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PREFACE

The CRYOSEM, our international seminar on low temperature physics and
technology has been organized third time.

Participants from the different countries met between 26th and 3lStMay
1986 to discuss the research aims and achievements of their Institutes.

The CRYOSEM’86 was hosted by Visegrad, a small Hungarian holiday resort
in the Danube bend.

The purpose of the meeting was to provide participants an opportunity
for informal and free discussions, concerning any problem connected with
low temperatures. The reports held at the CRYOSEM’86 will be published in

this issue.

Prof. I. Kirschner

Acta Physica Hungerica 62, 1987
Akadémiai Kiadé, Budapest
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SIZE- AND HIGH FIELD EFFECTS IN MOS-FET DEVICES

T. PORJESZ, G.ZSOLT, GY. KOVACS, T. KARMAN

Department for Low Temperature Physics, Roland E6tvos University
1088 Budapest, Hungary

One of the most prosperous chapters of the applied sciences is the
solid state electronics. The ever decreasing sizes and the same time the
increasing amount of semiconductor devices in one chip gave the importance to
study the new physical phenomena of dense systems and small devices.

Introduction

The physical models describing the transport phenomena in solids are
based mainly on the Boltzmann transport theory. This approximation is valid
with strict assumptions only. The validity of these restrictions is doubtful
in the case of the recent solid state devices [1].

Our investigations were carried out on semiconductor microstructures
on dense systems of small devices. In the small devices the carriers are
often in non-steady state. In a dense system of such devices the buk -device
picture looses its validity and surface effects and the interactions between
devices will be dominant.

The understanding and the explanation of such phenomena and their correct
physical interpretation have a crucial role both in solid state physics
and the technical progress. Therefore the research of this field has a great
importance.

Among our intentions the study of the role of hot carriers in an
avalanche breakdown [2] and Van der Pauw measurements on MOS inversion layers

[3} have been carried out so far.

Samples
The samples were designed and prepared according to our purposes. The

samples are MOS FET systems of a rather simple type in order to avoid the
disturbing effects due to a complicated structure.

The good availability and easy handling of the most widespread planar
technology gave us the idea to apply it for sample construction.

Parallel p+ doped regions were diffused into an n-type silicon layer
with equivalent width and distances to each other giving a lattice-like
structure. Deeper p+ diffusion was used to get contact to the p-type substrate
and a contact was made to the n-type layer as well. The last two made it
possible to use a bias voltage in order to avoid the noise current. All this
structure has been covered by a silicon-oxide insulated gate electrode. Five
P'-type electrodes have been made in our samples (Fig. 1.).

Acta Physica Hungarica 62, 1987
Avadémiai Kiadd, Budapest



8 T. PORJESZ et al

The number of the electrodes can be increased up to 200 or more, but in this
case individual connection to each one can not be made.

By the aid of this sample a tunable Kronig-Penney model has been realised
completed with variable depth channels. For the investigation of the
superlattice effects a higher number of electrodes is needed. For transport
experiments in certain cases individual electrodes are more suitable.

The dimensions of the devices are dependent on the litographical
possibilities. Our first samples had the characteristic dimensions of 10 Jum.
The second generation of our samples has the characteristic dimensions of

5 /um. We should like to reach the 2 /m1w1th1n a reasonable time.

Measuring system

A computer controlled measuring system has been designed and set up in
order to study conduction phenomena and the transport properties of samples
subjected to different effects. The system automatically permutates the
current and voltage contacts in a given sequence. The block diagram is shown
in [3] :

Size effects

The conventional operational principles of MOS-FET work as far as the
channel length is much higher than the mean free path and the transistors are
far enough from each other to avoid the interaction between them.

The difficulties of the explanation can arise from the decreasing sizes
or by lowering the temperature. Both can cause the mean free path to be
comparable to the channel length.

To examine the size effects we use the low temperature measurement
technique. In this way a transistor having a 10 /machannel can be treated as
a small device at sufficiently low temperature, the mean free path being in

the range of centimetres at helium temperature.
High field effects

The operating voltage for a transistor must not be less than a few volts.

In our case, supposing 10 V for 10 pm channel we get 106 V/m field strength.

In the smallest existing device — having 100 nm channel - for an operating
voltage of 1 V 107 V/m field strength will be resulted. In the next future

we have to consider even smaller devices and not lower operating voltages.
There is no way to neglect the high field effects any more. We can say that
below certain dimensions all transport phenomena should be regarded as hot
effects.The energy of the electron will be much higher than that of the equi-
librium one, exceeding the minimum energy that is enough for inelastic scat-

tering, for avalanche effects, etc.
Conclusions

We found our measuring system to be applicable to collect automatically
a large amount of data and the direct connection to the computer makes the
evaluation easy at thesame time. The detailed results are reported in this issue [ 2,3].

Acta Physica Hungarica 62, 1987
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Fig. 1. The structure of the MOSFET device
prepared for our experiments
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CALCULATION OF PHYSICAL PARAMETERS OF MOS STRUCTURES AT DIFFERENT
TEMPERATURES

G.KOVACS ,I.KIRSCHNER , T.PORJESZ , T.KARMAN , G.ZSOLT

Department for Low Temperature Physics Roland E&tvés University
1088 Budapest, Hungary

Exact theoretical equation will be given for the temperature dependence
of the threshold voltage in MOS structures. Two different temperature depen-
dences have been originated because of different assumptions for the bending
of the impurity levels. The realistic case should be found between them.

Introduction

One of the main trends in the technological progress is to develop dif-
ferent MOS structures.

Recently these devices are used mainly at room temperature, but in the
big computers of high speed there is a tendency to apply them even at liquid He
temperature. The higher speed of the devices is originated from the higher
mobility of the charge carriers at low temperatures., Another advantage of the
low operation temperature is the higher heat conductivity that is the higher
dissipation capability. !

The temperature dependence of the physical parameters of the MOS struc-
tures being not clear, therefore it is important to deal with them.

Calculations
Using the basic Eq./l /to determine the Fermi energy with the following

numerical values

N, = 5,53 . Ty% Tl
NV =2,89 . T s 10 m
Ec =1,12 eV
E_= 0 eV
v
Ey = E, - 0,05 eV = 1,07 eV
for T—<5 K we got [1] :
E _+E
ol oGy KD > /1/
2 2
c

After the electric field and the potential distribution in a silicon
MOS capacitor i&s determined /Fig.l /, we can calculate the electric charge
distribution inside the semiconductor. In the presence of bias voltage the
conduction, the valence bands and the Fermi energy are not bended. The elect-
ric field is given by the Poisson equation. The Vé gate voltage:

Acta Physica Hungarica 62, 1987
Akadémiai Kiadd, Budapest



12 G. KOVACS et al

K
kT S
¥ = — —— -
Ve S ( S XoEs R ) 12/
This Vé is an ideal gate voltage, the real one is:
- 4
Vo = Vg + Oye 131

because the metal-semiconductor work function, ¢MS has to be taken into ac-
count .We have to point out that in the capacity measurements DC voltage and
a small AC voltage are used. We consider the low frequency case.

Using the positive voltage, the capacity is approximately equal to the
capacity of the oxide layer. Applying a small negative voltage, depletion
will occur at a high negative voltage an inversion layer will be produ-
ced. In this case the total capacity will be the sum of the capacities of
the oxide and of the semiconductor channel.

The gate voltage where the inversion begins is called threshold voltage
at which the minority carrier concentration at the interface is equal to the
majority carrier concentration in the bulk. It is a function of the drain
voltage and the temperature. We have to point out that decreasing the tempe-
rature the threshold voltage is increasing and the dependence given in

Eq. /4/ will be steeper as well.

K kT
kT o e D~
A Tl 4%g "N RaE L (22 gr U)o 14/
T P 2¥8 e .3
o
Conclusions

In the Eq. /4/ the donor electron concentration is the most important
quantity. It depends on the temperature and the bending. Neglecting the ben-
ding of the impurity level, we can find the temperature devendence of the
threshold voltage shown in the Fig. 2 curve ’a’,

Assuming that the bending of the impurity level is equal to the bending
at the interface all over the bulk, we can find the function, curve ’'b’, in
Fig.2. The realistic case should be between these two.

The interesting point of the results is that the significant difference
between the two functions occurs below 100 K only.

Notations
Nc effective density of state in the conduction band
Nv effective density of state in the valence band
Ec lower edge of the conduction band
Ev upper edge of the valence band
Ed donor energy level
T absolute temperature
F Fermi energy
k Boltzmann constant

Acta Physica Hungarice 62, 1987
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ideal gate voltage

electron charge

reduced band width

oxide thickness

field strength at the interface
dielectric constant of the semiconductor
dielectric constant of the oxide
real gate voltage
metal-semiconductor work function
threshold voltage

reduced Fermi energy

dielectric constant of the vacuum

ionized donor concentration

Fig.1. The electric field at the interface in a Si MOS capacitor
as the function of the gate voltage
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Fig.2.
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The temperature dependence of the treshold voltage
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RESISTIVITY MEASUREMENTS IN SILICON INVERSION LAYERS

G. GCMR)SI, M.M. W’IF\FAZ, H. Al'.rSHARABY3

lDeparment for Low Temperature Physics, Roland EStvSs University
Budapest, Hungary

2Faculty of Education, Alexandria University
Alexandria, Egypt

3Depart:nent of Physics, University of Baghdad
Baghdad, Irag

In this paper a simple method is presented for resistivity measurements on silicon
inversion layers. The classical Van der Pauw method is applicable only if the thickness of
the sample is a given value . In MOSFET structures the layer depth is the function of the
gate voltage. We evaluated the inversion layer thickness from the DC drain current-gate vol-
tage characteristic by using the delta depletion theaty, After this the Van der Pauw method
can be used.

Four point method

We have shown the classical four point method for sample classification in Fig. 1 [l]
There are certain disadvantages of this method having some sources of errors, We have to
make often examinations at low temperatures and different magnetic fields. A part of these
measurements can be realized by the four point method only with rather great difficulties
as it is shown in Fig. 1 but for another part of these measurements this method is not
applicable at all. The advantage of the four point method is its quickness when industrial
classification or comparison is needed without scientific exactness. :

Van der Pauw method

Higher accuracy and more physical informations are needed for the researches where the
Van der Pauw method [2] can be applied. This is a classical procedure to determine the re-
sistivity of samples with given thickness. In MOS structures much more information is neces-
sary because there is no direct measurement for the different layer thickness and charge
carrier distribution depending on the control gate voltage.

The main advantages of the Van der Pauw method:

1. The measurements can be carried out on samples of arbitrary shape.

2. Evaluating the data from this type of measurements all of the parameters can be
calculated which can be gained by using a conventional Hall probe.

3. Using samples cut in different orientations the complete resistivity tensor can be
calculated.

After listing the advantageous properties of this measurement we are giving a brief
description of realising this process. In Fig. 2 it is shown that we have four measuring
contacts to the sample not considering the gate and substrate contacts for controlling the
thickness of the inversion layer. The procedure differs from the four point method in the
sense that the role of the contacts are changing during the measurements, Through two po-
ints for example ‘A’ and ‘B’ a given current is driven, while potential drop between D’

Acta Physica Hungarica 62, 1987
Akadémiai Kiadd, Budapest



16 G. GOMBOS et al

and 'C’ is measured. This is the way to define a resistivity like quantity RABCD by dividiny
the voltage VDc by the driving current through ‘A’ and ’'B’. Permutating the contacts written
in the subscript we can get different RUXYZ' In this case the relationship given by Van der
Pauw holds. From this equation the sheet resistance, the ratio of the specific resistivity
to sample thickness can be calculated [3] . The camputation can be carried out by dividing
of intervals or by using an approximative formula.

The principle of the calculation is that the complex half-plane can be transformed by
conformal mapping into a singly connected form of arbitrary shape.

The measurement can be carried out at different temperatures and magnetic fields as
well [4] . By the aid of these measurements the variation of the resistance in the functin
of the temperature and the magnetic field and the measured sheet resistance give us the
data to calculate the Hall mobility.

Results

Our investigations were carried out in MOSFET inversion layers, In this case the ef-
fective layer depth and the charge carrier distribution can be controlled by a voltage bet-
ween the substrate and the gate electrode. In principle it is possible to determine experi-
mentally the depth of the inversion layer from the gate voltage value giving zero channel
current, although practically there is no zero current regime. This is the reason we worked
out a method to determine the thickness.

We determined theoretically the drain current-gate voltage function., The so called
delta depletion theory, where the depleted layer thickness is a Dirac delta, results in a
parabolic behavior of the drain current-gate voltage relationship. According to this ex-
pectation a parabolic curve should be fitted to the measured data. Our results satisfy this
relation in the range where the leakage current can be neglected (Fig. 3)

When MOSFET and Van der Pauw samples coexist on the same wafer they can be charac-
terized by the same physical parameters., This is the way to use the value of the layer
thickness determined in the MOSFET channel for the Van der Pauw samples.

Using contacts of arbitrary shape they can cause short-circuit for the covered area.
To avoid this effect we designed the sample contacts relatively far from the sample as it
is shown in Fig. 4. The driving current is led to the sample by conventional Reed relays
while the voltages fed into a DVM by a Keithley ILow Voltage Scanner. The arrangement of
our experimental system is given in the Fig. 5. The computer controlled system permutates
the current and voltage contacts in a given sequence.

Comparing the results of this type of measurements to the Hall measurements a good
agreement was found. Therefore it can be exvected that this method is well applicable both
in the industry and research.
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Fig.1. Contacts for the four Fig.2. Contacts for the van der Pauw
point method method

UG[VL

05

Fig-2. The theoretically expected IB vs. UG function and
the experimental data
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Am

Fig.4. The shape of the sample designed for the
van der Pauw measurements

Fig.5. The block diagram of the experimental system
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AVALANCHE CURRENT RELAXATION IN p-Si MOSFET-S

G. ZSOLT , GY. KOVACS , T.PORJESZ , T.KARMAN , G.GOMBOS

Department for Low Temperature Physics, Roland E8tv8s University

Budapest, Hungary

A characteristic time dependence of the avalanche current was found
in p-Si MOSFET-s while the normal plateau current was constant. This can be
explained by tunneling and trapping of hot carriers into the oxide layer.

Introduction
In the present state of the semiconductor microtechnology, the devices,
materials and carriers are subjected to high electric fields because of the
small dimensions. In this case we have to take into account the properties
of the hot carriers [1,2].

In our paper we report some experimental results about hot carrier ef-
fects occurring in the avalanche breakdown of p-Si MOSFET-s.

Earlier experiments

In Fig.l an experimental arrangement is shown for studying the hot
electron emission from Si into Sioz. The corresponding band structure diag-
ram is shown as well. The electrons are optically generated, The carriers
that overcome the potential barrier contribute to the gate current if they
are not trapped in the SiO2 layer[3].

In Fig.2 an experiment is shown to study the electron trapping in
the 5102 film. Because of a partial trapping electric charge will be accumu-
lated in the oxide, therefore the current changes in time Fig.3 [4] .

Our experiments
We studied hot carriers generated in an avalanche breakdown in the sur-

face region. A fraction of the carriers will have sufficient energy to sur-
mount the energy barrier at the Si—sio} interface. Some of them will get trap-
ped in the oxide. In this case a time dependent drain current can be expect-
ed because of the influence of the accumulated charge. The rate of the char-
ge trapping inside the oxide layer is related to the number of the hot car-
riers.

The experiments were carried out in samples detailed in[S].

Results
In the measurements carried out at room temperature we observed a UO-I°

typical characteristic of a FET,with plateau and breakdown. At 77K we did not
find breakdown within the same drain voltage range.,
At room temperature we found a decreasing current vs. time function in
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the avalanche region (Fig.4).
By a detailed analysis of such curves we can obtain informations about

the energy distribution function of the hot carriers and the spatial distri-
bution of the traps.

We carried out a reversed experiment too. We switched on a drain voltage
causing a breakdown, waited until the drain current decreased then we switched
it off. After that we periodically switched a constant drain voltage on for
a very short time to measure the actual avalanche current, The resulting time
dependence is shown in Fig.5. It can be seen that by detrapping the carriers
tue electric charge accumulated in the oxide gradually disapvpears and the con-

ductivity of the channel will be regenerated.
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Fig.l. The experimental arrangement ofl}]for studying the hot electron
emission and the corresvonding band structure diagram
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Fig.2. The experimental arrangement of [4] for studying the electron
trapping

Fig.3. The current vs. time dependence in the experiment of [4]
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Fig.4. The avalanche current vs. time dependence in our experiment

Fig.5. The dependence of the beginning value of the avalanche
current impulse on the time
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IRREVERSIBILITY OF MAGNETIC FLUX PENETRATION IN SUPERCONDUCTORS

I.KIRSCHNER
Department for Low Temperature Physics, Roland E6tvOs University
1088 Budapest, Hungary

Thermodynamic behaviour of the fast, non-equilibrium, unstable,
non-linear and irreversible magnetic flux penetration is investigated.

As a collective result of an external effect and an internal inhomo-
geneity such a phenomenon appears often in superconductors during which the
non-equilibrium magnetic vortex distribution is followed by a sudden,
avalanche-like equalization. It can lead to a local increase of the magnetic
induction so that it is able to transform the sample into normal state. The
abrupt change is accompanied by thermodynamic cross effects which result
in a local increase in the energy density and temperature and help the tran-
sition into the normal state.

The phenomenon represents a degradation effect according to which the
critical parameters of the short samples are much higher than those of the
compact magnetic systems. At a given place of coils the value of the magne-
tic induction suddenly increases, the magnetic field penetration into the
matter becomes jump-like, which goes with an increase of the local energy
density and it results in reaching the upper critical magnetic field or the
critical temperature at the place in question. In this way a phase transiti-
on leading into the normal state is induced and the magnetic /and thermal/
instability is able to propagate over the full sample.

This is a very fast, non-equilibrium, unstable, non-linear and irrever-
sible dissipative process.

The equilibrium distribution of the magnetic vortex lines is a homoge-
neous and isotropic one which can be disturbed by the effect of pinning
force Fp’ vortex-vortex interaction force Fv and Lorentz-force FL.Fp origi-
nates from the matter imperfections resulting in the flux pinning, Fv has
mostly a repulsive character and FL arises due to an electrical current
introduced into the sample and plays role of an external generation. They
are depending on the magnetic induction B and on the temperature T.

If a weak force is applied to the superconductors the flux lines will
locally move a little. They leave their minimum energy sites Bt and move
onto the neighboring minimum after an energy maximum Eole in between has
been passed. The energy difference between the maximum and minimum sites can
be dissipated[1].

The thermodynamic picture on the decay of the stability in the vortex
line structure can be drawn up as follows.
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A disturbance of the equilibrium means an addition of a flux increment
to the interior of the specimen and the innermost flux lines move a small
distance. Such a disturbance can be imagined as a density wave in the flux-
oid structure which propagates much more faster than the vortex motion
velocity.

In this way the disturbance changes alike all the forces FL,Fp and Fv'
Among them FL has to be changed since for the same B the gradient differs
from the earlier, Fp is also changed because of the local change in tempera-
ture in consequence of the energy dissipation, while FV changes due to the
change of actual local vortex density,.

The non-equilibrium state succeeding an equilibrium can be described
by the relation

AFLgéAFp + AF_, 7o)

where sign < represents the stability, sign >the instability and sign = de-
termines the stability limit.

The essence of the phenomenon is an abrupt change of the flux penetra-
tion, or in other words, a sudden change of the vortex current density.

The disturbance destroying stability may practically have three diffe-
rent forms:

1. a fast change in the vortex density,

2. a fast change in the vortex velocity and

3. a fast change in the energy density.

The thermodynamic cross effects of all the changes can naturally come into
being as well.

The new non-equilibrium state is characterized by the existence of
thermodynamic a-parameters a; general forces xi and an irreversible change
of the entropy S

Taking into account the magnetic and energetic /thermal/ interactions,
general forces and currents belonging to those are needed only for thermody-
namic description.

In the biggest part of the thermodynamic changes of state in addition
to the distribution of intensive parameters, external generations Gi(t) and
internal sources Qi(t) also participate in the development of the actual
processes. Interactions occurring in this case may result in either permanent
stationary non-equilibrium states, time-dependent forces and a-parameters,
or fast changes. The motion equations of generated processes can be descri-
bed in the form of [2]

X (t)

= - gLX(t) + gG(t) - gQ(t), 12/

a(t) = - Lga(t) - G(t) + O(t) 13/

and their solutions with the condition of G(t) = G0 = const and Q(t) = Qo =
= const are

xt) = (-t +17lo +'x, , )™ + 17l - 17lg /4/
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1= . 1 1

A -1_- Mo =Tat. e = o
at) = (gL s T N, T o"init)e e Nl e R 151
which contain a component exponentially decaying in time if g L>0 and
L g>0 and an other one being constant in time, where g is the entropy mat-
rix and L is the conductivity matrix.
The thermodynamic force for the thermal interaction is
I

g =% ol

and the magnetic interaction force for a homogeneous temperature distributi-
on consists of two parts

U
= v =
X = Xor T o 171

where va characterizes the state of the vortices and Xqv the current-vortex
interaction [3].

- E%EV{— e (@) + Eoohv(rk_ri)}’ 181
where the first term depends on the pinning character of the material and
the second describes the direct vortex-vortex interaction.

Xqv =) E%? (§o’hq(r_rio £ E% [jqx nv¢o]’ /91
which is the Lorentz-force arising from the effect of the electrical cur-
rent jq' /Among the symbols E is the coherence length, hc is the thermody-
namic critical magnetic field, oo is the magnetic flux gquantum, hV is the
vortex-vortex interaction term, h_is the magnetic field of transport curr~
ent and n is the vortex density/. TR o )

On the base of these considerations it is possible to determine the
conductivity coefficient of the vortex motion LV and the value of external

generation which is playing a role in equations /2/ and /3/

ny%
L,=T /10/
nV
and
1 305 o)
Gv =z e T L J11/
nV

where N is the viscosity coefficient of the vortex motion,
The magnetic vortex current density and the energy current density can
be expressed by general thermodynamic motion equations of processes with an

external generation and an internal source:

O () = =Ly, gptb,g; ) ag (t) =Ly, 9, ya, (£) =G, (£) +Q_ (t) 5
and

ap (£)= - (Lggp + Ty595))ap(8) ~(ggyy + Lypg o, (B). /13
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These non-linear differential equations hint at the thermodynamic cross ef-
fects, reflect the non-linear character of the sudden magnetic penetrati-
on phenomenon, and provide a possibility for the chaotic behaviour, too [4].

The creation and propagation of this instability is a dissipative pro-
cess and the entropy production o or the dissipation D is the reason for
irreversibility. The dissipation has three origins:

1. local movement of the individual vortices between the sites of & ast and
€min’
d(e - B )
23 max min
o = =n v /14/
loc S at
2. macroscopic flow of vortices which is dissipative in consequence of
nv> Qs
i 2
%1ow = T M v’ 1351

3. electric current injected from outside into the sample (corresponding to
the external generation):

Feqiae % dt % g [vv X n,0.4r, o
P
where g is the electric change, N is the vortex velocity and P is the
integration length.
The total dissipation can be determined by irreversible thermodynamic
methods in the form of

Dtot = Totot= -Lv(gvavxv+9120Exv)+vav_LE(gBaEXE+gl2avxE)_

_LlZ{gvavxE+gl2(qvxv+aExE)+gEuExv} p

which contains the spontaneous terms, the external generation, the internal

117]

source and the cross effects as well.
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MICROSCOPIC CALCULATIONS OF VORTEX STRUCTURE AND MAGNETIZATION CURVES FOR TYPE IT
SUPERCONDUCTORS

U.KLEIN]', L. IGZAMERZ, W. PFSCHZ, D. RAINE-ZR2 and J. RAIVI‘GE‘.R2

Lmstitut fir Theoretische Physik der Universitst Linz

Linz, Austria

2Phys:i.kalisches Institut der Universit&dt Bayreuth
Bayreuth, F.R.G.

Up to now, important properties of low u type II superconductors, as the amplitude and

temperature-dependence of the jump of the induction Bo at H ., and the nature of the phase
boundary between type II and type II/1 behaviour have not b&%n explained quantitatively by

theory . We calculated numerically the exact solution of the quasiclassical Eilenberger
equations for a triangular fluxline lattice. We compare our results with previous theories
and with recent experiments.

Introduction

The phase transition between the Meissner and mixed states becomes discontinuous for
type II superconductors with sufficiently low values of the Ginzburg-Landau parameter.The GL
theory gives some insight into the underlying physical mechanism:
The interaction energy of flux lines may be separated into a repulsive part /electromagnetic
in origin/ and an attractive part /due to the order parameter overlap/. The latter favours
the simultaneous entry of many flux lines at Hcl but always is smaller than the repulsive
part for u>1/\2 near T, [1] . e first order transition at H,; /type II/1 behaviour/
indicates the importance of corrections to the GL theory such as nonlocality of the electro-
magnetic response or higher powers of the order parameter and its derivatives. All such
effects are contained in the full set of microscopic equations of superconductivity. A
detailed theoretical analysis of type IT/1 superconductors requires a rigorous solution of
these equations. Among previous theoretical studies we mention the asymptotic theory [2--,3]
and the theory of Brandt [4] .

We outline the methods used in our calculation and report some preliminary results. We
discuss the temperature-dependence of Bo and compare our results with the asymptotic

theory.
Methods
We start from Eilenberger’s quasiclassical equations in the weak-coupling, isot-
ropic form, using the notation of [8]

[w,fﬁ(v-ig)]f = yg + Fg - Gf , (1)

(2)
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(2f%g = v*£ - y£* + F'E - FED, (3)
g.® fnEE ) /% Belg) > O, (4)
Wlnt-=—2t£o[5:§—Jgi—ff], (5)
vx$x§=-i(2t/z2)£ojd72’$£g, 6)
e Jg_z_;?(%,,%;;) g4 (7
G = J‘—lg(—l-+2—1—lzc;g, (8)

where f, £, g are the Green Functions;  the order parameter ; R the vectorpotential;
F,F', G are "impurity potentials".

A self-consistent solution of (1)-(8) for the vortex lattice has been obtained by [ 8] using
a one-dimensional circular-cell approximation, For clean superconductors the question of the
type of phasé transition at Hcl can be answered only by taking into account the actual
structure of the vortex lattice.

We have solved Egs. (1)-(4) for a triangular lattice by iterative methods starting with the

potentials of Abrikosov’s theory. We developed a complete theory of symmetry transformations
for Green’s functions on a triangular lattice which reduced the number of evalutions of Egs
(1)-(3) by a factor of 20. Symmetry properties were also used to determine the true boundary
values of the Green’s functions. We applied also an appropriate version of the "explosion
method” [9] . Both methods are alternatively chosen according to their efficiency which
depends: on the characteristic length of variation of the Green’s functions/i.e, depends on
k and w/.

Having obtained the Green’s functions for a sufficiently large number of w and -]:-, new
potentials may be calculated from Egs. (5)-(8). We found two diteration procedures of rapid
convergence, the "subtraction of BCS-solutions" and the "shooting method".

From the final Green’s functions and potentials the free energy of the flux-line lat-
tice was calculated. Repeating the procedure for different flux-line distances we obtained

the induction-dependence of the free energy. Its derivative gives the macroscopic induction
B vs. the external magnetic field.

Results
For reasons of symmetry we have calculated the order parameter and vector potential
in one-twelfth of the Wigner-Weitz /WS/-cell (Fig.l). Fig. 2 shows the modulus of the or-
der parameter ¢ and the microscopic magnetic field b in the irreducible part of the cell
along the line AB. In the GL regime b must be lower at point B /minimum/ than at point
A /saddle-point/. According to [10]and [14]however, the positions of the minimum and saddle
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-point fields are exchanged at H = ch and T= 0,62 T,. We verify these results, and find
an additional structure at intermediate fields and temperatures. The magnetic field of a
pure superconductor (Fig.z. b.) is lower at point A than at point B (bB = 0,516, bA=0.498)
and has a maximum between them. With decreasing induction B the maximum comes closer to point
A and the difference between b, and b, decreases. Below B~0.3 the usual situation described
by the Abrikosov solution is recovered.

Increasing impurity content decreases the spatial variations of order parameter and
magnetic fields. In addition, we find significant changes in the shape of both fields. Simi-
lar effects have been observed in the circular-cell approximation [8] .

Magnetization curves for samples with different impurity content are shown in Fig. 3.
The corresponding jumps of induction and the critical fields Hcl were obtained by means of
a Maxwell construction. In the pure case our magnetization curves were similar in shape to
those found by [4] and led to similar jumps. Fig. 4 shows the temperature-dependence of our
Bo and data of [6] . The agreement is satisfactory in particular with regard to the nearly
temperature-independent behavior of B for T<0,2 T- Our reduced jump Bo/Hc’ however, is
higher than the experimental one by a factor of 1,4, This discrepancy between the experimen-
tal and theoretical values of Bo/Hc is related to similar discrepancies in %y aniuz. These
deviations are probably due to strong coupling corrections and anisotropy effects which are
neglected in our calculation.

We compared our preliminery results on the phase boundary of the type II/1 region with
the asymptotic theory and experimental data. Calculating magnetization curves for pure
superconductors at T = 0.5 T and various values of u we found that B, vanishes more or less
continuously at ue~1.l. The prediction of the asymptotic theory [2,3] is 1.25.

In the impure case we performed calculations for two types of materials, the Nb samp-
les of moderate impurity content, [6] , and the impure Ta samples [5] (see Fig.3). In both
cases our results agree reasonably well with the predictions of the asymptotic theory. The
possibility of an "attractive minimum" at finite flux-line distance has been discussed [2]
mfourxiacontimx)usvanishingofBoatthephaseboundary for both pure and impure
superconductors.

Our theoretical IT/1-II phase boundary falls below the experimental data on Ta-N

[5] . This discrepancy may be due to our neglect of real metal effects and/or experimental
inaccuracies. The Nb experiments agree reasonably well with both the asymptotic curve and
our results.
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The elementary quantum physical description of superconductors using
only three elementary facts of quantum physics, Bohr’s quantum principle, the
uncertainty relation and Pauli’s exclusion principle, can reflect the basic
bulk properties of superconductors, the effect of temperature and external
magnetic fields. The same method for triplet superconductors gives that for
every H # O magnetic field the perfect conductor state is thermodynamically
more favourable, than the diamagnetic state;the perfect conductor state will
cease at H = Hc2.

Introduction

There is an interesting discrepancy between the generality of supercon-
ductivity on one hand /more than 50% of metals is proven to possess a super-
conducting phase/ and the theoretical complexity 6f microscopic explanation,
Weisskopf [1] already has demonstrated that a partial but quite detailed
understanding can be achieved by using full guantum mechanics but not quan-
tum field theory. Here we build up a simplified description of superconducti-
vity; only elementary constants and the data of the lattice ions will be
used, and, of course, the results are expected to be correct only up to num-
ber constants of order of unity.

EQP of Superconductors

Consider an ideal metallic lattice with positive ions and a free elect-
ron gas. In first approximation these charges compensate each other. In se-
cond approximation, the moving electron disturbs the ion lattice, causing an
effective positive charge near to its path, which acts on a second electron
moving collinearly by a potential U~ - g ez/ r, where e is the elementary
charge, M is thp ion mass and m isthe electron mass. If this were a classi-
cal potential, there would be a bound state of the electrons with a charac-
teristic energy 600, K. Nevertheless the uncertainty principle gives a simple,
correct estimation. There are momentum and position uncertainties, so the

ground state energy of a pair can be written as

2 2
S, SABR)ER S e e
batrat: s gkl o5 < g 1L

where
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APAx ~K /2.

Hence, looking for energy minimum, one obtains

While the M dependence of this energy does not show the right isotope effect
its numerical value is in the correct order of magnitude, 2 K for a metal of
50 atomic mass. So one can conclude that, via lattice oscillations, two elect
ron states may appear with a binding energy. \

Since the creation of such pairs is energetically favoured, one expects
the sea of pairs in the T=0 ground state. Elementary symmetry and guantum
considerations yield that the Ccoper pair consists of two electrons being as
collinear as possible, in order to maximize the attraction;but on the other
hand it is a resonance with finite size [E =2VFH/Eb and a minimal momentum
uncertainty /ponfEb/vF/, which forbids exactly zero total momentum. The op-
timal compromise is a state where the total momentum is Py when it is grea-
ter, the binding is weaker, and it cannot be smaller, for details see Refs.
[23 3

Consider now an external effect not disrupting but modifying the super-
conducting state. It can only change the total momentum of the pairs, as the-
re are no other parameters to be modified. The change of the total pair mo-
mentum appears as an excess uncertainty.

The disturbed quasiparticle posseses a greater size Ed’

A 2 2

P = (8p)“ + (h/Ey " 131
The new binding energy is:
e e
2
= 2 tapd)
E, = > 141
po

smaller than Eb’ so the thermal excitation energy is within the energy un-
certainty of the pairs, so it seems that the Fermi distribution of the elect-
rons does not influence the possible excitations, i.e., A Boltzmann approxi-

mation can be used, so

@trv kBT/Vf. /5/

The magnetic field can interact only with the individual electrons, as
the usual Cooper pair, being a particle of O spin and O momentum, cannot
feel the presence of the magnet field. The interaction via the momentum yi-
elds:

H
AP. =P . ==, 16/
HM (] ch
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L
. 1 . o)
where ch is the upper critical magnetic field, Hc2 P r—_

In case of interaction via the spin, the field H ggg produce a change

in the spin orientation, leading to a change in the potential energy

AV=ZEH) [7Y

while the kinetic energy of the Cooper pair changes by
2
AE = (Ap) “/m. 181

They have to be in the same order of magnitude in dynamic equilibrium, so

2 2 H
(Ap) P e 191/
o ch

Combining the thermal and magnetic effects, the binding energy is as follows

['_2] :
2 1/2
E, (T,H) = E, (0,0) {1 & (—T-—i— (H~§ - : /10/
TC HC

For spin-1 Cooper pairs the magnetic field can interact with the pair
as a whole, and the released interaction energy can be transferred into e.g.
lattice vibrations, which is an external heat reservoir for the electron
gas, therefore this interaction will not change the binding energy. Then,

repeating, mutatis mutandis, the above steps, one gets eq. /10/ without its
last term:

By, (2,8) /11/

Thermodynamics of the superconducting state

Since superconducting samples are handled at constant temperature and

magnetic field, the actual state is selected by the minimum of the Gibbs
potential G

G = E - TS - BH/4m. /12/
The energy of the superconducting state can be approximated as [3]

1 2
E; =E -7 EEE , 113/

where E is the state density, for a cold Fermi gas En-E%/z so, using eq,
/11/ and the definitions

£ Seih
H, = 0,/2ME A° = 3= /14/
ne
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one gets

115/

Again, this is true for spin-O pairs; for spin-1 ones the last term is ab-
sent.

Now, let us indeed select the actual state by the minimum of G. For
this one has to compare states of different structure. The list at least
contains the following ones; normal /E=En’ B=H/; Meissner /E=ES, B=0/; mixed
/E=ES(B), B< H/ and a "perfect conductor" /E=ES(B), B=H|,

For comparison the Gibbs potentials of the "usual" states /[i.e. the
first three ones/ can be found in Ref. 3. So we have to deal only with the
"perfect superconductor" here. Its Gibbs potential can be directly obtained
by using egs. [/12/, [/15//with or without the last term according to the pair
spin/ and the definition of that state,

After trivial calculations one gets for spin-0O Cooper pairs

o 1 - R
GP—GM+8—H{HC1H+H/M. - %}, 116/

where u is the GL dimensionless parameter. The Meissner state is below the
normal one until Hcl' and in this whole range the bracketed term is positive,
Above H one could easily show that G > B, . This is just the standard
cl P mixed
result that the "perfect superconductor" state is not realised.
However, consider the case of spin-1 pairs., Here, according to eq., /1l1/
the term linear in H is absent, that is

Gp = Gy~ g; 1 -1 2}. 117/

Now, obviously, this means that for the cases u ) 1 the "perfect supercondw-
tor" state is always preferred to the Meissner state. Thus, if this system
has a superconducting state, then this state is a perfect superconductor

until ch.

Conclusions
Here, we have demonstrated that fundamental quantum principles and
thermodynamics do not rule out the possibility of a perfect conductor state,
i.e. superconduction without diamagnetism. In fact, such states are rather
predicted, but only when the Cooper pairs exist in spin-1 state., This is
just the case of triplet superconductors [4] ,[5].
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SIMULATION OF I-V STEPS SHARPENING FOR JOSEPHSON JUNCTIONS

T.F.REFAIl, L.N.SHEHNHE

lpaculty of Engineering, Dept. of Physical and Mathematical Engineering
Ain Shams University, Cairo, Egypt

zAtcndc Fnergy Establishment, Dept. of Mathematics and Theoretical Physics
Cairo, Egypt

The effect of rf frequency on the induced I-V steps for Josephson junc-

tion is discussed. The resistively shunted junction is applied for the case
of an applied rf rectified sinusoidal current in which the amplitude is modu-
lated by a sawtoothed function.It is shown that the step rise sharpens on
increasing the rf frequency. We also show that the first fundamental step is
nearly absent for low rf frequency while on increasing the rf frequency,
the step evolves and assumes its well-known configuration,

Introduction

There has been considerable interest to investigate the induced steps
in the I-V characteristics of a Josephson junction driven by either ac- or
dc-current sources or both. The effect of critical current amplitude modula-
tion [l] , radio and micro wave power, and thermal noise [2—5] on the inducel
steps has been investigated . In Fig.l the effect of varying the rf frequency
on the I-V characteristics is shown [6] . This Figure shows the evolution of
the steps. Higher steps are better evolved than the first step, but still
their step rise sharpens, and finally the overall curve rise increases /i.e.
approaching the ohmic line faster/. To the best of our knowledge such pheno-
mena have not been investigated and presented elsewhere.

Our purpose is the theoretical investigation of the effect of rf frequ-
ency on the features discussed above. We applied the resistively shunted
junction model [7] /RSJ/, for a Josephson junction biased by an rf rectified
sinusoidal current with sawtooth-modulated amplitude. The model works for
three rf frequency /10, 50, 100 MHz/ at zero temperature and for an rf
frequency /10 MHz/ at a normalized temperature /[t=0,75/. The calculated I-V
curves qualitatively agree very well with the I-V curves of Figure 1.

Theory

The response of a Josephson junction to an ac current source Iac sinot,
fw is the applied external frequency /, while biased by a dc current source is
given by:

C dV/dt +g*V + lc sing = ldc + 1 (1-a)

sinwt+ [
Lo

a N’

2eV =h dd/ dt, {l-b)
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where C is the capacitance, V is the voltage,c is the conductance, Ic is the
critical current, ® is the phase difference across the junction, and IN is
the thermal current generated in the resistor R=1l/c at a given temperature.
We will only consider C = O and Idc = 0. The rf current source will be re-

placed by:

lo sinw t \: (2)

: o
where /T/ is the modulation period of the sawtoothed function T t, and Io

is the current amplitude at t = T. Next, by setting u=wt, Eq. /1-b/ can be

expressed as

. (3)

From /l-a/ and /3/, we then have:

d-¢‘ o ZeRlC i u sinu + iN—Sin (o) ] ' (%)

du hw LOT
where i0 and IN are the rf and thermal currents normalized with respect to
the critical current Ic' For the thermal current, the average distribution

is given by:

wk, Tof\ 12
T e 6o
rms I R
[ >
2eR 1 g 5
P IR Al - ‘ s
‘h u

the Au is the normalized time step involved in the numerical integration of
Eg. [4]/.

Eg. /4/ was solved numerically by the Runge-Kutta method. io was taken
to be lO3 ,T=lo_%3and Au = n/100, The normalized voltage

Gt N R i d
R0 Tl }I> T 2eRlc<E>' ©

The averaging is taken over half rf cycle. Keeping T constant and chan-
ging the frequency has the same effect as if the opposite is done.

Discussion

Fig. 2 shows the I-V curves at zero temperature, In the regions where
the normalized current is below 2, it is clearly shown how the first step
evolves with increasing rf frequency. Fig.3 shows a general step shape indu-
ced by an applied rf current. On the path OA several rf cycles elapse before
v reaches Viis Along Ac the duration between transitions decreases, At C the
phase transition occurs every cycle. Beyond C, the transition occurs every
few cycles on both the positive and negative rf swings. At B the transition.

Acta Physica Hungarica 62, 1987



SIMULATION OF I-V STEPS SHARPENING FOR JOSEPHSON JUNCTIONS 37

rate is twice every cycle. At D a second step appears [5]. In Fig.3 we can
compare the cases for 10 MHz and for 100 MHz rf frequency, and try to inter-
pret how the first step is evolved. On increasing the current from 1 to i=ir
the voltage on curve I is vy /point A/ which is less than v, /point B/for
curve II.

In the region where the current is above 2 /Fig.2/ subharmonic steps
exist at 2, 2.5 and 3. This is due to the nature of the rf current consi-
dered in this work. Their general features are the same as discussed. Our
work predicts that by changing the modulation frequency and keeping the junc-
tion at a constant rf frequency we would be able to observe such phenomenon,
We have also solved the equations for a normalized temperature t=0.74 and an
rf frequency 10 MHz, with no change in the modulation frequency. In Fig.4
the second subharmonic step is completely washed out, while the third one
is_less pronounced than that for T=0. The fundamental steps show a slight
rounding on their knees. Hence the effect of thermal current is only very
strong on subharmonic steps in agreement with [3] .

Since curve II /Fig.3/ is at a higher frequency, there are more rf
cycles involved than for curve I during the same range of current, hence a
higher transition rate is expected for curve II which leads to Vo=V As
the rf frequency is increased, the step rise /OB/ sharpens. For curve I,
further increasing the current beyond C, a step is observed at v 1.5, i 1.5
which is a subharmonic step /n=3/2/. On curve II, increasing the current
beyond B, a step width is observed. From B to C, the transition rate incre- °
ases until at C we have a transition every complete rf cycle. If our rf cur-
rent was not rectified, we would then have the step extended to i~~2 where
two transitions occur every rf cycle. But since we have a rectified current
the step width will terminate at D and a new riser starts again leading to
the second step. Fig.3 and this discussion suggests that at low rf frequency there is a
step /second subharmonic/, and as the rf frequency is increased the step is shifted down-
wards until it completely assumes the position of the first fundamental step with a width
equal to half the critical current,

Conclusion
We have shown the effect of rf frequency on the evolution of the first step. We pro-
ved that such effect can also be observed by keeping the rf frequency constant,and variyng
the modulation frequency. last, the rectified current considered in our work leads to the
appearance of subharmonic steps. This last result suggests a new mean of experimentally
detecting subharmonic steps.
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Fig.l. Experimental I-y curyes for different rf frequencies

normalised voltage

normalised current normalised current normalised current

Fig.2. Calculated I-V curves for different frequencies at zero
temperature

normalised voltage [V]

Fig.3. The effect of the rf frequency Fig.4.

Calculated I-V curve
on the sharpening of the first step

for 10 MHz and normalized
temperature t=0,74
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COMPUTER SIMULATION OF THE CORRELATION LENGTH IN TYPE II SUPERCONDUCTOR
IN CHAOTIC APPROACH

P.SAMU
Department for Low Temperature Physics, Roland E8tvds University
1088 Budapest, Hungary

It was shown that the pinning force in one dimensional case can be
handled in a deterministic way, but the solution of the actual non-linear
differential equations leads to a chaotic behaviow of the pinning-vortex
interaction. This method provides the concept &f the correlation length,
The correlation length was determined with computer simulation and it is
shown that there is sharp transition from linear to chaotic behaviour.

The large loss-free currents observed in type II superconductors are
due to pinning of the vortices caused by inhomogeneities of the material,
The Lorentz force exerted on the vortices by the current is balanced by
pinning forces up to a critical current density jc , where depinning occurs
and the vortices start to drift and to dissipate energy.

The sum oOf the elementary pinning forces to an average force density is the
volume pinning force jcB, where B is the magnetic induction. The pinning
problem in type II superconductors is basically a 3-dimensional effect,
nevertheless to investigate the fundamental features of it the l-dimensional
modelling also provides some useful informations,

The generally accepted assumptions about the flux line lattice and
pinning centres are as follows [l]

1./ Non-interacting defects;

2./ One defect in the interaction range of the flux line;

3./ The defects are in randomly distributed nositions;

4./ The vortex lattice can be treated as an elastic continuum;
5./ Thermal activation is negligible,

The pinning problem in type II superconductors averaging with randomly
spaced weak pinnings generally is handled as a deterministic system in the
senge that their differentia equation defining the position of the individwl
flux lines is as follows [2]

+r - 2r

-3 el i

- dokd:

T i p )2 = fp (ri,RK), s
2 AL i-1
where c is the elastic constant, ry is the position of the ith vortex, Rk

is the position of the kth pinning centre and fp is the pinning force acting

on the ith flux line
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o) 1f X.=R = 2.2
£, (ryrRy ) = %1% | o AR
p i £ (x5)
TR L |ri—Rk|< a; /2
where a, = r - r,, is the lattice constant and
% i i+l i
k ry = R.k + ai/2
X = = . /3/
a,
o5
"By the help of this equation /1/ can be written in the form
15 1) k
= ol L E 0 [
a L
X

which shows that a change in the lattice constant occurs due to the existen-
ce of the pinning forces.
The other possible definition is as follows.

We should like to calculate the correlation length in case of 1-d col-
lective pinning. There are at least two different methods yielding different
correlation lengths.

One is the 1-d version of Larkin-Ovchinnikov approach [2], i,e. the
regions of the vortex lattice in which relative shifts are less than the
lattice constant will be called correlated regions. The linear dimension

2>= a2 /5/

where a is the displacement vector, Lc is the correlation length,

Lc of correlated regions is determined

U (Lc')— U (o)

The positional uncertainty—-of the i-th vortex

i af
Ax, = Ax + I (i-j) = —B ax, 16/
3 R sy L R

where fp is the individual pinning force length.
Calculating the average response due to the displacement of the first vortex:

2 2 wp? 3 -
i (ax;) = (ax ) + T g =% (ax)) . 11
j i c dx J
From this we have [3]
/3 -2/3
LCNLp/ L s £ 18/
where
K
nufp/c 19/
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and L_ is the average distance between the pinning centres, measured in
lattice constant dimension.

Equation /1/ can be transformed in the form being equivalent to the
map of unit interval onto itself [4] . As the lattice constant changes are
due to presence of pinnings, it is allowed to investigate only the flux li-
nes possessing a pinning centre neighbourhood with distance less than the
half of the lattice constant. The unit interval will be the interval of
lattice constant length where the pinning centre is in the middle position.
The position of the flux line relative to the nearest pinning centre is

x* g X+ 1 fi S /10/
where La is the distance between the ath and /a+l/th pinning centres, mea-
sured in lattice constant and Nu is the number of flux lines between them
and a 1is the lattice constant.

gne vortex position is the function of the displacement of the first
vortex which altered in every step a given Ax. To simulate the behaviour of
the correlation length chaos parameter can be introduced [6] . The chaos
parameter shows the linkage among one vortex sequence of three position.

The chaos parameter is
S Ik el o n P (LS -2m? + P, |
GhARE, =¥y T Sl Yi+1| Imi—l kg, et
n n n n T ROAL
where AT O T and Y4, are the positions of the nth pinned vortex and

Mo - o /12

where f is the individual pinning force strength.
The results are in Fig.l-2 where 1, is the distance between the first
vortex pinned by the nth pinning centre.

Figures 1-2 show that the transition is sharp from the linear to the
chaotic behaviour.

In chaotic approach the correlation length yields [5]

£ -1
L, = —a—(—-P-) -1 = b /13/
ax |\ c Vﬁ'fp
The result of computer simulation is
1
L =g 3 /14/

: ¥t

where g is g = 1,6 + 0,2 numerical constant in accord with equation /13/.
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Chaos Chaos
parametfer parameter

Fig.l Chaos parameter dependence on Fig.2 Chaos parameter dependence on

the distance of the nth vortex in the distance of the nth vortex in
lattice constant measure lattice constant measure
Ax = 0.001 Ax = 0-01
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THERMODYNAMIC CROSS EFFECTS IN TYPE-II SUPERCONDUCTORS
G. KISS

Department for Low Temperature Physics, Roland Eotvids University
1088 Budapest, Hungary

Investigation of the galvanomagnetic and thermomagnetic effects in
superconductors has a special role with respect to the case of normal con-
ductors if these investigations are made in mixed state, because in this
case only the normal electrons from the magnetic vortices take part in the
effect. Their concentration is smaller than the concentration of the conduc-
tion electrons, so the effect taking place is bigger, and depends strongly

on the pinning forces. This allows to get a lot of information from this measurement type.

Galvanomagnetic effects

a./ Transversal effects
- Isothermal Hall effect
The onset of the potential gradient in direction perpendicular to

the external electric current /Iee = Ix/ and magnetic field /B=Bz/,

with the boundary conditions Jel y=0 and grad T=0, in the case if the
’

external magnetic field is greater than the lower critical magnetic

field Hyp.
- Adiabatic Hall effect
Similar to the former one and the boundary conditions will be:

5
I
(@]

and.. «J =0
sX

)
®

- Ettingshausen effect

The onset of the temperature gradient perpendicular to the direction
of external magnetic field BZ, and electric current Jx, with the

boundary conditions:
= L T -
Jel,y =0, Js,y_ 0 and == (]
b./ Longitudinal effects
- Isothermal electric resistivity

- Adiabatic electric resistivity
In the case of superconductors the value of these effects is zero.
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Thermomagnetic effects

a./ Transversal effects
= ‘Righi -Leduc effect
The onset of the temperature gradient perpendicular to the x directi-

on temperature gradient and Z direction magnetic field, with the boun--
dary conditions:
Je1 = 0 and Js,y =0
/perhaps the magnetic field must be higher than Hcl/
- Isothermal Nernst effect

In the case of the applied magnetic field B=BZ and heat current

JS=Js 2 the onset of the potential gradient, with the boundary condi-
r
tions:
i and Rilio
Ay

- Adiabatic Nernst effect

Similar to the former, but with the boundary condition Js =0 instead
’

of the O temperature gradient
b./ Longitudinal effects
- Isothermal thermal conductivity

- Adiabatic thermal conductivity

In the case of boundary conditions

u G L L
Jel—O and évy- =0 or Js,y = 0
The coefficient of thermal conductivity
vk o8

grade
has a strong magnetic field dependence, because the Cooper-pairs do
not take part in heat conduction, only the normal electrons appearing
in magnetic vortices. At the same time the concentration of the vorti-
ces depends on the value of the magnetic field
- Isothermal Ettingshausen-Nernst effect
Appearence of the potential gradient in the X direction due to the ap-

plied magnetic field B=Bx and temperature gradient grade, with boun-
dary conditions

S an
Jgy = 0 and 52 =0

- Adiabatic Ettingshausen-Nernst effect

Similar to the former but in the boundary conditions we will have
Jg y =0
’
Because of the Onsager reciprocity relations there exists the Bridgman-
-type equation
T £
TQi = AiQ
/QE is the isothermal Nernst coefficient, Ai the isothermal coefficient of
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"

thermal conductivity and ot the Ettingshausen coefficient/.

Experimental results

We have made the experimental investigation of Nernst effect in super-
conducting samples of Pb-Sn with content of Sn 50 atomic percent. The e%fect
takes place only if H:—Hcl because in the Meissner state the electric field
cannot appear in superconducting sample. We have used cylindrical samples
with a diameter of 4 mm and a length of 50 mm. They were prepared by
quenching from liquid state to the nitrogen temperatures [2]

The system position of measurement is shown in the Fig. 1. . The measure-
ments allow a very precise determination of the lower critical magnetic field
H (see Fig. 2.) [3] , because the onset of the potential gradient is
very sharp when the magnetic field penetrates the sample. The results provi-
ded by this method are in good agreement with the values of Hcl determined
by magnetisation measurements [4] .

The appearence of the effect is similar to the appearence of Hall effect,
If we have the magnetic vortices in our sample, they feel the effective
thermodynamic force - (OOS’/B) grad T due to the heat current /@o is the flux
quantum, and S’ is the entropy density/, and the vortices can move from the
hotter place to the colder if this force is bigger than the pinning force.

At the hot end of the sample the vortex density is higher, here the vortex
lines permanently move into the sample, and at the cold end they permanently
leave it. The Loreniz force acts on the normal electrons in moving vortices
resulting in vortex density gradient in y direction, and Ey potential gradi-
ent. The effect disappears at ch, because with the magnetic vortices disap-
pearing the moving electrons disappear too. The hysteresis we have found is
the result of the pinning forces bounding a part from vortices. The value

of the effect has strong pinning force dependence. If the pinning forces are
strong enough the effect will disappear. In this case the thermodynamic for-
ce will be less than the pinning forces. If the vortices are bound the flow
disappears. If we put the sample into the cryostat immediately after quenching
it cannot recrystallise. In the other case strong pinning centres are for-
med and the effect diappears. The magnetisation curves show these phenomena
very well.
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COMPUTER SIMULATION OF PINNING IN TYPE-II SUPERCONDUCTORS AND THE THEORY OF
COLLECTIVE PINNING (Abstract) *

E. H. BRANDT
Max-Planck-Institut -fiir Metallforschung, Institut fiir Physik,
Stuttgart, Germany

The problem of pinning of flux-lines by random inhomogeneities is
discussed. The theory of collective pinning, which was established recently
by Larkin and Ovchinnikov and has proven successful in weak-pinning amorphous
alloys, is discussed in some detail. Then computer simulation of pinning is
described and the results are discussed. They confirm collective pinning
theory for weak two-dimensional pinning and modify it at strong pinning where
the flux-line lattice becomes amorphous. The threshold-behaviour predicted
by the "dilute limit theories" proves to be an artifact which is due to the

non—-existence of this limit in sufficiently large specimens.

*The full text of the paper will appear in a subsequent issue of
Acta Physica Hungarica
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ANALOGIES BETWEEN GRANULAR SUPERCONDUCTORS AND SPIN GLASSES (Abstract)*

J. ROSENBLATT, P. PEYRAL, A. RABOUTOU and C. LEBEAU
Laboratoire de Physique des Solides UA 786 au C.N.R.S.
I.N.S.A. 35043 RENNES Cedex France

The transition to coherence of a granular superconductor with grain
size much larger than the characteristic superconducting lengths is described
by an X-Y model with random couplings. This led us to measure the critical
exponents (which of course need not coincide with those of mean field theory)
for this transition.

To illustrate this work, we present a measurement of the correlation
function exponent 7 and the "susceptibility" (order parameter fluctuation)
exponent Y. Scaling laws allow then to obtain values of £ and ) which are in
guod agreement with those resulting from previous measurements. The value
obtained for") = -0.1 + 0.2, is in good agreement with calculations on the
ordered X-Y model, but the exponents 3=0.7 + 0.1, y=2.8 + 0.3, y=1.3 + 0.1
are about twice the X-Y model values. Actually these exponents are rather
close to those found experimentally in certain spin glasses.

We discuss a model which assumes that critical order parameter fluc-
tuations are localised in the regions of highest coupling energy. This
defines a temperature-dependent percolation problem, which in turn allows
to relate the critical exponents of the coherence or spin glass transition to

the percolation exponents. Fairly good agreement with experiment is obtained.

*
The full text of the paper will appear in a subsequent issue of
Acta Physica Hungarica
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ANISOTROPY EFFECTS IN SUPERCONDUCTORS DOWN TO MILLIKELVIN TEMPERATURES

F. M. SAUERZOPF and H.W. WEBER
Atominstitut der Osterreichischen Universititen
A-1020 Wien, Austria

We report on two experimental techniques aimed at an analysis of anisotropy effects in
superconductors. The first provides direct experimental evidence and is based on the
measurement of the direction dependence of the upper critical magnetic field H , in single
crystalline superconductors. Unfortunately, the theoretical situation is unsatgsfactory at
present and does not allow an evaluation of electron-phonon coupling anisotropies. The
second technique is based on an analysis of the thermodynamics of type-I superconductors
and its impurity dependence. In this case an excellent theoretical description in terms of
Eliashberg theory is available, vwhich allows a full evaluation of experimental results.

Introduction

A variety of experimental techniques have been devised to investigate arisotropies of
the electron-phonon coupling strengths in superconductors (for a review of this subject cf.,
e.g., Ref.1.). Among these we have concentrated on anisotropy effects of the upper critical
field ch in single-crystalline cubic .type—II superconductors during the past few years
[2—5] and obtained detailed and accurate information on the temperature — and impurity —
dependence of ch—anisotropy, which was characterized by the coefficients A1l of a series
expansion in terms of cubic harmonic functions [6]. The increasing precision of the
experiments, which were carried out in the temperature range between 1.5 K and the transition
temperature Tc’ revealed the following features: 1) The temperature dependence of the
expansion coefficients shows considerable discrepancies [4] with the predictions of the only
presently available microscopic theory [7]; 2) at sufficiently low temperature (t = T/Tg

t=0.3) additional higher—order expansion coefficients (1= 8,10,12) are needed to describe
the results on Nb and V to experimental accuracy [5]; and 3) even at 1.5 K, the coefficient
A6 was found to be negligibly small in Ta. (This could be caused, however, by the fact that
a certain amount of impurities had to be introduced into Ta, in order to convert it into a
type-II superconductor within the accessible temperature range [B,Eﬂ). Especially, in view of
the last two observations, a new series of experiments was made on Nb-, V- and Ta-single
crystals in a region down to milli-Kelvin temperatures. We are, however, aware that an
evaluation in terms of electron-phonon coupling anisotropies is not at hand, due to the lack
of an apporpriate theoretical treatment.

On the other hand, the well-established technique [1] of studying the thermodynamics of
superconductors with varying mean-free electron paths, in order to deduce mean-square values
of the coupling anisotropy, has become attractive again, because a full theoretical
treatment in terms of Eliashberg theory has become available [9,10]. From an experimental
point of view, precise data on the Tc—depression as a function of impurity concentration,
as well as accurate measurements of the deviation function, especially towards T-=0, are
essential.
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Ecz—anisotropy in Nb, V and Ta

The experiments were made on 110 -oriented single crystals by measuring the a.c. susceptibility in trensverse
megretic fields, either in a cawentional bath cryostat or in a dilution refrigerator. We will restrict ourselves to
results on four samles, remely Nb 8 (RRR = 2080), V21 (RRR  200) and Ta 4 and 5 (RRR = 34 and 0, respectively),
Mmdopedwiﬁx%inoxdertopmﬁdetyp&-ﬂsqmmﬂntivity in all crystal directions 8,11 . Typical
results are shown in Fig.1. The analysis consists of a least-mean square fitting precedure of the experimental data
to B (D: Hop(at;@y) = L A (&, t)H) (&), (1)

1=0,4,6,8,10,12

where ey = X,¥,2 denotes a unit vector in the direction of the magnetic field, Hl(eﬂ)meﬂeculﬁcmmnﬂc
functions defined in Ref. G,adAl(ot,t)amﬁeaﬁmtmwcoefficimts, which deperd on the impurity parameter
u(i).&fﬂ/l)aﬂﬂlene&nedtamerawmtaﬁy. AOEHchsmeﬁmt]ylsedtormmlimﬂeM
aﬂsotmwooefficimts(al=A1/A0).F&unaJlﬁedaiamﬂeaﬂsotmw coefficents a, ve wish to present an
example result pertaining to the coefficients quzrd 2 in Fig. 2. In Nb the temperature deperdence ofah
follows a (1-t)-law as predicted by theory [7] at low temperatures, wheress both in V and Ta, &, levels off
towards T = 0. In the case of Ta, audefmfelymrm:sfmi‘beatﬂewwezmmtarpemhnei’totype—l
superconductivity. Coancemning the coeffient ag, the results on Nb zgain indicate Wﬂltmﬂlﬁ‘e(lt)—]al
hﬂ even at the lowest tenperatures, whereas saturation effects occur for V and Ta towards T = 0. The coefficient
2, identified for the first time in Ta, is mch smller than in the other two materials, which is partly related
o the higher impurity parareters in the Ta samples, but definitely dissppears at T, where type-IT supercomuctivity
disappears. Nore of the higher-order coefficients could be detected in Ta. ag in Nb shows a (1-t)-deperdence ad
in V again a platean for T—0. 2 which was identified in Nb only, is negative (as the leading
term ay, ) and dlspla.ys again a (1-t)-temperature dependence. This summary of experimental
Iesultssm:sclearlyﬁatﬁuw@ﬁewnfmmdﬁmupnmofdaiamtemsofmﬂncmnmcfur:tlcm a troad
spectrum of effects is covered, whose variety becares particularly pranounced at the lowest tenperatures. It seams
that the microscopic aniscotropies of the specific material are responsible for the different phenorena observed
in Nb, V ard Ta. The disappearence of g at T* in Ta seams to be of special intterest, because it is directly
carrelated to type-II supercanductivity, as opposed to the behavior of the first coefficient ay.

Thermodynamics of anisotropic In
In order to study the thermodynamics of anisotropic supercoductors, type-I materials are preferentially

investiga:bed,because‘thenea&mrﬂrtofﬁeﬂmmdyraricmitlcalfieldHccalbednevdﬂlmx:hhidm'aoanmy.
The basic idea of the experiment and the subsequent theoretical analysis is as follows: Starting fram the isotropic
M,amemmmlmammmmmm%mmmw,
vbcse averege over the enttire Fermi surface is zero, tub whose meen-square value (o) denctes the average deviation
of the oo.lp]_‘irgfmnﬂ\eisotm;ﬁ.ccase.CaBeqlmtly,inﬂ)eclem]inﬁ.tﬁeh‘a‘siﬁmtarpera:hneTcofﬁxe
supercomductor is enhanced campared to the isotropic case; hut the addition of small amunts of nomegretic
impurities provides new scattering centers and, hence, permissible k-states, which tend to smear out the original
anisotropic distribution of states. This situation, i.e. ﬁemﬂglrala’ﬂsotzopicT ad its subsequertt reduction

by anisotropy removal, can be treated accurately for any supercanductor of arhitrary coupling strength in terms of
the linearized anisotropic Eliashberg theary, if the electranphonm spectral function 2F(w)[’|2]151«mfar‘the
clean material. With only one additional parameter, namely the lifetime of the electronic excited states due to
normel scattering, a quantitative camparison between theory aﬁﬂesqmum’ﬁle—de;mﬁimasafuchmof
mpmtyoamadnmyleldsﬂemwe(%ofﬂeelecmmw@rgmwy Thus, having established
dlﬁepamfmhsTc—emum,ﬁefmmcmMgﬁwywmme&mwlcmaeﬂeoﬁm
ﬂmrmdyranicqxaﬂ:i.ﬁ%,aﬁlasﬂetmpmahxedepadaneofﬁeﬂmm@mﬁcmiﬁcalﬁeld%aﬂﬂeel&&uﬂc
spec:‘.ficheat,wiﬁmta’wﬁee;maretexs.D)eoor!%paﬂirgexpeﬁnmtsch(T)orﬂedeviaﬁmﬁmﬁm,
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therefare, represent a very sensitive consistency check of the whole evaluation procedure ard the concept of
anisotropy and anisotropy removal by scattering centers. The experiments were mede on high-purity indium and a
saﬁescfmanwsﬂnse&mwdntiwgopertles}avebemmmedmmmdewﬂ;meviaxsly[’lB,M].
'DexesﬂmmﬁeTc-depresﬂmmaa]ymdfoﬂmﬁemmedmemthrﬁiabove.’Hlebestwmtbe‘b»eaq
theory and experiment is fourd for 0.035=(a%)=0.040, where the stardard deviation of all the experimental data
amounts to aly 3 nK. In Fig. 3 we carpare the experimental results on the deviation function

D) =ﬁ®/&ic(0)]—[1—t2]fa~pre indium and for te sanple with the higest impurity cantent,with theory.In the clean limit
we rote significant discrepancies between experiment and the weak—coupling BlS-results, as well as with the isotropic
Eliashberg calculation. On the other hard, satisfactory agreement is found for the anisotropy parameters <a2>,
zsdsbenﬂnedfxmﬁ)eTc—demnssimRmtherevidanefmﬁe correctress of an anisotropic treatment of pure
Inismvvidedbyﬁ’uedevia:l:lmﬁn:timoflngo’l‘lm,Ma"meaed—art"mtmammmeldsagmarmt
with experiment. An additional quantitative camparison between theory and experiment can be mede for the
ﬁmnndymriccriﬁcalfieldHcai:T=O.Lqﬂﬁscase,ﬂmee:q)eﬁna’ﬂalaocmacyisnmhbetberﬁmfm'D(t), but
the thearetical results require an additional quantity, which has to be taken fram experiment and, therefore,
cantains experimental wcertainties, namely, the density of states at the Fermi level, which is calculated from the
Sanrarfeldocrstznt[15].'DEmﬂtsdsmtrateagajn,ﬁatb$tagrearartisobizjmdfm'<a2 = 0.04.

In sumary, all the evidence presented above ard, in addition, a very careful ard camrehensive analysis of the
influence of experimental uncertainties and functional derivatives (0], show consistently that the cancept of
coupling anisotropy and its removal due to impurity scattering, represents the correct explanation of the
experiments on Tn ad provides a valuatile tool for studying anisotropy effects in superconductors.

Conclusions

The experiments presertted in this peper clearly enphasize the role of very low temperatures for an
Mgatimofaﬁsohoweffmtsmsmwdm.wmeasmﬂecaseochz—mﬁscm,irrterestingfeatm%
in the temperature deperdence of the anisotropy coefficients were revealed only at temperatures below 1 K, milli—
Kelvin temperatures are a necessary cordition for an accurate evaluation of the deviation function. Conceming the
theoretical analysis in terms of electronphonon coupling anistropies, studies of the thermodynamics have to be
mefmedatmm.}bevw,beoameofﬁemnhmgm-misimofﬂe%e—aﬁmowdam, future theoretical
efforts should provide still more detailed insight irto the nature of anisotropy effects in  supercoductors.

We gratefully acknowledge the partial support of this work by Fods zur Forderung der Wissenschaftlichen Forschurg.
Wien, wder cartract No. 3973.
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~50

Fig. 1: Experimental results on the angular dependence of
ch in a vanadium single crystal (T = 59 mK)

Fig. 2: Temperature dependence of ay,
and ag in V (RRR ~200)
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Fig.3: Deviation function D(t) for pure
In (a) and In,.T1,.(b). The experimental
data are compared with various solutions
of Eliashberg theory and with the
BCS—result
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ON SOME DEVELOPMENTS OF TECHNOLOGY OF MULTIFILAMENTARY WIRE V3Ga
J. BANKUTI, K. HEGYI FARKAS and L. LASZLOFFY
Department for Low Temperature Physics, Roland Ettvos University

1088 Budapest, Hungary

The last twenty years have brought along a big evolution in the field of the appl?ca—
tion of the superconducting materials. It is a valuable task to improve the supercondu9t1ng
critical parameters, T ,H and I . As the experiments show some improvement can be aghleyed
by adding other alloyi%g Slement§ to the superconductors in a lowlconcentratlon..Taklng into
account of the advantageous properties of Al there are some experiments and considerations
to make superconducting wire in Al matrix.

Introduction

The critical temperature Tc and the critical magnetic field H02 depend
on the microscopic physical properties of the basic material as it can be
seen in Table I. However the critical current Ic is determined mainly by the
technology, by the inhomogenities, the dislocations and the other crystal
imperfections [1—2] +

In mixed state of a superconductor the so-called pinning centres prevent-
the Lorentz motion of the flux line. The critical current density jc is
related to the mean pinning force Ep (B) by the critical state equation

igx B + Ep (B) = 0,
where B is the magnetic field. Fp is determined by the interactions between
the flux line and the crystal imperfections.

Recently some manufacturing technologies exist for BCC superconductors,
first of all for Nb-Ti, Nb-Zr, because their critical parameters are not
too sensitive for composition. This solid solution superconducting phase can
be worked well mechanically too.

However from the point of view of the high critical parameters the compound
of A15 structure is favourable. Among the A15 superconductors the Nb-Sn and
the V-Ga systems have stable A15 phases in a wide range around the stoichiometric
composition.

For multifilamentary superconductors V3Ga there are two technologies:
1. Surface diffusion process (SDP); 2. Composite diffusion process (CDP)

By some reasonable modifications we can get higher values in the critical

parameters extremely in the critical currents.

Some improvements in the critical parameters

In A15 superconductors the dominant pinning centres are the grain-
boundaries [4] . When the grains are less we can get stronger pinning forces
and the critical current is higher. The grain size can be limited by the
temperature of heat treatment. However ,at the heat treatmentthe thickness of the
superconducting layer also decreaseswith the decreasing of the temperature.
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Adding different alloying elements to the matrix or to the pure materials the
diffusion constant can be increased due to the decrease of the activation
energy [5—6J i

In the Fig. 1 the critical currents are plotted against the annealing
time in some superconducting samples. '

As it can be seen the critical currents increase with the annealing
time. We mentioned that the changing of the critical current with the
reaction time is influenced by two effects mainly. One of them is the growth
of the superconducting layer and the other is the formation of the grain size.
The critical current increases approximately monotonically with the thickness
of the superconducting layer and so with the reaction time, but when the
grain size will be larger jc will decrease and so the strength of the pinning
force.

From the results we can establish that the effect of the alloying of
In is the highest . It surpasses the effects of Al and Zn. The element In
owes the best effect to the largest superconducting layer due to the best
diffusion of Ga. But after annealing of one hundred hours the grain size
becomes too large and the critical current density will be lower.

In the Fig. 2 the critical temperature Tc is plotted against the
annealing time in the same samples.

As we can see the solution of the additional elements in V3Ga layer is
a limited process because the critical temperatures change hardly.

Taking into account the advantages of element Al a new idea arises
for the further modification of the V3Ga technology. The element Al is very
promising as a matrix material in the multifilamentary superconductive wires
because its mass density is only one third of that of Cu, the electric and
thermal conductivity is approximately that of Cu at low temperatures but it
is much cheaper.

The first task in the CDP technique is to examine the Al-Ga system from
the mechanical and electric points of view. In previous works we can find
two different phase diagrams for Al-Ga. One of them is a simple eutectic
system with limited solid solubility. The other one has three intermetallic
compound phases.

In our early experiments the Al-Ga samples were produced by melting
of the pure metals in a quartz tube under argon atmosphere. The compositions
were next to the assumed intermetallic compounds. The content Ga prevented
the development of the Al oxide layer and the samples were damaged in a
relatively short time. The samples were porous, brittle and plastically
undeformable. The unsuitable properties of the Al-Ga alloys demand the
further modifications of CDP technique or other SDP techniques.
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Table I
Critical parameters of superconductive materials
of different crystal type
Crystal Type Material TC(K) H02(4,2K)(T)
BCC Nb-Ti 9.8-10.2 12
Nb-Zr 10.8 44
A15 : NbBGa ; 20.7 34 .1
Nb3A1 i S S 252
NbBSn 18 23.5
VBGQ 159 22
V4Si. T 22,8
- %
c15(Laves) HEV, 9.2 20
g ZrV2 849
Hf0‘5zro_5v2 0 )15 23
TMS(Chevrel) SnMo6S8 . 0
; PbMoSg - 14
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COMPUTER DESIGNED SUPERCONDUCTING MAGNETS

T KARMANl - I.KIRSCi'l'NERl and J.BANKUTIl

Department for Low Temperature Physics, Roland E8tvds University
1088 Budapest, Hungary

The designing of specific magnetic field profiles is performed by a po-
wer series of the general field formula up to 1llth term. This method instead
of the usual integration increased the speed of the calculation by a factor
of few hundreds. At given magnet parameters the program has a self-consistent
procedure to gain the prescribed homogeneity taking into account the layer
distribution. The operation can be extended for the planning of strongly in-
homogeneous magnetic systems too. The elaborated way is applicable to the
conventional, superconducting and multifilamentary magnets as well.

Introduction

our aim was to improve a quick but versatile computer program to design
different magnetic field profiles Solenoid type magnets of partially
cylindrical symmetries were used to produce the magnetic field. The program
was prepared on a personal computer to calculate the magnetic field profiles
in the case of an arbitrary given solenoid arrangement. The only requirement
for the calculation is the partially cylindrical symmetry.

The input data of the program are:
data of solenoids: length, inner diameter, maximum outer diameter
data of wires: diameter,density of turns, thickness of layers, intensity of
current
minimum of magnetic field strength
data of homogeneity: volume of homogeneous magnetic field /length, diameter/,
maximum inhomogeneity
other data: arrangement, profile
Using these data the program calculates the appropriate layer distribution
by a self-consistent procedure.

To increase the speed of program running a power series.was used up to
1lth terms instead of the integrating Biot-Savart formula. The increasing of
the calculation speed was by a factor of few hundred. The other advantage of
power series calculation was the decreasing of the memory capacity needed
for the stored data.

If the axial component at the axis of cylindrically symmetrical field,
Hoo(z) is known then we can calculate the axial and radial components at any
given r distance from the axis by the following expressions:
oa) (R s 2n

Hylz,r) = 3 3 Wolanl jzi 3 Y

(o Saklbe 2 5014 4
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o /_1/n+1 fan s/ o 2n+1

Hr/zrr/ - Z “O /Z/ E ¢ /2/

n=o0 n! /n+l/!

The value of Hoo(z) can be determined by this formula:
NI z+b Z=b
Holz | s ( 5 )
2 o\ et oant [2-b]* +a% J - 131
where a, b, N and I are the half of diameter of solenoid, the half of length

of solenoid, the number of turns and the intensity of driving current respec-
tively and z is the axial co-ordinate beginning from the centre of solenoid,

The magnitude of the terms of the power series are decreasing very fast
- about 1.5 order - both for the axial and radial components. The other cause
of fhe high speed of the convergency is the sign-changing character of a gi-
ven component.

The program consits of two parts., The first one calculates the main or
basic magnetic field from layer to layer up to the prescribed value. The se-
cond part performs the appropriate outer correction layers - constructing it
from turn to turn - to achieve the specified field profile or homogeneity.

By this procedure a very quick and versatile method has been developed
for designing different normal and superconducting magnets but first of all

our method is suitable for superconducting one where no Joule heating occurs.

Some superconducting magnets

To demonstrate the capability of our program we present a couple of ex-
amples of superconducting magnets and the magnetic field realized by them.

Simple outer corrected solenoid

At first a simple solenoid is presented for laboratory measurements. No
rigorous requirements have been made. The length of solenoid is 10 cm, the
inner diameter and the maximum of outer diameter are 4 cm and 20 cm, respec-
tively. The wire has 0.1 cm diameter and the solenoid has to have a minimum
magnetic field strength of 2 T, while the driving current is 100 A. The ho-
mogeneity requirement is 2 %/cm or less at least in cylindrical volume with
3 cm diameter and 4 cm length in the centre of solenoid.

By 24 layers the magnetic field strength reached the prescribed 2 T,
After this the program constructed 36 layers to achieve the homogeneity. The
length of the correction layers is decreasing from 2.9 dm to 1.7 cm in this
way as it is shown in Fig.l.

At the end of procedure the homogeneity became better than 2 %/cm,., Du-
ring the correction procedure the magnetic field strength increases, in our
case up to 2.8 T, but it is very simple to optimize the minimum layer number
of the solenoid if it would be necessary.

Highly homogeneous solenoid

In a couple of measurements a highly homogeneous magnetic field is re-
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quired in a given volume [2] [3] {4]. In our example the homogeneity had to
be better than 10 " /em in a cylindrical volume with 1.5 cm diameter and 2 cm
length in the centre of solenoid. The main data of solenoid are: length 15 cm:.
inner diameter 2.5 cm, maximum outer diameter 12.5 cm, diameter of wire 0.02
cm, intensity of current 50 A and we need a magnetic field strength of 10 T.
According to the calculation the solenoid needs 41 ground layers and
7 outer correction layers. The first one has 254 turns and the last layer has
only 3 turns.

Linear varying magnetic field

Using two equivalent solenoidsin front of each other we can obtain an
interesting magnetic field profile between them. We have to point out that it
differs from the Helmholtz solenoids being reversely coiled. We have examined the
axial and radial components of the magnetic field in a volume having cylind-
rical symmetry of 2 cm length and 2 cm diameter in the centre of the soleno-
ids. If we examine the radial component in the volume in question - see Fig.2
- then we can obtain two interesting facts.At first the radial component is
constant in the function of the axial co-ordinate. Secondly the radial com-
ponent is varying linearly in the radial direction. The axial component shows
the opposite property. It is constant in the sense that it does not depend
on the distance from axis and it has a linear variation in the axial direc-
tion.

In Figs.3 to 6 we have shown the validity of linearity and constancy.
We have found that the deviations of above mentioned quantities have a deep
minimum at a solenoid distance of about 3.2 cm.

We hope that these examples have shown the versatility of the use of

our program. We are going to extend it to even more complicated works, too.
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Fig. Y. Simple outer corrected
solenoid

Pig. 3. Relative deviation of
axial component from constancy

Pig. 5. Relative deviation of radial

component from constancy

Acta Physice Hungarica 62, 1987
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BIOMAGNETIC MEASUREMENTS WITH A THIRD ORDER GRADIOMETER
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Debrecen, Hungary

A short introduction about biomagnetism and associated instrumentation
is given in the first part of the papger. The application of SQUIDs and
superconducting gradiometers in clinical biomagnetic instruments is reviewed
in some detail. The construction and adjustment of a third order gradiometer
is described later and a magnetocardiogram is displayed to demonstrate the
capability of the instrument.

Introduction

It is well known that every electrophysiological phenomenon is accom-
panied not only by electric but magnetic signals as well.

These biomagnetic signals are very weak, 4-7 orders of magnitude below the
ambient magnetic noise. Fig. 1 shows some typical values of biomagnetic
fields and the average amplitude of the ambient noise.

An apparatus designed to detect biomagnetic fields is to meet two re-
quirements: it must have sufficient sensitivity and capability of producing
adequate selection between the signal and the noise. In the majority of bio-
magnetic investigations SQUIDs are used as magnetic detectors [1]. So as to
eliminate environmental magnetic noise, we should build a magnetically
shielded room, or make a detection system that is appropriate for spatial
discrimination, or apply filtering and averaging techniques.

Constructing shielded rooms is very expensive, so spatial discrimination
with SQUIDs and superconducting gradiometers seems to be the best version for
clinical applications.

Superconducting gradiometers

In Fig. 2. a schematic sketch of a flux transformer can be seen.

Its working principle is the flux quantization: if we change the mag-
netic flux in the pick up coil, it causes current change in the signal coil,
which can be detected by a SQUID sensor. In biomagnetic measurements this
configuration can only be used in a shielded romm, because it cannot make
the difference between the signal and background noise. Gradiometer-type
flux transformers are more suitable for measurements under normal laboratory
circumstances [2].

In Fig. 2b "a first order gradiometer" can be seen. This arrangement
gives zero response to homogeneous magnetic fields and non-zero response
to inhomogeneous ones: It is well known that the gradient of the magnetic
field far from the source decreases faster in space than the field itself.
So by measuring the gradient (either the first or the higher ones) spatial
discrimination can be made between the signals generated by near and distant
sources. Better discrimination can be achieved by higher order gradiometers.
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In Fig. 3. some sorts of first and second order gradiometers can be seen.
A third order gradiometer

In our laboratory a third order gradiometer has been developed to take
magnetocardiograms under laboratory circumstances. In other laboratories 2nd
order gradiometers are more widely used, but nowadays some publications have
come out where the advantages of the 3rd order types are carefully discussed
[3]{ 4]. The main dimensions of our gradiometer can be seen in Fig. 4. The
inductance of the gradiometer is about 1.5 ,uH , and in our measurements a 40
MHz SQUID electronics is used with a directional coupler [5]. The cryogenic
part is located in a BMD-5 type cryostat [7].

The magnetic noise generated by distant sources can be approximated by
the first +two terms of the Taylor’s series of the magnetic field:

an(vo)
Bovl - B AN o et (ALK ey

where V=x,y,z and Uo=x°,y°,zo.
Usually a higher order gradiometer should be balanced in such a way

that it gives zero response to homogeneous field and to first gradient of the

field in axial direction. In mathematical form the following equations should

be satisfied:

n
B, (v,) 121 N, A, =0, (1)
r, i ) S <
SV Y NA Z, =0, (2)
v i=1 Az i

where Ni is the number and Ai is the effective area of the appropriate turn,
Zi is the distance between the ith
the coils.

In the equation (1), when for example n=4, A1, A2, A3 are constant, the

turn and the origin, n is the number of

gradiometer against the homogeneous magnetic field can be balanced by
changing A4 . Using three superconducting tabs or rings in the three ortho-
gonal directions, all the three conditions of equation (1) can be satisfied
independently of one another. In the equation (2) the Zi parameters can be
used to balance the gradiometer against the first gradient part of the
ambient magnetic noise. In practice this was realized in Ref. 6 .

Because of mechanical simplicity in our gradiometer we used a non-
orthogonal procedure: the effective areas in axial direction of two coils
were changed. For this purpose a fourth tab was built into the interior of
the gradiometer ( Fig. 4.). At the best configuration the minimum noise level
was about 290 fT/Vﬁ; in a steel reinforced concrete laboratory building.

Further reduction of noise level is in progress.
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Application in magnetocardiography

A magnetocardiogram taken by this instrument can be seen in Fig. 5. A
known magnetic field generated by a wire loop has been used to calibrate the
instrument and to measure the sensitivity as the function of the source
-~ gradiometer distance (Fig.. 6.). It can be seen from this curve that the
maximum sensitivity is at about 1 baseline distance and it drastically

decreases as the distance increases.
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Fig.3. First and second order gradicmeters Fig.4, Oiird order type gradiorreter
Oie distance b is the baseline

37 pTldiv
Fig.5. Magnetocardiogram recorded in an Fig.6. Sensitivity calibration curve of the
unshielded laboratory. Bandwidth: 0,07-20Hz 3 instrument
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MAGNETIC PROPERTIES OF (Fe1_xMx)7Se8 (Abstract) 5

M.M. ABD-EL AAL
Physics Department, Faculty of Women, Ain Shams University
Cairo, Egypt

The temperature dependence of the magnetization of the quenched and
slowly cooled samples of Fe7S8 and (Fe1_xMx)7Se8 samples with M=Co and Ni
and x = 0.02,0.05 and 0.08 were given. All the thermomagnetic curves obtained
belong to the Weiss ferrimagnetic type. For some samples discontinuities
indicating a magnetic transformation to antiferromagnetic order were obtained.
The values of the magnetic moment Fo Mg were given. The reciprocal
susceptibility-temperature dependence in the paramagnetic range were studied
and the asymptotic Curie points were given. The values of the effective
magnetic moment /Aeff and the number of unpaired electrons n were calculated.
The thermal variation of the electrical conductivity of the host material

Fe7Se8 in the paramagnetic region was studied.

* X
The full text of the paper will appear in a subsequent issue of
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MAGNETIC PROPERTIES AND SPONTANEOUS DISTORTION IN PHASE LAVES INTERMETALLIC
COMPOUNDS

M.M.ABD-EL AALl s A.S. ILYSHIN2 y V.I.CHECHERNI KOV2 and A,V. PEICHENIKOV2

lAin Shams University, Faculty of Women

Cairo, Egypt
2Moscow University, Faculty of Physics
Moscow, USSR

The magnetization of several polycrystalline compounds in the Tb,__Ho Cb2
series have been measured using magnetic fields up to 18 kOe. Linear variations of t;l_hex &
magnetic moments at 4.2 K and the Curie temperatures T  with x were found. X-ray diffracti-
on analysis for the samples were carried out between 15 and 300 K. The cubic lattices of

all the studied compounds distorted into rhombohedral lattices temperatures below Tc' The
distortion parameter - temperature dependence were given. The spin orientation diag¥am of
the system was determined.

Introduction

The compounds RBZ' where R is a rare earth element and B is a transition metal have
received a considerable attention recently [1,2] . These compounds are particularly interes-
ting from the point of view of magnetism, while all possess the same Mg Cu2 cubic Laves pha-
se, they exhibit a wide variety of magnetic behaviour: In RFe2 the magnitude of the magne-
tic moment of the Fe atoms is slightly influenced by the different rare earths[3].

In the RNi2 the magnetic properties depend exclusively on the different rare earths [4]
In R002 the different rare earths can have a very pronounced influence on the magnetic be-
haviour of cobalt. In the case of the heavy rare earth—002 comounds, the rare earth moments
align antiparallel to the cobalt moment [1,5] .

Experimental

The compounds ']bl_x Hox 002 with x=0; 0.2; 0.4; 0.6; 0.8 and 1.0 were prevared by arc
melting in an argon atmosphere. The samples were annealed in evacuated quartz capsules at
900°C for 200 h. ‘

The lattice parameter was measured between 15 K and 300 K. The magnetic measurements
were performed by means of a vibrating sample magnetometer in fields up to 16 kOe and
between 4.2 K and 300 K. Ni was used for calibration of magnetization.o. The saturation
magnetization moments were obtained by extrapolating the o - -}l-!- curves to infinite field.
The Curie temperatures were calculated from oz-vs temperature plots.

Results and discussion

The X-ray diffraction pattern at room temperature can be completely indexed by the
cubic C15 structure for all the prepared samples. The lattice parameters of 'Ibco2 and Ho002
agree with the reported values [6,7]. With increasing x in the Tb. Ho Co, system, the

1= 2
lattice parameter linearly decreased from 0,7203 nm for 'I'bOo2 to 0,7164 nm for HoOoz.

The temperature dependences of the unit cell volume V are shown in Fig.l, For ']1!:0:)2
an anomalous increase in V was found from 239 K to 148 K indicating a second order transiti-
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on from cubic Fd3m phase to a rhombohedral R3m phase at 239 K. The cubic cell is distorted

by elongation along the direction of the easy magnetization [lll] axis which becomes the
rhombohedral three-fold axis. The distortion is measured by the shift in the angle e=90c-oLR.

'I't[% thermal variation of g is shown in Fig.2. These results are in good agreement with[7]and
5 Increasing x up to 0.4 no fundamental changes occurred. In samples with x = 0.2 and 04
the phase transition occurrmedat 220 and 150 K.

The phase transition for x=0.6 occumedat 142 K. But from 44 to 32 K, the character of
the distortion could not be identified. Below 32 K, the ’I‘bo. 4H°0 6C°2 comound attained a
monoclinic /rhombic/ phase with a parameter of distortion € = _c_;__. Thus, on decreasing the
temperature below 44 K the easy axis of magnetization changes continuously from the [111]
to the [110] direction.

The compound Tbo.z“"o.a‘bz is abic until 98 K. From 98 to 44 K it has an intermediate
phase. From 44 K to 15 K the compound attains the distorted monoclinic phase, /[Fig.l and 3/.

The HoCo, from 300 K to 79 K is cubic /C-15/. From 79 K to 14 K it is tetragonal with
g = 0.998 where the easy axis of magnetization is [100] . The easy axis of magnetization is
parallel to the {llo}axis. HoCo, has the smallest lattice parameter in the 'Ibl_xI*!oxOo2
system and the smallest absolute distorticn parameter but the largest change in the sponta-
neous distortion. This large change in the spontaneous distortion as well as the high magne-
tic anisotropy may be attributed to the crystal field effects [f].

It is possible to determine the spin orientation diagram of the ’l‘bl_XHoxOo2 system
/Fig.3 /. Four zones can be identified with different stable phases.

The obtained spin orientation diagram is similar to that reported by[9—121

In order to follow the spin orientations which take place in the studied compounds,
the magnetization temperature dependences were studied from 15 K to Tc /Fig.4 /. Tc were
obtained by plotting 02 versus T for several field strengths. The values of Tc with H 1kOe
were the same as obtained by extrapolating to H = O. The variation of Tc with composition
shown in Fig.5 agrees well with that obtained from X-ray results. The relatively low ’I‘c—s
of the '1‘):’1_}{}10}(co2 system in comparison with that of the RFe, compounds could be understood
by the single ion model. In the RFe, compounds the Fe-Fe exchange interaction is the domi-
nant one,in R002 compounds the R-Co interactions are dominant yielding much lower Curie
temperatures and affecting only marginally the magnetic anisotropy characteristics.

In ,Fig.4 , nonmonotonical changes in the magnetizations were obtained for x=0;0.2;0.4
The anomaly for H0002 takes place at about 14 K analogous to the temperature of the spin
orientation /Fig.l and 3/. The anomaly for x=0.8 and x=0.6 takes place at T=20 and at 35 K.
We can conclude that with increasing the Ho concentration the anisotropy energy decreases
and the reorientation of the easy axis of magnetization occurs at lower temperature.

From the magnetisation - field strength dependences/at 4.2 K and up to 18 kOe/ the
saturation magnetic moments were calculated. From the results obtained for the total mag-
netic moment of 'Ib('Jo2 and HoCo2 and assuming a magnetic moment of cobalt IuB and ooposite
in direction to the rare earth ion moment, the rare earth moments are nearly equal to the
corresponding values of the moments of the free ions, Similar results were obtained by[13]
and [14] . The calculated magnetic moments of the ternary compounds increased linearly by
increasing the Ho concentration. The experimental values of the magnetic noments for the
pseudobinary compounds (uccnp) show a good agreement with the values obtained by the addi-
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tivity of the magnetic moments of the two binary compounds:
Heomp = 17 Mmoo, * X Mioco,

According to the results, Co gives a constant magnetic contribution for the compounds
of the 'Ibl_x Ho Co2 system. The Co moment ( Iu.B) suggests an electronic configuration of 3d
and zero charge on the Co atom, in agreement with [5] concept for the heavy rare earth-Co
compounds, with antiparallel coupling between the spins of the rare earth and Co atoms.

9
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Fig. 3. Phase diagram of the intermetallic compounds
Tb- _xHo Co-

1 X 2
Fig. 4. Magnetization - temperature curves Fig.5. 1. The Curie Tempera-
for Tbl_xHoxCo2. ture (Tc)K.
1 - ThCo2 2 - X =10.2 3 -X =10.4 2. The total magnetic moment
4 - x =0.6 5 -x=0.8 6 - HoCo2 at 4-2 K ~comp5 (UB>
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LOW TEMPERATURE MAGNETIZATION OF Sml_xEere2 COMPOUNDS

M.M.ABD-EL AAL 1, V.I. CHECHERNIKOVZ"L.I. KAZAKOVA2 and A.V. CHEREMUSHKINA2
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The magnetization of ten compounds in the Sm, _Er Fe, series has been
measured from 4.2K to Curie temperatures in magne%ié ffelés up to 110 kOe. At
the composition x=0.2 the minimum value of the saturation magnetic moment at
4.2 and 77 K is obtained. In the small erbium concentration region a decrease
of the magnetic moment of the compounds in comparison with SmFe., is found.
This may be related to the increase of the magnetic moment of samarium which
is caused by the changes of the energy of anisotropy, the crystalline and
exchange field in the compounds. The results are interpreted using the sing-
le-ion model and also in the sight of Néel’s theory of ferrimagnetism,

Introduction

In the present work the magnetic properties of the pseudobinary system
Sml_xEere2 have been investigated. The intermetallic compounds SmFe, and
ErFe2 exhibit interesting magnetic characteristics. They possess high Curie
temperatures, huge magnitudes of anisotropy energy and negative magnetostric-
tion [1] . ErFe2 is ferrimagnetic with high magnetic moment of the rare
earth sublattice at low temperatures., In contrast to ErFez, the magnetic
structure of SmFe2 had not been established yet because the Sm3+ion magnetic
moment is very small and the excited states 6H and

GH
6 3+ 9/2 T2
H5/2 state of Sm ion. The admixture of these excited states leads to the

are close to the ground

sign change of conduction electron polarisation relative to the iron magne-
tic moment causing ferrimagnetic coupling in the SmFe, compound [2,3] . For
this reason it is interesting to investigate the effect of samarium replace-

ment by erbium on the magnetic properties of Sm xEere2 compounds.

1-

Experimental results
s 2 compound with x=0, 0,02, 0,03, 0,04, 0.05,
0.10, 0.20, 0.4, 0.6, 1.0 have been prepared by arc melting stoichiometric

The specimens of Sm Eere
amounts of the constituents in a purified argon atmosphere. The purity of
the starting materials was 99.99% for the rare earth and 99.98% for iron. The
samples were annealed in high vacuum at 600°C for 70-120 h and then homoge-
nized in evacuated ampules for 10 days. X-ray, microstructural and spectral
analysis revealed that all the specimens are single phase having MgCu2 cubic
structure. The magnetization measurements were recorded as a function of the
applied field in "Solenoid" apparatus [4] , at 4,2 and 77K in magnetic fi-
elds up to 110 kOe. The magnetization measurements were also carried out
from 4.2.K to the Curie temperatures in magnetic fields up to 10 kOe.
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Magnetization-magnetic field (o - H) curves for all the compositions
of the compound Sml_xEere2 at 4.2 and 77 K are shown in Fig.l. The saturati-
on magnetic moments Ms calculated from Og which were obtained by extrapolat-
ing the magnetizations to infinite field (% - o) are drawn in Fig.2. It is
seen from this Figure that on replacing samarium by erbium in a small con-
centration the magnetic moment Ms noticeably decreases to a minimum value for
compound with x = 0.2. This can be explained by the fact that in the binary
compound SmFe2 the main contribution to the magnetization of the compound is
given by the iron atoms and the samarium and iron magnetic moments are coup-
led antiparallel. Thus with increasing the erbium concentration in the
Sml—x
magnetic moment of the compound. For the compound with x = 0.2 a compensati-

ErXFe2 the rare earth magnetic moment increases decreasing the total

on of the magnetic moments by the rare earth sublattice takes place, By fur-
ther increasing the erbium concentration the main contribution to the magne-

tization is given by the rare earth atoms leading to an increase of the total
magnetic moment Ms/Fig.Zl.

If we assume that in SmFe2 compound the iron electrons configuration
remains the same as in other rare earth - Fe2 compounds with iron magnetic
moment 1.5 - 2uB [1] it is possible to apply Néel’s theory of ferrimagnetism,
The total saturation magnetic moment of the RFe2 compound is given by

M= ZMFe 3 MR‘ 1/

The samarium magnetic moment in the compounds Sm, _ Er Fe, at 4.2 K can be
calculated according to the relation

M= ZMFe - (nMSm i mMEr), 12/

where MFe’ MSm and MEr are the magnetic moments of iron, samarium and erbium,
n and m are the molar concentration of samarium and erbium. The calculated
values of MSm are given in Fig.2. It is seen from this Figure that increasing
the erbium concentration x up to 0.04 the samarium magnetic moment increases
up to a value comparable to that of the free ion moment for samarium,

The increase of Sm magnetic moments with increasing the erbium content
in the small erbium concentration range may be caused by changing the crystal
and the exchange field effects and also due to the changes of Sm3+ ion ani-
sotropy energy.

As a confirmation of the previous assumption the temperature devenden-
ce of the magnetization of the given compounds in 8 kOe applied magnetic fi-
eld has been studied /Fig.3/.

It is clear from this Figure that there are nonmonotonical changes in
the total magnetization in the low temperature range 140 - 240 K in SmFez.
It is recorded that a spin reorientation of the direction of the easy axis
of magnetization in the 140 - 240 K temperature range[S]takes place. The
easy axis of magnetization of SmFe, rotates from the direction[Oll]to[llﬂ

with temperature increasing. We can attribute the occurrence of different di-
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2

rection of magnetization to single ion crystal field anisotropy at the Sm
site[G].

Investigating the pseudobinary compounds Sml_xErXFe2 in the region of
small erbium concentration till x = 0.04 it is found that the nonmonotonical
changes in magnetization temperature curves shift to a lower temperature
region in comparison with the SmFe2 compound., For the compounds with
x = 0.05 - 0.20 the nonmonotonically changing regions are noted at higher
temperatures. Analogous to the binary compound SmFe2 we can propose that
these regions of the nonmonotonity in the magnetization of pseudobinary
compounds are characteristic of the phenomena of the reorientation of the
easy axis of magnetization /the direction for which the free energy
|F = -KBTLnZ/reaches its loweést value/ . Thus, with increasing the erbium
concentration to 0.04 the anisotropy energy /at low temperatures/ decreases.

Analysing the region of the spin reorientation as a function of compo-
sition and temperature in the sight of the single ion theory we can consider

that the anisotropy energy K of the SmFe, compound at 4.2 K is nearly 106Jh£

2
In summary, in the §m1_xEere, compounds the noticeable decrease of

the magnetic moment in the small concentration €rbium region may be att-

ributed to the increase of the samarium magnetic moment which approaches
the magnetic moment of the free samarium ion Sm3+ and which is directed
oppositely to the iron moment. This may be related to the decrease of the
compound anisotropy energy and also to the changing of the crystal and

exchange field effects.
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The electrical resistivity temperature dependences of bulk and thin film
samples of dysprosium, samarium and thulium have been investigated in the
temperature interval from 4.2 K to 300 K in the thickness range from 25 nm
to 350 nm. A decrease of the Néel temperatures with decreasing film thick-
ness has been observed for Dy and Sm thin films. The observed anomalies in
resistivity vs. temperature dependences of Tm thin films have been caused
by magnetic as well as by structural transitions due to the presence of
hydrogen.

Introduction

The behaviour of rare earth transport properties is dominated by contri-
butions which have their origin in the various spin configurations of ferro-
and antiferromagnetic states, that occur mainly at low temperatures.

The transport properties of rare earth metal thin films, mainly the
electrical resistivity size effect at room temperature, have created consi-
derable interest[l] . Only few papers have been devoted to the low tempera-
ture study of RE thin films.

The aim of this paper is to study the influence of thickness on magne-
tic phase transitions in thin films of dysprosium and samarium.

Experimental procedure

Thin Dy and Sm films were prepared by evaporation in the vacuum 10_4 Pa
onto pre cleaned glass substrates. A conventional four probe d.c. arran-
gement was used to measure the temperature dependences of electrical resis-
tivity in the temperature range from 4,2 K to 300 K, The temperature of thin
films was measured using calibrated Ge and Pt thermometers with an accuracy
+ 0.1 K. The crystal structure of films was determined using X-ray diffrac-
tion techniques.

Our attention has been concentrated to the two RE metals- Dy and Sm,
the magentic structures of that represent their wealth in RE metal group[z].

Acta Physica Hungarica 62, 1987
Akadémiai Kiad6, Budapest



78 J. DUDAS et al

Results and discussion

Prior to the thin film study we have measured resistance /R/ vs. tempe-
rature /T/ dependence of Dy and Sm bulk samples, that have been used as refe-
rence samples.

We have observed two anomalies on R vs. T curve of 99.98 % pure Dy with
residual resistance ratio /RRR/=52. Using the method described in [3]we obta-
ined dR/dT vs.T dependence, the local extremes of that yielded Néel temmera-
ture TN = 180.5 K and Curie temperature Tc = 92 K.

Thin Dy films were prepared from this bulk in a thickness range from
26 nm to 350 nm. Their resistance was measured from 4,2 K to 300 K. TN valu-
es, obtained by the above method, are illustrated in Fig,l, We can see in
this figure that TN value of all Dy films is lower than that of bulk and
decreases with decreasing film thickness. RRR value of Dy films, illustrated
also in Fig.l., decreases with decreassing film thickness.,

X-ray analysis has shown h.c.p. phase of Dy and a small amount of dysprosi-
um dihydride.

The R vs. T curve of 99,9 % pure Sm with RRR = 12 exhibited two anoma-
lies in the temperature range from 4.2 K to 300 K, Using the method mention-
ed we obtained phase transition temperatures T: = 106.8 K and T; & 134K,
that correspond to the magnetic moment arrangement of ions in hexagonal res-
pectively cubic sites.

Thin Sm films were prepared from this bulk in the thickness range from
37 nm to 115 nm. Both anomalies are clearly seen on their R vs.T curves,
Values of Tg, T;, and RRR are illustrated in Fig,2. and are lower than that
of bulk sample and decrease with decreasing film thickness,

We assume, that the observed Tst. d dependence of Dy and Sm films is
caused by one of the following reasons or by their combination:

1/ the decrease of TN value is caused by the increasing relative contamination
with decreasing film thickness,

2/ the decrease of T value is causedby increasing internal stresses and

3/ the TN

The RRR vs. d dependence suggests the mechanism 1/ to be prevailing.

N
decrease as predicted by theories,
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Fig. 1. TiVS. thickness and RRR vs.d dependences of Dy thin films

Fig. 2. vs.d, vs.d and RRR vs.d dependences of Sm thin Tfilms
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RESIDUAL RESISTIVITY INVESTIGATIONS ON HIGH PURITY GALLIUM

D.NOVAK, S.MESZAROS, K.VAD

Institute of Nuclear Research of the Hungarian Academy of Sciences

4001 Debrecen, Hungary

Different factors have been studied that influence the residual resis-
tivity analysis of gallium. A proper method to separate the impurity contri-
bution from the measured resistivityv has been established and the suitable
experimental apparatuses and procedures have been developed. The empirical
correlation between the impurity contribution of resistivity and the integ-
ral impurity concentration of gallium metal has been studied on the basis of
data obtained from measurements on a large number of gallium samples of vari-
ous purity grades.

Introduction

Investigation of low temperature resistivity of metals is a useful tool
to study conduction electron scattering processes. On the other hand, the
residual resistivity is widely used for practical purposes to characterize
the impurity content /or purity grade/ of high purity metals.

The work reported here is of practical nature. For this purpose instead
of resistivity the residual resistivity ratio is used to characterize the
samples:

R® = R(TYR(295 K),

where R(T) and R(295 K)are the measured resistances at "low” and "room" tem-
peratures respectively. Methods have been elaborated to measure R® for gal-
lium samples. In order to set proper experimental conditions and find empiri-
cal correlation between R® and chemical purity a systematic study has been
performed on different factors that influence the residual resistivity analy
sis of gallium. Investigations have been performed on gallium materials of
different origin though most of the samples has been provided by Hungalu
Company, Budapest.

Experimental method

According to Matthiessen’s rule the resistivity comes from several ad-
ditive contributions. The same is valid for R™:
x =

R = R

X = x
oh + Rd + RS LR /1/

45

where:

- R® is the experimentally measured value of the
resistivity ratio;
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- Rxh comes from scattering of electrons on phonons
A R
s i

3 are contributions from electron scattering

on lattice defects, on the surface of the
specimen and on inpurity atoms, respectively.
In finding correlation between impurity content and residual resisti-
vity ratio the elimination of the first three terms in /1/ is necessary, R:
is not expected to be a single-valued function of the integral impurity
concentration because different impurity elements have different scattering
cross sections. Instead of it a wider correlation band can be determined
experimentally as an empirical relation to be used for the estimation of the
purity grade in practical measurements.
To eliminate R;h the measurements of R™ have to be performed as a func-
tion of temperature. The R extrapolated to T=0 K is free from contribution
of R® . However for practical purposes R™ data measured at T=4.2 K can be

ph
accepted. [Fig. 1 and 2 /. To get rid of R: one has to use defect free

annealed single crystals as specimens. In cgse of gallium the use of single
crystals with definite orientation is preferable because of its resistivity
anisotropy, though R® is not too sensitive to the orientation[l]. Eliminati-
on of R: can be performed by extrapolating to infinite specimen size which
needs the measurement of the size dependence of R* [1].

Our measurements have been carried out on cylindrical Ga specimens in a
diameter range of 0.6 to 6.3 mm. The single crystal samples have been grown
in teflon moulds or polyethylene tubes by seeding, The crystallographic ori-
entation of each specimen has been determined from the room temperature
resistivity.

For resistance measurements four-contact d.c. method has been used in
two arrangements. One is a conventional system with a commercial nanovolt-
meter, the other one uses a SQUID picovoltmeter with a sensitivity of
10'13\1&].Measuring currents of 0.5-2,5 A were used for the conventional
arrangement and O - 100 mA for the picovoltmeter with current reversal in
both cases.

Results

Our aim was to find an empirical correlation between RT and integral
impurity concentration C = ; Ci’ where the Ci 3 are the concentrations of
different impurity elements: From the R® values measured at finite size and
temperature the contributions of R;h & R: have been subtracted /here we
assumed that R; is negligible due to the proper sample preparation and
handling/. The integral impurity concentrations have been determined by
optical spectroscopy and/or mass spectrometry, C is taken as the sum of the
concentrations of the detectable impurities. The obtained correlation diag-
rams /Fig.3. and 4 / show that on the basis of residual resistivity ratio
measurements [3] the integral impurity concentrations in gallium can be

estimated with an uncertainty of an order of magnitude.
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Fig. 3. Correlation diagram for Ga samples of various
purity grades. R™ data obtained from ¢ 2 mm specimens[3]

Fig. 4. Correlat;on diagram for Ga samples of various
purity grades. R™ gata obtained from ¢ 6 mm specimens{3]
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STUDY OF NON-ISOTHERMAL PHASE TRANSFORMATION IN ASZSe -As,Te, GLASSES

33

M.B. EL-DEN', M.K.EL MOUSLY"
1Physics Department, Faculty of Science, Ain Shams University
Cairo, Egypt

2Int:ternational Centre for Theoretical Physics

Trieste, Italy

The kinetic parameters for the crystallization processes of the system AsSe, . _ 'I\e v
with O=x<1.15 have been determined based upon the analysis of DIA plots, The coBo¥it¥onal
dependence of the crystallization activation energy, E ot/ shows a minimum at equal ratio
of selenium and tellurium, E = 15 kJ/mole for Asggg 75‘1\90 75+ The value of Ecryst is
dependent on the ratio of seT&Ehm or tellurium. ° '

Introduction
The last few years have shown a strong theoretical [1,2] and experimental [3] interest in
the application of non-isothermal analysis techniques to the study of the phase transforma-
tions because of their several advantages. In the present paper the kinetics of the crystal-
lization processes in the system AsZSe3-Asz’1\e3 have been investigated.

Experimental technique
Seven compositions of the system AsSel_s_x'I‘eX with O=x=1.15 have been prepared in
evacuated quartz ampoules at 95 °C for 4-8h.The ampoules were shaken several times to ensure
conplete homogenization. The molten materials were quenched in air. The amorphous structure
of the samples and the macroscopic homogeneity was checked [4—8] .
DTA curves were carried out using Shimazo DT-30 system [4]

Results and discussion

The DTA curves carried out at a constant heating rate ® = 5 deg/min. Fig.l shows three
DTA curves. These plots are characterized by the glass transition temperature (Tq) ) crys-—
tallization temperature (TC) and melting temperature (Tm) v

Table I sumarizes the observed transition temperatures. The endothermic glass transi-
tion temperature Tg decreases upon introducing Te to the Aszse3.

After passing Tg the thermograms show one or two exothermic peaks. The beginning of this
exothermic peak-has been considered as the temperature characterizing the starting of the
crystallization process.

Kinetics of the crystallization process of the examined compositions has been investi-
gated using a single-scan technique through an improved DTA model [5] . An estimation of the
complex activation enerqgy of crystallization E

can be made by using Piloyan’s method

cryst
[9]and [10] . This leads to the following two equations [5] :
57 Zane) - ot
gla)=tn[-2n(1l-a)] = n lnl 3 ;rys 'J - Cgs # (1)
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. b
enfgla)] = 2n ———;aﬂL” ‘%%%_ (2)

/n
Ké Ec st ] ¥ &
The transfomed fraction a at any time t /or temperature T/ was calculated by Borchard's
equation [8]

alt) = a(t) /A, (3)

where A is the peak area and alt) the area under the peak up to the time t /or the tempera-
ture T/.

Fig.2 illustrates the relations between g(a) vs. 1/T. This relation yields a linear
relationship for both of the crystallization peaks., For the two compositions AsSe1.35'I\eo- 15
and AsSeo_ 35'151. 15 the relationship takes on two different slomes. The compositional depen-
dence of Ecryst for the first peak shows a minimum of 15 kJ/mole for X=0,75, It reaches
25 kJ/mole for x=0.15 and 37,6 kJ/mole for x=1,15. The high value of Ecryst /44,7 kJ/mole/

for the second peak for x=0,15 might be due to some heterogeneous distribution with
113‘5281533-As2’1\93 matrix. This introduced barrier or boundaries act to retard the devitrificatim
‘process in the material.

Comparing the experimental data with different kinetic equations []l] showed that the
function A, (@) where -In(i-a) 1/3=Kt is closely linearover the entire range of a [O<a< 1]

with respect to the first and second peaks of the crystallization, (Fig.4). Accordingly, by
using Bg.(2), the value of the order of crystal growth "n" which depends on the details of
the nucleation and growth mechanism has been calculated /Table II/. "n" lies in the range
2.5-3.6 for all stages of crystallization of AsSel- s_x'IEX glasses,

The glasses of the system As2 /SeTe/ 3 have a character of solid solution in the amorphais
state [12] , with heat treatment the crystallization processes may take place together
with phase separation. There are two TgiAsSe'I\eo.sl, two TC /AsSel.35'IVe 0'15/ and two
'];n /11\sSeo..75.)'I'eO.75 ,AsSeO‘S'IVe and AsSeO. 35'191.15/, indicating two different processes. For
the other compositions only one peak appears for the characteristics Tg, Tc and Tm indicating
that the possibility of overlapping of the crystallization of the two phases or the crystal-
lization of one phase is predominant.

X-ray measurements [13] have indicated a phase separation for system ASZSe3—A52'I\e3
at about 10 $ Te content /AsSel.zs'IeO‘zsl. The phase separation is the result of a homogene-
ous melt being quenched through a region of subliquids liquid immiscibility [14] . The sub-
liquids phase separation process often serves as processor reaction for the ultimate crys-
tallization of the amorphous phase [15].

There is an eutectic point at 28,6 % Te content. For samples rich in Se, i.e. before
the eutectic composition [12] , it is difficult for the crystallization process to take plac,
This is clear from Table I for Aszse3 where there is no crystallization temperature Tc'
Increasing the Te content, the crystallization process becomes more pronounced which may
appear in one or two steps.

Acknowledgements
One of the authors /M.K.E1-M./ would like to thank Professor Abdus Salam, the Internati-

Acta Physica Hungarica 62, 1987



NON-ISOTHERMAL PHASE TRANSFORMATION IN AeaseB-AszTOB GLASSES

87

onal Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theo-

retical Physics, Trieste.

References

1. D.W.Henderson, J. Non.Cryst. Solids, 30, 301, 1979.
2. L.Hodany, Central Research Institute for Physics, Budapest,

KFKI preprint 24, 1981,

- W
.

o« MBS
1983,
5. M,F.
6. MiF.
1983,
7. M.K.
8. M.F.
9. F.O.
H.J.
J.H.
2,
13.
47, 73, 1976, 42, 83, 1976.

14.

15. J.W. Cohn, J. Am. Ceram. Soc.,52, 118, 1969,

Table I

H.E.Kissinger, J. Analytical Chem., 29, No.ll, 1957,
Kotkata, M.H. El-Fouly, A.Z. El-Behay and L.A. Wahab, Mat. Sci. Eng., 60, 163,

Kotkata and E.A. Mahmoud, Mat. Sci. Eng., 54, 163, 1982,
Kotkata, A.M. Shamah, M.B. El-Den and M.K. El-Mously, Acta Phys. Hung., 54,

47,

El-Mously, M.F. Kotkata and M.B. El-Den, Egypt. J. Solids,l, 166, 1980,
Kotkata and M.B. El-Den, ICTP, Trieste, Internal Report IC/83/99.

Piloyan, I.O. Ryabchikov and O.S. Novikova, Nature,212, 1229, 1966.

Borchard, J. Inorg. Nucl. Chem.,12, 252, 1960,

Sharp, G.V. Brindly and B.N. Achar, J. Am. Ceram. Soc.,49, 379, 1966.

Obrazov et al. Bull. Acad. Sciences, USSR, Ing. Material,7, 2166, 1971,

S.A. Saleh, M.F. Kotkata and M.K. El-Mously, Proc. Math, and Physical Soc. of Egyot,

M.B. Myers and J. Berkes, J. Non-Cryst. Solids,8-10, 804,1972.

Characteristic temperatures of AsSe1 5_xSex glasses. The

i S
temperatures are given in “C

Crystallization exotherm
<

Composition TqOC < & Tm °¢c
First peak Second peak

AsSe, ¢ 189 - - 387
Assel.}STeO.IS 131 170 272 324
AsSeTe o 150 240 - 290
196 314

AsSe  ,5Te, 5o 136 194 = 288
309

AsSe, ¢sTe, g5 134 193 297
AsSe, gTe 131 187 = 310
320

AsSe, 35Te; ;g 129 160 = 323
340

Table II

Crystallization kinetic parameters of AsSe

1.5-xTex glasses

First peak

Second peak

Composition Y E-kdJ /mol = E kJ/mol
Asse1.35Te0.15 3.6 251 345 448
AsSeTeo's 2.6 230 = "
Asse1'751e0.75 2.8 151 o -
AsseO.GSTeO.BS 22 184 - -
Asse ) T 2.9 209 »* -
AsSeo'35Tel.15 3.2 377 2,5 109
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ELECTRON MOBILITY IN HIGH DENSITY NEON GAS

A.F.BORGHESANI, L.BRUSCHI, M.SANTINI and G,TORZO
Dipartimento di Fisica "G.Galilei", Université di Padova
35131 Padova, Italy, and
Gruppo Nazionale Struttura della Materia
Padova, Italy

The electron - atom scattering cross section in Ne is much smaller than that of other
simple gases. Therefore the electron mobility is field-dependent even for very low fields.
The zero-field electron mobility can be determined by extrapolation from w(E) curves only.

Introduction

The density and temperature dependence of the electron drift mobility
in high density Ne gas has been recently measured,P42]using a "square wave"
-technique /SWT/.(Fig.l). This technique has been extensively described
elsewhere [3}

For the current of the sample cell we get i=0 for f=>fe and
1=(1,/2) Q-£f/f,) for f=f_. f, and f are the constant and the variable square
wave frequencies between Gl1-G and G2-C. Io is the current measured at zero
frequency. The electron time of flight between.G2 and C, Te=(2fe)-l, is gi-
ven by linear extrapolation to i=0. The mobility is then obtained as
= d/(reE) /E is the electric field/.

When electron attachment to molecular impurities /usually oxygen/ is
present, the same relation i(f) holds, but I, is now replaced by Ioexp(ﬂﬂfe),

mhere ® is the attachment frequency. An impurity concentration of 0.0l ppm
can be detected with this method.

Measuring of the electron mobility

The SWT technique has been used to measure the electron mobility at ve-
ry low values of the reduced field E/N, where N is the gas number density
/typical values are E/N=510-25m2V-/At such low E/N values the electrons are
thermalized in the He, H2, Ar,Nz,Kr,Xe, but not in Ne , where the electron-
-atom scattering cross section is very small.

In Ne, therefore, the electron mobility is field-dependent and the "ze-
ro-field" mobility U, can only be extrapolated from the u(E)curves [Fig.2/.

In low density gases the classical theory gives a formula for K, as a
function of temperature T, density N, and the thermal scattering cross sec-

tion-cTH
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Ko = 2 1/2° (1)
3NoTu (2mkaT)
¥y ¢/kpT
wn‘=&ﬂy4/ JE%J%LJ, )

(o]

where =2 is the energy-dependent momentum transfer cross section.

In the low density limit Ho N should be density-independent lim (u N)=
-(uoN)o= A(T) . The function A(T), calculated from /1/ and /2/ fgr Ng is plot-
ted in Fig.3. The agreement with the extrapolated (uoN)o data /closed circ-

les/ is substantially good.

Multiple scattering effects

The classical theory, however, fails at finite‘density and several the-
ories have been proposed [4,5,6] to explain the experimental data, which ac-
count for multiple scattering effects. All these theories [MST/ suggest, at
moderate densities, a linear decrease of (uQN) with N for gases with a posi-

tive scattering length,a, like He,H2 and Ne:

4N = (4oN)o (1 — 7N) = A(T) — &N, (3)

where vy = h . on./ 2(2mk;D)'/? |, and a = eh/ (3mmk ).

The mobility behaviour predicted by /3/ is qualitatively /and for He and
Hy also quantitatively/ in agreement with the experimental results. For Ne a
density dependence of uON much stronger than the expected one has been mea-
sured.

The a . T vs. T functions for different gases are shown in Fig.4. The
constant theoretical value a= eh/13nkaT) ;s drawn by dashed line, a is deri-

ved from the experimental slope of uON vs. N.

Thomson discharge method

In order to check the strange results for Ne we repeated our measure-
ments with the "Thomson discharge method"[B]. The TDM has been adapted to
our low temperature and high pressure drift cell.

A pulsed photocathode has been used as electron source, and the electron
time of flight has been measured by means of fast electronics and a transient
recorder.

Special care has been also devoted to avoid systematic errors due to
the finite electrodes geometry and to the electron attachment.

The "zero density" values (u.oN)o obtained with TDM /open circles in
Fig.3./ are now in perfect agreement with MST.

At high density,the density dependence of uoN is still much stronger
than predicted by MST /Fig.4, open circles/, leading us to the conclusion
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that the multiple scattering theories by alone are inadequate to explain the
electron mobility behavior in high density Ne.

An important peculiarity of Ne, with respect to other gases with a=0,
is that omt(o) is much smaller, and moreover omt(e) is strongly dependent on

the electron energy e/a comparison with He and H, is shown in Fig.5/.

Conclusions

Starting from this consideration we suggest a rough model to fit the
experimental results. Essentially we assume that the effective cross section
is affected by density through the Fermi shift [10] of the electron ground
state energy €.

Such an effect, in fact, becomes important in Ne owing to the steepness
of the cmt(e) curve at low energy /it is negligible in He and in HZ where
o} t(e) ig flattex].

In Fig.6 the data obtained at three different temperatures are plotted
as uoN versus N. The full line is calculated following MST and the dashed
line is calculated following our model without any adjustable parameters.
Inspite of the crudeness of our approach the agreement is good, suaggesting

that more theoretical effort in this direction could offer a correct inter-
pretation of the electron mobility in dense gases.
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ARE THE STABILITY AND THE SUPERCONDUCTIVITY OF ALLOYS CONNECTED?
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1088 Budapest, Hungary
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The electronic structure has a local stabilizing effect in metastable
and amorphous phases. A model is given to explain the lower total energy in
these cases. The DOS measurements confirm the role of the electronic structure
in the stability. There is an explanation for the behaviour of the super-—
conducting transition temperature Tc under the pressure and at heat treatment.

Introduction

The local stability of different alloys and their metastable phases have
been continuously investigated from the beginning of solid state physics as
an independent discipline. From thé first moment it was clear that the
electronic structure is one of the basic factors of this branch of problems.
One of the largest results in the early period of these investigations were
the Hume-Rothery-rules for metals [1] . Based on the Hume—Rothery's investiga-
tions many extended new results were reached [2,3,4] . The related problems
have been raised again more widely and deeply in the last decade in connection
with the amorphous materials (first of all the metallic glasses) and with the
different problems of the surface and interface phenomena.

The role of the electronic structure in the formation of binary Ni-P
metallic glasses has some interesting specialities, which is in a good agree-
ment with the investigations of metastable phases of the aluminiumbased
alloys [4].

On the basis of our soft X-ray emission investigations we have a
conclusion that the electronic structure in the metastable state is definitely
more stable than in the "equilibrium" structure. So the local minimum of the
energy of the electronic structure is a stabilizing factor; the metastable
8trueture is stabilized by the electronic structure. It is clear from the
local investigations too that the changes in the chemical bond are responsible

for the short-range order.
The model

The basic problem of all electronic structure investigations is the
geometrical discrepancy of the Brillouin-zone BZ and Fermi-sphere FS. The
Brillouin-zone reflects the geometry of crystal lattice and the Fermi-sphere
has spherical type geometry, which is the smallest volume for the non-excited
states. In such a simple case, when the Fermi-radius is smaller than the
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smallest distance between the BZ centre and the boundary, we have no difficul-
ties; the dispersion relation is parabolic, the density of electronic states
DOS changes as the square root of electronic energy. Problems arise when the
Fermi-sphere touches the boundary of Brillouin zone. This situation is given
in the simple case of FCC lattice on the Fig. 1. After the first crossing of
the BZ boundary the electrons need a gap energy to fill the second BZ. In the
other region of the FS we have a continuous filling of the first BZ without
gap energy. It means energetically that the minimum energy will be in the
case of the full-filling of the first BZ, and the filling of the empty second
BZ begins after this with defined energy gap. The more spherical BZ can
secure much more electronic states in the first BZ, so the total energy can
be much less than in a real, polyhedral BZ case. The deformation of the real
lattices deforms the BZ too. The deformed BZ can form a more spherical shape,
which holds more electronic states in the first BZ. In the case of random
deformations the BZ will be a smeared sphere. It produces an elongated
parabolic dispersion relation with a smaller gap, and a smoothed DOS. This
effect can be seen in the DOS measurements of different metastable and
amorphous alloys too [4,5] . In many cases of metastable phases the stabilizing
factor is the electronic structure [4] and it can stabilize the amorphous
structures. This is very similar to the Nagel-Tauc's assumption for the
amorphous stability [6] , where the DOS at the EF has the local minimum
(WELE . 2400

The microscopic stress—strain investigations of amorphous materials
show a linear dependence, so the larger stress gives smaller real lattice
parameters, consequently a larger BZ, which helps in the electronic stability
too. This could be the reason of the pressure sensitivity of superconductivity
[7], when the superconducting critical temperature Tc increases with the
pressure. The more amorphous state ("smeared spherical" BZ, the higher
internal stress) has a larger Tc in many cases [8] (Fig.3 ). At the annealing
the stresses decrease, which is followed by the decrease of the Tc B],
(Fig.4 ).
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STABILITY AND SUPERCONDUCTIVITY OP ALLOYS

Fig. 1. The energy gap at the touching of the Fermi-sphere and the
boundary of the Brillouin zone in the case of FCC lattice

Fig. 2. The stability at the local minimum of the density of
electronic states
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MECHANICAL PROPERTIES OF TEFLONS AT LOW TEMPERATURES
L.LASZLOFFY and J.BANKUTI

Department for Low Temperature Physics, Roland Eotvds University

1088 Budapest, Hungary

Many kinds of materials are used in the experimental investigations
of superconducting or cryoresistive devices. Among them certain synthetics
have important roles in the experimental and industrial applications as well.
Earlier examinations show the very advantageous properties of teflon like
materials in cryogenics.

The advantageous properties can be both mechanical and electrical.
This is the reason why they are preferable for electric and thermal insulation
and for some mechanical and stabilizing problems. In recent paper the mechanical
properties of different teflons are studied.

The effect of the structure on the mechanical properties of teflons

The chemically homogeneous polymerized tetrafluorethylen is a
crystalpolymer and its property is determined by the rate ofcryymllimnjon[1],
The melting point of the crystallites is 600K and the temperature for the
vitrification of non-crystallized parts is 153 K. In the applications at room
temperatures the solid crystallites are mixed with the non-crystallized
parts. The result is a soft, elastic material down to helium temperature.
During the production of teflon the rate of crystallization can be controlled.
By faster cooling we get a more elastic structure by the low rate of
crystallization, and by slow cooling the crystallites can be so large, that
the material can suffer only a small deformation without breaking.

The improvement of the properties of teflon can be made by adding
different filling materials during the production. Our studies were
concentrated to certain temperature dependent mechanical and thermal

properties of some teflons filled in different ways.

Compressive strength measurements

We have made measurements on teflons filled by bronze + carbon, carbon,
15% glass, 40% glass and on pure Hungarian and GDR materials. The applied
deformation was in the range of 5% - 25%. The temperatures of the measure-—
ments were 373 K, 296 K, 273 K and 77 K.

The experimental results are summarized in the Table I.

The measurements made at different temperatures unambigiously prove that
the teflon doped by bronze + carbon is the most solid. Depending on the elas-
tic property of material the accumulated mechanical energy causés an inner
heating. The increase of the temperature results in a steep decrease in the

solidity. If the heat originating inside the material can not be conducted

Acta Physica Hungarica 62, 1987
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away so it causes a decrease in the solidity of the material. Supposing the
better heat conductivity of the bronze + carbon filled teflon the better

mechanical properties are evident.

Examination of the t hermal expansion

The determination of the contraction caused by the decrease of the
temperature is essential at low temperature application [2] g

We have made measurements on the above mentioned materials. The values
of the linear expansion -Al/lo-at the different temperatures of 473 K, 423 K,
373 K, 273 K, 223 K, 173 K, 77 K, are summarized in the Table II.

From the measurements it can be seen that the dilation of the teflon
with glass is the least. It can be explained by the small thermal dilation of
the glass.

Charpy impact value examination

The Charpy impact value examinations provide us informations how the
materials become brittle at different temperatures. This time we have made
measurements on two kinds of samples,the Hungarian and GDR teflons,at the
temperatures of 373 K, 293K, 273 K, and 77 K. The results of the measurement
are given in the Table III.

It can be seen from the results, that the embrittle ment of the teflon
is not too high even at lower temperatures.

For the detailed evaluation we need some other measurements too,
for instance the study of structure,the measurements of dielectric constant
and loss and their frequency dependence, the determination of electric and
thermal conductivity.

References

1. D.D. Csegodajev, Ftoroplaszti, Goszhimizdat,Moscow 1960.
2. L. L&szl6ffy, I. Kirschner, J. B4nkuti and T. Porjesz, Examination of
Contraction on Low Temperature, Industrial Study, Budapest, 1978.
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Sort of Teflon

MECHANICAL PROPERTIES OP TEFLONS AT LOW TEMPERATURES

Results of compressive strength measurements

Temp K) def.(%)

373

276

273

EBEBo BBGEBEa BBEB&GB«

B B8BG B w

720
1000
1360
1670

1250
1750
2200
2650
3150

1600

2400

2800

3200

3100
3700

Bronze + Carbon

Carbon

max. compressive force (N)

480
700
890
1060
1260

900
1150
1420
1660
1940

1440
1670
1940
2200

2300
2450
2620
2850

440
600
760
910
1080

800
1020
1240
1460
1720

1020
1300
1520
1760
2090

2650
2970
3150
3320
3570

15% Glass  40% Glass

380
540
670
800
920

700

1150

1080
1300
1480
1660
1900

2300

3150

520
670

970

700
950
1150
1350
1600

1000
1220
1420
1640
1900

2620
2820
3020
3170
3370

270
440
610
780
940

620
800
1000
1200
1400

1000
1220
1410
1590
1860

2400
2700
2850
2980
3180
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Table II
Results of thermal expansion measurements

Sort of Teflon Bronze + Carbon Carbon 15% Glass 40% Glass H-Teflon GDR-Teflon

Temp (K) 10%x g4
o
473 23%5 24157 32 22'h 26 =
" 423 16.5 17.2 18.5 16 18 =
373 10.5 14 10 10 9.5 b
296 0 0 0 0 0 0
273 -4.5 -4 =l -2 =945 -4.5
223 =9 =10 =12 -4 -12 =1055
173 =1045 -13 -14.5 -6 =15.5 -14
Vs =3oh -18 =17 -8 -18.5 -16
Table III
Results of Charpy impact value (C.I.V.) measurements
Teflons H-Teflon GDR-Teflon
Temperature (K) max.C.I.V.(cmkg/cmz)
373 2D =50
293 =50 14.5
273 12 18
77 13.5 T-+5

Acta Physica Hungarica 62, 1987



NOTES TO CONTRIBUTORS

I. PAPERS will be considered for publication in Acta Physica Hungarica only ifthey have not previously
been published or submitted for publication elsewhere. They may be written in English, French, German
or Russian.

Papers should be submitted to

Prof. I. Kovécs, Editor
Department of Atomic Physics, Technical University
1521 Budapest, Budafoki Gt 8, Hungary

Papers may be either articles with abstracts or short communications. Both should be as concise
as possible, articles in general not exceeding 25 typed pages, short communications 8 typed pages.

II. MANUSCRIPTS

1. Papers should be submitted in three copies.

2. The text of papers must be of high stylistic standard, requiring minor corrections only.

3. Manuscripts should be typed in double spacing on good quality paper, with generous
margins.

4. The name of the author(s) and of the institutes where the work was carried out should appear
on the first page of the manuscript.

5. Particular care should be taken with mathematical expressions. The following should be
clearly distinguished, e.g. by underlining in different colours: special founts (italics, script, bold type,
Greek, Gothic, etc.); capital and small letters; subscripts and superscripts, e.g. x2,x3 small /and [; zero
and capital O; in expressions written by hand: eand /, n and u, Vand v, etc.

A List of Symbols on a separate sheet should be attached to each paper.

6. References should be numbered serially and listed at the end of the paper in the following
form: J. Ise and W. D. Fretter, Phys. Rev., 76. 933, 1949.

For books, please give the initials and family name of the author(s), title, name of publisher, place
and year of publication, e.g.: J. C. Slater, Quantum Theory of Atomic Structures, I. McGraw-Hill Book
Company, Inc., New York, 1960.

References should be given in the text in the following forms: Heisenberg [5] or [5].

7. Captions to illustrations should be listed on a separate sheet, not inserted in the text.

8. In papers submitted to Acta Physica all measures should be expressed in Sl units.

lll. ILLUSTRATIONS AND TABLES

1. Each paper should be accompanied by three sets of illustrations, one of which must be ready
for the blockmaker. The other sets attached to the copies of the manuscript may be rough drawings in
pencil or photocopies.

2. Illustrations must not be inserted in the text.

3. All illustrations should be identified in blue pencil by the author's name, abbreviated title of the
paper and figure number.

4. Tables should be typed on separate pages and have captions describing their content. Clear
wording of column heads is advisable. Tables should be numbered in Roman numerals (I, II, I, etc.).

IV. RETURN OF MATERIAL

Owing to high postage costs, the Editorial Office cannot undertake to return all material not
accepted for any reason for publication. Of papers to be revised (for not being in conformity with the
above Notes or other reasons) only one copy will be returned. Material rejected for lack of space or on
account of the Referees' opinion will not be returned to authors outside Europe.



Periodicals of the Hungarian Academy of Sciences are obtainable
at the following addresses:

AUSTRALIA

C.B.D. LIBRARY AND SUBSCRIPTION SERVICE
Box 4886, G.P.0.. Sydney N.S.W. 2001
COSMOS BOOKSHOP, 145 Ackland Street

St. Kilda (Melbourne). Victoria 3182

AUSTRIA
GLOBUS, Hochstadtplatz 3, 7206 Wien XX

BELGIUM ~
" OFFICE INTERNATIONAL DES PERIODIQUES

Avenue Louise, 485, 7050 Bruxelles

E. STORY-SCIENTIA P.V.B.A.

P. van Duyseplein 8, 9000 Gent

BULGARIA
HEMUS, Bulvar Ruszki 6, Sofia

CANADA
PANNONIA BOOKS, P.O. Box 1017
Postal Station “B", Toronto, Ont. M5T 278

CHINA
CNPICOR, Periodical Department, P.0. Box 50
Peking

CZECHOSLOVAKIA

MAD’ARSKA KULTURA, Narodni tiida 22
115 66 Praha

PNS DOVOZ TISKU, Vinohradska 46, Praha 2
PNS DOVOZ TLACE, Bratislava 2

DENMARK
EJNAR MUNKSGAARD, 35, Nerre Segade
1370 Copenhagen K

FEDERAL REPUBLIC OF GERMANY
KUNST UND WISSEN ERICH BIEBER
Postfach 46, 7000 Stuttgart 1

FINLAND
AKATEEMINEN KIRJAKAUPPA, P.O. Box 128
00107 Helsinki 10

FRANCE

DAWSON-FRANCE S.A., B.P. 40, 91121 Palaiseau
OFFICE INTERNATIONAL DE DOCUMENTATION ET
LIBRAIRIE, 48 rue Gay-Lussac

75240 Paris, Cedex 05

GERMAN DEMOCRATIC REPUBLIC
HAUS DER UNGARISCHEN KULTUR
Karl Liebknecht-StraBe 9, DDR-102 Berlin

GREAT BRITAIN

BLACKWELL'S PERIODICALS DIVISION
Hythe Bridge Street, Oxford OX1 2ET
BUMPUS, HALDANE AND MAXWELL LTD.
Cowper Works, Olney, Bucks MK46 48BN
COLLET'S HOLDINGS LTD., Denington Estate,
Wellingborough, Northants NN8 2QT

WM DAWSON AND SONS LTD., Cannon House
Folkstone, Kent CT19 5EE

H. K. LEWIS AND CO., 136 Gower Street
London WCTE 6BS

GREECE
KOSTARAKIS BROTHERS INTERNATIONAL
BOOKSELLERS, 2 Hippok Street, Ath 143

HOLLAND

FAXON EUROPE, P.O. Box 167
1000 AD Amsterdam
MARTINUS NIJHOFF B. V.

Lange Voorhout 9-11, Den Haag
SWETS SUBSCRIPTION SERVICE
P.0. Box 830, 2160 Sz Lisse

INDIA

ALLIED PUBLISHING PVT. LTD.

750 Mount Road, Madras 600002
CENTRAL NEWS AGENCY PVT. LTD.
Connaught Circus, New Delhi 110001
INTERNATIONAL BOOK HOUSE PVT. LTD.
Madame Cama Road, Bombay 400039

ITALY

D. E. A, Via Lima 28, 00798 Roma
INTERSCIENTIA, Via Mazzé 28, 10749 Torino
LIBRERIA COMMISSIONARIA SANSONI

Via Lamarmora 45, 50721 Firenze

SANTO VANASIA, Via M. Macchi 58

20124 Milano

JAPAN

KINOKUNIYA COMPANY LTD.

Journal Department, P.O. Box 55

Chitose, Tokyo 156

MARUZEN COMPANY LTD., Book Department
P.O. Box 5050 Tokyo International, Tokyo 7100-31
NAUKA LTD., Import Department

2-30-19 Minami lkebukuro, Toshima-ku, Tokyo 171

KOREA
CHULPANMUL. Phenjan

NORWAY
TANUM-TIDSKRIFT-SENTRALEN A S.
Karl Johansgata 43, 7000 Oslo

POLAND

WEGIERSKI INSTYTUT KULTURY
Marszalkowska 80, 00-5717 Warszawa

CKP | W, ul. Towarowa 28, 00-958 Warszawa

ROUMANIA
D. E. P., Bucuresti .
ILEXIM, Calea Grivitei 6466, Bucuresti

SOVIET UNION

SOYUZPECHAT — IMPORT, Moscow

and the post offices in each town
MEZHDUNARODNAYA KNIGA, Moscow G-200

SPAIN
DIAZ DE SANTOS Lagasca 95, Madrid 6

SWEDEN
ESSELTE TIDSKRIFTSCENTRALEN
Box 62, 7107 20 Stockholm

SWITZERLAND
KARGER LIBRI AG, Petersgraben 31, 4071 Basel

USA

EBSCO SUBSCRIPTION SERVICES

P.O. Box 1943, Birmingham, Alabama 35201
F. W. FAXON COMPANY, INC.

15 Southwest Park, Westwood Mass. 02090
MAJOR SCIENTIFIC SUBSCRIPTIONS
1851 Diplomat, P.O. Box 819074,

Pallas, Tx. 756381-9074

READ-MORE PUBLICATIONS, INC.

140 Cedar Street, New York, N. Y. 10006

YUGOSLAVIA
JUGOSLOVENSKA KNJIGA, Terazije 27, Beograd
FORUM, Vojvode Misi¢a 1, 27000 Novi Sad

Index: 26.022




Acta

Physica
Hungarica

VOLUME 62, NUMBERS 2-4, 1987

Akadémiai Kiado, Budapest




ACTA PHYSICA
HUNGARICA

A JOURNAL OF THE HUNGARIAN ACADEMY
OF SCIENCES

EDITED BY
. KOVACS

Acta Physica publishes original papers on subjects in physics. Papers are accepted in English, French,
German and Russian.

Acta Physica is published in two yearly volumes (4 issues each) by
AKADEMIAI KIADO
Publishing House of the Hungarian Academy of Sciences
H-1054 Budapest, Alkotméany u. 21
Subscription information
Orders should be addressed to
KULTURA Foreign Trading Company

1389 Budapest P.O. Box 149
or to its representatives abroad.

Acta Physica Hungarica is abstracted/indexed in Chemical Abstracts, Current Contents-Physical,
Chemical and Earth Sciences, Mathematical Reviews, Science Abstracts, Physics Briefs, Risk Abstracts

© Akadémiai Kiad6, Budapest



CONTENTS

GENERAL PHYSICS

Correlations in a nonequilibrium steady state: Exact results for a generalized kinetic Ising model.
Z. Racz'and Mo BISChRE o5 (ol sy slit)a v 3 05 S DR Rt AT oo 5 (15 avs Serei Bste s sty

A symbolic algorithm for finding exactly soluble statistical mechanical models. P. Rujdn .......
Unusual maps and their use to approach usual ones. Z. Kaufmann, P. Szépfalusy and T. Tél . . ..

ELEMENTARY PARTICLES AND FIELDS
Infrared asymptotics of the quark propagator in a Bloch—Nordsieck-type model. G. Pdcsik and
40117 ([ SRS Y B el X Bale i L S TR e LS LT 0 S o TERERRE e 1 S DRI TS
Infrared asymptotics of the quark propagator in nonabelian gauge theories I. G. Pécsik and T. Torma
Remarks on the bilocal field theories. Z. Fodor and E. Regés ..................cooiiuinenn.
Energy-energy correlations for the pp collider. F. Csikor and G. Pocsik ......................
Scalar Bethe-Salpeter equation and the relativistic bound state problem. K. Laddnyi ..........
On a problem of spontaneous compactification. P. Forgdcs, Z. Horvath and L. Palla .. ........
The nature of the deconfining phase transition in the SU(2) gauge theory in 1 + e dimension. A. Patkés
Expansions at the parameter space boundary in the standard Higgs model. I. Montvay ........
Weak interactions of-heavy quarks.’ H-PIISEIMaMn: . - .. < 08 hve c scesitcuinisitn o Bo's chistan siois
The possibility of avoiding the axion in the Peccei-Quinn mechanism. T. Nagy ...............
Yang-Feldman formalism of dipole fields. K. L. Nagy ............coiiiiiiiieiineneainnn.
Canonical quantization of the relativistic theory of the Dirac monopole. A. Frenkel ...........

NUCLEAR PHYSICS

Fragment yields in the microcanonical model of nuclear disassembly. G. Fai .................
Nucleon-nucleon interaction with ultra short range attraction. I. Lovas, Erika Lovas and K. Sailer

A quantitative analysis of the collective outward motion of nuclear matter in central Ca 4+ Ca and Nb
+Nb collisions. [ PO Cserngt anaiO IRGIG . « » v sirisisaisnisinissin e ol Lo s ofiklo's o s 4 & e ok le

A three-fluid model of heavy ion collisions. J. Németh .................ccooviiiiiiiiiiinn.

The effect of correlations on the entropy and hadrochemical composition in heavy ion reactions.
W Bane TS .- Bigt. B Eukdes anal'). ZImanyl: - 56 oo . o i sisie vesins Saalias s s o 5k s s as

ATOMIC AND MOLECULAR PHYSICS

Spin orbitals and total energy calculated by the Xa method including ab initio self-consistent
exchange parameters dgep. R..Gdspdrand 4. Nagy .. cos oo eivdobivnnsiaonoresesosees

203
287
321

101
107
115
155
161
197
185
191
211
237
257
307

277
347

355
365

371

131



FLUIDS, PLASMAS AND ELECTRIC DISCHARGES

Hamilton principle for the vortex flow of an ideal fluid in special relativity. I. Abonyi .

Inversion method to test radial structures in cylindrical plasmas. K. G. Antal, J. F. Bité and F. Haldsz

CONDENSED MATTER

Zero modes and reparametrization invariance in the Ising spin glass. I. Kondor and R.

The glass transition feedback: Review and comments. T. Geszti ....................

ASTROPHYSICS

Entropyan thelumyerserG. Mary ... coBiin o b b Sahlls o il & S 5 o s
Density peaks and large scale velocities. Alexander S. Szalay and Lars Gerhard Jensen

INTERDISCIPLINARY

Global-scale changes of the environment: Observations from space. K. Ya. Kondratyev

The final manuscript was received
by the Editorial Office on 20 February 1986

Németh .

199
225

219
267

139
263

243



Acta Physica Hungarica 62 (2—4), pp. 101—105 (1987)

INFRARED ASYMPTOTICS
OF THE QUARK PROPAGATOR
IN A BLOCH-NORDSIECK-TYPE MODEL*

G. Pocsik

Institute for Theoretical Physics, Roland Eotvés University
1088 Budapest, Hungary

and
T. TorRMA

Computing Centre, Roland Eétvos University
1088 Budapest, Hungary

Assuming a k™~ singularity for the infrared behaviour of the gluon propagator in QCD, in a
Bloch—Nordsieck-type model it is shown that the quark propagator is an entire function or vanishing
in the infrared limit depending on the gauge used. In special cases one can restore the free propagator,
too.

1. Introduction

The absolute confinement of quarks can manifest itself in the lack of singularities
of the quark propagator in the infrared limit, and a pole or branch point in this limit can
go with the existence of free quark states. As for the first possibility, in various gauges
and approximations it has been shown that the quark propagator is vanishing on the
mass shell (e.g. [1, 2, 3]). In other approaches the quark propagator turns out to be
consistent with the free one in the infrared limit [4, 5]. In all of these considerations the
infrared behaviour of the gluon propagator was described by a more singular term than
the free one, k2, namely, in several cases a kK~ * behaviour was used corresponding to a
linear confining potential.

Considering the importance of the above problems, in the present paper we
calculate the infrared asymptotics of the quark propagator S; in QCD in a Bloch—
Nordsieck-type model where the Dirac matrices are considered as c-numbers. The
infrared behaviour of the electron propagator in QED has been successfully treated in
this model in [6]. Our calculations are carried out in a kind of vacuum saturation
approximation leading to an exponential form of Sy in the coordinate space. For the
gluon propagator a k~* behaviour is assumed.

* Dedicated to Prof. K. Nagy on his 60th birthday
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102 G. POCSIK and T. TORMA

In axial gauges n* #0 we get that Si(k) is an entire function which is finite on the
mass shell. In the timelike axial gauge, n> =1, one can still find Sy = Sy as a special case
by choosing n, as the constant Dirac matrices. In Feynman and Landau gauges S% is
again an entire function in 4+ ¢ dimension going to zero for vanishing .

In Section 2 we describe the model considered and our calculations of Si(k), while
Section 3 contains a discussion of our results.

2. Model calculations for the quark propagator

The model we consider consists of taking the Dirac matrices as c-numbers u,, u”
=1, and we may assume u, > 0. Thus, quark—-antiquark pairs cannot be produced and
effects of closed quark loops are vanishing. This follows from the fact that Sg(x) is a
retarded function, indeed

0, Xo<U;

Se(x)= i (1)
& —Lexp(—imz—q>5‘3’<xj—ujﬁ>, Xo=0.

Uy 0

(1) is the Fourier transform of (uk —m+ie) .

We are working in axial gauges n*#0 [7] where ghost loops are absent. The
quark propagator can be expressed by functional derivatives in the following form

SHx—y)=N )
where
Z(J)=exp (i
" exp ( = % Id‘xd“yJ uaX)Goap(x — Y)J (y)) 5 3)
N~ 1=(Z());=0- (4)

The Lagrangian L, contains the self-couplings of gluons, J4(x) is an external colour
current, G4,(x—y) is the free gluon propagator in axial gauge and G(x, y|A) is the
Green’s function of the quark moving in the external gluon field A,,. Under the above
assumptions (2) is exact, which can be verified by solving the Schwinger’s equations for
the vacuum functional by functional derivatives. The gluon Green’s functions are given
by the functional derivatives of Z(J) at J =0 multiplied by N.
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The Green’s function G(x, y|A4) satisfies the equation
1
<iuvav =Nt i‘ gj'auv A:(x)) G(x’ .V)| A) = 5(‘)(x Y y) (5)

m means the mass parameter, 4, is the colour matrix.
First, we find a solution to (5). Therefore, Fourier transform G(x, y|4) with
respect to x—y leading to a function G(k, x) which can be represented as

oo}

Gk, x)=—i g dvU(v, x| A) exp [ —i(m—uk —ig)v], (6)
and for U(v, x| 4) we have

[i% +u, (ia" - % gi,.Af.’(x))] U(v, x| 4)=0 ™

with U(v=0, x| A)= 1. Being tke gluon Green’s functions translational invariant, we
can take U(v, x| A) at x —uv =0 on the subspace of the functionals Z(J) in (2). This new
quantity U(v|A) obeys the equation

dup|4) 1. 4
o g ighuf A, (uv)U(v|A),

U0|A)=1. (®)

The solution of (8) should be taken at 4 =i~ '/8J applied to Z(J), and J =0in (2). This
yields for the quark propagator in momentum space

o]

Si(k)=—i l[ O|U(v| 4) 0> exp [ —i(m —uk — ie)v]dv )

and the operator U(v|A) satisfies (8) where now A,,(uv) is the interacting gluon field
operator. We evaluate the vacuum expectation value in (9) in a vacuum saturation
approximation, so that terms with only an even number of A’s remain, corresponding
to

1 v vy
U(v|A)=1+ Z(ig)zu,u,,l,,l,, 'gd"x £ dv, A%(uv,)Af(uv,)U (v, | A). (10)
An approximate solution of (10) is
1 v Vi
U(v|A)=exp (Z (7) STRTPY VI z[ dv, g dva;‘,(uvl)Af(uvz)). (11)
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Terms of order —g* are neglected in the exponent. Taking (11) in the vacuum
saturation approximation leads to

v

01U (+] 4)[0) =exp (— §40° j vy, G (v, _Vz))“ﬂ> (12)

0

with G* the two-point gluon Green’s function, and (4,)* = 16/3.

Exactly the result (12) follows by assuming commutable 4,’s in (8) and replacing
the many-point gluon Green’s functions by their disconnected pieces. For free gluons
(12) is still an approximation but in QED it holds exactly [6].

In the examples considered below u,u,G**(u(v,—v,)) is v-independent and
imaginary, thus (12) is of the form exp (bv?), b<0. For b=0 (9) reproduces the free
quark propagator, while for b <0 Si(k) is an entire function of m —uk:

ik ke e g

@ means the Gauss’ error integral. On the contrary, the free propagator in (12) leads to
an exp (b In v)-type function assuring a branch point for Sg(k) at uk=m [6].
In what follows we assume the form

QZ
Gaﬂ(k) g F [gaﬂ _(kn)~ l(kanﬁ I nzkﬂ) Sy

+(kn)"2k,kn?],  n?#0 (14)

for the Fourier transform of G,y(x) in axial gauge, 2 is a constant. Without the
dimensionless term 22/k?, (14) is just the free propagator. 2%/k? [1, 2, 3] modifies the
potential into a linear one. From (14)

We have calculated (12) also in Feynman and Landau gauges using the confining
term 2?/k*. Here (13) is still valid in the approximation of neglecting ghost loops with

L'l 3
by=— 353 T®,  b.=3bs, (17)

where the calculation has been carried out in n=4+¢ dimension. For ¢—0 Si(k) is
vanishing.
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3. Discussion

In the present paper we have calculated the quark propagator in a model with
constant Dirac matrices. We feel that the main features of (8) and (9) will remain valid
also in the relativistic case in the infrared limit. The exponential form (12) emerged in a
vacuum saturation approximation. In spacelike axial gauges n* <0, b<0 and Si(k)

i /e A s . ;
tends to the constant — 3" b in the infrared limit uk—m, even if we started with

massless quarks, provided we use the confining gluon propagator (14). For timelike
axial gauges n” =1 this is still true except the choice u, =n, when b=0 and Sy becomes
the free propagator irrespective of the factor 2?/k2. This follows immediately from
u,uyG*(k) in (14). If one adds a term like (g,; — n,nz/n?) to (14) [5], in general, S} is still
an entire function except one choice which cancels (16) and b=0 [5]. In Feynman and
Landau gauges the approximate Si(k) is vanishing in four-dimension.

The appearance of a finite Si(k) in the mass shell limit is a nonperturbative
phenomenon. Indeed, the dependence of Sk(k) on the coupling constant gis ~g~ ' on
the mass shell, and for m—uk #0

(18)

¢, ¢, are finite. For g—0 (and g— oc0) Sz—0 in (18).
Finally we remark that (13) leads to the following propagator in coordinate space

(19)

St does not generate any dynamical singularity.

In conclusion we have considered a common approximation to Sy in various
gauges and shown that in most cases the quark propagator does not possess
singularities in the infrared limit.
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INFRARED ASYMPTOTICS
OF THE QUARK PROPAGATOR
IN NONABELIAN GAUGE THEORIES I*

G. POCSIK

Institute for Theoretical Physics, Roland Eotvos University
1088 Budapest, Hungary

and
T. TORMA

Computing Centre, Roland Eotvos University
1088 Budapest, Hungary

Assuming a k~* singularity for the infrared behaviour of the gluon propagator, it is shown
that the quark propagator is an entire function of p? in the infrared region and it has an essential
singularity at g> =0 for p> #m? in axial gauges. A similar behaviour is shown in a Bloch-Nordsieck-
type model, too.

1. Introduction

The absolute confinement of quarks can manifest itself in the lack of singularities
of the quark propagator in the infrared limit. In various gauges and approximations it
has been shown that the quark propagator is vanishing on the mass shell (e.g. [1, 2, 3]),
while in other approaches the quark propagator turns out to be consistent with the free
one in the infrared limit [4, 5]. In all of these considerations the infrared behaviour of
the gluon propagator was described by a more singular term than k™2, namely, in
several cases a k~# behaviour was used corresponding to a linear confining potential.

Considering the complexity of the problem whose different approaches have
emphasized various remarkable aspects of the confinement we calculate the infrared
asymptotics of the unrenormalized quark propagator Sj by functional methods [6].
Our approximation corresponds to a resummation of quark lines with many dressed
gluon propagators, both ends of which are attached to the quark line. For the gluon
propagator a k~* singularity is assumed. This approximation can be interpreted as a
result of an effective bilinear gluon Lagrangian with an inverse propagator of the type
k*. Because of algebraic complications due to colour pairings, the resummation is
carried out for SU (2).

* Dedicated to Prof. K. Nagy on his 60th birthday
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108 G. POCSIK and T. TORMA

In Section 2 we describe our calculations of Sy. In axial gauges n® #0, Si(p) turns
(pn)?
n2
essential singularity at g?> =0. This disappears in the mass shell limit. In Feynman and
Landau gauges S} is again an entire function of p? in 4+ ¢ dimensions and it remains

finite and independent of g2 for ¢—0.

In Section 3 it is shown that similar conclusions are valid also in a Bloch—
Nordsieck-type model.

Section 4 contains a discussion of the results.

out to be an entire function of p? for 0 <p? xm?, p*# , and for p> #m? it has an

2. Infrared limit of the quark propagator

We are working in axial gauges n? #0 [7] where ghost loops are absent. The
quark propagator can be expressed by functional derivatives in the following form

[/

S'r(x—Y)=N X,y (1)

where
Z(J)=exp (i
wcenp (= [ #5030, 0968005~ ®
and
N~'=(Z(J);=o. (3)

The Lagrangian L, contains the self-couplings of gluons, J4(x) is an external
colour current, Gj,,(x—y) is the free gluon propagator in axial gauge, and G(x, y|A4)
means the Green’s function of the quark moving in the external gluon field 4. Under
the above assumptions (1) is exact which can be verified by solving the Schwinger’s
equations for the vacuum functional by functional derivatives (see e.g. [6]). The dressed
gluon Green’s functions are given by the functional derivatives of Z(J) at J=0
multiplied by N.

The Green’s function G(x, y|A) satisfies the equation

[iv,. (55 —ig :121 AL‘(X)) " M]G(x, Y| A) =8N (x—y), @)
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m means the mass parameter, 4, is the colour matrix. Let us introduce the functional
H(x, y| A) by the definition

G(x, y|4)= [in (az—ig % Az(x)) +m] H(x, yl4) )
and from (4) we get

(82 +ig 22,7, 08A300)+ g, Ay I8+

2
+ S O ALCDH(x, Y1 4) =69 x— ). ©)

The Fourier transform of H(x, y| 4), H(p, q| A), determines the quark propagator in
momentum space as follows

(2m)*SHp)O“(p—q)=S'+5",
§'=(p* +m) (H(p, 4| ANZ(J)); =, (7

e AR~ AL ANZO) o

~ : : 1 ; :
here A%(q’) is the Fourier transform of A4(x)— - and H satisfies the equation.

P
i 6J,,(x)

1

¢ ~m)AG, 4l A+ s

jd4k[glawgau(k) iy

2

A v = g
=Y E (guv "1 l(T;tv)l(“'4 a(k) + W ‘Yu‘))vj'a'{b X

x [d*k Ak)AYk—K)1H(p—k, g A)=(2n)*6“Y(p—q). ®)

Following [6] we represent H(p, q| A) as the integral

[+ o]

A(p, qlA)=—i l[ dvU(p, g; v| A) exp (iv (p* —m’ + ic)), ©)

where the new functional U(p, g; v| A) obeys the normalisation
U(p, q; 0| 4)=(2m)*6“Y(p—q). (10)

This can be shown by taking the Fourier transform of (6) in x—y and writing the
corresponding Fourier transform of H as the integral of the exponential function of its
inverse with respect to v.
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110 G. POCSIK and T. TORMA
Substituting (9) into (8), using (10), leads to the definition equation of U(p, g; v| 4)

d $ 4
d—v U(P’ q, Vl A) (2 )4 J‘d k[gl P”A an(k)
}‘a n . T gz
Tl 5 k (guv =+ IO"",)A a(k) + W ‘Yu)’v}'a'lb ¢
[ d*k A%K)A Yk —k')] exp (iv(k® —2kp)U(p—k, g; v| A) =0. (11)

We need the functional U for p*’s around m?. Since A ,,(k) and the brackets in the
integral act as gluon operators in the gluon Green’s functions in S"", we can
approximate the integrand in (11) by its value at k—0. Actually, assuming A (k) ~k '
<4 for k—0, the most singular term is p4 at k<pam in the bracket. Finally, we
replace (11) in the infrared limit as follows

d
i% U(p, q; v|A) +gA.p" A, (2pv)U(p, q; v| A)=0. (12)

(12) has the usual time ordered operator solution which, making use of (7), (9), (10)
yields

= — @n)*i8p— q) (. p* +m) I dv exp (iv(p? —m? + i) x

F X i (ig)" ﬁ AP E avy. ...
n=1 i=1
z[ dv,< T4, 2pvy). . .Aa"“"(2pv,,)>0:| : (13)

where A4,,(2pv) is the interacting gluon field.
For S" one obtains in the above approximation

N|Q

'[ dv exp (iv (p> —m?* +ig)) | d*x exp (i(p— g)x) -
o

PREALD 0+ T, GoF [T Aup [dv ..

Vn-

g dV <TAau(x)Aa|u|(2pvl) a,.y,.(zpvn)>0] (14)

Now, we calculate (13) and (14) in such an approximation where gluons starting
from the quark line are absorbed by the same line, corresponding to keeping the
propagators in the dressed gluon Green’s functions in (13), (14). For the gluon
propagator a k~* singularity is assumed. The same approximation follows by using an
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effective bilinear gluon Langrangian with an inverse propagator of the type k*. In this
way we get

(2711)4 J.d“qS' = —i(y,p"+m) Zj: dv exp (iv(p* —m? +ig))-

{1 2r Z (2 ), ig2v2p¢pﬂGuﬁ(2p(vl b= VZ)))'l >

[H Yoy J G- O, ]} (15)

where G*# denotes the dressed gluon propagator without the colour —é,, and Z goes

over all the distinct a;a;-pairings. We have employed that in the cases con51dered below
P.ppG* is a v-independent quantity,
» .2b
PaPpG (2p(v1—v2))=t?, b<0. (16)

In QCD the summation [ i ] is extremely complicated, therefore, we confine
d.p.

d.p.

ourselves to the SU (2) gauge group for which [ ¥ ] is given by 2n+1)!/ (n/2")~ .

Hence

1 )
20 fd‘qS' =—i(y,p*+m) | dv(1+2bv?)exp (iv(p> —m*+ie)+bv?).  (17)
0
This type of exponential v-dependence has been shown in an Abelian gauge model with
a dipole gluon field, too [8].
In order to fix bin (17), assume for the Fourier transform of the gluon propagator
in axial gauges n”#0 in d dimensions [5]:

n*+

Q¢ k.ng+kgn, k.k
Gaﬁ(k)= = [ o L L g s

'd kn (kn)?

+(1+8)(4— d)(g,, - ”")], (18)

with Q a constant and 6 is a parameter. The choice =0 is used in [5], 6= —1
corresponds to the usual axial gauge. From (18) one gets in four dimensions [5]

(19)
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For first orientation we consider b in Feynman and Landau gauges too, where
(17) remains valid in the approximation of neglecting ghost loops. Making use of the
term Q?/k* we find in 4 + ¢ dimensions
2.2 3 2

Q%g Q 92
T i cm—— 2 p—
b 16 2‘(8)11, b, 647>

re)p?. (20)

In the above infrared approximation S" can also be calculated with the result

1 ig? ©
Id4qSl' = — PG 4(2pv) l[ dv(3+

(2m)* 2
+2bv?)v exp (iv(p* — m? + ie) + bv?). (21)
Here
2
& P Gap2p) =ib(rp—m) (pr)n~?) - (o~ (pryn =) 22)

for axial gauges (18), and
2
5 TP Gl =it 23)

for Feynman and Landau gauges.

For b=0 (e.g. =0 in (19)) (21) is vanishing and (17) reproduces the free quark
propagator [5]. For b>0(17) and (21) are nonexisting, but for b <0 one can carry out
the integrations [9] and obtains

1 s bldnd
o Jd4qsl= —(yp+m) [%
(1 ) (24)
1 g*
Tk J d*qS" = =- 7P Gegl2p)

(25

with a=m? — p?, ® means the Gauss’ error integral. The sum of (24) and (25) provides
S%(p) in the infrared limit, p> ~m?.

In spacelike axial gauges n? = —1, for §<0 and p*>0 around m?, the quark
propagator S is finite; at p> —sm?, (24) tends to zero, (25) remains nonsingular. Thus S}
is an entire function of p? in the infrared region. This conclusion holds also in timelike
axial gauges n*>=1, 6 >0, p#(pn)>. In the mass shell limit S} is independent of g>6Q>

#0.
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In Feynman and Landau gauges (in the approximation without ghost loops) the
above conclusions are still valid in 4 + ¢ dimensions and no g-dependence survives the
limit a—0. In four dimensions S} is an entire function of p? ((24) vanishes and (25) is
yp/2p?) which is completely independent of g2.

3. The Bloch—Nordsieck model

In what follows we would like to show that the result (24) can be derived in a
Bloch—Nordsieck-type model too [11].

As is known [10] this model corresponds to taking the Dirac matrices as c-
numbers u,, u?>= 1, and we may assume u, > 0. It follows that contributions of closed
quark loops are vanishing.

First, find a solution to (4). Fourier transform G(x, y|A) with respect to x—y
leading to a function G(p, x) and write

G(p, x)= —i | dvU(v, x| A) exp (— iv(m—up—ie)). (26)
0
For U(v, x| A) we obtain
(27)

It is easy to see that U(0, x|4)=1. Being the gluon Green’s functions translation
invariant, we can take U(v, x| 4) at x —uv =0 on the subspace of the functionals in (1).
This new quantity U(v|A) obeys the equation

d A
— LT
5 U(v|A)=ig ) wWA,,(u)U(v|A),

U0|A)=1. (28)
The solution of (28) should be taken at 4= % % applied to Z(J) and J =01in (1). This
yields
SHp)=—i j dv{0|U(v|A)|0)> exp (—iv(m—up —ie)) (29)
0

for the quark propagator in momentum space where the operator U(v| A4) satisfies (28).
Here the vacuum expectation value agrees with the bracket [ ]in (13) with p,, replaced
by u,,/2 and 2pv—uv. Applying the same treatment as in Section 2, for the SU (2) gauge
group we obtain (24) as Si(p) without yp + m, where a=m—up and instead of (19), (20):
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202 3

Q
~ L5, b= b (30)

bF=

Therefore, S&(p) in the infrared limit, up ~m, has identical features with those of (24) in
the region p? ~m?. In particular, Si(p)—0 for up—m, g #0.

In an Abelian gauge model with a dipole gluon field the gauge invariant fermion
fields have zero asymptotic limits, as it has been in [8].

4. Discussion

In the present paper we have calculated the quark propagator in the infrared
limit by functional methods for a confining gluon propagator. The results (24), (25)
emerged in a vacuum saturation approximation where due to algebraic complications
an SU (2) gauge group was assumed.

As we have seen, in axial gauges Si(p) is an entire function of p? in the infrared
region p> x~m?, (6, n* #0). This seems to be true also in four-dimensional Feynman and
Landau gauges. In order to reach the above conclusion in timelike axial gauges n’> =1,
one must assume p?#(pn)? otherwise unphysical singularities would appear in (24),
(25). Likewise (17) and (21) do not exist for b>0.

Under the v-integrals in (17) and (21) exclusively analytic expressions of g? take
place. After the v-integrations this is no longer true, S¥(p) cannot be expanded around
g*>=0. In axial gauges n?#0 for g>—0 (b— —0) and a#0, Si(p) is finite. In Feynman
and Landau gauges S; is finite in 4+¢ dimensions. In four dimensions Sy is
independent of g2.
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REMARKS ON THE BILOCAL FIELD THEORIES*
Z. FODOR and E. REGOS

Institute for Theoretical Physics, Roland Eotvos University
1088 Budapest, Hungary

Bilocal field theories of spin-0 and 1 mesons as permanently bound quark systems are
studied. Internal consistency of the field equations frequently imposes strong restrictions on the
potentials. An anharmonic oscillator model is described leading to a hadron mass spectrum that
bends back from the linear one. In the framework of bilocal field theories we work out the classical
field theory of baryons consisting of three quarks, and differential as well as integral conservation
laws are derived.

1. Introduction

Bilocal field theories (e.g. [1]) are space-time models and they have been
constructed for describing hadrons as permanently bound quark systems. In these
theories the subsidiary conditions play an important role since they fix the dependence
on the relative time in such a way that oscillations (as in the Bethe—Salpeter approach)
are absent. In one of these models [2] the subsidiary condition allowed a harmonic
oscillator potential leading to a linear hadron mass spectrum. The classical and
quantised conservation laws for hadrons were studied in [3] and [4].

In this work we look for certain classes of potentials which are allowed in bilocal
field theories by the field equations and the subsidiary condition. This problem was
partly discussed in [5] for three-quark systems of baryons.

After describing the problem for spin-0 mesons (Section 2), we study the
influence of the condition of compatibility on the potential and corresponding
differential equations are derived in Section 3. An anharmonic oscillator model is
constructed. Its mass spectrum deviates from the linear one, so that the hadrons lie on
Regge trajectories bending back from the linecar one. This is allowed by quantum
mechanics. In Section 4 the bilocal theory of spin—1 vector-mesons is described in the
Lorentz gauge. Assuming the symmetry of the x and r-spaces we get such models which
do not give quantised mass spectrum for the vector-meson, otherwise quite sensible.

In the last part of the work (Section 5) we derive the classical conservation laws
for the three-quark systems of baryons and show how to construct conserved
quantities for the baryon as a whole using field quantities depending on the three
quarks.

* Dedicated to Prof. K. Nagy on his 60th birthday
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2. The compatibility of the field equations

A spin-0 meson is described by a y(x,, x,) classical scalar function (field
quantity), x; and x, are the coordinates of the two pointlike constituents. As in usual
field theories, Y(x,, x,) is determined by the equations of motion

(a%u g V(xl > XZ)NJ(XI ) x2) =0,
(3%,4— Vi(xz, x)W(xy, x3)=0.

The quark 1 is moved by the effective potential V(x,, x,), etc. Vis an invariant scalar

(1)

which is a real function of x; and . To decompose the centre-of-mass and relative

ox;
! 1 -

motions, we define x, = 7(x1u+x2“), ry=X;,—Xz,. If p, is the four momentum of

the centre-of-mass, a free meson is represented as follows

'\l’(xl, x2)=e_ipx 4 ‘/’(P» r)s (2)

where Y(p, r) is responsible for the internal motions. Substituting into (1) gives
1
(03 o p*—Re V(r,0,, ip)) ¥(p.r)=0, 3)

(P, +1m V(r, 0,, ip)y(p, r)=0. )

Here p?=M? M means the meson mass. A useful necessary condition for the
compatibility of these equations is

([o7,Im V]—[Re ¥, pd,+Im V)Y (p,r)=0, )

where 0,= . Now we answer the question if (5) is sufficient for the compatibility of

ar,

"

the equations (3), (4). Let {{,(p, r)} be the solution of (4). Using (4) we have
(07 ;;PZ—RG V) (o, +1m V)Y (p,r)=0, (6)
substituting into (5) gives
(pd,+1Im V) (0? — %pz—Re V)Y (p,r)=0. (7)
If Yo € {¥n(p,r)} and (5) is satisfied, one has only
(03 372 Re V) lpne it
so, the condition (5) is necessary but not sufficient.
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It is easy to provide an example when (5) is not sufficient. Write

Im V=Re V=0, ®)
then (5) is trivially satisfied. From the relativistic invariance
Y(p,r)=y(pr,r? p?. ©)
Using (4)
0 Ao , W o
- =p*—— +2pr—- =0 1
Pa Y (pr,r*,p°)=p aon T (10)
and solving (10)
Y=g((pr)*—p°r?. (1)
Put this form into (3):
1
(03 0 P2> 9=2p’[29" -3¢, (12)

here the comma means the differentiation with respect to the argument. It seems that
this is an element of {y,(p, r)} but it is 0 only if g(u)= —2u /2,

Furthermore, employing the relativistic invariance of y/(p, r), it will be useful to
write the equations (3), (4) in the more explicit form

Y » () pr . pr oy
[2pr dImV dImV (ImW |

7w Tam T~ +ZPZ+RCV]'//=O’ 5

o 2pr_6_n/1_ImV~n// 14
Fr R R %Y

3. Discussion of the compatibility
The case of Re V#0, Im V=0

Let Re V be the most general function consisting of quadratic invariant
quantities:
Re V=V(r%, rd,, (pr)?, 62 (pd,)?), (15)

Re V contains rd,, 2, (pd,)* only as a finite polynomial. Using (5)

Re Vparll/_par(Re Vd/):Oa (16)
hence
)
Pu (E Re V)nﬁ(p,r)=0. (17)
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Differentiating the function (15) and substituting into (17) we get

ReV o2 IRV
a?) VTP e

“pry=0. (18)

(Hence Im V=0, pd,y =0.) The only solution of this differential equation is
Re V= f(p*r* —(pr)*)- g(rd,, 37 , (p0,)*), (19)

where g is a polynomial.
A special case of this is solved in [6]. Now we solve the equations (3), (4) forg=1
in (19) and Im V=0, that is

V= f(rz— (’:2’2). (20)
In the centre-of-mass frame p=(p,, 0, 0, 0) and ¥ is independent of r,
AL ";’)2 S, @1
where r=(r,, r,, r3) a three-vector. Furthermore, (3) has the form
[A + lM2 f(rz):lt// 0. (22)
Separate the internal motion into angle and distance variables
w=70,0)- 2, 23)
then
(M —rer-150) 0. (4

In general, we are interested in the regular solutions of this equation since /(p, r),
describing the motions in the hadron, decreases quickly with increasing r. (The
quarks are permanently bound.) Here we consider the model

f(r)=c*r*+art, (25)
where

a
=l (26)
o
This model is a perturbed harmonic oscillator.
The eigenfunctions of the normal harmonic oscillator are known from the
quantum mechanics:
ar? 3

in=A-r-e 7 Yaa) F( 5 I+2 2), (27)
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where F is a degenerated hypergeometric function and the mass spectrum is

M3<°)=8g(n+%); n=0,1,2,... (28)
and
0,2,...,n| n=1I 3
|m|=0,1,...1, I=<1,3,...,n}T=s 5 0,1,2..; (29)

The mass spectrum of the unperturbed oscillator gets a correction which is in first order
perturbation calculation

M2V =4 [y OF, - (ar®) - Y0}, - r*dr sin 9d9dep. (30)

nl,m

Calculating this from the integrals of the hypergeometric functions, we arrive at the
correction

M) = %(3n’+9n—12—1+7.5). @1

The degeneration of the spectrum disappeared. For a fixed n the internal angular
momentum causes a fine structure in the mass spectrum. The relative correction to the
unperturbed spectrum is as fellows

MZ  a(B3n*+9n—1*—1+1.5)

o = e, (32)
! 463 n+ =
2
0.3
this correction is real for n < 3’ (see Fig. 1). For a fixed n the mass spectrum has a
a
T T T V ]' T T T  § I T T T T I T T T
- +S=0 * -
10 — + - -
l - + +S=2 T
3 T
- + + -
s | i
- + + vt
- 4+ + -
0 P 7 A L O TN e - 1o 1 TR Tyt S B S,
0 200 400 600 800
§M*6?/a

n—1
Fig. 1. Mass spectrum of an anharmonic oscillator vs [ at S=T=0'2
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structure of a Regge trajectory bending back from the linear one. For a fixed n there
always exists a maximal angular momentum.

The case of Re V=constant, Im V#0

The most general form of Im Vis
Im V=pa, V' r?, ro,, (pr)?, 02, (pd,)*) +
+pr- V@2, rd,, (pr)?, 0, (p,)%). (33)
Using (5) one can write
(0,0,Im V+23,Im V)i =0. (34)
This leads to the following partial differential equation (x=r?, y=(pr)?, z=rd,):
{(p0,) 2V +4VQx +4VDyp2 + VDO + 4V )y +2V Nz +4) +
+2V0(p* + prpo,)] + pr[2V 3 + 4V Qx +4ViDyp* +
+ V202 +4V2y+2V 2z +4)+2V2(p* + pr+pd,)] +
+2V@pr+2VPprp* + VP por +2po,VVz +2pd, ViV -
- prpd,+pd, Vo2 + V®po, + pr[2VPré, + 2V Ppr -
- p0,+ VP01 =0. (35)

In the special case of VV'=V"(r?) and V'® =V3(r?), clearly

Im V=pr f(r?)+g(r*)po,. (36)
Substituting into the condition (34) we get
6f'pr+2f"r*pr+4g'po,+2r’g’+2f'prré,+ f po,+2g'rd,po,=0. (37)
From (4) it follows that
poy=— 1 pru. 68)
g+1
Comparing (37) and (38):
r=g-L (39)
which has the solution
po, Y= —cpry. (40)
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Making use of (40) in (37) and (38) we have as the only solution
=0 41)

or in other words ¢=0.

The case of Re V=constant, Im V=0

If we suppose (40) for f and g, the parts rd, vanish in [6Z, Im V], and
[03,Im V]= —2c¥g+ 1)pr. (42)
Substituting into (5) and using (42) we obtain

OReV ,0ReV

e +p 2pr)? =—2c2. (43)

Solving this partial differential equation yields
2 2
Re V=——c2<r2+ (p’%) +h<r2—(I:‘2) >, (44)

where h is an arbitrary function, and ¢ is determined by (40).

4. Bilocal field theory of spin—-1 vector mesons

We would like to extend the bilocal description of mesons with 0 spin (consisting
of two quarks) to 1 spin. In this case the vector potential has 4 components, 4,(1, 2);
v=0, 1, 2, 3. The field equations are assumed in the form

[a%u_V(Lz)]Av(l,z):O’ (45)
[0%,,— V(2,1)]JA(1,2)=0, (46)

where Vis an invariant scalar potential, as in Section 2. Separating the motion of the
centre-of-mass we can write

A,=e(p) e " Y(p,r), (47

where e, (p) is the polarisation unit-vector. We can always add the Lorentz condition to
(45), (46):

A" =0, 48)

or in momentum-space: p, A" =0, that is e,p* =0. For this reason the results concerning
the O spin are valid also for the internal y/(p, r) space in the present case. There is,
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however, a possibility, namely the possible symmetry of x- and r-spaces in the
subsidiary condition, that is whether or not

0;A*=h(x, p, 1) (49)
_can be assumed where h is vanishing or nonvanishing. From (47) and (49)

h(x, p,r)=e""*- g(p,7), (50)

where
g(p,r)=e,(p) Y (p,r), (51)
so that to a given Y(p, r) there exists an h(x, p, r). Applying 9;, using (49) we can write
03uh(x, p,r)—0;[V(1,2)4,1=0 (52)
03,h(x, p,1)—0)[V(2,1)4,] =0, (53)

1 % 1 *
and because of 02, = — = ip+9,) , 8%2,=( — =ip—4, | , and (47), (50) one gets
1 2 " 2

< 52 % ip+ 6r>29(p, r)—e,(p)3;[V(r, 0,,ip)Y(p, 1)1 =0, (54)
i 2
(* 5 ip~0,> g9(p,r)—e,(p)o;[V(—r, —0,, ip)Y(p,r)]=0. (55)
Taking the real and imaginary parts:
(= 37+ )atpn=esRe v-, (56)
po,g4(p,r)=e,0,(Im V" ¢). (57)

In general, if V= f(r?, pr, p?) - (pd,)' - (6?)%; substituting into (56), (57) we obtain

(= yor—rer-woy@r)amn=2 5L erymrery. o
I A2)\k dIm f I A2\k
(00, +1m 0N a(p. =25 (eor) (P0G, (59

It follows that without knowing the y solution, we do not get natural solutions for g,
dReV o0ImV

ar?) % ar?*

since in general . However, if Vis independent of r?,

(63 - % p*—Re V> g(p,r)=0, (60)
(pd,+1Im V)g(p,r)=0, (61)
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and similarly to (3) and (4), the compatibility under (5) is necessary for g(p, r). Using (9),
(48), (51)

v oy
g=evar¢=zevrv'a_(r7)" (62)
therefore g=0 is equivalent with
Y =y(pr, p?. (63)
Let us discuss now in more detail the case g=0. From (56) and (57)
e,0/(V-¢)=0, (64)
partially differentiating and since e,r,#0, we get
oV
P =0. (65)
Assume now
V= f(p? (pr)*)- (07)* - (pO,)™, (66)
and define
1
4 p*—Re f
1 pz
Im
Sfa= zf- (68)
p
Substituting into the field equations (3), (4):
'+ fi ¥ =0, (69)
'+ fy=0, (70)
consequently
Y=A-e IS, (71)
and f; is also fixed by
fi==-. (12

Since the wave functions of the type (71) are regular, they do not provide mass-spectra
in these models motivated by symmetrical subsdiary conditions. The vector mesons are
compound, but the mass is not quantised, it remains a continuous parameter.

It is, however, evident that the harmonic (or anharmonic) oscillator models
described in Section 2 can be maintained for vector mesons, too, and in this case there
exist mass spectra.
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5. Conservation laws for compound baryons

The classical field theories and conservation laws of the bilocal fields are worked
out (e.g. [3]). In what follows we shall show that this can be done for baryons consisting
of three quarks, too. We suppose that y vanishes quickly at the boundary of the relative
coordinate-space (for instance the hadron bag is described by a Gaussian). The baryon
consists of three components, whose coordinates are x,, x,, x3. Let us introduce
centre-of-mass and relative coordinates:

1 1 2 X, + X
X=§(x,+x2+x3), x=—=(x;—x3), y=\£(x,— 22 3)- (73)

2

We assume that there exists a real, invariant Lagrangian

L=L(‘I’a 'l/*’ ai'\ll7 6.“#*’ xua yu)s #=(1’2, 37 4) (74)
E= XX nls =t s)
i—{ w Xps Yuss & af.-.

The field equations are derived by the usual method from the Euler—Lagrange
equations

oL oL oL oL oL
= 50w =0y ooy Ty (76)
oL oL oL oL oL
W* el 0* e 00, 0* +9, 00 * +0, oN*’ ()
0 i
i T T g

In practice these are completed by subsidiary conditions (examples in [5]).
Demanding the invariance of the Lagrangian under infinitesimal translations in
¢-space we get a conserved quantity. Introducing

) Ll oL
{ PR o ST x
T MJ’aa,..//*

FER oY*—Lg" (79)

as the energy-momentum tensor in the &-space, it follows
0,TY=—d,, L. (80)

(80) can be verified directly from the field equations too.
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The tensor (79) can be decomposed into the tensors:

o a; A 5 d/* e i "
T = aawavl/wr W‘ u*—gnL, (82)
T aE.p B+ o l//*5".p="—g'"L (83)
T“:aaw U+ gV 54
Thi= 5 P+ g TV 85)
T';‘:aa n/zm’Laa ;* ¥ i
TS = o .ﬁ”'“ T )
Thi= 55 P+ g OV 88)
Tis= g OV s U (89)

Here T*, T*, T* are attached to the centre-of-mass and internal motion,
respectively. These tensors satisfy the conservation equations:

0,T"+8,T,+0,T4%=0, (90)
o, T%+3,T*+3,T8 = —Tpl, (91)
0, T4 +3,T45+0,T"=—0%pL. 92)

v

Divergences of T%%, Ti5, T4, T4y, T45, T4% act as force-densities and they show
correlations between the three constituents of the baryon.
Since T%% =0 at the boundary of the x-space, T%% =0 at the boundary of the y-

P 8, | d*xd*yT*=0. 93)

This integral can be interpreted as the energy-momentum tensor of the baryon
attached to the centre-of-mass motion. Similarly, because of quickly decreasing T*”,
/A L e el

0, [ d*xd*yT4, =0, (94)

3, [ d*xd*yT%; =0. (95)
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It is, however, probable that these integrals do not play any role because they include

mixed derivatives. Indeed, for example the Lagrangian of the free baryon without spin
depends bilinearly on the derivatives, and in the state of P momentum

J d*xT3iaip" [ d*xys (p, x, Y)3Y(p, X, y) =0 (96)

in case of a real internal wave function. Alternative forms of (90), (91), (92), expressing
with the variables of the constituents, are

3 o’
014 (37"‘5"1 =+ \/[5 T‘;;) +0,,(3T%, +./2T* — [6T4%) +
+03,3T4 —/2T* ~ /6T43) = — 0L, 97)
i 4
01, <3T‘5“1 + \é T“")+az,‘(3rg", +/2T5 — /6T ")+

+03,8T41 —/2T43 — /6T *)= = 8.yl (98)

3
1 (3T"v+ \/; ‘f%) +52n(3T“V+\/§T‘f§—\/3T‘;3)+

+0;,(3T* — /2%, — . /6T4%)=0, (99)
as well as

81y fdt xad'xs <3T“"+ \g Tﬂ;g) =0, (100)
8 § d*x,d*xs(3T*" + /2T4 — . /6T%%) =0, (101)
03, | d*x,d*x,(3T* - /2T% — . /6T%%) =0, (102)

4 -+ 3
Oy Jd*xadtxy (3TH + |54 ) =0, (103)
02 | @4x1d*xy(3TH, + /2T * —  /6T44 + /26, L)=0, (104)
B, | d*x,d*x,(3T%, — 2T* —  [6T%, —/25,, L)=0. (105)

We can introduce the current vector, too. Demanding the invariance of the
Lagrangian under gauge transformations of the first kind,

e R AL LB AR A
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we get the conservation equation for the currents:

R oL

W A

J —te<65“¢ ' R ] ) (108)

S g oL

JFie <W ¥ — W-w*), (109)
0," + 07" + 0,44 =0. (110)

Integrating again over the internal space:
0, | d*xd*yj* =0. (111)

j d*xd*yj* can be interpreted as the conserved current vector of the whole system. For a
free baryon j*=j*=0 in the case of a real internal wave-function.
An alternative form of the current conservation:

B 3 h
01, <3j“+ \/5 j“) +0,,(3* + /20— /6" +
+03,3*— /2" — /6" =0, (112)

whose double integrals are

01, f d*x3d*xs (3j“+ \g,’“) =0, (113)

03, [ d*x,d*x3(3* + /2 — /6) =0, (114)
03, | d*x,d*x,(3j* — /27 — /67 =0 (115)

in terms of constituent coordinates.

Finally let us introduce the angular-momentum. Demanding the invariance of
the Lagrangian under infinitesimal rotations

f:"_—éi'*'sijéj; S =7 (116)

we get the conservation equation concerning the angular-momentum. Define the
angular-momentum tensor in £ space as

oL oL
Ji.lj=éj7;l_élrrij"Wzljw_wzljw* (117)
we obtain
3J,,,=0, (118)
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where [, j=1,2,3,4,0r 5,6,7,8, or 9, 10, 11, 12. ¢;; consists of blocks,

[ § L uv
e = &1

&5’ ’ (119)

&8’

J;.1j can be decomposed into tensors of the four-space

Juves  bhLj=1,2,3,4,

‘,u.va; ia I,j=5, 6a 71 8’
ju.va; i’ l)j=9, 109 11, ]2,

Ty Tt L 8 4 ,j=5,6,7,8,
Josims  dageats 156,78, 1,j=9,10,11, 12, (120)

Tivuni v d =90 A3, ot iyed T 34,

Lok =868 1j=1,2,3,4,

T w10, 11,12, 1,j=5,6,78,

Kot i=153.4 1,j=9,10,11, 12.

These satisfy the the conservation equations:

Lo P as e By 5 0 =0, (121)
a“"Zlu.va+a—”ju.va+5“"23u.va=0’ (122)
31490+ 0324 v0t O s 4 =0 (123)

and
0, [ d*xd*yJ, ,,=0. (124)

{d*xd*yJ, ,, can be interpreted as the angular-momentum tensor of the baryon.
Furthermore

0, f d*xd*yJ 51, 40 =0, (125)
3, [ d*xd*yJ31, v0=0. (126)

Write (121), (122), (123) in terms of constituents:

% 3
aln (3‘,;4.\:0 y ﬁ JlSu.vv) + a2;:(3']‘4,v¢1'*_ \/5'112“.\;0_\/6']13#. va)+
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+ 03,037 ve— /2 12090 = /6 134,v0) =0, (127)
5. (31,1,,, L \/% J',,_v,,) + 02400515 v ) B2 25 vy < . o)
+033 31070 — /2T 3200 — /67 4.00) =0, (128)
Or (3121“‘ o F \g Jm,,_v,) 402439210, ve + V2T ve— /60 234, v5) +
+03:3 21090 /2 pve= /67 234.30) =0. (129)
Their integrals
01, f d*x,d*x, <3J,,,;,,+ \g J13,,_w> =0, (130)
O J X4 85503 oo+ o/ L 2k v ~f 6 1304 =0, (131)
OB e o S SRR ) PR 4 AR TN ) (132)
Similarly,
¢ f ahed x, <3J31,,_va+ ;J‘,w> =0, (133)
O § A5 d* %3514 o/ B s 2sine = BT 5.5} =0, (134)
an | *%:18°%4(30 31 v0—/ W 33090 =/ 605, v6) =0, (135)
31, fd‘xzd‘xa (313,“,v,,+ ﬁ b 5 ) =0, (136)
02 § 4*%18*%3(3 314 v0+ /2 320,90 = /67,70 =0, (137)
B § B R s e ol s B re) = D) (138)

In conclusion, the conserved quantities attached to the motion of the centre-of-
mass (four-momentum, current and angular-momentum) have been described by
integrating over the internal motion in the baryon consisting of three pointlike quarks.
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SPIN ORBITALS AND TOTAL ENERGY
CALCULATED BY THE Xa METHOD INCLUDING
AB INITIO SELF-CONSISTENT EXCHANGE
PARAMETERS ag.*

R. GASPAR and A. NAGY

Institute of Theoretical Physics, Kossuth Lajos University
4010 Debrecen, Hungary

A way of calculating ab initio self-consistent exchange parameters in the Xa method is
presented. It provides a self-contained theory, having no need of any external parameter. Expectation
values of powers of radius and the total energy for some atoms and ions are calculated with this self-
consistent exchange parameter agcr and compared with results obtained from other Xa calculations
and the Hartree-Fock theory. It is pointed out that the X« results with exchange parameters o are
nearly as good as the Hartree-Fock values and the method greatly simplifies the many-body
problem.

Introduction

The Xa method, which has become extremely popular for the past few years,
greatly simplifies the many-body problem, as only integrals on density functionals are
calculated instead of two-electron integrals. Since the Xa method was first suggested by
Slater [1], enormous development has occurred in the theory and in its applications.
One of the main aims of the researches in the Xa method is to develop it into an ab initio
method. The Xa method has an adjustable parameter a. Generally, the parameter «
used is exterior in the method, e.g. the most commonly applied parameter «, the so-
called oy, has been determined by Schwarz [2] so that the Hartree—Fock total energy
and the Xa total energy be equal. This way of determining the parameter ay seems to
be very fruitful in a large number of applications, but it has the shortcoming that it can
be applied consistently to atoms only as few Hartree-Fock calculations for molecules
or solids are available nowadays. On the other hand, it seems to have little sense doing
an Xa calculation if we do a Hartree-Fock one beforehand to calculate the exchange
parameter oy of the Xa method.

There have been several attempts [3] to determine the value of the exchange
parameter o of the Xa method. The most interesting ones seem to be those that
determine the value of the parameter a without adjustments. Gopinathan, Whitehead
and Bogdanovic [4] calculated theoretical exchange parameters. However, they
started out from the assumption that the density of the Fermi-hole varies linearly wiin

* Dedicated to Prof. K. Nagy on his 60th birthday
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the radial distance and the exchange parameters a(xgwg) they obtained were not good
enough so they had to introduce a set of scaled parameters a(xgwg) to get agreement
with the free-electron gas value. Gazquez and Keller [5] applying the method of
Gopinathan, Whitehead and Bogdanovic with another expression for the exchange-
hole density obtained theoretical exchange parameters. However, they also had to
apply an adjusting parameter.

In this paper a review of a method proposed by one of the authors [6] is given.
This method provides an ab initio self-consistent method for the calculation of the
exchange parameters a. In this method there is no need of any external parameter, the
exchange parameter is determined in the method itself, in a self-consistent manner. This
method can be used for molecules and solids, too. It is shown here that the expectation
values of powers of the radius and the total energy calculated by the Xa method with
parameters agcp are nearly as good as the Hartree—Fock ones. The ab initio exchange
parameters agcp are fairly close to the exchange parameters ay, and show a similar
behaviour vs atomic number.

The method

This way of theoretical determination of the exchange parameter « in the Xo
method starts out from the free-electron gas theory. The exchange potential of an
electron with spin up in the electron gas is given by [7]

Vx1(1)=—8F(n) (1)
where
1—n2. |149
pm In ——1_’7) 2)
and
3

where p is the momentum of the electron considered and pg is the Fermi momentum.
The total density of electrons having spin up is

Priss Z"i“?“i (4)

and a similar formula holds for electrons with spin down. n; and u; are the occupation
numbers and spin orbitals of the electrons, respectively.
The averaged exchange potential is given by

n2 2
| F(n)n*dn
n

VXT(1)= _8 "2
) ndn
m

; )
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which is an Xa exchange potential

(©)

with an exchange parameter

o bE g gt oo 1001 1%
a—{z(n )= 20" 1) ln|1_n L (7)

(Energy is in Rydbergs.)

If the average is taken over all the occupied states, i.e. n; =0 and n, =pg/pe=1,
the exchange parameter =1 is given. As it has already been shown by Slater [8] an
average of the exchange potential (1) for the total Fermi sphere leads to the exchange
parameter a = 1. If the averaging is done over a thin shell near pg,i.e. n, =(pg —¢)/pr and
1, =pg/Pr=1 and e-0, 2 =2/3 is obtained. This is the exchange parameter a suggested
by Gaspar [9] and later by Kohn and Sham [10].

Obviously, the reality is between these two extreme cases. On the one hand, there
is no need to average for the whole Fermi sphere to determine the exchange potential of
the one electron considered. On the other hand, the average must be taken for a shell of
finite thickness. Thus, the exchange potential is constructed by an averaging process
near the Fermi surface for a layer containing v, electrons in the unit volume, i.e. n, =
(1—v,/py)"”? and n,=1. v, is the density of the electron considered. The exchange
potential is given by

3 1/3

Viat = — 60gpen [5 Py] ’ (8)

where

P 1 1.4 2
Olgnen = — =+ =" —1) n 9
el v 2 4
and

(10)

Here we introduced a subscript “shell” emphasizing that the exchange potential (8) is
different for different spin orbitals, i.e. for different shells. To get an exchange potential
that can easily be compared with the original Xoa exchange potential, the exchange
potentials (8) are averaged over the shells

VXaT(r‘)(i) e 6‘11('?) (11)
Z M O%hen
() ="T—, (12)
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where o, is the exchange parameter of the shell i according to the formula (9). As the
expression (12) contains the spin orbitals, this a,(F) is not a constant, but it is a function
of the position 7. Of course, it is possible to introduce a constant exchange parameter o,
so that the mean squared deviation of the original Xa exchange potential

3 1/3
V() = — 6‘17[% PT(F):I (13)

and this modified exchange potential (11) be a minimum.

These exchange parameters «; and a; can be calculated self-consistently.
Starting out from a trial exchange parameter «, the Xa one-electron equations are
solved self-consistently. The spin orbitals obtained are used to calculate the new
exchange parameter a applying the formulae (9) and (10). With the new exchange
parameter o the Xa equations are solved again self-consistently, and so on. The
procedure is carried on until the self-consistent exchange parameter ogcp is obtained.

It can be emphasized that it is not necessary to apply the constant exchange
parameter a,. Instead, it is possible to use the exchange potentials (11) or even (8). In the
calculations presented in this paper the constant a has been applied as the results are
compared with those of other X« calculations having constant exchange parameters.

It can be seen that this metiod is self-contained. The exchange parameter o is
determined in the course of the calculation without any need of an adjusting procedure
or a parameter exterior to the method.

This method is not restricted to atoms or atomic ions. It can be straight-
forwardly applied for molecules and solids, too.

Results and discussion

A test of spin orbitals is offered by the expectation values of powers of the radius.
{r*), <r) and {r ') calculated for a few atoms and ions using self-consistent
parameters agcp and these are presented in Table I and II. The total electron density
here is normalized to 1. For comparison Hartree—Fock [11] and CI [12] values are
presented in Table I. Table II contains Xa results with oy, a=1 and a=2/3, too.
Hartree-Fock values and experimental data for {r*) obtained from diamagnetic
susceptibility [13] are also presented in Table II. The expectation values of {r?), {r)
and {r ') reflect the goodness of the spin orbitals and the total electron density. The
{r~ ') values show how well the electron densities behave in the domain of inner spin
orbitals nearer to the nucleus. The values {r)> and {(r?) show the behaviour of spin
orbitals in the middle and outer regions of the atom. In a recent article of the authors
[14], spin orbitals of Ne, Ar and Kr calculated by the Xa method with several
parameters a (among others og) have been compared. It was pointed out that the Xo
spin orbitals with ag. agree well with those of the Hartree—Fock method. Studying
Table I and II we can come to the same conclusion. The Xa results with parameters ogcg
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Expectation values of powers of the radius for a few atoms and
ions calculated by the Hartree-Fock [11], CI [12] and Xa

methods with self-consistent agep parameters

HF CI Xogcr

Li

<r2> 6.21038 6.12404 6.99186

{ar) 1.67325 1.66474 1.75168

Rty 1.90516 1.90587 1.87662
Be

) 432971 4.08138 4.37394

) 1.53221 1.49702 1.53807

$rTty 2.10219 2.10615 2.08613
C2 +

oy 1.15549 1.11799 1.10809

{r) 0.81968 0.80836 0.80495

ad) 3.35567 3.35947 3.37625
Ne

o 0.9372 0.9448 0.95914

{ry 0.78911 0.79221

&roty 3.11134 3.11677
Mg

r? 24676 2.3965 2.36169

{r) 1.02148 1.00746

ey 3.32672 3.32870
Ar

iy 1.4464 1.45700

{r) 0.89282 0.89276

ret) 3.87364 3.87412
Ca

r® 2.8283 2.70531

iy 1.06229 1.04900

' 4.00801 4.00615
CaZ +

() 0.8573 0.85301

135

are very close to the Hartree-Fock data. In several cases the Xag, values are as good as
the Hartree-Fock ones or sometimes they are even better. A comparison with the other
values of a show that the ager and oy, give better results than the a=1 or a=2/3.
Table III presents the total energy of some light atoms. In addition to Xa results
with exchange parameters agcr, Table III contains the Hartree—-Fock data [15], the
values obtained from the Hartree-Fock plus correlation energies [16], and the LSD
(local-spin-density) energies [17]. For Ne and Ar atoms Xo total energies calculated
using the parameters agwg and agws are also available [4]. The Xa total energy
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Table II

Expectation values of powers of the radius for Ne and Ar atoms calculated by the Hartree-Fock [15] and Xa
methods with ogep, oye, =1 and a=2/3 parameters. Experimental values (r?) are obtained from
diamagnetic susceptibility [13]

Xa
HF Exp

AscF oyF a=1 a=2/3

Ne
e 0.9372 0.84—-0.98 0.9591 0.9701 0.8509 1.0038
{r) 0.7891 0.7922 0.7959 0.7539 0.8070
Ty 3.1113 3.1168 3.1113 3.1782 3.0953

Ar
oy 1.4464 1.34—1.38 1.4570 1.4530 1.2948 1.4894
{ry 0.8928 0.8928 0.8918 0.8519 0.9004
@ty 3.8734 3.8741 3.8753 3.9277 3.8648

Table III

Total energy (in Ry) of some light atoms calculated by Hartree-Fock [15], Hartree—
Fock plus correlation [16], the LSD [17] and Xa methods with ag.r parameters

Z HF HF + correlation LSD Xofascr)

10 —257.095 —257.855 —256.427 —257.825
11 —323.720 —324.490 —322.847 —322.725
12 —399.231 —400.085 —398.234 —399.263
13 —483.755 —484.671 —482.587 —483.107
14 —571.710 —578.696 = —577418
15 —681.438 —682.479 —679.937 —680.968
16 —795.012 —796.199 — —794.567
17 —918.966 —920.296 - —918.508
18 —1053.638 —1055.096 —1051.792 —1053.117

determined applying the parameters agwg is —257.459 Ry for Ne and — 1054.657 Ry
for Ar. The Xa total energy calculated using the parameters agwg is —256.862 Ry and
—1052.947 Ry for Ne and Ar, respectively. It can be seen that the Xa method with
parameters agc generally gives nearly as good results as the Hartree-Fock method and
always better results than the Xa method with agws and agwg. The Xa total energies
with parameter agcy are often closer to the exact results than the LSD total energies
that explicitly contain correlation.

In conclusion, it can be found that the Xa method with ab initio self-consistent
exchange parameters is nearly as good as the Hartree-Fock method.
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ENTROPY IN THE UNIVERSE*

G. MARX

Department of Atomic Physics, Roland Eétvos University
1088 Budapest, Hungary

The relic microwave radiation indicates that the universe was in the state of thermal
equilibrium (heat death) in the past. The question arises: how could it happen that the universe
departed from the thermal equilibrium? According to the models presented here this was the
outcome of an interplay among dynamic instability, matter differentiation and weakening of some
interactions.

Past and future are so markedly
different because the universe
is still very young. (F. Hund)

Dynamical controversy

The success of the Newtonian programme has been due to the fact that the laws
of motion have been formulated in the form of time dependent differential equations
like

4="F(q), (1)
where q is a set of variables describing the state. The function F describes the specific

interaction, it can be obtained from local observations. In order to get the present state
q(1), beside the equation (1) of motion one needs also the initial condition

q(0). )

But this cannot be learned by experimenting in laboratories! One tried to borrow it
from elsewhere, but scientists of the last century were worried about such an alien
input. To be able to explain the material world by itself, a steady state universe was
postulated (at least on large scale):

G=0.

In this way physicists hoped to get g by solving time independent equilibrium
conditions:

F(g)=0.
* Dedicated to Prof. K. Nagy on his 60th birthday
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At the turn of the century, however, theoretical investigations led to inherent logical
and empirical contradictions:

Olbers’ paradoxon is well known: The intensity of the light reaching Earth from a
star being at distance r is proportional to r 2. The number of stars in a layer of unit
thickness and radius r is proportional to r?, so in a homogeneous universe, being in
steady state, each layer contributes to the brightness of the sky with the same amount.
In an infinite universe this would give a brightly glowing sky, so why is it dark at night?
— Clausius argued that in an eternal universe all differences would have levelled up, the
universe would have reached its state of maximum entropy long ago. How can it be hot
and cold, denze and empty at different places? — Seeliger stressed that the known
equations of motion cannot describe a static homogeneous universe, the potential
equation

Vip=4nGp

does not have an acceptable solution for a mass density constant in space and time. (G is
the Newtonian constant of gravity.) How comes that the sky does not fall onto our
head?

The greatest minds were ready to modify the empirical equations in order to
force a steady state solution. Finally Alex Friedman took the courage to acknowledge
that the physical equations of motion did not have static solution at all. He used the
equations of general relativity and postulated a homogeneous and isotropic universe.

2

1+ 2Kr

ds* =R(t)? [ +r*(d9? +sin? Sd(pz):l —c?de?.

The length scale R(t) can be obtained from Einstein’s equation

L 4, Gpfdx _,
—R*— — | — =K, 3
2 # R <3 8 )
General relativity also gives
dE+pdV=0

for an adiabatically closed world, in our case

4
d (47" R3pc2) +pd (T” R3) —0. @)

If the equation p = p(R) of state is known, Eq. (4) gives p(R) and the Eq. (3) enables us to
compute R(t). E.g. in a dust (nonrelativistic gas) dominated universe p<pc?,
consequently 4nR>3p/3 =M =const, and Eq. (3) gives

R2=2GM/R+2K (5)
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and all of its solutions show a singularity R=0. There is a combined empirical and
theoretical indication that K cannot be large. E.g. by putting K =0 and by choosing R
=0 as the origin of time, one gets

R(t)=(4.5GM)" 3?13 and p(t)=1/6nGt>. (6)

(Hawking and Penrose confirmed later that even if one dropped the specific restrictions
about p and p, the realistic solutions of Einstein’s equations could not be extended to
infinity in both directions of the time axis. Only empty universe could be static.)

The theoretical conclusion has been confirmed empirically by the observation of
the runaway of galaxies (the overall expansion of the universe). This has invalidated the
objections cited above.

Thermodynamical controversy

If the universe was dense in the past, how comes that the present cool world is not
dominated by medium-heavy nuclei having the deepest binding (like Fe) but it is
abundant in light elements (H, He, O, C)? Gamow offered the answer that the early
universe was hot. The entropy of the black body radiation at temperature T'is

4n? k4T3 1673 k*

B oo - 3,
45 K33 135 A3 s

If radiation has reached its thermal equilibrium,
dS=(dE+pdV)/T=0,
then S=const gives T~ R~ '. This results in a radiation (mass) density
Pead =(m/15)k*T*/R3c® ~R 4, (7
to be compared to the (nonrelativistic) gas density
Pgas=3M/AnR?>~R 3. (8)

By approaching the limit t—0, R—0, p,,4 diverges faster and exceeds p,,,. In the early
era of radiation dominance p~p,4~R ™ * so

plp=—4R/R).
Eq. (3) gives (for K=0)

R/R=(8nG/3)p. ©)
The two equations combined offer the solution

Praa =(T?/15)k*T*/h3c® =3/32nGt? (10)
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and from this one gets T~ '/2. In this way the thermal history of the past can be
reconstructed as far as the behaviour of matter is explored in high energy laboratories.

The prediction of the early hot universe has been confirmed by the discovery of
the cosmic microwave background noise. Radioastronomical observation has shown
that this radiation is highly isotropic (up to 4-5 decimals), its spectrum has a Planck
shape corresponding to a temperature T=2.7 K. This means that at present the
number of (microwave) photons exceeds the number of atomic particles by a factor of
10°, so the overall entropy of the universe is mainly due to photons, nowadays atomic
contribution is negligible.

By reconstructing the past of the universe by using the formulas R ~t%/3 (while
Pgas> Praa) and T4~ R ™!, one obtains that space cooled below 10* K within the first
million years. Before that it was kT > 1 eV, charged matter was completely ionized,
interacting immediately with electromagnetic waves. After that ions formed neutral
atoms, which became practically invisible for electromagnetic waves. Since that the
mean collision time of photons got larger than the age of the universe, so the relic
radiation depicts the state of the universe within the first million years! (The picture is,
however, red shifted.) The Planck shape of its spectrum tells us that the universe was in
thermal equilibrium 103 years after its origin! (No wonder: gravity was able to
thermalize the very early — hot and dense — universe within Planck time.) The relic
radiation we observe is not a bliss of creation but the glow of hell!

Our world certainly is not in thermal equilibrium now. How can a closed system
get out of thermal equilibrium? This question is a burning one since decades [3]. In the
next chapters models will be presented to show that the rejuvenation of our world is the
outcome of an interplay among dynamical instability, matter differentiation and
weakening of some interactions [11, 12].

Gas model

Let us consider two equal containers, one filled with argon gas, the other with
nitrogen gas; both at 2 atm pressure and 200 °C (Fig. 1A). The equal temperatures are
consequences of a thermal contact between the two pistons. In this equilibrium state
there is no arrow of time. — Remove now half of the weights! Both gases expand
quickly. By raising the pistons, they perform the same work against gravity at the cost
of their internal thermal motion. The monoatomic argon cools to 76 °C, the diatomic
nitrogen cools to 121 °C (Fig. 1B). Nitrogen molecules store energy in the form of
molecular rotations as well, so in order to perform the same work, nitrogen gas has to
cool less.) Expansion against gravity created temperature difference! (One could even
drive a steam engine for a while.) But heat conduction starts immediately to level up the
temperatures, the appearance of an arrow of time is only a transient phenomenon. Due
to the weak (thermal) coupling between the two pistons, they will soon reach a new
thermal equilibrium at a common temperature of 104 °C.
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0O 0 » *® % B .3 *
o o *
1Rp° oo
20°C 20<C
Fig. 1A

To build up this model to aclosed system, let us assume that Einstein’s world is
filled with two gases: one is monoatomic, the other is diatomic (with molecular masses
m,, m 2 and with temperatures Tt, T2; each of them containing n/2 molecules within a
sphere of radius r). The energy, pressure and entropy of the gas mixture are:

E=(N/2)(mlc2+ 15fcTI+ K c2+ 25«kT2), (11)
P=N(kT1+ kT2y2V, (12
S=0.75kN INT2+1.25kN INT2+ kN\n V. 13

The Einstein’s equation (3) reads for k = 0:
k 2= 2GE/Rc2 14
or by introducing dimensionless variables

r—Rmec/h, x =kTl/2(ml+m 2)c2, y = eT22(m1+m2)c2 (15)
one gets

f=g\_N(I+3x + 5y)/ry 12. (16)
The entropy (13) can be expressed by the same variables:

s =(kN/) [In(xV) + In(y5r6)]. ()
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Now one can imagine three different scenarios:

Scenario A: There are no collisions between different molecules (T, =T5, S,
=const, S,=const separately, complete thermal isolation). As space expands
according to Eq. (16), both gases cool down independently and adiabatically:

2 e R B 2 L (18)

evidently conserving the overall entropy (17) as well. The different molar heats result in
different cooling rates (18), so temperature difference will be created, mainly in the fast
initial phase of the expansion (Fig. 2A).

a=0

a=3

a=30
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Scenario D: There are frequent collisions between all sorts of molecules (7} = T).
During expansion both gases cool at the same rate:

X poup 13 (19)
Matter is in thermal equilibrium all the time (Fig. 2D):
S=2N In (xr'-%)=const.

Scenario B: There are frequent collisions among monoatomic molecules,
frequent collisions among diatomic molecules, but rare collisions among different
molecules. The thermal coupling of the two gases is not enough to equalize their
temperatures, but there is a sort of modest heat conduction between them:

X = —2xF/r+ A(y—x)/3, (20)
y=—1.2yr/r— A(y —x)/5. (21) -

(The first terms on the right hand side take the expansion cooling into account, r ~ 4,
where 4 is the de Broglie wave length of molecules. The second terms describe the heat
conduction. Here the factors are chosen so that Eq. (4) is satisfied all the time.) Now the
behaviour of this system is described by the equations (16), (20), (21). As indicated on
Figures 2B-C, the early fast expansion creates temperature difference, but the
temperatures equalize in the later — more quiet — phase, as a consequence of heat
conduction. Any temperature difference is a transient phenomenon, its duration
depends on the value of the conduction coefficient 4. Heat conduction is surely
irreversible, producing an increase in the entropy S (Eq. (13), solid lines on Figures 2B
G):

dS>(dE+pdV)/T=0. (22)
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This last remark deserves some attention. In scenario D the expansion started
from and went through equilibrium states, so the entropy was constant (because it had
already its maximum value). In scenario B one experienced a sequence of non-
equilibrium states with irreversible process going on, consequently the entropy started
from the same value as in scenario D, but later it increased! How is it possible for S to
increase above the maximum value? The straightforward answer is that after the first
moment different scenarios (different conductivity coefficients) led to different
universes. According to scenario A the pressure behaves (Eqs (12), (18), 19)) like

p=pola*+4*?)/2, (23)
where g=R(0)/R(t) is the inverse expansion ratio. In scenario D it behaves like
P=pyq*?, (24)

being smaller than in the earlier case (Fig. 3). In scenario B the pressure is somewhere
between the values (23) and (24). If one starts the integrations from identical initial
conditions, at a later time t the sizes of R(t) will be different in different scenarios.
(Smaller conductivity A, larger entropy S leads to faster expansion.)

Model of gas with radiation

Let us consider an expanding Einstein’s world filled with ionized plasma and
radiation. At a certain temperature neutral atoms will be formed, the (monoatomic) gas
decouples from thermal radiation, both expand adiabatically, but independently of
each other. The gas temperature T; deviates from the radiation temperature T,. This
leads to irreversible phenomena.

This happens in our actual universe.

Our second model deals with such a two-component system, expanding against
its own gravitational attraction, consequently cooling. The energy, pressure and
entropy of the system are:

E=Nmc?+ L.SNKT, +(n?/15) (k*/H3c}) T4V, (25)
p=NKT,/V+(n?/45) (k*/F*c®)T?, (26)
S=1.5kN In T, + kN In V+(4n?/45) (k*/H>c*)T3V. 27)

Einstein’s equation (14) is with dimensionless variables:
2 =02Gm>c>/h?) [N(1 + x)/r + br?y*], (28)

where x =3kT,/2mc?, y=3kT,/2mc?, r = Rmc/h and b= 64n>/3645. The entropy of this
two-component system can be expressed with the same variables:

S/k=1.5N In (xr?)+2b(yr)*. (29)
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Now let us consider again three scenarios:

scenario A: The neutral atoms do not interact with radiation, the two
components cool adiabatically (A~R), but due to their different scaling behaviour
(energy quantum=nhe/k for photons and=/i2l8mA2 for atoms) the nonrelativistic
component cools at a much faster rate (Fig. 4A):

X~r~2, y~r~1. (30)

Each term of the entropy (29) remains constant.

Fig. 4B

4 Ada Physica Hungarica 62, 1987



148 G. MARX

Scenario D: There are frequent collisions between the atoms and photons, so they
have a common temperature (x=y). The x(r) function can be obtained from the
equation

S/k=1.5N In (xr?)+ 2b(xr)* =const. (31)

By substituting x(r) into Eq. (28) and by integrating it numerically, one gets an
expansion through equilibrium states (Fig. 4D).

Scenario B: There is now a weak heat transfer which tries to level up the
temperature difference, created by the different expansion rates of the adiabatic
cooling. If one writes

X = —2xF/r+(A/N) (y—x), (32)
y=—yijr—(A4/4br’y®) (y—x), (33)

the condition (4) of the Einstein’s equations is satisfied, but the irreversible heat transfer
from radiation to the cooler gas increases the entropy (29) (solid lines on Figures 4B-C).
The integration may always start from isothermal equilibrium (let us say, from the
formation of neutral atoms out of ions). In case of strong thermal coupling equilibrium
states follow each other (S = const, Fig. 4D). In case of weak coupling non-equilibrium
states emerge, leading to irreversible processes and to increase of entropy (Fig. 4C).
Again, there is no paradoxon in this conclusion: at a given time ¢ the actual size R(t) of
the universe depends on the chosen value of 4. The difference in the expansion rates
becomes considerable at the time when the densities of gas and radiation are
comparable. No wonder: the escape from thermal equilibrium is a consequence of an
interplay between the dynamical instability inherent in the equation of motion (3), (28)
and the differentiation of matter (the different adiabatic cooling rates (30)).

Realistic cosmological models

In this Chapter we shall shortly recapitulate, how current cosmological models
depict the history of our universe, in order to explain its present structure. We shall do it
in order to be able to show that in certain time periods two components of cosmic
material decouple from each other, consequently they cool at unequal rates, in this way
irreversible non-equilibrium processes may start, which lead to transient processes and
may enable structure formation. Some of these transient structures give the
characteristic face of our world. (This reminds us of a cloud chamber. At the beginning
the air-alcohol-gas mixture is compressed — it is in thermal equilibrium at room
temperature. We expand the volume quickly, which produces an adiabatic cooling. At
the low temperature the new equilibrium state would be air + liquid alcohol. But the
formation of droplets needs time, so for a transient period one has air + overcooled
alcohol vapour. This is just the short sensitivity period of the cloud chamber: if an
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ionizing particle passes through the chamber, its trajectory will be made visible by the
chain of droplets formed around the ions.)

In order to be specific, we use the standard cosmological model, complemented
with the inflationary scenario of the Grand Unified Theory (GUT).

Bottleneck 1: Let us recall the formula (5). If K <0 then R(t)— o0 is excluded.
After a finite time expansion stops and then the world will collapse. The condition for
the universe to be practically infinite in space and time can be taken from Eq. (5):

P=Peis  Where p.;=(3/87G) (R/R)’ =3/8nG>. (34)

The present expansion rate is known empirically: 7~ '=R(t)/R(t)=50 km/s per
megaparsec, leading to the value p,;, = 10%° kg/m?*. Astronomical evidence indicates
that the actual value of p cannot differ from this critical value by orders of magnitude.
Using formula (34) in Eq. (5), taking the solution (6) into account one gets

l_p/pcril__-zK/RzN!-

If there was |1 —p/p.. | > 10712, say, at 10~ *° s when thermal equilibrium was first
established, this deviation would have increased (proportionally to the age ¢ of the
world) to 10** till today! If p~ p,;,, there would be no galaxies on the sky. If p> p_...,
the world would have collapsed long ago. What could be the explanation that the
universe was extremely fine tuned to p=p_,,, i.e. to K=0? [4].

According to GUT the early universe thermalized itself by gravitational
interactions within Planck time. At such high energies all particles were massless, all
gauge interactions were of the same strength, matter behaved like black body radiation.
(Its Gibbs free energy was zero.) The differentiation of matter into light and heavy
particles, differentiation of forces to weak and strong interactions can be attributed to a
phase transition: the freezing of the vacuum resulted in an order parameter W>0. As a
consequence different particles picked up different rest energies: m;c? = g;W> 0. During
the vacuum phase transition a latent heat (Q per unit volume) was liberated which
warmed the world to a temperature T(Q ~ T*). This heat may be the origin of the huge
entropy what we observe now by radio telescopes in the form of microwave noise.

The cooling of the early universe was very fast, due to the rapid expansion (for
small r values 7 ~r ! in Eq. (28)). But freezing of vacuum (to start formatting domains
with non-vanishing order parameters) needed a certain time. So the universe was
actually overcooled for a considerable period [6]. An energy density Q remained latent
in the ’liquid vacuum’ in spite of the low temperature of its particle content. If Q
dominates over the Stefan Boltzmann energy density then Eq. (9) takes the form

(R/R)?*=8nGQ/3c? =const,
Le.
F/r=1/t1o=const
with
10 =(3¢*/87GQ),

*
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giving the exponential solution
r(t)=r(to) exp [(t—to)/70] .

If the duration t —t,, of overcooling is large with respect to the constant z,, the universe
might be inflated by many orders of magnitude. The inflation of r makes the last term
negligible in Einstein’s equation

(R/R)*=8nGp/3+2K/R,

which is equivalent of saying that after inflation K may practically be set zero.
Conclusion: space and time enough for our world has been created by the
thermodynamical disequilibrium between the (still liquid) vacuum and the (already
cool) particles.

Bottleneck 2: Radiation has higher entropy than hydrogen gas of the same

energy. Annihilation of protons plus electrons into photons would increase disorder in
an irreversible way. According to GUT such transitions may go via the hypothetical X
PARE p+e—Xophotons.
There are still protons around: one for 10° photons. (Luckily not too many. One per
million would have made the universe recollapsed long ago. One per trillion would be
not enough to start galaxy buildup.) How comes that in our cool world atoms did not
annihilate long ago?

At kT >m_c? quark matter and antiquark matter were in thermal equilibrium
with X particles and radiation, which meant equal number of quarks and antiquarks.
When kT dropped below m,c?, the equilibrium number N, ~exp (—m,c?/kT) of X
particles became practically zero. The actual decay of X particles was, however, weak
and slow, so they survived for a while in the cool environment. When they decayed in an
irreversible way, they produced a tiny excess of quarks over antiquarks, due to the
observed slight inherent asymmetry of weak interactions. If we assume that at this time
X was one sort out of 10® sorts of particles, and if N was the overall number of particles,
then N, =103 N. If the semileptonic branching ratio is assumed to be 10~ 3 and if the
asymmetry of weak decay is 102, then the number of quark excess produced by the
decay of X particlesis B=10"2-10"3- N,=10"° N. Later on antiquarks annihilated
with quarks, only the excess quarks survived. Almost all particles decayed into
photons, their entropy has been transferred to what is called today photon entropy.
This means that the present photon number is & N. Thus the present ratio of baryonic
charge to photon number can be estimated to be B/N ~ 10~ °, in acceptable agreement
with the empirical evidence. The universe has cooled down so fast, that a tiny fraction of
its material got trapped in the quark state (of low entropy). Quarks may decay into
radiation (of high entropy) only by tunnelling slowly through the X barrier (Fig. 5).
Their decay lifetime is estimated to be Innger than 10*° years. This is why our present
world (stuffed mainly by photons) still contains some quarks (condensed into protons
and neutrons) as overcooled transient relics from the hot kT >m,c? era. It contains
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Fig. 5

protons enough to make stars and planets, but not enough to terminate world history
too early by a collapse.

Bottleneck 3: After quark—antiquark pair annihilation one had mainly photons
and leptons in equilibrium due to electromagnetic and weak interactions. When the
densities and energies became low, weak collision time became longer than the age of
the universe, so neutrinos got decoupled from the electron—positron—photon plasma.
Both components cooled adiabatically according to the law T~A " '~R™'.

When kT dropped below 2m,c?>=1 MeV (after about 1 s), electrons and
positrons annihilated into photons, in this way they transferred their entropy to the
electromagnetic radiation, increasing the photon temperature:
4n? (1 7 7) TR ol .

S=Sua+8e-+5e: = 55 HS 45 R

i g El g
giving T, = Toq (11/4)'/3, Since this era the neutrinos became a bit cooler than
photons: T,=(4/11)!/3T,,,. The present temperature of weakly interacting massless
particles must be lower than the measured temperature of photons, 7,4 =2.7 K. ‘Cold’
particles are not warmed up because weak collisions like v+e—e+v are very rare.

Bottleneck 4: In the cooling universe the quark excess condensed to neutrons and
protons. Their number ratio was given by Boltzmann’s formula:

N(n)/N(p)=exp [—(M,— M )c*/kT],

i.e. practically one while kT > (M, — M )c*=0.75 eV. The temperature dropped below
this value after the first second. At lower temperatures the equilibrium number of
neutrons is practically zero, but their actual decay into protons n—p* +e” +vis a
weak and slow process, taking about 10 minutes. Free neutrons survived for a few
minutes in a cool world where nuclear binding already became possible. This is again a
non-equilibrium situation! Some of the neutrons got captured by protons, making light
nuclei, others decayed. When the free neutrons disappeared, the nuclear buildup
stopped before establishing an equilibrium distribution of chemical elements. Heavy
hydrogen and lithium are excellent nuclear (fusion) fuels, so they could not originate
from hot stars, only in the cool outer space, when free neutrons were still present. Their
further fusion is prevented by the mutual Coulomb repulsion of the positive nuclei.
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Bottleneck 5: In the first 10° years, above kT >1eV gases were completely
ionized. The charged ions were coupled to light by electromagnetic interaction, so ion
temperature and photon temperature were equal. When the world cooled below
ionization temperature, electrons were captured by nuclei. The neutral atoms
decoupled from electromagnetic waves. As shown in our second model, nonrelativistic
gas cools like R ~ 2, radiation like R ~!. While radiation cooled from 10000 K to 100 K,
the gas cooled from 10000 K to 1 K. Again temperature difference was created! In the
cool hidrogen gas (slightly contaminated by light eclements) statistical fluctuations
produced mass concentrations. If these clouds were large enough, their excess gravity
helped them to survive against thermal motion. Unluckily this happened too late: the
gas density in the universe was too low to make galaxies. The galaxy formation might
start earlier if there were cold (weakly interacting) nonrelativistic particles (like massive
neutrinos [7]) around. Because they were not coupled to electromagnetic radiation,
they started the faster nonrelativistic cooling T~ R ~? much earlier, reaching a very low
temperature till today. These slow particles (affected by gravity) might build up the first
astronomical objects (neutrino superstars?) before the formation of neutral atoms. The
gravitational fields of these (neutrino?) superstars were already present when the
neutral hydrogen gas appeared. The neutral atoms cooled and fell into the
gravitational wells of (neutrino?) superstars, forming the first hydrogen clouds, which
later differentiated into galaxies and stars [2, 8, 9, 14].

Bottleneck 6: The present atomic universe contains today 75% hydrogen, these
simplest nuclei, in spite of the fact that iron offers the deepest binding energy per
particle. Nuclear material was trapped in hydrogen (characteristic for a hot thermal
universe) because the fast cooling and the electric repulsion among positive nuclei
prevented reaching nuclear equilibrium appropriate for a cold world. Later the
contraction work of gravity heated up some fragments of matter (called stars) to several
million degrees, offering a new chance for nuclear fusion. The first step would be the
'H + 'H—2He reaction, but *He isotope does not exist. (This is why the Sun does not
explode like an H bomb.) The only slight chance for lasting fusion is a simultaneous
weak decay:

'H4+'H-2He—»*H+e" +v. (35)

From now on fusion may run via strong interactions, but the ‘weak’ bottleneck at the
first step (35) slows down the nuclear fusion chain from microseconds to billions of
years, offering ample time for biological evolution.

The Ultimate Bottlenecks: Our universe is about 16 billion years old. It is made
mainly of thermal radiation, but some surviving protons, light elements, stars and
planets give it the shape we know. There exists a thermodynamical arrow of time. How
long will these transient disequilibrium phenomena last? This is under discussion in
recent literature [1, 5].

Nuclear material will be transformed into iron, stars will become black dwarfs,
neutron stars or black holes in 10'° or 10'? years.
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Protons may decay into positrons and radiation, stars and planets may crumble
away through X tunnelling in 10%° to 1032 years.

Positrons (of proton decay) and electrons (left over from atoms), massive
neutrinos and antineutrinos will annihilate into radiation in 10*° to 108° years (if
leptons remain bound in (neutrino?) superstars).

Even black holes may annihilate in 107°—10°° years.

In about 10'°° years matter may turn ‘back’ into radiation (without rest mass,
possessing ‘maximum’ entropy), if the expansion is not too fast (K =0). (Some fast
expanding scenarios with K <0 prolong the existence of some massive particles ad
infinitum [5].)

Conclusion

The discussion of some simplified and other more realistic models has shown
that in order to be able to explain the (transient) deviation of the universe from thermal
equilibrium, beside the inherent instability of Einstein’s equation one has to take into
account the (transient) differentiation of matter: the emergence of ‘weak’ forces, which
can make the rate of thermalization among different components of matter slower than
the creation of thermal differences by adiabatic expansion.

Gravity created stars and planets. Strong interactions created protons, neutrons,
nuclei: they stabilized the chemical elements. Electromagnetic interactions created and
stabilized atoms, molecules, solids. And weak interactions created the arrow of time.
All together have shaped our world as we watch it today.

Appendix: Computations

The equations of the Gas Model (16), (20), (21) were rewritten for computation as

ri=ro+d[N(1+3x¢+5y0)/rol*?,
x1=x0(r0/r1)2, Y1=Yo("o/"1)”2,
x, =Xy +(ad/3) (y, — x,), y2=y1—(ad/5) (y,—x,),

where d=g - At. By starting with e.g. N=1, x=y=0.4, d=0.03 one gets at t=10 the
following values:

r=7.032 and S—S(0)=(0) if a=0
r=17.008 222 1
r=6.991 92 4
r=6.983 39 10
r=6978 8 40

showing how different heat conductivity coefficients lead to different universes of
different (actual and ‘maximum’) entropy values at a given later time. (As a rule, higher
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entropy leads to faster expansion and larger size.) These initial conditions were used in
Fig. 2, the two temperatures (thin lines) and the entropy change (solid curve) were
plotted for the time interval 1-40 (139 steps). Fig. 2A is for a=0, Fig. 2B for a=3,
Fig. 2C for a=30, Fig. 2D for a= 0.

The equations of the Gas + Radiation Model were rewritten for computation as

ry=ro+d[N(1 + xo)/ro+bygrs]"/?,
x1=x0(r0/r1)2, Y=Yoro/T1>
Xy =x; —(ad/N) (y; —x,), y2=y, +(ad/4br y,) (y; —x,)

(with ad = AAt). In our computation we used the initial conditions N =0.0001, x=y
=0.3, d=5, r=1. (At these initial conditions the masses of gas and radiation were
comparable, so the interplay of the two components could manifest itself in creating
temperature difference and irreversibility.) At t=1000 (after 200 steps) this gave the
following values:

r=12.096 and S—S(0) if a=0
r=12.094 173 10
r=12.087 108 10
r=12.089 27 10
r=12.052 1 10

It can be seen how higher entropy is related to faster expansion. The same initial
conditions were used in Fig. 4, when the two temperatures and the entropy curve was
plotted in the time interval 0-700 (in 139 steps). Fig. 4A has used 4 =0, Fig. 4B has used
A =10, Fig. 4C has used 4= 10, Fig. 4D has used A= c0.
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ENERGY-ENERGY CORRELATIONS
FOR THE pp COLLIDER*

F. CsIKOR and G. POCSIK
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1088 Budapest, Hungary

Hadronic energy—energy correlations (EEC) for the pp collider are defined and calculated in
QCD in the colliding parton center of mass frame of each event. Normalized EEC calculated from
only those events for which the parton and the pp center of mass frames coincide is also investigated.
Itis shown that in both cases the normalized EEC are quite insensitive to the choice of parton density
parametrizations and may thus serve as reasonable tests of QCD.

Jet physics for the pp collider has been a very successful field in the last years [1].
Experimentally determined inclusive jet yields reasonably agree with the QCD
predictions. The clear emergence of two jet events makes possible a direct study of the
underlying parton—parton interaction, too. On the other hand multijet final states are
not yet studied in detail. Only well separated three jet systems were studied by
measuring p,,, distributions (where p,,, is the momentum perpendicular to the plane
defined by the colliding pp and the highest transverse momentum jet.) To study more
complicated final states it is natural to take over experience obtained in e*e”
annihilation.

In this note we discuss the ways energy—energy correlations (EEC) — which have
proven to be very useful in e*e™ annihilation — may be defined for the pp collider.
Though next to leading order calculations are not expected to be available in the near
future, we mention that EEC are properly defined, “infrared safe” cross sections, which
are finite in higher order QCD [2]. EEC are sensitive to two jets only through jet
fragmentation, while the first real contribution comes from three jet final states. On the
other hand, measuring EEC it is not necessary to set up a specific jet definition, EEC is
simply defined in terms of observed hadron energies. The EEC cross section is not a
Lorentz invariant quantity. To be as close as possible to the e* e~ annihilation case, we
shall always define EEC in the colliding parton center of mass frames of each event. A
different definition of EEC the so called transverse EEC is given in [3].

We define the normalized energy—energy correlation function as

ErsE =00
1
Z=EF e

N
F(COSX)_N g Axsmx

* Dedicated to Prof. K. Nagy on his 60th birthday
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where the label A specifies the event A=1,...,N and the energies and angles are
measured in the center of mass frames of the colliding partons. This frame will be
identified with the rest frame of the (hard scattered) final state hadrons. The first sum is
over the accepted events (see later), while the second sum is over all pairs of accepted
hard scattered hadrons a, b, whose momenta are at relative angles between y and g
+A4y. E 4, E 4, are the energies of particles a, b and E , is the total energy of the (hard
scattered) final state hadrons in event 4. F(cos ) satisfies the usual normalization

1
condition: [ F(cos y)acos x=1.
1

The accepted events/particles may be defined in several ways resulting in
different EEC functions. For obvious reasons, we impose the usual pseudorapidity
cuts, i.. | y| < ymax ON the accepted hadrons. Second, we require that the total transverse
energy E of the accepted hadrons be larger than E,;,. This requirement should ensure
that the event is a hard scattering one. The EEC function defined with these
requirements we shall call F(cos x). Thinking on the parton level, it is the three parton
final state, which first contributes. It might happen e.g. that in a given three parton final
state only two partons lie in the accepted phase space region. Such events will
contribute only at y=180° (and by self correlation at 0°), since the Lorentz
transformation to the rest frame of the detected partons makes the event back to back.
Since the fixed order QCD prediction is reliable only for é < y < 180° —d(6 ~ 30°) such
events do not contribute in the interesting y range. Alternatively, one might exclude
events, which have a large total transverse momentum.

Determining F,(cos y) one has to make a Lorentz transformation for each
accepted particle into the rest frame of the final state hadrons. To avoid this one may
accept only those events for which the colliding parton center of mass frame coincides
with the pp center of mass frame. The EEC function defined in this way will be called
F,(cos y).

The lowest order (leading log) calculation of the EEC function F,(cos ) is in
principle straightforward. We have to calculate the convolution of the structure
functions with the 2— 3 subprocess cross sections (known from [4]), insert a  function
to keep the relative angle of the detected partons fixed, multiply by the appropriate
scaled energy factors, and sum up for all pairs of final partons. To lowest order the
normalization cross section (o) is given by a similar expression involving the 2—2
subprocess cross sections [5]. Schematically

(2)

To calculate the EEC function F,(cos y) one has to proceed similarly, keeping however
the momenta of the colliding partons equal in magnitude.
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Since the normalized EEC functions F;(cos y) are ratios of integrals both of
which contain the parton densities G, |,, G,, 5, it is expected that the sensitivity to the
parton density choice will be less than e.g. for the inclusive jet cross section case (where
it is very large, see e.g. [6]). To study this expectation (following [ 7]) we have used two
different parametrizations: the Owens—Reya (OR) [8] with 4=0.5 GeV and the
Gliick—Hofmann—Reya (GHR) [9] parametrization with A=0.4 GeV. Following [7],
in the OR case we have put Q =p and in the GHR case Q =2p in the denominator of
Eq. (2) (i.e. 64rm), While for the numerator (involving the 2— 3 subprocesses) we have
used Q=p, (OR) and Q@ =2p; (GHR). (py is the average transverse momentum of the
three final partons.) Our results are shown on Figs 1-4 for . /s=540 GeV.

Fig. 1 shows F,(cos y) for different values of y,,, and different parton density
parametrizations. The sensitivity to the parton density choice is 10-20%;, small indeed.
Fig. 2 shows the E,;, dependence of F(cos y) at y =90°. It is remarkable that F is quite
insensitive to E_;,. The reason is again that both the numerator and the denominator
in Eq. (2) depend on E,;, in approximately the same way. Fig. 3 shows the E_;,
dependence of the normalizing cross section o, (the denominator in Eq. (2)), which of
course decreases fast with increasing E ;.

Fig. 4 shows F,(cos y) for different values of y,,, and different parton density
parametrizations. The sensitivity to the parton density choice is again 10-20%,.

Figs 1-4 show the lowest order (leading log) QCD results. The pure QCD
predictions will be modified, when parton fragmentation is taken into account.
Experience obtained with e "¢~ annihilation shows that fragmentation corrections are
not negligible even at energies comparable to the Z° mass [ 10]. EEC are sensitive to the
choice of fragmentation models applied. This sensitivity — though a great, important
challenge — is not very large, it is usually less than 20%,. Referring to the e*e”
annihilation experience we do not expect larger sensitivity in the pp EEC case either.
Also it is clear that the EEC asymmetry, (defined as A(cos y)= F(—cos x)— F(cos x)) is
less sensitive to the 2 parton final state fragmentation, than the EEC itself. To take into
account fragmentation corrections in the pp case (and check the above expectations)
the only possibility is to perform a complete M.C. calculation with one (or several) of
the existing fragmentation models. This is, however, outside the scope of the present
note.

Another source of correction is that our definitions of accepted events/particles
will necessarily include some low energy hadrons belonging to the spectator jets.
Because of the presence of the energy factors in the definition, we estimate that this
correction may be small [11].

In summary, we have defined two kinds of parton center of mass frame
normalized energy—energy correlation functions. Both of them (and F,(cos ) more
easily) could be determined from existing collider data. A precise comparison with
QCD predictions (Figs 1-4) will be possible if fragmentation corrections are properly
included. Since fragmentation corrections change both the numerator and denomi-
nator of Eq. (2), we expect that the net effect will be smaller than in the e*e”
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£, (cos X)

Fig. 1L The EEC function F[(cosy) for different ymx cuts and parton density parametrizations
for Emi,,= 40 GeV

F, (cos X =0)

0.5 -

"L . ; ; . \ ;
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Fig. 2. Em,,dependence of E,(cos y=0) with OR [8] parton density parametrization and ymal=1.
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Fig. 3. E,;, dependence of the normalizing cross section of @, 0f F (cos x) with OR [8] parton density
parametrization and y,,.=1.73
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Fig. 4. The EEC function F,(cos y) for different y,,,, cuts and parton density parametrizations
for E;, =40 GeV
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annihilation case. The theoretical uncertainty of the prediction will be quite small
(including scale ambiguity, parton density choice ambiguity and fragmentation model
sensitivity, we estimate it to be less than 40%;), thus making experimental determination
of normalized EEC functions a very reasonable test of QCD in pp collisions.
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BOUND STATE PROBLEM*

K. LADANYI

Institute of Theoretical Physics, Roland Eétvds University
1088 Budapest, Hungary

_The structure of the scalar Bethe-Salpeter equation is studied in the coordinate space.
Expansion methods are applied to derive a generalized matrix eigenvalue problem. The standard
truncation procedure is modified by using a least-squares variational method.

1. Introduction

The Bethe—Salpeter (BS) equations [1-3] offer an efficient theoretical tool to
solve relativistic bound state problems. Important progress has been made by using the
ladder approximation along the lines suggested by Wick [4], Cutkosky [5], Schwartz
[6], and Schwartz and Zemach [7]. (For reviews and early developments see [8-10].)
Generalizations of the standard ladder approximation have been presented in order to
analyse the asymptotic behaviour of the spinor BS wave functions at short distances
[11-14]. The short-distance properties of the BS wave functions lead to a number of
predictions for the covariant observables, such as structure functions, distribution
amplitudes, form factors, anomalous magnetic moments, and other hadronic
properties [15-19]. In addition, the short-distance analysis is a crucial ingredient in
bound-state calculations which involve the selection of the admissible asymptotic
solutions by using the BS normalizability condition [8, 20].

In the present paper we investigate nonperturbative expansion methods which
can be applied to the solution of relativistic bound-state problems. The BS equation
will be formulated in the space of a complete set of normalized basis functions. In this
way, we arrive at a generalized matrix eigenvalue problem which is ideally suited for
machine computations, since it gives a systematic procedure for generating a sequence
of higher approximations. Applications of the Rayleigh-Ritz method [21] will be
discussed. In addition, we suggest a least-squares variational method based on a
convenient error functional [22]. A similar procedure has been already applied to
avoid the spurious solutions which may appear in the application of the standard basis
set expansion methods to the Dirac eigenvalue problem [23]. (The least-squares
method can also be extended to the scattering theory [24-27].) As an illustrative step,
we next consider the scalar BS equation of unequal-mass systems in the bound-state
region.

* Dedicated to Prof. K. Nagy on his 60th birthday

Acta Physica Hungarica 62, 1987
Akadémiai Kiadé, Budap




162 K. LADANYI
2. Ladder approximation

Let us start by writing down the simple interaction Lagrangian
gl
L1=—5[Z¢f¢¢+:¢§¢:]- (2.1)

Here the quantum fields ¢(x), ¢,(x), and ¢(x) generate scalar particles of rest masses
m,, m,, and k, respectively. The definition of the covariant BS wave function 7, is the
following

Tp(x1, X2) =<0| T (x,)P1(x,) | Pp), (2.2)

where |®,) is the Heisenberg state of the composite system which can be characterized
by total four-momentum P,. The ladder approximation of the wave function 7,
satisfies the BS equation

(O +m)ep(xy, x,) (O, +md)=

1
=9 = Dz K)p(xy, %), (23)
with z=x; —x, and
1 exp (iq"z,)
) Y L 4
D(z; k%) o P e (2.4)

Translational invariance implies

Tp(x1, X2) = @p(z) exp [ —iP, (X} + p2x3)] (2.5)

with the restriction u, + u, =1. The calculations will be carried out in the center-of-
mass (c.m.) coordinate frame by choosing

Po=E, P,=0 (j=1,2,3), (2.6)

where E is the total c.m. energy of the system.
The Wick-rotated relative BS wave function y/(x) is given by [4, §]

Y(x)=@p(—ixy, X;). (2.7)

Here the vectors z* have been rotated to the real Euclidean values x;=z/(j=1,2,3) and
x.=iz°.
We shall apply the following notations

4
O=0,0,= Y 0%/dx?, (2.8)
v=1

o (2.9)

1

N

R=(xvxv)1/2’ xVxV=
L
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The BS equation of the Wick-rotated wave function i/(x) can be derived by using
Eqgs (2.3)12.9). One obtains

[F(x)—g*V(R; k*)]y(x)=0, (2.10)
where g=g'/4n,

0
F(x)= [—D +2u,E — —ufE2+m%] x

0x,
0 2p2 2
X | —0-2p,E-— —p3E*+mj |, (2.11)
(JX4
and
Sl
V(R; k%)= —R—Kl(xR). (2.12)

(K 1s the first-order modified Bessel function.) In the short-distance limit we get
V(R;k*)=4R *+42xInR as R—O0. (2.13)

The numerical calculations can be simplified by applying the Vosko approximation of
the interaction kernel V(R; k?) [28]. This approximation is of the form

4
V(R; k*) ~ - R72[(1+kR)e *®+a(1 +2kR)e ™ **X], (2.14)

where a=0.66746. In the subsequent part of this paper we shall choose the convention

1
=== (2.15)

In addition, the mass scale will be fixed by

m;=1+6, my=1-3, |d]<1. (2.16)
The BS equation of equal-mass systems (6 =0) becomes
[Fo(x)—g*V(R; k*)]Y(x) =0, (2.17)
where )
EZ 2 2 62
Fo(x)—<~D+1—T) —E e (2.18)

Notice that Eq. (2.17) leads to the Wick—Cutkosky model [4, 5, 8] if the exchange mass
K is zero.
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3. Separation of the angular variables

a) Expansion of the scalar BS wave function in partial
wave amplitudes of O(4)

We shall use the angular variables 0, 9, and ¢ as defined by

x, =R sin 6 sin 3 sin ¢, X, =R sin 6 sin 3 cos ¢, (3.1)
x3=Rsin fcos 9, X4=R cos . (3.2)

One obtains
r=Rsin6, - r=(2+x3+x3)'2. (3.3)

The BS equation (2.10) is invariant under rotations in the three-dimensional subspace,
and the wave functions /(x) can be characterized by the total angular momentum
quantum numbers J and M. Thus, we have

Y ()= ypl(x) = P,(r, x4) Yy(9, @). (3.4)

Here Y,,, is the three-dimensional spherical harmonic, and the wave function @, can be
written as

®,(r, x4)=%,(R, 0). (3.5)

As a first step, we consider the BS wave functions at vanishing c.m. energy E. In
this limit the BS equation (2.10) is invariant under the transformations of the four-
dimensional rotation group O(4). Consequently, the BS wave functions y/(x) have the
following form [29]

Y(x)=fy J(R)Yn;u(2)  for E-O, (3.6)
N < B Q25 4 (3.7)

Here f,(R) is a radial BS wave function, and the four-dimensional scalar spherical
harmonics Yy, ,/(€2) involve the Gegenbauer polynomials [30] Ci(cos 6) as given by

Yyvm(Q)= Yy;m(6, 9, )= G%”(O) Yim(9, ), (3.8)
22N+ 1) (N-J)! L& 2
(J)(0) — VI +1 0. j
GY'(0) [ ANTI+D)] JICx{ 5 (cos 6) sin’ 0 (3.9)

Let us turn to the analysis of the BS wave functions at finite c.m. energies E. In
this case, the O(4) invariance of the BS equation is broken according to Eq. (2.11).
Therefore, we shall expand the wave functions y/(x) in partial wave amplitudes of O(4).
The truncated version of this expansion can be written as [6, 29]

VO=Yon= 3. S sR @) (3.10)
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Relations (3.4)3.5) together with Egs (3.8) and (3.10) imply
K+J
&R, 0= ¥, fu-s(RIGKO). (3.11)
=J
In summary, the approximate solutions of the BS equation (2.10) can be obtained by
calculating a finite set of radial BS wave functions f,(R).
b) Relations

It is convenient to introduce the following notations

d N

d(—=L;N,R)= JR_R’ (3.12)

d(L; N, R)=di‘;E +5;—2, (3.13)
d('—z;N,R)=£—z—2NR“ AL ke } (3.14)
d(o; N, R)=;I;2-+%d—d§ i N“Zfz), (3.15)
d2; N, R)= di;; + 2NR+3 % % N(z;gz) (3.16)

Integration by parts gives

] a0

l[ dRR? f¥R)d(—1; N, R)f,(R)= — t[ dRR’f,(R)d(1; N+ 1,R)f¥R), (3.17)

@ £ o]

[ dRR® f3(R)d(~2; N, R),(R)= g dRR*f,(R)d(2; N+ 2, R)f%R),  (3.18)

a0 a0

g dRR® f3(R)d(0; N, R) f,(R)= l[ dRR f,(R)d(0; N, R) [ 2(R), (3.19)

provided that the contributions vanish at R=0 and R— 0. Thus, we may write

df(—=1;N,R)= —d(1; N+ 1,R), (3.20)
df(—2;N,R)=d(2; N+2,R), (3.21)
d¥(0; N, R)=d(0; N, R). (3.22)

Simple recursion formulae involving the Gegenbauer polynomials imply [6, 29, 30]

O f(R) Yysum(€) = Yysn($d(0; N, R) f(R), (3.23)
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0

s SR Yyym(2)=AN+1,J) Yy, yjm()d(—1; N, R) f(R)+
+A(N,J)Yy_ 1 ;(Q)d(1; N, R)f(R), (3.24)
where
_1L[(N=J)(N+J+1) b2 e
A(N,J)—?[ NN+ 1) ] 5 A(0,0)=0. (3.25)
We shall also use the notations
AP2; N,J)=AN+1,J)AN +2,J), (3.26)
AP0; N, J)=[A(N +1,J)>+[A(N, J)]?. (3.27)

¢) Radial BS equations

Let us substitute the expansion (3.10) into the BS equation (2.10). By using Eqs
(3.23)«3.25), we arrive at the truncated system of radial BS equations which can be
written as

f Bm|n)f,(R)=0, m=0,1,2,...,K, (3.28)
n=0

where
B(m|n)=F(m|n)—g*>V(R; k*)J - (3.29)

The diagonal matrix element F(n|n) becomes

E2 2
F(nln)=[—d(O;n+J,R)+1+5’__] iy

4

—E2A?(0; n+J,J)d(0; n+J, R)—452, (3.30)
and the nondiagonal matrix elements are given by

F(n|n+ p)=F(n|n+p)d(p;n+J +p, R), (3.31)
p=-2,-1,1,2, (3.32)
FO(m|n—2)= —E2A®(2;n+J-2,J), (3.33)
FO(n|n—1)=—45EA(n+J,J), (3.34)
FO(n|n+1)= —43EA(n+J +1,J), (3.35)
FO(n|n+2)= —E*A®(2;n+J,J). (3.36)

All the other nondiagonal matrix elements of F(m|n) vanish.
Taking into account Eqs (3.21)3.22), we observe that

Ft=F for &=0. (3.37)
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Thus, in the equal-mass case, the operators F and V3, are self-adjoint, the latter being
positive definite. On the other hand, Eq. (3.20) implies

Ft#F  for S8E#O. (3.38)

In other words, the operator F of an unequal-mass system is not self-adjoint on account
of the matrix elements F(n|n+ 1).
The radial BS equations (3.28) can also be written as

i By(m|n)f,(R)=0, m=0,1,2,.. ., K, (3.39)
n=0
By(m|n)=F y(m|n)—g*Vy(m|n), (3.40)
where
F y(m|n)=(—1)"F(m|n), (3.41)
and
Vu(m|n)=(—=1)"V(R; k*)d . (3.42)

It follows from Egs (3.20)3.22) and (3.31)«3.36) that the operators Fj, and V', are self-
adjoint due to a convenient definition of the scalar product [31, 32]. However, Fj; and
V, are no longer positive definite operators (see Eqs (3.41) and (3.42)). One should note
that, at §E #0, the truncated radial BS equations may lead to ghost problems and
trajectory-mixing phenomena [8, 31-34].

4. Methods of solution
a) Asymptotic solutions

Since the leading short-distance behaviour of the solutions is independent of E

and &, we next consider the radial BS equations at E=0and § =0. In this case, Eq. (3.28)
becomes

{{—d(O; N, R)+ 11>~ g*V(R; ?)} fy- (R)=0. (4.1)

We may now proceed to investigate the solution f(R) in the short-distance limit R—0.
Taking into account Eq. (2.13), standard theory of linear differential equations tells us
that there exist powerlike asymptotic solutions:

fu-sAR)=»amR?  as R-0. 4.2)

By substituting Eq. (4.2) into the radial BS equation (4.1), we obtain the homogeneous
linear equation

B(Z)(N’ p)a(N) pree 07 (43)
with
BN, p)=[p—(N+2](p—N)(p+N)(p+N +2). (4.4)
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To guarantee nonzero coefficients ay,, the indices p must satisfy the indicial equation

BA(N, p)=0. (4.5)

The solutions of Eq. (4.5) are the following indices
p1=N+2, p2=N, (4.6)
p3=—N, pa=—(N+2). (4.7)

As R—0, all the asymptotic solutions fy_ ;(R) are of the powerlike form (4.2) provided
that the indices p; (i=1,. . ., 4) are nondegenerate. Otherwise, according to well-known
theorems, the short-distance behaviour of the solutions may be governed by
logarithmic terms.

The crucial ingredient of the bound-state calculations is the selection of the
admissible solutions which satisfy the BS normalizability condition [8, 20]. Simple
calculation yields two admissible asymptotic solutions:

SHER) = dRY 2, (48)
S AR) - aBRN. 4.9)

In addition, there are two nonadmissible solutions which can be ruled out by means of
the BS normalizability condition. These solutions are given by

SAR) = a@RN for N>0, (4.10)
R—-0

f@ 4R) —» a®R-N*D  for N>O0. @.11)
R—-0

At N =J=0, the nonadmissible asymptotic solutions are of the form

SR ~ aIn R, 4.12)
SEUR) > aPR"2. (4.13)
R—

We next discuss the large-distance (R— c0) behaviour of the solutions in the
bound-state region. For simplicity, let us consider Yukawa-like interaction terms
V(R; x?) involving nonzero exchange masses k. In this case, the BS equation becomes
simply the free equation as R— oco. One can verify that, at large values of R, the four
independent asymptotic solutions consist of two exponentially decreasing (admissible)
solutions, and two exponentially increasing ones. Of course, the nonnormalizable
(exponentially increasing) solutions must be rejected.
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We now are in a position to investigate the eigenvalue problem. In the short-
distance region (R—0) the radial wave function f _ ;(R) is a linear combination of two
admissible asymptotic solutions. Since the BS equation is linear and homogeneous, we
are left with one free parameter (a(y)/aly)) as we integrate out to the large-distance
region R—oo, where two exponentially increasing asymptotic solutions must be
absent. These conditions may be satisfied only at discrete eigenvalues of some other
parameter (e.g. g%) in the BS equation.

b) Rayleigh—Ritz method

To begin with let us expand the radial BS wave functions f,(R) in terms of a
complete set of normalizable basis functions ¢,;(R). The truncated version of this
expansion is given by

F4R)= 3. a0u(R). @.14)
i<
The leading short-distance behaviour of the approximate radial wave functions f,(R)
will be fitted to that of the exact solutions by using Slater-type basis functions ¢,;(R).
According to Eq. (4.9), we choose

Pnj(R)= A R** T *ie™ R, (4.15)

with a positive nonlinear scale parameter «. (4,; is a normalization factor.)

The BS eigenvalue problem (3.28)~3.29) can also be formulated in the space of
the basis functions ¢, ;(R). By substituting the expansion (4.14) into Eq. (3.28), and using
the standard procedure, we obtain a homogeneous system of linear algebraic equations
for the coefficients a,;. The truncated version of these equations can be written as

K - —
¥, % UFm. hinj)—g*V (m. b ey, =0, @16)
m=0,1,2,...,K; h=0,1,2,...,0, (4.17)
where
F(m, h|n,j)={@mlF(m|n)|¢,;, (4.18)
V (m, h|n, j)= <@l V (m|n)| @,,>, (4.19)
and
V (m|n)=V(R; k*)d,,,. (4.20)

All the matrix elements of the type (4.18)4.19) are defined by

oo

{Pmn| D(m|n)| @, = z[ dRR*@,(R)D(m|n) 9, (R). (4.21)
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In addition, we shall use the notatic[)n
B(m, h|n, j)=F(m, h|n,j)—g*V (m, h|n, j). (4.22)
Nontrivial solutions of Eq. (4.16) exist if
Determinant | B(m, h|n, j)| =0. (4.23)

In other words, the approximate eigenvalues are prescribed by Eq. (4.23). The matrix
elements B(m, h|n, j) involve the following integrals

ID(h]j) = @unl V(R; K2)| @i (4.24)
I2(h1)) = Pt| Ormj> » (4.25)
I9(hj) =@l [d(0; m+ J, R)]*| @D (4.26)

and
Im, h|n, j)=<{@mld(p;n+J,R)|@,;>, (4.27)

with
m=0, n=m+p=0, - p=0,+1 £2. (4.28)

It is practical to replace the interaction term V(R;x?) by the Vosko approximation
(2.14). In this case, all the integrais (4.24)(4.27) can be easily evaluated by using the
formula

r+1)

wA+l

J dRRAe™“R = (4.29)
0

For further insight, let us investigate the application of the Rayleigh—Ritz
method to the solution of the equal-mass BS equation (5 =0). This method is based on
the variational functional [6, 28]

o JEYHIF )
Jd* VR KW (x)

In accord with Egs (3.10), (3.23)3.24), and Eq. (4.14) the functional (4.30) has the
explicit form [35]

(4.30)

=" 2 ; (4.31)

S ¥ Y ¥ atlmbhinja,

m=0 h=0 n=0 j=0

K K 5
3 )‘f X f at,F(m, h\n, ja,;
2_ m=0hk=0n=0
K

By variation of the expression (4.31) with respect to the linear coefficients a,,;, we are led
to the matrix eigenvalue problem (4.16) which can be solved by a computer. Thus, in
this way, one can calculate a sequence of approximate eigenvalues [¢¥'?7]2 (and the
corresponding linear coefficients a,;) by choosing finite and increasing values of K and
Q. Since the matrices F and V are Hermitean and positive definite (in the equal-mass

Acta Physica Hungarica 62, 1987



SCALAR BETHE-SALPETER EQUATION 171

case), the Hylleraas—Undheim theorem [36] ensures that, for =0, the sequence of
successive approximations monotonically approaches the true eigenvalues from
above. In addition, the “optimal” value of the nonlinear scale parameter « can be
selected by using standard variational procedures. Here we consider the c.m. energy E
as given and g to be found. By solving the BS eigenvalue problem (4.16) at many values
of E, we obtain the function g?(E) from which E(g?) can be recovered without loss of
accuracy. ]

We next discuss the eigenvalue problem (4.16) in the unequal-mass case (5E #0).
According to Eqgs (3.20)+3.22) and (3.30)+3.36), we have

F(m,h|m+2,j)=F(m+2,j|m, h), (4.32)
and
F(m,hlm+1,j)= — F(m+1, j|m, h). (4.33)

Consequently, the matrix F is non-Hermitean at nonzero values of 6E. Of course, we
may use Eqgs (3.39)3.42) to write the eigenvalue problem (4.16) in the Hermitean form

K
,.>—:o ,-io [Fyu(m, hin, j)—g*Vy(m, hin, j)]a,;=0, (4.34)
m=0; 1,2:. %K h=0,1,2:52:70; (4.35)
where
Fy(m, h|n, j)=(—1)"F(m, h|n, ), (4.36)
and
Vu(m, hin, jy=(— 1"V (m, h|n,j). (4.37)

We now observe that Eqs (4.19)14.20) and (4.32)+(4.37) imply

Fy(m, h|n,j)=Fy(n,j|m, h), (4.38)
and
I7H('n’ h'na])= VH(”:./lma h) (439)

However, Fj; and V,; are no longer positive definite operators. On account of these
properties (including Eqs (4.32)14.33)), the Hylleraas—Undheim theorem cannot be
applied in the unequal-mass case SE # 0. Therefore, in general, one should not expect a
sequence of monotonically convergent approximations of the eigenvalues g* (from
above) by choosing finite and increasing values of K and Q. Furthermore, one cannot
automatically use the Rayleigh-Ritz variational principle to select optimal values for
the nonlinear scale parameter a. This lack of the control of the classical variational
methods may result in unpleasant convergence problems (and instabilities) which
restrict the applicability of the standard truncation procedures to the solution of the BS
eigenvalue problem (4.16). Finite basis-set expansion methods may also lead to
spurious “approximate” solutions of the Dirac equation [23]. Consequently, the
standard variational methods should be replaced by other efficient procedures in order
to select convenient basis sets and acceptable numerical solutions.
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¢) Least-squares variational method

Let us consider the approximate BS wave function /'(x) that can be expressed as

K
Y'(x)= ,.Z‘o SR Y, 45, 1m (), (4.40)

in accord with Eqs (3.10) and (4.14). By substituting Eq. (4.40) into the BS equation
(2.10), we may write

f:mmMUﬂm=AARL m=0,1,2.....R. (4.41)
n=0

Here the operators B(m|n) are defined by Eqs (3.29)«3.36), and the deviations A,.(R)
are related to the error of the approximate BS wave function /'(x). Of course, the
truncated system of radial BS equations (3.28) can be recovered by choosing 4,,(R)=0
and K =K. In order to generalize the standard truncation procedure, we shall prescribe

K>K+1. (4.42)

In this case, Eq. (4.41) may be regarded as an overdetermined system of differential
equations. Therefore, in general, the deviations 4,,(R) are different from zero, and also
depend on the linear parameters a,;:

4,(R)=4,(R; agg,- - -, agg)- (4.43)

We now introduce a complete set of normalizable test functions y,,,(R). According to
Eq. (4.9), we choose

L(R)= AL R™ 0~ (3=0,1)2,...), (4.44)

where y is a positive scale parameter, and the normalization factor is denoted by 4,,,
As a first step, we consider the components of the deviation vectors 4,,(R) as
given by

ol Ay = IdRR’xm(R)A,,(R). (445)

A measure of the error of the approximate wave function /'(x) will be defined as

K
S 5 Wl Ctal 412
AY ()] = == (4.46)
55

’
axyW (m, h|m, j)ay,;
m=0 K=0 j=0

where W is a convenient (positive definite) “norm operator”, and the w,,,’s are positive
weighting factors. We shall use a sufficiently large set of test functions by imposing the
requirements (4.42) and

0>0+1. (4.47)

Acta Physica Hungarica 62, 1987



SCALAR BETHE-SALPETER EQUATION 173

In order to simplify the calculations, one may use

Y=, W(m’ hlm’j)=<(pmh|¢mj>’ (4.48)
and, in addition,
W =1 (4.49)

for all possible values of m and h.
By variation of the expression (4.46) with respect to the linear coefficients a,,; (and
using the notation (4.22)) we obtain the eigenvalue problem

K — -
Zo f‘,o [L (m, h|n,j)— AW (m, h|n, j)]a,;=0, (4.50)
n=0 j=
m=0,1,2,...,K; h=0,1,2,...,0, (4.51)
where s o
K
L (m, h|n,j)= Z ﬁ Wy B*(m', 0| m, h)B(m', k' |n, j) (4.52)
m=0h"=0
and
W (m, h|n, j)=W (m, h|m, )6, (4.53)

The matrix L is Hermitean and positive semidefinite, and the acceptable
solutions a,; belong to the lowest eigenvalue A, which depends, of course, on the size of
the basis set (4, =1%?). According to the requirements (4.42) and (4.47), we shall
choose

R=K+k  k>1, (4.54)
0=0+q, g>1, (4.55)

where the integers k and g are fixed.
We next consider g2 and J as given and the bound-state energies E to be found.
By solving Eq. (4.50) at many values of E and a, we obtain the function

Ay =AKO(E, a). (4.56)

The approximate eigenvalues of the c.m. energy E (and the “optimal” scale parameters
®) can be calculated by using the least-squares variational requirement

AX-Q(E, o) = minimum. (4.57)

In other words, the eigenvalue A% 9(E, o) may be regarded as a reasonable measure of
the error of the approximate BS wave function ¢'(x), and the minima of the function
ME-Q(E, o) are at the approximate bound-state energies EfX*9(x) (b=1,2,. . .). Thus, at
fixed values of a, we apply Eq. (4.57) to compute a sequence of the approximate
eigenvalues E{X 9(a) by choosing finite and increasing values of K and Q.

Let us first discuss the approximate ground-state energies E{'?(x). The
completeness of the basis set (4.15) implies that E{¥?(«x) is almost constant in a finite
region of the nonlinear scale parameter a, if the values of K and Q are sufficiently large.

Acta Physica Hungarica 62, 1987



174 K. LADANYI

(These stability properties are, in general, less pronounced for the excited states (b > 1)).
Of course, the “optimal value” of the scale parameter & may also be computed by using
the least-squares variational requirement (4.57).

Illustrative numerical calculations [22, 23] indicate that the least-squares
variational method can be successfully applied to the approximate solution of the BS
equation, if the basis functions (4.15) are chosen according to the following
requirements. (i) There must exist a region of the nonlinear scale parameter o where a
set of the computed energy eigenvalues is stable (i.e., in that region one has E¥ @(a)
~constant). (ii) An apparent convergence of these eigenvalues should be observed at
increasing vasis sizes. (iii) The measure of the error 4, must be sufficiently small. Similar
criteria have been already used to select acceptable numerical solutions both in the
bound-state and in the scattering region [23, 27].

5. Discussion

At nonvanishing c.m. energies, the BS equation leads to an infinite system of
coupled ordinary differential equations which are referred to as the radial BS
equations. In the equal-mass case, these equations can be solved by the Rayleigh-Ritz
method which is based on the standard truncation procedure. However, in general, the
unequal-mass BS equation is beyond the current scope of the classical variational
methods and, indeed, the standard truncation procedure may result in unpleasant
convergence problems and instabilities [23]. Consequently, the classical variational
methods should be replaced by other efficient procedures. In the present paper we have
suggested a particular least-squares method which involves a nontrivial generalization
of the standard truncation procedure.
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We investigate how the equations governing spontaneous compactification to non-
symmetric coset spaces can be solved for two particular classes of internal spaces.

1. Introduction

In the last few years we witnessed a revival of interest in using theories based on
the old assumption that the physical space-time has more than four dimensions to
explain the observed properties of elementary particles. The spontaneously com-
pactified theories [ 1] form a class of these models: they are theories of gravity coupled
to Yang—Mills and spinor fields in a 4 + d dimensional space-time which are reduced —
via a solution of the Einstein—Yang—Mills (EYM) field equations — to a 4 dimensional
low energy theory by compactifying the extra d dimensions into a compact coset space
S/H with an appropriately small size R,,. Recent investigations showed that it is rather
difficult to find a model explaining all details of unified gauge theories [2]. In these
models mostly symmetric coset spaces were used to describe the extra compact
dimensions [3]. Quite recently the equations governing spontaneous compactification
to non-symmetric coset spaces (NSCS) have been derived [4, 5] and it was shown [4]
that in contrast to the case of symmetric spaces they cannot be solved for all NSCS. The
aim of this paper is to determine a class of NSCS for which the compactification
equations do admit a solution.

In the next Section we briefly outline the derivation of the equations governing
spontaneous compactification to NSCS while in Section 3 we show how these

equations can be solved in two special cases, namely for S/H’s having the form of
1 1

——— | — e
SU(k+1)/SUKk)x U, x ... xU,; or SO2[k+1—1])/SU(k)x U, x ...xU,; where k
and [ are arbitrary integers (k> 1, [>2).
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** On leave from Central Research Institute for Physics, H-1525 Budapest 114, Hungary
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2. Spontaneous compactification to NSCS

We start with the standard EYM action for a coupled system of gravity and
gauge fields with gauge group Gy,, in 4+d dimensions

R 1
S= Jd24+d(—g)1/2 (F NS Z_g_z :BFaAB__A> : (1)

where k and g are the 4 + d-dimensional gravitational and gauge coupling constants
and A is a cosmological constant. The equations following from (1) are 444
dimensional Einstein equations and the Yang—Mills equations coupled to 4+d
dimensional gravity. Spontaneous compactification means that we find a solution of
this coupled system of equations where the 4 + d dimensional space-time is the direct
product of the flat 4 dimensional Minkowski space (M,) and a compact coset space S/H
(dim S—dim H =d). To obtain M, x S/H as a solution we must have non-vanishing
gauge fields on the internal space S/H, and as this internal space admits S as a symmetry
group we also require that the explicit gauge fields be S symmetric in the sense of [6]. In
this paper we assume that S is a simple Lie group and S/H is a NSCS.

To describe M, x S/H we split the coordinates z* =(x™, y*) m=0, 1,....3; u=1,
2,. .. d denoting Minkowski versus internal ones. Furthermore, we choose from each
coset an element labelled by y* denoted as L(y). Using this quantity the vielbeins ¢ on
S/H are given by [7]

L™ (y)dL=eQ,+ 'Q; =(el(y) Qa + w}(y) Q)dy". 2

Here Q4, A=1,...,dimS§, are the generators of S satisfying [Q ,, Qz]= f4pcQc With
[fasc being the completely antisymmetric structure constants of S. Furthermore, we
denote the indices corresponding to H and to the coset S/H by i and a, respectively (so A
=(i, a)). As H is a closed subgroup of S, f;;,=0and f;; are the structure constants of H.
The fact that S/H is not a symmetric space means that f,, #0. Since ¢” and o' satisfy the
Maurer—Cartan equations — as a consequence of Eq. (2) — we determine the torsion
free (“natural”) connection on S/H as

1 .
By=— 5 fie— fi0 G

It is straightforward to determine the Riemann and Ricci tensors for this
connection, in fact for the latter we obtain

1
Rab e z (f;befeca + 4f;aiﬁcb)' (4)

To make an ansatz for the compactifying gauge fields we must choose appropriate Gy,
admitting the possibility of constructing S symmetric gauge configurations. The
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minimal choice is Gy, =H [6]. f H consists of several factors H = Mo X H, x50 % H
then our ansatz is

p

S

where i; runs over the indices corresponding to the j-th factor, H;, of H and g; denotes
the gauge coupling constant referring to this particular factor.

Using the Jacobi identity for f; ,,, the antisymmetry of f,,. and also that f,4 /i 4
=0 one can readily show that F{) in Eq. (5) indeed solves the YM equations

where eI"%, = B is the torsion free connection and A} =e% 44 with e/ being the inverse
of ej.

Before turning to the Einstein equations we introduce a length scale, Ry, fixing
the size of S/H. This implies that both R,, and FY) in Eq. (4) resp. (5) get multiplied by
R?. The 4+ d-dimensional Einstein equations split into a four- dimensional and a d-
dimensional part. The 4-dimensional part — expressing that we assume here a flat
Minkowski space — determines A in terms of the other parameters. Fine tuning 4 to
this value the d-dimensional part has the form

(6)

where C5(Adj) is the value of the quadratic Casimir of S on its adjoint representation:
fupcSepe= — C3(A4d))d,.. If for a NSCS, S/H, there is a choice of the g; coupling
constants guaranteeing that the expression on the r.h.s. of Eq. (6) is proportional to §,,
then this coset space can be used for compactification in our framework. In [4] we
analyzed briefly Eq. (6) and concluded that in the case of NSCS physically interesting 4-
dimensional models may be obtained only if H is a regular subgroup of S satisfying in
addition rank H=rank S. Therefore, in the following we consider only such coset
spaces, S/H, that satisfy these two conditions.

3. Some solutions of Eq. (6)
First, we note that f; . (i;=1...dim H)) form the representation matrices on the
tangent space (T) of the generators of the H; factor of H thus f; ,. f; s is proportional to

the value of the second Casimir of H; taken on‘this representation. Rewriting the

6 Acta Physica Hungarica 62, 1987
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expression on the r.h.s. of Eq. (6) as

()

we see that Eq. (6) may have a solution if we can introduce the 4 ;jfactors that change the
relative values of the second Casimirs of the various H;’s in such a way that the sum of
all of the modified Casimirs for all irrep components of

becomes identical.

We conjecture that Eq. (6) can be solved in this way for all H’s satisfying the two
conditions mentioned above if all the roots of S have equal length; i.e. for all regular
subgroups with maximal rank H, of SU(n), SO(2n) and E,. Even if this conjecture is
right it does not mean that all solutions of Eq. (6) are found as e.g. the G,/SU, solution
(discussed in details in [4]) does not belong to this class.

To motivate our conjecture we note that if we take H to be the maximal torus of
Si.e. when the tangent space consists of all the roots of S then the expression in the curly
bracket of (7) in the root basis of S has the form

where af (k=1. . .d) are the roots of S (dim S=d + p). If all the roots are of the same
length then choosing equal A;’s in this expression it gets proportional to d,,. On the
other hand if there are roots of different lengths then a simple inspection revealed that
this expression cannot be made of this form.
To substantiate our conjecture we show how the 4; factors must be chosen in
1

r—— e,
order to solve Eq. (6) for SU,,,/SU,xU, x...xU, and SO(2[k+!-1])/SU,
!
xU; x ... xU, respectively. For k>1; I|>2 these are NSCS and belong to the

conjectured class of coset spaces.
[

F——— Y
For SU,,,/SU,xU,; x ... xU,; we use the k+/ mutually orthogonal unit

vectors ¢; (i=1...k+1; e;e;=9;)) to describe the roots of SU, ,, as well as the weights
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in the tangent space. In terms of these vectors the positive roots of SU, ., and SU, have
the form [8]

€1 —€3,...61—€xy s €1 —E€3,...6,—€,
82—83,...82—8“.,, 82—93,...82—ek, (8)

exri-1—€+1> (SUx4)) e—1—e, (SUY),

while the roots that (together with their negatives) constitute the tangent space, T, are

€;— €k 4ns e Bl e L 9)
Chtn—Ck+m> n<m, m=1..; m=n¥l,. L (10)

Clearly for all fixed n the roots in Eq. (9) form the weights of the fundamental
irreducible representation of SU,, while those in Eq. (10) are SU, singlets. The
normalized U, generators are expressed in terms of e; as

X7 LR o e —(k+m— l)e,,,+,,,

- ¢ .00, 1
G Jk+m) (k+m—1) i i

For SU, x U, x ... x U, the sum of second Casimirs is nothing but the sum of
the SU, Casimir and of the squares of the U, charges. The value of the second SU,
Casimir is (k — %) for the fundamental irrep and is O for the singlet. The U, charges of
e;—ex+, and e, ., —e ., are obtained by simple multiplication

g

] ok =,
Vk+m)(k+m—1)
Q (ei—exsn)=X k+n : (12)
m s m=n,
Jk+n)k+n—1)
~0 ’ m>n;
1
0, p<n; , n<p<m; 0, m<p;
V{k+p)(k+p—1)
Qp(ek+n_ek+m)=
k+n—1 k+m

T JermEen=n’ | " Jkamkrm=1)

(13)
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Using these expressions in the curly bracket of Eq. (7) one gets that the sum of all terms
for e;—e,, , becomes

1 n-1 m k+n
- — - 14
k= g ek ey o
while for ¢, . ,—e, ., it has the form
_1 m—1
k+n k+m A (15)

P
" ken A REm—1 G GEr=1)

Eq. (6) can be solved if there is a choice of 4,, guaranteeing that the expression in (14) is
independent of n and is identical to that of (15) for all n and m. Demanding the equality
of the expressions in (14) for n and n+ 1 leads to 4,=4,,,, i.e. all the U;-s must be
shifted uniformly with respect to the SU,. Setting all 4,,= 1 in both Eqs (14) and (15) we
get

ke~ % +A(k+1), (14)
2% (15)

The equality of these two expressions finally determines A; A=k + 1.
To describe the roots of SO(2[k+!—1]) and the tangent space for SO(2[k+1
1

—1])/SU,x U, x ... x U, we again use the ¢; vectors (i=1,.. .k+1—1;e;e;=9;;). The
positive roots of SO(2[k+1—1]) can be expressed as
€1 — 5y @ —@ay! o Oy Ch Y= 15 ey +ez,...eq+eii-1,
.............. (16)
Cxt1-2—€kt1-1, Cxy1-2F€sp—1.

The root system of SU, remains identical to that of given in (8) while the roots
constituting the tangent space are now

e —Cpias Cteia i=LLikn=1"1—-1, (17)
e;+e; GLj=1,...k i#j, (18)
Chin—Chims Crinterims N=1,...1-2; m=n+1,...1-1. (19)

Clearly the expressions in (17) describe the weights of two fundamental SU, irreps,
while those in (19) are SU, singlets. The novel feature of this coset space is the
appearance of the completely antisymmetric two tensor irrep of SU, in (18). For m
=1,...l—1 the normalized U, generators are still given by (11), however, for m=1the

U, generator has the form
(W A Ty L T (20)

Q= Je+i=1

Acta Physica Hungarica 62, 1987



ON A PROBLEM OF SPONTANEOUS COMPACTIFICATION 183

Itis easy to see that fore;—e, , ,and e, . ,—e, , , the I-th U, charge vanishes while
for m<1 they are identical to those in (12, 13), thus repeating the discussion of
SU;+i/SU,xU; x ... x U, case we conclude that all 4,-s (m=1,...I—1) must be
equal to A=k + 1 and the sum of all (modified) Casimirs must be 2(k + 1). Thus we must
check if it is possible to choose a 4, guaranteeing that this latter holds for the other
irreps in (17-19) as well. The U, charges of the e, ,+ e+, SU, singlets are

2

€ +n+e m= " T/—»
Ql( k k+ ) \/](-H——l

0, p<nm; : , h<p<m, 2 , m<p;
V{k+p)(k+p—1) (k+p)(k+p—1)

Calerin¥essa) = A k+n—1 Wi 2—(k+m) =
Jk+n)(k+n—1)" " Sk+m)(k+m—1)° g
p=1,...1—1. (21

Using that 4,=(k+1) (m=1,.../—1) the sum of the squares of the modified U,
charges for e, , ,+ e, 1S thus

2 4
2(k+1){1—k+l_1}+4k+l_1 :

Equating this expression to 2(k + 1) yields A, =k + 1. The completely antisymmetric two

tensor irrep of SU, (18) has a Young tableaux B thus the value of the second
2 o :
Casimir on this irrep is [9] E(k’—k—Z). The U, charges of this irrep are given by

2
i+e)= . =1 0=1
fab V(k+m)(k+m—1) %

Ql(ei+ej)=

2
ey i

Since all 4,-s (m=1,. . .[)are equal to k + 1 we finally get for the (modified) sum of
the Casimirs

Ak + 1)% & %(kz—k—2)=2(k+ 1),

thus the criterion is indeed satisfied for this irrep. As the U charges of the e; + ¢ ., irrep
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are
2 n<m, 1 m<n,
ot ok Jk+m)k+m=1)’ T Sk+mk+m—1) :
m\%i k+n) — 2—(k+n) .

Jk+n(k+n—1)"

2

Qie;+exn)= ﬁ

it is not difficult to verify that with all 4,,-s set to (k + 1) we get the needed 2(k + 1) when
computing the curly bracket of (7) for this irrep. This then completes the proof that
4 1

SOQ2[k+1—-1])/SU, xU,; x ... xU, is indeed a solution of the compactification

problem.
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THE NATURE OF THE DECONFINING
PHASE TRANSITION IN THE SU(2)
GAUGE THEORY IN 1+¢ DIMENSION*

A. PATKOS

Department of Atomic Physics, Roland Eétvés University
1088 Budapest, Hungary

The effective theory of SU(2)-coloured charges at finite temperature is shown to undergo a
deconfining phase transition in D = 1 + &(¢>0) dimension and to belong to the Ising universality class
by explicit computation of the coupling renormalisation to subleading order.

Theoretical approach to deconfining phase transitions starts from the important
universality arguments of Svetitsky and Yaffe [1]. They state, if the transition is
continuous and if a single fixed point exists to describe the breakdown of the symmetry,
then the indices of the deconfining transition are determined by the characteristics of
that fixed point of the renormalisation group transformations.

Yet, an eventual first order transition cannot be excluded. Actually, Monte Carlo
simulations indicate continuous phase transition only for the pure SU(2) gauge theory
among the SU(N) groups. There the deconfinement breaks a global Z(2) Ising-like
symmetry. Numerical “measurements” of the critical magnetization index in 2 and 3
spatial dimensions support that the transition belongs to the Ising universality class
231

The only analytical approach to these phenomena to date is the mean field
treatment of the effective theory for the order parameter P [4, 5]:

£
2

Ser=——=J Y, [PX)P*(x+e)+hc]. (1)
P takes its values among the characters of the group in the fundamental representation;
its expectation value gives the excess free energy of static coloured charges in the
fundam ental representation of the gauge group over the ground state. The coupling J is
related to the gauge coupling and the temperature. For the strong coupling regime

* Dedicated to Prof. K. Nagy on his 60th birthday
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(g>> 1) the following functional form can be derived

1/Ta
} G=SU(2),
Jig* T)e= ' )
2 , G=SU(N) N>2,

where a is the lattice spacing.

In this note we shall establish two results concerning the nature of the phase
transition in the SU(2) model defined by Eq. (1). First, we show that its lower critical
dimension is 1, secondly we compute its critical point and critical thermal index in D
=1+ ¢ dimension and find that the model belongs to the Ising universality class. These
results although very plausible, are not self-evident as the model (1) is not an Ising
model by its definition. It has a much wider symmetry, than Z(2) as its partition
function

)

is defined by integrating over all the elements of the gauge group. Our results
complement the evidence collected by numerical simulations for the nature and
mechanism of the deconfining transition in the finite temperature pure SU(2) gauge
model.

In order to prove the above statements we employ the Migdal-Kadanoff
renormalisation group transformation [6, 7]. As for 1D global symmetric (spin-)
models this transformation is exact the first conclusion will be proven rigorously. In D
=1+¢ dimensions the experience shows that this version of the renormalisation
transformations yields critical exponents which are exact to leading order in ¢ [6]. We
shall use the bond moving variant of this transformation due to Kadanoff [7], with a
scale factor b = 2. The first step of the transformation is bond-moving where along each
direction every second bond is suppressed and the corresponding strength is
redistributed uniformly among the remaining bonds:

y=2-1j, (4)
In the second step a I-dimensional integration is performed leading to the

renormalized Boltzmann factor:

(&)

We shall explicitly compute (5) for J> 1, because in D=1+ ¢ we find that the critical
point J.~ O(1/¢). In this asymptotic region we shall see that

Ween(P, P')=const - exp {J,..PP'}, (6)
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that is the transformation is closed with a single coupling (for infinitesimal &).
The generic form of the 1D decimation at large J will be

J’=J(1— j7> )

This means that to leading order the coupling is marginal in 1D, and subleading terms
in the renormalisation make the fixed point J = co unstable. This is exactly the way we
identify the lower critical dimension. The bond moving step in D=1 +¢ dimension
introduces the opposite tendency by Eq. (4) in the coupling flow leading to a summary
coupling renormalisation

¢
Jee =2¢ —— ).
J(l = J,,> ®)
Expanding the right hand side of (8) to leading order in ¢ (assume that J# ~ O(¢ 1)) one

finds the shifted location of the fixed point:

c
eln2’

s=

)
Then one linearizes the transformation (8) around the point (9) and finds the expression

ln2~l

yy=1+¢fIn2, vl=lny =
7

(10)

for the “thermal” exponent of the transition. From Egs (9) and (10) we see that it is the
subleading term in the 1D renormalisation transformation formula (7) which
determines the critical data to leading order in &.

The parameters ¢ and § are what we determine for large J next.

In a previous publication [8] we have introduced the double character
expansion for the Boltzmann factor of the theory (1):

exp{J Trg Trg'} = 12 Fi(J)did;x:(9) x;(9), (11)

where y; is the character of the spin-j representation of SU(2) and d; is the dimension of
the representation:

Fyd)= 2 U9 ey 2 00+ L 0] —
i%j
Ly ji )L ju 1 )+ 154 1 ()], x=8J. (12)

In Eq. (12) I,,(x) is the n-th modified imaginary argument Bessel function. Also, both
indices of F;; are either integers or half-integers.
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In terms of thH@ expansion coefficients the 1D decimation with scale factor b=2
takes the form

F:’j(‘])= Z:dt%Ftk(J)ij(-])~ (13)

For large J we make use of the asymptotic saddle point expansion of the Bessel
functions to order x ~3:

et 2] A
4 128 x3\24 96
Substituting this form into Eq. (12) one finds

er

Fij(")x:w a4 (F(U;Fmﬁ' _F(z).F(z)J> T’ x=8J

F(G)l' = ﬁa)i Lo f;a)i +15

fon= sl 1 +1 _9__5 +l _E._K_z.*.iz_ K_gg +£
Wi=€ 8x ' x2\128 2/ " x3\1024 2 T 2 TH ATy &

1 2

— (2 +K)e "I*, (15)
2
Here the separation is not unique. We exploit this fact by introducing into (15) a

constant k to be determined later.
Now the decimation transformation (13) takes the form

f(2)i=

et il

’ a2
Fij= Py Fdja‘ I:Fmiij"' p(Fu)iF(2>j+F(Z)iij):ls
a,= g F(zl)ks d1a2= ; F (13F 2)- (16)

It should be noted that the summations run over integer or halfintegers depending on
the values of i and j. To the accuracy implied in Eq. (16) one evaluates the constants a,
and a, with help of Poisson’s resummation formula:

5 rwm= § jatemm, (1)

In order to be able to apply (17) one has to reshuffle the summations over k=1/2,
3/2,... or k=0, 1, 2,... into summations over all integers with help of evenness
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properties of the summands. It turns out finally that to leading order in J a, and a, are
the same for both classes of the indices:

a—(n>”2+0(x‘3/2) a,= : x !
T8 N RN AT 08

Then the use of (18) in (16) shows that actually that recursion formula is O(J ~?)
accurate.

Now we would like to find a rescaled value of J which fulfils the renormalisation
group invariance equation:

L OXTLY xS 1 H(18)

Fi()=F,(J"). (19)

The only possibility is that the leading piece in (15) when evaluated for J having the
form of (7) and expanded around J, gives rise to the second term in the square bracket of
(16). We proceed by comparing the two expressions in order to find the constants ¢, f
and k. The result is

c=—, B=1, K=——. (20)

Finally using these values in (9) and (10) we have for the critical data:

1 1
JC= m, VJ=E. (21)
The location of the fixed point is sensitive to the value of the scale (b=2) that is to the
definition of the renormalisation group transformation. The “thermal” index v; is
however universal in the Migdal-Kadanoff framework too.

The fact that we found a consistent solution to the renormalisation group
equation (19) with the Ansatz (7) proves that the coupling J is marginal in D = 1, which
is therefore the lower critical dimension of the system (1). This means that the symmetry
broken in the transition should be discrete.

The critical index v, found in (21) is the same as calculated by Migdal for the D
=1 +¢ dimensional Ising model in his original paper [6]. This fact establishes that the
theory (1) belongs to the Ising universality class.

Along the same lines, in principle, one should be able to demonstrate that the
SU(3) effective theory belongs to the Potts universality class in D=1+ ¢ dimensions.
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EXPANSIONS AT THE PARAMETER
SPACE BOUNDARY IN THE STANDARD
HIGGS MODEL*

I. MONTVAY

Deutsches Elektronen-Synchrotron DESY
2000 Hamburg, FRG

The strong self-coupling expansion and weak gauge coupling expansion are discussed in the
lattice regularized SU(2) Higgs model with scalar doublet field.

1. Introduction

A basic ingredient of the Glashow—Weinberg-Salam SU(2)®U(1) theory of
electro-weak interactions is the Higgs mechanism due to the non-zero vacuum
expectation value of the scalar field. Its consequence is a non-zero mass for the gauge
vector bosons and, after introducing the appropriate Yukawa couplings, the chiral
symmetry breaking mass of the leptons and quarks. Both the SU(2) and U(1) gauge
couplings are experimentally known to be small, therefore can be taken into account by
perturbation theory. The starting point of the usual dimensionally regularized
perturbation theory is, however, the assumption that the vacuum state is identical to the
semi-classical one, given by the minimum of the classical potential. This fact alone
could justify a non-perturbative investigation of the Higgs mechanism. The need for a
non-perturbative approach to the electro-weak theory would become, of course, acute
if it would turn out that the presently unknown scalar Higgs sector is strongly
interacting. In addition, non-perturbative results in lattice regularized scalar ¢*
models, without the gauge couplings, strongly suggest that such models have a trivial
continuum limit with vanishing physical interaction [1]. In order to establish the
relation of the triviality of ¢* models to the standard SU(2)® U(1) perturbation theory,
a better understanding of lattice regularized Higgs models is required.

The lattice regularization [2] allows for a variety of different approaches: besides
the powerful exact theorems it is also possible to perform approximate numerical
calculations or different sorts of analytic expansions. The general strategy of the
analytic expansions is to reduce the number of coupling parameters by sending some of
them to the boundary of the coupling parameter space. The small parameter in the
expansion is the distance from the boundary in some appropriately chosen metric. In

* Dedicated to Prof. K. Nagy on his 60th birthday
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the example of the standard Higgs model (i.e. SU(2) gauge field coupled to a complex
scalar doublet), which will be considered throughout this paper, there are three
couplings: the scalar self-coupling A, the gauge coupling g (or f=4g?) and the
hopping parameter x which represents in the lattice regularization the mass parameter
for the scalar field. A possible expansion in this model is the hopping parameter
expansion in powers of k at k =0. The expansion coefficients are, in general, functions of
the other two parameters (4, ff) involving non-trivial integrations over the gauge
variables. A similar hopping parameter expansion is often used in gauge models with

1
spin-i fermion matter fields [3].

Another possibility, among others, is to expand at some point of the A= co plane.
The resulting strong self-coupling expansion [5, 6] will be discussed in Section 2 of the
present paper. As we shall see, the expansion coefficients depend also in this case non-
trivially on the gauge variables. Such expansions can be rather useful, but for a
completely analytic calculation one has to choose some particularly simple expansion
point on the parameter space boundary, where all the integrations can be done
analytically. Another important aspect is that one would like to control analytically the
continuum limit of the lattice regularized theory, therefore the expansion point should
also be a critical point with infinite correlation lengths. The classical example for an
expansion fulfilling both these requirements is usual lattice perturbation theory, which
is a double expansion in powers of 4 and g at <l=0, f=o00, k= %) The action is
gaussian at this point, therefore the gauge and scalar field integrations can be easily
performed. An important feature of perturbation theory is that it is done at a point with
vanishing gauge coupling, therefore the expansion coefficients do not involve non-
trivial gauge field integrations. Expanding only in the gauge coupling at some arbitrary
point of the = co plane one obtains the more general weak gauge coupling expansion,
which will be briefly discussed in Section 3 of this paper.

The advantage of the general weak gauge coupling expansion is that it allows for
a formulation of the constraints imposed on the Higgs model by the expected triviality
of the pure ¢* model at f= 0. The triviality of ¢* means that the limit of the physical
Green’s functions at the critical line (4, x(4)) in the f = co plane is proportional to the
physical Green’s functions of a free scalar field theory. Although the scalar field action
looks non-trivial, at the critical line it describes a free field theory “in disguise”.
Therefore, if ¢* is trivial indeed, then there exists an infinity of points (A=arbitrary, p
=00, k=K.(A)) on the boundary of the parameter space, where in a weak gauge
coupling expansion the remaining theory is free. One can also combine the weak gauge
coupling expansion at the point (A = o0, ff = 00, k = k,(00)) with the strong self-coupling
expansion. The resulting “strong-weak coupling expansion” is in principle s?ﬁ‘nilar to

1
the usual double expansion at ().=0, H=coyix=— §>.
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2. Strong self-coupling expansion

In this Section the general formulation of the strong self-coupling expansion [5,
6] will be summarized. The notations and conventions will in general be the same as in
[7, 5, 6]. Therefore, the SU(2) gauge link-variables will be denoted by U(x, u) € SU(2),
and the Higgs field will be described by the length (p,>0) and angular variable
(a, € SU(2)). x denotes lattice points, u= +1, +2, +3, +4 are link directions and (x, p)
is the link from the point x to the neighbouring point (x + 2) in direction u. The lattice
action in these variables can be written like

1 7
S;_ﬂ‘,(-:ﬁ;(l— —2—Tr Up> =

Y. [p2—3log p.+ApZ—1)*1—k (Z) Px+iPx T (@ 2U(x, pasy). (1
x Xu

Here X, stands for a summation over positively oriented plaquettes,and 2, ,=Z, ..o
is a sum over positive links. The integration measure in the path integral is
dp.d*a,d*U(x, p) (where d>g denotes the Haar-measure in SU(2)). The peculiarity of
the SU(2) doublet scalar field is that its angular part is equivalent to the local gauge
degree of freedom. Therefore, at any finite f it is possible to introduce, instead of the
SU(2) link- and site-variables, a gauge invariant link variable

V(x, p)=a, zU(x, p)a,. (2
In terms of this, the lattice action is
1
S“,_,‘=BZ<1—- —Tr V,) +
P 2
+ . [pi—3logp,+A(p;—1)*]—xk (Z) Px+apxTr V(x, p). 3)
X XH
After performing the trivial integration over «,, the integration measure for Eq. (3) is
dp,d*V (x, p).
In the limit f— oo the variable change in Eq. (2) is inappropriate, because the

gauge part of the action vanishes (the link-variables become gauge equivalent to unity).
Therefore, for the f— co action one has to use

Sip=wx= 2, [pi—3log p.+UpZi—1)"]—x (Z) P+ P TF (74 300). 4)
x xp

This defines a four-component ¢*-model with global SU(2)®SU(2)- (or O(4)-)
symmetry.
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In the A— oo limit the length of the Higgs-field is frozen to p. = 1, and the action in
Eq. (3) goes over into

1
S1=m'ﬁ,x=ﬂ;<l—?Ter) —x Y. TrV(x, p). (5)

(xu)

The corresponding limit of the action in Eq. (4) defines the SU(2)® SU(2)-symmetric
non-linear g-model on the lattice:

Sl=no.ﬂ=oo.x='—K Z)ﬁ(a:+ﬁax)' (6)

(xp

The derivation of the strong self-coupling expansion at the point (=0, B,
K =s%k) starts from the relation

Sl.ﬂ.x=Sl=w.ﬂ.E+ Z l:_?’ log px+j'

= (Z) (Px+ 4P — ) TF V(X, ). ()
XU

The integration over the length variables can be explicitly performed. Introducing the
A-dependent expectation value (. . .),, for an arbitrary p-dependent function f(p), by

I[dp]f(p)exp{— Z[—3logpx+/1<p§_1+ 5}) ]}
o= v o 8)
| [dp] cxp{— Z[— 3logpx+,1<p§._1+ _27> ]}

x

the necessary integrals are of the form:

o 1 2
3+k i 2L At
: z[dp,,py expl: A(py 1+ 21) ]_ L&
<py>).= = 1\2 = i (l) =l
[dp,pyexp| —i| pi—1+ = ¢
0 24

Here p, is the length variable for some site y. An explicit form of these integrals can be
given in terms of the parabolic cylinder functions (see [6], where numerical values are
also listed in a few representative cases).

Let us denote a positively oriented link shortly by /=(xpu), and the trace of the
corresponding gauge invariant link variable by T,=Tr V(x, u). Due to Eq. (7), the
required A-dependent expectation value is:

©)
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Here the “connected i-product” ¢, is defined by

cn(ll YL 'In)Ec(ll L% 'In)“=‘<(px|+ﬁ1pxl)' g ’(px"+ﬁnpx")>‘}. - (1 l)

The superscript c on <. . . ) denotes “connected” (A-dependent) expectation value. In
the definition of the connected parts, the products within parentheses have to be
considered as a single entity. Identities similar to Eq. (10) are the basic tools for the
derivation of the expansions considered in this paper. They convert integrals over some
group of lattice variables into exponentials of connected expectation values of some
functions of these variables.

The strong self-coupling coefficients of, say, the generating function of connected
correlation functions can directly be obtained by applying identities of the type Eq. (10)
also to the integral over link variables. Some explicit expressions for the expansion of
different connected correlation functions are given in [6]. As a representative example,
let us consider the connected correlation functions of the link trace T;:

o
BT T Y5pe= L RCFOT, TS i (12)

The function F™ can be written as a sum over partitions:
e SR RS i g o (13)
ni{ny...ng}
The “partition” n{n,...n,} of the positive integer n is defined as a set of positive
integers n,,. . .,n, satisfying

n=n;+2n,+...+kn,. (14)

In Eq. (13) the factor f},, ., belonging to the partition n{n,...n,} is given by

k 1
n oo 32 2\n
(m...nk}'—(ll—s ) 3 il=_[l ni!(i!)m' (15)
The function T, ., is the product of n, single-link variables, n, two-link variables,

..., n, k-link variables, summed over all the links. The first few F™ in Eq. (13) are given
explicitly by

FO=(@}-s)Y T,

1 1
Fo= 3 [7 (35T, T, + 7c(1,lz)m.r.,)],

Iilx

1l |
'; I:g @ -5’7, T,T,+ j(lf—sz)C(lzls)Tz,(’ﬂsz,)+
16243

1
* gc(lllzla)(ﬂ,ﬂz’l},)], (16)
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where let us recall that in the connected expectation values the variables put in
parentheses count as a single entity.

The explicit form of the expansion coefficients can be used for the study of
convergence of the strong self-coupling expansion series. As it was shown in [6], the
series is essentially always convergent on a finite lattice, since it can be written as an «
=1 ratio of two entire functions of some appropriate auxiliary variable a. The
eventually appearing zeros of the denominator for |«| < 1 can always be transformed
away by a suitable conformal mapping in the a-plane. This implies a finite reordering of
the series such that the k' term of the new series is a linear combination of the first k
terms of the old one. After this eventually necessary resummation the series will be
convergent.

The extension of the convergence proof seems straightforward also to the case of
infinite lattices. The only additional question is the convergence of the lattice link sums,
but this can probably be controlled for appropriately chosen expansion points (4= oo,
B, k) and A-dependent curves k=s(1) *K.

In [6] the numerical values of some low order expansion coefficients were also
determined by Monte Carlo integration at the point (A= oo, f, ). The calculated third
order series are sufficient for A-values in the range of A~10. For A~0.1-1.0, however,
only a qualitative description of the direct Monte Carlo results is possible, for suitably
chosen s%. A quantitative agreement in this A-range requires higher than third order.

3. Weak gauge coupling expansion

The relation between the actions, instead of Eq. (7), is now

Sl.ﬁ.xzsl.ﬁ=°0."o+sﬂ_

The hopping parameter of the expansion point is denoted here by k,, and S is the
Wilson action for the SU(2) gauge field:

(18)
Introducing the notations
Alx, )=U(x, p)— 1= —a,,+i,8,,;  P=py0 (19)
the above equation can also be written as
Sl.ﬁ.x=sl,ﬁ=oo.xo+sa_
~ & (e T [od gl 091+ (5= o) T (920} (20)
Xp

Acta Physica Hungarica 62, 1987



EXPANSIONS AT THE PARAMETER SPACE BOUNDARY 197

We are interested in the generating function Z of the gauge invariant connected
correlation functions:

Z[r, k]l.ﬁ.leog<exp{zrxpx+ Z eruﬂ[1r¢:+ﬁv(x9l‘)(px]}> J (21)
x r(xu) Afx
Heret,,(r=1, 2, 3)is a weak-isospin Pauli matrix. The derivatives of Z with respect to r
give the connected correlation functions of the gauge invariant Higgs-boson variable p
(weak isospin zero), whereas derivatives with respect to k produce the connected
correlation functions of the isospin 1 gauge invariant W-boson variable Tr [zt Ug].
(Note that one could use, in principle, also other interpolating fields, for instance, in the
Higgs-boson channel Tr(¢*U¢) or in the W-boson channel Tr[ta* U«a], but this
would not change anything essential.)
The path integral needed in Eq. (21) can be written as

f [dpd®ad*U] exp (=S = w.xo— Sy

- €Xp { Z TyPx i (Z) [eru Urxy + (K e KO) vxu + axujxu =+ arxujrxu]}s (22)
% Xp
where a summation over repeated isospin indices (r,s,t,...=1,2,3) is always

understood. The definition of the currents appearing in Eq. (22) is the following:
V= Tr (@3+70.)
Vpeu = TH (@54 404T)),
Uy = T (@54 2T,05),
= It ((Px+ oF ﬁfr(Psz),
Jau= = K0 =KV
Jroon = iUy + K Uy (23)

The integration over the gauge field variables in Eq. (22) can be performed in the same
way as in usual perturbation theory. The result is, of course, an infinite series in g2. The
final form of the generating function Z can be obtained from an identity of the same
type as Eq. (10) (for more details see [8]). The expansion point (4, f= 00, k,) can be
chosen everywhere in the f= oo plane. If one wants, however, to study the questions
related to the possibility of a continuum limit at (4, = o0, k..{4)) [7], then k, has to be
identified with x_(4). It is also possible to combine the weak gauge coupling expansion
with the strong self-coupling expansion at 4= co. In this case the expansion point has
only a single parameter (), and the expansion coefficients are expressed by expectation
values in the non-linear s-model defined by the action in Eq. (6).

Note added in proof: The lowest order weak gauge coupling expansion near the
= oo critical line implies that the continuum limit of the standard Higgs model is trivial

(%1
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HAMILTON PRINCIPLE FOR THE VORTEX FLOW
OF AN IDEAL FLUID
IN SPECIAL RELATIVITY*

1. ABONYI

Institute for Theoretical Physics, Roland Eotvos University
1088 Budapest, Hungary

The fundamental equations of an ideal — entropy current conserving — fluid are obtained
from a Hamilton Principle. The Lagrangian is formulated in the usual way. The physical situation,
however, requires the introduction of some constraints in the variational principle to restrict the
variations of the original field quantities. The Lagrange multipliers entering in such a way are shown
to lead to the possibility of vortices in the velocity field.

1. Variational principles based on a convenient action integral play an
important role in classical mechanics as well as in classical and quantum field theory.
This role — because of its homogeneity in mathematical methods, its inherent
insensitivity to the coordinate system used in the description — offers a unique
possibility to exhibit the common features of the phenomena that belong to a branch of
physics and so to decrease the number of first principles in the theory and may help to
formulate the laws of the branch in question in a coordinate independent manner. The
procedure called canonical quantization, based on an action principle offers a way to
pass from classical to quantum theory.

In the case of the hydrodynamics of the classical ideal fluid an action principle
has been used for a long time [ 1] which, however, has been found to be insuffient since it
accounted only for the vortex-free flows of the fluid.

The possibility of the extension of the variational procedure to account for
vortex flow has been shown by Herivel [2]. He realized that when one takes into
account consequently requirements formulating the substance character and the ideal
thermodynamic behaviour of the fluid, i.e. adds the continuity equation for the density
and that of entropy density with multiplicators to the Lagrange density, the variational
principle with constraints will lead to a sufficient number of equations, one for each
field quantity and multiplicator, the flow velocity v being determined in a Clebsch form

v=—Va+pVs,

* Dedicated to Prof. K. Nagy on his 60th birthday
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where o and f are the Lagrange multipliers and s is the specific entropy. Evidently, if Vs
#0, then V x v#0. Herivel has shown that

op

E + (VW)=
where u(p, s) is the specific internal energy and T the absolute temperature.

2. The relativistic fluid will be described by the rest mass density (in the proper
volume) y, the specific entropy (per unit rest mass) s and the four-vector u, of the flow
velocity field. Use will be made of the specific internal energy which is related to the
internal degrees of freedom of the fluid and so is quite different from rest energy already
specified by u. The specific internal energy e is considered as a function of x and s, and
by definition will be a scalar quantity, which satisfies the First and Second Law of
Thermodynamics written in the form

de(u, s)= ds= fz‘dﬂ"' Tds, 1)

where p and T'stand for pressure and absolute temperature, both scalars; especially,
when (1) is put in the form

Tds=dw— Illdp, (2)

where w=e+ E is the specific enthalpy.

We have to require that the flow velocity u, be a four-vector of bound length,
namely

uu,= —c? 3)

(summation convention understood for doubly occurring Latin indices) to make the
physical interpretation possible.

The fluid material should be considered as a substance which is guaranteed by
the continuity equation

0, (uu,)=0. @)

The relevant thermodynamical model in the frame of which we want to describe
the fluid is now chosen to be the ideal fluid, where no dissipation effects are considered
throughout the fluid. So along the world line of any fluid element

u,0,s= 5 =0. ®)]

Let us remark that Eq. (5) combined with Eq. (4) gives
0,(usu,) =0, (6)
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us being the entropy density of the fluid, then the entropy current four-vector usu, is
divergence-free in our case.

The Hamilton principle will be announced for a four-dimensional space-time
region 2 using a Lagrange-density L, a Lorentz-scalar of the dimension proper energy
per proper volume. The fundamental part of the Lagrangian starts with a scalar rest
mass density of the fluid (being the lowest order available nontrivial construction). The
flow vector as a four-vector of bound length is not interesting for this fundamental part.
The internal (or external) interaction of the fluid will be considered by the product of
and the specific internal energy e (or specific potential ¢), both being lowest order
nontrivial scalars. Then the fundamental part of the Lagrangian Ly has the form:

L= pc® — p(e(p, )+ @(x).- ()

Since the flow is not free, but subject to the constraints (3), (4) and (5), we take them into
account by Lagrange multipliers using Ky, o, fu, respectively.

After all this introduction the actual Lagrangian L for this variational problem
with constraints is the following:

L=pc*—p(e(u, )+ @(x0) + Kp (e, + c*) — ad (uu,) — pu,0,s. (8)

The variation has to be executed in such a way — as usually —that the variations dy,
s, duy, 0K, da, 6 vanish at the boundaries of the region of Q.

Evidently, the Euler equations give back the constraints for the variations 6K, da
and of:

SK: W= —c?, 9
oa: 0, (uu,)=0, (10)
8p: u,0,5=0. (11)

For the other variations, the calculation is not so trivial. So we follow it giving a short
outline.
The variation of u gives

S c2+u,0,0— <e+yg—; +(p) =0. (12)

When varying u,, we obtain
Suy: 2K pu, + pd,o.— upo,s =0. (13)
Now, since u#0, we omit this factor, and observe that the factor 2K does not play any

important role, so it can be considered as incorporated into « and f, permitting us to
write

uk= —aka+ﬂa,‘s‘ (14)
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When carrying out the variation of s, we obtain

s 57 e (%) ~o. (15)

Here, taking (10) and (1) into account, we have
de
of=(=—| =T
ud,p ( as)“ (16)
In the following, we transform Eq. (12) by taking its gradient, which gives
de
0;(u,0,0)—0;{ e+ +u— | =0. (17)
ou
When substituting here d,a from (14), we conclude, that (17) leads to
—u,0,u;+ + 0,0 =0,

which in virtue of the thermodynamic relations (1) and (2) can be put in the form

u,0,u;=TOo;s—0;w— 0,0, (18)
or
1
urarui= Rai alp— al(P (19)
U
This, however, is equivalent with
O puiu) = —0(p+ ), (20)
or
O (puu+ 6, (p+ ) =0. (21)

Equations (18)+21) represent one of the usual forms of the equations of motion for a
barotropic fluid in special relativity (we use the term barotropic to underline that in this
case p=p(p), i.c. the pressure can be envisaged as a function of the rest mass density
only).
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CORRELATIONS IN A NONEQUILIBRIUM STEADY STATE:
EXACT RESULTS FOR A GENERALIZED KINETIC
ISING MODEL*
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A one-dimensional kinetic Ising model with domain wall dynamics corresponding to
diffusion-limited annihilation in the presence of particle sources is considered. The spin-spin
correlation function C, is calculated exactly for a nonequilibrium steady state which can be brought
close to a critical point of the system. We find that in contrast to equilibrium situations, C, contains
two distinctly diverging correlation lengths &, <&,. While scaling appears for r ~ ¢, , where &, is an
equilibrium type correlation length characterizing the cooperativity of the spins, no simple scaling is
observed for r 2 &,, where ¢, is a length closely related to the nonequilibrium kinetics of the system.

1. Introduction

The description of systems in thermodynamic equilibrium is enormously
simplified by the fact that the probability for a given equilibrium state to occur is
independent of the details of the underlying dynamics; it depends only on the additive
constants of the motion which, in practice, means the energy of the state. It is an
intriguing and quite important question whether some aspects of the equilibrium
description could be generalized to far-from-equilibrium steady states. The attempts to
answer this question seem to go along the following two lines.

i) One may try to generalize thermodynamics. Usually, this means that a set of
deterministic equations are written down for the macroscopic variables and the
influence of fluctuations arising from the microscopic degrees of freedom are taken into
account by adding noise terms to those equations. Then, if possible, the equations are
transformed into an equivalent Fokker—Planck equation and the stationary solution of
the Fokker—Planck equation gives the steady-state distribution of the macroscopic
variables and thus one finds the non-equilibrium thermodynamic potential of the
system [ 1]. The aim of this approach is to examine simple cases and try to find the rules
of construction of the nonequilibrium potential and thus bypass the tedi