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A DISCRETE-TIME INVERSE SCATTERING ALGORITHM
FOR PLANE WAVE INCIDENCE
IN A ONE-DIMENSIONAL INHOMOGENEOUS ACOUSTIC MEDIUM

Frederic B. LEYDS* and Jacob T. FOKKEMA*

A frequency based algorithm is developed to calculate the reflected acoustic signal resulting
from plane wave incidence on a horizontally layered acoustic half-space. This forward modelling
algorithm is inverted to yield a layer-peeling inversion algorithm to recover the acoustic impedance
in each layer, using the principle of causality. At postcritical incidence, the development of an
inverse algorithm is impossible because the evanescent waves in the horizontally layered half-space
create a non-causal contribution to the scattered field.

The forward and inverse algorithms are tested for a complicated geology based on real
well-log data. The inversion of synthetic signals produces excellent results. Experiments show that
the inverse algorithm is sensitive to white noise. It remains stable only when those frequencies of
the scattered field are used, at which the amplitude of the incident field visibly exceeds the amplitude
of the noise. With this reduction of the bandwidth, the impedance profile of a geology of 684 layers
can be recovered at a noise-to-signal ratio of 2% (r.m.s.). A simple geology of eight layers can be
recontsructed at a noise-to-signal ratio of up to 30%, but only if recovered reflection coefficients

within the noise range are removed by a threshold filter before the acoustic impedance profile is
derived.

Keywords: plane wave, scattering, seismic inversion, signal-to-noise ratio, acoustical waves, one-dimen-
sional models, algorithms, synthetic seismograms

1. Introduction

In seismic exploration, the measurement of a scattered wave field is used
to obtain information about the structure of an often complicated subsurface
geology. However, individual traces measured in the field usually do not allow
for immediate and exact scaling and location of the elastic or acoustic par-
ameters. All the field measurements must be used to determine the response of
the geology from which, &s a last step of the data processing, the parameters
can be estimated.

The research presented in this article describes a method for obtaining the
acoustic layer parameters from the individual plane wave components of a one
shot gather over a horizontally layered geology. This is an unrealistic problem,
because the layers usually have some dip. However, such a shot gather is
approximated by a common-mid-point (CMP) gather of seismic field recordings
[see, for example, Robinson and Treiter 1980, Ch. 1.

* Delft University of Technology, Dept, of Mining Engineering. Lab. of Applied Geophysics,

Mijnbouwstraat 120, 2628 RX Delft, the Netherlands
Paper presented at the 47th meeting of the EAEG, 4-7 June, 1985, Budapest, Hungary
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In other words, the input data of the inversion method investigated here
are presumed to be the result of a successful plane wave decomposition of
common-mid-point data, that has reduced the inversion to essentially a one-
dimensional problem. Only synthetic input data are used in this article. The
plane wave decomposition itself is not discussed.

The inversion algorithm used here is based on a procedure which Schur
[1917] developed for testing the boundedness of complex functions that are
analytic inside the unit circle in the complex z-plane. Bruckstein, Levy and
Kailath [1983] give an account of its use as an inversion algorithm following
work done by Goupillaud [1961], Claerbout [1976] and Robinson [1982],
while Yagle and Levy [1984] discussed some of its applications. In this article,
the inversion algorithm is developed for solving our particular problem, and its
behaviour in the case of postcritical incidence is examined. The algorithm is
tested on a digital computer using synthetic seismic responses.

We begin with the configuration of the model and describe the forward
modelling procedure for simulating the plane wave response of a horizontally-
layered acoustic earth. Then the inverse problem is tackled. A key assumption
is that the layer thickness and velocity parameters coincide with the time
discretization. This allows a layer peeling inversion algorithm to be made.
Specific problems in the case of postcritical incidence are treated in a separate
section. It will be shown that for postcritical incidence a non-causal distortion
in the seismic signal destroys the inversion algorithm.

Finally, the computer implementation is briefly discussed and some results
are presented. The sensitivity to noise of the inversion is also investigated.

2. Model configuration and representation of the acoustic wave field

The geological model consists of a set of N horizontal homogeneous
acoustic layers L,,, sandwiched between upper and lower homogeneous acoustic
half-spaces, LOand LN+1respectively. The configuration in which actual seismic
data are obtained is always bounded at the top by a free surface. If the source
is a monopole with dimensions small compared with a wavelength (for example
a dynamite source), then the field data may be decomposed into plane waves
[see, for example, Treitel, Gutowski and Wagner 1982]. These plane wave
components still contain the effects of the free surface, including multiples in
the upper layer. In this paper it is assumed that the effects of the free surface
have been removed and that the upper layer is a half-space. This half-space is
represented by LO.

The origin is chosen in the upper half-space, with the z-axis pointing
downwards vertically along the normal to the layer interfaces; layer interfaces
are defined by z=z, (Fig. 1). Using this configuration, the scattered wave field
as caused by an incident plane wave is examined. Under these circumstances it
is clear that the wave field consists of plane waves throughout the model.

The theory is treated in the frequency (/) domain. The acoustic pressure
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P is governed by the source-free wave equation :

AP+k2P = 0 (1)
where A is the Laplacian operator, K is the wavenumber:

K = dnf)lc (7))
and the acoustic wavespeed is:

¢ = (Kig)12 €)

in which K is the bulk modulus and q is the density.
The Fourier transform is defined as:

PJ) = J P(t) exp (+\2nft) dr 4)
o
Plt) = 3 P(f) exp (- \2nft) df )

The wave fields in adjacent layers are coupled by two boundary conditions.
These impose continuity on the pressure and on the vertical component of the
particle velocity, everywhere along a layer interface:

Prti(x, y, znf) = Pnxy, z,, )
for all/, Xy (6)
forn=01 .., N
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and :

K ti*>V*“rf) = K.nXY “IP/
X for ail/, X VH(X ) )
for« =01 , N

In the frequency domain the vertical component of the particle velocity can be
expressed in terms of pressure as follows:

1 8P
\/Z bE)
N \2nfQn dz

In a layer Lr two plane-wave solutions of the wave equation (1) can be
distinguished, denoted by Pnand Ptrespectively:

(8)

Pn=Pi+Pn )
H = A(N exP {i27i/(a,x + yffj' + yrz)/c,,} (10)
K = A(/) exp {\2nf{cLLx+ B,.y- yrr)/c,} (11)
where :
Y, = (1-a2-178)12 (12)
with: Re{yn} * 0 (13)
and: Im{yn}~ 0 (14

With this choice of y,, and with the complex time factor exp(-i2nft), Pn
represents a plane wave either propagating or decaying in the positive z-direc-
tion (i.e. downwards), whereas Py represents a plane wave propagating or
decaying in the negative z-direction (i.e. upwards).

The absence of discontinuities in the x and y directions yields Snell’s law:

_«1-1 _ a0 (15)
G in-l c0

M Bn-1 Ro (16)
C-1 O

In the upper half-space the downward-travelling wave corresponds to the
incident fields as caused by the seismic source:
Po(x, y,z,f) = DO(f) exp {i2nf(ctOx + R0y +y 0z)/cO} ()]

while the upward-travelling wave, disappearing into the upper half-space, cor-
responds to the observed and recorded reflected field :

PAxX,y, z, f) = UO[f) exp {i2nf(aOx + ROy —y0z)/cO} (18)
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where :
a0 = sin(0g)cos(y/o) (19)
Bo = sin (0Q sin (F0) ©0)
% = cos (00 ¢1)

with 0~ 607n/2 and 0”Y/0”2n in which 0 Oand are the vertical and
horizontal components respectively of the spherical coordinates as shown in Fg. 2

o) X
/

Fig. 2. Definition of spherical coordinatesf ,0and 0 O
2. dbra. A Yo és 0 Ogombi koordinatak definicidja

Puc. 2. OnpegeneHune chepuuecknx koopauHat Y,,um O (.

In theforward problem the structure of the model is given and, for a given
incident field, the reflected field is to be computed. In the inverse problem the
subsurface is unknown and must be reconstructed from measurements of the
reflected field, using prior knowledge of the incident field and of the acoustic
properties of the upper half-space only. In the research presented here the
inversion aims at recovering the acoustic impedance profile; no attempt is made
to recover the velocity and density profiles.

3. The forward problem

The relations obtained so far must be evaluated further to construct the
wave field in all layers. As an aid in this construction, the global reflection
coefficient of a layer L,, is defined as the ratio between upward- and downward-
propagating wave fields, at a point just above the lower boundary z = z,,.of that
layer:

@2)
or:
(23)
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It should be noted that the global reflection coefficient in the upper half-space
equals the impulse response of the geology as measured just above the top layer.

By applying the boundary conditions Egs. (6) and (7), and using the
transmission property of a plane wave in a layer, the following recursion
formula for the global reflection coefficient in layer L,, is obtained:

C-raAn+l(n

I+ rmRn+I(R wn+Xf)
form = N—1, N-2, 1,0

in which r,, is the local reflection coefficient at interface z =z, for a plane wave
travelling downwards:

(24)

= Y, -Yht!
) (25)
rroy,+Y,,+
where Ynis the z-component of the acoustic admittance:
Yn=yjQ,cn (26)
and in which Wrn+I(f) is the two-way phase delay of layer Ln+, :
Wriif) = exp (iZid t,+,) 27)
where :
T+l = 2/intiynt+i/c,, +ie (28)

It must be noted that t, is the two-way travel time within the «th layer for a
propagating wave (in which vy,, is real).

The recursion process is initiated in the lower half-space L N+1by imposing
the radiation condition: this half-space does not contain any reflectors and
therefore it contains no upward-travelling wave. Hence:

Rr(J) = rN (29)

Starting from this condition, the global reflection coefficient is calculated step
by step in each layer Lnusing the recursion formula (24) as an upwards moving

operator:
K(f) = uP[n+1](/) (30)

The final outcome of this process is the global reflection coefficient in the
upper half-space RO(f). From Egs. (17), (18) and (22) it can be seen that the
reflected field at any point in the upper half-space can be expressed in terms of
the spectrum of the incident field DO(f):

PLIX, y, z0,f) = RO(f) PO(x, Yy, z0, ) (31)
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or
PQ(x,y,z,f) = RO(f) DO(J) exp {\2nf(otOx + ROy + y0(2z0-z))/cO} (32)

This is the solution of the forward problem. This solution is well-known as the
‘reflectivity method’ and can be found in many texts, see for example [Kennett
1985].

4. The inverse problem

In order to solve the inverse problem, first the upwards moving operator
(Eq. 30) is inverted to give a downwards moving operator:

Rmt+i(J) = DOWN [/2,,]J(/) form= M- 1 M-2, 1,0 (33)
where:

DOWN [RJ (¥) (11'”)R”(f)' w3 (34)
and in which the set of inverse recursion steps m is not yet determined. In the
forward problem, recursion steps spanned the two-way travel times in the
successive layers. In the inverse problem, of coui se nothing about the subsurface
is known.

We now take advantage of the discretization of our time domain data.
Following Goupittaud [1961], the time discretization is taken as a constant
recursion step, such that:

Wh(f) = exp {\2nftn} (35)
where:rm=zlr form =M- LM-2,..., 1,0 (36)

This implies that our band-limited response can be described in terms of discrete
layers Lm each of which has a two-way travel time At. The aim of the recursion
is now to find the contrast, if any, between these layers. It must be emphasized,
in accordance with what has been said about the meaning of r,, following
equation (28), that this only makes sense for precritical reflection.

The frequency domain associated with discrete time sampling is periodic;
the Fourier transform pair corresponding to this situation is as follows:

+@®

PQ) - £ P[r exp (+\2nfnAt) @37)
)

Pl = At j  P(f) exp (-\2nfnAt) af (38)

-1/C2A)
As stated above, in the inverse problem both the incident field and the
reflected field are known. The inverse recursion process is initiated in the upper
half-space LO by:
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. H(x,y, z0, /)
| M i, 20,1 39
or:
w =A /\'XL/Jr) ~ exP{"i2™/(a0x+  +y0(2"0~ 2))/cO}, (40)

where the reflected field PQ(x, y, z, f) corresponds to the field measurement,
while the division by DO(J) represents the process of deconvolution, and re-
moves the source function.

Before each step of the inverse recursion (33), the next local reflection
coefficient must be determined. For this purpose, the forward recursion formula
(24) is dissected by expanding RJJ) and all its intrinsic previous Rff) into a
Taylor series; this is rather like taking apart a set of nested Matryoshka dolls.
Each term of this Taylor series consists of a combination of local reflection
coefficients with an exponential factor, expressing a particular scattering path
and its two-way travel time. After adding up terms with a common exponential
factor, an expression of the following form is obtained:

00

RJJ) = rm+ Y 4 mexp (\2nfkAt) (41)
K—1

where each coefficient Aln) is a sum of combinations of the local frequency-
independent reflection coefficients r; and is therefore also frequency indepen-
dent. It should be noted that the summation starts at k= 1; no zero-order
exponentials occur in the summation. The inverse Fourier transform (Eq. 38)
is then applied :

+
Rnjn\ = At  } RJJ) exp (- i2nfnAt) d/ (42)
- V@)
or: .
+il2Y)
R\ = rm | exp (- \2nfnAt) df+
i +1/(240 (43)
+ Yj J exp {-\2nf{n- k)At)df
k=1 -1/(241)

The first integral on the right hand side of the above relation results in one pulse
at ?= 0. The summed integrals in the second part produce a series of pulses, all
occurring after t=0:
()
RM = rmd[n\+ k\_(1A?LI_I,n-|<] (44)

Now it is clear that for «=0:
£JO] = rm (G9)
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It will be recognized that this illustrates the causality principle. The first
sample of a reflected signal is a single primary reflection, uncontaminated by
primary or multiple reflections from deeper layers, which must all arrive later.
As Rnfn\ represents an impulse response, the amplitude of this first sample is
equal to rm the local reflection coefficient of the ‘shallowest’ reflector.

In order to derive rmdirectly from the frequency domain of the global
reflection coefficient, equations (42) and (45) are combined:

+129
= At J RJJ)af (46)
- 1<)

After computation of one local reflection coefficient by means of the
method described above, it can be used in the inverse recursion formula (34) to
remove from the signal all effects of this reflector and the underlying layer,
including multiple reflections, thus arriving at the next global reflection coef-
ficient:

K +iU) = DOWN [Rn]if) 47)

The inversion process becomes a sequence of alternately calculating a local
reflection coefficient (Eqg. 46) and applying the downward operator (Eq. 47). In

this manner, having initiated the procedure in the upper half-space with formula
(40), a maximum of M+ 1reflectors or M layers can be identified.

recursion: RO -*r0 -»A, "1 "H2 ™
time : 0 At 2Al MAt
layer No.: 1 M

Fig. 3. Inverse recursion scheme
— calculation of reflection coefficient rmwith Eq. (46); 6 - applying the DOWN-operator
with Eq. (47)

3. &bra. Az inverz rekurziés séma
az rmreflexidés egyitthatd szamitasa a (46) egyenlettel; 8 — a DOWN operéator alkalmazasa
a (47) egyenlettel

Puc. 3. Cxema o6palyeHHOW peKkypcum
- pacyeT KoaduumeHTa OTpaKeHNa rTno ypaBHeHuto (46); 6 — npvMeHeHMe onepartopa
DOWN no ypaBHeHuto (47).

The inversion scheme is illustrated in Fig. 3. The final result is a trace
containing the recovered local reflection coefficients, at a constant interval of
At. Finally, from the reflection coefficients, using the inverted version of formula
(25), a profile can be derived of the vertical component of the acoustic admit-

tance :

-1

1-
Yo+ =g r'nYm (48)
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with:
¥r
Qmt-m

(49)

5. Postcritical incidence

It is necessary to reassess equations (41) to (45) for postcritical incidence.
This is reached when:

— _* 50
1 < C§<<S+/E) (50)
in a layer LK+1. It follows from equations (15), (16) and (12) that yK+1is now
purely imaginary. From equations (25) and (26) it then follows that the local
reflection coefficient is complex and depends on the sign of the frequency:

rKf) = exp - i%e |f/_| (1)
where :
e = arctan P+l Qdk (52)
W {ktickti

This has grave consequences for the recursion process and for the relations
as derived from equation (41) onwards, where the forward recursion formula
was expanded into a Taylor series. The expansion converges on condition that:

(33)
From expression (51) it is clear that
KA\ = 1 (54)

This latter property may pose a threat to the convergence of the Taylor expan-
sion. In all recursion steps through layers of precritical incidence, the two-way
transmission factor WimtI(f) as defined in Eq. (27) is a complex exponent and
the local reflection coefficient rmis a real number:

\Wm+I00I = 1 (55)

ri\ (56)

On the other hand, in recursion steps through layers of poj/critical incidence,

the transmission factor is a real decay factor, and the local reflection coefficient
is now complex with modulus 1:

&TH(N 11 1 (57)

-1 (58)
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In fact, if critical reflection is reached in layer LK+l, it can easily be shown that:
\Rn(f)\GN for m=K+I,..., M-1, M (59)
\Rn{f\=1 for m=0\,...,K-\,K. (60)

Relations (55) to (60) show that expression (53) always contains at least one
factor of magnitude less than one, which secures the convergence of the Taylor
expansion; it is ’safe’ for both precritical and postcritical incidence.

The whole analysis from equation (41) onwards is now reconsidered by
examining the simple case of postcritical incidence in the lower half-space L Mt .
As before, each term in the Taylor series of Rn{f) represents a particular
scattering path. Some of these terms contain the complex rMf) at least once,
the number of times depending on how often the postcritical reflection surface
z=zMuis included in that particular scattering path. The smallest exponential
factor attached to one of these terms is exp {\2nj\M —m)At}, which expresses
the earliest or primary postcritical reflection .

As before, terms with a common exponential factor are collected into a
single coefficient. However, frequency dependent terms containing rM/) are
here isolated in a separate summation :

RJJ) = i+ £ Alme\p(\2nfkAt)+ £ &KAF) exp (\2nfkAt)  (61)
k=1

k=M-m
for m<M
Every term in the second summation on the right hand side has the form
of a summation itself:
ArC/)y =t GT)exp(-i2e ) (62)

where j indicates the number of reflections at interface z=:Mand Jnj is a real
and frequency independent factor representing the sum of all possible scattering
paths between m and M for a givenj and two-way traveltime kAL

Applying an inverse Fourier transform (Eqg. 38) to &™\f) leads to:

AHO] = I COS (2ej) (63)
and: =
&\ = j]':'i G ZSnrrr]\(Zfi/) for [iil= 1,3,5... (64)

BMn\=0 for |n! = 2 4,6... (65)
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Equations (44) and (45) now appear as:

km =rj[n\+ z mwn-m 2z mn-k] (66)
k=1 k=M-m

and:
B9 = it Y1 Y BBkeiij 7194

with  L~(M —m-=3)I2 for odd (M —m) (67)
or L — 2 for even (M -m)

The first sample of the global reflection coefficient is contaminated by an
undesired non-causal noise, originating from the postcritical reflection from
deeper layers. This non-causal effect is not suprising. It is a consequence of the
formulation. The incident plane wave has been propagating for an infinite time
before passing the origin of the coordinates at our chosen time origin /=0. For
postcritical incidence the evanescent wave travels faster horizontally than the
propagating wave and therefore creates a scattered field before the incident
wave arrives.

This shows that the forward recursion process produces an impulse re-
sponse of the geology containing a non-causal element for postcritical incidence
only. As a result of this, there can be no inverse recursion which uses the concept
of causality to reconstruct the acoustic layer parameters.

6. Numerical results

In accordance with the theory, a forward program and an inverse program
were developed. Discretized versions of both recursion formulae were used, of
course, with a time sampling interval of two milliseconds and a total of 4096
sampling elements.

The programs were implemented on a Gould 32/67 computer equipped
with a 32-bit CPU with high-speed transistor-to-transistor logic (TTL), operat-
ing at 150 nanoseconds machine cycle time. The CPU time used by the forward
program of course depends heavily on the number of layers in the geological
model, as this determines the number of recursion steps. The inverse program
uses 2,629 seconds CPU time for 2048 recursion steps.

Figure 4(a) shows an acoustic impedance profile of a structure containing

4. dbra. A 684 réteges modell
(a) akusztikus impedancia szelvény; (b) szintetikus szeizmogram meréleges beesésre az 5. abran
lathat6 elemi hulldmmal; (c) az inverzi6é eredménye zaj nélkial, maximalis frekvencia 250 Hz;
(d) az inverzié eredménye 2% fehér zaj hozzaadasa utan, maximalis frekvencia 125 Hz

Puc. 4. l'eonornyeckas mogens ¢ 684 cnosmu:

(a) npohunb aKkycTuyeckoro umnegaHca; (b) CMHTETUYECKas celicMorpammMa npu nNpsmMom
BXOX/eHUN Ans BaseneTa puc. 5; (C) pesyntaT obpalieHuns, 6e3 wWyma, MakcumManbHas yactoTta
- 250 ru; (d) pesynbTat obpauieHuns nocne gobasneHns 2% 6enoro wyma, MakcuManbHas
yacToTa - 125 ru,.
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Fig. 4. The mode! of 684 layers
(a) acoustic impedance profile; (b) synthetic seismogram for normal incidence with the wavelet
shown in Fig. 5; (c) inversion result, no noise, maximum frequency 250 Hz; (d) inversion result
after adding 2% white noise, maximum frequency 125 Hz
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684 layers. This geological model is based on real data taken from a North Sea
oil well. The upper half-space consists of sea water. A synthetic wavelet (Fig. 5)
was used to calculate a seismic response for normal incidence, shown in
Fig. 4(b). The result of the inversion algorithm is demonstrated in Fig. 4(c).
Clearly, it yields a perfect reconstruction of the whole subsurface sequence, from
the ‘sea bottom’ down to the lower half-space. It should be remembered that
the complete inversion scheme entails two recursive processes. First the local
reflection coefficients are recovered through the inversion, using the layer peel-
ing and multiple removing algorithm illustrated by Fig. 3; secondly, the acoustic
impedance (or admittance) profile is derived using equation (48).

For all precritical angles an excellent result was obtained: an exact recon-
struction of the vertical acoustic impedance component, based on a two-way
travel time scale.

As a first step towards reality, the sensitivity of the algorithm to noise was
tested. Figure 4(d) shows the result of the algorithm after adding white noise
to the signal shown in Fig. 4b, at a noise-to-signal ratio of two per cent (r.m.s.).
In order to obtain a stable solution, the frequency bandwidth had to be cut by
half: only frequencies up to 125 Hz instead of 250 Hz were included in the
inversion scheme. Apparently, at higher frequencies the information bearing
content of the reflected signal has been flooded by the noise content; an effect
enhanced by the deconvolution process as expressed by formulae (39) and (40).

Fig. 5. Synthetic wavelet in time- (a) and frequency (b) domain
5. abra. Szintetikus elemi hullam az id6- (a) és a frekvencia- (b) tartomanyban

Puc. 5. CuHTeTnyeckunii BaBeneT: (a) BpeMeHHas o6nacTb; (b) yacToTHas o6nacTb.
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It can be seen in Fig. 4(d) that the shape of the impedance profile is
recovered more or less correctly. Most strikingly, individual reflections are
identified at the correct two-way travel times, hence layer interfaces are put at
the right place throughout the structure. The magnitude of the identified reflec-
tion coefficients contains an error—as can be expected—which, in its turn,
causes an overall deviation in the reconstructed impedance profile. This be-
comes clear especially at relatively sharp contrasts. Sometimes minor contrasts
are exaggerated and smooth layers acquire an irregular appearance; this is most
noticeable at the lower half-space where the global reflection coefficient should
have been zero for all frequencies. However, as stated before, the error in the
local reflection coefficients never destabilizes the inverse layer peeling and
multiple removing algorithm, as long as ’‘unreliable’ frequencies are excluded
from the inversion process.

Finally, the ultimate limits to the noise endurance of the algorithm were
explored. An extremely simple synthetic geology (Fig. 6(a)) was scanned with
a minimum phase wavelet shown in Fig. 7, which has a more broad-band and
more regular spectrum than the synthetic wavelet used previously.

Figure 6(b) shows the resulting reflected wave with a noise-to signal ratio
of 30 per cent. Figure 6(c) shows the recovered reflection coefficients, using fre-
guencies up to 75 Hertz only. All reflections are still identified at exactly the
correct two-way travel times. The layer peeling and multiple removing
algorithm has remained stable, but the quantitative error in the magnitude of
the recovered reflection coefficients is such that the recursive process of recon-
structing the impedance profile does not at first produce a sensible result.
However, if a threshold value is implemented to select only those reflection
coefficients which exceed the expected noise level, an impedance profile is
obtained which gives a reasonable estimate of at least the shape of the subsur-
face (Fig. 6(d)).

The inversion process becomes unstable if either the noise level or the
bandwidth is increased. Thus the resolution of the inversion process depends
on the bandwidth for which there is an adequate signal-to-noise ratio.
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C

Fig. 6. Simple geological model
(a) acoustic impedance profile; (b) synthetic seismogram for normal incidence with the wavelet
shown in Fig. 7, 30% white noise added; (c) recovered reflection coefficients, maximum
frequency 75 Hz; (d) reconstruction of the acoustic impedance profile after applying a 30%
threshold filter
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Fig. 7. Minimum phase wavelet in time- (a) and frequency (b) domain
7. dbra. Minimum fazist elemi hullam az id6- (a) és frekvencia- (b) tartomanyban

Puc. 7. BaBeneT B hase MmuHumyMa: (a) BpemeHHas o6nacTb; (b) 4acToTHas obnacTb.

6. abra. Egyszer( foldtani modell

(a) akusztikus impedancia szelvény; (b) szintetikus szeizmogram meréleges beesés mellett a 7.

abran lathaté elemi hullammal, 30% fehér zaj esetén; (c) az inverzidval visszanyert reflexios
egydutthatd sorozat, maximalis frekvencia 75 Hz; (d) az akusztikus impedancia szelvény
rekonstrukcidja, 30% kiiszobsz(irét alkalmazva

Puc. 6. MpocTos reonornyeckas Mogenb:
(a) npohunb akycTuyeckoro umnegadca; (b) curHan oTpaXeHHOW BO/HbI NPV NPAMOM
BXOX/EHUN ans BaBeneTa puc. 7, 30% 6enoro wyma; (c) nonyyeHHbIe NyTeM WHBEPCUU
KO3(hp1eHTbI OTpaXKeHWA, MakcuManbHasa yactoTa - 75 ru; (d) BoccozgaHme npouns
aKyCTUYeCKOro MMnefaHca ¢ 1Cnofib3oBaHWeM NOPOroBoro gpunstpa 30%.

85
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7. Conclusions

Using acoustic wave theory, a frequency based recursion scheme has been
developed to calculate the reflected wave signal of a horizontally leyered struc-
ture for plane wave incidence. By inverting this recursion algorithm and using
the causality principle, a layer peeling and multiple removing algorithm has
been derived, which recovers the layer structure from the reflected wave.

In the case of postcritical incidence the reflected wave contains a non-causal
component; an inversion algorithm using the concept of causality cannot 4)e
developed.

For any precritical angle of incidence the inversion algorithm yields ex-
cellent results on noise-free synthetic reflected field signals.

Tests show that the inverse algorithm remains stable when the reflected
signal is contaminated with white noise, although parts of the frequency domain
where the signal-to-noise ratio is small must be left out of the algorithm.
Qualitatively, the recursion performs well and the reflection coefficients are
identified at the correct two-way travel times. However, the recovered reflection
coefficients contain a quantitative error which at very high noise levels necessi-
tates the use of a threshold filter, in order to obtain a faithful acoustic impedance
or admittance profile.
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INVERZ SZORASI ALGORITMUS SIKHULLAM BEESESRE, EGYDIMENZIOS
INHOMOGEN AKUSZTIKUS KOZEGBEN

Frederic B. LEYDS és Jacob T. FOKKEMA

Vizszintesen rétegzett akusztikus féltérre bees6, sikhullambol keletkez6 reflektalt akusztikus
jel szamitasara kifejlesztettlink egy, a frekvencian alapul6 algoritmust. Ezt a modellez6 algoritmust
invertaltuk, hogy egy réteglefejté algoritmust kapjunk, amellyel minden rétegben meg tudjuk
hatarozni az akusztikus impedancia értéket, az oksag elvének alkalmazasaval. A kritikusnal na-
gyobb beesési szognél az inverz algoritmus kidolgozéasa lehetetlen, mert a lecsengé hullamok a
vizszintesen rétegzett féltérben egy nem-oksagi taggal jarulnak hozza a szort térhez.

A direkt és inverz algoritmust valddi karotazs adatokon alapuld bonyolult szerkezeten
ellendriztiik. A szintetikus jelek inverzidja kivald eredményeket ad. Kisérletek mutatjak, hogy az
inverz algoritmus a fehér zajra érzékeny. Csak akkor marad stabil, ha a szort térnek azon frekven-
cigjat hasznaljuk, amelynél a bees6 tér amplitid6ja lathatban meghaladja a zaj amplitaddéjat.
A savszélességnek ezzel a csokkentésével 684 rétegli modell impedancia szelvényét lehet elkésziteni
2% (r. m. s.) zaj/jel viszony esetén. Nyolc réteg(i egyszer(i felépités 30% zaj/jel aranyig rekonstrual-
hatd, de csak abban az esetben, ha a zaj tartomanyaba esd reflexios egyiitthatdkat eltavolitjuk egy
kiiszob szlir6vel, miel6tt az akusztikus impedancia szelvényt levezetnénk.

ANNIbI'OPUTM OEPATHOVIVAVICFIEPCI/IVI, ,£l,VICKPETHOJ7I BO BPEMEHW, A/15
BXOXXAEHWA MAOCKOW BOJIHbI, B OAHOMEPHOW HEOAHOPOAHOW
AKYCTWUYECKOW CPEAE

®. 6. NEWAC v Ox. T. POKEMA

Pa3pa6oTaH anbropuTM Ha 6a3e yacToT ANs pacueTa OTPAXKEHHOr0 aKyCTUUYECKOro CurHana,
BO3HMKAIOLLLEro 13 NAOCKOI BOMHbI, BXOASLLE/ B FOPU3OHTANbHO C/IOUCTOE aKyCTUYecKoe Monyn-
POCTPAHCTBO. [aHHbIii anbropuTM, OCYLLECTBAAIOWMIA MOAENUPOBaHWe BO BPeMeHHu, 6bin 06pa-
LWEeH C LENblo MOAYYEHWs anbropuTMa CHATUS CNOEB AN MOMyYeHUs 3HAUEHMIt aKyCTUYEeCKOro
¥MMeaaHca no BCeM CI0AM MyTeM MPUMEHEHWs NPUHLMNA MPUYUHHOCTW. Tpn yrne BXOXAEHUs
6oNblle KPUTUYECKOro pa3paboTka 06palleHHOro anbropuTMa HeBO3MOXHO, 160 3aTyxalolue
BOJIHbI B IMCMEPCHOM Mofie 06pa3yroT HEMPUUMHHBINA UNeH B FOPU3OHTANLHO CNOWUCTON cpege.

MpaMoit 1 06paLlleHHbI anbropuTMbl NPOBEPANNCL HA KAPOTAXKHbIX AaHHbIX, NOMYUYEHHbIX
B C/IOXHbIX F€0/10rMuecknx ycnosusx. O6palleHne UCKYCCTBEHHbIX CUTHAN0B 06ecneYnBaeT OT/InY-
Hble pe3ynbTaTbl. SKCMEPUMEHTAMU YYTAHOBIEHO, UYTO O6PALLEHHbIN anbropuTM YyBCTBUTENEH
K 6e/10My LLyMy, 0CTaBasiCb CTaGU/bHLIM NNLLIL B TOM Clyyae, eCiM UCMONb3YIOTCA Te YacTOThl
AMCNEPCHOro Nons, Ha KOTOPbIX aMMNIMTYAa BXOASLLEro Nos ABHO NPEeBbILLAeT aMNAUTY Y LyMa.
MoA06HBIM YMEHbLLIEHWEM LIKPUHBI MONOCHI MOXHO COCTaBMTb NPOMUbL MMMeraHca MOTeNu ¢ 684
reonorMyYecknMmn CnosaMm npu 2%-HoM COOTHOLLIEHUM WYM: curHan (r. m. s.). MpocTas reonoruye-
CKasi MOJENb C BOCEMbIO CMIOSIMU MOXET GblTb BOCCO3AaHa BNAOTb 40 30%-HOTO COOTHOLLEHWS
LWYM: CMTHaN, HO MWL B TOM CMyuae, eC/M BCKPbITbIE KOIPMULMEHTbI OTMAXEHUs B AManasoHe
WwymMa yaanstoTcs noporoBbiM (HUILTPOM ellie A0 BbiBOAA NPOMNAA aKyCTUYECKOro UMMeaHca.
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REFLECTION AND TRANSMISSION OF SH-WAVES IN LATERALLY
AND VERTICALLY HETEROGENEOUS MEDIA AT AN IRREGULAR
BOUNDARY

Suversha GUPTA™

Reflection and transmission coefficients of plane SH-waves at a corrugated interface between
two laterally and vertically heterogeneous media have been studied by using Rayleigh’s method of
approximation. Effects of lateral and vertical variation constants, amplitude of the corrugated
boundary, wavelength of the irregular interface and velocity contrast were considered numerically
and graphically for the normal incidence case, for the first order approximation.

Keywords: reflection coefficient, transmission coefficient, SH-waves, Rayleigh’s approximation,
heterogeneous media, corrugated boundary

1. Introduction

Waves are generally affected by discontinuities between media. Wave con-
version and phase change take place upon reflection and refraction at plane
interfaces. Studies of these modifications in the propagation of various kinds
of waves upon reflection and transmission at plane interfaces have been made
extensively. Since earthquake generated seismic waves encounter in their paths
mountain basins and mountain roots, such irregularities do affect the reflection
and transmission of elastic waves through the media. Thus the study of the
dynamic characteristics of waves reflected and refracted by rough surfaces is of
great practical importance.

The study of the problems of reflection and refraction of waves incident
upon an irregular boundary, initiated by Ray1eigh [1893,1896,1907] for sound
and light waves, has given rise to a rich literature in other fields also. Since these
types of problems involve considerable mathematical difficulty, the exact sol-
utions of the problem have not yet been found. In recent years, a number of
approximate methods for computing the field produced by scattering at an
irregular surface have been developed. These more general treatments include
work by Brekhovskikh [1951], Eckart [1953], Mites [1954], Parkar [1956,
1957], Twersky [1957], Lysanov [1958], Abubakar [1962], Herrara [1964],
Herrara and Mai [1965], Stavin and Wolf [1970] In the StUdy of elastic
waves in solids, Homma [1941] seems to have been the first to make an attempt
to solve the problem of reflection of body waves at a corrugated traction-free
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surface, by reducing it to the problem of a plane surface. A similar attempt was
made by Gitbert and Knopoff [1960]. Sato [1955] also considered the reflec-
tion of elastic waves at a corrugated, free surface by using the method that was
first applied to acoustic and optical gratings by Ray1eigh [1907]. Asano [1960,
1961, 1966] used Rayleigh’s method of approximation to solve reflection and
refraction of elastic waves at a corrugated interface.

The reflection of body waves from an arbitrary, not necessarily periodic,
rough surface of a semi-infinite solid was discussed by Abubakar [1962a,
1962b], and by Dunkin and Eringen [1962], each of whom applied a perturba-
tion technique to arrive at the result. Abubakar [1962c] devoted another paper
to working out the particular case of a flat boundary having a local depression,
while Dunkin and Eringen also dealt with the diffraction of Rayleigh surface
waves by a wavy boundary - a problem analysed earlier by Brekhovskikh
[1959]. Adams and Chung-Po Chang [1964] investigated the wave propagation
phenomenon at an irregular infinite interface by applying the Weber integral
solution to the wave equation. Deresiewicz and wWours [1964] studied the
reflected field arising from body waves incident on a rough boundary of a
saturated porous medium. Levy and D eresiewicz [1967] investigated the reflec-
tion and transmission of elastic waves in a system of corrugated layers. worr
[1967, 1970] studied the propagation of Love waves in surface layers of varying
thicknesses and the propagation of Love waves in layers with irregular bound-
aries. Sravin and worr [1970] investigated the scattering of Love waves in a
surface layer with an irregular boundary for a rigid underlying half-space.
Sumner and D eresiewicz [1972] investigated the effect of surface irregularity
on the propagation of waves in an isotropic elastic plate by employing the
perturbation technique. Y amada and Sato [1976] studied SH-wave propagation
in a medium having a step-shaped discontinuity. Gupta [1978] studied the
reflection and refraction from curved interfaces.

In all the above investigations, the media considered were homogeneous
and isotropic. Very little work has been done on inhomogeneous media with an
irregular boundary. Chattopadhyay and par [1982] studied the propagation
of SH-waves in an inhomogeneous medium with an irregular interface overlying
an initially stressed elastic half-space. I1ts and Y anovskaya [1985] studied the
propagation of surface waves in a half-space with near-vertical curved inter-
faces. Here, we have made an attempt to study the reflection and transmission
of plane SH-waves at a corrugated interface between two laterally and vertically
heterogeneous media. Rayleigh’s method of approximation has been followed
to find expressions for reflection and transmission coefficients for the first and
second order approximations. The effect of lateral and vertical variation con-
stants, amplitude of the corrugated boundary, wavelength of the irregular
interface and velocity contrast have been considered numerically and graphi-
cally for the normal incidence case, for the first order approximation.
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2. Formulation of the problem

The geometry of the problem under consideration is shown in Figure 1; M x
and Mz are two laterally and vertically inhomogeneous half-spaces, separated
by an irregular boundary. The x- and y-axes are on the horizontal surface and
the z-axis is taken positive vertically downwards. The equation of the boundary
surface is assumed to be z=C where Cis a periodic function of x and is
independent of y, the mean value of which is zero. Then Ccan be represented
by a Fourier series as follows:

00

C rIél(Onelrlox+C ne_i"do, D
C= ci cospx+ c2cos 2px+s2sin 2pXx + c3¢co0s X + s3sin Jpx+ ...+
+c, cos MpX+  sin Npx+ ..., 2)
where
a=C1=_Cj2 )
and
G = (cnTisn)/2. @)

When the boundary surface is expressible by only one cosine term, i.e.
C= ¢y cos px, the wavelength of the corrugation is 2n/p.

Fig. 1. Geometry of the problem
/. dbra. A feladat geometriaja

Puc. 1 ["'eomeTpuyeckme ycrnosus 3agaun.
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We consider the case when the plane SH-wave with period 2n/cois incident
from the lower to the upper half-space, making an angle 8 with the z-axis. The
guantities concerning the lower medium will be denoted by suffix 1 and those
of the upper medium by suffix 2. Let Q be the density and pj the rigidity in
(medium:j = 1,2) and:

Qi(x, 2) = Qjof(x) qX2),

M (x, 2) = Pjof(x) q/z) ©)
where gj0 and pj0 are constants. We also assume that f(x) and q}z) satisfy the
equations :

iff_M]2 _ al
2100 4
2

1q)) \[®Y] forj- land 2 (6)

20 4L™)
where al, bj are constants. Functional forms of the solutions are of the type exp
(ax), (1 +ax)2, sinh2 (ax), cosh2 (ax) )

If the boundary surface is a plane, then we have the following solutions

[Mathotra et al. 1982]:
Incident wave

VO = -F~\—TT7TGex? [Mt- XsinB/Rj-i sz 8)
iMiof(x) 4\(z)Y!l

Reflected wave

_[f\_/l_l_of(x) qn(z)]lJZRO exp [ico(t-x sin 0/BJ + i sz], ©

Refracted wave

v2 = ---- Toex

I\/Eof(x)e (g\ilt X sin 6/82) - irz], (20)

where

Rj = Hio/Qo, kB = 0)/Bj (1D
s and r are given by:

[Kj{cos20 - dGg- 62]22 for KkHcos 0>(al +b\)12

SooL \[al + b\-k}xcos2 <912 for k@i cos &<(a%+ bj)112

(12)

_ [kR2cos26-al-blY'2 for k2cos S> (&%+ bl)12 13

li[al +bj-kRcos2@U2 for  kRocos o<(a%+ b2 (13
0 being the angle which the refracted wave makes with the z-axis and connected
with the incidence angle 8, by Snell’s law.
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sin<x® sind K
T (14)
Ri Ri 0]

K being the wavenumber.

In addition to the incident and regularly reflected and regularly refracted
waves, we have to consider the effect of corrugation on the reflection and
refraction of SH-waves. For irregularly reflected waves, whose spectrum of the

nth order is:
1
"1 T \Miof(x)gflz) Y2
Rnexp [\ee(t- xun&'JR\) + is',7] (15)

exp [\a>{t-x sin GJRX + \srz] +

where, by the elementary theory of these spectra [Abubakar 1962],

sin0,,-sin0 = *\np\/kA (16)
and
cos2e,,-(a@+bi)]112 for kRBlcos B > (&%+ bj) 112

S —if(ao+ bf) - kjtcos20J 12 for kR™NosGn<(al+hb\)il2,

[K&i cos2e'n-(al +bl)Y2 for kBlcose'n<(a@+bi)ll2
~i[(@ao+"i)- klcos20']y2  for KM@ cos & (tig+ bf)12, {

where Gn Gnare the angles which the irregularly reflected waves make with the
z-axis. In equation (16), we shall choose the upper sign (positive) for 63,and the
lower sign (negative) for G,, Thus the complete expression of the displacement
Vxin the lower medium takes the form:

= Rl o0 M~ st Sl e
+ ROeig+ £ Ae",pe“z+£ KjPvxt'f\. (19)

Similarly, in the upper medium the spectrum of the nth order is represented by :
2 = [ 42[F"><PNf 2-
2 = | 'y(x)\<h(z)$jr e JC SinSJR2) - irr\ +
(19)
IM;exp [laflt-x sin 6'JR2) + ir>]J,

where S, S,,are the angles which the irregularly refracted waves make with the
z-axis and are connected by the relation:

sin §,- sind = + |np\jkBl, sin &;,- sin & = —AnpV/kA (20)
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and

[kj2ees26n~(al +b2]12 for kM@ cos 6,>(al +bj)12
-i[a%+ b2-k~cos26,\M12  for kM@ cos on<{a@+ b2 112

\kB3i cos2 8n~((JqT b2J]J2  for  kh cos6'n>(a@+ b2) 112 n
" -i[(a@+Db2)-k~cos26i12  for  kh cos 6',,<(@%+b2)il2,
Hence the complete displacement V2 in the upper medium takes the form:
= exp [ico(/- x sin 6/R2\ [TCe" '+
{M2of(x)q2(z)] 112 @2)
+ X T,e~npe~rz+£ Teipe

V2

3. Boundary conditions

The conditions to be satisfied at the boundary are:
(i) The displacement should be continuous at the interface, i.e.

Vi= V2 atz=f. (23)
(if) The tangential stress should be continouous at the interface, i.e.
dv, dv, A 1 dv2 _ dv2 ° 1
Mg ex Jp1+e2™ M o d A e
(24)
MiogAz) WLy Mwaiiz) e e
dz dx dz dx
The boundary conditions (23) and (24) yield :
[i”2(c)])/-de- £+ ROELHN , e ¢ + X Kelpe“] -

= im [ql@QULATC-ii+1{7 > "pe ~ +X T'ere A,

I ki(-)Ji=c - Lia? + A j +ikRsin 0)C
2W [} z=C
= /2, bl - é/V_A + I\ J + sin 9)C eisi+
2 \M1/2=C
+X Aer17C- + (inp+ Ay +1*,Sn0J C elSH-
+ xvpg i*C- + Aol T+ N y +i?,sin 0NC e"“g:

(26)
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= blI*)]A 0 irC-\ (- + Ir —+1kRsini) CJe“iri+
A e 2\72r={ \2 I )
+1 Tre ir,.C Ug'i A o le
mr,,L- 2W Z:{+ Inp‘l'\ / + Sno
e +C'(-inp+tC +
2\qg2 ( P 2(;/
+irosing '

where 1 = p10/p20.

4. Approximate solutions

To find the approximate solutions, we assume that the functions f(x) and
qfz) are in the exponential form:

1(*) = exp (ax),
ai(z) = exp (yf), j- 12

We also assume that the amplitude of the corrugation and the slope of the
corrugated interface are both small. By an iteration procedure, the approxima-
tions are advanced. For first order approximation, the terms independent of x
and Care retained in (25) and (26) to determine the first approximation of RO
and TO. By making use of (27), we get:

|+ Ro = finTO, (28)
(29)

These two equations, (28) and (29), give the amplitudes of the reflected and
refracted waves for a plane boundary surface. From these two equations, RO
and TO are obtained as follows:

3 (30)

To (31)
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After further simplification, expressions (30) and (31) coincide with the results
of singh et al. [1978].

In order to obtain the first order approximation of Rnand T,, the coef-
ficients of e~'npx on each side of the boundary conditions (25) and (26) are
equated. By carrying out this procedure, the following formulae for the first
approximation of R, and T, are obtained :

Rn- ft Tn= fin -ir) TOC-nt151- ROCGn“J O+Ro)C-,, (32

(“@" 1) K+" ir-+yJ2)T- -

Vi

r2|L.+inp >sine)]U ]

2 +'k fin

r2+~+i«p™+itsin (33)

Similarly equating the coefficients of e'rpxin the boundary conditions (23) and
(24), by making use of (25), we obtain the first approximation of R;,and  as
follows:

5. Solutions of the second approximation

Next, if the terms of higher order than £2 in equations (25) and (26) are
neglected then, by making use of equation (27), the following two equations are
obtained :

1-isg—s2Z + 1+i5C- SZZCZ RO+

.. . . *:2c2
+1K ein i+~c
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x+yél + A8 1- t'r—rZI—z—’J\To+ AT, en I-ir,{-r2i22
+YJIn**px[i-~c-yr (36)
1+ ?§+ E/C\2 1- ijC- 12z L -is+ +\k@¥sin Q)c +
+7h 1+IsC~i2— js-y + (| + iki>sin0 )C *
I X e- i+ii,,C-i2 H«-y +("¥>+1+i”sin 0)C +
FIX A" is'— + (—inp+ - +ikAsin 0 )£
1+ G 52 - -7
fa _ 2 8 u r 2+
) o . . 7,
2 +ikB2sin6 )C  1HrC-r2— 4 17%< M9
. Do ., nt-
+ (inp+ 2 +ikgjsin6)C -ira- +
+1 Tie* ir,- Ll +yinp+ A~ +\kQsin6]1C  \-xr',,C-r'yi2z12  (37)

From equations (36) and (37) we obtain the second order approximation for RO,
T0, R,, Tn Rnand Tnby picking up the terms independent of x; collecting the
coefficients of e~wpx; and the coefficients of enpx They are as follows:

Ro 1+C,,|’-,,I§//\+T* -fii To 1+C,,C-,lj-iryi
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1
. - e 4. y2 1+
+ - - + -T 0—
R° [i5~ y I+U -n[isVI-s 2+ i fin tra2
+Q(-nfiry2+r2- J is+ I]I[Ill- cnCn (A7i+12- yila

+kCn s2+ Loiffphp+ @ + K@ sh Q+n;0-n K12+ j + inp+ \ +
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R: 1+£,E-,( 52~S2+ iysn = ~ To (j -"jC,+fin
I+C,,C-n(y ~rr2_li2rn (42)
y\ ) N . CUA e .

1n- \) - +>*7} +np |£- l.  inp+ - +

o : 7i
+ i& sin 2- k 2' I+ [A-s'rR+isnYI)CrC-n

1 T2 e ICOC L 1 g
ro+ 12 \np\T +\kR2sin 6 nt (A_U+
o P AR S
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Equations (38) - (43) give the reflection and transmission coefficients for the
second order approximation.

6. Normal incidence on the boundary surface £ = ¢ cos px
For simplicity’s sake, normal incidence on the boundary surface given by
the equation £ = ccospx, has been computed numerically. In this case,
£,=£-,=0(a,61);£t=£_t =c/2;0 =0;Q3 ! =cos6d andcos™ =cos<l .

Then the solutions of the first order approximation for /?j and 7\ are given as
follows:

cs 2[1 m] [mpct- y2(r+ f3] +i[(1- m)(flyy2+y\-myly2- 4frt)+

+4m(ms2- r2) + m(my\- jdeno, (44)
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Tx=csfm 21- m)(yS-ylr+pa)+\(1- m)(4rsx+yly2)+4(ms2- r )+

+ (mvi~ Y) ideno, (45)
where

deno = [(y2- myX2- 4(ms+ rY(ms+ r) + 2i[y2- myx][{msx+ fj) + (ms+ r\. (46)

In this particular case: s, r, sx and f, are given [from Equations (12), (13), (17)
and (21)] by:

Mms2 1
kKl~ 4(*2+yD for kR > -(a2+y\yR
S 1 12
1 Zl(a2+y2)-k§ for kf < -(a2+y1)12
1 12
L- z 2+yl) for k,,> -(a2+yi)l2
r= 112
-1 Hcet2+y2) - ki for nn< MNa+y|)12
12
kB,-p2- \ («2+yi) for kB >p2+-(ci2+y212

112
2+ N2+ Ti)-" R for kR <p2+ 7 (a2+y2)12
112
-p2- 7(a2+yl) for kRI>p2+ -(a2+y|)12
112
— p2+ " (a2+ y2)~ kjj for A 2<P2+ Na2+yMIR2  47)

7. Numerical computations

The computations have been carried out by assuming the elastic parameters
as:

B1=4.358 km/s, px=3.32gm/cm3, .
ft =6.707 km/s, "2=4-93 gm/cm3 <48)

and
yl= - 0.0087, y2=

- 0.0030, a= 0.0020. “@
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The effects of the lateral and vertical variation constants and of the fre-
guency of the incident SH-wave have been examined numerically and graphi-
cally for the normal incidence case, against the dimensionless parameter cp\c
being the amplitude of the corrugated boundary.

8. Effect of frequency

Computations have been made for four different values of R ( = coc/B".

namely 0 =0.5, 1.0, 1.5 and 2.0 at intervals of 0.01.

It has been observed that for large frequency, the behaviour of the reflec-
tion and transmission coefficients remains the same. The values of these coef-
ficients increase with the increase in O. These coefficients have been plotted
graphically in Figures 2 and 3 respectively for 0 = 0.5, 1.0 and 15.

Fig. 2. Reflection coefficient \Rt] of
irregular SH-waves for normal
incidence against the dimensionless
parameter cp for different values of the
dimensionless frequency Q = cuel/?,2

2. dbra. A szabalytalan SH-hullamok
[, I reflexids egyltthatdja merbleges
beesés mellett a cp dimenzié nélkili
paraméter fliggvényében, az Q = <ocjfix
dimenzid nélkali frekvencia kulénb6z6
értékeire

Puc. 2. KoadmuueHT oTpaxkeHus |/,
HenpasW/bHLIX BOAH SH npu
nepneHaNKYNAPHOM BXOXAEHWUU

B 3aBMCMMOCTM OT 6e3pa3mepHOro
napameTpa cp v Npu pasnnyHbIX
3HaYeHNsAX 6e3pasmMepHO YacToTbl

Q = cuell?,.
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Fig. 3. Transmission coefficient 17\ | of irregular SH-waves for normal incidence against the
dimensionless parameter cp for different values of the dimensionless frequency Q = coc/i3t

3. abra. A szabalytalan SH-hulldmok |I, | transzmisszios egytthatdja mer6leges beesés mellett
a cp dimenzi6 nélkili paraméter fuggvényében, az B = ojcjB{ dimenzid nélkili frekvencia
kilonbdzd értékeire
Puc. 3. KoadhthmumeHT nepegaum |7, | HenpaBubHbIX BOAH SH Npu nepneHanKynsipHOM

BXOXAEHWUM B 3aBUCMMOCTU OT 6e3pa3MepHOro napameTpa cp v NPy PasfnuHbIX 3HAYEHUAX
6e3pasmepHoli YacToTbl B = cacj’".

9. Effect of lateral variation

Computations have been made for different values of a, namely a=0.001,
0.002, 0.004, 0.008 and 0.016 at intervals of 0.01, keeping Q= 1.0 fixed. It has
been observed that with the increase in a, the value of the reflection coefficient
decreases slowly and this decrease is large for larger values of cp. But the value
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of the transmission coefficient increases with the increase in a and this increase
is also large for larger values of cp. The behaviour of the reflection and trans-
mission coefficients for two different values of a, namely a=0.002 and 0.008,
have been plotted graphically in Figures 4 and 5 respectively.

Fig. 4. Reflection coefficient |/?, | of irregular SH-waves for normal incidence against the
dimensionless parameter cp for different values of the lateral variation constant a

4. &bra. A szabalytalan SH-hullamok |A | reflexios egyiitthatdja merGleges beesés mellett a cp
dimenzi6 nélkili paraméter figgvényében, az a oldaliranyu variacios allando kilénb6zé
értékeire
Puc. 4. KoathchmumeHT oTpaxeHus |/1,| HenpaBu/bHbIX BOMH SH npy nepneHAnKynspHoOM

BXOX/EHWM B 3aBUCMMOCTU OT 6e3pa3MepHOro napameTpa cp U Npy pasnYHbIX 3HAYEHUsX
KO3uuMeHTa Baprauuii a no natepanu.
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Fig. 5. Transmission coefficient 7', of irregular SH-waves for normal incidence against the
dimensionless parameter cp for different values of the lateral variation constant a

5. &bra. A szabélytalan SH-hulldmok jT, | transzmisszi6s egyitthat6ja mer6leges beesés mellett
a cp dimenzié nélkili paraméter fliggvényében, az a oldalirany( variacids allandd kiilonbdz6
értékeire
Puc. 5. KoatppmumeHT nepegamu IT, | HenpaBubHbIX BOAH SH npu nepneHAnKYNspHOM

BXOX[EHUW B 3aBUCMMOCTU OT 6e3pa3MepHOro napameTpa cp W Npy pasfMuHbIX 3HAYEHUAX
Ko3(hmumeHTa Bapuauuii a no natepanu.

10. Effect of vertical variation

Effects of the vertical variation constants yl and y2were considéré separate-
ly. Computations have been made for different values of y namely:
yl'= —0.0043, -0.0087, -0.0174, -0.0348 and - 0.0696 at intervals of 0.01.
keeping Q= 1.0 fixed. It has been observed that as yt decreases, the value of the
reflection coefficient decreases slowly and this decrease remains almost the same
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for all values of cp. The transmission coefficient increases slowly with the
decrease in yl and this decrease is slightly large for larger values of cp. The
behaviour of these coefficients for two different values of yl, namely:
y, = -0.0087'and -0.0348 have been plotted graphically in Figures6 and 7
respectively.

Fig. 6. Reflection coefficient |11, | of irregular SH-waves for normal incidence against the
dimensionless parameter cp for different values of the vertical variation constant y, in the lower
half-space

6. abra. A szabalytalan SH-hullamok if?, | reflexiés egyiitthat6ja mer6leges beesés mellett a cp
dimenzi6 nélkili paraméter fliggvényében, a ¢/, fliggbleges iranyl variacios allandé kilonbéz6
értékeire, az alsé féltérben
Puc. 6. KoathmumeHT oTpaxkeHus |/1,| HenpaBuAbHbIX BOMH SH npu nepneHAMKYNsSpHOM

BXOX/IEHWUW B 3aBUCUMOCTM OT 6€3pa3MepHOro napameTpa cp 1 Npu pasinyHbIX 3HAYEHUsIX
KoahpmumeHTa Bapraymii y1no BepTMKannm B HUXHEM MOMYNPOCTPAHCTBE.
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Fig. 7. Transmission coefficient II", | of irregular SH-waves for normal incidence against the
dimensionless parameter cp for different values of the vertical variation constant y, in the lower
half-space

7. abra. A szabdlytalan SH-huildmok !7" | transzmisszios egyutthat6ja mer6leges beesés mellett
a cp dimenzié nélkili paraméter fliggvényében, a y, fligg6leges iranyl variacids allando
kilonb6z6 értékeire, az als6 féltérben
Puc. 7. KoathdpmuymeHT nepegaum 17"\ HenpaBunbHbIX BOAH SH npu nepneHgnMKynsipHOM

BXOX/EHWW B 3aBUCUMOCTW OT 6e3pasMepHOro napametpa CP v Mpu pasfiMyHbIX 3HAYEHMAX
KoahmuMeHTa Bapuauuit y, No BEPTUKANU B HUXKHEM MOMYNpPOCTPaHCTBE.

To find the effect of vertical variation constant y2, computations have been
made for different values of y2 namely: y2—-0.0015, -0.0030, —9.0060,
-0.0120 and -0.0240 at intervals of 0.01, keeping Q= 10 fixed. It has been
observed that as cp increases, the value of the reflection coefficient first increases
and after reaching its maximum value, it starts decreasing. However, R{ is
smaller for smaller values of y2 until the maximum is attained, while the
behaviour is reversed after the maximum is reached. The value of the trans-
mission coefficient decreases with the increase in y2. This behaviour remains for
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small values of cp, but for large cp the behaviour of the transmission coefficient
for y2 is reversed. The value of the transmission coefficient starts increasing with
the increase in y2. The behaviour of the reflection and transmission coefficients
for two different values ofy2, namely y2= - 0.003 and -0.12, have been plotted
graphically in Figures 8 and 9 respectively.

Fig. 8. Reflection coefficient Rt of irregular SH-waves for normal incidence against the
dimensionless parameter cp for different values of the vertical variation constant y2 in the upper
half-space

8. abra. A szabalytalan SH-hullamok |l | reflexiés egyitthatéja mer6leges beesés mellett a cp
dimenzi6 nélkili paraméter figgvényében, a y2 fiiggbleges iranyd variaciés allandé kilonboz6
értékeire, a fels6 féltérben
Puc. 8. KoathuLMeHT oTpaxkeHuss R, HenpaBufibHbIX BOAH SH npu nepneHAuKyNsipHOM

BXOX/EHWM B 3aBUCUMOCTM OT 6e3pa3MepHOro napameTpa cp v Npu pasnyHbIX 3HAUEHUsX
KoauuMeHTa Bapuaumii y2 no BepTUKaNM B BEPXHEM MONYNPOCTPaHCTBE.
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Fig. 9. Transmission coefficient Tx of irregular SH-waves for normal incidence against the
dimensionless parameter cp for different values of the vertical variation constant y2 in the upper
half-space

9. abra. A szabalytalan SH-hullamok !T, | transzmisszios egyitthatdja mer6leges beesés mellett
a cp dimenzié nélkili paraméter fiiggvényében, a y2 fliggbleges iranyl variacios allando
kilonboz6 értékeire, a felsd féltérben
Puc. 9. KoahpmnumeHT nepegaum I, | HenpaBUbHbIX BOAH SH npu neprneHANKYNspHOM

BXOX/[EHUW B 3aBUCUMOCTU OT 6€3pasMepHOro napameTpa cp W Npu PasnyHbIX 3HAUYEHUsX
KoahpmumeHTa BapuaLuit y2 no BepTUKaNM B BEPXHEM MONYNPOCTPAHCTBE.

11. Effect of velocity contrast

The effect of the velocity contrast has been seen for three different cases,
namely for the first case SH-wave velocity in the incident medium is taken as
3.00 km/s and in the refracted medium as 5.00 km/s; the density ratio of the two
media (q10/Qzo) being 4.8, called model (3.0/5.0). For the second case, SH-wave
velocity in the incident medium is taken as 5.00 km/s and in the refracted
medium as 6.00 km/s; the density ratio being 1.6, called model (5.0/6.0). For the
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third case, SH-wave velocity in the incident medium is taken as 7.5 km/s and
in the refracted medium as 7.0 km/s: the density ratio being 1.2, called model
(7.5/7.0): With these distributions of velocity and density the other elastic
constants are taken to be the same as in (49). Figure 10 shows how the amplitude
of the irregular waves or the reflection coefficient changes with the amplitude
of the corrugation. As R1is proportional to the amplitude of the corrugation
in this approximation, the graphs are given by straight lines. Thus Figure 10
shows that the larger the velocity contrast and the larger the amplitude of the
corrugation, the larger is the effect of corrugation. The results obtained in this
case are nearly the same as those derived by Asano [1966] for the case of
P-waves, when the medium considered was homogeneous.

Fig. 10. Reflection coefficient \R{\ of irregular SH-waves for three different velocity models for
normal incidence against the dimensionless parameter Q = wc/Rl

10. &bra. A szabdlytalan SH-hullamok |/1,| reflexiés egyutthatdja harom kilénbdz8
sebességmodellre, meréleges beesés mellett, az Q = wc/Bt dimenzid nélkili paraméter
fliggvényében

Puc. 10. KoaththmumeHT oTpaxkeHns |R,| HenpaBuibHbIX BOMH SH Ana Tpex pasnnyHbIX
MoAeneli pacnpefeneHns CKOpocTeil Npu neprneHAMKYNSAPHOM BXOXAEHWW B 3aBUCUMOCTU OT
6e3pasmepHOro napamerpa Q = oxl/?,.
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SH-HULLAMOK REFLEXIOJA ES TRANSZMISSZIOJA FUGGOLEGES- ES
OLDALIRANYBAN HETEROGEN KOZEGBEN, SZABALYTALAN HATARFELULETEN

Suversha GUPTA

SH-sikhullamok reflexiés és transzmisszids egyitthatdjat tanulmanyozza két vizszintes és
fliggbleges iranyban heterogén kozeg kozotti hullamos hatarfelileten, a Rayleigh-féle kozelité
modszerrel. Az oldal- és fiigg6leges irany( variacios allandok, a hullamos hatarfeliilet amplitidéja,
a szabalytalan hatarfeliilet hullamhossza és a sebességkontraszt hatasat vizsgalja numerikusan és
grafikusan, mer6leges beesés esetére, els6rendl kozelités mellett.

OTPAXEHWE W MEPEJAYA BOJIH SH B BOKOBOM W BEPTVKAJ/IbHOM
HAMNPABJIEHNAX B HEOAHOPOAHOW CPEJE B C/TYHAE HEMPABU/IbHbIX
MPAHNYHbIX NMOBEPXHOCTEW

Cysepwa N'YNTA

C nomouibo NpMBAMKeHUs Panest paccMaTpMBaloTCs KOIMULIMEHTbI OTPaXKeHUs 1 nepeaa-
UM NNOCKOCTHbIX BOMH SH, OTHOCALLMECS K CKNaAUaTol rpaHUYHON NOBEPXHOCTM pasgena Mexay
[BYMsl CMOSIMU, HEOAHOPOAHbIMM Kak Mo BepTuKanu, Tak 4 Mo natepanu. [Ans cnyyas npsmoro
BXOXX/IEHWA BOMH 1 NPUGNKEHNS NepBOro nopsaKa B LU(POBOM 1 rpagiMyeckom Biae UCCNeaoBa-
HO BAUsHWE KO3((MULIMEHTOB BapuaLwii No BepTUKanM W No natepanu, amnauTyabl CKNafoK no-
BEPXHOCTU pasfena, ANMHbI BOMH HeMpaBu/bLHOM NOBEPXHOCTM pasfena W KOHTpacTa CKOPOCTeid.
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ASPECTS OF FINITE DIFFERENCE MODELLING OF THE
ELECTROMAGNETIC FIELD OF AN OSCILLATING ELECTRIC
DIPOLE

Géabor PETHO*

Assuming a harmonic time dependent electric source parallel to the strike the paper deals with
the determination of its electromagnetic field for the plane which is perpendicular to the strike and
contains the source. The chosen numerical procedure is the finite difference method. A direct method
taking the blocked-tridiagonal structure of coefficient matrix into consideration is recommended
for solving the resulting linear system. After solving the set of equations for numerous spatial
wavenumbers the field components are determined numerically by inverse Fourier transformation.
The number and distribution of discrete spatial wavenumbers need to be planned. The way of
planning is shown by an example.

Keywords: 2-D structure, conductivity, electric dipole source, finite difference method, Fourier trans-
formation

1. Introduction

If we assume a 2-D conductivity structure the determination of the electro-
magnetic field of an electric source treated as a point source is a 3-D problem.
Fourier transformation may be used to substitute the three-dimensional prob-
lem for a series of two-dimensional problems. In the case of direct current
sounding Laplace’s and Poisson’s equations and in the present case (frequency
sounding) Maxwell’s equations are to be Fourier transformed over the strike
direction. As a result of Fourier transformation the series of 2-D problems
belongs to different spatial wavenumbers; inverse Fourier transformation en-
ables the field to be calculated. Dey and M orrison [1979] developed this method
to solve the three-dimensional potential distribution about a point source of
direct current located in or on the surface of a half-space containing 2-D
conductivity structure. Stoyer and G reentietd [1976] worked out the response
of a 2-D earth to an oscillating magnetic dipole source in this way. However,
their general formulation can be applied to electric dipole sources.

* Department of Geophysics, Technical University for Heavy Industry, Miskolc, Egyetemvaros,
H-3515, Hungary

Paper presented at the 31st International Geophysical Symposium, Gdansk, 30 September-
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2. Mathematical formulation

The basic relationships governing this electromagnetic phenomenon are Max-
well’s equations. Assuming only €' time dependent electric source they are:

rot _ —jnl A (1)

rot 1 = (ct+Jwe)é+X(2).
where is is the current density. If equations (1), (2) are reduced to components
in the x,y, z directions the Fourier transforms of the equations can be deter-

mined over the strike direction (x). If G denotes any component of E or U the
Fourier transform of G over x is:

G(kxy, 2) = } G(X Yy, z)e~ikxdx ®

The Fourier transform of the function SS over x is (—3kx) times G{kxy,z)

because G(x,Y, z) vanishes as x-> * oo if the source is placed to the origin of
the Cartesian system of coordinates. Taking into consideration the above-
mentioned relationships and assuming only an electric source parallel to the
strike the densest form of the Fourier transform of the component equations

(1), @) is:
S/_1_ 8HX O( 1 dHX dd gEx dd dEx
- Dkx-r A+ )k x-x -+ +yMX=0(4
dy dy dz Vbm dz ) "d{, dz ) Xz dy y )

o (_nEN d 1dEy dd dHx od dH
dy\iE dy) dz

Equations (4), (5) are called the Transverse Magnetic (TM) and the Transverse
Electric (TE) equation, respectively. In these equations Hx, Exare the Fourier
transforms of Hxand Exover x; Ixis the Fourier transform of the electric source
term in the strike direction. If k denotes the wavenumber, £ TM admittance,
TE impedance, TE admittance, TM impedance can be defined after Stoyer
[1974] in the following way: d = (k&~k2)~I; 'yMFjculr; 3E= (1

AE = ((j+jcue); aM= (1-k™/k2) ™. These parameters are constant within each
grid element (Fig. 1).

Without solving the coupled partial differential equations (4), (5) it is easy
to see that Ex(kx y, z) must be even in kx and Hxkx y, z) must be odd in kx
To verify the assertion above observe that isx is an even function in kx on the
right side of equation (5). Therefore the superposition of terms occurring on the
right side of equation (5) must be even in kx as well. It follows from this that
each term on the right side of equation (5) must be even in kx. It is possible if
and only if function Ex(kx y, z) is even and function Hx(kx,y, z) is odd in kx
In order to get the solution in the space domain the solution of equations (4),
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Fig. 1. Grid element of two-dimensional conductivity model in the (kx,y,z) domain

/. dwa Kétdimenzids vezetSképesség modell elektromos szimulacidjanak részlete a (kx,y, z)
tartomanyban

Pue. 1. ®parmMeHT 3M1eKTPUYECKOTO GOCMPON3BEAEHNS ABYMEPHON MO 31eKTPONPOBOAHOCTH
o6nactu (KXy, 2).

(5) isto be inverse Fourier transformed. This transformation for the plane which
is perpendicular to the strike and contains the source becomes simple because
x=0. This fact further simplifies the inverse Fourier transformations:

EXQ,y,2) = - Bx(kxy, 2) dkx ()

Hx(0,y, z) = 0 (7)

For a source-free area Hy, Hz, Ey, Ez can be expressed as a function of Exand
Hx. These are used for calculating the other components of the field :

LEX

@®
( dz Tkx  8HX
H1o, 1;‘1(1~KL|,K2))(OLI, K~k2 gy. dkr ©
dEx
( Sy \kx  8HX
HAD, /\ %‘\{\-KLI,KZ))(OLI, (ke-k2 @z 9K ©)
Ey(0,y,z) = 0 (10)

Ez(0,y,z) = 0 Q)
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3. Numerical process

As has already been pointed out the numerical procedure utilized is the
finite difference method. The coupled partial differential equations have been
given in (4), (5). The next step is to discretize them over a rectangular net.

3.1 Structure of the system of equations

Using a three-point difference operator for the second derivative and
averaging each term on the left-hand side over the four quarter blocks surround-
ing a central node, the final form of the finite difference equations is:

where Z denotes lumped impedances, C denotes coupling terms between the
central and one of the four neighbouring nodes, and Y denotes lumped admit-
tances (Fig. 1). Similarly to 2-D magnetotellurics the lumped impedances are the
parallel combinations of the impedances of two adjacent elements, and the
lumped admittances are the parallel combinations of the admittances of the four
elements surrounding a node.

The reciprocal values of coupling terms - which do not occur in mag-
netotellurics - are directly proportional to values £ of the adjacent elements and
are independent of the size of elements. For example Zf, C, and Tf can be
given by the formulae:

1 JL (éZ* + 14

Zf AzvVaf ifJ 14

A= 2jM ,-in) (15)

X’XI AyLA zu ™ + AyRAzV-Yjf+ AyRAzZLY% + AyLAzLy ft (16)

Using a Neumann-type boundary condition in equations (12) and (13),
Pi= 0 if point P, is outside the grid, and pt= 1in any other case. If we use a
terminal-impedance type boundary condition, i.e. the edge of the mesh is
grounded, the outward-directed lumped impedances are a fraction of the in-
ward-directed lumped impedances. This can be accomplished by a suitable
choice ofpt. In equation (13) isaxis the Fourier transform of the strike directional
electric source term in finite difference form. The sources can be treated like
distributed parameters [Stoyer 1974]. Oscillating electric dipoles are treated as
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point sources in the strike direction. If their lengths were finite in the strike
direction, the Fourier transforms of sources would be oscillating functions in
kx. The strike directional source term on the surface is treated as a Heaviside
function in the two adjacent quarter elements situated below the surface (Fig. 2).
The treatment above makes it possible to determine the Fourier transform of
the electric source placed in the strike direction:

00

isAx)e~lloddx = isx  (17)

It means that there is only one node that has a source term different from zero,
and it is equal to the applied electric source.

Fig. 2. Treatment of an electric source in strike direction on the surface
2. dbra. Felszinen lev6, csapasiranyu elektromos dip6lus egyszer(sitett vazlaza

Puc. 2. ¥YnpouieHHas cxema 3NeKTPUUYEcKoro Aunons, napaniensHoro npocTupaHuto
1 HaxofsALEerocs Ha NoBePXHOCTHU.

After decomposition of finite difference equations (12), (13) to equations
containing either real (R) or imaginary (I) terms we get four (TMR TM,, TER
TE,) equations belonging to a node. Progressing column-wise on the grid nodes
from left to right and writing the equations successively the resulting linear set

of equations has the form (Fig. 3)
[Q}?2=$ (18)
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Fig. 3. Structure of a coefficient matrix belonging to a grid with three rows and seven columns
3. dbra. Harom sorbol és hét oszlopbol allé racshoz tartozé egyitthatomatrix szerkezete

Puc. 3. CTpyKTypa MaTpU4HOro Koah@uumeHTa, NpUHAANeXallero CeTke, COCTOALLEH 13 Tpex
CTPOYEK 1 cemmn rpad.

Coefficient matrix [Q] has a band structure, it is a square and non-symmetrical
matrix; is the column vector of unknowns containing the components in the
order of Hx, Hx, Ex, EX\£is a column vector containing the Fourier transforms
of source terms in finite difference form belonging to TMR TMj, TER TEj
equations. If we use a Neumann-type or terminal-impedance type boundary
condition, [Q] has a blocked-tridiagonal structure as well. If the grid has m rows
and n columns and m is smaller than n it is worth numbering the nodes
column-wise, because the size of blocks and [Q] can be partitioned in the form:

[B] =M~LW i = [U[W 19

where / denotes the number of the actual column, [F], and [N], are co-diagonal
blocks, and [J1], represents main diagonal blocks. Each block has 4m.4m

elements. Vectors and 3 can be partitioned in the same manner: J?, and
belong to column /.
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3.2 Solution of the set of equations

Schechter [1960] suggested a reduction of Q to the form shown in equa-
tion (19) where L and U are square matrices, partitioned in the same manner
as [Q\, of the form

L = {[OAAO]}; (20)
. [U = {[onn143a (21)

where [/], denotes unit matrix.
From equations (19), (20), (21) [A], may be determined recursively:

ML = [ML (22)
ML =[Mi- U/UT-"H/-1  [=2,3,....«. (23)

Introducing [U]™= P the first step is to solve [L]I"=?.Its solution may be
obtained recursively too:

Pi = (24)
P= A[MUTM-18-1 1223 ..« (25)
The solution of [U])t= P is equal to those of (18):
t = [A];IPn (26)
2. = [AIFI(2,-[N\A+0 /= «-1,¢-2,...,2.1 @7)

Using the same geoelectric section and frequency withthesame grid size but
having another source position or another type of source (/?) one has only to
change in the source terms of equations (24), (25):

Pi = A (28)
p=A -UWNTAP-1 1=23 .., « (29)

The advantage of this decomposition is obvious from the above: it reduces the
AmnAmn matrix ([£]]) inversion to « 4m.4m matrix {[A]t) inversions.

This direct method was applied to solve that part of the problem related
to the homogeneous half-space. We were restricted to the case of Ax=0. The
frequency 20 kHz, the grid 12 by 25 nodes, and the conductivity of the earth
was 0.01 mho/meter. The number of unknowns is 1200. The distribution of the
absolute value of strike directional electric field in Vm™1 and the structure of
the grid are illustrated in Figure 4. The source was placed on the surface (6th
row) and into the 13th column, its current intensity was 10 A. The smallest grid
elements, having a length of 5m and a width of 5m, are next to the source.



Fig. 4. Distribution of Fourier transformed strike directional field component in V/m

4. dbra. Csapasiranyl elektromos térkomponens Fourier transzformaltjanak izovonalas térképe
V/m-ben

Puc. 4. KapTa usonuuuii V/m TpaHcdopmaTta ®ypbe 37eKTPUUECKOoi KOMMNOHEHTbI Nons,
napannenbHOn NPoCTUPaHMIo.

3.3 Planning of wavenumber domain

The set of equations (18) has to be solved for different kx values. The
simultaneous aim is to compute for as few kx values as possible and to achieve
suitable accuracy. For this reason the number and the distribution of discrete
spatial wavenumbers need to be planned. They depend upon the geoelectric and
geometric parameters of structures, the frequency and the transmitter-receiver
arrangement. We can only plan for 2—D geoelectric sections. The electromag-
netic field of an electric dipole source placed on a homogeneous or a layered
half-space can be computed for a line which is parallel to the strike direction
and is situated on the surface. After this these functions are to be Fourier
transformed over x. In order to get accurate space domain values by inverse
Fourier transformation for x =0, we have to choose the appropriate number
and distribution of kx values. Figure 5 shows the Fourier transforms of strike
directional electric field components computed numerically from the space
domain values over half-spaces of different conductivity [Takacs 1983]. Assum-
ing a horizontal electric dipole source in the x direction on the surface, the
electric field has been determined for the line which is parallel to the x-direction
and is situated 900 metres from the source on the surface. The current intensity
of the source is 1 A. Formulae derived by Bannister and Dube [1978] allow
ready computation of these functions. The Fourier transform of component Ex



.. .finite difference modelling of the electromagneticfield. . . 121

with indices 1, 2, 3 refers to gx= 190 =800 Hz\g2=24Rm ,f2~ 244 Hz;
g3=60RBm,/3=25 Hz, respectively. Subsequent inverse Fourier transformation
showed that the 13 kx values selected logarithmically in the range of 0<kx i

v

i 1.648 10 3m 1were sufficient to achieve an accuracy within 1%in the x =0
plane. In this way, ifwe have a 2-D inhomogeneity embedded in a 1-D structure,
we can determine approximately for which kx values the set of equations is to
be solved.

Fig. 5. Fourier transforms of strike directional
electric field components over a half-space
computed for a line parallel to the source in the
strike direction

5. dbra. Csapasiranyd mos dipdlus csapasiranyu
mos tér komponenseinek Fourier transzformaltjai
forrassal parhuzamos felszini vonal mentén
homogén féltér esetén

Puc. 5. TpaHctopMmaTbl Pypbe 31eKTPUYECKON
KOMMNOHEHTbI N0As, NapannenbHoin NPoCcTUpaHuio,
Haf OfHOPOAHBLIM NONYNPOCTPAHCTBOM,
paccuvTaHHble BAONb NMHWUW, NapannenbHoi
WCTOYHUKY BLOMb NPOCTUPAHUS.

4. Conclusions

Earlier the response of a 2-D earth to an oscillating magnetic dipole
source was investigated. The present work describes a numerical method which
makes it possible to determine the electromagnetic field of an oscillating electric
dipole source placed on a 2-D earth. The electric source is parallel to the strike
and it is treated as a point source. The result of a parity test is taken into
consideration to determine the field components for the plane which is perpen-
dicular to the strike and contains the source. The algorithm worked out by
Schechter has been applied to find the solution to the set of equations. On the
basis of the numerical calculations the spatial wavenumber domains to be
considered are equal under the condition of constant transmitter-receiver dis-
tance.
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MEGJEGYZESEK AZ OSZCILLALO ELEKTROMOS DIPOLUS FORRAS
ELEKTROMAGNESES TERENEK NUMERIKUS MODELLEZESEHEZ

PETHO Gébor

Harmonikus, id6tél fligg6, csapasirannyal parhuzamos elektromos forrast feltételezve a cikk
a csapasiranyra mer6leges, a forrast tartalmazo sik elektromagneses terének meghatarozasaval
foglalkozik. Az alkalmazott numerikus eljaras a véges differenciak modszere. Az egyiitthaté matrix
blokktridiagonalis szerkezetét figyelembe vevé direkt modszert javasolja a kapott linearis egyenlet-
rendszer megoldasara. Szamos térbeli hullamszamra megoldva az egyenletrendszert, a térkompo-
nenseket inverz Fourier transzformacié segitségével hatarozza meg numerikusan. A diszkrét térbeli
hulldmszamok szamat és eloszlasat meg keH tervezni. Ezt az eljarast egy példan keresztiil mutatja
be.

LUN®POBOE MOLE/TMPOBAHNE SNNEKTPOMAIHUTHOIO NOJ1IA ABYMEPHOIO
KAYAKOLWENOCA SJIEKTPUYECKOIO AMNMNOIA

[a6bop MET3

B cTaTbe paccMaTpuBaeTCsi ONpefeseHne 3M1eKTPOMarHUTHOrO Mons NAOCKOCTU, NepneHau-
KyNSipHOW NMPOCTMPaHWIO U MPOXOAsLLE Yepe3 NCTOUHMK, Npefnonaras rapMoOHUYECKNA aneKTpu-
UecKniA UCTOYHUK, NapanienbHblii CTPYKTYPHOMY MPOCTUPAHWIO U 3aBUCALLMIA OT BpemeHu. MMpu-
MeHseTCs LMgpoBoIi MeToa — Cnocob KOHEYHbIX pasHOCTel. AN pelleHnst MoNyYeHHO! NMHeHOM
CUCTEMbI PEKOMEHAYETCS MPSAMOI MeTOf, YUMThIBAKOLWUIA 6GNOKOBYHD, TPUAMATOHANIbHYIO CTPYKTY-
py MaTpUyHOro koaduumeHTa. Benep 3a pelleHneM CUCTEMbI YpaBHEHUIA HECKONIbKMX 06bEMHbIX
BOJTHOBbIX UMCE/ MOMEBbIE KOMMOHEHThI OMpPeAenstoTCs B LU(POBOM BUAE, C NOMOLLbIO 06paTHbLIX
TpaHcgopmaToB ®dypbe. He06X04MMO 3annaHMpPoBaTh pacnpefefieHne U KOMYECTBO [AUCKPETHBIX
06bEMHbIX BO/THOBBLIX YMCE/, YTO UAMKOCTPUPYETCA KOHKPETHLIM MPYMEPOM.
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ANALYSIS OF SEVERAL FEATURES OF RESPONSE FUNCTIONS
OF FREQUENCY SOUNDINGS OVER H- AND K-TYPE MODELS

Gabor SZIGETI*

A simple three-layer model is examined for a better understanding of the exploration potential
of frequency sounding. A clear condition for the screening effect of the intermediate layer, as well
as the exact condition of equivalence for the thin layers and their simplified description are obtained
by an asymptotic estimate, related to the parameters of the intermediate layer.

Keywords: frequency sounding, equivalence, screening, electromagnetic field, one-dimensional model

1 Introduction

The frequency sounding method significantly increased the possibilities of
surface geoelectric exploration. The interpretation of frequency soundings ren-
ders the calculation of the electromagnetic field over a horizontally layered
medium essential. In order to facilitate the vertical magnetic dipole-source,
transition zone frequency sounding work carried out at ELGI a computer
program-package was developed to compute response curves for the layered
half-space [Pracser et al. 1982]. Thus, a possiblity is given for the purely
numerical analysis of the effect of changes in model parameters on the sounding
curves. However, questions of the solvability of the geological problem, survey
planning and quality of interpretation make it necessary —besides the numeri-
cal study of the curve-behaviour— to have as clear view as possible of the
dependence of sounding curves on layer parameters.

Such a view may be obtained by the asymptotic analysis of computational
formulae of quite simple models. A layer embedded in a homogeneous half-
space is examined by such a method in this paper and simple, suggestive pictures
describing the effect of that layer are presented in two cases. In the first case the
layer is thick and conductive so it screens the underlying formation. The second
case is the asymptotic one, when the layer is thin, having only a slight resistivity
difference compared with the surroundings and its effect is proportional to its
thickness resistivity-difference product.

The validity-domain of the simple rules obtained by the asymptotic estima-
tion is to be controlled because the inequalities determining the above domain
could not be fully analysed due to the complexity of the formulae describing the
phenomenon of induction.

* EOtvOos Lorand Geophysical Institute of Hungary, POB 35. Budapest. H 1440
Manuscript received: 13 July, 1987
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However, this is not identical with the empirical study of the effect of
parameters. Let us see it through the example of equivalence. Equivalent models
may be found by computing numerous models. Knowing the deduction of the
thin layer case it is given how model pairs considered to be equivalent should
be chosen, only the question whether the models satisfy the conditions of the
deduction needs to be checked. It is difficult to check the latter, so we test the

equivalence of the model pair.

2. Computational formulae of EM field

Let us place a layer of g2 resistivity and d thickness into a homogeneous
half-space of  resistivity at the depth h (Fig. 1). The model is type A'if g2>Qi,
and type H if g2<g”

Fig. 1. Parameters of our geoelectric model containing an

1 2 interbedded layer
X 1- transmitter; 2 - receiver
t
L I. dbra. A vizsgélt, betelepult réteget tartalmazo

geoelektromos modell paraméterei

A 1- add; 2 - vevd

P2 d Puc. 1 MNapameTpbl reoanekTpuyeckoro paspesa
C UccnefyembiM CpefiHUM C/I0eM: 1 - MepefaTyuk,

A 2 - MPUEMHUK.

The two functions to be presented below concern all electromagnetic
components over the three-layer model, but for brevity’s sake only the Hz
component is deduced now.

Using the formulae and symbols of Pracser et al. [1982] for the n-layer
model, the F*%} differential component — this is the deviation of the EM field
existing over the layered half-space from the field over the homogeneous half-
space — may be written as follows :

Hy = 9IS D3 0r 1) dit
2n\cogolL5 [9 t+ R\ Ay (1)
+b!
t-Bx

The more important parameters are :
g magnetic permeability
IS moment of transmitter
o frequency of transmitter
L transmitter-receiver distance, r = L/h
t variable of Hankel transform
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Rj = ~t2-2iB](j)2 ReBj>0

Bi=LW, ¢ S=|/"-; a =1Ug for j =123

and let us denote Bxby B. The recursively defined bxquantity may be arranged
into the following formula, taking it into account that Bx=R 3.

b = _2(R\-RI) u ,
L TR +aiRi+Rj) (©)
where

a=th(r Ri) = th ).

3. Deduction of condition of screening

It is easy to see, that if Re(Z)> 1.47 then th(Z)= 1(10% accuracy). Thus,
if for Z = - «R2 it is true then /T&) is independent of the thickness d of the

intermediate layer, because the tp(t) = <, &) kernel function of expression (1)
uniformly converges to the function tp(t, 1) over any 0<t<T interval, if a-> 1

On the basis of the following estimate to fulfil Re(d/h w?2)—1.47 a satisfac-
tory condition which is independent of t is

Thus, if B, L and axare given and the parameters of the intermediate layer
fulfil inequality (3) then an increasing if does not affect #la|; that is, in this type
of Hand K model no information is given about the bottom of the intermediate
layer. If Eq. (3) is fulfilled in the whole induction number-domain then even the
whole sounding curve does not “sense” the bottom of the intermediate layer.
If it is accepted as true that a layer of smaller resistivity contrast or of greater
depth causes a smaller effect then no information is obtained not only about the
bottom of the second layer that satisfies Eq. (3) but also about the layers below
it even if the third layer is a multilayered, inhomogeneous medium whose
maximum resistivity contrast compared with o does not exceed the contrast of
0j and a2- Inequality (3) is satisfied if d/L is great or 02 is great, for given B,
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L, n,. However, the fact that no information may be gained from below a layer
of about L thickness is well-known, independently of this deduction, so the
screening becomes interesting when a2»crl

It is also known [e.g. Mundry and Blohm 1986] that frequency sounding
gives no information from below a sufficiently conductive layer. Inequality (3)
gives the quantitative meaning of “sufficiently” and shows how screening should
be interpreted.

Estimate (3) is independent of the depth of the intermediate layer. An
infinitely thin and ideally conductive plate really acts as a screen independently
of its depth because the EM field does not penetrate through it. So the question
arises concerning the extent to which the screening effect of the intermediate,
not infinitely thin and not ideally conductive plate is independent of its depth,
i.e. of h/L. In other words, the questions are: how sharp is estimate (3), e.g. in
the case of fixed L, B,ci2, and h how great is the interval d in which - - though
the estimate is not realized  the layer still acts as a screen.

These questions were examined by numerical computation. It is also as-
sumed that h/L> 0.2, since  is involved in Eqg. (3), but the induction number
should be matched to the resistivity of the first layer only if it is not too thin.
By means of B = 1, 3, 6 and 9 values for h/L=0.2 and 0.4, studies were carried
out to determine the lowest d*/L value for which, if it is increased, the //f*
anomalous field only slightly changes (10%). This d*/Lvalue proved to be nearly
the same for the two h/L values, and this value is involved in the upper lines
of Table I. Estimates on the basis of Eq. (3) are found in the bottom line. The

1 3 6 9
e 0 0.15 0.08 0.05
B 0.22 011 0.07
] 0.35 012 0.06 0.05
H-10 0.47 0.16 0.08 0.05
] 0.12 0.06 0.03 0.02
H-50 021 0.07 0.03 0.02

Table I. Smallest d*/L thicknesses of the interbedded layer necessary to behave as a screen for
type H models. Upper values were obtained by a numerical program computing the field, lower
values were given by estimate (3). B is the induction number, M is the identifier of the model

|. tablazat. H tipusi modellben a betelepiilt réteg arnyékoldként valé viselkedéséhez sziikséges
legkisebb d*IL vastagsagot tartalmazo tablazat. A fels6 sor a numerikus térszamolé programmal
kapott, az alsé pedig (3) becslés alapjan meghatarozott értékeket mutatja. B az indukci6szam,
M a modell azonosit6ja

Tabnmua I. MuHMManbHble MowHOCTM d*/L, Heo6XoAMMble AN MOBEAEHWS CPEAHEro Cnos
paspesa TMna H B KauecTBe 3KPaHMPYIOLLEro: B BEPXHEN CTPOKe NPUBEAEHbI 3HAYEHUS,
noflyYeHHbIe NPOrpaMMOii YUCNEHHOTO OMpeAeneHns Mons, a B HUKHel no oueHke (3);
B vHAYKunoHHOE uucno, M 0603HaveHne paspesa.
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values where d*/L>0.5 are marked by a star, because there the estimate is
meaningless since the resolution power of frequency sounding rapidly decreases
below the depth of h+d > 0.7 L. Thus, the more interesting part of the table
is where the thin layers are involved. For (€2/(t1 = 50 no information is obtained
from below a layer of d/L = 0.2 thickness, being at a depth greater than 0.2 L,
as shown by the last line. The relative closeness of the values in the top and
bottom lines of Table I. demonstrates the quality of estimate (3). The estimate
is less sharp for small B and hvalues, as may also be deduced from the discussion
of the uniform convergence of the <, @) function due to “a”.

4. Effect of thin layer

Let us assume

(4)
and so the th(z) function may be approximated by z in (2), that is
b = - e- 20!
281+ HiRR+RI)
If it is also assumed that
« \BI\ ®)
and
7 fil « \BI\ (6)
then
. -(0j-0Jxceph2
b, = o, A ™

2/i, 20i

When substituting this formula of ft, to Eq. (1) the second term in the denomina-
tor of the kernel function may be neglected, because due to Re~"O::

(In the geometrical representation of complex values here the longer diagonal
of the parallelogram is in the numerator.) On the basis of Egs. (5) and (6),
further of |e_2"'|< 1, from Eq. (7) follows that ft,« 1
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Thus, substituting into Eq. (1) the form of blinto Eq. (7) we get

O d t~Ri .
IR = = o % ~2I0frt) d.
z 2nh3 o, h t+Bl| ort) (8)

The importance of (8) is given by the fact that the integral already does not
contain d and a2 parameters of the intermediate layer, so it is a clear form of
the description of intermediate layers fulfilling conditions (4), (5) and (6). At first
glance conditions (5) and (6) appear to be never satisfied, because integration
parameter t — which varies between zero and infinity — is at the power of two
on the left side of the inequality, while it is at the first power on the right side.
However, the kernel function of expression (1) is of 0 (e"") order [Szigeti 1983],
so — because d is involved only on the left side of the inequalities — there always
exists an adequately small d'fb that (4), (5) and (6) are satisfied for every d<d*
values by arbitrary values of B, a2/al ar>d JYL. Further, it can be seen from the
above discussion that d* is greater when B is smaller, and 02 is close to ax

Presenting a simpler summing of the result it may be said that for given
o! and L the anomalous field of a thin layer is proportional to its thickness
conductivity difference (in relation to the surroundings) product, i.e. it may be
written in the form:

rf? = d{o2- 0 X G4B, h). )
Thus we have obtained the condition of equivalence for H and K type

models containing a thin layer: at given 0] and L, layers of parameters d’, a2,
and d', d2being at equal depths cause equal effects at induction number B, if

d\o'2-0x = d{0'2- gX (10)
Patra and Mallick [1980] have examined intermediate layers of greater thick-
ness than those of conditions (4), (5) and (6). According to these authors the
condition of equivalence is do\ =const for model #, and d"6-2 = const for
model K. Details of the connection between these two results require further

study.
Expression (9) calls attention to the important difference between the effect

of the H and K type intermediate layers, because if LP stands for a2/<ii = a>|
and K? stands for al/a2 = 3> 1then to get an effect of the same amplitude but
opposite sign in the case of a=R, and layer thickness d in model H a layer
thickness of x is needed in model K, where

d(aal—ijj) = ¢ O - o,

and so
d""=otd"'

i.e. an a times thicker intermediate layer is necessary in model K. Instead of the



.. .response functions offrequency soundings. . . 129

# z quantity the behaviour of the R = (HJHTr) ratio — which is measured on
the field — is studied by computer calculations in Fig. 2 for Hland K? inter-
mediate layers in the I<oc,,/?<10 interval by 5=1 induction number and
A/L= 1/3 values. Quantity d/L — relative thickness of the layer — is on the
horizontal axis, and the relative deviation of the R ratio of the given model from
that of the half-space model is on the vertical axis.

The steepness of the curves belonging to different models and their devi-
ation from the straight line show the approximate satisfaction of (8) and its
inaccuracy. The graph is also valid in the whole B< 1 interval.

FU- 2. Deviations of the low frequency part of the \HJHr\ ratio from the homogeneous model
(in per cent) for interbedded layers of different parameters

2. dbra. \H,/Hr\ hanyados alacsony frekvencias részének homogén modelltél valo szazalékos
eltérései kiillénb6z6é paraméterl betelepiilt rétegek esetére

Puc. 2. MpoueHTHble OTKNOHEHMSA HM3KOYACTOTHOM YacTu oTHoweHus HJIH,\ oT ogHopopgHoi
MOfeNu AN pasfMyHbIX NapaMeTpoB CpefHero cros.
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FREKVENCIASZONDAZAS VALASZFUGGVENYEI NEHANY TULAJDONSAGANAK
VIZSGALATA H ES K TiPUSU GEOELEKTROMOS MODELLEK ESETEN

SZIGETI Gabor

Tanulmanyunk targya az egyszerd haromréteges modell, a frekvenciaszondazas kutatasi
lehet8ségeinek teljesebb megértése szempontjabdol. A modellt leird képleteknek a masodik réteg
paraméterei szerinti aszimptotikus vizsgalataval kdnnyen kezelhetd feltételt kaptunk a kozéps6
réteg arnyékolo voltara, illetve a vékony réteg egyszerdsitett leirasdval megkaptuk ezen rétegek
ekvivalenciajanak pontos feltételét.

MN3YUYEHWVE HEKOTOPbIX CBOMCTB OTBETHbIX ®YHKLIMIA YACTOTHOIO
30HANPOBAHUA OJ1A CNYUYAA MEO3NTEKTPUNHECKUMX PA3PE3OB TUMA HUNK

Fa6op CUTETWN

[Lns 60nee NOMHOIO MOHUMAHKUS BO3MOXHOCTEH YaCTOTHOIO 30HAMNPOBAHNA N3y4YaeTcs Mpo-
CTOIA TPEXCNOViHbIN reoaneKTpuYeckuii paspes. MyTemM acCUMNTOTMYECKOrO UCCNeA0BaHUs napameT-
POB BTOPOrO C/OS B YPaBHEHWW, XapakTepu3ylollieM AaHHbIA pa3pes, MOXHO MOoMyuuTb SACHOE
yCNoBMe NpeBpaLleHns CPeIHEro Cos B IKPAHWUPYIOLLUIA, UK XKe NYTeM YMpPOLLEHHOro OnMcaHus
TOHKOIO CN0Si MOXHO MOYYMTb TOUYHOE YC/OBME 3KBUBANEHTHOCTU 9TUX C/OEB.
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SPECIAL CROSSPLOTS PREPARED FROM WELL LOGS

Dénes SZENDRO*

Consideration of the standard deviations of logging values enables more accurate discussion
of correlation connections from the point of view of probability theory. If one takes the log values
to be probability variables the level of probability of their expected values to be in certain given
intervals can be calculated by using the measured values and the standard deviations that are
dependent on their derivatives. Representing this in a co-ordinate system, for two logs a two-dimen-
sional average probability distribution is obtained whereas three logs give a weighted mean value
distribution.

Compared with the conventional crossplot the cross-probability plot method developed is of
a filtered character. Thus logging data near layer boundaries have less weight and parameters
characterizing rock types can be determined by higher accuracy.

Keywords: well logging, interpretation, probability, standard deviation, crossplot, statistical distribu-
tion

1. Introduction

For the computer aided processing of well logs the crossplots reflecting the
statistical and correlation connections between two or more well logs are of
great significance. These representations allow the determination of the basic
geophysical parameters dependent on the rock types as well as the estimation
of their degrees of uncertainty and the reduction of systematic measuring and
processing errors and the calibration of the mesurements. Apart from the
inaccuracy of the instrument, the possible statistical behaviour of the measured
guantity and the inaccuracy of the depth determination, in the conventional
method all measurement data are considered with one numerical value, and the
data pairs or the groups of three data relating to one depth point are always
considered to be equally and absolutely related.

If few data are considered, it results in the values of the two-dimensional
frequency distribution randomly fluctuating according to the degree of inac-
curacy. If many data are considered then for thin layers the intervals characteris-
tic for rock types merge into each other and cannot be separated. This results
from the fact that for this method also the considerably varying parts of the log
values, i.e. the environments of the layer boundaries, are equally considered as
the constant parts of the log values (i.e. the points inside the layers). To
investigate the more exact connections the theory of probabilities is discussed.

* Edtvds Lorand Geophysical Institute of Hungary, POB 35, Budapest. H-1440
Manuscript received: 14 November, 1986
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2. Notations

CAL — caliper log

FID
FIN
GR

/
/
J
J
/
L
Pi

Ptj

qu

— density-porosity log

— neutron-porosity log

— gamma ray log

— index of the interval on the X axis of the co-ordinate system

— number of intervals dividing the X axis of the co-ordinate system
— index of the interval on the Y axis of the co-ordinate system

— number of intervals dividing the Y axis of the co-ordinate system
— index of the sampling point

— number of sampling points

— probability of the expected values of the xhytmeasured value pair to

be in the Stj interval

— average probability of the expected values of the measured value pairs

to be in the interval

probability of the expected value of the measured value X, to be in the

/th interval

— average probability of the expected values of the measured values X,

(/=122 , L)to bein the /th interval

probability of the expected value of the measured value yt to be in the

/th interval

— average probability of the expected values of the measured values y,

(/=12,... L) to be in thejth interval

ROB — density log

— 10 cm normal resistivity log
40 cm normal resistivity log

RTR — invert of the resistivity, i.e. the conductivity log

Zij
Z\%)
Z N

— interval of the co-ordinate system given by inequality (1)

— spontaneous potential log

— log assigned to the X axis of the co-ordinate system

— value of the X log in the /th sampling point

— axis of the co-ordinate system

—mean value of the /th interval of the X axis

— log assigned to the v axis of the co-ordinate system

— value of the Y log in the /th sampling point

— axis of the co-ordinate system

— mean value of the yth interval of the Y axis

— log assigned to the Z axis of the co-ordinate system

—value of the Z log in the /th sampling point

— axis of the co-ordinate system

— weighted mean value assigned to the Su interval

— weighted mean value assigned to the /th interval of the X axis
—weighted mean value assigned to the yth interval of the f axis
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Ax  — width of the intervals dividing the X axis

Ay — width of the intervals dividing the Y axis

gj — standard deviation of the weighted mean value Zi;

a\XY) — standard deviation of the weighted mean value ZjX

fp — standard deviation of the weighted mean value 2Ap

ad — standard deviation of log value X,

(Y — standard deviation of log value y,

azd — standard deviation of log value z,

exl — parameter characterizing the absolute error of the X log

ex2  — parameter characterizingthe relative error of the X log

£3 — parameter characterizingthe error dependent on the derivative of the
X lo

g — para?neter characterizing the absolute error of the Y log

ey2 — parameter characterizingthe relative error of the Y log

BB — parameter characterizing the error dependent on the derivative of the
Y log

£z2I — parameter characterizing the absolute error of the Z log

e2 — parameter characterizingthe relative error of the Z log

ez3  — parameter characterizingthe error dependent on the derivative of the
Z log

3. Formulation of the theory

For clarity let us see Fig. 1 Let the points plotted on the axis of the X, Y
rectangular co-ordinate system at equal distances Ax and Ay consecutively be
X@G=1,2,.,/)andp = 1,2,..../). Let the values—measured at equal
distances as a function of depth—of the X, Y logs examined as for the correla-
tion connections consecutively be xhy,, z,(I = 1,2,..., L). The standard devia-
tions of the log values for the /th sampling point are, consecutively, axh ay, ad
(/=1 , 2 Let us denote the rectangular domains of the co-ordinate
system for which

AX AxX
*I+T =*>*m-T
-, 4y Ay @

Vit Yy AYysyry

istrue, by Sj(i= 12 ...,1,) = 12 .., J).

The conventional frequency-plot gives the number of the (x,, X,) point pairs
inthe Sj(i=12 ..../;j = 1,2,...,/) domain whereas the Z-plot gives the
mean values of the Z, values of these point pairs. On the basis of probability
theory we assume that the differences between the expected and measured value
of the logs follow a Gaussian distribution or can be approximated by that. Thus
in the /th sampling point the probability density that the expected value of the
X log value with standard deviation ax is x:



134 D. Szendro

<y*)= 1

ax ]/2na>d_ I=1,2...L. 2

Similarly, the probability density that the expected value of the y, log value
with standard deviation ayl isy:

dp) = 1
dy fhiOyi
where gt(x) and r,(y) are the distrubution functions of x, and y, respectively. If
we plot density functions (2) and (3) on the respective axes of the co-ordinate
system, we can see from Fig. 1that these curves have maxima at the x, and y, log

values and are Gaussian curves dependent on the degree of the standard
deviations oX and ayl.

= 12...L ®)

id

Fig. /. Construction of probability plot
/. abra. A gyakorisagi valdszinlség-eloszlas el6allitasa
Puc. 1 CocTaBneHne BepOSATHOCTHON AuarpaMmbl.

By means of probability density function (2) we can calculate the level of
probability of the expected value x of the measured value v, being in the /th

. o Ax . dWwW
interval between the points I xt----—; jg+ — 1:
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;Gﬂ%l (X- p
%,
dx

4n = 2fior (4)
A

2
1=1,2,..../; [ =1.2,...

Similarly, the probability that the expected value y of the measured value vy, is

/ A dy\
in theyth interval between the points ij——y-;yi,+ 4y 1is:
*+4 @2
la2. .
rk = {2noy y 5)
j- 12..3; 1=12

Figure 1also shows that the probability gtl is the area in the interval of the

Gaussian distribution curve between the points |x,—§J}and k/xz+

where the maximum of the curve is at the measured value x, and the standard
deviation is oxl. Similarly, probability rX is the area in the interval of the

Gaussian distribution curve between the points fyj—ZI—AI and ij+ d—Alwhere

the maximum of the curve is at the measured value y, and the standard deviation
is ayl.

. AX
One can see that the measured values x, and ytneed not be in the F V——

Ax\ .
X+ 2 j and y]—/nyr yy]‘r+’\2) ‘nterva’s so probability values differ

from zero. We can also see that proportionately to the value of the standard
deviation and the width of the interval one measurement value may contribute
to several adjacent intervals.

Since the magnitude of the whole area below the Gaussian curve is unity
the sum of the probabilities assigned to the intervals of the co-ordinate axes is
also unity. The smaller the values of the standard deviations in relation to the
width of the intervals the fewer the intervals they contribute to but the higher
are these probability values. Conversely, the greater the values of the standard
deviations in relation to the width of the intervals the more the intervals they
contribute to but the lower the probability values there are for this.

It is obtained from integral probabilities (4) and (5) separately that the
measured values X, and y, approximate the expected values of the zth interval
of the X axis and the yth interval of the Y axis respectively. The question arises
as to what is the resulting probability that the expected values x and y of the
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measured values jt, and y, be in the rectangular domain defined by the inequality
(2). Utilizing the fact that the x, and y, measured data are unrelated, the resulting
probability is the product of the probabilities qu defined by (4) and rijt given by

(5):
€

Probability Pij, obtained from (6) indicates that the expected values x and y of
the x, and y, measured value pair are defined in the S@domain by inequality (1).

In the case of having L measured value pairs the mean value of the
probabilities given by (6) can be obtained for all the domains of the co-ordinate
system:

™

The average probability P shows the level of average probability that the
expected values of the measured value pairs be in the Su domain of the co-
ordinate system. Useful information can also be obtained by forming the sum
of the average probabilities Ptj related to j and i and given by (7):

®

©)

When deriving (8) and (9) we utilized the fact that the sums of the x and y
domains of the probabilities git — defined by (4) — and rjl — defined by (5)
— between - o0 and + oo are equal with the whole area below the Gaussian
curves, i.e. with unity.

The probabilities Qtgiven by (8) characterize only the probability distribu-
tion of the jc log values whereas the probabilities R} given by (9) characterize
only that ofthe y, log values. In order to visualize the values of the probabilities

similarly to Fig. 1, we introduce the term probability plot.

If standard deviations ax and oyl were consecutively negligible, taking zero
for their values, the integrates (4) and (5) could only be zero and one and thus
the conventional frequency plot was obtained again. The domains characteriz-
ing the certain rock types — the probability values being greater than in their
environments — can be determined on the basis of the probabilities of the
co-ordinate system. Since in the calculation of the average probabilities  not
only the xhy, values in the  domain play a part but also the point pairs in
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the neighbouring domains, so the average probabilities P{J already show a
filtered character.

When investigating the connection of the xhy,, z, (1= 1,2 , L) values
measured by depth points of threee logs probability Pi} given by relations (6)
and (7) shows that the expected values y of the point pairs xhy, are in domain
Sij given by inequality (1). Since the probability of a single point pair may differ
from zero in several Stj domains the log value z, with standard deviation azl can
no longer be assigned exclusively to a single domain of the co-ordinate
system. Therefore instead of a simple mean a weighted mean value should be
produced considering the probability pul and the extent of the standard devia-
tion.

When forming the weighted mean which can be assigned to the individual
domains the weighting factor is taken to be in direct proportion to the probabil-
ity Piji = 4u'rji of its originating from the given domain and to be inversely
proportional with the square of the standard deviation az characterizing the
measurement value z,. The latter means that the more accurate log value with
smaller standard deviation plays a greater part in the forming of the mean than
the less accurate log value with greater standard deviation. Forming the
weighted means Z0 in the way said earlier we can write:

I\_/gu.Zr»'ZI
Fl1 =
10
Z° y 4l (19
=i <h
=12,/ j=12

The weighted mean Z\X) — which can be assigned to the /th interval between

A . -
the points ( X * and Ix,+ ~ lon the X axis — can similarly be formed:

V 4n
" fz-
Z)X) - 1=1 azl
()
2-
/=1 Gzl
i=1,2,..,/
The same is true for the forming of the weighted mean which can be assigned
to they'th interval between the points |y} -~ Jand ij+ AY\ on the F axis:
yty) 114
J L (12)
1=1 azl

=12,/
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The most probable Z value that can be assigned to the xt, yt co-ordinates on
the basisof log values xhyhz, is given by the weighted mean ZtJof relation (10).
On the basis of this the domains of the co-ordinate system can be determined
in which the Zi-values are nearly constant, i.e. characteristic for only one rock
type.

The most probable values of the z, log values are assigned to the respective
X and yj values of the co-ordinate system by the weighted means Z\x) and Zf].
On the basis of this it can be decided whether there is a correlation between the
respective logs and if yes, then to what extent. Since for the weighted means
related to the individual domains not only those points are considered whose
values xh yt are in the Su domain but more than these (i.e. those whose
probabilities obtained for the S§ domain are not zero), the weighted mean
values are more reliable than the simple mean values and the adjacent ones do
not oscillate considerably.

In order to visualizethe Zy (/ = 1,2,..., 1J = 1, 2,...,/) aswell asthe ZX
(/=1,2,....)) and the (= 1,2,....,/)) weighted means as in Fig. 2, we
introduce the term ZW-plot. If the limit values of the standard deviations axb
ayiapproach zero and all the possible / values of the standard deviation azl were
to be constant then Zi}would be reduced to a simple mean and the conventional

Fig. 2. Construction of weighted mean (ZW) plot
2. adbra. A sulyozott atlagérték (ZW) eloszlas el6allitasa

Puc. 2. CocTaBfieHVe AMarpamMmmMbl CpeaHeB3BELIEHHOr0 3HadYeHus (ZW).
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Z-plot would be obtained again. To interpret the ZW-plot for geophysical
purposes it is necessary to know the standard deviations of the weighted means
calculated by formulae (10), (11) and (12). For the reliable determination of the
domains characteristic for certain lithological formations the comparison of the
means, i.e. the forming of their difference, is not enough, since the standard
deviations of the latter are needed that is equal to the square root extracted from
the sum of the square of the standard deviation of the two means.

Forming the standard deviations «;,, X and dp of the weighted means Zfj,
Z\X) and Zy0 in the usual way, we obtain :

1y Merii
i (szZijv 2 12 V1=1 til
. "7 ‘ (13)
i= 1 Kdzi) y i &ji
/1 oh
=12,/ j=12,./
(14)
(15)

On examining the relations obtained for standard deviations (13), (14), (15)
we can see that the standard deviations decrease with the increase in the number
of the data from which the means are formed even when highly uncertain data
are included in the forming of the mean, and that they are smaller in the domain
to which the data of smaller standard deviation belong.

Comparison with the probability plot is also intefesting : while in the case
of the probability plot the probabilities are higher inside the domains charac-
teristic for the rock types, then here the values of the standard deviations are
smaller exactly inside the domain and are greater at the boundaries. For the
diagram of standard deviations (/=1,2,..../; j =1,2,....,]) dX
(i=1,2,.,)and dp (= 1,2,...,/) as in Fig. 3 we introduce the term
SD-plot. If the SD-plot is always applied together with the respective ZW-plot
the determination of the domains characteristic for the rock types can be more
reliable.
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Fig. 3. Construction of standard deviation (SD) plot
3. dbra. A szoraseloszlas (SD) el6allitasa

Puc. 3. CocTtaBneHue gnarpammel gucnepcum (SD).

The domains characteristic for the rock types can reliably be seperated if
the difference between the weighted means characteristic for the two domains
is greater than two or three standard deviations of the square root extracted
from the respective squares of the standard deviations. Otherwise these can only
be incidental oscillations and the dividing into separate domains is not reliable.

4. Applications

Estimation of the standard deviations

In practical applications the following relations are used to estimate the
standard deviations:
o\i » (e*i+e*2"'*i)2+ (E<3' XY
o\i « (eyl + ey2 eyi)2+ (ey3 my'))2 16)
oh * (ezl + ez2-2z,)2+ (ez3-12")2

1=1,2,L
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where x\, y\, 2\ are the derivatives according to depth of the individual logs in
the /th sampling point, exl,eyl, ezl are the parameters characterizing the absolute
error, whereas ex2, ey2, £22 are the parameters characterizing the relative error
and ex3, ey3, ez3 the ones characterizing the error dependent on the derivative
and considering the effect of the relative depth deviation. From (16) we can see
that the standard deviations of the logs may vary from point to point and may
be highly dependent on the log values.

If the derivative is great, i.e. the shape of log is steep (at the bed boundaries)
and the standard deviation is also high, i.e. the log value is not absolutely
reliable, the derivative contributes to the probability of several domains in the
probability plot, whereas in the ZW-plot it plays a smaller part in the forming
of the mean value. Conversely, if the derivative is small, i.e. the course of the
log is smooth (inside the layers), the standard deviation is small, the log value
is more reliable and as a result of appearing sharply on the probability plot
contributes considerably to the probability of less domains whereas on the
ZW-plot it plays a greater part in the forming of the mean.

The computer program of the method

The language of the computer program of the method developed is
FORTRAN-IV. The names of the logs to be used, the depth interval to be
investigated and the error parameters necessary for the standard deviations
estimated by (16) should be given as input data.

The results are printed out in the form illustrated in Figs. 1-3. At the top
the type of cross probability plot, the name and the depth interval of the well,
the names of the logs assigned to the X, Y and Z co-ordinate axes and the
number of the investigated points are printed out by the program.

The relation is also printed here on the basis of which the value of the
probability and the weighted mean can be obtained from the values in the inside
of the co-ordinate system.

Axes X and Y are divided into fifty parts between the minimum and
maximum log values occurring and thus a net of 50 * 50 is made by the program.
When printing the probabilities 50 is assigned to the maximal probability and
so numbers from one to fifty may occur in the domains of the co-ordinate
system.

In order to prepare the ZW-plot the Z axis is also divided into 50 parts
between the minimum and maximum value of the log and so numbers from zero
to fifty may occur in the domains of the co-ordinate system. In the case of the
SD-plot the number 50 belongs to the maximum standard deviation and so the
numbers 0 to 50 may occur in the domains of the co-ordinate system. Conver-
sion into real values is enabled in every case by the relation printed in the
heading. The real values of the probabilities, and the weighted means and
standard deviations relating to the individual lines and columns can also be
determined by means of this relation. In order to decrease computation time the
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integrals given by (4) and (5) are approximated by using the table function given
in the article of Szendré [1983].

Example

The logs in the example can be seen in Fig. 4, the values of the parameters
necessary for estimating the standard deviations are in Tables | and //. The
standard deviations calculated by relation (16) on the basis of the parameters
of Table | are zero, i.e. the results obtained correspond to the conventional
frequency-plot and Z-plot. The standard deviation values estimated by relation
(16) on the basis of the parameters of Table Il are already right; the standard
deviations may vary from point-to-point depending on the log values and their
derivative. The results in accordance with Table I can be seen in Figs. 5 and 6
whereas the results obtained by considering the standard deviations estimated
by the error parameters of Table Il are in Figs. 7-9. The SD-plot belonging to
the ZW-plot in Fig. 8 is shown in Fig. 9.

Error parameter depending on

Logs Absolute error parameter Relative error parameter the derivative
X=FIN ex1 =0 £2=0 5=©C
Y =FID ey2=0 £3=0
Z=RTR £21=0 ez2=0 £23=0

Table /. Values of the error parameters of the logs, illustrated as an example, for conventional
crossplots
I. tblazat. A példaként bemutatott szelvények hibaparaméterei a hagyomanyos eloszlasi
diagramok esetében
Tabauua |. 3HaueHMss NapaMeTpoOB OLUMGOK MO M3YUYEHHbIM NPOMAAM ANs cnyYas
TPaAULMOHHBIX NPSIMOYTONbHLIX AMarpamm

Error parameter depending on

Logs Absolute error parameter Relative error parameter the derivative
X=FIN £=0.01 £,=0.01 £43=0.05m
Y =FID £,=0.01 e2=0.01 £,=0.05m
Z=RTR £,=0010nT1 £i2=0.01 £,=005m

Table 1l. Values of the error parameters of the logs, illustrated as an example, in the case of the
probability theory
1. tablazat. A példaként bemutatott szelvények hibaparaméterei a val6szinliségelméleti targyalas
esetében
Tabauua Il. 3HaueHWs mapaMeTpPOB OLIMBOK NO M3yUYeHHbIM NPOUNAM AN Cnyyas
paccMOTpeHUs B paMKax Teopun BEpPOSITHOCTEN.
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Fig. 4. Logs of a borehole from a North-Hungarian lignite-producing area (Visonta)

4. dbra. A példaként szerepl6 Visonta kornyéki lignitkutatd farasban mért gorbék:
GR = természetes gamma; SP = természetes potencial; R40= 40 cm szondahosszu ellenallas;
R10= 10 cm szondahosszU ellenallas; ROB = s(ir(iség; CAL = lyukatmérd ; FIN = neutron
porozitds; FID = gamma-gamma porozitas

Puc. 4. KpuBble, NONyYeHHbIE MO CKBAXXWHE HAa IMTHUTLI B OKPECTHOCTAX C, BuwoHTa (CeBepHas
BeHrpus):

GR — ecTecTBeHHas raMmma-akTMBHOCTb; SP — ecTecTBeHHble TOKW; R40 — conpoTuBeHue,
n3MepeHHoe 30HA0M B 40 cm; RIO — conpoTusneHune, nsMepeHHoe 3oHaom B 10 cm; ROB —
nnotHocT; CAL — gmameTp ckBaXuHbl; FIN — nopucToTCTb NO HEMTPOH-HEMTPOHHON KPWBOIA.
FID — nopucTocTb N0 raMma-ramma KpuBOWA.
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MITHITLLTITIL.LLILT
VI101/TD-101 1B« 110,0 k Te n,0 » »ILHIT »111#
» 1 ™ 1
IUMILL 01 1011111 «01 Talul 11 0100<0 0700010 « OIIITII VALUI

Fig. 5. Conventional frequency plot

5. abra. Hagyomanyos gyakorisagi eloszlas, a szdrasokat nem véve figyelembe :
FIN = neutron porozitas; FID = gamma-gamma porozitas

Puc. 5. BepoaTHOCTHOe pacnpefefieHue, COBNajaloLLee ¢ TaKOBbIM Ha TPaAWULMOHANbHOW
NpsIMOYTro/fibHOW AnarpamMmme 6e3 yyeta AUCNepCuii:
FIN — nopuctocTb N0 HEWTPOH-HEATPOHHOI KpuBoi; FID — nopncTocTb MO raMma-ramMmma
KpWBOIA.
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Fig. 6. Conventional Z-plot

6. abra. Hagyomanyos atlagérték-eloszlas, a szdrasokat nem véve figyelembe
FIN = neutron porozitas; FID = gamma-gamma porozitds; RTR = az ellenallas reciproka

Puc. 6. PacnpefeneHue cpefHUX 3HaueHWiA, coBnajaroLlee ¢ TaKOBbIM Ha TPaAuLMOHAaNbHOM
Anarpamme 6e3 yuyeTa Avcrepcuii:
FIN — nopucTocTb N0 HEeWTPOH-HEATPOHHON KpuBoiA; FID — nopucTtocTb Mo ramma-ramMmma
KpuBoiA, RTR - BenmuuHa, obpaTHas CONPOTUBNEHNIO.
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Puc. 7. Pe3ynbTaTbl N0 13y4aeMOli CKBAXMHE Ha BEPOATHOCTHOM Auarpamme.
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Fig. 8. Weighted mean ZW-plot
8. dbra. Sulyozott atlagérték (ZW)

Puc. 8. Pe3ynbTaTbl M0 M3y4yaeMoii CKBaXXMHe Ha gnarpamme ZW.
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Fig. 9. Standard deviation SD-plot

9. dbra. Szoraseloszlas (SD)

Puc. 9. Pe3ynbTaTbl N0 M3y4aeMoil CKBaXWHe Ha auarpamme SD
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The conclusion drawn from the Figures is clear: the adjacent points of the
distributions in Figs. 7-9 oscillate to a smaller extent in relation to the conven-
tional plots corresponding to Figs. 5-6, they are of filtered character and the
domains characterizing the individual rock-types can be separated with more
certainty. The environments of the local maxima of the probability distribution
on the probability plot provide good help for separating the domains on the
ZW-plot as well as those of the local minima of the standard deviations on the
SD-plot.

In the example there is lignite, clay, and sand in the well. Characterizing
the log values of the rock types by low, medium and high values the distinction
illustrated in Tgble 111 can be made. The limits of the plain lithological forma-
tions were marked on the distribution in Figs. 7-9 according to the classification
in Table 11l simultaneously considering the probability plot, the ZW-plot and
the SD-plot.

Logs Lignite Clay Sand
A"=FIN high high low
Y=FID high medium low
Z=RTR medium high low

Table 11l. Log values of the well in the example as a function of lithological formations
I11. tablazat. A példaként szerepld kut szelvényértékei a kézettani jelleg figgvényében
Tabnuua 111. ConocTaBneHune npoduneli No U3yUYeHHOW CKBaXKMHE C NUTONOTMMYECKUMM

nospasaeneHuUsMu.

5. Conclusions

Every item of measuring data is considered with two quantities, viz. with
the measured value and with its standard deviation, by the method described.
When estimating the standard deviation the inaccuracy of the instrument, the
possible statistical behaviour of the measured quantity and the inaccuracy of
the depth deviation in connection with the derivative of the log may be con-
sidered. Considering two logs and dividing the rectangular coordinate system
X, Y into domains of rectangle shape the level of probability that the expected
values of a point pair relating to a depth be in certain domains can be calculated.

Summing the probabilities of the measuring pairs belonging to the domains
and forming the average, a two dimensional average probability distribution is
obtained as a result. If this is compared with the frequency plot used so far this
shows a “filtered” character where the boundaries of the domains characteristic
for the rock types are less faded by the points at the layer boundaries and appear
as nearly permanent background noise.

If the related data of three logs are studied the probabilities of certain data
pairs can be calculated in the way described above. A weighted mean value is
calculated from the data of the third log for every domain where the weights
are in direct proportion with the probability of belonging to the given domain
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and are inversely proportional with the square of the standard deviation of the
data for the third log. Thus a “filtered” weighted mean distribution is obtained
the adjacent values of which oscillate to a smaller extent than for the conven-
tional Z-plot.
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SPECIALIS ELOSZLASI DIAGRAMOK KESZITESE KAROTAZS SZELVENYEKBOL
SZENDRO Dénes

A mélyfurasi adatokat eloszlasi diagramokon abrazolva lehet6ség van a szelvények kozotti
statisztikus, korrelaciés kapcsolatok vizsgalatara. A mérési értékekhez rendelhet6 szorasok figye-
lembevétele a pontosabb valdszinliségelméleti targyalast, s igy a szorosabb korrelacios kapcsolatok
feltarasat teszi lehetdvé. A szelvényértékeket valoszinliségi valtozoknak tekintve, mért értékeiktol
és differenciahanyadosaiktol is fligg6 szorasaik felhasznalasaval kiszamithatd, hogy varhato értéke-
ik milyen valoszin(iséggel lehetnek egyes el6re megadott intervallumokban. Koordinata-rendszer-
ben abrazolva két szelvény esetében igy egy kétdimenzids, atlagos valésziniiségeloszlast, mig harom
szelvény esetében egy sulyozott kozépérték eloszlast kapunk eredményiil.

A kidolgozott specialis diagramok maédszere a hagyomanyoshoz viszonyitva ,,sz(rt” jelleget
mutat. Az (j eljarassal készitett diagramokon a réteghatarok kérnyékén levé mérési adatok kisebb
stllyal jelennek meg, igy a kdézettipusokra jellemz6 paraméterek pontosabban hatarozhaték meg.
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COCTABJIEHNE CMEUWMANIBHbIX MPAMOYT OJIbHbIX ANATPAMM MO
KAPOTAXXHbIM KPBbIM

Oenew CEHAPE

MyTem 1306paXKeHNs KAPOTAXKHBIX AaHHbIX HA AnarpamMmax pacnpefeneHus obecrneymBaeTcs
BO3MOXHOCTb W3YUeHUs1 CTAaTUCTUUECKUX, KOPPENALMOHHBIX CBS3e MeXAy KpUBbIMW. YueT Auc-
nepecuii JaHHbIX W3MepeHWi AaeT BO3MOXHOCTb 60/1ee TOYHOTO PacCMOTPEHUS C TOUKM 3PEHMS
Teopuu BePOSTHOCTE, TO-eCTb 06HAPYXXeHUs 60/ee TECHbIX KOPPENALMOHHbIX CBA3ei. Paccmatpu-
Bas 3HAUYeHUsl, CHATbIE C KPUBbIX, B KAYECTBE BEPOSTHOCTHbLIX MEPeMeHHbIX, C UCMOMb30BaHNEM
M3MEPEHHbIX 3HAYEHUI 1 ANCTIEPCUIA, 3aBUCALLMX TaKXKe U OT X AU (epeHLIManos, MOXHO paccuu-
TaTb, C KaKoil BEPOATHOCTbIO OXKMJAEMble 3HaUYeHUs NONafaloT B TOT WAWN UHOM 3afjaHHbIA UHTEp-
Ban. Mepexofs K cucTeMam KOOpAWHAT, B Cyuyae ABYX KPUMBbLIX MOMy4aeTcs ABYMepHOe cpeaHee
BEPOSTHOCTHOE pacnpefeneHue, a B cryyae TpeX — pacnpeseneHune cpeHeB3BeLleHHbIX 3HaUeHNiA.
Pa3paboTaHHbIi MeTO/ CreuuanbHbIX AMarpamm pacnpeaeneHns o6Hapy>KWBaeT B CPaBHEHUM
C TPAAULMOHHBLIMW NPAMOYTOMbHLIMU AXarpaMMamMy NPU3HaKU UALTPALMM, NOCKONbKY AaHHble
M3MepeHUit, MonyyeHHble B6AN3N rPaHUL, CNOEB, MeHee 3aTPYAHSAIOT TOUYHOEe onpefeneHne Xapak-
TEepHbIX MapamMeTpoB ONpeAeneHHbIX TUMOB FOPHLIX NOPoA,.
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