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SÁNDOR SZALAY 

1909 -  1987

The l ife  and the works of Professor Sándor Szalay (A. Szalay), Member of the Hungarian 
Academy of Sciences, are characterized by his wide in tellectual horizon and broad sc ien tific  
in te rests .

His sc ien tific  career commenced in the f i r s t  half of the th ir t ie s  while working in the 
in stitu te s  of three Nobel prize winners; one afte r the other he had the opportunity to work 
with Szent-Györgyi in Szeged, Debye in Leipzig and Rutherford in Cambridge. His f i r s t  pub
lished a rtic le s  reported on remarkable results on the chemical effects of ultrasound 
and on some special features of electrolytes. I t  was Rutherford of the Cavendish 
Laboratory in Cambridge who influenced him the most. Returning from England to Debrecen in 
1936, Szalay became the pioneer of nuclear physics research in Hungary. In his f i r s t  works 
dealing with nuclear physics he studied the excitation functions of various nuclear re
actions by means of radioactive alpha sources. He carried out his work in a special experi
mental arrangement of his own invention. Later he demonstrated (in collaboration with 
Gy. Csikai) the recoil effect by neutrinos in the decay of ^He in a Wilson chamber.

During his l i f e ,  in addition to nuclear physics, he dealt with a wide spectrum of
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issues from nuclear geochronology by mass spectroscopy to medical research using radioactive 
tracer techniques. The radioactivity in the biosphere was also a subject in which he was
interested. The measurement of the radioactivity of precipitation was started  in Debrecen in 

141952. The usage of the C dating method for d ifferent purposes in Hungary was in itia ted  by 
him. During the la s t  period of his l i f e  he became very much interested in trace element re
search, primarily th is  concerned various types of foods; and for some years before his death 
he dealt with the primordial atmosphere of the Earth by means of quadrupole mass spec
troscopy. -

From the outset Professor Szalay devoted himself to instrumental research, too. An in
genious experimental approach mentioned above was of immense help to him in producing his 
f i r s t  results in nuclear physics in Hungary. He then in itia ted  and established, in Debrecen, 
nuclear detection techniques and electronics, as well as concerning himself with the construc
tion  of e lec tro s ta tic  accelerators and with the development of a new type of beta- and alpha- 
spectrometers.

The ac tiv itie s  of Professor Szalay were not lim ited to fundamental sc ien tific  re
search even if  the really  interdisciplinary topics are also considered. He was very much 
concerned with prac tica l aspects. Just after the Second World War he instigated the search 
for uranium in Hungary, recognizing the importance of nuclear power in the future supply of 
energy. The discovery of uranium on Hungarian te rrito ry  was carried out la ter by a large 
scale geological survey in itiated  by and based on Szalay's  findings. This work of Szalay 
was, in fact, conducted in collaboration with A. Földvári, professor of geology, u tiliz ing  
portable equipment constructed by Szalay himself, together with his coworkers. This search 
for uranium and the study of radioactivity  of Hungarian coal led him to the discovery of the 
mechanism of uranium enrichment in Nature by humic acids which, again, represented an out
standing sc ien tific  achievement. He then recognized that not only the uranium but other 
cations are also strongly adsorbed by humic acids, and th is  is the reason for some microele
ment starvation of plants and animals in peat so ils . On th is basis the microelement f e r t i l i 
zation of plants and the microelement nutrition of animals were introduced by him.

Radioactive isotopes were applied by Szalay not only in medical research but also in
131medical practice. The application of radioactive isotopes ( I) in Hungary was due to him.

He prompted several applied works in environmental topics, too. His practical in terest is  to 
some extent demonstrated by his six  patents.

Professor Szalay was a top-level research worker, but at the same time he was an 
enthusiastic, devoted, and highly successful teacher of physics. He taught generations of 
medical students, teachers and physics students during his professorship f i r s t  at the Facul
ty of Medicine and la te r at the Faculty of Sciences in Debrecen. A great deal of his energy 
was devoted not only to lecturing but also to the demonstration experiments during lectures 
as well as to the experiments rela ting  to the laboratory practice for the students. Despite 
these ac tiv ities he se t aside a substantial part of h is time to organizational work in the 
Experimental Physics Department of Debrecen University.

The main re su lt of this successful work was the foundation of the Institu te  for 
Nuclear Research of the Hungarian Academy of Sciences (ATOMKI). Here he was able to use his 
best creative ta len ts  as well as amply demonstrating h is ab ilitie s  as a sc ien tific  organ
iz e r . The in s titu te  developed step by step from one with a small s ta ff  to the present stage
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of having a to ta l of about three-hundred people. Academician Szalay selected the best re
search workers year by year, th is  extended to the laboratory assistan ts, the technicians 
and the administrators. He designated the main research directions and guided the style of 
research work in the in stitu te  and the whole atmosphere of i t  by his broad interdisciplinary 
research horizon and his experimental-instrumental approach. Professor Szalay himself 
regarded ATOMKI as his greatest work and we feel that he was right in th is .

Acta Physica Hungarica mourns Academician Sándor Szalay; the Editorial Board of the 
journal will sorely miss his presence.

D. Berényi
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A PROPOSED MODEL FOR THE PHOTOLUMINESCENCE OF ZnS : CdS : Ag : Ni : Co PHOSPHORS 

Z.S. EL MANDOUH
Electron Microscope and Thin Films Laboratory 
National Research Center, Dokki, Cairo, Egypt

(Received in revised form 26 October 1986)

Phosphors with 41% ZnS : 59% CdS : 0.009% Ag : 0.00065% Ni and containing various con
centrations of Co dopant are investigated with regard to the fundamental photoluminescence 
processes involved.The wavelengths of maximum emission in tensities in the spectral d is t r i 
butions of excitation and emission remain unaltered with increase in Co concentration. Thus 
the energy level structures with the silver impurity centres are not affected by the cobalt 
content.

The temperature dependence of thermoluminescence has been studied over the temperature 
range of 77 К to 800 K. The thermoluminescence curves show peaks due to chlorine, cadmium, 
cobalt and nickel impurities. A new trap is identified at 0.065% concentration of cobalt 
which has an energy of 1.09 eV. An energy band model is  proposed to explain this phenomenon. 
I t  is  suggested that th is peak is  due to the association of cobalt and silver centres.

Introduction
Impurity-activated ZnS-type phosphors with additional nickel, cobalt or iron impurities 

as luminescence quenchers have been studied by many investigators. These impurities form 
trapping sta tes at which electrons and holes may recombine without giving visible emission. 
I t  is  well known that cobalt in phosphors of ZnS-type causes a decrease of visible lumines
cence within the visible range [ l ] .  On the other hand Garlick and Dumbleton [ 2] found the 
presence of cobalt in the phosphors to be the reason for an infrared emission with a peak 
near 3 p . Furthermore, in ZnS and (Zn, Cd)S cobalt creates an electron trap about 0.52 eV 
below the conduction band, as has been investigated by Hoogenstraaten [ 3] . Recently, the 
transfer of energy from luminescence centres to the Co has been studied by means of e lec tro 
photoluminescence and electroluminescence [4] . From the experiment i t  is  found that energy 
is  transported by free carriers. Gumlich Q>] explained the changes in optical properties by
additional radiation and by cooling the crystals by charge transfer processes Co+-̂-----> Co+.
Elmanharawy [̂ 6J detected a glow peak due to Ni which had an energy of 0.78 eV.

The aim of the present work is  to study the effec t of cobalt on photoluminescence of 
ZnS : CdS : Ag : Ni : Co.

Experimental
All phosphors, prepared in the presence of chlorine, were in powder form.
The dobule chopper technique [б] was developed for measuring excitation and emission 

spectra. Measured excitation and emission spectra were both corrected for the variation of 
photomultiplier response and the angular dispersion of the prism material with wavelength.
A small cryostat with a large optical aperture, easy to set up and sim ilar to that set by 
Garlick [jJ was applied. The temperature can be varied from 77 К to 800 K.

Acta Physica Hungarica 63, 1988 
Akadémiai Kiadó, Budapest
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Results and discussion
Figure 1 shows the variation of excitation efficiency with wavelength of the exciting 

radiation of a constant in tensity . The curves were recorded at room temperature. Excitation 
occurs in two bands, fundamental absorption band and a second band of longer wavelength. The 
curves show some indication of ta i l s  extending into longer wavelength regions of the spectra, 
which attribu ted  to the perturbation of the s ilv er activators centres by nickel and cobalt. 
The wavelength of maximum excitation efficiency is  independent of the cobalt concentration.

w avelength , nm

Fig. 1. Excitation spectra for 41%
ZnS: 59% Cds: 0.009% Ag:
0.00065% Ni: x% Co phosphors 
A) X = 0.00 В) X = 0.00013
С) X = 0.00325 D) X = 0.065

Fig. 2. Emission spectra for 41% ZnS: 
59% CdS: 0.009% Ag: 0.00065%
Ni: x% Co phosphors
A) X = 0.00 В) X = 0.00013
С) X = 0.00325 D) X = 0.065

The spectrum is  the same as ZnS : CdS : Ag and ZnS : CdS : Ap : Ni phosphors. This shows 
that the energy level structure of the phosphor is  not changed by the addition of cobalt. 
The Figure shows also a decrease in excitation efficiency due to the increase of quenching 
action with the increase of cobalt concentration.

Emission spectra recorded a t room temperature are shown in Fig. 2. The wavelengths of 
the silver emission band are very similar to those reported before ^6j for ZnS : CdS : Ag 
and ZnS : CdS : Ag : Ni. No new emission due to nickel or cobalt is  found in the wavelength 
range of 400 — 900 nm. I t  is  clear that the increase in cobalt concentration causes the 
emission in tensity  to decrease. This gives evidence that the energy level structure with 
silver centre remains unaltered by the inclusion of coactivators and th is  agrees well with 
Schön [ji] and was elaborated by Klasens and his coworkers [?—l j  .

Introduction of Co in ZnS:Cu produces a peak in  the glow curve as mentioned by Krylova 
[12] which increases in height with increasing amounts of cobalt. The original low tempera-

8



tűre glow peak is  reduced which is  probably caused by an increasing degree of retrapping of 
the electrons released from the Cl traps, in the deeper Co traps. This is  possible because 
even after excitation to saturation the Oo traps are never completely f ille d .

Thermoluminescence curves for phosphors with varying cobalt concentration are shown in 
Fig. 3. Curve (A) for cobalt free phosphors exhibits three thermal glow peaks, which have 
been c la rified  as due to trapping states associated with chlorine, cadmium and nickel 
impurities. The variation of heating rate method suggested by Booth [ l |  was used to 
estimate the energy depths of such traps which are 0.26 eV, 0.53 eV and 0.78 eV, respective
ly. The energy depths associated with chlorine and cadmium are sim ilar to those reported in 
ZnS : CdS (Ag, Co) phosphors И  . I t  is  of in te rest to mention that a thermoluminescence 
peak due to trapping sta tes caused by nickel dopant hae been found to appear only when the 
cadmium sulphide concentration in the matrix is  59% or more.

PHOTOLUMINESCENCE OF ZnS : CdS : Ag : N i : Co PHOSPHORS

Fig. 3. Thermoluminescence curves for 41% ZnS : 59% CdS : 0.00065% Ni : x% Co phosphors

The absence of th is  peak from thermoluminescence curves of phosphors of low concen
tration  of CdS is  due to the fact that such peak appears at very high temperature (800 K) 
in case of ZnS(Ag:Ni).

9
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A peak at 310 K appears which is  c la rif ied  as due to trapping sta tes associated with 
cobalt which is  sim ilar to that observed by Hoogenstraaten [з] . As cobalt concentration 
increases the peaks due to chlorine and cadmium decrease in height un til cobalt concen
tra tio n  of 0.00325 % where they disappear completely (Curve C). This is  due to the increased 
degree of retrapping, into the deeper nickel and cobalt trapping s ta tes, of electrons 
released from shallower traps during the heating process.

A new trap with energy depth of 1.09 eV appears at a temperature higher than 500 К and 
i t  sh ifts  to higher temperature as cobalt concentration increases and i t  decreases in 
height as shown in curves (D, E). This new peak is  attributed to the association of ac ti
vator (Ag) and coactivator (Co) centres.

During the preparation of these phosphors, the silver impurity ion enters the la ttic e  
to  form a luminescent centre in accordance with Kroger's theory of charge compensation ü û) • 
Thus, there is a possib ility  that the emission and trapping phenomena originate in a c ti
vator — coactivator pairs at neighbouring s ite s . Since emission spectra of silver, copper, 
gold and self-activated  ZnS phosphors are unchanged when different halogen or trivalent
cation coactivator are employed, i t  has been suggested by Kröger Í14] that the activator

+ 1 - 2  L J centre consists of a M (S  ̂ ) activator group, well separated from the activator. However,
Prener and Williams [l5| have proposed that associated pairs of activators with second-
nearest neighbour coactivators constitu te the luminescent and trapping centres in ZnS
phosphors.

I t  is observed from our results that the energy level structure with silver centres 
remains unchanged by the inclusion of the coactivator. This is  agrees well with Schon [1б] 
and Klasens [l7] •

Fig. 4. The proposed energy model

The energy band gap of these phosphors is  2.88 corresponding to a matrix la ttice  
concentration of 41% ZnS : 59% CdS. From emission spectra measurements, the silver level is  
2.05 eV below the lower edge of the conduction band. The proposed energy model for such 
phosphors is  shown in Fig. 4. I t  is  very d ifficu lt to know the origin of th is  new peak from 
thermoluminescence measurements only. Conductivity and electron spin resonance measurements 
are necessary to elucidate the origin of th is new peak.

10
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A NONLINEAR EXTENSION OF THE LOCAL FORM OF GYARMATI'S GOVERNING PRINCIPLE OF DISSIPATIVE 
PROCESSES

B. NYÍRI
Institu te  of Physics, Technical University 
1521 Budapest, Hungary

(Received in revised form 26 April 1987)

A proof of the validity  of Gyarmati's  Principle to non-Onsagerian constitutive 
equations is  given. A generalisation of the Principle, independent of reciprocity 
relations, is  suggested for nonlinear constitutive equations.

Introduction
Recently, Verhás has given "An Extension of the Governing Principle of Dissipative 

Processes to Nonlinear Constitutive Equations" [ l]  on the basis of the Onsager Reciprocity 
Relations (ORR). This Principle was proposed by Gyarmati in the s ix tie s  for linear and for 
certain nonlinear constitutive equations [j?, з]:

0  - ф -  1^1= max .

Here Cf is  the entropy production, which is  a bilinear function of the 3  ̂ fluxes and 
forces:

<3-- S l j  XjL . (2)

The functions ф an d y  are dissipation potentials. The f i r s t  depends on the 0^,/3 type and 
the second on the X ^octype variables, viz.

Ф ‘ * S M S
l;k2 f t  Lik xi  xk (3)

The conductivity matrix L^k and i t s  inverse, the resistance matrix Rik are positive defin ite  
due to the second law of thermodynamics. They are constant in the s tr ic t ly  linear theory, 
while in the quasilinear theory they depend on the equilibrium sta te  variables Г ,  b .  4  
These matrices are symmetric in the absence of magnetic field , due to the ORR [з, 4, 5, б].

The existence of potentials proved to be very useful, especially in the discussion or 
problems where local constraints and/or constraint type restric tions are present (j, 8, 9, 
10, l l j  . The potential character o f a n d  ф , i .e .

(4)

Acta Physica Hungarica 63, 1988 
Akadémiai Kiadó, Budapest

i s  g u a r a n t e e d  b y  t h e  ORR. I n  t h e  p r e s e n c e  o f  m a g n e t i c  f i e l d  sy m m e try  r e l a t i o n s  w e re

o b t a i n e d  i n  a  " f o u r - f o l d  r e p r e s e n t a t i o n "  by M u sc h ik  a n d  S z e r  [ l i ]  . T h u s  t h e  g e n e r a l i s a t i o n
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of the Principle to nonlinear equations seemed to demand the generalisation of the ORR as 
well. Such a generalisation of the ORR was proposed by Gyarmati and by Li [б, 1з[], assuming

(5)
I f  these conditions hold, the potential can be constructed, as proved by Verhás . The 
extension of the Principle based on the existence of dissipation potentials was worked out 
by Gyarmati and by Farkas and Noszticzius Ь , 15] . Relations (5), however, are not 
consistent with the equations of chemical k inetics, in the customary noproach, viz. i f  the 
a ff in itie s  are regarded the thermodynamical forces in the nonlinear region too, as i t  is  
usual in the linear approximation [lé] .

In the linear and symmetric case there is  an equivalent form of (1) that reads

- 1 2  Rik (JA - 2 lís Xs )Q k - 2  LkrXr ) -  max. (6)
15 к г

This Gaussian type local form was also proposed by Gyarmati [2 , 9] ,  and i t  offers other ways 
of generalisations. Actually, Verhás [Y] has shown that i f  the ORR hold in the linear case, 
then the L^k coefficients can always be chosen to constitute a symmetric matrix, i .e .  when 
the L̂ k-s and so the R̂ k~s depend on the forces X ,̂ too. Thus (6) remains valid, and i t  is  
s t i l l  equivalent to (1). The crucial difference is  that Tj/ and(|)cease to be potentials.

Though there is  no reason to doubt the ORR that are symmetry relations only in the 
absence of magnetic field  [9 , 12, 17] , i t  is  shown that the symmetry relations are not 
necessary to the validity  of (6), which is  thus more general than (1). A generalisation of 
Gyarmati's  Principle for nonlinear constitutive equations without reciprocity relations is  
also proposed.

1; Non-Onsagerian constitutive equations 
For the sake of convenience, le t  (6) be written in the form

5 2 ( J t - S  Lir  Xr ) (X± - 2  Ris  Js ) = max. (7)

I t  can be done even i f  the matrices L^k and R̂ k are not symmetric. Necessary conditions of 
the maximum are

M  - ' b i ,

Thus, regarding the f i r s t  group of these equations,

0 .

3. ? Lkr Xr -  ? L ik (XA - 2 > is  У  =r -  - i  - -  * s

must hold, that by matrix notation, after rearrangement, reads

C§ + LT R) J - (L + Lt ) X = 0 .

( 8 )

(9)

( 10 )

14
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Using the identity  ^  = LB, we get

(L + LT)(|Û  -  X) = 0 ,

whence i t  is  seen that

X = B 5 ,

( 11)

( 12)

since (L + (J) is  positive defin ite (due to the second law of thermodynamics). Consequently, 
the inverse equation

3 = U  (13)

holds as well, and i t  can d irectly  be derived from the second group of equations (8) by the 
same procedure.

To show that Gyarmati's  subsidiary theorem pertains to th is case, we show that 
conditions

= 0 (14)

are fu lfilled  at the maximum. Executing the differentiations the conditions

( 7)1 \  I Ъ *  \
I X I (X - в J) + 3 J (3 - L X) = 0 (15)

are obtained, that are automatically satisfied  at the maximum with respect to X or T.
Thus the Gaussian type local form of Gyarmati's  Principle is  valid for non-Onsagerian 

constitutive equations as well.

7 ) 1

2. Extension for nonlinear constitutive equations 
In the nonsymmetric case and (j)cease to be potentials and (6) or (7) cannot be 

reduced to (1). Though (6) and (7) are equivalent, the la tte r  form w ill be preferred because 
of i t s  more accentuated symmetry in the X-J and L~B pairs. Moreover, the form of (7) 
suggests that the extremum principle

<£= 2 ( л  -  f i  (xi> у ]  T v  9i •••» v J  = max (16)
i

be used for nonlinear constitutive equations. Here f^ and are inverse function systems,
i .e .

f i ^ O p  ••• , 0n), •••, ..........Jn)) = 3i  ■ (17)

I t  is  easily seen that the conditions

as well, as the conditions

ЪТз
о

(18)

(19)

15
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are sa tisfied  by the constitutive equations

Ji  = f i  (X1> •••> V  >
or i  = 1, n (20)

Xi = 9i (J1.......... V  .
since executing the prescribed differentiations

^  - f i (X) -  2 l. 7 (Xk - gk (G)) = 0 , (21)

Xi - g^G) -  S - ^ - '  (Jk - fk (X)) = 0 (22)

and
„ C H , .  —  'ЭЭс

(Xk ■ 9k Q )) + (Jk - fk (x)) = 0 <23>
к 3 k J

are obtained respectively.
The next question is  whether (18) has any other solution, d iffe ren t from (20), or not.

Conclusions
From the resu lts  of Section 1 i t  is  seen that the Gaussian type local form of Gyarmati’s 

Principle (6) is  independent of the existence of reciprocity relations of any kind, thus 
i t  is  based solely on the second law of thermodynamics (in the linear approach). Specially 
in the Onsagerian case i t  remains valid in i ts  orig inal form (6) even in the presence of 
magnetic f ie ld . I t  is  also independent of the representation, i .e .  of that Onsager or 
Casimir [lî] type reciprocities are valid.

Consequently, the generalisation of the principle to nonlinear cases should not 
necessarily be based on reciprocity relations. Such a generalisation is  given in Section 2, 
which is  not the only possible, but maybe a quite natural one.
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SOFT MODE OF SPIN WAVES IN THIN FERROMAGNETIC FILMS 

K. RADOWICZ - SARNOT
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Lesna 16, 25—509 Kieice, Poland

(Received 8 May 1987)

The dispersion relation  of the spin waves in thin ferromagnetic film near the phase 
transition  point from the homogeneous magnetization state to the domain structure has been 
obtained. Calculations have been carried out within the pheonomenological theory u tiliz ing  
the Holstein — Primakoff expansion in the f i r s t  approximation.

We w ill consider a ferromagnetic thin film  near the phase transition  point from the 
homogeneous magnetization s ta te  to the domain structure. The easy magnetization axis is 
perpendicular to surfaces of the film and p ara lle l to the z axis of the Cartesian co
ordinate system. The dimensions of the film in (x, y) plane are much larger than i t s  thick
ness L along the z axis. Our considerations concern a case in which external magnetic field  
is  p ara lle l to y axis. For the value He У HC(L) of the homogeneous magnetic f ie ld  the ground 
s ta te  is  the homogeneous magnetization sta te  in the plane of the film, and for He <̂  HC(L) 
the ground sta te  is  a f la t  para lle l domain structure [l, 2, 6J. HC(L) is  the c r i t ic a l  value 
of the external magnetic f ie ld  responsible for continuous phase transition [l, 2]  from the 
sta te  of the homogeneous magnetization to the domain structure. In our considerations we 
will assume that the ground s ta te  is  the s ta te  of the homogeneous magnetization, i . e .
M0 = (0,Mo,0).

The energy Fg of the sample can be w ritten in the form [I, 2̂  : 

Fa = j  I  [« (V M )2 - /3> M2 - 2HeM - Hd М] dV ( 1 )

where F[e = (0,He,0) is  the vector of the external magnetic f ie ld , ß  is  the anisotropy 
constant, at is  the macroscopic exchange constant, Hd = Hd(r) is  the vector of demagneti
zation f ie ld . This vector can be expressed by the magnetization vector M,
-=-o^mx’ 1~5^mx + mz>, usi R9 the Maxwell equations in magnetostatic approximation [ 3J:

ro t H div (H + 4TTM) = 0 ( 2)

The magnetization vector M should satisfy appropriate boundary conditions. In the case of 
the strong surface anisotropy, the boundary conditions are in the form [4, 6j:

mz(z = 0) = mz (z = L) 0 ;
z=0

O x = 0 (3)
z=L

Let us take the Holstein — Primakoff transformation [3 , 4] in the f i r s t  approximation:
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М+(х) = (4 >l0Ms )a(x) ,

М~(х) = (4/J М )а+(х) ,
° 5 '  (4)

Му(х) = Ms -  2 д»оа+(х)а(х) ,

М-(х) = Mx(x)î iMz(x) .

The operators a(x) and a+(x) satisfy  the following commutation relations:

[a(x), a+(x '3  = S(x -  x ')  ,

[a(x),  a(x' )] = [a+(x ) ,  a+(x')J = 0 . (5)

We will take the Fourier transformation of the operators a(x) and a+(x) £4]:

a(x) = - j -  2 bk exP ( - ' l l )  .
Vs k ( 6 )

a+ (x) = / s 2 b: exp a *  £_) ,

where - (x ,0 ,z), = (kpO ,kj), and s is  the cross-sectional area of the sample in the
plane (x ,z).

Operators bk and bk satisfy the commutation relations:

CbkJ bk'] ‘ ^kk ' ’

[bk> bk ,] = f t ,  b*,] = 0 .
(7)

Excitation energy^F  represented by b. and bjti in bilinear approximation, has the form:

A F  = F W  - f {m0} = 2  (A. bi-b. + B^tt b+. +
k k k k k -k Bkbkb-k) >

where

Ak = 2A*0Ms i 2otk2 + 2h -/3 + 2ТГ} ,

Bk = 2>̂ oMS Í2/3 -  ^ k' 2 <kx -  Ф  -  2^ ik' 2kxkz}

and h = HeM_1-  О

The motion equations [3 , 4] have the form:

1 - [ьк>лр] -  Akbk + К  b+-k >

' j f t .
i ~ ъ т  - Lb-k ’AF] = Akb-k + 2Bk bk •

We assume that operators bk(t)  and b*k( t)  depend on the time as follows:

( 8 )

(9)

( 10)
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b+k(t)  = b t, ( -е -1аЛ ) . ( 11)

Inserting (8) to (10) we obtain the se t of the homogeneous equations. The condition of the 
solution of motion equations (10) gives us the following dispersion relation:

The dispersion relation for the spin waves with the soft mode is well known and on the basis 
of the Landau — Lifshitz classical motion equation i t  has been discussed in [l, 2J .  I t  has 
been shown [ l ,  2J , u tiliz ing  relation  (14), that dispersion relation (12) describes the 
soft mode of the spin waves. I t  corresponds to the continuous phase transition  from thé 
s ta te  of the homogeneous magnetization to the domain structure with the period:

The magnitude of the external fie ld  h in th is  case is  equal to the c r it ic a l value hc

The calculations presented above can be considered as a f i r s t  step in future calculations 
of the thermodynamical properties of the thin ferromagnetic film near the phase transition  
point from the homogeneous magnetization state to the domain structure.

1. V.V. Tarasenko, E. Chenski, I.E . Dickstein, Zh. Eksp. Teor. F iz., 70j 2178, 1976.
2. A.Z. Patashinski, W. Wasilewski, Acta Phys. P ol., A57, 789, 1980.
3. C. K itte l, Quantum Theory of Solids, John Wiley and Sons, Inc., New York, London, 1963.
4. A.J. Akhiezer, W.G. Baryakhtar, S.W. Peletminski, Spin Waves, North Holland, Amsterdam, 

1968.
5. W. Wasilewski, Acta Phys. Pol., A68, 613, 1985.
6. N.M. Solanski, M.S. Erukhimov, The Physical Properties and Application of the Magnetic 

Films, Nauka, Novosybirsk, 1975.

Ы 2 = 16yu2 M2 (САТУ + oCk2 + h - ß  ) (06k2 + h) -411 /Зк-2 k2] , (12)

(13)

From the boundary conditions (3) we obtain:

kz = nTTL'1 (14)

[ l ,  2, 5]:

(15)
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EFFECTS OF THE POLARISATION POTENTIALS ON POSITRON -  HYDROGEN INELASTIC SCATTERING 
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Erlangen-Nürnberg, 8520 Erlangen, West Germany

(Received in revised form 20 Tune 1987)

The effects of various possib ilities  of "switching on" the polarisation potentials of 
e — H ine lastic  scattering on the coupled-static model are investigated in details. The 
p artia l e las tic  and positronium formation cross-sections of the new models are calculated 
for seven values of the to ta l angular„momentum {•(O^-tSő) at seventeen values of the incident 
energy kf within the Ore gap (6.8 ^k Í5*10 .2  eV). The comparison between the present ca l
culations and the elaborate variational results of Humberston [l, 2J and Brown and 
Humberston [_3, 4] shows that the "switching on" of the polarisation potentials leads to 
overestimated values for the p a rtia l and to ta l e la s tic  and positronium formation cross- 
sections. This conclusion raises, a t least to us, some doubts about the consistency of the 
polarized o rb ita l principle when higher channels than the elastic  one are opened. I t  seems 
that th is  principle is  completely insufficient for describing the positron — atom in e las tic  
processes.

1. Introduction
Few years ago, Horbatch, Darewych and McEachran Ы  have expressed their concern about 

the re lia b ili ty  of the polarized orb ita l method (POM) when applied to the elastic  scattering  
of positrons by large atoms. Their main criticism  was concentrated on the adiabatic nature 
of the POM and the computational d ifficu ltie s  associated with the calculation of the po lari
sation potentials of these processes. In spite of these c r it ica l points, however, i t  was 
found, (see McEachran et al [б—lőj ), that the POM is  extremely successful in the treatment 
of the e lastic  scattering of positrons by noble gases. Furthermore, having in mind the 
s ta tic  model of the e lastic  collisions of positrons with small atoms, i t  was noticed by d if 
ferent authors (see e.g. Drachmán and Temkin [ l l ] ) tha t the POM yields considerable improve
ments upon the s ta tic  phase sh ifts  which were always shifted towards the elaborate vari
ational ones. These improvements were clearly attributed  to the effect of the polarisation 
potentials and led to the commonly accepted argument that the contribution of these po
ten tia ls  is  always towards the real physical picture of the collision process under investi
gation. The purpose of the present paper is  to te s t  the validity of th is  argument in in 
e las tic  collisions of positrons with small atoms, i . e .  to investigate whether the "switching 
on" of the polarisation potentials to the coupled s ta t ic  models of these processes would 
improve their e las tic  and positronium formation cross-sections in comparison with the 
variational ones. As an example for our investigation, we trea t the e+ — H inelastic 
scattering, which has been extensively treated by Abdel-Raouf et a l [ïi] using the coupled 
s ta tic  approximation, and considered, for years, by Humberston and coworkers, (see e.g. the 
above mentioned papers), using Kohn's variational method. From the work of the former 
authors [ if ] , we know that, although the coupled-static model of the e+ — H inelastic 
scattering is  associated with enormous computational d ifficu ltie s , i t  is  s t i l l  simpler than
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i t s  variational treatment, and provides useful ( f i r s t  order) estimation of the corresponding 
p a rtia l and to ta l cross-sections. This fact emphasizes the necessity of establishing another 
(more accurate but s t i l l  simple) approach for investigating th is type of problems, and ex
plains the increasing in terest in the resu lts of the present work.

The "switching on" of the polarisation potentials of the e+ - H inelastic  scattering 
— (where only e la s tic  and rearrangement channels are opened) — is  carried out in the 
present paper using four different models:

i)  by including the polarisation potential of the f i r s t  channel (Vpjj to the coupled-
s ta t ic  model (or Model 0), i .e .  by allowing only for the polarisation of the hydrogen atom;

( 2 )Ü) by including the polarisation potentials of the second channel ( \ r ^  to Model 0, 
i .e .  by allowing only for the polarisation of the positronium atom (Model 2);

i i i )  by including and to Model 0; th is  case is  referred to as Model 3;
iv) by using a generalisation of Stone's polarized orbital method with symmetrized 

kernels (Model 4).
Section 2 of th is  paper deals with the formation of these four models. Section 3 is 

devoted to the discussion of the p a rtia l and to ta l cross-sections computed by these models. 
There we find also a comparison between the new cross-sections and the ones obtained by 
other authors. The analysis of the kernels and the d e ta ils  of the method of iteration  are 
accumulated in Appendix 1 and Appendix 2, respectively.

2. Theory
Let H and E be the to ta l Hamiltonian and to ta l energy of the collision  of positrons 

with hydrogen atoms in any channel. Therefore, they can be sp lit to the forms

H = ^  ♦ Н<А) + , i= l,2  (1)
and

E = E1 + kl  = E2 + 2 k2 • (2)

The operators in the right-hand-side of Eq. (1) are defined (in the s ta tic  approximation) as

|(D = -V 2 - ?о v r r ’
H(2) = - 2 V ^ - 2

9  9 ’
(3a)

Г  • - V Í  . -  1T72—  2v O' ’ (3b)

f f i - É - Д  « v<2>m t
- 2 _ 2 

X " r ‘ (3c)

E, and E?, Eq. (2), are the ground-state energies of the hydrogen and positronium atoms,
L 2 \ 2 (-1.0 Ryd and -0.5 Ryd, respectively), and kj and |  k£ are the kinetic energies of the

incident positrons and the center-of-mass of the positronium atom rela tive  to the proton. 
X and r are the position vectors of the positron and the bounded electron with respect to 
the hydrogen nucleus. Ç and Ciare given by ß = x -  r and 20= x + r ,  (see Fig. 1).

Let |ф   ̂>  and[(p2 > b e  the to ta l wave functions of channels 1 and 2, respectively, 
then we can express the fu ll wave function which describes the two channel process as

22
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e*

|<A»= [ V i > + 14*2 >  • (4a)
where

| V i > -  I Ф± > | ф ± >  - <4Ь)

If  we assume th a t  the hydrogen and positronium atoms are polar ized ,  t h e n | ( J ) .> ta k e s  the  form

1ФА > = |Ф п  >  + /% |Ф 12> .  i-1.2 (*°>
w h e re ^ ^  >  and | ф 12> а ге  the ground-state wave function and the polarized orbitals of 
channel i .  They are defined, for i =1,2 , by

1 1
Ф и  = (1/1Г ) 5 e ' r  , ф 12 = ( 8 /4 3 V ) 5 r ( l+ r /2 )  e~r (? .$ )  , (4d)

1 1
Ф 21 = (1/81Г)5 e~ 9/2 , ф 22 = (l/172'ÎT)29(l-»Ç)/4) е‘ Р/2(§ .& ). (4e)

|ф ^ > ,  | ф 2> ,  Eq. (4b), are the scattering wave functions of the positrons and positronium 
atom, respectively.

Fors Eqs (4d) and (4e), we notice that, for each channel i ,  the following relations are
t rue

^ i j  l ^ i j > =  1 ■ J*1»2 (4 f )

We also remark that 1Ф12 > and  I ф 22 5*represent a l l  P-states of the hydrogen and 
positronium atoms, respectively.

Following Stone [1з] , the p a r a m e te r s , Eq. (4c), are calculated using the variational 
principles

5Ef  =5(<Фа 1н̂ 1Ф± >/<ф.|ф>}

= о i = l , 2 ( 5 )

ч
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Had = H(i)  + v( i |  1 о in t

where Ead and Had are the adiabatic energy and Hamiltonian of the i- th  channel. Thus, 
we have

1= 1,2 .

Substitution from Eqs (3a), (3c), (4c), (4d) and (4e) into Eq. (5), we find

»2  ̂ .  u( i)  /fF(i)_  c( i )  ж „(1) .  u( i)4 / ( 1  -  ß p  = V $  /< E ^ -  E ^  + ,

( 6 )

(7a)

where E ^  = E^, eP ^  = -21/129 Ryd, is the binding energy of the polarized hydrogen atom, 
and Ê  = -21/258 Ryd, is  the binding energy of the polarized positronium atom.

Equation (7a) provides us with two roots for each &■. The proper ones are those which
orj

yield minimum values for Ej , i= l,2 , where

Ead = (1 + / l2 , - 1(E(i)  + v( i)  9ay(i) . fp (i) . w(i) Д2
/S i ; u l Vl , l  + .%V1,2 + (E2 + V2,2 P i

, / i )The potentials appearing at Eq. (7a) are determined by

t/( l \  = < ф . I V( l >|(t>. ,m,m’ “ im | in t | n i ’>  ’ i,m,m'=l,2

v j^ (x )  = 2(1 + i)  e72x,

, “ !<«> ■ < (<

(7b)

(7c)

(8a) 

(8b)

+ 18*2 ♦ 45X + Щ- ♦ « L  ) e-2x -  m - L b j ,  (8c)

Substituting from Eqs (3c), (4riT and (4e) into Eq. (7c), we obtain

C1)(X) .  ( ^ ) l / 2  {(x2 + 5x + 9 + 9/x) e- 2x_ 9 ( t Ç l ]  ,

( 1 )
2,2

V ^ ( r f )

5 ( 0 )  •= ( ^ ) 1/2{(CГ* + 50+ 9 + 9/CO e-2 0  9(l-e 2Cl ) l
2 J ’ 

2СГ

V222(Cf) = 0 '

The polarisation potential of channel i  is  defined by

w(i) _ л w(i)
Vpol - A  Vl,2

(9a)

(9b)

(9c)

( 10)

The solution of the inelastic  problem is  obtained in the coupled-static as well as the 
polarized o rb ita l approximation by demanding that the projections of the vector (H - Е)|ф >  
onto the<(|)i ^| , i  = 1,2, are zero. Thus we have

< 0 i l  l H - e| 4 A =  0 . i =1>2

Substitution from Eq. (4a) into Eq. (1), leaves us with

( 1 1 )
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Сфп |н (1) -  Е(1')| ф 1 > =  -<фи |н (2) -  E(2 ) |Lp2 >  (12a)
and

< Ф 21 |н(2) - Е(2) | ф : > =  -<Ф 21 [н(1) - ECl)JCp2 >  , (12b)

where the superscripts (1), (2) of H and E are introduced in order to distinguish the ir ex
pansions in the f i r s t  and second channels, respectively.

Substituting from Eqs (l)-(3 c ) , and Eqs (4a)-(4e) into Eqs (12a,b), we find

(V x + kl ) | ^ i  > =  Ф 1 > - < Ф ц  I H(2) - E(2 ) | Ф 2 Ф 2 >  , (13a)

(V & + k2 I ̂ 2  >= UÖ}| ^ 2  > + < ( ^21 I н(1) - e(1)| Ф1 Ф2 >  ■ (13b)

where Schrödinger's equations for the hydrogen and positronium atoms are used.
Let us now consider the p a rtia l wave expansions of the scattering wave functions] Ф ] ^  

and] ф 2 > ,  i .e .

Ф.(х) = i  2  (2 t +1) i l  f, (x) Y,°(x) , (14a)
1 x 1=0 t  г

Ф 7(СГ) 4 i  2  (2I  +1) i e g. (O) Y?(0) , (14b)
2 cr t=o t  t

where f^(x) and д^(О) are the (radial) partial wave functions corresponding to the to ta l 
angular momentum l  , of the f i r s t  and second channels, respectively, Y^(x) and Yj(Ô) are the 
related spherical harmonics, and x and O'are the angles between the vectors x and O'and the 
z axis.

Substitution from Eqs (14a,b) into Eqs (13a,b), we obtain for each value of fo l
lowing coupled integro-differential equations:

( - Í  - + k?)f, (x) = f,(x ) + J К 9t (Cr) d a  , (15a)
dx2 x2 1 1 x 1 0 12

+ k2) gt (Of)= l£2) g£( 0 ) + J  K21(Ü,x) ft (x) dx , (15b)

where the kernels K̂ 2 and K2  ̂ are expanded by

t<12(0',x)=8a'x J |{Ф11Ф21(- \4a - j  к2) + ф и ф21 V-2^

♦£<(- 2V o - 2 Af-ç - E) ФПФ22

+ Ф и  Ф22 Vin t ^2(<̂ }  \  (x) V ®5 dx d °" (15c)
and

K21(Ö,x) = 8 .2хбЯ ^ Х1 Ф 21(-<^+к1)) + Ф и  Ф 21 +£ ((-7 ^ - V f  - f  - E) 21 12

+ Ф21Ф12 V ^ |)  /^(x)} Y^(x) y£(Ô) dx dÔ . (15d)
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(The number 8 is  due to the transformations J*dr = 8 JdCT, JdÇ) = 8 J d  x'). The direction 
of the z axis may now be adjusted such that i t  is  in the direction of x i f  Eq. (15a) is 
solved and in the direction of O 'if  Eq. (15b) is solved. The potentials and ap
pearing in Eqs (13a,b) and (15a,b) are defined by

where the polarisation potentials i= l ,2, are defined by Eqs (10). The parameters 0 p
£ ,  and £2  appearing in Eqs (15b) — (16b) are introduced for distinguishing the various 
conditions (Models) under which Eqs (15a,b) are solved. Thus, we distinguish the following 
oases:
a) 0  = 0  = 0 ^  = 0 2  = 0. This case is  identical with the coupled-static approximation, 
where /3  ̂ = /32 = 0, (see Eq. 4c), i . e .  where no polarisation effects are taken into account. 
(In Appendix 1, we show that th is case implies that Kj^iOjx) = i  H^CCFjX), i .e .  the kernels 
are symmetric).
b) 0 = 0 =  £ 2  = 0 and = 1- This case represents Model 1 in which the polarisation
potential of channel 1 is  switched on while the coupled s ta tic  picture of the system is  con
sidered.
c) 0  = 0  = £ x = 0 and £ 2 = 1. This case corresponds to Model 2 in which the polarisation 
potential of channel 2 is  switched on while the coupled s ta tic  picture of the system is 
considered.
d) 0 = 0  = 0  and£1 = 0 2 = 1. This is  Model 3, or the coupled-static approximation plus 
the polarisation potentials of both channels.
e ) £ i  = 0 2 = 1 and 0  and 0  are defined such that K^TO^x) = j  V~,(C(,x). This case id e n ti
f ie s  Model 4 and is  referred to as the Stone polarized o rb ita l method with symmetrized 

kernels. Obviously, the c ase0  = 0 = 0 ^  = 0 2 = 1 represents the extension of Stone's POM to 
in e la s tic  scattering.

Let us now rewrite Eqs (15a,b) as follows

and
(16a)

(16b)

(17a)

(17b)

where

0 (17c)
and

(17d)
0

Equations (17a,b) have the general form

(18a)
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where HQ is  an arbitrary part of the to ta l Hamiltonian H which describes, as well as the 
to ta l energy E and the to ta l wave function |Ç >  , a given quantum mechanical system. I t  is  
well known that the solution of Eq. (18a) is  given (formally) by the Lippmann — Schwinger 
equation

\ i  > - ]  î 0> +  Go I C > ,  (18b)

where Gq is  the Green operator (E -  HQ)_1.
Comparing Eqs (17a) and (17b) with Eq. (18a) and using the p a rtia l wave expansion of 

the Green operators corresponding to the operators on the left-hand sides of these equations 
we can prove that

{ u j - P f ^ i x ' )  + Q ^ P x ’ )} d x ' j  f^(kjX)

{ u j j P f ^ P x ' )  + Q ^ C x ' ) }  dx' ,

and

4i)(co g^(k2a ’) Q ^ P a ’) dCTj£t (k2a )  

f^(k2CTT) Qj^CO') d o ’ .

(19a)

(19b)

The delta functions §■ identify two independent solutions for each of f,(x) and g.(Cf) in r>J ^  V" c
the channels 1=1,2. The functions f^(ju) and g^fyi), fyi=kjX, k.,0;, are related to the
spherical Bessel functions of the f ir s t  and second kinds, j^lja) and ŷ fyu) by the relations
ft (/i) =jUjt (M) and gt (b) = -/iy^(u).

Equations (19a,b) can be only solved ite ra tiv e ly  and the ite ra tiv e  solutions are 
obtained by

4( i ’V )(x ) = i 5 i l  + I  9 t (k l * ^ }  Ux ')fí ’V )(x ’ ) + * ’

' V kl x) '  J f t (kl x,) {*#> f - V)(x’) + q}Í,V"1)(x')} dx ',\?>l(20a)

and

g ^ .v ) (o) ={5i2 ♦ i  J  ^ ( k 2c n  Q ^ c o ”) d o ’} ft (k20)
0

g.(k2°) r „  . g  ij) ,
-  I k j ft (k2o ,:) q^>v ; (o ’) d o  ,v7^o , (20b)

where\7 is  the order of ite ra tion . The sta rtin g  values (or zero iterations) of f ^ P x )  are 
given by

ft( i -0 ) (x) = { 5 n  + ^  J  gt (klX' )  u<P f . 0 ) ( x . )  dx'} ft (kl

- ° A ^ ]  V V ' )  и ' 1 \ ( 1 ’0 ) ( х ' )  dx' . 
j- n

x)

(20c)
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The la s t  equation defines the solution of the elastic  scattering of positrons by hydrogen 
atoms, ( i .e .  when the positronium formation channel is  closed).

In order to obtain the reactance matrix, R, we rewrite the ite ra tive  solutions (20a,b) 
in the forms

fe( l ,V ) (x) = a [1>V) fj(k jx )  + gt (kxx) , (21a)

g^1,V)(0() = a£1>V) f t (k2C>) + 9t ( k p )  , (21b)

where a ^ ’1̂  is  the factor of f/(k .x) in Eq. (20a), b ^ ’^  is  the factor of g,(k,x) in the( -i -O') ^ л/ Г ( -j O') ^
same equation, a^ ’ is  the factor of f^(k20) in Eq. (20b) and b2 * '  i s  the factor of 
д^(к2<Л in the same equation.
Defining the two matrices

a■0 ( 22)

we can determine the elements of the reactance matrix by using the relations

Ri j  -  { b V r 1} ц  • (23)

Thus, we obtain

II

>
 —1 

c
n { b j1 ^  a<2 >V> -  b<2 ’V> а ' 1 «'»} /Д *  , (23a)

II

л
04f-H

С
И ^  - Г  -  - Г Ч 2 -'4 } ^  • (23b)

R21 '  )
/ f f b U . V )  a (2,i)) .  b (2,V ) a ( l ,V ) |  /Д *  ) (23c)

R22 ( b ^  a ^  -  > « • « }  /A !  >

where = a (l,i>) „(2 ,V ) _ (2,V>) (1,V) a1 a2 a:  a 2 (23d)

The ite ra tiv e  transition  matrix, T''7, is  related to the reactance matrix by

= R %  - i  R^)'1 , (24)

where I is  a 2 x 2 unit matri)! and i  = nF T -  The ite ra tiv e  partia l cross-sections corre
sponding to the to ta l angular momentum •£, i .e .  O '^ ’̂ 's ,  are calculated by

rrtf.v») 4lit2t+l) 2
i î  " “ i f "  T4

( 2 5 )
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where the analyses of Eq. (24) provide us with

1ТИ 1 2 •  { K i ) 2 + (A*2)2} ^  - (26a)

| T12 1 2 = (Ri2)2/AV > (26b)

| T2 i |  2 = (R ^)2/ ^  . (26c)

f ë | 2 - { 0 $2)2 * c A ÿ / A ! \ (26d)
where

4^2 = R11 R22 “ R12 R21 (26e)
and

t f = ( l - ^ ) 2  + (R*11 + R*2)2 . (26f )

Finally, the to ta l ite ra tive  cross-sections are calculated by

O’?. =1J „ 1J 
1=0

i  > » 2, (27)

where 0 '11 is  the to ta l e lastic  cross-section of the positrons from the hydrogen atom, 0"12
is  the to ta l positronium formation cross-section,Oo, is  the to ta l e la s tic  cross-section

V>of the positronium atom from the proton and i s the to ta l rearrangement cross-section of 
the second channel.

3. Results and discussion
The computation process has been started by investigating the general features of the 

four potentials and Vp2, Eqs (8a), (8b), (8c) apd (9b), respectively. We
noticed that ^(x) and V2 2 f a l l  off exponentially within a range of 2 a.u away from the

proton while v i ^ x )  and V^,(CF) possess long range ta i l s  and a depth at x=0'=1.4 a.u , (see
 ̂ 4( 1)Figs 2 and 3, respectively). In Figs 4 and 3, we plot the variation of -x V„.;(x) and

4 (2) (1)^°"  ̂ 4-e r  VpgjioO with x and o ', respectively. I t  is clear that the relations Vp0{(x) Ç^œ----% ancl
Vpoi(<r) < ^  'r f i  are tru e> which confirms the argument that the polarizab ility  of the *
positronium atom is eight times the polarizability of the hydrogen atom. (Note that we can te s t
the accuracy of the calculations by investigating the asymptotic behaviours of the quantities
-x4(E?d+ 1) and - стЧе?0 +1), which should be identical with 4.5 and 36, respectively).

Since the Taylor expansions of Vp^ix) and Vp o i ^  vanish around the origin, we con
clude that the solution of Eqs (1) and (2) for any of the above mentioned models does not 
add (apart from the lengthy algebraic analyses connected with the use of the fu ll kernels 
in Model 4), any particular complications to our original solution of Model 0, (see Eqs 4 
and 5 in [12] and the text thereafter). In order to find the ite ra tiv e  solutions of Eqs 
(15a,b), we followed the procedure summarized in Appendix 2. I t  was noticed that the 
Simpson expansion of the integrals over x and O 'requires a mesh size h = 3/32 a.u. and 256 
mesh points in order to obtain reasonable agreement between R^ and (to  at least two 
figures). Tables I and f t  demonstrate the convergence of the reactance matrix elements of 
Models 1 and 3 with the increase of the integration range (the number of mesh points
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X

multiplied by the mesh size) up to 24 a.u. away from the proton. From th is  investigation we 
conclude the following points:
a) The rate of convergence increases when the momenta increase.
b) The rate of convergence increases when the to ta l angular momentum {. increases.
c) The range 24 a.u . is  sufficien t for obtaining symmetric reaction matrices at a ll values 
of kj and t  considered.
We have also studied the convergence of R?ys with the number of ite ra tio n s and found that 
the stationary variations of these elements are insured after 40 ite ra tio n s . Therefore, a l l  
resu lts presented in the following Tables correspond to the case hP = 40.

Tables I I I ,  V, VII contain the partial and to ta l e lastic cross-sections of models 1— 3 
determined for a l l  important values of t  at kj = 0.71, 0.72, . . . ,  0.86, 0.866 a.u. There, we 
find also the cross-sections a t k  ̂ = 0.87 a.u, i . e .  when the f i r s t  excitation channel of the 
hydrogen atom is  opened. Comparing these Tables with Table I in Q.2] , we conclude the fo l
lowing points:
1) The to ta l O ', , 's  of Model 1 are sligh tly  larger (about 10%) than those of Model 0. How- 

11 ( 1 )ever, the inclusion of Vp0{(x) has shifted the large contributions of the partial cross-

30

Fig. 2. Variation of v j1^ )  with x



EFFECTS OF THE POLARISATION POTENTIALS

Ó

Fig. 3. Variations of and Vp̂ OO!) with O'

sections from the S-wave in Model 0 to the P- and D-wave in Model 1, which is  in the cor
rect direction (as i t  is  clear from the comparison presented in Table XI).
2) Model 2 leads to considerable increase in the to ta l cross-sections. The maximum to ta l
in th is  model about 67% larger than in Model 0 and the S-wave contribution is  s t i l l  leading 
the D-wave contribution.
3) Model 3 produces extremely large cross-sections in which the D-wave plays the role of the 
S-wave in Model 2 and vice versa. (The use of Model 4 and the extended Stone POM provided us 
with exploding values forO"^ and we have excluded the ir tabulations).

Tables IV, VI, VIII, IX involve the partial and to ta l cross-sections of the positronium 
formations in Models 1 — 4 at a l l  previous values of t  and k^. The comparison between these 
Tables and Tables 2 and 4 in [l2] leads to the following conclusions:
1) The to ta l cross-sections of Model 1 are about three times those of Model 0 and the 
contributions of the D-wave are leading at a ll > 0 .7 5  a.u. The F-wave contributions are 
larger than those of the S- and P-waves at 2 0.83 a.u. and the total increases 
steadily with the increase in k^.
2) The to ta l O ^ 's  of Models 2 —4 are an order of magnitude larger than those of Model 0.
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3) The switching on of V^Cx) in Models 3 and 4 reduces slightly  the to ta l positronium 
formation cross-sections comparative to Model 2 a t a l l  k̂  210.72 a.u.
4) All five models (Model 0 is  included), support the importance of calculating the F-, (and 
sometimes the G-), wave partia l cross-sections in order to gain su ffic ien t information about 
the size of the to ta l Ö12-

Table X contains the elements of the P-wave reactance matrix calculated at four values 
of for Models 0 — 4 as well as the results of Chan and McEachran [14] and Brown and 
Humberston и .  The CM values were obtained using a coupled-static treatment in which 30 
short wave correlation functions are added to the to ta l scattering wave functions of both 
channels. The BFI results were determined using Kohn's variational method with 120 (for the 
S-wave), and 84 (for the P- and D-wave), short range terms in which e-“' ’ functions were 
included. The Table emphasizes the following points:
i)  The smallness of the difference between the two off diagonal elements cannot be used as
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an indication to the goodness of the used approximation. (Note that in CM and BH we have 
R12 = R21 construction).
i i )  The argument th a t, the larger the value of R^ i s ,  the better is  the approximation, is  
not true unless the employed approximation allows for such a statement. (Remark that R^ in 
creases with the order of the Model from Model 0 to Model 4 and that the BH values l ie ,  (for 
k  ̂ = 0.71, 0.80 and 0.85), between Model 2 and Model 3).

In Table XI we find a comparison between the S-, P- and D-wave p a r tia l cross-sections 
of Models 0 —4, the S-wave results of Chan and Fraser [Í.5] . The P-wave resu lts  of Chan and 
McEachran [IÁ] and the S-, P- and D-wave results of Humberston [l,2] and Brown and 
Humberston Cm J. (The approximations used by Chan and Fraser and Chan and McEachran are 
iden tica l.)  The Table illu s tra te s  that the effect of each polarisation potential varies from 
one p artia l wave to the other and from one type of p a r tia l cross-sections to the other.

Table XII demonstrates the comparison between the to ta l O',, of d iffe ren t methods at 
2various values of k^. Column 6 contains the sum of the S-, P- and D-wave e las tic  cross-sec

tions obtained by Brown and Humberston QQ, while in column 7, we added the coupled-static 
resu lts  for l  2ï3 to the ir t o ta lO ^ 's .  I t  is  clear from the Table that Models 0 and 1 are 
insufficient for describing the e+ — H inelastic  scattering , while Models 2 and 3 have
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shifted the to ta l e lastic  cross-sections higher than the variational ones. Thus, both
(2) _  Po1and Vp0  ̂ have positive influence upon the to ta l CT^'s. Fig. 6 shows the general behaviours

of O îi 's ,  calculated by d ifferent approaches, as a function of the momentum of the incident
positrons.

On the other hand, Table XIII contains in addition to the corresponding positronium 
formation cross-sections obtained by our Models, the ones determined by Drachmán e t a l [íéj 
using the modified Born approximation and those of Khan and Ghosh [n] using the d istorted 
wave approximation. From the Table we conclude th a t i t  is very unlikely that the fu l l  
polarisation of Ps will take place in the second channel and that the distortion due to the 
presence of the proton may be adequately described by a less a ttrac tiv e  potential. (Remember 
that VpQ (̂x) n j -  4.5/x2, while v£2j(ö)«vi- 36/0^). In Fig. 7, we presented a comparison 
between the to ta l“pbsitronium formation cross-sections obtained by our Models. The Figure 
illu s tra te s  the behaviour of these cross-sections under the variation of the momentum of the 
incident positrons.
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Table I I I
Partial and to ta l e lastic  cross-sections of e+ -  H scattering. (Model 1 is  used)

X 0 1 2 3 ■ 4 5 6
to ta l O', -,

2 11 in ал a.u. 0

0.71 0.32769 0.09724 0.85850 0.17645 0.03566 0.00987 0.00370 2.60911
0.72 0.35488 1.16618 0.89209 0.18562 0.03742 0.01027 0.00383 2.65029
0.73 0.38208 1.12504 0.92699 0.19573 0.03929 0.01070 0.00395 2.68378
0.74 0.40911 1.07955 0.95968 0.20679 0.04129 0.01115 0.00409 2.71166
0.75 0.43587 1.03235 0.98821 0.21865 0.04344 0.01163 0.00422 2.73437
0.76 0.46226 0.98479 1.01174 0.23109 0.04575 0.01213 0.00437 2.75213
0.77 0.48823 0.93763 1.03009 0.24385 0.04822 0.01266 0.00452 2.76520
0.78 0.51372 0.89130 1.04340 0.24669 0.05085 0.01322 0.00468 1.77386
0.79 0.53869 0.84608 1.05214 0.26935 0.05364 0.01381 0.00485 2.77856
0.80 0.56308 0.80214 1.05666 0.28163 0.05656 0.01442 0.00503 2.77952
0.81 0.58687 0.75960 1.05740 0.29337 0.05960 0.01507 0.00522 2.77713
0.82 0.61003 0.71854 1.05479 0.30443 0.06272 0.01574 0.00541 2.77166
0.83 0 63253 0.678902 1.04920 01.31471 0.06589 0.01645 0.00561 2.76341
0.84 0.65436 0.64108 1.04100 0.32416 0.06909 0.01719 0.00581 2.75269
0.85 0.67549 0.60473 1.03049 0.33271 0.07229 0.01796 0.00602 2.73969
0.86 0.69592 0.56996 1.01799 0.34034 0.07545 0.01875 0.00624 2.72465
0.866 0.70783 0.54985 1.00965 0.34448 0.07733 0.01924 0.00637 2.71475
0.87 0.71563 0.53675 1.00377 0.34704 0.07856 0.01957 0.00646 2.70778

Table IV
Partial and to ta l positronium formation cross--sections of e+ -  H (Model 1 is  used)

\ l 0 1 2 3 4 5 6
to ta l O', о 

2 1in a a.u. 0
0.71 0.01271 0.01398 0.00078 0.00001 0.00000 0.00000 0.00000 0.02748
0.72 0.02694 0.10155 0.02797 0.00112 0.000003 0.000000 0.00000 0.15761
0.73 0.03588 0.19352 0.10058 0.00733 0.00029 0.00001 0.00000 0.33761
0.74 0.04290 0.27653 0.21275 0.00130 0.00130 0.00006 0.00000 0.55642
0.75 0.04875 0.34934 0.35339 0.05083 0.00374 0.00023 0.00001 0.80629
0.76 0.05380 0.41291 0.51169 0.09278 0.00838 0.00061 0.00004 1.08021
0.77 0.05825 0.46850 0.67880 0.14899 0.01601 0.00136 0.00011 1.37202
0.78 0.06225 0.51728 0.84813 0.21866 0.02731 0.0262 0.00024 1.67649
0.79 0.06588 0.56019 1.01504 0.30025 0.04282 0.00460 0.00047 1.98925
0.80 0.06919 0.59800 1.17640 0.39183 0.06287 0.00747 0.00082 2.30658
0.81 0.07222 0.63135 1.33017 0.49130 0.08761 0.01143 0.00136 2.62544
0.82 0.07499 0.66082 1.47507 0.59660 0.11698 0.01665 0.00211 2.94322
0.83 0.07751 0.68690 1.61035 0.70582 0.15078 0.02328 0.00314 3.24778
0.84 0.07979 0.71005 1.73564 0.81721 0.18866 0.03142 0.00450 3.56727
0.85 0.08186 0.73067 1.85088 0.92919 0.23022 0.04114 0.00624 3.8702
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Table IV (cont.)

0 1 2 3 4 5 6
to ta l o '

2 12\ in a a.u. 0
0.86 0.08371 0.74912 1.95621 1.04041 0.27499 0.05245 0.00843 4.16532
0.866 0.08473 0.75928 2.01477 1.10626 0.30319 0.06000 0.00997 4.33820
0.87 0.08538 0.76571 2.051935 1.14965 0.32249 0.06534 0.01101 4.45152

Table V
P artia l and to ta l e lastic  cross-sections of e+ - H (Model 2)

to ta l O jjk\ 0 1 2 3 4 5 6 in a^ a.u. 0

0.71 1.67066 1.80562 0.37772 0.02659 0.00137 0.00006 0.00000 3.88202
0.72 1.72114 2.00479 0.44958 0.03061 0.00160 0.00008 0.00000 4.20780
0.73 1.74509 1.88734 0.53325 0.03557 0.00187 0.000009 0.00000 4.20321
0.74 1.76347 1.75945 0.61626 0.04160 0.00217 0.00011 0.00001 4.18307
0.73 1.77934 1.65619 0.69013 0.04871 0.00255 0.00012 0.00001 4.17705
0.76 1.79327 1.57039 0.75176 0.05678 0.00300 0.00015 0.00001 4.17536
0.77 1.80560 1.50161 0.79963 0.06570 0.00353 0.00018 0.00001 4.17626
0.78 1.81661 1.44539 0.83505 0.07523 0.00415 0.00021 0.00001 4.17665
0.79 1.82643 1.39623 0.86078 0.08514 0.00486 0.00025 0.00001 4.17370
0.80 1.83508 1.35237 0.87842 0.09521 0.00567 0.00030 0.00002 4.16707
0.81 1.84260 1.31383 0.88888 0.10529 0.00657 0.00035 0.00002 4.15754
0.82 1.84906 1.28018 0.89354 0.11519 0.00756 0.00041 0.00002 4.14596
0.83 1.85454 1.24997 0.89405 0.12474 0.00864 0.00049 0.00003 4.13246
0.84 1.85906 1.22200 0.89147 0.13380 0.00979 0.0057 0.00003 4.11672
0.85 0.86265 1.19601 0.88616 0.14231 0.01101 0.00067 0.00004 4.09885
0.86 1.86536 1.17227 0.87828 0.15025 0.01228 0.00077 0.00004 4.07925
0.866 1.86657 1.15916 0.87252 0.15472 0.01307 0.00084 0.00005 4.06693
0.87 1.86721 1.150845 0.86834 0.15756 0.01360 0.00089 0.00005 4.05850

Table VI
P artia l and to ta l positronium formation cross-sections of e+ - H (Model 2)

0 1 2 3 4 5 6
to ta l <y. 9 

2in aQ a.u.

0.71 0.16712 0.39113 0.00275 0.00001 0.00000 0.00000 0.00000 0.56101
0.72 0.12589 2.57989 0.11270 0.00208 0.00004 0.00000 0.00000 2.82060
0.73 0.11412 3.88425 0.42635 0.01409 0.00041 0.00001 0.00000 4.43933
0.74 0.10737 4.56892 0.92200 0.04517 0.00184 0.00008 0.00000 5.64488
0.75 0.10188 4.99704 1.52270 0.10281 0.00535 0.00028 0.00002 6.73008
0.76 0.09678 5.28218 2.16315 0.19079 0.01217 0.00076 0.00005 7.74588
0.77 0.09204 5.48505 2.79197 0.31005 0.02350 0.00168 0.00013 8.70442
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Table VI (cont.)

K 0 1 2 3 4 5 6
to ta l СГ, 9 

2 1in a a.u. 0
0.78 0.08748 5.64171 3.37291 0.45933 0.04043 0.00328 0.00028 9.60542
0.79 0.08295 5.76223 3.89425 0.63437 0.06388 0.00578 0.00054 10.44400
0.80 0.07845 5.85065 4.35503 0.82934 0.09449 0.00945 0.00095 11.21836
0.82 0.06982 5.96093 5.09113 1.25830 0.17768 0.02126 0.00245 12.58157
0.83 0.06571 5.99202 5.37344 0.48192 0.22983 0.02984 0.00360 13.17636
0.84 0.06170 6.00760 5.60838 1.70439 0.28848 0.04040 0.00526 13.71621
0.85 0.05727 6.00840 5.80116 1.92162 0.35292 0.05304 0.00733 14.20174
0.86 0.05410 5.99681 5.95471 2.13097 0.42221 0.06780 0.00991 14.63651
0.866 0.05194 5.98494 6.02930 2.25192 0.46569 0.07767 0.01174 14.87320
0.87 0.05053 5.97518 6.07228 2.33032 0.49537 0.08466 0.01308 15.02142

Partial and
Table VII

to ta l e lastic  cross-sections of e3 - H (Model 3)

0 1 2 3 4 5 6
totaicfjj
in a2a.u. 0

0.71 0.49306 3.44398 0.29514 0.20351 0.03718 0.00997 0.00371 5.48655
0.72 0.54259 3.48078 1.41165 0.21687 0.03916 0.01039 0.00384 5.70528
0.73 0.57286 3.18676 1.53733 0.23218 0.04130 0.01083 0.00397 5.58523
0.74 0.59925 2.91301 1.65047 0.24953 0.04361 0.01131 0.00410 5.47128
0.75 0.62408 2.68320 1.73882 0.26867 0.04614 0.01181 0.00424 5.37696
0.76 0.64765 2.48499 1.7996B 0.28911 0.04889 0.01234 0.00439 5.28705
0.77 0.67021 2.31386 1.83331 0.31029 0.05188 0.01290 0.00454 5.04699
0.78 0.69199 2.16160 1.84419 0.33156 0.05510 0.01350 0.00471 5.10265
0.79 0.71305 2.02171 1.83804 0.35226 0.05855 0.01413 0.00488 5.00262
0.80 0.73332 1.89233 1.81832 0.37190 0.06219 0.01479 0.00506 4.89791
0.80 0.75283 1.77302 1.78745 0.39011 0.06599 0.01550 0.00525 4.79015
0.82 0.77160 1.66231 1.74837 0.40658 0.06990 0.01624 0.00545 4.68095
0.83 0.78969 0.55835 1.70389 0.42017 0.07387 0.01701 0.00566 4.56864
0.84 0.80708 1.46012 1.65563 0.43328 0.07787 0.01783 0.00587 4.45768
0.85 0.82378 1.36757 1.60429 0.44339 0.08183 0.01868 0.00609 4.34563
0.86 0.83977 1.28073 1.55047 0.45142 0.08571 0.01956 0.00631 4.23977
0.866 0.84904 1.23124 1.51740 0.45523 0.08798 0.02010 0.00645 4.16744
0.87 0.85509 1.19924 1.49517 0.45736 0.08947 0.02046 0.00654 4.12333

37



M .A. ABDEL-RAOUF

Table VIII
Partial and to ta l positronium formation cross-sections of e -  H (Model 3)

0 1 2 3 4 5 6
to ta l o ^2
in a^ a.u. 0

0.71 0.30530 0.29947 0.00252 0.00001 0.00000 0.00000 0.00000 0.60730
0.72 0.23340 2.01715 0.10313 0.00202 0.00000 0.00000 0.00000 2.35570
0.73 0.21651 3.05464 0.38939 0.01370 0.00040 0.00001 0.00000 3.67465
0.74 0.20875 3.59488 0.84075 0.04386 0.00181 0.00008 0.00000 4.69013
0.75 0.20304 3.92996 1.38671 0.09973 0.00528 0.00028 0.00001 5.62501
0.76 0.19781 4.14961 1.96778 0.18487 0.01202 0.00075 0.00005 6.51289
0.77 0.19303 4.30382 2.53821 0.30010 0.02320 0.00167 0.00012 7.35915
0.7B 0.18834 4.42129 3.06211 0.44409 0.03980 0.00326 0.00027 8.15926
0.79 0.18340 4.50940 3.53189 0.61263 0.06301 0.00575 0.00053 8.90661
0.80 0.17823 4.57127 3.94572 0.80003 0.09316 0.00938 0.00095 9.59874
0.81 0.17298 4.61324 4.30226 1.00112 0.13053 0.01442 0.00156 10.23611
0.82 0.16772 4.64079 4.60231 1.21113 0.17499 0.02110 0.00244 10.82048
0.83 0.16241 4.65545 4.85154 1.42480 0.22623 0.02962 0.00365 11.35370
0.84 0.15701 4.65689 5.05708 1.63692 0.28379 0.04009 0.00524 11.83702
0.85 0.15154 4.64579 5.22374 1.84354 0.34698 0.05261 0.00729 12.27119
0.86 0.14608 4.62424 5.35426 2.04218 0.41486 0.06723 0.00987 12.66772
0.866 0.14283 4.60714 5.41643 2.15670 0.45742 0.07701 0.01168 12.85870
0.87 0.14066 4.59414 5.45168 2.23081 0.48645 0.08393 0.01302 13.00069

Table IX
Partial and to ta l positronium formation cross-section of e+ -  H (Model 4)

X 0 1 2 3 4 5
to ta l о

с 2in a„ a.u. 0
0.71 0.10099 0.00482 0.00255 0.00005 0.00000 0.00000 0.00000 0.10586
0.72 0.09968 0.01689 0.09089 0.00824 0.00007 0.00000 0.00000 0.21577
0.73 0.06439 0.01546 0.30058 0.05084 0.00073 0.00000 0.00000 0.43200
0.74 0.02379 0.00931 0.58526 0.14862 0.00315 0.00002 0.00000 0.77015
0.75 0.00023 0.00325 0.89980 0.30969 0.00878 0.00007 0.00000 1.22182
0.76 0.02861 0.00008 1.22386 0.52918 0.01905 0.00023 0.00001 1.80102
0.77 0.15758 0.00211 1.54825 0.79704 0.03507 0.00072 0.00002 2.54079
0.78 0.42176 0.01164 1.86610 1.10203 0.05765 0.00629 0.00004 3.46551
0.79 0.78236 0.03119 2.17643 1.43063 0.08747 0.00006 0.00007 4.50821
0.80 1.11791 0.06359 2.48260 1.76988 0.12501 0.00017 0.00010 5.55926
0.81 1.32793 0.11195 2.78734 2.11082 0.17039 0.00040 0.00012 6.50895
0.82 1.40352 0.17959 3.09161 2.44751 0.22342 0.00050 0.00009 7.34624
0.83 1.38706 0.27018 3.39654 2.77475 0.28373 0.00048 0.00001 8.11275
0.84 1.32083 0.38779 3.70463 3.08805 0.35072 0.00037 0.00036 8.85275
0.85 1.23172 0.53671 4.01863 3.38515 0.42334 0.00020 0.00838 9.60413
0.86 1.13417 0.72140 4.33993 3.66630 0.50019 0.00004 0.03694 10.39897
0.866 1.07482 0.85128 4.53616 3.82789 0.54771 0.00001 0.03183 10.86970
0.87 1.03551 0.94643 4.66829 3.93281 0.57981 0.00001 0.02819 11.09105
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Table X
Comparison between the P-wave reactance matrix of d ifferent approximations. 

(CM refers to Chan and McEachran [14] . BH = Brown and Humberston QsJ)

kl Model R11

CMr—\
Q1

R21 R22

0.71 0 0.0355 0.0166 0.0165 -0.0065
I 0.1275 0.0138 0.0137 -0.0064
2 0.1586 0.0740 0.0764 0.1050
3 0.2211 0.0654 0.0684 0.1067
4 67.2611 -0.5408 -0.3603 0.0548

CM 0.165 0.0250 0.0250 0.0092
BH 0.185 0.0321 0.0321 0.0699

0.75 0 0.0348 0.0910 0.0907 -0.229
1 0.1244 0.0750 0.0748 -0.2252
2 0.1977 0.3438 0.3464 0.5553
3 0.3485 0.3075 0.3112 0.5975
4 6.4211 -0.0469 -0.0456 -0.2686

CM 0.171 0.133 0.133 0.0486
BH 0.174 0.110 0.110 0.171

0.80 0 0.0237 0.1414 0.1412 -0.522
1 0.1129 0.1151 0.1150 -0.511
2 0.1655 0.3848 0.3867 0.3992
3 0.2183 0.3402 0.3432 0.4590
4 3.2510 0.1490 0.1482 -0.8735

CM 0.161 0.173 0.173 -0.160
BH 0.176 0.171 0.171 -0.0611

0.85 0 0.0072 0.1917 0.1916 -0.813
1 0.0973 0.1539 0.1540 -0.7908
2 0.1253 0.4080 0.4097 0.2804
3 0.1823 0.3552 0.3580 0.3548
4 2.2841 0.5006 0.5011 -1.5924

CM 0.148 0.210 0.210 -0.361
BH 0.169 0.211 0.211 -0.289
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Table XI
Comparison between the partial cross-sections of e - H inelastic scattering calculated
using different approximations. ( 

BH =
X = Chan and Fraser [l5] , 
Brown and Humberston [jiJ)

CM = Chan and McEachran [Ï.4] ,

ki Model
Partial O"^

о(in aQ a.u..) Partial 0^2 (in aQ a. u.)

S-wave P-wave D-Wave S-Wave P-wave D-wave
0.71 0 2.1000 0.1000 0.1481 0.0000 0.0206 0.0009

1 0.3277 1.1972 0.8585 0.0127 0.0140 0.0008
2 1.6707 1.8056 0.3777 0.1671 0.3911 0.0028
3 0.4931 3.4440 1.2951 0.3053 0.2995 0.0025
4 - - - 0.1010 0.0048 0.0026

CM 0.1053х 1.9894 - 0.0047х 0.0462 -
BH 0.0817 2.4794 1.0151 0.0129 0.0849 0.0020

0.75 0 2.1095 0.0972 0.2145 0.0001 0.5190 0.3907
1 0.4359 1.0324 0.2145 0.0488 0.3493 0.3534
2 1.7793 1.6562 0.6901 0.1019 4.9970 1.5227
3 0.6241 2.6832 1.7388 0.2030 3.9300 1.3867
4 - - - 0.0002 0.0033 0.8998

CM 0.1637х 1.8450 - 0.0091х 1.1220 -
BH 0.1351 2.2754 1.2666 0.0138 1.1471 1.0529

0.80 0 2.1025 0.0758 0.2736 0.0006 0.8963 1.3145
1 0.5631 0.8021 1.0567 0.0692 0.5980 1.1764
2 1.8351 1.3524 0.8784 0.0785 5.8507 4.3550
3 0.7333 1.8923 1.8183 0.1782 4.5713 3.9457
4 - - - 1.1179 0.0636 2.4826

CM 0.2363х 1.5400 - 0.0097х 1.5871 -
BH 0.2043 1.9549 0.3294 0.0154 1.5149 2.5520

0.85 0 2.0779 0.0586 0.2981 0.0013 1.1019 2.0877
1 0.6755 0.6047 1.0305 0.0819 0.7307 1.8509
2 1.8627 1.1960 0.8862 0.0573 6.0084 5.8012
3 0.8238 1.3676 1.6043 0.1515 4.6458 5.2237
4 - - - 1.2317 0.5367 4.0186

CM 0.3039х 1.3074 - 0.0101х 1.8354 -
BH 0.2671 1.7191 1.2980 0.01823 1.7631 3.3220
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Table XII
2

Comparison between the to ta l e lastic  cross-sections (in aQ a .u .) calculated using d if
ferent approximations

k  ̂ (Ryd) Model 0 a) Model 1 Model 2 Model 3 Kohn's, .. 
Method ;

Kohn' s 
Method + 

CS fo rl> 3
0.5041 2.3678 2.6091 3.8820 5.48661 3.5829 3.6016
0.5625 2.453 0.6344 4.1771 5.3770 3.6771 3.7078
0.6400 2.5071 2.7795 4.1671 4.8979 3.4886 3.5429
0.7225 2.5162 2.7397 4.0989 4.3456 3.2686 3.3492
0.7500 2.5105 2.7078 4.0669 4.1674 - -
a) Abdel-Raouf et al |î.2]
b) Brown and Humberston И

Fig. 6. Comparison between the to ta l e lastic  cross-sections of Models 0 — 3
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Table XIII
Comparison between to ta l positronium formation cross-sections (in aQ a .u .)  calculated

using d iffe ren t approximations
2

(Ryd) Model 0 Model 1 Model 2 Model 3 Model A Born
Approx. b)

Dist.
wave
Approx.

Kohn
c)Method'

s .4 Kohn's  +
'a; CS fo rt >2

0.5041
0.5625
0.6400
0.7225
0.7500

0.0214
0.9667
2.6909
4.4437
5.0905

0.0275
0.8063
2.3066
3.8702
4.3382

0.5610
6.7301

11.2184
14.2017
14.8732

0.6073
5.6250
9.5987

12.2712
12.8587

0.1059
0.2218
5.5593
9.6041

10.870

0.0512
1.7129
4.3686
7.0714
7.8571

0.0722
1.9651
4.5765
6.6577
7.0144

0.1066
2.200
4.0857
5.2486

0.10061
2.2564
4.5642
6.4997

0.71 0.75 0.8 0.8A 0.87
ki

Fig. 7. Comparison between the to ta l positronium formation cross-sections of
Models 0 — 4
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Finally, i t  is  in teresting  to refer to our investigation of the extended Stone POM. In 
th is case the kernels K̂ 2 and  ̂ K21 are far from being symmetric and the off diagonal 
elements of the reactance matrix are of completely different orders (often of d iffe ren t 
signs), which raises our doubt about the consistency and applicability  of this method to 
inelastic  collisions of positrons with atoms. This has also emphasized the argument tha t the 
polarized orb ita l principle fa ils  in describing any collision process more complicated than 
the e lastic  scattering of positrons by small atoms.
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Appendix 1
Our main goalin this Appendix is  to express the kernels К̂ 2(0",х) and «^(O ^x), Eqs 

(15c,d), in closed forms as functions of x and O '. Let us f ir s t  consider and replace the
functions ф -ц , and ф 22 by their explicit forms using Eqs (4d,e). This provides us
with

K12(0 ',x)=( BOx J Jd/VITVT) e~r {- (7 ^ .0  k2) + 2 ( | -  | ) }  e~ ? /2 +

+ (£ /H V 4 3 ){ 9 (l+ p /4 ) ( -  v £ ) -  0.5EÇ) (1+ Ç/4) -  (Vp+ / Ç ) p ( l +Ç /4) +

+ 0.5 Ç(l+P/4)(2+x—2/r)J e P/2( $  . O')} O')} y| ( x) y£(0) dx dCT . (1.1)

2 AIn order to avoid the operation with V(j on the functions of O' and O' in Eq. (1.1), we use 
Green's theorem which has the net effect that £ ( r ,  Ç ) V ^  \(Ó) - ( V ^  £ ( r ,  Ç)) X(O), where 
£"(r,Ç ) andX(O) are arbitrary functions.
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In order to express Vo- in terms of Vf and 2 r , we use the relations 

r  = 20 - x and ?  = 2(0  -  x)
and hence

_ L .  2 _ э _  + 2 э
э ° г  d * t  W i  ’

Э х ,  '  •
Therefore, the required relation is  given by

e V r . 7

i  = 1,2,3 

i  = 1,2,3

( 1 . 2)

Consequently, we can prove that

Р /  2V £  ( е 'г e ~Р П ) = 4 {5/4 -  2 /r  -  1/Ç) + (r. Ç))} e ' r e'

(e”r e ' P/2)f ( l + P / 4 ) p )

= 4 (1—2/r)  e ~ V  P /2 p ( l+  P / 4 ) P  + ( 9 2/ 4—2Ç) —4) e ' V P / 2 9  + 

+ ( 6 + p ) p  e~re~ P^2( r . 9 ) Ç  — 2 ( 4 + 9 )  9  е~Ге~ г ,

where the following relation i s  used

V? (e~ ? /2  9 ( 1+9 Л ) £ )  = C 9 2/ l & - p / 2 - l )  e" 9 /2  9  .

(1.3)

(1 .4 )

(1.5)

( 1 . 6 )

Substitution from Eqs (1.4) -  (1.6) into (1.1) leads to a simpler form for K12(0 ,x )  which 
contains the functions e~r , e~ 9^2, (?. $ ) ,  ( f . f r j ,  (<? . O') and a polynomial in r and 9■
In order to evaluate the integrals involved in Eq. (1 .1), we have to use the transformations 
in  (1.2) for г and 9  • Also we have to use the following definitions

(?.& )

( ? .$ )

<§. O')

( Í . Í )

<§. x)

JO. -- (x. O')

(2СГ—/1x)/(4/X2+x2 -  4O 'x/l)172 ,

(2JUO -x )/ { ( 0 2+x2 -  2 0 ' x/U ) ( 4 0 ' 2+x2 -ЧО х/!)} 1̂ 2 

(0 '- ,U x )/(0 2+x2-20xyU)1/2 ,

(2x—2ДС0/(4О'2+x2—4 СГхуЦ)1/2 ,

1/2

(1.7)

( 2yud-x )/ ( cr2+x2—2 Ox Д  )

I t  is  now possible to reduce the in tegrals in (1.1) into integrals over,U only from 
JUl = —1 to ^x- +1. In order to carry out the integrations numerically we use the following 
expansion for a given function W( | 2 O'— x | , | O'— 211 ). where is  one (or a combina
tion) of the angles appearing in Eqs (1.7):
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w( | 2 ? - x | >  | 0' - * l  . £  ) = ^  ( 2l + l )  W (Cf,x) Pt (M> . ( 1. 8)

w here  t h e  f u n c t i o n  W(O ', x )  i s  a p u r e  f u n c t i o n  o f  x and  o ' a n d  i s  d e t e r m i n e d  by

W(0 \ x ) = ^  - J +lft  ( M-) «  I 2? - x |  , I ? -  x |  ) d /i. . ( 1. 9)

The i n t e g r a l  a t  t h e  r i g h t - h a n d  s i d e  o f  Eq. ( 1. 9) c a n  b e  c a l c u l a t e d  w i t h  l a r g e  a c c u ra c y  u s i n g  

a Gauss  q u a d r a t u r e  o f  o r d e r  10. I n  o r d e r  t o  o b t a i n  t h e  s e e k e d  form o f  К^2(С Г ,х )  we i n t r o d u c e  

a f u n c t i o n  ( x , 0" , i 1, Í 2>mp m2>n i > n 2> • • • . ng )  such  I h a t

G^ ( x ,  ű ' , i p Í 2>mi> m2>n p n2) П ^ j n 5, n ^ ) —

= 4 Ï - J  Pt  ( Û )  exp(_ l 2 ? - x l} e x p ( - | a f - x |  )

( £ . S ) n l  (f). 0 )n2 ( £ ) . х )п3 ( г .  Ô ')n4 ( r . C O n5 ( Î . Ô O n6 djU , ( 1. 10)

EFFECTS OF THE POLARISATION POTENTIALS

w here

1 f o r  m. = 1 ,

2/ x  - 2/  12 0 -  x 1 f o r  mj = 2 , ( 1. 11)

2/ x  - 2/  12 О - X 1 _  E f o r  m  ̂ = 3 ,

1 f o r  m2 = 1 ,

2/ x  - 2/2 I ? - * ! f o r  m2 = 2 , ( 1. 12)

2/ x  - 2/2 I ? - *  1 -  E f o r  m2 = 3 .

F o r  s i m p l i c i t y  o f  r e p r e s e n t a t i o n  o f  К12(С У ,х ) ,  we d e n o t e  t h e  f u n c t i o n  i n  Eq.  ( 1. 10) as  

w he re  j  i s  an i n t e g e r  and r e f e r s  t o  a  s e t  o f  v a lu e s  o f  t h e  numbers  i p i 2>mi > m2>n i ’n2’ • ■ • >n g .  

( s e e  T a b le  A).  I t  i s  now an e a s y  m a t t e r  t o  r e d u c e  K12( 0 ' , x ) ,  Eq. ( 1. 1) ,  t o  t h e  form

T a b le  A

The v a l u e s  o f  i p i 2, m p m 2, n p . . .  , n ^  i n  G ^ ^  a t  a g i v e n  j

j h 12 ml IT̂ n l n2 n3 n4 n5 "6
1 0 0 1 1 0 0 0 0 0 0
2 l 0 1 1 0 0 0 0 0 0
3 0 1 1 1 0 0 0 0 0 0
4 0 0 2 1 0 0 0 0 0 0
5 0 0 1 1 0 1 0 0 0 0
6 0 -1 1 1 0 1 0 0 0 0
7 0 -2 1 1 0 1 0 0 0 0
8 1 -1 1 1 0 1 0 0 0 0
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Table A (cont.)

j 4 x2 ml ni n2 n3 n4 n5 n6

9 1 -2 1 1 0 1 0 0 0 0
10 0 -1 1 1 0 1 0 0 1 0
11 0 -2 1 1 0 1 0 0 1 0
12 0 0 1 1 0 0 0 1 0 0
13 0 -1 1 1 0 0 0 1 0 0
14 0 -1 2 1 0 1 0 0 0 0
13 0 -2 2 1 0 1 0 0 0 0
16 0 0 1 1 0 0 0 0 1 0
17 0 0 1 2 0 0 0 0 0 0
IB 0 0 1 1 0 0 0 0 0 0
19 -1 0 1 1 1 0 0 0 0 0
20 -2 0 1 1 1 0 0 0 0 0
21 -1 1 1 1 1 0 0 0 0 0
22 -2 1 1 1 1 0 0 0 0 0
23 -1 0 1 1 1 0 0 0 1 0
24 -2 0 1 1 1 0 0 0 1 0
25 0 0 1 1 0 0 1 0 0 0
26 -1 0 1 1 0 0 1 0 0 0
27 -1 0 1 2 1 0 0 0 0 0
28 -2 0 1 2 1 1 0 0 0 0

K12( 0 \x )  = K^CCT.x) + K^iCT.x) + « ^ (C T .x ) , (1.13a)

where

K ^CCT.x) = 8>/2" [g(4) -  (3+E) Ĝ 1} -  2 g£ 16)J

+ (2/S2E /V Ä 3) [16 g[ 5) -  4 (1+2E) Ĝ 6) -  

-  (21+2E) Gt(7) -  12 Ĝ 10-* -2  g| U ) + 32̂ G(12) +

,(13 ) 8 G,-(14) + Е,(15)гг  J (1.13b)

and
K(2>,
^12

/<3),

( C .x )  = 32y f ï  g[ 2 )  + (.16ß £ / \ f i ä )  (4 g£ 18) + G£4)) ,

K J ^ O ’.x) = lés/i" Ĝ 3) .

(1.13c)

(1.13d)

From Table A we deduce that K^P(CJ'.x) is a continuous function of x and O ', K^iPiO'.x) isIZ 1Z
discontinuous at x = 2 O' and K12 (C .x) is  discontinuous a t x = O '. Thus, the to ta l 
kernel K ^iO '.x ), Eq. (1.13a), is  singular a t x = O' and x =20', and special atten tion  should 
be paid during the numerical calculation of Q^ix), (Eq. 17c).
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The explicit form of the kernel ^ (С Г .х ), Eq. (15d), is given by

47

К21(СГ,х) = 16сУх[|{(1ЛГ\/2) e~r { - ( V 2)+(2/x^-2/Ç ) +

+ £  (2/irVr43) e ' 9/2 { r(l+ r/2)(-V x) -  rE(l+r/2) -  (1.14)

-  (V r+2 /r)r(l+ r/2 ) + r(l+r/2)(2/x—2/Ç )} e ' ^ r . J ) ^ }  Y°(x) Y°(& d i d a  .

2In order to exclude the operation with on the functions of x appearing in Eq. (1.14), we 
use (similar to Eq. 1.3) the following transformation

V2 = V2 + * Vp2 + ♦Ъ-Ур • a .15)

Therefore, we have

V* (e‘V P/2) = {2 -  2 /r -  1/ 9  + 2(гф) е 'ге ' Р/2 , (1.16)

V* ( e 'r e"P̂ 2 r(l+ r/2 )r)

= 4(1/4 -  1Д))г(1 + r/2) е~г e‘ ?/2 г + (r2/2 -  2r -  2) e 'V  P/2 r  +

+ r2 e ' r e~9/2 (i.@) r -  (2 + r )  e ' r  e ' P/2() , (1.17)
and

V^(e"r  r(l+ r/2) r) = (r2/2 -  2r -2 ) е~г г . (1.18)

Substituting from Eqs (1.15) — (1.18) into Eq. (1.14) and integrating over the angles, we 
obtain

« ( ^ ( O »  = «(^(CT.x) + K<2) ( a ,x )  + K<3> ( a ,x )  , (1.19a)

where (O^x) is  continuous in x and a  and determined by 

K ^ i a . x )  = -  (3+E) Gt(1) -  2 Ĝ 16)j  +

+ £  (32/31/ \/*3) {a g[18) + 2(2 -  E) G£19) -  (3 + E) g£20) -  (1.19b)

-  2 Gp4) ♦ 4 g( 25) + 2 Gp6) ♦ G p7) ♦ 2 g[ 28)} ,
( 2 ) (СХ,х) is  discontinuous at x = 2 O' and has the fina l form

k(2) (a,x) = 32\/2"G^2) , (1.19c)

and K ^lO 'jX ) is  singular at x = О  and is  calculated by

(O'.x) = М ф  Gj(3) + Ё Д  ( 1 2 8 / /« )  (2 Ĝ 21) + G(22)) . (1 .19d)
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From Table A, we can easily prove that

r (17) .  г(4) А „(2) r (3)
Gt  - 4  % ~  bi

which implies the following rela tion

2 К12«Г ,х) = K21(CT,x) at £  = £  = 0

Equation (1.20) indicates that the kernels of Models 0-3 are symmetric.

( 1 . 20)

( 2 . 1)

Appendix 2
This Appendix contains a b rief discussion of the iteration  procedure used for ca l

culating the elements of the reactance matrix, (see Eqs 20a — 23d). This has been achieved 
by rewriting Eqs (20a) — (20c) as

ft 1,V)(x) = {5 i î 4  I  9t  V ) i Ux ' ) f t i ’1,)(x' ) +
1 0

+ q[ í *V>~1)(x')}  dx'} fj(kjX) -

-ÊfjO ^x) j  ~ (k^xl) £и(1) + Q(i>v - 1)(x ')} ,V >

1 0
S

g[i ,V ) (CO = { 5 i2  + £  J gt (k2 a ” ) Q2 i ,V )(O M ) do"} V 1̂ 0 0 -  
2 0

-  * f  J f^(k2a ') CÇ1’ dCT ,\> ^0  
2 0

= { 5 ii +1. Í  9t (ki x,) ux '} ft( l ,0 ) (x ,)  dx'} f t (ki x) -  
1 0

( 2 . 2 )

and
_ (i,0)

(x1) dx' , (2.3)

where X and 2 represent the ranges of integrations over x and O', respectively.
(Physically, X (=nh, where n is  the number of mesh points and h is  the Simpson step, or 
mesh size), represents the distance at which we assume that the scattered positrons are not 
affected by the hydrogen atoms, andS(=nh) is  the distance at which the positronium atom 
and the proton are to ta lly  separated). The functions ^ ( x 1) and Q ^ ’̂ ^O '1), in Eq.
(2.1) and (2 .2), are now defined by

q( í , \ ? -1 ) ( x , )  = J  k12 ( 0 - , x ' )  g^ i l< ,_ 1 ) (CT) dCT ,V >  1

and
£ i > v  } ( a ' )  = | Xk2 1 (c t ' , x ) f ^ 1 ’ ' ’ }(x) dx , v > 0 .

(2.4a)

(2.4b)
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Thus, the iteration  process s ta rts  by calculating f£i ,0 ^(x), i= l,2, using Eq. (2.3) and 
introducing i t s  values into Eq. (2.4b) in order to find Q ^ ’^ ic r ')  which can be used in the 
right-hand side of Eq. (2.2) for obtaining The values of the la s t quantity can
be introduced into Eq. (2.4) in order to calculate which may be employed in Eq. (2.1)
for determining f ^ ’^ (x ) .  This ite ra tio n  process can be repeated as many times as we need 
and the judge of i t s  quality is the stationary variation of the elements of the reactance 
matrix R^j, Eqs (23a) — (23d), when v> increases.

In order to calculate the integrals in Eqs (2.1) — (2.4b) we use Simpson's rule. Thus, 
we expand ^ (x )  and Q ^ ’̂ ^O") a t the point q of the configuration space, as follows

QÍ Í , V " 1 )(Xq) = | ( 4 1)K^ V q >  + W S2)k12) ( 0 W  +

■bGO^K^icrp.Xq)] gl(1’4,_1)« r p),V>>l , (2.5a)

Q2Í , V ) ( 0 V  “ Д Н 1)К2l ^ q ' V  ♦ и ? )|<21) « Гч'Хр) +

+ 0 3 j3)K ^ « r q,xp)} ft(1’V )(xp) ,V > 0  , (2.5b)

where Cüp1^'s are the usual Simpson weights (y, y ,  y ,  . . . .  y , y ,  y) and Cüp2"1's,(i )p'5'1's  
are modified weights used for avoiding the singularities at x=CT and x=2CT , respectively, 
(see e.g. Fraser [s,19j and Chan and Fraser [ll| ). The variables o>p and xp are chosen such 
that Xp= Crp=ph, p= l,2 ........n.

An essential point in the determination of the integrals in Eqs (2.1) — (2.7) is  the 
calculation of the sta rting  values of the functions f ^ ,v>^(x) and g£'''’"'> i .e . the ir
values a t x„ = h, O' = h. (Note that f j ^ ’ ^ ÍO )  = 0, g i* , ' > ^(0) = 0). In order to find the

P (Ç o) ^  ̂ ( l)  ^sta rting  value of f^ ’ '(x ) we consider the Taylor expansion of ' ,  f (̂)LL) and ĝ IyU.) 
around the origin. From Eqs (8a), (10), (16a), we can prove that

2 3
u£1}~  ( | - 2 + y p - y p  + . . . ) +  £ 1>31(x) (-0.431 X + 0.345 x3 + . . . )  . (2.6)

Also, i t  is  known, (see e.q. [го], p.490), that

4  ( / °  “  ("2fc}+1 ) ! ! -1 ) + 2 ! (2 ^ ^ 2 X V 5 )  + •••} - (2-7)
and « r\ r\

3- (/1 ) o, I 2 L ± 1 ----------------+ , (2.8)
1 (2 t +1)JLC L 1 !(2-t - 1  ) 2 ! ( 2 l - l ) ( 3 l  -2 )  J

where Д=к^х.

Assuming that f ^ ’^^(x) behaves close to the origin as

f j i ' ° )  x  Cxx i+1 + C2x 1+2 * C3x * +3 + . . .  , (2.9)

therefore, substitution from Eqs (2.6) — (2.9) into Eq. (2.3) yields
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С1 5,i l
kî+1kl
T 2 Г туп (2.10а)

and
с2 = сх/(  I +1)

сз = т г ^ з  (г п : _ (1 + ki /2)) '

(2.10Ь)

(2.10с)

Introducing the constants С,, С0 and С-, into Eq. (2.9) and setting  x = h, we obtain a 
n  nl 1 ^ Jsta rting  value for ’ Чх). (Note that the f i r s t  three terms of Eq. (2.9) are enough for 

obtaining th is  value especially when h is  reasonably small). Remark also that the main con
tribution to the starting  value is  due to the s ta t ic  potential involved in and the 
inclusion of the polarisation potential has almost no effect on th is  value.

In order to find the sta rting  values of f ^ ’ ^ ( x )  and g^1 O0, we have to know 
the behaviour of q^1. v_1)(x) and V ') close to the origin. Gur investigation of th is  
problem enabled us to express 1^(x) as

Q̂ i ,V ~ l) (x) = ^  xt+l  + C2 xt+2 + . . .  , (2.11)

where C ,̂ ТУ,, . . .  are dependent on i  and V. Again, assuming that f ^ ’^ C x )  is  expanded by

ffc(1-V> }(x) = Cj x{+1 + C2 xt+2 + C3 xi+3 + . . .  , (2.12)

one can show from Eqs (2.6), (2 .7), (2.8), (2.11) and (2.12) that and C2 are identical 
to those given by Eqs (2.10a) and (2.10b), respectively, while rela tes to and Ĉ  by

C3 = (C1/(2 Í  +3)) { l /C l+ l)  -  (l+k^/2)} + +3). (2.13)

The constants and C2 are roughly estimated by the relations

Ci Q̂ 1 ,i;_ i:)(h)/h ^+1 -  C2h , (2.14a)
and

C2 ~ ( l /h )  {Q^i ’V_1)(2h)i' +1/(2h) +1- 0 ^ >  _1)(h)/h +1 . (2.14b)

Therefore, we can use Eqs (2.10a), (2.10b), (2.13) and (2.14a,b) in order to obtain a 
sta rting  value for f j 1,V>\ x )  a t x = h by employing Eq. (2.12). The preceding procedure can 
be applied for calculating starting  values for g ^ ’^ ÍO O  at d ifferent L's, i ' s  and V s .
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VIBRATIONAL TRANSITION PROBABILITY DATA FOR THE BAND SYSTEM А1-П> X1! ^  of AsP 

N. RAJAMANICKAM
Department of Physics, University of Mysore 
Mysore 570 006, India

(Received 15 Duly 1987)

The Franck-Condon factors (vibrational transition  probabilities) and r-centroids 
have been evaluated by the more reliab le numerical integration procedure for the bands of
the Â TT-»X'1‘ Z* system of the AsP molecule, using a suitable po ten tia l. The reported values 
of Franck-Condon factors by Sinha and Chatterjee are found to be erroneous.

1. Introduction
The theoretical prediction of intensity d istribu tion  in the molecular band system 

requires the knowledge of vibrational transition probabilities which are to a good approxi
mation proportional to the Franck-Condon factors (qv >vit)- A precise knowledge of Franck- 
Condon (FC) factors and related quantities are essen tial to understand and to calculate many 
important aspects of the molecules, e.g. radiative life-tim es, vibrational temperatures and 
kinetics of energy transfer.

While constructing potential energy curves for the evaluation of dissociation energy 
of AsP molecule [ l ] , some discrepancies were noticed between the curves reported by Sinha 
and Chatterjee £2] .  Therefore, the reliable values of FC factors (qv ,vn) and r-centroids 
(r ,v„) for the bands of the A ^TT-^X f system of the AsP molecule have been computed in 
the present study by the more accurate numerical integration procedure, using the suitable 
potential. The reported values of FC factors by Sinha and Chatterjee [ 2J are found to be 
erroneous.

2. Franck-Condon factors and r-centroids
One of the parameters which controls the in tensity  distribution in the emmission of 

molecular bands is  the FC factor. The square of the overlap integral is  termed as FC 
factor [3] ,

V v "  ' Ü ^ v '  < J V d r J  2  ’ ( 1 )

where (|)v, and(|)v„ are the vibrational wave functions for the upper and lower s ta te s , 
respectively. The r-centroid is  a unique value of internuclear separation which may be as
sociated with a v'—>-v" band and defined as

ф у -dr

J 4 v  ( |V 'dr
( 2)

Present address: Department of Physics, VHNSN College, Virudhunagar — 626 001, India
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For a proper understanding of the intensity distributions in the band systems of the 
molecules, i t  is  necessary to choose a suitable potential. The Morse M  potential yields 
accurate FC factors, especially for vibrational transitions involving low quantum numbers 
[ s j . The potential energy curves for the electronic sta te s  of A- and X- of AsP have been 
constructed using the Morse function [ 4J  and by Rydberg — Klein — Rees (RKR) procedure as 
modified by Vanderslice et al [é j. In Table I, the computed values of the turning points 
are given for the molecular vibration in the electronic states A- and X- of AsP. I t  is  found 
that the Morse function represents the potential energy curves of the two states quite 
adequately since the RKR curve is  nearly similar as the Morse curve.

Table I
Turning points for the molecular vibration in A and X sta te s  of AsP

G(v)
(m"1) x 102

Morse RKR

V A X A X A X

rmax rmin Гmax
(m)x

г . min
10-10

гmax rmin Гmax rmin

0 237.23 301.51 2.1597 2.0457 2.0516 1.9505 2.1601 2.0461 2.0518 1.9508
1 708.51 901.57 2.2072 2.0090 2.0929 1.9174 2.2074 2.0092 2.0932 1.9176
2 1175.55 1497.67 2.2420 1.9852 2.1229 1.8957 2.2419 1.9851 2.1231 1.8958
3 1638.35 2089.81 2.2716 1.9666 2.1483 1.8786 2.2713 1.9663 2.1484 1.8787
4 2096.91 - 2.2983 1.9511 - 2.2977 1.9505 - -

The computation of the FC factors are made by Bates's method [ 7J of numerical in te 
gration according to the detailed procedure provided by Tawde and Sreedhara Murthy [e j and 
Rajamanickam [ 9 ]. Morse wave functions were calculated using TDC-316 computer at intervals 
of 0.005 x 10”1 m for the range of г from 1.65 x lO”*0 m to 2.35 x 10~10 m for every 
observed vibrational level of each s ta te . Once the appropriate wave functions are obtained, 
the FC factors can be evaluated by integrating the expression (1). In the case of Morse 
function, Fraser and lármáin [loj gave a procedure for analytical integration of the overlap 
in tegral. The resu lts  are generally, however, only indicative of trends [If] . The integra
tion is therefore carried out numerically in the present study. The defin ition  of r-centroid 
offers a method of computing r-centroids directly. Integrals in the Eqs (1) and (2) for the 
FC factors (qv,v„) and r-centroids Crv ivn) were computed numerically and the results are 
entered in Table II . The r-centroids were computed by graphical and quadratic equation 
methods [l2] and lis te d  for comparison. The wavelengths data [l5] are also entered.
The molecular constants [хз] used in the present study are listed  in Table III.

3. Results and disrfussion
Sinha and Chatterjee [ 2J have reported Morse FC factors by approximate analytical 

integration method for the band system (A-X) of AsP and r-centroids by the graphical and 
quadratic equation methods which are not safest [14] . The reported qv>v.. and f  , „ values 
by Sinha and Chatterjee are also given in  Table II for comparison. They have also used the 
same molecular constants provided by Harding et al [13| .
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Table II
Franck—Condon factors (ду1у„) and г-centroids (гу, ,,) for the band system (A -  X) of AsP

v' ,v"
(m) X

 
V

 
__ 

< 
о

1 
< 

I—
* 

=
о

V v " V v " (m) X 10 10

Present
study

Sinha
and

Chatterjee

Numerical n , 
integration GraPhlcal Quadratic

Present
study

Present
study

Sinha and 
Chatterjee

Present
study

Sinha and 
Chatterjee

0,0 3090.7 0.166 0.119 2.049 2.049 2.045 2.048 2.041
0,1 3149.1 0.308 0.566 2.081 2.082 2.076 2.079 2.073
0,2 3209.3 0.276 0.196 2.112 2.112 2.106 2.110 2.106
1,0 3046.3 0.281 0.201 2.024 2.025 2.017 2.023 2.016
1,1 3103.0 0.106 0.037 2.056 2.055 2.050 2.055 2.048
1,3 3221.В 0.146 - 2.119 2.118 2.114 2.116 2.112
2,0 3003.6 0.253 0.181 2.000 2.001 1.993 1.998 1.991
2,1 3058.6 0.002 0.003 2.032 2.031 2.024 2.030 2.022
2,2 3115.3 0.153 - 2.063 2.064 2.057 2.062 2.055
3,0 2962.4 0.162 - 1.976 1.977 1.969 1.973 1.967
3,1 3016.2 0.097 - 2.007 2.007 2.002 2.005 1.998
4,1 2975.5 0.166 - 1.983 1.983 1.974 1.980 1.972

Table I II
Molecular constants for the band system (A -  X) of AsP

Molecular sta te A X

( ^ ( n f 1 )  X 102 475.52 604.02

( Д э У т '1) X 102 2.12 1.98
Be  ( n f 1 )  X 102 0.1744 0.1925

c y m " 1 )  X 102 0.0009 0.0008
r  (m )  X 10"10 2.100 1.999e

Harding e t al have analyzed 5 most intense bands (2,0), (1 ,0), (0,0), (0,1), (0 ,2).
As is  shown in Table II , the orders of magnitude of the FC factors of these bands suggest 
that they are more intense. There are, however, large differences in Sinha and Chatterjee 
values of qvivu from the present resu lts. In the case of Y0 band systems also such large 
differences in qv,уМ values have been reported by approximate analytical and accurate 
numerical integration methods §-5 — iá] . The FC factors of (1,3), (2 ,2), (3,0), (3 ,1), (4,1) 
bands indicate that they also have appreciable in tensity . Harding e t al have observed these 
intense bands experimentally. But Sinha and Chatterjee have not reported the values of qytyM 
for these bands.

Since rg > T g , гу1у„ increases with wavelength which is expected in a red-degraded 
band system. The sequence difference for th is system is  found to be constant and is  less 
than 0.01 X 10" ̂  m.

53



N. RAJAMANICKAM

In the present study, the qv,v„ and гу1у„ values have been evaluated by the more ac
curate numerical integration method and therefore can be considered reliab le .
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Electron — positron pair creation in strong Coulomb fields is  outlined. I t  is  shown 
that the singular behaviour of the adiabatic basis can be remdved i f  solutions of the time 
dependent external field  Dirac equation are used as a basis to expand the fermion fie ld  
operator. This la tte r  "asymptotic basis" makes i t  possible to introduce Feynman-propagator. 
Applying the reduction technique, the computation of a l l  of the basic quantities can be 
reduced to the solution of an integral equation. The positron spectrum for separable 
potential model with Lorentzian time dependence and for potential jump is  analyzed in the 
pole approximation in the second part of our series.

1. Introduction
External field  problems constitute a special class of problems in quantum fie ld  theory, 

which though easily reducible to c-number problem, at the same time exhibits particle  
creation, one of the most remarkable effects of quantum fields L1 -  б]. Physically the 
origin of the created particles can be traced to the influence of the external fie ld s on the 
vacuum sta te  vector whose change is  accompanied by release (or, in some cases, by capture) 
of particles.

A rather unique possib ility  for the study of the reaction of the vacuum on the varia
tion of the external fields is  offered by the collision of two heavy-ions like uranium [7, 
в] . To very good accuracy, the motion of the ions can be treated classically  with the back 
reaction of the quantum fie ld s neglected.

Confining ourselves to adiabatic approximation, the process is  best described in terms 
of the energy Eg of the lowest bound sta te of the electronic Dirac equation in the fie ld  of 
two charges fixed at a distance R.

2Obviously, for large separations Eg is  less than me , where m is  the electron mass, 
and larger than zero since the ion charge is  less than 137e [^9j. When R becomes smaller the
energy E„ of the lowest bound s ta te , decreasing monotonically, becomes negative and even-

° 2 tually a t some c ritica l value Rc of the ionic distance reaches -me , the top of the negative
energy continuum. For even closer approach (R<( Rc) the sta te  under consideration ceases to 
exist as an individual eigenstate of the two-center Oirac Hamiltonian, but i t s  effect 
manifests i ts e lf  in the strong perturbation of the negative energy continuum sta tes within 
a narrow energy interval whose center, which for decreasing R goes lower and lower, can be 
interpreted as a continuation of Eg. When th is  sta te  is  empty, the energy of the electron — 
positron fie ld  may decrease by means of creating an electron in th is  sta te  and, simultaneous
ly , emitting an outcoming positron in order to ensure charge conservation. In short, one may 
expect that the stable electron — positron vacuum at R< Rc has an excess charge e with 
respect to the stable vacuum at R> Rc . We w ill refer to these vacuum states as charged and

Acta Physica Hungarica 63, 1988 
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neutral vacuum Respectively [jiJ. When the sta te  В is  originally f il le d , no positron emission 
is  possible.

Up to now we have considered R as a fixed parameter in the Dirac equation. Actually R 
depends on time and, as a consequence, in Schrôdinger picture the s ta te  vector of the system 
w ill, in general, depend on time as well. As the ions approach each other in the region 
R > R , then, depending on their velocity, the sta te  vector acquires components, describing 
one or more electron — positron pairs of various energy on the background of the neutral 
vacuum. This type of pair production which is  induced by the motion of the nuclei becomes 
zero in the adiabatic lim it when the motion of the ions is  very slow.

However, when the distance between the centers becomes smaller than R the situation 
changes d rastica lly  since the adiabaticity  of the motion can no longer prohibit pair pro
duction, and a new spontaneous pair production process appears. One may expect that in the 
supercritical period the time dependence of the sta te  vector becomes to a large extent in
dependent of the motion of the centers, and sim ilarly to a radioactive decay, a new sta te  
w ill be approached, corresponding to an outgoing positron on the background of the charged 
vacuum. Later, when R becomes large again, in conjunction with the d istan t positron an 
electron on the background of the neutral vacuum appears also, which is  bound to the lowest 
s ta te , reestablished at R>  R . (We note, that, now and in the following, we do not take 
care of spin degeneracy.)

The properties of the spontaneous positron production just described depend c rit ic a lly  
on the single p a rtic le  states of the two-center Dirac equation at the top of the negative 
energy continuum. The law of spontaneous positron decay is  essentially governed by the 
kinetics of the rearrangement of the electrons in the Dirac sea among these single-particle 
continuum sta tes .

At f i r s t  sigh t, nothing seems to prohibit th is  rearrangement process and, therefore, 
instantaneous positron emission is  expected with smooth energy distribution [id] . However,
as c larified  in the beautiful paper И .  when the Dirac equation is transformed into second

?order form of a Schrôdinger equation, at energies about -me there appears a strong barrier 
and the necessity of penetration through i t  presumably makes positron emission exponential 
in time with Lorentzian energy d istribution . Though th is  conclusion was drawn for a 
spherically symmetric potential rather than for the two-center Dirac equation i t  may well 
survive for a real collision  process, too.

We see that heavy ion collisions provide a much more sensitive te s t of our notion of 
the quantum fie ld  theoretic vacuum than do the problems mentioned ea rlie r . During the la st 
ten years great effo rts  have been made [12] to observe the solitary positron peak which was 
predicted to accompany a supercritical heavy ion collision , but so far no part of the 
positron spectrum could be convincingly identified with the expected peak.

External f ie ld  problems exhibiting particle creation, are always time dependent'*' and 
the ir quantitative treatment requires solution of time dependent quantum mechanical equa
tions. This is  obvious for induced pair production but the actual properties of the 
spontaneous creation may also be influenced by the motion of the ions in the region R <R c>

*“An important exception is  partic le  production in a constant e lec tric  field  [llj which 
requires special consideration.
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This influence which will be called "the effect of the moving pole" has been completely out
side of out previous discussion. Indeed, exponential positron production can be expected 
only if  the nuclei are fixed at some R < Rc £9] .

Our review, though mainly pedagogical, pays special attention to the time dependent 
aspect of the problem. In the f i r s t  part we outline the general description of Coulomb pair- 
creation. We ca ll attention to the fact that there are two distinct methods to describe 
quantized fermion fields which d iffe r from each other in single p a rtic le  states used to  ex
pand the fermion fie ld  operator. The adiabatic method, employed by the Frankfurt group [V], 
has the disadvantage that at R=Rc one of the basis functions (the lowest energy bound sta te ) 
disappears. We point out that such a singular behaviour can be completely avoided with the 
aid of a basis whose members sa tisfy  the time dependent Dirac equation.

This la tte r  basis, which we ca ll asymptotic, makes i t  possible to  conveniently in tro 
duce Feynman propagator whose importance for the calculation of exclusive probabilities has 
been recognized in cosmological p artic le  production [l3j . Using reduction technique, we ex
press the probabilities for the fundamental processes in terms of a single amplitude and 
derive an integral equation for th is  amplitude i t s e l f .  Our considerations will be based on 
th is  integral equation.

In the second part we discuss some model calculations. The d if f ic u ltie s  connected with 
the time dependence can be somewhat reduced by expanding the time dependent potential into a 
sum of separable potentials [14] . This technique has recently been used in nuclear physics 
for the description of some aspects of heavy-ion co llisions [ l]  . Here we apply the method 
in conjunction with the Dirac equation. We found i t  necessary to introduce a further approxi
mation (we ca ll i t  pole approximation) which in some cases leads to soluble equations with
out eliminating the effect of the moving pole.

In spite of the partial resu lts  in handling time dependence, our review aims f i r s t  of 
a l l  a t a self-contained introduction into the f ie ld  of Coulomb pair-production. We confine 
ourselves to spherical potentials since so far even re a lis tic  attempts usually end up with 
spherically symmetric approximations [в]. A more complete version of th is  paper can be found 
in [ б ] . Dirac equation with separable potentials is  considered in separate publications 
[17, 18].

2. External field  problem as a linear canonical transformation
External f ie ld  problems are most easily treated in the Heisenberg picture. The 

dynamical variables which describe a fermion quantum fie ld  are the spinor operators Ip  ( x , t ) , 
( |;+(x ,t) which must obey the equal-time anticommutation relations

£^T(x,t); tfT+(x ',t)}  = 5(x  -  x) [(fF (x ,t); ^ ( x ’, t ) }  = 0  . (2.1)

In Heisenberg picture ^ ( x , t )  depends on time in a canonical manner

^  ф (х ,1 )  = i  [ H ( t ) ,  4T(x,t)J , (2.2)
where

Ж ( t)  = J d 3x (jT+(x ,t) H (x,t)ljF (x ,t) (2.3)

and П  is  the single-particle Dirac Hamiltonian:
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H(x,t) = - o l( i ,^ ~  + e A(x,t) + e V(x,t) + m |°  . (2.4)

The above rela tions lead to the equation

i (fX x.t) = H (x ,t)q ;(x ,t)  , (2 . 5)

which can be cast into the form of the Dirac equation

0(A) ( |T =  eV  ) -  m} Ф  « 0 • ( 2 . 6 )

Equations (2.2) and (2.6) which are the basic formulae of the theory can be sa tis fie d  
by either of the following two Ansatzes:

lp (x ,t )  = ^ ^ bj ( t ) 1 .y ( - » ' t ) *

ip ( x ,t )  = 2 { bj ^ (j ) ( ï>t )  + ( 2 . 8 )

In the f i r s t  line b^(t), d*(t) are time dependent operators which obey the equal-time 
anticommutation relations

{ b .( t ) ,  b j( t)}  = (d i ( t ) ,  d*(t)} = 5 j j  , (2.9)

^bi ( t ) ,  bj(t)} = [ d i (t> d j( t ) j  = ^ ( t ) ,  dj(t)}  = { ^ ( t ) ,  dj(t)J = 0

(Î)
and the Dirac spinors 4 V ' (x ,t)  are eigenfunctions of H(x,t):

= E ^ t ) * ! ^ * . «  . (2.10)

Here negative energy continuum s ta te s  are labelled by minus (an tipartic le  states) a l l  the 
remaining s ta te s  by plus sign (p a rtic le  sta tes). The degree of arb itrariness of th is as
signment w ill be discussed in a la te r  section.

The spinors 'Ч , being eigenstates of the Hermitean operator H, form a complete and 
orthonormal basis. I t  is easy to verify that these relations together with (2.9) are suf
fic ien t for the validity  of the commutation relations (2.1). In order to satisfy (2 .2), Eq. 
(2.7) can be substituted into (2.5) and using the orthonormality and the completeness of the 
eigenfunctions, the following equations of motion for the annihilation operators can be 
obtained.

i &  bi «  = E ^ t )  bi ( t)  - i £  j c f ^ o t ) ,  - L ± —  b . ( t ) )

'й 'и ( - )
+ a | +)( t) ,  Lj &  d+(t)) 

1 'cJt J
( 2 . 11)
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i ^ c t ) E<_)( t)  d+(t) 1 2 [< 1 < - <«• — % T ~  » 3 « »

T> dJ ( t ) ) J

I t  can be shown that the equations of motion (2.11) are consistent with (2.9). The only 
remaining step in the characterization of the solution (2.7) is to define the operators b(t) 
and d(t) a t some given moment of time. To th is end we f i r s t  substitu te (2.7) into (2.3):

U ( t )  = 2 Í E (+)(t)  b*(t) b ( t)  -  (e!; }( t) )  d+(t) d * (t)} 2 E ^_)( t)  . (2.12)
A » J  J  J  J  J  J  JJ J

Since only energy differences are observable the remaining constant, in the lim it t  — oo , 
of the la s t term of (2.12) can be disregarded. Before the variation of the external f ie ld  
A(x,t) sets in ^ У ( t)  and E ^ ( t )  are independent of time and we can write the solution of 
the operator equations of motion (2.11) in a somewhat lose notation as

b ^ t )  = b ^ - « ) d*(t) di (- е '1Е̂ ( Е р -  E p ( i S 0

Then, as t  — H(t ) takes on the same p artic le  form as a free f ie ld  hence bj(—«>), 
bj(— oo), dj(—»о), dj(— =*>) can be interpreted as absorption and emission operators and

N ^ ( — « )  = b+ ( -~ )  b . ( - ~ )  , N ^ ( —»») = d*(—<*o) d . ( - ~ )
J J J J J J

as fermion and antifermion number operators at t  — * Therefore,

}t(-«>) = 2 {Ej +) Nj +)(—oo) + ( -  E<_)) N ^ i-o o )}  .

The vacuum is  defined by the relations

bj(— °®) 10, in >  = dj(—=«) 10, in >  = 0 

and has zero energy.
Throughout the paper we w ill confine ourselves to the case when the sta tic  external 

fie ld s before and afte r the process are the same and for H(+®o) we obtain again the form

where
11 (+00) * ? t £j +) NS+)(+oe) + Nj ' )( ■

Nj+^(+oo) = bj(+««) bj(+~>) , Nj ^(+®o) = dj(+«o) dj(+=o)

bj(+«o), bj(+oo), dj(+««), d j(+ « ) being the absorption and emission operators for times 
a fte r the process has been accomplished. At t — the vacuum s ta te  |o , ou t> is the
solution of the equations

(2.13)bj(+«o) I 0, out >  = dj(+=o) I 0, out >  = 0 .
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Owing to the "particle form" of H(— •») we can identify the vectors Ь*(—«о) |0 , in > ,  
d j ( - « ) |  0, in >  with the single electron and positron states at the beginning of the 
process. For continuum states when the indices i , j  beside spin projection contain the 
momentum^ th is  identification  imposes certain constraints on the spinors T  ̂ 4_x,t) which 
are the wave functions of the above sta tes:

lim < 0 ,  in | tf /(x ,t)  bj^(t) I 0, in >  = "4 £+^ (x ,-~ )  = X£+^(x) ,

< 0 ,  ini (£J(x,t) d^(t) I 0, in >  = T = X£~^(x) ,

where the functions XjJ 4x) are the solutions of the eigenvalue equations

HCx.-oo) X ^ î ) (x) = H (X.+ -0) Х ^ ( х )  = X ^ > ( x )  .

In the continuous spectrum the eigenvalue does not specify uniquely the spinors
' 'I f  \ x , t )  — th e ir  asymptotic form contains beside the plane wave of momentum к either an
outgoing or an incoming scattered wave. These solutions will be denoted by 'T, and
4  £ ^ ^ ( x . t )  .respectively. When a wave packet is  formed from the solutions near k^ only
the in type solutions lead at t —>— oo to a pure incoming packet and for t  —> + only the
out spinors give r is e  to an outgoing packet. Therefore, only if  we employ the in type
solutions in (2.7) can bî(— *») I 0, in > ,  dt(— °°) 10, in  >  be interpreted justly as electron J J ( i )
and positron s ta te s  a t t —» —°oand can b .(—*>), d .(—~ ) , N: '  be denoted consistently as 
b .in , d jln , N ^ in . For bound s ta te s  ^  în = <\^(-)out _ ^ ( - )  an(j the index in of the 
corresponding operators can be omitted also.

Now i t  is  c lear that since the wave function a t t —> + =omust be an out type spinor 
bj(+<*>) I 0, o u t>  and dj(+“>) I 0, out >  must not be interpreted as s ta te  vectors for f in a l 
sta te s  because e .g .:

< 0 ,  o u t |4 / ( x , t )  bj^(t) I 0, o u t>  -t 2£T'<*. X k+)Ín( * ) * * k +)0Ut)(*) •

The reason is  that once we have fixed the type of the solution of (2.10) at t —> — 
i t  is  not allowed to change th is  definition at some intermediate instan t because th is would 
lead to singu larities in the equations of motion (2.11) of the operators b (t) and d (t). 
Instead, we introduce the S-matrix fo r the s ta tic  Hamiltonian H(x,i*>o)

sp  = ( X [ i)ou\  X ( i) in )
and define

P . HRASKÚ e t  a l

.out 2  S(+)
3

bj(+ oo) .out 2  s.(-)
i j dj(+ « (2.14)

Then the wave functions, corresponding to the sta te s  b j0ut I 0, o u t>  and dj0Lrt |0 , out j> 
w ill be of out type ones as required. Moreover, since S is  unitary and conserves energy the 
out operators sa tis fy  (2.9) and provide a "particle form" for H(+oo):

u ( + - )  = 2 : { ej+) Nj +)out (—Ej_)) Nj-)out ' (2.15)
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We have accomplished the description of the f i r s t  approach which will be called 
"adiabatic" since i t  is  the set of the adiabatic eigenstates T o f  H(x,t) which serves 
as a basis in (2.7) for the expansion of IfJCxjt).

The second approach based on (2.8) can be given the name "asymptotic" since the basis 
ip j  \ x , t )  will be assumed to satisfy the Dirac equation (2.6), and from the variety of the 

solutions an orthonormal complete set will be selected with the aid of the asymptotic 
condition

L p f ) ln ( x , t )  X ^ ) in (x) e ' iEj  * = X f  ])in( x , t )  . (2.16)

Then for t - > — oo both expansions (2.7) and (2.8) are identical and b.; d+ in (2.8) may be
identified  with b*n; d+^n 

J ’ 3
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T J T C x . t )  =  2  ( b 5 l n ( | ) 5 + ) i n ( x , t )  +  d j i n  ( J ) ^ ) i n ( x , t ) ] (2.17)

We note that in this case the operators b  ̂ and d  ̂ are independent of time. Obviously 
IJKjXjt) also sa tis f ie s+(2.6). The canonical anticommutation relations are also fu lf ille d  
since the functions ф   ̂ '>in at any instant form a complete orthonormal se t. Indeed, for 
t —» — they do so because of the condition (2.16) but the scalar product of two arbitrary
solutions to (2.5) is  independent of time.

Consider now the lim it t —*■+<*). If  we substitute (2.17) into (2.3) we obtain a 
"particle form" only fo j t —> —»»since for intermediate and large moments of time the 
elements of the set ф   ̂ ^in 0<,t) are not eigenstates of H(x,t). In order to obtain a 
"particle form" for H(+°») too we define another se t of solutions by the dordition

4 ) f )out(x ,t) •^(i)out
( . X , t ) (2.18)

Obviously, th is set is  also orthonormal and complete set at any given t  and we can expand 
either se t in terms of the other. In an obvious matrix notation

ф ( +)Ш = фС-Oout^ + (j,(-)out 

ф (-)Щ  = q /O o u t ^  +Cp (-)o u tw

<3 , ( jj(+)out = ф (+)1п w; + (J),(-)in

V
(-)out _ , |1(+)inфС+)1п w+ +ф |(-)in

where the time independent matrices Ŵ defined as

W =f “ ‘
W2 \

1 » , w4 /

((p(+)°ut, ф (+>1п) ( ф (+>ои\  (p(-)in)\
(-)out ,[,( + )in(ф̂ -;оих, ф (-)out ,l,(-) in( ф ^ ои\  Ф

satisfy  the relations

61



P . HRASKÚ e t  a l

+ w2 = 1 W3 W3 + W4 W4 = 1 •

W: W+ + W2 w4 = 0 , W2 +  Wj W4  = 0 (2.19)

WJ w3 + W3 w3 = 1 W2 w2 + W4 W4 = ! ,

which follow from the orthonormality and completeness of the out and in se ts of (j) .
We can now express the in type spinors in (2.17) in terms of the out type ones:

Ifr (x ,t)  t |)J+)out (x ,t)  + d+°ut t | ) ^ )out(x ,t)}  , ( 2 . 20)

where we introduced the coefficients

,out = Wlbin H- W2d+in , bin = W* b1

l+out = W3bln + W4d+ln , d+in = W2 1

out .+outк Kj d
( 2 . 21)

As the notation implies these new coefficients may be consistently identified with the out 
operators since when (2.20) is substituted into (2.3) we obtain for H(+«o) the expression 
(2.15) and due to (2.18) the wave packets formed from the states b£ou*| 0, o u t>  and 
d+out J o u t>  behave correctly for large times. Due to  (2.19) the anticommutation re la
tions are also preserved so (2.21) can be properly called a linear canonical transformation. 
Notice that for a potential which is  constant for a ll moments of time

w: = S(+) , w4 = s (- ) , w2 = w3 = 0 .

As i t  w ill turn out la te r  the matrix elements of W normally called Bogoliubov coefficients 
are of basic importance for the expression of the observable quantities.

Both approaches when applicable are equivalent but the asymptotic approach is  of wider 
scope. In the defin ition  (2.10) of the adiabatic basis i t  is  tac itly  assumed that sta tes 
with a given index vary continuously in time. For the continuum sta tes th is  requirement 
seems not to pose special problems because the continuous spectrum is  unchanged in time and 
sta te s  with given momentum and polarization can be naturally associated at different moments 
of time. In the d iscre te  spectrum the identity of the levels is  unambiguously conserved only 
i f  there is no level crossing. Moreover, for a supercritical system the lowest bound sta te 
of H disappears of the spectrum (see Section 5 for deta ils) when the c r it ic a l point is  
reached and reappears again when the system crosses the c r it ic a l point in the backward 
direction.

At these moments the annihilation operators corresponding to the aforementioned 
eigenstates, disappear and reappear again and a rather awkward matching procedure is  re
quired to ensure continuity at these moments of time [7 j.

These severe singularities at the moments of c r i t ic a l  transitions are the properties 
of the basis used in the adiabatic approach rather than those of the solution and in th is 
respect they resemble coordinate singu larities. They are completely avoided in the
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asymptotic approach which from th is point of view seems superior. I t  must be noted, however, 
that from a computational point of view neither of these schemes seems efficient and in fact 
we lack a computationally effective approach to partic le  production in time dependent fie ld s.

The end product of the solution by either adiabatic or asymptotic method is  the matrix 
W, i .e .  the Bogollubov coefficients whose existence, however, does not its e lf  guarantee the 
possib ility  to obtain answers to physical questions. One of the most important quantities is 
I <0,out I0 ,in>)2 the vacuum persistence probability, i .e .  the probability that no pairs 

are created at a l l .  The necessary and sufficient condition for | 0 , in >  and I 0 ,ou t>  to l ie  
in the same Hilbert space is  that the matrices W2 and be Hilbert -  Schmidt |l9] :

2 I ( W  ) | 2<~> , 2 l ( W 3L . I 2 < ~  . (2.22)
i . j  J i , j  J

When th is  condition is  not met no vector exists in the Hilbert space which is  annihilated by 
the operators bou  ̂ dou  ̂ computed according to (2.21) and no immediate physical in te rp re ta
tion can be given to the theory. In particular, the amplitude < 0 ,o u t | 0 ,in >  becomes a 
meaningless symbol.

A unitary operator U, connecting in and out operators

bout = UbinU_1 , dout = UdlnU_1 (2.23)

exists only i f  (2.22) is  sa tisfied  because (2.23) implies the existence of the sta te 
I 0,ouC>=Ul0,in.>. If this is  the case, the Bogoliubov transformation is said to be imple- 
mentable in the Hilbert space by unitary transformation [l9 -  2Í] .

3. Expectation values and transition  amplitudes
The average number of fermions or antifermions in state j  produced from the vacuum is  

given by the expressions

< 0 , i n |  N̂ + )o u t|0 , in >  = <  0, in I bj0ut b°ut I 0, in > =  2 |( W 2)i J | 2 ,

< 0 , i n |  N ^)out |0 , in >  = < 0 ,  in | d+aut d°ut |0 , in >  = S U W j ) ^ 2 .

More complicated expectation values can be calculated in the same manner. Comparing 
the above expressions with (2.22), we see that the physical meaning of implementability is  
that the average number of fermions and antifermions created in a single process must be 
fin ite .

Transition amplitudes which contain more detailed information about the process can be 
derived also. The four basic processes and their amplitudes are lis te d  in Table I. As i t  can 
be shown using some operator algebra [l?J

< 0 , |  out| boutJ
.out

dk 10, in >  = -Ajk < 0 ,o u t 1 0, in >  , (3.1)

< 0 ,1  out| dj ln
.+in

dk 1 0, in >= (B+)kj <  0,out 1 0, in >, (3.2)

where
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A = -W*'1 W3 = W2 W4X , B = -  Wj1 W2 = W3 1 .

These formulae furnish physical in terpretation  of the matrices A and В as relative ( i .e .  
divided by < 0 , out | 0 , i n »  amplitudes.

Table I

In itia l sta te Final s ta te Amplitude Relative
amplitude

Fermion in s ta te  j
.ou t .out□. □. j  кPair creation Vacuum antifermion in < 0 ,o u t | 10 ,in >  -Ajk

sta te к

Fermion in s ta te j
Annihilation antifermion in Vacuum <.0,outl . +in ,+in

bj  dk

CD

ACО

sta te  к

Particle
scattering

Fermion in s ta te к Fermion in s ta te  j <  0,out| bout bk^n,oд п> ftÇ-1) ^

Antiparticle Antifermion in Antifermion in
■out .in 

dj  dkscattering sta te  к sta te к < 0 ,o u t| 1 ° ’in >

A commonly quoted expression for the vacuum persistence probability can be obtained
2

from I det Ŵ| with the aid of the u n ita r ity relations (2.19) and the definitions of 
matrices A and B:

K .0 ,out I 0 , in > l2 = I det V. | 2 = -------- = -------------- Ц — .
det(l+A A) det(l+B B)

There ex is ts  a well defined approximation in which we discard pair creation and an
nihilation. Formally this approximation consists in neglecting the "frequency mixing" 
matrices W2 and Ŵ . Then obviously A=B=0,and <0 ,ou t I 0 ,in >  is equal to a phase factor and 
through (2.19) we obtain the expressions

CO.outl b°ut b*l n |0 , in > ^ ( W 1) .k ,

< 0 ,o u t | d°ut dkin |0 , i n > a (W4)*k ,

which indicate tha t many-particle contributions are neglected. Such a single particle ap
proximation used e.g. in [9] becomes applicable when external fields depend adiabatically 
on time provided the division of the states into p a rtic le  and an tipartic le  states is  proper
ly chosen (see Section 5).

4. The Feynman -  propagator approach
Canonical transformations which are linear when self-in teraction  is  absent are an 

ideal tool for the clarifica tion  of the physical content of a quantum field  theory but they
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turn out unsuited to the calculation of transition amplitudes because of the existence of 
the inverses (Ŵ ) ; (Ŵ )  ̂ in the corresponding formulae. This problem is  successfully
handled with the aid of the Feynman-propagator.

The Feynman-propagator is defined by the formula

K(x,x') = 1 < 0 .° и*1т (Ф(х) Ф +(х' )) I 0,in >  ^
<  0,out I0,in >

where x = (̂ <,t ) and T means time-ordering. This expression incorporates the inverses (Wp”1 
and (wp-1 . Indeed by substituting fo r ip  and \J)+ the expressions (2.17) or (2.20), we obtain

K(x.x') = - i  2  { B (t-t ')  (Wp1) ^  (|)^+)out(x) ф * (+Нп(х ') -

-  B t t ' - t K « ; 1 ^  ф ' ‘ ) 1 п ( х )  ф * ( ’ ) о и 1  (X 1) }  . ( 4 . 2 )

Now, the usefulness of К hinges on the possib ility  of whether i t  can be calculated 
independently of the Bogoliubov coefficients or not. Since К is one of the Green functions
of the single-particle Dirac equation which for potentials confined in space and time obeys
well defined boundary conditions, the f i r s t  possib ility  is  realized. Indeed, i t  can be 
easily verified that К s ta tis f ie s  the Green-function equations

0x K(x,x' ) = « ( x .x ') ^ ,  = 5 ( 4 ) ( x - x ' )  . (4.3)
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In order to establish the condition which se lects (4.2) from the variety of solutions
to (4.3) we fix  the space coordinates and t '  and investigate the behaviour of (4.2) at
t —» + 0« . When t —» + ■*> only the f i r s t  term survives and, owing to (2.18), the j-th  term
of the sum is proportional to exp f - i E ^ t )  . Since p artic le  states are those which l ie

(+)1above the lower continuum we have Ej -m i.e . as t —> + ~> К approaches a function of t  
whose Fourier transform consists of frequencies above (-m). We will refer to such functions 
as "positive frequency" functions though among bound sta tes negative values of E ^  
may occur.

When t —> - m  the terms in К behave as exp {-iE*“~^kt| where E^_}ç<-m i .e . К tends 
to a "negative frequency" function.

For fixed t ,  К is  again of positive frequency as t ’—*■ + »  and negative frequency as 
t 1—> - <*> , but th is  time i t  is  (+m) rather than (-m) which distinguishes between the two 
cases. Any redefinition of the partic le  and antipartic le  states leads to a corresponding 
change in the precise meaning of the positive and negative frequency function which, how
ever, can always be established from the context.

We are now led to a rule which permits us to se lec t the Feynman propagator among 
various Green functions as that solution of the Green function equation which approaches a 
positive (negative) frequency function when any of i t s  time arguments tends to positive 
(negative) in fin ity . Clearly, th is  principle permits us to calculate K(x,x') independently 
of the right hand side of (4.2).

A practical way of doing th is is  to transform (4.3) into integral equations with in 
homogeneities which incorporate the above boundary conditions. Retaining only the scalar 
potential V, the appropriate integral equations are of the form
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K(x.x') = K* (x ,x ')

K(x,x' ) = K?, (x ,x ')

Jï
d4x" KA (x,x") A  V(x") K (x",x ')  ,

d4x" K (x,x") Д V(x") Кл (x",x') .

In writing down these equations we have assumed that V is of the form

V(x) = A(t)V(x) = ( A + A \ ( t ) )  V(x) = 7\\IM  + Av( x)  ,

(4.4)

(4.5)

where A \ ( t )  > 0. (x ,x ')  is  the Feynman-propagator solution of the Green-functionc—̂ +
equation

0*X K* Cx.x ' )  = m ~ T ° A  V(x)) к л ( x , x ' )  = У 5 5 ( 4 ) (x-x’ ) (4.6)

and of i t s  conjugate. Applying 0^„ to (4.4) and 0^ x, to (4.5) and using the rela tion

0x = 0Ax -  /  A V « (4.7)

i t  is easy to show that (4.4) and (4.5) are indeed equivalent to (4 .3). If AV(x) =
= A\(t)V(x) vanishes sufficiently  rapidly as t —*- «  then i t  follows from (4.4) that the 
frequency content of K(x,x') as t , t ' —> - «  w ill be the same as th a t of K(x,x'), i . e .  the 
required one.

The only remaining step is  to extract from К the inverse matrices (Ŵ ) \  (Ŵ ) 3 or, 
more generally, the amplitudes of the four basic processes discussed in the preceding 
Section. As i t  is  easily verified with the aid of (4.2) we have

AjE = - i  Jd3x jd3x’ (J)j(+)out (x) K (x ,x1 ) C |^-)out(x') ,

Bjj = - i  Id3x Jd3x’ ф^( - )3п (x) K (x , x ' ) ф [ +)1п(х') ,

(W;-1) ^  = i  fd3x Jd3x’ ф ; « « *  (x) k (x>x.) ^ ( +>in (x-) , ( t > f )

(w“1)je  = - i  Jd3x Jd3x’ (p j(- )in (x) K (x ,x ' ) <4)£-)out(x ')  , ( t <  f  )

(4.8)

Within the domains indicated in the brackets the r .h .s .  of these expressions does not depend 
on t  and t 1.

The solution ф  of the fu ll  time-dependent Dirac equation can be eliminated from (4.8) 
in favour of the solutions X of the asymptotic ( t —W - oo) time-independent Dirac equation 
by means of a reduction procedure which at the same time eliminates the spurious time 
dependence too [1б] , and finally  we have

Ajj = - i  Jd 4x fd4x' (x) M(x,x') X ^  )out(x’)

= - i  Jd4x Jd4x' Х ^ - > 1П (x) M(x,x') %£+3ln (x ') ,
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(W*'1) ^  = O C j+ )o u t , - i  J d 4x J d 4x ’ % * ( + )o u t (x) M(x,x ') X ^ + ) ln ( x ' )  , (4 .9 )

(W-1) ^  = (X 5 ') in , ^ (t- )out) ♦ i j d 4x jd 4x' X j(- )in (x) M(x,x') X (t- )out(x ')  ,

where M(x,x') — the analogue of the T matrix in scattering theory — is defined by the 
equation

M(x.x') = A v(x’) 5 (4)(x- x')  + A  V(x) K(x,x' ) Av(x’) . (4.10)

the inverse of which can be written as

K(x.x') * K> (x,X1 ) + Jd4yJd4y' K* (x,y) M(y.y') K* ( y 'x ') . (4.11)

Expressions (4.9) contrary to (4.8) contain integration over time variable also. How
ever, the range of these integrations is  lim ited since, owing to the presence of the factors 
Av(x) in i ts  definition, M(x,x') fa lls  off a t large times as rapidly a s A \ ( t ) .  Because of 
i t s  good behaviour i t  seems expedient to work solely with M(x,x') instead of K(x,x'). Using 
the definition (4.10), i t  is  easy to transform (4.4,5) into integral equations for M.

COULOMB PAIR-CREATION I

M(x,x' )  = Av ( x )  5 ^ 4\ x - x ' )  + J d 4x" Av ( x)  KX (x ,x")  M(x",x ' )  , (4.12)

M(x,x' )  = AV(x) 5 (4 ) ( * - x ' )  + J d 4x" M(x,x") Kx ( x " , x ' )  A v ( x ’ ) . (4.13)

5. Criterion for supercritical transition
Consider that solution ^ g i ^ t )  of the adiabatic equation (2.10) which corresponds to 

the lowest bound sta te . Moments t^ of supercritica l transition can be defined formally by 
the relation  lim E„(t) = -m. In a given process one usually encounters two such moments 

t _ k tc
t ^  and tg2 ( tg j<  tç j)-  At tg j the system originally subcritical becomes supercritical 
while a t t ^  the subcritical situation is  restored. Supercritical transitions are charac
terized by the c rit ica l value Ac = X + A \ c of the coupling constant.

However, this definition is  a rather formal one which may have no bearing at a l l  on 
what really  happens. The point is  that the s ta tes ^  serve only as a more or less conve
nient basis for the expansion of the true s ta te  of the system and in terms of the true 
sta tes no moment of supercritical transition  can be defined because true s ta tes are not 
eigenstates of energy. Since we are considering the rea lis tic  situation in which the sub
c r it ic a l value of the potential is  always restored the very fact of the appearance of the 
supercritical vacuum in the role of a new vacuum sta te  during the process requires rather 
special circumstances for being convincingly established.

The most definite signal of a new supercritica l vacuum is  furnished by the study of 
the amplitude <  0,out |0 , i n >  . Let us assume that the function A ?\it) is characterized by 
an amplitudeA"\m and a time parameter T during which A \ ( t )  is  approximately equal to AX,,,- 
If in the interval T the system is  superciritcal ( I A"\mIMAXc l) and the sta te  В has been 
in it ia l ly  empty then, as explained in the Introduction, a positron is  emitted with a
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characteristic  decay ra te  T = )f'. Whenever the positron emission succeeds, the lowest 
bound s ta te , reappearing in the spectrum at the end of the process, will be f il le d . When 
Т . »  (/positron emission w ill be fully  accomplished and the vacuum persistence probability 
w ill be approximately equal to zero. I f ,  however, then in a considerable fraction of
the cases positron emission will be absent and the vacuum persistence probability may remain 
close to unity. We have, therefore,

lim I <0,out 
Т-» + ao

I 0 , in > |

i f  1 Д Х Ы Д Х ,

i f  | Д А | < | Д \ Г

(5.1)

In the la tte r  case |<0 ,ou t | 0 , in > p  will remain the closer to unity the slower is the 
change of the coupling function A X (t) since, when |A \ J < |  A X J , there is  no level 
crossing and, as, a consequence of the adiabatic theorem, the quantum sta te  of the system is 
maintained if  1. When, on the contrary, | Д \ т1>|ДХ.с| the adiabatic theorem
breaks down and the smallness of the ra tio  | д ’̂ ( |) |*5С1 no f°n9er prevents the in it ia l  
s ta te  of being transformed into a final sta te  which may even be orthogonal to the 
orig inal one.

When the lowest bound sta te is  f i l le d  at the beginning, i .e .  the Heisenberg state is 
I B ,in >  rather than | 0 , i n > ,  a supercritica l transition , in which the strength of the 

s ta te  В is  transferred to the sta tes of the lower continuum, does not create a hole in the 
vacuum charge density around the center of force and no positron emission can occur. As a 
re su lt , the nondecay probability |< B , out | В, in > |2 does not tend to zero as T—> + »  even 
for|A^-m(> - |ДХс| but remains close to unity especially when the rate of change of the 
potential is small. 2

We may, therefore, replace |<  0 ,out i 0 ,in > | on the l .h .s .  of (5.1) by the ratio 
|< 0 ,o u t |  O ,in > 0 < B ,o u t I B,ini>|. What is  gained by th is  apparent complication is that 
th is  new ratio  can be computed with the aid of (4.9). To see th is we note that our c la ss ifi
cation of states into partic le  and an tipartic le  states is  by no means the only possible one.
We may, for example, classify  the lowest energy bound s ta te  В as an an tipartic le  state 
without altering the c lassification  of the remaining s ta tes . This new description which is 
as legitimate as the original one will be called the "primed description" and notationally 
w ill be distinguished by a prime. The primed description d iffe rs  from the unprimed one by 
the replacement of bg in the expansions (2.7,8) by dg which is  an allowed step since in the
orig inal expansion no dg or dg occurred. Now, since bg=dg,, the Fock vacuum in the primed
description is  given by2

i n > 0, i n > I O', o u t>  = bp0Ut 10, o u t>

since i t  is  these s ta te s  which in primed description are annihilated by a l l  the absorption 
operators. In particular

dgin I O ',in >  = bgin I O', in >  = (bgin )2 10, i n >  = 0 .

2For sim plicity we disregard degeneration due to magnetic quantum number which is  
equivalent to considering d istinct p a rtia l waves
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But th is  means that |B ,in .>  = | O ', in >  , | B,out.> = |0 ',o u t.> a n d

I 0 , in  >  = hg11 |O ', in  j> = d ’+ln I 0 ' , i n >  , | 0 ,o u t>  = b°u t 10 ' ,  o u t >  = d£+out |0 ’ ,o u t> .

Therefore, using Table I and (4.9),

.out ,+in
<  0, out |0 , in >  < 0 ',o u t |° B  °B 10 ' ,  in >  ^ ,-1 )
< B ,ou t |B , in >  <  O ',out | 0 ' , i n >  4 BB

= 1 + i  J"d4x |d 4x' M' (x ,X1 ) X g '^ ( x ' )  .

In th is formula M '(x,x') differs from M(x,x'). Indeed, in  the primed description the 
notion of the positive and negative frequencies is  slightly changed with respect to our 
e a rlie r  convention since in the primed description Xg = X ^  while in the unprimed one we 
had Xg = X ^+). As a consequence, the boundary condition for the Feynman propagator К will 
depend on the kind of description and through (4.12,13) the difference between К and K' 
influences M.

We have, therefore, our criterion

Um |CŴ(_))BB I

i f  | A \ J  > | A A ci

i f  I Д Х  I <  I A X  Im c

(5.2)

We have established the r .h .s . of th is  equation on the basis of our in tu itiv e  notion, 
described in some detail in the Introduction, of how QED vacuum behaves in strong external 
time dependent e lec tric  fie ld s . Since we have a well defined scheme for the calculation of 
(W' 4) Igg, i t  becomes, in principle, possible to judge whether the actual mathematical model 
confirms our in tu itive picture or not.
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In a previous paper [_lj we investigated the general theoretical background of electron- 
positron pair creation in strong external e lec tric  fie ld s . In th is paper we apply the general 
formalism to calculate the positron spectrum for two types of time dependent separable 
potential: Lorentzian time dependence and potential jump.

1, A model with separable potential 
A nonlocal potential of the form

n

v = Х /З г 1

is  called an n-term separable potential. These types of potentials are often employed, e.g. 
in scattering theory because their use permits one to replace the integral equation for the 
scattering amplitude by a system of algebraic equations. Moreover, from the point of view of 
the amplitudes local potentials can be well approximated by sums of separable potentials. In 
what follows we do not claim re a lis tic  calculations and confine ourselves to a single-term 
separable potential

v(t) =\(t) v = ?\(t)i/J>«93| = ( V  A \ ( t ) ) j « >  «931 = X.v + Av , (l.i)

where 1/3 > is  an appropriately chosen normalized state in the Hilbert-space of the single- 
partic le  Dirac — Hamiltonian. In order to incorporate (1.1) into our ea rlie r  formulas they 
have to be rewritten for nonlocal potentials.
We have

M(x,x') = <  x|/3 X / 3IM (t,t') |/3><y3 | x '>  , (1.2)
where

</31 M ( t , t ') |/S > = A \( t )  5  C t-f  ) +Z 'i \ ( tX ^ |K ( t , t , )l/3>wilÀ(t')<93| K (t, t ' ) 1/3>  =

= Jd3x d3x,< /3| x > K (x ,x ')<  x 'l /3 >  .

U tilizing these formulas in (4.10) — (4.11) of £l] we obtain the following integral equations 
for < J3\ M (t,t')|/3 >  :

+GO
< /3 |M (t,t’) | / J >  =А_Л(t)  5 ( t - t ' )  + _ A ( t )  J  dt"<y3l ( t , t " ) ^ x y j |  M (t",t')l/3> ,

-oo (1.3)
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</SI M (t,t')l/3>= A X (t)  5 ( t - t ' )  + J dt"<#M (t,t")|/i></3|K Ä ( t " , t , ) | / 3 > A X ( f )  . (1.4)

Let us substitu te (1.2) in to  ^ ^ o fQ 'ja n d  use (2.16) and (2.18) of [ l]  for the eigen
functions У,:

A.t = - 2 r i < x 5 +)OUt| ^ <  ( b | ^ )0Ut>  M ( E « ,  E<->) ,

(B+)je  = - 2 t i < ^ ‘ ) in | P < P  I Xe+Hn> ^  (Ej _) > e(+> } - (1 ' 5)

cwT 1)je  - <  x r ° uV +)in >  -  2^ i < X j +)out) p > < l i ÿ i +)in> ' ii/(Ej+)- e(_)) >

(W-1) ^  = < ^ J - )in IX6( ‘ )0Ut >  - 2 i r i ^ j - ) in | ( i > <  ^ - )0Ut > - ( E ( - ) > E( - ) )  f

where the Fourier-transform o f< ß | M(t, t 1 ) |/3 >  is  defined as

M(E,E1 ) = J dt d f  elE t</3l M (t,f ) |ß > e lE 4 '.  (1.6)

Performing in (1.3), (1.4) Fourier-transformation, we obtain

M(E.E') = AX(E-E') + J dE"AX(E-E") F* (E") M (E",E') , (1.7)
- B e

M(E,E' ) = AX(E-E') + J dE" M (E,E") F* (E") A%(E"-E') , (1.8)
where -«• E

ДЛ(Е) = J -  J dt AX (t)  eiE ,

h  (E) = j  d t< /3l KX ( t)l/i> elEt , (1.9)

since owing to the time-independence of K to x ß l  ,K  ̂ (t , t  ' ) = Кл ( t - t  ' ).
We see, that in the case of time dependent potential models with separable potentials 

are not completely solvable — the scalar integral equations (1 .7), (1.8) remain to be solved.
The potential V will be assumed spherically symmetric. Then in any partial wave the 

Dirac equation can be reduced in  a well-known manner |2 ] to a two-component equation for 
the two-component spinor (u), in  terms of which the solution of the Dirac equation ф  has 
the form

u (r) ( I е- YpX ) .  \г
y (r )

г

b jm \
l+1 ,

(1 Ч+-1Х)зш 1
j = t -1 /2 (1.10)

being a Pauli-spinor and

(v p 0 1m = 2  < t \ l / 2 / x J  jm >Yj ;
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In working with separable potentials i t  became customary to employ momentum represen
tation in  which (1.10) takes the form

»  -
f 1 < > .* > ,

T  CYl* l
j  = t -1 /2  ,

where now У(д = v ( “ ) ‘
The Dirac-equation (2.5 — (2.6) of [ ljin ag iv en  partial wave and asymptotic indices

suppressed yields the two component formoo
J d p '<  p | 0 I p '>  Ф  (p' , t )  = 0 , ( 1 . 11)

where

and
< p I 0  ! p ' >  = < p I 0 n l P ’>  -  Tn< P l  v(t) I p’>

ъ
1ф - л p

. 0-p 1 < )̂t '

l  о

o - i

The sta te vector iy } > in  the separable potential (1.1) in the momentum representation 
has the components g(p), h(p), i .e .

< p |  v e t ) I P- >  = A(t)<p|/3><y3l p’>  = \ ( t )
g(p)

, h(p)
(g (p '), h (p ')) ( 1 . 12)

In order to decide whether a given potential produces supercritical transitions or 
not we must f i r s t  study the adiabatic s ta te s '^  , i .e .  solutions of (1.11) with time in
dependent coupling 7v> which belongs to the range of 7\.(t). The eigenvalue equation is

J dp' < p  I HJ | p l> W p ' )  = E X ( p ) , (1.13)
where

m -p 

-p -m

I t  can be formally written in the form

< p |  нл | р ' > 5 ( p - p ’ ) +л < р^ Х /3 1 р >  ; l^ P .* )  = 'X-(p) e
iEt

(Hr
where

-E)|% >= - \ | /3 X /3 |X >  , (1.14)

! / 3 1X >  = j  dp (gu + hv) = N .

Let us f ir s t  investigate the bound s ta te  solutions of (1.14) which will be denoted by 
|X B>  or |B > . If N were equal to zero then (1.14) would reduce to the free eigenvalue 
equation which does not possess normalizable solutions. So, for a bound sta te  we must have 
N /  0. I f  E is  any complex number whose imaginary part does not vanish when |Re E|^ä m,
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then the operator H -̂E has a unique inverse and the eigenvalue equation is

1 - A ,  F ( E )  = 0 ,

where

F ( E )  = < / â l  E — Hg I/Î >  = < ß l  E -  HQ =

= f dp
■</m A +(p)I/?>> < /3 lA _ (p )|/î>

J
0

Here

A + (p) = —

Е- »

rí—r 2  2

p 2+m2 E + \ j

+  1 2 2 p — Xi P +rï*

2 2 p + m

■P ) Г Т , —Ö /-2\J p +ГП
- p

2 2 /  p +m -m

are the usual energy-projectors and

< / 3 1  A + ( P ) | p >  = ( g ( p ) , h ( p ) ) A + ( p )
/g(p)

V h(p)
( g ( p ) , h ( p ) )  A 2+ ( p )

д(рЛ

i h ( p ) |

( 1 . 1 5 )

(1.16)

are nonnegative functions. The vanishing of either of these expressions for f in ite  values of 
p would mean the absence of coupling a t these momenta, a nonphysical feature, which we 
exclude by assuming that<C/3l A + (p)|/3> do not vanish at f in ite  values of the argument.

As i t  can be seen, the energy eigenvalues are real, confined to the interval -m<E<m,fSJ
where F(E) is a real decreasing function, so (1.15) possesses at most a single solution.

The c r it ic a l coupling constant \  is  obviously given by the expression

l / \ c = F (-m) .

Hence, F(-m) must be f in ite  the condition of which is  easily seen to be

< f i\  А + ( Р) | л >
lim 1 -------------------  = 0 •
p-»o r

A further natural requirement is  that the bound sta te  energy be the lower the larger 
is  I A.I which is  fu lf i l le d  i f  and F(-m)<.0.

We recall now that the Dirac equation when transformed to a second order form of a 
Schroedinger-equation possesses at E=-m a barrier which to some extent may be reflected in 
our model by making the coupling to the negative continuum sufficiently  weak. The inequality
/V
F(-m)<0 is  in conformity with th is requirement.

The existence of the barrier manifests i ts e lf  in the fact that at the c r it ic a l charge 
a normalizable bound s ta te  s t i l l  ex ists . The norm of the s ta te  В is

<B  I В >  =
< /3IA +(p)I/3>

(E-^p2+m2)2

< / â l A _ ( p ) | / 3 >

(E+\jp2+m2)2
(1.17)

which is  f in ite  at E= -m provided
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lim < А |Л +(р) | а > <  «  ,
p-*0 1 ¥

lim < / î | A - (P}U >  „
P"*° p3

All these requirements are met, for example, by the form factors 

r \ 1 P \ 06 Л 2
g(p) = Ü 2" 72 ; h(p) = C , i V  ■p +Д  (p + / t )

i /(B+OC/2 ) 1 £
V 32 ; -  <  06 <  0 .

( 1 . 1 8 )

(1.19)

For I E| >  m Eq. (1.14) has solutions normalized to delta-function, hence the domains 
E < -m , E> m constitute the continuous spectrum of our Hamiltonian. The continuum eigen
functions are

(  ̂л in
~^k out(p) = ф £ +)(р) + 7\.GQ(p,E!i£ )|ß></3f)(.£+)out >

(_) in  in
*k  out(p) = ф ^ _)(р) + ^ ( p . E i i D ^ ^ I X ^ - ’out >  -

( 1 . 20 )

where _____
E = -  \J k2+m2

ф £ +^(р) = Ö(k-p)

Gg(p.z) =
Л+(р) Л _(Р)

/ 2 2 / 2 2  z p +m z +ÿp +m

^(p) = 5 (k -p

Let us investigate now the bound sta te  energy Eg as a function of the coupling 
constant X- For negative values above Xc we have Eg in the interval (-m,m). When X ap
proaches Xc Eg tends to -m. What happens to Eg(A) when "X becomes smaller than X .̂?

As i t  must be clear from our ea rlie r  considerations above equation (1.14) does not 
possess normalizable sta tes, whenX.<Xc and the continuum states are themselves
complete. In sp ite  of th is there exists a useful extension of the notion of the bound s ta te  
energy Eg below X c by defining i t  as the solution of the equation

1 -  \F_(E) = 0 ( 1 . 21)

where F_(E) is  the analytic continuation from below of F(E) through i t s  cut (-«« , -m) to 
the Riemann-sheet R_.

The fact that F(E) is an analytic function of the complex variable E with cuts (— *» ,
-m), (m, + » )  follows from the integral representation (1.16). If in the f i r s t  integral we

Г2 ?" HI 2"replace the integration variable p by x = up +m , in the second by x = — wp +m then we
obtain П о  -  J dx

f_(x) dx f +(x) 
E + x
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If we deform the Integration contour into the curve C_ (see Fig. 1) then for values of 
E between C and the real axis

A

©

m

Fig. 1

F_(E) = J dz + J  dx - ^ 4 ^  = F (E) + 21t i  f_(E)
C_ m

is  the required analytic continuation of F(E) (we assumed that f_(z) i s  analytic in th is  
domain). As i t  can be shown (1.21) does have a complex solution Eg even for \sm alle r than 
but close to I t  seems in tu itive ly  clear that Eg = ImEg corresponds to the penetrability
of the barrier at E s  -n in the Dirac equation discussed earlier. The smallness of f_(E)
(see (1.18)) which is  the consequence of the normalizability of the eigenstates with Eg = -m 
leads to Eg<<l Eg I i .e .  to small barrier penetrability . We notice tha t i f  F+(E) is the 
continuation of F(E) through the cut (-<*> , -m) from above (i.e . into R ) then l / \ ,  = Г+(Е) 
w ill be sa tis fie d  by E = EÏ.

The kernel of the integral equation for M contains the function Fa (E) defined in (1.9) 
through the Feynman propagator K^(t). I t  is  easy to  verify that in the partia l wave under 
consideration

where either in or out solutions can be substituted for the X-s. ForX ,<\c the term, cor
responding to the bound sta te , is  absent. The bound s ta te  is handled in (1.22) on equal 
footing with the partic le  s ta tes , so (1.22) corresponds to the unprimed description. In the 
primed description we move the bound sta te  term to the antiparticle s ta te s . Substituting 
th is  equation into (1.9) we obtain

( 1 . 22)

0

. (1.23)

/V Г
Fx'(E) d iffe rs from 1̂  (E) only in the sign of it. in  the pole term. When д,= 0 the la s t term
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is  absent and we observe that the eigenvalue equation (1.15) can be written as

1 -  ?\.Fq(E) = 0 ( 1 . 2 4 )

Green functions, corresponding to d ifferent constant values Л ., say and are 
connected via integral equations of the type (4.4) — (4.5) of pQ from which the connection 
between (E) and Fx (E) is

(E)
(E) =

1 -  ( \ 2 F ^  (E) -  i Í
(1.25)

The choice of - i t  is  dictated by the pole term in (1.23). F o r\^  = 0 andi^  th is  gives

FX(E) Е0<Е>
1 —”\,F g (E ) -  i t

(1.26)

As a consequence, for values E near Eg

F ^ (E )~ -
dF0(E)

dE

From this the constant in the pole term is

(1.27)

(E -£„) + i t

N2 =-■ w

Ц Т
X m

In the primed description - i t-  is  replaced by + i t - .
In the subcritical case the singularity structure of R(E) is  clearly seen from (1.23) 

but in the supercritical regime the pole term is  absent and the influence of the pole on the 
R_ Riemann-sheet is  hidden in the integral over the lower cut (owing to the particular i t -  
prescription, the pole on R does not influence appreciably the behaviour of F-. (E)). How-+ rJ A
ever, the unphysical pole on R_ manifests i ts e lf  explicitly  in the form of (ч (E) given by 
(1.26). Indeed, for real values of E below -m FQ(E) = F_(E) and we have

FX ( E )
F (E)

1 -  \F _ (E )

So far as the imaginary part Eg of the solution (1.21) is  small, we have for real E-s 
near EnL'B

FX(E) -F -  <EB>

\
dF (E)

dE
(E  -  E g )

"B

which exhibits the pole structure due to the unphysical bound s ta te .
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2. Model calculation for Lorentzian time-dependence 
There Is an essentially  unique choice of the function A X (t)  for which the integral 

equation (1.7), (1.8) can be transformed into ordinary d ifferen tia l equations. I t  is  the 
Lorentzian form

A X  ( t )  = AX t2 » .
m t 2 + T2

The Fourier transform of th is expression

P . HRASKÚ e t  a l

A X(E) = |A X m T e~T|E|

s a tis f ie s  the Green function equation

Applying the operator 
equations

( ~ 2 ~  ' 2 J AX(e) = -A X m T2 5(E) •
/^2 « ^ 2  2

to ( 1 - 7 ) , — a -  Tz to (1.8) we obtain the d ifferential
^>E2

1 ^ 2 - T 2 d - A X m Fx (E))j MCE.E-) = - A X m T2 б(Е-Е '), 

l ^ - T 2 ( 1 - Д \ Л  (E,))]  M(E,E' ) = — A \ m T2 б(Е-Е')

The necessary boundary conditions can be read off from (4.11)of [У]: M(E,E') must vanish 
as either of i t s  arguments becomes large in magnitude. This condition conforms with the 
physical meaning of M(E,E') expressed in (1.5).

Let us put Л?= X, + A \  . Then from (1.25) we can write

1 Fv <E)
Fx <E>
Fo (E)

( 2 . 1 )

Therefore

—  — T2 — 
F,

(E) „
M (E.E1) =

(E)
-A X m T2 5  (E-E')

'C)2 2 X  (E 2 S7 fT § ~ T 7=--------  M (E.E') = -A X  T2 Û(E-E') .
% ' 2 % (E ') / m

These equations are sa tisfied  by the Ansatz

M(E.E') = 0 (E -E1 ) X l j  ( Е ) Л 2 (E 1) + 0 (E '-E ) ( E ' ) A 2 (E) ( 2 . 2 )

provided чН; (E) ( j = 1,2) obey the equations A ~
.2

ldE"
.2 FV (E) 

& (E) J
A j (E) = (2.3)
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and the boundary conditions

= Л 2 ( - « - )  = о ,

W12 = -AXmT2 .
( 2 . 4 )

We assume now that in (2.3) the ratio  (E)/fÿ (E) can be approximated by the ra tio  
of the pole contributions (2.27) with the rela tion  (2.1) preserved. Due to this la s t

rj
relation the pole approximation incorporates the effect on M of the moving pole as well as 
the contributions from the v irtual processes in which one of the members of the v irtu a l pair 
is  in s ta te  В (in case of Д <  Ac th is means a superposition of those continuum s ta te s  which 
are strongly disturbed).

We write therefore

FA(E)-> FXP ( E )  -
E-E0 + i £

f J > ( E ) - * f  (E) =
Z* R(E) 

E-E^ + i £

R(E0) = 1, ZA = N*

(2.5)

in which R(E) must be chosen so as to satisfy the equation
? P ( E )

1 -  AAm ? ( E )  -  •
PoP(E)

When lv> К  I A i then , Ev are real, whenl\2 I X I both are complex:

ЕЛ + iEI!y ; Ei <  -m Е'Л >  0 .

In what follows the primed description w ill be primarily employed in which the i t .  
term in (2.5) is  of negative sign. I t  w ill be convenient to trea t E as a complex variable.
The unprimed (primed) description is  obtained by approaching the real axis from above (below). 

We have, therefore, in pole approximation

l dEz Zv> E -  EB x ® о ( 2 . 6 )

The solution, which sa tis fie s  the desired boundary conditions is

M(E,E') = -  200 e ' 1̂ 3 Г (а) ДХ T2 (E-En) e"A (E' EB') .
Г(2-а) m 0

e~cL (E' -E0) íe ._eb) . |q (E E1 ) и(а,2,2Л(Е-Е0)) .

(eilt a p(2_a) M(a 2|2oo (E'—Eg)) + U (a,2,2ot (E'—Eß))) + (2.7)

+ 9 (ELE) U(a,2,2oc.(E'-EB)) .

, ( ( -e l1ta П(2—a) M(a,2,2oi (E-Eß)) + U(a,2,2oi. (E-E0)))]

79



P . HRASKÚ e t  a l

M and U are the two independent confluent hypergeometric functions a and OL are

a = 1

ot= T ( K  ZÎL 
V z , 'V 7 7

(E„ -  Ev )

00' iou" = I об I eiiJ o <  /6 г

The function U(a,b,z) is a many valued function with a cut along the negative real 
axis. In the primed description the semiaxis arg(ft> — It ) which corresponds to negative real 
values of E must be approached from below, so the cut need not be crossed.

Now we are in  a position to verify whether the condition (5 .2 )o f^ l]is  sa tisfied  or not. 
The la s t line of (1.5) gives

( “ i "  ) BB = 1 + 1N' - 2Tt. M'(Er , E„>В’ ЕГ

From this we obtain

and
= e~2^  la '-"Ч ;BB e

IfW'-1) I - 3P 4 ;ВВ|

Using (2.6), a can be expressed as

a -  1 + 1  ™ /ÎÂ Â J

I t  is  always true th a t Ê  <  Eg. I f  E  ̂> -m , no supercritica l transition  occurs,
Im Ev = Im a= 0 and | (Ŵ_1)ggl 2 = 1 . I f ,  on the other hand, Ey<-m t hen Im E^> 0 and 
obviously Ima< 0 . In particular, i f  E ÿ /(E g -E ^ )« l then Ima = — E Ejj = — -щт T
and 2 = e"^"LT—*■ 0 as T - * » .  B V

The criterion  (5.2) of [ i j  i s ,  therefore, sa tis f ie d . The quantity can be in te r
preted as the decay constant of the vacuum. When the unphysical pole E  ̂ is  close to the 
rea l axis is  proportional to Im E as expected. However, the proportionality factor 
is  a nontrivial expression which re flec ts  the effect of the moving pole.

I f  the electron of the pair created is  bound then the spectrum of the accompanyingl\J
positron is determined by the function М'(Ец, -kg). IT is  d ifficu lt to calculate the large 
T lim it of th is quantity — and of the amplitudes M'(E,E') in general — with the aid of (2.7)
since th is would involve a simultaneous lim it in both the argument and the parameter of the

- 2  2functions M and U. However, since T plays a role sim ilar to the role of HI in a Schrödinger 
equation a quasiclassical treatment is  available.

Let us introduce a new variable x = Eg-E and a new function

y(x) 21Î i  N
-2* ia tf (E0 ,E)

which sa tisfie s  the equation

Ч 2 y"(x) -  c £ £ (2. B)
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with the boundary conditions

y(- oo) = о , y(0) = 1 ,
where ^

b = E v -E B = b' ♦ lb" ; 1 = {  .

Since the imaginary part of Ep is  small we have b " « |  b '| and in the domain 
I b '| . »  X »  О, X can be neglected as compared to b. We have, therefore,

x y "  + У = 0 
Г

y(x) = УГ [a H<X) (2 | p  \/x) + В H<2) (2 | p  /T)J

The general solution of th is equation can be written as a superposition of Hankel-functions:

(2.9)
'l J

the coefficients of which are subject to the constraint

( 2 . 10)

In the domain | x|55>Tjwe look for the solution of (2.8) in the form

—SУ = e 4

y(0) = (В-A) - i =  = 1 .
tty be

S = s0 + 4  si  + T, ^2 +

Applying the usual procedure of the quasiclassical calculations we obtain to terms linear 
in Г 1:

y(x)rvKe exp j i -  J ê  ( ^x(x-b)—bln( f a  + /х ) )
1/A

( 2 . 11)

The coefficient К can be determined from matching the solutions (2.9) and (2.11) in 
the domain of overlap | b '|2t>  x » 4 j  , where they take the form

y(x) ~
Ш

l A e ' ^  ei2
Tbc

1
г -  ,2? , , / ь с  j ~
’x + B e*4 e"12 Y  Vx

and
y(x) ív> K(-b)f i t  ( ' b) ^  •  t ] xl/4  ei2 ^  C

respectively. These expressions together with (2.10) lead to

f c c - »

The asymptotic formula (2.11) with th is  value of К determines the large T lim it of M’ (E g ,-kg ).

The positron spectrum was computed numerically and as i t  can be seen from Fig. 2 and 
Fig. 3. — which are typical spectra for sub- and supercritical processes — there is not any 
characteristic line structure which was expected on the basis of our in tu itive  notion. The 
reason for th is  discrepancy needs further c larifica tion .
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Fig. 2. The subcritical positron spectrum for Lorentzian time dependence, 
EB = —0.9, Ev = -0.987, T = 20

Fig 3. The supercritica l positron spectrum for Lorentzian time dependence, 
Eg = -0 .9 , E*, =-1.05+0. OOlBi, T = 20

3. Potential lump in pole approximation 
A potential jump of duration T is  described by the coupling function

A A m
A \ ( t )  =■

о

i f  —T/2 <  t  <  T/2 ,

otherwise

Then, according to (1.2),</3I M (t,t')l/0>  = 0 unless both t  and V are within the in terval 
(—T/2,T/2). Therefore, equations (1.3), (1.4) in the primed description take on the form

+T/2
</3|M'Ct, t ’) |/3> =AX-m 5 ( t - t ' )  + A A m J  dt"</4| ( t - t " ) | / î> < /9lM -(t",t ') |y3 > ,  (3.1)

-T/2
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+T/2
</3| Mtt,t')|/î>=AAm 5 ct-t') + AXm J dt"</3| MU,V')\ßxß\ (t" -t')l/â > . (3.2)

-T/2 - T /2 < t , t '<  T/2

The kernel K1 given in (1.28) is  a highly complicated function which makes the 
analytic solution of (3.2) hopeless, but the pole approximation applied to the Lorentzian 
time dependence in the previous section leads again to a soluble problem.

At f i r s t  sight one might suppose that the pole approximation consists in neglecting 
a l l  contributions to <ß\  Kĵ  (t)|/J>  except for the pole term iN29(-t)e~iEBE. In such an 
approximation, however, equations (3.1), (3.2) would certainly be unable to account for the 
complexness of , the unphysical binding energy at V - \  + AAm> À c since the imaginary 
part of E-у originates from the coupling to the continuum whose contribution to <ß| Kj^(t)|/3> 
has been completely neglected. In the pole approximation suggested by the example of the 
preceding section we actually take into account, beside the pole term, an additional contri
bution also, which is  ju st sufficient to locate Ev at the right position. From (1.9) and 
(2.1) we have

+ oe

Л Л т< /3 | Kj[ ( t) l /a > =  I dE e - i E t A A m ^  (E) =

1 J
= b W ~ 2 V

In pole approximation, according to (2.5)

dE e-iEt Fx (E) 
% (E)

Л \ т < / 3 1  KjL (t)l/B> P • 5 ( t > - ^ - 1
Ж dE eiEt E -  E„

E -  EB -  =

= U. ) 5 ( t )  -  i  7 7 - (EB -  Ev ) В (-t)  e~iEBE ,

о
which, using (2.6) and the equality Ẑ = N , can be cast into the form

</3 | ( t )  I p = i - r -----5 ( t )  + iN2 0 ( - t )  е_1ЕвЕ

Substituting th is kernel into (3.1), (3.2) and multiplying by eiEB* and e”iEß \  we obtain

eiEBE </31 M, ( t , f ) | /e>  = Л А т е1ЕВЕ Ö ( t - t ')  +
T/2

+ А л т IN2 I  dt" е1ЕВГ < $ |  M '( t " , t ' ) | / 3 >  , (3.3)
t

^ - < /3 | M '( t ,t ') |/3 >  е‘ 1ЕВЕ' = Д А т е’ 1ЕВГ Ö(t—t 1 ) +
V „ o . o

+ A A m iN2 /  d t"< y 3 |M 4 t" ,t ') |/J>  е '1ЕВГ  , —T/2<  t , t ' <  T/2 .
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In the f i r s t  equation in which t  is  a parameter we introduce the notation
T/2

f ( t)  = J dt" elEBr < /3 | M1 C t" ,f  ) |/J >  .

Since

elEBt </3| M '( t , t ') |/3 >  = -  f ' ( t)  (3.5)

equation (3.3) takes on the form

- f ' ( t )  + A \ m iN2 f  ( t )  = -  eiEBE 5 ( t - f )  .Zy m m

The solution of th is  d iffe ren tia l equation, subject to the condition f(T/2) = 0 is  easily 
found to be

2лf ( t )  = £ -  A\ ei(EB+ A V *  e - lÄ ^ ZHm v> 0 ( t '—t)  .

Using (3.5), we obtain the solution to (3.3) 

Z
< /31 M '( t , t ') | / i>  = Д Л т  5 ( t - t ' )  + i  (Zv^ m) ei ( V A V y ) ( t '  _

which sa tis f ie s  (3 .4), too.
Now, from (1.6) we have

V zv A a m +I/2
M'<E>E'> = 2 t h rLK -T/2

dt ei(E—E1)t

ÍZ vA V
2*ZX

2 +T/2

I
-T/2

d td t' 0 ( t ' - t )  e '  Вi(E - i„ -A ^ Z o  ) t i(E'-En- ДЛ Zv ) t ' (3 .6 )

In order to verify criterion  (5.2) of [ l ]  we calculate M' (E„, E„) with the resu lt

M' (Eg,Eg) =
21t i  N2

from which we obtain

(«4_1)ВВ = eUEV ~Eb)T

( « г 1)4 'BB I = e~2 Im Ev»T= e-TjT

which is  again the expected resu lt. A comparison with the Lorentzian time dependence shows 
that though the criterion  (5.2) of [ l]  is  fu lf i lle d  in both cases but the decay constants of 
the vacuum ancl T j are different.

Performing in (3.6) the integrations, we obtain
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M ' ( E - E , )  e
A \ Z V - i ( E +E’)T f A \ Z v e iEV T

L(E-Ey )(E’- £ v )

+ F ^ P
F— F F' — F11 LB iET L LB iE'T

e ~ Г ~ = e

According to (1.5) the positron spectrum is  essentially  given by M'(Eg,E) (the other terms 
are only kinematic factors):

M'(EB,E) =
1 EV “Eg -|(Ey —Eg)! Í (E y-E )T  - i ( E v -E)T

2 » « Г  Ev -E

If we consider subcritical processes then Ey is real and „
, . T(Ey -E) . \ 2

sin [---- 5------1
U  I I  “  — ____ T.____ ( L  ____ С  Л “  IM'(ER,E)| 2 = - 4 - f  (Ev -EB)2

It N Ev -  E

as E—>■-<> th is function tends to zero as E" for fixed T. As T-*■<*> it  is  a more and more 
rapidly oscilla ting  function of E:

I M’(E E)| ^  (Ey - E b)2 I  5 (E y  -E) .

Ihe positron spectrum has a threshold at E = -m, so in the physically relevant region E ^  -m, 
thus E never coincides with Ey .

In supercritical processes Ey = Ely + iEÿ is  complex and

|M'(EB,E)| 2"
2 It V*

(Ey -EB)2 + Eÿ 2

(Ey -Е Г  + Eÿ
2E^ T (ch 2Ey I -  cos 2(Ey -E)l)

In the E—>«olimit i t  goes to zero as E again, and as T-

, (Ey ~Er)2 + Eÿ 2
---- >

»it has a Lorentzian form

|M’(EB,E)| 2
2 tt2N4 (Eÿ, -E)2 + Eÿ 2

As i t  can be seen from (3.7) and (3.8) characteristic difference shows up between sub- 
c r it ic a l (Fig. 4) and supercritical (Fig. 5,6) spectra which is  in agreement with our 
qualitative picture.
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Fig. 4. The subcritica l positron spectrum for potential jump, 
Eg = -0 .9 , Еу = -0.987, T = 100

Fig. 5. The supercritical positron spectrum for potential jump, 
Eg = -0 .9 , Еу =-1.05+0.00181, T = 100
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Fig. 6. The supercritical positron spectrum for potential jump,
E0 = 4 ) .9 ,  Ep = -1 .05+ 0.00181, T = 300

Acknowledgement
The authors thank A. Frenkel and 0. Révai for numerous fru itfu l discussions.

References
1. P. Hraskó, L. Fdldy and A. Toth, Acta Phys. Hung., 63,
2. J.D. Bjorken and S.D. Drell, R elativ istic Quantum Mechanics Vol. I . ,  McGraw-Hill,

New York, 1964.
3. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of 

Standards, Washington, D.C., 1964.

B7





Acta Physica Hungarica 63(1—2), pp. 89-96 (1988)

ERNST COORDINATES 

Z. PERJÉS
Central Research In stitu te  for Physics 
1525 Budapest, Hungary

(Received 4 August 1987)

Ernst coordinates can be introduced in space-times in which the complex Ernst potential 
ex ists with functionally independent real and imaginary parts. The real part of the Ernst 
potential is  the norm and the imaginary part is  the curl scalar of a Killing vector. As yet 
only stationary space-times have been investigated by th is approach. Some special lim iting 
types must be excluded from the discussion such as the s ta tic , the Papapetrou class and 
Petrov-type N metrics. The Poynting vector of the gravitational fie ld  is  required to be sur
face-forming, a mild condition sa tisfied  by most exact solutions of the gravitational equa
tions. As an illu stra tio n  of the procedure, we discuss axisymmetric vacuum space-times with 
conformally f la t  3-spaces.

1. Introduction
There are at least two reasons why ea rlie r  approaches to stationary gravitational 

fie ld s refrained from the application of Ernst potentials [ l ]  as complex coordinates. F irs t
ly, Ernst coordinates do not exist in well-known simple limiting cases such as the s ta tic  
Weyl problem. Moreover, the Einstein gravitational equations in Ernst coordinates appear at 
f i r s t  sight as a frightening calculational barrier. I wish to argue, to the contrary, that 
in order to tackle the hard core of the stationary problem, i t  may be advantageous to get 
rid  of a number of lim iting classes of fie ld s , and that is precisely what Ernst coordinates 
offer us. As for the computational obstacles, the new symbolic computing devices can be 
relied upon to surmount them. And some case studies indicate [2 ,3]  that the fie ld  equations 
eventually "bootstrap" themselves to acceptable simplicity.

In Ernst coordinates, the metric is

ds2 = r(d t + ü Ji dx1)2 -  r ' 1 D"1 (jd6 2 -  /̂3 d t  d £  + oCd£2 + p  2dv|)2]  , (1.1)

where x  ̂ = £, is  the Ernst coordinate, x2 = £  is  a complex conjugate coordinate, x  ̂ = tp and 
the real variables г and D are defined

г = +V  .

D = O L ^ - /b 2 .

( 1 . 2)

(1.3)

The fie ld  variables <x> and ^  are related by complex conjugation,
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a n d  t h e  f i e l d  q u a n t i t i e s  a n d  (j) a r e  r e a l .  A l l  t h e  f i e l d  f u n c t i o n s  a r e  i n d e p e n d e n t  o f  t h e

t im e  c o o r d i n a t e  t ,  a n d  t h i s  p r o p e r t y  i s  i n v a r i a n t  u n d e r  t h e  c o o r d i n a t e  t r a n s f o r m a t i o n s
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t ' = t  + FCx1)

X
i '

(1.5)

1 2Although the coordinates x and x have been fixed invariantly, one can s t i l l  perform the 
3-parameter SUC1,1) transformations usually considered [4]  to be internal symmetries in
volving the Ernst potentials.

The condition that the Ernst potentials g  and E can be introduced as coordinates is 
of course that they exist and are functionally independent. The condition of existence 
follows from the vacuum field  equations. Functional independence is guaranteed by excluding 
such limiting cases as the Papapetrou-class or the s ta tic  metrics. Type N fields are 
characterized by & = 0, but they w ill not be considered here. I t  is  also convenient to re
quire that the Poynting vector of the gravitational fie ld  be surface-forming, which is 
equivalent to saying that the function oCis independent of the coordinate >?. This is  a mild 
condition which follows, for example, from axisymmetry.

Four applications of the Ernst coordinate method have been worked out. We have a 
theorem that stationary vacuum fields with a conformally f la t  3-space are axisymmetric, and 
a theorem that the most general (non-static, non-Papapetrou and non-null) class of these 
fie ld s  is  incompatible with the fie ld  equations. We have improved on Simon's characteriza
tion  of the Kerr metric by relaxing the asymptotic conditions and Kramer has carried out a 
search for perfect flu id  solutions with the Simon property. Most of these resu lts have a l
ready appeared elsewhere [2 ,3 ,5 ,éj. As an illu s tra tio n  of the Ernst coordinate method, here 
we shall describe a somewhat simplified version of the theorem that the most general class 
of axisymmetric fie ld s with a conformally f la t  3-space, i . e . ,  with a vanishing Bach tensor,

Ri [ M ] - K  [kR 4 ]  = 0  ( 1 -6 )

is  incompatible with the field  equations.
The u ti l i ty  of the present formalism in finding exact solutions of the gravitational 

equations has yet to be c larified . Suggestions for further work include space-times for 
which the invariant oC is  an analytic function [ jJ . This class contains the Kerr metric. I t  
has been conjectured by Newman [s j that a larger family of stationary space-times can be 
proven to be axisymmetric.

2. The field  equations
In Ernst coordinates, the metric is  constructed from the invariants ot and ß  . 

E instein 's vacuum equations Ryu,V= 0 in a stationary gravitational fie ld  are decomposed with 
respect to the space-like 3-metric of Killing tra jecto ries

9ikdxldxk = D '^ ^ d t 2 -  2/3d&d g  + otdf,2 + p 2d^)2) . (2 .1)

The Ernst equation becomes a firs t-o rd e r relation  and has the role [9J to provide the 
derivatives of the cylindrical radius Q algebraically in terms of the invariants oi and f i  :
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P l  ?
20 Q1 ^ ï r T 06! + 2(Æïï 2~ ^ 2 >  + ■

9  ( 2 ' 2)
20 =TTa '2“ a '3'2 + гС /йо^-А /Зр + | ( T - /3 ) o t  .

The field  quantity CÔ  can be obtained by integration of the defining relations of the Ernst 
potential:

w l,k UJ « . i - e ikfc r~2(Im£ ) Л (2.3)

where is  the unit skew tensor in 3 dimensions. The 3-vector is  determined by Eq.
(2.3) up to an arbitrary gradient term, in accordance with the available coordinate trans
formations (1.5).

The most d ifficu lt part of the procedure consists of solving the spacelike components 
of the vacuum equations,

,(3) .  
ik * (i,k ) Ф (1,2) or (2,1)

(2.4)

i/b^y + fc>2) In D = i( /3  -  2 y  ) + Д  + 2-J-2 , (3.1)

(Л'Э1 + /3 ^ 2) In D = i ( p  -  2Ä ) + f i 2 + 20^ ] (3.2)

a pair related by complex conjugation. Axisymmetry means here = 0.
Solving (3.1) and (3.2) algebraically for od2 and "j^, respectively we have

^ 2  = ^■"1 H ß « .  1 +<ХЪ  + 0cß l  +/2>/32 + T0 o iß  - 2 л Т -  Z^2)] . (3.3)

T l = 06-1 [-2/ÔT2 + Ï<*1 +î  ß2 + M  + ï i J T A - 2* ? -  /3 2)] , (3.4)

(note that at /  0). We can thus eliminate the derivatives of ot and -y and the mixed [b 
derivatives by use of the fie ld  equation R-j-j = 0 which has the form

20 /^12 = T*- Л 1+ ß j ß  ß 2  * 2* ß l ^ ß l ~  ß  ^ l  f t \  + Т 2 /З2 + 2/® l/^2^ +
(3.5)

+ r t/3—TP«■! + (/3—06)-y2H + 4  (Лт + ß 2 - ß ^ - ß v  ■
г

Taking a combination of R^ = 0 with other components, we get
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where are the components of the Ricci tensor of the 3-space with metric (2.1).

3, Axisymmetry and conformally f la t  3-spaces 
The condition that the Bach tensor vanishes yields the following d ifferen tia l 

equations [3]:
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a D A [l " T (ot $ 2  TT 2 /®eCl 2  ̂ ^[а<- ß i + Т2^ TÍ2 + ^ ' îol'l 2/^ T 2 ^ <X'l] +

+ ( 2 * f f -  Л 2) «-! Д  + 7  [ (T - /Î )  л  С3/Зу 2- 2 7 /4 2) + y/3(2<*/3 j-3/5 с ^ М ^ - З А у ) ^

+ (2°ty + /52)/3äJ + ^ [у(5/32-обу-2/Зу) -jß&'S +3/32)J . 0.6)
г

whence, using also the complex conjugate equation, we w ill eliminate /3 -^ and /322-
Although the derivatives 06-̂ and y 2 cannot be removed sim ilarly, i t  will prove 

convenient to substitu te  them by the functions W and Z = W according to

Л 1 = ^3 L2/3/3 2 -  3cL/3i + f 06/3 - I /32  + WJ  ■ (3-7)

T2 = С2УЗ/3 г -  з Т у32 + |x / 3  - 1/3 2 -  z]  . (3.8)

From R17 = ---- i ,  we obtain the real f irs t-o rder relation
4rz

F =  9 a y  ( 06b2 + y b 2 -  2/3b1b2 -  |  -^0) -  ot Z2 -  yW2 + 2 f t  WZ = 0 , (3.9)
r

where the notation

b! = ß l ~
3г ’ (3.10)

has been introduced. The derivatives of the F equation (3.9) and use of the previous resu lts  
yield

24C3i.̂ /ÎD(W1— | w) = 306 f  {[(90ty-12 /&2)W -dft z] ^  +

+ [(506JJ--4 /3 2)Z+3y/3w] b2} + (3.11)

+(9 06 J -6  /3 2) J  W2—(14oty —12 /3 2)/iWZ + (506у -6  /3 2) об Z2 +
042T 2/3 „ 2(otZ-/5W)Z+3ocy(Zb2-Wb1)

+ 6 U ^ U 2  9  »
c t l —2 ß WZ+ JW z

24 06/3 D(Zr  | )  = (4 Oty+6 y3 2)WZ -  3y/3w2 -  706/3 Z2 +

30L[3y/3w+(9 06y - 16 /3 2)z] bx + 3 [ ( l l o 6 y - 4 p 2) / Î Z -  (506J-2 /3 2) yw] b2 + (3.12)

Г

p 2o< (3 Z2-2=6y WZ-3<x2y-Zb1+3«y (2jJyZ- yW)b2

fcc Z2—2/3 WZ+yW2

Hence we may get rid  of a ll the f i r s t  derivatives of W and Z. I t  has been shown [3]  that the 
functions W and Z do not vanish identically .

The in teg rab ility  condition Z^2 = Z2  ̂ provides us another real f irs t-o rder equation:
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Fj j  =  6(otZ2-2 /ÎWZ+-J-W2 + -i|ot$D)otjRe {( /5Z- pOot b j  +
Г

+(ooZ2-2/3WZ+-ÿW2) [(2/52-ÄJ-)(otZ2- 2 /ÜWZ+-J’W2) -06/îï-IL(27oCf+é/32)] -180«.3-J-3/32 = О.
г г4

(3.13)
The derivative of Fjj. contains a second-order expression. We apply the elimination 
procedure to th is , and subsequently we remove the terms with by adding a suitable 
multiple of the F equation. We then find that Im {( fil— •jW )«^} Fj-j. = 0 has ju st the right 
structure such that we can eliminate terms quadratic in the ß  derivatives by adding a 
multiple of the Fj-j equation:

( 06Z2—2/3WZ+7fW2+15ot-g73^2) [(/3*Z2-2otJWZ+/3yw2)(3a-yb1--JW)-2D(AZ2-2/3WZ+i5-w2)Z -
Г

2
-  12(»T+3/32)« t M jZ]  + 540ОГ2 J 2ß 4 5çZ = 0 . (3.14)

г г4

We сап further simplify th is  by adding a multiple of Fj j . The result is strik ingly  simple:

Fj j j  = Im(3«.yZb2 -  otZ2) = 0 . (3.15)

Some information has been lost in the process since in Eq. (3.15) we took the imaginary part. 
We perform, however, a twin procedure, cancelling f i r s t  the b2 terms in The combina
tion Im {(OtZ— /3W)'c)1} Fjj- then yields

2

Im(aZbj) = 0 (3.16)

Equations (3.15) and (3.16) were only independent on the condition that flW — t  0. 
Then they had the solution 30Cbj = W and 3 y b 2 = Z, whence substituting in the F equation 
(3.9),

-ffW2 -  otZ2 = 0 . (3.17)

Computing the 'Ьj  derivative of -JW2 — otZ2 we have £з]

El5ot-y-3/3 2) CtZ2 + (9 [b 2-2 1 o fy ) /3WZ + 90 OL 2 2 /3 ^.Jotbj +
Г (3.18)

+ [(506J--9 /3 2)( a z 2-  ßWZ) + 60 o t2 ï 2/ 3 ^ ]  W = 0 .
Г

We obtain another linear equation in bj from the 'Qj derivative of the Fjj-j equation 
(3.15), as shown in the Appendix. Introducing the positive functions

p 2 = 2 ( / 5 wz -  a z 2 ) ( 3 . 1 9 )

Д  = - з а ф З ^  , ( 3 . 2 0 )
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the resulting set of linear f irs t-o rder equations (3.13), (3.18) and (A.6) can be written

3 Q£,2-J5-P2(P2+5A)b1 + {«,£(P2+5A(P2+4A)-2 /32P2(P2- A ) }  W = 0 , (3.21)

[(-1506^+3 /3 2)P2 -  12/3 DWZ -  éO cc^A ja^  + { (-5 « 7 + 9 /3 2)Р2 -  40«. JA } = 0,(3.22)

-  [(6«у +3/3 2)P2 + 6/3dwz]  P2otb1 +
(3.23)

+ { -  (20C-J- —5 /3 2)P4 + 2/3 DWZP2 -  2 A  [(4«X -2  /3 2)P2 -  8/3 DWZ] + 40« fA 2} W = 0 .

Combining Eqs (3.21) and (3.22) such that the terms with Ab^ cancel:

{-DP4—4 [b DWZP2]  3»Ь: + {-DP4 + (8/32 - 4 a £ ) P 2A +  80oc-yA2} W = 0 . (3.24)

Hence we сап express (JDWZ using the F equation which has the form ЗР«Ь^ = - W p2 + sA  . 
(We see that b  ̂ must not vanish. From the signs in Eq. (3.24) i t  follows that the negative 
square root holds.) We then have

A DWZ = -  > 2 + - Р Г ^ /З ^ /Р Р ^ + В О о г а - А 2 _ (3 25)
4 4P2(3«b1/W)

A linear combination of Eqs (3.23) and (3.24) has the form

3(- |« ) Г -  I  /3 2) P4* b 1 + { ( - | « ï  + I  /3 2)P4 + 2y3DWZ(P2+8 Д ) -  6« j Z\P2] w=0.(3.26)

Eliminating /3DWZ by use of (3.25) and the F equation we get

з [ ( - 2 « Т — /3 2)P4 + (4/32_  -2a y ) P 2A + 40« jA 2] oibj/W +

+ (5/32 -  2 « f ) P 4 + (4/32-  1 0 « J )P 2A = 0  . 

Eq. (3.21) can be brought to a sim ilar form upon multiplying by 3 «  b̂ /W2: 

3 [(Off -2 /3 2)P4 + (9 « y  +2 P 2 PZA + 2 0 « | А2] л bx/W +

+ ot-jf-(P2+5A)(p2+B A) = о .

(3.27)

(3.28)

Multiplying Eq. (3.21) by (-4), Eq. (3.27) by (—1), Eq. (3.28) by 2 and taking the sum we 
obtain

-3P3(3 «  ^ ) +  13P2 -  12Д = 0 . (3.29)

Since P23> A  by Eq. (3.21), we have the sum of two positive terms on the le ft hand side, 
whence b  ̂ = 0, which is  impossible.Thus the class of fields with functionally independent 
real and imaginary parts of the Ernst potential is  empty.
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The present treatment of axisymmetric fields with a conformally f la t  3-space is  some
what simpler than that given in [jij, in  that only the special case yW2 = CX.Z2 needs con
sideration because of Eq. (3.16).

Acknowledgments
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computed by the R40 machine of CRIP, using a Reduce [lo] language program.

Appendix: The jjj. equation

Here we derive a linear equation in the function b  ̂ which holds as a consequence of

Sx í e 'ÖjFh j  = 0 . (A. 1)

This will exemplify the procedures that lead one up the F series equations.
F irst we get rid  of the derivatives Ẑ  and Ŵ in S. by use of the complex equations

(3.11) and (3.12). We then eliminate the terms with an odd explicit power of г and a ll terms 
2containing b̂  by subtracting a multiple of F ^ :

S2 = S1 ~ Тб/ P  FI II  tr  + 3(19otï  -20/3 2)b J  . (A.2)

Next we remove the second derivatives of by use of Eqs (3.6) and (3.7). We then replace 
any f i r s t  derivative of (5 overleft by b̂  ̂ using the notation (3.10). Following th is , we remove 
the terms quadratic in the b^'s by adding a combination of first-order expression:

Sj = Num S2 +

+ Dr2Fi n ('yW2 -  2y3WZ + otz2) [(39oq-- 12/3 2)otb1 + (48/3 2 -  84 o l f  ) -j-bJ +

+ 720D2Fl n ( « - 3 y  2 /3b1 -  ci.2 'J 2 ß \ )  + (A.3)

+ D r^jiyW 2 -  2/S WZ + otZ2) [8A/3Z + (4 ß  2 -  13«.y  )W -  120 y -c i2 y 2/3wj .
r

The expressions S^, and can be evaluated by a symbolic computer program. The result is ,  
dropping an overall factor 4 D r2:

S? =  - P 2 {[(33orj-24 /32)a y w 2+(-27ûiy+36/32)«/ÎWZ+(60Cy-24/52)oC2Z2] ^  +

+ [(12a3--12yü2)y/3w2+(36/52-63o(.y)oLywZ+(51ay-24/î2)<X/3z2J b2 +

+ (0/32-llo ty )  f  W3+(13oty -16/32) /ÎW2Z+(30ty +12/ 32) 0twz2- 90t 2^ z 3} + (A.4)

+ 2 4 a j/3 ^ 2  [ ( 3 o ty —̂ 2)■j"W3+ (2 /3 2—3ocj )/3w2z+(? e 2-7o(.y)otwz2+3oi.2 /3z3]  +
Г

2
+ 180oi.2 -y2/3%(otZ-/9W) (a.Zb1-yWb2)+720ot3y 3 /32 W = 0 .
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Eliminating b^ by use of Eq. (3.15) and using (3.17) we get

-P2 f[l8ot2 t 3/ÎW2 -  ( 12a.y- + 6/Э2) л 2 î 2w| b1+(2 « .^ -  В/32))Г /3W3+(10 fb 2 -  4cL)fjocy2W2z} + 

+ 6a?-J2ß ^ 2  [(-e«-X +4/32) yW2Z+4/33WZ2] +360oc4 -y4/52 ^  Z = 0 . (A.5)
Г Г

2
We now multiply by Z, use (3.17) repeatedly to get rid  of Z , and remove an overall

2factor Wy :

-  [(босу +3/32)otP4 + 6 0 0  DWZP2] bx +

+ {(5/J2-20CT )P4 + 2/iDWZP2 + бсС.у/3 ^  [(4cCff- 2/S2)P? -8 /3 DWZ] + (A6)
Г

2
+ З60ос3у 3/3 2 W = 0 .

Г

This complex firs t-o rder equation is an algebraic combination of the F, Fn  and FI II  
equations.
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ВЗАИМОДЕЙСТВИЕ ДВИЖУЩИХСЯ ДИСЛОКАЦИЙ И ТОЧЕЧНЫХ ДЕФЕКТОВ В ЩЕЛОЧНО-ГАЛОИДНЫХ 
КРИСТАЛЛАХ

Й. ШАРКЕЗИ
Ф изический и н ст и т у т  Б удап еш тско го  п о л и т е х н и ч е с к о го  у н и в е р с и т е т а  
1525 Б удапеш т, В енгри я

(П оступила в редакцию  3 с е н т я б р я  1987 г . )

И ссл ед о ван о  вл и ян и е  к о л и ч е с т в а , ти п а  и с о с т о я н и я  д в у х в а л е н т н о й  примеси 
на к р и т и ч е с к о е  скалываю щ ее напряж ение к р и с та л л о в  N aC l. С целью  оценки с о с т о я 
ния прим еси п р оведены  и с с л е д о в а н и я  п р о в о д и м о сти , д и э л е к т р и ч е с к и х  п о тер ь  и эф 
ф ек та  С т е п а н о в а . И зучено в л и я н и е  на  м ех а н и ч е ск и е  и э л е к т р и ч е с к и е  х а р а к т е р и с 
ти ки  к р и с т а л л о в : тем п ературы  з а к а л к и ,  врем ени  выдержки при повышенных т е м п е 
р а т у р а х  и преды стории  к р и с т а л л а .

В ведение
И ссл ед о ван и я  п ослед н и х  л е т  п о к а з а л и , ч т о  в  реальн ы х к р и с т а л л а х  в с е г д а  

и м е ет ся  больш ое к о л и ч е с т в о  р а зн о о б р а зн ы х  п р е п я т с т в и й , торм озящ их движ ение 
д и сл о к ац и й  и тем  самым оказываю щих су щ ествен н о е  влияние на п р о ц е с с  п л а с т и ч е 
ско й  деф орм ации . В это й  с в я з и  больш ое зн ач ен и е  п р и о б р е т а е т  вы делен и е  дом ни- 
рующих в за и м о д е й с тв и й  д и сл о к ац и й  с  п р е п я т с т в и я м и , играющих главн у ю  роль в 
различн ы х у с л о в и я х  п р о т ек а н и я  п р о ц е с с а  п л а с т и ч е с к о г о  т е ч е н и я . По имеющемуся 
опы ту в щ елочн о-галоидны х к р и с т а л л а х  в за и м о д е й с тв и е м  д и сл о к ац и й  д р у г  с д р у го м  
можно п р е н е б р е ч ь  по сравнению  с  в заи м о д ей ств и ем  ди слокац ий  и точечны х  д е ф е к 
т о в .  Таким о б р азо м  п л а с т и ч е с к и е  с в о й с т в а  о п р ед ел яю тся  п о след ним  в за и м о д е й с т 
вием  [ 1 ] .  И зв е с т н о , ч т о  д в у х в ал ен тн ы е  катионны е п ри м еси , вн едр ен н ы е  в щ елоч
н о -гал о и д н ы е  к р и с та л л ы , вызываю т зн а ч и те л ь н о е  у п р о ч н е н и е . У прочнение з а в и с и т  
о т  ти п а  и к о л и ч е с т в а  п р и м еси , а  такж е о т  р асп олож ен и я  прим еси в к р и с т а л л е .
В к р и с та л л и ч е с к о й  реш етке д в у х в ал ен тн ы е  прим еси м о гу т  с у щ е с т в о в а т ь  в следую 
щих в и д а х : в в и д е  о ди н ар н о го  п р и м есн о го  и о н а , ко м п л екса  из о д и н ар н о го  пр и м ес
н о го  иона и в ак а н с и и  (П В -к о м п л е к са ), а г р е г а т о в  с  м н о го о б р азн о й  стр у к т у р о й  и 
о р и е н т а ц и е й , образую щ ихся и з  П В -ко м п л ексо в , а  т ак ж е  в виде  п р е ц и п и т а т о в , о б 
разующих вторую  ф а зу . Каждое и з перечисленн ы х п р е п я т с т в и й , торм озящ их д и с л о 
кацию , н а в ер н о е  в с т у п а е т  во  в за и м о д е й с тв и е  р а з н о г о  ти п а  с  движ ущ ейся д и с л о к а 
цией [ 2 - 5 ] .  Особым вопросом  с т а в и т с я  в за и м о д е й с т в и е  д и сл о кац и й  с о  свободными 
в ак а н с и я м и , возникающими в с л е д с т в и е  наличия пр и м есей  или с т е п е н ь  торм озящ его  
д е й с т в и я ,  вы зы ваем ого  этим  в за и м о д е й с тв и е м .

Наши и с сл е д о в а н и я  основаны  на той  эк сп ер и м ен тал ьн о й  в о зм о ж н о сти , ч т о  п у 
тем  тер м и ч еск о й  о б р аб о тк и  и при м еняя  о п р ед ел ен н о е  к о л и ч е с тв о  п р и м еси , наличие 
т о ч е ч н о г о  д е ф е к та  данной  с тр у к ту р ы  в о б р а зц е  можно с д е л а т ь  преобладаю щ им. Т а 
ким о б р азо м  новые д и сл о к ац и и , образую щ иеся в п р о ц е с с е  п л а с т и ч е с к о й  деф орм ации, 
при своем  движ ении в ст р е ч а ю тс я  с  хорошо определенны м и п р е п я т с т в и я м и . Это д а е т  
во зм ож ность  с р а в н и те л ь н о  ч е т к о  о т д е л и т ь  в за и м о д е й с тв и я  р а зл и ч н о г о  ти п а  и и с -
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с л е д о в а т ь  и х . Таким п у тем  можно с о з д а т ь  однозначную  с в я з ь  между м ак р о с к о п и 
ческим и м ехани ческим и  х а р а к т е р и с т и к а м и  и соответствую щ им и м и кр о п р о ц ессам и .

О днако в с е  э т о  с п р а в е д л и в о  т о л ь к о  в с л у ч а е  к р и с т а л л о в  о п р е д е л ен н о го  к а 
ч е с т в а .  Обыкновенные ч и ст ы е  д л я  а н а л и за  к р и стал л ы  с о д ер ж а т  самые различн ы е 
п р и м еси , в  том  ч и сл е  и ги д р о к си л ьн ы е  ионы (ОН ) ,  к о то р ы е  м о гу т  в с т у п а т ь  в р е 
акцию с  д о б ав л ен н о й  прим есью  и и зм ен и ть  е е  влияние н а  к р и т и ч е с к о е  скалываю щ ее 
напряж ение (на КСН). Таким  о б р азо м  о ц е н к а  в за и м о д е й с т в и я  т о ч е ч н о го  д е ф е к та  
и д и сл о к ац и и  с т а н е т  не о д н о зн а ч н о й . В с в я з и  с этим  нашим и ссл ед о в ан и я м  п р и д а 
е т  особую  а к т у а л ь н о с т ь  т о  у с л о в и е , ч т о  мы р а с п о л а га л и  таким и с п ец и а л ь н о  вы ра
щенными к р и стал л ам и  N aC l б е з  ги др о кси л ьн ы х  и о н о в , к о то р ы е  кроме д о б ав л ен н о й  
примеси (Mg, Mn, С а , S r ,  Р Ь , Ва) д р у г и х  прим есей  п р а к т и ч е с к и  не со дер ж ал и  [6 ].

О сновной частью  наших эк сп ер и м ен тал ьн ы х  и т е о р е т и ч е с к и х  и ссл е д о в а н и й  я в 
ляю тся и с с л е д о в а н и я , с в я за н н ы е  с самыми просты м и, но в  т о  же в р е м я , о ч ен ь  
важными точечны м и д е ф е к та м и . Таким о б р а зо м , подробно и с с л е д о в а л и  в за и м о д е й с т 
ви е  д и сл о к ац и й  и в ак а н с и й  или д и сл о к ац и й  и П В -к о м п л ек со в . Проблемы б о л е е  слож 
ных то чечн ы х  д е ф е к то в , со сто ящ и х  из П В -ком плексов (д и м е р о в , трим еров) и п р о б 
лемы т о р м о зя щ его  д е й с т в и я  их  на д и сл о к ац и и  мы т о л ь к о  к о с н у л и с ь , с  т о й  целью , 
чтобы  в б о л е е  ш ироких р а м к а х  за н и м а ть с я  ролью п росты х точечны х д е ф е к то в  в уп 
рочнении  к р и с т а л л о в .

Э к сп ери м ен тальн ы е р е зу л ь т а т ы
Чтобы  о б ъ ек ти вн о  с у д и т ь  о в с е х  и зм ен ен и ях  с о с т о я н и я  прим есей в к р и с т а л 

л е ,  п а р а л л е л ь н о  были п р о в ед ен ы  и с с л е д о в а н и я  э л е к т р и ч е с к о й  проводи м ости  к р и 
с т а л л о в ,  д и э л е к т р и ч е с к и х  п о т е р ь ,  э л е к т р о с т а т и ч е с к о г о  п о т е н ц и а л а , возникаю щ его 
на п о в е р х н о с ти  при деф о р м ац и и .

Э л ек тр о п р о в о д н о сть  и с с л е д о в а л а с ь  эл е к тр о м е тр и ч е ск и м  м етодом  в и н т е р в а л е  
т е м п е р а т у р  2 0 -700°С  [ 7 ] .  Д и эл ек т р и ч ес к и е  п о тер и  и зм е р я л и с ь  по с х е м е , сходной  
с  м остом  Ш еринга при р азн ы х  т е м п е р а т у р а х , в за в и с и м о ст и  о т  ч а с то т ы  [ 8 ] .  На 
кривых t g ô  -  о) наблю дался м аксим ум , по  котором у  о п р е д е л я л и с ь  эти  п о т е р и .  В ели
чи на з а р я д а ,  возникаю щ его н а  п о в е р х н о с ти  к р и с т а л л а  при  е г о  деф орм ации , п о з в о 
л я л а  с у д и т ь  о  возможном з а р я д е  на д и с л о к а ц и я х . Эти и зм е р е н и я  п р о во д и л и сь  при 
ком натной  тем п е р ат у р е  по м ето д и к е  [9 ]  при деформации к р и с т а л л а  с о с р е д о т о ч е н 
ной н а г р у з к о й .  Все э л е к т р и ч е с к и е  и з м е р е н и я , а  такж е з а к а л к а  к р и с т а л л о в  о с у 
щ ес тв л я л и с ь  в вакуум е в и н ер тн о й  а т м о с ф е р е . М еханические  испы тания к р и с та л л о в  
п р о в о д и л и сь  на машине "И нстрон" на сж ати е  вдоль н а п р а в л е н и я  <100> .

Т ер м о о б р аб о тк а  к р и с т а л л о в  может бы ть очень р а з н о о б р а з н о й . Мы вы брали  д в е  
возм ож ности  с о зд а н и я  п р и м есн о го  с о с т о я н и я  при ком натной  т е м п е р а т у р е . Первый 
с п о со б : п ри м есь  в к р и с т а л л е  н а х о д и т с я  в терм ическом  р а в н о в е с и и . В торой сп особ : 
прим есь н а х о д и т с я  в р а ст в о р ен н о м  с о с т о я н и и , ч т о  при ком натной  т е м п е р а т у р е  я в 
л я е т с я  тер м и ч еск и  н естаби л ьн ы м  с о с т о я н и е м . Однако в т е ч е н и е  врем ени  изм ерений  
э т о  с о с т о я н и е  можно с ч и т а т ь  стаби л ьн ы м . Эти д в а  с о с т о я н и я  можно с о з д а т ь  вы бо
ром подходящ ей с к о р о с т и  з а к а л к и  о б р а з ц о в . Это и л л ю стр и р у ется  на п ер во м  р и су н 
к е .  Формы кривой  д л я  каж дой и с п о л ьзо в а н н о й  примеси с о гл а с у ю т с я  д р у г  с  д р у го м . 
Получению тер м и ч еск и  с т а б и л ь н о г о  с о с т о я н и я  д л я  к аж д о го  о б р а зц а  с о о т в е т с т в о -
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Р и с .1 .  Зави си м о сть  к р и т и ч е с к о го  
скалываю щ его напряж ения прим ес
ных к р и стал л о в  N aC l о т  ско р о сти  
за к а л к и

Р и с .2 . З а в и си м о сть  КСН к р и с та л л о в  
N aC liC a о т  к о н ц ен тр ац и и  п р и м еси . 
К ривая 1 С 0 о т в е т с т в у е т  бы строй з а 
к ал к е  (Ю С Г С /м ин), к р и в а я  2 -  м ед 
ленной з а к а л к е  (0 ,1 ° С /м и н ) .  Т ем пе
р а т у р а  отж ига  6 0 0 °С , п р о д о лж и тел ь
н о с ть  отж ига  5 ч а с о в . (Смысл букв 
А ,В ,С  с в я з а н  с  рисунком  4 . )

в а л а  с к о р о с т ь  в одну д е ся т у ю  г р а д у с а  в  м и н у ту . А при с о зд а н и и  с к о р о с т и  охлаж 
д ен и я  в с т о  гр ад у с о в  в м и н у ту , прим есь полностью  р а с т в о р я е т с я .  Это с о с т о я н и е  
примеси н естаб и л ьн о  при ком натной т е м п е р а т у р е .

На втором  р и сунке  приведены  концентрац ионны е за в и с и м о ст и  измеренны х при 
ком натной  тем п ер ату р е  КСН, д л я  двумя различными сп о со б ам и  тер м и ч еск и  о б р а б о 
танных к р и с т а л л о в . В это м  с л у ч ае  в к а ч е с т в е  примеси служ ит к ал ь ц и й . Быстрой 
з а к а л к е  с о о т в е т с т в у е т  в е р х н я я  к р и в а я : при малых к о н ц ен тр ац и я х  КСН линейн о з а 
ви си т  о т  к о н ц ен тр ац и и . При больших к о н ц ен тр ац и я х  о д н а к о , получаем  сложную з а 
в и с и м о с т ь . М едленной з а к а л к е  с о о т в е т с т в у е т  нижняя к р и в а я :  л и н ей н ая  за в и с и м о ст ь  
не н а б л ю д а е тс я . З д е с ь  н ад о  п о д ч ер кн у ть  т о т  ф а к т , ч т о  т а к о г о  ти п а  кривы е п о л у 
чены нами то л ь к о  при тер м и ч еск о й  о б р а б о т к е  к р и с та л л о в  в услови и  в а к у у м а . На 
т р е т ь е м  р и су н к е  видн а р а зн и ц а  в за в и с и м о с т я х  КСН о т  к о н ц ен тр ац и и  прим еси (при 
малых к о н ц ен тр ац и ях  пр и м есей ) в с л у ч а я х  тер м и ч еск о й  з а к а л к и  о б р а зц о в  в в о з д у 
х е  и в в а к у у м е . Для о б р а з ц о в ,  т ер м и ч еск и  обработанны х в в а к у у м е , получили  л и 
нейную за в и с и м о ст ь  д л я  каж дой п ри м еси , х о т я  и с отличаю щ ейся к р и в и зн о й .

Для о б р а зц о в , зак ал ен н ы х  в в о з д у х е ,  получаем  корневую  за в и с и м о с т ь , при 
этом  п р о п а д а е т  за в и с и м о ст ь  от  типа п р и м е с и . О бъяснение э т о г о  опы та б е з  со м н е
ния с в я з а н о  с обнаруженными на п о в е р х н о с т я х  тер м и ч еск и  обработан ны х  в в о зд у х е  
о б р а зц о в  то н к и х  сл о е в  о к и сл о в  м етал л о в  [ 1 0 ] .

Е сли в е р н у т ь с я  к кривым на втором  р и с у н к е , т о  в с т а е т  в о п р о с : п редполож е
ние к ак и х  точечны х д е ф е к то в  необходим о д л я  т е о р е т и ч е с к о г о  т о л к о в а н и я  отдельны х 
у ч а с т к о в  кривы х, а  такж е  к а к о в а  п р и р о да  в за и м о д е й с тв и я  со о тв етств у ю щ его  т о ч е ч 
н ого  д е ф е к т а  и д и с л о к а ц и и .
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Р и с .З .  З а в и си м о ст ь  п о л н о го  КСН о т  ти п а  
и к о н ц ен тр ац и и  прим еси  и о т  с п о со б а  
т е р м о о б р а б о т к и . Р е з у л ь т а т ы , полученны е 
при т е р м о о б р а б о т к е  в в а к у у м е , п о к а зы 
ваю т прям ы е: 1 - М д ,  2 - М п ,  З - С а ,  4 -  В а ,
5 -  P b , 6 -  S r .  К ривая 7 п о л у ч ен а  на о с 
новании  и зм ер ен и й  п о с л е  тер м о о б р аб о тк и  
на в о з д у х е

С целью  иден ти ф и ц и рован и я  данны х точечны х  д еф ек то в  мы и зм ер ял и  э л е к т р о 
п р о в о д н о ст ь  и т а н г е н с а  у г л а  д и э л е к т р и ч е с к и х  п о т е р ь  к р и с т а л л о в . С о гласн о  р е 
зу л ь т а т а м  и зм е р е н и й , на линейны х у ч а с т к а х  за в и с и м о ст и  ( р и с .2 ) ,  прим есь реш а
ющим о б р а зо м  п р е д с т а в л е н а  в форме отдел ьн ы х  П В -ком плексов и кром е э т о г о  м а 
л е н ь к а я  д о л я  прим еси п р е д с т а в л е н а  в ви д е  о д и н ар н о го  п р и м есн о го  иона (в с л е д с т 
в и е  э т о г о  в к р и с т а л л е  е с т ь  с в о б о д н а я  к а т и о н н а я  в а к а н с и я ) .  Следующий в о п р о с : 
к а к и е  то ч еч н ы е  деф екты  с о о т в е т с т в у ю т  нелинейном у у ч а с т к у  в е р х н е й  к р и в о й , или 
нижней кри во й  ( р и с .2 ) .  З н а я  и з л и т ер а ту р ы  функцию, описывающую нелинейный 
у ч а с т о к  в е р х н е й  кривой  [ 1 1 ] ,  к о т о р а я  п о л у ч ен а  в р ам к ах  ф ен о м ен о л о ги ч еско й  т е 
ории в предполож ении  нал и чи я  двойны х П В -ком плексов (д и м е р о в ) , мы вы числили 
в ел и ч и н у  КСН, отвечающую случаю  малых к о н ц ен тр ац и й  п р и м еси , и э т о  и зображ ено  
на  вто р о м  р и с у н к е  пр ер ы ви сто й  л и н и ей . З атем  мы в з я л и  уже зак ал ен н ы е  образцы  
с  о п р ед ел ен н о й  м алой примесью  и с д е л а л и  повторную  з а к а л к у .  Эти новые за к а л к и  
с д е л а л и  т ак и м  о б р а зо м , ч т о  к р и стал л ы  о тж и гали  при разны х т е м п е р а т у р а х  и в т е 
ч е н и е  р азн ы х  пром еж утков в р е м е н и , а  п о то м , п о с л е  бы стр о го  охлаж дени я при ком 
н атн ой  т е м п е р а т у р е  изм ерили  КСН к р и с та л л о в  и их д и э л е к т р и ч е с к и е  п о т е р и .

На ч е т в е р т о м  р и су н к е  в и д н о , к ак  м е н я е т с я  КСН в за в и с и м о ст и  о т  врем ени 
о тж и га  при т е м п е р а т у р е  з а к а л к и  8 0 °С . С оответствую щ ая в ел и ч и н а  м аксим ум а это й  
кри во й  п а д а е т  на полученны й п о с р ед ст в о м  вы числен ия у ч а с т о к  в ер х н ей  кривой 
на  вто р о м  р и с у н к е  ( р и с .2 ) .  В с л у ч а е  больш ого врем ени  отж ига в ел и ч и н а  п о л у ч ен 
н о го  КСН п а д а е т  на  нижнюю кривую  на вто р о м  р и с у н к е . Причину уп р о ч н ен и я  и р а з -
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Р и с .4 . З а в и си м о сть  КСН к р и с т а л л о в  
N a C l : 3 ' 1 0 - 4 м о л ь /м о л ь  Са, п о д вергн уты х  
п р е д в а р и те л ь н о й  з а к а л к е ,  о т  продолж и- 
т е л ь н о с т и  отж ига. Отжиг п р о в о д и л ся  при 
т ем п е р ат у р е  8 0 °С . КСН и з м е р я л с я  после 
бы строго  охлаж дени я при ком н атн ой  тем 
п е р ат у р е

упр о ч н ен и я  о б р а з ц о в , дем онстрированны х на ч е т в е р т о м  р и с у н к е , а  такж е о т в е т  на  
наш первый в о п р о с  -  с  какими точечными д еф ек там и  с в я за н  у ч а с т о к  верхн ей  к р и 
вой  на втором  р и с у н к е , отвечающ ий большим ко н ц ен тр ац и ям  п р и м е с е й , можно н ай ти  
на о с н о в е  и зм ер ен и я  д и эл е к т р и ч е с к и х  п о т е р ь . Эти изм ерения были проведены  на о б 
р а зц а х , подобных т е м ,к о т о р ы е  п ри м енялись в п р о ц е с с е  и зм ерения  КСН. На пятом  р и -

Р и с .5 .  З а в и си м о сть  о т н о с и т е л ь н о г о  чи сл а  
(к о л и ч е с т в а )  П В -ком плексов в к р и с та л л ах  

N aC l:3 * 1 0 ~ 4  м о л ь /м о л ь  Са о т  продолж и
т е л ь н о с т и  о т ж и г а . Исходные образцы  были 
получены  п у тем  бы строго  охлаж дения с 
тем п ер ату р ы  600°С

су н к е  и зображ ено  и зм енение в о  врем ени  д и эл е к т р и ч е с к и х  п о т е р ь  или о т н о с и т е л ь н о 
г о  ч и сл а  П В -ком плексов в с л у ч а е  различны х т е м п е р а т у р  о т ж и га . До т о го  м ом ен та  
в р ем ен и , п о к а  КСН, и зм ерен н ое  н а  подобных о б р а з ц а х ,  не д о с т и г а е т  с в о е г о  м а к с и 
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м у м а, к р и в а я  с о о т в е т с т в у е т  к и н е т и к е  в т о р о г о  п о р я д к а , т . е .  единичные П В -ком п- 
л ек сы  превращ аю тся в двойные П В -ком плексы , т . е .  димеры [ 1 2 ] .

Следующий у ч а с т о к  кри во й  формально с о о т в е т с т в у е т  к и н е т и к е  т р е т ь е г о  п о 
р я д к а , т . е .  с  двойным П В -ком плексом  с о ч е т а е т с я  еще один П В -ком плекс, и п о л у 
ч а е т с я  т р и м ер , и таким  о б р а зо м  нижняя к р и в а я  н а  втором  р и с у н к е  с в я з а н а  с  т р и -  
м ерам и и большими а г р е г а т а м и .

Р и с .6 . З а в и с и м о с т ь  з а р я д а  ( q ) ,  п е р е н е с е н н о г о  
д и сл о к ац и я м и , о т  ко н ц ен тр ац и и  свободны х к а т и 
онных в а к а н с и й  (Cv ) в к р и с т а л л е  N aC l.
Д -  к р и с та л л ы , содержащ ие р а зл и ч н о е  к о л и ч е с т 
в о  примеси ( 2 - 1 0 - ' -  10  м о л ь /м о л ь ) С а; 
о  -  к р и с та л л ы , содержащие д в у х в а л е н тн ы е  к а т и 
онные п ри м еси  р азл и ч н о го  т и п а  (с л е в а  н а п р а в о :  
В а , P b , S r ,  M g, Mn, Ca) в прим ерно о д и н ак о во м  
к о л и ч е с т в е  (10~® м о л ь /м о л ь ) ; • -  к р и с т а л л ы ,
содержащ ие при м есь Са с  к о н ц ен тр ац и ей  ~ 1 0 - J  
м о л ь /м о л ь , п о д вер гн у ты е  т ер м о о б р а б о т к е  в р а з 
личных у с л о в и я х

Кроме вы ш еуказанны х с л е д у е т  вы яснить эк сп р ер и м ен тал ьн ы м  путем  еще один
в о п р о с : к а к а я  с в я з ь  и м е ет ся  меж ду к о н ц ен тр ац и ей  катионны х в ак ан си й  (С ) в

2 +  ”  к р и с та л л а х  N aC l:M e и за р я д о м  ди сл о кац и и  ( q ) . Зная  э т у  с в я з ь ,  можно о ц е н и т ь
с и л у , тормозящ ую  дислокацию  о т  катионны х в а к а н с и й . П оэтом у были про веден ы  и 
т а к и е  и зм е р е н и я , которы е п о зво л яю т  н е п о с р е д с т в е н н о е  и з у ч е н и е  зав и си м о сти  меж
д у  зар ядо м  д и сл о к ац и и  и к о н ц ен тр ац и ей  в а к а н с и й .  Для э т о г о  н а  каждом о б р а з ц е  
и зм е р я л ся  з а р я д  и ионная п р о в о д и м о ст ь , п р о п о р ц и о н ал ьн ая  ко н ц ен тр ац и и  к а т и о н 
ных в а к а н с и й . З ав и си м о сть  з а р я д а  ди сл о кац и й  (q) от к о н ц ен тр ац и и  катионны х в а 
кан си й  (Cv > при  ком натной т е м п е р а т у р е  п р и в е д е н а  на р и с . 6 .  Э ксп ери м ентальны е 
р е зу л ь т а т ы  хорош о описы ваю тся линейной зави си м о стью  (q = A -C v + B ) ,  причем  н е 
зави си м о  о т  т о г о ,  каким  о б р а зо м  и зм е н я е тс я  Cv -
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Обсуждение р е з у л ь т а т о в  и выводы
Т е п е р ь , т а к  к ак  эксперим ен тальны м  п утем  определенны м  у ч а с т к а м  вер х н ей  и 

нижней кривой  н а  р и с . 2 можем с о п о с т а в и ть  оп р едел ен н ы е  то ч еч н ы е  дефекты  (п о 
лож ение похож е в С лучае д р у ги х  п р и м е с е й ) , о б р ати м  наше вним ание на т е о р е т и ч е 
с к о е  оп и сан и е  в за и м о д е й с тв и я  иденти ф и ц и р о ван н о го  то ч е ч н о го  д е ф е к т а  и д и с л о к а 
ции. в  л и т е р а т у р е  в р ассм атр и в аем о й  о б л асти  оп и сан и е  в за и м о д е й с тв и я  д и с л о к а 
ции с  точечны ми деф ектам и им еет ф ен ом ен ологи ч ески й  х а р а к т е р .  Мы, н а п р о т и в , 
с та в и л и  ц ел ь  при вы числении эф ф ектов в за и м о д е й с т в и я , у ч и ты в ать  точечны е д е 
фекты н а  атом ном  у р о в н е . Т ак о го  р о д а  вы числен ия основы ваю тся н а  р е з у л ь т а т а х  
эк с п е р и м е н та , изображ енны х на р и с . 7 .  З д е с ь  п р ед став л ен ы  вели чин ы  КСН, с о о т 
ветствую щ ие прямым р и с . 3 в с л у ч а е  одинаковы х концентрац ий  п р и м е с и , как ф у н к 
ции ионных р ад и у со в  при м еси . С л ед о вал о  бы о ж и дать  м онотонное в о з р а с т а н и е . 
П оявление м аксим ум а с в и д е т е л ь с т в у е т  о  том , ч т о  кром е величины  р а д и у с а  ион а  
п ри м еси , н ах о д ящ его ся  в П В -к о м п л ек се , во  в за и м о д е й с тв и и  П В -ком плекса  с д и с л о 
кацией  и г р а е т  р оль такж е и д р у го й  атомный п а р а м е т р .

Р д с .7 .  З ав и си м о сть  полной  величины 
КСН, с в я за н н о й  ПВ -  к о м п л е к с а м и , от 
р а д и у с а  п р и м есн о го  иона

К р и в ая , п о д о б н ая  э т о й , но с меньшими зн ач ен и ям и  ф ункции, описы вает з а в и 
сим ость  эф ф ективного  н ап ряж ен и я , к о то р о е  мы и зм ер ял и  м етодом  р елак сац и и  н а 
пряж ен ия , о т  ион ного  р а д и у с а . Это важно п о т о м у , ч т о  КСН я в л я е т с я  суммой в н у т 
р е н н е го  и эф ф ективного  напряж ен ий , в т о  же в р ем я  то л ьк о  эф ф ективное  н ап р яж е
ние можно н е п о с р е д с т в е н н о  с в я з ы в а т ь  с о  в заи м о д ей ств и ем  д и п о л я  с  д и с л о к а ц и е й .

Все э т о  с п р а в е д л и в о , есл и  вел и чи н а  торм озящ ей  силы о т  в за и м о д е й с тв и я  
свободны х катионны х в ак ан си й  и ди слокац ии  пренебреж им о м а л а . Выяснение э т о г о  
в о п р о са  возм ож но п утем  т е о р е т и ч е с к о г о  т о л к о в а н и я  линейной зав и си м о сти  ( р и с . 6) 
между кон ц ен тр ац и ей  катионны х в ак а н с и й  (Cv ) и зар ядо м  д и сл о к ац и й  ( q ) . Для 
о п и сан и я  з а р я д а ,  п е р е н е с е н н о г о  д и сл о к ац и ям и , в л и т е р а т у р е  с д е л а н  ряд  п о п ы то к . 
Однако больш инство  эт и х  описаний  р а с с м а т р и в а е т  з а р я д ,  образую щ ийся в о к р у г  н е 
подвижной д и сл о к ац и и  при р а в н о в е с и и . Эти т е о р и и  в у сло ви ях  п л а ст и ч ес к о й  д е 
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формации н е сп р ав е д л и в ы . Д ля вы числения з а р я д а ,  п е р е н е с е н н о г о  движущимися д и с 
локац иям и , и м е е т с я  в расп о р яж ен и и  то л ьк о  н е с к о л ь к о  с и л ь н о  упрощенных к в а л и т а 
тивных м о д е л е й , в которы х в в е д е н  ряд  н е и зв е ст н ы х  п а р а м е т р о в . Мы приближ ались 
к данном у в о п р о с у ,  исх о дя  и з  р е зу л ь т а т о в  и зм ер ен и я  с в о и х  и с о в е т с к и х  и с с л е д о 
в а т е л е й  [ 1 3 ] ,  и р а зр а б о т а л и  диффузионную м о д ел ь  п е р е н о с а  з а р я д а .  Сущ ность 
эт о й  м одели с о с т о и т  в т о м , ч т о  в а к а н с и и , взаим одействую щ ие с  м ехани ческим  и 
эл е к тр и ч е ск и м  полями д и с л о к а ц и и , следую т з а  д и сл о к ац и ей  вынужденным ди ф ф узи
онным д ви ж ен и ем . Решение проблем ы  д а е т  диф ф узионное у р а в н е н и е  К отрелла  с  д в и 
жущимся п о тен циальны м  п о л е м . А н ал и ти ч еско е  реш ение у р а в н е н и я  для  имею щ егося 
в нашем с л у ч а е  слож ного п о л я  н е и з в е с т н о , п о э то м у  было при м енено ч и с л о в о е  р е 
шение; по с у т и  д е л а  -  э т о  о п и с а н и е  диффузии с  атомными с к а ч к а м и , г д е  п о л е  д и с 
локац ии  в л и я е т  н а  ч а с т о т у  с к а ч к о в ,  и в д а н н о й  то ч к е  к р и с т а л л а  изм енение к о н 
центрац ии  в а к а н с и й  о п р е д е л я е т с я  числом в а к а н с и й , вскакиваю щ их в э т у  т о ч к у ,  
или вы скакиваю щ их о т т у д а .

В с о о т в е т с т в и и  с  излож енными р ан ее  эк сп ер и м ен тал ьн ы м и  р е зу л ь т а т а м и  ( р и с .6) 
з а р я д  (q) пр и  ком натной т е м п е р а т у р е  п роп орц и он ален  ко н ц ен тр ац и и  катионны х в а 
кан си й  к р и с т а л л а .  Эта за в и с и м о с т ь  и с с л е д о в а л а с ь  с помощью диффузионной м о д ел и . 
Р е зу л ь т а т ы , полученн ы е при р азн ы х  с к о р о с т я х  д и сл о к ац и и , приведены  на р и с .  8 .

Р и с . 8 .  З ав и си м о сть  за р я д а  д и сл о к ац и и  (q) о т  ко н ц ен тр ац и и  
кати о н н ы х  в а к а н с и й  (С ) в к р и с т а л л е  при р азн ы х  с к о р о с т я х  
д и сл о к ац и и  в к р и с т а л л ^  N aC l. Кривы е изображ аю т р е з у л ь т а 
ты  р а с ч е т о в ,  а  круж ки  -  р е зу л ь т а т ы  изм ерений (с м . р и с . 6 ) .  
И спользованн ы е п р и  р а с ч е т е  вел и чи н ы  с к о р о с т и : 1 - 1 0  ” , 
2 -  1 0 ” 5 , 3 -  1 0 - ’  м /с е к

Сплошные лини и  получены  и з  р а с ч е т а ,  кружки со о тв етств у ю т  р е з у л ь т а т а м  (р и с . 6) 
наших и зм е р е н и й . Как в и д н о , р асч етн ы е  р е з у л ь т а т ы  совп ад аю т с  линейной з а в и с и 
м остью , п о л у ч ен н о й  э к с п е р и м е н та л ь н о .

Д иффузионная м одель д а е т  возм ож ность и д л я  вы числен ия действую щ ей на 
движущуюся ди слокац ию  торм озящ ей  силы, возникаю щ ей в с л е д с т в и е  п е р е н е с е н н о г о  
з а р я д а  [ 1 4 ] .  С помощью м одели  была вы чи сл ен а  зав и си м о сть  тормозящ ей силы  о т  
с к о р о с т и  д и сл о к ац и и  при т р е х  разны х т е м п е р а т у р а х . Р е зу л ь т а т ы  п оказы ваю т, ч т о
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торм озящ ая с и л а ,  возникаю щ ая в с л е д с т в и е  п е р е н о с а  з а р я д а ,  з а в и с и т  о т  с к о р о с т и  
д и сл о к ац и и , и м ак си м ал ьн ая  в ел и ч и н а  напряж ения у в е л и ч и в а е т с я  с у вели чением  
тем п ер ату р ы  (р и с . 9 ) .

0.2
СВ

(Г
г

ш

0.1

о

Igv, м /сек

Р и с .9 .  З ав и си м о сть  торм озящ его  движ ение ди сл о к ац и и  
напряж ения (Тц) , возникаю щ его в с л е д с т в и е  п е р е н о с а  
в а к а н с и й , о т  с к о р о с т и  д и сл о кац и и  (v) при разны х  
т е м п е р а т у р а х  (1 -  2 9 3 , 2 -  3 7 3 , 3 -  423 К)

М аксим альная в ел и ч и н а  то р м о зящ его  напряж ения в зав и си м о сти  о т  тем п ер ату р ы  м о 
ж ет с о с т а в л я т ь  меньш е 10% величины  КСН. Э тот р е з у л ь т а т  п о д тв е р ж д ае т  наше и с 
х о д н о е  п р едп о л о ж ен и е , по  к о то р о м у  при тормозящ ем  дислокацию  д е й с т в и и  п в -к о м п -  
л е к с о в  тормозящ им д ей ств и ем  в а к а н с и й  можно п р е н е б р е ч ь .

Д алее  мы хотим  р а с с к а з а т ь  о  р е з у л ь т а т а х  р а с ч е т а ,  с в я з а н н о г о  с в за и м о д е й 
с тв и е м  д и п о л я  с  д и сл о к ац и ей  и о  схем е т е о р е т и ч е с к о г о  вы числен ия  эф ф ективного  
н ап р яж ен и я , и зм е р е н н о го  при ком натной  т е м п е р а т у р е , и и н те р п р е ти р у е м о го  т ак  
называемым эф ф ектом  С нока. Э тот  эф фект с о с т о и т  в то м , ч т о  способ ны е в р ащ аться  
ПВ -комплексы  по д  влиянием  п о л я  напряж ения д и сл о к ац и й  с т а р а ю т с я  приним ать 
э н е р г е т и ч е с к и  выгодную  ор и ен тац и ю . Так формирующ ееся "о б л а к о "  П В -ком плексов 
за д е р ж и в а е т  д и с л о к а ц и и , двигаю щ иеся под д е й с т в и е м  внеш него н ап р яж ен и я . Во в р е 
м я т е о р е т и ч е с к о г о  а н а л и за  мы, о с т а в а я с ь  в р а м к а х  тео р и и  кон ти н у у м а  -  в за и м о 
д е й с т в и я  д и сл о к ац и й  и точечны х д е ф е к т о в , у со ве р ш е н с тв о в а л и  преж ние вы числен ия 
в т р е х  а с п е к т а х .  В о -п ер вы х , с  помощью п р о сто й  атом ной  м одели и вы числения 
с д в и г а  и о н о в , находящ ихся н е п о с р е д с т в е н н о  в б л и зи  П В -ком п лекса , мы оценили х а 
р актерны й  д л я  П В -ком плекса деформационный т е н з о р .  С помощью э т о г о  т е н з о р а  и 
т е н з о р а  напряж ения ди сл о к ац и и  получили  вы раж ение д л я  эн ер ги и  в за и м о д е й с т в и я . 
Таким введ ен и ем  деф орм ационн ого  т е н з о р а  у д а л о с ь  у д а л и ть  и з о п и сан и я  в за и м о д е й 
с т в и я  приняты й в л и т е р а т у р е  сты ковочны й п а р а м е т р , т а к  назы ваемую  т е т р а г о н а л ь -  
н о с т ь ,  к о т о р а я  п о з в о л я е т  ощущать деформирующее реш етку  в л и я н и е  П В -ком плекса . 
В о -в то р ы х : при вы числении эф ф ек ти вн о го  н ап р яж ен и я , в о тли ч и е  о т  п р и н я то го  в 
л и т е р а т у р е  с п о с о б а , мы р а сс м ат р и в ае м  р азн о й  о р и ен ти р о в к и  П В -ко м п л ексо в , н а х о 
дящ иеся на разны х  р а с с т о я н и я х  о т  п л о с к о сти  ск о л ь ж е н и я , к ак  р азн ы е  тормозны е
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центры  и их  с о в м е ст н о е  в л и я н и е  учи ты вали  т е о р е т и ч е с к и  обоснованны м  м ето д о м . 
В -т р е т ь и х : симуляционным м етодом  вы числили  вел и чи н у  эф ф екти вн о го  н ап р яж ен и я , 
о б у с л о в л е н н о го  наличием  вращающихся д и п о л е й . И сходной то ч к о й  в вы чи сл ен и ях  
служ ило вы раж ение д л я  эн е р г и и  в з а и м о д е й с т в и я . Таким о б р а зо м , е сл и  д и сл о к ац и я  
п е р е д в и г а е т с я  в п л о с к о ст и  скольж ения  с  п о сто я н н о й  с к о р о с т ь ю , то  симуляционным 
м етодом  можно вы числить в ел и ч и н у  э н е р г и и , ди ссипи руем ой  окружающими д и с л о к а 
цию вращающимися П В -ком плексам и при их п е р е х о д а х  между различны м и с о с т о я н и я 
м и. Д о к а за л и , ч т о  диссипирую щ аяся э н е р г и я  с о в п а д а е т  с  вел и чи н о й  р а б о ты , н е о б 
ходимой д л я  перед виж ени я  ди сл о к ац и й  [ 1 5 ] .  С о гласн о  р е з у л ь т а т а м  наших р а с ч е т о в , 
эф ф ективное  н ап р яж ен и е, к о т о р о е  п о л у ч а е т с я  и з - з а  эф ф екта  С н о к а , я в л я е т с я  с о 
разм ерны м  ч и с л у  П В -ком плексов, и с о о т в е т с т в у е т  р е з у л ь т а т а м  наших эк с п е р и м ен то в . 
Д а л ее , в ы ч и сл ен н ая  в ел и ч и н а  эф ф екти вн о го  напряж ения з а в и с и т  ч е р е з  деф орм аци
онный т е н з о р  о т  п ар ам етр о в  ионов п р и м еси , и н ач е  г о в о р я ,  о т  р а д и у с а  и п о л я р и 
зу ем о сти  примесны х и о н о в .

hl

3$

Р и с .1 0 .  З ав и си м о сть  д о п о л н и тел ьн о й  величины  
КСН -  ч а с т и  С н о к а , вы зв ан н о й  П В -ком плексам и, 
от  р а д и у с а  п р и м есн о го  и о н а  (кривые 1 и 2 ) .  
К ривая 1 с о о т в е т с т в у е т  р асчетны м  в ел и ч и н ам , 
а  к р и в а я  2 -  измеренны м в ел и ч и н ам . К ривая 3 
и зо б р аж а ет  полный КСН

На р и с . 10  можно в и д е т ь ,  к ак  м е н я е т с я  и зм е р е н н а я  (п е р в а я  к р и в а я ) и п о с ч и т а н 
н ая  (в т о р а я  к р и в а я ) в ел и ч и н а  эф ф ек ти вн о го  н ап р яж ен и я , к а к  функция о т  р а д и у с а  
п р и м есн о го  и о н а . П олучено хорош ее с о в п а д е н и е , ч т о  п о д т в е р ж д а е т , с  одной с т о 
роны , п р а в и л ь н о с т ь  м ет о д а  в ы ч и сл ен и я , с  д р у г о й  стороны  -  т о  п р едп о л о ж ен и е , 
ч т о  эф ф екти вн о е  напряж ение п о л у ч а е т с я  о т  вращающихся П В -ком плексов и с о с т а в 
л я е т  аддитивную  ч а с т ь  п о л н о го  к р и т и ч е с к о г о  скалы ваю щ его н ап ряж ен и я . А н ом аль- 
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ное вл и я н и е  примеси (S r)  о б ъ я с н я е т с я  т е м , ч т о  с д в и г  ионов окружающей среды  
П В -ком плекса и деформационный т е н з о р ,  з а в и с и т  не т о л ь к о  о т  р а зм ер а  ионов п р и 
м еси , но еще и от  их п о л я р и зу ем о с ти . Т р е т ь я  к р и в а я  р и с .  10 с о о т в е т с т в у е т  п о л 
ному КСН. Э та к р и в ая  похож а на кривую эф ф ективного  н ап ряж ен и я , т . е .  и зм ер ен и я  
п р е д е л а  т е к у ч е с т и  м о гу т  д а т ь  к ач ествен н у ю  информацию о роли П В -к о м п л ек со в .

В заклю чение об и ссл ед о в ан и и  в л и я н и я  на КСН а г р е г а т о в , состоящ их  и з б о 
л ее  чем  о д н о го  П В -ком п лекса , мы хотим  за м ет и т ь  следую щ ее: в с л у ч а е  дим еров и 
трим еров необходимо эк сперим ен тальны м  и т ео р е ти ч е ск и м  п утем  в ы я с н и т ь , каким  
о бразом  с вя зан ы  д р у г  с  д р у го м  входящ ие в эт и  а г р е г а т ы  П В -комплексы . Т олько  на 
этой  о с н о в е  можно п о п ы т ат ь с я  п р о в е ст и  на атомном у р о в н е  вы числение деф орм аци
онных т е н з о р о в  эт и х  а г р е г а т о в  и в кон ечн о м  с ч е т ч е ,  п о л у ч и ть  вы раж ение д л я  
эн ер ги и  в за и м о д е й с т в и я .
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Infrared spectrophotometric method was developed for the determination of c rysta lline  
s il ic a  in respirable dust samples from a wide range of industrial environments. Samples were 
collected with personal sampler on a Microsorban f i l te r .  The f i l t e r  was dissolved in benzene 
and the suspension was separated by centrifuge. The mineral phase content of the dust was 
determined by X-ray powder d iffraction. The p artic le  size of the standards and samples as 
well as the mineral interference effects were controlled. Different calibration curves using 
a mixture of crystalline quartz and interference mineral were prepared. The p artic le  size
was measured in the pellets. The absorbance of the 800 cm 1 band (Si-O-Si symmetrical 
stretching vibration) was calculated and proved to be proportional to the concentration of 
quartz.

Introduction
Exposure to s ilica  dust can occur in a wide range of industria l environments, including 

mining, construction, agriculture and manufacturing. Quartz is  the most abundant polymorphic 
form of s il ic a , occurring naturally in certain types of rocks, in sand, and in most types of 
so il. Crystobalite and, more rarely, tridymite are formed when quartz or amorphous s il ic a  is 
heated.

S ilicosis, the lung disease caused by inhalation of fine partic les of cry sta lline  dust, 
has long been recognised as a health hazard in many work places. The occupational exposure 
lim its in England for respirable dust containing the different types of crystalline s il ic a  
range from 5 to approximately 0.1 mg/m3 for quartz-containing dusts, and from 2.5 to ap
proximately 0.05 mg/m3 for dusts containing crystobalite or tridymite [ l] .  The prac tica l 
lim it for any particular respirable dust depends on i ts  crysta lline  silica  content.

Many analytical techniques have been developed for the quantitative determination of 
the quartz in dust. These include gravimetry, spectrophotometry, d ifferential thermal 
analysis [2], X-ray powder d iffraction [3- 7] and infrared spectrophotometry [2 , 4, 5, &-loJ. 
Of these, X-ray powder diffractometry and IR spectrophotometry are the principal techniques 
currently employed; each is  capable of identifying free cry sta lline  silica  in the presence 
of s il ica te s  [ ll, 12] .  Using IR spectrophotometry, quartz may be analysed by d irec t f i l te r  
[l3—14] ,  pressed pellet [Ï.5, 1б] , or attenuated to ta l reflectance (ATR) [17J methods. In the
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d irec t f i l te r  and ATR techniques the membrane f i l te r  on which the sample dust is  deposited 
is  placed directly  into the infrared beam or in an ATR unit without further sample prepara
tion . In the p e lle t method, the sample is  recovered from the membrane f i l t e r  by incineration 
or dissolution of the f i l te r  and the dust is  mixed with embedding material and pressed to 
pe lle ts .

In our work, the pellet method was used for determination of the quartz content of 
respirable dust originated from d iffe ren t work places.

Experimental
Respirable dust was sampled by personal sampler (PERSOMETER) on a Microsorban membrane 

f i l t e r .  The flow ra te  of the air was about 1.5 dm'Vmin. Amount of samples ranged between 
1—10 mg. Recovery of the dust from membrane f i l te r  was carried out by dissolving the membrane 
in  benzene and centrifuging the suspension.

Standard samples for IR investigation were ground in a laboratory ball-m ill (Narva, 
Brand-Erbisdorf, GDR). Samples were homogenized in spectroscopic grade potassium-bromide and 
pressed to pe lle ts . Infrared spectra were recorded by a SPEC0R0 75 IR-spectrophotometer 
(Carl Zeiss, Jena, GDR). X-ray powder diffractograms were obtained by a M-1051 Philips d if
fractometer. P artic le  size distribution  in the pellet was measured by a VIDIMAT Image 
Analyser (Research In stitu te  for Ferrous Metallurgy, Budapest, Hungary).

Results and discussion
During the collection of the respirable dust samples, 1—5 g of sedimented dust was 

sampled from the immediate work places of the workers. Furthermore, in some cases, 50-100 mg 
of dust was collected by a high-volume sampler (type: SPG 210) on membrane f i l te r .  The 
higher amounts of samples were needed for the qualitative mineralogical analysis carried out 
by X-ray powder d iffraction .

The precision and the accuracy of the infrared spectrophotometric analysis depend on 
the effects of the partic le  size and matrix interferences [в]. Theoretical studies have 
shown that materials of equivalent chemical composition, but different p a rtic le  size, have 
significantly  d iffe ren t infrared spectra [l8-2lj . They indicate that the absorbances of par
tic le s  smaller than the incident wavelengths increase with decreasing p artic le  size. In 
order to avoid the reflection and lig h t scattering of the incident beam, the particle size 
of the samples has to  be smaller than 2.5 /jm (22] . This lim it is  usually fu lf ille d  in case 
of the respirable dust but during the preparation of the calibration curve, the standard 
samples should be ground. The partic le  size distribution of each sample collected and 
standards were determined in the p e lle t by VIDIMAT Image Analyser (22] .

For determination of the quartz content of dust samples, the absorbance of the 800 cm- '1' 
band was calculated. This band is  originated from the symmetrical stretching vibration of 
Si-O-Si groups. The base-line method was used for the calculation of the absorbance.

The presence of any minerals in the dust sample tha t possesses absorption band close 
to  800 cm-1 may produce erroneous re su lts . Therefore, a f te r  the qualitative phase analyses 
carried out by X-ray powder d iffraction , the interference mineral was added to the standard 
quartz used for preparation of the calibration  curve. In th is  case, the interference effects 
are taken into account in the calculation of the equation of calibration curves.
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Consequently, for reliable quantitative analysis, pellet preparation, particle size 
equivalence and interference effects have to be standardized and controlled.
Determination of quartz content in coal mine dust

Qualitative phase analyses of the sedimented coal mine dust was carried out by X-ray 
powder diffraction . Along with the quartz, kaolinite, i l l i t e ,  calcite, dolomite, sulfates 
and plagioclase were identified. From these minerals, the vibration bands of Si-O-Si groups 
present in the kaolinite and i l l i t e  have to be considered. Therefore, 0.5 mg of kaolinite 
was weighed to each pelle t and 0.0125-0.5 mg of crysta lline  quartz were added in eleven 
pellets for preparation of the calibration curve. The quartz and the kaolin ite were homogen
ized by potassium-bromide in an agate morter for 3 min. Pellets were pressed in a 20 mm 
diameter die se t. All steps of pelle t preparation were carefully controlled to allow com
parison of the spectra. After pe lle t preparation, a 6 x 20 mm area of the pellet was selected 
by masking the other parts of the disc. Both infrared spectra and p artic le  size d istribution  
measurements were taken on the free area and in the whole cross section of the pellets.

The equation of the calibration curve is:

A = 2.4xl0-2 + 4.2x10"1 C ,

where A = absorbances at 800 cm-1 and C = mass of quartz in the pellets (mg). The standard
error of regression, S , is  ^2.6х10~5, while the standard deviation of the slope, S is  
+ -3 re9 + -3 3-3x10 and that of the intercept, Sb is  -5.5x10 . The regression coefficient, r , is  0.999.

The average partic le  diameter of the standards in the pellet was dgvg = 2.2 yum.
The quartz content found in sedimented and respirable coal mine dust sampled from d if 

ferent places of the mine and different workers is  shown in Table I and I I ,  respectively.

Table I
Quartz content of some sedimented coal mine dusts’*

Sample Amount of quartz [%] dave И
1 10.7^0.7 2.5
2 9.4Í0.7 2.6
3 14.6Í1.7 2.5
4 13.0-0.7 2.5
5 14.9Í0.7 2.5
6 11.3-0.7 2.7

*2 mg sample was weighed into the pellets

Only 0.46-0.65 mg of respirable samples were recovered from the f i l te r s  and weighed into the 
pellets. Therefore, a confidence lim it of Î2.3-3.3S! was obtained in case of the respirable 
dusts while that of Î0.7J! at the sedimented samples.
Determination of quartz content in foundry atmosphere dust

Some respirable dust samples were collected from different foundries. About 0.5-2.0 mg 
samples could be separated from the f i l te r s .  According to the qualitative X-ray powder d if-
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Table II
Quartz content of some respirable coal mine dusts

Sample Sample mass 
in p e lle t

к

Amount of quartz

M
dave И

1 0.65 Э.1-2.3 2.5
2 0.53 18.4-2.8 2.3
3 0.46 8.8Í3.3 2.1
4 0.58 14.5Í2.6 2.4

1 5 0.55 16.1-2.1 2.4

fraction analysis, calcite , magnetite, a lb ite , hematite, ct-Fe, phosphates, chlorite and 
muscovite were found in d ifferent amounts. Since muscovite and ch lo rite  were in the dust as 
trace clay minerals, they did not interfere with the determination of the quartz. Calcite 
was identified as main component and the 880 cm-3 band of carbonate ion would be a possible 
interference. Therefore, 0.5 mg ca lc ite  was weighed to the standard crystalline quartz for 
the preparation of the calibration  line.

The equation of the calibration  curve is :

A = 2.9xl0'3 + 4.1X10“1 C ,

S = Í 5 .6 X 1 0 - 3 ,  S = Í 2 . 7 X 1 0 '3 . S. = Î 7 .3 X 1 0 - 3 , r  = 0 . 9 9 9  . reg > a > b *
The average particle diameter of the standards in the pelle t was dgvg = 2 .6 /urn.
The quartz content found in  the respirable foundry dusts is  shown in Table I I I .

Table I I I
Quartz content of foundry dusts

Sample ^ о е П е Г  Amount of quartz dave [urn]
Ы  Ы

1 2.07 8.6±1.4 2.87
2 1.00 6.5-2.9 2.87
3 1.23 5.0-2.4 2.86
4 0.52 6.1Í5.7 2.89
5 1.30 3.3-2.3 2.97
6 0.50 8.2-6.0 2.74
1 1.91 18.3-1.5 2.05
8 2.12 10.1±1.3 2.71
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The new phases produced in the interaction  of chloro-silane d is tilla tio n  residues and 
Ca(0H)2 are different in the case of alkyl and aryl silane derivatives. X-ray phase analysis 
resu lts about the composition of the new phases are strongly supported by the IR spectra, 
too.

Introduction
One of the ways to improve the corrosion resistance of cement-based building materials 

is  to decrease the Ca(0H)2 content of the s ta rting  materials. In th is case the microstruc
ture of cement stone w ill change. As an inexpensive hydrophobizing agent the by-product of 
chloro-silane manufacturing can be applied, namely the d is t illa tio n  residue, which contains 
chloro-silanes, alkyl-chloro-disiloxanes, b is-sily l-a lky la tes and Cg — C? hydrocarbons. The 
active chlorine content of the mixture was 48%, which was reduced to 6-7% by hydrolysis or 
alkoxylation ( i.e . treatment with i-propyl alcohol).

The modelling of the optimal hydrophobization circumstances of these cement mixtures 
was carried out with Ca(0H)2- A Ca(0H)2 — H20 suspension with a mass ratio  of 2 : 1 was 
treated with hydrophobizing agents, then a f te r  24 hours the phase composition of the powder
ed samples was studied based on X-ray phase diagrams and IR spectra.

For the treatment of samples as hydrophobizing agent the residue of the d is tilla tio n  
of methyl- (MK), methyl-vinyl- (MVK) and phenyl- (FK) chloro-silane production as well as 
W-290 (Wacker Chemie, West-Germany) were used. The last product is  a polysiloxane oligomer 
with long alkyl chain and i t  was used as a solution in an organic solvent.

From the IR spectrum of the model compound Ca(0H)„ (Fig. 1) i t  can be seen that i t  was 
transformed into the carbonate on contacting with air (bands at 1450, 875, 420 cm ).

The X-ray diffractograms of the Ca(0H)2 sample hydrophobized using MK and MVK (Fig. 2) 
do not prove the incorporation of Si-0 group into the sample. However, the wide band appear
ing in the IR spectrum refers to the presence of Si-0-Si or Si-0-С bonds. After extraction 
of samples with hexane the intensity of the wide band characteristic of the stretching 
vibration of siloxanes decreases and the wide band sp lits  into several peaks (in the range 
of 1130—1010 cm’ 1), which means non-reacting low molecular weight siloxanes can be removed
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Fig. 1. IR spectra: 1, MVK (------); 2, CaCOH  ̂ 3, Hydrophobized CaCOH  ̂ (-----)

Fig. 2. X-ray diffractograms: 1, MVK (----- ); 2, Ca(0H)o 3, Hydrophobized Ca(0H)o
(-----) 2 2

from the sample. The bands at 3600-3100 and 1700-1600 cm~̂  belong to the bound water. The 
amount of th is  bound water does not decrease on drying at 180 °C to constant weight.

In the IR spectrum of MVK the stretching frequency of the Si-H bond can be observed at 
2258 cm”'*'. This band cannot be found in the spectrum of the hydrophobized product because 
the Si-H bond is hydrolysed in alkaline medium.

On the basis of X-ray diffractograms i t  has been found that CaCOĤ  reacts with the 
residue of d is tilla tio n  only in the presence of water. In the X-ray diffractogram of MK 
there is  a wide band in the range of 29 8-12° (d/n = 0.73-1.25 nm; 0.81-0.821 nm) and a

116



INTERACTION OF SILICON-ORGANIC COMPOUNDS AND Ca(0H)2

diffuse band can be observed between 29 19-28°. The X-ray diffractograms of MVK, of Ca(0H)2 
and of the product of interaction can be seen in Fig. 2. The more combined hydrocarbon group 
bonded to silicon reduces the regularity of the hydrolysed partic les. The ca lc ite  bands in 
the X-ray diffractogram prove the particular transformation of Ca(0H)2 into CaCOj.

In the course of the reaction the amount of Ca(0H)2 decreases. This process is  
indicated by the IR spectra, but even better by X-ray diffractograms by a decrease in the 
intensity of the Ca(0H)2 bands (in this respect f i r s t  of a ll the d/n = 0.3097-0.3112;
0.1793-0.1798 and 0.1684—0.1687 nm bands are characteristic). The d/n values of the new 
crysta lline phase occurring on hydrophobization are summarized in Table I.

Table I
Relative peak in tensities of Ca(0H)2 hydrophobized with MVK or MK

№ d
n’ ™

Relative
intensity № d—, nm n’

Relative
intensity № d—, nm n

Relative
in tensity

1 0.8328 10 8 0.2926 4 15 0.1952 3
2 0.6605 1 9 0.2771 3 16a 0.1876 1
3 0.4161 5 10 0.2426 3 16b 0.1857 1
4 0.3688 1 11 0.2362 1 17 0.1845 1
5 0.3597 1 12 0.2218 2 18 0.1757 1
6 0.3376 2 13 0.2058 1 19 0.1651 1
7 0.3301 1 14 0.1997 1 20 0.1526 0.5

16a. only for MVK; 16b. only for MK

The data of the X-ray diffractograms of the new phase do not agree with those found 
in the lite ra tu re  [l—4]. The intense bands observed at d/n = 0.8328 and 0.4161 nm character
ise the natural calcium-alumina-silicates (CaO.Al20^.7Si02.1 ,7H20 and Ca0.Al20j.4Si02.6H20), 
a lkali- and alkaline earth metal s il ica te s , as well as calcium-chloro-hydrosulphato-aluminate 
(3Ca0.Al20j.CaS0^, CaCl2.12H20). At the same time the band a t d/n = 0.832 nm can be found in 
the X-ray diffractogram of Ca(CH-jC00)C1.5H2O. The starting components do not contain any 
alumina and alkali metal, thus organic acids with short chain are formed in the presence of 
HC1 arising from the reaction of the d is t illa tio n  residue and due to the large specific sur
face area. Hence, the crysta lline phase may contain calcium-alkylate-chloride, too. In the 
d iffe ren tia l IR spectrum of the new phase weak bands can be observed at 645, 615 and 465 cm  ̂
(the deformation frequencies of carboxylate ion), but the stretching frequency of carboxylate 
ion cannot be identified unambiguously.

On the basis of IR spectra i t  can be stated that during the hydrophobization with FK 
siloxane chains are b u ilt into the product (in  the range of the stretching frequencies of 
Si-0-Si group two peaks occur). In the X-ray diffractograms there are bands characteristic 
of the new phase, which have not yet been identified , at d/n = 0.8349; 0.5315; 0.2757;
0.2371; 0.1878 and 0.1637 nm.

Hydrophobization made with W-290 (not containing chlorine) yields a product contain
ing a high amount of polysiloxanes with long carbon chain. This material contains the
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minimum quantity of OH groups (only one sharp band can be observed at 3635 cm 1 in the IR 
spectrum and only weak bands at d/n = 0.2453 and 0.1637 in the X-ray diffractograms). In 
th is  case the siloxane oligomer chain is  bonded at the surface and in the pores of material, 
so i t  prevents water uptake.

Experimental
The X-ray diffractograms were taken by an X-ray diffractometer type JDX—IOPA applying 

a copper anticathode and nickel f i l te r  in the range of 4-65°. The rotation speed of the 
goniometer was 0.04 °/ms.

The IR spectra were taken by an IR spectrometer model UR—20 in KBr p e lle ts .
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A procedure was developed for the identification  of concrete additives on the basis of 
their infrared transmission properties, using the new supervised classification  method PRIMA 
(Pattern Recognition by Independent Multicategory Analysis).

The training process of identification was carried out using the IR spectral data of 
known additives. These data were the comparative spectral band in ten sities  of the additives 
at 15 selected positions, where the absorption of the single additives showed sharp d if 
ferences.

With the process elaborated identification  can be carried out with 100% re lia b ili ty , 
and th is helps the prediction of expectable concrete-technological properties.

The paper reports on the development of an effic ien t, well-reproducible, quick and 
cheap method, suitable for the identification of concrete additives, and thus, for the pre
diction of the ir expectable concrete-technological effect. The study of these effects (se t
ting time, consistency, hardening and shrinkage modification, e tc .)  requires lengthy and ex
pensive measurements, so that demand arose for the introduction of a simpler analytical 
process, s t i l l  giving reliable results.

The fundamental principle of our method is  the identification of concrete additives on 
the basis of the characteristic properties of the ir IR spectra, using a pattern recognition 
supervised classification  method. Identification is  carried out in two levels: concrete 
additives are f i r s t  grouped into composite classes on the basis of certain  IR spectral pro
perties, and then identification is performed within one single composite class under con
sideration of further spectral properties.

To characterize the IR spectra not only the location of the absorption bands is  used 
for identification, but also the percentage d istribution  of the in tensity  of a few selected 
bands. Thus, the number of data obtained from the IR spectrum considerably increases, which 
increases also the re liab ili ty  of our method, identification varying between 98.7 and 100%.

The steps for the development of the method were the following:
— 27 additives were identified [Î—з] with the aid of their functional groups, revealed 

by their IR spectra bands, and then with the assistance of IR spectrum maps.
— From the IR spectra of the additives identified, 15 properties (intensity d is trib u 

tion of the bands of their characteristic groups) were defined, on the basis of which the 
additives were separated into 10 classes.

*Presented at the 3rd Hungarian Conference on Molecular Spectroscopy, Debrecen, 
Hungary, 24—28 August 1987
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— Using the data above a learning program was written, with the help of which we got 
to know the centre of gravity points. The inhomogeneity of the known classes were calculated 
and these data were then used for the classification  of unknown additives by the method 
"PRIMA" [в].

The same procedure was also carried out separately for each class, with the marking 
out of new properties within the classes, on the basis of which identification  within the 
class became also possible.

Preliminaries
The chemical composition of additives, iden tification  of the ir components, their mode 

of action, description and survey of methods suitable for their chemical and instrumental 
analysis were discussed already in e a rlie r  works Q.—3^. Our present paper deals with the 
updating of our procedure developed ea rlie r , in so fa r as the supervised classification 
method PRIMA (Pattern Recognition by Independent Multicategory Analysis) is  used for the 
evaluation of our IR spectral data [б-fi] .

Supervised classification  by the method PRIMA
Pattern recognition methods form one of the groups of modern mathematical processes 

solving the problems of classification  and grouping. Pattern recognition methods can be 
subdivided into two groups according to their functions (supervised and non-supervised 
c lassification ). In the case of pattern recognition in the narrower sense, in the so-called 
supervised c lassifica tion  or train ing with a teacher program, material of knowledge is 
available, that i s ,  the classes of certain  objects are known. Using th is  learning pattern, 
the location of the classes in the space of essential properties is  determined by the 
a lte rs , defined by the known object points of the known classes. Using our knowledge, during 
recognition the objects of an unknown class can also be arranged in the respective class of 
the essential property alter.

Each supervised classification  consists of two steps, training and recognition (F ig .l) .

Fig. 1. Steps of supervised classification

120



IDENTIFICATION OF CONCRETE ADDITIVES

Differences among supervised controlled classification  methods are based on the mathe
matical models describing the location and separation of the points of objects belonging to 
the different classes.

The supervised c lassification  method PRIMA
The supervised c lassification  method PRIMA is  based on the concept of class distance. 

The essential of the method is  that a separate distance concept, the concept of class d is
tance is  assigned to each class on the basis of centre of gravity and inhomogeneity, and 
classification  is  carried out on the basis of these distances.

In training the classes are characterized by two parameters, the centre of gravity and 
inhomogeneity. The average of a given property j  in a class к can be calculated simply by 
the formula I,

*5 i=l i j
j  = 1 , . . . ,  J, and к = 1, . . . ,  К,

where X^ is  the jth  property of the ith  object in class k,
_
Xj is  the average of property j  in class k, and

Ik is  the number of objects belonging to class к in the training set.
The centre of gravity of the given class к is  the vector formed from the property averages

Xй = x!?

X* К = 1 , . . . ,  К,

where X is  the centre of gravity for class k.
The spread of the classes in  pattern space can be characterized by the inhomogeneity of a 

u
property j  in class k, s^, is  the dispersion of the property

i = l

1/2

Г 1
j  = 1....... 1 and
к = 1....... К.

The inhomogeneity vector of a given class b , is  a vector formed from the property inhomo
geneities

Sk =

/ s k \S1

\ Sj ^

к = 1........ К .
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Many different distance notions can be defined between the points of pattern space. Here, 
the Euclidean distance is  used as a class distance; other distance definitions, however, 
could also be used. Before a defin ition  of the class distance is given, the concept of a 
property component of the class distance must be introduced. The jth  property component of 
the class distance with respect to the kth class is

k = 1 .....K .
On the basis of property components, the basic idea of th is method, the class distance, can 
be defined as

where is the property vector of the ith  object, and 

is  the norm factor.

C lassification with the method PRIMA (Fig. 2)

Fig. 2. Algorithm of the PRIMA method

Training with the PRIMA method means the determination of class centres of gravity
—k —k l k  LXx . . .  X and class inhomogeneity vectors ŝ  . . .  £  from the training data matrix  ̂ .
Recognition consists of two steps. F irs t, the class distances of the object X* (recognition 

1 'll
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data matrix) to be recognized, i . e . ,  d̂ C d  ̂ (Xм , ÿ )  are evaluated. In the
second step, the class or classes to which the unknown object belongs must be chosen. There 
are several possible ways of evaluating the class membership. C lass ification  can be done by
assigning the object to the class fo r which the class distance is minimal, i . e . ,

Í 1 к 1d , . . . d  f . A more p ractica l solution is  achieved i f  the class membership is  d eter- 
0 к к —к Xmined by the condition d (X ,X )< ,  d which means tha t object X belongs to the kth class i f

the above condition is  sa tis fied , where d is a su itab ly  selected l im it  value, the so-called  

class distance threshold.
C lassification  can be evaluated by the characterization of the distances between the 

classes and of the classes, with the training set and with the test set.
For solving our problem, the composition of IR spectroscopy and of the supervised 

c lass ificatio n  method PRIMA, the poss ib ility  of th e ir  jo in t application had to be created 

(F ig . 3 ). By the marking out of specific  band locations a feature selection was carried  out, 
that is  the feature space was defined.

I------------------------------------------------------------------------------------------------1

rim a
Fig. 3. Application of pattern recognition fo r the c lass ification  of concrete additives

The more important characteristics of concrete additives  

Additives are mostly multicomponent systems of undefined composition, influencing the 
setting  and hardening processes of concrete, and the properties of the concrete mix, and 
hardened concrete. These additives are mainly prepared from industria l wastes and by-pro
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ducts (su lf ite  liquor, protein hydrolysates, waste liquors of the pharmaceutical industry, 
e tc). Their components are partly high-molecular natural substances, partly sa lts  of long- 
chain fatty  acids,and furthermore sodium carbonate and calcium formate. The composition of 
synthetic preparations is fixed, however, the composition of their majority is not given 
in the market. Their qualification requires time and work consuming, expensive concrete- 
technological investigations; therefore, the ir replacement by a simpler method would be 
ju stified . By the application of the method expensive additives can be replaced by cheaper 
ones, prepared from by-products and wastes not u tilized  at present.

Additives are mixed in a concentration of 0.3 to 3% to concrete. Their main types are 
as follows: p lastic ize rs  (P lastifica to r, P); se t-re tarders (Fliessm ittel, F); set-acceler
ators (Schnellhärter, S); air-pore formers (Luftporenmittel, L) and sealers (T).

Experimental
Additives in aqueous solution (active substance 10 — 40%) were obtained by evaporation 

in vacuum at 60 °C. Their spectra were taken in potassium bromide p e lle ts  with a Zeiss 
Specord 75 IR spectrophotometer.

Solid samples were homogenized with potassium bromide in a vibration mill, then 
tabletted and th e ir  IR spectra recorded.

From the IR spectra taken the characteristic properties of concrete additives were 
established, which were used in the pattern recognition calculations. For computational work 
a professional personal computer PROPER 16/A was used.

Experimental results and the ir evaluation 
C lassification of concrete additives * 5

Eight kinds of p lastic izers, 9 kinds of se t-re tarders, 3 kinds of set-accelerators,
5 kinds of air-pore formers and 2 kinds of sealers were identified on the basis of the ir IR 
spectra and of spectral maps. The spectra of the single additives, the interpretation of the 
absorption bands — using Sohár — Holly — Varsányi's  symbol system — are shown in Figs 
4 — 13, while the chemical structures of the active substances are displayed in Figs 14 — 15. 
Table I contains the chemical composition of additives, belonging to the classes established 
on the basis of spectral bands and of the percentage distribution of the in tensities of some 
selected bands (see la te r) . Though we succeeded in  identifying according to the aforegoing 
on the basis of the IR spectra of the active substances of the 27 additives studied, d if 
f icu ltie s  arose in distinguishing between some of the additives on the basis of the spectral 
bands of the ir scarcely differing active substances.

To f a c il i ta te  identification , we selected from the spectra in tervals or positions, 
where the absorption of the single additives sharply differs.

After base line  correction, absorbance values were determined a t these positions, then 
the d istribution  of intensity values was calculated as percentage of to ta l absorbance for 
the marked out bands of the single additives. Selected spectral in tervals and positions are 
shown in Fig. 16 and Table I I .

The resu lts  of five parallel measurements of each additive were used for the cal
culations.

In th is  way, the training se t needed for the application of the method PRIMA was 
prepared.
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F i g .  5 . IR s p e c t r a  o f  a d d i t i v e s  b e l o n g i n g  i n  c l a s s  I I  a n d  t h e i r  i n t e r p r e t a t i o n

Fig. 4. IR spectra of additives belonging to class I and their interpretation
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Fig. 6. IR spectra of additives belonging to class I II  and their interpretation
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x102 cm'1
Fig. 8. IR spectra of additives belonging in class V and the ir interpretation

Fig. 9. IR spectra of additives belonging in class VI and the ir interpretation

With th is  method the re lia b ili ty  of c lassification  for the training set is  100%. This 
confirms that the definition of the classes and of the features was correct. Distances be
tween the classes, s ta t is t ic a l  data, further resu lts  of the iden tification  of unknown samples 
are not given here, standard deviations of in tensity  values generally vary from 0.1 to 6%.

The classification  program thus "trained" was used in the further work for the 
c lassification  of unkown additives. The preparation of the samples, the recording and 
evaluation of the spectra were carried out in  the same way as in the case of the learning 
samples.

With the aid of the program, the re lia b ili ty  of the c lassification  of unknown additives 
was 98.7 to 100%, which proves the very high efficiency of the method.
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F i g .  1 1 . IR  s p e c t r a  o f  a d d i t i v e s  b e l o n g in g  i n  c l a s s  V I I I  an d  t h e i r  i n t e r p r e t a t i o n

1 28

Fig. 10. IR spectra of additives belonging in class VII and their interpretation
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Fig. 12. IR spectra of additives belonging in class IX and the ir interpretation

Fig. 13. IR spectra of additives belonging in class X and th e ir  interpretation

Identification  of concrete additives within the classes
The measures of the effect of concrete additives of identical type (belonging to the 

same class) differ from one another; therefore, for the exact prediction of the ir expectable 
concrete-technological effect identification within the class is  also important. Here d if
ferences are already so small that the spectroscopist can recognize them only with d ifficu l-
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Fig. 15. Chemical structures of the active substances of set-retarder 
1 sodium-/melamine-formaldehyde/sulfonate 

2 sodium-/naphthalene-formaldehyde/sulfonate

ty , so that for iden tification  within the class by the PRIMA method i t  became necessary to 
mark out further new properties in seven out of the ten classes. These properties were the 
absorbance values of selected absorption bands with respect to one another, and intensity 
distributions discussed earlie r, summarized in Table I I I .

From the aforesaid data, unknown concrete additives were identified by the PRIMA 
method with 100% re lia b ili ty  also within the classes. By the identification  process within 
the classes, th is  work has been accomplished. I ts  importance consists in distinguishing 
additives with chemically identical active substance, but of different effect (11, Tl, L5,

130
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Fig. 16. Spectral intervals and positions seiecreo ror xne classification  of additives 
1 -class; 2 -strong; 3 -medium; 4 -weak band

T2), and in the identification of additives of identical type and effec t, but differing with 
respect to the measure of action.

Table I
Summary of the results of infrared spectroscopic analysis, c lassification  of the additives

Marking
of

sample
Chemical composition Class

series
number

Pi ] 
P3 J sodium lignosulfonate mixture I

P2
P4
PS
PF
PK1
PK2,

• sodium lignosulfonate mixture II

FI
F2
F4 , sodium-(melamine-formaldehyde) sulfonate III
FS
FM
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T a b le  I  ( c o n t . )

Marking Class
of Chemical composition series

sample number

F3
F5 sodium-(naphthalene-formaldehyde) sulfonate IV
F7
F6 sodium stearate + sodium carbonate V
51
52
53

■ calcium formate VI

LI
Tl sodium carbonate + s a lt  of fatty  acids VII

L5
T2J sodium carbonate + lignosulfonate VIII

L2
L4. ■ colophenic acid sa lt IX

L3 sodium (lauryl-ethyleneglycol ether) sulfate X

Table II
Characteristic absorption in tervals and positions selected for the application of the

PRIMA method

Absorption in terval position Characterization

132

From 2900 to 2950 cm Agents 11 and T1 do not absorb, as the ir main mass
consists of sodium carbonate. The members of the 
single classes absorb d ifferently , because the lengths 
of their aliphatic carbon chains are different

From 2870 to  2850 cm"'*' The same as above is  valid

From 1650 to 1600 cm"*' The colophenic acid sa lts  (L2, L4) do not exhibit
absorption.

From 1550 to 1500 cm ** The S samples, the L2, Tl, the L5, T2 additives do not
absorb, while in  the case of the other additives bands 
of various in ten s itie s  are displayed

From 1500 to 1450 cm"*' The IR spectra of samples forming classes IV, V, VI, VII
VIII show no sharp absorption bands

From 1420 to 1400 cm"* P lasticizers and set-retarders of sodiumCmelamine-
formaldehyde) sulfonate type give an absorption 
minimum, while additives marked with LI, Tl, L5, T2,
L2, L4 exhibit absorption bands of high intensity .
This can be attribu ted  to the high carbonate content 
and to the C07 stretching vibration of fa tty  acid 
sa lts

At 1350 cm *■ At th is  position p lastic izers and set-retarders can be
well distinguished from the other additives

At 1250 cm * The air-pore former L3 separates sharply, because the
other additives do not exhibit absorption at this 
position
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Table II (cont.)

Absorption interval position Characterization

At 1200 cm"1 Set-accelerators and the additives marked with LI, Tl, 
L5, T2 can be separated, as they do not absorb at th is  
position

At 1120 cm"1 Additives F6, SI, S2, S3, LI, Tl can be separated from 
the other additives, because they have no considerable 
absorption

At 1050 cm"1 Additives of sulphonate type separate sharply because 
of their characteristic band

From 900 to 920 cm ^ Plasticizers and set-accelerators can be separated, 
because they exhibit no absorption

From 850 to 800 cm 1 Sodium(melamine-formaldehyde) sulfonates give a sharp 
absorption maximum, that can be assigned to the in
plane skeletal bending vibration of the triazine ring 
of the melamine part

At 720 cm'1 The set-retarder F6 sharply separates from the other 
classes, the /3 CFL vibration appearing in th is 
position is ch a ric te ris tic  of the long aliphatic part 
of the additive

From 650 to 600 cm"1 Additives containing naphthalene ring can be well 
distinguished on the basis of the out-of-plane 
bending vibration band of the ring

Table III
Properties selected for identification  within the class

Class 1 (Pl, P3)
Percentage d istribution of the in tensities of bands appearing in the regions 1550- 
1500 cm"1, 1500-1450 cm"1, 1420-1400 cm"1, 1350 cm"1, 1200 cm"1, 850-800 cm'1, and 
the ratios

-1
1550-1500

A1500-1420Cm
and 1420-1400

A1350cm
•1

133

Class 2 (P2, P4, PF, PS, PKI, PK2)
Percentage distribution of the in tensities of bands appearing in the wavenumber 
intervals 1730 cm \  900—920 cm ^, 850-600 cm \  and the ratios

A1280cm A650cm 1 A1500-1500cm 1

A1200Cm A520cm A1420-1400cm 1

A1500-1450Cm A1500-1450Cm 1
-1  ’ -1 

A1420-1400cm A1500-1450Cm
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T a b le  I I I  ( c o n t . )

Class 3 (Fl, F2, F4, FM, FS)
Percentage distribution of the Intensity of bands appearing in the wavenumber 
regions 1120 cm'* 1, 980 cm'1 (inflection), 900-920 cm'1, 850-800 cm'1,

650-600 cm'1, 500 cm'1 and the ra tio  ^ P 0-̂ -5-0.0 ^
A1500—1450cm

Class 4 (F3, F5, F7)
Percentage d istribution of in tensities calculated at wavenumbers 1650-1600 cm'1, 
1600 cm 1, 750 cm 1, 650—600 cm 1, 550 cm 1, and the ratios

А1650-1600ст 1 A1350cm 1

A1600cn A1380cm 1

Class 7 (LI, Tl)
Percentage distribution of the in tensities of bands appearing in  the wavenumber 
regions 2900-2950 cm'1, 2870-2850 cm'1, 1500-1500 cm'1, 900-920 cm'1, 650-600 cm'1, 
and the ratio

А1550-1500ст 1 

A1500-1450cm 1

Class 8 (L5, T2)
Percentage distribution  of the in tensities of bands appearing a t wavelength regions 
2900-2950 cm'1, 2870-2850 cm'1, 1650-1600 cm'1, 1500-1450 cm'1, 1500-1450 cm'1,
1200 cm'1 , 900-920 cm'1, and the ratio

A1120cm 1 

A1050cm 1

Class 9 (L2, L4) 
The ratios

A1650-1600cm 1 

A1550-1500Ctn 1

A1250cm

A1200cm

A1200cm

A1120Cm

A1050cm
-1

A900-920cm
-1 •
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The surfactant properties of the t i t l e  polymers depend on the to ta l and relative 
number of the propylene oxide (PO) and ethylene oxide (E0) groups.

These numbers were determined by IR spectroscopy on the basis of the symmetrical 
bending vibration of the methyl group and the wagging vibration of the methylene group 
applying the Beer — Lambert law.

Some interesting absorption characteristics of the polymers have been revealed.

Introduction
Propylene oxide — ethylene oxide copolymers (Р0/Е0 copolymers) have, similarly to 

other surfactants, two main parts; a hydrophobic moiety (here the polypropyleneglycol chain) 
and the hydrophilic part (here the polyethyleneglycol) (Fig. 1).

HO (CH2-CH2-0 )x (CH2-C H -0 )n (CH2-CH2- 0 ) y H
I
CH3

x *y  = numbers of the EO groups 
n = numbers of the PO groups

Fig. 1. General formula of PQ/EO copolymers

The absolute and rela tive quantity of PO and EO groups determine the app licab ilities 
of the members of th is group of surfactants. Details are given in Ref. [ l j .

Formerly conventional analytical methods have been used for the determination of the 
PO and EO units in Р0/Е0 copolymers [2], [3]. Kotzschmar applied oxidation and subsequent 
gravimetric and titrim etric  determination [3]. His method is  accurate but time-consuming 
and laborious.

Among the instrumental analytical methods pyrolysis gas chromatography was used 
ea rlie r for solving the task [4].

Recently infrared spectroscopy has been introduced for th is purpose. Spanish 
researchers determined the EO content of p-nonylphenol-polyethylene-glycol ether by estim at
ing the in tensity  changes of certain bands in the IR spectrum [ 5] .

* P r e s e n t e d  a t  t h e  3 r d  H u n g a r ia n  C o n f e r e n c e  o n  M o le c u la r  S p e c t r o s c o p y ,  D e b re c e n ,
H u n g a ry , 24—28  A u g u s t 1987

A c ta  P h y s i c a  H u n g a r ic a  6 3 ,  1 9 8 8
A k a d é m ia i  K ia d ó , B u d a p e s t
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In our work IR spectroscopy proved to be suitable for determining the PO/EO ra tio  and, 
with the knowledge of the molecular mass of a given substance, the absolute number of PD 
or EO units can be calculated.

Experimental
A PERKIN-ELMER 783 IR spectrophotometer, employing 1.0 mm calcium fluoride sealed 

liqu id  cells , and spectroscopic grade tetrachloromethane as solvent were used. For our 
examinations eight samples of PO/EO copolymers whose chemical compositions were known, were 
available (see Table I) . The concentrations of the prepared solutions were 10 mg/cm3. The 
accuracy of the weighing was 0.1 mg. The spectra were recorded between 1600 — 1300 cm 1 
with compensation of the solvent. The absorbances were calculated by the base-line method.

Table I
Summary of the measured results

PO
ÏÏÏ

A1375
A1350

P0 E0 M C < 1375> Alcml(1350) £(1375) £(1350)

0.19 0.70 16.4 86.4 4700 1.70 2.44 800 1160
0.32 1.01 35.3 108.7 6600 2.35 2.32 1550 1585
0.76 1.86 16.4 21.6 1900 3.79 2.06 720 388
1.14 2.05 20.7 18.2 2000 4.22 2.04 844 412
1.77 2.53 20.7 11.7 1714 4.93 1.95 845 334
3.04 3.05 20.7 6.8 1500 5.70 1.87 855 281
6.83 3.53 69.0 10.1 4444 6.22 1.78 2862 791
6.86 3.62 30.2 4.4 1944 6.44 1.76 1209 342

Observation of the two IR spectra shown in Fig. 2 reveals why the absorptions of the
bands at 1375 cm" 1 and 1350 cm- '*' were selected. The two peaks resu lt from the symmetrical
bending vibration of the methyl group (1375 cm"1: 5  CH,) and the wagging vibration of 

-1 s J
methylene group (1350 cm : "УдСЕ̂ ).

The 5 S and ^  denotations correspond to the symbol system introduced by Sohár, Holly 
and Varsányi [б]. The intensity and the absorptional position of the -ys CH2 vibrational band 
(1350 cm"1) can be explained by the —I effect of the neighbouring oxygen atoms.

Table I presents the Р0/Е0 and *^3,75/^1350 ra tio s  and the determined absorptivities as 
well as molar absorptiv ities at 1375 and 1350 cm”1.

Results and discussion
Plotting the determined * i375/* i35o against the PO/EO ratios a saturation curve is  

obtained (Fig. 3).
The shape of the curve can be explained by Уд CH2 band that characterizes both the 

polypropyleneglycol (PPG) and the polyethyleneglycol (PEG) units. The saturation value 
probably indicates the * u 75/* i35Q ra te  for pure PPG, which is  3.9 — 4.0 based on our 
measurements.
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J ___ I___ LJLi___ 1___ 1___ I___ 1___ !_1_J___ I I I
40 32 24 18 14 10 6
wavenum ber, x102 cm'1

Fig. 2. The spectra of a polyeihyleneglycol (a) and a P0/E0 copolymer (b)

Fig. 3. Plot of Ai 375/A]350 vs P0/E0

Fig. 4. Plot of A^m (1375) vs P0(%)
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The absorptivity at 1375 cm 1 for pure PPG can be calculated by means of the Beer —
1%Lambert law. Fig. 4 depicts Alcm(1375) against the PO content in per cent.

As shown in Fig. 4 the absorptivity at 1375 cm- '1' is  a linear function of the PO 
content. Extrapolating the function to 100% PPG content we can estimate the value of 
Alcm(1375) in pure PPG. This value is  7.0.

For the determination of the absolute number of PO and E0 units the knowledge of the 
molecular masses is  necessary.

Determination of the molecular masses by measuring the OH stretching vibration at 
3490 cm-11 is  not possible owing to  inherent association; at 3490 cm-  ̂ the fundamental law 
is  not valid. That is  why we worked out a conventional analytical method based on the 
hydroxyl number determination to solve th is problem.

The described relationships are well u tilizab le  in practice. Our spectroscopic method 
is  simple, requires no tedious sample manipulation; i t  is  a useful tool in the analysis of 
tensides.
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A COMPUTER DATA ACQUISITION AND PROCESSING SYSTEM FOR RAMAN SPECTROSCOPY4

0. VARGA, G. JALSOVSZKY and S. HOLLY 
Central Research Institu te  for Chemistry 
Hungarian Academy of Sciences 
Budapest, Hungary

(Received 15 September 1987)

A Varian Cary-82 laser Raman spectrometer was connected to a Nicolet 7199 FT-IR 
system. The Raman data acquisition system is  based on a Commodore-128 microcomputer system. 
The software consists of two parts.The f i r s t  one controls the data acquisition, the second 
one is a spectral data processing program. The new system has opened a series of new pos
s ib i l i t ie s  in vibrational spectroscopic research.

The increasing popularity and widening possib ilities of the d ig ita l processing of 
spectral data have created a demand of connecting existing spectrometers with analogue data 
recording to computers. This was the aim of connecting our Varian Cary-82 laser Raman 
spectrometer to the Nicolet 1180 computer of a Nicolet 7199 FT-IR system [ l j .  The resulting 
system has a l l  the benefits of the computer data acquisition and processing of Raman spectra 
[2], with the only disadvantage that for the time of Raman data acquisition, which may be as 
long as several hours, the 1180 computer is  fu lly  in use, and thus i t  cannot be used during 
th is  time for the control or processing of FT-IR measurements. Therefore, our new system has 
been developed in order to save time on the 1180 computer.

The new Raman data acquisition system is  based on a Commodore-128, an 8-bit micro
computer. As peripherals, a Commodore 1571 floppy disk drive, a Commodore 1901 colour 
graphic display and an MPS 803 matrix printer are connected.

The microcomputer communicates with the Nicolet 1180 via a se ria l RS 232 C channel.
The main peripherals of the la t te r  computer are a Diablo 44 В hard disk drive and a Zeta 
d ig ital p lo tte r.

The spectrometer is  connected to the microcomputer through two electronic units. The 
f i r s t  one is  a shaft encoder attached to the wavenumber drive of the Cary-82 spectrometer. 
Here, a disk with black and white sectors is  fastened to a shaft which drives the mechanical 
wavenumber display wheels of the spectrometer, which gives, by means of opto-electric trans
ducers, square pulses of a frequency proportional to the scan speed of the spectrometer. The 
second electronic unit is a counter interface. This counts, using a 24-bit synchronous 
counter, the amplified and shaped pulses arriving from the detector of the spectrometer (a 
photoelectron m ultiplier). The counter is  controlled and the data are latched by the micro
computer through an INTEL 8255 A Programmable Parallel Peripheral Interface Processor.

The software of the microcomputer was written mostly in BASIC, but some functions

^ P r e s e n t e d  a t  t h e  3 rd  H u n g a r ia n  C o n f e r e n c e  on  M o le c u la r  S p e c t r o s c o p y ,  D e b r e c e n ,
H u n g a ry , 2 4 - 2 8  A u g u s t 1987
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which were too slow or hard to perform in BASIC, were solved by means of ASSEMBLER routines 
written specially for th is  purpose.

According to basic functions, the software has been divided into two programs. The 
f i r s t  one controls primarily data acquisition, which means mainly the control of the in te r
face unit. Since the CPU time of the data input is  rela tively  short (the input of 3 bytes at 
intervals of 0.2 to 10s), the peripheral interface processor requests an interrupt from the 
microcomputer when i t  is  ready to send data. Then the CPU interrupts the execution of the 
running program and jumps to an in terrupt service routine. The data are read by this routine. 
In the time between the interrupts the computer deals with display functions. In this manner, 
the progress of measurement can be seen continuously on the colour graphic display (in an 
arbitrary intensity  and wavenumber scale, which may be changed interactively according to 
the intensity  data of the spectrum).

Oata acquisition stops automatically at a preset end frequency, i t  may be terminated, 
however, manually a t any point. Thereafter, the spectrum and the main parameters of the 
measurement may be stored in a disk f i le  with a name of up to 12 characters.

When developing the second program, for spectral data processing, i t  was taken into 
account that the Commodore microcomputer is  able to communicate with the Nicolet 1180 
computer through a se ria l RS 232 C channel, and that the software of the 1180 includes fast 
and user-friendly data processing routines. For th is  reason, and due to the relatively low 
speed of the Commodore, only the most important operations of data processing have been 
programmed on the Commodore microcomputer. These operations include, of course, the display 
of spectra and the determination of the frequency and intensity  data of Raman bands by means 
of a graphic cursor. An important function of the program is  spectrum accumulation, which 
can be used to improve the signal to noise ratio  of the spectra by averaging, when other 
means for th is  (e.g. higher laser excitation energy) are not available.

The program also enables base line  correction to be performed. This can be used to 
suppress fluorescence background which often hinders the evaluation of Raman spectra.

There are further data processing options provided by the software of Nicolet 1180:
By means of subtracting two spectra, i t  is possible to investigate the spectra of 

solutions in regions where the solvent has Raman band(s). This is equivalent to measurements 
on a "double beam" Raman spectrometer.

Curve analysis programs make i t  possible to determine the individual peak maxima and 
in ten sitie s  of the components of overlapping band systems.

On the Zeta d ig ita l p lo tter connected to the Nicolet 1180 computer, high quality, 
optionally smoothed hard copies of the spectrum can be prepared, and any part of the 
spectrum can be expanded along either axes. I t  is  possible to plot the infrared and Raman 
spectra of a compound in the same diagram, which is  an aid in the assignment of vibrational 
bands to the normal modes of the molecule.

We feel that our computer controlled Raman data acquisition and processing system has 
opened new p o ss ib ilitie s  in theoretical and applied vibrational spectroscopic research.
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A NEW TREATEMENT OF THE RING-PUCKERING MOTIONS BY PERIODIC FUNCTIONS IN THE HAMILTONIAN*
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A method is  outlined for treating the nonperiodic large amplitude molecular motions by 
a Hamiltonian which contains only periodic functions. The examples investigated for testing 
the theory are two pseudo-four-membered ring molecules,cyclopentene (CP) and 2,5-dihydro- 
furan (DHF) which are doing ring-puckering motions. Our calculations give better re su lts  for 
these two molecules than Malloy's ones ГlT.

Introduction
The general form of the zero order, one dimensional Hamiltonian of a large amplitude 

motion is :

H = - d d u
d ^ t ? )  d t  + V( t )

( 1 )

where X is  the coordinate, is  the inverse reduced mass or in e rtia l moment and
is  the potential function. Eq. (1) does not contain the effects of the pure rotation, the 
vibrations and the Coriolis couplings, i.e . 3 and К equal zero and a l l  vibrations are in the 
ground sta te  [ 2].

In the case of nonperiodic motions both Jül ( )  and have been given in the form
of a f in ite  Taylor series. In some cases i t  is  useful to complete th is  type of potential 
function [3j by a Gauss hump of form [4]:

a exp(— c TT^) ( 2)

The elements of the energy matrix have been set up in harmonic o sc illa to r representation. 
These elements are functions ofyU.(/£) and and are described by different and compli
cated formulae.

In the present paper a new method is suggested for describing the ring-puckering 
motions in which periodic functions are used for fx ^  ) and  ̂ instead of the nonperiodic 
ones. The f in ite  Fourier series approach very well both and ^ ( X )  an appropriate
- fC max region, where rCmax< ,i t  . The Fourier coefficients of depend on the geometry
and the atomic masses. The ones of depend only on the constants in the original expres
sion of the expanded potential. Consequently, the expressions of the elements in the energy

* P r e s e n t e d  a t  t h e  3 rd  H u n g a r ia n  C o n f e r e n c e  o n  M o le c u la r  S p e c t r o s c o p y ,  D e b re c e n ,
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matrix became independent of the form of the chosen potential. This is  the main advantage of 
our method.

We have obtained good experience about this method in the case of the inversion of 
methylamine [5].

The H ill matrix of ring-puckering
The present paper considers only symmetric problems when /U-('ç) = / jl ç_^  y and

'/ ( ' t )  = F°u rie r series of the form
M

= 2  a „cos
m=0

and

V(>t) = vo + k  2 vi (1 -  cosW  > 
1=1

(3 )

( 4 )

have been applied in  which both Ûm and Vg depend on the constants in the expanded 
potential. Thus, the energy matrix for the computation of the eigensystem of the Hamiltonian 
in Eq. (1) can be se t up in the representation of the cos and sine functions. This is  the 
so-called Hill matrix. In this representation the energy matrix is  separated into two blocks 
corresponding to the even and the odd energy levels. The elements of the two blocks are
[6,7] :

n,0 ^  vt  5 n t  , (5)

Hn , n '  " { ?  / * 0  n + V0 + 2 ?  }  5 n>n '  + 4 nn *■ ^  | n ' - n |  , п Г ^  n ' + n , ! ^  ~
c m

_  \  ( +ô п ч п .е } > (6)

Hn ,n ' = \  /* 0  H2 + v0 + 1 2  Vt j 5 n>n. + 1  nn ' 2 / i m  h '- n |  ,m +<S n h n .m 5 ~

-  i  - S  n - ^ n . t  } ■ <7 >

Application of the method for the ring-puckering of the molecules CP and DHF 
For testing  the above theory the ring-puckering of some pseudo-four-membered ring 

molecules was chosen. The molecules investigated are cyclopentene (CP) and 2,5-dihydrofuran 
(DHF). The following expression can be developed for the inverse reduced in e rtia l moment:

where

and

УУ

УТ

Чт “ 2  -i {(■

. h r  t '- ir V « )}  1 ■ (8)= 2*1 (*! + *!> . (9)
■̂ r1 г Ъ г . 'Эх 1  
^  mi l xi Э5? 1 Zi  J 
i

(10)(V'Öx .̂ 2 f t y  s2 f t  г .n21l(7srl) + (# 1} + (w l} ] • (11)
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A sim ilar relation as Eq. (8) was derived for the inverse reduced mass by Ueda and 
Shimanouchi [ej in another way. The formulae (8) — (11) are given in an (x,y,z) coordinate 
system with an origin fixed to the mass centre of the molecule.

The coordinates of the atoms in CP are collected in Table I. They are given in another 
molecule fixed system (£ , ). The coordinates x^, y^ and of the i- th  atom can be
obtained as ( S i - S  g), e tc ., where the zero index denotes the coordinates of the mass 
centre.

Table I
Atomic coordinates of cyclopentene in the ( £ , % , Ç ) axis system3

Co = { mC Asir,r^ + 2mH [A + r i6C0S( 5  /2)  sinT  — 4mHr 2gC0S ( 5 / 2 )  sin-ő'j/M

Ч о  = 0
С 0 = £ni(-,AcosX — 2mH C + 2mH [a + r^cosC 5  /2 ) cosT +

+ 4mHr2gCos( 5 /2 ) cos &  sin  lÇ  — 2m, , [c + rJ1Qsin( Y72)JJ- /М 

£ j = A sinT

" l l  = 0
Ç  ̂ = A cosT

C 2 “ 0

T. 2 = B

U  ■ 0 

Сз - 0

’Ь  = r 34/2

b  - -c

Ca = 0

"I A - - r 34/2

b  - -c  

Ь  ■ 0

" b  - - B 

b  = 0

b  = A sin T  + г^6 [cos( 5  /2 ) sinT  + sin ( C) /2) cos T ]

"ié * 0

Ь  = A c o s t  + г16 [cos( § /2 )  cosT — sin ( C1 /2) SinT ]

С / ■ A sin  V +  r^é [cos( 5 / 2 )  sinX -  sin ( ci /2) cos T ]

"I 7 = 0

С 7 = A cosu + Tjg [cos( S /2 )  cosX + sin ( 5 /2) sinTJ

Се = г28 С— cos( ^ sin ^  + sin  ̂  ̂/2 ) cos
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Ъ  =

X 8  =

^ 9  =

1 э  -

X Э " 

t io  =

4.10 =

ÇlO =

C n  - 

4 n  ■ 

1 11 = 

£ l2  = 

4 l2  =

í  12 =

Cl3 “ 

l l 3  = 

X 1 3  =

aA =

Table I (cont.)

В + r 2B [cos( 5/2) c o si3 "cos p  + sin( 5 /2 )  sinX  sinlj?] 

r 20 [cos( 5  /2) cos'ó' sin p> — s in (5 /2 )  sinX  cos if] 
r28 5 /2 )  s i n d  — sin( 5  /2) c o sX ]

В + r28 [cos( 5  /2) c o s 'd  cos p  -  sin ( 5 / 2 )  s in X  sinyüj 

r28 [cos( 5 / 2 )  c o s d  s iru p  + sin ( 5 /2 )  s in X  с о зф ]

0

r 34/2 + r 310cos( T /2)
-  C — r é s i n e  f / 2 )

0

- r 34/2 -  r 310cos( Tf/2)

— C — r 31Qsin( J /2)

r28 [ -  cos( 5  /2 ) sin  n d  + s in (  5  /2 ) cos X ]

— В -  r 28 [cos( 5 / 2 )  c o s 'd  cos p  + sin ( 5  /2 )  s in X  sin  p ]  

r28 [cos( 5 / 2 )  cos d s i n  ip — sin ( 5 / 2 )  s in X  coslp]

r28 [ -  cos( 5 /2 )  s i n d  — sin ( 5 /2 )  cosX J

-  В — r 28 [cos( 5 /2 )  c o s d  c o s p  -  s in ( 5 /2 )  s in X  sin  p>] 
r28 cos( 5 /2 )  c o s d e i n l ^  + sin ( 5 /2 )  s in X  cos p \

r 12cos( о1 /2 ); В = r 12sin( cC/2); C = £ r23 -  (B — r 34/2 )2J ^ 2’

The numbering of The atoms in CP and the fixing of the ( , 4  , C ) system to the
molecule is  shown in Fig. 1. The methylene hydrogens 6, 8 and 12 are above the plane 512 in
a ll cases. The hydrogens 10 and 11 lie  on the bisector of the corresponding angle ( ^  ). The 
axes T, and £ lie  in the planes 513 and 2345.

The expressions for the atomic coordinates were derived using the assumptions of the 
rigid reference configuration [9] and the bisector model [ l ] .  According to the rig id  
reference configuration a l l  the bond lengths and angles except T and f t remain constant 
during the ring-puckering. The bisector model assumes, however, that at a ll values of angle 
T the bisectors of the methylene angle 829 ( 5 )  and the angle 123 ( f t )  l ie  on a common 
axis marked by dashed line in Fig. 1. The situation  is sim ilar in the case of angles 12523 
and 451. The motion of these two methylene groups can be characterized by the angles S ', p
and X •  S '  i s  the inclination of the common axis relative to the plane 2345,p  i s  the angle
between the axis1'! and the projection of the common axis to the plane 2345, X is  the measure 
of the torsion of these methylene planes around the common axes. 

r$, ф  and % are given by:
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Fig. 1. Numbering of atoms in cyclopentene. Definition of the molecule fixed axis system
C l  1  л  ) •  T =  2 0 °

Fig. 2. Tdependence of calculated of cyclopentene

arc sin jcos( 01,/2) sinT  /2 cos( /3/2)} , (12)
arc cos £]l + cos2( /3/2) cos2 sin2( (Ь / 2) + cos2( oL 2) s in 2T  / 4] /
(2cos( /3 /2 ) cos 'Э’) — arc tan |cos( o t/2 ) co s 'ï /sin( 00/2)} , (13)

X -  arc cos {[sin2( /3 /2) -  cos2( o t/2) sin2 T  /4 ] ^ 2/sin( /3/2)} (14)
The structural data of the molecules investigated have been taken from [ l ] . As i t  can 

be seen in Fig. 2 the calculated of CP depends strongly on T  . was approximated
by a three term polynomial with exponents 2, 4 and 6. This form was completed by a Gauss 
hump in the case of CP. Both / i ( /[• ) and  ̂ were expanded in fin ite  Fourier series between 
160° and —160°. The numbers of the terms in the series were chosen 14 and 25, respectively.
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Results
A computer program which contains the diagonalization of the energy matrices and a 

nonlinear least-squares subroutine has been developed for f i t t in g  the potential constants to 
the far infrared transitions published in [ l ] .  The program has been run on an IBM AT computer 
using double precision arithmetic. The size of the used blocks was 40 x 40 for both mole
cules. The resu lts for molecules CP and OHF are collected in Tables II and I II , respectively.

Table II
Observed far infrared transitions and deviations of calculated values from 

experimental ones (in cm”1) for CP
> < A e A i a A 2

1 0 0.91 0.10 -0.02
2 w— 1 127.11 0.84 0.26
3 - — 2 25.20 1.30 0.69
4 3 83.06 1.43 -0.09
5 4 76.61 0.21 -0.11
6 -*•--- 5 92.03 0.24 -0.14
7 «--- 6 99.81 -0.45 -0.30
8 ■>---- 7 107.46 -0.83 -0.31
9 w---- 8 113.27 -2.15 -1.16

10 V— 9 119.38 -2.52 -1.07
11 «---- 10 126.10 -1.78 0.15
12 w---- 11 132.60 -0.83 1.58
3 «— 0 152.56 1.61 0.27
5 «— 2 184.60 2.70 0.21

S 30.30 5.85

afrom £lj

Column A   ̂ contains the deviations obtained by Malloy [ l ] ,  column A 2 contains the ones of 
our f i t .  I t  can be seen that the sums of the squares of the deviations S are smaller in our 
f i t .  The calculation for CP resulted a barrier height of 232 cm 1 (4.55 kJ.mol Ъ  which is  
exactly identical with Malloy's [ l ] .  For Xg a value of -26.2° has been obtained. No barrier 
was found in the case of DHF, i t s  structure is  planar [s,lj. The f itte d  potential functions 
are for CP and DHF, respectively:

V(T )  = (-12.117Î0.046)T2 + (0.460^0.023).10'3 X  4 -  (0 .140Î0.060). l t f 7 X6 +

+ (38.04-0.520) exp( -(0.206^0.115).10”2 T 2) ,

V( T )  = (0.4430^0.0070) T 2 + (0.2813^0.0025). 10”3 X 4 -  (0.7513-0.1077). 10"8 X 6 ,
where T  is  in degree and  ̂ is- in cm”1.

The results show clearly that our method gives a f i t  better than Malloy's.
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Table III
Observed far infrared transitions and deviations of calculated values from 

experimental ones (in cm”1) for DHF

> < A e A l 3 A 2

1 4— 0 99.9 -2.8 -1.8
2 *— 1 116.2 0.8 0.6
3 «— 2 126.8 1.3 0.9
4 1— 3 135.2 1.8 0.9
5 <— 4 142.1 1.4 0.6
6 *--- 5 148.1 0.9 0.3
7 6 153.6 0.6 0.1
8 ■*— 7 158.5 0.1 -0.1
9-«--- 8 163.2 -0.3 -0.1

10«--- 9 167.5 -0.7 -0.2
11<— 10 171.3 -1.3 -0.5
12«— 11 175.3 -1.5 -0.3

S 20.8 6.0

afrom [ l j
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VIBRATIONAL SPECTROSCOPIC CALCULATIONS ON DIFLUGRO-PHOSPHINE-BORANE AND ITS ISOTOPE- 
SUBSTITUTED DERIVATIVES (F^P-BX,, X=H,0; В=И В,10В)*

A. SEBESTYÉN
Department of General and Inorganic Chemistry, Veszprém University of Chemical Engineering 
B201 Veszprém, Hungary

(Received 15 September 1987)

The mean amplitudes of vibration for five isotope-substituted difluoro-phosphine- 
boranes F2XP-BXj  (X=H,D; B ^ B , 1DB), have been calculated on the basis of structural and
spectroscopic data from the litera tu re . Potential barriers to internal rotation have also 
been determined from torsional frequencies, from calculated mean-square amplitudes of vibra
tion and from mean torsional angle differences. Results obtained for various phosphine- 
boranes are compared.

Introduction
Difluoro-phosphine, HPF̂ , is  a compound with interesting unusual chemical properties, 

particularly  with respect to i t s  ab ility  to act as a strong Lewis base in contrast with the 
related compounds, PH-j and PF-j, which are both extremely weak donors. While the complex of 
difluoro-phosphine with borane, BH-j is undissociated at room temperature and stable when 
protected from the atmosphere, the similar complexes of the la t te r  are almost completely d is
sociated and thermally unstable under the same conditions [ l ] .

The differences in s ta b ili ty  of these complexes were primarily interpreted by structur
al deviations [4] based on microwave experiments [2,3,4], but the satisfactory explanation 
is  s t i l l  being searched. The highly different apparent P-В bond strengths in the F^HP-BHj 
and F-jP-BHj  complexes could hardly be rationalised with almost the same F-В bond distances. 
The additional vibrational spectroscopic experiments and the normal coordinate analysis [ 5j 
have supported the in terpretation above, but have le f t the question s t i l l  open.

Probably the reason of the unusual behaviour of F̂ HP-BH-j complex has to be found in 
several types of fine interactions besides the classic dative bond inside the molecule. The 
parallel and perpendicular mean amplitudes of vibrations and the potential barrier to 
internal rotation as fine structural parameters, determined from vibrational spectroscopic 
calculations, provide additional informations which may contribute to understanding the 
factors involved. In the present work, continuing the earlier vibrational spectroscpic cal
culations on donor-acceptor molecules [6 ,7] , the results for the t i t le d  compounds are re
ported with particular respect to the fine structural parameters depending on and character
izing the internal rotation about the P—В bond.

’'Presented at the 3rd Hungarian Conference on Molecular Spectroscopy, Debrecen, 
Hungary, 24̂ -28 August 1987
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Methods and results
F irs t, normal coordinate analysis was performed on the basis of Pasinski and co- 

worker's microwave structu ra l data [4]  and Taylor and coworker's whole vibrational spectra 
of five isotopic species [5]. The force fie ld  refinement on a to ta l of 90 isotopic funda
mentals, after a correction in Taylors' redundancy conditions, was made by the least squares 
method, using an algorithm of the generalized matrix inversion [в]. The symmetrized force 
constants are shown in Table I.

Table I

Symmetrized force constants for F^XP-BXj (X=H,D; B=^B,^B) molecules

In ita l Final In ita l Final
Index force constants Description Index force constants

L5] (disp.) C 5] (d isp .)

A'
1,1 3.503 3.488 C 10) F(P-H) 2,3 0.040 0.059( 30)
2,2 2.932 2.98K 75) F(B-H') 2,5 -0.585 0.437( 95)
3,3 3.191 3.210( 55) F(B-H) 3,4 0.251 -0.158(123)
4,4 0.385 0.378( 14) F(HBH) 4,6 0.013 -0.012( 21)
5,5 0.644 0.575( 34) F(PBH') 5,6 0.121 0.049( 20)
6,6 0.742 0.599(170) F(PF2H) 5,9 0.131 0.168( 38)
7,7 5.887 5.423(196) F(P-F) 6,7 0.479 -0.265(163)
8,8 0.299 0.238( 14) F(PBH) 6,10 0.182 0.086( 94)
9,9 2.566 3.131(142) F(P-B) 8,11 0.233 0.246( 13)

10,10 1.431 1.646(330) F(FPF) 9,11 -0.019 -0.143(169)
11,11 0.505 0.64K 73) F(BPF) 10,11 -0.241 -0.241

A'
12,12 3.061 3 .090( 41) F(B-H) 12,13 -0.079 -0.048( 71)
13,13 0.326 0.296( 11) F(HBH) 13,14 -0.073 -0.116( 13)
14,14 0.571 0.571 F(HPF) 13,16 0.137 0.092( 44)
15,15 5.443 5.326( 52) F(P-F) 14,15 0.341 0.369( 76)
16,16 0.470 0.443( 13) F(PBH) 14,17 0.106 0.07K 23)
17,17 0.452 0.500( 26) F(BPF) 16,18 -0.069 -0.104( 14)
18,18 0.253 0.266( 10) F(FPBH')

a) in N/cm, N/100, Non units

The eigenvector matrices, L, obtained during the refinement were then used to compute 
the mean amplitudes of vibration according to Cyvin [̂ 9j a t 0 and 298 К and at the 
temperature of microwave experiment. Results at room temperature are collected in Table II.

The potential barriers to internal rotation calculated in various ways are collected 
in Table I II  which also l i s ts  the parameters belonging to the free donor (PH-j, PHF2, PFj) 
and free acceptor (B2H6) molecules, as well as the related complexes (HjP-BH-j, F^P-BH-j) for 
the comparison.

Discussion
Inspection of Table III  shows the changes in the measured and calculated structural 

parameters caused by the formation of donor—acceptor bonds. Additionally, i t  can be seen 
how the differences in the relative donor strength of various donors are shown in the col
lected fine structu ra l data.
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Table II
Mean amplitudes of vibration3"* for F̂ XP BX-j (X=H,D; B=^B,"^B) molecules

Atom pairs R hf2p .bh3
< 1 > 

df2p .bh3 hf2p . bd3 DF2P.9D3

P-H/D 140.9 8.39 7.07 8.39 7.06
B-H/D 122.6 8.70 8.68 7.44 7.44
B-H'/D' 120.0 8.74 8.73 7.47 7.47
P-F 155.2 3.98 4.04 3.98 4.04
P-B 183.2 5.75 5.76 5.67 5.71

F ...F 237.8 6.80 6.78 6.82 6.79
F...H/D 224.8 11.61 9.88 11.59 9.97
F...B 290.0 9.45 9.38 9.82 9.87
B...H/D 281.6 14.30 12.95 14.56 13.46
P...H/D 237.3 13.73 13.93 12.05 12.08
P...H 7D ' 250.9 12.99 13.02 10.77 10.83
H/D...H7D' 205.6 13.93 13.93 11.82 11.82
H/0...H/D 204.1 14.24 14.27 12.02 12.01

(F...H/D)a 307.4. 20.31 20.33 18.35 18.52
(F . . ,H70*)g 322.2 19.29 19.15 17.82 17.85
(F...H/D)t 378.2 13.31 13.44 11.92 11.96

(H/D — H/0)Q 298.8 22.95 21.86 21.91 21.00
(H/0.. .H/D)g 376.8 15.78 14.93 14.41 13.53

a)in pm unit, T=298 K, amplitudes for ^B and ^B derivatives are the same in
0.01 pm, a-anti, t- tran s , g-gauche

Table I I I  ,
Comparison of measured and calculated fine structural parameters3'

Parameters ph3 h3p .bh3 PHF2b) HF2P.BH3b) PF3 PF3.BHj B2H6C)

R(P-X) 142.1 139.9 158.2 155.2 157.0 153.6
f(P-X) 3.45 3.39 5.38 4.40 5.42

< 1(P-X)> 8.69 8.44 3.98 4.10 4.07

< (XPX) 93.5 101.3 99.0 100.0 97.8 99.8
f(XPX) 0.36 (0.46) (1.12) 0.60 (1.09)

<1(X...X)> 15.68 14.62 6.80 7.10 6.92

R(B-H) 121.2 122.6,120.0 120.7 119.7
f(B-H) 3.05 3.15, 2.98 3.19 2.72

<1(B-H)> 8.84 8.70, 8.74 8.69 7.34

<(HBH) 114.6 112.7,115.9 115.1 121.3
f(HBH) 0.42 (0.48) 0.35AxXr—

i

V 14.21 13.93,14.24 14.18 14.82

R(P-B) 193.7 183.2 183.6
f(P-B) 1.95 3.13 2.55

< 1(P-B)> 5.99 5.75 5.49

Vg[kJ/mol] ir1 V(<P) = (V0/2) (l-cos3 4>)

PITZER L 6,7 1 10.4 17.8-19.5 13.9
KARLE,mod. C 6,7 1 9.8 - 12.9
KARLE,beta C 7 1 - 14.5-20.9 -

VILKOV 111] 9.8 16.9-18.8 -

MW [ 4] 10.3 15.0-18.8 13.6

'u n its  as in Table I and I I ,  X=F, data for terminal B-H, ( ) combinations 153
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The structu ra l changes for the donor molecules are not so visib le as those for the ac
ceptors during complexation as the hybride state of the central atom in the former remains 
unchanged. Movement of the lone pair towards the acceptor molecule, however, decreases the 
space demanded by the bonding electron pairs of ligands in the donor molecules. This ap
peared in shortening of R(P-X) bond distances and in a sligh t opening of <XPX valence 
angles in complexes as compared to the values in the free  donors. The increase of the f(P-X) 
valence force constants and decrease of the <1(P-X)> mean amplitudes are in a good cor
rela tion  with the bond strengthening above. Similarly, the increase in the valence angles 
around the P atom is  followed by the appropriate changes in the values of f(XPX) and 
<1(X ...X )>  parameters.

Effect of complexation on parameters of the free acceptor molecule is  more defin ite ,
considering the increase of the R(B-H) bond length and the decrease of the <HBH valence
angles as compared to the values in the hypothetic free BH, acceptor. Increase of the

э 2 3<1(H ...H )>  p ara lle l mean amplitudes are also good indicators of the sp —> sp rehybridisa
tion  of the В atom. This pattern of the structural changes f i ts  perfectly into the V.S.E.P.R. 
theory.

Parameters of the P-В bond are undoubtedly the most interesting data of the boronphos- 
phorous addition complexes. Preceeding experiences have already stressed that the accepted 
correlation between the bond length and the s ta b ility  should be applied only cautiously for 
addition compounds [id] . The f(P-B) force constants and the potential barriers to internal 
ro tation , Vg, obtained in various ways [4 ,6 ,7 ,ll] , seem to prove the experimental observa
tion , that the s ta b il i ty  towards the dissociation decreases in the order of HF̂ P.BH-j 
F-jP-BHj >  H-jP-BHj . The origin of th is  phenomenon, however, needs further quantum chemical 
considerations.
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MATHEMATICAL MODELLING OF DIFFUSE LIGHT .SCATTERING. THE ROLE OF INFINITE LAYER THICKNESS IN 
THE INTERPRETATION OF REMISSION RELATIONS*

GY. MAJOR
Institu te  of Physics, Section of Physics for Chemical Engineering, Technical University 
1521 Budapest, Hungary

(Received 15 September 1987)

Mathematical modelling of the dependence of remittance vs absorption coefficient for 
assumed pathlength distributions shows the basic rela tions for diffuse scattering systems. 
The limiting value of in fin ite  layer thickness is  a very important parameter characterizing 
scattering property.

In previous publications studying the theoretical problems of diffuse light scattering  
we have reported on results of mathematical modelling which gives simulated density func
tions of pathlength distribution ( la te r  referred to as density function) for remitted and 
transmitted ligh t [ l ,2 j . Modelling showed £з] that permitting non-discrete step length and 
making steps over the whole space creates a significant difference from the starting points 
of theories describing diffuse remission — the so-called continuum [4 ,5] and discontinuum 
[6,7,8^ theories -  because both of them practically summarize pathlengths of one-dimensional 
discrete step length.

Extension of modelling
For better understanding the mathematical basis of the phenomenon i t  was necessary to 

model the dependence of remission or transmission on the absorption coefficient (or concen
tration) for d ifferent arb itra rily  chosen density functions of pathlength distribution. 
Mathematical modelling in th is  case means the calculations of dependence on the absorption 
coefficient — according to Eq. (1) — for different density functions f(u) of characteristic 
shape set up from straight lines and the representation of the negative logarithm of 
remission R vs Z the parameter of the product of absorption coefficient and concentration 
(Fig. 1). “

Rz = J  f(u) e 'Zu du . (1)
0

The distributions are set up within the range 0 -  150 unit pathlength and the to ta l 
intensity  -  the number of photons -  equals 1000 (Table I, column 1). Parameter Z varied from 
0 to 0.5 with steps of 0.01.

The distribution  A where the pathlength for the whole light beam equals 20 units 
(practically the case of scattering free sample) has been set up as a marginal case. D is tr i
bution В is  the other marginal case — the uniform distribution  where the intensity for a l l

*Presented a t the 3rd Hungarian Conference on Molecular Spectroscopy, Debrecen, 
Hungary, 24-28 August 1987
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Fig. 1. Dependence of remittance on 
absorptivity for different assumed 
density functions, p  - -log (R),
Z = parameter of absorptivity

Fig. 2. Dependence of equivalent 
pathlength 1 on absorptivity Z 
for assumed edensity functions

Table I
Assumed model distributions, and their characteristics

distribution ,0.5
0.5 Д 1

0.2000 0.2000 20.00 20.00 0.0

0.4579 0.0156 45.79 7.36 38.43

0.3453 0.0404 34.53 9.73 24.80

0.3804 0.0412 38.04 11.10 26.94

0.4488 0.0412 44.88 12.49 32.39

0.5150 0.0412 51.50 13.30 38.20

0.1974 0.0403 19.74 8.37 11.37

0.5531 0.0412 55.31 12.72 42.59

0.2974 0.1403 29.74 18.37 11.37

0.3974 0.2403 39.74 28.37 11.37
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pathlengths is  the same. To the remittance data calculated from pathlength distributions a 
so-called equivalent pathlength 1  ̂ can be f i t te d ,  which corresponds to cell thickness for 
the same absorption coefficient and concentration in solution giving an absorbance equal to 

P z [ l ,2 j .  The value 1  ̂ is  equal to the distance between the centre-of-weight for the func
tion under integral Eq. (1) to the origo (Table I, columns 4,5). Fig. 2 shows that these 
equivalent pathlengths depend on the absorption coefficient in a different degree for the 
different distributions. Several authors say [ 9J that the average pathlength for remission 
of an in fin ite  thick layer corresponds to about a double length of the thickness of the 
in fin ite  layer. The data of Fig. 2 modify th is  premise f ir s t  of a l l  in that this pathlength 
decreases with increasing the absorption coefficient Z.

From the data of Fig. 1 and Table I important conclusions can be drawn. On logarithmic 
scale only the distribution A results in a linear dependence. The other distributions do not 

result in linear dependence and the curvatures of plots differ significantly  even from each 
other. The increase of steepness Sg (Table I , column 2) shows that the proportion of ligh t 
covering a longer path inside the sample increases (E,F,H). A sign ifican t part of curves are 
in this range steeper than graph A. On increase of Z the steepness gradually decreases. Most 
curves become less steep than graph A. This shows that for a low value of Z remission 
measurement is  more sensitive than solution measurement.

G ,I,J represent the pathlength distributions of transmitted ligh t for different layer 
thicknesses. The steepness Sgb for distributions 1,0 is  higher as they have an equivalent 
pathlength longer than G, which explains the greater sensitivity  of transmission measurement 
for diffuse samples.

The steepness at high absorption Sg  ̂ (Table I, column 3) characterizes the proportion 
of light covering shorter pathlengths in the distribution . The higher the steepness, the 
lower the proportion of shorter pathlengths (G). The difference of equivalent pathlengths 
A  !g (Table I, column 6) characterizes the flatness of the density function (G,B,H) or the 
sh ift of the centre-of-weight of the density function (C -  F). Among similar curves the less 
f la t ,  less extended, more peaked distributions approximate better the limiting value A le=0 
corresponding to the scattering free sample.

Modelling gives the possib ility  to investigate the effect of extending the density 
function, which represents the increase of p artic le  size. Distributions G,D, H. show the 
extension of the density function to 50, 100, 150 units of maximal pathlength, respectively. 
The data of calculations show that the extension of distribution moves away the curve in 
direct proportion (practically similarly to concentration) as a m ultiplier factor.

As neither the shape of density function nor the measure of i t s  extension can be 
determined d irectly , th is makes i t  d ifficu lt to evaluate the data. The shape of the density 
function depends f i r s t  of a l l  on the shape of particles composing the sample, the extension 
for the same particle shape depends presumably on the particle size. Therefore, we continued 
the investigations modelling the dependence of remittance and transmittance vs Z for d if 
ferent layer thicknesses L for samples of d ifferen t particle size F according to the method 
described previously [l,2j . Fig. 3 shows the dependence of R and T vs layer thickness L for 
several p artic le  sizes. Remittance approaches a lim iting value and reaches i t  for samples 
with larger partic le  sizes at considerably higher layer thickness. Comparing th is  lim iting 
value of layer thickness Lœ and the steepness Sg with particle size F we get a linear 
dependence which shows the nearly constant value of quotient Sg/L^ (Table II).
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Fig. 3. Modelled dependences remittance R and 
transmittance T on layer thickness L (L — arbi
trary  units)

Fig. 4. Measured dependence of remittance 
of in fin ite  layer Ô on concentration 
C% for K2Cr04 1 00
1 — diluent KBr
2 — diluent A120j

Table II
Modelled dependence on partic le  size

F S0 100 T* V Loo

10 4.695 93 7.82 0.0505
7 3.666 70 7.00 0.0524
4 2.734 60 5.00 0.0456
2 1.744 24 4.74 0.0727
1 0.945 13 4.54 0.0727
0.7 0.B18 11 4.84 0.0744
0.5 0.623 7 5.18 0.0890
0.4 0.530 6 4.75 0.0883
0.2 0.340 4 4.30 0.0850

Measured data
Results obtained by modelling cannot be d irectly  compared with measured data because 

they are based on assumed functions and values. But several measured data completely support 
the data of modelling in their character. We measured the dependence of remission for K2Cr04 
powder diluted with KBr and A120j  powders, using the uncoloured diluent as reference. On 
Fig. 4 is  plotted vs concentration measured at 400 nm. The steepness of the two curves 
d iffers essentially  and i t  corresponds to modelled data. The hiding power of the KBr is  
small, which means that the in f in ite  layer thickness is  large and the steepness is  great. 
For the A120j  the hiding power is  greater, the in f in ite  layer thickness is  small and the 
steepness is  much lower. These data show that the substance with the same absorptivity and 
concentration (K2Cr04) results in different values of remittance in two different colourless 
diluents.
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Conclusions
The measured data concerning the optical spectroscopical behaviour of diffuse sca tte r

ing systems show that the supporting material or diluent has an other role than the 
solvent's in measuring solutions — nonscattering systems. The pathlength of ligh t in the 
sample or rather the pathlength d istribution is  determined by the size and shape of p a rti
cles. This is  why the supporting material having a relatively  small absorption coefficient, 
can nevertheless resu lt in a considerably large deviation in measured remittance.

The data of modelling show that the value of in fin ite  layer thickness is  a very 
important parameter for diffuse scattering systems. But i t s  determination is  d ifficu lt , 
f i r s t  of a ll because of the character of dependence R — L. On the other hand, suitable tools 
are not available for measuring remittance at different exact layer thicknesses. Further 
investigations into modelling and the realisa tion  of a measuring method for in fin ite  layer 
thickness may give more interesting and practical results.
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SYSTEMATIC INVESTIGATION OF THE NEAR ULTRAVIOLET SPECTRA OF CHLOROTHIOPHENES* 
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Department of Inorganic Chemistry, Technical University of Budapest 
1526 Budapest, Hungary

(Received 15 September 1987)

The near ultraviolet (UV) spectra of a ll chlorothiophenes have been investigated in 
vapour phase and n-hexane solution. The Rydberg bands are shown to ob literate  in condensed 
phase spectra and have an almost constant term value throughout the series of the in v esti
gated compounds. In order to assign the valence transitions CNDO/S calculations were carried 
out. The order of the transitions has been shown to be ft and R in each
compound.

Introduction
In our previous works [ l ]  the near UV spectra of thiophene and some of i ts  substi

tuted derivatives have been investigated. The re su lt of our works was the identification  of 
three electronic transitions as Ï*  anc* Rs (Rydberg transition to an
s type terminating orb ita l). The aim of the present work is  to investigate a ll the chloro
thiophenes in order to assign th e ir  spectra and to  draw some conclusions about the 
electronic structure of these molecules.

Experimental
The investigated compounds were synthetised by known methods [2 ,3] and their purity  

was checked by gas chromatography. The spectra have been recorded using a Specord UV VIS 
spectrophotometer. For the assignment modified CNDO/S quantum-chemical calculations [4J have 
been carried out. Geometrical data were taken from the literature [5]], the applied 
parameters were described ea rlie r [4 ].

Results and discussion
The vapour and condensed phase spectra of the investigated compounds are shown in 

Fig. 1. In the 46-50000 cm"'*' region a weak band-system is observable in the vapour spectrum 
of each compound. The effect of the condensed phase is  to obliterate these structures as 
can be seen in Fig. 1. This behaviour is  characteristic for Rydberg transitions [б].

Term values calculated from the adiabatic ionization energies [7]  are listed in Table I. 
The observed term values are in good agreement with those calculated by Robin's method £6j 
for Rydberg orb ita ls of s type. The term values are roughly constant throughout the 
whole series as i t  is  expected. Judging from the term value a transition  to an s type 
terminating orb ita l is  favourable. This transition is  forbidden for molecules of sym
metry (A^^-A^), only a vibronic coupling can make i t  allowed. This might be the reason for 
the observed low intensity of the appropriate bands.

^Presented at the 3rd Hungarian Conference on Molecular Spectroscopy, Debrecen, 
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_____________I______________I____________ _____________ I_____________ I___________ ______________1-------------- L
5 U 5 _ U 5 _ U
x104 cnn' xlO4 cnri"1 x104 c m  1

Fig. 1. Near UV spectra of chlorothiophenes in vapour phase (------) and in
n-hexane solution (----- )

Below 45 000 cm"'*' an asymmetric band is observed for most of the compounds. However in 
the case of 3-chloro-, 2,5-dichlord- and 2,3,5-trichlorothiophenes two bands can be clearly  
distinguished. The bands generally do not show vibronic fine structures with the exception 
of 3-chloro-, 2,5 dichloro-, 3,4-dichloro- and 2,3,4-trichlorothiophenes. The bands are seen
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Table I
Ionization energies, transition  energies and term values of chlorothiophenes

Compound
Adiabatic

IE
Adiabatic
transition

energy

Term
value

Term value 
Calc4

Thiophene 71500 48300 23200 24200
2-Cl-thiophene 70800 46700 24100 24400
3-Cl-thiophene 71900 47900 24000 24400
2,5-Cl-thiophene 69400 46500 22900 24500
3,4-Cl-thiophene 73000 49400 23600 24500
2,4-Cl-thiophene 71300 47400 23900 24500
2,3-Cl-thiophene 70700 47000 23700 24500
2,3 ,5-C1-thiophene 70200 46400 23800 24500
2,3 ,4-Cl-thiophene 71700 47200 24500 24500
2,3 ,4 ,5-Cl-thiophene 71000 47000 24000 24600

*Term values are calculated by Robin's method [б]

Table II
Calculated and observed band maxima and o sc illa to r strengths for chlorothiophenes4

Compounds TC4 ■*— 1*2 <  w- n * 5 - * 3

Thiophene 43500 (0.18) 
39700 (0.20) 44200 (0.04) 55800 (0.01) 56600 (0.60)

2-C1 42700 (0.19) 
39000 (0.24) 44100 (0.04) 55100 (0.06) 56000 (0.60)

3-C1 41800 (0.11) 
38500 (0.17)

45000 (0.10) 
43000 (0.10) 52000 (0.00) 54800 (0.67)

2,5-Cl 40400 (0.25) 
38500 (0.25)

42000 (0.24) 
44000 (0.03) 54300 (0.00) 56000 (0.70)

3,4-Cl 40100 (0.10) 
39500 (0.18) 41500 (0.08) 50500 (0.00) 54000 (0.80)

2,4-Cl 42000 (0.14) 
42700 (0.31) 44600 (0.09) 59300 (0.00) 56000 (0.90)

2,3-Cl 42000 (0.13) 
42700 (0.36) 44300 (0.05) 59000 (0.00) 55600 (0.88)

2,3,5-Cl 39600 (0.13) 
37400 (0.21)

41800 (0.14) 
41000 (0.04) 51100 (0.00) 53700 (0.72)

2 ,3,4-Cl 41400 (0.13) 
42300 (0.32) 43200 (0.08) 58100 (0.00) 55100 (0.98)

2,3,4,5-Cl 40600 (0.21) 
36900 (0.21) 41000 (0.06) 50200 (0.00) 52400 (0.32)

*The f i r s t  rows represent the observed transition energies, the second rows the calculated 
ones. Oscillator strengths are in parentheses. O scillator strengths were calculated by the 
formula used in Ref. [4]
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in the solution spectra too having about 500-1000 cm”1 red sh ift compared to the vapour 
phase spectra. This behaviour confirms an assignment to a valence shell transition. In order 
to interpret these bands CND0/S calculations were carried out. The resu lts  of the calcula
tions together with the vertical transition  energies are compiled in Table II.

According to the calculations the lowest energy transition is  the (the
notation refers to the thiophene molecular o rb ita ls) in each compound. The next transition  
at about 2—5000 cm”1 higher is  a mixture of the and the K* 4-71  ̂ transitions with
a stronger character. The order of the two transitions are the same in each
compound regardless of whether they are observed in the spectra or not. The two above 
mentioned transitions are well separated from the 1£K<—n and 1C* <— ftj transitions by about 
10000 cm”1.

L . NYULÁSZI a n d  T . VESZPRÉMI
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ASSAY OF THE ACTIVE INGREDIENT CONTENT OF SOME INSECTICIDES, FUNGICIDES BY DERIVATIVE 
SPECTROSCOPIC METHOD4

GY. MILCH and É. SZABÓ
CHINOIN Pharmaceutical and Chemical Works Ltd.,
1325 Budapest, Hungary

(Received 15 September 1987)

The active ingredient content of some plant protecting agents has been determined by 
second derivative UV absorption spectrophotometric method, eliminating the background effect 
caused by the dissolved ca rrie rs , excipients. The method has a better performance than the 
conventional base-line correction method.

Introduction
Difference spectrophotometry [ l,2J , orthogonal polynomials [з ,4 ,5 ] and the base-line 

correction method [б] are often used to eliminate the background effec t caused by the d is
solved excipients. These methods are sufficien t in some cases, but the thorough selection of 
the optimal parameters of the mentioned methods [l,2,3,4,5,6] is  lengthy and tedious.

In the la s t decade a series of derivative spectrophotometric methods have been pub
lished, these aimed at d ifferent analytical problems. Some of them eliminated the background 
effect by scanning second derivative spectra [7,B,9,lÔ]. Our ea rlie r  experiences obtained in 
the analysis of pharmaceutical substances Гп,12] supported these observations.

In our opinion a close relation ought to be between the assay of the active substance 
content of a pharmaceutical dosage form in the presence of i t s  excipients and that of a 
formulated plant protecting agent in the presence of i t s  carriers. Therefore we have tried  
to apply the derivative spectrophotometric method also for the assay of the active ingredient 
content of some pesticide formulations.

I t  is  well known that a derivative of a linear function is  constant, i ts  second 
derivative is  zero, so when zeroth order spectra have a linear background, the evaluation of 
the active component content can be performed based on second derivative spectra.

The ordinate value in a derivative spectrum at any wavelength depends on the slope of 
zeroth order spectrum at the given wavelength. This technique discriminates therefore in 
favour of narrow spectral bands against those with broad bandwidths.

If the Beer — Lambert law is  obeyed by the analyte at wavelength X in the zeroth order 
spectrum, the derivative amplitude in the nth order spectrum will be linearly related to the 
analyte concentration

> _ dnA _ dn6  
n ’ d\n '  d}?

. c . d
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a t wavelength \  , where D = nth derivative amplitude absorbance units nm n, A = absorbance, 
6= molar absorptivity 1 mol'* . cm"'*', c = molar concentration and d = ce ll path length 

cm [13] .

Experimental
Instrument

The spectra were scanned on a Perkin-Elmer Lambda 5 recording spectrophotometer.

Substances
The following active ingredients and the ir formulations have been tested: Carbendazim, 

chemical name: benzimidazolyl methyl carbamate. I ts  formulations: Kolfugo, containing 25.0% 
of carbendazim in a suspension. Kolfugo extra, containing 20.0% of carbendazim in a sus
pension. Epidor, containing in suspension form 12.5% of carbendazim and 36.5% of mancozeb. 
(dithane). Carbofuran chemical name: 2,3-dihydro-2,2-dimethyl-benzofurane-7-yl methyl 
carbamate. I ts  formulation: Chinufur 40 FW, containing 40% of carbofuran in suspension form.

The used te s t solutions were as follows: 3 — B̂ ug/cm3 of carbendazim in N hydrochloric 
acid 15 — 2^ag/cm^ of carbofuran in methanol or in ethanol.

The evaluation of the second derivative spectra was based on peak to trough measure
ments. From these values calibration graphs were plotted for each compound as a function of 
concentration. These were found to be linear passing through the origin, the ir г values 
being 0.9990 -  0.9998.

Fig. 1. Zeroth order and second derivative UV spectra o f -----------  Carbendazim reference
substance and of .............  Kolfugo extra in 0 ^  N hydrochloric acid

Concentration: 5.0 /jg/cni
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Results and discussion
As our f i r s t  examples are related on the assay of active components of benzimidazole 

structure, a brief survey on their UV spectroscopic properties is given.
I t  is  well known that the u ltrav io let absorption spectra of heterocyclic compounds 

containing nitrogen instead of the metin group are sim ilar to those of the corresponding 
aromatic compounds, thus also the spectrum of benzimidazole may be retracted to those of 
naphthalene and of indole.

The absorption of naphthalene is  essentially a shifted benzene spectrum. A strong band 
without fine-structure at about 220 nm, a band of medium intensity with more or less vibra
tional structure and with a maximum a t about 276 nm, and at la s t a weak band at about 315 nm. 
According to Clar's nomenclature, the band of the short wavelength is  called ß-band, the 
one at 276 nm is  the p/para/-band, and at la s t the low intensity band about 315 nm is the 
ct-band. These bands may be detected in the spectrum of indole, too, a t 219, 273 — 278 and 
at 288 nm. Compared to these, there is  no much difference in the spectra of the azaindoles, 
thus in that of benzimidazole, however, in the la t te r ,  the band at the long wavelength is 
absent [l5,16,17,18,19,20].

The spectrum of benzimidazole resembles that of a substituted benzene. The band of 
shorter wavelength has been related to excitations, whose s ite  is the amidlne ring and the 
bands of longer wavelength have been related to excitations involving the benzene ring. Some 
transitions may arise from excitations, which include both rings and in those cases i t  may 
be expected, that they would produce bands of greater intensity at longer wavelengths 
[14,15].

The u ltrav io let spectrum of the parent compound,benzimidazole, exhibits in the pH 
range 0 — 5 rather few changes. I t  exhibits two well defined maxima at 267 and at 274 nm, as 
well as inflections at about 240 and 262 nm. The twin bands at 267 and 274 nm are very 
important. They can be assigned as It-»ft* transitions and may be found in a l l  benzimidazole 
derivatives, sometimes melted into a single band. This band may be found in the spectra of 
benzofuran, benzothiophene, benzoxazole and benzthiazole, too.

In neutral and alkaline media the spectra show a bathochromic sh if t. The inflexion at 
240 nm turns into a maximum at 245 nm, the maximum at 267 nm is shifted to 272 nm and the 
other of 274 nm to 278 nm, but the intensity  of the bands does not change markedly. Neither 
absorption, nor fluorescence bands depend markedly on the nature of the solvent [if] .

Position is  an important factor in determining basicity, particularly  in the case of 
substituents, which act predominantly through an inductive effect. Since the effect of a 
substituent on the basicity of benzimidazol is  stronger, the closer th is  group is  to the 
nitrogen atom, groups in the position 2 are more effective in modifying the basic nature of 
the imidazole ring than similar groups in the position 5, or 6. Specially high is  the effect 
of substitution with a methyl group a t position 2, which can be assigned to the combination 
of an inductive and a hyperconjugative effect [l4 ,15,16,17,18,19,20,2]] .

Carbendazim is  a systemic fungicide. As a benzimidazol derivative § 2]  , i t  has a 
characteristic UV absorption spectrum, which is  suitable also for quantitative measurements. 
When determining the active ingredient content of some simple formulated preparations, the 
UV spectrum usually serves as a suitable method, but Epidor is  a more complicated 
system [23] .

The determination of dithane content will not be treated here, but some of i t s  proper-
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Fig. 2. Second derivative and zeroth order UV spectra of ----------  Carbendazim
reference substance, of .............  Epidor and of -----  Mancozeb in 0.2 N hydro

chloric acid; Concentration: 5.0 /jg/cm

Fig. 3. Second derivative and zeroth order UV spectra of -----------  Carbofuran
reference substance and of .............  Chinufur 40 FW in methanol; Concentration:

20.0 f.jg/crrr
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Table I
Results of the assay of the active ingredient content of plant protecting agents

Found amount of active ingredient content

Name of preparation
*-— --------  “  by base-line correc-
active ingredient, tion  method

per cent n Mean RSD

by second derivative 
spectrosc. method

n Mean RSD

Kolfugo
Model experiment

25.0 w/w (of carbendazim)
7 24.9 1.8 7 25.0 1.2

Batch(production) 7 24.7 2.2 7 24.9 1.5

Kolfugo "extra" 
Model experiment

20.0 w/w (of carbendazim)
7 20.1 1.9 7 19.9 1.3

Batch(production) 7 19.7 2.2 7 19.8 1.5

Epidor
Model experiment

12.5 w/w (of carbendazim)
7 12.2 3.0 7 12.4 1.5

Batch(production) 7 12.1 3.3 7 12.3 1.7

Chinufur 40 FW 
Model experiment

40.0 w/w (of carbofuran)
7 39.7 1.7 7 40.0 1.1

Batch(production) 7 39.4 2.0 7 39.7 1.4

tie s  must be dealt with, as on the effect of the strongly acidic medium necessary for the 
assay of carbendazim, a degradation process of dithane takes place and i t s  resulting back
ground absorption inh ib its the simple determination of the carbendazim content. The use of 
base-line correction method is  less suitable in this case, as the degradation of mancozeb is 
a re la tive ly  quick process, though i t  does not proceed completely. The derivatization of the 
spectrum proved to be a much better way of solving th is analytical problem. The background 
absorption caused by dithane, which forms a slightly  raising  line when approaching the low 
wavelength UV region, can be excellently eliminated by second derivative spectrophotometry.

Carbofuran is  a systemic insecticide [24] . The UV absorption spectrum of carbofuran 
exhibits a broad absorption band at the maximum at about 280 nm, which can be similarly as
signed, as the appropriate band in benzimidazoles. The ca rrie rs , excipients of the Chinufur 
40 FW suspension d is to rt the spectrum in methanolic solution in a greater or smaller extent. 
This background absorption could be eliminated also by the base-line correction method, but 
the use of second derivative spectrophotometry proved to be also in th is case more suc
cessful. The advantages of second derivative spectrophotometry were verified with model 
experiments. A suspension has been prepared by weighing in  the active substance with ana
ly tic a l accuracy. The active ingredient content of the model suspension has been determined 
by both the base-line correction and by second derivative spectrophotometric methods in 
ethanolic, or methanolic solution. The resu lts  obtained by the derivative spectrophotometric 
method have a better reproducibility and the ir relative standard deviation is  less than 
those obtained by the base-line correction method.
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EFFECT OF SCATTERED PHOTONS ON THE INTENSITIES OF X-RAY CHARACTERISTIC LINES* 

L. MÉRAY and E. HÁZI
Oniversity of Chemical Engineering, In s titu te  of Radiochemistry and Physics 
8201 Veszprém, Hungary

(Received 15 September 1987)

Enhancement effect of scattered photons on line in tensities in isotope-radiation 
induced X-ray emission analysis was studied. Enhancement factors were determined by measure
ments performed with thin Ca, Cd, Co, Sr and Cs coatings on the surface of graphite and 
p lastic  matrices of varying thickness. The results were compared to data obtained by Monte 
Carlo simulation. A modified version of the simulation yielded to enhancement factors for 
elements distributed homogeneously in ligh t matrices.

Introduction
The ertiancement caused by characteristic  X-rays and leading to one side of inter- 

element effect is  well known and taken into consideration in different methods of XRF quanti
ta tive analysis [ l j .  The fact that scattered photons of the primary radiation take also part 
in the induction of characteristic radiation has been recognized and e ffo rts  to describe 
th is  effect have been made [2] ,  nevertheless the method introduced ignores inelastic  sc a tte r
ings and multiplex e lastic  scattering and so i t  is not suitable for being applied to samples 
consisting of ligh t elements. Our aim was to obtain re liab le  data concerning the effect out
lined above. This aim can be achieved by d irect measurements only in the case of samples 
containing the elements examined and a matrix behind th is  layer, free of the elements in 
question. For homogeneous sample d istribu tion  theoretical methods can be used.

Theoretical
When some material is  irradiated by X-rays, three kinds of event may happen:
1. ionization on an inner shell, (photoeffect), leading to X-rays (fluorescence) or 

Auger electrons;
2. inelastic  (Compton) scattering, causing changes both in energy and in direction of 

the photon scattered;
3. e lastic  (Rayleigh) scattering, affecting only the direction of the photon.
Due to those three possib ilities the intensity of the primary X-rays, I , decreases 

to I when passing a layer of thickness d:

( 1 )

where is  the density (gem 5) of the i- th  element in  the sample and yu.̂  is  the mass 
absorption coefficient. The la tte r  quantity can be expressed as the sum of three terms

*Presented at the 3rd Hungarian Conference on Molecular Spectroscopy, Debrecen, 
Hungary, 24—28 August 1987
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corresponding to the three events lis ted  above, respectively:

MI " ^IP + WIC + '“ iR ( 2 )

the probability of having an X-type scattering  — provided that the photon was 
scattered (where X can be either P, C or R, that is  photoeffect, Compton or Rayleigh 
scattering):

2 - ^ i X  ? i
Py = -------------
X ? i

(3)

U
The energy does not change in Rayleigh scattering  and decreases in Compton scattering:

E _ E2 (1 -  cos 9)
Compton eq  _  cos g)+ mc2 (4)

where E is primary energy, m is  the electron mass, c is light velocity and В is  the sc a tte r
ing angle.

Ihe scattered  photon can go in any direction, the probability density of the d irec
tions can be nevertheless determined. For Compton scattering on a single electron the d if 
feren tial cross section, is  given by the Klein — Nishina equation [з]. Ihe probabili
ty density is  affected by the other electrons as well; this fact can be taken into account 
with the so-called atomic scattering  factors, S(X,Z), where X = s in (0 /X ), 0 is  the angle of 
scattering and Z is  the atomic number [4].

For Rayleigh scattering the Thomson equation has to be used [3J. Ihe effect of other 
electrons is  expressed by the atomic form factors, F(X,Z). Ihe other atoms can also take 
part in the e la s t ic  scattering but th is interference can be ignored i f  the material is  
amorphous.

The d iffe ren tia l cross sections of the Rayleigh and Compton scatterings are given by 
Eqs (5) and (6), respectively:

r 2
= ~Y ~  (1 + cos2 0) [F(X,Z)] 2 , (5)

dp1
d« [l + k(l -  cos 0^ "2 [l cos 0 l+k(l - cos 0Tl

( 6)

where rg is  the classical electron radius, 0 is  the scattering angle and к is  the photon 
energy in units of electron restmass energy.

Equations (3), (4), (5) and (6) were used in a Monte Carlo simulation of the processes 
taking place-in the sample when irradiated with monoenergetic primary X-rays [ 5J . In Fig. 1 
a typical simulated spectrum is  shown as example; the primary energy was supposed to be 47

2keV and the sample simulated consisted of a Sr layer of 0.8 mg/cm , formed on the surface of 
a carbon p e lle t of 4 mm thickness. The simulation provided not only a spectrum but informa
tion concerning the number of different events and therefore i t  was suitable for determining 
the enhancement caused by scattered photons.
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Experimental
To have well-defined, thin layers of the model elements (Ca, Cd, Co, Sr and Cs) FIXION 

thin ion-exchanger sheets — commonly applied in thin layer chromatography — were used. The
О

surface concentration of those elements varied in the range of 0.8-000 g/cm . These sheets 
were put onto the sample holder above the detector, with the coated size facing the detector 
window. To study the effect of scattered photons graphite and perspex plates were piled on 
the sheet, forming a matrix of variable thickness.

The measuring system consisted of the following units:
— ORTEC Ge(l_i) detector (for Cs spectra) on ATOMKI Si (Li ) detector for the other 

elements;
— Fb-210 source for Cs and Ca excitation, Cd-109 source for the other elements;
— Canberra spectroscopic amplifier linked to the Si(Li) detector and ORTEC pulse 

shaper and amplifier with the Ge(Li) detector;
— ICA 70 (KFKI) multichannel analyzer.
The spectra collected were processed with an R-35 computer.

Results and discussion
Due to multiplex inelastic  scatterings in the sample the spectra obtained consist of a 

rather low characteristic peak piled up on the " ta il"  of a very high Compton-peak, therefore 
special care had to be paid when calculating peak areas. For this purpose an iteration 
method [б, 7] was applied. The s ta t is t ic  spread of peak areas was not negligible, especially 
not for low concentrations.

In Table I the peak areas (counts/time) are given for different thickness of graphite 
matrices, obtained with the greatest surface concentrations.

The spectra corresponding to lower concentrations were used only to check the simula
tions |V]. Spectra simulated were accepted only if  deviations from spectra measured under 
the conditions assumed in simulation were within the margin of s ta tis t ic a l spread, other
wise the model used was refined.

In Figs 2—3 the simulated enhancement A l/I  is  plotted against thickness for d if
ferent primary energies where I is  the intensity of the characteristic line  without excita
tions by scattered photons and A l is  the intensity increment due to the fact that scattered
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Table I
Peak areas obtained with d ifferent matrices

Graphite
thickness

mm

Ca
Counts/lOOOs

Co
Counts/lOOOs

Sr
Counts/lOOOs

Cd
Counts/3600s

Cs
Counts/3600s

0 1.93 -  0.05 14.35 - 0.20 62.12 -  0.45 26.2 - 0.7 38.1 - 0.3
2 1.90 -  0.07 15.07 - 0.25 65.30 -  0.61 27.2 - 1.0 39.1 Î  0.5
4 2.24 Î  0.11 15.74 Î  0.21 66.53 -  0.51 28.7 - 0.6 40.0 - 0.9

12 2.12 - 0.09 16.89 -  0.31 70.49 - 0.68 32.2 -  1.9 42.2 - 1.2

photons may also induce.characteristic radiation.

Fig. 2. Enhancement of Ca lin e , plotted against sample thickness for surface coating

From the results introduced in Figs 2—3 the following conclusions can be drawn:
1. The enhancement caused by scattering can be neglected only i f  the sample is  thin 

( <; 1 mm) or the primary energy just exceeds the К absorption edge.
2. The thicker is  the matrix the greater enhancement occurs above a certain thickness 

— that is  roughly equal to (l/^*y) the enhancement is  independent of thickness.
3. In the range in which usually the primary energy is  the enhancement increases if  

the energy is  raised. In higher energy ranges th is  relationship is  not generally valid.
With a l i t t l e  modification the Monte Carlo method was made suitable for simulating 

spectra of homogeneous samples. The results of such simulations are shown in Figs A—5.
As can be seen the enhancement in question can be considerable, in some cases about 

30%. I t  is  especially important to know i ts  value when samples of great volume are analyzed 
with any kind of standardless methods. Since such methods are more and more widely used, the 
subject introduced is  slowly slipping from theory toward the f ie ld  of practical analysis.
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Fig. 3. Enhancement of Cd line, plotted against sample thickness for surface coating

Fig. 4. Enhancement of Ca line, plotted against sample thickness for surface coating

Fig. 5. Enhancement of Cd line, plotted against sample thickness for surface coating
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COMPUTER SIMULATION OF PINNING IN TYPE-II SUPERCONDUCTORS AND THE THEORY OF COLLECTIVE 
PINNING*
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Max Planck Institu te  for Metal Research, Institu te  for Physics,
S tuttgart, FRG

(Received 20 October 1987)

The problem of pinning of flux-lines by random inhomogeneities is  discussed. The 
theory of collective pinning, which was established recently by Larkin and Ovchinnikov and 
has proven successful in weak-pinning amorphous alloys, is  discussed in some detail. Then 
computer simulation of pinning is described and the resu lts  are discussed. They confirm 
collective pinning theory for weak two-dimensional pinning and modify i t  a t strong pinning 
where the flux-line la t t ic e  becomes amorphous.The threshold-behaviour predicted by the 
"dilute lim it theories" proves to be an a rtifa c t which is  due to the non-existence of th is  
lim it in sufficiently  large specimens.

1. Introduction
The s ta tis t ic a l summation of the pinning forces exerted by material inhomogeneities on 

the flux-line la ttic e  (FLL) in type-II superconductors is  s t i l l  a challenging problem. Since 
the f i r s t  idea of flux pinning [ l] ,  the f i r s t  summation theories [2 , 3] , the excellent 
review [4] , up to the appearance of the collective pinning (CP) theory [5] i t  has been clear 
that the calculation of the maximum loss-free current density j c in a type-II superconductor 
is  a complicated problem. Even if  the nature of the pins were known and even i f  the 
elementary interaction of each pin with the FLL could be estimated reliably from a micro
scopic theory, one would s t i l l  have to solve the summation problem. For real superconductors 
th is  often appears impossible since the pins are either too strong, too large, or too cor
related for simple summation theories to apply. Most theories fa il  in particular when the 
pins generate p lastic deformation of the FLL. This in general leads to a dependence of j  on 
the "history" of the specimen, i .e .  on the previously applied current or magnetic field .

In spite of numerous works quoted in [őj, the summation remained essentially  unsolved 
even for the idealized case of weak identical pins at random positions acting on a FLL which 
is  only elastically  deformed ( i.e . topologically ideal). This situation changed when the CP 
idea came up.The CP concept was applied independently, with similar resu lts , to FLs Q>3 and 
to charge-density waves in quasi-one-dimensional metals (e.g . NbSe,) [7]. I ts  two-dimensional 
(2D) version was tested successfully on very weak pinning amorphous layers of Nb̂ Ge [jî] and 
by computer simulations Recently, the CP concept has been applied to pinning of a 
crystal dislocation line (the problem of solution hardening) [9] .

In our opinion, experiments in the past often seemed to confirm summation theories 
which were not well founded (or even wrong). In th is sense, the reason why we believe in the 
concept of collective pinning is  not so much i t s  agreement with experiments but i t s  con-

*Vresented at CRYOSEM '86, I llrd  International Seminar on Low-Temperature Physics, 
Visegrád, Hungary, 26—31 May 1986

Acta Physica Hungarica 63, 1988 
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ceptual c la rity  and transparency. In cases where experiments do not f i t  the 3D version of CP 
theory we ascribe th is to the presence of screw dislocations in the FLL which can move easily 
along the FLs (screw dislocations are at a right angle to the FLs and feel no Peierls 
potential since the FLs have no structure). As a consequence the FLs now can adjust easily 
to the pins and j  becomes larger than predicted from mere e lastic  deformation of the FLL.

The presence of screw dislocations in the FLL in our opinion has been demonstrated 
clearly  in a very recent experiment by Kes and Wördenweber [LÖ]. In amorphous films of 
thickness d=5 - 18 /rm an abrupt jump of j  by more than a factor of ten was observed when 
the induction В was increased to a value Всо®*0.7 Bc2 (Bc2= upper c r it ic a l field  of the 
superconductor). This fascinating finding demonstrates a sharp transition  from 2D to 3D 
pinning (called "dimensional cross-over"). Moreover, the sharpness of th is jump, i t s  reversi
b ili ty  (with sligh t hysteresis), and a subsequent further steep increase of j  by another 
factor of ten immediately above Bco, unambiguously proves that the FLL has switched from the 
ordered sta te  of nearly s t i f f ,  s traigh t, para lle l FLs (the case of 2D pinning) to a d is
ordered "spaghetti state" with strong p lastic  deformation. This s ta te  may formally be de
scribed by the presence of screw dislocations, dislocation loops, or kinks. Such defects are 
generated at the film surface where the FL t i l t  and shear is la rgest, and then move rapidly 
into the bulk un til a high defect density is  reached. Apparently a threshold value of the 
e las tic  d istortion has to be reached (a kind of flow stress) before the FLL switches to the 
spaghetti s ta te . There remain fascinating questions: for the th eo ris t, to explain th is  
transition  quantitatively, and for the experimenter, to check whether a similar transition  
occurs again at low inductions where the s tiffn ess  of the FLL decreases again (the ra tio  of 
pinning strength and FLL stiffness is  large at high and low inductions and has a minimum in 
between).

2. The theory of collective pinning
For transparency we will sp li t  the concept of CP into three basic ideas. This will 

f a c ili ta te  generalizations since i t  makes clear which of the three ideas has to be modified.
1st idea. Inside a coherently moving (almost rigid) "correlation volume" Vc contain

er's npVc pins (np = volume density of pins) the elementary pinning forces f^ are s t a t i s t i 
cally independent when the pin positions are uncorrelated. Here and in the following f^ 
means the force which the i- th  pin exerts on the FLL at this moment. The s ta t is t ic a l  fluc
tuation of the to ta l force on th is  volume is  interpreted as the maximum pinning force on V . 
The maximum volume pinning force j cB is  then obtained by dividing the root mean square of 
the fluctuating force by the volume Vc : , 1/2 1/2 

JcB - (npVc < í > p i n s ) /Vc -  (W/V  >
where

W = " p < i i > p i n s  = " p fP •

2nd idea. The correlation volume, or i t s  diameter 2Rc and length along the FLs 2LC>
is  estimated from the autocorrelation function g(r) of the FL displacement field  u(r) caused
by the pins. V is  defined as the region inside which | u(r) | i s  smaller than the range r of c - p
the pinning forces,
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O (r) =<lyCr> - У(0)|2>  s e m b l e < rp '

I t  is  a peculiarity of th is  theory that the force range rp enters: In CP theory the pin 
ensemble is  characterized only by i t s  strength W and range rp . The physical meaning of rp is 
that of a correlation length of the force f ie ld . Very recent resu lts  |ll] show that in 
almost a ll cases one has tp ft#0.195 a (a = FL-spacing) except for point pins (pins with 
radius<S£the coherence length^”) at low inductions, where r pft#í^aícore radius of the FLs.
The correlation lengths R and L depend on the dimensionality of the problem. The shape and

С С у у
size of the correlated volume V is  an e llipso id  (4lt/3)R L (3D), circle 'ÎCR (or cylinder 2 с с с c
lÍR^d, 2D case, realized in thin films or f la t  specimens when pinning is  sufficien tly  weak
so that the FLs are not curved), or the length 2Lc (ID case, pinning of isolated FLs or
d islo ca tio n  lin e s  in c r y s ta ls )  [ 9J.

3rd idea. In the weak-pinning lim it W and g(r) may be calculated from the uncor
related forces f^ which would act i f  the FLL were rigid. This means: the correlation between 
the FL and pin positions, which is  caused by the elastic response of the FLL to the pins and 
without which there were no average pinning force at a ll, is  disregarded at th is  step for 
consistency. I t  is  here where the weak pinning assumption is  required. The g(r) resulting in 
th is  weak-pinning lim it is  proportional to W. Note that th is lim it even applies to  an a l
ready p lastically  deformed FLL i f  only the pins are weak enough to introduce no irreversible 
motion of dislocations.

3. Predictions of collective pinning theory
From i t s  basic assumptions alone, without explicit evaluation, the CP theory pre

dicts that:
о

a) The c r it ic a l current j c depends only on the combination W = np < f ^ >  > оп the
range r , and on the e la s tic  constants of the FLL.

P 2
b) The mean square f of the actual pinning forces f^ en ters, not the maximum force 

a pin can exert. Most previous summations express j p as a function of fmax and np. In 
general one has fp < f max except when a ll (strong) pins are activated.

c) j c is  the same for attractive and repulsive pins as long as these are weak. 
Strong a ttractive  pins are, however, more effective since strong repulsive pins (with the 
sign of the pinning potential reversed) are partly  avoided by the pins.

d) The threshold predicted by the "d ilu te-lim it theories" [2 , 3] does not ex ist, 
even for n -» 0 , if  only the number of pins is  sufficiently large for the averaging to 
apply. In specimens containing only a few pins a threshold may appear (see the computer 
simulations below).

e) The CP theory only estimates the prefactor of j cB as becomes clear from the 1st 
idea and from the definition of V . This prefactor may be determined from computer simu
lations (see below). A further sligh t arb itrariness, which we had assumed in [é j, namely, 
that the prefactor slightly  depends on the shape of the pinning potential, was removed very 
recently by introducing a definition of rp which applies to any pinning potential [llj . In 
particular, j c may now be calculated for superconductors containing pins of various types 
and sizes.
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The explicit resu lts  of CP theory for various dimensionalities are:

3D:

2D:

ID:

Rc '  r p 8^"/C44C66 /W> Lc “ J  C44/c66 Rc  ’ 

j cB = ( /V 2  /32î t2) W2Ap c 4 4 c 2 6  ,

Rc = rpc6é i/s lïd  /W ln(Rcut/Rc) , 

j cB = / m(Rcut/Rc) /8 îtw /rpdcéé ,

Lc = 2 rp c ^ 4 041/4 (U n)^2 ,

j cB = (Wn)2/ 3 l 1' 9 /  2 ^  г / 9 c j f  ,

where n = B/ÿ>Q is  the FL density, R + a cut-off radius (« th e  half width of the specimen), 
c44 is  the l i l t  modulus and the shear modulus of the FLL. The Labusch parameter OCin the 
one-dimensional case has to be determined selfconsistently writing 0i -  j  в/ l  where 1 is  a 
length of the order of a/2Tt. Expressions for the cross-over 2D—»3D in films of thickness 
d are given in [12].

The exponents of n , f , and of the effective e la s tic  constant c follow from general 
scaling arguments [1з] . In cases where only the combination W = n^f2 enters one has for 
D = 1, 2, and 3:

•У3 ~  (np V
2/(4-D) -D/C4-D)

The applicability of th is  formula is  discussed c r it ic a lly  in [ 9] .

4. Computer simulation of flux -line pinning 
The observation of 2D FL pinning [в] encouraged us to  perform computer simulations of 

2D pinning [V]. 3D simulations require considerably more numerical effo rt but are within the 
range of modern computers and will be performed in the near future. The general 3D in te r
action between FL elements [l4, б] leads to the to ta l energy of an arb itrary  arrangement of 
curved or straigh t FLs:

U
2

(3) 1 ^  'V cPo/ /lo
FLL 2 ' f '  •^-’2 'r t \ '2

where
X = Л / Л-Ь  and £ ' = £ " / / 2 ^2b

are effective penetration depth (X) and coherence length (£ =Х./Ю b = B/B^, ancl 
r^ j = |r^ - гj  J . The integrals are over the FLs. From th is  energy expression the elastic  
and plastic  properties of the FLL may be obtained in principle. In the 2D case, i .e . for 
s tra igh t parallel FLs of unit length, one obtains from i t  the energy of an arb itrarily  
deformed FLL:
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u(2)
UFLL 2

j > i

Ф о ^ о

21C X2 LKo( K0(r i j№

Note that in ui, . the se lf energy of the FLs is  contained (the terms i=j depending on the fLL (у)
curvature of the EL) but in Ui. . i t  is  omitted since i t  does not depend on the arrangement 

(2) hLLof the FLs. From Up^ the shear and compressional modulus of the (ideal or p lastically  de
formed) FLL may be obtained and also the energy and d isto rtion  field  of the edge dislocation. 
Note that the range ^  of the FL-FL interaction may be much larger than the FL spacing a; in 
th is case the e lastic  properties of the FLL are non-local. This means tha t the t i l t  and 
compressional modulus depends on the wavelength of periodic distortions i f  th is  is  smaller 
than 2lt/C . The shear modulus for most purposes may be treated as local; c^^ depends on the 
direction of shear waves only if  their wavelength gets close to 4a. For th is  reason non
locality  is  ndt important for 2D pinning, but becomes crucial for 3D pinning in supercon
ductors with large Ginzburg — Landau parameter 1C. Ihe 3D CP result presented in Section 3 
is  derived from local e lastic ity  theory. I ts  non-local extension is given in [l2].

For our simulation of flux pinning we use simplified potentials between FLs and between 
FLs and pins:

Vv(r) = Av exp(-r2/R2)

Vp(r) = Ap exp ( - r2/Rp) .

From Vv(r) the shear modulus follows (R̂  = vectors of triangular FLL, R̂  = | | ):

c66 - (n/i6) 2 t Ri v; ,(Ri ) + 3Ri W ]  •
i

We generate Ny FLs (ideal or amorphous la ttic e )  and Np randomly positioned pins in a nearly 
cubic area with periodic boundary conditions. Ihe energy of th is system is  then

u = 2  2  vv( IEi-Ejl) 1гг£р| ) ,
i  j>i i  j

where the sums are over a ll FL (r^) and pin positions (rP). Our simulation thus contains 5 
parameters: The vortex and pin numbers Ny and Np (proportional to the densities n and np), 
the range R of the FL-FL interaction (or the shear modulus c , ,)  and of the FL-pin in ter-

V DO

action, Rp, and the amplitude Ap of the pinning potential. We put Av - 1 (th is  fixes the 
energy scale).

The main variables of our simulation are a constant force F on a ll FLs (which is 
compensated by the to ta l pinning force) and the mean x-coordinate of the FLs X = < x ^  >  .
We may perform dynamic or s ta tic  pinning simulations. For dynamic simulations we apply a 
viscose force on the FLs (proportional to their velocity), then we increase the force F 
gradually from zero and le t the FLs move such that at each moment a ll forces on a FL are 
compensated by the viscose force. In th is  way we get curves X(F) or, physically more 
sensible, dX(F)/dt which resemble the measured current (~ F ) - voltage («-«velocity dX/dt) 
curves. One of these curves is  presented in Fig. 1. Note that the FL-motion s ta r ts  only

\
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Fig. 1. Typical curves velocity X versus force F (corresponding to voltage versus current) 
in arbitrary  units. Nv = 340 flux lines, Np = 210 pins, Rv = 0.6a, Rp = a/8 and a/2,

Ap = -0 .05 ,-0 .1 ,-0 .2 ,-0 .3 , and -1

when the force F exceeds a c r i t ic a l  value Fs t a t , the s ta tic  pinning force, and then
increases with dX/dt approximately proportional to F - F ^ n where yn ^stat is  the
dynamic pinning force. We have generated a large quantity of such curves (for various
values of N , N , R , R , and A , and for ideal triangular and amorphous FLL) which are not 

V p V p p
yet published.

We present here the s ta tic  simulations in more detail. As the f i r s t  step we relax the 
FL positions, with the pin potentials switched on, by minimizing the energy U. In the 
resulting s ta te  the FLs are completely force free (a ll forces on each FL compensate). As a 
next step we apply an external force F and minimize the Gibbs potential

G {Ei} = U - N / X .

Then we increase F by a constant increment and repeat th is procedure. In th is way we obtain 
a curve X(F). However, when F reaches a c r i t ic a l  value the FLL "runs away". Therefore, in 
order to get stable, fluctuating force-displacement curves F(X) we prescribe in each 
ite ra tion  step the mean FL displacement X and, by some feed-back mechanism, obtain the value 
of F which keeps the FLL at th is  position. At each moment the FL positions are fu lly  relaxed. 
The resulting  F(X) f i r s t  increases linearly  (slope ot) and gradually goes towards a satu
ration value which may be interpreted as the s ta t ic  volume pinning force. Since our system 
is  f in ite  (we used up to = 2000 FLs and Np = 1000 pins) the real F(X) (Fig. 2) deviates 
from the idealized one by s ta t is t ic a l  fluctuations. A good value for the volume pinning 
force is  then the average of F(X) over X, F = < F (X )>  . For comparison with CP theory we
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Fig. 2. Force-displacement curves of an in itia lly  periodic FLL pinned by randomly positioned 
a ttractive point pins of strength -Ap and range a/4 (schematic)

also calculated the mean square W(X) of the actual pinning forces (times Np/Nv) and average
th is  over X getting W = W(X). From the ratio  F/W we get the prefactor of j cB. This ra tio  was
found to be constant in the lim it of weak pinning. I t  yields a prefactor which is  smaller
than that in Section 3 (2D) by only a factor 0.45. This nice agreement proves the good
estimate of the prefactor in 2D CP theory. (Originally, Larkin and Ovchinnikov Г5*1 assumed 

? ? U J Vc R̂ d rather than our improved value TÈR̂ d. )
Fig. 3 shows some curves F(A ) and W(A ) where A is  proportional to  the elementaryP P P 2

pinning force since Rp=const. Note that for small Ap one has W Ap in agreement with the 
assumption in the third idea of Section 2. When the pinning strength increases, W increases 
more (less) than <v Ap for attractive (repulsive) pins, respectively. But even then in many 
cases, and even when we started with an amorphous FLL, we obtained F now. The 2D CP resu lt

2
is  thus more general than originally assumed i f  only the correct value of W=np<  f f ,>  (now 
with the actual pinning forces, with the FLL distortion  considered) is  taken. For weak 
pinning we also confirmed-the relationships F no 1 /c ,. and F no l/R .

D O  P  5

5, Some resu lts of the simulation and outlook 
We summarize the main results of our 2D simulation of flux-line pinning in type-II 

superconductors:
21. The collective-pinning formula of Larkin and Ovchinnikov, j  no n < f .3 > /r  c . . ,

C p i p  D O

turns out to be valid not only for weak pinning but also in some cases for strong pinning 
(when the pins are repulsive or dense) and even for p lastically  deformed (or amorphous) FLL. 
The prefactor of j  is  obtained.

2. For amorphous FLL the prefactor of j c is  larger than that for the ideal (only 
e lastica lly  deformed FLL) by a factor 1.3 to 3. This finding explains the "history effect" 
and the hysteresis in j c(b). For example, i f  the ideal FLL is  moved against sufficiently
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-  -  2Fig. 3. The averages F <vjc (solid  lines) and W /v np <  f^ X d ash -d o tted  line) (see text)
versus the pin strength -Ap for a ttrac tive , randomly positioned, dense point pins (Np = 2Ny
ÇW105, Rv = 0.6a, Rp = 0.25a). Pamorp^ and ^ideal are ^or in it ia l ly  periodic and for

amorphous flux-line la ttic e s , respectively, extrapolated to very large systems. The dotted
lines indicate the a r t i f ic ia l  threshold caused by the finiteness of our system.

F .. . = n fd irect p p

strong pins the FLL becomes more and more deformed p lastically  resulting  in a larger j c(b)
which persis ts un til superconductivity is  destroyed, say, by rising  the field  or temperature
Thus j  depends on the "history" of the specimen.

3. j  (A ) exhibits a jump when plastic deformation sets in. As mentioned in Section 1 c p
th is  jump is  even more pronounced in 30 pinning. Such a jump may be interpreted as a "thresh 
old effect". However, the orig inal threshold, obtained in "dilu te-lim it" theories, is  an 
a r tifa c t which is  not observed in our simulations. In fact, we do observe a threshold; th is  
is ,  however, due to the fin ite  periodicity area we use: When the maximum relative displace
ment caused by the pins in the FLL within th is  area is  smaller than the force range r ,
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then the to ta l volume pinning force exactly vanishes. This a r tif ic ia l threshold value for Ap 
decreases with increasing periodicity area.

4. For strong pinning a modified d irect summation applies:

<  2 1/2 i B ä  n < f  >  = n fJc p p p

This value is  in general much smaller than the oriqinal direct summation resu lt i B=n f° Jc p max
Note that th is modified direct summation formula requires the knowledge of the actual 
pinning forces; these depend on the deformation of the FLL and are thus not easily calcu
lated. Therefore, for strong pinning one should look for a new summation theory or modify 
the CP ideas by introducing some effective correlation volume, perhaps saturating when Rc 
reaches the FL spacing a.

5. Many more interesting features of pinning may be investigated by th is  simulation: 
Trapping of vortices by pins (th is , too, leads to a threshold effect). Extended pins, pin- 
walls (e.g. grain boundary pinning), and flowing of the FLL around extended pins. In a ll 
these cases i t  is  interesting to look a t the shape of the force-displacement curve F(X). The 
in i t ia l  slope may then be much larger than F /(a /2 lt), i . e .  F(X) is  strongly curved near X=0. 
In some cases F(X) goes to i t s  saturation only very slowly, over several a. As shown in [é j, 
even pinning by one single pin is  not a tr iv ia l  problem since the displacements of the FLL 
may become large so that non-linear e la s tic ity  comes in  and computation becomes necessary.

6. A further topic on which future computer simulations should concentrate is the 
three-dimensional p la stic  properties of the FLL, in particular the c r i t ic a l  flow stress [l5 , 
lé j a t which the abrupt transition to the disordered "spaghetti state" observed in [lo] se ts 
in. An even more challenging task would be to conceive models for nucléation and p ro life
ration of dislocations in the FLL [l7] . Such models should account for the pronounced 
e las tic  non-locality and non-linearity which (besides i t s  topological peculiarity) is  charac
te r is t ic  for the FLL.Both analytical and numerical calculations should be based on the 
general interaction potential between the FL elements presented in Section 4. This pair 
potential accounts for both the non-local and non-linear effects: I t  yields the correct non
local e las tic  moduli of the FLL and applies also to merging or cutting FLs and to FL loops.
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Scaling in the transition  to coherence of randomly coupled granular superconductors is  
described by c r it ic a l exponents unexpectedly close to those reported for the spin-glass 
transition . We discuss a model of non-homogeneous transitions, localised in the regions of 
highest coupling energy in the sample. Thermal exponents are expressed in terms of percola
tion exponents; the numerical values thus obtained are in  good agreement with the experi
mental ones.

1. Introduction
The transition to phase coherence £ lj in granular superconductors may depend strongly 

on grain size when the la tte r  is  of the order of a few nanometres [2 — 5] . In particular, 
charge fluctuations across the junctions may be deleterious for coherence [з, . In order to
reduce the problem to i t s  very essentials, we have simply pressed together large (tens of 
micrometers) oxidized grains in an epoxy matrix. In th is  way we obtain three-dimensional (3D)Q
arrays of about 10 superconducting junctions. The grains are bulk superconductors, so the 
amplitude fluctuations of the order parameter are negligible. The behaviour of the whole 
system is  rather governed by phase fluctuations in the weakly coupled grains. Furthermore 
the large size of the grains results in large capacities and therefore very small charge . 
fluctuations.

I t  is  easily shown then [V] that the tunnelling Hamiltonian of the grains is

H = - 2  v i S ' - W S S z i  • (1Л)
<rr ’>  1

Here the Jr r , are josephson coupling energies of junctions of normal resistance Rr r , between 
f i r s t  neighbours located at points indicated by primed and unprimed subscripts:

R .
Jr r , = í r — A  (T) tanhA (T)/2k„T , (1.2)гг Rr r , В

where RQ = 7t/fi/4e2 = 3250 A . The quantity ,U0 is the pair chemical potential, Sp=SxrLSyr 
are pair destruction and creation operators in grain r , while Sz  ̂ is  a pair number operator: 
S2i = —1/2 indicates the absence or presence of a Cooper pair in grain i .  They satisfy  spin 
commutation relations:

LsZj  • sr ] = i s 3 5 kj • fej - sk l  = 2Szj 5 kj ■ (1-3)
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Equations (1.1) and (1.3) characterize equally well a ferromagnet with neighbouring spins 
coupled only through their x- and y- components, i . e . ,  the X — У model. In analogy with the 
ferromagnetic phase transition , the zero-resistance (and phase coherent) sta te is  reached 
below a c r it ic a l temperature T <  T where T is  the superconducting c rit ica l temperature

C C y  CQ
of individual grains. As Tc is  approached from above or from below, the suscep tib ility , the 
order parameter and the specific heat display non analytic behaviour, i.e . they follow power 
laws in t  = It — T I with non integral c r i t ic a l  exponents - Ц , and -Ot, respectively. The 
spin -  spin correlation function <  Sg S~> — <S"t>< S~ >> = D (r /£  ) / r d~2+*̂ , where ^  is 
s t i l l  another exponent and d the dimensionality of space. At T  ̂ T the correlation lengthJO _£
ç (T) nu t  describes the decay of the correlation function with distance through the 

function D(r/ £  ).
The c r it ic a l exponents must satisfy the scaling relations:

dV> = 2 - C t  = 2/3 ; f= ТЛ? = 2~ %  , (1.4)

which show that two exponents suffice to obtain a l l  the others. In our case we rather had to 
te s t i f  the exponents obtained experimentally were indeed those of a second order phase 
transition , which led us to measure four of them. We show in Section 2 that the values ob
tained are unexpectedly different from those calculated for the X -  Y model but sim ilar to 
those reported for spin-glasses. We discuss a possible model for th is  behaviour in Section 3. 
Concluding remarks are made in Section 4.

2. Spin-glass and random network exponents
We shall not dwell here on the specific physical phenomena connected with the c ritica l 

exponents of the arrays [7,в] . We simply rec a ll that (i)  the dosephson penetration depth of 
a 30 array [в]

Х3 ~ Г /3 , T <  Tc ; (2.1)

( i i )  the c r it ic a l current density [7,8^

j c ~  t 2 ^  + °  , T <  Tc ; (2.2)

( i i i )  the excess conductivity of a Josephson junction between the granular sample and a bulk 
metal, a t T > T c И ,  as well as that of the granular sample i t s e l f  [o] .

Д <7= O '-  CTN ~  t- T  ’

(iv) the voltage -  supercurrent characteristic at T = Tc

T > T c ; (2.3)

[10]

V~ IS - a d + 1
d -  1+l 2

(2.4)

provide the basis for the determination of four exponents from electromagnetic measurements. 
By using "alloys" of Nb and Та grains of d iffe ren t sizes we could recently follow the 
transition  of only a fraction of the sample [llj and obtain a rather precise and d irect 
measurement of ^  .
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The experimental results can be summarized as follows: /3 = 0.7-0.1, 2/3 + v5 =
= 2.5±0.3, 'J'= 2.8-0.3, yl= 0.027±0.015. The f i r s t  two give V1 = 1.1-0.3 (T < T c , cf. (i)
and ( i i ) )  while from ( i i i )  and (iv) and (1.4) jf/(2—'’J ) = 1.4±0.2 (T > T c). The
scaling relations (1.4) are satisfied  within the experimental error. We are then justified  
in imposing that t? should verify hyperscaling through 2/3 + V + "Jf = (d+l)v? = 5.3±0.5 
to get \ ) = 1.3±0.1 from ( i i )  and ( i i i )  above. The remaining exponents are obtained sim ilar
ly; they are shown in Table I. On the other hand, several authors have reported a scaling 
behaviour of spin-glass transitions [12] ; the corresponding exponents, also shown in Table 
I , are strikingly close to ours.

ANALOGIES BETWEEN GRANULAR SUPERCONDUCTORS AND SPIN-GLASSES

Table I
Random granular superconductor (RGS), spin-glass (SG) and model calculated c r it ic a l

exponents

f l T V1 5
X-Y model3 0.346 

- 0.001
1.316 

- 0.001
0.6693 

± 0.001
0.0335 

± 0.0025
4 .805b 

± 0.015
RGS 0.68-0.05 2.6-0.2 1.3±0.1 0.027±0.01 4 .84±0.lb
Fractal model 0.69±0.02 2.62-0.1 1 .33±0.05 0.0335 

± 0.0.0025
4.805 

± 0.015
Çu Mn 4 .6%c 1.1 ±0.2 3.4 ±0.4 1.8 ±0.2 4.2 ±0.1
Cu Mn 1%C 0.75±0.1 3.25 1.6 ±0.1 5.7 ±0.5
A1 Gd 37%c 0.6 -0.1 2.7 ±0.1 1.3 ±0.1 5.7 ±0.2
Mn-aluminac 1.4 -0.1 3.1 ±0.1 2 ±0.2

aLe Guillou and Zinn-Justin, Ref. [22] 
^Calculated from 5  = (d+2— ^  )/(d-2+ ^  ) 
CSG results quoted by Tholence, Ref. [12]

This apparent universality is surprising in view of a number of features of spin 
glasses not shared by arrays. The interactions are believed to be long-range in the former, 
while manifestly they exist only between f i r s t  neighbours in the la tte r . An important 
property of spin glasses is  frustration [l3] , absent from granular superconductors under 
zero fie ld  [l4,15] . On the other hand, the most conspicuous common feature to the two 
systems is randomness in the coupling energies. However, as discussed in the next Section, 
one would not expect, on the basis of the Harris criterion  [lé] , that disorder should affect 
the pure system exponents of the X — Y model, also shown in Table I. A possible way out of 
th si paradox is discussed in the next Section.

3. Localized phase transitions
3.1 Relevance of disorder

Consider the exact resu lt of s ta t is t ic a l  mechanics

<  A e2 > - -  к Д  , (3.1)
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rela ting  the energy fluctuation in a volume V to the heat capacity of th is volume. If we 
take V = £"d, recalling Eq. (1.1),

2  V  3nn. < A ( s ; s - ) A ( s ; s; . )> ~ 4 d+*  = | 2Aj > 0 .2)
< r r ’>
< n n ’>

where ot= ОС /x> and the la s t equation follows from the scaling relations (1.4). Hereafter 
a summation over f i r s t  neighbours of summed indices will be simply indicated by a primed 
sum sign. The singularity in  the specific heat results from the scaling properties of the 
correlation function between pairs of spins, which gives, in the above notation:

2 < A ( S + S~)Q A(S+ s_ )r> ~ C *  (3-3)
Г

Now, le t  us define:

A J r r ' = Jr r ' ’ (3-4)

2 A j 0 Д з г ~ £  d' a . (3.5)

where the upper bar indicates a spatial average in a region of linear size £" . The exponent 
a is  a measure of the degree of correlation in the J 's  [Î7] . I f  they are independent random 
variables,

Ho- AV  = Aj2 К  Sot. °-6)
and a = d. For a homogeneous system a = 0, indicating that the sum in Eq. (3.5) increases as 
the number of points in the la ttice .

Let us assume that intermediate values of a are also possible and study the ir relation 
with c r it ic a l exponents. Consider the energy fluctuation<AEg.> of the ordered system 
having a l l  couplings equal to Л and specific heat exponent 06q. Then for disorder to be i r 
relevant, that is  for the system described by (3.4) and (3.5) to have the same c r it ic a l 
exponents as the homogeneous system,

< A e2>  - < A e2 >  2 ' A j Aj < A (s + s- ) A (s+ s- ) > ~ £ d~a+*-° o (3.7)
rn 1

as T —> T , that is
a ^  d + 3cQ = 2/л?0 . (3.8)

When a = d, as in (3 .6), Eq. (3.8) becomes060<; 0, the well-known Harris criterion  [lő] . In 
the general case i t  is  equivalent to extending the la tte r  to "correlated" disorder [if] .

What happens when a <  2/v?g? I f  there is  s t i l l  a transition , i t  should have a d if
ferent correlation length exponent 1?(a), say. Suppose we replace a frac tion s of the J ’s 
by new values (or a rearrangement of the old ones) Лаг , such that Д э Jr r , = Jar , — Jr r , = 0. 
At the same time the Д sJ 's  are chosen to have ^  AG3q A =3r Ld~as in large regions 
Ld. At least a fraction of the system keeps the original exponent a. Finally assume that the 
exponents? (a) is not affected by a ll these operations, the difference between new and old 
energy fluctuations is
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< Z A SE2>  - <  Д е2> 2  c Ç 2AP ' as , (3.9)
s s

where Cg are constants. This should not increase(ag >2/v>) when T —у T , i f  i t  is  to be 
consistent with the assumption 19 = 3) (a). Furthermore, as £ —У oo only the terms with the 
smallest ag survive in Eq. (3 .9), i .e .  [Ï7] :

\?(a) = 2/a , a = min^ag >2/V> (a)} . (3.10)

Indeed, i f  the f i r s t  Eq. (3.10) were not true, the presence of an as <. a would have induced 
a change in the exponents, contrary to our assumption. Conversely the exponent V is  de
termined by that fraction of the system which displays the slowest ra te  of decrease of the 
bond-bond correlation function.

3.2 Fractal segregation from random couplings
Intermediate values of a, between 0 and d, can in principle show up in fractal [is] 

objects. For example, the in f in ite  percolation cluster near the threshold has a fracta l 
dimensionality [l9]

0 = d -  , (3.11)

where уЗр = /Зр/  is  a quotient between percolation c ritica l exponents. If the system 
is restric ted  to th is  D-dimensional cluster with independent random couplings as in Eq.
(3.6), a = D< d.

-ФNow, le t  Q be an extensive quantity with density q ~  t  , singular for an in fin ite  
system in d dimensions. However, i f  the singularity in q is due to non analyticities re
stric ted  to D-dimensional clusters embedded in d-dimensional space, f in ite  size scaling 
implies, for a °in ite  volume Ld,

Ql = Ldq ~ L d+^  ~  LD + ^p (3.12)

which gives the density in D-dimensional clusters and defines a cluster exponent [2Ö] :

QL/LD~ t '  ^ c  , ф с = vf+V /§p . (3.13)

I t  is  worth pointing out that cluster exponents, defined as in (3.13) sa tisfy  scaling in D 
dimensions:

D =. (2/ 1? ) — oLc = 2 ß c +  l c =  2 ^ c + 2 - 9 l c  , (3-14)

that is ,  they are the c r it ic a l exponents of a phase transition in D dimensions. In particu
la r, V = V (D) >  V (d) [21]  .

When the steps leading to (3.7) and (3.8) are retraced for a fractal,one finds

< Д е2 >  -  <  ДЕ^ £ '° -а+“ 'с0 = ^  d-a+oLg t (3..15)
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where the la s t expression results from (3.11) and (3.13). We obtain

a ^  D + S,cQ = 2/\>0 (0) (3.16)

as a condition for s ta b ility  of the pure (though fra c ta l)  system exponents against disorder. 
For independent random couplings in  frac ta l space a = D and the condition becomes 2ccq =
= ocQ + 0 ; in other words, a d-dimensional system may be thought to be insensitive
to disorder because "\?g >  2/d ( 0Cq<  0) but actually be the s ite  of an underlying fra c ta l 
transition  in a "correlated" region with 2/a = t? > 2 /0  ->Л?д(0)> 3?g(d) >  2/d.

We believe th is  to be the case of our random X — V samples. For ordered systems the 
value of V?g(d = 3) has been calculated [22]  and measured (23} ; from oCQ = 2 — dVQ the 
corresponding oCg-values are -0.0079^0.003 and -0.025^0.003, respectively. Since both are 
negative within the announced confidence lim its, we should conclude, in the light of H arris 's  
criterion  that disorder has nothing to do with the observed exponents. We argue, however, 
that /3p 0.5 [Î.9] and therefore сбд + /3p > 0 ,  i .e .  disorder is  relevant in fracta l
percolation c lu ste rs . The question is  how to define a meaningful percolation parameter p. We 
remark that the regions of the sample with the highest coupling energies will be the most 
effective in defining the c r it ic a l properties. This ju s t if ie s  taking as a possible perco
la tion  parameter the probability p(3*) = Prob (3 , > 3 * ) . The clusters thus defined have an
average bond energy 3* j>3*. If the d istribution of 3-values is  large enough, they in te ract 
with their surroundings through bonds of the order of J « 3 * .  Defining the differences

Д*3 . = J , — 3*, the double sumrr r r  ’

S  Д*3 Д*3 s2 p nw f  2d~3^p (3.17)гп г n s Hs ъ p H

simply goes as the number of pairs of elements in percolation clusters of a ll sizes. This is
2

s ( s - l)£ y s  in a cluster of s elements, while pg above is the probability of belonging to 
such a cluster. The la s t expression in Eq. (3.17) resu lts  from the scaling properties of 
percolation c lu ste rs [l9] . A comparison with Eq. (3.5) suggests immediately

a = зД р , f ( T ) ~  f p  ~ (P C - P)_VP • C3-10)

Percolation and thermal correlation lengths increase simultaneously as Tn is  approached,
which allows (3.10) to be sa tisfied . From (3.18) and (3.10) V= 2 V  / 3 Й = 1.33^0.05Й 1 P

. The agreement with
the experimental resu lt is extremely good, as can be seen from Table I. Now, if  the scaling 
relations (1.4) are to be sa tisfied , the ratios ß= / j /\> , "jf3 2 should not be af- 
fected by disorder. Consequently, the exponent = 0.033^0.003 calculated for an ordered 
system [22] should apply also to random arrays. This (cf. Table I) is  actually the case.

We must emphasize that the condition 3 > 3 * , although physically plausible for a 
ferromagnet is  by no means the only possible one. In a different system the definition of p 
may result from other c r ite r ia , but would give the same exponents i f  Eq. (3.18) applies. For 
example, the obvious extension of the present ideas to spin glasses, where ferromagnetic and 
antiferromagnetic interactions coexist, is to define a percolation parameter 
p = Prob ( Ы  > J * ) .
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4. Discussion
Table I shows that the agreement between calculated and experimental values is  not so 

good for spin glasses as i t  is  for random networks. Since the primed summation in Eq. (3.5) 
included only f i r s t  neighbours, one is tempted to imagine that correlations due to longer 
range interactions are at work in actual spin glasses. In any case, i t  is  worth pointing out 
that the percolation description given here would become incompatible with an exponent a 
in Eq. (3.5) that could imply a rate of decrease of the correlation function between the 
A  3 's , slower than that of the pair connectedness [Ï.9] . This gives a lower bound, 2 ß p ,  
for a and an upper bound Vp //3p, for V . The maximum 3D value of Vüí2 is  not in contra
diction with the resu lts shown in Table I for spin glasses. This upper bound coincides with 
the minimum (mean fie ld ) value of for d = 6, which is  thus the upper c r it ic a l di
mensionality; then D = 4, while the condition D V —2 > 0  (cf. Eq. (3.16)) corresponds to 
the irrelevance of disorder in percolation clusters. This is  another, more theoretical, test 
of the consistency of the present description.
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TOTAL ELASTIC AND DIFFUSION CROSS-SECTIONS OF e+ - H SCATTERING USING STONE'S POLARIZED 
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This le tte r  is concerning with the calculation of the to ta l e lastic and diffusion 
cross-sections of the scattering of positrons by hydrogen atoms using Stone's polarized 
orbital method. For th is purpose, we can easily derive the method from the preceeding 
paper [l} by setting the second term at the right-hand-side of Eq. (15a) equal to zero. 
Thus, we deal with the following d iffe ren tia l equation

M+1)
dx

+ k^) ft  (x) = U™ f^ (x)

where
^  = V i» (x , ♦ © X )  ,

and V j^(x) and V ^j(x) can be determined using Eqs (7a) — (10) of [ l]  .
Following Eq. (20a) [ l] ,  the ite ra tive  solution of Eq. (1) is given by 

X
fj’(x) = {l.O + J qj (kjX') U ^  f j _1(x ' )  dx'} fj (k^x) -

J  fj_(k1x' ) U «  fj? 1(x ')  dx' , V > 1

and
fj4x) = f j  (kjx)

( 1 )

( 2)

(3)

( 4 )

The position vector x and the functions f^ (k^x), g^ (k^x), as well as the momentum are 
defined as in [ l ] .  The only difference is  that k  ̂ varies between zero and 0.7, i .e .  below 
the rearrangement channel. Therefore, the ite ra tiv e  solution of Eq. (1) can be written as

ff (x) = a  ̂ f I  (k1x) + (kjx) , (5)

which provides us with the t-wave scattering phase sh ifts , through the relation

t a n ( ^  ) = b$ /a i  . (6)

The t o t a l  e l a s t i c  an d  d i f f u s i o n  c r o s s - s e c t i o n s ,  and  r e s p e c t i v e l y ,  a r e  d e f i n e d
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° e l  = J l Slr'2('l l   ̂ ’ (7a)
K1

a d iff = X  ?<  t+ 1 > s i "2< f t  - I ’l l )  • (7b)
kl

The calculation of fjj (x), a£ , b | is  carried out using the ite ra tion  procedure described 
in £l] Appendix 2. Table I demonstrates the convergence of the S- and P-wave phase shifts 
with the increase in the integration range (X). The results are obtained after two intera- 
tions. From the Table we notice that the phase sh ifts  become stationary with respect to the 
variation of n when the integration range is  equal to 32 a.u. away from the proton. Table II 
contains a l l  partia l wave phase sh ifts  computed with th is integration range for a large 
number of values of k  ̂ in the rangeO kj <; 0.7 a.u. I t  is  obvious that the phase shifts 
corresponding to l  > 2  increase steadily with k̂  while the S- and P-wave phase sh ifts  
reach the ir maximum values at k  ̂ = 0.16 and 0.54, respectively. Fig. 1 contains a comparison 
between the behaviours of the S-, P- and D-wave phase sh ifts  with the increase of k^. Table 
I II  involves the S-, P-, D-, and G-wave phase sh ifts  calculated by Winick and Reinhardt [2]

2using the moment T-matrix method in which an elaborate L - t r i a l  wave function was employed. 
The number of terms of th is  wave function was varying between 76, for the F-wave, and 105, 
for the S-wave, terms of Hylleraas' functions. Comparing Tables II and I II , we conclude the 
following points:
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Table I
Convergence of T o  and T i . at k = 0.2 a.u, with the 

integration
increase of the range of

n Integration range in a.u. To Ti
128 8 0.0805699 0.0271153
160 10 0.0806635 0.0271573
240 15 0.0806817 0.0271898
320 20 0.0806826 0.0271925
480 30 0.0806823 0.0271923
512 32 0.0806822 0.0271922
800 50 0.0806822 0.0271922

Phase sh ifts  of
Table II

e+-H e lastic  scattering as functions of the momentum of the 
positrons. (Stone's method is  used)

incident

kj(a.u. >  T 0 T i 1  2 Т з T 4 T 5 X
0.00
0.02

-1 .29244х 
0.02383 0.00037 0.00005 0.00002 0.00001 0.00000 0.00000

0.04 0.04349 0.00143 0.00022 0.00007 0.00003 0.00002 0.00001
0.06 0.05904 0.00313 0.00049 0.00016 0.00007 0.00004 0.00002
0.08 0.07077 0.00540 0.00086 0.00029 0.00013 0.00007 0.00004
0.10 0.07901 0.00817 0.00135 0.00045 0.00020 0.00011 0.00007
0.12 0.08415 0.01139 0.00195 0.00065 0.00029 0.00016 0.00010
0.14 0.08655 0.01497 0.00265 0.00088 0.00040 0.00022 0.00013
0.16 0.08657 0.01884 0.00346 0.00115 0.00052 0.00028 0.00017
0.18 0.08451 0.02294 0.00438 0.00146 0.00066 0.00036 0.00021
0.20 0.08068 0.02719 0.00541 0.00180 0.00082 0.00044 0.00026
0.22 0.07533 0.03153 0.00653 0.00218 0.00099 0.00053 0.00032
0.24 0.06868 0.03590 0.00776 0.00260 0.00118 0.00063 0.00038
0.26 0.06092 0.04021 0.00908 0.00306 0.00138 0.00074 0.00045
0.28 0.05226 0.04443 0.01049 0.00355 0.00161 0.00086 0.00052
0.30 0.04282 0.04851 0.01199 0.00408 0.00184 0.00099 0.00059
0.32 0.03274 0.05239 0.01357 0.00464 0.00210 0.00113 0.00068
0.34 0.02215 0.05603 0.01521 0.00525 0.00237 0.00127 0.00076
0.36 0.01115 0.05940 0.01692 0.00589 0.00266 0.00143 0.00086
0.38 -0.00018 0.06247 0.01868 0.00656 0.00297 0.00159 0.00095
0.40 -0.01175 0.06523 0.02049 0.00727 0.00329 0.00177 0.00106
0.42 -0.02350 0.06764 0.02233 0.00802 0.00363 0.00194 0.00117
0.44 -0.03535 0.06970 0.02419 0.00880 0.00399 0.00214 0.00128
0.46 -0.04727 0.07140 0.02607 0.00961 0.00437 0.00233 0.00140
0.48 -0.05921 0.07273 0.02795 0.01045 0.00476 0.00255 0.00152
0.50 -0.07112 0.07371 0.02982 0.01132 0.00517 0.00277 0.00166

0.52 -0.08297 0.07433 0.03168 0.01222 0.00560 0.00300 0.00179
0.54 -0.09473 0.07460 0.03350 0.01315 0.00604 0.00323 0.00193
0.56 -0.10637 0.07452 0.03529 0.01410 0.00650 0.00348 0.00208
0.58 -0.11787 0.07412 0.03703 0.01507 0.00698 0.00374 0.00223
0.60 -0.12921 0.07340 0.03872 0.01606 0.00747 0.00400 0.00239
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Table II (cent.)

^0 is determined by employing 105 Hylleraas' functions

? ! is determined by employing 87 Hylleraas' functions

h is determined by employing 100 Hylleraas' functions

2 3 is determined by employing 76 Hylleraas' functions

?4 is determined by employing 87 Hylleraas' functions

Table IV
Total elastic  and diffusion cross-sections of e -H scattering determined by Stone's

2
method (aQ units are used)

k1(a .u .) O' n el ° d if k^(a.u .) ~ ° e l ° d lf

0.00 20.9908 0.0 0.26
0.28

1.6841
1.4940

0.4627
0.4051

0.02 17.8558 17.3030 0.30 1.3637 0.4064
0.04 14.8946 13.9078 0.32 1.2797 0.4503
0.06 12.2615 10.9512 0.34 1.2310 0.5235
0.08 9.9967 8.4605 0.36 1.2088 0.6157
0.10 8.0938 6.4150 0.38 1.2061 0.7186
0.12 6.5240 4.7722 0.40 1.2172 0.8259
0.14 5.2488 3.4810 0.42 1.2378 0.9328
0.16 4.2277 1.4890 0.44 1.2645 1.0358
0.18 3.4211 1.7469 0.46 1.2947 1.1326
0.20 2.7932 1.2099 0.48 1.3264 1.2215
0.22 2.3121 0.8387 0.50 1.3583 0.3016
0.24 1.9502 0.5992 0.52 1.3894 1.3723

1 98

^Scattering length

Table III
Winick — Reinhardt's phase sh if ts  of e+-H elastic  scattering as functions of the 

momentum of the incident positrons. (T-matrix method is  used)

k^Ca.u. > l o ^ 2 b b 1 5

0.62 -0.14037 0.07238 0.04034 0.01706 0.00798 0.00428 0.00255
. 0.64 -0.15134 0.07108 0.04188 0.01807 0.00850 0.00456 0.00272

0.66 -0.16210 0.06951 0.04334 0.01910 0.00904 0.00486 0.00290
0.68 -0.17265 0.06768 0.04473 0.02013 0.00959 0.00516 0.00308
0.70 -0.18297 0.06562 0.04601 0.02116 0.01016 0.00547 0.00327

k1(a.u.) 1 0 ? ! 4 2 b 4  4

0.1 0.147 0.0073 0.00044 0.00000 0.00000
0.2 0.178 0.0321 0.0050 0.00000 0.00000
0.3 0.160 0.064 0.0124 0.0036 0.00000
0.4 0.120 0.098 0.0235 0.0069 0.00289
0.5 0.062 0.130 0.0386 0.117 0.00466
0.6 0.0015 0.155 0.0587 0.0185 0.00733
0.7 -0.053 0.171 0.0858 0.0291 0.0111



TOTAL ELASTIC AND DIFFUSION CROSS-SECTIONS

Table IV (cont.)

kj^a.u. ) ° e l °d if

0.54 1.4188 0.4337
0.56 1.4461 1.4858
0.58 1.4711 1.5292
0.60 1.4935 1.5642
0.62 1.5133 1.5914
0.64 1.5305 1.6116
0.66 1.5452 1.6252
0.68 1.5575 1.6331
0.70 1.5674 1.6357

Fig. 2

a) The F- and G-wave phase sh ifts  of both Tables are in good agreement with each other, 
which emphasizes that polarisations are the only important effects in the higher p a rtia l 
wave collisions.

b) The D-wave phases of both Tables agree with each other a t k ^  0.4 and diverge 
steadily at large values of k^.
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c) Disagreements are noticed among the S- and P-wave phase sh if ts  of both Tables, 
where the correlation terms play a considerable role and a large number of Hylleraas' func
tions is  required in order to achieve convergence in the moment T-matrix method.

Table IV involves the quantities of our in te res t, i .e . the to ta l e lastic  and diffusion 
cross-sections determined by virtue of Eqs (7a) and (7b), respectively. Figs 2 and 3 i l 
lu s tra te  the general behaviours of both cross-sections with the variation of k^. Both Table 
IV and Fig. 2 show that calculated by Stone's polarized orbital method has the same 
behaviour as the one determined by Winick and Reinhard [ 2J , (see Fig. 11 in their paper),
i . e .  i t  fa lls  off very rapidly in the region k  ̂<  0.38 and increases very slowly at 
higher values of k, .
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OPTICAL TRANSMISSION ANISOTROPY 
OF AMORPHOUS METAL FILMS

I D .  K o r n ]

Faculty for Physics of the University 
D-7750 Konstanz, F.R.G.

(Received in revised form 28 May 1985)

Amorphous and disordered metal and alloy films are produced by a vapour beam impinging 
obliquely on a quartz glass substrate at 90 K.. After evaporation the transmission is measured for 
perpendicular incidence of light within the wavelength range 400 nm to 900 nm. The films have 
an anisotropy of the transmission of linearly polarized light. The transmission has its lowest value 
when the electric vector in the plane of the film is oriented perpendicular to the vapour beam. The 
anisotropy is found for e.g. CuSn, BiPb and Cu, Ag, Au and Bi. The transmission anisotropy 
decreases with the transition to the crystalline state or with the reduction of disorder.

1. Introduction

Measurements of the optical properties of metals often yield anomalies. Mayer 
and coworkers [1] observed a structure within the high frequency conductivity of 
bulk Na. The structure depends upon the surface being Na-vacuum, Na-glass or 
Na-sapphire (short review [2]). The difference between the experimental situations is 
given by the surface tension and the adhesion to the substrate. Hunderi [3] reports 
the optical conductivity of quench condensed Ag films. The optical properties of 
quench condensed films show a strong deviation from annealed crystalline films and 
bulk material. Hunderi explains the difference with the influence of grain boundaries. 
Hutchinson and Hansen [4] measured the reflectance and transmittance of Au films. 
The optical properties of the Au films depend on the plane of the polarization of the 
light. The authors explain this effect with surface scattering. But there remains some 
anisotropy in the optical properties which they ascribe to an anisotropy of the crystal 
structure. All the experimental situations as surfaces interfaces, grain boundaries and 
anisotropy of the crystal structure have in common the anisotropy of the wave 
functions of the atoms which build up the mentioned situations.

The optical properties of amorphous metals show a more simple dependence 
on the light wavelength than the optical properties of crystalline metals. Especially 
the parallel band interband transitions are non-existent [5, 6]. Regarding long 
wavelength the model of free electrons is valid. That has been shown very carefully 
by Hunderi and Ryberg [5] for amorphous Ga. The free electron model is also a

l* Acta Physica Hungarica 63, 1988 
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202 D. KORN

good approximation for the electron density which has been measured by Häussler 
and Baumann for a series of amorphous alloys (review [7]). Further on the nearly 
free electron model is used for the calculation of the electrical resistivity of amorphous 
metals (Froböse and Jäckle [8]). The electrical resistivity of amorphous metals has 
negative and positive temperature coefficients. The temperature coefficients can be 
correlated with the P- and D-states of the atoms from which the amorphous metals 
are built up [9]. For example amorphous Cu and Au have a very high electrical 
resistivity. Therefore the atoms of amorphous Cu and Au are at least partially in the 
D-state. Concerning amorphous Sn, Mössbauer measurements by Bolz and Pobell 
[10] yield a s2p2 configuration which is in accordance with the P-ground state of Sn 
atoms.

2. Experimental details

a) Light path

A light source (Xenon high pressure) and a monochromator supply light with 
wavelength À between 400 and 900 nm. By an appropriate optical setup (Fig. 1) a 
parallel light ray with a diameter of 3 mm is produced. The light ray is chopped and 
ends up in a photomultiplier. The signal of the photomultiplier is measured by a 
Lock-In amplifier referring to the frequency and the phase of the chopper. The lenses 
and the windows of the cryostat are made of glass. The quartz glass substrate has 
the dimensions 18 m m x 12 mm and the thickness 1 mm.

Fig. I. Sketch of the arrangement for the measurement of the optical transmission of obliquely evaporated
metal films
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b) Measurements

The optical transmission of polarized light with perpendicular incidence on a 
metal film is measured. The light is linearly polarized by a Glan-Thompson 
polarizátor before passing through the film. The normal on the film and the vapour 
beam define a plane (also plane of drawing of Fig. 1). If the electric vector of the light 
lies in this plane, the polarization angle is noted as <p = 0°. If (p = 90°, the electrical 
vector (always in the plane of the film) stands perpendicular to the vapour beam.

The substrate can be rotated about an axis for evaporation, and measurement 
of the incident light intensity (this axis is perpendicular to the plane of drawing: 
Fig. 1). a is the angle between the film plane and the vapour beam direction x during 
evaporation. After evaporation the film is rotated out of the light ray and the incident 
intensity / 0 is determined. The incident light intensity is measured for every value of 
<p and Я. Then the intensity / is measured with the light passing through the film and

the substrate. The transmission of the sandwich film-substrate is defined as т =  — .
'о

Before evaporating the film the transmission of the quartz glass substrate is determined 
as г = 93% in the mentioned range for /. Then the transmission т is measured mainlyA t
for (p = 0° and (p = 90°. If not otherwise stated the error is — =  ±3%.

T

c) Details concerning the films

The film is condensed on the cold substrate in situ in an ultrahigh vacuum 
cryostat. The cryostat [11] and the production of the films [12] is already described. 
The vacuum during evaporation amounts to 10 8 mbar. Evacuation occurs by 
a titanium sublimation and a turbomolecular pumping system. During evapora
tion and measurement the substrate is held at TK = 90 K. Then the film can be 
warmed up to 300 К and measured again at Tm = 90 K. The film has the geometry 
14 mm x 10 mm x 20 nm. The thickness of about 20 nm can be determined interfero- 
metrically. The light passes through the film in the centre. The direction of the vapour 
beam is a = 45° if not otherwise stated.

A c ta  P h y sica  H u n g a rica  6 3 , 1988



204 D KORN

3. Results

All transmission measurements refer to the sandwich metal film-glass substrate.

a) Vapour beam perpendicular to the substrate (a = 90°)

For the first check measurement the vapour beam is oriented perpendicular to 
the plane of the substrate. Fig. 2a shows for the example of an amorphous CuSn film 
that the transmission is independent of the angle of polarization (<p). That is the 
normal behaviour of a light ray with perpendicular incidence on a metal film. Later 
on (Section 3b) films will be discussed which are obliquely evaporated. By oblique 
condensation the metal film has a slight wedge angle of < 2- 10” 7 rad.To consider 
the wedge angle as a possible cause of a transmission anisotropy a second check 
measurement is made. By inserting a half plane into the vapour beam, films with 
wedges are artificially produced. The wedge angles are larger or equal to that one 
mentioned. Fig. 2b shows as an example an amorphous CuSn film condensed by 
perpendicular impinge of the vapour beam on the substrate. As may be seen the 
transmission does not depend on the angle cp of light polarization. The measurement 
with the wedge (film) is done to rule out experimentally that a thickness gradient of 
an amorphous metal film causes dichroism.

22 b

к

amorphous CusoSnso 

Tm • Ta = TK = 90 К

*

I
9

a  b 

Ф * 0° О •
Ф * 9 0 °  X +

9
t 9 9

t

500 600 700 80(

wavelength t nm ]

Fig. 2. Optical transmission of amorphous CuSn films evaporated perpendicular (a =  90°): a) without wedge, 
b) with wedge angle 2 ■ 10“6 rad. tp marks the plane of polarization
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Fig. 3. Optical transmission of a Cu50Sn50 film in the amorphous (To =  90 K.) and crystalline (Ta =  300 K) 
phase. Film obliquely (a =  45°) evaporated. <p marks the direction of the electric vector of the light

b) Vapour beam oblique to the substrate

The angle between the vapour beam and the plane of the substrate is held at 
a = 45°. Cu50Sn50 films, thus grown, have an optical transmission for which Fig. 3 
shows a representative example. The transmission depends on the angle cp of the 
linearly polarized light. The transmission is larger for <p=0° than for <p = 90°. Thus 
there exists a transmission anisotropy for obliquely (a =  45°) evaporated metal films. 
This is valid for the amorphous film. Annealing to Ta =  300 К brings the CuSn film 
into the crystalline phase [13], [14]. Within experimental error the optical trans
mission of the crystalline film has no difference between cp = 0° and <p =  90° (Fig. 3). 
The transmission anisotropy has vanished for the film in the crystalline phase.

The transmission of the amorphous film varies with the plane of the polarized 
light. For perpendicular incidence the electric vector lies in the plane of the substrate 
and the electric vector is given by the angle cp. q> = 90° means that the electric vector 
stands perpendicular to the vapour beam. Fig. 4 shows how the transmission r varies 
with the angle tp of the linearly polarized light. Within experimental error z(cp) of 
Fig. 4 obeys the relation

3 =  t n +  Fa COS2(p.

The transmission anisotropy is axial and not unidirectional. The magnitude 
z(<p = 0°) — т(<р = 90°) =  t„ of the anisotropy depends upon the alloy. In Fig. 5 is plotted 
the transmission of amorphous Cu2iSn79 and amorphous Cu80Sn20. Regarding 
additionally Fig. 3 yields as result that the alloy with the highest Cu concentra
tion has the largest anisotropy. Amorphous Sn with 21% Cu shows no anisotropy 
(Fig. 5). No anisotropy is found for amorphous InAg (Fig. 6). Fig. 7 gives a further
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î */• i
amorphous Cu go Sn 2 0  

Tm =Ta =90K

6 7 . - X Л = 480 nm

» 4 7 . 
E

X =800 nm

2 7 . -

07. J------------------------------------ 1 -  ------ 1 ---------------- 1
0° 90° 180° 270° 360°

polarisation angle

Fig. 4. Transmission z as a function of the angle ip of the plane polarized light (wavelength л). Sample: 
Amorphous Cu80Sn20 film condensed obliquely (a =  45°) on a glass substrate at 90 К and measured at

Tm =  90 К

example for an alloy system with transmission anisotropy. The transmission of 
amorphous BiPb is lower for <p = 90° than for (p = 0° as in the case of CuSn.

Table I summarizes the existence of a transmission anisotropy of amorphous 
alloy films. The observation of a transmission anisotropy za larger than the 
experimental error of т is quoted with “yes”. Additionally the transmission anisotropy 
appears in disordered films. For example Bi, quench condensed on a substrate at 
90 K, grows microcrystalline and disordered. The disordered films can be described 
as a sum of crystalline and amorphous material [15]. The disorder sits in grain 
boundaries, in all types of lattice defects and in structure independent [16] imper
fections. Quench condensed Bi films have an anisotropy similar as amorphous BiPb. 
Pure microcrystalline and disordered Cu, Ag and Au films have the anisotropy but 
not with the same sign for xa in the whole range of the light wavelength. Disordered 
Sn and In have no transmission anisotropy. When the anisotropy exists the films 
annealed at 300 К always have a lower anisotropy than the amorphous or disordered 
films condensed at 90 K. The only exception is Te, but Те is no metal. The following 
results are concluded:

1. Quench condensed films evaporated with an angle of a = 45° between vapour beam 
and substrate can have a transmission anisotropy for perpendicular incidence of 
light.

2. The transmission anisotropy for polarized light does not exist for a =  90° even if 
the film is a wedge.

A c ta  P h y s ic  a  H u n g a rica  63 , 1988



OPTICAL TRANSMISSION ANISOTROPY OF AMORPHOUS METAL FILMS 207

10

£ 6

4 -

2 -

0 L

Tm = T„ = 80K

CU2| Sn79

Ф = 0° (•) 
Ф = 90° ( » )

Си™ Sn80 o n 20

400 600
wavelength [nm]

800

Fig. 5. Transmission of amorphous CuSn with different concentration, marks the plane of the polarized
light. Ta = annealing temperature

3. The transmission anisotropy grows monotonically with decreasing a between 
a = 90° and a = 30°. (Measured but not shown here. The transmission anisotropy 
exists also at angles lower than a = 30°).

4. Besides oblique incidence of the vapour beam, the disorder of the film is a necessary 
condition for the transmission anisotropy.

5. For amorphous films the optical transmission has its lowest value when the electric 
vector (here always in the plane of the substrate) is perpendicular to the vapour 
beam.

6. The transmission anisotropy xa is roughly independent of the thickness of the film 
(measured but not shown here). Tolansky interferometer and optical properties are 
used to measure the thickness of the films. The thickness of the films of the same 
material was calculated from the optical transmission. The thickness varies between 
20 nm and 34 nm. The error of xa of this preliminary measurements amounts to

—  =25%.

7. The magnitude xa = x((p = 0°)—x(<p = 90°) of the transmission anisotropy depends 
on the material.
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4. Discussion

The optical transmission of linearly polarized light has an anisotropy which is 
given by the angle a between the vapour source direction and the film plane. The 
anisotropy rises with decreasing a. That means the projection of the vapour beam 
on the plane of the film may be essential. Optical anisotropy of obliquely evaporated 
films is known for crystalline films [17, 18]. In crystalline films the direction of the 
grain boundaries lies often near the vapour beam direction. Grain boundaries are 
disordered parts of the crystal. Therefore the anisotropy is connected with a special 
sort of disorder. Amorphous metals have a disordered structure but no grain 
boundaries which may define a direction. A possible cause of the anisotropy of 
amorphous metals is an anisotropy in the disorder of the chemical bond introduced 
by the vapour direction. In the following two possible causes for the development of 
the anisotropy are discussed. These two causes may not be the only ones.

One possible mechanism is the influence of the direction of the arriving atoms 
on the orientation of the wave functions of the atoms. The atoms form the temporary 
surface during growth of the film. The wave functions of the atoms themselves, or 
hybrids, or the chemical bond (combined wave functions of different atoms) may have 
a preferred direction caused by the oblique impinge. Amorphous alloys can have the 
anisotropy, for example CuSn and BiPb (Table I). The atoms of these amorphous 
alloys are in the excited state. The thermal energy of the evaporated elements (e.g. 
2000 K) or the kinetic energy of the atoms does not bring enough atoms in the lowest 
excited state. The excited states are caused by the condensation (binding) energy of 
one atom to the solid surface. The condensation energy has a value which is higher 
than the kinetic energy by a factor 10 and about half of the atoms are in the excited 
state. It is a general feature of the solid state that atoms may be in excited states. Let 
us regard e.g. solid silicon. The Si-tetrahedrons are built up by an sp3 electronic 
configuration. That is an excited state. The ground state s2p2 of the silicon atoms in 
the gas is lower by 48 399 cm 4 . Although the energy difference is so high, the atoms 
are in excited states in the solid. In metal physics the atoms of crystalline intermetallic 
compounds are at least in excited states. Amorphous alloys are higher in energy 
(metastable state) than crystalline alloys and the latent heat at the transition 
amorphous-crystalline has been measured [15]. Hence the atoms forming an alloy 
with transmission anisotropy are at least partially excited. Mixing of excited states 
to the ground states results in hybrids. Hybrids are oriented bonds and are anisotropic. 
On the other hand the excited states themselves can cause anisotropy. The excited 
atomic states possess an electric quadrupole moment Qj. That is valid for e.g. Cu 
and Au with the atomic state 2D5 and for Bi (2D3). Amorphous Cu, Au and Bi show 
the transmission anisotropy. Indium (2Pi) and Sn (3P0) have no Qj and for amorphous
In and Sn the anisotropy is not observed (Fig. 6 and Table I).

Let us consider the case of the electric quadrupole moment Qj. J is the total 
angular momentum of the electrons of the atom. The beam of the atoms defines the
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Table 1

Amorphous alloy t„ =  т (0°) — т (90°)

Cu80Sn2o positive
Cu5oSn50 positive
Cu2 J Sn -jç 0

In5oAg5o 0
In8()Ag20 0

Bi7oPb30 positive

Sn,A u,_, 25% <jc<80% yes
Si18Au82 yes
SÍ2oCu8o yes
SiboAgao yes
Ga20Au80 yes

Disordered metal films

Ga (amorphous) yes
Bi positive
CUjFe,.* 0 < x ^ l0 0 % yes
Ag yes
Au yes

In 0
Sn 0

Те positive

x-axis. By the impact the atom must deliver its momentum to the surface in the 
x-direction. This is possible if the atoms stick to the microscopically rough surface 
at places with the surface mainly perpendicular to x. Electrical forces favour an 
extension of the electron charge of the atomic quadrupole perpendicular to x. During 
growth of the film the electrical quadrupoles orient in the electric field gradient of 
the quadrupoles at the film surface. If the x-axis is oblique to the plane of the substrate, 
a component of the anisotropic electron charge extension of the atom exists with 
respect to the plane of the substrate. From that follows a transmission anisotropy 
for the electric vector of the electromagnetic wave in the plane of the substrate. The 
transmission has its lowest value when the electric vector lies in the plane of the 
substrate perpendicular to x (that is <p = 90°) since in that direction the component 
of the charge extension is largest. This explanation agrees with the results.

The results of the optical measurements are in accordance with magnetic 
investigations of obliquely evaporated films. The magnetic anisotropy energy depends 
upon the direction of the vapour beam relative to the plane of the substrate [19]. 
Especially the easy axis of pure Ni is parallel to the vapour beam direction [16]. For
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Fe the easy axis lies perpendicular to the vapour beam direction. The causes are 
microscopic strains associated with imperfections in the film or with the imperfection 
itself [16]. This observation agrees with the results of the optical measurements 
(Section 3b). The responsible imperfections do not correlate with the crystal structure 
[16]. Such structure independent imperfections (disorder: Section 3b) can be regarded 
as local amorphous regions and an explanation as in the case of amorphous metals 
can be applied. The M  atoms with unfilled d-shells do not have spherical symmetry. 
The largest charge extension lies perpendicular to the vapour beam direction x. The 
electric quadrupole moment Q} of Fe (5D4) is prolate and hence the total angular 
momentum J  is oriented perpendicular to the x-axis. The easy axis for the spin is 
caused by spin orbit interaction. For Fe, Co and Ni the spin is parallel to J. Therefore 
the easy axis is perpendicular to the x-axis as observed for Fe. The Ni atom has in 
the ground state (3F4) an oblate quadrupole moment. J lies perpendicular to the 
largest electron charge extension. Since the largest charge extension is perpendicular 
to the x-axis, J  and S are parallel to the x-axis. The easy axis is parallel to the vapour 
beam direction as observed for Ni.

A second possible explanation lies in the assumption that an amorphous film 
consists of grains as known from crystalline films. This is really a hypothesis since 
no grain boundaries are observed e.g. for amorphous SnCu and SnAu. The diameter 
of a hypothetical grain calculated from the line width of diffraction measurements 
would be 2 nm (20 Â [13]). But the amorphous metal films differ essentially from 
microcrystalline material with comparable grain size. Amorphous metal films have 
properties similar to liquid metals. That is true e.g. for the structure [13], electron 
density [7] and the electrical resistivity [9]. Especially the absence of mechanical 
stress [20] is contrary to crystalline films with grain boundaries. Just the first layer 
shows mechanical stress. So only the initial formation of islands may perhaps introduce 
a certain anisotropy. Grains exist in crystalline films. In this case an explanation for 
the anisotropy of the optical transmission is found by E. F. Pócza [21]. He measured 
the dichroism of crystalline A1 layers. The crystallographic axes are oriented at random 
and the grains extend perpendicular with respect to the vapour beam. The prolate 
grains are regarded as parallel splits and in this way Pócza explained the anisotropy 
of the optical transmission of metal films.

Conclusion

In amorphous metals the wave functions of the electrons of the atoms are not 
fixed to certain crystal directions. They can be oriented with respect to the direction 
of impinging atoms. Assuming the wave functions and the electron charge to have 
its largest extension perpendicular to the atom beam direction, the anisotropy of the 
optical transmission of obliquely evaporated films can be explained. Additionally the 
magnetic anisotropy of obliquely evaporated ferromagnetic films can be understood 
in the same manner.
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The single mode performance of a wide aperture CW-TEA C 0 2 hybrid laser is reported, 
single longitudinal mode (SLM) is obtained from a wide aperture laser. The SLM from small 
aperture laser is given also for comparison.

Introduction

The need in certain fields of research (e.g. optical pumping and nonlinear optics) 
for spectrally-pure radiation has led to the development of a number of methods 
inducing single longitudinal mode (SLM) operation of TEA C 0 2 Lasers [1]. The 
ultimate usefulness of any such technique is strongly dependent on its scalability to 
large aperture multijoule output systems. Among the most promising and versatile 
methods, injection locking and hybrid systems are emerging as genuinely useful 
practical tools, by virtue of their operational efficiencies, stability robustness [2, 3, 
4]. The scalability of both techniques has been demonstrated for large aperture systems 
operated with unstable geometries [2, 5,6]. Selection of the TEM00 mode is automatic 
for such systems but the arrangement as a whole may be totally unsatisfactory for 
some applications due to the annular form of output beam profile [7]. While high 
quality (TEM00) beams are often mandatory for some purposes, the increased 
energy-extraction capability occurring in large spot-size multitransverse mode emis
sion of wide aperture stable resonator configurations can be equally beneficial for 
other applications, where spatial mode quality plays a less crucial role. Experiments 
for achieving SLM operation in locking and hybrid systems are generally based on 
the selection of TEM00 mode by insertion of an intracavity iris (see e.g. [8-9]) reflecting 
the commonly held assumption that reliable SLM operation is to a certain extent 
dependent on the elimination of all but the fundamental transverse mode of the laser. 
In this paper following a recent publication [10], we report on the operation of a 
hybrid wide aperture TEA C 0 2 laser and describe the quality of performance that 
was obtained.

* The experimental work was carried out at the Physics Department, Heriot-Watt University, 
Edinburgh, Scotland, U.K.
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Theory

Studies of the dynamics of the laser intensity built up in TEA C 0 2 lasers can 
be found elsewhere [11].

The introduction of a CW C 0 2 laser section inside the optical resonator affects 
the dynamics of the TEA C 0 2 laser pulse. If the gain in the CW laser is too small 
to overcome the resonator losses, the situation will be modified to that illustrated by 
the dashed curves in Fig. 1. The points to be noted are that the build up in the 
resonator will begin earlier as the threshold gain G, is reached earlier and the rate 
of rise of the laser intensity will be higher resulting in a laser pulse which occurs 
earlier. In the case where the CW laser gain is above the threshold value there will 
be a laser field inside the resonator prior to the excitation of the TEA section. This 
situation is illustrated by the dotted curve in Fig. 1. Since the initial signal in the 
TEA resonator is of the order of watts rather than where spontaneous emission is 
the only source of signal, the build up time for the TEA laser will be greatly reduced. 
It should be reduced to an extent that the signal intensity will reach a large value 
and as a result the stimulated emission transitions will be sufficiently strong to prevent 
any further increase in gain. In such a case the giant laser pulse will be eliminated 
while the resultant single mode pulse, having a relatively slow rise time, will never 
reach a very high value and will be of long duration. Due to the operation at 
atmospheric pressure, the laser transitions are greatly broadened by collisions. The 
bandwidth of a typical TEA C 0 2 laser transition is of the order of 4 GHZ/atm, when 
such medium is placed in a 3 m long optical resonator which has resonant frequencies

Fig. I. Laser field intensity and net round trip gain buildup as a function of time in case of a normal 
TEA C 0 2 laser without a CW C 0 2 laser inside the cavity (solid curves), with a CW laser under the lasing 

threshold (dashed curves), and with a CW laser above the lasing threshold (dotted curves)

2 3 4 5 6
t i m e  [ a r b .  u n i t s ]
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spaced 50 MHz, the laser tends to oscillate on many different frequencies simultan
eously corresponding to the different resonance frequencies of the resonator. Fig. 2 
illustrates the situation by indicating on the frequency axis all the resonance 
frequencies of the resonator and the broadened gain profile of the TEA laser. The 
narrow gain profile of the CW low-pressure C 0 2 laser superimposed at the center 
of this gain profile. In the absence of this CW laser, it can be seen that there are over 
20 resonator frequencies for which the gain coefficient differs by less than 5%. Thus, 
in the absence of the CW laser, the TEA laser field will build up approximately 
equally for all these frequencies, and the presence of a large number of oscillations 
at different frequencies will give rise to a modulation of the total laser output. With 
a CW laser giving an additional peak in the gain spectrum of the amplifying medium 
in the resonator, it can be readily seen from the difference between the solid and the 
dashed curve of Fig. 1 that the only resonator mode whose frequency lies within the 
narrow bandwidth of the CW oscillator will give rise to a very rapidly increasing 
field. This field will not only have the strength as to make the other modes insignificant 
but will actually prevent them from ever becoming important by depopulating the 
upper laser level of the transition before these other modes can reach a significant 
intensity. It is therefore not necessary to operate the CW laser above threshold value 
to eliminate the spontaneous mode-locking and in this way it is possible to generate 
giant pulses.

— и к -  50 MHzI I

Fig. 2. Gain profile of the TEA C 0 2 laser medium as a function of frequency, with some resonator 
frequencies (solid lines) for which the gain coefficient differs by less than 5%. At the centre of the gain 

profile is superimposed the narrow gain profile of the CW low pressure C 0 2 laser

Results and discussion

The apparatus used for this study consisted of a discharge chamber (122 x 22 x 
x20 cm perspex box) with one cathode (lOOx 15 x 1 cm) made of solid aluminium 
profiled to prevent field concentration and anode (108 x 8 x 1 cm) made of the same 
material. Ten tungsten wires (100 cm long) embedded in capillary tubes (0.7 cm 
diameter) were used as the trigger electrodes [12].
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The electrodes were 4 cm apart. The CW section comprised a water cooled 
glass chamber supplied with two Brewster windows (total length 66 cm and inner 
diameter 2.0 cm). The cavity length of the hybrid laser was 3 m. The resonator 
comprised a plane grating and a 36% reflecting curved, 10 m, A/R coated Ge 
output-coupler of a diameter of 20 mm.

The CW C 0 2 section was well below threshold as a result of low reflectivity 
optics.

As a control, the laser was stopped down to 8 mm diameter (using an aperture) 
for TEM00 operation and the spatial and temporal distribution of the SLM as well as 
the multimode output were viewed by means of a 100 pm pin hole, a joule meter and a 
photon-drag detector, respectively. The signals from the photon-drag detector were 
monitored on a Tektronix 7104 1GHZ bandwidth. Figure 3a clearly shows the 
temporally smooth form of the output along with Gaussian spatial distribution (Fig. 
3b) associated with single axial and single transverse mode emission. The correspond
ing results for operation with the aperture opened to the full 20 mm are shown in 
Fig. 4. Fig. 4b reveals a strong multitransverse mode structure, Fig. 4a shows no 50 
MHZ beating of multiaxial mode interaction in the main spike. The digitised form 
of the wide aperture SLM output is shown in Fig. 5.

1

T
>
Ö

—H |<— 50 ns

a)

b)

Fig. 3. a) Typical TEM00 SLM pulse. Horizontal axis: 50 ns div vertical axis: 0.1 V tliv b) Transverse 
horizontal (a) and vertical (b) beam profiles of TEM 00 emission
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b)

Fig. 4. a) Typical multitransverse mode SLM pulse. Horizontal axis: 50 ns div *, vertical axis: 0.5 V div 
b) Transverse horizontal (a) and vertical (b) beam profiles of wide-aperture emission

Fig. 5. Digitised form of wide-aperture SLM pulse. Horizontal axis: 100 ns div vertical axis: 200 mV
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The interpretation of such behaviour is as follows: the high order transverse 
modes usually suffer great diffraction losses as a result of the use of small diameter 
output couplers. As a result, the fundamental mode, TEM 00, grows at a faster rate 
which results in gain saturation by the main spike. The extra gain needed by the 
higher transverse mode will be available when the main spike disappears, i.e. during 
the recovery time; resulting in oscillation on two or more transverse modes giving 
rise to beating in the tail only. This interpretation is confirmed by Fig. 5, 10 MHZ 
and 50 MHZ oscillations both exist which belong to transverse and longitudinal 
modes. It was finally noted that for wide aperture systems output power was greater 
by a factor of five than that obtained from TEM00 operation.

In conclusion, the reproducibility of the wide aperture SLM output was 
impressive, with only 5% shots differing from that illustrated in Fig. 5. This 
performance is comparable to that obtained with laser operating at TEM00.
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In this work a new, fundamentally non-linear term supplements Maxwell’s and Einstein’s 
Lagrangians. This term contains the acceleration of the charge. The field equations obtained from 
the variation principles are examined qualitatively only. The model gives a classical explanation 
of spin.

1. Introduction

The classical electron models (Thomson, Lorentz, Abraham, Poincaré, . . . ,  
Dirac), the Quantum Mechanics and the Quantum Field Theory have not, as yet, 
solved the problems of the inner structures of the elementary particles. In view of 
this, it was thought reasonable to look for new ways in this field.

The new approach followed here is somewhat unusual: In the scope of General 
Relativity the acceleration of the charge is taken into the Lagrangian. The most 
important purpose is to explain the spin of a charged particle with the help of some 
non-linearities in the Lagrangians. The field equations obtained with the simple tools 
of Classical Field Theory will be highly complex and hardly interpretable, but perhaps 
some quantum properties of the charge can be explained classically, too. It is important 
to mention that this model also contains Maxwell’s Electromagnetic Field.

The Lagrangian Functions will be detailed first, then the field equations will 
be listed; following these the interactions written by the vector potential will be 
examined and the problem of the gauge-invariancy will be touched on; finally some 
macroscopic quantities of the charge will be calculated.

2. The action principle

The starting point is the action:

S =  Щ  $ (Lg+ L e + L e4+ L q) ^ / — g d Q .  (1)

* Address: H-8400, Ajka, Hungary, Rákóczi út 41.
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Here L g is the Lagrangian of Einstein’s Gravitational Field. In this work the basic 
vectors build up the metric tensor:

9*р = 9ллелУр-  (2)

Here длл is the constant Minkowski’s Tensor, елх are the basic vectors. Thus, the 
following expression is obtained for L g

9 16яу 9лл(е
ЛЬ p Ap 

8е и — еЛЬ Ар (3)

This expression is invariant scalar and does not contain the second order derivatives.
The use of the basic vectors is advantageous when the macroscopic momentum 

is calculated, and when there are some spinors in the curved space-time. In the latter 
case the energy-momentum tensor cannot be calculated without the basic vectors. L e  is the well-known Maxwell’s Electromagnetic Lagrangian:

L e = - - ~ F ^ r
4/Л,

(4)

Here
^  z ß ~  F o (^ ß \ z ~  ^z\ß) (5)

and Ax is the vector potential.L eq is the interacting Lagrangian between the current density and the potential 
field. In this work it is taken in the following form:

L C4 =  « ( - V Y / M p . (6)

Here a is a constant, and d is a power index. Г  is a vector field, which generally is 
not equal to the current density except for d = 0. The power factor makes it possible 
to describe, for instance, the case of the identically constant proper charge density. 

The Lagrangian of the charge has the form:

Lq= - ß ( - l iIi)ba/ .  (7)

Here ß is a constant, b and /  are power indices, and

a = Ja„ ap, (8)

аР = ир.ди0, (9)

ир = 1ри - 1 61>. (10)
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In equation (10), u" is the unit velocity vector of the current density, so a* is 
its acceleration vector. As the velocity vector is created algebraically and does not 
contain any derivatives, the acceleration contains the first order derivatives only. For 
this reason the variation problems can easily be solved.

With regard to Lagrangians (3), (4), (6) and (7), it seems that there are three 
variables, viz. A„, Г , eAx.

3. The field equations

The resultant Lagrangian is:

L = L(eAx, deAJdx", Ax, dAJdx", eAx, deAJ d x fi), (11)

so three sorts of field equations can be derived from the variational principles.
First, let the action be varied with respect to the vector potential. The 

well-known Maxwell’s Equations have the following form:

F a% = a ( - V Y / *  =  /Xo^- (12)

Here J" is the current density vector. This equation defines the current density vector. 
Varying action (1) with respect to vector Г  gives the equation:

a( -  / , / а)М . -  2a d( -  1,1*)' ~ lApupIx =

= - 2 ß ( b - f ) ( - I i I i )b l a ' u x +

-  К " и * ? а ' - 2а У ] . (. (13)
V  *Р*

If d is not equal to —1/2, and Г  is not equal to zero, and Г  is not light-like, the 
vector potential can be calculated explicitly from Eq. (13) and we get:

CL

(14)
CL

A c ta  P h y sica  H u n g a rica  6 3 , 1988



222 L. PARRAGH

If d is equal to —1/2, the absolute value of the current density (the proper charge 
density) will be constant. In this case there is no explicit expression for the vector 
potential. However,, the following equation will be valid:

Aa + A upua= —2 - { b - f ) ( - l aId)baf ux + 
a

+ ^ А - 1 » 1 У а ' - 2а у . л -  (15)a a

Multiplying Eq. (15) by ua gives:

2 — b( — IiI>)baf  = 0 . (16)
a

There are two valid possibilities for Eq. (16):
i) b = 0. In this case we get for the vector potential:

Aa +  A upua = 2 -  f a f u, + a

+ - / о / ‘ 2< г /; . - - / ( а /"2<1/ ) ; г  (17)a a

ii) af  = 0. The A^ + A ^ u ^  vector can be finite and non zero if a1 is light-like, 
and /  is equal to 2. We get for the vector potential:

Ax +  А Х К  =  2 £  ( -  -  2 -  [( -  / ^ ) 4 « p] ;a a
(18a)

The limit of the vector Aa + Apupua can be finite and non zero if a“ is not light-like, 
and /  is equal to 1. In this case the vector potential is:

А '  + А ри " и ' = \ - ( - 1 » 1 й)2 (X
,------ и . л -

V “/

I ß
2 a

(18b)

In the direction of vector ua Eq. (18a) and (18b) are identities.
If a12 is light-like, and /  is greater than 2, or if a1 is not light-like, and /  is greater 

than 1, we get:

Ax + Apupuai = 0. (19)

(The lôld = 0 case should not be taken into consideration because in this case the 
Lagrangian Leq would be infinite.)
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It is important to mention that Eq. (15), (16), (17), (18a), (18b) and (19) must 
not be taken into account if d is not equal to — 1/2.

Finally let the action be varied with respect to the basic vectors. The third 
group of field equations consists of Einstein’s Gravitational Equations:

% ^t{R°ß~ J 9aßR)  =

=  -  4^  F » y F iy9 ' ß +  ^  F x i F /  +  K xß. ( 20)

If d is not equal to —1/2, we shall get for the tensor:

K^  = ß { j f 2 d ~ l ) {~ IilS)ba/^ ~

- ß ( 2/  -  -  ß f (  - l il i)baf - 2allaß +

+ ß f  [ ( -  f SFS)baf  ~ 2(axußup + aßuxup -  gxußap)] ,p . (21)

If d is equal to —1/2, the Kxß tensor will have the form:

Kaß = аид As(gxß +  uxuß) - ß ( - 1 016)ьагдхр -  

- 2  ß ( b - f ) ( -  l dl 6)baf uxuß -  ß f(  -  Idi y a ' - 2axaß +

+ ß f l (  - 1 il's)baf  ~ 2(a* “ß up + aß uxup -  apuxufi)] . (22)

4. Some remarks on the field equations

In view of the difficulty of surveying the field equations and because of their 
complexity, I could calculate approaching solutions in the Euclidean Field only. 
However, many useful conclusion can be reached without any solutions, too.

It is very important that the field equations should be interpreted where the 
current density is equal to zero. There are at least three possibilities for the field 
equations and the vector potential to be interpretable in this case:

i) Let vector Г  be light-like where the current density is equal to zero. The 
conditions of the existence of the vector potential not to be identically equal to zero, 
and not to be infinite are:

(23)

(24)

(25)

b - d - f - 1 = 0 ,  

d> 0, 

b> 0.
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For the vector potential we get:

J S .  (26)

This is a light-like vector.
ii) The second possibility is the following: Let vector Г  be equal to a product 

of an s scalar and a ua unit vector:

I11 —su“. (27)

If s is equal to zero, there is no current density (if d is not equal to —1/2). The vector 
potential and the field equations can exist if the following conditions are realized:

b - d - 1 = 0 ,  (28)

b> 0, (29)

d> 0. (30)

The vector potential is:

lim 4 a(s, up) = -  [ 2 f  -  af u„ +
s-о  a \  t + 2 d /

+ - / ( а /_2а„);У -  (31)a  a

In this case, vector ua assigns the possible orbit of the charge and determines the 
vector potential, but the vector potential does not contain the scalar explicitly. This 
case resembles one of de Broglie’s [1] ideas.

iii) There are many cases when Eq. (13) is an identity. Firstly, let the direction 
of vector Г  be not light-like. If

d> 0, (32)
and

b - 1/2 > 0 , (33)
and

lim /" = 0, (34)

then both sides of Eq. (13) are identically equal to zero.
Secondly, let vector I“ be light-like. If

d — 1 > 0 , (35)
and

b — f  — 1 > 0 , (36)

then both sides of Eq. (13) are identically equal to zero, too.
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In these cases we get Maxwell’s Electro Vacuum.
Of course further potentials can be derived from Eq. (13) but these are identically 

equal to zero when the current density is equal to zero. These potentials do not 
describe any interactions among the remote current densities.

With regard to the gauge-invariancy it is remarkable that action (1) is 
gauge-invariant, but that Eq. (13) generally breaks this invariancy. If d is equal to 
— 1/2, there will be a restricted gauge-invariancy. The transformation rules are:

The conditions of transformation (37), (38) is the following if the acceleration is 
light-like:

If the acceleration is not light-like, we get for the conditions of transformation (37, 38).

Here A and t are scalar functions. If either Eq. (39a) or (39b) is valid, the transformation 
(A, t) can be used. If Eq. (39a) or (39b) is not valid, then transformation (A, i) should 
not be used. In the direction of the ua vector, Eq. (39a) and (39b) are identities. For 
this reason there is no explicit expression for dA/dx“. Equations (39a) and (39b) are 
very strong constraints. Because of the non-linearities these transformations do not 
create any group, unless 1 — t is infinitesimal. If 1 — Г is infinitesimal, and (A,, ft) and 
(A2, i2) are possible transformations, then (At +A2, • t2) will be possible transform
ations, too.

A'x = Ax + dX/dx* 

i : = t i «.

(37)

(38)

(39b)
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5. The macroscopic quantities

The macroscopic momentum can be defined as follows: Let the transformation 
x 'l, =  x‘’ + e'z be applied to action (1). (The e* quantities are infinitesimal.) The 
continuity-type quantities are the components of the momentum. After this calculation 
we get:

Here Fÿis the two-dimensional surface of the three-dimensional space, and y= 1, 2, 
3. The zero indices denote the time-components of the quantities.

The third part is the momentum of the current density. This is equal to zero 
if there is no current density at the surface.

The second part is the momentum of the potential field. If the distance between 
the surface and the current density is sufficiently large, this part can generally be 
neglected.

The first part is the momentum of the gravitational field. This is simple enough 
because of the basic vectors that are used. This part represents the momenta of the 
current density and the potential field far from the current.

With the help of the fourth part of action (1) the angular momentum of the 
charge moving in a narrow world-tube can be calculated. In this case the current 
density can be written in the form:

Here A К is the charge, ds1 is the element of the orbit of the charge. The third and 
the fourth parts of action (1) will have the following forms:

F

F

(40)
F

^ 0^  =  a ( - V Y / a
AK

(41)

(42)
a

if
b — d — 1/2 =  0.
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Here a is the parameter of the orbit of the charge. After some circuitous calculations 
the law of motion of the charge moving in the given potential field Aa and in the 
given gravitational field eAci is obtained by varying action (42) with respect to <r:

cAK \ —  Faiut + - ( 2 / — l)(af u j  sus —
(.Fo a

-  ^ / [ ( а ' - Ч Ь А У -  - / a ^ V u V Ä ^ }  =0. (43)a a J

It is important to mention that this equation can have a stable (not self- 
accelerating) solution in the stationary state. The factor of the curvature tensor is the 
angular momentum of the charge [2] in Eq. (43), thus the spin is:

Sxß =  -  fcA K af  - 2 (a, up -  aß u j . (44)
а 2

In reality the electromagnetic field and the gravitational field of the charge and the 
interaction have angular momenta, too. With the help of the field equation it is 
possible to calculate these angular momenta, and for the resultant spin we get:

r S M= ^ 3 - 2 b - 0 S ^ .  (45)

If /  is equal to 1, the absolute value of the spin will be constant. The greatest success 
of this model is that the proportion of the spin/charge can be explained classically, 
e.g. in the case of electrons. If, in Lagrangian (6), ч = сец0В and in Lagrangian (7)

/  =  1, ß=chB/ ^3 — 2b— (В is an arbitrary constant), this model gives the classical

description of electrons. This model gives the classical descriptions of several 
elementary particles in this case, too. That is, in action (1) there are two undefined 
signs. One of them is at the N/  — Ipl p factor corresponding to the two signs of the 
electrical charge. This does not influence the energy-momentum tensor or the spin. 
The other undefined sign is at the J арар factor in Lagrangian (7). This does not 
influence the charge or the spin but it does influence the energy-momentum tensor. 
This picture corresponds to the e + , e~, , /г particles in quality.

The field equations of the particles of constant spin can be divided into many 
groupings of four if d= 1/2 +  n, and b = 1 +  n. Here n is an arbitrary integer number. 
Perhaps one of these cases describes the elementary particles.
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6. Conclusions

In this work a conceptually very simple quantity, the acceleration of the charge, 
complements Maxwell’s and Einstein’s Lagrangians. This complementation leads to 
highly complicated and fundamentally non-linear field equations, and their interpre
tation is problematic. Many surprising consequences result from this complement
ation:

— In the scope of this model at least three sorts of interaction written by the 
vector potential can be interpreted. One of them is the Maxwell’s 
Electromagnetic Interaction.

— The model can classically explain the spin.
— We can infer e+, e~ , /t + , ц~ elementary particles from this model in quality. 

Conclusions can be drawn for further groupings of four elementary particles.
Perhaps it would be useful to examine a model such as this more accurately.
The stationary solution of this model is able to give the classical interpretation 

of the accelerating and still not radiating states of the charges. After all this model 
is an example of how the geometry of motion can be used in Theoretical Physics.
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The thermal glow curves and emission characteristics of annealed and air-quenched pure 
NaCl and NaCl : Ba(10-2 m.f.) specimens have been examined after the standard gamma exposure 
of 2.4 ж 102 Gy at room temperature. The comparison of thermal glow curves and TL-emission 
spectra of these specimens reveals the important role of Ba2+ ions in the thermoluminescence 
behaviour of NaCl : Ba. The Tl-emissions at 495 and 435 nm are presumed to be associated with 
the observed glow peaks at 90 and 220 °C, respectively.

Introduction

Thermoluminescence (TL) is the emission of visible radiation from the pre
irradiated phosphor during warm-up. The knowledge of the TL centres requires 
information regarding the nature of the emission centres and the trapping sites. The 
TL-emission results from the recombination of the trapped electrons with the holes 
and vice-versa. It is normally believed that the TL emission occurs as a result of the 
electron-hole recombination at the impurity centre [1-3]. It has been possible to 
identify the emission centres by examining the TL-emission of the phosphor. The 
present measurements were undertaken to investigate the nature of the emitters. It 
is concluded that the emission occurring at the 220 °C peak arises due to electron-hole 
recombination at Ba2 + ion sites.

Experimental

The host material used in the present work was analar grade sodium chloride 
(99.90% pure) obtained from British Drug House Laboratory, Bombay. Powder 
specimens of pure and Ba-doped (10“ 2 m.f.) NaCl were prepared from the aqueous 
solution by the method of recrystallization. The powder specimens so obtained have 
been subjected to thermal treatment, namely annealing at 750 °C in open air for two

* Low level counting Laboratory, B.A.R.C., Hospital, Bombay-400094, India 
+ Presently at Physics Department, M. J. College, Jalgaon-425002, India
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hours followed by rapid cooling (quenching rate 450 °C/min). Such specimens are 
designated as NaCl(T) and NaCl : Ba(T). All the specimens were exposed to standard 
saturated gamma dose, 4.2 x 102 Gy at room temperature. 20 mg of the powder was 
spread uniformly on Kanthal plate and TL-emission spectra were recorded for the 
thermally pre-treated NaCl and NaCl : Ba specimens (at 85, 120, 160, 200 and 230 °C) 
by using a 0.25 metre Jarrel Ash Ebert Monochromator. The TL glow curves of the 
above specimens were also recorded in the 30-400 °C temperature region. The heating 
rate for the present work was 200 °C/min. The TL measurements are carried out with 
the reader system described by Nambi [4] and Kathuria [5].

Results and discussion

The thermal glow curves of pretreated NaCl : Ba specimens were recorded along 
with those of undoped NaCl (Fig. 1A). The TL-emission spectra of these specimens 
at different temperatures were also examined and the same are presented in Fig. IB. 
The experimental data reveals the following notable features:

(i) The NaCl(T) specimens display measurable TL output at 90 and 240 °C 
(Fig. 1A). The corresponding TL-emission around 230 °C is broad and weak with 
diffused maxima at 425 and 475 nm (Fig. 1(5B)).

(ii) The thermal glow curve of NaCl : Ba(T) specimen exhibits dominant glow 
peak at 220 °C with subsidiary peaks at 90 and 140 °C.

(iii) The emission spectra for NaCl : Ba(T) clearly demonstrate that at lower 
temperature (85 °C) the 495 nm band is prominent. With the rise in temperature there 
is a radical change in the emission spectrum which involves suppression of the 495 
nm band and an emergence of pronounced emission at 435 nm. This characteristic 
is observed around 200 °C. If the temperature is raised beyond 200 °C the overall 
emission is suppressed.

On the basis of the present state of understanding of TL mechanism in divalent 
doped alkali halides [6-11], it is inferred that barium impurity-cation vacancy dipoles 
are the important components of the TL-centres responsible for the observed 
TL-emission in NaCl : Ba. In the present experiments only the emission spectra of 
NaCl(T) specimens displayed measurable output when recorded at 230 °C. This 
emission is presumed to be due to impurity unavoidably present in the base material. 
It is believed that such an impurity which remained in the precipitated state in the 
normally annealed and cooled base material got redissolved when the specimen was 
annealed and quenched from 750 °C.

In the present experiments the NaCl : Ba specimens were prepared from aqueous 
solution by the method of recrystallization. In such specimens one may not expect 
uniform distribution of barium impurity in the host lattice and at higher concentration 
the quenching of emission may result in leading to low TL output. On the other hand, 
quenching of NaCl : Ba specimens from elevated temperature would favour dissolution 
as well as uniform distribution of Ba2+ impurity in the host lattice. This would give
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Fig. I. (A): TL-glow curves and (B): TL-emission spectra at 85°C (IB), 120°C (2B), 160°C (3B), 
200 °C (4B) and 230 °C (5B), gamma-dose 2.4 x 102 Gy

--------- curves for NaCl : Ba (T)
-----------curves for NaCl:(T)

rise to a large concentration of impurity-vacancy dipoles in the NaCl : Ba(T) specimens 
and the consequential enhancement in the observed TL-emission. Changes in the 
relative intensities of the three emission bands with temperature indicate that the 
TL-centres associated with the 495 nm emission band are susceptible to thermal 
bleaching at temperatures lower than those for 357 and 435 nm emission. It is therefore 
concluded that the 495 nm emission relates to shallower traps and the remaining two 
emissions are associated with comparatively deeper traps.

The comparison of TL-glow curves and emission spectra of NaCl : Ba(T) (10“ 2 
m.f.) reveals that the substantial TL-emission output at 435 nm corresponds to the 
glow peak at 220 °C whereas the glow peak at 90 °C can be correlated with the 495 
nm emission band. The remaining emission band around 357 nm may be associated 
with the glow peak at 140 °C. Since the TL-emissions observed in the present 
experiments can be identified with characteristic Ba-emissions [12-13], it is believed 
that the Ba impurity plays an important role as an emitter in the TL of NaCl : Ba(T).
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Monte Carlo calculations have been performed to investigate some quantitative features 
of the slowing process underlying nuclear lifetime determination in Doppler Shift Attenutation 
Method (DSAM). Kregar et al’s numerical method developed for a simplified description of the 
process was found to be applicable in strongly limited intervals of recoil velocity and lifetime only.

Introduction

In recent years the Doppler energy shift of gamma radiation from excited nuclei 
recoiled in nuclear reactions has become widely used in many nuclear laboratories 
as a tool for the determination of the lifetimes of nuclear excited states. One of the 
techniques referred to as Doppler Shift Attenuation Method (DSAM) is appropriate 
for lifetime determination in the time interval 10 “ 15—10 ~12 s. In DSAM the decay 
of the excited level is observed on the time base given by the slowing down of the 
recoil in the target layer and in the target backing. The slowing process itself consists 
of a series of elastic and inelastic collisions between the recoil and stopper atoms, 
which result in a step-by-step loss of the initial velocity. The energy shifts observed 
in the spectrum of emitted gamma rays are determined by the ratio of the lifetimes 
to slowing time for the system composed of recoil and slowing atoms.

In practical evaluation work, F(r) = (v}/v0 curves are deduced from the slowing 
theory for the actual reaction, where <r> and v0 denote average and initial recoil 
velocities, respectively. Lifetime т is then determined from a comparison with the 
experimental F value, defined as the ratio of the average energy shift to the maximum 
one.

For a complete evaluation of the measurements the details of the slowing 
process should be known and taken into consideration. The reliability of the measured 
lifetimes — still questionable in many respects (see e.g. [1]) — depends on the accuracy
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of the theoretical description and on practical approximations used in the treatment 
of the slowing process.

The theoretical study of the slowing of a recoil nucleus penetrating through a 
stopper medium was pioneered in the works of Lindhard, Scharff and Schiott 
(LSS-theory) [2, 3]. Their results are of vital importance in the evaluation of DSAM 
measurements. These works serve as the best theoretical frame for the calculation of 
energy loss rates due both to elastic and inelastic collisions of the recoils on atoms 
(nuclear stopping) and shell electrons (electronic stopping). The basic characteristics 
of the slowing process are related to the potential function adopted for the description 
of Coulomb interaction between recoil and stopping atoms; Thomas-Fermi potential 
is normally used in calculating the scattering function. On the other hand, the energy 
loss due to inelastic collisions with the electron shell of the stopper atoms can be 
treated in different energy ranges using different models (e.g. [3]).

The most widely used practical formalism in DSAM was developed by 
Blaugrund [4] from Lindhard’s stopping theory.

Due to the statistical nature of the parallel processes of electronic and atomic 
stopping, the Monte Carlo treatment [5] is a realistic procedure for the generation 
of the spectrum of Doppler shifted gamma quanta, which reflects the kinematic 
conditions of the recoil at the instant of its deexcitation. The physical parameters of 
statistical determination are:
— the depth of the target layer in which nuclear reaction occurs;
— the initial value and direction of the recoil velocity related through the kinematic 

equations of the nuclear reaction;
— the mean free path between successive events as the function of energy;
— the scattering direction of the recoil in a scattering event;
— the decay time of the excited level by gamma emission determined in the form of 

the exponential law of decay;
— the direction of the gamma quantum as it enters the gamma detector.

The energy shift of a single gamma quantum is finally determined by the actual 
values of the above parameters which are selected for the recoil considered in a random 
way. The Monte Carlo treatment performs a simulation of the history of the recoil 
by selecting the parameter values randomly both for initial conditions and for all the 
successive scattering events, for a high number of recoils.

The Monte Carlo technique is the most promising way in DSAM-based 
research. On the one hand, it is well applicable in routine evaluation work, while on 
the other, it represents a good tool for checking other less time consuming evaluation 
methods.

Recently, Latta [6] presented a comparison of Blaugrund and Monte Carlo 
centroid-shift calculations. He came to the conclusion that the standard Blaugrund 
analysis at low initial recoil energy and large F(t) values results as a rule in lifetime 
estimates at least 20% too low.
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Low initial recoil energy values occur in the case of (p, y) reactions, where 
DSAM is widely used for the determination of short lifetimes. For this case Kregar 
et al [7,8] proposed a discontinuous stopping model for an approximative description 
of the slowing process of the recoil nucleus.

Kregar et al’s method is based on the argument that the average free path of 
the recoil in the target and/or backing layer exceeds in many cases the distance 
travelled by the excited nucleus before de-excitation through gamma emission. 
Therefore, under the condition of low velocity and short lifetime the neglection of all 
possible scattering events except for the first three of four ones represents a good 
approximation of the real case. Their numerical method is equivalent to the truncation 
of the whole chain of atom-atom scattering at a low number of scattering events. 
They came to the conclusion that for an excited nucleus with a lifetime less than 
10 13 s the conditions for the truncation method are fulfilled, if the recoil velocity 
is less than ßo = 0.2%.

Kregar was engaged in discussion with Latta and Scanlon [9,10] on the validity 
of the discontinuous stopping method in DSAM [11]. Latta et al concluded that the 
available information was not sufficient to justify the method. The results of Caraca 
and Correa [12] from Monte Carlo calculation did not support the few-step slowing 
in the case of 28Si recoil penetrating in aluminium with an initial velocity of ß0 = 0.14%, 
nevertheless they considered the method as a valuable and illuminating contribution 
to the DSA discussion.

Taken the fact into consideration that the mean free path depends on the atomic 
structure and density of the slowing medium, it is plausible that a more detailed 
investigation is needed on the condition of applicability of the discontinuous stopping 
method.

With a proper modification of the Monte Carlo code of Currie [5] we obtained 
a direct tool for the systematic investigation of the effect of the truncation by stopping 
the calculation after a prescribed number of scattering events for each recoil. 
Calculations were performed with the aim of contributing to the question of the 
validity interval of Kregar et al’s method.

Computational details

Part of the investigation was performed through calculations of F(r) curves for 
recoil nucleus 14N entering a tantalum layer with several initial velocities in the range 
of 0.052% <ß0< 0.414%, corresponding to the proton energy interval in l3C(p,y)14N 
reaction 0.03 M eV <£p< 1.95 MeV. Another set of calculations was performed for 
the case of recoil nucleus 28Si slowing down in aluminium at initial velocities 
^o =  0.14% and 0.2% which correspond to proton energies in the 27Al(p, y)28Si reaction 
Ep = 0.767 and 1.800 MeV, respectively.
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The Monte Carlo calculations were performed both in truncated mode with 
the number of scattering events for each recoil limited to a selected number n and in 
the original mode, where Monte Carlo chains are stopped only when the initial recoil 
energy £, decreases to the final value Ef  = 0.91 512Et.

Results and discussion

Some of the results are shown in Figs 1 and 2 where calculated F(t) curves are 
plotted for 14N recoils entering Ta stopper with ß0=0.0522% and 0.35% initial 
velocities, respectively. Here full curves correspond to the full chains of scattering 
events while dashed lines represent the different versions of truncated calculations. 
In these figures the qualitative features of Kregar et al’s statement are confirmed. The 
truncation model seems to be valid for very short lifetimes and low ion velocities, 
but the method breaks down with increasing values of these parameters.

The same tendency appears in Fig. 3 for the case of 28Si slowing in aluminium. 
The remarkable difference with respect to the case of 14N is a closer approximation 
of the untruncated F(t) curve by truncated ones at a certain n value, which calls one’s 
attention to the influence of the mass ratio M ,/M 2 on the validity of the approxi
mation. (Here M v and M 2 refer to the mass of the recoil and stopping nuclei, 
respectively).

As for the quantitative results, the limits of applicability seem to be overestimat
ed in paper [7], as it turns out from the calculated data presented in the Figures.

Fig. /. Computed F(r) functions for the 13C(p, y)14N reaction at £,, =  31 keV bombarding energy as 
obtained using n =  1 1 5  and infinite events of scattering (dashed and full lines, respectively)
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Fig. 2. Same as in Fig. 1, at £ „ =  1.15 MeV. Dashed-dotted lines were calculated for infinite events, with
modified aTF parameters

Fig. 3. Same as in Fig. 1, for 27Al(p, >’)28Si, at Ep = 0.767 MeV

The minimum number of scattering events to be taken into consideration can 
be well estimated for the case of the selected recoil and stopping medium from Figs 
4 and 5, where the differences appearing between F(r) curves for truncated and 
non-truncated calculations are presented for the case of 14N in tantalum. The 
difference measuring the validity of the approximation decreases with increasing
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Fig. 4. The difference of truncated and non-truncated F(x) values as the function of lifetime т in the case 
of 14N recoils in tantalum, at ßo = 0.052%

number of scattering events in the truncated case. To sum up the results, Fig. 6 gives, 
as the function of lifetimes, the number of scattering events, at which the truncation 
will result in an error

A = F(T)tlunc-F(T)<  0.005.
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Fig. 6. Number of scattering events, as the function of life-time, at which a truncation would result in an 
error less than 0.5%. Data are given for different ß„ values in the reaction 13C(p, y)14N

Fig. 7. Number of 28Si recoils de-excited before the л-th collision during slowing in aluminium. Initial 
recoil velocity fl0 = 0.14%, lifetime r =  60 fs

The parameter of the curves is the initial velocity. The curves can be considered as 
limits for the applicability of the discontinuous stopping technique.

For another way of checking the actual conditions, the Monte Carlo code was 
modified to calculate the relative number of excited recoils de-excited before the n-th 
collision event. Results for 28Si recoils slowing in aluminium are presented in Fig. 7, 
where P(t) is the number of decay events before the n-th collision, as the function of
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lifetime т. The calculations were performed for the 4.62-+1.78 MeV transition in 28Si 
on the Ep = 0.767 MeV resonance (which corresponds to an initial velocity ßo=0.\4%). 
A lifetime value r =  60 fs for the 4.62 MeV state has been derived from DSA 
measurements. As shown in Fig. 7, for such a lifetime only 4.6% of the excited nuclei 
will emit a y-ray before the first collision and only 23% of the recoils will suffer less 
than 4 collisions before de-excitation. These values fully agree with those of Caraca 
and Correa who gave the respective numbers 5 and 20%.

The nature of systematic error made by a strong truncation is clearly 
demonstrated by the theoretical у-line shapes derived from truncated (finite n) and 
non-truncated (n = oo) Monte Carlo calculations. Fig. 8 shows results obtained for 
14N recoils in tantalum backing. The build-up of the “slow peak” at lower energies 
proceeds continuously with increasing length of scattering chains, the effect of the 
lifetime on the speed of the convergence can be seen from the comparison of the cases 
with t = 80 and 160 fs.

As pointed out by Kregar [13] the number of collisions experienced by the 
recoil nucleus during lifetime depends critically upon the choice of the average free

Fig. 8. Calculated gamma line shapes for the decay of l4N with the emission of 3891 keV gamma quanta, 
at /)o =  0.35% corresponding to the proton energy Ep= 1.15 MeV (tantalum backing)
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Fig. 9. Number of 14N recoils de-excited before the n-th collision during slowing in tantalum. Initial recoil 
velocity /1 =  0.35%, lifetime 160 fs. The effect of modified aTF parameters is indicated by the parallel curves

path, or alternatively upon the scattering radius a appearing in Thomas-Fermi 
potential. The influence of the variation of a by ±  20% upon the F(r) curve is indicated 
in Fig. 2 with dashed-dotted line. The same effect on P(r) is shown in Fig. 9. It is 
obvious that the validity interval for the truncation method will be more or less 
modified by the actual value of the parameter. Making the good interatomic potential 
still remains an open question. The comparison of accurately measured gamma line 
shapes with calculated ones might well reveal the information upon the true 
interatomic potential.
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The force constants for diatomic molecules and isolated bonds may be expressed by using 
equalized electronegativities, bond strengths and interatomic distances. Some halides of group III 
elements have been studied and the proportionality constant d, as well as the Lennard-Jones 
parameters ab and b determined for the potential energy functions used by Szőke in calculating 
the anharmonicity wex€ and the rotational-vibrational coupling constant xe. The variations of 
molecular parameters with atomic number Z have been studied.

1. Introduction

The concept of electronegativity introduced by Pauling [1] is useful in 
understanding the nature of chemical bonds. The theory was modified by Iczkowski 
and Margrave [2] and Mulliken [3] and used by Szőke [4-7]. Pasternak [8] explained 
deviations of Pauling’s formula from experiments on the basis of the simple bond 
charge model of Parr and Borkman [9]. Mohammad [10] stated that the bond energy 
of a molecule can be represented by the sum of the electronegativities of the constituent 
atoms forming the bond and their product partially represents the charge density. 
The concept of equalized electronegativity was introduced by Sanderson [11] and 
later extended to orbital electronegativities. The authors have used electronegativities 
together with spectroscopic constants and have adopted the relations of Szőke [4-7] 
for the evaluation of d, ab, b, wex e and ae for some halides of group III elements.
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2. The estimation of d

Szőke’s relation [4-7]

ke = deDl/2r~ 1 (1)

was used, where ke is the force constant, re the internuclear distance, De the dissociation 
energy and the mean electronegativity is

£ =  (е;е , ) 1/2, (2)

where e, and are atoms in the molecules and

ke =  5.8883 x ^ 1 0 “ 5 N/m. (3)

The electronegativities from Pauling [1], the molecular parameters from Huber and 
Herzberg are used in the evaluation of d from Eq. [1]. Parameters used can be found 
in Table I.

The proportionality constant d may be assumed to be approximately constant 
considering the uncertainties in De and approximate estimates of electronegativities 
used in this calculation. The individual values of d do not deviate appreciably (the 
standard deviation being 0.132) from the mean value of 0.951, thus establishing the 
validity of Eq. (1) which is based on the above approximation.

Table I

Molecule К  [N/m ] re [nm] De [KJ/mol] d

BF 807 0.1263 754 2.828 1.313
A1F 423 0.1654 665 2.449 1.107
GaF 340 0.1774 577 2.523 0.994
InF 275 0.1985 507 2.608 0.931
TIF 233 0.2084 441 2.449 0.946
Bel 347 0.1716 531 2.449 1.056
A1CI 208 0.2130 494 2.121 0.939
GaCI 182 0.2017 474 2.191 0.770
InCl 159 0.2401 428 2.258 0.817
T1C1 142 0.2485 369 2.121 0.865
AIBr 169 0.2295 425 2.049 0.917
TIBr 126 0.2618 330 2.049 0.887
All 131 0.2537 364 1.936 0.900
Gal 123 0.2575 335 2.000 0.868

Standard deviation 0.132
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3. Variation of molecular parameters with atomic number Z

In a class of similar type of molecules such as oxides, halides, hydrides, etc., 
the molecular parameters vary in a periodic fashion as functions of atomic number 
Z [13]. This is clearly evident in Fig. 1, which shows the plots of internuclear distance 
re (dotted line) and the force constant ke (solid line) of the molecules under study in 
their ground states as functions of Z. It is observed that re exhibits a minimum within 
each period while ke exhibits exactly an opposite trend for a particular value of Z in 
line with theoretical expectations.

Fig. I. Dependence of the force constants and internuclear distances on the atomic number Z

4. Validity of Lennard-Jones parameters and the evaluation
of coex e and ae

To construct an empirical potential energy function with more than three 
parameters, it is advisable to use physico-chemical parameters in addition to the 
spectroscopic constants. Such a function proposed by Szőke is presented in Eq. (4)

U = De\_\-  exp — y ( r -  re)2/r], (4)
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where y = d(eieJ/De)112 (5)

and U is the potential energy.
In general, the potential energy functions do not describe the lower and higher 

energy levels with the same accuracy. Hence the original Lippincott energy function 
is modified by the addition of Lennard-Jones [14] supplementary term to take care 
of the Van der Waals forces and is given by Eq. (6)

U = Del  1 -  exp -  y (r -  re)2/r] [ 1 + а Ш , (6)

where f(r) is a function of the internuclear distance, such that f(r)~*0  as r-* oo and 
/ ( r ) - > o o  as r -» 0 .

The authors have verified the correctness of Eq. (6) by calculating first the 
parameters ab and b from Eqs (8) and (9), and using their mean values, the 
anharmonicity and rotational-vibrational coupling constants are then evaluated 
employing Eqs (7) and (8) as done by Dunham [ 15] and Lippincott and Schroeder [16].

(oexe= 1.5Be[0.25 + yrJ2 +  ab(yre)l/2 +  (a2b2/ 1.6 — ab2'2)2re] , (7)

ctewe/6B2e = ab(yre) (8)
and

b= 5/4< — 1 — ccea>e/6B2)2 — 2wexe/3Be — 1 +yre/2-3/2ab{yre)112
abyre

These values are presented in Table II. The average values of ab and b are 15.353 
and 8.623, respectively.

Table II

w€x, [m _1] a, [m ']

Molecule ab b
_  , _  Difference 
Cal. Expt. j y j Cal. _  Difference Exp.. [%]

BF 15.588 8.431 1138 1184 -3 .8 8 1.950 1.980 -1 .51
AIF 16.553 9.184 423 427 -1 1 .3 2 0.462 0.498 -7 .2 4
GaF 16.882 10.307 288 320 -1 0 .0 0 0.260 0.286 -9 .0 5
InF 16.555 9.572 235 264 -1 0 .9 8 0.173 0.188 -7 .81
T1F 15.844 8.253 212 230 -7 .8 2 0.146 0.150 -3 .1 0
BC1 13.919 6.996 566 511 +10.76 0.713 0.646 +  10.29
A1C1 15.723 9.996 200 195 +  2.56 0.157 0.161 -2 .3 5
GaCl 17.207 10.615 106 120 -1 1 .6 6 0.071 0.079 -10 .77
InCl 15.731 8.940 98 101 -2 .9 7 0.051 0.052 -2 .4 0
T1C1 14.628 8.347 88 82 +  7.32 0.042 0.039 +  4.95
AlBr 14.811 8.922 140 128 +  9.38 0.089 0.086 + 3.66
TIBr 14.012 7.700 44 39 +  12.82 0.014 0.013 +  9.57
All 13.956 7.313 122 100 +  12.00 0.061 0.056 +  10.01
Gal 13.431 6.144 56 50 +  12.00 0.022 0.019 +  14.31

Average values 8.21% 8.56%
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The average deviations between the estimated and experimental values of coex e 
and ate are 8.21% and 8.56%, respectively, justifying the use of Lennard-Jones 
parameters for the evaluation of œex e and ae on the concept of mean electronegativity.
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Rigorous analytic formulae are derived for the rotational intensity factors of the lines 
of all the branches resulting from the spin-forbidden electronic transitions ' A - 3 Z  and ' l l  
in diatomic molecules. The present derivation incorporates a full-fledged intermediate cou
pling treatment of the SZ  state which includes the effects of centrifugal distortion on spin 
uncoupling. These formulae when applied to the transition a'A g- X 3Z~ in diatomic sulphur predict 
an intensity pattern that markedly differs from the predictions of previous formulae based on case 
(b) treatment of 3Z.

1. Introduction

Beginning with the work of Honi and London [1] analytic formulae describing 
the rotational intensity distribution in the band spectra of diatomic molecules arising 
from a number of multiplet electronic transitions have been derived over the years, 
many of them by Kovács. Extensive tabulations of these may be found in his book
[2]. Barring those transitions involving singlet, doublet and most triplet states, these 
formulae are based on limiting schemes of coupling of the angular momenta in the 
molecule. In particular, the derivation of line strength expressions for transitions 
involving X states of multiplicity three and above has always assumed Hund’s case 
(b) scheme of coupling for the multiplet X state. However, it is known that when the 
splitting parameter Я of the multiplet X state is large, significant departure from case 
(b) can occur, especially for low J transitions. On the other hand, 3I  and *X states 
are amenable for a rigorous analytic treatment holding for intermediate (between 
Hund’s cases (a) and (b)) coupling. It is, therefore, to be expected that the rotational 
line strengths for transitions involving these states may be made equally rigorous. 
The works of Tatum and Watson [3] and of others [4-7] represent generalizations, 
on these lines, of the line strength formulae for some triplet and quartet transitions. 
In the present work, we derive rigorous expressions for the rotational line strengths 
for the two spin-forbidden transitions *zl-3T(int) and 'H - 3T(int). The former is 
known in the molecules 0 2 and NF and is also expected in other isovalent molecules 
SO, S2, etc.

4* Acta Physica Hungarica 63, 1988 
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Fig. 1. Theoretical intensity distribution in the rQ and *Q branches of a lAg* -X 3Z g (t> =  0) (hypothetical)
transition in 31S2. (kTjhc = 525 cm "1)

2. Theory

2.1 Rotational eigenfunctions

Any line strength calculation hinges on a knowledge of the rotational 
eigenfunctions of the participating electronic states. For degenerate singlet states, 
these functions may be written as

I F(J)-, p} = 2 - *'2[ I J M } + p \M _л;УЛ/>] (1)

with p = ±  1, where Л = 1 for П state and 2 for A state. The rotational eigenfunctions 
of the 3Г state are obtained by diagonalizing the spin-rotation Hamiltonian

H = BR2 + y R.S. + (22/3) (3S22 -  S2) -  DR4 + [(2„/3) (3S2 -  S2), R2] + (2)

with R = J —S, (see, for example [3]). The last two terms in (2) allow for centrifugal 
distortion effects and are important only in very accurate calculations. Centrifugal 
corrections for у and higher order (R4, etc.) centrifugal terms relating to Я have been 
omitted in (2). The diagonalization is conveniently effected employing symmetrized 
Hund’s case (a) basis functions given by

2 - 1/2[ |3r ^ 1;JM > ± |3i:1;JAi>]=|32;1;JM; ±>
and
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Elegant expressions of general validity for the various matrix elements of the 
terms occurring in (2) have been derived by Kovács [2, 8]. Accordingly we obtain

|3F i ; JM ; +> |3Г0; JM> |3I i ; J M ; - >
<3r i ; JM ; + | H ., H 12 0

1 H 2l H 22 0
<3T ,; JM ; — 1 0 0 h  33

where
H l l =Bx — Dx(x + 4) — у -(-(2/3) (А + Адх),

H22 =  B(x + 2) -  D[(x + 2)2 + 4x] -  2y -  (4/3) [A +  AD(x + 2)],

H33 = Bx — Dx2 — у + (2/3) (A + Adx),

Я 12= —2xl/2[B —y/2 —AB/3 —2D(x+ 1)],

with x = J(J  + 1).
In this evaluation the phase convention of Hougen [9] has been followed. The 

roots of the secular equation | H — El \ = 0 lead to the three rotational term series 
FfJ), F2(J) and F3{J) of the 3Z state. We shall not write them down explicitly. The 
corresponding eigenfunctions are readily obtained and are given by

I F,(J)> =  S j \ 3T, ; J M -  +  > + C j \ 3Г0; J M ) ,

\F2(J)}— \ 3Z l ',JM', — >, (4)

I F3(J)} = c7| 3T, ; JM; + > - s7| 3I 0; JM>,
where

Cj = [{2f(J) + (H , í — Я 22)}/4/(А)]1/2,

Sj =  —FI 22)}/4/(J)]1/2, (5)

2 /( J )= F 3( J ) - F 1(J)
and

H ,, — Я22 = 2[A —B + y/2 + 2D + 4AD/3 + (2D + AD)x].

2.2 Line strength calculation for i A-3Z transition

A lucid exposition of the details of general line strength calculation may be 
found in the works of Kovács [2] and of Hougen [9]. Essentially, the calculation 
involves evaluating

S(J',J")= I  К F'( J); p I I F ÍV")) 12 • (6)
MM
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(Note that the, rotational eigenfunctions |F(J)> have an M labelling which is not 
explicit in our notation). In (6) /tR is Rth component of the dipole moment operator 
in a space fixed frame X, Y, Z. Because the rotational eigenfunctions are expressed 
in case (a) basis, it is necessary to express /tR in (6) in terms of the molecule fixed (x, 
y, z) components /ir through the direction cosines. We shall exploit the isotropy of 
space to specialize relation (6) for the Z component which gives the particularly 
simple M  selection rule Л М  =  0. Accordingly we have

Fz = (Px -  Wy) (ocZx + i«z,)/2 +  (px +  Wy) (<*zx -  i* z  y)/2 +  PPZz ■ (7)

We recall that the intensity of the spin-forbidden transition 1d - 3I' results from spin 
orbit mixing, for instance, of the 3Г with 1П states. The lA state rotational 
eigenfunctions have \(2\ =  2 whereas 3E eigenfunctions are mixtures of substates with 
|ß | =  l and 0. Evidently, for this electronic transition there will be just one 
non-vanishing transition moment corresponding to the orbitally allowed sub
transitions

ß '= ± 2 ( 1d 2) - ß " = ± l ( 32;i).
Explicitly,

F i =  <fl' =  2 1 /i* +  ifiy I ß" =  1 > (8)

=  ± < ß '=  —2\px—iiiy\W= —1>

Table I

Transition amplitudes for 1d ±2- 32'±1 subtransition

Branch Amplitude

P ± [ ( J - 2 ) ( J - l ) / 2 j y u
Q UJ + 2 ) ( J - l) (2 J  + \) /2J(J+ l)V 12
R + UJ + 2)(J + 3)/2{J + \)V 12

Table II

Line strength expressions for the nine rotational branches of 
1d -3Z (int) transition

°P(J) Cj(J— l)(J — 2)/2J
FQ(J) c^(J-))U + 2)(2J + \)/2J(J + \)
QR(J) c2(J + 2)U + 3)/2(J + 1 )
PU) (J-l)U-2)/2J
Q)J) U - D U  + 2)(2J + l)/V(J+l)
RU) (J + 2)(J + 2)/2(J + 1)
QP{J) s](J-\)(J-2)/2J
RQU) s] U - \ ) U  + 2)(2J+\)I2JU + \)
SRU) sj(J + 2)(J -)- 3)/2(J +1)
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governs the overall intensity of this transition. The effective transition amplitudes for 
the P, Q and R branches of the above sub-transition have been evaluated according 
to Hougen [9] and are given in Table I. Using these amplitudes, and the relevant 
rotational eigenfunctions (relations (1) and (4) of Section 2.1), line strengths for the 
nine rotational branches that can arise are readily obtained and are given in Table II.

2.3 Line strength calculation for 1П - 3Е transition

The occurrence of this spin-forbidden transition may be visualized by assuming 
that the 3I  state is mixed with 1П and ‘Г states through spin-orbit interaction. The 
line strengths calculations follow similar lines but now we need two independent 
transition moments /Гц and given by

Р \ \ - ( 1П ±i\pz\3Z

=  +  (9)

= ± С П  _i\gx- i n y\3I 0y.

As before we need the effective transition amplitudes of the P, Q and R branches for 
the two sub-transitions 1Я ±1- 3Г ±1 and 1П ±1- 3Х0. These are given in Table III. 
Using these the line strengths for the nine rotational branches have been worked out 
and are given in Table IV. Experimentally only the ratio is determinable. To 
demonstrate the reality of this ratio, we apply the operation ov (reflection in a plane 
passing through the molecular axis z) followed by 9, the operation of time reversal, to 
the ratio of the matrix elements. Whiting and Nicholls [10] have shown that for a 
system with even number of electrons

9(<T„(A'S'r\gf'°\A"S"Z"y)

= ± (_ l) s'+s"<H'S'2:>e±'0|/l"S"r'>. (10)
Therefore,

9[o-„(/r\ \ /pJ]= (P \ \ /P i)*

= 9{<x„<1П , I £  13Г 1 >}/9{<x„<1 /7, |/C 132T0>}

=<1л 1|/х2132;1>/<1л 11лЛ 3£ 0>

=Р\\/Re
in the above relations stand for the molecule fixed spherical components of the 
electric dipole moment operator. One can show that an identical relation holds for 
the magnetic dipole operator as well. Therefore, the formulae given in Table II and 
IV hold for both electric and magnetic dipole transitions. This is not surprising since 
both electric dipole and magnetic dipole operators transform alike under rotations.

A c ta  P h y s ic a  H u n m a rka  63 , 1988



254 T. K. BALASUBRAMANIAN and V P BELLARY

Table III

Transition amplitudes for the subtransitions of ' i l - 3Z

Bi (inch
Subtransitions

‘л ± . - 3£ ± . Ы ' n ± t- 3Z<& 1)

p {(-/+ 1)(У-1)/У}*/2 <NÇN7+Í

Q ± {(2 J+ l)/J (J+ l)}4 i { ( u + m y 11
R {J(J + 2)l(J + l)} 'u +  {(J +  2)/2}1/2

Table IV

Line strength expressions for the nine rotational branches of 
' / / - 3I  (int)

°P(J) (У-1)[М||0{(Л-1)/4},/2- ^ ] 2
rm
QR(J) W + 2)[MuCj{JHJ+l)yi1+^sjy
P(J) H p - \ ) ( J + \ ) / J
Q(J) P\\(2J + l)/J(J + 1)
R(J) l i p J  + 2)/(J+l)
aP(J) ( J - D L ^ S j p + y / j y ^ + ^ c j y
RQ(J) (2J+l)lnusJ{\/J(J + \ ) y 3+n1cjy
SRU) (J + 2)[jiusJ{J/(J + l)yiI- n 1cjy

The fact that the magnetic dipole operator is an axial vector unlike the electric dipole 
which is polar, merely alters the Л component of the terms of x A or 1П involved in 
the transition.

3. Discussion

The formulae in Tables II and IV are based on a rigorous intermediate coupling 
treatment of 3Г state, which includes centrifugal distortion effects. When we set 
A = ÀD = 0, these formulae reduce to the ones derived by Kovács [2] based on case 
(b) assumption of 3I .  In order to illustrate the effect of intermediate coupling in 3Z 
on the intensities, we applied the present formulae (Table II) to the (hypothetical) 
magnetic dipole transition a lAg* - X 3Z~  in the S2 molecule. This example has been 
chosen because the splitting parameter A0 of this state is 11.88 cm 1 and its 
B0 = 0.29468 cm - 1 which would definitely warrant an intermediate coupling treat
ment. In Fig. 1, the intensities of the PQ and RQ branches calculated on the basis of 
intermediate coupling (formulae of Table II) are compared with those based on case 
(b) assumption (Kovács [2] or formulae of Table II with A = AD = 0). The significant 
mismatch between the curves of each pair clearly demonstrates the need for 
incorporating intermediate coupling. An interesting point revealed by the curves for
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the RQ branch is that while the formulae based on pure case (b) assumption predict 
substantial intensity for this branch even at low J values, the formulae based on 
intermediate coupling give almost zero intensity in this range of J. This situation 
arises for the following reason. The RQ branch involves the F,(7) component of 3I  
as the lower level. At small J values relations (4) and (5) of Section 2.1 show that 
|F i(J )> ~ |3Z0 ;JM>. The transition lá - 3E0 is orbitally forbidden which accounts for 
the vanishing intensity of this branch at low J values. At larger J values the 
eigenfunction | F^J)),  owing to spin uncoupling, acquires a progressively increasing 
admixture of \3Z l ;JM; + ) .  Since the transition is orbitally allowed an
intensity increase results with increasing J. Fig. 1 shows that at large J  values the 
curves for intermediate coupling tend to their case (b) limits asymptotically, as 
expected. It will be worthwhile to observe this transition and compare the experimental 
intensities with the results of the present theory.
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A complete infrared study of NH4C1 and NH4Br has been carried out and new results are 
reported for the two disordered phases I and II. The study includes measurements and 
interpretations of the 1R spectral bands, band width, intensities and frequencies of the internal 
modes as functions of temperatures. Special attention is paid to the doubly degenerate symmetric 
deformation mode v2 and to the triply degenerate asymmetric deformation mode v4 . For both of 
the two ammonium halides, the disordering inherent in these two phases generates spectral 
anomalies. The results reveal the presence of local ordering accompanying the disordering. The 
energy required for orientation of NH4 ion is calculated to be 0.52 eV (for NH 4C1) and 0.48 eV 
(for NH4Br).

Introduction

Ammonium chloride and ammonium bromide salts are well known to undergo 
a number of structural modifications at atmospheric pressure, at a certain well defined 
transition temperature. X-ray [1], neutron [2] and electron diffraction studies [3] 
have established the variations of crystallographic structures and transformation 
temperatures. The different known phases are referred to as phases I, II, HI and IV 
in order of the decreasing temperature (Table I). Phases I and II are disordered phases 
while phases III and IV are ordered phases.

Several models [4, 5] have been proposed to explain the behaviour of the 
vibrational modes of the ammonium ion through phase transitions. Neutron inelastic 
scattering [6 , 7] and near infrared investigations have provided experimental tests 
for these theoretical studies. The IR results were restricted to either the fundamental 
internal motions of the NH4 ion or combinations involving the external modes. 
Experimental studies of specific heat [8], expansion coefficient [9], piezoelectric effect 
[ 10] and the elastic [ 11, 12] and the dielectric properties [13] have been reported in 
attempts to understand the origin of these transitions. However, all of these various 
properties are dependent on many modes of vibrations in the Brillouin zone and 
cannot yield direct information about the detailed nature of the phase transitions 
[14]. But it is thought that the most powerful and direct method is the study of the
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Table I

Ammonium
halide

Phase I 
(disordered) 
Oj|(Fm3m)

Phase II 
(disordered) 
0£(Pm3m)

Phase III 
(ordered) 

D4h(P4/nmm)

Phase IV 
(ordered) 

T](Pm3m)

NH4C1

NH4Br

J 185°C ,, -3 0 ° C >  IV

] 138°C _ „ 38°C i - 190°C ,  IV

dynamical properties by determining the frequencies and the life times of every phonon 
mode in the Brillouin zone.

The connection between the phonon spectra, the extent and nature of the 
disorder prevailing in a crystal is a matter to which spectroscopists have more recently 
turned their attention and which is likely to play an increasingly important role, since 
detailed studies of frequencies and life times of phonon modes should give valuable 
information about the lattice dynamics and hence the mechanism of transition.

In the present work, all pertain to the disordered phases to provide a clear 
indication of the normal behaviour of NH4C1 and NH4Br free from the effect of 
ordering. It seems that new IR investigation of the disordered phases of these two 
compounds can provide more interesting information about their nature of transform
ation. It is our objective to report and compare the type of behaviour of the disordered 
transitions of these two salts predicted by IR spectroscopic analysis. To do so, we 
have an approach which incorporates the physical concepts of the phase transition 
phenomena.

Experimental

The apparatus used and experimental techniques employed were essentially 
identical with those described previously [15]. The IR spectra have been recorded 
using Beckman G.R. 7224 Spectrometer. The materials used were ultra pure NH4C1 
and NH4Br obtained by the British Drug House (B.D.H), Laboratory Chemical 
Division, England. The NH4Br samples employed were necessarily somewhat thicker 
than those of the corresponding chloride salt because the absorption coefficients are 
somewhat less for the heavier halide salts. The spectrum measurements were recorded 
in the region 400-4000 cm 1 on a graphical paper with a scanning time of 30 min.

Results

In the present work, we have recorded the IR spectra of NH4C1 and NH4Br 
in a temperature range covering both of phases I and II. Herzberg’s notations [16] 
are used here for the internal fundamental normal vibrations of the NH4 ions. Thus,
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Vj denotes the totally symmetric stretch, v2 the doubly degenerate symmetric 
deformation, v3 and v4 the triply degenerate asymmetric stretch and deformation, 
respectively, v5 the lattice mode and v6 the torsional oscillation mode. The splitting 
of the degeneracies gives the additional components which are indicated by primes. 
The presently observed IR spectrum of the two phases of NH4C1 and NH4Br did 
not exhibit any bands which could be attributed to any mode other than those due 
to NH4 ions.

1) Infrared spectrum o/ N H 4C1

Figure I shows the IR absorption band spectra of phase I of NH4C1 at three 
different temperatures, 210, 200 and 190 °C, and the spectra of phase II of NH4C1 at 
three different temperatures, 150, 160 and 170 °C. The frequencies of the bands and 
their assignments (for the two phases) are collected in Table II.

Fig. I. IR spectra of phases I and II of NH„C1 in the region 400-4000 cm 1

The triply degenerate asymmetric stretching v3 appeared as a broad band at 
3210 cm “ 1 and as a shoulder at ~3320 cm“ 1 (v3) in phase I (at 190, 200 and 210 °C). 
In phase II (at 150, 160 and 170 °C) the shoulder v3 is shifted by ~40 cm 1 while 
v3 is not sensitive to alteration of temperature.

The totally symmetric stretching mode v, appeared in the two phases as weak 
shoulders between 3050 and 3070 cm 1.

The combination mode (v2 + v4) is not clearly observed in the spectrum so that 
an accurate evaluation of this band could not be performed.
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Table II

Phase II Phase I

150°C 160X 170 °C 190"C 200 “C 210°C

3220 v3 3220 v3 3210 v3 3220 v3 3210 v3 3200 v3
3360 v'3 3360 v3 3350 v3 3320 v'3 3320 v'3 3300 v3
3070 v3 3090 V, 3070 V, 3050 V, 3050 V, 3070 v,

- ( v 2 +  v4) - ( v 2 +  v4) - ( v 2 +  v4) - ( v 2 +  v4) - ( v 2 +  v4) - ( v 2 +  v4)
2920 (2v4) 2950 (2v4) —(2v4) 2850 (2v„) 2870 (2v4) 2890 (2v4)

1720 v2 1720 v2 1710 v2 1775 v2 1775 v2 1760 v2
- v '4 - v 4 - v i -1 5 0 0  v4 -1 5 1 0  vi -1 5 2 0  v4

1430 v4 1445 v4 1440 v4 1450 v4 1480 v4 1470 v4
1380 v4 1420 v4 1360 v4 - v 4 1370 v" 1380 v"

700 (2v6) 700 (2v6) 700 (2v6) 680 (2v6) 690 (2v6) 680 (2v6)

The first overtone (2v4) appeared as a clear shoulder at 2890 cm“ 1 (at 210 °C) 
and at 2850 cm “ 1 (at 190°C) in phase I. But in phase II, this overtone shifted up 
and appeared at 2950 cm 1.

The doubly degenerate symmetric deformation mode (v2) appeared as a clear 
band at 1760 cm “ 1 (at 210°C) in phase I and at 1710 cm “ 1 (at 170°C) in phase II. 
This mode is sensitive to the phase transition since a 50 cm “ 1 reduction in its value 
could be recorded during the transformation from phase I to phase II.

The triply degenerate asymmetric deformation v4 appeared here as a broad 
band centred at 1470 cm “ 1 (at 210 °C)in phase I. This band has two other components 
at 1520 and 1380 cm“ 1. These components are still observed at high temperatures 
of phase I. But in phase II, the first component disappeared. However, v4 is sensitive 
to any temperature variations in the two phases.

The first overtone (2v6) of the torsional oscillation mode v6 could be observed 
in the two phases I and II between 680-700 cm ” 1.

2) Infrared spectrum o /N H 4Br

Figure 2 shows the IR spectra of phase I of NH4Br at three different temperatures 
160, 150 and 140 °C, and also shows the spectra of phase II at three different 
temperatures 130,120 and 110 °C. The frequencies of the bands and their assignments 
(for the two phases) are collected in Table III.

In general, the NH4Br IR spectrum is very similar to that of NH4C1. The only 
significant frequency differences occur for the bands v2, v3 and v4 appearing in NH 4Br. 
These characteristic differences can be summarized as follows:

i) The mode v2 appeared in NH4Br at 1580-1665 cm“ 1. This band occurs at 
frequency 50-180 cm “ 1 lower than the corresponding bands in NH4C1.

ii) The mode v3 appeared in NH4Br at 3120-3180 cm“ 1. This band occurs at 
40-90 cm “ 1 lower than the corresponding bands in NH4C1.
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Fig. 2. IR spectra of Phases I and II o f N H 4Br in the region 400-4000 cm 1

Table III

Phase II Phase I
110“C 120°C 130°C 140 °C 150°C 160 °C

3160 v3 3180 v3 3160 v3 3120 vj 3140 vj 3130 vj
3250 v'j 3290 v'3 3270 v'j 3230 v'j 3240 v'j 3230 v'j

- v t - v , - vi - » 1 - v , - v i
3030 (v2 +  v4) 3025 (v2 +  v4) 3020 (v2 +  v4) 3020 (v2 +  v4) 3025 (v2 +  v4) 3030 (v2 +  v4)

2790 (2v4) 2800 (2 v4) 2810 (2v4) 2815 (2v4) 2800 ( 2 v4) 2810 ( 2 v4)
1665 v2 1655 v2 1660 v2 1620 v2 1605 v2 1580 v2
1440 v; 1440 v4 1430 v4 1400 v; 1375 v; 1360 v4
1400 v4 1410 v4 1395 v4 1350 v4 1340 v4 1330 v4
1370 v" 1380 v4 1380 v" 1330 v" 1320 v4 1300 v4

700 (2v6) 720 (2v6) 715 (2v6) 700 (2vJ 690 (2v6) 710 (2v6)

iii) The mode v4 appeared in NH4Br at 1330-1410 cm -1 . This band occurs at 
30-140 cm ' 1 lower than the corresponding bands in N H 4C1.

iv) The most striking difference between the spectra of N H 4Br and NH4C1 is the 
disappearance of v, in the spectrum of NH4Br. Also, the combination mode 
(v2 + v4) could not be detected in NH4C1 in spite of its appearance in N H 4Br.
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3) Internai vibrations in NH4C1 and NH4Br

Figure 3(a) shows the temperature dependence of the peak frequency and band 
width (measured as full-width at half intensity) for the v2 mode of NH4C1. In the 
temperature range of phase II, it is clear that the peak frequency shifts to lower 
frequency as the temperature is raised (1720 cm “ 1 at 150°C to 1695 cm “ 1 at 180°C). 
The band width of this mode exhibits the same behaviour of the peak frequency.

a) b)

T t°C] 
c)

Fig. 3(a). Temperature dependence o f the peak frequency vp and band width vw for v2 mode during phase
transition II—I of N H 4C1

Fig. 3(h). Temperature dependence of the peak frequency vp and band width vw for v4 mode during phase
transition II—I of NH^Cl

Fig. 3(c). Variation of peak intensity with temperature for the two modes v2 and v4 of NH4C1
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However, in phase I (T> 185 °C) the peak frequency shifts to higher values and the 
band width increased, too.

In Fig. 3(b), the temperature dependence of peak frequency of v4 mode of NH 4C1 
shows approximately the same behaviour of v2 with temperature. But the band width 
of v4 mode increases with temperature in phase II and decreases in phase I.

The peak intensities as functions of temperature for these two modes v2 and 
v4 of NH4C1 are shown in Fig. 3(c). A linear temperature dependence is cleared for

a) b)

Fig. 4(a). Temperature dependence of the peak frequency vp and band width v*. for v2 mode during phase
transition II—I of N H 4Br

Fig. 4(b). Temperature dependence of the peak frequency vp and band width vw for v4 mode during phase
transition II I of NH 4Br

Fig. 4(c). Variation of peak intensity with temperature for the two modes v2 and v4 of NH4Br
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both of intensities of v2 and v4. There is an observed intensity decay during the 
elevation of temperature of these two modes v2 and v4. However, the rate of decrement 
is lower in phase I rather than in phase II.

Figure 4(a) shows the temperature dependence of the peak frequency and 
spectral band width for v2 mode of NH4Br. It is clear that the behaviour of NH4Br 
is somewhat different from that of NH4C1 since the peak frequency decreases with 
the increase of temperature in both of the two phases. The peak frequency of v2 mode 
is reduced by ~  85 cm 1 during the elevation of temperature by 50 °C. The band 
width (Fig. 4(a)) of v2 indicates a minimum value of 62 cm ~ 1 in the region of phase 
transition.

The peak frequency variation with temperature and also the temperature 
dependence of the band width of the v4 mode for NH4Br are shown in Fig. 4(b). A 
reduction of ~  75 cm 1 of the peak frequency could be observed over a temperature 
region 40 °C. Also, the band width indicates a minimum value ( — 70 cm *) at the 
transition region.

The intensity variation with temperature for the two modes v2 and v4 of NH4Br 
is shown in Fig. 4(c). This variation denotes a linear character of the intensities of v2 
and v4 modes in both of phases I and II of NH4 Br.

One can easily see that the peak frequency, band width and peak intensity for 
the two internal modes v2 and v4 (for NH4C1 and NH4Br) showed anomalous character 
during the phase transition II—I.

4) Rotational energy

The rotational energy barriers separating the two orientations of the ammonium 
ion were determined for both N H 4C1 and NH4Br according to the relaxation time 
equation [15, 17]. The rotational energy barrier “ [/” at certain absolute temperature 
depends on the relaxation time “t”. Also, the relaxation time is inversely proportional 
to the half band width of the absorption band. The temperature dependence of the 
relaxation time in the region of the doubly degenerate symmetric deformation mode 
v2 is shown in Figs 5 and 6 . The results of these calculations indicated that the 
rotational energy values are 1.38 eV (phase I) and 0.86 eV (phase II) for NH4C1 while 
those for NH4Br are 1.29 eV (phase I) and 0.81 eV (phase II). The energy required 
for certain possible orientation of the NH4 ion in NH4C1 is 0.52 eV while that in 
NH4Br is 0.48 eV which assumes that such orientations take place.
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T [ « C l

210 200 190 180 170 160 150

Fig. 5. Temperature dependence of the relaxation time in the region of phase transition II- I of NH4CI

T [°C]
160 150 140 130 120 1Ю

y .  10'3 IK-’]

Fig. 6. Temperature dependence of the relaxation time in the region of phase transition II—I of NH4Br

Discussion

It is well known that in the case of highly symmetrical ions in crystals it should 
be possible to obtain considerable informations about symmetry and structure of the 
crystals from the vibrational spectrum.

According to the present IR analysis, the disordering inherent in phase I and 
II of NH4C1 and NH4Br generates spectral anomalies. Within the crystal dimension
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corresponding to the wavelength of the exciting light, there is a loss of translational 
symmetry and consequently, the sampling of phonons with only very small wave 
vectors, K = 0 is not mandatory upon the IR transmission process. Thus, the usual 
sharp and symmetrical bands should not be expected. However, a reasonably strong 
broad spectrum was observed here for both NH4C1 and NH4Br. There are three 
main distinct bands that could be observed (2v6, v4 and v3). The broadening feature 
of the spectrum is due to phonon-phonon interactions which occur at high 
temperatures at which phase transition takes place. Also, the existence of some 
subsidiary shoulders on the high frequency band is possibly originating from two 
phonon summation processes at high symmetry points in the Brillouin zone, or is a 
result of a coupling with a normally inactive infrared mode with the main oscillator.

Special attention is paid to the differences between the numbers, intensities 
and different characteristics of the IR modes of phases I and II of NH4C1 and NH4Br. 
For both salts no unusual splittings of the internal modes could be observed. But 
the present spectroscopic analysis suggests that the similarities between NH4C1 and 
NH4Br are much closer than previously supposed [4, 5].

We have presented measurements of peak frequency, peak intensity and band 
width of the two internal modes v2 and v4 in NH4C1 and NH4Br spectra as functions 
of temperature.

The transformation from phase II to phase I in these two ammonium halides 
was monitored by the variations in these spectral parameters with temperature. The 
temperature of transition is 185 °C for the chloride and 135 °C for bromide. These 
values are in good agreement with the previously reported [8, 13]. This transition 
may arise from mechanical instability of the lattice in which an external mode 
elsewhere in the Brillouin zone assumes an imaginary frequency [18].

The doubly degenerate symmetric deformation mode v2 corresponds to an 
atomic motion in which the hydrogen atoms vibrate perpendicular to the N-H bonds. 
The triply degenerate asymmetric deformation v4 corresponds to an internal NH4 
motion in which the nitrogen atom vibrates with respect to the four hydrogen atoms 
as a whole. The present results showed that both v2 and v4 internal modes are very 
sensitive probes which reflects slight changes in site symmetry and local crystalline 
processes that occur as the crystal undergoes transformation from one phase to 
another.

The peak intensity of the two modes v2 and v4 decreases as the transition point 
is approached (Figs 3 and 4). This is due to the slight variation of the disordering 
state accompanying the transition or in other words the difference in the degree of 
disordering in the two phases of the two ammonium halides. Also, the decay of peak 
frequency is attributed to fluctuations of the order parameter in the vicinity of the 
phase transition. However, these results support the previous conclusions that the v2 
and v4 internal modes are very sensitive probes for phase transition

In general, the two modes v2 and v4 exhibited peculiar line shape and intensity 
variations as the transition II—I approached. These peculiar spectral features are
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associated with the presence of residual short range order in the disordered phase II. 
But during the process of phase transition, a rapid replacement of this short range 
order by long range order takes place. This replacement causes the intensity variations 
and the accompanied anomalies. The spectrum of a disordered phase is no longer 
rigorously controlled by selection rules, but at the same time it must be remembered 
that local order can persist in a disordered phase, i.e. occurrence of local order. This 
local ordering changes with temperature. The appearance of two definite shoulders 
for the mode v4 in the IR spectra (Figs 1 and 2) arises from the fact that the symmetry 
of the crystal field about any NH4 ion is no longer strictly complete. In more detail, 
as the transition temperature is approached in the high temperature phase transition 
II—I, the longer range ordering of NH4 ions begins to occur, which slightly displaces 
the halide ion (Cl or Br ) and in turn gives rise to the major NH 4 ion perturbation 
by modifying the tetrahedral crystal field. Thus, the lifting of the degeneracy for the 
triply degenerate vibrations is expected and is observed to manifest itself in the 
shoulder which develops specially on the high frequency side of v4. Also, it is expected 
that the near neighbour structures are predominantly those of the most stable 
crystalline forms although over any extended crystal volume there is still complete 
randomness.

The microscopic interaction is the main element responsible for the phase 
transition. This interaction depends on the relative spacing of the particles. Also, the 
transition temperature depends on these spacings. The frequencies of the majority of 
the vibrational modes of ammonium halides increase as the interatomic distance 
decreases. However, the magnitude of frequency shift depends upon the particular 
mode and are measure of the anharmonicities of the mode.

The nature of disordering of the two phases I and II of the present two 
ammonium halides can be distinguished as:
a) Positional disordering, which arises either when atoms or ions occupy appropriate 

sublattice positions or when more positions are available for the atoms than are 
necessary.

b) Orientational disordering, which takes place in situations where the ions occupying 
the lattice sites contain more than one atom. The orientational disorder here 
implied small energy difference since it takes place by thermal agitation. In general, 
the energy required for disordering is a progressively decreasing function of the 
disorder itself. Previous disordering events help the next disordering event to occur. 
Ultimately, the energy required for disordering decreases to zero at the end of 
transition. However, in phase I the disordering is effectively still greater than in 
phase II.

According to X-ray and neutron diffraction studies [19] phase I (of NH4C1 
and NH4Br) is a disordered face-centred cubic structure similar to NaCl and possesses 
Oh (Fm3m) space group symmetry with four molecules per unit cell. The ammonium 
ions are not freely rotating but undergo restricted rotations hindered by a potential 
barrier corresponding to orientations in which one, two or three hydrogen atoms
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make close approach to the chloride or bromide ions. Phase II has a structure of the 
CsCl type (space group O^). In phases I and II, the ammonium ions are randomly 
distributed between two possible energetically equivalent orientations giving rise to 
long range orientational disorder of the ammonium ions [19, 20]. Two unit cells of 
the crystal are shown in Fig. 7. Whithin any one cell, the nitrogen atoms sit at the 
body centres of the chlorine simple cubic lattice and the N -H  bonds point at the 
chlorine ions along the <111) axes of the lattice. The two possible orientations of 
the tetrahedral NH4 ions are shown in Fig. 7, where they are labelled “a” and “b”. 
In the high temperature state, the probability of an ion being in orientation “a” is 
equal to the probability of it being in “b”. The two orientations of the NH4 ions can 
be associated with the two states of the Ising spin [21].

©  nitrogen о hydrogen О  bolide

Fig. 7. Two possible orientations for NH^ ions in the disordered state

Under these assumptions, the optical phonons belong to the F lu type for both 
phases (I and II) so that they are infrared active but Raman inactive at wave vectors 
K = 0 [22].

Fraser and Kennedy [23, 24] have studied the NaCl(I)-»CsCl(II) transition in 
NH4Br in some detail and found that the <111) direction had rotated by 14-25°. 
The energy of a particular N H 4 ion with respect to neighbouring cations depends 
on the degree of orientational order so that the potential energy of ion as it rotates 
must also be a function of the degree of order. However, an NH4 ion in the two 
ammonium halides can change its orientation directly from any one equilibrium 
position to any other, or in other words, it is not restricted to a single-step reorientation 
about symmetry axis. The reorientation rate of the cations in phase I is considerably 
faster than in phase II.

The spectra of the disordered crystals of the two ammonium halides show less 
detail of the structure than those of the ordered form, since whereas the environment 
of a molecule or ion at a particular site in the unit cell in the ordered crystal should 
be uniform, variability in this environment from a molecule to molecule is to be 
expected in the disordered crystal.

It can be noticed that the frequency of the torsional oscillations of the NH 4 
ions (v6) appeared as its binary overtone (2v6) in the IR spectra at 700 cm T Also,
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when the NH4 ions become orientationally disordered, the triply degenerate bending 
vibration v4 appears at 1440 cm 1 which is a consequence of disappearance of the 
translational symmetry.

It is clear that our present experimental results on band intensities, frequencies 
and band width of the two modes v2 and v4 together with those presented previously 
can provide significant information on the nature of disordering phenomenon and 
local ordering in the two phases I and II of NH4C1 and NH4Br compounds. However, 
further experimental and theoretical work is needed on the various physical properties 
of these two disordered phases. A full understanding of the mechanism of transition 
and hence the associated changes in their properties, which are determined by the 
crystal lattice vibrations, will be obtained only when the lattice dispersion curve can 
be predicted throughout the Brillouin zone. However, the present measurements of 
the K = 0 optic mode frequencies can be used in conjunction with other data to 
provide important result for lattice dynamics.
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In this paper the most important features of instabilities are summarized and the most 
effective methods used to investigate them are analysed. These problems may arise, in addition to 
physics, in natural, technical, economic and social sciences and the methods developed in different 
parts of physics facilitate their description. We try to demonstrate that the problem of thermo
dynamic stability, instable states, quick changes, transitions accompanying singularity, catastrophes 
and chaotic behaviour are closely related phenomena occurring in real, non-linear nature, which 
can be ultimately included in the same group and which we investigate by different research methods 
because we do not have a universally valid non-linear theory.

Introduction

The problems of instabilities have recently become an intensively investigated 
sphere of physics. On the other hand, the stability conditions of macroscopic objects 
are most generally regulated by thermodynamic stability criteria. This is an ambiguous 
statement equally referring to terrestrial or cosmic scales, inorganic materials, or 
biological objects, the natural and artificial environment, technical, economic and 
social spheres.

The investigation of closed or open systems and the analysis of spontaneous 
or generated processes provides another possibility for classification. In principle, of 
course, all of them can be characterized by thermodynamic stability theories of general 
validity, the final build-up of which is a long-lasting process. Ceasing stability criteria 
lead to change in the stability state of the investigated system [1, 2, 3] and is 
accompanied by singularities in characterizing functions, changes in state, in certain 
cases intensive increase in disorder, or the dominance of random, non-linear nature, 
that is the chaos.

During the evolution in nature the opposite of these processes becomes 
predominant when either due to external effects or self-regulation disorder systems 
transform to a highly regular state and a form of existence more valuable from the 
point of view of the investigation is created. Such a process is e.g. the development 
of living material, or of social patterns.
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In this attitude the thermodynamics of states and processes, the investigation 
of stability problems, the theory of singularities and catastrophes, and the investigation 
of synergetics and chaotic features form an unambiguous logical chain, the elements 
of which are able to specify with their own apparatus parts of phenomena actually 
becoming predominant, which, however, cannot be separated from each other. In 
this respect the problem may be considered in such a way that the most general 
theory of states and processes, i.e. thermodynamics, may be extended so that due to 
the mentioned, associated principles of physics very rapid, random and very instable 
phenomena also become suitable for consideration.

The general frame for the investigations is provided by the theory of thermo
dynamics which has not been completely developed yet [4, 5] being able even today 
to characterize certain instable and rapidly changing phenomena and this range is 
supplemented by such sections of physics as e.g. the theory of stability-instability, 
the theory of catastrophes, the theory of singularity, synergetics or the theory of 
chaotic phenomena.

There are frequent cases in nature where the state of a system becomes unstable 
to such an extent that consequently a totally new state is formed. This kind of 
phenomena may occur in every sphere of nature such as the fields covered by physics, 
chemistry, biology, geology and technical sciences. It is interesting that processes of 
a similar kind may develop in economics and social sciences, too.

Strong instabilities developing in certain fields and the associated rapid 
transformations have the common feature that external and internal reasons work 
together to establish them. Of course, there may be cases when the instability is due 
either to external or internal reasons only.

Some illustrative examples demonstrate it well that strong instabilities and 
consequent radical and rapid transitions really take place in almost all fields of 
investigations. Such as e.g. earthquakes or tidal waves in geology, collapses in 
astronomy, accidents in traffic, break of structural elements in technical equipment, 
birth and death in biology, boom or crisis in economy, revolution or counterrevolution 
in society, phase transformations or chaos in physics, the effect of toxic matters or 
acute diseases in the living organism, reactions or the formation of new compounds 
by mixing different materials in chemistry, etc. This means that instabilities, rapid 
changes, singularities, catastrophes and chaotic phenomena equally occur in the 
natural, technical and social environment (including economy).

We have three basic methods for studying the mentioned phenomena: 1. thermo
dynamics, 2. the theory of singularity or catastrophes, and 3. the investigation of the 
phenomena of chaos, or synergetic methods. Of course other methods may also be 
successful.
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Scope of thermodynamics

The theory of thermodynamics used today may be essentially considered as a 
method of second approach because quantities representing actual dynamism, the 
general thermodynamic forces are produced with the help of the second term of 
entropy series. In these calculations we start from the fact that there is an entropy 
function S including all the possible thermodynamic information

S = F(x 1, x2, . .  .,x„). (1)

in which extensive parameters x ( play the role of the independent variables, the number 
of which agrees with that of the possible interactions [6 , 7, 8].

Here, the change in time is included in time dependence of the extensive 
quantities

Xi = fi(t), i '= l,2 , . . . , n  (2)

and this stimulates the entropy change in time, too.
Using specific quantities (or densities) the non-equilibrium specific entropy s 

(or the entropy density p j  may be sequenced in the vicinity of the equilibrium value 
s0(or ps0) according to the non-equilibrium extensive deviations (a-parameters) [9, 
10, 11]:

where

and

Л  f  d s \  1 Л
S =  S° + J , U j . “ ' + 2 J .

d2s
Ô0Li Ô(Xi

<*.<** +
k /0

=  ~9ik

(3)

(4)

(5)

In these formulae g =  g[pik] is the so-called entropy matrix being of nth order, 
quadratic, symmetric and positive-definite, — yJT  is the ith entropie intensive 
parameter, in which T  is the temperature and yt is the conventional intensive quantity 
originating from the energy [8].

The entropy change of a system being in non-equilibrium must be positive- 
definite, that is with the following quantities

ds =  s - s 0 = -  (6)
i 10 ^ ». к

Deriving it according to a, the expression for the occurring A^th general thermo
dynamic force is obtained:

X ' = % - - ^  =  - Z 9 * « k, «‘=1,2, . .  . ,n ,  (7)
10 1 fc
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which is the difference between the equilibrium and non-equilibrium value of the 
intensive parameters in case of a single system, the difference between the intensive 
quantities in two-system interactions and the gradient of intensive variables in 
continuous case [8 , 9, 10, 11].

The irreversibility of thermodynamic processes is expressed by the fact that 
during equalization

X , - » 0  and а;-к0 . (8 )

Irreversible thermodynamics in its present form is essentially a linear theory. 
Attempts have already been made to elaborate a nonlinear theory, but the results 
are still preliminary. Such results have been obtained e.g. by Gyarmati [11] and Li 
[13], completed later [14, 15], but as far as we know experimental evidence [16] is 
still missing.

This is well reflected in the second component of the theory, the description of 
thermodynamic currents or fluxes. Here the basis is the work of Onsager, which 
means the generalisation of the classical dynamic equations [17, 18].

Accordingly, in the development of any thermodynamic flux (or current) j, =  а,- 
all existing thermodynamic forces participate, that is

£  LikX k, f =  1,2, .. ,,n, (9)
к = 1

where the conductivity matrix L = L[Lit] is also of n-th order, quadratic, symmetric 
and positive-definite. These are the general conductivity equations of the thermo
dynamic theory which are linear that is the matrix elements Lik may depend on the 
place and time, but they are independent of y, and dyf or Py, [ 8 , 9, 19, 20].

Having written the equations (7) and (9) in matrix form and combining them 
after suitable time derivation we obtain the so-called thermodynamic equations of 
motion, containing the decay in time that is the real dynamics, which give the temporal 
change of general forces and а-parameters expressed by themselves

X = - g L X  (10)
and

à = — Lga. (11)

These differential equations contain the actual dynamism of the spontaneous
processes. Their formal solution

X(t) = X inilMe~*Ll (12)
and

“(0 = «initié L,t, (13)

where matrices gL and Lg are not diagonal and not symmetric, but they are positive
definite, which may express the physical fact that initially produced thermodynamic 
forces and non-equilibrium deviations decay in time and the state moves towards 
equilibrium.
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Due to the cross-effects, X  = X(t) and oc =  a(i) are not necessarily definitely 
monotonous-decreasing functions of time but only produce the ultimate decay of 
non-equilibrium disturbances. It should be noticed, however, that in case of real 
systems and actual processes, current (or flux) density j, generally contains convective 
member jev in addition to the conductive member jcd, meaning that

ii =ícd +jcv = ' L LikX k + PP» (9')к

where p, is the density of the i-th extensive quantity and v, is its velocity of flow [2 1 ].
Thermodynamic processes are generally initiated by the condition that the 

system examined is in connection with another system which exerts influence on it 
and at the same time internal changes (e.g. chemical reactions) occur in it. Denoting 
the external generation by G = G(t) and the internal source by Q = Q(t), the general 
thermodynamic equation of motion for such changes of state including external 
generation and internal source, [2 2 ] are

* ( t ) = -g U f ( t )  + gG (t)-gß(t), (14)

«(*) =  — Lga(t)—G(f) +  Ö(í), (15)

which characterize the dynamism of the generated processes.
Formal solutions of these differential equations contain the change of thermo

dynamic forces and non-equilibrium deviations in time. Their general forms are

X(t) = \(gG(t)-gQ(t))e*u dt T  ^ i n i t i a l
0

e -  gLl (16)

«(0 = { ( -G(t)  + Q(t))eLvdt + ^ in i t i a l
0

e -  Lgt (17)

which means of course that X(t) and a(t) are the vectors of all possible forces and 
deviations, respectively.

With the supposition of G(t) = G0 = const and Q(t) = Q0 = const, these solutions 
may be clearly separated into two parts

* (0  = ( - L - - ‘Go + L lQ0 + X inilM)e *l, + L 'G0- L  'Q0, (18)

a(i) = ( g - 1L - 1G0 - g - 1L - 1e 0 + ainitial)e“L« ' - g - 1r 1G0 +  g ‘L ^ o .O ^

from which the first one includes in both cases members depending on time, and the 
second one includes members independent in time. After a sufficiently long time has 
elapsed just these latter ones create the basic non-equilibrium level, resulting by 
external generation

A"(f = co) = L - 1G0 —L - 1ß 0, 

a(i = o o ) =  - g  ' L  'G o  +  g ‘ L ' ß o .

( 20)

( 21)
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The build-up of the differential equations referring to X(f) and á'(í) and their 
solutions provide a possibility for describing the rapid changes of state thermo
dynamically.

We have examined the second-order dérivâtes according to time of dynamic 
quantities participating in the characterization of the generated processes, that is the 
general thermodynamic forces X t and the non-equilibrium deviations a,. In this way 
we have obtained such “equations of motion” which are suitable for describing 
phenomena quickly changing in time that is for describing rapid processes.

Differential equations obtained in this way specify the second dérivâtes in time 
of the general thermodynamic forces and non-equilibrium parameters. The equati
ons—in addition to the above mentioned quantities—include the effect of the external 
generation and the internal source. These differential equations will be

tf(t)= -gL *(r) +  gÔ(r)-gÔ(t), (22)

« (í)= -L gá(t)-Ö (t) + Ó(f), (23)

whose solutions give the velocity of time-change of the general thermodynamic forces 
and the non-equilibrium deviations

X ( t ) = f  ( g Ó ( t ) - g ( ) ( t ) ) e tL,d t -^ in i t i a l
0 ]e -fLf (24)

à(f )  = j  - 6 ( t )  + $ ( t ) eL« d t T  ®initial^j e - L f f (25)

If G(i)=G0 =  const and ß(i) =  ß 0 =  const, then the general solutions (24) and (25) go 
over into the form of

and
(26)

á(í)=áini,i.le “L*', (27)

which give analytic expressions—finally disappearing in time—for the changing 
velocity of the forces and equalization currents.

Starting from the fact that g and L are independent of time, and supposing a 
functional relation of this type for G(f) and ß(t)

G(t) = G0e~Lv and ß(t) =  ß 0e L«' (28)

the differential equations

X(t)= - gL tf(t)-gL gG (i) +  gLgß(i) (29)
and

Ä(f)= — Lgá(r) + Lg G(í) —Lg ß(i) (30)

and obtained for describing the rapid change in time.
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The general solutions of these differential equations are:

X ( t )  = G(t)+ gLg Q(t))e*Lldt T  initial
0

e *L', (31)

m = Í  (Lg G ( f )  — Lg Q(t))eL,'dt T  ^ in i t i a l e -Ljl (32)

which include the phenomena of rapid, macroscopic changes.
It is clear from these considerations that the sphere of irreversible thermo

dynamics may be extended even to the description of rapid changes of state on the 
condition that we must know the parameters which may be substituted into the 
theory and which in this way provide concrete information on the processes and 
phenomena.

Stability and instability

The theory of thermodynamics starts from the features of the entropy

S = S(xi , x 2, ■ . . , x n), 

Xi =E,
(33)

of the internal energy

E = E(Xy,x2, .. .,*„), 

X, =S,
(33')

as the fundamental functions for the stability investigation.
The necessary condition for an equilibrium state of a system is that the relation

dS = 0, (34)
or

dE = 0 (34')

should be satisfied which is at the same time the necessary condition of extremum, 
namely S = Smax for entropy and E = Emin for energy. The sufficient condition together 
with the above one is that

d2S<  0, (35)
or

d2E> 0, (35')

which, however, mean the condition of state stability, too [23]. Should these conditions 
fail to be fulfilled (of course just in alternate sense) the macroscopic state looses its 
stability and becomes instable. On the other hand, thermodynamic stability or 
instability are essentially caused by the entropy matrix g and the conductivity matrix L.
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Entirely generalising their features, the change of state at place r and in time 
t is described by a continuity type equation [24]

к d f  , .
-  -7 - f  +k  div 

/  dt P \ f  PV * f  = f 2
(36)

where к is a constant, /  is the probability density meant for the state-space stressed 
by {p 1, P2 , . ■ - , pn} extensive densities and normalized to unity

\ f ( p ,  t)d"p = l (37)

and a is the dispersion tensor. Macroscopic entropy density in the place r and time 
t is given by the expectable value <ps>

p , ( r , t ) = - k l f  In f f p ,  (38)

and its mixed second dérivâtes by <p,-> and <pk> provide the elements for the matrix g

d2<Ps)
d<Pi>d(pk} ~ 9 i k — — 9 ki r n

Consequently, the positive definite nature of g is the result of Eq. (38). The value of 
the integral is maximum when f  = f(p)  is constant, or when it is the smoothest. 
Because of sub-conditions only this latter one can be realized.

It is clear from (36) that the conduction matrix Lik corresponds to the dispersion 
tensor aik, and therefore it is positive definite. The semidefinite character

au = *->Lu = 0 (40)

represents a case where the distribution according to p is point-like and the state is 
deterministic. (Just one state may exist with a single probability, which is practically 
never realized). In case of very sharp, but not point-like distribution au and thus L„ 
have very small values.

The elements with mixed indices aik*-*Lik measure the dependence of p, and pk 
on probability for the case i# k . Therefore, if p, and pk are independent probability 
variables, then

a ijt =  0 < -E iJk =  0, (40')
i / f c ,

thus L is diagonal and cross-effects do not occur.
Concerning the behaviour of the matrices g and L the following general rules 

may be formulated [24]:
1. The elements of the matrix L cannot behave so irregularly that would cause lability 

in itself (and at the same time a strongly instable state, catastrophe-like change or 
perhaps phase transition). This is shown clearly by experimental results and the 
deeper reason for it is that the dispersion tensor can never be indefinite. The value 
gu= 0  occurring in certain cases demands—in order to maintain stability—that
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L,-,—» oo in the proper order. This case corresponds to indefinite large (a„ = oo) 
dispersion.

2. In certain cases however when L„ = oo, this by itself and alone may ultimately cause 
only neutral equilibrium.

3. On this basis it is justified that we causally relate instabilities to the matrix g pointing 
out that transitions are generally characterized by the rapid change of the matrix 
L, which results in physically very important phenomena.

4. The possible singularity of the matrices gL or Lg prevent the decay of the matrix 
functions X , = e tL‘X iaiti2il, and <х,=е L*'ainjtial, that is it means the violation of 
equalization endeavour. It occurs in the case of rapid transformations.

5. Such abrupt, catastrophe-like transformations generally take place due to the 
disturbance of the static, stable equilibrium states and the new states satisfy the 
stability criteria of the static equilibrium.

Summing up the above we may say that the joint and abrupt change of the 
corresponding elements of the matrices g and L is necessary for the unstable states to 
arise.

The stability of states may be examined—in a general way—by the help of a 
variational principle. Now we set a variation principle, where the independent 
variables of the Lagrange function <£ are the space coordinates rl , r 2, r 3, the time i, 
the intensive parameters y l , y2, .. ,,y„and their gradients Vyx, Vy2, . . . ,  Fy„[22,25]:

i , r 2 , r3,t; УиУ2, ■ ■ -,Уп, Vy i, Vy2, . . . ,  F'yn)dr1ifr2<fr3dt=extremum.(41)

Denoting dyi
drk

= y{'k), k = 1, 2, 3 the Euler-Lagrange equations will be

d d d £ f  ô dSe

dr{ dy\r 11 + dr2 őy-r2) + 6T3 dÿ ' i] dyt
(42)

i=  1, 2 , .. .,n

which applied for the corresponding thermodynamic Lagrange function gives the 
equation of the entropy balance. Expressing this with the ос-parameter of entropy (as) 
in stationary case it would have the form of

div ds= Y, (ry„dd+ £  )’iQi <43)
i = 1 i = 1

in which, in addition to the spontaneous entropy-production, members originated 
from the source densities of extensive quantities qt also appear.

Performing the calculations for the determination of the necessary and sufficient 
condition of extremum, leads to the relation

j . .)d3r dt = minimum, (44)
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which is just the condition of stability. It means that when it is fulfilled the state is 
stable, when not, it is unstable.

One of the direct physical results of the investigations is that during processes 
entropy is produced at each place of the physical system and at each instant of time, 
namely by

where the sign of equality just corresponds to the stationary state. Therefore 
instationary entropy production (or that occurring with rapid change) is always larger 
than that belonging to the stationary state [22, 24].

Attempts have been made in thermodynamics, too, in order to deduce the 
fundamental equations of thermodynamics from a general variation principle, 
similarly to mechanics and electrodynamics. For this purpose the following functions 
are needed:

1. the spontaneous entropy production

where R = R[Rit] is the so called resistivity matrix. By the help of these the “principle 
of least dissipation of energy” [26, 27] of Onsager may be obtained in flux 
representation by a variation according to ос,- with constant A-,:

or in force representation by a variation according to A",- with constant values of oc,[8]

instac s t a c ’ (45)
that is

dVdt> (46)

and in this way

(47)
V

<*(<*,, * , ) =  Zct.-Yj. (48)

2 . the dissipation potential depending on the forces

(49)
I  i.k

3. and the dissipation potential depending on the fluxes

(50)

(a — Ф)х = maximum, (51)

(a —4*); = maximum. (51)
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It should be noticed that the original Onsager’s flux representation of the principle 
has proven to be very special and its applications are rather restricted, at least in 
case of continua.

In thermodynamics two different variational principles have been widely 
applied, namely the principles elaborated by Prigogine and Gyarmati.

Prigogine’s “principle of minimum entropy production” may be summarized 
as follows [28, 29, 30]. When a system, characterized with a number n of independent 
forces X i ,  X 2, . . X„, is kept in the state of fixed X k, X 2, ■ ■ X k (k < n ) and 
minimum entropy production then fluxes ос, =  /, belonging to the indices i = k+l ,  
k + 2, . . л, disappear. This means that the fluxes which—as conjugate variables— 
correspond to the non-fixed Xt+1, X k + 2, . . X n forces will be zero. This state is 
called stationary of /с-th order. (We remark that entropy production means here only 
spontaneous production, independent of the possible sources of extensive quantities 
characterizing the individual interactions).

Entropy production belonging to this state may be easily calculated. The 
necessary minimum condition for the indices i = k+ 1, к + 2, . . n will be

da
dX)

d
d X ] J ,

LijX iX j = 2 £  LyJ0 = 2 i,-O .
j= 1

(52)

Consequently, when we have non-zero values among the fixed X t belonging to indices 
i= 1,2, . . . ,  к this index is áf #  0, for i = 1, 2, . . . ,  k. In this way the minimum entropy 
production has the form of

к п к
* =  Z  I  L y X ' X j -  I  <*,*, = < W  (53)

i = 1 j = 1 i = 1

A general variational principle of non-equilibrium thermodynamics is the 
“governing principle of the dissipative processes” of Gyarmati expressed by the 
relation [31]

Ő $(a- (4 '  + <P))dV=0 (54)
V

and written in a more detailed form in the following expression

S а .Р у ,— dV= 0. (54')

This principle is suitable for deducing thermodynamic transports and gives some 
possibility for certain quasi-linear and non-linear description [32, 33, 34].

The wide range of analysed examples shows that the variational principles are 
as fruitful in thermodynamics as in the other fields of physics [35-43].
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Singularity and catastrophe

Phenomena of nature, society (e.g. economy) and technology are generally 
non-linear. Linear apparatus used to describe them can actually follow the real 
phenomena just up to the level of modelling. However, the “model” is almost perfect 
in many areas, it describes a wide range of phenomena and their elements important 
for us with great accuracy.

There are phenomena, however, for which the non-linear nature is obvious and 
for which it can be easily stated that a linear approach cannot provide a reliable 
picture and acceptable results of the relevant effects. Such typically non-linear 
phenomena are e.g. turbulence, fluctuations, the critical dynamic effects occurring 
during phase transitions, singularity, catastrophes and the disordered conditions of 
chaotic features. The investigation of these phenomena clearly leads us out of the 
world of linear principles. Catastrophes are abrupt, in certain cases unexpected events, 
causing a drastic change or crisis in the system concerned [44, 45, 46].

The different principles of singularity may play an important role in working 
out the catastrophe principles, as its introductory elements. This is made possible by 
the fact that any of the characteristic functions show singularity when the catastrophe 
takes place.

One of these singularity theories is that of Lifshitz [47], who elaborated the 
principle for characterizing abrupt and radical change developing due to the change 
of external circumstances in metals. The theory concerns concretely the topologie 
change of the Fermi surface in metals and the behaviour of the function of electronic 
state density due to external pressure, but it may certainly be applied to other similar 
problems, as well.

The essence of the Lifshitz electronic transition may be summarized in the 
following way: when the critical energy value ec for which the change of the Fermi 
surface topology characteristic for the given metal takes place is near to the Fermi 
energy ef , then in case of a very small change in er the topology change may occur 
actually, and the electronic state density function v(e) has a singularity near the Fermi 
surface ef zsec. In this case v(e) may be produced as the sum of a smooth function 
v0(e) and of a non-monotonous additive part áv(e):

Consequently, closed-open, or open-closed Fermi surface change, the appearance or 
disappearance of electron groups may take place, which strongly influences the 
physical characteristics of the metal.

We applied this principle in the research of superconductors using the fact that 
as a result of the mentioned behaviour of state density a non-analytic contribution 
appears in the characteristic thermodynamic potential function:

v(e) = v0(e) + <5v(e). (55)

if z < 0 , 
if z>  0 , (56)
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where к is a constant, ß ~ N / n 3l2> 0, z =  /r — £c, in which N  is the number of the 
conductive electrons and ц is the electronic chemical potential.

Applying this method for the present case, on the one hand, we succeeded in 
determining the order of the specific superconducting phase transition developing 
due to increasing the concentration of the alloying material [48], and, on the other 
hand, we obtained valuable information on the effects of paramagnetic and diamag
netic contaminations in superconductors [49, 50]. It is evident that this theory may 
be applied to other kinds of rapid and radical transformations, catastrophe pheno
mena, too [51].

Another approach of the catastrophe theory is to draw conclusions from certain 
mathematical features as regards the nature of the catastrophe phenomena. Things 
which are changing rapidly and irregularly have resisted the correct mathematical 
analysis for a longtime, because it is very difficult to describe them. The method 
deduced from topology handles these phenomena as “elementary catastrophes” and 
attempts to interpret them on the basis of common features.

There are two different methods of developing the catastrophe theory:
1. a mathematical interpretation with the corresponding mathematical formal

ism,
2 . the application of the mathematical principles (or the mathematical analyses) 

of the physical problem.
Catastrophe theory—as a mathematical discipline—in its own usual form 

actually is a classification theorem of degenerated singularity, extensively using the 
theories of extension and singularity [52]: The other form even provides possibility 
for the examination of different applications, because it may use theoretical descrip
tions of the solutions of linear partial differential equations and propagation 
phenomena. Here the analysis of interesting physical, biological, chemical, geological 
and even economic and sociological problems may be considered.

The problem of “shock-waves” is very important in applied mathematics, 
physics and engineering sciences, as it occurs in several physical phenomena. This 
effect develops when a physical phenomenon (or physical system) rapidly changes 
from one state to another. Due to the discontinuous nature of matter this is a very 
complicated problem with sophisticated mathematical statements.

Thom’s classification, grouping singularities into certain classes of functions, 
has greatly contributed to the understanding of discontinuities occurring in natural 
processes. The meaning of this classification is that it makes possible the definition 
of equilibrium states subjected to a few constraints and describes how these equilibrium 
states change with the change of the constraints [53].

Several phenomena are governed by certain kinds of potential functions. These 
have in the stable equilibrium state minimum (or maximum) extrema. We can change 
the governing potential function in an experiment—changing the control parame
ters—so that all of the local minima (maxima) are covered. This means that we 
produce all the equilibrium states that the system can have. In this way the stable
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equilibrium states of the system may change discontinuously when the control 
parameters change continuously. These discontinuous changes of state may be called 
“catastrophes”.

According to these considerations we may interpret different types of elementary 
catastrophes [54].

It is a rather general procedure that the appearance (or existence) of certain 
phenomena may be interpreted by minimizing (or maximizing) a potential function. 
It was due to Lagrange, who supposed that Newton-type motions may be character
ised with the minimum of the action integral

*2
j  (r, t)dt = minimum, (57)
о

where ££ is the difference of the kinetic and potential energy, r is the place variable 
and t the time variable. This way of description is equivalent to the Euler-Lagrange 
equations.

Next we show some demonstrative examples for the extreme values:
1. If a chain of length l, fixed at its two ends, is affected only by the gravitation 

space, then the Euler-Lagrange equations for the shape of the curve give the formula:

y = - c o s h  (ax), (58)a
where

У ж / F ’
which is the well-known equation of the “chain curve”.

2. When light passes from one medium to another there are several possibilities 
for the path of light. Light chooses the shortest of time intervals according to the 
principle of

J n(s)ds = minimum, (59)

where n is the refractive index and s is the path of light.
3. If a ring placed into soapy water is slowly removed, we get a surface with 

minimum area, which—depending on the shape of the ring—may be either a 
two-dimensional form or a bubble. At the same time the surface stress must be 
maximum.

4. In architecture the basic principle is to minimize the expenses, and maximize 
the useful area and esthetic quality.

5. In thermodynamics the maximum or the minimum value of the characterizing 
potential functions describes the distinguished states.

In the following some examples are shown for discontinuity and singularity:
1. The density of boiling water is abruptly discontinuous from 1 to 0 during 

boiling. The characteristic function has a singularity. This is a type of stable 
discontinuity.
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2. Water waves break when they arrive at the shore. The waves are symmetric 
before breaking and cresty after breaking.

3. In wind channels with a narrow neck the velocity increases at the narrow 
part and may reach even the velocity of sound. If local pressure is considered as the 
function of velocity, a sharp peak appears at this point and the pressure diagram 
becomes discontinuous.

In describing phenomena the method of topology comes to the foreground. 
Elementary catastrophes may be considered as certain singularities in the continuous 
projection of four- or less-dimensioned spaces. This is important because it appears 
in space-time in a structurally stable way.

The catastrophe (or bifurcation) is the system of points in the parameter space 
where the location of the minima (or maxima) of potential functions changes abruptly 
(discontinuity) when the parameters change. In this way the central question of the 
catastrophe theory is the investigation of the change of topology, the results of which 
are directly used in its own apparatus [55]. Considered from this aspect, Thom’s 
theory distinguishes between seven different types of catastrophes, according to the 
change of topology in the case of four or fewer dimensions (Table I).

Table I

Different types of elementary catastrophes

Name Germ Universal Codimension

1. Fold X 3 X 3 + их 1
2. Cusp (Riemann-Hugoniot) X 4 X 4  +  их2 +  t)X 2
3. Swallow tail X 5 x5 +  ux3 +  t>x2 +  tvx 3
4. Butterfly X 6 X 6 +  ux4 +  ex3 + wx2 +  zx 4
5. Hyperbolic umbilic x 3 +  y3 x 3 +  y 3 +  wxy +  ux + vy 3
6. Elliptic umbilic x 3 +  3xy2 X 3 +  3xy2 +  w(x2 +  у2) +  ux +  vy 3
7. Parabolic umbilic Х 2у  + у Л x 2y + y ‘l + wx2 + zy2 + ux + vy 4

Two fundamental regulating principles play a role in the description of these 
phenomena:

1. The so-called Maxwell convention (using the concept of “attractor” which 
is the range of the phase space to which the trajectory characterizing the changing 
system moves on after a while, i.e. in time). It means that when two or more stable 
attractors are in concurrence at any point of the parameter space, the system will 
select the state of the absolute minimum potential. Catastrophic conflict develops 
when there is more than one absolute minimum for the function [56, 57, 58].

2. The so-called rule of delay stating that once a stable attractor has been 
selected, then it must be continuously and systematically selected until it disappears 
at any degenerated critical point. At this moment the minimum will produce a rapid
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change. Geomett.cal place of the parameter is such that the potential function will 
possess degenerated critical points [59, 60, 61].

Two examples for the extension of singularity are given as follows:
1. Universal extension of the singularity type

V= y  X 3 (60)

is

V(x, u)= y  x3 + cx4 + ux, c ~0 .  (60')

Here the compatibility member cx4 does not influence the minimum at the critical 
point when only close neighbourhood is taken into consideration. However, it is able 
to produce one minimum point rather far from the start.

2. Similarly, universal extension of the singularity type

G = | x 4 (61)

is the potential

G(x, u, v)= y  x 4 + u + i>x (6 Г)

which characterizes the well-known cusp catastrophe. These ideas come partially 
from thermodynamical investigations performed for the specification of catastrophe
like jumps occurring in boiling liquids, and, on the other hand, from geometrical and 
mechanical investigations.

Synergetics and chaos

In the everyday concept the picture of disorder is associated with the idea of 
the chaos. In a general image disordered or totally unarranged things are referred to 
as “chaotic”. However, is there any unambiguous criterion of the chaos in physics? 
The chaos may be described by two characteristics: by random nature, on the one 
hand, and by non-linearity, on the other. Accordingly, chaotic state is the evolution 
of random phenomena in non-linear systems [62, 63, 64].

The phenomenon may be illustrated by giving either a characteristic time, or 
a characteristic length.

The former one means that—during the time of measurement—the system 
undergoes several changes of state with nonexpert direction. In this representation 
rapid and disordered changes of state result in the chaotic character.

The essence of the latter one is that there is a great number of different states 
existing within a distance characterizing the system at a given time. In this concept

A d a  P h y s ic a  H u n g a ric a  63 , 1988



INSTABILITY AND NON-LINEARITY 287

the different states existing at the same time may be considered as the cause of the 
chaos.

Studying non-linear behaviour has started in two closely related ways: the 
theories of synergetics and of chaos [65, 66]. These two research trends are strongly 
connected to each other, they deal in most cases with similar or identical phenomena 
and arrive at the same result. They can perhaps be distinguished by their different 
attitudes.

In synergetics research started by gathering non-linear phenomena from 
different chapters of physics and other natural sciences, trying to find their common 
features. Synergetics’ own major task is considered to be to investigate highly 
organized structures and self-organization.

Beside the fact that the non-linear basis is common, the theory of the phenomena 
of chaos may be perhaps separated from synergetics by the consideration that its 
major research field is development in the reverse direction, the disorder originating 
from the random character and the evolution of the chaotic states.

Considering the problem from a methodological aspect the random nature of 
phenomena occurring in non-linear systems is outlined better in the theory of the 
chaos whereas the operation with probability distribution functions receives more 
attention in synergetics. Of course the common features are of basic and decisive 
importance and the differences have a rather conceptual meaning [57, 68, 69].

Up-to-date computer techniques are widely used for these investigations.
Some years ago when the theory of similarity was studied intensively, attempts 

were made to describe the real reason for physical similarity by different methods, 
e.g. similarity criteria. This idea appeared to be slightly mysterious until the 
theorem—according to which phenomena described by the same type of differential 
equations may be considered similar—gained unambiguous approval.

In the course of investigating the chaos this uncertain element has appeared 
again and this is why it is necessary to mention the relevant fundamental recognition. 
Accordingly, each system, given phenomena of which are described by nonlinear 
differential equations, may take chaotic features.

The reason for chaos, as a mode of behaviour may be found in the non-linear 
features of the investigated system, and in the mathematical apparatus actually 
describing them, which means that solutions of the characteristic differential equations 
reflect the chaotic features occurring in the different cases [70, 71, 72, 73].

Under certain circumstances the non-linear systems show completely irregular 
chaotic behaviour. This has the main feature of being extremely sensitive to the initial 
conditions in the sense that at the given moment two trajectories, being near to each 
other, move away with exponential velocity. However, due to the fact that motion 
is generally limited to a finite range, trajectories mixing in a very complicated way 
are formed which show random features for real measurements of finite accuracy. 
This phenomenon is interesting because it appears typically for each non-linear system,
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if the system has more than one degree of freedom and it occurs both for conservative 
and dissipative systems.

As an example, let us examine a simple mechanical system, the one-dimensional, 
dampened, anharmonic oscillator with unit frequency generation, the so called Duffing 
oscillator. The equation of motion for this system will be

r + 1г + гг = А sin (27it). (62)

Introducing the new x 3= r ,  x 2 = f, x 3 = 2nt coordinates it is obvious that in case of 
sufficiently high dampening (large A) the system has a stable limit cycle, which may 
be described by a closed curve on the phase plane (x1; x 2). In phase space stressed 
by coordinates (x j,  x 2, x 3) the motion may be characterized with an equivalent field 
of velocity dx/dt = / ( x )  and in this space the trajectories intersect neither each other, 
nor themselves.

Reducing the measure of dampening, under a certain value A = A, the limit cycle 
of unit periodic time becomes unstable and a stable limit cycle with a period twice 
the former one appears. Further reducing the value of A, doubling of the periodic 
times occurs again for A,, A2, A3, . . . ,  dampening. According to numerical experiments, 
this period doubling is continued infinitely and the series Aj, A2, A3, . . .  has a 
congestion point A0. If dampening is reduced to below A0, the periodicity of the 
system’s asymptotic motion ceases and the motion in the phase space becomes 
irregular (chaotic). However, this chaotic motion does not fill the entire phase space, 
but—totally independently of the initial conditions—it moves on to a partial set of 
it, which is the so-called strange attractor. The most characteristic feature of this is 
the very high sensitivity for the initial conditions, which means that a very slight 
change in them causes significant deviation of the trajectories from the original ones, 
within a very short time period, resulting in that it becomes totally impossible to 
predict the motion according to the initial values. The appearance of this strange 
attractor in non-linear systems is a typical phenomenon, and due to the effect of 
further changing of the control parameter the structure of the attractor becomes more 
and more complicated, which means that the dimension number of the strange 
attractor is ever increasing.

It would take much time even to enumerate chaotic system. To mention just 
a few examples, chaotic systems include non-linear electrical networks (due to 
dissipation on resistances these are generally non-conservative), certain chemical 
reactions (e.g. reactions of Belousov-Zhabotinski, certain enzyme reactions), hydro- 
dynamical turbulence phenomena, the Benard problem, certain nervous diseases, 
economic and control technical phenomena, etc. [74, 75].

For example we demonstrated in earlier papers that the interaction between 
magnetic vortices and pinning forces in type II superconductors has some specific 
features [76, 77] and may also result in a chaotic behaviour [78].

The development of the chaotic state may take place in different ways, e.g. by 
period-doubling bifurcation series, but the special attractor may also develop after a
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few (generally two or three) bifurcations. In this case during the change of the control 
parameter, first a limit cycle appears and then the system gets into the state of 
biperiodic motion, the characteristic frequencies of which cannot be compared. The 
Fourier spectrum of the system first shows some discrete peaks, corresponding to the 
incomparable frequencies, and at the appearance of the strange attractor the spectrum 
becomes continuous [79, 80].

We also have to mention the so-called intermittent transition to the chaotic 
phase, when chaotic intervals appear at a certain value of the changing control 
parameter in the periodic phase and these become dense and fill the periodic phase 
completely.
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Recent studies based on microscopic theories have supported the existence of three-body 
forces in solids. A phenomenological model incorporating three-body forces is proposed and applied 
to calculate the phonon dispersion curves of silver which are found to be in very good agreement 
with experimental results.

1. Introduction

Recent studies [1-3] of lattice dynamics of metals based on pseudopotential 
theories have met with only a limited success in the case of noble metals. The chief 
complexity in these metals arises from the presence of d-shell electrons which are 
neither tightly bound to be considered as core electrons, nor so free as to be regarded 
as conduction electrons. Nevertheless, the pseudopotential studies have yielded some 
important informations regarding the nature of interactions in metals. Using 
pseudopotential theory Brovman et al [4-6] and Pethick [7] have shown that 
three-body interactions play an important role in metals and are essential to obtain 
the required equality of static and dynamic elastic constants. In the present paper 
we have adopted a phenomenological approach [8] to incorporate the effect of 
three-body forces on the lattice vibrations of a noble metal. The resulting model has 
been applied to calculate the phonon dispersion curves of silver in the principal 
symmetry directions. Extremely good agreement with the experimentally measured 
values is obtained.

2. Theory

We consider the energy of a metal as made up of three parts:
(i) Ec, due to core-core interactions,

(ii) Ed, due to d-shell-d-shell interactions, and
(iii) Ev, the volume energy which represents the combined effects of the 

interactions among (a) core-conduction electrons and (b) d-shell-conduction electrons.
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Pseudopotential studies of Pick et al [9] and Resolt et al [10] have shown that 
interactions among cores are essentially central. We have also, therefore, supposed 
core-core interactions for Ec to be purely central. These have been calculated in the 
usual manner [11] extended to second neighbours. The presence of d-shell electrons 
is well known to be responsible for the breakup of the sphericity of the charge 
distribution resulting in non-central interactions [12, 13] among clouds of d-shell 
charges. We have considered these non-central interactions to be of three-body 
character which can be phenomenologically described by the Clark-Gazis-Wallis 
type angular forces [14]. We have used these forces as given by Yuen et al [15] for 
a FCC metal.

The volume energy Ev is connected to many-body interactions. We follow the 
idea of Sarkar et al [16] who have developed this energy in terms of the volume 
strain A around the equilibrium volume. The term of interest in the expression is 
\ /2KeV0A2, where Ke is the bulk modulus of the electron gas and V0 the equilibrium 
volume. Interpreting A as a local strain one can express it in terms of the coordinates 
of the ions of the region. The region considered for the purpose is confined to the 
twelve nearest neighbours. As the term in A is quadratic, the sum over the twelve 
nearest neighbours compresses the many-body interactions into an effective three- 
body interaction.

The total dynamical matrix elements are found to be:

D a ~ { 2 a t  +  Щ у \  +У'2)] [2 — C i ( C j  + CJ] + 4a2S? —

-  8 /, (2S f  - S j  - S 2k) +  К ' S f ( C j  +  C k)2,

D u  =  [2a, - 16/, + К Щ  +  C k) ( C k +  C M S J j ,

where
у' = y/a2; K' = K ea/4; S, =  sin (лак,); C; =  cos (пак();

a is the lattice constant, к the phonon wave vector and the subscripts i, j, k, denote 
the Cartesian directions.

3. Results and discussion

The matrix elements given above contain five parameters — a , , a2 for the central 
forces, у,, у2 for the three-body angular forces and Ke for the volume forces. These 
are determined from three elastic constants and two zone boundary frequencies. The 
input data and the calculated parameters are given in Table I. The calculated phonon 
dispersion curves are shown in Fig. 1 along with the experimental points of 
Kamitakahara et al [17].

As is evident from the dispersion curves, a very good agreement is obtained 
with the experimental values for all directions. The maximum discrepancies are within
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0.0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 Q2 0.0 0.2 0.4
reduced wavevector

Fig. 1. Dispersion curves of silver in the three principal symmetry directions. Phonon frequencies in THz 
are shown as function of reduced wavevector: ak/2n for (100) direction, ak/2n^/2  for (110) and a kßny jb  

for (111) direction. Also shown are the experimental points of Kamitakahara et al, Ref. [17]

Table 1

Input data and calculated parameters

Input data Model parameters 
[N /m ]

Elastic constants: C ,,: 12.399 a,: 28.124
[1010 Newton/m2] C12: 9.367 a2: -1 .3 3 6
Ref. [18] C44: 4.612 y ,/a2: 0.364

Lattice constant: V: 4.08

y2/a 2: -1 .1 6 1  
Kea: 6.699

[10"'° m]
Atomic mass: ’M’: 107.868

[amu]
Zone boundary frequencies: vt (100): 4.96

[THz], Ref. [17] vt (l/2  1/2 1/2): 5.08

3%. Our model employs physically realistic interactions supported by microscopic 
studies based on pseudopotentials. The close agreement obtained justifies the 
importance of various interactions considered. In particular, the many-body volume 
energy seems to be effectively well described by the resulting three-body interactions.
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THE EMISSION BAND SPECTRUM 
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The emission spectrum of NiCl has been reinvestigated in a H.F. discharge from a 500 W 
oscillator using high dispersion. This study has led to a revision of the vibrational analysis of 
several doublet systems of bands recently reported in thermal emission using low dispersion. The 
bands of NiCl in the region XX 340.0-560.0 nm have been analysed as belonging to several doublet 
systems of bands degraded to red, some of which have a common lower АгП1 state and others 
with a common ground state X 2L, analogous to Л2/7, and X 2X states of NiF recently established 
from a detailed rotational analysis of two doublet systems in the visible region. The vibrational 
analysis of some of the systems have also been confirmed from a study of both chloride and nickel 
isotope effects observed in Av=  ±  1 sequences.

1. Introduction

The emission spectrum of NiCl has been investigated by Mesnage [1,2], More
[3], Krishnamurty [4], Reddy and Rao [5], Rao, Reddy and Rao [6], Rao and Rao 
[7], Darji and Shah [8] and Shah, Darji and Shah [9] in various electrical sources 
of excitation. The spectrum was known to consist of several brief systems of bands 
in the visible region AA 340.0-560.0 nm. Recently Gopal and Joshi [10, 11, 12, 13] 
reported for the first time the occurrence of the spectrum of NiCl in thermal emission 
in the visible region AA 399.0-555.5 nm. They reported the vibrational analyses of 
several doublet systems of bands corresponding to transitions from the ground X 2A 
state to various excited states designated as А, В, C, D, E, F, G, H, /, J, К and L in 
order of increasing energy. The ground doublet state is suggested as a2A state by 
analogy with NiH. Similar doublet systems of bands corresponding to transitions 
from the ground 2A state to various stable excited states in the spectra of NiF and 
NiBr have also been recently reported in a series of papers by Gopal and Joshi [14, 
15, 16, 17].

* Department of Physics, T. R. R. Govt. College, Kandukur, Prakasam Dt. India 
** To whom all correspondence should be addressed.
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According to a detailed rotational analysis of two doublet systems of bands of 
NiF by Pinchemel et al [18] and Pinchemel [19], the ground state of NiF has been 
established as X 2X state and higher excited states as А 2ПЬ В2П3/2 and C2A in order 
of increasing energy.

In the region XX 344.0-395.0 nm, Darji and Shah [8] reported the vibrational 
analysis of a, ß, y, ô, A0 and 4 , systems.

However, the vibrational analyses of all the doublet systems of NiCl reported 
by Gopal and Joshi have been based on spectrograms taken under the low dispersion 
of a Hilger E-492 large quartz spectrograph.

A reinvestigation of the various systems of NiCl in the visible region XX 
340.0-560.0 nm has therefore been undertaken using the first and second order 
dispersion of a PGS-2 spectrograph of Carl Zeiss. This study has led to a revision 
of the vibrational analysis of some of the systems reported by Darji and Shah in the 
region XX 344.0-395.0 nm and Gopal and Joshi in the region XX 399.0-555.5 nm and 
to a new interpretation of the spectrum of NiCl in this region as described in this paper.

2. Experimental

The spectrum of NiCl has been excited in a radio frequency (30-40 MHz) 
discharge from a 500 W oscillator, using an anhydrous specpure sample of NiCl2. 
The bands in the above region have been photographed in the first and second order 
dispersion 0.7 nm/mm and 0.35 nm/mm of a PGS-2 spectrograph of Carl Zeiss. 
Exposures of about 10 minutes to two hours duration on ORWO-WU 3 and Ilford 
R-20 photographic plates have been found sufficient to obtain good spectrograms of 
NiCl. Measurements of band heads have been made using iron arc spectral lines as 
standards for comparison.

3. Results and analysis

According to the vibrational analysis proposed by Gopal and Joshi, the common 
lower state with a doublet separation of about 9.614 x 10“ 21 J for all the observed 
doublet systems has been suggested as 2A state. The doublet interval between A", 
and X 2 has been derived from the vibrational analyses of C-X, D-X, I -X,  J - X  and 
L - X  systems. Taking the example of the L - X  system, they deduced the interval 
between Х г and X 2 from the vibrational analysis of i^-A", and L 3- X 2 systems. The 
vibrational frequency of the A", state has been determined as 8.482 x 10 21 J while 
that of the X 2 state could not be determined as only the d r = 0  sequence is obtained. 
They reported the vibrational analysis of another system designated as L2- X 2, from 
which the vibrational frequency of the X 2 state is determined as 8.621 x 10' 21 J. The 
separation between and L 2 is thus equal to 4.032 x 10“ 21 J. We may thus assume
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Hund’s case (a) as a good approximation for both X  and L states. As the bands in 
each of these systems have been observed to be double headed (R and Q), it has been 
assumed by Gopal and Joshi that the transition involved in the L-X  system is either 
2П - 2А or 2Ф-2А. For such transitions, only two component systems can occur 
according to the selection rule AZ = 0. Thus there is no possibility for the occurrence 
of three sub-systems L x- X  1( L l- X 2 and L2- X 2. It has been shown below that L l—X 1 
and L l- X 2 systems arise from a doublet-doublet transition of the type 2I - 2T1 with 
nearly equal vibrational frequencies for X l and X 2 and the L2- X 2 system arises from 
one component of another doublet system with a lower state vibrational frequency 
of 8.641 X 10“ 21 J. Similar remarks will apply for each of the systems C-X,  D-X, I -X  
and J - X  in which three subsystems have been reported by Gopal and Joshi.

According to our analysis based on high dispersion spectrograms of NiCl in 
the region ЛЛ 340.0-560.0 nm the spectrum of NiCl, can be classified as belonging to 
several doublet systems of bands degraded to red, some of which have a common 
lower state 2n i with merely equal vibrational frequencies of 8.466 x 10“ 21 J and 
8.446x 10“ 21 J and others with a common lower state 21  with a vibrational 
frequency of 8.641 x 10“ 21 J. By analogy with the A 2TJi and X 2Z states of NiF, 
deduced by Pinchemel et al [18] and Pinchemel [19] from a detailed study of the 
rotational analysis of two systems, it has been suggested that the ground state of 
NiCl is X 2X while the first excited state is A 2n i. In three prominent doublet systems 
of NiCl designated as H'-A, I'-A and L' -A  shown in Fig. 1, the corresponding bands 
of the strong Av = 0 sequences are separated by an interval of 9.634 x 10“ 21 J which 
is regarded as the doublet interval of the А2П state. Each of these systems has been 
suggested to belong to a transition 2Х - 2П. Two of these systems H'-A  and Lj-A 
have been earlier obtained by More and attributed to 2Х-2П transitions with a 
common lower state 2/7 with a doublet separation of 9.634 x 10 21 J. As the C-X  
and D-X  systems of NiCl reported by Gopal and Joshi are fragmentary, they are 
not considered in the present work.

All systems having either А2П 3/2 or А2П 1/2 as lower state have been designated 
as B', C,  D', £', F', G', J', К', M', N'  and O' in the order of increasing energy relative 
to А 2П3/2. Of these, B'-A1, K ' -A1, M ' -A 2 and O'-Ay systems are observed to be 
single headed and interpreted as R heads. Each of these systems is characterised by 
a strong Av = 0 sequence and a weak Av= +1 or —1 sequence. In few cases both 
weak A v = ±  1 sequences have observed and analysed. The transition involved in 
each of these systems is suggested as one component of а 2П - 2П transition.

The C'-A2, D'-A2, E'-Al , F ' -A1, G'-A2, J ' -A2 and N'-A2 systems consist of 
double headed bands interpreted as R and Q heads. Bands corresponding to a strong 
Av = 0 sequence and a weak Av= ± \  sequence are observed and analysed. The 
transition involved in each of these systems is suggested as one component of а 2А-2П.

All the systems with a common lower X 2Z ground state are designated as В, 
C, D, E, F, G, H, /, J, K, L and M. Of these, the B, C, D, G, L and M  systems with 
a common lower 2Z state are observed to be single headed and interpreted as R
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A
cta P

hysica H
ungarica 63, 1988

Fig. I. Grating spectrograms of NiCl (second order) de =  0 sequences

С
. V. R

ED
D

Y
 et al.



THE EMISSION BAND SPECTRUM OF NiC] 299

Table I

Band head data of N i58 Cl35 molecule in the region ЛЛ 340.0-560.0 nm

Wavelength
[nm] Int.

Classification
v',v"

Wavelength
[nm] Int.

Classification
v\v"

B -X  system L -X  system
541.65 3 0.0 366.42* 7 0.0
542.31 3 1.1 366.61 6 1.1
554.61 5 0.1 372.31 5 0.1

C -X  system M X  system
526.80 1 1.0 349.08 6 0.0
538.48 4 0.0 349.30 4 1.1
551.28 3' 0.1 354.39 4 0.1

D -X  system B'—A j system
523.73 2 1.0 351.29 4 0.0
535.24 5 0.0 352.05 4 1.1
547.86 3 0.1 C '-A2 system

E -X  system 490.80 3 1.0 R
486.81 6 0.0 R 490.99 2 l.o Q
487.04 5 0.0 Q 500.66 6 0.0 R
487.36 7 1.1 R 500.33 4 0.0 Q
497.25 4 0.1 R 511.50 3 0.1 R

F -X  system 511.67 3 0.1 Q
470.55 5 0.0 R D'-A2 system
470.74 5 0.0 Q 484.14 2 1.0 Q
470.90 6 1.1 R 493.13 3 0.0 R
471.06 4 U Q 493.32 4 0.0 Q

G X  system 503.77 3 0.1 e
451.35 5 1.0 E'-At system
459.70 9 0.0 473.21 2 1.0 R
469.02 3 0.1 482.37 6 0.0 R

H X  system 482.91* 5 -y  1.1 R
428.45 7 0.0 R 483.08 4 1.1 Q
428.54 5 0.0 R F '-A, system
428.94 5 1.1 R 454.14 4 1.0 Q
429.02 4 11 Q 462.25 8 0.0 R
436.49 3 0.1 R 462.56 9 0.0 e

I-X  system 471.77 4 0.1 Q
404.13 2 1.0 R G'-A 2 system
404.23 2 1.0 R 448.06 3 1.0 R
410.85 7 0.0 R 456.29 7 0.0 R
410.93 8 0.0 Q 456.40 6 0.0 Q
418.31 2 0.1 R 465.25 3 0.1 R

J -X  system H'-A 2 system
366.80* 7 1.0 R 439.66 6 0.0 R
372.19 8 0.0 R 439.92 8 0.0 Q
372.24 3 0.0 Q 440.05 7 1.1 R
378.24 3 0.1 R 440.31 9 1.1 Q

K -X  system 447.97 2 0.1 R
367.62 6 0.0 R H '-A 1 system
367.67 4 0.0 Q 423.21 3 1.0 R
367.89 2 1.1 R 430.49 9 0.0 R
373.52 2 0.1 R 430.73 7 0.0 e
373.61 2 0.1 Q 438.46 4 0.1 R

* Superposed by atomic line
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Table I (cent.)

Wavelength
[nm] Int.

Classification
v\v"

Wavelength
[nm] Int.

Classification
v\v"

t - A 2 system L '-A 2 system
421.25 4 0.0 R 407.48 2 1.0 R
421.30 3 o.o e 414.31 5 0.0 R
421.60 5 1.1 R 421.67 4 0.1 R
421.67 4 1.1 Q L'-A , system

T-А , system 399.65 2 1.0 Q
412.85 4 0.0 R 406.14 10 0.0 R
412.92 4 0.0 Q 406.24 9 0.0 Q
413.22 5 1.1 R 413.24 4 0.1 R
413.29 3 1.1 Q M'—A2 system
420.17 3 0.1 R 378.76 1 1.0

J '-A 2 system 384.63 8 0.0
402.94 2 1.0 R 390.99 3 0.1
403.00 2 1.0 Q N '-A 2 system
409.42 8 0.0 R 376.21 1 1.0 Q
409.53 9 0.0 Q 381.81 6 0.0 R
416.61 2 0.1 R 381.87 7 0 0  Q
416.72 3 0.1 Q 388.16 2 0.1 Q

K '-A , system O '-A , system
401.50 4 1.0 362.91 2 1.0
408.13 8 0.0 368.39 4 0.0
415.29 2 0.1 368.59 4 1.1

Table II

Vibrational constants for various electronic states of N i58Cl35 molecule

State
(а)

State
(b)

V,
ж 10“ ‘’J

tu,
ж 10 21J

tu,x,
X 10“ 23J

».
X 10“ ,9J

3 оX

tu,*,
X 10 23J

M* 5.6889 0 * 5.3907
L 5.4211 8.3828 4.5688 N ' 5.2032 7.8803 2.5824
K* 5.4012 M' 5.1649 8.0789 3.1783
J' 5.3393 7.9299 4.1716 V 4.8915 8.1087 3.0790
1 4.8362 8.1127 3.6749 K' 4.8687 8.1206 3.8736
H 4.6378 8.0889 4.0722 J ' 4.8519 7.8852 2.8406
G 4.3228 8.0739 3.4167 /'* 4.8102
F* 4.2187 H' 4.6153 8.0233 4.5688
E 4.0818 8.1544 2.4831 G' 4.3541 8.0769 4.0722
D 3.7124 8.2299 3.9729 F' 4.2954 8.0481 4.3702
С 3.6900 8.2339 3.4763 E' 4.1189 8.0729 5.3634
В 3.6685 8.2061 3.6749 D' 4.0294 7.7055 4.8668
Х(2Х) 0 8.6411 3.3769 C 3.9674 8.0094 2.8804

B* 3.7379
А22П . . . 8.4469 4.0722
A 2n , l2 8.4663 3.7743

* As only the strong Av = 0 sequences are observed the assignment of these systems to F-X, K-X, 
M X, B '-A „  Г-A  and O '-A , transitions is tentative.
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heads. Each of these systems, which consist of a strong Av = 0 sequence and a weak 
Av= +1 or —1 sequence is attributed to a 2Z - 2I  transition.

The E, F, H, I, J and К systems consist of double headed bands interpreted 
as R and Q heads. Bands corresponding to a strong Av — 0 sequence and a weak 
Av = + 1 or — 1 sequences are observed and analysed. Each of these systems is assumed 
to arise from one component of а 2П —2Е transition. In addition to the bands of 
NiCI attributed to the above transitions, there are other fragmentary systems of NiCI 
in the region AA 340.0-560.0 nm, some of which have been reported by earlier workers.

In order to save space the data and classification of a few prominent band heads 
of Ni58Cl35 molecule in the region AA 340.0-560.0 nm are presented in Table I. 
Grating spectrograms of the Av = 0 sequences of some prominent systems G-X,  
H'-A2, H '-A l , H - X , l ’- A u I -X ,  J ' -A2, K ' -A t , L - A 2 and L - A { of NiCI are shown 
in Fig. 1. The vibrational constants given in Table II refer to the most abundant 
molecule N i58Cl35. Table 11(a) gives the vibrational constants of all states whose 
heights are known relative to the ground X 2Z  state, while Table 11(b) gives vibrational 
constants of all states whose heights are known relative to the А 2П 3/2 state. However, 
the separation between X 2I  and А 2П3/2 states is not known from the analysis.

4. Isotope effect

Bands corresponding to the molecular species Ni58Cl35 and Ni60Cl35 have been 
observed in either Av= + 1 or — 1 sequences of systems C'-A2, F ' -A1, G-X, G'-A2, 
H'-Ay, K ' -A l , L -Ai ,  J - X  and N'-A2 with a separation of about 0.049 x 10“ 21 J in 
satisfactory agreement with the values calculated for these molecules. Similarly, bands 
corresponding to the molecules Ni58Cl35 and N i58Cl37 have been observed in either 
Av= + 1 or — 1 sequences of systems C'-A2, D-X,  F'-A, G-X, H-X,  G'-A2, H ' - A 1, 
K'-Ai ,  L - A x, J - X  and N '-A2 with a separation of about 0 .139xl0“ 21 J in 
satisfactory agreement with the values calculated for these molecules.

5. Discussion of results

Thus we have in NiCI a set of states whose relative heights are known with 
respect to А2П3/2 and another set of levels whose heights are known with respect to 
X 2E. It is of interest to note that Pinchemel et al [18] and Pinchemel [19] have 
shown that there are two doublet systems of bands of NiF molecule attributed to 
transitions C2A-A2n i and В2П 3I2 — X 2X + respectively from a detailed study of the 
rotational analysis using very high dispersion. But the heights of the А2П 1/2 and 
A2n 3j2 levels above the X 2E + state are not known in NiF also. By analogy with 
NiF, it may be assumed that the ground state of NiCI molecule is the X 2I  state and 
the А2П3/2 state, the first excited state of NiCI.
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Taking into account the 3d9 4s valence electrons of the Ni and the 3p5 valence 
electrons of the Cl atom, we may represent the ground X 2X and the А2П{ states of 
NiCl by the following two configurations using atomic and molecular orbitals.

1 . . . ( 3 d ^ ( 3 d < ( 3 d a ) Ni

(4sffNi + ЗрстС1)2 (Зрл)£, -  X 2X\

2 . . . ( 3 d ô t i{(3dngi (3da)2i{

(4s<TNi + Зр<тС1)2 (Зря)£, -  А2П{.

In these configurations the 3do orbital lies lower in energy than the 3dn which 
again lies lower than the 3da as assumed by Pinchemel [19] in the case of NiF. The 
stability of X 2X and А2П states of NiCl can be attributed to the presence of two 
electrons in the (4saNi + 3poa ) bonding orbital in each case.
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The unjustified assumption that the universe possesses a fixed gravitational constant prior 
to compactification is remedied by assuming an 11 dimensional scale invariant Lagrangian with 
a possible scale breaking potential whose minimum generates the 4 dimensional gravitational 
constant. The cosmological evolution equations are followed and a model is studied wherein the 
scalar field evolves to the minimum of the potential with the subsequent generation of G4, while 
the 7 dimensional space compactifies and the 4 dimensional space inflates.

1. Introduction

The emergence of the 4 dimensional world from a splitting of the primal 11 
dimensions into 4 observable and 7 unobservable dimensions has been the subject 
of many papers [1, 2]. The precise nature of the splitting process is not entirely 
understood and the assumption that a Casimir-like effect produced the compactifi
cation process is subject to the same scrutiny that any quantum gravitational 
calculation is subject to. Appelquist and Chodos [3] have calculated the influence of 
quantum fluctuations in a 5 dimensional Kaluza-Klein theory by computing the 
one-loop contributions to the effective potential. They find an infinite attractive 
potential after the divergent term is subtracted with the subsequent collapse of the 
5th dimension. Rohrlich [4] repeated the calculation and obtained exactly the same 
result. Later investigations showed that the sign of the Casimir energy depended on 
the topology of the background manifold which leaves the compactification process 
somewhat arbitrary [5]. The above calculation is subject to questions of cut-off and 
background topologies along with the validity of the one loop approximation and it 
was hoped that super-symmetry would remedy these problems. Unfortunately, there 
is no super-symmetric Casimir effect [6]. Of course the intense interest in the 11 
dimensional case was motivated by Wittens proof that the 7 sphere is the minimum 
compactified space that can generate the low energy SU3 x SU2L x Vi particle theory 
on M4 [7]. The hope is that particle phenomenology is represented by small 
fluctuations away from a ground state solution of the 11 dimensional Einstein theory. 
But what is the ground state, is it stable and how did the universe evolve toward it.
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The present approach to 11 dimensional cosmology is to assume a metric of 
the form

9ab=  I R i Ö i j i x )

\
( 1. 1)

«7 gm,n(ym)
A, B = 0, 1, 2, . . 1 0 ;  i,j= 1, 2, 3; m, n = 4, 5, 6 , . . 1 0 ;  R3 = three dimensional scale
factor; R7 = seven dimensional scale factor, where ди(х‘), gmn(ym) are the maximally 
symmetric metric of the d and D dimensional subspaces. Here x' represent coordinates 
in the three dimensional subspace and ym represent coordinates in the seven 
dimensional subspace, x° = i. The form

Тля = ( 1.2)

for the energy momentum tensor is used in the eleven dimensional Einstein equation. 
Here e = energy density, P,F are pressure in three dimensional and seven dimensional 
space, respectively. We have for the Einstein equations

„ 1 „  8 я С ц  _
R  A B  7 Г  R g A B  —  4  T A B ,2 c

(1.3)

and the evolution of the scale factors is studied for given spatial curvatures К, K'. 
One of the weaknesses of the above approach is that nobody knows whether in fact 
there is a gravitational constant at such early stages of the universe. A. Zee [8] has 
suggested that gravity may be “cooked away” at early times meaning that the 
symmetry breaking mechanism that is operative in generating G4 at conventional 
energies is not present since the scale invariance at high energies and early times is 
preserved. Only when the scalar field responsible for generating G4 sinks into a 
potential well is the gravitational constant generated and the scale symmetry broken. 
We adopt the philosophy of Zee at early times in eleven dimensions and demonstrate 
how the theory will lead to compactification of the seven dimensional subspace, 
inflation of the M 4 space and the generation of G4 (four dimensional gravitational 
constant).
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Scale invariant 11 dimensional gravity and compactification

Consider the following scale invariant Lagrangian in 11 dimensions,

+  +  ( 2. 1)

where R = scalar curvature, u  =  Lagrangian of matter, cp = scalar field. For confor
mal invariance

J$?= tp2R +
dA(pd„(pgA

9л в ~ * Л 2д А В ,

1
ч>-> —  <p- 

Л2

Here Л is the conformal rescaling factor and the above transformation is constructed 
to preserve scale invariance in 11 dimensions [9].

For

^ m = 0, V(<p)=C<p”

to preserve scale invariance.
For

22
<p-> QO, V(<p) = C<p9;

<p-+<Po, V(4>)=C((p~*-Cl)2,

where the Cj term dynamically breaks the scale invariance, for (р-кр0 = С \ 1. In 
other words the scale symmetry is preserved for high scalar field values. Varying 
equation (2 .1) with respect to gAB yields

where

, /  1 \  1 a y<P у * л в - у  r 9abJ =  -  ~ ÿ =  y y s  +  9ab^(P2-  V A V B(p2 ,  
■ ^ = y  dAq>dB(pgAB+V((p), Dtp2 = —^ = ~ ( ( p 2BgAB J ^ g ) , (2.2)

Vp = covariant derivative.
Varying Eq. (2.1) with respect to cp yields

dV
— □  cp + lcpR -I- —— =0.

dtp
(2.3)

The program now is to study Eq. (2.2) and Eq. (2.3) for the metric
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/ - 1

9 A B — R i a n

\ R U

The Ricci components for the metric are [10],

3R3 7R1
r° < - ^ + k7>

Rmn —

(2.4)

(2.5)

(2.6)

(2.7)

Here a dot refers to time differentiation. Also d =  3, D = 7, К, K' — spatial curvatures 
of d and D subspaces, i, j  =  1, 2, 3; m, n = 4, 5, 6 , 7, 8 , 9, 10. To compute Л we use Eq. 
(2.4) with Eq. (2.5), Eq. (2.6) and Eq. (2.7)

Also
1 д У  1 q . R c  V ( œ )

-J = g ^  = ^ S A<pdBc p - g- f ( d c cpôCi p ) - - ^ - g AB. (2.9)

In Eq. (2.2) the only term in VA VB cp2 that survives is

|7о ^ 2 = ^ - ( < Р 2) =  (Ф2).  (2.10)

Now the field equations read

<P2 ( R o o ~  ~ R 9 o o ) =  ~ ^ ( Ф ) 2 +  ( ( ~ Ф ) 2) + 9 о о П ( р 2 +  ^ ~ ( < р ~ 9 - С 1 ) 2 - ( ф 2)  ( 2 М )
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where
<p =  (p(t) ( 2. 12)

<P

ЗЯ3 7 A ,  Í 2 K  d ( А з
Я,

зА Л ^ '  
« з  r J r ^

\ R 21

R i

/6К '  d  ( А Л  ( З А 3 7 R 1 \  А -,'
-7 - г г  + ^  +

(<?)2 +§C(<p̂ L -C 1)2 + 9ij ( -  (ф2) -  ^  (ф2) -  (ф2) ),

(2.13)

f  - 9 ,

Л И  i l l  (2.14)

= (ф)2 + ^ - С((р 9 -  С , ) 2

+ 9тп\ - (Ф2)-
ЗЯз
R-K

(Ф2)-
™ 7
«7

(<Р2) •

Upon setting д00= — 1 in Eq. (2.11) and cancelling gu, gmn from Eq. (2.13) and 
Eq. (2.14) we have

4>‘ + 1 (^ l + 7l l  + 3 (Hi + ±(*l\ +  №  + 2 * Л  ^

(2.15)

<P

=  -  7  (<p )2 +  ( (<?2) +  - ё ^ ( Ф 2) +  - î r 1 ^
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(ЫС_ Ц А Л  ( Ъ к ^  

\ R Î  d t \ R 7)  + \ R 3
+

l R 7\ R 7
R-, J R 7

\(Ф)2+^(<Р9 - C l)2+ ( - ( ф 2) - ^r - ( (p2) - - - ( Ф 2)
R , R i

(2.16)

<P 1 “
6  K'
~ Ж + 7 t { ^ ] +

3 k_ ^  + т * Л * 1
R3 R7 ) r 7

3 R3

r7
i R i
R i

2K d ( R 3
33 . R\  + dt \R

n (6K'  d ( А Л  
7 { r 2 + d t ( R 7) + A

R ,

3Ä3 7Ä,

R 3  Я 7

R i J R i

1 C 11
^ (Ф )2 + ~ (С Р 9 ■ci)2+

R,
(2.17)

The above equations are extremely complicated but we can draw some qualitative 
conclusions on the behaviors of R 3, R7, q>(t). Equating the left hand side of Eq. (2.16) 
and Eq. (2.17) we obtain

d_(AA = _6*L , 2A  , ±(&A . ( A  , A \ A
d t \ R 7J R 2 + R 2 + d t \ R 3J  + \ R 3 + R 7 J R 3

_/3*з 7АЛ/АЛ
V r 3 R7 ) \ R i )

(2.18)

6 К
For small R7 the term -  ——- dominates Eq. (2.18) with the result that if R7>0, 
R " 1
~ - <0. If we further assume that ^ = 0  we find by solving Eq. (2.16) and Eq. (2.17) for
R i
R A

4R3 ft7 6 K' d ( k 7
R, R 1 R2 + dt \ R

Ri
6  K'

R
+ 7 Ä7

R i
R 3
R,

(2.19)

 ̂R. \  2 R
If in Eq. (2.19) the term — 2 ( —-  ) — —-  dominates for large time the left hand side

Ri

is negative since — ( —  ̂I + —у  «  0, and this implies R 3 > 0 if Й. 7 <  0. We also observeI ß 7
dt \ R i J  "1" R?

that away from the minimum of K((p) before the symmetry is broken we have from
d F

Eq. (2.3) if we neglect the Rep term which is assumed small compared to —
d<p

(2.20)
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Note that Eq. (2.20) yields dt< 0  after setting the integration

constant equal to zero since the scalar yield settles to a constant value for large times 
to generate the gravitational constant. Notice, however, we have neglected the effect 
of curvature on the evolution of <p.

In summary, if K ’>0, K=0,  then the equations predict « 2
«7

> 0 ,  (f)< 0

as in Fig. 1.
Let us notice that point P represents the point of symmetry breaking where

c 4 c 4
(po = . .  _— = . Vi = (volume of compactified seven space), G4 =  (four

167rCfjj I6 ÏÏU4 r-j
dimensional gravitational constant).

Fig. I. Variation of R 3( t), R7(t), Ф(1) with t

2. Conclusions

The assumption that cp =  cp(t) is justified on the basis that a spatially inhomogen
eous (p would have a higher energy. The crude estimate suggesting inflation in M4, 
compactification in S7 and <p-»<p0; would have to be substantiated by a more rigorous 
solution to Eqs (3), (15), (16) and (17). If the potential had many minimum it might 
be possible for gravity to pass through a series of changes wherein the gravitational 
constant kept increasing toward its present value. Such a series of freezings might 
leave its trace in relic particle symmetries; only the relevant scale would exceed the 
Planck scale in each case giving rise to interactions that we have never seen or ever 
will see. The general features of the discussion above present a consistent classical
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picture of dynamical scale breaking of a conformally invariant 11 dimensional 
gravitational system and a more complete numerical analysis will be the subject of 
future work.
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The paper presents the nonequilibrium statistical (kinetical) treatment of Gauss-Markov 
“external” and selfconsistent “intrinsic” fluctuations in the “embedded” plasma systems based on 
the separation and decoupling of the statistical and stochastical time-scales. This description yields 
both arbitrary kinetic level decomposition of the statistical distributions and Gauss-Markov 
momentum equations with coherent structure.

Introduction

The statistical fluctuations in classical plasma systems always reflect a lack of 
information about the exact state of the system. A large plasma system is described 
in terms of a few macrovariables (mechanical, electrodynamic and thermodynamic 
variables [ 1]) obtained by different “coarse-graining” procedures in phase space [2], 
and the loss of knowledge about the microscopic (kinetic) plasma degrees of freedom 
gives rise to “intrinsic” fluctuations of the plasma microvariables. Furthermore, a 
large number of “intrinsic” (collective turbulent) fluctuations are excited through the 
presence of instabilities in the plasma system. Finally, the external forces in the plasma 
statistical equations of motion, which describe the electromagnetic coupling of the 
plasma system to the outside, have also to be considered as fluctuating quantities, 
because they are produced by other macroscopic systems or outer plasma instabilities. 
They excite “external” (collective turbulent) fluctuations in the plasma system under 
consideration. The distinction between “intrinsic” and “external” fluctuations will of 
course depend on where the boundary is drawn between “plasma system” and 
“outside” [3].

The paper studies the arbitrary kinetic level stochastic dynamics of a plasma 
system embedded in Gauss-Markov “external” electromagnetic fields. These “ex
ternal” electromagnetic fields impose “external” (collective turbulent) fluctuations on 
the plasma system exciting Gauss-Markov “intrinsic” selfconsistent fluctuations in it.
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The Gauss-Markov treatment

Neglecting the radiation processes zRAD> z PL, the plasma system is supposed 
to obey a classical, nonrelativistic, subcritical APLN = 4n0Ào/3p 1 dynamics having 
Coulomb particle interaction potential Ф = е/|г|, and coupling псо = Фс/т ■ V2<0(  1), 
density n D = Г'/n ä 1 e R +\{0}, and correlation 0 (A P̂ N)ilDC = ПсоПо <0(\)  para
meters of given orders [8]. The plasma system is considered so large N = N X+ N 2+ ■ ■ ■ 

1, V$>1 that the behaviour of its particles is not affected by the presence of 
boundaries. Here N h i= 1, . . J f  mean the numbers of identical plasma particles. 
The “outside” is supposed to be much larger than the plasma system under 
consideration Fout >  > > > V. The stochastic states and properties of the “outside” 
are completely given by the probability space (fi, & ,  цРг) and stochastic process d>T: 
T->L°(ß, 3F ; M ) with state space M [4]. The те  T  represents the time-scale of the 
“outside” ( T c (  — oo, + oo)), and the state space M is usually a separable Hilbert space. 
For fixed те  T  the шх(ш) is a random variable, and for fixed ш е й  the côt(a>) is a 
sample state path of the “outside”. The one dimensional distribution of шТ(ш) is given 
by the induced measure Ft(x) = цРош~ x(x) for all time т e T and x e M. A sufficient 
condition for the existence of mean value is шх(ш) e L2(C2, S ’, цРг\ M ) for all т eT. So, 
the integrals

<c5>= J wt(œ)dnPr(w)= J xxdFx(x)— j  x j z(x)dx (U )
n M M

define the mean value of the stochastic process c5r(cu) over the probability space of 
the “outside” (Í2, &, цРг). Here f T(x) = dx Fr(x), x e M is the density function of stochastic 
probability distribution of the “outside”. The fluctuations 0шх(ш) and the two 
time-scales covariance cov(t5ri(a>), c5t2(cu)) are defined by the expressions

Smt(oj) =  c5t(oj) — <c5r>, (1.2)

cov (cùtl, cùt2)=  J ^cùtl(cu) ® ôcôl2(w)df2Pr(œ), (1.3)
n

for all г e Tand (tj,  i 2) e T x I I n  the expression of covariance (1.3) the two time-scales 
joint stochastic distribution function of the “outside” Ftl t2(x ,, x2) =  /rpr(côt” 1(x1)n  
n w ‘2(x2)) is also supposed to be given. The coupling stochastic electromagnetic fields 
between the “outside” and the embedded plasma system are supposed to have the 
following form

E£(r, t; ojJoj)) =  E§(r, t) + Ef(r, t; шт(ш)), (1.4)

BE(r, i; wt(oj)) =  Bg(r, i) + Bf(r, r; c5t(cu)), (1.5)

or the electromagnetic potentials

(pE(r, t; o\(w)) =  q>l(r, t) + <pf(r, t; шт(ш)),

A£(r, t; (5r(oj)) =  Ag(r, i) + Af(r, t; <5г(ш)),
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for all (t, u))eTxC2. These imposed “external” fluctuations and electromagnetic 
coupling effects are required to remain in the frame of linear response theory for all 
(t , to) e  Tx fl. The “outside” of the plasma system is assumed to have memoryless 
dynamics and a very large (approximately infinite) number of independent identically 
distributed “elementary” random variables. So, the tôt(co), Ft(x), Ftl t2(x, , x2), and 
the other higher finite dimensional distributions Ftl ...^ (x j , . . . ,  x„) define a Gauss 
process with Markovian property. Consequently, the covariance of the “outside” 
cov(côti:, coIp) for all xF, тРе Thas the following property

(cov (côtF, wtp); фк ® ф, ) М 2 = J ((<id}tp(oj),® <5«tp(to));
n

Фк®Ф1)м2(1ц^(со) = ((й>ТЕ®й>1р'); фк® ф,)мг-((й>ГРУ® <côtp>; (I.8a) 

Ф к ®  Ф 1 ) м 2 =  Z  A ..(tf)0«,i(i>) fora11 M e  N,
a e N

where f ,  geÚ(T, M 2),(M2 = M ® M) are suitable M ® M valued functions. Here 
® is a tensor product on the separable Hilbert space M with the O.N. basis {фК}, 
(k= 1,2, . . .),  rf?(co) is a Radon-Gaussian probability measure on the probability 
event state space of the “outside” Q. The ( • ; • )M2 denotes the inner product on the 
separable Hilbert space M 2 = M ® M, and фк ® ф,, к, le  N is an orthonormal basis 
for it [4].

The Gauss-Markov Liouville dynamics

The basic assumption for the approximation of time-scales is >  >  > > > tfy(f, 
and the “feed-back” of the dynamics of the plasma system to the stochastic 
(Gauss-Markov) dynamics of the “outside” is neglected. This treatment of the 
“outside” and “plasma system” makes it possible to separate and decouple the 
statistical time-scale of the plasma system t from the stochastic time-scale of the 
“outside” г in the following sense

{Ct, c y _ = 0 ,

{кг, г г,}_=о, {Ct,dp,.}_=0, Kt =  i - d F f c(x),
M

{ M d , } _ = 0 , {Ct,A}_=0,  Cr - = -  J| dF fc(x).

3 1 II p

o'II1

"S

where the symbolic [5] stochastic “averaging” projector operator Vt and stochastic 
“fluctuating” projector operator Cx mean the aforedescribed procedures (1.1), (1.2) with 
respect to the Radon-Gaussian stochastic probability distribution of the “outside”
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F f c(x). Without the restriction of generality of the treatment and using the formal 
properties of the symbolic stochastic projectors VT + CT = I, Vx = Vx, VxCx = Ct Kr = 0, 
C\  =  Ct for all г e T one can suppose that

By the choice of the separable Hilbert state space of the “outside” M one can define 
the different physical models of the “outside”. Applying the formal properties of the 
symbolic Radon-Gaussian projectors and the assumptions (1.10), (1.11) the stochastic 
electromagnetic fields and potentials can be split uniquely into mutually independent 
two parts, i.e.

Thus, the dynamical equation of a single n^-th particle of the aforedescribed plasma 
system will have the form

are for all njj=  1, . .  n, = 1, . . . ,  Nj. The dynamical equations of type (1.14) can 
be considered as the set of Langevin equations coupled by the Coulomb fields Ф(|г|). 
Taking the interactions and the couplings between the plasma system and the “outside” 
into account the Gauss-Markov Hamiltonian of the system is

(1.10)

or the electromagnetic potentials

К ФЕ(т, t; cörH )  = 0o(r, t), V, <v?f(r, f; côt(cu)) = 0,

VT A£(r, t; c5r(w)) =  Ag(r, i), Vz A ^ t, t; wr(co)) = 0.
( 1. 11)

( 1. 12)

(1.13)

(1.14)

The “pure” deterministic force

(1.15)

and “pure” stochastic force

(1.16)

H(r,œx(co)) = H0(t)+Hl(ùx(co)), (1.17)
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where

„ o(f)= g  £  (#  (г,,, y, â>t ( ( Q ) ) - e j C - 1 А£(гП|, г; ш(ш)))2 +
j= 1 fij = 1 2т :

and

+ Z  £  4 ф(|гл, - г IJ + eyíp&r^r),
I = 1 П, = 1 Z (i=j,m*nj)

(1.18)

Я 1(с51(ш))= X Z  for all (T ,cu)e7xß. (1.19)
j= 1 nj= 1

Here, the Ф (r„ , t; сиг(си)) is the stochastic generalized momentum of the system:

1 r
& (ü}T{œ)) = ̂ > (г, V, i; cùt(w)) = m v  + — А£(гЛ; w<M), ( 1.20)

consequently, the stochastic Hamiltonian equations are

dH(t;œt(w)) = 
„ / « » )  4

and
dH(t\ côT(co)) 

dr„ , ,(w t (w))

for all (t, cu)e Tx ß  and j =  1, . . . ,  J f ,  rij= 1, . . . ,  Nj. From the statistical point of 
view the nonequilibrium dynamics of the embedded plasma system is described by 
the stochastic (Gauss-Markov) Liouville operator

L n (w x(co)) =  { , H (  r;cùt(cu))}p, (1.21)

where { . , . }P means the Poisson bracket |JV =  N, + . . .  + N^\ .  Performing the 
transformation Ф (<ùr(tu))-+P in (1.21) the Ly(ù)x(w)) split into two independent parts

L y ( r ,  P, t; œ t ( w ) ) = Î 0N(r ,  P, t ) + L l N (r ,  P, t; cùrM )  (1.22)

with the following properties

K L n(г, P, i;mr(co)) = L ON(r, P, f), VxL lN(t, P, f; tùr(cu)) = 0,

{Vx; L 0n(t, P, i)} _ =0, {Vx; L lN(r, P, t; tut(co))} _ Ф0,

{Сг; £ 0л,(г, P, i)}- =0, {Cx; £.ljv(r, P, i;cur(cu))}_ Ф0. (1.23)

The time evolution of the embedded plasma system is governed by the Gauss-Markov 
Liouville equation

(d, + L 0„(r, P, Г) +  L ! N(r, P, t; wx(w)))Fn(t, P, f; cut(co)) =  0,

Fn{t, P, r0; cur(cu)) = F%(r, P; tut(tu)), (1.24)

where F,y(r, P, t; cùt(cu)) is the N particle Knormed Bogoliubov distribution function 
for all fixed (т, tu) 6  Tx  ß. The stochastic Liouville equation defines a stochastic Cauchy 
problem for t > t n time instants. The “deterministic” Liouville operator L0n(t, P, t)
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and the “pure” stochastic Gauss-Markov Liouvilie operator L lN(r, P, f; шг(го)) have 
the following detailed form

L 0„(T,P,t) Z  Z  J r̂„ + Fo(rnj. p + Z  Z
j =  1 n j = i  W j  i = 1  ni =  1 2  J

(i=j,l4*nj)
J T  N j

L ljv(r,P,r;c5t(w)) = X X F ^ r^ , P„,, f; шг(а>))дГп ,
j  = 1 " j  =  1

where the “pure” deterministic force

Fo(«V Pnr 0 = ej ( W rnj, Л B g (r„ i) j ,

and the “pure” stochastic (Gauss-Markov) force

Fi(rnj, Pn i; (ù^cu)) = ej ^ Е ? (г„ t; œT(œ))+C ~1 ^"J Л B f(r„ t; œz(w)) j  (1.28)

act on the My-th particle of the embedded plasma system. The Coulomb interaction 
is taken into account by the term

(1.25)

(1.26)

(1.27)

&nhni =  dtn Ф( Irnj -  r„, I ) (дГп. -  drJ .  (1.29)

From the physical point of view, for each fixed ( t , œ)eTxS2,  the nonequilibrium 
statistical behaviour of the system is described by a “pure” deterministic Liouvilie 
equation. Consequently, the Gauss-Markov stochasticity of the N  particle Bogoliubov 
distribution function F n (t , P, i; c5t(cu)), (г, Р )ё Г = 16" originates directly from the 
appearance of Gauss-Markov electromagnetic coupling between the embedded 
plasma system and the “outside”. Furthermore, this phase space Г distribution 
function has all the same stochastic properties (1.8), (1.9) as the “outside”. Thus, the 
N particle phase space distribution can be split uniquely into two mutually 
independent parts in the following way

Fn(r, P, t; œT(cü))=VtFN(r, P, i; c5t(m))+ CrF(r, P, t; cûr(cu)),

V t F n (t , P, t; wr(w)) =  F 0n ( t , P, i),

C z F n (t , P, f; cùr(w)) = F ,„(г, P, i; côr(w)).

The physical meaning of this decomposition is that the N  particle phase space 
distribution function consists of a “pure” deterministic phase space distribution density 
F0lv(r, P, f) and an independent Gauss-Markovian phase distribution density 
fluctuation F ljv(r, P, i; cor(w)). All the relevant information about the dynamics of the 
system are contained by the first order stochastic momentum equations of the 
Gauss-Markov Liouvilie equation (1.24). Using the formal properties of Vx, Cz and 
commutation and decomposition properties the Gauss-Markov momentum equa-

(1.30)

(1.31)
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tions for F 0n (t , P, t ) and F ljv(r, P, г; côr(co)) will have the following form 

ô , F 0n (t , P, £)= ~ F 0n ( t , P, t ) F 0J r ,  P, £)- V x( L l N (r,  P, r; <5t(co))

F I J r ,  P, t; t; wt(w)))
and

d . F t J r ,  P, t; à>z( o j ) ) = ( î -  V M - L 0J t, P, f; c5t(co))Fllv(r, P, t; cùt(co)))-

г, P, i; c5tM )F 0N(r, P, t), (1.32)
or

d f i j r ,  P, t;c5T((o))= - L 0 Jr, P, t )F t J r ,  P, t; côr(co)) +

+ (VT-  î) (L lw(r, P, i; <5t(w))Fljv(r, P, t; шг(си)))- L lw(r, P, t; œt(œ))F0Jr,  P, t).

These stochastic momentum equations express the fact that the dynamical equations 
of the “incompressible” deterministic phase fluid and the “compressible” Gauss- 
Markov fluctuating phase fluid are coupled. Evidently these Gauss-Markov mo
mentum equations are entirely based on the aforedescribed separation and decoupling 
of the statistical and stochastic time-scales. To obtain the Sa particle V normed 
Bogoliubov reduced distribution function FsJr, P, i; c5t(co)) the following integral 
operator can be defined

1
A — ____________ ,____________________________________y

П  s «  J / ( N « - S « )  j / J V i  y N . - , y N * + i  y N j -

X J fj d \ , d 3P„,. . .  П d \ J 3Pn, . . .  X . . .  П  d \  yd3P ^ , (1.33)
Д*6<JV - s „ )  ni  -  1 n» =  S * + l  " Ж - 1

where S„= 1, . . . ,  N„, a =  1, .. . , J f .  Using the commutability of the £  (<r-summation)
a

and LIM (limit) procedures with the operators Vx and Cx, the integral operator Â Sa 
has the commutative relations

{Л Kr}_ = 0  and {/Ts. , e t} -= 0  (1.34)

for all Sa= l;  . . . ,  N a . Acting the / î Si on the N  particle distribution function 
F,y(r, P, t; <ùt(a>)) the following relation is obtained

FsJr, P, t; c5t(oj)) = i s/ iV(r, P, r; <5t(ft>)) (1.35)

for all (t, w )e T x Q .  Retaining the Gauss-Markov properties of the “outside” in the 
Sa reduced distribution functions, the FsJr, P, t; <5t(w)) can also be split uniquely 
into two mutually independent parts

Fs.(r, P, t; cHx(cai)) = ^ F s j r ,  P, t; <5t(co)) +  CzFSm(r, P, t; wx(w)), (1.36)

^tFs.(r, P, t; wx(œ))= F 0s J t , P, i) and CxFsJ t, P, t; tut(co)) =

= F ls.(r, P, t ; w x(w)), (1.37)
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which includes all the S„ arbitrary kinetic levels. This arbitrary kinetic level 
decomposability of the Gauss-Markov reduced distribution functions means the 
dimensions of the phase space or subspace to be independent of the deterministic 
and stochastic dynamics of the plasma system. Carrying out the Mayer’s expansion 
of the S„ reduced distribution functions and considering that the Coulomb interaction 
potential ф couples both the deterministic and Gauss-Markov dynamics of the plasma 
particles, the arbitrary many particle correlation functions С5<Дг,, Р 1; . . . ,  rs>, 
PSi,t;c5(cn)) restrain the Gauss-Markov properties of the “outside” and have the 
following decomposed form

Cs.(r i>p i> • • ■> rSa, PSoi, f; côt(io))= PtCsJ r l ,P i, . . . , r SiM,P Sm,t;ô}T(co)) +

+ CTCsJ r 1, P 1, . . rs-, Ps>, t; c5t(a>)),

C2„(ri> P i> Г2> P2> f; (5t(co))=i>tC2.(r1,P 1,r 2,P 2,i; <5t(cu)) +

+ CrC2a(r, , P , , r 2 , P 2, t; w(co))

(1.38)

and
PtCs.(r ^ P i, ■ • •,rSoi,P Sii,t;iût(m)) =  C0sa(r1,P 1, 

CrQ ,( G ,p i. • ■ ,r s. ,P s. t;c5t(w)) =  C ls. ( r , ,P 1,

•> rs«> ps«> 0 >

• . r s .» p s„ .i; cùrM ) ,

(1.39)

K C 2J r l , P l , T 2 , 

CtC2>(r,, P , , r2,

P2, t; й г(ш)) =  Co^ir,, P , , r2, P 2, f), 

P2,i;cÙr(m)) = C ll>(r1,P 1,r 2, P 2, i; c5t(w)).

This unique and mutually independent decomposability of the Sa (S„=l, . . . ,  N ^ ,  
a =  1, . . . ,  J f )  arbitrary kinetic level correlation functions shows that it is necessary 
for the arbitrary kinetic level “pure” deterministic and “pure” Gauss-Markov reduced 
phase space distribution function to contain both the “individual” and “collective” 
dynamical effects of the plasma system.

The basic approximation to this electromagnetic coupling between the “em
bedded” plasma system and the “outside” is the aforedescribed separation and 
decoupling of the statistical t and stochastic (Gauss-Markov) т time-scales. This 
crucial assumption makes it possible to treat and study the arbitrary kinetic level 
Gauss-Markov dynamics of the “embedded” plasma system coherently. By the 
application of an “ergodic like” Gauss-Markov model to the fast turbulent time-scale 
tF with respect to the slow regular time-scale tSL the multi time-scales weak and 
moderately strong plasma turbulence can be coherently described in the frame of this 
stochastic treatment [7]. Finally, if this approximation fails the Gauss Markov 
stochastic projectors Kt, CT do not satisfy the commutation relations (1.9). This failure 
will produce an enormous complexity of the description. The second part of this paper 
will contain the Gauss Markov kinetic theory of the “embedded” plasma system.
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AMPLIFICATION OF В-G  WAVES 
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The present paper deals with the propagation of B G waves in a pre-stressed hexagonal 
piezoelectric half space which is coupled with a semiconducting half space through an air gap. 
Analytical expressions for the amplification coefficient and velocity of such waves have been derived 
and compared with the corresponding expressions when the pre-stressed conditions are absent.

1. Introduction

In a series of papers Soluch [1, 2] for the first time studied the amplification 
of В-G  waves in a structure which consists of a piezoelectric crystal of class 6 mm 
and a semiconductor separated by an air gap. In his papers he investigated the effects 
of the size of the air gap and diffusion in the semiconductor etc., in wave parameters 
like velocity and amplification.

In the present paper, a similar problem has been attempted when the 
piezoelectric half space is pre-stressed and ultimately it has been found that such 
pre-stressed conditions greatly influence the above mentioned parameters.

2. The differential equations and their solutions

Following Soluch [2] we consider a structure consisting of a pre-stressed 
piezoelectric half space x 2 > 0  and a semiconducting half space x 2< —h separated by 
an air gap of width h. The other two directions of the coordinate axes x ,  and x 3 are 
taken along the direction of wave propagation and tangential to the surface of the 
piezoelectric half space. The system to be analyzed is shown in Fig. 1. ve and vs are 
the velocities of the electrons and the В-G  wave, respectively.

The basic equations of the different regions together with their solutions are 
presented in the following sections.
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Fig. I

Piezoelectric region

From the equations of state and from the electrostatic equations of a hexagonal 
piezoelectric crystal together with the pertinent equations of motion

d (  du j \  дТи ..
ьт А ’ ‘ д Г .)  + FF,

(2. 1)

for a pre-stressed medium (Bolotin [3], Nalamwar and Epstein [4]) four coupled 
partial differential equation for the mechanical displacement components (i= 1, 2 , 
3) and the electric potential q> can be obtained. Since we are interested in the 
propagation of transverse В-G  waves, the displacement components u, and u2 can 
be taken to be zero and the remaining unknowns u3 and the piezoelectric potential 
<p are independent of the x3 coordinate resulting in the following two coupled partial 
differential equations (Ganguly [5])

l>i i“3,11 +  2<r, 2u3t2i + ff22u3,22] + с44^2“з +  G s У2(Р =PÜэ> (2-2)

e, 5(72m3 — £ii F72̂  = 0, (2.3)

where V2 is the two dimensional Laplace operator

„2  &V 2 = ---------с —
dx\ dx\

Introducing a new potential function ф defined by the relation

ф = < р - — и3, (2.4)
£ц

the above two equations further reduce to the following

pü3 =  C44 Р 2Из +  01 1 U3> ! 1 +  CT22W3, 22 +  2<T 1 2“ з, 2 1 . (2 -5)

У2ф = о, (2 .6 )
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where

C44 £44 (2.7)

aik are the initial stress components in the medium, p is the material density, u3 the 
displacement component, el5 the piezoelectric constant, eu  the dielectric constant 
and <p the piezoelectric potential of the medium. Dot denotes time derivative and an 
index proceeded by a comma signifies derivatives with respect to space variable.

We take the solutions of (2.5) and (2.6) in the form

u3 = A exp( —£2x2)exp {iféi*! -cut)}, (2.8)

Ф = В exp ( -  £tx2) exp {i(^x, -  cut)}, (2.9)

where £t and £2 are wave propagation and decay constants, respectively. A and В 
are constant amplitudes and cu is the angular frequency. Using the above two equations 
we get from (2.4)

cp= A —-exp( — £2x2) + ßexp( 
£i 1

- É 1X2) Jexp [ i^ ix ,-c u t)]  . ( 2. 10)

Substituting the values of u3 and ip from (2.8) and (2.9) in (2.5) we find (Ganguly [5])

£, l(c44 + <r22) -  i  f(c4 4 + a I ,) -  2i^  Ç2o 3 2 + peu2 = 0 .

The other equation (2.6) is automatically satisfied by the above choice.

(2. 11)

The air gap region

In this region there will be no displacement component and the electric potential 
cp must satisfy Laplace’s equation

V2cp = 0 , (2 .12)

the solution of which has the following form

<p =  [cexp(^1x2) + f)exp( — ̂ x 2)] exp [ i^ X j  — cut)]. (2.13)

The semiconductor region

If the semiconductor is isotropic dielectrically then Poisson’s equation has the 
following form

V2cp= — , (2.14)
£s

where n is the ac component of the electron concentration.
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The current continuity equation is given by (Seeger [6])

V-J=en,  (2.15)
where J  is the electron current density vector.

After neglecting the effect of generation, recombination and trapping, the 
linearized equation of state for the electric current density assumes the form

J =  — aV(p — eV'ti +  DeVn, (2.16)
where

о = ецп0, (2.17)

€е = - ц Е 0, (2.18)

and E 0 is the constant electric field intensity vector, ц  the mobility constant and D 
the diffusion constant, respectively.

From (2.15) and (2.16) we find

aV2(p + eV(ven) — DeP2n + eri = 0. (2.19)

Let us seek the solutions of (2.14) and (2.19) in the following form

n = £exp {qti(x2 + h)j • exp {i(<ï1x 1 — cut)}, (2 .20 )

<p = £exp {qti(x2 + h)} - exp {i(^lx l -cot)}. (2 .2 1 )

Inserting the above expressions for n and q> in (2.14) and (2.19) we get the following 
two algebraic equations

—  - F W - 1) =  0 , (2 .22)

E{ -  eico -  Detf(q2 -  1 ) +  eveÇ ,(q + i)} + £{£?(<?2 - 1  )a} = 0 . (2.23)

Hence for non-trivial solution we must have

-  —ti(q2 — О
«5
{ -  eico -  D e t f iq 2 -  1 ) +  eveÇ j (q +  i)} t f ( q 2 -  1 )<x

(2.24)

Out of the four roots of this equation two can be eliminated by the conditions at 
infinity as in Kaliski [7] and only two roots are meaningful namely

91 = 1,

q 2 = 2 D t2 Ve t l  +

£ĵ »2íí-4í)íí|,'(<u-«J« í i ) - j- (2-25)
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Using (2.14), (2.20) and (2.21) we find the following relation between E and F

- E  =  F t f ( q 2 - 1),

which shows E becomes zero when q assumes the value q , =  1.
We thus find the following expressions for n and <p from Eqs (2.20), (2.21) and

(2.25)

n =  E exp [q2Çt(x2 +  h)] exp [ i ^ x ,  -cu t)] , (2.26)

<p = {Fexp [ ^ (х 2 + Л)] + G exp [q2^ (x 2 + h)]} exp {i(^x, -  coi)}. (2.27)

In addition, the constants E and G are related by the following expression

E = G ( q \ -  1 )е Д . (2.28)e

3. Boundary conditions of the problem

Since in the present problem we wish to study the propagation of В-G  waves 
in a structure consisting of an initially stressed piezoelectric half space x2 > 0  and a 
semiconducting half space x 2< —h separated by an air gap of width h we find two 
bounding surfaces x2 =  0  and x 2= —h.

For the boundary x2 = 0

i) <P , i U  =  o * = < P . i L 2 =  o - >  (3-1)

Ü) ^ 2l*2 = 0 + = -^21JC2 = 0 - > (3-2)

>••) ^23 +<72*Из,*lx2 = 0 + = 0. (3.3)

For the boundary x2=  —h

•v) V.ilx2--**“ 4».il»2--*-» (3-4)
V) D iU — “ D il , ,— *-• (3.5)

vi) ^ 2Ix2= -* - = 0 . (3.6)

Inserting the values of (2.8), (2.10), (2.13), (2.16), (2.26), (2.27) in the above equations 
(3.1H3.6) we find the following set of equations

/ l ( ^ ) + B - C - D  = °, (3.7)

Bei j +ce?i —De?i = 0 , (3.8)

Л  { U ca*  +  ° 2 2 ) -  i f i * 2 1} +  B e ,  5{  1 =  0, (3.9)
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ee x p (-£ ,/i)  + D exp(<^,/i) — F — G = 0, (3.10)

ce?, exp( — —De,  j exp(£,/i) — Fes- G q 2es = 0, (3.11)

E {-e v e+ Deq2Ç ,} -  F<x£, -  G<72£, <r = 0, (3.12)

where £?, is the vacuum permittivity.
The above set of equations (3.7)—(3.12) together with the relation given by (2.28) 

contain a set of seven linear algebraic equations. For non-trivial solution of these 
equations we must have

*15
*11
0

2) ■ £ 2  

0 
0 
0 
0

1 - 1 - 1 0 0 0

„ „0 0 0 0
e l l  £ 11

« . s i .  0

e l 1 

0
0 0 0

0  e x p ( - i , * ) cxp(i, h) 0 - 1 —  1
= 0 .  ( 3 . 1 3 )

0  £ ? ,  е х р ( - £ , А )  [  — € ? ,  с х р ( ^ Л ) ]

0 0  0

0 0 0

- Я  2«.

“tó*(-eV' + DeqtZt) -<т£,
I О

Expanding the above determinantal equation we find

É2 1
)е15+‘°иГ>

where

el5El 1

<Sl (c44 +  <T22

^  COS h({,Л)) ( e , i î (  - ve-+ Dq2t ,)( 1 + q2)} +
/  fcl 1

• { ( - t J e +  D q ^ , ) ( l  + í 2t ó - 2 ^ , }  s i n h ( i , / i ) J

(3.14)

M ______________________________________ ________________________
T  ~~ {[(H -q2)es2^ ( - i J e +  Dí/2^ ) ]  [(£u +e?1)co sh (í1/i) -£ 11e x p ( - í 1/i)] +

+ t ó ( l + « 2 ) ( - p, + Ö92Í i) - ^ i] [£?,(e?i + «n)'

• sin h(<J,h)+ £,,£?, exp( — £,/1)]}. (3.15)

4. Determination of the phase velocity and amplification/attenuation 
co-efficient of the wave

Phase velocity

From Eq. (2.11) we have the following relation between and £ 2

Í 1 42
i t

(c44 + <T22) - ( c 44 + (T
u) K í í ) * “

+  P V s =  0 ,

a)
where v. ( =  — ) is the phase velocity of the surface wave.

(4.1)
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Inserting the value of £2/£ i > from (3.14) in (4.1) we find

1
(c44 + <rn ) -

/  M
I — e15 + i<T21

(c44 + (T22) (4.2)

This gives the phase velocity of the В-G  wave.
In the absence of pre-stressed conditions the expression for the phase velocity 

of the propagating wave is given by

1

> 1 L c.
-2 i (4.3)

Eliminating M/L between (4.2) and (4.3) we find the following relation between vs 
and V? P2 [ys (d44 + <r22) — v*2c44] 2 + 2p([c44(<r n+<r22) + (T11<722 + o-|1])

• {v*2c44 -  r 2(c44 + <r22)} =  4pt>f2c44<x2! -  C(c44 • (ai , +  <r22) +

+ о 11о22 + I -  2<t2 1 ) + 4<t2 J(c44(<r J ! + <r22) + a , Jct22 + a\ , -  2<t2 ,) + 4<r^c244] .
(4.4)

Amplification co-ejficient

To determine the amplification co-efficient of the surface wave we substitute

=x + iß, ß<<ot

in the dispersion equation (2.11) and follow the technique of Kaliski [7]. We thus 
find the following equation.

ízfóu  + ff22) -  (a2 -  ß2) (c44 + о i ,) +  2ß£, 2<r, 2 -

— 2ia/?(c44 +  <r, j ) — 2ia<r j 2 i  2 = 0. (4.5)

Equating the imaginary part and real part of this equation to zero we find

ß ^ 1 2
(с44 + <7ц )

and
ß \ c 44 +  <r 1, ) + 2ßo, 2Í  2 +  { £!(c44 + ff22)-  a 2(c44 + a x, ) + pco2} = 0 . 

The negative value of ß in (4.6) implies that it is a case of amplification.

(4.6)

(4.7)
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From (4.7) we find the two roots as follows

ßl,2 = 7 ^ ; --- r{-ffl2É2±(£i<rÎ2-(c44 +  ffll)[É2(C44 + ff22) -(С44 + <7п )

- а 2 ( с 4 4  +  < Т ц )  +  р с о 2] ) т } . ( 4 . 8 )

The above two values of ß given by the Eq. (4.8) become identical to the one 
given by the Eq. (4.6) when the discriminant

^ i 2 ~ ( c 4 4  +  <J \ i) [<Ü2(^44 +  <^22)-“2(c44 +  <r 11) +  = 0 .

For positive values of the discriminant two distinctly different values for the 
amplification coefficient ß can be obtained; one of which is negative and the other 
may have positive or negative value. This indicates both the possibilities of 
amplification and/or attenuation. Similarly it can be seen that for negative values of 
the discriminant, only amplification of the wave can be obtained.

In the absence of initial stress, the amplification or attenuation coefficient ß* 
of the wave can be determined from the equation

/?*2c4 4 +(<!;!-a 2)c44 + peu2 =  0 ,

which is obtained by substituting the initial stress terms equal to zero in Eq. (4.7). 
The roots of the above equation are

ß*.2 = ± ^ - { c 44[(a2 - ^ ) - p c u 2]}2  . (4.9)
C4 4

5. Discussion

To summarize the above analysis we find that the dispersion equation (2.11) 
relates angular frequency со, wave number and the decay constant £2. The 
determinantal equation (2.24) obtained for non-trivial solutions in the semi-conducting 
half space involves in addition to and со the decay parameter q for the surface 
wave. Similarly the determinantal equation (3.13) obtained from the boundary 
condition of the problem contains in addition to the material constants and the 
decay parameter q2, the decay constant £2. In such wave propagation problems, 
numerical techniques are generally adopted (White and Tseng [8]). To proceed with 
such method we first eliminate q from the equation (3.13) using Eqs (2.24) or (2.25) 
so that we find a relation only in £ 2 and w. White’s technique consists in finding 
a set of values for ^  , £ 2 and со which would satisfy equation (2 .11) and the equation 
obtained after eliminating q, the decay parameter in the semi-conducting region. To 
do this, values for the wave number £1 and the angular frequency со are assigned 
and then Eq. (2.11) is solved for the decay constant <j;2. The decay constant together 
with the preassigned values for the wave number and angular frequency are then
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substituted in the equation obtained after eliminating q from the determinantal 
equation (2.24/2.25) and (3.13) to see whether it is satisfied. If not, new values for the 
wave number and the angular frequency œ are chosen and substituting them in 
the dispersion equation (2 .11) the value for the decay constant is derived.

The process is continued until a set of values for the decay constant, angular 
frequency and wave number are obtained for which both the equations mentioned 
earlier are satisfied.

The values for the decay constant £2, angular frequency œ and wave number 
£ 1 thus obtained are substituted in Eqs (4.2), (4.3), (4.8) and (4.9) to obtain the exact 
values of the phase velocity and amplification co-efficient of the surface wave in the 
presence and absence of the initial stresses.
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The lattice thermal conductivity of InSb has been calculated in the temperature range 
2-800 К in the frame of Dubey’s model, which makes use of Guthrie’s classification of three-phonon 
scattering events. Excellent agreement has been found between the theoretical and experimental 
values of the phonon conductivity over a wide range of temperatures. The temperature dependence 
of three-phonon scattering relaxation rate has been calculated for both class I and class II events 
in the study of phonon conductivity of InSb. The percentage contributions of transverse and 
longitudinal phonons have been studied separately in the temperature range of investigation. The 
role of four-phonon processes is also included at high temperatures. The percentage contributions 
of the three-phonon normal and umklapp processes towards z have also been investigated.

1. Introduction

The lattice thermal conductivity of InSb has been studied by several workers 
[1-5] experimentally as well as theoretically at low and high temperatures, and it is 
now established that the Callaway [6] model could not get good agreement in the 
high temperature region. It should be noted that the Callaway model is an exception 
due to the fact that it does not make any distinction between transverse and 
longitudinal phonons. Holland [1] modified the Callaway model, making it applicable 
at all temperatures by considering the two mode conduction of phonons.

The three phonon scattering relaxation rates were further studied by Guthrie 
[7] by dividing the phonon-phonon scattering events into two classes: Class I events 
in which the carrier phonon is annihilated by combination, and class II events in 
which annihilation takes place by splitting. Recently, considering the rate of r fp\,N 
and Т3Д и and following Guthrie’s classification of the phonon-phonon scattering 
events Dubey [8] studied the thermal conductivity of a sample by proposing a new 
expression for т3Д as

т3Д =  { B N,t +  B VAe - eilT) g ( w ) T m'iT) +

+ (BN, u + Вv ,,e ~e/aT)g(w)Tm,'<T>. (1)
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Terms are explained in the following Section. The aim of the present work is to 
calculate the lattice thermal conductivity of InSb in the frame of the expression for 
the three-phonon scattering relaxation rate proposed by Dubey. The separate 
contribution of transverse and longitudinal phonons towards the total lattice thermal 
conductivity has also been studied by calculating their percentage contributions. The 
percentage contribution of the three N and U processes scattering relaxation rates 
toward have been studied.

2. Theory

In the present model Dubey [8] used the same frequency dependence g(w) for 
N  and U-processes due to the fact that g(w) depend only on polarisation branches. 
At the same time, the same value of m(T) is used to both N and l/-processes due to 
the fact that Guthrie [7] obtained the same value of m(T) for both processes. The 
temperature exponent m(T) has four values 1, 2, 3 and 4 for transverse phonons and 
three values 1, 2 and 3 for the longitudinal phonons corresponding to the different 
temperature ranges. Due to lack of an expression for the exact value of m(T), Dubey 
[8] suggested the use of the average value of the upper and lower bounds of m(T) 
reported by Guthrie [7]. Thus, the expression for m(T) used in the present 
communication is given by

Wi(T) = X m.Jex- '  -  1 ) 1 + 0.5* max (2)

for class I events and

mH(T)=0.5 + Q.5Xmaxeo-5X™'(ex™ ' - i r l (3)

for class II events, where X m̂  = hwmaJ K BT, h is the Planck constant divided by 2л, 
K g is the Boltzmann constant and wmax is the phonon frequency at the boundary of 
the Brillouin zone.

The Guthrie [7] classification leads to the participation of transverse phonons 
in class I events only, while longitudinal phonons participate in class I as well as in 
class II. As a result, Dubey [8] proposed an expression for т3Д T for transverse 
phonons as

Тэ7*.г =  (В™.. +  f W ~ e/‘> r mT' ,(T) • (4)

Similarly, the expression for т3Д L for longitudinal phonons is given by

Tз7* . l := (BLN,, ■+ BLU,, «Г ‘9/* > 2 T -  ■''<r >;

+ и +  BLUt и e ~ ei*T)w2 T mi- l,,T), (5)

where BN and Bv are the scattering strength of three-phonon normal and umklapp 
processes, respectively, suffixes N and U are used to represent normal and umklapp
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processes, 0 is the Debye temperature of the sample and a is a constant, ^(w) is the 
function of phonon frequency w, g(w) = w2 for longitudinal phonons and w for 
transverse phonons which are the same as obtained by Herring [9].

The phase and group velocities of phonons inside the conductivity integral 
have been corrected by using a modified dispersion relation [4, 10]

& = (w/d)(1 + rw 2), (6)

where к is the phonon wave vector, w is the phonon frequency, r is a constant which 
depends on the dispersion curve of the sample under study and can be calculated 
with the help of the experimental dispersion curve and v is the phonon velocity.

Assuming spherical symmetry of Brillouin zone for all three polarization 
branches, one longitudinal and two transverse, and that each phonon contributes 
separately towards the total lattice thermal conductivity, the contribution of each 
branch can be expressed as [6]

K, = ( 1 /6я2) Í xciVgi(H2w2/K BT 2) (е>*<КвТ -  1 ) - 2

efiwlKeTk 2d k  +  A K , (7)

where the integral is performed over the first Brillouin zone, suffix i stands for 
polarization branches. Vg is the group velocity corresponding to the polarization 
branch, A К is the correction term [6] due to the three phonon А-processes and its 
contribution can be ignored [11-13] compared to the contribution due to the first 
term in Eq. (7) and tc7 1 is the combined scattering relaxation rate given by

Т < Г 1 =  U  1 +  V 1 +  T 3 p H  +  U p 1* ,  ( 8 )

where xB 1 is the boundary scattering relaxation rate [14], r “ 1 is the point defect 
scattering relaxation rate [15], z^p\ is the three-phonon scattering relaxation rate [8] 
and Т4Д is the four-phonon scattering relaxation rate [16, 17]. The expressions used 
for the scattering relaxation rates are given in Table I. The expression for the lattice 
thermal conductivity in the frame of SDV [10] model can be expressed as

K = K T + K L, (9)

where K T and K L are the contributions due to transverse and longitudinal phonons, 
respectively, and are given by

в , i t

K T= ( j - j  J  rc Tx*ex(ex- l ) - 2( \ + R lx 2)2( l+ 3 R lx 2)~ldx +
0

02 IT

+ ( j - j  J  TC' Tx*ex(ex- \ ) - 2( l + R 2x 2)2( \+ 3 R 2x 2r ' d x ,  (10)
01 IT
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where

K L =

9з I T

tc , x 4ex(ex —1 ) ' 2(1 +  K3x2)2(l +3R3x 2)~ ldx +
о

+

»«/r

rCtLx V (e x-  1)_2(1 + R4x2)2(l + 3R4x2)~ ldx,
O i / T

R ^ r t(KBVU)2, e ^H w jK g ,

(11)

/= 1 , 2, 3 and 4, ri and r2 are dispersion constants for transverse phonons in the 
ranges 0 —1/2 fcmax and l/2 fcmax — /cmax, respectively, r3 and r4 are the same for 
longitudinal phonons, vTl and vT2 are the transverse phonon velocities in the range

Table I

Scattering relaxation rates. In these expressions v is the average phonon velocity, L  is the Casimir length 
of the crystal, A is the point defect scattering strength, V is the atomic volume, / ,  is the atomic fraction 
of the i-th impurity whose mass is m,, m is the mass of the host lattice, Am = m — mi, B's are constant and 

kma, is the zone boundary of the first Brillonin zone

Scattering processes Relaxation rates

Crystal boundary [14] ra 1 = v/L

Impurities [15]
V (A m  Y

r - ' = A w \ A = — f A  ----  I
4nvti \  m /

Three-phonon processes

Normal processes [9] (Л/-processes) T3 p h .N

Transverse tfw = BTwT4 at low temperatures

Longitudinal T LN' = BLw2T 3

T ransverse rf* = B’twT at high temperature

Longitudinal t  rw‘ = B [w 2T

Umklapp processes (U processes) T } p h .V

Klemens [25] 1 = Bvw2T 3e~3l’T at low temperature

Klemens [26] tJ 1 =  B [w T 3e" ,,*r

Holland [1] (for transverse) ' = B74Jw2/sinh (hw/K„T) 1/2кт„ - к тшх 

T j ‘ =0,  (Mcm„

Callaway [6] t  ï l = Bvw2T 3

Klemens [26] xû' = B ’vw2T  at high temperature

Four-phonon processes [16, 17] Ûp\ = Bw2T 2
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0 — l/2 /cmai and l /2 fcmai — fcmax. vLl and vL2 are the same for longitudinal phonons, 
and w3 are the frequencies of transverse and longitudinal phonons at 1/2 Icma„, 
respectively, and w2 and w4 are the same at kmax.

3. Results and discussion

The boundary scattering relaxation rates t b . t > t b , l  and the point-defect 
scattering strength A have been adjusted at 2 К and 8 K, respectively. At low 
temperatures, мД, Thus an approximate value of BTNl, B ,N l and BLNIl
have been calculated at 15 К ignoring the contribution due to т3Д11;. The three- 
phonon [/-processes dominate over /V-processes at high temperatures. Therefore, one 
can neglect the role of three-phonon /V-processes. BTV ,, BLU , and BLU „ at 200 К 
have been estimated. The four-phonon scattering strength BHT and BHL are calculated 
at 600 K. The experimental data are taken from the earlier report of Holland [18] 
and other constants related to the dispersion curve are taken from the earlier report 
of Dubey et al [4].

Using the constants and parameters reported in Table II, the lattice thermal 
conductivity of InSb has been calculated in the temperature range 2-800 К in the 
frame of the expression proposed by Dubey [8] by calculating the contribution of 
the transverse and longitudinal phonons separately. The results shown in Fig. 1 are 
in good agreement with the experimental data, also near conductivity maxima in 
which region Dubey and Verman [4] did not observe good agreement. The separate

Table II

Values of constants and parameters used in the calculation of phonon conductivity of 
InSb in the temperature range 2-800 К

vTI (cm/s) 2.28 x 1 0 s ®T/v,i(deg m) l.Ox 10~12
VT1 (cm/s) 0.82 X 10s Btu,i U eg m) 4.25 X 10“6
Vu (cm/s) 3.77 x 1 0 s Bln.i (s ' deg~m) l.Ox 10~23
v,.2  (cm/s) 3.77 X 10s Blu.i (s ■ deg_m) l.O xlO "20
О, (K) 56 Bln. it (s • deg_m) 1.0 X 10-2 '
0 2 (K) 62 Blv.ii (s ' deg m) 2.0 X 10"17
0 } (K) 101.5 B h t  (s ’ deg-2) l.Ox 10"24
О A  K) 170 Bhl(s ' deg-2) l.Ox 10“23
o D(K) 172.5
a 1.5
r, (S2) 9.665 X 10 27
r2 (s2) 2.618 X 1 0 '27
rj <S2) 0
r* (s2) 1.37 X 10~27
ZBT (s 1 ) 4 x  10s
*«/.’ s ’) 4.2 X 10s
/ l ( s 3) 4.2 X 10"44
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10 100 1000 
T I K  J

Fig. 1. Total lattice thermal conductivity of InSb in the temperature range 2-800 K. Solid line shows the 
calculated values and circles are the experimental points

In S b

/•\

J ___________ 1------------------------- L

10 100

•/.KL

T IK )

1000

Fig. 2. The percentage contributions % K T and % K L towards the total lattice thermal conductivity of 
InSb due to transverse and longitudinal phonons, respectively. Dashed and dot-dash lines represent % K T

and % KL, respectively
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percentage contributions of transverse and longitudinal phonons towards the total 
lattice thermal conductivity can be studied with the help of Fig. 2. From Fig. 2 it 
can be seen that at high temperatures the transverse phonons are mainly responsible 
for the transfer of heat, which is in agreement with the results reported by previous 
workers [1, 5, 19-23]. It is also clear that in the low temperature region the ratio 
% K r/7o K l depends upon the factor

which indicates that at very low temperature % K T is larger than % K L. At higher 
temperature towards the conductivity maxima, % K T begins to decrease while the 
reverse is true for longitudinal phonons. At a certain temperature, the transverse 
contribution begins to increase again. This nature of such variation in the curve is 
due to the role of the point-defect scattering [10]. A similar nature is also obtained 
by Sharma et al. [10] for Ge, Dubey and Verma [24] for Si, A wad and Dubey [23] 
for Mg2Ge and Mg2Si and Al-Edani et al [5] for InSb and GaAs.

Table III

The value of the temperature exponent m(T) used to calculate the 
lattice thermal conductivity of InSb. mT ,(T) is the temperature 
exponent of the three-phonon scattering relaxation rate due to 
transverse phonons for class I events, whereas m,, M(T) and т , Д T) 
are the same due to longitudinal phonons for class I and class II 

events, respectively

T [K ] mT,,(T) mL.,ÁT)

2 4 3 0.5
4 4 3 0.5
6 4 3 0.5
8 3.8783 3 0.5002
10 3.1120 3 0.5017
20 1.6962 3 0.5606
30 1.3329 2.8530 0.6672
40 1.1926 2.1865 0.7579
50 1.1249 1.8173 0.8212
60 1.0874 1.5937 0.8650
70 1.0645 1.4490 0.8954
80 1.0495 1.3507 0.9169
90 1.0392 1.2810 0.9327
100 1.0318 1.2299 0.9445
200 1.0079 1.0594 0.9852
300 1.0035 1.0266 0.9933
400 1.0020 1.0150 0.9962
500 1.0012 1.0096 0.9975
600 1.0008 1.0066 0.9983
700 1.0006 1.0049 0.9987
800 1.0005 1.0037 0.9990
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Fig. 3. The percentage contributions % т ,v and % r3p\ v processes towards the t }p\ T for class I events 
for transverse phonons for InSb in the temperature range 2-800 K. Solid and dashed lines represent У x~ 1

and % rjpl. jv, respectively ° Зр1'’и

Fig. 4. The percentage contributions % „ and % r3p\ v processes towards Tiph, for class I events for
longitudinal phonons for InSb in the temperatures range 2-800 K. Solid and dashed iines represent % xÿph и

and % Tjjijy, respectively
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Fig. 5. The percentage contributions % Д ;V and % x3p\ v towards x}phl for class II events for InSb in 
the temperature range 2-800 K. Solid and dashed lines represent % xj^, v and % x^phN, respectively

The temperature exponents can be calculated for both transverse and longitudi
nal phonons in the temperature range of study with the help of Eqs (2) and (3) and 
the results obtained are reported in Table III. It can be seen that at low temperatures 
mT ,(T) and mL ,(T) tend to 4 and 3, respectively, which is similar to the results 
obtained by Herring [9]. It can be seen that at high temperatures mT,i(T), mL ,(T) 
and mL,1,(7”) tend to unity. Thus т3Д reduces to т3Дос T due to e~ei*T which tends to 
unity at high temperatures, which is similar to the earlier finding of Herring [9].

The percentage contribution of three-phonon N  and U processes can be 
analyzed via Figs 3-5. From these Figures, it can be seen that at low temperatures 
T3pA.jv dominates over т3Д v for both transverse and longitudinal phonons. As a 
result, the three-phonon А-processes play a dominating role in the lattice thermal 
conductivity. At high temperatures, т3Д v dominates over т3р*<N, which shows that 
the lattice thermal resistivity is mainly due to three-phonon [/-processes. These results 
are similar to those obtained by previous workers [8 , 20, 23].

*  *  *
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The Franck-Condon factors and r-centroids have been computed by the more reliable 
numerical integration procedure for the bands of the (B1 - > X ' X ~ )  system of the PbO molecule, 
using the suitable potential. The electronic transition moment variation with intemuclear distance 
has been re-evaluated and this is represented by

Re(r) = const. (0.525r—1)

in the range of 2.022 x 10 10 m < r < 2 .1 4 4 x  10 10 m. It is interesting that this representation is 
found to be similar to the form of Re(r) for the band systems (AO+ - * X ' I +) and (01->Х 'Г  + ) of 
PbO. Also the relative band strengths are derived. The form of Re(r) reported by Dube et al is 
found to be in error.

1. Introduction

While investigating the electronic transition moment (Re) variation with 
intemuclear distance (r) for the band system (Z)l-►Лг1Г + ) of PbO [1], some 
discrepancies were noticed between the form of Re(r) for P b O f B l + ) band 
system reported by Dube et al [2]. Therefore the reliable values of Franck-Condon 
factors ) and r-centroids (r for the bands of the (В1->Х1Г + ) system of the 
PbO molecule have been computed by the more accurate numerical integration 
procedure using the suitable potential and the form of Re(r) has been re-evaluated 
in the present study. It is also noted that the form of Re(e) reported by Dube et al 
[2] is in error.

2. Theory

Mathematically one can write for the intensity of a molecular band for a 
v’-w "  transition in emission [3] as

Iv.v.. = DNv.EÎ.v..pv.v.., (1)

* Present address: Department of Physics, VHNSN College Virudhunagar 626002, India
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where D is a constant partly depending on the geometry of the apparatus, N v- is the 
population of the level v', £„•„•( =  AJvO, the energy quantum and p„v  the band strength 
which in terms of electronic transition moment Re is given by

P v 'v "  ^ e ( ^ v ' v ' ' ) ^ v ' v "  ■ ( 2 )

The quantities qv.v.. and r„v . defined as the Franck-Condon (FC) factors and 
r-centroids respectively, can be expressed in terms of the vibrational wave functions 
ф of the levels v' and v" as

9„v' = [ í  II>v4v-dr]2 

J \l/v.r<pv..dr

i ' I ' v  ' I ' v - d r  ■

(3)

(4)

The functional form of Re(rv.v■■) can be obtained from the plot of (//£ 4<j)‘42., vs 
r„v . and the relative band strengths can be evaluated using the relation S„v . =  p p 02-

3. Franck-Condon factors and r-centroids

For a proper understanding of the intensity distributions in the band systems 
of the molecules, it is necessary to choose a suitable potential. The potential energy 
curves for the electronic states of B- and X-  of PbO have been constructed using the 
Morse [4] function and by Rydberg-Klein-Rees (RKR) procedure as modified by 
Vanderslice et al [5]. It is found that the Morse function represents the potential 
energy curves of the two states quite adequately since the RKR curve is nearly similar 
to the Morse curve.

The computation of the FC factors is made by Bates’s method [6] of numerical 
integration according to the detailed procedure provided by Tawde and Sreedhara 
Murthy [7]. Morse [4] wave functions were calculated using TDC-316 computer at 
intervals of 0.005 x  10“ 10 m for the range of r from 1.65 x  10' 10 m to 2.35 x  10“ 10 m 
for every observed vibrational level of each state. Once the appropriate wave functions 
are obtained, the FC factors can be evaluated by integrating the expression (3). In 
the case of Morse function, Fraser and Jarmain [8] gave a procedure for the analytical 
integration of the overlap integral. The results are generally, however, only indicative 
of trends [9]. The integration is therefore carried out numerically in the present study. 
The definition of r-centroid offers a method of computing r-centroids directly. Integrals 
in Eqs (3) and (4) for the FC factors (qv v )  and r-centroids (r„v .) were computed 
numerically and the results are entered in Table I. The r-centroids were computed 
by graphical and quadratic equation methods [ 10] and listed just for comparison. 
The molecular constants [11, 12] used in the present study are listed in Table II.

Dube et al [2] have reported Morse FC factors by the approximate analytical 
integration method [8] and the r-centroids by the quadratic equation method [ 10].
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Table I

Franck-Condon factors (g,v .) and r-centroids (r„.„..)

v\v"

q r„v .(m) X 10“ 10

Present
study*

Dube et al
[2]

Numerical
integration*

Quadratic
Graphical

Present
study

Dube et al
[2]

0,1 0.166 0.157808 2.022 2.022 2.033 2.020
0.2 0.247 0.23807 2.053 2.052 2.068 2.052
0.3 0.237 0.23597 2.083 2.083 2.107 2.092
0.4 0.163 0.17418 2.113 2.113 2.152 2.116
0,5 0.085 0.1026639 2.144 2.146 2.204 2.148

* values used in the present investigation

Table II

Molecular constants

Molecular state
В X

Present study Dube et al [2] Present study Dube et al [2]

’) ж 102 498.0 489.0 721.8 721.26
ojiA,,(m *1)x  102 2.20 2.20 3.70 3.70
r,(m) X 10"10 2.0709 2.071 1.9216 1.922

The molecular constants used by them and the reported qv.v■■ and rv,v„ values are 
also given in Tables I and II for comparison.

In the presented study, qv.v■■ and r„v . have been evaluated by the more accurate 
numerical integration method using the reliable values of molecular constants and 
therefore can be considered reliable.

4. Variation of electronic transition moment and band strengths

The intensities (/„■„••) of (0, 1), (0, 2), (0, 3), (0, 4), (0, 5) bands reported by Dube 
et al [2] have been used here to re-evaluate the electronic transition moment variation 
with internuclear distance for the band system (В — X) of PbO. Graphical plot of 
( /£ “4/ i) iv  versus r„v . is shown in Fig. 1 and it is observed that the variation of Re 
with r„v . is linear. A least squares fitting was followed to obtain

/?г(г) = const. (0.525r— 1) (5)

in the range of 2.022 x 10 “ 10 m < r < 2.144 x “ 10 m. The form of Re(r) for the band 
system (B — X ) of PbO is given in Fig. 1. The standard deviation is found to be 0.7 
for the least-squares fitted straight line.
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Fig. 1. Variation of Re with r for PbO( В — X) band system

The form of Re(r) represented by Eq. (5) is adopted in conjunction with 
Eq. (2) to calculate the band strengths using the computed qv.v~ values. The band 
strengths have been relatively scaled with the value for the most intense band (0 , 2 ) 
as unity. The relative band strengths (S„v .) for the PbO(B — 2f) system are entered 
in Table III along with the intensities, The required wavelengths (A„v .) have 
been collected from the work of Bloomenthal [13] and listed.

5. Results and discussion

The Re(r) expression obtained by Dube et al [2] is Re(r) =  const. (1 — 0.5408r) 
for the PbO(ß — X) band system. In the case of the PbO(/4 — X  and D — X ) band 
systems, Prahllad et al [14] and Rajamanickam [1] have measured the integrated 
intensities and interpreted with Morse and f v.e.. values to arrive at the variation 
of electronic transition moments with internuclear distance, respectively, as Re(r) = 
=  const. (0.521 r — 1) and /*,,(/•) =  const. (0.54r— 1) which are similar to Eq. (5). One can 
expect such a similarity for the band systems (A — X), (B — X) and (D -  X) of PbO. 
Therefore the present study results are significant.

Table III

Relative band strengths (S„v .)

v \  V м 2„v .(m) ж lO '10 I v'v" SV‘V"

0,1 4657.98 66.2 0.420
0.2 4816.90 100.0 1.000
0.3 4983.79 88.6 1.387
0.4 5162.31 81.6 1.302
0,5 5353.82 75.2 0.896
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An experimental set-up is proposed for measuring impurity atom fluxes in fusion devices 
“in situ" with the aid of LIF method by using only one laser shot. It is shown that this method 
has the same sensitivity as that of earlier measuring arrangements.

1. Introduction

Laser induced fluorescence (LIF) [1], [2] based on tunable high power dye 
lasers is successfully applied to plasma diagnostics [3], [4]. It is used in impurity 
atom flux measurements in fusion devices [5], and in laboratory experiments 
investigating the phenomenon of sputtering. With the aid of LIF the origin of the 
impurities in tokamaks can be clarified. Their velocity distribution, local density and 
consequently their flux can be measured. But in all experiments performed till now 
absolute atom density measurements and velocity distribution measurements intended 
to obtain the impurity atom fluxes were performed separately. The velocity distribu
tion of atoms i.e. the velocity profile has been obtained usually in laboratory 
experiments using many shots of narrow band tunable lasers and monoenergetic 
beam of single species bombarding the surface. Impurity density distribution 
measurement is performed “in situ” in tokamak using also many shots of a broad 
band laser. Atomic flux in the tokamak can be calculated using the result of laboratory 
velocity profile measurement and the density measurement in the tokamak. But 
uncertainty arises in the flux calculation because there are many species of atoms of 
different energy distribution in the tokamak contrary to that in the laboratory velocity 
profile measurement. Therefore the need arises to measure the velocity profile and 
local density of the impurity atoms “in situ” in the tokamak in one laser shot so as 
to determine the atomic flux.

In this paper we discuss the possibility of the simultaneous measurement of the 
velocity profile and the atom density to determine the impurity atom flux “in situ” 
in the tokamak in one laser shot using the measuring set-up proposed by us.
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2. Atom density measurement

With the aid of LIF method one can determine the atom density in a vapour 
saturating the resonant transition of the atoms by an intense and long enough laser 
pulse [6 ]. The total local atom density (n) can be calculated from the detected number 
of resonance fluorescence photons (N) emitted in a solid angle Q from an excitation 
volume V, as follows [6]:

2 N 4n 
zA2l TQV

in the case of so-called two-level atoms (Fig. la) and

( 1 )

n = N
4n

TQV ( 2)

in the case of three-level atoms (Fig. lb). T  is the optical transmission of the detection 
optics, A2i is the spontaneous transition rate from the 2nd level to the ith level, i can 
take other values than 1 and 3 in general case, when transitions to other levels are 
also possible and taken into account, т is the duration of the laser pulse. In this way 
the local density of atoms having resonant transition wavelength within the laser 
bandwidth can be calculated using one laser shot.

a) b)

Fig. la. Level scheme of a two-level atom with spontaneous transition rate 
Fig. Ih. Level scheme of a three-level atom with spontaneous transition rates

3. Flux measurement in one laser shot

If we are interested not only in the density of the impurities in the plasma or 
in that of sputtered atoms in the case of laboratory experiments, but also in their 
flux, then we have to measure their velocity distribution too, because the flux (p, of 
the atoms in a given direction can be calculated as:

where
4>i = nvl,

- = I ViAvddVi 
V‘ Í f(Vi)dVi

(3)

(4)
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is the mean velocity. The velocity distribution f ( v t) of the atoms is defined so that:

J /(»()<*»( =f n. (5)

The velocity distribution can be obtained by measuring the spectral distribution 
of the emitted fluorescence radiation, or the lineshape of the absorption spectrum in 
the required direction if the linewidth of the transition is predominantly caused by 
the Doppler effect. Namely:

and the spectral distribution:

vt= — (v -v 0) (6)

consequently:

g(v)dv = f (7)

c_ I v'g(v)dv =  c_ 
V0 J g(v)dv V0

( 8)

where v0 = AE/h is the transition frequency, v is the Doppler-shifted frequency, and 
v' =  v —v0. If the spectral distribution is measured in one laser shot the flux of the 
atoms is also determined:

together with the density:

<Pi = c
V0

v'g(v)dv,

n = Í g(v)dv,

(9 )

( 10)

according to (3), (4) and (5).
The Doppler-broadened spectrum of the atoms can be measured in one laser

shot

— if a narrow laser line is scanned over the Doppler profile of the atoms during 
the laser shot [7], and the fluorescence light is detected simultaneously (the 
intensity of the fluorescence light is proportional to the absorption at the 
given wavelength of the excitation), or

— if all atoms are excited simultaneously with a broad band laser radiation 
and the emitted fluorescence spectrum is detected with a multichannel 
detector device.

The measuring set-up of the first method is really equivalent to a one-channel device 
with rapid frequency scanning where the scanning time is far shorter than the time 
scale of the processes to be investigated. The second experimental apparatus is that 
of really many channels.
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The question arises whether the sensitivity is sufficient if the fluorescence light 
is detected spectrally resolved. But it can be recognised in a simple way that the same 
part of atoms is excited in measuring the absorption by detecting the whole emission 
intensity using narrow band excitation. Namely, this is equivalent to the first method, 
i.e. to the step by step measurement usually done till now using many shots. The 
only difference is in the sensitivity of the instruments detecting the spectrum of the 
fluorescence, which problem is discussed at the end of our paper.

4. The experimental set-up

One possible realization of the measurement of the Doppler-broadened emission 
spectrum is that which can be done by using Fabry-Pérot interferometer as a 
dispersion element and optical multichannel analyser in circular scanning mode [8] 
(see Fig. 2).

In many cases the main impurity in tokamak is the iron (Fe, m = 93.73• 10~ 27 kg), 
which is of three-level atom with the emitted wavelength 2 =  0.382 pm. According 
to the sputtering experiments the mean velocity of iron atoms ÿj=104 m/s [9]. 
Provided that the velocity distribution can be approximated roughly by Maxwell- 
Boltzmann distribution, the spectral width of the fluorescence light v'D= 1.18 cm-1. If 
we want to resolve 10 points in the spectral distribution to obtain the Doppler profile, 
the required spectral resolution of our device ávp = 0.118 cm -1 . These two data give 
the free spectral range and the finess of the Fabry-Pérot interferometer (Fig. 3), which 
means that the spacing of the plates L — 4.2 mm and the reflectivity of the mirrors 
R = 0.73. The focal length f 2 of the lens L2 used in the arrangement in Fig. 3 will be 
determined by the size of the pixels of the OMA. Namely, the radial dimension of 
the ring corresponding to the resolution ôv'D of the interferometer has to coincide 
with or has to be larger than the dimension of the pixel. Furthermore, the illuminated 
area on the detector has to be smaller than the overall sensitive size of the detector. 
If the OMA which we intend to use is the one described in [8], then the detecting 
area is of 1 cm x  1 cm with 512 channels and the maximum space resolution is about 
20pm. The radius of a ring and the radial width (ár) corresponding to the resolved 
frequency interval öv'D are given as [ 10], [ 11]

СЛ Р,
L v 0

(1 1 )

à j o f l
(1 2 )

V0 rp

in the focal plane of the lens after the Fabry-Pérot interferometer, c is the velocity 
of the light, v0 is the frequency and v0 is the wave number of the center of the line, 
and p is the interference order. If we choose for the focal length f 2 = 5 cm the radius
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Fig. 2. Experimental arrangement for measuring velocity distribution of atoms by using only one laser 
shot. L is a broad band (dvL>v'D) tunable laser for the excitation of atoms, D is the Fabry-Pérot 

interferometer, OMA is an optical multichannel analyser, and P is the plasma in the chamber W

L, FP L2

Fig. 3. A common Fabry-Pérot arrangement. SF is the source of the fluorescence, J\ and / 2 are the focal 
lengths of the lenses L, and L 2, respectively, FP is the Fabry-Pérot interferometer, L is the distance

between its plates

r ~  1 mm ( < 5 mm) and br ~  0.02 mm according to the requirements. With this choice 
we achieve the maximum intensity of the light on the target of the OMA which is 
limited by the spatial resolution.

Finally, let us discuss the sensitivity of our method. Typical excitation volume 
and observation solid angle in tokamak experiments are 1 cm3 and 1 0 “ 3 sr, 
respectively [5]. The smallest total atom density measured in tokamak experiments 
was n ~  1012 1/m3 [5]. Taking in the expression (2) the factors other than n, Fand Q 
to be in the range of unity, we obtain for the number of photons achieving the detector 
N ~  102 in <5v'D = 0.118 cm ” 1 bandwidth. The maximum sensitivity of the OMA 
described in [8] with cooled target is about 1-5 photons/s channel. As spatial 
resolution of 20 pm corresponds to 5 channels in circular scanning mode [8], the 
102 photons are detected by 5 channels i.e. 20 photons/channel which is more than 
the limiting sensitivity of 1-5 photons/channel. That means that the 1012 1/m3 impurity
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density can be reliably detected by this measuring set up also. The accuracy of 
determining the velocity profile in this case is about 10%, which can be better at the 
centre of the Doppler profile and worse at the tail of the line. This accuracy is 
acceptable in experiments performed on tokamaks.

5. Summary

An experimental arrangement intended to reduce data acquisition time of 
velocity distribution and flux measurements in experiments performed on fusion 
devices is analysed. If the excitation of the impurity atoms is made by a broad band 
laser irradiation (dvLASER>v 'DOPPLER) and the detection of the fluorescence light is 
made by a Fabry-Pérot interferometer monitored by a modified vidicon type OMA, 
velocity distribution and flux of atoms can be measured by using only one laser shot.
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The equations of Born- Infeld electrodynamics are coupled with the Einstein equations. A 
three-parameter family of spherical static solutions of these equations is presented which describe 
the gravitational field of a charged source having mass and magnetic monopole moment. Among 
these solutions, considering the ratio of mass and charge a wide class proves to be different from 
the well-known Reissner-Nordström type.

1. Introduction

One of the purposes of the classical field theory is to make it possible to deduce 
the mechanical characteristics of particles from those of the field produced by a particle.

This program cannot be carried out within the domain of classical electrodyna
mics. There are two basic facts that prevent the identification of the corresponding 
physical quantities. The first of these is that the Maxwell theory assigns an infinite 
value to the mass-energy. The second is that the energy and momentum deduced 
from the stress-energy tensor of the field produced by a point-like particle do not 
transform as a four-vector. In order to remove these imperfections we might modify 
the classical electrodynamics to fulfil the requirements mentioned above (invariance 
properties, finite mass-energy and appropriate transformation law). A wide class of 
nonlinear electrodynamics can be constructed in this way. They are essentially based 
upon arbitrary assumptions. We investigate here the typical nonlinear effects in the 
theory constructed by Born and Infeld in 1930 [1]. Among the nonlinear electrodyna
mics the Born-Infeld theory is one of the simplest. In the following we will study 
how the nonlinearity manifests itself in the behaviour of well-known solutions of the 
coupled Einstein equations. The Born-Infeld theory is characterized by the following 
Lagrangian [1]:

L = ^ - (  1 - Ф 1 ) .  (1.1)
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Here the function Ф has the form:

Ф ,  i + ± - ! i
2b1 b4 ’

where the quantities / ,  and / 2 are the scalar invariants of the field tensor Fßy, i.e.

1I — F'  1 — Гц\1г  > l ,=  -F „ yF'

The symbol * denotes the duality operation in the usual way:

Physically the parameter b corresponds to the largest possible value of the field 
strength [1]. The Maxwell theory can be retained from the Born-Infeld one as b 
tends to infinity. Calculating the mass of an electron’s field we get the expression [1]:

3 i
mel= 1.2361 . . . езЬз.

We will use a system of units such that the gravitational constant G and the speed 
of light be equal to one.

2. The metric and field equations

The purpose of the present investigation is to derive some exact spherically 
symmetric, static solutions for the nonlinear electromagnetic field described by the 
Born-Infeld theory. This means we have four Killing vectors [2] K, (i = 0, 1,2, 3). It 
is well known that there exists an asymptotically flat coordinate system (t, r, 3, (p) in 
which the Killing vectors of this symmetry have the following form [3]:

K g = ( l , 0 ,  0, 0 ),
К Í =  (0 , 0 , sin (p, ctg 9 cos <p), ^  jj

K$ = (0,0, cos (p, —ctg 9 sin (p ),
K$ =  ( 0 ,0 ,  0, 1 ).

We number the coordinates as

x° = t, x l = r, x2 = 9, x 3 = (p.

In this coordinate system the line element has the form [4]:

ds2 = — e'dt2 + exdr2 + r2dQ2, (2 .2 )
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where A and v depend on r only, i.e. A =  A(r), v = v(r). Calculating the relevant com
ponents of Einstein’s tensor for the metric (2.2) we obtain the following equations [4]

8 nT\ = - e ~ k 

8 nT°0= - e ~ x

v' 1 'N 1
(2.3)-  + -T + T»r r J r

1 ЯЛ 1

r2 r 1 V ’ (2.4)

where TßV is the stress-energy tensor of the field and a comma denotes the derivative 
with respect to the coordinate r. In order to get the stress-energy tensor TßV we perform 
the variation ô(Ly/—g) of Lagrangian (1.1) in such a way that the potentials are not 
varied while the components of the metric tensor are. This variation is given by the 
equation

< * ( Ц / - 0 ) =  -  2011 +

+ 2 + L ö y ^ .  (2.5)

Calculating the variations of / 1 and I2 we get

and

á Í 2 = - y ^ f  +  W '

(2.6)

(2.7)

By means of expressions (2.5), (2.6), (2.7) T„v can be written in the form

1 , . _ I _  . L  , 1 l \
t; v = ^  -  Ф ■ ï  F„, f ; -  b2( 1 -  Ф2)дцу} +

4nb2 9 ц\ ( 2.8)

Ф 2

where we have taken into account the identity F*,FÏ =  / 20 mï. A straightforward 
computation yields the field equations corresponding to the Lagrangian (1.1):

=0. (2.9)

Here indicates covariant derivation. It goes without saying that the integrability 
conditions

F*',v.v =  0 (2.10)

originating from the relation F = dA have to be satisfied. Both the stress-energy tensor 
(2.8) and the field equations (2.9) go over to those of the Maxwell theory in the limit
b-* + oo.
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Now we assume that the field F„„ has the same symmetry as the metric (2.2), i.e.

LK,F = 0, (i = 0 ,1,2,3), (2.11)

where LK stands for the Lie derivative with respect to Killing vector K. As it is 
well-known, the most general solution of equations (2.11) has the following form [5]

Ftr — E(r), FiS=F l9 = F r9 =  Fr  ̂= 0,

F»„ = P(r) sin 9, (2.12)

where functions E and P are arbitrary and depend on r only.
Equations (2.10) imply that P is constant. The corresponding vector potential 

can be expressed as

and

/t„ =  ( m  0,0, P( 1 -c o s  9)) (2.13)

Taking into account all these restrictions, the stress-energy tensor can be reduced 
to the form

4тгТ° = 4лТ‘ = -Ф ~  2<T<A + *>E2 - b 2( l -Ф2) + Ь~2Ф 211 (2.14)

Го= Т\  implies that the derivative of A + v with respect to r vanishes, so we can 
choose A + v = 0, i.e. g00gll = — 1. In this case the invariants and the function Ф can 
be expressed as

/ ,  =  — 2 ^ E 2- Ç j ,  (2.15)

P E (2.16)

<*>= 1 - T T  1 + b2r*
(2.17)

Performing these reductions in Eqs (2.9) we get the following equation for the scalar 
potential

^ ( r 2D) = °,

where

(2.18)

D = (2.19)
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The solution of Eq. (2.18) is D =  - j , where e is a constant of integration. After a short 

computation we obtain

E = ( 2 .20)

where 4 e2 + P2
ro-— П

Substituting this into the right hand side of the expression (2.17) we easily get

<f> =

where

r* + r* 
r \ r *  +  r * y

( 2.21)

It should be noted that the source of the field can be imagined as a finite sphere 
having radius r0. To verify this assertion we recall that

F',V:M.V = 0 . (2.22)

Here the semicolon indicates a covariant derivative. So if we define the four-current 
in the following way

4 7 rJ"= -F "v.v, (2.23)

we get a local conservation law for the quantity ■/", i.e.

F .p= 0. (2.24)

In the classical electrodynamics the expression (2.23) is one of the pairs of the Maxwell 
equations. In our case (2.23) is the definition of the four-current. F"v.v and J" are 
determined by field equations (2.9). Substituting solution (2.20) into the right hand 
side of (2.23) we get the following equation for the charge density p=J'^fg^,\

4np = y/<h<r~2 ~ ( r 2E). (2.25)

The metric of the hypersurface t = constant is given as [4]

dl2 = yik dx‘ dxk = g,~t 'dr2 + r2dQ2. (2.26)

So the charge of the source Q can be calculated by the integral
+ oo 2 n  n

e = ^  J J J pg„~^r2 sin 9 d9d(p dr, (2.27)
0 0 0
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i.e. the total charge of the source equals e. Outside the sphere with radius r0 the 
charge density rapidly tends to zero. For this reason r0 can be regarded as the effective 
radius of the source. Having determined the function Ф we can express T° in terms 
of r. So, eventually T° can be written as

4яГ° = b2 1 -
rf + r4

V ' 0  +  r
(2.28)

Now we are able to solve Eq. (2.4). After substituting У=г V  this equation becomes 
separable and we obtain •-i-2= + i fr r J

t2G(t)dt = h(r), (2.29)

where
г 2 С ( г )  =  2 Ь 2 { У г 4  +  г 4 - г 2 } .

It has been taken into account that X should satisfy the Newtonian limit \ —e~

(2.30)

2m

as r tends to infinity (m is the mass of the source). Summarizing these results, we have 
a solution of the coupled Einstein-Born-Tnfeld equations which corresponds to the 
field of an electrically and magnetically charged source having mass. The charge of 
the source is mainly contained within a sphere with radius r0. The geometry of the 
space-time is described by the line element

ds2 = —h(r)dt2 + h l(r)dr2 +r2dQ2, (2.31)

where h is given by (2.29) and (2.30). The potentials of the electromagnetic field are 
given by

+ 00

A ,=  -  f Ar= A 9 = 0, A r = P(l —cos 9). (2.32)
ro J J l + x 4

r v

ro
dAi . .

We stress that the potential A0 and field strength E =  — —  have finite values at the 

origin r = 0 .

3. The behaviour of the metric

First we investigate the asymptotic form of the metric (2.31). By means of
f

expanding r2C in powers o f— we get the following form (in the case when r > r 0)
г о

r2G(r) = (3.1)
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Performing the integration on the right hand side of the expression in (2.29) we obtain 
the formula

3 +  p 3 I
5------ 1----T О (3.2)

which is valid for r>r0. As one would expect, the line element (2.31) becomes a 
Reissner-Nordström one in the first approximation, as it is clear from expression 
(3.2). In the limit b-* + со, the approximation (3.2) holds for the whole interval 
0 < r <  ч-co as r0 ->0, so we get precisely the Reissner-Nordström line element. From 
the asymptotic form of the metric we can find out that the parameter m is the mass 
of the source and the parameters e, P are the electric charge and magnetic monopole 
charge, respectively.

To obtain some analytical properties of the function h of r, let us write it in 
the form

h(x) =
x — 2 m + 2(e2 + P2)H(x)

X X
(3.3)

Here X stands for — and m=  —, ë= —, P=  —, where we have introduced 
r0 r0 r0 r0

H(x)= j  ( , / l  + x 4 — x 2)dx. (3.4)
X

The behaviour of h(x) is determined by the analytical properties of H. First we 
calculate some derivatives of H with respect to x:

Щ х)=  — (У Г+х* —X2), (3.5)

" ' « ' К ' - т г У -  ,з '61

Н"'(х) =  2 ^1 — 3X2+ Х1) .  (3.7)
^ ( 1 + Х 4)Т^

It is clear from (3.5) that H monotonously decreases as a function of x. From expression 
(3.6) we conclude that the curve H = H(x) is convex from below for x > 0  (x =  0 is a 
point of inflection).

This curve of H is schematically represented in Fig. 1. From this diagram we 
see that there exist at most two zeros of h(x), for the zeros of h are determined by 
the intersection points of the curve of H and the straight line — x + 2m. In the case 
when m>(e2 + P2)H(0) there exists only one zero and the graph of h does not differ 
qualitatively from that of the Schwarzschild type. When m<(e2 + P2)H{0) there are 
two possibilities:
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Fig. I. The curves of (è2 + P2)H(x). The graphs a, b, c correspond to increasing values of e2 + P2. The 
equation of the straight line appearing on the diagram is — x +  2m. Its intersection points with the graph 

of (è2 +  P2)H give the location of the horizons

When the derivative of 2(e2 + P2)H at the origin is less than —1, i.e.

y/ ê r + P ï >
1

2b'
(3.8)

(the special case m=(ê2 + P2)H(0 ) will be discussed later), there exist two zeros, if m 
is greater than a certain critical value mcrit, thus the graph of h is qualitatively similar 
to the Reissner-Nordström one. The existence of such a critical value of m can be 
seen from Fig. 2. Zeros do not exist at values less than this critical value of m.

The second possibility is that

/e2 + P2<_L, i.e. 2(ë2 + P2)H'(0) > — 1. (3.9)
2b

In this situation h has no zeros, as can easily be seen from Fig. 2. The solution being 
static, the zeros of h give the location of horizons, which are the singularities of the 
original coordinate system (f, r, 9, <p) (in fact they are pseudosingularities). We can 
get rid of these pseudosingularities by constructing a new, Kruskal-type coordinate

Fig. 2. The graph of (e2 + P2)H in the case when è2 + P2 is so large that the function (ê2 + P2)H has a 
tangential straight line with slope less than — 1. The equation of the straight line with slope — 1 determines

the critical mass mcri,
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system (u, v, $, cp) in which the path of light becomes a straight line with slope ±  1. 
This means that we perform a coordinate transformation

u = u(t,r), v=v(t,r) (3.10)

such that the line element acquires the form

ds2 =  f 2(u, v) (du2 — dv2) +  r2dQ2. (3.11)

The function / 2 must be regular and positive at the pseudosingularities. Following 
the work of Graves and Brill [6] for the case of a single zero we find an appropriate 
transformation

и =  2Л еуг*-
(cosh yt 
[sinh yt) (3.12)

г =  2Л еуг*-
sinh yt 
cosh yt

(3.13)

where r* is a “tortoise”-type coordinate for which dr* = h~ldr holds; moreover, A 
and у are constants. The choice of the function in the curly brackets depends on the 
intervals where h^O, respectively. The function / 2 is given by the following formula:

f 2 = h(r)e~2yr,/4A2y . (3.14)

The constant у has to be chosen in such a way that f 2 be regular and positive at 
the zeros of h r =  rf (i=  1,2). Expanding the function h in powers of (r — rf) around the 
pseudosingularities rt one can see that such a choice is possible if and only if r{ is a 
simple zero of h. For the constant у we obtain

y,= l +
2 (e2 + P2)

(3.15)

As a matter of fact, a single transformation like (3.12) and (3.13) cannot regularize 
more than one horizons, so the number of necessary transformations depends on the 
number of horizons.

Using exterior differential forms one can easily compute [3] the Riemann tensor 
in the following “static” orthonormal frame:

d
e;=h‘ ôr-

e* = (r sin 3)

(3.16)
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For the nonvanishing components of the Riemann tensor we get

h"
(3.17)R?rtr~ ~2 ’

h (3.18)Rtütíi~  R t i t i  ~  2^  ’

W
-  27> (3.19)

\ - h (3.20)f? A A A A -----K»<p»V-  r2 ■

In each case the place r =  0 is a real singularity of the space-time as it can be seen 
from the fact that the invariant I = tends to infinity and the determinant
of the metric tensor tends to zero as r~*0. It is of interest to note that the geometry

of the neighbourhood of the origin r =  0  has particular features if the ratio . 2 ™p2 is

H(0). In this situation there exists only a single horizon (see Fig. 3) and —2m + (P2 + e2)H(x) 
tends to zero as r-»0 , so

lim h(r) =  1 — 2b^/e2 + P2. (3.21)
r -*0

Fig. 3. The graph of (è2 + P2)H in the critical case when m =(e2 + P2)ff(0)

Moreover, by means of expression (3.6) we can see that h' vanishes at the origin. 
From (3.7) it follows that h" is finite and positive there. So the components of the 
Riemann tensor appearing in expressions (3.17), (3.18) and (3.19) are finite (the) 
component (3.20) diverges as r-*0). Now, let us consider an observer falling freely 
and radially into the origin r = 0 , carrying an orthonormal tetrad ex, ep, e9, e9. along 
with him as he falls. The tidal forces felt by the observer are measured by the 
components of the Riemann tensor with respect to his orthonormal frame. This frame
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can be connected with the “static” tetrad (3.16) by a boost with parameter V  in the 
r direction for ez is the four-velocity of the given geodesic, i.e.

et = cosh Ve;+ sinh Ve? >

ep = sinh Ve;+ cosh Ve; .

e»=e$, <v=e$. (3.22)

Like in the Schwarzschild case it can be shown that the “static frame” components
(3.17)-j(3.20) are invariant for the boost (3.22). For this reason the equation of the 
geodesic deviation evaluated in the local inertial frame of the observer is

D2£j
=  (3-23)

We have seen that all of the components Rzjzk appearing in Eq. (3.23) are finite. Unlike 
the Schwarzschild case this equation says that two freely moving particles, momentar
ily at rest in the observer’s local, inertial frame, and separated by the 3-vector ^ =  Çjej 
will accelerate apart with a finite relative acceleration. In this way an observer 
travelling along a radial geodesic feels finite tidal forces but he cannot be represented 
on the space-time after a finite lapse of his proper time.

4. Conclusions

The modification of the Maxwell equations that makes them nonlinear changes 
the character of the spherically symmetric, static solutions of the coupled field 
equations with the parameters m, e, P. These new solutions, unlike the Reissner- 
Nordström ones which have a single horizon only in the case m2 = e2 + P2, have a 
single horizon only if m>(e2 + P2)H(0). Moreover, in this situation the dependence 
of the metric on r agrees with that of the Schwarzschild metric. These solutions show 
features similar to the Reissner-Nordström metric only if c2 + P1 has a sufficiently 
large value and m is in a certain narrow interval. The singular behaviour of the 
space-time geometry near the origin r = 0 decreases if m reaches the value (ë 2 + P2)H(0). 
In this situation observers travelling towards the singularity feel finite tidal forces.
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Decreasing the pressure in the hollow cathode discharge, simultaneously ensuring room 
for the expanding negative glow, allows the discharge to transit from the hollow cathode type into 
a high voltage discharge where the cathode cavity is filled with the cathode glow. Such an 
arrangement seems to be very effective for endoergic charge transfer excitation as it was observed 
in a He-Cu system. Voltage-current characteristics of the transition region are also presented.

1. Introduction

Penning and Veenemans [1] described in 1930 the shiny part of the discharge 
called cathode glow at the cathode surface in cold cathode abnormal glow discharges. 
The phenomenon is due to the excitation of gas atoms and molecules by positive 
ions formed in the negative glow and in the cathode dark space, which are accelerated 
by the cathode fall.

This effect has recently been studied by Kuen and Howorka [2] in a cylindrical 
hollow cathode discharge. In a He-Xe mixture the intensity of the Xe II 104.8, 98.9 
and 97.3 nm lines shows a maximum near the cathode surface. A similar effect was 
found on N II resonant lines (64.5 and 108.5 nm) in an He-N2 mixture [3]. All of 
these lines are believed to be excited by fast ions via endoergic charge transfer.
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49. Hungary
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To use fast ion excitation for laser purposes, however, it is necessary to 
concentrate the cathode glow in a similar way like the negative glow is concentrated 
in the hollow cathode discharge. As in the cathode region the length of the different 
shiny and dark spaces are increasing with decreasing pressure, to fill the cavity with 
the cathode glow we need lower pressure than in the conventional hollow cathode 
discharge having the same cavity diameter. On the other hand, a room has to be 
ensured for the expanding negative glow to avoid the phenomenon of the obstructed 
discharge. In such an arrangement using a Cu cathode and He as a filling gas we 
have observed endoergic charge transfer between He ions and the sputtered Cu atoms
[4].

A schematic cross section of the discharge tube with the different parts of the 
discharge is illustrated in Fig. 1. Fig. la (relatively high pressure) shows the hollow 
cathode discharge. Fig. lb shows the discharge at lower pressure. The room above 
the cathode is filled now with the expanded negative glow, while the cavity matches 
the size of the cathode glow. As the cavity diameter is much smaller than the length 
of the negative glow we may call this discharge a plane cathode type high voltage 
discharge.

In this paper we report detailed measurements on the current-voltage character
istics of these two discharges and the transition region. Intensities of different spectral 
lines measured in the cathode cavity are also compared.

Fig. I. Discharge arrangement to study fast ion excitation I. cathode, 2. insulator, 3. glass envelope, 
4. anode, 5. negative glow, 6. cathode glow, 7. water cooling. In Fig. la the pressure is high enough to form 
a hollow cathode discharge. In Fig. lb the negative glow is much larger and the cavity is filled with the 

cathode glow, due to the decreased pressure

2. Experimental

Measurements were carried out using 50 Hz half wave rectified a.c. and direct 
current as well. In Fig. 2 the electrical arrangement of the a.c. measurements is shown. 
As a ballast resistor 8 electric light bulbs (220 V, 40 W) were connected in series to 
the discharge tube.
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a a

Fig. 2. Electrical arrangement. P.S.: power supply; B.R.: ballast resistor; D.T.: discharge tube. U , voltage 
is proportional to the discharge voltage, U2 to the current

Fig. 3. Oscilloscope curves of discharge voltage and current as they were obtained in a.c. measurement at 
a pressure of 4.8 mbar. A-В: hollow cathode type discharge, B-C: transition region, C-D: plane cathode

type discharge

In the case of the d.c. measurements high voltage power supply and high power 
ballast resistor were used. The discharge tube used for d.c. measurements has 
water-cooled cathode.

In all the experiments the diameter of the cathode cavity was 5 mm and He 
was used as the filling gas.
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3. Results

Typical oscilloscope curves of discharge voltage and current obtained in a.c. 
measurements are shown in Fig. 3. The pressure was 4.8 mbar. The AB part of the 
curves corresponds to the hollow cathode type discharge, the CD part to the plane 
cathode type discharge and BC shows the continuous transition between the two 
stages.

Fig. 4 shows the voltage-current characteristics with halfwave rectified a.c. 
excitation. At the pressure value of 9 mbar the curve indicates a hollow cathode type 
behaviour. The negative glow is inside the cavity (see Fig. la). Decreasing the pressure 
below 4 mbar the negative glow expands into the space between the cathode and the 
anode (Fig. lb), while the voltage is increasing 3-6 times to the value of that of the 
hollow cathode discharge. The negative slope part corresponds to the BC part of the 
curve shown in Fig. 3.

There is an intermediate pressure region (around 5 mbar) where the transition 
between these two types of discharges can be observed. In this case first the voltage 
is increasing with increasing current and still a hollow cathode discharge exists. Then 
the curve has a negative slope; the voltage increases further while the current decreases 
and the negative glow gradually comes out of the cavity. When the characteristics 
has a positive slope again the feature of the discharge is similar to Fig. lb. These 
measurements indicate that the state of the discharge can also be changed at constant 
pressure by increasing the electrical input power into the discharge.

discharge current 1mA]

Fig. 4. Voltage-current characteristics of the discharge at different He pressures using pulsed excitation. 
At 9 mbar conventional hollow cathode discharge, at 3.3 mbar flat cathode discharge while at 4.8 mbar

the transition region can be seen
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Similar features were found in the direct current measurements. The voltage- 
current characteristics can be seen in Fig. 5. Here the transition was also observed 
around the same pressure region as in the a.c. measurements.

With decreasing pressure the transition region of the characteristics is gradually 
disappearing. Around 4 mbar a short beginning part of the curve still indicates the 
hollow cathode discharge but shortly after we can see the plane cathode like cathode 
glow behaviour. With further decreasing pressure the characteristics only has one 
inflexion point. Below 2 mbar the characteristics shows the typical cathode glow 
behaviour with no starting part and no inflexion point.

Comparing the d.c. measurements of Fig. 5 with the curves of pulsed excitation 
in Fig. 4 it can be seen that the turning point can be observed even at higher pressure 
using d.c. excitation. The reason of this may be due to temperature effects. The gas 
temperature in the cavity is higher in the d.c. discharge. Having large ballast volume 
the gas density in the cavity may be similar to that in lower pressure using pulsed 
excitation. This explanation is supported by the observed spontaneous transition 
from the hollow cathode type to the plane cathode type discharge. The transition 
usually occurred after one-two minutes of operating time depending on the actual 
current and pressure.

The negative slope of the curves depends on the characteristics of the electrical 
power supply as well. Exciting the discharge with an ideal current generator the 
negative slope should not exist. Increasing the value of the ballast resistors we found 
that the current region where the negative slope exists is decreasing.

Hg. 5. Voltage-current characteristics of the discharge at different He pressures excited by direct current
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This effect is shown in Fig. 6 where the voltage-current characteristics obtained 
in d.c. discharge are presented at pressures 4.6 and 5.3 mbar. At the higher 
pressure only hollow cathode discharge behaviour was found up to 120 mA. Two 
curves were measured at both pressures using 2.46 and 9.4 kohm ballast resistors. In 
the case of 2.46 kohm resistor the whole transition curve was stable. Using 9.4 kohm 
ballast resistor where the turning point was reached the discharge rapidly passed the 
negative slope of the discharge. At still higher resistors the transition became very 
fast but then due to the limited voltage of our power supply we could not measure 
the high voltage type discharge. The curves were directly plotted by an X-Y recorder. 
The continuous lines were plotted as the input electric power was increased and the 
dashed lines as it was decreased. The obtained hysteresis is probably due to the 
temperature effect. After the high electric input power the gas density of the cathode 
cavity may be smaller due to the higher local temperature of the gas.

The plane cathode type discharge concentrates the cathode glow into the 
cathode cavity. The high voltage of this discharge accelerates the ions into the cavity 
and makes favourable conditions for endoergic charge transfer excitations.

For studying charge transfer reactions we measured the intensities of the 493.1 
and 436.5 nm Cu ion lines as a function of the pressure. The energies of the upper 
levels of these transitions from the atomic ground state are 24.58 and 25.69 eV, 
respectively. Compared to the ionization energy of the He (24.586 eV), the upper 
level of the 493.1 nm transition can be excited by thermal energy charge transfer, 
however, the 436.5 nm transition is probably excited by fast ions via endoergic charge 
transfer. The intensities were always measured in the centre of the cathode cavity.

discharge current t mA]

Fig. 6. Voltage-current characteristics of the discharge excited by direct current using different ballast 
resistors. At 4.6 mbar a hysteresis can be seen. The solid lines represent the increasing and the dashed 

lines the decreasing discharge current (5.3 mbar)
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Thus, the higher pressure points correspond to the hollow cathode discharge, while 
the low pressure part of the curves shows the intensities in the cathode glow.

The results can be seen in Fig. 7 where the intensities of both spectral lines are 
plotted as a function of the pressure at 200 mA discharge current. Both lines have 
one maximum in the hollow cathode discharge range (7-15 mbar). In the high voltage 
type discharge the intensities increased again (probably due to the stronger sputtering).

However, the Cu II line excited by thermal energy charge transfer was about 
six times more intense in the negative glow than in the cathode glow region. On the 
other hand, the 436.5 nm line was twice as strong in the cathode glow as in the hollow 
cathode discharge due to the presence of fast ions in the cathode cavity using the 
high voltage type cathode glow discharge.

helium pressure I mbar ]

Fig. 7. Pressure dependence of two Cu 11 lines at 200 mA discharge current. Above 8 mbar we have a 
hollow cathode discharge, at lower pressure a flat cathode discharge. The 436.5 nm line is excited by 

endoergic and the 493.1 nm line by thermal energy charge transfer
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In analogy with the resonant scattering of nucleons on nuclei, which occurs 
via the intermediate phase, namely the formation of the short-lived compound state, 
the scattering of electrons on atoms also has resonance character, which is due to 
the formation of quasistationary autodetachment states (AS).

For the description of these processes the Feshbach method turned out to be 
very fruitful. This method was first developed for the description of nuclear scattering 
and later, with minor corrections, which take into account the special features of 
atomic systems, it was adopted to electron-atom scattering. But in full extent the 
Feshbach method seems to be quite complicated and cumbersome.

In this work we report the results of calculations of elastic electron-lithium 
and electron-sodium scattering as well as of the excitation of the 2p level of the Li 
atom. The calculations were carried by using the modified Feshbach method (MFM) 
suggested by Balashov et al [1] and applied by us to the description of the resonant 
scattering of electrons on ions and atoms [2]. We believe that the MFM can also be 
successfully applied to the description of nuclear scattering. However, in the case of 
electron-atom scattering where the exact form of interaction between the particles 
is known the approbation of this method can be carried out with greater confidence.

According to MFM the wave function (WF) of the system “incident particle + 
+ target” can be represented in a form

■PLSt̂ ,  . . . , r N, r ) = X A [ ^ « ( r „ . . . , r N)Fa(r)] +
<X

+  E /1/1̂ ( r i ,N ; r N,r) .  ( i)
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Here Â  is the antisymmetrization operator, t/ra are duly symmetrized atom WF, L, 
S, n are orbital momentum, spin and parity of the system, respectively. According to 
MFM the sum over a had to contain only those channels which are open at a given 
energy. Functions describe the AS of the negative ion Li- or Na~ and are found 
by diagonalizing the Hamiltonian of the system on the closed channels subspace. 
Namely, functions Ф„ are constructed in the following way

Z  (2)n ihnih

@ n îî? n 2h  =  X  ^ h m 2l 2 m 2 ^ i  I  ' 4 [ ^ , согеФ л ,1 ,т2/1 ,Ф п 2 /2т2Д 2]’ ( 3 )
тцп2М1Д2 2 m 2 M2

where C\-™thm2 are vector addition coefficients, фсагс are WF of the core (singly ionized 
positive ion), д>„1тц are WF of electrons which move in the field of the core. Substitution 
of WF (1) into the Schrôdinger equation which is taken in a projected form

<(5Ф|Я —£ |f , ) = 0  (4)

brings us to a system of equations for the functions F„(r) and coefficients Лц [2]. 
Using the solution of the system of open channels equations which are found via 
direct numerical solution as well as using WF (2) obtained beforehand we obtain 
under certain conditions [2] the expression for the transition matrix in a closed form 
which contains resonance terms of a Breit-Wigner type.

In Fig. 1 the calculated cross-sections both of elastic scattering and the excitation 
of the 2p level of the Li atom for a scattering angle of 90° are shown. The calculations 
exhibit the presence of three resonances below 3s threshold Li, namely ‘Se (£ = 
3.09 eV, Г =  0.08 eV), 3P° (E = 3.28 eV, Г = 0.12 eV), 3Se (E = 3.36 eV, Г =0.07 eV) which

E [eV 1 
a)

E [eV] 
b)

Fig. I. Differential cross-section of elastic e +  Li scattering (a) and 2p level excitation at 90° (b) as a function 
of energy:-----------present calculation;----------- averaged calculation; •  experiment [3]
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are due to the formation of AS. In this Figure the results of experimental measurements 
are also shown [3]. As is seen from the Figure, the theoretical cross-section which 
is averaged over electron energy distribution in the beam (A =0.3 eV) coincides quite 
well with the experiment [3].

In Fig. 2 the partial cross-sections of scattering of ultracold electrons on Na 
are shown. At the energy ~0.01 eV the phase-shifts and corresponding cross-sections 
have resonance behaviour, which is due to the quasistationary state of elastic type, 
namely tunnelling along translational degree of freedom (shape-resonance).

0 ----1----L
23 U

E [MeV]
40 160 280 2 0 

E [MeV]
26 32

E [MeV]
a) b) c)

Fig. 2. Partial cross-sections of elastic e +  Na scattering: a —  'P  wave; b —  3P wave; c — lD wave
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The study of resonances in nuclear-nucleon scattering is a very rich source of 
knowledge about the structure of nuclei which allows one to carry out a careful 
selection of theoretical models, on the one hand, and is important for applications 
on the other. The foundations of the general theory of resonance phenomena in a 
nuclear scattering were laid by Feshbach (see, e.g. [1], and literature cited there). 
Feshbach’s approach is grounded on N. Bohr’s idea about the short-lived compound 
state which is formed as a result of capturing the incident nucleon by the target. It 
turned out that in collision processes of electrons with atoms and ions the 
quasistationary short-lived states of the “incident electron + target” system also play 
an important role. Since the main mode of decay of these states is a radiation-free 
transition of electron into a continuum, these states were called autoionizing states 
(AIS). Their decay is manifested in a resonance structure of scattering cross-sections.

The main features of Feshbach approach turned out to be very fruitful in a 
theory of electron-atom collisions and allowed to obtain a dynamical description of 
resonances in atomic scattering. However, the realization of Feshbach’s method in 
its full length turned out to be very cumbersome. The successful modification of the 
Feshbach method was suggested by V. Balashov et al [2], and it was applied by us 
for the description of resonances in electron-atom scattering. In spite of essential 
simplifications this method offers excellent results.

Let us consider the application of this modification to the description of 
resonances in electron-atom collisions. The problem of the nonrelativistic scattering 
of electrons on atoms is reduced to the problem of solving the Schrödinger equation

(H-E)4> = 0, (1)

where H is the Hamiltonian of the “incident electron + target” system. •F is the wave 
function.

A d a  Physica Hungarica 63, 1988 

Akadémiai Kiadó, Budapest



3 78 V. I. LENGYEL et al.

The starting point of the approximation in question is the following construction 
for wave function

V-ZAtoSJ+ZA'*',  (2)
У (Í

where <py is the wave function of atom in y state, A is an operator of antisymmetrization, 
the function Fy describes the motion of a scattered electrons in у-channel, ФM are the 
wave functions of AIS. These wave functions Фц are built on a limited basis of atomic 
wave functions 0„. Though basis wave functions 0„ are taken in a one-electron 
approximation, the interelectron correlations are taken into account in Фц. This 
expansion is quite similar to that used in the resonating group method for the 
description of resonance nuclear scattering as it was proposed by Wildermuth and 
Tang [1].

From the Schrôdinger equation in a projected form

< 0 4 ' \ H - E \ 4 ' }  =  0 (3)
the system of equations follows, which in a compact matrix notation can be written 

inaf0 rm  LF = —ХЛ,  (4)

<A'|F> + (e -£ M = 0 , (5)

where L is an integro-differential operator, X  is matrix element X  = <<р|Я|Ф>.
Let us write the solution of (4) in a form

£(r) =  £°(r) + J dr'G(r, r')X(r')A, (6)

where £°(r) is regular at the origin (r =  0) solution of (4) without right side and 
G(r, r') is the corresponding Green matrix.

For finding A it would be necessary to solve the system of linear nonhomogene- 
ous equations (5). At this stage the main, so-called diagonalization assumption is 
introduced. According to this assumption one can neglect the nondiagonal terms 
(X tl\G\Xv} ,n ^ v  or, in other words, one neglects the coupling between different AIS 
through open channels. This assumption immediately allows one to obtain the 
expression for A and the transition matrix T  in Breit-Wigner form [3]. Diagonaliza- 
tional assumption means deviation from the original Feshbach method or resonating 
group method for that matter. But it has a certain advantage because of the 
considerable simplification of numerical calculations.

This method has been already successfully applied for the description of 
resonance photoionization [2] and resonance scattering of electrons on atoms and 
ions [3].

As an illustration of the application of this method we show in Figs 1 and 2 
the results of total cross-section calculations of the excitation of the 2p level of He+ 
and the 3p 2P° level of Mg + . In the energy behaviour of the curves one can clearly 
observe the clear-cut manifestation of resonances, which are due to AIS converging 
to the thresholds n =  3 of H e+ and 4s 2S of Mg+.
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Fig. I. Total cross-section of excitation of 2p level of H e+ by electron impact: ♦ — experiment [4]; 
--------------averaged experiment [4 ];--------------present calculation

Fig. 2. Total cross-section of excitation of 3p 2P° level o f M g+ by electron im pact:------------present
calculation; •  — experiment [5 ] ; --------------averaged experiment [5]; О —  experiment [6]
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BOOK REVIEWS

High-Energy Physics, Edited by Stephan L. Mintz 
and Arnold Perlmutter, Plenum Press, New York 
and London, 1985

This volume contains the papers submitted to 
the High Energy Physics portion of the 1983 Orbis 
Scientiae (Miami) dedicated to the eightieth year of 
Professor P.A.M. Dirac.

The study of high-energy physics continues on 
many fronts. In this volume, experts report on the 
latest exciting and productive advances in their 
areas of specialization, including magnetic mono
poles, proton decay, very-high-energy colliders, glue- 
balls, supersymmetric couplings, supergravity grand 
unification, Kaluza-Klein theories, the N = 4 model, 
gravitational waves, gravitational gauge fields.

High-Energy Physics will be valuable to those 
working in the field, as well as those working in 
theoretical and mathematical physics, statistical 
mechanics, astronomy, cosmology, and space physics.

/. Lovas

Density Functional Methods in Physics, Edited by 
Reiner M. Dreizler and Joao da Providencia, 
NATO AS1 Series B, Physics; Vol. 123, Plenum 
Press, New York and London, 1985, pp. 533.

The idea of trying to represent the ground state 
(and perhaps some of the excited states as well) of 
atomic, molecular, and solid state systems in terms 
of the diagonal part of the one-body reduced density 
matrix is an old one.

At the NATO Summer School (Alcabideche, 
Portugal, 1983) on “Density Functional Methods 
in Physics” substantial progress was reported in the 
development of the general principles and the basic 
formalism as well as an impressive number of 
applications, including the fields of nuclear physics 
in addition to the traditional domains.

The proceedings volume contains all the main 
lectures presented at the School as well as two of 
the four short contributions offered.

The first three lectures address mainly the ma
thematical foundations. This is continued in the 
fourth, where an existence theorem for time depend
ent density functional methods is presented. In the 
fourth lecture we also find the transition to the 
discussion of atomic and molecular system, which 
is continued in the subsequent three lectures. Solid 
state applications as well as further insight into the 
structure of the theory are found in the following 
three lectures. After an interlude on hadronic sys
tems, the concluding lectures deal with a variety of 
aspects from the world of nuclear physics and the 
corresponding development of the general formal
ism. Each lecture cites detailed references.

This book is recommended to physicists and 
quantum chemists.

I. Nagy

G e o r g e  L. T r ig g : Experimente der modernen Physik. 
Übersetzung aus dem Englischen: K. H. Heinig und
H. R. Kissener, Akademie-Verlag, Berlin, 1984, 128 
Seiten

Der Titel ist irreführend, denn wie die Einleitung 
besagt, handelt es sich nicht um Experimente der 
letzten Jahren, sondern um solche, die die moderne 
Physik unterstützen. In diesem Taschenbuch sind 
die grundlegenden Experimente in neun Kapiteln 
zusammengefasst.

Der Ursprung der Quantenkonzeption. In diesem 
Kapitel wird die erste experimentelle Arbeit behan
delt, die die Formel des Emissionsvermögens der 
schwarzen Körper überprüft. Durch die Ergebnisse 
von Lummer und Pringsheim angeregt, modifizierte 
Planck seine eigene, theoretische Arbeit und be
gründete seine Gleichung im Dezember 1900. Bei 
der Einfügung der Vorstellungen von Boltzmann in 
seine Theorie fand er, dass die Energie eines Oszil
lators ein ganzzahliges Vielfaches einer Grundein
heit sein muss, die proportional zur Frequenz ist. 
Das resultierende Strahlungsgesetz beschreibt die 
experimentellen Ergebnisse sehr gut.
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Die Elementenumwandlung. Mit der Radioakti
vität, entdeckt durch Becquerel i. J. 1896 Hess sich 
später nachweisen, dass das Atom eine Struktur 
besitzt. Dieses Kapitel behandelt die, von Ruther
ford und Soddy entdeckte Änderung der Natur 
eines Atoms. Die Untersuchung begann mit der 
seltsamen Veränderlichkeit der Intensität der Tho
riumstrahlung mit Hilfe der hervorgerufenen elek
trischen Entladung. Die Apparatur von Rutherford 
und Soddy zur Untersuchung der Thoriumemana
tion wird ausführlich beschrieben. Auf diesem, von 
beiden Forschern gefundenen Weg leitete Soddy 10 
Jahre später die Gesetze der radioaktiven Umwand
lung in der heutigen Form ab.

Die Existenz der Atome. Ende des 19. Jahr
hunderts gab es keine zwingende Notwendigkeit, an 
die Existenz von Atomen zu glauben. Die Zweifel 
der Skeptiker wurden durch eine einzige For
schungsarbeit von Perrin beseitigt, für die Perrin im 
Jahre 1926 den Nobelpreis für Physik erhielt. Im 
Jahre 1827 entdeckte der Botaniker Brown die nach 
ihm benannte Erscheinung. Diejenigen, die diese 
Erscheinung untersuchten, gelangten zu der Schluss
folgerung, sie müsse molekularen Ursprungs sein. 
Nach Perrin lässt sich durch die Brownsche Bewe
gung auf die Existenz von Molekülen schliessen. 
Ohne quantitative Beweise, wie sie auch Perrin 
liefert, wären die Argumente wertlos. Die Experi
mente waren einfach: In zwei verschiedenen Höhen 
einer Emulsion aus Teilchen bekannter Grösse und 
Dichte waren bei konstanter Temperatur die Kon
zentrationen zu bestimmen. Die nun noch zu be
stimmende Grösse war der Teilchenradius. Auch 
hierfür fand Perrin mehrere Messmethoden um eine 
Kontrolle zu haben. Im letzten Teil seiner Arbeit 
gibt er andere Methoden zur Bestimmung der 
Avogadroschen Zahl bekannt. Alle Methoden lie
fern Ergebnisse, die mit seinen eigenen vergleichbar 
sind.

Der Atomkern. Das Atom galt seit den Experi
menten von Rutherford und Soddy nicht mehr als 
unveränderlich, aber keine Untersuchung sagte etwas 
über die Atomstruktur aus. Entscheidende Entwick
lu n g  war die Untersuchung der Streuung von я 
Teilchen, die Geiger und Marsden unter der Leitung 
von Rutherford durchführten. Der Apparat von 
Geiger und Marsden, sowie die wichtigsten Ergeb
nisse werden bekannt gegeben. Rutherfords Theorie 
besagt, dass die Streuung unterschiedlich schneller 
я Teilchen umgekehrt proportional zur vierten 
Potenz der Geschwindigkeit ist. Geiger und Marsden 
bestätigen diese Theorie. Das Atom mit einem Kern 
hatte sich als Realität erwiesen.

Stösse von Elektronen mit Atomen. Zu Beginn 
dieses Jahrhunderts wurden zahlreiche Messungen

der Ionisationspotentiale für verschiedene Gase 
durchgeführt, so auch von Franck und Hertz. Für 
verschiedene Elemente bestimmten sie Grössen, die 
sie für Ionisationspotentiale hielten. Ursprünglich 
beabsichtigten die beiden Wissenschaftler eine ver
mutete Korrelation der Ionisationspotentiale mit 
den Atomradien nachzuweisen. Die Zunahme des 
Kollektorstroms hatte folgende Ursache: Die Atome 
oder Moleküle wurden durch die einfallenden Elek
tronen in einen höheren Energiezustand angeregt 
und emittierten Strahlung. Diese Strahlung wiederum 
löste aus der Kollektorplatte Fotoelektronen aus. 
Es gilt offenbar für ein atomares System, dass dieses 
nur in bestimmten Zustanden mit bestimmten dis
kreten Energiewerten existieren kann. Noch während 
dieser Experimente übernahm Bohr diese Idee als 
eines der Grundpostulate seiner Atomtheorie.

Der Fotoeffekt. Anfangs galt der Begriff des 
Quants als ein Aspekt des Verhaltens strahlender 
Oszillatoren und nicht als Merkmal der Strahlung 
selbst. Der Quantenbegriff existierte gerade fünf 
Jahre, als Einstein diese Möglichkeit aufgriff um die 
eigentümlichen Effekte beim Fotoeffekt zu erklären. 
Sein Vorschlag zur Erklärung der Erscheinung 
beruhte auf einer radikalen Erweiterung der ur
sprünglichen Planckschen Quantenhypothese. Ein
steins Vorstellung veranlasste Millikan zu umfas
senden Experimenten, deren Ergebnisse 1916 veröf
fentlicht wurden.

Räumliche Orientierung atomarer Magnete. Eines 
der Grundpostulate der Bohrschen Atomtheorie 
war, dass bestimmte dynamische Grössen perio
discher Bewegungen nur diskrete Werte annehmen 
können. Ein merkwürdiges Ergebnis, das die An
wendung dieser Regel brachte, ist die Erscheinung, 
die als „Räumliche Quantisierung” bekannt wurde. 
Der Drehimpulsvektor des Atoms, das sich in einem 
magnetischen Feld befindet, kann nur bestimmte, 
diskrete Orientierungswinkel bezüglich der Feld
richtung bilden. In einem inhomogenen Magnetfeld 
erfährt ein magnetischer Dipol nicht nur ein Dreh
moment, sondern auch eine Kraft, deren Betrag vom 
Winkel zwischen dem Dipol und dem Gradienten 
des Magnetfeldes abhängt. Wenn die Atommagnete 
nur in bestimmten Richtungen orientiert sein kön
nen, dann sind die Ablenkungen auf einige Werte 
beschränkt und der Strahl wird in mehrere Teile 
aufgespalten. Diesen Effekt beobachtete Stern, der 
seine Analyse zur Veröffentlichung einreichte und 
mit seinem Mitarbeiter Gerlach Experimente durch
führte. Die Diskussion zeigte, dass das Ergebnis klar 
zugunsten der Quantenhypothese entscheidet, die 
im Gegensatz zum klassischen Verhalten steht.

Teilcheneigenschaften des Lichtes. In der Max- 
wellschen Theorie war ein Mechanismus für die
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Streuung elektromagnetischer Wellen gut vorstell
bar. Das zeitabhängige elektrische Feld der Welle 
regte die Elektronen im streuenden Medium zu 
erzwungenen Schwingungen an und die Elektronen 
emittierten ihrerseits Strahlung. Diese Theorie stiess 
auf zunehmende Schwierigkeiten, z. B. dass die 
Strahlung eine andere Frequenz als die Einfallende 
besass. Compton schlug vor, die Konzeption des 
Quants zur Beschreibung der Streuung anzuwenden 
und baute auf dieser Grundlage eine Theorie auf. 
Der wichtigste Schritt war die Ableitung der Be
ziehung zwischen den Wellenlängen der einfallenden 
und der gestreuten Welle und dem Streuwinkel.

Welleneigenschaften der Materie. Ende 1924 war 
die Vorstellung, dass das Verhalten elektromagne
tischer Strahlung sowohl wellenartige als auch 
teilchenartige Aspekte zeigt, allgemein akzeptiert. 
Damals hatte Louis de Broglie den genialen Einfall: 
Warum sollte dasselbe nicht auch für die Materie 
gelten? Davisson und sein Mitarbeiter Germer 
führten einige Routinemessungen über die Streuung 
von Elektronen an einigen grossen Nickelkristallen

durch. Sie entdeckten etwas Signifikantes, das sie 
nicht gesucht hatten und waren bereit, Ergebnisse 
zu akzeptieren, die den Erwartungen nicht entspra
chen. Sie wendeten die Beugungsgitterformel auf die 
Elektronenstrahlen an und erhielten dabei Wellen
längen, die im allgemeinen gut mit den Werten nach 
de Broglie’s Beziehung übereinstimmten. Eine Frage 
blieb jedoch offen. Es war noch denkbar, dass das 
in diesen Experimenten gefundene wellenartige Ver
halten für Elektronen spezifisch sei. Zeigte vielleicht 
eine andere Materie die gleichen Eigenschaften? Die 
Antwort darauf wurde 1930 gefunden, als Stern und 
seine Mitarbeiter nachwiesen, dass Atome und 
Moleküle ebenfalls wellenartige Eigenschaften be- 
sassen, wobei die Wellenlänge durch de Broglie’s 
Beziehung gegeben war.

In den beiden Anhängen wird die Beschreibung 
eines Quadrantenelektrometers und eine Bemerkung 
über die numerische Bezeichnung für Kristalle ge
geben.

IT Mátrai\
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