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EFFECT OF SURFACE DAMAGE ON THE TENDENCY
FOR DARKENING OF ZnS SINGLE CRYSTALS

By

P. Sviszt, P. Kovacs and M. Farkas-Jahnke

RESEARCH INSTITUTE FOR TECHNICAL PHYSICS OF THE HUNGARIAN ACADEMY OF SCIENCES,
BUDAPEST

(Presented by G. Szigeti — Received 13. X. 1964.)

The tendency for darkening of the mechanically abraded and polished, etched and
cleaved surfaces of hexagonal ZnS single crystals has been examined simultaneously with
electron diffraction studies. The obtained results showed that there is a strong connection
between the quality of the crystal surface and the tendency for darkening.

1. Introduction

According to pictures published previously [1] the Zn precipitates pro-
duced during the photochemical decomposition of ZnS do not cover homogene-
ously the surface of the crystal. In the case of most of the crystals the Zn
precipitates follow the stacking faults [2] perpendicular to the c-axis, as it was
observed microscopically. In the case of a few other crystals not showing any
oriented disorder and the surface of which seemed smooth before darkening,
the orientation of the precipitated Zn could not be observed.

The question arises whether the orientation of the Zn remains if a layer
is removed from such a crystal and the surface so obtained is irradiated.
To decide this question a layer has been removed from the surface of crystals
with mechanical abrading and polishing, and then they were irradiated in
humid air. The study of the darkening of these crystals, however, gave sur-
prising results: even after a 5 hours’ irradiation no darkening observable with
the naked eye could be seen on the abraded and polished surfaces, whereas if
the surface was removed only by etching (without abrading and polishing)
the darkening appeared in the same form as on the original crystals.2

2. Experimental procedure

The single crystals used for our experiments have been grown from
vapour phase in our laboratory [3]. They were prisms of a hexagonal structure.
The length of the prisms was 5—6 mm, their diameter 3 mm. The crystals
emitted the blue band characteristic for self-activated ZnS-s excited with
365 mm mercury line.

i Acta Phys. Hung. ToT. XX. 1966



2 P. SVISZT, P KOVACS and M. FARKAS-JAHNKE

The electron diffraction study of the crystals was carried out with a
80 KY electron beam (A= 0,0417 A) in aJRM 6-A type electron microscope.
Crystals were attached to the preparate-holder by a mixture of glue and silver
colloide. For evaluation the patterns were compared with a transmission
electron diffraction pattern of a gold foil made under the same conditions
of operation.

The crystals were irradiated in humid air by a 250 W high-pressure
mercury lamp fed from a stabilized source without filter. The intensity of the
exciting light was approx. 100 mW/cm2 on the crystal surface. Microphotos
were taken by means of a MEF-type Reichert universal microscope.

3. Results

3.1. Study of the darkening of mechanically abraded and polished and
afterwards temperature-treated crystals

The effect of abrading and polishing on the tendency for darkening of
the crystals could be easily cleared. Single crystals suitable for polishing
were available. After testing that the crystals chosen for the experiments
could be darkened in a relatively short time they were abraded and polished
mechanically. Abrading took place with a Naxos-type sand-cloth Ne 600.
Polishing after the abrading was done with SiC or A120 3. In the latter case the
finest fraction was used. Both methods led to the same results.

The result was that the tendency for darkening of the crystals strongly
decreased after such treatment. Fig. la shows an abraded and polished crystal
surface. The same surface is given in Fig. Ib after a 5 hours’irradiation. In this
figure larger and smaller Zn islands can be observed. It must he remarked
that the covering of the treated surface with such particles is not a regular
phenomenon. In case of the majority of the treated crystal surfaces no or
hardly any metal precipitation could be observed after a 5 hours’ irradiation.

The reason why we publish the rarely occurring surface picture is that
this demostrates better the change of the surface picture after the heat treat-
ment.

Heat treatment was carried out in purified N2 atmosphere. The time
of the heat treatment varied between 30 minutes and one and a half hour at
a temperature of 900° C.

Fig. lc shows the same crystal surface after a 1 hour heat treatment at
900° C. In the picture it can be well observed that the surface of the crystal
clears after such heat treatment, i.e. a bleaching effect takes place.*

* W ith this phenomenon and with other forms of the bleaching effect we intend to
deal in another paper.

Acta Phys, Hung. ToT. XX. 1966



EFFECT OF SURFACE DAMAGE 3

The surface of this heat treated crystal after 10 minutes irradiation is shown
in Fig. Id. It can be seen clearly that after the heat treatment the tendency
for darkening was noticed after a 10 minutes’ irradiation, while a 5 hours’
irradiation is not sufficient to produce such darkening (see Fig. 1b) after abrad-
ing and polishing.

Fig. 1. Microphotograph of the surface of a ZnS single crystal (a) after abrading and polishing
(b) after a 5 hours’irradiation, (c) after 1 hour’s heat treatment at 900° C, (d) after 10 minutes’
irradiation (128 fold magnification)

Parallel with the above experiments the electron diffraction study of the
crystals took place too. The systematic examinations showed that the diffrac-
tion pattern along a crystal surface hardly changes. This seems very advant-
ageous for the comparison of results as we were unable to make both a dif-
fraction pattern and microscopic picture of the same part of the crystal surface
because of technical reasons.

Single crystal spots and Kikuchi lines appeared on the electron diffrac-
tion pattern of untreated single crystals indicating that the chosen surfaces

I* Acta Phys. Hung. ToT. XX. 1966
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were single crystal faces. Fig. 2a shows such a picture. After mechanical
abrading and polishing the electron diffraction patterns of the same surfaces
showed diffuse Debye-Scherrer rings (Fig. 26). This means that the surface
consists of randomly oriented crystal fragments, produced by mechanical
treatment.

After a 1 hour heat treatment at 900° C the crystal surface recrystallized
and very good single crystal surfaces were formed. This is proved by the appear-
ance of single crystal reflections. An example for this is given in Fig. 2c. Since

2c

Fig. 2. Electron diffraction pattern of the surface of a ZnS single crystal (a) before, (b) after
abrading and polishing, (c) after 1 hour’s heat treatment at 900° C

because of abrading and polishing the part of the lattice (directly beneath the
fragmented zone) also became slightly deformed [4—5] and during recrystalliz-
ation the very fine fragmented layer grew to this deformed matrix, so the
recrystallized surface layer formed in the course of the heat treatment is also
somewhat deformed. Consequently, the single crystal reflections are a little
diffuse, too.

3.2. Study of the darkening of crystals etched after abrading and polishing

Fig. 3a shows the microscopic picture of an abraded and polished crystal
surface after a 30 minutes’ etching in H2504 + H20 2solution. Irradiating the
crystal surface obtained a strong darkening can be observed already after
a 20 minutes’ irradiation (Fig. 36).

Acta Phys. Hung. ToT. XX. 1966



EFFECT OF SURFACE DAMAGE 5

Fig. 4a gives the electron diffraction pattern of an abraded and polished
crystal surface after etching for 10 minutes. In the photograph it can be easily
observed that the single crystal reflections and in some cases even the Kikuchi
lines reappear. Besides the single crystal reflections weak Debye-Scherrer rings
can also be seen in the picture. This shows that the etching time in the present
case was not sufficient for the total removal of the fragmented layer produced

Fig. 3. Microphotograph of an abraded and polished ZnS crystal surface (a) after a 30 minutes’
etching, (b) after 20 minutes’ irradiation (128 fold magnification)

Fig. 4. Electron diffraction pattern of an abraded and polished ZnS single crystal surface
(a) after 10 and (b) after 30 minutes’ etching

by mechanical treatment. Increasing the time of etching (30 minutes) only
single crystal reflections and Kikuchi lines appeared (Fig. 46) i.e. the surface
was already a fine single crystal face.

3.3. Study of the darkening of crystal surfaces produced by cleavage

As far as the authors know there is no literature concerning the cleavage
of ZnS single crystals and the study of surfaces so obtained. This time our
aim was not the study of this question either. We only endeavoured to obtain
a new surface without greater damages as in the case of mechanical treatment.
Hexagonal prisms were used for these experiments, too, the c-axis of which
was parallel to the geometrical axis of the crystal. Cleavage took place in the
plane of the c-axis. The surfaces obtained were of different qualities. Perfectly

Acta Phys. Hung. ToT. XX. 1966
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smooth surfaces were produced as well as such on which steps could be ob-
served. These crack steps might be caused either by stresses causing that
the cleavage does not work exactly along the respective crystal planes,
or by imperfections in the crystal. E.g. it is well known that when an

Fig. 5. Microphotograph of a cleavage surface of a ZnS single crystal (a) before irradiation,
(b) after 2 minutes’ irradiation (256 fold magnification)

Fig. 6. Electron diffraction pattern of a cleavage surface of a ZnS single crystal

otherwise perfect crystal contains screw dislocations intersecting the plane
of cleavage a crack on passing along this plane leaves steps on the otherwise
smooth cleavage surface [6].

Fig. 5a gives a cleavage surface of an average quality before irradiation.
After a 2 minutes’ irradiation the Zn precipitates are well observable. (Fig. 56)
A certain regularity in the position of the precipitates is remarkable. Obvious-
ly a decoration of the crystal defects is in question. [7]. In our case precipit-
ation appeared both along the stacking faults, and the broken steps. The for-

Icla Phys. Hung. ToT. XX. 196fi



EFFECT OF SURFACE DAMAGE 7

mer are always parallel with each other, while the position of the latter relative
to each other is different in each crystal.

On electron diffraction patterns of cleaved surfaces ZnS Debye-Scherrer
rings were never observed. Only single crystal reflections and Kikuchi lines
appeared (Fig. 6). This proves that the freshly cleaved surfaces are very good
single crystal faces.

4. Discussion

It is well known that a mechanical treatment of the surface both in the
case of metals and semiconductors may lead to an “amorphisation” of the sur-
face layer, i.e. a formation of a layer consisting of extremely small crystallites
[8]. As proved by our experiments, a similar layer appears on the surfaces
of ZnS single crystals by mechanical treatment. ZnS single crystal faces show-
ing good single crystal reflections in a natural state give no single crystal
reflections after mechanical abrading and polishing. The upper layer of the
surface is damaged. In this damaged layer there is an outer fragmented zone
which consists of randomly oriented crystal fragments.

Since with the appearance of the damaged surface layer the tendency
for darkening of the crystals considerably decreased, we have to suppose that
the reason for this is just the “amorphisation” of the surface. If a crystal with
a damaged layer was heat-treated at 900° C for an hour, i.e. the very fine
fragmented outer zone was subjected to recrystallization, the tendency for
darkening grew parallel with the appearance of single crystal reflections on
the electron diffraction pattern. If the fragmented layer is removed by etching
i.e. a new crystalline surface is produced, we again obtain the increase of the
tendency for darkening. The new surface appearing by cleavage of the crystals
is a very good single crystal surface. In this case no decrease of the tendency
for darkening was observed.

Accordingly, the results of our experiments unambiguously led to the
conclusion that there is a strong connection between the quality of the ZnS
crystal surface and the tendency for darkening.

In the first place one can suppose that the reason for the strong decrease
of the tendency for darkening after mechanical treatment is that after polish-
ing abrasive particles remain embedded in the surface. It was recently estab-
lished conclusively by a radiometric technique [4] that such particles are really
present in lapped steel surfaces. But in our case this is not the reason for the
decrease of tendency for darkening. This is also justified by the following
experiment.

As was seen above (point 3.1), the tendency for darkening which existed
before mechanical treatment can be practically restored by 1 hour heat treat-
ment at 900° C. This obviously means that the causes of the decrease of the

Acta Phys. Hung. FoT. XX. 1966
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tendency for darkening —mproduced during the mechanical treatment — cease
to exist. If we suppose that these causes would be associated with the embedd-
ing of the abrasive particles in the surface, then these causes should act after
the heat treatment, too, because at the temperature mentioned the AF03 or
SiC does not evaporate from the surface. The following experiment was carried
out. A very fine dispersed AkO3 or SiC powder was settled on the original
(untreated) as well as the abraded and polished crystal surface, respectively.
The quantity of the settled material was so little that its presence was hardly
detectable by electron diffraction investigations. After a 1 hour heat treatment
in N2 atmosphere at 900° C, the rings characteristic for A120 3 resp. SiC could
be similarly observed on the electron diffraction pattern as before. This shows
that the particles settled on the surface before the heat treatment remained
really on it after the heat treatment too. In such a way these cannot be res-
ponsible for the strong decrease of the tendency for darkening after polishing
and the intensive increase of it after heat treatment

Gobrecht and Kunz [9] noticed a slight decrease of the tendency for
darkening of ZnS-Cu luminophores when milling them. Unfortunately, these
authors did not make parallel structural studies. From other works [10], how-
ever, it is known that on the Debye-Scherrer diagram of milled ZnS lumino-
phores the diffraction lines widen and their intensity decreases. At the same
time background grows also. All this indicates that after milling strong inner
deformations appear in the surface layers of the crystal, i.e. the first step
towards the formation of the very fine fragmented surface layer has taken
place. Consequently, the tendency for darkening must have decreased also,
which has been observed by the authors of [9].

Naturally the above described connection between surface damage and
tendency for darkening gives no ansver to the question of why the tendency
for darkening decreases with damaging. Further studies are required to clarify
this question
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B/IMAHWE MOBPEXAEHNA NMOBEPXHOCTW MOHOKPWCTAJI/IOB ZnS
HA NX CK/IOHHOCTb K MNOYEPHEHWIO

M. WBUCT, N. KOBAY un M. ®APKALLI SAHKE
Pestome

ViccnegoBanacb CK/IOHHOCTb K MOYEPHEHMIO FeKcaroHaslbHbIX MOHOKPUCTaInoB ZnS ¢
MeXaHMYeCcKN LUNNGOBaAHHOA M MNOMNBOPAHHOW, PacKosoTOl, a Takke TPaB/IEeHHON MNOBepX-
HOCTbt0. MapannensHo 6bI10 TaKXe NPOW3BEAEHO 3M1EKTPOHHOANGPAKLMOHHOE M3yYeHre 3TUX
noBepxHOCTe. [lofyyYeHHble 3KCMepUMEHTa/IbHbIE Pe3y/ibTaTbl MOKAa3bIBaOT, YTO MMeeTcs
TecHas CBSI3b MeX[y KaueCTBOM MOBEPXHOCTM KPUCTA/IOB U UX CKIOHHOCTBHD K MOYEPHEHMIO.
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APPROXIMATE CALCULATION OF THE TUNNELING
FREQUENCIES OF THE PROTON IN THE N-H ... O
HYDROGEN ROND OF THE NUCLEOTIDE BASE PAIRS

By

G. Bicz6, J. Ladik

CENTRAL RESEARCH INSTITUTE FOR CHEMISTRY OF THE HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST

and

J. Gergely
COMPUTING CENTRE OF THE HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST
(Presented by G. Schay. — Received 10. X1. 1964)

Using the semiempirical Lippincott—Schroeder method we have calculated the
potential function of a N—H ... O and N—H ... N hydrogen bond in the nucleotide base
pairs. Substituting the obtained N—H ... O double-well potential into the one-dimensional
Schrodinger equation of the proton, we have solved it on a computer by numerical integra-
tion. The block diagram of the programme used is given in the Appendix.

W ith the aid of the energy levels obtained for the proton, following the suggestions
of LOWDIN, we have calculated the tunneling frequencies of the proton in the different levels.
Further, on the basis of a classical estimation we have shown that in the electronic ground
state of the system the proton is practically localized in the deeper potential well. The
consequences of this fact are discussed from the point of view of the Watson—Crick—
Lowdin mutation mechanism.

Introduction

In 1962 Lowdin [I] has raised the very interesting idea that those
tautomeric rearrangements of the nucleotide bases which lead to point muta-
tions take place via a simultaneous double proton tunneling through the
potential barriers of the hydrogen bonds ofthe nucleotide base pairs. To obtain
an estimation for the probability of this tunneling phenomenon it is necessary,
as Lowdin has emphasized [1, 2], to calculate the potential function of the
hydrogen bonds of the nucleotide base pairs. Namely on the basis of these
potential functions, as Lewdin has pointed out [3], it is possible to determine
the energy levels ofthe protons and with the aid ofthem to make an estimation
about the tunneling frequencies.

As a first step in the determination of the mentioned potential functions
we have calculated with the aid of the semiempirical Lippincott—Schroeder
method [4, 5] the potential functions of the N—H ...0 and N—H ...N
hydrogen bonds of the nucleotide base pairs. For the N—H .. .0 hydrogen
bond we have solved numerically the one-dimensional Schrédinger-equation
of the proton. With the aid of the obtained energy levels it was possible to
calculate by numerical integration the tunneling frequencies. Finally we were
able to perform a classical estimation for the probabilities to find the protons
in the neighbourhood of one of the two minima of the potential function.

Acta Phys. Hung. ToT. XX. 1966



12 G. BICZO, J. LADIK and J. GERGELY

Method

According to Lippincott and Schroeder [4, 5] the potential energy
function of the proton of a linear X —H ...Y hydrogen bond can be well
approximated with the aid of the expressionl

V(R,r) = DO{1 e~°) D*e-P4- A -bR ;‘g ‘bR yy (1)
where
a = nx-H)(r—rog?2 g_n*R-r - ro2
2r ’ 2(4 - n
(2)
Ao (H—%

n*= gre(H-Y) . =

Here JT is the actual X —Y distance and Rgq its value in equilibrium, r is the
actual X —H, r* = R —rthe actual H—Y distance (see Fig. 1) and r0, r* are
their values in the equilibrium of the X —H, H—Y bonds, respectively, if the

n Y

r e

Fig. 1

atoms X and Y do not take part in a hydrogen bond. DO and Z)0h_y are the
dissociation energies of the X —H and H—Y bonds, respectively. A sui-
table value for the universal dimensionless constant g is, according to the
detailed calculations of Lippincott and Schroeder [4, 5], 1,45 and 4,80
A-1 for the universal constant b. The values of the constants M(x-u> and
M(H—Y) can be determined on the basis of the ionization potentials of the atoms
X and H, H and Y, respectively [4, 5].

The value of the constant A can be determined in every case on the basis
of the conditions

_ = 0, 3

dr E_:rha ( )

3V(R, n \ (4)
3R :R=R,

1As it is easy to see from equation (1), V(R, r) = 0ifr*= R = < and r= r0 i.e.
atom Y is in the infinity and the proton is in the equilibrium distance of the X —H bond.

Acta Phys. Hung. ToT. XX. 1966
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where re is the equilibrium value of r in the X —H ...Y hydrogen bond. Sub-
stituting (1) into (3) we have solved the resulting equation for reby successive
approximation. Using the obtained values re we have determined the appro-
priate values A for both cases with the aid of equation (4).

We have performed the calculation in both cases for R — Rq and we
have used for R,, in the cases ofthe hydrogen bonds N—H .. .0 and N—H .. .N
their average values in the base pairs [6] (RO = 3,00 A for N—H .. .0 and
2,95 A for N—H .. .N). All the other necessary data have been taken from

another paper of Schroeder and Lippincott [7]: DO" — 104 kcal/mole,
DoHo, = 118 kcal/mole, n(N-H>= 9,30 A-1, n<H o) = 9,07 A-1, rOiNH =
= roHSl = U0l A, rj = 0,97 A. For both hydrogen bonds we have

calculated the function V(RO, r) in the points [0,75 A, (0,05 A), 2,20 A].
Jn both cases we have determined the two minima and the maximum of the
potential function.

After the calculation of the potential functions we have substituted the
function V(RO, r)(N_H...0) into the Schrédinger equation of the proton :

A2UD LV (RY )N H.0) W) = ET{r). ©)
2Mp dr2

where Mp denotes the mass of the proton. Since this equation cannot be solved
analytically in the case of a potential function of type (1), we have solved it
only numerically with the aid of the M 3 computer of the Computing Centre
of the Hungarian Academy of Sciences. The details of this rather time-con-
suming calculation are given in the Appendix.

As is well known from quantum mechanics the probability of tunneling
of a particle with energy e¢and mass u through a potential barrier is given
in a good approximation by the expression

where the constant k is in the order of 1 [8]. The definition of the limits of
integration (r2. and r3) can be seen in Fig. 2.

Substituting into (6) k = 1, g = Mp, V(r) = V(Ril, N*N_H..C) and for
the energies E of the different tunneling levels of the proton, obtained from
the numerical solution of (5), we have calculated the values p T belonging to
different levels by numerical integration. Further we have calculated for each

energy level of the proton the Boltzmann factors pBt = —— , where Z

denotes the partition function. For T we have taken 37 -+ 273 =« 310° K.

Acta Phys. Hung. ToT. XX. 1966



14 G. BICZO, J. LADIK and J. GERGELY

Since the numerical solution of equation (5) has provided only stable
eigenvalues, but did not provide good eigenfunctions (see the Appendix), we
cannot calculate directly from the wave functions the probabilities to find
the proton in region | or Il (see Fig. 2). Therefore we have made for these

Fig. 2. Tunneling through potential barrier in a double-well potential

probabilities a classical estimation. In a first approximation the potential
function in the regions | or Il below a given level of the proton can be replaced
by the potential function of a harmonic oscillator:

Vi.= —Zfel,l’Z n.< r<rr,

Vu,——zkntrz r3{< r< r4.

k]t and k\i{ can be determined from the conditions that V\(and Yu{have to
pass through the points (rTj, ef), (r3, £), and through the points (r3j, £), (r.(, £,),
respectively, and further the depth of the potential-wells measured from £eis
Uj and Qu , respectively (see Fig. 2). With the aid of these conditions and
of the definitions d], = r2 — rl{ and du( = r3 — r4 we obtain

Kl, = BUI{ id fen, = suut
dl ~dh7

respectively.

Acta Phys. Hung. ToT. XX. 1966
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Substituting into the expression v = ) of the oscillators we obtain
m
2Uh J 1 2Uu
Wi= — e — and w 4= — [ ———"—, (8)
n md?4 n md fi

With aid of the latter we can write down immediately the condition of the
condition of the stationary equilibrium

PiivhPtiPbi — PuJiuPnPBi.
or

1 2Uit 1
PW - . = Pn- 9
n mdj. n rndhi ©)

where pI( and pu(=1 —p\. are the probabilities to find the proton which

occupies the i-th level in region | or Il, respectively. From equation (9) we
obtain
PU
- d'u B
d\. 1 Uii
and (10
Pu,
14. dU Viu
du. Ui(

Using the expressions (10) we have calculated p and pU for all the
tunneling levels of the proton in the N—H ...0 hydrogen bond. Weighting
each of these probabilities with the Boltzmann factors p B( of the appropriate
levels we can calculate also the overall probabilities p[ and py to find the
proton in region | or Il:

JLPite XT 2iPn(e kT
pi=— "= 1 ph= - A (1)

Results

In Table 1 we give the calculated values of the potential functions
Un—h..o and Un_h..n *In Table Il the extremal values of these potential
functions and their positions are given.

Acta Phys. Hung. ToT. XX. 1966



16 G. BICZO, J. LADIK and J. GERGELY

Table 1

The FN_H...0o an<i h”N-H.. N potential functions

rA N pIBRAD  INTEnERA D
0,75 37,4 37,7
0,80 25,0 25,2
0,85 14,6 14,8
0,90 6,8 6,8
0,95 17 15
1,00 -0,8 -1,2
1,05 —11 -1.7
1,10 0.7 - 0.2
1,15 3.8 2.6
1,20 8,0 6,3
1,25 12,7 10,5
1,30 17,6 14,8
1,35 22,2 18,8
1,40 26,2 22,2
1,45 29,5 24,8
1,50 31,8 26,5
1,55 33,0 27,3
1,60 33,1 27,0
1,65 32,0 26,0
1,70 29,9 24,4
1,75 27,0 22,5
1.80 23,6 20,7
1,85 20,0 19,6
1,90 16.8 19,8
1.95 14,5 21,7
2,00 13,8 25,7
2,05 15,3 32,0
2,10 19,4 48,2
2,15 26,4 51,0
2,20 36,1 62,5
Table Il summarizes the energy levels of the proton in the N—H .. .0

hydrogen bond. The Table contains also the Boltzmann factors pg., the tunnel-
ing probabilities p T{, the oscillator frequencies V\. approximated by the expres-
sion (8) and the probabilities pi. defined by equation (10). In the last two
columns of the Table we find the tunneling frequencies vrt= viiPTiPii=
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The extremal values of the Fn-n..o and

rk

Table 11

rN_H. ofto0 A, r) kcal/mole

rk

Fn_h ..n(2*95 A, r) kcal/mole

= vn.pj.pw.,

The energy levels of the proton in the N—H ... O hydrogen bond

and the

' ri kcalimole

0 2,163
1 11,568
2 18,045
3 19,430
4 26,028
5 26,553
6 32,019
7 33,167

In Fig. 3 we show the calculated N—H ..
levels of the proton. The number at the left

ties vTipB..

Min
1,029

-1,226

Min |
1,036 1

-1,738

Max
1578

33,172

Max
1,563

27,284
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L n potential functions

Min

1,993

13,777

Min

1871

19,546

which give how' many times a proton in the i-th level crosses
the potential barrier in unit time and finally the physically most significant
quantities Ve-Pp"e

Table 111

characteristic probabilities and frequencies of the different levels

PB;

10

2,3 « 107
6,3 « 10-'2
6,7 m|O*13
15 «10-”
6,3 «10“18
8,8 «10-2
1,4 «10-2

Pr;

0
0

1,8 « 107
8,8 « 10-7
9,3 «10-J
16 «io-3
3,4 m10-1
9,9 «10~>

%secl

9.22 m10'3
8,84 «10'3
8.56
8,46 m1013
7,99 «10'3
7,91 w1013
7,21 - 1013
6,62 » 1013

B

0,521
0,516
0,515
0,515
0,511
0,501

vp. sec"1

0

0
7,4 « 106
3,6 107
3,6 < 1010
6,1 1010
12 1013
3,3 « 1013

I'T, PB sec 1

0
0
47 +i0-3
24 + 10”6
54 «10-7
3,8 « 10-7
11 + 10-8
4,6  10-»

.0 potential function with the energy
side of each level gives the quanti-

We have found for the overall probabilities p\ and p\\, which are defined
by equations (11), the values pi =
interesting to calculate the wave length of radiation which is necessary to
excite the proton from the ground state (e0) to the first tunneling level (e2).

We have obtained / =

1,0 and pu =

3,4 «10~12 Finally, it was

1,8 /i which falls in the near infrared region.
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Comparing the potential functions obtained for the N—H ...0 and
N—H .. .N hydrogen bonds (Table I and Il) we can see that while the deeper
potential wells of the functions are rather similar, there are large differences
in the functions in the region of the potential barrier and of the more shallow
well. Namely the N—H .. .N function has a smaller barrier and a more shallow
second well than the N—H .. .0 function. This can be seen, if we take into
account that the 0 atom is more electronegative than the N atom.

Fig. 3. The potential function of the N—H ... O hydrogen bond of the nucleotide base
pairs and the energy levels of the proton

Discussion

Coming now to Table Il we can see that the energy levels of the proton
Si are placed at a distance of 6—9 kcal/mole from each other until we are below
the minimum of the more shallow potential well. Above this we find a splitting
ofthe levels. The two components of these doublets are only 0,5—1,4 kcal/mole
far from each other.

The Boltzmann factors pB<calculated for 37° C show that at this tempera-
ture there is a very small probability to have a proton in a state other than
the ground state. The tunneling probabilities p Tfincrease at the same time in
going from the first tunneling level (level 2) to the 7th level, which is very near
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to the top of the potential barrier. The oscillator frequencies vj( and the
probabilities pi{ differ only very slightly in the different levels. Therefore the
tunneling frequencies vj{— p\(ViipT{increase practically in the same measure
as the tunneling probabilities pT{if we are going from the deeper levels to
the higher ones. We can see from their values (values between ~TO®6 and
~ 1013sec-1) that if the proton is excited by some means (for instance infrared
radiation in the u wave length region), there will be a rapid oscillation of the
proton between the two.regions of the double-well potential and the proton
can be found approximately with the same probability in the two regions
(the values p\. vary in the tunneling levels between 0,52—0,50).

If the proton can be excited only by the effect of the temperature, how-
ever, the Boltzmann factors p~. become decisive and owing to their exceeding-
ly small values the proton practically will be localized in the deeper well

(pl = 1,0). Therefore the values 'mps” he. the numbers showing how many
times during 1 sec a proton will cross the potential barrier, if it can be excited
only by T to a tunneling level, are very small: ~10-5 sec-1—~10-9 sec-1.

We may expect qualitatively the same situation also in the case of the
N—H .. .N hydrogen bond. The values v\. and pI( will be in all probability

very similar to those found in the N—H .. .0 case. Since, however, now the
second potential-well is more shallow, we will find tunneling levels higher than
in the N—H .. .0 case. As a consequence of this and of the fact that the

barrier is now smaller the probabilities p-1( and with them the tunneling
frequencies vT. will now be larger than in the deepest tunneling level of
the N—H ...0 hydrogen bond. Because of the Boltzmann factors, however,
which are also in all probability very small, we can expect again that the pro-
ton, unless it is not excited by radiation or by other means, is localized in the
deeper well.

We have to call again attention, however, to the fact as LOWDIN [3] has
pointed out that the shape of the double-well potential function is extremely
important from the point of view of all these considerations. A somewhat
better approximation of the potential ofthe N—H .. .N hydrogen bond of the
G—C base pair which takes into account also the n electron distribution of
this nucleotide base pair has yielded a still more asymmetric double-well
potential in the ground electronic state, but the potential function has become
rather symmetric in the first excited electronic state of the n electron system
[9]. This means that in the excited state there is a much greater probability
to find the proton in both regions.

It should be further mentioned that recently independently of our calcul-
ations Rein and Harris [9a] have calculated the potential function of the
same hydrogen bond taking into account the change of the n electron distri-
bution of the base pair and of the 4rr electrons of the hydrogen bond with the
position of the proton. Equating the total electronic energy of the system with

2* Acta Phys. Hung. Tom. XX. 1960



20 G. BICZO, J. LADIK and J. GERGELY

the potential energy of the proton they have obtained a less asymmetric
double-well potential than we in our previously mentioned [9] approximation.
Extending their calculations also to the positive and negative ionized states
and to the first excited state, they have calculated the equilibrium constants
of the tautomeric rearrangement of the base pair [9b]. Their results show an
overall picture similar to ours.

The approximation of the double-well potential should he further im-
proved until it will be possible to arrive at definite tunneling frequencies. Any-
way, the qualitative conclusion can be drawn that in the ground electronic
state of a base pair, if the proton is also in the ground state, there is a very
small probability for the tunneling phenomena. If, however, the electronic
system of the base pair is excited or ionized [1, 2], or the proton is excited,
there can occur rather large probabilities for the tunneling.
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Appendix

In the course of the numerical solution of the Schrédinger equation
(5) of the proton the potential function (1) has been used with the appropriate
numerical constants of the N—H .. .0 hydrogen bond. In atomic units we can
write equation (5) in the form

— ¥- - 3672 [E F(r)lv(r) = 0 (A1)
drl
with the function V(r)
Cb(r-Cg)-
Cz(r~-C2 ¢ Ci~r "\
V(r) = C, CAe (A.2)
where the values of the constants Cj, ..., C8 were given numerically. This

potential function is, however, because of physical reasons not valid in the
neighbourhood of r = 0 and r= C7= 1?0. Namely V(r) @ if r — 0 or
r = RO0. Since the function (A.2) is equal in the intervals 0< r < a and
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R0 —a< r< ROina good approximation totheconstant Cv ifwe choose
the value 0,4a.u. fora, wehave taken in these intervals for V(r)theconstant
Cl This is permissible because, according to similar calculations which can be
found in the literature [11], the value of the potential can be changed essential-
ly (for instance increased) at the boundaries of the interval without causing
significant changes in the eigenvalues.

The task of our calculation was to determine the eigenvalues Ej, i.e.
those values E for which ip(r) satisfies equation (A. 1) in the whole interval
0 < r < RO and fulfils the boundary conditions

w(0) = v(Ao) = 0 (A.3)
and the normalization condition

q
Swy>(n2dr=1, (A .4)

0

The different wave functions 1 which belong to the different eigenvalues Ej
are eigenfunctions of equation (A.l).

For the numerical integration of equation (A.l) we have used the Runge-
Kutta-Merson method (see for instance [10]). We have used as starting
values

V>0 =0 and -N1 =C = 2-30. (A.5)
dr Ir ,,

It should be mentioned that for a given value E the solutions obtained for
the interval 0 < r < Rn are proportional to C, and they will be continuous
functions of E.

Let us denote by Y(E) the value of the function xp(r) obtained for r = R
for a given value of E and C,

Y(E) = V(RO) |[EC. (A.6)
Y (E) will be of course also a continuous function of E. Our task taken can be
reformulated: we have to determine the roots Ej of the equation Y(E) = 0,
since by the second part of equation (A.3) holds

Y(Ej)) = 0. (A7)

By the use of the Runge-Kutta-Merson method we have divided the

R
(R = el In the case of the third eigenvalue
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we have used also R T28_ We have found deviation between the eigen-

values obtained with the two different values h only in the fifth significant
decimal. Similarly we have found that the substitution of Cx by 4Cx for the
potential function in the intervals 0 < r < a and Rq—a < r < RO changes
again only the fifth significant decimal of the third eigenvalue. We have per-
formed the integration of the differential equation (A.l) also in the opposite
direction (more strictly speaking we have transformed the function V(r) by
the transformation f = RO — r. The eigenvalues obtained in this way differ
again only in the fifth significant decimals.

Also, according to other much more detailed investigations performed
for single-well potential functions [11], we can expect similar stability of the
eigenvalues. Therefore in the present case we have not repeated the mentioned
investigations in full detail. Further, following Léwdin [12] we can estimate
the distance between the two lowest energy levels in the harmonic oscillator
approximation. In this way we obtain the value of 11 kcal/mole which agrees
well with the value of 9,40 kcal/mole obtained from our present calculations.
We intend to reinvestigate the problem in a subsequent paper in which we
intend to compare the eigenvalues obtained starting from the boundary of the
interval with those obtained starting from inside of the interval.

In the calculation we have used a floating point programme, which has
worked with a mantissa of 24 bits (7 decimals) and with an exponent of 6 hits
(in linear system). The latter corresponds to the orders of magnitude 10-9 —
—10+9.

It has caused rather serious difficulties that the values of the functions
rp(r) in the interval 0 < r < Rg differ from each other by many orders of
magnitude and they may be multiples of the large permissible nun her with
which the programme is able to work. Therefore in some points of this inter-

di
val we have divided the functions ip(r) and d—pby appropriate constants. (This
r

can be done because equation (A.l) is a homogeneous linear differential
equation.)

We have found in some cases for the functions rp(RO, E) = Y(E) values
as large as 1030. Therefore to find the roots Ej of the equation Y(E) — 0, we
have linearly interpolated between the positive and negative values of Y(E)
in the neighbourhood of the roots. Since we intended to determine the eigen-
values Ej only with a precision of e = 2-24 a« 10-7, we have continued the
successive interpolation only until such positive and negative values Y(E)
were found between which the interpolation yielded values Ej in seven deci-
mals.

Since, however, the function Y(E) is an extremely sensitive function
of E the values of this function may differ considerably from zero also in the
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neighbourhood of the eigenvalues. In some cases they have values Y(E*) *
« 1020, where E* is the y-th eigenvalue determined up to 7 decimals. There-
fore we were not able to obtain from this calculation reliable eigenfunctions ipj.
In Fig. 4 we give a block diagram of the calculation.
Using the programme described we have determined 9 eigenvalues in
the energy region mentioned. To be able to obtain reliable eigenfunctions it

Fig. 4. The block diagram of the numerical integration of the one-dimensional Schrodinger
equation of the proton. Euand E max, respectively, mean the limits of the investigated energy
region (E0 — —1,226 kcal/mole, Emax = 37,000 kcal/mole), H is the length of the energy
interval used in the calculation of the function Y(E). The parameter v may have only the
values 0 or 1. v — 0 for the first calculation of a Y (£) and it has the value v = 1 for all the
subsequent calculations of Y(E) in the neighbourhood of a given eigenvalue. When used the
symbol =m at the left hand side stands always for a number and at the right hand side for
the title of a memory cell. The symbol (k) means, as usual, the content of the cell with title

*icta Phys. Hung. ToT. XX. 1966



24 C. BICZO, J. LADIK and J. GERGELY

would be necessary to use a floating point programme which includes a man-
tissa with 12—15 decimals and an exponent which gives orders of magnitudes
between 10-50—10+so0. Since floating point computers with such a word length
are not available, this task can be done in all probability only with a floating
point programme which uses double word length (one number is placed into
two memory cells).
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MPUNBJTM>XXEHHOE OMPEAENEHWE TYHHEJ/IbHbIX YACTOT NMPOTOHOB,
YUYACTBYIOLWMX B BOLOPOAHOW CBA3M N—H ... O HYKNEOTUAHbIX
BA3NCHbIX TIAP

r. BULO, 9. NAAWK, n N. TEPTENb
Pesome

Ha ocHoBe nonysmnupuyeckoro metoga JivnnuHkoTTa- Llpesepa onpegenstooTcs
noTeHUMasbHble PyHKUUK BogopoaHon cBasm N—H ... O u N—H ... N HyKneoTugHbIx 6asuc-
HbIX nap. MonydeHHbIli noteHunan N—H ... O ¢ ABYMS MUHMMyMaMun 3ameLLaeTcs B OAHO-
MepHoe ypaBHeHWe LllipeauHrepa A5 NPOTOHA, KOTOPOE PeLUaeTcss YUC/EHHbIM WHTerpupoBsa-
HVEM Ha BbIYUCNNTENBHON MalLUUHe.

Mpy NOMOLLM BbIYUCNEHHBIX 3HEPTeTUYECKMX YPOBHEN MNPOTOHOB, Cneays 3a npegno-
KEHUAMU J13BAMHA, ONpPeAenatoTCA TYHHE/NbHbIE YacTOTbl MPOTOHOB Ha OTAE/IbHbIX YPOBHAX.
[anee, KnaccMyeckol OLEHKON MOKa3blBaeTCs, YTO 3/1eKTPOHHOE OCHOBHOE COCTOSIHME CUCTEMbI
B CNy4ae, Korga v npoToH HaxoAuTCA B OCHOBHOM COCTOSHWW, MPAaKTMYeCKM MOMHOCTbIO JI0Ka-
nn3yeTca B OKPeCcTHOCTU 6onee rny60Koi noTeHumanbHOM Ambl. CneacTBUS faHHOMO (hakta
VCTOMKYIOTCA C TOYKM 3PEHUS MyTauMOHHOro mexaHusma YarcoHa—Kpuka—/leBgnHa.

Acta Phys. Hung. ToT. XX. 1966



ON THE EXAMINATION OF THE HEAT CONDUCTION
PHENOMENA OF LOW-PRESSURE GASES

By
G. Lakatos* and J. Bito
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The authors determine the energy trasferred by heat condution from the cathode of
low-pressure gas discharge. They indicate for various gases under given discharge conditions
the quantity of energy transmitted from the unit surface area of the cathode by heat con-
duction of the gas.

1. Introduction

As is well known, the most important result of kinetic gas theory was that
the pressure-independence of the internal friction of gases could be demon-
strated by its application. At the same time the theory also gave valuable
data on the relationships between heat conduction-, diffusion- and internal
friction coefficients.

It could be shown that the heat conduction coefficient Ais only the
function of the internal friction coefficient rj, of the specific heat at constant
pressure cp and of the specific heat at a constant volume c,, but is independent
of the pressure [1]:

A= I mg,, (9]

or considering more exactly the heat transport of the molecules:

A= e * 1) mcy, (2)

where
9y — 5

e= A (3)

and
Yy = Cpoy, (4)

generally

1~ enr 25, ®)

* At present at the Research Institute for the Electrical Industry.
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Later it was established [2] that this holds only if the pressure is higher
than that necessary to produce molecular flow. For this reason relationship
(1) in practice is only approximately valid [2]. The measurements effectuated
until now show that in the domain below 20 mmHg pressure the heat con-
duction coefficient of gases in general decreases hnearly and clearly as a func-
tion of the pressure.

The heat conduction phenomena relating to this pressure domain were
theoretically deduced in two different ways. Knudsen [3] calculated on the
basis of the energy transmission mechanism of some molecules impacting
against the hot surface, while Smoluchowski [4] composed his theory by the
application of the idea of the leap of temperature, or that of the “slide-pheno-
menon” analogous to it. Also, Langmuir [5] suggested a method of calculation
in case of low pressures, supported by the so-called “layer-theory”.

In the course of the following calculation the relationship due to Dush-
MAN [6] which clearly describes heat conduction phenomena of low-pressure
gases is applied, where the heat energy W transferred is given by the relation

2n ma ml mteAT
amn[r/a]

yy -

W being the heat energy transferred (watt),
I the length of the hot wire (cm),
a the diameter of the hot wire (cm),
AT the arising temperature difference (°C),
A the heat conduction coefficient of the gas (W mcm-1 degree-1),
ry the internal radius of the discharge tube (cm).
The value of the heat conduction coefficient A( can be given for each gas by
averaging, starting from the heat conduction coefficient of the gas in question
measured at 0° C and 760 mmHg. The temperature dependence of e.g. for
argon gas is given by relation (6)
Ju/2
A= 1,470-10-*------ wo - )

1+ T

where T is the measured temperature in °C.2

2. Conditions of examination and results

If the above relationships are known the heat conduction coefficients
of the various gases can be given for the pressure domain within 2—3 mmHg
examined here and for the temperature in question.
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The use of the calculation methods described above enable a determin-
ation of the heat conduction energy losses occurring at the low-pressure gas
discharge tube-cathodes. This is of fundamental importance in the establish-
ment of the energy balance of the cathodes. Namely, in determining the energy
balance of the cathodes three considerable possibilities of energy-losses have
to be considered: the processes of heat conduction, those of radiation and the
heat transport by electron emission (7). When examining heat conduction
phenomena, the heat conduction processes occurring in the gas of the discharge
count are most important, while the heat quantity conducted by the metallic
electrodes and glass surfaces are generally comparatively negligible.

In order to be able to take into account the appropriate temperature
distribution also, when indicating the heat conduction energy losses occurring
in gases, the calculations are to be made by means of the integrated average
of relation (7), where the integration comprises the complete range or the fall
in temperature.

Relation (7) can be expressed in the form of

Y 3/2
A= 1,470-1Q-5 8)
142 + T

from which the required integrated average Ais:

1,470-10"5 T 2
’ 2/3T32—2-142 «T12+ 2(142)32-tanh 9
t2- t, 142 '

where TI is the lower limit of the temperature difference zone (°C), T2 the
upper limit of the temperature difference zone (°C).

The calculations were made for argon at 3 mmHg, argon at 2,75 mmHg,
neon at 1,94 mmHg and for a mixture of 20% argon and 80% neon at
2,00 mmHg. In this period a local glow-discharge takes place between the two
metallic electrodes. During the glow-period the measurement of the tempera-
ture of the cathodes of the argon-filled discharge tubes ranged from 930 to
980°C, depending on the extent of the load current and the cathode coil.
The observed cathode temperature of the discharge tube filled with pure neon
was 1250°C during the glow-period.

The heat conduction coefficients varied between the magnitudes of
10-4 to 10~5watt/cm °C and, according to expectations, the heat conduction
coefficient of neon was about one order of magnitude higher than that of
argon. This points to the fact that the employment of neon is advisable when
relatively greater heat quantities have to he transferred by heat conduction.

Substituting the values of the heat conduction coefficients obtained into
relation (6), the quantity of energy transferred from the cathode by heat con-
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duction can be determined. This was the aim of the experiment. The trans-
ferred energy quantities relative to the unit surface of the cathodes obtained
are indicated in Table 1.

Table 1
a b C d
Gas filliNg e argon argon neon argon 20% -f-
neon 80%

Pressure (MMHQ) e 3,00 2,75 1,94 2,00
Glow current (MA) . 460 670 840 760
Glow performance (W ) ... 4,0 6,6 12,4 9.0
Energy transferred by heat conduction

(W/CM2) e 3,46 3,80 18,15 12,00

As can be seen from Table 1, the energy transferred by heat conduction
is the highest for gas discharge tubes filled with pure neon, as expected. When
evaluating the data of Table 1 it should be remembered that the cathodes of
the tubes of type a, were not identical with those of the tubes of types b, c,
and d either in size or surface area. The cathodes of types b, ¢, and d were of
similar construction.

Applying the calculations explained above, the authors determined the
energy balance of the respective cathodes under different discharge conditions,
during the glow period [7]. The results obtained agreed well with the data
found in another way and with those published in the literature. The agree-
ment of the data obtained otherwise with those obtained as above is shown
in Table 2.

Table 2
a b C d
Gas filling o argon argon neon argon 20% +
neon 80%
Pressure (MMHQ) i 3,00 2,75 1,94 2,00

Energy leaving by heat conduction (JE/em2),
calculated in the manner described here 3,46 3,80 18,15 12,00

Energy transported by heat conduction
(W/cm?2), calculated from the energy-
balance ... 3,90 4,05 19,00 12,7
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~NOoO s WNE

OB WCCNEAOBAHUN ABAEHWW TEMAOMNPOBOAHOCTW
A30B PN HM3KOM JABJTIEHNN

Ob. NAKATOW u 4. BUTO
Peswme
ABTOpamu OnpeaensieTcsl IHePrusl, yHocnmas OT KaToda rasoBoro paspsija npyv HU3KOM

[aBNeHNN TennonpoBOAHOCTbIO. BbIUMCNAETCS O0TAAHHOE eAvHWMLEH nolaaM Katoda Konu-

YeCTBO 3HEPrumM, o6yC/OB/IEHHOE Ter/IoNpPOBOAHOCTLIO Fasa, B Cyyae pasHbIX rasoB Mpu Tex
Xe YCNoBusx paspsja.
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The present paper deals with the investigation of stacking faults in hexagonal ZnS
rods and needles. Some possible models are presented for dislocations in wurtzite lattice and
the formation of certain crystal-regions without striations and birefrigenee bands. The
description of the macro- and microlamellar structure in ZnS, appearing in the direction
perpendicular to the c-axis is given.

1. Introduction

Interestin ZnS crystals is centred mainly on their luminescent and photo-
conductive properties. Nowadays both microcrystalline ZnS and single crys-
tals are studied, but it must be noted that the basic research has shifted
from microcrystals to that of single crystals of ZnS. This is in close connec-
tion with the fact that part of the phenomena appearing in ZnS, — especi-
ally electroluminescence — show a strong anisotropy in different crystallograp-
hical directions.

Natural cubic (F 43 m) and hexagonal (C 5 me) ZnS crystals are gene-
rally almost perfect structurally but they often contain impurities in rather
high concentration, (appr. 5—10%) so that the luminescent and semicon-
ductive properties of the material are completely killed. Several methods
have been described for the preparation of artificial ZnS crystals (see e.g.
[1, 2]). The chemical purity of these synthetic crystals is generally sufficient
but their structural qualities are worse than those of natural crystals. The
synthetic crystals often have a polytype character containing a mixture of
three-layer (cubic) and two-layer (hexagonal) modifications.

The study of the structure “purity” of ZnS crystals in luminescent
research is as important as that of chemical purity. A number of phenomena
indicates that besides point defects other imperfections have also a decisive
role especially in electroluminescence. One of these phenomena is the (1010)-
oriented bghting lines on the basal plane of ZnS rods [3, 4]. A similar localized
character appears in the photovoltage and photoconduction effects, etc.

In this paper we shall deal with the stacking faults in hexagonal rods
and needles. They are the most common type of faults in ZnS, therefore they
have a decisive role in the physical properties of the material.
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2. Stacking faults in ZnS rods and needles

The crystals examined were prepared in our laboratory. Some remarks
in connection with this work are already discussed in a previous paper [5].
In [5] the question of flux has already been mentioned. Very good results were
obtained with SrCl2 but a great quantity of Sr was built into the ZnS lattice.
The study of electroluminescence requires high purity, therefore we use HC1 as
flux at present. With this method we succeeded to produce rather pure crystals
of sufficient size emitting the blue band characteristic of selfactivated ZnS
excited with the 365 nm Hg line.

Fig. 1. Adjacently developed hexagonal ZnS rods. The crystals have nearly perfect basal
planes
Fig. 2. Birefringence bands on habit faces of ZnS needles in polarized light, a — crystal with
high band density, b needle with only few birefringence bands
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These crystals generally show strong birefringence bands in polarized
light. In some cases these bands can be observed along the whole crystal (e.g.
in case of thick rods) in other cases they can be found only in a certain region
of crystals. On the prism-faces of the thick rods (see e.g. Fig. 1) there are often
macroscopic glide effects that can be observed by the naked eye. For needles
the phenomenon usually can be seen well only in polarized light and crystals
containing only a few birefrigence bands are very rare. Fig. 2 shows two
needles, on one of them very few optical disorders can be seen. The other
needle shows the usual inhomogeneous behaviour in polarized light. It can
be observed by interferometric methods that the latter crystal has crystal

Fig. 3. The interferometric picture of a habit face of ZnS needle. The microphotograph was
made with Nomarski interferometer in sodium light

domains on the prism faces slipped in a plane perpendicular to the c-axis (see
Fig. 3). It is very probable that such faults are produced by the built-in
wurtzite lamellae in the sphalerite matrix [6].

The loss of the original sequence may possibly be due to several kinds
of causes, namely the real sequence of the structure can be interrupted during
growth by the process itself. Brophy and Samelson have described that
crystals grown at temperatures above 1240 °C already have a reversed pseu-
docubic structure [7].

As the growth from vapour phase usually takes place above the transition
point of ZnS [1, 2], the rate of cooling also strongly influences the real struc-
ture of the crystals. During a slow cooling the whole crystal or certain crystal
regions transform into the cubic arrangement. It is probable that the slipped
layers mentioned (see e.g. in Fig. 1) were also produced by these processes.
The fitting of the two structures gives no difficulty as both contain the same
type of layers. E.g. in Fig. 4 a cubic-hexagonal-cubic domain is represented.
On rapid cooling the hexagonal structure may freeze and stresses due to non-
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planar isothermal surfaces produce a high dislocation density in the surface
region [8, 9]. This again leads to a mixed structure caused by the stacking
faults in the crystal [10].

Fig. 4. The fitting model of the sphalerite-wurtzite domains in ZnS lattice

Fig. 5. The model of an edge-dislocation in wurtzite lattice. The atoms belonging to |he
extra-half plane are denoted by © . (ff] resp. Heavy lines denote the strongly disturbed region
of the lattice, “b” is the corresponding shear vector
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In ZnS the stacking faults generally appear perpendicular to the c-
axis, in the basal plane. These are the so called “b” faults [10]. In the case of
“b” faults the normal hexagonal sequence is disturbed and three or more
layers in the lattice follow one another in the sequence characteristic for
the cubic structure. (ABCABC... or other combinations of the three different
layers.) This means that in the disturbed regions beside the (0001) planes
there are crystallographical directions in which the nearest neighbourhoods can
be connected with straight lines. This is impossible in a perfect hexagonal
lattice.

Fig. 6. Slipped lamellar structure around the basal-plane of a ZnS rod. The microphotograph
was made with Nomarski interference-contrast setup

In hexagonal crystals the dislocations formed can be deduced from the
Read models [9]. Fig. 5 shows a possible structure of an edge dislocation in
wurtzite. This dislocation may split into partials. These isolated partiale and
the associated wide stacking faults can be directly observed by transmission
electron microscopy [10]. The same applies to the so called “p” faults which
can be found in the prism-planes of ZnS [10]. For thick rods and needles this
latter type of fault is of secondary importance.

Glides can be observed microscopically in given directions apart from
electron microscopical detection. When looking from the top of the crystal
with the same areas hexagonal, slipped lamellae can be seen. In Fig. 6 a crystal
is shown covered with high indexed top planes. Along the edges a “valley”
and a “wall” can be seen built from such slipped lamellae. On both the inner
sides of the valley and the top of wall the individual layers and the boundaries
of each lamella can easily be observed. The lamella boundaries produce a special
kind of kink structure and certain growth layers onthe surface are oriented in
the same manner.

The role of the effects mentioned increases for thick rods, where the
rapid inhomogeneous cooling of the surface leads to strong stresses in the
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surface regions. It is very probable that the appearance of the high dislocation
density near the surface, similarly to the case of CdS crystals [11, 12], is
caused by the processes mentioned. On the habit faces of such crystals macro-
scopic deformations are visible. (See e.g. Fig. 1). In Fig. 7 one habit face of

Fig. 7. The birefringence band structure on the prism-face of a ZnS rod in polarized light

Fig. 8. The etching picture on a high indexed habit face of ZnS crystal. The microphotograph
was made with Nomarski interference contrast setup

such thick crystal is shown in polarized light. It is very interesting that on
the face a strong proportion in the basal plane can be detected. This is very
rare in the case of needles, but in the case of rods it can often be found. At the
crystal edge very thin lamellae jutting from the crystal are visible. These thin
lamellae can also be seen in Fig. 3. It is characteristic for these types of crystals
that their X-ray patterns show a strongly mixed cubic-hexagonal character.
In the case of needles cooling more rapidly and homogeneously than the rdos
we generally cannot detect such structure.
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Fis. 9. a — Etched ZnS crystal containing bend planes, b — Drawing of the crystal. The
microphotograph was made from the surrounded region of the crystal
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The etching picture of the habit faces of crystals containing only a few
faults is also more simple. Fig. 8 shows a habit face etched with HC1 vapor at
high temperature. It can be seen that the investigated face is probably high
indexed. In a low concentration there are etching figures emerging parallel with
the c-axis. The very fine striations in the direction of basal plane mark the
boundaries between the microlamellas in the crystal. Apart from the fine
structure on the face there are deep etched striations, too. Within a certain
region each lamella has approximately the same width. It is remarkable that
the etching develops a structure which makes an angle of 45° with the basal
plane. It is probably due to the faults forming at lower temperatures in the
cubic arrangement of lattice.

Sometimes among the crystals one can find crystals with macroregions
without striations and birefringence bands i.e. without stacking faults. The
most interesting example of this kind of crystals is represented by Fig. 9.
Fig. 9/a shows the middle part of an etched ZnS prism of medium thickness
(appr. 1 mm) in polarized light. It is clearly observable that the crystal re-
gion between A and B contains no etched striations, etch-pits and birefrigence
bands. The section A—B is limited by very interesting and characteristic
crystal regions the orientation of which differs from that of A—B. These crystal
regions are separated by “rings”. These are features separating the upper and
lower parts of the crystal as well as the parallel oriented but slipped regions.
(See Fig. 9/b.) Such crystals are very common and it seems probable that the
origin of these crystals is connected with the dislocation motion. In the case
of hexagonal metals it is well known that if the temperature is high enough
during or after a mechanical deformation (bending) a polygonization occurs.
As a result of this process the dislocation density decreases strongly and the
dislocations form a sub-boundary by rearrangement and annihilation. This
effect has been observed in hexagonal metals deformed at high temperature
by bending. During the process the dislocations leave their glide planes by
climbing and annihilate one another until the density corresponding to the
Cottrell equation remains only [8, 13]. This arrangement produces a sub-
boundary of the tilt-type. If the temperature is low and the climb motion
of edge dislocations is impossible, the so called “kink” appears.

As in the process of ZnS growth there are many types of causes produc-
ing local bending (stresses caused by non-isothermal cooling, the influence of
the adjacently grown crystals on each other, etc.) the formation of bend-
planes and sub-boundaries of the type mentioned in hexagonal ZnS is quite
possible. This is also proved by the annihilation of edge-dislocations in the
region A—B and X-ray diagrams showing the purest cubic structure in
the region A—B [14]. Presumably the symmetrical rings are a consequence
of the high dislocation density around the limiting sub-boundaries, but this has
to be proved by further experiments.
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The clear ZnS crystal regions mentioned are very important, because
the study of the role of dislocations in electroluminescence requires crystals
with low dislocation density. In our further experiments we shall try to clarify
this with the help of similar ZnS crystals.

3. Acknowledgement
Our grateful thanks are due to Prof. G. Szigeti for many stimulating

discussions and encouragement, and to Mrs. T. Sellei, Mr. P. Lokik and
Miss A. Barényi for their assistance.

REFERENCES
1. H. K. Henisch, Electroluminescence. Pergamon Press, Oxford, 1962.
2. H. F. lvey, Electroluminescence and Related Effects. Academic Press, New York, 1963.
3.J. L. Gittson et al., Luminescence of Organic and Inorganic Materials. Ed. H. Kallmann

and M. Spruch. John Wiley and Sons. New York, 1962.

Zalm, Thesis. Univ. of Amsterdam, 1956.

Kovacs and J. Szabé, Acta Phys. Hung., 14, 131, 1962.
. Samelson, J. Appl. Phys., 32, 309, 1961.
. Samelson and V. A. Brophy, J. Electrochem. Soc., 108, 150, 1961.
. G. VAN Bueren, Imperfections in Crystals. North-Hoiland Publishing Co., Amsterdam,
1960.

9. W. T. Read, Dislocations in Crystals. McGraw Hill, New York, 1933.
10. S. Amelinckx, phys. stat. solidi. 2, 1660, 1962.
11. J. W oods, Brit. J. Appl. Phys., 11, 296, 1960.
12. D. C. Reynolds and S. J. Czyzak, J. Appl. Phys., 31, 94, 1960.
13. A. H. Cottrell, Dislocations and Plastic Flow of Crystals. The Clarendon Press, Oxford,

1956.

14. E. Lendvay, M. Farkas-]ahnke and P. Kovacs (to he published).

o~ o U A
ITITITDT

YNNOTHEHWE AE®PEKTOB B MAJIOYHbIX

N UTONbYATDBIX WHAHE:HOFO Zn$s
L ]

Peswome

B HacTosILLEin paboTe WcCneayeTcsl YNNOTHeHWe AeeKTOB B MasloUHbIX UM UrobYaTbIX
KpUCTasinax rekcaroHanbHOro znS. oKasblBalOTCS HEKOTOPble M3 BO3MOXHbLIX Mogenei ans
AVCNOKaUMKM B pelleTke ZnS 6e3 NMHeluaTbiX MOMoC ABOMHOIO fydenpesioMieHus. [aetcs
OnuncaHne Makpo- M MUKPOC/IOMHOW CTPYKTYpbl ZnS, NOABASIOWENCS B HanpasieHuu, nep-
NeHANKYNAPHOM K C — OCW.

.Ida Phys. Hung. ToT. XX. 1966






THEORY OF CONGRUENCE
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RED SHIFT AND GEODESICS FROM THE SAME THEOREM
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A theorem on parallelism is proved. Roughly speaking, the theorem states that physical
quantities are congruent under Levi—Civita transport in Riemannian spaces. The three
crucial tests of general relativity are deduced from the theorem.

Introduction

It is a prominent feature of a gravitational field that it is possible to
introduce coordinate systems which are Euclidean at a prescribed point.
Suppose notv that we introduce a system which is Euclidean at a point P and
define in this system an ennuple Kp of orthogonal basis vectors at P. Suppose
we do the same at an other point Q by means of an other coordinate trans-
formation. In the two local Cartesian systems KP and Kg natural laws are
supposed to be described by equations of the same form in their respective
local coordinates. It notv seems reasonable to put the following problems:
Is there any transformation connecting KP and K q and if there is how it looks
like. We will try to give a solution on the assumption that gravitational fields
are described by (four dimensional) Riemannian manifolds.

To get a rough idea about the nature of the problem consider first the
case when P and Q are infinitely near to each other and start out by analysing
a simple physical situation.

Suppose we fixed a metric by some means or other once and for all.
In the space defined by the metric we are allowed to manipulate freely with
empty coordinate transformations. Let us introduce a coordinate system x'
which is Euclidean at the point P'. This can be done for any arbitrary point
and can be thought of as a transformation to a freely falling box at P' of
sufficiently small dimensions. Fix a system Kp. of orthogonal unit vectors
in the tangent space at P' and give it a parallel displacement (in the sequel
parallel displacement will be simply described as transport) along an infinite-
simal vector dx' which has end point Q'. We get a system K g, of axes at Q".
Now space is Euclidean even at Q', at least to first order in dx1 and transport
is an ordinary parallel displacement in an Euclidean space, at least in this
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approximation. If we imagine some physical quantity written first in system
Kp,, then in Kg,, then congruence under ordinary transport can be defined
as follows. Take a quantity, for example a contravariant vector u'a(P') (for
simplicity we shall always work with vectors hut more general quantities can
be treated similarly by taking appropriate bases in the tangent spaces at the
points considered), the components of which are referred to KP,. We first
transport Kp, to Kg. and if we perform the same transformation on u'a(P"')
then congruence under transport means that the quantity u'a(Q') at Q' has
the same numerical value with respect to Kqg, as u'a(P') at P' had with respect
to Kp.. We shall simply say that u'a(P') and u'a(Q') are congruent under
transport along dx'. Moreover transport is defined in this case by the differen-
tial equation

duta= 0, («“(<?)= ualP)+ ...) 1)

at least in a first approximation, since the Christoffel symbols vanish at P".

Now we know, at least it is commonly assumed, that physical quantities
are congruent under transport in a Euclidean space and our point is that this
state of affairs should be independent of the coordinates chosen in the Rie-
mannian manifold. If this is to be the case, then if we go over from the geo-
desic to some other coordinate system x by means of an empty coordinate
transformation then ordinary transport should be replaced by its covariant
generalisation, the Levi-Civita transport, and quantities should still be con-
gruent under this new transport. Roughly speaking, from congruence under
transport in a Euclidean space would follow congruence under Levi-Civita
transports in a Riemannian manifold as a consequence of the postulate of
covariance.

However, difficulties immediately arise in connection with the above
rough argument.

The first is that the parallel transport in the geodesic system is the
ordinary one only as far as terms of higher than first order can be neglected
in equ. (1), or what amounts to the same the metric tensor at Q' is Euclidean
only to the same approximation.

A second objection can be raised in connection with the meaning of the
word covariant. Under the pretext of working covariantly we in fact say that
a physical quantity ua is congruent under a transformation defined by the
differential equation

du'd- %, dxRu? = 0, (2)
because this equation is the covariant generalisation of the differential equa-
tion

du = 0. (3)
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Such a generalisation might be satisfactory for a mathematician but not quite
so for a physicist since the transformations defined by these two equations are
quite different and the postulate of covariance would really mean the postulate
of congruence under a new physical transformation. Hence to be correct we
must prove that from congruence defined by (3) follows congruence defined
by (2) without a priori using the mathematical concept of the generalised
transport in Riemannian spaces.

These difficulties can be resolved, and in fact the solution to our initial
problem provided, with the help of the Fermi theorem according to which
coordinate systems can be introduced which are Euclidean along any curve
given a priori.

A theorem on congruence

In fact, it is easy to see that there is an intimate relationship between
parallel transport and the possibility of introducing coordinate systems which
are Euclidean along any prescribed curve. Consider first the special case when
the curve is a not-null geodesic.

The argument for null geodesics can be carried through in a similar way
by taking special parameters along the geodesics.

We Avant to describe the following situation. A small space laboratory
is put on a geodesic C from a point P. In the laboratory there is a small object,
such as an elementary particle, under observation. Define an ennuple of ortho-
gonal unit vectors K, comoving with the object. The ennuple and the object
are put on C with the same initial conditions as the laboratory.

Suppose an observer is making measurements on a quantity u'aattached
to the object. At point P' he finds some value u'a(P') with respect to his
system of unit vectors K(P') at P'. At another point Q' on his geodesic he
will find the same numerical value when he refers his measurements to his
comoving system K(Q’) at that point. This is the expression of the fact that
he finds u'a congruent under transport along the time axis in the ordinary
sense.

To describe the situation we start by taking an ennuple of unit vectors*
ua(P) at Pi referred to natural bases in the tangent space at P, in some co-
ordinate system x. If we transport the ennuple by Levi-Civita transport along
C we get an ennuple ua(e) of unit vectors in each tangent space along C, where
a is the length of arc of the geodesic. The fourth vector is supposed to be the
tangent to C at each point of C. Take an arbitrary vector ua(P) referred to

* Latin indices label vectors and also refer to coordinate and tensor components in
termi coordinates.
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natural bases in the tangent space at P and give it Levi-Civita transport
along C. We obtain a vector field ua(a) along C and obviously we have

ua(o) = N aua(o), (4)
(gag<uw = diag[IH 1]),

where the components Naof ua(o) on the ennuple Ua(o) are constant all along
C since lengths and angles are preserved by Levi-Civita transport.

Consider the geodesic Csin the hyperplane perpendicular to the tangent
to C issuing from a point of C of parameter rr, with the initial conditions for

the tangent——to Cs
ds

_____ = u“(<r)= N auafo).

Here s is the length of arc of Cs (s = 0 at C). A point xa on Csis obtained
by expanding along Cs. With the aid of the geodesic equation defining Cs and
equations obtained from it by differentiation we get (1)

= (@) + u“(o)(Na ®)

where gj\a) defines C in system x and terms of higher than first order in
(N as) are not written out. If we introduce a new coordinate system defined
by

x'k= Nks, *4= a (k= 1,2 3), (6)

then Levi-Civita proves [1] (in fact this is the way Levi-Civita proves the
Fermi theorem) that in the new coordinates the metric tensor is Euclidean at
all points of C

(gab)c' = diag [111 — 1), ra C= 0, )

all along C. It is also proved there that the transformed vectors uJ arc the
(unit) tangent vectors to the new coordinate curves. In fact they can be taken
as systems of natural basis vectors in the tangent spaces at each point of C
in the new coordinates. Moreover we have all along C

qu

= ua(o), u"(cr), (8)
dx'a

where Latin indices on ua are raised and lowered by means of (&6b)c' =
= diag [111 — 1], the metric tensor along C in the Fermi coordinates, and

ia . a
b

! b
ub— °b 5 ubuB — °B
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The constructed system x' is clearly suitable to describe the situation
of the observer making local measurements in the space craft. He has only
to identify his local Cartesian basis vectors with the transformed vectors
uab of Ug, all along his world line C . In system x' these are unit vectors in
the ordinary sense and they satisfy the differential equations of ordinary
transport

(du'a)c = 0 9)

exactly since ("bc)c — 0 at every point of C.

Consider now the vector ua(o) given by (4) attached to the object, in
the original coordinate system x, which is transported along C by Levi-Civita
transport. Clearly, it will be numerical constant Nain system x' with respect
to the Cartesian systems defined by the observer along his world line* since

va(<r) = Na= UaUa(o) (10)

and it will satisfy the ordinary transport equation

(du’a)c, = 0 (11)
exactly along C .

This is the exact mathematical description of the fact that the observer
in the freely falling space craft finds the vector unchanged, i.e. congruent
under ordinary transport along his proper time cr, with respect to his comov-
ing local Cartesian system.

This is obviously true exactly on C', and with this the first difficulty
mentioned before is disposed of.

Let us now turn to the second and forget everything about the mathe-
matical concept of transport in a Riemannian manifold. Suppose we find
a coordinate system x' for which the metric is Euclidean along C and
("ec)c — 0 and introduce a set of ennuples of unit vectors u along C which
are obtained from each other by ordinary transport defined by (9). A quantity
u'a which is congruent under ordinary transport satisfies the differential
equation (11) and we ask what are the corresponding differential equations
satisfied by uain any other coordinate system x. Let us suppose we find in
system x a vector field ua along C, referred to natural bases in the tangent
spaces at points of C, such that its transformed field u'a in x' is constant
along C', i.e. that it is congruent in the ordinary sense along C in system x'.

* 1t should be noted that the components u,a of uain the Fermi system along C are
identical with the components Na of ua in the anholonomic system defined in x by the
transported ennuples «2 along C as can be seen from (10).
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We have
dx'a (12)
dxa
and since
mun . wam
for any two points P' and Q' on C it follows that
ox*
ey = 5 (13)
«*(<?) dX'bQ dXB\ uly(P) m

Let us now fix the point P, differentiate along C and eliminate the constant
Qx'b\
ull(P) . We obtain

ax5 p
ax“ dx'b
dii"(Q) = d ul(Q) . (14)
dx'b P . )
Because {likc)c- = 0 we obtain from the transformation properties of the
Christoffel symbols that
dxa
d Mn dxic, (15)
dx'b

where dx1lis tangent to the geodesic. Hence equ. (14) is identical with the
transport equation

dun + I%,(C) dx* u» = 0. (16)

It is an easy matter to prove that the ua(e) satisfy equations of the same
form in coordinates x. Since angles and lengths are conserved under Levi-
Civita transport the components of the vector ua with respect to the ennuples
u,(a) are constant all along C.

It has now been proved without a priori using the mathematical con-
cept of Levi-Civita transport that from congruence under ordinary transport
in Euclidean space follows congruence under transformations defined by
the differential equations (16), at least in the geodetic case. Hence also the
second difficulty mentioned is resolved in this case.

The generalisation of the above argument for arbitrary curves is not
difficult and proceeds along similar lines by taking an ennuple of unit vectors
in the tangent space to the manifold at some point of the curve and trans-
porting it along the curve etc.
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Further, we were always considering congruence of vectors instead of
general quantities. However, the generalisation to more general quantities can
easily be done by taking appropriate bases in the tangent spaces at different
points of the manifold.

The final conclusion of the argument can be condensed into the defini-
tion and theorem.

Definition. A quantity |(P) at a point P referred to some basis, defined
in the tangent space at P, and a quantity £(Q) at a point Q are said to be con-
gruent under Levi-Civita transport along a curve C connecting P and Q, if
they are numerically identical when ij(Q) is referred to a basis, defined in the
tangent space at Q, obtained from the basis at P by Levi-Civita transport
along C.

Since the Fermi theorem holds we have proved the following theorem.

Theorem. A quantity |(P) defined in the tangent space at a point P and
a quantity |(@) defined in the tangent space at a point Q are congruent under
Levi-Civita transport along an arbitrary curve C connecting P and Q.

In this sense two bases, defined in the tangent spaces at two different
points, which are obtained from each other by Levi-Civita transport along
any curve connecting the points might be said to be physically equivalent.

Of course, the theorem is valid as far as gravitational fields can be
described by Riemannian manifolds and physical quantities are congruent
under ordinary transport in Euclidean space.

Because of the fundamental importance of transport we enumerate some
well known properties of the solutions of the equations

dp a dxf
iy= o, (17)
da fPr da y

where xa = xa(a), (b < a < c)is any parameterized curve and the functions
xa(a) are of class 1. Equations (17) have a unique set of solutions |!(a), .. .,
| n(er) satisfying the initial conditions |a(er0) = 16 with 16 arbitrary and <0
any number in the segment b < a < c. The solutions are linear in the initial
constants and are of the form

I » = aB(a, <)V 0) e (18)

This defines a linear homogeneous transformation |a((70) —»|a(cr) from the
tangent space at the point xa(au) to the tangent space at x\a). This holds in
a certain maximum segment b' <7 a < c¢'. Further, each of the transformations
(18) is an isometric mapping, i.e. leaves the fundamental quadratic form
invariant, from one tangent space to another and these transformations con-
stitute a pseudo-group.
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Red shift and geodesics

The experimental consequencies of the Theorem could be divided into
what might be called local and global. Local consequencies could be checked
by experiments performed in the tangent space at any point of the manifold,
global ones by comparing physical quantities in the tangent spaces at differ-
ent points. The three crucial tests of general relativity are of the global type
and we first turn to these.

Take first the geodesics. The Theorem says that quantities at two differ-
ent points P and Q are congruent (in the sense of the Definition) under Levi-
Civita transport along any curve C connecting P and Q. Pick out that curve
C for which the tangent to the curve is u'a= {0, 0, 0, const} in the Fermi
coordinates all along C. All quantities will then be congruent under ordinary
transport in the Fermi system. Accordingly, they are obtained from each other
by a transformation of Levi-Civita transport in any coordinate system. In
particular this must be the case for the tangent vector ua to C. However,
the transport equation for uais just the differential equation defining the geo-
desic. The same can be said of null-geodesics and thus the geodesic hypothesis
follows from the theorem.

To see what about red shift consider the Schwarzschild exterior solu-
tion* and take a curve C defined by dxu= {dr, 0, 0, 0} connecting two points
P and Q. According to the Theorem a vector field is congruent under Levi-
Civita transport from point to point along C and the vector £“(()) at Q is ob-
tained from the vector |“(P) at P by a transformation defined by equation
(17). If we put the Christoffel symbols for the Schwarzschild metric (of signa-
ture -)-2) into (17) together with dxawhich defines the curve, we obtain the set

m
dfl= drfl,
r2
dr
df2= f2,
' (19)
r
df4 =

* Obviously, the theorem is valid for any Riemannian manifold and is independent

of the validity of the Einstein equations. If one likes one may take the Schwarzschild solution
as an empirical finding.
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These are separate total differential equations and the integrals are easily
found to be

2m
e1 const., rf2= const.,
r
| (20)
r'3= const., 14 4 2m 2 = const.
r
The matrix of the transformation
r(r2) = a%r2r,) £»(n) (21)
is given by
2m \ 2
A T
diag ri e n ri (22)
2m r2  r2’ 2m
r2) 1 r

Identify now the vector |“(C) with the coordinate differentials in the
tangent spaces at the corresponding points. Then the meaning of the trans-
formation of the second and third component is clear. It simply says that the
distance d — rf2= rdO perpendicular to r is constant and is independent
of r. The same istrue for r|[3= rd0. The transformations of the first and fourth
components are identical with the formulas for the comparison of distances
and time differentials in general relativity.

The interpretation of these results is as follows. In the tangent space at
any point P(r) local geometry, and thus behaviour of measuring rods etc.,
is determined by the constant metric tensor guw(P) at that point. Obviously,
gal varies from point to point. Since, however, every physical quantity must
be congruent under Levi-Civita transport along r so must the metric tensor.
Indeed, it is easy to see with the aid of (22) that

gal(r2) = < (r2,tj) ap(r2, rjgs™rj (23)

and this must be so since gap satisfies the Levi-Civita transport equations
identically which is a remarkable fact.

It is easy to verify that the transformations (21) satisfy the pseudo-
group property and that dsZrj) = ds2(r2), i.e. they leave the fundamental
quadratic form invariant.

However, before working out other consequencies of the Theorem we
now have to face a problem. This is that Levi-Civita transport between two
points depends on the curve we choose between the points. What will happen
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if we choose curves different from what we actually chose. For example
let us take any curve defined by dxa— {dxa, 0}, (a = 1, 2, 3) and substitute
into (17) together with the Christoffel symbols for the Schwarzschild
solution. We obtain the set

d? + r* dxj=0, (i,j, k= 1,2,3), (24)
(25)

i.e. the time component separates out and depends only on r and is independ-
ent of the curve chosen. Thus there is no trouble as far as present day experi-
mental evidence goes. However, the transformations of the space components
do depend on the curves chosen and we have to face the fact that, in general,
Levi-Civita transport between two points is not a unique operation. We are
going to deal with this problem in a following paper.

REFERENCE
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THEORY OF CONGRUENCE
IN GRAVITATIONAL FIELDS. IlI.

THE POSSIBLE COSMOLOGICAL ORIGIN OF THE GROUP Li

By

(Presented by A. Kénya. — Received 28. XII. 1964)

A corollary to the Theorem proved in the previous paper states that local coordinate
systems, defined in the tangent space at any point of the Riemannian manifold, that are
obtained from each other by transformations of the holonomy group at that point are phy-
sically equivalent. With the aid of this corollary it is proved that if the Universe is a non-
vacuum Einstein manifold of signature +2, then the six-dimensional orthochronous proper
Lorentz group L is a good local symmetry group in the tangent space at any point of the
Universe. Conversely, if LiJl, or at least a subgroup of it, is a good local group then the Uni-
verse cannot be flat.

Introduction

In the previous paper [1] (I) a theorem on congruence in gravitational
fields was proved on the assumption that gravitational fields are Riemannian
manifolds. The theorem, roughly speaking, states that local coordinate systems,
defined in the tangent spaces at two different points of the manifold that are
obtained from each other by Levi-Civita transport (LCt) along some curve
C connecting the points are physically equivalent. It was shown there that
the three classical tests of general relativity follow from the theorem. It would,
of course, be straightforward to work out other experimental consequencies
of the Theorem.

However, a well-known fact was also pointed out in I, namely, that LCt
between two points is not a unique operation, hut the result of the transport
depends on the curve we happen to choose between the points. At first sight
this seems to be an unpleasant implication of the Theorem and in this paper
we are going to work out some of its general physical consequencies.

Congruence under the holonomy group

In fact apart from the conceptual difficulty involved in the many-
valuedness of LCt there is a practical one which will be clear from the follow-
ing example.

Suppose we want to compare two identical objects, such as elementary
particles, situated at two different points x and y of the manifold Vn. We pro-
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ceed as follows. Consider the objects brought together at x. Choose a curve
C~xy) connecting x and y and bring one of the objects to pointy along C”xy).
Consider some quantity |[(CX (a quantity might be a null quantity such as
a differential equation) attached to the object moved along C”xy). The Theo-
rem in | states that |(%) and |(y) are congruent (in the sense of the Defini-
tion, I) under LCt along C~xy) and, they are obtained from each other by the
transformation defined by LCt along Ct(xy) (in which case we write C(x)t<C
£(y)). In this sense two local systems K x and ICy(l) in the tangent spaces
at x and y, respectively, such that Kxi(Cl) ICy(l) are physically equivalent.

C2(xy)

If we choose another curve C2(xy) between x and y by transport we have
K X'JEE Ky(2). However, Ky[2) will in general be different from Ky(1).

In fact to determine all possible local systems Ky at y which are equi-
valent to Kx we ought to integrate the tram port equations along all possib-
le curves connecting x and y. Obviously this is a quite impossible mathema-
tical task in this primitive form. However, we can get around this problem
in the following way.

Suppose we denote the transformation defined by LCt along Ct(xy) by
the same expression Ct(xy) as the curve itself. Then the equivalent system
Ky(1) at y can be written symbolically as

Ky(l) = C1(xy)Kx. (1)
Consider now the other curve C2(xy) connecting x and y (see the Figure,
where only one vector in each system K is shown for simplicity).

The system Ky (2)— Kxequivalent to Kx along C2(xy) is obtained by
the transformation

Ky(2) = C,(xy)Kx. @)

However, Ky(2) can be obtained in a different way. If we transport Ky(1)
along CHxy) in the opposite direction we obtain

Kx= Q(*y)-% (1),
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where C'j(xy) 1is the transformation, and the curve, inverse to Cj(xv). If now
we transport Kx so obtained along C2(xy) we obtain Ky(2) from Ky(1) by means
of (2)

Ky(2) = C2Axy)Clxy)- KKy(l) , ®)

where C2xy)Cl(xy)_1 is now the transformation along the «closed curve
C2Axy)Cy(xy)~x through y. Since LCt conserves lengths this is a rotation in the
tangent space aty. If we take a third curve C3(xy) we can repeat the argument
with C3(xy), -Ky(3) and C2(xy), Ky(2) then with C4(xy), Ky(4) and C3(xy),
Ky(3) etc. In other words, if we obtain a system Ky(1) such that Ky( K x
by integrating the transport equations along any curve Cx(xy) then other
equivalent systems Ky(2), Ky(3), ... aty are obtained from Ky(1) by means
of some rotations aty. This suggests that there might be a relationship between
rotations in the tangent spaces at points of the manifold and LCt along curves
between different points. In fact let us consider the following more general
case.

Choose an arbitrary pointy in the manifold and define in the tangent
space at that point a local system Ky. Take an arbitrary closed curve Cr(y)
through the pointy and give Ky a LCtalong C4y). After describing the closed
curve we have aty another system Ky(l) equivalent to Ky given by

Ky(1) = C"Ky . 4)

It is proved by the mathematicians that the transformations (4) for all possible
choices of C4y) form a group, the holonomy group (hg) Ty of the manifold.

The Theorem of | is valid for any curve, in particular for any closed
curve. Apply then the Theorem to all possible closed curves through y. If con-
gruence is defined by the Definition in I, we obtain the trivial corollary to
the Theorem of I.

Corollary. Physical quantities, defined in the tangent space at an arbit-
rary point of the manifold, are congruent under transformations of the holo-
nomy group at that point.

In the sense of the definition of congruence it might then be said that
any two local systems, defined in the tangent space at an arbitrary point of
ihe manifold, that are obtained from each other by a transformation of the
holonomy group are physically equivalent.

To see the potential physical meaning of this corollary let us consider
a physical object, such as an elementary particle, at a point y and take it
along all possible closed curves through y in the manifold. The Theorem says
that every physical quantity (also null quantities such as the differential
equations of physics) attached to the object will suffer LCt along the curves
and through this LCt the object will pick up, picturesquely speaking, on its
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way informations about the properties of the manifold as a whole. After
describing all possible curves the object at pointy will remember the structure
of the manifold and the information about the manifold will be stored in the
holonomy group at that point. In other words, the global structure of the
manifold determines a local structure in the tangent space at every point by
means of the local symmetry group, the holonomy group at that point.

Thus the fact that LCt between two points is not a unique operation
is now seen to be far from unpleasant. On the contrary, it opens up fascinat-
ing possibilities since it provides a connection between local symmetries and
the global structure of the manifold.

Incidentally, the integration problem mentioned can also be resolved
by means of the holonomy group Wy. Namely one has only to integrate the
transport equation along any one curve C*{xy) connecting a and y to obtain
Ky(1), then all other equivalent systems Ky aty are obtained from Ky(1) by
transformations of Uly. In other words all transformations consist of a linear
homogeneous transformation which leaves lengths, but not necessarily the
metric tensor, invariant followed by transformations of the holonomy group
Y'y. Thus the integration problem is reduced to that of determining the holo-
nomy group.

We are now going to present some mathematical properties of holonomy
groups, associated with the Levi-Civita connection, in Riemannian manifolds
and, also, try to draw some immediate physical consequences of the Corollary.

Some general experimental consequences

An important consequence can be obtained by considering the holonomy
groups and Wy at two different points x andy. If C(y) is a closed curve at
pointy and the corresponding transformation of Wy is also denoted by C(y),
we may construct a closed curve C(x) at point x by going first from mtoy along
some curve C, then along C(y) and back to x along C-1. If Cis the transform-
ation along C we get for the whole transformation C_1C(y)C and this must be
a transformation of IF*. This means that 4*xand 4'y are isomorphic and there is
in fact only one holonomy group for the manifold. Even more, it is easy to
see that if Wx and Wy are described with respect to two local bases at x and
y, respectively, that can be obtained from each other by LCt along C the trans-
formations are numerically identical.

Now the global structure of the manifold Vndetermines a local symmetry
group at every point of Vn defined by the holonomy group i 7and in this way
a physical object at x, such as an elementary particle, is provided with a
structure defined by Wx for every x of Vn. By considering the above property
otV x we are lead to extend the notion of congruence of quantities attached
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to the object to that of structures. In fact the above property of Wxsays that
two structures at points x andy are congruent in the sense that Wx and Wy
defining them are numerically identical when they are referred to local systems
at x and y which are obtained from each other by LCt along some curve. We
have thus the result that the local structure, at least that defined by WX,
of a physical object is independent of the point in the manifold.

Important consequences of the Corollary can be obtained by consider-
ing the properties of the holonomy group K xat one point x (for the definitions
and proofs of the theorems see Chapitre Ill in Lichnerowicz [2]).

We first define a subgroup ax(Vn), the restricted holonomy group of Wx.
ax(Vn) consists of all transformations along all possible closed curves through
X which are homotopic to zero.

Theorem 1. The restricted holonomy group ax(Vn) coincides with the
arc-wise connected component of the identity in the holonomy group Fx(Vn).

We define the local holonomy group cr* as follows. Consider all open
connex neighbourhoods U in Vncontaining x. The set a* in ax(Vn) defined by

a* :)@(U)

is a subgroup of ax{Vn) since it is the intersection of subgroups ax(U) of ox(Vn).

Theorem 2. The local holonomy group a* is a connected Lie group and
there exists a neighbourhood U(x) of the point x such that cr* coincides with
the corresponding restricted holonomy group < [U(X)].

Theorem 3. Every element of x(Vn) is finite product of elements
deduced from elements of a* (y Vn) by transport along the curves joining
y to x.

Theorem 4. Given a special neighbourhood U of xasuch that ox =
= ax({U) the Lie algebra of the local holonomy group o*0 is the algebra
obtained from the tensors

Wy, Vrw" )

(RhYj is the curvature tensor) at x by transport along the curves joining x1i
to x.

One can deduce from Theorems 3 and 4 that the Lie algebra of the
restricted holonomy group ox (Vn) is obtained from the elements deduced
from the tensors (5) at x by transport along the curves joining a0to x.

Corollary 4. For a linear connexion of zero curvature the restricted
holonomy group is reduced to the identity.

We now define the infinitesimal holonomy group dx at x for a manifold
of class C”.The Lie algebra do'x of ox is given by the —domain of the curvature
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tensor and its covariant derivatives

IBx<f(y()* ﬂR)/g'A\e' IF\:gyd;E(fkl"
Theorem 5. For any arbitrary vectors Vx, W1, ujl, U2 ... wk... at
a point m the tensors at x

\Wx, VXW'% ... [ufup...upRfo YIM..ykVXW % ... (6)

define elements of the Lie algebra do* of the local holonomy group o*.

It is also proved that the elements (6) for k — 0, 1, ... define a Lie
subalgebra dox of do*.

From the theorems it is seen that the infinitesimal holonomy group ox
is a subgroup of the restricted group ax and thus also of the complete hg P x.

We are now able to deduce some physical consequences of the Corollary.

Consider first the case when there is no additional restriction, such as
on signature etc., imposed on the manifold Vn. We have immediately a con-
sequence which is independent of the detailed nature of Wx.

From Theorems 3 and 4 and Corollary 4 it follows that the curvature of
every non-flat manifold Vn determines a local symmetry group defined by
the restricted hg ox at every point of the manifold. Conversely, if ex, or at
least a subgroup of it, is found to be a good group locally then the manifold
cannot be flat.

We now inquire about the explicit nature of 4*x in a Vn. Since LCt con-
serves the fundamental quadratic form and the metric tensor is a covariant
constant,* Wx is an orthogonal group in the tangent space at x. If we refer
i'xto an orthonormal ennuple at x (which is equivalent to the introduction
of a coordinate system which is geodesic at x, see I) it is seen that R Xis a sub-
group of the orthogonal group 0(n) and ox is a subgroup of SO(n). To specify
Wx further we have to make special assumptions about the manifold.

We now require that Vn should be of dimension 4 and of signature
(+ + H--)* By introducing a coordinate system in Vn which is geodesic at x,
it is easy to see that~7* is a subgroup of the homogeneous Lorentz group L.
And since ox is defined by closed curves at x homotopic to zero, the restricted
hg ox is a subgroup of the homogeneous orthochronous proper Lorentz group
L]. And this is independent of any field equations. To specify ox further the
straightforward way would be to take interesting manifolds and work out
explicitly the holonomy groups. However, the metric tensor is usually expect-
ed to satisfy some field equations and it is more interesting to see whether

* A quantity is covariant constant if it satisfies the transport equations identically,
independently of the curves chosen, or what amounts to the same, it is a numerical constant
under transformations of the hg *PX
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there exists a connection between the structure of the field equations and the
structure of the holonomy group. Suppose now that the Einstein equations
are valid. Then gravitational fields are Einstein manifolds and the classification
of Einstein manifolds by means of subgroups of the hg, initiated by Petrov
[3] (Weyl tensor) and developed further by Schett [4] (infinitesimal hg) and
others (for references see e.g. Beiglbock [7]) is pertinent. From the work
of these authors it is seen that, as is expected, the dimensionality of at least
the local symmetry group L| has no absolute meaning but is, in general,
different for different manifolds.

However, instead of discussing any particular manifold we discuss a more
general problem. Suppose the Universe is an Einstein space of signature (+2).
Since the Universe is not empty we might safely suppose that it is a non-
vacuum Einstein space. Then the local symmetry group ax is a subgroup of
L i and we ask about its dimensionality. We have the theorem of Beiglbock
[7] (Satz 3).

Theorem. A manifold Vn with RvX~ gV, and R ==0 has always a six-
diaiensional infinitesimal holonomy group oa

Consequently, if the Universe is a non-vacuum Einstein manifold of
signature (+2) then the local symmetry group ax, subgroup of 4/x, is the six-
dimensional homogeneous orthochronous proper Lorentz group Lt in the
tangent space at each point of the Universe. Conversely, if the Universe is
of signature (+ 2) and if the six-dimensional L ', or at least a subgroup of it,
is found to be a good local symmetry group then, by Corollary 4, the Universe
cannot be flat, independently of any field equations. Moreover, the Einstein
equations are not in contradiction with dimension six for L

This establishes then a connection between the structure of the Universe
and the structure of elementary particles via the holonomy group. In fact it is
obvious that, under the assumptions made, the group L is nothing but a
local manifestation of the structure of the Universe at large and is far from
being a property of flat space. On the contrary in a flat space ax would be
the identity and the very existence of bn is due to the fact that the Universe
is curved. Indeed, it might be said that if the Einstein equations are valid then
at least the L+-properties of elementary particles are determined by the stuc-
ture of the Universe.

This example shows how cosmology and elementary particle physics
may help each other. If the manifold describing the Universe is found observ-
ationally then its hg can be calculated which, in turn, must be a local
symmetry group. Conversely, if a local symmetry group is found which is the
hg of a manifold, then the metric tensor of the manifold can be calculated.
We refer on this point to Goldberg and Kerr [5], Cahen and Debever [6]
and Beiglbéck [7] who show how to get, at least in some cases, the metrics
of a Vn with a given ax.
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Summary

The basic ideas of a theory of congruence in gravitational fields have
been presented in the previous paper (I) and here. The main content of the
theory is condensed in atheorem proved in l. Some immediate physical con-
sequences were shown to follow from the Theorem almost on inspection.
These are the three classical tests of general relativity, the congruence of local
structures at different points in a gravitational field and the cosmological
origin of L j. Obviously, many more experimental consequences of the Theo-
rem can be calculated and work is going on in this direction.

The author is grateful to Professor P. Gombas for giving him the oppor-
tunity to work on the problems presented here and in paper I.
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TEOPUA TOXAECTBA B NPABUTALMOHHOM TMOJE, 11
BO3MO>XHOCTb KOCMOJIOT'MYECKOIo HAYAJIA B TPYTIMNE L ;

M. LUKOBEMELL
Pesome

[oKasaHHasi B npeablaylueit cTaTbe Teopema yCTaHaB/MBAET, YTO /IOKa/lbHble KOOPAU-
HaTHbIE CUCTEMbI, OMpeaeNieHHble B TaHreHUManbHOM MPOCTPAHCTBE B /06O TOUKE MHOXeECTBA
PuvMaHHa, Mosly4eHHOro OfiHO U3 APYroro nyTem Npeo6pasoBaHus rofIOHOMHOW rpynnbl B AaH-
HOl TOUKe, (U3MYECKM SKBUBAIEHTHbI. [pW MOMOLUM JAHHOIO CeACTBMS 4OKa3blBaeTCs, UTO
ec/N BCe/IeHHan SIBNAETCS HeBaKyyMHbIM MHOXECTBOM OiHLITeliHA, Torga COOTBETCTBYOLLAs
LecTUMepHas rpynna JlopeHua 1 siBNsieTcs MPaBWIbHOM CUMMETPUYHO TPYMMoi B TaHreH-
LManbHOM MNPOCTPAHCTBE B /06O TOUKe BCeneHHol. Hao6opoT, ecnv 1, WM XOTb eé ofHa
NoArpynna, sBseTcs NpPaBWIbHOA rPYNMoii, TO BCENIEHHAsA HE MOXET BbITb M/IOCKOIA.
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ON THE PHYSICAL SIGNIFICANCE
OF THE RETARDED AND ADVANCED POTENTIALS

(Received 29. XII. 1964)

The role of the retarded and advanced potentials in the solutions of I%

equations are discussed. It is pointed out that the solutions can be represented as a super-
position of retarded solutionsgandg “wamdering waves” the latter having no sources. If the
possibility of the existence o%aves is excluded it may be suggested that only
those particular solutions of quations occur in nature that can be represented

with the help of retarded potentials. It is pointed out that the latter assumption leads to the
conclusion that electromagnetic processes are irreversible.

Retarded potentials

8§ 1. Maxwell’s equations can be written in the form (see also [1]):

rotE = -—-—--- B, (a)
C
rot B= — E + 4ndeH, (b)
c (1)
divB= 0, (c)
div E = 45 peff, (d)
where
¢-+—P+r°tM. (a)
c (2)
Peff= Q—div P, (b)

i and p are current and charge densities of the “true currents” and “true
charges”.ief{and paffare the source densities including the currents and charge
densities accompanying polarization.

The eqgs. (la) and (Ib) determine the changes of E and B for a given
initial condition. The relations (Ic,d), if satisfied att = 0 by the initial condition,
will remain satisfied at any other time, as can be shown easily provided the
source densities obey the continuity relation

divieff + --9% *e=<),. 3)
c 31
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8 2. The field strengths E and B can he expressed in terms of potentials
A and @ in the following manner:

1 3A°
grad @ (a)

¢ 31 (4)

B = rot A. (b)

We note that when the values of E and B are given at a time t = 0t is always
possible to find potentials A and ® which describe the given field E, B at that
instant.

Indeed, giving an initial condition for an instant t= 0 we may write
3A(r, t)

A(r,0)= a(r) and - 4 * 5
( ) (r) 31 =0 a(r) ()

and we can prescribe a(r) and a(r) independently of each other. If we choose

®(r, 0) = cp(r) (6)
arbitrarily, we may put

a(r) = c(E(r, 0) + grad <p(r)) , )]
and thus satisfy (4a). Supposing further B(r, 0) = BO(r) we find from (4b)

a(r) = ---1--r‘ot | BAUr+ R)
4t

dAR -|- grad mp(T), (8)
where y>can be chosen arbitrarily.
We see thus that a field distribution

E(r, 0) = E,(r), B(r,0) = BOQ(r) (8a)

existing for t = 0 can be expressed in the form (4a), (4b) in terms of suitably
chosen potentials. In any case EQ(r) and B((r) have to satisfy

div BO(r) = 0, div E,(r) = 4jrpeff(r, 0) . (8b)

The potentials A, ® and the time derivative A att = 0 must be chosen accord-
ing to the relations (5)—(8). The initial conditions for the potentials are not
uniquely determined as the relations (5)—(8) contain two functions ¢pr) and
ip(r) which can be chosen arbitrarily.

8 3. Inserting (4a) and (4b), respectively, into (la) we find identities.
Inserting (4a, b) into the remaining equation (Ib) and (Id) we find that Max-
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well’s equations will be satisfied by the field strengths E, B as expressed
through potentials in the form (4a, b), provided the potentials obey the follow-
ing system of equations:

V2A — ~ A = - 4pden, (a)
c2

V20 _ 1 & 47rpeff, (b) 9)
cl

divA+ -1-®=0. (c)
c

We note that (9a—c) are sufficient conditions for the potentials to obey, in
the sense that field strengths derived according to (4) form potentials obeying
(9) which in their turn obey Maxwell’s equations (1).

84. The relations (9a, b, c) are not independent of each other. Taking
the div of the first equation and adding the time derivative of the second
multiplied by 1/c to the former, we obtain with the help of (c) the continuity
relation (3). We see thus that the relations (9a, b, c) together can only then
be satisfied if the source densities on the right-hand side obey the continuity
relation.

Furthermore, integrating (9a) twice with respect to t we find

A(r,t) = a(r) + ta(r) + c2(f(\72A + 4nie[f)dt'2, (10)
60

where a(r) and a(r) define the initial condition for A(r,t). From the relation
(10) we can obtain A(r, t) for any value of t ==0 if a(r) and a(r) are given, e.g.
by integrating in small steps.

Inserting the values of A(r, t) obtained from (10) into (9c) we can obtain
¢ for any value of t by integration. We find thus

&, )= y(r) —cldivAdt. (11)
0
Inserting (11) into (9b) and using the integrated continuity relation, i.e.

@G = ¢ . A

we find as the result of a short calculation

VMr) = - 4*To(r) » (12
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If (12) is to be valid for the whole of space then g>r) can be determined (apart
from an additive constant) uniquely. We have

?2(r)=1J go(r +- R) (13)

From (13) it follows that
¢ —=0 for M (14)

and we shall always suppose this condition to be valid. We see therefore that
the system (9), (14), if we prescribe an initial condition of the type (B)—(8)
for the potentials, admits exactly of one set of solution. Taking together this
result with those of 8 2 we see that the eqs. (9) may be uniquely solved, the
solution corresponding to a field with a given initial condition

E(r,t) = EO(r), B(r, t) = BO(r) .

The above initial condition must be, of course, in accord with (lc) and (ld),
further the source densities must obey the continuity relation.

8 5. A particular solution of the wave egs. (9) can be obtained in terms
of the retarded potentials, i.e.

A,et(r,«)=( ieff(r+ R’f) rf3R, (15a)
orti(r,) =J VR, (15b)
with
t=t- — . (15c)
C

Inserting equations (15) into (9) we find that the potentials expressed by (15-
satisfy indeed the wave equations. The equations give thus a particular solu)
tion of (9). As Aret and <ret are exactly determined by the expressions
(15) in terms of the source densities these expressions cannot be made to
satisfy an arbitrary initial condition.

W hen inserting (15) into (9) there appears some formal difficulty since
the right-hand expressions (15) have singularities for R = 0 and are thus
improper integrals. The integrals should be interpreted as being given by the
proper integrals which are obtained when introducing polar coordinates, i.e.
eq. (15) must be understood to signify

2n n o

A(r,t) = J dg)J sin &dd Rieff(r+ R, t) dR .
0 o0 e
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The integrand of the latter integral is regular. See also [1].
The general solution of (9) can be obtained by adding to (15) solutions
of the homogeneous wave equations

V2A0 - -*-A0= 0,

c2

y->p0—J_0o0= O, (id)
cL

div AQ -------- ®0= 0.
c

The system (16) admits solutions satisfying an arbitrary initial condition for
the field as can be seen from the considerations of 8 3 inserting there ietf= 0
and Qif = 0. Thus adding to the solutions (15) a suitable solution of (16)
solutions of (9) satisfying an initial condition of the form (8a, b) for the field
E, B can be obtained.

8§ 6. The physical interpretation of the solutions of Maxwell’s equa-
tions, when putting

A = Aret -f- A,, ,
P

= Oret + @, ,

can be summarized as follows. The field E, B consists of two parts, i.e.
E = Eret +E/,, B = Bret : B,,

where the suffices “ret” and “h” refer to the parts obtained from the retarded
potentials and the potentials obeying the homogeneous wave equations.

The retarded field Eret, Bret is produced by the retarded action of charges
gen and currents ieff. l.e. the action of a charge peff(r 1t') which is at the time
t' in a point r' is felt in a distant point r at a time t —t' -)- |r — "' ]/c, thus
the action of the charge and similarly the action of the currents spread with
a velocity c.

8§ 7. As far as the solutions of Maxwell’s equations are concerned the
retarded field may be super-imposed by a homogeneous field which acts upon
charges and currents and which, however, has no sources. The latter fields
can be described as consisting of “wandering waves” travelling through space
which have not been produced by sources, and they can therefore be taken to
be part of the world just as are elementary particles or atoms.

It must be noted that such wandering waves once they fall upon matter
excite atoms and thus induce these to emit radiation of the retarded type
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thereby losing energy. Therefore, even if wandering waves exist they gradually
diminish like e.g. radioactive material diminishes.

It is a question of observation whether wandering waves do or do not
exist in nature. It may be noted that whenever we observe electromagnetic
waves coming e.g. from the universe, we immediately look for the sources
of these waves and thus automatically assume that they are of the retarded
type.

It does not seem to be a far-fetched hypothesis that such wandering
waves do not existin nature. If we suppose this then we conclude that Maxwell's
equations give only necessary conditions for the motion of electromagnetic waves,
but that only those particular solutions which can be expressed by retarded poten-
tials are realized in nature.

Advanced potentials

§ 8. Particular solutions of the wave equations can also be obtained in
the form

bitr  R.O d3R, (17a)
M )=1 R
M) = Ceeff(r + Ril") (17b)
) R
with
t' = t+ Rjc. (17¢)

The potentials obtained by the equations (17) satisfy also the wave equations
(9), they obey initial conditions which are different from those which are
obeyed by the solutions (15).

As both (15) and (17) are linear in the source densities we see that suit-
able linear combinations of (15) and (17) give also solutions of the wave
equations.

Denoting by Aret{i'} the potential obtained from (15a) by inserting
i eff =:|'iland similarly by Aadv {i""| that obtained from (17a) when putting
i eff ywe see easily that

A{i +i" } = Aret{T} + Aadv{i } (18)
s n'%e potential which satisfies the wave equations if the current density

Similarly, the mixed scalar potential
+ n"} = ored{E>r+ drNe} (19)
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satisfies (9) for geff = g' -)- q".

By splitting the effective densities ieff, geff in various ways into com-
ponents i', q' and i", g" solutions of (9) can be obtained satisfying various
initial conditions. Thus it seems that the system (9) with a given initial con-
dition can be satisfied with the help of suitable mixed potentials.

8 9. The advanced potentials and therefore also the mixed potentials
seem void of physical significance. The advanced potentials appear to describe
the state of the field in a point r at a time t from the distribution of currents
and charges at later times t" > t.

Because of this some authors believe the potentials to be merely mathe-
matical expressions which facilitate solving the wave equations, but which
are without particular physical significance.

We do not agree with this view but wish to point out that a mixed
solution of the wave equations can be written in the form

A{»eff} - Aret{i } ~b Aadv {* } >
(20)

= "ret {7} + dain(}}

with E

Considering (18) and (19) we can also erte in place of (20)

Ai%eff} — ~ret feeffl + Aret {$' ~~ 2effl + ~adv {i%ff — p}) -

The expressions in the large brackets on the right-hand side of (21) give poten-
tials which satisfy the homogeneous wave equations (16). Thus decomposing
the mixed potentials in the fashion (21) we see that these can be understood
as corresponding to the retarded field of the existing sources ieff, peff super-
posed by the potentials of “wandering waves”

Thus, as far as we admit the existence of wandering waves, the mixed
solutions when written in the form (21) obtain a simple physical significance.

§ 10. Comparing (15) and (17) we see that processes which have to be
described by pure advanced potentials can also be taken as the time reversal
of processes described by retarded potentials. If it is true that in nature only
the retarded solutions occur then we see that processes containing electro-
magnetic radiation are irreversible in the sense that the processes reversed
in time do not occur.

This is quite plausible when considering in particular electromagnetic
processes. E.g. as the process reversed to that of the expansion of spherical
waves emitted by an atom we have spherical waves contracting into an atom.
The latter process cannot reasonably be supposed to occur.
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Similarly, collisions between elementary particles which lead to emission
of radiation are essentially irreversible, since in the reversed collision one would
have to expect radiation to arrive out of space just in time to he absorbed
by the colliding particles in order to ensure the “reversed collision”.

It seems thus that electromagnetic phenomena are essentially irreversible
in time. The reversed forms of real processes may satisfy Maxwell’s equations,
but they are of the type which are represented by advanced potentials only
and thus cannot be supposed to occur.

Of course, with the help of wandering waves the reversal of a process
might occur, as can be seen from relation (21). However, in this fashion such
a reverse process could only occur with “heavenly help” — i.e. a long time
before the process starts, waves which happen to be just suitable to produce
the reverse effect would already have had to start from far distant points.

The probability of such an accidental reversal of a process must be taken
to be negligibly small. Therefore, even if we do not exclude wandering waves
we have to conclude that as a rule electromagnetic processes are irreversible
in spite of the symmetry in time of Maxwell’s equations.
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®U3NYECKWNIA CMbIC/T PETAPAVPOBAHHOIO
M YCOBEPWLWEHCTBOBAHHOIO NOTEHLUWNANOB

n. AHOLN
Peswome

VICTONKYeTCS pofib PETapAMPOBAHHOIO U YCOBEPLLEHCTBOBAHHOIO MOTEHLMANOB B peLle-
HWM ypaBHeHWIn MakcBenna. MoKasbiBaeTCs, UTO PeLleHWst MOTYT MPeACTaBNsATbCA B BUAE
Ha/IOKEHUS PeTapaMpPOBaHHbIX PELLEHUIA 1 «BeryLiieil BofHb», He UMEOLLen NCTOUHUKOB. Ecnn
MCK/IOUNTL BO3MOXHOCTb CYLLECTBOBAHUA Geryuimx BOMH, TO MO/ydaeTcsi, 4Tto B Npupoae
Ha6naalnTCca ML Te YacTHble PeLleHUs ypaBHeHWUi MakcBenna, KoTopble npeacTaBnsoTes
peTapAMpoBaHHbIMK NoTeHUManaMun. MokasbiBaeTcs Aasee, YTo M3 MOCAeAHEro NpeanonoXkeHus
BbITEKAET HeO6PaTUMOCTb 3/1eKTPOMArHUTHbLIX MPOLLECCOB.
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Maxwell’s equations are written in a form containing only E and B and the electric
and magnetic polarizations. It is shown that expressions somewhat deviating from the usual
ones can be obtained for the energy density and the Poynting vector, if one separates carefully
electromagnetic and non-electromagnetic sources of energy. The question ofthe ponderomotive
force is discussed and it is shown that the state of a complicated physical system cannot be
described by giving the value of its total energy and momentum and therefore no generally
valid expression for the ponderomotive force can be given. All the same in any given case,
when the mechanical properties of the system are taken into account, its behaviour can be
understood.

The effective currents and charges

8 1. Although Maxwell’s theory gives a complete and consistent
description of electromagnetic phenomena, certain questions remain which
have been giving rise to many discussions e.g. in Hungary Gy. Marx—
G. Gyorgyi [1], G. Gyorgyi [2], and J. Sarosi [3]. Here we shall make some
remarks upon the role of the field strengths E, H and the displacements D,
B and also on the question of the so-called ponderomotive force.

8 2. The electric field of a polarized dielectric can be described as that
of electric dipoles inside the medium. The electric field strength E in a point
r outside the dielectric is given by the relation

E = —grad @, (la)
with

¢{r)= - FdlvP(r+ R) R5 (Ib)

' 1

where we have introduced the variable R = r' —r, r' representing coordin-
ates of points inside the medium, and P(r') the polarization vector. The integra-
tion is to be taken over the whole of the dielectric.

Sometimes a surface integral is added to the right-hand side of (lb)
which takes care of the charges appearing on the surface of the dielectric.
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We omit this integral supposing the polarization vector P(r') to be a con-
tinuous function of r' and to change from its value inside the dielectric to
zero in a thin surface layer.

It follows from (la) and (lb) that the field outside the dielectric may also
be regarded as due to charges with a density distribution

@ = —divP, (Ic)

where gp is the so-called Poisson charge.

8 3. If ris a point inside the dielectric the right-hand expression of (Ib)
is an improper integral having a singularity for R = 0. The latter integral can
be replaced by a proper integral by introducing polar coordinates, i.e. we may

write : 2 ,1 «

J-1V  LR)d*R = ldplsin &d& Idiv P(r + R)RdR . )

0 0 0

It should be noted that to postulate (2) amounts to making an explicit
assumption about the field acting inside the dielectric. Mathematically, other
interpretations of the improper integral giving the field inside the dielectric
are also possible. It is, however, not on the strength of mathematical reason-
ing but on that of experiment, that one has to decide which expression gives
the field inside the dielectric correctly.

Usually it is supposed that the force upon a charge inside a dielectric
is given by eE. In principle, this statement may be tested experimentally,
however, we do not think that at present there exists explicit evidence con-
firming it.

8 4. The magnetic field produced by a magnetically polarized medium
can be represented in analogy to (la, Ib) in the following way:

H= —grad Q (3a)
with
f div MR + 1)

0(r) = d3R , (3b)
D71k

where M(r') is the magnetic polarization in the point r'. For a point r outside
the magnetized body we can also write

H = rot A, (4a)
A(r) = rotM(RR +r)d,R (4b)

Acta Phys. Hung. ToT. XX. 1966



REMARK ON SOME ASPECTS OF MAXWELL’S EQUATIONS 69

For points outside the magnetized medium the integrals (3b, 4b) are regular;
for such points it can be shown, that (3a, b) lead to the same values for the
field H as (4a, b). Indeed, applying the operation rot to (4b) and interchanging
the integration with the operation rot we find, remembering the relation

rot rot = grad div — \>2

from (4a)
edivM(R + r "V2ZM(R + r
H grad ( ) . ( ) d3R . (5)

R #R -] R

In the second term the operator \72is supposed to operate upon r. However,
as M is a function of R -j- r it can also be taken to operate on R without chang-
ing the value of the integral. In the latter case we find, integrating hy parts
and supposing that M(r) = 0 if r' is a point on the surface of the medium.

V3M (R
( d:tR= MR + 1) V2 cP R
R

However, if r corresponds to a point outside the medium, i.e. M(r') = 0, then
the integral is restricted to values R > 0 and we can take V2 7 =0, thus

the second term of (5) vanishes and we see that in this case (4a, b) is identical
with (3a, b).

The expressions (4a, b) show, that the magnetic field outside the magnet-
ized medium may also be regarded as due to currents which produce a vector
potential A(r) and have a density

w= rot M. (6)

We see thus that the field outside a magnetized medium can be represented
purely mathematically by either a suitable magnetic charge density — div M,
or alternatively by a suitable current density iM = rot M.

The question arises whether it is the current density or the magnetic
charge density that correctly gives the field inside the medium.

This field when calculated from (4a, b) may be denoted by R and when
obtained from (3a, b) by H. From (5) we verify (using a representation in
terms of polar coordinates whenever we meet with improper integrals) that

R= H + 4jiM . )

8 5. Relations (3a, b) and (4a, b) when applied to the inside of the
medium represent different transitions from discrete dipoles to the continuous
dipole distribution — mathematically both transitions are equally possible, —
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and only by experiment can it be decided which of the transitions gives the
correct expression for the field strength.

From the observation of cosmic rays traversing permanent magnets and
from that of neutrons passing through magnetized matter it seems to follow,
that the force acting upon particles passing through a magnet is correctly
described by B.

8§ 6. It should be noted that in a medium which is in the process of being
polarized electrically, the motion of the Poisson charges gives rise to con-
vection currents of density

(8)

where the dot (¢) represents differentiation with respect to time. Thus the field
arising from the electric and magnetic polarization of a medium may be re-
garded as produced by sources constituted of a charge density gPand a current
density ip -j-\M. If we add to these the true charge densities g and the
densities i of the true currents, we find for the total sources of an electro-
magnetic field:

peff = 6 — div P ,

9
*eff = *+ ——P + rot M. ©
C

It can easily be seen from (9) that the effective current and charge densities
obey the continuity equation

divieff+J -~ L = 0 . (9a)
c (0]

8§ 7. Maxwell’s equations can thus be written in the following form:

1 L]
roter — — B, (a)
c
1. :
rot B = m— E -f- 41r ieff, (b) (10)
c
div E = 4n geff’ (c)
div B = 0. (d)

w e see that the equations (10a—d) contain only E, B and the effective source
densities geff and ief( which are produced not only by the true charges and
currents, but also by those appearing inside the atoms of the polarized material.
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It seems satisfactory that in the form (9) and (10) in which we have
written Maxwell’s equations, the equations describing the electromagnetic
field [eqs. (10)] are separated from those [eqs. (9)] which involve the pro-
perties of the material upon which the field acts.

Energy and momentum considerations

8§ 8. Multiplying (10a) by —B and (10b) by E and adding the equations
thus obtained, we find the following relation:

divt!?5 J------- + cEieff= 0, (1la)
81
where we have put
N=-(ExB), (lib)
4an
n= — (E2+ B2). (11c)
8n

We suggest that (11a, b, c) represent the conservation law of the purely electro-
magnetic part of the energy. Thus we suggest that (which has a form similar
to that of the Poynting vector) represents the flow of energy and it the density
of energy. The usual expression

div SAr j4———-{cEi= 0, (12a)
at
where
&'=— (EXH), (12b)
an
m = — (ED-f HB), with D=E + 4nP (12c)

4n

contains mathematically the same relation as (11a, b, c). We note that unless
e and fx are constant in time, U' is not a total time differential and cannot he
integrated without the explicit knowledge of the details of the polarization
processes.

We shall discuss further below the different physical implications con-
tained in the relations (11) and (12).
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8 9. Multiplying vectorially (10a) from the left by E and similarly (10b)
by B we obtain with the notations (lib, ¢), making use of well-known vector
relations

Div2 H-—--) feff= 0, (13a)
c2
where
feff = E peff -f- idf X B - (13b)
%= — ———-(EOE-fBoB)-)-]«. (13c)
an:

The relations (13a, b, ¢) can be most easily understood as describing the
exchange of momentum between the field and the matter. Indeed, feff is the
density of force excerted by the field. feff has two parts:

fef(= f+ fP, (14)
where

f = eE + iX B, (14a)

is the density of the Lorentz force exerted upon the charge and the currents
traversing the matter and

fo — op E - (ip -j- ivi) X B,

is the density of force excerted upon the atoms. fPrepresents the action of the
outside field upon the currents and the charge inside the individual atoms.
Suppose that

1
— Sfi — G 15
- (15)

gives the momentum density of the field and that the tensor % represents
the density of flow of momentum. (13a) can then be understood to mean that
the electromagnetic momentum flowing into a certain volume there produces

partly an increase ofelectromagnetic momentumat a rate of— and parti)
c

transfers momentum to the matter contained in that volume. The total rate
of transfer of electromagnetic momentum to other forms of momenta has
a density feff- This transferred momentum is partly taken up by the atoms
and partly by the true currents and charges.
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11
Non-electromagnetic contributions to energy and momentum density

§ 10. The relations (11) and (13) describing the flow of energy and
momentum are mathematically equivalent to the relations used usually, we
have only grouped the terms in an unusual way. We presently discuss the
significance of the difference between our expressions and those usually used.

1. If e = constant, the electric part of the energy is usually taken as

1 . 1
utl = --—-- ED. We use instead uei= —é--—EZ the difference between the two
n n

expressions being given by

«i—Mei = — EP

More generally, when B may depend on E or other quantities, we have

p
uel— vel 2~ f EdP . (16a)
0

The above expressions give the density of work done by the electric
field. This work appears as mechanical or elastic energy which is stored in the
dipoles. Thus the quantity ut\includes, apart from the purely electric energy
density, also the density of mechanical energy which is stored in the polarized

1
atoms. uel = ry E2 does not include this energy density therefore it can be

taken as purely electric energy.

That energy of the amount given by (16a) is really stored in a polarized
dipole can also be seen when remembering that a polarized dipole once the
outside field is switched off starts to oscillate and emits the energy stored
according to (16a) in the form of electromagnetic radiation.

2. The magnetic density of energy is usually written as

u magn — 1H dB,
4n 1
. . 1 1T
thus we find writing nmagn B2 B dB
8n an: J
wmagn umagn Mf/ B . (le)
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The difference between the two expressions for the magnetic energy density
as given in (16b) corresponds to non-magnetic energy as can be seen from
the following consideration.

If we polarize a medium by turning its magnetic dipoles into the direction
of the external magnetic field, we gain energy as the magnetic field itself
produces torques on the dipoles which try to turn these into the direction of
the field. However, while the dipoles are adjusted into the direction of the
field, currents are induced inside the atoms which try to diminish the magnetic
moments of the dipoles. In the process of polarization these currents have to
be overcome by some outside source and the energy must be taken up from
the source so as to maintain the dipole moments. This results in a transfer
of energy from some non-magnetic form of energy to magnetic field energy
and thus the total increase of energy in the process of polarization is less, than
the increase of purely magnetic energy, the difference being given by (16b).

In order to illustrate the above consideration on hand of a macroscopic
model werememberthatasolenoid carrying current, when placed into a magnetic
field, will try to turn in such a way that its own field becomes parallel to the
external field. However, while the solenoid moves the outside field induces
currents in it opposing the current which already flows and therefore the
EMF acting on the solenoid has to do work in order to compensate the induced
currents and to keep the magnetic moment of the solenoid constant. Taking
the energy balance of the whole process we find that there is an increase of
purely magnetic energy accompanied by some decrease of, say chemical
energy, which was used to maintain the current in the solenoid.

The reduction of non-magnetic energy in the process of polarization can
also be illustrated as follows. Consider atoms carrying dipole moments as rigid
bodies rotating round an axis. The turning of such rotating atoms into the
direction of an outside magnetic field require work to be done in order to
maintain the rotation of the atoms. Thus mechanical energy is transformed
into magnetic energy equal to the difference u'magn—umagn.

We see thus that u represents the density of purely electromagnetic
energy, while u' represents electromagnetic energy mixed with other forms
of energy stored in the atoms.

3. The Poynting vector is usually written in the form

<% = — (E X H). a7)
4n
The difference
= _ QE X M) (17a)
corresponds to the flow of density u®j = u' — n of mechanical energy induced

by the electromagnetic field, which is carried by the dipoles while interacting
with the field.
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It is interesting to note, that such a flow may occur even if E, M =
= const., thus in a state where the dipoles do not move and do not change
their polarization.

§ 11. So as to see more clearly the nature of the flow we note that

div = —cdiv(E X M) = ¢c(ErotM — Mrot E) .

With the help of(10) and (6) the right-hand expression can be rewritten and
we find

div<OM = cEiM+ MB . (18)

The second term of (18) gives the flow carried by the magnetic dipoles in the
process of their adjustment. There is no term in (18) corresponding to the
motion of the electric dipoles. The reason for this is that

Eip——EP = 0, (19)
c
thus (18) may also be written
div — cE(i/lw + ip) -j- MB — EP . (20)

We may therefore include the energy transfer carried by electricdipoles in
the right-hand side of (18); however, this does not contribute to div™Aj.

The work done by the electric field on the Poisson charges gm appears
on the spot as potential energy and this type of energy transfer does not con-
tribute to the flow of energy.

§ 12. The first term in the right-hand expression of (18) shows that
mechanical energy is deposited at a constant rate when the field is constant
in time and space.

The mechanism of the latter flow can be illustrated when considering the
following schematic model.

As the model of a dipole consider a charged rigid body rotating freely
with a constant angular velocity u> Suppose at the centre of gravity of the
system a point charge which neutralizes the system as a whole.

If such a dipole is brought into a homogeneous electric field E the direc-
tion of which is perpendicular to to we find that the electric force tries to
accelerate one side of the rotating body and to decelerate the other (see Fig. 1).
The inner forces keeping the rotating body together, maintain the uniform
rotation. In this way the electric force transfers energy to the parts which
have a component of velocity parallel to E and takes up energy from the other
parts. Thus there is a steady flow of elastic energy across the system. The
direction of flow is perpendicular to both E and in and its value is given
quantitatively by (17a).
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Model of magnetic dipole

Fig. 1

v

The ponderomotive forces

§ 13. We have thus shown how the purely electromagnetic energy, the
energy flow and the momentum of a system can be described and separated
from the contributions of mechanical or elastic energy and momentum con-
tained in the material.

The densities u', Sfi' and G' contain thus apart from the electromagnetic
densities also contributions of a different nature.

The reason why the quantities u', SP' and G' were originally introduced
into the theory and not the quantities u, 6fi and G is that at the time when the
theory was worked out one tried to describe the total energy and the total
momentum of systems.

Such attempts must, however, fail unless one is satisfied with an over-
simplified model of matter. The energy and momentum of real matter under
the influence of an electromagnetic field is determined by many factors and
cannot be described without a detailed analysis of the physical properties of
the material involved. We note that apart from the electromagnetic and the
elastic energy a real physical system contains also heat and chemical energy
and other forms of energy.

Among other effects an electromagnetic field produces complicated
elastic stresses in a mechanical system and changes its elastic energy in a com-
plicated way. In this way e.g. électrostriction and the magnetostriction also
contribute to the total energy.

8§ 14. In Becker’s text-book [4] the Maxwell tensor is extended by
terms giving the électrostriction. This is done in an attempt to complete the
expressions for energy and momentum density. However, the term given by
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Becker accounts only for one of the many contributions of non-electro-
magnetic energy and momentum.

We think that a satisfactory description is obtained from the beginning
if we limit ourselves to the purely electromagnetic part of energy and moment-
um, i.e. if we use it, J/5 and G. We must be aware when doing so that for the
description of the interaction with matter the non-electromagnetic properties
of the interacting material have to be taken into account separately. The con-
nection between electromagnetic and other properties of the material is intro-
duced by giving the dependence of the polarization vectors P and M on the
electromagnetic field and the state of the matter. The connections P = aE

andM - - B must be regarded as very rough approximations.
*
8§ 15. We are now in a position to give a simple answer to the question:

swhich is the expression that gives the correct value for the ponderomotive
force a field excerts upon matter?”

We note, that the term ponderomotive force is not very clear in itself.
It was introduced at a time when one tried to formulate general laws for
matter as such, with as little regard as possible to the real and varying pro-
perties of material systems.

The energy and momentum transferred by radiation to a closed physical
system are described by relations (11) and (13) which in the integral form can
also be written in the following way:

Relation (21a) shows that part of the electromagnetic energy flowing into
a surface S produces there electromagnetic energy of density u, the remaining
part of it being transferred into other types of energy at a rate of E ieff. The
latter energy appears in two parts: E i is the work done on real currents and
charges, while the rest is transferred to the atom of the system.

Similarly (21b) shows that the total momentum flow % through the sur-
face S remains partly in the form of electromagnetic momentum with a density
G, the rest being transferred to the matter. The transferred part can again be
divided into one part which is taken up by the currents and the rest which is
taken up by the atoms of the system.

8§ 16. We see thus clearly what happens to the energy and the momentum
flowing through the surfaces S into the system occupying the volume V.

The “ponderomotive force” might be defined as the rate of increase of
the momentum of the system. However, such a description is purely formal
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and it does not help to clarify e.g. the behaviour of a mechanical system in
a collision.

We may e.g. try to determine the momentum of a system by letting it
collide with a solid wall, measuring the recoil of the wall.

The result of such a collision depends very much on the internal pro-
perties of the colliding systems. It depends also on the mode of the collision,
i.e. whether the various types of momenta contained in the system all take
part in the collision or not.

If the colliding system is in the solid state, then it is likely that the
momenta of its atoms will be transferred to the wall. It is, however, an open
question (and depends on the details of the collision process) whether the
momentum carried by the currents flowing inside the colliding system is or is
not transferred in the collision. Further the electromagnetic waves contained
in the colliding body might themselves be reflected on the wall, but they may
also penetrate into the wall according to circumstances. We see therefore that
it is impossible to foretell on general grounds (without going into the details
of the collision) what the result of the collision will be.

To illustrate the problem, we consider a box which contains a number
of loose bodies and which collides with a wall. In the first instant the moment-
um transfer in such a collision will be only that of the box itself, as the bodies
inside will continue to move owing to their inertia. These bodies will, however,
transfer their momentum when striking the front wall of the box from the

inside. — W hether their momentum is then transferred to the wall depends
on whether this secondary collision takes place soon enough after the first
impact.

A material system containing atoms, currents and radiation may be
compared with such a box. It is futile to try to define its momentum as if it
was a “mass point”. A description that fully accounts for the actual state of
such a system must give the distribution of its momentum over its various
parts and in particular over its atoms and further the distribution of the
currents and the radiation contained in it.

Under clearly specified circumstances the behaviour of the system as
a whole can be described by some integral over the mentioned distributions.
There is no law giving “the momentum of the system” regardless of the con-
nection in which this momentum is to act.

The ponderomotive force was introduced in an attempt to give an ex-
pression for the change of momentum of a physical system under the influence
of radiation. However, once we realize that the behaviour of a system cannot
be characterized simply by one momentum vector we see that the concept
of the ponderomotive force is an oversimplified one. When considering a real
process it is necessary to determine the detailed form of the energyand
momentum transfer between the various components of the body. Only by
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taking into account their physical properties can we determine what will
happen to the body under the influence of the electromagnetic field.

\%
A remark on the Poynting vector

§ 17. The Poynting vector seems to us to give the flow of density of
energy in any electromagnetic field. Sometimes it is stated that the Poynting
vector has only meaning in those parts of space where div J/3 5=0, i.e. where
a real exchange of energy takes place.

We venture to suggest that Sfi always gives the density of flow of energy,
even if this flow happens to be a stationary one with div — 0.

Consider e.g. the crossed fields of a charge and a permanent magnet.
In the latter field E X B does not vanish and we expect the energy to flow
steadily in a stationary fashion. We think this picture gives a good description
of the real state of affairs.

We note that as long as the charge and the magnet giving rise to the
crossed field are widely separated, the Poynting vector has only negligible
values and there is practically no flow of energy. If the magnet is brought into
the vicinity of the charge, the energy of the field is redistributed during this
motion, and the energy flow starts. Once the magnet has reached its final
position the energy has reached a state of stationary flow and through inertia
this state persists further as long as the charge and the magnet remains in
this position.
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3AMEYAHUVE O HEKOTOPbIX MOJIOXXEHUN YPABHEHW MAKCBEMNA
N1. AHOLLM
Peswome

YpaBHeHusi MakcBefina HanucaHbl B (hopme, cofepxKallleil TonbkKo E, B, U 3MeKTpu-
YECKYI0 U MarHWTHY Monsipusaumii. MokasbiBaeTcsl, UTo Ansi MIOTHOCTM 3HEPrMM 1 BeKTopa
MOHTMHIa MOXHO BbIBECTV BbIPaKEHWsS!, B HEKOTOPOI CTeMeHW OTAMYatoLLMECS OT 06bIKHO-
BEHHbIX, €C/M MPOM3BECTU TLLATENIbHOE pAa3fe/ieHe WCTOUYHUKOB  3/1eKTPOMArHUTHOro 1
HEaNeKTPOMArHMTHOTO MPOUCXOXKAEHUSA. [UCKYTMPYeTCs BOMPOC MOHAEPOABUXKYLLEA Ccunbl
N HaliieHo, YTO CMOXHbIE (PU3NYECKME CUCTEMbI HE MOTYT 6bITb ONMCaHbI 3afaHNeM WX MOJHOW
3HEPIUM M KOMMYECTBA [BUXKEHUS, W, TaKUM 06pa3oM, HET BOSMOXHOCTM f1s1 COCTAB/IEHNS 06-
LEro ¢ TOUKN 3PEHMSI ero [eMCTBUTENIbHOCTU BbIPKEHWUS AN MOHAEPOABUXKYLULEA CUMbL.
HecMoTpsi Ha 3TO, NMPUHMMas BO BHMMaHWe BCE MeXaHWuYeCcKue CBOMCTBAa CUCTEMbI, MoBefe-
HVe ee MOXET 6bITb MOHSATO.

Acta Phys. Hung. ToT. XX. 1966






ON THE REPRESENTATION
OF THE LORENTZ DEFORMATION

(Received 29. XII. 1964)

It is shown that with the help of the eigenvalues of Lorentz matrices Lorentz trans-
formations can be brought into a standard form. Using this standard form we find that any
Lorentz deformation appears, relative to a suitable system of reference, as an acceleration
in a fixed direction, and a rotation through afixed angle around the direction of acceleration.

8 1. In a number of papers [1—4] we bave dealt with the physical inter-
pretation of the Lorentz transformation. In the course of the analysis a
problem arose with which we want to deal in the present paper.

Using the terminology explained formerly we may denote events and
also physical systems by Gothic letters and use Latin symbols for their repre-
sentation relative to some system of reference. Thus we denote an event by @
and its representation relative to a system of coordinates K by

E = K(&),
where E stands short for a four-component vector x,
X=r,t.

We shall make use of Lorentz systems of reference only. Such a system s
an inertial system in which the measures of coordinates and clocks are adjusted
by means of light signals, these adjustments being such that light appears
to be propagated isotropically relative to the system of reference when this
is expressed in the coordinates thus adjusted.

More precisely, the Lorentz system can be characterized in the follow-
ing manner. Consider two events 6" and (#2, where should be the start
of a light signal from a point Pxand its arrival in a point P2 The coordinates
of these events relative to a system K may be written

*I = ruh X2 = h e
The system K is a Lorentz system if for any values of rj and r2 we have

¢r¢ = o, (1)
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where ? = x2— x4 and I is the matrix with elements

1 if v= f,=1,2,3
Cop = 0 if v==I (2)
—c2 if v= /i —4

8§ 2. The representations of an event relative to different systems of
reference are connected by Lorentz transformations, thus if x' is the repre-
sentation of ©j relative to K' and x that relative to K we have

x''= Jix -f- A, (3)
where J1 is a Lorentz matrix obeying the relation

Xrn=0r, 0o o0, 4)
or the equivalent relation
n«“*= 0-1r-i nr (5)

and Ais a quantity with four constant components.
Instead of (3) we can also write

x'= £p(x). (6)

2pis the Lorentz transformation leading from the coordinates relative to K
to those relative to k', the suffix p specifying the particular Lorentz trans-
formation. Thus the suffix p is a parameter with eleven components and it
contains also one sign; we may write more explicitly

p= 0,0, Vv,A ewith0 > 0, v|<ec e= -1, (1
where O is an orthogonal matrix obeying
00-= 1. (8)

v is a vector with three components (giving the velocity of K' relative to K
in measures of K), Acontains the four inhomogeneous terms of (3) and e =
= Nnl 14 ldefines the convention oftime measure in K' relative to that in K.
0 > 0 gives the ratio of units of time and length in K relative to those in K.
The set of transformations with parameters p form a group and are
also called improper Lorentz transformations. The proper Lorentz trans-
formations are a subgroup of these transformations with parameters

q=20, V A (91
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with the restrictions
0=1, detO= + 1, |n|<c, e— +1. (9a)
§ 3. Consider a physical system of some kind, it may be denoted by
The system may consist of a number of points moving under

the influence of inner and outer forces.
The representation of relative to K a be written

P = KNe),
where P consists of points Pv P2 ..., PN with coordinate vectors at the time t
r.(<), n=1,2,.. N
in measures of K.
The representation
P'= K'(%)

of [Brelative to K' can be obtained from that relative to K by a Lorentz
transformation. Thus the coordinate vector rh(t') of P,, relative to K' at the
time f' (in measures of K') is found to be

ri(«)= Lr,(t,)+ u'tn+ 1, (10a)

where the values of tn have to be chosen so as to satisfy
t — ur, (tn) Bth to (10b)

Here we have expressed /1 and Xin the following manner
L u
n= g X—1 (KOc)

and L is a third-order matrix, u, u’, | are three-component vectors and B, t0
scalars. The tn, n= 1,2,..., N can be regarded as auxiliary quantities.
8 4. The transformation (10a, b, ¢) can be given also a different mean-
ing. Writing
with r*()=Lr,(L)+ «m<, + 1, j (H)
l—uTn(In)+ Btn+ IU \]

we may regard the r£ as the coordinate vectors relative to K of points P*
at the time t (relative to K).
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Thus P* is the representation in K of a system iR* in K and we may
write

P= K(iB), p*= K(Tb (12)

and we call iB* the Lorentz deformed system i. In place of (11) we shall also
write

P* = L,(P), (13)

where L4 stands for the transformation (11). We use the symbol L in place
of £ to denote that the transformation does not lead from one system of
reference to another, but that it signifies a change of one physical system
into another (all measures taken relative to one system of reference K only).

We have written q for the suffix of L because we shall consider only
deformations corresponding to proper Lorentz transformations, thus we
restrict the value of q according to (9a). For the transition between Lorentz
systems of reference we may use both proper and improper transformations.
We may thus use for coordinate transformations all those with two para-
meters as given by (7).

8 5. The representations of i and iB* relative to a system K' can be
written

p'= k'(®)= wnp(p), I
P* = K'($*) = £p(P*). |

From (13) and (14) we find also

P* = L4 (P) (15)
with
Lg-= SrL4S"1, (16)

where L@ is the Lorentz transformation which is obtained as the super-
position of three Lorentz transformations.

From (15) we conclude that the representations P' and P*' of i} and iR*
are connected through a Lorentz transformation in any system of reference, pro-
vided they are connected by a Lorentz transformation in at least one system of
reference.

We may thus write instead of (13) more generally

ro= -MiR), (17)

where g characterizes the Lorentz deformation itself and g can be represented
in various systems of reference as

K() = g, K(q)=q9"...,etc.
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8§ 6. The problem we want to deal with in this paper is to determine
the set of Lorentz transformations which appear as the representations of
a given Lorentz deformation L if we consider all possible Lorentz sys-
tems of reference.

Consider thus two representations Lgand Lg of L . We have

L'= sAPL4Sple (18)

Wrriting (18) more explicitly, we see from (3) and (6) that (18) gives no re-
striction as to the inhomogeneous part of the transformation Lg. Denoting
the Lorentz matrices corresponding to the transformations in (18) by Ny Ny
and /1p we may thus write in place of (18)

A, = ApA, A"1. (19)

From (19) we verify easily that Aqg, defines a proper Lorentz transformation
if Aq does so, no matter whether Ap defines a proper or improper Lorentz
transformation. We see thus, that we can restrict the Lorentz deformations to
those represented by proper Lorentz transformations without restricting the systems
of reference to those connected by proper Lorentz transformations only.

8 7. With the help of a suitable matrix S we can transform A, into
diagonal form, we have

S-1 Ag S= D = diagonal matrix. (20)
We shall also write
D4i = Dv,

where Dy are the eigenvalues of Ag. Comparing (19) and (20) we see that
the D,, are also the eigenvalues of Ag. We conclude, that two Lorentz matrices
Ag and Ag, can only then represent the same Lorentz deformation if they possess
the same eigenvalues.

8§8. We prove the reverse of the above statement also to be true. This
means that if two Lorentz matrices Aqand Aqg, possess the same eigenvalues
then there exist such Lorentz systems of reference K and K' relative to
which Agq and Ag represent the deformation q.

So as to prove the above statement we write down as a first step the
secular equation for a Lorentz matrix Ag, thus

det (A, -4 1) = 0, V= 1,2, 3, 4. (21)
Explicitly written we find, remembering that det A = 1

X4 — spur N“1X3 - c2X2 — spur AgX -f 1= 0 (22)
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for
X = Dy, v=1,2, 3,4,

where c2is a function of the elements of Agq. From (5) we see that
spur A*1= spur Aqg,

therefore the equation (22) is symmetric and the four solutions Dv contain
pairs of reciprocal values. We may write

D.= ~ = a D,= — = b. (23)

where
a, b Z=0.

Consider a particular transformation with the matrix

f cos (p -Sin (p 0 0\
K = sin 9 cos @ 0 0 (24a)
0 0 B —Bv
VO 0 — Bvje2 B )
B =
J1- v2c2

We find that in this particular case the eigenvalues are given as

_ C \
Dl= ey B2= e~y D3= ° - ' (24b)
C -f- VvV C— V

in accord with (23).
89. From (20) we find that a Lorentz matrix Agq with eigenvalues D,,
can always be written in the form

Ag= SDS-1 (25)

Comparing (25) with (4) we find for 0 =1, that the matrix S has to fulfil
the following condition
S-1DSIrsbps_1=rm. (26)
Wrriting further
srs =i (27)
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we may also write after multiplying (26) from the left by § and from the
right by S
DSID= (28)

The v — /ith element of (28) reads

DvQul = QWI,
and so
Un, =0 if D,D, ¢ 1

Furthermore taking the transposed of (27) we see that 2= S and det S ¢ O,
thus 9 must be of the form

) A 0 \

= A 0 0 8 A Bd 0. (29)
0 0 0 B
\0 0 B 0)

§ 10. We note that to every Lorentz matrix Aqwith eigenvalues given
by D there exist matrices S satisfying (25). Since Agis a Lorentz matrix the
matrices S satisfy also (27) and (29).

However, if a matrix S satisfies (25) then any matrix

S'= SF

also satisfies (25) provided F is a diagonal matrix with non-vanishing diagonal
elements.

If S satisfies (27) then we have
s'Ts' = F*“10F = Q.

By a suitable choice of F we can achieve that £2 reduces to

10,
9 9 o 0

00 0 1
V0 0 1 0j

Thus writing S in place of S' we can always find for a given Aga matrix S
such that

SI'S= Q0. (30)
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Considering two matrices Aq and Ag, with equal eigenvalues, we can find
matrices S and T such that

SI)Ss-1, A-=TDT 1, (31)

srs = TTT = a0. (32)

From the relation (32) we find

(TsS-)r(rs-y=r,
we may therefore write
TS_1= Np, (33)

where Apis a Lorentz matrix.
From (31) and (33) we find further

A= JInA, A“1. (34)

We see therefore that any two matrices Aq and Ag, which possess the same
eigenvalues can be transformed into each other by a similarity transformation
(34), they can therefore be regarded as representations of one matrix Jig
and so we have proved the statement made in § 8.

§ 11. It is interesting to construct explicitly the matrices S and also
to give a standard form of matrices Aq with given eigenvalues. For this
purpose we introduce the matrix w with complex elements as follows:

© 1jl1+i 1—in
211 i 1+ T
01
We have c02 10 and
0 0
Ul =
O w

and so (30) is satisfied by S = SO0 with
S, =r_l12Q1/2, SQ= yl/l2P-1/25 (35)

S= Ap SO. (36)
All the matrices of the form

A= Ap SOD S01Ap1 (37)
are therefore Lorentz matrices with the same eigenvalues Dv.
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So as to see the significance of (37) more clearly we introduce the diagonal
matrix with elements as given by (24b) for D. We find

SqD S01— Afv, (38)

i.e. the matrix on the right-hand side is the Lorentz matrix of the particular
form (24a). From (38) and (37) we see that all the Lorentz matrices

n_ Sip Bpdel (39)

have the same eigenvalues, namely those given by (24b). Thus all the Lorentz
matrices with the eigenvalues (24b) can be brought into the form (39), where
Kfv is given by (24c).

8 12. From the considerations above we see that the matrix AfV gives
a standard form of the matrices belonging to transformations with the same
eigenvalues.

Physically this means that in this way any Lorentz deformation can be
characterized essentially by two quantities, i.e. by a velocity v by which the
system is accelerated while suffering the deformation, and an angle <pthrough
which it is turned around an axis pointing into the direction of v.

Apart from this the deformation consists of a parallel displacement
and a constant change of phase, both described by the inhomogeneous terms A
of the transformation.

Disregarding the inhomogeneous part of the transformation, we see
that each Lorentz deformation represented relative to a suitable system of
reference appears in the form (24a) and may then be characterized by the
quantities v and @

§ 13. The question remains whether the transformations which contain
the same absolute values of @and v, but where the sign of either or both these
quantities differ, can be obtained as the representation of the same deform-
ation? As the result of a simple analysis one concludes that coordinate trans-

formations which correspond to proper Lorentz transformations cannot
produce such a change of representation, i.e. all the transformations derived
from A~v will differ from those derived from Ap However, introducing

a coordinate system by means of a suitable improper Lorentz transformation
we may obtain a representation of Av_v equal to Aqv. From this it follows
that the representations of Aq5=1 and A~ differ if they are taken relative
to systems of reference connected by proper Lorentz transformations.
However, Ag may be equal to A“1 (i.e. to a suitable representation of A~3)
if the systems of reference K and K' are connected by an improper Lorentz
transformation.
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O MNPEACTABJIEHNWM OEPOPMALIUM JTOPEHLIA
1. AHOLLA

Pesome

MoKa3bIBAeTCs, UTO MPY MOMOLLM COBCTBEHHBIX 3HAUeHUIi MaTpULbl STopeHua npeobpaso-
BaHWs J10peHUa CBOAATCA K CTaHAapTHOW (opme. MpuMeHeHMEM AaHHOW (OPMbl HaMAEHO, YTo
no6asi U3 fedopmanmii JlopeHLa, no OTHOLLEHWIO K COOTBETCTBYIOLLEH CUCTEME, MPOSIBNSETCA
KaK YCKOpeHve B OMpefe/ieHHOM HarpaBfeHWM W Kak BpalleHue C OnpeaeneHHONR yrioBoii
CKOPOCTbIO BOKPYT Hamnpas/ieHWsl YCKOPEHUSI.
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ON THE ANOMALOUS MULTIPLET SPLITTING
OF THE TRIPLET TERMS OF THE TiO MOLECULE

By

i gva (BAN | g kD

(Presented by I. Kovacs. — Received 12. |. 1965)

It will be shown that the anomalous triplet splitting of the C377—X 377 and A3/1 —
—X 377, (1,0) bands of the TiO molecule is due — similarly to the splitting of the (0,0) bands —
to an anomalous triplet splitting of both the upper and the lower terms. The anomalous
triplet splittings can be explained in terms of spin-orbit and spin-spin interactions. The accurate
value of the multiplet splitting constant A has been determined for the level v - i of the
states C377 and A3A.

1. Introduction

The (1,0), (0,0) and (0,1) transitions of the C3M — X3 and A3A —
— X 30 bands of the TiO molecule have been photographed by Christy [1]
and Phitlips [2], and deviations from the normal splitting of the hand have
been observed. The triplet formulae accounting for the anomalous triplet
splitting valid for Hund’s cases a) and b) as well as for the intermediate cases
has been derived by Kovacs [3], [4], [5]. By using these formulae the accurate
value of the multiplet splitting constant A can also be determined. The value
of the multiplet splitting constant has been determined for the state CsIl by
Budo [6] from the results of Christy. He obtained the value A — 88 cm-1 for
the levels ;= 0 and v = 1. Phillips has obtained the value A — 105 cm-1
for the levels v= 0 and v = 1 of the A3A state, making thereby the remark
that the result is only an approximate one. Phillips believes that the deviation
is due to vibrational perturbation.

Kovacs has shown [7] that the deviation can be explained by taking
into account the spin-spin and the spin-orbit interaction. Kovacs carried out
the analysis for the A3 A — X3M and C3M — X3M (0,0) band of the TiO
molecule. In the present paper the calculations will be performed for the
(1,0) transitions of the same bands.

2. The transition A3A — X 30N

We have determined from the experimental wave number data the
normal splitting of the upper state from the relation

AFA(L) = Q3(1) - <2(h+ AF'™™l) = I 1- 1)- W1- 1)+
+ AF31(1 - 1)= P30+ 1)- P2+ 1)+ AF™I + 1),

Acta Phys. Hung. ToT. XX. 1966



996T "X X Lol ‘BunH ‘sAud eypv

97 -

87

A=9567
c3T v=1

A=8632
A3A v~-1

GOOCP?
00 o0 .0"oOCPo™* 00
«tooo N "5 T - OoNe no 00_ °0U°°
@O 0 °CP00Q300000cP°0""CP0000" °°CO00° 0° '° e e
A

L
L]

cfioQ~cP00QQePoGQe0e00000Q000c000Q00Q0OCi000000000000Q00cPooocPcPcPQ600

20 0 A0 50 60 70 80 90 100 110 1203

Fig. 1. The constant A as a function of |



XX ‘Mol ‘BunH ‘sAud ep-

9907

Figs. 2 2a. The anomalous multiplet splitting of the transition At/1 — X3//

E |




Rk ~ © 1 <

~

~

t6ros



'skyd ey

‘BunH

XX Lol

9967

Figs. 3., 3a. The anomalous multiplet splitting of the transition C3M — X 31

HENITHRHNMERY

I i

=9



96 R. TOROS

where AF'~(1) has been calculated from the data of the lower state by the
triplet formula. (For v* =0 B" = 0,5340 cm'l, D" = —6,1 «10~7 cm-1,
A" = 100 cm*“1)

The constants ofthe upper state have been calculated from the approxim -
ate relation [7]

415 Y{AF3i4~Y (2/+ 1) D' [(7+ 1)-(7+ 2)2 (7 bzlzl2-=

(2)
= (Y'- 2)2- -y-+ 7(7T+ 1).

The quantities Y', A' and y' are listed in the Table. The values of A for
different values of 7 are presented in Fig. 1.

Anomalous splitting is also found by using the obtained value of A’
which is more accurate than that used previously. We have determined the
anomalous splitting for the lower and upper states from the expressions [7]

[dF:°2s - AF[f'c] [zJFi?bs- /IF"alc]=
= PAS'Ei |- S&) - B'ASfi.l s;D),

(IF6f2- AF'2 1] - [1F7jbs- JFOBalc]

= R\ Ne S%1+1) - B (Sft - S"2+1).

The notation used in these formulae is explained below. For the case of the
/1-term
- + X -
2)-(1-/\ 2) 5 3\27__ y -2
Ci(i) lcai)
7- 1)+ 3
e (- DO+

C
21—

®)
Yc-Ai)

Cl) = 2Y (Y- &)J - 1T + 2)+ (27 + 1)(/ - 2)1(1 + 2),
CAJI)= Y(Y —4)+ /(/+ 1), (6)
C,(l) = 2Y(Y - &)(J - 2)(i + 3) + (27 + 1)(7- 1)(7 + 17+ 3)

and for the case of the 77-terms

S . f2(F—1) c _ Y -2 e 127(7 + 1)
1,t— 1 ’ ’
+() ' u KIT’ 1M yw

Q(7) = Y(Y — 47T + 1)+ 227+ 1)7 - 1)I(T + 1),
CA7)= Y(Y —4) + 47(7 + 1), (6a)
C,(1) = Y(Y - &) (7 - 1T+ 2)+ 227+ V(T + 1)7T + 2.

(5a)
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Ra and Bn are the anomalous splitting constants, the appropriate choice of
which makes possible the interpretation of the experimental data.1*(Figs. 2
and 2a.)

3. The transition C3/7 — X 30N

After determining the quantities Y = AjB and y we have calculated
the normal triplet splitting in a similar way as before. The deviations of the
calculated and the experimental data are now given by the formulae (cf. X)

[AFEs - AF[f'c]- [zIF"Bbs —AF~ac] =

to'2 Cf2\ 'tQ"2 Cf2\ N oA
1+1,7-1 — s 1.1y - PQ; V\?I,/—l — 131

[AFEDs - ZIF6RI]] - H F gbs —zIFO'flc] =
- Bif, - sAHY)- B:{si;, - $;%),

and they are presented in the Figs. 3 and 3a.l

The values obtained for Rjj are given in the Table.

Table
v A y y P
c3n 1 95,67 197,22 —0,0417 + 2,85
A3A 1 86,32 171,74 — + 1,20
X3n 0 100,00 188,00 — —3,32
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11t should be noted that in accordance with the results of [7] we have obtained the
value = —3,32. Therefore the fact that the two curves of the Figure can be reproduced
simultaneously by the choice of one single parameter (8'n) is a strong argument in support
of the correctness of the assumptions on which formulae (3) and (4) based.
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Ob AHOMAJIbHOM MYJIbTUMNNETHOM PACLWWENNEHUWN TPUMNNETHDBIX
TEPMOB MOJIEKY/1bl THO

p. TAPaLU
Pesome

lMoka3blBaeTcs, UTO aHOMasIbHOE TPUMJIETHOE pacLLensieHne NoaocHbIX cuctem CLU—X LU
n A3A — X3l (1,0) monekynbl THO — COOTBETCTBEHHO aHOMa/IbHOMY PACLLIEM/IEHNIO MOSIOCHbIX
cuctem (0,0) — cBOAMTCSA K aHOMasIbHOMY TPUMAETHOMY pacLLeneHnto, Hab/laaeMoMy Kak Ha
HM3WKNX, TaK N Ha BbICLUMX TepMax. AHOMasibHble TPUMNIETHbIE PacCLLEensIeHNsT UCTONKYHTCSA C
NPUHATMEM BO BHUMaHWE CMNH-0POUTaNIbHOr0 M CMMH-CMMHOBOIO B3auMOAeicTBuiA. Ha ypoBHe
p = 1 BbIUACNAOTCA TOUHbIE 3HAYEHUA MOCTOAHHBLIX MY/bTUMMIETHOrO paciuenneHus A B cocTo-
aHuax C3M n A3A.
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Theories on the pumping effect of diffusion pumps assume an ideal gas transport by
the jet, and so the diffusion seems to he essential in the performance of pumps. To attain
correct numerical results secondary effects are supposed. Other theories try to examine the
pumping effect on the ground of the collisions between gas and vapour molecules, but with
the help of the “mean-free-path” theory, which is not very easy to survey in this case, and
not quite of universal validity. This paper tries to handle the pumping effect with the aid
of the kinetic theory of nonuniform gases. On this ground an equation is obtained, which
will be solved for an ideal case. Thus it will he possible to understand the pumping effect
in a deeper manner, to verify the experimental results and to critically evaluate previous
theories.

1. Introduction

The diffusion pump is one of the most important instruments to produce
high-vacuum. Great advantage is its comparatively simple apparatus, robust-
ness, its easy handling and economy.

Diffusion pumps have been developed over the past fifty years. In spite
of this the theory of pump performance is not satisfactory. So diffusion
pumps are designed and constructed with trial methods.

The sketch of a diffusion pump is shown in Fig. 1. Mercury or oil of high
molecular weight are boiled in the boiler (a) and the vapour streams at high
speed across the nozzle (c) into the pump chamber. Gas molecules having
entered the pump from the container to be evacuated across inlet (e) interact
with the vapour molecules and by the vapour beam pass downwards towards
the forepressure outlet and on the forepressure side (f) the backing pump
exhausts them across (h). (For brevity the vapour of the pumping fluid will
be called “vapour” and the material to be removed “gas”, remarking, that
the diffusion pump is suitable to remove vapours.)

2. Experimental results

Essential characteristics of pump performance are: forepressure toler-
ance, pumping speed and ultimate vacuum. (Recently the backstreaming has
been taken into account in pump performance, but this paper studies only
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the working principle of diffusion pumps, and the backstreaming can be

neglected in this respect.)
The vapour pressure in the boiler is of the order of mmhg. To obtain

a suitable jet one needs a forepressure under certain threshold. This threshold
can be characterized by the forepressure tolerance.

Fig. 1. Single-stage diffusion pump

Fig. 2. Effect of change in heat input on performance of diffusion pump

Forepressure tolerance is specified as the forepressure at which the inlet
pressure increases 10 per cent at maximal throughput. The decrease of the
forepressure tolerance with decreasing heat input at the boiler was found
experimentally (Fig. 2).

Diffusion pumps are able to sustain certain pressure drop between the
pump inlet and forepressure outlet. Accordingly the inlet pressure depends
on the forepressure (Fig. 3).

The ultimate pressure is the smallest pressure attainable by a pump.
Practically the vapour pressure of the pumping fluid in the given circum-
stances will be the ultimate pressure because of the pump ability to hold
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a great pressure ratio, so a low forepressure. In practice thus baffles or cold
traps are needed. The ultimate pressure and pressure ratio are shown in Fig.
4 for helium and nitrogen. According to former and the latest experiments
the pressure ratio and so the attainable ultimate pressure are worse for gases
of low molecular weight [2], [6], [14], [18]. To increase the pressure ratio
a multi-stage pump is applied.

Fig. 3. Forepressure tolerance characteristics for different heater power with oil diffusion
pump DO-501 for hydrogen [14]

A significant characteristic of diffusion pumps is the speed defined by
S = Q/P, where Q is the quantity of molecules streaming across the pump
inlet per second, and P is the pressure at the same place. Because of using
always a known gas at a given temperature Q can he given in the form Q =
= PV, s0 S = V, namely, the volume of gas streaming across the pump inlet
per second [23].

The speed of a pump depends on the heat input (Fig. 2). The speed,
because of being independent of pressure in a wide pressure range, (Fig. 5), is
a characteristic of the pump at the smallest pressures as well. The peculiar
pressure range is affected by the heat input and the nozzle cross section
(Fig. 6). The speed of a pump in given circumstances depends on the molecular
weight of gases to be removed. There is a wide discrepancy in the data of
literature in this respect. Gibson [9] obtained for hydrogen the one third
of the speed of air. Setlow [18] obtained the speed of air for hydrogen but

only at high heat input; at normal heatinput he measured only — to — of the
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speed of air. Noeller [14] and Henderson [10] obtained twice the speed
of air for hydrogen using baffles and liquid nitrogen refrigerations at the high
vacuum side. FliIxjcke [5] found in his measurements an increase of the speed

[irepressure - microns Forepressure - microns
a, b,

Fig.~4. a) Forepressure tolerance characteristics for nitrogen; b) Forepressure tolerance
characteristics for helium [10]

Fig. 5. Speed of oil diffusion pump DO-8001 with baffle and cold trap, pumping air [14]

at the rate 1/M¥2 where M is the molecular weight: in the experiments he
used liquid air refrigeration at the high vacuum side. According to Dayton
[2] the rate of speeds for hydrogen and air for a pump may be various, depend-
ing on the design of pump the pumping fluid, the heat input and the fore
pump capacity.

Pumps of different sizes have different speeds. The efficiency of a pump
is estimated by the Ho-coefficient. The Ho-coefficient or speed factor is
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defined as the ratio of the speed measured at the inlet to the nozzle
chamber to the ideal speed as calculated by the kinetic theory for the pump
mouth. The ideal speed is identical with the speed of the perfect vacuum.

In the pressure region of diffusion pumps the behaviour of gases is mole-
cular, thus the quantity of molecules streaming in a given direction per second

1
perem2is —nc by kinetic theory; where nis the number of molecules per cm3,

c is the mean-speed. In the case of perfect vacuum there is streaming only
towards the perfect vacuum, so the speed of the perfect vacuum at 20 °C is

Pressure-mmhg

Fig. 6. a) The width of the gap of the nozzle is small, the heat input is small; b) The width

of the gap of the nozzle is small, the heat input is high; ¢) The width of the gap of the nozzle

is high, the heat input is small; d) The width of the gap of the nozzle is high, the heat input
is high [1]

11,7 lit per sec per cm2for air and 44 lit per sec cm2for hydrogen. This quantity
is called the conductance of the pump orifice per cm2for the given gas.

The Ho-coefficient of a well-designed pump is about 0,5. Milleron
[13] found that the attainable Ho-coefficient for gases of low molecular weight
might not be as high as for air.

3. Theories treating pump performance

Earlier theories [7], [8], [11], [12], [15], [16], [20], [24] accept the dif-
fusion as working principle ofthe pump. In Gaede’s pump (Fig. 7) the diffusion
occurs in tube AB. In modern pumps, according to [11], [12], [20], [24], the
gas diffuses into the vapour beam at plane D (Fig. 8). This supposition made
it possible to understand why the pump speed is constant in a wide pressure
range and why the pump speeds are different for different gases.

This assumption on diffusion, however, means a gas transport limited
only by the opening of the pump, which does not depend on the vapour jet.
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To attain reasonably acceptable numerical results secondary effects are assum-

ed (for example back diffusion).

To understand the role of the jet, more accurate investigation is needed.
Jaeckel [11], [12] assumes backstreaming vapour molecules in the jet (Fig. 9),
so he gets more exact speed results than before. Noelter [15], [16] examines

A - —fl

z7-1
Cooling

Fi/i. 7. Vacuum pumping by diffusion principle according to Gaede

Fig. 8. Single-stage diffusion pump

the jet by the theory of gasdynamics, establishes the formation of shock waves
owing to supersonic vapour flow. By this he can interpret the speed curve of
diffusion pumps and the difference between diffusion and jet pumps as well.

The above theories assume that the diffusion occurs at the mouth of the
pump. This assumption, however, may be argued against on the basis that
the diffusion phenomena are created by the constant motion of the molecules;
thus considering the motion of a single gas molecule it may not be decided
whether it takes place among vapour molecules possessing also a beam speed
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in addition to thermal agitation, or it is influenced only by molecules of
thermal agitation; and so “diffusion” occurs all over the pump chamber.
Thus it seems, it would be better to treat this problem on the ground
of the motion and collision of gas and vapour molecules by kinetic theory.
This was attempted recently [1], [3], [4]., [17], but on the basis of not very
well-founded assumptions. Therefore the results of these theories contradict in
some respects the experimental data (for example the ultimate vacuum is,

A

Fig. 9. Single-stage diffusion pump

better for gases of low molecular weight according to [4]), or they are empirical
rather than theoretical results.

4. The working mechanism by kinetic theory

It is an obvious assumption that the suction effect of the diffusion pump
is due to collisions between gas and vapour molecules. Molecules possess
an irregular molecular motion and collide with each other. Their speeds after
collision are determined by the speed before the collision, the mass of the
molecules and the sort of the collision. Thus diffusion in this case means the
penetration of gas molecules due to their thermal agitation into a space filled
with other gas. It is evident that the intensity of the penetration is influenced
by the impacts with the molecules of the other gas.

If the velocity-distribution of the gas molecules in the container to be
evacuated is a Maxwell one, the mean molecular velocity is zero and no gas
stream exists.

At the mouth of the pump the gas molecules having thermal agitation
enter the vapour of the pumping fluid possessing a stream velocity besides
thermal agitation and collide with them. The mixture of gas and vapour
molecules is in constant motion all over the pump chamber. Different velo-
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cities and collisions of molecules exist. Thus it may be stated that the gas
enters the vapour jet at every place x, not only at x — 0 (Fig. 8), as in the
previous theories. This interaction of gas and vapour molecules causes the
gas to flow to the forepressure side, well known from experiment. It may be
supposed that the interaction influences the velocity distribution of the gas
and accordingly gas flow is obtained in a given direction.

The working mechanism of the suction may be described as follows:
the Maxwell velocity distribution of the gas alters due to collisions between
gas and vapour molecules, therefore a gas flow toward the forepressure side
will exist.

In the following the gas flow in the pump chamber per unit cross section
area and time will be determined by means of kinetic theory [21], [25].

The investigations will be done on the ground of a pump model shown
in Fig. 1.

Accross the nozzle (c) a vapour beam of high speed streams into the
pump chamber. The velocity and density of the vapour depend upon x andy.
Gas molecules enter the pump chamber across the pump mouth (e), interact
with the vapour molecules and accordingly they are driven to the fore-
pressure side (f).

The interaction will not be treated for single molecules, but the encoun-
ters of gas and vapour molecules per unit volume and time at x will be invest-
igated. The velocity component of the vapour may be supposed not to cause
any gas transport in the directiony, it only influences the density distribution
of the gas.

Suppose that the gas has a velocity distribution function = yj(v15x).
If it were known, the gas flow across unit cross-section and in unit time at x
could be determined as

*= J vix /i O\/y (1)

Certainly is not a Maxwell velocity distribution function because the
interaction with the vapour alters the Maxwell distribution, and exactly
this process results in the pumping effect.

Although is not known, expression [1] may he determined from
the Boltzmann equation:

3, , 23 1 8 M

aT-n+ v mov T w on (2)

Equation (2) will be more simple in our case because the force action
is negligible, and the problem is one-dimensional and independent of time.
Therefore:

3/t

Vix (3)
dt  con
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Let us expand /, into infinite series [21], [25]:

N=iT +f[b+ +m

Define
J/1 = J/10)avl = « >
J /, = j A~ 1K0)dv, ,
o)
fi= A <dexp (—RBIvi),
where
4
n3R2 2RT )
R is the universal gas constant, M1is the molecular weight, = nBjx) the

number density of the gas; T is the temperature.
The problem will be solved in second approximation taking only
into consideration, may be expressed as [21]

fil= ™DJexPi~Ri vi)™*
where ¢ — c(x) is independent of the velocity.

The velocity distribution of the vapour is considered in first approxima-
tion and we assume that every vapour molecule has a mean speed or beam
speed vO= vO(x) besides thermal agitation. Owing to this:

fi = A n2exP [~RI (v2— "0)7] »

where R2and A2have the same meaning as in [4]: n2= n2x) is the number
density of the vapour.

On the left-hand side of (3) the term can be dropped in comparison
with /]0). Equation (3) multiplied by vix and integrated over all velocity
space yields

1 drij r Ql

dvy = (5)
2081 dx “J "Ix co11 dt cour

The collision term is considered by examining how the impacts affect
the gas flow. In the evaluation of the right-hand side of (5) the influence of
collisions only with vapour molecules must be taken into consideration
because collisions of the gas molecules with each other can have no effect
upon the momentum of the whole gas.

Acta Phys. Hung. ToT. XX. 1966



108 G. TOTH

Let the mass of a gas molecule be ml, its velocity vl5 m2 and v2the re-
spective values for a vapour molecule, w their relative velocity and u the
velocity of their common center of mass. Then

u = M4+ ft\2 W= Vi—v2,

M = me

m X ml-)-m.
The mean value of the change in gas flow in a single collision is [25]:
ni= —)XUx (1 — cos 0) ,

where 0 is the angle with which the relative velocity deviates due to collision.
The total change in gas flow due to all collisions in a second is

8i — 2nJ"lj wiazwx(1l— cos 0) Gfifisin 0 d& d\1d\2 (6)
Qt con

where G is the scattering coefficient. Assuming a hard elastic sphere inter-
action, G is given by

where ax and a2 are the diameters of the molecules.

To evaluate integral (6) the variables are changed from vx v2to u andw,
and it is assumed that the gas and vapour has the same temperature. This
last assumption has no influence on i, because the equalization of temperatures
of gas and vapour affects only the thermal agitation of molecules and a trans-
port is not affected.

After computing integral (6) the function c(x) in/ () may be determined

from (5), and thus the gas flow may be determined in second approximation
from (1).

dn 1v0Q(z)
d (7)
X Gn.
_ zexp(z2)
PO = 43— 27 £ PR d(n) exp(zd (1 + 4z8)]4 n
423 -(- 2z -f- J[n P(r) exp(z2)(4z4 4z2 — 1)
w2 (*) =

2[4z3— 2z + D(r) exp(z2) (1 + 4z4)]

2

z= R2vO\fi\ 5 ®(r) = exp(—n2)dx.
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The numerical values of cp*z) and qfz) at different beam speeds
vapour for hydrogen and air are shown in Table I. The necessary numerical
data were taken from [1], [22], [24].

From (7) the intensity of the gas flow i may be determined, if the velocity
and density distributions of the vapour are known. Computing i is difficult
because gx and g2 depend upon x.

5. Calculation for an ideal pump

Qualitative statements may be made if (7) is solved for the simple case
when the velocity and density of the vapour is constant, independent of x.

The ultimate pressure of the pump is obtained by integrating (7) in tbe
case of i = O:

n
— = €eXp = exp|a], (8)

where n0 is the number density of the gas at x = 0 (assuming that the x
component of the beam velocity of vapour is zero at this point), n is the
number density at the forepressure side.

The gas at the forepressure side may be assumed to have a Maxwell
distribution because at this place the effect of collisions with vapour molecules
is neglected, thus the pressure P there is proportional to the number density:
P = kn.

The number density nO of the gas at x — 0 may be considered to be
the same as the number density in the container to be evacuated, because
the change in number density from the container to the pump mouth is
negligible when compared with the change from x = 0 to the forepressure
side. (Obviously the number density of the gas decreases toward the pump
inlet because of the vapour molecules being there in thermal agitation, and
so the gas must diffuse through it into the pump.) Assume that the pressure
in the container is proportional to the number density nH:pO= kn0 so

n

9

We use data from [1] and assume that the speed of the vapour is con-
stant and equal to that at the mouth of the nozzle, furthermore that a mean
vapour density exists and that the speed of the vapour beam is exactly the
speed of sound. TakingL = 1 cm, we obtain 2 and 27 for the numerical value
of (9) in case of hydrogen and air, respectively.

Consider the specific pumping speed obtained with the previous
assumption.
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Integrating equ. (7), since i is constant (independent of x) and accord-
ing to (21) the specific speed is

exp (a)---—-- r (10)

where ri and n0 are the gas number densities at the forepressure side and in
the container (in this case nOis also approximately the same as the density
at x = 0 because ri n'0).

We obtain from (21) that

exp (a) = (n)

SO

n
1 / (12)

«0 no

The Table shows that g2 1. In the working range of diffusion pumps
the rate of fore and fine pressures, namely the pressure ratio in a wide pressure
range is negligible to that obtained from (9) for the case of the ultimate
pressure:

ri n

— - <€ —

»0 no
Thus

Therefore in this approximation the specific pumping speed is approx-
imately equal to the beam speed of vapour at the mouth of the nozzle.
According to data obtained from [1], [22] this speed is about 2 < 104 to
6,8.10 4 cm/sec, so the specific speed is about 20—68 lit/cm2sec. Evidently the
pump mouth is not considered in this speed, therefore the true speed is

(13)

S s0

where s0 is the specific conductance of the pump orifice. The pump orifice
means the tube from x = 0 to the container to be evacuated. The value of
sOfor a short tube is 11,6 lit/sec for air and 43 lit/sec for hydrogen at 20 C°.
The conductance may be smaller due to vapour molecules above the jet
having only thermal agitation and the gas molecules must diffuse through
them from the container to the pump.
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These numerical results show that the former solution of equ. (7) is
of optimal value. Apart from this, useful qualitative results are obtained from
the ideal case.

Expression (8) gives a smaller compression capacity for gases of low
molecular weight than for high ones.

Increasing the density of the vapour increases essentially the com-
pression capacity; increasing the beam speed has a role in increasing (<A,
which also increases the compression capacity.

These results allow us to interpret the experimental data.

The Ho-coefficient for this ideal pump is smaller for hydrogen than for
air unless the speed of the vapour is twice as great as the speed of sound.

The number of air molecules pumped by such an ideal pump is determined
by the diffusion of air molecules across the pump orifice (see equ. (13) and the
value ofs, and s for air). Therefore such an ideal pump may be called “diffusion
pump” only for air. In the case of hydrogen the ideal pump having less then
sonic vapour speeds is a “vapour pump”, since now the role of the jet is
essential due to the rate of sOand s in (13).

6. Results for real diffusion pumps

It is possible to obtain qualitative results for the performance of real
diffusion pumps from the theory and calculations previously performed.

Since a sufficiently low forepressure is needed for forming a suitable jet,
diffusion pumps work below a certain forepressure. The decrease of the fine
pressure also makes a change in the jet [15], [2]. To obtain an optimum jet
a low fine pressure is necessary. (Further decreasing the fine pressure probably
does not alter the jet essentially.) Reaching this condition the pump achieves
a maximum specific speed. Thus the growing parts of the speed functions
obtained by experiments may he interpreted with the change of the velocity
and density distribution of the jet. With full knowledge of the distribution
function of the vapour jet at any fine and forepressure values it should be
possible to determine the speed by equ. (7). Once having this optimum jet
the speed will be constant in a pressure range for which the bracket expression
in (12) is about one. This circumstance exists for a wide pressure range if the
ultimate pressure of the given pump is very small. Modern pumps can reach
a very low ultimate pressure and, accordingly, their speeds are constant in
a wide pressure range (Fig. 5). This pressure range is narrower for H2than
for air. Near the ultimate pressure the speed decreases. (In the term “ultimate
pressure” the effect of the vapour pressure ofthe pumping fluid is not included.)

Therefore to attain a comparatively high specific speed multi-stage
pumps are required, especially in the case of light gases. In multi-stage pumps
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the existing pressure drop in one stage is small compared to the compression
capacity of the stage.

It is evident that a high compression capacity does not assure a high
specific speed, only makes it constant for a wide pressure range. In the case
of gases of low molecular weight the compression ratio necessary for obtain-
ing an optimum jet and the compression capacity of the jet may be of the
same order, thus increasing the compression capacity is needed.

Equ. (8) shows that this is attainable by increasing the jet density.
But an indefinite increase of the jet density is impossible because the number
of the vapour molecules coming into the pump mouth increases and they
hinder the motion of the gas molecules into the pump so the speed of the
pump decreases. This reasoning fits in with the experimental facts (Fig. 6).

There certainly exists an optimum jet density. A higher density already
hinders the motion of the gas molecules but a lower one does not exert a
suitable compression capacity.

Values of specific speeds published in the literature are very different.
The reasons for this, beside the difference in pump constructions and testing
procedures, are the experimental circumstances. Using cooled baffles and
refrigeration traps the speed for gases of low molecular weight is higher than
for air, because the speed is determined by the conductance of the pump
mouth in this case [see equ. (13)], and it is higher for gases of low molecular
weight. If the conductance of the pump mouth is much smaller than the
suction capacity of the pump, the rate of speeds for hydrogen and air is 3,8,
according to the rate of conductances of the pump mouth for the gases in
question. If the conductance of the pump mouth and the suction capacity
of the pump are of the same order but the latter is higher, different values
for the rate of speeds for hydrogen and air should be attained but the speed
for air would be higher. If there are no cooled baffles or refrigeration traps and
the jet is not convenient the speed for hydrogen would be lower than for
air since, as it was shown, if the compression capacity of the pump is not
satisfactory it is much lower for gases of low molecular weight and the
speed decreases.

Using cooled baffles and refrigeration traps the speed of a pump will be
constant for a wider pressure range because the diffusion stream across these
obstacles is independent of pressure. Their conductances are much smaller
than the suction capacity of the pump, thus according to (13) these smaller
conductances determine the speed of the pump.

7. Conclusions

From the above theoretical reasoning it is easy to understand why some
research workers believe that diffusion is dominant in the operation of pumps.
In the original pump of caede the conductance of the pump mouth was
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Table 1
Hydroo%er; Eé\{lercury Allr)o(—:lv(l)e’ﬁ%ry
2%, z 2i(d iiw vzipl » SiM Gi() +PIVi
0,91 0,0091 0,33 1,23 3,73 0,12 0,081 1,03 12,7
1,00 0,010 0,26 1,00 3,85 0,13 0,070 0,96 13,8
12 0,012 0,23 1,01 4,39 0,15 0,057 0,95 16,8
1,4 0,014 0,19 1,01 5,33 0,18 0,047 0,92 19,8
1,5 0,015 0,18 1,02 5,67 0,19 0,043 0,91 21,3
1,6 0,016 0,16 1,02 6,38 0,20 0,039 0,90 22,9
1,8 0,018 0,14 1,00 7,14 0,23 0,035 0,88 253
2,0 0,020 0,13 0,99 7,62 0,25 0,029 0,86 29,7
2,2 0,022 0,12 0,99 8,25 0,28 0,025 0,83 33,0
2,4 0,024 0,11 0,98 8,91 0,30 0,022 0,81 36,7
2,6 0,026 0,10 0,98 9,80 0,33 0,019 0,79 40,5
2,8 0,028 0,091 0,98 10,90 0,36 0,017 0,78 45,1
3,0 0,030 0,085 0,97 12,14 0,38 0,015 0,76 49,0
34 0,034 0,072 0,96 13,25 0,43 0,013 0,72 57,6

very small, being capillary; in the performance of modern pumps cooled
baffles and traps are employed to prevent backstreaming and the conductance
of the pump mouth decreases by this fact; the conductance is always higher
for gases of low molecular weight.

From our previous discussions it is clear that there isno real fundamental
principle to design a pump having a Ho-coefficient of the same value for
hydrogen as for air.

It is apparent from the idealized model that while the compression
capacity is very high, the specific speed is comparatively small. Thus it may
be expected for the development of pumps the favouring of types having
high compression ratio stages. However, an essential increase in specific pump
speed or Ho-coefficient is impossible; otherwise it has no importance due to
cooled baffles and traps.

Besides qualitative results quantitative ones may be obtained if some
more detailed knowledge existed about the density and velocity distribution
of the jet and its alteration.

The vapour stream from the boiler to the nozzle may be studied by
thermodynamics and this was already attempted [19]. The vapour jet after
leaving the nozzle may be determined with the aid of gasdynamics or kinetic
theory and then numerical results may be obtained with the help of equ. (7).
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Perhaps it is possible to repeat the previous procedure for the mixture of
a gas and a vapour but it seems to be too complicated as yet.

The complete solution ofthe problem should make it possible to determine
the optimum jet for a pressure range, the cross sections of nozzle and pump
chamber and the necessary boiler input. Thus the design of pumps should
be based on theoretical grounds instead of purely experimental ones.
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cEmNOarwN L
>0zzwm

TEOPNA BCACbLIBAHUNA ANPDPY3NOHHbBIX HACOCOB
I TOBT

PesomMme

B Teopusix No MexaHW3My BCacblBaHUA AMDEY3MOHHBLIX HACOCOB NpeanonaraeTcs maeasb-
Hasl MepeHOCHasi CMOCOGHOCTb rasa B CTPYsX, MCTEKAOWWX M3 CoMmna BbICOKOBAKYYMHOIO
Hacoca M, TakuM 06pas3oM, KaxeTcs, UTo Augdy3ns UrpaeT rnaBHyl0 pofib B pa6oTe HACOCOB.
C uenbto MonyyYeHNs NPaBUMbHBIX YMCEHHbLIX Pe3yNbTaTOB B 3TUX TEOPMSX MNpeArnonaraeTcs
Ha/Mume BTOPUYHbLIX 3(EKTOB. B ApYrux Teopusix paboTbl HACOCOB 3(eKT BCaCbIBaHUSI UCTOS-
KYeTCsl Ha OCHOBE yaapa MeX[y MO/eKynaMu rasa v rnapa, Ho C MOMOLLbIO TEOPUM «CBOGOAHOO
npo6era», KoTopasi [0BO/IbHO FPOMO3AKa M He AoCTaTouyHo obuias. B fgaHHol pa6oTe caenaHa
NoMbITKA /181 06bSACHEHUSA 3(hPeKTa BCACbIBAHMS HA OCHOBE KWHETUYECKON Teopun HeogHopoa-
HbIX ra30B. BbIBOAUTCS ypaBHEHWe, KOTOPOE PeLlaeTcsl B OHOM WieanbHOM cydae. 3T0 gaeT
BO3MOXHOCTb 151 60/iee rNy6oKOro NoHMMaHms ageKTa BCacbIBaHWSI, UCTOMIKOBAHUA 3KCMepu-
MeHTa/IbHbIX Pe3y/IbTAaTOB U KPUTMUECKOW OLIEHKM MpPeaLlecTBYOLLIMX TEOPWiA.
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TWO SUBGROUPS OF THE LORENTZ GROUP
AND THEIR PHYSICAL SIGNIFICANCE

(Received 12. Il. 1965)

It is shown that the Lorentz group can he represented as the product of two sub-
groups. The one subgroup is connected with rotation, the other with translation. The results
of the negative relativistic experiments, like the Michelson—Morley experiment, are
connected with the invariance of laws with respect to the rotational subgroup, while the positive
relativistic effects, like the change of mass with velocity, are connected with the invariance
with respect to the translational subgroup.

§ 1. The Lorentz transformation can be written*

X'= A (x) = Ap>X+ X, (U

where /1 is a fourth order matrix obeying

A9 N<g) = 0T 2)

with 0 > 0, rvil— d\/ﬂyV, y].: y2: y3:|, yd= -c a.

The index p stands for the parameters of the transformation. The proper
Lorentz transformations are further restricted as follows:

0 = 1, detAap= + 1, Ji<P> 0. 3)

The matrix A~ which we shall call a Lorentz matrix depends on six para-
meters, explicitly it can he written in the following way:

A<p) = - (4)
- v'Bjc2

where v = vx V2 v3is a three-component vector with the dimension of a velo-
city; further
L=0—(B—1)(v'°\)/v2,
(5)

B = 1 = -0v,
fl - v2c2”’

* For notation see LL-
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and 0 is an orthogonal matrix, thus 00 = 1. The relation (5) contains six
parameters, i.e. the three components of v and three parameters in terms of
which the orthogonal transformation O can be expressed.

It can be seen easily that the matrix /1 as given by (4) and (5) obeys
indeed (2) and (3) and it can also be shown that any matrix obeying (2) and
(3), i.e. any proper Lorentz matrix, can be brought into the form (4), (5).

The matrix A" can also be written

A(r) = o(d A ,, (6)
where
0<4>= 0 0 (6a)
0 1
\YJ B
Av= VB and \ — 1+ (B — 1)(vov)la2. (6b)
vB/c2 B

Thus any Lorentz matrix can he written as the product of an orthogonal
transformation matrix of the type (¥4 and a transformation matrix of the
type Av which does not change the directions of the axes but changes the
translational velocity of the system of reference by an amount v.

8§ 2. The Lorentz matrix (4) can be taken as part of a coordinate trans-
formation (1); this transformation leads from a system K to a system K
which moves with a velocity v' relative to K, the orthogonal matrix defining
the directions of the axes of K' relative to K.

Alternatively, a transformation of the form (1) can be taken to describe
a Lorentz deformation. Indeed, consider a physical system C. Another system

£)* can be produced by replacing the points of Q by points
$*, $* making up £T.

W ritten more explicitly, at the time t the point may have coordinates
r,(t), at a time t* the corresponding point then has coordinates r*(i*),
so that

r*(t*), t = X*,
and
X* = Lg{xn) = Agxn + 4. ©)

In the above consideration xn and x* are the (four-component) coordinates
of the points of sQand Q* both taken relative to one system of coordinates, K.

We have written Aqin place of A(p to signify that we are considering
a transformation that refers to one particular system of reference, K, and
describes the change jQ—*£1* in terms of the coordinates relative to this system
of reference. Thus Aqis the homogeneous part of the transformation (7) which
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represents a deformation in terms of coordinates relative to K. Aq is a tensor
and we shall call it the deformation tensor.
We may also write symbolically

£1* =L q(£l) (7a)

and the representation of (7a) relative to K can be written in the form (7).
The representation of (7a) relative to another system of coordinates, K', can
be written

x* = Jl-xh+ A", ®)
where

X*' = A<p>x* + A, ]

Xn= AWX,, + A, J

and A(p is the homogeneous part of the transformation leading from K to
K'. From (8) and (9) it follows, that

Nn-=A«A AWL1. (10)

Thus Ag, Aq, ...are the representations of the deformation tensor Afl relative
to systems of reference K, K', ...

From (10) it follows that the representations of a deformation tensor
Nu are all proper Lorentz matrices if one of the representations is a proper
Lorentz matrix, regardless of whether or not the matrices A%) are proper
Lorentz matrices.

8§ 3. The representations of a deformation tensor corresponding to the
deformation {Q—£1* in different systems of reference are given by matrices
that are connected by relations of the form (10). From (10) it may be seen
that the representations Ag, Aqg, ... of /14 are matrices with the same eigen-
values. It was shown elsewhere [2], that the eigenvalues of a Lorentz matrix
can be written

c—V "

¢ v (n)
i.e. the eigenvalues are characterized by an angle (pand a velocity v. A Lorentz
matrix can be brought into a standard form, this means, that in a suitable
representation a matrix Aq with eigenvalues (11) obtains the form

/[ cos(p sin(pp O 0
—sin(p cos@ O 0
0 0 B Bv
| 0 0 Bv/c2 B

(12)
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The deformation tensor represented by (12) describes turning through an angle
g around the #3-axis and acceleration by an amount v in the direction of the
#3-axis.

8 4. We note that the transformation eq. (6a) has the eigenvalues

g'v, e~">, 1, 1. (13)

(We remark that the eigenvalues of the third order orthogonal matrix 0 are
e*,e-v, 1)

The representations of 074) relative to various systems of reference will
in general not appear in the form (6a). However, all the representations of
0<4>have eigenvalues of the form (13).

By Ow we may denote not only the deformation tensors that appear in
the form (6a) but all the deformation tensors with eigenvalues of the form (13).
We may call these deformations rotational deformations. We see from (13)
that the product of two rotational deformation tensors is also a rotational
deformation tensor. It can thus be concluded that the rotational deformations
form a subgroup of the Lorentz group.

Similarly, the eigenvalues of the deformation tensors Avare found to be

+ V C— V
11, © (14)

It follows from the form of the eigenvalues (14) that the product oftwo
matrices with such eigenvalues has also eigenvalues of similar type and there-
fore the matrices Ay form also a subgroup of the Lorentz group.

8§ 5. We see thus that the proper Lorentz group can be built up of two
subgroups: one subgroup with elements of the rotational type O(), another
subgroup with elements of the translational type AT. The elements of the
proper Lorentz group can be represented as the products of a rotational
element with a translational element.

In order to make this representation unique, we may use the following
convention. Of a given Lorentz matrix Aqwith eigenvalues (11) we determine
the normal representation (12) and from this normal form we define the splitt-
ing of Aginto its two components as follows. Let A(p) denote the coordinate
transformation from the system of reference in which Agappears in the normal
form (12) into the system K relative to which we wish to represent Ag. We

have thus
A, = APAg,AP> -\ (15)
and also
A, = 0 (4AT, (15a)
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with
0@ = ap0<pN(p)-1. NT= Jp>NyN(Ep*1 (15b)
and
cos@ sing O
—sing cos® 0 O
0 0 10
v 0 0 0 1
(15c¢)
/1 O 0 X
0 1 0 0
00 B By !
¢ O Bv/ic2 B

Relations (15), (15a), (15b), (15c) give a unique procedure for the splitting
up of a deformation tensor into its rotational and translational parts.

As and Av are commutative, their transforms O,l) and Av are also
commutative and we find

N,= 0@NT= A,OW .

We see therefore that any element of the Lorentz group can he split into the
product of an element of the rotational group and an element of the trans-
lational group in a manner in which the factors are commutative.

8§ 6. We may make here the following interesting remark on the con-
nection of this splitting up of the Lorentz group with physical phenomena.
The theory of relativity is based partly on the negative results of certain
experiments like the Michelson—Morley or the Trouton—Noble experi-
ment. In these negative experiments an arrangement is turned round and no
apparent effect is observed.

The turning round of an apparatus corresponds to a Lorentz deform-
ation of the rotational type. The negative outcome of these experiments can
be predicted from the Lorentz invariance of the laws of nature. However, if
the laws of nature were invariant only with respect to the rotational subgroup
of the Lorentz transformation this would be sufficient to account for the
negative results of these experiments.

There exist further the so-called positive relativistic effects, like the
change of mass with velocity or the perpendicular Doppler effect. The latter
effects can be understood by supposing that the laws of nature are invariant
with respect to the translational group.

We see thus that the invariance of the laws of nature with respect of the
two subgroups of the Lorentz group manifests itself in two distinct groups
of experiments. Taking these groups of experiments together, we come to
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conclude that the laws of nature arc invariant against both the translational
and the rotational subgroup, and therefore against the whole proper Lorentz
group, as the elements of the whole group can be formed as products of the
elements taken from the two subgroups.

From the experimental point of view it may be added that the first type
of experiments, i.e. the negative experiments, has been carried out with very
great precision, therefore the invariance against the rotational group is very
precisely established experimentally.

The experiments concerning the change of mass with velocity are not
very accurate (see e.g. [3]) howerer, very good evidence for the invariance
with respect to the translational sub-group was obtained by D. C. Cham-
perey, G. R. Isaak and A. M. Khan [4] with the help of the Mdssbtmer
effect. These measurements seem to be the most precise carried out so far
supporting Lorentz invariance.

Thus the measusements of Champeney et al. together with the older
measurements of the Michelson type provide good evidence for the invari-
ance with respect to both sub-groups and therefore provide evidence for
the invariance with respect to the whole group of proper Lorentz trans-
formations.
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A WN R

OBE MOArPYMNbl rPYMnbl IOPEHUA N NX ®UBNUYECKUIN CMbIC/
N. aHowwn
Pestome

B pa6oTe MOKasbIBAETCS BO3MOXHOCTb MPEACTAB/IeHUs TpynMbl SlopeHua B Buae Npous-
BefleHUa ABYX noArpynn. Mepeas U3 NoArpynn cBsisaHa ¢ poTaluei, Apyras — ¢ TpaHCAsLme.
OTpuuaTenbHbIi pe3ynbTaT OMnbITOB MO TEOPUM OTHOCMTENIbLHOCTU — HampyMep oOrbiTa Maii-
KeNlbCOHa—MOop/IN — CBsi3aH C MHBAPWAHTHOCTLIO 3aKOHOB, OTHOCSLUMXCS K Moarpynne Bpa-
WEHNs, a MONOXWTENbHbIA pe3yNbTaT OMNbITOB MO TEOPUM OTHOCUTENILHOCTM — Hanpumep,
3aBMCUMOTb Macchbl OT CKOPOCTM Tefla — CBsi3aH C MHBAPMAHTHOCTLIO MO OTHOLLIEHWIO TpaHCs-
LIMOHHOW noarpynmbl.
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EXPERIMENTAL ERRORS AND THE INTERPRETATION
OF COMMON LEAD ISOTOPE ABUNDANCES
IN LEAD ORES

By

WA D'V )¢
T \/

'AND A\ 'V, T

(Presented by A. Szalay. — Received 22. Il. 1965)

Experimental error sources, giving rise to incorrect model ages according to the
Holmes —H outermans model are discussed. Special attention is paid to the apparent age
anomalies caused by the inadequate resolution of the mass spectrometer.

Introduction

Since the discovery of the variability and time dependence of the iso-
topic constitution of common lead by Nier et al. in 1938 [1], several models
have been worked out for the interpretation of common lead isotopic abund-
ances [2]. Since the parent system of any common lead ore usually cannot
be associated with some known geochemical system, there is a rather free
scope in constructing various models, based on various principles having
equally the appearance of truth, and using experimentally determined iso-
topic constitution data for settling the free parameters of a given model.
As our knowledge of the primary sources of lead are very insufficient, the main
check on the adequacy of one or another model is their internal consistency
in case of using a group of experimental data other than that applied in the
course of the construction of the given model itself.

The individual models can be roughly divided into single-stage and
multistage ones, considering the behaviour in time of the parent system
assumed. On the other hand, with respect to the space behaviour of the parent
system, they can be classified as homogeneous and heterogeneous models,
the latter allowing local variations in the U/Pb ratio of the parent system.

Though nowadays it is the general opinion that in the case of each
lead occurrence a special model is the best to work out, great use has been
made up to now of the single-stage heterogeneous model developed by
Holmes [3] and Houtermans [4] (H—H model). We do not intend to
discuss here the basic principles of this model, in this respect we refer to the
literature already cited [2]. We should like, however, to describe briefly the
general features of it.
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According to the H—H model the development of lead isotope abundances
can he described by the following equations

* _ *0 + « — eR> M
Y=Yo+ V (ext- ext), (2)
+ V (ext — ext). (3)

The symbols used in equation (1) — (3) are defined in Table 1.
Dividing equ. (2) by equ. (1) a simple relation between the isotopic
constitution and age can be obtained

Y —Jo _ e/l — eX{ 4)
X — Xqg a extj — eu
Equation (4) means that if the isotopic ratio y is plotted against the
ratio x, points representing ores with different isotopic composition but
having the same age should lie along straight lines starting from the point
represented by the coordinates 0,y 0. The slopes of these straight lines (iso-
chrones) are determined by the absolute age only.

Table 1

Symbols and constants used throughout this work

Tsotoperé%ti)gndance F(’<re:se(r(1)t At time ¢ Prin}g\flovalue
Pb206/P b 204 X *0
Pb207/P b 201 v Yo
Pb208/P b2 z *0
XJ238/PJj 204 avVv a VeU a Velt>
U2HPb24 \Y% VeM VeM’
Th2Z2/Pb24 w Wex'1 wex'I°
A= AU2¥ = 0,1537 - 10“9y-1 x0= 9,50
A'= A(U2H = 0,9722 « 10“9y~> Yy, = 10,36 a= 1378
A" = A(Th2®) = 0,0499 « 10~9y-1 20 = 29,49

Equations (1) and (2) are parametric representations of the so-called
“isotope development lines” of the same graph. The point corresponding to
the isotopic composition of a given lead sample, developing in a closed system
represented by a fixed value of V, is changing his position with time along
such a development line in the H—H diagram. (See Fig. 1.

Acta Phys. Hung. ToT. XX. 1966



COMMON LEAD ISOTOPE ABUNDANCES 123

This means that a given lead sample can be unambiguously characterized
either by the pair of the values x and y, or by the values V and t, the former
called the “milieu index” and the latter the “model age”. It is obvious that

Fig. 1. The relationship between the isotopic abundances of lead and model ages according
to the Holmes—H outebmans model

errors in the determination of the isotopic data have an influence on the value
of “model age” determined this way, as well as on the value of the “milieu-
index”.

Sources of errors in the determination of lead isotope abundances

There are two main sources of errors in investigating the isotopic con-
stitution of lead: statistical errors arising in the course of the measurement
of the individual peak heights (or peak height ratios) and errors being due
to the inadequate resolution of the mass analysing system.

Statistical errors are well known and lead isotope abundance data are
usually given together with their statistical variances. The analysis of errors
due to incorrect resolution is, however, neglected, though in some cases it
succeeded in proving the influence of this effect on the final data. In this
respect we should like to refer to the work of Russell and others [5] correct-
ing the data given by Ashwatnarayana [6] on the basis of the thorough
re-evaluation of the original mass spectrograms and taking into account
the effect of the poor resolution of the mass spectrometer too; as well as to
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the work done at Vancouver University aiming at the re-examination of
some previously investigated material with improved techniques [7].

The importance of this question is supported by the fact that most
of the lead isotope abundance data (especially data used as an experimental
basis in the elaboration of lead isotope abundance models) were obtained with
mass spectrometers having intermediate resolution characteristics. The mass
peaks used in the mass spectrometry of lead (Pb+, PbS+, Pbl+, Pb(CH3)4)
lie in the upper part of the mass scale of these instruments and thus to obtain
reasonable accuracy the highest resolution available with these instruments
is to be achieved.

Influence of resolution to lead isotope abundance data

In the course of scanning a mass spectrogram peak heights are measured
at the output of the analysing system. As a result of several factors not
discussed in detail here, the mass spectrum does not consist of sharp maxima
at the individual mass numbers, but the peaks are broadened to an extent
characterized by the resolving power of the instrument and thus they possibly
can — more or less — contribute in intensity to the neighbouring peaks too.

If the relative difference in the mass numbers is low, we can say that
the peak shape is determined by instrumental effects only. This means that
a “reduced peak shape function” /( /x — /x0) can be constructed characterizing
the peak shape with no respect to the height of it and being normalized at
mass number fx — /x0to unity. If the measured peak height at mass number
/x0 is JO, the contribution of this peak to the intensity measured at mass

number [Xwill thus he I = 10 «f(/x — /x0).

If we assume that the individual peaks contribute only to the intensity
of the neighbouring peaks (i.e. f([x — (i0) = 0 if | fx — | Dm> 4n the case
of lead the measured peak intensities and the “real” intensities Ifl will
satisfy

Cl=m, ®)
Cl=1Im + =207 -7(-1), (6)
c = + hos mft-1)+ ho*mt+ 1), ?
Cl. ho*. h*
= + c/(+ 1) m (8)
Assuming — in a rough approximation — that thepeaks are of sym-

metrical shape, i.e. /(—1) =/(+ 1) = a; the isotope abundance ratios with
respect to the abundance of the Pb2M isotope can be given as follows:

= X - a ey, 9)
ym=y + a(x + z), (10)
Z(h= z+ a my . (11)
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From equations (9)—(11) the following expressions can be simply
derived:

ymoy o Xez (12)

*<m>- x y
_____________ =1. (13)

This means that in the case of a symmetrical peak shape if we determine
the isotopic composition of a given sample under different resolution con-
ditions, the measured values will lie along straight lines in the x,y diagram,
as well as in the z, x diagram, the slope of this in the former being determined
by the real isotope ratios only. In the z, x diagram the line of displacement
inclines by 45° to the coordinate axes independently of the age of the sample.

From the viewpoint of the H—H model it is of obvious importance to
examine, how far measurements carried out under inappropriate resolution
conditions can influence the position of the measured points in the x —y
diagram with respect to the isochrones, i.e. how far this effect can influence
the value of the model age obtained.

The discussion of this problem is rendered more difficult by the fact
that the basic assumptions of the H—H model do not give a well-defined
relation between all the three Pb isotope ratios even with fixed t. Fixing the
parameter V results in a definite relation between the values x and y, but
the value s depends still on the Th/Pb ratio. We chose therefore in calculat-
ing displacements in the H—H diagram the quantity V as a parameter, the
value of the parameter W being fixed by the relation WjV = 3,77. This
ratio is the same as found by Russerr et al. [8] for “conformable” leads,
and corresponds to the approximate ratio of the geochemical abundances
oi Th and U as well. Since uranium and thorium are very similar in their
geochemical character, no variation in the Th/U ratio was found reasonable
to compute with, all the more because a two-parameter treatment would
make the survey of this problem superfluously involved.

In Fig. 2 the slopes of displacement lines are shown according to equ. (12)
with the U2X3Pb2 value as parameter, as function of absolute age. In Fig. 3
for comparison, the slopes of isochrones are also shown.

As one can see the isochrone slope varies with age between the limits
0,59 and 1,75 while the displacement slopes vary between 3,10 and 3,75,
according to the age and the value ofthe U2¥Pb24ratio. Of course, variations
in the Th/U ratio would rather strongly influence the slope of the displacement
lines, but since only minute displacements in the H—H diagram are to be
expected, we found it reasonable to use an average displacement slope for
each t in our calculations.
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As a result of this simple approximation we can count in practice with
a linear shift of the H—H isochrones. Since the slopes of the displacement
lines are always greater than the isochrone slopes, even in the case of a parent
system highly depleted in thorium, the resulting model age will be always
higher than the true one, i.e. measurements carried out under inappropriate
resolution conditions give rise to apparent B-type anomalies.

Fig. 2. Relationships between the slopes of displacements of points in the H—H diagram
as a result of incorrect resolution and the parameters of the Holmes—H outermans model

In Fig. 4 the displacement of the isochrones in the H—H diagram is
shown assuming a symmetrical peak shape with a reduced peak contribution
factor /(il) = 0,005. In general one can state that if the individual peaks
contribute by 1°/0 of their intensity to that of the neighbouring peaks,
the resulting model age for paleozoic and younger leads would be high by
about 50 m.y., the value of the milieu index appearing by about 1% higher
than the real one. In the case of old precambrian ores the resulting age value
does not markedly differ from the real model age, e.g. in the case of an ore
3000 m. y. old the shift would be about 20 m. y., hut the milieu index would
be high by about 2.5%. Stating this, we should like to emphasize that a 0,5—1°/00
cross-contribution of neighbouring peaks is a very realistic estimation in
the case of common analytical mass spectrometers.
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Summarizing the preceding discussion the conclusion can be drawn
that ifthe model age ofa given lead sample is to be determined with an accuracy
of ilO m.y., then it should be assured that the contribution of the neigh-

1 gXt-g\t
(X gXto-eM

Fig. 3. isochrone slopes of the Holmes —Houtermans model

Fig. 4. Displacement of the Holmes—Houtermans isochrones as a result of incorrect
resolution of the mass spectrometer. A symmetrical peak shape and a reduced peak con-
tribution factor/(+1) = 0,005 is assumed

bouring peaks to each other in intensity should be less than 0,2 °/00, otherwise
the age shifting effect of modest resolution must be taken into consideration.

We should like to note, however, that a symmetrical peak shape is to
be expected in an ideal case only. In practice — as a consequence of scatter-
ing processes occurring in the vacuum chamber of the mass spectrometer
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and causing a negatively skewed distribution of ion kinetic energies —
asymmetric peak shapes occur with a broadening of the peak “tail” towards
the seemingly smaller mass numbers.

This means that in equations (5)—(8) /(—1) > /( + 1) and thus foreign
contribution to the peak intensities arise mainly from peaks of greater mass
numbers. In such a case the following relation can be derived from equations
(5)—(8):

ym- Y_ | n+ 1) < *+r /14y

x'm) — X y y I(—1) y

In a limiting case we have/(-|-1) = 0, and so the following limits can be given
for the displacement slope in case of an asymmetric peak shape:

— <; < *

v (15)
y X X y

The quantity z/y varies within the limits 2,1 — 2,8, the exact value depend-
ing on the age of the sample and on the choice of the model parameters. This
justifies also our previous statement that the displacement slopes are always
greater than the isochrone slopes and that it is reasonable to compute with
an average displacement slope.

The numerical demands on the resolving power of the mass spectro-
meter as previously given are thus only limiting values, but they change
only slightly if we calculate with an asymmetric peak shape.

We should like to emphasize that in the preceding discussion we did not
touch the question of the overall validity of the H—H model; our calculations
presume the perfect validity of it and deal only with apparent deviations
caused by instrumental effects.

Statistical and other errors

The variations of the isotopic ratios x, y and z are composed of the
variations of the peak intensities measured for the individual lead isotopic
peaks in the mass spectrogram. As the abundance of the Pb20 isotope is by
far the smallest (in case of common leads usually 1,2—1,8%) the errors of
the relative abundances are predominantly determined by the variation of the
measured Pb2¥ peak intensity and thus the quantities x, y and z are usually
correlated to a considerable extent. Since the variations of the Pb206 and
Pb207 intensities are of the same order, this correlation leads to the develop-
ment of elliptical deviation patterns in the x,y diagram, with the great axis
inclining by about 45° to the coordinate axes, the centre of this deviation
pattern supplying the most probable values for the quantities x and y. Erratic
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age values originating from statistical errors are — in a statistical manner —
equally distributed between B-type and J-type anomalies, but B-type anoma-
lies are in the case of leads younger than 2700 m. y. connected with a seem-
ingly high, and J-type anomalies with seemingly low values of the milieu
index. In the case of leads older than about 2700 m. y. the situation becomes
reversed.

In some types of mass spectrometers systematic errors can arise from
the presence of Hg24 background in the instrument, interfering with the Pb24
intensity, especially if the measurements are carried out on the atomic ions.
One should note, however, that disturbing background due to Hg2M can occur
even at higher mass numbers, for example in the region of the Pbl+ ions as
a consequence of the following reaction:

Pbl+ + Hg24~ Pb + HgxM+

the product of which reaction contributes to the intensity measured at mass
number 331 for the Pb204l + ion.

Erratically high Pb204 abundances measured in the presence of a Hg
background result in the displacement of the points in the x—y diagram in
the 45° direction and give rise to the development of apparent B-type anoma-
lies. Of course, if we take into account the background due to mercury, this
effect does not play a role, but it enlarges the uncertainty of the determination
of the Pb24 abundance.

The individual error sources dealt with in this report usually appear
together, and thus can give rise to rather complicated deviation patterns in
the H—H diagram. In the following we should like to demonstrate the above
mentioned effects in a practical case.

A practical case

The author of this report has recently published some experimental
data on the lead isotopic constitution of the lead ores of the Velence Mountains,
Hungary [9]. The rather great scatter of the experimental points in the x—y
diagram rendered it probable that, in spite of the acceptable deviations of the
individual measurements, they are burdened by some errors being superior
to the statistical ones. To clear up this question all samples have been re-
measured with improved techniques. The results are plotted in Fig. 5 where
results of the first set of measurements as given in [9] are shown by circles
and the replicate data by full dots.

It is conspicuous that in the case of the repeated measurements the
statistical errors could be highly reduced, resulting primarily in the increased
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accuracy of the Pb2M determination. The ratio of the main axes of the dis-
persion ellipses is about 1:3,5; indicating an improvement of this order in
the relative accuracy of the Pb20 determinations, while the accuracies of
the Pb2oe and Pb207 determinations are improved by a factor of about 2.

Fig. 5. Isotopic constitution of lead ores of the Velence Mountains, Hungary, according to
two sets of measurements. Results as given in [9] are shown by circles, dots represent replicate
data determined with improved techniques

Fig. 5 strikingly shows that the resolution of the instrument was not
sufficient during the first measurements. The average isotope abundance
values of the two sets of measurements differ significantly from each other,
and the slope of the straight line to the two central points is 1,95 * 1,0 the
error being calculated from the deviation of the two average points. This
steepness corresponds within the limits of error to the displacement slope
which may be calculated on the basis of the discussions of this report.

For the very reason of the approximative nature of the general state-
ments made in this report more elaborate conclusions concerning this special
case cannot be drawn, but, by all means, the presence of additional errors
originating from the inadequate mass resolution could be stated without
any doubt, and thus the H—H model ages given in the previous report [9]
turn out to be high to some extent.

Detailed data on the replicate measurements will be published in a
separate report.
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COCTABA OBbIKHOBEHHOIO CBWHLA

A. KOBAY

Pesome
PaccMaTpmBarOTCA UCTOMHUKM 3KCMEPUMEHTaIbHbIX OLUMGOK, MPUBOASLUMECS K Henpa-
BU/bHBLIM MOAENbHBIM Bo3pacTaM Mo Mogesne I"onmca u MyTepmaHca. Ocob0e BHUMaHWe yaensieTcs

Ha KaxKyLLMecs aHoMa/ii BO3PacToB, BbI3BaHHbIE HeY/N0BNETBOPUTE/bHbLIM Pa3peLieHneM Macc-
CcreKTpoMeTpa.
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The dependence of the multiple scattering constant (K) on cell length is studied in
the interval of 0,5 cm t 10 cm by means of two different methods. By the “coordinate
method” the average value of K is found to be K = 30,2 j; 0,6 in the cell length interval
of 0.5 cm i <; 3cm. When the effect of spurious scattering is taken into account this value
decreases to 27,1 i 1,2. The *“angular dispersion” method yields K — 30,2 2,5 for the
cell length interval of 3 cm < t <, 10 cm. It is found that the spurious scattering depends
on the cell length as dsp — aln where a— (6,84 i 1,33) «10“3 and n= 1,22 i 0,17 in the
cell length interval of 0,2 cm < t< 3 cm.

1. Introduction

Multiple Coulomb scattering of high energy particles in emulsion at
great cell length ({ 1 cm) has been studied recently by several authors
[1-7]. Some of them found that the scattering constant K for such cell
lengths is constant and smaller than the theoretically expected saturation
value, others obtained results, which showed that K has a decreasing tendency
with increasing cell length. Such an effect — if it exists — is very important
not only from the point of view of the theory of multipl Coulomb scattering
but also for the determination of the momentum of high energy particles.
Therefore it seemed to be worth while to continue our earlier investigations [6].

In the investigation reported here the dependence of the scattering
constant on cell length was determined from t= 05 cm up to t— 10 cm
by two different methods.

In the interval of 0,5 cm <[ f <[ 3 cm, the “coordinate method” [8] of
multiple scattering measurements and for higher cell lengths the *“angular
dispersion method” ** [5, 6] were used. At t= 3 cm, K was determined by
both methods to check their consistency.

The present measurements permitted also investigation of the spurious
scattering as a function of cell length.

*On leave from the Institute of Atomic Physics, Bucharest.
** This method is analogous to the “tangent” or “angular” method of multiple scatter-
ing measurements.
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2. Discussion of the methods of measurement

2.1 The scattering constant can be calculated in the case ofthe coordina
method from the well-known formula:

0,513 -pB «dc
- t32 (1)

with the approximation dsp dc. Here dc and dsp are quantities calculated
from the second differences of the coordinate values of the track measured
and refer to multiple Coulomb scattering and spurious scattering, respectively.
(d, t and pR are expressed in p, 1 0 0 and MeV/c, respectively.) The value
of the scattering constant thus obtained is larger than or at most equal to
the true value of K. The less the spurious scattering can be neglected as com-
pared with the Coulomb scattering, the greater is this deviation. Measurements
were made e.g. by [4] in two regions of a plate, where in the first region the
spurious scattering was small, while in the second it was large. The scattering
constant was found to he in the *“good region” K = (28,0 ~ 2,2) and in the
“bad region” K = (42,1 ~ 3,6). It is obvious that the method described
above is rather sensitive to the spurious scattering in the emulsion plate.
2.2. In the case of the “angular dispersion” method [5], the latera
angular distribution is measured in two or more strips perpendicidar to the
direction of the beam. When the distance t of the strips from one another is
measured in units of 100u, the scattering constant can be determined from
the following formula:

K = (w - 0id12 & (2)*
1,225 -t12 1
N N
Here [#/|2= and l#o|2= 2* where, &i and & mare the

projected angles (in degrees) between the i-th measured track and the average
direction of the beam in the first strip (t = 0), and the strip at a distance t,
respectively.

The contributions of the various noises (grain, stage, reading noise) to
the Coulomb scattering angle are the same in each strip. Thus by this method
the effect of all noises can be eliminated. However, the effect of small-angle
diffraction scattering has to be taken into account. (See the Appendix.)

* The average scattering angles measured by the “coordinate” method are calculated
from those measured by the “angular” or “tangent” method, by multiplying the latter by
a factor of 1,225 [8].
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3. Experimental results

3.1. Measurement with the coordinate method

3.1.1. Measurements were carried out on tracks of n~-mesons of moment-
um (17,2 ~ 0,2) GeV/c in llford G5 emulsion plates of size 14,5 cm X 23,5
cm X 0,06 cm by means of a Koristka R4 microscope with an objective
of 55 X magnification.

Tracks of a total length of about 10 m were measured with a basic
cell length of t = 0,5 cm and a further total length of about 3 m track with
smaller cell lengths (t = 50 u -r- 0,5 cm). The sections of tracks lying inside a
region of about 30 y from the top or the bottom of the plates were omitted
from the measurement.

The tracks were so aligned that they stayed within the eyepiece scale

50 fi) over the entire (roughly 10 cm) movement of the stage.

The average of the measured second differences may be written as the
sum of certain averaged quantities relating to the Coulomb scattering, the
spurious scattering and other noises in the following way:

vm = dc + d& -f-d,, .

The value of the total noise was found to be (0,150 ~ 0,003) fi when a cell-
length of 50/1 was used.

The distributions of the absolute values of the second differences for
cell lengths t= 0,5;1;2 and 3 cm after cut off at |Dm|= 4 \Dm\ and
normalization to the total number of second differences are shown together
with the corresponding normal distribution in Fig. 1. Due to the cut off 2,7;
1,9; 0,8 and 0.9 per cent of the total number of second differences were omitted
when plotting the various curves. A j2test analysis showed that the cut
off distributions can be well approximated by normal distributions up to the
highest cell length measured.

3.1.2. The mean values of the second differences corrected for the con-
stant noise (dm) after cut off and plotted versus cell length are shown in
Fig. 2a (open circles). The theoretical curve obtained for dc with values of
K(t) calculated by Voyvodic and Pickup [9] who took into account the
finite size of the nucleus, is also reproduced in the same figure. Because of the
effect of spurious scattering one should expect the experimental values to be
large or at most equal to the corresponding values of dc.

The present results are not in contradiction with the above expectation.
The largest — but not significant — deviations in the “bad” direction between

the experimental points and the theoretical curve are at cell lengths of t = 25
and 3 cm.
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Fig. 1. Distributions of second differences (Dm) for cell lengths a) t — 0,5 cm, b) t= 1 cm
c)t=2cm and d) t= 3 cm
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(in 100fj units)
Fig. 2b

Fig. 2c
Fig. 2. Variation of dm with t. a) presentexperiment (17,2 GeV/e n~). The points marked by
i correspond to second differences corrected for spurious scattering
b) Yash Pal et al. Jand A. A. Kamal et al. o (17,2 GeV/ca-)
c) A. Hossain et al. (16,2 GeV/c/n:-). The continuous curves show the variation of dcat given
energy calculated with a K-value obtained by Voyvodic and Pickup by taking into account
the finite size of the nucleus (9]
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For comparison the values obtained by other authors for 16,2 GeV [1],
17,2 GeV [3, 4] n~-mesons are plotted together with the theoretical dc-curve
corresponding to these energies in Figs. 2b—c. One may see that in most of
the cases the deviations are larger and more pronounced than in the present
case. It has to be emphasized, however, that the fact that in consequence of
the effect of spurious scattering there does not seem to be disagreement
between the experimental and the theoretical values, does not imply the non-
existence of such a disagreement.

3.1.3. In the present investigations we have used the method of Casniko
et al. [10] which does not require knowledge of K. By this method, the value
of dc and dsp can be obtained from the measured second (dm) and third (dm3)
differences. Introducing the notations

A and
2 dsp
we have
@ o
N (3)
4)
The values of dc obtained from equ. (3) with g% = are plotted in Fig. 2a

(crossed points). It can be seen, that all the experimental points for t lcm
lie under the theoretical curve, i.e. the deviation is more pronounced than
in the first case (see 3.1.2) despite of the greater statistical error of the indi-
vidual values.

The values of dsp obtained from eq. (4) for different cell lengths are
plotted in Fig. 3. From this it may be seen that the spurious scattering does
not show any saturation (or break down) tendency with increasing cell length
as obtained in certain cases by some authors [11—13] for cell lengths t lcm.
The discrepancy may be due to the fact that in the methods applied by those
authors** K had to be known.

*This assumption is supported by the fact, that experimental values very close to

»
Ssp ** QOn~ were obtained by Casnikov et al. with the formula given in ref. [10]:

eh = (h) - 4m3 (**)VI(-") tdm (h) - dfn <],
where tx and t2 represent two different cell lengths.

** Except A. Aditya et al. [12] who used relative scattering measurements for the
determination of the spurious scattering.
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According to the present measurements the dependence of the spurious
scattering on the cell length is given by a power law:
dp -—a 't (5)
with n — 1,22 ~ 0,17 and a = (6,84 » 1,3) « 10~3 obtained by means of the
method of least squares. These values are in a good agreement with the date
listed in Table ¥ in the paper of Jones and Kaitbach [13] and with the
results of Marzari-Chiesa and Wataghin [14]

Fig. 3. Dependence of spurious scattering on cell length

Table |
t K K
(100a) if d dc corr.
50 31,8 £1,7* 275+ 2,0
100 30,4+ 20 2711+ 22
150 301+ 11 26,3+ 2,7
200 300+ 12 27,8+ 44
250 295+ 17 27,2+ 40
300 28,7+ 17

The g-values were also calculated and plotted vs. the cell length (Fig. 4a).
For comparison the results of [3—4] and [10] are also presented (Figs. 4b —d).

*This value is higher than expected because the assumption jsp does not hold
at this cell length.
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Fig. 4. Variation of q vs. t. a) present experiment, b) Yash Pal et al,, ¢) A. A. Kamal et al.,
d) Casnikov et al.

The p-values measured by [10] depend significantly on cell length* while
other authors have not found such a dependence.

The average of the p-values in our measurements and in refs. [3, 4, 10]
are 145~ 0,02; 138~ 0,04; 1,35 " 0,02 and 1,60~ 0,01, respectively.

All ofthem are significantly larger than gc = 1,225 predicted theoretic-

ally for multiple Coulomb scattering.

The values of the scattering constant calculated on the assumption
dsp <g dc and with values obtained from eq. (3) are listed in Table I, respect-
ively.

*The p-values in Fig. 4a—c were calculated from the second and third differences
corrected for the constant noise, while those in Fig. 4d were calculated from the uncorrected
data. This difference, however, does not explain the significant dependence on cell length
since for large t (t® 0,1 cm) the noise becomes negligible as compared to the measured value.
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3.2. Measurement with the angular dispersion method

3.2.1. Measurements were carried out in the same region of the emulsion
plates as in the former case by means of a Koristka MS2 microscope with an
objective of 55 X magnification. The plate was placed on the stage in such
a way that the angle between the direction of stage motion and the average
direction of the pion beam (a) was about zero. In order to include only primary
particles only those tracks were measured where the projected angles between
the tracks and the average direction of the beam were smaller than 1°.

In three strips, at distances 1,8; 4,8 and 11,8 cm from the edge of the
plate (the second and third strip, respectively, being att = 3 and t = 10 cm
from the first one), about 1000 tracks were measured. At the end points of
each strip (1000 p wide) the ordinates of the tracks were measured and thus
the values of tg a, directly obtained. Then the angle #+= a- — a between
the direction of the i-th track and the average beam direction was calculated.
(The reading error of each angle was ~0,15 m rad.)

In order to eliminate the possible background due to single Coulomb
scatterings, knock-on electrons and secondaries from inelastic nuclear inter-
actions, a cut off was applied at | | = 4 ]&|. In this way the same back-
ground “events” were eliminated as in the case of the coordinate method.*
In the first, second and third strips 0,6%, 1,5%, and 0,6% of the total number
of tracks were omitted, respectively.

The average angle and the variance a = ®& | of the correspond-

n
T
ing normal distributions before and after applying cut off are listed in Table 11
for different cell lengths.

Table 11
t .
(100fi) [*i (M rad) a, (m rad)
before after before after
cut off

0 (1,54 + 0,04) (1,51 + 0,04) (1,93 = 0,04) (1,89 + 0,04)
300 (1,78 + 0,04) (1,69 = 0,04) (2,22 + 0,05) (2,12 £ 0,05)
1000 (2,15 + 0,05) (2,10 £ 0,05) (2,69 £ 0,06) (2,63 £ 0,06)

*In the case of two normal distributions with variance oc and cra respectively, “events”
having identical probability are omitted if both distributions are cut off at |0c|= x ac
and | = *ffa respectively (where ¥ is an arbitrarily chosen constant, having the same
value in both cases).

Acta Phys. Hung. ToT. XX. 1966



142 G. BOZOKI et al.

The Statistical errors were calculated from the formulae:

afit\l%\ = (144/2(Nt- 1)V* and déja, = (2(Nt- 1))d*,

where Nt is the total number of angles measured.

Fig. 5. Distributions of j&j| obtained in the first, second and third strip

3.2.2. The angular distributions (after cut-off) are shown together with
the corresponding normal distributions in Fig. 5. The distributions are nor-
malized to 1. A "2-test shows that the experimental distributions can be well
approximated by normal ones.

For the calculation of the scattering constant one has to use eq. [2].

This relation, however, holds only if multiple Coulomb scattering is present.

Takinlinto account the trisution of the small-angle diffraction scatter-
ing, r.corrl2 = (|d(]2 — < )2 kas to be written in eq. (2) instead
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of 18t |2 (For the calculation of \)2 see the Appendix.) With this
eq. (2) may he rewritten in the form
1,225 K 2
Incorrl2= 1MI2+ ai, where (6)
PR
In Fig. 6 ]$icorrl2 is plotted vs. cell length. The experimental points yield
a straight line, indicating the constancy of K in this interval. When using

Fig. 6. Variation of [ & c j2vs. t. The continuous line was calculated using the method of least
squares

the method of the least squares, the value of a and that of K can be calculated.

K was found to be
K = 30,2+ 254

4. Discussion and conclusions

4.1. 1t is apparent from Table I that in the interval of 0,5 cm f<[3cm
the iC-values show a small, but in no way significant dependence on cell
length, and can be well approximated by a constant: K = 30,2 ~ 0,6. With
the “angular dispersion-method” K = 30,2 ~ 2,5 was obtained from f= 3 cm
up to t = 10 cm, which is in agreement with the above value. If one corrects
for spurious scattering one finds, in the same interval, the dependence of the
K -values on cell length to be weaker (see Table 1), and the average value of K
to be 27,1 i 1,2. Therefore it seems necessary to correct for the effect of
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Table 111

Values of thel

Cell 1 Ex- | Meas
t (cm) | values [u] [8] [9] 1[10] 10] present pap®r [12] [% [10]

0,1 27,3 28,2 -k ‘ 30,6 £0.9

0,15 27,7 27,9+1.4

0,2 28,3 28,6+ 1.7 j28,8 -(b 30,1+1.2 29,9+0.9

0,3 28,6 i 30,9+1.7

0.4 28,9 27,8+0.5 29,0+ 18 31,0+2.1 30,2+1.5 30,6+1.2

0,5 29,2 318+ 1.7 275+2.0 31,3%£2.3

0,6 29,4 28,1+0.7 32,2+2.9

0,8 29,8 30,5+ 1.7 27,8+0.7 298+3.4 290+£2.6

1,0 30,1 26,9+1.7 289%1.0 30.4+£2.0 27,1+2.2

15 30,6 30,1+1.1 26,3%2.7

2,0 30,9 26,6+ 1.2 23,2+2.6 293+0.8 30,0+ 1.2 27,8+4.4

2,5 31,2 295+1.7 27,2%4.0

3,0 31,2 254+1.8 27,2x1.1 28,7+1.7 o -

4,0 31,2 27,6+1.6

5,0 31,2

6,0 31,2

7,0 31,2

7.2 31,2

8,0 31,2

9.5 31,2

10,0 31,2 1
Mean
value K 28,2+0.7 263+x1.0 27,7+ 11 283%0.2 30,1+0.6 '27,1+1.2 30,6+0.6 1} + 0.8

Coordinate
-
Method applied cut off ithout
withre- Byt off using cut off
placemen
by rel.
Measurements on single tracks I scatter on single tracks by relative scattering
ing
Type n
Particle  Epergy 45 16,2 17 6.2
(GeV)

lcorrected for dsp

s | corrected for small angle diffraction scattering
*These values have to he multiplied by a factor of 27/24 see ref. [12]
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ured by

[10] [10] [13]

318+19 280+2,2 30,4+1,0

without cut off

27
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[8] [2] present [2]

275+25

30,3+ 0,7

30,4+ 0,9

30,2+ 25

Angular dispersion

cut off

on single .
tracks on single tracks
n
8 0.3 17 6

[31

[6] [6] [<]

31,2+2,7 30,0+1,7

286+2,5 276%1,6
27,1+2,4 273%1,6
28,1+2,5
28,3+2,6

26,5+2,5

29,4£2,0

27,4£2,7

285+2,8

28,2+0,9 28,2+0,9 315%1,7

y dispersion

on single tracks

27 8
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spurious scattering at smaller cell lengths where its relative contribution to
the total average scattering is larger than at larger cell lengths.

Similar results were obtained by Kamal et al. [4] using the “coordinate
method”, by Chemel et al. [5] and two ofthe authors [6] applying the “angular
dispersion method” and by Aditya [7] using a treatment analogous to the
“angular dispersion method”.

In Table IlIl K-values are listed which were measured for different
energies in the 0,1 cm <"t 10 cm cell length interval. Dividing the pion
and proton data into two parts with respect to the cell lengths, 0,1 cm <it <j
<Clcm and 1 cm <[t 10 c¢m, the weighted averages of the K-values over
the first, second and the total cell length intervals are:* 28,9 i 0,2; 29,3 ~ 0,3
and 29,0 ~ 0,2, respectively.

The above results suggest that — for nuclear-active particles inde-
pendently of their energies —

a) K is constant at cell lengths t 0,1 cm, and

b) smaller than expected from the theory of Voyvodic and Pickup,
even if the influence of the spurious scattering is taken into account.

The above effect may be due to the fact that

1. either the experimental method used for determining K is not adequate
at such great cell lengths or

2. the statistical theory of multiple Coulomb scattering needs some
modification.

The fact that the different methods give the same result (within the
experimental error) speaks against the first possibility.

We are indebted to Dr. E. Fenyves for helpful discussions.

Appendix

Calculation of <jItj)2 in case of small angle diffraction scattering of pions
on emulsion nuclei

Let us introduce the following notations and definitions:
1. ™™t be the number of nuclei of type i per cm3in the emulsion,

2. Atthe mass-number of nuclei of type i,
0]

3. l/Ai= Nidi=Ni2nj—" sin 0d9, is the inverse value of the

0
mean free path for diffraction scattering, and <- the corresponding total
cross section;

4 . kfat dfi+AV,)
— —sin Odd A f3qte QdO {Al)
do 4tr

"In these averages the results written in the 2nd and 3ra columns are not included.
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is the differential angular distribution of pions scattered on nuclei of type i,
where 0 is the solid angle of scattering, the O- the limiting polar angle, kf
is the wave number of the incoming pion inthe CMS of the pion and nucleus
of type i.

R aA}'3is the interaction radius of a nucleus of type i, at can be expressed

in terms of R0 as follows: at= R¥%n (for the present calculation: R0= 1,25

2p 1
fermi, i.e. (= 49 m barn), ¢, = - — is a factor which transforms the

Po + Ai
angles from the LS to the CMS according to the expression:

®CMS d "CMS — 3i ALS

(PO= 17,2 GeV/c is the momentum of the incoming pion in the LS). Eq.(Al)
can be normalized to 1 in the interval 0 <[ 0 <<0I as follows:

dffj .
(I/Ism 0

IF-(0) dQ = 2n dd . (A 2)

Let us now investigate the angular distribution of the pion beam when this
is parallel to the longer edge of the plate at a depth t in the emulsion.
The normalized angular distribution of diffraction scattering is given by:

p(0, t) dO N,AP 1-m  06(0)dOH——W, (0)dO  (A3)
2 N'Af3 =

and the square of the expected absolute value of the projected scattering
angle by:
B
<|#[>2 =y |d2P(°A)dO. (A4)
0

After integration and putting sin 0~ 0, one obtains:

<lop* = -gL_ - Nfa? 17 "3 pyr, (A3)*
4Ro 2 NiAp kfg (I + Ap)
where
& fP00,)2
A(xoi) = (! + xot)e X2 and xoi = ( 00.) 3,(1+ Ap).

* Here the relation 02= #2-f- ®2between solid angle, projected angle and dip angle
(@) is used.
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b(t) is a slowly varying function of t. This dependence is due the fact that for
different cell lengths the cut off was made at different projected angles. The
values obtained for b(t) are given in Table IV.

Table 1V
12009 [m radf Yoo

300 6,27 « 104
1000 7,25 « 10-4

The ratio of the inelastic to the elastic scattering cross section for n-nucleus
interaction was calculated in the 0 angular interval as:

N 0,06.

This result means that no correction is necessary for the effect of the secondary
particles emitted at small angles in inelastic processes.
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M3YUYEHUME MNOCTOAHHOWM MHOIMOKPATHOIO PACCEAHUA
B SMY/NbCUI MPUN BOJIbLUNX PA3SMEPAX AYEEK
. BO30KW, 3. TOMBOLWW, 1. EHWH, 3. HAAb 1 M. LWWATVUHW
Pesome

M3y4yaeTcs 3aBMCMMOCTb MOCTOSAHHOW MHOrokpaTHoro paccesHus (K) oT pasmvepa
AYENKM ABYMS pasNMyHbIMU MeTogamu B UHTepBasie 0,5 cm < t <, 10 cMm. «KoopanMHaLMOHHbIM
METOZOM» /1A CPeAHEro 3HauYeHUs MOCTosAHHON K npun pasmepe sadveliku B nHTepBane 0,5 <; t
<; 3 ¢M nosy4deHo 3HadeHne K = 30,2 £ 0,6. Eciv NpuHSATb BO BHUMaHWe 3MMEKT SI0XKHOIO
paccesiH1s, TO 3HaYeHWe NOCTOAHHOM yMeHbLUaeTea o 27,1 £ 1,2. MeTog «yrnoBoi gucrepcum»
pesynbTupyet K = 30,2 + 2,5 ons pasmepa siveiiky B uHTepBasie 3 cM <; i 10 cm. HaigeHo,
YTO JIOXKHOE paccesiHWe 3aBWCUT OT pasMepa AYeKK COrfacHO COOTHOLLEeHWO dsn— atn, rae
a= (6,84 1,33)¢ 10~3mn= 1,22 + 0,17 B uHTepBane 0,2 ctM <, t <; 3 cm.
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UBER DIE ENERGIEVERTEILUNG DER ELEKTRONEN
IM STATISTISCHEN ATOM

(Eingegangen: 15. I11. 1965)

Fir die Energieverteilung der Elektronen statistisch behandelter Atome werden For-
meln hergeleitet und zwar sowohl fur den Fall einer globalen Behandlung der Elektronen,
als auch fur den Fall, dass die Elektronen im Atom in Gruppen mit gleicher Nebenquanten-
zahl unterteilt sind. Die Resultate fir die Eaergieverteilung der Elektronen werden im Falle des
K -und Hg-Atoms mit den aus den Hartreeschen Tabellen berechneten Verteilungen verglichen,
wobei sich zeigt, dass die statistischen Verteilungsfunktionen Uber die wellenmechanischen
Verteilungen sehr gut hinwegmittein. Weiterhin werden mit den statistischen Energievertei-
lungen der Elektronen Energiemittelwerte von Elektronen in Atomen berechnet. Fur diese ist
die Ubereinstimmung mit den wellenmechanischen Resultaten weniger gut. Die im § 2 und § 3
gewonnenen Resultate kénnen auf beliebige statistisch behandelte Systeme erweitert werden.

§ 1. Einleitung und Zusammenfassung

Es ist einigermassen (berraschend, dass das sehr naheliegende Problem;
die Bestimmung der Energieverteilung der Elektronen im statistischen Atom
bis jetzt nicht n&her untersucht wurde. Dies wollen wir in der vorliegenden
Arbeit nachholen und zwar bestimmen wir zundchst die Energieverteilung
der Elektronen im statistischen Atom und zwar sowohl fur den Fall einer
globalen Behandlung (d. h. keinerlei Unterteilung der Elektronen in Gruppen),
sowie auch fiur den Fall, dass die Elektronen des Atoms in Gruppen mit glei-
cher Nebenquantenzahl unterteilt sind. Diese werden dann fur die Atome K
und Hg mit den entsprechenden wellenmechanischen Verteilungen verglichen.
W eiterhin werden die Formeln fir die Energieverteilung zur Berechnung
von Mittelwerten der Elektronenenergie im Atom herangezogen. Die im §2
und 83 hergeleiteten Resultate kann man auf beliebige statistisch behandelte
Systeme verallgemeinern.

§ 2. Berechnung der Energieverteilung der Elektronen
im Thomas—Fermischen Atom

Wir gehen von der Energie e eines Elektrons im Atom am Ort I' aus,
das sich im Potential V befindet und das einen Impuls vom Betrag p besitzt.
Man hat dann

1)
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wo m die Masse des Elektrons und e die positive Elementarladung bezeichnet.
Hieraus folgt fur den Impulsbetrag

p = [2m(e + Ve)]K 2)

Mit diesem Ausdruck ergibt sich fur die Anzahl dn der Elektronen pro
Volumeneinheit, deren Impulsbetrag zwischen p und p -(- dp, bzw. deren
Energie zwischen s und e de liegt in bekannter Weisel

dn = — p3dp = 47m2w) /A (e+ Ve)*de, 3)
ft3 h3

wobei wir mit h die Plancksche Konstante bezeichneten. Hieraus erhdlt man

durch Integration fir die Anzahl der Elektronen im Atom, deren Energie

zwischen e und s -]- de fallt

dN _ 4u(2|a)b dE j» + VeyUdv' 4)
h3 j

wo dv das Volumenelement bezeichnet und das Integral nur auf solche Gebiete
auszudehnen ist, fur welche der Ausdruck unter der Wurzel im Integranden > 0
ist. Wenn wir — wie wir dies im folgenden durchweg tun wollen — eine kugel-
symmetrische Potentialverteilung im Atom voraussetzen, so kdnnen wir fur
dN schreiben

dN = 1602 de f(e + vefl.r2dr, (5)
h3 J

wo r die Entfernung vom Kern bezeichnet.

Mit diesen Formeln I&sst sich durch Integration nach e sofort die Anzahl
n(e) der Elektronen pro Volumeneinheit, bzw. die Anzahl N(e) der Elektronen
im ganzen Atom angeben, deren Energie zwischen der tiefsten Energie e0 und
einer beliebigen Energie e liegt. Diese tiefste Energie des Elektrons ergibt sich,
wenn die kinetische Energie gleich 0 wird, wenn also die gesamte Energie
mit der potentiellen Energie am Ort r identisch ist. Man hat also

e0= - eV (6)
und erhdlt far n(e) und iV(e)
8n(2m)’s
r(e) - 8n( Vk (e + ve)r, @)
3/i3
32a2(2 m)*
N(e) = AZ(2my7> (s--V e r2dr, (8)
3h3

1Mau vgl. z. B. P. Gombas, Die statistische Theorie des Atoms und ihre Anwendungen,
S. 6, Springer, Wien, 1949.

Acta Phys. Hung. ToT. XX. 1966



UBER DIE ENERGIEVERTEILUNG DER ELEKTRONEN IM STATISTISCHEN ATOM 151

wo die Integration nach r nur auf den Bereich auszudehnen ist, fir welchen
im Integranden der Ausdruck unter der Wurzel > 0 ist.

Hieraus ergibt sich sofort die Anzahl der Elektronen, deren Energie
zwischen erund e2liegt, fir die Volumeneinheit und fur das ganze Atom, und
zwar erhdlt man, falls e2> slist, fir die Volumeneinheit n(ez) — «(gj) und
fur das ganze Atom iV(g2) — N (gj).

Wir wollen im folgenden zundchst das Thomas—Fermische Modell
zugrunde legen und unsere Verteilungsformeln in den Thomas—Fermischen
Variablen x und g>ausdricken, die folgenderweise definiert sind2

X = (9)

(10)

wo eB = —VO0edie héchstmdgliche Energie eines Elektrons und VO0das héchste
Potential im Thomas—Fermischen Atom darstellt, weiterhin 1 die Thomas—
Fermische Léngeneinheit

9n2 0,8853 y
27 ¥ (V)

bezeichnet; Z ist die Ordnungszahl und a0 der erste Bohrsclie W asserstoff-
radius. Wenn wir statt der Energie e die dimensionslose Variable

n= (12)

einfuhren, d. h. g in der Einheit Ze2 (j ausdriicken, so ergibt sich

)= > % ——fu—m au, (13)

2 4n/r3 x

n(u,x) = n— M, (14)
49 3
dN{u) = — Zdu -——- Kun—u X-dx, (15)
I'SI \a&J
N(u) = 2] -(-u —u”j  x2dx, (16)
17)
Ze?

gesetzt wurde.

2Man vgl. z. B. P. Gombas, 1 c., S. 40.
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Fur neutrale Atome, mit denen wir uns im folgenden vorwiegend be-
fassen, ist3 el — 0 und somit auch uR = 0. Fir neutrale Atome setzen wir
statt (p das Symbol 0.

Die Verteilungsfunktion dn(u, x)/du, d. h. die Besetzungsdichte der
Energieniveaus, sowie die Verteilungsfunktion n(u, x), d. h. die Anzahl der
Elektronen, deren Energie < u ist, beziehen sich auf einen beliebigen Abstand
x vom Kern. Diese Verteilungen sind also Funktionen von n und x; sie haben
natirlich nur in den Gebieten einen Sinn, in welchen der Ausdruck unter der
Wurzel 0 ist. In den Figuren 1 und 2 sind diese Verteilungen fir neutrale
Atome bei einigen festgehaltenen u-Werten als Funktionen von x dargestellt.
Die Verteilungsfunktionen dN(u)/du, d. h. die Besetzungsdichte der Elektronen
sowie N(u) die Anzahl der Elektronen des Atoms, deren Energie <”u ist, sind
Funktionen von u. Diese Verteilungsfunktionen sind ebenfalls fiir neutrale
Atome in den Figuren 3 und 4 dargestellt.

Die Funktion N(u) haben wir fur die neutralen Atome K und Hg mit
den N(u)-Werten verglichen, die man mit der Methode des »self-consistent field«
erhdlt.4 Aus dieser Methode ergibt sich naturgemdéss fur N(u) kein glatter
sondern ein stufenweise abfallender Verlauf. Wie aus den Figuren 5 und 6
zu sehen ist, gibt unsere Funktion N(u) einen guten Mittelwert der wellen-
mechanischen stufenweise abfallenden Kurve.

Es sei noch bemerkt, dass natirlich n(uff, x) mit der Elektronendichte
a(x) am Ort x identisch ist, d. h.

n(uB, x) = a(x) (18)
ist und ferner
N(uB) = N (19)

die Anzahl der Elektronen im Atom darstellt.

§ 3. Berechnung von Energiemittelwerten
im Thomas—Fermischen Atom

Wir wollen zundchst den Mittelwert s(x) der Energie eines Elektrons
an einem bestimmten Ort x im Atom bestimmen. e(x) definieren wir folgender-
massen

(20)

3P. Gombas, 1 c., S. 38.

4Fur K: D. R. Hartree u. W. Hartree, Proc. Roy. Soc. London (A) 166, 450, 1938;
fir Hg: D. R. Hartree, Phys. Rev. 46, 738, 1934 und D. R. Hartree u. W. Hartree, Proc.
Roy. Soc. London (A) 149, 210, 1935.
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Wenn man hier dn aus (3) einsetzt und bericksichtigt, dass e0 —FO0e ist,
so erh&lt man nach einfacher Rechnung

su(2m)ss 1

£*) =
®) 33 Q

--(V e +sJ (Ve+ elU. (21)
5

Mit Ricksicht auf die Thomas—Fermische Beziehung5

— xkQI>='Ve+eli, (22)

wo HK die Konstante

3 (3n2*M(2 3 2
xh= - g ------ )M = — (3n2)«e2ag (23)
k 10 4n* m 10 V
bezeichnet, ergibt sich hieraus das Resultat
2 Tr 3 2 Ze2 N Ze2
e(x) = - Ve -—- € — mmmmmemmeeeeoeoe- L (24)
\Y 5 5 M , U4 X

das man auch unmittelbar aus (22) erhalten kann, wenn man in Betracht
zieht, dass kk g3 die mittlere kinetische Energie eines Elektrons darstellt.6

Die mittlere Energie éa eines Elektrons bezogen auf das ganze Atom
erhdlt man nun in der Weise, dass man s(x) auf das ganze Atom mittelt, d.h.

én = ~j-jégdyv (25)

setzt. Nach Einsetzen von é(a;) aus (24) ergibt sich7

=W rgo> o+ l«,. (26)

wo Ve (r) das Potential der Elektronenwolke bezeichnet. Fir Ve (0) gilt der
Ausdruck8

Vt(0)e = — <p'(0)-ell, (27)
I

5Man vgl. z. B. P. Gombas, 1 c., S. 34.

e Man vgl. z. B. P. Gombas, L c.,, S. 7.

7 Bezuglich der Integration vgl. man P. Gombas, 1 c., S. 62.
8P. Gombas, 1 c., S. 62.
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womit man aus (26)

2 Z2e2 - Zj . . (28)
“ 7 ni FO ivl
erhélt, wo (p' die Ableitung von (pnach x bezeichnet.
Wenn wir den lonisationsgrad
Z -N
(29)

einfihren und beachten, dass fur das hier zugrunde gelegte Thomas—Fermi-
sche Modell

(Z -N)e- (Z - N)e2
f*Xo

(30)

ist, wo r0O — /j,x0 den Grenzradius des Modells bezeichnet, so ergibt sich

1 2 Z2e2 7g(|_ q + il
. <P\0 (31)
S ) 2T x0
Fur neutrale Atome, d. h. fir N = Z, also q = 0 erhdlt man
én = — — Wi(0)= --0,5125 Z*/.— (32)
[ N 0,,

wo fir neutrale Atome (p( anstelle geund fir ¢p0 (0) der Wert9

<Po= — 1,588071 (33)
gesetzt wurde.
In der Tabelle 1 sind die Werte von ep fur die Atome K und Hg angege-
ben. In der Tabelle sind auch die aus den Hartreeschen Tabellenl0ermittelten
Werte von eg angefiuhrt. Diese wurden aus der Formel

En = e ‘S n:o8: (34)

berechnet, die mit der Formel (25) aequivalent ist und aus dieser hervorgeht,
wenn man von der kontinuierlichen Verteilung auf eine diskrete Ubergeht;

9S. Kobayashi, T. Matsukdma, S. Nagai u. K. Umeda, Journ. Phys. Soc. Japan 10,
759, 1955.

0 Fur K: D. R. Hartree u. W. Hartree, Proc. Roy. Soc. London (A) 166, 450, 1938;
fur Hg: D. R. Hartree, Phys. Rev. 46, 738, 1934 und D. R. Hartree u. W. Hartree,
Proc. Roy. Soc. London (A) 149, 210, 1935.
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dementsprechend das Integralin (25) durch eine Summe zu ersetzen ist,inwelcher
e- die Hartreeschen Energieniveaus der Elektronen und n- die Besetzungs-
zahlen der Energieniveaus bezeichnen.

Tabelle 1

Werte von B fur das K- und Hg-Atom in e2Za0-Einheiten

K Hg
Ep hier berechnet ... -25,99 -176,7
£4 nach Hartree....... — 19,92 -140,0

Wie aus der Tabelle zu sehen ist, liegen unsere ea W erte bedeutend tiefer
als die Hartreeschen, was darauf zurlckzufihren ist, dass im urspringlichen
Thomas—Fermischen Atom die Elektronendichte am Ort des Kerns wie
1///” unendlich wird. Dies bewirkt, dass sich die Elektronenladung in der
Umgebung des Kerns als zu gross und demzufolge die Energie der innersten
Elektronen als zu tief ergibt.

Es sei hier noch erwahnt, dass man in Anschluss an Bethe Uund Sommer-
feldll eine mittlere Elektronenenergie im Atom auch als den geometrischen
Mittelwert em der Energien der einzelnen Elektronenzustinde im Atom
definieren kann. Fir eM ergibt sich im Falle des neutralen Thomas—Fermischen
Atoms12

eM=0,0m z —
°0

: (35)

also ein cca 10-mal kleinerer Wert als der Mittelwert éa, der das algebraische
Mittel der Energieniveaus der Elektronen im Atom darstellt.

Wir wollen nun noch die gesamte Elektronenenergie E des Atoms
berechnen. Diese erhdlt man, wenn man aus der Summe der Energien der einzel-
nen Elektronen im Atom, d. h. aus NsA die elektrostatische Wechselwirkungs-
energie der Elektronen abzieht, da die Summe diese doppelt enthdlt. Fiur die
elektrostatische Wechselwirkungsenergie Ep der Elektronen im Atom ergibt
sich der Ausdruck13

Ep= e[vecdv= ZeVe(0)+ ° JVeu, 36
P ) J[ ¢ , ; (36)

1L H. Bethe, zs. f. Phys. 76, 293, 1932; Aim. d. Phys. (5) 5,325, 1930; A. Sommerfeld,
Zs. f. Phys. 78, 283, 1932.

12P. Gombas, 1 c., S. 181 —183.

13P. Gombas, 1. ¢c., S. 62.
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den man mit Ricksicht auf (27), (29) und (30) in folgender Form schreiben
kann

1 72e2
ES  0f0) + T — e (37)

X0

Fir die Gesamtenergie des Thomas—Fermischen Atoms erhdlt man also den

Ausdruck
3 Z2e2 [
E = N~eA EL W + (38)
7 P

der schon mehrfach auf verschiedenen anderen Wegen hergeleitet wurde.

8 4. Energieverteilung und Energiemittelwerte von Elektronen
mit vorgegebener Nebenquantenzahl

Zur gesonderten statistischen Behandlung der Elektronengruppen mit
vorgegebener Nebenquantenzahl | im Atom teilt man den Impulsraum in
der bekannten Weise in Zylinderschalen auf, deren Achsen zum Ortsvektor r
der Elektronen parallel sind.X4 Die Elektronen mit der Nebenquantenzahl | be-
finden sich dann in einer Zylinderschale, dessen innere und &ussere Begren-
zungsflache je ein Zylinder vom Radius pi = Ihl(2nr), bzw. vom Radius
p/+1l ==(1-)- 1)x/(2nr) bildet. Die Bildpunkte der Elektronen mit der Neben-
quantenzahl I in der Volumeneinheit, deren radialer Impulsbetrag zwischen
prund pr-f- dprféllt, fullen im Impulsraum in der besagten Zylinderschale
ein Impulsraumvolumen von der Grdsse

di = (pft pf)2dpr= aeli.y ™ dor (39)

aus.
Fur den Betrag des radialen Impulses prgilt der Ausdruck

h2 k2
_ 2m(Ve (- e) 40
oY 4n2 2 (49)

wo K die azimutale Quantenzahl bezeichnet, fur die wir in dieser halbklassi-
1
sehen Né&herung in lUblicher Weise k — | + -Esetzen. Aus (40) folgt

dpr— — de. (41)
Pr

14 Man vgl. z. B. P. Gombas, llandb. d. Phys. 36/2, S. 148 ff., Springer, Berlin—Gdttin-
gen—Heidelberg, 1956.
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Mit diesem Ausdruck erhdlt man aus (39) am Ort x = Tp pro Volumen-
einheit fur die Anzahl der Elektronen mit der Nebenquantenzahl /, deren
Energie zwischen e und e -f- de, bzw. u und u + du féllt

4(21+1) m de

dri[ (u,x)
h 4912 pr
(42)
2+ ha 1 dv
4n2/1a x2 1 k2
X a* x*
wo
2Z fi W,

a (43)

ist. Die Verteilungsfunktion hat natirlich nur in den Gebieten einen Sinn, in
welchen in (42) der Ausdruck unter der Wurzel > 0 ist.

Durch Integration Uber den Raum bekommt man hieraus fur die Anzahl
der Elektronen mit der Nebenquantenzahl I im ganzen Atom, deren Energie
zwischen e und e -f- de, bzw. n und wn -f- du liegt

I 4(214- 1 i
dluy =4 e F%r
J Pr

(44)
Wt q dx
e Ja-du 1 K2r/.

+ —
u U a2 x2)

wo die Integration nur auf solche Gebiete auszudehnen ist, fur welche im
Integranden der Ausdruck unter der Wurzel > 0 ist.

Ganz é&hnlich wie im vorangehenden Fall I&sst sich durch Integration
nach e (bzw. u) von der tiefsten Energie e/0bis zu einer beliebigen Energie e
die Anzahl der Elektronen mit der Nebenquantenzahl | angeben, deren Energie
zwischen die tiefste Energie e/gund die Ei ergii e fallt und zwar sowohl pro
Volumeneinheit («;), wie fir das ganze Atom (iV;). Die tiefste Energie €;0 des
Elektrons ergibt sich fur den Wert O der radialen kinetischen Energie, d. h.
fur pr= 0, woraus aus (40)

h2 k2
Ve + (45)
8n2m r2
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folgt. Mit dieser Beziehung erh&lt man fir w, und Ni

4(2/+1 r 21+ DDa 1
Wy (u,x) = ( ) P ( ) 2 . (46)
h 4nr2 2n2/r3 X a2 x2J

] Kk
N, (n) = 4(21;]+ 1]lerdr= 221+ 1)y~ f(~M+u

up dx, (47)
aJ\x a2 X2

wo in (46) die Integration wieder nur auf solche Gebiete auszudehnen ist, flr
welche der Ausdruck im Integranden unter der Wurzel 7> 0 ist.

Fur m= Upist M, (X, u) mit der Dichte der Elektronen mit der Neben-
quantenzahl 1 am Ort x identisch, es ist also

ni (x, u,,) = Q(ar), (48)
weiterhin folgt
N, («,) = 1V, (49)

wo Ni die Anzahl der Elektronen mit Nebenquantenzahl I im Atom bezeichnet.

Die Funktion iV; (u) haben wir fir das Hg-Atom fur 1 = 0, 1, 2 und 3
berechnet und mit den Werten von Ni (u) verglichen, die man mitder Methode
des »self-consistent field« erhdlt.15 Aus dieser Methode ergibt sich fir N[(u)
[geradeso wie fur N(u) in § 1] ein stufenweise abfallender Verlauf. Wie aus den
Figuren 7, 8, 9 und 10 ersichtlich ist, werden diese stufenweise abfallenden
Kurven durch unsere glatt verlaufenden Verteilungsfunktionen iV; (u) im
Mittel gut approximiert.

Mit dem Ausdruck (42) fir dre; kann man sofort den Mittelwert (ar)
der Energie eines Elektrons mit der Nebenquantenzahl | an einem Ort x im
Atom bestimmen. Wir definieren &f (9;) folgendermassen

1/
£ (ar)= — £dnt, (50)
QJ
5]
wo fur die obere Grenze im Integral die von | unabhdngige maximale Energie

fa eines Elektrons gesetzt wurde, was in dieser N&herung gerechtfertigt ist.
Aus (50) findet man nach einfacher Rechnungh

h2 k2 4 1
[Ve - ¢

3 8n2m 12 3 £
(51)
2 Ze2 (p 1 k2 Ze2

+
3 n a a2 X2 K-

15D. R. Hartree, Phys. Rev. 46, 738, 1934 und D. R. Hartree u. W. Hartree,
Proc. Roy. Soc. London (A) 149, 210, 1935.
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Die mittlere Energie ef eines Elektrons mit der Nebenquantenzahl /
bezogen auf das ganze Atom erhdlt man folgendermassen

j*®; Qtdv (52)

wo Q@ gemadss (48) und (46) durch den Ausdruck

42/ + 1) pr(eM _ 21+ 1 a bl 1 k2
h 471 r2 26i2/rl x21 X

(53)

dargestellt wird und das Integral in (52) nur auf solche Gebiete auszudehnen
ist, fur die der Ausdruck unter der Wurzel in o; grésser als 0 oder gleich 0 ist.
Fir Nt im Nenner von (52) hat man gemass (49) iV) (u,) zu setzen.

Tabelle 2

Werte von £ (I =0, 1, 2, 3) fur das Hg-Atom in eZaO-Einheiten

0 1 2 3
ef hier berechnet......covvieicennn —712,4 -130,0 -37,95 -7,02
7i* nach Hartree .iieinnniinnens -562,4 142,0 —32,87 4,20

Wir haben ej4 fir / = 0, 1, 2 und 3 im Falle des Hg-Atoms berechnet;
die Resultate sind in der Tabelle 2 angegeben. Ausserdem haben wir ti fur
dieselben /-Werte fur das Hg-Atom auch aus den Hartreeschen Tabellenl6
mit der Formel

~efg "? n‘“e 54>

berechnet, in welcher nu die Anzahl der Elektronen im Energieniveau By
bezeichnet und die Summation auf alle besetzten Zustdnde mit der Neben-
quantenzahl / auszudehnen ist. Formel (54) entspricht (52), wenn man in der
letzteren von der kontinuierlichen Verteilung auf eine diskrete Verteilung tuber-
geht und dementsprechend das Integral durch eine Summe ersetzt.

Wie man aus der Tabelle 2 sieht, ist der Unterschied zwischen den von
uns berechneten ~-W erten und den empirischen ziemlich gross. Dies durfte
in erster Linie darauf zurlckzufihren sein, dass der Ausdruck (53) fur
nur eine grobe Né&herung darstellt.

6D. R. Hartree, Phys. Rev. 46, 738, 1934 und D. R. Hartree u. W. Hartree,
Proc. Roy. Soc. London (A) 149, 210, 1935.
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Fig. 1. — - A" = [~"1--I*n) als Funktion von x fir mehrere festgehaltene u-Werte im
3 Z du \ X

Falle neutraler Atome. Die betreffenden u-Werte stehen neben den Kurven

Fig. 2. n=1?- uj als Funktion von x fur mehrere festgehaltene u-Werte

im Falle neutraler Atome. Die betreffenden u-Werte stehen neben den Kurven
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Fig. 2dx als Funktion von u fir neutrale Atome
936Ul du =d{x "

Fig. 4. = -f- uj ~ x2dx als Funktion von u fir neutrale Atome
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E

*

>

o.

Oon(1+/€/)
Fig. 5. N als Funktion von e fir das K-Atom. e in e200-Einheiten

-------------- hier berechnet,
.................. nach Hartree

*

z

:

@

S

Fig. 6. N als Funktion von e fiir das Hg-Atom, e in e200-Einheiten
------------- hier berechnet,
.................. nach Hartree
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leg (U Iti) =--—--

Fig. 7. iV0 als Funktion von s fur das Hg-Atom. e in e2a0-Einheiten
-- hier berechnet,
nach Hartree

Fig. 8. JV als Funktion von « fiir das Hg-Atom. e in eZanEinheiten
------------ hier berechnet,
..................... nach Hartree
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Fig. 9. JV, als Funktion von e fir das Hg-Atom, e in e€/anEinheiten
-------------- hier berechnet,
.................. nach Hartree

7
iog(i*/€f) — -

Fig. 10. N3 als Funktion von e fir das Hg-Atom, e in e2a0-Einheiten
hier berechnet,
nach Hartree
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Herrn Dr. T.szonay danke ich flr die Durchfuhrung mehrerer Kontroll-
rechnungen und die sorgféltige Durchsicht des Manuskriptes. Frl. 0. K unvari
verdanke ich die Durchfihrung der numerischen Rechnungen und die Zeich-

nung der Figuren.

O PACTPEAENEHVN SHEPITUN SJ/IEKTPOHOB B CTATUCTUYECKOM ATOME
n. TOMBALL

Pesome

B pa6oTe BbIBOAATCS (hOpMy/ibl AN pacrpeeneHnst 3HEPrumM 3MeKTPOHOB B CTaTUCTM-
YeCKM PacCMOTPEHHOM aTOMe KakK fi/1s C/lydas 06LLei TPAKTOBKM 3/1EKTPOHOB, TaK U s cryyas,
KOr/1a 3M1eKTPOHbI B aTOMe CrpynnmpoBaHbl Mo Mo60YHbIM KBAHTOBbLIM YMciaM. B ciyyae aToma
Hg Pe3yNbTaTbl BbIUMC/IEHUIA NO pacrpeeeH N0 3HePrM 3/1EKTPOHOB CPABHMBAIOTCS C pacnpe-
JeNneHnem, B3aTbIM Mo Tabnuue XapTpu. OKasblBaeTCsl, YTO pe3y/ibTaTbl XOPOLLO COr/lacyoTCs.
[anee, Ha 0CHOBE CTATUCTMUYECKOrO pacrnpeae/ieHns SHeprin 31eKTPOHOB OMNpPeAensitoTCsa CpefHue
3HaYeHWsl 3HePruM 3NeKTPOHOB B aTome. B aTOM criyyae pesynbTaTbl MeHee COrnacytoTcs C
KBaHTOBO-MEXaHWYECKMMMN JaHHbIMKW. [MonydyeHHble B 88 2 M 3 pesynbTaTbl MOryT pacnpocT-

PaHATbLCA Ha Nobble CTAaTUCTUYECKN PacCMOTPEHHbIE CUCTEMBI.
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INTERMEDIATE FIELDS WITHOUT PARTICLES

By
A. Frenkel

CENTRAL RESEARCH INSTITUTE FOR PHYSICS OF THE HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST

(Presented by L. Jadnossy. — Received 11. V. 1965)

An extension of Bogoltiubov’s S-matrix theory [1] to include intermediate fields with
no corresponding particles in the initial and final states is proposed. The mathematical ex-
pression for the complete propagator of an intermediate field indicates that there may be
cases when this propagator has the well-known analytic properties of a propagator of an un-
stable particle (or resonance). It is shown that if application of the formalism to the vector
field is possible, a renormalizable theory of weak interactions with intermediate vector boson
field can be constructed. In lowest order this theory leads to the same results for the weak
decay processes as the usual Fermi theory.

Introduction

One of the advantages of Bogotiubov’s method for the construction
of the S-matrix in quantum field theory [1] is that the problematical trans-
formations from the scnrsdinger (OF Heisenberg) picture to the interaction
picture are avoided. Furthermore, the theory is constructed in a way which
makes easy the investigation of the arbitrariness in the process of renormaliz-
ation. For these reasons we closely adhere to the method of Bogotiubov.
In part | of this paper we briefly recapitulate the theory and illustrate it on
hand of the well-known example of quantum-electrodynamics, without dis-
cussing special problems (infrared divergences, indefinite metric, gauge in-
variance). Nothing new is contained in this part of the paper, except perhaps
for the remark at the end of it concerning the choice of the subtraction point
when eliminating divergences from self energy parts. In part Il we investigate
the problem of the arbitrariness in the choice of the interaction Lagrangian
L(x) and give a detailed description of the effect caused by the introduction
of a term in :y)ip: with afinite value of m. We find that the electrons are
effectively eliminated from the initial and final states (see [1], § 31.2) and
become resonance-like intermediate “particles”. We conclude this part of the
paper by remarking that the properties of unitarity and causality of the S-
matrix must be reinvestigated for this case. We stress also that in order to
verify these properties it seems desirable to find and example where the described
situation with a resonance-like intermediate particle may have a physical
background. Such is surely not to be found in quantum-electrodynamics which
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serves here only as a model. A physically plausible example is given in part 111
where we propose to construct a renormalizable theory of weak interactions
with an intermediate vector-boson field. Such a theory would lead to the same
results as the Fermi theory for all processes with low momentum transfer,
i. e. for all known /3-decays.

I. As shown in [I] § 18, the most general form of the scattering operator
S = lim S(g) may be determined without reference to the Schrodinger equa-

tion. Indeed, the requirement of Lorentz-invariance, unitarity and causality
lead to the formula

s(@ = 1+ iJL(xi;g) dxl + ...+ — J T(L(xj;g)...L(xn;g))d*, ...dxn

) (1)
T(exp iJL(x;9)) dx,

where

L{x:g) = L(x) g(x) + J*'--- Kk K b - e-yv-dgiy”- mmy(yv-1)dyl...dyv_x.
>2 Vi

2
Here 0 <; g(x) < 1is a classical function switching on and off the interactiE)n)
and playing an important role in the derivation of (I); calculating the matrix
elements of the S operator between free particle states, one may, however,
put in the above formula g(x) = 1 from the very beginning of the calculation.
The operator L(x) is the interaction Lagrangean. It contains normal
products of the operators of the fields under consideration, multiplied by
appropriate coupling constants. The field operators obey free-field equations
and free-field commutation relations. In order to have a Lorentz-invariant,
unitary and causal S-operator, L(x) must be scalar, Hermitean and local.
Similarly, the Av-s must be scalar, Hermitean and quasi-local operators, and
they may be chosen symmetric in all their arguments without loss of gene-
rality. Thus each A, (x5...x,,) is a symmetrized sum of various normal pro-
ducts of an arbitrary number of field operators with arguments x{, x2, ..., xa;
o« < v, each of these normal products being multiplied by a factor

8
z i %) eeeb(xi - 3
- xi) 3) o(xi Xv) 3)
ensuring the quasi-locality. Z is a polynom in-&_? i— 1, ...,v with ar-
X

bitrary coefficients.
We see that in this most general form of the S operator of quantum
field theory, we have to choose not only the interaction Lagrangean, but also

Acta Phys. Hung. ToT. XX. 1966



INTERMEDIATE FIELDS WITHOUT PARTICLES 169

the infinite set of the highly arbitrary Av-s. Moreover, there is another ar-
bitrariness in S, inherent in the fact that the time-ordered product

T(L(xD)L(x2) . . . L(xn))

is undetermined if two or more of its arguments are equal. It can be shown,
however, that any change in S(g) caused by a change in the definition of the
I-products at X(= xk = ... may also be expressed by changing some of the
Av-s. Thus essentially we are left with one source of arbitrariness only, the other
being redundant in the sense explained above.

At first sight it seems that the simplest way of constructing the S-
operator would be the following. Since all the T-products are uniquely de-
termined for Xj §=xk, extend the same expressions to *; = % = .. . and put
all Av= 0. Then one would have to choose only the interaction Lagrangian
L(x), and the free parameters of the theory Mould be the coupling constants
and the masses, the latter entering into the S-matrix elements when expressing
the I-products according to w icx’s theorem. However, this simple procedure
does not work, because the integrals jI dx1...dxncontained in (1) in general
are divergent, and it is easy to show that the divergences arise just because
of the simple extension of the -product to %, = xk.1Thus one has to try, in
order to obtain integrable expressions, to define the I-products for Xj = xk
in some other way, or alternatively, (and that is what we shall do) to choose
some of the /1,-s different from zero. A detailed examination reveals the fact
that — except for a few oversimplified model theories — in order to eliminate
all the ultraviolet divergences2from all S-matrix elements one has to choose
an infinite number of Ay-s different from zero. Doing so one always succeeds
in making all S-matrix elements finite, however, in general these matrix
elements will contain an infinite number of arbitrary constants arising from
the Aws, and this clearly means that the theory is unacceptable. Only in a few
cases can the elimination of all the divergences be accomplished in such a way
that in spite of the infinite set of the Av-s the resulting S-matrix elements will
contain only a finite number3 of arbitrary parameters, which, together with
the masses and the coupling constants originally contained in the theory,
may be determined with the help of a finite number of experiments. The theor-
ies which turn out to be unacceptable in our scheme are called theories of the
second kind (or non-renormalizable theories), while the “good” ones are the
theories of the first kind (or renormalizable theories). The procedure of re-

11n special cases divergences from other causes occur, e.g. the infrared divergences
in quantum electrodynamics. Such problems are irrelevant for us, and we simply disregard
them. The divergences we are interested in are the ultraviolet divergences, which occur when
Xj —tj-> 0 (or pik-m oo if we transform to momentum space).

2See footnote 1.

31In some cases (e.g. in electrodynamics) this number turns out to be zero.
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moving the divergences is called the renormalization, because in the original
approach of Dyson and Saram the divergences were formally compensated
for by infinite charge and mass renormalization. It is important to realize
that in Bogoliubov’s method the charge and mass parameters have finite

(physical) values from the very beginning, and the divergences are disposed
of with the help of the /lys.

To illustrate the procedure for the elimination of the divergences in
a theory of first kind, we turn to the well-known example of quantum electro-
dynamics. The interaction Lagrangean is

L(x) = e:x)() y" ip()AL (x) : = e 1y>()A{x) y(x): 4)

where the electron and photon field operators satisfy the free field equations
.9
j ey Wn)=0; OA (5)

and the corresponding free commutation relations. The parameters e and m
are the electric charge and the electron mass, respectively. It can be shown
that all the ultraviolet divergences4 can be eliminated from the S-matrix
elements with the help of operators Av(a,, .. ., X,,) of the following structure:

e (BB — x2 ... 6 (x2— a,)}: ¥(a,) A(xk) Xp(xj) :
(i =j'-> i=f=k; «k =f=5) (6)

for all odd v-s starting with v = 3;

D. Ba, -a2)...0(Ar — xv)
3a? Qxj 8a? 9a,

B AMNXIA'IX]): (ij=]) "

for all even r-s starting with v = 2;

F..+ Gvi- 6(Ai — a2). . .5AI  a.) V(X)) (ion (8
2 - T3

J

for all even v-s starting with v = 2. The derivations act on the variables a
of the Dirac O-functions only. We have here an infinite set of Av-s, but any
operator product occurring in this set is at most trilinear, and any polynom Z
in (3) is at most of second degree. The possibility of limiting both the linearity

4 Except for the so-called vacuum divergences, which can be eliminated by dividing
all the S-matrix elements by the vacuum expectation value of the S-operator.

Acta Phys. Hung. ToT. XX. 1966



INTERMEDIATE FIELDS WITHOUT PARTICLES 171

of the operator products and the degree of the polynoms Z in the whole set
of the /lwsis the necessary and sufficient condition for a theory to be renor-
malizahle.

Symmetrizing the expressions (6)—(8) and inserting them into (2), we
arrive after integration over the variables y at the effective Lagrangean

() = 1)
L(x; 1) = ty(x)A(X) yi(x) 1 + eB :yj (x) A(x) yi(x) -t

Fy)() x() -j- G

axa X
1 QHA(x) pna(x) aAa(x)
D . (9)
2 X 3xg 8
where
ez2* , e ..
v Bogr1g G X fi
(2v) ! V1241
(10)
e e2"
v F,m - D 2v.
v=1 (24 Y D VZ( (24!

For the complete proof of the statement that with suitably chosen series
B, G, F, D all S-matrix elements become finite, the reader is referred to [1],
§ 30. Here we just perform the removal of the divergences in a simple case
and indicate the general procedure. Let us try to calculate the S-matrix ele-
ment between one-electron states

<p\r\ws\p,s>=(0 14 )P 11+ ijL(X;Ddxx+

("
0] J T(Lexis YL(T2? Yaxadxz + . dar<+>(p) [0

up to second order in e. The terms omitted in (11) are of higher order, and from
those written down we have the following contribution

014 ypy 1H----i F., 1y (xj) y>(*i) : + G2—l :xp(xj)---q---¥>(*,) ©odx1+
2 2 ax,
(12)

“ 12T (¥ (XIFA(X]) y{xx) = (2 A(x2) y(x2):) dxldx,j a*<+> (p)jor
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Using the familiar Feynman rules given in [1] §8 19—21, we find that up to
second order in e

<p r 1S lp,s) = brsOf{p’' —p) + (2n)4dib(p' — p)-

(13)

v'+ No _ 4+ A 22> (P

(25)3/2 2 2 (2n:)3/2

where the expression
dk — K+ m
327 (p,m) = y _ P 7 va;

(2m)4i k2-f is (p —&2— m2-f-ie

(14)

= (R2(p, fc, m)d/c

comes from the term of (12) containing the T-product. This T-product has
been treated according to Wick’s theorem, and the well-known expressions
for the vacuum expectation value of the two-fold T-products

1
<0] T(yi(x1) yi(x9) |0> = e P dp.
(2m)4i 1 tril—p2—is
(15)

<0| T(Afi(xD) Avx2)\0) = 87’ ei(xi-xnkdk
| TAARIGD AVN) (2n)4i J k2-\-is

have been used. These expressions are divergent for x+ — x2—m0 and this is
why the integral in 2~ is also divergent for k —»00. The divergent second order

Fig. 1

term e2v+ X<2v- is illustrated by the Feynman diagram shown in Fig. 1.

To see how the divergences occurring in can be compensated for by F2 and
G2, we observe that the expression

9R (2 (p, fc, m)
dp

—Pp2R}2*j (p, k, m)dk

R (p, k, m) — R (0, k, m) b dk

(10)
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is convergent. Thus if we choose in (13) F., and G2to be divergent in a well-
defined manner,5

JR(CAMN(O0, k, m)dk = — A~ 2)(0, m),

ar<2) (p, m)

G2 "dR(p, k, m) dk (17)
q dp 9P p:O

we are left with a finite remainder in (13)
L2 0 v r(p. m) e2p1 RP (p, k, m)ydk=e2 (p,m,0). (18)
2

We have introduced the third argument in 2}2*to indicate that the latter
depends on the point at which the expansion into Taylor series has been
carried out.

Similar consderations lead to the compensation of the divergences in
the second order vacuum polarization diagram (Fig. 2)

Fig. 2

and in the third order vertex diagram (Fig. 3),

when the divergent D, and f?3, respectively, are chosen suitably. Going then
to fourth and fifth order in e, the constants F4 G4, D4 and Bbcome into
play and take care of the divergences of the fourth and fifth order graphs
which eventually remain after the second and third order divergences have
been eliminated from them with the help of the F2 G2 D2 and B3 already
fixed. The procedure can be extended to arbitrarily high order in e, the essential
point being that no such divergences occur that cannot be compensated for by
the Aps introduced in (6), (7) and (8).

5 F2 and G2 are often said to be “divergent constants”, to express the fact that they
depend only on the electron mass and on the point at which the subtraction has been made,
but not on the momentum variable p.
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Let us come back to the second-order electron self-energy. We arrived
at the finite remainder p2Zj2 (p, m, 0) by subtracting from R the first two
terms of its Taylor series taken at the point p = 0. It is easily seen that ex-
panding 172 at some other point p = m' we obtain another finite remainder.
In an obvious shorthand notation we have

dzn™ (p, m)
dp p

Z (p,m) = Z*2>(m', m) :(p - m>) +

19
+ (P — Tn)2Zf2) (p, M m*). (19)

Now, by a slight modification of the corresponding /1,-s we can get the com-
pensating divergent constants. Indeed, it is enough to work instead of with (8)
with the expression

8
; m' G, 4- G,,— —m'G,
eV (xi) 2 1 dX:
(89
4 Xi —x2) ... 0(XlI - XV) 4>{xj) : (i =f=j).
This leads to the effective Lagrangean
L(x;1) = e:ipAxp:+ eB YA y:+ (F m' G) :yy: -)-
(99

+ G : .ARip:—m xpm: - 0 -:8 al3“N - (3 A
[I.?ép o A

with (10) formally unchanged. Repeating now the calculation which led from
(11) to (13), we arrive at the expression

5 (F2+ m' Gp -F—2 G2(p —m’) + -TQ)(p, m)

which reduces to

e2(p — m"H2Z§% (p, m, m") (20)

-Q - (P m) (F2+m'G2= ~ZM(m',m) (17)
2 2 dp p

m'
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The expression e2(p — m")2Zf” corresponds to the finite remainder (Fig. 4b)
ofthe divergent diagram shown in Fig. 4a and enters into the various scattering

div

Fig. 4

amplitudes. E. g. the fourth order Compton scattering diagrams (Fig. 5)
contain this element. Thus a new mass parameter m' appears in the theory.
In many textbooks we may read that it is “convenient” to choose m' — m
because then all the radiative corrections to external and free electron lines are
equal to zero, and also because then the pole of the complete electron propagat-
or occurs at the electron mass m. It seems to us that the choice m" = m isnot

Fig. 5

Fig. 6

merely a matter of convenience. Let us examine the question of the radiative
corrections to the external (e. g. ingoing) lines. The relevant factor corresponds
to the part of a diagram shown in Fig. 6 and equals (except for immaterial
factors 24)

—— e2(p —myzti2) (p, m, m) v~ (p) . (21)
p—m i
Taking into account that the spinor v~(p) satisfies the
(p —m)v=(p) = 0

Dirac equation, we see that if m' = m (21) gives

(p—mif (p,m m)v-(p) = 0
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and the diagram with the radiative correction in the external line indeed does

not contribute to the matrix element. However, if we put m' sf=m (21) will be
divergent because

(p —m)"1v~(p) = oo

and the factor (p — m')2 will not counterbalance this. Similarly for a free
electron line the propagator in the middle of the fourth order graph (Fig. 7)

Fig. 7

is easily seen to lead to divergence if in' Z{=m, while for m' = m we get zero
as for the external lines. Thus for m' ==m the radiative corrections to the
external and free lines make the S-matrix elements divergent, and therefore

the choice m' = m seems to be not only convenient, but necessary.
1. In the preceding section we have established that it is necessary
to choose m' = m in order to avoid infinities in the external and free electron

lines. The result is of course easily extended to the self-energy graphs of the
other particles, e. g. for the photon we have to carry out the expansion at the
photon mass nif = 0. The corresponding term with coefficient D in (9') was
written already in that form. For the vertex functions the choice of the sub-
traction point is probably not unambiguous in general, but in quantum electro-
dynamics gauge invariance imposes the condition B2~+i — G2. and the prob-
lem is thereby resolved. Thus we arrive to the effective Lagrangean

L(x; 1) = e:xpA xp:-f-eB :xpA xp:— bm :xpx:
(9"

G:— 3y — mxpxp:— D — :3aAxdaAx— (BaAa)2:
2 2

where the notation —dm = F -j- mG has been introduced.6 Now the whole

renormalization can be carried out without difficulty for the external and free
lines.

Let us here recall to mind that up to now we have investigated the prob-
lem of removing the divergences from the S-matrix elements of a theory
where the interaction Lagrangian was given by

L(x) = e : %A xp: (4)

Notice the misprints in formula (30.45) of [1].
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and the field operators \p, AR satisfied the free field equations
(id— m)yj= 0; 04,1 =0 (5)

and the corresponding free canonical commutation relations. Let us now
ask what happens if we start from the same free field equations and commut-
ation relations, but use the interaction Lagrangian

L(x) = e:ipA y:f- m:mip: " L(x) + OL(x), (4"

where in is a new finite “coupling” constant, independent of e.

First of all let us remark that the introduction of the bilinear term
T1\u>rp: does not change the fact that all scattering processes, i. e. all processes
where energy-momentum transfer between particles is possible, are due to
the same trilinear operator terms as it was the case previously, since a bilinear
term cannot lead to such processes.7Thus the structure of the basic interaction
remains unchanged, and therefore we may hope that the renormalization can
be carried out without essential changes in the Av-s. This isindeed the case, but,
as pointed out at the end of § 31.2 in [1], the term Hi :\pip : leads to a peculiar
effect.8Namely, we shall see that this term modifies the free electron propagator
Sc(p) in the following way:

and by the change

o v = 0 (23)

makes all the graphs with external electron lines equal to zero. Thus the effect
caused by the term in :mip:is not equivalent with a simple renormalization
of the mass of the electron.

We shall show below that at the same time the finite remainders of the
electron self-energy corrections take the form

ev(p— m")2 (p, m -f- ih, m") (24)

and that in the present case no divergences arise when self-energy corrections
are inserted in the external and free electron lines. Namely, we shall find that
the mechanism leading to formulae (22) —(24) makes the corresponding graphs

7 Of course other finite terms may also be introduced (see [1] § 32.), but we are not
interested in them.

8We have written m instead of dm in [1] to avoid confusion with the corresponding
divergent constant in (97).
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with external electron lines vanish with arbitrary m', while for free electron
lines we have simply the contribution

V 1(p)vs-(p7) = ors(p — p’) (p* = p0'= + Vp+ m2. (25)

The formulae (22)—(25) are obtained by inserting all the corrections
coming from the m :i/np :term in all simple electron lines of a Feynman graph

¢ ol e o O 4. = A

CR— 4 — At >P-A 4 = A -

----------- 4 A b —A-A— 4 -, = A
Fig. 8

and then eliminating all the divergences by appropriate choice of the divergent
constants in the A,,-s. Thus we obtain the following results:

for a propagator(Fig. 8a)

1 m
p—m p—m i p m p—m
(229
1
P 1 in p —m —m
p m
for an external line (Fig. 8b)
1+ -p"_--r-ﬁ- TIM vV o(p) = L m V- (p) =
p—m
(239
P=m v (p)—*0 for p2
p—m—m
for a free line (Fig. 8c)
, : : m m Vs (P)
ars(p - p) - (20)4i0{p - p’) ¥ [g, o (20)32
@2n)32 r p—1 —T1 (2n)32
— ors(P - P)+ 6(p-p")- 0 for p2- T2 (25"
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Of course, the geometrical series have been summed at such a value ofp where
they converge (such values of p surely exist for given m and ire) and then the
mass shell value p2= m2has been taken if needed. It is easily seen that it is
necessary to carry out the summation over the complete series, because stopping
at some finite order in rh, we get divergent results on the mass shell.

We still have to show how (24) is obtained. Looking at the second-order
formula (20), we see that it contains the divergent expression (14) 27 (p, m),
in which the free electron propagator

i
p—k—m
occurs. According to (22) we have to putin it m -|- rhinstead of m, i. e. we have

to write S{dp, m -J-ire) instead of E@Qp, m). To compensate the divergences
we have evidently to choose

1 6 ——3"@F>m+ ™ — (F£mG = -E~m"m--rh)
2 dp 2 a7
o
/ N‘\l
A A 1— A
Fig. 9

and we obtain the formula (24) for v= 1.1t is now easily seen that no difficulty
arises with the self-energy corrections to external and free lines. Indeed, while
previously for an external line (Fig. 6) we had the formula

oo for m ¢ m
~ m ----- —e~(P —m'YEQ)(P."L m )Vv~(P) =

p - 0 for m =m

we now have the case shown in Fig. 9, i. e.

p B m—:--m---i-—eZ(p —m')2 (p, m+ m, rﬂ) —p i--mri Thv~ (p) —u0
if pZ—HTQ (26)

independently of the value of ml. Similar considerations show that all self-
energy corrections to the free electron lines vanish and we therefore come to
the expression (25). We see that the theory with the new Lagrangean L(x) is
renormalizable and that all the calculations may be carried out up to any
given order in e. The structure of the basic interaction is the same as in the
normal case ire = 0, however, all the S-matrix elements with external spinor
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lines are equal to zero. This means that the spinor field becomes an inter-
mediate field, i. e. that the “electrons” take part in the scattering processes
only as virtual particles. Free “electrons” may be present in the initial state,
but they cannot interact and therefore they may be omitted without loss of
generality.

Two problems arise in connection with these results. First, it isnot sure
that the procedure for the calculation of the new S-matrix elements leads
to a unitary and causal S-matrix. We shall presently come hack to this ques-
tion. Second, even if these basic requirements are satisfied this does not
necessarily mean that the theory corresponds to physical reality. In this con-
nection it is enough to call to mind the well-known fact that present-day field
theories are unfortunately much richer than necessary. E. g. a theory of quant-
um electrodynamics with electron mass and charge values different from the
physical ones may mathematically be as good as a theory in which the true
values have been used, but such a theory does not apply to nature. In the same
way it is almost certain that even if the theory with intermediate electron
field turns out to be not worse mathematically than the normal one, it should
be rejected because there is no physical background for such a theory. In con-
trast to this, in part 11l of our paper we shall see that for weak interaction
the case is different: while the normal (M = 0) vector-boson theory of weak
interaction is non-renormalizable, the introduction of a bilinear vector-boson

M 2 ;
term — ——: B* BR: into the interaction Lagrangean makes the theory

renormalizable. It is true that at the same time the vector boson becomes a
purely intermediate field, but this is not in contradiction with any known
experimental fact.

Let us now illustrate the problem of unitarity and causality on hand
of example of quantum electrodynamics. The expression for the scattering
operator S with the new effective Lagrangean

L(x; 1) = L(x; 1) + OL(x)

according to (1) reads now:
5= 1+ iJ(L(1)+ oL{))dl + j2y T(L(l)+ oL(l),L{2) + 6L(2))dld2+..,, (27)

where 1 stands for xx, L (1) for L{xt; 1) and OL(l) = in : §(xX) rp(xD) :. A finite
part of this series contains terms up to a finite order in in. However, we have
seen that we must carry out the complete summation over m for each electron
line to avoid divergences in external and free lines [see formulae (23") and
(25"]. This means that we have to rearrange the infinite series (27) in such a
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way that for each given order in e we obtain an infinite series in in. To du
this we have first to write down all the terms of zero order in L(1) (i. e. in e),
then all terms of first order in L(I) and so on. (Of course, L(l) contains the
divergent constnats B, G, D, dm which themselves are infinite series in e,
and in which only the terms up to the desired order are to be retained, just as
in the normal case m = 0.) After trivial steps we arrive at the rearranged
scattering operator

I = ¥y — 1T(@dL(l)...0OL(n))d\...dn +
y n\
+ — Y — IT(L{1)OL(1). .. aUm) dI’dl...dn + ...= (28)
11t"o nt'J
@ ft R »

- Yy —-— IT(L(1)...Uk)aU1). .,0L(n))dI'. ..dkdl. ..dn,
~0On ak1 n'J

which has to be used if ind 0. Thus the rearrangement S -* S must be con-
sidered as the necessary redefinition of the scattering operator for cases m==0.

Of course one cannot assert that S = S, because S is not known to be ab-

solutely convergent. Therefore all the properties of S must be reinvestigated
without reference to S and it is in this connection that the problem of unitarity
and causality arises. This problem, which is intimately related to the problem
of the analytic structure of the Green’s functions of the theory, will not be
investigated in the present paper. Let us only remark that the two-point
Green’s function, i. e. the propagator of an intermediate field (with self-
energy corrections included) has some encouraging properties. Indeed, for-
mulae (22) and (24) indicte that this propagator is characterized by two mass
parameters m rh and in', and that the pole of the propagator

— (29)
p (m}m —(p —m)-e-Ztp (p, m \-m, m’)

including all second-order self-energy corrections may be shifted from the real
axis. The important question is whether for suitably chosen mass parameters
the pole will no longer be on the first Reimann sheet, as required by unit-
arity and causality.* The answer to this question may essentially depend on
the concrete structure of the self-energy correction, determined by the basic
interaction Lagrangean. Therefore we think that it would be useless to make
a detailed investigation of these properties in quantum electrodynamics,
where the case in @ 0 is perhaps mathematically correct but surely not physi-
cal, and we turn now to a physically plausible case.

*See the note added in proof.
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11, A possible application of the proposed scheme is the constructiol
of a renormalizable theory of weak interactions with intermediate resonance-
like vector boson.

It is well known that the vector boson theories with the trilinear inter-
action Lagrangean

L(x) = d  (X)0°y2(X) BA(X) : -- h. c. (30)

are in general non-renormalizable. The reason for this is the following. Let the
free vector-boson field satisfy the Ki1ein—Gordon equation9

(O - M2Ba(x) = 0. (31)

Then if the four components of B,, are quantized
[B*(x1),BR(x2)]_=gaB- » Ve ike(k*)d(k2-M 2)dk (32)
(2n:)-1J
we arrive at the following formula for the free vector boson propagator DaR:

<0| T(B* K) BR (x2) |0>= - DaB(x, - x2) =
(33)

! eik(xi xr) dk .

(2ny o M2 s
We see that the degrees of the fermion and boson propagators in momentum
space and the topology of the Feynman graphs are the same as in quantum
electrodynamics, and therefore the theory is formally renormalizable. However,
because of the appearance of the metric tensor in the commutator (32), the
free space state will be a vector space with indefinite metric, and negative
probabilities occur in the theory. To remove this difficulty several methods
are known, but except for the special case of conserved spinor currents, they
all lead to non-renormalizable theories, essentially because in the boson propa-
gator the factor

gaB(k2- M2+ie)~" (34)

has to be changed to

ga/,~ I ) (fe2_ M2 + [f)~1' (35)

9More sophisticated equations for the vector boson have been proposed, but we
shall not investigate them in the present paper.
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Thus we have here a situation where the normal M = 0 case turns out to be
unacceptable in the framework of the renormalization program.

M 2
As a solution we propose to add the bilinear term 1 B* (x) B* (x) :

to the interaction Lagrangian (30) and otherwise retain the formally renor-
malizable variant of the theory defined by the formulae (31)—(34). Going

nony over from S to S, we arrive at a theory where free vector bosons cannot
interact. The solution of the indefinite metric problem is then trivial. It is
enough to demand that no vector boson be present in the initial states, because
then they can never appear in the final states. More precisely, we split the
Arector space with indefinite metric into two orthogonal subspaces, a physical
subspace (with positive definite norm) with no vector bosons and a subspace

where bosons are present. The S-operator acting on physical states leads again
to physical states and thereby no negative probabilities arise in the theory.

The applicability of this scheme to the construction cf a renorinalizable
theory of weak interactions with purely intermediate vector-boson field is
immediate. In lowest order this theory clearly leads to the results of the Fermi
theory in all cases where [[2| M2-f-M2i. e. for all /?-decay processes, if
we put

1 d2

/8 M2+ M2

= /= 1,4-10 4ferg-cm3,

where d is the coupling constant of the vector boson to the weak currents.
Comparison with the results of high-energy neutrino experiments could serve
as a further experimental check on the theory, however, the theoretical un-
certainties in the form factors together with the experimental ones make such-
a comparison probably premature.

In conclusion let us make the following remark. Usually field theories
are expected to have structures in which each field operator gives rise to a
particle which may be both external and virtual. However, we think that
one need not consider this requirement as a necessary principle. Indeed, even
for stable particles there may be special symmetry laws which eliminate
some of the polarization states from the external lines but preserve them in
the internal ones. A known example for this is the case of the electromagnetic
field. A more general reason for doubt regarding the necessity of the above
principle lies in the problem of the unstable particles (or resonances). At pre-
sent it is an open question whether one has to introduce independent field
operators for the unstable particles or whether one has to obtain them as com-
posite systems of the stable particles. The second possibility is of course more
satisfactory than the first, but up to now no such solution of the problem
could be given. We may therefore adopt the first possibility and consider it as
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a phenomenological approximation of the second. One then has to look for
a mechanism which discards the unstable particles from the initial and final
states of the scattering processes, because in a consistent S-matrix theory only
stable particles should occur in those states. It may he that an extension of
the procedure proposed in the present paper to all unstable particles may give
such a mechanism.

Note added in proof. It is well-known that the propagator of a stable
particle (including radiative corrections) may have and in many cases actually
has a ghost pole. We are not concerned here with the elimination of the ghost,
but rather with the elimination of the normal stalde-particle pole. The de-
tailed investigation of this problem for scalar and vector fields is in progress.
The author expresses his thanks to Prof. |I. Biatynicici—BiRULAfor an inter-
esting discussion on the subject. Valuable critical remarks of Prof. J. Rayski
and |I. Todorov are also greatly appreciated.

Acknowledgements

The author is deeply indebted to Dr. G. Domokos and Dr. K. L. Nagy
for valuable discussions. Special thanks are due to P. H rasko for continuous
help and encouragement in all phases of this work.

REFERENCES

1. N. N. Bogoliubov and D. ¥. Shirkov, Introduction to the Theory of Quantized Fields.
Interscience Publishers, New-York, London, 1959.

MPOMEXYTOUHbLIE MONA BE3 YACTWL,
A. ®PEHKENb
Pesome

MpegnaraeTcss pacnpocTpaHeHWe Teopuu S-maTpuupl Borono6osa [1] K onuvcaHuio
NPOMEXYTOUHbIX MOJe 63 COOTBETCTBYIOLMX YacTUL, B HAYa/IbHOM U KOHEUHOM COCTOSIHUSIX.
V13 MaTeMaTMYecKoro BbIPaXKeH)s! MOIHOM NPUUUHHON (YHKLMKU TprHA NPOMEXYTOUHOro nons
BWAHO, YTO MOTYT 6bITb Cly4au, KOrga aTa (lyHKUMSI 06/1ajaeT U3BECTHLIMM aHANMUTUYECKMM
cBOViCTBaMM mponaraTopa HecTabu/bHOW YacTuLbl (MU pe3oHaHca). MokasaHo, UTo ecnu npea-
JIOXKEHHbIA (HOPMa/IM3M MPUMEHUM K MO0 BEKTOPHOIo 6030HA, TO MOXHO MOCTPOUTL MepeHop-
MUPYEMYIO TEOpUI0 CnabbiX B3aVMOAENCTBUIA C MPOMEXYTOUHBLIM MOSIEM BEKTOPHOrO 6030HA.
B HUM3LLIEM NPUBAVXKEHWN Teopust BeAeT K TeM Xe pesyfibTaTam, uTo u Teopusi depmu NS BCex
cnabblX pacnafios.
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THE HALF-LIFE OF THE SECOND EXCITED STATE
IN Csi3B
By
T. SCHARBERT

(Received 23. XI. 1964)

To obtain spins and parities of the levels of Cs1® many investigations
were performed on the decay of both Bal3and Xel133 [1]. It has been demon-
strated that for three out of the first four excited states of Csi33 reliable spin
and parity assignments [2] might be achieved. This is true especially for the
first and the third excited levels where the values 5/2+ and 3/2+ are reliably
established.

It is doubtless that the most problematic level is at 161 keV, i.e. the
second excited level. According to certain measurements [3, 4] spin 3/2,
while in others [2, 5, 6] 5/2 are supposed. The problem is even more interest-
ing since Cs1x is near the double closed shells and the investigation of such
kind of nuclei is very promising theoretically also.

It would be very useful in the given situation if there were any available
experimental data referring to the lifetime of the 161 keV level. Unfortunately,
up to now only the approximate estimation of Bodenstedt et al. [5] has
been known in literature according to which Tj|2</ 5 ¢ 10-10 sec.

That was the reason why we decided to measure the lifetime of the
second excited state of this isotope.

The measuring instrument consisted of a time to amplitude converter
with slow-fast system. The signals of two NaJ(TI) crystals in connection
with two 6810/A photomultipliers were connected with a fast coincidence
circuit with tunnel diodes [7]. The slow part of the converter was the usual
one, attached to a multichannel analyzer.

The resolving time of this instrument was 2t = 3,0 « 10-9 sec for
Co80 isotope.

Measuring the lifetime of the second excited level, the slow parts were
set to the 161 keV and 276 keV energies, respectively. It is clear from the
level scheme that no other cascades interfered in the measurement of this
level. The transition being weak, the chance coincidences were reduced by
placing a lead and tin shield between the source and the crystals. The lead
shield made a cut off about 200 keV and the tin reduced the intensive 81 keV
peak. We used Co®0 isotope as a prompt gamma source.
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The measurements were performed in five independent 24 hour periods.
In each period the sources Co60 and BalX were changed 14 times to eliminate

the drift of the instrument.

Fig. 1. Prompt and delayed coincidence resolution curves for Co60 and Bal®

Evaluating the experimental curves (Fig. 1) by the centroid shift method

the following value was received: T*2= (9,7 " 2,6) «10-11 sec.
For the purpose of evaluating the measurement let us see Table 1:

Table 1
2 —72+ 32 - 12+ 5/2- 72+
R 13/2 —7/2+ 1102 — 712 + 9/2 —7/2+ 72 —2+
An 1 0 0 | | 0 | 0
El Ml El Ml

EL or ML E3 M3 E2 M2
TIL (W) sec 1 1@ 10 105 io-B 10 1B 1012
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Here we obtained the values Tiji{w) according to the Weisskopf
calculation from a nomogram given by Wilkinson [8].

It is clearly shown that on the basis of the one particle model among
the values of 3/2+ and 5/2+ the assignment of 5/2+ seems to be the more
probable (the columns with An = 1 can be eliminated on the basis of Coulomb
excitation measurements). The deviation of the experimental value from the
theoretical one can be explained by the appearance of collective effects and
E2 mixture.

After we had finished our measurements, we received the paper by
Frlauger and Schneider [9]. They also measured the lifetime of this level
but with the help of gamma-conversion electron coincidences, and they
obtained T = (0,85 ~ 0,16) m10 10 sec in close agreement with our value
within the limits of errors.

I am indebted to Professor A. Szalay for the excellent working con-
ditions at this Institute and to Dr. D. Berényi for stimulating advices.
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ACTIVATION DEVICE
FOR OBTAINING ACTIVE DEPOSIT
OF THE THORON ON THIN WIRE

By
Cs. Ujhelyi and D. Berényi
INSTITUTE OF NUCLEAR RESEARCH OF THE HUNGARIAN ACADEMY OF SCIENCES, DEBRECEN

(Received 23. XII. 1964)

The ThB 4+—C 4—C" source provides a number of reliable standard
calibration lines for beta-ray spectroscopy. To obtain active deposit on thin
wire (~0,1 mm) two procedures are generally used: the wire together with
the source-holder is placed into the activation device [L—3] or the wire
itself is singly activated and then stretched (e.g. [4]). The disadvantage of
the first procedure is that not only is the wire activated but the source-holder
too. In the second procedure it is difficult to stretch the active wire on the
source-holder.

Fig. 1. General view of the activation device

In this short note an activation device designed for obtaining ThB -f-
-j- C -f- C" on thin wire is described. Here the thin wire stretched by a steel
spring is activated and after activation the wire can be easily fixed on a
suitable sourceholder.

The activation device 1iTSiééh in Fig. 1. The device consists of the follow-
ing parts: the stainless steel vessel containing the emanating preparation,

Acta Phys. Hung. ToT. XX. 1966



190 CS. UJHELY! and D. BERENYI

the wire stretched by the steel spring (how), and the upper and lower parts
of the unscrewable plexiglass plug (Fig. 2).

Before activation the plug is unscrewed and the wire stretched by a
steel spring (the bow) is placed into the corresponding groove on the lower
part of the plug. When the two parts of the plug are screwed up electric
contact exists between the wire and the negative jack (Fig. 3).

Fig. 2. Parts of the device

Fig. 3. Cross section of the device

The whole activation device is fastened to a metal disc supplied with

a positive jack. The changeable lead shield surrounding the device is mounted
on this disc.
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According to our measurement the ThB -f- C -f- C" activity deposited on
the negatively charged wire shows a saturation at about 1000 V. With the
increase of the voltage of 250 V to four times that value (1000 V) the activity
of the wire increases by afactor of~ 1,5. (For an activation voltage of 1500 V
the increase of the activity was not significant any more.) About 60% of
ThB - C — C'' activity deposited on the plug and on the how (steel spring
-f- wire) is concentrated on that part of the wire just above the platinum cup
containing the emanating RdTh source in hydrated ferric oxide preparation.

The authors are indebted to Dipl. Ing. J. Schadek for the technical
design of the chamber.
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MESSUNG DER TOTALEN WIRKUNGSQUERSCHNITTE
VON Cs UND Rb FUR NEUTRONEN
VON 14 MeV ENERGIE

Von

I. Angetli und |I. Hunyadi
INSTITUT FUR KERNFORSCHUNG DER UNGARISCHEN AKADEMIE DER WISSENSCHAFTEN, DEBRECEN

(Eingegangen: 4. I. 1965)

Einleitung

Die Messung der totalen Wirkungsquerschnitte fur schnelle Neutronen
ist eine relativ einfache Aufgabe, und es wurden bereits eine ganze Reihe
derartiger Messergebnisse verdffentlicht [1, 2, 3]. Es gibt jedoch noch etwa
20 Elemente, deren totale Wirkungsquerschnitte fir Neutronen mit einer
Energie von 14 MeV noch nicht gemessen wurden [4].

3 In dieser Arbeit sollen die experimentelle Anordnung fir die Messung
der Werte von Op hei Cs und Rb im Falle von 14 MeV-Neutronen und die bei
der Messung erhaltenen Ergebnisse besprochen werden. Aus den Werten der
gewonnenen Wirkungsquerschnitte erhalt man auch eine Information Uber
den Radius des Kerns von Cs133 da das in der Natur vorkommende Cs nur
das Isotop CsIxenthdlt. Fur den Radius von Rb kann daraus ein mittlerer
Wert ermittelt werden.

Experimentelle Anordnung

Die Messung wurde bei einer »guten Geometrie« durchgefiuhrt. Die
Neutronen wurden von einem Neutronengenerator mit einer maximalen
Beschleunigungsspannung von 110 KV [5] bzw. 300 KV [10] durch die Kern-
reaktion T(d, n)He4geliefert. Der Abstand der auszumessenden Probe vom
Target betrug 30 cm und der des Neutronendetektors 60 cm; der letztere
schloss im Falle von Cs mit dem Deuteronenstrahl einen Winkel von 90°
ein, im Falle von Rb einen Winkel von 0° d. h. wir erhielten Neutronen mit
einer Energie von 14,08 MeV bzw. 14,69 MeV. Die Proben waren zylinder-
formig und hatten Durchmesser von 3,9 bzw. 3,3 cm; sie enthielten 55 g
CsCl bzw. 49 g RDbCI. Als Neutronendetektor wurde ein organischer Kristall
(Anthrazen, 0 3,8 cmXI1,2 cm) benutzt [11]. Die von den gestossenen Proto-
nen hervorgerufenen Lichtimpulse gelangten in einen SEV (® 34 — 19) und
wurden durch die nachfolgende elektronische Anordnung registriert.
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Der ~Untergrund wurde mit Hilfe einer Impulsformdiskriminations-
schaltung [§ beseitigt. Der von den gestreuten Neutronen herrihrende
Neutronenuntergrund konnte durch Amplitudendiskrimination im Z&hl-
instrument im Falle von Cs auf 2,5%, im Falle von Rb auf 1,2% der gesamten
Neutronenintensitdt herabgesetzt werden. Als Monitor wurde ein dem oben
erwédhnten Detektor dhnlicher Apparat benutzt.

Auswertung der Messergebnisse

Die Messergebnisse lieferten fir die Wirkungsquerschnitte von CsCl
und RbCI ohne Korrektion fur Vorwértsstreuung (»in-scattering«) die folgen-
den Werte:

uViCs) -j- o't (Cl) = 6,84 dz 0,20 harn,
ur(Rb) + uVv(Cl) = 581 + 0,09 barn.

°n (O
Mit o-r(Cl) = 1,99 + 0,04 barn [3] und () = 1,00 4z 0,30 str x,

Cs
on (07) 0701 0a7 str 1 " _ 075 di 020 str 1(auf Grund
ci Rb
der in [§ und [3] angegebenen Werte abgeschdtzt) erhdlt man nach der

Korrektion [7]:

erT(Cs)

4,96 d¢i 0,21 barn (E,, 14,08 MeV),

4T(Rb) = 3,90 + 0,10 barn (E, = 14,69 MeV).

In der theoretischen Arbeit [9] findet man <TABa) = 5,1 b.
Auf die Radien der Kerne von CsI®3und Rb kann man aus der Formel

er = 2n ¢ (R -J- A2folgern [7]. In unserem Falle erhdlt man:

R(Cs1x3) = 7,67 = 0,27 fermi (E,,

14,08 MeV),

R(Rb) = 6,69 dz 0,14 fermi (E, = 14,69 MeV).

Die fur 14 MeV-Neutronen né&herungsweise gililtige theoretische Formel
Rt = 15 « Aa3fermi liefert die Werte R,ft((Cs) = 7,65 fermi bzw. R(f(Rb) =
= 6,61 fermi.

Die Verfasser sind Herrn B. scnhi1enx fir seine Hilfe bei der Einstellung
des Neutronendetektors zu Dank verpflichtet.
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ON THE HEISENBERG NONLINEAR SPINOR
FIELD EQUATION IN THE PRESENCE
OF GRAVITATION FOR A NONLOCAL SPIN
CONNECTION

ERIDPES

(Received in revised form 7. IV. 1965)

1. As is known, Heisenberg by formulizing his unitary theory of
elementary particles starts from a nonlinear spinor field. The equation of the
universal spinor field — as shown by W. Heisenberg and W. Pauli [1] may
be put in the following form

sy = 12YuYMYTp YsV) = 0. ()

If the idea of the fundamental spinor fields universality is correct, then the
prospects of obtaining the whole usual matter based on this field raise the
problem of including gravitation in this theory. The influence of the gravi-
tational field on elementary particles constitues even today an interesting
scope of research for those who deal with the theory of elementary particles.
Since the establishment of Dirac’s equations for electrons, many physicists
[2—4] have tried to formulate a general covariant equation that is to give
an account of the influence of gravitation on the electron.

Attempts to include gravitation in universal spinor theory have been
made immediately after the outline of Heisenberg and Pauli’s theory.
We mention in this regard J. Rayski’s [6], H. Kita’s [7] and Rodichev’s [8]
attempt.

2. To write Heisenberg—Pauli’s equation in the presence of the gra-
vitational field, we first introduce the covariant derivative of the spinor in
the following manner [2—4]

Sip

AN rv. (2)

The coefficients of affine spin connection '/ are determined by the funda-
mental metric tensor gfw of the gravitational field and of the generalized
Dirac matrices yRB which in this case are 4-dimensional coordinate functions
Yfi — YBfaR)- The relation between 1gfll, and yfl is as follows [5]

V' Ieye- rfiyve KIMA= o0, (3)
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where T'%p are Christoffel’s symbols of the second kind. The matrices y, by
which the connection between space and spin is expressed satisfy the follow-
ing anticommutation relations

yhyv+ yvrhr = 28/1- 4)

W ith the aid of the spinor’s covariant derivative, we shall transcribe Heisen-
berg—Pauli’s equation (1) for the nonlinear universal spinor field in the
presence of gravitation as follows:

Yuv, W RYFVIVNe V' oW = °- )

In this equation the spin connection coefficients depend on the point =
= A~ (xRB), thus this kind of connection is called local.

3. In the following we shall proceed to the establishment of Heiser
berg—Pauli’s equation in the presence of gravitation in the case of non-
local spin connection. Therefore we use the notion of nonlocal affine spin
connection introduced in paper [9]:

= (6)
9*> ]

The coefficients Th generalized the coefficients F\, for the nonlocal case.
If they are of the form

T, (x, )= T, x O0- £+ K, X1, )

where 6 (x —|) is Dirac’s 6-function, then the spin connection is called
partially-local. In this case the spinor’s covariant derivative is written as

4>y = — (»)
9>V J

Using the expression (§ for the spinor’s covariant derivative we shall write
Heisenberg—Pauli’s equation in the presence of gravitation for the case
of a nonlocal spin connection as

8

i N(x,C)WC) rff 125V Vo v>(V >V Y649 = 0 9
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If we have a partially local spin connection, Heisenberg—Pauli’s equations
becomes

TPYNnYeY(Yynyey) =°- (10)
OKD(

We may remark that in the case of nonlocal and partially-local spin con-
nection equations (9) and (10) are integro-differential equations.
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COMMENTS ON THE ESE OF
Ll EIGENFUNCTIONS AS A BASIS SET FOR
H, CALCULATIONS
By
John R. Riter, Jr.

CHEMISTRY DEPARTMENT, UNIVERSITY OF DENVER. DENVER, COLORADO. USA

(Received 14. VI. 1965)

Some time ago Ladik [1] proposed the use of the exact eigenfunctions
for the ground electronic state of H2 as product orbitals in an approximate
wave function for H2 After splitting off the terms belonging to the hydrogen
molecular-ion problem, he approximated the remaining electron repulsion
integral by the known value using best MO-SCF functions of Coulson [2].
Not surprisingly, the calculated dissociation energy of 5,3 ev exceeds the true
value by some 0,6 ev as the variation method was not called into play. This
point was emphasized by Ladik.

The purpose of this note is to call attention to the earlier work of Wallis
and Hutburt [3] who computed the energy of H2using several types of trial
functions built up from Ha2-like functions with variable nuclear charges.
Their most successful function, from the energy viewpoint, was

¥ (1, 2) = yi,0(1) Vos (2) + Vo5 (U Vio (2)°

where the subscripts 1.0 and 0.5 refer to the nuclear charges in the (homo-
nuclear) one-electron diatomic problem. With the electron repulsion integrals
evaluated analytically, the above trial function leads to a dissociation energy
of 3,6834 ev, using the conversion factor 27,210 ev/a.u. This is somewhat
better than the exact SCF bond energy of 3,6360 as determined by Roothaan
and Kolos [4]. This is to be expected since the above is a valence-bond or
Heitler—London type of function. Restricting themselves next to functions
of the form

¥(L3=x (DiE (3

Walltis and Hulburt found bond energies of 2,0950 and 3,486 ev for Z = 1,0
and Z = 0,7825 (best value), respectively. The former calculation corresponds
to that of Ladik [1] carried through analytically. All calculations were done
with the internuclear distance 1,40 a.u., the experimental value.
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It seems to us that a product function

y, (1, 2) = [CjYho (1) + c2 Vo5 (1)] [ci Vio (2) + c2-05(2)]

should yield a value of the energy very close to the SCF limit [4]; we are
in the process of making such a calculation.
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V. S. Burakov and A. A. Yankovskii:

Practical Handbook on Spectral Analysis

Pergamon Press Oxford, 1964

Burakov’s and Yankovskii’s book is essentially an introduction to the practice of
emission spectral analysis. It treats in a condensed manner — in less than 200 pages — and
in a simple and plain style the most important fundamental and indispensible bases of visual
spectroscopy resp. emission spectrography for the industrial expert. From the structure of the
book it is evident that the authors did not intend to explain the theoretical basis: they do,
however, sugggest references for that purpose. Their aim is to acquaint the reader with the most
important and indispensible instruments used in small and medium industrial spectro-
analytical laboratories all over the Soviet Union, giving a short description of their operation
and maintenance. In addition to this, the authors supply immediate help by introducing the
analytical methods used for carrying out series analyses in plant laboratories, in the determ-
ination of the components, first of all, of the low and high alloy steels, cast iron and alloys
with aluminium and copper base, since routine emission spectrum analysis is most widely
employed in the field of metallurgy and in metal works.

Because of the increasing application of spectroscopic investigations in the field of
metal, rock and mineral analysis, the authors treat the most important spectrographic methods
for the determination of powder or solution. This part is supplemented by a description of
a few fundamental methods, such as the additive method, the semiquantitative spectro-
chemical analysis and the spectrographic examination of slags. The book omits spectro-
métrie, i.e. direct intensity measuring (so called direct reading) apparatus and methods
owing to lack of space.

The greatest value of the book is that it covers the practical applications of both visual
and photographic spectroscopy. No book of this kind has as yet been published. Visual
spectroscopy is, apart from the Soviet Union, a rather neglected feature in spectroscopical
books, although it is this field that is mainly dealt with by those employing spectroscopic
methods in the testing of materials.

The closing part of the book, which deals with the planning, establishment, equipping, and
even with the financial questions of spectroscopical laboratories, deserves special attention.
The question might be raised, however, whether or not the editors are justified in confining
themselves to Soviet instruments; in addition, out of the 90 references 89 are to the works
of Soviet authors. We must not fail, however, to bear in mind that the original edition, written
in Russian, was specially published for Soviet plants, and this explains the references, for
the authors offer reference-books readily available to Soviet experts in their mother-tongue.
That does not detract from the merits of the translation, since the instruments dealt with
in the book may be found in a number of countries, particularly in the people’s democracies;
and where the products of other firms are more easily accessible, instruments analogous to those
treated in the book may easily be employed as in most cases there is little or no difference
in the optical and electrical principles, and after all, the present book is not supposed to serve
as an instruction handbook. The analytical methods described in the book may be applied
directly or with minor alterations.

The reasonable number of tables and the spectrum reproductions of the highest quality,
which may well be used especially for photographic resp. visual spectral analysis, add greatly
to the merits of the book.

Owing to lack of space, the authors had to refrain from detailed discussions and even
from setting forth such time-honoured methods as trace analyses or quantitative analyses
without standards although these fields are becoming more and more important in industry
as well as for research.
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Summarizing it can be concluded that the authors have fully achieved their aim in
producing a useful reference-book primarily for the specialist in industrial spectroscopical
laboratories. The careful translation should ensure a wide circulation for the book. The pleas-
ing format of the book is a credit to the Pergamon Press.

K. Zimmer

W. J. Caspers:
Theory of Spin Relaxation
John Wiley and Sons, Inc., New York—London—Sydney, 1964.

Recently, the theory of spin relaxation has been widely developed. The publication
of Caspers’ monograph is particularly significant because this book is the first work to cover
the theory of spin-spin relaxation. Therefore this publication will be widely welcomed by all
investigators in this field. This book will be of inestimable value both to practicising physicists
and to students since the physical arguments are very clearly discussed in every chapter,
while mathematical topics are treated in detail in the Appendices.

The book is divided into three chapters and an Appendix of six parts.

The first chapter outlines the general aspects of paramagnetic spin relaxation phe-
nomena from a theoretical point of view. The author shows that paramagnetic spin relaxation
phenomena are observed in paramagnetic crystals in a harmonically varying magnetic field
and arise from the component of the magnetic moment parallel to the field and are best
described in terms of susceptibility.

The second chapter deals with the description of a general theory of paramagnetic
spin-spin relaxation. This takes up the greater part of the monograph. The author shows
that the theoretical picture of Kronig and Bouwkamp cannot be correct, and in his own
theory of spin-spin relaxation gives a more correct description in terms of the motion of the
component in the direction of the external magnetic field of the total magnetic moment.

The third chapter gives a short survey of the theory of spin-lattice relaxation. The
refinements of the Casimir—Du Pré picture in particular are treated by the author in some
detail.

The Appendices at the end of the book contain all the important mathematical tools
used by the author in the various chapters. These are as follows: Appendix I: the relation
between and Appendix Il: the diagonal elements of the magnetic moment <n|M3| n);
Appendix Ill: irreducible tensor operators; Appendix IV: the number of independent her-
mitian operators for a spin moment S; Appendix V: classification of two-spin interaction
terms according to their selection rules for crystal field energy; Appendix VI: determination
of the operators M20) and K'(0).

The value of the monograph is also increased by the extreme clarity of the author’s treat-
ment of his subject and also by the exemplary format of the volume.
F. Berencz
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PERTURBED ANGULAR CORRELATION OF TRIPLE
GAMMA CASCADE

By
Gy. BeNCZE and J. ZIMANYI

CENTRAL RESEARCH INSTITUTE FOR PHYSICS, BUDAPEST

(Presented by L. Janossy. — Received 17. Il. 1965)

The angular correlation function is derived for a triple gamma cascade perturbed by
extranuclear field. Special cases are investigated for non-observed intermediate radiation
and for static external magnetic field.

I. Introduction

It is known that the magnetic moment of excited nuclear states can be
determined by investigating the directional correlation of gamma rays per-
turbed by extranuclear field. The perturbed correlation function for double
gamma cascade is well known [1]. However, under some circumstances
— owing to the shape of gamma spectra — it is possible to measure the cor-
relation between the first and third member of a triple gamma cascade only
[2]. The aim of the present work is to derive the perturbed correlation func-
tion needed for the evaluation of measurements in the latter case.l

Il. Formalism

The angular momenta of states will be denoted by Roman, the magnetic
quantum numbers by the corresponding Greek letters. The decay scheme is
illustrated in Fig. 1. The excited states with angular momenta a, b, and c¢
decay through radiations of multipolarity Lx, L2and L3, respectively, which
are detected by delayed coincidence technique. The zero on the time scale
is chosen to be the time at which the first radiation is observed. The second
and third radiations are detected at times tb and t. If the interaction between
the nucleus and the extranuclear field is described by the operator K the
evolution of nuclear states in time is governed by the unitary operator U(t, t0)
which satisfies the equation [1]:

3
2 U@t)= - — Kt,  U{oto)=l, iAto.
dt o (1)

0

1 Acta Phys. Hung. ToT. XX. 1966



210 GY. BENCZE and J. ZIMANYI

If the operator K is time-independent (static field) Eq. (1) has the simple

solution

u(t, tg — eH r<r> )

Fig. 1

Since the evolution of states with spins b and c¢ in the time intervals
[0, ij,] and [if, t] is described by U(t,t0) the perturbed correlation function
has the form

1
W(Q,, fi2, Q3 t, th) —— — —eommr e roX
a2

£< <*3>(X>\H3\CYr><c)’r||.|.Mh)|cyl>< u2<r2, Cyt \H2\b R2> X
bR2 1U(th, 0)\bR1)< B xcq bRL\Hj\ax ) ( bRt cr[ jaa )* X
<bR'2 1 0)L Afl >* <p24, cy[ [H2| bBi I <cy' N7(t, th\cy[ >* X )

<R 3(M3d6 |A3| cy=>>*,

where xband tc are the lifetimes of the excited states with spins b and ¢, while
HIf A4 2and 4 3denote the electromagnetic interactions responsible for the
emission of the first, second and third radiations, respectively. The summation

extends over the indices

Oi si <22=83« BRI R\ BI Ri Y\yl Yy'i 6-

Let us express now the matrix elements of the electromagnetic inter-
actions in terms of the matrix elements of multipole transitions as

<qg, bBx |A1] ax) = al|LinlXj) (bRv L1n1Xr|AXax). (4)
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PERTURBED ANGULAR CORRELATION OF TRIPLE GAMMA CASCADE 211

The expansion coefficient al\LXnl A) is transformed under
rotations by the matrices DL . Making use of this transformation property
and applying the Wigner—E ckart theorem, we can write

av bR1\W ax} = <0 ar |LXn1A¢c (bR1L I Axlax) <] LR\ a) Dfc* (RR), (5)

where <6|jLxja) is the reduced matrix element of the -electromag-
netic transition with multipolarity Lx while Ri denotes the rotation by which
the quantisation axis is brought into the direction Qv The matrix elements
of H2and H3can be transformed in a similar way.

We introduce the perturbation factor by the definition [1]:

CSSI(*, %) = 2 (-1)7*":il Hil- Hih *i) (-)""* (I Ixl — Wr\K *i) X
</ UL tO) 1 Ux>(Iur \U(L, t0) \IfiR}*.

Finally we recall the definition of the particle parameter [3]:

Ct(L,L') = 2 (-1)L-A"iLXL'- A'fcx)<0<r|LiIrA><0ff|L' s 'A)*.  (7)
N

aa'A

If the polarisations of the radiations are not observed only the particle
parameters with x = 0 contribute to the correlation function. Taking into
account (5), (§ and (7) and making use of the transformation properties
of the rotation matrices, the correlation function (3) can be written in the
case of unobserved polarisations as

1 1 ¢
JE(BR1,fla,Bi,f,f6) ~ —  oeoeeeeee « T4e Ti X
A2 rbrc

2-Rda c*kI0 (Lx, LXY)CJO(L2 L'R) C*B (L3, L3) DXI* (. ]}B (Rl) [yb (Rax

(-1)Li~K (L! AXL[ - & jfoxxx) (-1)Li~r* (LaA22 ~  |k282) (1) * *X
X (<BAA3 A3l fe3) X

(b RILxAxJa x) (bRi LxA la x) (eyxL2AF0/?2) (cyxL2AFe/?2) (d6 L3A3| cy.R) X (8

(d &L 3 A3Jcy") (-1)*-« (b B,b - B[\ rxeR) (-1)"-« @R2b - R *\r2Qi)
(—1y-y(C¥C yi Ingi)x

-1T * (cy=x - Y2X4 ) (t6,  G*j (t, t6),

1* Mcta Phys. Hung. ToT. XX. 1966



212 GY. BENCZE and J. ZIMANYI

where the short notation
Rda= <d L3y c><d 1L'3 ( c>* <c||L,||b ><c (Li|| & <b|L,| a>6| L[| a*
is used. The summation in (8 is to be performed over

BiRi BzViy\Y2Y2bL1A1L 1W 2L 2 A2L 3A3L 3h3ki1x1k2x2k3x3r1 rj Q\T2q2t2

Performing the summation over the magnetic quantum numbers in (8

we obtain
A LA

T, T

W (iiv Q2,Q 3,t,th) X

Ta Tc
ZR da(4n)ld c* kA C*ldLj, L[) C?=2L2 Li) c*o(L,, Li) X
o

{_ Da+d c+k* Li+L, Y~ (fli) (Bj) ykx (B3 X
C C ri
(ti ei fcz*21r202) L, Li; fc,a) IF(ce LAR.i; k3d) L2Li fi2 X 9)
b b r,

(L, O G$: (1, th).
The summation extends over
LILj LA A 33 “IL2ax3x312 r2p2

Expression (9) is the most general form of the perturbed correlation
function. In the following this form will be applied to derive the correlation
function for special cases.

IIl1. Special cases

Let us recall some properties of the perturbation factor needed in the
present treatment [1]. If the external perturbation disappears (k = 0), the
operator U(t, t0) reduces to the unit operator. Then, as is apparent from the
definition (9, we have

ciz (t, tQ = akiki (20

If the external field is a static magnetic field and the quantisation axis
is taken in the direction of the magnetic field, then we have

Gk% (L *o) = e-W -U Okikt (n)
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where o is the Larmor-frequency of the intermediate state given by co —
= —g gN Bj%. Here B is the strength of the magnetic field, isthe nuclear
magneton and g is the g-factor of the nuclear state.

Making use of the relation d (c | L3 d) = (—Il)c+L,~ac <d AL3 || c>*
and by considering (A1) the correlation function can be written in the form

W(QIt fia, Q3,t, t,) ~ 2? Ak (a, bb)Aks(cc,d) R kiktka {bb, cc) S kiktki (fi,, Q2Q3,1, t,.),
MA (12

where we have introduced the notations used in [3]:

Aki (abb) = 2& O[ILillaXill wy ay c*o(Ll, L[) b{—1)f -bFb-tuel LiL( fela)
L,Li

(13a)
N (cc,d)= 2<c\\ L3W\d>* (c\L'3\\dyCI0(L3,L'3) c(—\)d~c+ka~L*W(cc L 3L'S; k)
L’L> (13b)
cc k3
R kikk, (bb,ccy = 2 <c L2 b} L Wb)y*C*2(L2,L) ~ (-1)*= kz
uLi «3 b b
(13c¢)

The time and angle dependence is contained in the factor

h t-tb

RKik,M (A 17725 237 *§)
THT
(14>

A (4ryF2(fci K xt 1k3*a) Y*, (0) Y** (B5) X** (B3

where wb and coc are the Larmor frequencies of the states with spins b
and c. With vanishing external perturbation (oob = oc = 0), the well known
form of triple correlation function is reproduced [3]. For unobserved inter-
mediate radiation (14) has to be integrated over the directions Q2and over the
time tbin the interval [0, t]. Then the correlation function for the unobserved
intermediate radiation can be written

W(Q,,Q3 1) = (4nf2 A (a bb) Ak (cc, d) Rkok (bb, cc) G*(t) Yt (fi,) Yk«(Q3),
- (15)

where we used the short notation

i*«VC)_ —(1-f IX(DbTh) ——
* ¢}

. -(1+
Gx(t) = [(tc— th) + ix@h— ox) thtc] 1le . (16)
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214 GY. BENCZE and J. ZIMANYI

The correlation function becomes particularly simple if the detectors
are placed in the plane normal to the direction of the magnetic field.
Making use of the relation

n
YLy , Yk —, 9B| = Ckeb">~", (17)
where
Z+ 1 (k —x)I (k -f- x)I ;
or X even
cl an (% - x)1(fe+ ‘ (18)
(@) for « -\- x odd
the correlation functions become
Yrex B.
W(gzt)= ¥ X
*= [(Tc- Th)2+ *2K - wc? rbT?]12
- _-L 1
x]e eix(4~vx~«'c)_e "t (19)

where we have introduced the simplifying notations

Bx= (44)2 C); Ak (a, bb) Ak (cc, d) Rkok (bb, cc),

k = x

. — <) Tb
n arctg x(w ) Tore (20)

P= <P3— <Pie
In actual experiments, if the time delay between the detection of the

first and the third radiation is T and the resolving time of the coincidence
circuit is tOthe observed correlation function is

W((cp,T,r0) = f'w(tp,t)dt. (21)

T

If the resolving time is much longer than the lifetimes of the intermediate
states, the total time integrated correlation function is observed

L Tu00) = s W(<p,t)dt. (=2
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The total time integrated correlation function from (19) can be written as

W(cp, 00) - on\r/ax (23)

x-—mm [(1+ X2colrh) (1 + *2  rc)\*?
where

g* = -T—(arctg xcobrb -f- arctg xcoctc) . (24)
X

The authors are indebted to Dr. L. Keszthelyi for suggesting the
problem.
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BOSMYLWEHHAA YTIJIOBAA KOPPENALNA TPOMHOIO FTAMMA-KACKAJLA
O. BEHUE v . 3UMAHW
Pesome
BbIBOAMTCA (hYHKUMSI YI/I0BOV KOPPEnauun ANs TPOMHOro raMma-Kackaaa, BO3MYLLEH-

HOro 3KCTpasifepHbIM rosemM. KccnegyoTca cneuuvanbHble cnyyau, BK/OYaloLlve B cebe He-
Ha6mo,qaeM0e NPOMEXYTOYHOE W3yYeHNE N CTaTU4YeCKoe BHELUHEE MarHMTHOE Mose.
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OTHOLLUEHVE BEPOATHOCTEW elg+ JIEKTPOHHOIO
3AXBATA U MO3UTPOHHOW 3MUCCUN B MEPEXOJE
C OCHOBHOIO COCTOAHMA Co® HA BTOPOW
BO3BYXX[AEHHbI YPOBEHb Fe%

3. BATAN
WHCTUTYT AAEPHbLIX WUCCNELOBAHUA BAH, LEBPELLEH

(MpeactaBneHo L. Canan — [MMoctynunio 23. 111, 1965)

MeTogom 4nR+—y coBnageHUn onpegesieHa BePOSTHOCTb 3MMUCCMM MNO3UTPOHa B 1-
3anpeLLéHHOM Mepexofe C OCHOBHOrO COCTOSIHWS Co56(4+) Ha BTOPOA BO36Y>XAEHHbBIA Ypo-
Bejp, Fe66(4+). PesynbtaT PR+ = 0,899 + 0,142 Haxo4uMTCs B XOPOLUEM COrflacun ¢ pesysb-
@m npegbigylwinx unsmMepeHuii. CpefHee B3BELLEHHOE WMEIOLLUNXCA pPesynbTaTtoB faéT

= 0,117 + 0,089. 3T pe3ynbTaTbl COrNacyrOTCA C TEOPETUYECKUMM pacyétamu [/is
paspeLléHHOro nepexofa. OheKTUBHOCTb 41 NPOMNOPUMOHANIBEHOIO CYETUMKA oOnpefenieHa Y3
WHTEHCVBHOCTM aHHUTUAALMOHHOIO MMKa B OAMHOYHOM W MOIHOM CMEKTpe ramma snydei, u
B CMEKTPe COBMaAeHWA.

1. BBegeHune

OTHoLleHne BeTBeil e/R+ OblNO0 onpefeneHo B TeueHwe 1964-oro roga B
HaweM WVIHCTUTYTe ¢ ABYMSA pas/iMyHbiMK cnocobamu [1]. Tam >Xe AarTcs OTHO-
LUeHWS BETBEM, pacCUMTaHHbIe MO WM3BECTHLIM W3 NIUTepaTypbl pesynbratam. Yuu-
TbiBas MOBbIlLIEHHOe 3HauyeHune log ft (~ 8,7), Mo Bceil BEPOATHOCTU AaHHBINA
nepexos sBnsetca | 3anpeTHbIM (T. K. CMUH M YETHOCTb HE MEHSLOTCA).

CpaBHeHWe 3KCMEPUMEHTANIbHLIX W TEOPETUYECKUX OTHOLUEHUI BeTBel
e/+ gna nepexofos C /-3anpeTom nposegeHo B pabote [l. BepeHu un J1. Kasau
[1], » Kak 3T0 NoOKa3aHO, 3HaHME TOYHOIO 3KCMEPUMEHTAIbHOTO 3Ha4YeHUst OTHO-
LUeHWs BeTBei e/B+ Bblno Bbl XKenaTtenbHo M B criyyae pacnaga Co% ansa cpas-
HEHWUA C pacyéTHbIMKM JAaHHbIMW. OfHAKO, TOYHOCTb 3KCMEPUMEHTA OrpaHuyu-
BaeTcA TeM, 4YTO BEpPOATHOCTb pacrnaja Ha BTOPOi YpOBEHb OMpefensercs w3
raMMa WHTEHCMBHOCTEW C Haubofiee BepOATHOW norpelwtHocTbio 14%. Lienb Ha-
cTosiLeli paboThl Oblna NOATBEPAUTL Pe3y/bTaTbl paHee NPOBEAEHHbLIX WU3MEpPEHUH
npy NOMOLLM HEe3aBUCUMOr0 3KCMEpPUMEHTA.

MprMeHEHHLIA B HacToAWeld paboTe MeTOL SIBNSETCH, YCOBEPLUEHCTBO-
BaHHbIM 1 MpeobpasoBaHHbLIM K creuuduueckum cBoiicTBam pacnaga Co3 Ba-
puaHToM MeTogos M. Konwiina [2] n A Yunnamca [3], KOTopble MCMOAb30BaNM
coBnafieHnst MMMNYNbCOB MPOMNOPLMOHANILHOIO CYETUYMKA U CLUHTUANISLUOHHOIO
CNeKTpoMeTpa Ans onpegeneHvs e/R+
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218 3. BATAU

2. OKCNEepUMEHTasIbHbIA METOA

Cxema pacnaga Co% nokasaHa Ha puc. 1. OHa 6blfa cocTaBieHa B HacTos-
weli topme KuaHne v coTpygHukamy [5] Ha OCHOBE WM3MepeHWs COBMafeHWiA.
3HayeHus CNUHOB W YETHOCTel AaHbl OureHcom w ap. [6], no pe3ynbTatam n3me-
PEHWIA YTrNOBOM KOPPenauunm v nonspusaumm ramma nydei. VHTEHCUMBHOCTU

co®

"+ LU3g

Fess

Puc. 1. Cxema pacnaga Cofd

ramma nepexofoB B Cxeme pacnaga fdaHbl Mo pabote Kyka u TomHoBeka [4],
KOTOpble YKa3blBalOT TaKXXe TOYHOCTb Pe3y/bTaToB.

B HacTosel paboTe onpefesneHa BepOSTHOCTb Mepexoja Ha BTOPOA BO3-
OY>XAEHHbIA ypoBeHb Fe® nyTém umcnyckaHus nosutpoHa (PRH), M3 KoTOporo,
B CBOK O4Yepedb, MOXHO OMpeae/nTb OTHOLLEHWE BeTBeli ¢/f+ = PEPR+no cne-
OYIOLLMM BbIPXKEHUAM:

P&+ Pe= 1, (1a)
e/R+ = 1~ PR\ (1b)
PR+
roe Pe BEpPOATHOCTL Mepexofa Ha BTOPOI BO3OYXAEHHbLIA YpOBEHb MyTEM 3aX-

BaTa OpGMTa/IbHOrO 3/1IEKTPOHA Ha oauH pacnaf Co% Ha AaHHbIA YPOBEHb.
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WHTerpanbHbI CNEKTp MO3UMTPOHOB Oblf 3aperncTpuMpoBaH B 41 Mponop-
LMOHANTbHOM CYETYMKE, a CMEeKTP ramma jyyeli B CUUHTUANALMOHHOM CMEKTpPO-
MeTpe, PacnooXeHHOM PALOM C NPONOPLUMOHaIbHLIM CHETUMKOM. Kak aTo 6yget
MoKasaHo HWXe, A4N14 onpefeneHus PR+ HEOOXOLUMO W3MEPUTb:

a) WMHTEHCMBHOCTU (hOTOMMKOB C 3Heprueit 0,511; 0,845; 1,24 M3B, u yacTb
raMma cnektpa Ey> 1,24 M3, nocnegyrowancs Mocse YMCTOro 3/1eKTPOHHOrO
3axsara;

0) WX WHTEHCMBHOCTb B cnekTpe /K —y coBnageHwuis;

B) WHTEHCMBHOCTb aHHUMMASLMOHHOIO nuka nosutpoHos 0,511 Ma3B, n3Me-
pPeHHas He3aBUCMMO OT 3Hepruu MO3UTPOHOB.

Pe3yfnbTaTbl MO WHTEHCUMBHOCTAM aHHUTUAALWOHHOIO W3/1yYeHUs No3UTpo-
HOB B Pa3/NYHbLIX M3MEPEHMAX [AtOT BO3MOXHOCTb ONpefenTb 3th(heKTUBHOCTb
permcTpaymm Mo3NTPOHOB, a M3MepeHus npu Ey "> 124 Mag 3(pdeKTUBHOCTb
OTHOCMTENIbHO PEHTTEHOBCKMX Ny4eil n Oxe 3n1eKTPOHOB. CHSATME MUKOB C 3Hep-
rveii 0,845 n 1,24 MaB cnyXXWT ANS NOBbILWEHUSI CTATUCTUYECKOM TOUYHOCTU, TaK
KaK 415 060MX MUKOB MOXHO BbIYMCNTL [V, yuuTbIBas, UTO BEPOSTHOCTU 3TUX
nepexofoB Ha oguH pacnag pasHbl ny (0,845) = 1,00 u ny(1,24) = 0,703.

Uncno uvmMnynbcoB (HOTONMKa AaéTCA CNefyoWnUM BblpaXXEHUEM:

Ny = DnySy, (2)

roe D — MONAHOE 4YMCM0 PacnagosB B UCTOUHUKE
Sy — (POTO3(h(heKTUBHOCTb CLUUHTUANALMOHHOIO CNEeKTpOMeTpa.
Uncno coBnageHWin Mexay UMny/nbcamMmu MponoOpLUOHaTIBHOTO U CLWMHTUA-
NAUMOHHOIO CMNEKTPOMETPOB:

N B+y = D [xPR+SB+ -f-xPtse-f- (ny x) s -f- ne+$E+] sy , 3)

roe SR+ n Se — 3PEKTUBHOCTM  MPONOPLMOHANBHOIO CYETYMKA MO PEruncT-
pauuyM MO3MTPOHOB W  U3NYYEHWUA 3MEKTPOHHON 0O6O0MOUKM
nocne 3axBata (PEHTreHOBCKMX nyyeld M Oxe 3MeKTPOHOB)
COOTBETCTBEHHO.
x — BepoATHOCTb nepexoga (e M B+) Ha ypoBeHb 2,085 MaB Ha
ognH pacnag Co%
nR+ — Ta 4YacTb R+ pacnafa Ha BbllIeneXallne YpPOBHM, KOTopas
[aéT WMCTMHHOE COBMafeHMe C [aHHbIM ravma MepexofoM.
B TpeTbem ufieHe 6bII0 YYTEHO, YTO nR+ HAMHOrO MeHblUe x, U Takum 06-
pasoMm ny — ni+— x ~ ny —x. [ens ypaBHeHue (3) Ha ypaBHeHue (2) N y4nTbl-
Bas (la), PR+ faéTca cnefylolyM BblpaXKEHNEM

PR+= N g4y Ak S K )
X (Bp+ N
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M K1 Ny MOrYT ObITb paccyMTaHbl MO raMMa WHTEHCUBHOCTAM, AaHHbIM B paboTe
[4], a n+ nonyyaetcs U3 B+ MHTEHCMBHOCTE paboTbl [7].

Kak BugHo 13 topmysbl (4), KpoMe Yncna OgUHOYHbIX CYETOB (N.,) W ymcna
coBnageHuin (NH) HeobxoanMo onpeAenuTb TakxKe 3ggekTnBHoCcTM SB+mn SR

Se MOXeT ObITb OnpeAeneHo Mo COBNafeHUAM UMMYNbCOB MPONOPLMOHasb-
HOro CYETYMKA U TaKUX raMma fiyyeil, KOTOpble CNeAyHOT 3a YNCTbIM 3NEKTPOHHBIM
3axBaToOM. Takum CBOMCTBOM 00/1a4al0T BCE ramma syyu MpoUCXofslime ¢ ypoB-
Heil Bbiwe 3,119 M3B, To ecTb Ey > 1,24 M3B. YnCno MMMYNbCOB B CLUUHTWANSA-
LIMOHHOM CrMEKTPOMETPE MNPV 3TOM AAETCS BblPaXKEHUEM:

Wy = Dny(> 1,24) Sy . (5)

Uncno coBmageHWin Ans 3TUX dKe WMMMYMbCOB, YYMTbIBas, YTO 3(EKTUBHOCTb
PErnCTpaLmMn PeHTTeHOBCKUX Nyyeid 1 OdXKe 3NEKTPOHOB He M3MEHSeTCs:

iVov= Dny (> 1,24)SyS,. (6)

OTHOLLEeHVE 3TUX [aéT

MonyyeHHas TakuM 06pa3oM 3eKTMBHOCTb YUnTbIBaeT NofHbin (¢ K, L,
M ... 060n04eK) 3axBaT 3MEKTPOHOB.

OnpepeneHue Si+B pabote KoHwuiiHa [2] npoBefeHa Mo M3MEPeHUAM pac-
naga AMT C XOpOLIO M3BECTHOM CXeMOi pacnaga, a B pabote Ywunnamca [3]
MO M3MEPEHWEM Ha MWUKe CYMMMWUPOBaHUS aHHWUTWAALMOHHOIO M ramma KBaHTOB.
BTopoit MeTof fBNseTCA 60Mee TOUHbIM, HO MPU 60NLLUUX IHEPTUAX MO3UTPOHOB
1 6onee CNOXHbIX Y-CMEKTPOB €ro MpUMEHeHWe 3aTPYAHEHO MO CheayoLIMM
npuYMHam:

1) NO3UTPOHbI BLICOKON 3HEPTUN AHHUTUAMPYIOT JaeKO OT UCTOUHMKA, U
3(hheKTMBHOCTb PErMCcTpauun MX KBaHTOB pacnafa CWU/bHO 3aBUCUT OT 3HEpruu
NO3UTPOHa,

2) Henb3a OTAENUTb MNWKA CYMMWPOBaHUS OT KBAHTOB 60fee BbICOKMX
3Hepruia.

Huxe 6yneT nokasaHa BC3MOXHOCTb onpefeneHuns S+ mno MHTEHCUBHOCTU
aHHUTUAALMOHHOIO NuKa B crnekTpe R+—y coBnageHnin (NEH5LD), B cnekTpe
OAMHOYHbIX ramma nydeir (IVH5LD) u B cnekTpe ramma ny4yeid, CHATOM MOr0TU-
Tenem BOKPYF MCTOYHWMKA, B KOTOPOM MO3UTPOHbI MOMHOCTBH 3aMef/IstoTCs.

[na pacuéta SB+Mcnonb3yem TOT OUEBMAHBIN (haKT, UTO MO3UTPOHLI, KOTO-
pble He AT UMMYMbC Ha BbIXOAE WMHTErpasibHOro AMCKpUMMHATOPA NpU Mopo-
FOBOM HanpshyKeHWW COOTBETCTBYHOLLEM 5—7 K3B, OyAyT MOIMOWEHbI B WCTOY-
HWKEe, B MOANOXKE WAA B HEMOCPEACTBEHHOW OAM30CTM WCTOUHMKA, U Tam XKe
aHHUTMAMPYHOT. T[103TOMYy MOXHO npeanonoratb, 4To 3deKkTMBHOCTL (S“GlY)
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CUMHTUANALUMOHHOIO CMeKTpOMeTpa A8 3TUX KBaHTOB He 3aBWCMT OT MecTa
aHHUTUMNALMK. T103UTPOHBI, JatoLime WUMMYNbCbl OO0MbLIWE MOPOroBOro MOryT
MPOXOAUTL 3HAYUTENbHOE PacTosHUe, W 3PPEKTUBHOCTb AN aHHUTUAALMOHHBIX
KBaHTOB 3TUX MO3NTPOHOB (Sj5L) 3aBMCUT OT MecTa aHHUTUAAUUW. Y4uTbiBast
3TO, YWCNO 3apPerucTPUPOBAHHbLIX KBAHTOB AHHUTUAALUM [aETCA Cneaytowmm
BblpaXKeHWEM:

Ny5il= (Dy.PRHe(l- SRHS%n + (DxPRHSHE+S'511L. (8)
To e camoe B cnektpe (R+—y) coBNageHWii;
N BtybH — (Dx P 34) SB+S511. 9

[MponopuynoHanbHbIiA
CUYETUMK

Puc. 2. Bnok-cxemMa M3MepuTeNibHOM annapartypbl

B cnektpe c nornotuTenem:
m,n = (iy.PRHS%u e fiX (10)

roe € X y4uTbiBaeT MOr/OWEHNE aHHWUTUNALMOHHBIX KBAHTOB B MOr/0TUTENE.
[ensa pasHocTb (8) u (9) Ha ypaBHeHue (10) nonyvaem:

Spe— 1 e NEsyen

No e/ )

3. VM3mepeHna wn pesynbTarsl

bnok-cxema annapartypbl nokasaHa Ha puc. 2. VictouHmk Co33 M3roToB/eH-
HblIli METOAOM 3/1EKTPO/IN3A, aKTMBHOCTU ~0,2MKKIOPU, Obl1 paCNONOXEH BHYTPH
NPONOpPLMOHANLHOTO cYéTUMKa (TenecHbllii yron 4n). MpenapaT Co® nosyyeH u3
Pagnoxumunyeckoro LleHTpa, Amepwam. [ponopumoHanbHblA CYETUMK HaMon-
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HAMCA MeTaHOM [0 gasfieHus 280 MM. PT. CT., 419 YMEHbLUEHUA MNOr/oLeHns K
PEeHTreHoBCKUX ny4yeir. ocne npefBapuTeNbHOTO W TNaBHOMO YCWUWUTENEN WM-
NynbCbl MOCTYMa/IM Ha BXOL WHTErpaibHOro AUCKPUMWUHATOPA, CTaH4apTHbIe
oTpuLaTeNbHblE MMMY/bCbl KOTOPOro YMpaBiAs/M MHOrOKaHa/bHbIM aHanusa-
TopoM AN—100—1 BO Bpems M3MepeHuid B+—y coBnafeHui.

Puc. 3. YacTb cnektpa RB+—y coBnageHuii Cof0. CrydaiiHble COBMAfEHWs BbIMMTaHHbI

MammMa nyyn nonagainck B CUMHTUAMSALMOHHBLIA CMEKTPOMETP 4epe3 OKHO
¢ AvameTpom 15 MM, MOKPbLITOE a/tOMUHUEBOW honbroit Al 10 mr/cmM2 mnynbCbl
CUUHTUANSALMOHHOIO CNEeKTPOMETPa, Moc/e 3afepXKu Ha 2,2 MKCeK, HeobXxoam-
MOl 4N MOMyYeHWs COBMajeHWid, MofaBanCh Ha BXOJ aHanmn3atopa. VamepeHus
CoBMafieHnii MPOBOAMNNCHL C pa3pelleHneM 2T = 2 MKCEK.

Mpy aTuX ycnoBusx 6blM CHATLI CreKTpbl B+—Yy coBnageHuii (puc. 3.)
M OAUHOYHBLIX raMMa-nydeid (puc. 4., KpyUBas a.); TakxKe MUK aHHUTUAALUOHHBIX
ramma-nyyein (puc. 4. kpmeas 6.). B nocnegHemM crnyyae MUCTOUHMK OblT OKPYXKEH
Cv nornoTuTenem TOAWMHOKA 1 MM, B KOTOPOM MO3UTPOHbI 1,5 M3B MOMHOCTbIO
3amegnatoTces. ornowleHne aHHUIMASLMOHHOIO KBaHTa B NOrnotutene 6biio
YYTEHO MO KO3(puUMeHTaM MNOr/OLIEHWNIA, AaHHbIX B [8]. Pa3noxeHune cnekTpa
Obl10 NpoBefieHO Mo 6/M3KMM ramMma-nuHusM NaZ2 [oTeps UMMyNbCOB M3-3a
MEPTBOro BpemeHu aHanm3atopa ~10-2 %. B Hawem ciiydae el MOXHO nNpeHe-
6peub.
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PesynbTaTbl M3MEPEHWA, Ha OCHOBe ypaBHeHWs (7), AaloT crnefytollee 3Ha-

yeHWe ans Se
S, = 0,0594 = 0,0015 .

Puc. 4. a YacTb cnektpa y nydeii Co60, mocie BblyeTa (oHA ; 6. AHHUTUAAUMOHHBIA MUK,
CHATBIA C MOrM0TATENEM TMO3MTPOHOB M KOPPEKTUPOBAHHbLIA Ha MOr/OLeHNe Y-nyydeit

Ha ocHoBe (11) nonyyaem Ans BepOSITHOCTM [ETEKTUPOBAHUS MO3UTPOHOB:
Sk+= 0,892 + 0,028 .

B aTom cnyyae yuTeHO Bo3pacTaHue 3((eKTUBHOCTU M3-3a MOr/OLEHUS
aHHUTUNALMOHHBIX KBAHTOB B MPOMOPLMOHabHOM cuéTumke (+0,27%-Has Kop-
pekuus).

Wcnonb3ya Se SR+ UM MHTEHCMBHOCTM COOTBETCTBYHOLUMX MUKOB, TaKXe
ycpeaHaa pesynbTaTbl gnsa nukos 0,845 n 1,24 Mag, gna PR+ nonyyaem:

Pr+= 0,899 + 0,142 .

Kak yXe yKasanu, MOrpellHOCTb X SB/SETCS CaMbiM 3HAYMTENbHbIM.
Kpome 3TOro yumTbiBaIM CTATUCTUYECKME MOTPELIHOCTM U MOrPELUHOCTM pasfo-
KEHWS.
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Pe3ynbTaTbl, AaHHble B paboTe [L] v pe3ynbTaT HaCTOALWEN paboTbl COOPaHBI
B Tabnuue 1
CpefHee B3BeLUEHHOE pe3y/bTaToB 2—b5 [aéT:

PR+= 0,895+ 0,072

WA nepecymTaH Mo COOTHOWeHuo (1)
elt+ = PKL~-- = 0,117 + 0,089,
P+

eCNM  yuuTblBaeM 3axBaT C 6ofiee BbICOKMX 06OMOYEK, Crieaytollee 3HaueHue
nonyyaeTcs ANS OTHOWEHMS K 3axBaTa M 3MUCCUMM MO3UTPOHOB:

E/R+ = 0,107 £ 0,081.

3TV pe3y/nibTaTbl COMNacyrTCA C TEOPETUYECKUM Pe3yfibTaToM fns paspe-
LLIEHHbLIX MEepexofos.

Ta6nuua Ne |

No ABTOp MeTon v

1. Ckan n gp. [7] Cu.cn. 0,719
2. Kyk n TomHoBeK [4] Cu.cn. 0,887 + 0,148
3. BepeHn n Kasan [1] B —y Cosnan. 0,986 = 0,148
4. BepeHn n Kasaun [1] CnekTp, U aKTUBHOCTb 0,810 = 0,146
5. HacTtosiwan pabota MponopumMoHanbHbI CYETUMK 0,899 £0,142
6. Liganden [9] Pacuér 0,907

* * *

ABTOp CUMTAET CBOUM MPUATHLIM LONTOM BbIPa3uTb 6/1arofapHoCTb Npo-
theccopy LU. Canau, gupektopy WMHCTUTYTa 3a obecreyeHne Xopowumx pabouunx
ycnosuid, A-py [. BepeHu 3a NpeanoXeHWe TeMbl, 3a MOME3HbIE AUCKYCCUM W
COBETbI, KOTOPbIMU OH MOMOF MPOBECTW 3Ty paboTy, Takxe ¢usmkam [. Mats u
T. Lllap6epT 3a NOMOLUb MPU paspelleHnn NPo6/em, CBSA3aHHBLIX C 3/1EKTPOHHON
annapaTtypoil.
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s/B+ ELECTRON CAPTURE TO POSITRON EMISSION RATIO
IN THE DECAY OF Co0% FOR THE SECOND EXCITED LEVEL OF Fet%

By

E. VATAI

Abstract

Using the iizB+ —y coincidence method the probability of positron emission had been
determined in the 1-forbidden transition from the ground state of Co5 (4+) to the second
excited state of Fe5%6 (4+). The result PR+ = 0,899 + 0,142 is in good agreement with the pre-
vious measurements. The weighted average of the capture to positron emission ratio of the
given results is e/B+ = 0,117 =u-0,089. These are in agreement with the theoretical calculations
for the allowed transition. The detection efficiency of proportional counter for positrons had
been determined from the annihilation peak intensity in the single, coincidence and total
spectra of the same source.
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EXPERIMENTAL INVESTIGATION OF THE
PROBABILITY OF (n, an) REACTION
IN NATURAL URANIUM

By
A. Adam, Gabriella Palla and P. Quittner

CENTRAL RESEARCH INSTITUTE OF PHYSICS, BUDAPEST

(Presented by L. Janossy — Received 8. IV. 1965)

Experiments have been undertaken to investigate whether the (n, an ) reaction is
responsible for the anomaly observed in the small angle elastic scattering of 14 MeV neutrons
by U238 The results show the probability of this reaction, if it occurs at all, to be so low that
its contribution cannot explain the anomaly in question. An estimate of the reaction cros-
section gives a value of 0,5 mb in the upper limit.

Introduction

In a paper published simultaneously in this journal Hraskse and KOvESY
attempt to explain the anomaly observed in the elastic scattering of 14 MeV
energy neutrons by uranium and thorium nuclei. The values of the differential
cross-section for small angle scattering are found to be appreciably higher
in the case of these nuclei than would be expected from diffranction scatter-
ing [1].

The authors assume acontribution from (n,an') reaction to the measured
elastic cross-section. This would be confirmed by experimental evidence on
the existence of this reaction. The experiments performed to obtain this
evidence are reported below.

The neutrons having the same energies as those elastically scattered
are expected to be released by the assumed (n, a n') reaction at an angle of
about 0°. The simultaneously produced a-particles may leave in any direction
with the same energy as that of the a-particles emitted in radioactive decay.
The problem now is to establish whether there are any systematic n-a coin-
cidences, or more precisely, to find out whether a-particles actually do emerge
simultaneously with the elastically scattered 14 MeV energy neutrons. To this
end the neutrons have to be detected at O while the a-particles approximatively
in the Oto 2r angular range with respect to the direction of the bombarding
neutrons.

Experimental

The experiment was performed on natural uranium target using the
14,7 MeV energy neutrons from H3d, n)Hedreaction. The time and angle of
neutron emergence as well as the neutron yield were evaluated from the de-

2* Ada Phys. Hung. ToT. XX. 1966
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tected number of the recoil a-particles [2]. Time-of-flight technique was used
for the acceptance of both neutrons and a-particles, analysing for the latter
also the pulse height spectrum in the slow side channel. The target and detector
arrangement is shown in Fig. 1, the electronic circuit diagram in Fig. 2.

For full exploitation of the reaction target and to have the optimum
neutron solid angle* line-like source geometry (Q1 mm X JOmm) was used.
The 2,5 mg/cmZ2hick, U2 3target on Al support of 1,5 mg/cm2thickness was

horizontal plane

Fig. 1. Target and detector arrangement

placed into the a-solid angle of the detector delivering the start signal for the
time-of-flight measurement. The charged particles arising from uranium were
detected by a 1aDfj, plastic foil located outside the solid angle at 2mm distance
from the target and the neutrons by a 50 mm diameter plastic cylinder 10 cm
long at 50 cm distance.

Let us first see how the questionable UZ8(n, oT") reaction can be distin-
guished by the evaluation of the triple coincidences between start signal
and reaction products, a-particles and neutrons.

a) Considering the results of D ukarevics [1] and assuming the difference
between the measured and predicted values of the differential cross-section
to be due to the reaction in question, the expected contribution is about 15 mb.
This gives for the reaction probability, for the target used in the present experi-
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ment, 5 +10_3. The bombarding neutron intensity was chosen so that ran-
dom coincidences were of a negligible order compared with the systematical
events. In the present case this intensity was N0~ 1,4 «108re/sec at which
the number of triple coincidences as counted with the experimental setup
shown in Fig. 1 is expected to be iVsyst ~ 400 coinc/hour.

b) The most inconvenient background reaction is expected to be the
14 MeV neutron induced fission of UZBcausing the same kind of systematical

Fig. 2. Block diagram of the measuring apparatus

coincidences as the reaction to he investigated. For the present target, fission
probability is estimated as pf = 0,18 compared with a reaction probability
of 5 «10-3 calculated above. The (re, rx.n’) reaction can still be detected by
reasoning as follows. First the frequency of neutrons with energies above 10
MeV in the energy spectrum of fission neutrons is not more than 10—22while
the time condition in the time-of-flight measurement was chosen to be such
that only neutrons with energies between 10 and 22 MeV were being counted
(this time gate excludes the fission y-particles as well). Second, in contrast to
the (re are') neutrons which, according to H raské and Kosvesy ’s theory, should
emerge at about O only, the fission neutrons have no such forward peaking
tendency and this is a decisive factor. Triple coincidences due to fission in the
present experiments were found to be less than Jdcoincidence/hour.

c) As already mentioned, at the intensities used in the experiments,
the random coincidences could be kept negligible compared with the number
of systematical coincidences. This does not apply, however, relative to the
number of systematical fission coincidences. Random triple coincidences are
due primarily to events which are simultaneous with a systematical coinci-
dence between start signal and the a — or the neutron detector and a random
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coincidence between the start signal and the other detector. Such events are
caused in the first place by 14 MeV direct neutrons in random coincidence
with a-particles emitted by the natural decay of U233 second, by systematical
coincidences between start signal and a-detector due to fission products or
other charged particles from target reactions with a random simultaneous
coincidence between start signal and the neutron detectors. Owing to the
marked intensity dependence of random coincidences it seemed expedient
to have them counted simultaneously with systematical events. This has
been done by appropriate fast and slow coincidence units marked by C,,
Cn, Cm and N a N,,, Nan respectively, in Fig. 2.

Check of the measuring apparatus

The setting of the uranium foil position had to be controlled to 0,1 mm
precision in order that the target should be inside the solid angle of the start
signal detector, considering that the solid angle extent in the vertical plane
is only about 0,4 mm at the target. The target position was set and checked
on the basis of C, (start signal —a) coincidence counts. The solid angle between
the target and neutron source was checked experimentally using the known
value of the cross-section for charged particle reactions. The presence of sup-
port material was taken into account by the number of Ca coincidences
measured in the absence of UR 3 The solid angle thus determined is satis-
factory only if the target is everywhere uniformly and sufficiently thin to per-
mit the emergence of fission products and 4 MeV a-particles. This was checked
by the radioactive a counts from a known quantity of U2 3.

The time gate for coincidence units was set by making use of the charged
particle from target reactions, and of the 14 MeV primary neutrons. The a —n
fast coincidence circuit was biased by suitably delaying the neutron and a-
pulses with respect to the start signal. The time resolution of the (start signal —
n) coincidence stage was chosen to be 2r = 3,6 m” sec. This value is suffi-
ciently large for the counting efficiency not to be reduced by the spread in
the flight times of neutrons. This time gate corresponds to neutron energies
from 10 to 22 MeV. In the Caunit the time resolution was 2t = 10 T/n sec so
that, considering the maximum 5cm flight path of the 4 MeV energy a-part-
icles from U233 there is no loss in counts even with an 80% loss in particle
energy on their emergence from the target.

The measuring assembly was tested by the measurements of the known
cross-section for fission of UZBbombarded with 14,7 MeV energy neutrons.
The time gate in this case was set, of course, to cover the total energy spectrum
of fission neutrons. The measured value seems to be in good agreement with
that reported in the literature.
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Résulte and conclusion

The measured value of triple coincidences N — 140 and Nr= 137.
The similarity of the two values is not inconsistent with the expected number
of systematical fission coincidences which has to be within the statistical
error. It seems, however, to be in contradiction with the existence of the
(n, an.') reaction. The double statistical error permits the maximum possible
value of the reaction cross section to be estimated as 0,5 mb compared with
15 mb predicted by the theory. It follows that even if UZB(n, an') reaction
occurs at all, its contribution cannot explain the anomaly observed in the small
angle scattering of fast neutrons by U233

The question now arises why the effect predicted by the dispersion
theory by Hraské and Kovesy could not be observed in the present experi-
ments.

Thanks are due to E. Pasztor and |. Veress as well as to other members
of our group for the highly satisfactory operation of the accelerator and assist-
ance in the experiment.
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SKCMNMEPUMEHTAJ/IbHOE WCCJ/IEAOBAHME BEPOATHOCTU PEAKLWIN
(n, an’) B ECTECTBEHHOM YPAHE

A AOAM, T. NANNA n N. KBUTTHEP

Pestome

3KCMeprYMeHTa/IbHO MCCefyeTcs, BO3MOXHO /N UCTOMKOBbIBATb aHOMa/IMI0 Mpy ynpy-
roM paccesiHuy HelAiTPOHOB € 3Heprueli 14 M3B Ha masble yrnbl peakuuid (0, a n’) B U3R Hali-
[leHO, 4TO peaKuUuMsi He MMeeT MecTa, WU ecnv U NpoTeKaeT, TO el He 0bycnaB/MBaeTcs aHo-
Manus. Ansa 3h(eKTUBHOro MonepeyHOro CeYeHMs peakuMM — Kak BepXHWi npefen — nosny-
YeHo 3HayeHve 0,5 mb.
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THE HYDRODYNAMTCAL MODEL OF
WAVE MECHANICS 111

ELECTRON SPIN

By

(Received 22. VI. 1965)

The hydrodynamical model is extended to the problem of the electron as described by
the Pauli equation. It appears that the Pauli equation can be transformed into a set of equations
which have the form of the classical equations of motion describing an elastic medium which
is inhomogeneously magnetized.

I. Basic conceptions

8 1. In the present article we are concerned with the hydrodynamical
model of an electron the motion of which is described by the Pauli equation,
i. e. with the problem how far the procedure carried out in our previous articles
(I and 11l see [1], [2]) can be extended to the case of the electron described by
a two-component wave function

p= i and ip* = (iptip*) (1)
¥2

obeying the Pauli wave equation

1
ihvip — i% y--A f-(e(p-f- V) —/t(a rot A) v (2)
2n c
, en .
Here /[j = --2--6-45 the Bohr magneton; the components ofthe Pauli operator
e
a are’
o1 O —i 1 O
09 = ®3)
10 1 (@] O-1

The potential V represents the non-electromagnetic outer forces, while A
and @ are the vector and scalar potentials, respectively, of the external
electromagnetic field.

*In the following we shall denote the components x, y, z by 1, 2, 3 respectively.
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The aim of the present paper is to show that equation (2) can be re-
written in terms of hydrodynamical variables into a system of equations which
have the form of the classical equations of motion of an elastic medium. It
should be emphasized that we endeavour to carry out a transformation re-
sulting in the equations of motion of one elastic medium only and not in that
of two, as might be expected from the fact that the wave function (1) has two
components (see e. g. [3]).

In our previous papers we have described the medium corresponding
to the particle by means of a density distribution g and a velocity distribution
V. In the present paper we take the spin of the particle into consideration with
the help of a further variable, i. e. we introduce the distribution of polarization
of the medium. The new variables will thus be p (or more precisely ge= eg and
gm = mg, respectively), gv and the density of the polarization expressed
by the vector s.

8 2. In order to account for the distribution of density and of velocity
of flow in the medium representing the electron, we have to formulate the con-
tinuity equation. Multiplying (2) from the left by ip and subtracting from it
the conjugated equation multiplied from the right by ip, and remembering
that ¢ is a Hermitean operator we arrive at the continuity equation

diviv)+ —-= 0, (4)
a
where
B = V*V, (5)
or explicitly
6=V*Vi+ By (5a)

and the velocity distribution gv might be put equal to gv°® with

gv°= ——-—(ip* grad ip — grad ip* *ip) — g ——A , (9

2m " me

if the only requirement were to satisfy equ. (4) mathematically.

However, as can be seen easily equ. (4) remains valid if we add the ro-
tation of an arbitrary vector to the expression of the velocity given by (8.
Thus (4) remains satisfied if we put

gv = gv° -f-rot %.

As will be shown later the correct hydrodynamical description of the
spinning electron that corresponds to the experimental results is obtained
if we choose
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with

In the polarized elastic medium representing the electron we take there-
fore as the definition of the density of velocity of flow

H
QnV= Qnve + a? rots, (?)
or using (6§, with a = --é-we have
L
omV = - (y>*grader — grad S --A rots. (7a)
2 ¢

For points in which g > 0 we divide (7a) by gmand obtain the following
explicit expression for v.

V= ——-— (y*gradip—grad y>* ey>)----m-m—- - A - — rots. (8
2m g me 4dm g

For points with g = 0 the value of V is not defined, however, in such
points its value is of no interest.

§ 3. Finally, the density of the polarization vector can be introduced
by putting
s = ip*af. 9)

The components of S are obtained with the help of (1) and (3) as

si= WrFop + vy,

$2= i(xp* ipl — y>* %), (19
S3= xpf VI — y* m2

Adding up the squares of the components of S we find with the help of (5a)

S2= g\
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i. e.the length ofthe vector s is equal to the density g. Therefore it seems to be
convenient to introduce a unit vector T pointing into the direction of S.
This is done by writing
al = s, (11)
or expressing g and s by ip
(ip* p) T = ip*a ip. (11a)

The vector T can be regarded as giving the direction of polarization
of the medium as function of the coordinates. Obviously, T can only be de-
fined for points with e> O.

The hydrodynamical variables, the scalar density g, the density of velo-
city of flow qV and the density of the polarization vector qT, i. e. the quanti-
ties characteristic of the medium representing the spinning electron, can thus
be expressed in terms of the wave function ip with the help of equs. (5), (7a)
and (13a).

Il. Connection between hydrodynamical variables and the wave function
8 4. In order to simplify the investigation of the relations between the
hydrodynamical variables and the wave function let us represent the two
complex components of ip by four real functions of time ( and coordinates r:

R = R(r, (); S = S(r, t); = o> (); ft= ft(r,t).

Ifthe components ofthe wave function are expressed in terms of these auxiliary
functions in the form

=
I

|I>COS —\2/ e (
(12

K sin —82‘e (S+IV)

9

R, s, o and < can be given clear physical meaning as will be shown later.

By means of equs. (12) the wave function ipis unambiguously determined
in terms of the variables R, S, ft and <.

8 5. Now we have to consider whether it is possible to associate values
of R, s, ft, punambiguously with given values of * and ip2; that means whether
(12 can be reversed in an unambiguous way.

From equs. (12) it follows that the function R(r, t) is obtained from given
ipy and ip2 as

R= I\ipi e+ \ip2\z .
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When ypl=f=0and =j=0, we obtain for$ and ¢pwith the help of equs. (12)

$ = e 2—Ian and @@= —ilnz2, (13a)

where
.\n\2 - \f22 1

2Wi | and yry2
f Kkil2- W21 1 NR2v2
2ki %l

These equations determine $ and fpuniquely in the intervals
O $<[a and O"<p< 2T (13)

A physical interpretation of these restrictions will be given further below.
When Vi = y-»— 0 we have R = 0 and P can be chosen arbitrarily.

For ~ = 0, y2==0 and y)x 5=0, = 0, respectively we have
R ="\ip2y, ®= 71 ., -iln o~y
s + | = W
and
R = MU =° PLp=  tin ,
2 w

respectively. This means that in these cases premains indeterminated.
Finally, we find from (12)

S=—iln-pi- + — <
Wi\ 2

where qis to be inserted from (13a) in accordance with (13) and the logarithmus
has to be chosen so as to restrict the values of S to the interval 0 S < 2jr.
8§ 6 Having shown that there exist essentially unambiguous relations

between the components and y2 of the wave functions and the functions
R, S, $ and cp, we investigate now what kind of relations can be formulated
between R, S, @ and the hydrodynamical variables q, v, T.

Let us begin with the density distribution. Inserting (12) into (5) we get

B = R2 (14)
or

R = fe,
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i.e. the scalar function R(r, t) introduced by the relations (12) corresponds to
the square root of the density of the elastic medium.

§ 7. The physical meaning of the functions $ (r, t) and 9(r, t) can also be
seen easily. Introducing (12) into (10) we obtain with the help of (11)

Tn= sin«&cos ¢, T2— sin m&sin ¢, T3 = cos &, (15)

thus ft and @ are the polarangles of the vector T. We note that T Hl,, T3ust as
@ are functions of r and t.
From a short calculation the reversed relations between & @and Tv T2,
T3 are obtained in the form

iTs _
Y e 3 | o TLiT2
an =
= Myn+ n (16)
- 41
n-T1

provided \T\ -f- T |> 0, which corresponds to the restrictions given in (13).
It remains to discuss the relations between S and the velocity vector v.
8§81In order to express the velocity of flow in terms of the scalar functions

M, S,$ and qwe substitute (12 in (8 and find as the result of a short calculation

n n n , e . n 1
V= -—-grad b - costr gradcp A ) rots. (17)
m 2m me 4dm p

Applying the operation rot to both sides of the above relation we obtain
rotv+ W = 0, (18)
where we may write using (17)

%
W rotA *-rot rots -----—--- rot(cos &grad o . (18a)
4m 2n

Here we note that IF is a vector quantity although its last term contains
the rotation of the non covariant quantity ~ = cos $ grad o. Indeed, the ro-
tation of | can be expressed by means of the vector T in the form

rot? = TZ2*,
where is the tensor built up of the minors (K*),/c of the matrix $ having
g R
as elements Tt = -(-j---kL, i.e. in cases when det % ¢ 0 we have
X
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le)/* =
(1) det %

where (2+),k are the elements of the matrix (2) A
From (17) we find

r

h 1
S —cos &grad w rots dr + S0, (19)
2n 4m

where r Ois the coordinate vector of an arbitrary point. SO= SO0(r0t) is a
quantity which depends on the choice of ruhut is independent of the vector r;
it may, however, depend on time. The path of integration has to be taken
along a line connecting rOwith r in such a way that this avoids singular points.
If the distribution of the hydrodynamical variables has no singularities and
equ. (18) holds, the value of S becomes independent of the path of integration.
In cases where there are singularities, the value of S as obtained from (19)
depends on the path of integration and (19) defines a multi-valued function S.

However, we are primarily interested in the function y= It follows from
(11) that mpremains a single-valued function even if S is multivalued, provided
the values of S in the same point differ by integer multiples of 24 only. This
is the case if the integral on the right-hand side of (19) taken over any closed
path is either zero or equal to an integer multiple of 2rm; i.e. we have to require
that integration of (19) along a closed path becomes

A h 1
r= cos & grad e - rots dr
me 2m B

(24)
with k= Q™ 4 i 2...

The value of K depends on the particular choice of the path of integration.
Applying Stokes’ law we may also write

vdr = 2n K— wdf. (21)
m

It can be seen from equs. (21) and (18a) that in the case of a polarized medium
the appearance of vortices is due not only to the external magnetic field but
also to the polarization T.

89. Equ. (21) can be taken as an auxiliary condition for hydrodynamical
variables. As we have shown above the hydrodynamical variables obtained
uniquely from a given wave function satisfy condition (21) automatically.
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On the other hand the distribution of the hydrodynamical variables
defines a single-valued wave function (apart from a time-dependent phase
factor e only if p, v and T satisfy the auxiliary condition (21).

Further, it is usual to normalize the wave function by putting

Jipripdt = 1, (=22

the corresponding condition in terms of the hydrodynamical density is

P

Thus if we require (22a) to be valid for the wave function, in addition
to the auxiliary condition (21) relating to p, v and T, we have to take into
account the condition (22a) relating to the density distribution.

As conclusion of this section we thus state: From a given two-component
normalized wave function ip the hydrodynamical variables p,v and T can be
derived. The variables so obtained obey certain auxiliary conditions. Further-
more prescribing the hydrodynamical variables p, v and T and satisfying
the auxiliary conditions we can determine from them the normalized wave
function ip, apart from a constant phase factor.

I1l. Equations of motion

§ 10. In order to obtain the hydrodynamical equations of motion of
the medium representing the electron we have to consider first the acceleration
of a volume element. To obtain this we differentiate the expression for the
velocity of flow given in (8 with respectto time and substitute the time deriv-
atives of ip» and ip with the help of the Pauli equation (2) by their spatial
derivatives. W ith the help of equs. (5), (8 and (11) ip and its spatial derivatives
are then expressed by the hydrodynamical variables. In this way we obtain
for the acceleration an expression containing, beside the hydrodynamical
variables, only the field strengths E and B which are defined by the scalar
and vector potentials

E = —grad p——A |
c

B =rotA.

The detailed calculation may be found in [4].
The equation of motion of the velocity vector of a volume element of
the medium is obtained as the result of a lengthy calculation as
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6n—dt -=e(/o+/,)> (23)

where p/Ois the density of the outer and n/mthat of the inner force. For the
density of the outer force we find

e/o = Qgrad v + eh + efe, (24)
where

QL= QE " ----m- Q[vXxmn] (24a)

c

is the well-known Lorentz force and
qfB = —2 fi {(s grad) B -f- [s X rot B] -f grad (sB) Div (B°s)} (24b)

represents the force derived for an outer magnetic field acting upon a polarized
medium. To the physical interpretation of this expression we shall return later.
The inner force can be expressed, as is to be expected, as a tensor di-

vergence
o/,= Div®, (25)

where the tensor M has the elements

%2 _2In . h
%2 32 Q

(t)7= + — (t>, rotyS +' rot,- Sev) -
4m ax,QX;i 4
%- » 8IN,. 971« r- 1 B (252)
Q> ] Koo k- rot, Serot S+ (t)ij
4m 13- 3Xj 16m o
and the tensor fis defined by
Div f = rot Div g, (26)
i. e. the elements of the tensor [ are
0 pivs9 — ON2D
Divy 0 Divjg
Divgz — DiVlg 0
where
. Mn KiI 1 h2 ar,, QT,
(9kj = — — (skvj) + — = sk WTOtj S + — -B -7 (26a)
4 16m o 8n 0xq X3

herej =1,2,3 and k, |, m are cyclic permutations of 1, 2, 3.
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Thus for the acceleration of a volume element of the elastic medium
representing the electron we have obtained an expression containing only
quantities characteristic of the medium itself, such as g, V, s (or T) and quan-
tities characteristic of the outer field in which the medium moves (V, E, B).

§ 11. It remains to derive the equation of motion for the polarization
vector T.

In a way similar to that described above we obtain after some calcula-
tions (for details see [5]):

fIT

2
Q—- = — /zg[TxB]+ DivO, 27
h % gl 1 (27)

where the k, j-th element of the tensor © has the form

®)*/ = vksj+ — Tkrot7s + — B(TITm - TmT,j 27a
@) = visi + - 5 B(TITm ) (272)
(k, I, m= 1, 2, 3 in cyclic permutation), with the notation

r - Jrm

mi~ & °

§ 12. Equs. (23) and (27) together with the continuity equation (4) give
a complete set of equations of motion. Indeed, if we give the values of g V
and T att= 0, i.e. if the state of the medium is characterized by the initial
conditions

v(r,0) = vO(r), g(r, 0) = g0O(r), T(r, 0) = TO(r) (28)

the motion is completely determined for any time t> Q

We show further that relations (22a) and (21) if satisfied fort = 0 remain
satisfied for any subsequent time.

Indeed, with the help of Gauss’ law we find from (4)

~ jgdr = 0O, i.e. (qdx = constant in time.
dtJ

Thus if the integral of the density extended over the whole space is equal
to unity at t = Othen it remains so at any later time.

We return to the auxiliary condition concerning the velocity vector v
(21) and show that if the hydrodynamical variables given at t = 0 (p0, VO T ()
satisfy (21) for a given value of k then this equation remains satisfied for any
g,V, T obtained by integrating the equations of motion starting from the given
initial conditions for the same value of k.
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From equ. (20) it follows that

. 2nh d
(V+ w)ydr= - K,
dt m dt
where
W= ... A It cos 1ngrad]cp---------°{9-—\ rots .
me 2m idm g

The left side of the above expression can be rewritten in the form
N {v+ tvy)dr = ot (V-+w)dr Q)[» Xrot (v+ WAJdr. (28a)
Introducing here from (17)
n
V+ w — grad S
m

it is seen that the second term of (28a) is zero.
The first integral on the right-hand side can be written in the following way
g

ft .
-(v + tv) dr = — (cl')grad Sdr = Q
ot m J

-

as grad S, as we have shown in [4] can be substituted by grad there | is
a single-valued function of r and t. I. e. we have thus proved

J &«
— ¢ (v+w)dr=Q (28b)

which means that k is independent of time.

It must be emphasized, however, that the procedure followed here is
justified only under the condition that no singularity crosses the path of in-
tegration in the course of the motion considered. So as to getrid of this condi-
tion, we may replace the fixed closed path of integration in (21) by the path
moving together with the medium. If this avoids singular points at the time
t = 0 it will do so at any later time. It can be shown easily that equ. (28b) is
valid taken with such a moving boundary. We see therefore that both auxiliary
conditions (21) and (2=) if satisfied at t — Owill remain satisfied at any later
time. The auxiliary conditions (21), and (22a) are automatically satisfied by
the hydrodynamical variables determined from the equations of motion (4),
(23) and (27) with the aid of given initial conditions.

§ 13. Finally, it remains to show that the hydrodynamical equations
of motion are equivalent to the wave equation. With the help of equs. (12),
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(14), (16) and (19) the wave function mpcan be expressed in terms of the hydro-
dynamical variables p, V, T.

Introducing the explicit expression for ip= ip(g, V, T) into the wave
equation (2 it can be shown after a somewhat tedious calculation that the
relation

Hip(Q, V, T) = ih ay(g’i" R
al

reduces to an identity provided g, V, T obey the hydrodynamical equs. (4),
(23) and (27), and the constant of integration SO(r0, t) is taken to be

Cse.j vyQies — miz d i o,
S0(10.) = S °-j vV rQier —mv2 di-—Tie flot

. . ) H2 N1QR
where S° is a real but otherwise arbitrary constant and Q = —
2m  qv*
The function rj contains besides the hydrodynamical variables the magnetic

field vector B; the explicit form of rj was found to be

B.T, B, T2

n=
n + n
mn Vra—T2V n 1.
------- (vmrotS) +
+ 7 r3 TV + TN 4 Q
Y4

1 b2 1
divioVT3) + — ——-- —(rotqT)2+
4dm T\ + T\ ¢ 32m Q2

;: L+ TY[VTR+ (VT22+ (VT3

w 1 T T1VT2 T2VTt
_________ T rotQ
8n g 3 Tf 4- T\

We intend to return to a detailed discussion of rj in a later paper.

Summarizing, we conclude that a given set of hydrodynamical variables
obeying the initial conditions (21) and (22 determines — apart from a constant
phase factor e S° — a wave function that satisfies the Pauli equation.

We can thus state that in the case of an electron the motion of which
is described in quantummechanics by the Pauli equation there is a one-to-one
correspondence between the normalized solutions of the wave equation and the solu-
tions of the hydrodynamical equations of motion satisfying the adequate initial
conditions. This means that the equations of motion in terms of the hydro-
dynamical variables are equivalent to the Pauli equation.
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IV. Integral properties of closed systems

§ 14. So as to proceed with the discussion of our results let us consider
the integral relations which can be derived from the equations of motion.

We see from (25) that the density of the inner force /m can be obtained
as the divergence of a tensor. Thus we have for the inner force of the elastic
medium representing the electron

F, = Jof, dx = 0, (29)

i. e. as isto be expected in a closed system, the inner forces have no resultant.
The moment of force produced by the inner forces can be written as

K, = Jp[rx/,] dx = j [rx Div dx.

Integrating by parts we find, remembering that the divergence of the anti-
symmetric part of the tensor (25) can be written as a rotation of a vector which
is the divergence of the tensor g [see (26)]:

Ki — 2 1 Divgdr = 0, (30)

i.e. the resultant moment of force produced by the inner forces is also zero,

§ 15. Thus, as was to be expected, the inner forces of the elastic medium
representing the electron have no integral effects. At the same time we obtain
by using (24) for the outer force acting on the system

FO= — egrad Vdr+ U E H-—-[vxIli] dx -f
(31)
+ fx {(sgrad) B + [s X rot B]} dx
and for the moment of force produced by the outer forces:
K Q: _J [r XQ grad V] dx -f-
[rXQeE]dx + - I[rX[e<.t=XB]]dT + (32)

II I X —2/n((sgrad) B+ [sXrot B]) dr-\- j— /u[sxk] dr.

These expressions may be given the following physical interpretation.
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The dynamical behaviour of the electron described as a hydrodynamical
system of density q, velocity of flow v and polarization density s, can be
characterized by the average of the total momentum of the system

P =1J QnVdt, (33a)
and by the total angular momentum

[l = J[FX QmV] dr.

The rate of change of the momentum gives the force acting on the system,
while that of the angular momentum is equal to the moment of force. Thus
using (4), (23) and (29) we get for the total force acting on the electron

F. Fo= 7 (34)
dt

and for the moment of force

K=K0 =~ . (35)

Let us consider now the case when the external field in which the electron
cloud moves can be described by functions changing slowly over the region
covered by this cloud. In this case (34) has the form

FO= - (VF)+ eE+ — [PXB] +
me

(36)
Mp (V°B) -(- [T/p XrotR] ,

(The bar indicates average value.)
As one can see from (36) the outer force integrated over the whole me-
dium representing the spinning electron corresponds to the force exercized

by an external field of average field strength E, B and VF on a charged mag-
netic dipole of momentum

Mp= — /xS. (37a)
where S is the total spin vector

S=1JgT dr. (37)

If we want to consider the moment of force exerted by the outer
forces in a first approximation it is not sufficient to use the average
value of the outer force acting in the region of the atom. So as to get the
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first approximation of the moment of force we have to introduce the grad-
ient of the outer force and express the moment of force in terms of the
average value of this gradient. We do not give here the formula explicit-
ely hut note that the equations thus obtained have a certain similarity to the
Euler’s equations of motion of a top.

§ 16. From the equation of motion (27) of the polarization vector T
we may obtain the time derivative of the spin vector S of a volume element.

Integrating over the whole space and interchanging the order of operations
we get

----- fsdr= — [I[sXRB]dr . (38)
dt J me J

Using here the same approximation as in § 15 and introducing the spin mag-
netic moment, by using (37), as:

we get
ds
dt

l

[M X B]

i.e. the rate of change of the spin vector is determined by the effect produced
by the magnetic field on the spin magnetic moment.

Thus we see that all the actions expected in a classical picture appear in
our relations.

Y. The physical significance of the constant a

§ 17. Finally we return to the problem of the choice of the coefficient
of the last term of expression (8§ giving the velocity of flow. We show that

only the choice * = , which we introduced in § 2and used throughout

our calculations leads to results which are in agreement with experience.

Indeed, in the model considered in this paper the total magnetic moment
of the electron is taken to be built up of two parts: first, as can be seen from
the expression of force (24b) as well as from equ. (36) the medium representing
the electron has a permanent magnetic dipole moment of density

ni
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This contributes to the magnetic moment of the electron
S dx .

Secondly, owing to its inner motion the electrically charged medium
contains convection currents; the density of the magnetic moment of these
currents can be obtained from the expression for the velocity of flow [equ.

(8], as (see [€):

1.
mc= — [is.
Integrating over the whole of space we get

sdx. (39)

Thus, for the total magnetic moment of the electron we have
M= Mp+ Mc= nJsdx. (40)

This is in agreement with the fact that the magnetic moment of the electron
in an s-state is one Bohr magneton.

We note, however, that the above result is independent of the choice
of the parameter a. As a detailed calculation shows by changing the value
of « we merely change the relative contributions of the convection current and
the permanent magnetization to the total dipole moment, the value of the latter,
however, is found to be independent of a.

An effect which does depend on a and therefore gives information on its

correct value is described below.

According to classical mechanics a magnetized top when placed into an
outside magnetic field will precess around the direction of the magnetic field
with a frequency which is proportional to the moment of force and inversely
proportional to the angular momentum, thus

co = (41)

In order to apply this result to an atom which we may compare to such
a top we note that in that case we get for the moment of force independently
of the choice of the value of a:

K = fi [SxB].
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At the same time we obtain for the angular momentum given in (33b) with the
help of the expression of the density of velocity of flow given in (8§

IT = ochS.

l.e. in our model the moment of force is proportional to the total magnetic
moment, while the angular momentum is proportional to that part of the
magnetic moment only which is produced by convection currents.

We get thus for the frequency of precession of the atom

* _ -
I*\s\-\B\ _ | e (42)
aS|s| a 2me

The observed frequency, the so-called Larmour frequency in a magnetic
field of strength B is known experimentally to be

wL= — B. (43)

Comparing (42) with (43) we get for a the value a = — introduced
in §2 2

A further remark must be made regarding the density of the electric
current inside the cloud. The density of the convection current is given by

e (44)

where we have to insert for V the value given by (8 corresponding to & =

However, in a magnetized medium an effective current ieff can be defined
(see e.g. [G) the density of which is given by

reff= ic+ rotM , (45)

where M is the density of magnetic polarization. In the case of the electron
we may suppose8

M = (46)
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Introducing (44) and (46) into (45) we obtain with the help of (8

2 h
E’_- ----------- (P — VE* of) oo ?---Ay>*ip-1f----rot >*aip). (47)
2ne me2 2ne

The latter expression is that usually given for the current density in quantum
mechanical considerations.

We note that the density ieff as given by expression (47) can be used
Tﬁetermine the field strength B produced by the magnetized system, i.e.

can be regarded as a current density equivalent to one producing a mag-
netic field equal to the sum of the fields produced by the convection currents
and the magnetic polarization.

The comparison of (7a) and (47) sheds also light upon the mechanism
of the so-called anomalous magnetic moment of the electron. In the case when
t?°=:Qi.e. in a system when only currents arising from the spin are present,
we find

ipt= Jir= --F-h--rot S .

2ne

Thus the current intensity E‘rom which the magnetic moment can be de-
rived is twice the intensity of the convection current density ic. Since the an-
gular momentum is proportional to the momentum of the masses which are
moving inside the atom, it is also proportional to the density ic and thus the
ratio of magnetic moment and angular momentum becomes twice the “normal”
value, i.e. twice the value to be expected in the case of a system containing
convection currents only.
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r’MAPOANHAMUUECKASA MOJE/Ib BO/IHOBOWM MEXAHWKW 1l
CnnH 3M1eKTpoHa

n. AHOWW v MAPUA LUWUTNEP-HAPAW

Pesome

rmapoanHamuyeckasi Mofieslb BOMIHOBOM MeXaHUKM 6bl/1 pacnpocTpaHeH Hamu Ha npo6-
NeMy 3/1eKTPOHa, OMMCAHHOIo ypaBHeHMem [Maynu. MokasaHo, uTo ypaBHeHust Maynu moryT
6bITb NpPeobpasoBaHbl B CUCTEMY YPaBHEHWIA, MMEIOLLYIO BW KNAcCUYECKOro YpaBHEHWsI ABU-
XKEHUA HEOAHOPOAHOM HaMarHWUYeHHoW Yynpyroi cpefbl.
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Let H be the Hamiltonian operator of a molecular system, let <p(a, a2, ..., an) be a
variational wave function involving the set oq, a2 ..., an of variational parameters and let
u0, u,, ...,un be a set of arbitrary linearly independent functions depending on the same
co-ordinates as (p.

In the special case

ud = o W= BpQLi; (i=1,2,...,n)
the roots Ojj, o2 . .., <sn and e of the set of equations
<iiEIH —e 19> = 0; (k=0,1,...,n) *)

coincide with the values of the variational parameters and the energy, respectively, obtained
by the method of energy variation.

There is reason to expect that the roots of (*) are in many cases fairly insensitive to
moderate deviations of the function u0 from (pand of the functions w, from 9<p/8oc. Consequently
if difficulties of integration prevent us from determining the a- ’s and e by the method of
energy variation it may be reasonable to solve the equations (*) approximately by replac-
ing the functions uk by some mathematically more convenient functions vO~ (p and I/~
3E>/%l. This possibility seems to be an efficient tool for reducing difficulties of integration,
and thus for extending the applicability of variational methods to problems which are —
at least at the present stage of computer techniques — beyond the domain of applicability
of the method of energy variation.

The present paper deals (a) with some practical aspects of the application of
such an approach to problems of quantum chemistry, and (b) with questions concerning the
reliability of the obtained results.

Onu of the most serious difficulties arising in the course of determining
approximate wave functions of molecular systems is the calculation of certain
integrals with very complicated integrands. It has been pointed out in the
first paper of this series [1] that these difficulties can be significantly reduced
if instead of determining the parameters of the variational wave functions
by the method of energy variation (MEY) they are determined by the method
of moments (MM). MM is a more general variational method than MEV in the
sense that while every variant of MEV can be regarded as a definite special

* New address: Computer Center of the Chemical Industries, Budapest.
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case of MM, there exist variants of MM of practical importance which are not
equivalent to a MEV approximation.

In the present paper (a) the basic equations of MM will be re-formulated
in a form which is more general and considerably more convenient for com-
putational work than that considered in I, (b) the problem of the reliability
of the results obtained by MM will be investigated in some detail, (c) the prob-
lem of obtaining an approximation to the energy of the system within the
framework of MM will be discussed, and (d) some remarks will be made con-
cerning the relation of MM to some other variational methods of quantum
chemistry.

1. Introduction

The object of our investigations is a system consisting of a finite number
of electrons and nuclei. It will be assumed that the system is in a stationary
state. The system will be characterized by the (nonrelativistic) Hamiltonian
operator H, the state by the wave function ip and the corresponding energy
eigenvalue E

Hip — Exp = 0, (1)

<vl?> = 1- (2)

Our considerations will be confined to Hamiltonian operators which are real
in the sense H* = H, where H* denotes the complex conjugate of H.

It should be noted that all our considerations are valid also for systems
in which the nuclei are fixed (not necessarily at their equilibrium positions).
In this case H, ip and E denote the (nonrelativistic) electronic Hamiltonian
operator, electronic wave function and electronic energy, respectively.

In order to make predictions concerning some property of the system
we actually never need the wave function ip itself, only certain matrix elements
calculated from it. In order to have something definite before our eyes it will be
assumed that we are interested in the expectation value (y>\P\rpy of an
operator P, and any approximation (p to ip will be called a “good approxima-
tion” if it satisfies the conditions

<fk>= i. ©)
[<<pi P lI<p> - 0 1P vipn < sp, 4)

and
(V 1V < ®)
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where 1 denotes the error in o defined by

V= 9—=<v I<p>V» (6)

while gp and e denote preassigned small positive numbers. There is, in prin-
ciple, no difficulty in generalizing our considerations to the cases (a) when
we are interested in more than one expectation value, and (b) when we are
interested in off-diagonal matrix elements. For the sake of simplicity we shall,
however, not consider such cases explicitly.

Let <p(x) be a variational wave function depending on the same co-
ordinates as y» being normalized

<<PpX) \<p)> = 1,

and involving the set a = {al5 a2 ... xn} of variational parameters. MEV
determines the values of the xg¢’s [2] from the condition

% (x) = (<p{oi) IH 1<p(x)y — stationary. (8,

It will be convenient to start our considerations with the following assump-
tions:

(i) It will be assumed, that (8) has a root m denoted in the following
by a — for which <p(c) is a good approximation to y>

Such an assumption is based in practice always on an extrapolation of the experience
obtained by performing calculations on a number of systems more or less related to that
we investigate, using thereby variational wave functions of a type similar to or simpler than
91a). The reliability of such an extrapolation can be significantly increased by certain qualita-
tive or semiquantitative considerations such as an investigation of the “stability” of the wave
function under suitably chosen perturbations (Hall [3], [4]), or investigations similar to
those of Kapuy [5] concerning the range of applicability of wave functions built up from
group orbitals. As, however, the reliability of such considerations is always limited, they do not
diminish the importance of a posteriori tests of the accuracy of the approximate wave func-
tions (cf. Sec. 3.).

(if) 1t wdl be assumed, that tp(x) and H are so complicated that practical
difficulties of integration prevent us from calculating the integral (a) (or at
least the calculation is too tedious to pay off) and consequently we can not
determine x.

(iii) 1t will be assumed that ¢fa) can not be replaced by some other,
mathematically more convenient variational wave function without risking
an inadmissible loss of accuracy or an inadmissible decrease of the rate of
convergence.

The problems which we shall discuss are (a) how to determine in a si-
tuation characterized by assumptions (i)—(iii) values a, [2] of the variation-
al parameters such, that it can still be expected that cp(a) is a good ap-
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proximation to xp or at least to 99(@) and (b) how to obtain in practice infor-
mation about the accuracy of 99(a). Thus it will be attempted to extend the ap-
plicability of the variational methods to problems which are — at least at the
present stage of computer techniques — beyond the domain of the practical
applicability of MEY.

It seems almost certain that the application of MM to problems which
can be easily dealt with by MEY is disadvantageous and in this sense MM will
be probably always at a disadvantage against MEV.

It should be emphasized that the present paper provides hardly more
than a list of possibilities which seem, after a careful consideration, worth
testing. Our aim is by no means to give final answers to all the arising ques-
tions but rather to initiate further investigations.

2. The determination of a

Let us define a projection operator S by the following requirements:
(@) S should act on functions depending on the same co-ordinates as xp, and
(b) S should project the function on which it acts onto that subspace of the
Hilbert space the elements of which have the same symmetry properties as
Xwith respect to both the permutation of the co-ordinates and spatial symmetry
operations. Evidently SH = HS, S2= S and it can be assumed without loss
of generality, that Scp(a) = 99(a).

In all the practically important cases 99(a) appears in the form

99(a) = N{a) Sw(a), (9)

where iV(a) denotes the normalization factor (Su(a) | Sii(a)>~12 and u(a)
is a function — generally much simpler than 99@) — depending on the same
co-ordinates and variational parameters as 99(a). Introducing the notation

u(@) = ul(a); 9bl@)3a- = wn-(a); £1() = ag (10)

it follows in a straightforward way that (8) is equivalent to the following set
of equations [2], [6]

<UK(«) IH — a0 199(a)) = 0. (11)

We now restrict our considerations to cases in which the stationary
value of the integral (8) is a (local) extremum. This is certainly the case when
X is the wave function associated with the ground state, but it is satisfied
in many cases also for excited states. Then it can be easily verified, that in the
neighbourhood of a = & and a0= If(a) = a0
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iC]
det oai \H. agii 0 oo (12
A

In order to obtain an approximation & to a we proceed in the following
way:
Let us assume we succeeded in finding approximations vk (a) to the
uk (oc)’s
vk (a) » (00) (13)

such, that (a) the calculation of the integrals (vk(a) |H \SBa)) and<uft(a) [¥a))
is possible in practice (some aspects concerning the construction of such vk (a)’s
are discussed in Appendix 1.), and (b) the property (12) of the integrals
(uk (@) \H — a Oj %)) does not get lost by the changes uk (a) —»vk (oc), i.e.
in the neighbourhood of a = a@ and o — cc0

0
det —-< va(«)\H — aO\cp(a)} ¢ O, (14)
aat
The integrals [2]
mki: 1) = <vkii) |H—z.’|:’:’;j\ (15)

are, in general, not zero for c = aand o = cc0. However, whenever (14) holds,
there always exist such changes of aGand the a; ’s which simultaneously dimi-
nish the absolute values of all the mk (oc,a0) ’s. Evidently if the absolute values
of the integrals mk (6c, o)) are sufficiently small, the set of equations

Vit () T H — i) =0 (16)

has a system of roots — to be denoted in the following by {a, a0} — such that
99(a) is a good approximation to cp(~). It is also obvious that the values
imk (5 1| can be reduced beyond every limit by reducing — at least in those
regions of the configurational space which give significant contributions to the
integrals mk (oc, o0) — the absolute values of the functions

ok = vkii — uk (o). (17)

Consequently if the vk (oc) ’s are “sufficiently good” approximations to the
uk (oc) ’sthe equations (16) provide a possible tool for approximately solving (8.

In the following the integrals mk (oc, o) will be referred to asmoments
of (H — a0)g)(oc) with the weight functions vk and the equations
(16) will be regarded as the basic equations of MM [7].

Evidently the competitiveness of MM depends on two factors: (a) how
can we decide in practice whether or not the approximate wave function
99(@) obtained by an actual set of weight functions is a good approximation
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to xp (or least to qgp(sc)), and (b) whether or not the root & of (11) is sufficiently
insensitive to changes uk (a) — vk (a) in practically important cases, that the
requirement of obtaining a good approximation to x is compatible with
bk (a) ’s sufficiently large to make possible a significant reduction of the diffi-
culties of integration. These problems will be dealt with in the next two
sections.

3. Some possibilities for obtaining information about the accuracy of < (a)

In this section we shall discuss some practical possibilities for deciding
whether it is justified or not to expectthat a wave function <p) obtained by
some actual set of weight functions is a good approximation to » (or at least
tO <J9(ix)).

(i) The simplest possibility for obtaining information about the accuracy
of xp(a) is evidently to calculate some properties of the system from cp(a) and
compare the results with the experiment. This error estimate is an “absolute”
one in the sense that it compares <p@) with x and not with (p(oi). As this type
of error estimate does not depend on the way cp(@) has been obtained, we shall
not discuss its problems in detail but refer to a review article dealing with
this topic [8]. Only some remarks will be made on questions which are of a
special interest for MM.

The difference between the expectation value (a) and the empirical
(nonrelativistic) value E of the energy is generally regarded as an important
gauge of the accuracy of cp(a). Although according to assumption (ii) made in
Sec. 1. the calculation of &’(4) may be prohibitively difficult, it must not be
categorically excluded from among the practicable possibilities. Namely it is
a much easier task to calcalate é’(a) for the one given set & of variational para-
meters than to calculate it several times in the course of the determination of a.

The most serious shortcoming of the empirical error estimates certainly
lies in the fact that they are limited to a fairly small proportion of the practi-
cally important problems, mainly to isolated atoms and small molecules in
the ground state or some low-lying excited state. It is namely hardly possible
in practice to carry out sufficiently accurate and clear-cut measurements
on considerably more complicated systems, e.g. on a system consisting of an
aggregate of interacting molecules with some prescribed nuclear arrangement.
Unfortunately the quantumchemical methods are the most competitive just
in those cases in which the experimental ones fail, and consequently purely
theoretical error estimates are of a great practical importance even if they are
mathematically not rigorous (in a similar sense as e. g. the error estimates
ofthe Monte Carlo calculations). The main value of the empirical error estimates
lies in the possibility of testing on simple problems the efficiency of different
types of variational wave functions and error estimates.
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(ii) In the case of MEV there is inevitably a considerable amount of
arbitrariness in the choice of the variational wave function 99(a) and in the case
of MM there is some additional arbitrariness in the choice of the weight
functions vk (a). It is evidently of importance to obtain information about
the effect on the results of this latter source of arbitrariness and, as far as
possible, to reduce this effect.

In order to obtain information about the order of magnitude of the
changes % —» - we can make use of the fact that for given H and 99(a)
the changes a, —»d; depend only on the magnitude and the shape of the func-
tions ok (a). Let us assume now that we have solved the equations (16) for

more than one set of weight functions, say, for the sets (a), vk*(a), . ., vk\x),
such, that the corresponding (@)'s = 1, 2,... /) substantially differ
from each other [9] and let us denote by the root obtained by using the set

(a). Of course, it may — accidentally — happen that for some value of i

two or more of the (if*— a,)’s are approximately equal. The probability of
all the (df* — a,)’s being approximately equal for some value of i decreases
however, rapidly with the increase of f. It can be expected that even for
rather low values of / the oscillations of the W/J) ’s provide a fairly reliable
estimate of the order of magnitude of the |d- — a, | ’s, where d; denotes some
average of the d;ft*’s. Although this error estimate has the character of a “ran-
dom sampling”, we expect that if one obtains experience in its use its reliabi-
lity will be sufficient for practical purposes.

There exists a very attractive variant of this error estimate. We start
with a set vk\x) which is a rough but possibly simple approximation to the set
uk (a), and continue with sets vk (a), v~ (a), . .. which are better and better
approximations to the set uk (a). (E.g. if the vf,n(a) ’s are obtained from the
uk (a) ’s by expanding certain constituents of them in terms of more convenient
functions (as described in Appendix 1.), the subsequent sets v (a), vk (a), . . .
may be obtained by retaining more and more terms of the expansion.) It can
be expected that in this case the subsequent a'P ’s tend to some definite values
and the procedure can be ended after the changes of the df* ’s do not exceed
in the last steps some preassigned values.

It may turn out that this procedure is economical even from the point
ofview of computer times, as it means that the values of the d-’s are determined
first roughly but in a relatively simple way and the more and more tedious
steps serve only for refining the result obtained in the previous step. Evidently
all the steps require in this case the running of a program of the same type.

(iiif) A further possibility for obtaining information about the error in
99(d) or rather in matrix elements of the type <(9(0) | P |99(d)) is that proposed
recently by Chen and Dalgarno [10]. As to the details of the method we refer
to the quoted paper and make here only a few remarks on problems of a specal
interest for MM.
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Chen and Daltgarno have shown that under certain rather general
conditions the integral

ApP = 2(/9(@) IH lw(a)) (18)

is of the same order of magnitude as the error in (<p(& \P |9s(a)), where
f denotes a well-defined function determined in practice by minimizing a
functional with respect to a selected trial form off. The fact important for us
is that this functional is so simple that it can be generally calculated without
prohibitive difficulties even if this is not true for if(oc). Naturally the integral
AP suffers from similar if not worse difficulties of integration as &(pc). Howe-
ver, having determined f we can approximate to / 9(a) by some more con-
venient function and thus calculate AP approximately. Taking into account
that AP is generally only a small correction this latter neglection seems
justified.

This error estimate is again an “absolute” one in the sense mentioned
in (i). Although AP is not a rigorous error bound it can be expected that after
gaining experience in the application of the method, its reliability will be
sufficient for many purposes. Unfortunately the method fails if 99(a) is “stable”
under the perturbation P in the sense defined by Hann [3], [4].

(iv) Information about the order of magnitude of the error in <<p(8) |Pj<p(&):
may be obtained also in the following way [11]. At first we determine
cp(d). Then we repeat the calculations with another variational wave function
obtained from <p(@ by introducing some new variational parameters which
have the effect ofimproving ss(a) particularly in those regions in which jP 99(0)]
is large. The improvement in the expectation value of P, due to the intro-
duction of the new parameters, can provide information about the order of
magnitude of the error in <wo(&) [P joes(a)).

A possible form of such an “extended” variational wave function may be

(] ’

M) 1+ Bo-A'b S Bhfh P y(a) - (19)
/1=1
where M(B) denotes a normalization factor, Ra, A, ..., BH denote new varia-
tional parameters and the fh ’s denote suitably chosen functions depending
on the co-ordinates of the particles comprising the system. The choice of the
fh’sis based on intuition and experience.

4. About the sensitivity of the approximate wave function to changes
nK-> Vk

We notv discuss some aspects of the problem: how sensitive is the root S
of (11) to moderate changes uk (a) —mvk (a). Unfortunately there seems to be
little hope for finding a mathematically rigorous and yet practically useful
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answer to this question and consequently we always must strongly rely on
numerical experience. However, in order to justify the expectation that MM
is a practically useful method and also to make it possible to draw conclu-
sions from a much smaller amount of numerical results than would be pos-
sible by considering only the numerical results themselves, it seems useful to
make some general investigations into this problem. E.g. it can be shown that
even for weight functions vk (a) strongly differing from the corresponding
uk (o) ’s the approximate wave function cp(a) satisfying (16) has certain
important properties such that (a) no approximate wave function can be a good
approximation to wpif it does not, at least approximately, possess these pro-
perties, and (b) a wave function which is a bad approximation to y) can only
accidentally possess such properties.

As the moments are linear in the weight functions the roots of (16)
remain unchanged if we replace the weight functions by n -f- 1 linear
combinations made up of them. Let us start by constructing such linear com-
binations wi (a) of the vk (4) ’s which are more convenient for our purposes
than the vk (ct) ’s themselves. We write [2]

u>i(d) = £ c IkSvk(4a), (20)
k=0

(ak = const),

and determine the co-efficients Gk in accordance with the requirements that
(a) the wi (2) s should be linearly independent, and (b) n of them, say wl (ct),
w2 (a), . ..,wn(ct), should satisfy the orthogonality relations [2]

i (@) 1<p@>= 0. (21)
Although these conditions do not uniquely define the Wi (ct) "s, the remaining

arbitrariness does not affect our following considerations.
The equations (16) can now be written for ¢ = & and o = 40 as

(w, (& IH — a0 1I<p@)>= 0. (22)
It is important to note that by (21) the integrals on the left hand side of the

last n equations of (22) do not depend on the value d0Oand consequently they
are equivalent to

<w/ («)]| H — % (a) l<pca)y = O. (23)

The equations (23) present a convenient starting point for our following con-
siderations.
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(i) Let us assume that the io, (&) ’s are acceptable functions and let
consider the following variational wave function

X(R) = (! + Ro)<P@@) + I£:|Bi (24)

X®) 1 X®)>= 1. (25)

where B = {7, Bt ... denotes a set of new variational parameters.
The values of the Rk ’s can be determined by MEY, and writing out the cor-
responding equations (cf. Sec. 2. of I) it can be easily verified that by (23) they
are satisfied by the values Rk=0, i.e. by this procedure we re-obtain ). Con-
sequently whenever the (@) ’s are acceptable functions the approximate
wave functions <p(d) satisfying (16) is always automatically also an exact
solution to a well-defined MEV approximation to ip. (It is essentially the func-
tions Wj which have been called weight functions in 1.)

Although there exist types of weight functions which are of considerable practical
interest and do not satisfy the requirement that the n>{d) ’s constructed from them should be
acceptable functions, this requirement does not seem to cause a significant loss of gene-
rality. Namely in a majority of such cases the wi (&) ’s are not acceptable because of their in-
correct asymptotical behaviour which makes them unnormalizable. However, in these cases
we can always think to have replaced these weight functions (without changing &) by such
weight functions which are already acceptable but differ markedly from the old ones only in
regions far enough to have no marked effect on the investigated properties of the system.j

UsS

(i) Let us recall a result derived by Schwartz [12]. It is well known

that if r](a) denotes the error in (a) as defined in (§ and P, is an arbitrary
operator associated with some physical property, the expectation value
(<p@) 1P, 19a)> generally differs from the exact value (ip \Pt| ip) by terms
proportional to tj(tx), i+ (oc) and higher powers of tj(a). Schwartz has shown
that if we add to (<p(&@ \Pi \¢>(d)) the correction term

2Re(Fj cp(@ \H — <4@) \ <p(d)), (26)
where the function F, satisfies the equation
[F, H- H Ft]cf(d = [Pi- (<p@) IPi I<p@)>] <p@), (27)

the error in the corrected expectation value does not contain terms linear in
rj(ct) and thus can be expected to be, in general, a significantly better approxi-
mation to (ip jPi lipYthan is (f(a) [P,- | <p{@Vy.
Notv the equation
Wi(d) = Fitp(a) (28)
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defines a function F,-, and by (23) for this F, the correction term (26) vanishes.
Consequently it can be expected that <p@) is such an approximation to y>
which is particularly suitable for calculating expectation values of operators P
which can be expressed as some linear combination of the operators P, defined
by (27) and (28). (Cf. ref. [16.].)

It is possible to obtain equations for the Pz’s directly in terms of the (a) ’s instead
of the FI ’s by multiplying (27) from the left by (p(& and taking into account (28)

i*(8H @) —y(A)H wi(d) = y(a)IP, - <<p(d) | Pt\¢>(0)>] @ (29)

As follows from the results contained in Hall’s paper [4] the vanishing of (26) is equivalent
to the fact that (p(d) is “stable” under any perturbation P which can be expressed as some linear
combination of the P- ’s.

(iii) The equations (16) have the property that if — accidentally —
(p(x) = y» the values x = x and x0= x0= E satisfy them for any set of
weight functions whatsoever.

(iv) As pointed out in Sec. 3 of I, for a number of large classes of weight
functions strongly differing from each other and being arbitrary to a consider-
able extent, the results obtained by MM are equal to those obtained by other,
more customary and probably highly reliable variational methods of quantum
chemistry. This again strongly supports the expectation that the results of
MM are not very sensitive to moderate changes of the weight functions.

5. Approximation to the energy

Finally we investigate some problems in obtaining an approximation
to the energy of the system in the case when we cannot calculate @ (a).

Taking into account that the expectation value of the energy is generally
fairly insensitive to a moderate increase of the error in the approximate wave
function, the simplest but evidently not very attractive possibility is to carry
out a MEY calculation with a variational wave function less accurate but
mathematically more convenient than cp(x). If the Svp (a) ’s are acceptable
functions, a possibility of this type is to regard the constants cOk in the first
equation of (20) as variational parameters and determine their values from the
conditions

<wQ(d) 1H \wO(ct)> = stationary (30)
and

(w,, (a) livu(a)> = 1. (31)

There exists, however, a possibility which seems to be in many re-
spects a better one. It can be shown, namely, that (a) if E isthe energy asso-
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ciated with the ground state, (b) if we have any normalized acceptable ap-
proximation w to (f(&) for which we can calculate the integrals (w | H | <p(@)y
and (w I<p@y and which satisfies the condition

1 - <» 12<)> <=1, (32)

and (c) if there is some good reason to expect that S’a) isa much better
approximation to E than is (w |H w]> it is advantageous to use instead of
<w IH lwy the value Re

<w| ?(«)>

as an approximation to E. (If w= w0 (&), @= dO0and thus © can be obtained
without solving (30). In this case (13) may automatically ensure (32)).
Let us namely consider the following variational wave function

£ o0 =T0 9(«) + Yiw, (34)

<E(>V Yi) 1£(M0> Yi)> = I» (35)

where y0 and yx denote variational parameters. Determining the values of
y0and yr by MEV we obtain the secular equation

<?«) |A - ©]¢(0)> <®) IH - o 1« _
<\N|ﬂ_ ©|<FX0)> WIH - ©|W} K

Denoting by © the lower root of (36) we have E <[ © S’(a), and it follows
from (32), (33) and (36) that

Ke© - @™ I©- © = |<w|9>(a)>|-1 - 6] [<w|H|w> - ©] ~

~ "IWW -©][Wh |p>- ©e

Then — assuming (c) and taking into account that the more two positive
quantities differ, relatively the closer istheir geometrical mean to the smaller
one — it immediately follows from (37) that the error in Re © is much smaller

than the error in (w |4 |ic>. Evidently the worse an approximation
(w IH lwy (as compared with S(a)) to E, the more advantageous is the
use of Re © instead of (w |H \wy.

It should be noted that in the case of complicated systems the introduc-
tion of one single variational parameter yx (y0is namely fixed by (35))
is not likely to give a drastic improvement in the energy. Then S(a) — ©
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&(&4) — E and this can by (37) have the effect that Re ®is a good approxXi-
mation to <?4a) even if (32) isnot fulfilled. In this case, however, the only possi-
bility for obtaining information about the accuracy of Re @ seems to be a
“random sampling” type estimate described in (ii) of Sec. 3.

6. Relations of MM to some other variational methods
of quantum chemistry

Our aim has been to adapt MM as far as possible to the special needs
of quantum echemistry, mainly in order to overcome difficulties of integra-
tion. Although MM is one of the standard methods for approximately
solving complicated differential and integral equations [13] and it has been
successfully used e.g. in the theory of elasticity, it appears to have found only
a very few applications in quantum mechanics. Almost all these approaches
deal with problems of solid-state physics and band spectra and differ so
substantially from the method outlined in the present paper that further
comment on this question seems unnecessary [14].

There exist, however, two further initiatives the relation of which to
MM is of a considerable interest. Their discussion supplements similar con-
siderations of Sec. 3. of I.

(i) Recently Armstrong [15] has proposed to obtain a qualitative
estimate of the error in an approximative wave function (p by comparing the
values

?2 = A and » = A , (38)
<ik> k k >

(provided that the denominator <(l/ip) differs from zero). By comparing
(33) and (38) it can be seen that (33) is a straightforward generalization of the
first equation of (38).

(ii) In a series of papers [16] Hirsciifelder, Epstein, Coulson et. al.
have considered the possibility of determining approximate wave functi-
ons of molecular systems from the requirement that these should satisfy so
called hypervirial relations. The close relation of this approach to MM is
evident from the relation of the two methods to MEY (cf. e.g. the quoted paper
of Epstein and Hirschfelder). It seems probable that the two initiatives can
supplement each other very satisfactorily as the hypervirial relations appear
to be excellent tools for investigating problems of theoretical interest but
seems less suited for reducing computational difficulties, while the opposite
holds for MM. *

* Note added in proof: The reader’s attention is drawn to a paper by C.A.Coul"”
son, which has recently appeared in Quart.J. Math. (Oxford), 16, 279,1965.; the results of

the paper may prove very useful in eliminating difficulties of integration from calculations
of wave functions associated with excited states.
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1. Appendix

In the following some practical aspects will be discussed concerning
the construction of the weight functions.

(i) Let us consider the equations (10), (13) and (16). In many cases when
the relation i»a (a) u0(a) holds in a large domain of the a- ’s also the relations

dvO (a)/3a,- /bl &0 (a)/9%a,- (39)

hold, and it may be reasonable to make the choice

Vi (o) = 9dO(a)/ &~ (40)

The computational advantages of such a choice are obvious: (a) we have to
approximate to only one function (namely to u0(a)) instead of approximating
to /I -f dones, and (b) only integrals of the type

Oo (<*) IH —ao lw(a)) (41)

must be calculated for a' a as the integrals on the left hand side of equations
(16) can be obtained from (41) by numerically differentiating with respect
to the o) ’s at a' = a. It should be noted that generally the calculation of the
integrals (41) is not more difficult for oc’ =f=a than for a' = a.

(i) In some cases it may have advantages to determine at first a

approximation to & and &40 from the condition

<«o(«)| H [99(@)) _ stationary,

(42)
<ro (a)|99(a)>

and use the equations (16) only for refining this approximation. Equation (42)
has practical advantages over (16) but it seems less satisfactory from the theo-
retical point of view.

(i) The variational wave functions nQa) and their derivatives
(Egs. (10)) are in practice always constructed from simple “building elements”
by simple operations (mainly multiplication of the building elements and con-
structing linear combinations of their products). The most frequently used
building elements are (a) the cartesian co-ordinates of the particles making
up the system, (b) powers and exponential functions of the distances from
fixed points or from each other of the particles in the system, (c) exponential
functions of linear or quadratic expressions of the cartesian co-ordinates of the
particles, and (4) the well known spin functions. We shall denote the building
elements occurring in the functions uk(a) by f£ f2,...,/p. Evidently the
uk (oc) ’s are definite functions of the fp ’s [ and of the a, ’s
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uk(x) = UKkifvft, ccha.,  *)s (43)

where the fp ’s themselves may depend on the a/’s.

Now a very convenient way for constructing approximations vk (a)
to the uk (a) ’s is to construct at first some mathematically more convenient
approximations gp to the fp’s

gp”fp (44)

and build up the vk (a) ’s in the same way from the gp ’s as the uk (a) ’s are
built up from the fp’s (cf. Appendix 2.)

vk (x) = Uk(gbg2 ...,gP; a,, a2 ...,X,). (45)

The advantages of this procedure can be more easily seen from a simple illustrative
example than from some general consideration. It is well known that the function exp (—r)

can be approximated for not very large r > 0 by the polynomial yro(—l)/1 (hn1 ", Now let
us assume that some f,, occurring in uk (a) has the form exp (—a, r). If we want to build up g,,
S
in the form V akr (an= const.) we evidently can, in principle, determine the ak ’s e.g. from
li==°
the condition
<vk (a) — uk(a) Ivk (@) — uk(a)> = minimum. (46)
This procedure would be, however, an extremely tedious one as we had to determine simul -
taneously all the parameters in all the g,, ’s (among them the ak ’s) for every value of k and
AN
even for every set of a- ’s anew. On the other hand by making the choice g-= l\h[;()—l)h(h!)ﬂ(ajr)h

the work of -calculating the ak ’s is completely eliminated. This choice will probably
pay offin most cases inspite of the fact that it does not provide the “absolute best” values
of the ak ’s.

(iv) Let us finally list some types of functions which seem to have par-
ticular advantages if serving as building elements of weight functions [17].
This list is by far not complete and perhaps experience will teach us also
other possibilities.

(a) At first we limit our considerations to cases when the wave function
) consists of a linear combination of products of one-particle spin-orbitals
and these spin-orbitals themselves are linear combinations of Slater-functions
centered at arbitrary points and having integer principal quantum numbers. In
this case it isnatural to construct also the weight functions in the form oflinear
combinations of products of one-particle “spin-orbitals”. The following types
of functions seem to have advantages if serving as building elements of the
one-particle “orbitals” comprising the weight functions:

(a/l) Polynomials of the cartesian co-ordinates of the particle. It can be
easily verified that the most complicated integrals occurring in the moments
are in this case two-center Coulomb integrals.
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(a/2) Linear combinations of Boys-functions [18] depending on the co-
ordinates of the particle. In this case the calculation of the moments can be
easiliy performed by expanding also the Slater functions in 99(a) in terms of
Boys-functions [19].

In practice such an expansion always means that we replace the Slater-functions in
<pfa) by a finite linear combination of Boys-functions and thus in certain special cases this
procedure simply coincides with carrying out a MEV approximation with a variational wave
function built up from Boys-functions instead of Slater-functions. Yet the application of MM
can provide considerable computational advantages because of the following reasons:

The obtaining of a good approximation to a Slater-function requires the use of a very
high number of Boys-functions. Now evidently the number of Boys-functions used for ex-
panding the Slater-functions in <p(U) is fixed by the required degree of accuracy and must
not be reduced. However, as it can be expected that the root cc of (11) is not very sensitive
to moderate changes of the uk(a) ’s, it can be expected, that the vk (a) ’s can be constructed
without a considerable loss of accuracy by expanding the Slater-functions in the uk (a) ’s
in terms of a much smaller number of Boys-functions than in <p(a). This leads to a very signi-
ficant decrease in the number of integrals to be computed.

(a/3) Linear combinations of plane waves depending on the co-ordinates
of the particle. In this case the situation is analogous to that discussed in
(al2), but the plane waves seem to be less advantageous for atomic and mole-
cular problems apart perhaps from delocalized ~-electron systems.

(b) Let us finally consider variational wave functions <p(a) consisting
of a linear combination of products of (spin-) geminals which cannot be
reduced to a finite linear combination of products of one-particle spin-orbitals.
In this case it seems advantageous to use weight functions consisting of a linear
combination of products of one-particle “spin-orbitals”. The advan-
tages of this choice are: (a) no integrals involving inseparably the co-ordinates
of more than four particles occur in the moments (in contrast to the case of
MEV which requires the calculation of integrals in which the co-ordinates of
all particles may occur inseparably), and (b) there exist possibilities of over-
coming difficulties associated with the strong orthogonality conditions for the
geminals [20].

2. Appendix

The following simple example can illustrate the main steps of an MM
calculation [21], [22].

The electronic wave function associated with the ground state of the
neutral helium atom can be approximated by the variational wave function

ul(a) = u0(ax) —e~aTl e~a'n (47)

where ry and radenote the distance from the nucleus of the electrons 1 and 2,
respectively, and spin co-ordinates have been disregarded. u0O(a) can be re-
garded as being the product of the “building elements”
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fx = e~°iri; f2= (48)

“o(*) = fi wfi e (49)

Now the function e~rcan be approximated by the function 0,473 e~°'2,r~
[23]. Consequently it can be attempted to make the choice

gx = 0,473 e~° 27(airi)2; g2= 0,473 e~°"2LAM\ (50)
From (48), (49) and (50) we have in accordance with (45)
vo(a) = gl mg2 = 0,224 e*°27(air)2 e_0'27(all™’. (51)
For vli(a) we make in accordance with (40) the choice
h (® = 3 »o (a)9aci . (52)
Then equations (16) give the result

40= —2,766 at.u.
cq = 1,643 at.u.

The corresponding MEV results are

50= —2,848 at.u.
ol = 1,688 at.u.

Some further numerical examples can be found in Sec. 5. of I.
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OMPEAENEHWME BOJIHOBOM ®YHKUMN MONEKYNAPHbLIX CUCTEM
METOAOM MOMEHTOB, Il.

E. COHAMN u T. COHAN

Pesiome
Myctb A — onepaTtop MNamMunbTOHa MONEKYNspHOA cuctembl ip(al, a2 .. ,an) — Bapua-
LMOHHasA BOMHOBasi (YHKLMSA, cojepxxallas CeTb BapuauuoHHbIX napameTpoB alt a2 ... am,
panee n0, ux, ... WN — CeTb NPOU3BOMbHbIX IMHENHO HE3aBUCUMbIX PYHKLNIA, 3aBUCSLLUX OT

TeX Xe caMbIX KOoOpAuHaTt, 4yTo U <
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B cneyuanbHoM cny4ae
ud= 9 U= soofsoy; i=12,...n
KOPHW CUCTEMbl YpaBHeHWIA
< UkIH —el9p> =0 (fc= 0,1,...n) *)

a,, a3... a, W e cOBMajalT CO 3HAYEHUSIMU BapWaLMOHHbIX MapameTpoB W 3HEPTUWU COOTBET-
CTBEHHO, MOJTyYeHHbIMA METOA4O0M Bapuauun 3Heprum.

EcTb OCHOBaHWe npegnonararb, YTO KOPHW BbIpaXeHus (*) BO MHOrMX cry4asx fAo-
BO/IbHO HEUYBCTBUTE/IbHbI MO OTHOLLEHUIO HEGOMBLLIOFO OTK/IOHEHUS PYHKLUUK Mo OT IPp U (DyHK-
unii ut oT 893y~ CnefoBaTeNbHO, Lienecoo6pasHbIM ABSETCS PeELUWTb YpaBHEHUS Npubnu-
YKEHHO, 3aMeHss (YHKLUN MK HEKOTOPbIM, C MaTeMaTMYecKOW TOUKW 3peHus 6onee Noaxons-
wyM npubnmxkeHnem: vl pu vt ad/gw, [aHHas BO3MOXHOCTb OKasbiBaeTCs 3(hheKTMB-
HbIM MPUEMOM [/ YMEHbLUEHNUA TPYAHOCTE NPV UHTErpupoBaHWKM, W, TakuM 06pasoM, Ans
pacLuMpeHusi 061acT¥ NPUMEHMMOCTY BapuaLMOHHOIO0 MeToda Ha CMEXHble — MpPU COBPEMEH-
HOM YPOBHE BbIUYUC/IUTE/IbHON TEXHUKM — 061aCTU NPUMEHMMOCTY MeToda BapuaLMn 3Heprum.

B HacTosieli paboTe rnaBHbIM 06pa30M PaccMOTPEHbI CriefytoLve BONPOChI: a) Mpak-
THYeckasi CTOpOHA MPUMEHEHUS YNOMSHYTbIX NPUGAVKEHHbIX NPUEMOB K Npob6remMaM KBaH-
TOBOM XMMMUK; 6) BOMPOCHI, KacarLMecss HafleXXHOCTU MOMYyYeHHbIX pPe3y/bTaToB.
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THEORY OF CONGRUENCE
IN GRAVITATIONAL FIELDS I11.
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BUDAPEST
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The inversion part of the holonoray group, which is a good physical symmetry group
locally, is investigated. It is shown that the existence of inversions depends on the topological
properties of the gravitational field (supposed to be a Riemannian manifold Mn). Therefore
M n is defined to be a differentiable manifold and the Theorem on parallelism is extended to
this case. It is shown that if Mnis orientable then 4? is a subgroup of SO(n) and if Mnis non-
orientable then IPis a subgroup of 0(n). More precisely there exists ahomomorphism h : n,(Alrn)
>m 0(n)/S0(n), where Jij (Mn) is the first homotopy group of Mnand the topologically invariant
classification of gravitational fields according to factor groups of % (Mn) is physically meaning-
ful. Besides some simple examples space forms of zero and constant positive local curvature
are classified. For example, there exists an infinity of 3-dimensional forms of positive curvature
but local space inversion is not a good operation in either of them. It is also pointed out that
physical space is not simply a Riemannian manifold Mn but a fibre bundle over Mn.
Therefore the theory of fibre bundles with structure group over a differentiable manifold
is used.

Introduction

In two previous papers [1, 2] it has been shown that the holonomy group
(hg) Wof a gravitational field, assumed to be a Riemannian manifold Mn, is
a good local physical symmetry group in the tangent space et each point of
Mn. In a Riemannian manifold IP is a subgroup of the orthogonal group
0(n) and in [2] the identity component 4r/0 (denoted previously by ax) of 4*
was discussed. It has been shown that the Lie-algebra of W°, the restricted
hg, is given in terms of the Riemannian curvature tensor and its covariant
derivatives. In particular, when Mn is of signature -f-2 then W is a subgroup
of the Lorentz group L and 470 is a subgroup of the restricted Lorentz group
L |. Physical consequences of this fact were discussed.

In the present paper we are going to deal with the discrete operations
of 4*. More precisely, given a gravitational field M n we wantto know whether
its hg involves inversions or not. To grasp the nature of the problem consider
the following simple example.

Suppose Mn is simply connected. Then every closed curve at any point
x e Mnishomotopic to zero and hence the hg W is equal to W°. Thus the hg of a
simply connected Mn does not contain inversions and the possibility of inver-
sions can happen only if Mnis not simply connected.
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It is seen from this that the hg depends in a crucial way on the topolo-
gical properties of the manifold. Therefore the rather loose term “Riemannian
manifold” we used (and is usually used in classical relativity) up to now will not
serve but must be made more precise by the introduction of topological pro-
perties into the concept of Mn.

This will be done by means of the concept of a Riemannian manifold
as adifferentiable manifold. Particular attention will be paid to the orientation
of a differentiable manifold since, as will be seen, it plays a crucial role in
the determination of the inversions in ®. In particular, for an orientable M nW
is reduced to Y70.

Before proceeding, however, to mathematical definitions we make one
more remark. In usual geometrical theories of gravitation one is dealing with
such objects as points, curves, geodesics, tensors. We have, however, seen
that since the hg is a good physical symmetry group, each tangent space is
provided with a structure defined by W. So we have a superstructure at each
point of the Riemannian manifold and we want to build this superstructure
into the theory in a systematic way. This will be done by introducing the con-
cept of a fibre bundle with a structure group over a differentiable manifold.

We first give the necessary mathematical definitions and theorems, then
generalise the theorem of [1] and try to draw some consequences concerned
with inversions in W.

All the mathematical results needed in this paper are contained in stan-
dard books on global geometry such as those by Lichnerowicz [3], Nomizu
[4], Kobayashi and Nomizu [5], and Rinow [6]. Since, however, they are
scattered throughout these books we start by presenting them in an organised
fashion most suitable for our purpose.

1. Differentiable manifolds, orientation

An re-dimensional manifold is a connected, separable topological space
in which each point has a neighbourhood homeomorphic to some open set
in Cartesian re-space Rn. A system S of differentiable coordinates, or atlas,
in an re-manifold Mnis a family {Ua} of open sets covering Mn and for each x
a homeomorphism

9 : Ua “mRa,

where R1is an open set in Rn, such that the map

qayjl:<pR(Ua N UR)- <a(Ua M UR) 1)

is differentiable. The pairs (Ua, qu) are called charts, or local coordinates in Mn.
If such a map has continuous dérivates of order r then S is said to be of
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class Cr. If S and S' are two systems of coordinates in Mn of class Crthey are
said to be r-equivalent if the composite families {Ua, UR}, {(pa, w) form a
system of class Cr. A differentiable manifold M n ([3], Chapitre 1) of classCr
is an ramanifold M,, together with an r-equivalence of coordinate systems inMn.

It should be noted that this definition of a differentiable manifold
coincides with the more usual definition in terms of differentiable functions
([4], Chap. 1). The one given here is more convenient for geometry.

If X e ua N ug, let us denote the Jacobian n X n matrix of the coordinate
transformation (1) by QR (x) at gB(x). From the equation

Qay (*) dyfi (*) = daB (*),* e Ua M UBR N Uy

it immediately follows that aal (x) liesin GL (n, R) and we have ag3: Ua N Up->-
— GL (n, R).

An atlas S is called oriented if the determinant of aal (x) is positive for
all x, 8 and x e Ua Ml UR. If S and S' are two oriented systems, one can show
that the Jacobian matrices of gay j1 have determinants which are either posi-
tive for all a, 8 and x e Ual UBor negative for all x, 8 and x e Ua Tl UR. One
says that S and S' are positively or negatively related. In this way oriented
coordinate systems fall into two classes. Systems in the same class are positively
related, systems in different classes negatively. Each class is called an oriem>
ation of the manifold Mne If Mn admits an oriented system we say it is
orientable. If this is not the case we say it is non-orientable. An oriented
system has two orientations and orientation can be reserved by the transform -
ation

(x4, X2, .. .xn) ( Xy X2 ..., x").

The transformation <a qtR1 at X e ua fl ug for every x and R induces
a transformation in the tangent space at x of M n . Since the induced transform -
ations are given just by aaB, it is easy to see that the tangent spaces over an
orientable differentiable manifold M n fall naturally into two classes. Those
in one class are arbitrarily described as right-handed and those in the other
as left-handed.

2. Fibre bundles

Consider now the tangent space Tx (Mn) at a point x of the differentiable
manifold Mn.

A linear frame it(x) at x e Mn is an ordered basis of the tangent space
Tx (Mn). Let Q(x) be the set of all linear frames at x e Mn and let L(M,,) be
the set of all linear frames at all points of Mn

LMn= U <2(*).
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L(Mn) can now be made into a principal fibre bundle ([5], Chap. I): If a point
in L(Mn) is defined by the local coordinates x of the origin of the frame
u(x) eL(Mn) at x and by the matrix defining u with respect to the natural
frame at x and n is the projection which maps a linear frame u at x into x,
then L(Mn) is a fibre bundle over Mn with GL(n, Rn) as structure group. This
bundle is called the bundle of linear frames over Mn . The transition functions
ipa are in this case given by the Jacobian aap of the transformation (1)

caVil:n (UaN Up) -+cpa(UaN Up).

Since the linear group admits two components, there exist at a point
X e Mntwo arcwise-connected families of frames. The determinant associated
with two frames in the same family is positive and with frames in different
families is negative. Consequently, the bundle L(Mn)either admits two arcwise-
connected components or itself is arcwise-connected. Since the transition
functions are given by a aap it is seen that in the first case the base manifold
M nis orientable and in the second case it is not. Conversely, if Mnis orientable
then the first case is realised and if it is not orientable then the second.

If Mnis orientable then we denote by L° (M,,) one of the components
of L(Mn). It is a principal bundle with structure group the identity component
of the linear group.

Obviously, tensor bundles Ts(Mn) of type (r,s) over Mn associated
with L(Mn) can be defined by regarding GL(n, R) as a group of linear trans-
formations of the tensor space Ts over the vector space Rn. The transition
functions can again be constructed in straightforward way.

3. Connections, holonomy groups

Let P(Mn, G) be a principal fibre bundle over a differentiable manifold
M n with structure group G. If T(P) is the tangent space of P at u e P, then
a global connection I in P can be defined in the usual way by splitting up
T(P) into the direct sum of vertical and horizontal subspaces ([5], Chap. II)
Given a connection I in P one can then define the connection form, which is a
1-form co on P with values in the Lie-algebra k of G. This, in turn, can be ex-
pressed in terms of a family of local connection forms coa each defined on Ua for
an open covering {Ua} of Mn. These fc-valued local 1-forms are suchthat they
satisfy for each intersection the transformation law

0Ja= (adal})wp+ a°fi daal

for each x e Ua M Up, where aape G.
By means of the connection 7’one can define parallel displacement of
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fibres along any given curve T in the base manifold. More precisely, let r = xt,
0 < t< 1, be acurve in Mn. A horizontal lift, or simply a lift of r is a hori-
zontal curve T* = U, a < t< b,in P(M,,, G) such that n(ut) — xt. A horizont-
al curve in P means now a curve whose tangent vectors are all horizontal.
It can be shown that the lift x* of x through u0Oe a-1 (x0 is unique. Consider
now x* through uO having end point uxsuch that nm(ml) = xv By varying uu
in the fibre n~1(xa) we get a mapping of the fibre s-1 (X0 onto the fibre
A -1 (xj) which maps u0Ointo uv This mapping will be denoted by the same letter
t and will be called the parallel displacement of the fibre along r.

Consider now the loop space C(x) at x. For each t s C(x) the parallel
displacement along r is an isomorphism of the fibre a -1 (x) onto itself. The set
of all isomorphisms forms a group which is the holonomy group of I' with
reference point x. The restricted h g 770is defined similarly by means of the subset
C° (x) of C(x) consisting of loops homotopic to zero.

We now introduce the holonomy bundle which is important in our fur-
ther work. This is made possible by the following theorem ([5], Chap. II),
which in fact says that the holonomy bundle is a fibre bundle in its own right.

Theorem. (Reduction theorem.) Let P(Mn, G) be a principal fibre bundle
with a connection ', where Mn is connected and paracompact. Let u0be an
arbitrary point of P. Denote by P (m0) the points in P which can be joined to u0
by a horizontal curve. Then

(1) P(u0) is a reduced bundle with structure group *P(uu);

(2) The connection I' is reducible to a connection in P (u0).

In other words the holonomy group defines a subbundle of P(Mn, G)
which will be called the holonomy bundle P(u) at a point ne P. It is obvious
that P(m) = P(v) if and only if u and v can he joined by a horizontal curve.
Since the relation ~ (u ~ » if u and v can be joined by a horizontal curve)
is an equivalence relation we have for any u and v of P that either P(u) = Pv)
or P(u) M P(v) is empty. In other words P is decomposed into the disjoint
union of the holonomy bundles. However, from the fact that every aBG
maps each horizontal curve into a horizontal curve, it is easy to see that the
holonomy bundles P(u) are all isomorphic to each other.

It is an important fact that the holonomy groups can be defined in a
different way as follows: The hg P(it) at ue P is the set of elements aB G
such that u and ua can be connected by a horizontal curve ([5], Chap II).
In this way the hg is realised as a Lie-subgroup of the structure group G which
is an important fact: For example, for an orientable Mn G is the identity
component of GL(n; Rn) in L (Mn) and thus cannot contain inversion.

However, to study inversions in W it is often more advantageous to go
over to the universal covering M nof M n (for covering manifolds see [6], Kap. 5)
since this will give rise to a classification scheme which is physically meaningful.

That the hg of Mn can be studied on Mn can be seen as follows.
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4. Holonomy and homotopy

First of all, the restricted hg W° of Mn and the restricted hg of its
universal covering M n coincide. Roughly speaking, this follows from the fact
that to loops based at 4 in Mn homotopic to zero there correspond loops at
%in M nin the same equivalence class with respect to homotopy and vice versa.
More precisely let Mn and M'nbe Riemannian manifolds with metrics g and g',
respectively. If the mapping f : Mn—mMh is isometric, i.e. if g(X,Y) =
=g (/, X,/I, Y) for all X, YeTx(M,), where/,, : Tx' (Mn) then we have
the following theorem [5].

Theorem. If/is an isometry of a Riemanniann manifold Mnonto another
Riemannian manifold Mf,, then the differential off commutes with parallel dis-
placement. More precisely, if r is a curve (and the parallel displacement)
from x toy in Mn, then the following diagram is commutative:

Tx(Mn) Ty(M,)
I* /*
TX (M'n) 1— Ty (M'n)

where a' = f(x),y' = f(y) and t' =/(r).

The statement above follows by applying this theorem to the case when
f is an isometric immersion of Mn into M.

We now discuss the relationship between the inversion operations of W
and the first homotopy group 7tv Consider the loop space C(x) based at x
in the base manifold Mn and the horizontal curves constructed over C(x).
Take any two loops Cx(x) and C2(a) which are in the same homotopy class.
If the horizontal curves over Cl(s) and C2(s) connect the points u to ueq
and u to ua2 respectively, (cq, a2e W) then the horizontal curve connecting
n to ua2_1ax projects on the curve

C“1(a) Cx(5),

which is homotopic to zero. Therefore it follows ([3], Chap. Il) thata2 1aleTO
and it is easy to see that there exists a homomorphism h

h :h (x) -* W(u)Iwe(u),

where Tr*a) is based at a = n(u).

In other words 4,f4,n is isomorphic to a factor group of the first homotopy
group ux which is, in turn, isomorphic to a group of deck transformations
([6], Kap. 5) of Mn at least for locally simply connected and locally compact
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M n. Consider now the set D of all possible groups of discrete isometries acting
freely on Mn. Then each d e D is a deck transformation group of Mn and the
factor spaces M,,/d, d s D, all have Mn as their universal covering. Moreover,
the fundamental group nn(Mnjd) of each factor space M n/d is isomorphic to
the corresponding group d.

Now all these factor spaces are topologically distinct. However, they can
be divided into two large classes according to whether the homomorphism
h:nl(Mnld) (M n/d)/*0(Mn/d) is trivial or not. In the first class M n/d is
orientable and 4y(Mnld) is reduced to W° (Mnjd) that is 4* does not contain
inversion.

Obviously, the classification according to nlitself, rather than to its
quotient groups, is more detailed and contains more information. It should
also be noted that these classifications are topologically invariant ones since
the fundamental group Tlis a topological invariant.

For the sake of completeness we mention some well-known facts about
Riemannian manifolds to show how these arise on a general differentiable
manifold.

5. Riemannian manifolds

A Riemannian metric tensor of class CVis defined to be a positive definite
symmetric second order tensor of class CV. If a differentiable manifold M n of
class Cuadmits a Riemannian metric tensor of class C then it is said to be a
Riemannian manifold of class C . According to a theorem of Whitney every
differentiable manifold Mn of class Cu admits a Riemannian metric tensor
of class C“-1. In what follows we restrict attention to positive definite Rie-
mannian metrics and always suppose differentiability sufficient for the purpose
at hand.

Now every Riemannian metric tensor g defines an inner product in each
tangent space Tx (Mn) denoted by gx (X, Y), X, Y e Tx (Mn) and it is well
known that there is a 1 :1 correspondence between the set of Riemannian
metrics and the set of reductions of the bundle L(Mn) of linear frames to the
bundle 0(Mn) of orthonormal (with respect to g) frames with structure group
the orthogonal group 0(n).

In the principal fibre bundle 0(Mn) one can again introduce a connection.
Given an open covering {Ua} of Mn and local sections of 0(M n) over each Ua,
the local connection is defined by an o-valued 1-form coa, on each Ua, where
o is the Lie-algebra of the orthogonal group 0(n). These local 1-forms are then
assembled by means of the transition functions: If ua (#) is a representative
of 0(Mn) j Ua at Xs Uaand ca3is an orthogonal matrix then

Ua (X) = CafBUB(X)

Acta Phys. Hung. ToT. XX. 1966



280 M. SUVEGES

and for x e Ua N UR the matrices coa must satisfy
eca = (adcy) co? + c~jdcal.

Obviously, if Mnis orientable then 0(M n) admits two arcwise-connected
components. If 0° (Mn) is one of them then it is a principal fibre bundle with
structural group SO(n). If M nis not orientable then 0(Mn) has only one arc-
wise connected component with structure group 0(n).

A linear connection ' in the bundle of linear frames L(Mn) is called a
metric connection if it is determined by a connection in 0(M n). The following
two theorems ([5], Chap. IV.) settle the existence problem of Levi-Civita con-
nections on Mn.

Theorem. A linear connection I' of a Riemannian manifold Mn with
metric g is a metric connection if and only if g is parallel with respect to I .

Theorem. Every Riemannian manifold admits a unique metric connection
with vanishing torsion.

This the Levi-Civita connection. Other conceptsin Riemannian geometry,
such as covariant derivative, curvature tensor and the like can now be intro-
duced. We, however, content ourselves by clarifying the above definitions
and concepts on a few examples in terms of local coordinates. For example
the Levi-Civita connection is just given by the Christoffel symbols FaR mOt?
for example the connection forms coain L(Mn) are of the form

coj=YIl (dXf -f I RLX]j dxm),

where Y'kis the dual of Xf and x*is a local coordinate system in Ua. In parti-
cular, in the bundle 0(Mn) the X k are orthonormal with respect to g and the
coj are just the Ricci rotation coefficients. As a last example, the transition
functions yaB for L(Mn) in terms of local coordinates are just given by

dx*

where x| and x1 are local coordinates in two neighbourhoods Ua and Up,
respectively.

6. Extension of the Theorem on congruence and applications

In the introduction we mentioned the need for the incorporation of
topological properties into the definition of gravitational fields. This will now
be done by supposing gravitational fields to be described by differentiable
manifolds M n provided with Riemannian metric tensors (we restrict attention
to positive definit metrics). In this case, however, one has to revise the proof
of the Theorem on congruence.
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Obviously, if Mn can be covered by one coordinate neighbourhood U
the Theorem is valid and trouble arises only when this cannot be done. Suppose
then that Mnis covered by a set of neighbourhoods {Ua} each provided with
a local coordinate system xa. Since the manifold M nis supposed to be connected
any two points can be connected by a curve C. Suppose C passes through the
neighbourhoods UIf U2 ... and denote by Cathe restriction C \ Uaof Cto Uu.
It is obvious that in each Uathe proof can he carried through by introducing
orthonormal frames which are parallel (with respect to the local connection
adefined in Ua) along Ca. When this had been done one has only to assemble
the frames in the intersections of Uv U2 ... accroding to the transition func-
tions ipaB (#) at x e Ua M Up for all intersections. In this way one can introduce
a Fermi system all along C and with this the theorem is extended for arbitrary
differentiable Riemannian manifolds.

The contents of the two previous papers can now be reformulated in
terms of differentiable manifolds and fibre bundles. We content ourselves
to enumerate some relevant theorems. First of all we note that the hg P is a
subgroup of the structure group G.

Theorem, (a) Ifv = ua,a e Gand v,ue P(Mn,G), then P(v) = ad(a~1)P(u)
that is, the holonomy groups P(u) and P{v) are conjugate in G. Similarly,
P° (v) = ad(a-1) P°{u),

(b) If two points n and v of P can be joined by a horizontal curve, then
P(u) = P(v) and P° (n) = P a().

Theorem. Let P(Mn, G) be a principal fibre bundle whose base manifold
M nis connected and paracompact. Let ~(u) and P 0 (u), usP, be the holonomy
group and the restricted holonomy group of a connection ' with reference
point u. Then

(@) P° (u) is a connected Lie subgroup of G;

(b) P° (n) is a normal subgroup of P(u) and P(u)jP°(u) is countable.

In the previous papers we were working with orthonormal frames defined
in the tangent spaces of the Riemannian manifold M n. Moreover each tangent
space over Mnwas provided with a structure defined by the holonomy group.
In the introduction we mentioned the need for the incorporation of this super-
structure into the theory. From the above results and sec. 3, it is obvious that
this can be achieved by defining the holonomy bundle of orthonormal frames
which is a sub-bundle of 0(M n) with structure group the hg.

Using the above theorems and others on local and infinitesimal holonomy
groups the restricted hgi*0 can again be discussed as in the previous paper
and we now turn to the inversion operations in P .

The simplest thing for this purpose is to work in the orthogonal
bundle 0(Mn) over Mn. Then the structure group G is the orthogonal group
0(n). From sec 2 it follows that for an orientable M n O(n) is reduced to the
identity component SO(n). Now the hg’Fis asubgroup of the structure group
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and we have the important result that for an orientable Riemannian manifold
the hg is a subgroup of SO(n) and for a non-orientable one it is a subgroup of
0(n). Hence the hg of an orientable manifold does not involve reflections.
Therefore the concept of orientation is a crucial one and it isimportant to know
whether a manifold is orientable or not.

Of course, the straightforward way would be that, given Mn, we cover
it with a family of local coordinate systems xain Ua. Then we compute the
Jacobians of the coordinate transformations in each intersection Ua N UR
to see their signs.

However, given M n, it is more advantageous to go over to the universal
covering M nsince in this way we will be able to classify large numbers of mani-
folds. Suppose, in fact, we have M nwith restricted hgWO0and universal covering
Mn. Let us determine the set D of all possible discrete isometries acting freely
on Mn. Then all factor spaces Mn/d, d e D, have same 4/0, but different topo-
logical properties, and can be classified according to sec. 4, where W is now,
in the orthonormal bundle, a subgroup of 0(n) and is a subgroup of SO(n).

7. Examples

As a first example we shall rather fully discuss a very simple case in order
to illustrate concepts and method of classification.

We want to determine all (up to an isometry) 2-dimensional complete
flat Riemannian (locally Euclidean) manifolds [6].

The problem is reduced to the determination of the discrete groups of
motions acting freely on the Euclidean plane R2 which is a simple task. We
give the first homotopy group for each type by representing its action on the
universal covering space, which is the Euclidean plane R2 in terms of the
Cartesian coordinate system (X,Y).

(1) Euclidean plane (orientable)

jtj :identity;
(2) Ordinary cylinder (orientable)

nre(x>y) — (*+ ) n= 0,

I+

D + 20..;

(3) Ordinary torus (orientable)

nl:(x,y) 3 (x + Ta -(- n,y -f- mb),

a, b :real numbers, b==0; m, n= 0, il» i2, ... ;

(4) Mdbius band (edge removed) with infinite width (non-orientable)

nl:{x,y) > (x-fn, (—D"y) n=20, 1, £2, ..
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(5) Klein bottle (non-orientable)

Wex,y) +x+ n, (—=Iny + bm)
b :non-zero real,

Since the restricted hg R° coincides with that of the universal covering,
in each case 170 is the identity. In each case the kernel of the homomorphism

h: T/TO

consists of pure translations N. Cases (2) and (3) together with (1) are orientable
and the homomorphism h is trivial in each case. Consequently, the complete hg
is the identity. Cases (4) and (5) are non-orientable and their holonomy groups
contain reflection. Apart from the Euclidean plane, there is in each class one
open and one closed manifold according to whether the pure translation part
of -y is of one or of two dimensions, respectively. The concept of orientation
is strikingly illustrated by the difference between the cylinder and the Mdbius
band.* When an oriented orthonormal frame is displaced parallel along the
complete basis circle, orientation is preserved on the cylinder after coming
back to the point of departure while orientation is reversed on the Mdbius
band. Of course, the classification according to jtj rather than TtJN is more
detailed. For example (1) and (2) are in the same class with respect to TtJN.
Nevertheless the behaviour of geodesics, for example, is drastically different.
In case (1) between two points there is only one geodesic while there is an
infinity in case (2).

As an other example we consider spaces of constant curvature. These
spaces are of some interest in cosmology since the constant-time sections of
the Friedmann solutions are just of this type for dimension 3. The problem
is the determination of all spaces which are locally Euclidean, spheric or hyper-
bolic. This is the well-known classical problem ofthe space forms and we do not
go into detail.

The determination of all 3-dimensional locally Euclidean spaces proceeds
along the same lines as in 2 dimensions in the preceeding example. There are
18 different types, 8 of which are open. Both in the open and closed classes
there are orientable and non-orientable types. However, since these spaces
are locally flat the restricted hg W°, which is now the group of proper rotations,
is the identity.

The spherical spaces of constant positive local curvature, K = -|-1, have
been fully discussed [6] in the mathematical literature. The even and odd
dimensional cases must be treated separately.

* 1t is impossible to visualise the Klein bottle since it cannot be imbedded topologically
in Euclidean 3-space.
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There are exactly two spherical space forms of even dimensions n:
the n-dimensional sphere Sn and the n-dimensional elliptic space. Snis orient-
able, consequently its hg W is a subgroup of SO(n) and does not contain in-
version. The elliptic space of even dimension is not orientable and its hg is a
subgroup of 0{n). Thus these spaces fall naturally into two classes.

There is an infinity of odd-dimensional spherical space forms. For ex-
ample if K is an integer then there is at least one form of odd dimensions
whose first homotopy group is cyclic of order k. However, all odd-dimensional
spherical forms are orientable. As a consequence the homomorphism h :nl—a
—m0(n)ISO(n) is trivial. In particular, the holonomy groups of 3-dimensional
spherical space forms can never contain space inversion.

We are not going to deal with the hyperbolic cases since they have not
been fully discussed, at least to the author’s knowledge, in the mathematical
literature.

The direct applicability of these results to observation is not quite clear.
Obviously, one must consider four-dimensional spaces with indefinite metric.
Indefinite metric, however, brings in some more complications and this problem
will be dealt with in a separate paper.

The author is grateful to Professor P. Gombas for his interest in the pro-
blems presented.
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G wN e

TEOPUNA TOXAECTBA B NPABUTALMOHHBLIX MOAAX Il

MpocTpaHCcTBeHHAss MHBEPCUS U rpaBuTauus
M. LUIOBEFELL

Pestome

ViccnegyeTcsl MHBEPCMOHHASA 4acTb FOMIOHOMHOM rpynnbl Y, siBAsilOWeica NOKanbHO
(DM3NYECKOA CUMMETPUYECKOA Tpynnoil. [MokasbiBaeTcsi, UTO CyLLeCTBOBaHME WHBEPCUM 3a-
BMCUT OT TOMOJIOTMYECKMX CBOWCTB rpaBMTALMOHHOIO Mons (npegnonaraeTcsi, YTo rpaBuTa-
LIMOHHOE Nosie NpeAcTaBnsieT co6oit MHOXecTBO PuMmaHHaMM). C3Tol uenbio M,, onpefensieTcsi
Kak anddepeHumpyemMoe MHOXeCTBO. OKasbIBaeTCs, UTO U B 3TOM C/lydae MMeeT MeCTO Teopema
napannenusma. NokasbiBaeTcsi Aasiee, UYTO ecnv M, — HanpaB/isieMoe MHOXeCTBO, TO W sBNsi-
eTcsA MoArpynnoil rpynnbl SO(n) 1 ecnu M n — HeHanpasnsiemoe, To W siBNsieTcsi MOArpynmnoi
rpynnbl SO(ra). TouyHee, cyLlecTBYeT romomopgmaMm h: nt(Mn) <»0(n)/SO0(n), rae ny(M?») —
nepeasi romMoTonHas rpynna Mn U TOMOMOrMYECKN WMHBapUaHTHasi Knaccuukaums rpaBu-
TaUMOHHbLIX MOMIEM MO OTHOLIEHUIO (haKTOpHbIX rpynn rpynnbl A,(MnM) vMeeT (undecKuii
cMbIcn. Hapsgy ¢ 3TUM paccMaTpuvBalOTCsl HEKOTOpble MPOCTble NMPUMEPbI MPOCTPAHCTBEHHOM
(hOpMbI HYNEBOW M MOCTOSIHHOM MOMOXUTENbHOW NI0KaNbHOW KpYBM3HLI. Hanpumep, cyLuecT-
BYeT 6ECKOHEYHOCTb TPEXMEPHOW (hOpMbl MOSIOXUTENbBHOM KPWBU3HBLI, HO JlOKa/lbHast MpocT-
paHCTBEHHasA MHBEPCUSA He ABNSETCA NpaBu/ibHOM onepauueid B no6oM M3 HUX. MNMokasbiBaeTcs
TaKxXe, 4TO (DM3NYECKOe MPOCTPAHCTBO HeNb3s CUMTaTb MPOCTO MHOXECTBOM PuMaHHa M,
OHO AIBNISIETCS BOJIOKHUCTBIM MY4YKOM Haf M n. [03TOMY MPUMEHSIETC Teopusi BOJTIOKHUCTbIX
NY4YKOB CO CTPYKTYPHOI rpynnoi Hag AuddepeHUMPYEMOM MHOXECTBOM.
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A theory of nuclear reactions, analogous to the dispersion theory of
elementary particle processes was developed recently by I. S. Shapiro [1, 2].
The derivation of formulas for reaction amplitudes in this theory is based
on the assumption that, because of the causality requirements, the amplitudes
are analytic functions of the energy everywhere on the physical sheet except
on the real axes, where the location of the singularities (poles and branch
points) is determined by the unitarity condition. If in the unitarity condition
one takes into account virtual states of certain type only, one gets the corre-
sponding approximation to the amplitude.

The lowest order approximation consists in the restriction of the virtual
states to the single particle states. In this case one finds that a pole of first
order will be the only singularity of the amplitude and this pole approximation
turns out to be equivalent to the Butler theory, when applied to the stripping
reactions.

The location of the pole is completely determined by kinematic condi-
tions. It is clear that the pole must not fall into the physical region ofthe kine-
matic variables, because in this case one would get an infinitely large cross
section. The condition requiring the pole not to lie in the physical region implies
the stability of all particles in the initial, final and virtual states. In other
words the theory cannot be generalized to nuclei with spontaneous alpha decay.

Let us now consider the reaction

R+ A —»-B-j-a" + n D

on a hypothetical heavy nucleus. If the nuclei A and B are stable, the dis-
persion theory may be applied to compute the cross section which is supposed
to be very small due to barrier effects. The pole approximation term of the
reaction amplitude is represented graphically by the graph of Fig. 1, and
the corresponding matrix element has the form (see [2] formula 2.47)

M(A — B -f-a) eM*(x n—mx n')
P\ - 2maEa
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where Ea and Pa, considering the energy and momentum conservation in
vertices of the pole graph, are known functions of the kinetic energies and
momenta in the initial or final state. It is clear that the “smallness” of the
cross section is contained in the matrix element M(A —% B - a).

So far the nucleus has been considered as stable, satisfying therefore
the mass relation

mA < mB + ma. 3)

Now, if we choose nuclei A with increasing mass, then for a certain nucleus
A' the relation (3) will cease to hold. Therefore in the cases when ma > ma:"
the pole of the amplitude M turns out to be inside the physical region for at
least certain values of the kinematic variables, and so the theory cannot be
applied in this case.

Fig. 1

It has to be pointed out that when mA < T1ng- and the mass increases,
the pole moves towards the physical region and in the usual interpretation
the pole approximation becomes increasingly better. Nevertheless, when mA
reaches tn- the theory becomes in principle inapplicable.

On the other hand, it seems that there are no sharp differences between
“almost stable” and “almost unstable” nuclei and this suggests that if the
theory is true in the stable region, it can be modified to work at least at the
onset of the unstable region too.

The simplest modification consists in including a small imaginary part

ih
—iy = —-—-(tis the lifetime of A) in the mass difference Q = mA — mB —
27

— ma. As a result, the pole again turns out to lie outside the physical region
and no infinite cross section arises. Nevertheless, owing to the smallness of vy,
for real nuclei the pole will be very near to the physical region and will manifest
itself in an unusually sharp and high peak. The shape of this peak cannot be
resolved in detail experimentally since only the area under the peak is measur-
able.

The numerator of M contains the product of two matrix elements.
Let us consider M(A —B -j-a). When A is a stable nucleus, this matrix
element has to be computed for non-physical negative kinetic energies of the
decay products B and oc In our cases, however, B x has positive kinetic
energy equal to the decay energy Q. To understand this it is sufficient to note
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that M(A->B -f-a) has to be determined at the pole, i.e. where the denumerator
of (2) vanishes. Therefore, the intermediate alpha particle is on its mass shell.
The matrix element M (A B -1-a) can be computed for the nucleus A at rest.
Considering the conservation of energy and momentum in the vertex A —»
—»B a, one concludes that precisely M(A —aB -f- a) is the matrix element
for the real decay of A. The quantity jM(A —B + a)|2involved in the ex-
pression of the cross section will therefore be proportional to the observed
decay probability y. This quantity contains the reduced width and the barrier
penetrability for the vertex A —=B -|- a.

Similarly, |M (a -f- N —a' -f- ra"j2 is proportional to the absolute square
of the (n, a) elastic scattering am plitudeé«, g2), which must be calculated for
the momentum transfer 2= (prh— pr‘ and the relative energy

ma+ mn mm 2
£ = "4 .
(Pa Pn")
2Zmamn ma+ mn

The differential cross section which can be obtained in the pole approxim-
ation is therefore:

da—(29)2 mn+ ma V(222 Eg’En. X
QEn
(4)
Y

X 0(En.+Ea En~Q)dEa.dQadEndQn,.
Q - e (Pni+Pa —Pn)2 + y2

Since y is an extremely small quantity, it is obvious that the charac-
teristic features of the energy and angular distribution are determined by the
factor

G - Qd w0 Q -— (Pn' + Pa' - Pn)2-

om (Pn*+ Pa' - Pn)2 + y2

One may replace G by a delta-function, since the distributions observed
experimentally are integrated over a range always much larger than y.

Let us consider an experiment, when one fixes pnand pn-and measures
the angular distribution of a' particles with respect to the direction pn-—pn.
The magnitude of Eawill be given by the energetic delta-function. Systematic
coincidences between alpha-particles and neutrons may take place, when the
angle B between pa and pn.—pn equals R' which makes the argument of G
to vanish. The existence of such a very sharp angular distribution may serve
to decide on the existence of such a reaction mechanism as well. For the special
case of pn’—pn it has to be pointed out that when the arguments of the two
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delta-functions in the expression of da coincide after integration over the direc-
tion of ,da contains a factor 6(0) I/y. Therefore, for the angular distrib-
ution of elastically scattered high energy neutrons on nuclei, which are energe-
tically unstable, an increased cross section in forward direction is expected as
compared to the diffractive one.

An attempt to observe coincidences between alpha-particles and neutrons
in the forward direction in the reaction n-\-U T7i234-j-a'-j-n" at £,,=14 MeV
was made in [3]. No systematic coincidences were found although, accor-
ding to (4), a cross section of the order of the (re, a) elastic cross section could
be expected. Since the extension of the dispersion theory to the case of the
“almost stable” nuclei was carried out in the most natural and usual way by
replacing mA by mA — iy and considering that one expects the transition from
stable to unstable cases to be smooth, the negative experimental result suggests
some not yet clearly formulated limitations of the dispersion theory applied
to nuclear reactions.

One of the authors (P.H.) isindebted to Professor Bosco for a discussion
on the subject.
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Recently, dislocation motion has been observed in Ge at room temper-
ature as a result of indentation [1] and of bending [2]. These deformations
have been carried out in etchants, because in this case the materials have an
increased tendency to plasticity. We have investigated the dislocation mobi-
lity in Ge exposed to high stress at a temperature range below the limit tem-
perature of macroscopical plasticity (~350°C [3]). Ge surface has been
indented with a Vickers indenter at temperatures of 400°, 350°, 300°, 250°,
200°, 150°, 100°, 20°C and subsequently etched for 7 seconds in boiling Billig
reagent. The material was loaded only for a few seconds: if the loading was
applied for longer than 10 seconds, or was not carried out carefully enough,
cracks arose and no dislocation etch pits could be observed. At temperatures
below 250°C the diameters of indentations did not exceed 2 microns. The re-
sulting etch pattern on the (111) Ge surface at 400°C (Fig. 1) displays arrays
of dislocation etch pits aligned in (110) directions as previously observed
in [1] and [4].

Indented at 100°C the etch pits near the indentation (large and flattened
triangle) are due to the dislocations which have arisen and slipped in (110)
direction. (Fig. 2.) (They have the same character as the etch pits of as-
grown dislocations which can be seen elsewhere in the picture. These pits
blurred after etching was continued for a few seconds. In the following cal-
culation these shallow dislocations were supposed to be 60° type dislocations
but we could not obtain any information about the mechanism of their motion
or details of the dislocation structure owing to the limitations of the etching
method. We obtained similar photographs for the etched indentations per-
formed in the temperature range below 250°C.

The stress acting on dislocations in (110) direction near the surface
(r = 0) was calculated according to the elasticity of the isotropic media in case
of point load [5] taking into account the given geometrical situation. We ob-
tained the following formula for this:

P(l —2y) y2—x- P(1 —2y) cos 2P
rnJe (j2-1-*2)2 n|/6 r2 @)
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with P, y, (X,y) the load, the Poisson-ratio and the coordinates, respectively.
This stress was put in the dislocation velocity formula given by Chatjdhury
et al. [6]

"
KT

v=PH8,T"exp —

(2)

Fig. 1

with Bm, m constants. Table 1 shows the values of the average velocities over
the replacement of dislocations.

Table 1
T T Vtheoretical v measured
100°C 57 kg/mm2 3X10-11 cm/sec 1,7X10-4 cm/sec
400°C 12 kg/mm2 1,3X10-4 cm/see 8,3X10-4 cm/sec
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According to Table 1, there is no difference in order of magnitude between
the theoretical and measured dislocation mobilities at 400°C. The discrepancy
is due to the approximate character of formula (1). However, the discrepancy
between the theoretical and measured data increases in the temperature ranga
below 250°C. Consequently the existing theory of dislocation mobility is not

-

Fig. 2

valid for Ge over this temperature range and another theory is needed. The
required new theory must account first of all for the temperature independence
of dislocation mobility as demonstrated by our experimental results.

This conclusion may be supported qualitatively by microhardness
measurements reported in [4]. According to this paper the measured micro-
hardness does not increase with decreasing temperature as abruptly as would
be expected from the existing dislocation velocity formulae in the low tem -
perature range, although the relation between microhardness and dislocation
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mobility cannot be as simple as assumed in [4] in view of the complexity of

the indentation procedure.
The author is pleased to acknowledge the discussions with Y. J.

Nikitenko and ¥. G. Govorkov.
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Introduction

Ramsauer and Kollath [1], [2] have measured the total and differen-
tial scattering cross sections of low-energy electrons from helium, and Nor-
mand [3J has measured the total scattering cross-section.

Mcdougall [4] was the first to make theoretical calculations on the
total scattering cross-section, by using the Hartree—Fock potential that
applies to the helium atom. Significant discrepancies were found, between
the computed total scattering cross-sections of low-energy electrons and
measurement results particularly for differential cross-sections. Morse and
Allis [5] used the Hartree —Fock potential modified for exchange effect.
Their results showed a better agreement with experimental data for the total
scattering cross-section. Important discrepancies continued to exist at energies
lower than a few eV. For low-energy electrons the agreement for differential
cross sections was not satisfactory, either.

For neutral polarizable systems O’Malley, Rosenberg and Spruch [6]
have lately developed a theory of modified effective ranges. O’Malley [7]
first applied this theory to the elastic scattering of electrons from helium.
The author found a fair agreement with the measurement results of Ram-
sauer and Kollath [1] for the total scattering cross-section, up to about 4 eV
energy. The computation method he used did not permit more detailed in-
vestigations.

La Bahn and Callaway [8]in their computation took into consideration
the polarisation effect produced by the electrons. The results obtained for the
total scattering cross-sections displayed a fair accordance with the experi-
mental data from 0 to 50 eV energy. The results for differential cross-sections,
however, were at variance with the measurements of Ramsauer and Kol-
lath [2].

We have applied the theory of modified effective range to the scatter
of low-energy electrons from helium, without following O’Malley’s method.
Our own method of handling the problem has resulted in a better agreement
between computation results and measurement data for the total scattering
cross-section in the range of 0 to 14 eV electron energy.
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In addition, our results for the differential scattering cross-section are
in better agreement with measurement data than are La Bahn and Calla-
way’s computations [8].

Computation results

The pure theory of scattering of quantum mechanics, the method of par-
tial waves, is used here. The formula for the total scattering cross-section is:

477 ®
°= — 2(2L+1)sin*r,L 1)
A L=0

and for the differential cross-section:

a(&) = A2L+1)(cos 2Vi-1)P 11 4+ 271 (2L +1) sin2r)LPL (2)
4k2 |-y L=0

2Em
In the formulae k2 = b (m is the mass ofthe electron, E the energy

of the electron and rjL the phase shift corresponding to quantum number L.)
The modified effective-range theory [7] for rjL gives the following re-
lationships:

tg 0= — A k -——-- afc2 ----------- — a Ak3In (a0k) + 0(k3), 3)
3a0 3a0
tg Vi = - ak2— ATK3E 0(/c4), (4)
n
4V ock2A 0(/td; L > 1, (5)

(2L + 3) (2L + 1) (2L - 1)

here awnis the first Bohr radius, a = electric polarizability of the atom (for
helium a = 1,36 a2), A and Ax are the scattering lengths for phase shifts
S and P, respectively, 0(fc3) and O(fcd) residuals containing k3 and fdand terms
of higher powers.

In the computation of the total scattering cross-section for helium
O’Malley [7] worked with the following method: In formula (3) he determined
A from the measurements of Ramsauer and Kollath [1] by extrapolating
for zero energy. This resulted in A — 1,19 aa Instead of 0(k3) he used the term
Dk3 and neglected the terms of higher powers. He determined the constant D
equally from measurement data. In the computation of the total scattering

Acla Phys. Hung. ToT. XX. 1966



APPLICATION OF A MODIFIED EFFECTIVE-RANGE THEORY 295

cross-section he assumed sin rJ0= tg rj0. Owing to this the computation is
valid only for low values of r/0. In the energy range computed (0 to 4 eV) he
discarded the values of rj belonging to higher quantum numbers.

At variance with this method we have not made use of the simplified
assumption that sin rJ0 = tg T0 and have not neglected v In formula (3) we
have used A=1,19a0 We have determined D so as to obtain as good an agree-
ment as possible, not only with the measurements of the total scattering
cross-section of Ramsauer and Kollath [1] and with Normand [3], but

Fig. 1

also with the measurements of the differential cross-sections of Ramsauer
and Kollath [2]. We have followed a similar method in the determination
of Av In equation (4) we have discarded the term 0(fcd). For rJ0and % we have
derived the following relationships:

ri0= arc tg [—1,190ay fc — 1,424af, k- — 2,16080 k3In (a0k) — 0,262apg k3], (6)
1= arc tg [-|-0,285a0 f2 — 0,163a0 fc3]. (7)

rj0 and % are represented in Figure 1 as functions of ka0. W ith the phase
shifts rj0 and the total scattering cross-sections have been calculated from
relationship (1), throughout the range from 0 to 14 eV electron energy. In Fi-
gure 2 the continuous curve represents our computation results. The data
marked with circles are those of Ramsauer and Kollath [1], those marked
with crosses those of Normand [3].

In a similar way, by using the values of r\0 and from equation (2)
we have determined the differential cross-section. The computational results
are represented in Figure 3 by a continuous curve. The data marked with
circles are the measurement results of Ramsauer and Kollath [2].
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Conclusions

Our computations are in fair agreement with experimental results
throughout the energy range represented in the figures. W ith energies higher
than 14 eV, where auk 1the discrepancy between computation and measure-
ment results grows significant. (Computation results are higher than test
results.) When a0k > 1 the error increases considerably because of the simpli-
fication in the term 0(k3) and of the neglect of the term O0(fcd). According to
our computations the neglect of the phase shifts belonging to higher quantum
numbers in the energy range investigated does not produce any significant
in accuracy.

Figure 2 also illustrates the computation results of La Bahn and Calla-
way [8] of the total scattering cross-section (dotted curve). The two calculated
curves diverge at energies above 5 eV.

Our calculated differential cross-sections show a fair agreement with

n
the measurement results at angles larger than # — — from 1,8 to 8,25 eV

energy. The comparison of measurement results for energies higher than
10 eV (not represented in the Figures) with our computations shows discre-
pancies. Similarly to the case of total scattering cross-sections, the discrepan-
cies may be due to the simplifications regarding the terms 0(/c3) and 0(fc4).

La Bahn and Callaway’s computations of differential cross-sections
give less good agreement than do our own calculations from 1,8 eV to 8,75eV.
In their computations the discrepancy increases with increasing energy.
In Figure 3, at 1,8 eV and 5,35 eV the differential cross-sections determined
by using the values rj0and rllcomputed with their method are shown by dotted
lines.
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ZUSAMMENHANG ZWISCHEN DER STRUKTUR UND
DEN PHYSIKALISCHEN EIGENSCHAFTEN
DES GLASES

V. ZUSAMMENHANG ZWISCHEN DICHTE UND LICHTBRECHUNG
Von

I. Naray-Szabo

ZENTRALFORSCHUNGSINSTITUT FUR CHEMIE DER UNGARISCHEN AKADEMIE
DER WISSENSCHAFTEN, BUDAPEST

(Eingegangen: 15. VI. 1965)

Vor einigen Jahren hat Tord [I] (1960) einen sehr einfachen Zusammen-
hang zwischen der Dichte und der Lichtbrechung von einer Reihe von opti-
schen Gldsern nachgewiesen. Er fand bei 203 optischen Glasern der Fa. Schott
u. Gen., Jenaer Glaswerk (Mainz), dass — mit Ausnahme von 11 Gldsern —
die folgende Gleichung mit einem maximalen Fehler von 2% gultig ist:

d+ 104
8,6

nD =

Hier ist np die Brechungszahl fir Na-Licht und d der Zahlenwert der Dichte.
Die 11 Glé&ser, fir die die obige Beziehung nicht gilt, sind lanthanhaltig oder
stark bleihaltig (Flintgldser).

Die Parallelitdt der Dichte und der Lichtbrechungszahl ist selbst bei
einer so geringen Genauigkeit wie der obigen interessant. Doch erh&lt man viel
genauere Zusammenhédnge, wenn man gewisse Reihen von Gl&sern mit zwei
oder drei Komponenten untersucht.

Fir einfache Natriumsilikatgldser, d. h. fur die Glieder der Reihe
Na20-Si02 fand ich, dass folgende Gleichung Giultigkeit hat:

nD= 0,143d + 1,1494. (1)

Die experimentell gefundenen Brechungszahlen und Dichten sind nach
Morey [2] zusammen mit den nach GIl. (1) berechneten Brechungszahlen in
Tab. 1 zusammengestellt.

Man sieht also, dass GI. (1) einen durchschnittlichen Fehler von 2,4 « 10~4
im Wert der Brechungszahl ergibt. Die Analysenfehler sind weitaus grdsser,
und man kann daher keineswegs eine bessere Ubereinstimmung erwarten.

Es ist besonders bemerkenswert, dass fir Natriumsilikatgldser mit
Aluminiumoxidgehalt dieselbe Gleichung mit einer geringfiigigen Anderung
der additiven Konstante gultig bleibt:

nD= 0,134 d + 1,1508. (1a)
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In der Tab. 2 sehen wir die Messungsergebnisse von Faick et al. [3] ver-
glichen mit den nach GIl. (la) berechneten Werten.

Die Abweichungen zwischen den berechneten und den gemessenen [Ilg-
W erten betragen im Mittel 4 « 10~4und maximal 12 « 10~4.

Nun kann man aber — wenn man 4ahnliche gute Ubereinstimmung
zwischen den berechneten und den gemessenen Brechungszahlen erreichen
will, keine allgemein glltige Gleichung benttzen, da mehr als zwei Variablen
auftreten kdnnen. Man wird also eine Reihe von Gleichungen fir ternére
Glaser erhalten, so z. B. fiur die wichtigen Na20-Ca0-Si02-Gl&ser, deren Dich-
ten und Brechungszahlen u. a. von Peddire [4] bestimmt wurden. Bleibt das
Verh&ltnis Na20 :Si02 konstant, so kénnen wir fur jedes solche Verhéltnis
eine Gleichung aufstellen, die mit sehr guter Anndherung den Zusammenhang
zwischen der Dichte und der Brechungszahl angibt. Die Zusammensetzungen
sind in Tab. 3 in Molverhdltnissen angegeben.

Auch fir K20-haltige Glé&ser kdnnen wir dhnliche Gleichungen formulie-
ren, wie das aus der folgenden Tab. 4 zu ersehen ist.

Tabelle 1

Gefundene und berechnete Brechungszahlen sowie gefundene Dichten
von Gléasern der Reihe Na20-Si02

No. SI0,%  NaO% oo aogem v ber, nel
9 54,14 45,86 25475  1,5137 15137 0
1 57,45 42,55 25318 15112 15114 ‘2
15 59,97 40,03 25208 1,5099 15099 0
17 62,86 37,14 25044  1,5076 15075 -1
18 63,06 36,94 25038 1,5075 15074 -

19 64,30 35,70 2,4890  1,5055 15053 — 2
20 65,32 34,68 24924  1,5055  1,5058 + 3
22 67,14 32,86 24807 15042 1,501 -1
23 69,65 30,35 24644  1,5021  1,5016 -5
24 70,21 29,79 24612 1,5014 15014 0
25 70,44 29,56 24603 1,5015 15012 -3
26 72,15 27,85 2,4488 14993  1,4996 ‘3
30 75,29 24,71 24260  1,4965 14963 — 2
34 77,85 22,15 2,4007  1,4925  1,4927 v o2
35 78,61 21,39 23935 14912 14917 + 5
36 79,73 20,27 23813 14898  1,4899 vl
40 82,86 17,14 23536 14851  1,4861 + 10
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Fir Na2-K20-Ca0-Si02-Glaser kdénnen auch entsprechende Glei-
chungen aufgestellt werden, s. Tab. 5.

Will man solche Gleichungen fir bleihaltige und bariumhaltige Gléaser
aufstellen, so werden die Differenzen zwischen den berechneten und den ge-
fundenen Werten schon bedeutend hdher, und sie kénnen etwa 0,5% erreichen;
deshalb wollen wir hier keine weiteren Berechnungen mitteilen.

Es ist interessant, den Zusammenhang zwischen der Brechungszahl
und dem R-Werte (Sauerstoffionenzahl pro netzbildendes lon) zu betrachten.
Der R-Wert hdngt von dem Verhdltnis der Brickensauerstoffionen zu den
nicht brickenbildenden Sauerstoffionen ah. Trdgt man die Brechungszahl
als Funktion von R in einem rechtwinkligen Koordinatensystem auf, so erhélt
man keine Gerade, sondern eine — zwar sehr schwach — gekrimmte Linie.
Fur die Brechungszahl ist zwar die Molrefraktion der Sauerstoffionen ent-
scheidend, doch spielen auch die modifizierenden Kationen wie Na', K+,
Ca2+ usw. eine Rolle und das Gesamtergebnis ist die erwdhnte nicht ganz

Tabelle 2

Gefundene und berechnete Brechungszahlen sowie gefundene Dichten
von Glésern der Reihe Na20-A 12 3-Si02

Dichte

No. Sio,, % 41,0, % Na30 % g +cm-3 nD.gem. D .ber. A 10<
101 50,32 2,86 46,82 2,5605 1,5162 1,5168 + 6
102 50,57 7,00 42,43 2,5495 1,5164 1,5152 -12

103 50,86 6,71 42,43 2,5484 1,5155 1,5150 - 5
104 50,89 9,57 39,54 2,5410 1,5150 1,5140 -10

105 50,95 4,88 44,17 2,5533 1,5157 1,5157 0
106 55,25 9,83 34,92 2,5182 1,5116 1,5107 -9
107 55,56 6,94 37,50 2,5259 1,5120 1,5118 -2
108 55,66 9,68 34,66 2,5163 1,5110 1,5104 - 6
109 55,80 4,83 39,23 2,5304 1,5124 1,5124 0
110 55,86 4,83 39,23 2,5304 1,5124 1,5124 0
111 60,45 9,84 29,71 2,4897 1,5072 1,5066 - 6
112 60,68 4.86 34,46 2,5032 1,5088 1,5086 -2
113 60,76 2,82 36,42 2,5111 1,5092 1,5097 + 5
114 60,78 1,09 38,13 2,5168 1,5094 1,5105 + H

115 60,88 9,59 29,53 2,4891 1,5070 1,5065 - 5
116 60,97 6,57 32,46 2,4997 1,5073 1,5077 + 4
117 64,78 1,02 34,20 2,4916 1,5059 1,5069 + 10
118 65,10 9,96 24,94 2,4615 1,5032 1,5026 - 6
119 65,70 4,75 29,55 2,4749 1,5049 1,5045 - 4
120 65,88 9,43 24,69 2,4580 1,5025 1,5021 - 4
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Mole

5
10
15
20
30
40

Gefundene und berechnete
von Glasern der

Dichte
g *cm-3

2,512
2,533
2,559
2,584
2,629
2,667

nD,gem.

1,5110
1,5189
1,5259
1,5327
1,5442
1,5540

np,ber.

1,5132
1,5187
1,5256
1,5322
1,5441
1,5541

1. NARAY-SZABO

Tabelle 3

Brechungszahlen sowie gefundene Dichten

Reihe 100 Si02:40 Na,0 :x CaO

Glaser der Reihe 100 Si02:20 NaX :x CaO

5
10
15
20
30
40

CaO
Mole

5
10
15
20
30
40

2,412
2,458
2,499
2,537
2,603
2,659

Gefundene und berechnete Brechungszahlen sowie gefundene Dichten

Dichte
g *cm-3

2,488
2,513
2,535
2,555
2,594
2,630

1,4970
1,5088
1,5192
1,5279
1,5435
1,5573

1,4975
1,5088
1,5188
1,5280
1,5441
1,5578

von Glasern der

1,5125
1,5179
1,5229
1,5277
1,5379
1,5475

8

1,5115
1,5178
1,5234
1,5284
1,5383
1,5474

Glaser der Reihe 100 Si02:20 K2

5
10
15
20
30
40

Acta Phys. Hung. ToT. XX. 1966

2,420
2,450
2,478
2,505
2,555
2,601

1,5011
1,5081
1,5151
1,5223
1,5355
1,5491

1,5008
1,5087
1,5160
1,5231
1,5362
1,5483

+

|
[S2 B> &~ O u

Tabelle 4

nD= 0,264 d + 0,850

nD = 0,244 d + 0,909

Reihe 100 Si02:40 K2 :x CaO

A ¢ 10«

-10

| +
w [ N e ) |

+
oo ~ © o o

nD = 0,253 d + 0,882

rie = 0,262 d -J- 0,8663

(2)

©)

4

(®)
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Tabelle 5

Gefundene und berechnete Brechungszahlen sowie gefundene Dichten
von Glésern der Reihe 100 Si02:20 Na2 :20 K20 :x CaO

Ca0 Dichte
i

Mole g ~cm-3 no.GAN A+ 104
5 2,502 15115 15115 0
10 2,529 15186 15187 + o
15 2554 15255 15254 | tia = 0.266 d - 0,846 ©
20 2,574 15314 15307 — 7
30 2,619 15428 15427 1
40 2,657 15528 15528 0
Glaser der Reihe
100 Si02: 10 Na02: 10 K2 :x CaO
5 2,415 14992  1,4993 + o1
10 2,450 15086  1,5082 — 4
15 2,485 15177 15710 — 7
20 2,523 15253 15258 s nD = 0.254d -f 0,886 ™
30 2,585 15401 15416 + 15
40 2,626 15528 15520 — 8

lineare Kurve. Sind stark polarisierbare Kationen mit hoher Molrefraktion
wie Ba2f, Pb2+ usw. vorhanden, so wird die Krimmung noch stérker, und es
ergibt sich keine Linearitdt. — Die netzbildenden Kationen, wie Si4+,B 3+
usw. Uben dagegen sozusagen gar keinen Einfluss auf die Brechungszahl
aus, was ihre starke Bindung bestdtigt. In dieser Hinsicht verhdlt sich das
Kation AI3+ ebenso, wie wir das aus der Gultigkeit der GI. (2) schliessen
kénnen. Aluminium gehdrt also zu den netzbildenden Kationen mit tetraedri-
scher Koordination, obzwar das von einigen Autoren in Abrede gestellt wird.

Die mitgeteilten Gleichungen kénnen einerseits als sehr gute Interpola-
tionen fur die Berechnung von Brechungszahlen fiir beliebige Glieder der
angefliihrten Glasreihen dienen, andererseits ist es aber mdglich, solche Glei-
chungen fir andere Glasreihen auf Grund von zwei bis drei Messungen auf-
zustellen und somit Gl&ser mit vorausberechneter Brechungszahl herzustellen.
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INVESTIGATION OF THE GAMMA ACTIVITIES AND
GAMMA SPECTRA OF SNOW SAMPLES

By

A. Toéth, T. Zsoldos and A. Urban

MEV HEALTH SERVICE, PECS

(Presented by L. Pal — Received 18. Il. 1965)

An analysis of the total gamma activities and the gamma spectra of 25 samples of snow
and 1 of rainwater-snow collected in Hungary (between 16°—22° longitude and 46°—48°
latitude) between 29th January and 22nd February 1963 revealed that a) the 137Cs-equivalent
total gamma activity is on the average 5,1 « 10~ 7//e nil: b) the total beta concentration cal-
culated from this is 1,2 «+ 10”6 ,uc/ml; elements detected with great probability: 141Ce,
144Ce, 10B8Ru, 7Be, 137Cs, ®%Zr and %BNb. Age of fission products: ranging from 50 to 80 days.
137Cs and (%®Zr -(- BNb)-concentrations have been estimated. Our total activity data agree
well with those of other authors; the results of our selective determinations are of the order
of the values obtained by other authors, differences being due to losses in collection and sample
treatment. Our Szeged sample distinguished itself from the others by its anomalously high
(approximately three times higher) radioactivity.

Introduction

Owing to atomic bomb explosion tests precipitation and falling dust inject
fission products into the biosphere. On account of this man’s external and
internal radiation dose increases above the natural dose, and so does the radio-
activity of the environment. This fact affects geophysical investigations and
the determination of man’s exposure to natural radioactive elements in the field,
the investigations of the contamination of the environment and the measure-
ment of low radioactivities. This accounts for the importance of analysis of
precipitation for the presence of fission products.

In this country such measurements have been in progress at Debrecen,
since 1952 [11,12, 38, 39, 40]. The purpose ofthe present paper isto supplement
these and other valuable Hungarian [37] and the many foreign data with some
results of our own obtained by a preliminary informatory method. The improve-
ment of the method employed is in progress.

Survey of the literature

Many excellent summaries of this problem have been published [10, 25,
28, 39, 51]. Several authors have dealt with the determination of fission product
concentration in snow [1, 2, 3, 4, 14, 24], in rainwater [2, 3, 5, 9, 13, 14, 15,
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17, 20, 24, 26, 27, 30, 31, 36, 37], in aerosols; and in snow, rainwater and in
aerosols on the whole [6, 7, 8, 11, 12, 18, 22, 23, 29, 31, 38, 39, 44], as well as
with the detection of the presence of these elements. The determinations are
affected by the 'Be [16, 32, 33, 44] and the 212Pb [44], isotopes of natural origin
and in the case of “hot” particles [58] by the phenomenon of fractionation[19].

Characteristic data for fission products in fall-out samples [8, 27, 34, 35,
42, 43] and assignments to atomic weapon tests carried out in 1962 have also
been published [12, 21, 22, 23, 24].

Results of our investigations

The total gamma activities and gamma spectra of twenty-five snow
samples and one rainwater-snow sample have been investigated. The samples
were collected in the area between 16° and 22° longitude and 46°—48° latitude
of this country (10 snow and 1 mixed rainwater-snow samples from Pécs, 2
snow samples from Maraza (Baranya County) and 1 snow sample from each of
the following towns: Szigetvar, Szekszard, Szombathely, Sopron, Kaposvar,
Gy6r, Tapolca, Debrecen, Somosk&ujfalu (Ndégrad County), Miskolc, Szeged,
Kecskemét and Budapest) between 29th January and 22nd February 1963.
Although the reason for our choosing snow for the analysis was that it was
simple to collect snow samples, later on, it appeared that snow was worth col-
lecting also because its radioactivity was higher than that of rain[14, 24, 36].
On the other hand, the measurement of gamma activity and spectra is techni-
cally, preparationally and even informationally more advantageous than the
observation of total beta activity detected after radiochemical treatment,
although the disturbing element 7Be cannot be separated from the 500 keV
photopeak without radiochemical separation by means of the gamma spectro-
metrical instruments now avilable to us, and if at all, this can only be done by
half-life estimation.

The snow was sampled from approx, Im 2 area, to its full depth, without
traces of soil. The melted snow mixed with rainwater was taken from the rain-
water pipe. The volume of our samples prior to evaporation to dryness was
5000 ml, with one exception (sample marked F—18: 3000 ml). As no acids or
carriers were added to the vessels when the snow samples were collected,
melted and transported to the laboratory we did not use polyethylene vessels
[14, 17, 19, 24, 26, 27] and did not record how long before collection the snow
fell (leaching: [14]). Thus significant losses of fission products may have
occurred.

After preliminary filtration the samples were boiled with nitric acid to
the volume of 5—10 ml necessary for the measurement. The filtrate was also
washed with nitric acid added to the filtered liquid. Thus, at this stage of the

Acta Physica Academiae Scienliarum Hungaricae 20, 1966



INVESTIGATION OF THE GAMMA ACTIVITIES OF SNOW SAMPLES 307

work the adsorption can be assumed to be smaller [50], although it can still
be very considerable [5], for carrier-free iodine, ruthenium and circonium. It
has been shown that the adsorption loss can be decreased by rubbing with
diatomaceous earth [26]. The solutions evaporated to approximately 9 ml were
put into normal test tubes and measured in these with a single-channel
recording spectrometer type 1820B, manufactured by Nuclear Chicago [52,
56] having a NaJ(T1) detector of a bore-hole volume of 8,4 ml, and with scalers,
types FH—49 and PSZ—20, connected to the spectrometer (their input sensi-
tivities were 0,5 V and 3,0 Y, respectively).

The three groups of our measurements (total gamma activity measure-
ment, measurement of spectra by automatic continuous, and manual step
method) are summarized in Table 1.

Our measurements of total gamma activity were carried out by the
integral mode of operation above 80 keV, by scalers. Our equipment was
calibrated by a point-like 137Cs source for energy (linearity is fulfilled, see also
Fig. 5) and for total efficiency. The values thus obtained: e = 5,6 ¢ 105
cpm//ic and Tt — 25,4% agree well with the results observed under different
conditions (6,1 ¢ 10s cpm//ic and 27%, but with a 50 mV input sensitivity
scaler [48]) or calculated [49] by others.

For a known fission product mixture, an efficiency of 39% was measured
for photon energies above 60 keV [26]. This is substantially modified by the
difference in the composition from that used in [26] and by the actual condi-
tions of the measurement. The counting rates of our solutions with an average
volume of 9 ml have been reduced to zero solution height, so that the correc-
tions obtained by others [44, 45, 46, 47, 48] for NaJ(TIl)-crystals, the bore-hole
of which was of a size similai to that of our detector, have been made universal
by establishing the (sample/bore hole) — volume ratio. A curve has been plot-
ted based also on the Operation Manual of our instrument [52].

The 137Cs equivalent concentration shown in Table 1 has been calculated
on the basis of the background-less counting rates M, the above data and the
original volumes. The roughly approximate total beta concentration calculated
from the 137Cs equivalent concentration, as can be seen from Table 2, is in
good agreement with the values of others for a similar period [37, 38]. As
0Sr is also present in the samples [1, 20, 24, 37] our total beta value exceeds
the level 1,0 « 10"6 /ic/ml fixed by ICPR (1959) by approximately 20%. This
assertion is supported by the presence of 90Sr actually detected by other authors
in precipitations over the same period of collection, e. g. in Rumania [1],
Canada [20], England [24] and even in this country [37]. The age of fission
products on the basis of our total gamma measurements (see Table 1) isapprox-
imately 50—80 days. To obtain preliminary information as to composition
we measured the spectra of our twenty six samples by automatic registration
[52], four of which are shown in Figs. 1, 2, 3 and 4. These represent the spectra
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of the remaining twenty two samples very well, apart from the 140 keV
photopeak of the rainwater — melted snow sample, marked F—22, which is
completely missing, and the 750 keV photopeak, which is scarcely visible

Fig. 1. Automatically recorded gamma spectrum of our Pécs sample. Sample mark: F-I’
Site of collection: Pécs; Date of collection: 29.01.1963; Time and date of measurement: 16h;
19.02.1963; Volume of melted snow prior to evaporation: 5000 ml

(losses due to collection from the rainwater pipe). The figures in brackets
indicate the values concerning the increased counting rate (cpm) — limits of
measurement.

It is known [41] that the shape of spectra recorded by single-channel
automatic analyzers with ratemeters is distorted (the photopeaks are flattened
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Type of

taken of 26 (recording of spectra) counting rates 7Be, at the time No.
samples of measurement of /1 500 keV\
At (day) M (cpm) ¢ (rucimi) miaesnutrse— V 140 KeV/
26 15 1030 + 3% 5,09 . 10-’
I (1)2 (18)2 (3600 + 1,3%), (14,4 .10-% -
Total gamma-
counting rate 26 652 73+ 14%
measurementst V- (1)2 (653)2 (286 + 3,1%)2 - . —
(threshold: 80 kev)
i (0,07 + 14,3%)
i _ _ (0,08 = 3,4%)2 . _ _
l.
Gamma spectra
taken for prelimi-
nary information
by automatic 306 15 25T 0,80
recording5
+ 17,5%,0
22,7
Gamma spectra or
taken by the
stepwise .
17i6 13,9 0,92
method15 640,
+ 53%22

Table 1

Summary of the results of the measurements

Average, approxi-
mate, 137Cs-equi-
valent concentration
calculated from M,
not corrected for

Arithmetic average
of the time between
collection and

Arithmetic average
and statistical
errorin % ofintegral,
background-free

Total number
of measurements
and spectra

Explanatory remarks:

11: first series of measurements;

I1: second series of measurements.

2Values for the anomalous Szeged sample marked: F-17.

3Based on 1030“ 1and 73~ 1.

4Based on 1030“ 08 and 73“ 083 [40].

5Duration of a run = 30 minutes; spectrum scanning speed = 0,555 keV/sec; recording
paper speed = 30,5 cm/hour; window width — 2 Volts; counting rate, range in general:
0—150 cpm; rarely: between 0—300 cpm; charging time constant of the ratemeter for 0—300
cpm: of the order of 100 ~sec [55]; integration time constant of the ratemeter: 40 sec [52];
equilibrium time calculated for the recording pen adjustment to the new average cpm with
a probability of 50%, as well as for the difference between the cpm-s in the photopeaks and
the “valleys’ below the photopeaks for a time constant of 40 sec: approx. 100 sec [56];
energy range: from 0 to 1 MeV.

6Since we have taken four spectra altogether for the sample F-I, two spectra for the
sample F-2 and two spectra for the sample F-17, the automatic spectrum of F-5 was not record-
ed at all owing to instrument fault.

7 Owing to distortion it was not possible to evaluate the 140 keV photopeak several times.

8 Without the anomalous value of (7,84) obtained for F-26.

9 For the February 1963 measurements which could be evaluated.

10 Photopeak heights graphically corrected for the average, distorted, total background,
in [cpm/20 keV] — units, for 140, 500 and 750 keV: IV/ = 51, 47 and 24. The relative statistical
errors of the observations of IV/ (assuming an equilibrium time of approx. 100 sec and that
the differential background is zero; we know, however, that these assumptions are not satisfied)
are for the time constant t2= 40 sec on the basis of the formulas

6=+ (100 J2% -3 and 6= x 87/ )  [%]

of the values: +12,2; +12,7; it17,8%. The errors in the ratios have been calculated by the
square law of the propagation of error.

11 From the comparison of the shapes of our spectra and those in [51b].

2 For the ratio of value 0,41, as well as for the conditions of measurement given in
[51a], assuming 2BU-fission products.

13See Fig. 3.

14 Certainly.

Arithmetic averages and statistical errors in % of some important, observed
photopeak-heights and photopeak area ratios corrected for Compton
scattering [27] and flattening [41]. (For error calculation see explanatory

Average
approximate
age of fission
products in the

time of an identical photopeak height
remarks 10. and 22.)) published in [57]

No. No.

samples . 140 500 662 750
of / 500 keV\ of 1 750 keV\ sign of
measure- -\ 750 kev/ measu- V140 keV/ <h(day) sample
ments rements keVv
50 + 203
80 + 104
33 2,07 between 7Be; BZr
or or 45 and 65n F-11.3 — NI3Ru? — SNb
32a 1,899 229 0,41 approx. 4512
144Ce lu3Ru
+ 21,8%10 4.91 Sfhro F-26 141Ce ) _
u
144Ce?
F-1724 B3N
141Ce? b
2,442, 9 0,45 approx. 5023
+ 5502 +47% 2 F-26%5  1MCe4 — Bréggy  —
15 Window width = step distance = 2 Volts = 20 keV; energy-range: 0 to 1 MeV;
observation by scaler; durations of observations (it: sample -j- background; t2: background):
for the sample F-17 early in 1963: =2"; t2= 0’ (the ten times smaller background-cpm
was neglected); late in 1964: i, t2 = 3’. For the sample F-26 early 1963: f, = t2= 2’; late
in 1964: i, = f2 4’ Errors of the respective observations: F-17, 1963, in the neighbourhood
of 750 keV: +11%; 500 keV: +7% ; 140 keV: +5% ; F-17, 1964, 660 keV: approx. +30% ;
F-26, 1963, 750 keV: +25% ; 500 keV: +10%; 140 keV: + 8%. F-26, 1964, 660 keV:
approx. +30%.
18 For the samples F-17 and F-21 the number of partial spectra recorded in the neigh-

bourhood of 660 keV is not included here.

17 For the 11 measurements carried out in March 1963.

BFor the 6 measurments carried out in 1964.

9The 500 keV photopeak already decayed in three cases, while for the sample F-22
the 140 keV photopeak was missing.

20 The 750 keV photopeak was missing in 8 spectra.

21 For the relation th =50 to 60 days, and for the assumptions of [18] this photopeak
area ratio is only approx.: 0,5. According to [42] this ratio for = 42 days, when it is just
maximum, is only of the value: 1,33. As the ratios observed by us are much larger, thus in our
case it is either due to the disturbing effect of the element 7Be that the area of the 500
keV photopeak is larger, or it is due to losses in collection and treatment that the area of the
750 keV photopeak is smaller, or in our case the assumption in [18] about the fission of 238U
by fast neutrons can no longer be maintained. As the errors of our ratios are about 20%
and 50%, these can only be used for estimation.

2The error of the photopeak area ratios has been calculated in the following way:
a) the own relative statistical errors of the values of measurements determining the area
of the photopeak have been established; b) for simplicity the arithmetic average of the errors
so obtained has been taken for the significant photopeaks of each sample: c) finally the arith-
metic average of the average errors referred to in b) has been taken for the given identical
photopeak energy of each sample (i.e. separately for the 140 keV, 500 keV and 750 keV ener-
gies.) For the estimable 140 keV peak of 16 we have thus obtained an error of +32%, for the
500 keV of 14 an error of +42%, and for the 750 keV of 10 an error of +35% . The er-
rors of photopeak area ratios have been calculated by the square law of the propagation of
error. These errors, as can be seen in the Table, are approximately 50%.

2 According to the photopeak area ratio of approx. 0,45 and [51a] (see remark 12).

24 See Fig. 7.

%5 See Fig. 8.

Identification of elements by comparing the decay in
(area) of a
given sample and the Table of corrections for decay
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and shifted, resolving power decreases.) For the conditions of our measurements
[55, 52, 56] we have determined the distortions (at 140, 500 and 750 keV:
a) flattening of photopeak 27, 16 and 12%, respectively; correction factors
1,27, 1,16 and 1,12; b) decrease of resolving power: at least 28, 11 and 10%,
correction factors: 1,28; 1,11 and 1,10; c) photopeak shift towards small
energies: 15, 17 and 19 keV), for the automatic spectrum obtained for 137Cs

Fig. 2. Automatically recorded gamma spectrum of our Somoskéujfalu sample. Sample mark:
F-14; Site of collection: Somosk6éujfald (N6grdd County); Date of collection: 12.02.1963;
Date of measurement: 22.02.1963; Volume of melted snow prior to evaporation: 5000 m

(the resolution is 13,75%; and by dividing this by the correction at least 1,11
for 660 keV, the undistorted resolution gives 12,4%, while in the stepwise
operation (see later) it is 11,6%. Thus the correction is good within the 7% error
mentioned in [41].)

After graphical Compton correction [27] the rough photopeak heights
have been corrected according to [41] and the ratios of the corrected values are
given in Table 1. Figs. 1—4 and Table 1 show that expressed photopeaks
appear mainly in the neighbourhood of 140, 500 and 750 keV (thus, at places
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310 A. TOTH, T. ZSOLDOS and A. URBAN

distant from one another in this country the distribution of fission products
is approximately identical) the heights of which, except for the 140 keV peaks,
always exceed the values of the total background (below them). Owing to

Fig. 3. Automatically recorded gamma spectra of our Szeged sample showing an activity

much higher than the average. The second spectrum was recorded approx, four months later.

Sample mark: F-17; Site of collection: Szeged; Date of collection: 07.02.1963; Volume of melted
snow prior to evaporation: 5000 ml

errors [41] it would he unreasonable to regard smaller protrusions as “photo-
peaks” or to assign them to specific elements.

Based on automatic recordings, Table 1 also contains age and element-
identification estimations (45—60 days, 141Ce, 144Ce, 7Be, 103Ru, &Zr and 9BNb).
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The presence of 144Ce is confirmed by the fact that after more than one and
a half years it can still be detected in the stepwise spectra (see Figs. 7 and 8).
On the other hand, the presence ofthe other elements (except for 7Be) is sug-

Fig. 4. Automatically recorded gamma spectrum of our Kecskemét sample. Sample mark:
F-21; Site of collection: Kecskemét; Date of collection: 14.02.1963; Date of measurement:
26.02. 1963; Volume of melted snow prior to evaporation: 5000 ml

gested by the factthat they were also detected in neighbouring countries during
the period of our collections (see Table 2).

The manual stepwise spectra of a few samples (measurements with
scalers) were taken directly after the automatic recordings, and (to detect
137Cs) again much later, in order to decrease statistical and distortion errors.
(Unfortunately, owing to the restricted duration of the measurements we failed
to obtain a smaller statistical error).
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Isotope

144Ce

141Ce

103Ru

106Ru

10CRh

1°eRu

A4llBa

Medium

(r+ s)*

Table 2

Presence and concentration of fission products in precipitations

Date and site of collection

21.12.1962-10.01.1963
Bucharest, Rumania

30.04.1962-01.01.1963
Vienna, Austria

12.1962 1
01.1963 1 London
02.1963 | England
03.1963 J

29.01.1963-22.02.1963
Hungary

16.07.1962-15.08.1962
Sydney, Australia

17.02.1963
Budapest, Hungary

11-13.03.1962
Seibersdorf, Austria

05-07.11.1961
Seibersdorf, Austria

11—13.03.1962
Seibersdorf, Austria

30.04.1962—01.01.1963
Vienna, Austria

11.1961 and 03.1962
Seibersdorf, Austria

Date of measurement

11.05.1962-
04.01.1963

© © © ©

After 715 and
days

28.02.1963 and
19.06.1963

21 —22.03.1962

27-28.11.1961

21—22.03.1962

11.05.1962 —
04.01.1963

11.1961 and
03.1962

640

Concentration C (pc/m\)

2.5 «10"7; co
7.0 «10-7; co
35 ¢10-7; co
3.0 «10-7; co

?; ce
(Table 1)

2,7 m1O*7

?; ce
(Table 1)

< 0,68 «10-7; co

Trend
in time of Literature
C
? [i]
’ [5]
i [24]
max
d
d
? (o}
i [13]
9 (o]
* [2]
? [2
’ (5]
’ [2)
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95Z r

110Ba

110La

13,Cs

BZr

-f 95N b

(r+)*

(r + s)x

(r + 9s)*

12.1962 1
01.1963 1  London
02.1963 | England
03.1963 )

21.12.1962-10.01.1963
Bucharest, Rumania

05.11.1961-07.11.1961
Seibersdorf, Austria

16.07.1962-15.08.1962
Sydney, Australia

21.12.1962-10.01.1963
Bucharest, Rumania

12.1962 1
01.1963 1 London
02.1963 1 England
03.19631

03, 14 and 17.02.1963
Hungary

07.02.1963
Szeged, Hungary

30.04.1962-01.01.1963
Vienna, Austria

12.1962 1
01.1963 1 London
02.1963 | England
03.1963) J

21.12.1962-10.01.1963
Bucharest, Rumania

11—13.03.1962
Seibersdorf, Austria

1,1 «10-7; co
55 *10-7; co
1,2 *10-7; co
1,2 *10-8; co

© © © ©

27-28.11.1961 0,8 *10-7; co

8 9,3 «10-8

?: ce

8,0 «10“9; co
5,0 «10-8; co
4,0 *10-8; co
3,5 ¢10-8; co

ECTERECRNY

after 670 days > (6,0 #10-9); a; j

after 690 days

11.05.1962-

04.01.1963
? 1,0 *10-6; co
9 —
? 5,0 «10-7; co
? 2,7 «10-7; co
9

?1 pr

21-22.03.1962 ?; ce

> (1,1 '10%9); a; 1

max.

(d)

[24]

(1]

[21

[13]

(1]

[24]

5]

[24]

(1

(2]



996T ‘0z 8eoleBUNH WNJRIUSINS aelWepedy eoIsAud 1oy

Isotope

Sy
UPm

"Sr

Medium

Date and site of collection

16.07-15.08.1962
Sydney, Australia

02.03.11, 12, 17, 22.
02.1963, Hungary

07.02.1963,
Szeged, Hungary

05.1963 London, England
07.1963 London, England

21.12.1962-10.01.1963
Bucharest, Rumania

1955-1962,

Deep River, Canada
Spring 1962

Deep River, Canada
Late 1962

Deep River, Canada

12.1962 |
01.1963 1 London
02.1963 1 England
03.19631
12.19621

01.1963 1  Budapest
02.1963 1 Hungary
03.1963 J

03, 14, and 17.02.1963
Hungary

Table 2 (continued)

Date of measurement Concentration C (/4c/ml)
8 2,1 m10-7

after ~ 12 days > (3,0 10-98); a; p

after 18 days > (1,3 +10-7); a; 1
9 2,0 «10-7, co
9 2,0 m10-7; co
9 ?; ce
o 4,2 «10-9
8 3.0 «io-8
8 5.0 «10-9
9 6.0 « 10-9; co
9 3.0 «10-8; co
9 2.0 «10-8; co
9 2.0 «10-8; co
after 3 weeks 3.2 +10-9
4,8 «10-9
1.2 «10-9
1,1 «io-8
calculated > (3,6 m10-9); a; j

from Cs-137 value; e

Trend in
time of C

max.

Literature

[13]

(0]

[24]

[24]
(1

[20]

[24]

[37]

17423
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480 keV peak
"Be + 103Ru

deducting llula

Total
beta

r+ S+
+ Y

P+ s+
+ Y

07.02.1963
Szeged, Hungary

19.02.1956 1
01.03.1956 [ Uppsala
03.03.1956 J Sweden

20.06.1958 1 Bombay
11.09.1958 } India
14.07.1958 J

16.07.1962-15.08.1962
Sydney, Australia

01.1963 1 Budapest
02.1963 j Hungary
03.1963
01.19631 Debrecen
02.1963 Hungary
03.1963

29.01.1963-22.02.1963
Hungary

05-12.02.1963

11.02.1963 Debrecen, Hungary

calculated from
13,Cs value; e

after 3 weeks?

after 2 days at least

~ 15 days

~ 2 days

11 days

> (6,6 +10%9; a; 1 9

1,31 «io-8 i
1,61 *io-8 i
2,64 +10-8 i

1,87 + 10-8
(average of 19
samples)

4,3 «10-8 max.

4,00 «10-" max.

2,6 « 106 i, ?
11 +io-6 d
1,7 «10-6 i

0,88 « 106 c
0,67 «+10-6 d
0,82 «10-6 i

= T o% 9
f;

0,56 « 10-0 —

< (0,85 + 10-8) g; .

[32]
[33]

[16]

[33]

[13]

[37]

[38]

w
s
(6,1
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Explanatory remarks to Table 2

rain

melted snow

r -f-s = melted snow mixed with rainwater
co = corrected for the date of collection

r

i increasin

d decreasin g

max = maximum

min = minimum

c = approximately constant

ce = certainly present

pr = probably present

? = not published, undeterminable value of C given in cpm/ml only

X = between 11.01.1963 and 08.02.1963 only snow, for [24]

0 = our investigations

a = approximate, neglecting sampling and concentration losses, calculating in arough approx-

imation for the volume-dependence of photopeak-efficiency, taking (%Zr -f- ®Nb) with the
efficiency of [27] at the date of measurement (not corrected for decay !)
e = obtained from eight pairs of data [24, 14], converted with the average value (90Sr/137Cs) =
y = “dry” fall-out on precipitation-free days

= calculated for our conditions by a multiplying factor of ~ (2,3) [26] from the approximate
total gamma concentration in Table 1, determined in 137Cs-equivalent and not corrected for
7Be, neglecting losses and with a rough correction for the volume-dependence of the 137Cs
total-efficiency; average value applicable to all 26 samples. The multiplying factor ~ (2,3)
can be applied under the following assumptions [26]: a) the fission products in our samples are
due to the fission of 28U by slow neutrons; b) the measurement was made not earlier than 100
days after the fission. With a known fission product mixture [26] and with an unknown geo-
metry the mean integral counting efficiency is 0,39 and 0,33 for 60 keY and 140 keV threshold,
respectively. For 80 keV and an unknown geometry of measurement approximately 0,38 can
be taken. The authors calculated for point-like Cs-137, for 80 keV and other, known conditions
of measurement with an integral counting efficiency of

rif = 0,254 [impulse/137Cs disintegration] = 0,31

The deviation is in percentage of the value 0,38: — 18,4%, appropriate for estimation, still
acceptable.

n = element of natural origin, affecting the determination of fission products

g = seef, but only for our sample, marked: F-15.

j = for the samples marked: F-5, 6, 9, 21 and 26

1= for the sample marked: F-17

p = for the samples marked- F-4, 10, 15, 16, 18, 24, 25 and 26

> = greater than

< = smaller than

Ada Physica Academiae Scientiarum Hungaricae 20, 1966
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As shown in Fig. 5 the energy linearity of our apparatus is satisfied
between ~ 140 and 1280 keV. Below 100 keV linearity is not guaranteed for
our instrument by the manufacturer [52]. The energy-dependence of energy

h base level division

Fig. 5. Energy linearity of our gamma-spectrometer

Fig. 6. Energy-dependence of the energy resolution of our gamma-spectrometer

resolution is shown approximately in Fig. § where the extrapolated straight
line obtained from observation — apparently owing to equalization errors —
does not intersect the ordinate [54].

Energy calibration measurements were carried out with non-pointlike
sources (solutions). For pointlike 137Cs in the stepwise mode of operation the
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half value width is 76 keV (in automatic recording 91 keV), the resolution is
11.68%, and the photopeak efficiency calculated from the area of the photo-
peak: PRC®= 13,8%. The latter value isin good agreement with values obtained
by other authors: 14% and 15% [2, 53].

Fig. 7. Gamma spectra recorded by the stepwise method, by scaler, of our Szeged sample.

The second spectrum, in which the peak appearing in the vicinity of 660 keV refers to the

existence of 137Cs, was recorded 20 months later. Sample mark: F-17; Site of collection: Szeged;
Date of collection: 07.02.1963; Volume of melted snow prior to evaporation: 5000 ml

Table 1 as well as Figs. 7 and 8show the results of our stepwise spectra
obtained at two subsequent time-intervals for the samples F—17 and F—26.
At this time too, outstanding peaks appear at 140, 500 and 750 keV, except for
two samples of the remaining twenty two (F—22: peak appears only at 500
keV; F—23: the 750 keV peak is missing; but when observed automatically,
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soon after collection, it was barely visible). For at least one and a half year
after collection the 140 keV (144Ce) peak can still be found in the spectra, the
500 keV peak can scarcely be observed and since the 750 keV peak and its
Compton continuum have already decayed, the 662 keV peak of 137Cs also

Fig. 8. Gamma spectra recorded by the stepwise method of our Budapest sample. The peak

appearing in the vicinity of 660 keV in the spectrum recorded approx. 21 months later refers

to the presence of 13,Cs. Sample mark: F-26; Site of collection: Budapest; Date of collection:
17.02.1963; Volume of melted snow prior to evaporation: 5000 ml

appears. The areas of the significant photopeaks have been determined from
linear scale graphs by means of the graphical correction already mentioned
[27]. The ratios of the areas are shown in Table 1. Although with a large error
(i 82, 68, 88, 23, 74, 46%) 137Cs has been detected in the samples marked
F—5, F—6, F—9, F—17, F —21 and F —26 one and a half year after collection,
with the greatest probability in the F—17 sample 23% statistical error).
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From the resulting 137/Cs concentrations, 90Sr concentration for the above six
samples has also been estimated by means of the conversion factor mentioned
in remark d) to Table 2 (see Table 2).

The 137Cs concentrations (see Table 2) have been calculated on the basis
of zero solution height corrections and the -P62 = 13,8% photopeak efficiency.
As the value of P 6 agrees with the one in [27] and as in [27] the 750 keV photo-
peak efficiency (for ®BZr + ®BNb) is P70 = 12%, based on the latter we have
estimated (%BZr -f- BNb)-concentration from the 750 keV photopeak areas. This
is relatively simple, as a single gamma photon of given energy is emitted in the
decay of each of these elements. As for 137Cs, calculations have also been made
for point source geometry assuming a 100% recovery of the element, although
we know that this is not true. Table 2 shows the estimated (%Zr -(- BNb)-
concentration, just as the 137Cs concentration, marked by the “greater than”
sign before the bracket.

According to Table 2 our approximate values agree quite well with those
of other authors (for total beta activity) or are of the same order of magnitude
(owing to loss of material).

Owing to the dependence of fall-out concentration on latitude and
season [24, 28, 29] and to possible fractionation [10, 19, 22] it is difficidt to
assign the fission product age of approximately 2 months obtained from the
three types of measurements (see Table 1) to any particular nuclear explosion
test, although snow normally contains younger fission products than does
rain [36].

Our preliminary investigations have revealed that the surface of this
country is also contaminated by fission products in snow and that some local
anomalies occur (F—17 sample collected at Szeged, being approximately 3-
times higher than the average). Improvements in our techniques are in progress.
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NCCNEOOBAHNE TAMMA-AKTUBHOCTU U TAMMA-CIEKTPA
CHEXXHbIX OBPA3LIOB

A. TOT, T. XXON40LW, n A. YPBAH

Pestome

Viccnegysa cyMMapHyl0 ramma-aKTVBHOCTb M ramma-crnekTp 25 CHeXHbIX obpasuos u 1
obpasua A0XKAEeBOWM BOAbl, HAKOMMEHHbIX B Nepuoge oT 29 siHBaps no 22 eBpans 1963 roga Ha
TeppuTopun BeHrpunm (16°—22° mepuanaHoB N 46°—A48° ceBepHON LLMPOThI), BbISCHAETCS,
4YTO a) 9KBMBANIEHTHAs CyMMapHas ramma-akTuBHocTb Cs—137 cocTaBisieT B CpeAHEM
5,1 ¢« 10“7 juc/ml; 6) cymmapHas 6eTa-KOHLEHTpauusi, onpeaeneHHass Ha OCHOBe 3TOro, paBHa
N 1,2-10-6 ac/ml; C 60NblLUO/A BEPOSATHOCTbIO BCTpeYatoTCA 3nemeHTbl Ce—141, Ce— 144,
Ru—103, Be—7, Cs—137, Zr—95 n Nb—95. Bo3pacT npoayKToB pacnaga coctasnsieT 50—80
CyTOK. OueHmBaeTcA KoHUeHTpauma Cs—137 n (Zr—95 + Nb—95). [laHHble CymMmapHoW
aKTMBHOCTW XOPOLLO COBMaJaloT C pesynbTaTtamu APYrux mccnefosaTeneil, pesynbTaTbl Cenek-
TMBHOrO OMpejeneHns BCeACTBYE NOTePb NpY B3ATUN Npob 1 06paboTke 06pasLioB MO NOPALKY
BE/IMYMHbI COrNacyloTcsa € AaHHbIMU Apyrux pabot. O6pasel, B3ATbIA B r. Ceref, 0T/MyaeTcs
0T APYruUX aHOMa/lbHOW pajnoaKTUBHOCTbIO, MPUMEPHO B TpU pasa 60/bLuUeid.
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POTENTIAL FIELD AND FORCE CONSTANTS
OF PHOSPHORUS AND ARSENIC TRICYANIDES

By

G. Nagarajan®*

DEPARTMENT OE CHEMISTRY, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND,
U.S. A

(Presented by A. Koéonya. — Received 8. YI. 1965)

An orthonormalized set of symmetry coordinates satisfying thetransformationproperties
has been constructed for a pyramidal X(Y Z)Smolecular model following the w itson's group
theoretical method. The F and G matrices relating to the potential and kinetic energies have
been derived. The recent vibrational and structural data of phosphorus and arsenic tricyanides
have been applied and in each case nine valence force constants evaluated.

Introduction

The infrared absoprtion spectrum of phosphorus tricyanide was studied
and only four bands were observed by Staats and Morgan [1]. Later, Goubeau,
Haeberle and UlImer [2] studied the Raman spectrum in solid and solution
states and the infrared absorption spectrum in solid state and assigned the
fundamental frequencies on the basis of a pyramidal configuration. Recently,
Miller, Frankiss and Sala [3] studied the Raman and infrared absorption
spectra of phosphorus and arsenic tricyanides in both solution and solid
states and assigned the fundamental frequencies on the basis ofa C3,symmetry.
X -ray diffraction studies by Emerson and Britton [4, 5] favour a pyramidal
configuration for these two molecules. It is aimed here to evaluate the force
constants of these two molecules on the basis of the Wilson’s group theoretical
method [6] with help of the recent vibrational and structural data [3—5].

Symmetry and selection rules

In a molecule of the X(YZ)3type possessing the symmetry point group
C3V, the X atom lies on the symmetry axis and the three YZ groups lie in the
planes passing through the symmetry axis; each plane bisecting the angle
formed by the other two planes. The equilibrium configuration adopted for
this molecule is given in Figure 1. The six covering operations of the point
group C3, pertaining to this system have been classified as follows: — an

* Permanent address: Kalyanapuram, Thanjavur District, Madras State, India.
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identity operation E, rotations by 21r/3 around the symmetry axis 2C3(r)
and reflections in the three planes with respect to the symmetry axis 3av. The
characters and other relevant features [7] of the point group C3,pertaining to
this system reveal that there are fifteen vibrational degreesof freedom constitut-
ing only ten fundamental frequencies. They are distributed under the various
irreducible representations as follows: — 4Ax A2 5E, where the vibrations
of A) symmetry species are nondegenerate and symmetric with respect to
C3(z), the vibration of A2 species is nondegenerate and asymmetric with
respect to C3z) and the vibrations of E species are degenerate. During the
oscillations of A7 species the molecule remains always a symmetric pyramid,

Fig. 1. Geometric illustration of the internal coordinates for a pyramidal JT(Y/),t molecule.
The symbols denote the values at the equilibrium configuration

but it does not during the oscillations of E species. There are no genuine
vibrations of A2 species, but the rotation about the symmetry axis has this
type. A schematic representation of the normal modes of oscillation for a mole-
cule of the present investigation has already been given by Fritz and Manchot
[8]. The fundamental frequencies 5 v2 v3 and r4under the symmetry species
A1l are of totally symmetrical Y —2Z stretching, X —Y —Z bending and X Y3
deformation vibrations; v5under the A2species is of an asymmetrical X —Y
—Z bending; v6, v7, vs, v9 and r10 under the E species are of asymmetrical
Y —Z stretching, X — Y stretching, X —Y —Zbending, X —Y —Z bending and
XY 3 deformation vibrations. AIll the vibrations are active in both Ra-
man and infrared absorption spectra except the one under the A2 species
which is inactive in both. The vibrations coming under the Ax species are
polarized in the Raman spectrum, whereas those coming under the species
E are depolarized in the Raman spectrum, and similarly the former are parallel
and the latter perpendicular in the infrared absorption spectrum.
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Symmetry coordinates

Fifteen internal coordinates as the deviations from the equilibrium
interbond distances and interbond angles have been selected here to describe
the fifteen vibrational degrees of freedom and they are given as follows: —
Arl5Ar2and ZIr3are the X —Y stretching coordinates; Zldi5Ad2and Ad3are the
Y —Z stretching coordinates; AOX AO2and A0O3are the Y —X —Y bending
coordinates; and /1®4 A®2 Ad3 Ad4, Adband AdBs are the X —Y—Z bending
coordinates. On the basis of the principle postulated by Wirson [6], a set of
symmerty coordinates (linear combination of internal coordinates) satisfying
the conditions of normalization, orthogonality and transformations of the
concerned vibration species has been well constructed with help of the internal
coordinates described above and given in the following: For the Altype vibra-
tions:

51 = (Arx+ Ar2-f- Ars)iy3,

52 = (id, -f- Ad2 -f- Ad2)1J3)

{AO0,+ A02+ A02I]/3,

(AD, + AD, + AD3+ AdP4+ ADDB+ AD,)1Y6.

53
54

For the A2 type vibration:
S5= (A®l- ADP2+ AD, - AP, + NIdb- [o,)L.
For the E type vibrations:

Sea = (2/lrj — Ar2 — Ar3)lY6,
S6b = (a2 — Ar32)

S7a = (2Ady— Ad2- Ad3)l]fs,
St = (Ad2- Ad3)lY2,

S8 = (2A02- AO0X- AO03)iy6,
Sst = (A0 i- AO03IY2,

S%@= (2 \®y - AP3- J1P-)1\[E,
ShH= (ADP3- Adi/y2,

Sion = (2A®2- A®P, - Ad6/ys,
Sw = (AP, - Adp)ly2
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Potential energy matrices

In the most general harmonic potential energy expression for a molecule
of the present study, the number of force constants is twenty four, but the
available number of observed fundamental frequencies is only nine. Even if the
fundamental frequencies of isotopic species are available, it is not possible to
evaluate uniquely all the twenty four valence force constants. Hence most of
the interaction constants of higher order were neglected in this case by retaining
only eight prominent valence force constants. The adopted potential energy
expression is given as follows:

v = fr2 W+ fa2 (M)2 Ne )* + ford 2 (N10,)2+
1=1 1=1 = 1=1

1=1

+ 2frr2  {Ar[) {"ri+i) + 2fdd2 (Adi) (Adj+1) -f
=i =1
+ 2fee t2 ~ . (A D (+1) +
i=i =1
+

2140/ rd 2 (A®,)(A®,+2),
|:

where/ris the X —Y stretching force constant, fd the ¥—Z stretching force
constant, /0the Y —X —Y bending constant,/ dpthe X —Y —Z bending constant
and frr, fdd, fe@ / d and f df are the respective interaction constants. In the
above potential energy expression the angle displacements are multiplied by the
equilibrium interbond distances r and d in order to keep the dimensions of the
force constants referring to the angle bending the same as those of the force
constants due to the interbond distances.

The F matrix elements for the various irreducible representations were
obtained by means of proper matrix multiplications according to Wilson [6]
and they are given as follows: — Fn = fr+ 2frr, F2=fd+ 2fdd, F=
= r2(/© Zesy, Fu - rdij0 « [0 -)-/dd ), F66= fr frri F, = fd fdch
F8= r2(fo - fee), FP = rd{f0 —/pd') and F1010= rd f o Since the vibration
corresponding to the frequency v5 is forbidden in both Raman and infrared
absorption spectra, the expression for the symmetrized force constant F5 in
terms of the valence force constants (/) has not been given here. All the off-
diagonal elements involving the interaction force constants have been neglected
for the sake of convenience in solving the secular equations.

Kinetic energy matrices

Assuming unit vectors along the chemical bonds of the molecular system,

the inverse kinetic energy matrices were obtained according to W ilson [6]
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and they are given as follows under the various irreducible representations:
For the Ar type vibrations:

M= X +~W> 22— ‘b Hzi CZB= (2/r-) (2 fix -f- 1ty),
cu= 2[(I/ddMz+ {Wr) + (/d)}Vy], GR= - 1y,
GB= (2Ir) Itx, G = GB= GA= G#A=0.

For the E type vibrations:

G66 = Ux+ IV GT7= + |_t| G88 = (1/r2) (/[“x+ 21/ly),
CP= {(I/0 + (Hd)}Vy+ (1/d2)~, GI0= {(1/r) + (1/d)}V y+ (1/d2)/tz,
G67= - /)’ G68= (1/0 W> GO910= {(VO + (Vd)}Vy + (1/d2)/G,

G69 = G610= G78= 179 = /789 = G8l0= ®’

where /tx, /iy and /rz are the reciprocal masses of the atoms X, Y and Z,
respectively. Here the matrices are symmetrical ones. Asin the cases of valence
force constants not given in the expression for the symmetrized force constant
under the A2 species, the expression for the inverse kinetic energy matrix
element G5 has not been derived here. The off-diagonal elements of the kinetic
energy matrices are to be included in constructing the secular equations as they
are not cancelled in the product equations though the off-diagonal elements of
the potential energy matrices are neglected.

Results

The observed fundamental frequencies of phosphorus and arsenic
tricyanides [3] in cm-1 are given in Table 1. The X-ray diffraction studies
[4, 5] yield the following values of molecular parameters: P—C = 1,78 A,
C=N = 1,15 A and C—P—C = 93° for phosphorus tricyanide and As—
—C= 188 A,C=N = 1,15 A and C—As—C = 92° for arsenic tricyanide.
The equation [FG—EX\ = 0 postulated by Wilson [6] has been adopted in the
present study, where E isthe unitary matrix and X = 4ji2c22. Here c is the
velocity of light in vacuum and v the observed fundamental frequency in wave
number. On the basis of the above equation the secular equations giving the
normal frequencies in terms of the valence force constants were constructed
with help of the F and G matrices, fundamental frequencies in cm-1 given in
Table 1 and the molecularparameters given above. All the off-diagonal elements
were for the sake of convenience and brevity neglected and only the diagonal
elements evaluated by keeping only nine valence force constants. The obtained
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Table 1

Fundamental frequencies of phosphorus and arsenic tricyanides in cm'1

Species  Frequency Schematic description P(CV), As(CN)t
Vi Y —Z symmetrical stretching 2206 2199
V) X —Y symmetrical stretching 620 415

A »h X —Y —Z symmetrical bending 468 140
4 XY 3 symmetrical deformation 145 106

a?2 VS X —Y —Z asymmetrical bending — -
V6 X —Z asymmetrical stretching 2202 2210
v7 X —Y asymmetrical stretching 581 451

E % X —Y —Z asymmetrical bending 452 280
s X —Y —Z asymmetrical bending 314 122
»ho XY 3 asymmetrical deformation 159 80

Table 2

Valence force constants of phosphorus and arsenic tricyanides in 10s dynes/cm

consant - UL leyance
fr 4,638 3,924
fd 17,853 17,514
fe 1,446 1,243
I 1,105 0,896
frr 1,214 1,085
fdd 2,846 2,168
fee 0,779 0,547
f o 0,532 0,495
I 0,245 0,179

values of the valence force constants in 105 dynes/cm are given in Table 2 for
phosphorus and arsenic tricyanides.

The force constants in general are slightly in the decreasing order from
phosphorus tricyanide to arsenic tricyanide. This indicates that the replace-
ment of the apex atom by an atom ofhigher atomic weight causes lower funda-
mental frequencies (see Table 1) and correspondingly lower force constants.
The Si—C stretching force constant in silyl acetylene [9] is 3,3 X 105 dynes/cm
and S —Cstretching force constant in thiocyanate ion [10] is 5,3 X KO5dynes/cm.
The increase in the Si—C, P—C and S—C stretching force constants is not a li-
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near one but theincrease from Si—Cto P —Cis much greater than it is from P—C
to S—C bond. The values of the C==N stretching force constants obtained in the
present study are well comparable with those obtained in other related systems
having similar chemical bonds such as hydrogen cyanide [11], halogen cyanides
[7, 10, 12—13], halogenated methyl cyanides [14, 15], cyanogen [7] etc. The
force constant due to Y —X —Y¥ bending is slightly greater than that of the
X —Y —Z bending. The force constants due to the interaction of stretchings are
similarly slightly greater than those of the bendings. The reliable data are not
available to compare the other constants ofthe present study.The data obtained
here would be very helpful to evaluate the vibrational frequencies in other
related systems having similar chemical bonds with nearly identical inter-
nuclear distances.
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NookwN R

MOTEHUMAJIbHOE TMNONE N CNNOBbIE KOHCTAHTbI ®OC®OPHOIO
N AP3EHHOIo TPMUMAHNOOB

r. HATAPAAH
Peswome

MNpumeHeHNeM rpynnoBo-TeOpeTMYecKoro metoga BunbcoHa gns X(YZ).t MonekynsapHox
MOZenn nupammianbHoi (opMbl CKOHCTPYMPYeTCS OPTOHOPMasibHas CeTb CUMMETPUYHbI-
KOOpPAMHAT, YAOBMETBOPAOLLNX CBONCTBaM npeobpasoBaHus. BbiBogaTcs maTpuubl F 1 G, oT
HOCALLMECA K MOTEHLMANTbHON N KMHETUYECKON 3Hepruam. Hoselilne BMOPALMOHHbIE N CTPYK
TYpHble faHHble (HOCPOPHOro M ap3eHHOro TPULMAHWAO0B UCMOMb3YIOTCA U B KaXKAOM Cryyae
ornpeaenseTcsa fAeBATb Ba/leHTHbIX CWU/IbHbIX KOHCTaHT.
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An electronic configuration for the ground state of disulphur monoxide possessing
an asymmetrical structure with the symmetry point group Csis given. Molecular polarizability
is calculated by the Lippincott—Stutman method employing the delta-function model of
chemical binding. Mean amplitudes of vibration at the room temperature are computed by
the Cyvin method utilizing the symmetry coordinates. The molar thermodynamic functions
for the temperature range 100—6000°K are calculated on the basis of a rigid rotator, harmonic
oscillator model. The results are briefly discussed.

Introduction

The infrared absorption spectrum of sulphur monoxide was studied and
the bands were observed at 679 cm-1 and 1165 cm-1 by Jones [1]. The ultra-
violet spectrum was also studied and a ground state vibration frequency of 679
cm-1 was deduced from a partial analysis of the electronic absorption band
system. It was concluded that the molecule cannot be diatomic SO but the
formula S20.2 as suggested by Kondrat’eva and Kondrat’ev [2]. The micro-
wave spectrum of the product resulting from the passage of an electrical
discharge through a mixture of sulphur and sulphur dioxide was examined by
Meschi and Myers [3] and the product, usually called, “sulphur monoxide”
was found to have a microwave spectrum which was assigned to disulphur
monoxide with a bent asymmetrical structure; and on the basis of which the
fundamental frequencies were assigned from the existing infrared absorption
data. It is the aim of the present investigation to present a most stable electro-
nic configuration in the ground state, evaluate the molecular polarizability by
the Lippincott—Stutman method [4] employing the delta-function model of
chemical binding, calculate the mean amplitudes of vibration by the Cyvin
method [5] utilizing the symmetry coordinates and compute the molar thermo-
dynamic functions on the basis of a rigid rotator, harmonic oscillator model.

* Permanent address: Kalyanapuram, Thanjavur District, Madras State, India.
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Electronic configuration

Lewis [6] was the first to propose all the electronic formulae on the
“group of eight” which was later described by Langmuir [7] as the “octet”.
The very importance of the “pairing of electrons” in the “group of two” was
also stressed by Lewis; sometimes shared, sometimes unshared (lone). However,
the stability of the molecules (or radicals) was not fully explained by Lewis,
[8] but Pauling [9] by introducing the concept of resonance and also the
existence of the one and three-electron bonds. When the resonance was accept-
ed, the concept of the electron pair was retained; accordingly, better descrip-
tions of the electronic configurations of certain molecules could be given by
a combination of canonical structures of the type proposed by Lewis [6, 8]. On
the basis of the Lewis-Langmuir octet rule [6, 7] and the concept of resonance
proposed by Pauling [9], disulphur monoxide could be represented as a reso-
nance hybrid of the pair of structure I and Il given in Figure 1. However, both
of these structures do not actually represent the stable configuration of
disulphur monoxide in the ground state. Meschi and Myers [3] proposed the
structures 11l and IV given in Figure 1 from the usual resonance picture for
disulphur monoxide. Both of these structures make the end atoms negative
with respect to the apex sulphur atom. Because of the difference in electro-
negativities and on the basis of the calculated bond moments, the structure 111
is more favoured over IV. These two also do not represent the stable configura-
tion cf the molecule in the ground state.

Recently, Linnett [10] modified the Lewis-Langmuir octet rule [6, 7]
as a double-quartet of electrons rather than as four pairs; accordingly each
group of four electrons will tend to have a disposition round the nucleus which
isapproximately that ofthe corners of a regular tetrahedron [11—14]. On the
basis of the octet as two groups of four electrons (the quartets being strongly
correlated within the group but the two groups being loosely correlated the
one with the other), it is proposed here the structure V given in Figure 1 as the
most stable configuration for disulphur monoxide in the ground state, where
the “dots” represent the electrons with spin quantum number of —1/2 and the
“crosses” the electrons with spin quantum number of —1/2 or vice versa. The
electrons are more widely separated in: than they are in other structures. More-
over, both spin sets of nine electrons would favour a bent configuration for this
molecule in accordance with the results of microwave studies. The two sets of
four round each nucleus can be treated uncorrelated spatially relative to one
another. As far as the spatial correlation of the two sets is concerned, the
electrostatic repulsion and the Pauli Principle effect cancel one another.

The structures from | to IV give a high probability to configurations in
which two electrons are in one bond and four in the other or vice versa, whereas
the structure V gives a high probability to configurations in which there are
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three electrons simultaneously in both bond regions. Resonance between | and
Il or Il and IY can result in the mean electron density in each bond region
being three, but it gives a completely different measure of the instantaneous
configurations from that denoted by the structure V ; hence the inter-electron

L4

Fig. 1. Electronic configurations of disulphur monoxide

effects for the conventional resonance hybrid (I and Il or Il and IV) will be
different from what they would be for the structure V. Since the structure V
would appear to reduce inter-electron repulsion in comparison with the other
structures, it will provide a more satisfactory description of the ground state
of disulphur monoxide than will a resonance hybrid of the structures | and Il
or Il and IV.
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Molecular polarizability

Several investigations have been made in recent years and developed in
many ways to compute the atomic and molecular polarizability values on the
basis of quantum mechanical models for many molecules and ions in order to
test how far the polarizability could be a useful criterion for testing the accuracy
of wave functions adopted. Ofthe various potential models developed, the most
recent one is the delta-function potential initiated by Frost [15] and deve-
loped by Lippincott [16]. Lippincott and Stutman [4] applied this semi-
empirical model to develop a method of generating component polarizabilities
in order to compute the molecular or average polarizabilities. This model gives
explicit expressions for the parallel and perpendicular components and mean
polarizabilities for diatomic as well as polyatomic molecules. The molecular
polarizability is composed mainly of bond parallel components obtainable from
molecular delta-function model and bond perpendicular components obtainable
from the atomic delta-function polarizabilities. The polarizability contributions
from the bond region electrons and those from the nonbond region electrons
are clearly distinguished. In addition, corrections to the parallel and perpen-
dicular components are made to compensate for polarity effects. The same
method has been adopted and hence one may refer to Lippincott and Stutman
[4] for the detailed theoretical considerations and calculations.

The delta-function strengths A's in atomic units, atomic polarizabilities
a's in 10~% cm3 and c's in atomic units adopted from earlier work [4] for
disulphur monoxide are as follows: As = 0,688, A0 = 1,00, = 18,20,
a0= 592, cs = 4,128 and e0= 4,899. The ¢ value for the apex sulphur atom
was obtained in the manner described by Lippincott and paynore [17] for
a bond of polyatomic system and used in the calculation. The internuclear
distances S—S = 1,884 A and S—S =f 1,465 A and the interbond angle
S—S~0 = 118° from microwave studies by Mmescnhi and myers [3] were used
for such calculations. The assumed bond order 3/2 is slightly lower for the
sulphur-sulphur bond whereas it is fully satisfied for the sulphur-oxygen bond
in accordance with the results in other similar systems [18].

The contribution to the parallel component by the bond region electrons
is calculated using a linear combination of atomic delta-functions representing
the two nuclei in the bond and analytically expressed as x\ = 4nAn (l/a0)
(<7c2>)2where A12is the root mean-square delta-function strength of the two
nuclei, nthe bond order, aOthe radius ofthe first Bohr orbit of atomic hydrogen
and <7#2> the mean-square position of a bonding electron which may be
expressed as <7ar2> = (424) + (1/2 cRI2), where B isthe internuclear distance
at the equlibrium configuration. The calculated values of the polarizabilities
in 10-25 cm3for the S—S and S—O0 bonds are 59,403 and 27,073, respectively.
The total value of the polarizability contribution to the parallel component
from the bond region electrons is obtained as 273c||;, = 86,476 X 10~5cm3.
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The nonbond region electron contribution to the parallel bond component
x\\n is calculated from the fraction of the electrons in the valence shell of each
atom notinvolved in bonding and its respective atomic polarizability; and the
basis for sucli calculation is the Lewis-Langmuir octet rule [6, 7] modified by
Linnett [10] as a double-quartet of electrons. Disulphur monoxide has an even
number ofelectrons in the valence shell. Since five of six electrons in the valence
shell of the end sulphur as well as oxygen atoms and two of six electrons in the
valence shell of the apex sulphur atom are not involved in bonding (structure
V in Fig. 1), the polarizability contribution to the parallel component from
the nonbond region electrons is obtained as Ial|,, = XfjXj — (7/6)xs -f- (5/6)oc0 =
= 26,167 X 10-25 cm3 Hereby is the fraction of electrons in the valence shell
ofthejth atom notinvolved in bonding and Xjthe atomic polarizability of the
jth atom obtainable from the delta-function strength A.-.

The perpendicular component of a diatomic molecule was assumed to be
the sum of the two atomic polarizabilities, i. e.xx_ = 2xAfor a non-polar diatomic
A2 molecule = 2 (XAXA -f- X bxb)l(Xa2 -f- X B2) foran A —B molecule, where
X refers to the electronegativity ofthe atom on the Pauling scale. This principle
was extended to polyatomics and the derived equation for the sum of the per-
pendicular components of all the bonds in the molecule is given as Z2x+ = n-df
(UXj2Xj)I(XXj2), where ndf is the number ofresidual atomic degrees of freedom,
Xj the electronegativity of the j'th atom and xj the atomic polarizability of the
j'th atom. nd is obtained directly from a consideration of the structure of the
molecule and the assumption that each atom, if it were not bonded, would
possess three degrees of atomic polarizability freedom. If an atom forms one
bond, one degree of freedom is lost. i. e., a diatomic molecule has four residual
atomic degrees of freedom. If an atom forms two bonds which are linear, only
one degree of freedom is lost. i. e., carbon dioxide has only six residual atomic
degrees of freedom. If an atom forms two bonds which are non-linear, two
degrees of freedom are lost. i. e., disulphur monoxide has only five residual
atomic degrees of freedom. The calculated value ofthe sum ofthe perpendicular
components for the bonds of disulphur monoxide is given asF2aJ_= 60,610 X
X 10 Bcm3. Hence the average molecular polarizability is obtained in terms
of the parallel bond, nonbond region electron and perpendicular bond contribu-
tions as follows: —

«M = (1/3)(Tallb+ Na,+ X2xx) =
= (1/3)(86,476 + 26,167 + 60,610) X 10~%5 cm3=

= 57,751 X 10“%5 cm3.

There are no experimental values of dielectric constant, index of refraction etc-
available to derive the molecular polarizability and make a comparison here.

Acta Physica Academiae Scientiarum Hungaricae 20, 1966



336 G. NAGARAJAN

However, the bond parallel components may be compared with those of other
molecular systems having chemical bonds with same as well as different bond
orders. The bond parallel components were calculated for the S2and H2S2mole-
cules from the existing structural data [18]. The values of the bond parallel
components in 10-25 cm3 are 55,358 for the S—S bond in H2S2 59,403 for the
S—S bond in S20 and 80, 041 for the S = S bond in S2 Similar argument may
be extended to the sulphur-oxygen bond. This shows that the bond parallel
component of the polarizability increases with the increase in the bond order.
Thus the delta-function model gives explicit expressions for the parallel and
perpendicular components and the mean polarizabilities for any molecular
system and these are in accordance with the investigations of penbign [19]
in which the molar refraction of a molecule is assumed to be the sum of the
refractions of all the bonds in the molecule and similarly, the molecular pola-
rizability is assumed to be the sum ofthe bond polarizabilities. The sum of
the perpendicular components of all the bonds in a molecule is a linear combina-
tion of atomic polarizabilities and is independent of the internuclear distance,
whereas the bond parallel componentis dependent on the internuclear distance
and hence the perpendicular component will always be transferable from one
molecular system,to another but such transfer in the case of parallel component
would be possible only when the internuclear distances are nearly identical in
the two different molecules.

Mean amplitudes of vibration

Disulphur monoxide possessing an asymmetrical structure with the point
group C, gives rise, according to the relevant symmetry considerations and
selection rules [20] to three vibrational degrees of freedom constituting only
three fundamental frequencies, namely, vxthe frequency corresponding to the
sulphur-sulphur stretching vibration, v2 to the sulphur-oxygen stretching
vibration and v3to the bending of the molecule. All are allowed in both the
infrared absorption and Raman spectra. The equilibrium interbond distances
S—S and S—O0 are being represented by the symbols r and d, respectively and
similarly the interbond angle S—S—O by the symbol 0. On the basis of the
principle postulated by Witson [21], the following symmetry coordinates under
the symmetry species A' are formed: — Sx= Ad, S2= ZIr and S3= (rd)12
AO. Here the angle displacement is multiplied by the equilibrium bond lengths
in order to keep the dimensions of the mean-square amplitude quantities
referring to the angle bending the same as those of the bonded atom pairs. On
the basis ofthe symmetry coordinates, the derived Gmatrix elements related to
the kinetic energy under the symmetry species A" are given as follows:
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Gn — Ms + Mo»

A12 = A21 == MS COSO,
Ga = G3l= —Ms sin0,
= 2lis»

CB= G&2= —(r/la) Ms Sin0,
GB= Ms {2+ (r/d)2— 2 (r/d) cosO} + (r/d)2 uO,

where ns and /to are the reciprocal masses of the atom S and O, respectively.
The fundamental frequencies used forthe presentinvestigation are, accord-

ing to Mescnhi and myers [3], as follows: vx= 1165 cm-1, r2= 679
cm“land r3= 387 cm“l The structural data were also taken from microwave
studies [3]. From the secular equation |[EG"1—EA |= 0 postulated by

cyvin [5], the secular equations giving the normal frequencies in terms of the
mean-square amplitude quantities were constructed at the room tempe-
rature with help of the E and G matrices and the vibrational and structural
data [3]. The G matrix elements were calculated, the inverse of those elements
derived and introduced into the secular equations. The symmetrized mean-
square amplitude matrices 27u, E2 A33 E12 E13 and Ert are directly related to
the mean-square amplitude quantities Ob, or, 0©, 0>d, a*e and or@ respectively.
Since there are three equations with six symmetrized mean-square amplitude
matrices, it is not possible to solve them uniquely unless the fundamental
frequencies of the possible isotopic species are available. Hence all the off-dia-
gonal elements were neglected for the sake of brevity and convenience and only
the diagonal elements alone were evaluated. The evaluated values ofthe mean-
square amplitude quantities in A2at the room temperature are given as fol-
lows: or = 0,0023619, Od = 0,0019272 and e®= 0,0098465. The quantity
due to the bending of the molecule is very much greater than those of the
bonded atom pairs. The situation is reversed in the cases of corresponding
force constants. The calculated values of the mean amplitudes of vibration in
A are given as follows: 0,0486 for the S—S bond and 0,0439 for the S—S
bond. These values would be very useful for the interpretation of the electron
diffraction studies when undertaken for this molecule.

Thermodynamic functions

The statistical thermodynamic functions such as heat content, free
energy, entropy and heat capacity of disulphur monoxide were calculated
using the vibrational and structural data [3] for the temperature range 100—
6000° K. A rigid rotator, harmonic oscillator model was assumed and all the
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Table 1

Heat content, free energy, entropy and heat capacity of disulphur monoxide for the ideal gaseous
state at one atmospheric pressure*

T(°K) H. - e0)t -(Fa- ET s° cP°
100 7,990 45,869 53,859 8,196
150 8,150 49,134 57,284 8,780
200 8,387 51,510 59,897 9,421
273,16 8,783 54,184 62,967 10,284
298,16 8,919 54,957 63,876 10,543
300 8,927 55,011 63,938 10,556
400 9,452 57,657 67,109 11,421
500 9,914 59,820 69,734 12,043
600 10,302 61,654 71,956 12,474
700 10,633 63,261 73,894 12,783
800 10,920 64,704 75,624 13,010
900 11,165 66,013 77,178 13,177
1000 11,363 67,183 78,546 13,297
1100 11,547 68,277 79,824 13,397
1200 11,711 69,319 81,030 13,473
1300 11,844 70,239 82,083 13,532
1400 11,962 71,109 83,071 13,580
1500 12,077 71,961 84,038 13,621
1600 12,171 72,727 84,898 13,654
1700 12,261 73,472 85,733 13,682
1800 12,344 74,188 86,532 13,707
1900 12,422 74,885 87,307 13,728
2000 12,476 75,471 87,947 13,742
2200 12,604 76,724 89,328 13,772
2400 12,693 77,785 90,478 13,792
2600 12,784 78,831 91,615 13,810
2800 12,851 79,735 92,586 13,822
3000 12,910 80,575 93,485 13,833
3200 12,979 81,506 94,485 13,843
3400 13,031 82,303 95,334 13,850
3600 13,066 82,944 96,010 13,855
3800 13,110 83,662 96,772 13,861
4000 13,545 84,411 97,956 13,866
4200 13,190 85,089 98,279 13,870
4400 13,217 85,621 98,838 13,872
4600 13,253 86,295 99,548 13,877
4800 13,271 86,776 100,038 13,878
5000 13,289 87,303 100,592 13,880
5200 13,316 87,790 101,106 13,883
5400 13,344 88,440 101,784 13,884
5600 13,362 88,888 102,250 13,886
5800 13,371 89,235 102,606 13,887
6000 13,399 89,865 103,264 13,889

* T is the temperature in degrees Kelvin; the other quantities are in cal. deg 1mole 1
and EOis the energy of one mole of perfect gas at absolute zero temperature.
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quantities were calculated for a gas in the thermodynamic standard gaseous
state of unit fugacity (one atmosphere). The standard formulae and tables
of functions for the harmonic oscillator contributions given by Pitzer [22]
were used. The principal moments of inertia were calculated from microwave
data [3] and their values are given as follows:

laa = 13,7811 AMU A2 (22,8922 X 10-40 g cm?2),
Ibb= 98,5735 AMU A2 (163,7434 X 10-40 g cm2),

lac = 112,3546 AMU A2 (186,6356 X 10-40 g cm2).

Assumed in the calculations were a symmetry number of 1, singlet ground
electronic state and chemical atomic weights. Neglected in the calculations
were the contributions due to the centrifugal distortion, isotopic mixing and
nuclear spins. The calculated values of the thermodynamic functions in cal.
deg“1, mole-1 for disulphur monoxide are given in Table 1. No calorimetric
data are available in the literature to make interpretation and comparison with
the results of the present investigation.
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3NEKTPOHHAA KOHO®UIYPALMSA, MOMIEKY/IAPHASA MONAPVU3YEMOCTb,
CPEAHVE AMMIUTYAbl BUBPALIMOHHbIX N TEPMOANHAMWYECKMX
DYHKUUA AUCYNbONLHON OLHOOKMCHK

r. HAFTAPASAH
Pesome

[aeTcs 3/eKTPOHHAs KOHMUrypauus Ans OCHOBHOMO COCTOSIHWSI AMCYNb(WAHON 0aHO-
OKUCK, MMeloLLIEli HECUMMETPUYHYIO CTPYKTYPY C CUMMETPUYHOM OCHOBHOW rpynnoit C5. Mo-
NeKynsapHas nonsapusyemMocTb onpeaensieTca  MeToaoM JIUNNUHKOTTa—CTaTMeHa, WCMosb-
3yIOLMM MOfeNb AeNbTa-PYHKLMM XMMUYECKOi cBA3W. CpegHue amnnvTydbl BuGpauuv npu
KOMHaTHOl TemnepaType BbluMcisoTcs MeTogoM CaliBUHA, WCMOMb3YIOWMUM CUMMETPUUHbIE
KoopauHaTbl. MonsipHble TepmoguMHaMmuyeckme (GYHKLMM B WHTepBane Temnepatyp 100—
6000 K° onpegenstoTca Ha 6ase Mofefeit )ecTKOro potatopa, rapMOHUYECKOro ocLMNNsSTopa.
KOpoTKo 06bSACHATCA  pesy/bTaThbl.
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OPTICAL DIAGRAMS FOR ELECTROSTATIC LENSES
APPLIED IN HIGH VOLTAGE ACCELERATORS

By
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(Presented by A. Szalay. — Received 17. VIII. 1965)

Optical data for two similar electrode configurations generally used as electrostatic
lenses in high current cascade generators are presented in the form of P—Q diagrams and
cardinal characteristic obtained by the application of the cans’ method.

1. Introduction

Several theoretical works can be found in the literature devoted to the
ion-optical description of acceleration tubes with a non-uniform field [1] [2]
[3] generally used in open-air high voltage accelerators. Although results
obtained in this way are very important in the general solution of this question,
simple methods using optical diagrams have great utility and are very fre-
quently applied in practical construction work. Graphs summarizing the ion-
optical parameters for a number of simple electrode configurations partly used
as gaps in acceleration tubes are presented in a book by K. R. spangenberg
[4] . The possibilities of their application, however, are limited to a few cases of
simple configurations by the fact that effects connected with the presence of
secondary electrons in the tube necessitate the application of more complicated
systems of electrodes.

In the present article graphs, similar to those of spangenberg, Obtained
by the application of Gans’ method [5] [6], are given for two different cases of
electrode gaps with cylindrical lens shields, which are generally used in cascade
generators of high ion current [7].

2. Electrode configurations and potential distributions

The shape and relative dimensions of the two different gaps treated are
defined in Figs, la and Ib. The cylindrical lens shield electrodes are used to
prevent the gap from viewing the insulator walls of the acceleration tube. In
the case of Fig. la the tube sections are closed with apertures preventing
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secondary electrons from crossing more than one gap along their trajectory
[7]. In the case of toroidal closure as shown in Fig. Ib similar apertures can only
be placed inside the tube at a distance from the gap in order to minimize their
influence on the potential distribution within the gap.

As a first step for the determination of the optical characteristics, the
potential distribution and the axial potential curve were measured in an
electrolytic trough for the cases shown in Figs, la and Ib. The strong effect of

the shield on the potential distribution is clearly demonstrated in Fig. 2 for the
case of toroidal closures. The equipotential line corresponding to the half value
of the potential difference on the lens is moved towards the tube entering the
shield (left in the Figure) in comparison with its position in the field of a sym-
metrical two-tube immersion lens. Consequently, a stronger converging and a
weaker diverging effect will be obtained (if accelerating the beam from left to
right), i. e. the presence of the shield results in shortening the focal distances.

For calculation an analytical expression of the axial potential curve is
required. In Fig. 3 the measured curves Va(Z) and Vb{Z) i. e. the axial potential
curves for the cases of Figs, la and Ib, respectively, are compared with F 0(Z),
i. e. with that for the symmetrical two-tube immersion lens. As follows from the
evaluation of the measurements, Va(Z) and VIZ) can be expressed by means
of appropriate transformations of the formula [8]

(1)

where

b= D 0,73+ 0,53
D)

D = the tube diameter,
S

= the width of the gap.
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Fig. 3

Vx and V2 are the voltages on the first and second electrodes, respectively.
In this way, we obtained the following expressions for our cases with S = D:

Va(z)= VOO (2)
with
Z V Z \2
C 0720 0,296 0,75 29
R K I + 2'330 R
and
z
0,75 exp[ ( It + 0,075 /0,537 fOI’—K < -0,075,
Vb(Z) = VQZ) + 3)
z
0,75 exp — R + 0,075 /1,68 for—R-> - 0,075.

The transformation (2') and the second term of Equation (3) are shown in Figs.
4a and 4b, respectively, together with the corresponding data from the mea-
surements. In Fig. 4b both linear and Gaussian scales [9] are used. The validity
of the expressions (2), (2") and (3) is verified by the excellent fit ofthe curves to
the experimental points.

3. Procedure

The method used in the present calculations is based upon the approxi-
mate integration of the paraxial equation for systems of axial symmetry

d2r \ \ dr A

r
dz2 2V dz 4V

=0 4)
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by replacing the V(Z) axial distribution of the potential by a broken line as
proposed by Gans. A description of the method can be found in various
articles and books on electron optics (see for example [5] [6] [10]).

By the application of this method, the r = r(Z) trajectory and its
r' = r'[Z) slope were computed under different initial conditions. As a result,
the associated object and image distances (P and Q, respectively, measured in
the units of tube diameter from the reference plane of the lens) and the corres-
ponding angular magnifications (m) were obtained for the different values of
the voltage ratio (V2Vx).

The cardinal elements and lateral magnifications were deduced from the
following expressions using the above data

M M ]fV(Q) = 1 5
yv(P) ©
_ Pi—P i Qi-Q*
fi = | A = Mo o (6a, 6b)
XK ih
q2
Vf, - P, M1 M 2
Fo= 0 K= Ml (7a,7b)
M2~ M 1 1
M2 M1

where F, and ft denote focal distances measured from the lens refe-
rence plane and from the i-th principal plane, respectively,

i= 1 and i = 2 denote elements for the object side and image side,
respectively, M denotes the lateral magnification,

P],Qj and Mj (j = 1,2) indicate values of P, Q and M for two differ-
ent values of P at a given voltage ratio, respectively and

a sign convention denoting distances measured towards the object
with negative, those in opposite direction with positive sign is used.

4. Results

The optical characteristics of both lenses defined in Figs, la and Ib are
presented in the form of P—Q curves showing the associated object and image
distances for given values of the voltage ratio and the curves of constant lateral
magnification in Figs. 5a and 5b. Similarly, Figs. 6a and 6b show the plot of the
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position of principal planes and focal points as functions of the voltage ratio

(cardinal characteristics).
For the sake of comparison, the trajectories computed according to the
procedure described in 3. (curve a) and that given by the graphical method of

Fig. 5a

Hepp [11] (curve b) are presented in Fig. 7. The focal points, principal planes
and lens reference plane are also indicated together with the simple constiuction
of the image using the cardinal elements. It can be seen that the graphical
method results in a fairly good approximation of the trajectory obtained by
making use of the more accurate numerical method.
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ONTUNYECKWME OVATPAMMBDBI ANTA SNEKTPOCTATUYECKMNX NTNHS,
MNCIMONb3OBAHHbBIX B YCKOPUTE/IAX BbICOKOIo HAMPAXEHUA

3. KONTAW w W. UEFAEAN
Pesome
[alTcs onTuYecKue faHHble ANs ABYX NOA06HbIX 3/IEKTPOAHBIX KOHDUIYpPaLWiA, NCnonb-
0BaHHbIX 00bIYHO B Ka4yeCcTBe 3/1eKTPOCTATMUYECKMX IMH3 B KACKafHbIX FeHepaTopax CU/IbHOIOo

TOoKa, B (popMe P—Q AvarpaMm U XapakKTepUCTUK [NaBHbIX M/I0CKOCTEN, MOMyYeHHbIe
nprvmeHeHneM meToda IaHca.
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Analytical formulas based on investigation concerning the influence of temperature
on electronic spectra of different luminescent systems are given to describe the change of the
shape of spectra due to temperature. It is shown that a simple relation exists between the
constants in the formulas and the temperature. The experimental values for the systems examin-
ed are in very good agreement with those calculated from the formulas. The changes in the
spectra are interpreted by the supposition that the influence of temperature on the distribution
of vibrational energy is different for the ground state and the excited state.

1. In studying the laws of luminescent radiation it proves useful to
examine the temperature dependence of the parameters of luminescence, e. g.
of absorption and emission spectra. Earlier investigations, performed mainly in
the temperature range 7°K to 300°K, showed changes in the structure of
spectra as well as in the yield of absorption and emission with changing tempe-
rature. The interpretation of experimental results cannot yet be considered as
satisfactory. Several authors (e. g. [1]—[3]) derived formulas on the basis of
general physical laws, in an attempt to describe the shape of spectra and
their change with temperature, using simplified models instead of luminescent
centra. These formulas could not piovide satisfactory solutions of the problem,
either on account ofthe complexity of the relations or because of the simplifying
suppositions used in deriving them.

An empirical approach to the solution of the problem was given by
Tarasova [4], who proved by many experiments that the maximal values of
the absorption coefficient kT and of the emission spectrum fm (more exactly
that of the spectral yield) for a given temperature T can be described with the
formulas

K
— = const [1—" exp (—AEJKT)] 1)
k To

and
~~ = const [1—d2 exp (—AEJKT)] , (2)
Jto

* Delivered at the 8th European Congress on Molecular Spectroscopy in Copenhagen
1965.
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where krOand /y 0 are corresponding values for temperature TO. (d2, d2, AEt
and AE2 are empirical constants.) Tarasova Showed that the values of AEX
and AE2 having the character of energies, are equal to the activation energy
for dielectric relaxation of the solvent in the cases examined. The relations
(1) and (2) give an adequate description of the temperature dependence of
KT and /y, as was ascertained by our own investigations. On the other hand,
they are not suitable for describing the changes in the shape of spectra due to
temperature.

Dombi et al. [5], taking the general equations describing the connection
between the absorption spectra k(y) and the luminescence spectra fq (v) as
a starting point, obtained the relations

k(v) = Axv exp(bv) sech[al(v0l—V)] (3)
and
fqv) = A2v3exp (—bv) sech [a2(r02—vV)], 4)

which give a satisfactory agreement with experimental results for many cases
with empirically determined values of axand a2 (Axand A2in the formulas are
normalizing factors, vOland v are values near vn, the pure electron transition
frequency, and b = h/2kT*, where T* is the effective temperature or vibration
temperature of the molecule. The latter can be calculated on the basis of the
spectra with the method given in [6]).

According to our experimental results, relations (3) and (4) proved to be
adequate for describing the changes in the shape of spectra caused by tempera-
ture if the dependence of axand a2 on temperature could be determined. One
of our most important results was to give this relation.

2. From relations (1) and (2) giving the intensity of spectra, as well as
(3) and (4) describing the changes of their shape with temperature, it can be
concluded that the absorption and emission spectra of a luminescent system at
temperature T can be given in the following form:

k(v, T) 1—dlexp (—AEJKT) vexp (bv) sech [al(r0L — v)]

.. ~0d
k (vma\i TO) 1 —dxexp (—AEJKTO max jrexp (bv) sech [ol(v0lL—r)]|

and

fqg(v, T) _ 1—d2exp (—AEJKT) Vaexp (— bv) sech [a2(r®2 — v)]
fq(viwax* T o) 1~ <2exP(~ AE2/kTo) max{r3exp(— bv) sech [02(r02-i)]} ’

where k(vmax5 T0) and/9(rmaxST () denote the values belonging to the frequen-
cies Vmax of the spectra measured at temperature TO.
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These relations are suitable for calculating the spectra, because the
constants can be determined from relatively few experimental data.

3. In the course of our experiments the spectra of six luminescent
systems listed in Table | were measured in the temperature range 262 to 338°K.
For measuring the absorption spectra a grating spectrophotometer Optica

Table 1
absorption spectra emission spectra
Fluorescent material T b-10%
No (concentration) Solvent CK) . 10¢ oM -i0-» a2« 10 U e10-»
(mole/1) ® -
© («-) ¢ *-)
. 262 9,099 12,006 5915 11,283 5,875
| F'l:frfsicgl_n NaOH (1%)
C2HSOH 338 6,478 9,625 5,882 8,059 5,850
. 262 7,336 10,822 5,660 10,711 5,625
2 Eosine NaOH (5+10-3 m/1)
(5 - 10-9 C2HSOH 338 6,004 9,256 5,639 8,612 5,620
. 262 6,678 10,247 5,680 9,441 5,650
3 Erythrosine NaOH (5- 10~3m/1)
O3 C2H50H

338 5,229 8,405 5,661 7,599 5,640

262 6,792 9947 5360 10500 5390
4 Rose Bengale  NaOH (5.10~3m/1)

5+10'5
( ) C2HIOH 338 5787 8934 5350 8882 5370

: 262 6,472 6320 7944 6,190
5 Aurophosphine g (3 w10-3m/) 8,750

1.10
( 9 C.HSOH 33 5000 7,000 6320 6150 6,190

Flavophosphine HC1 (3 » 10-3m/1) 262 7,160 10,000 6,260 9,000 6,190
6 (5 « 10“5) (C2H50H)
glycerol (10%) 338 6,588 9,000 6,260 8,400 6,190

Milano CF—4 was used with a supplementary device for regulation oftempera-
ture, suitable for measuring layer thicknesses up to 20 cm [7]. In the case of
luminescence spectra the solution was placed in a box with double walls serving
to regulate the temperature. The windows of this box were placed in front of
the entrance slit of the spectrophotometer. The layer thickness of the solution
was chosen according to the method given in [8] in order to keep the influence
of secondary luminescence within the limits of experimental error. Reabsorp-
tion in the system was taken into accountin the usual way [9]. The temperature
was held constant within =h1°K. A high pressure Xenon-lamp (Osram XBO
500) and a Hg-lamp (Osram HBO 500) served as light source. The nearly
monochromatic exciting beam was obtained with a double monochromator or
a metal interference filter SIF from the light of the lamps.
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4. The results show that'the changes in the spectra due to temperature
are of identical character for all systems: The height of absorption spectra
decreases with increasing temperature, but the shape of the spectra is also
subject to changes at the same time. The greatest change in height can be
observed in the neighbourhood of the maxima, while the changes in the short
wave region are considerably less. In the long wave region the decrease of the
absorption coefficients is not only less than that found near the maxima, but
even an increase can be found in some cases. In the emission spectra a shift
towards longer wavelengths can be observed with increasing temperature,
evidently due to an increase in the relative transition frequency of emission
belonging to longer wave-lengths.

Figs. 1 and 2 show the measured absorption and emission spectra of
fluorescein and aurophosphine, respectively. (The units are chosen in such
a way as to give spectra of the same height for all solutions). It can be seen from
the figures that an increase of temperature resulted in a broadening of the
spectra. Aurophosphine exhibits a somewhat different behaviour inso far as
no significant broadening in the absorption spectra occurs even in the anti-
Stokes region. It should be noted that for this dyestuff the quantum yield
function shows no significant temperature dependence, either [10].

According to the present results and our earlier investigations [10] con-
cerning the dependence of quantum yield on the wave-length of exciting light,
the similar temperature dependence of quantum yield and of absoprtion
spectrum can be ascribed to the fact that the population in higher vibrational
levels of the ground state is altered by changes of temperature. The relatively
increasing frequency of transitions with low energy in the emission spectra
indicates that the changes in the vibrational configurations of molecules
produced by the changing temperature are different for ground state and
excited state. This possibility as well as the influence of vibrational energy
distribution on the shape of spectra has been referred to by several authors
[11]—[13] in earlier papers. The constants in relations (5) and (6) were deter-
mined from experimental absorption and emission spectra with the methods
given in [4] and [5].

Values of the activation energy E, in relation (5) were found to be
nearly equal for all systems examined and were calculated to AE; ~~ 2 - 10713
erg/particle, in good accordance with the dielectric relaxation time of ethanol
which was used as a solvent. The divergence between the calculated values is
less than -+ 39%,. It is to be noted that these values of AFE, are based on tempe-
rature dependence of the maxima of spectra.

The value of the “mirror frequency” v in the formulas was determined in
the usual way from the intersection of the spectra. Calculation from the
extreme values of function ¢(») given in [5] leads practically to the same
results. Our calculations show that relation (5) is fulfilled in a very good
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approximation using these values of v0. However, the emission spectra fg(v,T)
calculated with the same values on the basis of formula (6) show significant
divergences from the measured values. For most of the systems examined
(except Bengali Red) the values of frequency had to he taken with V2 < Vv
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(=vO0) (see columns 7. and 9. of Table I) to obtain a good accordance with the

experimental results.
In the Table the luminescent dyestuffs, their concentrations, and the
composition of the solvent as well as the values of constants playing a role in

Fig. 3

relations (5) and (6) are given only for two temperatures, though measurements
were also made at T = 298°K and T — 318°K.

One of the possible explanations ofthe fact thatincalculating the emission
spectra the frequency v had to be taken less than vQlis to be found in the
supposition that the energy system of complex luminescent molecules can be
described with the three level term-scheme suggested by Neporent [14]. It can
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be easily understood on the basis of this scheme that greater pure electronic
transition frequencies vOwill belong to absorption processes than those belonging

to emission acts.
Factors ax and a2 were determined from experimental data with the
method given in [5]. One of the main results of our investigations was to

Fig. 4

give the temperature dependence of the factors ax and a2 which was not
known earlier. Our results show that axand a2are inversely proportional to the
temperature, i. e. ax= CJT* and a2= Cc3T* where cx and c2 are constants
characteristic of the luminescent system.

Emission and absorption spectra for temperatures T = 262°K and
T = 338°K are shown in Figs. 3 and 4. The spectra calculated with the values
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Fig. 5

a, band vOgiven in Table | are indicated by solid lines, while measured spectra
are indicated by small circles. The spectra are plotted in arbitrary units. As can
be seen from the figures the values calculated with the formulas are in very
good accordance with the experimental data.

The values of k(v), both measured and calculated with formula (5) using
the activation energy AEv are plotted in Fig. 5 in order to show the tempera-

Acta Physica Academiae Scientiarum Hungar.icae 20, 1966



INFLUENCE OF TEMPERATURE ON ELECTRONIC SPECTRA 359

tire dependence of the real conditions of intensity. It can be seen that the
changes both in the shape of the spectra and in their intensity, due to the in-
fluence of temperature are very well described by relation (5).

The authors are indebted to Prof. Dr. A. BudO, Member ofthe Hungarian
Academy of Sciences, towhomthey offer their sincere thanks for most valuable
discussions and advice during this work.
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BIMAHMNE TEMIEPATYPbl HA 3NEKTPOHHbLIE CMNEKTPbl PACTBOPOB
OMPAHNYECKUX KPACUTENEN

E. XEBEW U n N. KO3IMA
Pesome

Ha oCHOBaHUM WCCNEAOBaHWIA 0 BAWUSIHUM TeMMepaTypbl Ha 3NeKTPOHHbIE CMeKTpbl pas-
HbIX IIOMUHECLIPYIOLNX CUCTEM BbIBOAATCS aHAUTUUYECKMe (OPMYbl, AatoLye BO3MOXXHOCTb
ONS OMUCaHWS M3MEHEHWs BMAA CMEKTPOB B 3aBMCUMOCTM OT TemmnepaTypbl. [okasbiBaeTcs,
YTO CyLLECTBYET MPOCTOE COOTHOLLEHME MEXAY MOCTOSHHLIMKU B (DOPMynax W TemrepaTypoii.
SKCNepUMeHTaNIbHbIE  pe3yNbTaTbl ANSl MCC/eN0BaHHbIX CUCTEM Y/IOBNETBOPUTENLHO COrna-
CYIOTCA C AAHHbLIMU, BbIYMC/IEHHLIMA Ha OCHOBE MOJYYEHHbIX (OPMY/. W3meHeHUs B crieKTpe
0GBACHAIOTCS C MPeANonoXeHeM, YTO BAUSHWE TeMnepaTypbl Ha pacnpedeneHue BUGPALOH-
HOI 3HEPrUM PasIMYHO AN OCHOBHOMO U NS BO36YXKAEHHOr0 COCTOSHUA.
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ELECTRON GROUPS IN THE THOMAS-FERMI ATOM
ACCORDING TO THE RADIAL QUANTUM NUMBER

By

A. KONYA

RESEARCH GROUP FOR THEORETICAL PHYSICS, HUNGARIAN ACADEMY OF SCIENCES,
BUDAPEST

(Received 1. XI. 1965)

A method is given for the decomposition of the electron cloud in the Thomas—Fermi
atom into electron groups which correspond to the groups of electrons with equal radial quant-
um numbers in the wave mechanical atom. The number of electrons with given values of the
radial quantum number is calculated numerically as function of the atomic number. The results
agree quite well with those of wave mechanics.

1. Introduction

If we want to use the Thomas-Fermi (TF) statistical theory of atoms in
the interpretation of atomic properties depending on the shell structure, one
must introduce the concept of quantum numbers in this theory as it was
initiated by Ai1fred [1] and by Gombas [2] or to seek for continuous quanti-
ties corresponding to these numbers in the TF model.

The problem of the angular quantum number was solved by Fermi in the
following manner [3]. In the statistical theory the electrons g(r)dv in a volume
element dv of the atom are treated as totally free, their states being fully
characterized by the momentum vector p with radial component pr and azi-
muthal component p+.

The maximal value of p is

P(r) = (32213 h PI/3(r),

the radius of the Fermi sphere in the momentum space. The energy E of an
electron with the momentum p is

and the absolute value of the angular momentum is

M= Pt
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(m is the electronic mass, eOthe elementary charge, F(r) the potential resulting
from the nucleus and the electron cloud).

The continuous quantity k* corresponding to the azimuthal quantum
number k of the quantum theory is, according to Fermi, given by

M

n

k> = (1)

The wave mechanical states with angular quantum number lare describ-
ed by the states in the TF model with the values k* obtained from the rela-
tion [4, 5]

K* = | + 1/2, 1=0, 1, 2, ... 2)

Starting from these statements Fermi has defined the electrons with
I"k* < 1+ 1 ?3)

as the electrons with angular quantum number I'in the TF atom. The prescrip-
tion (3) to form the groups of electrons with equal values | was investigated by
several authors [6, 7, 8] and was found to be the most suitable one for the sta-
tistical treatment.

The continuous quantity n * corresponding to the radial quantum number
nr of the quantum theory was defined by KONYA on the basis of the Bohr-
Sommerfeld quantization rule [9]. After this definition the quantity

M2 12
A 2me0V(r) 2mE dr (4)
n

can be assigned to the election with the energy E and angular momentum M.
Here rxand r2are the lower and upper bounds of the range where the integrand
is real.

The states in the TF atom for which
n* = nr+ 1/2, nr= 0, 1, 2, ... (5)
correspond to the wave mechanical states with the radial quantum number
nrin close analogy to the relation (2).

In earlier papers the author has defined the quantity

n* = n* + k* (6)
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corresponding to the principal quantum, number n of wave mechanics and has
interpreted some properties of the periodic system ofthe elements by investiga-
ting the possible values of n* [9, 10]. In the present work we will investigate
the quantity n* defined in (4), on the basis of which we deduce a method for
decomposing the total electron density of the TF atom into partial densities of
electrons with equal values nr (Section 2). The numerical computations were
performed for several values of the atomic number Z. From the partial densi-
ties we easily obtain the number of electrons with given values nr and the
dependence of these numbers on the atomic number (Section 3).

2. Decomposition of the total electron density of the TF atom according
to the radial quantum number

In the following we deal only with the case of free neutral TF atom.
Introducing the Fermi function y(x) the expression (4) may be written as

3 W3

4n2 )

This value belongs to all the electrons in the volume dv at r = fxx, which
have the momentum components

1/2
gy PO .
(6n)V3 a0
PI= ot 738 0 (9)
(6n:)V3 a0 X

when the momentum value p = (pE-j- p\)AZis lying inside the Fermi sphere.
The notations

PKoy=j xPOK)—Bx2—«2 e ,

K*

3n W3
Z13

and
(6n)2* a0 E

8Z43 e2

Acta Physica Academiae Scientiarum Hungaricae 20, 1966



364 A. KONYA

are the same as in [9], where numerical tables for the function ®(a, B) are also
given. For the meaning of the notation see [11].

As follows from (2) and (5), which express the relation between the wave
mechanical and statistical states, one must choose the same intervals for n*
for defining the nrgroups ofthe TF atom, as Fermi has done for k* in the case
of the | groups. Therefore we define the electrons of the TF atom with

»r n* <; nr+ 1, nr— 0, 1, 2,... (10)

as those corresponding to the electrons with the radial quantum number nrin
the wave mechanical atom.

x-0,6 x-1,2 x-2,8

Fig. 1. Decomposition of the volume of the Fermi sphere into the partial volumes wrir(r)
occupied by the electrons of the nr groups in the case of the TF model for the Ag atom

We determine the density of the electrons in the nr groups in the follo-
wing way. In a volume dv at the arbitrary distance r = fix all electrons are
characterized by some value n* according to (7). With the help of the Tables
for @ (a, B) given in [9] one may find those values of the parameters a and B for
whichn* = 0,1,2, ... Bythe equations (8)and (9) we get further the momen-
tum vectors having integer values of n*. These momentum vectors define a
series of surfaces inside the Fermi Sphere. To a given integer value of n*
there belongs a surface of this kind.

The partial volume TIT (r) between the neighbouring surfaces n* = nr
and n* — nr -f- 1 is occupied by the electrons of the TF atom which belong,
according to (10), to the group with quantum number nr. Accordingly the den-
sity of this group at the place r = fix is

- (r)
enr(r) = An3A3 )
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Examples for the decomposition of the Fermi sphere into the partial
volumes con (r) are shown in Fig. 1 for the Ag atom (Z = 47). The boundary
surfaces possess rotational symmetry around the pr-axis and reflection sym-
metry with the symmetry plane perpendicular to this axis through the origin
of the momentum space. After having computed numerically the components

Fig. 2. The total radial density and the partial radial densities of the electron groups with
nr= 0, 1, 2 and 3 in the TF model of the Ag atom

prand pj of the points lying on the boundary surfaces, one can calculate the
partial volumes TIT (r) by numerical integration.

The partial densities obtained with this method are shown for the case
of the Ag atom in Figs. 2, 3 and 4. In Fig. 2 one may see how the total radial
density 4trrp(r) of the TF atom is decomposed into the partial radial den-
sities 4nr2an (r).

In most cases the TF model has also a group with greater radial quantum
number than those occurring in the wave mechanical atom. In the case of the
Ag atom for example the TF model has electrons with nr = 4 too (the partial
density of this group is small to be shown in Fig. 2). The reason for this is, that
the maximal value of n* in the TF model is greater than the maximal radial
quantum number in the wave mechanical atoms.

In Figs. 3 and 4 the partial radial densities 4aT12n/r) are compared with
the results obtained by Gaspar for the wave mechanical Ag atom [12]. The
partial densities of the TF atom approach to the curves of the wave mechanical
atom in the same manner as it is the case for the total densities. The maxima of
the wave mechanical curves are smoothed out by the statistical curves. One
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Fig. 3. The partial radial densities for 'T—=% and 1 ip the TF model and in the wave mecha
nical shell model of the Ag atom. — TF model,---------m- wave mechanical atom

Fig. 4. The partial radial densities for nr = 2 and 3in the TF model and in the wave mechanical
shell model of the Ag atom. TF model, — — — — wave mechanical atom
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obtains from the TF model in average a good description of the general
behaviour of the partial densities. The regions with maximal densities are
nearly the same.

In comparing these curves one must take into account — as we shall sec
it in detail in the next section — that the wave mechanical and the statistical
curves belonging to the same values of nrare not normalized to the same elec-
tron number.

3. The number of electrons with given values of nr in the
periodic system of the elements

Having obtained the partial radial densities (11) one can get at once the
number of electrons with radial quantum number nrin the TF atom by nume-
rical integration

Nnr= 3 4ar2Qr(r)dr . (12)

0

The numerical computations were made for the atoms Ne, Ag and Hg
(Z = 10,47 and 80, respectively). The results together with the data taken from
the periodic system of the elements are shown in Figs. 5 and 6. As can be seen,
the curves for the TF atom describe very well the general behaviour of the
wave mechanical curves with abrupt changes.

Beginning from Z ~ 75the TF model has also a group with nr= 6. The
number of the few electrons in this group may be computed numerically with
relatively great error, thus we have not shown it in Fig. 5.

In some cases there are relatively very great differences between the
values N,,, taken from the TF model and from the periodic system. This is
caused by the following fact. The successive filling of the electronic states with
increasing atomic number Z occurs in the wave mechanical atom in the way
that in some intervals of Z there is only one nrgroup in which the number of
electrons increases, in all other groups the Nn,s remain constants. This is
contrary to the behaviour of the TF model, where all values Nn increase con-
tinuously with increasing atomic number Z.

It follows from the basic conceptions of the TF theory that it is unable to
describe the individual shell properties ofthe atoms but it gives a description of
the average behaviour. This is the case according to Figs. 5 and 6 also for the
change of the values Nnrin the periodic system.
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Fig. 5. The number of electrons in the groups with nr — 0,2,4 and 6 as functions of the atomic
number according to the TF model and to the wave mechanical shell model

Fig. 6. The number of electrons in the groups with nr= 1, 3 and 5 as functions of the atomic
number according to the TF model and to the wave mechanical shell model

The approximation of the TF theory to the wave mechanical atom in
determining the values Nn isthe same as itisforthe number of electrons in the
| groups determined earlier by Fermi [3], Theiss [7] and Oliphant [8].

Thanks are due to Mrs. J. Huszar and Miss E. Szabé for carrying out the
numerical calculations and for drawing the figures.
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QNNEKTPOHHBLIE TPYIMMNbl MO PAOMAIBHOMY KBAHTOBOMY 4YWNCNY B
ATOME TOMACA-®EPMN

A. KOHSA

Pesome

B paboTe u3naraeTcs MeTod ANA pasaeneHusl 3NeKTPOHHOro o6/1aka B atome Tomaca-

depMy Ha 3M1eKTPOHHbIE TPYNMbI, COAepPXalline 3M1eKTPOHbI C 0VHAKOBbLIM paguasibHbIM KBaH
TOBbIM UMC/IOM KBAHTOBOMEXaHMYECKOro atoma. YucrieHHbIM METOAOM OrMpefesnsieTcss uuc/o
3M1EKTPOHOB C JaHHbIM 3HAYEHMEM PaAVaTbHON0 KBaHTOBOIO YMcia Kak (yHKUMs OT NopsiaKo-
BOr0 HoMepa. Pesy/nbTaTbl YAOBNETBOPUTE/ILHO COMAcytOTCA C COOTBETCTBYHOLMMU AaHHbIMM
KBaHTOBON MexXaHUKM.
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DEPARTMENT OP THEORETICAL PHYSICS, INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE,
JAPAVPTIR, CALCUTTA—32, INDIA

(Received 22. VI. 1965)

Let two functions u(t) and v(t) be the Hilbert transforms of each other
so that

- _ p dt' =- — P (~ (i} dt".
u(t) o J[t'—t v(®) - J(t' (i} (1)

Further let g and p be defined by

2
dt dt )

We have shown in a recent work [1] that gand p satisfy certain relations which
are similar to the partial differential equations of Hamilton’s canonical form

dq 24 dp _  BH 1%,
d dp = dt dg

where H is a suitable function*, not necessarily unique, of g and p. We shall
look at this result as a sort of mapping of (u, v) on to a set of families of trajec-
tories defined by the partial differential equations (3). Further this mapping
seems interesting since there is a large class of physical quantities (called the
causal transforms [2] in the dispersion theory), whose real and imaginary parts

* The function is given by (9) of [1]. Any two functions q(t) and p(t) define a trajectory
that can always he represented as in (3), where H(q, p) is some function of q and p and may
be non-unique. What is new in our result is the restriction of H(q,p) to the explicit form (9) of
[1] due to the constraint (1) between u(t) and v(t). Constraint (1) is in fact a type of causality
condition in physical cases.
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are Hilbert transforms of each other. Below we consider such a quantity,
namely the complex refractive index N(w) considered as a function of the
frequency w of light*. Strictly speaking (Ch. I, [2])it is N(w) — 1 and not
N(w), which is a causal transform (we consider scattering of light by bound
electrons). We shall also go through some necessary manipulations so as to
make the families of trajectories look like the dynamical ones, for the sake of
elegance. The result is the correspondence of N(co) with a set ofone-dimensional
dynamical systems. This is possible because of the similarity of the differential
eqs. (3) with the canonical forms of the equations of motion. Let us come back
to the index N(w). Both its real and imaginary parts are pure numbers. We have
the following relations from dispersion theory (p. 3, [2]).

Re [iV(co) - 1]= — P J 1]
4)
im [Rfw) —1f= — ' pf _Ae ) L=l
n J w' —ﬂ)
Let us define w = CO[T 2t, (5)

where COis a constant and its dimension is indicated in the parentheses. The
variable t has the dimension of time so that we may call it the time variable.
Let us put N(w)—1 = N(c@)—1 = u(t) -j- iv(t),
so that Re[N(co)—1] = u(t),
and Im[iV(ft)) —1] = v(t);
and so changing the variable from wto t (4) becomes formally identical to the

relation (1). Now we define gand p having the dimension of co-ordinate (space
co-ordinate) and momentum respectively and consistent dimensionally by

ut) = CAL-iT] »(*) = C2[M -iL-iT2] « (2"

where Cxand C2have dimensions as indicated and each** = 1. We note that

*N@>) = re(c0) + ic/2ea(co), where n(@) is the index of refraction of light of frequency
o0, and ) Is the absorption co-efficient of the medium for to. The factor c/2n is introduced
to make Im N(co) dimensionless.

**This is possible by choosing suitable of units.
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u(t) and v(t) are dimensionless. Thus the relations (2') are the same as (2). So
we have an H(q, p), or a set of H(q, />)’s (given by (9) of [1]) satisfying.

dq _ dH dp _ 8H .
dz —-~ ? .= ] )
t 8p dt Q

W ith gandp as defined in (2') and t as in (5), we see that H(qg, p) has the
dimension of energy and may be called the Hamiltonian of a one-dimensional
dynamical system, with q and p as co-ordinate and momentum respectively,
and whose trajectories are determined by the canonical equations (3').

We thus associate with a refractive index N(co) a classical (one dimension-
al) dynamical system. It may also be looked at as a type of correspondence
(one to many in case H(g, p) is not unique) between a system consisting of
a photon -j- an electron bound to an atom of type A (for specification) and a
family of one-dimensional dynamical systems via the intermediation of the
complex refractive index N(w).

Similar correspondence is also possible for a quantum mechanical system.
Consider a scattering process in the system. By virtue of the principle of
causality it will have a causal transform (see Chapter VI1I, [2]), and this can be
mapped on to a (or a set of)one-dimensional dynamical system as in the preced-
ing example.

Thanks are due to Professor D. Basu, Ph. D. for kind encouragement.
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When investigating systems comprising a large number of particles
such as electrons in atom shells good results can be obtained by statistical
approximation. So, the Thomas-Fermi method [1] gives a smooth curve of
electron density in which, as opposed to the Hartree-Fock method, only the
finer curvature of electron density as well as a correct asymptotic falling-off
for r —=m0 and r —»00 cannot be found.

In the Thomas-Fermi approximation the electron density p(r) at r is
determined by the value of the potential V(r) at point t only. Recently, some
improved methods have been developed and assessed [2]—[16]. With these
methods, the influence of the whole potential form on density distribution is
taken into consideration, and density curves are obtained which show the finer
curvature also. For r —moo the density shows the exact exponential falling-off,
but for r —0, the singularity of the centrifugal potential still results in a wrong
asymptotical form. Therefore, a method has been developed which contains
completely the centrifugal potential as follows:

In [9] from the density matrix

e(t, r')y = 2 v(t)v*(t') = O(Eg-H(r)) a(t-r")
occ.

rdrp(r) = A H = + V(r) (1)
3

2 m

the density p(r) = p(t, r) in an external potential V(r) is obtained for a system
of A particles in this potential by suitable approximation for the derivations of
the potential with regard to the evaluation of the Hamiltonian, H. In the one-
dimensional case a standard density Q0(q) is obtained. This is the exact solution
for a linearly increasing potential VO(x) = a \x\ so that by a transformation

g(x) (I, 1.5) determined by the particularly interesting potential V(x) the den-
sity can be calculated as follows:

e(*) = &>[2(*)]. KX (Ea ~ V(x)). 2)
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Consider now the radial density distribution A r(r) as well as the radial density
matrix DI(r, r') for the angular momentum Z(l, 1.6) and the occupied levels
n= 01
N,
Q — Y, Wmiy) ¥Y*/(r')>
N=o
D’(r,r)y= j dQrr Q(r,cep;r', f, 99),

D'(r,r')= (2/+ 1O(En- A,)<r- r'), 4'(r)= D(r,r), (3)
drD'(r) = (21+1) (IV, + 1), 4, = reaz o Rz(z) + A (r).
2m dr2

Then, the centrifugal potential h2I(I + [1)/2mr2occurs additionally which leads
to the above mentioned errors. To correct these errors a potential Vi(r) is
sought for which the exact density A)(r) can be calculated in a closed form.

This may be practicable for the harmonic oscillator VArfAvVghr) —
= mcox22. The eigenfunctions contain Laguerre’s polynominals L

+3/ i
1 2 A+3/2 rle-JI22L(/+i/2>(/r2) X
r+ 1+ 172
h i n
4
2z+ 1 (/| m) " ?
4 z+ m)! Pr(oe

where A= mco/H, and for the radial density matrix and the radial density of the
harmonie oscillator, they lead to:

N, 2 A2

Dbs(r, 1)=(2Z +1) V e a (VY TiRe(N2LAY) LAY =
n=°TI(a+1)
n (3)

— (22+1) ZAi/Z(iV;\I+L)()C (yy'yi+nizg-(y+yoa LITAY) I TTIF) -iXI+1(y)w /)

Moc+1) ' y~-y

N,
D tse(r)= (214 1) 2AY2(LY;+ 1)1 v
- (iV,+a)!
- b LW

where x = I+ 1/2 and y = Ar2
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By means ofa transformation q = qdx(r)
r = qgosl{q) from (5), a standard density pos (q)

ql13D bsc[qdiAq)]
r 40Q i"OSC [T0sci?)];

(6)

is obtained which in approximation (2) is equal to the standard density Qo(q).
Consequently, for any potential V(r) the radial density DI(r) can be calculated
by means of two successive transformations qosc{q) and q(r)i and

JMO! i=osAfoJe(q(r))\

D{r) = "~ " Lg®Jg(n] oA s (7

qli3(r) IKAtacigirM
Fig. 1. The radial density distribution D (r) for a Coulomb potential V(r) = —ZeZr to angular
momentum 1=1, the levels n= 0 to re= 5 being occupied (a = fir/mZe2). Comparison of
approximation (7)------------ with the exact solution------------ ,approximation (/) - and

Thomas—Fermi approximation —.—.—.

isobtained in the same approximation (2), where the function Qsc(g) need not be
determined. For r —0 the density computed in this way falls off with the cor-
rect power r2+2 because with a small r the centrifugal potential forms the
main part of the potential in Ht(3), consequently qoc{r) = q(r) and, therefore,

q7slfa{n)] = r.
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It is no disadvantage that owing to these two transformations the
quantum mechanical approximation (the approximation concerning treatment
of the derivations of F(r) by the evaluation of the operators comprising the
Hamiltonian) is done twice. As the total error is of the same size the errors may

partially compensate one another. With g(r)=¢as(r), the function Dbsc(r) is ob-
tained for D (r), i. e. the exact solution.

Now_ these considerations are applied to the Coulomb potential
V(r) = —ZGZI‘ The Coulomb potential may be considered as a test for the
quality of statistical approximation because owing to its singularity relatively
large errors appear. On the other hand the Coulomb potential is one of the most
interesting potentials. The Figure shows the density distribution for 18(iVZ=5)
particles without interaction to angular momentum | = 1 in the Coulomb
potential. The Hartree solution, the Thomas-Fermi approximation and the
approximation (I, 1.5) are compared with approximation (7), Dosc(r) being the
starting point. For r — 0 the calculated density (7) has the correct falling-off,

viz. r4;it approaches the H artree Solution more closely than the other approx-
imations.

I am indebted to Prof. W. macke for helpful discussions, to Dr. b emkov
of the University of Leningrad for reference to the representation of the har-

monic oscillator density, and to Dipl.-Ing. A. scnhubert for the performance
of numerical calculations.
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The Mdéssbauer effect was studied on the 58 keV energy first excited state
of Th1® nucleus by Dézsi and Keszthelyi [1]. In this first work only the
existence of the Mdssbauer effect was stated. The aim of the present investiga-
tion was a more careful study of the effect.

The source was prepared by irradiating Gd(NO03)3 (enriched to 92% in
Gd1) in reactor, then by heating at 800°C to produce Gd40 7 policrystalline
material. The half life of Gd1®is 18 hours [2] it decays in 24% to the 58 keV
state of Thb159. The absorber was 50 mg/cm2Tb1®in Tb40 7compound. The source
and absorber were at about —190°C temperature in the same cryostat cooled
by liquid nitrogen.

They-spectrum measured by a krypton-filled proportional counter (Fig.l)
isvery complicated and the intensity of the 58 keV line is small because of
the high internal conversion (a = 10,4 + 1 [2]). The discriminator channel was
set to the 58 keV peak.

The half life ot the 58 keV state was measured by Berlovich et al [3] to
be (1,4 + 0,3). 10-10 sec, but Meiling [4] found that T/2 < 10~10sec. In any
case the line width is large and we had to reach large velocities (~10 cm/sec) in
movement. Therefore the source was attached to the moving coil of a loud-
speaker and was moved by sinusoidal voltage of different amplitudes. The
counting rate was measured as a function of the amplitude. The calibration
was made with the help of Fe57 M dssbauer effect. By such method the possible
isomer shift causes an increased line width but taking into account the large line
width this error may probably he neglected. The form of the line in the case of
a Lorentz curve of width I is

LB M

BI
1+ B1

where B isthe amplitude ofthe sinusoidal voltage. The result ofthe measurment
(corrected for background) is shown in Fig. 2. The fitting gives ' = (11,5 »
0,6)cm/sec. The maximum of the nuclear absorption is (15 £+ 1)%. R we
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Fig. 1. y-spectra measured by a krypton-filled proportional counter

Fig. 2. Result of the absorption measurement

assume that the Debye-Waller factors of the source and the absorber are
equal then f(T) =f'(T)= 0,19 ~ 0,02, the Debye-temperature 0g= (225"
A 10)°K and the line width after correcting for finite thickness of absorber is
(7,7 370,9) cm/sec. This gives the lower limit for the halflife ofthe 58 keV state

T
of Th1 as > = (37~ 0,3). 10 1isec. Atthis moment it is impossible to see if

there is an isomer shift or some splitting of line both of which cause an appar-
ent shorter life time.

We are indebted to Mr. B. Mo1nar for producing the souices.
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The power consumption of the nickel plates used as auxiliary electrodes
was determined in a Hg—A discharge, under d.c. and a.c. conditions. The
nickel plates used were radially movable, 1,0 mm thick, 7 mm wide and 12 mm
long. They were arranged paiallel to each other and to the electrode axes, and
extended into the electrode space. The electrodes of the glass-walled discharge
tube with an inner diameter of 36 mm were formed of tungsten spirals coated
with an electronemitting substance, and of wholly uniform design. The spiials
were spaced at 1090 mm. The discharge space contained argon at a pressure
of 3mm Hg, and about 50 mg of mercury. The latter ensured a vapour pressure
of 6i 05 X 10 3mm Hg during the measurements. For both the a.c. and
d.c. tests a discharge current of 430 amps was applied, and the cathode was
heated only by the discharge. The current of the auxiliary electrodes was mea-
sured with reference to the spiral ends.

The power consumption of the auxiliary electrodes extending into the
cathode space during the d. c. measurements is shown in Fig. 1. In this case
there was a constant distance of 17 mm between the auxiliary electrode | and
the spiral. There was no current variation concomitant with the change of
position or the current of the other auxiliary electrode moving on the opposite
side of the spiral. To enable the current conditions to be followed more clearly
only the curve for the auxiliarry electrode | has been plotted in Fig. 1. The
subscript/for the cases i; and i// indicates the situation when the auxiliary
electrode was tied to the spiral end nearer the cathode spot. For both auxiliary
electrodes, in the given position, the current consumption was higher in this
instance. As a matter of fact the potential of the spiral end next to the cathode
spot was lower than that of the other end. Consequently, on account of this
lower potential the auxiliary electrodes could attract a larger number of ions
and, therefore, the current consumed by them was higher. At the same time
it may be seen that for the given comparable situation, for a distance of 17 mm,
there was an appreciable difference between the currents of the two auxiliary
electrodes. According to complementary optical measurements, this was
attributable to the asymmetric arrangement of the cathode spot. In the case
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investigated here the cathode spot was arranged on the spiral surface asym-
metrically to the spiral axis, and was shifted in the direction of the auxiliary
electrode Il. Consequently a corresponding change took place in the power
consumption of the auxiliary electrodes. That is the electrode with the cathode

[mA]

N
=» 4

10 5 d
a[mm]

Fig. 1. Currents i/i and ij, respectively, consumed by the auxiliary electrode Il moving in the
cathode space of the d. c. discharge and by the non-moving auxiliary electrode I, as a function
of the distances measured from the axis of the cathode spiral. The subscript/denotes the auxili-
ary electrode connected to the spiral end next to the cathode spot, whereas the notation
without subscript stands for the auxiliary electrode having the potential of the other spiral tip

spot and its accompanying range of a high concentration of charge carriers
closer by, consumed more current, although otherwise in an identical geometri-
cal position. Furthermore, the measurements disclose that irrespective of
whether the two auxiliary electrodes were connected to the same spiral end, or
to two different ends, the sum total of the current was, in all instances, smaller
than the total of the currrents consumed by each electrode separately. For
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reasons of greater convenience in the study of the plots this relation is not
shown. However, when due consideration is given to the distribution of the
specific superficial current densities, the effect noticed here can be very easily
confirmed theoretically. From the trend of the curves it appears that on ap-
proaching the spiral, the current ofthe electrically coupled auxiliary electrodes
tended to rise rapidly, but even so the electrodes did not modify the processes
in the cathode space to any appreciable extent, as the power consumed by the
electrodes was extremely small. Consequently their influence on the cathode
drop was only slight [1]. Further results obtained in this connection [1] were
in good agreement with the relations of the distances obtained and presented
here.

Fig. 2 shows the current consumption ofthe auxiliary electrodes in a simi-
lar manner under d. c. conditions, but in this case for electrodes moving in the
anode space. From the current values obtained here itisincontiovertibly evident
that for all auxiliary electrode arrangements and connections the current
density of the auxiliary electrodes was substantially greater here than was the
case in the cathode space. Consequently the electrodes influenced the pheno-
mena in the anode space to a greater extent than those in the cathode space.
The notations used in Fig. 2 correspond to those in Fig. 1. W hat was striking
was that, in this case, the currentofthe non-moving auxiliary electrode at 17 mm
from the spiral end did not remain constant either when connected to the
anode spot or to the other end of the anode, and with the approach of the
auxiliary electrode Il and the rise in its current, the current of the auxiliary
electrode 1 also rose, although its position remained constant. Here, the auxi-
liary electrode Il behaved with respect to the auxiliary electrode I, so to say, as
a charge reflector, a phenomenon highly current-dependent. Apparently it was
due to this property of electrode Il that with cathodic interference, this pheno-
menon escaped observation owing to the extremely low currents consumed
there. The basic effect may be traced to the modification of the anode glow
space caused by the radially moving auxiliary electrode II.

The third set of curves in Fig. 2 has notyet been mentioned. They describe
the overall currents. W hen these curves were plotted auxiliary electrode Il was
moving in the direction of the spiral, whereas auxiliary electrode | was at a
distance of 17 mm from the spiral. Both electrodes were simultaneously electri-
cally connected, alternately to the anode end close to the anode spot (position
subscript/), and to the spiral end far from the anode spot (no subscript position)
Even in this case the overall current consumed by the electrodes simultaneously
and jointly was smaller than the sum total of the currents consumed by the
electrodes seriatim.

Experiments with an alternating current of 50 c¢/s were conducted under
similar conditons and with similar methods. Here the auxiliary electrodes
extended into the space of a preferred electrode which alternately performed
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the functions ofthe anode and the cathode. Onthe auxiliary electrodes approach-
ing the spiral their previous constant current density began to increase at a
distance of about 10 mm from the spiral. When the electrodes approached the
spiral their alternating current consumption began to rise appreciably. However

Fig. 2. Currents i/j and i[, respectively, consumed by the auxiliary electrode Il moving in the

anode space of the d. c. discharge and the non-moving auxiliary electrode I, together with

their total current «(/+//Referred to the spiral end close to the ande spot (with subscript/)
and to the other spiral end (without subscript)

it fell short ofthat observed for d. c. plate interference. Even so, the value ofthe
current consumption was by an order of magnitude in excess of that for d. c.
cathode interference. In this case, too, the “reflector” effect was noticed. In
fact, the current ofthe extension at rest also increased with that ofthe opposing
moving extension. Furthermore, in this case, too, the sum total of the indivi-
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dually consumed currents exceeded the total simultaneously consumed current.
Since the shapes of the curves plotted for a. c. discharge tests conform essen-
tially to those plotted for d. c. discharge tests, no separate diagrams have been
drawn.

In conclusion, it can be stated that the spaces of the discharge electrodes
can be changed appreciably by introducing auxiliary electrodes of appropriate
arrangement into these spaces. In an earlier paper Hinman and Fox [2] made
it clear that the superficial dimensions of these auxiliary electrodes substan-
tially affected the phenomena taking place round the electrodes. In addition to-
the observations made by these authors it is evident from the data presented
here that even the arrangement of the auxiliary electrodes will effect the
conditions round the electrodes appreciably. The auxiliary electrodes may
abstract charge carriers from the environment of the main electrodes, and by
this process influence the characteristics of the corresponding fields. In this
way, the auxiliary electrodes will influence the anode and cathode fall, the tem -
perature of the anode and cathode spots, and further, through these, the tube
voltage of the discharge. From the plots presented it may be expected that un-
der d. c. discharge conditions, the auxiliary electrodes will influence the pheno-
mena round the anode to a greater extent than those in the cathode space.

LITERATURE

1.J. Bito, Lecture given at the 3rd Czechoslovak Conference on Electronic and Vacuum
Physics, Prague, September, 1965.
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The electronic excitation energy — as is well known — may be transferred
over several molecular diameters from the excited molecules to the unexcited
neighbours by means of radiationless processes. The quantitative treatment of
the energy transfer leads to a characteristic distancel ([1], p. 176)

3 9 x-1n10c4r C dv 1113

128 n5ndN "' re W LW : M
0

for which excitation transfer and spontaneous deactivation are of equal proba-
bility. Here Vis the frequency, e(r) the molar decadic extinction coefficient,
fq(v) the quantum emission spectrum, x2an orientation factor (= 2/3 for random
directional distribution), T/re= Tgthe absolute quantum vyield of fluorescence,
n the refractive index of the solvent, N' = 6,02 « 1020, c = 3 « 1010 cms“ 1
Eq. (1) is valid for any thermal equilibrium distribution over the vibrational
levels of both molecules, provided the spectra are taken at the corresponding
temperature, but it is not valid when energy transfer occurs before thermal
equilibrium is established. According to [2] an equilibrium would not be
expected even in liquids when, due to strong interaction, the transfer is very
rapid. In these cases, the transfer may take place directly from the vibrational
level obtained by excitation and depends, therefore, on the exciting wavelength.

Though the interaction process between the excited solute and the solvent
is generally supposed to take place in a very short period (in 10-13—10~1X)
compared to the mean life time of the excited state (10~9 — 10-8s) and the
thermal equilibrium is expected to be practically established by the instant of
emission, some recent investigations show the existence of a slow interaction
process completed in about 10_8s. This process results in a vibrational tempera-
ture of the excited solute higher than the bulk temperature of the solution. In

* Delivered at the 8th European Congress on Molecular Spectroscopy in Copenhagen,
1965.

1n5has to he taken as n6, see [8].
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proper systems this phenomenon is revealed in the dependence of the emission
spectrum on the frequency of exciting light [3] or in an increased rotational
depolarization of fluorescence [4]. For such systems eq. (1) does not hold
because the absorption spectrum corresponds to a temperature lower than the
vibrational temperature to which the emission spectrum belongs.

According to [5], and [6] respectively, the quantum emission spectrum
may he given as

811 V2In 10 n2(v) fjQ(v) rs(v)
Uv) = e mo, L\ Q
N ®2Vg(v)max

exP[-*(*- vo/kT]. (2)
where ilg(v), n(v), vO, T, hand K are the quantum vyield, the refractive index, the
frequency of pure electronic transition, the temperature, the Planck and
Boltzmann constant, respectively. Eq. (2) has been found to be valid in a very
wide sense for vapours, liquids and solids, in the majority of cases, however,
only for temperatures T* T obtained from the slope of the function F(v) =
= 21nv — 1In[fg{v)le(v)] — h(v—vVvO)IKT -f- const., giving a straight line in
a considerable spectral region (even if the variation of re(v) and T)g" is neglect-
ed). Considering T* as the vibrational temperature at which the emission
occurs, substituting T* for T in eq. (2) and introducing f4(v) from eq. (1) with
Xjte = rjg, we have

ile
RoT* = 5,07-10-m \] v exp [—h(v— vO/kT*] (3)
n* *1q 4

which — provided e(v) has been taken atthe proper temperature — yields the
correct value of the critical distance for the temperature T*. An acceptable
approximate value of RO might be given with e(v) measured at temperature
T and for some cases with dq(v) = 1.

Our experiments have been carried out in luminescent systems under
circumstances described in [7] and with the same methods. In Fig. 1 two
examples are shown for the variation of spectra with the temperature. Table
1 exhibits the results for glycerol solutions. Eq. (1) and eq. (3) yield very
similar results when taking the spectra atthe propertemperatures (see upper
and lower figures, respectively). Note that the differences are not large.

Table 2 shows the approximate values of ROT, at differenttemperatures
T for glycerol solutions. Decay times were taken from [1] (p. 155). As the
frequency of radiationless transitions is given by nab = Bol*R6 (where R is
the average distance ofthe fluorescent solute particles), the frequency ofradia-
tionless transitions decreases with the temperature in all cases investigated due
to the decrease of R Git"under constant concentration (neglecting a decrease
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of concentration of less than 5 per cent due to the thermal expansion which
causes an increase of R less than 2 per cent in glycerol solutions). Fig. 2 shows
the decrease of R {it’ with the vibrational temperature T* (the actual tempera-
tures T are somewhat smaller, but the general line of the variation of R Qit"
with T is the same).

Similar results may be obtained if the variation of 1 0j- with the fre-
quency of exciting light is studied. In solutions of trypaflavine in glycerol
where the quantum vyield (and consequently very probably the decay time) is
practically constant in the wavelength range of 436 —375 m/n, RO t* may be
given as the function of the wavelength of exciting light as follows: at 436, 455
and 475 rn.fi, R (tT* is 46,9, 47,6 and 49,2, respectively. The corresponding
values of T* are 361, 347 and 336°K (see [3] b), Table III).

As a final conclusion of our investigations we may state:

a) Eq. (3) seems to be useful for calculating the critical distance charac-
teristic of energy migration in systems where the thermal equilibrium between
solvent and solute molecules has not been established by the instant ofemission.

b) The critical distance (exceptin some cases, e. g. rhodulin orange solu-
tion) is practically the same, independently of whether energy migration is
completed before or after termal equilibrium between solute and solvent is
established.

The authors are indebted to Prof. Dr. A. Budo, member of the Hungarian
Academy of Sciences for most valuable discussions and advices during the
work.
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RECENSIONES

Richakd J. Weiss:
Solid State Physics for Metallurgists

Pergamon Press, Oxford, 1963, 410 pages, 84s.

The book appeared as the 6th Volume of the International Series of Monographs on
Metal Physics and Physical Metallurgy. It is concerned mainly with problems of interest to
engineers and experimental physicists working in solid state research, metallurgy or related
fields.

The author approaches the subject from the experimental point of view giving only
a short summary of the theoretical foundations in the first four chapters of the hook, approxim-
ately a hundred pages. This first part entitled Theory outlines the most essential results of the
theory of the atom (Chapter 1) and the binding of molecules and the cohesion of solids (Chap-
ter 11). Chapter IlIl entitled Temperature and Pressure gives some insight into the mecha-
nical and thermal properties of crystals, while Chapter 1V briefly reviews some facts connected
with nuclei. This first part of the book is intended primarily for reference, as the author
notes, to enable the student to orientate himself for studying this material.

The second part entitled Experiment consists of eight chapters (Chapters V—XII)
covering almost three times as many pages as the first part. In an introductory chapter (Chapter
V, Experimental Techniques) the author deals with some general problems related to the
experimental techniques used normally in solid state physics. This is followed by a fairly
thorough description of many important diffraction experiments and techniques in Chapter VI,
including X-ray, neutron and electron diffraction equipment as well as the methods of use of
these techniques and the results obtained. Chapter VII reports on the spectroscopy of solids. The
remaining five chapters are devoted to some of the most common basic aspects of solid state
research. Chapter VIII summarizes the experiments and experimental methods used in the
investigation of transport properties of the solid. Chapter IX deals with the experimental
procedures required for the investigation of the thermal behaviour of the solid. Chapters X and
X1 are concerned with the experimental methods of magnetic and nuclear measurements.
Chapter X111 outlines some aspects of problems in the synthesis of the various experimental
results.

Three Appendices containing thermodynamic table (1), nuclear tables (II) and some
references, constants and conversion factors, etc. (I11) are given.

The book is written in a clear style. Every chapter includes problems which are, in many
cases, very illuminating. The special attitude of the authors in approaching the subject from the
experimental side may be of value for those seeking a medium sized summary of the experi-
mental techniques used in everyday work in solid state research.

Edited by Pergamon Press, the book reflects the usual high standard.

J. Antal

Signal Detection and Recognition by Human Observers

arranged and edited by John A. Swets ; John Wiley and Sons, Inc., New York—London—
Sydney, 1964, 702 + XI pages.

About a hundred years ago G. T. Fechner, in his Elemente der Psychophysik (1860),
by his famous law relating thresholds focussed attention on problems in psychophysics,
problems in signal detection and recognition increasingly approached vital realistic decision
problems. In spite of the importance of modern detection theory applied to human observers,
until now there has been a lack of a comprehensive textbook in this field. The present book
tries to build a bridge over this broad field of various sciences, until such a textbook becomes
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available. This book consists of thirty three collected articles by the most prominent authori-
ties on visual and auridoty detection, recognition, sensory physiology, auditory frequency
analysis, vigilance, memory and speech communication fields.

Nowadays, even in the tendency towards complete automation, practical reasons
suggest that a complex process is most valuable in which, among the automata, the human
servo also plays some role. In this regard, the most objective treatment possible of the be-
haviour of a human observer is very important in order to find those characteristics which
are useful in plamning a complex system involving man. This book indicates a giant step in
this direction.

The first four articles discuss elementary notions and the basic experiments both on
visual and auditory phenomena, discuss the necessity of reforming Fechner’s notion of the
threshold, and show the interdependence of statistical decision theory and human observation.

The next four articles relate the parameters of a measurement to some operating cha-
racteristics in visual and auditory observations.

The next seven articles discuss observation in the presence of noise, and in some re-
spects expand the old notion of threshold.

Three articles then follow in which the physiological applications for the sensory systems
are discussed.

An important point is emphasized in the next four articles. The role of recognition is

discussed. The authors develop clearly that a hungary man is much more likely to see food as
fata morgana than a well-fed man. In this sens the mechanism of subjective evaluation is
placed under the microscope of objective investigation.

The next seven articles discuss the interrelation between frequency analysis, noise,
and masking effects, primarily in relation to auditory signals.

The last four articles deal with special applications to speech communication, articula-
tion, vocabulary size and related subjects.

An appendix with tabulated material and another tih a comprehensive bibliography
on the application of detenction theory in psychophysics widens the value of this pioneering
book.

This well edited book deserves to be studied not only by psychologists, physiologists
and biophysicists, but also by engineers, cyberneticians and scientists in other fields who have
to include human sensory organs in their system design.

T. A. Hoffmann
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science. The frontier between physics and chemistry is disappearing as the
methods of physics are brought to bear on the problems of chemistry. In this
new development a focus of attention is the structure and properties of the
molecule. The interest of molecules for the chemist naturally extends far
beyond their purely physical properties; but these properties constitute the
basis of chemical theory and are becoming increasingly important for an

understanding of biology.
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