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OPENING ADDRESS

By
K. Nagy

INSTITUTE FOR THEORETICAL PHYSICS, ROLAND EOTVOS UNIVERSITY, BUDAPEST

Ladies and Gentlemen,

it is an honour for me to welcome you on behalf of the Mathematics
and Physics Division of the Hungarian Academy of Sciences and also of the
Roland Edtvés Physical Society, to this conference on weak interactions.

As time goes by the Conferences on Physics at Lake Balaton are growing
old enough to have traditions. Several years ago a much smaller group of
physicists convened here, at Balatonvilagos, and later at Balatonfdldvar, to
discuss topics in elementary particle physics, which were then of interest.
The last conference took place at Keszthely, two years ago. It already prided
itself upon greater publicity. Among its participants one found well known
physicists from distant countries and a noticeable reaction to it from abroad
could be felt. All these conferences have been very important in improving
our connections with the physicists of foreign countries. Let me sincerely hope
that the same will hold for this conference on weak interactions. Nowadays
active work in the natural sciences, especially in physics, is inconceivable
without exchanging ideas during personal contact in the atmosphere of vivid,
“open air” conferences. It is far from my intention to exaggerate the signi-
ficance of these conferences at Lake Balaton, or their role in the promotion of
physics. But they are significant to those doing physics in Hungary, in enabling
them to meet eminent persons in the various fields covering their interests.

Physics in Hungary has its past, present and future. The name of
Roland Estves, his investigations as to the equivalence of gravitational and
inertial mass, are known everywhere. We are witnesses to a revival of interest
toward this problem, evoked by recent measurements of Dicke. But “real
action” to enlarge the basis for research work in Hungary was taken only during
the last 10 or 15 years. We now possess good young physicists and they are
engaged in up to date problems of modern physics. We do not undertake great
things, yet by fitting in, from time to time, small bricks in a rather modest
way, we still may contribute to what can be called the majestic building of
modern physics.
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6 K. NAGY

Nobody, indeed, should be ashamed of being overwhelmed by the
riches of the microcosmos, revealed by the rapid progress of the experimental
techniques of recent years. We seek to bring to light laws and symmetries in
order to find our way through the jungle of microscopic objects. We are led
by the conviction that the world seen by awider vision is much simpler than the
fraction of it we are acquainted with at present. To make use of a foggy simile:
we see perhaps the peaks emering from the clouds, without seeing the ridges,
which connect them according to deeply established rules. We often meet the
unexpected during our search for the ridges: such was the case in recognizing
the parity-violation, or more recently, in the experimental discovery of CP-
violation. Now we have the problem of the existence of the quarks, and
whatever the outcome of the experiments it will be a surprise. There is an
incentive in those surprises; they give wings to research work and, ultimately,
bring us closer to reality. Personally, | tend to believe that the concept of a
small number of elementary particles will prove realistic and the variety of
phenomena we are aware of are produced by the various interactions.

In its title our conference bears the name of “Weak Interactions”. But
I hope this conference will be a place for a peculiar mutation of weak inter-
actions into strong ones — as far as scientific cooperation is concerned.

That is predominant in my mind, when | open this conference and
wish you good work and useful discussions.
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SESSION 1. WEAK INTERACTIONS

POSSIBLE TESTS FOR THE VIOLATION
OF PARITY AND TIME REVERSAL IN NUCLEI

By

Z. SZYMANSKI

INSTITUTE FOR NUCLEAR RESEARCH AND UNIVERSITY OF WARSAW, WARSAW, POLAND

The possible tests for the existence of weak nucleon-nucleon force and the violation of
parity and time reversal in atomic nuclei are discussed.

1. Parity

In the present review the tests for the existence and properties of weak
interaction acting between nucleons in atomic nuclei are discussed. Itmay
seem at first sight that the detection of such an extremely weak and fine force
cannot be possible in the background of the strong interactions between the
nucleons in nuclei. In fact, the relevant parameter that estimates the relative
strength of weak to strong force is

- weak force potential G'MRn 10-7A 13,
nucleédr potential n

where G is a constant appearing in the weak correction to nuclear potential
(see formula (4) below). It is of the order of the weak coupling constant G.
In equ. (1) RO denotes nuclear radius.

The weak effects of this size would never be detectable if the invariance
properties of the weak force were not different from those of the strong inter-
action. The violence of parity invariance (P-violence) makes ever possible the
investigations of such effects which would vanish if strong force were present
as the only interaction between the nucleons.

The weak nucleon-nucleon force arrives from the self-interacting nucleon
current. In the V—A current-current theory [1] it has the form:

Lself= KB G n vn ! fj_y?p [/ [p——— n (2)

in the self-evident notation. Expanding this expression in powers of 1/c we get
a contact P conserving interaction in zero order, while the first order term
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8 7. SZYMANSKI

produces a pseudoscalar interaction containing expressions like (G, — G))
(Pn — Pp) tending to align the nucleonic spin in the direction of their motion.
The expressions have been derived by BrLiN—StovrLE [2] and MicrEL [3]
and are of the form:

B8 il woarmn b v olr Trls

% ((Gp il Gn) {pp — Pn» Cs(xn RO xp)} A
@)

iEp X a:n [—ﬁp o isn ’ 6(}n R ‘;P)]) .

The simple averaging procedure applied to the nuclear model consisting
of a nuclear core plus one outside nucleon leads [3] to the contribution to the
nuclear average potential

u? =G'G-p, )

where G is proportional to the weak coupling constant G. Here again, the
potential tends to align nucleon spin along its linear momentum. The derivation
of this formula is over-simplified, as it completely neglects the radial depend-
ence. Expressions of a different form are also possible in principle (see [4]).

As a result of the weak, P-violating corrections to the nuclear potential
we shall have to deal with nuclear states which are no longer exactly charac-
terized by the parity quantum number. The wave functions will then contain
the opposite-parity admixtures;

= "/’reg'A+ FYo WYirreg » (5)

where « depends on the magnitude of nuclear matrix elements of uPVF,
while ..., denotes the regular part of the wave function (i.e. the eigenstate
of a nuclear Hamiltonian without the correction term u(P)). The other com-
ponents, Pjeg, have the opposite parity with respect to 9eg.

Now, owing to the existence of that ‘irregular’ admixture the well-
known parity selection rules for electromagnetic transition will nolonger hold
exactly. If the lowest regular transition is for example M1 then a trace of
simultaneous E1 multipolarity should also be seen.

There are two immediate consequences of the existence of such irregular
transitions. In the case when the nuclear source emitting the radiation is
unpolarized we should expect the outgoing gamma-ray to be slightly
circularly polarized as the only consequence of P-violation. In other words,
the number of right-handed photons IV, is slightly different from that of the
left-handed ones N_ and therefore the polarization

= N+_N:

is different from zero.
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POSSIBLE TESTS FOR THE VIOLATION OF PARITY IN NUCLEI 9

If, on the other hand, polarized sources are used then the circular
polarization of outgoing photons occurs anyway and isnot a test forP-violation.
However, in this case the existence of the pseudoscalar part n (see equ. (4))
causes a slight asymmetry in the angular distribution of the outgoing photons
with respect to the polarization. In other words, the expression for angular
distribution W(Q) contains a term with cos 6:

Ue6) =1+ FRcosO, (6)

where angle Ois measured from the polarization direction, while B again depends
on nuclear matrix elements.

As the expected sizes of all the effects are very small owing to the pre-
sence of factor £ in formulae (5) or (6) one has to look for those suitable cases
where the nuclear conditions strongly favour the irregular part of transition
with respect to the regular one. In other words parameters a and R from equs.
(5) and (6) have to be as large as possible. For example if the regular transition
in the nucleus is forbidden for some nuclear reasons (such as approximate
1-selection rule, for instance) then we may expect that the relative importance
of the irregular transition is much higher. Following this line Boenm and
Kanketleit [5] used the Tal8l nucleus as a test for the detection of circular
polarization of the 482 keV gamma radiation. The regular M| (-f- E2) trans-
ition is accompanied by the irregular £1. As the regular M | is approximately
105times forbidden in this case the irregular £1 is relatively stronger and the
measured polarization is

P= (—2% 0,4) »10~4.

The method of a polarized source was used in the experiment of Abov,
Krupchickij, Oratowskij [6]. They bombarded a Cdl13target with polarized,
thermal neutrons. A highly excited 1 -f- state of a Cd1l4 nucleus is then pro-
duced, and the source is polarized. The 1-|]-— > O0-f- regular transition is then
of the M| multipolarity. The negative-parity admixtures in the 1-)- state
cause a slight £1 transition and then the asymmetry in the angular distribution
results as shown by equ. (6).

In this case of a very high excited state obtained by a thermal neutron
capture there are many 1— states nearby, which can be mixed with the 1-)-.
Then the factor B from equ. (6) is quite appreciable and the measured asym-
metry coefficient is:

RE= (-3,7 + 0,9) m10-4.

This experiment has been repeated for Cd1l4 and some other nuclei by
Abrahams et al. [7]
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10 Z. SZYMANSKI

Another method for testing the violation of P-invariance has been used
by G. Scharff—Goldhaber and McKeown [8]. They have investigated a
58 keV gamma line of the transition 1143 keV (8—) 1085 keV (8-)-). Here the
nuclear selection rule for the regular EIl transition (K — selection rule with
AK = 8) gives a hindrance factor of the order 10le. Such a high degree of
forbiddenness makes possible a direct comparison of the regular P11 transition
with the irregular M1 component. The experimental determination of the
conversion coefficients leads to the following suggested mixture:

90% Pl + 10% M1 .

Unfortunately, the result may be ambiguous as the penetration effects
in the electron conversion process offer an alternative explanation for discre-
pancy between the experimental and calculated conversion coefficients.

The above nuclear experiments seem to be important not merely because
they test the violation of P-invariance. After all, this fact has been known for
a long time from beta-decay experiments. However, the above experiments on
circular polarization or gamma-ray asymmetry are the first observations of a
self-interaction in the current-current theory of weak interaction which is
then confirmed very reasonably in this way. On the other hand the experiments
give for the first time a measurement of the weak process in the first order of
the coupling constant. Then, not only the magnitude but also the sign of the
interaction can be determined. For this purpose, as well as for the quantitative
determination of the weak coupling constant G all the steps of a sequence have
to be investigated carefully:

[weak 1 ( non-relativistic 1 [ average j [experimental 1
Icoupling | | two-body weak | Inuclear | leffects in

|with a j Jj force between | | weak j [nuclei (circular

constantG1 (1) | the nucleons 1 (2) 1 potentiald (3) ».polarisation, asymmetry) 1

Steps (1) and (2) were examined by Birin—Stoyte [2] and Micher [3]
while step (3) was first estimated by Bi1in—Stoyte [2], Michet [3]. Then
Wahtborn [9] has done more detailed calculation employing the present
knowledge of nuclear structure and models. His calculation could be easily
repeated for any particular case (see for example [10]). The calculations are
unfortunately very involved. However, the sign of G determined in this way is
compatible with the possibility of the existence of the intermediate boson.
The opposite sign of G would have ruled out that hypothesis.

2. Time-reversal

The problem of testing invariance with respect to time-reversal T has
become especially interesting after the discovery of a K° —=2n decay which
violates CP and therefore also T by the CPT-theorem. The question whether
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POSSIBLE TESTS FOR THE VIOLATION OF PARITY IN NUCLEI 11

this decay is a real proof for the existence of interactions which are odd under
time-reversal does not seem to be settled yet. Many speculations have been
introduced in order to explain the possibility of such interactions. We shall
not attempt here a discussion of the various approaches to the problem.
Assuming that the experimental consequences in the nucleus are essentially
the same we shall pick out one of the suggested theories and try to investigate
its consequences.

Let us take, for example, the suggestion of Zweig—Zachariasen [12]
that the weak-interaction Lagrangian contains not only V and A terms as in
the usual theory but also P — S and T — T(T — pseudotensor) currents of
baryons as well. Now, in the ordinary beta decay or in any other lepton decay,
the current of leptons (which is assumed to have only the V — A component)
automatically picks up the V — A part of the baryon current. Then the
T-violating terms can occur only in non-leptonic processes and can also
contribute to the nucleon-nucleon force. The same terms are also odd with
respect to the parity transformation P. For reasons of symmetry (see [12])
the T-violating part of the Lagrangian which comes from P —S or T — T
interference should be expected to be of a much lower strength compared
with the usual weak interaction. In the Zweig—Zachariasen theory the
corresponding factor is of the order of 40% (and this follows from the square
of the sine of Cabibbo angle). Then, the resulting magnitude for the ratio
K2->2n/K2-3- 37 comes with the right order of magnitude as compared
with experiments [11].

As in the case of the usual weak Lagrangian (see equ. (2)) we may try
to determine the nonrelativistic nucleon-nucleon interaction resulting from
[12] as an example of a P- and T-violating theory. The result is:

G<T>]/8 .
ygE’T): AMC (i(a2_ opy [pi - P1'0(X2— *1)]~

- (0 X a2 {Pl - p,,6(x2- XIJ),

where GM7) is of the order of 4% G. The averaging procedure similar to that of
Michet [3] performed in this case gives:

UP'T)= G'~r-d, (8)

which is the analogue of equ. (4) with G'(T) 4% G"

The very small size of the expected interaction makes experimental
tests extremely difficult, if not hopeless, at present time. Let us try, however,
to consider the consequences ofthe T-violation imposed by such an interaction.

In order to better realize what the effects connected with T-violation in
the nuclear system are let us recall the well-known theorems which follow from
the assumption of the T-invariance of the system. They are:
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12 Z. SZYMANSKI

1. The system containing the odd number of fermions exhibits an energy
spectrum with at least doubly degenerate eigenstates (Kramers degeneracy).

2. The reality of matrix elements. In the case of electromagnetic trans-
itions in nuclei we may make all the matrix elements real. For a standard
phase-convention this is achieved by multiplying the electric transition
operators by i* and the magnetic ones by i**1 (A-multipolarity).

3. The static odd-A electric moments and even magnetic ones vanish.
This follows from 2.

Now, if T-invariance is violated in the nucleus we may expect that
none of the above theorems will be valid exactly. As for the splitting of the
Kramers degeneracy in nuclei it turns out, that the principle of rotational
invariance (or at least reflection symmetry in the deformed nuclei) still keeps
the corresponding pair of energy eigenstates degenerate. Therefore, there is no
Kramers splitting in nuclei.

Let us now turn to Theorem 2. We may expect the relative phase to be
measurable in a whole variety of electromagnetic processes. As an example
let us take 482 keV transition in Ta'®l. A measurement of photon linear mo-
mentum % together with its linear polarization & can be performed as a func-
tion of the asimuthal angle @ in the plane perpendicular to k. If the initial
target is aligned (with the degree of orientation even) the number of pola-
rized photons is given by

W(p) =1+ 0.222 cos 2¢ + 1.5 - 1075 - sin 2¢ .

Here, the last term corresponds to the irregular (P- and T-odd) part of the
interaction. The resulting rotation of a polarization pattern would be very
hard to detect because of the very small expected size of the effect.

Perhaps the best possibility for testing the simultaneous P- and T-
violation is offered by the corrections to Theorem 3 if it is not valid exactly.
The electric-dipole moment of a neutron for example should have the value
of the order of

exr=l af,

where e is the elementary charge, r is the neutron dimension, F' is the relative
strength of weak interaction, while f determines the relative strength of
oD compared with o (see equs. (4), (8)). Taking r = 10~ cm, F = 1077
f =49, we get for the neutron electric dipole moment a value of the 102!
cm - e. Perhaps the measurement of a quantity of this order is not completely
hopeless (the measurement of SwmiTH, PUrRCELL and Ramsey [13] give
102° ¢cm - e as an upper limit) and we may expect that tests of this type may
be actually performed in the near future.
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h

3. WMMAHbCKWNA
Pes3tome

O6Cy>X/aeHbl BO3MOXHbIE MPOBEPKM CYLLECTBOBaHUS Cnaboli HYKMOH-HYKIOHHON CUfbl
HapyweHusi P- u [-WHBapUMaHTHOCTW.
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RATIO ca/icv AND TIME REVERSAL INVARIANCE
IN NEUTRON BETA DECAY

By
G. CONFORTO

CERN, GENEVA, SWITZERLAND

The existing data on the asymmetry coefficients of the various correlations in the beta
decay of free neutrons are applied to determine the A/V ratio and the relative phase A, V.
It is shown that by using the above data the error of the generally accepted A, V value can
be decreased by 25%.

1. Introduction

The neutron beta decay
n—ap -)-e+ V

is known to be described by the Universal-Fermi-Interaction-F,A-Theory
[1, 2] i.e. by a Hamiltonian of the form

H = -y=-<«IY~1+ YD\V><PIYAl+ calcvYs)\n) + h.c,

where Cv and Ca are the vector and axial vector coupling constants respect-
ively. The ratio Cn/Cy can be written as

CA/ICV = oep

where @and Pare real constants.

If time reversal invariance holds in neutron beta decay, the ratio Ca/Cv
must be a real number [3] which means that the only possible values for
are either 0 or n. It is known that experimentally @= n [4]. However, after
the discovery of the CP violating decay -> 2n [5], it is interesting to redis-
cuss the experimental situation to see what information is actually available
as far as time reversal invariance in neutron beta decay is concerned.

The value of @has recently been calculated on certain theoretical grounds
[6]. This number is of fundamental importance in a number of questions in
the field of weak interactions and its most accurate determination is clearly
desirable.
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16 G. CONFORTO

Both a and @ can be determined from the existing data on the decay of
free polarized neutrons. Further information on a can be obtained from a
knowledge of the neutron lifetime and the study of 0+ — 0+ transitions.

It is the purpose of this paper to use all the experimental information at
present available in order to obtain the best consistent determinations of
a and @

2. Free neutron data

The values ofthe asymmetry coefficients a, A, B and D in the correlations

1+ a Pe ’Pv "
Pe 'Pv
J-Pe
I+ A 2)
JPc
1+g VPV 3)
j Pv’
1+ D— =« Pex fti, 4
J PePv
(pe= electron momentum, pp= neutrino momentum, J = neutron spin),

measured in the beta decay of the free neutron, can be used to determine the
best values of the quantities a and @@

Assuming that only V and A terms are present, the expressions for the
four considered coefficients are given by [3]

o = 1- a2 )

1+ 3a2
Rl
: ~ ia+5i;aq;' ®
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The available experimental determinations of the asymmetry coefficients
are listed in Table I.

Table 1
Experimental result Reference
a= 007z 012 M
a= —0,06 + 0,13 8]
a——0,12 + 0,04 [9]
A = —0,114 + 0,019 [,
A = —0,09 + 0,05 [101
B = 0,88 + 0,15 [4]
B= 096+ 040 [HI
D= 0,04 = 0,05 [4]
D= -014 + 0,20 [HI

The weighted averages of the results quoted in Table | are listed, together
with the corresponding values, in Table II.

Table 11

Weighted average

a= - 0093 + 0,036 2,35
A = —0,111 =+ 0,018 0,20
B = 0,89 +0,14 0,03
D = 0,029 + 0,048 0,76

The y? values obtained indicate that the various measurements of the
same parameter are consistent among them.
The best determinations for a and <p and their errors can be obtained

from the function (oc, ¢ constructed by using formulae (5), (6), (7) and (8)
and the results of Table I.

More precisely

(a(a) + 0,098)- (+(*y)+ 0,111)2

‘ K (0,036)2 (0,018)2
(B (€ () —0,89)2 (D (a,"- 0,029)2 ®)
(0,14)2 ’ (0,048)2
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18 G CONFORTO

The best values oc* and cp* are those for which % (oc, <) reaches the minimum

value.
Fig. 1 shows the plot of the function 92 (oc, go* (oc)), where, for each o

cp*(oc) is the value of pwhich minimizes £2a,c>). This curve does not show
any appreciable deviation from the curve %(a, <.

Free neutron correlations

X1[a, if<ta)7
a<250xmi
120 125 130 a
Fig. 1

A line drawn across the curve at y?(oc* (p*) - 1 encloses a 68% con-
fidence interval (1 standard deviation). From the curve of Fig. 1, ccisdetermined

to be
X = 1,250 = 0,044 .

Similarly, Fig. 2 shows the plot of the function %2oc*(cp), cp) where, for
each (p, oc*(<p) is the value of o« which minimizes /2<xcp). The dotted curve
represents the functions £2a*,¢c>). With the same procedure used for the de-

termination of oc, the best value for ¢ is

= 176,1° £ 6,4° .

The minimum value of %2(oc, ¢p) is found to be

X2a*,cp*) = 0,49
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19
which indicates that the correlation data are very well fitted by formulae (1),
(2), (3) and (4).

The results obtained should be compared with the best determinations
at present available in the literature [4]

x — 1,25 0,05 (with the assumption @= 180°)
<= 175° Jr 10° (with the assumption x = 1,25).

3. 0+-> 0+ transition data

An independent determination of x can be derived from the relation [1]

wft(Q:!!->o0on 1 3 X,
ft {n) 2 2
From the values
ft{n) =

(1213,4 + 35) sec,

+ (11)
ft{O14) = (3127,3 = 77) sec

a = 1,180 = 0,028 .
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20 G. CONFORTO

The errorsina and in/i(014)are assumed to take into account all statistical
and systematical uncertainties. The largest contribution to the error in a in
any case arises from the error in the measurement of the neutron lifetime [13].

The accuracy claimed for this determination of @ is somewhat better
than that obtained from the free neutron data. However it has to be pointed
out that:

Freeneutron correlatios
xYa/p4a)] *fttn)<-ft(OK

a) The measurement of the neutron lifetime has never been repeated
and actually some criticisms of this result have been raised [2]. The determin-
ation of awfrom the free neutron data comes, instead, from several measure-
ment, all self-consistent.

b) The value of @obtained in Section 2 comes from more direct experi-
mental observations and does not depend on any calculation involving nuclear
physics and with very good approximation is not affected by radiative
corrections [14].

At any rate, the two values of @are compatible and there is no a priori
reason why all the available information should not be used in the determin-
ation of @ and

Equations (10) and (IT) give a fifth term to be added in equation (9).
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W ith this new definition of %(oc, @) one obtains the two functions plotted in

Figures 3 and 4, in complete analogy to what has been shown in Figures
1 and 2.

The final result obtained by using the method discussed in Section 2, is

a= 1,198 + 0,022 ,
+ 7,6°

= 174,3° ,
q) _7'00

The minimum value of "2, o) is found to be

**(«e,70) = 2,58

which indicates that the new information is, in fact, compatible with the
correlation data.

4. Conclusion

To summarize it has been shown that:

a) For each correlation, the existing measurements of the asymmetry
coefficient are consistent among them.
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b) The experimental data relative to the four considered correlations
are well fitted by the V, A theory (a*,<p*) = 0,49).
c) The free neutron data give

a = 1250 + 0,044, $p= 176,1° £ 6,4° .
d) The free neutron data are compatible with the value
a = 1,180 = 0,028

derived from the OMand neutron ft values (%2oc*, f*) = 2,58).
e) The best determination of « and <p obtained by combining the free
neutron correlation data with the OMand neutron ft values is

*= 1,198 + 0,022, @@= 1743° _ J’jj*.

The author is deeply indebted to Drs. J. Baxley, J. K. Bienlein,
W. Cleland, K. Kajantie and M. Boos for many helpful discussions and
valuable suggestions.
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14. Radiative corrections are not expected to influence appreciably the correlation properties
since the leading term in radiative corrections is independent of the form of the inter-
action, and terms which depend on the form of the interaction vanish in the limit
me= 0 and a = 1. See also for previous references S. A. Berman and A. Sirtin, Ann.
of Physics, 20, 20, 1962.

OTHOLWEHWE Ca/Cy W T-MHBAPUAHTHOCTU B BETA-PACMALE HEMTPOHA
0XX. KOH®OPTO

Pe3ome

CyluecTBylOLME AaHHble OTHOCWUTENIbHO KO3(MULMEHTOB acvMMETPUM pasHbIX Koppe-
nauunii B 6eTa-pacnage CBOOOAHOrO HEMTpPOHA WCMOMb3YHTCA A5 ONpeAeneHns OTHOLIEHUS
A/V 1 OTHOCUTENbHOW (hasbl A, V. lMokasaHo, YTo, yuMTbiBas 3T AaHHble, OLWIMOKa 06LLenpu-
HATOr0 3HayeHMs A/V MOXET ObITb yMeHblueHa Ha 25%.
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THE VALUE OF THE FIERZ TERM AND THE
RECENT DATA ON THE e/t+ RATIO IN
FORBIDDEN TRANSITIONS

By
D. Berényi

INSTITUTE OF NUCLEAR RESEARCH (ATOMKI) OF THE HUNGARIAN ACADEMY OF SCIENCES, DEBRECEN

In connection with the finite value of the Fierz term derived recently from an e/R*
ratio measurement, the new data on e/R+ are analysed in forbidden transitions.

Recently, Williams carried out measurements for the branching ratio
of electron capture to positron emission in jhe decay of NaZwith much greater
accuracy than in earlier studies [1]. The 0,1041 0,00098 experimental value
determined by him is less than the 0,1135 ~ 0,002 theoretical value. From this
datum for e/B+ he derived a value of the Fierz term b= —(2,5 = 0,6)%
which definitely deviates from zero.

If the theory of two-component neutrinos holds then it demands the
Fierz term to be identically zero even if the beta interaction has not a pure
V—A character. In this way the Williams’ result would be very important
from the view-point of both theories but a difficulty here is that the transition
of Na2to the 1275 keV excited state of NeZ2 where the measurement was
carried out is a /-forbidden transition in all probabilities.

My present short lecture is to analyse the recent measurements on e/B+
for forbidden transitions in order to examine whether the deviation obtained
by Williams is explicable by the /-forbiddenness on the basis of the experi-
mental data available.

A comparison between the experimental and theoretical values of e/B+
for the known three /-forbidden transitions was made [2] just at the time of
the publication of [1]. It was stated that there exists a deviation from the per-
mitted value at most in the case of Zn@®but according to the last measurement
of Taylor and Merritt [3] this does not hold. In spite of these facts we can
say nothing certain about the expectable deviation in /-forbidden cases because
the number of such cases are very few and the relevant measurements are not
sufficiently accurate in comparison with Williams’ measurement.

However, the question arises, whether some general trend exists for
e/B+ with the increase of the forbiddenness. According to the theory [4, 5] in
general, the ratio either agrees with the permitted value or is higher for for-
bidden transitions. Experiments have supported this hypothesis until now
[6, 7] and where deviation was indicated it was in a positive direction. Asitis
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well known e.g., for the 2~ 2+ transitions, these experimental data were

consistently 20—50% higher than the theoretical permitted values [8].
However, during the last year, some new data on the e/R+ for first

forbidden transitions were published (Table 1) which confused the previously

relatively clear picture. These data are partly in contradiction with each other,
too (cf. Table 1).

Table |

Recently measured branching ratios s”jR* in first forbidden transitions

E ft~ Allowed Experimental
Nuclide Transitions Al An End-point t?,z‘:ﬂee“g?l Vaw% Authors, year Ref.
energy - £ A
(keV) eKIR+ o +
Xa|Eu 5/2 +—3/2- 1, yes 800 47 100+ 20 Avotina et al. [10]
1965
120 Zhelev, 18]
Musiol 1965
Y|Ewm 5/2+-*7/2- 1, yes 1740 3,4 <5 Avotina et. al. [10]
1965
3,4 Zhelev,
Musiol, 1965 [11]
‘«Eu 5/2+—3/2- 1, yes 433 407 160 Avotina et al. [9]
1965
'e3En 5/2 +-*5/2- 0, yes 509 265 170 Avotina et al. [9]
1965
‘»>Er 3/2--*1/2 + 1, yes 820 64 400+ 200 1Gromow et al. [12]
1965

*From the zyryanova tabulation [14] by linear interpolation. The calculations of

Zyryanova differ from those of zw eirer [15] in that in the earlier the finite nuclear size also is
taken into account.

A measurement for Eul47, not included in the Table, was also performed.
McNutty et al. [13] stated that for the two transitions indicated in Table I,
as well as for the transition to the SmM/ground state (5/2+ -> 7/2 ) together,
the experimental e/B+ ratio is definitely higher than the theoretical one.

On the basis of the existing experimental and theoretical results we can
draw the following conclusions. To make clear the regularities for the electron
capture — positron emission branching, it would be very useful to perform
more accurate measurements for the e/B+ ratio for forbidden transitions.
Accurate measurements for pure Fermi and G-T allowed transitions would
be of great help in checking the theory of two-component neutrinos. If in
such experiments the Fierz term has a non-zero value it is in contradiction
with the theory of two-component neutrinos and at the same time the experi-
ments can give information on the S or T admixture to the V—A interaction.
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Finally, it is to be noted that the new data included in the Table have a

very important bearing on the theory of branching between electron capture
and positive beta-decay [6]. Namely, for the non-unique first forbidden trans-
itions where the mentioned deviation exists between theory and experiment,
experimental data have been available till now only for transitions of 2~ —m2+,
Al — 0, yes type. Unfortunately, the accuracy of recent data on transitions
with Al — 1, yes (cf. Table I) is very poor.

©

10.

11.

13.
14.

15.
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3HAYEHWNE WHTEP®EPEHLUWMOHHOIO YJ1EHA ®WPUA U HOBbLIE JAHHBLIE

MO OTHOLWEHWIO e/f* B 3ATIPEWLLEHHBIX MEPEXOAAX
. BEPEHN

Pes3tome

O6(:y)K,quV|e HOBblE JaHHble N0 OTHOLUEHUIO e/R+ B 3anpeLleHHbIX nepexojax, B CBA3U

C KOHeYHbIM 3HayeHWeM WHTep(epeHLMOHHOro uneHa Pupua, NOMyYeHHbIM HeAaBHO W3 U3-
MepeHus OTHOLWeHus s/R*.

Acta Physica Academiae Scientiarum Hungaricae 22, 1967






Acta Physica Academiae Scientiarum Hungaricae, Tomus 22 (1—4), pp. 29—45 (1967)

NUCLEAR PARAMETERS FROM THE
MEASUREMENTS OF THE /?-DECAY SPECTRUM*

By
E. Balazs
»

RESEARCH GROUP FOR THEORETICAL PHYSICS OF THE HUNGARIAN ACADEMY OF SCIENCES,
BUDAPEST

A general formula is given for the shape factor of the energy spectrum of the /~-decays
forbidden in arbitrary high order. The method used allows us to take into account configuration
mixing, too. New equations obtained from the measurements of the shape factor provide a
possibility to learn experimentally about new matrix elements characteristic for the nuclei
participating in the transition. The numerical discussion of the decay CI¥— SQis investigated
as an example.

1. Introduction

In order to obtain information concerning the nature of weak interactions
the theoretical analysis of the experimental data obtained from /l-spectroscopy
was of greatimportance in recent decades. After 1957 /1-spectroscopy provided
a new possibility to nuclear physics; after having learned the fundamental
form of weak interactions it has become possible to collect useful information
concerning nuclear structure from the observed properties of "-transitions.

All the results obtained by many authors, e.g. Fierz [1], Konopinski,
Uhlenbeck [2], Rose, Osborn [3, 4], Marshak [5] contain approximations
and they give exact formulae only for second forbidden transitions at most.
These formulae contain the reduced matrix elements as unknown nuclear
parameters.

In the case of transitions forbidden in higher order, the calculation is
rather complicated by the increasing number of unknown parameters. Thus,
the analysis of the experimental data in terms of nuclear parameters is rather
difficult.

On the basis of the calculations carried out by Konopinski and Uhlen-
beck, and taking into account the fact that all the four particles participating
in the transition are in energy, parity and angular momentum eigenstates, i.e.
their eigenfunctions have the form

F Kk (r) f«,M, (r)

VS 00 (U
iF'», (r) AmAr),

* Part of this work was undertaken at the Institute for Theoretical Physics, Roland
Edtvos University, Budapest.
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Montvay [6] proposed a new method to calculate the transition probabilities
of /3-decays and electron capture (in Eq. (1) Xj is the spin-orbital quantum

t
number, r= — [ fXMf, f'XMt are known angular functions. FK and FK are

known exactly only for leptons). The results ofthis paper [6] refer to transitions

forbidden in arbitrary order but only for nuclei with one nucleon outside the

closed shell. Later on he completed these results [7] for the case of nuclei

with more nucleons outside the closed shell. For the sake of clarity the main

results of [7] are given in Appendix 1. Moreover, he succeeded in reducing

the unknown matrix elements to radial matrix elements of the nucleons.
Let us introduce the notation for the radial matrix elements

Ri (*«> xv) = 3 drr2UXi(r) V¥ (r).

#2K , *)= (drr2UXi (T) Kv(r),

2)
R3(*,,*) = Imdrr'U”~r) VX (r),
Ad(*,,*) = j drr UKIT)V "Xe(r)

where xu(xv) stands for the spin orbital quantum number of the final (initial)
nucleon state. U(r) (F(r)) are the radial parts of the “large” components of
the wave function of the final (initial) nucleons. The primed letters denote
those of the “small” components and R is the radius of the nucleus.

The transition probability of /3-decay can be expressed in terms of these
quantities (cf. Appendix 1) as

even

Y rij (UVIUV)RI Ky Rj (*Uxv) +
uv_uv
od P 3)
+ 2Z ri(UVIuv)Ri(Xuxv)Rj (xuxv) m
n uv
i3

The quantities r-y, r-y are easily calculable numerical coefficients. They
contain the known radial integrals of the leptonic wave functions as well as
the angular integrals of all the four wave functions. The other notations used
in Eq. (3) are explained in Appendix 1.

The transition probability of the electron capture has a form similar to
Eq. (3), differing only in the numerical coefficients of the unknown parameters.
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In Eq. (3) the unknown parameters are characterized by xuxv. This
means that in the case of pure configuration we are confronted with only 10
nuclear parameters independent of the order of forbiddenness, and the formula
is also suitable for describing transitions between nuclei with configuration
mixing. (In the case of configuration mixing the number of the unknown
parameters becomes inconveniently large.)

Hence taken the values of I'§+, and the branching ratios K/R+, L/K
from the experiments, we are able to construct equations forthem containing
the nuclear parameters; these equations, however, will not be sufficient for
calculating uniquely even the ten parameters occurring in the case of pure
configuration. Therefore, we have to look for further equations regarding other
measurements of /3-spectroscopy.

In the present paper a general formula for the shape factor ofthe energy
spectrum of /3-decay is given (Sec. 2) and the second non-unique forbidden
transition CI38-> SPBis discussed as an example (Sec. 3).

2. The spectrum of the /3-decay

The energy spectrum of the electron (positron) emitted by /3-decay may
be written in the following form:

P(e) de = EcquZF (fi, ~ Z) CR(e,e0Z) de, 4)
n

F(e, £Z) is the Fermi function [8], CB (e, €0, Z) is, by definition, the shape
factor which depends on the energy of the electron only in the case of forbidden
transitions, p = Js2— 1, q= e0— e and e0 is the energy difference between
the initial and final nuclei. (In all our calculations and formulae the units
H= me= c = 1 are used except when specified.)

By a simple modification of Eq. (A2) one can also obtain the explicit
form of the shape factor for transitions forbidden in arbitrary high order.
The main steps of this procedure are as follows.

In the literature, the energy functions tsF"4 and (radial parts of the
wave function of the neutrino and electron, respectively) are normed for a
sphere with unit radius while our functions N and E in Eq. (A2) are normed
for energy. The transition to that notation is given in the following expressions:

ﬁ_ ¥, (5a)

jin

Ex = 2% (5b)

1—
pn

Acta Physica Academiac Scientiarum Hungaricae 22, 1967



32 E. BALAZS

On the surface of the nucleus we can approximate (5a) with the formula
(cf. e.g. [6]):

~ o (R)y= (@R)” + *(QF+LR>+i) - (5¢)

The tabulated functions in [8] are M,,, LV, Nvand the connection between
them and the function is given by

fEO2p2R2+2MvVv if xe> 0

6
\FO2p*R»Lyv if ke< O ®
and
i FO2p2R2+INv if vye> 0
[ - FO2p2R2MINV  if  xe< 0 )
where v— | xe| — 1, R is the radius of the nucleus and
+ 2
FO(e,2) ed (8)
p2(l+ Yr~ "N z2
is the zero-order approximation of the Fermi function.
Introducing the notation
R "+2Mv or
e@= R-"Nv or (9)
R2+1LYV
the new form of the energy integrands in Eq. (A2) will be
’%—dsequF(s,iZ)’\l eg). (10

Now the energy integral in Eq. (A2) can be replaced by the integrands
in Eq. (9) and we can split off the factors independent of the variables inside
the bracket notation. This procedure enables us to write the shape factor
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e0, Z) as:

(6,

R2v+2 MV
Ra/Lv
' Ri (U V) + R4, V) IRX(U,v) + R4(u,V)
wuv JrUs) 1IJr Us) + Ji (3 13t (¥3)
R[A<Y3> + (1 OB IN< B> +
+ 11— O3]

7))  {IR

R2,+2M V
R3(u,v) —R2(u,u) IR3(u,v)— R2u, v) +
N ) 13r Us) + Ji (¥3) 13t ()
2YER[- <Y3>+ (- N)I1- <Y3>+ (1- A ()]

R28 1Nv
- R2P+INvV

yArr

RI(«,v) + Ri(u,v)IR3@w, V) —R2(u,v)
Jr(¥3) 11 (¥3) + (¥3) 13i Us)
APERA<Ys> + 1—5) O I—<¥3> + 11— 8]

R2v+l N;
R2" 13V,
Rt(u,r)-f R4, «) IR1(u,Vv) -b Ri (u,Vv) +

YAMn
odd

uv uv

n Jt (¥3) 1Jr (¥3) —Jr Us) 1Ji Us)
28R[AYB> + (1- Ay bKys> + (1- A(ys)l
Rav+1 NV
2 M1
XV -RZ+1Nv
R3(, V) — R2(u, V) IR3[u,v) — R 2u, v) +
Jivy)ljrvs  Ir (v3) 13i ¥3)
23R[— <Y3> + 1 —A M) I—<¥Y3> + (1- 9 (¥3)]

yarn ROH2M,

RZLv
RI (H,v) + Ri(u,v) IR3(u,v) —R, (u,Vv) )
JiUs) rUs) - JrUs 1Jt Us)

AYsR[A<Ys3> + (1 —") (3) 11— <¥Y3> + (1 —9) (¥Y3)]
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By changing the order of lines in Eq. (11) we point out that one has to
determine the coefficients of functions Mv,Lv, Nv. From the angular momentum
selection rules discussed in [6] it follows that the functions My, Ly, Nvhave to
he in the relative order to each other just written in Eq. (11), i.e. if it happens
that we have to put Mv(LV)in the firstterm, in the otherterms LVNV{MV —N V)
are to be written. For the sake of brevity in the argumentum of the nuclear
radial matrix elements n and v are written instead of Un, Xv.J, and Jr are the

imaginary and real parts of the quantity defined in Eq. (A4), Jfis the angular
even oad
momentum of the final nucleus, A= GA/GV. 9 A denote that one has

uvuv uv uv

*

to summarize over the terms where lu -f- Iv:J IuJ-fS- Iv -|- an even number
lu-)-Iv==1a-|- Ilv (- an odd number, respectively. The < j3]> and (j3) are the
angular integrals written explicitly in Eqgs. (A3).

The coefficients of the functions Mv, Lv, Nvcan easily be calculated,i.e.
the values of Mv, Ly, Nvare tabulated as functions of the electron energy [8],
so there is nothing to do but to take Eq. (11) at as many given values of the
electron energy as there are functions Mv, Ly, Nv contained in it, or more
appropriately, to fit the theoretical curve to the experimental points as
closely as possible, e.g. with the least square method.

Thus, we obtain a system of equations in which the unknown quantities
are the coefficients of the functions My, Lv, Nv. By solving this system of
equations and knowing how its results depend on our parameters one obtains
further equations which can be solved uniquely.The number ofthese equations
depends on the order of forbiddenness as can be seen from Eq. (8).

3. The decay Clx-*S3b

The method discussed above should be illustrated with the decay
CI® +»S3. It is a Jj — 2 -> Jf — O A no transition, i.e. it is second, non-
unique forbidden (cf. [9]). There are five different measurements (partly
carried out, partly under way) namely the/i-value of the -decay [9],the
ratios K/B+ [9, 10], L/K [10], the energy spectrum of the positrons and that
of the X-quanta emitted by the internal bremsstrahlung [11].

In the course of this calculation we neglect configuration mixing. The
reasons for this are:

1. The nucleus CI% can be described with a state vector which is the
superposition of 7 different configurations (cf. [12, 13]). In this case the trans-
ition CI3¥% ->S3 can be realized through two different transitions Id 3/2— |d 3/2
and 2s12—1d312 Considering these two possibilities the number of unknown

parameters would be 36, i.e. far more than the number of data obtainable
from the measurements.
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2.1n [12] and [13] itwas shown thatin the state vector of CI¥the weight
of the state (1d32)4(2s12)4 is dominant (about 90%), i.e. the mixing is weak.
There is no reason to take the mixing into account and by so doing to lose the
possibility of obtaining information, at least for the dominant matrix elements.

Hence we calculate only the most probable transition 1d3/2-> 1d3/2 of
the decay CI%-» S3%using the general formulae (3) and (11).

a) The value fti+

Putting the data of the individual nuclei into Eq. (A4) it can be seen

that the real part of J(j3) vanishes. Therefore, in Eq. (3) the terms occurring
odd

under the symbol vanish. Further, as a consequence of having neglected
W uv
U

the configuration mixing uvne = uvne there is no need to summarize over the
initial and final nucleon states in Eq. (11).

01 02 03 04 05 06 07~p*~

Fig. 1
The general formula of the ft-\alue expressed by the shape factor is
fg+ — 27i3log 2 (12)
G2<CR>
with the notation
deepq2F (e, +Z)C R (e, €0,2), (13)

<c'> :7
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<®

where f = J deepg2 E(e, zh-Z)- In the case of this transition sO= 1,224, f is
I

calculated by integrating the curve plotted in Fig. 1 graphically.
By computing with the help of Eqgs. (11), (12), (13) and introducing the
notation C = 2n3log 2/[G2-2{y[}2«{y3RJi{j3)] the following formula is obtained:

ftg+ —C UIG, (xupV) Rj (*,w) 1 (14)
1 J

In the case of the most probable transition 1d32-> Id 32
2 ifi,/= 1.2,
2 ifi,j = 34,
213
315"

j3= 2 and Jj (dd2) =

The coefficients of the unknown parameters in the case of pure configu
ration are symmetrical in suffixes i and j, and their explicit forms are:

Ai = f-1[J(MQ«n (H) + J (M, au (02)],
A3z = [“U T AXOA+/1A) cl2(02)],
A3 = -/-1[J(NO) c13(11) + J(iVX c13(02)],
At = /-1[J(M0Oal(ll) +I(1V 1 a 14 (02)],
A2 = Z'1000) 6M(H)+ J(A) h2(02)], (15)
A3z = -/-1[JA0) 6B(M) + J(LJ 623(02)],
A4 = A L[I(A) e4ll) + TA) C4(02)],
A3 = A1[JLo) MH)+J(A) *3(02)],
Ad = -7i1[J(A) caaciny + NTA) c34(02)],
At = T 1[J(MO)as(ll) + NA) «4(02)],
with the notation J(M 0), . .. for the integrals of Eq. (10). The integrands are

plotted in Figs. 2, 3, 4 where the values of the integrals are also shown.The
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01 02 03 On 05 06- 07
Fig. 2

Fig. 3

explicit form of the quantities a-y, fcy, Cy can be obtained from the bottom line
of the first, second, or third term of Eq. (11), respectively. The suffices are the
same as those of the products RiRj. The numbers in their argument indicate
the quantum numbers (In, | xe|). The numerical values of the quantities ay,
bij, Gjj, Ajj and those of the angular integrals < >, () are given in Appendix 2.
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0l 02 03 OA 05 06 O0.7-p*~
Fig. 4

b) The branching ratios K/B+, L/K

W ith the simplifications occurring because we calculate only the most
probable transition instead of Eq. (3) we get

4
Mp+ = Y r,j(xuxvixuxv)Rt(xuxv)Rj (xuxv). (16)
ii=1

In [7] it is shown that the expressions of 'k, 'L can be brought to
a similar form, differing only in their numerical coefficients. That is, in order
to get the expression ofthe transition probability it is necessary only to replace
the wave function of the electron moving in the Coulomb field of the nucleus
by the wave function of the bounded one in Eq. (A2). Instead of summation
over the infinite values of xn and xe one has only to sum over xn with the
auxiliary condition that the value of xeis fixed. Having calculated the coef-
ficients rjj or rjj following the procedure given above, the ratios K/B+, L/K
can be calculated.

c) The shape factor of the positron spectrum
The following form of the shape factor can be obtained from Eq. (11):
CR(e,e0,Z) = A{{e0—¢e) [aMbMO(e) + am NO(e) + aloLO(e)] +
+ aMiMj (e) -f-aNIN1(e) + aLlLI(e)}, 17)
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where e is the energy of the positron, A = 2{/3R{i/}2 (j3), the functions
MQMv ... are tabulated in [8]. Their unknown coefficients can be written:

«M,, = R3[«n (N) Rl + 2al4(11) R, R4+ ad4(11) R\],

aMl= R [°ii (02) jRj + 2a14(02) R1R4- a4 (02) Rj],

«No= R*fci2 (I11) RIR* + (Z (11) RZRi — CB(LL) RIRs  c (11) RsRe]’
(18

aNl= R'liciz (02) RI Rl *v ¢24 (02) R2R4  ¢13 (02) RIR3 ¢t (02) R3R 4],
«1,= R2[bn (11) Rl + 2b,3(11) R2R3+ 633 (11) RI],
«il'= R4 [b2(02) B2+ 2623(02) R2R3 + b33 (02) RI].

R is the radius of the nucleus and the coefficients of the parameters are known
from Eq. (14).

Numerical values for the quantities aMo, ... can be obtained by fitting
Eq. (17) to the measured spectrum thus obtaining six new equations for the
parameters. Together with Eq. (15) and the equations obtained for the branch-
ing ratios we already have nine equations. One further equation is required
to identify all ten nuclear parameters uniquely. This is supplied from the
evaluation of the internal bremsstrahlung accompanying the decay CI3% —=S3%.

The experimental results for ftB+ and for the branching ratios so far
known are insufficientto determine all the unknown parameters. As an approx-
imation, however, we can neglect those parameters containing more than one
“small” component part, i.e. we assume that the products RjRj vanish if
i> |,j > 2. This approximation is correct if the transition between the “large”
components is not forbidden higher then the transition between the “large”
component -> “small” component, or vice versa. (This is exactly the case in
the transition CI3% -“mS3e)

Hence, by using Eqs. (14) and (16) as well as the data of [9,10] a system
of equations containing only three unknown parameters is obtained. Its
solution gives:

IRi 1= 2,61 IR3I= 8,42 «10~2 IR3\= 6,09 « 10~2

(For the calculation the wave functions of the electron given in [15] were used.)

The above results are unsatisfactory considering their order of magnitude.
But the ratios |R2|/|Rx]|, |R3|/|Rx]| are in good agreement with the
assumption that the matrix elements containing one “small” component are
at least two orders of magnitude smaller than the matrix elements containing
only “large” components.

We hope that the discrepancy mentioned above will vanish if we are
able to calculate the complete system of equations.
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4. Conclusions

f3-spectroscopy provides one possible check on the shell model of nuclei.
However, the number of unknown parameters is, in general, high compared
with the experimental data.

In the present paper we have calculated the shape factor of the energy-
spectrum of /3-decay. From its explicit form equations can be derived con-
taining the unknown parameters (in our case the products of the unknown
radial matrix elements ofthe nucleons). The number ofthese equations depends
on the order of forbiddenness.

Thus, we may hope that for certain transitions of nuclei with configur-
ation mixing forbidden in high order it wdll be possible with the help of our
equations and the formulae obtained by Montvay to calculate the numerical
values ofthe unknown mixing parameters from the experimental data uniquely.

The calculation of the second non-unique forbidden transition Cle S3¥%
is given as a simple example. Only the most probable initial and final configur-
ation transition was taken into account. The four measurements (ftR+, CR+
K/B+,L/K) gave us nine equations for our ten parameters. The lacking equation
(or more) may be expected from the measurements of the energy spectrum of
the internal bremsstrahlung. We hope that finding these equations we shall
be able to give experimentally ten new parameters characterizing the structure
of nuclei CI36, S3e.

This will support information concerning the small components of the
Dirac wave functions ofthe nucleons which, in general, are neglected in current
nuclear model theories.

The author would like to thank Prof. P. Gombas for his kind interest in
this work. Thanks are also due to Dr. D. Berényi, Dr. |I. Lovas, Prof. G.
Marx and Dr. I. Montv ay for their valuable help and advice.

Appendix 1

Transition probability of the R-decay

Let us suppose that N nucleons are outside the closed shell, then the
iV-particle function describing them (using the isotopic formalism) has the
following form

(Fi» o+ o»%) = . @ IrP> =+ oxw-i) fv”()]TVMidy@? Tjvl). (Al)
* J, ;

The suffices i and v refer to the initial state. Replacing these by / and u,
from Eq. (Al) we obtain the corresponding equation for the final nucleus.
In Eq. (Al) stands for the wave function of the decaying nucleon with the
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z-component of the isotopic spin 7, .rx ... ljv_i are the coordinates ofthe
other N —1 nucleons in the (N —I)-particle wave function ®]'MTMTWith the
resulting angular momentum (j, M) and isotopic spin (T, Mr)- a denotes
further quantum number specifying ®mM~x. The numerical coefficients
y(ocjTjvIv) can be obtained from the coefficients of fractional parentage. The
values of resulting angular momentum (j,-, M,) and isotopic spin (T,, M"})
correspond to the initial and final IV-particle wave function in Eq. (Al).
This is expressed by the notation [...]t'mt >i.e.

[Ojimtmt VT ]jTMTi = UM h M, lji Mi)

Y
M-+MEM{

" PLUMTMT W TMT— tvITj Mr,

Based on the wave function of Eq. (Al) the transition probability per
unit time is:

JIr(¥3) 13r03) -b Y/ (¥3) 1Ji (¥3)
%MIdE(NEINE+ NE' INE") +

even

®1.2 y
uv W
U

Iy
2{¥3)2 <¥3> + (1- AHPo> I*<¥y3> +
(L= A)(y3
R3(u,v) —Ro (u,V)I Rs(u,v) —R2(u, v)
Jr(¥3) 1Ir(¥3) “b Ji(¥3) 1Ji(¥Y3)
+ + (A2)

2 Trde(NEIIVE+ NE'\NE")
*nve J

2{¥3}2[- <¥3> + (1- A)M)I- <¥Y3> + (1- AO03)]

#1 (n,v) + i?4(n, v) IR3(u,v) —R2(u,v)
T (3) 1Jr (¥3) + Ji (¥3) 1Ji (¥3)

A Tde (IVEIIVE' - NE'\NE)

*nyelJ

4 {RA<Ys> + 1- AH)I- <¥Y3> + (1- A (Y3)]
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Ri(n,v) + Rt (u,v) IRXx(u,Vv) + R4(u,vVv)

odd  ji ) IN Y3 Ir () 1Ji (¥3) 1
+
UYHV 2 [de (NE INE' — NE'\NE)

xn xe J

2 {Y3}2[A < ¥Y3> + (L - A)Y3)IA< Y > + (1 - A)(Y3)]

R3wm,V) — R2(u, ) 1iis(u, V) — R2(u,v)
Jt (3) 131 (Y3) —Ir(¥3) I (¥3) +

2 {deNEINE'-NE'INE

xn xe J

2(M3)2[—<Y3> + 1—AM) 1—<Y3> + (1 —A M)

-Ri(n,v) -f R4(u, v) IR3(u,v) — R2(u,v) “J

Jt ) 131 (9 —Ir (¥9) 13t ¥3)

-2 [de(NE IIVE + IVE'|IVE)

A{ERIA<Y3> + (1- AM)Il- <Y3> + (1- AM)] J

The bracket notation used in Eq. (A2) is familiar from Ref. [6] N, N', E, E1
are the radial parts of the wave functions of the neutrino and electron respect-
ively with their values valid on the surface of the nucleus (cf. Ref. [6]). G is
the coupling constant of the weak interaction, e is the energy of the electron.
Further notations in Eq. (A2) are, with the abbreviation {%8= V2*+ 1.

<¥3> = < uvnej3> = 2 < uvnej3a'a> {a'}2,
a a

(¥3) = {uvnej3)

< uvnej3> =j(uvne) 1jy (In le«"' \jUU | jV 2 ilu a )\jUjVj?,

ooo
000 [Inin a] lejca 1Un a 1[jein a

(A3)

; | 7
(uvnej3) = — 1y (uvne) wids Hnleds -
000 000 Until un

j (uvne) = {1} {03 {iu} (U {je}{le}{jn} {In}
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a and a' denote auxiliary quantities occurring in the calculation of the angular
integrals (cf. App. of Ref. [6]).

J¥3)=j (*.M3)=YM (- 1)/f7°7:7! A4
¥3) =1 ( 3) (-1 iJiJfJ (A4)
and

y ) - 2 Y TAIQY Ty, g (TMT; T[T, M T){TMTAT,|T, M, )

(cf. the notation after Eq. (Al)).

Appendix 2

Numerical results

The angular integrals <>(, xe>, (xuxviInxe) are calculated in the
case of the transitions 1d3/2-> 1d 32, 2s1/2—1d 32 for /?-decay as well as for K-,
L%, LU, Ln~captures. For the calculation, the formulae (A3) and the tables of
[14] were used. The results are given in Table I, the omitted values are zeros
resulting from the selection rules (cf. [6]), while accidental zeros are tabulated.

The quantities ay, by, cy are calculated only for the transition
1d32-> 1d32. The results are given below:

an(ll) = 7,18 «10-3, al4(ll) = 1,88 »10-3, «as(H) = 4,76 » 10-*,

°n(02)

4,76 +10~\ 0H(02) = 1,88 +10-3, a4i(02)

7,18 « 10“3,

MU) = 640 +10-3, M M) = 1,07 103, g3(H) = 1578 ' 1°“2>

MO02) = 1,78 «10-3, M02) = 1,07 «10-2, 6s3(02) = 6,40 « 10 -3,

cn(ll) = 6,84 «10"3, c111) = 1,14 «10%2,
cn (02) = 3,00 +10-3, MO02) = 1,79 » 10-3,
M il) = 1,79 «10%3, MU) = 3,00 »10-3,

402) = 1,14 + 10“2, c3(02) = 6,84 +10“3,
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Table 1
(xuyvIn*) <Mt *Are>
M*q)
(**,) 0 @ 2-1)@E-2) 09 i (2-1)@-2) 0-2) G -i) ) (12
2 2 2 2 2 2 2 2
(22) 5 5 5 5 25 15 25 15
- 2 2 2 2 1 1 _,
(2,-1) 5 b 5 5 25 15
(-2.-2) 2 2 2 2 2 2 2
' 5 5 5 5 15 25 15 15
) 2 2 2 2 1 1 1 56
(-20) 5 5 5 5 3 9 15 225
2 2 6 2
(-2.2) 15 25 25 25
1 1 1
(-2.-1) 3 ! 15 9
(2.-2) 2 2 2 &6
' 25 15 25 25
1 1 1
(@h) 25 15 0 3

By introducing the
integrals of the leptonic
the results:
ru= 579 ri2=
r2 0 305 ¢10-%, rB=
= 153 «10-*, =
v = 1,38 ¢ 10- 14

The quantities

r£ =:1,07 «10~14

tn ==2,50 m10-15

notation r:y= f Ajj and using the values of the radial
wave functions written in Figs. 2, 3, 4, we obtained

-2,25 «10%13 ,,;, = 2,08 '10'13».r14 = 8,82 «10- 15,
-2,03 «10%1, ,, - -6,12 +10-13

3,87 « 10- 13

fi= -551 «10%25 FK_ 918 «io0-12

ri2

—3,52 + 10713 n'g 6,06 *i0-13

were used for the calculation of the radial matrix elements Rv R2 R3.
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AONEPHBLIE MAPAMETPbI N3 U3MEPEHWIA CMEKTPA /3-PACMALA
E. BANAX

Pesome

[aeTtca obwaa dopmyna ansa ¢(opmdakTopoB 3HEPreTUYecKoro crnekrpa /3-pacnafos,

3anpeLleHHbIX B Ntobom nopsake. C NoMoLlblo ynoTpe61seMoro Metofia MOXHO YYecTb U KOH-
(hurypaLnoHHoe CMeluVBaHVe. HoBble yYpaBHEHWS, MNOMyYeHHble Ha OCHOBE M3MepeHuli (opm-
(DaKTOPOB, fAlOT BO3MOXHOCTb [N151 3KCMEPUMEHTANIbHOTO M3YYeHUS HOBbIX MaTPUYHbLIX 3fe-
MEHTOB, XapaKTepPHbIX ANA Afep, Y4acTBYIOLWMX B Nepexofie, Kak Hanpumep, B NOApPo6HO pac-
CMOTpPEHHOM cnyyae pacnaga Cl3-mS%H
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WEAK INTERACTIONS AND UNITARY
SYMMETRY BREAKING

By
P. Mobius

INSTITUTE FOR THEORETICAL PHYSICS, UNIVERSITY CF VIENNA, VIENNA, AUSTFIA

A model for leptonic decays is considered using unitary symmetry. For the calculation
of matrix elements a special method of unitary symmetry-breaking is applied taking into
account all corrections due to baryon mass differences.

For the treatment of leptonic decays a model is considered using SU (3)
symmetric expressions for the weak current of the hadrons and for the strong
interaction between baryons and mesons. Computing the matrix elements
the unitary symmetry is broken by putting the experimental masses in the
propagators, i.e. in the contraction of two baryon field operators. So all
corrections due to the breaking of unitary symmetry by mass differences
of the baryons are included.

In the octet version of unitary symmetry the weak current has ten
constituents permitting the ansatz

J,= 2 WW L+ OQ)Ne (F) +; An) (0) ) (B +

r~VA, G<p(1)Sp (F) + Gtf (1) SC) (D), M

where JB(L) is the leptonic part, j,, is the strangeness-conserving part and
SR is the strangeness-changing part, both of F- and D-type. In the limit of
exact SU (3) symmetry the currents of the strongly interacting particles are

u (F)= Tr(L +mmm  JAD)= 2>(6EMp{B,A+ £ +

S,(F)= Tr (B [B, M+ isH)+ ... SM(D)= Tr (b {6, 4 + »A}) +

where b and B are the 3 x 3 baryon matrices and the $- are given by Geul-
Mann [1], [/, is yMfor r = V and y*ybfor r = A. The points indicate contri-
butions of other hadrons. The ten G’s are the corresponding unrenormalized
coupling constants, G(0) is involved in semileptonic processes with A S =0

and G(I) in those with \A S| = 1. The G’sare determined by making the follow-
ing assumptions for the weak current:
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a) The contributions ofthe baryons and leptons have the same “weight”

2" GY)2= 2 G (°)2+ G (°)2+ <#> (i)2+ Gtf (I)2. 3)

b) The leptonic coupling constants are equal because of the absence
of renormalization effects in L-decay

Gl=Gi=1. (4)
c) The CYC-theorem excludes the B-parts of the vector currents
gd(0)= Go(1)= 0. (5)

d) For the axial vector coupling constants the D/F-ratios are equal for
AS =0 and \AS\ = 1 processes
Gd (0)= £EGF(0) 1 coO) = fCr(l). (6)

and it is further assumed that the D/F-ratio is the same both for strong and
weak interactions

f weak = ~strong (7)

e) The ratio of the vector coupling constants for processes with A S = 0
and jzISj = 1 is that of the corresponding axial vector coupling constants
in the case of F'-coupling

GF(0) /Gp(1) = GF(0)/ Gp (1). (8)

These are 8 conditions for the 10 coupling constants providing for the weak
current the expression

Jix= JX(L)+JE(L)+ cos# (2)1 cosxjX (-F)-f- sin xjfi (F) +
U+ £2
+ £sin xj£ (D) sin & (2)1 cos XS%(F) + 9)
I + £2]
sin x Sfi (F) -f- £sin x Sfi (D)
I + £2 | + £2

where & and x are arbitrary constants, f is the D/F-ratio. The parameters
$ and x are determined by the and K decays involving only axial vector
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matrix elements of the form
<0| Gp (0)tf(F) + C (0)j£ (D) lit) = Fxqg" (10)
<0 (1) Sfi (1) + GO(1) S*(D) K} = FK(,, ")

where gf and dB are the four-momenta of the n and K, F,, and FKare certain
constants (Their ratio is exactly cotan B, where B is the Cabibbo angle)

B

Fig. 1. The first order diagram for the considered decays

The diagram of Figure 1 is computed by making the following assump-

tions:
1) The strong baryon — meson interaction is given by
(12
2) Assumption (7) means
GE(0) G&(l) gp 13)
Gp(0) Gp(l) oo
3) The contraction of two baryon field operators is given by
SF(x~y, M&) (14)
with
(15)
e44 — e 66 55 —  fi77

Eu= 0 otherwise.
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The result is

12— (Ms+ MA) Ms + MN + 2i[Ms ~M N]

M3-j-4Ms + MN (16)

K p\"M z+\ ma+\{M3+Mn)_|-||_|_|I - mn]
z 0

z

+ ~ [Ms+ MA+ Ma+ MN].

Summing up all B B bubble diagrams [3] an additional correction is obtained
which is within 1%.

Taking as the other conditions the experimental axial vector renormali-
zation of the nuclear ~3-decay and the ratio between - and /i-decay coupling
constants the parameters are determined to

s~ 18°, a ~ 42°, f~ 15 17)
providing for the coupling constants the values
G*(0) — 0,98, Gp(0) — 0,49, GE(0) — 0,74 . (18)

These results are now compared with the investigation of 400 000 27-decays
done by Willis, Courant, Filthuth et al [2] using Cabibbo’s theory. In
their solution A they obtained for the parameters “F*” and “_D’ the values
0,437 and 0,742 while our extrapolation to these quantities gives the values
0,50 and 0,75 indicating an agreement which is better than expected.
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CNABbIE B3AUMOAENCTBUA N HAPYLIEHWE YHWUTAPHOW CUMMETPUU

n. MEBNYC

Peswome

PaccMaTpuBaeTcs MOJesb [/ NENTOHHLIX PAacnafjoB B pamMKax YHUTApHON CUMMETPUM.
N8 BbIUNCNEHUS MATPUYHbIX 3MIEMEHTOB MPUMEHSAETCA CMeUMabHbI METOA HapyLIeHNs YHU-
TapHON CUMMETPUN, YUUTbIBAIOLLMIA BCE MOMPaBKM, CBSA3aHHbIE C pacluenieHeM Macc 6aproHOB.
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THE HOT MODEL OF THE UNIVERSE AND
THE ELEMENTARY PARTICLES

By
Y. B. Zeldovich

ACADEMY OF SCIENCES USSR, MOSCOW, USSR

The recent radioastronomical observations strongly support the hot model of the
Universe. The implications of this model are discussed, and, in particular, an estimation is
given for the number density of the quarks.

1. The observational basis

The observations made by radioastronomers during the last year have
shown that the hot model of the Universe is the correct one.

These observations revealed the existence of a Planck spectrum of
black body equilibrium radiation with the temperature 30+ 0,3° K, isotropic
in all directions and filling all space. This radiation is superimposed on the
light of the stars mostly in the visible part of the spectrum, and of nonthermal
radio-sources prevailing at X 50 cm.

The measurements were made by radiomethods at X= 20 cm, 7,3 cm,
3 ¢cm and 0,25 cm. The last point belongs to %co/kT w 2. It is independently
checked by the measurement of population ratio of two nearby states of the
molecule CN. The bolometric and colour temperatures at different wavelengths
coincide and give 30+ 0,3°.

At 7 cm the blackbody intensity is some 102 more, at 0,25 some 105
more than the calculated intensity due to known sources (stars, radiosources,
quasistellar sources).

The integrated density of electromagnetic radiation of the blackbody
spectrum at 3° Kis 6 «10~13 erg/cm3. It exceeds by a factor of 30 or 50 the
mean density of radiation of known sources.

The mean matter density in the Universe is still little known. The density
of matter in the form of galaxies is said to be 5 « 10-31 g/cm2including visible
stars, gas, dust and all other forms of invisible matter. This density is evaluated
by the dynamics of galaxies as gravitationally bound systems. Cosmological
evidence does not exclude a mean density of 2 « 10~2 g/cm3 The greater
part of it in this case should be in the form of a highly ionized highly trans-
parent intergalactic plasma at 105 — 10e °K, heated by cosmic rays. Of course
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this plasma is not in equilibrium with the 3° radiation, but is cooling very
slowly.

Neither the radiation from stars or other discrete sources, nor the
radiation of the hypothetical plasma can give the 3° blackbody radiation.

2. The hot model

The only possible past state ofthe Universe, compatible with the observed
situation is the so-called hot model first put forward by George Gamow in
1947.

The cosmological theory of A. A. Friedman (1922—24) which incorpor-
ates the Hubble red shift and expansion give the following picture: there
was a moment t = 0 (1010 years ago) when the density was infinite; from this
moment begins the general expansion. The expansion is isotropic and uniform:
all directions in space are alike.

The mean density of baryons decreases like R~3 where R is the linear
scale. The density of quanta decreases in the same way like R~3. But at the
same time the wavelength of quanta Aincreases like R, so their energy Ey=
= %c/X decreases like B_1. The overall energy density of quanta decreases like

eY= nyEy = R~* = 0T4.

This is perfectly in accord with the law of adiabatic expansion. The

o 4 0oT3
entropy per baryon is given by b = ERrTY , S0 S = const corresponds to

Ey T4 Tlb

The dimensionless S divided by Boltzmann K (entropy per baryon)
today is of the order of 108 — 109 This means that the number of quanta
per baryon is of the same order of magnitude. Then for the distant past,
when the energy of quanta was far greater, we obtain the picture of a quite
uniform plasma with overwhelming number and energy of quanta. The elec-
trons and ions constituting “ordinary matter”, from which stars and planets
are built, were a small minority at this stage (t< 105years). Only at a later
stage the temperature of the radiation drops in the course of expansion,
the electrons and ions go into neutral atoms, gravitational instability gathers
them together in clusters, from which galaxies and stars are formed — in short,
the present period of astronomical evolution begins. We shall not follow these
questions further.

3. Nuclear reactions and the primordial composition

Let us return to the very beginning, with very high temperatures.
The energy density as a function of time is given by the equations of mechanics
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quite independently of the composition of plasma:

3 5-105 1
n = -~r n = sec.
€ 32n Gt2 t2 cmd

The only assumption is that of isotropic and uniform expansion. At very
high density the time of the equilibrium adjustment is much smaller than
the time of considerable diminution of the density.

So to the first approximation the expansion goes through a succession
of equilibrium states. The equilibrium at some moment for example when
t = 10~3 sec, T — 30 MeV, does not depend on previous states. So one can
foresee that at this moment there are no measurable quantities of antibaryons,
excited states (resonances) and mesons.

There are quanta, electrons, positrons, neutrinos and antineutrinos of
both sorts in commensurable quantities. Contrary to this, the number of
baryons is small (10“8 — 10_9 of the mentioned particles), the equilibrium
e+ -f- n p f-ve e~-f~-p”~ n+ veis rapidly established so that n/p =

e-AT-CbIKT * j

During the expansion at T a&d1l MeV, tesd 1 sec, the reaction rate is
no longer great enough. The composition 16% N, 84% P is “quenched” i.e.
is not much altered during subsequent expansion by the mentioned reactions.
By subsequent nuclear reactions of the type

N+ P=D+ vy; P+ D= He3+ y;

D+ D= He3+ N; D+ D=T+ P; T+ P = Hed+ vy,

He3+ N= T+ P, T+ D= He4+ N; He3+ D= He4+ D
one should obtain 70% H and 30% He4(by weight), with 10-4 -¥ 10~5of D
and He3. Some astrophysicists claim that observations confirm this com-
position, but there are rumours of old stars with a smaller helium content.

The investigation of helium content is very difficult, owing to its high
potential of ionization and excitation from ground state. At least the obser-

vations do not disprove the hot model, and the evidence from the 3° radiation
is of overwhelming importance.

4, “Relict” thermal neutrinos and their detection

Near the moment when N~ P equilibrium is quenched, the reaction
e+ + e~”™ ve ve also becomes slow. It has no immediate consequences
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because the temperature of independent ve, ve and e+, e~y drops in the same

tempo when e+, e~ are relativistic, at T > 0,5MaV. But later when ex disap-

pears at T <( m e«c2 their energy is pumped intoy, the drop ofy-temperature is
j4 b3

retarded, compared with the drop of v-temperature. As aresultnow T" = J—-

I

Ty. Today, when the TY= 3°, the theory predicts that there shall be an equilib-

rium distribution of veveand also of fMMcorresponding both to the temperature
Ty = 2° K.* Their energy density is of the order of 1,5 « 10~13erg/cm3=0,1
eV/cm3, the mean energy is E 5 ¢« 10~4eV, the number density n* 200 1/cm3.

The experimental investigation of these neutrinos is of the utmost
importance as a direct proof of the very basis of modern cosmology. But the
task is immensely difficult. The various methods for investigating cosmic
neutrinos is reviewed in the report of G. Marx at the Balaton school. So we
make only a few remarks.

The energy flux of solar neutrinos is estimated to be 5% of the total
energy flux (106erg/cm2sec) i.e. 5 « 104 erg/cm2sec; it gives the energy density
5 ¢104c_1= 10~6 erg/cm3. But the energy of solar neutrinos is of the order
of 2 MeV so their number density at the Earth is n~ 1 cm-3. As is well
known, there are feasible projects for detecting solar neutrions.

The main difficulty in our case arises as a result of the very small energy
of cosmological (“relict”) neutrinos.

It has been proposed to determine the effects near the endpoint EO of
B spectrum in tritium decay. AtE EO—KT,where T = 2°, kT = 2 « 10~4eV,
the electron number shall be half as small compared with the normal theory
(Kurie plot). But it appears now a group of electrons with energy higher than
EOfromv T —He3 e~.TheirE —EOad6kT = 10~3their numberisthe same
31T\

En
~ 3 +10-24 N for tritium-helium decay where N is the number of normal
electrons.

One should speculate on what effect relict neutrinos have on cosmic
rays or artificially accelerated particles. The relict neutrinos single out the
frame of reference in which the nearby galaxies are at rest; only in this frame
they are isotropic and with E ~ 10-3 eV. In the frame of a relativistic particle
with Ep= 6 «MpC2 6 = (1—/3)~i 2 the w appear as a gegenstream, with
E" 08 +10~3eV, with the density of the order of n = n0 &2 and effective
angular spread 0 ~ <$1. The increase of density is compensated by the

as the number of missing electrons from the other side of EQ, AN =

*During the stay at Balaton, an interesting remark was made in a discussion with
Gebshtein: the mass of is known only to be smaller than 2 MeV by particle physics.

But cosmological evidence perhaps could put a much more stringent limit, m (tv) <
> me/w0 = 5 KeV, because in the opposite case the density of the rest mass of v~ bu would
be too great, more than the allowed 2 = 4- 10-2
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relativistic time dilatation, when one calculates the number of interactions
per unit length of path in the laboratory frame. The non-specific scatterings
on neutrinos are far smaller than the similar scattering of the particle on
thermal electromagnetic quanta. For the specific reaction P v= N -f- e+,
one must have P with E = 1018eV in laboratory frame, and still the equilib-
rium neutron content is only 1018 of the protons, if only interaction with
relict neutrinos is considered. The effect of the smaller number of more
energetic stellar neutrinos is overwhelming.

Perhaps the collective coherent effects are more promising: for a
neutrino with E ~ 10“3 eV, the wavelength 4w 0,1 cm, all the electrons of a
macroscopic volume scatter in the same phase, and the v interaction with the
nuclei is of second order and does not compensate the electrons. These effects
are best described by the notion of the refractive index of ordinary matter
for neutrinos.

Let us start from the interaction Hamiltonian, Hmt = gtyeOVeWvOXp,
(after Fierz transformation) single out O = y4 and sum the contribution of
all electrons yeyape= ne where nethe electron density, c¢cm-3. So the energy
of a neutrino with given impulse p = EJc is altered in matter by the amount
A E = gne. It corresponds to the index of refraction rj such that:

nP
AMffj=f—1=— -= ~ 10-9forn, = 61024 (gold) and EO= 10-3Y.
EO e0

The sign of (j — 1) is opposite for v and v . Perhaps one should search
for the low energy excitations by neutrinos in a solid cooled downto T 1° K.
For phonon excitation it is the momentum of neutrinos which is limiting
more than their energy.

Finally, on a uniformly moving macroscopic particle of r~ 4~ 0,1 cm
a force of the type of friction is expected.

F=-1¢er2— (Anf,
c

so that the inverse time of deceleration of the order

1 F = 3-10 4sec 1

(—~ p, because An”" q, as it must be for coherent effects . The same
Ir

time t characterizes the onset of Brownian motion, corresponding to 2°, of
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the particle due solely to the interaction with relict neutrinos. Obviously,
these effects are quite unobservable.

5. Quarks in the hot model

Let us assume that quarks exist as normal heavy (m) particles and
. 2 2 1
antiparticles with one sort for example q with z = + -3—e with g with —? e

stable against weak interaction. At the very beginning, when kT > me2
they were as numerous as any other particles. During cooling down their
equilibrium concentration drops:

312 :
Tig fes kT me Q_ka
me2 n

But then comes a moment when the reaction rate of the establishment of
equilibrium is too small, the remaining q and q are “quenched”. Their con-
centration is further diminished only by the general expansion, the ratio of
glX, g/v or q/P, N (short for ngnx...) tends to a finite limit. The quarks are
strongly interacting and the small rate of the reactions leading to the dis-
appearance of quarks is due to the fact that one must have always two q or
g and q for the reaction q-f-q= B -f~q (B for baryons) or q-\-q= energy.
So every one g or g is stable, but on the other side, triple encounters 3g= B +
-f- energy, 3q= B energy are not necessary.

The inverse time of bimolecular reaction ? = ovng, where a is cross-
section, Vv velocity, nqg concentration. This tends to zero with ng->0 .
So there exists an ngwhich makes — <1 ----- being the hydrodynamic

time of expansion. The corresponding ngP is conserved afterwards (up to
a numerical coefficient) because during the expansion

d (r(]jU/P) = -ov {nJPfP
t

and the j Pdt = jt32dt does not diverge on the t = oo side. What isimportant
'h

is that the condition of quenching singles out a definite ngq— nx.
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The equilibrium nq depends exponentially on the mass of the quark.
But if ng= nlis defined, it means that the moment of quenching tland the
characteristic temperature Tradjust themselves to the mass M. So the resulting
nl does not depend exponentially on M. The hydrodynamic time tx~ 1/J/G
because g” —1/Gt2, t = VG/g* By the quenching condition

~ ~ NG
h
If or- (by the order of magnitude), then by dimension argument
Gm2
01710 -1»,
N 1 h<?
where is the number density of all other kinds of particles (y,v,...) at

the moment of quenching.

But the number density of baryons remaining after cooling is also a
small part of all kinds of particles, of the order of 10~9.

So the model predicts that primordial matter contains some 10_1°
quarks per baryon ! Of course we have lost here logarithmic factors of the
type (In Gm2Sc)_1 w 0,01 but the result is still impressive, because, for
example, the ratio of gold to hydrogen is now of the order of 10-"12

The result about quarks quenching is due to Okun, Pikelner and the
author. One must acknowledge that at the time of their work, the hot model
had not been proved correct by radioastronomers, so in the original paper
there are two extreme figures — for the hot and for the cold model. Now the
higher one (for the hot model) should be taken.

The burning out of quarks in stars is not very great (see the original
papers). The last work by Domokos and independently done by Feinberg
and al. has shown that the quark production in cosmic ray encounters is
small. So the search for relict cosmological quarks appears to be more appealing
— if quarks exist at all, of course !

6. The charge—quasi-symmetry of the Universe

There are no signs of charge symmetry in the contemporary state of
the Universe. The attempts at a theory of charge symmetrical Universe with
spontaneous division of matter and antimatter are artificial and not in
accordance with general cosmological theory.
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In my opinion this asymmetry of state (prevalence of “matter” over
antimatter) does not in any way contradict the known symmetry of properties
of particles and antiparticles.

But in the hot model of the Universe there is an enigma: early at
T ~ MpC2, there were antibaryons, so that approximately

B/B =1+ 10“8.

The early state was almost charge symmetrical, hut the small departure (of
the order of 10~8) from full symmetry is of the utmost importance for the
present state. Such a situation seems very strange.

Perhaps more appealing is the assumption that there was a previous
history at t<i 0, before the singular state of t— 0, g= co, T = co. One
could assume that at t< 0, there was no charge symmetry just as now.
Normal matter prevailed. By some nuclear reactions and other processes
the matter was heated. During the implosion at t 0 the pairs B, B were
born quite naturally, the excess of B over B remaining. This excess also
remains when at t= 0 the implosion at t< 0 is reversed to the expansion
at t > 0.

Such a cosmological theory has recently been elaborated.

The difficult point is of course near t = 0 where at high densities general
relativity is intimately tied with quantum mechanics.

It is the beautiful work of Roland E 6tvés which is the basis of Albert
Einstein’s general relativity and through this of modern cosmology.

It is a great honour to make this report to a conference held by the
Roland E6tvds Society. But it is also a tribute to the memory of the great
Hungarian Physicist.
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FOPNYA.A M3U3b BCENNEHHOW W 3/IEMEHTAPHBbIE YACTULbI
A. 6. 3EN1bAOBUY
Peswome
HoBble pafMoacTPOHOMUYECKME HabnofeHWs fJanu MOALEPXKKY ropsdeii mogenu Bce-

NEHHOIA. O6cy)K,qubI cneacrTena aToNn mogenn, W, B YaCTHOCTW, [aeTCA OuUeHKa M/I0THOCTU
yucna KBapKoOB.
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NEUTRINOS, GRAVITY AND COSMOLOGY

By
G. Marx

INSTITUTE FOK THEORETICAL PHYSICS, ROLAND EOTVOS UNIVERSITY, BUDAPEST

The observation of the soft cosmic neutrino and neutretto background, predicted by
different cosmological theories, may be observed efficiently only with the help of reactions
having no energy threshold. A new method is suggested making use of local gravitational
fields.

The mean free path of neutrinos and neutrettos amounts to light years
in condensed matter, and 1030 light years in the cosmic gas filling the Universe.
This has the consequence that the neutrino radiation of extragalactic origin
is affected neither by time nor distance, so it contains vital information
concerning the Universe as a whole. It was Pontecorvo and Smorodinsky
who first emphasized the cosmological importance of the observation of the
cosmic neutrino background [1].

The various cosmological theories predict different neutrino and neutretto
fluxes. For example in the steady state theory, where neutrons are created
locally at rest, from their decay a flux of intensity | = 106V/cm2s is expected,
corresponding to an average mass density g= 10~31 g cm-3. The energy
spectrum has its maximum evidently at 0,78 MeV, but as a consequence
of the Hubble shift on average 43% ofthe energy is lost, so the mean neutrino
energy is well below 0,5 MeV. The different Hot Universe theories predict
higher or lower densities and different types of neutrinos. For example,
Zeldovich assumed a thermal radiation, corresponding to T — 2°K neutrino
temperature, indicated by the observed thermal electromagnetic radiation
of T = 3°K in the long wave length radio region [2]. Thismeans £= 10_35g ¢cm -3
both for ve, Ve and for v, VR if the rest masses are vanishing. In the case of
a neutretto rest mass of m(vB) * mf{e) from T = 2 °K we should have a
neutretto mass density q= 5 «10~30g cm-3. A decision among the various
theories would be made possible by observing the soft neutrinos.

The classical method of neutrino detection is given by the induced R
decay:

Ve
K eT
\:é + Az+ E-+Az+1 + A (1)
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Here the emitted charged leptons can be counted. The charged leptons are
massive, so the reactions have a certain Emin energy threshold, being of the
order of MeV for neutrinos, 100 MeV for neutrettos. As mentioned above,
the energy of the extragalactic neutrinos has been degraded far below these
thresholds because of the Hubble shift, so this classical method may be useful
in the case of nearby sources (for atmospheric and solar neutrinos, where the
energy E is covered by the kinetic energy of the incoming neutrinos), but not
in cosmological investigations. In the latter case the excess energy E must
be supplied by the other partner of the reaction.

S. Weinberg [3] suggested the use of radioactive nuclei instead
stable ones as target particles. In this case E is liberated from the binding
energy of the nucleus. Analyzing the observed spectrum of H3 Weinberg
deduced the estimation

pF < 103 eV/c for ve,

where pF means the Fermi momentum of the neutrino gas, assumed to be
degenerate. (This corresponds to a density limit g< 10-10 g cm-3.)
The very same idea [4] applied to the reaction

VF + e+ + vC

gives
pF<i 5 MeV/c for \p.

Another idea, due originally to Bernstein, Feinberg and Ruder-
man [5] is to support the energy E needed for the reaction (1) in the form of the
kinetic energy of the target particles. Bernstein et al. argued that the mean
free path of very energetic protons would be shortened by the presence of
an intensive neutrino sea as a consequence of inelastic collision

V f-p 6 w>n+ e ¢

From evidence obtained by the Brookhaven machine we have p F<C10seV both
for neutrinos and neutrettos. If we knew that the most energetic cosmic ray
protons came from outside the Galaxy, we should he able to push the upper

limit down to

corresponding to g< 10-22 g cm-3, somewhat approaching the density
values of cosmological interest. The origin of cosmic radiation is, however,
not completely clarified, so a direct search for the energetic neutrinos, produced
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from soft ones by collision has been suggested [6].

~soft _J “energetic Aenergetic j_ g . “energetic-+p _|_e—"yenergetic®

This mechanism is able to transform an indétectable soft neutretto into an
energetic neutrino. The recent South African experiments of Reines and
his co-workers [7] have put an upper limit on the neutretto flux in the 100
MeV region. Comparing this value with the intensity of the cosmic proton
radiation, we have reached the estimation pp < 103 eV. The accuracy of
this direct method may be improved by the improvement of the neutrino
experiments working in the MeV—GeV domain in the coming years.

The most promising development in the observational neutrino cosmology
would be afforded by the use of a thresholdless interaction instead of the
classical weak transition (1). In [8] the possible importance oflocal gravitation-
al fields has been emphasised. Let us now risk a more quantitative esti-
mation.

In weak gravity approximation the metric tensor can be given as

2 2
gii= 1+ — P(X > goo = 1 ------CS—<P(><) , gliv ~ 0 for 1 ==v .

Here <p(X) is the absolute value of the local Newtonian potential, produced
e.g. by cluster of stars or galaxies. <p(X) -> 0 at large distances. W hat will
be the equilibrium distribution of a neutrino gas in this geometry? As a
consequence of the vanishing rest-mass of neutrinos, we have for the neutrino
wave number

Kgl'=0. A N ) 2)

Now, the number of neutrinos in a three dimensional volume V is given by

dx1ldx2dx3dkldk2dk3
N = ©)
(2n)3

where, e.g., in the case of complete degeneracy

flh\ — 11 for < kp
J o- (0 for kO> kF.'

By making use of the connection (2), we integrate the expression (3) with
respect to k, with the result

41t
dN = kb dx1dx2dx3.
(2n)3 1+ 75 9>(x)
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(Terms of higher order in <2 are neglected.) This shows that in the vicinity
of gravitating bodies the number density of neutrinos is increased, the relative
excess of neutrino density being proportional to epicL Evidently the same is
true for energy and mass density. The neutrino energy present in a given
volume V amounts to

dx1ldx2dx3dkldk., dks

2n)3
v (2n)
where the neutrino energy p° is given by
0= ko>
so, finally
4it 8 dx1dx2dx3,

which corresponds to a mass distribution

eW = Qo

Q0 is the mass density of the unperturbed degenerate neutrino sea at large
distances from the gravitating body. The mass density excess due to gravi-
tational polarisation of nearby masses is given by

@bl = - K

in first approximation in the constant of gravity K . This mass excess amplifies
the gravitational stability of the cluster. Let the mass of the cluster of stars
or galaxies be M, its radius R, the stellar mass density g# approximated by
a constant, so the potential ¢ can be taken in Newtonian approximation,

y.M (s-1 for £> 1,

O« (r)=
" R IlY“T? for £< 1,

where £ = r/lJR. The neutrino density excess in first approximation turns
out to be

oQv(r) = ’::rre«.<P* n
and its potential
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. 240 x2MR D
Pv (X) = - - —- —f£2+ —f4 for I < 1.
c2 R 9 4 4

Here D is the upper limit of radial integration, something like the main
separation of the clusters. The over all potential energy of the cluster is
evidently given by the formula

te* +<5p,) (%> +(pV)d3x,

which can be evaluated, let us say, up to second order in the constant of
gravity, x/c2. From the point of view of the stability of the cluster, the following
expression is of importance:

dEpot 3 XM 2\ 1o5e—g. R2 .
drR J R2 c2

We see that the effective stabilizing mass is given by

Meff- M 1-f625n— QeR2+ 0" A

E.g. the effective mass is doubled by the presence ofthe neutrino sea if the
overall neutrino density is of the order

to .
62,5xR2
It can be seen that the role of gravitational polarisation(the gravitational
feedback coming from cosmic neutrinos) is completely negligible in the case
of stars, even for galaxies, but for a giant cluster of galaxies a moderate
neutrino density may result in a considerable stabilizing effect. Let us put
in as characteristic value R = 108 light years; for such a galaxy cluster a
background density p_ = 10~2 g cm-3 may be of importance. Owing to
the pioneering works of Ambartsumian and de Vancouleurs, the empirical
study of stability problems is progressing, with very promising preliminary
results. So the observation of invisible mass densities in space may be possible
by taking the effects of gravitational polarisation into account.

If we put R the radius of the Universe, R # 1010 light years, we obtain
g™ 10~30 g cm-3 as the critical neutrino density which may show itself
in the gravitational behaviour of the Metagalaxy. In fact, in the framework
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of relativistic cosmologies, by assuming a vanishing cosmological constant*
and by assuming homogeneity and isotropy, Pontecorvo and Smorodinsky
concluded that an average mass density higher than 2 « 10~2g cm-3 is hardly
possible according to the astronomical evidence [1].

In conclusion, it can be stated that a cosmic neutrino density higher
than the optically observed mass density, may show itself by its gravitational
effects, if sufficiently sophisticated astronomical methods are used.

If, however, the actual neutrino density turns out to be lower than the
optical recognisable mass density or the electromagnetic energy density the
gravitational method cannot be applied. One has to go back to the selective
atom-physical methods. To-day one cannot say how it would be possible to
increase the atom-physical detection sensitivity by ten or twenty orders of
magnitude. As can be seen the number of ideas is growing fast in time in this
romantic field of astrophysics, but still more sophisticated concepts are needed
if we are interested in hearing the background music of the Big Dawn of our
Universe, which is hi-fi recorded in the cosmic neutrino fluxes.
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HEWTPUHO, TATOTEHUE M KOCMONOrna
. MAPKC
Pesome

DOH MATKMX KOCMMYECKNX HEI‘;ITpMHO n HeﬁTpETTO, I'Ipe,qCKaSblBaeMbll;l pPasHbIMMN KOCMO-
NIOTNYECKNMIN TEOPUAMN, MOXET ObITb Sm(*)eKTI/IBHO Ha6mo,qu TO/IbKO Mpu nomMown peakunu,

He VMEeoLLMX 3HepreTmyeckoro nopora. [peasioxeH HOBBIV MeTo/, CBSI3aHHbI/ C NOKa/IbHbIMK
rpaBuTalMOHHbIMK NONAAMN.

* 1t should be noted, however, that the vacuum expectation value of the energy moment-
um tensor operator may give rise just to a term <0 | /'ly|0 > = because of the Loreutz
symmetry of the vacuum state.
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MEASUREMENT OF THE TIME-REVERSAL
PARAMETER IN THE DECAY”OF THE A PARTICLE

By
G. CONFORTO

CERN, GENEVA, SWITZERLAND

Abstract

A high sensitivity experiment to measure the time-reversal parameter in
lambda decay in progress at the CERN proton synchrotron is described. Pre-
liminary results are presented.

M3MEPEHWE MAPAMETPA OBPALWLEHNA BPEMEHW B PACMAAE N1-YACTWLbI
ﬂ')K. KOHMpoOpTO

Pesome

OnUCbIBAETCS BbICOKOUYBCTBUTE/bHBIA 3KCMEPUMEHT MO U3MEPEHUIO MapameTpa 06pa-
LLleHUs BPeMeHM Ha NPOTOHHOM CMHKpPOoTpoHe CERN. [laHbl npeABapuTe/bHbIE pe3y/bTaTbl.
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ON THE LEPTONIC DECAYS OF HADRONS

By
N. Brene, C. Cronstrém and L. Veje
NIELS BOHR INSTITUTE, COPENHAGEN, DENMARK

and

M. Roos

CERN, GENEVA, SWITZERLAND

Abstract

The experimental data on leptonic decays of baryons have been reexa-
mined in the light of a two-angle Cabibbo theory, where the two angles, 0V
and &A are characteristic of the vector and axial vector baryon currents,
respectively. With certain assumptions about the energy dependence of the
form factors in the vector (Ke3) and axial vector {KR2 572 decays of mesons,
it can be shown that the angles OV and Oa derived from baryon decays are
compatible with the corresponding angles derived from meson decays. There
is no discrepancy between the information from hyperon and meson decays
and the information from the superallowed nuclear beta decays (014, Cl34 ...).
From a fit of all data on leptonic decays of hadrons we obtain the values

0v= 0,212 + 0,004, Oa = 0,268 £ 0,001, a = 0,665 = 0,018 ,

where the parameter awdefines the relative content of D coupling in the baryonic
axial vector current.

O NEMNTOHHbIX PACMALAX AAPOHOB
H. BPEHE, L. KPOHW TPEM, 1. BEWE u M. PYYC

Pesome

MepecmMoTpeHbl IKCMEPUMEHT/IbHBIE [iaHHbIE M0 JIENTOHHLIM pacnajam 6apuoHOB C
TOUKM 3peHUs ABYXYrnoBoii Teopuu Kabn66o, B KOTOpO ABA yrna &v 1 0 A xapakTepusyot
COOTBETCTBEHHO BEKTOPHbIA W aKCU/bHbI TOK 6apuMoHOB. pWM MOMOLM HEKOTOPbIX Mpea-
MOSIOXKEHU/ A OTHOCUTENLHO 3aBUCUMOCTU (HOPM(aKTOPOB OT 3HEPrMM B BEKTOPHbIX (Kes) U
aKcManbBeKTOpHbIX (K7, A 2) pacnafiax Me3oHOB MOXXHO MOKa3aTb, YT0 0 Y n ©A, nosyyeHHble
13 6apMOHHbIX pacnajos, CPaBHUMbI C COOTBETCTBEHHbLIMU YriaMU B ME30HHbIX pacnafax. Hert
MPOTUBOPEYMIA MeXay WHAOPMauMaMU O TMMNEPOHHbIX U ME30HHbIX pacnajax W AaHHbIMKU O
cBepxpaspeLleHHbIX agepHblx /?-pacnagax (014 ciz4,..). M3 Bcex AaHHbIX Kacarolmxcs nen-
TOHHbIX pacnajoB afpoHOB MONYYEHHbIE 3HAYeHMA

By = 0,212 + 0,004, Ba = 0,268 + 0,001, a = 0,665 £ 0,018,

roe napamMeTp a onpeaendAeT OTHOCUTENbHYKO BENUYUHY G -cBssn B 6apI/IOHHOM akKChnabHOM
TOKe.
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CONSISTENT THEORY OF WEAK INTERACTIONS

By
H. PIETSCHMANN

INSTITUTE FOR THEORETICAL PHYSICS, UNIVERSITY OF VIENNA, VIENNA, AUSTRIA,

Abstract

An S-operator theory of weak interactions will be discussed which fulfills
all the requirements of consistency including unitarity. In an expansion to
first order in G the results are identical to those obtained in first order per-
turbation theory from standard Lagrangian Formulation of weak interactions,
but higher order corrections can be calculated. They are finite apart from a
single infinite parameter which can be absorbed in acoupling-constantrenorm -
alization. The complete renormalization of the theory will be discussed.

HEMPOTUBOPEUMBASA TEOPUA CNABbIX B3AUMOIENCTBUM

X. MTUTYMAHH

Pesome

PaccmaTpuBaeTcs S-onepaTopHas Teopusi ClabblX B3aUMOAENCTBUIA, YLOBNETBOPSAIO-
las BCEM OCHOBHbIM TpeGOBaHWAM, BK/OYas YHUTApHOCTb. B pasnoxeHuu no O nepBblid
NopsfOK [AeT aHaMornyHble pPesynbTaTbl C NEpBbIM MOPSAKOM B TEOPUM BO3MYLLEHWIA C OGbIY-
HbIM Jl1arpaHxeBbiM (DOPMaM3MOM C/labbiX B3aMMOZAEWCTBUIA, HO MOMpaBKW 60fiee BbICOKONO
nonpsiaika MoryT GbiTb paccunTaHbl. OHM KOHEUYHbl KPOMe OfHOr0 GECKOHEUHOro mapameTpa,
KOTOPbIA MOXHO YCTPaHUTb C MOMOLLbLIO MEePEHOPMUPOBKM KOHCTaHThbl CBA3W. MMofHas nepe-
HOPMUPOBKA Teopuu 6YAeT U3yueHa.
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TIME REVERSAL INVARIANCE IN BETA DECAY

By
F. Janauch

FACULTY OF TECHNICAL AND NUCLEAR PHYSICS, PRAGUE, CZECHOSLOVAKIA

Abstract
The time reversal invariance in beta decay is discussed.
T - WHBAPVMAHTHOCTb B BETA-PACNALE

®. AHAYX

Pesome

O6ecyxaeHa T — WMHBApUaHTHOCTb B GeTa-pacnage.
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RADIATIVE DECAYS OF BARYONS

By
B. N. Vartuev

JOINT INSTITUTE FOR NUCLEAR RESEARCH, DUBNA, USSR

Abstract*

The results of calculation for weak electromagnetic processes Bx-> B2-\-

e~ f-e+,B1 B2-f-y will be given. (Bv B2denote baryons with spin 1/2).

Calculations were carried out in a pole approximation (one-photon approxi-

mation). In this case all quantities are expressed in terms of four form-factors.

The expressions obtained are used for the discussion of possible tests of

CP conservation in such processes asS+ —p + e~ -f-e+, S~ -> E~ -f- e~ -f-
-f- e+, etc.

PAOVNALMNOHHBIE PACIMAObLI BAPNOHOB
b. H. BANYEB

Pesom e**

B poknage 6ynyT npefcTaBneHbl pe3ynbTaTbl BblYMCAEHUI ANA  cnabo-3nekTpomar-
HWTHbIX npoueccoB Br Br+ e~ + e+, B1-mB2 vy, rge Bu Br— 6apuoHbl CO CMVHOM
1/2. BbluncneHus nposedeHbl B MOMOCHOM (OAHOMOTOHHOM) NpubAMXeHUn. B 3ToM cnyvae Bce
BE/IMYMHBI BbIP@XXAKTCA Yepes yeTbipe opmdpakTopa. Ha 0CHOBaHWMM MONYYEHHbIX BblPaXEHWI
06CY>K[At0TCA BO3MOXble CMOCOOHbI MPOBepkM CP COXpaHeHWs B TakWxX MpoLeccax Kak
2> <p+ e~-+ e+t S-—Z-+ e+ e*nrT 4

* For details see preprint JINR, P-2823, Dubna, 1966.
** Mogpo6HOCTN MOXHO HainTu B npenpuHTe OUAW, P-2823 [y6Ha, 1966.
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ON THE FORM FACTORS IN THE K;; DECAY

By
N. SMIERNITZKY

ACADEMY OFJSCIENCES USSR, MOSCOW, USSR

Abstract

The recent experimental results on the form factors in the K;; decay
are discussed.

0O ®OPM®PAKTOPAX B PACITAIAX K,
H. CMEPHULIKUN

Peswome

OGcy>raeHbl MOCTeIHHe IKCIepUMeHTasIbHbIe pe3ynbTaTel 1o (Gopmbpaxropam B K
pacnajax.
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SESSION 2. CP VIOLATION

CP VIOLATION AND n+n~ INTERFERENCE
IN NEUTRAL K DECAY

By
M. Nauenberg?* **

CERN, GENEVA, SWITZERLAND
and
SLAC, STANFORD UNIVERSITY, STANFORD, CALIFORNIA, USA

The elementary facts concerning the decay of neutral K mesons and the proposed CP
violating interactions are briefly summarized. The recent interference experiments on the
decay mode for a coherent mixture of L, and Ks are discussed.

Two years ago, a group of experimental physicists [1] at Princeton
discovered the n+n~ decay mode of the long lived neutral K meson, with a
branching ratio R(K -5 jr+ ii~)/(K —mall charged) ~ 2xt _3. The funda-
mental importance of this result is that it indicated that CP invariance, the
combined symmetry of particle anti-particle conjugation and parity, is violated
by some interactions in nature. As we shall see later on, we are still quite in
the dark regarding the properties of this CP violating interaction. Actually
several attemps have been made to save CP invariance by invoking additional
fields or particles, or possible non-linear modifications of quantum mechanics.
However, recent experiments have essentially disproved these hypotheses;
the talk of M. Roos will cover some of these points. Since you have received a
copy of the excellent review article of G. Marx on the topic of the lectures
today [2], we shall concentrate this discussion mainly on the recent beautiful
experiments at CERN on the interference between the a+ 7t~ decay mode of
the short and of the long lived neutral K mesons [3], and attempt to relate
the results to the fundamental questions concerning CP violation. We shall
also remark on some experiments which are now in progress to resolve some of
the ambiguities which we face at present.

To begin with, let me remind you of some of the elementary facts con-
cerning the decay of neutral K mesons if there are CP non-conserving inter-
actions. Assuming TCP invariance (on which we shall comment at the end),
the short and the long lived states of the K mesons can be written in the form

ICS= pICO+ KO,
Kt = pK0—gKO0.

* Sloan Fellow.

** Permanent address: Physics Department, University of California, Santa Cruz,
California.
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These are the eigenstates of a non-hermitian operator with matrix elements

K AHAK) [+ Kj\T+- TIKj ; Kj= Kti,KO0
( Nt : \(Ho — mK + ie) ) : (2)

and complex eigenvalues ms ---------- and ml ------ -2---I-respectively, where m is

the mass and r is the lifetime of the K mesons; experimentally |Am |=

= m ) t;~ 600ts and rs 10 10 sec. In Eq. 2, the matrix
r,

elements (n | T \Kj) give the transition amplitude for Kj n, while the off

diagonal matrix elements (Kj \H \Kj) account for the possibility of a AS = 2

CP violating transition.

For the ratios of the amplitudes of Kt and K s going to the same 21 state,
one obtains the results

(nt n~ IT IKj)
VH-= (+n-1T\KJ — 07
(A« n® 1T 1Kj) 3
Vo one 1T Ky 0T K22 )
where
~ 0% [T
= A and Im (A 2e~10%) eicp-00
+ 9 Mol
The amplitude = (2n, | |T | X0 is the X0 —m24 transition amplitude in
the isospin state |, where we have chosen the phase of K0 relative to the

1=0, 2n state in such a way that AO= |AO|ed We can also express €0
directly in terms of the off diagonal absorptive part F00 and the dispersive
part MOqof Eq. 2

ilm Moo+ ImToo

4
™ i1 11 )
(s MF[)e— 1

2 r,
where
ro6= 2I'I (NIT IK®)* (n\T\KQn 6(en- mK).
Note that with the phase convention described above, the | = 0 25 state

does not contribute to Im T[o,0-
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Now let me briefly summarize the proposed CP violating interactions
according to their strangeness changing properties [4] and indicate their
relation to the amplitudes which enter in neutral K “m25n decays. The three
possibilities that need to be considered are given in Table I.

Table |
AS Interaction
2 superweak
weak
0 medium strong or electromagnetic

Wolfenstein [5] has suggested that the CP violating interaction allows
AS — 2 transitions, in which case it should be much weaker than the CP
conserving weak interactions. We can then ignore the second term in Eq. 2,
so that

M,j= (K,IH IKj) and rtj= 0.
Hence, in this case

iim (Ko\H\KQ)

N S —
2 ri)

and e2= 0. We see immediately that the branching ratio

RI K,-+n+n- 7y )
»2+- T —
NKs—=n+n-~

determines [Im (KO|Hw]KO0) |, and from the experiment of Christenson et al.
[1] we have

\fm (KOIH IKQ)lei 2 X 103 zIm --—— ~ 24 X 103Am.
2ts

Note that in this case the phase @ of e0 is determined to be

tan 1 2tsAm ~ + 45°

(1 — ts/t),)
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and the branching ratio

K, -V 2n° -R K. m2n°
7K, K, wltn-
According to the | Al | = 5 rule RO = —2-WhiCh is satisfied experimentally. It

should be added that with present techniques, the only observable effects
of this superweak interaction appear in the neutral K decay.

Fig. 1. Coherent superposition Kg and obtained by passing a beam K; through a slab
of matter

If the CP violating interaction allows AS = 1 transitions then no definite
predictions can be made about g0 and ROunless further assumptions are made.

1
In particular, if we suppose that this interaction also satisfies the Al = —

rule, we have RO——2- Furthermore, if the ZIS = AQ rule is satisfied, the

same phase g as in the case of AS — 2 interactions follows, since in this case
the leptonic modes cannot contribute to N'0g, and we would then expect
Im/'o g <llllm MOO, unless there isan anomalously large CP violation in the 31
decay amplitudes. On the other hand, one should then expect to find observable
consequences of CP violations in decays other than that of the neutral mesons
[6].

Finally, there is the possibility that the CP violating interaction satisfies
the zfS = 0 rule [4, 7]. In this case this interaction is of the same order as
electromagnetic interaction (since its effect in K decays occur through second
order processes) and no definite predictions seem possible about either (0 or
RO (however, see Prentki’s report in [2]). The consequences of CP violation
in electromagnetic interactions will be discussed by M. Jacob in the next
lecture.

Now let us turn to some of the recent interference experiments on the
n+ n~ decay mode for a coherent mixture of K/ and Ks. At CERN, two
experiments [3] have been carried out in which a long-lived K beam is in-
cident on a slab of matter which then generates a coherent mixture of Ks and
K, (see Fig. 1). By measuring the jr+ n~ intensity from the decay of the
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coherent K beam as a function of the distance x from the slab, the relative
phase ¢0 of Ks and Ki into s+ n~ may be obtained. The amplitude for the

X
7' n~ state att = — , where v is the velocity of the incident K meson is
\Y

proportional to

Ve V21 rem 'UX oy ®)

where f]+_ is given by Eq. 3 and r is the cumplex Ksregeneration amplitude

r . (1 H( ’ (6)
mK Am -\—I— ! 1
2

where/(/) is the forward K°, (K°) nuclear scattering amplitude and N is the
density of the regenerator of thickness d.
The 7t+ nlC intensity is proportional to

-</x, 'tIX, -+ (

*++n
20T,
n+- +1> N +- r e T

“d X cos(Amt ™+ —),

where @* _and <rare the phases of r]*__and rrespectively.It is clear that this
experiment can only determine the relative phase cpH_— ¢r, and that to
obtain qr the phase of the difference (/ —/) between the K° and K° forward
amplitudes has to be known. The recent fits obtained at CERN for¢?= +_ —
— arg i(f —f) and the value Amrs are given in Table II.

Table 11

C. Steinberger M. Bott.
et al. Bodenhausen et al

P— 4>+ —argi(f-f) 80,4° £ 10° 875° = 4,9°

+

\Am\ rs 0,445 + 0,34 0,48 = 02

It should be noted that the experiment of C. A1ff-Steinberger et al. is
carried out with a copper regenerator and a K beam of 25~ BeV, while M.
BoTT-BoDENHAUSEN et al. use carbon regenerators and a K beam energy of
45 + 2 BceYlc.

We cannot arrive at any definite conclusions regarding @+_ until Arg
i(f—f) is determined. The remarkable agreement between the phase @ for
these two recent CERN experiments carried out at different K beam energies
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and with different targets is consistent with the nuclear model calculations
‘indicating that f and f are mainly imaginary and therefore do not contribute
much to ¢. In that case, the superweak model is ruled out. However, we can
expect in the near future to have a determination of Arg i(f — f) by measuring
interference in the leptonic decays of a coherent mixture of K;and K;, and
also by a determination of ¢ . _ measuring the 7+ #~ intensity relative to the
distance from the production region, where the strong interaction conservation
of strangeness determines the mixture of K, and K; att = 0.

I like to end this discussion with a brief comment. It is straightforward
to carry out this phenomenological analysis without introducing the restriction
of TCP invariance. In this case ¢, depends on an additional parameter pro-
portional to the difference between the diagonal elements of Eq. 2, and on the
difference (4, — A,) and the phase of & is no longer determined by the
difference (0, — d,) S-wave iz phase shifts. It will be interesting to bear in
mind this possibility for the future.

Note added in proof:' Recent experiments have ruled out the superweak model of CP
violation. The branching ratio for K,—27° has been measured by two groups giving

760/=4-9--0+5x10-3, J. CRONIN et al., Phys. Rev. Letters 18, 25, 1967, and |n,|=4-3F 0§ x
%1073, J. GAILLARD et al., Phys. Rev. Letters 18, 20, 1967. Furthermore, recent total K+
and K~ cross section measurements in Cu by CooL et al., Brookhaven (to be published),

lead to the conclusion [see C. RUBBIA and J. STEINBERGER (Phys. Letters to be published)]
that the angle arg i(f-f) is at most a few degrees.
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HAPYUIEHUE CP U n+a~-UHTEP®EPEHLIUS B HEWTPAJIbLHOM K-PACIIAOE
M. HAYSHBEPI'
Pe3wome

Haercst kpaTkuii 0030p 9sieMeHTapHBIX (AKTOB MO pacrany HeHTpasibHbIX K-Me30HOB,
M TpeJIOKeHHbIX B3auMozedcTBuil, Hapywatomux CP. O6cy)xnaercs MocieqHU 9Kcmepu-
MEHT 110 MHTep(epeHIld B z+z~-pacnajge KorepeHTHoi cmecu K; n K.

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



Acta Physica Academiae Scientiarum Hungaricae Tomus 22 (1—4), pp. 77—78 (1967)

THE STATUS OF CP INVARIANCE IN
K°*n+n- DECAYS

By

M. Roos

CERN, GENEVA, SWITZERLAND

The remaining possibilities to explain the long-lived n* n~ decays of K° mesons by
CP invariant theories are examined in the light of two recent regeneration experimentsat CERN.

Among the possible explanations to the observation [1] of long-lived
decays of K° mesons into n+ n1~, some conjectures have retained strict CP
invariance. Most of these conjectures have already been proved wrong. For
the remaining CP invariant theories [2—4] feasible experiments have been
proposed [5] as decisive tests of CP invariance. In this talk, we are going to
report on two recent regeneration experiments [6, 7] at CERN which shed
some light on this question.

For the purpose of this talk it is not necessary to distinguish between
the different CP invarianttheories [2—4]; we will just call them CP theories in
contrast to CP theories which violate CP invariance. As remarked before
[4], [5], CP theories and CP theories predict interference terms of different
magnitude in regeneration experiments, when the K° beam is an incoherent
mixture of K° and K° mesons. Let the beam contain K° and K° mesons in the
ratio Z/l — Z (at the source), then the interference term in CP theories will be
proportional to

2z - 1, @

whereas no such proportionality occurs in CP theories. Instead, CP theories
correspond to taking the factor (1) equal to 1.

Since it is very difficult to obtain information of the value of Z, we have
suggested [5] that the interference term be studied as a function of the measur-
able ratio K +/K~. This ratio is known to vary strongly with beam angle and
momentum, and although the value of Z cannot be derived from the value of
K+1K-, one would expect Z to vary detectably if K+/K~ varies strongly.

Both CERN experiments [6], [7] have, however, been carried out at fixed
beam energy and angle. Thus neither experiment has studied the variation of
the interference term as a function of Z. Unfortunately, both experiments also
claim identical K+/K~ ratios, so that no information on the Z dependence can
be obtained from combining the experiments.
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The only useful information then comes from a best fit determination of
the factor (1). The factor takes the values 1,20 4 0,14 (a 569, likelihood
solution) [6], and 1,08 - 0,12 (a 98,5%, likelihood solution) [7], respectively.
The likelihood for CP theories (2Z — 1 = 1) is, in the two cases,42%, [6] and
989, [7], respectively.

If the ratios K+/K— and K%K?° are equal, the value of Z in these experi-
ments is A~z 3/4. With this value, the best solution for CP theories has the
likelihoods 0,39, [6] and 0,5%, [7]. respectively. If Z is underestimated even
by a small amount, however, the best fit solutions of CP theories get acceptable
likelihoods, although much worse than CP theories. To demonstrate the

sensitivity on the true value of Z we tabulate below the likelihoods for CP
theories as a function of Z.

Table
Likelihoods in 9%,
L e
Ref. [6] } Ref. [7]
0,75 03 | 05
0.80 L5 5
0.85 6 | 34
0,90 17 82
1,00 42 98

From this we conclude that CP violation is very much more likely than
CP invariance, although the CP theories have not been ruled out in an entirely
unambiguous way.
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BO3MOXHOCTb CP-MHBAPUAHTHOCTU B PACIIAIIE K° — m+a~
M. PYYC
Pe3wome
VccneoBaHbl OCTaBIIMECS BO3MOXKHOCTH JUIS O0bSICHEHHMsT m*z~-pacrajga JI0JroyKu-

syumx KO°-me30HOB ¢ momoiibio CP-MHBapHAaHTHBIX TEOPHii, B CBeTe JBYX HOBLIX pereHepa-
[MOHHBIX 3KCIEPUMEHTOB, TpoBeAeHHLIX B CERN.
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POSSIBLE C VIOLATION IN ELECTROMAGNETIC

PROCESSES
By
M. Jacob

SERVICE DE PHYSIQUE THEORIQUE, CENTRE D’ETUDES NUCLEAIRES DE SACLAY, FRANCE*

The various ways in which C non-invariance could appear in electromagnetic inter-
actions are reviewed and the pertinent experimental consequences are analyzed with a detailed
discussion of a few typical cases.

It is stressed that, even though C invariance might be badly broken, all experiments
one can think of, at present, in order to observe its possible consequences, appear as searches
for a measurable effect of at most a few per cent. This is due to various reasons which are
indicated.

I. Introduction

During the two years which have now passed since the first
announcement of an apparent CP violation in neutral K decay [1], the only
solid piece of information which has become available with respect to this
apparently puzzling fact is that the long lived K zero actually decays into
both three pion and two pion states, thus violating invariance under CP [2].
The ingenious proposals [3] which have been put forward to explain the
observed effect with an external interaction through which a K2 could turn into
a Klhave beenruled out by experiment [4, 2]. At present, one is left with the
ratio of two decay amplitudes corresponding respectively to the Ki and Ks
T+ n~ decays. This ratio is known in absolute value

A(KL="n+n=) ) 85 +0.12)10-L )
A (K5-"-n+n~)
and its phase will be known soon [5, 2].

There is some reluctance to admit that the weak interactions, which
otherwise have shown so far a perfect invariance under the combined operations
of P and C, should also include CP violating terms [7]. Although this possibility
should be kept in mind, pending better knowledge of weak reactions with
large momentum transfer, another attitude is to put the blame on other inter-
actions thus preserving an exact CP invariance for the proper weak interactions.
One possibility is to postulate a CP violating but extremely weak interaction

* Address: BP n° 2, 91, Gif-sur-Yvette, France.
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[8] which could manifest itself appreciably only in the K K¢ transition,
owing to the smallness of the mass difference [2]. Another possibility, which
does not require the introduction of an hitherto unknown type of interaction,
is to consider CP violation, as expressed by (1), as the result of the perturbation
of basically CP invariant weak interaction by C violating electromagnetic
[9, 10] or even medium strong [11] interactions. The possibility that C in-
variance could be violated by medium strong interactions is now hard to
reconcile with recent experimental information on anti-proton anihilation [12]
as well as several other results pertaining to Time-reversal Invariance in strong
interactions [9]. On the other hand, a possible violation of C invariance in
electromagnetic interactions is at present still compatible with all known
experimental results [9] and could furthermore provide an intuitive explanation
for the smallness of the K; decay amplitude into two pions. At first guess, this
value is o/ which is quite compatible with (1). The various possibilities so far
mentioned have been presented and discussed in parallel by PRENTKI at the
Oxford Conference [13]. Each hypothesis leads to several consequences beside
the two pion decay of the K; which each deserve proper theoretical and expe-
rimental attention. The purpose of this paper is more modest. It is to present
the various consequences of a possible C violation in Electromagnetic Inter-
actions together with the limitations already imposed by the experiments
which have been done and are at present being done to test this possibility.
Even though all that follows is still at the conjecture level, it is the precise
meaning of an invariance property which is at stake, and the intense experi-
mental activity which is at present proceeding along these lines makes the
whole subject worthy of frequent discussions. As analysed in detail by LEE in
a remarkable series of papers [14] the selection rules which could be associated
with C violation in Electromagnetic processes already lead to many different
predictions. We shall first present the different theoretical possibilities together
with some of their implications. We shall then try to estimate the effects ex-
pected in the decay of mesons which provide apparently handy tests. A dis-
cussion of each currently usable case would be outside the scope of this paper
and we shall put our emphasis on the  and X°decays which have been most
extensively studied so far. We shall then finally consider the expected effects
in experiments involving high energy photons [15]. Both types of experiments
by no means provide an exhaustive list. On the contrary this omits many
reactions with which similar tests could be conducted. We prefer here to focus
on these two types of reactions, which are a priori quite typical, rather than to
give survey of the many reactions available. Many more reactions are presented
in references [9, 14, 15]. Some of these are listed in an Appendix. In the whole
discussion, we shall assume CPT invariance. In particular, any violation of CP
invariance will correspond to a violation of T invariance and we shall consider
tests of both.
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Il. C non-invariant electromagnetic interactions

It may appear puzzling that C invariance still remains a question when it
seems so deeply associated with Electromagnetic interactions which are com-
paratively extremely well understood. As emphasized, however, by Bernstein,
Feinberg and Lee [9], if C invariance is a basic property of Standard Electro-
dynamics, its relevance whenever hadronic currents are introduced, still
remains an hypothesis. It has often been taken for granted so far, without
involving any contradiction, but this may be due merely to the fact that it
often results anyway from other conditions such as Lorentz invariance, parity
invariance and gauge invariance.

<p'lI»(0)lp>= Julp'l [fyi+ff/jyip'-pM +ifp'-pIrfjuip)

Fig. 1. Electron-baryon scattering

If one considers, for instance, electron-baryon scattering in lowest order
in electromagnetic interactions, as shown in Figure 1, the whole amplitude can
be explicitely written down except for the matrix element of the electro-
magnetic current operator JB between the one baryon initial and final states

<B(p+)[IMO)|A(p)>. @)
If both baryons are spin 1/2 particles, (2) is expressed in terms of three inde-
pendent functions of the momentum transfer squared t= —mp ' —p)2as [16]

<B (P) 1In (°) 1A (p)>= — iuB(p') {yMF 1(t) + (p' —p), F2(t) +

+ i (P'—jPV Fz(1)} na (p)- )

This is the most general expression when Lorentz invariance and parity in-
variance are required. If T (or C) invariance holds all terms should transform
properly under T and this implies that Fv F2and F 3, as defined in (3), should
all be real. A relative phase, from which polarization effects would result even
in lowest order, would show a failure of T (and C) invariance. Nevertheless, all
detailed experiments so far conducted involve only nucleons for the A and B
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particles. The hermiticity of the current alone then implies that F, and F,
should be real. I'; should then be pure imaginary but it is not possible to test
its presence since it does not contribute to the scattering amplitude as follows
from the conservation of the electron current. In effect, F; should be zero also
from the conservation of the hadronic current. This condition reads in general:

(B(p')[8,J ,| A(p)y = — iTig (p') {(M o — M) Fy (t) + tF; ()} ua(p) = 0
or tF, (f) = (Mg — M) Fy (2

with F, (tf) = 0 if the baryons A4 and B are identical particles. So, present
detailed information on electron proton scattering does not give any hint
whether or not C invariance is satisfied. As explained in detail in reference [9]
such an argument can be extended to most experiments so far analyzed. With
different baryons, the same constraints no longer hold and tests are possible.
The experiments, however, are much more difficult. A possible test could be
provided by the X% — A° 4 e¢™ 4 e~ decay as shown in Figure 2 [9] which is
formally very close to the one just mentioned. It involves the matrix element:

AP T, ) |E(P) = — i1, (p) {n . D

M, — M,
(5)
t 0, (0" —p) F, (t)} s )

where F, and F'; are new form factors, proper to this reaction, but which have
been defined according to (3) and (4). We have not included a term Fy(p’ — p),
since it does not contribute to the decay amplitude. A phase difference between
the two form factors would violate T invariance and would resultin a polariz-
ation of the / normal to the decay plane, allowed by parity invariance but
forbidden by T invariance for a lowest order decay amplitude [18]. The normal
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polarization obtained with unpolarized E, is then proportional, beside known
factors, to tIm {F* ()F2t)} | F2(t) |2 at least for small t. In order to find
a large effect, it is tempting to take large momentum transfer decays (large
angle pairs) but these decays are infrequent. The process in analyzed in great
detail in reference [9] and generalized to arbitrary hadronic states for A and B
in reference [15]. The present limit is: 0,06 ~ 0,03, inconclusive.

Even with a large violation to start with the measurable effect is a priori
highly reduced with the imposed kinematics.

@ ®)

Fig. 3a.r) n°+ e+ + e decay 3b. f] "mn° n- n+ decay with C violation (model)

This brief discussion illustrates two general points, the second of which
will come up many times here. The first is that there is so far no direct proof
of C invariance in electromagnetic processes involving hadrons, the second is
that most C violation effects which could be expected turn out to be quite
small, and this for various reasons, even if Cviolation would be large, that is C
conserving and C violating coupling terms would be comparable in magnitude.

A similar argument can be carried for spinless particles, as shown in
Figure 3. The most general expression for the matrix element of the Electro-
magnetic current operator now reads

14 @p.oop<b(p) Wp (O)\a(p)}=Ff1®) (p + p)"+ /2@ (p* —P)P, (6)
where current conservation requires
(ml —m)fx(t) = tf2(1) . @)

Only /j (t) is present when both a and b particles are identical. f2 (t) does not
contribute to the scattering amplitude as follows from the conservation of the
electron current. 1f Jp has non-zero matrix elements between two eigenstates
of C with the same eigenvalue (rj and n° say) C invariance will be violated.
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Different particles are needed. The matrix element is otherwise zero since a
photon cannot couple to a pair of identical spinless mesons.

As imposed by (7) this C-violating term should, however, by zero at zero
momentum transfer squared. Following [9],/xis approximated as t/m2, where
<Ar2> = —6 m~2may be defined as a charge transition radius. If this charac-
teristic mass is of the order of the vector meson mass, as seems to be the case
in most meson decays [19] here again the kinematic limitation on t, will also
quench the effect a priori.

So far we have introduced possible C (and T) invariance on a pure pheno-
menological basis, building up obvious C-violating amplitudes. Lee has,
however, highly clarified the various ways, in which a violation of C-invariance
could be brought into the electromagnetic interactions of the hadrons [14]
and we now turn to this classification.

I11. Classification of C non-invariant interactions

The successes of standard electrodynamics, a theory which is explicitly
C-invariant, clearly warrants C invariance for the electromagnetic interactions
involving charged leptons, whereas for the hadrons, for which no detailed
theory is at hand, C-non-invariant terms could be constructed with no known
reason to be ruled out. One should, however, specify clearly what is meant by
C for the leptons and for the hadrons. In classical Electrodynamics and also
for the electron and the positron, or y~ and (j+ as well, which are the only
particles involved in quantum electrodynamics, C is basically associated with
a change in the sign of the charge and the electromagnetic current accordingly
changes sign under C. Following Lee [4] such an operation will from now on be
denoted by Cy. Charge conjugation, as defined for the hadrons, should change
a particle into its antiparticle because it is under this operation that strong
interactions are known to be invariant. It might be the same operation as Cy
but could be different, and will be denoted by Cgte In other words, whether
particle—anti particle exchange always implies the change ofthe charge into its
opposite is still an open question. If the electromagnetic current is odd under
Cyit could be either odd (as assumed so far) or also contain an even part under
CSt- Cy and Cst would then be non-compatible as invariance properties and C$t
invariance, a property of strong interactions, would be violated by electro-
magnetic interactions. Parity invariance being a common property of strong
and electromagnetic processes, the same parity operator P is introduced for
both and, according to the CPT theorem, two time reversal operators Ty and
Tst are required in order that the Hamiltonian (strong and electromagnetic)
commutes with the operator CYPTy — Cst PTst. The two pion and three pion
decay modes of the K meson are eigenstates of PCst with eigenvalues -[-1 and
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—1. At the same time the XJ and X, are defined as eigenstates of PC$t with
eigenvalues -{-1 and —1. PC invariance for weak interactions is then specified
as PCst [20] invariance (for the leptons Cy and C$t are identical) and apparent
violations may result from electromagnetic effects. In general, they could he
expected in weak interactions whenever hadrons are involved.

The electromagnetic current JB (odd under Cy) is then separated into two
terms respectively odd I,, and even KRunder C$tmThe presence of X" will lead
to Cst non-invariance in electromagnetic interactions. Its presence might be
associated with selection rules according to which its possible effect should be
classified. As pointed out by Lee,the main classification, however, has to do
with the charge QK associated with it. The charge is defined as

Qi ill [']d3x, QK = i7Ki{x)d3x,

and QKas well as Qj might not be zero. The X charge as the current density is
even under Cste If Qk is not zero, and as shown in detail by Lee [14], there
should then exist at least one charged state (which can be chosen as an eigen-
state of Hst) which is an eigenstate of Cst, Ja+/>. Through PCT, there would
then also be another state |a- /> (not related to it by Cst)- The existence of any
such state necessitates C non-invariance. Cs<and Cyinvariance are then clearly
incompatible. Qj and QK are shown to be two commuting operators which are
separately conserved by the strong and electromagnetic intractions [14].
It follows that all particles known at present must have a zero X-charge for
Cst invariance to hold in strong processes as it does. Nevertheless, particles of
the a+ (and a~) type with a non-zero X charge could exist which would be
stable except for weak interactions [21]. These particles could be produced in
pairs. Their non-observation in the data so far analyzed would put a lower
limit of over 1 Bev for their mass [22]. These strongly interacting particles
should be associated to SU3multiplets. If ais a SU 3scalar, the pertinent part
of K/t will transform like a scalar but, as stressed by Lee [14], it is also possible
that X,, might transform like a scalar even though the a might be associated
with higher multiplets (some a would then be neutral).

This possibility of C non-invariance thus corresponds to a ZiT= 0
Isotopic Spin selection rule. Many reactions which could be considered as
direct proofs of C non-invariance [9] would in effect not provide a test under
this scheme. In particular, the ® (or co), gy decay is forbidden. The 7] -> n°
e+ e~ decay, which we shall consider in detail later on would also be forbidden.
Similarly no Cviolation would be found in A e+ e~ decay norin N+ (3;3)
(and any N+ with T 5§=1/2) electroproduction on a polarized target, which
would be one of the easiest practical tests to do with high energy electrons
(Section V.). As discussed in particular examples in the next Section, C violation
effects when allowed, would then often show a rather well defined pattern.
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Asymmetry in the r] = jt+ n~ w° decay might be hard to detect but asymmetry
in the rj-> 7i+ n~y could appear.

On the other hand, QK might be zero (no particle such as the 0’s would
then exist). KBwould not be limited to any particular multiplet and its matrix
elements could be, as previously done, written on purely phenomenological
grounds. As listed in references [9] and [14], many reactions can then show
directly the effect of such C non-invariant terms. If KR as IR is assumed to
transform as a member of an Octet, many matrix elements are zero in perfect
SU3symmetry and should be reduced by an order of magnitude.

Defined with only the known particle, that iswithout o’s, Electromagnetic
interactions, introduced in a minimal way, with 8" replaced by 8" — ieAR
everywhere in the strong interaction Lagrangian, may seem at first sight to
imply Cstinvariance. In effect, one does not know whether such a Lagrangian
approach is correct to derive definite conclusions from it, hut anyway, as shown
by Lee [14], C non-invariant terms could be introduced in a minimal way
starting from at least two neutral vector meson fields coupled to the Electro-
magnetic field. The C violating terms then come out as a magnetic moment
coupling between the two fields.

IV. Possible C invariance violation in rp and X° decays

As particular examples of the various reactions so far mentioned, we
now consider how C non-invariant terms would appear in f] and X decays
[9, 14, 23]. Such decays are, a priori, the simplest reaction in which to look
for the effects of Cviolating electromagnetic interactions. The widths (especially
the rj width) are small and electromagnetic terms should manifest themselves
in a conspicuous way either directly or as interference effects. Much inform-
ation is already available on the r] [24].

A striking effect would be the decay mode rj -> 1r° -)- e+ -|- e~ as shown
in Figure 3. The hadron vertex is obtained from the expression already written
(6). The decay rate is then easily calculated as

M= ——— e {40" c02 — 2M (coj -f cd?) + (M 2— [£)} d<olda)2, (8)
an 4n nTt4J

where and @&2are the electron and positron energies. M and u are the fand
n masses. We have defined/ = m2f x(t)/t (t = 0) and neglect the variation of
fx mm-1 defining a radius (it is tempting [19] to take m = g meson mass).
This decay mode has been now thoroughly explored [24] and one knows that

N <:0,007 ryy, (Myy = 1,54r39),
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where I''yy is the rate of the rj — 2y decay mode. 'yy can be related through

SU3symmetry to the n° decay rate, {.e.l'yy = 127 ev. This gives the following
higher limit for/2

P 4 500-5 9
41i ' ®)
This may sound deceptively small but it should be stressed that the reaction
considered corresponds to a contribution from K with AT = 1 which could be

la) b
StrVII: Is-u)(l_—l_azlu-l)

Fig. 4a. Dalitz plot for fj decay T = 1,2 interference

4b. Dalitz plot for Ty decay T = 0,1 interference, final state nsa interaction increases the
density toward the low Nn° Kinetic energy

forbidden if a ZIT = 0 selection rule holds. Also, as pointed out by Cabibbo [25]
the process is forbidden if KB, as I transforms under SU3 as a member of an
octet. The zero value of the diagonal matrix elements then implies a zero value
for the rjji off diagonal elements. SU3 symmetry could then decrease the
expected effect by an order of magnitude. Feinberg [26] has made a detailed
analysis, assuming SU3 matrix elements and X —Yj mixing. The expected
branching ratio /%»(»? n° e+ e~)/T(r/ +~yy) is of the order of 1%.

We now turn to the three pion decay mode of the rj. This is known to be
an electromagnetic decay. If both the K and | parts ofthe current are involved,
the final state will not be in general an eigenstate of C$t as the initial»? state,
i.e. there will be an asymmetry between the n+ and n~ energy distributions.
This would arise from an interference between the basically constant. S wave
amplitude associated to the C conserving electromagnetic decay of the r?
(T = 1 final state) and a C violating amplitude (with T = 0 or T = 2final
states). As follows from PCT invariance, the two decay matrix elements are
relatively imaginary. Interference can occur only through final state inter-
actions, here mainly the large S wave, T = 0 phase shift [26]. The observed
asymmetry will reflect the Isotopic spin character of the interaction. If no
particular selection rule holds, beside what is known for the / component, the
asymmetry would result mainly from an S, P interference in the n+ n~ state.
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This corresponds to a left right asymmetry on the r) Dalitz plot (Figure 4a).
It is then tempting to assume that the coupling between the P wave two pion
system and the Mn° system would occur through a simple IK interaction [23]
(that is a one photon exhange as shown in figure 3b). The C violating term
would then correspond to T = 2. The advantage of this model is that the
asymmetry can be calculated in terms of the coupling constant f previously
introduced (8). To do this, we write the dominant S wave rate as:

\ro= I da>j da>2 (10)
(47)3M

and the left right asymmetry (assuming dominance of the C conserving mode)
is found to be

ctg — w2 Ildwlde?2
FOm2 j da)1dco2

or

R=~ = KA2
o

using (8), (10) and (11) with K ~ 70 independent of the range m-1.

Therefore, the present lower limit of 1,1% on 't would limit the asym-
metry to ~1,3% which would be extremely hard to detect. Furthermore we
have assumed maximum interference when a reasonable treatment including
the Tenphase shift would reduce the asymmetry by a factor 2 at least. Never-
theless, the model is probably too restrictive though practical, and the non-
observation of thet? -> n0e+ e~ decay mode should not discourage a detailed
check of the asymmetry in the three pion mode.

If the zIT = Orule operates for K the Cviolating term should correspond
to AT = 0. At the same time the?? “me+ e~ decay mode is excluded. In such
a case the antisymmetry of the isotopic spin state implies a totally antisym-
metric amplitude, namely G(s — u) (u — t) (t —s), where s, t and u are the
centre of mass energies squared of each pair of 1 mesons. G is a symmetric
function of s, t and u, i.e. a constant with a good approximation. The asym-
metry now would change from one sextant to the next, as shown in Figure 4b.
If this is the case, one would expect an important quenching of the C violating
amplitude as a result of centrifugal barrier effects. Whenever we introduce an
explicit dependence onthe energy of one of the pions, a&lsay, we should actually
introduce a factor m/m where mis the inverse decay range. With m of the order
of the vector meson mass, we are led to expect strong centrifugal barrier
quenching whenever the matrix element introduced is complicated. The C
violating term should be intrinsically very large [23] in order to bring a
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detectable asymmetry effect. Taking the range as an inverse g mass, one
obtains an average quenching factor for the asymmetry of 103 as opposed to
a Al = 2 transition.

Asymmetry could also occur in the n+ A~ y decay mode between the P
wave associated with the Cinvariant term and the D wave associated with
the C non-invariant one (we limit the decay amplitude to the lowest possible
waves). This should occur even with a unitary singlet current. This has been
discussed in detail by Barrett and Truong [28]. The point is that there is no
large expected phase difference between the P and D wave at the energies
available (both are expected to be rather small). Even though the violation
might be strong to start with (that is the same amount of P and D wave), the

bl ®

Fig. 5a. X° —=7i(rj) + e+ + e 56. X° —=n(rj) -)- n* + n~ (model)

interference cannot build up. As shown in [28] the maximum asymmetry
would come out as 1,1% while the large D wave would contribute a rather
large 7t° Wy branching ratio I'(r] -a- n°a0y)/I'(r] =»n+ a1~ y) ~ 0,25 which
might then perhaps be the easiest to detect, though this would be very hard
against the 3w’ background. Present experimental information [29] based on
33 events gives a 0 asymmetry (with an error of 17%).

The same argument can be applied to the KL—n+n~y decay. Even
though parity is not conserved, an asymmetry between the n+ and 7i~ energy
distribution would still be a proof of CP violation due to C violation in the
Electromagnetic part of the decay interaction.

It is to be feared that centrifugal barrier effects may, in many cases, hide
actual C violating terms. A striking example is the n°® — 3y decay where with
a decay range of the order of the inverse mass of the g, which seems to fit
properly the 2y mode [19] one would expect a quenching factor as large as
10~7. The present limit for I by!l' 2y, is 5x10 _e.

We now turn to X° decay. Several decay modes could provide evidence
for C non-invariance. Among the many matrix elements of interest, we shall
consider first <jr0| KR |X) and (r) [KA\X). As shown in Figure 5, they
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would correspond to X — 7(n) + et + e~ and X — 7(n) + «a" + z~. Esti-
mation of C violating effects may proceed as follows. The ratio of the 7°e* e~
and 37 decay rates is readily obtained (the 37 decay assumed to proceed
according to our model). One finds that the p enhancement more than com-
pensates for phase space. Namely

I'X—>n%ete) e
I'X—>nntn-) 5

The 37 decay rate has a contribution (second order electromagnetic) from C
conserving terms but without p enhancement. Assuming C violating terms to
be present with a similar strength, we have neglected it.

There is at present, an upper limit for the " z~ (neutrals) branching
ratio of the X [30]: 5 + 49,. We would then expect a branching ratio for the
7% e* e~ mode of at most 19,. The 7 e™ e~ decay mode implies a phase space
reduction by a factor 50. With an X1, electromagnetic transition interference
between the C conserving (strong interaction) mode and the C violating electro-
magnetic mode would yield an asymmetry on the Dalitz plot. As for the 7,
the same model relates this asymmetry 4 to the 77 e" ¢” branching ratio
through the same relation. The pertinent factor K is now found to be about 30.
This would assume complete interference and the asymmetry should in effect
be still more reduced.

If K, transforms as a unitary singlet both matrix elements are zero
except for X—# mixing. If K, transforms like I,, the n > me’ 7, X —
— mwet e and X — e e~ rates are all related [26] with a X —7 mixing angle
of 0,18 [31]. The branching ratio of the X — 7 e™ ¢ mode should then be of
the order of a few per cent, the 77 e* ¢~ mode should contribute about 0,19%,.
Experimentally, the respective upper limits are 1,39, and 1,1%, [32].

As for the 7 the most interesting test should here also be afforded by
the 77 7~ y mode, which has a branching ratio of 209, [32]. The C conserving
contribution corresponds mainly to P wave, while the C violating interaction
would correspond mainly to D wave. The transition is allowed even for a K
current which would transform as a SU, scalar. The centrifugal barrier effect
should play only a rather small role owing to the high mass of the X, and the
o resonance together with a still small D wave phase shift should provide an
important interference. For all these reasons the Dalitz plot of the X —
— " 7~y decay should provide one of the most favourable pieces of data
for seeking possible C violation. A detailed estimate has been made by BARRETT
and TruonG [28]. With maximum violation, i.e. equivalent P and D contri-
butions, the expected asymmetry soars to 18%, as follows from the large P
wave phase shift. Such a large D wave contribution is, nevertheless, not too
reasonable and a more likely figure of 109, would leave only a 49, =° z° y/
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/n'Tn~y (due to the D wave contribution) branching ratio [28]. The present
experimental situation [32] based on 152 events (including 86 in the g peak)
is compatible with no asymmetry but the statistical error is such that a 10%
or less asymmetry cannot be ruled out. Further data on this decay mode are
highly needed [33].

V. Experiment involving high energy electron scattering

We have seenthat if, in principle, C invariance could be easily tested in
meson decays, tests of T invariance are more readily available with fermions.
One should then test directly T invariance in electromagnetic interactions
involving fermions, C and T invariance being related by the CPT theorem.
Many such possible tests have been proposed and analyzed in great detail by
Christ and Lee [15]. Several of the reactions considered are formally related
to the E° -> J10e+ e~ decay, already mentioned. The E and J1 may be replaced
by two different hadronic states which can be one or more particle states.
Both electron scattering and pair production are considered. In many such
reactions, one should simply look for a T non-invariant term in the reaction
amplitude. Since the reaction is described up to a very good approximation
by a one photon exchange, it should then correspond to a ' non-invariant
term in the Hamiltonian [34]. This is the case for a contribution of the type
<@}kXJc' to the cross section which was previously mentioned [18]. Such
terms, as well as others [15] should be searched for in many electromagnetic
interactions involving hadrons. The remaining question is to select that which
would be, a priori, the most favourable.

Instead of giving a review, we shall single out one reaction, namely N +
electroproduction on a polarized target and analyze its main features which
are quite typical. This might be a feasible experiment at present [35]. We
refer to the work of Christ and Lee [15] for a more detailed discussion as well
a review of related possible experiments. The reaction studied is presented in
Figure 6. N + stands for any nucleon isobar. For obvious practical reasons,
production of the N + (3,3) at 1240 Mev could be most easily studied. Never-
theless, there are some indications that, owing to the particular relative value
of the form factors involved, the polarization effect sought might not be large
in any case [36]. Furthermore, no effect would be observed if C invariance is
violated unless the current K/ transforms like an isoscalar [14]. For these
reasons, it is desirable to push the experiment to higher isobars and especially
to the N + (1,3) at 1520 Mev which is also clearly produced in electroproduction
[37].

The principle of the experiment is as follows: electrons are scattered off
a polarized target and their energy spectrum at a fixed angle is analyzed. The
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N + peak, due to protons, will stand above the background provided by the
target compound nuclei as a whole, and its magnitude should change with
inversion of the polarization if T (and C) invariance were violated. At present,
polarized targets provide a 60% polarization, but with only a 3% proton
content [35]. The background is therefore enormous. Nevertheless a rapid
improvement of targets is expected.

The N+ Ny vertex, with a virtual photon (Figure 6) involves 3 form
factors which are conveniently related to the matrix elements of the electro-
magnetic current between different helicity states of the initial and final

Fig. 6. e + IVv*e+ N* reaction

baryon [38]. We follow here the analysis of Christ and Lee [15], i.e. we write
the differential cross-section in the laboratory system defining the z axis by
the isobar momentum p and the y axis by the normal to the electron scattering
plane . 3 independent matrix elements are thereby introduced [15].

f+ =ty (iy+ y £ 1I@*0>£i-M)IiV’ y)
X 7 (12)
Fz=(n+,

All other matrix elements are given by parity invariance [39]. The matrix
elements of the time component of the current are obtained from current
conservation, namely

(13

where M and m stand for the isobar and nucleon mass.
Iftime reversal invariance holds all F's are relatively real in the scattering
physical region and a zero polarization effect results [34]. On the other hand,
a contribution to the cross-section proportional to the polarization normal to
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the production plane involves the imaginary part of the quantities Ff Fj.
This is easily seen since with our choice of axis, it is proportional to the non-
symmetric part of the density matrix describing the polarization of the initial
nucleon.

In order to be more specific, we write the isobar production differential
cross-section in the laboratory system as

da ' + +
2n eek M22Km2 42 2Rt + R2cotan2
dcos O 2K m202 <K sinzg
m 2
(14)
k2- k'2 0\
+ P — R3cotan— >
T 21

where P is the average proton polarization (expectation value of the spin
component) normal to the selected reaction plane, g2is the momentum transfer

0
squared, 2= 4M"' sin2 , 6 is the scattering angle. The electron mass has

been neglected.

Relation (14) is derived from the work of Christ and Lee [15] when
their general relations are specialized to a particular isobar. Rv R2and R3

have been defined according to the 3 form factors that they have chosen (12).
Namely

R, =\F+2+|F _|2

4m2q2
R* = F+R+ IF_ R+ (15)
p~ (M2+ m2+ @22

4m4ql
p2(M2—m2+ @22

R3= 2rjIm {F* FJ

M2I . M2—m2— g2

where p, P2 = ——- + mmommmmmeee e -, is the isobar momentum, and
PP m2 \qN 4M 2

where 71 is the relative parity between the nucleon and the isobar time a factor

-f-(—1) if their spin difference is even (odd) = —1 for the iV+(33) and -(-1

for the N + (1,3).

(14) together with (15) follows from the definition of the F’s when the
cross-section associated with the graph of Figure 6 is calculated. The most
readily measurable quantity is the asymmetry obtained with up and down
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polarization. It reads [15]
(k* — Kk"?) Ry cotan

A = (16)
m? 2R, + R, cotan?

We now turn to an estimate of this expected asymmetry assuming a
maximal violation, that is Im {F;" F_} ~ | F, F_ | as seen in (14) and (15).
The observation of the electron direction only yields two independent functions
[41] which correspond to transverse and longitudinal photon polarization.
Present results [37] clearly show that isobars are conspicuously produced, but
the analysis of the data still leaves a great uncertainty in the knowledge of
the F functions. For the N* (3,3), | F, ? is compatible with zero and should
not exceed 209, of (| Fy |2+ | F_ ]), [41]. The small value of F, could be a
result of higher symmetries [43]. A maximal effect, i.e.Im F, F_ ~ 0,5 | F- [2~
~ 0,5 | F [>, with 800 Mev incident electrons and a scattering angle of 60°
(¢> ~ 0,26 (Bev/c)?) would yield an asymmetry A ~ 309, as follows from the
relation of CuHRisT and LEE.

The asymmetry is zero in the forward direction, increases with momentum
transfer to return to zero in the backward direction. The counting rate, however
decreases sharply with ¢

A detailed and refined analysis [36] concludes with a maximum asym-
metry of the order of 259%,. This may look favourable but, as we have already
mentioned, this has to be observed on a 29, contribution above the background
due to the still low hydrogen content of the targets.

As mentioned already, the probable smallness of F), relative to F_ for
the N* (3,3), together with the possible AT = 0 selection rule, strongly indi-
cates that the experiment, if feasible, should be extended to the N* (1,3).
The pertinent value of F. could be much more favourable [38] and a AT = 0
rule would not forbid it.

Many other reactions have been proposed and analyzed in great detail
including Compton scattering [44]. However they all seem difficult at present,
as in the case for the test of reciprocity relations in photon reactions [15], or
else are expected to yield small effects.

As a general conclusion, if there is yet no direct proof of C invariance in
Electromagnetic processes involving hadrons, C non-invariance effects appear
to be almost always limited to small contributions for various and independent
reasons. This, however, should in no way discourage us from probing the
profound meaning of this invariance principle.

It is a pleasure to thank G. SmAPIRO from Saclay and A. RousseT from
’Ecole Polytechnique for discussions on the experimental aspects of the
different tests at present being performed or planned. I also thank G. BoucHIAT
for a discussion.
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Appendix

Several meson decays which could provide tests for C invariance in electromagnetic processes
are listed

Reaction

71° -» 3y

r-ma®e* e~

T —= Tj+ Ti~ n° (asymmetry)
1j —a7i+ 7i~ Yy (asymmetry)

X —a7i+ 7i~rj (asymmetry)
X —T7i°(r)0) e + e~

-*-Qn
X > jr+ n~y (asymmetry)
K —»n + n~y (asymmetry)

b —B+ Y
d-*o+ Y
o—Q-Ty

¢ =71+ 7t Y (asymmetry)
o A+na~y (asymmetry)
p a+a- Y (asymmetry)
o -»> A+ 4- n° (asymmetry)
® -a TC+ 7i~ T (asymmetry)

forbidden for
3

singlet

xXQ—vy)

forbidden for
su3

octet

Expected quenching as opposed to the

dominant mode or Cconserving one. It

is due to centrifugal barrier effects or
the weakness ofa

a, very strong

strong (anyway) average (model)
average but small P wave phase
shift
a (Average)
a2
a2

average but small P wave phase
shift
a
a
a
small branching ratio
small branching ratio
small branching ratio
a
a

As a still possible search for C violation, it should be mentioned that:
— a more precise measurement of the neutron electric dipole moment
would also be extremely interesting. Estimate with C violation [26] gives
values as large as 10“19 excm when the present experimental limit obtained
by Ramsey and his collaborators is 10-20. W ith a precision pushed higher, it
could easily reveal a C violating effect if present.
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BO3MOXHOE HAPYLWEHWE C-YETHOCTU B 3/NEKTPOMAIHUTHbIX
MPOLIECCAX

M. XXAKOB

Peswome

PacCMOTpeHbI pasHble BO3MOXHble CMOCOGhI HecOXpaHeHWs C-4eTHOCTM B 3/1eKTpo-
MarHWTHbIX B3aUMOAENCTBUAX, U [aeTCA aHaan3 3KCMePUMEHTa/IbHbIX CMEACTBUIA C NOAPO6HBIM
06CYX/EHVEM HECKOMbKMX TUMWUYHBIX CYy4aes.

MoauepkmBaeTcs, 4to x0T C-MHBApPUAHTHOCTb MOXET 6biTb CWU/bHO HapylleHa, BCE
3KCMEPVMEHTbI, KOTOPblE B faHHbIA MOMEHT MOFYT 6biTb MPEANOXEHbI, SBASIOTCA MOMCKaMW
U3MEPUMbIX 3((EKTOB MOPsiKa HECKONIbKUX MPOLEHTOB. TO OBGCTOATENLCTBO CBS3aHO C pas-
HbIMU MPUYMHAMKM, KOTOPble KPaTKO OGCYXAalTcs.
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REMARK ON THE s»->3y DECAY

By

L. Galfi and G. Marx

INSTITUTE FOR THEORETICAL PHYSICS, ROLAND EOTVOS UNIVERSITY, BUDAPEST

A theoretical upper limit on the rate of the C violating decay is given.

One of the discussed possibilities of (electromagnetic) C violation is the
possible n° — 3y decay [1]. Our aim was to find the simplest 7i°— 3y vertices
and to estimate the expected branching ratio

R r(n°-+3y)
r (n°— 2y)

for the case of an electromagnetic (or strong) C violation. Lorentz symmetry,
P conservation, Bose statistics and gauge invariance for photons are assumed.
It has been shown that all the vertices with six or less dérivates vanish for
0~ — 3y (and also for 0+ — 3y) transition. Independent non-vanishing vertices
with seven dérivates are

— - 3e3j71°8 FaBa7FakFy$ , (1)
ml
“V. By 9-1° GoF °$ F by QFF 7 )
~ 8p Fal F Ry 3, 37 , ?3)
m7
o 9%9% 3eFaR FRyOg Fyi , 4)
~T®1 9e FaBaa 3D Be Fyb, (5)
v
~~ 9471’ 8e Fal 8a FRy Oe Fyf . (6)
m

8VAf, is the electromagnetic field tensor,

Fie — Bon Far ©?)
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the corresponding pseudotensor, m_1is a constant of the dimension of length
(the so-called decay length). There are several other independent vertices
where the antisymmetric pseudotensor eMAf and the field tensor Fg are not
contracted twice, so the vertex cannot be expressed in terms of it0, Fa*, F*
only.

One of the simplest cases seems to be the vertex (1) which was quoted
already by S. Barshay [2]. For a pion at rest in three dimensional language
it can be rewritten in the following form:

.pfn:ff . [(H2KX {[E3H, k7 + [H3EXKZ} +

+ (Hgk2 {[Eg H2kg] + [Hg Eg kg]} + (la)
+ (Hg ko) {[Eg H3kg] -f- [Hg E3kg]}.

The decay rate corresponding to the vertex (la) can be expressed in a straight-
forward way. By making use of the &functions several integrals can be evaluat-
ed directly; finally two integrals survive (with respect to the two photon
energies feg and k2). The integration domain is the central solid triangle of the
Dalitz-diagram (Fig. 1). The numerical evaluation of this integral results in
the estimation

F(n°® -a-3y) = 2 «109s“1

if the decay length m-1 is put equal to the pion Compton wavelength. This
corresponds to a branching ratio

R = 3.10-7.

This numerical value may be considered to be an upper limit. A more realistic
result can be obtained even in the case of maximum electromagnetic C violation
by putting the Q meson Compton wavelength as decay length (m = mg):

R — 10-12.
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The present best experimental upper limits are higher by two (or seven)
orders of magnitude than this result. So we may conclude by saying that the
observation of the C violating n° -> by decay may be considered to he rather
difficult technically even for a maximum electromagnetic C violation.
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3SAMEYAHWE O PACIMALE n» -> 3y
n. TANb®W n I'. MAPKC

Pesome
[aeTca TeopeTuyeckuii BepXHUiA Npefen Ana pacnaga c HapyLueHem C-MHBapnaHTHOCTH.
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POSSIBLE CP-VIOLATION AND INTERFERENCE
PHENOMENA IN DECAYS OF K°L AND K°s MESONS

By

E. 0. Okonov

JOINT INSTITUTE FOR NUCLEAR RESEARCH, DUBNA, USSR

Abstract

Interference experiments in non-leptonic and leptonic modes of K% and
K°L are considered in connection with possible CP-violation. The interference
effects in the K°stL— n+ n~ system, which occur in the case of CP-violation,
are investigated. It is shown that these effects are very pronounced under
certain conditions. Their study makes it possible to solve finally the problems
concerning the existence of the K® -> n+ n~ decay and the models of CP-
violation. A comparison is made between the expected effects and recent
experimental data. The influence of CP-violation upon leptonic decays of K°s
is analysed.

Some new interference effects which can be observed in experiments
with K° K° pair production are considered.

BO3MOXXHOE HAPYLWEHWE CP N NHTEP®EPEHUMNOHHBLIE ABAEHNA
B PACMAOAX KI N KS ME3OHOB

3. 0. OKOHOB

Pestome

PaccMaTprBaOTC MHTEPEPEHLIMOHHbIE 3KCMEPUMEHTbI C JIEMTOHHLIMUA U HENENTOH-
HbIMM pacrnagamMu Kg v KL B CBA3U C BO3MOXHbIM HapylleHuem CP-uHBapuaHTHoCTU. Wccne-
[0BaHbl WHTEP(EPEHLMOHHbIE 3((eKTbl B cucTeMe Ks.l — n*a~, KOTOpble SBASIOTCA CleAcT-
BMSIMW HapylleHust CP. [loka3aHo, 4TO Npu OMpefiesieHHbIX YCI0BUAX 3TW 3(eKTbl BecbMa
3HaunTe/bHbl. VX M3ydyeHue AaeT BO3MOXHOCTb OKOHUYATENbHO PELUNTL BOMPOC O CYLUECTBO-
BaHUM KI-*- pacnaja v 0 Mofensix HapylieHus CP. [Mony4yeHHble 3KCMEepPUMEHTa/IbHbIE
[aHHbIE CPaBHUBAOTCS C OXWAAEMbIMU TEOPETUYECKUMM 3ththekTamu. [MpoBefeH aHanM3 BAWS-
HUA HapylleHus CP Ha /IENTOHHbIA pacnaf K%

PaccMOTpeHbl HEKOTOpbIE HOBble MHTEP(EPEHLMOHHbIE 3((EKTbI, KOTOPbIE MOTYT GbiTh
HaG/ofleHbl B 3KCMEpUMEHTaX C poxzaeHrem KeKem
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EXPERIMENTAL INVESTIGATON OF K9 — auv AND
2—>71+7r_710 DECAYS

By

P. BasiLe, J. W. CronNIN, B. THEVENET, R. TurLAY, S. ZYLBERAJCH and
A. ZYLBERSTEJN

CENTRE D’ETUDES NUCLEAIRES DE SACLAY, FRANCE

Abstract

An experiment on the charged K decays has been carried out on the
synchrotron Saturne in Saclay with a double magnetic spectrometer and spark
chambers. 300 000 photos containing 80 000 K} decays have been obtained.
The identification of the 77, u and e has been carried out by investigating their
interactions in spark chambers. We present here preliminary results concerning
3000 K9 — nn* u¥ v and 1000 K] — 7" 7~ 7° decays. We have investigated
the form factors of the muv mode and their possible energy dependence. The
analysis of the 7° spectrum in the 2" 7~ 7° mode is carried out in terms of
WEINBERG’s linear matrix element and of o resonance as suggested by L.
Brown.

OKCITEPUMEHTAJILHOE UCCJIEOOBAHHUE PACITAJOB
K} —awu K —a+taa

I1. BA3WJIb, K. B. KPOHUH, B. TSBEHE, P. TIOPJIEH, C. 3UWIBEPAX u
A. BWIBEPCTENH

Peswome

ITpoBeieH 3KcnepUMeHT MO 3apspKeHHbd K pacmagam Ha cuHXpoTpoHe CaTypH B
Cakyd ¢ JBOMHBIM MArHUTHBIM CIIEKTPOMETPOM M MCKpPOBBIMH Kamepamu. IToayuenst 300 000
CHUMKOB, n3 KoTopbix 80 000 coneprkat K| pacnaasl. Mnentnduranms =z, u v e NpoBeieHa Iy-
TEM MCCIIEI0BAHUST MX B3aMMOJIEHCTBHS B UCKPOBBIX KamepaX. Mbl COOOIIMM 3/1eCb HEKOTOPbIe
npeaBapuresibHble peaysbTaThl HA ocHoBe 3000 ., — ztpu4v u 1000 K, — n~n'a® pacna-
10B. Mbl uccnenoBanu opmbaxropst KO — zt 4+ v pacnaaoB U MX 3aBUCUMOCTb 0T SHEPTHH.
Ananus cnexrpa n° B pacnage K{ + mz—z+z° cienaH B TepMHHAX JIMHEIHON0 MAaTPUUYHOTO
asemenTa BeitnGepra u o-pesonanca, npeaiokedHoro JI. BpayHom.
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SESSION 3. QUARK MODELS

THE NON-RELATIYISTIC QUARK MODEL

By
G. MORPURGO

ISTITUTO DI FISICA DELL’'UNIVERSITA
and

ISTITUTO NAZIONALE DI FISICA NUCLEARE-SEZIONE DI GENOVA, ITALY

The classification scheme and decay properties of hadron states are investigated in the
framework of the non relativistic quark model. The main successes and the unsolved diffi-
culties of the model are presented indicating the future work which could be done to under-
stand and exploit the non-relativistic quark ideas.

1. Introduction

If, at some time in the development of physics, one had known only
states of pions or states with integer isospin (think ofhaving “simply” switched
off the weak interactions !) and one had observed isospin conservation one
might have asked whether states with half integer isospin exist; one would
have thus discovered the neutron and the proton, the lowest representation
of SU2

Our present situation with SU3 might he similar to the hypothetical
situation described above. We do know the 8 and 10 representations of SU 3,
hut not the lowest one, that of dimension 3. Do particles corresponding to
such a representation, the “quarks”, exist? [1]

If this is so one can of course imagine that all the particles of the higher
representations of SU3the 8 and 10 representations are really built with quarks,
in the same way as Fermi and Y ang built the pion through a nucleon and an
antinucleon.

This is of course the basic idea ofthe quark model of elementary particles,
an idea of which I will try to show the usefulness and the difficulties in what
I am going to say; it must be emphasized that this approach may well be
wrong but since more elaborate approaches may be wrong too, it seems useful
to try to investigate its consequences.

To be more specific the main assumptions of the model are [2, 3]:

| . 2
1. Quarks of only one kind do exist with charges respectiverS— , 3-

1\
— — L As is well known also other models are possible with different kinds of
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quarks; in these models one avoids fractionary charges, but they do not have
the direct connection with SU, described above; we therefore will not consider
these models further in this lecture.

2. The mass of the quark is rather large (M 2 10 GeV); we shall come
back later to this point.

3. A description of the particles in terms of a fixed number of quarks
and a fixed number of antiquarks is a good description. By this we mean that
an approximation in which say a proton is described in terms of the coordinates
of the three quarks which it contains is a good description; in the same sense
in which a description in which He?® is described in terms of the coordinates of
the three nucleons is a good description, in spite of the fact that pions, that is
exchange currents, are certainly present in the He® nucleus. In our case pre-
sumably the exchange currents are larger than in nuclei; so that it is by no
means trivial to understand the validity of this assumption [4].

A simplifying feature which, if true, might also be useful in understanding
assumption 3. above is now the following: contrarily to the FERMI—YANG
description of the pion, it is not impossible, in the present model, that in spite
of the high binding energy, the motion of the quarks inside an elementary
particle is non-relativistic [2].

Consider, in fact, as an example, a pion described as a quark-antiquark
system. The quark and antiquark will exchange mesons and we will assume
that the force through which they are bound to form the meson is due to such
an exchange. If the mesons which provide the binding force are, say, vector
mesons, the range of this force will be of the order of (5m,) 1. Let us therefore
represent the interaction between quark and antiquark as a potential well of
radius @ = (5m,) %, and of such huge depth, of course, that the lowest bound
level has the mass of the pion. In this potential well the relative velocity v of
the quark and antiquark is non-relativistic. The relative momentum p is in
fact, by the HEISENBERG principle only determined by the radius of the
potential

p =< om,
v p. om,. . ,
and therefore — = —— = ; if M, the quark mass, is =~ 10 GeV, one
B M M
v
has —<<1.
c

It is obvious that the above argument will hold for any potential similar
in shape to the square well, like, e.g. for a superposition of two Yukawians not
having an attractive singularity at the origin. On the other hand, as has

1
already been remarked [2], it does not hold for a pure s potential (Virial
r
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Theorem) nor for a pure YUKAWA potential, on account of its singularity.
This last point can be explicitly checked analytically by making use of a
HuLTHEN potential.

Since it is not unlikely that the realistic potential between two quarks
(or a quark and an antiquark) may have a repulsive core of sufficient radius
to make the above argument valid we will not insist further, for the moment, on
the shape of the potential, and, for estimates of order of magnitude we shall
use in what follows a square well potential. Indeed, assuming a square well
potential of radius (5m,) ! the distance between the two lowest s and p states
of a quark and an antiquark can give us some information on the mass M of
the quark; the lowest s, p, d, levels in an infinite square well potential of radius

25m>
T where o = (3,14)%, (4,5)%, (5,76)%, for s, p and d

(5m,)~?1 are given by o

states, respectively. The distance between the first p and s states is
mn - .

(=Y 250m,,~ﬁ . Now, experimentally, the distance of the average mass of the

even parity mesons from the odd parity mesons is =< 500 MeV. Therefore we
obtain M = 10 GeV. Of course this figure depends strongly (quadratically)
on the assumed range of the force and it becomes 20 GeV for a range of (Tm,)~!
or 5 GeV for a range of (3,5m,)~*. In the following, as already stated, we will
assume M = 10 GeV, when necessary for estimates of orders of magnitude.

2. A list of results and problems

We will list now several results of the model which can be considered
rather succesful. They are:

1. The possibility of an interpretation of the values of the parameters in
the GELL-MANN—OKUBO mass formula.

2. The magnetic moments and the V' Py radiative decays.

3. The N* - N + y transitions, where N* is an excited baryon state;
in particular the absence of the E2 transition N3z => N 4+ p.

4. The connection between BBP and VPP vertices, where B is a baryon,
P a pseudoscalar and V' a vector meson (in particular the connection between
the pnzr and Nj3; Nz widths).

5. The JoansoN—TREIMAN—LIPKIN—ScHECK relations.

One can ask how typical the above list of results is of the non-relativistic
quark model. The general answer to this question is that most of the above
results can also be derived in different ways, but only at the expense of making
some specific assumption in each case [5]. It appears to me that the quark
model is, so far, the only way in which the results above can be derived in the
simplest way and with a minimum number of general assumptions.
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There are also, of course, things for which, at present, only tentative
answers can be given in some cases.

1. Consider the quark-quark binding; as we have said this is produced
by the exchange of meson states; assume, for a moment, that the vector mesons
dominate this potential and that the effect of the other mesons is that of pro-
ducing a convenient repulsive core. Of course we do not know if this is true
but this schematization enables us to put the problem. In principle the qgV
coupling constant can be determined from the NNV vertex. The question is
now: is this coupling constant large enough for the ¢g bound state to have the
mass it must have? This is a kind of self-consistency problem, or bootstrap
problem as one prefers to call it. Of course, a similar problem can be put for
the baryons and here also the question arises of which is the potential which
binds the baryons.

2. The saturation problem: how can one explain the saturation of the
baryons at three quarks? Why don’t we have more binding when the number
of quarks increases?

3. Why are the magnetic moments of the quarks so highly anomalous as
we shall see they are?

4. How can one proceed to treat the dynamics when the kinematics is
relativistic? Think for instance of the w — n°+ 9y decayor p - 7 + @ decay
where the outgoing pions move at relativistic speeds.

5. Do quarks exist? and how can one get an estimate of their production
cross section?

6. Taking the charge of the n quark as —1, why is the electron charge 3 ?

Let us now take the above lists of questions and try to discuss them briefly.

3. The baryon wave functions

To start this discussion it is necessary to examine the internal structure
of the baryons. To construct the baryon wave functions let us only assume

3
that all the spin ~2— of the decuplet baryons is intrinsic spin, with no appreciable

orbital angular momentum contribution. In other words, at least dominantly,
L = 0 for the decuplet baryons. If this is so the spin and unitary spin wave
functions of the decuplet baryons must be completely symmetric; and by the
Pauli principle, the space part of the wave function must be completely anti-
symmetric. Calling W the spin and unitary spin wave functions of the 10
particles (i = 1...10) of the decuplet and X(r,, r,, r;) the space part,

we therefore can write for the decuplet wave functions

D?O) = X (1T T3) ngo) B (1)
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where X(rv r2,r3) is an antisymmetric L = 0 wave function and JF)1) are
the spin-unitary spin symmetric wave functions.

Coming now to the wave functions of the octet baryons we may argue
as follows: if the dynamics is such that low lying levels are characterized by
antisymmetric L = 0 space wave functions we should use these space wave
functions to construct all the states which the Pauli principle allows; therefore

3
not only the (decuplet) states with spin ’ but also the (octet) states with spin

—; . The spin-unitary spin wave function with spin—; has (for a proton, say)

the structure s(82<8 — a3BR>) and if this wave function has to be multiplied
by the antisymmetrical spatial wave function X(rv r2, r3), this spin-unitary
spin wave function has to be symmetricized. Therefore the spin unitary spin
wave function of a proton has the form

WB) = N Sccl(oc2R3— «3R2)PIPI N3,

where N is a normalization constant and S is a symmetrization operator; and
in a similar way we can construct all the baryon wave spin-unitary spin wave
functions W@\ We can finally write for the octet baryon wave functions

B)8) = X (r’5r2 r3 WW , (i= 1...8), (2)

These results are of course the same as those which one obtains from S[76;
but we want to emphasize that the motivation here is different [2]: just as,
in nuclear physics, the fact that the deuteron ora particle wave functions are
dominantly S wave functions is not a proof of a spin independence ofthe
Hamiltonian (we know, indeed, that tensor forces, for instance, are rather
strong): here the fact that L is dominantly zero is not a proof that the Hamil-
tonian is invariant under SUe. Things, in other words, may go, for particular
configurations as if SU6were valid, even if the Hamiltonian is far from being
spin-independent. It has been just to emphasize this point that we have given
this detailed presentation of the baryon wave functions.

Of course the question arises why the lowest state of a three quark
system has an antisymmetrical L = 0 wave function. There are two separate
questions here:

1. why antisymmetric?
2. why L = 0?

If the quark forces are dominantly Maiorana exchange forces, that is attrac-
tive in antisymmetric states, the fact that the wave function is antisymmetric
can be understood. Of course, loosely speaking, the kinetic energy is higher
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with an antisymmetric wave function than with a symmetric one (that is
why in nuclear physics low lying states possess the maximum possible sym-
metric space wave functions) but in the non-relativistic quark model the
kinetic energy is supposed in any case to be small and if the forces are domin-
antly MATORANA exchange the three quarks might well repel in a spatially
symmetric state.

One should ask at this point: why MAIORANA forces? but the problem
of the forces among quarks is not yet at a stage in which this question can
be answered.

Now we ask the second question: even assuming that the forces are
such that the lovest state is spatially antisymmetric, why do we have L = 0?

Here a remark of THIRRING [6] is important. THIRRING has, indeed,
put this question to himself and has made it plausible that, at least in a
particular model, it should not be an L = 0, but instead an L =1 state,
the lowest spatially antisymmetric state. The model considered by THIRRING
consists of three particles which are performing harmonic oscillations around
the three vertices of an equilateral triangle of side R. THIRRING has shown
that both in the limit R = 0 and R = oo the lowest L = 1 antisymmetrical
wave function, which turns out to be proportional to [7]

Ty X Ty Ta X1y~ Tp XT3 (3)

is lower in energy than the lowest L = 0 antisymmetrical wave function

proportional to
(rfy — rhy) (r; — 13) (7§, — 732) - (4

In our opinion this is a real problem (incidentally it should be interesting to
solve THIRRING’s model for intermediate values of R), but it is not an unsolvable
problem. Indeed even if THIRRING’s conclusion is valid for intermediate values
of R, the tensor forces might well raise the L = 1 state over the L = 0 state.
Of course they would, at the same time, introduce a mixing among states

1
with different L (for instance the state with L = 1 might be mixed, for J = %

with that of L = 0 through the intermediary of some state with L = 2) but
this might be small as it is in the deuteron problem; the 39, deviation of the

3
ratio of the proton and neutron magnetic moments from the value?can be

interpreted in several ways but may perhaps indicate some admixture. What
THIRRING’s problem shows is that relatively low lying baryon states with
L — 1 and parity -+ should exist. We shall come back to this point in some
detail later (Section 5).
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4. The magnetic moments of baryons and the F-vP -fyMI
transitions

W ith the wave functions of baryons discussed above one can calculate
the magnetic moments of baryons, in terms of quark magnetic moments.
To show this we first remark that, as is easily seen, SUs implies that the
magnetic moments of the quarks are proportional to their charges

= p— ot i=1, 2 3 (5)

e
through the same proportionality constant p. On calculating the expectation
value of the magnetic moment operator S/pi in the neutron and proton state
we obtain for the magnetic moments and 2ip of neutron and proton:

(6)

78 (?

3
Therefore not only do we get the famous ratio---—- é—among the proton

g
and neutron magnetic moments, but we also obtain ] =SR P = 2,79--2- ----------
n p

i.e. we have the values of the magnetic moments of the quarks. With a know -
ledge of the magnetic moments of the quarks we can calculate [8], in the same
way as in nuclear physics, several pure magnetic dipole transitions of interest;
in particular those corresponding to the radiative decays of vector mesons
into pseudoscalar mesons: V -> P -f-y. The results are given in Table I; as
far as we know, the w — n + vy transition is in beautiful agreement with the
experiment.

There is only one comment which we want to make here on this kind of
calculation, referring for any other details to the original paper [8]. For this
purpose let us concentrate on a particular transition, for instance g+ ->n+ y.
W hat one calculates is the matrix element of the magnetic moment operator
between a g+ state, described by the wave function x1laj/(r) and a n+ state

described by the wave function -ﬁr(«j —RBiar)/(r)- Because the space

wave function f(r) of gand n is assumed to be the same, the matrix element
(g 1n) in question is entirely known; we have

2

<Q 11> 1
av

where average means average on the g polarization.

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



112 G. MORPURGO

Table I
Process I'y (MeV) ryr
®—~ 7ty 1,17 1,2 10—
o> 7ty 64 103 6,8 « 107
o~ =w+vyp 121072 Iikes 1052
0°—+ n+vy 4,4 103 4,15 104
K*+ +~ K+ + vy 7 10=2 14 107
K*° — K° + p 2.8 o=k 1.6: ‘10~
e 3,04 1071 10-1

Column 1: the process.

Column 2: the V' — P -+ y width.

Column 3: the branching ratio.

The wave functions assumed for @, ®, and 7 in giving the figures of this Table are:

1 1
p=Di o=+ Db, =i+ D} 20D
A discussion of this point is given in ref. [8].

The X — py, X - wy and ¢ — Xy decays are calculated in ref. [13] by the same
method with the results: I'(X — py) = 155 KeV, I'(X — wy) = 18 KeV, I'(p - Xy) = 1 KeV.

Now if the transitions were non-relativistic we should simply multiply
this matrix element square by the (non-relativistic) phase space to obtain the
rate of the ¢ — 7 + y transition. However, the pion is relativistic. We must
therefore interpret the matrix calculated above as the limit of the relativistic
matrix element when the pion mass and the p mass are equal. Now what is
the form of the relativistic matrix element ? There is only one invariant inter-
action leading to a transtion V — P + . It is

fertr 6, 4,6V, P. (8)

The matrix element of this interaction contains the mass of the g, M, and the

mass of the pion m, only in the form ; the non relativistic limit of this
I m

factor is unique, being 1 whether we make M, - m, or vice versa. This is a

fortunate situation which allows us to relate uniquely f? in (8) to the non-

relativistic matrix element | (o | #) |* calculated above. One can then proceed

to the calculation of the rate by the relativistic interaction (8). The results of

Table I have been obtained in this way.

We have insisted a little on this point because it clearly shows the neces-
sity of improving the techniques used in such a way as to take relativistic
kinematics into account not only in the phase space. For instance, in the
V' — P + P problem, which we shall consider in a moment, the transition to
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the non relativistic limit analogous to the one performed above for the
\% P -f-y problem leads to certain ambiguities; these can be avoided only
by using a relativistic description of the wave functions, i.e. knowing how a
wave function which is written, say, as axQ|/(r) in the rest system must be
written when we are moving at relativistic speeds with respect to the rest
system. It is this problem which was listed (problem 4) in the second section
and which we must leave open in this lecture.

We shall only state [16] that the Bargman—W igner description is, for
two free particles both having the same momentum, a kinematic transformation
of the required kind; but it is still unclear to me how to perform the trans-
formation when the two particles are bound.

5. Electromagnetic transitions between baryon states

It was remarked by Beg, Lee and Pais [9] that the transition magnetic
moment N3BMI* N -f- y is related to the magnetic moment of the nucleon, by
SU9. Of course the same result holds in the non-relativistic quark model.
The agreement between the experimental data and the prediction appears to
be wrong by a factor ~ 1,6 in the matrix element but the points to consider in
this comparison are many and we refer to the paper of Dalitz and Suther-
land [10] for a discussion of this problem.

An additional prediction of the model [11] is that the quadrupole
transition

N*3JN -f-y
is forbidden.

This is consistent with the present data. | will show very briefly how
this prediction is obtained because this helps me in treating the transitions to
the L — 1 baryonic excited states with positive parity mentioned in Section 3.

The E2 electromagnetic transition operator consists of two parts: the
first part is independent of the quark spin, the second part (usually neglected
in low energy nuclear spectroscopy) contains the spin, but is proportional also
to a space vector. When we insert the E2 operator between the B(10) and B (8
wave functions described in Section 3 the first part gives a vanishing matrix
element because of the orthogonality of the spin-unitary spin functions, and
the second part is also zero because we are dealing with an L = 0to L = 0
state transition.

Now we want to show that if, as discussed in Section 3, we assume that
relatively low lying L = 1 baryonic excited states of positive parity exist an
argument similar to that above shows that their excitation or decay either
electromagnetically or through single pseudoscalar mesons is very small. Since
this argument might provide a new interesting test of the model, we will
describe it in some detail.
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Let us, therefore, assume, as discussed in section 3, in connection with
the Thirring argument, that low lying baryonic excited states do exist having
L = 1, positive parity and belonging either to an 8 or to a 10 representation
of SU3. Let us call B (1-K a) the wave function of one of these states where 1
refers to the orbital angular momentum, -f- is the parity and a reminds us
that the space part of their wave function is antisymmetric. These states may

r 1 3 5
have total angular momentum J = —2 (twice) or ? or 2— but a good part

of the argument to be given holds for any one of these values of J so that we
need not specify at this point the value ofJ with which we are dealing.

Now the matrix element for the transition from a state of the normal
baryonic octet (say a proton) £Ne into one of these states B (I-{-, a) isin general
a sum ofterms each of which is proportional to a factor of the type:

<XLAO(r, ,r2,rd T jXE=L(rx,r2,r3)>. 9)

Here XL=0(r1?r2 r3) is the space wave function of the normal octet (L = 0)
and Xf=1(r55r2 r3) is the space wave function of the excited baryon, with
L — 1 (and 2 component M); T is the operator inducing the electromagnetic
or pionic transition which we wish to consider.

We now examine separately

a) an electromagnetic transition (J3(I-f->a) -> B -~vy);
b) a pseudoscalar meson transition (B(Il-(-, @) = -B® + P).

The electromagnetic operator Tem has the general form

Tem= " £exP* rf ~i a‘™ XE£)exP *ri (10

Here, the first term is due to the current and the second to the magnetic

moments of the quarks. In the second term $Upis the proton magnetic moment
B.

(we recall that Slip— is the magnetic moment of the i-th quark). Now, when
e

inserted in (9), the second term does not contribute (because the matrix
element <X = 0+ |exp ikr [L = 1+) vanishes). The first term provides a
contribution which in the long wave length approximation is given, by the

~e(h
matrix element of the orbital magnetic moment operator i ( L ek Xe.

If the mass of the quark inside the baryon is its real mass (we are saying “if”
because we are thinking now for instance of the argument proposed by
Tavkhelidze [12] as a possible explanation of the anomalous quark magnetic
moment — see, however, ourpointofview onthis point in Section 10)the contri-
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bution of the first term is extremely small owing to the large mass of the
quark, and the transition is practically forbidden.

Note in addition that the transition due to the first term in (10) to the
3

decuplet L = 1% excited baryons |s = —| is in any case forbidden because

of the orthogonality of the spin—unitary spin functions.

It should be finally remarked that in the above argument concerning
the electromagnetic transitions, we have not considered the exchange current
contribution to the electromagnetic transition operator. This is admittedly an
omission but it is perhaps better to wait for some data before considering this
problem.

We now considera B(1-|-, a)->B® |- P transition. In the static limit
which should be appropriate in view of our non-relativistic dynamics, the
coupling of quarks with pseudoscalar mesons P is of course proportional to

TPS“ Ui' VP (xi) = O'i' kexpi k ri. (11)

This coupling has the same form as the second term in T, (10) and the same
argument used there shows that the transition B(1+4-, a)—B® 4 P isforbidden.

If the above arguments are correct the detection of thelow lying L = 1
baryonic states considered here should be very difficult. They should not appear
as peaks in pion scattering or in pion photoproduction. They should not decay in
B® | one P meson or in B9 + one P meson. They might perhaps be pro-
duced in nucleon collisions, but even there they would be presumably very
inhibited.

Of course, the situation described above holds if these states are pure
L = 1+ states and do not contain an admixture of wave functions, correspond-
ing to other values of L; and if the octet baryons are pure L = 0 states with
no admixture of other L, too. If, as we have suggested, the L = 1% states are
pushed above the normal L = 0 states by tensor forces they contain pre-
sumably admixtures of states with different L. In such case the essential
parameter determining the observability of these states as resonancesin pion
reactions or photoproduction reactions will be the degree of admixture.

We close this discussion with the following remark: if we have concen-
trated our attention here on the L. =1 states it has certainly not been because
in the literature there are many positive parity states [13]; on the contrary
very few positive parity states are known; it is not impossible, but by no
means clear that the resonance suggested by BELLETTINT et al. at 1450 MeV [14]
is one of these 14 parity states; the situation appears, however, really too
obscure to say more than this. On the other hand, there is a great variety of
— parity states on which we shall not enter here. They have been discussed,
under certain specific assumptions concerning the wave functions, by DavrrTz
[13] and, as far as their photoproduction is concerned, by Moormouse [15].
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6. On the connection between BBP and VPP vertices [16]

In the quark model the gnn decay can be seen as a transition from a 3 X
quark antiquark state (p) into a 1SOquark antiquark state 1 with the emission
of a pion. In other words a quark in the gflips its spin at the same time emitting
a pion. Of course, in the same way we can consider any other VPP process,
say p K -f- K or K* -> K n. Let us concentrate on the g° n+ n~ decay,
for definiteness. Once a quark-quark pion interaction has been written the
calculation parallels very closely that of the g— n -j-y process sketched in
Section 4. The qqn interaction, in the static limit has necessarily the form

Hagn= K2— (r_ffeV® (1)) + h. c. (12)
P

where /?is the garr coupling constant to be determined, and fi is the numerical
value of the pion mass.

It is clear that it is possible to express (16), approximately, the pion

/2
nucleon coupling constant -1-1“-_0’08 in terms of fg One thus gets the
n

(approximate) relation

n=r/- (13)

W ith this knowledge offqone can calculate two quantities:
a) the N*3-> N -f- 9 width: the calculation is straightforward and the
result is:
49 f2 n3 M
Rate (N&-+N+ 1) = oo LA"80M eV
V 3 ; 25 4n: it* M*
to be compared with an experimental value 100 MeV.

b) the g->n + n decay width: this calculation needs a little more at-
tention. To present it in the simplest way let us first write the most general
form for the g -> nn relativistic matrix element (in the rest system of the g).
For a p° with spin up it is [17]

M. o= 2g (Px - ipy) (14)
\2 V8Meel

where g is a phenomenological coupling constant; the observed value of the
ann width is obtained with

&
(15)
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p in (14) is the momentum of one pion. The other symbols are obvious. Now
if we calculate the same matrix element with the model we get

M %o —-41Pl Px ﬂzipy - (16)

Putting cop= ---é—in both (14) and (16) and equating (14) with (16) we get

for g24n the expression:

4n 25 [p 4n ' *

Here we find the ambiguity which was already mentioned in Section 4.; Eq. (17)
is valid only at the non-relativistic limit. But do we obtain the non-relativistic
limit by putting Mg= 280 MeV (twice the pion mass) in (17) or putting Mg=
= 750 MeV (its real value) and imagining to increase the pion mass to 375
MeV? Note that, contrary to the case of the V P + y decays, these two
cases are different, because the value of p in (17) is fixed; it is the value (140
MeV) which appears in the non-relativistic limit of the pion—nucleon interaction.
In view of the above ambiguity we can only say that the value of g24tr which
we obtain is in between 1 and 7,5. It is satisfactory that the correct value of 2
is comprised in this range.

In spite of the ambiguity just mentioned we consider this result rather
significant; it is essentially the same result of Gursey, Pais and Radicati [18]
(these authors also have some ambiguity when they use a “central” mass pQ
forthe mesons) but it is obtained without assuming [18,19] that the “relativistic
completed” meson SUGtensor must globally couple to the baryons and without
assuming as these Authors do that the vector coupling of the g to the isospin
current is universal.

We realize of course that a number of problems arise when one wishes
to improve this calculation; one problem has already been mentioned; itis a
correct treatment of the wave functions of particles moving at relativistic
velocities; the other is how to avoid treating (in the g— an dceay) one pion
as a field and the other as a quark-antiquark system.

7. The Johnson—Treiman—Lipkin—Scheck relations

As is well known Lipkin and Scheck have recently shown [20] that the
Johnson—T reiman relations [21] together with a set of many other relations
between cross sections can be derived by simple considerations according to the
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ideas typical of the model. The general idea is that the forward scattering
amplitude for, say, nN scattering may be written simply as the sum of the
forward scattering amplitudes of the quarks or antiquarks which the pion and
nucleon contain. By reducing the forward amplitudes of a certain number of
physically accessible reactions to a sum of quark-quark or quark-quark
forward amplitudes and using in some cases SU3to relate these quark-quark
amplitudes one obtains a very interesting set of relations which are listed and
compared with the experimental data in the paper of Lipkin and Scheck.
The agreement with the experimental data appears to be fair and in some cases
good. W hat has still to be justified in much more detail is the additive as-
sumption of the forward amplitudes. This is probably connected with the
transparency in the individual quark-quark collisions as pointed out by
Kokkedee and Van Hove [22]. But these quarks are extremely off shell and
while some kind of impulse approximation should be valid, it is doubtful
whether two quarks, bound say in a pion moving with momentum p can be
described when this pion collides with something else, as two free particles

. p . fp2 I .
with momentum 5 each and with an energy / — + —/- where m is the

mass of the pion; i.e. as two free particles of mass

As already stated in Section 4 (seealso [16]) such an assumption, if possible,
would enable us to take into account the relativistic kinematics of bound
states by a Bargman—Wigner description and would, therefore, simplify
things very much. We cannot, at the moment assert that such an assumption
is impossible but in our opinion it is a very important problem to understand
if and when it is possible. We do not think that the high value of the magnetic
moment of the quark (in quarkic magnetons) is necessarily related to assuming
a small effective mass (in the above sense) of strongly bound quarks.

8. The problem of the masses

To conclude this survey of the main results of the quark model and
before passing to problems which are in a sense open, we should speak of the
question of the masses. We shall confine ourselves to a few comments here
because Dalitz has discussed this problem in some detail [13] and we may
refer to his discussion.

The success of the Gell-Mann —Okubo mass formula does not mean
that the mass problem is understood. Indeed one has to understand:

1) the reason for this success;

2) the values of the parameters which appear in the Gell-Mann—
Okubo mass formula.
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In the quark model, since ZwEgiG [1], the principal reason for the mass
splittings inside a multiplet is attributed to the mass difference among quarks;
the mass M’ of the A quark 3 is assumed to be heavier than the common value
of the mass M of the quarks 1 and 2. This fact alone explains a good part of
the success of the GELL-MANN—OKUBO mass formula; indeed it explains
the fact that the dominant SU, violating term in the Hamiltonian is of the
form T;. In addition a perturbative calculation of this mass difference term
is equivalent to an exact calculation since this term commutes, in the non
relativistic model, with the SU, invariant part of the Hamiltonian.

However the mass difference effect is not the only effect leading to
splittings inside a multiplet as is obvious

a) from the X' — A mass difference;

b) from the fact that when one examines the values of the mass differen-
ces obtained for the various multiplets there are some differences among the
values obtained.

These differences are to be explained as an effect of SU, violating
potentials, as we shall discuss in a moment. To see this let us temporarily
assume that the difference of mass among quarks is the only effect responsible
for the mass splittings. One obtains for this mass difference 4 = M' — M
the following values

1
1) Baryon ey + octet 4 = 190 MeV;

3
2) Baryon 5 + decuplet 4 = 146 MeV;

3) Vector mesons (with linear mass formula) 4 = 130 MeV;
4) 2" mesons (with linear mass formula) 4 = 80 MeV.

I have not listed the excited baryon states because the situation appears
to me so far too confused; and I have not listed the pseudoscalar mesons
because their 4 depends very much on whether we use the linear or quadratic
mass formula, being in the first case ~~ 350 MeV, in the second ~~ 120 MeV.
We entirely agree with SocoLow and MACFARLANE [23] that this question
of the linear or quadratic mass formula for the mesons has to be settled experi-
mentally. I should also like to be more sure than I am that the X° at 960 MeV
is effectively the ninth pseudoscalar meson. I am somewhat puzzled by the
large separation of this unitary singlet from the other mesons.

The question, at this point, is to understand the reason for the differences
among the values of A listed above; these values, though having the same
order of magnitude are somewhat different and our purpose is to understand
these differences. We shall concentrate our attention, from now on, on the
baryons and our purpose will be to understand, following Daritz [13] (see
also Kvo and Rapicarr [24]), the difference between the 190 MeV value of
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A obtained for the baryon octet and the 146 MeV value obtained for the baryon
decuplet.

As we said the mass difference effect among quarks, though the largest
effect, is not the only one responsible for the mass splittings inside a multiplet.
Also the potential between two Aquarks iand k (call it U3 (ik)) may be some-
what different from the potential between a A quark and an n or p (call it
U2(ik)) and this in turn may be different from the potential (call it U?"ik))
between two quarks n or p. We have assumed, in the above, two body forces
only among quarks.

It is now convenient to write the Hamiltonian of a baryon using the
formalism of unitary spin in the same way as one would write the Hamiltonian
of a three body system using the formalism of isotopic spin [2]. In the same
way as one would introduce there the projection operators for proton and

neutron, respectively 1d2r T3 , one can introduce here the projection operators

for proton, neutron and A quarks; they are, respectively

2-3t,+ A8 2—3r3+ M 228

where Agis the diagonal matrix with elements 1, 1, —2.
In this notation the Hamiltonian can be written [2]

H = HO+ H,, (18)

where HO is an SU3 invariant Hamiltonian, which we do not need to write
down explicitly, and Hx is the part which violates SU3. It is convenient to
divide f/linto two parts Hr= H{ + H i Here

={M — M"Y p2i Pi ] 19
= Y+ 1i 2M  2M (19)

describes the effect of the mass difference among the quarks, proportional
to the hyperchargeY = — * Agand, therefore, commuting with the remaining

Hamiltonian; and a second kinetic term which is rather small (» 5 MeV) in
the non-relativistic model.

The second of part Hv that isH i describes the effect of the SU 3violating
potential energy. It can be written, in the notation already introduced,

H U= 2 Iinear(m (UP + T
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where

U oc2wmr- U2- U3 (21)
and

Wgoc Ux- 2 U2+ US3. (22)

In order that no quadratic term (of the kind, in tensor notation T33) appears
in the mass formula it is necessary that WqGi 0 i.e.

Ute* -U' + Wt
2 2

a condition already conjectured by Zweig [1]. The problem of the splittings
is then determined by (M — M"') Y, by the second term in H{ and by the
first term in Hi .

The second term in can be omitted for simplicity: the ensuing
discussion is not affected by its presence. We can therefore confine ourselves
to calculate the expectation value of

W =JEJTHik)(4° + 4K)

for the various states indicated as a of the decuplet and octet baryons. Now,
if we take our decuplet and octet baryon wave functions which consist of the
product of a purely antisymmetric space part (the same for the octet as for
the decuplet) and a symmetric spin unitary spin part and if we assume that
Wi(ik) in (20) is independent of the spin, the expectation value < W >a
is simply proportional for all the states in question

<IF)a=<iF>Ya, (24)

where is the hypercharge of the state a under consideration and < W >
is a constant.

Therefore, for both the decuplet and octet states the part of the mass
formula which determines the splittings would be

[(M-M") + (Wy\Ya. (25

This means that we should obtain, both for the decuplet and the octet
a splitting proportional simply to the hypercharge, the coefficient (M — M ') +
4" (Wy being the same for octet and decuplet. In particular one would have
no 27— /1 mass difference. A way to obtain, in terms of central two body
forces, such a mass difference is to assume that the expression W(ik) in (20)
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has a part which is spin dependent, i.e. that it is different when two quarks
are in a singlet or in a triplet state [25].

In this case the expectation value (IF>ais given by an expression of
this kind:

SW\ = <WBY + <Wa(,2 ciok(4° + 4/m)>*e (26)

This expression contains only two constants <W xp and (IF2); therefore, on
adding the term (M — M') Y , the splittings both in the decuplet and in
the octet are determined by

((M'-M ) + (IF,» Ya+ <|F2><|2K’a, mk (A« + 4«)>a. (27)

Now the expression (~ ateak(Ah)-|- A*») can be evaluated as

Cr - ¥ + 21 (1 + )Y 2

with a different C but the same coefficients of Y and of { } both for the
decuplet and the octet. It follows that the mass splitting formula becomes

Y 2
(M- MY+ - <IF>» Ya+ 2<IF2> tatx+ 1) - (28)

that is, more concisely, as already discussed by Dalitz [13], and using now
his notation:

(29)

with a and b being the same for decuplet and octet. Now the octet masses
determine a — —190 MeV as already said and b = 37 MeV. For the decuplet
formula (29) reduces to

a f- Y

and we have a -f-—2 b = 135 MeV to be compared with the already mentioned

experimental value of —146 MeV. As noted by Dalitz the agreement is not
perfect but rather good since we have omitted Coulomb effects and effects
of order T3 arising from small violations of (23); we note also that possible
tensor forces effects and consequent L ==0 admixtures may affect the situation.

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



THE NON-RELATIVISTIC QUARK MODEL 123

It must be noted finally that the starting point of this discussion has been
the mass difference between the quarks. It is now evident, however, that all
one can know is M — M' + (Wi) and that M' — M though presumably
larger than W x, cannot be known with precision without additional arguments.

9. The problem of saturation

We have listed in Section 3 problems to which only a tentative solution
can be given; in this Section and in the next one we shall consider only part
of these problems; for instance we shall not consider the first problem in the
list of Section 3 since we have notyet a sufficient knowledge ofthe qqorqgpoten-
tials; in this Section we shall concentrate our attention on the saturation
problem [26]. The question is, of course, why 3 quarks are so strongly bound,
to form, say, a proton, and four or more quarks, if bound at all, give rise to
objectswhich are certainly much heavier than the proton. Indeed, assuming that
there are only two body forces between quarks and neglecting, as one can
do as a first approximation in the non-relativistic model, the average kinetic
energy with respect to the average potential energy, the average potential
energy of a pair of quarks in the proton is

WA M -gMp, ;30)

where M is mass of the quark and MP the mass of the proton. One sees from
(30) that a bigquark would have a mass much larger than that of the proton

M2= 2M — M M, (31)

in fact, M2has a value near to the mass of one quark.But a system of4 quarks,
for instance, should have a mass (remember that there are 6 pairs of quarks
in a 4 quark object)

M4= 4M — 6 \W (32)
and therefore, on using (30),

M4= -2M + 2MP

a negative value for mass !
This obviously absurd conclusion shows that there is something wrong
in this argument. In fact, it is easy to realize that if a 3 quark system is so
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strongly bound as to have formed a proton which is a very light object in the
quark mass scale, the dynamics of a 4 quark object cannot be treated non-
relativistically. To see this let us consider the 4 quark object from the following
point of view: as a quark which is bound to a three quark subsystem.More
specifically let us consider a particular model of binding (one would say, in
the variational language a particular trial wave function) in which wehave
already our three quark system forming a proton and we are trying to bind
the fourth quark to it. In this case the mass formula (32) is more conveniently
written

M,;= MP+ M - 31V I (33)

since the fourth quark can interact with all the three quarks of the proton.

It is now sufficient to remark that the proton mass is of the same order
of magnitude as the inverse range of the forces holding the proton to the
fourth quark to conclude that the relative motion of the fourth quark with
respect to the proton is necessarily relativistic. Non-relativistic concepts
cannot, therefore, be applied and we should interrupt our discussion at thispoint
noting only that this conclusion is independent of the particular model of
binding considered above.

However, we may try to go a little further assuming that we can continue
to discuss on the basis of a non-relativistic formula like (33). Since what
we have just learnt is that the quark motion inside a four quark system
cannot be treated non-relativistically, we have no justification for substituting
in (33) for IV Ithe non relativistic value (30) obtained from the binding of
the proton. It may well happen that the potential between two quarks, which
is strongly attractive when they move non-relativistically depends on the
relative velocity and becomes much less attractive or even repulsive for
relativistic velocities. Along these lines a possible explanation of the saturation
problem can be given; for more details we refer to a published note on the
subject [26], noting here that the above argument only shows that a consistent
situation in which saturation is reached in the way it is (at three quarks)
can be generated in a quark model; it is a different question and becomes a
kind ofconsistency problem to show that saturation must effectively be reached
at three quarks.

10. The problem of magnetic moments

Another problem which must be understood is that of the magnetic
moments of quarks. It is easy to show that in non violated SU 3these magnetic
moments are proportional to the charge of the quarks. In fact the electro-
magnetic currentisthe T\ component ofan irreducible SU3tensor and the mag-
netic moments of the quarks are therefore proportional to | T\ \gf), where q,
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(i= 1,2, 3)are thethree quark states. Observe now that T\ belongs to the
representation 8 and that the product 3 x 3 * contains, of course, 8 only once.

Therefore, the three expectation values | T[ |9/> can all be expressed in
terms of a single reduced matrix element; the proportionality constants can
be determined by simply taking = Q (the charge); hence they are 2/3,
-1/3, -1/3.

Note the difference with the SU2case (isospin) where the electromagnetic
current does not transform according to a different representation of the
isospin group, but is the sum of a scalar plus the third component of a vector
in isospin space.

The real problem with the magnetic moments of the quarks is why they
are so large. The Lande g factor of the quarks is

g—5,58

where M is the quark mass and MP the proton mass. The larger the quark
mass, the more anomalous is the magnetic moment. To explain this large g
factor the attitude is often that the quarks, when strongly bound as in the
proton have a small effective mass, and it is this small effective mass, call

it M*, which determines the magnetic moment of the quark inside a proton

eh M
S -mmmmmmen . For instance, il M* = --é--P--one would have agfactor of a bound

Ve

According to this point of view the magnetic moment of a free quark
eh
should be very small, of the order ~ —and the large anomaly is produced

in the binding. We do not share, at the moment, this point of view. We observe
that if a very heavy particle such as the quark is coupled strongly to much
lighter particles such as mesons the magnetic moment is essentially determined
by the meson cloud. It is entirely unnatural to measure this magnetic moment
in Bohr magnetons of the heavy particle; one can do so, of course, but one
must not be amazed when one finds very anomalous values for the magnetic
moment. These value turn out to be “anomalous” simply because measured
in “anomalously” small units.

In other words, according to our point of view [27], the order of magni-
tude of the magnetic moment of a free quark might be calculated, for instance,
in a fixed source theory, in a way similar to that used some time ago for the
nucleon (compare e.g. [28]). It is not extraordinary then that, since the
coupling of the pion (just to consider one of the mesons) to the the quark
has the same order of magnitude as the coupling of the pion to the nucleon
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(compare equation [13]), also the magnetic moment of the quark and the
nucleon turn out to have the same order of magnitude. Indeed, assuming
that this kind of explanation is correct, we may reverse it to say that the
couplings of the quarks to the mesons are not generally expected to have
a substantially different order of magnitude from the couplings of the nucleons
to the mesons. If this is so, the fact that the binding energy in the baryons,
for instance, is so much higher than that of nucleons in nuclei might he due
to the fact that the potential between two quarks, like that between two
nucleons, is very deep at small distances (but always with such a repulsive
core as to allow non-relativistic motion) and that quarks being much heavier
than nucleons can remain practically at rest at small distances, with a negligible
zero point motion.

(There is no need to stress at this point that all these are only very
qualitative and tentative suggestions.)

11. Final questions

All the questions posed in the introductory Sections have been considered
more or less at length, except for the last two:

a) why, normalizing the charge of the n quark as —1, the electron
charge is 3? and

b) do quarks exist? and how can one get an estimate of their production
cross section ?

The fact that no answer at the moment can be given to question a) is
a brutal way of recognizing that we have no idea of the connection between
strong and weak interactions; this is not typical of the quark model, but this
question remains and becomes in a sense more acute with the introduction
of the quarks. Why are leptons not composed of quarks? Or does some
kind of leptonic quark exist too? We do not know, although it is diffi-
cult to conceive weakly interacting leptonic quarks which are strongly
bound. If one were to be optimistic at all costs one might even say that the
existence of baryonic quarks hut not of leptonic quarks can explain the con-
servation of nucleonic number. In fact, a quark, having fractionary charge,
cannot decay into a lepton -f-y or into leptons and, therefore, a proton is
stable if it is assumed that the total decay amplitude of a proton is the sum
of the amplitudes from the three quarks.

But this is a too optimistic way of seeing the situation; the real status
of which is a complete lack of understanding of the relation between leptons
and strongly interacting particles.

Coming now to the second question: do quarks exist? it is obvious that
the model which we have described implies the real existence of quarks. It is
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therefore very important to find them, either in cosmic rays from experiments
mwith future accelerators or in terrestrial matter [30]. The problem is complic-
ated by an absolute lack of knowledge of the cross section for quark pro-
duction, of which it is extremely difficult to give a reliable estimate. The
only published estimate which we know of is a statistical estimate by
Domokos and Fulton [29] which gives an exceedingly small value ofthe cross
section for quark production in pp collisions at energies where the pion produc-
tion cross section in the same reaction is ad 40 mb (aga” 10~7/r6 for M =
= 9 GeV).

How reliable a statistical estimate is when it gives rise to such small
numberswe donotknow, since some form of direct reaction (to use the language
of nuclear reactions) can well be more important. In any case it is essential
to try to have theoretical estimates of these quark production cross sections
(the simplest process for this purpose is perhaps p p ->q-fq in order
to he able to understand the meaning of the experiments performed or to
he made in future. These experiments are in progress at various laboratories
with the different methods listed above, but their survey would lead us too
far away and it seems appropriate to end this report here [31].
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HEPENATUBNCTCKAA MOJE/Ib KBAPKOB

. mopnypro

Peswome

WcecnenoBaHbl cxeMa KnaccUgMKalyMu 1 pacnafHble CBOMCTBA afjpOHOB B paMKax cTaTu-
Ueckoli MOAeNM KBapKOB. VA3M0XEHbI F/aBHble YCMEXU W HepelleHHble Npo6ieMbl Modenu,
yKa3sblBasi 334, KOTOPbIE JOMKHbI BbITb PELLEHbI /1 SYYLIEro NMOHAMAaHUS W UCTI0/b30BaHMsl
HEepenATUBUCTCKUX ULEI.
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RECENT RESULTS FROM THE QUARK MODEL

By
R. H. Socolow™*

CERN, GENEVA, SWITZERLAND

The basic ideas and methods of the quark model of the elementary particles, and the
main results of the model, including the new applications to high energy scattering are sum-
marized and partly discussed in detail. Also the quark models of weak interactions are briefly
commented.

I. Introduction

In the past few months, quite a number of interesting calculations
have been done under more or less direct inspiration of a simple quark model
of strongly interacting particles. To my knowledge, the theory of weak inter-
actions has least benefited from this work. Thus, the only justification for
including a lecture on quark models in a conference on weak interactions
is the hope that a description of some of the recent applications of the quark
model elsewhere in particle physics will lead someone in the audience to a
useful idea about the weak interactions. Most of this talk will concern applic-
ations outside weak interactions; only a few remarks about quark models
of weak interactions will be found at the end.

I assume that this audience is familiar with the SU(3) group and its
representations, and is aware of the kinds of problems in particle physics to
which it has been applied.

A part of this lecture will be based on still unpublished material, and |
want to make sure that proper credit is given. | had the pleasure of visiting
the Weizmann Institute of Science, Rehovoth, Israel, two months ago, and
I was greatly stimulated by discussions with Professor Harry Lipkin, Dr.
Hector Rubinstein and Dr. Florian Scheck. | am taking the liberty of
presenting some of their ideas and calculations here, trusting that the work
will be correctly attributed to them.

I make no claims to being aware of all of the published literature on
quark models, much less of the unpublished literature. Furthermore, of the
articles known to me, those discussed below are a sample chosen with con-

* National Science Foundation Postdoctoral Fellow.
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siderable arbitrariness. | hope no one whose work is not mentioned will feel
offended.

This lecture was written at CERN, where | have enjoyed the hospitality
and the inspiring presence of L. Van Hove. | have also benefited from helpful
conversations at CERN with N. Cabibbo, J. Harte, J. J. J. Kokkedee,
Y. Ne’eman and J. Prentki.

Il. History of the quark model

A basic idea of the quark model is that the known strongly interacting
particles can be usefully viewed as composite particles. This idea can be traced
at least as far back as Fermi’s and Yang’s suggestion [1] that the 4 mesons
might be deeply bound states of a nucleon and an antinucleon. Sakata [2]
extended this idea to incorporate hypercharge, describing all mesons as deeply
bound states of the nucleon, the lambda, and their antiparticles, and his model
led to the first appearance of SU (3) in particle physics. The Fermi—Sakata
idea has led in two directions, down two different roads. One direction led to
Chew’s idea of “nuclear democracy” where all of the strongly interacting
particles are viewed as composites of one another [3]. This road will not be
explored here. The other direction also led to theories which equalize the
roles of mesons and baryons, but in a different sense. It led to theories in which
the known baryons and mesons are all made of something else.

The farthest outpost along this second road today is the literal “quark
model”, according to which entirely new physical objects, called “quarks”
by Geli1-Mann, are supposed to have an independent existence in nature,
and the baryons and mesons are understood to be bound states of these quarks.
People have set out to look for these quarks, and they have not proved easy
to find. The search continues. We shall not have to go quite this far down
this road, however, for we shall never need to assume that quarks have an
independent existence. In particular, we shall not need to introduce a free
quark mass, because we shall almost completely avoid any discussion of the
dynamics from which bound states of the quarks arise. Needless to say, even-
tually quark dynamics will have to be faced more directly.

The first step down the road from the Sakata model to the quark model
was taken by Gell-Mann [4] and Ne’eman [5], who were seeking an
explanation forthe existence of eight spin 1/2 baryons. If the eight pseudoscalar
mesons were bound states of a triplet of particles and a triplet of antiparticles,
perhaps the eight baryons were also. (In the baryon case, of course, the two
particle triplets would have to be distinct.) These triplets might have only
a mathematical existence; in any event, they did not have to be identified
with any known particles.
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The next step down this road came with the identification of one SU (3)
multiplet which was not an octet: the decuplet of spin 3/2 states. This iden-
tification was made secure by the discovery of the Q~, the tenth member,
at just the predicted mass [6]. For our story, the importance of the identifi-
cation of this decuplet lies in the fact that it suggested a different model
for the baryon octet. A decuplet cannot he made from a triplet and an anti-
triplet. However, both an octet and a decuplet can be made from three of the
same kind of quarks. Gell-Mann [7] and Zweig [8] proposed such a model,
in which there is only one triplet of quarks, with spin 1/2and baryon number
1/3, and the mesons are quark-antiquark bound states while the known octet
and decuplet are both bound states of three quarks.

This point of view achieved major confirmation in 1964, with the SU(6)
theory [9]. In particular the grouping of the baryon octet with the decuplet
was confirmed by: i) the availability of the 56 representation which exactly
accommodated these states, and ii) the derivation of the ratio of the static
magnetic moments of the neutron and proton [10]. The latter calculation wre
shall repeat in detail below.

There are other quark models besides the Gell-Mann—Zweig one-
triplet model. In particular, nothing we have said so far (though some of what
we shall say subsequently) requires the mesons and the baryons to be made
of the same kind of quark-stuff. There are a number of other models which
begin with a triplet and a singlet or two triplets. To my knowledge, such
models do not readily lead to the correct proton-neutron magnetic moment
ratio. Though this is probably not sufficient reason to dismiss these models,
we shall not mention them further.

Ill. Baryon and meson “wave functions” in terms of quarks

In order to do most quark model calculations, we must know something
about the wave functions of the baryons and mesons in terms of quarks. We
assume that these wave functions factor into a part containing the internal
quark quantum numbers and quark spins, and another part dependent on the
quark positions (and perhaps velocities). Particles belonging to the same
SU(6) supermultiplet are assumed to have the same spatial wave functions,
in general not needed here.

Most of the states which have been successfully classified in the SU(3)
theory have also been classified in the SU(6) theory. There is a 56-plet of
baryons (the fully symmetric three-quark representation) and a 35-plet of
mesons, made of a quark and an antiquark. In both cases, the quarks are
assumed to be in atotal orbital angular momentum zero state, which is another
way of saying that the spin of the composite particle is accounted for entirely
by the spins of the quarks.
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The properties of the fundamental quark triplet are given in the Table

below:
Quark | r. Charge Hypercharge
0 12 12 213 13
1/2 —1/2 -1/3 1/3
A 0 0 -1/3 —2/3

All quarks have a spin of one-half. The two charge states will be denoted
by (+) for Sz= -f- 1/2 and (—) for Sz= — 1/2. The charge, hypercharge, and
Izassignments of the antiparticles are obtained by a change of sign. The third
integral values of charge and hypercharge are required to keep the triplet
representation centered (meaning that the average charge and hypercharge
equal zero). This, in turn, is required if the supermultiplet constructed out
of three quarks is also to be centered (which the physical 56 happens to be).
Note that the notation p, n, A is intended to remind us that the quarks have
the same values of | and |z as the physical baryons with the same names.
We shall try to use the capital letters P, N, JI, when we refer to the physical
baryons.

We can arrive at the baryon wave functions in more than one way.
A simple way is the following: to construct the proton state with Sz= -(- 1/2,
we need to use two p quarks and one n quark, two spinning up and one down.
We obtain a state of spin 1/2 by first combining two quarks to make spin zero,
and then attaching the third:

[P(+M—) —p(—M+)]p (+) *

The state which belongs to the 56 is then obtained by fully symmetrizing,
that is, adding together the six permutations of each term above. We get
IP(+)>-= (1S)“12[2p(+ )P (+) n (-) + 2p(+)n (-)p (+)+

+ 2n ()P (+)I>(+) —P (+ )P (—=)n(+) —

—P(=)n(+)P (+)—=n(+)p(+)p(~) —

—P ()P (+) n(+) =P (+) n(+)P (-) -

—ni+)P {—)P (+)] >

where the radial (18)_1 2 assures that normalized quark states lead to nor-
malized physical states.
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We obtain the remaining states of the spin 1/2 octet as follows:

a) the Sz= — 1/2states are obtained by a spin reflection, interchanging
(+) and (—);

b) the neutron states are obtained by a charge reflection, interchanging
p and n;

c) the E+ states obtained from the proton and the S° from the neutron
by a U spin reflection, interchanging re and A.

d) the E~ and E~ states are obtained by a charge reflection of the
E+ and E° states;

e) the E° and /1 states are constructed by beginning with the combination
(for Sz= + 1/2)

[p ()" (=) —p(=)"(H)In(+) = [n(+)" (=) — n(=)"(+)]p(+) »
where the upper sign gives | — 1 and the lower sign gives | — 0. Symmetrizing
and normalizing we get

I*°(+) > = (36)-12 [2p(+)re(+)A(-) - p(+)re(-)A(+) -
—jp(—M +W + ) + perms.],

1A (+) > = (12) 1"[p(+)re(—|f [* | —p{=In(+)"(+) + perms.],
where “perms” means: add the five additional permutations of each term.

In a similar way, but with less work, we may construct the forty

spin 3/2 decuplet states. For example, the A++ state with Sz= + 1/2 has
the quark representation:

@) 1-lp(H)p(H)P(=) + p{H)p(—=)p(+) + p{)i*Mif>(+)] -
The other states are constructed in a similar manner.

The pseudoscalar and vector meson wave functions are made from one
quark and one antiquark. For many applications, one has to be careful to
distinguish ordinary spin and JF-spin (a crucial minus sign creeps in when
antiquarks are involved [11].) For our purposes, we only need the quark
content of the charged mesons and neutral K mesons:

a+>e+ = (p,n),
ar, a~ : (re,p) .
K+, K*+ :(p, A,
Ke, K*° :(re, A,
Ke, K** (A n),
K-, K*- : (A p) .
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Many other strongly interacting states are known. W hat is to be done
with them? An honest answer is: we do not know. We probaly shall not be
able to talk about their quark content until we at least identify the SU (3)
representation to which they belong. But at this time only one more SU (3)
representation has been identified that people generally believe in. This is
the octet and singlet of spin 2+ mesons [12]. Two distinct quark pictures
for these mesons are: i) states made of two quarks and two antiquarks, with
no orbital angular momentum between the quarks. (The corresponding SU(6)
multiplet can have a dimension of either 189 or 405. The 405 requires twenty-
seven more 2+ mesons. Both 189 and 405 require many more axial vector
and scalar mesons.) ii) states made of one quark and one antiquark, with
one unit of orbital angular momentum and one unit of spin coupling to give
total spin 2. (Three units of orbital angular momentum are also possible.)
It is not known if either of these pictures is correct, and even though the
experimental situation is somewhat uncertain, it appears that all of these
pictures share a common difficulty: they all give a ratio of the strength
of the spin 2 coupling to a vector and a pseudoscalar meson to the strength
of the spin 2 meson coupling to two psedoscalar mesons, which is too small
by a factor of two [13].

However, even if we only know the quark content of two SU(6) mul-
tiplets, these multiplets include most of the states we are usually interested
in, and all of the states which are stable under the strong interactions, so
let us proceed to applications.

IVV. Group theoretic results: mass formulae and baryon magnetic
moments

It is necessary to distinguish two varieties of results obtained from
the quark model. First, there are a set of results which amount to finding
a more picturesque language in which to describe a group theoretical calcul-
ation. These derivations have a heuristic value, for often the picturesque
language will suggest further calculations. In particular, the language of quarks
provides a simple and appealing way to discuss broken symmetry. Second,
there are results which cannot be reduced to a group theoretical statement.
Among these are relations between meson and baryon properties, since mesons
and baryons belong to different supermultiplets, and relations which presup-
pose some definite quark dynamics. In this Section we shall describe the first
kind of result, and in the next Section the second kind.

As a first example of a group theoretic calculation in quark language,
let us consider massformulae valid in the absence of electromagnetism. A simple
quark-language statement would be “all baryon masses would be the same
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except that A quarks are heavier than n and p quarks; the extra mass is
proportional to the number of A quarks”. This statement is sufficient to
“explain” the equal mass spacing in the decuplet. It corresponds to the
statement in group theory language that the mass operator transforms like
a 35 of SU(6), since the mass operator may be written

M = MO Mj [ar+) ay+) + a/(-> an(-)] »

where a+, a are the creation and destruction operators for quarks, which
themselves transform like the basic 6 and 6* representations, so that bilinear
forms transform like a 35.

The mass operator above does not account for the S — J1 splitting or
the splitting between octet and decuplet masses, and it is well known that
we allow additional terms in the SU(6) mass formula. Recently, Federman,
Rubinstein, and Talmi found a picturesque language for these extra terms.
Suppose that “mass differences are also caused by interactions between
pairs of quarks, the pairing energy depends both on the kinds of quarks and
whether they are in an S — 0 or an S = 1 state, and the net effect on the
particle masses is the sum of the separate pairing energies”. We can guess
the result in advance, because pairing terms in the mass operator, a+a-aa,
transform like the 405 of SU(6) and the group theoretic calculation has been
done before (that is, the Clebsch—Gordan coefficients have been tabulated).
The most general mass operator for the 56 of SU(6) which neglects electro-
magnetic effects has eight terms:

M= M(1, 1)+ M(35,8)+ M(405, 1) + M(405, 8) +

+ M(405, 27) + M (2695, 8) + M (2695,27) + M(2695,64) ,
where the SU(6) and SU(3) representations are given in parentheses. In the
language of the quark theory, the 405 terms correspond to pairing interactions

and the 2695 terms correspond to the three-quark interactions. Neglecting
the three-quark interactions gives three mass formulae.

3 - yx= 3 - 27, (1. a)
Q- N= 3(38%- Y*), (1.b)
(Y* —A) - (Q —3*)= (3N + E—23 —2N). (1. ¢)

The first is a famous SU(6) result. The second is well known as the weaker
form of the equal spacing law which still holds when the conventional octet
SU(3) breaking is treated to second order. The third mass formula equates
two combinations of mass differences, each transforming like the | =Y = 0
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member of the 27 of S17(3). It is not often mentioned as a mass formula.
Experimentally, both sides of (1. c) have the same sign. (It is well known
that the J1 is too heavy and the Q~ is too light to satisfy the Gel1-Mann—
Okubo formula exactly.) Although one is comparing quantities which depend
considerably on electromagnetic effects, and one is not sure what sort of average
of charged states to insert in (1.c), it is probable that the right-hand side
of (1.c) is about five times as large as the left-hand side.

The Gelt-Mann—Okubo formula (the vanishing of both sides of Eq.
(1. c)) does not follow from the pairing assumption alone. Fedehman, Rubin-
stein, and Tarmi find that it does follow if one makes the additional assump-
tion that all S = 1 pairing forces have the same strength. (In fact a weaker
additional assumption is sufficient — see the Appendix.) Rubinstein [15]
notes that if one extends this assumption to include quark-antiquark pairing
forces as well, one obtains

® — K* — K*¥ — Q= S* — Y* (2)

(using meson masses), which is quite well satisfied. This is an example of a
quark model result of the second kind following from a quark model result
of the first kind, for (2) has no obvious group theoretic origins.

The principal significance of the idea of pairing forces is that it provides
a quasi-dynamical explanation for the observed mass spectrum. One had
already noticed that in SU(3) the “octet splitting” is larger than the ,27
splitting” and that in SU(6) also, the smaller the representation, the larger
its contribution [16]. The SU(3) situation had been explained by postulating
a symmetry breaking interaction transforming like an octet; it was then
difficult to explain why lowest order perturbation theory works so well. One
can now speak instead of one-quark effects, pairing effects, and, eventually,
three-quark effects, increasingly unimportant in determining the physical
mass [17].

As an example of the use of the quark wave functions presented in the
previous section, the pairing calculation is worked out in detail in the
Appendix.

As a second example of a derivation of a group theoretic result from the
quark model, consider the baryon magnetic moments [18]. The well-known
results are “one-quark” results in the sense just explained above. One begins
again with an additivity assumption: that the magnetic moment operator

M is the sum of the magnetic moment operators for the separate quarks:

Mz= 2 Ku+)«mt)- aH->«m(-)] A ¢
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where i = p, n, Aand pt is the magnetic moment of the corresponding quark.
Using the wave functions given above and taking expectation values, we find
for the spin 1/2 baryon:

Pp= (4pp—1/0/3 , (3.2)
Mh = (4¢n—/0 /3" (3.b)
(3-¢)

Ne = (4pp—/0/3 , (3-d)
= (2pp+ pn—/0/3, (3-e)
rap= (—WP+ /IO/F3, (3-)
P = (@mbi—0 [ » (3-9)
P = (4°x — VipY3 > (3.b)
PB" = (4"x —/0/3 (3-1)

The transition moment ps* governs the rate for 27° >mJ1 -f-y , which
is not well known experimentally. (It is interesting that it may be expressed
in terms of pp and pN without further assumptions.) The magnetic moments
of the J1 and 27+ are now known approximately. Making no assumptions
about the relative magnitudes of the quark magnetic moments, one obtains
from (3a)—(3d):

B 4001 ot (5, 1]

If we assume that the magnetic moments of the p and n quarks are proportional
to their charges (pp= —2pn), we get the additional relation

[xp = - (3/2) p N (4b)
which is the celebrated SU(6) result. Finally, if we also demand that the
magnetic moment of the A quark has the same constant of proportionality
(so that pn= px) we get the SU(3) predictions:

pL+ = pp 4.c

Pa

Il
—

hn- 4-d)

We should expect (4a)to hold better than(4c) or (4d), since in (4a)
we are allowing for some of the medium strong symmetry breaking. The n
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and A quarks might have different magnetic moments because they have
different masses. Experimentally

ur+ = 43" 15,

/<n= —0,69 i 0,13

in units of nucleon Bohr magnetons. Better experimental accuracy will be
required before it will be possible to say whether (4.a) is indeed better satisfied
than (4.c) or (4.d). If (4.b) turns outto be better satisfied than (4.a),this would
indicate that the medium strong symmetry breaking is making itself felt
elsewhere than in a difference between the Aand n magnetic moments.

We see here that even when discussing a “one-quark” effect like magnetic
moments, the quark model provides a natural language in which to discuss
symmetry breaking. Setting fin=f=uU}is equivalent to allowing U spin violation.
Accurate tests of 17-spin conservation do not exist as yet, and it would be
interesting to perform them.

It turns out that the electromagnetic decays of the decuplet resonances
provide a sensitive test of [/-spin conservation. The magnetic moments for
decuplet-octet transitions are of course given in terms of the quark magnetic
moments under the same assumptions. One finds

[A+p = (2 12/3) (np  fin), (5.2)
IVijv— (2Y2/3) — ftp) » (5.b)
fiy +2+ = (2 K2/3) ([ip — Hj) , (5.C)
MmEe — (K2/3) (fip+ Up — 2/3-1), 75.d)
HY*A = (K6/3) (flp— fin), (5.e)
fry*-£- = (2 ][2/3) (fin —fi,) , (5.1)
MB»3»= (2 /2/3) (fix~[np), (5-9)
Ws*~3~ = (2/2/3) (Px — 1), (5.h)
where
A¥P= <N+>Sz= YZ|MZ|P , SZ= )Q> , etc,
We see that yn = forbids the decays S*~ -> 3~ + yand Y*~->Z- + vy,

which is the well-known U spin result. The calculated rates for S*0-f- y and
Y*+->27++ y both turn outto be somewhat greater than 0,1 MeV. In this case,
the electromagnetic decay rates may be measurable (the S* width is only
7 MeV) and the degree of suppression of the negatively charged resonance
decays may be ascertained [19].
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V. Non-group-theoretic results: high energy scattering

In addition to the group-theoretic results described in the previous
Section, the quark model has yielded a number of results of a more dynamical
kind. An example is the Lipkin—Scheck [20] and Levin—Frankfurt [21]
work on high energy scattering. This work, in my opinion, is the mostinterest-
ing application of the quark model thus far and alone justifies further study
of the quark model.

There now exists a large amount of accurate data on high energy total
cross-sections, for a variety of incident particles with proton and with neutron
(deuteron) targets. Assuming charge symmetry, ten independent processes
are measured in the laboratory: K+P, K+N, K~P, K~N, n+P, n~P, PP,
NP, PP, PN. Charge symmetry allows us to imagine that we always have
a proton target and are scattering the then particles (K+, K°, K~, K°, n+,
n~, P, N, P, N). These fully equivalent processes can be discussed with a
simplified notation: henceforth “K °” will refer to K°P and K +N scattering, etc.

Lipkin and Scheck, and also Levin and Frankfurt, made the extremely
simple assumption that at high energies the meson-baryon and baryon-baryon
elastic scattering amplitudes could be approximated by the sum of the elastic
scattering amplitudes of the constituent quarks. In this approximation, one
neglects the effects of quark spin and all details of the quark wave functions.
Letting the quark and particle names stand for the quark-proton and particle-
proton elastic scattering amplitudes, we may then write:

K+ =p + I, (6.a)
Ke=n+ X, (6.b)
K- = A+ p, (6.c)
K°e = A+ fi, (6-d)
n+=p 4-n, (6.€)
n = MN+4p, (6.1)
P=P+ P+ n> (6-9)
N=p+ n+ n, (6,h)
P=p+p+ no» (6.1)
N=p+ n+ n. (6-))
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This gives us four relations among the particle-proton elastic scattering
amplitudes:

K+ + n- + K° = K- + 4+ + K°, (7.a)
K+ - K= P - N, (7.b)
K- -K°=P- N, (7.C)
3(n+ + n-)y =P+ N+ P+ N. (7-d)

These relations may hold for all values of the momentum transfer at
sufficiently high energies. They are most easily compared, however, in the
forward direction, where the imaginary part of the elastic scattering amplitude
is related to the total cross-section [22]. Equation (7.a), which involves only
meson-baryon cross-section, is found to be satisfied to better than one percent
for six out of seven experimental values of the incident meson momentum,
between 6 and 18 GeV/c. [23]. It is not yet possible to make useful quantitative
tests of equations (7.b) and (7.c), because experimental errors in the total
baryon cross-section are of the order of the splittings themselves. However,
it does appear that the baryon differences appearing in (7.b) and (7.c) are
consistently larger than the meson differences; also the two experimental
mass differences appearing in (7.c) show a tendency to have opposite signs,
but the errors here are particularly large. The left-hand side of (7.d) is 150 + 2
mb at 12 GeV/c, somewhat smallerthan the right-hand side, which is 185 5
mb at 12 GeV/c and 173 ~ 10 mb at 18 GeY/c. That (7.b) —(7.d) are less well
satisfied than (7.a)is attributed to differences in the quark properties inside
baryons and mesons.

It is well to bear in mind that intesting relations between meson-baryon
and baryon-baryon amplitudes, we need to compare the collisions at the same
centre-of-mass energies of the quark-quark systems. It is reasonable to argue
that since an incident baryon carries three quarks while an incident meson
carries two quarks, the quarks in the two situations have the same energies
when the baryon incident energy isroughly three-halves of the meson incident
energy. It is interesting and probably significant that, for all relations of this
kind derived from the quark model, the agreement with experimentisimproved
when baryon and meson momenta are chosen to be in a 3-to-2 ratio rather
than in a 1-to-l ratio [24].

M otivated by the success of these relations, Lipkin [25] went on to
examine whether any relations among the quark-quark amplitudes could
be found. For this purpose, we must decompose the proton target into its
constituent n and p quarks. There are then eleven quark-quark amplitudes,
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of which six are independent because we are insisting on charge reflection
symmetry:
(PP) = nn) = P>
(pn) = n".
(PA) = (nA) = A,
(pp) = (nfi) = p",
(pn) = (np) = n,
(pi) = (A) = A,

where we adopt a compact notation at the right. In terms of these amplitudes,
the physical amplitudes become:

K+ = 2p’+ n' + 34, (8.a)
Ke=p'+ 2n'+ 34, (8-b)
7li+=2p'+ n' + p' + 2re, (8.C)
n~=p'"-(-2re f2p' -|- h’ (8.d)
Ke=3A+p'+2n', (8.e)
K~ = 3A+ 2p' - n", (8.1)
P=25p"+ 4re, (8-9)

= & *5 (8-h)
P=5p" + 4«’, (8-i)
V= 4p'+ 50 (8-i)

Of course, Eqgs. (7.a)—(7.d) are still obtained. But suppose we use the
experimental values of the total cross-sections to solve for the total quark-
quark cross-sections. We begin with the meson-baryon scattering, using the
experimental total cross-sections at 14 GeV/c as a typical high energy value:

K+ = 17,4

I+

0,1 mb.

I+

K° = 17,5 0,4 mb.
ti+ = 23,9 0,2 mb.
n~ = 254~ 03 mb.
K°e = 20,1 £+ 0,4 mb.
K~ =215 %+ 0,2 mb.
[At this energy, Eq.(7.a) happens to be satisfied exactly by the central values.]
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One finds that the six quark-quark amplitudes are now expressed in
terms of a common parameter. The total quark-quark cross-sections, in milli-
barns, with errors of about » 0,2 mb, are:

p'= 3,6 —x, (9.2)
n'= 3,7 —x, (9 b)
A= 24 - «, 9.0
p' = 53+ X, (9.d)
h' = 3,8 - x, (9.e)
A= 21 £ x, 9.f)

where a cannot be determined unless we make use of the data on baryon-
baryon scattering.

The equality of the p —p and p — n total cross-sections is seen to be
independent of the parameter a . Lipkin takes this equality to mean that
one is in an asymptotic region where one can neglect the effects of charge
exchange in quark-quark scattering. On the other hand, thep —p and p —n
cross-sections are quite different, indicating that here charge exchange is
still significant. Lipkin supposes that the fact that the asymptotic region for
quark-quark scattering is at a lower energy than for quark-antiquark scattering,
is a reflection of the fact that annihilation channels are open in the latter
case. We might recall that at these energies one has a substantial cross-section
for nucleon-antinucleon annihilation.

We notice that if x is near zero, we have two additional approximate
equalities:

n"~ n', (10.a)

A-~T. (10.b)

Dynamically, these equalities are a statement of the Pomeranchuk theorem
for n —p and A—p quark scattering. This is another phenomenon of the
asymptotic region. The fact that we do not simultaneously obtain p' = p',
(i.e., the equality of the p —p and p — p total cross-sections) is attributed
by Lipkin to the importance of the annihilation channel with 1=0.

But is X near zero? We may express the baryon-baryon total cross-
sections (in millibarns) in terms of x:

P = 328- 9a, (Na)
N = 329- 9a, (I.b)
P = 41,7 + 9a, (I.c)
N = 40,2 + 9a. (11.d)
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These cross-sections are uniformly 8 to 10 mb lower than the experimental
values at 14 GeV/c, and the baryon-baryon total cross-sections are decreasing
sufficiently slowly that the situation is not appreciably improved by using
incident baryon momenta closer to 21 GeV/c. But the four cross-sections
(11.a)—(11.d) are approximately correctly spaced. If we solve fora by fitting
to the experimental difference between PP and PP total cross-sections at 14
GeV/c, (which is 11,6 ~ 1,5 mb), we obtain a = 0,1; if we extrapolate to 21
GeV/c, (which is somewhat beyond the highest well-measured antiproton data),
we get a = 0,0.

In Lipkin’s paper [25], the argument is reversed relative to that given
above. He begins by supposing p' = n', in which case he obtains

K+ = K?°, (12)
Adding the assumptions n' = n', X' = [O', he obtains
jrt —a~ = K° —K° . (13)

The equality (12) has always been a challenge to any theory, because these
total cross-sections differ by less than 3% down to incident momenta below
6 GeV/c. Equations (7.a) and (13) are the Johnson—T reiman relations [26],
which here follow from some plausible dynamics. [Actually, we see that

n" — X" = n'" — 1" is sufficient to derive (13).] [27].
Note that we have not used any SU(3) predictions to relate the quark-
quark amplitudes. These relations, n' = X' and n' = J', are in fact seen to be

badly violated. We use SU(3) only to arrive at the quark content of the
physical states, and then make use of a plausible quark dynamics in which
S17(3) is broken in order to go further. In the end, ten physical cross-sections
are given in terms of three quark-quark cross-section (p ', p', 4).

Successful relations between baryon and meson properties provide
positive evidence for the existence of a simple type of hadronic quark matter.
There are several other applications ofthe quark model which also give evidence
for a common quark-stuff out of which both baryons and mesons might be
composed. Of these, I will mention here the successful calculation of the
electromagnetic decay rate m->n° + y in terms of the nucleon magnetic
moment by Becchi and Morpurgo [28] and the analysis of proton-antiproton
annihilation into mesons by Rubinstein [29].

VI. Towards a quark model of weak interactions

Two sorts of hypotheses about quarks have continually appeared in our
discussion of applications in the previous two Sections. One is the additivity
hypothesis, which states that the amplitude for some interaction of the

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



144 R. H. SOCOLOW

strongly interacting particles is the sum of the amplitudes for processes
involving the constituent quarks. The second is the idea that single-quark
processes should predominate over multiple quark processes, so that a reason-
able perturbation theory is provided by ordering quark effects according to the
number of quarks which participate. Can either of these hypotheses help to
construct a quark theory of the weak interactions? We confine ourselves to a
very brief discussion of this question.

The strongly interacting particles decay leptonically and non-leptonically.
The decays into leptons are known to be described by a Hamiltonian density
J,. "j. where j, is the lepton current and J, is the hadron current. J, is one of
the most exhaustively studied objects in particle physics. One has relations
between its baryon and meson parts via both the conserved vector current
and partially conserved axial vector current hypotheses. One has relations
between the strangeness changing and strangeness conserving parts via the
Cabibbo theory. One knows how to calculate many of the renormalization
effects via the SU(3) X SU(3) algebra formed from its vector and axial vector
components (an algebra which, in turn, was suggested by the properties of the
currents constructed from free quark fields).

The quark model accounts for some of the facts of the leptonic decays
which have been built into the more sophisticated theory. If the leptonic
decays are to involve only a single quark, then one is restricted to the pro-
cesses

n — pl= 7,

A—pl=y

and the corresponding antiparticle decays into positive leptons. Thus one
automatically has a | 4Y | <1 law and a AY = 4Q law for the hadronic
transitions. One guesses that these processes are universal and hence is less
surprised than in the absence of a quark model when one finds a common
ratio of strengths of strangeness changing and strangeness conserving inter-
actions in both meson and baryon decays. (Without further assumptions, one
might not expect the equality of these ratios for vector and axial vector
transitions.) All of this and more is of course built into the CABIBBO theory.

When we turn to the non-leptonic decays, we have greater hope of
getting new results from the quark model, largely because a satisfactory
theory is still lacking. Two paramount regularities appear in these decays,
the | AY | < 1 law, which appears to be rigorously satisfied (in view of the
magnitude of the K; — Kg mass difference), and the AI = % law, which is
approximately satisfied. (The decay K — a* 7% provides a measure of its
violation, and suggests violations of 5%, in the amplitude.) The first law,
| AY | < 1, follows from that has generally been regarded as the most likely
non-leptonic interaction Hamiltonian, Jﬂ+ J,.» where J,. is the same current
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as in the leptonic decays. The law is rigorous if the leptonic selection rules

1dy 1 1 and A Y = AQ are rigorous. However, the second law, Al = 1/2,

doesnot follow in any straightforward way from the current-current interaction.
The quark model provides one additional single-quark transition

A-»n,

which does not appear in the leptonic transitions because the leptonic current
is charged. And the quark model all but demands that this transition appears
when it has an opportunity to do so. In non-leptonic decays,the A—n trans-
ition is a one-quark effect, while the current-current interaction is a two-
quark effect, (Ap) -> (pn). From what we have already seen, we expect the
single-quark transition to predominate.

We are led to the following picture of the non-leptonic decays. There
are two mechanisms by which these decays can proceed, shown pictorially
below:

Both interactions preserve the |AY | </ 1 law, which we then expect to

be rigorous. Only the first interaction satisfies a pure Al =|law, which we
then expect to be broken by the second interaction. The second interaction
should be weaker, so the Al = | law should be approximately valid.
According to this picture, the current-current interaction should cor-
rectly relate only the Al = | parts of the non-leptonic decays. The Al = |
parts should be dominated by the single-quark transition. There should be no
Al = g transitions to lowest order, a prediction which will eventually be

tested by the K decays into two pions.

It is tempting to imagine that CP violation is introduced at the quark
level by a difference in phase between the one-quark and two-quark terms in
the weak Hamiltonian. This would require that no CP violation be seen in
any leptonic interactions or in strangeness-conserving non-leptonic inter-
actions. It would also predict that there would be no CP violation in Al = |
non-leptonic decays, but how this could be verified is not clear since Al = |
decays always accompany Al = | decays.

Let me conclude on a still more fanciful note. There appear to be two
fundamental ways in which the quark content of hadronic matter can be
changed. The first is quark-antiquark pair creation and destruction; these
processes allow the formation of resonances and many-particle final states in
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high energy scattering. The second is quark change, by which we mean the
three fundamental processes p n, p->A n->A Because of strict charge
conservation, the first two processes only occur in the presence of leptons.
But all three processes may have a comparable, slow rate, which gives the
characteristic features of the weak interactions [30].

The usual weak interaction coupling constant, which is 10~5when meas-
ured in units of the proton mass, is of order unity when measured in units
of a particle whose mass is 300 GeV. Far down the road which the quark model
has led us along, far beyond our farthest outposts today, might there lie a
calculation of the weak interaction coupling constant in terms of quark
parameters ?

Appendix

The baryon self-energies

We want to work out a simple calculation in some detail in order to
illustrate the use of quark wave functions. For this purpose, we express the
self-energy of the baryon octet and decuplet states as a sum of single terms
and pairing terms, as discussed in Section IV. The pairing term requires a sum
over the energies of interaction of all pairs of quarks contained in these states.

The baryons are three-quark systems, and hence for each quark configura-
tion there are three different pairing interactions which must be summed.
The baryon wave functions are linear combinations of distinct quark con-
figurations, and we must sum over these as well. Because the wave functions
are symmetrized with respect to the three constituent quarks, it is sufficient
to calculate the pairing energy due to the interaction of the first and second
quark, for example, and then to multiply the result by three to obtain the
total interaction.

We assume isotopic spin and ordinary spin conservation. Thus, it is
necessary to rewrite the wave functions in such a way that the first and second
quarks are in eigenstates of spin and isospin. For example, consider the A++
state with Sz = 3/2:

M ++ > = [p(+) p(+)]p(+)-

Here the pairing energy is three times the p(+)p(+ ) interaction energy.
Using the notation of [14] we call this energy D where the first and
second upper indices refer respectively to the spin and isospin of the
two-quark system. Naturally, the pairing energy is the same for the other
charge and spin states of A. We write:

E(A) = 3wn+ 3D&, (A.D)
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where we include in the self energy E(A) both the one-quark contribution (a
sum over constituent quark masses) and the pairing contribution.

For the proton and J1 states with Sz = 1/2, we rearrange the terms of
the wave function given in Section 11l as follows:

IP(+) > = (18)-» 2[p(+) p(+)M -) +

+ ~ [p(+)n(=)+ P(=)n(+ )+ n{r)p(—=)+ n{—=)p(+)Ip(+) +

+ Y [p(+)n{—=) - p(=In(+) - n(+)p(—) + n(=)p(+)Ip(+)—

—[P(+H)p() + P(=)p(+)In(+) —Ip(+)re(+) + re(+)p(+)Ip ()
I1N(+) > = (12)-» {[P(+ H -) - p(-)»(+) + i»(-)p(+) -
—n(+)p (=)W +) + W +)p(+)]re(—) — [*(+)n(+)]p(—) —

— [n(H)M(H)Ip(—) + [P(HXK +)]«(—) +

+y [(=)M(+) + n(+)M()p(+) + v —
—n(+H)A()]p(+) +y W +)re(—) +  —)re(+)]p(+) +
ty W+M-) - AGU+H)]Ip(+) - v [AMH)p(-) +

+ NDp(H)M+) +y WH)i>(-) —N—p(+)M+) —
— Y [p(=)"(+) + p()M(=)In(+) + v M (+)—

—p ()M () ]«(+) ¢
The expressions in brackets now have definite spin and isospin, so we may
write down the self-energy by inspection:

E(P)= 3m,+ 3 X~ [4D" + D" +9D° + 2D" + 2D"]=
[¢]

= 3mn+ *-D"n+ D°°n, (A.2)
z z

E(A) = 3mn+ ml+ 3 x -~ [4D* + uDtf* + 2BL* + 2L *\ =
}Z

= 2mn+ mx+ DZ + ~ DW + -J-l12. (A.3)
z z
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The other self-energies are found in exactly the same way, and we simply
state the results:

E (Y*) = 2m, + m; 4 D}}, + 2D}, (A.4)
E(E*) = m, + 2m, + 2D} + DY, (A.5)
E(Q) = 3m, + 3DY, (A.6)
1 3
E (%) =2m, + m; + Dy, + ¥ D2 4 €y Dy, (A7)
e | TR
E(E) = my, + 2m, + - DI + DI + DY, (A.8)

From equations (A.1) — (A.8), we may verify that we obtain equations
(1.a) — (1.c)of section IV, and no other relations. If we also assume the follow-
ing relation between S = 1 quark-quark interactions:

DY, + Dig = 2D3}", (A.9)

then we get the full equal-spacing law for the decuplet and the GELL-MANN—
OxuBo formula for the octet. Equation (A.9) is a weaker assumption than the
aséumption that all quark-quark pairing energies are equal. Using the stronger
assumption:

D}, = Diji* = DY (A.10)

does not lead to any further relations between the eight baryon masses. How-
ever, (A.10) suggests the further assumption (see [15]) that the S = 1 quark-
quark and quark-antiquark pairing energies are equal. Under the additional
very reasonable assumption that the @ is a A state, this yields an interest- .

ing relation between meson and baryon mass differences, namely equation (2)
of Section IV.
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Ilaercst 0030p, U yacTblo NO0APOOHOE 0OCY)K/IeHHe TJIABHBIX pe3yJbTaTOB, BKJIIOYAsl HOBOE
NMpUMEHEeHHEe MOJeJIM K PACCESHUI0 NMPH BBICOKUX IJHEPIrusixX. Kpamo pPacCMOTPEHBI TAK>Ke
KBapKOBbIe MOJlenH ciaa0bIX B3aUMOJCHCTBHIL.
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THE BARYON MODEL AS A TETRAHEDRON
OF QUARKS AND ONE ANTIQUARK

By

Y. B. Zeldovich and A. D. Sakharov

ACADEMY OF SCIENCES USSR, MOSCOW, USSR

A baryon model consisting of 4 quarks and one antiquark is proposed.

The idea of quarks has given a clear physical picture underlying the
SU(3) and SU(6) symmetries. The lowest energetic states of mesons have the
structure @, q in s-state with total spin 0 or 1. Concerning the baryons one
usually assumes that they are built up from 3g The lowest energetic states
(octet + decuplet = 56 in SU(6)) have wave functions totally symmetric in
spin and unitary spin. From the Pauli principle then follows that the space
wave function of three quarks must be totally antisymmetric. It is tempting
to assume that there are attractive forces between g and g, and repulsive ones
between two quarks. However, in that case it cannot be understood, how
three quarks can form a baryon; new, more or less artificial assumptions are
necessary, like the hypothesis of attraction between two quarks at great
distances and repulsion at small ones, or that concerning three-body forces
[L] [2].

We propose a baryon model consisting of 4 quarks and one antiquark [3].
The antibaryon gives a common attractive field, in which the quarks are
moving. The lowest one-particle states in this field are an s-state and a three
times degenerate p-wave. The quarks prefer to be on different energetic levels
because of the repulsion between them. (The Pauli principle would not give
this result at all, as the quarks have three charge states and two spin states.
On the contrary, the Pauli principle leads to the considered spin-unitary spin
structure only, if the dynamics give the desribed space wave function.) The
configuration with 1q on the s-level corresponds to the meson, while the sp3
configuration gives the structure 4q, g, i.e. the baryon. Thus one gets auto-

matically (4 — 1) g = 35 for the baryon, that means, the quark has B =

Our model allows an interesting geometric interpretation. Namely, from
the s and p-functions one can build — like in organic chemistry — linear
combinations, so called wu-functions, which have preferred axes directed to
the vertices of a tetrahedron. So we may consider the baryon as a tetrahedron
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with quarks in each vertex, and the antiquark is moving symmetrically around
them. The privileged character of the number 4 is connected with the fact that
the tetrahedron is the simplest regular figure in our three-dimensional space.
So we prefer Pythagoras’ hellenistic ideas instead of the eightfold way of
Buddha.

The difficulties of the model are the following.

1. The quarks should be placed in the vertices of the tetrahedron with
the maximal probability. Besides that, the wave function has to change sign
(and not only go through the minimum) when in the process of interchanging
two quarks the system passes through a configuration, in which all the four
quarks are in the same plane. It is possible that for that purpose the repulsion
between two quarks is not sufficient, and we have to consider different effective
interaction potentials for the symmetric and antisymmetric cases [2].

2. As it was pointed out by R. Socolow, the additivity principle for total

2
cross sections at high energies [7, 8] gives in our model 3 for the ratio of the
meson-baryon cross section to the baryon-baryon or antibaryon-antibaryon
2
cross section. The ratio 3 ,which is given by the usual 39 baryon model, fits

much better the experiment.

The best proof for the 49, g model would he the discovery of baryon
resonances with electric charge Q = +3 or Q = —2 (and strangeness S = 0)
or resonances with strangeness S = -f-1 or S = —4. Resonances with an unu-
sual strangeness have not been discovered so far. The baryon resonance N +++
(1580 MeV) which is decaying intop -f- n+ + n+is mentioned in the literature
[5, 6], but it is not clear, whether it is a resonance or an interference effect of
the n+ waves in the simultaneous decays of A++ and g+.
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MASS FORMULAS FOR MESONS AND RARYONS
IN THE QUARK MODEL

By

Y. B. Zeldovich and A. D. Sakharov

ACADEMY OF SCIENCES USSR, MOSCOW USSR

A unified mass formula is given, linear both for mesons and baryons. The spin-spin
interaction and the annihilation interaction of strange quark pairs is proposed to be much
weaker than that of non-strange quark pairs.

For the charged pseudoscalar and vector mesons (g, g) and for the 56-plet
of baryons the following mass formulas of similar form are proposed:

0+ c__2_ 1 1+ cO(fxj n2), (1)

12 Ll o 2 (Ree)- )

Note that the formula (1) is written for the mass (and not for the mass square)
of the meson. Here S-is the strangeness of the i-th quark or antiquark; thus the
coefficient b= 180 MeV (the same in both equations (1) and (2)) gives the
mass difference between the A quark and the p and n quark. The coefficients
c0 and cx characterize the spin-spin interaction of quarks and so lead to the
mass splitting between the vector mesons and pseudoscalar mesons, and the
baryonoctet and decuplet respectively.

The experimental results predict cO= 620 MeV and <g= 206 MeV. The
difference is understandable, if we take into account, that in a meson the g
and g are in an s-state: ip(rl2= 0) #=0 while in a baryon the wave function is
totally antisymmetric, i.e. y>r12 r13 r23) is equal to zero, if any ruc= 0.

We assume, that the spin-spin interaction of the strange 9 quark is
weaker than that of the p, n quarks. Therefore we write

Hi= O @1 — «ISt1),

where o-is the spin of the i-th quark. The best fit with the experiment is given
by the value = 0,42 for both the mesons and baryons.

The difference between the spin-spin interaction of the Aand the p, n
leads to the mass splitting of YO and J10, having the same quark structure
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(A, p, n). Indeed, it can be seen, that for the

1 1
< apan> = ~ 1 <TPOX> = <~ 7 > = - —
4 L
and for AO
3 onc 8
<apan> = ——, < apax> = < 0onoxs> = .

4

In the case of baryons the only difference between the formula (2) and that of
Gell-Mann—Okubo is that the coefficient of (0ofan>is (1 —a)2instead of
(1 — 2*). The comparison of the theoretical and experimental results is given
in the following Table for the values a0 = 608, ax= 1083, b= 180, c0O= 620,
cx -206, « = 0,42:

Table |
particle n K p K* cu P
masstheory (MeV) 143 500 763 878 763 1020
massexXp (MeV) 137 494 750 890 780 1020
particle N n z S A Y* S* Q-
masstheory” (MeV) 928 1108 1195 1340 1238 1375 1520 1675
massexp (MeV)] 939 1115 1193 1317 1238 1385 1530 1675

Let us consider now the neutral mesons, the quark structure of which is
the superposition of pp, nn and AL It is useful to recall the analogy of the well
understood systems consisting of charged particles like positronium e+ e~,
muonium p+ e~ and antimuonium p~ e+ Orp+ p-~.

Fig. 1

In the system p+ e~ the Coulomb interaction between pA and e~ plays
the fundamental role (see Fig. 1). This diagram contains also the magnetic
interaction of the spins of p and e, which leads to the splitting of the 1SO and
33X muonium states.
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In the case of positronium we have to take into account the annihilation
diagram ofthe e+ e~ pair (Fig. 2). It is well known that this process is possible
only for the orthopositronium 3V as the electromagnetic field is a vector field.
The annihilation process gives a correction to the energy of the positronium,
which is measured and is in excellent agreement with the theoretical result.

Fig. 2

Assuming the existence of /r+(x~ pairs we have to consider diagrams
like in Fig. 3.

We can conclude that the ortho e+ e~ and ortho L+ p,~ are mixed in
the superposition. (Here we neglect the fact that the mass difference ofy+ p,~
and e+ e~ is more than the binding energy of positronium.) On the other hand,
para fi+fi~ and para e+ e~ are not mixed, because in electrodynamics there

are no diagrams with a pseudoscalar neutral intermediate state. |[we do not

e2l

%cJ
On the contrary, for the neutral mesons i.e. for pairs

consider diagrams higher than first order in

pp =t} nii = r2, XX= r3.

The experimental results show that in the case of vector mesons (the analogue
of ortho-positronium, spin 1) there are no annihilation processes. Thus r3, i.e.
the @ meson is an eigenstate; this can be proved by the fact that (p decays
mostly into K and K.
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The r, and r, states are degenerate, and a very weak interaction (which
must not be taken into account for ry and ry,) is enough to split (r; —r,)/}/2=0°
and (r; + r)/)2 = . The mass splitting between ¢° and ® is small. As in the
system of p° » and ¢ there is no considerable annihilation, we give the masses
of the neutral mesons in Table I together with the charged meson masses.

Let us consider now the pseudoscalar neutral mesons. The annihilation
term in the Hamiltonian is

Hyrf 14

where i is the production operator of the i-th pair; ry is the annihilation
operator of the k-th pair.

The other interaction terms in the Hamiltonian are of the type of H, ;in
that case r; = pp goes into r, = pp again. Such a process is clearly possible for
charged pairs as pn, which are not contained in r, r,ry, . Thus we can say, that
the non-diagonal terms in H;; are characteristic for annihilation processes.

The unitary symmetry group SU(3) is in agreement only with such a
Hamiltonian H;, = g, which does not depend on any indices, e.g.

lg &8 8
H=|g 8 8|
888

The usual interaction

Hik =f6ik

is allowed only, if there is such a term f'in the energy of charged pairs like pn
also. In that case we have an SU(3) singlet:

s % . m=f+3g

and two degenerate states

Ty —T.
70— 1 2 and Ml

V2

As the annihilation interactions exist for pseudoscalar mesons (and not for
vector mesons) they are in agreement not only with SU(3) but with SU(6) also.

Finally let us consider the SU(3) symmetry breaking (isospin is conserved)
caused by the mass difference between 1 and p, n. We will assume, that ryis

always multiplied by (1 — f), so

1 iL: (1—27p)
Hy =g 1 1 - (1—p)

|(1—B) 1 —p) (1—p)
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Considering the usual interaction, in which (in the absence of annihilation)
the different mass and spin interaction of Ais taken into account (see (1)), we
get a secular equation for the neutral pseudoscalar mesons. It gives

Mg= mry 7

rj =3 0,54 rx4- 0,54 r2— 0,65 r3,

X = 046 rl+ 0,46 r2-f- 0,76 r3.
To fit the experimental values mn= 548 MeV and mx = 958 MeV we take
g = 580 MeV , R = 0,75 .

That means that not only the spin-spin interaction, but especially the anni-
hilation interaction of r3= ¢4 is much weaker than that of the non-strange
quark pairs. This result is in good agreement with the smaller cross section of
A scattering and smaller probability of strange particle production in the
additivity theory of scattering (see the lecture of R. H. Socolow at the Summer
School at Lake Balaton).

Note that the sign of the annihilation interaction is the same as for
the orthopositronium i.e. it is as if there would exist an intermediate pseudo-
scalar boson with zero mass. As such a boson does not seem to exist, we have
to assume that the annihilation processes correspond to simple four-fermion
diagrams.

Most of the ideas in this work were already mentioned by other authors.
The list of references is given in [1].
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A RELATIVISTIC QUARK MODEL WITH
APPLICATION TO MESON DECAY RATES

By
J. Harte

CERN, GENEVA, SWITZERLAND

The pseudoscalar and vector mesons are assumed to be quark-antiquark bound states.
By using the Bethe— Sat1peter equation, the wave functions of mesons are determined and,
in turn, these wave functions are applied to calculate several meson decay rates. For the
Q 2n decay we get ' = 200 MeV which is roughly in agreement with the experimental value.

At this Conference we have heard several reports on the successes and
failures of the static quark model. | should like to report now on some of the
consequences of a relativistic quark model of the hadrons. The work is moti-
vated by the probable large binding energy of quarks in hadrons and the
consequent difficulties of achieving non-relativistic quark motion inadynamical
model. We shall assume that the hadrons are described by appropriate bound
state solutions to the Bethe—Salpeter equation with quarks taken as the
constituent particles. Because of the difficulties associated with the three-
body problem, our attention here will be restricted to the mesons which will
be assumed to be quark, antiquark bound states.

The Bethe—Salpeter wave function equation [1] for a fermion-anti-
fermion bound state reads

S)i (P, P)X(P,P) (P.p) = jd*ql (P,p, q) X(P,q) m )

where ” is the Bethe—Salpeter wave function which is, in general, a 4x4
matrix, SFis the quark propagator, and | is the interaction kernel.

The variables P and p, q refer to the sum and difference respectively of
the quark four momenta. We shall assume the ladder approximation for the
interaction kernel and take the binding mechanism to be that of meson
exchange.

In order to simplify the dynamics and allow us to obtain exact solutions
readily, we shall set the mass of the exchanged meson and the total centre-of-
mass four momentum of the bound state equal to zero. This may be a reason-
able approximation if the quark mass is sufficiently large, in which case our
solutions may represent the first term of an expansion ofthe full wave function
in powers of the parameter M meson/M quark. We refer the reader to [2] for a
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more complete discussion of this point. The solutions of Eq. (1) are still not
uniquely determined and therefore we impose two additional conditions of the
wave function.

First we assume a self-consistency or bootstrap condition which states
that the exchanged meson is identical to the bound state. This condition
implies that the coupling constant, g, which appears in the interaction kernel
in the form (neglecting spin complications)

ig 1
(2m)* (p — q)2 — p?

I(P,p,q)= (2)

is equal to the effective coupling constant for the bound state to annihilate
into a quark, antiquark pair. Using the relation between the vertex function
and the BETHE —SALPETER wave function, we can formulate this condition
by writing

g = (27)2 S§y (P, p) x (P, p) SF» (P, p)s (3)

where the right-hand side is evaluated for momentum variables corresponding
to on-shell quark and antiquark.

Secondly, we impose a normalization condition on the bound state wave
function which has been derived by many authors [3] and reads

¥ 28, 5
Tr { [ @27 (P.p) 157 (Pop) SEa (P ]2 (Prp)

I

—J‘J'df*pdw(P,p) 5% [ (P.p.g)|x (P.q) | =2iP,. (1)
7

We shall omit here the minor complications which arise in writing the multi-
channel generalizations of Eqs. (1), (2), (3), (4) appropriate to interacting SU,
multiplets of particles and simply state the results; further details can be
found in [2].

For the pseudoscalar mesons we obtain the wave function

s = €15 F (312, 3/2; 3/2; 2; p2ms2) , (5)

where F'is a hypergeometric function, and m, is the quark mass, while for
the vector mesons, with polarization vector ¢, we obtain

o | 22— ma

2
i mg

Z’\/:%P'Er(Pz(pz_mg) ot pt ) (6)
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Cj and c2 are determined fromEq. (4). We shall now apply these wave funct-
ions to the calculation of several meson decay rates.

We consider first the g—m25n decay rate, or, in general, the rate for
V — PP. The simplest dynamical mechanism to assume for this process is that
shown in Fig. 1. The shaded blobs refer to the wave functions for the vector

and pseudoscalar particles and the three internal quark lines will be described
by free particle propagators. The integration around the loop is convergent
because of the fall-off of the wave functions at infinity in momentum space
and the result, for the g meson width, is

2= 200+ 0 ratneson MeV .
m quark ,

(?)
The first term in this expression is independent of any adjustable parameter
such as the quark mass or a cut-off constant and depends only on the g and n
masses and, of course, the dynamical assumptions discussed above. The rough
agreement with the experimental value 's~ 125 MeV is satisfying.

We can also calculate the decay rates n+ -> Juv, 1+ -> 1° évin our model.
We assume for the weak Hamiltonian an expression of the form

Aw='[Ggnm+ (1 - by gp+ G gxyMl1 - b'yhygplj", (8)

where b and b' measure the axial vector renormalization of the A'S = 0 and
A S = 1 hadronic currents, respectively andj)tis the leptonic current. The pro-
cesses illustrated in Figs. 2 and 3 will be assumed to dominate the decay rates.
It is most convenient to compare the calculated ratio 1+ -> n° er/a+—ayr with
experiment. We then find agreement with the experimental ratio of 10-8if the
condition

m, b2= 80 BcY 9)

is satisfied. The parameter b is expected to be of the order of magnitude of 1,
and hence the quark mass is predicted to be ofthe order of magnitude of 100 X
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the nucleon mass. The calculation of other mesonic decay rates is in progress.

We wish to emphasize, in conclusion, that the description of the mesons
that we have attempted here cannot he considered to be complete even if
the exact solutions of Eq. (1) could be obtained with physical mass parameters.

The reason is that because of the singular nature of the meson exchange force
and the assumed large quark mass, our wave functions describe highly con-
densed or localized mesons. Thus we are describing, at most, the meson core.
If the “radius” of the physical meson is of the order of I/M meson, it may be
necessary to include qqqq and perhaps more complicated contributions to the
wave functions [4]. Nevertheless, it may still be valid to calculate processes
involving internal pair production of quarks such as that illustrated in Fig. 1
if the production occurs primarily from the meson core. The processes illustrated
in Figs. 2 and 3, however, would be expected to receive a significant contribu-
tion from the peripheral structure of the meson. It will be of interestto calcul-
ate non-leptonic hyperon decays in this model, since the simplest mechanism
to assume for these processes is the pair production mechanism of Fig. 1.
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4. Another possibility for surmounting this difficulty and also to avoid additional unpleasant
features of the marginally singular Bethe—Satpeter equation would be to introduce
a core in the binding force via appropriate form factors in the exchanged meson vertices.

PENTATUBNCTCKAA MOJEJ/Ib KBAPKOB N EE NMPUMEHEHUE
K PACMAJAM ME3OHOB

LK. XAPT

Pesome

MpepnonaraeTcs, YTo NCEBAOCKAIAPHbIE M BEKTOPHblE ME30HbI ABMSKTCS CBA3aHHLIMM
COCTOSIHUSIMW KBapK-aHTUKBapK. C MoMoLblo ypaBHeHUs BeTe—ConbnuTepa OnpeaenstoTes
BOJIHOBblE (DYHKL|MWN ME30HOB, U MOTOM 3TW BOMHOBbIE PYHKLMWM MPUMEHSIOTCS A4S BbIYUC/EHUS
BEPOSTHOCTEW HEKOTOPbIX ME3OHHbIX pacnafgoB. [ns pacnaga q-m2n nonydaetcs I = 200
M3B, 3TO MpPUBAUXKEHHO COOTBETCTBYET 3KCMEPUMEHTAILHOMY 3HAUYEHMUHO.
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ON THE CROSS SECTION OF QUARK
PRODUCTION

By
S. S. Gerstein

SERPUKHOV, USSR

It is shown that in certain circumstances the cross section of quark production may
be much larger than that predicted on the basis of the statistical model.

From papers of Fainberg et al. and Domokos and Fulton it follows
that the cross-section of quark production is very small. On the basis of the
statistical model they predict

a~e T , (1)

where M is the quark mass, and T is constant.

If that is true, then the search for quarks with large mass will be hopeless
even at cosmic energies.

I should like to make a short remark and emphasize that prediction (1)
may be wrong.

In the statistical model a compound system is supposed to be produced.
In such a system the statistical weight of mesonic states increases exponentially
with the energy. Thus the cross-section of quark production becomes small.

A similar consideration may be applied for instance to elastic p —p
scattering at large angles. Indeed, Hagedorn and others have obtained for
the cross-section of elastic p —p scattering the following formula:

where T — 0,15—0,16 GeV, and E is the energy in the c. m. system.

This formula describes well the energy dependence of the cross-section
at an angle near 90°. On the other hand, in the range from 30° to 80° the
experimental data are described by Orear’s formula:

— _ e-Psine/ir - y-, it

dQ
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where tis the momentum transfer.

When t decreases, we have diffraction scattering with a cross-section
equal to

__qg: Ay At (4)

At an energy of 30 GeV the cross-section decreases by 10 orders.
It must be stressed that this dependence can be observed not only in
elastic scattering, but in some inelastic processes too, e.g.

P+ P->D+ nt+ ,
p+ p N+ p .

Suppose now that we have some reactions in which quarks can be produced,
for instance:

4+ P P+ C+ 7>
N+N->N+N + g-\-c],
N+N-> g+ ?

and that the energy is much larger than the mass of the quarks.
Then the momentum transfer is

Y-t ~ (2MQ@)22E  2AC i2.

At sufficiently large energies the momentum transfer can be small, and we
shall be in Orear’sregion. If Orear’s formula is valid, then the cross-section
of quark production may be much larger than that predicted by the statistical
model with the energy in the c. m. system.

Ob 3 dEKTUBHOM CEYEHUWWN POXAOEHWUA KBAPKOB
C. C MEPLUTEMH

Pesome

MokasaHo, 4TO MpYM HEKOTOPbIX O6CTOATENbCTBAX 3PHEKTUBHOE CEYEHVE POXAEHUS
KBapKoB MOXET 6blTb HAMHOFO GOJbLUE TOTO, YTO MPEACKA3bIBAETCS CTATUCTUUECKON MOAENbHO.
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The radiative decay widths for pseudoscalar and vector mesons are calculated in the
static quark model.

1. Introduction

The following review of the static quark model could perhaps be charac-
terized as “an outsider’s view” on this subject because the author will not
show any particular eagerness in defending some of the rather drastic assump-
tions entering the model. Rather, aim is made at showing the coherent picture
of many different physical processes and experimental facts which this model
provides with only very few adjustable parameters.

Since this is a conference on weak interactions, it will not be assumed
that everybody is familiar with the concept of quarks; a short-hand introduc-
tion has to suffice, however, to leave ample time for results and predictions.

The idea that mesons could be actually bound states of a fermion—
antifermion system is rather old and goes back to E. Fermi and C. N. Yang
[1]. Later on, one tried to reduce the number of “fundamental particles” even
further; in the Sakata model, it was assumed that all elementary particles
are formed as bound states of only 3 fermions, the 2 nucleons and the /-
hyperon which can then be grouped in a triplet

" (1)
u

The S[/3-symmetric version of the Sakata model [2] was eventually ruled out
by experiments. (It predicts, for example, odd 27 — J1 parity.) But its formal
beauty inspired people not to discard it altogether.

The 2 diagonal generators of SU3 will be defined by

(2)
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In the SU3symmetric version of the Sakata model, they are related to the
3rd component of isospin and to hypercharge by

3a,, Y = 2(A2+ hl3), )

where h is some quantum number equal to zero for the representations 8,
10, 27, ... which we now know to be relevant for the classification
of elementary particles. However, h — | for the triplet representation of SU 3.
The charge is then given by the generalized Gel1-Mann—Nijishima formula

Q= f3 H, + H2+ N3+ (4)
Just as hypercharge has to be added to J3to keep the charge integer also for
the fundamental representation of S U2 one here has to add the new quantum
number h. In nature there is, however, no indication of such a quantum

number. This lead Gel1-Mann and Zweig [2] to define h = 0 by force and
hence to arrive at a new triplet, called “quarks” or “aces”,

®)

with quantum numbers shown in Table 1.

Table 1

Quantum numbers of the fundamental particles

& y N S | 1,
p 2/3 1/3 1/3 0 1/2 1/2
n -1/3 1/3 1/3 0 1/2 -11/2
n -1/3 —2/3 1/3 —1 0 0

All bosons are assumed to be bound states in the quark anti-quark system,
whereas fermions should be made up of 3 quarks.

The static quark model goes one step further and assumes that the motion
of the quarks in the potential that binds them together is non-relativistic.
They are assumed to be bound in S-states. The present lower limit on the mass
of the quarks is around 5 GeV, so that the binding energy per particle is of
the same order as the rest energy. It follows that the potential can not satisfy
the virial theorem, otherwise the average kinetic energy would be of the same
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order and the motion would be relativistic. Discussions of these problems are
found in the literature [4, 5].

The question immediately arises why only quark-antiquark and 3-quark
bound states are found in nature. According to rough arguments, given by
Morpurgo [4], 2-quark bound states for instance could in fact exist, but their
mass would be of the same order as the quark mass.

2. “Classical” predictions of the static quark model

The extremely simplified model described in the introduction turns out
to be rather powerful in its predictions. Most of them coincide with predictions,
earlier derived from SUG. This is not at all surprising; if Sl/ehas any range of
application at all, the static quark model is the most natural candidate. All
one has to assume is that the binding forces are approximately independent
of spin and unitary spin. Since there are 6 different quark states, 3 with spin
up and 3 with spin down, one predicts 36 different boson states which group
into 35 (1 according to the representations of SUe. Likewise, one has 56
baryon states. The decomposition of these states in terms of quark states is
given in [6]. Here, we only list a few characteristic examples in an obvious
notation

Qrt=t1 SIRE WL
K*+t=1tt, K+tr=w H -W¥
nop i2 Xop nop)
. (6
f = 2f jf+2f f1+21 tt-t Vt- ttl
1/'8 pnop ppon npp popn ponop
—ltt —tit —ttl —Itt
Php N pp 0pop PPN

The neutron state with spin up is obtained from the negative of P f by inter-
changing p -o- n. In a more closed form, the nucleon states can be written as
(suppressing space-dependence)

P f= S «! («2B3— «3/Y Pi (P2n3 —p 3ra2p>
(?)
nrf = Sar(c3R2- a2B83) nx(n2ps- n3p2),
where
<7goc = CC, 03p = — (8)
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and S is an operator symmetrizing with respect to the indices (1, 2, 3).

When the A-quark is assumed to have a slightly higher mass, co — ®
mixing is predicted with a mixing angle arctan (1/1/2) 35,3°. Since 1) and
X° belong to different representations of SUG, their spatial overlap integral
should vanish and no r) — x° mixing is predicted. Both these predictions come
close to experimental findings. From the decay of ® q-f-n [7], the co— @
mixing angle is obtained to be about 40° and the masses of pseudoscalar mesons
allow for an estimate of the j — x° mixing angle of about 10°.

Nucleon magnetic moments can be obtained in the static quark model by
taking matrix elements of

(©)

between the nucleon states (7). The sum goes over all quarks contained in the
states and 1 Qmis the magnetic moment of quarks with charge Two relations
are obtained [6]:

= 4> 0°)

2
Un = _TJF-

Elimination of p yields the famous SUG6 result
Pp/Pn = — 3/2 (11)

which compares favourably with the experimental value — 1,46. The result that
equates the total proton magnetic moment to the quark magnetic moment is a
bit surprising. Because of the large quark mass, a quark magneton is a small
unit and to obtain eqgs. (10), the quarks have to have an appreciable anomalous
magnetic moment. The situation is improved when one takes into accountthat
in their potential the quarks move with an effective mass that is much lower
than their free mass [8].

The axial vector coupling constant for /1-decay is obtained in the same
way. One computes

(P\2(°3"(r+),\N) = 5/3 (12)
i

to obtain the S[/6-result
gA/gv = - 5/3 (13)

This value is a little bit too large. But one knows from calculations of B. W.
Lee [9] that the same result is obtained from current-algebra without assum-
ing SU6 but an approximation where one only uses the 56-representation in
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the intermediate state. On the other hand, the excellent calculations of Adler
and W eisberger [10] have shown that the value of gA/gv is too high if one
only takes into account the (3,3) resonance and neglects higher resonances;
all this is consistent and seems to point out that one should not expect better
agreement in eq. (13) from the static quark model.

3. Electromagnetic decays

It will not be possible here to give an account of all aspects of the static
quark model. Electromagnetic boson decays shall be taken as a representative
example [11].

There are essentially 2 kinds of electromagnetic decays: Lepton-pair
decays of vector mesons and radiative decays. To investigate the firstkind,
one has to write down the most general form ofthe V—y vertex from invari-
ance reasons

<*U (*)I10> = efWa, eP* (14)

To compute the constant f Vir from the quark model, one has to compare (14)
with matrix-elements of the quark current

(15)
) (@) 0]

where

ri= eyR+ ifi’olvgv (16)
and /o is the anomalous magnetic moment of the quark in its bound state.
It can therefore be obtained from the quark “effective mass” mvl2 [8] by

17
myv
The first result one can derive from eqgs. (14) and (15) is
fey dw = 3:1:—1]2¢c, (18)

where co, and P, refer to the “ideally mixed” particles with mixing angle arctan
(1/13/ID)> With ¢ = 1, this is the S[/3-result which has to be obtained as SU3 is,
of course, built into the model. However, symmetry-breaking effects are
included in a natural way because in eq. (17), the physical masses are inserted.
This leads to ¢ = 0,58 due to the different mass of the ®. Comparing dimen-
sionless constants, one has

fm R (19)
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In principle, eg. (19) can be checked against measurements of the isoscalar
nucleon form factors; these measurements are still somewhat uncertain, but
they agree qualitatively [12].

A parameterless computation of fW is unfortunately impossible, but
these constants can he related to some sort of radius r of the vector mesons.
This radius depends, of course, on the precise form of the wave function, but a
good compromise leads to

2ma
few — 9r3

(1 + ﬁ,‘am,), (20)
The bracket in (20) contributes a correction due to the anomalous magnetic
moment of 0,8.The width for lepton-pair decay is related tof Vy by the standard
formula [13]

4n a2 1fvy 2 . mf

0 (21)
3 1m2 mi

Experimental data and the resulting coupling constants are shown in Table II.

Table 11

Vector meson decays into lepton-pairs

\V/ i+ |- rv~*i+i~irv Ref. fVylmy
@© e+e~ 2.KT4 [14] 1/8,2
© e+e~ 1.10-* 71 1/11,7
Q- e+ e~ 0,65 *10“4 71 3/13,6
7 1 0,3 +io-4 [15] 3/20

Relying on [15] one obtains from eq. (20) r = 0,97 « 10-13 cm, a rather reason-
able value.

Turning to radiative decays, it should be pointed out that the PVy
vertex can be obtained without adjustable parameters. Its relativistic form is

LVpy = 2/iVp {Pe""aXA 1.).e All, (22)
where the transition moment fxXVP is defined by
Pvp = (P\*"\Vjjz= 0). (23)
Its values as obtained from the static quark model are listed in Table III.
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Table 111

Transition moments in units of proton moments

vV X° "
B - UF3 12713 13
wi - g 12i3/3 I
@, - 2/2/31/3 - 21373 0

From Table Il one easily obtains decay widths for V —=P -j-y and P V -
-j- y. In particular [6, 11].

L (to—% + y) — 1,2 Mev

in absolute agreement with experiment [7].

Turning to 2y decays of measons now, one observes that in a nonrelati-
vistic picture the emission of the first y should just straighten out the two
quark spins and then the quark—antiquark system can transform into the
second y. The decay widths are again obtained from a standard formula [16]

LPY y=*- .m*P . (25)
4 m\,
In this way, one obtains

F(n°-+2y) = 37ev (26)

which is by about a factor 4 larger than the experimental value [17]. It is
interesting to observe that the value of eq. (26) can be pushed down if the
radius of the pion is abnormally large. This is consistent with calculations of
J. Kuti [18], who computed this decay in analogy with positronium decay
and also found an abnormally large pion radius. A recent measurement [19]
yielded an electromagnetic r. m. s. radius of the pion

m= (1,8 0,8) x 10-“ cm. (27)
A calculation of the rj -> 2y decay along the same lines gives
rvirn= 46. (28)

In a different model, in which the pseudoscalar meson first goes into 2 virtual
vector mesons which then convert into y-s, H. Faier [20] obtains for the
same ratio a value of 6. This value is pushed to about 12 when ] — X° mixing
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is added to his calculations, still leaving a discrepancy of a factor 4. This may
just show that the above-mentioned approximation schemes are not too reli-
able.*

There is, however, yet another support for the assumption of a large
pion radius. An analysis entirely similar to the above but with replaced by
the axial vector current of weak interactions allows a computation of meson
radii from the decays P -> (j -f- v*. One obtains

rK= 1,1 X 10-« cm

r,= 1,75 X 10- 13cm. (29)

in consistency with the above assumptions.

4. Conclusion

Our rough survey of some of the predictions of the static quark model
were intended to show that there is some internal consistency in the model,
in spite of the fact that the assumptions are sometimes extremely crude. It is
therefore desirable to find some better understanding of this fact. The static
quark model will probably not be enough for this undertaking and some
extensions are desirable. About relativistic extensions we are going to hear
at this conference and | think we are all eager to watch the development in
this field.
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CTATUYECKAA MOJEJ/Ib KBAPKOB

X. MTUTYMAHH

Pesome

BblunceHbl LWMPYHLI pagnaLmMoHHbIX pacnajoB MCeBAOCKaNAPHbLIX W BEKTOPHbLIX Me30-

HOB B CTaTM4ecKoii MOZJenn KBapKOB.
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MESON DECAYS IN THE STATIC QUARK

MODEL 11
By
J. Kuti

INSTITUTE FOR THEORETICAL PHYSICS, ROLAND EOTVOS UNIVERSITY, BUDAPEST
Abstract

The radiative decay n~ —=e -j- 'v y is investigated in the framework
of the static quark model. After having the separation of the internal brems-
strahlung one is left with two form factors to characterize the structure radia-
tion which is extremely sensitive to the internal dynamics of the decaying
hadron state. As the static quark model is a possible hadron structure we are
challenged to analyse the structure radiation just to see what are the conse-
quences of the drastic assumptions concerning the fixed particle number and
slow internal motion of quarks inside the hadron state. According the CVC
hypothesis the vector form factor is connected with the decay ratio n° —y2y
and the ratio of the vector and axialvector form factor is calculated explicitly.
Moreover, considering the leptonic decay n~ -y -f-'v . we have some informa-
tion on the spatial extension of the bound state wave function and, therefore,
the form factors could he calculated absolutely.

PACMA[bl ME3OHOB B CTATWUYECKOM MOJENW KBAPKOB II.

0. KYTHK

Pesome

PacCcMaTpuUBaeTCs pPaguaLMOHHbIA pacnag n~ ->e~ + v+ y B CTaTUYECKON Moaenu
kBapkoB. OTHeNMB BHYTpEHHee TOPMO3HOE M3/yuyeHue, OcTaeTcs ABa (HOpM(aKTopa, XapakTe-
pesytolme CTPYKTYPHOE M3/yYeHue, KOTOPOe O4YeHb UYBCTBUTENIbHO K BHYTPEHHEN AuHaMuKe
pacnajaroLLerocs aApoHHOro COCTOSHWSA. TaK Kak CTaThyeckas MoJenb KBapKoB sBnseTcs
BO3MOXHOI aipOHHOW CTPYKTYPOA, CneflyeT n3yuyaTb CTPYKTYpPHOE U3NyUYeHue, YTobbl YBUAETh,
K KakuM CreACTBUSIM BefET O4YeHb CU/IbHOE NPEeAMOoNOXEeHNe (UKCUPOBAHHOTO YMCNA YacTuL,
U Me[/IeHHOTO BHYTPEHHErO [BWKEHWS| KBApPKOB BHYTPU afpPOHHOIO COCTOsIHUS. COriacHo
rMMNoTe3e 0 COXpPaHEHUM BEKTOPHOTO TOKaA, BEKTOPHbI (DOPM(AKTOp CBSi3aH C pacnagom n° -» 2y,
1 COOTHOLLIEHWE BEKTOPHOTO U aKCUaNbBEKTOPHOTO OPM(aKTOPOB BbIUNCIEHO SBHbIM 06Pa3oM.
Bosnee TOro, M3 NENTOHHOIO pacnaja i~ mrf + v Mbl IMEEM HEKOTOPYHO MH(OPMALI0 OTHO-
CUTE/IbHO MPOCTPAHCTBEHHBIX PAa3MEPOB BOTHOBOW (DYHKLM CBSI3AaHHOFO COCTOSIHUS, W NO3TOMY
MOXHO TOYHO OMpefenuTb (HOPMaKTOopbI.
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SESSION 4. HIGHER SYMMETRIES

RELATIVISTIC su{6) SYMMETRIES WITH
INFINITE MULTIPLETS

By
W. Ruhl

CERN, GENEVA, SWITZERLAND

The group PxSL (6, C) and its physical interpretation is discussed and the predictions
which can be derived from the model are surveyed. In conclusion it is stressed that the theories
with infinite multiplets of the type studied here encounter great difficulties connected with
the violation of crossing symmetry.

1. Introduction

In static SU(6) theory the spin operators are identified with the genera-
tors of the spin group SU(2),

Rotations of the rotational subgroup of the homogeneous Lorentz group
transform these operators as a three-vector operator

[Mk, Si] = ieklmSm.

In relativistic formulations of SU(6) symmetry the spin operators must
necessarily transform as a tensor operator under the transformation of the
homogeneous Lorentz group. Characteristic for the abstract group approach
is the additional assumption that the spin operators should form a Lie algebra.
This requirement rules out such operators as Wigner’s spin operators W

The most natural choice for the spin algebra is the algebra of the well-
known group SL(2, C) (see [1]). Its commutation relations are

i ] t{g.* Y1 I SW — Swx Q.)'

Let us first neglect the translations completely.

If we couple these generators of SL(2, C) to the unitary symmetry opera-
tors Aj by simply extending the compact part of SL(2, C), SU(2) to the complex
domain, we obtain the group SL(6, C). This group possesses the generators

cr cP
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representing tensor operators and scalar (pseudoscalar) operators under trans-
formations of the homogeneous Lorentz group.

Let us now assume that the dynamics is not only Lorentz invariant, but
that the spin algebra also defines a symmetry.

Since we want to extend the static SU(6) symmetry it is very plausible
to assume that the compact subgroup SU(6) of this SL(6, C) group does not
change the state of motion if it is applied to a particle at rest, but transforms
simply states belonging to irreducible representations of SU(6) into another.
We take these representations to be idealized physical SU(6) multiplets with
degenerate mass. The algebra of SU(6) is closed under transformations of the
rotational part of the homogeneous Lorentz group by construction.

Having fixed the meaning of the compact part of the SL(6, C) group our
further arguments are straightforward. Let us assume that we have a kinematical
situation with all particles moving in the direction of one spatial direction,
say the third axis, with arbitrary velocities. We can create these states by
applying finite transformations generated by the element M, of the Lorentz
algebra. Those generators of SU(6) which commute with M, will still operate
between states of the multiplet without changing the state of motion. They
form a subalgebra of SU(6) as can be seen from the commutation relations.
This subalgebra can be used to deduce restrictions on the S-matrix elements
taken between states which are eigenstates of the momentum operator and
for which the momenta are collinear in one Lorentz frame.

This subalgebra is the well-known collinear algebra spanned by

1 :
?(sﬁ = Siz,i)’ 78— et I | s()!,l‘."

The group is S(U(3) ® U(3)) or SUB) @ SU3) ® U(d)neticity-

For the derivation of this collinear symmetry it is therefore not necessary
to know the detailed group structure. In particular, we can overlook the pro-
blems of the translation subgroup. Instead we need some heuristic arguments
on particles, transformations to rest or to a definite state of motion, which
have to be justified in complete group models.

There are now two essentially different groups which permit the spin-
algebra to possess these transformation properties. In the first case we can
assume that the SL(2,C) group contained in SL(6, C) coincides with the
homogeneous Lorentz group. Such an ansatz leads to theories with more than
four momentum components. In the second case the homogeneous Lorentz
group and the SL(2, C) group of SL(6, C) are regarded as independent. We then

obtain a total group of the structure

(LxT,) x SL(6, C) = Px SL(6, C), (SL(6, C) in invariant subgroup),
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as the simplest example. Models of such structure have been proposed as
physically interesting SU(6) generalizations by Fronsdal, see [2].

The group L, the homogeneous Lorentz group, can be split into two
parts which are both isomorphic to the homogeneous Lorentz group

L=1LOfLr, MRYy=1L" s*

such that Lris a subgroup of SL(6, C). In this way we obtain another possibility
of writing the group, namely as the direct product

(LOX T4H®SL(6,C).

Indeed, it is trivial to check that the generators L” and commute.

2. The physical interpretation of the group (L XT4)XSL(6, C)

If we write the group in the form
(LOX T4 8>SL(6, C), LOXT4= P',

the problem of finding representations for this group is reduced to the con-
struction of tensor products of unitary representations for the group LOX T4,
which has the structure of the inhomogeneous Lorentz group, and ofrepresent-
ations for the group SL(6,C) which we require also to be unitary. Whereas
the representations of the inhomogeneous Lorentz group are well-known to
every physicist the representations of the group SL(6, C) are less popular.They
are all infinite dimensional. The representations of the group LOX T4 bring in
the mass M, which is common to the complete multiplet, and a spin S, denoted
orbital spin.

On the other hand the representations of SL(6, C) can be reduced to an
infinite direct sum of unitary representations of the compact subgroup SU(6)
of SL (6, C).

In the physical picture we want to deal with state functions which
depend on the momentumpBand belong to moving particles which form SU(6)
multiples with degenerate mass. Mass splitting can be introduced by additive
terms in the mass operator which break the symmetry and are handled with
perturbation theory. The connection between these state functions and the
states belonging to the tensor product representations is quite simple in prin-
ciple. For simplicity we now assume S' = 0 (see below).

Let Xcharacterize the SL(6, C) representation, v a given SU(6) multiplet
and co a state ofthis multiplet. Then we may denote a physical state function byl

lv, op >
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By a rotation free Lorentz transformation we bring this state to rest, the
SU(6) state o is unchanged

lv,c0,0 > = Ji(p)-1lv,co,p>.

We assume that we know by any principle the representation T of SL{6, C)
which contains the S 17(6) representation r as a representation of the compact
subgroup. Wc define the connection then as

l v,eo0> = IS"=0,0> Ir,Vv, 00>

We apply on both sides the “booster” JI(p) but note that on the right-hand
side we can split this operator into the commuting product

N(p) = nO(P) Lip)

with JIQ(p) £LO0, Llp) £Lra SL(6,C) .
In this fashion we obtain

Iv,cop > ~-J1{p) Iv,co 0 >

= IS"=0,p > «Up) IT,v, ©>

In this manner we have fixed the interpretation of the model:

(«) If we decompose states at rest of representations for P' 0 SL(6, C)
into SU(6) representations, these representations are thought to be the physical
SU(6) multiplets. This identification is permitted because elements belonging
to the compact subgroup SU(6) of SL(6, C)transform one state c of SU(6)
multiplet at rest into another state of the same multiplet v.

The elements which lie outside the compact part SU(6), as e.g. the booster
S(p) induced by the pure Lorentz transformation J1(p), connect different
SU(6) representations contained in the SL(6, C) representation. Indeed, we
may write

2 (p)\r,v,co> o C (Y, ad,v, cop) IT,V,co' >.

A multiplet in motion contributes therefore to different representations
of the compact subgroup SU(6).

Thus we have recognized that all the praemissa needed for the collinear
subgroup symmetry are satisfied. The collinear subgroup is a good symmetry
group for these infinite multiplet models, in the following sense:

If we assume that a given set of physical SU(6) multiplets co/ are con-
tained in SL(6, C) representations T- and these representations T/ are known
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to couple to at least one invariant form, the predictions of the collinearsub-
group consist in identities between S[/(3) amplitudes which do not all vanish
identically. (The same statement can be made for S[7(6,6) models etc.) This
result was first stated in [3]. The fact that one physical multiplet in motion
belongs to different representations of the compact subgroup is the reason
for the non-conservation of spin or orbital angular momentum separated.
The decays

Q — Nn-f1n
N* N + n

are really allowed in principle in such models.

The condition S' = 0 is made above for reasons of convenience. In a
search for representations which are to fit the experiments one has to account
also for representations with S' =#=0. In such a case the spin of a particle at
rest consists of contributions from both the groups P' and SL(6, C). Let us
look at a 35-plet. For S' = 0 we have the content

{s'= 0,35} = [8,1] ©[8,3] © [1,3],
whereas for S' — 1 we obtain

{s'= 1,35}=[831© [85©30 11 © [15© 3© 1].

Since this bears some resemblance with the 1-excitation of elementary particles
(see [4]) we may adopt this notion for theories S' ==0. On the other hand, we
may denote the excitation implied by the non-compactness of SL(6, C) “relati-
vistic S[7(6)” excitation. The idea that non-compact groups could serve to
generate an infinite sequence of multiplets with or without nontrivial (that
means non-perturbative) mass relations, goes back to Barut [5].

3. Parity

The choice between all those representations which contain a given S17(6)
multiplet and which can therefore be considered to be of physical interest
can be restricted by the requirement that the parity operator must be definable
as a unitary operator on the representation space. For non-unitary represent-
ations of SL(2, C) it is known that parity reflections force us to double the
representation space. Indeed, a representation (j\, j2 goes over into (j2 jq)
under parity and both representations are, in general, not equivalent.
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The requirement that the representation should not be doubled has the
following physical origin. The compact subgroup SU(6) of SL(6, C) possesses
only generators of positive parity, the generators of boosters 27(jp), on the other
hand, are negative parity operators (they contain the velocity). If we take
these properties together, we can formulate the following statement: If D(S)
is a representation of elements S of SL(6, C) parity acts as

D(S) = PD'(S)P~1,

where D'(S) = U(S~1+). If and only if D and D' are equivalent, P can be
defined as a unitary operator in the representation space (see [2] and [6]).
If D and D' are not equivalent P maps an SU(6) multiplet of the represent-
ation D onthe same multiplet of the representation D'. Each SU(6) multiplet
would appear twice. We know, however, that such parity doublets do not
exist in nature.

Investigating the consequence of the postulate that D and D' should be
equivalent we get relations for the Casimir invariants of the SL(6, C) represent-
ations which in the finite example correspond to j\ = j2.

4. Physical implications of the model, |

The physical predictions of the model are principally of two kinds.
Either they involve from each SL(6, C) representation only one SU(6) multiplet
or they concern different SU(6) multiplets from one representation. Let us
first study the first kind.

We know that collinear symmetry is valid in the group model we are
investigating. Are the predictions which are beyond those of the collinear
subgroup? We shall see that this can be decided only if particular represent-
ations of SL(6, C) are considered. It depends on the number of invariant
forms which can be built out of the representations. Two extreme cases are:
the meson-baryon vertex with maximal possible degeneracy, we obtain only
one vertex. With this same degeneracy of the mesons we obtain an infinite
set of invariants for the meson-meson-meson coupling. We expect, therefore,
new results for the meson-baryon vertex only.

The collinear subgroup gives some identities for strong formfactors of
the baryon octet, namely:

«m:ammw = 3:2:1,
and

aF= -2/3 af - 5/9a?,
aD= —af + 2/3af .
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ac and am are the formfactors of charge and magnetic moment (Sachs) type
for the vector mesons, “a” are the formfactors (vector-coupling) for the pseu-
doscalar mesons. In addition static SU(6) gives the result

oD= 0 at M= 4M2
The well-known result
aDlaF = 3/2 at u2= 0

is not (!) a consequence of the collinear subgroup or static SU(6), but can be
derived only if certain properties of analytic continuation of the represent-
ations are satisfied. These are satisfied for the inhomogeneous SL(6, C) group
with 72 translations (the analytic behaviour is analogous as for the inhomo-
geneous Lorentz group) but are different for the group now under discussion.
Therefore, we expect different results in the present case. Other interesting
results are the ratios

aF
—— at jB = 0 or in general.
of

FrOnsdal and White have shown that the ratio aD/aF depends on the repre-
sentation of SL(6, C) used for the mesons. For a particular one they obtain [7]

aDlaF = 9/5
and as a consequence
a?lac = — 3/25, /12= 0.

It is, therefore, possible to enlarge the value of the D/F ratio for the pseudo-
scalar mesons without changing the D/F ratio for the vector mesons too much
from the value zero.

Since for this vertex only one invariant form can be found it could be
suggested that the electromagnetic current is similarly determined up to one
factor, which would imply a fixed value for the magnetic moment. However,
this is not true.

Indeed, we can immediately find two contributions to the current. First
we have a convection current. Since the translations commute with SL(6, C)
we can build a fourvector out of a unitary representation of SL(6, C) and its
conjugate, by first forming the SL(6, C) scalar product and then multiplying
by the momentum. We treat the SL(6, C) states like scalars ! Such a convection
current implies a pure electric current for the SU(6) multiplets, the total
magnetic moment is zero, see [8]. However, we can also define the magnetiza-
tion current as the divergence of the expectation value for the magnetization
operator

I a- 12sf

J j
nny3 ° afiv,s
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taken between states of the infinite multiplet. So far nobody has calculated
such an expression, the result for a physical multiplet as the 56-plet would
certainly be of interest. In any case the magnetic moment of the nucleons is
not fixed since the convection and magnetization give completely independent
contributions.

5. Physical implications, 1l

The other type of predictions which can be derived from such a model
relates different SU(6) multiplets contained in one infinite representation of
SL(6, C). Such predictions make, however, sense only if such multiplets are
known to exist in nature. This raises the fundamental problem whether there
is any hint in the data of particles and resonances which favors the assignment
of such objects to infinite multiplets. Today, this question must still be answ-
ered in the negative.

Indeed, for the mesonic resonances we know that the 35~-plet must be
followed by a 405+-plet. The 405+ contains

405= [27©8© 1,5]© [27©8© 8© 100 10,3] @
© [27©8 @1, 1] .

No members of the 27-plets are definitely known. In the case of the 189 the
[27, 5] and [27, 3] are missing, but this supermultiplet lies in a certain sense
far off the 35-plet if it is contained at all in the infinite sequence.

It might well be that the SL(6, C) group is too big a group to generate
the infinite multiplets and that SL{2, C) ® SU(3) serves better for this purpose.
In addition such a smaller group is technically simpler to handle and gives
definite predictions which might also have relevance for more general models
involving infinite multiplets.

Some results are known: (see [9])

(1) If we consider a ladder of octets containing the spins S = kO0-)- n,
n—20,1,2,... parity (—1) , all the decay states of this multiplet consisting
of two pseudoscalar mesons can be shown to have signature (—I)fcO. If the
vector resonances belong to such a ladder they must necessarily have fld— 1.
On the other hand the resonance K** (1405) fits into a similar octet ladder
only if kQ= 0 or 2, since it also decays into two pseudoscalar mesons. This
implies, therefore, that the known 1_ and 2+ octets belong to different ladders.
No example is known, even for this smaller group, where two SU(3) multiplets
could be assigned to one ladder. In terms of our SL(6, C) ladders we can inter-
pret this result in the way that the 1—mesons lie in a ladder of SL(2, C) starting
in the 35~-plet and going through the 405+ whereas the 2+ resonances lie in a
SL(2, C) ladder starting in a 189+ multiplet.
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(2) To gain some insight we assume that a hypothetical 0" meson and
some 2% lie together in an infinite ladder and decay into two pseudoscalar
mesons. The ratio for the corresponding partial widths can be computed. The
width of the 0" turns out to be a factor of 1000 bigger, somewhat depending
on the masses of both particles (we have broken symmetry !). If the mass of
the 27 is of the order of 10 GeV, 0F mass equal 1 GeV, this ratio becomes of
the order one. The origin of this result is formally so simple that we may very
likely draw the conclusion that higher rungs of a ladder are very weakly coupled
to a channel which is already open to a lower rung of the same ladder. This
result makes it unprobable that these higher rungs are observable at present
and the principal question for the existence of ladders remains open.

6. Concluding remarks

One of the aims of studying these mathematically non-trivial models
which generalize SU(6) symmetry in a relativistic manner was to learn some-
thing about the contradiction of SU(6) symmetries with the unitarity of the S-
matrix. We note that collinear symmetry and static SU(6) symmetry give no
answer to the unitarity problem. They tell us only that a complete set of states
must contain at least one SU(6) multiplet. From the model SL(6,C)xT,, we
deduce that one multiplet is in general not enough to achieve completeness;
there is a leakage of probability, formally into the remaining 68 dimensions.
On the other hand the infinite multiplet model assures us that an infinite
number of SU(6) multiplets suffices to yield completeness. The natural question
of the physicist is then how the higher SU(6) multiplets in the completeness
sum are weighed, if we consider an infinite multiplet model as a good physical
symmetry. The answer is contained in the statement made earlier: A given
channel is mainly coupled to the lowest SU(6) multiplet possible. The same
multiplet must consequently give the main contribution to the unitarity sum
in this channel. In other words: Violation of unitarity is not severe if only one
SU(6) multiplet is taken into account in the sum. This is the meaning of the
notion of “saturation” known from the current algebra approach in this
complementary approach based on abstract groups. The conflict with unitarity
can be considered as the characteristic difficulty of the model based on the
inhomogeneous SL(6, C) group. The characteristic defect of the theories with
infinite multiplets of the type studied here is connected with crossing symmetry.
In familiar field theories particles and antiparticles are dealt with simulta-
neously in fields and field equations. In our models this is not the case. Fields
can be defined. They contain only particles similar to fields of the WEYL type
and the field equations are absolutely trivial: they are all equal to the KLein —
GORDON equation.
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A typical effect of the violation of crossing symmetry can be observed
in the following fact. In usual field theory the Lagrangian

ij dw y (x)y5y(x) cp(x)

describes the coupling of the pion to the nucleon current as well as the annihila-
tion of a pion into a virtual nucleon pair. In momentum space the pion is
either coupled to the nucleon spinors via the matrix

«(P' - P)k

or the identity matrix. Both matrices are hermitian. This property can be
understood to be a consequence of the reality of the Lagrangian in #-space.

Examples are known where hermilicity in one channel implies non-
hermiticity in another channel if we apply the infinite multiplet models. The
result of the symmetry depends on whether we make the vertex hermitian in
one channel and continue then or continue first and add the conjugate later.
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PENATUN3INCTCKWNE CMMMETPUN SU(6) C BECKOHEYHBbIM MYNbTUMNETAMUN
B. PHO/Ib

Pestome

O6cyxgaeTcs rpynna PxSL (6, C) u ee (uanueckas UHTepnpeTalms. PestoMupytoTcs
npeAcKasaHusi, KOTOPbIE MOTYT GbiTb MOMYYeHbl U3 MOAENW. B 3aKueHWU noAvepKMBaeTcs,
UTO TEOPUM C BECKOHEUHBIMI MYNbTUMETAMU TUMA U3y4aeMoro B JaHHoO paboTe, BCTpeuyaroT
60MblUMe TPYLAHOCTW B CBSI3W C HapyLUEHWEM KPOCCUHICUMMETPUU.
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We study the non-compact symmetry groups and their connections with field theory.
We prove explicitly that in the symmetry with a non-compact group there exists no contra-
diction with the unitarity condition of the S-matrix. We have suggested a method of describ-
ing the symmetry with a non-compact group by means of the apparatus of the local quantum
field theory. Within our method the field operators satisfy the normal commutation relations,
and the S-matrix is crossing-symmetrical.

1. Introduction

In a series of papers [1—8] the symmetry groups SL(6, C) and 1/(12)
have been suggested as the relativistic extensions of the SU(6) symmetry
group, the SL(2, C) subgroup of these relativistic symmetry groups being
identified with the homogeneous Lorentz group. In contrast to the isotopic
invariance and the unitary symmetry, no ideal case with exact symmetry
exists for these new groups: these symmetries are intrinsically broken. More
concretely, it is impossible to write down the wave equations even for the
free particles or the Lagrangian for the free fields in such a manner that they
are invariant under the SL(6, C) or the 1/(12) groups if we do not consider the
4-dimensional momenta of the particles as the components of some many-
dimensional tensors of the corresponding groups: 36-dimensional for the
SL(6, C) group and 143-dimensional for the | (12) group. Because of the
breaking of the symmetry by the wave equations the matrix elements of the
scattering processes are not strictly invariant under the SL(6,C) or 1/(12)
groups. If we require the exact symmetry of the S-matrix, then this require-
ment should lead to a contradiction with the unitary condition even in the
one-particle approximation, i.e. in the pole approximation [9, 10]. In order to
take into account the intrinsic breaking of the symmetry we have suggested
a spurion method [5]. According to this method the matrix elements of the
scattering processes contain explicitly particle momenta (irregular coupling
in [11]) and therefore could be invariant under the SL(6, C) or U(12) groups
only if we introduce many-dimensional momenta (a very similar method was
also suggested in [11, 12]). In some special cases the scattering amplitudes
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obtained within this formalism do not contradict the unitarity condition [12,
13] but in the general case the above mentioned spurion method does not
remove the contradiction with the unitarity condition [14]. It is possible
to show that this contradiction arises because of the following cause: exact
symmetry requires the existence of the many-dimensional momenta but, in
fact, particle momenta have only 4 components. In other words, the intrinsic
breaking of the symmetry is closely connected with the breakdown of the
unitarity of the S-matrix. In order to construct a relativistic SU(6) symmetry
theory with a unitarity S-matrix we have to introduce a symmetry group
G such that the 4-dimensional momenta form it in irreducible representations;
the group G containing the homogeneous Lorentz group and the SU(6) group
as its subgroups. One of the symmetry groups of this kind has been suggested
by Micher [15] and by Budini and Fronsdal [16]. It was studied in a series
of papers by Fronsdal, White etal. [17], Delbourgo, Salam and Strathdee
[19, 20] and Ruh1 [21]. This symmetry group G is the semi-direct product
of the homogeneous Lorentz group and the internal symmetry group S

G=L-S, (1)

S being the SL (6, c) or the 17(6,6) group. If we also consider the translations,
then we have the group

Gp= P-S, (2)

where P is the Poincare group, generators of the translation group and of the
symmetry group S being commuted.

In the present paper we study the structure of the unitary S-matrix
in such a symmetry. We also consider the connection between the symmetry
theory with a non-compact group, and the local quantum field theory.2

2. The symmetry group

Before studying the group G and the classification of elementary particles
in the symmetry with this group, we first give some physical arguments
which show that the introduction of the symmetry group G in the form of
Eq. (1) is natural or even necessary. Let us formulate the conditions of the
group G. It must contain the homogeneous Lorentz group L and the internal
symmetry group S as subgroups, S and L not being commuted because we
want to find such an internal symmetry group S that its irreducible repre-
sentations contain particles with different spins. Further, the group S must
be relativistically invariant in the following sense: in any Lorentz transform -
ation A£L every element a of S goes into another element of this group,
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e.g. ifa£S then Aa A1 CS. In addition to this condition, we require that
the irreducible representations of the group G exist which can be identified
with the 4-momenta of the particles. We show that in this case the homo-
geneous Lorentz group L must be isomorphic to the factor-group G/S of the
group Gwith respect to the invariant subgroup S. Remember that by definition
a representation of the group G is a homomorphism of this group to a group
R of the linear transformations in some vector space. If we denote by N the
kernel of this homomorphism then the group R is isomorphic to the factor
group G/N of the group G with respect to the invariant subgroup N. On the
other hand, the group of linear transformations of the 4-momenta pR which
conserve the square p2is the homogeneous Lorentz group L. Thus the 4-momen-
ta of the particles form an irreducible representation of the group G only in
the case when the Lorentz group L is isomorphic to the factor-group G/N of
G with respect to some invariant subgroup N. By definition N is the set of
all elements of G which go into the identity transformation of the momenta
Pnin the homomorphism G -> L. On the other hand, in all the transformations
of the internal symmetry group S particle momenta do not change. Therefore,
the group S in general must be a subgroup of some invariant subgroup N.
If S is not identical with N then instead of S we can choose N as the internal
symmetry group. Thus, the internal symmetry group S can be chosen in such
a manner that the homogeneous Lorentz group L is isomorphic to the factor-
group G/S
L~ G/S.

It is natural to suppose L and S have only one common element, namely,
the identity transformation, i.e. there does not exist any nontrivial Lorentz
transformation which may be considered at the same time as a transformation
from the symmetry group S. In this case the group Gis the semidirect product
of the invariant subgroup S and the factor group L .

We suppose that the group S is a simple group. Then it must contain
some subgroup SL isomorphic to L . This property of S follows from the
fact that the Lorentz group L is a group of automorphisms of S and from the
theorem according to which every automorphism of a semisimple group is
an inner automorphism. More concretely, to every Lorentz transformation
A there corresponds such a transformation s from the group S that for any
0£S

Aa Al —saa-1,

the mapping A—s being a homomorphism. Hence the group L is a simple
one, then the mapping A-> s is an isomorphic. We suppose that the internal
symmetry group S is the SL(6,C) group or the 17(6,6) group. In this way
we obtain a symmetry theory which is a relativistic extension of the SU(6)
symmetry.
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In studying the classification of the elementary particles, i.e. in studying
the one-particle states it is sufficient to consider only the internal symmetry
group S. Hence, S is a non-compact group, we have infinite multiplets if we
use the unitary representations of this group. The idea of using the unitary
representations of the non-compact groups to classify elementary particles
was also suggested in the paper by Dothan, Gell-Mann and Ne’eman [22].

We denote the generators of L by Ipr, the generators of the subgroup
SL isomorphic to L by spv. For the corresponding infinitesimal operators of
the representations of the group G we use the same notations. We put

I,LP: I'n » + Spf (3)

It is not difficult to show that I'®V commute with all generators of S
and form the Lie algebra of a group L' isomorphic to L. Thus the group G
may be considered as the direct product of the internal symmetry group S
and some group L' isomorphic to L:

G=L"®S, 4)

I/ together with the translation group forms some group P' isomorphic to
the Poincare group P, and the group Gp is the direct product of P' and S

Gp= P'" ¢S. (5)

3. Particle classification

We introduce some notations. The maximal compact subgroup of S
which contains the SU(2) subgroup with generators sy, i,j = 1,2,3, s
denoted by SO. Consider the unitary representations of S. We denote by
£ the sets of all parameters characterizing these representations. Each such
representation splits into a direct sum of the irreducible (finite-dimensional)
unitary representations of SO which are characterized by the sets of para-
meters j. The sets of the eigenvalues of the diagonal infinitesimal operators
of SO are denoted by v. The basis vectors of the irreducible unitary represent-
ations of S may be represented as £jv) . In the following we call this basis
the caconical basis corresponding to the reduction S 3 SO. On the other hand,
each irreducible representation of P' is characterized by two numbers: m =

= ]J/—p2ands',s" = 0,—,1....The basis vectors of such a representation

are denoted by |p s’ > . Hence, as Gp is the direct product of S and P, the
unitary irreducible representations of Gp, i.e. the Hilbert spaces of the state

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



NON-COMPACT SYMMETRY GROUPS 191

vectors of particles may be considered as direct products of the representations
of S and P'.

Consider rest particles and denote their momenta by p :pi = 0,pi —im .
State vectors of these particles are of the form

ps',Cjv> = Ips'> ® lijv>. 6)

In the pure Lorentz transformation Ax£ in which the momentum p goes
into p the state vectors (6) are transformed in the following manner

Ips',Cjv=>-+U(0Pp)(ps',Cjv> = [/'AP*P)|ps'> ® ITIS(AKP) lij v>, (7)

where
U (A = e'VV<b

U (A= eup* (x), (8)
Ust(?) = e'VVv-«,

and ocopv (A) are the parameters of the Lorentz transformation A. The first
factor onthe right-hand side of Eq. (7) is the basis vector |ps'>, and we denote
the second factor by | Instead of the generators sa of S (some of sa
are identical to s*) we introduce new operators depending on p:

S*(p)=us (W p)s»Us (AKP)_1. 9)

These operators may also be considered as the generators of the group S.
They satisfy the same commutation relations as the generators sa It is not
difficult to show that in the basis | the operators sa(p) have exactly
the same matrix elements as s® have in the basis |£j r> . This means that
if I£jv> is the canonical basis of arepresentation of the group S with gene-
rators sathen liffv > is the canonical basis of the same representation of S
but with new generators sa(p). In particular, the sets of parameters j charac-
terize the irreducible representations of the maximal compact subgroup
SO(p) containing the SU(2)p group with generators

sj(P)= Us (Wp) stJVs (4. p)-L (9)

In other words, particles with different momenta are classified according
to the representations of different maximal compact subgroups of S.

The state vectors on the right-hand side of Eq. (7) will be denoted

by Ips' Cjv> «We consider only the case s'= 0, and denote the state

vectors by |p |y}T> . In the Lorentz transformations Axp (2= p2 they
are transformed in the following manner

U(Ag™p) |pfjv> =Rm\pfjv>, (10)
where Rw. are the matrix elements of the Wigner rotation operators.
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In order to classify the elementary particles we use the canonical basis
corresponding to the reduction S > S (p), i.e. depending on p. However, in
studying the structure of the S-matrix it is convenient to use for all momenta
the canonical basis corresponding to the same reduction S O S,. In other
words, we must introduce a new basis |p £jv> in which the generators s,
have the same matrix elements as they have in the basis for rest particles
| p £jv>. It is not difficult to show that this new basis is related to the
physical one in the following manner:

|pETv> = US (Apep) | pEjv>, (11)

this transformation not being a Lorentz one. This relation can be rewritten
explicitly in the following manner

pETV> =djy 0 (Aps) [PEJ Y > (12)

We remember that the state vectors |p 57;> and | p &jv> are of the form
of Eq. (6). Therefore, we have

E7 V> = di, 1 (Apep) |6 V">, (13)
which is the special case of a more general formula
U Ay Efns = df,,,j,,, A)|&j v >, (14)

where 1 is any Lorentz transformation. From the group properties and the
unitarity of U® (2) if follows that the functions d;, j,(2) satisfy the relations

dlgxn,fzvz (%) dJE'zvzyfava (2) = dfl”uia"a (2, 2), ()
dj:xvl,jv (l) dfe*’mjv (A) = dfv,jxvl (ﬂ.) dfﬂ,jaw (4) = (Sjljﬁ 6"1!'2’ L19)

the summation over the continuous parameters on the left-hand sides Eqgs. (15)
and (16) being the integration.

In conclusion, we note that in the space inversion some irreducible
unitary representations of S go to themselves. However, representations exist
which go to other representations non-equivalent to themselves. For these
last representations the space inversion invariance leads to the degeneracy
in parity.

4. S-matrix

We now study the structure of the S-matrix. We show explicitly that
in the symmetry with a non-compact group no contradiction with the unitarity
condition exists. For simplicity we consider in detail the elastic scattering
of a singlet on the particles from some multiplet of the group S. The
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4-momenta of the singlet before and after the scattering will be denoted by
g2and Q,, the 4-momenta and other quantum numbers of the second particle
before and after scattering will be denoted by pv  >jI>vl and p2 @ j2 v2,
respectively. Matrix element of the T-Matrix, S = 1-)-i T, is of the form

P2hw-.21T I14vPi hh*i> = i 2n)*&(Pl + d1—P2- W) ai,ix
T- < P2j2v21<hplivi),£= h = h- 17)

Going from the physical basis \p £jv> to the non-physical one |p Ij r>
which is the canonical basis corresponding to the reduction S Z> SO, i.e.
making the transformation (12), we can show that the amplitudes Tf (g2 p2j2vi |
4vPiJini) ~ave the following structure

TS(g2, pj2vt lqvp jni) = d)2wWx (Ap~p, )«
. (lor*-pr) F ' (s,1), (18)

where F2(s, t) is a scalar function of s and t. This means that in the given
case the structure of the scattering amplitude is completely determined by
the functions dfn j% (A) . In the general case it is completely determined
by the functions dfnjr (A) and the Cilebsh—Gordan coefficient of the
group S. We denote the antihermitian part of the scattering amplitude by
Ai(g2p2J2v2\q2Pi j]iq). From Eqgs. (17) and (18) it follows that

A*{g»Pih v21qvPiiivi) = dfiHij, (API<_p,) *
w1, yImFE' (s, 1). (19)

Consider now the unitarity condition in the two-particle approximation. We
put the expressions (17) and (18) into the right-band side of the relation

—< /| T —=T+1i=>J?2 <JITIn>< nIT+ li>, (20)

where A denotes the summation over the infinite number of all intermediate

n

states of the system consisting of the singlet and the particle in the given
multiplet. Using Eq. (16) we get:

AS{g»Pii2 v2Ig~Piii vi) - dfi\gjy("P +-h)
(21)
1 i'd%_i%_
dfi’ijv ( “aq JI'Z’Q)%) KA(* + ¢ - A - «i)FSA *>F(A *)
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Thus, after the summation over the infinite number of all particles from the
given multiplet we get for the antihermitian part Ai(@2p2j2v2|qvpXx VX
the same structure which we suppose. In the given case the unitarity condition
leads only to an integral equation for Fs(s, t) which is similar to the integral
equation for the scalar particle elastic scattering in the two-particle approx-
imation.

Consider now the scattering of two arbitrary particles. We denote by

tNe Glebsh—Gordan coefficients for the group S

Isji VI> ® 1f271 *2> = %bl'l Ceih'i bl/1 1f/ v>nm (22)

In principle, the product of two irreducible representations of the group S
can contain some irreducible representation many times. In order to distin-
guish between these different, but equivalent representations, we use the
index n . These equivalent representations can be chosen in such a manner
that the vectors from the representations with different n are orthogonal.
We can show that the scattering amplitude is of the form

J (22 £2/2 V2 P2 *2 %272 T4 IANTIAWP IH 'l *LHI) = (Aq2<-p2)

) djlvuj* ) (23)

2 cE£T*-w -p’c¥ S \ip- (m)>
Ckxnt

where F,ai(s, t) is an infinite number of scalar functions of s and t. Note
that the C, P and T-invariances lead to some relations between these scalar
functions.

Consider now the unitarity condition in the two-particle approximation.
We put the expressions in the form of Eq. (23) into the right-hand side of
Eqg. (20) and sum over all intermediate two-particle states. Using Eq. (16)
for the functions dy ~ yrt(A) and the following properties of the Clebsh—
Gordan coefficient

2. ClH & ¢ f» * = «Vor** (24)
tiiu
ub); rgm e BN eava — G e (25)

we can show that the antihermitian part obtained after the summation over
all two-particle intermediate states has the same structure as the amplitude
(23), and the unitarity condition leads only to a system of integral equations
for scalar functions F”™ni(s, t) . Thus in the two-particle approximation there

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



NON-COMPACT SYMMETRY GROUPS 195

exists no contradiction with the unitarity condition. This takes place owing
to the fact that the summation over the intermediate states is an operation
invariant under the symmetry group. Therefore, in any many-particle
approximation after the summation over all intermediate states we always
obtain expressions invariant under the symmetry group. We can show
explicitly that in any many-particle approximation the symmetry and the
unitarity of the S-matrix are compatible.

5. Connections with field theory

We now study the possibilities of describing the symmetry with the
group G of the form (1) by means of the apparatus of the local quantum field
theory. We show that for the particles in the infinite multiplets of the group
G we can introduce the corresponding quantized fields in such a manner
that for the field operators we have the normal commutation relations, and
the scattering amplitudes satisfy the crossing symmetry condition.

For simplicity we consider first the case S = SL(2, C) and we omit
the index f . The creation and destruction operators for a particle in the
state Ipj v> willbe denoted by a+(pj v) and a(pj v), respectively. Consider
the set of operators af{pj V) with given j(v= —, 5 =1, ...] —1,j).
Using the method suggested by Weinberg [23] and developed by Feld-
man and Mathews [24], we construct the corresponding field operators which
form the non-unitary spinor representations of the homogeneous Lorentz
group. Let <mi..an (pj v) be the wave functions of particles with spin
j, n = 2j, and with spin projection v. These wave functions form the
representation (j, 0) of the homogeneous Lorentz group. From these functions

and the momentum (p)\ we form other representations
(=~ 1L 1... (0,j):
<paia2...an(pjv) 4> <pba,...n (p j V)
m
(26)

9u«2.9. (pjv) = -LIJ <pal ...hn_Ib (pjv).

All these representations are the components of the Bargmann—W igner
wave function UXv (pjv), a, = a, or a,; which satisfies the wave equ-
ation

(ip f- m)qust..ai |+ (PjV) o. (27)
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We put
() = 2 (Piv)a(pjvy (28)

The operators AX*a (p) are transformed in a Lorentz transformation as
components of a spinor of rank n

i/(A) AJT'in(p) U (A)”1= SE£1J:APL.pJp"), (29)

as has been shown by Feldman and Mathews [24].
Consider now some transformation X from the group S. We have

Xu (pjv)X 1= xjv,jV (p)a(pj'v’), (30)

and therefore
XAX.J h(p)X-1= 2 *x*ix (P) (P), (31)

m
where
Xfi-A (p) = 2 (p/*) (p) UBL.EM(pj' /),

ra= 2j,m — 2j". (32)
Note that if X does not depend onp then (p) and Xj,i V. (p) depend

on p. On the other hand, we can choose the jo-dependence of X in such a
manner that the matrix elements Xjy ,v. in (30) does not depend on p.

The transition from the canonical basis corresponding to the reduction
S ZDSO(p) to the canonical basis corresponding to the reduction S Z) SO, i.e.
the transformation of the form of Eq. (11) is a particular case of the trans-
formation (30). In this transition

P) - (=11 (P) ABv..m(p). (33)

In constructing the matrix elements of S-matrix it is convenient to use the
non-physical operators Ax a (p), because they are transformed in a simple
way in the transformations of the group S. Namely, if X CS does not depend
on p, then

XAXJHpP)X~1= 2 X tt (p)*~...Rjph (34)
where

Xai:"(p) =2 ‘ (pj V) *w v Uh-Bn(pj'v"), (35)

Xjr.j’v being jo-independent.
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The operators An * (p) are the Fourier transforms of the positive
frequency parts (x) of the field operators

viV’\n(k) : ] ePX A «i-«n (p)6|p2+ m2)9|p°) dpm (36]

Making the transition to the canonical basis corresponding to the reduction
S ZDS0 we obtain new non-physical operators

(37)

To study the negative frequency parts (x) °f the operators
we introduce the creation and destruction operators for the antiparticle
b+(pjv) and b(pj v), respectively, and we put

(p) = Y; 9*.«. (PIV) b+ (PTV)e (38)
The negative frequency parts of the field operators are
VAITAX) ~ ~ \ e~ipXBXL,n(p)d(p™ + m*)e(p°)d". (39)

The field operators equal

W -« () = 4V, n(*) + )+ (4°)

The transition from the canonical basis corresponding to the reduction S H>S0(p)
to the canonical basis corresponding to the reduction S D SO for the field
operators is of the four of Eq. (37).

0K ft.-A»- (41)

In this transformation the operators (p) are transformed in the
following manner

(p)-> (?)=2 Dt 1l m(-p)BBR>-Bm(p)- (42)

The matrix elements of scattering processes and also the vertex parts
contain explicitly the non-physical operators A'ai * and and their
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conjugate. These operators are transformed in a simple manner in the
transformations from group S and from them we can form immediately the
invariants of G . Let the matrix element of some process with the destruction
of a particle described by the field y=ai..an(x) be

(43)

Then the matrix element of the corresponding process with the creation of
an antiparticle is of the form

M2= < /| ... Bu_M(p) li >
. (44)
= e Dil-+(-p)VRL.Bm(p).

The matrix elements (43) and (44) are connected by the normal crossing
symmetry relations (the substitution law of Loy).

The destruction and creation operators satisfy the normal commutation
relations

a(p2+ m-)o6(p2+ m2)0(p'°) [a(pjv),a+ (p'j'v")]+
0(p2+ m20(p'2+ m2) B (p°) 9(p') [6+ (pjv), b(pj'v)]+
6(p2+ m2)O(p - p’)8(p°) Gjj. bm:

(45)

From these relations we get in the “-representation

12 (X)W B - (Y)]E = A o+ m)i\... & m)f;A(x-y). (46)

P o(«!...«,)

It is not difficult to see that the commutation relations of the form of Eqs. (45)
and (46) are invariant under the group G. The field operators "ai..»,(*)
satisfy the Bargmann—W igner equation which is also invariant under the
group G.

The results obtained may be generalized to the case S — GL(6, C) for
example. In this case instead of the Bargmann—W igner [8] wave functions
we use the broken 12(12) wave functions Ifj.'f™ (pj v), the upper and the
lower indices being symmetrized according to some Young table. Field
operators are

*) =" 32 [Wp (pjv)<pjv)

+ e~'"PXVilifr (pjv) b+ (pjv)]. (47)
0(p2+ m2sB(p°) d*p.
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In this case, to each irreducible unitary representation of the group S =
= GL(6,C) we introduce an infinite set of irreducible finite dimensional
representations of the broken (7(12) group. The transformation of the form
(42) for this case is

*) («o =
(48)
" .
FA ecCl ,.a,,,%..\% dX
The new operators (99 have the following transformation properties
under the group S
XWRIMRMX ~ 1 — "V X BI" Rrialey (49)
PA ax
where
(p) =2 uti: (pp) utii (pi V), (50)

Xjvij,v, being p-independent if X is p-independent.

We can show that the wave equations for the field operators are invariant
under the transformation of the form of Eq. (49), i.e. under the group S .
The field operators satisfy the following commutation relations

TGN ] Kt P

(51)
(3+ m)leee(3 + e+ mR\ ... (- o+ T)MTN(Xx- vy),

which are also invariant under the group G . Here the -)- sign is used for
fermions, and the — sign is for bosons.

In conclusion the author expresses his deep gratitude to Prof. Dr. G.
Marx for his kind invitation and his interest in this work.
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HEKOMMNAKTHBLIE TPYMMbl CUMMETPUN, YHUTAPHAA S-MATPULIA
M KBAHTOBAA TEOPUA TMONA

HI'YEH BAH XbEY

Pestome

13y4aloTCa HEKOMMAKTHbIE Tpynmnbl CUMMETPUM U UX CBA3b C Teopvle|7| nonsa. #ABHO

A0Ka3aHO, YTO B CMMMETPUKN C HeKOMMaKTHOW prl'll'lOI71 HET HMKaKOro npoTnMBOpeYnNa ¢ yHUTap-

HOCTbIO S-maTpuubl.

Mpegnaraetcad Metod ANfA ONUCAHUA CUMMETPUM C HEKOMMAKTHOW rpyn-

Mol C MOMOLLbK annapaTa JoKajbHOW KBaHTOBOW Teopuu mnonsi. B Halwem MeTofe onepa-
TOpbl MONel YA0BNETBOPSOT HOPMa/bHLIM MEPecTaHOBOUHbIM COOTHOLLEHUSIM, U COXPaHseTcs
KPOCCUHT-CUMMETPUS S-MaTpuLibl.
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ON THE THEORY OF UNITARY
REPRESENTATIONS OF THE SL(2C) GROUP

By

DaO VONG Due and NGUYEN VAN HIEU

JOINT INSTITUTE FOR NUCLEAR RESEARCH, DUBNA, USSR

The irreducible unitary representation of the noncompact SL(2, C) is discussed by a
method based on the use of the homogeneous functions. The matrix elements of the finite
transformations are calculated explicitly. The method is very convenient for applications in
physics and the results of Geifand and Naimark are obtained in a very simple way.

§ 1. Introduction

The possibility of using the unitary representations of non-compact
groups to classify the elementary particles has been discussed in a series of
papers (Barut, Budini and Fronsdal [1], Dothan, Gell-Mann and Ne’e-
man [2], Fronsdal [3], Delbourgo, Salam and Strathdee [4], Ruhl [5],
Michel [6], Todorov [7] and Nguyen van Hieu [8]). It has been shown
that in the symmetry theory with the group G

G=PQ S, S3 SL(20C)

which is the semi-direct product of the Poincare group P and some interna
symmetry non-compact group S containing some SL(2, C) subgroup, no
contradiction with the unitarity condition for S-matrix exists [8], and in this
theory we can introduce field operators in such a manner that the free field
operators obey the normal commutation or anticommutation relations (with
the normal connection between spins and statistics).

Before studying the experimental consequences of this new symmetry
theory we must solve some mathematical problems:

1. To study the irreducible unitary representations of the internal
symmetry non-compact group S and the splitting of these representations
into the direct sum of the irreducible finite-dimensional representations of
the maximal compact subgroup of S.

2. For the unitary representations to calculate the matrix elements
of the finite transformations of the group S which correspond to the Lorentz
transformations.
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These problems have been considered in all the above-mentioned papers,
where some partial results have been obtained, but none of which has been
solved finally.

In the present work we study the irreducible unitary representation
of the SL(2, C) group and calculate the matrix elements of the finite trans-
formations for these representations. The method developed here can be
generalized to study the groups SL(n, C) and SU(p,q). We note that the
theory of unitary representations of these groups was developed in the work
of Gelfand and Naimark [9]. The Gelfand—Naimark theory is a rigorous
one mathematically. However, the method used by Gelfand and Naimark
is not convenient for physical applications. Here we apply another method
based on the use of the homogeneous functions to realize the irreducible
unitary representations of non-compact groups. This method is very convenient
for applications to physics. The possibility of using the homogeneous functions
to study the representations of non-compact groups has been discussed in
references [10, 3, 5, 11]. W ith this method we can obtain the Gelfand —
Naimark results in a very simple manner.

§ 2. Unitary representations of the SL(2, C) group

SL(2, C) is the group of all 2 x 2 complex matrices with determinant
equal to 1. We now realize the representations of this group in the Hilbert
space of the functions f(zv z2) depending on two complex variables zx and z2

For every matrix g £ SL(2, C) we define a corresponding operator Tg in the
given Hilbert space of functions f(zv z2):

g-+lg
Tgf{Z1’Zi) =/(*i» 4); za= zbgba (a,b= 1,2). (2.1
It is not difficult to prove that
Tgl Tg*: Iglgi
Therefore the correspondence g “mTs s a representation of the group SL(2, C).
We now define the scalar product in the Hilbert space of functions f(zv z2):

zi)fi (zn ziy dzldzledz2dz2. (2.2

In this case our Hilbert space consists of all square integrable functions of
two complex variables. It is not difficult to prove that with this scalar product
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(2.2) the operators Ts are unitary:

< Tgfv TJi> =
Thus we obtain a unitary representation of the SL(2, C) group, which
is still not irreducible. In order to get the irreducible representations we use
the homogeneous functions. A function f(z2 z2) is called a homogeneous
function of degree (A1 A2, where Ax and A2 are complex numbers, if for any
complex number a #=0 we have

f(azlaz2 = ananf(zlz2). (2.3)

This definition makes sense only if the difference Ax— A2is an integer. From
this definition and from (2.1) it follows that if f(zv z2 is a homogeneous
function of degree (AL A2 then Tsf(zv z2 is also a homogeneous function
with the same degree. Thus the Hilbert space D2 of homogeneous functions
of some degree A= (Ax A) realizes a representation of the group SL(2, C).

For the homogeneous functions we cannot use the scalar product defined
as in (2.2). Indeed, each function f(zv z2 from Dx is determined uniquely
by a corresponding function of one variable f(z) = /(z, 1), since

f{zvz2) = &z\*f = (2.4)

and the integral on the right-hand side of (2.2) can be written in the-form
of the product of two independent integrals

in (@, z2)f, (zx,z2) +dz2dz1lmdz,dzz =

_f|22I222]2f| h Al 2p.d «dz2dz2=
- z, z,

= J/i(z)/2@)dzdz- j |zh+1z” 2dz, dz2.

It is not difficult to show that the second integral tends to infinity.

Thus, in the Hilbert space Dx we must define the scalar product in
another manner. Since the homogeneous functions f(zv z2) effectively depend
on only one of the variables we must use the complex path integral instead
of the complex surface integral to define the scalar product. That is, we define
the scalar product in the following manner:

<fvfi> =y J/I (zp zi)fi (zn zi) diOz w (2-5)
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where d(oz is some measure invariant under the transformations

«a-* 2a= 4 gba . detg= 1.
It is easy to see that such a measure can be of the form
dojz — (z2dzy — Zj dz2) (z2dzx— z, dz2). (2.6)

As in the case of (2.2) it follows from the invariance of the measure that all

the operators Tgare unitary with respect to the scalar product (2.5), and the

representation of the SL(2, C) group in the Hilbert space D2is a unitary one.
The norm of an element/(z15z2) CD2is determined according to (2.5):

I <fa> = [0 L 00 |-T]

Inserting the integral in the right-hand side of (2.7) za = az'aand using (2.3)
we get

L/L» =jo*x+3,+* I« Uil« (2.8)

for any complex a ==0. This relation shows that A and X2 must satisfy the
equation

h + R+ 2= o0 (2.9)
the solution of which is
K —vo+ ----—--- 1
N2 — — N0+ —-momee- 1=
where v0 and q are real numbers. Since — A — 2v0 must be an integer

number, then vOis an integer or half-integer number. Thus we have obtained
the unitary representations of the SL{2, C) group in the Hilbert space DA

of homogeneous functions of degrees A= 1Q I» ~ Vo+

where V0 is any integer or half-integer number, and g is any real number.
These representations will be denoted by @.00. They are irreducible [10]
and form the so-called principal series. Together with this principal series
there also exists the supplementary one [9, 10, 12] which can be considered
in a similar manner. However, we shall not study this series here.

Finally, we note that from (2.6) and (2.9) it follows that for the represent-
ations of the principal series the scalar product defined by (2.5) is identical
to the scalar product introduced by Gelfand and Naimaric

p 7 (2)fi (z)dzdzm (2.10)
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§ 3. Equivalent representations. Splitting the unitary representations
of the SL(2, C) group into direct sums of the representations
of the SU(2) subgroup

Let @, (with operators Tg) and (with operators Tg) be two
irreducible unitary representations of the group SL(2, C) which are realized
in the Hilbert spaces of homogeneous functions:

j and D.
D, (V- Jﬁ 1 Wi )
respectively. We now find the conditions for the equivalence of these two
representations. The representations @,® and are called equivalent if
there exists an operator A which realizes a one-to-one mapping Dp onto

Dr, such that
T'gA = ATg (3.1)

for any g £ SL{2, C). From this definition we see immediately that if A= A’

(i.e. vVO— VO, g= 0') then ©J, and are equivalent. This case is trivial
and of no interest, because here Dx and D? coincide, A = 1.
Let/(]L g2 ¢cDx,f'{Vi'Vi) 6 We represent the operator A in the

form of an integral transformation with some kernel K:
/" (WVi) = 4f(fn S2) = y jK(Vi, VA Si, S2 f {Si, S2) dmi. (3.2)
Then the condition of equivalence (3.1) can be rewritten explicitly in the form

T'J"iVvi) = Y [K(vi,Vi, Si, Si) Tef (g 1tS2) dco( . (3.3)

Using Eq. (2.1) We can rewrite the last equation in the form:

I (W Vi)=y j K(@rjv gl gdf (|(fa)dcot’, (3-4)

where ffa= Vbgba, Sa= Shgam Comparing Eqgs. (3.2) and (3.4) we get:
K{Vi,V25 S'x,S2) = K{vi,VA SV S2).

Thus, the kernel K must be an invariant function of and Va* As >3 well
known in the theory of spinor representations of the group SL{2, C) from
the variables and Va we can form the following invariant

SiVi — S&i = inv-
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The kernel K must be a function of this invariant combination — izVi)-
It must also be a homogeneous function since f'(rjv rj2) is homogeneous. Let
K be a homogeneous function ontwo variables (f19£2) of degree (/v fi2). Then
putting = crfa into (3.2) we get:

P v ovii th LT by dmi:

for any complex a 5=0. Therefore, we must have

M= -V -2= o - 1,

(35

—R—2= + O-f 1.

Thus, K(r)v 12; f19f2) must be a homogeneous function on (f9f2 of degr e
io 1 0 -

—V0—; o 1»vo ---------Q-—l . On the other hand, the kernel K(r]4 rj2; f19f2)

is a function of the combination (fxrj2— f2tjj) and, therefore, it is also a

homogeneous function on (rjl, j2) of the same degree —vn -——-E---—-I,vn—

----------- 1. This means that if VO— —Vv0,q = — g then the represent-

ations B and are equivalent.

Consider now the splitting of irreducible unitary representations of the
group SL(2, C) into direct sums of the irreducible representations of the
maximal compact subgroup SU(2). In the theory of spinor representations
of the group SL(2, C) we know that if za is transformed as a spinor qgma then
«a is transformed as a spinor (pa and the sum zazais transformed as the sum
(Pe(pa i.e. is an invariant of the SU(2) subgroup. In the following we denote
za by za or za for convenience.

For clarity we now illustrate our method by some simple examples.
The general case will be considered in the following section. Consider first
the representation @Oe. This representation is realized in the Hilbert space

IE il _Nn ofhomogeneous functions/~, z2) ofdegree ——1, ———-1

One of these functions is
loo (zp z2) M ziz1+ z2z22 =* (3.6)

As has been noted, this function is invariant under the SU(2) subgroup and
therefore characterizes the spin-zero state. In order to obtain the functions
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corresponding to the states with non-zero spin we must construct them in
such a manner that they contain some factors zaand zbwithout summation.
It is not difficult to see that for the spin 1 states we have the following
functions:

fn(zvzd~ (zizl + 222202 zi2 fory=1, m = I, (3.7)

lo zn 20~ (zi2l+ 22?) 2 2 Ri2—2Zzl) f°r7= 1, "1= 0, (3.8)
il-2

-1 22~ (zizl + z22)2  z2z21 for/ = 1, m— —1. (3.9)

(¥ and m denote the spin and its projection onthe z — axis.)
Consider now the representations @ (v05=0). Since the representations

@,05 and are equivalent then we can assume that vO> 0. We choose
the basis elements of the representations in the form of the products
2

of the quantity (zjz1+ z22)2 “(" ~ Vg“k 1) and some factors Zq and z*
without summation. The products with the minimal number of free factors
za and z are of the form

f(zvz2~ (z,214- 2222 2 1 zaizai...zado: (3.10)
These functions describe the states with spin jn= v0. The other functions
correspond to the states with spins j = v0+ 1,v0-f-2,... Thus, the
representation splits into the direct sum of irreducible finite-dimensional
representations of the SU(2) subgroup. Each of them is contained in given
representation once and describes a state with definite spin j = jO+

0,12, ...

/

8§ 4. Matrix elements of finite transformations

As was noted in the Introduction, in studying the structure of the vertex
parts and the scattering amplitudes we must use the matrix elements of the
finite transformations of the group S and in particular of the group SL(2, C).
Note that this problem was first considered in the paper by Dolghinov and
Toptyghin [13] for the case with vO= 0. These authors chose the analytic
continuations of the 4-dimensional spherical functions as the basis functions,
(see [13, 14]). Our method is based on the results obtained in § 2.

The matrix element (g) corresponding to the representation
g —mUg is defined in the following manner:

I |
' - S e i' ) |- .
UelvoQ'am> ijJme(g)‘Oe,J {41)
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where \vOg;jm> is the canonical basis of representation @ <j and m are
the spin and its projection on the z — axis. Generalizing the results obtained
(see (3.6) — (3.10)) we determine first the canonical basis in the space of
homogeneous functions £a_"~ +h _j _v+ A in the following manner:

WOBH]] > -+ Fff (*L*Q = cjj (*1? + 222) ~» - .. (zy+" (4.2)
where Cjj are the normalization constants. Using (2.10) we get:

1-12= D j Qj + j). 1il2
43 - 2 J.Jj7e(®)l2dzdzj (4.3)
: 1(+ vOl(-v Ol

From 1voQ'ijj> we can find |v0q;jm>:

.. *2

|VOB|Jm> (*i>*2) = Njm 1, Lf, (4.4)
where
Njm= Ol 12 @s)
@j)1(j-m)l
| =4 9 F 3 (4.6)
3zx 3z2
From (4.2) — (4.6) we get the final expression for (zv 22):

fNe (zr z2 = -Un{(2j + D@+ mjt(g- m\V(G + )M - vol}~.

m(z"N + z2z22" ~142 (- 1l)ik- 4.7)

Z1)vs +m + d (z9)U ">-d igl)d (zA i-‘e-d -

dAG-m - d\(vO+m + d)Uj- vo- d)l

Having the explicit expression for the canonical basis jv0Q;jm> we can find
the matrix elements Dj,,.j,m.(g). It is well known that every matrix g can be
represented in the form

g= Ujeu2

where ul and u2 are unitary unimodulary matrices which correspond to
the space rotation;

e = (e—real number)
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and corresponds to a pure Lorentz transformation in the plane (x3, xt).
Thus, without losing generality we can consider only the matrix element
Djmj'm'(e)

From (4.1) and from the orthonormalization relations

y J fjT W M (z)dzdz = o3j mKm'
we have
L, («) = yJT,fjm (z) ffm' (z)'dzdz. (4.8)

From (2.1) and (4.7) we get:

(s) —

=Km,- |G+ )M+ DU+ U- m)}-U+ o
s U - voyr (ot m)lgg - m)V ¢+ VO ()" — royryare

V\A/ (— lyd+d' — (4.9)

d'd'{{j—m —dI (' —m—d)! (vO+ m + d)\
mvo+ m+ d’). (j —vO—d)I (' — v0- d")!

w~2(2d+m+v. +1“if) . 1 jdzdz\z\"d+d'+m+" =

-Z1.-1-)’ A-l-j
(I + [¢2 2 (L+£"4N2) 2
where d and d' can take any integer number which does not entail each factor

under the factorial becoming a negative number. By putting 2= ] elp
(0 < V<C o00; 0 < < 2n) the integral in (4.9) can be rewritten in the form

|=J‘I(l)°dv-v"'+"o|3+v) 2~ J@+ r 4T " -

= n gd+d+mAotx) (d+ d'+ m+ vOI(j+ /- d-d'-m - vOI _
u+r + 1

j'+ 1H—y ,d-(-d’--m vO+ 1;j+j + 2;1—b4 (4.10)
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where F(x, B;y; z) is a hypergeometric function. By setting (4.10) into (4.9)
we get the final result:

DYk (9 =
= (Y4TH1) @+ 2/ + DU+ mIU~ WU+ )
0wt e mynet e - voipa e [ )T
dd
(d--d" 9-m+ vOr( -fji' —d —d' —;  yo (1)
dld'l{?—m—d)! (f —m—d)! (r0+ m  d)I(v0-\-m f- d")I-
CG - r0- d)l (- ro- d
@ AEmMEOHE ) F At L G mefe VO Lj ¢+ 2 1—ed

This result exactly coincides with that obtained earlier by the authors in
another way [15].

Now we note some simple properties of D]mj'm\E e

1. Putting in (4.11) e= 1 and taking into account F(oc, B4y, 0) = 1
we have:

D:%.j,m.(1)=06]jr omm4 (4.12)

This is a trivial relation. It means that we deal here with the identity trans-
formation.

2. Making a permutation of jm and j'm’ in (4.11) and using the
properties of the homogeneous functions

F(ocB;y;z) = (I - 2)-»F y — x,B;y, ,
(4.13)

= (1-*)-"F xy —Biy;
y y ;-1
we obtain
Dj-m-Jm(e) — (e De (4.14)
3. Making the permutation m —=—m, m'->—m"' in (4.14), putting
j —v0—d= dx,j' —vwW—d'= d[ and using (4.13) we can prove that

Ym«e(*) = (- iy+7N-2>1>» mjli_m(E-i). (4.15)
4, From (4.12), (4.14) and from group properties of Djm.j,m we get:

JZm DjmJ'm4 («) Om,j'm- () = <Mr <W -
This last relation means the unitarity condition of the representation.
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8 5. Generalized tensors

From the canonical basis which was given in (4.7) we go to another
basis called generalized tensors of the SU(2, C) group. They are constructed
in the following manner:

J«A-"-V (2Hzi) = (Z£2) 2 (nf = 1,2), (5.1)

where

20 [sorseyoh o Lol b e s

S=0

oct, s,k) = (— I)s - ti(t + K)I(2t + k-8) | —— _
si(t- s[(t+ k- 9s) (2t + k)\
S denotes the symmetrization on the upper and lower indices a and b separa-
tely:
o TN oy ) P

1'] - P(a b)

(2 stands for summation over all permutations af d and all permutations
P(a b
of( b).)

The tensors are symmetrical in upper and in lower indices
and are traceless with respect to contraction of any upper index with any
lower index. They are irreducible under the SU(2) subgroup. Putting in (5.1),
e.g.,ax= a2= ...= aMWw= 1, bx= b2= ...= bj_t0= 2 and using (5.1),
(5.3) and (4.2) we get:

Thi b o

The inverse expansion is

zaik ... 4+1& &...0i6=0 B(t,s, KK i?-S Okzr . (5-4)
S=0
where
B(t, s, k) = ==---mm- It + fo)l (2s + K+ 1)l-mmmmm . 5.5
( ) sl(s + gc)!(i)-s()!(t+ fc+)«+l)! (55)

o

Under the transformation g the tensorfa2-'“2° *stransformed as
falai" (zI'z2  Tfatal’, (D) =

- % Da\a2..a-lli ©)fciCi2d  (zu 22 » (5.6)
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where the matrix elements Dh2'\ djU.. (g) are the generalization of
Djm j-m (g) * The explicit expressions of these matrix elements will be given
in the next section.

Any homogeneous function <plzv z2) from the space D" iQ ~ ~iQ ~

can be represented in the form:
p(*i. *r) = zy AEX % txfch-4tr (%i*zd) e (5.7)

The components are also symmetrical in upper and lower indices
and traceless. These quantities will be called generalized tensors. Under g
function <plzv z2) transforms into Tg(p(zv z,) which can also be represented
in the form of (5.7):

*>(*1*)= 2 Tggpa::$z A n (5.8)
On the other hand, from (5.6) and (5.7) it follows that

oGy 2| — _fJ’qui’db..Mf_‘\b AME> b HREG) Jaia2..aftbe (5.9)
J

Comparing (5.8) we find immediately the transformation law for tensors
ala2...

Vbjb%.. =

FhZhav o T o B2 hir— A;S' lycica. of, +viibib2 bj WAl B Ve 17

§ 6. Matrix elements for generalized tensors

Now we determine the matrix elements DH&fa2\d]dl " (g) defined in (56)
At first we rewrite (5.1) and (5.2) in the form

. -1—j+S
falatza” (2pz2) = ¥ oc(j — Vo, S, 2v,,) (zcZc) 2 "
S$=0

WSOR O Rleaee G Bl x5 +1 mme Zaj+\/a_21?"l" cee? (6.1)
Since under the transformation g
2a~*2a= 26gha— zbgai

120 4)  Tgl(2p zi) = f (ZUZ"),
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al'!, is transformed in the following manner:
Jabzuaj+

Tgjfad S =
= EO*(j —v s3>0 {zpz4 (, Eyoy 2+ aes
S:

(6.2)
Z6ey| 2ot - - - L\p z0s+1 2O, ZF N o
«S 3% d%2 i mcrtlr/y 2 fiGnb A +i (-2
(<Pb) °a‘ °a2e«+m0°* "a.+|Ma. +2e¢ ¢ &»,+* gd.+1H

if/-f.
+*m*egdi~V. e
We represent the 2 x 2 matrix gg in terms of the Pauli matrices:

gg = *om+ *= «o(! + /3); 7= --—-a = — a-5.

(6.3)
Putting this expression for gg into [zp?a(gg)E) ~L-i*s gng performing some
elementary expansion

(g9)pYy - W+S -a 0" - W+S {,C*+ Z ~ } N - WH+S

r IQ
-l-j+s

T “J+ S
k=0

(6.4)

(zc¥) 2 -'~i+S-\z pp qHik.
we can rewrite (6.2) in the form

Tgfa ltul = Z_ZO J_:O«(; - "O'S 2"0)

fcir( p -y+ s—f
12
— -1-j+s ~ 17+ =%
2 ) (*c*c) 2
WP Ifirz SRz 7z 7 7 7 . =P t+iHraw-Jh
P4i PAr eemPaK zPiZP i- mm2PkZPk+i z Pk+i - -2
S do"ld;2 A&/t4+i/i+i
S 501°0s
@f)

(6.5)

Z<?%i7*+1»
2 2 memZ 2

N +HAvo-« it +i 62
o 4 L« +1 e egitva

9%+2  zak+)-V,M.
2 cee?
Sfe+l 6it+re

bi~v*
e 6<?2*+/-lv-»

Here for convenience we have made some changes in the notations of the

summation indices:
CS+1“ p Pfc+l

ds+r“ m2/f+i
cs+;s ~*-Pk+i

Ns+2 ~* ik+2
cy+vo FIC: jsvo—s

dj—o~ »2/£+]—0-S
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Now we express the product 2Pi 2P. e e ¢ ZR++y,-,
of dp7.. by means of (5.4) and we put these expressions into (6.5).

T fblb*hito —
j-ya ~ k+j-y,-s
Jg 2 J? <U—v s>2vo)mi(k +j - vo- 2vo) m
S—O0 k=0 r=0
r~--j+s h (
T~ rv 1n0s « (zc*V
M T7™-j +s-k

« shobOR .. X \& :igp:i-

Air+2 Nnot

e dnNdAr-yr A -y
Pr+2mw+! mmm Pk+i+Vr-e ’

PIPI-"-Pr+tv, Pr+2vo+|
(@)

Note that the product

IB7L. .. PRSI BB .y B i )
Y OB oo BT AR

can also be represented in the following manner

yr 4, A4k +i
ggBh:’(r@. Pr+iVo ]2'b+| Pr 2IIO| 2000 Plc Ij : Oe
o N" /I?71 N +2 PtV Aﬁﬁ
Pul e eepUlc &a,+1 gal+2 e esaixl +104

P(P, 9)

Therefore, we can rewrite (6.6) in a more convenient form

? bl i, =

" 72" in termS

We get:

RviBb m Bl (6.6)

rH « f/»—
I g:z 4t+]v$

y-* ~ fcty-s b ©
= 20 B0 1oy, T "«Rfc*A oV .
r1o- 1
; : . ~2 7+ S
e<x(j-v0s,2vw0) R (k+ j-vO0-s,j'—v02v0) Z .. (6.7)
Ydr — —y+ *— A
o fflj'N6H A-Vo+i  filk—e= .
P,-+,t+. P,+,,+2--- Pi+tb,.-. (Y —0o)(¥Y+ Vo)l (fe+ y_~"0_ s)! (fc+ y +Vo_ s)!
2, l Ig)fli- --55«02'1 l"nga +| mmméaj+Vt g9*+i -.oe4yk¥-»| V>- »
B(i; 1 P;
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where we put r -f-v0= j'. From (6.7) and from definitions (5.1) and (5.6)
we get the following expression for 6a)a2 d [di.- (s):

~Uate2. ity oo ftoival -
© min(y—Qj + k—") o r .
= J?2 Ko 2 “0 - VS’zVO)'
k=max.(0, j'—j) s—0

roo\f _jf o+ s )

— (6.8)

B(k + j —vo—sS,/ - Vv, 2r0)
KIT ~ - j +s-k
2

0PI Od> 2 &V
10+ v —

1
(J-yoy-U+voy .(k+j-"-sy.(k+j+vO0-sy.

" @ %_C?I)Bd\ mme 30\ 62\ mmmgb « J1\ ««+8a/IU1°~*86 \ Mo e&X~:1n~. »

Putting here the explicit expressions (5.3) and (5.5) for a and [ we obtain

the final result:

(2 —s)! (2jv + 1)!

y mna-'.J+n-J1
k=max1” J'-j) St's st fel(2))! (j*—va)l (Y'+™0)! (j—*0 s)!
(Y+VO—8)! {K+ j—j'—sy (k-\-j-\-j"

J e+ S io
r2 -V ~]"Jls<5f;ed~""\. . . =m (6.9)
2

N Pdi « » mpdk°ai me mua,gal-H ¢+ egaiha  odiH «« modk+H. V",

P(a; 6 c, a)

Consider now some particular cases:

If g is a pure Lorentz transformation in the (xn =4 plane, i.e.

1.
le-1 0)
r = = , then
8 \0 e)’
+ le~2 0 1, ,, 2 10 1, 2 211 0
SS 0 e2} 2 01 2 O —Ij

U myergeeigyr @M
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Putting (6.10) into (6.9) we get:

DAZSNGRGN .

- m in j+k-j') -~
fomek0j-) =0 b T VM-
2/ -s)r (2 + 11
mistid )1 (/ —VvOr (/' + VO (- —w-S)! (7 + T1,,- S)!

fc+7 —j' —o)N(*+ 7+ Y —s+ 1)

(6.11 i

2 0 s+1 2)(1_ gtyn+k.
2A+H
r —7+ s—K—m

O

oo~ WA .o e \UiLaKOAE e . (OTRAEL . o ok ARV 1. 900,
Pabcd

If we put 7= 7' in Eq. (6.11) and

= a=...= dNo=F—c2—... = G0 = 1,
bl= b2= ... = fy ,,0—di= d2= = dj—w= 2,
then we have
7-*,, times 7+*» times / O\
A(®): («):*4 e+ 1l -ir)
j+vOtimes j—Otimes
7+ 1 - Jg—V,+ 1; 2j+ 2; 1—e4d

This result can be obtained also from (4.11).
2. If g is a Lorentz transformation from the rest frame of a particle
with mass mOto the frame in which this particle has momentum pfi= (p, iE)
then
E \-mO0O—ap + E—ap
S~ Y2mO(E + W, ;8g=~v~™ -~
and therefore

E 1
B= -"K P -

*0 = o~~~
0= mn»
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3. In the casej = 0 (V0= 0) formula (6.9) becomes

* 2y + 1y
D]i$X(g) = '] .
iZj- UW - N1 (*+>"+ 1)
r v
2
% rJ1 :\---1K
r ®. « ’ & %(Q

§ 7. Most degenerate principal series of SL(n, C)

For the most degenerate principal series of SL(n, C) we can immediately
use the method developed in 8 5,6, for the group SL(2, C) with some slight
changes. Thus, instead of Eq. (5.1) we have

faral. ( 2n.. zn)= (xkzZ) 2 2’ > (a,b=1,2,-, n)

where j, vO are also integer or half-integer, however, j still does not denote
the spin. The formulae (5.2) and (5.4) remain if instead of the expressions
(5.3) and (5.5) for @& and B we take

ti (t -f- k) (21F- K f-n — 2 —)!
st(t—s) (tf-Kk—s)! (2t -\-k \-n — 2)!
i(t+ f)(2s-)-k n— 1
st(sf-K\(t—s)!(¢tFfk+ n-fs—1)

*(t,s,k) = (—I)s

B(t,s, K)

In order to obtain the formula for matrix elements

bbr~ht v-G2 c.+ /[ \
aiaz..af\v (9)

corresponding to the transformation za-> Za= Zbgba we make the analogous
procedure as in 8 6. The only difference is that we must now expand gg+ in
terms of the matrices generators [- of the subgroup SU(n). The result is:

ANala2.aH\o did2.dj,_\Vag) —
min(j—0, j+k—j")
2 2 (- Ds e
ft= max (0,j'—j) =0
(2j+ n -2 - 91 (2/+n - !
St (j- rO—s)! (j+ p0—s)!' 2+ n-2)!(/ - rQ(/ + vO)!
MK+ j—j' —S¥(k+j +]' —s+ n—1)
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es @ Aa/'-ve+i’\%-v + Ja*-n-*g-,
C+H\o+l -l-\%i— Fxk CoH\VOF

V1 |98|i [9&‘% . l(@%ég,Oar e l%ﬁ e -&E@'H’V"' JaJkJ;,l % *gﬁjgj"_\,g_ss

P(a, b; c\ d)
where

gg = Ol+JE ad(= «0(L+R); B= ~ M a, 4.
i=1

§ 8. Space reflection for the group SL(2, C)

Now we identify the group SL(2, C) with the homogeneous proper
Lorentz group and consider the space reflection P . The following relations
exist between P and the generators of the SL(2, C) group:

PMjp-i= Mj,
PNjP 1= —Nj, (8,1)
P2= 1,

where Mj and Nj are compact and non-compact generators, respectively.
As is known, the commutation relations for Mj and Nj are of the form:

[Mj, Mj] = gMf- diM]j,
[Nj,Nj]= - d\Mf+ o6fMj, (8.2)
[Mj,Nf] = 6\Nf- 6fNj.

It is easy to see that in the space of homogeneous functions with canonical
basis (4.7) these generators arel:

Mj = Zj-—-—-- - 21— . Za 8
ll Z{dZJ_ 8V 8Za dZa -
(8.3)
iNj=zj-0—+ zz2J L o 20_8 + Za 8
1 1Qzi 8273 2 21° 82, 8Za, *

1The correspondence between our My, Nj and Il, F in reference [12] is the following:
MI = H_,Mf= H¥ M\ = — Aif = 113,
M= F_,A?=F, ,A{= —A| = F3.
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From egs. (8.1) and (8.3) it follows that the operator P acts in such
a way that

Z a -*m Eab Z b ,
Z2"-> Z,, fbc,

a — Pab — (0 1\
bab — — V-lo)

and therefore
Pf{Z!,22;Z\ &) = f{Z\ - Zb - zz,Z,). (8.4)

From eqgs. (8.4) and (8.5) after some simple calculations we get:

P/* (Z,,29= (-1)"~ "L;/imeV i, ") (8.5)

Thus, under P the basis elements of representation @,ce transform into

the basis elements of g which in its turn is equivalent to @,0 . This

means that under P only the space D, i? ie \ (v0= 0) or the space
(2 2 /

P(,.0_i(v0i) (? = 0) transforms into itself.Moreover, it is seen from (8.5)

that parities of the basis vectorsf jm differ fromone another by a factor (—I/.
In conclusion we express our gratitude to N. N. Bogoliubov, Y a. A.
Smorodinsky and A. N. Tavkhelidze for their interest in this work.
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K TEOPUW YHUTAPHbIX MPEACTABAEHWA TPYMMbl SL (2, C)

AOAO BOHI AbIK n HIFYEH BAH XbEY

Pestome

B paGoTe paccMaTpuBaeTCsi Hemp B3AW.M3e YHWTApHOE NPEeACTaBleHWe HEKOMMAKTHOM
rpynnbl SL (2, C) METOOM, OCHOBaHHbIM Ha MNPUMEHEHUM OfHOPOAHLIX (PYHKUUA. MaTpuuHble
3/IEMEHTbI  KOHEUHbI'C MP3030a33BaHWil BbIUMCAsIETCS TOYHO. MeTog sIBNSeTCs O4YeHb Nof-

XOAAWMM AN MPUMEHEHUA B (M3Mke W pesynbTaTtbl [enbaHga M Halimapka nosydeHsl
OYEHb MPOCTbIM MYTEM.
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DECAYS OF THE POSITIVE PARITY MESONS
IN SU(6)w

By
I. MONTVAY and T. NAGY

INSTITUTE FOR THEORETICAL PHYSICS, ROLAND EOTVOS UNIVERSITY, BUDAPEST

SU(6)Winvariant amplitudes are given for the decays of the 189 and 405 meson multi-
plets into two pseudoscalar mesons and into one vector meson and one pseudoscalar meson.
The decay widths and branching ratios of the 2+ mesons are calculated; the results obtained
for 189 are closer to the experimental data.

In a previous paper [1] we tried to classify the positive parity meson
resonances according to the 189 and 405 representations of SU(6). The classi-
fication was based on simple mass formulae [2—4]. We have concluded that
405 seems to be a more suitable choice, in so far as it allows a great many of
the observed resonances to be identified. The existence of most of the reported
positive parity resonant states [5] is, however, rather questionable [6], the 2+
being the only well established multiplet; therefore, the classification based on
mass formulae alone is not convincing enough. The additional information
which is needed can be provided by the investigation of decay widths and
branching ratios.

In order to obtain relations for the decay amplitudes in 189 and 405, we
use the SU(6)w formalism [7]. The SU(6)s states are linear combinations of
SU(6)W states from various SU(6)W representations, occurring in the
17(6) < 1/(6) 3 SU(6) decomposition

(15, 15*) = 189 + 35+ 1
in the case of 189, and
(21,21*1 = 405 + 35+ 1

in the case of 405. The SU(6)s — SU(6)W mixing for 189 and 405 is given in
Tables | and 11, respectively. (For the definition of 8f and 8d see [1].) In Table
11l we give the SU(6)Winvariant amplitudes for all possible decays into two
pseudoscalar mesons and into one vector meson and one pseudoscalar meson.
(The notations are as follows: re™1 denotes the SI17(3) state |n, a>, with
2T 1= m,Jz= u, where J is the spin; Cab etc. are the CG-coefficients for
8®8==27+10 + W*+ 8k+ 8o+ 1; Oa= (—I)»+12i4) The results
for the 2+ mesons are the same as in [8]. The 27s mesons in 405 can decay only
into two vector mesons or into more than two particles.
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The fact that the decays of particles with different spin go with different
orbital momenta gives rise to ambiguities when making a quantitative compa-
rison with the experimental data. For this reason we shall discuss only the
decays of the 2+ mesons. According to [1] the 2+ states which can decay into
the two-body states studied here are those given in the following Table:

Mass Mixing
(Mev) 189 405
K* 1405 |8 > 1115 (/2127 > — 7318 >)
K*' 1650 - UYS(Y3 127 > + fiil8 )
n 1324 s > 1/15 (|27 > — 2|8 >)
Ai 1580 _ 5@ > + 8>y
f 1253 113 (8> + Y21us) 1th) (27 > — 218 > + /5]1 >)
. 1500 UY3 (12185 — |1>) 1115 (327 > 1— 8 > — 1/5[1 >)
f 1670 — 1/£30(3127 > + aj8 > +fS\| >)

The decays can be described by two parameters both in 18 9 and 405 (A, B and
A', B', respectively). By fitting the width of A2and/we get the results sum-
marized in Table IV. The decay rates are corrected by a phase space factor K5,
where K isthe momentum of the decay products in the c.m. system.

The widths ofthe unobserved resonances in 405 are very large. The results
for K* and A2are well known from earlier works (see e.g. [8]), and they do not
distinguish between 189 and 405. The theoretical branching ratios for the /
meson are approximately the same forboth representations and are in accord-
ance with experiment. Thus, there remains only one point where the pre-
dictions of the two representations differ: the decay of/'. And in this case the
189 seems to be preferred, contrary to the considerations based on mass
relations. Now, the arguments given in favour of 405 have been connected
with the possibility of identifying the 1+ mesons and S°(700). Recently the
experimental evidence for these resonances is very bad [6]: the ~41(1072) and
B(1220) are almost surely kinematic effects, while K*/2(1270), ATrtr(1320) and
S°(700) have never been well-established resonant states. On the other hand,
the well established C(1215), 19(1286) and £(1410) can be assigned to 189 as
well as to 405. Clearly, much more experimental data are needed in order to
be able to decide which of the two representations is correct, or whether such
classification schemes make any sense at all.

Acknowledgement

The authors thank Prof. G. Marx for valuable discussions and for his
continuous interest in this work.
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Table |
SU(6)s — SU(6)w mixing for 189

SU(6)s |SE/(3), SU(2); Jz> \SU(6V,SU(3), SJ7(2); Jz>
189 18,5;2> 18,5;2 >
1n,52> 11,5;2>
18,5;1> 1/2 (/3 |189,84,3;1 > — |35,8,3;1>)
[1,5;1> — 135,1,3;1>
18,5;0> 1/3(— j189,8,5;0 > — /5 |189,8,1;0> + /3 |35,8,1;0>)
11,5;0> 1/3/5(— /5 1189,1,5:0> - 4 189,1,1;0> +
+ 2/6 11,1,1;0>)
|10,3;1 > 1189,10,3;1>
[10*3;1> — ]189,10*3;1>
|8F,3;1> — 1/2(]189,8D,3;1> + /3 |35,8,3;1>)
|8d,3;1> 1/2(/3 |189,8,5;1 > — |189,8F,3;1>)
110,3;0> — ]189,10,3;0>
|120,*%3;0> — ]189,10*3;0>
18/7,3;0> — |189,8F,3;0>
184,3;0 > 1/2 (]189,8D,3;0> — /3 |35,8,3;0>)
127,1;0> — 1189,27,1;0>
18,1;0> —1/6(2 /5 1189,8,5;0> + |189, 8,1;0> + /15 |35,8,1;0>)
11,1;0> — 1/15 (4/5 |189,1,5;0> + 7(189,1,1;0> +
+ 4/6 11,1,1;0>)
35 18,3;1> — 1/2 (1189,8,5;1> + /3 |189,8F,3;1>)
|8,3;0> — 1/2 (/3 ]189,8d,3;0> + |35,8,3;0>)
18,1;0 > 1/2 /3(2 1189,8,5;0> — /5 1189,8,1;0> —
_ 13 35,8,1;0>)
|1,3;1> — |189,1,5;1>
|1,3;0> 135,1,3;0>
1 11,1;0> 1/5/3 (2/r0 1189,1,5;0> —4/2 1189,1,1;0> —
— /3 ]1,1,1;0>
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Table 11
SU(6)s — SU(6)W mixing for 405

SU(B)s 1SU(S), SU(2); Jz > ISC7(6)n,, SU(3), SU(2); Jz >
405 |27,5;2> 12752 >
1852 > 1852 >
[1,5;2> 11,5:2>
[27,5:1> — 1405273:1>
8,5;1> — 1/2/6(3 |405,8D,3;1> + /15 |35,8,3;1>)
11,5:1 > — |35,1,3;1>
£7,5;0> 1/3 (— |405,27,5;0> + 2/2 |405,27,1;0 >)
18.5:0> 1/3/2 (—/2 |405,8,5;0> + |405,8,1;0> +
+ /15 B58,1;0>)
11,5:0> U3 VT(-fj |405,1,5;0> + 2/2 [405,1,1;0> +
+ 4/3]1,1,1;0>)
12713;1> — [405,27,5;0>
110,3;1> — |405,10,3;1 >
|10,%3;1> |405,10,%3;1 >
18/7,3;1 > 1/2 /2 (- /5 |405,8D,3;1> -f-/3 [35,8,3;1>)
8d,3;1> — 1/2/2 (/3 14058,5;1> + /5 |405,8F3;1>)
127,3;0 > |405,27,3;0>
|10,3;0> — 1405,10,3;0>
|10,*3;0> — |405,10,*3;0>
8/r,3;0 > — ]405,8F,3;0>
j8n.3;0 > I/4(— |405,80,3;0> + /15 |35,8,3;0>)
|127,1;0> 1/3 (2 fi 1405,27,5;0> + |405,27,1;0>)
18,1;0> 1/12 (2 12 |405,8,5;0> — 11 |405,8,1;0> +
+/T5 |35,8,1;0>)
[1,1;0> 1/21 (2/17 |405,1,5;0 > — 17 |405,1,1;0> +
+ 476 11,1,1;0>)
35 183;1> 1/2 fi (-Y5 |405,8,5;1> + /3 [405,8F,3;1>)
183;0 > 1/4 (/15 |405,80,3;0> + |3S,8,3;0>)
18,1;0> 1/4/3 (2/10 |405,8,5;0> + /5 |405,8,1;0> +
+ /3 135,8,1;0>)
I1.3:1> — 1405,1,5:1 >
113;0> 135,1,3;0>
! 11,1;0> 1/7/3(4/7 |405,1,5;0> + 4fi |405,1,1;0> +

+ /3 11,1,1;0>)
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Decay

S?A'BW 81

SS,0_>8‘:| 4

-»m8181.

2I®@1L-» enei

5,0

21@° « , g@" 8j
I0®-1->8® .'81
10®°->8® 8¢
10*3.i _+g®x8i

-N8jI3!
83 -> s®°8'

> 8™ |3°
27" ->8> 8§’

-»8« 8'
1'-~ g8,

Table 111

Decay amplitudes*

189

Y 3ne#
1/5/3 NC&

- 1/fiBO a

/"KMO'C

bL,ab

rr*o0,.c
ab

1% ¢

- cc'gt
(2¢ — 3A) Cab

- 2cC%
fbcC%

— 113J/2 c
j/5/C- nics
D

1/2ccii

1/6 (9c -5Aa)c %

1/4 /10 (3C + 8B) 6o

* For the notations see the text.

DECAYS OF THE POSITIVE PARITY MESONS

405

[[T5 a'cqe

- 53 X'/

B 6d

12 Cc'cere

Lcocon

grp-c

u cab

" "»IOHi.C

b “ab

(2c - 2") Cffc

- 2C'CE

vircr cgf

1/512 C

1/1/2 (C '-5/") Cgf
D

1/2 )/3 C'C"c

1/6 112 (9C' - 5y4") C{E
1/2 fii (3C' 8B') &0

225
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Particle
189
K* 112
K** —
n 90
X J—
f 118
r 82

[ (Mev)

405

84

212

90

113

118

49

235

I. MONTYAY and T. NAGY

95 + 11

90 + 10

118 + 16

80

Table IV
Decay

K*71
oK
wK
Kn
Kr]
K*n
oK
K*r)
<pK
coK
Kn
K>]
Q7z
KK
nn
K*K
071
KK
nn
57
KK
L
K*K
TIC
KK
m
K*K
nn
K K

LLL
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189

15,5

7
25

64,5
12,5
23

98
2

2+10"2

10,5
62
19,5

Branching ratio (%9

405

15,5
4
1
77
2,5
22,5
14,5
35
0,7
0,5
55,5
2,8
64,5
12,5
23

68

13,5
15,5
98,8

0,2

28,5
57
12,5
33
16
36
15

— 50

— 50

91
55
3,6

large
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PACMAbl ME3OHOB C MOJIOXUTE/IbHOW YETHOCTbIO B CXEME SU(6),,
nN. MOHTBAW n T. HAb

Peswome

[aHbl SU (6)iv — nHBapuaHTHble aMnanTyabl Ana pacnafos 189- n 405-MynbTUNNETOB B
[iBa MCEeBAOCKaNAPHbIX Me30Ha W B OANH BEKTOPHbIA ME30H W OfAWH MCEeBLOCKaNAPHbIA Me30H
BbluncrieHb! WMPUHLI pacnaja 2* Me30HOB; pe3ynbTaThbl, MoAyyeHHble and 189 nyudiue corna-
CYHOTCA C 3KCMEPUMEHTA/IbHbILIMU  [IAHHBIMW.
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A FIELD THEORETICAL MODEL WITH SL(6, C)
INVARIANT INTERACTION
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K. Ladanyi
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BUDAPEST

Abstract

A nonlinear spinor equation is considered, which is form-invariant under
the transformations of the SOe-group. The components of the field operator
are the trion fields introduced by Bacry, Nuyts and Van Hove. The formal
interaction Lagrangian is characterized by V—A coupling and SL(6,C)
invariance.

MO/AE/Nb TEOPUN MOJA C SL(6, C)-MHBAPUAHTHBLIMU
B3ANMOAENCTBUNAMU

K. nagaHmn

Pesome

PaccmaTpuBaeTCs HeNMHEeHOe CMWMHOPHOE YpaBHEHWe, WHBapUaHTHOe OTHOCWUTENbHO
rpynnsl npeobpasoBaHuii SOe. KOMMNOHeHTaMK onepaTopa Mons SBrAlTCA TPUMAETHbIE MONS,
BBeJeHHble Bbakpu, Hiontcom u BaH-XoBoM. ®opMaibHbIA JlarpaHuaH B3aMMOLEWCTBUA
oxapakTepn3zoBaH V—A cBsA3bl0o M SL(6, C) MHBapUaHTHOCTbLIO.
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SYMMETRIES OF SCATTERING INCLUDING
MASS-SPLITTING

By

J. Stern

DEPARTMENT OF THEORETICAL PHYSICS
FACULTY OF TECHNICAL AND NUCLEAR PHYSICS, PRAGUE, CZECHOSLOVAKIA*

Symmetries of scattering including mass splitting are discussed.

It is known that the usual perturbative treatment of symmetry breaking,
when applied to the symmetries of scattering, affords no practical possibility
to include unambiguously the effect of mass-splitting. This fact causes serious
difficulties whenever the relations among scattering amplitudes have to be
compared with experiment: one does not know for what values of kinematic
variables the amplitudes of different processes have to be compared. The
comparison for the same C-value usually made is an ad hoc assumption devoid
of any theoretical foundation.

I should like to present here briefly an attempt to give a new and more
accurate meaning to the notion of symmetries of scattering which would not
encounter such difficulties. Let me begin with the formulation of my basic
assumptions.

Let Fa), ... be aset of operators commuting with the scattering operator
with the following properties:

1. AIll one-particle states can be divided into subspaces (multiplets)
which are closed and irreducible witb respect to

FWla> = v |«' > e

2. The space of two-particle states built up by taking one-particle from
one multiplet and the second from another is again closed under F*

F<'>\a,b> = 2\a',b' > .
3. F change the conserved observables Q and Y by 0,71, £2, ...
AQ,AY =0,+1,22,

* Myslikova 7, Prague 1, Czechoslovakia.
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4. F”™ are rotationally invariant.
[FM,LjK]_= 0.

It isnot explicitly assumed that F” form an algebra but for the moment
let us imagine that they do. Consider various realizations of this algebra in
terms of normal products of creation and annihilation operators of in- and/or
out-going particles i.e. in terms of the sum of operators like

j d3 d3k1f(klk,) a+ (kJ aR (k2) +

+ jd3 ... d3 fc2, k3, k 4la+ (fcj) a / (f2) ax (fc,) aei&4) -f ...

The assumptions 1—4. have then to be considered as constraints which
indicate what realizations express the symmetry of the S-matrix.

Usually one considers only realizations which are bilinear in the field
operators. This corresponds to the explicitly made assumption that two-
particle states transform like members of the space which is a direct product
of one-particle representation spaces

FMH11 > ®j2> = (FHI1>) ® |2 > + |1 > ® (F<>12 >). (2)

In our approach it is necessary to go beyond this assumption whenever
we wantto include inelastic processes. This means that more general realizations
must be used and the Wigner—Eckhart theorem can no longer be applied.

Nevertheless, a rather simple general method exists in which it is possible,
on the basis of assumptions 1—4, to obtain well-defined relations among the
Scattering amplitudes whenever the classification of one-particle states is
given.

I cannot demonstrate this method here but only present some typical
results.

As a simple example we consider spinless quarks and antiquarks forming
two-multiplets in the sense of assumption 1. We shall label them by Greek
indices 1, 2, 3 corresponding to p,n, Xand assume mx </ m3.

When only Q—Q scattering is considered the situation is very simple
because here only elastic processes can occur. The result is then

af(p2 —dFip2; x,B,y= 1,2,3 (3)
where a™(p2) is a partial tv*ave for the elastic scatering

*+ B—= + B
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as a function of the c.m. momentum squared. For a = /? this equality holds,
of course, for even partial waves only. In this case of purely elastic scattering
relations satisfying (2) can still be used.

More complicated and interesting results are obtained for quark-anti-
quark scattering. In this case we have a degeneracy of states |a, ec> with
respect to 13and Y and therefore inelastic processes like

c+ X-+R + R

can take place. Now inclusion of two-particle terms (see assump. 2) is necessary
to get nontrivial scattering. Let us denote by f}(p2 the amplitudes of elastic
process

«+ B-** + [ {*¥=hR)
as a function of c.m. momentum squared, and by fR'Ys) amplitudes of
*+ o« —mk + R

as a function of c.m. energy squared in the corresponding channel. Then

UR(P2) = PNYP2) = 4>PiP2)= eme =<Pi (P2)
and

det[B (s)-24iX 4i) ® 1] = O,
c= 1,2,3, S > 4mj|
where B(s) is a 3X 3 matrix

BaB(s) = fas)(s - |1 1]l

where

4i=pl+ m —ml>

s= 4(p2-\-mj) .

Finally let me make two comments:

1. Besides relations among scattering amplitudes, relations among
certain matrix elements of appear. This means that if F* have to form an
algebra this algebra cannot be arbitrary. It is not even clear whether FI() can
form an algebra at all. Moreover, the present method does not exclude the
possibility that our basic assumptions are incompatible with nontrivial
scattering, as only some of their consequences have been derived.

2. The main question, of course is, whether this approach and its con-
sequences have anything to do with physics at all. Up to now | cannot give a
definite answer to that question, but it is possible to examine the following
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point of view: it is clear that such a symmetry of the S-matrix cannot include
electromagnetic forces of infinite range. This is seen from

°NN — aPP

On the other hand, it cannot he excluded a priori that the breakdown of higher
symmetries, including [/-spin etc., can he provided by the inclusion of mass-
differences in the way proposed here. However, this needs to he directly
verified. It is possible because the present method is general and can be
applied equally well to such cases as meson-baryon or baryon-baryon scattering.
However, this needs the inclusion of spin which slightly changes the method of
derivations. This work is now in progress.

CUMMETPUN PACCEAHUA, BKIHOYAA PACLLEMIEHNE MACC

M. WTEPH

Pesome

O6cy)K,qubI CUMMETPUN pacCedaHnd, BK/IKOYad pacliensieHne macc.
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SYMMETRIES OF QUARK-ANTIQUARK
SCATTERING AND MESON NONETS
MASS-SPUITTING

By
J. Stern and A. Vancura

DEPARTMENT OF THEORETICAL PHYSICS,
FACULTY OF TECHNICAL AND NUCLEAR PHYSICS, PRAGUE, CHECHOSLOVAKIA*

Linear mass formulae for meson nonets are obtained. The derivation is based on equali-
ties among quark-antiquark partial wave scattering amplitudes obtained in the preceding paper,
and on assumptions concerning its analytical properties. The resulting formulae are in very
good agreement with experimental mass-values of the 1~ and 2+ meson nonets, but fail
completely for pseudoscalar mesons.

1. The idea of quarks [1] as basic elements of all particles is rather
attractive. Its applicability goes beyond the SU(3) or SU(6) content of the
original proposition, as is well seen in the recent literature [2]. However, all
dynamical calculations in quark models are made within a non-relativistic
limit, what seems to be rather naive, to say at least. In this paper we shall
try to exploit some results of the preceding talk by Stern [3] about the
quark-antiquark scattering amplitude to obtain certain properties of the one-
particle meson states.

As in the original proposition [1], we take mesons to be bound states of
a quark-antiquark system. We shall show that from relations among the Q—Q
scattering amplitudes and a usual assumption about the analytical properties
of the amplitude we can obtain ordering of mesons into multiplets and non-
trivial mass formulae, which are very well satisfied for |- and 2+ meson
nonets, but fail for pseudoscalar mesons.

2. We denote by 1, 2, 3 the three quarks p, n, X with m1<* m2< m3.
The antiquarks are then 1, 2, 3- The partial wave scattering amplitude for
the process [4]

X+ B-"x+R; (x=f=x\x,8 = 1, 2, 3)

(elastic scattering of a quark x and an antiquark B) is ("%(p2, where p2is the
c.m. three momentum of the pair (a, B). The amplitude for the process

X-fx->R + R

* Myslikova 7, Prague 1, Czechoslovakia.
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is//*M(s); here s is the total c.m. energy squared. These amplitudes are nor-
malized in such a way that the differential cross-section is

do*P
40 Yy &2+ 1)

and

=2 (21+1)ff.
Q

Here we must make a remark about the partial wave decomposition. In [3]
quarks were taken as spinless particles for simplicity, and | was the orbital
momentum of the partial wave. However, this is inessential for us, because
we expect that the same relations as those derived in [3] for partial waves
will be true for the helicity amplitudes with definite values of spin and parity
Jpin the case of quarks with spin. Further on we shall not write the index I,
and shall consider all amplitudes to have definite values ofJp.

In [3] it is shown that the amplitudes gpand/ fulfill the following relations

wP(p)= »(pI 1)
(all are equal) and
det[B(s)-2/iy X 4 )] =0,
(2)
A :~——4 s—ml, s> 4mijj,

where B(s) is a 3x3 matrix with the elements
B*R= (s- 4ml) Y2~ (s) . 3)

Eq. (2) is a cubic relation between the amplitudes ¢p and f. It can be easily
linearized when looked upon as a secular equation for three eigenvalues
2AI[2<p(AU). One gets

Sp B(s) = 2 V(AJ. (4)
a=l

Two other conditions (one quadratic and one cubic) can be obtained also but
they have no value for us at present.

3. Relations (1) and (4) are valid in their respective physical regions.
Instead of making any artificial assumption about the interaction of a quark-
antiquark system we suppose that our scattering amplitudes have the usual
analytical properties in the total c.m. energy squared. This is the only dynamic
assumption we make. Mesons as quark-antiquark bound states will manifest

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



SYMMETRIES OF QUARK-ANTIQUARK SCATTERING 235

themselves as poles in the corresponding amplitudes (with specified Jp). From
analyticity we conclude that (1) and (4) can be extended to the non-physical
region and the pole terms can be compared.
Let us start with (1). The relevant pole term corresponds to a “charged”
meson (1J31+ 1Y |> 0). We write e.g.
/\cﬁzl\z
P2(p2 = —--——e- 1 no pole terms , (5)
Sm(Pz) — "»32

where

$32(P2) = [(p2+ mi)l2+ if -'r mi)l2]2

and m3is the position of the pole. As a function ofp2 sphas a pole on the first
Rieman sheet of both square roots whenever

ml—m]|j< m3i
is true. At the position of the poles we have
mX= (Po+ mi)l2+ {pi+ mi)lR2 (6)

Now it is easy to see from (1) that all gaP(p2 must have a pole at the same
value of p2= pi:

fp(p2d = ——r— [-no pole terms, ©)
sal iP2) —
where

saP(P2 = [(P2+ m«12+ (P2+ m2)l/2]2
This means
m*® = (pl + mDI2+ (pl + ( 8)
och B

This can be done for every value of Jp. Therefore, it is possible to identify
uniquely maS(a #=R) with masses of “charged” mesons with the same Jp and
Y, 13values of the corresponding channel (see Table I).

Table 1
Ip 12 13 23
o]
0- nu K K
1- o K* K*
2~ A+ K == Ko**
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Eliminating pi from (8) we get

ml — m%= m,B(may — mRy)

(9)
(«® R Y=ha)

A similar procedure can be followed with (4). The r. h.s. of (4) has three
different poles, according to the previous discussion, which must appear at
the 1 h. s. too. Their position in the s-variable we denote by m\, and choose
mu <[ m2<C 748 We write, therefore,

3
VyVy
* + . (10)
RO 2 i
Here again myymust have the meaning of masses ofbound states — (absoutely)
neutral mesons — in the (yy) system. Comparing positions of the poles we get
= 2(pi + mI2 (11)

where pi is the same as in (8). Formulae (8) and (11) can therefore be written
in a common form

mal= (po+ O 12+ (P§+ ™})Im (12)

We have now to find the correspondence between bound states (yy) and the
real neutral mesons. It can be chosen according to the increasing masses of
the mesons with given Jp. The results of the assignment are in Table Il. We
remark that this cannot be done for pseudoscalar mesons.

Table 11
JP n 2 3B
0- 710 ? ?
| Q @ (O]
2+ f A° r

From (12) we obtain three linear relations among the meson masses
(with given Jp)
2m,8= m,, + mRR (13)

and two quadratic ones (with (9)).

4(ml—m})= ml, —mjB= 4m,B(Tay — mRy) . (14)
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Formulae (13) are extremely well satisfied for 1 and 2+ meson nonets. If one
calculates e.g. (using [5]) ® and/' masses, one gets

M(<p) = (1017 = 6)MeV

and
M (/') = (1520 £+ 20) MeV.

One can estimate also the electromagnetic mass difference for X*-mesons:

M (K*°) —M (K*+) = — [M (co)) —M (eQ)] = (8 = 3) MeY.

From (14) relations among masses of members of different multiplets follow.
In this way a remarkably good value for the yl2meson is obtained:

M(A2 = (1324 + 11) MeY.

Besides formulae (13) and (14) it is also possible to write down several equa-
lities among the coupling constants (ga‘)2 and (y*)2 by comparing residues of
the poles of @and f. These relations can be of some value for quark models by
giving information about different physical quark-antiquark-meson coupling
constants.

4. In our opinion the important point of our result is not the relations (13)
but the method by which they were obtained. It seemsthat it can be generalized
to more complicated cases.

We made no use of any kind of perturbation method in our calculation.
From this point of view the results obtained are exact. Relation (13) is exactly
the “relativistic” version of the additivity rule for hadron masses frequently
met in non-relativistic hadron models.

One point is rather interesting. Formulae identical to (13) were obtained
by Formanek [6] in a completely different way. He found that an infinite
dimensional algebra exists, connecting in a nontrivial way SI1/(3) with the
whole Poincaré algebra. Among other things, it has representations suitable
for classification of nine particles with different masses. The relevant mass
formula — also obtained without symmetry breaking — is equivalent to (13).

Both these approaches are different, but nevertheless have something
in common. Namely, they are free from any kind of approximation, and use
no symmetry breaking. This suggests that there is a deeper connection between
the “spectrum generating” infinite dimensional symmetry scheme and un-
broken symmetry of scattering proposed in [3].
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CUMMETPUN PACCEAHNA KBAPKOB-AHTUKBAPKOB 1 MACCOBOE
PACWENMNEHNE ME3OHHbIX HOHETOB

M. WTEPH n N. BAHUYYPA

Pesome

BbIBefieHbI IMHEHbIE MAacCOBbIe (DOPMY/ibI 1S ME3OHHBIX HOHETOB. BbIBO/ OCHOBbLIBAETCS
Ha NpUpaBHEHWM amnAUTyA napuuanbHbiX BOMH B PAacCeAHWM KBapKOB-aHTWUKBApKOB, MoO-
NyyYeHHbIX B NpefpblaylLei paboTe; Aasee Ha NPeAMNONOKEHNAX, KACAIOLLMXCA UX aHAUTNYECKNX
CBOICTB. PecynbTupytolye (OpMy/M O4YeHb XOPOLLO COFMACYHOTCS C 3KCMEpUMEHTa/bHbIMY
JaHHBIMM [11 MaccOBbIX 3HAYeHWd /11 ME30HHbIX HOHETOB H M 2+ HO 3TOro cornacus
HET Yy MCEBAOCKANSPHLIX ME30HOB.
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SESSION 5. CURRENT ALGEBRAS

DISPERSIVE SUM RULES FROM CURRENT
ALGEBRA

By
G. Furlan
ISTITUTO DI FISICA TEORICA DELL’UNIVERSITA DEGLI STUDI, TRIESTE, ITALY
and

C. Rossetti

ISTITUTO DI FISICA DELL’UNIVERSITA DEGLI STUDI, TORINO, ITALY

One of the most successful and popular trends in our present approach to Elementary
Particle Physics seems to be, beside group theory, the method based on the so called “current
algebra”. In these lectures we shall try to recall and summarize the main physical ideas and
the most important results of this new approach as well as our present attitude toward still
unsettled problems.

As the subject is a rapidly developing one, our exposition will suffer from the imperfec-
tions of the theory, which is still at its heuristic stage. Namely, itisincomplete and the formul-
ation is not the most elegant one, but, on the other hand, it offers many reasons for genuine
enthusiasm, which we shall try to make evident. Thus, we apologize from the beginning for
the personal plan of exposition and for the numerous interesting contributions which will
not be mentioned explicitly.

I. General considerations

1. One of the most powerful tools with which to investigate Elementary
Particle Physics is group theory. We all know the very satisfactory classifi-
cation of elementary particles based on S1/(3) and SU(6) and the other out-
standing results obtained with this approach. However, we find some diffi-
culties in comparing group theoretical results with reality. The reason is that
in nature all the proposed symmetries are more or less badly broken so that an
estimate of the corrections due to symmetry-breaking interactions is neces-
sary. This is particularly relevant in the case of groups like SU(3) XSU{3)
where the symmetry limit is far from reality. Thus, to achieve a complete
understanding of the role of group theory we need a scheme where, on the one
hand, the group theoretical results are reproduced but, on the other hand, a
control on the “corrections” is maintained. To deal with these problems we
shall profit by the methods of quantum field theory and dispersion theory
through the “current algebra approach”.

The study of weak phenomena has revealed the appealing feature of an
analogy between electromagnetic and weak interactions, in the sense that both
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are represented as interactions of currents. This similarity is sharpened if we
assume that, like electromagnetic current, the weak (vector and axial vector)
hadronic currents can exhibit a conservation, at least partially. After a set of
currents J™\x), which can be considered divergenceless in a suitable symmetry
limit

Da(x) =9,,jp ()= 0

we can define a set of charges

QAt) = SA*4*>t)dx 0
which are approximate constants of motion
[<?,tf0] = O.

(HOis part of the total Hamiltonian H). The next step, i.e. the bridge between
physical hadronic currents* and symmetry operators of the theory, is based
on the fundamental suggestion by Gel1-Mann [1] of identifying the physical
charges with the generators (aside from a coupling constant) of a symmetry
group, which is explicitly proposed to be SI/(3) (for vector currents) or
S17(3) XSU (3) (for vector and axial vector currents). In so doing the equal
time commutation relations between charges and currents are taken to generate
the algebra of the corresponding group i.e.

[Csr’ C /3] =CttByQV’\

(2)
[Ca(0 . jT (*>»)] = c«By NY)(*=t)m

where the cxfy are the structure constants of the algebra. After this we can
look at the group asunderlying the structure ofbaryons and mesons e.g. in the
unitary symmetry scheme. Anyway, the existence of the algebra and the
hypothesis that the related group is a symmetry group are independent things.
Thus we can still exploit the group (through its algebra) without assuming
invariance under it. In other words the commutation relations reflect the
existence of the symmetry group for the hadrons but they are supposed to be
exact and not to be affected by the presence in the total Hamiltonian of a
symmetry-breaking part. Thus, the commutation relations can be the tool we
are looking for.
2. One important problem is, therefore, to translate these exact commu-

tation relations into exact relations among observable quantities i.e., into
sum rules.

*We shall consider here the first oder in electromagnetic and weak interactions.
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The simplest way [2] to do this is to take the matrix element of an equal
time (e. t.) commutator between one-particle states and to use completeness

[?<» MR = KRBy M Y. (3)

where Qais a generator and MRBany tensor operator with well defined trans-
formation properties (which determine the constant haly). Then

My < «11IMylo2> — < ajl[(Pal MB]| > —

(4)
— N <ay\Qx\n > < nIMBja2> — " < ai\MB\n > < n\Qx\a2>
n n

and this is a sum rule.

Now in the limit of exact symmetry we can classify particles as belonging
to a given irreducible representation of the group, so that once having fixed
the irreducible representation of | ax~> \a2> we can separate in the sum the
diagonal and non diagonal contributions. By diagonal we mean the contri-
bution from one-particle states of the same multiplet as | CL">, |d2>; non
diagonal otherwise. The fundamental point is that if Qais approximately con-
served, the ratio of the non diagonal to the diagonal terms is of the order of
the symmetry breaking X In fact, if mag=my, i.e. |a>, |r> belong to different
multiplets, then

<a\n \v>= <°|[Q«> a]ly> =i <a\[QwHi]\v> =
K~Ea Ev-E a

©)

= 0(A); A= A0+ A91.

From this it is clear that when X —m0, the sum rule contains only diagonal
contributions which reproduce the group theoretical result. Then, as a con-
sequence of switching off the symmetry breaking part of A, non-diagonal
matrix elements come into the sum and give rise to O(A) corrections. The
reason is that a set of states, transforming in the symmetry limit as an irre-
ducible representation of the group, now contains mixtures of other represent-
ations since the physical states are eigenstates of the total Hamiltonian,
containing both symmetry preserving and symmetry violating parts.

From this it also follows that the one-particle term is modified and we
must include a “renormalization factor”

< «ll<ala > = a(px—p) C(a X eq) r'a <p) (6)

and the deviation of ra)(p) from unity is a measure of the symmetry breaking,
again due to non-diagonal terms.
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In fact, we can find a sum rule for r(@p). From the e. t. commutator
between opposite elements

[ft, <?-J = C(<*»)&; <?,= <7, ()

where Qj is a diagonal generator (¥ or J3in SI/(3)), we obtain, by selecting
the one particle term

Ir@ (p) B-f- (@) (jo) = 1. ®)

We notice that the 1 factor on the r. h. s., which takes into account the non-
renormalization of the diagonal generators, helps, together with the non
linear relation (8), to “fix the scale” for the renormalized coupling constants
[1]. b represents the many particle contribution

or(°b (p) = I< aJXxIn > [2—crossed term =

9
<o[Qq,H,] n>\2

(En- Eaf

c. t. = 0(A2).

This is the most general form of the Ademotto— Gatto [3] theorem
which shows that the deviation of r® from the symmetric limit 1 is of the
second order in A. Moreover we have squared denominators which improve
the convergence of the sum rule. Of course the distinction discussed here has
a practical value as long as the symmetry breaking parameter “A” is small
enough to justify the denomination of corrections for the many particle con-
tribution (as for SU(3) or SU(2) violation).

3. Let us now discuss a very peculiar point which arises when we take
into account the dependence of the sum rule on the external momenta plsp2
of lol>, la2> (onecommon momentum” if M of Eq. (3) is an integrated ope-
rator). In this way we get a continuous set of sum rules. Of course the total
sum rule is independent of “p ™ (in the simplest case of the sum rule 8) but
different choices can lead to different splittings between lowest order and
higher order terms, namely they can affect the rapidity of convergence of the
sum rule. From this point of view a possible criterion of choice is the study of
the relative size of the corrections and “as best sum rule” we can consider the
one corresponding to the “p ™ value for which br@ is as small as possible.
As can be shown on the basis of some models, this occurs for |p | = oo.
In the text, of course, we assume that it is possible to do this inside the sum.

The existence of a continuous set of sum rules is due to the fact that the
separation between one-particle and many-particle contributions depends on
the reference frame. The fact that covariance is not automatic can be easily
understood by considering that we started from an equal time commutator
and in so doing we defined a reference frame. The choice p —o00 corresponds
to specifying in that frame the state of motion of the external particles.
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To appreciate further the choice p -» oo let us consider a typical cor-
rective term

< a(p)'A[Ca,Hylin (k) > = i j'dx < a(p) \Da(x) \n(k)> =
(10)
= (2mM3i 0(p —fc) < a(p)\ D*\n(k) > = (2n)3i &6(p — %)Fa(g?d
and
2= (p —k)2— (@ip2+ m2 — Yp2+ m2)2> 0. 9)

In the limitp -> 00, g2-> 0, independent of the mass of the intermediate state
and, for instance, we find the familiar definition of renormalization ratio as
the limit of zero momentum transfer of the form factor, i.e. = /ao0).
The fact of avoiding form factors in the time-like region is important to have
some confidence in the approximation of keeping only a few resonant states in
the total sum. In fact if p is finite, g2 is time-like and varies with mn, so that
non-resonant states also can give important contributions provided that g2
for a suitable m,, crosses a peak of the form factor Fa(g2).

Finally, in the limit p “wmoo it is possible to give to the sum rule an
explicit covariant form, completely equivalent to a fixed masses dispersion
relation. To this end let us start from the commutator (3) assuming for simp-
licity MR to be a scalar operator* and av a2spinless particles of equal masses:

< «11KD MR\ \«@> = <al\Myl\az> = hRY Fy(A2, (11)

where we introduce the quantities

p=~P A=PIl-p 2. (12)
J2<;0
Selecting the one-particle term, we have:
Pi)~ (P j 2 (2n)H 6 (Pi—Pn)-«
(P~ ( J)+n¢a(n) (Pi n)
(13)

N
PO - crossed term
En—Ei

and the corrective term can be written, after introduction of an auxiliary four
vector g= (g0,q = 0), as

*This example has only an indicative value. The use of sum rules when a scalar operator
is involved should require a more complete discussion (see later the case of the mass formula).
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(2a)45<4>(Pl + q—pn) <al\Da\n>

J 4a n™a
(14)
<n\Mp\a2> - c.t.= [— e@%q0’Pi’P2)-
J 4o
As is a scalar, it is actually a function of the independent invariants
PO = o(*P) (92 k2 A2 V),
v=g-P = q0PQ 52= g2= -1-i (15)

*0
k2— (A -\-gf = A2+ g2+ 2A m.

We see explicitly the dependence on the reference frame, since different choices
of PO correspond to different paths of integration in the plane g2, k2 A2 v.

Now we perform the limitpv p2-> °° i.e., P —>«=, taking A —pr—p?2
fixed and going to the limit of infinite momentum along a direction (r say)
orthogonal to A. We have that the path of integration becomes the g2= 0
k2= zI2one (ZI2fixed) and it is easy to verify that in so doing the sum rule
takes the form of a dispersion relation at fixed zI2(spacelike) and fixed external
masses

Jr dv'
\Y Fr(}'laz <a FR("2 + 6@ P* A 52= 0, A.q= 0). (16)

This relation can be visualized as corresponding to the pseudoprocess of Fig. 1.:

Of course, it is clear that the implicit hypothesis that the exchange of the limit
P — 00 and of the summation over infinite states is harmless, amounts to as-
sume the convergence of the dispersion integral (16).

A more direct derivation ofthis representation for the e. t. commutator
and some applications have been discussed in [4]. Let us only stress the fact
that the corrections can be expressed in terms ofthe local operator Da(x) which
is usually taken to be a “gentle” one, i.e. with matrix elements dominated
by low lying states.
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The choice P -> oo isfundamental but we have a price to pay for it: while
the situation p = 0 does not allow the excitation of higher angular momenta,
this is possible when |p |-> o00.*

4. Up to nonawe have discussed sum rules derived from e. t. commutators
of the form [(), O] or [Q, J] i.e. an integrated operator is present at least once
(this has the consequence that at least one “external mass” is zero, g2= 0).
The experimental verification ofthese sum rules represents atest of the validity
of the assumed commutation relations, i.e.,, a test of the algebra. In fact to
deduce these commutation relations we begin with a well defined field theore-
tical model (usually the quark model) and then we abstract the result, assuming
its general validity. In other words we renounce explicit field-theoretical ex-
pressions of the currents of hadrons and in order to characterize them we
exploit their equal time commutation relations.

In this spirit it is natural to look at the more specific commutation
relations between non-integrated quantities i.e. between current densities
components like

Doa) (*U), Ne) (y,*] = caByAv)(x,t) 6 (x—y) f-... . 17

It is clear that commutators where one integrated quantity is involved
are more restrictive because possible gradient terms present in (17) disappear
in (2). Moreover, in this case the link with the underlying symmetry group
is lost and diagonal and non-diagonal terms cannot be separated.

The consideration of commutators between densities introduces the
complication of possible additional gradient terms whose presence was original-
ly indicated by Schwinger [5] in the case of electric current densities, when
space components are involved. We have no complete theory for them, but at
least in some models [6] it is possible to show that, for space labels, they have
definite symmetry properties so that they can be presumably eliminated by
considering properly symmetrized commutators. Analogously for both time
components there is, for instance from perturbation theory, the indication
that there are no gradient terms.

Anytvay, let us start from the commutator, where ive assume the absence
of Schtvinger terms

L/00 JW (y,D] = (x,n Ox-vy). (18)

We consider its matrix elementbetween |al>, |a2>,we multiply it by e‘dix
e-iQt-Y, we integrate over x and y and after insertion of a complete set of
intermediate states, we find

*The last (but not the least) advantage by the choice P -#moo is the possibility of neg-
lecting disconnected graph contributions. In fact they correspond to states of infinite mass,
which on the basis of the assumed convergence are taken to be negligible.
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cByFy (A>) = ~(2n)30 (p , + pfy<allj(a>|n> «<n\Bn\a2> —c.t. (19)
M

From the previous discussion we can guess the result we shall obtain after
performing the limit P -> oo, taking zI2 fixed. In this case, we have
no energy denominators and the external “masses” of the particles will be

fixed at the values ql2= —qg\2 Thus the sum rule will be of the form*
capy FM (Z)2 = Jdv'a» (v\ ql ,ql). (20)
where is a suitable amplitude.
5. To derive this sum rule in a more elegant way, we prefer to follow the

approach given by Fubini [7], where explicit use is made of dispersion relation
techniques.
We consider the two quantities

Tf, = i$dx es>m0 (*,) <Pl I[IM (*), J(f) (0)] Ip2>
(21

C =y Jdxeb 'x<PiINe )(*)i>hk)(0)][f 2>

which are in some way related to the scattering process of Fig. 2 (pv p2repre-
sent spinless particles). We introduce the kinematical variables (Pl + 4i —

= Pi + 4i)

D_ Pi+ Pi A=Pi —Pn
2
(22)
v=P-qi, t= (PlI- PIf = A2
On invariance grounds we can develop T“f** and in elementary invariants,

* |t can be shown that this procedure introduces a limitation of the form Yg2+ Yqgl ~

> [ /J2 and analogous ones obtained by circular permutation.

** In this context we can recognize the Schwinger terms from another (equivalent)
point of view. The time ordered product is not a completely covariant quantity in the sense
that it does not transform as a second order tensor. In fact, owing to the incomplete definition
at the origin, we can add a certain number of derivatives of 6(x — y) which result in a poly-
nominal in g. This means that the true covariant amplitude given by the decomposition (23)
and T/xv defined in (21) differ just by the Schwinger terms. It is clear that these terms can
affect the asymptotic behaviour and therefore the non-subtraction philosophy of Eq. (25).
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namely
TN —ALPItR,, -j- A2qL, P, + A2qg2flPy+ BIP*qlv+ ... A 3)
—°iBuB + aigmK + aslUnK + A2 div+ eee
where the scalar functions Ax.. aldepend on v, t, g\, g. The mathematical

relation between T" and can be expressed as

Tiy= Ht,y, (24)

where H means “Hilbert transform” with respect to the variable v and (24) is
understood to hold among the components of TRy and t%,, developed in the

set of invariants (23). In other words, we assume unsubtracted dispersion
relations, at fixed t, for the A functions:

Al = = -\-/-I----'--\-/ai(v‘, t), (25)

To exploit the e. t. commutator we apply glfi to TRv:
90 TM=i$ (-id, eT XNdx0 (x0) <pxI[JP (x),JiR)(0)] |p2>

= —"0{x0e4d4'sdx < pj [DIx), JEw (0)] \p2> — (26)
—j ®(*0e'A'xdx <pr|[Jft0O(x),Jin (0)] jp2> = id —cyy < pi [IEV)\p2>,

where an integration by parts has been performed, and we have used the
commutation relation

[Ne (*)Jifi (O)k-0 = W *w (0)3(5). (27)
We can summarize the result of this operation as
9di P di9adfiv  (ii/iPd  PdOifiyhiv "My Pi!Py iPi e (267)

Putting:

Df = —j 0 xoeb xdx <pl\[DA(x),JiR) (0)] Ip2> =
(28)

— P4+ P24y + P44
df = -Pj e xdx <plI[Ha(x),JiR)(0)]|p.> = dIR+ d2qllA+ d3gq2]

Dv— Hdv (29)
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and
Il = TKagymt | oraw | (30)
(F2(t) =0 if is conserved)

we obtain from (26), comparing the Pv coefficient

vd + qlmQA2+ ?21eq2A A3 —Dt — —2cay (i),
(31)
vel+ 91eQ°2+ 51'72272«3 — "~ = 0

and from (267)

-~ Jdrots (L6 0\, 1) - GRYyFM (1), (32)

where according to its definition (23), “a is related to the imaginary part
of the scattering amplitude for the process of Fig. 2. In the same way we can
get two other sum rules by comparing the glvand g2 coefficients.*

The sum rule (31) is the most general consequence we can deduce from
the assumed e. t. commutator (27). There are some comments to be made
about this result.

a) First of all our sum rule has nothing to do with symmetry breaking
because only currents, and not charges, are involved. As a consequence we
have not such “gentle” operators, as divergences, to deal with. Anyway, if we
want to get back to the sum rules of the kind (16) it is sufficient to consider
the limit gl —agt+g2= 0, gl = tso that from (31)

and Eq. (32) becomes

- 1dj(v',t,gl=0, gl=1 = cay FjW (t) (329
2nJ v

completely analogous to (16).

The second remark concerns the dependence of the sum rule on ql, ql, t.
We know that it can be obtained for g{, gl, t spacelike but can we find a “best
sum rule” in this case also, namely a configuration corresponding to the most
rapid convergence of the sum rule? Or, more modestly, does the sum rule
converge for any value of the above momenta? We have no complete
answer to this question [8] and we shall limit ourselves to a few considerations.

* For these sum rules the presence of Schwinger terms is by no means excluded.
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b) To better visualize the situation let me consider an explicit case,
namely the commutator between isospin currents —) -> (3). After selection
of the one pion contribution we get

K@O=F+@O)F+(@)+ ” JV+-\v' tqlq)dv. (33)

As long as the t dependence is concerned, the right hand side of the previous
equation is an analytic function in t with given poles and cuts. How can the
left hand side reproduce these singularities? For instance, if we are concerned
with the g-meson pole the simplest possibility is to add a sort of subtraction
constant ~ (m7 —t)-1, assuming the good convergence of the integral, or,
alternatively, to deduce the pole in t from the blowing up to the integral i.e.
from the large vbehaviour of av In fact in a Regge-pole model, the asymptotic
behaviour of axis

eq(r, ) —P * “29(t,ql, q) (34)
and

dvial(v,y e -e 35
v ally. ) a(t) —I t>m t—m2 (35)

This means that in the timelike t region the dispersion integral can provide
the “asymptotic tail” which guarantees the consistency of the sum rule,
developing the right hand side “t” singularities.*
c) The last point concerns the gl, gl dependence. As we remark from Eq.

(32) or (33) the right-hand side is independent ofq\, gl so that we must presume
that strong cancellations occur in the left-hand side integral. (Of course our
sum rule rests on the assumed simplicity of the e. t. c.). To fully exploit this
fact, we multiply (32) by (gl — ml) (gl — mRB) ma, mB, being the massess of
vector mesons (the g-meson in ex. 32) with the same quantum numbers of
JM\ * If we extrapolate to gl -> ml, gl = mRB, the right-hand side becomes
zero while the integrand of the left hand side now involves the quantity
alr, t, ml, mp)to be related to the imaginary part of the scattering amplitude
P2 + B~>PI + <%

I dvtat(v',t,ml,mf)= 0. (36)

This is a sum rule for a strong-interaction amplitude i.e. only strong interaction
parameters are involved. Thus, starting from the region ql2 0 where weak
and e. m. interactions are described through currents, we go to the gl 2=
= m\tp > 0 region of strong interactions. The interesting point is that result
(36) is completely independent of the form of the e. t. commutator (provided it

* The structure of <p(t, gf, ql) should be rather complicated. We could guess for it a form
Ao\ gh) = a@- H<plalgl)+ Gg2(t); 2Mm2= 1
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is a local operator) i.e. independent from current algebra. This strongly suggests
that a sum rule like (36) can be directly derived from the theory of strong
interactions. This will be discussed in the final part.

Il. Applications

1. In the previous lecture we have seen a general method which enables
us to obtain sum rules from current algebra. The general form ofthe sum rule is

o dv'a(v',t, qj,ql) — F (1), (1)
where an “on mass shell” form factor F(t) is given as an integral over the
imaginary part of an “off mass shell” scattering amplitude a(v', t, g\, gl), since
the q) should be considered as arbitrary “masses” associated with some object
simulating particles fields.

In this lecture we shall, primarily, give an account of the most interesting
sum rules which derive directly from current algebra and so involve weak
interaction quantities. We shall obtain our results using the Fubini dispersive
method, by an appropriate definition of commutators and states. We shall
point out that many of the results we shall illustrate have been obtained by
the original authors using different methods, namely either following the
Fubini, Furlan [2] suggestion of introducing completeness in the matrix
elements of the equal time commutators of “charge” and currents in the
“infinite momentum frame of reference”, or applying the equivalent, but
completely covariant approach proposed by Fubini, Furlan and Rossetti [4].

Let us begin by briefly recalling the main steps of the method, as has
been explained in the previous lecture. One starts by considering the equal-time
commutator between two currents (which are local operators) and then con-
structs the general quantities

A1) jj dxeiQxe (*0)< pj flr>(a), J W) (0)] Ip2>, (2)

tif> = 1 \dx eiQx< Pl I[jp (x),IJW (0)] Ip,>. 3)

p, Vare Lorentz indexes and a, B those of internal symmetry, and the states are,
for the moment, scalar particles states. Introducing the kinematic variables

P=Pi+%—Pi; p= '*P

(4)

A=Pi—Pn v=P-qi, t= A2
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one decomposes then, on invariance grounds, T#, and in the same set of
elementary invariants, namely

Tf,, = AIPpP, -f- A2qlflP, -j- A3glti P, - (5)
= «1P?P, + o2¢qlfiP, + a3q2/JP, + ... (6)
the invariant functions A, a, ... depending, of course, on v, t, gl, ¢ The A

functions are then Hilbert transforms, with respect to the variable v, of the
corresponding a:

Mv,t)'=Hat = N — at (7

By taking the “divergences” qlfl T* and qlfl tAy it can easily be shown

that starting from Eqgs. (2), (3) and after partial integration the following relati-
on holds:

(<wH — H4n) + ,v= Cayy < Piljiy)Ilp2> . (8)

To write (8) we have taken into account the equal time commutation relation

[Ne (X)JIB(Q)xC0 = Cx3I™ (0) 6(3).- ©)

By observing that, on invariance grounds,*

< PLIITY)\P2> = (P I+ P2UF\V)(t) + (Pi - p2VvFiy)t) (10)

it is almost straightforward to derive from (8), using the decomposition (5)
and (6), the fundamental equation

) a\ai=r, t, g\, g\) dv = CayyF\y)(t) (H)
n

To derive from (11) explicit sum rules, we shall, first of all, separate the
one-particle term from the continuum of many particles contribution. This is
easily done by writing the general one-particle matrix element of a current as

< PilNe Im> = (Pi+ m),PT>(??) - qi, FW LW (12

= m —Pi-

*We assume here, in order to simplify the notation, an invariant normalization for
the states, namely

<PilPr> = 3 2BO(Pi—P) =
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From (3), introducing a complete set of physical intermediate states, and
selecting the PRP,, coefficients, in the one-particle contribution, evaluated
with the help of (12), it follows immediately that (11) can be written as:

PW)P?> (?2!)-(« ) J\ai(v)dv = CaRyF\yHt). (13)
n

cont

In many of our applications we shall he concerned with the particularly
simple kinematic configuration of gx= q\= t— 0. If this is the case, the
evaluation of the continuum contribution can be put in the most suitable
form by observing that from (3), by integrating twice by parts, it follows that

im4YyC =y Je‘4l-x< Pi I[A, (X), DBR(0)]\p2>dx = wal(V); (14)

where w is a scalar function; on the other side from (4) one has simply
9,4 = t2a(v,0,0,0)

and no other contribution appears since gx= 2= gx*g2= 0. Our sum rule
then takes the form

{FAO)F\N(0)-(x->B)} + =~ [ A % =A~A(0),  (15)
In J \
cont

where tv can now be interpreted as the absorptive part of the amplitude for
the scattering of the zero mass “particles” Dgi3 on the particles px and p2
2. Besides current-current commutators, we shall consider another type
of commutator in some applications, namely that between a current and a
local scalar operator, say MB(x), B being an index of internal symmetry. We
can treat this simpler case exactly in the same way as we derived the previous
sum rule. We introduce the quantities

= ije dxB (*0) < PLI[;(*)(x), MB()] jp2> , 17)
<B) =1y J> IXdx <px\[y>>(*), MB(0)] Ip2> (18)

which we decompose as

T,= AP, BgXi-j- Cqw, (19)

th= aPu+ bq]fl+ cq2,. (20)
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We then derive
(qIRH - 4 ghi)t, = hdy < PI\My\p, > (21)

having taken into account the commutation relation
[V (*), MB(O)]xo=0= KByMy(0) a(x). (22)

The right-hand side of Eq. (21) is now a scalar function, say R() and we obtain
the sum rule

-i- fe>v, 1,0\, ql)dv = hxyRM (t). (23)

270 j

Again the one-particle contribution is easily separated (by looking at the Py
coefficient in the one-particle contribution to the expansion of tf through a
complete set of intermediate states) and we can write our sum rule as:

{it> (gf)RM(ql) - (a» R)} + J2- \tz)iW) (v)dv = hxByRM (t). (24)
n

cont

Also in this case, in the particular kinematic configuration g\ — gl = t = 0,
the continuum contribution can be more easily expressed by observing that

yrtiv= “ jeid x <Pl [D"x), Mp(0)] \p2> dx = waB(v), (25)
nJ

w being a scalar function which, looking at the decomposition (20), equals va
in the considered limit. In this particular case the sum rule (24) can thus be
written as

{F\*>0)RM (0) - (@au—>R)} + — dv = h,yrM™M (0). (26)
2n v

As in the previous case w can be interpreted as the imaginary part of the
scattering amplitude for the process Da-f- Pl > MR + p2at the limit of zero
masses for the “particles” D and M.

Up to now our considerations refer only to the simplest case where the
external particles PI, p2 are spinless particles. If we want to generalize the
method to higher spin external particles, the only complication which would
arise would be the appearance of more and more terms in the general invariant
decomposition of the kind (5), (6) or (19), (20). We shall not treat any higher
spin case in its most general form, since particular kinematic configurations
allow us to greatly simplify the deduction of the particular sum rules in which
we are interested.
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Let us point out only that if it is possible to average the spin of the exter-
nal particles, exactly the same formulae hold as those we have written for the
scalar case.

3. The general formalism we have discussed allows us to obtain explicit
examples of sum rules, by only particularizing the commutator from which we
start and the physical states between which it is sandwiched. As first examples
we shall consider a set of sum rules which present two common features; first,
the evaluation ofthe continuum contribution can be connected to the imaginary
part of amplitudes for a physical process through the assumption of the validity
of the PCAC (partial conservation of the axial vector currents) principle and
thus calculated from experimental information on scattering processes;
secondly, they must actually be considered as a sort of “low energy theorems”
since they are deduced in the limit g\= gxeqg2= ...= 0.

As a first explicit application let us discuss in some detail the famous
and elegant sum rule, obtained independently, one year ago, by S. L. Adrer [9]
and W. |I. weisberger [10], for the axial vector coupling constant renorma-
lization in neutron B decay. To this end we must consider the commutator
between the two opposite axial vector currents having the same internal quant-
um numbers asthe n+and the n~ which we shall call andA” = [Aj+]+
and we take it between proton states. Putting gl — gl = t= 0we have pl= pA
and we can average over the spin of the external protons so that the general
treatment can be applied. We shall exploit the commutation rule

[<H (), A<>(0)PO0= 21<3>(0) O(x), (27)

where j[3is the isovector part of the electromagnetic current (which is not
renormalized), whose matrix element between proton states is, after an
average on the proton spin,

<p\13)\p> = Y «{yl.*4(0)} U = IV (28)

the isovector form factor being normalized to

F\ (0)= 1. (29)

Thus, one immediately has from (11) the sum rule
]. [a{v,0,0,0)dv: 1, 30
2nJ (39)

where “a” is the coefficient of the P* Pv= p” p,. term in the decomposition of
1
o=y lenr-*<plIn[<+) (), A[ 4°)] [p> dx- (31)
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We remember that the general form of the matrix element of Ap between a
proton and a neutron state is

<>11ApH) In> = iGi{rAybyfIG(qgr) - glMysRB (g?)} un, (32)
= n—Pv
where ra is the ratio between the renormalized axial vector coupling constant

ga and the bare one ga-= gV:

rA = én/gv
and

G() = 1. (33)

We can now introduce a complete set of intermediate states in (31) and easily
extract the neutron contribution (which is the only single-particle contri-
bution, since in the crossed term we should need a twice charged particle).
We have thus (remember that an average on the external proton isunderstood)

<> = L (anE_r d3n 0o{p + q- n)i2urAy5y, unun
' 2 J {2nf2E ”

Y5 u-= O{(P + g)2- mn}Y raA®

mTr{(p + mp)ysyR(p + g+ mn)y6y,} =

mh — mp

) 8Pi- Pv+- ¢+= 2nTa a(v)p,,Pv em

The one-particle contribution to the sum rule (30) is then simply the square of
the axial vector renormalization ratio; since we are considering the case
az2= q=2= t = 0, we can now write (30) in a form similar to Eq. (15), namely

2, 1 f New J i (34)
Fn+bl) —

cont

where in this case the scalar function w is given by
w = emx<p I[D+(x), D_(0)]jp>dx; D=Q AIL (35)

Two comments now arise: the first is that, looking at Eq. (34) and re-
membering the general discussion, the value 1 would be considered as the
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symmetric value of rg in agreement with the fact that, in the symmetry limit,
w would be automatically zero since the currents would be conserved and then
the D's would be zero. In the case we are treating, however, we do not believe
in this limit, since the underlying symmetry group is the SU2X SU2group (or,
more generally, the SU3X SU 3 one) and we know such a symmetry to be very
badly violated, being valid only in the limit of zero baryon masses. In this and
analogous cases we can thus never disregard the higher contributions which
are of fundamental importance. The second comment is concerned with the
form of these higher contributions; we will indeed point out that (35) has the
form of the elastic unitary condition where only squared amplitudes appear
and they are related to the imaginary part of a forward scattering amplitude
and then, through the optical theorem to total cross-sections. Some care
should, however, be taken in handling experimental data due to the “soft”
character of one of the incoming particles.

Our final task isnow to transform the expression of the continuum
contribution into a suitable form for practical evaluation. To do this in the
simplest way we admit, as already mentioned, the validity of the PCAC prin-
ciple, i.e. we assume the validitiy of the Get11-Mann, Levy [11] proportion-
ality relation between the divergences ofthe axial currents and the pion fields,

D+ = Ccpt (36)

and we admit that (36) still remains valid when extended to zero mass pions.
The value of the constant C can be deduced in various ways; the simplest is
to consider separately the matrix elements of the two sides of (36) between
nucleon states; by remembering (32) we have for the 1. h. s. matrix element

<p ID+In> = — {2mrAG(q2 + 2B (g2} uipy5un 37)
and from the r. h. s., one has

<p\j+\n>

C<plet|a> —C T c /2 ml%)'g(qz) urybun- (38)

GbwK )

By equating (37) and (38) and letting <f go to zero we derive

Y2mrA m2

SN Gpn (0) (39)

where GpN (0) takes into account the fact that we are working with zero
mass pions.
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Introducing (36) in (35) the spectral function w becomes

21)4 C 2
@n) © “32{\<Pi\j+\n > \*o(p + 9- Pn) —\<p\j-\n>\2-
m m

ca(p—q+pn} (40)
and it can then be easily expressed in terms of total n+ proton cross-sections.
Remembering that, with our normalization

(flux) eJot = Y (2n)4|T,|28(P, - Pn) (41)

and
(flux) = 4p0g0JIVTl; Vi = {(pqaf - p2?2}pgql (42)
we have thus, at the g2= 0 point:

2 (27)41TnR&4>= 4vatot (y, g2= 0) = 4r [£,,, (0)]2crtot (v), (43)
n

where we have introduced an inelastic form factor to correct the physical
cross-sections to zero pion mass.
Introducing (43) in (40) and making the value (39) for C explicit, we have
4m2r\ G,.,(0) 2
= 2, {o*>-p — as+p} (44)
g'iN Gpn(0)

so that our sum rule (34) attains its final form

2m2
ra2= 1+ — atot ] (45)

D

where we have made the approximation of taking (G;,(0)/GpN(0) = 1 assuming
the two extrapolated values to go in the same direction.

The sum rule for ra in the form (45), which is that obtained by Adier
and W eisberger, presents, besides a truly elegant aspect, the possibility of
easily evaluating the continuum contribution. This evaluation, based on the
experimental data on pion-proton scattering has been carefully performed
separately by Adier and Weisberger, Who respectively give the values of

(ray = 1,24 and (rA) = 1,15*

*The difference between the two results can be mainly ascribed to the different pro-

cedures in handling the zero mass pion limit. Adier uses PCAC directly in the form (36),

while Weisberger n3e3 analytic continuation in d~by retaining only the pion pole. In so doing
only physical quantities are involved, and the sum rule (45) becomes

A2= 1+ é nN

where K is the momentum of the (physical) n in the laboratory system.
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to be compared with the experimental one [12] of

(Fa)exp = b20 = 0,02 .

We wish to emphasize that the convergence of the sum rule (i.e. the
validity of the assumed unsubtracted dispersion relation) is ensured by the
Pomeranchuk theorem which we could consider as the dynamical mechanism
which minimizes the corrections.*

The result we have obtained, namely that the higher corrections to the
axial vector renormalization for B decay can be expressed in terms of physical
cross-sections, depends, of course, on the fact that the D's have the same
quantum numbers as the pions. It is then clear that analogous results could
be obtained by exploiting other commutators involving operators having the
same quantum number as other physical particles ase.g. K mesons. Investig-
ations of this kind have been actually undertaken by several authors [13],
generally by means of the infinite momentum frame of reference method.
By translating their language into our present one, we sketch, briefly, the
investigation undertaken, for instance, by D. Amati, C. Bouchiat and J
Nuyts. One starts by considering the commutators

VA (), A<n) (0)]  and [AMA (x), A\L-]]

where A+ — [AM N+ and AN = [Aj/~*]+ are the axial strange currents
with the same quantum numbers as the K+ and K°, respectively. Following
exactly the same procedure as in the previous case one obtains two sum rules
strictly analogous to (45), where total cross-sections of charged or neutra
kaons on protons appear. Owing particularly to the lack of experimental data
the numerical evaluations are not so good as in the Adler —Weisberger
case. The main result of the investigation by Amati, Bouchiat and Nuyts is
the derivation of the ratio between the symmetric (D) and the antisymmetric
axial coupling (F) which we must consider in SUs. The value obtained is
D/F = 2,7 to be compared with the experimental one [14] of about 2.

4. The relations we have examined, deriving from the commutators of
two axial vector currents, can be referred to as “scattering sum rules”. The
question arises spontaneously if there are analogous “photoproduction sum
rules”. The next example will, therefore, deal with such sum rules, which
derive from the commutator of an axial vector current with the electro-
magnetic current. In particular we shall obtain two sum rules for the nucleon
anomalous magnetic moments which have been derived by Fubini, Furlan

* Experimentally one can fit the high energy data with
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and Rossetti [15], using the covariant approach. By translating again into
our present language, we shall consider the two commutators

[A™ (x),I[39(0)], (46)

(where we have adopted the SU3X SUs notations to label the isovector axial
current (Ajif), the isovector (j]13) and the isoscalar (J*) part of the electro-
magnetic current), taken between nucleon states. Following our general con-
siderations we define

Tk= 1ev) < Pi 1W/<3>*)» 'N138) (0)] p2> e4lI'xO (x°)dx, (47)

/. = < Pi Ai§™)inNna3g ) !'Pi> eigi'xdx, (48)

where evis an arbitrary (for the moment) vector introdu....d for convenience
Since, as one easily realizes, T/ and tf are to be connected to photoproduction
amplitudes, we shall look for their decomposition to that given by Chew,
Goldberger, Low and Nambu [16] in their fundamental paper on photo-
production theory. We can, however, choose the particularly simple kine-
matic configuration gl = g\ —qymg2= 0, and, furthermore, we can choose
ev as being orthogonal to the photon momentum g2 and also to qp gql-e —
= ee= 0.In the C. G. L. N. decomposition only two terms survive in our
limit, namely

M = y5(ye)(y-q2, N = y5(y =) [y mx,y «q2] (49)

so that we can decompose THand tfl as

T.- PMi M+ B,N) + qU(A2M + B2N) + ..., (50)

C —P/Aai M 4" Ui N) 4 ii/(@2M 4- b2N) - .. .. (51)

In this case we obtain a sum rule for the invariant function av since we have

@3H —HaQ,D*<= M — lax(v)dv= 0 52)

having taken into account the commutation rules
4 3)(*M '38 (0)]x0= 0. (53)

The sum rules we shall consider are then:
j a38)'v)dv — 0 (54)
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To evaluate the one-particle contribution we define the following matrix
elements

< PIIAIYIP2> = iul {IBWWMG (il) — bMbB (g?)} «2 (55)

4i~ Pi Pi» aM = — [ Wri-

nd for the nucleon contribution we can then derive

1
J«Nucleon vy dV = === T-F% ¥{0) = (57)
71 m

Ks—Kp + KN

Now, to express the continuum contribution we can follow an analogous
procedure to that used to obtain Eq. (26). In this way we are finally led to
the two sum rules

(58)

where (38 are the coefficients of M in the continuum contribution to qt*,
i.e. the a’s can be deduced by selecting the coefficients of the M terms from
the general quantities

— < Plji@38+eln> <njD3Ip2> (Pl —g2—pn)}.

By neglecting the continuum contribution in (58), we obtain, as usual,
the symmetry limit. In this case we find the (expected)* bad prevision
Kv = Ks = 0.

However, we do not have to believe in it, since the axial currents are con-
sidered, and we need the continuum contributions. Through PCAC, these are
expressed as dispersive integrals over the imaginary parts of 1 photoproduction
amplitudes; in the present case they cannot, however, be directly connected
to physical cross-sections.

* 1t is, in fact, well known that as a consequence of the ybinvariance the anomalous
magnetic moment is zero for massless fermions.
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For a first approximate discussion of the continuum part of Eq. (58) we
shall assume the dominant contribution to come from the lowest lying re-
sonance NZ3 i.e. in an SU3scheme, from the decuplet states. This “decuplet
dominance hypothesis” is suggested by two kinds of considerations. First of
all, in most ofthe dispersion treatments the dominance of the 33 state has been
assumed in good agreement with experiment; secondly SUU considerations
seem to put the decuplet 3/2 states on somewhat privileged ground as members
of the 56 supermultiplet. Under this decuplet dominance hypothesis the two
sum rules (58) reduce to

?23Kv = ¢33 (60)

73KS= 0, (61)

since, as a consequence of isospin conservation,only in the first case can the
33 resonance be excited. As from Eq. (60) r35=0, Eq. (61) tells us that, in this
approximation, Ks still remains zero.

In order to study Eq. (60) together with the possible corrections to the
decuplet model we need to use experimental information about the con-
tinuum distribution. Assuming PCAC, we can introduce in Eq. (58) the n°
photoproduction amplitudes

a(38 = 73 2r.im A(3,8). (62)
&N

and obtain the two sum rules

Kv- *m* . | Im A<v'>(v)~ = Q, (63)
gnN N v
1, dv'

ks - Im A<s>(v') —-—= 0. (64)
gon 7 JL v

Let us first study Eq. (64) under the hypothesis of a decuplet dominance.
In order to have an estimate of these contributions we shall use the isobaric
model of Gourdin and Salin [17] which gives a satisfactory description of
the photoproduction process. In so doing we obtain
AC 2/ mj2im

S«n] 3 Imn! I M,

(65)

where A and C are phenomenological constants describing the N n N33 and
N y Na vertices which have the values*

A= 181 ; C= 0,345 .

*These values are not exactly those given by Gourdin and Satin. For a discussion
on this point see [15].
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From (65) one obtains for Ky the value

Kv = 3.98, whereas (Kv)exp= 3,70 .
In the same approximation

Ks —0, whereas (Ks)exp= —0,12 .

The calculated values are in reasonable agreement with the experimental data.
We can observe at this point that with our approximation, we overestimate
both Kv andICs; the same thing happensin the Adler—Weisberger case: if
one takes only the 33 contribution, the value obtained is indeed rg = 1,44;
the contribution ofthe higher states then reduces the value of rg approximately
to the experimental one.

To estimate the role of higher states in modifying both values of Ky and
Kg, we have considered the next resonant state, namely the 1V131515) which
plays an interesting part in the Adler—Weisberger relation. From the
standpoint of experiment the N 13 plays a much more relevant role in scat-
tering than in photoproduction, so that we can expect that the rather good
agreement given by the decuplet dominance model is not going to be spoiled.
Indeed taking into account the 13 contribution, always with the help of
the isobaric model, we obtain the values

Kv= 380; Ks= 0,176.

These results show that the 13 contribution has the correct sign and order of
magnitude to improve the agreement of both sum rules.

Finally we shall point out that the assumption of retaining only certain
states has no absolute justification, but is an approximation depending on the
kind of the sum rules studied.

The sum rules discussed for the nucleon anomalous magnetic moments
were related to the n photoproduction amplitude. It is then rather obvious
that by considering axial currents having the same gquantum numbers as the
K mesons, one can relate, in an analogous way, the anomalous magnetic
moments of the hyperons to K photoproduction amplitude. For instance, by
considering the commutator

Ni-4H(*), JT (0]

taken between a S + and a proton states, one can obtain a sum rule for the
anomalous magnetic moment Ky;+of the S +. This sum rule has been analyzed
by Mathur and Pandit [18] under the decuplet dominance assumption and
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the calculated value is

g
/<E+ = 3,6------- , Whereas (1CE+)exp= (3,54 1,5)e/2mp.
2mp

The same authors derive analogously also the J1 anomalous magnetic moment
for which they obtain

KA= —0,84—-—, whereas (KAPw= (—0,69 -f- 0,13) e/2m,, .
2mp
The agreement between the calculated values and experimental data is not bad
even if many further approximations are necessary in these cases, such as
that of connecting the coupling constants relative to the Y* (1385) resonance
to those of the N3 by a simple Clebsh—Gordan coefficient, owing to the
lack of precise experimental information.
6. Up to now we have restricted ourselves to consider gl = gl = t = 0.

If we now retain the restriction g\ = gx mg3— 0, but allow gl = t==0, we
can obtain sum rules not only for coupling constants, but even for form
factors. As an example of this kind of sum rule, we shall mention the two sum
rules that can be derived from the commutators

[4->(*),JW (0)] and [4 3>(*), J<3>(0)] (66)

taken between nucleon states. It is easily recognized that we are then led to
dispersive integrals involving electroproduction amplitudes instead of photo-
production amplitudes. By treating the commutators (66) in the usual way,
assuming PCAC and approximating the continuum contribution under the
decuplet dominance assumption through the Gourdin—Salin isobaric model,
the two sum rules can be written as

I c' (1) M+ m

G(t)= F\ (t) - t 67
® ® rA ml 1/3 3M?2 67)

X c’ (1) M -f-m
rA m'ip 3M 2

0=KVFY () F 4m2 (68)

*7(0) = *7 (0)= 1,
where X' and c' are proportional to the N n N3 and N y N3 coupling con-

stants. Eqs. (67) (68) have been derived in a recent paper by Furlan, Jengo
and Remiddi [20]. By combining these two equations one has

G(t) = F2(t Yo 69
(t) (t) ant. Y F20) (69)
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This equation allows the evaluation of G(t) in terms of the well-known
electromagnetic form factors and it should represent a good approximation
for not too large “t” (t/m2< 1). In particular, looking at the slope at t — 0,
we can obtain an indication of the mass of the axial vector meson. Assuming
the simple polar form

G(t) = Mo\t (70)

and using the experimental fit for the vector form factors we obtain Ma =

= 0,815 BeV. If we take into account the effect of N 13resonance the resulting

mass is Ma = 0,765 BeV. These figures have to he compared with the result

from the CEBN neutrino experiment Ma ~ 0,7 BeV.

7. A particular case of our general sum rule (13) which is remarkably

interesting is that in which we assume the kinematical configuration q\ =

= g2— g2 and t = 0. Let us illustrate this with the following example. We
consider the commutator between two opposite vector currents

(71)
sandwiched between proton states. As t= 0 we can again average on the
proton spin, so that all the general formulae which we have deduced at the
beginning, apply. We can, thus, write a sum rule of the kind (11):

—jaMg20g20)dv — 1. (72)
2n J

In order to separate the one-particle (neutron) contribution we write for the

matrix element of between proton and neutron the usual expression
. F2 (g2
<P IJIH)Ie> = UP\we Fi (?2+ iv ng]g)
so that the neutron contribution to t., is
. . mA—mi \ 1
W =j(2ny i-d [v — Tr{(> mp)’

F, I _
YBFI—&I@%—Zm (P+ 9+ mn) YWFi+ aTy, om

= n6(v) ~ Tr {pyvPYuf | —P flpegeP ¢e°} =
= 2n PsPAFf + -—— -F 2P/upv +
4ml
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and (72) becomes

| = (F2 (q2)2! s F1(2232¢ -Iir;\][a(\/,qZ)dV; 1]

cont

This sum rule has already been derived in one form or another by several
authors [21]. The interest of (73) lies in the fact that it shows (almost) expli-
citly the dependence on g2 At g2= 0 we have the trivial identity Fi (0) = 1
since it could be demonstrated that “a” is proportional to g2

On the contrary, if we take the derivative with respect to gq2at g2= 0,
we obtain:

. [FT(°)r 1 8 N dv=0. (74
Fi(g2\  + N San(V,Q) v . (74)

cont

As long as the many-particle contribution is concerned one could demonstrate,
as has been shown by Cabibbo and Radicati [19], that the sum rule can be
finally written as

(75)
"0

where <ry> is the mean square isovector charge radius and <*2 and 032 are
the total cross-sections for production of | = 1/2 and | = 3/2 states by “iso-
vector” photons on protons. If we try to saturate the integral by a few low
lying resonances the agreement of (75) with experiment is not exceptionally
good, since the contribution of the 33 resonance is of the wrong sign. Roughly
speaking, ,F24m2is equal to <r&> and the contribution of the iVBto the
integral is negative and of the order of magnitude of one half the anomalous
magnetic moment term. However, above the 33 resonance, the cross-section
is mostly | = 1/2 and there is a good chance that the sum rule is, in fact,
satisfied. As far as we know, nobody has given a satisfactory evaluation of the
continuum contribution to < r\ > . This sum rule isindeed on a different footing
from the previous ones.

8. All the sum rules we have considered up to now involve axial charges,
i.e. quantities which should be considered in the framework of the SU3XSU3
algebra.

There is a very simple reason for having so far disregarded the simpler
SU3algebra built up from vector currents, which, moreover, corresponds to a
symmetry which is much better observed in nature. When we have to deal
with vector currents the evaluation of the continuum contribution to the sum
rules is more unpleasant.
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In the axial vector case the evaluation of the many-particle contribution
is based, in most cases, on PCAC, i.e. on the fact that the pseudoscalar mesons
have the same quantum numbers as the divergences D. For vector currents
we do not postulate a proportionality relation between current divergences
and particle fields to connect the many-particle contribution to “physical
amplitudes” ,since,up to now there isno experimental evidence on the existence
of a (well established) fundamental multiplet of scalar particles. It is clear,
however, that we could introduce scalar particles into the theory, either
believing in their existence, or as a suitable tool to express our results in a
more compact form, through scattering amplitudes and cross-sections; but
such a procedure is, at least at the present moment, ofrather academic interest.
In so doing we should indeed introduce a lot of unknown masses and coupling
constants which would be presumably very difficult to relate to known quant-
ities.

To evaluate the many-particle contribution we shall thus, in this case,
apply different methods, for instance, perturbative-like ones. As, however,
SU, gives a much better symmetry than SU,X SU, the only polar terms give,
in general, a not too bad saturation ofthe sum rule, so that, even if the methods
used to evaluate the further contributions are rather rough, the results are
sufficiently good.

We shall now illustrate the sum rules coming from SU, algebra with a
few examples.

First, we shall consider a sum rule for the renormalization ratio for the
weak strangeness changing vector current, which was first derived by Furrtan,
Lannoy, Rossetti and Segré [22], some time ago, using the infinite moment-
um frame method.

W ith the present method we start from the commutator

D<K (), 1k (0)], (76)

J<K+>= [J Jif 7]+ being the vector current having the same quantum numbers
as the K +, taken between jt+ states. We can then choose the simple configura-
tion of g\ = gl = t = 0 and then we can immediately write a sum rule of the
type (15). For the one-particle contribution we take into account that

<a+ N(«+>IK0> = (p,, + pKIMF1(f) - gl F2(?), 77)
where

Fi (0) = rKn (78)

and, to write the right-hand side of Eq. (15) we remember the commutation
relation

[i1K#H) (%), (0)k - 0= |I<3>+ | \]<5(X). (79)
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Our sum rule then takes the form

(80)
cont
where, according to the definition (14)
(V) = — @2m4ar At {|<a +IDK+\n >\26(pl+ gl pn)
(81)

— I <n+ IDK-In > j26(PI —q2—pn)\.

To give an estimate of the many-particle contribution we performed a
very simplified calculation taking into account only the lowest lying two-
particle states treated in a perturbative way. To be more explicit we observe
that in the first term in the right-hand side of Eq. (81) the states | n should
be 1+ with the same internal quantum numbers as the KO, whereas in the
second term |n > should have strangeness 1 and charge 2. The lowest two-
particle states with these quantum numbers are composed of a pseudoscalar
and a vector meson and these are the only states we have taken into account.
We then had to deal e.g. with matrix elements of the type

< 7iT ID"+ jQ@KO> (82)

which we treated in the polar approximation represented by the following
graphs

(83)

(the cross stands for D[<®. In this way the matrix elements of the kind
(82) are reduced to known quantities, i.e. to the matrix elements of the D
between one-particle states and strong coupling constants. In so doing the
result is still independent of the transformation properties of the breaking
Hamiltonian and one obtains for the continuum contribution:
J_ C ~L dvr 007 (34)
2nJ  r2

cont
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This number must not be taken too seriously, but only as an indication of the
order of magnitude and sign of the renormalization effects.* They are quite
small, as one can expect as a consequence of the Ademollo and Gatto theo-
rem, and, anyway, too small to change the present considerations about uni-
versality.

9. We shall now point out that if we are interested in the renormalizatior

of the A'S = A Q vector current for the semileptonic decays of baryons, the
same kind of procedure can be applied. In this case, however, the evaluation
of the many-particle contribution can be rather simplified. Let us take as an
example the renormalization ratio rgr for the process E~ -> ne~ we. We can
start again from the commutator (1) taken between neutron states and assum-
ing g\ = gl = t= 0 we can average on the external neutron spin, so that the
general formulae hold.
Thus, we reach the relation

ri N + dV = 1 (85)

where now
wM= F(2nyZ~z-{\<ra IDK+1la > [2&(px+ ?i - P*)~

(86)
- I1<n\DK-\x> RO(PlI- g2—pa)}m

In this case, in analogy with the procedure followed in many of the previous
examples, the decuplet resonant states can be taken to simulate the continuum
contribution, using an appropriate isobaric model.

The evaluation of the continuum contribution will thus depend on the
value of an unknown parameter g*, simulating the baryon-resonance —DK+
coupling constant. If we believe in scalar mesons, g* could be connected to the
scalar meson-baryon-resonance coupling constant, invoking for instance a
PCVC relation DK”-0K,. An estimate of the value of g* can be made, with the
same kind of approximation, on the ground of unitarity arguments applied to
the pseudoprocess D K+ baryon scattering. This value has been determined by
Boiti and Rebbi in two different ways. The first [23] applies the method
suggested by Amati and Fubini [24] for n — N scattering to the D-baryon
scattering. One considers the amplitude for the D-baryon scattering, projected
in partial waves, taking into account only the contribution of intermediate
baryon and decuple-resonant states. In the static model, one then requires

*We notice that the square of the term in which one breaks the symmetry on the
vector line is logarithmically divergent. We have evaluated it by introducing a cut-offats = 3
(baryon mass)2 This contribution, however, is multiplied by a rather small Clebsch-Gordan
coefficient and, in any case, is far from being the leading corrective term.
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them to satisfy the high energy behaviour predicted by unitarity. Thus one
obtains the value

g*2= 4,9. (87)

The second method relates the g* coupling constant to the well known
meson-baryon and meson-baryon-resonance coupling constants by applying
analogous considerations to the “process”

D+ B ->M+ B. (88)

The value so obtained is [25]

g* = - 2,2 ->(g*f = 4,83 (89)

in excellent agreement with the previous one.
Thus, assuming for g* the value (89) one easily derives, for the conti-
nuum contribution to the sum rule for rN: m

Y i

2n 1 v
cont

so that
riN~ 0,98 . (91)

Again we see that the second order corrections, arising from the so-called
medium strong interactions which break SU3 are small.

10. As a final example we shall consider a new kind of sum rules, which,
neglecting the many-particles contribution, coincide with the well-known
Gell-Mann, Okubo SU3 mass formulae.

We start by considering the commutator between a vector current and a
vector divergence, both having the same quantum numbers or the K +meson:

[Ak+) (%), TV (0)] (92)
and we take it between a K+ and a K~ state, in order to derive arelation
among meson masses. By choosing, as usual, g\ — gl = t= 0, we can write

the sum rule in a form of the kind (23), i.e.

la(r,0,0,00dV—0 (93)
since in the present case*

*In handling current-divergence commutators some care is necessary. From current
algebra one cannot indeed derive a general commutation relation of the kind [j*a\ Dp] =
= CalSy Dy since the Da do not transform, under group operation as a basic octet. The validity
of (94) is insured if the S173 breaking Hamiltonian transforms like the hypercharge as it is
usually assumed. Eq. (94), however, is less restrictive and it holds also for more complicated
Hamiltonians.
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[AKH) (*). OK+ (0)]X%=0= 0 (94)

The one particle contributions to Eq. (93) are easily evaluated by remembering
that, following our convention

1/i2
K+ \JTK+3 PK + Pn7j 22) —~ 9<F 2(i2 95
sy (P PR (22 —9<F 212} (995)

and thus (g2= 0) 0) = TKuw,

F+D K, . 2 dﬁ kg - (96)

The sum rule, written as the general form (26), becomes:

1 fw
rK  ™2) + 3 (MK— nig)r* = ) dv, 97)
ZnI JJ t
cont
where, according to the general definition (25)
tv (v) = (2n)4 < X+ jDK+In > < nIDK+| > &(p + q—pn)  (98)

(the factor 2 arises from crossing properties).
We remember now that

rear) =1+ 0 (/2

if / is the strength of the breaking of the symmetry, and ~ 0()
by definition of f. Disregarding the third order corrections we can safely put
rKnrj — 1 and the sum rule (97) becomes:

4m\- 3m2- ml= — 1 -~-dv. (99)
2n ] T

cont

By looking at Eq. (98) one sees clearly that the right-hand side is 0 (f2) and (99
is actually the Gerr1-Mann—Okubo mass formula for the pseudoscalar
meson octet. The present method, however, presents at least in principle, a
possibility of evaluating the continuum contribution, i.e. the 0(f2 corrections.
We can try to evaluate the right-hand side of Eq. (99) using the same approxi-
mation made in calculating r\n. This calculation has actually been done by
Furtlan, Lannoy, Rossetti and Segré [2]. In this case, however, due to the
appearance ofonly one “denominator”, the integral is divergent. A natural way
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to get rid of this difficulty would be to introduce a strong interaction form
factor instead of the point-like coupling between the vector and the pseudo-
scalar mesons which we have taken in Eq. (83). However, in order to have a
first indication, we have simply a cut-off on the integral, obtaining:

1 |" w(v) dv= 10,55ml for f1 = 2m%
2n \Y, [0,19 wi) [N=mB

mOand TB being the mean masses of pseudoscalar mesons and baryons. These
values are to be compared to the experimental one of the left-hand side of
Eq. (99):

(4mK — 3ml, — m2exp= 0,36 m~.

Our calculation shows that even a very rough approximation gives the right
sign for the correction and also a reasonable order of magnitude.

In what the mass formula for the baryon octet is concerned the decompo-
sition of the basic quantities Tpand tBis a little more complicated, since in this
case we must take the commutator (94) between a proton and a E~ state
and we cannot average over the external particle spins.

We shall limit ourselves to writing explicitly the sum rule discussed

in [4].
2mp -f- 2ma — 3mA — = Il Jrﬂ(l)_ dv, (106)
n \Y
cont

where now w(v) ean be obtained from

«=J (2 Zn*A*{ <p\DK \n> <n\DK+\E->. (101)

"A(PIY <h — pn)-crossed term)
by decomposing it as

w = up{»'!(v,0)+ (rwi)n2(v,0)} uB. (102

It is easy to see that all the SU(3) results can be rederived in the current
algebra framework. Moreover using some particular models, like the decuplet
approximation, a first, rough* indication can be done for the size of the
corrections. For instance, starting from the commutator

[jiL+4 x)d ltm4 0)1 (103)
* We should remark that for the matrix element N* —aND a/ 2 transition is required.
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taken between 27+ and proton, one can derive a sum rule for the anomalous
magnetic moment of the 27+ in the framework of broken SU3algebra. Assuming
decuplet dominance one can obtain

Ks+ = 221 e/2mp, whereas (Kr + )exp= (3,5 1,5) e/2mp.

This value has been calculated in a recent paper [26] where, under the
same assumptions, the magnetic moment of all the baryons are evaluated.
For the magnetic moment, coming from a more complicated calculation, these
authors give:

fiA= — 0,80 e/2mp, whereas (MDexp= (—0,6970,13) e/2mp.

Also in this case the calculated corrections to the symmetry limit are of the
right sign and order of magnitude.

In conclusion we shall point out that in any studied case the agreement
of the results obtained from current algebra dispersive sum rules and experi-
mental data are good, and in some cases even spectacularly so. This shows, in
our opinion at least, the soundness of the commutator dispersion approach to
elementary particle physics.

I1l. Further developments: Strong interactions sum rules

1. We hope that in these two lectures we have been able to present &
sufficiently impressive, although incomplete, description of the successes of
the “current algebra” approach. There are some rather interesting results
which we have not discussed, like the treatment of higher symmetries [27] or
the specific application of our machinery to weak interactions[28].

Let us make a few remarks on the practical evaluation of the sum rules.
In the previous lecture you have seen that, apart from the happy case of the
Adler—Weisberger relation, we are forced to approximate the contribution
of the continuum with a few resonant states. Then we are faced with the two-
fold question of which states are to be consistently included and of the evalua-
tion of their parameters, in some cases not directly deducible from experi-
ments. As far as this latter point is concerned, we remind you that a relation
between the coupling constants ge*BD (unknown) and gBBD can be found using
simple unitarity considerations. [See the discussion on the S1/(3) corrections.]
We have to keep this point in mind for what follows.

We want only to mention the first problem which arises when we try
to exhaust the sum rule with a small number of states of discrete i.e. bound
states or resonances. This set of particles has to saturate the algebra: taking
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the matrix element between two such states, a consistent result is obtained
by limiting the intermediate contribution to states of the same set. This means
that the low lying hadron states should be, with a good approximation,
described as a mixture of a few irreducible representations. Therefore, we have
to find what these representations are. This point of view and the related
problems are discussed elsewhere [29].
2. Let us describe instead, for the second problem, a completely different

approach [30] which starts from the very attractive suggestion we gained at
the end of the first lecture. We considered there the extrapolation of the

momenta g\, gl to the masses of physical particles with the same quantum

numbers as the currents (Thus if is the isotopic current the physical
particle is the meson.)
More precisely we notice that for q\ . ml/i our amplitude is dominated

by the graph of Fig. 4.
Then we can write the exact relation

0 lim mZB(qI—ml)(ql—mf)a(v,q{,q\,t): const. Imd, (@H)

where A is defined according to the decomposition ofthe B(q2).A p2-> s (qx) -)-
4- Pi scattering amplitude

T, 4« =(P <e@) (P 'e() A(V,t) + — )

Moreover, the right-hand side of Eq. (31). |

N odE (*.qhght) = c,Byf [a {t). (3i)
is not singular in q( 2so that our sum rule becomes
IdvimA (rit) = 0. 3)

As already stressed this result is independent of the explicit form of the e. t.
commutator between current components. The only requirement we need is
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locality, i.e. the presence of 0 function derivatives of finite order. Thus, we are
in the pure strong interactions region, where there is no trace of weak currents.
It is rather natural to look for the possibility of deriving Eq. (3) directly from
the general properties we are accustomed to ascribe to strong interactions,
namely analiticity (connected with locality), unitarity and asymptotic beha-
viour.

In fact, let us assume an unsubtracted dispersion relation, at fixed (, for
the function A(v):

Lf, ., ImA(]
A=y .V_______\_/_E}IE
If A(v) is subjected to the asymptotic bound
\A(V)\ V—-00, BR< —1, (5)
we deduce at once from Eqgs. (4), (5)
jImA (v)dVvV —o. (6)

The crux of the matter is the asymptotic condition (5) so that we must
specify our present knowledge about the large v behaviour of the scattering
amplitude. Let us remind you that for spinless particles we have for the scat-
tering amplitude the upper bound viIn2v, the well known Froissart limit
[31]. However, if we consider, as we are doing, spin one particles we shall see
that, at least for some amplitudes, unitarity requires more drastic limitations
such that, for instance, condition (5) can be verified.

To appreciate better the working mechanism let us rederive the Froissart
bound in an heuristic way. As a consequence of unitarity and as the total
cross-section is larger than the purely elastic one, we have, for large s,

0
Im A (v,0) > const — J 1A (v, t) [2d t. )

Now, at high energy the elastic scattering is practically concentrated around
the diffraction peak and, assuming as a first, rough approximation a constant
shape of the diffraction peak we obtain

IA(v, 0) [2< const, v Im A(v, 0), (8)

namely
IA(v, 0) j< const, v. (9)
Of course this is only an indicative derivation and to include logarithmic

terms in the asymptotic bound we have to specify the variation of the diffrac-
tion peak (as in a Regge poles model).
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Let us now consider a scattering process where spin 1 particles are
involved e.g. ng scattering (neglecting for the moment isospin). The general
form of the amplitude is:

T= A(P mE)(P me2) + B | [(P «BI(Q mez) + (Q = en(P «en]
(10

+ C, «?¢*)«?2.*) + C2(B1l.B2);<?=51b £ "

To sketch shortly the core of the proof let us assume the oversimplified situa-
tion where only forward scattering is considered px—p2= p, = <= gand

Tv~ AP, Pv+ C2 (Q*Sl= Q-sz— 0). (11)

The sum over the polarizations of the intermediate g implied by the unitarity
condition, introduces an additional factor v2. In fact

>'T,kTvv4° 4r)= (a p,p\ + C2gnk) m

(12
—gkv AT (A% py p, + C* giln ~\A\2PfIPY
M 2
Thus relation (8) for the amplitude A now becomes
vz 1A (v,0) R2< const, v ImA(v, 0) (13)
i.e.
I1A(v, 0) I< const, v¥1. (14)

Of course a more complete derivation is possible using an orthogonal decompo-
sition for T, and the following relations are derived, assuming a constant shape
for the diffraction peak,

1A(v, 0) I<[ const, v 1, 1 B(v, 0) [<C const. (15)

IC]2(v>°) I< const. v.

The remarkable point is that we get an improved asymptotic behaviour for
the different amplitudes, classified according to the power of P;tthey multiply.
Now we can be more realistic, taking into account isospin and the general
features of strong interactions at high energies, summarized by a Regge pole
model with the empirical value of the trajectories in the small t region. On the
basis of Eq. (15) we shall assume that if the behaviour of a given isospin
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amplitude for spinless particles is r* (corresponding to the exchange of “spin”
a), the behaviours of A, B, CJ2 are

A(s, 0)~v*~2, B(s,0)~v-1 Cw~ r“. (16)

Thus we get the asymptotic bound (5) for A if x< 1 and for B if «<C 0.

To exemplify these considerations let us investigate in more detail the
7i — Qcase. We limit ourselves to the t = 0 situation and the isospin depend-
ence leads to the decomposition of each amplitude according to the | = 0, 1, 2
values (in the (-channel)

T=POTO+ P1IT1+ 1\ T2 (17)

being the Pi projection operators on isospin eigenstates. At high energies T2
is dominated by the exchange of the p trajectory, and T2 by double charge
exchange. The candidate amplitudes to verify a sum rule (3) are:

AW, A<, B<]), B<>.

Experimentally <g(0) 0,5 < 1, so that for A (>we have

ldv Im AQ) (v) — 0. (18)

If we assume that for double charge exchange a20) < 0 we can still
write

fIm A<z>(v)dv= 0, \dv Im B<2 (v)= 0. (19)

\A .
(Actually the sum rule A<>turns out to be trivial by crossing.)**

Finally, on the basis of the assumed asymptotic behaviour and of the
crossing properties, there is nothing against the additional sum rule

v Im A*2)(v) dv — 0. (20)

To evaluate Im.I*1* ImB*"* we assume tentatively that only the well
known particles n, co, @ give an important contribution as intermediate states.
We obtain from Eqs. (18), (19), (20) respectively***

T ** The crossing properties are A (V) = (—I)r A* (—V); B (y) = (~1)T B* (—V);
= 0,12
*** The various coupling constants are defined by the interaction Lagrangians
Sonn eijk Tl
f col i1
sqre-~ijgyd 9, 1y | Q7.
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N gonn (8'jnia ~f" g (fjtf)9 (ISI)
Agojin ~b T ) SWIO) “I" (*<p ! ~ JU 8on<pl (19‘)
“ 8nan 76) 8(>fA<a ~b "'p 8itn* (200
lhere
Vo, y —mQ—m2). (21)

The solution is the trivial one

= genp' (22)

and it shows that the naive approximation of retaining only the above low
lying single particle states is not completely reliable (at least in this problem).
3. In this context it is perhaps not useless to further recognize the
similarity between results derived from current algebra (after extrapolation to
the time-like region) and from unitary sum rules for partial wave amplitude
strong interactions. We want in particular to mention the relation between
the n iv7v3B and n NN coupling constants g* and g. In the current algebra
approach we start from the e.t. commutators [32]

[/,, A)?1- 0, [/+, A, )], 2JwW. (24)

We consider their matrix elements between nucleon states, and saturating the
sum rule with the N and NS3 intermediate states only it is possible after
extrapolation to gl = t ~ m#8 to derive the result,

M-ml
I (25)
2 mM - m)2(2M —m)

(M, m, mnare the V33, N, n masses).
If we introduce the more familiar definitions for dispersion relations
theorists [24]
4m?2
g2 m g*2 i*23 ~ (26)
4n ml ’ 4n: ] m

Eq. (26) can be written
6Mi

* q9= - 27
/*a (M+m)2(2M-m)/2/2’ (27)

while the experimental value is about 1,1f 2,

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



278 G. FURLAN and C. ROSSETTI

Now let us consider the n N scattering amplitude in the J = T =3/2

channel (p wave):
e‘sPBsin /1
133 (?) (28)

(q is the momentum in the c.m. system).

As a consequence of the unitarity condition for partial waves / (Q) <
for large g. Moreover we have the threshold behaviour /38~ g2 for small g
Thus we can introduce a new amplitude

q_
such that
raAq)<L|~3 2 > 00

F33(?) ~ const. 2 O

It is important to remark that both the large and small g behaviours
must be taken into account to choose correctly the improved F33 (Q)
ampli uie.

Assuming an unsubtracted dispersion relation for F 33 (co) we have

FR@»)= — MN-Im Fa3 (<0,) -de' + — T [O33(g0 duw't (29)
Q )
% ’ left cut

The unitarity limitation on the asymptotic behaviour of "33 enables us to
derive from (29) the sum rule

-Lf Im F 33 (co) + dco RB(o/) = 0. (30)
nJ
left cut

There are various contributions to the unphysical left cut. If we limit ourselves
to the crossed N exchange, the second integral introduces the n N coupling
constant/2 while the first one is, in the limit of zero width, exactly/*2. Thus a

relation of the type (27) results. In particular, neglecting nucleon recoil, we
find [24]

ABH ~ - -~ [ 2d(o>) (31)
and we obtain the static model result
r 2= - f (32)

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



DISPERSIVE SUM RULES FROM CURRENT ALGEBRA 279

This example reminds you again that the asymptotic constraints due to uni-
tarity introduce some restrictions on the bound states parameters [33].
In particular we can have strong self consistency requirements which lead to
the so called “boot-strap” approach [34]. We believe that our sum rules,
discussed at the beginning of this Section, represent the relativistic generaliza-
tion of the bootstrap conditions, resulting in relations among masses and
coupling constants of particles and resonances.

However let us stress the fact that while in the above approach you
have to deal with the complicated singularities of the left cut, the super-
convergence sum rules (18), (19), (20) give rise to simple, algebraic relations
among the different parameters.

To conclude let us remind you two points: the first one concerns the
crucial role played by the spin of the involved particles. If we increase the
spin, we increase at the same time the number of coupling constants and the
number of sum rules, i.e. of equations. This means that the more complicated
(i. e. with more parameters) is the theory the higher is the number of constrains
we have on it. It should be necessary to ascertain the relative rate of growth
of these two sets or more directly to study the problem of the exact saturation
of the superconvergent sum rules.

On the other hand equations like (18) or (25) show the possibility of a
connection between coupling constants of different dimensions. This is import-
ant because different dimensionality of coupling constants corresponds to
a different degree of singularity of the theory, so that we could hope to reduce
more d vergent theories to less divergent ones. It is clear the superconvergent
sum rules do not represent the complete solution to Quantum Field Theory,
but rather they constitute an algebraic approximation to it in terms of many
narrow resonances.

Really at present it is not given to know how far these speculations
can go. We had better to wait for the next Balaton-meeting.
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ONCMEPCUOHHBLIE MPABUIA CYMM W3 AJITEBPbI TOKOB

r. ®YPANAH un K. POCCETTMU
Pesome

OfHAM U3 CaMbIX YCMELUHbIX U MONYNSPHbIX HanpaBfeHUd B HACTOsILLEM MOAX0Ae K

(hM3MKe 3M1eMEHTapHbIX YacTul, KpoMe Teopuu rpynn, ABNSETCA TaK HasblBaemas «anrebpa
TOKOB». B 3Toii paboTe gaetcs 0630p OCHOBHbIX (IM3NYECKMX MAEN U CaMbIX BaXHbIX pe3yib-
TaToOB 3TOr0 HOBOFO MOAX0AA, M 06CYXXAAeTCA HbIHELIHAS MO3MLMA OTHOCUTENbHO NOKa OTKPbI-
ThIX Npo6aem.
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The relations of current algebras to strong interaction dynamics are studied by consider-
ing charge — current commutators between meson states and the vacuum.

In applications of current algebras three assumptions are generally made:
a) unsubtracted dispersion relations wherever possible, b) partial axial vector
current conservation (PCAC), and frequently ¢) dominance of certain inter-
mediate states in sum rules. It is generally believed that a knowledge of
strong interaction dynamics, based on a), will make assumptions b) and c)
unnecessary and may even justify current algebras, but decisive evidence may
be very far at present.

To learn about the relations of current algebras to strong interaction
dynamics we study particularly simple cases: charge-current commutators
between meson states and the vacuum. Here Lorentz-invariance restricts the
spin of contributing intermediate states to zero or one, disconnected pairs are
eliminated by the application of dispersion theory [1], the decomposition of
the dispersion integral into independent kinematic forms provides a further
selection.

When dealing with SU2X SU2 we can use the conservation of the vector
currents. Between n+ and the vacuum 0O we consider

Following the general method [1] a dispersion relation for (2) in v= (pn «q)ImT
with fixed g2= 0 is assumed.

(©)
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where the absorptive part a(r') is the coefficient of pf to he picked from

i12(2ny 2 <7I1+\(A ())/.1n > < nIDf+(0) 10 > +J(p" + g)

(4)
— < a+ IDf+(0) In > <n\ (4 (0), 10> 6 (pl+ g —pn).

Only vector mesons contribute, we introduce a mass spectrum gV (M) and
rewrite without loss of generality

< n+1Df+ (0)IV(M) > = i(p*- gi) (5)

using a pion pole model and correcting for higher contributions by a form
factor Kyn(q'2.Ky,, (ml) = 1 and Kyn(q2 s« 1 characterizes the range of
pole dominance or approximate validity of PCAC. Relation (3) gives

o = T v (M)f,,.gWit(M).fv (M)

Jn M 2- k Wn(0) (6)
(2mn)

to be compared with the dispersion integral for the isospin current form factor
between T-mesons

1= j Qv(M)gvm(M)fv (M) dM
) M2 ' ;
@2m.)
We derive (Kyn (0))or. = 1, an average validity of PCAC as a consequence of
current algebras and unsubtracted dispersion relations [2].
Similarly we can apply the commutator of an axial charge and an axial

current between a Q+ meson and thé vacuum. With related notations the
integral FMis now split into kinematic forms

Fu(p, q) = A(v)ell + B (v) €>-9)p% + C(v) (fi-g) B ®)

with ~4(0) —fg where < e+ II(// + (<% lo > = fge®. In calculating the
absorptive part (4) we find that the pion intermediate state contributes only
to B and C and that an isotriplet of axial vector meson states is necessary to
saturate the sum rule for A(0).

Explicitly we find:

J_ T LGAIM)-fA(M)o*(M)
12 M- - U]
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If we make the additional assumption of dominance by a single resonance
corresponding to g-meson universality we can apply the commutator of equ.
(1) between <A+ |and jO > to deduee/le= — and obtain a relation bet-
ween mass and effective coupling constant

V2= Glen-fIM%- MO)-h (10)

With A1(1070) the coupling constant comes out too large, but this
may only show the limitations of the single resonance assumption, the postulate
for axial vector mesons is maintained [3].

We can also make applications to S U3violations to eliminate ambiguities
of scaling when approximating matrix elements by SU3 Clebsch—Gordan
coefficients.

So it is found that/e= fK*up to second order SU3violations [4] and to
the same accuracy gK’K+n/gg+n+n®° = (mkK>) 22 m8 for dimensionless coupling
constants in vector meson decays.

For the pseudoscalar meson decay constants can be found:

M)fv(M)gVKn(M
FKIL [ & DV (M)gVKn(M) g,
M 2
"G (M)fs(M)gSK,, (M) W
+ IR 95 am.
M2- mir
from the commutator [Qf, (/)<+)/*] (Jk9n,between < K ' |and |0 >.

Scalar mesons (with a spectrum gs (M)) may contribute because (jK+)Bis not
conserved. We compare (11) with dispersion integrals of form factors

< K+\UbMno > = 7~ (F Hf)(pK+P"), + F~(f)){p« - P%), (12)

ev(M)-fv(M)gVK,(M)

dM, (13)
n F+iq2) = M2- Q@

* Qv (M)-fv (M)gVKn(M)
M 2(M2— q2)

F- (g9 = (mK- ml) dM +

(14)
GB(M)FS(M)gSK, (M) 4\
M2—q2
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With g~ = mX we rederive the relation of Callan and Treiman [5]

f,.</L=F+(m\) + F (<) (15)
(m v)av.

with a small correction from the finite ur-meson mass. If we assume dominance
of vector mesons over scalar ones we derive
m~ — mK

fKIL = F+(0); F-(0)/F+(0) (16)
(mv)a,,

It should be noted that scalar meson contributions produce an increase of
f K/If,, and F~(0)/F+ (0) over the values of equ. (16), both in the observed
direction. This supports equality of the fundamental Cabibbo angles for
axial and vector currents [6] and attributes to SU3violations an enhancement
of the rate K+ -*my + vrelative to n+ ->/n-\- vrecently discussed [7].
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HEKOTOPbIE NMPUMEHEHUNA AJITEBPbI TOKOB
b. PEHHEP

Pesome

V13yyaeTcq OTHOLLEHWe anre6pb| TOKOB U AWHAMWUKWN CUNbHbIX BSaI/IMOAeVICTBI/IVI, pac-
cMaTpuBasa KOMMYTaTOpbl 3apAA0OB W TOKOB MeXAY ME30HHbIMWU COCTOAHMAMU U BaKyyMOM.
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We make a few remarks about the various possibilities of representation mixing.
In connection with magnetic moment relations it is shown that assuming “partial conservation
of the tensor currents” and a vector meson —axial vector meson mixing, excellent agreement
with experiment cau be reached.

A rather wide justification has been given to the striking successes of
SU(6) theory in the frame of the algebra of currents [1]. It has been realized
that the emergence of the SL/(6)-symmetry results for baryons was linked to
the saturation of the algebra of vector and axial vector currents by a few
one-particle states, which build up a single SU(6) representation, namely
the 56.

By allowing the saturation within more than one irreducible representa-
tion one gets results that “correct” the SU(6) predictions, and one can look
at such corrections in order to gain some insight into what these additional
representations should be.

As L. Maiani has shown [2], we see that the inclusion ofa (20,1) SU(6) <
o> 0(3)/ representation, which is supposed to describe the leakage of the axial
current operators into negative parity baryon resonances, leads to the well
verified relation

(rA= 1 D+ F
Gv 3 D-F )
and also to a lowering of the N* — N axial current transition matrix element
from its SU(6) value, which is quite in agreement with the experiments.

In the first part of this talk | shall be concerned with the discussion of the
possibility that the leakage of axial currents is directed towards representations
different from the previous proposed (20,1); and the ultimate answer to such a
question must of course rely on the comparison of the testable predictions, if
any at all, with the experiments.

At the very budding of SU(6) theory it was proposed that the negative
parity baryon resonances could be arranged into a 70- representation [3].
Let me recall that the physical particles content of this representation is [in
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the notation (S [7(3), JP)]:
(8,1/2-), (8,3/2-), (1,1/2-), (10,1/2-).
We see that in this set of states there can be arranged the quite well established

y-octet, the possible 1/2_ tyoctet, and the singlet Y* (1405) —whilst the 1/2*
decuplet is still very dubious.

W ith the very simple method of mixing representations, one can again

. . . Ga D .
quickly derive a relation between-——- and— [4], i.e.
Gy F
D + F
Gv 3F-U ’

Owing to the fact that — G+Gy must be smaller than its SU(6) value
5 D
— , because ofthe leakage of axial currents, we see immediately that— must

also be smaller than the 3/2 SU(6) prediction, which is in conflict with the
latest experimental figures [5].

One can also show [4] that Eq. (2) is also provided by adding to the
(56, 0) the 20~ representation with negative parity, though | must say that
such representation has never been seriously considered, as far as | know,
to be a good candidate for arranging some of the known negative parity
resonances.

We can go further and ask whether the spectrum generating non-compact
groups which have recently been proposed [6], can naturally give some set of
states, whose connection with the familiar baryon octet and decuplet through
axial currents is able to lead to good predictions of the type of Eq. (1).

Dothan, Gell—Mann and Neeman [6] have proposed that the baryon
states should be contained in a particular infinite dimensional unitary repre-
sentation of the [7(6,6) group. This representation, when analyzed in terms of
its [7(6) compact subgroup, leads to the following sequence or “tower”:

56+, 56 0 700“......

and one may consider the saturation of the chiral algebra within this huge set
of states.

The saturation problem can be solved [7] and we finally get:

Ca = D+F

3
Gv 9F-5D 3
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Again one sees that if —GAIGV</E, as is experimentally the case,

D 3
also < — , which is in conflict with the experiments.

Thus it seems to us that this additional set of states does not lead to an
acceptable picture of the baryons axial transitions.

Another proposal has been made by Sartam et al. [6] in the frame of the
“L-excitation” scheme, whose orbital angular momentum pattern is provided
by an infinite dimensional unitary representation of the group 0(3,1), thus
giving rise to the SU(6) ® 0(3) tower:

(56,0) +, (56,1)-, (56,2) +,

The negative parity resonances are thus put into a (56,1), and one can again
play the game of saturation with such states. The results are the following:

D
4
¥ (4)

Ga b
which are really not bad, as —-6--is reduced from thez value, whilst the
v

. .3
ratio remains — . However, this is not completely accurate, though it

must be said that we are at the limits where SU(3) breaking effects could play
quite an important role.

Among the various other possibilities, we last mention that the (70,1)-
multiplet discussed by Dalitz [8] leads to no testable prediction, owing
essentially to the fact that the mixing scheme is complicated by the presence
of two 1/2 octets.

As a conclusion of this brief review | have to say that we are quite
confident that the mixing of the octet and decuplet with the resonances of the
(20,1) multiplet contains a lot of physical truth, at least as far as low energy
parameters of baryons are concerned.

In order to have another confirmation of this point of view, I shall now
consider the problem of magnetic moments [9]. We know that the SU(6)

predictions are very good for the octet baryons li.e. R , but are in

disagreement with the experimental value of the M(1) N* N y transition
[10], i.e.

(Exp.) = (1,28 i 0,05) (SU6theory).

Thus SU(6) has to be corrected, though not too much !

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



238 G. PREPARATA

A natural frame for such corrections is the one we have discussed, and
we can try again whether they happen to be in the right direction. Before
discussing the results I would like to say a few words about the way the
magnetic moments are to be calculated.

The frame in which p -> 00, as has been discussed by Dashen and Gell-
Mann [M]. selects upon the various “charges” which build up the U(12)
compact algebra, some algebras of “good charges”, that is of operators with
non-vanishing matrix elements between single particle states.

The SU(6)Walgebra is one such, and also the 17(3) ® U(3) chiral algebra
which coincides in this limit with the 17(3) ® 17(3) collinear algebra. Only wit-
hin these algebras can we expectto have saturation among single-particle states.

Let us now consider the electric dipole operator

D[ = \d3x Xl jlI(x) (i= 1l.... 8) ;

it has been shown [12] that its matrix elements between baryons are proportion-
al to the anomalous magnetic moments. As D[ belong to a (1,8) -)- (8,1)
representation of the chiral 17(3) ® 17(3) group with |A h =1 (h is the heli-
city) we can use the Wigner—Eckart theorem to compute its matrix elements.
By restricting ourselves to the ]h = 1/2 states we obtain a relation between
the M () N* Ny transition /u* and the magnetic moment of the neutron,
namely

* K2 1
cos 6 cosQ ¢ Msrv (5)

2ilo . . . . . L
where (*)s[/6= —~— fip is the value obtained in SU(6), and 6 is the mixing
angle as derived from the commutation relations of axial charges within the

Ga 1
(56,0) and (20,1) states. By putting —-é---z 1,18, we get-—-——-- A 1,25 to be
v B

compared with the factor 1,28 derived from an analysis of N* photoproduct-
ion [13].

However, if we want to have consistency between this result and that
which we get for the h = 3/2 —=h = 1/2 matrix elements we see that all
anomalous magnetic moments and p* must vanish. A very unpleasant result!

In our opinion this model has the additional disadvantage of not repro-
ducing the well known SU(6) results in the no-mixing case, i.e. 6 = 0.

Thus, we are forced either in putting into doubt the commutation rela-
tions between D[ and the vector and axial charges, by invoking, for instance,
the existence of the so called “Schwinger terms”, or by thinking that the
relevant magnetic moment operator is to be identified in a different way.
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This second alternative rests mainly in the so called “Partial conserva-
tion of the tensor currents” [14], which by a type of Gell-Mann—Lévy
identity relates the divergence of the tensor current to the vector meson field,
i.e.

a = (6)

where i is a SU(3) index.

By further assuming that the electromagnetic form factors are dominate d
by such vector mesons, we can link the matrix elements of the tensor charges
TO2 and TOl»whose operator form in a quark model is given by

TiK= ird4g+KyKg (K= 1,2) (")

to the magnetic moments.

Actually one very delicate problem is to decide whether we have total
magnetic moments or anomalous ones. An ultimate answer cannot at present
he given, as has been emphasized in [14] and the choice can he based only on
the final agreement with the experimental numbers.

We note at this point that the collinear 17(3) <9 17(3) operators and the
TOk charges generate, in the quark model, a SU{6) algebra in which F 3 (the
integrated third component of axial vector current) and Tok have the commu-
tation relations of the oa A" (x — 1, 2, 3) SU(6) generators. As we are actually
saturating these commutation relations with SU(6) multiplets, the matrix
elements of T"k have the same SU(3) structure as those of F3 which coincide
at p = 00 with the axial charges. Thus we have

D
8
magn.moments axial
and we get the following predictions:
t'n= - 2,05, A= (1,16)nF )N 9)

in nuclear magnetons.

These results are less accurate than those found for the axial matrix
elements.

A possible improvement of the situation can be achieved if one realizes
that the vector mesons in this framework can get mixed with the axial vector
mesons with C — — 1, which are contained in the (35,1) “Kinetic multiplet”
[15] and that this mixing from the beginning has been neglected in the PCTC
hypothesis, and in the extrapolation to zero vector meson mass which is
entailed in it.
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By adding this new term in the magnetic moment matrix elements (it
corresponds to a [(1,8) — (8,1)]L = rfc 1 tensor U(3) ® U(3) $ U(\)L) we
finally get only the relation:

B
: Wp+ 'MIM 126 (h*)su. (10)

in very good agreement with experiment.

To conclude this talk | should like to emphasize that a consistent picture
of low energy parameters of haryons can be given in terms ofthe mixing scheme
of the representations of the chiral algebra at p —y °°, and that from this
picture the previous proposed (20,1) “Kinetic Supermultiplet” [16] seems
clearly to emerge as a tool for classifying the higher negative parity baryon
resonances. | believe that much can still be said following this line of reasoning
in order to classify also the other positive parity resonances, whose evidence
is daily growing. Work is in progress in this direction.
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CNABbIE N 3JTIEKTPOMAIHUTHBIE TOKU U KITACCUND®UKALNNA AOPOHOB
. NMPEMNAPATA]

Pesome

06cy>K,u,ar0Tc51 pasHbl€ BO3MOXXHOCTW CMeLllnBaHNA I'Ipe,ClCTaBI'IeHVIVI. B cBA3n c coOTHO-
LEHNAMWN MeXAY MarHUTHbIMM MOMEHTaMM MNOKa3aHO, 4YTO npegnonaraa «4aCTMYHOE COXpa-
HeHue «TeH30pHOro TOKa» M CMeLUMBAHWE BEKTOPHbLIX W aKCUasibHbIX Me30HOB MOJy4aeTca OT-
NIn4HOE cornacue C OMbITOM.
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The role of the (20, L = 1) states in describing the low energy weak and electromagnetic
parameters of the stable baryons and of the 3/2 + resonances is discussed.

In the past year two lines of research have focused the attention of many
theoretical physicists. The first was the search for a group-theoretical classifica-
tion for the negative parity baryon states like Y* (1405), N* (1518), Yg (1519)
and others, for which growing experimental evidence was being reported. The
second was the exploitation of the physical content of quark-model commuta-
tion relations among weak and electromagnetic currents. It culminated in the
discovery ofthe Adler—W eisberger sum rule, which allowed the evaluation
of the neutron beta-decay axial coupling constant.

I shall be mainly concerned with these two arguments, as well as the
relations among them which have been worked out in a series of papers made
in Florence by R. Gatto, G. Preparata and myself. Moreover, | shall consider
only the quark model commutation rules of the integrated four components of
vector and axial currents (generating the 1/(3) (@ 1/(3) chiral algebra) and of
the integrated third components of the axial current (which, together with
vector charges, generate the collinear 1/(3) <1/(3)), when saturated with
single particle states at p3— co.

It was rather early recognized [1] that symmetries like SU(6) may stem
out from a saturation of the commutation rules of certain algebras with few
single-particle low lying states. In fact, as shown by Bergia and Lannoy [2],
and Gerstein [3], the saturation of the 1/(3) ® 1/(3) chiral or collinear alge-
bras, when restricted to the 1/2+ and 3/2+ octet and decuplet, leads directly
to the static St/(6) results.

Corrections to such results may arise from a violation of these algebras,
when considered as symmetries of the Hamiltonian, in the sense that even if
the implied commutation relations are to be retained, the physical octet and
decuplet cannot be put together in a single irreducible representation, but
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become mixed, through the generators, to other low lying states. This is, of
course, equivalent to saying that the saturation of the commutation relations
with the 1/2+ octet and the 3/2+ decuplet fails, and other states have to be
taken into account. As a matter of fact, this is just what is suggested by the
Adler—Weisberger sum rule [4] in which the contribution of the nearest
negative parity intermediate states is far from being negligible.

These considerations also indicate a possible way to evaluate the matrix
elements of axial charges to a better approximation than SU(6), simply on a
group theoretical ground without having to recur to dispersion-like treatments.
One has to assume that only resonant states come into play (which amounts,
for example, to approximate the continuum in the A. W. rule with few reso-
nances) and try to saturate the chiral or collinear algebra with an enlarged
set of SU(3) multiplets, containing some negative parity multiplets besides
the 1/2+ octet and the 3/2+ decuplet. The problem is thus reduced to a purely
algebraic one. The output of such calculation are the renormalized axial
strengths among the states under consideration, many of them being directly
comparable with the experimental data.

As it has been formulated, this programme requires a somewhat detailed
knowledge of the structure of the negative parity baryon states. For instance,
a supermultiplet grouping of such particles as that indicated by the non-
compact group approach [5] [6] would indicate which SU(3) multiplets are to
be put in the calculation together with the y-octet.

On the other hand, it is clear that such an approach could allow tests
of the various proposed classification schemes on the basis of their predictions
for the axial charges matrix elements.

Other expected outputs are the matrix elements among the states of
interest of operators, like magnetic moments, whose commutation rules with
axial and vector charges are known. The saturation of such rules with the
chosen set of states will provide these matrix elements. Note that his does not
imply that these operators have unappreciable leakage outside this set.

Let me return now to the classification schemes for negative parity
baryon states.

Using as a guide the well known quark model, schemes have been propos-
ed, according to the different pictures of

i) bound states of three quarks with one unit of orbital angular moment-
um ((56,L = 1) [6], (20,L = 1) [7], (70, L = 1) [8] of S17(6) <»0(3) );

ii) three quarks plus a quark—antiquark pair (700") [5].

Another proposed possibility was the 70_ SU(6) representation [9].

I shall not enter here into the details of all these models, apart from
(20, L = 1). I shall simply remark that in all the proposed supermultiplets
embarrassing low-lying negative parity decuplets appear for which, at present,
the experimental evidence is rather poor.
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The (20,L — 1) has the following content:
two nonets with Jr = 1/23/2 ;

one singlet with Jp = 5/2

Consistently with the mass formulae derived in the “kinetic supermulti-
plets” model [7], the 3/2- nonet can be identified with the well known y-octet
plus a still lacking isosinglet predicted at 1670 i 30 MeV. The 1/2“ octet can
be identified with a possible tyoctet containing the N — rj (1510), the /1 — {]
(1660) threshold resonances plus a lacking isotriplet predicted at 1530 i 40
MeV and a S* predicted at 1520 i 60 MeV. The well known Y* (1405) complet-
es the 1/2- nonet, whereas the 5/2~ singlet, predicted at 1760 £ 25 MeV is
still missing.

It is worthwhile mentioning that one is also able to derive a quadratic
mass formula (7) among the masses of known particles, which is experimentally
well verified.

Having this supermultiplet at hand, we put its SU(3) multiplets together
with the 1/2+ octet and 3/2+ decuplet in the commutation rules of the chiral
algebra,and looked fora consistent solution oftheequations thus found [10,11].

Under the requirement that it should provide, either for the stable octet
and the decuplet, and for the other SU(3) multiplets, the SU(6) solution
in the limit of no leakage between the two sets, we found only one solution,
which, as for the 8 1/2+ — 8 1/2+ and 8 1/2+ — 10 3/2+ matrix elements,
depends upon one single parameter. Its elimination leads to the relations:

1 D+ F

3 D-F ()

G*2= — 1+ 3-~- (2)
A>* Gy

---------- is the neutron axial beta-decay coupling constant, D and F the

independent axial strengths over the octet, G* the axial N* — N strength.j
Relations (1) and (2) are in good agreement with data: inserting
------év—z 1,18, one finds: a = D(D -f- F) = 0,69; G* = 1,08 to be compared
with the experimental values: a = 0,67 i 0,03, G* 1.
Note that putting —Ez 5/3 one recovers the SU(6) predictions
D/F = 3/2; G* = 4/3.
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Thus, it appears that the (20, L = 1) provides a fairly good picture of
the additional states needed to saturate our commutation rules. In addition
it has to be said that the alternative classification schemes do not provide
such good relations as eqgs. (1) and (2) [13, 14] (on this argument see the report
by G. Preparata [15]).

These latter calculations have been made by using an equivalent but
much simpler method devised by H. Harari [16] and, independently, by
N. Cabibbo and H. Ruegg [14].

Let me briefly explain this method by which the actual solution of the
complicated commutator equations is directly bypassed.

The essential point lies in the observation that a solution of the commutat-
or equations will provide us with a reducible 17(3) < (7(3) representation.
In the absence of leakage one would have, as irreducible components, the
same representations appearing in the reduction of (56, L = 0) and (20,L — 1)
of SU(6) ® 0(3). Moreover, the physical 1/2 stable octet would be represented
by the 1/2 octet contained inside the (56, L= 0). One possible solution in the
presence of leakage (and the only one which contains the latter situation as a
limit) is that which reduces according to the same (7(3) <$(7(3) components
as before, the physical 1/2 stable octet being now a mixture of the octets
contained in (56, L = 0) and (20,L = 1).

Owing to the absence ofdecupletsin (20,L — 1)the physical decuplet cannot
become mixed. In this situation one can write the 8—8 and 8 —10 axial charges
matrix elements in terms of the mixing angle, thus obtaining egs. (1) and (2).

It has to be said that the requirement of having the SU(6) limit also on
the negative parity states is by no means obvious. If one omits this require-
ment [14], one finds another set of states giving the same eqgs. (1) and (2).
However, going further to the study of magnetic moments, one finds that
again the (20,L = 1) is successful in predicting a good relation among T[ip,
fin, and the magnetic N*— N transition strength [15, 17, 18].

In conclusion, | should like to add a few remarks. We have seen that
combining the (7(3) @ (7(3) commutation relations with the hypotheiss of
saturation with the states of (56, L = 0) and (20, L = 1), we found a consistent
picture of the low energy weak and electromagnetic parameters of the stable
baryons and of the 3/2+ resonances. Naturally, we are very far from having
tested all the predictions contained in such a model, for which we have to wait
for more accurate data of photo and neutrino production of negative parity
resonances. Anyway the fact itself that the other classification schemes are not
so successful even on the testable predictions gives us more confidence that
we are on the right track towards finding the structure of the baryon levels.

Finally, the same appearance of the (20,L = 1), after (56,L — 0), is a
puzzling feature of the theory. Perhaps this is an indication of the existence of
a larger group than SU(6) <0(3), with a single irreducible representation
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containing (56, L = 0) together with (20,L = 1), (as well as other possible
SU(6) ® 0(3) multiplets). This group, although badly violated as a sym-
metry group, could have the role of providing, with its irreducible repre-
sentations the blocks which saturate the chiral, or collinear algebras.
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3®PEKTbl CMELUMBAHWA B BAPMOHHOW CMEKTPOCKOMWN

N. MANAHU

Pesome

OG6cyxpaaeTcs posb cocTosHMA (20, L = 1) B HAMMCAHUM HU3KO3HEPTeTUYECKUX CNabbIx
3MEKTPOMArHWTHbLIX MapaMeTpoB CTaGU/bHbIX 6aproHOB M 3/2* pPE30HaHCOB.
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REMARKS ON THE WOLF nn PHASE SHIFTS
AND THE CALCULATION OF gAlgv RATIO FROM
ADLER nn SUM RULE

By
J. PiSat

KATEDRA TEORETICKEJ FYZIKY UK, BRATISLAVA, CZECHOSLOVAKIA

The consistency of pion-pion phase shifts recently proposed by G. w o1f with dispersion
relations is briefly mentioned. Using these phase shifts thegpa/gy ratio is calculated from Adier
NN sum rule. The calculated value isgfyjgy = 1,08. Some possibilities ofreducing the discrepancy
between the calculated and experimental values are discussed.

Introduction

Pion-pion interaction plays an important role in the interpretation of
many scattering and decay processes involving strongly interacting particles.
Most of the experimental data are based on the application of the modified
one pion exchange model to the reaction n N — nn N. Recently, G. Wolf
[1] has summarized the cross-section and asymmetry parameters data and on
this basis he has proposed a plausible nn phase-shift analysis [1]. In the first
part of the present paper the consistency of these phase shifts with dispersion
relations (DR) and with DR sum rules is briefly discussed. In the second part
the Adrer nnsum rule [2] for gAlgv ratio is calculated using Wolf nn phase
shifts. The third part contains a discussion of discrepancies between experi-
mental and calculated values of gA/gVv

I. Remarks on the consistency of Wolf nn phase shifts with DR

We shall first introduce the notation. The amplitude for elastic nn
scattering in the CMS system for pions in the definite isotropic spin state is
written as

FT=— ¥ (21+ 1) P, (cos &sin 6j exp (i 6f), (1)
4

where g is the CMS pion momentum v= g2 = J]j>-)- 1 and nuclear units
W= c= m,= 1 are used. The elastic scattering amplitudes for pions in
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definite charge states are

F++.++ = F2, F+-*+-= — F°+ — Fx+ — F2,
3 2
I i 1 2
F+0.+0 Fl4- —F2 FOOO= — F° 4-—F2 2)
2 2 ’ 3 3
F0O.+- L F°e4-— F2
3 3

Respecting the identity of pions, we get the following expressions for
elastic cross-sections

adkl = (4 — 2dij) 0>-2J |F'7W2d Q, ©)

where kl(ij) are the pion charges in the initial (final) state.
From eqgs. (2) and (3) the optical theorem for elastic scattering amplitudes
can be easily obtained:

mF ) W2(V+. 1) 12

<tot(v), (4)

where F(v) is some elastic scattering amplitude in eq. (2). The DR for forward
scattering with two subtractions in the point v= — 1/2 are [3]

F(-1/2) + (v+ 1/2) 4 F(-1/2) = ReF ) -
\"

®)
@+ 12 , . V(v + D2 ot0t(v") ,  "cOt(F) 1
8n2 P (3] @v' + )2 Vi —v V' 4-vf 1

where o*04 is the total cross-section for the crossing symmetric reaction. In the
paper [3] the consistency of Wolf nn phase shifts [1] with DR [eq. (5)] was
examined in the region 3 <> <[ 15. The phase shifts data and cross-sections
data which are inserted on the right hand side of eq. (5) are known [1] only
inthe range v<”" 24. The errors on the right hand side of eq. (5) which are due to
the unknown cross-sections for v 24 are relatively large but within these
errors the consistency of Wolf nn phase shifts with DR in the range 3 <[ v< 15
is quite reasonable.

In principle, it is of course possible to calculate the right hand side of
eq. (5) also in the range v< 3, but in this region the cross-sections, their
derivatives and the experimental errors are very large. The principal value
integrals are very sensitive to the derivatives of the integrand and the errors
of the right hand side of eq. (5) in this region would be greater than the values
of it.
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The low energy behaviour of phase shifts is characterised by scattering
lengths. In analogy to the n N scattering it is also possible to derive sum rules
for nn scattering lengths [5]. In order to have rapidly convergent integrals it
is convenient to use only crossing symmetric amplitudes F+0'+H0 and F 00°00.
The sum rule for these amplitudes has the form [5]

F(0) = F(-1/2) + -1 1 dviim P () 6
(@)= F(-liz)+ - v+ v (v + 1) *

The values F(0) are directly related to the scattering lengths, F(— 1/2) can
be calculated from eq. (5) and integrals can be evaluated using phase shift
data [1]. The scattering lengths calculated in this way are:

a0= — 13+ 06, a2= 0,38% 0,2.

A similar value for the aOwas obtained by a different method by H. Rothe [6].

These values of scattering lengths are approximately the same in absolute
value as Wolf’s, but the signis reversed. Wolf’s nn phase shift analysis [1]
was based on the experimental data ofthe cross-sections a+0’+0, cr++,++ and
J+~"+-.In the low energy region where the nn phase shift is small it is impos-
sible to determine from these data the sign of the &0 and phase shifts.
It is probable that the signs of these phase shifts should be reversed in the low
energy region. The cross-sections corresponding to original Wolf nn phase
shifts will be almost the same. Therefore, we shall use the original phase shifts
in the calculation of the gAlgv ratio in the next section.

Il. Adler pion-pion sum rule

Recently, the following sum rule which relates the gAlgv ratio to the nn
cross-sections was proposed by S. Adler [2]

2 1 1 v
92K NNlan)z J - V- atWl, (o
{gAlgv? 2n s v -f- 3/4
where (v), [trAT (r)] is the total cross-section for scattering of a zero mass

t~ [s+] meson on a physical n+ meson, M N is the nucleon mass, gr is the
rationalized, renormalized n N coupling constant and JCNNn (0) is the pionic
form factor of the nucleon.

If we neglect inelastic processes and partial waves with | > 3 and use
the Adler form for off mass shell corrections we can write the right hand side
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of eq. (7) as
RW + R(0)+ R(y+ R(n+ a<2)+ a@)«

where i?;r> is a contribution from 1, T partial wave. Using Wolf »» phase
shifts the values of i?;T) terms are

O<>= 1,20, fA<>= 0,114, R(D = 0,760, = 0,072,
JCO= 0,385, = -0,034 .
Then 2/ = 1,73 and éA/gv = 1.08.

II1. Concluding remarks

There are various possibilities for avoiding the discrepancy between the
experimental and calculated value. First of all it must be noted that the
term calculated here is much larger than Adler’s estimate = 0,42. This
discrepancy is due to the different g-meson width used. Adler uses e= 105
MeV, while Wolf »» phase shift corresponds to 's= 140 MeV. A second
possibility arises from the fact that the R@) term which dominates the right
hand side of eq. (7) is very sensitive to the small variations of a0. For instance
if we use = 0,76 and take |a0\= 1,1 in the region O m{ v<[ 0,5 we get
gAlgv = 1A7-
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o s wn e

SAMEYAHWA O nn ®A30BOM CABUTE BOJIb®A N BbIHNCNEHWE
OTHOLWEHNA gAlgv M3 MPABVNTA CYMM AONEPA

A MUYT
Pes3ome

KpaTko 06cy>K,qaeTc;| COBMECTUMOCTb J1/1 (*)aSOBbIX CABWIOB, MPeanoXeHHbIX . Bonb-
mUM [LNCMNEePCUOHHBIMU COOTHOLWeHMAMKU. cnonb3ysd 3tu CpaSOBble CABUIN, BbIYNCAETCA
OTHOLLEHWe gA/gv K3 npaBuna cymm Afnepa. Paccy>kaloTcs HeKOTopble BO3MOXHOCTU ANf
YMEHbLUEHNA PaCXOXXAEHUA MeEXAY TEOPETUHECKMM W 3IKCNEPUMEHTa/IbHbIM 3HAYEHUAMMW.
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ELECTROMAGNETIC MASS DIFFERENCES
AND CURRENT ALGEBRAS

By
P. SURANYI

CENTRAL RESEARCH INSTITUTE FOR PHYSICS, BUDAPEST

A sum-rule for the electromagnetic mass difference of elementary particles is derived
using the methods of current algebras. An expression for the proton-neutron mass difference
is given in terms of the proton-electron and neutron-electron cross-sections.

Current algebras have been applied to many physical problems in recent
times [1]. By using this method it was possible in some cases to derive relations
among different measurable quantities. In general, these relations were in
satisfying agreement with experimental data. Several electromagnetic pheno-
mena were examined using current commutation relations [2]. The success
of these calculations encouraged us to apply this method to the calculation
of electromagnetic mass differences. We shall use a U(2) algebra (isotopic
spin group extended by baryon gauge group) for deriving closed expressions
for the mass difference of any particles belonging to the same isotopic spin
multiplet. Our relations are exact if we assume as usual the convergence of
a dispersion integral.

The U(2) algebra consists of the generators T+, T~, T3 and T°, where
T‘= 8jO(x)dX .The generators T3and T~ are assumed to be exactly conserved.
The conservation of T+ and T~ is violated by electromagnetic interactions.
The generators Tl satisfy the usual U(2) commutation relations. We denote
the Hamiltonian of the system by H = Hs-f- Hem, where

[HST1= 0, i= +,—,3,0 1)
Hem= el (4 (x) + il (*))a (x)d3X 2)

Using relations (1) and (2) we can obtain the following equation [3]:

= i[H, T+] = i [Hy, T+] = =+ ei fj* A, d3x 3)
On the other hand
+
dT_ Q\]I d3X = 3pj* d3X (4)
dt dt

Acta Physica Academiae Scientiarum Hungaricae 22, 1967



302 P. SURANYI
Comparing equations (3) and (4) we obtain
| (*)d3x = xie$jl A, d3x. (5)

In what follows we shall use eq. (5) without integration. Such a relation can
be derived in a quark model for some types of interaction. We remark that
our final formulae can be derived assuming only (5) as it stands and using
a non-covariant method of derivation. Nevertheless, we shall follow the more
elegant covariant treatment [4]. As usual we shall define a retarded function:

F ab(v>q2) = 1T egqx 0 (*o)dix < Aa(Pi)\[djn(x)’eAJTT\Ab(P2) >. (6)

gjPi+Pr)
2

For the sake of simplicity we shall use zero three-momentum initial and

final states, Px= (ma, 0,0,0),p2— (Tb,0,0,0). i can be chosen as —,

3 or 0. As stated the existence of a dispersion relation for F& without sub-

tractions will be assumed:

where Aaand Abare particles ofthe same isotopic multiplet, v —

fa (l”.) -" (7)
27113 v —V—IE

where
fib (v, q) = Jd*xeAx< A a{pX)|[ 9 (X),eAli] \Ab(pl)>. 8

After integration by parts we obtain from (6)
Fib (0,0) = < A a(pt) leA, (0) [L (0), T-1\ADb(p2>. 9)

Inserting a closed system of physical states inside the commutator of eq. (8)
using (7) and (9) we arrive at the following expression (if we perform our
calculations in second order of e it is enough to include in the sum over inter-
mediate states, the corresponding state from the A multiplet and states con-
taining one photon)

< AaieAnVP T~ 1Ab> = —Ra < Acieadi 1Ab>

+ Réb < AaleA.ji1Ad>+ 4 — 2: ai(q+PI- N 2
J OV ap* (10)

0 (@+ Pio- po)[ < Aalivia (P)> < a (P)\iilab>
+ < Aalii IX(P')> < a (P)wr\ap> ]

The summation on the r.h.s. is understood over all possible hadron states.
jRa0s essentially a Clebsch—Gordan coefficient, with RaC— (2 n)3<An |j"\Ab>-
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Eq. (10) is our final formula for the mass differences. For any types of isotopic
multiplets one can choose i in such a way that the I.h.s. and the first terms
of the r.h.s. can be expressed by mass differences. The sum on the r.h.s. can
be given in terms of integrals over cross-sections, or may be approximated
by a few low-lying levels.

The simplest application of eq. (10) is that for isotopic triplets or higher
multiplets. For the sake of definiteness we apply it to triplets. If we choose
i — — the I.h.s. of eq. (10) vanishes. Using eq. (5) we obtain an expression
for the following combination of masses:

™ “- Tt —2m3 e2(2nm)3

JEG +Pi
2 ROmR-0 ap ((q

0 D+ Pio- K) < A-)YUI*(P') > <<x(p ")jn \A+>-
We shall apply eq. (11) in a separate paper [5] to calculate the mass difference
of charged and neutral pions. In what follows we shall apply eq. (10) to
doublets. We choose i = 0, so the l.h.s. again vanishes. On the other hand,
having a — d and ¢ = b in eq. (10) the first two terms on the right hand side

(we have chosen the members of our doublet as positively charged and neutral
particles) give

Ri= —y=-(< A+\eAJI\VA+> - <Ao\eAJI\Ao0>)-
The isoscalar part of the photon source will not make any contribution to Rv so

R\= —yr(<A+\eAJI\A+> - < Ao\eA"\Ao0>)’

where now only the isoscalar part of the photon source contributes. Using
isotopic spin invariance, Rx can be written as

Ri= AgleArdrass = 10 w1
IS S AgEATINAY> = —anys T 187
which gives
m3- m+= - 2 f2(2n)3e3[— 2'a((, + P - PJ)

(12)

0 (0+ Po- PO <Jlip)li»l«(p')>m
c<«(PY)]y°M + (P)>,
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(The mass difference of AO and A + gives fourth order effects on the r.h.s.
and can be neglected). Eq. (12) is essentially the same as that obtained by
Cini, Ferrari and Gatto [6] for the proton-neutron mass difference using
field theory methods. The calculation of the one nucleon term does not give
a correct result as is well known (we obtain mp— mn= 0,6 MeV). Because
of the baryon current appearing in the sum rule of eq. (12) N*/23J resonance
makes no contribution. We may expect the N* (1518) resonance to make
an essential contribution. Unfortunately, the electromagnetic properties of
this resonance are not yet well known. There is a further possibiliy that non-
resonant many-particle terms may make essential contributions if they go
through one meson exchange diagrams. Calculations of that type are in
progress. We can express mp— mn through the electron-proton, electron-
neutron cross-sections in the following wayl Using isotopic invariance we
can write

mn-m p= - (2H)36*Jf_\/ aP'ﬁ((q+ P~ P'f)0 (q0+ PO- PO

[<p®P)Wric(M> <= (TMnar \pe) > -
— < n(P)1d"™ 1« (P') > < a(P') ly¢mlIn (P)>],

where p and n denote proton and neutron, jpm= jp--jp.
We define Wpv as [7]

wiv=\ 2, 2 <P(p) Kmla(r >
spin '

<x{P")\jim\p{P)>O(q + P-P").

Following from Lorentz invariance and current conservation W can he
expressed as a linear combination of two scalar functions

K v=Wi(q*,qP)

+ N2(?2 4P) p»-~r<r
4

1A little different sum-rule for the proton-neutron mass difference was obtained by
Cottingham [8].
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W+ and W2 depend on two invariants: g2 and gqP. Comparing (12) and (13)
we obtain for the mass difference

mn - mp= — (20032 f41 5 LWP(PI - POZ(Pi- PoP) -

W2 ((Pi-P 2)2 (Pi-Pi) P>(Pi- Pi)P)] 3+ [Wob((Pi- P22 (Pi —P2lO -

i- (14)
(P1-p Z,(P1- p2 P)]jI- [PIPIPIZ
™{Pi-Pi)2
The total (in the sense, that we sum up over all possible hadron final states
at a given final state electron momentum) differential cross-section for electron-
nucleon scattering is given by the formula

d2a.y IPa
2W1 P
dQ2dp2  2n2g41 px\p FPWHEZAP) + (15)
+ 92 2--E—-(Em —qP) "~ (g 2gP)l
2 m

In eqgs. (14) and (15) a = -21---,92is the invariant momentum transfer between
n

the two leptons, g = px—p2 pxand p2are the four-momenta of the electrons
in the initial and final states, respectively. E is the primary energy E = pw.
The components of pland p2appearing in eq. (15) are taken in the laboratory
system. The special combination of Wxand W2 appearing in eq. (14) may be
expressed as a linear combination of ep, en cross-section and their derivatives
with respect to E at constant ' and qP. By inserting this linear combination
into eq. (14) we obtain after integration by parts

2
@M J4E| d02 | dp2y (E.p2 cos¥)
d 2&1,ep d2«. (2tr)5 dE (16)
d*2d IPi1  d172d \Pi] 2a
\2E f-p, (1 — cos #)]2 d2a,ep d2a, cos# = — 1.

<t62d jp21 dQ2dIp2l
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The quantities appearing in eq. (16) are defined as follows

_ EM _ EM
M + E (1 — cos #) 2E + M

g (E,p2cos0) = PZ ~ S ] {(2E+p2Ep2coS{>- 4£3 _ 5£*N1 - Epl+pLl.
(E + p22

The present experimental data are still insufficient for the right hand side
of eq. (16) to be calculated. However, it is not excluded that in the near
future we shall have sufficient data about the electron spectrum in inelastic
electron-nucleon scattering to evaluate these integrals.

The author is very much indebted to Dr. A. Frenkel for valuable dis-
cussions.
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O~NO O W

SJIEKTPOMATHNTHBLIE PASHOCTU MACC U AJIFEEPbl TOKOB
n. WYPAHWN

Pesome
MonyyeHo MpaBWIO CYMM [NS 3NEKTPOMArHUTHBIX Pa3HOCTEA MacC 3/1eMEHTapHbIX

YaCTuUL, MCMOMb3ys MeToj anre6pbl TOKOB. [laeTcs BbIpaXeHWe ANns PasHOCTM MacC MpOTOHa
M HeliTPOHA Yepe3 CeuyeHUst PaccesiHWs 3MeKTPOHA Ha NPOTOHAX U HeMTpoHax.
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ON LOCALIZATION OF RELATIVISTIC
MICROPARTICLES IN SPACE AND TIME

By
D. I. Biokhintsev

JOINT INSTITUTE FOR NUCLEAR RESEARCH, LABORATORY OF THEORETICAL PHYSICS,
DUBNA, USSR

The present day theory in a formal way permits one particle states which are localized
in space with any degree of accuracy. This gives the possibility to formulate conditions of
macroscopic causality directly for S-matrix.

The scattering matrix S for real “in” — and “ont” — states should
obey certain causality conditions. However, these conditions can be formulated
only if “in” states are given in the form of localized wave packets instead of
plane waves.

In this connection it is necessary to consider possibilities of construction
of narrow wave packets for relativistic particles, which do not spread essentially

R
during the time T = --—-—-much longer than the collision time 1 (here R is the
\%

distance between wave packets, and v their relative velocity). It is important
to mention that when we say that the matrix S transforms the state given
at T = — oo to the state T = -1 00 it is implied that we neglect the terms of
the order t2T2and retain the terms of the order /7.

Thus, we are looking for wave packets which satisfy the conditions:

Rs>A$%$>X (1)

the typical wave length, A the dimension of wave packet, R the distance
between them) and
\A(T) - A(- TH\"A(-T). (P)

The smaller the wave length X the more precise are the conditions for the
formulation of macroscopic causality for S matrix.

The fact is that in many papers devoted to the problem of relativistic
particle localization it is asserted that a spinor particle cannot he exactly
localized since the states of positive energy do not form a complete set of
functions (see [1]). Therefore, the eigenfunction 6(x— x') of the coordinate
operator X cannot be expanded in the eigenfunctions corresponding only to
positive energy states.

The same is related to spinless particles obeying the Klein equation.
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We shall show that if quadratically integrable wave packets are used
instead of the d-function then particles can be localized in positive energy-
states to any degree of accuracy.

A. First we consider the case of Dirac particles. Let us take a one-particle
state, represented by a quadratically integrable wave function:

vy, t, = JC(P) U (P,a)e(P* ~Ri>d3P, 2)
where E = + 1/m2-f-P2,U (P, a) Dirac spinor, and

J1C (P) Rd3P = 1, 3)
SPU*U = 1. (4)

Now we calculate the mean square value of a coordinate, for instance,
of Z . Assuming that at t= 0 Z= 0 we obtain after simple calculations:

suU* 8U
A22:Z|:J 8C(®) daP + U C P)PS. & d3p . (5)

3pz D,

The last term is characteristic of the relativistic case.
Now we represent C(P) in the form:

(6)

1
\Y

C(p) = /()ilpf , 1

where POis the quantity describing the momentum dispersion in the considered
state:

AP\ " P2. (7)

The first integral in eq. (5) gives:

dCc 2 a
H pi
The second integral is 1
X\42d EM(£), (8"
where
8U* 8U\dQ
M(f) = (8")
9z p, J 4n
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and M (f) is equal:
1

4m2
M (f) = (9

1 m2 1 ft m
. Secme—
4m2 T||* Pn
(See Appendix IA).

Therefore, we have that at t= 0

| m/PO,

AZ2= x——F + BR2— 11- (10y
AP\
if zIP| <§ m22.
For A P| > mXx2 we have

. h2
1Z2= a (104

u

where a, /9,a' are of the order of unity. It is well seen that although in eq. (10)

an additional term %ImX2 appears as if indicating that the Dirac particle
%

cannot be localized more exactly than within AZ ~ -——- but, in fact, it is
me

of no importance since at APZ->°0 eq. (10) transforms into eq. (10'.
Notice, however, that at A P|-> oo the considered state isnot described
by the function:

2'(2)= 82z —2"), (11)

since this function is not quadratically integrable but the considered state
is described by quadratically integrable functions. This quadratically integrable

function (Z,PO0) localized about Z= Z" is related to the function (11) as
follows:
ZPr (Z,P0)= Z2'wz.(Z,PO+ A(Z- Z\PO), (12)
A(Z- Z',P0O)= [(z- zv) (z,POPJI, (129
iv
in this case

PZ(Z,PO)/PIR—d(Z —2Z

at PO— oo . Therefore, if the function !PZ, (Z) is considered as an “ideal”
eigenfunction of the operator of the coordinate Z then the function Wz, (Z, P0)
approximates it so that ZI(Z — Z', P0) -»-0 at PO-> oo (see Appendix IB).
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B. We now turn to the spinless particles, and consider again the one-
particle state. The field <p(x) may be represented in the form:
r —T ||KX
V(x) = VA (K)UK(x) d3K, UK = , (13)

J KQ

where KX = KX —cot, o= -f- fm2-(- K2 (see Appendix I1A).
The density g(x) is

Q{x) = > [Qcp* @-¢- go* Qep], A=+YTn2—y2 (14)

and, generally speaking, is non-definite even for positive energy states o =
= ]fmF+ K2.

In this case it is also impossible to represent the 6 function as a super-
position of waves U” with co >0

Now let us consider localized states with integrable density g. We
calculate the quantity ZI at t = 0 under the condition:

Ag(x)d3x = + 1. (15)
We have

TZ22=7> = A {z2{Qp*cp+ cp*Q<p)d*x. (16)

After simple calculations we find that:

a
z2= % 43K boHK .. (16"
akK, Cco*

This expression is non-definite, therefore the density g{x, 0) cannot be treated
as a density of any probability.
It might be expected that such “anomalies” in the behaviour of g(x)

arise only when the density g(x) isconcentrated within A X ~ - . But this
me

is not the case: g(x) may assume negative values also when Ax ~ K/mc (see
Appendix IIB and IIC). Taking A in the form

A(K) = A(@)—f & 1o Oy
we find

U. 431, (16)

Z2m "12- -
1/'12 4£2 19 f2

[>m
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It is not difficult to choose a function / such that p 4£2 j“ 2 0

Then it is seen that at mg->co , Z2= 0 and we come to the state with a well
localized density i.e. a density which at t= 0 is concentrated within an
arbitrary small region A Z ~ h/co0 — 0 (see Appendix II1).

Thus, as far as the possibility of localization is concerned, the situation
is quite similar to that which takes place for the Dirac particle. However,
the g(x,t) for the spinless particle might not be interpreted as the density
of the probability to detect the particle near the point x at moment t.

The quantity p(3c, i) should be considered as a purely “field” quantity
representing a spinless particle in space-time.

C. Now we consider the behaviour of relativistic wave packets in the
course of time. All the state; discussed above localized at t = 0 are spreading:
the quantities AX2 AY2>AZ2increase. However, this increase is such that
under certain conditions it may be said that the relativistic packet is mov-
ing during a rather long time T conserving its characteristic size.

In other words, the change in the packet size during time T may be
small compared with its initial size even for long time intervals. Here a
long time interval imp'ies an interval such that R = c¢T §>AX, AY, AZ
where A X, AY, AZ are taken at t= 0, C is the velocity of light.

It is easy to show that the packet width.dn measured in the direction pa-
rallel to the packet motion increases with faccording to the law:

Ab (t) = 42 (0 V2t 17
® © = 42 (0) E' .

and the width A+ measured in the direction perpendicular to the packet
motion increases according to the law

n 1 m?2
A\{t) A2(0) )-------m- V212= A\ (0) + t2. (1T)
v - Zl1i(0) 1 m2c2 A[ (0) IP
Here K is the particle wave length,«---—-- isthe p acket vitocity, m is the partic-

3p
le rest mass, d2(0) is the value of A2(i) at t= 3 (see Appmiix IV). From
these equations it follows that

A2(t)-A 2(0)

18
A2(f) (+9)

R =ct < 220 (18
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Now we come back to the conditions (1), (1’) and combine them with the
result (18"). We find the inequalities:

A—;| > gdgd (19)

which can be realized for any t under the condition that 4—=0 (i. e. i>->c).

This important condition of a possible long existence of a localized
relativistic packet is exclusively the result of relativistic effects: delay of the
clock in a moving frame of reference and increase of the particle mass
with increasing velocity.

D. Summary:

The present day theory in a formal way (because there is no practic-
al way to construct an arbitrary narrow split) permits one-particle states,

which are localized in space with any degree of accuracy A -> 0, and for the
d2

time intervals T < ﬂ——>oo at 9-7-0. This givesthe possibility to formulate con-
c

ditions of macroscopic causality directly for the S-matrix, taken on the
mass and energy surface.

Appendix |

A. The spinor Ur(P,<X) can be written for E > 0in the form (see [5]):

r=1, r= 2,
U =N, U= o,
17(2) = 0, U@ =N,
fE 1* N
U(s) = 1/(3) =
(3) P7N (3) mE (1)
U@ = vaw= N
" 1AN - m - E
N = ! Il=Px+ iP
. y
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Hence, it is seen that the traces of bilinear combinations for r= 1 and
2 are identical. A simple calculation gives

guU* duU | m
1+
9Pz 9Pz 8 E Ee
11 i
1+ Pi +
E E2 Ex
Ej
1 m2P i 2Pi mP%
* I m 2 m m * (2)
1+ — Ee 1 H— E2 1+ — E3
E E £
E2- m2- PIl)Pj
mPd o )Pl X
f m E6 | + E
1+ —
E

« 1+12 " >o.
y

Noting that
p2 dQ = — p2 J‘?dU:— Pi 3)
3 5
find
2P<sme
* 4m
M = . 9uU* 9 U do @
n. 1
9Pz 9Pz P 'sme
3 P2
4m2
M ! (5)
1 4 ni2 1 p m
I X-—-
4m2 3 P2 f

The integral of M (£) is of the form

m .
h o l [/(f)yi2i2d fMm

pi

m C!l(f)\ZEdeM b (6)

h b

J

0
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This integral tends to zero at ----- —>0 since the region where M (£) » ------
0 4m?2
.m m o 1
reduces is ----- N —moo it is finite and equal to ----—---- .
Po Po 4m2
B. Let us consider the connection between the wave function represen
ing the state localized about the point X — X' and the d function. We
denote this function by Wz, (X, a) where a * --—---- . It can be of the form
_ (X-X'y
. € a2
IV (X,a)~ . (2)
la

This function leads to (X — X')2= a2so that at a "m0, (X — X')2-> 0 the
function ipx- (X, a)/fa has a limit 6(X — X') at a =0

(X, a)/[K«-v Vx.(X)=a(X - X). (8
a-*0
Therefore

X 4. (X,a) = X'wx.(X,a)+ fa (X-X") (9)
fa

The last term tends to zero at a 0 owing to (8) and the relation (X —X') x
XO(X - X" = 0.

Appendix 1l

A. Usually the Fourier representation for the scalar field is written in
the form

) = fC(IQ gikx dlK C(K)

. oy UXOOdK = TAK)UZ()dQ (1)

A(K), in contrast to C(K) is not a scalar.

B. The fact that the quantity qg(X, t) is non-definite is seen from the
following example. We put

(K-K » (K -K 22
c(K) c{e 2b2 e 22 2

(e6] (6] co
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We find g(X, 0)

Ne 5 +« X «26-)0'\ +iKX

2b
<Pp(x) = cx d2K + Cl]_e d2K . 3)

For simplicity we assume that (Ki — Kj,) b. Further

b’X ! iKX b'Xxm
-1K, SiK, X
Qp —cfe + c*e

From here
X1

Q(x x0)y= — (Q <pp- cpQep) = e

(4)
+ +—cos (AKX + p + 122 cos (AKX + 9+
where @ = arg —. Now we believe that col 8> cov |cr|, | c2| are comparable.
Then
b'Xm
Q(X,0)=¢e 2 + cos (AK X P\ (5)

It is seen that if > 1 then ofX, 0) periodically changes the sign.
The density in this case is not too strongly localized (it was assumed
that b is small) and in any case the quantity A X 2= s is by no means con-

nected with the Compton wave-length fb/mc .
C. Negative values of An.2 Now we turn to the case of one dimension.
Eq. (34) reads now

K2
AZ2= o 1/4 A2- dK.
We put A = 1 for o= jJK2-f 1< Qg>1

A = e-a22(<"-R)2 m> Q
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(the particle mass is taken to be unity). Going over to the integration over
a>we get

1/2 AZ2= Te-a™-0)2ad(@> — Q)2 1 - d e>—
n
¢ 1”2 dt 212 d “
(o}
fir 1 yas O M212% Qe g do
g 021 w2 11 -2 0)2
Q

It is sufficient to consider the first two integrals.
Assuming a (0 — Q) = £ we find that the first integral will be of the

T

order a and the second is sime/lv calculated and for Rg>1 is —1/4 — = - .

’ 4 16

the third integral is far smaller. At a SRR ./ 38 —-Z—L--——-ﬁ-——-. In the
16 8 m2c2

case of three dimensions, under the normalization condition (31) we have
not succeeded in finding an example with AZ2<CO0 »

Appendix 111

Let us consider a relativistic packet described by the field <p(X t)

<P(X,t7=I «W  ciKKX-wt) d3K , (1)

. a<p3*{x|t) I}Uizs)e-uKX-mt)& K 2

The density g(X, t) is determined by the expression

e(X1*)=Y P e 3 — (3)

9
The localization will be strong if @ or--g--?are strongly localized, We choose

(C(K) in the form

(K—K)*
c(K) = Ne » (4)
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where N . Then
1/bs
3 Xt (K-K,))* .
PY N e o TRXgx
of
(5)
2a2
fa ~
where a ~ _b . At a -» 0 this function is arbitrarily strongly localized about

X = 0. The connection of such a function with the 6 function was considered
in Appendix IB.

Appendix IV

We calculate the spreading of a relativistic packet starting from its
representation in the form (I11. 1) and take c(K) in the form (IIl. 4). If bis
not too large then the field (p(X, t) can be represented in the form:

PX ) — e I (X1,
CO, O)
where
(K-Ki) . . oo
I(X.1) = e 26, HI(K-KI,X)-i(a>-rai)i d3K. 2)
For definiteness we put K!= {Kx”" 0, 0). Then
1
|;|—wi——00-.~ 4x + (Ux + W+ 4z) — 1Ur o Yx’ (3)
where = K — Kj . A simple calculation yields
(x-v,0* Ve vid
ia(XJ)-
| (Xxt) = A (f) e 211,0 2JKO 4

where A(t) is a slowly changing quantity, a is a real number and the quantities
Aiiit) and AR\t) are

A\At)= 1 b2mi t2. 5
W) b2 ¥ 0(%” ®)
1 b2 '
(57

rr or
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Putting — = 2Z2(0) these formulae can be rewritten in the form
62

zI2(0) E4
j?2(0 = ~"2(0) -+~ — f£2%2. 6
iw W 712 (0)
Here A= F , P is the particle momentum, F = -—E—-is its velocity. From

the first formula it ife seen that for m = 0 the wave packet does not spread
in the longitudinal direction as is necessary for particles without rest mass
(in this case there is no dispersion of the de Broglie waves). The formula
for zJj(t) can also be derived from diffraction theory (see [6]). The increase
of the beam width due to diffraction is determined by the multiplier

a2 gripi @)

where a is the diameter of the diaphragm, orifice, 9 is the wave length, é is
the angle defining the beam width. The width Q= R sin #, where R — Vt
is the distance to the diaphragm.

Therefore
Sinet. g (8)
so that
n2= —A2V2t2 (9)

according to eq. (6) for A2.
This formula can also be represented in the alternative form

12 m
= — err (10y
a2 E

where AO= -—.In this formula the muItipIier--I-E-- characterizing the delay
me

of the clock is clearly seen.
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oukhwn

O NOKANM3AUNKN PENATUBUNCTCKNX MUNKPOYACTWUL, B NMPOCTPAHCTBE
1 BPEMEHN

A. V. BNOXWUHLEB

Pesome

HblHewHaa Teopus (*)OpMaI'II?’HO no3Bo/iAeT OAHOYaCTUYHblE COCTOAHWA, JTOKaM30BaH-
Hble B MPOCTPaHCTBE MNPOW3BOJSILHOW TOYHOCTLIO. 3TO AaeT BO3MOXHOCTbL A/1A CCbOpMy]'II/IpO-
BaHWSA YCNOBMA MaKpPOCKOMUYECKON MPUYMHHOCTA MPAMO ANS S-MaTpuLbl.
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CALCULATION OF THE n+- n° MASS
DIFFERENCE

By
A. Frenkel, M. Posch, G. Suranyi and P. Suranyi

CENTRAL RESEARCH INSTITUTE FOR PHYSICS, BUDAPEST

Abstract

An attempt has been made to calculate the n+ — n° mass difference
((m+ — mOexp = -f- 4,7 Mev) on the basis of isospin current algebra. The
contribution of the lowest n°y intermediate state turned out to be -)- 1 Mev,
while that of the coy state equals -f- 8,8 Mev. In the calculation the Hofstadter
form-factors have been approximated by functions ofthe type Ji2mg2n2 —t)~1
(nig — i)_1 and for the coy case the form-factor has been normalized to the
observed T(co-> n°y)~ 1,26 Mev decay rate. The result shows that the
lowest n°y state does not make a dominant contribution and that either much
more convergent form-factors or non-negligible negative contributions to the
mass-difference are needed to get the experimental result.

BbIYMCNTEHNE PA3HOCTW MACC n* W n° ME3OHOB
A. ®PEHKE/Ib, M. MOLW, T. WYPAHW u M. WWYPAHU

Pesome

OueHeHa pasHOCTb Macc i+ U " Me30HOB ((HM — T O)aken = 4,7 M3B) Ha OCHOBe afi-
reébpbl TOKOB M30CMMHA. BKnaj HW3LLEro NPOMEXYTOYHOro COCTOSIHMA n°y cocTasBnser +1
M3B, a BKaj wy cocTosHus paBHseTcsa +8,8 MaB. [Npu pacuete dopMm akTopbl Fodutagrepa
6bin NpeacTasneHbl QyHKunamMy Tuna J12r8(12—i)-1m| —/)-*, n gna cnyyas coy COCTOAHUSA
(hopm (hakTop OblN HOPMUPOBAH MPU MOMOLLY 3KCMIEPUMEHTANLHOIO 3HaYeHns (bl —n°y)

1,26 Ma3B. Pe3ynbTar nokasblBaeT, YTO HU3LUEE COCTOAHWME n°y He [aeT [AOMWHUPYIOLLEro
BKNafa 1 YTo 18 COrnacus ¢ 3KCrepumeHTasbHbIM 3Ha4eHMeM pa3HOCTU Macc HeobXoauMbl v
(hopM (haKTopbl, CXOASALLMECH HAMHOIO CU/IbHEE WUCMOMb30BaHHbIX HAMU, UMW XE HYXHbI Apyrue
BKNafbl CO 3HAKOM MUHYC.
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RESTRICTIONS ON THE CURRENTS AND SUM
RULES

G. PocsiK

INSTITUTE OF THEORETICAL PHYSICS, ROLAND E5TVO3 UNIVERSITY, BUDAPEST

Abstract

The general properties of a set of not necessarily conserved currents
interacting with massive vector particles, the positivity and selected problems
are examined.* From the positivity some restrictions on the currents are
obtained. It is shown that all the conventional fermion currents, e.g.
weak currents, contradict the positivity.

OrPAHMYEHNA HA TOKW W MPABUJTA CYMM
r. NOYUH

Peswme

WccnenoBaHbl 06WMe CBOICTBA psiia He 06513aTeNbHO COXPaHAOWMXCA TOKOB, B3au-
MOZENCTBYIOLMX BEKTOPHbIMM YacTULAMM C MacCoii, a TakXe MOJI0KUTENbHOCTE U 0CoBble
npo6/emMbl. 13 MONOXWTENBHOCTU MOMYyYeHbl HEKOTOPblE OTPaHUYeHWst Ha TOkM. [lokasaHo,
UTo 06blYHbIE (DEPMMOHHBLIE TOKM, T.e. Crlabble TOKM, MPOTUBOPEYAT MOMOXUTENBHOCTH.

* G. P4csiK, Nuovo Cimento, 43A, 541, 1966.
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ON THE STRUCTURE OF WEAK CURRENTS

By
F. CsiKOR and G. POCSIK

INSTITUTE OF THEORETICAL PHYSICS, ROLAND EOTVOS UNIVERSITY, BUDAPEST

Abstract

Restrictions on the currents arising from positivity are studied in both
vector boson and conventional theories of weak interactions.* It is shown
that the usual definition of the current does not fulfil these requirements.
The correct expression for the current which satisfies all the prescriptions,
is also given.

O CTPYKTYPE C/NABbIX TOKOB
®. YAKOP n . NO4YNH

Pesome

OrpaHuYeHns, HaBsizaHble YC/TOBMEM MOMOXWUTENBHOCTY Ha TOKMW, M3y4eHbl U B TEOPUSX
C BEKTOPHLIMM 6030HAMI 1 B KOHBEHLIMOHANBHbLIX TEOPMAX CNabblX B3aUMOAEWCTBMIA. MMoKa3aHo,
uTo 06bIUHOE OMpeaenieHWe TOKa He YA0BMeTBOpsieT 3TUM TpeboBaHWAM. [aHo npaBu/bHOE
BbIpaXXeHMEe TOKa, Y/J0BNETBOPsIOLLEE BCEM TPeOOBAHWAM.

*F. CsiKOR and G. Pé6csik, Nuovo Cimento, 42A, 413, 1966.
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MODELS OF HIGH ENERGY SCATTERING

By
N. Dombey

RUTHERFORD HIGH-ENERGY LABORATORY, CHILTON NEAR DIDCOT, BERKS. ENGLAND

Abstract

Complex potential models of proton-proton high-energy large angle
scattering are investigated. One finds that there are two essentially different
kinds of potential which generate exponentially small scattering amplitudes.

MOAENN PACCEAHUNA MPU BbICOKUX SHEPINAX
H. OOMBEWN

Pesome

V13yyeHbl KOMMAEKCHbIE MOAENMN MOTEHUManoB A1 MPOTOH-MPOTOHHOTO PacCesHus Ha
60/bLUME YTibl MPU BbICOKUX 3HEPTUAX. HalifeHo, YTO CYLLECTBYHOT [Ba CYLUECTBEHHO Pa3HbIX
copTa MOTEHLWa/IOB, KOTOpble MPUBOAAT K 3KCMOHEHLMasbHO NajalolnM amiinTygam pac-
cesHUs.
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Theorie der Warmestrahlung

Vorlesungen von MAX PLANCK

Mit einem Geleitwort von Prof. Dr. H. Falkenhagen, Rostock
6. Auflage

1965. X 11, 221 Seiten mit 6 Abbildungen

Leinen 16,50 MDN

Unter den epochemachenden Errungenschaften auf dem Gebiete der Physik ist die
Entdeckung und Berechnung des elementaren Wirkungsquantums h durch Max Planck
eine der wesentlichsten. Er ist damit als Schépfer der Quantentheorie in die Geschichte
der Physik eingegangen. Die grofRe Tragweite dieser Entdeckung liegt nicht zuletzt
darin, daB bis in die neueste Zeit alle Anwendungen und Verfeinerungen der Theorien
bedeutender Physiker wie Albert Einstein, Louis de Broglie, Werner Heisenberg u. a.
letztlich ihre Grundlage in dieser fundamentalen Entdeckung Max Plancks haben.

Klassische Arbeiten deutscher Physiker

Herausgegeben von der Physikalischen Gesellschaft in der Deutschen
Demokratischen Republik

Heft 1
Grudlegende Abhandlungen Uber die X-Strahlen

Von W. C. RONTGEN
1954, 42 Seiten mit einem Portrat. Kartoniert 2,70 MDN

Die Technik: Es ist sehr zu begrifien, dalR die Originalarbeiten Réntgens tber seine
Entdeckung der X-Strahlen neu herausgegeben worden sind. Das Studium der kleinen
Schrift fihrt uns die GroRe der Entdeckung Réntgens vor Augen und zeigt, dal3 er
dank seiner Grindlichkeit bereits die wichtigsten Eigenschaften der X-Strahlen fest-
stellen konnte. Das Studium der Schrift kann sehr empfohlen werden. Freyer

Heft "2
Interferenzerscheinungen bei Rontgenstrahlen

Von W. FRIEDRICH, P. KNIPPING u. M. v. LAUE
1955. 36 Seiten mit 3 Abbildungen und 4 Tafeln. Kartoniert 3,— MDN

Réntgen- und Laboratoriumspraxis: Nachdem im ersten Heft die grundlegenden Ar-
beiten Rontgens ahgedruckt worden waren, folgt jetzt im zweiten Heft der Serie die
originalgetreue Wiedergabe der Veréffentlichung von Laue, Friedrich und Knipping
aus dem Jahrgang 1913 der ,,Annalen der Physik* Uber Interferenzerscheinungen bei
Rontgenstrahlen. Es ist aulerordentlich reizvoll, den grundlegenden theoretischen
Ausfuhrungen zu folgen, die Laue Uber die vermutliche Wellennatur der Rd&ntgen-
strahlen und die Madglichkeit, sie mit Hilfe von Interferenzerscheinungen an dem
regelméaBigen Raumgitter von Kristallen zubeweisen, in dieser Arbeit gemacht hat. Gj.

JOHANN AMBROSIUS BARTH LEIPZIG
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