE/IMPOBAHWE ANA WHTEPMNPETALNN AHOMANNIN
Mnona CUAbl TAXECTA

MatemaTunyeckme 0CO6EHHOCTU (IUNLTPOB, NPUMEHSIEMbIX NPU MOCTPOEHUU KapT aHOManuis
nons CU/bl TSHXKECTW MOAPOGHO OMUcaHbl B NuTepaTtype. Llenbio paccMaTpuBaeMblX B HacTOsLLeld
paboTe MOAE/NbHLIX UCCNEA0BaHWIA 6bl0 HETN BO3MOXHOCTb TEOIOrMYecKOil MHTepnpeTauuu
NpoguAbTPOBaHHLIX aHOMaNUiA, CXOAA U3 PEKOMEHAYEMOr0 B uTepaType cnocoba (uabTpaLum.

MonyyeHHbIe NpU 3TOM pe3ynbTaTbl CBOAATCA K CMedytoLLemy.

1 Pa3paboTaH MeTOf pelleHnsi 06paTHO 3afaun 41 TPEXMEPHOTO Tefa, MO3BONSAKLWMIA BblUM-
CNUTb TPaBUTALMOHHBIA 3th(eKT reonorMyeckon Mofenu B MpUHUMNE C NOBOA CTeneHbto
CNTOXHOCTH.

2. Mo kapTam aHOManuii byTe, ¢ ucnonb3oBaHWEM MaTpwL, GUILTPOB NEBOrO Cpesa, Npu nocre-
NeHHOM YMeHbLUEHWUW Lara BbIGOPOK, MOXHO MOAYYUTb KapTy OCTATOYHbIX aHOManuid, NoyTH
He pa3/nMyatoLLlytocsi OT KapT aHoManuii BbyTe, 3aTeM - KapTy peasbHbIX OCTaTOYHbIX aHOMa-
NI, N HaKOHeL, - KapTbl XapaKTepa BepTUKaNbHbIX NPON3BOAHLIX. MeXay peanbHbIMU, reono-
TMYECKN MHTEPMPETUPYEMbIMU KapTamMy MOXHO CO34aTb BCskue (hopMasibHble Nepexofbl (ans
BblOOpa Lara BbIGOPOK (BENNUUHDI S) HET 06LEKTUBHOTO Kputepus. Mpu 3TOM B ONpeAeneHHoM
Mepe MOXHO PYKOBOZACTBOBATbCSA TeM, YTO LUAr BblIGOPOK [OMKEH BblTb 0643aTeNbHO MeHb-
LUMM NO CPaBHEHWIO C FNYyO6UHON MccnefoBaHus).

3. AHOManuM Nons CUbl TSHKECTMW, BbIYMUC/IEHHbIE C UCMOMb30BaHUEM MaTpUL, UNLTPOB NEBOTO
cpesa, NpefcTaBnsftOT cO60i - NPU [OBONbHO HU3KUX BENMYMHAX S - aHOMaNIMK XapakTepa Bep-
TUKa/bHbIX NMPOU3BOAHbIX.

4. AHOManuu xapakTepa BepPTUKabHbIX MPOU3BOAHLIX UTPalT po/b Npu onpeseneHUn Gopmbl
BO3MYLLLAOLLEr0 TeNa, B TO BPEMsl, Kak aHOManuu byre, cBO60AHbIE OT BAUSIHUSA PErvOHaNbHO-
ro nons, cBsi3aHbl 60/1ee TeCHO C rNy6uHoOl 3aneraHus 3Toro Tena. B paiioHax ¢ 6naronpusT-
HbIM Fe0/I0MMYECKNM CTPOEHWEM, NPY COOTBETCTBYIOLLEM KOMOMHMPOBaHUM aHOManuii byre ¢
aHOManusMKn xapakTepa BepTUKaIbHbIX NMPOU3BOAHBIX, MOXHO MOMAYUYNUTb MPAMO WHTEPNpeTUu-
pyemble A4N15i Te0NOTMYECKMX Lieneit KapTbl FY6UH.
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A Pintér-R. Stomfai

Mpw BbIYMCNIEHUM KapTbl FNYBUH KaXKaas U3 BeIMUMH aHOManuii Byre (a UX Ha NPaKTUKe MHOTO
ThICAY) W KaXAas 13 BeIMUMH NPOMULTPOBAHHBIX aHOMAaNUil XapakTepa BePTUKanbHOM Mpo-
M3BOAHOM, NONYYaeT KONMUYECTBEHHOE 3HaueHNe. HU OfMH U3 MPUMEHSBLLUMXCS [0 CUX MOp Me-
TO[I0B He fjan Takoil BO3MOXHOCTU.

. [0 MofeNbHbIM UCCNEA0BaHMAM, AN NMOCTPOEHWS NPeABapUTENbHON KapThbl FNY6UH, MOXHO

3ajaTb NpeaBapuTeNibHbIe MOCTOSIHHbIE MPe06pa3oBaHms, B 3aBUCUMOCTM OT 0XUAAEMOIi cpef-
Hell rny6uHbl, XapakTepHO AN W3y4yaeMoro paioHa.

MocTosiHHbIE Npeo6pa3oBaHns AN NOCTPOeHMs 6onee TOUHOW KapTbl FNY6UH AOMbXHbI 6GbITh
OTAEeNbHO onpefeneHbl ANs KaXA0ro paioHa (yyactka). [ns aToro Heo6xoAMMo MMeTb CpaB-
HWUTENbHO He6OMbLIOE KOIMYECTBO, HO AOCTOBEPHbIX (6YPOBbLIX UM reon3NUecKmnX) AaHHbIX O
rnyobuHax.

. PaboTbl no MoAennpoBaHUIO NOKasblBakdT, YTO AOCTOBEPHOCTb BbIYUCEHNA Fﬂy6I/IH 3aBUCUT

NPaKTUYeCKU He HACTONMbKO OT CPeAHei rny6uHbl, a CKopee BCEro OT CNOXHOCTY penbetha BO3-
mywjatouiero Tena (OCHOBaHMS).

. PasHuubl Mexay FﬂyﬁVIHaMVI, noAcYMUTaHHbIMW MO rPaBUMETPUYECKUM AAaHHBIM U MPOYUM reo-

NOr0-reo(uU3NYeCKUMI BENMUMHAMK TNYBUH, Aa0T AOMOMHUTENbHYIO UHAOPMALMIO O Feono-
TMYECKOM CTPOEHUM OCHOBAHMS UMW MOKPOBa.

ONTUManbHbIA BapuaHT MeToAa 6biN BbiGPaH C y4eTOM MPUMEHSIEMbIX Ha NPaKTUKe MeTO40B
HabNt0IeHUI, UHTEPMPETALMN W TEXHUKW BbIUUCIEHUIA.

OnuCcaHHbIi Bbllie METO BbIYMCIEHUS TNYBUH MOXET paccMaTpuBaTbCs Kak aHaNMTUYecKoe
NPOAO/MKEHNE MONS B HUDKHEE MOMYNPOCTPAHCTBO, NPU KOTOPOM HEOGXOAMMbIE MOCTOSHHbIE
OMNpefensioTcs He pas W Ha BCErAa, a B KaXAOM Clyuvae, UCXOAS M3 AaHHbIX HaboaeHUi.

. MpoBefeHHOe MOAENNPOBaHME MO3BOMSAET KOHKPETHO M OLHO3HAYHO ONpeaennTb Hanpas/eHne

NPOBEAEHNA NPOU3BOACTBEHHBIX Pa3BefoUHbIX PaboT, a TakKe MPOAOMKEHNUS paboT No Moje-
NINPOBAHMIO.
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CONNECTION BETWEEN THE INNER STRUCTURE
AND THE STATIC DEFORMATIONS OF THE EARTH
CAUSED BY EXTERNAL FORCES

P. VARGA*

The load numbers have been determined from the system of differential equations of
Molodenskjy (1953) describing static deformations. As in our earlier paper (Varga
1974) we transformed the system of equations to the form

A=r2/((T+H'-T (1)
n(n+ 1)
B = (1+2u)H' + /1 SH— VT (7))
C = r2(R’—4nfgH) K))
-A' = gr2(R+ W'H) +Br2+2/i[H —(n2+ n—1)T—H'r2] @
H +1
g=q Coawt 0D py
r r
2 2H +1 n(n+1
I'lZH--r-'|"r\9':,~ g b, ©)
C = n-{n+\)-{R-4nfeT) (6)
where
= Lamé parameters
Q=g density
W= W(r) geopotential
f gravitational constant
n order of deformation
R=R,,H n functions describing the Love numbers of the re-
H=Hn(r) | spective order corresponding to deformations on
T=T.,(r) J the surface
A B C auxiliary functions as defined in Egs. (1)3)

Dash-denoted derivatives are taken with respect to the distance from the centre of the
Earth.

From among the six boundary conditions which are necessary for the solution of the
system of differential equations three are given on the surface of the Earth. The first

* Geophysical Institute 'Roland E6tvos”. Budapest
Manuscript received 27. 2. 1978
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expresses the continuity of the derivative of the mass potential function, the second states
that there are no tangential stress components along the surface of the Earth, while the
last condition determines the normal load, N, acting on the surface:

n-2n+\)W+— -R-4nfgH =0 ™
HIM--T+HJ=0 &
AP T CIR L QA BRI

a is the average Earth-radius in the above equations. Using the results of MOLODENSKIY
(1953) and assuming the hydrostatic nature of the normal load, i.e. that
N = -gg0h
(where g0 is the acceleration of gravity on the surface of the Earth and h is the height of
the water-column), we get the third boundary condition:
+ 1
n(n )._l_ _ _2n 4F-1gl-
4nf

The second group of boundary conditions are obtained from the conditions referring

to the core-mantle boundary (r="b). Assuming that the loading effect is negligible at this

depth, the core is incompressible and elastic, and further, that the density distribution is
fluid-like, we obtain the followings:

(A+2g)-H'+ A\[{;-H~ ©)

\ (2n+1 3
M[F--T+H -ft ——T--H 1=0 (10
V b
(K+2
2ir+n+3 3(n+ 1L
FOIR+W H)-fxi 2T T3, 30D .
nmb
R'-R-y--R +4nf(ei-Qe)H =0 12

index e in Egs. (10)—12) denotes the physical parameters of the mantle, while index i
refers to the core, y characterizes the density distribution within the core, and can be
determined from the differential equation (MOLODENSKIY, 1953) shown below:

2(n+1 1
20y, g
r w

The system of differential equations (1)—6) subject to boundary conditions (7)—12)
has been solved by using the fourth order Runga-Kutta method, with a relative Earth-
radius step of 0.005, within the limits of the surface and the core-mantle boundary.

The aim of the calculations was to clarify the following questions:

Yy +y2+ =0 (13
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1 What is the effect of the location and the physical state of the core-mantle boundary
upon the load numbers?
2. To what extent does mantle structure influence the load numbers?
3. How surface conditions effect the load numbers?
As it is well known, from the simple combinations of the load numbers

K=Rn(@~1; K=Hn{#) and T,= T,@
the quantities 8nand ynnecessary for the describing of gravitational changes and in-
clinations are deduced the following way:
n+ 1
_K-K
2n+ 1 T m+ 1
The dependence of ¢, and y« on the Earth’s structure might be very important in

solving practical problems, as in the equations describing gravitational changes and
deflections of the vertical (Pertsev, 1967)

(14)

Ag = i (15
=0
0 ®

M= g o yH-m s

bnand ynbear information on the inner structure of the Earth. In Egs. (15) and (16) 'Vis
the central angle; HJV) is the n-th harmonic in the expansion of the Earth’s tide of
height H on the spherical segment.

Computations were performed for the following five Earth models;

1 Bullen’s A model
2. MOLODENSKIY’s (1953) model assuming homogeneity of the mantle and the following
density distribution: , ,
Q B
g A

3. Bullard’s (1957) model, with a somewhat displaced transient C layer in the mantle.
(In Bullen’smodel the relative boundaries of the C layer are 0.93 and 0.84, in the pre-
sent model they are 0.94 and 0.80.) This model will be marked in the Tables as Bul-
lard 1

4. Same as the Bullen A model, but the near-surface density is decreased from
3.31 g/cm3to 3.20 g/cm3. This model will be marked as Bullard 2. (Bullard 1957)

5. The density on the surface is significantly increased, with respect to the Bullen
A model: from 3.32 g/cm3 to 3.70 g/cm3. This model will be called Bullard 3.

In the calculations G utenberg’s velocity data were used. Since the phenomena de-
scribed by means of the load numbers are expressed in infinite series form (Egs. 15 and
16), it has been investigated how many terms of these series should be taken into account
in cases of different spherical segments and different central angles Y. It had been found
earlier (Varga 1977) that for a 1°x 1° segment some 3000 terms, while for a 0.1° * 0.1°
segment approximately 104 terms are needed.
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Table | shows the values of the load numbers for the five Earth-models described
above, while core-mantle boundary is being kept at 0.545 Earth radius. Due to the rapid
decrease of the value of I',, this load number is not presented in Table | beyond n= 200.
Comparing the numerical values it is apparent that for all values of n the MOLODENSKIY
model for homogeneous mantle deviates only slightly from the generally accepted
Bullen A model. The deviation is somewhat more significant in the case of the Bul-
lard 1 model, the displacement of layer C, however does not influence the value of the
load numbers considerably. The same holds true in respect of the Bullard 2 model.
There is a significant deviation in the case of the Bullard 3 model, and increasing with
growing n. As a summary, it can be stated that the values of Hn, K,,and [I,,depend only
slightly on the mantle structure, while the effect of the changes in surface density is reflect-
ed by these load numbers for higher values of n.

The dependence of he load numbers on the assumed physical conditions of the core-
mantle boundary can be analysed by the boundary equations (10)—12):

— the density distribution within the core can exert its influence by the factor Yappearing
in EQ. (12). Pertsev (1976) has shown that for N9 this effect can be neglected;

— using relative boundaries of 0.55 and 0.54 in the computations, it was shown that the
variation ofthe depth of core-mantle boundary affects significantly the results at small
values of «, for n*40 however, this effect becomes negligible;

— the effect of the shear modulus within the core has been studied by taking /(=
= 1010dyn/cm2and /t— 1011 dyn/cm2in Eq. (11). It was found that its effect—simi-
larly to that of the core-mantle boundary—is considerable for small values of n but for
n~40 it becomes negligible.

Thus, for increasing values of n the differences between the different models gradu-
ally increase. The dependence of the load numbers on the near-surface structural
elements grows with increasing values of n and at the same time the effect of the physical
characteristics of the core-mantle boundary decreases.

Table 1l presents the series of equations describing the values of 8n(of Eq. 14) derived
from the load numbers for the different models by approximating the empirical values in
the form of 6,, = amnb. The statistical significance of this approximation is characterized
by the coefficients of determinacy (r). A comparison of the equations also proves that the
gravitational changes due to deformations do depend on the structure of the Earth.

Since the deformations due to loading, described by Egs. (15) and (16), do not depend
upon the individual values of 6,, and y,, but on their sum, by using the above described
equations we have determined for the different Earth models the total gravity changes for
I p;x10 segments by assuming a load corresponding to a water column of 1cm height.
Results are shown in Table Ill. It can be concluded that the deformations are not inde-
pendent of the Earth’s inner structure, first of all because of the ever increasing effect of
the near-surface conditions at greater values of n. The effect due to the unknown features
of the near-surface structures becomes even more pronounced in more detailed calcula-
tions (i.e. in case of segments smaller than 1° x 1°) due to the already mentioned slow con-
vergence of the series (15), (16).

According to the above described ideas the exact study of deformations due to the
tides of world oceans needs besides the set of accurate cotidal maps, describing the areal
distribution of sea tides, the best possible approximation of the Earth’s structure. The
effect of this factor is even more important in the near-ocean regions, since in such areas
segments less than 1° x 1° should be used for the integral description of the total effects.

*
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Y BULLEN A MRIY°(1973)S" BULLARD 1 BULLARD 2 BULLARD 3
2 ft'= -0.31260 -0.31291 -0.30502 -0.31088 -0.31050
ft'= - 0.99680 - 1.00454 -0.98143 -0.98822 -0.99200
3 k'=-0.19986 -0.19990 -0.20308 -0.20063 -0.20061
h'=- 1.04690 -1.03192 -1.05201 -1.04134 -1.04130
4 k'= —0.13575 —0.13764 -0.14469 -0.13563 -0.14304
h "= -1.04040 -1.05589 -1.07205 -1.04330 -1.04715
5 ft'= -0.10604 -0.10844 -0.10803 -0.13903 -0.11220
ft = —1.06571 - 1.08208 -1.06605 -1.03296 -1.06031
6 k'=-0,08649 -0.08963 -0.09467 -0.08441 -0.08435
P = —1.08600 -1.10312 -1.12100 - 1.07820 -1.10971
7 k'= -0.08354 -0.07980 -0.08670 -0.08201 -0.08141
fr= —1.18382 -1.14434 -1.19211 - 1.17263 -1.16852
8 k’=-0.07991 -0.07828 -0.08041 -0.07817 -0.08221
h'= -1.26666 -1.24100 -1.25227 -1.26489 -1.20671
9 k'=-0.07320 -0.07490 -0.07432 -0.07216 -0.07671
ft = -1.30793 -1.30787 -1.29742 -1.31248 -1.30103
10 k'= -0.06952 -0.06912 -0.07021 -0.06877 -0.07391
ft' =5 —1.36561 -1.33927 -1.35104 -1.37326 -1.30762
15 ft = -0.05251 -0.06357 -0.05953 -0.05250 -0.06071
ft'= -1.52073 -1.69121 - 1.62567 -1.52072 -1.51472
20 ft = -0.04750 -0.05277 -0.04675 -0.05314 -0.05631
P = —1.73885 -1.83111 -1.69121 - 1.87827 -1.76240
25 k'= -0.04231 -0.04438 -0.04401 -0.04415 -0.04415
ft'= -2.01319 -2.11173 -2.09419 -2.10071 -2.10100
50 f=-0.02341 -0.02464 -0.02458 -0.02465 -0.02785
ft'= -2.25200 -2.37042 -2.36461 -2.36652 -2.67922
100 ft'= -0.01297 -0.01371 -0.01375 -0.01374 -0.01623
ft'= -2.68621 -2.83931 —2.84761 -2.84561 -3.36121
200 ft = -0.00705 -0.00749 -0.00756 -0.00753 -0.00934
ft= -3.06792 -3.25672 -3.29150 -3.27801 -4.02641
500 ft = -0.00345 -0.00366 -0.00373 -0.00371 -0.00483
ft'= -3.69261 -3.92586 -3.99971 -3.97083 -5.16921
1,000 ft'= -0.001978 -0.00210 -0.00216 -0.00214 -0.00289
ft'= -4.12433 -4.39300 -4.50571 -4.46194 -6.04410
5,000 k'= -0.000447 -0.00048 -0.00050 -0.00049 -0.00078
ft'= -4.62752 -5.01870 -5.26519 -5.16882 -8.16821
10,000 ft'= -0.000246 -0.00026 -0.00028 -0.00027 -0.00046
ft'= -5.09842 -5.56001 -5.88921 -5.75871 -9.65031
2 '=0.02738 0.02609 0.02771 0.02507 0.02723
3 ['=0.07343 0.07218 0.07342 0.07280 0.07282
4 /'=0.06109 0.06177 0.06613 0.06007 0.06313
5 '=0.04781 0.04901 0.04882 0.05140 0.04986
6 /'=0.03546 0.03724 0.04172 0.03998 0.04340
7 /'=0.03557 0.03050 0.03831 0.03709 0.03791
8 '=0.03451 0.03183 0.03473 0.03245 0.03352
9 '=0.02974 0.03032 0.03061 0.02828 0.02911
10 '=0.02773 0.02614 0.02840 0.02650 0.02904
15 '=0.01922 0.02889 0.02490 0.02331 0.02292
20 ['=0.01645 0.02279 0.01573 0.01598 0.02430
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n BULLEN A MKIY®°(?9™S" BULLARD 1 BULLARD 2 BULLARD 3
25 /'=0.01004 0.01321
50 /'= 0.00206 0.00277

100 /'=0.00071 0.00078

Table I. Load numbers for different Earth models
|. tablazat. Terhelési szdmok kiilénb6z6 modellek esetében

Bullen A model
S-,,-= 0.5849 -n-0,86 74
r2 = 0.9989

Molodenskiy model
5,, = 0.5964 .,,-°'801
r2 = 0.9980

Bullard 1. model
Sn = 0.5658-n" 0184
rl = 0.9990

Bullard 2. model
8,,= 0.5779 -/T 0'8531
r2 = 0.9990

Bullard 3. model
4 = 0.4694-'“0'77%6
r2 = 0.9994

Table 11. Equations approximating the values of Sh describing gravitational changes due to the
deformations and the corresponding coefficients of determinacy (r2)
Il. tablazat. A deformacio keltette gravitacids valtozasokat leirdé ohértékeket kdzelitd egyenletek és
a megfeleld determinaltsagi egyuitthatok (r2)

Table 1l

Model n v=2° D= 4>=8° P=10°

Bullen A 3000 -0.0011096 -0.0005075 -0.0002316 -0.0001785
Molodenskiy 3000 -0.0011485 - 0.0005226 -0.0002373 -0.0001826
Bullard 1 3000 -0.0011160 -0.0005036 -0.0002270 -0.0001741
Bullard 2. 3000 -0.0011290 -0.0005112 -0.00023109 -0.0001775
Bullard 3. 3000 -0.0010722 -0.0004594 -0.0001972 -0.0001489
Bullard 3. 4000 -0.0010721 -0.0004601 -0.0001970 -0.0001491

Table I11. Gravitational effect in microgals due to the deformation caused by the pressure of a water

column of # = 1 cm height exerted upon a spherical segment of 1° x 1°, as a function of the central
angle V.

I11. tablazat. H = 1cm magassagl vizoszlop 1° x 1° szférikus szegmensre gyakorolt nyoméasa okozta

deformacio kovetkeztében fellép6 gravitacios hatas microgalban T centralis tavolsag fiiggvényében
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MOLODENSKIY, JR. (1977) has found theoretically a simple analytical relationship
between the load number Knand the Love numbers kn, h,, According to him:

K =K~K-
We have checked the validity of this formula for the Bull EN A model, in order to get an
indirect estimation of the reliability of our calculations. The results of the two calcula-
tions have shown a fair agreement. The deviations increase with growing order of n, their
average value being one tenth per cent.
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VARGA PETER

A FOLD KULSO EROK OKOZTA STATIKUS DEFORMACIOINAK
KAPCSOLATA A FOLDSZERKEZETTEL

Ot killénb6zé foldmodell, valamint véaltozé hatarfeltételek esetében meghatéaroztuk a terhelé-
sek kovetkeztében fellépd deforméciokat leird terhelési szamok hin, Knés értékeit és ezeknek a gra-
vitacios és horizontalis komponensek esetében érvényes kombinaciéit n=2-t61 n—10000-ig. Az el-
végzett szamitasok célja: megvizsgalni azt, hogy radidlisan inhomogén Foldet feltételezve, az egyes
bolygoszerkezeti elemek, milyen mértékben befolyasoljak a fellép6 rugalmas deformaciokat jellem-
z6 terhelési szamok értékét. Megallapitottuk, hogy a terhelési szamok nagysagrendjének névekedé-
sével az egyes foldmodellek kozott eltérések jelentkeznek, igy példaul a felszinhez kozelebb fekvé
haték szerepe ndvekszik. A deformaciok szamitasahoz felhasznalt foldmodelltél fliggéen a szamita-
sok eredménye bizonyos mértékig valtozik, azaz a Fold statikus deforméacidinak nagysaga boly-
gonk szerkezetével kapcsolatot mutat.
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n. BAPTA

CBfA3b CTATUYECKNX OEGOPMALNIA 3EMAN,
BbI3bIBAEMbIX BHEWWHNMW CUNAMW, C CTPOEHVEM 3EMJ/IN

[na naTv pasnnyHbIX Mogeneii CTPOeHWUs 3eman U NPU NEpPEMEHHbIX FPaHUYHBIX YCI0BUAX
6blNK OnpeaeneHbl BeNUYMHLI h,, KNK /,, Harpy3ku, onucbisarolwme geopmanmmn, BO3HUKaOLWME Ha
BO3JeliCTBME HArpy3oK, a Takxe WX KOMOUHauuu, feiCTBUTENbHbI 418 TPaBUTALMOHHbLIX U FOpu-
30HTaNbHbIX COCTaBAAKOLWMX, OT N = 2 go n = 10000.

Llenblo NpoBeAeHHbIX BbIYMCEHWI ObIN0 N3yYeHWe CTENEHW BAUAHUA OTAENbHbIX 3M1EMEHTOB
CTPOEHWS NNaHeTbl Ha BENNYMHbI (DaKTOPOB HAarpy3Ku, XapakTepHbIX A0S BOSHUKAIOLWMX YNPYrux
fedopmauuii, Cxoan 13 NPesnonoXeHN 0 pagnanbHO HEOLHOPOAHOM cTpoeHMn 3emnun. Ob6Ha-
PY>XXEHO, YTO C YBENMYEHMEM NOPAAKA BEIMYMH HArpy3oK, MOABAAKOTCA pasMuns MeXxay OTAeNb-
HbIMW MOZENsMM, TaK Harp., YBe/MUMBaeTCA 3HauYeHWe pPoan BO3MYLLAKOLWNX Ten, 3anerarwmnx
671Ke K NoBepxHOCTU. B 3aBMCUMOCTM OT MOZENM, UCNOMb30BaHHOW ANS BbluMCneHua fedopma-
LW, pe3ynbTaTbl BbIYUCIEHWI B ONPeAeNeHHON Mepe U3MEHSAIOTCS, T. €. BENNUYMHA CTaTUYECKUX Ae-
thopmauuii 3eMan CBA3aHa C CTPOEHMEM Halleld nnaHeTbl.
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DETERMINATION OF LAYER PRESSURES
USING INTERVAL VELOCITIES

P. ZSELLER*

1 Introduction

It is advantageous at the planning of well-drillings to know in advance the expected
changes in layer pressures. The delineation of the so-called “abnormal pressure” zones is
especially important. In these zones the pressure of pore liquid is greater than the hydro-
static pressure.

Without going deeply in discussing the formation of abnormal pressures let us exa-
mine which physical parameters change in the abnormal pressure zones.

During the normal sedimentation and compaction process the surplus liquid is
squeezed out from the layers, and the compacted rock granules support the grains above
them. The pressure of liquid at a given depth depends only on the height of liquid column
and on the density of the liquid. This pressure is equal to the hydrostatic pressure.

Occasionally at certain places sediments of small grain-size and of low permeability
are deposited. This layer might trap the pore-liquid into the underlying incompletely
compacted layers. As time passes by these layers are sinking deeper and deeper; the top-
layers are loading them more and more while the trapped liquid does not allow this layer
to be compressed.

In cases like this the weight of the overlying layers does not load the rock grains but
the trapped liquid. Thus the pressure built up in the liquid will be greater than hydrosta-
tic pressure. A fraction of the pressure due to the overlying layers must also be added to
the hydrostatic pressure. This is called the abnormal pressure.

The physical parameters of rocks in zones of abnormal pressure differ from those in
normal surroundings. As the trapped liquid does not allow the layer to be compressed the
rock matrix will be less compact, i.e. more porous.

This is the physical basis of predicting the presence of abnormal pressure zones.
From among the numerous methods only those will be dealt with which are based on the
relationship between porosity and wave velocity.

In bore-hole technology acoustic well-logging curves have been used since long to
predict abnormal pressures. Let us examine layers consisting of identical rock grains at
various depths. The wave velocity in layers is described by Wyllie’s formula:

VoM Ma

where
& s porosity,

* Geophysical Prospecting Enterprise of the Hungarian Oil and Gas Trust, Budapest
Manuscript received 16. 4. 1977
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Vf is the wave velocity in the pore-liquid,
\ha is the wave velocity in the rock matrix.

The wave velocity in the matrix depends on the elastic constants of the material and
on the stress conditions. Velocity changes with depth.

It can be shown experimentally that in rocks of identical type—for example in
marls—the wave velocity increases exponentially with depth. This is proved by several
well-known examples described in the literature.

In other words, ifthe logarithm of the velocities for rocks of identical type is plotted
as a function of depth, the values should lie along a straight line (Fig. 1). This straight line
is called the normal compaction trend of the given rock type. The slope of the line depends
on the compaction conditions of the region.

Porosity systematically increases in zones of abnormal pressure, leading to a de-
crease in wave velocity. Thus, in zones of abnormal pressure, the observed velocities do
not fit the normal compaction trend, velocities are systematically shifted towards smaller
values. From the degree of this shift the magnitude of abnormal pressure may be deduced.

In well-logging practice the presence of a sealing layer above the abnormal pressure
zone—being itself partially under abnormal pressure—is used for the detection of the lat-
ter. By taking repeated well-logging readings during drilling this transitional zone can be
recognized.

Instead of frequent well-logging it is more convenient to use seismic velocity ana-
lysis, but the poor resolution of the seismic reflection method may cause some concern.
At well-logging, using different types of logs, layers of identical rock types can be identi-
fied. In practice shales or marls are used to predict abnormal pressures.

It cannot be expected from seismics to provide velocity information for each layer,
only for selected depth intervals. The so-called interval velocity gives the average velocity
of the wave passing through the depth interval.

1 2 J 4 56 km/sec
\
.
\
\
A
\

Fig. 1 Wave velocities in shales

\ 1 abra. Hullamterjedési sebességek margas rétegekben

Puc. 1 CKOpOCTM pacnpocTpaHeHus ynpyrux
b Kone6aHuit B Mepre/bHbIX nnactax
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This is why in case of seismically determined velocities one cannot speak of the com-
paction trend of a certain rock type—for example of shales. However—as it will be
shown in the next sections—the change in velocity caused by abnormal pressures can be
recognized on the interval velocity curves.

In what follows we first introduce a method for seismic velocity determination. Then,
an example will be presented to illustrate the application of interval velocities to predict
abnormal pressures.

2. Description of the Velocity Analysis

The velocities are determined from multiple coverage reflection data. In order to use
this method the following supplementary input data are required:

(i) exact static corrections,

(ii) an approximate stacking velocity function.

First the static and dynamic corrections are carried out and the input traces are
sorted, according to common depth points.

The second step is to select the appropriate time windows. This is accomplished by
producing first a reference trace at each depth point by stacking the CDP traces. It is sup-
posed that only those parts of the section are worth for any further study where there are
good reflections even on the rough stacking section processed by the preliminary velocity
function. As next step, the local maxima of the reference trace are picked. The time values
corresponding to these local maxima will be denoted by fO’in the further examinations.

Each CDP trace is examined to see how similar they are to the reference trace
around the selected fO values. For comparison the following coherence function is used:

to+DT

L In-(n)+y(r+ 7]

= - ETFT— o
| woi+ | WOI

t=t0- DT t=tQ-DT

This function differs from the well-known semblance function, only in using the aver-
age of absolute values instead of energies; thus accelerating the calculation process.

At the same time it is determined how much the respective trace should be shifted in
time with respect to the reference trace to achieve maximum similarity.

The procedure at a CDP point of a six-fold coverage profile is shown in Fig. 2. In the
calculation of the M(t) function the sampling interval A+t was selected as twice the origi-
nal. The exact location of the maximum of M(x) was determined by fitting a parabola to
the largest value of the sampled function, and two of its neighbouring points. The peak
of the parabola is considered as the maximum of the M(r) function. Detailed illustration
of the method is shown in Fig. 3

To the time-shift thus obtained a weight, characterizing its reliability is assigned.
This is determined from the maximum value of M(t). The following should be considered
when determining this weight:

Mmex |, it x(i)=y()

M nex= 0. it x(t)=-y(t)

Mmax=05, if x(t) and y()  areuncorrelated (the case
x(f)=0 and y(i)= 0 is exluded).
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X=405n,

X-525rr|

X=645n.

X=765n,

X=885n,

X=1005r,

-12-8 -4 0 4 8 12 msec

Fiy. 2 M(i) similarity graphs of traces belonging to a common depth point. Values of x denote
shotpoint-geophone distances. Arrows show the values of maxima of the graphs

2. dbra. Egy kozos mélységponthoz tartozé csatornak M(r) hasonlésagi figgvényei. Az x értékek
a csatorndk robbantépont-geofonpont tavolsagat jelentik. A nyilak a fiiggvények maximalis
értékét jelzik
Puc. 2. ®dyHkummn nogobus M (r) Tpacc, OTHOCALMXCA K 06Wei rny6uHHON Touke. BennmumHbIx
COOTBETCTBYHOT PacCTOSIHWUIO OT MyHKTa B3pblBa A0 celicMonpuemMHuka. CTpenkamy OTMeYeHbl
MaKCUMabHble BEAUYUHBI (YHKLMIA

Next, we compute the sum of the weights at each point. Those will be considered as
reflection-like points for which the sum of the weights exceeds a given threshold.

At reflection-like points the RNMO values should be determined. It is carried out by
fitting a parabola to the previously defined shift values, as a function of offset, using the

least squares method.
The respective shift values are taken into account in proportion to the corresponding

weights.
Having fitted the parabola, the RNMO and f0 values of the reflection can be

obtained. The corrected NMO function will be:
NMO(t0) = RNMO(t0)+ AfMO[r0+ RNMO(t0]]

where NMO is the preliminary dynamic correction function.



Determination ol layer pressures using interval velocities

4 ~max "2

Mj +M3 -2M2

Fig. 3 Fitting a parabola through three points. The differences between t1( t2, 3 are constant (Ax)

3. dbra. Harom ponton atmend parabola illesztése
ij, x2, x3 kozott egyforma Ax kiillénbség van

Puc. 3. CornacosaHue napa6osibl, NPOXOAsLLE Yepes TpU TOUKU. Pa3HOCTb AX MeXay b X%, I3
0/IMHaKoBa

Next the CDP summation along the RNMO curve is carried out at the calculated t0
points. The sum obtained will be considered as the amplitude of the corresponding reflec-
tion. Thus, the following three values are assigned to each reflection-like point: t0, NMO
and the amplitude.

Figure 4 shows a 600% stacking section, the corresponding reflection-like points are
shown in Fig. 5. Shading of the points is proportional to their amplitude. On the right-
hand side of the figure there are histograms of stacking velocities of the reflections
observed on the section versus f0.

The next step is to select those reflection-like points which could be interconnected
into seismic horizons. The following criteria were observed at selecting these points:

(i) Reflection-like points should fit into some appropriate stacking velocity function.
This function should not have rapid changes either in time or along the section.

(i) Reflection-like points should be observable through consecutive CDP traces.
More precisely, for any reflection-like point there should exist a pair of points at the
neighbouring CDP traces such that the deviation in their r0O, NMO and amplitude values
should not be greater than some fixed threshold. These points then may be connected
into seismic horizons.
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Fig. 4 600%-coverage time section
4. dbra. 600%-o0s fedésii id6szelvény
Puc. 4. BpemeHHbIli pa3pe3 ¢ nepekpbiTem B 600%
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(iii) Between the subsequent horizons we can determine the interval velocity. The cal-
culated interval velocities should match the velocity trend of the area.

Figure 6 shows the stacking velocities corresponding to the reflections chained into
horizons. Each velocity value is produced by joining 8 points. The interval velocities of
the same section are shown on Fig. 7.

The main advantage of the described velocity analysis is its speed of calculation. By
carefully preselecting the areas of investigations, eight or ten times less computer time is
required than for the traditional velocity determination methods. This enables mass
application of this method which is indespensable at investigations of layer pressures.

0—n | 1 1 1 1 L 1 .17
BT *1

05-

Fig. 6 Stacking velocity section. Velocity values written along the horizons represent the
averages of 8 consecutive depth points

6. dbra. Stacking-sebesség szelvény; a horizontok mentén kiirt sebességértékek 8-8 mélységpont
atlagabol késziltek

Puc. 6. MpadmK CKOpocTeit Mo HAKOM/IEHMIO; BEIMUMHBI CKOPOCTEl, YKa3aHHble Ha FOpU3OHTaX,
noNyyeHbl Mo OCPEAHEHUIO AaHHbIX A5 8 FNYGUHHBLIX TOYeK
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Fig. 7 Interval velocity section
7. dbra. Intervallum-sebesség szelvény
Puc. 7. I'padMk nHTepBa/bHbIX CKOPOCTElh

3. Example for Predicting Anomalous Layer Pressures

As it has been already discussed, the following tasks must be solved: determination
of the interval velocity function versus depth, plotting in semi-logarithmic scale and
determination of the normal compaction trend. Next this plot should be examined
whether any deviation from the trend exists. The magnitude of abnormal pressure can be
calculated from the extent of the deviation.

In our example the interval-velocity function was calculated by horizontal averaging
in order to increase reliability (Fig. 7).

In well-logging, instead of interval velocity its reciprocal, the interval transit time is
used. Therefore in the followings we also switch over to the use of interval transit times.
The averaged transit time curve is shown on Fig. 8

47
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cF)e ig%%a jus:c/m

Fig. 8 Interval transit time graph for the section
shown in the previous figures. Dashed line
represents the normal compaction trend
characterizing the area of investigation
ibra. Az el6z6 abrakon lathaté szelvény intervallu
athaladasi id6-fiiggvénye; a szaggatott
vonal a teriiletre jellemz8 kompakcios trend
Puc. 8. ®yHKUMA KPUBOIA, NpeACTaBNeHHON Ha
npefblAYyLLIMX PUCYHKaX OT BPEMeHU nepexopa
uepe3 MHTePBa/Ibl; MYHKTUPOM OTMEYeH
TPeH KOMNaKLuUW, XapaKTepHblii ans paiioHa

The next task is to determine the normal compaction trend. As it was already men-
tioned it is not possible to separate the individual layers by the seismic method, so it can-
not be stated about any point of the graph that it represents the velocity of a certain rock
type.

According to the published values of rock velocities it can be taken for granted that
from among the sedimentary rocks;

the wave velocity is the lowest in shales and marls;

— the highest in carbonates;

—the velocity of sandstones is inbetween that of the shales and carbonates.

Wave velocities as measured by the seismic method always relate to a whole series of
layers. It can be assumed that the velocity is proportional to the shale—sand—carbonate
content in the corresponding depth range. Thus, in case of the graph shown in Fig. 8, the
normal compaction trend of the shales is best approximated if the straight line is fitted to
the points of lowest velocities.

For determining the seismic velocity function the straight line should be fitted to the
velocity curve as closely as possible. This trend is represented by a dashed line in Fig. 8

Naturally a normal compaction trend drawn from a single velocity curve would be
unreliable. In our example results of previous investigations being at disposal were uti-
lized as well. Unfortunately, this simple method of drawing the compaction trend is bur-
dened by a lot of biased errors. Further investigations in this field will decrease the
number of such errors.

It can be seen from Fig. 8. that the velocity curve deviates from the inscribed straight
line at the shallowest and greatest depths. As for shallow depths, this can be explained by
noticing that the compaction is not of the same degree as in case of the older layers. The
deviation observed at a depth of 2500 m is believed to be due to abnormal pressure
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Let us draw an auxiliary straight line fitting to the velocities corresponding to the
depths of about 2500 meters. The two straight lines are shown in Fig. 9. From the differ-
ence of the two lines the amount of abnormal pressure can be estimated. This estimation
is based on the so-called method of equivalent depths, shortly described as follows.

As an example, let us try to estimate the pressure at a depth H2, shown in Fig. 9. The
depth corresponding to that velocity on the normal compaction trend which is equal to
the velocity on the abnormal pressure line of depth H2, will be denoted as H1 It may be
assumed that the velocities are the same because the stresses acting upon the rock
matrices are nearly the same.

%i g%%ogo fjsei_c/m

Fig. 9 Deviation between the normal compaction
trend and the trend characterizing the zone of
abnormal pressures

9. dbra. A normal kompakcids trend és
a tilnyomasos rétegre jellemzd trend eltérése

Puc. 9. OTKNOHEHVE HOPMANLHOIO TPeHaa
KOMMaHWK OT TPeH/a, XapaKTepHoro Ans
nnacTa ¢ nepefjaBneHnem

The pressure exerted by the overlying sediments is balanced by the stresses in the
rock matrix and the pressure of the pore-liquid:
S = “matrix “*liquid’
where

S is the pressure exerted by the
overlying sediments;
etrix s the stress in the rock-matrix;
Piiquid 7 the pressure of the pore-liquid.

The pressure of the pore-liquid at depth A, isequal to the hydrostatic pressure. Con-
sequently, the following equation holds true:

Xx(Hi) = [S W -pW JH ,,

where dashes represent the gradients with respect to depth.
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The pressure at depth H2is
p(H2) = p'(H2H2 = S\H 2)H2—Zharix{H2).

If we assume that ffrratrix(H

= firatrix(W2):

p(HD) = X(AD-[Y (A D-p'(A 3] iy

where

p'(HY) is the hydrostatic gradient at depth H 1 characteristic to the are;
A'(A) is the pressure gradient in the overlying sediments.

If the above-mentioned factors are known, the pressure can be calculated as:

Instead of using pressures or pressure gradients in the above formulae some prefer to
use the equivalent mud density. This expresses that the hydrostatic pressure of what den-
sity mud would balance the pressure of the pore-liquid at a given depth.

The solid line shown in Fig. 10 is the equivalent mud density curve calculated from
the given velocity function. For comparison purposes the actual mud densities used in
neighbouring drillings were also plotted (as dashed areas).

The pressure values obtained by seismics clearly indicate the place of pressure
change. As seismic measurements precede drilling activities in time, the information thus
obtained may be used at the planning of drillings. These preliminary informations, sup-
plemented for example by monitoring the drilling velocity, may greatly increase the safety

of balanced drillings.

1011 1213 14 kp/dm3

051

10-

km

Fig. 10 Comparison of mud densities from actual
drillings of the area (a) and the equivalent
mud density graph obtained from velocity analysis (b)

10. dbra. Iszapfajstlyok 6sszehasonlitasa.
a) a terdlet farasaiban hasznalt iszapfajsulyok,
b) a sebességvizsgélatokbdl meghatarozott
ekvivalens iszapfajsuly-fiiggvény
Puc. 10. ConocTaBneHue yfenbHbIX BECOB FMIMHUCTOrO pacTBOpa;
a) yfAenbHbliA BEC IMIMHUCTOrO pacTBopa, MPUMEHSsBLLErocs
B eKBaXWHax paioHa;
6) aKBMBaNeHTHas KpuBas yfeNbHOro Beca rMHUCTOro
pacTBOpa, ONpefe/leHHOro Mo aHanu3y CKOpOoCTeit
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ZSELLER PETER

RETEGNYOMAS MEGHATAROZASA INTERVALLUM-SEBESSEGEK
FELHASZNALASAVAL

Az utébbi években a reflexids szeizmikus kutatasban egyre nagyobb teret hoditanak a Etold-
giai vizsgalatok. Ezek kozé tartozik az Un. tdlnyomasos zdnak el6rejelzése sebességvizsgalatok
alapjan.

A litoldgiai vizsgalatok megbizhat6 sebességadatokat igényelnek. Ez csak Ugy érhet6 el, ha a
sebességvizsgalatokat nagy tdmegben tudjuk végezni.

A cikkben bemutatunk egy reflexidédetektalason alapuld sebességmeghatarozasi modszert,
melynek gépiddigénye kb. tizedrésze a szokasos 0sszegzéses sebességmeghatarozasi eljarasok gép-
idejének. Ez lehet6vé teszi a modszer nagy tomeg( alkalmazasat.

A cikk masodik részében bemutatunk egy példat a tiInyoméasos zénak kimutatasara, az ismer-
tetett sebességmeghatarozas alkalmazasaval.

n. XENNEP

OMPEAENEHWE MNMAACTOBOIo AABJIEHNA C MCMOJIbBOBAHVNEM
WHTEPBAJIbHbIX CKOPOCTEW

3a nocnegHue rodbl B ceiicMopasseoUHbIX pa6oTax MOB Bce Gonbliee 3HadeHMe Npuobpe-
TaloT NUTONOTMYECKUe uccnefoBaHus. Clofa BXOAMT U NpeAcKasaHne Tak HasblBaeMblX 30H nepe-
[aBneHus Mo aHannuay CKOpOCTeid.

JluTonoruyeckue nccnefoBaHns TPeGYHOT HaMUMS AOCTOBEPHBIX AAHHBIX O CKOPOCTAX. ITO
MOXET AOCTUraTbCs TONbKO NPU MacCoBOM MPOBEJEHUM aHanNN30B CKOPOCTEN.

B HacTosLeil pa6oTe OnucbiBaeTCs METOA OMNpeaeneHns CKOpPoCTel, OCHOBbIBAKOWMIACS Ha
NPOCNEXNBAHUM OTPAXKEHWUI, NOTPE6HOCTL KOTOPOro B MalIMHHOM BPeMeHW NpubA, B AecATb pa3
MeHbLLIE MO CPABHEHWIO C MALLMHHBIM BpeMeHeM, TPe6YIoLIMMCS A1 CTaHAAPTHLIX METOA0B onpe-
[JeNeHunst CKopocTeli No cnocoby CyMMMPOBaHKs. ATO NO3BO/SET UCMO/MbL30BATL METOA A4St MACCO-
BOrO OnpefieneHns CKOpOCTeil.

Bo BTOpO#t YacTh paboThbl NPUBOAMTCS MPUMEP BblAeNEHUs 30H NepefaBieHns ¢ UCNo/b30Ba-
HUEM MpeanaraeMoro MeToja.
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SOME NOTES ON A PROBLEM OF TREITEL AND WANG

G. KORVIN*

In a recent paper Treitel and Wang (1976) call attention to the fact that the auto-
correlation matrices, used for the time-domain design of deconvolution filters, are in cer-
tain cases ill-conditioned. They also present an interesting example, where the solution to
such an ill-conditioned system of equations leads to rather different filter points, on differ-

ent computers.
To measure the condition-number of autocorrelation matrices they use the ratio

(1

where Amaxand Amjnare the largest and smallest eigenvalues of the autocorrelation matrix
(see e.g. Westlake, 1968).

On p. 318 of their paper the authors are posing the question, whether there is a sim-
ple geological-geophysical explanation for the ill-conditioned behaviour of the autocorre-

lation matrices.

In what follows it will be shown that, in case of autocorrelation matrices, the condi-
tion-number (1) has a simple physical meaning.

If we denote by x,, the sampled values of a seismic trace, the autocorrelation matrix,

corresponding to this trace is
rorl

R= rlro
rmrm_, ... 10
where rk is defined by the expectation
rk = (xnxn-+k).
Let us first observe, that for any stationary time-series x,, the matrix R is positive semi-

definite, i.e. for an arbitrary vector

K, L «2. s> M), ]!_OI/P+O

we have

m

k>§o fz(ork-iUku ao @

* Hungarian Geophysical Institute ‘Roland E6tvos’, Budapest
Manuscript received 21. 8. 1978
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Indeed, let us consider the vector (u0, ut, ..., um)as a digital filter and apply it to the series
of data xn. The mean energy E of the resulting time-series yn can be expressed as

m \2\ /' m m \
X“N-*))= &X X uku,X,,,.kxn I\ =
. =0 171 \k=0 10 /

£-«>-((
=X X = X X rk-iuku,
k=0 1=0 k=0 =0

which, since the expected energy is obviously non-negative, proves the positive semi-
definiteness of matrix R. The formula

2= X X re-1d, P)

k=0 1=
expressing the expected energy of a filtered trace will also be referred to later.
Let us now recall that the smallest and largest eigenvalues of an arbitrary positive
semidefinite matrix A = (au)* can be characterized as smallest and largest values
assumed on the (m+ I)-dimensional unit sphere by the quadratic form

m m
X X atjXiXj
/=0 j=0
m m
'mm = _ min X X “inin 4
i=0 j=0
i=0 -
m m
Amax = _ maX X X aijXIXj (5)
. i=0 j=0
iba =1

(this characterization is due to Courant and Fischer, see Bellman 1960, Section 7; or
Beckenbach and Bellman 1961, Section I1.)

In what follows we will show that large enough values of m the smallest and larg-
est eigenvalues of the autocorrelation matrix R are “approximately” equal to the mini-
mal and maximal values of the power spectrum of the time series x,,.

Theorem. Let us denote by x and X, respectively, the smallest and largest values of the
power spectrum of the time series xn; and by Arjn and / nax the extreme eigenvalues of the

autocorrelation matrix (r*jg. Then

Xx"Ammg (I+ M X+0 Q (@]

XAAmaxt (1-]82))2X+0 Q U]

where el; e2 are constants of small magnitude:
lej1  0.09; le21” 0.00. ®

Proof. Let us first consider the smallest eigenvalue. Denoting by X(z) the r-transform of
the time-series x,,, the z-transform of its autocorrelation function will be |X(z)|2 and—by
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the inversion formula of z-transforms (Kulhanek 1976, p. 25)—the /cth value of the
autocorrelation function is given by

r . (¢)
K onj ©)
.

wherej = ]/—1 and the path ofintegration I should be taken counter-clock-wise along

the unit circle.
As a particular case of Eq. (9), for k=0 and for an arbitrary finite z-polynomial

u0+ulz+...+umzm;, X uf=1 (10
we have
ro= X uf= 1= — (11

By writing out Eq. (9) for the index (k—I), multiplying both sides by ukuh and summing
with respect to k, | from 0 to m, we obtain :

L/ \ J AX(2)\2 "' "
X1>(rk- —-— L X zz ukuidz =
k=0 1=0 nd
Im \2
X ukz' mdz >
2K k0O
X f1
Z o o X ukek dz = X, (12)
2nj z k=0

where we have made use of Eq. (11) and of the fact, that along the unit circle
IX(2)\2 2. min |X(2)|]2 = x.

From inequality (12), on the strength of the minimal property (4) of the smallest eigenva-
lue,

X = Anin (13)
and, by a similar reasoning,

I <X 14
On the other hand, suppose that the minimal value of the power spectrum belongs to the
frequency f0. The energy J1IE corresponding to the spectral band ~/0—y-, fO+ is,

for a small enough Af:
AE Kk x -Af. (see Fig. 1).
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Fig. 1L Power spectrum of the time series Xx,,
I. dbra. Az x,, id6sor teljesitményspektruma
Puc. 1 CnekpT cowHOCTU psAja BpeMeHU Xy

By denoting the Fourier coefficient corresponding to the frequency /0 by c, we have, by
the Wiener-Khintschine theorem

Let us now construct a digital convolution filter

al) jrruci
corresponding to the amplitude transfer function
1 .
if fo + Af

0 otherwise

(see Fig. 2)) Since, in the frequency domain, the total energy of filter A(f) is 1, we have, by
the over-all error estimations of Meyernhoff (1968)

£>? = I+ 0 (
i—o \

3 4+

) (15)

j
if m is sufficiently large.

The actual transfer factor of the digitally realized filter (a0, alt..., am) will be, for the
frequency fO0:

1

o @+ei

IAf

where e, is some small (less than 9%) overshoot or oscillation due to the Gibbs

phenomenon.
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1G]

Fie/. 2. Amplitude characteristics of the filter A(f)
2. dbra. Az A(f) sz(ir6 amplitadé-karakterisztikaja
Puc. 2. Xapaktepuctuka amnautyg gunbtpa A(f)

By applying the filter to the time series x,,, the output energy will be
1
AE it @+ED -\c\2-Af+0
VTif
= x(1+el)2+0 (16)

On the other hand, by Eq. (3)

m m

AEflit = X! X rk-lakal
k=0 /=0
i.e. by Egs. (15), (16) and (4):
Amingx (1 + |El])2+0 Q 17

which, together with (13), proves statement (6). Inequality (7) can be similarly proved.
Finally, it should be noted that the distribution of the eigenvalues of the infinite
matrix T = (c,,_/ where the indices vand /i range from —oo 8 + 00, has been first stu-

died by Toeptitz (1911). Assuming that the Laurent series £ ¢,z" is convergent in a

ringv! < \2\ <r2(0 < < 1< r2)around the unit circle, Toeplitz proved that the set
of these eigenvalues coincides with the set of the values the Laurent series assumes on the
unit circle Izl = 1 The treatment of the asymptotic distribution of the eigenvalues of
finite Toeplitz matrices requires rather deep mathematical techniques (Grenander and
Szeg6, 1958; Ekstrom, 1973). The above, elementary proof of inequalities (6) and (7),
based on digital filtering theory, seems to be new.
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KORVIN GABOR

MEGJEGYZESEK TREITEL ES WANG EGY PROBLEMAJAROL

Treitel és Wang 1976-0s dolgozatukban megmutattak, hogy a dekonvollcids sz(ir6 tervezé-
séhez hasznalt autokorrelacids matrix esetenként gyengén kondicionalt, olyannyira, hogy a feladat
megoldasa kiilonbdz6 szamitégépeken lényegesen eltérd szlir6ket eredményez.

A kondiciészdm mérésére a

mennyiséget hasznaljak. Felvetik a kérdést, mi lehet az autokorrelaciés matrixok gyengén kondiéio-
naltsdganak geoldgiai-geofizikai magyarazata.

A dolgozatban, a digitalis sz(ir6elmélet médszereivel bebizonyitom, hogy a P kondiciészam-
nak egyszer(i értelmezés adhat6: korllbelil megegyezik a szeizmikus csatorna teljesitményspektru-
ma legnagyobb és legkisebb értékének hanyadosaval.

Pontosabban, legyen Amin és Avex az (r£_ ' autokorrelaciés matrix legkisebb, ill. legnagyobb
sajatértéke, xés X a teljesitményspektrum legkisebb, ill. legnagyobb értéke. Ekkor, ha m elég nagy

ahol E, és e2 kis abszolutértéki konstansok (|ex| g 0,09; |e21” 0,09).

r. KOPBVH

3AMEYAHNSA K O4HOW 13 MPOBIEM TPEUTENA N BAHTA

B cBoeli paboTe oT 1976 r. TpemTen v BaHr nokasanu, 4To B OTAEMbHbIX CAyYasx MaTpuua aBs-
TOKOppenaummn, ucnonb3yemas 41a NpPoeKTMpoBaHus (unbTpa 06paTHOW CBEPTKM, cnabo KOHAM-
LIMOHMPOBAHa, TaK YTO MpU peLleHny 3afiaumn Ha pasnyHbix 3BM, nonyyarTcs CyLLecTBEHHO pas-
nimyaromecs mMexay coboin punbTpsbl.
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[Ans onpefeneHna yncna KOHAULMOHMPOBAHUA NPUMEHSETCA COOTHOLLEHME
P =

CTaBUTCS BOMPOC, B YeM 3aK/IHOUAETCA Fe0/10ro-reonamyeckoe 06bCHeHMe €naboil KOHANLMOHN-
POBaHHOCTU aBTOKOPPENSLMOHHBIX MaTPUL.

B HacTosLel paboTe, NCX0aa U3 TEOPUU LIMGPOBbLIX PUALTPOB MOKa3aHO, YTO YUCAWU KOHAU-
LIMOHUPOBaHMSA P MOXHO NpuaaTb NPOCTOe UCTOKOBaHMWE : OHO NMPUGAN3MTENLHO COBMaAaeT ¢ OT-
HOLUEHMEM MaKLMMaNbHOM M MUHWMa/IbHOM BENMUMH CNPeKTPa MOLLHOCTU CEMCMMNYEeCKOro KaHana.

TouHee, NycTb 6yAYT /,MH 1 / VBKC HaUMeHbLLIAs M HanbonbLLas CO6CTBEHHbIE BENIMYNHBI aBTO-
KOPPENALUOHHOWM MaTpuLbl, a X U X - HAMMeHbLIAs N HaUbOoMbLLAs BENMUMHBI CMEKTPA MOLLHOCTH,
COOTBETCTBEHHO. Torja, npu A0BO/IbHO BbICOKOM 3HAYeHUN T:

rge ei v £2 - NOCTOSHHbIE C HU3KOM abcontoTHOM BenuumnHoi ( 150,09; |£2|g0,09).
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MEASUREMENT AND INTERPRETATION OF THE DYNAMIC
CHARACTERISTICS OF INDUCED POLARIZATION
DECAY CURVES*

A ERKEL-P. SIMON-L. VERO**

1 The time function of the induced polarization
decay curves

The majority of IP measurements, at present, provide only the variation of one, in-
strument-dependent parameter along profiles or on contour maps. The parameters are
different in time domain and frequency domain measurements but even within these two
techniques there are several parameters of quite different definitions. The definitions are
mainly based on instrumental parameters because of lack of exact theory.

To meet the increasing requirements in induced polarization measurements, other
quantities, possibly independent of the measuring technique, are to be determined. This
requires in time domain to know the time function, that is, the dynamic characteristics of
the decay.

As early as in 1959, Wait described the time function as

e(t)
L A.exp(— V)
&0 n=1,2,3
In 1962 Roussel processed his laboratory measurements on the basis of a similar assump-
tion. For Huntec’s M-3 type instruments H utchins (1971) suggests the approximation
with exponentials as a processing method. Ketier (1967) determines the time constants
with density function instead of discrete exponentials:

E(t) = EOj G(u)e du. )
0

An even more complicated relation was found by Damaskin and Sheinmann (pri-
vate information, 1976)

F(T) = 1—exp(xerfcyx),

7 ©)
X Tofn
but the form of the function is also exponential.
Dankhazi (1973) provides the function for a very simple, elementary model:

o, t) = 4
' 4nre @
* Presented at the 39th EAEG Meeting, 1977. Zagreb

** Hungarian Geophysical Institute ‘Roland E&tvos’, Budapest

Manuscript received 17. 1 1978



62 A Erkel-P. Simon-L. Ver§

Both theoretically and empirically it seems to have been proved that the induced
polarization decay curve can be approximated with sufficient accuracy by the sum of
exponential factors. This alone does not provide further information on the basis of phy-
sical-chemical principles, neither does it contain any restrictions, it is purely a mathemati-
cal approximation of the recorded curve shape.

2. First step of factoring

In our processing method we also started from this approximation using the well-
known factoring:

n

uip(f) = £ AiexP (- f/T)+ corr> ©
iz
where

UIP({) complex decay function;

i serial number of exponentials;

At coefficient of the ith exponential;

r- time constant of the ith exponential;

t time after the current is turned off;

corr sum of supposed non-exponential components.

In the course of processing with different methods of the several hundred analogue
field curves recorded under different geological conditions, it was found that n in Eq. (5)
in most of the cases is 3, and the T values are in the order of 10 x 1and 10. Unfortunately
the method of processing also affects the distribution of T since factoring is only suitable
for separating time constants in the ratio of about 5. The extreme values are restricted by
the recording interval (0.2-80 sec in our case).

The first step in factoring is to eliminate the assumed non-exponential components.
Not even a recording of 100 sec'is enough for complete depolarization after long-time
charging. The simplest procedure to eliminate this potential difference is to correct the
complete decay curve with the potential difference obtained at the end of the measuring
cycle. This method is applied for instruments operating with short charging and measur-
ing times. The records show, and it is highly probable, that although the change of poten-
tial difference becomes very slow in time, it cannot be considered as constant. If, however,
a potential value belonging to a given point in time is used for correction, an instrument-
dependent parameter must be introduced, what we would like to avoid.

In the first processing method we assumed that the disturbing effects could be des-
cribed in one measuring cycle with a function consisting of a remanent potential (UR)and
a linear member (dy). With the proper number of samples taken at equal intervals from
the final portion of the decay curve, consisting of the component with the largest time
constant and the above factors only, the linear and the constant components can also be
determined from the following expressions:

@

where
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dy linear component;
UR residual potential,
Us,..., Us_5 last 6 samples;

“« ng_5 sampling times;
At sampling interval.

The results of the numerous tests for determining the reliability of URand dy values
show, that with one or two exceptions both URand dy are of the same sign in the records.
That was not what we expected, as we had mainly reckoned with random effects, such as
electrode polarization, telluric currents, instrument drift, SP compensation error etc.
Besides, as it was systematic, it could be considered as a very slowly decreasing IP com-
ponent rather than a correction.

The data necessary for determining URand dy were read off the record without any
correction, namely, off the last portion of the curve with a poor signal to noise ratio.
Therefore, scatter of the values determined on the basis of the same record was quite large
but having recognized that their sign was always the same, we changed over to another
method of determination. A tangent straight could be drawn to the last portion of the
decay curve either by graphical adjustment in a linear time scale or by another smoothing
method. The records were processed with this latter method as well, and it was found that
the value of the last component at the time f= 0 was of highly random nature, but about
at (extrapolated) 250 sec it descreased to zero. This corroborates our assumption that it is
some long-time depolarization resulting from charging. Thus, it might as well be consi-
dered as an exponential component, since in a relatively short time interval an exponen-
tial of a large time constant can be well approximated with a linear function. If, in the
above interval, the values of UR and dy are available, the approximate values of the
assumed exponential are easy to determine. At small values of f, however, the correction
with an exponential of large time constant differs from the linear correction, but it is im-
possible to have the choice of the different methods of correction on theoretical basis.
Even in practice, the result hardly differ from each other.

For the sake of uniform plotting the URand dy values were converted into exponen-
tial parameters AO and r0 and the amplitudes were normalized. Thus the function des-
cribing the complete decay curve is the following:

‘X Llexp (—r e (8)

i=0

of which only the values of WO and r0 have been discussed so far. W means the amplitude
normalized to the primary voltage.

3. Recording time and sampling rate

The next step is to choose the most suitable sampling rate. But this, unfortunately,
depends on the data themselves, that is, on the time constants and amplitudes. So the two,
probably most effective time series of sampling can be chosen with an assumed distribu-
tion of the time constants and amplitudes, consequently, they are inadequate for consid-
erably different distributions.

For determining a component, two moments should be taken into consideration,
which depend on the time constants:
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tM. the moment up to which a component of a given time constant can be recorded
reliably. If this limit is set at 5 per cent of the original amplitude, the value is:

©)

tm the moment, when the amplitude of the component with the smaller time constant
decreases to 1 per cent of that with the larger time constant in a two-component
curve:

t In (100 10
33 < |_|_|| [@AV)]

As a first approximation it can be assumed that the amplitudes are almost equal and
the ratio of the time constants is about 5, in which case

fm~ 5.8¢+j~ 121~ (H)
So the recording time of a two-component decay curve should be:
iM - i mi~ 27(. (12

One of the sampling methods is to sample at equal intervals in sections. The number
of samples taken for determining the components is to be chosen so, that the data for the
estimation of scatter due to the measuring errors, should be sufficient, on the one hand,
and the difference between the successive samples should not be too small on the other
hand, otherwise they would be obscured by noise.

With the supposed amplitude and time constant distribution these two conditions
could be fulfilled if 10 samples were taken from each component, that is, if the sampling
interval was

At- 0.2t (13)

At the same time, to determine URand dy as well, the time series of Fig. 1was used for the
sampling.

But in some cases is was found that too many samples fell on certain components
and too few on others (see Fig. 2). To determine the fourth component we had only four
samples. Moreover, during the processing by a programmable calculator, it often caused
problems that these time series could not be specified with a simple mathematical
formula.

In the other sampling method, the interval varied and the time series was easy to de-

scribe mathematically:
h=hb\ (19

in which tl time of the first sample,
b  factor determining the sampling rate. By using the powers of 2

t1=2X b=2y. (15)

If the recording time is 125 msec-64 sec, then x= —3, y=0.2, 0°k"45.

It is clear that the selection of x and y determines the time of the first sampling and
the sampling rate. For instance with the above values the number of samples is 45, almost
the same as it was in case of equal sampling intervals but their distribution is better, so
the condition of determining all the components from nearly the same number of samples
is easier to fulfil. Therefore this method of sampling, was selected for practical applica-
tions.
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TIME SERIES

At=0.1s At=0.2s At=1s At=2s At=4s

Q2 1 2 10 30 78s

44 samples

Fig. 1 Time series of sampling with different sampling rates
1 abra. Valtozé mintavételi slir(iséget biztositod id6sor
Pue. 1. BpeMeHHbIA psf, obecneunBaroLLnii NepeMeHHY NNOTHOCTb BbIGOPOK

Fig. 2 Factoring of a four-component decay curve
2. abra. Egy négykomponenses lecsengési gorbe tényezékre bontasa
Puc. 2. Pa3noXeHue YeTbIPEXKOMMOHEHTHbIX KPUBbIX 3aTyXaHUs

65
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4. Determination of the time constants
and amplitudes

Field records as well as computed (synthetic) decay curves have been examined in
order to find the most suitable method.
It requires relatively little calculation to determine the differences:

AU(tK = U k-U k. v (16)

A, and T can be determined from the differential curve.

But methods independent of sampling have been found more efficient. From two
subsequent samples a time constant can always be determined, what may be called appar-
ent time constant—ifthe samples consist of the sum of more exponentials. Plotting these
apparent time constants versus sampling time, a curve is obtained, the right-hand side
asymptote of which provides the values of the largest time constant (tj in Fig. 3). The
asymptote can be determined by adjustment.

Fig. 3 Apparent time constant versus sampling time function of a three-component decay curve

3. dbra. Egy haromkomponenses lecsengési gorbe latszolagos id6allandé — mintavételi-id6
fuggvénye
Puc. 3. DYHKUMUA KaXKYLLMXCA MOCTOSAHHbIX BPEMEH N BPeMeHU BbI6GOPOK ANs
TPEXKOMMOHEHTHbIX KPUBbIX 3aTyXaHus

A similar method can be used to obtain the amplitudes (Fig. 4). The formulas for
time constants and amplitudes for the above two sampling methods are given below:

At
pW an
In
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rapp(h) = exP \n}Hukuk+l + (18)
Uk

Tan(tfc) = exP (x+Kky)in 2—niny ~ - +In (2y—1) (19
Uk+1
K \2s—

= 20

Am (k) = UKk Uka1 (£Y)

Thus the values of A, and t, can only be considered as approximate. The second
approximation can be obtained by the following procedure:

First the approximate values of the first component for each sampling time are com-
puted and these values are subtracted from the recorded decay curve. From the remain-
ders—using the factoring—the approximate parameters of the second component are
calculated. Subtracting the approximate value of the second component from the original
samples, the data obtained contain only the first and the third components, which are
more suitable for the exact determination of the first component. This multistep factoring
is particularly necessary when the time constants are closer to each other than assumed
and the time intervals suitable for their determination overlap one another.

In the majority of the cases it has been found that after having subtracted the third
exponential member, what remains generally falls into the level of noise, thus making the
determination of any further component impossible.

Fig. 4 Apparent amplitude versus sampling time function of a three-component decay curve

4. dbra. Egy haromkomponenses lecsengési gorbe latszolagos amplitidd6 — mintavételi-id6
fuggvénye
Puc. 4. ®yHKUMS KOKYLLMXCH aMNAUTYA U BPEMEHU BbIGOPOK AN TPEXKOMMOHEHTHOW KpUBOIA
3aTyxaHus
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5. The trend of development

A common feature of the new TD instruments (Huntec M-3, Scintrex IPR-8,
Elliot R-10A, or the microprocessor controlled Soquem-Scintrex SWP-1, Z.E.R.O.
IP-12) is their suitability for curve shape analysis. But the sudden improvement of the
measuring technique is more important than the introduction of parameters supplying
more information. It seems that in this field greater progress has been made in FD mea-
surements (complex resistivity measurements, phase-angle—PFE correlation, correction
methods), but at the same time it is also highly required to extend the frequency range of
the measurements (Zonge and Wynn, 1975; Mitter et al. 1975). In case of TD, an
equivalent requirement is to examine the decay curve in the widest possible time range in
order to have more components. More components give more Wi—xi pairs, and more
data allow an easier detection of the differences and similarities between the dynamic
characteristics connected to the different IP sources.

The coefficients obtained during processing are plotted in the form of Wi—xi dia-
grams. The normalized amplitude is the ordinate of linear scale and the time constant is
the abscissa of logarithmic scale. As only the relative values of the secondary amplitudes
are of interest, each amplitude is normalized to the sum of the secondary amplitudes.
Bertin and Loeb (1974) interpret their results of factoring in a similar way and consider
the ratio of the amplitudes of exponentials as the most suitable for interpretation. In the
diagrams the points defined by LLL—xt values have a physical meaning only, the connect-
ing lines just indicate that they belong to the same measurement.

6. Field results

For practical applications first the necessary charging time was investigated. As
shown in Fig. 5 the charging time (Tc) must be chosen so as to exceed the largest time
constant of the survey area, otherwise URor AQ calculated from it considerably depend
on the charging time.

The curves of Fig. 6 have been obtained above mineralizations of different types. On
measuring points Nb-10, Nb-7 and P-8 the host rock consists of young volcanic pyro-
clastics (mainly andesite), subvolcanic instrusions, lava beds and so on. On point Nb-10,
disseminated high grade sulfides have been found in two depths (20-40 m, 148-180 m). In
the vicinity of the ore formations, even further away, the pyrite content was predominant
(> 10 per cent). In bore-hole Nb-7 only disseminated pyrite of 0.5-10 per cent has been
found. In the area of P-7 the pyrite content is 1-2 per cent on the average and is only
enriched to 6 per cent in some sections. Pyrite occurs as disseminations and in veinlets.
On point P-8 only sporadic, slight pyrite dissemination occurs (<1 per cent).

The W—Xdiagrams show considerable differences. The P-8 curve is completely flat
without extreme values. Nb-7 and P-7 are quite similar although the apparent chargea-
bility anomalies are different. The amplitude of WO— derived from UR—is 2.5-3 times as
large as that of the other. On point Nb-10 the amplitude of WO is about 5 times as large as
that of the other components.

On sites Sz-3 and Y -6 the host rock consist of Mesozoic carbonaceous formations
and dark-grey shales. No concrete data reffering to mineralization are available but it has
been observed that in this area some of the IP anomalies result from ore$ others from
graphitic enrichment in the shale. These two latter curves considerably differ from the
others both in form and extreme values.
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Fig. 5 Effect of charging time on amplitudes
5. abra. A gerjesztési id6 hatasa az amplitidékra
Puc. 5. BausiHne BpemMeHn BO30YXAeHWS Ha aMMAUTyAbl

Fig. 6 W—z curves obtained above mineralizations of different types
6. abra. Kiilonb6z48 tipusu ércesedések felett mért W—z diagramok
Puc. 6. patmkn W -r, nonyyeHHble Hag pasnnyHbIMW TUNaMu OpYAEHEHNs
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7. Equipments and development of new instruments

The results presented have been obtained with three different equipments: the bulk
of the measurements was taken by an analogue recorder in the time interval of 0.2-80 sec,
a few with two different types of DIAPIR time domain automatic digital potential, in-
duced polarization and resistivity measuring instrument developed in the Hungarian
Geophysical Institute ‘Roland E&6tvos’.

DIAPIR 4005 operates with the time series according to Eq. (14). For processing
Egs. (19) and (20) have been applied. DIAPIR 4010-N operates with three sampling inter-
vals shown in Fig. 7, for processing Egs. (6), (7), (17) and (18) have been applied. The
apparent resistivity and polarizability values are measured automatically and the results
appear on a three-digit display. To improve signal to noise ratio both in resistivity and in
IP measurements different electronic solutions (summing, changing of the interval of in-
tegration) have been applied. For data processing programmable pocket-size scientific
calculators have been used.

The paper has presented the results and shortcomings of the method for determining
the dynamic characteristics of IP decay curves as well as the possibilities of improvement.
The determination of W—t diagrams involves considerable increase in the measuring and
processing time and in the present instrument technique the depth of investigation is also
limited. To increase efficiency the development of a new, sophisticated, multichannel digi-
tal equipment was just launched. At present the interpretation of the W—%diagrams is
performed empirically, with comparative methods. Since the values of amplitudes and
time constants are affected in addition to the quality of ore by several factors, for example
grain size, specific resistivity conditions, ore structure and so on, the methods can only be
expected to solve some basic problems.

We are well aware that we have contributed to the method of curve shape analysis
with only a few concepts so far and we are far from being able to tackle even the essential
problems. We hope, however, to succeed in determining the most important data of the
ore and the host rock with ground IP measurements and to solve the problems involved
in increasing depth of penetration.

DIAPIR-4005

0125 < tl1< 8; b=2; 0 <K < 4;

number of samples 5 (in one cycle)

DIAPIR -4010-N

At=0.2s At=04s At=3s
02 3s
5 samples 5 samples N samples

Fig. 7 Time series of DIAPIR equipments
7. dbra. A DIAPIR m(szerek mintavételi id6sora
Puc. 7. Cepus BpemeH Bbl6OpOK Ansa annapatypbl Tuna ANATNP
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ERKEL ANDRAS-SIMON PAL VERO LASZLO

GERJESZTETT POTENCIAL LECSENGESI GORBEK DINAMIKUS
JELLEMZOINEK MERESE ES ERTELMEZESE

Feltevés szerint a gerjesztett potencial lecsengési gorbék jo kozelitéssel leirhatok exponencialis
tagok dsszegeként. A legegyszer(ibb modellek esetén ez az exponencialis id6fliggés elméletileg is iga-
zolhatd. A terepen mért lecsengési gorbék tényez6kre bontasaval az exponencialisok paraméterei
meghatarozhatdk és ezen paraméterek segitségével kiilonbséget lehet tenni érces és nem érces hato-
tol szarmazé anomaliak kozott.

Az utdbbi években jelentek meg azok a miiszerek, amelyek lehetévé tették a lecsengési gorbék
alakjanak vizsgalatat, de ezek szinte kizarélag rovid gerjesztési és mérési idével dolgoznak. Ugyan-
akkor a valtéaram GP-mérések értelmezésénél egyre inkabb arra a kdvetkeztetésre jutnak, hogy a
frekvenciatartomanyt legalabb néhany dekadnyira ki kell terjeszteni. Az egyenaramd méréseknél
ezzel egyenérték(i a lecsengési gérbe minél szélesebb id6-intervallumban valo vizsgalata. Csak igy
varhato, hogy m(szer-paraméterektdl fliggetlen adatokat kapunk.

Feldolgozasi modszereinkkel az exponencialis tagok amplitiddit és id6éallanddit hatarozzuk
meg, a foldtani értelmezést a normalt amplitidé—id6allandé diagramok alapjan kiséreljik meg.
A feldolgozasi modszerek megszabjak a mintavételezés modjat is. A mszerfejlesztésnél ezeket a
szempontokat figyelembe vettiik. Az igy kialakitott DIAPIR-m(iszercsalad alkalmas mind a cikk-
ben ismertetett modszerhez szilkséges adatok mérésére, mind a gyorsabb, de kevesebb informaciot
adé hagyomanyos GP-mérésekre.

A mérési és feldolgozasi tapasztalatok szerint ipari zajos tertileteken feltétlentl szilkséges a di-
gitalis jelrogzités és szamitdgépes feldolgozas. A mlszerfejlesztés ebben az iranyban is megindult.
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A. OPKEN-MN. WWWMOH-N. BEPE

MONYYEHUE N MHTEPMOPETAUNA ANHAMUWYECKNX XAPAKTEPUCTUK
KPMBbIX 3ATYXAHUSA BO3BYXXAEHHOM MONAPUSALNMN

MpegnonaraeTcs, YTO KPMBbIe 3aTyXaHWs BbI3BAHHON MOASPM3ALMM C XOPOLLMM NpubanKe-
HMEeM OMMCbIBAKOTCA Kak CyMMa 3KCMOHeHUManbHbIX YieHoB. [ns NpocTedwmx mofenei Takas
3KCMOHeHLManbHasa 3aBUCUMOCTb OT BPEMEHW TEeOpeTUYecKM MoATBepXaaeTca. [Mpu pasnoxe-
HWUW Hab/IOAEHHBIX MONEBbLIX KPUBBIX Ha (haKTOPbl, MOXHO OMpeAenvTb napameTpbl 3KCMOHEHLMa-
NbHBIX YNEHOB, W MPU MOMOLLM 3TUX MapaMeTpoB MOXHO pasnnyaTb Mexgy co60i aHoOManuu,
06YCNOBNEHHblE PYAHBIMW W HEPYAHbIMW BO3MYLLAOLWMMU Teflamu.

3a nocnefHvie rogbl NOABUANCL NPUBOPBI, MO3BONAIOLLME N3YYaTb (HOPMY KPUBbIX 3aTyXaHus,
HO OHW paboTaroT, NOYTK 6e3 UCKKYEeHUS, C KOPOTKMMU BpeMeHaMu BO36Y>KAEHWS 1 M3MEePeHNs.
B T0 e Bpems, npu nHTepnpeTauun faHHbIX MeToga Bl nepemeHHOro Toka, BCe yalle Aenaercs
BbIBO, O TOM, YTO AManasoH 4acToT HEO6XO0AMMO pacLIMpUTL MO KpaiiHe Mepe Ha HeCKOMbKo Ae-
Kag. Mpn HabnofeHNAX ¢ NOCTOAHHLIM TOKOM, 3TO COOTBETCTBYET M3YUYEHWNIO KPUBOW B Kak MOX-
HO 60/1ee LIMPOKOM MHTEpPBase BpeMeH. TOMbKO TaKuM 06pa3oM MOXHO OXMAATb MOyYeHUe AaH-
HbIX, HE3aBMCUMbIX OT napameTpoB npubopa.

Mpy nomoLLm MeToL0B 06pabOTKM AaHHbIX ONpefensoTcs aMnauTyabl U NOCTOAHHbIE Bpe-
MEHW 3KCMOHEHLMANbHbIX YIEHOB, MPUYeM reoorMyeckas MHTepnpeTauns ocyLLecTBseTCca Mo na-
NneTKam HOPMMPOBAHHbLIX aMMNTYA N MOCTOAHHbLIX BpeMeHU. MeTofamu 06paboTku onpegenseT-
€A TaKKe cnocob nonyyeHms BbI6OPoK. Mpu pa3paboTke annapaTypbl HaMK ObIAN YYTeHbl 3TN ac-
nekTbl. Co3faHHas Takum obpasom cepus annapatypsl Tuna AVAMWP npeagHasHavyeHa Kak ans
NnoNy4yeHNs AaHHbIX, HE06X0ANMbIX A8 NpejnaraeMoro B HacTosLein paboTe MeToda, Tak v ang
nposefeHna HabnogeHWn No cTaHgapTHOMY meTody BI, KOTOpbIA OKa3blBaeTcs XOTA U 6onee
6bICTPbIM, HO AaeT MeHbLUEe MHGOPMALUHN.

HakonneHHbI ONbIT NpoBefeHWs HabnloaeHUA N 06paboTKM AaHHbIX MOKa3blBaeT, 4TO B
paioHax ¢ MPOMbILIEHHBIMU MOMEXaMn HEO6XOAMMO NPOUMEHSATL LU(POBYIO 3anUCh LaHHbIX U
06paboTKy 1x Ha 9BM. HauaTbl paboTbl N0 YCOBEPLUEHCTBOBAHMIO annapatypbl U B 3TOM Hanpa-
B/IEHUN.
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METHODOLOGICAL BASIS OF A g PROCESSOR FOR
THE DIRECT DETERMINATION OF DENSITIES IN BORE HOLES

L. ANDRASSY*

Introduction

In well-logging practice gamma-gamma logs are generally interpreted by using
charts, graphically constructed from model measurements. To replace the rather time-
consuming, tiresome manual interpretation procedure, there are two obvious possibili-
ties:

1 Digitalisation of the logs, computer processing and automatic plotting of the
resulting g values,

2. Application of an analogue g processor ensuring the direct registration of the den-
sity log.

The present paper is devoted to the basic theory underlying the construction of g
processors, including a mathematical approximation of the interpretation charts. Mud
cake correction will also be approximated mathematically.

1. Basic Equation of the Two Detector
Gamma-Gamma Method

The theoretical basis of the method is expressed by the equation describing the prim-
ary Compton scattering of gamma photons. We shall need two separate equations, for
short and long probes:

Ns = KsQ<* 1y
N, = K,Qe-Q. 12
Taking the ratio of these equations we get
N K
s _  Sp-(Qs-Qi)

N K 13
which is the basic equation of the gamma-gamma method. In the above formulae:
nsand wn, — counts of short and long probes, respectively;

Ksand R, — constans depending on source strength N0, solid angle dQ and
on the Klein-Nishina-T am differential scattering cross sec-
tion <(9 P);

* Hungarian Geophysical Institute ‘Roland E6tvés’, Budapest
Manuscript received 28. 6. 1978
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Qsand Q depend: — on the path of the primary and scattered rays in the rock

(x4, xh and x x12 (see Fig. 1);
— on the density (g) of the rock;
— on the average mass absorption coefficient of the rock

— on the thickness and density of the mud cake (tnt, gno);
— on the average mass absorption coefficient of the mud cake
(AWP
(Index 1 refers to the primary, index 2 to the scattered ray).

Hg. 1 Sketch of primary gamma scattering processes in bore-holes
I. bra. A farélyukakban lejatszddd egyszeres gamma szorasi folyamatok sematikus rajza

Pue. 1 CxemaTuueckoe MpeAcTaBieHMe MPOLECCOB OJHOKPATHOIO raMMa-paccesHus,
MPOVCXOASLLMX B CKBAXKVHAX
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Let us write, in a general form,

(14
L (/Lie:L /hiK,) ImeQmcm
In the absence of the mud cake Eq. (1.4) reduces to
Q=1 -fM+Xer . - (15
introducing
C = Xitmt+ X28&m, (16
and using indices s and / to short and long probes respectively, we get:
~(Qs-Q,)= -(Cs-Qe @7
ie.
Ns ", e
N NJ7 (Cs-Cl)Q (18)
2. One-Variable Linear Regression

for the Approximation of the Base Line
of the Interpretation Chart

Figure 2 shows the interpretation chart for the KRGG-2-120-60sY type radioac-
tive probe. The chart consists of two parts:

G) The “base line” and the branching lines for mud cake correction (central part);
b) a nomogram for direct read-out of the o values (on the right).

Individual points of the base line are determined by the values of counts (Nsand N,)
measured by the short and long probes, respectively normalized to water, and by the den-

sity values (g).
Let us try to fit an empirical formula to the base line. We start out from the general

equation
N = Kge~Q 2.0
where: N — registered counts;
g — density of the rock;
K, C — appropriate constants.

Writing Eqg. (2.1) for an arbitrary gand for o= | (water), and taking the logarithm of their
quotient we obtain the equation of the base line:

Y= InX—c(x- 1) 2.2
with
N
Y = In— — logarithm of the counts normalized to water.

Eq. 2.2 of course, cannot be used for direct regression because of the non-linearity of

the function Inx.

If, in a given interval (a, b) the function In x is approximated by a straight line ®(x) =
= Dx+G D and | parameters can be determined by the least mean squares principles
minimizing the integral
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S = j {Inx —(Dx + Q}2dx. 23)

Fig. 2. Interpretation chart for the KRGG-2-120-60sY type radioactive logging equipment
2. dbra. KRGG-2-120-60sY tipust radioaktiv szonda kiértékel§ diagramja

Puc. 2. Manetka Ans MHTepnpeTauumn faHHbIX, nofyvaeMbix 3oHgom PK Tuna
KRG G-2-120-60sY
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Substituting back the approximate relationship Inx x Dx+( to Eg. (22) and
regrouping the terms:

Y= (D-C)x +(C+C)
m b
we find that m and b can be obtained directly by linear regression. Indeed,

@2.4)

25)

where:

Yand X are mean values of the dependent and independent variables;
Sy and Sx are the corresponding standard deviations;
r is the correlation coefficient.

Table I. contains the results of the linear regression for the KRGG-2-120-60sY probe.
Calculations have been performed for two different diameters (#=86 mm and d2=
= 214 mm). The correlation coefficients obtained for the short and long probes show that
there is a very strong connection between the values of counts normalized to water and
the densities (g). This, at the same time, proves the accuracy of the approximation of the
base line, and the validity of the basic equation.

Table |
¢/j =86 mm 42=214mm
as= 13cm G =38cm as= 13cm ai=38cm
No. Q— Qi-Xi
N. N, " Ns N,
NS, yd N, Y4 Y,
1 100 10000 QOO0 10000  0.0000 10000 1.0000  0.0000 1.0000  0.0000
2 136 08485 -0.1642 04849 -0.7238 146 0.8989 -0.1086 04188 -0.8704
3 150 07839 -0.2435 03249 -1.1242 215 07633 -0.2701 01322 -2.0234
4 198 07558 -0.2799 01432 -1.9435 234 07576 -0.2776 01071 -2.2340
5 234 06580 -0.4186 00736 -2.6091 250 07010 -0.3552 0.0750 -2.5903
6 270 05896 -0.5283 00353 -3.3439 270 0.6253 -0.4695 0.0545 -2.9095
\'\/’;TSQ 1.8283 -0.2724 -1.6241 20233 -0.2465 -1.7713
SD. 0.6336 0.1864 1.2432 0.6568 0.1693 1.1129
r -0.9747 -0.9998 -0.9807 -0.9991
m -0.2872 -1.9627 -0.2524 -1.6894

b 0.2538 1.9632 0.2645 1.6498
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Finally, writing Eqg. (24) obtained by linear regression for both short and long
probes

- X4 (2.6)
Y, = mx+b, 27
the equation of the base line will be:
Ys- Y, = K -mi)x +(bs-b,) 2.8)
or with the original notations:
In—5—1In - = (m—mAo+ib.—b)l 29

3.Ail Approximate Mathematical Solution
for Mud-Cake Correction

One among the factors influencing gamma-gamma measurements in bore-holes is
the presence of mud-cake. As an effect of mud-cake, points to be interpreted do not lie
exactly on the base line but somewhat displaced, upwards to the right, or downwards to
the left. (This latter case occurs for mud-cakes of high density).

In what follows we derive an approximate mathematical solution for the continuous
determination of the mud-cake correction (Aq). The basic ideas of the method can be un-
derstood from the sketch of Fig. 3.

Fig. 3. Principle of the mathematical approximation of continuous mud-cake correction
3. abra. Szemléltet6 rajz a folyamatos iszaplepény-korrekcio kozelité matematikai modszerének
megértéséhez
Puc. 3. Cxema Ans unncTpaumn npubanKeHHOro MaTemMaTYeCcKoro MeTofa HempepbiBHOTO
BBOZa MOMNPaBOK 3a IMIMHUCTYIO KOPKY
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Consider the triangle PQR. By the sine theorem the mud-cake correction (Ag) is
given by

sin
Ag = dsin fcf @1
where
d= M- K,
R =a—0. (3.2

The sign of the correction Ag is either positive or negative, depending on whether the
measured point g lies on the right-hand side (Ts> LL or left-hand side (Ys—Ys) of the base
line.

Of course, this approximation has definite limitations. If the measured point
happens to be too far off the base line (tmc> 1—1,5 cm) we are not justified by projecting
it back along a straight line. In such cases approximations based on higher-order polyno-
mials should be certainly better. This, however, is outside the scope of an analogue g pro-
cessor, because of the complicated circuitry required. Problems of this kind should be
dealt with digital processing.

4. Methodological principles for constructing
a g Processor

The mathematical formulae derived in previous sections are simple enough to be
realized by an analogue circuitry. The main task of this instrument is to register a con-
tinuous apparent density (egyp) curve and mud-cake correction (Ag) curve. Real density
values are the sum of these curves:

Q= QmtAg. 4.1

Equation (4.1) is, methodologically, the basic equation of the g processor.
By substituting x = ggp into Eq. (2.7), and making some rearrangements:

dgp = mT Yi+ bf, 4.2)

where

The parameters m, and b, have to be determined by linear regression.

Mud-cake correction is computed by Eq. (3.1). The angles 6 and 8 can be determined
from the interpretation charts. The value of d comes from Eq. (3.2), Y' term can be deter-
mined by putting Y, = const, into Eq. (2.8), i.e.

Ys = Mg+B+ Das? 4.3)

where

M
B

ms—ml,
bs-b,.
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From Eq. (4.3):
d = Y- (M g+ B + Yconst)- 4.4
Introducing the notation
sin &
- sin
Egs. (4.2)-(4.3) together yield the basic equation of the g processor:
frg = K M+ b))+ K{¥-[(Msmpp+B)+ Y]} (45)

In the absence of mud-cake ¥?, Ag = 0, i.e. the counts measured by the long
probe yield real density values.

5. Field Experiments with the KRG G-2-120-60sY type
Probe and ACD-75 Type g Processor

The aim of these experiments was to record continous density logs in situ, to check
the reliability and limitations of the g processor. Two wells: Cs-220 (Csordak(t) and
Na-221 (Nagyegyhaza), were used for the experiments.

In well Cs-220 continuous density logging was performed from 120 to 172 m, log-
ging repeated between 120-150 m for statistical reliability checks.

For statistical analysis 24 corresponding ¢ samples were used from each log and
their deviations were classified into four intervals.

The percentage distribution of deviations is given in Table II.

Table 11
Deviation intervals No. of o
(g/cm3) samples 0
0.00-0.05 18 75
0.05-0.07 5 2
0.07-0.1 0 0
greater than 0.1 1 4

As Table Il shows, 75% of the deviations are within the accuracy limit of density
determination.

In well Na-221 gamma-gamma and continous density logs were taken between
24-100 m, with repeated measurement from 25 to 75 m. Logs are presented in Fig. 4. The
density values obtained by the g processor were compared to those calculated manually
using the chart of Fig. 2, for altogether 18 layers (Table I11). It can be stated that—except
for a few samples—there is a fair agreement between the two sets of g values.

As already mentioned, the distance (d) of the measured point off the base line sets a
natural limit to the accuracy of the g values determined by the g processor. In case of a
high d value the projection along a straight line back to the base yields unrealistically
high Ag correction. We realize that in such cases a projection along second—or hi-
gher—order curves would yield better results.
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r-r

Fig. 4 Gamma-gamma logs, continuous density log (g) and Ag log for the Na-221 bore-hole
1) long probe 2) short probe

4. dbra. Nagyegyhaza-221 szamu fuarasban felvett gamma-gamma, folyamatos siir(iség (g) és Aq
szelvények
1) hossz( csatorna; 2) révid csatorna
Puc. 4. KpuBble HenpepbiBHOW naoTHOCTM K g 1 KpuBble Af, MOAYYEHHbIE B CKBaXXWHE
Hagbagbxasza-221
1- ANVHHBIA KaHan; 2 - KOPOTKWIA KaHan
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In the next years, we should further refine the theoretical principles of the g proces-
sor by developing the basic equation of primary scattering and introducing a correction
term for secondary scattering effects. Theoretical calculations and model experiments will
be performed to incorporate bore-hole diameter corrections into the basic equation of the
g processor. All these research works will be reported in forthcoming papers.

Table 11

Probe type: KRG G-2-120-60 sY
Probe No: 7636

Isotope: Cs137 14.9 mCi
Bore-hole Na-221.

as=13cm flj =38 cm ACD-75 manual
Q@ Q@
No Depth Ns Ns A A [g/cm3] [g/cm3)
[m] [cpm] Asv  [cpm]  [cpm] Nu,
1 2 3 4 5 6 1 8 9
1 25.0 53 142 0.646 4 286 104 0.0701 2.34 2.33
2 26.0 51429 0.625 4429 105 0.0725 2.32 231
3 28.7 62 857 0.764 11429 169 0.1871 1.86 1.80
4 29.5 57 143 0.695 5000 112 0.0819 231 2.33
5 31.0 58 286 0.708 5571 118 0.0912 2.23 2.19
6 32.0 53 142 0.646 3857 98 0.0631 243 2.45
7 33.0 53 142 0.646 4000 100 0.0655 237 2.37
8 35.0 54 286 0.660 4 857 110 0.0795 2.28 2.32
9 38.0 59 429 0.723 6429 127 0.1053 2.20 2.37
10 40.0 52 571 0.639 4286 104 0.0702 2.34 247
n 425 58 857 0.715 8 143 143 0.1330 2.03 2.04
12 45.0 52 000 0.632 3857 98 0.0631 2.39 2.39
13 46.2 54 286 0.660 4143 102 0.0678 2.39 2.28
14 48.0 51429 0.625 4 286 104 0.0702 2.30 2.40
15 49.0 52 286 0.635 4000 100 0.0655 2.38 2.50
16 54.5 48 571 0.591 3429 93 0.0561 2.40 242
17 59.0 48 000 0.583 2857 85 0.0468 2.53 2.60

18 62.0 48 000 0.589 2786 83 0.0456 2.54 2.46
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ANDRASSY LASZLO

“g" PROCESSZOR MODSZERTANI ALAPJAI A TERFOGATSULYERTEKEK
FUROLYUKBAN TORTENO KOZVETLEN MEGHATAROZASARA

A kétdetektoros gamma-gamma mérdérendszerek és a ,,g” processzor egyittes alkalmazasa fu-
rélyukakban kdzvetlenil iszaplepényre korrigalt valodi térfogatsalygorbe mérését és analdg
formaban torténd regisztralasat teszi lehetévé.

A gamma-fotonok Compton szorasat leird egyszeres szorads alapegyenletébdél kiindulva meg-
hataroztuk a kétdetektoros gamma-gamma eljaras alapegyenletét. Kévetkezésképpen az emli-
tett egyenletek ismeretében — iszaplepénymentes feltételekre — logaritmizalas és egyszeri
matematikai miveletek elvégzése utan linedris regresszio segitségével meghataroztuk a bazis
egyenes egyenletét. Bemutatjuk a KRGG-2-120-60 sY tipust kétdetektoros gamma-gamma
mérdrendszer bazis egyenesének egyenletét.

A méréseket befolyasol6 iszaplepénykorrekcio kiszamitasara egy kozelit6é matematikai meg-
oldast mutatunk, amely segitségével iszaplepényre korrigalt valodi térfogatsulyértékek hata-
rozhatok meg. Az eljaras tnc = 1-1,5 cm-nél kisebb iszaplepényvastagsagokra alkalmazhat6.
Cs-220 furas szelvényanyagabol elemz6 feldolgozast végeztiink a térfogatsulygdrbe és ismétlé-
sének Osszehasonlitasara. A Na-221 flras szelvényanyagabol elvégeztiik a kiértékel6 diagram
segitségével kézi uton és ACD-75 processzorral kapott térfogatstlyadatok dsszehasonlitasat.

N. AHOPALLN

METOAUYECKUE OCHOBbI MPOLLECCOPA «g» /19 MPAMOIO
OMPEAENEHNSA BE/IMUYMH OBBEMHOIO BECA B CKBAXWHAX

CoBMeCTHOe MCMONb30BaHMe ABYXAETeKTOpHOro 3oHaa MK u npoueccopa «g» faeT BO3-
MOXXHOCTb MOJTyYaTb ¥ 3aNMCbiBaTb BaHaN0roBoi (hopme KpmBble 3h(heKTUBHONO 06 bEMHOIO BeCa,
MCMpaBfieHHbIe 3a FIMHUCTYI0 KOPKY HENoOCPeACTBEHHO B CKBaXKMHAX.

Vicxoas n3 OCHOBHOIO YpaBHEHWS OfHOKPATHOr0 paccesiHWs, ONMCbIBaKOLLEr0 KOMMTOHOBC-
KOe paccesiHnsa raMma-thoTOHOB, MOXKHO OMpefennTb OCHOBHOE YpaBHEHME A8 MeToAa ABYXAEeTeK-
TopHoro IN'CK. 3Haa ykasaHHble ypaBHeHWs, NoOc/e N0rapMTMUpOBaHMUA W NPOBEAEHUA NPOCTbIX
mMaTeMaTUYecKMX npouedyp, ANs YCNOBWA 6e3 TMUHUCTON KOPKM - OblN0 ONpefAenceHo ypaBHEHME
OCHOBHOI NpsAMOiA. B paboTe NpMBOAMTCA YpaBHEHNE OCHOBHOW NPAMOi ABYXAETEKTOPHOI0 30HAa
'K tnna KRGG-2-120-60 sY.

[.ns BblUMCNEHNSt NONPaBOK 3a MMMHUCTYHO KOPKY, BAUAIOLLYHO Ha pe3ynbTaTbl Ha6MAeHWA,
NPVBOANTCS NPUBAKEHHOE MaTeMaTMYECKOe PeLLEHNEe, NO3BONAKOLLEE ONPeAennTb APHEKTNBHbIE
BE/IMYMHbI 06LEMHOTO Beca, MCMpaBNeHHbIE 3a FNHUCTYO KOpKY. [aHHbIi METOA MOXET npumMe-
HATLCS MPW TOMWMHAX FAMHUCTOM KOPKM MeHbluMX tmc= 1—1,5 cm.

KapoTaxHble faHHble CKBaXXKUHbI Cs-220 6binn nogseprHyTbl 06paboTKe 1 aHann3y ans co-
NoCTaBNEHMS KPUBON 06BLEMHOMO BeCa C KPUBOI MOBTOPHbLIX M3MepPeHUA. Mo KapoTaXKHbIM AaH-
HbIM CKBaXXMHbI Na-221, ¢ NCNoNb30BaHWEM NaeTKN OblaN CONOCTaB/EHbI AaHHble 06 06bEMHOM
BeCe, MOJIlyYeHHble B pe3ynbTaTe PYyYHON WHTepnpeTayum u 06paboTKM NpoLeccopom Tuna
ACD-75.



ii/r












hs -2i9A9+1.7m3-4,5m"+12,5m6
bu-Bto

Ahk

Lio



57N

n-pil«rtA



	005-030
	031-038
	039-052
	053-060
	061-072
	073-089

