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L. JANOSSY
1912-1978

On the 2nd of March, 1978, a prominent personality of Hungarian
physics, Professor t ajos 1an0ssy, wWhose name and work are known the world
over, passed away at age 66. His death is a great loss to both Hungarian and
international scientific life, for he was an outstanding physicist and also a
keen-sighted critic of physical science.

The present author, who has been afriend and fellow-worker of Professor
sinossy for more than a quarter of a century, may pernzps take the liberty
of recalling a conversation of long ago, still alive in his memory. When in
the summer of 1950 Professor 1anossy returned from Dublin to Budapest



IT OBITUARY

for good, we discussed if it was worth reproducing measurements which had
already been carried out by others. It was then that I learned from him that
if a reproduction was cleverly performed it was not a simple imitation but
possibly a source of some important new revelation. The correctness of this
statement was later often experienced in my own investigations. We, who
wanted to do something absolutely new at that time, found out later that
the way to some new results led from past experience and that the difficulty
lay in the choice of the proper way.

We were often surprised at the unusual turns of his questions. It was
particularly fascinating to watch how theorems thought to be trivial could
be ingeniously thought over anew and critically revised. I was deeply impressed
by all our discussions since — mainly because of his critical perspicacity —
the reasoning never remained within the scope of conventional concepts.

The earliest papers by Professor JANossy were written in 1934 reporting
on his work in the Laboratory of WERNER KOLHORSTER in Potsdam. In his
paper on the invariants of counter tubes it is shown that the intensities of
cosmic radiation measured in the vertical and horizontal positions of the tubes
are obtained as a linear combination of four quantities uniquely characteristic
of the radiation. In another paper the angular distribution of cosmic radiation
on sea level is determined. The results published in 1936 in the thesis for his
doctorate are the basic concepts of a new theory of counter tubes and of
coincidence. After some further reports written at the Berlin Laboratory of
Cosmic Radiation Research from 1938 onward he continued his highly success-
ful work at the Manchester Laboratory of P.M.S. BLackETT. At this time his
attention was focussed on the laws governing cosmic showers. The frequencies
of these showers were measured on sea level and also underground at a depth
equivalent to 60 m of water. He recognized the importance of penetrating
showers and for several years he carried out thorough measurements to iden-
tify the penetrating component. In the meantime, together with B. Rossr,
he started investigations on the photon component of cosmic radiation, which
made him interested in the theory of cascades. In 1941 he disproved the exist-
ence of an apparent second maximum in Rossi’s curve by showing that this
false second maximum is due to SCHMEISER and BOTHE’s measuring arrange-
ment. The high energy particles of cosmic radiation passing through an absorb-
er (e.g. lead) produce secondary particles in a cascade process. This makes the
transmitted radiation intensity increase with increasing absorber thickness
up to a given value past which the intensity gradually decreases. The depend-
ence of the transmitted intensity on absorber thickness was thought by some
investigators to show a second maximum for the explanation of which far-
fetched hypotheses were proposed. Later, in 1956, JANossy reinvestigated
the problem of the second maximum in Ross1’s curve and showed again that

its existence should be unquestionably excluded.
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One of his remarkable papers on the production of mesons was published
in The Physical Review in 1943. It is shown in this paper by means of cloud
chamber photographs that several mesons are produced at the same point
and that this can only be understood on assuming that high energy particles
undergo several collisions within an atomic nucleus. Investigations into the
properties of penetrating showers resulted in his determination of the transi-
tion and of the barometric effects. The study of the production of mesons
led him to the formulation of the “diffusion equations* describing the energy
losses of high energy particles. This work was followed by the development of
the cascade theory of cosmic showers and, in 1952, already in Budapest he
published the general theory of cascades referred to since then in a large number
of monographs and papers. In this theory he utilizes the so-called first collision
method which is of great importance also in the general theory of branching
stochastic processes.

His intensive engagement in problems of both mathematical statistics
and probability calculus was prompted partly by the evaluation of cosmic
radiation data, partly by the actual description of the processes of cosmic
radiation. In a completely original way he reinvestigated the fundamentals
of probability theory by a thorough analysis of reality and elaborated highly
useful practical procedures for dealing with problems of data evaluation in
a great variety of measurements. The majority of Hungarian physicists adopted
Professor Janossy’s exacting methods he always applied in connection with
conclusions to be drawn from experimental data.

JANOssY was much intrigued by the two grandiose theories of the twen-
tieth century: the theory ofrelativity and the quantum theory. This manifested
itself first of all in his courageous and ingenious attempt to revise theorems
thought to be irrefutable. He transformed the whole reasoning of the theory
of relativity to reconstruct it in terms of expressions closely related to real
physical processes and to bring it in agreement with his concept of relativity
which remains, of course, in harmony with the generally accepted theory —
both formally and in respect of its actual results.

Upon the advent of the quantum theory, the controversy under debate
was again one ofthose problems Professor sJANossy thought worth reinvestigat-
ing. Assisted by his fellow-workers, he even decided to carry out the so-called
“Gedanken*-experiments, frequently referred to in bygone days. The photon
experiments — coincidence and interference measurements — did not only
serve the above objectives, but also provided a sound basis for advanced
optics (laser physics) research in the Central Research Institute for Physics.
He developed the theory of the fluctuation of light, which explains the origin
of excess coincidences observed in experiments with very short (10~7— 1CU8sec)
coincidence times. His aim was to check the potentiality of quantum theory
within its scope by calculations possibly without the use of neglections. That
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is why he chose the hydrodynamical form of schroedinger’s equation with
all the mathematical intricacies it presents. The possible consequences of the
theory are thoroughly analysed in his papers, which introduce a truly new
aspect into the considerations of quantum physical phenomena.

Professor JANossy had always shown great interest in the philosophical
aspect of physics expounding in many articles and lectures his standpoint
based on deep Marxist conviction to contradict metaphysical views. In recent
times he paid increased attention to problems connected with the teaching of
mathematics and physics in secondary schools and he suggested several
original initiatives.

The name of Professor JAnossvy is closely linked with the establishment
of up-to-date physical research in Hungary, with the foundation of the Central
Research Institute for Physics and that of the Atomic Physics Department
of the E6tvés Lorand University in Budapest.

He is the author of a number of important monographs, the best known
of which are: Cosmic Rays, Oxford, Clarendon Press 1950; Theory and Practice
of the Evaluation of Measurements, Oxford, Clarendon Press, 1965; Theory
of Relativity Based on Physical Reality, Akadémiai Kiad6, Budapest, 1971.

Professor Janossy played an active part in the Editorial Board of Acta
Physica Hungarica and greatly contributed to increasing the scientific stand-
ard of the publications. His own reports considerably promoted the internat-
ional reputation of the journal.

We are deeply grieved by the death of Professor sAnossy, who will
be remembered by all of us for ever. His scientific achievements will outlive
him and become sources of inspiration for new creative ideas and develop-
ment.

Budapest, 6th April 1978.

L. PAL

Member of the Hungarian Academy of Sciences
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INELASTIC INTERACTIONS OF 69 GeV/c PROTONS
WITH EMULSION NUCLEONS

By
O.E. Badawy, A. A. EiI-Naghy, A. Hussein, N. Mettwali
and

M. M. Sherif

HIGH ENERGY PHYSICS EXPERIMENTAL LABORATORY
DEPARTMENT OF PHYSICS, FACULTY OF SCIENCE
UNIVERSITY OF CAIRO, CAIRO, EGYPT

(Received 14. IV. 1977)

Tracks of 69.0 GeV/c protons are followed in nuclear emulsion. In 768 m of proton tracks,
1887 inelastic stars are found, yielding a mean free path of proton inelastic interactions with
emulsion nucleons and nuclei of 38.74 + 1.01 cm. The average charged multiplicities <Ach)
of p-p and p-n interactions are found to be 6.93 £ 0.26 and 5.62 = 0.20, respectively. The
multiplicity distribution of the emitted charged secondaries for p-nucleon interactions prefers
the wang first model, reflecting the cell structure of the nucleon. KNO scaling of partial
cross-section is found to be obeyed in case of p-p interactions more than in the other inter-
actions between other hadrons.

The pseudorapidity distribution of the emitted charged secondaries is found to confirm
the limiting fragmentation hypothesis.

A test of a composite proton model through the p-p multiplicity distribution and its
moments prefers the construction of a proton out of three quarks.

1. Introduction

In this work the results of the study of the inelastic proton-nucleon
scattering in nuclear emulsion at 69 GeV/c are presented. The multiplicity
distribution of the emitted charged secondaries are compared with the various
theoretical and empirical predictions. The tendency of the ratio <nch)/D,
where D is the dispersion of the multiplicity distributions, to approach a
constant value at high energy is discussed in terms of a two component model
of high energy interactions.

The study of the different moments of the multiplicity distribution of
p —pinteraction to test the KNO scalingbehaviour of cross-section is discussed.
A comparison of these moments with the predictions of a semi-classical compo-
site model for p—p collisions at high energies are found to prefer the construc-
tion of a proton out of three quarks.

A study ofthe rapidity distribution of the emitted secondaries considered
all to be pions indicates the coincidence of the distribution of the parameter
r (where y= —(Intan 0/2) at the momentum 69 GeV/c with that at 200 and
3000 GeV/c, in the region of target fragmentation.

1* Acta Physica Academiae Scientiarum Hungaricae 43, 1977
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2. Experimental procedures

The exposure of an emulsion stack type, Br-2, of20 cm X 10 cm X 0.065 cm
size to the 69 GeV/c protons was tangentially performed at the Serpukhov
accelerator (USSR). The admixture of pions and kaons in the beam was less
than 1%. This beam was extracted by diffraction scattering and was highly
collimated in a concentrated strip at the centre of the stack. The projected
angular distribution of the beam tracks after about 1.5 cm from the entrance
is shown in Fig. 1. The angular spread is shown to he 10“ 3rad.

Fig. 1. Distribution of projected angles of particles from the beam irradiating the emulsion
stack. The measurements were made a few centimeters (~1.5 cm) after the entrance of the
particles in the stack

Starting 0.5 cm from the beam entrance, and along the track, scanning
was performed.

The space angles at which the emitted secondaries are emitted relative
to the primary beam direction are determined through accurate measurements
of both the projected and dip angles of each secondary. Then using the usual
trigonometric relations both the space and the azimuthal angles of each se-
condary can be calculated.

Acta Physica Academiae Scientiarum Hungaricae 43, 1977
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3. Results

3.1 Inelastic interactions of protons with emulsion nucleons and nuclei

Using the previously mentioned scanning procedures, a total of 768
meters track length was followed. For the calculation of the inelastic-inter-
action length “Airt” the following types of events were excluded.

i) Stars with single relativistic tracks deflected by less than 7 mrad (mostly
due to elastic scattering);

ii) Electron-positron pairs on the beam track;

iii) Knock-out electrons.

Altogether 1887 inelastic nuclear interactions were found, which corres-
ponds to an interaction mean free path 2int = 38.7471.01 cm (a 5% correc-
tion was added to the total number of events found due to scanning losses.
The missed events are mostly with nh — 0 and ns< 4, where nh is the number
of heavy ionizing tracks and nsis the number of prongs due to relativistic par-
ticles.)This value of Aintis not very far from that calculated for our emulsion com-
position and assuming an A2!3dependence of cross-section onthe atomic weight
A which amounts to a value of 35.9 cm.

3.2 Inelastic interactions of protons with free and quasifree nucleons

Interactions with free and quasifree nucleons were selected as those with
at most one grey track (for protons this corresponds to kinetic energy between
25 MeV and 400 MeV), in the forward hemisphere in the laboratory system,
and without a visible recoil nucleus. It should be pointed out that the resolu-
tion of our nuclear emulsion allows the observation of slow recoils (~ 0.2 MeV
for a proton and ~ 1.0 MeV for a carbon nucleus [1]). For even prong number
(p p)eventsthere wasthe additional criterion of the absence of an accompany-
ing electron. This may be due to excitation of the target nucleus, i.e. such stars
may show no evidence of /3-decay at the interaction point [2].

Altogether 300 proton —nucleon interactions were found (173 events with
odd prong number i.e. thep ninteractions and 127 due to even prong number
i.e. due top —pinteractions) which represent about 16% of all inelastic nuclear
interactions in the emulsion. This ratio becomes about 20% after applying
the 5% correction due to scanning losses (considering that all the 5% losses
are due to events with Nh= 0 and ns 4) as mentioned before.

All the odd prong number (p—n) events correspond to collisions with
quasi-free neutrons of the emulsion nuclei. As can be seen in Section 3.3 there
is an admixture of coherent interactions in the odd-prong number (p—mn)
events.

Acta Physica Academiae Scientiarum. Hungaricae 43, 1977
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3.3 Prong-number distribution of proton nucleon events

The prong number distribution of the proton-nucleon events is shown
in Fig. 2.

An overabundance of nch = 3 and nch= 1 is due to coherent interac-
tions. The number of the coherent three prong events present in our sample
was estimated to be 25, [3], giving rise to a production cross-section of 6.5 mb
of coherent three prong events in p-nucleus interactions at 69 GeV/c. The

Pig. 2. Multiplicity distribution of proton-nucleon interactions by 69 GeV/c protons

average charged multiplicities for p—p and p n interactions are 6.93~ 0.2,
and 5.62J;0.2, respectively. The latter multiplicity becomes 5.1370.17 with-
out correction for the coherent events.

Our value for the average charged multiplicity (nch) forp p interactions
is greater than the value obtained in a hydrogen bubble chamber (H.B.Ch.)
experiment at the same energy and which is equal to 5.8970.07 [4]. This
may be due to cascading effects taking place in emulsion nuclei.

3.4 Multiplicity distribution and current models for pion production

The resemblance of the multiplicity distribution of charged secondaries
to a Poisson distribution has been observed at low energies, [5], and some theo-
retical models have predicted the Poisson distribution.

Acta Physica Academiae Scientiarum Hungaricae 43, 1977
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W ang [6] has proposed two models which give predictions of multipli-
city distributions.

Fig. 3 and Fig 4 compare these two models with the multiplicity distribu-
tion ofcharged secondaries produced in p—pandp ninteractions, respectively.
Table | gives the results of the "2-test for our experimental data to the different

Table |

jf2values comparing the experimental multiplicity distribution of p—p and p - n inelastic
interactions with the predictions ofthe different models (this experiment)

Rvalue A2value
Model p-p p-n

(8 points) (7 points)
Poisson 0.621 0.631
w | 0.135 0.116
w,, 2.677 1.463

predictions for 8 points incase ofp —pand 7 pointsin case of p—n. Our results
are shown to be inconsistent with a Poisson distribution. The w ang second
model w n predictions are inconsistent with the data, while w ang first model
(Wi) gives a better overall fit.

The W[ model was also found to give a better fit for the data ofthek- —p
[4] at momentum 33.8 GeV/c, n~ —p [4], at 50 GeV/c, and —p, n~- n at
40 GeV/c [7].

Table 11

N-values obtained from fitting the experimental points of the multiplicity distribution of
p—p inelastic interactions to different distributions (7 points in each case)

pGeVic
25 67 69 19 50 69 102 205 303
Emul- Emul- Emul- g Bgch. H.B.Ch. HB.Ch. HBCh HBCh H.BCh,
Model sion sion sion
Poisson 11.82 24.90 31.54 1.09 6.50 10.25 16.08 32.75 35.25
W ang | 511 6.36 8.60 3.70 0.59 0.67 2.23 5.41 3.80
Wang Il 62.77 119.01 150.05 7.50 56.27 66.35 89.30 168.80 171.65
Inverse square
fall-off 163.28 179.00 179.50 93.27 129.20 149.74 167.10 218.86 266.30

Table Il presents the results of the %-fit of the experimental data of the
multiplicity distribution of p p inelastic interactions in the proton energy
range from 19 up to 303 GeV [4, 8, 9], to the predictions of the inverse square
fall off, the Poisson and the w ang first and second models (W, & w u).
The experimental data are compiled from both H.B.Ch. and emulsion experi-

Acta Physica Academiae Scientiamm Hungaricae 43, 1977
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Fig. 3. Comparison of charged particle multiplicities in p-p reactions at 69 GeV/c with a Poisson
distribution and with the wang | and wang Il models

Fig. 4. Comparison of charged particle multiplicities in p-n reactions at 69 GeV/c with a
Poisson distribution and with the wang | and wang |l models

Acta Physica Academiae Scientiarum Hungaricae 43, 1977
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ments beside our results. The values of the y2 are calculated for seven points
Asix degrees of freedom) in each case.

The experimental results for energies below 25 GeV are fitted by a Pois-
son distribution to abetter degree than the fitting obtained from the W ang’s
first and Wang’s second models. As the incident energy increases, the deviation
of the experimental points from the Poisson distribution increases. The y2
values shown in Table Il indicate that Wang’s first model agrees with the
experimental data at energies higher than or equal to 25 GeV.

Table 111

[ 2-values comparing the (nc)) Pnch graph for different reactions with respect to
Slattery’s fit

*I/N for(ncb>PnoObwith

Reaction respect to tfhe Slattery’s Reference
it
32 GeV/c K +-P 18.5 2
32 GeVic K --P 2.3 pil
32 GeVic p--0 0.7 2
50 GeV/IC +—p 100 2
50 GeVic + -p 80 2
69 GeVic p—p 0.05 Present work

Relative to the inverse square fall off predictions, the ~-values show
that the experimental results are inconsistent with this prediction in the whole
energy range.

All the above results may reflect the cell structure of the nucleon in this
energy range of interactions.

3.5 Scaling property of multiplicity distribution

A *“scaling” behaviour of multiplicity distributions was predicted by
Z. Koba, H. B. Nietson and P. O1eson (KNO) [10, 11].

A detailed comparison of p—p emulsion data [9, 12, 13, 14], at momenta
from 19.8 up to our results at 69 GeV/c with this scaling behaviour is carried
out here.

In Fig. 5, the experimental points of the multiplicity distribution for
the emitted charged secondaries in this mentioned range ofenergy are presented
on a

Xh)y“ 1+ vs -y~- graph.
°Tnel \rech/

It is clear that they can indeed lie on one curve as expected by the KNO
scaling predictions. The emulsion data for p~ p interactions analyzed here give
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some deviation from that universal curve fitting the H.B.Ch. data [15],
which is drawn as a continuous curve in Fig. 5. This may be due to the higher
values of (nch) in case of emulsion experiments as mentioned before.

It is interesting to compare the degree of consistency between the ex-
perimental results for different reactions and the calculated curve fitting the
p pdatafrom50 303 GeV/c, [15]. In Table 11l the values of %2 are given for

this fit.

Fig. 5. Variation of <(nch) eonaJa-mti vs "ch/(nch)- The curve represents the results of the
fit of [15]

Table IV

Experimental values for the parameter Cq for the reaction pp -> n charged particles at incident
momenta from 19.8 up to 69.0 GeV/c and for q running from 2 through 5

Cgqg — (ncb ”)/(nch) al

4 plab (Gevic) 19.8 24 25 67 69
2 1.24+0.14 1.27+028. 1.25+0.12 1.25+0.07 1.29+0.11
3 1.83+0.27 1.88+0.59 1.82+0.23 1.83+0.14 2.02+0.23
4 3.13+0.59 3.14+1.29 2.99+0.48 3.05+0.30 3.55+0.54
5 5.99+1.39 5.75+2.94 5.36+1.08 5.64+1.02 7.04+1.30
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In spite ofthe acceptable ~-values for pand p p data, it is clear
that the degree of consistency in our case ofp pat 69 GeV/c is better. This
may be attributed to the fitting curve being dueto p p interactions, beside
the low energy range of the data of the other stated reactions. (n#y

Table IV presents the experimental values of the parameter Cq= -

forg — 2, 3, 4, 5 (predicted to be energy-independent), for each value of beam
momentum. Despite some indication of a slow increase with energy, the
19.8 69 GeV/c ratios are consistent with being constants, consequently in
Table V, we present the weighted averages using just these used data, and, also

Table V

Average Cgq = <n?H)/<ucn>? values for g running from 2 through 5. The ~-values compare
these averages with the data of C,, shown in Table IV

9 C, X

2 1.26 0.001
3 1.876 0.015
4 3.172 0.061
5 5.956 0.281

the "-values between these data and the calculated constants. The deviation
from constant may become higher for higher values of q.

<X h>

Fig. 6 shows the value of as a function of the incident momentum
for the data of p p interactions. It is clearthat the experimental values ofthe

« P-P HAC data

<O[c)h> » P-P emulsion data
L
f-é-*-— — &
1))
Prab(GeWc)

Fig. 6. <nc|,)/1) ratio as a function of the incident momentum in p-p reactions
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parameter * approach its asymptotic value ~ 2 as the momentum in-

creases. This approach is from above as predicted by van Hove T[4, 16],
using a two component model. The same behaviour was established in case
of jr+—p and K +- pinteractions [¢]. These results shed some light upon the
fact that the general trend of the meson—proton reactions is similar to that
of the proton—proton reactions.

3.6 Multiplicity distribution and c:zyzewski—Rybicki empirical relations

Czyzewski and ryvicki [17] have proposed an empirical fit to mul-
tiplicity distributions which works well over the range from «.1 to so GeV/c
for 7 —p, from +.0 to 18.0 GeV/c for n+—p and from .0 to 28.5 GeV/c for
p —p reactions.

They proposed plotting x = <= £<€M) 2gainst y — DPn where Pn

is the probability of nch charged particles being emitted (and E Pn= 1).
V.y. anmosow €tal [4«] Obtained a good fit for the experimental data

of the multiplicity distribution of K~—p and n~ —preactions at 3.5 GeV/c
.and so GeV/c, respectively, to the c:yzewski— rRysicki empirical fit.

Fig. 7. Comparison of p-p data (19.8—69.0 GeV/c) with czyzewski and Rybiecki formula [17]
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The present emulsion data for p p interactions at 19.8, 24, 67 and
69 GeV/c are plotted in Fig. 7, usingthe parameter of the x-y curve obtained by
Czyzewski and Rybicki from fitting the earlier data. It may be seen that
a good agreement is obtained.

3.7 Pseudorapidity and angular distribution of the emitted charged secondaries

Fig. 8 shows the distribution of the parameter rj where
= —Intan (0L/2)

with OL = the space angle with which the charged secondaries are emit-
ted with respect to the direction of the incident beam in the laboratory

0 3000 GeVic

Fig. 8. Pseudo-rapidity r\() — — In tan 0 L/2) distribution of charged secondaries emitted
in p-nucleon interactions at 69.0, 200 and 3000 GeV/e

system, for p—N collisions at 69 GeV/c, 200 GeV/c and at 3000 GeV/c. This
parameter rjis approximately proportional to the rapidity value in the laborat-
ory system considering all the emitted secondaries as pions. From Fig. 8 it
is clear that a scaling behaviour in the rapidity distribution for the secondaries
emitted in p—N collisions occurs, especially for the slow pions in the target
fragmentation region. This is in accordance with the limiting fragmentation

hypothesis [18].
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3.8 Moments of the multiplicity distribution in a semiclassical composite mode
for p —p collisions at high energies

According to Govobkov [19], the scaling in the behaviour of the multi-
plicity moments is accounted for by the Van Hove overlap function being a
Gaussian in impact parameter within a semiclassical composite model for p—p
collisions at high energies. Within the framework of this model, the multipli-
city distribution and its different moments of the emitted secondaries inp—p
collisions were calculated on the basis of the following suppositions:

(1) The early onset of the Van Hove regime of the overlap function;

(2) The composite structure of protons and the independence of quark-
proton collisions, and

(3) Narrow single particle distribution for each of these collisions compared
with the overall multiplicity distribution.

Table VI

Calculated values Cw“r = (IVm/<IV)>m (N = number of quark—proton collisions) for the

quark number v = 2, 3, 4 and oo, and experimental values C“p = / r@ )/"nch)m(A cannot
exceed a quark number v)

£theor.
m CfP-
<d> = 502693
v=2 v=3 v=4 V= 0
2 1.117 1.191 1.240 1.50 1.26
3 1.40 1.71 1.92 3.45 1.89
4 1.94 2.82 357 11.24 2.99
5 2.89 5.17 7.47 47.40 5.60
6 4.48 10.12 16.98 244.0 10.78

In Table VI, the theoretical values of the different moments ofthe multi-
plicity distribution, Cth“r, are compared with the experimental values Cep,
for the data compiled here from 25 up to 69 GeV/c. It is clear that the best
agreement is observed for the quark number “ & equal to three. In this case
single, double, and triple quark —proton collisions can occur, with the proba-
bilities Pi = 0.723, p2= 0.218 and ps= 0.059, respectively.

Adding to the above mentioned hypothesis the following two assumptions,
about the particle production in each quark—proton collision.

1. The distribution ofthe secondaries produced in this collision is supposed
to be independent of the impact parameter.

2. This distribution is a Poisson type one with the average particle number
<(nch) and making use of the charge-independence hypothesis to perform the
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transition from the overall multiplicity distribution to the charged multiplicity
distribution both the multiplicity distribution and its moments for the case
of the quark number v= 3 and in both cases of <nch> = 6.41 and 9.05 were
calculated. The results are shown in Fig. 9, and Table VII, respectively.
From Table VII, it is clear that the values of the relative moments for the
charged particles multiplicity distribution obtained experimentally at 67 GeV/c
and at 69 GeV/c (our work), are indeed close to the calculated values. However,

p-p at 69 GeV/c.<nct,>=6.93+0.26
20 theoretical..<nch> =6.41

15

&

05

(03] 10 15 20 25 3.0

Geh ~<:nch>

Fig. 9. KNO-plot: <rach) anaJamel. vs rch/\nch) for the p-p data. The continuous curves are cal-

culated according to the composite proton model [19]. The arrows on the r-axis indicate the

places where the maximum of individual distributions corresponding to a single, double, and
triple quark—proton collision would be located.

Table VII

Values of C'b™'= < )/&nch)mcalculated for the composite proton model with three quarks.
In the last column the C*“p‘averaged over the results at 67 GeV/c and our results 69 GeV/c

is given.
<Mcb>= 6.78
m <"ch> = 6.41 <nch) = 8.05 67 and 69 GeV/c
2 1.250 1.240 1.27
3 1.880 1.850 1.93
4 3.250 3.19 3.30
5 6.270 6.15 6.34
6 13.11 12.86 11.07

Acta Physica Academiae Scientiarum Hungaricae 43, 1977



16 0. E. BADAWY et al.

the KNO-plot presented in Fig. 9 shows a disagreement between the theoretical
and experimental values in the range of the maximum. This may be due to
the assumption thatthe secondary particle distribution in each quark proton
collision is a Poisson distribution as stated before. This could be broken down
by the production of resonances or clusters [20].
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The activation energy (Q) for the formation of CoFed 4 was calculated from a series
of Mdssbauer effect spectra measured during the formation process. This was calculated by
applying the Jander’s reaction kinetics equation to determine the reaction rate constant, on
applying the Arrhenius equation. The obtained value of Q was found to be 56 K e« cal/mol.

Introduction

Recently Eissa et al [1] studied the applicability of Mdssbauer effect
(ME) to follow the reaction kinetics. It was proved that ME is a powerful tool
in the field of solid state reaction kinetics. Co-Ferrite (CoFe20 4) has the inverse
spinel structure [1], where the tetrahedral A-sites are occupied by Fe3+ ions
only, and the octahedral B-sites by Fe3+ and Co2+ ions with a distribution
ratio of 1:1 [2]. In the present work the same method of analysis of Eissa
et al [1] was applied to the CoFe2 4

Experimental procedure

Iron oxide Fe20 3 having a particle size of about 370 A as measured
from the X-ray line broadening, was mixed with CoO in the stoichiometric
ratio for the formation of the Co-Ferrite. The mixture was milled and many
pellets were pressed at 3 tons/cm2

These pellets were then inserted in a preheated electric furnace at 900
up to 1200 °C. They were then heated for periods varying from 1 minute
up to 120 minutes. The samples were then withdrawn and air-cooled to room
temperature. X-ray diffraction measurements confirmed the formation of the
ferrite after 60 minutes at 1200 °C.

Also, solid solutions having the composition (by weight)

(1—Y) CoO + (1+y) Fe203-V (I-y) CoFe2 4+ (2y) Fe20 3
0<y< 1.0

* Present address: Physics Department, Faculty of Education, Doha, State of Qatar.
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were prepared by the usual ceramic method. Previous work [5] suggests that
the reaction proceeds by the following steps:

(i) Vapour phase transport of CoO to the surface of the Fe20 3;

(ii) Diffusion of cobalt and iron cations throughout the continuous oxygen
lattice obtained by rearrangement of the oxygen ions. X-ray diffraction
revealed two solid phases, as given in the right hand side of the above
chemical formula. The following relation -was obtained by substituting
the atomic weights in formula (1):

X=(l-y)/(1+0.36vy), (2)

where x is the percent of ferrite in the final reacted mixture. Several ME
absorbers which have different compositions and firing periods, were
prepared to contain the same amount of iron. The ME spectra were
measured at room temperature using a constant acceleration spectro-
meter connected to a 256 multichannel analyser. The source was 7 m
Ci 5Co(Cr).

Results and discussion

The measured spectra were analyzed by the same method applied by
Eissa et al [1]. The room temperature ME spectra shown in Fig. 1 show a
gradual increase in the absorption intensity corresponding to CoFe2 4. These
peaks were compared after normalization with the spectra measured for the
solid solutions (Fig. 2). The normalized areas of corresponding peaks give the
percentage of the ferrite formed to the fully formed ferrite (a) (Fig. 3), which
was confirmed by X-ray diffraction measurements. The resulting percentages
were analyzed according to reduced-time plots [4], which leads to that applying
Jander’s equation is the suitable one to follow this kind of reaction that is

[4, 5]
@-\Trcf= Kt, 3)

where tis the firing period and K is the reaction rate constant, which depends
on the material under study.

The above relation was applied and shows a good agreement at lower
firing time intervals. Deviation at longer time intervals may be due to the
change in the diffusion rate of the moving species, which is a slow homogeniz-
ing process in the almost completely reacted material.

*

The constant K is the slope of the (1- Y\-x)rvstcurves (Fig. 4). Values
of K over a temperature range are used to find the activation energy Q from
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channel number

Fig. 1. Mdssbauer effect spectra, measured at room temperature for the mixture CoO—Fe2
fired at 1200 ° C, for different periods. The letter (m) represent the period in minutes

the Arrhenius equation:
K = Zexp(-QIRT), 4)

where Z is a constant, R is the gas constant, T is the firing temperature, and
Qis the reaction activation energy (cal/mol). Fig. 5 represents a plot of the values
mof In K vs 1/T.
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Fig. 2. Mdssbauer effect spectra measured at room temperature for the solid solution (1-y)
CoFe204: (2y)Fe20 3. The letters A and B represent the tetrahedral and octahedral sites,
respectively
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Fig. 3. Fraction of the reacted mixture (x) vs time (t) at various temperatures

Fig. 4. Experimental results plotted according to Jander’s equation

The slope ofthis curve determines the activation energy listed in Table I,
mwith previous results of other ferrites for comparison.

The value of 56 Kcal/mol for Co-ferrite fits into the range of activation
energy to produce other ferrites. The scattering of data can have various causes

as chemical purity, physical form, method of preparation, particle size, and
method of heating.

Acta Physica Academiae Scientixrum Hungaricae 43, 1977
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w N

o Ul

Fig. 5. Relation between In K vs 1/T

Table 1

Activation energies of ferrites

Ferrite Q Kcal/mol References
Co FeD 4 56+10* present work
Ni Fed 4 78+ [i]
54-70+£3 [5]
Zn FeXD 4 70 (3.02 eV) [1]
Cd Fed 4 67(2.9 eV)** [1]

*For pellet samples, depending on particle size of Fe(lll).
** For powder samples.
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The aim of the present work is the study of the effective target mass distribution in
inelastic proton-nucleon collisions at 6 GeV/c and 69 GeV/c proton momentum. The angle,
momentum and grain density are measured for each emitted secondary particle. It is proved
that the average effective target mass in p-nucleon events decreases with the energy of the
primary particle.

1. Introduction

Several investigations have confirmed that the nucleon consists of a
dense core surrounded by avirtual meson cloud. A study of effective target M T
(the part of the target nucleon which actually participated in the interaction
in which mesons are produced) reveals the existence oftwo types of interactions,
the incident particle may interact with the central core of the nucleon or with
the pion of the virtual meson cloud surrounding the core.

It is the purpose ofthis experiment to provide further information about
the question of whether the effective mass will depend upon the energy of the

primary particles.
The interactions of 6 GeV/c and 69 GeV/c incident proton beams are
studied using nuclear emulsion technique.

2. Selection of central and peripheral interactions [1]

One can estimate the mass of the target particle purely from the conserv-
ation laws of energy and momentum. The target mass Mt is defined as

Mt= 2 (Et- Picos0,)- (EO-P 0), (1)
|

where Eh Piand 0,- denote the total energy, momentum and angle of emission
in the laboratory system with respect to the direction of the incident particle,
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respectively, of the ith particle given out in the interaction, and e o, PO repre-
sent the energy and momentum of the incident particles. For high incident
energy EO—PO< 1,

Mt = i Ej — Pj cos 6j. 2)

In case of nucleon—nucleon collision, we have

Mn= Z ((Ei Pi) cos 8,) + (Ep Ppcos Bp) . 3)
i

Mn denotes the mass of the nucleon, subscript p denotes the recoil
target nucleon and E denotes the summation over all secondary particles
except the recoil nucleon. The effective target mass is defined as:

MT= 2 (Ej- Picos Q). 4)
]

Thus MT denotes the mass of the nucleon which actually participated
in the production of secondaries, mainly pions.

The experimental difficulties in the directdetermination of MT are two-
fold. Firstly, the angles of emission and the momenta carried by neutral part-
icles are unknown and secondly, not all the emitted charged shower particles are
amenable to scattering and ionization measurements. In view of these
difficulties we have followed an empirical method to determine MT.

According to this method a quantity & defined as:

dj= — (ej- Pj)cos Q) ®)
rrij

is computed for all the secondary shower tracks emitted from an interaction
on the basis of emission angle 6j in laboratory system. The summation of §j
is connected with MT by a constant conversion factor

K= MTIE 6. (6)

In those cases where the scattering measurements of steepness of secondary
tracks, but only the angles could be measured, the effective target mass Mt
can be found by the following approximation method.

If the secondary particles have high energies, then

MT- 2 pl(x- cosfl)= Ptz 1 sinTO, , (7>

where the sum is taken over all shower particles produced in nuclear inter-
actions, and Pt is the average transverse momentum.
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3. Experimental technique

Two stacks of nuclear emulsion type Bp-2 and each of size 20 cm X 10 cm X
%X 600 u were used in the present work. The first one was irradiated by 6 GeV/c
protons at the Dubna Synchrophasotron. The second one was exposed to the
69 GeV/c proton beam from the high energy accelerator at Serpukhov, USSR.

The scanning was carried out along the track by the following method
in the central plates, starting 0.5 cm from the edge facing the incident beam.
The momentum and grain density of the secondary particle were measured
in the case of the 6.0 GeV/c irradiation.

The momentum is measured for each particle having small dip angle
by means of Coulomb scattering using the coordinate method [2]. Each track
is measured twice using cell lengths of 500 xand 1000 u. Noise and spurious
scattering are eliminated by standard methods [3]. The average statistical
errors in the values of PB were 159%,, the maximum allowed error being 259,.

The grain density is measured in terms of g* the ratio of the grain dens-
ity of the track to be measured to that of the incident proton beam. A correc-
tion is made for the average depth of the track, since ionization loss differs
from the depth of the emulsion. About 1000 blobs were counted for which the
average blob density is determined for each track.

Identification of the particles is made using the coupled momentum-
ionization measurement technique. The results of measurements of multiple
scattering and blob density of the shower particles are plotted and compared
with the theoretical curves [4] calculated for different particles (pion, keon
and protons).

4. Results and discussion

About 151 and 300 proton —nucleon events are found in the 6 GeV/e
and in the 69 GeV/c incident proton interactions, respectively.

For the 6 GeV/c proton interaction we were able to measure both the
momentum and grain density of all the products of about 50 events and so for
these events the effective target mass is calculated exactly by using Eq. (4).
The average conversion factor K is 0.62. For the remaining events (100 events)
where not all the products could be identified but only the angles are meas-
ured, the values of 0; are determined using Fig. 1 which gives the relation
between §; and sin 0;. The effective target mass for these events is calculated
by Eq. (6).

Fig. 2 shows the effective target mass distribution for the events pro-
duced at 6 GeV/c incident proton momentum.The distribution shows two peaks
corresponding to M, and M,. The nucleon mass peak is twice larger. The
average effective target mass is 0.85 M,.
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Fig. 1. §j = (Ej—Pj cos0j)/Mj. Plotted against laboratory emission angle 0j, solid curve
(empirical relation) is the average fit for all types of particles. The dotted points are the experi-
mental results for protons and pions.

Fig. 3 shows the effective target mass distribution for the 69 GeV/c
incident proton interaction. The M 7-values in this case are calculated accord-
ing to Eqg. (7) using the approximate angular method. This approximation is
valid at this high energy where the average transverse momentum is constant
<P,> = 0.4 GeVlc.

It is evident from the Figure that strong peak at Mwand a smaller one
at Mn exist. As to the ambiguous peak between 2 and 3M,,, it may be inter-
preted as being due to multiperipheral interactions. A mean value of MT

0.4 Mn is obtained at this energy. Table | shows the variation of <Mr>
with the energy of the incident particle.

The events are classified according to their effective target mass into
p-cloud events (those having MT Mn) and the proton-core events (having

M,, < mt<; Mn).
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Fig. 2. The effective target mass distribution in P—ninteractions at 6.0 GeV/c incident proton
momentum

Fig. 3. The effective target mass distribution in P —ninteractions at 69 GeV/c incident proton
momentum
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Table |

Type of incident

Energy particle <MT) Ref.
6 GeVv Proton 0.85Mn Present work
i6  GeVv Pion 0.73Mn [5]
26.7 GeV Proton 0.7 Mn [6]
28 GeV Proton 0.72 Mn [5]
69 GeV Proton 0.4 Mn Present work
1000 GeVv Cosmic rays 0.3 Mn m, [l

The average charged particle multiplicity and the average emission angle
for the outgoing particles in each class of events are calculated.
For 6 GeV/c incident proton momentum we have

€n'ch”p-cloud 1.941
O ch>p-core = 2.95

<0>p-cloud = 10-33°
~®)p-core = 25.15°

For 69 GeV/c incident proton interactions we have

~ch”~p-cloud = 5.42
~ch/*p-core =  8-47
~np-cloud = 3.3¢
<e>p-core = 10.4°

The decrease in the average charged particle multiplicity in tLe p-cloud
events is due to the lower values of the average energy available in the C.M.
system for these events.

At both energies, the secondary particlesemitted inproton —cloud events
are confined in a much smaller cone than those from proton—core interactions.
Also it is clear that the outgoing showers are collimated in a smaller cone as
the momentum increases (from 6 GeV/c up to 69 GeV/c in both the peripheral
and central collisions).
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The quantum mechanical problem of a wave packet falling on two thin potential barriers
of equal strength and arbitrary separation is discussed. The solution is given in the individual
regions as weighted integrals over a free-particle solution, the weight functions depending on
a single essential parameter (separation times strength) only. A discussion is given of the
physical interpretation of the results.

Introduction

§ 1. The escape of a particle from a small region of space surrounded by
a potential barrier is often discussed in quantum mechanics, in particular
in the theory of o« decay. The wave function can be assumed to be known
and confined to this “cavity’ at t = 0 and the Schrodinger equation can then
be solved for the future development. In such an approach one is usually
dissuaded from asking about the past development of the state. If one is not
so easily discouraged and follows the development back in time according to
the Schridinger equation, usually very unlikely and peculiar states are ob-
tained inthe distant past. Thus this description of the whole process including
both the formation of the decaying state and the subsequent decay is not even
qualitatively correct, although some quantitative features of the decay obtained
from such calculations might agree well with experiments.

In the present paper a very strongly simplified model will be discussed,
which does not give the quantitative details of any actual experiment, but
gives a good qualitative description of the formation of a trapped part of the
wave function and its subsequent decay. The model is in one dimension. The
region of space in which the wave function can be trapped is thus represented
by an interval. The two potential barriers ‘“‘surrounding” that interval are
assumed to be infinitely thin, i.e. the potential in each of the two end-points
is proportional to a Dirac delta function (the constant of proportionality is the
same for both ends of the interval). A wave packet arriving for example from
the left (see Fig. 1) is then partly reflected from the first barrier and moves
back with essentially the original velocity towards the left. The other part
of the packet penetrates into the region in between the barriers, then it is
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partly reflected from the second barrier, the reflected part is again partly
reflected from the first barrier, etc. If the barriers always reflect the major
part of the wave function falling on them, then a trapped state evolves in
between the barriers and it later decays away slowly and can thus be considered
as a model for a decaying system.

Fig. 1. The incoming packet and the two potential barriers

The phenomena connected with the passage of particles through poten-
tial barriers are relatively simple both mathematically and physically. The
numerical solution for a wave-packet initial condition is fairly straightforward
(for some examples see [1]). The analytical treatment in terms of energy-
eigenfunctions is also easy in principle, but the solutions are given in terms of
integrals which have to be evaluated numerically.

Itisimportant that the method of solution should emphasize the quali-
tative features ofthe process. Such an approachwas applied by one of the present
authors (L. J.) to the case ofthe passage through one thin potential barrier [2].
Although the present problem is more difficult and the physical character
of the solutions is more complex, the method used successfully in [2] is also
useful in our case.

The Schrodinger equation is to be solved for a wave packet arriving
from the left into the region of the potential barriers. The solution is given by
free-particle solutions inside the three regions separated by the two barriers.
At the barriers themselves the potential is infinitely high, but this singularity
can be shown to be equivalent to a simple boundary condition connecting the
free-particle solutions in adjacent regions. The three free-particle solutions
connected by the two boundary conditions can then be generated from a
single auxiliary function, which in turn can be shown to satisfy the free-
particle Schrodinger equation for all x and t. The solution for the auxiliary
function would be easily obtained if the initial condition for that function was
known.

This initial condition — and also the auxiliary function for arbitrary
times — can be expressed in terms of the free development of the arriving
wave packet, that is in terms of the free-particle solution of the Schrédinger
equation with an initial condition corresponding to the incoming packet.

The solution will turn out to be analogous to the multiple reflections of
light on a set of two parallel semi-transparent mirrors, with the individual
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terms in a sum corresponding to reflections of given order. The analogy is
even closer if the optical model is refined to include dispersive effects and a
frequency dependent reflectivity.

The exponential nature of the decay can be shown in some special cases,
butin general the situation is more complex. It appears plausible that the decay
is complicated by the strict phase-relations among successive reflections,
and one must not expect a smooth behaviour for a precisely defined incoming
packet. If, however, the subsequent incoming packets show some statistical
fluctuations, then a statistical averaging should be done and the averaged
decay is expected to show a smooth behaviour.

W ave equation and boundary conditions
§2. The one dimensional Schrddinger wave equation
iV t)= - — W(x,t)+ V() W, t) 1)
is to be solved for the potential
V(x) = y(6(x + a) + d(x)), where y|> 0, 2)

and for initial conditions corresponding to a wave packet arriving from the
left (Fig. 1). Throughout the paper atomic units (h= m = 1) and the denota-
tions
and y dip
dx
will be used.
The problem can be re-formulated in terms of free-particle solutions
obeying certain boundary conditions. The solution of (1) should satisfy the

free-particle equation
iip=~~W 3)

except in the points x — —a and x = 0 where the barriers are. These free-
particle solutions are different in the three regions and they are connected
by simple boundary conditions obtained by integrating (1) in small vicinities
of the barriers:

W(x -f-0,t) = W(x —0,1t) for x — 0, —a, (4)
¥"(x -j- 0,t) —W(x —0,t) = 2yV{x,t) for x= 0, —a. (5)
Thus the wave function is continuous but has a break at each barrier.
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Now it will be shown that the three properly connected free-particle
solutions and thus also the solution of (1) can be expressed in terms of a single
free-particle solution. To do so W is first written in a form which will turn out
to be convenient for initial conditions as shown in Fig. 1:

Si(x, t) — ip2(x, vy — ip3(X, t)for X < - a,
nx, t) Wi(x, t) - ip2(x, t) for 0 < X < 0, (6)
PPi(x, t) for X > 0,

where ipt (i — 1,2,3) are free-particle solutions. The boundary conditions (4),
(5) are satisfied if

¥0, t) = y8(—a, t) = 0, (7a)
A0, 1) = 2y>1(0, v, (7b)
Vo>a(-a,t) = 2y[rpl(~a. t) — y>2(— a, f)] . (7¢)

These conditions are of course not enough for determining the three functions
Vij(i = 1,2,3), therefore further conditions should be imposed. First, (7a)
is automatically fulfilled if y2 and ips are taken to be antisymmetric with
respect to the points 0 and a, respectively:

ipZX1 t) = y[U(X, t) - U( X t)]r (8a)

ip3(x, t) = y[v(x + o,t) -r(—(x + a), t)], (8b)

where n and v are also solutions of (3). Second, (8a) and-the choice of yx as
rp™x, t) = u'(x, t) 9)

satisfy (7b) identically. Third, as can be seen from (8a), (8b) and (9), the condi-
tion (7c) is also satisfied if

vi((x + a),t) = u'(x,t) —y[u(x, t) —u(—x, ] . (10)

Now we introduce a single free-particle solution U(x, t) in terms of which
n and t) are expressed as

u{x,t) = U'(x,1), (11)
r(lac + a), t) = U'(x, t) —y[U(x, t) + U(—x, t)], (12)

in accordance with (10). By using equations (6) and (8) —(12) the solutions of
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1) can then be given as

V(x,t) = U'(x,t)+ AX) y{U\x, t) - U'(—x, )} +
+ A(x + a)y{U\x, t) - [/'(-(* + 2«), 1) - (13)
—y[U{x, ) -f U(—x, t) —U(—{x+ 2a), ) — U((x + 2a), H]} .

where
f—1 for x <[ 0,
{ 0 for x > 0.

Thus for any given free-particle solution U it is easy to calculate a parti-
cular solution of (1). The solutions !F(t, i) obtained from simple solutions for
U(x, t) (e.g. from simple wave packets) are, however, very artificial and thus
of little physical interest. In order to have meaningful solutions, one should
be able to calculate U(x, 0) for given initial conditions 4*(x, 0), and then according
to (13) obtain ~(x, t)in terms of the free-particle solution. This problem will
be discussed in the next Section.

Initial conditions

§ 3. The initial condition for W cannot be chosen arbitrarily, since the
boundary conditions (4), (5) have to be satisfied at any time. Supposing that
the initial condition

Lx, 0) = mi(x) (14)

satisfies these restrictions, (13) can be considered as a complicated differential-
difference equation for U(x, 0). Instead of solving this general equation, we
restrict the treatment to initial conditions corresponding to wave packets
approaching from the left. We suppose that at t = t0the wave packet is so
for to the left that its values at and beyond the barriers are negligibly small
(see Fig. 1). One further advantage of such an assumption is that it can be
taken to hold for any time before the packet reaches the vicinity of the barriers,
thus there is no need to single out a particular “initial” time. Instead of an
initial state we can speak then about a time-dependent “incoming packet”
and instead of (14) we can write

W(x, t) = 0(x,t) for t< tOe (15)

As can be seen from (13), *F(x, t) will vanish at x > —a for t < t0if it
is assumed that

Uk, i) = 0 for x>m—a, t<[i0. (16)
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For t <Ct0the incoming packet is then obtained from (13) as
%(x, 1) = U"{x, t)- 2yU'(x, t) + y2U(x, t) - y2U(x + 2a,t) . 17)

B oth sides of (17) represent free-particle solutions for t -< t0. Since the right
hand side continues to satisfy (3) for t (17) holds for all times if mp(x, t)
is the free development of the incoming packet.

Equation (17) leads to an interesting decomposition of y(x, t) into three
parts. Writing (17) as

rm(x!t) = U"(X, t) -y {U'(th)J —Yy {UI(Xv t) —Yy [U(Xv t) U(X + 2a, t)]}
(18)

it can be directly compared with P(x, t) as given in (13). Before the incoming
packet reaches the barriers, both expressions (13) and (18) vanish for positive
values of x and are identical for negative values. After the barriers have been
reached, (13) and (18) behave differently. The three parts of (13) can, however,
be obtained with the help of the parts of (18) in the following manner. The
wave corresponding to the first part of (13) continues to propagate freely
just as the first part of the free solution (18) does. The wave described by the
second part crosses the first barrier unattenuated but is totally reflected from
the second barrier, while the third part is totally reflected from the first
barrier and thus it is not affected by the second barrier. Thus the solution
in the presence of the barriers is easily obtained once the decomposition (18)
is known.

It should be stressed that the three parts of (13) do not satisfy the bounds
ary conditions at the barriers, only their sum does so. Thus the three part-
of (18) do not represent some kind of “basic solutions” of (1) and (2) and are
not determined by the potentials alone as is the case for eigenfunctions, but
depend in an essential way on the incoming packet mpd(x, t).

In what follows it will be assumed that the free-particle solution mi(x, t)
is known for all values of x and t; one might take it e.g. to be a Gaussian packet
or a superposition of such packets. If one knew the decomposition given in
(18), W{x, t) could be easily obtained by the above simple procedure. In order
to have the decomposition, however, U(x,t) should be expressed in terms of
ip0(x,t), that is equation (17) should be solved for U(x,t).

The solution for U (x, t)

84. It will be convenient to write the differential-difference equation
(17) in the form

U"(x,t) — 2y U'(x, t) f-y2U(x,t) = yO(x, t) y2U(x -(- 2a, t). (19)
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The derivation of the solution will not be given in detail, only the important
steps will be indicated. First, one should note that if the inconvenient term
U(x + 2a,t) is not there, then (19) is a well-known inhomogeneous linear
differential equation of mathematical physics, the solutions of which are given
in many handbooks (see e.g. [3]). Second, for t <A 0O U(X, t) was assumed to
vanish in a good approximation for x > —a. Similarly one might suppose
that for an arbitrary time t there is a coordinate value X(t) beyond which
U(x,t) practically vanishes. Then in the interval X(t) 2a< x < X(t) one
has U(x -f- 2a,t) = 0 and (19) can be solved. In the next interval to the left,
X(t) -- 4a™ x ™ Mi(i) 2a, t/(r 1 2a,i) is known from the previous solution
and thus (19) is again a similar differential equation, but with a modified right-
hand side. Continuing this step-by-step procedure, always making sure that
the solutions in neighbouring regions match smoothly, one obtains

u(x,t)= 2 r -(k '—x)2n+le K x) rpo(x’ 2an, t)dx'. (20)
n=0 (2n + 1)!

As can be directly verified, this expression satisfies Eq. (19), (16) and (3).
The above solution can also be written as

uix,t) = — ¥ [2mH(x" — x; y) mOo(x -f 2an, t) dx' , (21)
r n=0Jx
where
MF2mx: - % y) = Arl) - (X - x)rrce-rrery), n=0,1,2, ...
2n + 1)!

are the normalized density functions of the gamma-distribution familiar from
probability theory (see e.g. [4]). The gamma-densities are concentrated in fairly
small vicinities of their maxima (with the parameters used here, (k' —»)Tax and
the standard deviations are given by ----—-- M and , N Respectively).

It should be noted that in practical cases the summation in (21) can
be taken to extend to a finite number of n values only. Since both yO0and I 2n+1
are small outside a certain neighbourhood oftheir maxima, the overlap integrals
of y(x’ + 2an,t) and I21+L(x'— Xx; y) are vanishingly small in most cases.
It is particularly instructive to consider the case when the major contribution
to U(x, t) is given by a single integral. This occurs for moderate »x and t values
if a, the separation between the two barriers is much larger than both the
width of the incoming packet and y-1. Let us fix the value of x (to be specific,
we take it to be somewhat beyond the barriers). The development in time of
U(x, t) is then described as follows.
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Before the free packet rp0 would reach x, all the integrals in (21) vanish
and thus U(x, t) = 0. Then y)(x, t) starts to overlap with 'x(x" x; y) but
all the rest of the integrals vanish because the free packet would reach x -f- 2an
(n = 12,...) only much later. Before the second integral appears, Y0 gets
beyond x(x'— x; y) and thus the first integral practically vanishes. Then the
overlap and with it | U(x, t) | starts to increase again and then decreases to
very small values before the third integral appears, and this strongly fluctuat-
ing character continues until eitherthe width of y(x, t) or that of I 2Hl(x' —X; y)
becomes comparable with 2a. From that time on an increasing number of
integrals contribute and jU(x,t) | is getting smoother.

One is tempted to interpret U in terms of distortions and multiple reflec-
tions of the incoming packet. The distortions are represented by gamma-
densities while the multiple reflections themselves are given by the shift
by 2an in the argument of y=0. The same interpretation also applies to the case
when the separation of the barriers is small, but then several reflected and
distorted versions of the initial packet are superimposed at any place and time
and thus it is more difficult to disentangle the picture.

The above interpretation of U(x t) is physically meaningful for x > 0
only, where W = U", that is where there is a simple relationship between 4l
and U. For x < 0 U cannot be interpreted in terms of reflections from the
barriers, instead it should be thought of as a mere auxiliary function generat-
ing the useful decompositions of y¥0 and W as given in (18) and (13), respect-
ively.

Before going over to the solution for ¥(x, t), another useful expression
will be derived for U(x,t). By substituting s = y(x’- x) + 2ayn, (20) can
be written as

U(x, 1) . _ Wt (22)
Jo &r(s;xy) Yy Vo

where

iff 1 (*-2nayl+i e_(s_2m0 for s> 0
ga(s;ay) = A @2n + 1)! (23)
0 for s< 0.

The upper limit of summation is the integral part of s/2ay as indicated by the
square brackets. The subscript o indicates that the terms to be summed are
the gamma-densities with odd indices I 2ml(e—2nay; 1).

The main advantage of the representation (22) is that it gives U as a
simple weighted integral over 0. The weight function depends only on the
parameters of the barriers, that is on the boundary conditions, and is indepen-
dent ofthe initial conditions. A further interesting property of ga(s; ay) is that
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it depends on the separation . and strength y of the barriers through the com-
bination .y only, thus it is easy to tabulate. It should also be stressed that the
summation in (23) extends to a finite number of terms only, although the
number of terms changes with s.

The solution *F(x, t)

8 5. The solution for the Schrddinger equation (1) with potential (2)
and initial condition (15) is now obtained by substituting (22) into (13). The
derivatives of xpo can then be eliminated by partial integration; the resulting
expression then contains the weight function ga(s; ay) and its first and second
derivatives into s. The result can be further simplified by introducing another
weight function gecs; ay) defined in a similar way to gacs; ay), but containing
gamma-densities with even indices instead of odd ones:

UIl(*-2anyl e-(s-inay) for s> O
ge(s; ay) (2B)! (24)
@] for s< 0.

The solution is then obtained in the following form:

Y(x, t) =
Vo(*»0 g"(s; ayy IP0 X —2a }——,t ds for x — a (25a)
«0 Y 1
VoOm )+ ge(Siay) YO x —— 1t ds —
Jo y |1
for —a < = < 0, (25b)
*i(s; ay) ys0 — X Hoe ds
-J y
vs0 (. %) + g"(s; ay) WO ds for X> 0, (25¢)
0

where the primes denote differentiation into s. At s = 0 the derivatives are
defined by continuity from the right.

Thus the modifying effect of the barriers is represented by weighted
integrals of the free-particle solution, the weight functions being different
before, in between and after the barriers. The quantitative description of the
solution requires numerical integration. Some qualitative features, however,
can be revealed by an analysis of the general behaviour of the weight functions
and of the free-particle solutions.
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Discussion

8§6. Let us consider the behaviour of the weight functions first. As
can be seen from (24) and (23), ge and gavanish for s < 0 and are also very
simple for 0 < s < 2ay, where

ge(s; ay) = e~s and g0(s; ay) = se~s. (26>

As s increases, more and more gamma-densities appear and the resulting func-
tions are generally rather complicated. There are, however, two particular
cases when the behaviour of ge and ga (and also of their derivatives) is fairly
simple. First, for ay —0 the summation in (23) and (24) can be easily carried
out and one obtains

e(s;0) = mL + e and a(s; 0) = -- - *e . 27
ge(s; 0) & ga(s; 0) 2 (27)

This limit corresponds to a single potential barrier of finite strength. Second,
for ay 1 the subsequent gamma-densities are shifted relative to each other
so much that they do not overlap for moderate values of s, that is ge and go-
start as trains of widely separated “bumps”. For large enough values of s,
however, the gamma-densities begin to overlap and smooth out the functions.
It can be shown that in the asymptotic region both geand gaare well represent-
ed by the sum of a constant and of a sinusoidal term, the amplitude of the latter
decreasing exponentially. Since the weight functions in (25a—c) are deriva-
tives of ge and go- they contain the damped oscillation type term only.

The behaviour of the weight functions is shown in Fig. 2 for ay = 0.5,
1 and 3. The three curves coincide for very small values of siin accordance with
(26). The new terms in (23) and (24), and thus also in the four weight functions,
appear at s = 2ayn, and the transition becomes smoother and smoother as n
increases. If ay is of the order of unity or less, then the curves show a very
strongly damped oscillation about zero. In the special case of ay = 0 there
are no oscillations at all, as can be seen from (27).

Now we return to the interpretation of (25a ¢) which gives the solution
for any time tand place x. The lower limit ofintegration in the integrals express-
ing the modifying effect of the barriers is s = 0, corresponding to different
values x' of the argument of ip0 in different regions. For x <C - a we have

X'= —x—2a, that is the integration starts from the mirror image of x relative
to the first barrier. For a< x < 0 there are two integrals, one starting
from x'm=x and the other from x'= —x, that is from the mirror image of X

relative to the second barrier. Finally, for x > 0 the integration starts from
X'= X. The integration extends in each case to such parts of ip0that have al-
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Fig. 2. The weight functions (for discussion see text)

ready passed through x asthe wave packet moved to the right, that is the values
of the free-particles solution 1)0(|, t) with | << x have no influence on IF(x, t).

The argument of rpP0 in the integrals can be given in the above notation
as | = x'-j-sjy. ThustpOas a function of the integration variable s is obtained
by shifting #0(£) by —x' and then stretching it by a factor y. The values of
the integrals depend then separately on a and y, whereas the weight functions
depend on the product ay alone. It is sometimes convenient to eliminate the
derivatives ofgeand go- by integrating by parts and also to return to the repre-
sentation of ge and gain terms of gamma-densities as given in (23) and (24).

The behaviour of W(x, t) will now be described for some interesting
limiting cases. First consider the behaviour of the solution when the separation
a of the barriers is arbitrary but their strength y tends to zero. By introducing
the new variable of integration | = x'-\-s/y a factor y appears before the in-
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tegrals and since the integrals are finite, for y —m0 one has W(x, t) — rpd(x, t)
for any time as expected.

As a second limiting case we assume that y is arbitrarily fixed but a,
the separation of the barriers tends to zero. The weight functions are then
obtained from (27). Using the variable of integration £= *'-[-s/y again we
obtain

ipO(xt) 2ye 2XJ e 2SME, t)dE if x < 0,
Mx, t)
Xx¥0(x, t) —2y e-2vA>Q(!, t) df if x> 0.

The expressions given above describe the passage of a wave packet through
a single potential barrier of strength 2y.

The most important of the limiting cases is when a is fixed and y tends
to infinity. It is intuitively expected that for very large values of y most of
the packet is reflected from the first barrier and only a small fraction passes
through it. This latter part of the packet then suffers multiple reflections on
the barriers, ejecting a small fraction of it on each reflection. The decay of
this trapped part of the wave packet is rather similar to the radioactive
decay.

From the expressions given in (25a «¢) it is not quite easy to see the
behaviour for very large values of y. This asymptotic behaviour becomes,
however, much clearer if we return to an earlier stage and express the weight
functions as sums of derivatives of gamma-densities. For example, for X 0
one obtains the following expression from (25c) and (23):

4*%(x, t) = \p(x, t) + 2nay; 1) \p0 ds . (28)

By interchanging the order of summation and integration and then integrat-
ing twice by parts one obtains

J [tayic* I .
'F(x, t) = -J? | r2n+l(s — 2nay; )xgi\x + — ,1 ds, (29)
y2 o0ldo \ y )

that is W(x, t) is of the order of y~2 beyond the barriers. The term rp0(x, t)
describing the free propagation has been cancelled by  y9(x, t) obtained from
the first term of the sum in (28). Similarly, it is easy to see that W is of the
order of y 1in between the barriers, that is much larger than for x >0,
and y(x, t) is again cancelled. The situation is different for the region x < —a
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from where the packet arrives. In that region both y(x, t) and the directly
reflected packet y,(—x — 2a,t) contribute along with the multiply reflected
waves of order y~ 2. However, the incoming and directly reflected packets give
appreciable contributions near the first barrier for a short time interval only,
after which the slow leakage from between the barriers dominates for a very
long time. This is not strictly true for all conceivable packets, but it is a good
qualitative description for packets propagating fast and diffusing slowly.

The decay of that part of y, which is trapped in between the barriers
has in general a rather complicated nature. The complication arises because
of the strict phase relations among the many superimposed multiply reflected
images of y,. It is therefore worthwhile to give some attention to a special
case which is free of this difficulty.

Suppose that the width of the incoming wave packet is much smaller
than a, the separation between the barriers, but much larger than y 1, the re-
ciprocal of the barrier strength. We shall describe the behaviour of ¥(x,t)
in the vicinity of the barriers. Suppose that the time elapsed since the arrival
of the wave packet to the barriers is not too large, so that the free wave packet
is in the region where the separation of the gamma-densities in (29) is much
larger than their width, thus the solution ¥(x, t) is nearly zero in a given point
x for most of the time and is appreciable only when y(x, t) overlaps with
one of the gamma-densities, say with I'y ,. Supposing that x > 0, the follow-
ing integral should be evaluated:

H(x5it) — —-;Tjwl"znﬂ(s — 2nay; 1)y, (x + ——::—, t) ds .
0

If the gamma-density is much narrower than yg(x + s/y.t), then p, can be
written as a quickly oscillating term multiplied by a smooth function that
changes little in the region where I', , is appreciable. Treating this latter
term as a constant and approximating 1’2,1“ by a Gaussian, the integration
can be carried out. Then one can go over to the density p, = Y%, and the
following result is obtained:

on(® 1) = 0ou(2na + y71) — v(t — 1,) LI, (30)

where t, denotes the time at which the free packct would reach x, v is the
translational velocity of y, and g, is the term obtained from the smooth
part of y,. The function g, has a sharp maximum when its argument is about
zero.

The behaviour of o(x,t) = ¥*(x,t) ¥(x,t) in a point to the right of the
barriers can then be described in the following way. Before the freely propagat-
ing packet would reach x, the density is practically zero. Then a train of
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bumps passes through X, the successive bumps containing exponentially de-
creasing amounts of the density. The bumps also spread out and finally lose their
individuality and then more complicated interference phenomena set in. The
characteristic time of the decay is the product of alv, that is the time needed
for the wave packet to cross the distance between the barriers, and of (y/v)2
the squared ratio of the strength of barriers to v, the velocity of the packet.

The behaviour of gfor x < - a and for a<i:< 0 can be similarly
calculated. For x <C —a the behaviour is the same as for x > 0, apart from
the presence there of a directly reflected packet which, however, goes away
fast. In between the barriers a huge bump is found going to and fro and decay-
ing exponentially. The smaller bumps in the regions outside the barriers can
be thought of as those parts ofthat bump that have leaked through the barriers
at successive reflections.

The interference phenomena start to be important when the width of
the central bump becomes comparable with the distance of the barriers. In
practical experiments, however, the initial conditions are never exactly repro-
ducible and therefore a statistical approach taking account of the distribution
of the initial conditions is more appropriate. It appears likely that in such an
approach the interference phenomena average out and a smooth decay is
obtained.
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The artificial mechanism of heat conduction introduced by Sachdev and Prasad
into ordinary gasdynamics has been extended to the case of magnetogasdynamics. This re-
quires an additional field equation, alters the momentum and energy equations and at the same
time needs satisfaction of the conditions adopted by Sachdev and Prasad. Although the
stability conditions of the difference and differential equations are slightly disturbed, they
remain almost the same. We observe that in place of ordinary medium if we take magnetised
medium into consideration, the same order of artificial heat conduction can smear out the
shock discontinuity easily but on account of the magnetic field, the shock region is divided
into two subregions.

1. Introduction

Von Neumann and Richtmyer [1] developed a method of artificial
viscosity in the shock layer to smear out the shock. Following his method,
Lax [2],Brode [3], Cotgate and Jonnson [4] and christy [5] solved various
shock problems. In particular, B roae carried out extensive computations for
the blast wave problem. On account of the complexities arising in the problems
taking artificial viscosity, sachdev and Prasada [6] introduced a new tech-
nique ofartificial heat conductionto spread out the shock in ordinary gasdyna-
mics. The choice of this artificial heat conduction was made to satisfy the
following conditions:

(i) The altered equations with the heat conduction term must possess a
continuous solution.

(i) The thickness of shock layers must be everywhere of the same order
as the interval length Ax in the numerical computation and must he
independent of the shock strength.

(iii) The effect of terms containing artificial heat conduction must be small
outside the shock region.

(iv) The Rankine—Hugoniot conditions must hold.

In the present work, it has been shown that when gasdynamic equations
are coupled with magnetic terms, all the four conditions enumerated above
as well as the stability conditions for difference and differential equations are
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almost satisfied also for this case. The artificial heat conduction is assumed to
be effective only in the shock region and we have attempted to investigate
whether the same phenomenon of spreading out of the shock occurs. We
conclude that the shock region divides itselfinto two sub-regions on the trans-
ition layer of which the perturbation in specific volume is constant. It has also
been shown that by using the artificial heat conduction method the shock
discontinuity is more easily smoothened in the magnetogasdynamic case than
in ordinary gasdynamics.

2. The governing equations

The one-dimensional Lagrangian equations governing the motion of an
ideal, compressible fluid with artificial heat conduction, subjected to a trans-
verse magnetic field are given by

1 dX
V = 4 2.1
BO &
u(x, t) dX (2.2)
91
du » 95
H 2.3
B0 91 dx dx (23)
9H h2 du
+ : (2.4)
91 Kgn dx
3E H2 dV 9R 25)
o1 7 91 91 '

In these equations, X is the Lagrangian coordinate, X is the Eulerian
coordinate, t is the time, V is specific volume, U is particle velocity, g0 is
density at t= 0, p is the pressure, H is the magnetic field, E is the internal
energyper unit mass given by E =pV/y~ 1, HV = K,y being the ratio of spe-
cific heats and K is a constant.The term —9P/QI in the Eq. (2.5)represents the
rate at which heat is being added to the unit mass of fluid where R is given by

dv
R = + ( @CAx)2" - (2.6)
z o dt
C being a dimensionless constant. As a consequence of (2.1) and (2.2), the
above expression for R can be written as
du 9U

R=— (CAX)2— 2.7
2( ) dx dx dx @D
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We now prove that (2.6) satisfies the conditions enumerated in Section 1.
First of all, R is large in the shock region where the derivative QV/dt is
large but small outside where dV/dt is much smaller. Also, R is zero for
expansion waves when OF/8t > 0. For real shocks gF/gt < 0 and then,

I dv\2

R = ~ { QoCAx)2 — (2.8)

In the following Section, we show that the above form of R also satisfies
the conditions (i), (ii) and (iii) of Section 1 for steady-state magnetogasdynamic
shocks.

3. Steady state plane shocks

Let a magnetogasdynamic shock of constant strength move with a
constant Lagrangian velocity S. Then all the flow parameters will be functions
of Lagrangian distance w (from the shock) given by w = x — St.

We now introduce a quantity M (= q0S) which is the rate of flow of
mass per unit area across the shock, in the Eq. (2.1)—(2.5) to obtain

M K
+ U= , (3.1)

H Q
MV+U = C2, (3.2)

H2

b—z—bMZV: c3, (3.3)

H?2 M 2V 2
E +\P + vV + R = Ct, (3.4)

where C15 C2 C3 C4 are constants. Also, in terms of M the expression (2.8)

becomes

R= {MCAx)2 dviz2 (3.5)
die f

Applying the boundary conditions

w —moo, V — p —*pi, H —mHj, E —Ej, R =0,

m —m— 00, v —EVf, p —»Pf, H —>Hf, E —»Ef, R 0 ,

where the suffixes i and / refer to the initial and final values of the quantities
involved, to obtain the constants, substituting for R from (3.5) and putting
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pVijy —1 for E, in Eq. (3.4), we get,

dv Y+ 1 (E - E)(F- F) (y+ D~

die 2(y—1) (Czk); 2(y - 1) (Czk M)2
1 I
I 1) T O (] (3.6)
!L I';E Viro i( t y+ )]

In what follows, we discuss separately the significance of the two terms on the
right hand side of Eq. (3.6).
Case |. The non-magnetic case >

When the second term on the R.H.S. of Eq. (3.6) is zero, we proceed
to obtain [6]

y - vr+vf . ViooVE gy (3.7)
2
where
wo= dy- _1) I (C Ax) .
Cy+iJ
Also, the width of the shock is
nwo a9y D ocay (3.8)
y+1

which shows that it is independent of the shock strength and the initial state
of the medium into which the shock propagates and is of the order of the inter-
val Ax of computation. This satisfies the condition (ii) of Section 1.

The pressure p in the shock region is given by

p 2y [Vf  Y-1rr 1il, 1l ] W j
Pi y+ 1 [Vi Y+ 1 Uyl + r; 2 | E m0)

(3.9)
Case IlI. The magnetic case

When the first term on the R.H.S. of Eq. (3.6) is neglected to study
explicitly the effect of the magnetic field, we have

4T Y+ 1) & i 1 1 VIVEi+ K 1 540
1die) 2(y - )(MCAXx)2[U Vil K IF, " y+ 1jj
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We assume,

vV o(V, K 1
w Vo g gi— +_L]
K IVt y+ JU + FJ
so that Eq. (3.10) takes the form
K
an ' Y+ 1
Vi Y+ 1
1- Y)12 3.11
die C .20 p(eaxmyz G0 I G4
Vi V.

which on integration and thereafter being written in terms of V becomes

K
V = Vi + KVf\ ~KT [WZ , (3.12)
+ -
Vi y + 1
where
v+ 1 K

(Y- 1) (CAXM)2 i ¥ y o+ 1

The pressure p in this case in the shock region is given by

y+ 1 2K Vit VE oo K2
c K 2 2V?2
Vivi -£m+
e (3.13)
« lior y+1 g (r+n CW oove g
Y.y, y . 8 [y- 1 ICAx U + y+ 1
p [r +1 2K \ Vi'; vf M 2o ﬁvzz
’ 2
P y V,-Vf M
V- y+ 11" (3.14)
2
C1e VZoyr1o ey W K 1 x
Vivf y 8 y —1) CAx Vit oy 41
2 _ K2 .
X y v 2vi VT y 11 11+ FIL -
Y+ 1i Vi Y+l vz VLV v oo
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4. Stability of differential equations

Substituting E = pV/y—1, the energy equation (2.5) can be written as

Ve . 9F H2dV 14 dR
V-2aerp-N (- DM -N o (r- DM-=0- @)
Now, we perturb the differential equations in order to study their stability.

If OU, dp, 8V and OH be the perturbations in U, p, V and H, the equations
for the perturbations from (2.1) (2.4) and (4.1) are

Qo-"(aU)=~~ (P) -
ot ox

(H6H), (4.2)
0X
ot K q0 ox K q0 ox
Qon(aVvV) = ~(6U), (4.4)
at 0X
A-(av)+ V-~ (0 + -A(OV) + y~(d +
dt( ) d(t p) yp dt( ) y d% p)
(4.5)
+ “A)~-h(av) o+ HHOH ™ + 1)~(OR) = 0.
(y)zét)(y) ot (y )dﬂ)
Let us assume these perturbations to be of the form
OU = OUoe'x+* 6V = OVOe'Pxt
(4.6)
dp = dPo e‘&adi, dH = dH,, ePxt

where dUOQ, dp0, dVOand dHOare constants, B is a real constant and «is another

constant, real or complex. The perturbation equations from the equations of
flow then become

Bo x(dU)0 + iR(dPo + HAHQ + (dHO *-= 0 4.7)
0X

o 2O g b M2 inemyo= |

(4.8)
Kq0 dx) KQ@
iR(du0) Qx(dv0) = 0 (4.9)
Also,
drR = (clrz 94 0TI gy (4.10)
dx dx j dx (a4, '
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it being assumed that the perturbation in R is not so large as to alter the sign
of 0U/gx. Since the width of the shock is very small, we consider the perturba-
tions of very small wave length, that is, large 8. From each of the Eqgs. (4.7),
(4.8) or (4.9) it follows that |x | should also be very large. Thus we consider
perturbations that rapidly change in X and t and under such conditions, the
coefficients of 6V, OUOQ, 6pand OH can be regarded as constants for small time
and space intervals.

Eliminating 6p0, 6V0O and 6HO between (4.7), (4.8) and (4.9) we have,

elVKx* + g&3\vpOK ~ - + 2HV + (y _ 1) BACAX)2K du du
dt X dx ' dx
. dH
+ e@2[y PRX + 2Hys0~ ~ _+ VH2ZP + iBRHW
ot OoX 0X (4.11)
JE/
— - HBPK + (y - 1)B{CAX)22H — AL,
2 Ox ax ax
2yp R*H— + R*H3— - yH2IiB — - — +
Qo BO ax dt dt ax
_ *
+ AKX y -1 H*P 2E/ ac/  gp_ — 0.
dt 2 Q@ ax ' Jip dt

Since la land B are large, we can write the dominant terms in Eq. (4.7) for
the shock region and shock free region separately.
In the shock region

i fP (CAXxf du JEN
X = (r-i) (CAXx

(4.12)
Q \Y dx dx)

which is negative for a real shock and hence the differential equations are
stable in the shock region as small disturbances decay with time.

This expression is similar to the non-magnetic case discussed by
Yon Neumann and Richtmyer [1]. The next value of x in the shock region is
given by

P
Ql (4.13)
an JE/ JEN

ax ax

+ (y- 1) (CAX)22H
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Eq. (4.13) gives the value ofa in the shock region where artificial heat conduc-
tion and magnetic field both play an important role.
In the normal region,

P 2ypH dU+|</;jt_+(y IP 3U

" dqyk Q@ dx 2 290 dx)

(4.14)

which shows that the stability of differential equations is unaffected inmagneto-

gasdynamic case.
In the shock region the dominant terms give
v4op) _ 40R)

4.15
dt Vit 19

and

va (op) d(v) X > +(r 7
_ 0. (4.16
a TP o U » o T ot (4.16)

From the Eqs (4.15) and (4.16) we conclude that the shock region has
been divided into two subregions. In the first, only artificial heat conduction
is prominent, and in the second, artificial heat conduction and magnetic field
b«th play an important role. On the transition layer of these two regions, the
perturbation in specific volume neither grows nor decays but remains constant.

As a consequence of Eqs (4.7), (4.8) and (4.10), Eq. (4.15) yields for
a real shock

- (P = a4 (@) (4-17)
which has the form of a diffusion equation where <is given by

(y-1)(CAxf du du

o g @-m (4.18)

and N is given by

*

H 3R
N = H382{&« + {(Oc*2+ WP*)2+PIP j~ )2} 1 (4.19)

where we have put

KN + 29— = A.
dx

In the normal regions the dominant terms in Eq. (4.5) give

\% ot (6p) + yP~dt (yV) + (y - 1)"2 Aat (ov) = 0, (4.20)
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which is simplified to an alternate form

2 . 20U
(OV) = &g (V) (4.21)
012 dx2
where
Q YP I r- 1 H?2

The Eq. (4.21) is the wave equation type so that the perturbations propagate
like sound waves. From Eqs (4.16) and (4.21), we conclude that on the transi-
tion layer of shock region and normal region, the perturbation in artificial
heat conduction is constant, an assumption made by Sachdev and P rasad [6]
but proved mathematically by us.

5. Finite difference equations and their stability
Following the method of finite differences exactly on the same pattern

as used by Yon Neumann and Richtmyer, we ensure the stability of difference
equations in the normal region and shock region separately.

A) Normal region

Considering only the terms which are dominant in this region, and
writing difference equations for the perturbations corresponding to differential
equations (4.2), (4.4) and (4.20) we get,

coOUO) I 1R2(f- 1) = - (dpoc1u2(i 1)~ ~ HOHO 2(E- 1) At
Ax Ax
(5.1)
. . At
eo (OVO) ~2(& -1) = A (GUp?12C- 1), (5.2)
X
w Y71 a2@6v0+ V@©Po) = o, (5.3)

where perturbations have been taken in the form as given below

OUJ+1= 0UO0C4n+l"2 etc. (5.4)
where
£= erAx, £= Bt
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Eliminating 6p0, 6U0, 6V0 and OHO between (5.1)—(5.3) and making use of
(4.8) we obtain

It
g ReemrmR LAy 2 Mg ot Ax - 1), (5.5)
BO AX AX
where
;- H2iB
= U
K gO0a -f- 2H Q
dx

Considering only the real part of Eq. (5.5) and then solving it for we have

li,*= b+ 1671, (5.6)
where
6= 1—p2{1l —cosB Ax) , (5.7a)
=5, N (5.7b)
AX

The relation (5.7a) shows that b is always less then one. Two cases may then
arise :
-1<6< 1,1 1= 11*1= 1, (i)

which gives the stability in the sense that the perturbation will not grow and

b<~1, Ili|<1 < 1$21 ©)

showing that the system of difference equations are unstable. Thus, equations
will always be stable if y < 1.

B) Shock region

Writing the difference equations corresponding to (4.2), (4.10), (4.15)
and (4.16) and making use of (4.6) and (5.4) we obtain the following expressions:

o00UO!I"* (1-1) = Ax B- 2(C- 1) - HZ C"wu2(i- 1) iE70}, (5.9)
Vopa12= - SlzJL .6UO(CAX)211— - — )I!WXE- 1). (5.10)
AX (ldx j dx j
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Eliminating 6p0and dUO between (5.9) and (5.10) and taking only real part
we get

N—1—2rj(cosB Ax—1 ) , (5.11)
AX
where
v (y-1) {CAXf du 317 j
QV dx dx j
For stability 11 1 1 for which
Ax)2
At < (AX) (5.12)
2V

We define the shock strength as

B V- (5.13)
Vf
In terms of this shock strength, f] is expressed as
At < Q@K 0+ 1 «Yy + 1) ekK
27 - DECMZ \eip 1 gk 1 V—DB(CMAN2[ 1 y+1,
r r+i]

This equation gives the condition for stability of differential equations in the
shock region. From the Rankine —Hugoniot conditions, S can be written as

1/2 12

S = fo + (y+1) |.|.|, + Vf m (5_14)
(y+ 1)0- (y- 1) el vf  2g°vt 2&V,
In non-magnetic case this reduces to the form
2
S= ————— —
(Y +1]i)0 y+ 1

12

where
YPf
QlIvf

which gives the sound speed relative to the Lagrangian coordinate. Thus we
see that the stability of difference equations is slightly disturbed in magneto-
gasdynamic case but is not affected anywhere else. Since the differential equa-
tion (3.6) has been discussed by taking both parts on the right hand side
separately, we cannot deduce non-magnetic conditions only by dropping the
magnetic field term but have to proceed afresh in a similar way. This case has
been thoroughly studied by sachdev and Prasad [6].
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6. Discussion and results

To have the qualitative picture, we use one set of data used by Lax [2],
y =2 Vi= 3, [l-= 0,pf= —2/3,py=6, Vj=1,Uf — 4. For our conveni-
ence we have taken C = 2, Zhr = 0.025, K — 2. Fig. 1 represents pressure
distribution in the shock region with Lagrangian distance. The four conditions
of Section 1 are satisfied in the present case and the stability of difference and

Fig. 1. Pressure distribution in shock region

differential equations are almost satisfied. As a result of the following discuss-
ions we observe that the shock region is divided into two sub-regions on the
transition layer of which the perturbation in specific volume is constant.
One layer behaves like the non-magnetic case while in the other sub-region
the magnetic field and artificial heat conduction both play an important role.
Thus, the shock region has been spread out and artificial heat conduction
introduced to smoothen out the shock is more effective in the magnetised
medium rather than in the ordinary gasdynamic case.
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The governing principle of dissipative processes is formulated for unsteady heat conduc-
tion phenomenon. The dual field method is applied to find the temperature distribution in
a finite insulated rod whose ends are maintained at a constant temperature. The variational
solution obtained by this new method is in excellent agreement with the exact solution given
by carsiaw and Jaeger. The result is also obtained in the force representation of the govern-
ing principle which is exactly similar to that obtained by local potential method.

Introduction

On the basis ofnon-equilibrium theory ofirreversible processes Gyarmati
[1, 2] formulated a variational principle which describes the evolution
of dissipative processes in time and space. The formulation which is called
the governing principle of dissipative processes is written in most general
form as
6jva-W-0]dv = °. @
Here a denotes the entropy production inside the system and it is a bilinear
function of thermodynamic forces AT} and current J- i. e.

CT=2 1 (2)
i=i
rt are the state parameters, the gradients of which are the thermodynamic

forces. In the linear Onsager theory, the currents are linear functions of the
forces, i. e.

J, =2 L*vr*» vu =2 R« ’
k=1 fi=1 3)
i=1.2,.0)

where the constant coefficients Lih and Rik are the conductivities and resist-
ances, respectively, and these satisfy the famous reciprocal relations

Ljk = Lki, Rik= Rk (i,k= 1,2, .../). (4)
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4* and & are the local dissipation potentials which are defined as [1, 2]

V(vr,vr) " '2k IL"‘W mvrft~ 0, (5)
N ik=

e»(j,j)= -2 RN *-J3 " 0- (6)
* i fe=i

These functions, in Onsager’s linear theory, are equal to half of the entropy
production for real processes, i.e. W and ® are the local measures of irreversi-
bility. Using (2), (5) and (6), the variational principle (1) can be given in the
following detailed form

J, evr, 2 LA r<'vr* RikJi dv=10. (7)

It should be noted that the principle (7) is operative if and only if the balance
equations
Qi+ V «J, = 0i (i= 1,2,...1), (8)

are regarded as auxiliary conditions for whose variations the restrictions
b(kl-a)= -OA «J, = -V «J5(i= 1.2,.../) (9)

are valid. Here g, is the partial time derivative of the density g, and cr, is the
rate of production of the transport quantities.

The principle is already used extensively for the derivation of equations
of heat conduction, diffusion etc. Recently singn [3, 4, 5] applied this principle
to get the variational solution of the Bénard convection. The critical wave
and Rayleigh numbers for the linearised Bénard convection were obtained
when the principle of exchange of stability is valid. In the following, the prin-
cipleis applied to get the solution ofthe time dependent process of heat conduc-
tion in a finite insulated rod, the ends of which are maintained at constant
temperature say zero. Assuming that the initial temperature is given by
TO(l X2 where TOis constant and x is the distance measured along the rod,
the temperature distribution which depends on both time and position is
obtained. The result obtained using the universal form of principle is quite
close to the exact result given by carsiaw and sacger [6]. The result was
also obtained in force representation which is same as obtained by

Schechter [7].
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Formulation of the problem

Let us assume that the physical properties of the rod are independent
of temperature, then the process of cooling is determined by the energy
balance

Qur~ + V3, =0, (10)
at
where gis the density and c, is the heat capacity at constant volume. is

the heat current density and T is the temperature of the rod. The constitutive
equation of the system is

J, = -AVT, (11)

where Ais the conductivity of the rod and it is constant. The entropy produc-
tion of the system in Fourier picture is [2]

o— —Jq'VT (12)
and W and & are
AN= 1 Ayr-ycr, ¢ = -, . (13)
z ZA
Principle (1) becomes
s f f-J, VT - — AVT VT- —y, wadvdt = 0. (14)
Jo Jv 2 2A

The problem is one-dimensional, therefore relation (11) becomes

Jog= - A-~- (15)

0X
where x is the distance measured along the rod. In the dual method we intro-
duce by definition, an approximate temperature field T* which is connected

with current density, J?i, by the relation
oT*

= -AVT* = -A— . (16)
0X

W ith the help of this approximate value of J , energy balance (10) and the
principle (14) become

3T 0

_ 0, 17)
dx -
' . 2 * iof
3T or 1 o7 I (dT* i2i dtdx = 0. (18)
8 Ba 2 dx 2 1 9* .
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The initial and boundary conditions are

,_.
Il
o
Il

rot - x%
(19)
t 0; T= 0atXx= ~ 1.

It is assumed that T* satisfies the conditions (19). Let us assume T in the follow-
ing form

T = TOo(l — x2x(t), (20)

where x(t) = 1when t — 0. Here «(t) is the variational parameter to be deter-
mined. Use of (20) in (17) gives

m* (21)

Using the expressions for T and T* in (18) and integrating w.r.t. X we get
the final form of the principle as

6jj [84Aaa+ 105A2a2+ 17aZdi= 0. (22)

As the Euler Lagrange equation of this variational formulation, we
get the following equation for a(t)

a -0 =0 (23)
17
Integrating (23) we get a as
/ 105 Vi* .
a= e (24)

since a(0) = 1. The temperature field is

TITO=(1-x?) e®™H (25)
This variational solution is compared with the exact solution

T=— TOY ( DO exp (e DA os2h i (26)
n2 @2n + 1)3

in Table I.
A brief study of this Table will reveal that the approximate solution,

though a first approximation, is in excellent agreement with the exact result.
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Table |
Ai=1 Af= 0.1 A= 0.01
x Exact Universal Force Exact Universal Force Universal
VT, T/TO r/iTo TIT, T/TO TIT, TIT,

0.0 0.0850 0.0833 0.0820 0.792 0.7799 0.779 0.9755
0.2 0.0823 0.0799 0.0787 0.755 0.7487 0.747 0.9364
0.4 0.0696 0.0699 0.068 0.640 0.6551 0.654 0.7194
0.6 0.0509 0.0533 0.0525 0.472 0.4992 0.498 0.6243
08 0.0267 0.0299 0.295 0.249 0.2808 0.280 0.3512
10 0.000 0.0000 0.00 0.000 0.0000  0.000 0.0000

A better approximation can be developed by using a more complex expression
for temperature field.

It is well known that the governing principle of dissipative processes
results in two partial forms of the principle. Though these two partial forms
are no more actual variational principles, but to establish the fact that the
force representation ofcs y . rnai’s principle is equivalent to the local potential
method of 6 1ansaorsr and »prigogine, We have calculated the parameter «
in the force representation and its value is found to be

a = e -5/2/» (27)
and therefore the temperature distribution is
TjTO= (1 x2 (28)

which is exactly the same asobtainedbyscnecneer [7] with the help ofthe local
potential method of ¢ 1ansdaorsr and p rigogine. This result proves the theo-
retically established fact [1, 3], that the local potential method is equivalent

to the force representation of GPDP as far as the approximation procedure is
concerned.
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The optical density distribution in cell containing electrolyte solutions of Schmidt
number greater than 2500, Sc > 2500, [1], has been investigated. The “Shadow Schlieren”
method 1s used to record the free convective flow caused by the difference in gravity bet-
ween the electrode film and bulk fluid. The two roots of the imaging law of the diffusion bound-
ary layer have been achieved in the vicinity of the cathode.

Introduction

The problem of mass transfer has been studied for acidified copper-
sulphate solutions under the condition of free-convection [1]. In such a case,
the deposition of metal ions on vertical cathodes is accompanied by the forma-
tion of a concentration gradient in the y-direction (Fig. 1). On this condition,
the optical density is considered to be a function of the concentration distribu-
tion of the fluid.

The “Shadow Schlieren” method is based on the fact that parallel light
rays passing through a medium with a continuously changing refractive index
are deviated towards the optically denser parts of the medium. In this case,
the image is formed by the projection of a shadow without the use of lenses
and so a “Shadow Schlieren” can he photographed. The method is quite
valuable for the investigation at the cathode while it is less valuable at the
anode film. This is because the light passing through the boundary layer will
be deviated towards and deflected by the anode. This will result in a broaden-
ing of the electrode shadow. There is, however, also an opposite effect, which
results in a narrowing of the shadow, due to the light passing close to the rear
edge of the anode.

W hen the rays are incident on the cell in the 2-direction as in Fig. 2,
the differential equation of the ray path in one dimensional refracting field is
given from geometrical optics [2] by

Y dIn (n)
1 +y"2 dy ’ w
where y' = dy/dz is the slope of the ray, and n is the refractive index.
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For a small concentration (0.1 M/L CuSo4), y'r is practically negligible
compared with unity [3]. Accordingly, the slope of any ray incident parallel
to the cathode at a distance yO0 from it is given by

Fig. 1. Schematic representation for the fiaid velocity and concentration distribution near
the cathode

screen

Fig. 2. Approximation of the path of parallel light through the diffusion boundary layer,
a: denotes the position of the cathode edge on a screen at a distance L from the mid point
ofthe cathode, in the absence ofany concentration gradient; c: at a distance < from a, denotes
the maximum deviation of a beam incident just on the front edge of the cathode; d: at a dis-
tancey,from a, denotes the deviation of a beam incident at a distance yOfrom the front edge
of the cathode. Its deviation at the rear end of the cathode is y; e: at a distance & from a,
denotes the deviation of a beam incident just outside the diffusion boundary layer
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Assuming the total deviation of this ray to remain small, the concentration
and its gradient do not change during the light path and, so, at the outlet of
the electrode, i.e. at z = 6,

yi= — b ©)

n

and so the total deviation of the ray at the end of the electrode is

Y —Jo b2. n'= dnjdy . (4)
2n

Thus, the path of the light beam across the diffusion boundary layer, 6d,
describes a parabola. From Eqgs. (3) and (4), one can write for the slope of the

ray

0/2 (*>

The curved form of the light beam could, however, be replaced to the
first approximation by two straight lines in Fig. 2. If the deviation of the light
beam on a screen, at distance L away from the central point of the cathode,
is denoted by y\, then the slope of the ray is

Wi = Yr—>Yo (6)
or, with the help of equation (3);
Y- Yo " b

- (?)

Fig. 3 gives a schematic diagram for the optical arrangement for the
study of the density distribution in the electrolysing cell made of planparallel
plates of flow-free glass [1].

Fig. 3. Optical Schlieren arrangement for the study of the hydrodynamical motion of the fluid

in the electrolysis cell. S: Sodium lamp; b: circular slit; d: collimating lens group; f: electrolysis

cell; k: camera box; a; condenser lens; c: camera shutter; e: rectangular box; g: camera slit;
L: screen
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The diffusion boundary layer

Introducing the relative deviation rf= y1261 and the relative wall
distance rj = y 05, the imaging law of the diffusion boundary layer could be
obtained, after Eq. (7), in the form

Vi o — H---- (8)

where neis the refractive index on the cathode, and neis the refractive index
gradient perpendicular to the ray.

From the International Critical Tables giving the relation between the
refractive index and the concentration, one can find for the concentration
region of cupric sulphate solutions between C — 0.0 —m0.1 M/L, that 9n/3C
is positive and constant. That is, one can give for the refractive index field the
same equations for the concentration field. Consequently, in Fig. 2, the illu-
mination strength has its maximum value when dyjdy = 0. This leads for the
imaging law of the diffusion boundary layer to the relation

dyl  _ = —-—-6] f orj2= 0.
W G g o e Fo ©)

This means that two bright lines are observed on the screen originated from
the places of the diffusion boundary layer, since

Yab — 1/2 jI db 1—'2‘A- (10)

with rja and rjb being the two roots of the quadratic equation (9).

This has been achieved from the Schlieren photos recorded through the
present work. The image obtained on a screen at a distance L = 28 cm from
the centre of the cell shows two bright lines to arise along the cathode. For the
concentration (0.01 M/L CuSo4 -f- 1.5 M/L H2504) during the passage of
0.306 mA/cm2 for 90 min, Plate 1 shows the two bright lines that appeared
along the cathode. They are very near to each other because of the small
concentration gradient. Such photo has been taken for the cathode film using
a punched rectangular slit 3 mm wide clamped close to the cell face so that
light incident on the cell is allowed to pass only through the layer adjacent
to the cathode surface. Also, the edge of the slit is well adjusted in the plane
of the cathode edge to record the deviation due to the cathode film.

In the cathode diffusion layer, the concentration and refractive index
are lower than those in the bulk solution. The light beam is, therefore, deviated
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from the electrode as given in Fig. 2. Such deviation is proportional to the
refractive index gradient. Since the gradient is greatest close to the cathode
surface, so the light rays that enter the solution near the cathode surface
mwill undergo the greatest deviation. Plate 2 is a Schlieren photo showing
the deviation of light from the diffusion boundary layer. The course of the
second bright line, denoted by Cin Fig. 2, gives the variation of the concentra-
tion gradient (8Cjdy)e at the surface of the cathode, which may be obtained

from Eq. (7) and so

Plate 1. Schlieren photo, 90 min after closing the circuit for the composition: 0.01 M/L CuC04 +
f 15 M/L HZ04at 0.306 mA/cm2
Plate 2. Schlieren photo shows the deviation of light from the diffusion boundary layer and
illustrates the variation of the concentration gradient at the cathode surface
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d, e, f

30 minutes 45 minutes 60 min'utes

Plate 3. Schlieren photos for the cathode film showing the distribution changes of the local
current along the cathode surface at different times from passing 1.787 mA/cm2current density
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i.e.
Lb 1dn 3C
04
ne \dC e dy e (12)
and
dC 5 ne
-
oy S (dnldC)e

From this one can see the distribution of the current density along the cathode
surface. The distance of the course line from the cathode surface at any point
is, therefore, a measure of the concentration gradient at such point on the
cathode surface.

The cathodic local current

Plates 3 are Schlieren photos for the cathode film showing the distribu-
tion changes of the local current along the surface of the cathode during one
hour in the cel] filled with solution (0.05 M/L CuS04-f~ 15 M/L H2504) at
passage of 1.787 mA/cm2current density. Photos (a) to (c) illustrate the varia-
tion of the diffusion boundary layer with time before reaching the limiting
current. Photos (d) to (f) show that such region remains unchanged with the
time going up. This indicates that after a considerable time, (30 min for such
composition,) the limiting current is reached and more or less it is constant
along the surface of the cathode. Evidently, it is the case detected from the
electrical measurements tl] of the local current density along the surface
of the cathode. However, such constancy for the limiting current density is
attributed to the presence of the back-flow wdiich has been found to grasp
the original flow [1].
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This paper presents a numerical study of the propagation of magnetogasdynamic
shocks in inhomogeneous medium. The natural state of the medium is defined by the assump-
tion that the pressure, internal energy and temperature are determined at each spatial point
and time by the density and entropy.

1. Introduction

Propagation of a shock wave through a non-uniform medium, in the
absence of thermodynamic influences, has been considered by cnisner 1 [1],
who obtained the strength of the shock wave throughout the region of varying
density. stracnan et al 127 also considered the shock propagation in a similar
medium but included the initial variation in the pressure, particle velocity
as well as density. Recently, v wn:iato andw a1sn 3] discussed the propaga-
tion, growth and decay behaviour of shock waves and found that a globally
steady wave, in general, was not possible in a non-uniform fluid.

In the present work we study the effects of a magnetic field on the propa-
gation and growth of shock waves in inhomogeneous fluids, and find that the
equation determining the strength of the shock wave is of the same form as
obtained by n vn:iato and w a1sn with the addition of magnetic field terms.
Qualitative picture shows that the time derivative of the strength of the shock
wave decreases with space coordinates in both cases while magnetic field
creates retardation in the decrement of the derivative of the strength of the
shock wave. After travelling a certain distance, the time derivative of the
strength of the shock wave becomes constant.2

2. Fundamental equations for the problem

We consider a Lagrangian coordinate system so that the basic equations
governing the motion of a magnetogasdynamic shock wave in a non-viscous
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and non-heat conducting medium are

gr —Jqgl (2.1)
9V
+ 8p+ H 3" = » (2.2)
4a aa
@ gH+ HdAV =0, (2.3)
Q dt Ja
9 H 2\ P+ 2 \%
e~ n T ( w2y a —n? (2.4)
dt 2q) Pr 9®

where p is the pressure, gis the density, V(= x) is the particle velocity, e is
the internal energy and J = dx/Qa. The position of the particle which had the
position ‘a’ in the initial configuration is given, at time t, by x = x(a, t).
Initially, the mass density of the medium is given by gR — gR(a) which is
assumed to be once continuously differentiable.

The variables characterising the medium in its initial reference configura-
tion are defined as

P* = p/IPTY), (2-5)
e*=¢,(9.5i), (2.6)
0 = B(e,u), (2.7)

where pt —p H22, e*= e f-H22g, B> 0 is the absolute temperature
and 1) is the entropy. From the second law of thermodynamics, we have [4],

P2QP«*, B = 9* (2.8)

3. Shock waves of arbitrary strength

Consider the shock wave as a singular surface propagating with the
intrinsic velocity U = d Y(t)/dt > 0 where Y(t) is the material point where
the wave is to be found at time t. Let the jump in any function f(a, t) across
the wave at time t be defined as

[N=7~17+ r = Hmf(a,t) (3.1)

so that, at the wave, the following well known compatibility conditions

—qt - [+ Waan (3-2)

and
[fg]l=f+[g]+g+u] + m[g] (3-3)
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hold. Let the region ahead of the wave be at rest. Then, by (3.1) we have,

(90*)+ = 1, (3.4)
V+= 0. (3.5)

Now, defining, as in [5], the strength of the shock waves
0= [dax] (3.6)
and considering only compressive shocks so that 0 < &< 1, we see from
(3.4) (3.6) that the shock strength can also be expressed as
0= V/U. (3.7)

Using the general conservation law the jump relations across the singular
surface may be written as

H1

Br U[V] = [p] (3.8)
KgRU Lt M=o (3.9)
- H2
n Qp [E]""[V*] + =[pV] (310)

Taking into consideration that the region ahead of the wave is in equilibrium
the Hugoniot relation for magnetogasdynamic case is obtained from equation
(3.10) as

e4_.H2 (P* + pi) (3 ___ 1 0
2Q Q Qr
or (3.11)
,_H2 H2 + i i
- ep+ = _ . Pixpi 2 11 0,
24q 2q 2 19

where er = &(gRr,rjr) and pR:= p (gr, rR). Thus (3.11) implies that g, 1/
must be related to each other. Let there exist a function Tlh so that the rela-
tions

V = Vi(e), Vr = ViAQr)

hold which are called the ‘Hugoniot, entropy-density function’. From this
the Hugoniot pressure density function and temperature density function

Adta Physica Academiae Scientiarum Hungaricae 43, 1977



76 B. G. VERMA and R. C. SRIVASTAVA

are defined by

p = p (e>») = p [e>Vhie)] = Phie) » (3.12)
and
e = 6{Q,rj) = d[& JH@E)] = dnh(é) > 0. (3.13)

Then, the intrinsic shock velocity U is given by

U2 = (p - Pr)y+ 112(H*~HI) (3 14)

6r a

It is now a matter of simple verification that Wey1’s theorem [6] about
shock waves of arbitrary strength holds good in the magnetogasdvnamic ease
as well.

4. Strength of compressive shock waves

Now we shall derive an expression for the strength of the shock wave.
Using the Eq. (3.2) with f = dax and V, the definition of shock strength 6
and conservation of momentum we obtain the formula

H-
2U M+ = U*[dI x], 4.1
dt dt r 2 @

where we have yet to evaluate [37*], [3Q@], and dUjdt. To this end we pro-
ceed as follows. From the continuity equation (2.1) we have

9lx = Q-1{dapR — (dax) (daQ} (4.2)

while from (3.4) we get
(dax)~=~~=1—4d>0. (4.3)
Then, (4.2) evaluated at the wave yields

P3 *] = }{0*e« - (I - me)"} m (4.4)
From the smoothness of p*(g, rj), we have

[9aP*] = E (Qaqg)~ — Er (0o gr) + L (darj)~ - Lr (darR), (4.5)
where
L="r*L.
Jp dr)
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In (4.5), (3a@®) and (darjR) will be determined by the initial configuration of
the medium. We shall determine (3arj)in terms of (3a gr)and the shock strength
O Differentiating (4.3) and making use of (3.2) and the Hugoniot entropy
density function we get,

Vh(e) or 4o (4.6)

@ gy U o)

Lastly, differentiating Hugoniot function (3.11) with respect to density
and using (2.8), (3.12), (3.13), (3.14) and (4.3) we obtain,

Vhie) = (4.7)
where
= J fdPh() + n (1- dfu2
20r 1 9p 3Q
Lo
B

Substituting (4.7) along with (4.6) in (4.5) we get

% dd XV
[3aP* = & — + E(dag + (A Er\(32Qr) — LR(daVYjR) .
17(1 - af dt 1-0

(4.8)

To obtain dU/dt, we use (3.14) and also the definition of E, L and the total de'
rivative of (4.3) evaluated at the wave to obtain

du
4 — » 4.9
dt 101 02 dt v 4 [t e)Bapm) *9)

where
dPh(Q) + H 1 6)7,
Qr «5(1 0) 8p 3p

2 - 9ur Erl,
Qa0

V = 2Lrlgr O.

Substitution of (4.8) and (4.9) in (4.1) gives the following differential equation
for the strength of the shock wave

"=M(0) € Gap), (4.10)
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where
4av 9a Q@
C= .- (/ra1 (1 -3e) . — <PdaVr
(1- 6)eR 4
R {E - (@- of U2},
Qr a
M(6) m > 0.
2U 14+ *Qr+ Y
21/2(1 — O

Using the consequences of w ey 1's theorem we can easily prove for a
compressive shock that a > 0, B 0, 0< k< 2, e]>0and (p> O.

Considering the motion of a magnetogasdynamic shock in a non-uniform
medium at rest we have,

(paB) <£ <= _E]t_ >0’

(9a 0)~ = C <=> = 0 » (4.11)

dt

G0y > 1 4= — < 0.
dt

Then following the arguments as in [3], we see that, since g depends on the
density, magnetic field, and entropy gradients ahead of the wave as well as
on the shock strength, the strength of shock wave may become stationary at
one instant and be increasing (or decreasing) at the next instant, i.e. a glo-
bally steady wave, in general, cannot exist in a non-uniform fluid. But for a
particular set of numerical values of physical quantities, the time derivative
of strength of shock wave becomes stationary at one place and decreases with
space coordinate.

5. Numerical solution and result

To have the qualitative picture, we take one set of numerical values,
that is, y = 1.1, pR = 1000, B = 2X 104°K. From these numerical data we
determine that the time derivative of the shock wave decreases with space
coordinate in both cases. It is clear from the Figure that the magnetic field
retards the decrement ofthe derivative of the shock strength. After travelling
a certain distance, the strength of shock wave becomes constant in the ordin-
ary as well as in the magnetogasdynamic case.
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Fig. 1. Variation of time derivative of shock strength with space coordinate
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The interaction of magnetic fields and displacements in an elastic solid is considered as
a mixed initial and boundary value problem in magneto-elasto dynamics. The solution is
reduced to a system of Fredholm equations of the second kind, which in certain particular
cases become Fredholm equations of the first kind. A general solution for free and forced
motion problems of circular plate is obtained in the applied magnetic field and also frequency
equations are obtained for free-vibrations of circular plates.

1. Introduction

Primarily due to the success of the merger of electromagnetic theory
and fluid mechanics in magnetohydrodynamics, considerable attention has
been given recently to the area of magneto-elastic solid interactions. Applica-
tigns of magneto-elastic action are evidenced in seismology, high speed engines
in a strong magnetic field, rapid rail magneto-trains, as well as in the study of
the phenomena of aero-magneto flutter.

Although there has been some progress in the study of magneto-elasticity
the development of effective methods of solution of the general mixed initial
boundary value problem in magneto-elastodynamics remains a challenge.
In this investigation complete and systematic mathematical formulation for
mixed initial and boundary value problems in MED with mixed boundary
conditions is developed.

The method is based on Nowacki's general method of solving problems
of elastostatics and later extended [1] to problems in elastodynamics with
mixed boundary conditions. In deducing our results in magneto-elastic medium
it is assumed that the magnetic field is much more conducive to inter-action
effects associated with the body force coupling than is the electric field.
Consequently, we investigate the problems of MED in a large magnetic field
and ignore the similar electrical effect. Moreover, in a perfect conducting body,
conduction current dominates, and as a result we may neglect the displacement
current term.
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2. Equations of motion and their solution

Assuming that the elastic displacements are infinitesimal and that the
displacement currents are negligible compared with the conductivity currents,
we can write the linearised exact three dimensional magneto-elastic equations
for a perfectly conducting homogeneous isotropic body in vector form:

= cfV2u -(- (¢\ «c|) grad div U +

2.1
+ RH [curl curl (uxH)xH -f X,

where His the vector of the original steady magnetic field, U is the displace-
mentvector,and c2are the longitudinal and shear wave velocities, RH = fijQ,
fieis the magnetic permeability, gis the density of the medium, and X is the
body force.

Consider a conducting, isotropic, and homogeneous circular plate of
radius ‘a’ and assuming that the magnetic field acts along the Z-direetion of
the circular plate we write the equations of motion (2.1) in polar co-ordinates:

ur clV2ur 4 4 R ™
0t2 -+ @ + Ro) or [_r or ()
all 24 01
+ + R2 mX
4 ) dr 1rdd 00
dau, 1 9 2c\ di (2.2)
+
dt2 @ 4 R2) rgs r dr 00
i d
2k (4 ~ 4 + R) X,
rdd rdd
where y2= 02
dr 2002

jieH 7r

R = (2.3)

The external conditions are such that within the medium a state of
plane deformation occurs. The conditions which must be satisfied at the plate-
vacuum interfaces are: (1) the continuity of the magnetic field vector;
(2) the continuity ofthe total normal and shear stresses across the surface S2(a),
where the loads are prescribed, and (3) the given boundary displacements on
the surface S”a).
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We find Green tensor-field of displacements gfi(r, B;r0, 0Qt) of the
Eq. (2.2) as follows:

We apply at the point (r0, 0Q inside the plate an instantaneous concen-
trated force, first parallel to radial direction, and then cross-radial direction
subject to boundary conditions:

(i) gor = gre= 0 on r

(V) ger

1]
o

(2.4)

ge=0on r= « (2-5)

As a preliminary to the analysis of the forced vibration we first consider the
free vibration.

Let us assume that the boundary conditions are homogeneous (i.e.
ur= me= 0 on r = a) and consider the solutions in the form

ur(r, 0, t) = fn(r) cos nOe,mt,

(2.6)
ur(r, 0, t) = gn(r) sin n6 e .

It can be shown that an infinite set of values for w0 are obtained from
a frequency equation which will be derived later.

The modal functions fn(r) and gn(r) satisfy the differential equations:

d2fn + dfn n2 .
dr2 rodr -=rin\-2dg 4

K /n 1 dfn fn]
+ (<u—A + ! +
(< 1) (dr2 ' r dr r2
n dgn 2cf n > ft\
+ (cf- 4 + 1) aCtt ----- — gn = —Wonfn(r),
r dr r.
" 2.7)
cl - c+ R\) - NA n o -n o+ (
( ) r dr ol
+  [UTIL + 1 "2 8n
dr2 r dr r2
n2ct — < &z) lrtz = ign(r)

For free vibrations subject to the boundary conditions ur= u9= Oonr = a
we assume

ur(r, 0, t) Ay 2 n(arn nBn JInir) cos nse, T, (2-8)
or r
.. J
w (S Q) n AN Bn——Jn(Rr) sin raoe"a (2-9)
r or
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If we compare (2.6) and (2.9) we can easily see

Sl = An-9~..al)l.__yBR _Jnibr)

dr r
(2.10)
gn{r) nAnM ~ 1+ Bn~ J n(Br).
r or
Substituting (2.9) into (2.8) we get
A djr;(xa) 4D"Jn(rSa) - o,
a (2.11)
-4 JnH +BndMBRa) = o
a da
In order that Anand Bn can be determined ‘@’ and ‘B’ must satisfy:
3 Jn(xa) MRa)
da
J n(<xa) dJn(Ra)
da
or,
<B’In(oca) I'n(Ba)--------- Jn(xa) Jn(Ra) = 0. (2.12)
Substituting (2.10) into (2.7) and simplifying we get:
Anikén — acf + R3] ; nBhe: - AMMBN) 5 013
r

nAn{wl - axcf+ 1y "0
.

+ BN(vin  4P) dIn(Br)-= 0. (2.14)
or
The relations (2.13) and (2.14) hold provided

acf + B%) = ubn,
4 R2= wan.

(2.15)

Using the relations (2.15) in the Eqs. (2.12) we get the frequency equations as

4 + b\ 4+R2Xa

@ e RE Jhvxuydn . Jn (xa)dn =0

(2.16)
from which we determine X,,.
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From (2.15) we then determine Bn and natural frequencies wOn. Results
for various values of magnetic permeability are shown in Table I.

Table |
n=0 D w n=1 D C
0 3.825 0 3.365
0 6.635 0 5.380
0 7.010 0 8.485
0 10.170 etc. 0 9.275 etc.
0.1 3.830 0.1 3.405
0.1 6.750 0.1 5.382
0.1 7.015 0.1 8.490
01 10.175 etc. 0.1 9.420 etc.

Assuming a plate of radius unity,i.e. a= 1, we get the roots w of the
frequency equation (2.16) for different values of

£2

for two modes n= 0 and n = 1.
We determine the ratio AJBn from the equations (2.11).
Hence natural modes are known:

K)n = fn(r) cos ns, (2.17)

(ue)n = gn(r) sin ns..

Consider now the forced vibration due to a unit harmonic concentrated
load in r-direction at (r0, 0Q with forcing frequency w. The Green functions
grr, gre satisfy the equations of motion.

4 A 4 -1 + (4 warr] +
orr r ( 4+Ri)i { v 1
- o fl dgrél  2cl ggre- | <5(r-r0) <3(0-Q@) _ 0
dr r o00j r2 oo _
(4 RZ)?d, — drteJ+ 24 8661 4-
+ Q@Vogre~ 388 A L3N ERE) t a0 = 0. (2.18)
re r do\r om
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The solutions to (2.18) are assumed in the form of modal functions

grr = tn (r) COS nd Tneth,

n (2.19)
gre =" gn(r) sin nB8 Tne'w.
n

We also expand the given loading functions in terms of the modal functions

Qr="(r1]nf,i(r),
(2.20)

Q e= gn{r)-

where the loading functions Qr and Qe are the components in the r-direction
and 6-direction, respectively.
From (2.18) we can easily see that

Qr = — —-—--cos ndo,
nr

1]
o

Qe (2.21)

Substituting (2.19) into (2.18) and multiplying by cos TB and integrating with
respect to 9 we get

1 d fn . Jc
dr2 r dr o N
I A T R
n dgn
+ TM - 4 + RI)
r dr
< 5 . —
2<n IriSn ~ Sr—=rocosnso — Tnw2f n(r),
nr
Tn(4 _ 4 + r\) nfn n dfn
r dr
2c|2n d29n 1 1 dgn n2 é Bn
Tntn + Tna dr2 r dr r2 Bn r2
TneN— ——r-— gn = — Tnnr2gn¢r), fOr each V. (2.22)
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We define the operators as

d2 1 d
T r
= +
b1=0 dr2 dr
A . d2 1 d
+ — 4 + +
(4 2) dr2 rodr_ym -
d n 2c|n
T = @ + f ’
L2= (4 = r dr r2 =
= n a) 2c|n
r = @"'
(4 1) , r2 r dr) r2
d2 1 e n2 1 — A
X n(4 4 + Al) 223
4 & dr2 rodr r2 r2 r2 ( )
Using the relations (2.23) we can re-write the equations (2.22) as
Tn(LlIfn + L>gN) + g nfn= — W2 Tnfn,
Tn(L3fn + Lign) + gngn = — uPTngn * (2.24)

We can also re-write the homogeneous equations (2.7) in the operator forms

LJn 4“"28n nfn 9

L3ftn + Lign= — whgn. (2.25)
Using the relations (2.25) into the relations (2.24) we get

{Tn(n‘Q- Won) + gn) fn(r) = O,

{Tn(w — w@n) + gn}gn(r) = 0. (2.26)
These two relations of (2.26) will be satisfied if

Tn(w2 — w@n) + g n= 0. (2.27)

Orthogonality relations:

If Xj, pt denote body and surface forces respectively, which produce
in a body the displacements, ut, while X/, p[ belong to the other system of
forces producing the displacements w\.

W e have by Betti's reciprocal theorem [1]

J(B) X*u" dv + J(S)PiUlds = J(B) X “u‘dv + J(S)Pi w ds ’ (2-28)
where B is the whole body bounded by the surface S.
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In our case the surface integrals are zero as the displacements are zero
on the boundary.
Hence (2.28) reduces to

\BXju'i dv = JBX; Ldv . (2.29)

The only body forces are the inertia forces 4 a2ujrar2

If the displacements in such a system be assumed in the form w = Utewt,
ewith Uj dependent of time, and if ufis the displacement in the mth mode and
U the displacement in the nthmode, then the time reduced form of (2.29) is

(m) (n)
QU Udv 0.
Thus
(m) (n) .
U Ujdv =10 ifm~" n,

0, if m—n. (2.30)

(Summation convention is used on i).
This is the general orthogonality condition for undamped elastic systems.
Now we multiply the first equation of (2.20) by fm(r) and the second
equation of (2.20) by gm(r) and then add, we get

Qrfm +Qegm= (fnfm + gngm) m (2-31>

n

Integrating (2.31) over the whole plate
Jo [Qrfm + Qegrn\ rdr = Eqn[J* {fnfm + gngm}] r dr . (2.32)

Using the expression for Qr and Qe from (2.21) in the relation (2.32) we get,
with the help of (2.30)

fv ATTr° co,n$0-fmdr
Jo nr __ fm{ro) cos n ~o
Ar — fa ©
rpf2 + g@ndr nl
Jo

where 12is the scale factor,

J“r Ifm + gm] dr . (2.33);
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Using (2.33) into (2.27) we get

T = _ qn _ fn(ro0) COS ns0 (234)

W2 — Won 1112 (Won — w2)

Hence we know the Green’s functions grr, grg in the case of harmonic unit

concentrated load as
y fn(rO)fn(r) cos nd cos neo ciwl

8rr ~ nlAw2n - w2

Yy tn(ro) gn(r) sin nB cos n 0"
[ N2Kn - MmA)

(2.35)

We now apply to the fundamental system (the system in which the elastic
body is entirely fixed along the circumference) an instantaneous harmonic
unit concentrated force, parallel to cross-radial direction subject to the bound-
ary conditions

ger =ge= 0onr= a- (2-36)

The Green’s functions ger, gm satisfy the equation of motion

L /\ + - + 0 -_ — J—
4v2ger',- 4 > (4-4 R/o))lIr = o I — w2ger +
2c2 dgm
-4 + 4 >

+ M -4 4 £ (fE 2 00

0 2c| dger

or (r&r) + 00

1 0 1 0 .

* r 00 r 00 oo
I d(r- ro)a(0- op 0 (2.37)

If we follow the same method as before we find

» _ ™ gn(rO)fn(r) cos ne sin neo _fut

A ﬂP1(|//|§2n —*rs\
= y gn{ro)gn(r) sin nB sin n0o eilvi /2 38)
8 i? nl2(win - w2

Now we know all the components of the Green’s functions gi;(r, 0; r0, 0Q w)
and we can use them to find the displacement functions u,(r, 0, w).
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Applying Betti’s reciprocal theorem [1] we can find the relations for
circular case:
uk(ro, 0Q w) = uk(r0, 0Qu) - J w) L[gik] ds(a). (2.39)
where
uuro, 0Q M) (2.40)
and

L=U[v -f —r &j+ @A+ 9)9d, (i,j,k—1.2).
a

Here Sj(a) is the surface where the displacements are given and S2(a) is the
surface where the loads are specified, and R represents the whole region of the
body.

Since all the quantities Xt, gik, and f in (2.40) are known, the displace-
ments u\ in the fundamental system are known.

Re-writing the Eq. (2.39) in component forms we get

nr(r0, 0Q u) = u®(r0, 0Q tv) —  2° U r+
JO or
1_dgmr + dgB  érs Ue+ Wr | f (*)+1 £ add,
e 90 dr r
ug(ro, 60,w) = ug(ro, 0Qtv) - I %..Eﬂ Ur + i [9ge , dge e 1 nB +
or \ 00 dr roi

13 . . 1 dsm
+ AHT _r~ (Orrger) + _r_OB add, (2.41)
Here Ur, Ue are the unknown reactions on the boundary S2(er) and they are
to be found out from the boundary conditions S2(a).

In order to determine the unknown functions Ur, Ue we perform on the
expression (2.41) the operation L'(. . ..). The prime on the operator L denotes
that the operation refers to the point (r0, 0Q. Then we pass from the interior
point (r0, 0Q eR to the point (a, 0) on the boundary and get

Qr(a,0,a) = — 1 2gL’ hdar  yrafeaL | S A e Ay
Js, dr r 00 dr
W r\u _l _9 (rgrry + L’ I'1 9916 ado ,
r or r 00
Qe(a,d ,w )= -p~L" Ur+ n\L 1+ dger +L1%9™ y Ue+
dr r 88 dr
1 of
(rgér) + L' ( y add, (2.42)
00
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where r, r0= a and Q= s'. As Qr, Qe are known and (2.42) represents two
Fredholm integral equations, we can easily determine Ur and Ue from the
system of equations.

By choosing different sets of loadings on S2(a), where the loadings are
prescribed, we can find different values of Ur and Ue for different mixed
boundary value problems. Thus it is easy to find displacement functions ur
and ue. After having determined the displacements u- we obtain the deforma-
tions efj and stresses Ou.

It is clear that we can extend our considerations to the case in which
on the surfaces S2, S4 and S6, ... are the prescribed loadings, while on the
surfaces S15 S3 and S5, ...are the given displacements.

We can also see from the above resultsthat if we know the modal functions
ofthe free vibrations we can find the solutions ofthe forced vibration problems
in eigen-functions expansion. This method is very useful for any forced vibra-
tion of circular plate. From the Table of free vibrations we see that the numeri-
cal values are shifted considerably in the magneto-elastic from that of elastic
case in all orders of frequency equations.

Next we will consider a number of applications of this method in subse-
quent papers.
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EVENT HORIZONS AROUND A PARTICLE SURROUNDED
BY A STATIC CONFINEMENT POTENTIAL

By
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After solving one of the Einstein’s equations in the case of a spherically symmetric
confinement potential, the locations of event horizons are discussed in gravitational theory
and in the “strong black hole” picture of Recami and castorina.

1. In elementary particle physics, in order to explain the confinement of
quarks in mesons and hadrons it is widely accepted to take a two body “con-
finement potential” in the form

p-mr

V(r)y=-—-(z0+ K 0r*). 1)
r
For instance, [1] gives in the case of the charmonium for the c—c interaction

a0= —0,2, KO— — ,a= 02fm, m=0.
a2

In the cc (cc) interaction the potential is supposed to be repulsive; Vo=
= Vtc= —VQE, i-e. 0= +0.2 in Eq. (D).

Our aim here is to investigate the space-time structure around an object
(c or c) which for the following arguments, tentatively, is supposed to exist
alone, surrounded by a field representing (1).

The relativistic considerations necessary to carry out our program are
quite straightforward, we quote [2] only, where similar calculations for the
Yukawa field have been performed.

2. The total potential energy of an object described by a distribution q,

fax)ydx = 1
self-interacting through (1) is
W =-% e gx') e~mX-X" |[(a + K I*-*"' P dax . 2)
2] X —x\

*0On leave of absence from the Institute of Theoretical Physics, Roland E&étvds Uni-
versity, Budapest, Hungary.
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Introducing
J- p - Mx—X|
(IO I — (a+ K I* P @& x’
\x — x'\
W takes the form
W=--\ Q) dPx)d3x .

A direct calculation gives
Noe — 120 = — 4nxQ + Kip,

e Joex) T X 4m d3xm

Substituting Qinto (2), after performing the integration over x1, W is

1
\ (V0> 2 + 1292+ KdU) d3x, (3)
81ra

therefore the energy density in our case is the following:

u(*) = - (jVO R+ m2d2 + Kd<p). (4)
8nx

One might notice the non-definiteness of (4), which, from a field theoretical
point of view, seems to be related to an indefinite metric quantization [3, 4].
For a point source

p-mr p-mr

P =--—-—--(@+ Krad, p= - 2 4mr)
r r
and
omr @? 2a2m 2a2m2 4a Km
8 tc m 1 3 r2
()
- 3K2-)- 4xKT2— 6K2TT -)- 2K 2nr2].
W riting

ds2 = e™f)c2dt2— epr*dr2 — r2(d62 -+~ sin20 dtp? ,
one of the Einstein’s equations gives [2]:

8rG A 1

T2 (6>
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where G is the gravitational constant. With the notation

g(r) = e "3
Eq. (6) reads

o to=1- 22w ™

for which the solution is

where m0= GMc 2 is an integration constant.
Substituting (5) into Eq. (7) one gets

K2 2 KZT]Z 3
g(r) = 1 f— + 2Kmr 2 (8

r a a

g(r) = 0 gives the locations of the event horizons if there exp v(r) is finite.
Note that the metric tends to the Minkowski’s one only if m ¢ 0.
Let us suppose, however, that mr 1 in the whole relevant interval.
Then
2f»0 + G
r 9
a(n) “ ©)

T

andy = 0 leads to a fourth order equation. For r a one immediately ob-
serves the possibility of an event horizon (from (8) actually two) around (a >0!)

ac4
GK2’

T2

with the above data for a and K(oc = aOhe)
r~ 55 «105cm,

an enormously large value. The assumption mr <€ 1 leads to the ratio
m
< 25 1019

where This the pion mass.
It is quite obvious that the starting formula (1) for the potential cannot
be extrapolated for such distances. Indeed, as ¢ and c separate, the energy
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grows until a pair of light quarks is created, which together with ¢ and c¢
form a pair of mesons, therefore the whole former simple picture breaks down.

Lonely lived quarks, therefore, in reality do not seem to produce some
type of “exotic” gravitational black holes.

3. NeXt we wish to discuss the ideas of Recami and Castorina [5,

concerning the concept of “strong black holes” in our case.

According to the classical mechanics, two particles with the same mass
due to their gravitational interaction move around each other in a flat space-
time as if they were led by the force

M 2
F= —G-—nm (10)
r2

General relativity tells us that the motion is actually a geodetic one in a curved
space-time, the structure of which is described by Einstein’s equations. In
an attractive strong interaction e.g. with

F= ———e~mr, « >,
r2 (1h

for those distances where mr 1, at the classical level one may say that the
interaction is of a “gravitational” nature, but G is replaced by

G (12

In analogy with the gravitational theory, let us suppose now that the
expression (11) is just as crude a description of the reality as (10) is in the
gravitational case. Instead, the motion of a strongly interacting particle (for
attraction) is a geodetic one in a (strongly) curved space-time, where the (strong)
space-time structure (measured by pion or gluon signals?) is determined by
Einstein’s equations, but according to (12) G is replaced by xM~2.

Adopting this idea, introducing

X r Me2a X
5G
X M2

the equation/(r) = 0, where f is given by (9) takes the form
*4 _ A+ 2AX -1 = 0. (13)

The value of A with the data of [1] (M = Mc= 1,6 GeV) is A = 8,5. With
this value of A from Eq. (13) one immediately observes that there are three
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positive real roots, two of them lie close to A.~1 the third one is in the imme-
diate neighbourhood of A. Keeping in mind the former picture, this means
that a lonely lived quark produces a “strong black hole” for its antiparticle
(attraction) of the radius: R~ aA — 1,7fm, then the antiparticle falls down

to
Rc”r aA~x= 0,02fm.

The condition mr 1 gives for the gluon mass

B< 1

4. Apart from the above considerations, one might notice that one of
the Einstein’s equations (for the coefficient of dr2 can exactly be solved for
those situations where a particle is surrounded by a given field representing
a spherically symmetric static potential V in the form

V — Yukawa times an arbitrary polynomial in r.
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UNIFIED THEORY OF FERROELECTRIC
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In the framework of the unified theory of ferroelectrics displacive type phase transi-
tions are investigated in the T = OK quantum limit, when the phase transition is due to the
zero-point fluctuations. The critical value of the zero-point energy is evaluated in the case of
the completely ordered and disordered lattices, not taking into account tunnelling.

In [1] a wunified model for ferroelectric phase transitions has been
presented, which took into account both the statistical disordering of the ions
in the cells and the dynamic instability of the fluctuations of the lattice lead-
ing to displacive phase transitions. The solution of the self-consistent system
of equations for the two order parameters, oa= < ea* >, the average number
of ions in the state a = il, and 6a= < S/ i>, the average displacement of
ions in the cell in the state a has been obtained in [1] and subsequently in
[2], in the classical limit of high temperatures, kT ha>D.

It is also interesting to investigate the quantum limit of zero temperature
when the phase transition is determined by the quantum fluctuations and the
energy ofthe zero point fluctuations and not by thermal excitations. Displacive
phase transitions in the model of ferroelectrics in the quantum case has been
investigated also in [3].

1. Self-consistent system of equations

The model of ferroelectrics [1] is described by a system of harmonically
coupled ions, each of which can occupy one of the two minima (@@= 1)
of a one-particle potential well:

B
H = _V of St)2
om (PD2 (St) (Sty

(1)
1
+ -~2"£ a?akPj(St-Sj)?2,
* Ij
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where the projection operators of = 1 or 0 (accordingly of = 1—of = 0
or 1) if at the i-th lattice point the ion is in the state a = +1 ora= —1
respectively, p? and Sf are the momenta and the coordinate of the ion, A
and B are parameters of the one-particle potential well, is the coupling

constant between the ions in the three dimensional lattice.
From the condition of equilibrium d p“(t) > Idt = 0in [1] the follow-
ing equation has been obtained

Vi (1 3ya) +(r]++ rj_)foff a= 0, 2)

which relates the equilibrium position of ions rja= (BjA)*2 S“ > to the
average number ofions <a= < e“> hi the state a. Herefn= J? <PRijlA = (pJA
is the dimensionless coupling constant. J

The quantity ya is the average squared displacement of ions from the
equilibrium position in the state a. It has been determined by the help of the
phonon Green’s function in the form

* - Ap < (st - D2 > = 4 < w 2> = d

d>coth------  — Im D~(o} + ie)
20 n

mv) = AN-(nr2.+410) = *- (Aln+ /o)

(v2- )|+)(v2— v*A - o+o_f v2 -l (V2- v’ *)

where
= «d(Alm); 4 = 22+ (/,,- o T);

»Ml) =y (4+7-)x\ {"+ i9-)2+ 4da+o-pg}xh
Jl= - 1+3 @+ yj; /5= (LA)2<PilqT- ).
]

Performing the integration in (3) in the case of zero temperature, when
coth(co/20) = 1, taking into account (4) one obtains:

n2, +/0\"
2(V + \Wg) (5)

where A= (H/T)Y2(H2B) is a quantum parameter, proportional to the ratio
of the energy of zero point fluctuations, hco0 = (H/m)h2and the height of the
barrier in the one-particle potential well, uo = (H24R).
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For the determination of the average population oa or the pseudospin
variable a = (of) = (2cr+— 1)(1 2cr ), an effective pseudospin Hamiltonian
has been introduced:

| Z ij &
where of = il, h(and j are the average effective field and the “exchange
integral” which depend on the state of phonon subsystem [1].

In the Hamiltonian (1) and (6) the tunnelling between states x — i |
is not taken into account and therefore in the limit 0 —0 a unique solution
0=1 appears (if J/j > 0, ht )>0). The effect of tunnelling, suggested in [4],
makes it possible to generalize the Hamiltonian (1) and to introduce in (6)
the transverse field, Q’I‘ of, which in turn may lead to the solution a —0

in the case 0 —<0. In the present work we will not discuss the solution of the
self-consistent system of equations for the phonon system and the pseudospin
system in the range 0< a < 1; instead we will investigate only two cases,
namely the case of the completely ordered, o = 1 lattice and the case of the
completely disordered, a = 0 lattice. Doing so, we will assume that the right
choice of the value of the transverse field Q, can ensure the transition from
o= 1to 0=0 in the case of zero temperature, 0=0.

2. Displacive type phase transition in ordered lattices

In the completely ordered lattice all the ions are in the same state, for
example <= +1 and a = 1. In this case the equation of selfconsistency (5)
takes the following form:

[ -y 1 _ A g(oR) daR
_ (7
2N a 1nvi/o - fq= T Jo
where the density of the phonon frequencies
-_ L~ &(fo—fq— )2, fy < f)D (8)
N q

has been introduced.

Taking into account the condition of equilibrium (2), in the case of
o=1 (o_ = 0) we obtain one equation for the self-consistent determination
ofthe equilibrium displacement [ or the gap in the spectrum of the frequencies

= 2rf, in the ferroelectric phase:

3 p g(ar) daB

2 Jo f2rp+ aB ©
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As can be seen the solution of this equation for the ferroelectric phase
with 71~ Oexists only if A< HAd), where the critical value $()is determined by

g(co2) dw2 2 flo (10)
to 3

Here fj, r= (y-1 is the average of the inverse of the frequency; for the Debye

spectrum g(0)2) = 30)/20)a; g_1= 3/2 y2~ 1 if ajp = 2f0. Consequently,

displacive type transition in ordered lattice cantake place only if the lattice

consists of sufficiently heavy ions, that is if

S ir 2
m- /1 B b

for a given coupling constant qgQbetween the ions and a given width S0= ]J/A/B
of the one-particle potential well in accordance with [3].

3. Displacive type phase transition in disordered lattices

Let us discuss the effect of disordering on the displacive type phase
transition. Putting in (2) and (3) <= 0, corresponding to equal number ofions

in the states a = -|-1 and « = —1 and consequently meaning that Az =
= A_ = Ajj tj+= ri_= N we get the following system of equations:
V=1 Jo —3y, (12

A '8 g(co?) do)2
}~TJo VAL + w2’

(13)

Therefore the self-consistent equation for the determination of the gap,
Lo > 0 in the phonon spectrum in the case of a= 0 and f] > 0 takes the
following form

g(0)2 dco2 (14)

= W flo = 2
M yae + @

Displacive type phase transition, rj > 0, can take place if A< %9),
nvhere the critical value of 9 is determined by the condition Al(2¢,0 = 0,
that is

2 ilo
3 x| fo = ) (15)
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Consequently, the occurrence of the disordering decreases both the limit-
ing value of the allowed energy of the zero-point fluctuations and the limiting
value of the temperature of the phase transition in the classical limit of high
temperatures: 1.0 = {1 (3/2)/,,} [1]. However, it has to be mentioned
that the transition into the state a = 0 can take place only if f0O 1, and
therefore formula (15) is valid only if/0 1. In the case /0 1, in accordance
with [I], only the state with o= 1 is possible and formula (1) is valid.

The explicit effect of tunnelling and the evaluation of the limiting value
of the quantum parameter Ain this case will be dealt with in a separate paper.
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T. Mitsui, J. Tatsuzaki and E. Nakamura:

An Introduction to the Physics of Ferroelectrics
Gordon and Breach Science Publishers, London—New York—Paris, 1976

The book issued as the first volume of the “Ferroelectricity and Related Phenomena”
series was in its original Japanese edition a textbook for advanced students. Though in this
rapidly developing field it is impossible to write down a truly systematic theory of ferroelectric-
ity, the book in its present revised and completed form is not simply an introduction to the
contents of the literature but a presentation of the present status of the field of ferroelectrics
in a systematic form. So it is suitable not only for students interested in this topic but also
for young scientists, particularly experimental researchers, concerned with ferroelectricity.

While in the first part of the volume the theory of ferroelectricity is built up on the
basis of experimental results based on the investigation of concrete types of crystals, in chap-
ters V—Y Il the reader can also get acquainted with the theoretical treatment of both order-
disorder and displacive types of ferroelectrics. In these chapters the emphasis is laid on the
theory of phase transformations in ferroelectric materials.

The appendicescontainthe domain structures and the chemical and physical data of ferro-
electrics and antiferroelectrics known so far.

Finally, the book contains a copious collection of references.

G. Groma

Molecular Fluids — Les Houches 1973

Edited by R. Balian and G. Weill. Gordon and Breach Science Publishers,
London—New Y ork—Paris 1976, p. 459

The volume contains the material of the Molecular Fluids Summer School organized
in Les Houches. As is iveli known, the term “molecular fluids” should always be used with
caution, because it has been created by necessity and is used only owing to the lack of a better
and more concise way of specifying the field in question. The subject is the physics of the con-
densed assemblies of large molecules, forming amorphous polymers or liquid crystals, or simply:
fluids of high viscosity, etc. The School, offering a fruitful discussion for the specialists, and now
the volume, publishing the lecture notes, both aim at bridgeing the gap between theoretical,
and experimental investigations in the field, where, tending to describe and understand the
nature of real matter, theoreticians and experimentalists have to master each other’s language
not only the words but also the notions and ideas. The volume contains the following contribu-
tions: Linear Response Theory (R. zwanzig), Correlation Functions (C. B rot), Dynamics
of Chain Molecules (W. H. stockmayer), Configurations and Dynamics of the Polymer Chain
(S. F. Edwarads), Viscoelasticity of Polymers (J. D. Ferry), Structural Problems in Liquid
Crystal Physics (R. B. Meyer), Nematodynamics (P. G. DE Gennes), Electrodynamics of
Liquid Crystals (. burand), and some special seminars.

l. Abonyj
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M. M1adjenovic: Development of Magnetic Beta-Ray Spectroscopy
Springer-Verlag, Berlin—Heidelberg—New York, 1976, p. 282

The book which appeared in the series “Lecture Notes in Physics” surveys the past
and present state of magnetic beta-spectroscopy.

First of all in a short historical review the most important stages of development are
given from the second decade of the century up to our days.

Separate chapters are devoted to different types of spectrometers: semicircular focused
ones, prismatic spectrometers (magnetic prisms), toroidal and trochoidal types; one chapter
about each type of magnetic lenses (short, long and intermediate). Similarly, individual chap-
ters are dealing with different types of special spectrometers, i.e. those with bidirectional and
higher order focusing characteristics.

Preceding the chapters dealing with the different instrument types there are separate
chapters on general issues, like the most important parameters and component parts of spectro-
meters, the basic characteristics and equations of electron movement and those of magnetic
optics. Further, among the chapters dealing with the different types of spectrometers, the
necessary and possible ways of magnetic field correction are given.

The final chapter of the book gives an account of magnetic spectrometers developed
on optical analogy i.e. which consist of two magnetic lenses with a magnetic prism between
them.

The book of Prof. M1adjenovic, the first monograph in the literature on beta-spectro-
meters, is really very easy to follow, and as far as magnetic spectroscopes are concerned, it
gives a complete summary of the different types of beta-spectroscopes. The author himself
has been working actively in this field, and the contents of the book originate from the univer-
sity lectures and seminar talks delivered by him at different Universities (Belgrade, Rome,
Cairo, Nashville).

It should be noted here that it is spectrometers that are nearly exclusively dealt with
here, other instrumental relations (like preparation of sources, or problems of detection) are
just touched or even not mentioned at all. No attempt is made to survey the results of investi-
gations carried out with beta-spectroscopes, though one might expect to find chapters about
them considering the title of the book. This field of research is extremely rich that is why the
material, in spite of its limitation mentioned above, makes a book of 300 pages. Anyway, it
might be disputable, whether certain types of beta-spectroscopes of historical interest only
(e.g. magnetic lens types) are worth the detailed discussion, as given in the book.

D. Berényi

Wolfgang Meiling; Kernphysikalische Elektronik
Akademie-Verlag, Berlin, 1975

The book published in the “Wissenschaftliche Taschenbicher” series is a very good
summary of the principles of nuclear electronics. Prof. W. Meiting defines the subject matter
as the instrumentation problems of data acquisition processing and handling but he omits
all problems of the regulation and control of reactors as well as the special electronic instru-
ments of high energy physics. Starting from the interaction of radiation with matter, the first
Chapter makes the reader acquainted with the most important features of detectors (G. M.
counter, semi-conductors, scintillation counters). In Chapter 2 a very good survey of pulse
amplifiers is given and also some circuit diagrams are presented. In the third Chapter the prob-
lems of nonlinear pulse shaping are reviewed. The subject of the fourth Chapter is the pulse
counter together with a universal scaler and the ratemeters. Chapter 5 is devoted to measure-
ment problems of time differences and time correlations. A good survey of pulse height analysis
is presented in Chapter 6. The last Chapter gives information on the on-line use of small comput-
ers and on CAMAC interfaces. This paperback book of small format is recommended to electro-
nicians and senior students, and also to physicists, engineers, medical researchers and all
specialists concerned with radioactive isotopes and other nuclear radiation sources.

L. Medveczky
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THE DETERMINATION OF TRUE DECAY TIME
OF FLUORESCENCE OF DYE SOLUTIONS
AT A VERY LOW CONCENTRATION

By
l. Ketskeméty, L. Gati, A. Gyé6ri and L. Kozma

INSTITUTE OF EXPERIMENTAL PHYSICS, JOZSEF ATTILA UNIVERSITY, SZEGED
(Received 23. V. 1977)

By determining the luminescence characteristics of dye solutions at a very low
concentration (10~8 1 0 mole/l) the effect of secondary luminescence cannot be neglect-
ed, even in the case of the integrating spherical cuvette, since the luminescence light leaves
the cuvette after several meters of “rambling”. In our present paper the calculation method
is described, considering the effect of secondary luminescence, taking into account the de-
termination of true decay time.

1. The method of determining the luminescence characteristics of dye
solutions at a very low concentration with integrating spherical cuvette has
been described in [1—4]. In these articles by determining the luminescence
characteristics — fluorescence spectrum, yield, decay time — the effect of
secondary luminescence was assumed to be negligible owing to very low
concentration (10~9—10-6 mole/1).

In the course of our later experiments on decay time, it has been observed
that the decay times determined on the basis of the method published in the
above mentioned articles showed a concentration dependence even in the
range of very low concentrations, namely T was increasing with the increase
of concentration. From the further fact that r', X" obtained by measure-
ments, the mean rambling time of the exciting and luminescence photons
respectively is of an order of several ns in the spherical cuvette (further
abbreviation G), in this way the luminescence light covers a path of several
meters in G, it has been assumed that the above mentioned variation in r
can be attributed to the effect of the secondary luminescence.

2. Instead of Eq. (14) of [1] ddrl = —JAfrl concerning ‘the time-

dependent part of density n' of primary luminescence photon gas, we start
from the differential equation

dn vl--+ dn Afl Af2 N
= --+ = o+ -
dt Vdt Tt Nir o Bi2r (1)

in the determination of the true decay time, where Apg is the number of
primary luminescence photons emitted by exciting photons in G during unit
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time, N,2means the number of secondary luminescence photons emitted by
primary luminescence photons in G during unit time, Njlr and Njir mean
the loss of primary and secondary luminescence photons, respectively, owing
to non-complete diffuse reflexion on the interior surface of G. (The loss of
escaped photons through uncoated areas of the surface of G can be neglected.)
Furthermore n' = nx-\- n2(nx, n2mean the density of primary and secondary
fluorescence photon gas, respectively).

Based on the consideration mentioned in [1], the following relations are
valid for Nflr and NfX

Nfir=nl— (1 - A') Ai , (2)
n

— ri*V— k{v) Fe-~AX (* - *)dt" (3)

r n Jo

Here k(v) is the absorption coefficient of the examined solution at the excit-
ing frequency v, R the reflexion coefficient at mean frequency of luminescence
light of the interior surface of G, r radius, V volume, nv density of exciting
photon gas, n refractive index of the solution, ¢ velocity of light.

The values of Nj2r and Nj2 concerning secondary luminescence can he
given in the same way

Nf2r=n2— (I-R")r*n, (4)
n
nf2= — V—TV "4 (* - 0o ff NO **"k(\V)d" dt (5)
r nJo LJ o

where f(v"), r\*(v") and k(y") mean the normalised luminescence quantum
spectrum, the function of absolute quantum yield, and absorption spectrum,
respectively, in the overlapping range of the spectra.

Substituting the formula nv, the density of photon gas, obtained by
solving the differential equation (11) [1], into the formula Nrx (3) — taking
into consideration the sinusoidal excitement of intensity N(t) = N sin cot
applied at phase fluorometer —

n,, = N sin co(t — x') ,
fws+ Sigt+ °a R ©®
n 4rm
here o is the angular frequency of the sinusoidal exciting fluxus, R is the
reflexion coefficient of the interior surface of G at the exciting light frequency v.
Having done the indicated integration, and substituting the formula obtained
for Nfl in the first part of differential equation (1), after integration we have
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the following formula for the time-dependence of primary fluorescence photon
gas density
na(t) = Alsincot —« —r" —r) . )

Here the value of constant Alis
N/V erf* se/n «k(v)
[ 3c 2]

3c 32
/o2 — (1 —R) o+ ck(v) 4 1 R) (14 w212
4rn 4rn

A

(8

According to Eq. (7) the density of primary fluorescence photon gas
follows the variation of the intensity of the exciting light with a phase delay
corresponding to time r -f- % + r* = t* Thus if no secondary luminescence
occurs, the decay time of the fluorescence can be obtained from delay time r*
measured by the fluorometer, based on the relation r = r* — «+ — r". Here
r+ and «- are the mean rambling time already mentioned above of exciting
and luminescence photon gas in the solution in G, respectively, which can be
determined by calculation from the formula given by solving the correspond-

ing differential equation

1 con

— arc tg 3¢
© k() - (1 -R) ©)

4r

and
| con
= — arctg
® , (10
Y =R

Since the reflexion coefficients R, R' of G are difficult to determine directly,
rambling time rO of the exciting photons in the solvent in G has been intro-
duced, which is immediately measurable in the integrating cuvette containing
the pure solvent. For in this case k(v) = 0 based on Eq. (9)

1 wn
xy — arctg
@
- - (11
A2 )
fa-
comparing this equation with Eq. (9) the formula
con
arc tg - con
@® ck{v) + (12)
tg TOoo
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is given. In case of the small arguments on the right side of Eq. (12) (with
tg @ (p approximation)

If Tgis measured either at v exciting, or at v' mean frequency of luminescence
and R, R' can be calculated from (10) and (11)

r (13)

we obtain a very simple approximative formula.
3. If the intensity of the secondary luminescence can he neglected, its
effect of r is to be calculated as follows.
We substitute the formula for nxin Eq. (7) into the formula written
for secondary luminescence photons Nj2 (5), and integrate according to
time t'. We substitute Nf2gained in the second part of differential equation (1)

v dn2
dt

N/2 Nf2r. m

Having solved Eq. (1/b) in similar steps as above, we obtain for the time-
dependence of density of secondary luminescence photon gas in G:

nt) = A2sincot —r' — 2r" — 2t) , (14)
where
N/V erj* (c/n)2 k(v
o * (c/2 k(v)
r 3c ) 2 Ur 21
1+ @) - 2+ 1 R 1@+ ck(v)+ 1 —R)
4rn 4rn 1
X Jrix{vr{v") k(v") dv" . (15)

From formula (14) it is easy to see that the density of the secondary fluores-
cence photon gas produced in G follows the variation of the intensity of the
exciting light with a phase delay corresponding to r' + 2t¢" + 2r.

The quotient of the intensity of secondary and primary fluorescence
light being proportional to the quantity obtained according to x — which
has been introduced previously in the course of secondary fluorescence cor-
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rection [5] — from Eq. (7), (14) and Eq. (8), (15) in the following formula

re2Wmax N2 cln

X
nlWmax ~ f ,
I+ <tfv) Q29 _ — R
( ) T 1 —R)
16
X r k(v'") dv" ~ - X (16)
Jo n y( + Q2T2) (1 + coV'2
¢ or]*{vf(vk(v")dv".
Jo
. 3c .
Here we substituted ---—--- (1 —R") from the approximate formula
4 rn
<™ eore/(3c/4m)(I — R") from Eq. (10) in case of small arguments.
4. The timewise variations of the primary and secondary luminescence

photons can be considered harmonical vibrations in phase delay as compared
to each other, and by superposing them we apply the relation concerning
superposition of harmonical parallel vibrations of equal frequency. Thus the
phase constant of the resulting vibration is

Ansin a, 4- A, sin a9 .
tga = — 1--—-"1-Y- | - (17)
Axcos oq + J12cos a2

applying it to our ~case « = arctgcor*, sgq= arctgco(r' + r" + r),
a2= arc tg co(r' + 21" + 2t).

We denoted the delay time of primary fluorescence occurring together
with the secondary luminescence with r*, measured directly by fluorometer.
We come to the formula containing the true decay time T by adequate tri-
gonometrical transformation of Eq. (17), by substituting the formula for
a, oq and <2, and by denoting the value of A,JA: calculated in the way given
in Eq. (16) with K.

* v+ oaAr2 + 2T)2(T1+ NN + Ky 1+ oo + 12 (2+ 2t)
Y1+ o2(r2+ 2t)2+ K j/I + to2(ti + t)2

(18)

where rx= r'+ r* and r2= r'+ 2r".

Eq. (18) contains true decay time r implicitly and as it is easy to see from
Eq. (16) K is also dependent on r, therefore instead of the explicit, seemingly
very complicated formula of decay time, 7 is calculated from the equation
above with the successive approximation method with a pocket calculator.
Starting from the first approximate value r° = T* — r' — r" in the case of
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neglecting secondary luminescence (K = 0) the calculation can be completed
quite quickly with arbitrary accuracy.

The details of the method to determine 7’ and 7" in Eq. (18) are given
in Part 3. The “overlapping” integral in the second part of formula K = 4,/A4,
(16) has been determined with a graphical integrating method by using the
results of the measurements 7*(»”), f(»") and k(»") taken from [2].

5. From our several experimental results on dye solutions, we publish
our data obtained on Rhodamine 6G aqueous solution as an example. The
dye concentration was varied from 2.5 - 10-% mole/l to 2.5 - 10-7 mole/l on
a logarithmic scale. 6 per cent acetic acide was applied as an additive material.

We placed the integrating cuvette of 4 cm diameter, having coated the
exterior surface with diffuse reflecting MgO in a way described in [6] into
the phase fluorometer applied in [7, 8].

The luminescence was excited by the light of 546 nm wavelength of a
light source type OSRAM HBO 450 and the exciting light scattered in the
solution was eliminated with a crossing filter type OG3.

The experimental results are shown in Table I and Fig. 1, where 7* is the
delay time measured directly with the fluorometer, and 7%(= 7* — v’ — 7"
decay time uncorrected for the effect of secondary luminescence, 7 the true
decay time corrected for the effect of secondary luminescence. Rambling time
7” in Table I in our case equivalent to rambling time 7, is calculated on
the basis of Eq. (10), and rambling time 7’ based on Eq. (9) by using absorp-
tion coefficient k(») is indicated in the Table as well. The Table also contains
the value K calculated from Eq. (16).

As can be seen on the curve giving the dependence of 7° on dye con-
centration, the uncorrected decay time similarly to the ones published in
numerous previous references [6—10] increases with the concentration due
to the effect of secondary luminescence. The corrected true decay time 7
holds continually under 7°. Disregarding the value 7 belonging to the last,
highest concentration (where according to [1, 2] the condition k(») - r <~ 102
to produce a homogencous and isotropic photon gas is by no means given)
a mean value 4.4 ns is given for decay time (with a mean error less than
10 per cent). This value agrees to a good approximation with the results
concerning this dye, measured by several authors, by means of laser pulse
fluorometer (e.g. [10—12]) it is, however, considerably greater than our
values determined in a concentration range 10-3—10-3 mole/l [13]. This
deviation seems to be right, based on the data of our experiments up to the
present, and is due to physical processes depending on dye concentrations.
The fact is also worth mentioning that the deviation of 7 from 7° is important
even at the lowest concentration applied (=20 per cent) which exceeds the
error of measurement considerably. Consequently, the correction to the
effect of secondary luminescence cannot be neglected even in the case of
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Fig. 1

Table 1

Decay time of Rhodamine 6 G aqueous solution at several dye concentrations

Dye concentr. T f-= * a. T
’ - K
(mocle/l) () (ns) (ns) (cm'ui) (ns) (ns)
25 +10-8 18.17 7.48 6.22 1.288 « 10-3 0.0928 4.47 3.78
5 «10-8 18.95 7.48 5.31 2.577 « 10-3 0.1829 6.16 4.79
1 «10-» 18.51 7.48 4.09 5.153 « 10-3 0.3667 6.94 4,52
25+10-’ 17.22 7.48 2.40 1.288 « 10-2 0.9376 7.34 3.11

solutions of the lowest concentration showing an intensity of luminescence
still suitable for measuring, especially in case of Rhodamine 6G and similar
dyes showing a strong overlapping of absorption and emission spectra.
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Three different parameters; d (density), y (thermal conductivity), and a (electrical con-
ductivity) have been used to investigate the crystal growth in two Se—S glassy alloys. The
kinetic analysis indicates that the crystallization process takes place through switching
of the chemical bonds with energy 26 —28 kcal/mole.

Introduction

The quantitative study of the dependence of the crystallization rate of
Se—S alloys on the percent concentration of S-atoms showed a minimum
rate at about 5 at. % S [1, 2]. This has been explained by the microhetero-
geneity of the states of S in both chains and lings of Se. The minimum micro-
heterogeneity in amorphous Se—S alloys is expected to lie between SSe% and
SSe [2]. At the same time, the number of crystalline centres increases, also,
in this region (SSe50 — SSe2)), while the rate of linear growth of crystallites
drastically decreases in the presence of S.

Experimental

SSe325 and SSe25 glassy alloys have been prepared by quenching from
the melts [3]. Each sample has been subjected to isothermal aging at three
different temperatures between Tg and Tm, namely 70, 80 and 90 °C. The
process of aging led to great change in all the measured physical quantities;
the density (d), thermal conductivity (/) and electrical conductivity (0). The
measuring techniques were described in previous publications [4].

Results and analysis

Fig. 1 shows the annealing time dependence of d, £X° log 20 an(l *
for SSe325 and SSe25 samples isothermally aged at 80 °C. The dependence
of % a or Ea shows firstly a miscellaneous variation referring to the presence
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of an induction period [5, 6], after which the growth of the crystalline phase
proceeds monotonically with time. The induction period, which may be due
to a relaxation in the mechanical stresses possibly present in the amorphous
matrix or due to destruction of some chemical bonds, is not detected during
the density measurements.

At the other two aging temperatures, 70 and 90 °C, a similar behaviour
has been found but with different durations. Table | gives the average initial-
amorphous and final-crystalline values of the measured quantities as calcul-
ated for the different temperatures.

Table |

Values of the initial-amorphous and final-crystalline physical quantities in the temperature
range 70—90 °C for both SSe< and SSe2xi

Initial value Final value
Physica] property
SSes2s SSe25 SS &6 SSes2.5
d (gl/c.c.) 4.26 4.19 452 4.44
- log >0 (O-* cm -1 9.46 + 0.07 9.42 +0.05 587 : 0.15 562 + 0.12
Ea (eV) 0.96 10 0.51 0.60
J20 (cal/cm S °C) 0.017 + 0.003  0.04 0.006 + 0001 o0.006 :+ 0.001

For each composition, it can be found that the period of induction
decreases from about 2.5 hr at 70 °C to 1.5 hr at 80 °C and nearly disappears
at 90 °C. Also, the time required for attaining a complete crystalline modifica-
tion is decreased from about 15 to 5.4 hr with the aging temperature (70—v
90 °C) indicating an increase in the rate of crystallization.

The increase of S-content in sample SSe25 as in SSe325 slows down
the process of crystallization. It also causes a little decrease in a20°t E® and
X depending on the states of Sin Se which, in turn, depend on temperature [7].
However, the big change of a2o and Eo- at any aging temperature is mainly
due to the disorder-order transformation of the samples. The X-ray study
of the resulting solids showed that they have hexagonal structure. Heat treat-
ment, however, causes the formation of microcrystalline areas in the disorder
mode and an increase in the number of dispersed centres by which phonons
are scattered. This leads to increase the density (d) during the transition
and decrease the distance between the chains. That is, decreasing the phonon
free path and hence the value of % during the transition.

These experimental data are presented in terms of the formal theory
of phase transformation developed by Avrami [8]. It gives the untransformed
fraction 0 at any time moment t by the equation

0 = exp. [-Ktn] , 1)
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where d, log o, Ea- and y have been considered to be characteristic quantities
for the two-phase system [3] (the part B—C of curves of Fig. 1). In terms
of these quantities, 0 has been calculated using the suggested empirical
equation [9];

e = (Hc- H)I(HC- Ha , 2)

where H stands for a measured characteristic property which can be considered
linearly dependent on the crystal content.

Fig. 1. The annealing time dependence of log <X, Ea, and d for SSe25and SSe3R6samples
aged at 80 °C

The parameter re of Avrami's equation, defining the mechanism of
nucléation and crystal geometry [10], has been calculated in terms of the
experimental values of 0 from the equation

In(-ln 00 = In (K) + reln (1),

where the plot of In (—In 0t) vs In (f) gave linear dependence for SSe325 and
SSe25 at 70, 80 and 90 °C. However, for each composition, the values of re
obtained on the basis of log a, Eirand y agree fairly with each other, whereas
increasing the aging temperature causes a decrease in reto a limiting value
about unity (Table Il). This means that the growth is in one dimension and
gradually changes from sporadic to predetermined one [10]. At the same time,
re shows little increase with the increase of S-content, from 2.99 to 4.29 at.%.
This may mean that the presence of S-atoms, in such concentration range,
leads to increase the possibility of nucléation of the crystalline phase.
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Table 11

Values of the parameter n of Avrami’s equation as obtained from slopes of the lines In (—In ©)
vs In (t) at the temperatures 70, 80 and 90 °C for both SSe3l5and SSe22s

n

Composition

70 °C 80 °C 90 °C
Sre3b l.i 0.93 0.87
Sse25 1.2 1.10 1.00

The rate constant (K) of the disorder-order transition process has been
calculated from Eq. (3), for all the intermediate states during the transition
at the different temperatures. It has been found that the rate K has a con-
stant value and does not depend on 0. This may be attributed to the high
degree of dispersion of the order (crystalline) phase in the disorder (amor-
phous) matrix as a result of the large number of the formed nuclei in the
disordered volume.

The mean constant rate of crystallization (K) showed an increase with
the aging temperature, from 4X 10-5 at 70 °C to 8.7 X 10-4 at 90 °C for SSe225.
Decreasing the S-content in the SSe325 sample gives the respective values
2x10~4and 10~3 for K.

It is possible, however, to prove that the empirical relation (2) used
to calculate the different values of 0 indicates that the conductivity a of a
mixture of two-phases highly dispersed in each other; amorphous (of con-

ductivity aa) and crystalline (of conductivity ac) can be represented by a
formula

ffmix = orf a«-®). (4)

Such latter formula is similar to that obtained for a mixture of two metallic
phases randomly distributed in case of alloys [11].

The plotting of In K vs 1/T gave a straight line relationship for both
SSegand SSe25. The slopes of these lines represent a measure for the activa-
tion energy of the crystallization process E [9]. On these conditions, the
average value of E calculated on the basis of the electrical conduction (a)
and the thermal conduction {% has been found to be 26.16 for SSe3®5 and
28.15 kcal/mole for SSe25. This means that increasing the S-atoms in the
sample, from SSe325 to SSe25 makes the process of crystal growth easier.
However, any of these values obtained for E is less than the energy of destruc-
tion of the Se—Se or S—S bonds which, respectively, are 57 and 49 kcal/
mole [12]. It is also less than the energy of self-diffusion of Se-atoms which
equals 53 kcal/mole [13]. This means that the presence of S-atoms within
such concentration range (2.99—4.26 at.%) does not affect the switching of
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the covalent bonds known for pure Se during the viscous flow or the crystalli-
zation process [12].

To provide more information about the physical processes taking place
during the amorphous-crystal (a- a-¢) transition, a piece of SSe25 sample was
sealed in an evacuated (10-4 mmHg) pyrex tube provided with two-tungsten
electrodes [9]. The sample has been subjected to different isothermal aging,
ranging from 98 to 132 °C. At each temperature, the electrical conductivity
(u) has been recorded continuously during the crystallization process.

Fig. 2. The continuous variation of log a with time for SSe226 as isothermally aged at 117 °C

A typical spectrum for the isothermal time variation of log a is given
in Fig. 2 for SSe25 sample aged at 117 °C. The initial value of log a cor-
responding to the prepared amorphous state is —9.63 (point a) and reaches
a value r—5.84 corresponding to the final crystalline modification (point d)
after a period of 165 min. During this period, three different stages can be
distinguished:

ab: a miscellaneous change in a due to a relaxation accompanied by
an increase of temperature of the sample;

be: a less pronounced increase in a due to nucléation and growth of
electrically isolated fine crystallites on the expense ofthe amorphous phase, and
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cd: a big increase in a by more than two orders related to the growth
of cross-linked non-isolated crystallites forming a more ordered crystalline
network.

Increasing the annealing temperature leads, generally, to decrease in
the total time of the crystallization process, from 355 min at 98 °C to 87 min
at 132 °C, as well as that of the individual stages during the transition.

Fig. 3. The plotting of the function In(—In®)vs In (t) as calculated from Eq. (2) on the
basis of loga for SSe25

Kinetics of the a —y ¢ transition has been studied for SSe225 sample in
the range 98—132 °C by applying Avrami’s principles. The quantity log a has
been used as a characteristic quantity and so the untransformed fraction 0
was calculated using Eq. (2).

Fig. 3 shows that plotting of In (—In0) vs In (t) yields straight line
relationships at the different temperatures. The parameter n of Avrami’s
equation as calculated from slopes of lines of Fig. 3 decreases from 1.24 to
1.08 with temperature (98 — 132 °C). The relation between log K and 1/T
given in Fig. 4 indicates an activation energy for the crystallization growth
E = 29.28 kcal/mole. Such value is in agreement with that obtained from
studying the electrical and thermal conduction during the transition step
by step.
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Evidently, the results confirm the suggested explanation for the mechan-

ism of crystallization of the samples. That is, the a —mc transition generally
proceeds through nearly one-dimensional growth with binding the terminals
of the formed crystallites as they come close to each other forming the final
crystalline modification.

Fig. 4. The relation between the logarithm of mean crystallization rate (1C) and the

reciprocal of absolute temperature (T) for SSe22s
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The field equations for Einstein—Maxwell fields admitting a normal null Killing
vector are reduced to a 2-covariant system of equations, which can be derived from a varia-
tional principle. Using the invariance of the associated Lagrangian one can generate a class
of Einstein—Maxwell fields from the corresponding vacuum solutions.

1. Introduction

For stationary Einstein—Maxwell fields it is possible to construct from
the field tensor Fab and the time-like Killing vector scalar potentials, and
the field equations follow from a 3-dimensional variational principle [1, 2].
The Lagrangian contains these potentials and their first partial derivatives.
The SU (2, 1) symmetry [3] of the Lagrangian leads to the possibility to
generate new solutions [1]. Similar results hold for a space-like Killing vector.
The trajectories of a non-null Killing vector determine a 3-dimensional space
V3 [4], and the Einstein—Maxwell equations can be written as 3-covariant
equations over V3 This relevant property breaks down in the case of a null
Killing vector. Therefore, this case has been excluded from considerations on
generating new solutions. However, a twistfree null Killing vector ka

k (ab) = Kk® = o, ka= Wua (1)

admits finite 2-dimensional surfaces V2 orthogonal to ka [5]. The reduction
of the field equations on equations over V2 is possible. Moreover, we can
introduce scalar potentials and find a simple Lagrangian for Einstein —
Maxwell fields under the conditions (1) (with W = 1).

Debney [6] investigated expansionfree Einstein —Maxwell fields which
are of Kerr—Schild type and for which the preferred null direction is simul-
taneously an eigendirection of the electromagnetic field tensor Fabe In place
of these restrictions we impose the conditions (1) on the null vector field.
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2. Coordinate system

In particular, the conditions (1) imply that ka is a geodesic, shearfree,
expansionfree, and twistfree congruence. We introduce coordinates x*—
= (x,y,v, it) adapted to this null congruence [5],

Y=63, Y= WO\ = g3i. @)

The space-like coordinates XA = (X,y) are chosen orthogonal to ka It is
always possible to take a conformally flat metric in the 2-spaces V2 (it,v =
= const).

| p2 0 0 ml \
0 0 m2 .. .
Sij 0 %2 0 W gij. = 0, Vdet (-gij) = Wp2. (3)
\Y m2 w -2H /

In general, a coordinate transformation making W — 1 would destroy the
«-independence of gy. The following transformations preserve the form of the
metric (3):

(a) ' = F(z,it), z— X + iy,
(b) it = h(u), (@)
(c) vi= v+ g(xy,

By means of the last transformation we can achieve m2= 0.

3. Electromagnetic null field. Scalar potential
For a geodesic null congruence ka one obtains from the identity
2kO;[6,c] = kdRve 3)

an equation for the derivative of the complex expansion Z with respect to
the affine parameter v [8],

*f+ z2+ od= - L Rabk’k<>. (6)
dv 2

Thus, the conditions (1) have the immediate consequence

Rabkakb= 0 (7)
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From the conditions (1) we get the relation

Kb = *>,ab Wa Ua= 0 - (8)
Calculating the contraction of the Ricci identity (5) we obtain
kbh = Ra% = Xka. 9)

i.e., kais an eigenvector of the energy-momentum tensor Tab' In Section 5
we shall show that the electromagnetic field is necessarily a null field,

Fab = 2p\akbh Paba= 0 » (10)
Tab = nkakb, n=paa.

The eigenvalue Ain (9) must vanish,

9= 0= WIiAA A = 1,2, (11)

so that the function W satisfies a potential equation in V2 In the case of a
time-like Killing vector the complex electromagnetic potential ® has been
defined by

£aF*h — Fbes Fab+  ecbodFad (12)

[1]. It does not make sense to substitute £“ by ka in this equation. The in-
vestigation of the relation

2A[bai = Fab= 2plakb] (13)
in the metric (3) with (2) shows that with the aid of a gauge transformation
Aa= A + Xa (14)

the vector potential Aa can always be transformed to the form
Aa= $unod V= “)o (15)

The gauge function %is linear in v. Eq. (15) defines a real scalar potential m.
The vector potential (15) satisfies the Lorentz gauge condition

Aaa= 0—mpaka= 0 . (16)
Thus, the Lie derivative of the field tensor

Fab= 2Vlautg (17)
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with respect to ka vanishes. Fab determines the vector pain (13) up to aterm
proportional to ka. This freedom can be used such that a gradient y>a appears
in the representation (17). The Maxwell equations

Fabb= —V>ba= 0= waAA (18)

demand that the potential mpis the real part of a function/(z, u) analytic in z.
For the complex self-dual field tensor F*bwe get

F*= 2/[aulb [ = /(*>«) = V + up- (19)

The real and imaginary parts of f are related by the Cauchy—Riemann
equations
<PA = ~ eABWA » (20)

so that the full system of the Maxwell equations

Fff=0 (21)
is fulfilled because of (18).

4. Einstein equations

We have to solve the Einstein equations for the null field (17),

Rab = xY.,clCuanb * (22)

The solutions are contained in the general class investigated by Kundt [5, 9].
We use the coordinate system (3) and apply the transformations (4) to
simplify the metric.

Starting with the potential equation (11) we have to distinguish two

cases:
l.
1.

=1, (23)

w
W = x.

The first case is characterized by the existence of a covariantly constant
null vector,

W — 1 :kab= 0. (24)

In the second case the coordinate transformation (4a) has been used. Without
the special choice W = x in case Il we get from the equations RAB = O0:

p2= W~12W AW A . (25)
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The Eqgs. (22) lead to the statements listed in Table I where the transforma-
tions (4a—c) used are indicated.

Table |
| 1.
T =0 - w = X (4a)
rab = 0: px = 1 (4a) pr=x-ilt (4b)
RiA =0: ml= 0 (4a,c) ml= N (u)yx~ (4c)

N(u) is an arbitrary function of u. The last field equation of (22) is a dif-
ferential equation for the remaining function H. In the case Il we introduce
a new function M,

M X-1H + — x-W |I— y- — N2 (26)
3 (du 3 ,

The second term in (26) takes into account the nonvanishing function m™
In the case | the functions H and M coincide. Then, the total system of the
Einstein —Maxwell equations reduces to very simple equations over the
2-spaces V2 (u, v = const) or, equivalently, over the Euclidean plane:

VAA= 0, (27)

flwm,)a= *vavu>w=1; W=x.

Derivatives with respect to n do not occur.
We consider the two cases separately.

Case I. (W = 1)

In terms of the complex coordinate z we have the equations

921 a3/ al
VEY UHD g, 3z 3z
leading to the final form of the metric
ds2 = dzdz -\- 2du dv — 2H du2, (28)

H=xff+g+g, f =1z u), g=g(u),

where f and g are arbitrary analytic functions of z depending arbitrarily on
the retarded time coordinate u.
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If the gravitational field is entirely caused by the electromagnetic null
field, the solution of the homogeneous equation for H can be put equal to
zero, and H isjust the squared modulus of an analytic function. The solutions
(28) are in general of Petrovtype N. For the special function/= a(u) 2 they
are even conformally flat [6]. In the case under consideration we can derive
the field equations (27) from a variational principle with the Lagrangian

L = r tAr A

Fr=H —~ y?+ iy?.
2

The complex scalar potential F contains the gravitational potential H as well
as the electromagnetic potential y= The invariance transformation

F'= eal (30)

generates solutions of the Einstein—Maxwell equations from vacuum pp-
waves (ip= 0). The parameter a in (30) can depend on u.

Case Il. (W =x):
In this case the field equations (22) lead to one single inhomogeneous

differential equation for the real function M,

2(, + i,U it + » + 9T U*M M . (31)
9302 02 02 02 02

The solutions are of Petrov type Il or D (5). The metric

ds2 = v (dx2 -f- dy2) -j- 2xd udv — 2xCx2du2, (32)
X
\p = Cx, C = const

provides the simplest example of an Einstein —Maxwell field of this kind.
It can be interpreted as a stationary cylindrically symmetric field with rotat-
ing charges and curvature singularities on the axis of symmetry. If the electro-
magnetic field is switched off, the solution is not flat: For C — 0, the solu-
tion (32) is the static Levi—Civita metric which is of Petrov type D and
admits two null Killing vectors.
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5. Electromagnetic non-null field

Finally, we have to investigate the case of an electromagnetic non-null
field with the eigendirection ka,

Fab - ~ F{fifak)] -F t[a;]), Tai, — ) rwrmy (33)

The complex null tetrad (ra, ra na ka) is adapted to the eigendirections of
the electromagnetic field tensor. The eigenvalue [in Eq. (9) must not vanish
in this case

(2p*W)-'WiAiA= "F F 0 . (34)

We consider the Einstein equations

(@ Rn  R2i—0—R12,
Fab = XTAB — —}p23AB _ (35)
(by Rn + Ri2= —2Ap2.

From Eq. (35, a) we obtain
YWwWX= - dA» " v , g-*= A(W,u), W p\IV AWIA) (36)
3w

where A(W, u) is an arbitrary function of its arguments. From the relations
(34), (36) it follows that there exists a function Y = Y(W) satisfying the poten-
tial equation Y AA= 0, sothat we can put Y = X. The remaining Eq. (36,b)
requires 1= 0, which is contradictory to the premise (34). Therefore, under
the conditions (1) solutions of the Einstein—Maxwell equations with electro-
magnetic non-null field do not exist.

6. Summary

If the existence of a twistfree null Killing vector ka is presumed, the
Einstein—Maxwell equations can be reduced to the system (27). These equa-
tions are derivable from a variational principle with the Lagrangian (29),
provided that ka= wua (covariantly constant null vector). Only electro-
magnetic null fields are compatible with the conditions (1).

In this paper we have shown that there exists an internal invariance
group which can he exploited to generate pp-wave solutions in the Einstein-
Maxwell theory from the corresponding vacuum solutions. Of course, the
resulting metrics are well-known. The main result is the new generation
theorem for solutions admitting a null Killing vector.
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To find Einstein—Maxwell fields with twisting null Killing vectors, it
might he useful to apply similar methods: introduction of scalar potentials,
reduction to equations containing only derivatives with respect to two spatial
coordinates.
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This note deals with the relation between the Governing Principle of Dissipative Pro-
cesses and the Lagrangian thermodynamics of Biot. The governing principle is introduced
in its universal form and then the flux representation is deduced as a partial form of it
for the heat conduction phenomenon. Finally, the Lagrangian thermodynamics of Biot is in-
troduced in its original form and it is compared with the flux representation for heat con-
duction in solids. It is shown that for heat conduction phenomena for which the Lagran-
gian thermodynamics was proposed and applied by Biot, it is equivalent to the flux re-
presentation of GPDP.

Introduction

It is well-known that the non-equilibrium theory of irreversible pro-
cesses was initiated by o nsager in 1931 [1, 2]. He proposed that the irrever-
sible phenomena can be expressed by phenomenological relations of the
general type: i

Jo= 3 ANX* ([-1,2...1) (1)
fcai

stating that any current J-, is caused by contributions of all thermodynamic
forces X,-. The coefficients LIk (i, Kk = 1, ...,/) are called the phenomenological
coefficients. onsager's fundamental theorem states that the matrix of
phenomenological coefficients Lik is symmetric, i.e.,

Lik = Lki (i,k = 1,2 .. 1) . (2)

These symmetries are called the o.sager reciprocal relations and they
express a connection between two reciprocal phenomena which arise from
mutual interference of simultaneously occurring irreversible processes.

Using these phenomenological relations and the reciprocal relations
Gyarmati [3, ¢, 5], in 1965, formulated a variational principle which is
valid for the linear, quasi-linear and non-linear systems of dissipative pro-
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cesses and, therefore, it is called the Governing Principle of Dissipative Pro-
cesses (briefly: GPDP). In its most general form, it is expressed as

SJjtr - W - ®)dv= 0, 3)

where a denotes the entropy production per unit time and volume and it can
be expressed as

°=2 Ji-X"O0. (4)
1=1

It is a positive definite quantity according to the second law of thermo-
dynamics. It should be noted that in (4), f represents the number of inde-
pendent current densities, J,, and thermodynamic forces, X/. Using (1), a can
be given as the homogeneous quadratic expression of the independent thermo-
dynamic forces, i.e.

o - *X*A Q. (5>

2
i,k—

The alternative forms of (1), (2) and (5) are also obtained when the pheno-
menological coefficients Lik are expressed in terms of the resistances Rik.
The constitutive equations (1) take the form

X, =2 R""x (»=1,2,.../), (6>
=

where Rik and L ik satisfy the relations

2 LimRmk — 2 = Nk i,k=1,2,...,/) . )
m=I m=1
Here dik is the Kronecker symbol, i.e. 6jk= 1; i = k; dik= 0; i & k. Thus

the alternative reciprocal relations are
Rik= Rk (i,k= 1,2,...,/) . (8)

Using (6), a can be expressed in terms of currents as
crr 2 Ridi (9>
ik=1

The forms of a in (5) and (9) are called the force and flux representations
of the entropy production. These terms are very appropriate butitisimport-
ant to note that expressions (5) and (9) of a are based on the validity of
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linear constitutive equations (1) and (6), respectively. The most important
fact is that the expressions (5) and (9) for a may be considered now as local
potential functions with respect to currents and forces, respectively, due to
the validity of the symmetry relations (2) and (8). More exactly we can accept
the expressions (5) and (9) of a as non-equilibrium local potentials for linear
theory, if and only if the onsager’s reciprocal relations are valid.

However, if we accept the validity of onsager’s relations, we can
directly define the non-equilibrium local dissipation potentials, W and ®, in
the following homogeneous quadratic forms [4].

Y(X, X)» -- 2 Li*i «X,> 0, (10)
* jk=1

2 ikl (1)

which correspond to entropy forms (5) and (9), respectively. These potential
functions are equal to half of the entropy production in case of the validity
of linear laws and reciprocal relations. Hence 4* and ® are the local measures
of irreversibility and they differ from one another only in the way of descrip-
tion of the non-equilibrium state. The potential character of W and & can
be seen from the relations

Jo- N =2 Likxk (£=1,2,.. ¢.0) , (12)
8X, |
0

Af— =J'Allc (£=1,2,. (13)
8Jf k=1

which represent the linear constitutive relations (1) and (6), respectively.
Substituting the expressions for <, ® and & from (4), (10) and (13),
respectively, in the principle (3), it becomes

1 f
~ 2 eva T 2 (14)

where X-= VH" bas been used for the dissipative forces X,. It should be not-
ed that in the case ofirreversible transport processes the forces can always
be generated as the gradients of certain ‘I'” variables which are state va-
riables and simultaneously internal parameters with respect to the forces [3]
[4]. It should also be noted that the variational principle (14) is operative if
and only if, the balance equations

st+ Vel = a (E=1,2,....0) (15
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are regarded as auxiliary conditions for whose variation the following restric-
tions [3]:
K@ —ai)= —HVeJ)= V «&), (i= 1,2,....,/) (16>

are valid. Here p-is the partial time derivative of the density p- J- is the
corresponding current density and <, is the rate of production per unit time
and volume.

Flux representation of GPDP

The flux representation of the principle can be obtained from the
Governing Principle of Dissipative Processes simply by varying it with respect
to currents only. It is obvious that in (3), y)is the functional ofthermo-dynamic
forces only and therefore its variation with currents is simply zero. Thus (3)
in this case, reduces to

0J,[a—0]dv = 0,
which with the help of expressions for a and ® becomes

VI, - RnJi m3k dv = 0. (7)

* k=1
It may be mentioned that the original formulation of Onsager’s principle
of least dissipation of energy was in flux representation and the variation
was taken, naturally, with respect to currents only.

Since our aim, in this paper, is to discuss the relation between this
partial form of Gyarmati’s principle and the Lagrangian thermodynamics
which was formulated originally for heat conduction problems, we shall
formulate the partial principle (17) for the purely heat conduction phenomena.
Let us denote the heat current density by J9 and the dissipative force by
VT which represents the temperature gradient. Entropy production, a, in
Fourier picture [4] becomes:

a= —JqeVT]>0. (18)
The constitutive equation for heat conduction phenomena is well defined by

Fourier’s law
3q= —AVT, (19)

here n denotes the coefficient of heat conduction. The alternative form of
this constitutive relation may be expressed as

VT=-i-J9. (20)

A
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For the case under consideration, the potential function, ®, is

) 3> 0. (21)

Using (18) and (21), the principle (17) for the heat conduction phenomena
becomes

0 0. (22)

We have already mentioned that in the flux representation, the principle is
varied with respect to fluxes only, while the forces are kept constant. Per-
forming the variation, (22) becomes

6jqdv = 0 23
H+T,< 1 (23)

In the next Section, we shall show that the Lagrangian thermodynamics
of Biot reduces to the form (23) when the phenomenon of heat conduction
is considered.

In (23) the element of volume, dV, is arbitrary, therefore, it gives

which is nothing but the constitutive relation (20). Thus it is to be noted that
flux representation of GPDP leads to the constitutive equations only. It
means it is useless for the practical purposes. This was the reason for the original
formulation of Onsager principle of least dissipation of energy not having
received any attention.

Lagrangian thermodynamics and its equivalency with flux representation

Since Biot [6, 7, 8, 9] treats mainly heat conduction in solids, we shall
focus our attention on this phenomenon. In this case the internal energy
balance without, source term is

— +Vel=o0, (24)
9*
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where 1 denotes the specific internal energy and J?is the heat current density.
Biot [6, 7, 8, 9] introduces the field quantity, H, defined as

94

at

(25)

that is, heat current density Jqis a priori defined as the partial time derivative
of something labelled by Biot as H and called ‘heat flow’ or ‘heat displace-
ment vector’. It should be noted that there is, however, no macroscopic
physical quantity, the time derivative of which would be identical to the
heat current density. In general, there are no physical quantities from which
the conductive current densities of dissipative processes may be generated
by time derivation. Consequently, Biot's method (Lagrangian thermo-
dynamics) is based on a physically empty assumption (25). Using (25), the
internal energy balance (24) was written by Biot [9]:

it VeH=0 (26)

which was considered analogous to a holonomie constrain in classical mechanics.
The temperature field T(r, t) was assumed in the form

T= T(,t; qvg2..., qn) . 27)

Taking the boundary conditions into considerations for H, Biot determines

the corresponding field H from (26) as
H S H(r, f; qMg2 +++,0n) . (28)

In other words, the field H was assumed to be a given function of the space
co-ordinates r, of time t and of a certain number of parameters qv g2 .. ., gn.
These parameters are unknown functions of time and are considered as
‘generalised co-ordinates’ by Biot. Using the expressions (27) and (28) for
the field T and H respectively, Biot formulates his ‘fundamental variational
principle’ as [9].

H “
I VT + OHdv = 0 (29)
which is essentially the reformulation of the Fourier’s law

H=1J?= -AVT.

Thus as a variational principle it reproduces only the constitutive relations.
The situation is same with the flux representation of GPDP as we have
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already seen. As an approximate variational method for the field quantity H,
the formulation (29) contains Ritz parameters qv g2 .. gnwhich are unknown
functions oftime. Regarding this point Fintayson and Scriven’s [10] remarks
are worth quoting: “The functions qv g2 ... gn, which are analogous to
variational parameters in classical variational method are named generalized
coordinates by Biot, who unfortunately failed to distinguish between exact
and trial solutions”.
Let us accept the variation

"o

dH = qi, (30)

1=1 9g,

which was used by Biot [9]. Variation with time becomes

3H " 9H .
H B ) o (31)
dt - fei qut 4
From (30) and (31), we get
aH an (32)
94, 9g,m
Consequently, principle (29) with the help of (31) becomes
I VT+~ . =0, (33)
i=i 9g,
which with (32) yields
H ; -
VT + J-Jg_bg,.di; = 0 (34)
i=i 9Ci
Finally, with the help of (25); (34) reduces to
VvT+i X199 g o - 0 (35)
A 1 9qt

This expression does not contain the field H and therefore, it may be remarked
that there was no necessity of the field H. Considering the variation of J?(r, f)
in the usual sense associated with the variational principles; (35) or (19) yields

V T+l 6j,,dv = 0, . (36)
A
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which is nothing but the partial principle (23). Thus Biot’s variational
principle (29) reduces to (36) which is nothing hut the flux (i.e. only partial)
representation of governing principle of dissipative processes [3, 4]. However,
for heat conduction phenomenon, this principle was already established by
Onsager iN 1931 [1, 2]. We therefore conclude that Biot's Lagrangian thermo-
dynamics was not a new formulation and it is based on a physically empty
and incorrect hypothesis represented by (25). The criticism of this type of
assumption is given by Truesdert (see [11] p. 128).

*
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In this investigation we have obtained from ‘Curzon particle’ solution a coupled elec-
tromagnetic and scalar meson field solution. We have studied the nature of the singulari-
ties of this solution through the evaluation of Kretschmann curvature invariant along
curved trajectories approaching the origin. It has been shown that singularity in gene-
ral is located along power law trajectories approaching the origin except for certain values
of the power index.

I. Introduction

The problem of singularities in general relativity is one of fundamental
importance since it naturally emerges in the theory. GAUTREAU and ANDERSON
[1] have shown that the ‘directional singularities’ occur in the case of the
Curzon [2] field for positive mass. Their study is based on evaluating the
Kretschmann curvature scalar o = Ry, R*, where Ry, is the Riemann
tensor. They have shown that « tends to infinity for every straight line tra-
jectory approaching the origin except along the z-axis which indicates the
property of ‘directionality’ associated with the intrinsic singularity at the
origin. STACHEL [3] has analysed the same problem further and shown that
in the case of ‘mass’ being positive the nature of the intrinsic singularity is
not ‘point like’. GAUTREAU [4] has shown that in the case of certain class
of Weyl gravitational fields generated by the Newtonian potential of a rod,
the equipotential surfaces converging on the coordinate location of the
singularity become non-zero only when the singularity has directional pro-
perties. In a later work, GAUTREAU [5] has investigated the case when the
zero mass scalar field is present. The above study of GAUTREAU has been
extended by us (DATTA and RAo* [6]) to the case when the superposed field
is coupled zero mass scalar and electromagnetic field. Our investigation
reveals the persistence of the directional behaviour of the singularities, just as

* We wish to thank the referee of our paper (DATTA and Rao [7]) for drawing our
attention to the mistake of not taking the effect of the factor e—#'+* in equation (30) of our
earlier paper (DATTA and Rao [6]) in evaluating the limit of Kretschmann curvature in-
variant . The correct conclusion thereby should be that ‘directional singularities’ are present
in the presence of coupled fields as well.
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in the corresponding cases studied by cauvtreauv and andserson [1] and
cauvtreau [5] fOr the particle like solutions. cooperstock et al (s, [9] have
examined the problem of directional singular behaviour employing curved
trajectories instead of straight line paths approaching the singularity. They
have shown that the behaviour of Kretschmann curvature invariant is de-
pendent on the trajectory.

In this paper we have developed from the vacuum solution the coupled
zero-mass scalar and electromagnetic solution by a method obtained by
Teixeira et al 107, in which two types of long-range scalar fields are con-
sidered. This solution is more general than our previous solution (o =t+a2 and
Rao [6]) in the sense that from this solution the general vacuum solution
can be recovered simply by putting a constant, associated to the coupled
solution, equal to zero.

In Section 11, the solution for coupled superposed zero-mass scalar and
electromagnetic field has been obtained by applying the technique of1 cixcira
et al [10]. In Section Ill, we have analysed this solution from the point of

view of the singularity. We have evaluated the Kretschmann curvature
invariant a along the curved trajectories. These investigations have led us
to the Same qualitative conclusions as obtained by cooperstock et al [9].
The limit of a as shown in the Table | is trajectory-dependent of which the
singular behaviour of the coupled solution along a straight line trajectory is
a subcase. Finally some conclusions have been drawn in the last Section.

Il. Technique and solution of coupled superposed fields
Teixeira et al. [10] have obtained a technigue which generalizes the
static vacuum solution to coupled electromagnetic solution as follows:

Let a static solution (V, hf) of the Einstein’s vacuum equation

K,=0 (1)

be given by the line element
ds2= exdt2 — e~2rh;jdx*dx;, 2)

then the static solution (> hjj, ®, S) of the Einstein—Maxwell-scalar equations

Rav- Y Rguv = + Sp) (3)

can be obtained from the line element

ds2= e2vdt2 — e~2vhtj dzIl dx>, 4)
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where EllVand are the energy momentum tensors corresponding to electro-
magnetic field and scalar field, respectively. The electrostatic potential ® is
functionally related to the gravitational potential ip, and also the scalar
potential S to ip. This ipis to bear a functional relationship with the vacuum
gravitational potential V. The solution is thus given by

S = +cxF, cX= constant, (5)
e~v = coshcxy — (1 + a2c2)12 sin h c (6)
e= (14, \Y
o = —(alc) evsin hcx , (8)
and
FA= aev Vt (i= 1,2, 3) 9)

where F” is the electromagnetic field tensor.
In the case of static axially symmetric metric given by

ds2= e2dt2- e2'-A(dr2+ dz2) - r2~o2, (10)
the vacuum field equations are

+ 24" Ir— 0 (11)
V= N4 —4), 2= 2r2° (12)

where X and v are functions of r and r only.
We consider the ‘Curzon’ solution of (11) and (12) where

V=~Jr 7 e= (124- 2212 . (13)

By applying the results ((1)—(9)) we obtain a solution for the coupled
field from the vacuum solution (13), as

(14)

where K = (1  aJel)12 a constant. (15)
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Further the physical fields are given by

me,
S = (16)
4amrg -3
Fu=
cosft- " -)- K sin h me an
4amzQ’
Fu =
cos h -f- K sin h (18)

Q

M1 Coupled field singularity

The Kretschmann curvature invariant a computed for the solution (14),
can be expressed in the form

*= 8e-4#~[(B [ + (Riai)2+ (Riaf + 2('YQ =
mZ|p~6
— 128e2mVv'? " *Tc,le X
(Kt + K2
X {e~2Ki - K2-2Mlef + (Kf- Kle-**m/e)e + 2g~4{K1- K2Z-2™-|°) x
X (Kf — K%e~imCtle)} + similar terms corresponding to other factorsj ,

(19)
where Kr(= 1+ K) and K2(= 1 — K) are constants.

Following cooserstock et al [97 we now investigate the behaviour

of a along the curved path given by the power law
z — Drn n > 0, (20)
where D is taken to be positive and z-> 0+ to the origin. The following Table

is the summary for the results.

Table 1
Limits for a

Directions

Range a as r —=*0

0<n< 23 0 z-axis
re= 2/3, D < (m/2c23 00 z-axis
D~ (m/2cdV3 0 z-ax!s
23 < re< 1 00 z-axis
re= 1, r# 0 00 z-axis
r= 0 (the z-axis trajectory) 0 z-axis
fl > 1 00 r-axis
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IV. Conclusions

According t0 6auvtreauv and aAnderson a point is said to be singular
if a becomes in some way either infinite or indeterminate. Our results are
similar to those ofcooserstock et al (97 with the difference that for critical
trajectory n = 2/3 the scalar a depends on the relationship between the
mass of the ¢ ur:0n particle, the constant ¢, and the trajectory parameter D.
It should be mentioned here that the constant c2 is not an ordinary constant
but characterizes the strengths of the fields either attractive or repulsive.
If c2 is taken to be equal to 1 which implies Cj= 0, our results go over to the
corresponding results of cooperstock et al (97 for the vacuum field solu-
tion. The qualitative behaviour of the singularity has not changed due to the
presence of the coupled field. It may also be noted as can be seen from (16)—
(1s) that the scalar field S is singular at the origin whereas the electric field
strengths ~14° "~24tend to zero. We may therefore conclude that the singularity
is essentially due to the sources of gravitating material and the zero mass
scalar field.
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MCCNEOOBAHWE BO3SMOXHOCTWN CO3AAHWNA
NABMWHHO-MPONETHOIoO AgMWOAA HA TETEPONEPEXO/AE
FrEPMAHWMN-APCEHWL TAANWA

K. M. JATWUEB*

MHCTUTYT O3KCMNEPUMEHTANIbHON ®WU3UKW, YHUBEPCUTET UM. ATTUNEL NOXE®A
CErFref,, BEHIrrun4

(MocTtynuno B pegakuyuto 14. VII. 1977)J

MpuUBOAATCS HEKOTOPbIe pe3ynbTaTbl WCCNEA0BAHWS BO3MOXHOCTU CO3J4aHWsA NaBUH»
HO-NMpoNneTHbIX AnogoB (JIM[) Ha reTeponepexofe repmaHuii-apceHuns rannus. CoobujaeTcs
0 paspa6oTke JIT [ ¢ yKasaHHOW CTPYKTypoii, Ha KOTOPbIX BMNepBble HabnwpAanacb reHe-
pauuns CBY konebaHuii.J '

B pa6otax [1—4] 6bL10 MokasaHo, YTO WCMOSb30BaHWE reTeporepexosoB
Ge — GaAs ana NIM A paeT BO3MOXHOCTb CO3[aHUSA BbICOKO3((EKTUBHbIX reHe-
patopoB CBY KosiebaHmin Ha MX OCHOBE.

B pa6oTe [3] BrepBble co06WAIOCL O MpaKTUYeCKOM co3faHuu J1M[
C YKa3aHHOW CTPYKTYPOW, Ha KOTOpbIX Habnwanack reHepauns CBY konebaHwmii.

B npepnaraemoil ctaTbe MPUBOAATCA HEKOTOpPble pesy/ibTaTbl IKCNEepUMEH-
Ta/IbHOFO  MCCMefOBaHUS BO3MOXHOCTW co3gaHusa J1MJ[ Ha reTeponepexoje
Ge — GaAs.

1. Mony4yeHne reTeponepexofoB repMaHui-apceHns ranus

eTeponepexofbl repMaHuii-apceHns rannust 6bUIM NosyYeHbl NMyTeM 0Cax-
JeHVS 13 Ta3oBoi (hasbl HA MOAMOXKAX M3 apceHWpa rasimsi ¢ UCrosib30BaHUEM
M3BECTHOW ra3oTPaHCMOPTHOW peakuuy AMCMPONOPLMOHPOBAHNS:

2Ge2 ~ Ge -)- Geld.

Mpouecc NPoBOAW/CA B OTKPbLITO CMCTEME C MPVMEHEHWEM BOOPOAA B KauecTBe
rasa-HocuTens.

MeToauKa MoAroTOBKM MOM/I0XKEK apCceHnaa raiins 1 repMaHneBoro UCTou-
HMKa 1 NPOBeAeHME MPOLecca aNNTaKCUa/IbHOT0 HapallMBaHUS repMaHnst noau-
HbIMA METOAOM B HAaCTOsILUee BpeMsl [JOCTATOUHO OTpadoTaHbl [5—8] M Mbl He
6yfeM Ha HWX ocTaHaB/IMBaTbCA. OAHAKO, YKa)KEM, UTO BbIGPaHHbIE PEXMMbI
npougecca anMTaKCUa/ibHOrO HapallvBaHUs FepMaHusl Ha MOfM0XKKax M3 apce-
HUA rafiins, YMCToTa annapatypbl U, B 0OCOGEHHOCTW, YMCTOTa MPUCMOCO6/IEHNT

* MocTOAHHOE MeCTO paboTbl: ®aKynbTeT DNEKTPOHHON TexHUKM, CeBepo-KaBKasckuii
MonutexHnyecknii MHcTuTyT, 1. OpaxoHuknase (CCCP).
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BHYTPM PeaKUMOHHOW Kawmepbl MO3BOMUAM HaM MONyYnUTb FeTepornepexodbl ¢ pes-
KM pacnpefenieHMemM aTtoMOB MNPYMeECce B LUMPOKOM [uana3oHe KOHLEHTpaLuuii
no obe CTOPOHbI OT rpaHWLbl pasgena, n3baBuTbCA OT B3aUMHOM Auddys3un MaTe-
puanoB W COAepPXalUXCA B HUX MpUMeceli M TpaBfieHUs MNaCTUH-MOAI0KEK
apceHuga raniuvsa MoLoM BO BpeMsi pocTa 3NMTaKCUasbHOro Crios.

B kauyecTBe MOLMIOXKEK MCMOMb30BANCA [BYXCNONHbIA (N — H+) apceHus
rannua ¢ opveHTaumein (100). BbICOKOOMHbIE 3NUTaKCUabHble MAEHKU apceHnga
rannns Ha HU3KOOMHbI MOAM0XKKe 6biiv NOMyYeHbl XI0PUAHbIM MeTogoMm. Mapa-
MeTpbl 1-ciod GaAs nexXxann B npefenax: KOHUeHTpauunsa 3nekTpoHos 104 4
4- 1016 cm-3, NMOABWIKHOCTb 3/IEKTPOHOB MPU KOMHATHOW TemnepaType OKOJ10
5000 cmZB. cek. TonwmnHa—>5 4 8 MKM. B KauecTBe repMaHMeBOro WCTOYHMKA
NCMoMb30BasICA BbICOKOOMHbIA repMaHuin N-tuna. J1ermpoBaHue anmTakchasibHbIX
MeHOK repmMaHus rasiieM B MPOLECCE pocTa MO3BOMIUMIO HaM MOSYyYUTb [ABYX-
CMOViHble M/IEHKU TrepmaHusa (p — p+)-TMna C OAHOPOAHbIM IerMpoBaHMeM Mo
TO/IWUHe p-cnos. MNapameTpbl BbICOKOOMHON 3aNUTaKCUaIbHOM MIEHKU repMaHus
nexanun B npefenax: KOHUeHTpaumsa Ablpok 2 ¢ 101554- 6 « 1016 cM-3, noaBuxk-
HOCTb AbIPOK 0K0/10 30 cMm2B.CeK., TOJMLLMHA BbICOKOOMHOIO P-CMos B MJ/IEHKe
(p — p+)-Tvina 0,5 4 1,0 MKM, TONWWHA MNIEHKN p+-Tuna 8-4-10 MKM C yaenb-
HbIM conpoTusneHvem 0,001 om. cm.

Ha ocHOBe MoMy4eHHbIX reTepoanmnTakcnanbHbIX CTPYKTYp (p+ — p)Ge —
— (01 — n+)GaAs 13roTaBMBaINCb OMbITHbIE 06pasubl JIM A,

2. WsroTtoBneHue onbITHbIX 06pasuos J1M /4

MonyyeHHble retepocTpyKTypbl Ge — GaAs paspes3aiucb Ha KpUCTaslibl
¢ pasmepamm 0,3x 0,3 MvM2 B KayecTBe OMUYECKOro KOHTakKTa K n+— GaAs
MCMosb30Basiocb YMCTOE 0/10BO, BMJIaB/ISIeMOe B aTMocepe Bogopoga npu Tem-
nepatype 470 °C B TeyeHWe 5 MUHYT, a K repmaHuio p+-tmna — cnnas In — Sn
BMaB/seMblii Npu Temnepatype 450 °C B TeyeHMEe 3 MUHYT.

JocTaTouHO HUM3KMEe TemMrepaTypbl MPOLIECCOB BJIaB/IEHNSA UCKIIOYa/IN BO3-
MOXHOCTb 06pa30oBaHUSA «/I0KHOro» romorepexoja B pesynbTare Anddy3nm
MbILIbSAKA U3 MOLMOXKKN B repMaHunii p-tuna. TpasneHVeM reTepoavoaoB B pacT-
Bope 5% H2 2 ¢ go6aBkon KOH npu Temnepatype 70 °C obecneymBanock 06paso-
BaHMe Me3a-CTPYKTYPbI C AuameTpom p — n nepexoga 60—70 Mkm. NonyyeHHble
reTeponepexofbl repMeTU3NPOBa/INCL B CTAHLAPTHLIX KOprycax MoyrnpoBOLHM-
KoBbIx CBY npubopos. B paboTe npvBegeHbl pe3ynbTaTbl M3MEPEHWUA OMbITHBIX
obpasuos J1M M4, oTHocAwmeca K AByM napTusm (A n B) ¢ pasnuuHbiMKn napa-
MeTpaMy M-cfiof: naptms A (KOHUEHTpaumus anekTpoHos 8 1015 cMm-3, TonwmHa
7 MKM); naptva B (KOHUeHTpauusi aneKTpoHoB 6 ¢ 104 cm-3, ToAwuHa 5 MKM).
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3. VccnegoBaHuve 3aneKTPUYECKUX Xapaktepuctuk J1M g

ViccnenoBaHUA a/leKTPUYECKUX XapaKTepUCTUK paspaboTaHHbIX 06pasuoB
reTepojuofoB BENNCb B HamnpasBfieHUM WU3YydYeHUs MexaHu3Ma npobos, onpefe-
NeHnsa pacnpefeneHns aTtoMoB NpuMeceli B 0611acTU 3anmpatoLLero c¢nos n Bo3-
MOXXHOCTM MOoflydeHns1 reHepaumm CBY konebaHwmii. B cBA3M c aTum cHavana
OblM MCCNefoBaHbl TeMnepaTypHas 3aBUCMMOCTb HaMpsKeHMs npobosi, BOSbT-
(hapagHble XapakKTEPUCTUKW, a 3aTeM — BbICOKOYACTOTHbIE XapaKTePUCTUKM
NN A4 Ha reteponepexoge Ge — GaAs.

3a. Hanps>keHue npo6osi n ero TemnepaTypHas 3aBUCKMOCTb

WcecnepoBaHnsa 06paTHO BeTBM BOSbTAMMEPHON XapaKTepUCTUKW TeTepo-
OnogoB 6blIM NPOBeAeHbl B LUMPOKOM WHTepBasie Temnepatyp. Ha pwuc. 1 npeg-
CTaB/leHbl 06paTHble BETBU BOSIbTaMMEPHbIX XapaKTEPUCTUK HEeKOTOPbIX reTepo-
avogos. BennumHa 06paTHOrO0 TOKA HACbIWEHUS Y BCEX OUOAOB MpW Harnpsxe-
HUM — 10 B He npeBbiwana 0,05 mka.

b 0
n (B)
Puc. 1. O6paTHble BETBU BONbTAMMEPHbIX XapaKTePUCTUK reTeposuoa0B:
o6pasybli: a) 1—AO3, 2—Al4, 3—A26,
4 —AA43, 5-A65, 6-A78,
6) 7-b15, 8—b 18, 9-b27,
10—b42, 11—bB93
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BenvuuHa gudchepeHUMansHOro CoMpoTUBAEHUA A1 Pas/IMUHbIX AUOLOB
NnonoXuTtenbHa 1 fiexxuT B npegenax 50—400 om. TunuyHble TemnepaTypHble
3aBMCMMOCTM HanpsXKeHWU Npobos HeKOTOPbIX FeTepoamofoB B MHTepBasie TeM-
nepatyp 170 H- 400 °K npuBeAeHbl Ha puc. 2. BnaHo, 4To HanpshkeHWe npo6os
BO3pAacTaeT C POCTOM TEMMepaTypbl, YUTO CBUAETENLCTBYET O JIABUHHOM MeXaHWu3me
nNpo6osi B UCCef0BaHHbIX reTepoanonax.

Kak 13BecTHO, 0OAHUM W13 BaXKHbIX MOMEHTOB npw cosgaHuun J1M [, Ha ocHose
reteporepexoja fIBAISIETCA BbISICHEHME BOMPOCa O SIOKa/M3auumn rMosiHOro YMHo-
XXEHUS B 0AHOI M3 06nacTeid 3anopHoro cnosi. B pabote [9] npuBeaeHbl HEKOTO-
pble pesynbTaTbl OLEHKW JIOK&IM3aLUUN MOMHOro YMHOXeHUa B 06nactn obbem-
HOro 3apsga paspaboTaHHbIX FeTepornepexoios.

Puc. 2. TemnepaTypHble 3aBUCUMOCTN HaNpPsi)XeHWW NaBUMHHOTO NPo6os reTepofnof0B
(0o603HavyeHnsa ob6bpasyoB Ha puc. 1)

36. BonbinapagHble xapakTepucTUKu

[nsa onpegeneHns npoduna pacnpegeneHns aToMOB MPUMECE B 3aMOpHOM
C/I0e W 3aKOHAa M3MeHeHUs 6apbepHOli eMKOCTU MOMy4YeHHbIX 06pasLoB Npubopos
ObUM NOCTPOEHbI UX BOMbT(apagHble XapaKTepUCTUKMN.

3aBMCUMOCTb E€MKOCTM MCCnedyeMbiX MpM6opoB OT 06paTHOr0 CMeLLeHUst
CHMManacb MeTOAOM €EMKOCTHO-OMMYECKOro [fenuTens Ha 4actote 1 Mry npwu
BE/IMUVHE 30HAMPYIOLLEro curHana, pasHoi 10 mB.

PesynbTaTbl M3MEPeHW NpeAcTaBieHbl Ha puc. 3—4.

Ha umuc. 3 npusegeHbl 3aBUCMMOCTM EMKOCTM OT 06paTHOr0 CMELLEHWs, Mo3-
BO/IAIOLLME ONpPeAenuTb MNpoduab pacnpefeneHns KOHLEHTpaLuun aTomoB Mpu-
Meceli B 3amopHOM Cnoe p-n nepexofa. BuaHo, 4TO BCe uccrnefyemble Npubopbl
UMET pe3Koe pacnpegenieHVe aToMoB MpUMeceil Mo 06e CTOPOHbI OT rpaHuLbl
pasgena. Ans rpynnbl NpuMbopoB co CTPyKTypoi (p+— p)Ge — {n—n+)GaAs
HabMogaeTcs PeXUM OrpaHMYeHHOro paclumpeHust obnacteii 06beMHOro 3apsga
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8.
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Puc. 3. BonbTapafHble XxapaKTepuUCTUKN FeTepoaMOA0B B norapnmuyeckom macwtabe
(o603HayeHna obpa3uoB Ha puc. 1)

no obe CTOPOHbI OT rpaHMubl pasgena. Mpu manbix cmeweHusax (/[//< 3B)
6apbepHas eMKOCTb reTepoAvOLOB MOAUYNHSAETCH YPaBHEHUIO

gsosie2NIN 2 '_J_]i .S

_2(eliV1-f- e2V2)  <Pk~\-U.

W, cnepoBaTeNlbHO, HakoH 3aBucumocTn C~\U) paseH

(O603Ha4eHNA — OBLLENPUHATbIE: MHAEKC 1 — repMaHuii; 2 — apceHug ranans).

Mpu ganbHelileM yBeNMYeHUM MOAYAA OTPULATENbHOIO CMeLleHWs 6apb-
epHasi eMKOCTb FeTepOAMOJ0B OMpedensieTcss 60/iee TOMNCTON BbICOKOOMHOM 06-
NacTblo apceHuga ranva ¢ HaknoHoMm C~2U) xapakKTepuUCTUKW, pPaBHbIM
arc tg (21qs0eN 2S2).

Mpn HanpsbkeHuax okoso 20 ~ 40 B 06/1acTb 06BLEMHOrO 3apsija pac-
NPOCTPaHAETCA L0 HWU3KOOMHOrO M+-C0s apCeHnga rasvsa U npu gaabHeilem
yBeIMYeHUM MOAYNs 06paTHOro cMeLLeHNs 6apbepHas eMKOCTb reTeponepexosos
OCTaeTCcsl MOCTOSAHHONM. VICK/IHOUeHMe COCTaB/iseT psg NpubopoB C aHaI0MMYHOM
CTPYKTypoin (p+— p)Ge — (N — n+)GaAs, B KOTOPbIX A0 pPeXuma OrpaHuyeH-
HOro paclmpeHnss 0b6nacTm 06bLEMHOro 3apsfa B M-CN0e HacTynaeT JlaBUH-
Hblii MPOGOIA.
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Puc. 4. BonbTthapajHble XapaKTepUCTUKMN reTepojnoAoB, NOCTPOEHHbIe B KoopAnHaTax C~2— U
(o603HayeHMa obpasyoB Ha puc. 1)

[na onpegeneHns pacyeTHbIX 3HAYeHMI HanpsbkeHWn npo6os mo [1, 2]
N CPaBHEHUSA WX C 3KCMEPUMEHT&/IbHbIMU JaHHBLIMW M0 BOMbTHAPaiHbIM Xapak-
TEPUCTUKAM OblIN paccunTaHbl TONWMUHBI U CTEMEHW NIErMPOBaHNSA BbICOKOOMHbIX
o6nacTeil No 0be CTOPOHbI OT rpaHuULbl pasfena reteponepexofos Ge — GaAs.

AHa/IN3 MOJMYYEHHbIX Pe3y/bTaToB MokKasas, YTo A7 NpubopoB C Hanps-
>XeHnem npo6os 20 - 120 B pasnnuve Mexgy pacHeTHbIMM U 3KCMEepUMEHTab-
HbIMU 3HAYEeHVUSAMU HanpshKeHW Npobos He npeBbiwaeT 10— 15%.

Takum 06pa3oM, uccnefoBaHVWe faBUHHOMO Mpo6os reTeponepexonos
Ge — GaAs noaTsepansio NpPaBWIbHOCTb TEOPETUYECKUX pPe3ynbTaTtoB Mosy-
YeHHbIX B paboTtax [1, 2].
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3B. BbicOKOYacTOTHbIe XapakTepucTuku!!rma

PaspaboTaHHble 06pasupbl J1M /[, uccnegoBanncb B pexxmme reHepauyn CBY
KonebaHNn B TPeXCaHTMMETPOBOM AuarnasoHe AAWH BOMH. Hamu BrnepBble 6blia
nonyyeHa agekTnBHaa reHepaunss CBY konebaHuii Ha J1M [, ¢ ABYyXCNOAHbIM
3anuparowmMm cnoem Ha ocHoBe Ge — GaAs reteporiepexofoB [3]. eHepauums
Obl1a obHapyXeHa NPV UMMYIbCHOM PEXWUME MUTaHWA C BeMUYMHON TOoKa
B umnynbce 15 4- 250 ma, pamTenbHOCTbO MMNybca 1-h 10 MKceK M CKBax-
HocTblo 103 y- KO4 MolHocTb reHepaumn coctasrnigana 100 y- 150 MBT B MMMy bCe.
MaKcumanbHbIA K. M. A. —5%.

Puc. 5. TOKOBble 3aBUCMMOCTU MOLLHOCTU FeHepauuu u K. N.[. reHepaTtopos
Ha OCHOBE reTeoOpOAMOfAO0B:
o6pasybl: a — AO3, 6 — Al4

Ha puc. 5 npuBefieHbl TOKOBbIE 3aBUCMMOCTM MOLLHOCTU W K. M. 4. AN1S ABYX
npr6opoB. OCHOBHbIE MapaMeTpbl MepBbIX 3KCMNepUMeHTaNbHbIX 06pasuos J1M /[,
Ha reTteponepexofe Ge — GaAs, Ha KOTOpbIX Oblna nonyyeHa reHepauuss CBY
KonebaHnii B X-ananasoHe, npueegeHbl B Tabnmue (Unp — HanpsbkeHue npo6os,
B; Cnp— eMKOCTb reteponepexoja npu Hanps>xeHun npobos, ndy; / dp — obpat-
HbIi TOK reTeponepexofa npu obpaTtHom cmeweHnun — 10 B., mka; Agtp — gndp-
thepeHUMaibHOe CONPOTYBIIEHNE TETEPOANOL0B B paboyem pexxume, oM; /0— Benu-
U/Ha TOKa B peXuMme reHepauuu, Ma; P — MOLIHOCTb reHepauuu, MBT;, p —
K. n.g., %).

Bcreacteme HanmMums JOCTATOYHO TOMCTbIX BbICOKOOMHBIX C/I0EB apceHunia
raniva 1 60MbLUOA BeNMYMHBbI COMPOTMBIEHUS OMWYECKMX KOHTAKTOB K rep-
MaHUIO 1 apCeHUAy raanvs, BennyuHa T,/TA, XapakTepusylowasa notepu, B pas-
paboTaHHbIX npubopax Bbicokass (rg/n > 0,1) 4To M o06ycnaBNMBaeT HU3KME
3HaYeHNss MOLLHOCTU U K. N. 4. [4]. CnefoBaTtenibHO, 41 CO3[aHUS BbICOKO3(dEK-
TMBHbIX JIM [, ¢ ABYXC/MOMHbIM 3anuparolm C/I0eEM Ha OCHOBE reTeponepexofa
Ge — GaAs HeobxoavMMma fAanbHelillas 0TpaboTKa TEXHOMOrM4Yeckoro BapuaHTa
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MoslyYeHUst reTeponepexosa € ONTUMa/IbHbIMKM NMapamMeTpamu CTPYKTYypbl Mo o6e
CTOPOHbI OT FPaHNLbl Pa3fena v yayULleHNs CBOWCTB HEBbINPSAMISIOLLMX KOHTaK-
TOB K repMaHvio 1 apceHugy rannus [4].

4. BbiBogpl
1. BrepBbie paspaboTtaHbl JIM[, ¢ ABYXCAOAHBIM 3anvparolmm Cr0eM Ha

OCHoBe reteporiepexofa Ge — GaAs, Ha KOTOpbIX MNosiyveHa 3PeKTMBHAA reHe-
paums CBY KonebaHwii B CaHTMMETPOBOM AManasoHe A/IUH BOJH.

Tabnuua 1

OCHOBHble napameTpbl 3KCNepuMeHTanbHbiX o6pasyosB JIM A Ha reteponepexoge Ge — GaAs

Ng o6pasuya unp., B cnp, Mo npmiggg.mxa Apud., om '0) MA P, mMBT u, %
A03 22,1 0.3 0,04 10 200 120 2,5
Al4 22 0,2 0,04 30 135 150 4,45
A26 23 0,8 0,04 30 75 80 3,3
A43 26,2 0,2 0,03 50 55 40 2,7
A65 27 0,3 0,05 40 140 90 2,4
AT8 28,9 0,3 0,03 60 40 75 5

2. WccnepoBaHuA  3NMEKTPUYECKUX — XapaKTepUCTUK  FeTeporepexofos
Ge—GaAs n JIMN 4 Ha nx OCHOBe Mokasasu:

a) uccnefyemMble reTepornepexodbl MPeacTaBnstoT coboii CTPYKTypbl Tuna
(p+—p)Ge — (n — n+)GaAs ¢ OAHOPOAHbIM pacrnpefeneHnemM aTtoMoB MpuMe-
ceil Mo 06e CTOPOHbI OT rpaHULbl pasgena;

6) obpaTHasA BeTBb BO/IbTAMMNEPHON XapaKTEPUCTMKUN UMEET Pe3KuiA 1310M,
YTO B COYeTaHUM C¢ nonoxutenbHbiM TKH npo6os cBuaeTeNbCTBYET O NIaBUHHOM
MexaHu3Me npo6os;

B) CpaBHeHME 3KCMepPUMEHTA/IbHBIX M TEOPETUYECKMX 3HAYEHUI Hamnpsxe-
HWIA NaBMHHOrO NpPo6os W OLEHKM I0KanM3aumy MosIHOrO YMHOXEHUS B OfHOW
M3 yacTeli 3aMOPHOro Cfos B MCCMefoBaHHbIX TeTeponepexojax MogTBEPANAN
NpPaBWU/IbHOCTb Pe3y/ibTaTOB TeOpUM NTABUHHONO Mpo6os reTeporepexosos;

r) paspaboTaHHble MepBble 3KCNepUMeHTasIbHble 06pasubl JIM4 ¢ aByx-
CMOMHbIM 3anMparoLMM CoeM 06ecneymBatoT B TPEXCAHTMMETPOBOM [MarnasoHe
MOLLIHOCTb reHepaumn 100 4- 150 MBT B UMNy/nbCce € K. M. 4. jo 5%.
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STABILITY OF ROTATING STRATIFIED FLUID
IN THE PRESENCE OF
A VARIABLE HORIZONTAL MAGNETIC FIELD

By
R. ¢. sharna

DEPARTMENT OF MATHEMATICS, HIMACHAL PRADESH UNIVERSITY, SIMLA 171005, INDIA
(Received 9. VIII. 1977)

A study has been made of the stability of a rotating stratified fluid in the pre-
sence of a variable horizontal magnetic field. Both the density and the horizontal magnetic
field are assumed to be exponentially varying. The dispersion relation has been obtained.
Some special cases are drawn and discussed. Both rotation and magnetic field are found to
have stabilizing effect on the system.

1. Introduction

The instability derived from the character of the equilibrium of an
incompressible heavy fluid of variable density (i.e. of a heterogeneous fluid)
is termed the Rayleigh—Taylor instability. Mention may be made of two
important special cases: (a) two fluids of different densities superposed one
over the other; (b) a fluid with a continuous density stratification. v ia. [1]
has studied the effect of rotation on the character of the equilibrium of a
stratified heterogeneous, inviscid fluid and found that rotation stabilizes the
potentially unstable arrangement of certain wave number. In another study,
Hide [2] studied the case of a viscous conducting fluid with a transverse
magnetic field and found that magnetic field considerably stabilizes the con-
figuration and it is possible to have oscillatory motion in the presence of
magnetic field even if the configuration is thoroughly unstable. k ruskan
and schwarzscnite [3] have considered the stability of an inviscid plasma
of infinite conductivity supported against gravity by a horizontal magnetic
field. chanarasexnar [4] has given a detailed account of the Rayleigh—
Taylor instability, under varying assumptions of hydrodynamics and hydro-
magnetics. The magnetic field, in the above studies, has been considered to
be constant and uni-directional. ¢ vsca [5] has investigated the stability of
a horizontal layer of a perfectly conducting fluid, with continuous density
and viscosity stratification in the presence of a horizontal magnetic field
(constant as well as variable). snarn. [6] has studied the effect of rotation
and surface tension on the stability of two superposed fluids in the presence
of a variable horizontal magnetic field.
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The problem of the hydromagnetic stability of conducting fluid of
variable density plays an important role in astrophysics (stability of stellar
atmosphere in magnetic field, heating of solar corona, theories and sunspot
magnetic fields). Since the Coriolis forces play an important role in astro-
physical problems, it is necessary to study the combined effect of rotation
and magnetic field.

In the present paper we study the Rayleigh—Taylor instability of a
fluid with a continuous density stratification in the presence of rotation and
a variable horizontal magnetic field. The fluid is considered to be heterogeneous,
inviscid and of zero resistivity. The fluid is assumed to be infinitely extend-
ing so that the free surface is almost horizontal. The fluid is under the action
of gravity g (0,0, —g) and acted on by a uniform rotation 8 (0,0, Q) and
a variable horizontal magnetic field H (H0(z), 0, 0).

2. Basic equations

Let p, Qand v (u, v, tv) denote respectively the pressure, the density
and the velocity of the fluid; pt is the magnetic permeability. The hydro-
magnetic equations to be solved in the fluid are

— + (VeV)V = -VP + P«(VXH)XH + eg + 2e(vxft) , (1)
at
Vev=20, (2)
= VX(vxH) , (3
at
VeH = 0. (4)

Since the density of particle moving with the fluid remains unchang-
ed. Hence

— 4+ (v eV)9= 0 . (5)
at

Let OQ op, v (u, v, tv) and h (JIx, hy, hz) denote the perturbations in density,
pressure, velocity and magnetic field, respectively. Then the linearized hydro-
magnetic perturbation equations are

gqt = ~V<b6p + M(vxh)xH + gdp + 2p(vxfi) , (6)

VeV= o, @)
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A VX (vxH) | )
at
v mh = 0, 9)
d
f s —w (10)
at dz

Analyzing the disturbance into normal modes, we seek solutions whose
dependence on X,y and tis given by

exp (ikxx + ikyy -f- nt), (11)
where kx and ky are the horizontal components of the wave number, k2=

= kx -f- ky and re is the rate at which the system departs from equilibrium.
Using the expression (11), Eqs. (6)—(10) become

pnu -ikx6p + hzDHO -f- 2gQv , (12)
an:

gnv -ikyop + A (ikxhy — ikyhx) — 2gQu (13)
n;

QTIV -Dop+~-(Dg) w + l\/llleﬂ°fikggl_§/ - DK - h, DH°? (14)

re n:

ikx n -f- ikyv -j- Dw = 0 , (15)

ikx hx + iky hy -)- Dhz= 0 , (16)

h = IlkxH® V- w(DHO) Ix, 17)

where Ix (1, 0, 0) is the unit vector in the direction of x-axis and D —d/dz.
Multiplying Eqgs. (12) and (13) by —ikx, —iky respectively, adding and
substituting for hx, hy; we get

kxky pelll y ~ PeHpk?

gnDw = -k?d6p - 2gQC + WDHO, (18)
re 4n: 44re
where £, the «-component of vorticity, is given by
£ = e = ikXV — ikyU . (19)

_d x d y_
Multiplying Egs. (12) and (13) by —iky and -\-ikx, respectively, and adding,
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we get
2 Qn Dw

(20)
m_| klv2-
where V2= peHI'AnQ is the square of the Alfvén velocity.
Eliminating bp between Eqgs. (14) and (18), using (20) and the relation

iNou — —(kxDw -|- falC) = —IkxDW A---oo-——m - (21)
y 1 n2+ k2v21i

we get after simplification

D(e Dw) - k2ow + M [D{H2Dw) - Kk?HM] =
n2+ k2v2 4mil

(22)

Eq. (22) is the general equation formulating the effect of rotation and a
variable horizontal magnetic field on the Rayleigh—Taylor instability. In the
limit of vanishing magnetic field (H0O— 0), we get the particular case of the
effect of rotation on the Rayleigh—Taylor instability (cnandraseknar [4],
Chapter X). The particular case of the effect of constant horizontal magnetic
field (chandarasexnar [4], Chapter X) can be derived in the limit of vanish-

ing Q.

3. The case of exponentially varying density and magnetic field

Assume the stratifications in density and magnetic field of the form

e=ete*, Ww = h\erz, (23)
where gx and R are constants and so the square of the Alfvén velocity
V2= [lell Ann = uyeH?2ALL1 (24)

Using the stratification of the form (23), Eq. (22) transforms to

(2 + LUY2- gR) (n2+ k2Vv2

Dhv + RDw kav = 0 . (25)
(n2+ k2V22+ 4i2xn2
The general solution of Eq. (25) is
w= Alegz+ AZ2edz, (26)
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where Av A2are two arbitrary constants and qv gq2are the roots of the equation

iK + KV2- gB)(n2+ k2v2 [f2= 0

27
(n K2V22+ 4Lh2 @)

g2+ qgf3

If the fluid is supposed to be confined between two rigid planes at z= 0
and z = d, then the vanishing of w at z = 0 is satisfied by the choice

ic = A(eqz — eur) , (28)
while the vanishing of ic at z = d requires

exP (9i — ft) d = (29)
which imply that
(gi—g2d= 2imn, (30)
where m is an integer.
Eq. (27) gives

4k?{n2 + k*V2- gR) (n2+ f2F2)

R (31)
712 2 -+ k2VX + 4Qx2
Inserting the values of qv g2in Eq. (30) and simplifying, we obtain
1+ A)na+ [(2k2V2+ 4Q2 A + 2k2V2- gR] n2+
+ k2v[kevl + A)~ gR]l = 0 , (32)

where

A = i~"RAH2+ mn2\jka2

Eq. (32) is the dispersion relation studying the effect of rotation and the
variable (exponentially) horizontal magnetic field on the Rayleigh—Taylor
instability of fluid with exponentially varying density.
If 8 < 0 (stable stratification), Eq. (32) does not admit of any positive
root of n2and the system is always stable for disturbances of all wave numbers.
IfR 0 (unstable stratification) and if

gR<k2vl + A), (33)

Eqg. (32) does not allow any of the roots of n2to be positive. The system is
therefore stable. If (33) is violated, the system may be unstable also. For
the stability of the system, we must have

gR < k2vl + A) .
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In the special case of zero magnetic field, Eq. (32) reduces to

(34)

If nl is the value of n2in the absence of rotation, Eq. (34) gives

(85)

If B is positive, the rotation stabilizes the unstable arrangement for all wave

numbers less than
(36)

and for a given Q, kmu occurs for B = 2n/d. Distributions with § less than
or greater than 2n/d are stabilized by rotation for greater ranges of k.
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HEAT TRANSFER IN TWO-PHASE LAMINAR FLOW
FOR TIMEWISE LINEAR VARIATION OF
INLET TEMPERATURE IN A CIRCULAR PIPE

By
S. N. Dube
DEPARTMENT OF MATHEMATICS, HIMACHAL PRADESH UNIVERSITY, SIMLA-171005, INDIA
(Received 1. IX. 1977)

Exact solutions of the forced convection energy equations of dust particles and of
liguid with fully developed flow in a circular pipe are obtained in the present problem when
the inlet temperatures vary linearly with time and an interpretation of the case of laminar
flows is given.

Nomenclature

Tp temperature of dust particle

T temperature of liquid

(6] specific heat of dust particle

c specific heat of liquid

a pipe radius

Kp thermal conductivity of dust particle

K thermal conductivity of liquid

t time

Up velocity component of dust particle in i-direction
n velocity component of liquid in 2-direction

a _ average velocity

r,®,z cylindrical polar coordinates (z-flow direction)

Q liquid density

mN mass of dust particle per unit volume (= mNO, constant)
fi coefficient of viscosity of liquid

\Y% kinematic coefficient of viscosity of liquid

P Prandtl number (= fic/K)

R Reynolds number (= ailv)

hp heat transfer coefficient for flow over dust particle
Ap surface area of dust particle

Vp volume of dust particle

TO, T,, Tj known temperature constants
The meaning of any other symbols is given in the text as they occur.

1. Introduction

Heat transfer by gas-dust suspensions in pipe flow has been the subject
of many studies because of the anticipated large heat-transfer coefficient due
to the high volumetric specific heat of dust particles or liquid droplets com-
pared to a gas and the demand for high heat-transfer coefficient in gas-cooled

reactors. Based on the experimental observations on gas-dust suspensions by
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Farbar and mortey [1] @and schiuwderverg [2], DY 1onnson [3] On gas
suspensions of liquid droplets, and by saitonone and wewnann [4] ON
liquid-dust suspensions, 1ien [5, 6] has analysed the heat transfer by a gas-
dust suspension in turbulent pipe flow based on a simplified model. In solu-
tions of the forced convection energy equations of dust particles and of liquid
in a circular pipe Soo [7] has assumed that the inlet temperatures of dust
particles and of liqguid are constants across the flow with a specified constant
wall temperature. Recently o wse and snarna [8] have obtained exact solu-
tions of the forced convection energy equations of dust particles and of liquid
in a channel bounded by two parallel flat plates when the inlet temperatures
vary periodically with time.

In the present paper exact solutions of the forced convection energy
equations of dust particles and of liquid with fully developed flow in a circular
pipe are obtained under a prescribed boundary condition when the inlet
temperatures of dust particles and of liquid vary linearly with time and an
interpretation of the case of laminar flows is given.

2. Formulation of the problem

We consider the steady laminar flow of a dusty viscous liquid with
uniform distribution of dust particles in a circular pipe of radius a. The dust
particles and the liquid entering the pipe have temperatures which are
spatially uniform across the entrance section but vary linearly with time.
Therefore we can write the inlet conditions as

TR(r, 0,t) — TO £ Tx " 2.1

vt
T(r, 0,t) — Tqg+- Tx (2.2)

To obtain the heat-transfer performance and the temperatures of dust
particles and of liquid it is necessary to set down two energy equations, one
for the dust particles and one for the liquid-dust mixture. They are given as

dTp 8P g(r- Tp) , (2.3)
91 82
8T 8T mNOcp g = i 8T
8T, 8T, P Loy o 120y sxTp- 1y,
81 8s oc | o1 8z P1l19of2 r oOr
(2.4)
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where

Q__  hpAp___ _ mI\OcpG
mNQcpVp " (€

Simplifying (2.4), we get

A -
AT oA 2T AT L apofTp— ). (2.5)
91 02 P dr2 r dr |

The inlet and the boundary conditions of the problem are as follows:

TP=TO0+ Tl — when a=0, (2.6)
a2

T=T0+ Ty — 1 when 2= 0, (2.7)
a?)

Tp is finite atf = 0, (2.8)

T is finite atr = 0, (2.9)

Tp= T, atr = a, (2.10)

f=T2 atr = a, (2.11)
t>0

The system satisfying (2.3), (2.5) is subjected to the following restric-
tions (Soo [7]):
(i) Radiation effect is neglected.
(i) The density of liquid remains constant; thus the velocity distribution
is independent of the temperature distribution.
(iii) Liquid property variations are neglected.
(iv) Each dust particle is small and maintains uniform temperature due to
its high thermal conductivity Kp.
(v) The liquid and dust particle cloud have similar velocity profiles. The
presence of dust particles does not affect the liquid velocity profile.
(vi) The dust particles are uniformly distributed throughout the pipe.
(vii) The effect of collision with the wall is neglected.
(viii) The suspension is extremely dilute such that each particle is assumed
to see the wall without interference of other particles.
(ix) Fully developed laminar velocity profiles in the pipe.
(x) Axial conduction is negligible with respect to bulk transport in the
i-direction. This is a reasonable assumption when Péclét number exceeds
100 [9].
(xi) Thermal resistance of the wall is negligible.
(xii) Eddy diffusivity of heat is negligible.
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Further, to simplify the method of analysis the case of constant velocity
will be considered here and for this purpose we substitute G (u = up) for the
velocity profile in (2.3) and (2.5).

We now introduce the following non-dimensional quantities:

Equations (2.3) and (2.5) then become

8®r+ N ~ = g0 (B_B). (2.12
9 9z

1 (a20 190
%0 + - ﬂ: — (— TS S + A(0p — (2.13)
9. 9 P dr T dr

The inlet and the boundary conditions reduce to

Op=t when z—0, (2.14)
0 —t when 2= 0, (2.15)
Op is finite at r = 0, (2-16)
is finite at r = 0, (2-17)
Op= 00 at r = 1, (2.18)
0=00 at r = 1, (2.19)
I >0
3. Solution
For the solution of the above problem we assume that
Opfr, z,t) = 0pl(r,2) + tOpr,2z) , (3.1)
0(r,z,t) = 02r,z) + tOo2r, z) , (3.2)
where Opl,0 P20 1 and 02 satisfy the following problems:
ro90 p2
A(Oa Opr) ? (3.3)
o ( pr)
8& _ ¥ e
- -f3.+ 1 + &(©, - 02, (3.4)
92 P 9r2 r or
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0= 1 when z= 0,
02 =1 when z= 0,
Op2 is finite at r= 0 ,
02 is finite at r= 0 ,
Op2= 0 at r=1,
02 =0 at r= 1

op2+ A ~ = ,5301-0p1,

dz

¢ 5. 1 d&J | gigpl- 0)) |
dz p dr ,

9pl = O when z=0,

0, = 0 when z— 0,

9 pi is finite at r= 0,

oL is finite at r= 0 ,

dpi = 00 at r= 1 »

03 =00 at r= 1.

Solving Eqge. (3.3) and (3.4) under the conditions (3.5)—(3.10), wé get

0 Jo{rXxn)

A+ A +jg-—]A Ba+ RBi 1 «n
PR '

R

.+ 10

r

A + Ri

I 2
R PR.

2

mAN(z) ,
pa2n Sa,Jiw
02= 2 Jo(ra") . W
JA @ 1(xn) T
where the a, are the positive roots of J0(a) = 0, and
A(*) = 1-mmeee — [K exp (—nnz) — Uoexp (—A,s)]
4, —M
Bn(z) = exp (—iinz) —
(*n — Pn) Ra .
1—WNIr"1 exP (-A'"r) "’
(*» - Pn) P3 /

4a2

PR2

4a2

- P3

(3-5)

(3.6)
(3.7)
(3.8)

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)
(3.14)
(3.15)
(3.1 6
(3.17)
(3.18)

(3.19)

(3.20)
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Then the solutions of (3.11) and (3.12) under the conditions (3.13)—(3.18)
are given by

Azy MTO)  aApg), (3.21)

Opi — 1-2 2 Jvr-r saypj
o=1ao-fl(an) B n=1ao-fl(ao)
oo 1 -2 M r*n) B.A) 2T jZp M T«n) agng- (322
0=1 an-fl(®o) B 0=1 GCofl(ao)
Thus
N (T«o)
Op=2001\-2 2 A(*) +
n=1 a-s>fl(a;,)
©_ i N ' (3.23)
CA D) RS M
0=0,1-2~ /1 (rao) Bo(*) +
0=1 ao-fl(an)
+2t— y Jo(r*n)_ . B (2) (3.24)

B}&i*M *n)

Op(r, z,t) and O(r, 2,i) give the dimensionless temperature distributions of
dust particles and of liquid in a circular pipe for slug flow assumption when
the inlet temperatures vary linearly with time.

4. Discussion

When the boundary condition on the wall for 0 p(r, 2,1) and 0(r, 2, 1) is
homogeneous, that is, when 00Ois zero, then

op(r, 2, t) = 2 -aa (4.1)
fi) 0=1an-fl(ao)

or,2,%=2 —— Yoo g (4.2)
0=1 V-nJ\(an)

From (4.1) and (4.2) it is obvious that the temperatures of dust particles
and of liquid decay exponentially along the pipe.

For a single-phase system the number of dust particles per unit volume
is zero (and so /34 = 0). Hence

— 'y Jo(ra,n t o/ \
os(r,-, )= 2t . ot Jotran) ey (4.3)
n=1
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where Cn(z) = exp (—a”/PR z) and the boundary condition on the wall

homogeneous.

is

In many applications heat transfer in regions away from the inlet is
of interest; for such situations only the first terms in the series (4.1), (4.2)
and (4.3) need to be considered. Therefore

0p(r, 2, t) = 2%
o(f, 2,t) = 2t

0s(r,2,t) = 21t

where

M *)
(N /h)
RI(2) "1 b _«Ml
i Mi)
/h 1_ RA
™1 - Mi)
a = exp «L
A PP
2A] = £+ A A
& + A 2 &
i = 4+ —
2 Mi p P
The temperatures at any r, say r = 0,
Op(0, 2, )= 2|t -
00, 2,) = 2 t ——
P)
050,2,t) = 2|t - —
K
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Jo(rai)
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ain bl
aidi(aj) @) s

(A exp (=M 2) — MiexP (="l 2)] ,

exp (—" 2) ,
+ A a? 12 4a?
P PP PPZ& >
+ Bt ,  *! 43?
+
p pp PP2
are given by
"Ad»),
aH/l(ai)
1
Lo *i(2) ,
«iJiK) '(2)
1
C(2) .
alA (K)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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Table 1

Comparison of the temperature distributions for
*= 2, P = 0.73, 83= 106 Bt/R3 = 0.5, R = 13,000

z 5 10 15 20
Temperatures
®p0,..) 3.1974 3.1904 3.1834 3.1763
0@0r0 3.1970 3.1900 3.1830 3.1759
0/0,r,i) 3.1941 3.1839 3.1736 3.1634
Table 11

Comparison of the temperature distributions for
t= 2, P =073 [A,= 105 RtIR3 = 0.5, R = 20,000

z 5 10 15 20
Temperatures
0/0r,% 3.1992 3.1940 3.1888 3.1836
0@zt 3.1988 3.1936 3.1884 Y 3.1832
070, * 1) 3.1975 3.1907 3.1839 3.1771
Table 111

Comparison of the temperature distributions for
t= 2, P= 073, 4,= 10s, B8jB3 = 0.5, R = 25,000

z 5 10 15 20
Temperatures
0p(0,*.») 3.2009 3.1974 3.1939 3.1904
0 (0,z1) 3.2005 3.1970 3.1935 3.1900
0/0, *t) 3.1992 3.1941 3.1889 3.1838
Table IV

Comparison of the temperature distributions for
t = 2’ P = 073, R3= 10», BJB3 = 05, R = 201000

A 5 10 15 20
Temperatures
0/0,2,t) 3.1991 3.1939 3.1887 3.1835
© Z 3.1987 3.1935 3.1883 3.1831
0/0,r,0 3.1975 3.1907 3.1839 3.1771
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Table V

Comparison of the temperature distributions for
t= 2, P =073, 83= 109 B,I83 = 0.5, R = 25,000

z 5 10 15 20
Tem peratu res
®p(0, 2,) 3.2008 3.1973 3.1938 3.1903
0 (0, z 1) 3.2004 3.1969 3.1934 3.1899
©5(0, 2, 1) 3.1992 3.1941 3.1889 3.1838

We observe the following important points:
(@) From Tables I, Il and IIl it is obvious that the temperature dis-
tributions 0 p, 0 and 0 Sat any point inside the pipe increase with the increase

of R and
Op>0 >0S.

(b) Tables Il and IV show that Op and 0 at any point inside the pipe
decrease with the increase of B3 (and so /4) and

Op >0 > 0S.

(c) From Tables Il and V we infer that the temperature distributions
Op and 0 at any point inside the pipe decrease with the increase of BjRsand

Op>0 >0s.

Thus, the effect of dust particle is to flatten the temperature profile
and, consequently, to increase the heat transfer.
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WAVE MECHANICS AND THE PHOTON 111

FORMULATION OF THE SIMULTANEOUS EQUATIONS
By

L. JANOSSY and M. ZIEGLER-NARAY

CENTRAL RESEARCH INSTITUTE FOR PHYSICS, BUDAPEST

(Received 6. X. 1977)

The interaction of an H-atom with its own radiation field was treated in a former
publication to a certain approximation. The calculations in this paper give a more precise
formulation of the differential equations representing the interaction. In a subsequent paper
we shall give the explicit solutions in a particular case of the equations derived here. It
will be seen that the solutions thus obtained confirm our former results, but contain some
interesting new features.]

Introduction

In a previous publication [1] we have investigated the interaction of
an H-atom with its own radiation field. The result of the calculation showed
that the atom when in an excited state has a strongly instable configuration.
Therefore a small suitable perturbation starts an avalanche which leads to
emission of radiation of the total energy hv. The radiation is in general emitted
inside a narrow cone. This process much resembles what one may take pheno-
menologically as the emission of a photon.

In the previous paper [2] we dealt with this process and carried out
calculations making certain approximations. Presently we give a more precise
treatment of the problem. The calculations we give presently leads to results
similar to that of the former paper. Presently we show, however, that an
avalanche may develop also in the case when the radiation emitted by the
atom is captured by a system of perfect mirrors. In the approximation used
in the former paper it appeared (incorrectly) that an avalanche can develop
only if some of the radiation emitted escapes from the region occupied by
the atom.

In the present paper we consider only the particular processes when
one H-atom is enclosed into a cubic box with sides L, which cannot be penet-
rated by the atom and which acts as a perfect mirror. Further, we restrict
ourselves to processes which take place when the state of the atom is the
superposition of two stationary states only. So as to obtain an adequate
description of the emission process it would be important to consider such
processes also which occur when states consisting of the superposition of

5* Acta Physica Academiae Scientiarum Hungaricae 43, 1977
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several stationary states are present and it is also important to take into
consideration the radiation which escapes out of the enclosure.

The treatment of the process as the superposition of two states leads
to qualitative results only. Nevertheless in this qualitative way we obtain
a phenomenon corresponding to the natural line width of spectral lines, which
comes about as typical property of the non-linear oscillating system indepen-
dently of the loss of energy of the oscillator. Further an effect somewhat
resembling to the Lamb shiftis found as the result ofthe non-linear interaction.

We deal presently with these more specialized configurations so as to
develop mathematical methods which we hope to generalize later and which
will be suitable to describe the process of emission which occurs under practical
conditions.

The mathematical formulation of the problem
We investigate an H-atom described by a two-body function
ip(r) = r2)

r<> (k = 1,2) being the coordinate vectors of proton and electron. The
Schrddinger equation can thus be written

{H+ P)ip=ihip, Q)
where
Wo = ihip0 2)

is the unperturbed wave-equation and P is the perturbation caused by the
electromagnetic field of the system itself. We take thus P to be the perturba-
tion caused by the field with potentials A, ® obeying

VA —— A
c2

—sri

Y2 — — b _dijre . 3)
r2

The sources of A and @ being the so-called semi-classical current and charge
densities. Thus we derive from the wave function ip six-dimensional source
densities

QK)(r) = ehip*ip ,

W{r) = o {ip" gradfcip — ip gradtip*) — e ipripAk k= 1,2 (4

. m k<?
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where e2= —ex= e is the charge of the electron and mL m2 is the mass of
the proton and electron, respectively. For the potentials in three-dimensional
space we introduce the notation

Ak(r) = A(r«), ok(r) = ®(rW) k= 1,2. ®)
The three-dimensional source densities are thus

eW) = j ewyir) dam) [Wb=T, (6)
i) = 3 iwWr)d3 ()= K'A K

and the total source densities caused by the electron and proton

o(r) = e@(r) + e@(r) , ™)
i) =i@)(r) - i@(r) .

We note that p(r) and i(r) thus defined cannot be represented as threefold

integrals over some densities p(v) and i(r); the averaging must be taken

separately over the six-dimensional proton respectively electron densities.
The perturbation operator P consists of two contributions

P = p(i) + PO), (8)
where

4
pm _ e MOAC+ kK + ekak + T = A2 ©)

Remark on the magnitude of the perturbation

The H-atom being enclosed into a box with macroscopic linear dimen-
sions L the charge and current densities as obtained by the definitions (4),
(5), (6), (7) are proportional to 1/L3 the densities can he taken to he small.
For this reason, as can be seen from (3) the potential A and ® are also small,
i.e. proportional to 1/L3. We see therefore that the perturbation operator P
in (1) produces only a slow perturbation; the solutions of (1) can thus be
represented as solutions ofthe unperturbed equation with some slowly chang-
ing parameters. In particular the frequencies of oscillations of the system
have values differing only very little from those of the unperturbed system.
The perturbations caused by the reaction of the atom with its own radiation
field are small indeed provided

L rH, rH — Bohr radius. (10)
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It is, however, also important for the considerations that we have to
take ip= ip(r) as a two-body wave function. If we were to take the usual
one-body treatment of the H-atom, i.e. if we were to take the nucleus as a
classical point particle, then the reaction of the field upon the atom would

appear to cause large perturbations. The above model — as we have called it
elsewhere [3] — isthe “50% Bohr model”.Thetreatment of this model involves
considerable mathematical difficulties — nevertheless the solutions obtained

from the 50% Bohr model do not seem to have physical reality. Some
problems of this kind are treated in the literature and these are connected
with the so-called “solitron” types of models.

We note further that one might suppose incorrectly that our results in
the limit m1— oo tend to those which could be obtained using one body
wave function. This is not the case. Indeed, increasing the value of the mass

one obtains configurations which show decreasing rates of diffusion. The
perturbation calculation is based on stationary configurations, thus the
larger mx the longer it takes to reach stationary configurations. Stationary
configurations, however, when eventually established, fill about uniformly
the volume of the box. The larger the mass mx the longer one has to wait
until the configurations we are making use of are established. These times,
however, remain very short indeed, even if the proton was replaced by a
particle with mass m W. The two-body treatment is thus based on wave
functions which essentially differ from those used in the one-body treat-
ment. This is so even in the limit mx—moo.

The perturbation energy

The perturbation energy can thus be written

(1)
Introducing P from (9) and making use of the expressions for the three-
dimensional current and charge densities, we obtain a rather simple expression
for the perturbational energy. Supposing (10) to hold we can neglect the

f (113

terms containing higher powers o thus we can neglectthe terms placed

into square brackets in (4) and (9); we thus obtain
12)

where

is the reduced mass.
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The second term on the right is to be taken as an integral over the
boundary of the box containing the atom.

The perturbational equations

The effect of the perturbation P can be calculated if we introduce a
complete set y)vof orthogonal wave functions representing unperturbed states.
Developing the wave function as linear combination of stationary states

y) = 27¢c,yV, (13)

we find in the usual way from the wave equation (1) that the effect of the
perturbation is to make the coefficients change in time in accord with

(14)

where

= - yJIPPM B~ (15)
(for P see Eq. (9)).
Making use of the definitions we find that the bl can be expressed in

terms of current and charge densities in the following manner: introducing
(13) into the definitions (4), (5), (6) and (7) we may write

i(r)=Tc'cd » , (16)
e(r) = r) »
where
M r)= *v(r) + *Ne ° 17)
M r)= e*“(r)+ e®(r)
and
in(r) = J Wr)dVv s, (18)
eif?() = f $32(r)dVk)rk)_r, k'~k
finally
iekh
t$(r) = — ke (V* gradtYV — W gradtW*) +
+ negligible terms (19)
pW (r) = exlp&y .

Using the above definitions, we obtain for the coefficients defined in (15)

N = —-—-—I(g ® — i,,A) d3 + surface integral. (20)
hJ
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Multiplying (20) with c*ca and summing over v and ,» we find, also with the
help of (16) and (11)
= UP. (11a)

(11a) is a relation which could be derived directly from (11), (13) and (15).
Returning to the electromagnetic wave-equations, we find that the
relations (3) can be written

V2A - — anZcfC'Xp ,

—4nEc*ch™ . (21)

The motion of the system is thus defined by the simultaneous solutions of
(14), (20) and (21).

The stationary solutions

So as to obtain a definite set of differential equations describing the
motion of the system we have to make a choice for the set of wave func-
tions yv. We note that stationary states of the H-atom can he described by
wave functions

W= W= -rr e KIR<P(S) e ~imt » (22
where
k="127T "% s=rQ_ rQ®
ml+ m2
and
je 23
2ml-my ' 23)

Here <Pi(s) are amplitudes of the solutions of the one-body H wave equation
with reduced mass m (see (12a)) and co, are the corresponding frequencies.
We note that in the following we shall use the notation:

YV = Wni'= eiK»R <pr (e) (24)

The wave functions thus defined cannot be normalized over the whole of
space. If we suppose, however, that the H-atom is captured in a finite box
and the effect of the walls is to cut off the wave functions outside the box,
i.e. if we suppose

ipv(r) = 0 if r«) or r* point outside the box
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then the functions thus defined can be normalized and if we choose the wave
vectors Kn with components

2*mA 1 .
Ayn, R where nk are integers . (25)

The wave functions thus defined give a complete orthogonal set in terms
of which wave functions inside the box can be developed. More exactly, the
wave functions y)v defined by (22), give only a nearly complete orthogonal
set of functions and there is an important restriction. Indeed, the wave
functions thus defined are periodic in R. Therefore all linear combinations
of the y)v are also periodic in this way. We can therefore express in terms of
the ipv only wave functions which are themselves periodic. Thus as we take
the wave functions to vanish outside the box we can prescribe at a fixed time
tthe values ofiponly inside the box and on three of the walls; on the remaining
opposite walls the values are repeated. We shall see further below that this
restriction is not a trivial one, however, the states of the H-atom enclosed
into an inpenetrable box with reflecting walls may be supposed to possess
wave functions of this type.

Further below we shall carry out the perturbation calculations suppos-
ing that the stationary states of the H-atom captured into a box with reflect-
ing walls can be described indeed by wave functions of the form ynl.

The above assumption is not quite correct. The functions ipni define
states with definite momentum. The atom captured in the box has no total
momentum, its state can thus be described only by suitable linear combina-
tion of states ipnl. We shall discuss briefly at the end of the article how our
results are affected when using instead ofthe stationary states of the captured
H-atom the wave functions ynl.

The explicit form of the equations of motion

Introducing the wave functions ynl defined by (22) into the expressions

for the densities ry and i,mr) we find as the result of a short calculation
eV*) = jjeie* R VI, (26a)
V(r) = 7Lgﬂ 1¥- (26h)
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Here we use the following notation:

07 = (KM- KJr- (iB- §)t (26¢)
RVi= J <F{s)~(s) [e“qKi- K> F A3S (26d)
n ) . N
A (K1-f- Kr) 1 - ein!(K(x-K>)e) ¢i*(s) d3s
2Me
- g_ -
hi ¢ e o 9< x s (268)
2Mc J a2 al 1 0Os 0s
here
~r  “nl - Anl- E ; (27)
and
a, = ﬂ” , M™= ng+ m2.
M

Equations (26a, b) are valid only if L > rH. Indeed, carrying out the integra-
tions, approximations are used the nature of which can be seen from the
following example

g()(r) = e2 J yi*tpd3 &) [t(i)=r
introducing s as a new variable of integration, we have

R=r+ ad, d3r() = d3.
Thus
g@(r) = A j,el(K(@i-Kn) (r+ct.i) ¢,A(g) ~(s) d3se -KOfi—Qw)! _

f rp”s) el ~k" T(p*(s) dX> .

Because the <p(s) decreases rapidly with s, we extend the integrals over s to
all values of the vector s; this procedure introduces a small error of the order
of (rH/L)3.

Introducing (26) into (6) we may write in place of (2)

V2A - -1-X = -
var—\dh = — ZCARN. (28)

Ld
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Prom (28) we see that A and ® can be expressed by Fourier series
A= 2Are'V = , (29)

where the coefficients Avi and ®V)i are functions of time only. It follows from
(29) that A and @ are periodic functions of the coordinates. From this it
follows that the Poynting vector has the same value at opposite walls. There-
fore the field given by potentials (29) possesses a constant amount of energy
in the box; either A = ® = 0 on the walls in the case there is no streaming
of energy across the boundary. If A, ® 0 then there is a sourceless stream
of energy across the volume.

We can safely restrict ourselves to solutions A= O ® = 0 on the
boundary. We see thus that the assumption of periodicity of the wave func-
tions ip,, automatically makes a restriction to configurations enclosed by a
box reflecting the radiation.

Introducing (29) into (28) with the help of (26c) we find for any one
of the Fourier coefficients of (29)

4:nckc*c T

n - K)S- (- AN K, - 2i(Q,- Q)k, + K =
No - K)2- (™ - A)A<V- 2i. - A) +ow=- » V

The AMl and ®,mcan be eliminated from the above equations and equations
containing the bvii only can be obtained. 8o as to see this, we introduce (27)
into (20) and find thus

h,= - - A A) dir m (30)

Introducing A and & from (29) taking the orthogonality relations

f efkV+V*d dh = L3306y 6ffi>,
into consideration we have
IR

. : (31)
F

Avu

since in accord with the definitions
Rw= R*/ and 1/ = I*,
Lo . 16 16 .
By multiplying (30) and (31) with _h Rp and--—-- t-1 --R* respectively and
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then adding them we obtain
iyLKu+ 2(8 —Q) hy ibyn  2airc* . (32)

Equations (14) and (32) give a set of equations giving the motion of the
system. The parameters 6vVx yvl appearing here are

2nex?2

hy  (nd2 miC12 (33)

and
vl = (0, - - MK. - KW (34)

are frequencies the numerical values of which can he determined from the
definitions.

The system of equations of motion can he rather simplified considering
systems consisting of two states only: an excited state y)xand a lower state ip0.
The amplitudes of other lower states w\ ... ylo=should he zero. Such
an assumption does not lead to inconsistency. Indeed, if we consider an initial
condition so that asymptotically for t— —oo0

Ig I->1 and 140 1= jcOl->0
but
4n>= n if n 0.

Thus we permit at the beginning of the process a small admixture of one
particular lower state, take the other lower states to have strictly zero

amplitudes.
The full perturbation equation can be written

ci=
n
co = Ci,
therefore if to begin with = 0 for n > 0 we have at
Ci = bcO,
c0 = —b*cv

where we have introduced the notation b$ = b, thus the cOn starting from
zero remain zero and as a consequence the bOn which start with zero values
remain also permanently zero. The solution of the system of equations which
thus appear at any time as a linear combination of two states only is a mathe-
matical possible solution of our system.
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It must be remembered, however, that the initial configuration in
which one lower state has a very small amplitude and the others are strictly
zero is a rather unstable one. In a more realistic configuration several lower
states will grow up side by side.

The question of the parallel avalanches which thus develop is most
important for the adequate description of the physical process and we hope
to come back to the treatment of this process. In part IV of this paper [4]
we shall give the explicit solutions for the two state system. In the next
paper we shall confine ourselves to the two state system only, largely in
order to obtain certain qualitative features of the process and also to deve-
lop mathematical methods which we hope to use later to treat the more
complicated process.
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OF THE °*II—°1II BANDS IN DIATOMIC MOLECULES
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Explicit expressions are obtained for the intensity distribution in the branches of
5[1(a)—>5I1(a), 5I1(a)—>3I1(b), 5II(b)—>I1(a), 5I1(b)—>I1(b) bands, including all branches which

have been missing till now.

1. Introduction

In the CrO molecule the (0,0), (0,1) and (1,0) bands of a 3/7—>IT transi-
tion have been observed and analyzed rotationally by NinomivA [1]. In general
the theoretical investigations of intensities in electronic bands relate to a
wider field than the experimental data, providing hereby the experimental
researcher with some guidance in case of an analysis of a new kind. So the
formulas have been worked out for the line strengths of all possible transitions
between X' and I7 terms of any multiplicity up to septet [2]. In the case or
transitions of higher than triplet multiplicity, general formulas, namely the
formulas of the line strengths of transitions between terms belonging to the
intermediate Hund’s case, would be complicated. In such a case the treatment
restricts to the limiting-case transitions. For 3/7—3/T transition the °I1(a) —
—511(a), 5I(a)—>5II(b) and 5I1(b)—5II(b) cases have been elaborated by
PrEMASWARUP [3], but only 15 branches (so called main branches) arising from
the transitions AJ = AN = 0, 41 were published of the possible 75. This
is perfectly satisfactory for the 5/1(a)—5I1(a) transition because due to the
42 = 0 selection rule the line strengths of the unlisted branches are identic-
ally zero. In the case of 51(b)—5/1(b) transition over and above A4J = 0, -1
the AN = 0, +1 selection rule is valid instead of AX = 0 therefore over the
main branches 22 further satellite branches come into being. As is known
if the formulae for all branches had been included, the sum would be
(2S + 1)(2J + 1) = 5(2J + 1), (S = 2). In the Table I the second column
shows the values of 5(2J + 1), the fourth column the sum of the line strengths
of the published main branches of 5/7(b)—3/1(b) transition for a few J values
according to WHITING et al [4]. As can be seen the intensities of the satellite
branches converge fast to zero with increasing rotational quantum number.

* On leave from Ain Shams University, Education College, Cairo, Egypt.
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Table |
J 52.7 + 1) 57(a)—67(6) 677(b)—*T1(b)
2 25 3.357 19.639
10 105 18.994 103.063
30 305 54.259 304.344
100 1005 176.849 1004.800

A quite other circumstance can be found in the case of Hl1(a)—d1(b)
transition. Here the selection rule AH = 0 is no longer valid and the selection
rule AN = 0, +1 is not valid yet, solely the AJ = 0, +1. Therefore all the
75 branches appear and the intensities are dispersed over all branches as can
be seen in the third column of the Table I. These facts make it necessary to
give the line strengths of all the 75 branches.

2. Intensity distribution

As is known, in case of the thermal equilibrium the intensity of the
lines of emission bands can be given by the following expression:

L. = G mS/r e~hcF kT, 1)

where G can be regarded as constant to a good approximation within a band
and Sj,j, is the line strength. The relative intensities of the individual lines
of a hand arising from a multiplet transition are determined, apart from the
Boltzmann factor, by the line strength; it is this latter that characterizes
the intensity distribution among the branches. The task of the theory is to
calculate the Sj.,, factors for all branches occurring in the rotational transi-
tions. For this the corresponding expression for the amplitudes

*a?Ma-,*M0") = J yaf>170) up{1in') dr 2)

is used, the absolute values of which may be found in a paper by Kronig [5].
The threefold square of (2) summed over the magnetic quantum numbers
gives the S factors to the transition H1(a)—31(a) and these are to be found
in the second column of Table II.

The 91 terms can in general be described well by the formulae of Hund’s
case a) only in the range of the lower rotational quantum numbers. W ith
increasing rotational quantum numbers namely the transition starts towards
the case b) and the difficulty in describing the conditions consists in that
no expression is known concerning the 91 energies valid with a satisfactory
accuracy for any value of the coupling constant. Thus we have to content
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ourselves with the knowledge of the energies of the relative simple case b),

respectively with the amplitudes produced by the use of the
matrix elements calculated with their aid

(5 a> 5 bk) = | ya(uililY) 2\pb(*nN,) dr ,

2(5M,V-; 50 @") = J V=hi5nN') rYa{5Mii”) dt
and

Z(INm5Ag,.) = ) zWb{S5nN") dr,
where

v» N )= J s GtNWa” n 0)

transformation

(32)
(3b)

(3¢)

4)

and the elements of the transformation matrix of 57 state are the following

_ /I (J-2XJ+1) N (J—2)J

s-id-r—+ 1142 - 1X20+ 1) 80,31 Y (23-1)(20+1)
o33 —2)(d+1 - j

S+ij-r= + ] ( )« ) #+r,7-3 y (3-2)(J+ 1) (j+2T

12(23—1)(23+1) *

(IJ+1)(IJ+2)(3+3)
S+3J-2= + ]/4(.]—1)(2J—1)(2J+1) :

T(3-1)(23-1)(23+1)

. .o J+1
=+ ]EV 223+ 1) * $0J-1 ¥ 2023 + 1)
Y 3 . (3-3)23+2)
S*LIL= 4 g, st23-l * 115-1)3(23+1)

(J-2)(3+2)(JI+3)

S+3i-i 2(3-1)J(23+1)
1 3J(J+1)
S = L F 2(23-1)(23+3) ° Sod  + ony_1y23+3)
o I [J(I+D)-3]* 27(3-1)(3+2)
Ki=+f30+n3-1)(23+3) * 2] ¥2J(J+IX 23-1)(23+3)
1/3(3-2X J-1X -/+2X J+3)
F 23(3+1)(23-1)(23+3) *
. J+ 1 .
S-iJ+i 202,3+1) 50J+i Foo200+1)
o = 1/ (3-1)(J+4)8
SHIH Ly f s(0r1x20+1) J+l F 2(J+1XJ+2)(23+1)

_F-Z)(J-I)(J+3)
3+3j+|
B(J+1)(J+2)(23+1)
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/o (J+1XJ+3)

i/ JV + 3) ) )
S-13+2 = + {40574 1)(2J4 3) - SOIFZ =+ 1 (23+1)(23+3)
v 3J(J+3) _ 1@ 1).@3+3)
$+13+2= + |r2<2J+1)(23+3) - STAr2 = %01 (3+2)(23+1)(23+3)
(3-2)(I—1)J
S+3J+2 — 4(3+2)(23+1)(23+3)

The threefold square of (3a), (3b) and (3c) summed over the magnetic quan-
tum numbers gives the line strengths referring to the transitions d1(a)—57(fe),
H1(b)—91(a) and 5TJ(b)—57(6) which are to be found in the third, fourth

and fifth column in Table II, respectively.
As can be seen from Table II, the intensities of the Q branches for any
transitions (if they differ from zero) are proportional to — except for (232’

J
KQi3, ¢ s« in the case of F1(a)—dl1(b) transition where the intensities are

proportional to — , therefore the observation of the Q branches cannot be

expected. This is in good agreement with the experimental results [1]. The
intensities of the P and R branches in the main branches (AJ — AN — 0)
are proportional to J and for 37(b)—31(b) transition in the 22 satellite branches

(AJ — AN @ 0) they are proportional to— . That means that it is satisfactory

in practice to know the line strengths of the main branches for B1(b) B1(b)
transition, too. (See Table 1).

On the other hand for 1(a)—d1(b) and H1(b)—d1(a) transitions the
intensities of 21 P and 21 R branches are proportional to J and those of 4 P

and 4 R branches are proportional to — . In the Table Ill the first column

shows the line strengths of the main branches for "l1(a)—31(a) transition
andin the second column it can be seen how the intensities of the main branches
among the individual branches are scattered for H1(a)—d1(b) transition.
(See Table I). This is the reason why it is necessary to know the line strengths
of all branches for §7(a)—5%JI(b) transition.

In Table Il both 57 terms were assumed to be normal. In the case of
inverted terms Q = 3 does not correspond to the state N = J 2, but to
N =J —2 and for the transitions %7,(a)—31n(a), 97,(a)—B1(b) the first
indices 1,2, ..., 5 in the denotation of the branches should be replaced by
the denotation 5,4, ... (for H1n(a)—91,(a), 31(b)—577,(a) this applies to the
second indices).
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PAJ)

QAJ)

RiU)

QP.i(J)

*QM)

sRn(J)

rp,AJ)

SQAJ)

TR3AJ)

-

41(a)—41(a)
DA+ 7
J

2J+ 1
JU+ )
JJ + 2)
J+ 1

0

Table 1l

Line strengths for 37 —57 transitions

f1@—119
= N (_R
423 DRI+ 1
J- 2
4323 - 1)
@3- 230+ 2
423 - DRI+ 1)
3- 2
(23- 12+ 1)

0

@3- 233+ 1
(3 - DI+ 1)
30- 2@- DE+ 1=
2J(23- 1)@I+ 1)
3J- 2)
2J(23- 1)
30- 203+ 2)
2023 - DI+ 1)

TI—710) 41(b)—41(h)
y ' (I-3@- DI+ Y
JHi@- i) (- 2@2I- 3
@+ @RI+
<?V) u- 1u
(I - 2)JI + 3
ng + 1) (I- 1)I- 1
) _ 21 + 1)
on=wu- i (I- 2XJ- 12
) 20 - 2)(23+ 9
pé»U) (@- 1223- 1)
N (T + 1) 0
. J -
pRNU - i) A - 1)2?2(,] - ?L;(ZJ -3
°CisU) 0
"Nau + 1) 0
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Table M (continued)

Line strengths

Branch
ranches A1(@)—41a) 41(a)—1(b) m(b)—4I(a) 47(b)—41(b)
0 (3-2)23+1)(J+2)* 0
SPM) (3 - 1)IEI - 1)23+ 1) Ru(J- 1)
4(3-2)(3+2)
QM) 0 (3 - 1)I23- 1) nQu(J) 0
(3 - 23+ 2)3 + 3)
0 0
nRM ) @1 - DEs MPU(J + 1)
) 0 (3-3)(I+1)(IJ+2)(I+3)s 0
Tpsi(J) 40 - 1)JIRI- DRI+ 1) aa-t)
; 9(J + 2)(J + 3) .
uQsAJ) 0 43 - 1)3(23 - 1) MQir,(3) 0
0 (- 2)0+ )3+ 3y + 4) _ 0
Vr n(J) 403 - 1)(23- 1)(23 + 1) LPi, 0+ D
(J-1X3+1)
*Pn(d) 0 2020 + 1) 0
) 0 1 2(3 - 2)(23 + 1)
pQiz(J) 200+ 1) (3 - 1)223 - 1)
0 JAJ + 2) 7 2(2) + 3)
QrAJ) 20+1)(23+1) Q-P2i(J + 1) (3 - )23+ 1)
. ; 10+ 1 s 1) (3 —2 @+ 1DEI+ 1)

2(23 + 1) (3 - 1)223 - 1)

avydov-13 ‘N "I ‘I pue SOYAOM



/16T ‘€ 8eouebunH wWNJeNUSINS 8elWapedY BOISAUd BIOY

Branches

QAJ)

R.(J)

qp3,U)

rQ3*(J)

Srm(J)

Rp i3(J)

sSQtAJ)

TR,AJ)

SP M)

TQ M)

UR M)

“77(a)—41(a)

0

Line strengths

41(a)—41(b)
0

I+ 12
223 + 1)
3(J-1)(J+1)
J2(2) + 1)
3
J\I + ]
3+ 2)
G+ D2I+ 1
J- 3)AT- 2)J+ 2)2
20- JIW + 1)
2(3- A + 2)
(J-1)J2(J+1)
(J- I+ 2)(J + 3)
2JJ+ D@ + 1)

J- 3 - 2@+ 2)I + 32
2(J3-1)J2(23+1)
9(J-2)(J + 2)(I+3)
20 - 1)JAJ+ 1
(J-2)23+2)(J+3)(J+4)
2(J-1)J(J+1K2J+1)

“I7(b)— “1/(a)

QAJ)

PAJ + i)

@Al - 1)

PQAJ)

cPAJ+ 1)

°Q»(J)

np*AJ + i)

°nasc/ - 1)

nQ,AJ)

mp *aJ + l)

“I1(b)—"1/(b)
(J2- 3223+ 1)
(J-1W J+ 1)

J- DAI+ 2)23 + 3
J2(2) + 1)

30+ 1)QI- 3
- 12s
30 - 1223+ 3)
Je(2J - 1)
0

9(J-1)(J+1)
Js(2) - 1)2I+ 1)

0
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Branches

NPi3(J)

*QuUJ)

PrAJd)

°ptAd)

PQIAJ)

aRAJ)

P-AJ)

QAJ)

RAJ)

ap*AJ)

rQaAld)

-

678 —47(a)
0

0

0

1) +1)
J

2)+ 1
JAJ + 1)
JQJ + 2)
J+ 1

0

Table Il (continued)

Line strength

G770

30 - DA+ 1)2
2(2) - 1)(2J + 3)

3(23+ 1)
2(23- 1)(21 + 3)

30\ + 2)
2(23 - 1)(21 + 3)

3l
223 - 1)(21 + 3)
0
33+ 1)
2(2) - 1)) + 3)

(- HPE+ 1)- 3)2
JZ22) - 1)(2)+ 3)

(20 + HPIQ+ - 32

JAI + 1)Z2] - 1)(21 + 3)

3+ 2)PE+ 1)- 3)2
(J+ 1223 1)1+ 3)

270 - 2)(J- D@+ 2)2

2023 + 1)(2) - 1)(2) + 3)

540 - 1)+ 2)(23+ 1)

I+ 1220 - 1)) r3)

(o —17(a)
TR i)
SQAJ)
RPAJ + i)
sRJ - 1)
rQAJ)
ap 3A(J + i)
RYJ - 1)
QAJ)
PJ + 1)
qe3(d - i)

PQAJ)

41(0y—41(b)
0

6j- 1
JZ22) - 121+ 1)

0

3(J - 1)-(23 + 3)
J323 - 1)
30+ 2)21 ~ 1)
JAI+ 1)3
(3 - 1DAI + 1)Z21- 3)(2I+ 3)
J32) 1RI+ 1)
[3(3 + 1) - 3142) + 1)
333+ 1)3
JAJ + 2)42J) - 1)(2) + 5)
(J+ 1323 11)(23+ 3)
3(J- 1)(21+ 3)
I3+ 1)2
3(J + 2)423 - 1)
(3 + 1)32) + 3)

avydov-13 ‘N I ‘N pue SOYAOM *



/16T ‘tp oeoLeBunH WNJenusldS selwapedy eolshyd ey

Branches

4a(3)
RP*3(J)
sQs*(J)
TRdJ)
MPuU)
nQhU)
R.(J)

NPuUU)
“Quu)

pP M)
*PuU)

pQuU(J)

&8—na)

Line strength S

“Ta)—1\e) 5619

21J- DI+ I+ J
2JJ+ DA23- 1)+ 3 Pu + D)
3J- 3U0- P- DI+ QA+ 3R :
2J3+ 1)23- DI+ 3 prRAJ - i)

270- 2J- D@+ 2@+ 3@ 1)
2123 + D223 - DI + 3

3J- 233- NI+ I+ U+ 4

20+ )W @I+ 3 NR(i + i)
(- DA+ )2 :
2023+ 1) uRd3 - )
1
2 TQu(J)
%&f+%) spdd + i)
J2 :
2021+ 1) TRdAJ - )
0 sQdJ)
JUJ+ 1
2223++ )1) RPdJ + ]
3J3- ) .
I3+ D) SHJJ - 1)
3

JA+1)2 RQd9)

3-60
0

6J+ 2
w D323+ D@ + 3

0

0

0
Du+ 2
o DI+ 1)+ 3

0

33+ 222)- 1)
@+ D323+ 3
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Branches

4 4))
PAJ)
QAJ)
RAJ)

QP UJ)

*QbAJ)

SrsAd)

1P>AJ)

mQiAJ)
nRiAJ)

MPn(J)

-

-

NE—11@)
0

2) 3+ 2)
J

423 + 1)
I3+ 1
DA+ 3
J+ 1

0

Table Il (continued)

Line strength S

87(2)—41(0)
3+ 2
I+ D23+ 1)

(- 2)0- DU+ 4=
2JJ + 1)(23 + 1)
200 - 1)@+ 42
JA+ DI+ 2

(J- 1DAI + 3)[ + 42

200+ NDAI+ (2 + 1)

(- 3)0- 2@- nE+ 3)2
2000+ D+ D +

9(J - 2)(J- 1)(J + 3)

2J(J+ D2AI + 2
J- 22)- Hd+ 30+ 4
20+ DAI + (A + 1)
(J- DU+ 1)+ 3)
42+ 1)(21 + 3)
J "3
40+ )2+ 3)
JAI + 2)(J + 3)
40 + 1)(21+ (2 + 3)

J(J+ 1)U+ 3
23 + 1)) + 3)

670)—97()
ap 4(J + i)
«4) -1

QAJ)

PAJ + i)
ar *aj - i)

PQ,AJ)
°p *AJ + i)
VR M - 1

QM)
TPoi(J+ 1)

WRM -1

41(b)y—41(0)
3J(2J + 5)
3+ D3I+ 22
(J- DA+ 2)223- )
(J+ 1DZ23+ 1)
[+ 2)- 21223+ 1)
JA+ DYI + 22
I+ 323 + 1)
(3 + 2223 + 3)
223 - 1)
JUO+ 1)AI+ 2

200 + 3)(23 + 1))
J+ 2)2(2+ 3)

0
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Branches

nQ,AJ)

N P*AJ)
°Q3AJ)
Pr 3(J)
*pu(d)
pQibU)
ru(d)

PAJ)

QAJ)

RAJ)

41(a)}—m (@

0

0

0
J- 33+ 3
J
923 + 1)
J(J+ 1)

(J-2XJ+4)
J+ 1

Line strengths

41(a)—47(0)
0

(J+ 1)AJ + 3
(23 + 1)(23 + 3)

3G- m + Ixj+ 3
223 + 1)(2) + 3)
3(J + 3)

2(J + 1X2] + 3)
3J23+2)(J+3)

2 + 1X2] + 1)(23 + 3)
(J- 2 - 1XI+ 3)
(23 + 1)(23+ 3)

40 - 1+ 3)

B+ DU+ D + 3
(J- DA+ 3)2
G+ DI+ 22 + 1)1+ 3)
(J- 3XJ- 2)3- 1)+ 3)
41 + 2)(23+ 1)(2I+ 3)
9(J-2)(3-1)

40 + DU+ 2)(2 + 3)

G- 22)- 1IJ + 4)
400+ D+ 2)(21+ 1)(2I+ 3)

41U —41(2)
TQaAlJ)
SP,AJ + 1)
TR,AJ- 1)

sQiAJd)

RPM + 1)
SR5i(J - 1)

rQuJ)
PM + i)
RAJ- )

QAJ)

PAJ + i)

41(by—41(b)

0

0

6(J + 3)
(J + 2)223 + 3)(2) + 5)

0

20+ 3)(23+ )
(J + 121+ 3)
2(23 + 1)

B+ DI+ 2V + 3)
(J+ 1)+ 3)(23- 1)
I+ 2@+ 3
J(21+ 1)
(J+1XJ+2)2

(J+ 2XJ+ 4X23 + 1)
(J + 3X2J+ 5)
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Table 111

37(a)—61(a) 11(a)—47(b)

SA SA St s4 st
SA 1 4 6 4 1
16 16 16 16 16

st SA 5% st st

SA 1 1 1
4 T 4 4
St St st Sa
- 3 0 2 0 3
8 8 8
St St st sa
SA 1 1 0 1 1
T 4 4 4
S SA 84 st A
SA 1 4 6 4 1
16 “UT 16 16 16
A =P orR
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COMMUNICATIO BREVIS

MEJISUREMENTS
ON THE FOURTH POSITIVE BAND SYSTEM
OF “O0 MOLECULE
IN THE NEAR ULTRAVIOLET REGION

By

J. Domin, U. Domin and M. RyTEL

ATOMIC AND MOLECULAR PHYSICS LABORATORY, PEDAGOGICAL COLLEGE, RZESZOW, POLAND

(Received 9. VIII. 1977)

The fourth positive system (A1l — X X + transition) of the 4C180
molecule was obtained by a discharge in a Geissler tube filled up with carbon
monoxide having 91% 14C. The bands were photographed in the third order
of PGS-2 plane grating spectrograph (VEB C. Zeiss, Jena) with a dispersion
of about 2.4 A/mm on the UV—1 type ORWO plates. The thorium lines
from the hollow-cathode type lamp were used as standards [1].

The band heads of the fourth positive system of the 14C160 molecule
are listed in a Deslandres table. These wave numbers are in satisfactory agree-
ment with those calculated from the origins of the natural molecule [2] using
isotopic relations. We estimate that the errors of most of the given wave
numbers are less than 1 cm-1. The wave numbers of the heads of the bands
(9,21), (11,20), (11,21), (12,22), (12,23) are especially inexact since they are
overlapped by another system. The presence of the bands (13,23), (14,25) is
possible but their region is strongly blended.

The detailed analysis of this system of 14CleO molecule will be under-
taken subsequently.

REFERENCES

1. A. Giacchetti, J. Opt. Soc., 60, 474, 1970.
2. J. Domin, U. Domin and M. Ryter, Acta PhyS POl., Ab51, 783, 1977.
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Table |

The band heads of fourth positive system of MC180 molecule (in cm-1)
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RECENSIONES

Physique des Plasmas — Les Houches 1972

Edited by C. de Witt and J. Peyraud
Gordon and Breach Science Publishers, New York—London—Paris, 1975

The volume presents the lectures delivered at the Les Houches Summer School of
Theoretical Physics 1972, in the course on plasma physics. The collection gives only six con-
tributions, evidently the most important ones of the course: 1. Collective Emission Processes
in Unmagnetized Plasmas, by G. Bekeri, 2. Linear Waves and Instabilities, by A. Bers,
3. Non-Linear Effects, by G. Lavar and R. Per1at, 4. Atomic and Molecular Processes in
lonized Gases, by J.-L. Det1croix, 5. Topics on Plasma Response Functions, by G. Kaiman
and 6. Strongly Magnetized Classical Plasma Models, by D. Montgomery.

The collection of the articles offers an excellent and open-minded review of two fields
of plasma physics, namely description of linear waves, instability criteria, study of non-
linear effects, radiation on the one hand, and the study of dense plasmas with the correla-
tion function method on the other.

The contribution of Professor J.-L. Detcroix gives an excellent and rapid view of
the individual processes of the plasma interior which is the bridge to every practical applica-
tion.

I. Abonyi

T. Karrard: Exploring Laser Light
Optosonic Press, New York, 1977, pp. 298.

Experiments with lasers today are no longer restricted to research laboratories. As a
result of the widespread application of this light source lasers are present in every funda-
mental optics experiment. And when lasers are combined with properly chosen display
elements, many old and difficult demonstrations in optics become easier to do and able to be
viewed by a large audience.

The performance of the optics experiments is generally inseparable from difficulties
involved. Fortunately, many of them are simply eliminated by the advantageous character-
istics of laser light. Nevertheless, a careful preparation of the laboratory exercises and lecture
demonstrations requires a knowledge of all the basic principles and techniques of optics.

From the points of view mentioned above T. Kair1ard’s book will be of advantage
to those, who want to master the performance of various optics experiments and measure-
ments.

The book is not divided into chapters explicitly. In connection with each experi-
ment discussed in the book the author has mentioned those physical principles which form
the basis both of laboratory exercises and simple practical applications.

All the exercises and lecture demonstrations contained in the book utilize low-power
c.w. He-Ne lasers.

The book begins with a brief review of the properties of laser light and exploratory
exercises. These are followed by the measurements with optical elements such as mirrors,
lenses, prisms, etc.

The next part of the book contains measurements of the parameters of basic acces-
sories. In these sections the author gives practical advices for the determination of the radius
of curvature of mirrors, for refractive index measurements, for measuring small wedge angles
and for other techniques, connected with the formation of the laser beam.
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The section on “Simple polarisation demonstration” contains a short discussion on
the polarisation of light, followed by exercises on the relevant problems.

The metrological possibilities of optics are realized by interferometers: interference
is discussed in detail. The usefulness of the different interferometers for measuring purposes
is demonstrated over a variety of practical applications. Unfortunately, the importance of
the Fabry —Perot interferometer is illustrated in a too modest way. Diffraction experiments
are treated as being of capital importance.

The experimental part of the book is completed with holography and its applications.

In the book relevant formulas are presented to refresh the memory and where appro-
priate, numerical values for parameters are given. Schematic drawings help the experimenter.

The “References” and the literature suggested “For Further Reading” make it easier
for the reader to pursue any of the topics covered in the book in greater detail. Review
articles are often included in the references. Relevant books are listed at the end of the
volume.

T. Kallard’s book will give an invaluable aid to workers of teaching laboratories.
The practical ideas it offers for planning the exercises can be very useful for young scien-
tists, too.

Z. Fuzessy

K. Mendetssohn: The Quest for Absolute Zero
Taylor & Francis Ltd., London, 1977

Professor Mendelssohn’s book summarizes the fundamental problems of low tem-
perature physics for a wide circle of readers in an understandable way. In my opinion, this
is the best book which has ever been written about this subject.

The author is an outstanding scientist in low temperature physics and engineering.
His name is connected with numerous significant results in the research of low temperatures.
The fact that he has been able to describe very complicated things in such a simple,
clear and understandable manner is obviously due to his perfect orientation and deep-settled
knowledge in this vast field of research.

The book begins with the first experiment to liquefy the so-called “permanent” gases
(Paris, 1877) and leads us as far as the presentation of the most up-to-date technical applica-
tions of superconductivity. In this way it shows the reader over the whole chronological
history of the investigations of low temperatures and presents all phenomena, effects and
technical results which rightly attract the interest of readers.

The principal content of approaching the absolute zero and the phenomena occurring
inbetween are dealt with very clearly and vividly, pointing beyond the principles of physics
and at the same time projecting the perspectives of applications.

The two most unexpected and astonishing groups of phenomena, namely the question
of the flow of helium without viscosity (superfluidity) and that of the electric current
without resistance (superconductivity) are analysed in detail. The process how the absolute
zero can be approached through the liquefaction of the gas and further through the magnetic
cooling of nuclei is described.

We are acquainted with the recent technology which has grown out of the physics
of low temperatures but can be applied effectively in many fields of engineering practice.

The book is divided into the following eleven chapters: 1. Paris 1877, 2. Cracow 1883,
3. London 1898, 4. Leiden 1908, 5. The third law, ©O. Quantisation, 7. Indeterminacy,
8. Magnetic cooling, 9. Superconductivity, 10. Technology near absolute zero, 11. Superfluidity.

Of these the first four can be taken essentially as the “novel” of gas liquefaction,
while the others give an overall picture of low temperature physics covering all essential
problems ranging from the problem of specific heat to the superconducting train.

The material contained in the book has been written and arranged in such a manner
that natural scientists and experts, technicians, university students and even many of those
who have an inclination for classical subjects can equally benefit from it since almost every-
body interested in the results of modern natural sciences can find something interesting in it.

The neat printing and fine lay-out of the work is the merit of the Publishers.

I. Kirschner
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ITERATION AND LANGER’S METHODS
FOR COMPUTING WAVE FUNCTIONS

By
D. C. PaTiL and V. M. KORWAR

DEPARTMENT OF PHYSICS, KARNATAK UNIVERSITY, DHARWAR-580 003, INDIA

(Received 13. IX. 1977)

Two approximation methods for solving the Schridinger equation, one recently pro-
posed by HERMAN et al., called the iteration method and the other due to LANGER, have been
compared computing wave functions by these methods for (A — X)) transition of AlO and using
them to compute Franck— Condon factors. RKR (Rydberg— Klein— Rees) Franck— Condon
factors have been taken as standard results for comparison. It is found that the iteration
method is better than LANGER’s. Compared to RKR procedure, the iteration method is also
much simpler.

1. Introduction

Recently HERMAN et al. [1] have proposed a new approximation method
for solving the Schrédinger wave equation for a diatomic molecule. These
authors give explicit expressions for wave functions and further, they claim
that the wave functions obtainable by their method are more accurate than
those which are available (e. g., Morse oscillator wave functions); the wave
functions, they claim, can be credited with accuracies at least as great as
those associated with the Rydberg—Klein—Rees numerical methods. In
the present work we have computed wave functions for the 423 — X2¥ trans-
ition of AlO molecule using the expressions given by these authors.

We have taken this opportunity to evaluate wave functions by yet
another method known as LANGER’s [2] approximation method which has not
found as much publicity as it deserves. Using one and the same potential,
viz., the Rydberg potential we have computed wave functions and Franck —
Condon factors and r-centroids thereof both by the method of iteration and
LANGER’s procedure. To see how both these approximate solutions compare
with exact solutions of the Schréodinger equation, we have compared the
Franck — Condon (FC) factors and r-centroids (r,.,) calculated on approxi-
mation methods with those obtained using Morse potential wave functions,
which are exact solutions of the Schriodinger equation. The Morse data on
FCs on the aforesaid transition are available from the work of earlier workers
[3] on this molecule.

1* ‘Acta Physica Academi ientiarum Hungaricae 43, 1977
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204 D. C. PATIL and V. M. KORWAR

2. Evaluation of the vibrational wave functions
(A) Iteration method

The Schrodinger wave equation for rotationless vibrational state govern
ing the nuclear radial motion can be written in the form

- N*)Ye.blx) = 0. Q)

Here x represents the relative internuclear displacement, (r —rr)/re, r and re
being the instantaneous and equilibrium internuclear separation, respectively,
and Ev is the vibrational eigen energy (in cm-1) and Be is the rotational
constant.

Equation (1) is solved by first making the transformations

Vo(x) = exp [- y Jo¥(x")d*j (2)
and

Vvix) = gv(x) 4>0(x) . (3)
ip0(x) being the unnormalized wave function of the ground state v = 0. The
functions y(x) and gv(v) satisfy

y{x)2 - . - Eo=0 (4)
Be
and
dv/> dg e} (E, = ,U,Q
- + M
d*2 y() dx Be gv(x) (5)

Power series solutions to these equations have been found; these have

been tabulated in [1].
W ith the use of Rydberg potential defined by

F(r) = -D[I + a(r - role-“<'-4

where D = dissociation energy, a = constant, re = equilibrium internuclear
distance, we have, in the present investigation, computed wave functions for
the vibrational states v’ =0, 1,2, 3,4 of A State and v* = 0, 1,2, 3 of X
State of A10. The integral

dr (6)
characterises the transition between two vibrational states v' and v". Re is
the average electronic transition moment. The integral J f* is called the

overlap integral and its square is called the Franck—Condon factor for the

transition v' —v".
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(B) Langer’s method

The one-dimensional Schrédinger wave equation is written in the form

LY | BE- VO] =0, (7)
dx?

where u = reduced mass, h = Planck’s constant, V(x) = potential energy
function.

One of the pre-requisites for the validity of LANGER’s procedure for low
vibrational quantum numbers is that AE has to be of moderate value. If this
condition is satisfied let the variable in equation (7) be changed to Z, given by

Z=x—x,— (8)

where ¢ is a constant to be determined through the formula

_ 2V"(x) AE

9 [V"(x) P

x, = equilibrium internuclear distance. Primes indicate derivatives.
Then Eq. (7) becomes

2y

o~ WaE) + A+ 1) 2 =0, 9)

where

Xg(z) = V(z + x,),
21(3) = —AE + oV'(z + «x,) ,

2a(2) = }.2{1/ [z + x, + —Z—] -V + %) — —g— V'(z + xe)].

It is shown by LANGER that the solution of Eq. (9) which remains
bounded as z - oo, is unique except for an arbitrary constant factor, and
that for values of z that are positive and sufficiently large, its form is

p = A—14 —1/2 Ck e—l/ZC’
where
2ky
D=2y,+—{1*+ 2
o l jo Xodz
¥ J paNE L e
0 2[2V"(x,) ]
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The form of the same solution for values of Z that are negative and

numerically large is
X = A-1T1d -12[>41£-*£el'2 + i4jC'e“1* ],
where A land A2are arbitrary constants and are given by

AX=— *-(*-4W I'(k + 1/4) T'{k + 3/4) sin 2k - 1/2) a
n

and A2 = 1
Ultimately one obtains the following expressions for normalised wave
functions
2V (xe) Y4 nt V22(-1)6» 12 _ynpsie va(g)
7 2" -1 ®"Ar)

where n is odd and
2V"(xe) 14 n! 12 (_N)«/2 M, [2+IMI/4)(0
- ) 2" (n/2)! ®(r)

where n is even (M ’s are confluent hypergeometric functions.)
Using the Rydberg potential we have arrived at the following expres’

sions for ® and f:

¢ =2fD [0.707,107 az - 235,702 a2z2 + 0.049,105 a3z3
- 0.015,386 a4z4+ 0.000,641 a5z5- 0.000,201 a6z6 ]

+ -Or [-0.463,766 az + 0.115,121 a2z2 - 0.069,099 a3z3
yu
- 0.010,42 a4z4 - 0.000,957 a5z5. .. ],

AjaZ(pdz

By integrating the above expression for ®, one can write explicitly for £e

Using these expressions wave functions have beenobtained forvibration-
al quantum numbers ranging from 0to 4. Wave functions have been evaluated
at intervals of 0-01 A ofr, the internuclear distance. A desk DCM calculator
(Programmable) has been used and the calculations have been recorded up to
sixth place of decimal.

As wave functions are available, another important parameter, r-centroid,
defined by the following relation has been evaluated:

| W riprdr

-rt>V_—p ,
jW wd
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Table I

AlO(A%Y — X2X)

FC Factors r-Centroids

Band 1(\'1&(‘:)1.!!::!)‘5 (Sm) (li\z;n:tgic); Iteration 11;(;({)‘327::?_ LANGER Tteration
(0,0) 0.730 0.730 0.733 0.729 1.646 1.646 1.646
(0,1) 0,238 0.237 0.244 0.237 1.727 1.727 1.727
(0.2) 0.031 - 0.033 0.031 - 1.809 1.811
0.3) 0.001 — - 0.001 - - 1.989
(1.1) 0.356 0.346 0.366 0.357 1.657 1.656 1.656
(1,0) 0.244 0.223 0.220 0.224 1.573 1.574 1.573
(1,2) 0.343 0.349 0.357 0.342 1.739 1.738 1.747
(1,3) 0.071 - 0.077 0.069 - 1.905 1.827
(2,2) 0.160 — 0.166 0.160 1.669 1.652 1.667
(2,0) 0.040 - 0.037 0.040 - 1.497 1.504
(2,1) 0.310 0.303 0.318 0.302 1.573 1.579 1.579
(2,3) 0.378 0.384 0.354 0.379 1.752 1.728 1.749
(3,3) 0.063 - - 0.059 - - 1.779
(3,0) 0.005 - 0.005 0.005 - 1.945 1.506
(3,1) 0.088 0.094 0.091 0.090 1.501 1.509 1.484
(3.2) 0.304 0.298 0.318 0.306 1.586 1.585 1.603
(4.0) 0.00043 - - 0.00036 - — 1.428
(4,2) 0.129 0.138 - 0.132 1.518 - 1.523
(4,3) 0.275 0.257 d 0.266 1.591 a 1.641

All these results are given in Table I. Also in Table I are given FCs and
ry s of SHARMA [4] obtained on RKRV procedure and FCs and 7, ,.’s of
NicHOLLS [3] obtained with the use of Morse potential are given for comparison.

3. Discussion

As RKR potentials are realistic in that experimental data have been
made use of in constructing potential energy curves which are later employed
for obtaining potential at any inter-nuclear separation r, results of FCs and
r-centroids evaluated with the use of RKR potentials may be taken as standard
results with which we could compare other results.

Now, we see from Table I that, except for bands involving high quantum
numbers such as (3, 1), (2, 3), (3,2), (4, 2) and (4,3) Morse FCs are almost
the same as RKR FCs. This fact, incidentally supports the long-established
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208 D. C. PATIL »nd V. M. KORWAR

fact that Morse potential is generally valid at low quantum numbers. However
there is another significance indicated by this fact and that is, we could take
either RKR results or Morse results for testing the accuracy ofthe two approxi-
mation methods we are employing.

As one can easily see from Table I, the results ofiteration method compare
better with RKR results than do the results based on Langer’s procedure. It
may be noted here that we have employed the same potential, viz., Rydberg’s,
in both the approximation methods. The difference between iteration results
and Langer’s result are especially significant at high quantum numbers,
for instance for (2, 3) transition. Langer’s procedure yields 8 % error whereas
iteration gives only 1.3 % error; for (3,2) transition Langer's FC is in error
by 6.7 % while iteration FC is in error by 2.6 %. Thus, based on the results
of FCs by the two approximations considered in the present investigation we
can saythat the iteration method yields better results than does Langer’s.
Another pointin favour ofiteration procedure is that, although it is an approxi-
mation method, it yields results comparable with RKR results, and it is a
much simpler method than RKR procedure.

r-centroid results could also be compared in a similar way; but r-centroids
are not as sensitive as FCs to potentials. One can find the reason for this in
the very definition of the r-centroid. This is also clear from the last 3 columns
of Table I: there is not any appreciable difference in the various sets of
r-centroids.
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TWO-PHASE FLOW HEAT TRANSFER IN A CHANNEL
WHEN THE INLET TEMPERATURE VARIES LINEARLY
WITH TIME

By

K. S. SHIRKOT and SURJIT SINGH
DEPARTMENT OF MATHEMATICS, HIMACHAL PRADESH UNIVERSITY, SIMLA-171 005, INDIA

(Received 13. IX. 1977)

Exact solutions of the transient forced convection energy equations of dust particles
and of liquid in a channel bounded by two parallel flat plates are obtained in the present
paper when the inlet temperatures vary linearly with time and an interpretation of the case
of laminar flows is given. It is found that the effect of the presence of dust particles is to
increase the heat transfer.

Nomenclature

temperature of dust particles

temperature of liquid

specific heat of dust particles

specific heat of liquid

half distance between parallel plates

thermal conductivity of dust particle

thermal conductivity of liquid

time

velocity of dust particle in z-direction

velocity of liquid in x-direction

average velocity

liquid density

Cartesian coordinates (X—flow direction, and y— distance from channel centre line)
mass of dust particle per unit volume (= mNo, constant)
coefficient of viscosity of liquid

kinematic coefficient of viscosity

Prandtl number (= uc/k)

Reynolds number (= hii/v)

heat transfer coefficient for flow over dust particle
surface area of dust particle

volume of dust particle

“‘ukta-' s = ;s:le QIQS ~ HQN = qﬁn ﬂuﬂ

The meaning of any other symbols is given in the text as they occur.

1. Introduction

Heat transfer by gas-dust suspensions in pipe flow has been a subject
of many studies. This was due partly to the demand for high heat-transfer
coefficient in gas-cooled reactors and partly to the high volumetric specific
heat of dust particles compared to a gas. Based on the experimental observ-
ations by FARBAR and MorrEY [1], SCHLUDERBERG [2] and SALoMONE and
NewwMAN [3], TieN [4,5], has analyzed the heat transfer by gas-dust suspen-
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sién in turbulent pipe flow. Soo [6] in his solutions of the transient forced
convection energy equations of dust particle and of liquid in a circular pipe has
assumed that the inlet temperature of dust particles and of liquid are constant
across the flow. Dube and Snarma [7] have analyzed a similar problem for
the flow in a channel when the inlet temperatures very sinusoidally with time
and the corresponding problem of flow in a pipe has been solved by Shirkot
and surjit [8].

In the present investigation, exact solutions of the transient forced
convection energy equations of dust particles and of liquid with fully deve-
loped flow in a parallel plate channel are obtained under given boundary con-
ditions when the inlettemperature varies linearly with time and an interpret-
ation of the case of laminar flows is given.

2. Formulation of the problem

We consider the steady laminar flow of a dusty viscous liquid with uni-
form distribution of dust particles in a parallel plate channel whose sides are
separated by distance 2h. The dust particles and the liquid entering the chan-
nel have temperatures which are spatially uniform across the entrance section
but vary linearly with time. Therefore we can write the inlet conditions as

Tp(0,y,t) —TO+ T1 (2.1

T{O0,y,t) = TO + (2.2)

where TOis the cycle mean temperature.

To obtain the heat-transfer performance and the temperatures of dust
particles and of liquid it is necessary to set up two energy equations, one for
the dust particles and one for the liguid—dust mixture. They are given as*

A +Uph-= G(T- Tp), (2.3)
bl dx
2T - -
aT  y ATV T gt T, (2.4)
dt ax P &ay2
where
ftpAp _rnNgCpG
mNOCp Vp , 2 oC
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The inlet and the boundary conditions of the problem are as follows

(Soo
()
(iM)
(iii)
(iv)
(v)

(vi)
(vii)
(viii)
(ix)
(x)

(xi)
(xii)

Tp=TQ+ 7\ PY when x = 0. (2.5)

T=Tn+ T, — | when X=0, (2.6)
L 2

(2.7)

Tp=Ta, T = TB at y = h, (t> 0).J

The system satisfying (2.3), (2.4) is subjected to the following restrictions
[61):

Radiation effect is neglected.

The density of liquid remains constant; thus the velocity distribution
is independent of the temperature distribution .

Liquid property variation is neglected.

Each dust particle is small and maintains uniform temperature due to its
high thermal conductivity.

The liquid and dust particle cloud have similar velocity profiles. The
presence of dust particles does not affect the liquid velocity profile.
The dust particles are uniformly distributed throughout the channel.
The effect of collision with the wall is neglected.

The suspension is extremely dilute such that each particle is assumed to
see the wall without interference of other particles.

Fully developed laminar velocity profiles between the parallel plates.
Axial conduction is negligible with respect to bulk transport in the in
direction. This is a reasonable assumption when Peclet number exceeds
100 [9].

Thermal resistance of the channel wall is negligible.

Eddy diffusivity of heat is negligible.

Further, to simplify the method of analysis the case of constant velo-

city will be considered here and for this purpose we substitute u(u = up) for
the velocity profile in (2.3) and (2.4).

We introduce the following non-dimensional quantities:

T,
hu
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Equations (2.3) and (2.4) then become

—ng + (I'(]Edp = « « -e p), (2.8)
0 , p W 1 d20 m
_ K47 e 3) o 2.9
ot * K éx p dy2 0) (29)
The inlet and the boundary conditions reduce to
6p=1t when X= 0, @10)
B=1t when n = 0, (2.11)
dd ldd
. 0,0p=0Q 0= 00aty =1, (t: 0). (2.12)
dy ldy >=0
3. Method of solution
The above problem can be separated into two as follows:
ep(x,y,t) = Op, {x,y) + ePI(y,x,t), (3.1)
6(x,y, ) = 01(x,y) + dAx,y, 1), (3.2)
where dv 02, dptand dpasatisfy the following problems:
R JEEL = A(01 - epi), (3.3)
dx
dd[ 1 a200
R + A(Op, — 0i) > (3.4)
dx 0o dy2
Op, = 0 when & = 0, (3.5)
0j = 0whenx = 0, (3.6)
00p: 0, & =0,0,. = 0®0i = 60aty = 1, (t> 0 (3.7)
dy dy y=o
and
adp,
"+ R d6p' = A - (3.8)
dt dx - A0z - Bp),
dd2
+R ps* 1 2 . 3.9
it 7 A, Add..  0.). (3.9)
OPI = t when x = 0. (3110)
6* = twhen £ = 0, (3.11)
dd dOa
> =0 =0,
dy y=o dy y=o (3.12)

BRPA= 0, 02= 0 aty =

1, (r> 0).
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Solving Egs. (3.3) and (3.4) under the conditions (3.5) —(3.7), we get
4. 2 (=1 2n + 1
8,, (=, =0,|1 — — ——— ¢c08 |—| @y X
o (% 9) [ P & ( ; ]y
% (ln e — Hn e—l"x) ]’

1n — Un
4 = (~1p 2n + 1
0 t] = 6 1 Tl e SN P — —_— B ’
o =af1- & 5 EW L) g )
where
Byfz) = —n (1 5 R“")e—unr e LB Do) g-so,
n — Mn Bs An — pin Bs
and
By + By , n+lpa2 ’
24, = o
p R i
ou = PatBe  Cn+lpa _l/—ﬂs+ﬂ4 H (2n+1)2nz]z _@n4lpap,
i R 4PR R 4PR PR?
let

0p. (% 55t) = t@p,(%, ¥) + ¥p, (%, ¥)s
Bs(x, y,t) = to, (x,y) + s (x,¥)-

Substituting in (3.8) and (3.9) and on equating co-efficients of ¢ and the
constant terms we get

J
q’ﬂ: + R.%:—l == 133('4’2 i 'Ppl)’ (3‘13)
oY, 1 Py,
+ R =— + . — Ys)» 3.14
P2 9% P % Bo(wp, — v2) ( )
0
R = f(s — 95 (3.15)
Wp 1 8¢,
R L= — + . — ®a). 3.16
rviaha g Bd®p. — @2) (3.16)
The boundary conditions are
5 =1, ¥,, = 0 when x =0, (3.17)
@ =1, vy =0 when x = 0, (3.18)
ol Uy
— =0, |2 =0,9,, =0, 9, =0aty=1, (3.19)
0y Jy=o 0y Jymo J .

3‘1’2) 3'[’2]
S =0, [— = oa={05 9y = (- ateyf==] . (3.20)
¥ Jy-o  Jy-o 5 i
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Solving Egs. (3.13 —3.18) and using (3.17 —3.20) we get

4~ (-1)" (2n + 1!
- 7 cosr i — A M x)'
Vi = — cos f2n A 11 B n(x),
71 yi=0 4" ¥ 2
4 - (-1)" 21+ 1
713 Cn(«),
v- = 7a~~"~T1 \
4 - (1) N
v = A e 4 (),
% ﬂ n=0 T + J_ s Y
where
d”W :%pNW/\_ N «:""H‘
fin
. RuUN M ifq, | -
Bn(*) = T B
fin A K- A
a p' = o H,Jnx - fini“KX):
fin)
D.(*) = (e-" - e* - ~ e’AX
> /hi)A R{K - fin)
Thus
(—1)" cos [———1Iny ;
y 1 2 ) Il,e-~"x- fine->%
P A n n=o 2n + 1 [ mfin
2n + 1
(—1)" cos A ay
[] 1 H M i X
' - - JrjH =0 2/i + 1
X — fi
A,e » —fine mx RXnan_(e“.J.X_e_n,X)
n i"n)$s

where Xn and un have the values given before.

4. Discussion

When the boundary condition on the wall for Op and 6 is homogeneous,

that is when 00is zero, then
Op(x, y, t)
e (x,y,t)

dpi(x, y, t), (4.1)
exx,y,t). (4.2)
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Expressions for 6pt (x,y, t) and 62Xx,y, t) show that the temperatures of dust
particles and of liquid decay exponentially along the channel.
The temperatures at any y, sayy — 0 and t = 2 are given in the follow-
ing Tables:
Table |
p = 0.73, ft = 10s, 8jR 3= 0.5

X
R 1 5 10 15 20
13 000 2.0236955 1.9997131 1.9984316 1.9980305 1.9976402
02 20 000 2.0318297 2.0028223 1.9989533 1.9984620 1.9981961
13 000 2.0237062 1.9998234 1.9984333 1.9980306 1.9976421
OPi 20 000 2.0318379 2.0028316 1.9989538 1.9984639 1.9981966

We observe the following important points:

(i) From Table I it is found that 02 and dpa both increase with the increase
of R and decrease with the increase ofx. Also, 6pa> 02always, for fixed
values of P, B3 and RjR3.

(ii)  02anfl OPaincrease with the increase of R j8 3and decrease with the increase
of x. Also, Bpr > 62 always, for fixed values of p, 83 and R as given in

Table 11.
Table 11
p = 0.73, A = 10s, R = 30000
\\
> > 1 5 10 15 20

0.5 2.0381531 2.0084913 2.0004405 1.9989521 1.9985684

02 0.9 2.0410775 2.0128147 2.0022515 1.999516 1.9987236
0.5 2.0387145 2.0086209 2.000632 1.9989836 1.9985736

Op2 0.9 2.0418631 2.0128736 2.0025646 1.9995982 1.9987422

Thus it is observed that the effect of the presence of the dust particles
is to flatten the temperature profile and as aresult, to increase the heat transfer.
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By
M. Y. Nasir*

DEPARTMENT OF THEQRETICAL PHYSICS, ROLAND EOTV0OS UNIVERSITY, BUDAPEST
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The system of Alfvé nwaves is elucidated. Bose— Einstein statistics is applied to find the
equation of state and thermodynamic quantities of the system. It is found that the pressure
of the system is directly proportional to the square of the absolute temperature. Adiabatic
changes of the system are also discussed.

1. Introduction

So far Alfvén waves have not been studied as a system. In this paper we
are showing that Alfvén waves can be considered as a system. Assuming that
the energy of the system of Alfvén waves is quantized by the boundary con-
ditions imposed on the walls of the box containing the fluid and taking the
aid of the formulae of electromagnetic waves we have obtained the density
of states and free energy of the system which have led us to the equation of
state of the system.

2. Definition

In analogy with the photon of electromagnetic waves and the phonon of
acoustic waves, we assume that the quantum of energy of an Alfvén wave
also exists and possesses the value %iw (% being Dirac h and w the angular
frequency). We call this quantum “Alfvénon”.

The definition is supported by the fact that magnetohydrodynamic waves
can be considered as an extreme case of electromagnetic waves and that there
is transition between magnetohydrodynamic and electromagnetic waves [1].
The transition also occurs between magnetohydrodynamic and acoustic waves
as discussed by HErLoOFson [2].

3. Formulation of the problem

We consider the system of Alfvén waves in a cubic box having each side
| and volume V. Let the system be in thermal equilibrium with the box which
is assumed to have perfectly reflecting walls. Moreover, we suppose that the

* On leave from Government College, Bahawalnagar, Pakistan.
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swalls of the box are ideally conducting and that the wave function vanishes
on all sides of the box. Due to the analogy between photons and Alfvénons,
we say that Alfvénons are subject to quantum statistics, in general, and Bose —
Einstein statistics, in particular. Thus, the Pauli exclusion principle is disobeyed
by Alfvénons.

On the basis of the facts supporting the definition of an Alfvénon as
described in the previous Section we are justified in determining thermodyna-
mic quantities of the system of Alfvén waves with the aid of the formulae of
electromegnetic waves.

4. Solution of the problem

We write the basic equations of magnetohydrodynamics for an ideal
medium as follows [3]:

~~ 4+ o =0 ,
i (gv) (1)
v 1
— = -V — [(V X B B,
B A p + P [( ) + B] (2)
7 =V X (vXB),
it ( ) ©))
V B = 0, 4)

where g = g(r, t) is the mass density of the fluid, v = v(r, t) its velocity, p the
pressure and B the magnetic field. Also we add an equation which in the first
approximation is representing a reversible adiabatic process of an isotropic
plasma:

p = const gy, (5)

where y is the ratio of specific heats given by
v = CRHCV. (6)

We assume that the waves propagating in the fluid are plane harmonic waves
havin gsmall amplitudes. The assumption of small amplitude helps us to linear-
ize the Eqgs. (1) —(5). Thus, we write

B = B0+ Bj, ©)
V= V0 + Vi, (8)
P=Po+Pn )
B= Q@+ Qi (10)
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where B,,, v0,p0and g0 are constants and correspond to the uniform equilib-
rium state of the flmd. B15v15P | and are small perturbations in the quan-
tities BO,vo,p 0 and g0, respectively. The values of these perturbations and
their derivatives always remain very much smaller than the constant quanti-
ties. Neglecting all but the linear terms in B15v1p, and o0,, the equations
(I)-r(5) are linearized to:

dyi + Po(V *Vj) = 0, ()
dt
= VPl +-/-[(V XBIXBJ, (12
dt 4n
dB, )
= V X (Vi X B0), (13)
dt
V eB, = 0, (14)
(15)
Po Q@

Thus, we get a system of homogeneous, linear, partial differential equations
that governs the behaviour of the perturbations is space and time. Since, the
waves propagating in the fluid are plane harmonic, we may simplify the linear-
ized equations (11)—(15) by introducing the plane wave solution

A = ade-'N-k-0 , (16)

where A is any fluctuating quantity, afd its amplitude, i = (—I)¥2and K the
wave vector. The simplified forms of the equations will be

“Pi - 9o(K ’vi) = 0, a7
Bowvi = Pi K + -Zm— [K (BO+Bj) - Bj(BO K)I, (18)
coBj = —[vj(BO+*K) —BO(K *Vj)], (19)
K «Bj = o0, (20)
PI y. (21
Po Q

W ith the help of these equations we may obtain the following important
relation connecting the kinetic and magnetic energy for any type of mode

. n (?. »T 22
9 vi = (£2)
2p0 >+ 1IN
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where Ca = (pjQi)1'2 is the speed of sound. Moreover, eliminating all the
variables except from the Eqs. (17) —(21), we get the following equa-

lity [4]:

BO « K)» Bp(BO
( ) YPa K - MK - i) -
41 an

. (23)
(BO-Vi goek)yK = 0.
an
Now corresponding to different conditions, we obtain different relations for
the various modes of oscillations.

If the fluid velocity vxis perpendicular to the wave vector K and the
unperturbed magnetic field BO, viz. Fig. 1 [5], we obtain transverse magneto-
hydrodynamic waves known as Alfvén waves. On the other hand, if V], Kx and
BOare coplanar, we get magneto-acoustic waves —the waves which are neither
purely longitudinal nor purely transverse.

For the time being we restrict ourselves to the case of Alfvén waves and
postpone the discussion of magneto-acoustic waves to some other place. For
Alfvén waves we have

(K *V,) = 0= (BOsvt). (24)

Therefore, the expression (23) is simplified to

n2- (BoeK)2 (25)
41re0
or simply
~ o= (Ch - K)2, (26)
where
Ca - B° (27)
(4 n Q)12

is known as Alfvén velocity. We can write Eq. (26) as:

CaxKl + C% K1 + ciu KI + 2CAXCAZKxKy + 2CAyCAz KyKz +
+ 2CAzCAXKzKx —®2= 0.

The discriminating cubic of this quadratic equation will be

C\x- g Cax Cp Car Cax |
Cax Cay cay- g CayCarl= 0. (29)
Caz Cax CAy Car C\z- g

Acta Physica Academiae Scientiarum Hungaricae 43, 1977



SYSTEM OF ALFVEN WAVES 221

Solving this equation, we obtain
g=0 0, {Cx+c\y+Ci).
Thus, the quadratic equation (28) can be reduced to the form

{C\x + CAy + C\9) K |- aB = 0
or,

Kz= + - (30)
(Cax + CRAy + Caz)l12

Hence, the relation (26) represents a pair of parallel planes in K space. More-
over, the result (25) implies that the group velocity ofthe waves is

K - A(4ﬂp6ﬂ2 ’ (31)

Therefore, the disturbance travels parallel to the magnetic field with the Alfvén
velocity CA. Furthermore, with the help of the equalities (17), (21), (22) and
(24), we obtain

6i = 0 = PI (82)
and

t *"4- * - (33>

Thus, we conclude that the compressibility of the fluid does not play any role
in Alfvén waves, density or pressure perturbation does not accompany these
waves, energy flow is always along the magnetic lines of force, geometrical
spreading of the energy does not take place, the medium does not change
thermodynamically (qv plbeing zero) and there is an equipartition between
hydrodynamic and electromagnetic energy, a fact which serves as an impor-
tant guide to recognize Alfvén waves [6].

Due to the boundary conditions imposed by us upon the walls of the
box only two types of propagation of magnetohydrodynamic waves are pos-
sible; either along or across the magnetic field. Thus, the oblique propagation
of magnetohydrodynamic waves in the box is not permitted by the set of
boundary conditions. Now the relation (26) gives us

o = CAK cos 9, (34)

where @is the angle between the direction of the constant magnetic field and
the wave propagation. For Alfvén waves to propagate along the magnetic
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field @vanishes (see Fig. 1). These waves do not propagate across the magnetic
field because in this case @ = jr/2 and the result (34) will imply

phase velocity = co/K = 0.

Thus, Alfvén waves will tend to become entropy waves. To avoid this situa-
tion, we take @ = 0 for Alfvén waves and write the relation (34) as:

© = CAK. (35)

Fig. 1. Directions of the constant magnetic field BO, the wave vector K and the fluid velocity vL

We can find the density of states Z of the system of Alfvén waves by
applying the formula given by Kompaneyets [7]:

dz = — dK. (36)
n
We are justified in utilizing this formula because we are considering the
propagation of Alfvén waves along one side on the cube only. Hence, substitut-
ing the value of dk from Eq. (35) and considering all possible polarizations,
we obtain the number of states included between o and co -~ dco as:

dZ(co) = 2y13 dco . (37)
nCA

Now let us determine the thermodynamic quantities of the system of
Alfvén waves. At first we shall find the expression for the free energy $ of
the system by using the formula given by Guggenheim [8]:

S =d2ZKklog (1 - e-**/»), (38)
K
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where 6 is Boltzmann’s constant X absolute temperature and E, the energy
of the kth Alfvénon. The expressions (37) and (38) collectively give us

1/3 oo
g = 2—V—Q-j log (1 — e~4/%) dos .
ﬂCA 0
Let iw/60 = x. Therefore,
2ying

= log (1 — e ¥)dx.
i o )

Using power series for logarithm and integrating term by term, we obtain

1/3 g2
2th0 f[ 2‘"“ pEL 7
‘A

Putting nx = y, we get

3 - 1/3 g2 2 3
$=__2V1 ?J“[ZL]e_},dyz_2V . BN 62. (39)
ahCs Jo \7=0 n? whCy 6 3hCy

Entropy S of the system will be
08 2 V130

S= === ae Ny (40)
00 3hC,
i 13 g2
Mean energy: E=8+0S = Kol - (41)
3hC,
Pressure: p=— i & — V-3, (42)
oV 9fiCA
or,
pvis = - g2, (43)
91C,

Eq. (43) is called the equation of state of the system of Alfvén waves.
Thermodynamic potential

= 2n V1B 62
=E —-6S +pV=— ———. 44
Z P 9KC., (44)
Enthalpy or heat function
= 4 V1B @2
=E + pV = ———.. 45
y P ONC, (45)
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For reversible adiabatic changes, the entropy of the system remains
constant. Therefore, Eq. (40) implies

V63 = const. (46)
Eq. (43) and (46) further give us
pV*I3 — const. 47)

The expressions (46) and (47) are also obtainable for a photon gas.
The specific heat ofthe system at constant volume can be determined as:

I = 2nV113 6 (48)
)v ~  3hCA

c = (gE
I de

If Cpis the specific heat at constant pressure, then

ew * i
r o Im Jv 2n Y138 (49)
dp] 3hcA
aVe
c 4nV13s (50)
p~ 3%A
Adiabatic index y = CACV= 2, (51)
(52)

5. Conclusion and discussion

On the basis of Eq. (42), we say that the pressure of the system of Alfvén
waves is directly proportional to the square of the absolute temperature.

If we compare results obtained in the system of Alfvén waves with the
corresponding results of a photon gas [4], we observe that the energy of the
system of Alfvén waves is directly proportional to the square of the absolute
temperature (cf. expression (41)), but for a photon gas Stefan —Boltzmann law
states that energy is proportional to the fourth power of the absolute tempe-
rature. Also we note that for both systems pressure is equal to one-third of
the energy density. The thermodynamic potential of the system of Alfvén
waves has a definite value given by the relation (44) but for a photon gas it
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vanishes. For adiabatic changes, the results (46) and (47) hold in both systems.
Moreover, the adiabatic index y for the system of Alfvén waves is 2 while for
a photon gas it becomes infinity. The value of x for the system of Alfvén waves
is 1/2 but for a photon gas it is indeterminate.
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The paper presents the existence of gravity capillary waves travelling down the surface
of a falling liquid film past a permeable bed. The bed is characterized by a parameter 8 =

(a + <Yo<7z, where a is a property of the porous material and a = hJYK, hOthe depth of the
liquid film and K the absolute permeability of the porous medium. It is shown that the range
of allowed dimensionless wave celerity widens as B increases. The celerity depends less and
less on the Weber number W and also on the dimensionless wave number N, as B increases.
When B = 0 we recover the gravity capillary waves on liquid films predicted by Kapitza.

1. Introduction

An important phenomenon in physicochemical hydrodynamics [1] is the
existence of travelling waves on the surface of viscous liquid films under the
influence of gravity and surface tension. Such waves were first predicted by
K apitza [2]. His procedure was refined by m assot, irani @nd tignhtfoot [3].
In this paper, following their scheme, we investigate the nature of these waves
for a falling liquid film past a permeable vertical bed.

2. Nusselt solution for a liquid film past a permeable bed

At the outset, we determine the steady fully developed flow for a falling
liquid film pastapermeable bed. The corresponding solution foraliquid film past
an impermeable bed, i.e. for the classical case was given by v vsse1 ¢ [¢]. The
physical model illustrating the problem is sketched in Fig. 1. It consists of a
permeable vertical bed. The flow to the right of the bed (Zone 1) and through
the bed (Zone 2) is caused by the gravitational acceleration g. The depth of
the liquid film hQin the zone 1is so maintained that the flow is laminar. In the
Zone 1, we have [5]

d2wu
while, in Zone 2, by the Darcy’s Law
Q _ g
K \Y
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Fig. 1. Physical model

where K is the absolute permeability of the porous medium, Q the filter velo-
city and Vthe kinem atic coefficient of viscosity.
The following condition developed by Beavers and Joseph [6] is used

at the permeable bed in the present analysis

du

(ui
dy y-o+ Vk

where « is a dimensionless quantity depending on the material parameters
which characterize the structure of permeable material within the boundary
region, and uB is the slip flow at the nominal surface aty = 0. At the free

surface, the shear being zero, we use

du
= 0.
dy y=ho
Using the dimensionless variables
u Yy
Y =

with u0 as a reference velocity, the solution of the foregoing equations for

the liquid film is

u M)
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wherein
uoho
= (Reynolds number), (2)
v
F= O (Froude number), (3)
ghO
0 = « ,§=*+,,°‘ )
VK aff2

Choosing uOas the average velocity of the liquid film, we have
1
= ¥ + . (5,

When /3 —0 (or ff — °°), we obtain the Nussert solution [4] for the falling
liquid film past an impermeable bed.

3. Kapitza’s scheme of approximation

We follow the Kapitza’s scheme of finding an approximate expression
of n when the film surface assumes an arbitrary shape y — ft (x, t) which
changes with time (Fig. 1). We note that # must satisfy the conditions [6],

y:0: du

B -<?)e
dy Y-0+

These conditions, in the absence of the permeable bed (ff -» °°) led K apitza
to pattern the approximate expression after the Nussert flow. In the same
spirit, we write the following expression for n for the flow under consideration

n=R n(x, ty Y Y2 (6)
F h(x,t) 2h2(x, t)

We substitute (6) in the equation of continuity

du d
y -0
dx dy
and integrate under the boundary condition v (x, 0,t) = 0. Then
R du y3 f R . dh r ., T_
F dx 6ft2 2ft | F dx 3ft3 2ft2, 0
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K apitza [2] also assumed Ap/ay = 0, i.e. p = p(x, h(x, t), t). But
cPh
P =Bext- «7 7 on h(x, t),
0Xx2

where X is the coefficient of surface tension. The radius of the curvature of the
film is approximated by dZjdx2 since the surface slope is expected to be so
small that its cube can be neglected. Therefore

fh= — X2 (8)
dx dx3

Substituting (6—8) in the x — momentum equation

du du du 1 dp d2wm d2u

......... b Ut Vo = e+ g+ V
dt dx dy Q dx dx2 dy?

and integrating the result with respect toy from 0 to 1i(x, t), we get

da i dh di 12 dh
m, m, Wou --mmmmn P
~dt h  dt dx ho odx . T *
x F d3h 0 i
+ V{ml 20 + m;lfl (9)
o R dx3 ( -2 & dx2
7 1 da dh
LM M e
h2 h dx dx
where
F
ra, = — = ----- \-p‘,m9= ------- ,m, = - + — + R2
R 3 3 10
(10)
R 1
, m-=1and m. = —
30 P! 1

The principle here is to determine i so that (6) becomes the best representation
of m in the sense that it satisfies (9) in an averaged manner.

4. Linearized travelling wave

If a solution of (9) exists such that it represents a steady travelling wave
in the x-dircction, it must he function of a single variable (x —ct), where cis
the phase velocity of the progressive undamped wave train. To search for such
a solution, we can replace s/01 in (9) by —c3/ax and linearise Eq. (9) on the
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assumption that the wavy surface is but a small perturbation on the flat

surfacey = hoO,i.e. h(x,t) = h0(1 + xp(x, t)) where | | -cl.
The mass balance equation
dh d & , d ....
dt = " loxJoudy " Hy ()
gives us

c(h  ho) —uh UgAq,
8.

where uOis the average velocity ofthe liquid film referred to in Section 2 above.
In terms ofip
h=u0+ (c —uOip.
In a similar manner
da _ o dip '

du . . dip

= ho (ud+ (c - 2mow) 1

o
|

— :hQK(UO+ (c - 3u0)i[])?,

h2

dh - _ch dip
dt dx
dh_: h dip

dx dx

Substituting these quantities in (9), we arrive at a linear equation, which is
expressed in a non-dimensional form using

2nx c . TN
....... , ¥ = -— {(wave celerity),
un
12 2nho )
p = 08 N= T
2n X

where X is the wave length. Thus we get

niN d3ip ‘ n2F N9 Pip | n FN dip
P2 dI3 R dl2 a1 (12)

n
K y' nbV— O
R ) '
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where
(I I p— , N2~ m,y 4-(m, —'mt),

n3g — mly2+ (~m3- ml+ m2y + (m3- m4, (13)
nl=h ~A5= 3.

Eqg. (12), being homogeneous, will admit a sinusoidal solution only if

pi. — (14)
lijF

nuy - b
Ne = e (15)

We note that n1>- 0 and that n3 is a quadratic function of y with a positive
leading coefficient. Therefore P 2in (13) is real if

Y> Y2 or Y < Il» (16)

where < y2 are the roots of n3 = 0. On the other hand N in (14) is real
only if
m2—ml

17
n1 (17

Thus an undamped, steadily travelling wave in the form of a sinusoidal func-
tion is compatible with the physical situation if positive values of r lie within
the common range of (16) and (17). No solution in the particular form under
consideration exists if the two regions do not overlap.

If a value of y does lie in the range that make both P and N real, the
wave length of the corresponding wavy flow is then

A=[2nkK0 I------- el I
Il ra5- nty
5. Conclusions

The common range of (16 and 17) is dependent on the value of B. The
result is plotted in Fig. 2. For 8 = 0, we have the allowed range

1.689 <y < 3,
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which checks with the analysis of K apitza [3] for the liguid film past an im -
permeable bed.

As B increases, the allowed range widens and reaches the maximum range
1<y<y

corresponding to a perfect permeable bed for which o = 0. For each B, there
is always an admissible range for the wave celerity.

Fig. 2. Admissible range of wave celerity

The Weber number

p" . «0™N0 _ pn Ar2a2p _ _ nl(niy ws)
ylq n2n3

is calculated for each admissible value of y and is plotted in Fig. 3 for various
values of B. This shows that the Weber number W decreases as B increases, for
the allowed range of the dimensionless celerity y. Fig. 4 shows the dimension-
less wave number N versusy for various values of B. It is also found to decrease
as B increases. Further the celerity is more sensitive to the Weber number and
the dimensionless wave number as [ increases. Ultimately at a perfect imper-
meable bed (a = 0), both W and N vanish.
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Fig. 3. Weber number W versus wave celerity

Fig. 4. Dimensionless wave length N versus wave celerity
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ON THE INVERSE OF THE POMERANCHUK THEOREM
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In this note we prove the inverse of the Pomeranchuk theorem for logarithmically
rising total cross sections.

Recent measurements on total cross sections and forward scattering
amplitudes [1] reveal the following basic features in the 10 — 2000 GeV energy
region:

1) The total cross sections rise with increasing energy and this rise is
compatible with a logarithmic law;

2) the difference of the particle and anti-particle total cross sections
decreases with increasing energy and this decrease is compatible with an inverse
power law;

3) The forward scattering amplitudes are not dominantly real.

In 1958 PoMERANCHUK proved [2] that for bounded total cross sections
property 3) involves property 2). More precisely, if in the asymptotic region 3)
is fulfilled and total cross sections tend to constant limits, then these limits
are the same for a particle and its antiparticle hitting the same target. However,
as mentioned, recent measurements do not indicate the boundedness of total
cross sections at infinite energies, and for arbitrarily rising cross sections one
cannot prove the zero asymptotic limit of the difference of the particle and
antiparticle total cross sections. There exists a proof only on the ratio of the
particle—antiparticle cross sections [3].

Therefore we consider the problem here from the inverse point of view. In
this note we prove using dispersion relations that from the assumption that
1) and 2) hold asymptotically 3) follows also in the asymptotic energy region.
More precisely, we repeat POMERANCHUK’s line of thought in order to show
that if

i) the total cross sections rise with some power § of logarithm (8 > 1)
and if

ii) the difference of the particle and antiparticle total cross sections
remains finite, then

the real to imaginary ratios of both the particle and antiparticle forward

scattering amplitudes are bounded.
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These two amplitudes will be denoted by f and/, whereas their sum and
difference will be labelled by f+and/_:

A E R R i

The real and imaginary parts of any amplitudes will be denoted by D and A.
We write the twice subtracted dispersion relations in the form [4]:

D(E) I = J.
BE)J-TPH -»H JT|BL-%)] +
E.T E Xt
Ef - E. (5 )Ef-mz
L P2gmA m(E' T E)E" 2)
nde p"AE.- E2
v onp |_E‘ (0 + a) T E m(ff — a) dE"
492 p\E-. - E2

Here p, E and m are the laboratory momentum, energy and the rest mass of
the incoming particle, respectively. D(m) and D(m) are the two subtraction
constants, the subtraction being made at zero laboratory momentum. In
the integral over the physical region we have substituted A by the total cross
section using the optical theorem:

A = ®3)

The threshold of the unphysical region, EOQ, is the laboratory energy of the
incoming particle corresponding to the CMS energy which is equal to the smal-
lest mass of the physical continuum having the quantum numbers of the ini-
tial state.* The polynom represents the pole contributions, where Et is the
beam laboratory energy corresponding to the CMS energy equal to the rest
mass mt of the pole. X (is proportional to the coupling constant square of the
colliding particles to the pole [4]:

(m, —mt)2 —m2
4mf

(4)

*The laboratory energy corresponding to y» energy in the CMS is:

where T< is the target mass.
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Since we assume ii), it is enough to prove that

. D . D
lim < 00 and lim (5a)
E-*o A+ E-«. %y

or
. + . D
lim D < 00 and lim - (5b)
E+* A+ E--

Hypothesis i) is equivalent to
IA+1~ cE{In E)B (6)
asymptotically, therefore in Eq. (2) all terms but the last one (which we

denote by Dh ) automatically fulfil the inequalities (5). Instead of (5) it is
sufficient to prove the following inequalities:

. D%
lim < oo (5¢)
E-» A+
and
Dh
lim - < @. (54)
E*o A+

In Appendix 1 we calculate the integral DK for B = 0,1, 2 and show explicitly
that the limit of (5¢) is equal to zero. For arbitrary values of 8~ 1 we recall
(see e.g. [5]) that analyticity and crossing require the following form the of
amplitude in case of logarithmically rising cross sections:

lim /+
E—~

from which we get [5] the same result as for integer values nfB.
Inequality (5¢) can also be proved for a very general case. Fischer et al

have given namely [6] an upper bound for

B+ = D+/A+
if a+ rises unboundedly:

n | dE
InEj E

This means that inequality (5c) is zero if g+ is positive. For this latter we
recall the theorem of Knhuri and Kinosnita [7] who showed that for an
unboundedly rising cross section D+ cannot stay negative at all energies.
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Turning now finally to inequality (5d) we reproduce in Appendix 2
the result of Pomeranchuk, Which states that the crossing odd term, b _

approaches to
— 2N, JEX

if the difference, Acr, of the antiparticle and particle cross sections remains
constant beyond a certain value Ev Combining the limits (6) and (5) we arrive
to prove (5d) and hence the whole statement.

We thus conclude that extrapolating the observed properties 1)—3) up
to infinite energies they are compatible with dispersion relations in the sense
that 3) follows from 1) and 2), although the inverse statement may not he

proved.

I am indebted to Dr. Jan Fischer for valuable comments and suggestions.

Appendix 1
The crossing even part of the high energy integral

1. a and a are constant beyond Ej

+ 1 -
ph~ g2" XW@* Q) gy gy BI- B gy
JEI x(x2- E2 E, + E
2. a and a are logarithmically rising: a ~ (InEf; 8 = 2 (for /3=1 the
procedure is essentially the same [8]).
Dh - E2T jn2xdx , el {NE* In X f da:
Je, x2-E 2 JEIE X2- 1
EIN2ZETFC - dX + 2EInE [ Inxdx + [ |If xdx
Je,lIEX2 —1 JE/JEX2 — 1 JEIE X2 — 1
IfE — @
. =y udu
D[l ~ CjIn2E + cE In E + CoEIN ~ du
J. shu shu

The last term is zero, the second integral is finite and non-zero, therefore:
-D+ ~ ¢.In2E + c2E «In E ,

where Cj and c2 are some constants.
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Appendix 2
The crossing odd part of the high energy integral

Ao = o — o is constant beyond E,

3 s (E/E.)?
D'le/JUJ dx =Ao’£ du g
dn? JE, x(x* — E?) 47 J)o 1—u
oA B
22 E,
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EFFECTS OF MASS TRANSFER ON FREE CONVECTIVE
FLOW OF AN ELECTRICALLY CONDUCTING, VISCOUS
FLUID PAST AN INFINITE POROUS PLATE WITH
CONSTANT SUCTION AND TRANSVERSELY APPLIED
MAGNETIC FIELD

By

D. D. Hatdavnekar

DEPARTMENT OF CHEMICAL TECHNOLOGY, UNIVERSITY OF BOMBAY
MATUNGA, BOMBAY 400019, INDIA

and

V. M. SOUNDALGEKAR

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY, POWAI,
BOMBAY 400076, INDIA

(Received in revised form 18. X. 1977)

An analysis of the mass transfer effects on the free convective flow of an incompressible,
electrically conducting, viscous fluid past an infinite porous plate with constant suction and
transverse magnetic field, has been carried out. Approximate solutions to coupled non-linear
equations governing the flow are derived. The velocity and the temperature fields are shown
graphically. The effects of cp (Grashof number), cc (modified Grashof number), sc (Schmidt
number). E(Eckert number), P(Prandtl number) and M(the Hartmann number) on the flow
field are described during the course of discussion.

1. Introduction

There are a number of research papers published on free convective flow
past infinite and semi-infinite plates and other bodies. These flows are caused
by the temperature differences. In these studies, it was assumed that the fluid
is free from all soluble and insoluble impurities. This is not always true. In
many cases, the flow is modified by density differences caused by temperature
or chemical composition differences. Such a physical situation constituting
flow due to temperature and concentration differences has not received much
attention. In this situation, there is transfer of mass due to temperature differ-
ences and transfer of heat due to concentration differences. In the literature,
these are known as thermal diffusion and diffusion thermo effects.

Such a combined flow has been considered by a few researchers like
Sparrow, Minkowycz and Eckert [2], Gebhart and Pera [3] and a few
others referred to in [1, 3]. Their study was aimed at flow past semi-infinite plates
without suction. In [1, 2], the thermal diffusion and diffusion thermo effects
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were considered whereas in [3] only thermal diffusion effects were considered
and diffusion thermo effects were assumed to be negligible. This assumption
istrue when the concentration levelis very low. Assuming very low concentration
level, the effects of free convection currents and the mass transfer on the flow
past an infinite porous plate were studied by Soundalgekar [4].

All these papers deal with non-conducting fluids. But the effects of mass
transfer on the free convective flow of an electrically conducting fluid under
the action ofthe transverse magnetic field have not been studied at all. Hence
it is the object of the present paper to study the effects of the mass-transfer
on the free convective flow of a viscous, electrically conducting fluid past an
infinite porous plate with constant suction and transverse magnetic field.

In Section 2, the problem is posed mathematically and the approximate
solutions to a coupled non-linear system of equations governing the flow are
derived. The velocity, the temperature, the skin-friction and the Nusselt
number have been shown graphically. In Section 3,the conclusions are set out.

2. Mathematical analysis

Here the X-axis is chosen along a vertical porous plate in the upward
direction and the y' axis is chosen perpendicular to the plate, u', v' are the
components of velocity along X' and y' directions. The equations governing
the free convective flow of non conducting fluid under proper assumptions are
derived in Gebhart [5]. Following his treatment, we can show that the free
convective flow on an electrically conducting, incompressible, viscous fluid
on neglecting induced magnetic field, is governed by the following equations
(Rossow [6])

vVi— = + gR(T" - Ta) + gR*(C' - CL) - (1)
by’ by

PCnv’?--I— = IXxp-Z-T— + oBqu'l, 2)

by by’

dvt 0 2

by’ , (3)

e - p b2c Q)
by’ by'2

Here all physical quantities have their usual meaning except 8* which is known
as volume coefficient of expansion with concentration. D is the molecular
diffusivity and C is the species concentration. In Eq. (2), the last term re-
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presents the Joule dissipative heat. The viscous dissipative heat is assumed
to be negligible as compared to Joule dissipative heat.

Integrating (3) we have
v\ = — v, (5)

where v, is the constant suction velocity and the negative sign in (5) indicates
that the suction is towards the plate.
On introducing the following non-dimensional quantities

Wi u : y ks _7 Uo g 0 2 T 78 Tm "
v, c =T

€= __C_—C‘” ,Gr = 18 B(Tw — T-) (the Grashof number),
€y — CL vy

*((" ’
G, = 1gB*(Ce — Co) (the modified Grashof number) ,

v

P= ”T(Ci (the Prandtl number)

‘ : _ (5a)
o TR Y < ) (the Eckert number)
Cy(Ty — To)
W
M2= __11342_1’ (the Hartmann number) ,
Ay :

8= -—12)— (Schmidtéﬁumber)

in Egs. (1), (2) and (4) we :have

2 ‘
W5 B8 g Rl B0 (6)
dy* dy
&0 pB _ _pEs, W)
dy* dy
dC dC

b 8 2= 0 (8)
dy* dy

The boundary conditions are [3];
u=060=1,C=1aty=0
y : (9)
=0 4= 106 =0 at y o
Eqs. (6) —(8) are the coupled non-linear equations to be solved under the

boundary conditions (9). As exact solutions are not possible, we now try to
obtain approximate solutions. To solve these equations, we expand u, 0, C in
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powers of E, the Eckert number, This is possible physically as E for the flow
of an incompressible fluid is always less than unity. It can be interpreted

physically as the flow due to the Joule dissipation heat is superimposed on the
main flow. Hence we assume,

M= U + Euj, B =80 + Eagx C —Cg + ECV (10)

The terms of order E2 Es . .. are neglected because as £ < 1, the contribution
from the coefficients of E2 Es .. .will be negligibly small. Substituting (10)
in (6) —(9), equating the coefficients of different powers of E, neglecting those
of E2. .., we get a system of coupled linear equations. The procedure being
straightforward, it is not mentioned here to save space. These coupled linear

equations are solved and their values are substituted in (10). The solutions are
the following:

Fig. 1. Velocity profiles P = 0.025 Fig. 2. Temperature profiles, P = 0.025

u— bxe Y —b2e py —bie~sy + E [Ase~ my —
- GT{A.e~Py - A:e~2my - A:e~2Py - A.e~2Sy + (11)
+ Ase~(T>H)y - Ate-<s‘+ply + A:e-"m+s"y}]

B=e~py+ E[bse~Py- Coe~my- Q2Z™- C.e~2Sy +
+ Che~<nt+p)y - Cee“ s«s¥y + CT7e~<ni+sdd] .

u and 0 are shown in Fig. 1—2, respectively.
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Here
1+ fl + 4M2
uz TP2_ P My M S2-Sc-M 2°
c M 2Pb\ . M 262
4m2 —2m2P 3 2P
c M 2Pbl . 2blb2M 2P
4SC2 - 2PSC’ m2(m2 + p)
c 2b1b3 M 2P . 2b2b3 M 2P
6 (m2+Sc¢(m2+Sc- P) SQSC+ P)
b3=C. + C3+ c4—c5-mcg + C7,
1 bs 1 (o
P2- P - M2° "s  4m2- 2m2- M2’
1 n _ C4
"3 4P2—2P—M2’ 482 - 2Sc - M2
a m. + 2m.P + P, — m:. —P — M2
0= Ci
S2 + 2PSC+ P. —Sc—P — M. ’
C,,
n7=

ml + 2m.Sc+ S2 —m. —Sc — M2,
= GI-[i4j —A: —As —A, + As—Ae-fAT].

Knowing the velocity and the temperature field, we can now calculate
the skin-friction and the rate of heat transfer expressed in terms of the Nusselt
number.

The skin-friction is given by

=y (13)
dy’ Y-o
which in view of (5a) reduces to
—_ (14)
dy Y-0
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Substituting for n from (11). in (14) we can obtain the expression for T shown
in Fig. 3. The rate of heat transfer, in terms of the Nusselt number is given by

do
Nu = - (15)
AaTO-n K dy y=o

Substituting for B from (12) in (15) we can obtain the expression for Nu shown
in Fig. 4.

5
4
T
3
2
1e
0 2 4 6 8
M----- » M
Fig. 3. Skin friction P = 0.025 Fig. 4. Nusselt number P = 0.025

3. Discussion

In order to get the physical insight into the problem, numerical calcula-
tions are carried out for different values of GT, G¢c, M, E. P and Sc. In Fig. 1
the velocity profiles are shown for constant Gc and Sc. We observe that due
to more addition of Joule dissipative heat, the velocity increases. The velocity
increases with increasing GT whereas an increase in the magnetic field leads to
a decrease in the velocity. An increase in Gcleads to an increase in the velocity
whereas an increase in Scleads to a decrease in the velocity. Fig. 2 shows the
temperature profiles. We observe from this Figure that an increase in the
Schmidt number leads to a decrease in the temperature. But due to more
addition of the Joule dissipative heat, the temperature increases. The tempe-
rature increases due to increasing GT or Gcor M. Fig. 3 shows the skin-friction
plotted against M. With increasing M, the skin-friction decreases. It decreases
with increasing the Schmidt number. However, due to more addition of the
Joule dissipative heat or due to an increase in GT or Gc, the skin-friction increas-
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es. In Fig. 4, the Nusselt number is plotted against M. For small values of M,
the Nusselt number is large. It decreases due to increasing the Schmidt num-
ber or G, and increases owing to an increase in G, or E.
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Rayleigh —Taylor instability of two superposed conducting fluids in the presence of
suspended particles is studied. The prevalent magnetic field is assumed to be uniform and
horizontal. The fluids are assumed to be highly viscous and of equal kinematic viscosities,
for mathematical simplicity. The system is found to be stable for stable configuration and
unstable for unstable configuration in the presence of suspended particles. This is in contrast
to the thermal instability problem where the suspended particles have a destabilizing effect.

1. Introduction

The instability derived from the character of the equilibrium of an incom-
pressible heavy fluid of variable density (i.e. of a heterogeneous fluid) is termed
the Rayleigh—Taylor instability. Mention may be made of two important
special cases: (a) two fluids of different densities superposed one over the other;
(b) a fluid with a continuous density stratification. KRUSKAL and SCHWARZ-
scHILD [1] have considered the stability of an inviscid plasma of infinite con-
ductivity supported against gravity by a horizontal magnetic field. HipE [2)]
studied the case of a viscous conducting fluid with a transverse magnetic field
and found that magnetic field considerably stabilizes the configuration and it
is possible to have oscillatory motion in the presence of magnetic field even if
the configuration is thoroughly unstable. CHANDRASEKHAR [3] has given a
detailed account of the Rayleigh—Taylor instability under varying assump-
tions of hydrodynamics and hydromagnetics.

The effect of suspended particles on the stability of superposed fluids
might be of industrial and chemical engineering importance. Further motiva-
tion for this study is the fact that knowledge concerning fluid-particle mixtures
is not commensurate with their industrial and scientific importance. SCANLON
and SEGEL [4] considered the effect of suspended particles on the onset of
Bénard convection and found that the critical Rayleigh number was reduced
solely because the heat capacity of the pure gas was supplemented by that
of the particles. SHARMA et al [5] studied the effect of suspended particles on
the onset of Bénard convection in hydromagnetics. The effect of suspended
particles was found to destabilize the layer whereas the effect of magnetic
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field was stabilizing. The effect of a uniform rotation was also studied and was
found to have a stabilizing effect in the presence of suspended particles on the
Bénard convection.

The effect of suspended particles on the stability oftwo superposed fluids
in hydromagnetics might be of industrial and scientific importance. This
aspect forms the subject matter of the present paper.

We consider a static state in which an incompressible fluid-particle layer
of variable density is arranged in horizontal strata and the pressure p and the
density Qare functions of the vertical coordinate z only. The character of the
equilibrium of this initial static state is determined by supposing that the
system is slightly disturbed and then following its further evolution. The fluid
is under the action of gravity g(0, 0, —g) and the horizontal magnetic field
H(H, 0, 0). The particles are assumed to be nonconducting.

2. Basic equations

Let Qp,p and u(it, v, 1 denote respectively the density, the viscosity,
the pressure and the velocity of the pure gas; V(«, t) and N(x, t) denote the
velocity and number density of the particles, respectively. K = 6apr], where
rj is the particle radius, is a constant and X = (X,Yy, z). Then the equations of
motion and continuity for the gas and Maxwell’s equations are

— 4+ (ueV)u S’p +gg + (UWW2u + KN(X —u)-(-
(1)
dco flu I dp
+ (VXh) X H +
4tr dx Q) dz
Veu = 0, (2)
— = vXwXH), 3
5 ) (3)
VeH = 0. (4)

Since the density of a particle moving with the fluid remains unchanged,
we have

e
+ (Uuev)p = 0. 5
dt (5)

The presence of particles adds an extra force term, proportional to the
velocity difference between particles and fluid and appears in equations of
motion (1). Since the force exerted by the fluid on the particles is equal and
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opposite to that exerted by the particles on the fluid, there must be an extra
force term, equal in magnitude but opposite in sign, in the equations of
motion for the particles. The buoyancy force on the particles is neglected. Inter-
particle reactions are not considered either for we assume that the distance
between particles is quite large compared with their diameter.

The equations of motion and continuity for the particles, under the

above approximations, are

mN[a—V— + (V- V)V] = mNg + KN(u — V), (6)
ot
ﬂ+V-(NV):0, (7)
ot

where mIN is the mass of particles per unit volume.

Let dp, dp and h(hx, hy, hz) denote respectively the perturbations in
density o, pressure p and the magnetic field H. Then the linearized perturba-
tion equations of the fluid-particle layer are:

ou ow ou) du
—= =Viép + gép+ pViu 4+ p— 4 ==l g
93‘ P + g0g + pv-u P> i)z)dz
+ - (VxB) X H + KN(V - u), (8)
7
V. -w="0, 9
h
a—zv X (u X H), (10)
ot
V'h=09 (11)
_m_i_{_IJV:u. (12)
K ot
In addition to Eqgs. (8)—(12), we have the equation
o
= =y 1% 13
o2 (13)

which ensures that the density of every particle remains unchanged as we

follow it with its motion.
Analyzing the disturbance into normal modes, we seek solutions whose

dependence on x,y and t is given by

exp (tkx + ikyy + nt), (14)
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where KX, Ky are the horizontal components of the wave number, k. = kx - k\
and n is the growth rate.
Using expression (14), Eqgs. (8) —(13) give

[p(rre + 1) + mN]nm = —(1 + xn) ikxbp + («(I + xn)(D. —ft)n +
+ (ikxd) + Du)(lI + rn)Dp, (19)

[g(xn + 1) + mN]nv = —( + xn)ikybp 4- p(I 4 xn)(D. — No)v 4-
4- (ikyco + DV)(1 4- rn)Dp 4- -~ -(ikxhy — ikyhx),
in
[p(tra + 1) 4- mN] neo — —(1 4- xn)Dbp 4- p 1 4 rn)(D.: —k2co +

+ 2Deo (1 4- xn)Dp 4- — (1 4- xn)(Dg) + ';r—(ikxhz—th), A
n n

ikxu 4- ikyv + Deo = 0, (18)
ikxhx + iky hy + Dhz = 0, (19)
nh = ikxHu . (20)

Eliminating bp between Eqgs. (15) —(17) and using Egs. (18)—(20), we
obtain

n(xn 4- 1) [D(gDco) — k.gco] 4- [D(mMNDco) —k?(mN)co] —

—p(xn 4 1)(D2 —K». 0 4 -*—(Dg)(xn + l)cu 4
n (21
- (rn 4- 1) [D{(Dp)(D. + k:)eo) - 2k:.(Dp) (Deo)] +
f'eH . k-
+
4nn

(D: - k20 = 0

3. Two uniform fluids separated by a horizontal boundary

Consider the case of two uniform fluids of densities and g. and visco-
sities py and p. separated by a horizontal boundary at z — 0. The subscripts
1 and 2 distinguish the lower and the upper fluids, respectively. In each of the
two regions of constant g and p, Eq. (21) reduces to

(Dz - k2) (Dz - KaCO =0, (22)
where
K, = ke + — + mN pd(sz
v p(l + xn) 4nkvgn (1 -- xn)
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Since w must vanish both when z — — < (in the lower fluid) and z - +
(in the upper fluid), the general solution of Eq. (22) can be written as

w, = A6t 4 B, ethz, (z <0) (23)
w, = A,e= % L 'B, e~ k2, (z> 0) (24)

where A4,, B, A,, B, are constants of integration,

N k% H?

K1=Vk2+1+ = + 0 ; (25)
v, 0. (1+7n) 4av, 0,n(l + 7n)

and

_ > P
K2=Vk2+i+ = P : (26)
vy 05 75(1+ 7n) 47y, o, n(1 + 7n).

Integrating Eq. (21) across the interface at z = 0, we obtain

[o- 2o [ 20

n z=0
N H2 k2
+ —"—— (Do, — Do),eg + —EC—"2— (Do, — Do)y (27)
n(tn+1) 4an*(rn+1)
gk*

=—"—(¢2 — e1)@o — %(#2 — p)(Dw), -

In addition to the condition (27), the boundary conditions to be satisfied
at the interface z = 0 are (CHANDRASEKHAR [3], p. 432):

o, (28)

Do (29)
and

w(D? + K)o (30)

must be continuous across an interface between two fluids.
Applying the boundary conditions (27) —(30) to the solutions given in
(23) and (24), we obtain

A4, + B, =4, + B,, (31)
kd, +K,B, = —kd, — K, By, (52)
w24, + (K} + k) B,] = u,y[2k*4, + (K + k) B,], (33)
and
— 4+C—g, — s ok o= | Bk
[ 2 i n(tn + 1) n*(tn + 1)] : [2 k ] )
34)
S R (
e Lo L ]A2+[——CK2]BQ=0,
2 n(zn +1)  n¥wm + 1) 2 k
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where
_ 9k 3 _ . ki H.
R = (&2 - B, C=— (/i2- pi) and S =
n 4an

Eqs. (31) —(34) can be written, in matrix notation, in the form of the
single matrix equation

1 1 —1 -1 FA
K KXx K K2 Bx
2 ke Px(K*X + k2) - 2kru. -i% (K. +k2)
R + C—QX R ¢ (6)]
E 2 = 0.
mN mN CK:
B.
n(rn-f 1) {1 Nl = n(xn+1) K
S S
nrn+1) nArn + 1)

(35)

The determinant of the linear system of equations which (35) represents
must clearly vanish. The determinant can be reduced by subtracting the first
column from the second, the third column from the fourth and adding the
first column to the third. By this procedure, we obtain

Kx- K 2 K K*-k
mN N
QU + +m @n + m +
xn + 1 o xn +1
S 2fc2(Pi»'i - Q2v2) S
n(xn + 1) n(xn + 1) 0
mN gk mN (36)
. + CoAy
\Qi+ n(xn+1) (ei-Qi) n(xn + 1)
2mN
+ {KI-k) +  _(gi+eD- (K -k) +
K n(xn+l)
2S N
n2(xn+ 1) n2(xn + 1) n2(xn +1)

4. Discussion

Since the values of K. and K. involve square roots, the dispersion rela-
tion (36) is quite complicated. For mathematical simplicity, we make the
assumptions that the kinematic viscosities of the two fluids are the same i.e.
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vy = v, = v and that the fluids are highly viscous. Under the above assump-
tions, we have

n mN S 1/2
K =k|1+ + '
! vk?2 ovk?(tn+1) E*von(tn+1) (37)
n mN b
=k 4 == + : ,
2vk 20vk(tn+1) 2kvon(tn+1)
so that
B, e B 8 R (38)
2vk  2p,vk(tn+1)  2kvo,n(tn+1)
and
g n mN S (38)

+ - :
2vk  2p4vk(zn+1)  2kvo,n(tn+1)

Substituting the values of K, — k and K, — k from Eqs. (38) and (39)
in the determinant (36) and simplifying it, after a little algebra, we obtain
Agn® + Agn® + A,n” + Agn® + Agn® + A,n* + Aynd +

(40)
=1 A2n2 + Aln + AO = 0,

where

Ay = 0,0:7(01 + 02)

Ag = 010,701 + 02)*[3 + 2K*v7)],

A, = 60k 7% 0, 05 (01 + 02 + 8k01 02(01 + 02) (01 — 02)T° +
+ 30,05 7(01 + 02 + mN7X(0, + 02)(0f + 40,02 + 03)»

Ay = 60k 1o, 05(0; + 0,)* + 202 mN7©2(p, + 0,)% +
+ 3gk7 05 02(01 — 03) (01 + 02) + 2mN7(gy + 05) X
X (0f + 40100 + 03) + 2010001 + 02)* — S7(01 + 22)°>

As = 9B mN1(0, + 02)° + 20k 0, 0501 + 02)° +
+ 3gko, 027(01 + 02)(01 — ©2) + mN(0y + 02) (0 + 40100 + 03) +
+ ghlor — 02)(e1 + 0’'mNT> + 3m*N?7(0; + 0,)° + (41)
+ St(0, + 0) [2(01 + 02)* + 2vK* (0} + 03)],

A, = 208 m* N*7(o; + 0,)* + 2gkmN7t( 0; — 05) (01 + 02)* +
+ 8koi05(01 — 02) (01 + 05) + 3m*N*(o; + o) +
+ 2k»mN(0, + 02)° + S0y + 2)° + St(oy + 0,) [4K%(0] + 03) +
+8kt(0; — 02)(01 + 02) + 4mN(o; + 05)]
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A3 = gkmN(gl- g?(ol+ g22 + gk(gL- goHgr + g2m2N 2T +
+ 2m3N gl + g2) + 2vk2m2N (g1 + g2)2 + + g2 X
X + g2 + S(g2+ g2 + 2gft(ei - g-j)™ + g,)] +
+ s (ft + ft) [4fc2vgi g2 + 2k2v{gl - ¢2)2] ,

A 2= gkm2N 2gx- g2 (gx+ g2 + gkS(gl- g¢2(gl+ g2 X
X [ft + ft + 2miVt] + 4m2N2S(gl+ g2 + S2gt + @22,

Al= gkS(gr —g2(gj + g2 [2nr/IC + Sr] + 2S2mN(gt + g2),
A0 = S2gk{gl - go)(gi + e2) e

For the potentially stable arrangement gx> g2, we find that all the coef-
ficients in (40) are positive and so all the roots of n are either real and negative
or there are complex roots (which occur in pairs) with negative real parts and
the rest negative real roots. The system is therefore stable in each case. Thus
the potentially stable configuration gt > g2, remains stable for the case of
two superposed fluids in the presence of suspended particles.

For the unstable configuration g2> gv there is at least one change of
sign in (40) and so Eq. (40) has one positive root. The occurrence of positive
root implies that the system is unstable. The unstable configuration, therefore,
remains unstable for the case of two superposed fluids in the presence of
suspended particles.

We conclude therefore that the system is stable for stable configuration
and unstable for unstable configuration in the presence of suspended particles.
This is in contrast to the thermal instability (Bénard convection) problem
where the suspended particles have a destabilizing effect.
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The auto-correlation analysis of the fluctuations of the differential cross-sections of the
(d, p) and (d, «) reactions on %3S target at 135° gave a mean level width “/™ of 20 + 5 keV
for the 3Cl compound nucleus at 13.630 MeV average excitation energy. This value of “I™
eflects the nuclear shell structure ef fects for even mass numb er nuclei beside confirming the
rermigas model predictions. The abse nce of correlation between associated as well as between
Fon-associated decay groups is confirmed. The validity of the Thomas-Porter distribution for
nescribing the probability distribution of cross-sections around their averages is attributed
do a very small contribution of the direct process to the reaction mechanism if present. The
tprobability of the a-isospin forbidden transition to the 3°P first excited state is discussed in
the frame of the isospin mixing.

I. Introduction

The angular distributions of the different groups emitted in the 3S(d, p)**S
reaction were studied [1—7] in the deuteron energy range from 1.0 up to
5.0 MeV, and a contribution from both the direct and compound nucleus
processes to the reaction mechanism was recognised. The angular distribution
of the (d, ) reaction in 32§ targets in the energy range from 2.0 up to 5.5 MeV
[8, 9] showed the characteristic features of the compound nucleus mechanism.

In all these previous studies the mechanism of the (d, p) and (d, x) reac-
tion on the 32S target nuclei was investigated via the analysis of the measured
angular distributions in terms of both the direct and compound nucleus
processes beside the interference between both. The use of thick S targets
beside the big energy steps used in measurements prevented the obtained
data from being suitable for ERricsoN analysis of the present cross-section
fluctuations.

Accordingly, we still have to investigate these reaction mechanisms,
especially in the low energy range of incident deuterons. This is carried out here
via the analysis of the accurately measured yield curves of these reactions in
terms of the EricsoN methods [10], on the one hand. On the other hand the
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study of the EricsoN fluctuations of these reactions is used as a tool for the
determinations of the isospin mixing leading to the appearance of the x-iso-
spin forbidden transitions in this low energy range of bombarding deuterons.

This paper presents the experimental results of the excitation functions
of the above mentioned reactions in the deuteron energy range from 2.0 to
2.5 MeV, in 10 keV steps at 135° scattering angle. The observed fluctuations are
attributed to a statistical origin and thus analyzed according to the method
proposed by Ericson [10].

II. Experimental techniques and analysis

38 targets of thickness equivalent to ~ 10 keV energy loss at 2.20 MeV
deuterons were prepared from ‘““Ag,S” by evaporation onto thin ‘““Ag”
backings.

The same experimental techniques given in [11] were performed here for
the yield curves measurements. The methods of analysis of the results in terms
of the EricsonN theory of statistical fluctuations [10] are given in detail in [11].

ITI. Results and discussion
1. Energy spectra and yield curves

Fig. 1a shows a typical energy spectrum of the elastically scattered deu-
terons at £, = 2.20 MeV, and at 135° angle of scattering. Peaks corresponding to
(d, @) reactions upon 23S target nuclei as well as those due to ““Ag”” nuclei used
as backings and present in target material (Ag,S) are well seen. Peaks of 2C
impurities are also present. Considering the elastic scattering due to Ruther-
ford, the target thickness was determined to be equivalent to ~10 keV energy
loss at 2.20 MeV deuteron energy.

Figs. 1b and lc present the energy spectra of the protons and x-groups
emitted in the (d, p) and (d, «) reactions on the S targets, respectively, at
E; = 2.0 MeV and 6 = 135°). The first six proton groups leading to the shown
328 levels are well separated from the >C(d, p,)**C group shown at the low
energy end of the spectrum (Fig. 1b). The first emitted four a«-groups, with
«, and o, recorded as one group (x,_,) due to lack of such very high energy
resolution, are clearly seen in the spectrum of Fig. lc. The identification of the
reaction groups was performed by the reaction kinematics. In view of this,
one can carry out the study of six proton groups and three «-groups with fair
certainty. Accordingly, the excitation function curves of these six proton
and three alpha-groups are measured in the deuteron energy range from 2.0
up to 2.4 MeV in the fairly accepted steps of 10 keV. Proton and «-spectra at
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Fig. la. Spectrum of elastically scattered deuterons from S target on Ag backing measured
at Ea= 2.2 MeV and 135° angle of scattering

Fig. Ib. Typical spectrum of the proton groups from deuteron bombardment of a natural
sulphur target, recorded on the multi-channel analyzer. All labelled peaks correspond to single
levels in 33 residual nucleus
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Fig. 1c. Typical spectrum of the alpha groups from deuteron bombardment of a natural
sulphur target, recorded on the multi-channel analyzer. All labelled peaks correspond to single
levels in 30P residual nucleus

each deuteron energy were measured for a deuteron charge accumulated on
the target giving good statistics of points. Our scattering chamber and the
charged particles spectrometer (utilizing the semiconductor detectors) are
described in detail in [11]. Figs. 2a and 2b show the results of the yield curves
measurements. Reproducibility of the results was confirmed by measuring
different runs for special parts of the yield curves. Fluctuations of the differ-
ential cross-sections cannot he missed from the first look.

2. Average level ividth

The observed fluctuations in the differential cross-sections of the|(d, p)
and (d, «) reactions on 32S (see Figs. 2a, 2b) are attributed to a statistical origin
of that type considered by Ericson [10]. This assumption is supported by
calculating the level spacing “D” [12] of the compound nucleus 34Cl at 13.630
MeV average energy of excitation as J u 0.33 keV and thus giving a value
of /D — 60 realizing then the overlapping conditions F/D > 1.

Accordingly, an auto-correlation analysis ofthe differential cross-sections
of the measured protons and a-groups was performed. The auto-correlation
function is given by:

"o(E) _jl . (cjE, + Q _ 1\
m (oE) | |<E+6) / )
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Ed(MeV) Ed (Mev)

Fig. 2a. Excitation functions of the 35(d, p)33S reaction leading to the first eight excited
states of the 33S nucleus for the scattering angle 135°, and deuteron energy range from 2.0 to
2.4 MeV. The statistical errors are within the dots.

Fig. 2b. Excitation function of the 35(d, a)30P reaction leading to the first four excited states
of the 30P nucleus, for the scattering angle 135° and in the deuteron energy range from 2.0 to
2.4 MeV. The statistical errors are within the dots.

with as an increment of energy not less than the energy steps of the yield
curves measurements. The average value of the cross-section at an energy
Ei(a(Ei)y is represented by either a straight line obtained by a least square
fit of the data or by a non-periodic Fourier function with higher orders neg-
lected. An iteration procedure for the method of average was performed until
getting the coherence width “I" ” of a certain excitation function being approx-
imately constant. The details of the procedures of analysis are given in [11].

Figs. 3a and 3b present examples of the normalized auto-correlation
function (that is f?(£) normalized to R(d — 0)] of some of the studied protons
and a-groups. The theoretically expected Lorentzian shape [10] of the auto-
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Fig. 3a. Normalized auto-correlation function of the fluctuations in the differential cross-
section of the reaction 35(d, p,,)33S at 135° angle of scattering
Fig. 3b. Normalized auto-correlation function of the fluctuations in the differential cross-
section of the reaction 35(d, a12)30P at 135° angle of scattering
Fig. 3c. Absolute auto-correlation function and cross-correlation functions in the differential
cross-section of the 35(d, p)3S and 35(d, a3)30P reactions at Ea = 2.0 —2.4 MeV and at
© = 135°

correlation function with the same experimentally obtained coherence width
is shown in the same Figure. Fluctuations in the R(£) values around the
£-axis for values of £ [ are attributed to the effect of the finite data range
(FRD). The indicated values of the FRD error were calculated according to
Hoatt [13].
Table 1
Results of fluctuation analysis

Average
. Level N = A , ex_cita- M life ti
Reaction Group spin N 1/LL10) (kael</t()) /(I?g\[})) (kg\t/'; (k(I;V) ert1leorgy ea)Q (;eec) me
(MeV)
Po 32 12 23 17 175
Pi 12 6 9 20 215
* 5/2 18 19 14 18 16 195 13.63 3.66 X 10-20
;W(d. a) 35 P
P3 32 12 10 26 24
A456 - - 29 15 19
32 12 2 16 18
“o 1 5 5 32 275
35(d, a) P 12 - - 0 23 23 20 2 13.63 2.86 X 10-20
3 2 8 19 14 185
N Fluctuation damping coefficient calculated using the spin weight formula
N = I/fi(0) Fluctuation damping coefficient from the experimental data
Fauto Width obtained from auto correlation analysis
F.r Width obtained from the Fourier technique analysis

Average life time
The FRD errorin ', R(0) and T= £ 25%
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Another method for the determination of the average coherence width
“I" based on the Fourier analysis of the yield curves was used in all groups
studied. The details of this method are given in our previous work [11].

Table I presents the values of the coherence width ‘I obtained for
each group by both the Lorentzian and the Fourier methods of analysis.
The corresponding mean life-time ““¢”’ of the compound nucleus *Cl at the
average excitation energy of 13.630 MeV, amounts to ~3.21X10720 sec in
agreement with the slow reaction mechanism. Comparing this value of “I"”
for the **Cl nucleus at an average excitation energy 13.630 MeV with that at
16.30 MeV, which amounts to I' = 39 + 4 keV [9], one can see that these
results are in agreement with the Fermi-gas model predicition [9]. The value
of “I" obtained here, being equal to that for the %3S nucleus at an average
excitation energy ~ 17.4 MeV [11], reflects the nuclear shell-structure effects
for even mass nuclei [9].

3. Associated and non-associated decay group correlation

The correlation between the different groups emitted in a certain decay
channel (i.e. protons or z-groups) can be studied through the correlation func-
tion

£ +
[{aa(E)) (on(E + €))]
+ [0dE + €) — <oo(E + €][on(E) — <ou(E)] ]>
[KouE + ©) <on(E))]

with the same parameters defined in Eq. (1). In our work we studied the corre-
lation between the emitted proton groups as well as between the emitted
a-groups. The overall normalized values of the cross-corrclation function (i.e.
at € = 0) amount to (18 + 54) % and (—8.0 4 40) % for protons and x-groups,
respectively. This confirms the absence of correlation between associated decay
groups. On the other hand, the correlation between the non-associated decay
groups (i.e. protons with x-groups) was also studied. Fig. 3¢ shows an example
of this correlation parameter. Fig. 4 displays the values of the normalized
cross-correlation parameter (at € = () between each emitted proton group
and all the emitted «-groups. The overall average correlation amounts to
(0.16 + 1.7) which reflects the lack of correlation between non-associated
decay groups, in accordance with the Ericson predictions [10].

R,4(€) = <l/2[ 0o(E) — {oo(E))] [os(E + €) — {ay(E + €))]
2)

4. Probability distribution of cross-section

Fig. 5 shows the probability distribution of the measured cross-sections
around their averages 1) = o/{(¢) (represented by a histogram) for some of the
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Fig. 4. The mean normalized cross-corn lation function cC(G)> for each proton group emitted

from the 35(d, p)33S reaction with all a-groups emitted in the 35(d, a)3P reaction. The over-all

normalized cross-correlation R between all the proton and cc-groups averaged over all ofthem
is represented by the dashed line passing through the points.

Fig. 5. The cross-section probability distribution histograms of the 35(d, p)33S and the 3d, a)30P
reaction groups. The smooth curves are calculated neglecting the direct interaction contribution
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studied proton and a-groups. The smooth curves represent the distributions
calculated according to the Thomas— Porter distribution, i.e. a y*-distribution
with 2N degrees of freedom [10] and neglecting the direct reaction contribu-
tion, with IN as the value of the fluctuation damping coefficient taken as
N = 1/R(0). These values of IN are given in Table I where they are compared
with the corresponding values calculated with the spin weight formula defin-
ing the number of incoherent statistically independent competing reaction
channels [10]. The small deviations seen in Fig. 5 may be due to some small
contributions of direct and/or any other than the compound nucleus mecha-
nism if present.

5. Isospin mixing

In the present investigation, the isospin forbidden T = 1 state in 3°P
at 0.678 MeV can be excited through the (d, ) reaction on 32S. This 0+ (T = 1)
state of 0.678 MeV is so close to the 1* (T = 0) state at 0.709 MeV that they
cannot be separated and are recorded as one group (x,_,). Now, due to
Coulomb forces, isospin mixing may occur before the decay of the compound
nucleus state, and violations of the isospin selection rule then take place [14].
According to WILKINSON, the cross-section for an isospin forbidden transition
should be inhibited by a factor f = (H_)/I" where I' is the level width and
{(H,) is the average matrix element of the Coulomb forces which are respon-
sible for the mixing of the isospin of neighbouring states having the same
spin and parities but different isospins. If we considered a probable upper
limit for the value of (H,> = 100 keV [14], then a value for the inhibition
factor f = 100/20 = 5 is obtained. This is clear from Fig. 6 where the proba-

Fig. 6. The probability distribution of the cross-section of the 32S(d, a,,)3°P reaction group

around their average. Smooth curves are calculated «; and «, alone (N = 2 and N = 5,

respectively). The deviation of the IV = 2 curve from the experimental histograms confirms
the big inhibition of the isospin forbidden a, transition
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bility distribution of cross-sections around their aevrage (rj = 0/<<t)) for the
al 2 group is very far from agreement with the calculated distribution with
N — 2 (corresponding to the T = 1 state of spin = 0+). The deviation is
very clear in both the width and the peak position. This reflects the fact of
the very small amount ofisospin mixing in this case, a result which permits one
to consider the x1 2group as due to x2group only on the average.
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IN-ELASTIC INTERACTIONS OF 6.0 GeV/c
PROTONS WITH C, N, O AND Ag, Br NUCLEI
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Inelastic interactions of 6.0 GeV/c protons with light (C, N, O) and heavy (Ag, Br)
emulsion nuclei were separated and classified by the use of two types of nuclear emulsions.
The average values and the angular distributions of the emitted showers, recoil nucleons, and
evaporated particles together with the intercorrelation between them are thoroughly investig-
ated both for light (C, N, O) and heavy (Ag, Br) nuclei.

The results are compared with the predictions of the traditional cascade evaporation
model and with its version taking into account many particle interaction (MPI).

1. Introduction

Inelastic interactions of 6.0 GeV/c protons with light (C, N, O) and heavy
(Ag, Br) nuclei are investigated by using two types of photoemulsions I, II
having different compositions (Table I). The interaction characteristics are
studied and compared with their corresponding values calculated according
to the cascade model with and without considering multiparticle interactions
MPI [1, 2].

The intercorrelations between different emitted secondaries are studied
and interesting conclusions about the mechanism of proton—nucleus interac-
tion are obtained. The space angular distributions of secondary emitted show-
er, grey and black tracks producing particles are measured, and the half
cone angles of the emitted particles are then obtained and compared with the
values predicted by the cascade model [2, 3].

Table I
Emulsion I Emulsion II
Element nuclei/c.c. nuclei/c.c.
H 3.357¢ 1072 5.06 x 10%2
C 1.41 1.83
N 0.39 0.16
0 0.96 1.65
Br 1.03 0.42
Ag 1.04 0.42
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Il. Experimental technique

NIK —FI —Br—2 photoemulsion (denoted by I) and emulsion | enriched
by ethylene glycol [CH2CH], (denoted by 11) are used in our experiment.
The nuclear composition of these photoemulsions is given Table I. Photo-
emulsions | and Il were exposed at the Dubna Synchrophasotron, USSR, to
6 GeV/c protons.

The grain density in emulsion | was 33 per I00/i, while in emulsion 11
it was 21 per 100jU.

Events were searched for along the tracks. AIll events including one-
prong at an angle > 10° to the primary particle were detected and recorded.

I11. Results and discussion

1. Separation of inelastic interactions with light (C, N, 0) and heavy (Ag, Br)
nuclei from the total sample

Due to the additivity of the nuclear composition of emulsion | and
CH:20H, the interactions in emulsion Il are considered as a sum of interac-
tions with emulsion I and CH20H nuclei.

In order to determine the number of interactions of protons with C, 0
nuclei we subtract the interactions with free protons (these form 4 % of events
in emulsion | and about 10 % in emulsion Il) according to their criteria [4].

Some events are produced showing coherent generations, which are
searched for among the selected pure relativistic clean odd prong number
events, i.e. among the sample ofproton—neutron interactions. At our energy,
events showing coherent production are of very small number.

Subtracting the p-free p events from the events in both types ofemulsions
(I and Il) we can obtain the number of events due to proton interactions with
carbon and oxygen nuclei IV,,(C, 0) due to the enrichment in emulsion Il by
the equation:

iv,(C,0) = IV, Vi Lu (1)
V1Vo L,

This equation makes a normalization to the scanning length equal
to that of emulsion Il, and decreased as much as the emulsion volume VO is
increased to V when enriched by light nuclei [CH20H], where the number of
stars in emulsion | found along a scanning length L, is denoted by IV, and the
number of stars in emulsion Il found along a length L,, is denoted by 1V,,.

A fter subtracting this number of stars IV,,(C, O) from 1V,,, the remaining
number IV, r will have the same njnh (nsand nhbeing the number of shower
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and heavy tracks producing particles) distribution as the normal one IV; and
is distributed according to the distribution ratios in IV;.

To obtain the n /n, distribution of the C, O events we subtract the n /n,
distribution of N|;, (which is similar to the ng/n, distribution of IV}) from that
of N, (this is similar to the distribution of C, N, O because the average atomic
mass is the same). Since we know (by composition of emulsion TI) that 22 %
of the total emulsion I events IV, are due to interactions with (C, N, O) nuclei,
so one can find N,(C, N, O) in emulsion I and also its ny/n, distribution from
its similarity to that of IN;(C, O).

Also to get the distribution of events due to Ag, Br nuclei in emulsion
I, one subtracts the IN,(C, N, O) distribution from that of the total IV;. By
a similar procedure one gets the Ag, Br events distribution in emulsion II.

From our data wa have obtained that

L, = 298.92 metres
L; = 129.91 metres
N; (p-free p events are subtracted) = 833 events.

N;; (p-free p events are subtracted) = 247 events.
ViV, = 2.5

2. Multiplicities of the shower, recoil and evaporated particles

Table II presents the dependence of the average values characterizing
particle generation for some groups of nuclei and their decay under proton
bombardment. For comparison, Table IT presents the mean number of charged
shower particles i, and half angles 0,, (the angle through which half of
the secondary particles emerge), averaged for interactions with protons and
neutrons. In this Table we also present the data obtained at 69 GeV/c and
9.0 GeV/c incident proton momenta [5, 6].

The most convenient characterization of the multiplicity is the ratio
R, of the average number of shower tracks nyA4) from a target 4 to n, in
p—p collisions at the same energy: R, = n(A4)/n,(pp)- Fig. 2 shows the dep-
endence of the ratio R on n, for the interactions with nuclei, C, N, O and
Ag., Br, where the data at 69 GeV/c [5] are introduced.

Table II shows a weak dependence of 7, on the atomic weight 4. One
also sees this well in Fig. 3 in which the line 4%1° fits the data at 69 GeV/c [5],
while the line 4% 9% fits our data at 6 GeV/ec.

The average values of interaction characteristics ng", ng, nj of our data
obtained for the interactions of 6.0 GeV/c protons with emulsion nuclei are
presented in Table III, where they are compared with their corresponding
values calculated for 6.2 GeV primary protons according to the cascade model
with and without taking into account MPI [2, 3].
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Table 11

The different characteristics of the in-elastic interactions of protons with light and heavy emulsion

Nuclei

Ag
Br

nucleon

Nuclei

Ag
Br

nucleon

Ac ta Physica Academiae

nuclei at different momenta

Momentum

14

92

GeVic

69

69

6rech=

69

Momentum

14

92

GeVic

69

69
6nch=

69

n8

2,77 £
3.0 *
7.53

292 +

0.12
0.1
0.27
0.07
0.3

10.53 + 0.48

+ 0.3
0.2

2,67 £ 0.12

3.47
8.05 +

0.16
0.11

9.58 + 0.6

Table 111

ng

0.07
0.1
0.05

0.96
14 +
0.90 +
2.54 + 0.06
41 * 05
298 + 0.1

8112

23.0°+ 0.5°
22.5°+ 1°
9.6°+ 1°
34.6°% 1°
27.5°+ 1.5°
14.0°+ 0.5°

11
6.5°

nb

171 +
33 *
257 +

0.12
0.1
0.13

0.09
0.6
0.5

551 +
61 -
66 =

®i,ik

60.5°+ 5°
56.5°+ 3°
60° 3°
67.8°+ 2.5°
65.0°+ 3°
66.4°+ 1°

I+

The 6.0 GeV/c interaction characteristics compared with theoretical values

Interaction Present data
characteristics at 6 GeV/c

2.89 + 0.05

"g 2.18 + 0.05

oh 6.81 + 0.09

0512 25.0° £ 0.5°
®gli2 65.5° + 3°

Scientiarum

Hungaricae 43,

Calculated values
according to the cascade

evaporation
model ref. [5]

2.80 + 0.15
2.10 £ 0.15
8.30 + 0.40
28° + 2°
70° + 4°

1977

Calculated values
according to cascade
model with MPI

ref. [4]

2.7 +
23+
7.8 +
29° +
66° +

0.1
0.1
0.4
15
30
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20b

=

P-Cone U
: U 69 GeVic
P-AkgBr |

P-C.N.O
P-Ag,Br

*

* O

at 6 GeVic

ns

15

Fig. 1. The dependence of the average number of shower tracks on
the number of heavy tracks producing particles

Fig. 2. The dependence of the ratio R = njn/, on the number of heavy tracks producing
particles. Circles are our data at 6 GeV/c, and triangles are data at 69 GeV/c incident
proton momentum
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Fig. 3. The dependence of the ratio R = njnc on the atomic weight A

3. Correlation between different emitted charged secondaries

The intercorrelations between nb, ngand nsare given in Figs 4, 5,6 and 7.
In the representation of the frequency distribution of stars for ns as a
function of their grey and black prong number nh(Figs. 1,6), it was found that
for both light and heavy nuclei events the stars with larger nh show, on the
average, a large ns. This must be due to secondary interactions for two reasons:

Fig. 4. The dependence of the average number of grey tracks producing particles on the number
of shower tracks producing particles at 6 GeV/c
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Fig. 5. The dependence of the average number of the shower tracks producing particles on the
number of grey tracks producing particles at 6 GeV/c incident proton momentum

Fig. 6. The dependence of the average number of heavy tracks producing particles on the
number of shower tracks producing particles
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(i) If nsis larger; the change for secondary interactions increases.
(ii) Fast particles undergoing secondary interactions still have some change
to lead to additional thin tracks by producing other fast particles.

From the proportionality between ng and nb, and the constancy of the
ratio ng/nbat e GeV/c and other protons momenta [4], one may think of the
high energy collision as proceeding in spatially and chronologically separable
steps: the fast particles undergo an independent process, not directly connected
with the nuclear break-up mechanism. The link between the jet and the eva-
poration process is formed by the recoils from the high energy collision. These
recoil particles excite the nucleus and serve as the strong “buffer” which is
needed to explain the observations. The existence of this buffer is entirely an
effect of elementary particle physics.

The linear correlation between ng and nbindicated that normally every
recoil particle finds its own fraction of nucleons to interact with.

The straight lines in Figs. 6, 7 are drawn for all emulsion nuclei by least
square fitting.

Fig. 7. Correlation between the number of grey tracks producing particles and the average
number of black tracks producing particles
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4. Angular distribution of different charged secondaries

The angular distributions of shower,
particles emitted from the interactions of protons with both light (C, N, O)
and heavy (Ag, Br) nuclei are given in Figs. s, 9, 10, respectively. From

grey and black tracks producing

these

Fig. 8. Space angular distribution of the emitted shower tracks producing particles in the lab.
system. The solid curve is that for the interactions of protons with nuclei C, N, O and the
dashed curve is that for the interactions with Ag, Br nuclei, at our 6 GeV/c proton momentum.

cos 0

Fig. 9. Space angular distribution of the emitted grey tracks producing particles in the lab.
system. Solid curve is that for the interactions of protons with nuclei C, N, O, and the dashed
curve is that for the interactions with nuclei Ag, Br at 6 GeV/c incident proton momentum
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Fig. 10. Space angular distribution of the emitted black tracks producing particles in lab.
system. Solid curve is that for the interactions of protons with C, N, O nuclei and the dashed
curve ie that for the interactions with Ag, Br nuclei at 6 GeVic.

Figures one sees that the half angle of the emitted shower particles 0U2s is
about proportionalto the atomic weight A and decreases with increasing energy
(see Table Il); while the half angle of the em itted grey particles 01/2g depends
very weakly on the atomic weight and is not sensitive to energy (Table I1).
One can also compare the obtained half angles 0725 072g to their corresponding
theoretical values calculated using the cascade models (Table Il1l), where a
good agreement is shown.

The angular distribution of the em itted black tracks producing particles
have been found to be nearly isotropic, confirming them to be emitted in the

evaporation step of the deexcited nucleus.
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In Part III we have given in a suitable form the system of differential equations describ-
ing the interaction of an excited H-atom with its own radiation field. In the present paper we
give a particular solution of the system; i.e. we give such a solution which corresponds to the
superposition of two stationary solutions only. For the ultimate description of the process it
seems necessary to extend the present calculation and to obtain the more general solutions
corresponding to the simultaneous transition of an excited state into a number of lower states.

The solutions obtained in the particular case dealt with presently show interesting
qualitative features. So one finds a feature of the solution which seems to be related with
the Lamb shift.

Introduction

In the preceding part of this paper (see [1]) we have given in a
peculiar form the system of differential equations which governs the motion
of a H-atom interacting with its own radiation field. The atom was sup-
posed to be enclosed into a cubic box of sides L > r, and the walls of
the box were taken to be perfect mirrors. In the present paper we give an
explicit particular solution of the system of equation derived in [1].

In [1] we developed the wave function of the H-atom in a series of sta-
tionary wave functions

'/’ B chw»-‘

In the present paper we confine ourselves to wave functions which can be
expressed as the superposition of two states only, thus we suppose

Y = €Yy + €1 Y- (1)

The differential equations given in [1] admit solutions of the form (1); this can
be seen considering the solutions of those equations with initial condition
Cli=at, v=0,1,

by, =B, = 05" w01, (2)
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(For the definition of bvJ see [1] (15)) The initial conditions (2) are in fact
Cauchy conditions; i.e. if (2) is satisfied at any time t = to then it remains
satisfied at any time t ?£ tO.

Simplifying the notation of [1] we can thus write the equations of motion

for the two-state system

iylb + 20b — ib = 200CO0c*, 3)
c0~ ’ (3a)
éj = —b*cO.

W e obtain (3) from Equ. (32) [1] writing

Yoi = Yo ~ = ~oi — ao )
)

*oi = -b\0=b.

The definitions of yMl, avfl, bWiare given in [1]. Here we note thatbis a quantity
proportional to the transition probability 1 o,U isthe combination frequency

between the two states Irp0 and NV We suppose
Q>0 (5)
thus we choose tplto be a state of higher energy than ipOFurther:

yl = & -<? &, (6)
where

K= Kj- K2

is the wave vector of the relative translational motions of the two states. It

will be seen that (3) possesses non trivial solutions only if

Yo ~

i.e. in the case of close resonance between de Broglie wave length and the wave

length of the emitted radiation. From [1] one finds
"""" : )

This is a frequency which plays the role ofthe coupling constant between atom
and radiation. It must be emphasized that this coupling decreases with increas-
ing volume L3 of the box containing the atom.

The latter fact may appear surprising at first sight — however, it can

be understood clearly in this manner: Increasing the box into which the atom
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spreads out we decrease the current and charge densities by spreading them
out. In this way the density of radiation emitted by the current charge density
decreases with increasing spread.

Because of the volume dependence of the coupling constant, in accord
with (7), the rate of the process described by (3) will be the slower the larger
the volume IA So as to eliminate this dependence from the mathematical

formalism it is convenient to introduce as the unit of time

QV2
At

The above unit is thus proportional to Ls2;in such units we have
Q = a\ (8)
and the equations of motion (3) can be written

iy\b + 2Qb — ib = 2QcO0c*. (9)

Elimination of the coefficient c,

The coefficients cO, cf appearing in (3) and (9) can be eliminated with the

help of (3a). Indeed, introduce two new quantities
B = 2cOc* and U = ICllz - 1cOI2. (10)

Using the normalization

K |2+ |cl2= 1 (11
we have from (10)

U= yi- BB* . (12)
In a transition where the atom starts in the excited state | Cj| = 1 finishes in
the lower state | co| =1 we find that U changes from +1 -+ —1.1B | changes
from 0 1 -» 0; the sign of the square root has to be changed while B passes

through unity.
D ifferentiating the second equation (10) into time, we find with the
help of (3a)

U = —(Bb*+ B*b) (13)
and similarly

E — 2bU. (14)
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Thus differentiating (9) into time we find with the help of (10) and (14)

iyl'b + 2Qb - ib = 2Qb][l - BB* + (15a)

For the sake ofcompleteness we write down Eq. (9) here again using the expres-

sion B given in (10):
iylb + 2Qb - ib = QB . (15b)

B can be eliminated from the relations (15) and thus we are left with a strongly

non linear differential equation for b.

An approximate solution

So as to see better the properties of the system (15) we give first an
approximate solution. For this purpose we neglect the imaginary terms and
look for real solutions of the approximate system. Thus we write in place of
(15b)

6 = bfl - B2= 56 ]/1- 46".
Integrating in the usual way we get
26 = sin f 26 dt .
Thus introducing

2 J edt - R,

we are left with the equation of the pendulum, i.e.

B = cos B .

The explicit solution of which, with initial conditions

is found as

(16)

cht
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Thus b increases monotonically from zero to its maximum value one at ¢t = 0
and then it falls back monotonically to zero. Further

2 sht

B =2b=— :
ch?t

thus B increases from zero to one and then falls back to zero.

The process thus described amounts to the atom falling down gradually
from the excited state 1 into the lower state zero. However, once the lower
state is reached the radiation emitted by the system is reabsorbed and even-
tually the initial excited state is re-established.

Complex solutions

So as to obtain more exact solutions it is necessary to take into consi-
deration the imaginary terms also. For this purpose it is useful to introduce
phases and amplitudes of b as new variables. Let us write

b = eT+iS, : 17)

where T and S are real functions of the time. It is convenient to introduce
further a notation for time derivatives, thus

T=1 S=o. (18)
We shall always consider initial conditions
b =D g — &

thus we also suppose
T—> —o if t > — co.

With the help of the above notation we obtain two integrals of the equations
of motion as we show presently. Indeed, multiplying (15b) with b* and adding
to the equation so obtained the complex conjugate equation we have

ﬁqmr—x%t-PM=Qwv+Bwy
i

Using (13) we can integrate both sides into . Using the initial condition

b b0, U~Yikts %
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we find

Ubb* - i(i)b* - bxb) = B(l - ).
W ith the help of (17) and (18)

bb* - b*b = 2 iabb*

thus
box =+ Y 19
- 2a ( )
1+
Q

(19) is an integral of the equations of motion, valid for the initial conditions
(18a).

If a Q then bb* ~ 1 — U thus bb* represents the energy irradiated
by the system.

Anotherintegralisobtained by multiplying (15a) by b* and subtracting
from the equation thus obtained its complex conjugate value. The right

hand sides are thus zero and we find

— [-iylbb* + 2Q(b*b - b*b) + i(bb* + b*b - b*b)] = o
dt

Integrating the above equation into time we note that the expression inside
the square bracket is constant. However, as the above expression tends to
zero for t “m — °° we see that the value of the bracket must be zero. W ith
the help of (17) and (18) the expression in the square bracket can be expressed

in terms of o', r and its derivatives; we find thus
ya+ 4Qa - 2t - T2+ 302=0 (20)

as a condition which must be fulfilled for any value oft if the process starts
from the initial configuration (18a). Eq. (20) is thus a second integral of the

equations of motion, valid for the initial condition (18a).

Equation of motion in terms of the phases

Introducing (17)and (18) into (15) and separating itintorealand imaginary
parts, we obtain two real differential equations expressing a and r in terms
of lower derivatives. Such a system can be solved e.g. by numerical integration.
However, using (20) r can be expressed in terms of a, r therefore it is suffi-
cient to take from the equations which can be derived from (15) only the one
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which contains ¢; the one containing 7 can be replaced by the simpler rela-
tion (20).

We find thus considering the real part of (15) and simplifying the expres-
sion thus obtained making use of (20)

20(c + 72 + 1) + 0 = 2Q(1 — &) 21)
with
0 = 20% + 2720 + 70 + 367 + & + 20T .

The advantage of using (20) instead of the imaginary part of (15) is that (21)
which is obtained in this way does not contain the parameter y, explicitly.

Thus (20) and (21) is a system equivalent to the original equations of
motion provided the initial condition (18b) is used.

Solutions by successive approximations in powers of 1/Q

The solutions of (20) and (21) can be obtained by successive approxima-
tion supposing 2 > 1 and writing

similarly (22)
1
T=T, + 'y y

Indeed, inserting (20), (22) into (21) and considering the first terms only
in the development we find from (20)

2 + 4Q0, =0,
thus

(23)
and since o, does not change in time, also, we have
o, =0,
In (21) we can neglect in our first approximation the terms lumped together
into 0, we find thus
B4+ =0-0d-eeNn), (24)
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Let us write further
eTl =y, (25)

thus
y o= (rj + ri)y.

M ultiplying (24) by y we find therefore

Y= (- °i)y - ¥3-

M ultiplying this with y and integrating into t we find

o

=] a - ol)y* y*.
2 4

2
The integration constant is chosen so as to satisfy the initial condition,yx -* 0
ie.y "m0 fort The above equation possesses non-trivial real solution
only if

a? < 1.

Integrating once more into t we obtain (with the initial condition given above)
as non-trivial solution
\[2 a

chat

a= 1—al\. (26)

According to (19) we get (neglecting terms of 1/Q)
Umin — 1 I *max|2 -
Thus using (25) and (26) we find:
tfmin = o\ - 1. 27)
In the case of perfect resonance ar — 0

tfmin = -1
and we find
Il cOR=1 Ic,* =0 at=0,

thus the atom falls from the excited state into the pure lower state; however,
the radiation field appears exactly suitable to reverse the position and to
bring back the system into its original configuration. If there is lack of reso-
nance (cTj 7l o) then the reversal takes place before the pure lower state has
been reached. For |[al\ > 1 the process does not start at all.
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We note, if radiation was allowed to escape from the enclosure, the revers-
al could not take place — presumably it does not take place if the energy is
split among a number of lower states of about equal energies. Thus the sym-
metric process (see Fig. 1) takes place only in the idealized case considered
above.

A qualitative remark

An electromagnetic wave of arbitrarily small amplitude with frequency
Q + o0, sweeping over the excited H-atom starts an avalanche which leads to
the process described above. The avalanche starts, however, only if

| o] <1

this means, only if there is a very close resonance between the atomic frequency
and the exciting radiation. From (6) and (23) we find

A.Q:]cK—.Q|<%.

The above expression is another form of the relation defining the state of
resonance in which an avalanche will start.

The physical significance of ¢ is that the radiation field emitted by the
atom has a frequency 2 + ¢. Thus owing to the nonlinearity ol the process,
frequencies slightly deviating from the combination frequency appear. How-
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ever, these deviations are small. The physical significance of these deviations
is as follows. The H-atoms enclosed into the box will emit frequencies inside
a frequency range Q + AQ. The actual frequency of an individual emission
depends on the mode of initial excitation ofthe state. Considering the emission
of several atoms we expect therefore a band with 2AQ of the line emitted by
the system, if we suppose thatthe individual atoms em it with random width a.
This effect represents a natural line width of the emission. The effect thus
described is different from the widening of the line which is usually considered
as being due to the exponentially decaying excitation of the atom in the course
of the emission.

We see thus that owing to the non linear coupling of the radiation field
and atom, a line width of emission is produced which is independent of the

decay of the intensity of emission.

The second approximation and its possible connection with the Lamb shift

Inserting (22) into (20) we obtain for the terms of the order \jQ

Taking expressions (24) and (26) into account we find
Ao = (%(0) — ff2(— °°) = — (1 — °i) »

We see thus that the frequency a which is superposed to the combination
frequency varies in the course of the emission. The shift itself Aa > 0 is posi-
tive independently of the sign of av

An important qualitative feature of this shift isthat it depends explicitly
on a0 and thus it depends on the exact configuration of the states and y=0.

Considering thus two types of transitions so that for

Wi = Wo» ao = ao\
Wi - Vo» Cob = adv-

(of), a<2>the respective parameters defined further above).

In case of degenerancy we may have

20 = ~ 10
However, even if the supposition concerning cro given in [1] is strictly correct

we may have independently

a? * off»
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In the latter case the corresponding shifts are also different, i.e.
Ac/2) 7* Ac/-1).

Thus owing to the interaction of the system with its own radiation field, the
frequency shift depends on the distributions ¢O(S) and Cpj”'S). Appart from small
terms it is proportional to the expression

1 J <Pi(a) grad <Pi(8) 12’

i.e. to whatis taken as the “transition probability” in the usual terminology.
The above effect qualitatively resembles the Lamb shift. Indeed, in

case of the H-atom the transitions

217312 =~ 1 1/2 1
2Kif2 — 1512

possess exactly the same combination frequency. Nevertheless, the two trans-
itions produce emission of slightly different frequencies. This difference is
the Lamb shift. We see that an effect qualitatively of this kind follows from
the strict solutions of the system of simultaneous equations consisting of
wave equations and classical equations.

A qualitative comparison of the observed Lamb shift and the frequency
change Aa2calculated here is not possible at this stage — as the real process
can only be dealt with considering the simultaneous transitions of an excited
state into anumber of lower states. This is a problem we hope to come back
to shortly.
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Explicit expressions are obtained for the intensity distribution in the branches of sextet
transitions of any type with 44 = 0 and 44 = +1 where the upper and lower electronic
states may belong to one of the limiting Hund’s cases a) or b). Moreover, general formulae
are given for the transitions of any type and any multiplicity where both the upper and lower
electronic states may belong to the same limiting case.

1. Introduction

In the case of spin multiplets formulae of the intensity distributions (line
strengths, Honl-London factors) for transitions between terms of any type are
known in general form only for doublet and triplet transitions where both the
upper and lower electronic states may belong to a coupling case intermediate
between Hund’s cases a) and b) [1]. For transitions between terms of higher
than triplet multiplicity formulas have been worked out till now only for
special cases, namely for X' — X, /T — IT and II — X transitions where the
upper and lower electronic states may belong only to one of the limiting cases
a) or b). In addition, in the case of (a)—(b) transitions formulae for the inten-
sity factors of several branches with significant intensity have not been pub-
lished yet and the list of the intensity factors for (b)—(b) transitions is not
complete either [2]. Recently one of the authors (I. K.) eliminated this lack
for 5/T — 5II transition [3]. Lately PurLLy, Scaamps, LumeELy and BArrow [4]
observed and analyzed a %// — /1 and %4 — °® transition on the spectra of
iron monofluoride (FeF). The formulae of the line strengths for these transi-
tions are not known so far, which makes it necessary to give the line strengths
also for these transitions. Instead of the formulae of the line strengths of the
8/ — ¢4 and %@ — 5/ transitions, however, general formulae will be given for
all branches of the sextet transitions of any type with 44 = 0 and 44 = +1
where the upper and lower terms may belong to one of the limiting cases
a) or b). These formulae give after substitution of the proper A values the line
strengths of all branches for ¥ — X, [T — II, A — A...and IT — X, A4 — II,
@ — /... transitions completing with the line strengths of the lacking branch-
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es the 77— 77 and 77 — H transitions already published. Moreover, general
formulae are published for the transitions of any type and any multiplicity
where both the upper and lower electronic states may belong to the same
limiting coupling case (e.g. (a)—(a) or (b)—(b) transition). Algebraic expres-
sions where both states may belong to a coupling case intermediate between
Hund’scases a) and b) in general form would be very complicated. For a given
transition of higher than triplet multiplicity with the known value of the
coupling constant Y, however, numerical values of the line strengths for each
value of the rotational quantum number can be calculated by the numerical
diagonalization of the Hamiltonian with the aid of electronic computer (e.g.
Lambert, Gaure, Albritton [5] for the biHs — a*MNn transition of mole-
cule).

2. Intensity distribution

In case of the thermal equilibrium the intensity of an emission line can
be written

hcFje
kT
U'- GSfr ¢ (1)

where G can be regarded as constant to a good approximation within a parti-
cular band and Sj., is the line strength. Thus the intensities of the spectral
lines within a band, apart from the Boltzmann factor, written explicitly, de-
pend only on the line strength. The theoretical prediction of these line strengths
is therefore of considerable importance. For this the corresponding expressions

for the amplitudes

za(BS+1* A OiAlt 25+1*T,0,.nr) = W 23+1X/1°m<) *bl 25+1*na,nr)

za(2S +1X B i0+i,MfzS+1X J’ta,M’) = J Vi (2S+1X jti0O+1,Mb) *ba(28+1Xr,a,m-) dr

are used, the absolute values of which may be found among others in a paper

by Kronig [6]. As can be shown over and above AJ = 0, =+ 1 the selection
rule relating to (2) is AQ =0 and +1, respectively. Since in the Hund’s case
a) the selection rule AH = o also holds, the above relations are equivalent to
the selection rule AN = 0 and 1. The threefold square of (2) summed over

the magnetic quantum numbers M gives the Sj,j, factors to the transition
2S+1IX A — 2S+1X Aand 2S+1X A+l — 2S+1 YA where both the upper and the lower
electronic state may belong to the Hund’s case a). These are to be found for
the case of sextet transition in the second and third column of the Tables I
and I, respectively and in general form for transition 2S+1X A(a) — 2S+1X A(a)
and 2S+1X A+l(a) — 2S+1Y A(a) in the second and third column of the Tables
Il and IV, respectively.
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The multiplet terms where /1 > 0 can in general be well described by the
formulae of Hund’s case a) only in the range of the lower rotational quantum
numbers. With increasing rotational quantum numbers,namely, the transition
starts toward the case b) while the multiplet X' terms (A = 0) already in the
range of the lower rotational quantum numbers also belong to the Hund’s case
b). The difficulty in describing the conditions consists in that no algebraic
expressions are known concerning the multiplet energies (A > 0) higher than
quartet valid with a satisfactory accuracy for any value of the coupling con-
stant. Thus we have to restrict ourselves to the knowledge of the energies of
the relatively simple caseb), and to the amplitudes produced by the use of the
proper transformation matrix elements calculated with their aid

3(* X 0w 241X jrgr ) =5 YECSH X o) 2y (S H1X pryepr) d,
z(zs +1XJ’N'M’ 3 +1XJ’D"M") =j 4 (2S+1X_]'N’M') z%(zs +1XJ'D"M”) dr, (3a)

3PS X e B X ) = [ WECS X v ) 3PS 41X pennpye) d,

and
25+ X yow 25 +1y JoNme) = S PEESHX rorar) (S HY oneme) AT,
32X par B541Y ogenpe) = j PRSI X parar) a5 H1Y prgere) dv,  (3b)
225 +1 b 28 +1 Y nme) = S prES+1X NA) 2p,(25 +1 Y onmar) dr,
where

P (351X nar) = P, San (I )1 X yrgrar) »
X=H-S (4)
A"+S
P25 1Y prnrge) = = SonJ") Yol 1Y jrgeare) -

Q"=A"-§

The elements of the transformation matrix of sextet terms of any type
are the following

S+ | S
A-5/2,)—5/2 2C5_sp(J) KABSoNE S 2C;—512(J)
A—1I2,J-5l2 CJ__S/Z(J) 2 A+1/2.]-5/2 Cj—5/2(J) ?

: _, |[Faeuiugg | _ |/ udvivduiui
A+3/2.]—5/2= SCILD) |t AT T 2C;_55(J)
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/ us ug udug us Suzuy uiugul

Sa-siz, j+sl2 = — el 3 Sa—si,j+s2=— 2C,,50(J)

s W RS e T ST & R R R R
Suguzus ug u, Suzuguzugu;

S e = - ey e S g 5y = — —_
A—1/2, J+5/2 CJ+5/2(J) ’ A+1/2, J+5/2 Cj+5/2(J)
i 1/5u; usuzusu; DA '/u;u:ugu;u;
= — S L = [ 2230
+3/2, J+5/2 2CJ+5/2(J) W J 2CJ+5/2(J)

where uZ,, = uf + 1 and u*, =J + 4 — 11/2
Cj—sa(J) = 2(J — DJ2T — 3)(2J — 4)(2J + 1),
Ci_apJ) = 2J(J + 1)(2J — 3)(2J — 1)(2J + 1),
Cp_yeld) = 2(J — 1)(J + 1)@J — T + 1)@2T + 3), (5b)
Criy(J) = 2J(J + 2)2J — 1)2T + 1)(2T + 3),
Crianll) = 2H(J + DT + 1)2F + 3)2T + 5),
CrisnJ) = 2(J + D(J + 2)(2J + 1)(2J + 3)(2J + 5).

After substitution of 0, 1, 2, . .. for the value /A these formulae give the trans-
formation matrix elements for X, 677, ¢/, . . . terms.

The threefold square of (3a) and (3b) summed over the magnetic quan-
tum numbers gives the line strengths referring to the transition %X ,(a) —
— OX,(b), OX,(b) — OX,(b) and X, (a) — OY,(b), OX,,,(b) — 0¥ ,(a),
6X4,1(b) — %Y 4(b) that is to the sextet transitions of any type which are to
be found in the third and fifth column in Table I, and in the fourth, fifth
and sixth column in Table II, respectively and in general form referring
to the transitions of any type and multiplicity *5+1X,(b) — *+1X(b) and
341X, 1(b) —***'Y 4(b) in the third column in Table III and the fourth
column in Table IV, respectively. In the case of the (b) — (b) transition of any
type and multiplicity we have used the amplitude factors determined by HiLL
and VAN VLECK [6] starting directly from Hund’s case b).

For (a) — (a) transition due to the AX = 0 selection rule there are
3(2S + 1) branches, the so called main branches, the intensities of which differ
from zero. In the case of (¢) — (b) transition the selection rule 4X = 0 is no
longer valid and the selection rule of (b) — (b) transition AN = 0, +1 is not
valid yet, solely the AJ = 0, +1. Therefore all the 3 (2S + 1) branches
appear and the intensities are dispersed over all branches (see for the dispersion
of quintet transition [5]). This fact makes it necessary to give the line strengths
of all the 3 (2S + 1)? (for sextet transition 108) branches. For (b) — (b) transi-
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MRi(J - 1)
Qi)
Kp T+ 1)
SR -1
QD)
p,(J + 1)
R,(J - 1)

0:(J)

PyJ + 1)
QR - 1)
Pu(J)

0

0

Sugug(2J + 1)
J - 1)J@EJ - 3)
20(2J + 3)
(J+ IN2J - 3)@2J — 1)
J + D ugud@J — 5)(2J + 1)

A2

A2

J - 1)J@2J - 3)
422 - J — 8)*2J + 1)

JUJ + 1)@2J - 3)%2J — 1)
(J + 2) ugui(2J — 3)2J + 3)

JJ + DT - 1y
128(J — 2)(J + 1)
J@2J - 3)2J-1)
Quguf(2J — 3)2J + 1)2J + 3)

A!

- 1DJYJ + 1)2J - 1)*

‘I SNOLLNEIYLSIA ALISNALNI FHL OL NOILNEGIYLNOD
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Branches

SRJ.J)
RP M )
sQiAJ)
TRM)
sPdJ)
TQ M)
WR M)
TP M)
uQcAJd)
VR M )
NP M)
°Qn(J)

PR M)

Table | (continued)

Line strengths

X(0) - (<) =X@ - «X(b)
(»3 + 4M2UiUjudufut
C2(R)
(iiz - 4/1)y2uj2luiz
C2(P)
(a . iV 21 - 4M2wn+u+
| \Y cm
(“? - 4,M)2ujujutu%u%
CAR)
(BUj - 2m2urujufur
2CAP)
(a I 3V (3“3 - 2/4Yujutu”
1 2J cm

(3 —2my2ujujuiuruf
2CAR)
5ujulitdujuju,2
2CAP)

(a . sj25u”uiuiu”uj

| \Y CAQ)
Su”iifujfujjurui
2CAR)
5UjUcUj"Uz Us Us
CAP)
foa 5V 10U5Ué“7“3“4
| \Y% CAQ)

SuJU gujuluPun

CAR)

*X(b) - eX(a)
PRI + 1)
PP24(] - 1)
°QuUJ)

np2Ad + i)
°R,AJ - 1)
nQ*AJ)

mpM + i)
nR2AJ - 1)
MQ M)

1Ip2AJ + 1)
TR,AJ - i)
SQ,AJ)

RPnU + i)

A -

*X(b) - *X()

18ujuf
(J - 1)J2(23 - 1)

0

10 1%714
DI + 1)(20 -

1)*

| pue SOYAOM °

173223d
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OPy(J)
Q)
R,y(J)
Py(J)
0u(J)
Ry(J)
Py(J)
N
SRu(J)
KPy(d)
$0s(J)
"Ry(J)
SPy(J)
TQu(J)

UR(J)

(-

0
ugug
J

§)2 2(J + 1/2)
2

—
Uq Uy

J+1
0

JJ + 1)

(uf + 4A4)? uzuzufuf

Cy(P)
(A X §)2 2(uf + 44 uzuguf
2 G4(0)
(uf + 44)* uguguzu?
C5(R)
2[uzug — 3424 — 1) uz?uf
Cy(P)
( & 1)24[u;u6‘ — 3424 — 1)Puz
B G(Q)
2[ugug — 34(2A — 1) uzugus
Cs(R)
2[ufuf — 3424 + 1)) ugui?
C(P)
(/1 = 1)2 Alufuf — 3424 + )P ut
2 C(Q)
2[ufuf — 3424 + 1) uzuiud
Cy(R)
(uy — 44) uguzugug®
Cy(P)
3)\? 2(uy — 44)* uzufuf
(4+3) )

(uy — 44)* ugtuguguy
Cy(R)
Suzuzuzuiudus®
Co(P)

5\ 10uzuzuiuiui
7 _) 3 WaUsUglUy
( 2 G5(Q)

Suz?uzuiuiuiud

Cy(R)

SRys(J - 1)
QD)
p,J + 1)
Ry(J - 1)
()

PyJ + 1)
QR(J - 1)
Qa0
DU+ 1)
Rag— 1)
%Qu5(J)
NP+ 1)
OR(J - 1)
NI
MpuJ + 1)

0

2uzui(2J — 3)(2J + 1)@2J + 3)
J-DJJ + DHET-1)
128(J — 1)(J + 2)
J + 1)2J - 1)2(2J + 1)2
J — 2)(J + 1) uguf(2J — 3)(2J + 3)
J = 1)Jx2J — 1)?
42J% 4+ J — 9)*
JJ + 1)@2J - 1%2T + 1)
J — 1)(J + 2)uzui(2J — 1)(2J + 5)
JJ + 12T + 1)
, 36(2J — 3)(2J + 3)
JCJ = 1Q2J+ 1)
9(J — 1)(J + 2) uzui
J¥J + 1)%2J + 1)

0

o b

AZ

A

18uzug

JJ + 1)EJ + 1)
0

0

‘I SNOILNEIYISIA ALISNILINI dHL OL NOLLOAFIHLNOD
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Branches

Mpu(J)
nQu(J)
°R,AJ)
np*AJ)
°Q3AJ)
PR3AJ)
°p3AJ)
PQ3AJ)
qR3AJ)
PAJ)
QAJ)
RAJ)

QP M)

Table I (continued)

Line strengths

X(@) - *X@) X (a)--X(b)
0
CAP)
0 . 5V Owwnrnrur
| 2j CM
0 su”rujuturutul
CAR)
0 (m* - 4/1)2
CAP)
0 t 342 2(u? - 4.4)*
1 2/ C4(G)
0 («7 - 4/L)2iquul\ui
CAR)
0 2[u+u7 - 37210 - 1)]2n7u>7
C4(P)
0 G 1)4 K «+-3/1(20-1)]!14
1 \% CM
0 2[«J«d - 3/1(2/1 - 1)]2uTu+2
CAR)
wgug 2[«7u? - 3/1(2/1 + 1)]2ujuju”
J CAP)
P4, 1V 2(34- 1/2) (» + IVAK «7- 30020 + 1]*N7
| 2 3@ + 1) 1+ 2j C4G)
“i“e 2[»F«7 - 31020 + 1)]2«7*«+
I+ CAR)
0 (“» 4- 4M)2UjUjiqul2

CAP)

X(b)-*X(a)

WBRM - i)
QM)
SpiAd + i)
TRtAJ - i)
sQdJ)
RP M + i)
SRM - i)
RQdJ)
ap,AJ + i)
RAJ - 1)
QAJ)
PAJ + i)
ar m - i)

X(b) - -X(b)

18u7ud
J(J 4 1223 + 1)2

0

9(J - 1)(J 4 2)ujut
J\J + 1223 + 1)
36(2J - 1)(2J + 5)
(3 4 1)(23 + 1)223 + 3)2
(J - 1) + 2)uju+(2d - 3)(2J 4 3)
J2J + 1)(23 4 1)2
4(2324-33 - 8)2
JJ 4 12 + 1)(2J + 3)2
J(J + 3)uTu+(2) - 1)(23 + 5)
(3 + 1)23 + 2)(23 4 3)2
128(3 - 1)(3 + 2)
J(23+ 1)2(23 +3)2

173Z23d I pue SOYAOM
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rQsAJ)
SRUJ)

rp«AJ)

U ()
LPn(J)
MQAJ)
NKIS(J)
MP*AJ)
NQ°.AJ)
°R*.AJ)
NP,bU)
°*QAJ)
PR,AJ)

°P (7)

(. 3V 2(i4 + 41)2udubujf
r + 2 cm
(Ut + 4 uFrutud«d
cm
Sugujujufu?*
cm

n + 2 cm
S5uV*“7*“s“curu8
cm

572 Wl
2CH(P)

( 5V 5u7ujujuiui
m 2j 59
5u7u7uJZ‘4ubue

2Cm
(3u7 - 2/I)! u7uduiuiud
2cm
( 3\ (3u7 - 2/4)2uiudui
m Zj CHG)
(3«7 - 2M)2ujufutut
2cm
(«7 - 42«70 U u5uo
CHP)
I. IV 2(u7 - 4M)2ugutul
r Zj CqQ)
(«7- 4M2u725 2
¢ 5(fi)

(7 + 4N)2«7TNTvoun?'1t
cm

PQ\AJ)
°PM + i)
pRIt(J - 1)
nQK(J)
NPM + i)
WR*AJ - i)
TPm(J + 1)
URbAJ - 1)
QAJ)
sp5(7 + i)
TiW J - i)
Sx3(.J)
RPHJ + 1)
1 SR*AJ - 1)

2u7ui(2d - 1)(27 + 1X2J + 5)
7(7 + DAJ + 2)(2J + 3)2

0

10uJud
7(7 + IX7 + 2X2J + 3)2

0

0

18u7ul
(J + 1DA7 + 2X2J + 3)2

0

I SNOILNEGIY1SIa ALISNILNI IHL OL NOILNGIdLNOD
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Branches

pQis(.J)

gR*AJ)

KQCAJ)
si<,A)
KPiAJ)
1Qu(J)
mRiAJ)
LP*AJ)

MQIAJ)

X@ - >Xa

J

(, . SV 23+ 12
1 20 JUa+ 1)

ujuj
J+1
0

Table 1 (continued)

Line strengths

X —&Xb)

(n . 1)22(«7 +
2] cm
(u] + 4NM2ujaruj2
CAR)
(Buj + 2/1)2u”ujujuj.
2CHP)
(., 3V (3u, + 2/1)2ujujug
t 2 CK?)

(3wl + 2/1)2ujaijujus
2CAR)
5u2us u4 usus mJ2
2CHP)

(., , 5)2Su”ujurun
vV *ai CqQ)
Su3juju™unjuJ
2CH()
74 23«AI*5NG 7
2C4P)
f4 5V u3ud“5“6“t
| 2/ CqP)
“8u3Z‘456U7
2C«(P)
S5UjUNUSY lelgu!
2C4P)
3V Sufutututu+

12 ©

w6 - @
rQuJ)
QPbAJ + 1)
AgJ -1)
QAJ)
PAJ + i)
@aiJ - 1)
p<BAJ)
pad+ i)
WRC,AJ - 1)
Ve « (1)
UP*AJ + i)
RM - i)
WQ«AJ)

X0 - -XO)

2ugUg(2d - 1)(2J3 + 1)(2J + 5)
JUJ + DAI + 2)(2] + 3)2
1283(J + 3)

(J+ 1)(23+ 3)A2J+5)2
- Diva(23 - 1)(23+ 5
JA + 1)(2 + 3)2
, 4(2J2+5J - 5223 + J)

JJ + 1)(2J + 3)72J + 5)2

Ju7«+(2J + 1)(23 + 7)
G+ DA+ 22 + 52
202 - 1)
(23 + 3223 + 5)
5uJu$(2d + 1)
J+ 1)+ 2)(23+ 5)2

0

173Z23d I pue SOYAOM i
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nR,AJ)
MP,AJ)
nQAJ)
°R:M)
np *AJ)
°QdJ)
PRdJ)
P M)
PQdJ)
gR M)
PAJ)

QAJ)

RAJ)

0

0
ujuf
J

{1,5)2231+1/2
t112j JQJ+ 1
Uguj
J+ 1

Su72ui2a™ugu”
2Ce(R)
5nAMlru™n, ujajuy
Ce(P)

(n 1V 10uru7u+utu+

1 2j C&Q)
$uw 2y n-M7L
Ce(R)
5Ujuju”ujusuBly
Ce(P)

(a | *V 10“5uB“7“6“7
(A+V CKQ
Sufujujutui
ceR)
5MBuduSubn7u jm/
2CoP)
(, ,3V 5ujujufujui
1 +2 CE<?)
5uJuJuJuu$?2
2CAR)
2" 3MIvg MM/
2CAP)
(a , 5V «3«4"5“6"7
Ul + 2j CAQ)
132ndm5u6M M
2C,,(K)

>80  + 1)
"Jud - 1)
TQdJ)
SPM + i)
- )
sQrMm)
PPCM + i)
SRM - 1)
pQcdJ)
QPIJ + i)
RAJ - 1)
QAJ)
PAJ + i)

0

0

I0OuJuf
G+ DA+ 2)J + 3)(2) + 52

0

5u7u+(2J + 1)
(J+ 10+ 2 + 5)2
a, 20(2) + 1)
(J+ 1)@I+ 52121+ 7)
u7«7(2) - 1)
3+ 2)2(0 + 5)
43(23 + 1)
J + 1)(2J + 52

IHus(~J + 1)
G+ 3)23+7)

1 SNOILNGId1SId ALISNILNI 3HL OL NOILNGIYLNOD
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Table 11

Line strengths

Branches Line
- m= O Y@ X(a) - "Y(b)
Maut LBLULE»62172
PAJ) .0 - 1 o) 4027
@3()+ 1) LTLILBLGLY2R
QAJ) QAJ) 30 - 1 b s
- «3«4 “3LlrL|,5L$L|7“3“«
RAJ) PAJ + i) 20+ 1) P
5u3U4«5206nJ
qp *AJ) qP (J - 1) 0 4C«m
i SudujUjurufui
rQ,AJ) pQIAJ) 0 e
5Wuiu PR
sr2AJ) P + ) 0 W -
i 5»\L42)
rp3AJ)  PPII - ) 0 Elcj(Lf)Mw
burUjUA-uruXUi
sQsAJ) 0 .
TRAJ) NAL3(+ 1) 0 5»3 u42uCSm 114u5 U6
sPn(J) °RtAJ - i) 0 5m72;f1(£).,1u5
5u3lij2u3u; uiug
TQIAJ) nQiAl) 0 Cien
Slig fij M8 Uj Wyhtg "
uRu(J) MpiAJ « i) 0 -
TPsAJ) nruj - i) 0 5Ll2L'.Z(2:>>i?FI)-§lLBL5
~(d 0 5n723LBLBLBLY
o 2Cj(¢)
Su3u ujuun
VRSAJ) LPM + 1) 0 R,
up™iQJ) MRI6(J - i) 0 Mrvi%uglf}fﬁw
Q..AJ) LQtAJ) 0 2LBL;4,{J5I?_§3IJ]Lb
ujujugujufujuj
WR*AJ) KPIB(J + i) 0 P
5ud«5Ugu72ud
°PiAJ) sR2(J - 1) 0 © (gp)

Acta Physica Academiae Scienliarum Hungaricae 43, 1977



CONTRIBUTION TO THE INTENSITY DISTRIBUTIONS I.

for «XJH1l — «¥Yn transitions

strengths
'X(b) - >Y(a)
ulu2u3ud4ububu?

4Cf(P)
u2uUrUjujug UFliJ

2Cj«?)
u3(idububu7ujuj
40i+(«)
5u2u3uduoubwiuf
4Cr(P)
5u3as ubu6u: u3ul
2C,(Q)
Bu,ujurujurunis
4CZ(P)
5u3udu5ubuujusd
2Q (P)

5 mrUBuju3u4dus
CAQ)
5ujué«7«iuiub5“6
2Cc3(P)
5u W w 1*7Ms Ms Us
2Cr(P)

5«77i,,u7ujud!ifuf
c49

Sujfufuj«dn?«6*i
2Q (P)

AubSueu7uP 4 utui
4C.-(P)

Sugqulu3udmlitj
2CH<?)

5uJUg Us Ug udu Tes
4ACH(R)

li"M7 Ms U jug lig 1if
4C6(P)

«7%3%4n5"6"7"8
2Cd(?)

S3 4t BU BT 8]
4Q (R)

S5nuxuzmsusususUs

4CI(P)

*X(6) - eY(s)

uf«223 + 1)

23 - 2)(2J - 5)
20 + 1)«2ul(2J + 1)
J(23 - 3)2
uJui(2d + 3)

23 - 1)(23 - 3)
10u2ud(2] + 1)
J(2J - 5)(2) - 3)2
5uJu+(2J + 1)
23 - 1)J(23 - 3)2

0

5Ugu4
(- 20 - 1)J23 - 3)2

0

Physica Academiae Scientiarum Hungaricae 43,

1977
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Branches
nn= +1 An= -1

PQ\AJ) rQzAJ)
QftvAJ) QP-n(d + 1)

FAJ) RZAJ - 1)

QAJ) QAJ)

RAJ) RAJ + i)
ap *AJ) aRZAJ - 1)
rQ3AJ) PQ-AJ)
SR3AJ) °PLAJ + i)
rp *AJ) pR2i{J - 1)
sQiAJ) °QzAJ)
TRiAJ) nP24(J + 1)
SP*zU) cp2s(i - 1)
TQbAJ) nQzAJ)

UR 3AJ) mp*AJ + i)
tp «AJ) nRZAJ - i)
UQ«AJ) MQzAJ)

VReAJ) 1IPZAJ + i)
NpiAJ) TR3AJ - i)
°QiAJ) SQ3AJ)

PRiAJ) rp3AJ + i)

yl'cfa Physica Academiae Scientiarum Hungaricae 43,

I. KOVACS and 1.

*X(a) - *V(o)

2J

Ugujd + 12

I3+ 1)

«4 «5

20+ 1

0

1977

PECZELI

Table |1

Line
Xa- B

5u4U5U6Uj 2uJ2
2CAC)
5uJ«b«éu7u32ud
4C2in)
[3i*3 -t 2/1]2 a7»52Mg2
4C(P)
B+ 21]2
2C2A<)
[Bud + 21]2n, UjWuluj
4C2AP)
[uf + 41720 24 I
2C,(P)
[“3 + 4/1J2u4ubiuf
c2A)
[of + 4112UALBIIA IiTii+
2C2AP)
[“3 — 4/1]2U3it42uu)
2C..(P)
[w —4/1J2udfujuj
CAQ
[«7 - 4/1]2
2C,(R)
[3ur — 2/1]2uju3ujugu$
4C,(P)
[Bu3 — 2/1]12u uvdudud m
2CAQ
[Bu3 — 2/1]2ujujufufug
4C2(fi)
5uj u2u3ujujtuj
iC"Pj-
51ijTUguJ«5 lig Urlig
2C X
"'uitupiTu”ujugui;
4C2P)
5Nhue~u7di;ltij
2QP)
5«bUé«721824
ca(cy~
Sujugujujous2
2C3(P)



CONTRIBUTION TO THE

(continued)
strengths
X(b) - >Y(a)

5u2u3udu5ub
2cm
5UjUjUjUeUluf*
4CTXR)
[3uJ + 21 + ])]2u2u3ndn5n6
4C2P)
[BuE + 2(N1 + |)]2u"ujujujut
2C3Q)
[Bul + 2(N1 + |)]2ujujujutuf
4C}(R)
[« + 4N + I)]Zujufujugul
2C3(P)
[i4 + 401 + ])]2uiiqueiisu~
cm
[ud3+ 4001 + 1]2U5U u+u+ul
2Q(R)
[iif - 4(1 + 1)]2UiVi«(TUA B
2Cr(P)

[uj - 41 + I)]Zu Auiutui
Mo - 40N + 1)]2U6«4ubue“7
2C4(P)

[35 - 201 + 1)]2U5"6ul “su6
4Cj(P)

[BuT- 21 + 1)J2U6B«iUs“6“]
Sej«?)

[Buf - 2(1 4 1)]2ujujujufuj
acj(P)
S5ug2uguiufu% uf
4Q (P)
5u62°4U5Ue“ 7“8
2C«(?)
SufuruJurB™udud
4Q(R)
5uju2u3udusu3uj”
2Cf(P)
5u2ul udul u| U2
Ci(Q)
S5ujujujut2unr2
2CUR)

INTENSITY DISTRIBUTIONS 1.

*X(0) - -Y(b)

5udu3(2J +1)
23 - 1)J(23 - 3)2
10u3u+(2J + 3)

(3 + 1)(23 - 3)(23 - 1)2
(J + 1)ugug(2l - 5)(23 + 1)
23 - 1)I(23 - 3)2
223 2- 1 - 8)2ugiin (23 + 1)
JI + 1)(2)- 3)223 - 1)2
(J+ 2utut(2d - 3)(23 + 3)
200 + ha - 1)2
64(J - 2)(J + 1) uju+
J(23 - 3)223 - 1)2
utu+(2J - 3)(23 + 1)(23 + 3)
(- 133+ D - 1)2

0

9“4%5

(3 - 1DIZ23 - 1)2
0

0

0

0

5ujuj"
(- 130+ 1)EI- 1)2

Acta Physica Academiae Scientiarum Hungaricae 43, 1977
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Table M
pranches Line

AA=+1 M= -1 X0 - O

PA)  RAI- 1 am

PQ*A)) RO:dJ) Ko+ 4::1]nf

aR*AJ) @A + 1) [“i + 4;Q]§LLJLE)WQ WL+
PAJ) RAJ - i) [FLE snézg)- 1207652
QAJ) QA) 2 [ujiijr - 3/;(;2) - 1)] Usi+
RAJ) PIJ + i) 2+ D [ualb - 311(20%) ]2 b6
@PM) @34 - i) 0 [u4uc —3ﬂ(é;P+T~I)]2uAu}uj
rQiAJ) RCGBAJ) 0 2[mjud —3“(C?1r1n+ 1)]2ujutug
KA °PAI+ ) 0 . 3"(22;) )] 2utuus
Rpx(J) PR3AJ - i) 0 . — 4“22;2,;”;)”3”""%
() °QBAJ) 0 [ii —4ﬂC]2nI1IJ,r4uuncUJ
TRA)  NPRAT+ i) 0 [T - 4gg:é)uiuiUiuJ
Pa) REAT - i) 0 5I|’J—Uj2UCszu)£ltgu7
TQUJ) n@aJ) 0 5'—'—'.V|JUI;I]J«5Urgufug
RM) mp3AJ + 1) 0 5U3UJZLétA;JFJ;;JJuAUJ
MPUU)  WRaU - 1 0 SU“L;J"‘:QU"UQ
nQA) QM) 0 5u<;«C7mMJmJuj
°RiAJ)  sPn(J+ 1) 0 SHA%X%‘MS
np*AJ) RIAJ - 1) 0 [y, '422:2:;L)1,,21J"ut
QA)  NM) 0 Do - 423(2 ;Jemzw

Mcfa Physica Academiae Scientiarum Hungaricae 43, 1977



CONTRIBUTION TO THE INTENSITY DISTRIBUTIONS I.

(continued)

strengths

[uj + 41 + 1)]2ujujujuju}
2CLP)
n + 400 + 1)]2ujururut2
CMm
[uj + 4(/1 + 1)]2«Juuful2
2Ci(R)
2[uruj - 301 + 1)(2N1 + 1)]2«3u7“5
2Cj(P)
2[U3L - 3(1 + 1)(21 + 1]2uj«5ul
CM
2[u7ug - 3(1 + 1)(21 + 1)]2uFu5ue
2CUR)
2[ujut - 3(1 + 1)(2N + 1)]2«4Uj Ul
2CT(P)
2[utut - 301 + )21 + DN]J2ujufut
CM
2[“6uB - 3(N1 + 1)(21 + 1)]2u+u+u+
2Ct(R)
[«F - 41 + 1)]2ur2uFusUB
2C5(P)
[6- 41+ 1)]2“F254e"7
C5(2)

[uf - 4(1 + 1)]2uFus“e“ 7«8
2Ci(R)
SuiTaututut
2CLP)
SuFZ?«5ue“?“8
Ce<)
5iiB u7u®u”u”UR Uqg
2Ct(R)
5Uj U2Ug  ~3 "4*n5
2Cr(P)
3UFUFU4U4U5U62
CAQ)

Sujujutu”ut
2Ct(R)
nj - 401+ 1)]2ujujurutut
2C2(P)

[uF - 41 + 1)]2wu, utut2
CAQ)

*X (b)--Y (1)

0

ujui(2d - 3)(23 + 1)(23 + 3)
(J- I3+ D@ - 1)2
64(J - 1)(J + 2) uju+
G+ 2 - HaA2 + 1)2
- 20+ D«rcl(2] - 3)(2 + 3)
23 - 1)3323 - 1)2
222+ 1 - 9)2ulnl
JUO+ D@ - D22 + )

(J- 1)U+ 2utut(2d - 1)(2J + 5)
2J(J + 1)Z23 + 1)2
18uiu+(2J - 3)(23 + 3)
J(23 - D32 + 1)2
9(J - 1) + 2) u+ue
223+ D22 + )

0

9«5Ub6
JAI + DD+ |)2

0

0
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312 1. KOVACS and I. PECZELI

Table 11

an = +i nn= -1 mX(a) - *Y(a) *X(a) - >Y(b)

[, - 4N]2uBuj*ut*

PR*AJ) HPi2(J + 1) o 20AR)
°PAJ) RKRM - ) 0 *j=t - 3“%&}3—) D ujujuj
2lW<_-3.1(2/f - D)2 ujuj*
e el ’ [ - C(:AQ)‘ N
aR,AJ) QPtAJ + i) 0 [“«c - 3ﬂg:R)' P uituj
PAJ) RAJ - i) ”;-z”— [<Po(7 - 3.1(é/A1P; D]2uauiui
QAJ) QAJ) "j??JU++ 1)1/2) 2t - 3/18:Q)+ O Ujujuj
RAJ) PAJ + i) 2(‘3“? ) o - 3 122’A1R+)- ]2V bl
ap 5AJ) RiAJ - i) 0 [ + 4/§|§A-lli_);ll-bur>"g
“» + 410]2wu, igurui
rQsAJ) PQ,AJ) 0 [ éAu(S) g
Sr 6AJ) °p<Al + i) 0 (U + 4112]C%(Lrj<t)mew
pp *AJ) PRM - ) 0 5|t!~"'22CL(££;&gU>
sQeAJ) °QM) 0 5u7ui ur usuUi U8
TREA) AT+ ) 0 LR
IPiAJ) VM - i) 0 5“6U1®é§’;u;u1uc
mQiAJ) WQ,AJ) 0 5<<FZS«S’2;‘(‘(;)"5U|’
nRiAJ) TpbAJ + i) 0 -
mp *AJ) WR-AJ - i) 0 [3uf —2/41C]§(t;j)UgUfngUg
nQ*AJ) TQsAJ) 0 [3uf Tvzvn]z??:ujmw
°R*AJ) SPM + i) 0 [3<<FA—C ngz)qu«szu,-
np3AJ) TRsAJ - i) 0 [uf - 4112]C2;E;Jj»pl\5u6
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CONTRIBUTION TO THE INTENSITY DISTRIBUTIONS I.

(continued)

strengths
X(b) - *Y(a)

[uj - 41 + 1)]' Ulu +*ut!
2CI(R)
[ujuf - 301 + 1X21 + 3)] w ldiit
C3(P)
2[ujuf - 3(1 + 1)(2N1 + 3)]* i»7ue?
C.(Q
[“e“i - 3(N1 + 1)(211 + 3)]r U+U«
Ci(R)
[7%7 - 3(n + 1)(2N + ) ¥AT7
Cr(p)
2[«3“T - 301 + 1X2™ + 3)]2i*72u)
C 4<?)
[¥71%7 - 3(0 + 1)(21 + 3)]r uSUguf
Ci(R)
[uF + 41 + 1)F ui*u7»ui
2CHP)
ise + 4(N1 + 1)Jrururufuf
c E(?)
m? + 401 + D]2ulr((-n+n~unr
2Q (R)
5i*72*72*7i4 i4
2CE(P)
5u72J5U”ufu”ul
CeNo)
5071 “7“6“t“8“9
2CUR)
5ur“r“3“3“4mn5“6
4ACf(P)
5ii2Ufulufutuf2
2Cm

5«7“5U6«728S

4C+(R)

Bi*7 - 2(1 + 1)]2HA 7ujubur

4C2P)

[3*7 - 2(1 + D)]2¥ajutre 2
2CZ40)

[3*7 — 2(71 + 1)]2uBU72g2
4Q(R)

[« —4(n + 1)]2U23uEuE
2C3(P)

«X(Kk)-«Y(fc)

JU+ D22 +1)2
0

9(J - 1XJ+ 2 ulur
23*(J + 1223 + 1)
18u7u+(2J - 1)(2] + 5)
(J+ 1@+ 1)Z23 + 3)2
(J - 1)J + 2)uT«s(2J - 3)(2) + 3)
2J\) + 1)(23 + 1)

2(23 2+ 33 - 8)2ujui
J(I+ 1@ + 1)(23+3)2
J(J + 3) UjUj(2J - 1)(2J + 5)
200 + 1DAI + 2)(23 + 3)2
64(J - 1)(J + 2) ujut
J(21 + 1323 + 3)2
Ujuf(2Jd - 1)(2J + 1)(2J 4 5)
J(J+ DI+ 2)(23 + 3)2

0

5ufuf
I3+ DO+ 2)(23 + 3)2

0

0
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Table II
Branches Line
ANl= +1 An= -1 *X(0) - *V(a) *X(a) - 'Y(b)

[w - 4/1]2ujujrug*ut

°QsA A 0
QsAJd) QyA)) CAQ)
N . [w - 41]2Uguu™2
PR*AJ) rp5J + i) 0 2C<]K¢R)
R . [uy + 4/1J2ujuju”uguf
°PtAJ R4 - i 0
b RO -y p)
0 [uj- + 4m2wwwn

PQIAJ) *<254(J) CAQ)

[+~ + 4,1p njjuCUgzly

Qr*AJ) QPBAQ + 1) 0
3«7 + 2N1]2u2uw n4u5
PAJ) ti5(3 - 1) 2] [ /\C]:jp)m' a
“FTA+ 1/2) [Bu; + 20| 2wwmn wn”
QA% QAJ) I3+ 1) 2c1y)
utut [3u] + 2/F]2u4n7,wuw ne
RAJ) JW +1) 20 4 1) 4CX)
5U] i ur
oPeAd) @EI - 1) 0 | ToViaLiivm /i
< S5ufugujujujujut
RQeb(J) pQAAJ) 0 gzcjsz(]g)] ]
R R ; 5LB8u jurumu$ul uy
%AJ) PM + i) 0 ey
X AufuiLiuv U
KP1AJ) WrM - i) 0 vt ”ié';g)“y”'
»7Tu32»4“8“6It7
1Qn (J) VQ*AJ) 0 2Co()
. L3 L4 LbWe X7
Mr u(J) uPu(d + i) 0 4Ca(i)
‘ . Sub uy ufudUblpuy
LP,AJ) w (] - i) 0 4CaP)
S5urufuddbuy n,”
MQ«M) UQ*AJ) 0 20802
. SMfuididufuf
Nr *AJ) TPeAJ + i) 0 4CqUR)
R _ 5uj USuy ufujuju+t
MPBAJ) UrM - i) 0 anp)
Sug~ujfu f L5 JB»j~
NQ3AJ) TQqJ) 0 gwoq(l_?‘s J
snrufuy 2nAj~
°R3AJ) SPM + 1) 0 " Uzgép) '
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(continued)
strengths

X(b) - *Y(a)

[“0o - 4(1 + ]2 ni"2u|ui2
cm
[uf —4(A + D]2ujuju$2
2CUR)

[“2 + 4(n + 1)]2ufu”rut
2Cj(P)

[uio + 41 + 1)]2 u32ujuj2
cm

m& + 41 + 1)]2 ujujufu%*

2Ct(R)

[But" + 2(n + 1)]2Uo2u321J
4C5(P)

[3ug + 2(1 + I)J2ujjujuf
2c m

[3ug + 2(1 + 1)]2ujujucufug
4Ci(R)
5Uz22Uj2ujug uf
4C6(P)
5uJ2uJuJuéufut
2C6(C)
by UjUqll, Ui lift lift
4CUR)

U1 Uz it Mbift lift U7
4Cf(P)
Wutus Le U7 B2
2cm
uf,u,ta “82°92
iCt(R)

5 2w UNE «B « T
4C2(P)
51122Uft lift Ui My2
2Cm
suyug UMy292
4C2(B)
55

2C3(P)

C3((?)
5urU4 UNUg W 2

2C3 (P)

8*

X (i) - *Y(b)

0

SRITIT
1)(d + 2)(23 + 3)2

0

ujuj(2j - 1)J + 1)(23 + 5)
J(I + 123 + 2)(23 + 3)2
64J(J + 3) ujfun
(3 + 1)(23 + 3)22] + 5)2
1)(2J + 5)

1)(23+3)2
2(232+ 53 — 5)210i*uj(2d + 1)
J(J + 1)(23 + 3)22J + 5)2
Julut(2Jd + 1)1 + 7)
2(3 + 1)(3 + 2)(23 + 5)2
10uéu,+(2J - 1)
J(2J + 3)2(23 + 5)
S5ufui(2J + 1)
1A + 2)(2d + 5)2

(J - Dur«i(2d -
23 (J +

2(J +

0
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L16T

Branches
ANl =a +1 AN= -1 *X(0) - «¥(a)
NP M) 4.(3 - 1) 0
sQ«i(J) 0
PRM ) RPUJ + i) 0
°pJJ) SRUJ - i) 0
PQ M) RQ M ) 0
QPUJ + i) 0
; uiuft
PAJ) R*(J - i) 23
. , ujut(j+ 1/2)
QAJ) QA I3+ )
) . <8 “9
RAJ) PAJ + i) 200 + 1)

Table 11 (continued)

oX(«) - "Y(4

5n3udubu,u ufuf
2C6(P)

S5u,ujuéujut*u}
ce(Q)

S5«iTuur ue*ui 2

2Q P)

5u2u3udubu,,u, Ui
4Ce(P)

5u3u4u5ueu7uf*
2C6(Q)

5u7 W UfiUfut2ug
4Co(R)

Uj Zz ~s T My My
4QP)
u2u3u4usubit, uj
2C6(<?)

«B 4 «5us “7TTU9
4CHA)

Line strengths
X(b) - *¥Y(a)

5w rmrrnrneEn?
2C4(P)
5u25u3ujufug2
2\
S5wumnrnnErmir
2Ct(R)
S5uworw rmumnh
4C3(P)

2C5(<?)
3u3u7u”u- utu+*
4C3(R)
u7'tu2su3 u7 i,
404P)
u2*udud«subuj
2CH(?)
us us us us u, UglIf
4C+(P)

*X(b) - *¥(e)

SugUj

G+ 1)@+ 2)I + 3)(23 + H*

0

S5ujfuf(2d + 1)

2(J + 1)J + 2)(23 + 5)*

10uMUE(2d + 1)

(3 + 1)(23 + 5)*QJ + 7y*

ueuT (23 - 1)
2(J+ 2)(23+ 5)
2Juiut(2d + 1)
(J + 1)(2J + Bk

uii4(2J3 + 1)
23 + 3)(23 + 7)

co
e
0)

H3Z23d ‘I pu« SOYAOM 1
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Table IIT

Line strengths for 25+1X , — 25+1X , transitions

Line strengths
s =S+lx(a) . 25+lx(a) 28 +1X(b) 2 25+lx(b)
J:— (A + Z) (N-ADN+DJ+N-1DJ+N)—SS+DIJ+ N+ N+1)— SS + 1)]
Py(J) R i e 4JN*@2N - )N + 1)
DS @ DIBE L) = (J - Mg — N —1
2P, () 0 U+ NI+ N+1) ( 4;N=)](15 i 1; )i ( )(J )]
T . (N—A+ DN+ A+ DS+ - T -N-DJ-NISES +1)— (J- N—2%J - N=-1)]
t0iJ) 4J(N + 1))CN + 12N + 3)
p (N = AN+ D[J + NI+ N+1)— S(S+ DISS + 1) — (J - NYJ - N+ DJ2J + 1)
Qi-1,i(J) 0 4J(J + 1)N?*@2N — 1)@2N + 1)
s 2J+1 JUJ + 1) + N(N + 1) — S(S + DT + 1)
Qi(J) A+2) 5575 A 4J(J + DNV + 1y
R 7 0 (N — A+ 1)(N+A+1) [(J+ N+1)(J+N+2) — S(S+1)] [S(S+1) — (J — N — 1)(J — N)] (2J+1)
Qisr.iJ) 4JU + (N + 1PN + DEN + )
P (N—DN+ DS +1)-—(J-N+1)J—-N+2][SS + 1) — (J - NJ - N+ 1)
Ri—si(J) 0 4J + 1)N*@2N — I)2N + 1)
N+DJ+N+2)—SS+DIS(S+1)—-(J-N+1)(J-N
R, (J) . plU+N+DJ+ N+ 2 4(.I(+ 1+)N3(]1\[r i 1J)r= )i=( + 1)( )]
R(J) J+12— (A+2) | (N - A+ 1D)N+A+1D)[(J+ N+ I)J+N+2)— S(S + DI(J + N+ 2)(J + N + 3) —S(S + 1)]

J+1

47T + 1)(N + 12N + )N + 3)

I SNOILAEIYLSIA ALISNILNI HFHL 0L NOILAGIHINOD

Lig



318 I. KOVACS and I. PECZELI

tion due to the AN = 0, 1 selection rule there are 9 (2S-t-) —8 branches,
i.e. their intesities are other than zero. In the Tables I and Il

Cf(P) = JCK{J - 1); C,(A) = (J + 1) CK();
ci(Q) = .]JI J+~ 1/2-CK(J)i (6)
C,(P) = JCK(J); Ci(R) = (J + 1)CK(J + 1);
where i =1,2,.. 6and K =J —5/2,J - 3/2,.. J + 5/2,respectively.

For all the Tables the following correlation

Case a) Case b)
i (o)) o, N
1 n- s n+s J- s
2 nNn-s+1 N+s-1 J-5S+1
2S+ 1 1+ s n- s J+s
holds, where the suffix of Q n = normal, i — inverted.

For all Tables the terms of case a) were assumed to be normal. If an
inverted term occurs instead of a normal one then the suffixes corresponding
to the inverted terms in the branch symbols have to be changed on the basis
of the above correlation according to the pattern 1 -»2S + 1, 2 - 2S, ...,
2S + 1 “m1 wherever the inverted term occurs. In the next part of this paper
the quartet and quintet transitions will be discussed.
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Annex to page 317
Table IV

Line strengths for B+ IX"| 1— X+ 1y~ transitions

Branches Line strengths
AA= +1 Al= -1 2«+IX(a) - 25+1Y(a) 25+1X(b) - 2S+ly(fe)
_ =N —2 —1)@ =1 —2) @V- My - N — D@+ V- 1)J + IV)- S(S+ II + N)J+ N + 1)- S(S + 1)
PAJ) RAJ - i) 2] 8JIV2(2JV - 1)(2N + 1)
_ - _ 0 (N - AN+ 1+ [+ N)J + IV+ 1) - S(S+ IS(S+ 1) - (3 - NYJ - Iv- 1)
QPt+iAJ) QRii+AJ - i) 8INZAN + 1)2
) ) _ (N+ JT+ D@V+ N+ 2)[S(S+ 1)- (J- V- 1)P-IV)I[S(S+ 1)- (J- V- 2)(J —Tv—1)]
RPt+2,iU) PRLI+AJ - ) 0 8IAV + 1)2A2IV + 1)Q2IV + 3)
) - 0 @V - mMAr- n - 1)@ + IV)d+ IV+ 1) - S(S + 1)][S(S+1)—(I—N)(J—N + 1)](23 + 1)
pPQi-u(J) rQii-AJ) 8J(J + 1IV2QIV - 1)QIV + 1)
) B+ +2+ 1)@ - N - 2)(2) + 1) (N = MAr+ N + DI + 1) + VAV + 1) - S(S + 1)]*(23 + 1)
Qi(J) QAJ) 23(3 + 1) 8J(J + 1)IV2IV + 1)2
) ) 0 @V + N+ 1DRAV+ N+ 2)[(I+ IVHL)(I+IV + 2)-S(S+DI[S(S+1D)-(I-IV-1)I-IV)]I(23+])
RQi+uU) PQti+AJ) 83(J + 1)@V + 1)221r + 1)(2iV + 3)
_ B _ 0 @V - MAY - N - 1)[S(S + 1) - (I - IV+ 1)J - IV+ 2)J[S(S + 1) - (I - IV)J -IV + 1)]
PRi-u(J) RPIi,i-t(J + i) 8(3 + 1iV2@2v - 1)QIV + 1)
. av - maAar+ o+ D+ N+ D@+ IV+ 2) - S(S+ DIS(S+ 1)- (I - N+ 1 - V)
QPu-i(J + 1) 0
8(J + 1)IV2QV + 1)2
. @ -bNn 22+ ){IJ+ N+ E + 2) @V+ N+ DRV + N+ 2)[(I+ IV+ DNE+IV+2)-S(S+D]J[(I+IV +2)(IJ+IV +3)- S(S+1)]
RAJ) Pi(J + 1)

2(3 + 1) 8(J + 1)@V + 1)22IV+ 1)QIV + 3)
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CONTRIBUTION TO THE INTENSITY DISTRIBUTIONS OF
THE MULTIPLET BANDS IN DIATOMIC MOLECULES II

By

l. Kovacs and A. Grandpierre
DEPARTMENT OF ATOMIC PHYSICS. TECHNICAL UNIVERSITY, BUDAPEST

(Received 17. 1. 1978)

Explicit expressions are obtained for the intensity distributions in the branches of
quartet and quintet transitions of any type with AJ1 — 0 and A/l = + 1 where the upper and
lower electronic states may belong to one of the limiting Hund’s cases a) or b).

In the first part of this paper the formulae of the intensity distribution
of the sextet transitions and of the transitions of any type and any multipli-
city in the limiting Hund’s cases have been treated [1]. In this second part
general formulae of the line strengths are given for all branches of the quar-
tet and quintet transitions of any type with AJ/1 = 0 and AJl = = 1 where
the upper and lower terms may belong toone of the limiting Hund’s cases a)
or b). These formulae give after substitution of the proper /1 values (0, 1, 2, ...)
the line strengths of all branches for 27 — 27, IT —77, A — A ...and 77 —E,
A —77, ® —A, ... transitions completed with the line strengths of the lack-
ing branches of the 77 — 77 and 77— 27 transitions already published [2]. In
spite of the existence of algebraic expression for the quartet terms of interme-
diate case [3] due to the complicated form of the transformation matrix in
intermediate case we have also in this case no other choice but to restrict
ourselves to the transitions of limiting cases, otherwise the formulae of line
strengths would be too complicated to use. The adopted procedure has been
described in the previous part of this paper [1]. The elements of the transfor-
mation matrix of quartet and quintet terms of any type for case b) required
for the application are the following.

4X (6) transformation matrix

Acta Physica Academiae Scientiarum Hungaricae 43, 1977



320 I. KOVACS and A. GRANDPIERRE

n -211y-n+ 3u4»sn,
3A+1/2,7—1/2 — oy 11243) 7 SA+3/2.Y-1/2 Cj-iliid)
3 UBU+LS (u6-21)2u4n
n-3/r,7+1/2 Cj+IIAJ) i BA-1/2.y+1/2 — Cj+iizid)
"(«B++ 2J1)*«r 3U4iij W
5A+1/2.y+1/2 ;S A+3/2,Y+1/2 — .
-7T+U2(d) Cj+n-AJ)
«4 »5 5 3 Mcn, n»
S A=3/2.Y+3/2 — Cj+312{3) R.a2.y+3n IS
3uTuldut n4 m5mB
5A+1/2,Y+3/2 — vsr2(d) ; S.A+3/2.Y+3/2 RV
where u*+1 = + 1 and =J £ Nn- 92
Cy_3P2(J) = 2J(2J - 1)(2J + 1),
Cy-1/2(3) = 2(J + 1)(23 - 1)(23 + 1),
Cy+1y2(J) = 2J(2J + 1)(23 + 3),
Cj+312(J) — 2(J + 1)(2n + 12N + 3) .
5X(b) transformation matrix
QtHAxng ¢ |A4 v3i4th
A-2,Y-2 — Cy-23) SR LW o roCy-203)
6v3VivEv+ r4+"r'4r;5 +6;
3Ay-2 - 4 s °SA+|,y-2
Cy-2(J) Cy_@J)
S 3+\A\VEVE'
A+2-Y-2 —
Cy-2(J3)
A2y « VR VR v 3h bl +/fv4vs
e L e Cy-x(9)
6i;4 (V3 - [1)2+4; +5F
Saij-i =N SA+1I-] —
aj-i Cy-i(3) A+1J-1 [ Cy-1(d)
Sa+2.y-1 —
' Cy-4J)
3vbvt
CiQJ) Ci(d) ;
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CONTRIBUTION TO THE INTENSITY DISTRIBUTIONS II. 321

| Ci{J) CEAFL) (21 + 1\ Cj(d)
3v3i4t;Ave
A+ Ll (2a)
- Ci(d)
r®@s“ nya »
n-2,7+1 C’le_ll(‘]) ’ A'l-/+1 Cy+|(J) )
) r(veh4- Ay jvn
Saj+l——yl Cy+1(J) » 1+ 741 CJ +]( J)
a2 741 — ®3 «4 V5V 6
' Cj+1(J)
V?V4V5ve i 4i:6r 4«5+ _
3”'2,7"‘2 C\]+KJ) [ SA'1,7+2 - I C\]+2(J) ]
A vb 4ix4vsvnVi
N,7+2 Cj+2J) ++1.7+2 ClH2J)
c AT w
N+,-y+2 v cT+2j)
where v/A+1 = + 1 and =J /1 —3
Cy_2J) - 4 - 1)J(23 - 1)(2) + 1),
Cy_i(J) = 2(J - DI + 1)(2) + 1),
Cji(J) =23J + DI - 12 + 3), (2b)
Cj+i(J) = 23(J + 1)(J + 2)(23 + 3),

CH2(J) = 4(J + 1)J + 2)(2] + 1)(23 + 3).

The line strengths referring to the transition 4X a(a) — 4X a(a), 4Xpa(a) — iX A(b),
*XN(b) —4Xa(a), 4XA6) —4X[A6) and 5Xpa(a) - 5Xp(a), SXp(a) - SX[(6),
X [A(6) —5Xn(a), XJib) — 5X /I(b) that is to the quartet and quintet transi-
tions of any type with AA = 0 can be found in the second, third, fourth, and
fifth column in Table I, and in Table I, respectively. The line strengths re-
ferring to the transition 4X pg+l(a) —4Ygp(a), 4Xpg+l(a) —4YLO(6), 4X p+1(6) —
- 4¥Yn(a), 4Xn+l(6) —4yL(6) and 5Xpt+l(a) —5¥Yn(a), 5Xg+l(a) - 5YN(6),
5Xp+1(6) —5¥a(a), 4Xpt+l(6) —5Y[(6) that is to the quartet and quintet
transitions of any type with AJ — + 1 are included in the third, fourth, fifth
and sixth column in Table Il and in Table IV, respectively.
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Table |

Line strength for *XJ1 — *X/J1 transitions

Line strengths

¢ce

1/6T ‘tp eeoueBuUNH wnienualos selwapedsy eonhyd ey

Branches
eX(n) = *X(n) *X(n) - «X(I>) *X(S) - *X(«) X (b)-*X(k)
] “Tu3 “I"5B2Z'3 uuf(2d + 1)
PAJ) J Gi(P) K@- 1) (J-1K 23- 3)
( 3y 2J+1 ( 3y ujujuc 43+ 1)(23+ 1)
QAJ) t 2330+ 1D 1 2J cE QAJ) J(23 —1)2
ufui ujujuéuiut uJuj(2d + 3)
RAJ) I+ 1 CAR) PAI + 1) 323 - 1)
3uJBLI2 1220 + 1
* 0 ~ -1 a ( )
ap*A)) c, (i) ) J(23 - 1223 - 3)
fa 1 3uluf(2d + 1)
rQA) 0 [ 23/ C?) PQ,AJ) JZ2J - 1)
3UiUjuruiun
X i(J) 0 ICJ:R;IU “PAJ + 1) 0
0 3u72U4U52 3ujuj
RPNV) C.(P) PRM - 1) (3 - 1)J223 - 1)2
5Q,AJ) 0 ||”4 1Y 3CT(L<1_;)L5 °QVAJ) 0
4 i) 0 3””2;;““ NPu(J + 1) 0
sp»(J) 0 3Ci<;E; 2 *Ru(J - 1) 0
3y “i“6
TQu() 0 {2 3y Lor nQu(d) 0
URtAJ) 0 “”E”&f Mpli{d + 1) 0

JHYIIdANVYED 'V pue SOYAOM I
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°PAJ)
pQN()
aRk(J)
PAJ)
QAJ)
RAJ)
QP*AJ)
rQAJ)
sR3(J)
RPM)
sQit(J)
TR1(J)
NP1J)
X))

PRIZJ)

3u6ub2uju|
C2(P)
f 3 \2 suju,ui
I 2)  c(Q)
3u3ujfufuj2
C*R)
ujut (uj + 2/1)2 U324
J CAP)
ly 2J+1 1 u+ + 2/1)2uj
2J 30+ ) |( 22/] ( (32(<?)) J
wgug (1% + 2/1)2ugRiuf
2(J+1) C2(R)
0 (<7 - 2/1)2u4 U52
CAP)
. ( iy(uJ-2AYut
| 2j C2(<?)
(« - 2/1)2 L, uE
CAR)
3uJuJujjujP
cap)
0 §_i| 3V 3“4lB“e
2 C2AC)
3ud2 UjjyYfuf
CAR)
o 3U(r2Ms14 VB
CAP)
t sV suiufuf
| 2 c30)
3urufujaui

CAR)

0

SR2(J - 1)
rQ3i(9)
ap°ad + i)
RAJ - 1)
QtU)
PAJ + 1)
R*AJ - i)
RQ&{(J)
°P-n(J+ 1)
pR21(I - 1)
np.2A3 + 1)
4.(j-1)
QM)
RP3AJ + i)

0]

Zujui(2J + 1)
J2J - D*
r 12(23 + 3)
I+ DI —1)(23+ Dr
(I + Dur«i(23 - 3)(2J + 1)
J223 —1)2"
40232+ J - 4)2
J(J+ 1)(23 —1)2(23+ 1)
(I + 2udu3(2d - 1)(23 + 3)
J+ 1323+ 1)2
64(J-1)(J+1)
J(2J - D223 + 1)2
“»ut(2Jd - 1)(23 + 3)
JAJ + DX+ 1)
0

_ 3urg
2J23 + 1)(23 + 1)

0

0

3yrun
JUO+ D23+ )2
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L16T

Branches

op*AJ)

PQ M)

aRAJ)

Ps(J)

Qs(J)

Rs(J)

QP i3(J)

RQ M)

SR M )

MP 1t(J)

nQu(J)

*Ru(J)

np,AJ)

*X(@) - 4X(a)

“r“s

J
(.. 13/ 2J+ 1
in+ 2vJ(J+1)
ujut

J+ 1

0

Tabic | (continued)

Line strengths

*X(@) - <X(b)

(w - 2Afusuiui

*X(b) - *X(a)

C.(P) % AJ - 1)
( 1V (w - 2/1)2u+ .
I ZJ C3C) rQsAlJ)
(uf - 21)2uknf?2 .
CAR) QP*AJ + 1)
(ut + 2A)2ujiqut )
CAP) RAJ - 1)
(a, 1V (ut+ 2AyuT )
2J CAQ) QAJ)
(ut + 2AYujut 3
CAR) PAJ + 1)
Su™MuJuJUqg2
CAP) ar*ai - 1)
(, 3y Sujuiut N
I 2J cAQ) PQ3AJ)
Zujuj2ut2
CAR) °p3al + i)
uéutuiutut .
CAP) UORM - i)
(a 3Vuiun .
1 2)  CcAQ) T<?4i(J)
Wl«a i R
) SP*AJ + i)
CAR)
3uturufutut ;
TRtAJ - 1)

CAP)

o -

vsut(2d - 1)1 + 3)
1203 4 1)2(2] + 1)

643(3 + 2)

(3 + 1)(23 + 1)2(23+3)2
Dujut (23 - 1)(23 + 3)

1221 + 1)2

432+ J — 3)2
2J(J+1)(23+1)(23+3)2
Ju«ut(2J + 1)(23 + 5)

(3 + 1)A23+ 3)2
24(23 + 1)

J(23 —1) (23+ 1)2(23+ 3)

3udut(2d + 1)
(J+ 1)A23 + 3)2

0

3YY3IdANVED 'V pue SOYAOM 1
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<2

PR,A-J)

0P3AJ)

PQ3i(J)

QR3AJ)

p i(J)

QAJ) |

RAJ)

0

0

«M
J

Sy 2J+1

2 JJ+ )
“~7

J+ 1

i. 1y 3u6ujui
| 2] C4<?)
3utdj*ue
CAR)
3uJuiUeuzuz
CcCnP)
on, 1V suiusut
v 2l can
B2 er
CAR)

i V|4((rL(7<€i
CAP)

f,. 3y wury
1 2] C40C)
“I2TTv

CAR)

sQiAJ)
rp,Ad Tt )
SRM - 1)
*QM)
QpJJ +1)
RAJ - 1)
QAJ)

PAJ *+ i)

200 + D*Q + 2)(2) + 3)

0

3u™ud

0

3“<Tee(2] + 1)

(3 + 1)*(2J + 3)2

(J+ 1)(27+1)(27+3)2(27+5)

1

24(21 + 3)

uru,+(2J - 1)
3+ 1DEI+3
43(23 + 1)
I+ 1)(23 +3*
Wuj(23 + ]
(J+ 2)(23+ 5)
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326

. KOVACS and A. GRANDPIERRE

Table I1

Line strengths for

Branches Line
AN = +1 an = -1 *X(@) - *Y(a) X (a)-‘Y(b)
3 . uju3 UjUg2uj2
PAJ) RAJ - i) 23 2 AP)
ubul(2J + 1) W2
QAJ) QAJ) 23 + 1) 2CAQ)
. M4 i ujujutrujui
RAJ) PAJ + i) 20+ 1) 2CAR)
) 3u72U521i4
QP2t(J) ar.,aj - i) 0 2CAP)
3UjUs2Ifug
PQAJ) PQiAJ) 0 2CAQ)
i o 31t"U”rU4UgUg
SR*.AJ) plAJ + 1) 0 2 AR)
33w ming
rp-AJ) PRIYJ - 1) 0 2cAP)
3ufuju3ul
SQAJ) °QiAlJ) 0 2CAQ)
ZuJUfUsllgUT
TRAJ) NP AJ + i) 0 2CAR)
utujuiutut
SPAJ) PRuU(J - i) 0 2CAP)
w uyufufuf
TQAJ) 0 2CAQ)
utuSu+ujuf
UR,, (J) mPiAJ + i) 0 2CAR)
3«5 2«6 2u4
°Pn(Jd) SR,,M - l) 0 ZCZP)U'
Bujuéauf
PQrAJ) PQAJ) 0 2CAQ)
. . 3<<5ujut2u£
aRiAJ) Qpn(j + i) 0 2c2P)
R “ 4«5 (uj + 2”)2uLuf2
PAJ) RAJ - 1) 23 2Co(P)

Acta Phytica Academiae Scientiarum Hungaricae 43, 1977



CONTRIBUTION TO THE INTENSITY DISTRIBUTIONS II. 327

*Xg+1 —*Ya transitions

strengths
*X(b) - eVia)
u2u3udnvll
2Cr(P)

«3«4U5U6 U4
2cm

ujujujutut
2CRR)

3ujujujurui
2Cr(P)

3ujuldujujut
2C.(Q)

3wwninens
2c m

3ujujujutut
2Cc3(P)

3ujueululus
2C3(Q)

3ww, UjUf
2CHA)

5 “ el “ifif
2Cj(P)
“(CUs L, L
2Ct(Q)

n, L Utuf uf
2Q («)
iurUjUjuUjuf
2CI(P)

2C«?)

3u,usulug2
2Ct(R)

(T 2.2
2Q(P)

X4 - 0

u3u3(2J + 1)
2(J - 1)(23—3)

20+ 1) Bu,(2J + 1)

J(2JI- 12
udia(2J + 3)
2J(23 - 1)

6u3Uf(23 + 1)
J(23 - 3)(23 - 1)2

3uiun(2d + 1)
2J2(23 - 12

0

AL
2(3 - 1)I2QI- 12

3uduj(23 + 1)
2J*%(23 - Iy2

6uJuf(2J + 3)
@+ 1)@I- 1)+ D*

23+ Ludui(2d - 323+ 1
J22J - )2

Acta Physica Academiae Scientiarum Hungaricae 43, 1977
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Branches
nn= +1 nn= -X **(«) - *V(«)
. uJut(2J + 1)
QAJ) QAJ) 2000 + 1)
) “s"?
RAJ) PAJ + 1) 20 + 1)
QP3AJ) aR*3(J - i) 0
rQAJ) PQtAJ) 0
SRAJ) °Pa(d + i) 0
pR2.(j - 1 0
SQAJ) °Q«M) 0
TR K(J) np *AJ + 1) 0
NP a(J) 40(3 - 1) 0
°QiAJ) SQAJ) 0
Pru(d) RP3J + i) 0
°P*M) SRAJ - i) 0
PQ«AJ) rQAl) 0
QR*M) ap3AJ + i) 0
PAJ) RAJ - 1)
2J
QAJ) Q3(J) ujut(2j + 1)
2J(J + 1)
RAJ) PAJ + 1) @7
23 + 1)

Acta Physica Academiae Scientiarum Hungaricae 43, 1977

Table N
Line
*E(-)-*V(4)
(«1 + 2M1)2us!u+
2C2(<?)

W+ 2/1)*
2C.(R)

(“4 - 2n)* «aui'uj
2Cr(P)

(“T - 21)* a~ufue
2CY(?)

mr - 20)lututut
2C,(R)

34yn«3 UNUT Ug
2C2(P)

2C2(<?)

3aj«”u,tufas
2C.,(R)

3uju2utuf

2C3(P)

3“(Mud*5
2C3(Q)

3¢(TU4 *exrx
2C3(R)

uT - 20)2ufutut
2C3(P)

u,T - 21)* usul*
2CAQ)

(ué - 21)* us*u6
2C3(R)

(«6 + 2M1)2wn"né
2C3(P)

(u? + 2M)2uj"ujut
2C3Q)

(ut + 2/1)2urutut
2C3(R)



CONTRIBUTION TO THE INTENSITY DISTRIBUTIONS II.

(continued)

strengths
X(fc) - *Y(.)
(of + 211Y »r“s*“s
2C.AQ)

« + 2*urutut
2CT(R)

(uj - 2m* urujut
2CT(P)

(u, - 2D*uiuiut
2C.AQ)

(Uf - 2 D*ujufuf
2C$(R)

3Ui *«5U [«n
2Q(P)

3“5*B4ub5*
2C4?)

3UTE 302 38
2Ci(K)

31M*3uj'uj'u.t
2CI(P)

3udurufu™2
20,(0)

3«r«id+*

XT(R)

»0 - 2/1)2U ,uj
2CF(P)

(« - 2/1)* uj-u+*
2Cs((?)

(U< - 2D*u+ud*
2C?(P)

((6 + 2% »3FH"
2C3(P)

No + 2/1)* u<u+
2C3<)

(»io + 2T)*UsUeuf
2C3(fi)

*X(b) - *Y(b)
uj-u+(2J* + J - 4
JUI+ 32 - @2 + 1))

(J + 2)GjUj"(2) - 1)(23 + 3)
20 + 1*Q) + *

160 —1)(J + 1) ULb
J(2) - 1)*Q1 + *

»5ue(2J - 1)(2J + 3)
2P+ W23 + 1)
0

3utut
2% + 1)(23 + 1>

0

0

31u5
2J(3 + D*@I + 1*

0
»i»i(2J - 1)(2 + 3)
2*(J + )*2) + 1)

32J(J + 2) uj-ui
(J+ 1+ D2 + 3)*

(J - Dujui(2j- 1)1+ 3)
20%(23 + 1

2ur»6+(2J2+ 3] - 3)*
JI + DRI+ )2 + 3*

Mu}(2J + 1)(2) + 5)
200+ 1)*Q21+ 3*

Acta Physica Academiae Scientiarum Hungaricae 43, 1977
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Q i3(J)

rQAl)

SR t3(J)

Mpu(J)

nQu (J)

°RiAJ)

np2Al)

oQ*AJ)

PR 2AJ)

0p3AJ)

PQ3AJ)

QR3i(I)

pAJ)

QAJ)

RAJ)

Branches

R3i(J - i)

PQBI(J)

Op3t(J + i

-

WR*AJ - 1)

TQnU)

SpM  + i)

TRM - 1)

SQiAJ)

RpM  + i)

SRI3(J - i)

rQAlJ)

QpAJ + i

RAJ - i)

QAJ)

pAJ+ i)

X KOVACS »nd Av GRANDPIERRE

Table IM.

Line

*X (a)-*Y(a) «X (a)-*Y(b)

Zuiusujujui

2CAp)
0 Susujujuiu}
2CAQ)
0 Sujujutufug
2CAR)
0 u$ LWu|utug
2CAp)
0 LW Ui2lsug
2CAQ)
0 utut*ut
2CAR)
0 Zujujujutut
2CAP)
0 3ujusut2un2
2CAQ)
3utujauf2
0
2CAR)
0 3udujujurut
2CAP)
0 Zujuiuéitj2
2C4<?)
0 3ujujutuf
2CAR)
112u3 u2u3UAusS B
2] 2CAP)
nsui(2d 1) UsUjUswy uj
21 (3 + 1) 2CAQ) '
uiujuw utuy
203+ 1) 2CAR)

Acta Physica Academiae Scientiarum Hungaricae 43, 1977



CONTRIBUTION TO THE INTENSITY DISTRIBUTIONS II.

(continued)

strengths
*X(b) - *Y(e)
3nrmritg

2Cr(P)

sutujutuf
2 m

3udugufufuf
2Ci(R)

uiujutufut
2Cf(P)

2cm

N2«?2*%»"

2Ct(R)

3U2*Uzutut
2C,(P)

3uaw “?1
ICM)

SMAMAMA*
2C}H(R)

3ntrn2ruy
2C3(P)

3nsr«7!
2CAQ)

3uJUsufuzl
2Ct(R)

“22:32'T
2Cr(P)
2C4<)

itduSuGaf Uy
2Ct(R)

*X(K) - “Y(4)
6uiu+(27 - 1)
J(23 + 1)2A27 + 3)2

3uguUj(2d + 1)
2(J + 1)*(23 + 3)*

3n~né
2(7 + 1)*(7 + 2)(27 + 3)

Mru<r(27 + 1)
2(7 + 1)*(27 + 3)2

3uJu}(2d + 1)
(7 + 1)(27 + 3)1(2] + 5)

»Ne(25 - 1y
2(7 + 1)(27 + 3)

Jurut(2J + 1)
2(7 + 1)(27 + 3)2

ufujf(27 + 1)
2(7 + 2)(27 + 5)

Acta Physica Academiae Scientiarum Hungaricae 43,
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Brauches
*X(0)-»X(0)
PAJ) 4JV2
QAJ) 2” 2)2
QPn(J) 0
rQ*AlJ) 0
SRu(J) 0
rp *AJ) 0
SQ,AJ) 0
4 AJ) 0
SP*AJ) 0
TQiAJ) 0
VR,AJ) 0

JIJ+ 1)

Table 111

X@- Xb)

VyVijVvijveavn
Cr(P)

(N 02 W W

(2D CAQ)

»3°U »5 V« L »3
CAR)
&Vjvjvju$2
CAP)

(n
1 CAQ)
CAR)
6vIVINAVj2
CAP)
6vjvjvevi
CAQ)
»3I¥4»6
CAR)
4i'32>>1iB2
CAP)
(n , 142 4ei-e3 X
CAQ)
bvav/rvvtvtvt
CAR)

[

Lire strengths

Line strengths for 5X g —6X 4 transitions

X - *Xa)
RAJ - i)
QAJ)
PAJ + i)
PREAJ - 1)
aQAJ)
°PrAJ + i)
PRVAJ - 1)
°QiAJ)
NPa(J + 1)
°RIAJ - i)
nQiAJ)
MPu(J+ i)

() _ X0

vjvj(2Jd + 1)
(J- 2)@2 - 3)
, (3 + DRI+ 1)

2(J —1)2

v3va(%J + 3)

(- DI —1)
2023 + 1)

- 2@ - 12

2«5<4(2J + 1)
(3 - D23(23 - 1)
0

6v3v3

(J - 1)23(23 —3)(23 —1)

0

cee
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TP*AJ)
uQmQ)
VR M )
°PiAld)
PQIA-I)
@Pnu)
PAJ)
QAJ)
PAJ)
ap *AJ)
rQ,AJ)
srAl)
rp *AlJ)
SQ,AJ)

P,AJ)

Pvrvivtvt2
cap )

N+ 22 vsvr i

vav3wvivivi
CAR)
V7Vvivé2viv3
CAP)
(A 2)!
v CAQ)
Vjv3v3viv72
CAR)
K +
CAP)
tn L« M+ MV»5
(-~ CAQ)
3+
CAR)
o« W
CaP)
/14 6t,r<4
cAC)
12 Bt>T»T»i»i
CAR)
*T- N)2»ifd«E2
CAP)

1+ N2(r- MU1s
‘ ; CAQ)

@3 - A)07vjvjl7
CAR)

nRiAJ - i)
MQiAJ)
IPiA J + D
% AJ - 1)
RQNV)
aP2AJ + i)
RAJ - 1)
QAJ)

PAJ + i)
4 JJ-10)
PQ-.AJ)
°p,AJ + i)
PR,_AJ - 1)
°Q*AJ)
NP*M + 1)

0

2vjvt(2J + 1)
G- DARI- Y
221 + 3)
- 1)J3@J+1)
3 - 2)(J + Nhvavt(2d + I
(J- HUEI- 1)
(J2- 3)223+1)
J- D3JI+1)
- DE+2Kv+(23+3)
JAI+ )2 + 1)
Aat3(J + 1)(23 —3)
J- a3
3(J - NtyD4(2J + 3)
J3J+ 1)(23- )

0

gvijvt
J3(20 —1)(23+1)

0
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LL6T

Brauches

SPsAJ)

TQdJ)

URtAJ)

NPiAJ)

°QdJ)

PRa(J)

°P-AJ)

PQauU)

aR-AJ)

PAJ)

QAJ)

RAJ)

QP*AJ)

X(@) - >X()

74 »4
J

2J+1
JJ +1)

«5 «5
J+ 1

Table 111 (continued)

Line strengths

&(a) - &X(6)
CAP)
(A , 04* "Svivta
(N +2) cAQ)
» 1 4 4y
CAR)
3«5"»M »4
CAP)
CAR)
(2/1 1)2 3v? vM
n r CAP)
(- w20 - 1f Jfjjj
12/1 1)2
( " CAR)
2[vivi - /1(2n + \)fvivt
CAP)
2[vi - nen+ 1))*
CAQ)

2[«5i%4 - N(210 + 1)]V p§&

CAR)

121 . 1)2 3W » +2

(n+ } cap)

SX(b) - *X(@)

°RJJ - )
nQ*AJ)
MP«.AJ + 1)
TR:nU - 1)
sQu(J)
RP»AJ + 1)
%w AJ - 1)
rQ3AJ)
QP:,AJ + 1)
RAJ - i)
QAJ)
PAJ + 1)
aqR3AJ - i)

mX(b) - *X(M

6v,v}
J2J+ 1)(2 - 1)(23 + 1)

0

3(J - Nvjvi(2j + 3)
J3J + 1)(23 - 1)
3(I+ 2)(23- 1)
J\J + )3
1) + 1K«4+(2] -
J\23 - 1)(3 + i)
4, U+ - 31W + 1)
Jv + 1)3
J(J + 2)vijvt(2j- 1)(23 +
(J+ 1)3(23+ 1)(23+ 3)
3(J- 1)(23+ 3)
J3J+ *

3) (21 + 3)

5)
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*ul))
SRu(J)
RPga(J)
0slJ)
"Ry(J)
MPu)
NE)
°R,i(J)
Np,(J)
%Q:4(J)
PR.i()
°P,(J)
Po,4)
RyuJ)

PyJ)

3038

~

3vgvf

G(Q)
3vzivd

Cy(R)
3vzvzvvivs?

Ci(P)

(A + 1724 + 1y

24+ 1y

3vzvyvivg
G5(Q)
3vztv vivivy
Gy(R)
vg vy vvivy
C(P)
vgvivivi
Lo
5 v7 03 *vivy
Cy(R)
(vg— A)vgvgoivi
Cy(P)
e (5 = AYviv
e I D)
(v5 — A)vgviey
Cy(R)
6vyvgvivg
Cy(P)
6v5 vy
Cy(0Q)
6v52vi?
Cy(R)
(v + A)vzvzvgvd

Cy(P)

(4 +2)?

A?

Al

A2

0u)
0P, (J + 1)
PRysJ - 1)
%0s5(J)
Npsld + 1)
"Bkr~ 1)
Qu())
SPu(J + 1)
TRa(J - 1)
Quld)
Rps(J + 1)
SR - 1)
ko)
W +1)
R(J - 1)

3(J + 2wzu(2] — 1)
JJ + 1%2T + 3)

0

—pF
6vzvy

JU + 12T + 12T + 3)
0

0

0
0
0
0

0

Jv5vg

J + 1*@2J + 1)2J + 3)
0

3(J + 2)gvi(2J — 1)
JJT + 12T + 3)

A2 3J(2J + 5)
J + 1)%J + 2)
(J — I(J+ 2)vzoF(2T — 1)

JU + 1)*@2J + 1)
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Branches

QAJ)

RAJ)

QPUJ)

rQM)

SR M)

LPtAJ)

MQiAJ)

nRiAJ)

mp,AJ)

ng,aj)

°RtAJ)

np3AJ)

QM)

X («) - *X(<)

M

(n 1

Ir 2-/+ 1
J(J+1)

»r»e
J+ 1

0

Table LU (continued)

X (a) - *X(b)

M 11V ("et+ A)ivFv*
n + 4 C,(Q)
(vi + Afojhijvt
CAR)

CAP)
M, 04,

(n 1 2) CAQ)
4*v7vbvt vi
CAR)
VAVIVEVIVtVE
CAP)

(4 oV v}vtvtvt
( ' CAQ)
Tr»iditl

ciR

CAP)
(1 fv  [lvevi vy«
CAQ)
d«eW »e
CAR)
6VvivjvAvivivt
CAP)
(WbVgvtvi

CAQ)

X (b)-**(«)

QAJ)
PAJ + 1)
qr .aj - i)
PQtAJ)
°PLAJ + i)
VR M ~ i)
uQiAl)
TP M + i)
UR>AJ - i)
QM)
SP*AJ + 1)
TR*AJ - 1)
SQsAJ)

X (b)-«X (b)

[J*+2J - 2]%Q) + 1)

JJ + DI + 2*
J(J + 3Kr+(2J + 1)
@+ DA+ 2223 + 3)

r 223 - 1)

JUJ + D)@+ 2

2vavt(2Jd + 1)

@+ DA+ 2*21 + 3)

0

JHYIIdANVYEO 'V pue SOYAOM



/16T ‘tp eeouebuny wnienusldg selwspedy eIISAUd ey

6f54 &V Buew«

* O H
PREAY) CAR) RPdJ + i) (3 + D@ + 2)22) + 3X2) +.5)
OPAJ) 0 AW ttVeVIVi *RM ) |) 0
cap)
. 7 &Vjv3VEvE v 4(2) + 1)
0 n 12
PQIA) SR RQbAJ) (J+ 1XJ+ 2)A2] + 3)
4yTIv3vt' . « 22 + 1)
RAJ 0
aRAJ) CAR) @M+ (3 + 1XJ + 2)2J + 3)
Egwtt icvjvjvjvévi . Bs.4(2.7 1)
PAY) J CAP) RAJ - ) (3 + 2X2] + 3)
n+ 2@+ 1 (A, ) VAV v L 3(23+1)
oA M+ 22504 N+ P CAO) QA% (J+ 1)+ 232
vavi w32 T8 T Errf(20 4 1)
RAJ '
) 3+ 1 CAR) Pass ] (J+ 3X23+ 5)
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Table IV

Line strengths for

Branches Line
NN—+1 nn= -1 + X («)-*¥(n) *X(«)-"Y(6)

V 3»4»s4S

PAJ) RAJ - i) 23 ronP)
vivt(2J + 1)
QAJ) QAJ) 2000 + 1) .
i V3Vi VSVKVI Vit
RAD PAT =D 20 + 1) 2a g
2vfvi*vs*vf
qp,Ald) qrlaj - 1) 0 CAP)
2» XK Y <
rQAJ) PQn(J) 0 L
2vJvJVsvZvtvb
SR*AJ) °P\AJ+1) 0 CAR)
i 3t>71% *»3»1
rp 3AJ) pRAJ-I) 0 >ICZP»)»
° 0 S Vv A al'w*
sQu(J) QAJ) ch0)
3vivjv$vivEvE
TR3AJ) NPaU + i) 0 CAR)
. 2v,vi*v}vivi
sPtAJ) °RIAJ - i) 0 O
2v3*v$vtvtvt
TQa(J) nQxAJ) 0 .
2i’sv3vivSvei'7?
URtAJ) mPiA) + i) 0 CAR)
VZVjVtvtvSvE
TpsAl) NRtAJ - 1) 0 2CAP)
VJVEVEVEVEVT
uQsAJ) 0 2cAQ)
vivivEv$vivt
VRsAJ) IPXAJ + i) 0 2CAR)
i »C AT A3
°PiAld) sr2Ad - i) 0 2CAP)
i 0 VI»I»6*»3*
PQIAJ) rQ*AJ) o)
VjVjVgVitrt
qRAJ) qp *AJ + i) 0 2CAR)
i vivi (3 + -1)*VIW 1
PAJ) RAJ - i) ’3 2CAP)

Acta Physica Academiae Scientiarum Hungaricae 43, 1977



CONTRIBUTION TO THE INTENSITY DISTRIBUTIONS II. m339

5Xn+l —6Y 4 transitions

strengths
% (b) - *i» X(b)-*¥(b)
»1 V3V3Vi V&3 viva(2j + 1)
2Cr(P) 20 - 2)(23- 3
v2v3V,VSVEeVE I+ HYuj2 + 1)
2Q\(Q 2(j - m
vjvijvijvijvtvf vtvt(2d + 3)
2Ct(R) 23 - 1)(JI - 1)
V2V3V,V5 VeV vivt(23 + 1)
2cuP) J- 2J- 12
»I<T »3I4 vavt(23 + 1)
2C M J- DI - 1
Vjv3VvgVEVjVi
2CUR) 0
3v3vjvjvavtvi 3’\3|-j
2C3(P) J- D2J2I- 3)23- 1)
3vjv3v3vtvivf 0
2C?)
3VjVSTEVIVEVE 0
2C3(R)
vTVsVivivive .
2Cr(P)
Vs\Vov3vavsve 0
2c4Q)
Vfvfvivtvtvt 0
2C}(R)
v3VgV%vivtvt 0
2Cg-(P)
2CY) ’
0
2Cjj(R)
2vxv2v3v4vsvj 0
Cr(P)
2v2v3Vijvijvt2 v3v3(2d + 1)
CAQ) J- D323 - 1
2v3Vjv3vtvo?2 vavi(23 + 3)
ci(R) - 1)J33+ 1
("t + J2v2v3vjv3 J- 2)J+ Dvav(2a + 1)
2C:(P) 23 - 12J(234)
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AA= +1

Qi)

RAJ)

QP3AJ)

rQsAl)

SR,AJ)

RP*AJ)

SQ,AJ)

TR,AJ)

SP 5AJ)

TQAJ)

UR SAJ)

NPiAJ)

‘QAJ)

PRiAJ)

°P«.AJ)

PQAJ)

qR*.AJ)

pal)

QAJ)

RAJ)

Acta Physica Academiae

Branches

= -1

QAJ)

PAJ + i)

qr ,aj - i)

PQAJ)

P*AJ + i)

PR,AJ - 1)

°Qi,(J)

Np2t(J + 1)

CRJIJI - 1)

nQ.AJ)

mp,AJ + i)

TR3I(J - 1)

SQ3AJ)

RP3AJ + i)

SR3AJ - i)

rQsAl)

qP-AJ + 1)

RAJ - 1)

QAJ)

PAJ + i)

Scientiarum Hungaricae 43,
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*X(0) - *V(e)

tst>i(2) + 1)
2J(J + 1)

»i»5

203 + 1)

0

V3 Va
2J

t>Tvt(2J + 1)
20(3 + 1)

203 + 1)

1977

K(a) - “Y(b)

(v3 + ™e)*vivjhti

(t

2CAQ)

+ JNI)rVjVvjvivs
2CAR)

At

7 CAP)

At 3»iV »5

At 3r,[»4»5»6

(vi

(v3

(v3

CAR)
- Afvsv3vtvt
2CAP)
- Thavavitv A
2C.(Q)

- AY Uiz Wy7
2CAR)

ViVtVs vivvt

2CAP)

2CAQ)

Vjvtv, tvEVivE

(2n

(2n

\vivt - JI(2/1 + 1)]2v3vj

[v3Vi -

[vivi - (211 + 1)]2«£r6

2CAR)
3vAvcavjvt
2CAP)
fvsviAvah’J
2CAQ)
3vivivi*vi*
2CAR)

- 12 U (®
- 1)2 I CAR)

CAP)

11211 + 1)]12vj-vf

CAQ)

CAR)

Table IV

Line
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(continued)

strengths

t5 + ny VgVjVgV%
2C,(Q)

Mi + Ayvivivivt
2Ci(R)

On, 42 3»rw i

(ZA + X)  2Ci-(P)

94 , 1yrrw X

(n } 2c3Q

<A+ " a [

(- N)2vjvjvtvf
2C4(P)

(tT - N1)2vivtvsVe
2C4<)

(vg - N)2vghA2
2Ct(R)
Ai2jvivt vt
Cg (P)
2B 2/6VgVRVE
cm
A}rvjvidi2
cm)
"ivyvjv3vjvoevoh
cm)
V2N3vjvivi2

cm
3vIvrvEVgVQVE
cm)

(n+ 12

g4— Q*3V*V*V*2

cm

( + cm)

— N+ 1)(2N + 3)]» v3v.

cm)

- (N+ 1)(2N + 3)Pvjvj

cm

[»ifi - (1 + 1)(2N + 3)] «frf

cm)

X(b)-*Y(b)

(J2- 3H2vdvi(2J + 1)
20 - 1DAYI + 1)
J - DI+ 2vtvt(2d + 3)
22+ 1)(23+ 1)
3(J + 1)vivt(2d - 3)
20 - 1)23

3(J - Dt>K (2] + 3)
23+ H2a - )

0

Qitfttf
23323 - 1)(23 + 1)

0

0

0

0

3iM»r

JAI + 1)1 - D2 + )
0

3(3 - 1)vjvj(2j + 3)
2333 + 1)(23 - 1)
30 + 2vjvt(g - 1
2323 + 1)3
(J - 1)+ 1)v3vi(2J - 3)(2J + 3)
23323 - 1)+ 1)
(J2+ 3 - 3)274 (23 + 1)
2033+ 1)3
J(J + 2) tEB(2J - 1)(2] + 5)
2(J + 1)323 + 1)(23 + 3)
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Branches

ANl —+1 An= -1

qPiAlJ) 4,03 - 1)

rQidJ) PQ3AJ)

Sr iAJ) °PsAJ + i)
rPsAl) Pr35<) - i)
S<253(J) 0Q351J)
TP s3(A) np35(3 + i)
MPiAJ) Uru(d - i)
nQiAJ) TQn(J)
*Ru(J) SP M+ i)
np *AJ) TB42(J - 1)
°Q*AJ) SQiAJ)
PriAl) RPAJ + i)
0P3AJ) SRAJ - )
pQaj) RQ dJ)
Qr 3AJ) QP M + i)
PAJ) RAJ - i)
QAJ) QAJ)
R AJ) PAJ + 1)
ap *AJ) Sr>5(J - i)
PQsAJ) PQJJ)

. KOVACS and A. GRANDPIERRE

Table IV
Line

X(0)-YO

‘X(a) - *Y(a)

3v2v3v4vE
0 @n+ 1= 2C3(P)
@1 + 1)2 NBVI\6\6
2C3(Q)
3VvjvEVEVT
2C3(R)
3vv3v3vJvivt
2C3(P)
3V2V3vi vt vevi
2C3Q)
3 v3vjvtvivivt
2C3(R)
ViVeDs\Vivs
2C4P)
y,FY Uy?
2C,(Q)
«Y W
2C4R)
Y - N2Aywy Y
2C4P)
V - M2y Y
2C4C)
Y - I1)2«ivVv 2
2C 4(ff)
3y3y4dy3yE
c4P)

3Y8Y p3
0 n2 c4?)
3w Y

CAP)

Vs Vs (Y + M21rr3yy

2] 2CAP)

0 @n + 1)2

0 /12

viy(2J + 1)
2J(J + 1)

VEVE
2(3 + 1)

0
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(continued)

strengths

X(b) - *Y(&)

o+ CT(P)

Vl *

n+ 3} cm

(1 11V Feweerr
' " Ct(R)

3»3

c&(P)

c.(<?)
3»01T<7™»8r
Ci(R)
2Vivtvjv$svivi
Cf(P)
215 »3 »4»8»62
c,«?)

C,+()

(»6 - )27 Da»|Uin
2C2(P)

(«F - n )2>Bttfpjj-2
2CZQC)

(2 - nm2vtvtvrvt
2CHR)

20+ 32 2c3PB
GRS

@@n+3)y-uw 7
(rf + N)2i:2232
2C4(P)

(»i + N)2ri-
2CAQ)

« + N)2vjvjvtvl
2CHR)
2vJ*vZ*vIVE
c*(P)
2V32ii v5vev7
cm

X(b) - *Y(b)

30 - D»r«tf(2J + 3)
231+ 1)2

3(J + it - 1)

21(J + 1)32J + 3)

0

J(J + 1)220 + 1)(2) + 3)
0

0

0

0

9<W
20 + 1323 + 1)(23 + 3)

0

3 + 2)vjvi(2j - 1)
213 + 1)323 + 3)
3JvJvj(2J + 5)
20+ Hyy + 2)2
J- DE - Dvjvj2d - )
2JU + 1)22) + 1)
(32+23 - 2)2»*»1(2) + 1)
23(3 + 1)3J + 2)2
J(J + 3)vitvi(2d + 1)
2(3 + 1) + 2)22J + 3)
vavi(2d - 1
JO - DI+ 2
tri+H2 + 1)

J+ 1)+ 222 + 3)
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Branches

AA= +1 nn= -1
sReAlJ) CPAJH+ )
LPiAJ) VR M - 1)
MQiAJ) uQ M)
nRiAJ) TP*AJ + i)
MP*AJ) UR M - 1)
nQ*AJ) QM)
°R*AJ) SP*AJ + i)
NPsAJ) TRdAJ - i)
°Q.,AJ) SQ M)
PR3AJ) RP*AJ + i)
°Pi5(J) sR5AJ - 1)
PQiAJ) RQ M)
QR*AJ) ap 5AJ + i)
PAJ) RAJ - i)
QAJ) QAJ)
RAJ) PAJ+i)

Acta Physica Academiae

Scientiarum

. KOVACS and A. GRANDPIERRE

Table IV
Line
X (a)-‘Y(a) X (<) - >Y(b)

VIiVjvsvEV}VE
2CAR)
VsVBV%VtvEVE
2CAP)

4 v3vivivt
2C5?)

«KBW e
2Q (R)
2vivirvbvivEvE
CAP)
2VjvévtazZvE
CAQ)
2vsVivsvs
CAR)
3vavArvijvgviv}
C5(P)
3«l»5»<T«’5 28
CAQ)
Sego (% M
CAR)
2v2v3»4vsvetjj"
CAP)
2vijvijvirvit2
CAQ)
2vZviVevEv}
CAR)

VIVI «lvila«i«ary,
23 2C5(P)
vivi(2d + 1) 1253 t' V5 VKI> f
2J(3 + 1) 2C5(P)
V7Vve
203+ 1) 2C6(fi)
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continued)
strengths
X(b) - 'Y (a)

ivjvjvgvfvi*
Ci(R)
vivivivivivi
2Cf(P)
i2p4,5t,6172
xM™m
vivivivivfvt
2CHR)
il2v,vtvfvt
2CZAP)
»TH*»a»?
2 m
VavjvEvEvtvt
2C}R)
HvY2I'2 vtV g
2Cr(P)
3oryrup# 2
2C3Q)
3vjvjvtvtv}ivs
2Ci(R)
VivAvjvE
2C4(P)
2C4C)
2Ct(R)
VivaIvivij
2C5(P)

vivavijvijvj

2CAi(C)

2C?(P)

10
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30506

J+ DI+ 2223+ 3)(2)+ 5)

VEVI(% J "b i)
G+ DI+ 2322 + 3)
vev7(2J + 1)
G+ 1P+ A3+ 3)
vs7e(2d - 1)
2(J + 2)(23 + 3)
Jvévf(2d + 1)
I+ DA+ 22

vtvs(2J + 1)
2(J + 3)(2J + 5)
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In the Tables
cr{p) = JckQ - 1) C.(R) = (j + Deck;
Ci(Q)= JIJ+~ Ck(J); 3)
J + 1/2
C,(P) = JCk(J); Ct(R) = (3 + 1)Ck(J + 1);
where for quartet transitions i = 1,2,3,4 and k=J —3/2,J —1/2,J + 1/2,
J +3/2, respectively and for quintet transitionsi = 1,2, 3,4, 5andk = J — 2,
J —1,J3,J + 1,3 + 2, respectively. For all Tables the terms of case a) were

assumed to be normal. Ifan inverted term occurs instead of a normal one then
the suffixes corresponding to the inverted terms in the branch symbols have
to be changed on the basis of the above correlation according to the pattern
for quartet transition 1 —4, 2 —-3, 3 —<-2, 4 —-1 and for quintet transitions
1—5,2—>»4, 3—»3, 442,51, respectively, wherever the inverted term
occurs.
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COMMUNICATIO BREVIS

SEGREGATION OF MAGNETOHYDRODYNAMIC WAVES
IN AN IDEAL MEDIUM

By

M. Y. Nasir*
DEPARTMENT OF THEORETICAL PHYSICS, LORAND EOTVOS UNIVERSITY, BUDAPEST

(Received 27. IX. 1977)

1. Introduction

A. l. Akniezer et al in their book “Plasma Electrodynamics” describe
that the fundamental equations of magnetohydrodynamics can be written
in matrix form. After linearizing and solving the equations they obtain the
phase velocities of different magnetohydrodynamic waves as eigenvalues of
a matrix. Corresponding to these eigenvalues they calculate different column
(right) eigenvectors and row (left) eigenvectors and show that an arbitrary
small perturbation of a magnetohydrodynamic quantity can be written as a
superposition of seven fundamental magnetohydrodynamic waves. In this
paper we reproduce these results briefly and extend them to prove that the
fundamental magnetohydrodynamic waves do not mix with each other.

2. Formulation and solution of the problem
We consider one dimensional wave propagation along a Z —axis and
take all magnetohydrodynamic quantities depending upon z and time t only.

The basic equations of magnetohydrodynamics for an ideal medium can be
written as [1]:

—0, 1l —1,2,.. 7, (1)

*On leave from Government College, Bahawalnagar, Pakistan.
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where A, and MIn are respectively, given by

(2)

vz 0 0 0 y 0 0
0 vz 0 0 0 0 0
0 0 2 0 0 —Brl4-ng 0
0 0 0 Vz 0 0 - Br/dsa:g

)
—C 0 0 vz Bx/4ng Byl4np
e Q ds
0 0 B 2 0 B x Vz 0
0 0 0 Bz By 0 «r

Here, gis the mass density, s the entropy density, v the fluid velocity, B the
magnetic field,p the pressure and Cs= (9p/3g)12the speed of sound. We linear-
ize the set of Eqs. (1) by substituting — At + A" and assuming that
the components A/(1*are small corrections to the unperturbed solutions AuQy
Thus, the Eqgs. (1) will become:

+ 2 Mm{Aw = 0. 4
dt =i { ) dz @

If the frame of reference moves with the fluid velocity and the coordinate
system rotates about a Z-axis, the matrix (3) can obviously be simplified to
a form 3illn (say). Using a plane wave trial function for the solutions

K Aid) = Os, e«kr-°>>% (5)

where o/llis the amplitude of Al(ly i = (—I)12 k the wave vector and the
angular frequency, we obtain a system of algebraic equations in terms of co
and Kk (or the phase velocity u = k). These equations are:

2 = UM e (6)
n=1

We observe that a vector Gthaving components c/l;is a column eigenvector
and u an eigenvalue of the matrix o/tin. We write

2 °Mn™n = u&i- ?)
n=1
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Thus, the solution of the wave problem is reduced to a proper value problem.
For a non-trivial solution of Eq. (7), we must have

MIn~ WK 1 — o, (8)

0ln being Kronecker delta. It is a polynomial equation in n of degree seven.
Solving this equation we obtain seven values of the phase velocity u; each
two corresponding to Alfvén waves, rapid magneto-acoustic waves and slow
magneto-acoustic waves and one to entropy wave. We can determine different
column (right) eigenvectors and row (left) eigenvectors corresponding to these
values of u. The sets of these column eigenvectors {G;} and row eigenvectors
{Fn} form a biorthogonal set. Therefore, we can write

2 F™MG\m =0 ifn™Z
m=1

©)
F™GT = YWUo.

m=1

Now the general solution of (4) can be written in the form:

i cm I (10)

n=1

=j 'ithqu (11)

Al(L)(z, t)

where C”" are coefficients to be determined later.
Let us assume that the equalities (4) are subejct to the initial condition:

N1 0) =1.(*). (12)
Now keeping in view the expression (5), we can write/ r(r) as a Fourier integral:
Al)(z,0) = /(*) = J//f)eite dA, (13)

where ft(k) can further be written as:

f(k) = 2:1 c{n)Gn)- (14)

The coefficients C'n\ with the help of the relations (9) and (14), will turn out
to be

2 F\n)Ne )

(O RV — . (15)
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Thus, Eq. (5) will take the form:

* 7
2 F™fmik) G\n
m=1

(Zi 0 Iil\%‘] eHkz—mt) (16)

implying that an arbitrary small perturbation can be written as a superposition
of seven fundamental magnetohydrodynamic waves.

3. Segregation

Interchanging the order of summation in (16) and taking the aid of the
Eqg. (9), we obtain

j<m

2 é<
Alw{z, t) = 2 . (Y — W eifa~i) dk = 17
= 2 IJr am,fm(b) eitkz~wt) dk . (18)

Therefore, iffm(k) represents one of the fundamental waves, the solution con-
tinues to belong to that very fundamental type; or cross-excitation does not
take place.

From the last expression, we note that any perturbation of a magneto-
hydrodynamic quantity in a given mode has contributions from the same mode
only and all other modes remain apart. Thus, we can conclude that magneto-
hydrodynamic waves do not mix with each other in an ideal medium.
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RECENSIONES

Lasers and Their Applications

Edited by Alberto Sona, Gordon and Breach Science Publishers, London, 1976
pp. 629 + XIV. Price £ 23.90

The book contains the proceedings of a Course on lasers and their applications from
the International School of Applied Physics held in Eric, Sicily from 31 May to 13 June, 1970.
The Course was a very significant meeting of researchers active in different areas from uni-
versities and industrial laboratories. The papers of contributors are valuable for young gra-
duate and experienced scientists interested in having basic information on laser sources and
some specific applications. However, the delayed publication of the book has led to its de-
preciation to a certain extent. As a matter of course the basic physics does not become out of
date, while the technological applications are more ramifying now as it is suggested in the book
and in many cases are realized with good results even in factory environments.

The work is divided into two sections headed, “Laser Sources” and “Applications”.
The first section contains seven papers on 252 pages. This part of the book deals with the phy-
sical processes in laser action, properties of open resonators. In the following the detailed phy-
sics of semi-conductor, dye, gaseous and solid state lasers is given with the discussion of tech-
nological problems pointing out the advantages and difficulties in the applications of each tech-
nique. Basic principles of laser theory are applied to the experimental results observed under
operation. In most cases the conclusions are supported by numerical examples.

In the second section different applications of lasers are discussed. It is difficult to
estimate the expectational effectiveness of these papers because of their inopportuneness for
the experienced scientist of our days. The lectures on applications dealt with theory and
applications of holography, information processing with optical methods, atmospheric propa-
gation, transmission of information with laser beams, distance measurements by laser beams,
machining with laser, medical applications, scattering experiments, nonlinear optics, plasma
generation and diagnostics. Valuable analysis of basic physics and some general technological
problems are explored scientifically.

To summarize, in this book we have a good collection of works on topics of laser physics
and its various applications. The literature listed at the end of each paper makes it easier for the
reader to pursue any of the topics covered in the book in greater detail.

The book is nicely presented and has an extensive set of figures to accompany the text

Z. FUZESSY

R. V. Dickey: Bifurcation Problems in Nonlinear Elasticity

Pitman Publishing Ltd. London, San Francisco, Melbourne 1976

This is the 3. volume of the series “Research Notes in Mathematics” edited by an editor-
ial board headed by Prof. A. jefrrrey (University of Newcastle-upon-Tyne). The aim of the
series is to publish current material of a specialist nature whose style of exposition is mostly
that of a developing sub|ject.

The present small volume of 119 pages (it looks like a lecture note) presents the most
important elements of bifurcation theory and its aBPIication to some 1problems in the non-
linear elasticity. Bifurcation theory deals with problems of solving differential equations of
the type F(u, A = 0, where F is in the most general context a nonlinear transformation defined
for v and Aa real parameter, when the solutions are not single valued functions of A The most
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important mathematical bases are given in Chapter 1 (Introduction) and Chapter 6 (Bifurca-
tion theory for second order ordinary differential equations) while the applications treated are
given in the other Chapters. These are devoted to the following problems of nonlinear elasti-
city: the static problem for the nonlinear string and circular membrane, the rotating string
and the buckling of the circular plate.

The volume is written on a rather sophisticated level, but in an elegant, clear style and
with many clarifying examples. A clever balance was held between the pure and applied side
of mathematics used and for every chapter references are given for a deeper study of the
subject. There is, however, no subject index and a slightly more detailed introduction as well
as a short conclusion would have been useful for a physicist reader, who wanted to use advanced
mathematical methods in different possible fields of physics.

J. Antal

H. Haken: Synergetics—An Introduction

Springer-Verlag, Berlin, Heidelberg, New York, 1977, pp. 325

Synergetics is a very new field of interdisciplinary research. It investigates the sponta-
neous formation and functioning of well organized dynamic structures caused by the cooper-
ation of many subsystems or phenomena. Such phenomena are an experience of our daily
life when we observe the growth of plants and animals. On the other hand, the whole universe
exhibits pronounced dY]namic structures from different samples of galaxies to living cells and
their constituents. In the last decades it has become evident that there are numerous examples
in physical, chemical and biological systems where well organized temporal, spatial or spatial-
temporal dynamic structures arise out of certain chaotic states. In contrast to artificial, man-
made machines, these dynamic structures develop spontaneously, i.e. they are self-organizing
and, many of the most fascinating and interesting phenomena occur in systems far from ther-
mostatic equilibrium. Many different disciplines cooperate in the theory of “synergetics” to
find general laws governing self-organizing dynamic structures.

The author, who is a pioneer of this interdisciplinary science, in this introduction tried
to present the different disciplines of synergetics as a text for students of physics, chemistry
and biology in an elementary fashion whenever possible. Therefore the knowledge of an under-
graduate course in mathematics is sufficient and the basic knowledge required for the physical,
chemical and biological systems is not very special.

The book contains twelve chapters concerned with the fundamental laws of Probability,
Information, Chance, Necessity, Thermodynamics, Self-organization and applications of the
general concepts and laws of these disciplines to physical, chemical, biological and sociological
systems and phenomena. The book is beautifully presented and has an extensive set of figures
to accompany the text. The treatise is very useful for physicists, chemists, biologists and so
on and it really is indispensable for university libraries. Nevertheless, we cannot find any new
and original concepts and principles in the text which would be characteristic only for the new
science of “synergetics”. Consequently, the real existence of this “new science” remains prob-
lematic.

l. yarmati

H. Bacry: Lectures on Group Theory and Particle Theory

“Documents on Modern Physics”. Edited by E. W. Montroll, G. H. Vineyard, M Lévy and
P. Matthews.Gordon and Breach|Science Publishers, London, New York, Paris, 1977, 586 p.

This book provides the basic concepts and theorems in group theory as well as selected
applications to the fundamental symmetries of elementary particles for physics students.
Complicated proofs are avoided but the notions and theorems are well enlightened. Numerous
exercises are included into the volume. The inquiring reader can find also specialized works
given in the bibliography.
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Chapter 1 yields a description of the elements of group theory. A whole chapter (Ch. 2)
is devoted to vector spaces followed by Chapter 3 treating the notion of group representation.
The finite representations of the linear groups and of their principal subgroups are contained
in Chapter 4. The next chapter deals with the topics of Lie groups and Lie algebras. Consider-
ing the importance of the rotation group in physics, a whole chapter (6) treats its properties.
In the subsequent parts topics essential in particle physics are selected: the Lorentz group
(Ch. 7), the Poincaré group (Ch. 8), the most essential internal symmetries of elementary
particles (Ch. 9) and unitary symmetries of hadrons (Ch. 10). Since the SU(6)-physics (Ch. 10)
therehis a great progress in particle symmetries, this can be pursued on the basis of the biblio-
graphy.

It is a real plesure to see such a volume containing also applications in a well summariz-
ed way. We hope it will be good reading for those interested in theoretical physics.

G. PocsiK

Amon Yariv: Introduction to Optical Electronics

Holl, Rinehart and Winston, New York, 1977.

In recent years the importance of quantum electronics has considerably grown in the
study of phenomena observed on both atomic and macroscopic levels. The latter field has
attracted ever more attention with the progress of applied research. The book contains the
basic principles of this discipline completed with new results obtained over the five years
which elapsed since its first edition. The concentration on the macroscopic features of interac-
tions between light and matter permit the phenomena to be described without recourse to
quantum mechanics which reappears only in the determintaion of certain parameters charac-
teristic of matter.

The reader is first introduced to the field of basic problems connected with the propa-
gation of electromagnetic radiation in isotropic and anisotropic media, then to the fundamen-
tals of geometrical optics. Finally, in this part, the propagation of optical beams and the
properties of optical resonators are discussed.

Subsequently, we learn about the behaviour of electromagnetic waves interacting with
atomic systems and about the basic principles of laser operation. This is followed by the de-
scription of the laser types most frequently used.

In some crystals the polarization in strong electric fields varies with the square of the
electric field intensity. This phenomenon can be utilized for a number of practical applications
such as the generation of second harmonics and parametric amplification. This section of the
Book ends with the discussion of the basic principles of the electrooptical modulation of laser

eams.

Some problems of light detection are also considered with special regard to the role of
noise. The operation of some of the most important light detectors is described.

The interaction between light and sound waves plays an important role in modern
applications (e.g. light deflectors). For this reason the chapter on the theory of these inter-
action can be very useful. This applies also to the chapter dealing with the propagation of
light in dielectric waveguides and with the basic principles of the so-called “integrated optics”.

The book is a useful manual for university students who are interested in quantum
electronics and it can be of good use to engineers starting research and development in the
field of modern optics.

N. K roo

Progress in Crystal Growth and Characterization

Editor: B. R. Pamplin. Pergamon Press, Oxford, 1977.

A new international review journal, planned to appear as a quarterly, edited by the
well-known specialist B. R. pamp1in, has been launched by Pergamon Press. The aim of this
new journal, as expounded by the Editor in the Introduction, is to review the important
technologies and methods of the rapidly developing subject of crystal growth and crystal
qualification before the results become outdated and thus to give general information on this
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field of research. Fast information is well served by the camera-ready copy techniques. The
issues are completed by book reviews and a list of current conferences and other events. From
time to time special issues are planned to appear on some up-to-date problems in the fore-
ground of interest, as e.g. Molecular Beam Epitaxy.

Workers in this field welcome this new journal which, beside filling the gap between
monographs and original papers, provides information for the beginners on the essentials
of the subject as well as for more advanced readers on recent results. The journal serves equally
well the interest of the experts of research and industry.

The first issue contains articles by 8. R. pamp1in 0n “The Evolution of Crystal Growth-
Techniques”, by B. k. Tanner 0N “Crystal Assessment by X-ray Topography Using Synchro-
tron Radiation” and by k. G. Barraciougn 0n “Crystal Growth of Ferromagnetic Semicon-
ductors”. From the high standard set by these papers one may conclude that the new perio-
dical will be most useful in promoting work in the field of crystal growth. R

. Voszka
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