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•

The experimental potential energy curves for , X 23Z f ,  B t3Z~, B2i Zu , C f Z u and E
states of the diatomic selenium molecule have been constructed using the method of Lakshman and 
Rao and also by Jarmain’s method. The dissociation energy for the ground state of the molecule has 
been estimated to be 3.31 eV by the method of curve fitting using the electronegativity potential 
function of Szőke and Baitz. Also the first ionization potential of the Se2 molecule is found to be 
8.68 eV.

Introduction

The construction of experimental potential energy curves for the atomic 
interactions is of fundamental importance in chemical physics for the understar ring of 
various physical problems arising in astrophysics, gas kinetics and molecular spectra. 
Also a knowledge of the exact values of the dissociation energies (D0) of diatomic 
molecules is necessary in thermo-chemistry. The present paper mainly deals with the 
construction of potential energy curves for X 23I~ , X 23X~, B23Z~ , Ct 3I~
and E states of the Se2 molecule using the method of Lakshman and Rao [1] and 
theoretical estimation of D0 of the molecule by the method of curve fitting. The 
molecular constants required for the present work have been taken from Huber and 
Herzberg [2].

Potential energy curves

The method of Lakshman and Rao is a modified form of Rydberg-Klein-Rees 
method [3] in which / and g terms are written in a simplified form. Chakraborty and 
Pan [4] had mentioned in their review paper that the method of Lakshman and Rao is

1» Acta Physica Hungarica 56, 1984



4 P SAMBASIVA RAO et al

reliable and accurate. As the present method was successfully verified [5-9] for several 
states belonging to different diatomic molecules, and because the full details of the said 
method were reported in literature [1] only the results of the present work are given in 
Table I. The turning points of the vibrational motion, obtained by the method of 
Jarmain [10] are also presented in Table I, for comparison.

Dissociation energy

An accurate estimation of the dissociation energy (De) requires an empirical 
potential function which gives the best reproduction of the experimental potential 
energy curve. Various attempts to get such empirical functions have been reported in 
literature. A critical evaluation of the more important of these functions was given by 
Steele et al [11] and they have shown that the potential function of Hulburt and 
Hirschfelder [12] and the Lippincott potential function [13] fit well with the RKR 
curves of a large number of diatomic molecules. In the present investigation, it is 
observed that the electronegativity potential function proposed by Szőke and Baitz 
[ 14] has given the best reproduction of the experimental potential energy curves of Se2. 
Also, it has been found by Singh et al [15] that the Szőke and Baitz potential function 
fit well with the RKR curves of the molecules built from like atoms, such as I2, N2, 0 2, 
etc.

The function used is of the form

U(r)-41 — exp
yAr‘
~Ъ

1 —a
1/2

Ar exp ( 1 )

where y = de/Dl12. d is obtained from the expression ke=d(el e2De)ll2r~l, b is 
considered a constant ( ~  1.065) and a = 0.35e1/2 where e = (e2 e2)1/2, and e2 being the 
electronegativities (Pauling scale) of the atoms constituting the molecules. The turning 
points of the ground state of Se2 are used in the Szőke and Baitz potential function and 
for a particular value of De, the observed energy values of U are compared with the 
calculated energy values [l/(r)]. This procedure is repeated for different values of De, 
and the De value (3.33 eV) for which the best fit of the energy values [L/(r)] is observed is 
taken as the dissociation energy (De) of the molecule.

Results and discussion *-

The turning points obtained for ninety-two observed vibrational levels of six 
electronic states of the Se2 molecule are presented in Table I.

It is obvious from Table II that the best fitting of the energy values is achieved for 
Dc = 3.33 eV (26875 cm -1) since the average percentage deviation in this case is

Acta Physica Hungarica 56, 1984
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Table I

The turning points of the potential energy curves of the Se2 molecule

и
[ c m 1]

U + T'
[cm "1]

Lakshman and Rao method Jarmain method

'•mm [nm] '■m., [nm] '"min [nm] [nm]

X , state

ОII rc = 0.2166 nm
192.4 192.4 0.2121 0.2215 0.2121 0.2215
957.2 957.2 0.2069 0.2280 0.2069 0.2280

1714.3 1714.3 0.2039 0.2323 0.2039 0.2323
2463.5 2463.5 0.2017 0.2359 0.2017 0.2359
3204.9 3204.9 0.1998 0.2391 0.1999 0.2392
3938.5 3938.5 0.1982 0.2421 0.1983 0.2421
4664.1 4664.1 0.1968 0.2449 0.1969 0.2450
5381.8 5381.8 0.1956 0.2476 0.1956 0.2477
6091.5 6091.5 0.1944 0.2501 0.1945 0.2503
6793.1 6793.1 0.1934 0.2526 0.1935 0.2528
7486.7 7486.7 0.1924 0.2550 0.1925 0.2552
8172.2 8172.2 0.1915 0.2574 0.1916 0.2576
8849.5 8849.5 0.1906 0.2597 0.1908 0.2600

X 2 state T' = 510.0 0.2163 nm

193.3 703.3 0.2118 0.2211 0.2118 0.2211
967.9 1471.9 0.2066 0.2276 0.2066 0.2276

1722.7 2232.7 0.2037 0.2320 0.2037 0.2320
2475.8 2985.8 0.2015 0.2356 0.2015 0.2356
3221.2 3731.2 0.1996 0.2888 0.1996 0.2888
3958.9 4468.9 0.1981 0.2418 0.1981 0.2418
4688.8 5198.8 0.1967 0.2446 0.1967 0.2447
5411.1 5921.1 0.1954 0.2473 0.1955 0.2474
6125.6 6635.6 0.1943 0.2499 0.1944 0.2500
6832.5 7342.5 0.1933 0.2524 0.1933 0.2525
7531.6 8041.6 0.1923 0.2548 0.1924 0.2549
8223.0 8733.0 0.1914 0.2572 0.1915 0.2573
8565.8 9075.8 0.1910 0.2584 0.1911 0.2585
9582.7 10092.7 0.1898 0.2619 0.1899 0.2620

10250.9 10760.9 0.1891 0.2642 0.1892 0.2643
B, state T' = 25980.4 rt = 0.2447 nm

122.9 26103.3 0.2391 0.2508 0.2391 0.2508
609.3 26589.7 0.2328 0.2592 0.2328 0.2592

1087.2 27067.6 0.2293 0.2650 0.2293 0.2650
1556.5 27536.8 0.2267 0.2698 0.2267 0.2698
2016.7 27997.1 0.2245 0.2742 0.2245 0.2743
2467.7 28448.1 0.2227 0.2783 0.2227 0.2784
2909.2 28889.5 0.2211 0.2822 0.2212 0.2823
3340.9 29321.2 0.2197 0.2860 0.2198 0.2861

В 2 state Tt = 26058.6 r< = 0.2440 nm

122.9 26181.5 0.2385 0.2503 0.2385 0.2503
608.4 26666.0 0.2328 0.2592 0.2328 0.2592

1084.1 27142.7 0.2297 0.2655 0.2297 0.2655

Acta Physica Hungarica 56, 1984



6 P. SAMBASIVA RAO cl al

Table I. (conl.)

V U
[ c m 1]

t/ + T. 
[cm-1]

Lakshman and Rao method Jarmain method

'■«ы. [nm] [nm] rm,„ [nm] [nm]

C, state T' =  53220.5 r ,= 0.2089 nm

0 213.7 53434.2 0.2047 0.2136 0.2047 0.2136
2 1062.4 54282.9 0.1998 0.2198 0.1998 0.2198
4 1901.3 55121.8 0.1970 0.2239 0.1970 0.2239
6 2730.5 55950.9 0.1949 0.2274 0.1949 0.2275
8 3549.9 56770.4 0.1932 0.2305 0.1932 0.2306

E state T' = 54752.5 re = 0.2137 nm

0 210.6 54954.1 0.2093 0.2184 0.2093 0.2184
2 1001.6 55754.1 0.2043 0.2249 0.2043 0.2249
4 1791.2 56543.7 0.2014 0.2292 0.2014 0.2292

Table II

Comparison of the observed and calculated energy values

r [nm] U Calculated energy values U(r)
[cm-1] Dt = 3.29 eV De = 3.33 eV D ,=3.38 eV

0.2121 192.4 192.4 192.3 192.3
0.2215 192.4 192.3 192.3 192.4
0.2039 1714.3 1710.4 1708.9 1707.3
0.2323 1714.3 1714.8 1716.8 1718.8
0.1998 3204.9 3197.1 3193.3 3189.6
0.2391 3204.9 3200.6 3206.0 3211.4
0.1968 4664.1 4646.8 4640.4 4634.1
0.2449 4664.1 4652.7 4662.9 4672.9
0.1944 6091.5 6067.8 6058.6 6049.6
0.2501 6091.5 6061.9 6078.0 6093.8
0.1924 7486.7 7454.9 7442.8 7430.9
0.2550 7486.7 7429.3 7452.3 7474.9
0.1906 8849.5 8816.0 8800.8 8786.0
0.2597 8849.5 8748.0 8779.1 8809.5

Average percentage 
deviation: 0.35 0.33 0.37

minimum. Hence the dissociation energy for the ground state of Se2 is 3.33 eV and the 
value as measured from the lowest vibrational level is D0 =  3.31eV. But from the 
predissociations in B t state, observed by Barrow et al [16] the dissociation limits are 
fixed at 27508cm“ 1 and 29498cm-1. From these dissociation limits three possible 
spectroscopic values i.e. 3.4105, 3.1638, 3.0964 eV for D0 can be derived depending on 
the assumed atomic states at the observed predissociation limits. Barrow et al [16]

Acta Phys ica Hungarica 56, 1984



POTENTIAL ENERGY CURVES AND DISSOCIATION ENERGY 7

prefer £)0 =  3.164eV. But the present value of D0 (3.31 eV) is slightly higher. Yet this 
estimated value is reliable because both photoionization and thermochemical studies 
[2] strongly favour a higher value of D0 =  3.411 eV.

Also, the dissociation energy (De) for By state of the molecule has been 
established at 1.19eV (9625 cm-1) using Eq. (1).

The lowest state of atomic selenium [17] in 3P2 and the Wigner-Witmer 
correlation rules [18] show that two normal atoms (3P2 + 3P2) can give, among other 
types 31~ but not 3Z~. The ground state, X l 3Z~, should therefore dissociate to 
normal atoms Se (3P2) +  Se (3P 2) but the upper state B, 3Z~ must go to a different pair 
of products.

From the relation
De(Bl)+Te = De(X l) + EA (2)

the atomic excitation energy (EA) is evaluated from the estimated De values of the 
excited (Bx) and ground (Y,) states and the electronic term (7 )̂.

Since the Te value for the B, — Y, system is 25980.36 cm-1, Ел = 9625 + 25980.36 
— 26875 =  8730.36cm-1. As this value of atomic excitation energy is close to the 
atomic state energy (9576 cm - 1 ) o f1D2 for selenium atom [17], the upper state, Bl 3Z~, 
may dissociate into Se(3P2) + Se(1D2)-

Knowing the D0 value of Se2 and the D0 value of Se2 [18] and the first ionization 
potential of selenium atom [17], the first ionization potential of Se2 can be evaluated. 
The difference between Se2 and Se2 bond energies is given by the relation

D0(Se2+) -  D0(Se2) =  /(Se) -  /(Se2) = 1.07 eV (3)

which is consistent with the ionization of an antibonding electron. It expresses that Se2 
has one antibonding electron less than Se2 and so one would expect D0(Se2 ) to be 
larger than D0(Se2).

So, from Eq. (3) the ionization potential of the Se2 molecule is given by 

/(Se2) = /(Se) + Z>0(Se2) -  D0( Se2+)

= 9.75 + 3.31-4.38 = 8.68 eV,

which is in good agreement with the value of 8.88 eV recommended by Huber and 
Herzberg [2].
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O N  Q U A R K  A N D  C O L O U R  C O N F IN E M E N T

С , V. W e s t e n h o l z  

D-45 Osnabrück—Dodesheide, FRG*

(Received 21 September 1982)

The problem of quark confinement is re-investigated in terms of a structural analysis of the 
Wilson loop confinement criterion.

Within a suitably chosen gauge-geometrical framework it is shown that the topological 
structure of the vacuum underlies the mechanism of confinement. The non-existence of free coloured 
particles within this approach confirms that the problem of quark confinement becomes that of 
colour confinement

1. Introduction

A description of hadronic matter leads to the question: Why are quarks 
permanently trapped within hadrons? This problem of quark confinement, where 
strongly interacting hadrons show signs of an inner structure deals with the status of 
quarks as the fundamental constituents of all hadrons within the framework of some 
non-abelian gauge theory. The basic dynamical and topological aspects which are 
derived from such a gauge geometry are intimately related to some interaction energy, 
E(R), between a heavy quark-antiquark (qq)-pair, imbedded in a gluon soup, separated 
by a distance R for a time T. A model where confinement occurs when E(R) grows with 
R, R -»oo, i.e. when E(R)>0, or, alternatively, where pair-produced quarks will repel, 
when E(R)< 0, can be of the type which refers to Wilson's confinement criterion. The 
interaction energy of massive quarks, which appear as an effect of a spontaneously 
broken gauge symmetry (cf. Section 3), can be calculated by evaluating the vacuum 
expectation value of the ordered exponential of the line integral of the corresponding 
gauge field w1 =  AM dx" (in the A0 = 0 gauge) about a loop of spatial extent R and time 
extent T, such that

W[c i) — < vac I Tr exp (i J to*’ | vac >  -» ex p [—E(R)T] . (1)
ci T -* oo

Note that for large Tthe vacuum expectation value (1) behaves like

W(cy) #  exp (-const. A) (2)

* Address: Eibenweg 6, D-45 Osnabrück—Dodesheide, FRG
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(in certain cases), where A is the minimal area enclosed by the Wilson loop c, : = 
C i ( R x T )  in space-time.

The aim of this paper is a structural analysis of Wilson’s confinement criterion, in 
terms of a relativistic field theory on space-time M4, the base of a gauge-invariant 
structure P(M 4, G) with symmetry G, the colour-gauge transformations. The fields are 
pairs

(cop, cp), ojp e FP(M 4) (vector space of p-forms on M4) (3)

cpe C ,(M 4) (space of p-chains on AÍ4) ; p = 0 ,1,2, 3,4

such that the the chains and loops e C ^ M 4) are associated with a gas of closed 
continuous loops, replacing the conventional discrete lattice gauge theoretical 
approach to confinement. I.e. we consider a statistical system in a lattice-independent 
description in the sense of Samuel [1]. Within such an approach to quark confinement 
in terms of the geometrical fields (3), the structure of the observed hadrons, i.e. matter 
arises from the physical properties of the “empty” space, the QCD vacuum. This 
ground state will enjoy statistical properties similar to those of a quantum liquid state.

2. Dynamical and topological aspects of quark confinement

The fields (3) are assumed to derive from a principal fibre bundle P = P(M 4, G) 
over space-time M4=(M 4, ds2) with structure group G [2]. Let a be a connection form, 
ß=(ß£) the curvature form of this connection and (ej be a frame in G', the Lie algebra 
of G. The potential A and the Yang-Mills field F associated with a are given by virtue of 
a local cross section s:U -*P , U c  M4, in terms of the pull-backs by s:

s*u = A = Aitldxpei defined by Ap=0 а  дц0 + 0ар, (4)

s*i2 = F =  FJ,, dxp a  dxv et ;

Fpv = A[„-  A‘pv + c‘jk AJßAkv=>FßV =  д„0 л dv0 + 0(d„av -  t)vaM), (5)

where (c'k) are the structure constants of G and (хд) a system of local coordinates in U. 
Denote by £  =  £(M 4, V, G, P) the bundle associated with P with standard fibre V, a 
vector space. The Higgs field 0 which determines the potential (4) and the field strengths 
(5) is the pull-back of the map (p : P-+0 a  V, О an orbit of G, by a section s, such that

0 = s*(p = (pos : U a  M*-* V, (6)

V0 = s*Vcp=Vll0idxpei -, FM0' =  0^ +  4 4 0 * ,  (7)

whenever K= G'. V0 stands for the covariant derivative of 0.
The dynamics o f the quark confinement as well as the corresponding “observables” 

related to colour charge screening derive from a Lagrange density of a variational

Acta Physica Hungarica 56, 1984
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principle. This Lagrangian L is invariant under G-colour gauge transformations and is 
obtained from P by the following construction: Let g be an ^ -invarian t metric on G', 
9ij—9(ei, ejX and II (p || =  /iy<it>‘(pJ an invariant metric on V, then

A = </y *ß‘ л ß J + /iy *P(p‘ л P qp + K(|| <p ID̂ i, ; ß  =  ß ‘ef (*ß the dual form of ß) (8)

which is an invariant 4-form under the action of G, such that co4 = s*A (cf. (9)) will 
embody the dynamics with respect to the oriented Riemannian space with volume 
element rj = dx° a dx1 a dx2 л dx3 (r]h is a horizontal form). Hence we may classify all 
the fields, dynamical and topological “observables” relevant to the problem of quark 
confinement as follows:

(еД с4)-»/ =  J cu4 ;
C4

œ* = L r ] = - ~ F  a *F + F0 л *F0+1/(|| 0||)>/e F 4(M4), c4 e C 4(M4); (9)

(co3,c 3)->ßc = J w3 ;
C 3

w3= j 0dxl Adx2 Adx3 -, dw3 = 0 (d : FP->FP+1 ext. derivative)
ял*

(eu2, с2)-+4лд =  J w2 ; со2 = £в;Д0‘ ^ - ^ dx‘A t/x'" - 

(ca1, cl)-*l(c1, c\)=  jcu ‘ = n e Z ; со1 = Htdx‘ ;
Cl

f} _  ~  1 [( x - y ) * d y47t J И И 3 ’ [1 ],C 2 ]
c',

(со1',C!)->dS/Ä= l/й j  dS =  e/Ä c| At dxl = e/hc<Pc\
Cl  Cl

co1,= -/1, dx‘=dS e Fl (M) ; c

K ,C o H f f l ° =  £  f t S(Pí) =  S(P2) - S ( P 1), w° = S : AÍ4->R ;
CO i =  1

c0 = ZgiPi = P2- P l e C 0(M*).

( 10)

( П )

( 12)

(13)

(14)

The integral observable (9) stands for the action integral. The “observable” (10), the 
colour charge Qc, is related to some conserved current e.g.

d*F = 4nco3, о)3 — dx^dx'dx', dw3 = 0 . (15)

A d a  Physica Hungarica 56, 1984



12 С. V. WESTEN HOLZ

(* is the Hodge star operator). The observable associated with the Yang-Mills- 
Higgs-2-fïeld (11) is the magnetic flux through the closed surface c2 . The total magnetic 
charge g related to (11) may also be interpreted in terms of (14). Let

/ :C 0(M4) ^ R ;  f(c0)=  £ > , = <2 [2] (16)
i

be Kronecker’s Index, which is a linear map which associates with each 0-chain

c0 = ^giP i e C0(M4) the quantity (16). If the coefficients gt are regarded as a discrete

magnetic charge distribution g l , g2 , ■ ■ .,gk over the points Px , P2 , . . . ,  Pk, then (16) 
equals the total magnetic charge Q = g. Relation (14) assumes gx =  1 and g2 = gx = — 1 
as unit charges for a quark-antiquark pair. The action for a line of quantized flux, i.e. a 
string terminating at such quark monopoles is a>° = S, hence (cu°, c0) yielding the 
observable (13). The observable (12), /(c ,, Ci) =  n is a linkage property and arises as 
follows: Let c\ be a vortex solution of the Lagrangian (9). If its linking number with a 
Wilson loop c x is l(c 1 , c\), then one may express the contribution for several vortices 
with positive and negative linkages, n+ and n_ , respectively, to Wilson’s vacuum 
expectation value (1) in terms of

where

g (c \ , x0 , x 1) = Rexp(i j  Akdxk) = e
Cl

0 (x ,, cx) = D\_g(c 1 , X1 , xo)]0(xo);

[ф Г i2ng= exp I ----- (n + — n eG ,

0(xo) g G/H (cf. Section 3),

(17)

(18)

P being the Dyson ordering operator alon the loop cx . As shown in [1], an evaluation 
of the vacuum expectation value W(cx) in terms of the linkage property (12) yields, on 
account of a quantal vortex field 0:

W1a ) #  exp -  ----
[ - ( 4 ) ' w

d3x H = — 1/4л
' ( y - x )A d y

. I I  У ~ х  I I  3 [2],[1] (19)

( H 2d3x #  (l/4n)2 2Tln (R/R0) ; R0 = const. [1] (20)

for any Wilson loop which is homotopic to a “rectangle” R x T  for large T. 0, denotes 
some trial solution.

On the other hand, assume M4 = S3 x R . If уФ х are regular values of a 
differentiable map 0 : S3-»S2 , the linkig number of the closed curves 0 *(x) and 0 “ ^y) 
equals the Hopf invariant H(0) [3], [4], given by

H(0) =  / (0 - ‘(x), 0 - ‘(y)) = А л d A ,
s3

. Л01 d@k
dA = 1 /2ef -fc0‘ — 7  —— dxl л dxm, A = Atdx‘ .

ox ox

( 2 1 )

Acta Physica Hungarian 56, 1984



ON QUARK AND COLOUR CONFINEMENT 13

This relation refers to the following geometrical set-up: Let c2 be some closed 
connected 2-chain (2-cycle) in S3 with boundary 0 ” 1(x)Sc1 then, by virtue of (21) we 
may count the number of times 0 ~1 (у) ш c\ intersects the surface c2 . Since the 2-form 
dA is used for a representation of //(0), i.e. Я(0) and the linking number follow from the 
topological structure of the vacuum-Higgs-manifold M0 = S2, the Hopf charge holds 
true no matter what action principle determines the dynamics of the Higgs field 0‘.

By virtue of the spontaneously broken colour-gauge symmetry G the previously 
massless gauge mesons acquire a mass. This spontaneous symmetry breaking relates to 
the following geometrical set-up [5]: Let H : = {g eG  : £%)0O = 0O} be the isotropy 
subgroup of G at 0O, D : G x V-* V a representation of G in К Let M0 = G/H be the 
homogeneous space of G. On account of the Higgs field (6), (p : P->M0 c  К we have the 
subbundle P'= {ре P : (p(p) = 4>0} of P over space-time M4 with structure group H. M 0 
is the vacuum manifold, i.e. the set of all vacua, obtained from 0O by M 0 = D(G). 0O, 
where 0O is a field configuration which minimizes the energy U (0) in (9). Note that by 
the converse, a given reduction F  of a principal fibre bundle P to a subgroup H of its 
structure group G defines a Higgs field (p : P-> M 0 = G/H by <p(p) =  0O e M 0 whenever 
pe  P'. Let now 0 : S3-*S2 which determines the Hopf invariant H(0) in (21). For any 
fixed t and M 4 = S3 x R we consider a Higgs field over the trivial bundle P = S2 x G, 
with the choice of G — SO(3) [5):

This set-up corresponds to the monopole vortex solutions o f the 4 Hooft-Polyakov type. 
In fact, under the condition that the structure group G is reducible to H and if F„0 = 0, a 
connection of P(M4, G) is reducible to a connection of P'(M4, H). Otherwise stated: A 
connection form a on P, restricted to F , defines an //-connection iff it is //'-valued, i.e. 
iff РФ = 0. In the case of the associated bundle E(S2, SO(3)/SO(2), SO(3), P) with fibre 
G/H = SO(3)/SO(2), the condition that the principal fibre bundle P is reducible to 
P'(S2, SO(2)) is satisfied [2]. The geometry of P'(S2, SO(2)) may be regarded as the 
geometrical structure of a //(l)-monopole, since SO (2) ё  (7(1). In fact, by (4) and (5), i.e. 
the definition of the Yang-Mills connection and curvature, respectively, the C/(l)- 
curvature of the structure F  is given by

3. Spontaneous symmetry breakdown and quark confinement

<p : P(S2, SO(3)) = S2 x SO(3)-+S2 c  U3, q»(0, g) = g~ 10; 

M 0 = SO(3)/SO(2) =  S2,

F  =  {pe P/(p(p) = <Do e S2} = P'(S2, SO(2)).

(22)

(23)

Acta Physic a Hungarica 56, 1984



14 С. V. WESTENHOLZ

where, by (11), F l =gw2. Fv induces the magnetic flux described in Section 2:

4 ng =
2e I Ф I I  3 J £ , V * 0 Í

d p  6#
Ihddx”

dxl dxm, (25)

which admits a Homology classification of Higgs fields and monopoles as given in [5]. 
Moreover, the 2-form F' yields, via F ^ , the relation (21) between the Hopf invariant 
Я(0) and the linkage property between a Wilson loop and vortex solutions. Hence the 
proposed framework of a non-abelian gauge theory for an analysis of the problem o f quark 
confinement admits a description of hadronic matter with monopole-antimonopole- 
configurations. Quantization of charge in the presence of the colour gauge group SO(3) 
= SU(2)/Z(2) can now be derived from the gauge structure P'(S2,SO(2)).

Proposition 1. Let F  =  P'(M, SO(2)) (e.g. M = S2) be a principal fibre bundle over 
a 2-dimensional oriented Riemannian space M. Let the curvature 2-form of a 
connection in P' be determined by (24), i.e. Q’ = n * F '. F' admits the quantum 
condition g = n/2e, n e  Z, where g is given by (25), iff eF'l2/2n represents an 
integral cohomology class (integrality condition).

Proof. If we identify SO(2) with 1/(1) and regard P' as a bundle with structure group 
t/(l), then the characteristic class of P' is represented by eF'/2n, whereby M4, for any 
fixed t and r>  0, may be chosen as S2. The integrality condition, following which the 
cohomology class F  is integral, amounts to

J eF'/2n — n e Z Vc2 .
Cl

Since M 

i.e.

Now, ß ' 

then

S2 is compact, then

£ ß ' = 2x(M) , (x(M) is the Euler characteristic of M ),

J ß ' = 4 я , *(S2) =  2. 
s2

л*а>2 , i.e. F' = gco2 , and

co2= 1/ II 0 II 3(0‘d02 л d03 + 02d03 л d$l +03d0‘ л d02),

A 2 n 2 n ] * 2e

(26)

(27)

(28)

(29)

T his’t Hooft-Polyakov monopole-quantum condition differ in its internal structure 
from monopoles which have a point singularity, in that 4 Hooft-Polyakov monopoles 
enjoy a smooth internal structure satisfying the SO(3) gauge theory equations without 
the need for external sources. The Higgs field in the adjoint representation of the full

Acta Physic a Hungarica 56, /984
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colour gauge symmetry group before symmetry breaking would yield a structure of the 
topological quantum numbers which is characterized in terms of the Poincaré group 
П 1(SO(3)) = Z 2 , the cyclic group of order two. However, integral topological charge 
which is consistent with the 4 Hooft-Polyakov model, i.e. with proposition 1, derives 
from the vacuum manifold M0 = S2, which corresponds to the 2nd homotopy group

n 2(SO{3)/SO(2)) = n 2(S2) = Z , [2], (30)

G2(SO(3)/SO(2)) = П j (SO (2)) n 2(G/H) = n 1(H) (31)

which expresses the structure of the topological quantum numbers involved in terms of 
the exact gauge symmetry group H = SO {2) only, i.e. the symmetry, which is “directly 
observable”. The relations (30) through (31) relate to the following

Proposition 2 [5]: There exists a 2-field of the type (3) and a nondegenerate 
bilinear map ß

ß : H 2(S2) x H 2(S2)-+U-, (cu2,c 2) - n  = deg(0)=l/4* J Ф*ш2 , (32)
s*

where а>2' = Ф*ш2; w2 =  l / | |0 | |  3 (0'd02 л d03 + 02d03 л d0‘ + 0 3d0* л d02), 
and where 0 : S2->S2 is defined by 0(x) =  0(x)/1| 0(x) | | .

For a proof refer to [5]. Note that the cohomology class [cu2] e H2(S2) (the second de 
Rham group of the unit sphere S2) is integral, i.e. <cu2, c2> e Z Vc2. This is consistent 
with proposition 1. On account of (25) and (29) the monopole condition g = п/2e may be 
recasted as

n —
An

Г ckí W  dQk J £iJk0 8xm dx‘ dxmdx‘, (33)
c 2

which is the number of times 0(x) covers the sphere M 0 , as x covers S2(r). The number 
(33) originates from the form dA (relation (21)), which in turn determines the Hopf 
invariant H(0) and via the linking number /(0~ ‘(x), 0_1(у)) determines quark 
confinement by virtue of the relations ( 19)—(21 ).

Discussion: The map 0 :S 2(r)->S2 (proposition 2) represents a smooth 
normalized Higgs-vector field, which, by proposition 2, admits a classification of 
monopoles relevant to the problem o f quark confinement in terms of 4 Hooft’s SO(3) 
gauge tensor field

=  0' G‘v -  ~ eiJk 0 T , 0' ■ Pv 0k (34)

or, in terms of a more simplified version in the use of the field strength (5). Obviously, 
the reasonings are not different. In the case of the tensor (34), the Hopf invariant (21) 
will be determined by the 2-form

со2 = 1/2 eiJk 0' F0' л F0* ; F0> =  V f t  rfx". (21)

Acta Physica Hungarica 56, 1984
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16 С. V. WESTENHOLZ

This monopole-classification refers to the set of isolated zeros of the Higgs field 0 (the 
vector field 0 has an isolated 0 at some point x, if 0(x) =  O, but 0(x')^O for х 'ф х  in a 
neighbourhood of x). The integer n of (32) arises as follows: There is a linear

isomorphism / : =  J  : H2(S2)-*U which determines a unique linear map f*  : R-»R 

such that the diagram
0*

H2(S2) ^ — H2(S2) ,

U  ï  12 (D) (cf. [23)

commutes. Since/ *  e L(R, R), this map is of the form f *  : tr-*kt, keU . Moreover, since 
/ *  о / 2 = о 0* and if со2 belongs to the class [cu2] e H2(S2) then

j  0*co2 = k

The degree of the mapping 0 is called the index /(0), i.e. deg (0)d=/(0) [3]. This 
Kronecker index whose general integral representation is

j  со2 — deg(0) j  со2 with deg (0 )= /* (l). (32)

,(í)= лЬ* 4*ш- лЬЫг  ■*" ■ л ■ ■• ■л •
м

со= i  . . . d f r . .  .d V  (35)

admits a classification of the breakdown configurations of the models of Nielson- 
Olesen, ’t Hooft-Polyakov, Salam-Weinberg and Georgi-Glashow, as exhibited by 
[6]. In the case of a vortex-1 field (cu1, c,) in R2, where

we have 

hence

<u1= d S = - 0 2d01+ 0 1d026 F 1(R2) and c ,e C j(R 2)

0 : S,1 -+S1, 0(reiS) = 0(rei9) /1| 0(re‘9) || ; re" e S ' ,

2 n

(cu1, Cj)->/(0)= deg (0) =
2 n

0*d9 + 1 .

(36)

(37)

Vortex fields are therefore singularities of index 1=1.

Acta Physica Hungarica 56, 1984
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4. Quantummechanical aspects of quark confinement

The question of quark confinement does not arise if we are treating the 
monopoles of Section 3 classically. Monopole-antimonopole systems, i.e. meson-like 
systems in a superconducting medium with string like magnetic flux connecting them 
are considered in this paper in terms of the observables (13) and (14) and display 
quantummechanical aspects. Since vortices are singularities of index one, they carry, by 
(29), a unit of magnetic flux g= l/2e, where, in conformity with (13) we may write

4 ng = j* Ajdx‘$ S $ g
'0Ы 02 л d03 + 02d03 л d0l +03d01 л d.02

I I  0 I I 3 (38)

i.e. dS = e/c A^dx* is the action differential of the action for a line of quantized flux 
which, by (13), ensures a kind of quantized Meissner flux confining effect. The right- 
hand side of (38) holds true by the following reasoning: Consider the 2-form Fi in 
relation (24). This closed curvature form enjoys the property Fx=dA  (locally for some
A):

F l =dA = dxx f\dx2, A =  (1 + x l)dx2, Rank F = 2(cf. [4]),

by virtue of Darboux’s theorem [2]. Let now : t->x"(t), t e [0, 1] be a closed curve 
in JVf4, which induces a closed curve c t in M2, which by assumption satisfies the 
boundary property c, — c\ = dc2 for some c\ and some 2-chain c2 . Then

ß J Alldxß = ß J s jg  du1 du2 = ß J ojj л cü2 = /? J Q = S
C l  C2 C2 C2

ß := e /c  g\ = det(gtJ)

on account of the choice c2z S 2 with respect to the differential forms oj1 = dxl and 
co2 = dx2 that diagonalize the first fundamental form of the local surface c2, i.e.

ds2 = g u du‘duJ = (dul du2) (co,cu2)

and
ß =  sin cpd9 л d(p = 0 ld02 л d03 + 0 2d03 л d0l + 03d0' л d02 on S2.

Consider now two vortex solutions terminating at monopoles g and —g. These 
solutions (ct , g) and (ct , -g ), which enjoy the property (14), whenever this meson-like 
system of string like magnetic fluxes connects g and — g, is one-one correspondence 
with the elements (I, —I) of Z 2, the group of integers modulo 2. This means, that in 
terms of the colour group SO(3) this quantummechanical aspect shows that the 
topological quantum numbers have the structure of the Poincaré group

П i(SO(3)) = П i(SU(2)/Z2) = Z 2 . (39)

2 Acta Physica Hungarica 56, 1984



18 С. V. WESTEN HOLZ

In theories with G = SU(3)/Z3 three-monopole systems, as well as monopole- 
antimonopole systems are physically realizable. The general case is the local invariance 
group SU(n), such that the universal covering group is G, G/C = G,C denotes the center 
of G. In this case

G = SU(n)/Z„; П x{SU(n)/Zn) = Z n. (40)

The Higgs fields are chosen in the adjoint representation of SU(n) and a classification of 
vortices, which are physical objects exhibiting homotopic conservation laws, is

obtained in terms of (40). The factor P exp i } Akdxk) (Eq. (17)) belongs to C.
c‘

5. Quark confinement and colour confinement

All quarks carry a hidden quantum number “colour”. Hadrons are “white”, i.e. 
they are always formed of combinations of quarks that are colour neutral. Theories 
that are invariant under G-colour gauge transformations should then admit the 
configurations qq and qqq as the simplest colourless structures, corresponding to 
mesons and baryons, respectively. Since these colourless or colour singlet- 
combinations of quarks have the quantum number of normal hadrons, the problem of 
quark confinement becomes that of colour confinement. The meaning of the conjectured 
“colour charge screening” is that all physical states carry the colour charge (cf. (10))

Qc= J w3 = j  jcc dx tdx2dx3 = 0, da>3= 0 . (41)
c  3 c  3

A dynamics of quark confinement characterized in terms of fields (3) such that the 
action integral is obtained from (9) admits a representation of quarks, which are in one- 
to-one correspondence with monopole-antimonopole systems, whenever these quarks 
are internal vectors t//„ of the internal vector space К of E = F(M4, V, G, P), which are 
transferred in parallel around a loop c, . This parallel transport induces a linear 
transformation V. Thus quark-monopole systems are given by the properties

С1 ^Ф .(х)~иЦ х)ф ,(х); U '= ô l+ j£ 2 l llvdx>dx''eHx , =  F ‘M ; / . e G ;  (42)

(co1,c í)-*l(cl , c\)=  J со1 ; (ol = Hjdx‘ = n e Z  (Eq. (12)) [2] , (43)
Cl

Ф‘ = 47г<7(= J *FJJV dx" л dx'l = 4n j  со3 =4я j j 0d x l dx2dx3, (by(15)). (44)
C2 C3 C3
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Within this framework, it is only by virtue of the linkage property (43) that the 
transformations (42) represent quarks with monopole charges (44). The flux quantities 
(44) are given in terms of

P exp i J AkIk • dxß = exp i Фк Ik e G . (45)
Cl

The bundle curvatures (ß£), which are the generators of the internal holonomy group 
Hx [2] contribute to these fluxes via (44) in terms of the net effect of transporting an 
internal vector field about an unknotted circuit c3 which amounts to a change of phase 
by the amount (44). Colour confinement is now obtained as follows: Q =  I  gt = I(c0) =  0 
for c0 — ^ j giPi = P2 — Pi (Eqs (14) and (16)). Now /(c0) = O o c 0 = dc1. Hence

I

(tu0,c0)-> Í w °= J S=  Í S=  J dS = dS =  S(P2) -S (P 1); /(co) = 0 , (46)
со со de 1 cj

which, by (13) and (14) yields quantized flux. Since magnetic charge does not originate 
in dynamics, but rather follows from the topological structure of M 0 , one may choose a 
dynamics (9), where L depends on the quark field (42) through Lt (A, фх) —

— l/4FjlvFfv+ Y, — "U '/'a. such that L is G-invariant. On account of a judicious
a

choice of c3 e C3(M4), M4 = S3 x IR, colour confinement follows from the reasoning as 
was emphasized above by (46):

Qc= jjo d x 1 dx2dx3= J a»3 =  /(c3 • c0) =  0 , (47)
C3 СЭ

where, by definition: P ■ c3 = P if P e c3 (or 0 if P ф c3). (The operation “dot” differs from 
the set-theoretical intersection in that the orientation of chains is taken into account). 
The relation (47) uses the index-property

I(c3 -c0)= f со3 ■
C 3

If the choice of the dynamical field (a»4 • c4) admits a Hopf-invariant-type of current (cf. 
[4]), then the linkage property (21) equals zero, which amounts to the absence of 
interaction, i.e. the non-existence of free coloured particles, as a special case of (47).
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Mössbauer spectra were measured for a series of alkaline earth phosphate and borate glasses 
with mole % composition (100-X) P2O s +  X MeO + Sn02 (where Me = Mg, Ca, Sr or Ba and X = 20, 
24 or 28). The results were analyzed as a function of glass composition and tin atoms valence state. 
The decrease in the isomer shift (IS) value with the increase of the alkaline earth oxide content was 
attributed to an increase in the ionic strength of bonds around the tin ions. The increase of the 
quadrupole splitting (QS) and line width (LW) values with the gradual increase of alkaline earth 
oxide content were attributed to be due to an asymmetric and irregular distribution of alkaline earth 
ions around the tin ions. The asymmetry in the absorption peak is due to Goldanskii effect. The tin 
was found only in the quadrivalent state.

Introduction

Mössbauer measurements have become a major tool for the investigation of the 
electronic properties, structure and bonding in glass. Virtually all previous Mössbauer 
work with phosphate glasses has dealt with either iron in alkaline earth phosphate 
glasses [1] or in alkali phosphate glasses [2, 3]. The only work on the sodium 
phosphate glasses containing tin was done by Evstropev et al [4]. The present work is 
an extension for a work done by the authors on both borate [5] and phosphate [6] 
glasses, containing tin using ME to study the valence state, coordination number and 
the symmetry of the immediate environment of the tin atoms. An explanation was 
suggested for the dependence of the ratio of the various valence and coordination 
structural states of the tin in the phosphate and borate glasses on the amount and 
nature of the alkaline earth ions.

Experimental technique

The method of preparation of the glass samples is based on the mole% 
composition mentioned above. Mössbauer spectra were measured at room tempe­
rature using a constant acceleration driving system coupled to a 256 multichannel
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analyzer. The source used was 5 mCi Sn119 in Ba, Sn, O. The absorber contained nearly 
1 mg Sn1,9/cm2. The measured ME spectra had simple shapes and were analyzed on 
the basis of the known Lorentzian line shape.

Results and discussion

The outstanding feature common to the Mössbauer spectra of all the glasses 
studied was a well resolved two peaks spectrum as shown in Figs 1,2 and 3. Spectra in 
Fig. 1 are arranged according to the variation of MgO content while in Fig. 2 in order 
to compare the different cation effects in phosphate glasses. In Fig. 3 effects of the type 
of cations are studied in borate glasses. All the values obtained for the Mössbauer

V Imm/s]

Fig. 1. Effect of alkaline earth content in phosphate glasses

parameters are presented in Table I. The general features of the isomeric shift (IS) 
results are their decrease as the ionic size of the MeO increases. The interpretation of 
this trend depends on the fact that there is a mutual polarization interaction between 
the Me cations and the neighbouring oxygen ions bound to the Sn4+ ion. This 
polarizing power is measured quantitatively by the charge/radius ratio which decreases 
in the Mg—Ca—Sr— Ba direction. Also the valence electrons of oxygen have to spend 
more time in the Mg—О than in the Sn—О bond and vice versa in the case of barium 
glasses. Consequently, the IS decreases in the direction of the increase of the ionic size. 
On the other hand the IS values decrease upon increasing the MeO content. This
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Fig. 2. Effect of alkaline earth type in phosphate glasses

Fig. 3. Effect of alkaline earth type in borate glasses
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Table I

Mössbauer parameters

Composition of glass I. S.* 
[mm/s]

Q. S. 
[mm/s]

L. W. 
[mm/s]

Effect of MeO content

20% MgO + 80% P 20 5 + 5Sn02 2.57 0.11 0.5
24% M gO+ 76% P 20 ,  + 5Sn02 2.72 0.20 0.66
28% M gO+ 72% P20 ,  + 5Sn02 2.82 0.28 0.80

Effect of MeO type

a) Phosphate glasses
20% M gO+ 80% P 20 5 + 5Sn02 2.57 0.11 0.5
20% CaO +80% P20 ,  + 5Sn02 2.52 0.16 56
20% SrO + 80% P20 5 + 5Sn02 2.45 0.26 0.75
20% BaO +80% P20 5 + 5Sn02 2.30 0.33 0.89

b) Borate glasses
34% C aO + 66% B20 3 + 5Sn02 2.72 0.2 0.66
34% SrO +66% B20 3 + 5Sn02 2.60 0.27 0.6
34% BaO +66% B20 3 + 5Sn02 2.45 0.36 0.76

* I. S. are measured relative to /?-tin.

increase in the values of IS suggests an increase of covalency in the glass samples with 
increasing the MeO content.

The increase of the quadrupole splitting (QS) with the increase of the MeO 
content can also be interpreted on the basis of this covalency mentioned above. As 
known from the theory [7], the spherically asymmetric charge distribution of valence 
P-electrons will produce a large field gradient at the nucleus. Furthermore, when all 
three P-orbitals are equally populated, their superposition forms a spherically 
symmetric charge distribution. Thus the QS observed due to the increase of covalency 
in the glass samples is associated with unbalanced 5P electron density. Generally 
speaking, this splitting of the Sn4 + spectrum is caused by the non-equivalency of the Sn 
bonds in the coordination polyhedron. The amplitude of the Sn4 + ion vibrations along 
the nonequivalent bonds will clearly be different. Therefore the asymmetry of the Sn4+ 
quadrupole spectrum which is attributed to Goldanskii effect [8] can naturally be 
explained by the anisotropy of the dynamic properties of the S n 0 6 structural group. In 
the studied glasses, the splitting of the Sn4+ spectrum has the nature as in crystalline 
S n02. According to Shapiro et al [9], in S n 0 2 the sign of the quadrupole interaction 
constant is positive i.e. £ ± 3 / 2 > £ + l / 2 .  Therefore the right hand line in the 
quadrupole spectrum of Sn4 + corresponds to the -transition, while the left hand line 
corresponds to the -transition. It is clear that the force constant of the Sn—О bond 
along the Z-axis is significantly smaller than in the perpendicular direction. 
Consequently, the two oxygen ions lying on the Z-axis in the Sn06 group are at a
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greater distance from the Sn4+ than the rest. This clearly causes the splitting and the 
asymmetry of the Sn4 + spectrum. Thus, we can come to the conclusion that there is a 
direct connection between the value of the QS and the anisotropy of the probability of 
the M össbauer factor / .

The increase in the line width LW with the gradual increase of MeO content may 
be due to the increase of non-uniformity of sites in this direction. Also the disorder of 
the Me atoms causes great variations in the intensities of the molecular electric fields 
which in its turn causes a certain broadening in the absorption peak.

The tin was observed only in the quadrivalent state which has an octahedral 
coordination with respect to oxygen.
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A method is suggested for completing the Gáspár universal potential with the correlation 
term. Calculations are performed for the sulphur and silver atoms in the ground configurations.

Gáspár [1] suggested a universal potential and a universal function which were 
broadly and successfully used by many authors for calculating one-electron 
eigenvalues and wave functions as well as for establishing other atomic magnitudes and 
properties. In [2] the original Gáspár potential (for neutral atoms) using a simplified 
Fermi-Amaldi type correction [3] was modified for ions. Both the original and 
modified Gáspár potentials have very simple analytical forms, are convenient for 
calculations, give an orthonormal set of one-electron wave functions and well 
approximate Hartree— Fock functions. The Gáspár universal potential consists of the 
generalization of the Hartree field and statistical approximation of the exchange terms. 
In this paper an attempt is made to complete the Gáspár universal potential with a 
correlation term.

In the statistical theory of the atom [3] correlation energy is evaluated by a 
correlation function. In [4] a new expression for the correlation function was 
established which has a very simple form and gives rather good results:

( 1 )

where y = 0.04846 e2a 1 and p is electronic density. Applying the Gáspár procedure 
and his universal function [1]

(2)
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where

C =  3.1 û0  S a =0.04, /4 =  9, x =  —, H =
O.8853a0

Й/3

for the correlation potential we get the expression

4yC
3e

.1 /3  .
1 +/4x ( 3)

Then the modified Gáspár universal potential for an ion with N —a electrons is given 
by (in a.u.)

v,= Hi x > x 0,

x < x 0  (4a) 

(4b)

where x0  is the value of x, when the values of (4a) and (4b) are equal and I = a + 1, 
Ao = 0.1837, A0= 1.05, A is the empirical parameter.

In order to get one-electron wave functions we solve the following Schrôdinger 
equation

d4>
dx:

+ (5)

with necessary boundary conditions. The eigenvalue parameter is given by e 
= 2Ец2е~2а 0 1 and E is the one-electron energy parameter of the nontransformed 
Schrödinger equation. For solving Eq. (5) the program of Bogdanovich [5] was 
adjusted. For example, we have solved the equations for the sulphur and silver atoms in 
the ground configurations both with and without correlation correction taking / = 0  

and A = 0  (the original Gáspár universal potential). These cases were investigated by 
Gáspár himself [ 6 ,7] (without correlation correction) and that gives us a possibility to 
compare and verify the results obtained by program [5].

The one-electron eigenvalues are given in Table I for the sulphur atom and in 
Table II for the silver atom, where they are compared with the original Gáspár data

Table I

One-electron eigenvalues of the sulphur atom in the ground configuration (in a.u.)

Is 2s 2 P 3s 3p

Gáspár [6] -90.28 -7 .85 -5 .89 -0.588 -0.233
Gáspár (here) -90.3726 -7.8585 -5.8955 -0.5888 -0.2326
Gáspár + corr. -90.5419 -7.9048 -5.9450 -0.6011 -0.2425
Empirical data -91.2 -8 .5 -6 .25 -0.77 -0.43
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and with the empirical data (Landolt-Börnstein) both taken from [ 6 ,7]; for the state 5s 
(the lower values in Table II) the equations were solved taking /  =  1 and à =0  (as in [7]) 
as well. It follows from the Tables that one-electron eigenvalues with correlation 
correction become large (in absolute value) and are in better agreement with the 
empirical data.

Table II

One-electron eigenvalues of the silver atom in the ground configuration (in a.u.)

Is 2s 2 P 3 s 3 P

Gáspár [7] -915.95 -130.82 -122.65 -23.26 -19.70
Gáspár (here) -917.124 -131.072 -122.768 -23.308 -19.717
Gáspár+ согг. -917.450 -131.211 -122.918 -23.362 -19.776
Empirical data -939.67 -140.21 -126.65 -26.49 -21.68

3 d 4 s 4 P 4d 5s

Gáspár [7] -12.65 -3 .22 -2.12 -0.375 -0.214
-0.244

Gáspár (here) -12.660 -3.2231 -2.1243 -0.3757 -0.2149
-0.2450

Gáspár+ corr. -12.721 -3.2414 -2.1450 -0.3904 -0.2206
-0.2487

Empirical data -13.67 -3 .57 -2.14 -0.195 -0.278

The correlation correction in the Gáspár universal potential shifts one-electron 
wave functions towards the nucleus. This shift can be illustrated by calculating the 
diamagnetic susceptibilities for which we use the formula [3]:

00

X= p2(nl/ry dr’ (6)
о

where AN is the Avogadro’s number, Nnl is the number of electrons in the nl shell and 
summing is extended on all shells of the investigated configuration.

In Table III the data on the diamagnetic susceptibilities (gram-atom) for the Ag+ 
ion are given. These diamagnetic susceptibilities were calculated using the one-electron 
wave functions of neutral silver atom (as in [7]). It follows from the Table that the 
correlation correction leads to larger changes in outer shells and improves the value of 
diamagnetic susceptibility which is in better agreement with the experimental data 
— 24-10 10- 6  cm 3  taken from [7].

It follows from Eq. (4) that the influence of correlation decreases when increasing 
the atomic number, as Z ~ 1/3, which is in accordance with the physical situation.
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Table III

Contribution of electronic shells to the diamagnetic susceptibility x of the Ag+ ion in the ground
configuration (10-6 cm3)

Is2 2s2 2 P6 3s2 3 P6

Gáspár (here) 
G áspár+  corr.

-0.0022
-0.0022

-0.0361
-0.0361

-0.0811
-0.0811

-0.2626
-0.2623

-0.7640
-0.7630

3d10 4s2 4P6 4d10 A g +

Gáspár (here) 
G áspár+ corr.

-1.1454
-1.1429

-1.6755
-1.6711

-5.9389
-5.9166

-20.4143
-20.1203

-30.3201
-29.9956

Investigations on the subject of correlation correction to the Gáspár universal 
potential in a broader scope are in progress and are supposed to be published in 
subsequent papers.

The authors wish to acknowledge with thanks the aid of Dr. P. Bogdanovich in adjusting his 
program to performing the required calculations.

References

1. R. Gáspár, Acta Phys. Hung., 3, 263, 1954.
2. A. Jucys, J. Glembockis and R. Gáspár, Acta Phys. Hung., 23, 425, 1967.
3. See, e.g., P. Gombás, Die statistische Theorie des Atoms und ihre Anwendungen, Springer-Verlag, Wien, 

1949.
4. И. И. Глембоцкий, И. Ю. Петкявичюс, Лит. физ. сбор., 22, N4, 28, 1982.
5. П. О. Богданович, Программа численного решения уравнений Хартри-Фока, Ин-ут Физики АН 

Лит. ССР, Вильнюс, 1978.
6. R. Gáspár, Acta Phys. Hung., 12, 171, 1960.
7. R. Gáspár and К. Molnár-Ivanecsko, Acta Phys. Hung., 6, 105, 1956.

A da Physica Hungarica 56, 1984



Acta Physica Hungarica 56 ( 1— 4), pp 31— 38 (1984)

C A L C U L S D E S C O E F F IC IE N T S  D E  D IL A T A T IO N  
D E  M O D E L E S SIM PL E S  

A L ’A ID E  D E  LA M E C A N IQ U E  Q U A N T IQ U E

Y. T h o m a s

Institut de Recherches Scientifiques et Techniques 
49045 Angers Cedex (France)
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Les interactions entre phonons rendent compte de la dilatation thermique des solides, leur 
traitement est effectué par la méthode de la fonction thermodynamique de Green. L’expression du 
coefficient de dilatation thermique est retrouvée par cette méthode pour une chaîne linéaire d’atomes 
et pour le solide d’Einstein.

Le champ phonique est un champ de vecteurs obéissant à une équation d’onde 
linéaire et homogène du second degré par rapport aux coordonnées de l’espace et du 
temps. Il présente une superposition d’ondes planes caractérisées par une relation de 
dispersion.

Pour de petites vibrations, un oscillateur harmonique monodimensionnel a pour 
hamiltonien:

H - k  + T " mèa‘
avec [up] = ifi

où p = — ih — est le moment, и le déplacement, m la masse et w0 la fréquence angulaire.

En résolvant l’équation de Schrôdinger Hi)/n = Enip„ on montre, qu’étant donné une
£

solution quelconque ф„ relative à la valeur propre en = ^ , il est toujours possible
na>o

d’en tirer une solution ipn+, correspondant à la valeur propre en + 1 et une solution t 

correspondant à e„_, (si tpn n’est pas l’état fondamental). L’opérateur , où

fm œ  \ 1 / 2

y = Í I u, est l’opérateur création b+ qui permet de passer d’un état d’énergie

E„ = fico0 ( n + y  ) à un état En + 1; l’opérateur
dy

+ y , permettant de passer d’un

état |n> à un état |л — 1 ), est l’opérateur annihilation b:
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b =  —\=  (  J m w 0u +  '— p ),
■sjlh \  y/mwо /

mw0u +

Si l’on résoud ce système en fonction des opérateurs p et и l’hamiltonien devient:

Considérons un solide qui est un système mécanique à N  degrés de liberté. Son 
énergie potentielle est minimale dans l’état d’équilibre. En première approximation, 
pour de petits écarts par rapport à sa position d’équilibre, on peut adopter 
l’hamiltonien harmonique:

où la matrice Gkl est symétrique. Il est transformable en une somme de N parties 
indépendante en considérant un ensemble de N  vecteurs orthonormés définis 
comme les vecteurs propres de la matrice symétrique dite dynamique:

Si coj est la valeur propre: D ■ Bj=co]Bj.

En développant: ^ О к1Ви=ы]Вк).

De même que précédemment, les opérateurs bj et bj  peuvent être définis à l’aide des 
vecteurs propres BkJ:

Ils peuvent être résolus afin de tirer les opérateurs hermitiens:

(D
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d’où l’hamiltonien, somme de N oscillateurs harmoniques indépendants:

H = ^ n c o j(b ;b J + i ) .

Etudions les vibrations d’un cristal en considérant le cas le plus simple d’une 
chaîne monoatomique de N  atomes, équidistants de x et interagissant par des forces 
harmoniques entre plus proches voisins.

Soit une chaîne d’atomes fixée à ses extrémités, des forces agissent sur les 
extrémités en plus des interactions. Si G est la constante de rappel de la force, 
l’hamiltonien s’écrit:

H = + Z  (“» - “« -i ) 2  + 4 - G(u? + t4 ).n = i 2m Z i 2

Si l’on considère une chaîne monoatomique cyclique où tous les atomes jouent le même 
rôle, on doit ajouter le terme —GuxuN\

N  d 2 1 JV-1 1

H = „ ? i^ m + y G ?  (M» ~ “" - i ) 2  + y  g (“jv- “ i)2.

H =  Z | ~  + y £ {G«.A 2  + G„ + i.,M,+ i “, + Gn , , - iM n - 1} + y  G(un~U i)2.

Par rapport au cas précédent, les termes Gw sont nuis sauf si fc =  / ou si /с—/ = +  1. Tous 
les atomes étant identiques:

C' 9  r1 f~*
Dkl = —  =  0 (si к ф l) = —  (si к =  l) = ----- (si к — / =  + 1).

m m m

Véga\ïté:Yi D„lBlj=(ojBnj se réduit à:

Dn.n-iBn-u + Dn nBnj + Dn n+lBn+l j = w]Bnj,

G „ 2G G „
-----Bn-i.j H------ Bn, j ------Bn+l j=(OjBnj,m m m 1 1 1

со? / G \ 1 / 2

— B „ - i j+ 2 B nj —Bn+ij  =  BnJ si o)0 = .

On prend comme solution une combinaison linéaire arbitraire des solutions 
fondamentales Bn = exp ( +  iqnx) avec exp (iqNx) = 1 d’où les vecteurs propres

&Nq —
1

exp (iqnx). (2)
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La relation de dispersion est [1]:

—y = 2 ( 1  —cos qx) ou - . qxa>q =  2œ0 sin —
2n

avec q =  —— s 
N x

(où s est l’un des N  entiers pairs compris entre ±N /2  correspondant aux N  
coordonnées indépendantes de la série de Fourier de réseau).

On obtient de même:

н  = м  + Д АЧ ь;ь' + т)-
Mais cette approximation harmonique, assemblage de modes normaux quantifiés en 
phonons, ne permet pas d’expliquer la dilatation pour laquelle on doit aller au-delà du 
second degré dans le développement de l’énergie potentielle afin de tenir compte des 
interactions phonons-phonons.

Soit une chaîne d’atomes à l’équilibre (a) et déplacés par des vibrations 
longitudinales selon l’axe des x  (b):

b) ï.n. 1

u„ * 1

Xj- 2 *n-1

vn-l

Hors d’équilibre, la distance x  varie et devient x' =  x„ — xn_ t =  (x° +  u„)—(x°_ y + u„_ t) 
=  x +  u„ — u„-l . La variation de la distance due au mouvement thermique entre deux 
atomes consécutifs est dx = u„ — мп_ ,.

L’énergie potentielle entre deux atomes est une fonction de leur écart et peut être 
développée en puissance de dx, l’Hamiltonien anharmonique de la chaîne est:

"  P2 b »
í í  =  Í Í  +  2 *?i + 2 4 Ç (u" - “- l)4 +

où a, b, c sont les constantes harmonique, cubique et du quatrième ordre 
respectivement, des forces entre plus proches voisins.

Le déplacement atomique peut être exprimé à l’aide des opérateurs création et 
annihilation de phonons, pour cela portons l’équation (2 ) dans l’équation (1 ):

2mNw,

1/2
(bkei4nx + b^e“",x)

2nsor qx =  — к valeurs permises par la condition cyclique aux limites (u„+N = u„)

u. = 2mN ) Ç
„ikn

coi'2
(bk + bj) (3)
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où wk est la fréquence des modes normaux du réseau non perturbé [ 1 ]:

. qx Í 4a \ 1 / 2  . к 
(«* =  2 0 ) 0  sin y  = I — 1 sm -.

A l’aide de l’équation (3), l’expression de l’hamiltonien en seconde quantification avec 
Bk=(bk + b ï)  . . .  est [ 2 ]:

H =  Yhcok( b î b k + i )  +  Y  V3ktk2k,BklBk2Bk3 + Z У 1 . . л Л ,  •. • BkA + . . .  . 
T  \  2 )  к  ib * 3

D’après l’équation (3):

иn (bk + bj)

d’où la moyenne:

<dx> = <M„ —u„_ j> = - V ' ! i2mN J T

g i k n _g i k ( n  -  1)
1/2 <ьк+ь:>

= 2  i
S ö f ) ‘4

s in k/2 ,± . . .
— щ - е  2e k\ b k + bk y. 

U>k

Il faut évaluer la moyenne thermodynamique <B*>, cet opérateur satisfait à l’équation 
suivante de mouvement [ 2 ]:

i - { b k + b î)  = wkBk + b Y  V l M '_ kBklBkl + 8  X Vtuk2,ki. - kBklBk2Bk 3 + . . . ( 4 )
Ut *T*2 к 1*2 * 3

La valeur thermique moyenne de l’observable A est la trace (Tr) de pA où p est 
l’opérateur densité et H l’hamiltonien du système:

g-н/кт
(A') = Tr p • A =Tr ^ e - H/kT • A .

En explicitant l’opérateur à l’aide de ses états propres |n>:

<Aiy = X- Y e- E" kT<n\At\n'>
Z/ n

où Z = Tr e~HlkT est la fonction de partition, or, A, = e‘H'A0e~‘Hl, d’où:

< A ,> = ± Y e - E«kT<n\A0\n>Z. n

d
indépendant du temps t soit: — <A,) = 0 .
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Prenons la moyenne thermodynamique de l’équation (4)

0 = œk<Bk> +  6 Y  V l ' k2' . k(B klBk2)  + S Y  Vîuk2'k3' - k <BklBk2Bk3>+ .
k\K2 ki,K2,ki

En se limitant au premier terme anharmonique:

<Bky = - 6  y  V3klk2- k ^ - ( B klBk2->

avec [ 2 ]:

(Вк,Вк2У — Nklôkik2 — coth 2кт^к'кг'

La moyenne est:

(  h Y 12<dx> =  2 i 

D’où [2, 3]:

V3 =

» ! y s'm k /2 M kn
2mN J V eu,

^ 1/2— ÿ - _----------------_ 0 - k CÜe COfc/ z ,
^ 2 8 8 a3/2iV1/2 •' 4 1 *

<dx>
- b h  v  sin /с/ 2  e e'*” 1/2лг ,

: 2  т 1 /2 о 3 /2 ЛГ^ co*3 / 2  , 4
tj41*

. 2q . к 
- 4 b b J m 2 Sin2

m2N

- b h

wlwq
N q A keikn

З Л У ? “'*"’

- L  y  ll:i) coth
а 2 Л/ V " 2kT4a2N q

L’énergie moyenne d’un oscillateur dans l’approximation harmonique est:

ő  , 1 hw
<£> = <Я> = Т грЯ  = ------ - l o g Z  =  yAco +

d kT
hw

e k f ~ '
1 . , hw

= - — /гы coth —— 
2N 2kT

soit k T à haute température)

<dx>= -  2 ^ 2  <£ >>
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le coefficient de dilatation linéaire est:

OC y i  A
X  dT

<dx> = b dE 
I c ^ x l lT

si CVT est la chaleur spécifique par atome. Il existe une similitude avec l’analyse de Kittel 
[5], l’expression moyenne de l’énergie, selon la mécanique quantique, remplaçant la 
valeur classique kT. Ce résultat a aussi été obtenu par une méthode très différente [4]. 

L’Hamiltonien d’un solide d’Einstein est [ 6 ]:

„  P2 a , b , c .
H = 2^ + 2 X + 6 X + T4X

où X est le déplacement de l’atome par rapport à sa position d’équilibre. 
L’équation de mouvement est:

d2x  b , c -,
m d ? ~ aX + 2 X + 6 X ’

sa moyenne thermodynamique est:

0  =  a<x> + -  <x2> 
a

en négligeant le dernier terme, soit:

<*>= -  y -< *2>. 
2  a

Comme l’énergie est la moyenne thermique de l’hamiltonien: E =  <H>:

<x2>
е - гТ(Л+1 )1.ш<п|х2|„)

ï ï
^ e  *7-<в + 2 ),|ю

1

rncoo
hü) , hw 
—  • coth —— 2 2kT

E
a

en fonction de l’énergie interne du solide. <x> = — —y E. Le résultat de Kittel [5] à
2  a

haute température est ainsi retrouvé très rapidement.
La méthode de la fonction thermodynamique de Green a permis de retrouver 

élégamment l’expression du coefficient de dilatation linéaire. Cette illustration sur deux 
exemples simples laisse entrevoir la fécondité de la méthode pour l’étude de la 
dilatation thermique des solides à laquelle jusqu’ici elle ne semble pas avoir été 
appliquée.
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Superalgebras can become semi-simple, if one constraint in the analysis of Haag, 
Lopuszánsky and Sohnius [1] is ignored. A complete analysis for reconstruction of all possible 
superalgebras is shown in this case. The self-consistent conditions which the superalgebras must 
satisfy are derived. Finally, we classify those models and give new possibilities of unified theories. 
Using those models we can look for the prospect of irreducible multiplets of particles with different 
masses. In certain models, we would have superunified theories with arbitrary internal symmetry 
groups. As a minor result, the Coleman-Mandula’s theorem is also given in weaker form.

1. Introduction

Up to now the superalgebras used in superunified theories have based on the 
analysis of Haag, Lopuszánsky and Sohnius [1]. In that paper the authors showed a 
complete analysis on all possible generators of supersymmetry of S-matrix with three 
assumptions:

(i) they commute with S-matrix;
(ii) they act additively on the states of several incoming particles. (This 

requirement can be expressed most conveniently in the following way: Let G denote the 
possible generator, â ")(p) denote the creation operator of an incoming particle of type i 
with momentum p and spin orientation r, and djfiHp) the corresponding destruction 
operator. Then:

G= I  \ d 3pd3p'*W(p)K(p,p')aW(p'),
i,77r,S

where К is a c number kernel);
(iii) they connect only particles with the same mass.
As the result, a GLA which has been used widely up to now in superunified 

theories, is obtained. It can be considered as a non-trivial unification of Poincaré 
algebra and the internal symmetry algebra.

Let us restrict with the generators М цв, Pp, Qp and B, only, this GLA has the 
following form:

ЕЛ '/ду, M p a ~\ 9  HP va + 9  va ^  HP 9vp  ^ на 9 на ^  vp » (1  ■ 1)
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L Alyi’ F,.) i(dnp Pv Qvp Pp) » (1 .2 )

[/%,/%] = (>, (1.3)

[ A v e ° ] = y ' K . Ä > (1.4)

[M„o> ß |]=  0 , (1.5)

(1 .6 )

и
(1.7)

(1 .8 )

1В„ Q H = 1 « " ,
м

(1.9)

1Л ,в « ] = о , (1 .1 0 )

1Л , е й = о . (1 .1 1 )

(fi,v,p= 1,2,3,0; Minkowski indices, /, m: internal indices a, ß spinor indices, L, M = 1, 
2, . . . ,  N: unified indices).

The numerical matrices cLM, a\M, sfM must satisfy certain self-consistent 
constraints. The vanishing matrices c = 0, a, =  0, s, =  0 are the trivial solutions of the 
system of self-consistent conditions. So, in some GLAs those numerical matrices can 
vanish. In [1] the authors affirmed that the c matrix is different from zero, and then cLM 
can be normalized to ôLM in any case of GLA. But in fact there is no argument for it. In 
our previous paper [ 2 ] we showed that with reparametrization of superspace we can 
get such a GLA, in which c = 0. In such models we have more degrees of freedom for the 
internal symmetry groups as it will be shown in Section 4.

It is worth noting that all above GLAs have the commutative ideal {Pp}. In this 
study we also discuss the possibility of the existence of semi-simple superalgebras, when 
we ignore the assumption (iii) of Haag, Lopuszánsky and Sohnius. Mathematically, we 
must have the system of self-conditions of the semi-simple superalgebras. Using the 
semi-simple superalgebras P2 is no longer Casimir operator. So, we come to two 
possibilities:

1. Interacting multiplets: In an irreducible multiplet we would have composite 
particles and elementary particles together. Their bare masses are the same, but new 
sources would appear to give corrections to mass. After a certain procedure of 
renormalization the physical masses can be different.

2. Free multiplets: In this case operator P2 is the mass operator. So, we have 
particles with different masses in an irreducible multiplet.

Of course all these possibilities can be realized only on concrete models.
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2. Analysis

First, we preserve Poincaré algebra and the internal symmetry algebra, so we 
come to (1.1), (1.2), (1.3) and (1.5). Let us assume that Pp belongs to (1/2, 1/2) 
representation, Q£ belongs to (1 / 2 , 0 ) representation, Qp belongs to (0 , 1 / 2 ) 
representation, B, belongs to (0, 0) representation of Lorentz group, we come to (1.4) 
and ( 1 .6 )

The case of the commutator {ß£, Q f}.'

Generally speaking, {Q%, Qtf} belongs to the (1/2, 0 )x (l/2 , 0)=(1, 0)®(0, 0) 
representation of Lorentz group. Let us restrict with MßU, Pp, Qÿ  and В, generators
only. There is no operator belonging to the (1,0) representation in our analysis. So the 
coefficient of this component in the above expansion equals zero and the coefficients of 
(0 , 0 ) are a[M (because zero belongs to every representation, afM can vanish in some 
models). So, we come to (1.8).

The case of the commutator {QL, Qp}:

The commutator {ß£, Qp} belongs to the (1/2, 0)x(0, 1/2) = (1/2, 1/2) 
representation, so we come to (1.7).

Naturally, cLM can be chosen as zero in some specific models. And there is no 
argument to identify it with 6LM in the general case as it had been done in [ 1 ].

The case of the commutator [B(, Qlf \  :

The commutator [B,, ß£] belongs to the (0,0) x (1/2)=(1/2,0) representation of 
Lorentz group. So we come to (1.9). Like the case of a, and c, the s( matrices can vanish, 
too, in some specific GLAs.

If we do not require assumption (iii), we can replace (1.10) and (1.11) 
commutators by more general ones. We continue to use the standard technique to find 
the possible forms of [PM, B,] and [P„, Q'f] without the assumption (iii).

The case of the commutator [P„, В,]:

The commutator [P„, B,] belongs to (1/2, 1/2) x (0,0)=(1/2, 1/2) representation. 
Hence, the most general form of it is determined by the following formula:

[P„>B,] = £(&,); P„. (2.1)
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The case of the commutator [P„, Qlf\:

The commutator [PM, Q£] belongs to the (1/2, 1/2) x (1/2, 0) = ( 1, l/2)©(0, 1/2) 
representation of Lorentz group. Hence the most general form of it is:

because there is no generator ( 1 , 1 / 2 ) in our analysis.
The matrices bt and d can vanish too as well as the matrices a,, s, and c in some 

specific GLAs. With non-trivial d we have the ideal {P„} no longer, the algebra becomes 
semi-simple.

Generally, {P„, Bh Qtf} form a non-commutative ideal of this algebra, so our 
algebra cannot be simple. We need more generators to get a simple GLA.

We must satisfy the Jacobi identities for the generators. Only in this case the 
previous commutators would form a GLA. These identities would impose constraints 
on the numerical matrices.

First, let us consider the Jacobi identity (Рд, B„ BJ. We come to:

where bk are 4 x 4  matrices. So, bk matrices form a 4-dimensional representation of the 
generators of the internal symmetry group. The condition of using the models with bk 
# 0  is that the internal symmetry group has 4-dimensional representations. Then we 
can speak about Lie extension of Poincaré algebra and the internal symmetry algebra. 
This algebra is not a trivial extension. However, we always want to have an internal 
symmetry group with arbitrarily big size. In the following discussion we choose bk =  0. 

The Jacobi identity (P„, Bh Q'2) gives:

£(sf-MdM" + dLM- s D = 0  (3.2)
M

in the matrix form
s , d = —d s l .

The Jacobi identity (Bh g£, Qjf) gives:

£ ( s r - c LN+ <:*"■ 0 = 0  (3.3)
N

in the matrix form
c • s, =  — s, • c .

^ 0 а ] = ^ '- мк ) ? е ,м , ( 2.2)

3. Self-consistent conditions

b r b m- b m-b, = iZcjm bk, (3.1)

The Jacobi identity (P^, Pv, Q) gives:

ZdLM ■ i MN = 0 , (3.4)
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in the matrix form
d d = 0 .

The Jacobi identity (Bh Bm, QE) gives:

X ( s { - " s Z " - s ! ; " s r )  = i£ctmst“ (3.5)
N

in the matrix form
[s„sm] = iTcf„,s*.

The Jacobi identity (B,, QE, Q%) gives:

Si-ack- a k -sc, = iZc^a»,. (3.6)

The Jacobi identity (QE, Q Q % )  gives

when a =  y dLE ■ cMN = dME ■ cLN, (3.7)

w hena#y  Is™ ■ a[M — 0 . (3.8)

The Jacobi identity (QE, Q%, ß p  gives us:

Z(ai)KL-s?M=i:aE" s « M. (3.9)

Other Jacobi identities satisfy trivially.
From the conjungation, we have two relations:

aEM——a ^ L (antisymmetric) (3.10)

and
c m l  =  c l m  (hermitic). (3 .1 1 )

So, generally matrix elements of s(, a„ c,, d{bk = 0) must satisfy ten of the above 
self-consistent conditions.

4. Classification and discussion

The case of Ькф0: As it was quoted in the previous point, with Л#„„, Pp, В, 
generators, we have a non-semi-simple Lie algebra with the Abelian ideal {P„}. 
However, it is not the trivial extension of the external and the internal symmetry group. 
The extended group is not simply the direct product of the geometrical symmetry 
group and the internal symmetry group. So, if the internal symmetry is big enough not 
to have 4-dimensional representation, the unification is impossible. From the 
viewpoint of the Lie algebra theory, we come to a weaker form of the Coleman- 
Mandula’s theorem, when we ignore the assumption (iii). (According to the Coleman- 
Mandula’s theorem [3] with the three above assumptions the unification of Poincaré 
algebra and the internal symmetry algebra is trivial).
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In GLA models, for the arbitrariness of the internal symmetry group we choose 
bk = 0  with any k.

Non semi-simple models had been reviewed in [1] with d = 0.
In the models with <1ф 0, the operator P2 is no longer a Casimir operator. We 

have two possibilities:

1. Free representation

We have this possibility if we can assign free elementary particles into an 
irreducible representation of such models. Because P2 is the mass operator then, if we 
would succeed in searching for another Casimir operator K = K {P2, G.) where G, are 
the generators of the considered GLA, the mass would not be constant in each 
irreducible representation. And we would come to a mass-formula without symmetry 
breaking. In this case, as expected, the internal degrees of freedom and fermion charges 
would give corrections to mass.

2. Interacting representation

We have this possibility if we can assign elementary particles and composite 
particles together into an irreducible multiplet. In this case P2 is not mass operator 
indeed. The bare masses of particles in an irreducible representation can be the same. 
But the field equation is inhomogeneous. It means that new sources will appear to give 
corrections to mass. After a certain procedure of renormalization the physical mass in 
an irreducible representation is not constant too.

The above situations give us the prospect to search for a mass-splitting 
mechanism on exact symmetry. It is worth studying because, as we know, up to now no 
symmetry breaking has been found in superunified theories.

With c =  0, we have the Tsp models studied in [2]. We can get those models from 
the usual models with cLM = öLM when we replace Q, by Tsp^ = QL + iQ,‘f ( o J >aLP'1. In 
these models the superfields are determined uniquely, the superspace will be 
vectorspace, the supertranslation group will be Abelian. It is worth noting that in this 
case (3.3) satisfy automatically. So s, can be chosen more arbitrarily. We can speak 
about the SU(N) superunified theories.

With с ф 0, we have the models of Haag, Lopuszánsky and Sohnius. These 
models have been considered in [1]. Note that if in these models we choose cLM =  0Ш, 
from (3.3) we come to s, = — s, hence we have only the orthogonal supergravity. Tо have 
other internal groups (SU(N ) for instance) in superunified theories we must choose 
c = 0  or at least must keep it in general form.

With a, =  0, we have the models without central charges, which can be used as 
well as the models with central charges [ 1 ].

It is worth examining the models with s, — 0. The algebra will have the ideal {B,}. 
Without central charges this extension is trivial. So with s, =  0 the non-trivial unified 
theories must be the models with central charges.
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5. Conclusion

Using the semi-simple superalgebras we would unify the particles with different 
masses into an irreducible multiplet. The mechanism of mass splitting would be studied 
only on the concrete models satisfying conditions (3.2H3.11). The choice of these 
models will be decided only by the physical conditions. We will revert to this point 
again in the nearest future.
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Thermal-convective instability in a stellar atmosphere is considered to include the effect of a 
stable solute gradient. A criterion for monotonie instability is derived. The thermosolutal convective 
instability problem in the presence of magnetic field and rotation is also studied. The criterion derived 
for monotonie instability of the stellar atmosphere is found to hold good, both in the presence of 
magnetic field as well as rotation, on the thermosolutal-convective instability.

1. Introduction

The instability in which motions are driven by buoyancy forces, of a thermally 
unstable atmosphere has been termed as “thermal-convective instability”. Defouw [1] 
has generalized the Schwarzschild criterion for convection to include departure from 
adiabatic motion and has shown that a thermally unstable atmosphere is also 
convectively unstable, irrespective of the atmospheric temperature gradient.

Defouw [1] has found that an in viscid stellar atmosphere is unstable if

0 =  y r ( L T -pet Lp) + Kk2<0,  (1)
c p

where L is the energy lost minus the energy gained per gram per second and a, p, к, k, 
LT, Lp denote respectively the coefficient of thermal expansion, the density, the 
coefficient of thermometric conductivity, the wave number of the perturbation, the 
partial derivative of L with respect to temperature Tand the partial derivative of L with 
respect to density p, both evaluated in the equilibrium state. In general, the instability 
due to inequality (1) may be either oscillatory or monotonie. Defouw [1] has also 
studied the effects of a uniform rotation and a uniform magnetic field on thermal- 
convective instability of a stellar atmosphere and has found that inequality (1 ) is a 
sufficient condition for monotonie instability.

The conditions under which convective motions are important in stellar 
atmospheres are usually far removed from the consideration of a single component

* Present address: Department of Physics, University of Alberta, Edmonton, Canada T6G 2J1
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fluid and rigid boundaries and therefore it is desirable to consider two component fluid 
and free boundaries. In the case of a two component fluid buoyancy forces can arise not 
only from density differences due to variations in temperature but also from those due 
to variations in solute concentrations. Veronis [4] has considered the problem of 
thermohaline convection in a layer of fluid heated from below and subjected to a stable 
salinity gradient. The thermohaline convection in a horizontal layer of viscous fluid 
heated from below and salted from above has been studied by Nield [2].

In the present paper we consider the thermal-convective instability of a stellar 
atmosphere in the presence of a stable solute gradient. We also study the 
thermosolutal-convective instability problem in the presence of rotation and magnetic 
field. In many situations of astrophysical interest such as interstellar gas, interior of 
stars etc. the gases may not be composed of a single component fluid but may be 
subjected to the concentration gradient of another component fluid. The motivation of 
this study is due to the importance in astrophysics of thermal-convective instability 
problem in the presence of solute gradient.

Here we consider an infinite horizontal fluid layer of thickness d heated from 
above and subjected to a stable solute concentration gradient so that the temperature 
and concentrations at the bottom surface z = 0  are T0 and C0 and at the upper surface 
z =  d are Tx and C, respectively, z-axis being taken as vertical. This layer is acted on by 
gravity force g(0,0, — g). Then the equations governing the motion of the fluid, 
following Boussinesq approximation, are

Eqs (2)—(4) express the conservation of momentum, mass and solute mass concen­
tration, respectively. Eq. (5) represents the equation of state. The suffix zero refers to 
values at the reference level z =  0. v(u, v, w), g, p, p, T, C, a. and a' stand for velocity, 
gravitational acceleration, density, pressure, temperature, concentration, thermal 
coefficient of expansion and an analogous solvent coefficient, respectively. The 
kinematic viscosity v, the thermal diffusivity к: and the solute diffusivity к' are each 
assumed to be constant.

2. Perturbation equations

(2)

V • v =  0 ,

—  + (v F )C = /c T 2 C , 
ot

p = p 0 [ l - a(T -T 0) +  a '(C -C o)].

(3)

(4)

(5)
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The steady state solution is

where
v = 0, T=T0 + ßz, G = G0-ß 'z , p = p o{ l - 0Lßz-x'ß'z),

ß =
тх- т 0

d
and

are the magnitudes of uniform temperature and concentration gradients. is

positive as the temperature increases upwards whereas ß is positive as the

concentration decreases upwards.
We now consider a small perturbation on the steady state solution and let v, dp, 

dp, в and у denote the perturbations in velocity, density, pressure, temperature and 
concentration, respectively, so that the change in density dp, caused by the 
perturbations в and у in temperature and concentration, is given by

<5p= - Р о И - а 'у ) .

Then Eqs (2)-(4) on linearization give

%  =  -  — P<5p + vF2v — g(a0 — a'y),Ot P Q

V ■ v = 0,

dy
dt

-K 'V 2y = ß'w.

The first law of thermodynamics can be written as

^  dT К . p dp
С.-Г- =  - L + - P 2 T+dt p p dt

(6)

(7)

(8)

(9)

where p is pressure, К is thermal conductivity, C„ is specific heat at constant volume, T  
is temperature and t is time.

Following Defouw [1], the linearized perturbation form of Eq. (9) is

Tt +  ^ “ (Lr - aPLp)0 - K p20= - H ) w . ( 10)

Here we consider the case in which both boundaries are free as well as perfect 
conductors of both heat and solute concentration. The density changes arise 
principally from thermal effects. The case of two free boundaries is the most 
appropriate for stellar atmospheres (Spiegel, [3]). The boundary conditions appro­
priate for the problem are

w = d2 w| dz2 = 0=y = 0 . (1 1 )
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3. Dispersion relation and discussion

Analyzing in terms of normal modes, we seek solutions whose dependence on x, 
y, z and t is of the form

exp (ikxx + ikyy +  nt) sin k2z , ( 12)

where n is the growth rate and kz = sn/d, s being any integer and d is the thickness of the 
layer and k( =  ^ /k 2 + ky + k2) is the wave number of the perturbation.

Eqs (6 )-(8 ) and (10) give

Eliminating в, у from Eqs (13)—(15) and using (12), we obtain the dispersion relation 

n3 + [D + (v + к')к2] n2 + [k2  {(v + k')D + VK'k2} + r ( ß  + + Г ?  J n

{ v k ' 1+ 1 VK'k*D + K'k2r[ ß + - ~ )  + r 'ß'D^ = 0 ,

where

When

Г =
ga(k2x + k2y) ^  gx’(k2 + k2y)

D< 0 and \(vK?k* + r p ) D  \ >Г( ß+  -^г)к'к2,

(16)

(17)

the constant term in Eq. (16) is negative. Eq. (16), therefore involves one change of sign 
and hence contains one positive real root. The occurrence of positive root implies 
monotonie instability.

We thus obtain a criterion that a stellar atmosphere in the presence of stable 
solute concentration gradient is unstable if

D< 0 and \(vK'k4 + r 'ß ' ) D \> r (^ ß + -jpjic'k2 .
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4. Effect of magnetic field

Here we consider an infinite horizontal viscous and finitely conducting fluid 
layer subjected to a stable solute concentration gradient and acted on by a uniform 
vertical magnetic field H(0,0, H) and gravity force g(0,0, g). This layer is heated such 
that a steady temperature gradient ß( = dT/dz) is maintained. The linearized perturbed 
equations of motion and Maxwell’s equations are

-г =  — — Vôp + vF2 v -g (a0  — a'y)+ - ^ - ( F  x h) x H , 
dt p о Anp0

V ■ h =  0 ,
л«
- = ( H F ) v  + i7 F 2 h,

(18)

(19)

( 20)

where pe , t] and h denote respectively the magnetic permeability, the resistivity and the 
perturbation in magnetic field H. Eqs (7), (8 ) and (10) remain unaltered. Eqs(7), (8 ), (10) 
and (18H20) give

(s-̂ b4 S ♦$-*(£+£)+&'
(s -’b — ï -

( J b ) ’— ( ß + -§-)*■

Eliminating 9, y and hz from Eqs (21H24) and using (12), we obtain 

n* + [fc2(v + 1; + к') + D]

2dK
dz

(21)

(22)

(23)

(24)

]л3  + |к '

9+ Г ß + ^ r \ + r 'ß l + k2z V

k2D + vrjk* + k2(v + r\) (D +  к'к2)

/c4(v + ri)D + (vrik4  + kz V\)(D + к'к2)Î F 2 J n 2  +  ̂ 'A
(25)

+ к2(к' + г1)Г[ ß+ i?r) + r'ß'(D + rik2)

+ K'rjk* r ( ß + ^ r )  + rjk2D r'ß' + к'к2 V \k2

Jn  + ĵ vi/ic' W

o ] = 0 ,

where

У2л =
9eH2
Апро
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When the inequalities (17) are satisfied, the constant term in Eq. (25) is negative. This 
means that Eq. (25) has one positive real root, meaning thereby monotonie instability. 
The criterion for monotonie instability (17), thus, holds good in the presence of 
magnetic field on thermosolutal-convective instability in a stellar atmosphere.

5. Effect of rotation

Here also we consider an infinite horizontal viscous fluid layer heated from 
above and solute concentrated from below acted on by a uniform rotation ß  (0 , 0 , Q) 
and gravity force g(0,0, -  g). The linearized perturbed equation of motion becomes

^  = — — Pôp + vP2 v -g (a 0  — a'y) + 2 (v ж ß ) .  (26)
dt p о

Eqs (7), (8 ) and (10) remain unaltered. 
Eqs (7), (8 ), (10) and (26) give

(27)

(28)

where £ =  ------— denotes the z-component of vorticity. Eqs (14) and (15) remain the
ox oy

same. Eliminating 0, y and ( from Eqs (14), (15) (27) and (28) and using (12), we obtain

n4  +  [Z) +  /c2 (2 v +

+ г ( в + ± -

ic')] n3 + ĵ v2 /c4  + K'k2D +  2 vk2(D + к'к2)

( ß  + - f )  + r 'P'+ ^ ß ^ n 2 + [ 2 VK'k*D + v2k*(D + K'k2) 

k2(v + K')r(^ß+ ~ ^ j  + rß '(D  + vk2)+ ^ ^ ( D  +  K'fc2)Jíi 

^vk2^(vK'k* + r 'ß ’)D + K'k2r(^ß+  ^ J  + 4Q2k2 k'£>J= 0 .

(29)

When (17) is satisfied, the constant term in Eq. (29) is negative, which means that this 
equation has a positive real root, leading to monotonie instability. The criterion for 
monotonie instability, thus, holds good in the presence of rotation on thermosolutal- 
convective instability in a stellar atmosphere.
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6 . Discussion

The stellar chromospheres, coronas and the interstellar medium may exhibit 
thermal-convective instability. The Schwarzschild criterion is applicable in the interior 
of a star, where the photon mean free path is small, the assumption that the motion is 
adiabatic is justified. The departure from adiabatic motion may be significant in the 
outer layers of a stellar atmosphere, where the effective heat transfer is no longer 
prevented by opacity. The conditions under which convective motions are important in 
stellar atmospheres are usually far removed from the consideration of a single 
component fluid. We therefore consider the two component fluid, i.e. one fluid acted on 
by mass concentration gradient of another fluid. Keeping in mind such astrophysical 
situations, we study the thermal-convective instability of a stellar atmosphere in the 
presence of a stable solute concentration gradient. A criterion for monotonie instability 
of the stellar atmosphere has been derived. The criterion has been found to hold good 
for thermosolutal-convective instability in the presence of magnetic field and rotation.
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It is shown that the axisymmetric stationary gravitational and Maxwell fields in the general 
scalar tensor theory can be obtained from the axisymmetric stationary Einstein — Maxwell fields. 
The scalar-tensor analogue of the Kerr-Newman solution has been obtained by this method.

1. Introduction

Within the framework of the general scalar tensor (ST) theory of gravitation [1],
[2], [3], [4] one can allow the parameter a> to be an arbitrary function of the scalar field 
Ф. Recently Barker [2] proposed a special case of the general class of scalar tensor 
theories where the Newtonian gravitational constant G does not vary with time. Also 
Schwinger [5] and Kimball and Yee [ 6 ] have formulated a ST theory which is a 
member of the general class of ST theories.

Owing to the highly non-linear character of these field equations, there is a 
relative scarcity of their exact solution which is an obstacle to a better understanding of 
the physical implications of this theory. Hence a substantial increase in the number of 
exact solutions would be a useful first step. Recently some authors [7], [ 8 ], [9] 
discussed methods of generating solutions of these equations.

In this paper we establish a procedure to obtain solutions to the stationary 
axially symmetric general ST field coupled to non-null source-free Maxwell fields. We 
show that starting from any solution to the Einstein — Maxwell field equations one can 
generate a class of solutions to the general ST field equations including Maxwell fields. 
The method is applied to the Kerr-Newman solution. Thus we have generalized the 
result of Singh and Rai [10] for a stationary, axially symmetric electrovac in Brans- 
Dicke theory [11] of gravitation where cu =  constant.
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2. Field equations

We start by considering a stationary, axially symmetric space-time whose metric 
is of the form

ds2 = e2u(dt + (id<p)2—e2k 2u[(dx1)2+ (dx2)2] — h2e 2ud(p2 , (2 . 1 )

where u, Í2, к and h are functions of x 1 and x 2 only. The Nordvedt-Maxwell equations 
to be solved are

R -  - Ф Ф  I dw
,j Ф iJ Ф2 J  Ф 2(2co+ 3)Ф dФ ’Ф2 Ф

(2.2)

ПФ = Ф: ;=

(a) F ‘j= 0 ,

Ф ,Ф'‘ dw 
(2w + 3)

(b) f*"[ij\ k] = 0  ,

(2.3)

(2.4)

where comma and semicolon followed by an index denote partial and covariant 
derivatives, respectively.

The electromagnetic energy momentum tensor Etj is given by

Eij = — FiaF* +  — gtJF„ß Ftß.

Also Fij=Ajj — Aj i are the components of the electromagnetic field tensor, At being 
the electromagnetic four-potential. For the metric (2.1) the surviving equations from 
the field equations (2.2)-(24) are

2  [ u |-u ? ]  +
2klh l 2k2h2 + W (Q2- Q 2)

1 8  Пе 2ир
+ ^(^2 2 - / in ) =  — p ---- [2Í2CA2Z2-1A1Z1)

-  («Al -  Ф1 У- (ß 2  -  h2e - 4u) (x2 -  x])h -  (<« + 1) (Pi -  PÏ)

—(P2 2  — Pi 1 ) —2(fci- u i)pi +2(k2- u 2)p2 , (2.5)

M i  ^ Л  e4“ ^  , . . 1 Z

2“ * - - S -------- Г ~ 2 Р а л  + ~

8Пе2ш~р

hi 2  

h

№(il>iX2 + *p2X i)- ' l ' i ' l '2 -№ 2- h 2e 4“)xiZ2]

- ( w + l ) p lp2 - p i2 + (k2- u 2)pl +(kl - u l)p2 , ( 2.6)

ß  1 1  “Ь ^ 2 2  — T (ß  1 ^ 1  "Ь ^ 2 ^ 2 ) + 4(M|Î2j +  ̂ 2 ^ 2 )
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8  Пе2и~р
= — ^ 2 ----[ß(i/'f + iÂ ) +  ß ( ß 2 - / i 2e 4u) (Xi +  X22)]

16 Пе2и~р
------- p -----[(ß 2 - / l 2c 4 “)(l/'iZ l+ '/'2 Z2 ) ] - ( ß l P l + ß 2 P2 ) (2.7)

1 e4“
“ l l+ « 2 2 + ^(Ml^1 +U2 /l2)+  ^ j 2  (ß? + ßi)

8  Пе2и~р
= 2 ^ 2  [(^î +  ̂ i) + (ß 2 + Л2« '  4“) (xi + zi)]

8Пе2и~р
-------p ----[ßW'iXi + <̂ 2 X2 )] - (P i“ i +Р 2 «г)

ep 7 2ndw 
+ 2 (2^+ 3 j t pi+P2Íd ö '

hl í +h22= - ( p lhl +p2h2)+ (2 ^  + 3 )

(2.8)

(2.9)

1 dcû
P ll+ P 2 2 + P Í+ P Í=  -  jr(p A  + P 2 #i2) -  2̂ ^ 3 ) [P Í+ P 2] ^ »  (2.10)

/i{2 ß(u,Z! + “ 2 X2 )”  2 (u,i^, + M2 i//2) + (ß 1 z 1 + ß 2 x2)}

+ h{ß(Z n+ Z 2 2 ) - ( ^ l l + ^ 2 2 )} -ß ((» lZ l+ ^ 2 Z2 )

+(hlil/i + h 2il/2)=0 ,  (2.11)

Л«4“ {(ß 1 <A ! + ß 2̂  2 ) + ß(«A 1 1  + lA 2  2 ) + 2ß(u ! >1/ ! + U2\\> 2)}

- /ie 4 “{2 ß ( ß lj; 1 + ß 2 z2) + 4ß 2 (u1 z 1 +U2 Z2 )}

-  ß(/i,i/r, + И2ф2)е*и +  2 /j2 (/i ,Xi + /1 2 X2 )

— h((22e4u—h2) (Хи +X 2 2 )

+ (fí 2 e4“ -  /1 2) {(/i,zi +  /1 2 X2 ) + 2/i(UiXi + W2 Z2 )} = 0 , (2.12)

where Ф — ер and А 3 = ф, Л4 = х and subscripts 1 and 2 denote partial differentiation 
with respect to x 1 and x2, respectively.
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3. Solutions from the axisymmetric stationary 
Einstein-Maxwell Fields

Let us consider the Einstein-Maxwell field equations corresponding to the 
metric

ds2  =  e2v(dt + Шер)2 -  e2k - 2v [(dx1 ) 2  +  (dx2)2] - H 2e~2vd(p2, (3.1)

where ß  and к are the same as those given in (2.1 ) and H and v are functions of x 1 and x 2  

only. The set of equations A (of the Appendix) have one of the equations as

Я п + Н 2 2  =  0 . (3.2)

From (2.9) and (2.10) we have

(Ьер)ц  +(hep)22 = 0 . (3.3)

The Equations (3.2) and (3.3) suggest as a possible relation

H = hep . (3.4)

Now if we use (3.4) and make the following substitution

» = w + i p (3.5)

in the Einstein-Maxwell equations (A.1HA.7) corresponding to the metric (3.1) they 
reduce to

2 [nl — «?] +
2klhl 2k2h2 e*u

h  h ~  + 2h2
+ - T [ ß 2 - ß 2]

1 %Пе2и~р
+ ^ 2 2 -> i |i )=  — ïj2 ----{2 ß(«A2 Z2  —«AiXi) —(«Ai —«Ai)

—(í22—h2e *u) ( Û - x \ ) } ~  j ( p 22 - p 2i ) - ( p 22 - P n )

- 2 ( k l - u l)pl +2(k2- u 2)p2 + ^ ( li iP i- /i 2 p2), (3.6)

2 и и -  -  к ^ 2 _  —  Í2  Q + b l
2 U l “ 2  h h 2h2 “ '“ 2*  h

8 Пе2и p
№№1X2 + iA2Zi)- «AiiAi~ (ß2 - h2e *u)XiX2 ]

-  y P lP 2 - P l2 + ( ^ 2 - « 2 )P l+ ( ^ l - “l)P2-  ^(hjPi + hzPi), (3.7)
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^11 ^22  7  ( ß i^ i  +  ß 2fc2) +  4 (U jß  J “b U2^ 2)h

8  Пе2ир= — 2̂— L̂ («Aî + ̂ i)+ß(ß2—л2е ‘“Hxï + xi)]

16/7e2“~p
--------^ 2 ---- (ß 2 — h2 e *u)(<PiXi+<p2 X2 ) - ( ^ i P i + ^ 2 P2 ), (3.8)

1  e4“
Mi 1 +  « 2 2  + j; («i*i +  м2 й2)+ 2 /^  (ß i + fíz)

+  y j^ P ii+ P 2 2 + P Î+ P i + Ji (hlp l +h2p2)

&Пе2и~р
= 2 /i2 " W  + ^ )  + (fl2 +<i2e “"Mxî + xi)}

8  Пе2ир
-------p —  {ßWiXi + «A2 Z2 )} -(PiMi + p 2 u2) , (3.9)

Л, 1 +  / 1 2 2  + 2(/i 1 P1 +  h2p2) + Ц рц + р22 + р] + р22) = 0 ,  (3.10)

h{2Q(ulx l +u2x2) - 2 ( u lil/l +u2il/2) + {ü lXi+^2X2)} 

h{n(Xu+X22)-('l'u+*p22)}-G(biXi+h2X2)

+(hl \l/l +h2il/2) = 0 ,  (3.11)

he*u {((2 ̂  t + й 2Ф 2 ) + n  + Ф 2 2 ) + 2 &(и1 Ф I + U2 >P 2 )}

- h e 4u2S2(QlXi + n2X2)+№1(ulXi + u2X2)}

-Î2(hi»l/l + h2[p2)e4u + 2h2(hrti+ h2x2)

—/j(ß 2 e4" —Ji2)(xn  +X2 2 )

+  ( й 2е4и -  h2) { (h , X, +  h2x2) +  2h (u 1 x 1 +  u2x2)} =  0 . (3.12)

On comparing (3.6H3.9) with (2.5)-(2.8) we observe that they are equivalent if 
the following relations are satisfied:

(°>"  y )  tP* _ P‘] =  \  ( Ä 2 p 2  “  hiP^  > (3-1 3>

y^PiP 2 = ~(hiP2 + h2Pi) (3.14)
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and

Pii+P22 + P2i + P l = -  -^(hiPi+hzPi)-
ep , ,  , .dw 

(2ш + 3 ) ^ 1+P2)dà
(3.15)

The Eq. (3.10) together with (3.15) is equivalent to the Eqs (2.9) and (2.10). Hence 
the set of equations (3.6H3.12) along with (3.15) is equivalent to the set of equations 
(2.5H2.12) provided the relations (3.13) and (3.14) hold. Therefore the axisymmetric 
stationary solutions of Nordvedt-Maxwell equations can be obtained from the 
solutions of the Einstein-Maxwell equations when the relations (3.13) and (3.14) are 
satisfied.

We assume a functional relationship between p and log h = 0, then (3.13) and 
(3.14) reduce to

dp 4
dO = (2 co— 1 ) ‘ (3.16)

Now if со is a known function of p, then p is known in terms of в (i.e. log h) and 
consequently p and h are known in terms of Я. Hence we have established the result: 

Given any Einstein-Maxwell axisymmetric stationary solution (uE ,QE, k E,H E, 
A 3 , A J  one can generate a corresponding Nordvedt-Maxwell axisymmetric 
stationary solution (uST, £2St > K s t , Hs t , Ф, A 3 , Л4), where

mS7-=  uE — — log Ф, Qst = Qe , K st = K e , A3 = A 3 , A4 = A4 ; Hst

and Ф are known in terms of HE when ш(Ф) is a known function of Ф.

Some particular cases

4 — 3 Ф
Case 1: If we choose a> in Barker’s form [2], i.e. a>= — —- ,  then from (3.16) we have

й = Я ( 1 - Я 4) and Ф = [ 1 - Я 4] -1 .

Hence the following theorem.

Theorem 1

If (QE, K E,uE,hE, A 3 and Л4) forms a stationary, axially symmetric solution to 
the Einstein-Maxwell field equations for the metric (2.1), then a corresponding 
axisymmetric stationary solution to the Barker-Maxwell field equations for the same 
metric is given by

(Í2B > Кв > ив > , Ф, A3 , A4) ,
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where

Case 2: If we choose w in the form [5], [6 ]

2 ( 0  + 3=  ——, a = constant,
OOP

then from (3.16) we have

h = H log (M/H ix) , M  =  constant

and

Hence the following theorem.

Theorem 2

Given any Einstein-Maxwell axisymmetric stationary solution (uE ,CiE,K E,H E, 
A3 , A J  one can obtain a corresponding Schwinger-Maxwell axisymmetric stationary 
solution

An application of these theorems is made to obtain the ST solution 
corresponding to the Kerr-Newman solution [12], [13]. The Kerr-Newman metric is 
given by

(us , Qs , K s , Hs , Ф, A 3  , Л4 )
where

and

4. ST analogues of the Kerr-Newman solution

ds2 = — (r2  + a1 cos2  в) I dO2
+ (r2 + a2 — 2mr + e2

dr2
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— (r2  +  a 2 )sin 2  9d(p2 + dt2

( 2  m r - e 2)
(r2  +  a2 cos2  0 )

The electromagnetic potentials are

ear sin2  0

y — [dt +  a sin2  0  dip]2 .

^ 3 — / 2  , „ 2  „ л о 2(г2  4- a2  cos2  0 ) ’
Ал =

er
(r2 + a2 cos2  0 )

(4.1)

(4.2)

If we use a co-ordinate transformation similar to the one used by Misra and 
Pandey [14] for Kerr metric, the Kerr-Newman metric (4.1) can be written in the form 
(2 .1 ) as given by

ds2 = — (L2  + a 2  cos2  0 ) [d0 2  +  d/?2] — (L2  + a2) sin2  0  dip2  

(2 mL-  e2)
+ dt2-

(L2  + a2 cos2  0 )
(dt + a sin2  0  dtp)2 (4.3)

where
R (m2 — a2 — e2)

= £?* + т + - ------- ------- -e R

and coordinates r and R are related through

R (m2- a 2—e2) _R 
r = eR + m + — ---- -------- e . (4.4)

The variable r in the expressions for A3 and A 4 in (4.2) can be converted into R through 
(4.4).

Application of theorem 1 to the metric (4.3) leads to the Barker-Maxwell 
solution given by

2  I I + a2 cos2 e —(2mL-e2)
ds2 =

x[d t-

(L2  -I- a2 cos2  0 )

(2 mLr-e2)a sin2  0

[ 1 - B 2  sin4 0 ]

dcp
l} + a2 cos2  0 — (2mL- e2)

— (L2  +a2 cos2) [1 — B2 sin4  0] _ 1  (d02+dR2)

-  [1 -  B512 sin5  0] 2  [1 -  B2 sin4  0] “ 1 

with the scalar Ф given by

L2  + a2 cos2  0

L2  + a 2  cos2  0 —(2 mL- e2)2\ d(P

where
Ф =( 1 - В 2  sin4 0 ] “ 1, 

В = l3 + a 2  — (2mL- e2) .

(4.5)

(4.6)
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The electromagnetic 4-potentials A 3 and A4 remain unchanged.
In view of theorem 2 the Schwinger-Maxwell solution corresponding to (4.3) is 

given by

ds2 = [}+a2 cos2  0—(2mLr-e2) 
L2  + a2 cos2  в Г л - j r ^L2+a

(2mL—e2)a sin20
cos2  0 - ( 2 m L - e 2)

1} + a2 cos2  в
[d0 2  + dR2]

— [{L2  +  u2 —{2mL-e2)}2 s in 0 Z ] 2

Is + a2 cos2  0 - ( 2 m L - e 2) 
L2  + a2 cos2  0

Zdcp2 , (4.8)

J _ = 7  , ___________ M___________
Ф {1} +a2 — (2mL— e2)}2“ sin4* 0

The electromagnetic 4-potentials A 3 , A4 remain unchanged.

(4.9)

5. Concluding remarks

The immediate utility of the results obtained in this paper is that starting from 
any stationary axially symmetric solution of Einstein-Maxwell equations one can 
generate solutions of the general ST theory coupled with electromagnetic field. 
Applying the method to the cases of Barker’s and Schwinger’s theories we have found 
the stationary, axially symmetric solutions corresponding to Kerr-Newman solution. 
The theorems could be easily applied to the charged Tomimatsu-Sato solution [15], 
Das and Banerjee [16] and Yamazaki [17] resulting in a class of solutions of the 
general ST theory coupled with electromagnetic field with parameters describing mass 
(m), electromagnetic charge (e), rotation (a) and deformation (<5).

Finally, we may add that it is also possible to develop a similar technique to 
generate the corresponding Einstein-Maxwell conformal field solutions. The problem 
is under our active consideration.

Appendix A

The Einstein-Maxwell equations for the metric (3.1) are

, 2 4  2klH l 2k2H2 e
2 (v l -v \ )+ H

W e 2*
H

H +
,4» 1

2  _  П2 1(a2- a î ) + - ( H 22- H l l )

№ № 2 X2  -  Ф1 Xi)- ( V i  -  Ф1 )}
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m e 2»

H
-{(Q2- h 2e-*9) ( x î - x l ) } , (A.1)

k2H 1 k xH2 e,4» Hl2
H2viV2-  ^ 4  -  ^  -  ^ 2 ^ 2 + Ч г

m e 29

H H 2 H 2
2d

{@(}PiX2 + [l, 2Xi )~ ll/ iil/ 2~~№2~ H  e )Х\Хг} 1H

Й „  + S222— — (ßi Hi + Q2H2) + 4(Qlvl + f í2v2) 
H

(A.2)

m e
H 2 

16 n e 2v
H

2V {ß(<H + ф2) +  (ß 2  - Я V 4 ”) ß ( * 2  + Xl)} 

2 {(Si2- H 2e ^ 4v)(il/iXi + '/'2X2)}. (A.3)

1 eAv
vl l + v22 + i+V2H2)+ ÿ j j 2 (ß l + ß D

m p 2v
= ^ 2- { ^ i + ^ i + ( ß 2+ w 2e ‘ '’Mxî+xi)}

-  ^ - { ß i i A i X i + ^ Z 2)}. (A-4)

Н и  + Я 2 2  = 0 , (A.5)

H {2 ß(t>iXi -I- 2̂X2) — 2 (tJ2 , +ti2 i^2) + (ß,Xi + «2X2)}

+ я  {ß (z ,, + X22) -(<A 11 + ^22)} -  ß (w 1Z1+ n 2x2)

+ (Я , ^ 1 +  Я 2^ 2) =  0 , (A.6)

Я í 4 ,,{(ß 1 l/l̂  + ß 2 i/i2) +  ß(i/in  +  i/'22) +  2 ß(t>ii/i1 + I2 2 iA2)}

-  He4v(2i2( ü lXi +  Q2x2) +  4ß 2(i>1x1 + U2X2)}

-  ß ( tf , «Ai + H2ip2)e*v + 2 H 2(HiXi + И 2X2) 

- H ( f í 2e4v- H 2)(xl l +X22)

+ (ß  V »  -  H2) {(HlX i+ H2X2) + 2H(viXl + v2x2)} = 0 ■ (A.7)
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The true potential energy curve for the electronic ground state, X ' l ,  of the LuF molecule has 
been constructed by the Rydberg-Klein-Rees method. By curve fitting of the five-parameter 
Hulburt-Hirschfelder empirical potential function, the dissociation energy D“ of LuF is found to be 
402 ±  10 KJ mol-1 . The force constant of the electronic ground state of LuF molecule indicates that 
this value is of the correct order.

1. Introduction

During recent years, experimental potential energy curves have been constructed 
for many diatomic species which are of interest in various fields such as astrophysics, 
gas kinetics and aerodynamics. A detailed knowledge of potential energy curves will 
help in determining the Franck-Condon factors and the r-centroids which are required 
in testing the intensity theories, such as the variation of electronic transition moment 
with the internuclear separation, a knowledge of which is lacking for many diatomic 
molecules of astrophysical and general interest. A comparison with the experimental 
curve decides the empirical potential function which best fits the molecular electronic 
state. In particular the dissociation energy could be estimated reliably from the 
empirical function describing adequately the electronic ground state. Many methods 
are available to construct the true potential energy curves using the experimental data. 
The approach of Rydberg-Klein-Rees (RKR) as modified by Vanderslice et al [1] is 
the one largely employed.

For a molecular species to form and remain stable against dissociating influences 
in any environment, astronomical, chemical and so on, the temperature must be 
sufficiently low and other energetic interactions must be sufficiently mild that the 
probability of breaking chemical bond once formed is low. Since the dissociation 
energy is a prime factor in such phenomena, astrophysicists, chemists and spectrosco- 
pists are concerned with the determination of reliable values of dissociation energies for 
the diatomic molecules.

* On leave from VFfNSN College, Virudhunagar 626-001, India
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The curve fitting method has been found to yield reliable values for the 
dissociation energies of a large number of diatomic molecules [2-6]. The procedure 
consists in determining the De-parameterised empirical potential function which best 
fits the true potential energy curve for the electronic ground state of the molecule.

There has been no report on the true potential energy curve for the electronic 
ground state of the LuF molecule [7]. Experimental energy levels are known up to 
vibrational quantum number v= 14. Reliable true potential energy curve can therefore 
be constructed. It is proposed to adopt the RKR method in the present work.

Zmbov and Margrave [ 8 ] have arrived at the dissociation energy D% of LuF as 
569 KJ т о Г 1 from mass-spectrometric studies. But this value is not confirmed [7]. 
Using the relation, De=col/4wexe, the dissociation energy D% is reported as 
437 KJ mol- 1  [9]. The dissociation energies 7>8 obtained with this method are often 
too high [1 0 ].

Many empirical potential functions are known for the diatomic molecules. Of 
these, functions given by Lippincott et al [11] in the modified form, by Hulburt- 
Hirschfelder [12] and by Szőke and Baitz [13] describe adequately the potential 
energies of many molecules. These functions are therefore examined in the present 
study to estimate the dissociation energy of the electronic ground state of LuF from the 
constructed true potential energy curve.

For the known vibrational levels, the RKR method gives the turning points by

Expressing the potential energy curve by a series of overlapping segments i, quadratic

2. The true potential energy curve

( 1 )

Vanderslice et al [1] have simplified the RKR method. Further 

modifications by Singh and Jain [14], Murthy and Murthy [15] lead to

and

+ [2Bi- x icoi((ox)i *] (zv- z v- x)((x>x)i 1/2},
where

<yi~2{(cüx)jG(t>)}1/2
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For a segment i of four vibrational levels the molecular constants coh  (cox),, B, and are 
determined from the experimental data of we, coexe, Be, ae by least squares fit of

and

Bv= B e—ae yv+ y

The constants so obtained are used over the middle two levels only. By a series of such 
overlapping segments the entire curve is constructed for the known v values. The 
experimental data [7] required for LuF in the present study are listed in Table I. In 
Table II, the computed values of the turning points are given for the molecular 
vibration in the electronic ground state of LuF.

Table I

Molecular constants for the electronic ground state X ' l  of LuF molecule

o )e [m ']  X  10* uiex e [m ']  X 102 Be [ m - '] x  101 a ,  [m - l ]  X  10“ 1 r e [m] X  10"10

6.1179 2.54 2.6764 1.56 1.9171

Table II

Energy values from the Hulburt-Hirschfelder function for the LuF molecule

V r± x [1 0 “ ‘°m] CM
[KJ т о Г 1]

(/(r) in K J mol 1

De = 395 KJ m o l '1 Dt = 405 KJ mol 1 De = 415KJ т о Г 1

0 1.9769 3.6515 3.6887 3.6887 3.6887
l 2.0243 10.9089 10.9675 10.9679 10.9683
2 2.0590 18.1056 18.1762 18.1776 18.1788
3 2.0885 25.2414 25.3199 25.3230 25.3260
4 2.1150 32.3166 32.3920 32.3961 32.4036
5 2.1395 39.3310 39.4006 39.4106 39.4201
6 2.1626 46.2846 46.3413 46.3569 46.3712
7 2.1847 53.1775 53.2178 53.2403 53.2611
8 2.2059 60.0096 60.0255 60.0566 60.0853
9 2.2264 66.7809 66.7684 66.8098 66.8480

10 2.2464 73.4915 73.4415 73.4950 73.5445
11 2.2658 80.1412 80.0324 80.0999 80.1625
12 2.2849 86.7303 86.5663 86.6498 86.7274
13 2.3037 93.2585 93.0222 93.1239 93.2184
14 2.3222 99.7259 99.4171 99.5391 99.6526
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ТаЫе II. (coni.)

r t  x[10'10m] GOj)
[KJ mol“ 1]

U(r) in KJ m o l 1

Dc = 395 KJ m ol"1 O, = 405 KJ m o l '1 Oe = 415 KJ mol-1

0 1.8633 3.6515 3.5062 3.5062 3.5062
1 1.8268 10.9089 10.8332 10.8329 10.8326
2 1.8031 18.1056 18.0068 18.0059 18.0050
3 1.7847 25.2414 25.1249 25.1228 25.1209
4 1.7693 32.3166 32.1854 32.1840 32.1805
5 1.7559 39.3310 39.1969 39.1908 39.1852
6 1.7441 46.2846 46.1504 46.1415 46.1333
7 1.7335 53.1775 53.0381 53.0257 53.0143
8 1.7238 60.0096 59.8780 59.8613 59.8463
9 1.7148 66.7809 66.6682 66.6468 66.6275

10 1.7065 73.4915 73.3920 73.3652 73.3409
II 1.6987 80.1412 80.0797 80.0467 80.0170
12 1.6915 86.7303 86.6944 86.6548 86.3149
13 1.6846 93.2585 93.2937 93.2467 93.2044
14 1.6781 99.7259 99.8139 99.7588 99.7093

Average percentage deviation 0.293 0.291 0.298

3. Dissociation energy

For the constructed true potential energy curve, the energies U(r) are calculated 
with the empirical potential functions by varying the De value. An average percentage 
deviation is determined between the calculated U(r) and the experimental G(t>) values. 
The dissociation energy from any function is that value of De which gives the least 
deviation. And the function leading to smallest deviation determines the dissociation 
energy of the molecule. The dissociation energy referred to v=0 level is given by 
D° = De- G (  0 ).

This procedure is applied to determine the adequacy of the empirical potential 
functions [11-13] to represent the electronic ground state of LuF. De is varied over a 
range of 290 to 580 KJ mol - 1  in steps of lO K Jm ol-1 . It is found that the five- 
parameter Hulburt-Hirschfelder function fits the true curve best when De = 
405 KJ mol-1. Relevant results of l/(r) are given in Table II. Combining the error of
0.29% with 2% error inherent to the Hulburt-Hirschfelder function [16] the 
dissociation energy is estimated to be D° =  402± 10 KJ m ol-1.

4. Conclusions

Zmbov and Margrave [ 8 ] have reported the dissociation energy D% of LuF as 
569 KJ mol - 1  from the mass-spectrometric studies and the relation De = Wg/4coexe 
yields a lower value 437 KJ mol - 1 [9]. Since the five-parameter Hulburt-Hirschfelder
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function fits adequately the experimental data, the estimated value D ° -  
402+10 KJ mol 1 in the present study can be considered as satisfactory. The force 
constant for the electronic ground state of LuF also indicates that the dissociation 
energy obtained in the present study is of correct order.
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We investigate the three-particle decays of heavy Higgs bosons in the Weinberg-Salam 
model with two Higgs doublets. The dominant decay mode is H-» V H '-* ff H', if the mixing angles in 
the Higgs sector are not very extreme. The decay width is a few percent of the decay H-> VH', at mH 
= 100-150 GeV it is about a few MeV. The fermion energy distribution can discriminate from the 
case of one Higgs doublet.

1. Introduction

In a previous paper [1] we have studied the decays of heavy Higgs bosons in the 
Weinberg-Salam model with two Higgs doublets and found that the decay H,-> VH2 
generally exceeds the known decay mode H l ->VV [2 ] as well as the decay into a 
fermion pair. The decays Н {-гН2Н3 may be also large in some cases but these are not 
controllable easily because of the complicated couplings.

In this paper we go into the details of the above processes, investigating the three- 
particle decays of heavy Higgses. We consider the possible decay types, and give their 
widths, then we discuss their relevance. The concrete analyses are performed for the 
case of charged and pseudoscalar Higgses. It turns out that in general the main decay 
modes are f -

In the Appendices we make general statements on the interference terms and give 
useful formulae for the evaluation of three-particle decays.

2. The possible decay types

We work in the standard electroweak model with two Higgs doublets [3], [4] 
because here there appear the typical features of the models with more than one 
doublet, but the Higgs sector is still rather simple. The five physical Higgs bosons 
are H ±, h°, Ф0, H°, their masses and two mixing angles a and ß, 0<ß<n/2,  
— n/2<ot<—n/2 + ß, are free parameters. This is not too strong, so the phenome­
nology is relatively fixed.
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From the trilinear interaction term of the model [4] we get the possible decays: 

H ±-+W±h°, \У±Ф°, W^H0 ; 

h°-+W±H * , ZH°; H + H - ,  Ф°Ф°, H°H° ;

Ф0- ^ 1//* , ZH°; H + H~, h°h°, H°H° ;

H°-*W±H :f, Zh°, гФ°.

If the virtual particle is the same as the decaying one there are also other possible 
decays, e.g. f  h, here H = H°, H ±\h = h°, Ф0, but we shall see that these are
not important. We investigate the three-particle decays where one of the secondary 
particles decays into a fermion pair.

Fig. 1. The possible decay types of Higgs bosons in the model with two Higgs doublets

All of the above decays belong to one of the following four types (Fig. 1):

A) H ^ V H ^ V f f

B) H l ->H2 V-+H2f f

C) H l -*H2H l -+H2f f

D) H ^ V H ^ V f f

In the next Section we evaluate these processes. The concrete model will appear 
only in the coupling constants.
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3. Evaluation of the general decay modes

The double differential decay widths of the cases A-D) with the notations of 
Appendix 1 are:

A. d2T = 4|t/1 |2 ([gs | 2  + |ÿP|2 )m^, (x 2 -x ) (x 2 -x ? )
dxdy  (4 7 t) 3  ml (x — x 0)2 + dj,2

B. d2r  = 4\gl \2(\gy \2 + \gA\2) x - x 2  + 2 y ( l - x - y )
dxdy  (4л) 3  m,i' (x — x0) + Al

c . d2T =  16|c/ !  | 2( | . ^ s | 2 +  I ^ p I2) x 2 - x

dxdy  (4n)3mHl (ц2„ - 2 x ) 2+ 02Ht'

D. d2T = 4 |g i |2 (|gs | 2  + |gp|2 )m ^ (x 2 -x ) ( x 2 -x f )  
dxdy  16л3 ml (n l~ 2x)2 + ôjll

It is important that in A) and B) there can be a resonance at x = x0, while 
in C) and D) this is not possible, because х > х 1=ц. Denote the couplings by G, 
G' 4  =  4 |^ , | 2 (|0 s | 2  + |Éíp|2), etc. Integrating over the fermion energies gives

A d i  Ga m3,, (x2  —x) (x2  —x ? ) 3 / 2  

dx (4л) 3  ml ( x - x 0)2 + Aj,2

d r  _  GB 1 (x2 - x f ) 3 / 2  

dx (4л) 3  Wh' 3 (x — x 0 ) 2  + Al  ’

d ^ _ G ^ _  1 (x 2 - x ) ( x 2 - x ? ) 1/2 

dx (4л) 3  mHl ( 2 х - ц 2Нг)2

dr  _ Gd m3Hl (x2  —x) (x2  —x 2 ) 3 / 2  

dx 16л3 ml (2х — ц1)2

Here we neglected ôj, in the denominator, since (2x — g.2)2 > [g(2 — д)~\2 > ц 2Р 0 2. In the 
cases A) and B) the Higgs energy distribution is a sharp resonance around x0: it is a 
typical behaviour of these cases.

From here we get the total decay widths of the above processes. In A) and B) the 
main contribution to the integral comes from the resonance, we can neglect the tails. 
Also, if x 0 < x 1; that is mlh <my + mH2, the decay width is very small. Finally,

GA m3Hl к m2ll2A3l\ \ ,{mylmllf , ( m nJm llÿ )  
(4n)3 ml  All2mjh 16

В: Г =
(4л) 3

m.
\2цу0,

A3l2( \ , n l , n 2„2
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c . г Gc 1 1

(4л) 3 п„, 4

D: г GD тн, 1

16 л 2 ttly 4

i 2  /  3 — /х2

=  arccos g —-— +
l - ц 2

(l+ 6 4 /t2- 1 7 / )  +
48

и? и^
+ ( 6  — 9ц2 +  /г4) In g — — (28 — 11 д2 +  /i4) arccos

2 о

We see that the presence of the resonance enhances the total width (the integral) 
strongly, so the decays A) and B) are more advantageous compared to C) and D). From 
A) and В), B) is preferred, since usually mf ozgHf-4gVf  (see the details later).

We give here the fermion energy distribution of B):

dr/dy

g'= GВ ™H1
W1tl:

x_
AV

У

Fig. 2. The fermion energy distribution of the В graph in the resonance case

B:
d i  G *m „ A (  1 (/4/2 ) 2  + d 2

with £(y) =

dy ~  (4я) 3

А г И т д у '

\ + n l - 4 y ( \ - y )

y - T ) ln (£,(у)~Хо)г + А2у + 2̂};(1

arctg {g2/2A y) — arctg £(у)-*о'

2 ( 1 - 2  у)
. In the resonance approximation

ä r  „  GBmHl f 
dy (4л) 3  f

i . M 2]
l —

2 \ » в | /  J\Ау
(Fig. 2 ).

In conclusion, we can say that the main decay mode is of the type B) (via a virtual 
vector boson).
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4. Pseudoscalar and charged Higgs

Let us see the above statements in more detail, in the case of the pseudoscalar H°. 
This particle has 8  decays in the model (Fig. 3). We can say:

1. A) and B) are negligible, if they contain no resonance.
2. The resonance condition both in A) and B) is:

шя ,> т н2 +  шк- Usually gHf < g Vf, so that A is negligible beside B.
3. In C there is no resonance, and therefore Г(С)<^Г(В) for two

reasons.
1 2 3

K K K K
h°

-4<
ф°

♦H-

k k

h° .  4 <

(-C III A -*i

Fiy. 3. The decay modes of the pseudoscalar H° in the model

2*. In the model with two doublets gHf occos 1 ß can hold (in the optimistic case), 
therefore, if ß&n/2, the widths of processes A and C can grow.

For example, if the fermion couplings to the second doublet are absent (for 
/J>45° it is an optimistic choice), g„f  is the greatest coupling,

while

and

From these

дм
g mf  sin a 
2  mw cos ß ’

g/.i =
g

4 cos 0 i
[(4sin2  0 * ,- l ) /  + y5]

дн" huz:
g

2 cos 0 ,
cos (a — ß).

^ 4 ^ Í ^ Y  = 4sin2a í  m/GBl -  cos2 ß \ m 2 ' 1 mzcos ß
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For ß we have an upper limit [5]

tg/?<40
thus

If ß is not exceptionally large, our conclusion remains valid, that is A is negligible 
beside B. With the optimistic choice of th e /— H couplings we also overestimated A.

3*. C can hardly be analyzed because of the complicated HHH couplings. For example,

the mass of the Ф0  boson also appears. Cl can be relevant only if this coupling is able to 
compensate the smallness of gHf and the absence of a resonance.

If the mass of Ф0 is large, ß is very near to its maximum value and the decay goes into 
heavy fermions, then Cl can be of the same order as Bl.

Disregarding these not very likely cases, the decay of H° goes via the diagrams B. 
These considerations hold for the charged H ± decays, too.
After this analysis let us write the H° decay width from the В graphs as

([ 1 ], [4])

If ßx n /2 ,

ч mw

Let us choose a =  — я/4 to simplify our considerations. Then

вн°н°к° —

and

Г (//0) = Г(Я0- Л ° г - /1 0/ Л  +  Г(Я0- Ф 02 - Ф 0/ Л  +

+ r(H°->H±W :f- ^ H ±f J 2)

(there are no relevant interference terms, see Appendix 2).
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here

^ 1.=  ^ 3 / 2 ( 1  , n l , n 2„)Avl ,

ГИ/ h = H \
\ z  h = h°,<P°,

Hh = mJmHo, nv = mv/mHo, Av = mv r v/2m2Ho,

Gho = G cos2  (a — ß), Gфо = G sin2  (<x-ß),

G= L  9 n  У [(4sin2  &w—\)2+ 1], GH± = Ç .  y2 cos суyy J 2

Numerically see Table I (e.g. for h = h°).
The width is determined mostly by mH0, mh can give rise to threshold effects. In 

the region тн0к  100-150 GeV the width is of order MeV, then it grows rapidly with 
mHo.

Table I

The total decay width of H °-»h ff

тно [GeV] 120 150 200

mht, [GeV] 10 20 10 20 30 40 50 10 50

2 , [MeV]cos2 (a — p) »
1.12 0.59 7.3 6.4 5.0 3.2 1.4 34 23

тно [GeV] 200 350 500

mhо [GeV] 90 10 50 90 150 200 10 120 350

r{H °-*h ff)  rw  ln  
2 , [MeV] cos (a —p)

6.0 291 271 227 133 55 944 776 71

Comparing with the two-particle decay gives:

r ( H ° ^ h ° Z - + h ° f f )  a [(4 sin2  &w—\)2 + 1] mw
r(H°-*Zh°) 48 sin2  0 W cos3  0 , =  2.56 10“2.

We also give some characteristics of the once differential decay widths. With

xh =
m Ho

1

XOh~
" Hv

У =
m„o
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we see that
d[_ = GhmH о 1 (xh- n l Ÿ 12 
dxh (4л ) 3  3 (xh—x0h)2 + ày

has a resonance behaviour around x0A, its width is Av, and at x0|i its height is

that is not very large, at mHox  100(150) GeV it is about 0(10 4)mHo (0(10 3)m„o). 
The fermion energy distribution is

that is, the superposition of three parabolas. It is a characteristic feature of the model 
with two doublets. (In the minimal model there are only graphs of C and D type, 
leading to very different energy distributions).

As far as H ± decays are concerned.

Г(Н± ) = Г(Н 1  й° W ± -*h% f 2) + Г(Н° -»Ф° W ± -»

-»Ф0/ . f 2) + r ( H ±-*H0W±^ H ° f l f 2),

the formulae are similar to those of the H° decay. The h° and Ф0 decays are going also 
likewise, the results hold qualitatively for these cases, too. The complementary decay 
widths (e.g. H°->H±f l f  2 and H ±->H°fi f 2) are the same.

We investigated the three-particle decays of heavy Higgs bosons in the 
Weinberg-Salam model with two Higgs doublets. We considered the possible decay 
types, gave their widths and energy distributions. The main decay modes are

if the ratio of the two Higgs doublets’ vacuum expectation value (tg ß) is not very 
extreme, e.g. for the pseudoscalar H°

In the region m„0 x  100-150 GeV the total width of H° is about a few MeV, then rapidly 
grows with mH o , h° can give rise to threshold effects. This value is about 3% of the decay 
width H X->VH2. The energy distribution of H2 is a resonance of width Гу, with a 
height of 0(Ю “ 3) т и ,. The fermion energy distribution is a superposition of three

where
fh(y) = n ■ Ay ‘[2y(l - x 0h-y ) - (n l /? f ]

5. Conclusions

H°->h°ff  + Ф0/ /  + И i / i / z  •
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parabolas, this is characteristic for the model with two doublets, and from this some of 
the parameters of the model can be fixed. These results hold qualitatively also for the 
neutral and charged scalar Higgs particles. (We can expect to see the chain-like 
production of Higgs particles via these processes.)
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Appendix 1

General considerations on three-particle decays

Let us take the decay 1 —>2, 3 —»-2 
Introduce the notations

»  3 =
"h ^  — 1 d 3— —^з^з ,m, i

Then

neglecting the fermion masses,

\m '\2= £  \M f A x > y , y ' = \ - x - y ) \ 2-

6 Acta Physica Hungarica 56, 1984
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In general

d[_ Q(x) R(x)s/ x 2- x 2l
dx ^  (x — x 0 ) 2  + A2 (x—x0)2 + A2

Q and R are polynomials. Hence dr/dx  is a resonance around x0, its width is Г3, and its 
maximal value is

d r  Q(x0) R i x o ^ x l - x ]
dx max A2 A2

y / xo ~ x î  = y  A ll2( \ ,n \ ,n \) ,

A (abc) =  a2 + b2 + c2 — 2(ab + be + ca).

There are two cases:
a) If ml >m2 + m3, x 0  6  [x1; x2], dF/dx is of resonance type.
b) If m1<m2 + m3, x 0 ^ [ x , ,x 2], then dr/dx  is not resonance-like. (Fig. 4)

df/dx df/dx

Fig. 4. Possible shapes of energy distributions —— vs x

Integrating over x  we get Г. In case b) usually x — x0^>d therefore A 2 can be 
dropped out of the denominator. In case a) the dominant distribution comes from the 
resonance, integrating the tails can be neglected, and

Г =
d r
dx m a x

n - A 3.
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Appendix 2

On the interference terms

Let us consider the interference of the two processes

M->m, f 2
and

(Fig. 5).
M-*m, m2->mfl f  2.

Fig. 5. Interfering graphs in three-particle decays

This appears in |Af' | 2  in the combination

/  =  Л,____________A*2 + A*___________ A2 =
k2 —mj — i n t i i , k2 — ml+im2r 2 k2 —m2 + imi r i k2 —m\ — im2r 2

- ■#[(*oi-x) (x02- x )  + Al A2] + . f [(x0 l - x ) A 2- ( x 02- x ) A l]
[ ( x 0 i - x ) 2 +  d i ]  [ ( x 0 2 - x ) 2 +  d | ]

with
3t = Re A l Re A2 + lm A, lm A2, J  = Re A, Im A 2 — Re A2 Im A x, 

x j = / r ,  2 x 0 J= l  + n 2- n f ,  x 2= y ( l + / i 2),

X! and x 2 border the integrating domain.
There exist four cases:
l )  * 0 1 , x02 * [ X | , x 2] ,  or M < m í +m,  M < m 2 + m. Then | x 0i — х\$>А(, 

neglecting А/

r „ 3*
1 = 2 ----------------------.

(*ot - x )  (x0 2  x)
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2) Let us choose m2>ml , x 02 ф [x j ,x 2], x0l e [x j ,x 2], there is one resonance 
between x, and x2, |x 0 2  — x \ P A 2. f ma* *s at x0l,

/ =2  1 m a *
■#A2 + . / ( x 0 1 - x 02) 

Л 1 (*0 1 - * о 2 ) 2

< C Í T c c A ~ 2

The interference term remains negligible beside the diagonal ones after integration, too.
3) x0 l,x 0 je [ x i ,x 2], and |x0l — х0 2 |>Л(. There are resonances, at x0l and at 

x02, there

/  —  ?  1 m ax(  1 ) —  ^
£ A 2 + J ( x o t - x 02) 

A 1 (x q 2 ~  x 0 i ) 2
^ m a x ( 2 )  1 max{l)(A i*—* A 2) .

These two terms can be integrated separately, and it can be seen that both of them are 
negligible beside the diagonal terms.

4) X0l, x 0 2  g [ x , , x2], and |x 0l — x 0 2 |«c4,. In this not likely case it is not easy to 
simplify the integral.

The conclusion is that the interference terms can be comparable with the 
diagonal terms only in the cases 1 ) and 4). These considerations are of general nature.

Appendix 3 

A useful integral

In calculating three-particle decays we often confront with the integral

/„ =
" J x 2 — a2

dx
( x - x 0 ) 2

which cannot be found in tables. Using the decomposition

x"(x2  —a2) y  . a„x + b„ 
(x- x0 ) 2  i = oC" ''X + (x —x 0 ) 2  ’

where
c„,„= 1 ; cn , „ ~ m = {m+ l ) x o - ( m - l ) x £ ' 2 a2, m = l . . . n

a B= ( n  +  2 ) x S + 1 - n x S _ 1 a 2, 

b„= —(n+ l)x 5 + 2  +  (n— l)x ju2, 

we can give it as

ln— K„+  £  Cn.n-m^n-m + Jn ■
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Here

from tables
Kj’ i ;

xjdx

J x 2- a 2
7 4  2  m~ 7Г~2m

s/X2 —a2 '

, " U ,1 ( 2 m — l ) ! ! ( m  — Л — 1)! / a 2\ k
Ĵ x2" 1 4 - y  ‘ ) x2m 2* 1fc = 1 (2m—2Л — l)!!(m — 1)! V 2

+ |y
a 2 \'"(2 m— 1 )!!

m \ a

ml
2m-2k

Arch;

X" TI k=o \  k J  2k + l 

and we can express also Jn: 

xr

(x2- a 2)k+ 2 ,

J .= 0 /71----2 , x0 *[("+ l)^o-«a2] a2 — x0x--------y /x  —a H------------ -----------------arccos—-------- -
x  — x o ^ a 2 — Xq a (x  — x o)
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Indian Institute o f Petroleum, Dehradun-248005, India 
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Cohesive energy and Debye temperature of some substituted, fused and non-fused aromatic 
compounds have been computed on the basis of Lennard-Jones (6-12), modified Buckingham and 
Morse intermolecular potential functions. The results have been compared with those determined 
from the experimental data and discussed. The cohesive energy of the present set of aromatic 
compounds, as a class, is found to be one order larger than that of normal alkanes and is comparable 
with cycloalkanes.

Introduction

In our earlier publications [1, 2] we have studied the lattice properties like 
cohesive energy, Grüneisen parameter, Debye temperature etc. of molecular crystals of 
globular hydrocarbons like adamantane, bicyclo (2 .2 .2 ) octane and methane on the 
basis of intermolecular potential function due to Lennard-Jones. Due to the apparent 
success of this approach, we now extend the work further to include the molecular 
organic crystals of benzoic acid, hexamethyl benzene, hexachloro benzene, hexabromo 
benzene (all substituted benzene compounds), bi-phenyl, benzophenone, benzil, p- 
terphenyl (all non-fused aromatic ring compounds) and naphthalene, perinaphthenone, 
anthracene, anthrone, anthraquinone, perylene, 9,10 bi-phenyl anthracene (all 
condensed aromatic ring compounds).

From a number of studies it has been inferred that the following three forms of 
the intermolecular potential functions, viz.

ф= ( )[ — A V ~ 6n + BV~l2n~\

N.

and

(Lennard-Jones),

ф = —  I [ — A V 6n + B exp ( — K"/p)] (modified Buckingham)

ф= ( — ■ )[ — A e x p ( -  K"/p) + Bexp(  —2K"/p)] (Morse)

( 1 )

( 2)

(3)
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Table I

Potential parameters of the Lennard-Jones, modified Buckingham and Morse functions for some substituted, non-condensed and condensed aromatic compounds

Potential parameters
Lennard-Jones Modified Buckingham Morse

Compound (Eq. (4)) A x 1062 
[J cm6]

B x  10106 
[ J e m 12]

p x  108 
[cm]

A X  1062 
[J • cm6]

В X  1012
[J]

p x  108 
[cm]

A X  10“
[J]

B x  1010
[J]

1. Benzoic acid 2.90 1.04 1.18 0.317 0.63 1.94 0.424 3.06 4.54
2. Hexamethyl benzene 2.78 5.82 18.63 0.389 3.77 2.60 0.554 2.25 2.23
3. Hexachloro benzene 2.61 4.42 10.61 0.263 1.66 8.81 X  102 0.460 9.40 22.98
4. Hexabromo benzene 3.87 7.73 25.59 0.252 2.55 80.56 X  102 0.481 12.97 35.07

5. Bi-phenyl 3.39 2.70 6.30 0.286 1.16 93.90 0.461 5.47 12.10
6. Benzophenone 3.59 8.02 31.44 0.287 3.05 8.18 xlO2 0.499 10.47 23.90
7. Benzil 2.47 5.72 19.02 0.479 4.39 0.18 0.541 2.40 1.78
8. p-terphenyl 3.55 8.73 41.21 0.301 3.77 5.71 X  102 0.516 10.54 25.77

9. Naphthalene 3.07 2.34 4.26 0.316 1.25 9.33 0.457 3.62 9.33
10. Perinaphthenone 3.48 4.29 10.75 0.279 1.65 2.82 X  102 0.466 8.36 20.44
11. Anthracene 3.17 5.01 14.11 0.278 1.97 4.54 X  102 0.953 0.05 0.16 X  10~3
12. Anthrone 3.18 5.30 14.74 0.323 2.62 29.17 0.481 7.54 13.65
13. Anthraquinone 3.66 6.58 19.59 0.267 2.41 16.05 X  102 0.476 11.25 27.49
14. Perylene 3.35 15.48 75.56 0.328 6.79 1.97 xlO2 0.523 14.91 33.16
15. 9, 10 bi-phenyl anthracene 3.74 36.04 371.20 0.318 12.65 45.88 X  102 0.582 20.08 54.25
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(where ф is the potential energy per mole, Kis the molar volume, n=  1/3, N A is 
Avogadro’s number and A, В and p are the potential parameters) have been widely used 
in cases of gases and liquids [3] as well as in solids [1] for the calculations of molecular 
energy levels and lattice properties. In what follows in the present work, the cohesive 
energy (U0) and the Debye temperature (0) of these solids have been studied on the 
basis of the above forms of the intermolecular potential function and the results thus 
obtained have been discussed.

Theory

In order to study the lattice properties, a knowledge of the potential parameters, 
A, В and p, of the intermolecular potential functions for the individual solid is desirable. 
For the case of two-parametric Lennard-Jones function these can be easily computed 
by employing the static lattice conditions [1, 4], but for three-parametric modified 
Buckingham and Morse functions one more condition is necessary. Chang [5] has 
shown that under the quasi-harmonic approximation

<5 = or 2y — 2/3, (4)

where ô is the Anderson-Grüneisen parameter, ßT and ßs are the isothermal and 
adiabatic bulk moduli and y is the Grüneisen parameter. The two values of ö in terms of 
y in Eq. (4) are due to two relationships — one due to Dugdale and MacDonald [ 6 ] and 
the other due to Slater [7] — between y and the change of compressibility with volume, 
respectively.

The compression behaviour of the present set of aromatic crystals has been 
studied by Vaidya and Kennedy [ 8 ] and the bulk modulus, ß, and its pressure- 
derivative have been determined using the Murnaghan equation and the modified 
Murnaghan equation. Using these data, the values of the potential parameters of the 
modified Buckingham and Morse functions for these solids have been computed and 
are reported in Table I. In this Table the values of y computed using the relation 0 = 2y 
are also listed.

Results

Using these potential parameters, the values of cohesive energy, U0, have been 
computed [1,9] and are given in Table 11 alongwith the melting point (m.p.) of the 
solids. In these values of U0 are also added the zero-point energy, e0, of the crystal

lattice which was calculated using the relation e0=  -jj--j^[1 0 ] (where R is the gas
8  N A

constant). The 0-values as obtained by Plendl’s equation (Table III, column 5) were 
used in these calculations and values of e 0  thus obtained are listed in Table II, column 3.
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Table II

Zero-point energy, e0 [kJ/mol], and the cohesive energy, U0 [kJ/mol], of some substituted, non-condensed and condensed aromatic compounds

Compound m.p.
[°C] eo

U0 (calc.)

T , _ Modified 
Lennard-Jones Buckingham Morse

l /0 (exptl.)**

1. Benzoic acid 122.4 1.13 69.50 (62.98)* 108.62 63.34 93.35 (70—114 °C) +
2. Hexamethyl benzene 167.0 1.17 138.29 (107.95) 225.10 131.75 82.22 —
3. Hexachloro benzene 230.0 0.96 147.07 - 154.93 116.82 97.32 (51-71 °C)
4. Hexabromo benzene 327.0 0.84 168.49 (150.25) 177.61 145.60 — —

5. Bi-phenyl 70.5 1.00 88.37 (75.31) 108.11 75.48 77.40 (6-26°C )
6. Benzophenone 48.0 1.13 155.35 (136.69) 173.96 109.45 96.99 (16-42  °C)
7. Benzil 95.0 1.00 130.79 (120.08) 219.28 130.12 100.16 (45-67 °C)
8. p-terphenyl 210.0 0.96 140.25 (126.61) 177.23 130.88 — —

9. Naphthalene 80.6 1.17 97.95 (91.04) 139.95 86.86 71.84 (6 -21  °C)
10. Perinaphthenone 156.5 1.08 129.79 144.68 104.18 — —
11. Anthracene 216.2 1.13 139.20 (122.55) 154.77 131.71 103.26 (65-80  °C)
12. Anthrone 155.0 1.13 144.77 (138.59) 196.23 126.52 — —
13. Anthraquinone 286.0 1.13 167.44 (146.69) 178.45 139.79 112.05 (224-286 °C)
14. Perylene 278.0 1.17 232.34 - 298.70 205.43 — —
15. 9, 10 bi-phenyl anthracene 249.5 0.96 (248.53) 285.89 233.30 160.67 (208-229 °C)

* Values in parentheses are calculated using the modified Mumaghan equation [8] for the calculation of bulk modulus.
** Deduced from the data listed in ref. [13].
+ Temperature range to which U0 belongs.
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From the knowledge of the cohesive energy, the characteristic temperature, 0, 
can now be calculated on the basis of our earlier derived equation for в [2]. Plendl [11] 
has connected the bulk modulus and the density of a solid with the characteristic 
temperature. A similar relation has also been earlier derived by Blackman [2, 12]. 
Using these equations the values of в have been computed and are listed in Table III.

Table III

Debye temperature, 0(K), of some substituted, non-condensed and condensed aromatic compounds

Debye в
Our Eq. (Eq. (3) ref. [2])

Plendl
[И ]

Blackman
[12]

Com pound
Lennard-

Jones
Modified

Buckingham Morse

1. Benzoic acid 115 146 112 120 68
2. Hexamethyl benzene 119 153 126 123 70
3. Hexachloro benzene 98 101 88 103 56
4. Hexabromo benzene 85 86 80 89 52

5. Bi-phenyl 105 116 97 109 61
6. Benzophenone 116 124 107 120 68
7. Benzil 103 132 94 106 59
8. p-terphenyl 96 108 95 104 55

9. Naphthalene 124 149 118 127 73
10. Perinaphthenone 115 122 104 116 67
11. Anthracene 116 123 115 120 67
12. Anthrone 115 135 109 121 67
13. Anthraquinone 119 123 109 122 69
14. Perylene 116 132 109 123 69
15. 9,10 bi-phenyl anthracene 99 101 92 101 58

Discussion

On a comparison of the values of U0 (Table II) obtained on the basis of Lennard- 
Jones, Morse and the modified Buckingham intermolecular potential functions, some 
interesting trends have been noticed. These are increasing with the molecular weight 
and melting point of the solids and those obtained on the basis of Lennard-Jones 
inverse power law type potential function are larger for all the solids in comparison to 
those obtained using the double exponential function of Morse. The modified 
Buckingham function, which is of mixed type, yields values of U0 which are larger than 
those obtained from both of these pure functions. However, the use of bulk modulus 
obtained from modified Murnaghan equation reported for some solids [ 8 ], in place of 
ß values obtained from Murnaghan equation, yields somewhat lower values of U0 
(Table II, column 4, in parentheses).
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In the last column of Table II are listed the experimental values of U0 for some of 
the compounds alongwith the temperature range for which they are deduced. On a 
comparison with the theoretical values which are for absolute zero, the experimental 
values of U0 are showing deviations the amount depending upon the temperature 
range. Thus, in case of 9, 10 bi-phenyl anthracene, as the experimental value of U0 is 
belonging to very high temperature, the deviation from its theoretical value is also very 
large in this case as that of naphthalene and bi-phenyl. Nevertheless, both the pure 
functions, the Lennard-Jones and Morse, are giving satisfactory results.

From a critical analysis of U0 values obtained on the basis of Lennard-Jones 
function (though the arguments that would follow are also valid for other sets of U0 
values as well) it may be seen that in a two six-mem bered rings compounds — whether 
directly united as in bi-phenyl or fused to form naphthalene — the cohesive energy does 
not change much. The difference being only about 9.5 kJ/mol, the fusion giving a more 
stable compound. Extending this argument to compounds like p-terphenyl and 
anthracene, we note that like their melting points, their cohesive energies are also 
nearly equal. It may thus be concluded that addition of one more ring to a two-ring 
compound increases U0 by about 52 kJ/mol when non-fused (as in p-terphenyl) and 
when condensed to form anthracene, the increase in U0 is about 42 kJ/mol. We may 
thus infer that the cohesive energy of benzene should be around 47kJ/mol. The 
cohesive energy for higher ring compounds of this series can now be predicted and, for 
example, for linear quaterphenyl (m.p. 320 °C) and naphthacene (m.p. 357 °C) may be 
estimated to be around 165 and 180 kJ/mol, respectively.

In case of substituted benzenes, it can be seen that as the molecular weight of the 
substituent is increasing the value of U0 is also increasing, in a somewhat linear 
manner. As such, by assuming the cohesive energy of benzene as 47 kJ/mol, the values 
of U0 of toluene, xylene, etc can be estimated from the knowledge of U0 of hexamethyl 
benzene. Following this procedure the values of U0 for toluene, monochloro benzene 
and mono-bromo benzene have been estimated to be 62, 64 and 6 6  kJ/mol, 
respectively.

From Table II, it can be further noted that the addition of a C = 0  group at 
one of the positions 9 or 10 of anthracene, as in anthrone, increases the cohesive energy 
of anthracene by about 5kJ/mol, while a further addition of the C = 0  group at the 
other position, as in anthraquinone, increases U0 further by about 20 kJ/mol. From 
these trends, U0  values of still more complicated molecular solids could be analysed. In 
case of perylene it can be thus seen that its cohesive energy (Table II, column 4) is the 
sum of cohesive energies of anthracene and naphthalene whereas in the case of 9,10 bi­
phenyl anthracene, the value of U0 is the sum of the cohesive energies of anthracene and 
p-terphenyl. These examples further lend credence to the additive nature of the 
cohesive energy.

The Debye в values of these solids calculated on the basis of Lennard-Jones, 
modified Buckingham and Morse functions seem to be in good agreement with those 
obtained from Plendl’s equation (Table III, column 5). The agreement for most of the
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solids is particularly satisfactory for the Lennard-Jones function. Blackman’s equation 
is yielding lower values of 9 for all the solids.

It can also be seen from Table III that on a comparison of the values of Debye 9 
between substituted, directly connected and fused benzene rings compounds, the 
Debye 9, unlike the case of cohesive energy, does not vary much from simpler 
compounds like benzoic acid, hexamethyl benzene etc to complicated molecules like 
perylene, 9, 10 bi-phenyl anthracene etc. It seems that the complexity of the structure 
does not have any bearing on the characteristic temperature.

Conclusions

From this study it may thus be concluded that the cohesive energy of the 
aromatic compounds as a class is one order greater than for methane [ 1 ] — an alkane, 
and one order smaller in comparison to ionic solids [9]. These are comparable to those 
for adamantane and bicyclo (2.2.2) octane [1] — both cycloparaffins. It could then be of 
interest to investigate the cohesive energy of normal- and iso-paraffins and to study 
their comparison with the cyclo-paraffins and the present aromatic compounds. From 
the present investigation, it is indicated that for simpler members of the paraffinic and 
iso-paraffinic compounds, the cohesive energy should lie between 8  kJ/mol (for 
methane) to about 40 kJ/mol (for bicyclo octane).
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Herman et al have developed a simple iterative method to obtain vibrational wavefunctions 
for 'Z  states of diatomic molecules. Tipping et al further extended their work to 5th iteration. We 
have, in the present work, improved upon the method by going up to 6th iteration.

To find out the applicability of the extended work, we have computed Franck-Condon 
factors, r-centroids for D1П — X 1Z of SnO assuming that the formulae developed hold for 1П-states. 
Our results compare very well with the realistic R. K. R. results showing that the 6th iteration has 
yielded good results and our assumption of the applicability of the iterative procedure to ‘/7-states is 
justified.

Introduction

The theoretical study of the intensities of diatomic molecular bands involves 
vibrational wavefunctions. These are to be obtained by solving the appropriate 
Schrôdinger equation, with a proper potential function. The Schrôdinger equation is 
solvable exactly for a very few potential functions although many have been proposed 
for diatomic molecules. One then normally resorts to approximation methods for 
solving the equation. Many approximation methods exist but not all of them are easy 
to handle. R.K.R. procedure is supposed to yield accurate results as it is based on 
experimentally determined parameters; but this procedure is rather cumbersome. In 
1970 Herman et al [1] have proposed a simple approximation method, named 
‘Iteration Method’ for solving the Schrôdinger equation. They have evolved formulae 
in the 3rd iteration.

This iterative method was further extended to 5th iteration by Tipping et al [2] 
for ^ -s ta te  diatomic vibrational wavefunctions. Niay [3] also had extended the 
procedure to 5th iteration; however, his emphasis was entirely different.

We have actually processed Rydberg potential function [4] by this iterative 
method taking expressions for the third iteration [1] and calculated Franck-Condon 
Factors (FCF) and r-centroids for the Dlll  to X 1!  transition of the SnO molecule. To 
improve the accuracy of the results, we extended the procedure to 6th iteration and 
then calculated FCFs and r-centroids for the same transition by processing Rydberg 
potential [4] by it. These results are compared with those calculated by the R.K.R. 
procedure [5].
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To appreciate our extension-work, it is necessary to know some fundamentals of 
the iteration procedure before we present our formulae for the 6th iteration.

The Schrôdinger equation to be solved is

where

d2 ФАх)
dx2 + [ £ - И * ) ]

в .
|/'.>(*) = 0 ,

,x =

( 1 )

This is solved by putting

Фв(х) = дв(х)Ф oW. (2)
where

1 X

ф0(х) = е 2 j  y(x ')dx\ [unnormalized wavefunction for r = 0 state] 

and hence y(x) and gv(x) satisfy, respectively, the following differential equations

y2( x ) - 2 ^ - - ^ [ K ( x ) - E 0] = 0 , (3)
dx Be

^ _ , м * й  +  И , л = ( 1 . ,4,
dx dx Be

Dunham [6] assumes that the potential function is expressible in a power-series as

where

Vjx)
Be

=  y 2x 2{ 1 +ayX + a2x 2 + . . .  +<vx"),

Be and a>e are the usual spectroscopic constants.
Equations (3) and (4) may be solved by the power series

У(х) = Z1 = 0

9v(x)= £  c vix‘
i = 0

as follows. Under harmonic approximation, the solution is

Vjx)
hcBe = y - V ;

(5)

( 6)

(7 )
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Then in the 1st iteration, one additional term is added to the harmonic potential

^ • y - V H  + a .x ) ,

while terms higher than a, appearing in Dunham energies are neglected; at the same 
time, the series equations (6) and (7) are truncated according to

b,=  0, i> 3 ,

C„(=0, i>v + 2

continuing this procedure, for the nth iteration we obtain the wave function for the 
Dunham potential equation (5) expressed in terms of the polynomial series truncated 
according to

b, =  0, i > n +  2 ,

CVl=0, i> n  +  n + l .

Expressions for y(x) and g(x) developed by us in the 6th iteration are listed in Table I. 
Expression of gv(x) for и >6  are possible but rather more tedious.

These new formulae have been employed to calculate wavefunctions, FCFs and 
r-centroids for Dli l  — X 1!  state of SnO molecule; the results are given in Table II, 
along with the R.K.R. [5] results for comparison. As can be seen from the Table there is 
good agreement between the two sets of results.

To obtain the a's (the Dunham coefficients) in the case of a given analytical 
potential, this latter is expanded in a power series and the coefficients compared with 
those of Dunham expansion.

Table I

Unnormalized gv(x) and y(x) functions for the pure vibration states of diatomic molecules in the 6'h iteration

4'v(x) = gv(x)J~~'2lytx')dx')

Г / 5  ,  \  1 ,/681 « 26'yW= a,+yl -  a?-3a,a2 + 2a3 1 + ( 3 ^ -  —

— 42a2Ű3 + 24Ű5̂ | + ^  + i ^ - l af + 3a2j  + |

, 2691 3 125 ,
i f -  ^ - u f a 2+ — a1a |- 4 6 u 1a4

305 , 123 , 49ятя2- у а,

+ 128 

+

1 ' \ 4 1 1 L J /
_  VI [2  1 /  7 . \  1 /  305 A 123 _

.2a3 + 24a5J J  + ^  + y ^ - ~ a( +  3a2J  + - ^ - — u, + — a ,u 2-

\  / САОПС >-.Z-7Z7 118,3 31 595 ,
— AT u,---------a, a ,--------- U7 a

1 2  256 1 3  512 1

, 495 215 , 15 V
,l- l 2 aia* - l i al+T a6) \ X

199

7J Lv 2 V
21 , \  , /  54895 . 136767 , 11812- y ű 2 + .5 a ^ +y —

973 2 5139 309 513 3 495 215

tfal

973 , 5139 309 513 , 495
----a iал Ч---------û iû iû i--------a ,6 u + -----a i-------128 1 4  64 o ,a 2a3 , 6 64 “2 JJ

1 /917 , 483 , 1УУ ,— y| —  я(- aja2+ - j - afa3 .U  /13 3 9 „ \  1 /917
L7 + U a ,~ 4 ű“,2+2ű3j  + T y^
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T ab le  I . ( coni.)

4/„(x) = gv(x)e(

+  у а , а 4-3 6 а 2а 3 + 24а5̂ |  x 2+ | j ^ -  j t í  + a^j

1 /  99 . 47 , 11 11 , \  /169 . 12 957 4
+ у m űí+ T flíű2~ T eifl3~ T a2+5a‘J - y[ l2 'a'~  ~1йГа'а>

1209 , 439 , , 293 , 71 75 3 75
+  — -Ű ÍŰ J+ — a t a | -  — a ia 4-4 2 a ,a 2a 3+  у  a ,a 5-  1б“2+  ï “2“4

61 ,  5 ,  Г 1 /1  ,  1 \  1 /191 5 115 3+ Ï6a i~  T  a‘] J x + [ д ¥ а , _ Т а,а2+<,7 +  4 (“64 a‘ -  “T 0102
+  у  a fa 3 + y a , a l - 1 3 a , a 4-1 3 a 2a3 + 12a5J j  x4 + ^ ^ - ^ a í +  y a f a 2

,  2 ,  \  /  953 6 565 4 95 3—2a, a3— a i + 4 a 4j  +  ^ - —  a « + —  a j a 2- - ^
291 23

32aifl3 - 6 ¥ a i a 2 + ¥ a ‘a*

7 15 ,  9 9 ,
+  11 a 1a2a3- —a 1a5+ — a | - — a2a4—j a 3+  2

-  — a?a2+- у в ? в з +  — a , a | -
1
■°la4"

5 3 15 2 2 3 2 3 1 1 3 1 1 ,
-  Тб0*03“  32a ‘“2+ ¥  a ‘Ű4+ J “1“2“3*  у  а 1°5+ y  a2“  y  a2 ° 4 -  J a3+«6

[ as) ] x5+î[ l5 8 a’
1 1 . 1Г 21 . 35 4

у « 2а3+ а 5] х ‘ + - ^ - — а 1 + —  а ,а 2

Г 2 /67 з 27 \  з/1
0 i=  a t y + y 2 l — а | -  — а ,а 2 +  За3 1 + y3l

8973 , 3507 , 1083 ,
2 * « ? — Я-.«* 2 + у М з

937 , 269 , л „  \
+  у у « 1 «*2 -  — а 1а4- 3 0 а 2аз +  12а5 I

1851
~64

429
~4~

+  Х +

587

Г 1 1 /  27 з 15
|_ - 2 а‘+ 2 V ¥ ai + T а,а2

а 3+  - 7 ~в3а2---- — а \а г ---- — aial +
289
4—4а3)  +  у  У2 ( “

а2а3-18а5) ]х 2+ [ 1 ( { а ? - а 2)  + | у ( ^ а Г - ^ а 2а2 

с \  1 ,/17479
5ű4J + Т ' 1------

81

89
а ,а 3+ — а у

6
90403

, 50435 4 13173 з
4 УЧ¥548-а?- - Т 2 Г а1а2+- ^ ¥ - а*аз

,  ,  2637 ,  1275 963 57 3 4<:
-г=т~ ° 1  а2 -  ~ Г Г «1 '° 4 -----г ~ «i а2а3 +  —-  a t в5-  — а2 + 45а2а4256 16 4 8 2

597
ТУ
519

[ К "  ^ а?+ ¥ aiű2“ У аз)  + У у(
3 21 2 151 , 11 ,  „ W  .O i O j - y a f a j - —  а , а | + у а 1а4 +  5а2а 3—2а5 I х4

Г 1 /21 4 7 , 13 2 \  1
L ¥ U ai- 2 aia2+¥ a' a3+a2- a4J + ¥

1223
"256 aí

/40829
Ч  1024 а , _  256 а ‘°2

. 21665 46 ____

2819 _ 10315 , ,
+ ТйГа‘а’+ ------

2649 , 2987 167
128 a^ - i y a?a4- y o - W 3 + i y a2Ü’
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T ab le  I. (coni.)

4'v(x)=gv(x)e(~ уЦко*")

-9 a J + 1 5 a 2a4+ y a 5 - 4 a 6j j x 5+  y ^ “ ^ e i +  j ^ a i a 2 ~ y aî a;

5 , 17 23 1 1 . 1 Г 427 , 495 .
- ¥ a , a j + ^ a , a* + ^ a2a, - T a5J x + - ^ — а , - - а , а2

967 ,  135 , ,  173 , 477 7 5 ,
+  579ű l° 3+ 6 4 " TW010* "  240fllfl2fl3+ Tôûlû3~  Тб°2

11 2 1 1 7
"2а4+У)аз~ у аб \ ’

v + v \ - ^ +^ ) + v \ - n * a'<
• , \  1 ./1460395  . 1566501 , 178645 ,
a | + 45a4 + — y'* - - -■■■■ a? + </vt ■ a?a4------— — a ja 3

J  4 \  2048 1024 128 3

22797 ,

Л, о \  *t J

459 2 „  \  1 4 / 1460 35—  а2 + ̂  + - у ( - ^ -

393419 . .  76435 . 62373 3135 2279
- T û1Û5+^ 2 -

8

) , , 76435 , 62 373 3135 1
~ m ~ a'ai+ ~ м  a °4+ - й -« .« л - - г e‘fls+ -

3885 , 525 \ 1  Г , /1 5 1  , „
a2a4-  y y al +  - у  Oe J + 4а,)> +  у2 1 — a J-4 5

1 / j 8 « 9  fl, _  2916a3(j2 +  3221 а?аз + 1 i87a, fl2

11 835 3885
16 ° ia * jig-  4 7 J  L *

+18a3 + у  у3 aî — 2916a} a2 + ^^a?a3+ 1187a, a\

a, a4 — 552a2 a3 + 192a5̂ J x + x2+ J^-a , + y^ — у  a3 + 9a, a2 

\  1 /  8523 , 3267 , 1651 , 907 ,
-  y r a?+- r û‘û2~ ~ г а?аз-  У “' 02

-623a,

16
Г з) + y ( ~  ^ ~ a î+ i r ûiû2-  T űífl3_ T M j

+ 145a,a4+132a2a3-60a5jjx 3 + ^y^-aí-a2j  + y y (y y aí
85 , 25 \ 1 ,/8354847 .
¥ a2 - y a*J + T V (-У 545-“1

1253 , 557 85 ,

485927 . 319777 , 195993 , , 1369 ,
”  - У 5 6 ~ а ' а2+ 95 aî a5+  j2g aî ai j - ®îa4

9705 2419 2919 , 1245 2301 , 165 VI .
g  a i я 2 ° з  4“ - у « . « , - ~ й -°1 +  — а2а<+— а \ - — аь)  J x

2901 ,  1053 ,  155 ,
----- л -------ai а , --------űjű3

9705 2419 2919 . 1245 2301 , 165 \
- у - а . а 2 а з + — a ,a 5-  —  a^+  — a2a4 +  _ _ а2 _  _ fl6j J

К З , 1 \  1 /  2901 ,  1053 ,  155 ,- J a>i+ala1- 1 a3)  + y y { - — a\+ — a\a1- — a>a3

245 , 157 76 24 Y1 , Г 1 /165 . 45 ,
■ X aia2+l ö aiŰ4+T a2a3- y av J x + [ 8 V ^ ű í_ 7 aíŰ2

17 5 , \  1 /1673 , 49493 . 12559 ,
+ У а,аз+ г “* -2“*) + У Ч"Тб~в?_~ й Г в?в2+ Т а‘аз

14791 471 55 ,
- —gQ— a i а 2 аз + - у  а > ~  у  аз + ‘43аза*

'.«*+ 5 5 - у у -  ■ |^8 ^ 32 -•

1 /1673 . 49493 . 1255«
з “ ' “ з т 2 “ 2 ‘“V T y 4 _ Í6_ a i ~ _ Í 2 r a , a 2 + _ Í6"

2533 , , 4541 , 14791
------ai a i--------- ai aA-----------

8 1 2 40 1 4 60

7* Acta Phys ica Hungarica 56, 1984



100 D. C. PAT1L

T ab le  I. (coni.)

'PÁx)=gv(x)Á ÿJxx'Vtf)

•** 2 31 VI 6 Г 143 , 55 , 25 , 15 ,
T ^ ~ Y a» ) \ x  + [^— 256ű l 32a ‘° 2 2 4 a ‘аз Тб° l

7  1 1  ,  1 Г  1 0 0 1  .  1 0 0 1  . 2 5 3
a ^ + T 5 a2a3- - a ^ X + J ^ - a l + — ai at -  —

1 ,  ,  1 3 3  ,  3 4 7  9  7  ,  3  i :

1 1 4 1  ,

~зГа>
1 1  7

2 6

2 3 1  ,  ,  1 3 3  2 3 4 7  9  I  .

- l 2 a' 0l+ 1 ^ а'а*+1 0 а' а>аз~-5а'а' + 8 e i'

9  3 =
Г  7 .  1 J 4 8 9 3  , 1 0 4 1 \  1 J

— - a , v  +  — г - - ^ ~ a î  + —— a, a , - 4 1 a ,  +  —  yn
2 2  \ 3 2 8 J  2  \

2 5 3  3 
a(a3

13 2 2 1 , 
а !  +  у  “ в  U2 a>a*~Tsal .

4 2 7 6 0 1 3  ,
a;

2 6 4 9 5  6 1 3  ,  1 2 4 2 7 3  ,  1 5 7 0 3 7  ,  4 4 5 1  7 9 1 7

t- — z t t ------a U i --------- ~ — a 2, a 3 ----------Z T ~ a ' a 2 +  T ~ a ' a *  +  ~ ^ - а 2 а ъ
2 5 6  3 2  6 4  4  8

H  3  9  , /  2 3  ,  \  3  . /  5 2 0 1  , 1 5 6 6 9  ,

~ 2 У + Т б У { - ^ а '  +  Ш > )  +  Т б У Í 2 Í T a ' +  1 6  a ' a i

1 1 1 9  2 6 0 1  ,  \  1 . / 5 0 5 6 4 5 5 5  „ 2 8 4 2 0 0 1 1  ,
- — a i a 3 - — a 2 +  2 2 5 a ^  +  - y  ( - ^ - а 1 + — ^ - * а 2

2 5 0  0 2 9  ,  6 5 2 0 0 7 7  ,  ,  2 2 8 1 9 1 7  ,  2 4 5 5 0 1 1

Z  1 0  \  Ч

2601 2 ллс \  1
2 — * - T a* + 225a*) + 64 'V

250 029 ,  6520077 , , 2281917 , 2455011~ l 2— а?« э------j y — a i a l +  — —— afa4 + ---------- a , a 2a 3

135441 803061 ,  64425 160635 , _____
— Ö a i a s +  ' « I ----- ^— Oja*-------1----- аз + 20115a,2 16 4 4

'39 3 ,/7997 4 1689 _  \  3 ,/6 7 8 5  537 ,
"  2 V ( l T a ' - - ^ a ' Ű2 + 40a3J  +  2 V \  2Ö48 a>

245209 , 15317
2̂g 0)02 Î5 a'a*

Г 3 3 /  77 ,
- - y ű i  + y V l - - ^ - a í+ 1 9 a ,a 2

П 1TC 1П1

Г 3 9  3  , / 7 9 9 7  ,  1 6 8 9  \  3  , / 6 7 8 5 5 3 7  ,

+  | у « , У + у У  ( l T a * - - ^ f l l Ű 2  +  4 0 a 3 j +  2 V \  2 Ö 4 8  a ‘

1 6 2 8  1 3 3  ,  1 0 3 2 7 3  ,  2 4 5 2 0 9  ,  1 5 3 1 7

------------2 5 6  a * a j "1 3 2  а 1 а э " 1 ^ 2 8  а , ° 2  Ï 5  a ' a *

~ ^ ^ a 2 a 3 +  2 7 i a ^ j  x 2  +  x 3  +  y  a t  +  y  y ^  -  y  a ? +  1 9 a ,  я 2

\  3  , /  4 1 5  ,  1 2 8 2 9  ,  1 7 1 2 5  ,  1 1 2 1  ,
- ^ )  +  1 У \ - - Т а \ + - у Г а \ а 2 - — а \ а 3 - — а У 2

+  - Y a >a * +  ~ ~ й Г а 2 а з ~ 4 5 а > )  Г  +  4  I ? _ f l 2  )  +  у ? !  7 5 a ‘

4 7 7  ,  2 5 9  „  ,  2 9  \  1 , / 2 8 2 9 2 3 7  .  1 9 5 8 2 6 5 7  .

- - 4 - ^ 2 + T - a ‘ a 3 + 1 3 a 2 - T a * j + 4 V \  Ï Ô 2 4  f l | ------------2 Ö 4 8  a | ° 2

1ПЙО<;А1 A1124Q 4 4 4 Н П  1 1ЛАО*7

477 2 259 J 29 \  1 i f 2
- ! T a Í Ű 2 + ^ a >a 3 + 1 3 a 2 - T a ‘ J + 4 V у  í ( ) 2 4 ~

1 0 8 9 5 6 1  ,  6 1 1 3 4 9  ,  ,  4 4 4 3 5 1 3  ,  2 1 0 6 9 5 7

+  ^ 5 6 - а ? а з +  ~ [ 2 Г а ' а 2 ------------6 4 0  а , а * ~

2 0 8 2 3  3 4 8 5 7  ,  2 6 0 1 9  1 4 0 7  ,  1 9 5  \

+ T a' fl5-  ~12Га2+ - б Г а2°*+ т - “3-  т * )
• 7  5 5  ,  1 5  \  3  /  3 3 9 7  ,  1 9 5 9  ,  1 0 3 5  ,

—  ̂ + T fl1fla - - 3) + T y ( - 1 W a>l + — a3a3- — a2a3
1 /  5 5  з

h ~2 \  Тб“1
8 9

Т a' a i+ “8Ö
8 0 9  5 4  2 7

а , а 4 +  - у  Û 2a 3—  у д  а5

\  3  /  3 3 9 7  ,  1 9 5 9  ,  1

* / п Ч ~ 1 й в*+ “з г в1в» --
2 7  Y I  .  Г З  / 1 4 3  ,  3 3

>2а> -То°>)\* + [ у ^ а1- 4 'а2,а2
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T a b le  I. (coni.)

'Pv(x)=gv(x)e( ÿjW)*')

fa,a3+- a l - a 4

+ 16 ‘ 

1455

1 /418065 . 672481 „ 5439
8 УV 1024 512 а . а2 +  g а

96129 891 2091 ,
û4

160 a ,а2аз+ 10 а , ° 5 32 °2

4 N [ 273 , 91 ,  3 
_ -  256a i + 32aiŰ2- 2 ai

а1аэ

21 , 27 11
' l 6 a' a2+4ÖaiÜ4+4Öa2a

+

63
+ ~8a

2 1  3
а 1 а 5 ------- j " a 2

9A

_ 1024

2467 , 819 , ,  2931 , 2853 99
~бГabay+ — ,au* -  — , а.<W + - ,

>2а4+  аз — 3a6̂ j X9 ,

'40403 . 95 343 , 11621
------ ai ----- 2̂ а>а2+ —j -  а1аз

5 4 J

= [ т у2+¥ у3( х в5"63вг)  + 1 у4
5291 , 2115 \  1 /  5252
— а> - ^ г а*) + ш { —

........  ..................... 316593423 ,
-----i-----a' a*

256

253050455 . 2000 577005 A
---- r;----- ai -  ------ jj------ai a2

15 291
+ í r  a , 4

2702306771 , 4993552461 , , 31659:
H------- —------ala3+ ------ ГГ------a| a2-------- —48 1 3  32 1 8

29958439 157 183275 , 35 592705
------4 ---- aia3--------g-----a2 + ----- j---- 0 2 0 4

416252787 29958-
------ 4----- a>a*a’ + -----4 -

547 ,
- —  «?+ 172a, fl2. 1201̂261Sa2_471861â j  + ^ _ 2 0 a ,y 2 + 3y3^ -  2 ... .

N , /  2445197 , 93291 , 831 239 , 51571
-5 0 a 3 I +y“ l ------- —— a , +  — j - a , a 2 ------a i а з ------------- ^ a i a 2

+ 5617a,a4 + 849a2a3-1248a5̂ j  x +  £ — Зу+ i y 2^ — ^ - a f  + 8 la 2̂

1 , /  53 493 33 867 , 8221 4545 , 1395 N
+ Т УЛ -~ 64“ а1 + ~ 8 ~ a?a2- -4“ ű' a3- - r ű2+ “У

1 /5813067473 . 3597369567 . 292 3221
H---- V I ----------------- a, + ----------------- a, a , --------------

4 r V 32 768 1 8192 1 2 3072

544217931 , , 35555553 ,  45 190089
— 2048 Ű3Ű2+ — 512— ö ‘ű- +  — 256 ~ а' а>а>

16592829 ,  3620205 1 119045 ,
— 5 Ï2 ~ al----- Ï28~a2a*-----Б б “ 03

3402815 16 592 S
Ï28 а ,а 5 +  512"

,/1 1 0 6 1  , 1645 , \
’ 1 [6 a î --—  a ,íJ2+  148(j 3 J

128 

42831

512

1 ,/8044187  , 1394729 , 492913 , 38079
— V ----------- a ï ---------- -— а г а ,H----------- a ra ,------------ a.a ,
2 2 V 128 16 8 4
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Т аЫ е I. (сот.)

'PÁx)^gÁx)e( ĵl>iCw)

T i ^ ^ a 1a l-2 2 5 a 2a3 +  2484a ,^ |x3 +  x* +  ^ - 2 a, + 3 y ^ ~  у  a3
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Table I. (cont.)

4'„(x) = gv(x)e( yjWw*')
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Table II

SnO (D ' n - X ' l )

Band
FC factors r-centroids

R.K.R. VI iteration R.K.R.
[nm]

VI iteration 
[nm]

(0,0) 0.125 0.132 0.1889 0.1858
(0,1) 0.275 0.265 0.1909 0.1937
(0,2) 0.275 0.273 0.1957 0.1955
(0,3) 0.187 0.188 0.1989 0.1987
(0,4) 0.087 0.096 0.2022 0.2018
(0,5) 0.246 0.259 0.1865 0.1863
(1,1) 0.158 0.141 0.1902 0.1906
0 ,2 ) 0.0014 0.0015 0.1878 0.1919
0 ,3 ) 0.099 0.088 0.1966 0.1961
0 ,4 ) 0.202 0.192 0.1992 0.1993
(2,0) 0.254 0.258 0.1843 0.1845
(2,2) 0.128 0.121 0.1908 0.1906
(2,3) 0.094 0.098 0.1942 0.1941
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Cathodoluminescence steady state and decay measurements on S i0 2 glass and gate oxides 
were carried out.

The recorded spectra show luminescence bands at 1.9 eV, 2.7 eV and 4.3 eV. The bands at 
these energetic positions decay in very different time ranges.

The time dependence is not described by an exponential (unction with a single time constant. 
The results are discussed on the basis of intrinsic defects in S i0 2 .

Cathodoluminescence (CL) is one technique to investigate the nature of 
irradiation defects in gate oxides and can be applied to both thin film and bulk samples.

It is well known that irradiation of S i02 material with KeV electrons produces 
radiation induced defects which can reheal spontaneously or result in permanent 
damage [1]. Besides this luminescence radiation is produced.

In the UV/VIS range pure S i0 2 emits three characteristic CL bands at 4.2 eV, 
2.7 eV and 1.9 eV shown in Fig. 1. For comparison the spectra are taken from dry 
thermal oxide (full line) and Suprasil (dashed line). The experimental details are 
described elsewhere [2].

At room temperature the three CL bands decay in very different time ranges [2]:

CL band time range

4.2 eV < 250 ns
2.7 eV « 4  ms
1.9 eV x 5  ns

* This paper was presented at the School on Defect Complexes in Semiconductor Structures, 
Mátrafüred, Hungary, 1982.

** 1086 Berlin, Hausvogteiplatz 5—7
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Within the limits of 5% the results agree for dry thermal oxide and Suprasil. From 
these findings it is concluded that luminescence emitted from radiation induced 
defects in thermal grown dry oxides and Suprasil glass can be compared.

The time dependence of the 2.7 eV CL following a 10 ps excitation pulse is given 
in Fig. 2. The decay consists of an initial fast part and bends over in a slower 
exponential function dependence with a time constant x = 4.6 ms, hence the duration of 
an excitation pulse is very much smaller than t.

Fig. I. Steady state cathodoluminescence of a S i0 2 layer (oxide thickness d0x = 168 nm) and Suprasil. The 
energetic resolution is indicated by parallel bars. Note the different energy scales

Fig. 2. Semilogarithmic plot of the 2.7 eV CL decay for a thermal grown oxide (dox = 168 nm). r (dashed line) 
= 4.6 ms. Primary electron energy: 2.3 KeV

9
Acta Physic a Hungarica 56, 1984



DECAY OF CATHODOLUMINESCENCE FROM SiO; LAYERS 109

The assumption of a three level energetic system for a single metastable 
recombination level gives the time dependence A exp(—í/тx) — ßexp( — f/r2). This 
function does not fit the measured decay.

Now it is assumed that additional fast relaxing energetic systems exist which may 
interact with the 2.7 eV luminescence centres via multipolar forces and transfer energy 
directly. The theory for this energy transfer was developed by Förster [3] and by 
Dexter [4] for multipolar coupling.

Consider a configuration of 2.7 eV and a second kind of recombination centres 
(called energy donors and energy acceptors for brevity) distributed randomly 
throughout the material. The distance between acceptors should be very much greater 
than the distance between donors. In the case of weak dipole—dipole coupling and 
for direct transitions from donors to acceptors, the time dependence of luminescence 
is given by [5]

/ ( t )  =  / ( 0 ) e x p { - t / z - b ( t / T ) 112} ,  (1j

/, = 7.41 • N aR%.

Na is the concentration of energy acceptors. R0 represents the separation at 
which the probability for energy transfer between a donor—acceptor pair is equal to 
the intrinsic decay probability т 1 of the donors without interaction effects.

Luminescence of this time dependence does not exhibit a simple exponential 
decay. At earlier times t/x<  ̂1 the emission intensity is given by

/Ю * /0{1 -М * А )1/2}. (2)

As shown in Fig. 3 Eq. (2) makes a good fit of the fast initial decay of the 2.7 eV 
band supporting the proposed model. Candidates for energy acceptors are 1.9 eV 
luminescence centres because (i) the 1.9 eV band decays faster in three orders of 
magnitude than the 2.7 eV band; hence the 1.9 eV emission centres are well suited to 
serve as fast relaxing energy sinks for the 2.7 eV emission centres and (ii) in irradiated

Fig. 3. Initial part of the 2.7 eV CL decay plotted over (t/z)u2, t/z < 0.4
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quartz glass the 1.9 eV emission can be excited with photons in the 2.5 eV region [6] 
which overlaps the relatively broad 2.7 eV band. Further support is provided by the 
fact that irradiated quartz glass excited in the 4 . . .  5 eV range at 77 К shows a broad 
emission at 2.9 eV and an emission at 1.9 eV [1].

Fig. 4. Illustration of the proposed model in terms of configuration coordinate diagrams

Fig. 4 shows the proposed model of energy dissipation in terms of conventional 
configuration coordinate diagrams. The energy donors and energy acceptors are 
designated by D and A, respectively.

The model considered here does not take into account any migration of energy 
over many interatomic distances, but in principle this effect should be possible.
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Aluminium and aluminium alloys are widely used as interconnecting materials in silicon 
integrated circuits. The processing technique includes vacuum deposition and—after patterning— 
heat treatment of the metal film. The heat treatment of aluminium metallization is accompanied by 
the dissolution of the underlying silicon into the metal and the consequent penetration of aluminium 
into the silicon. The dissolution process is highly nonuniform on the contact surface creating 
crystallographic etch pits, which can cause excessive leakage or even shorting of the p — n junction. 
Furthermore, silicon precipitation in the contact windows that occurred on cooling down can cause 
increased contact resistance.

We intend to present surface analytical investigations and electrical measurements on the 
Al/Si interface in case of pure and silicon-alloyed aluminium metallization. The results show the effect 
of various postmetallization heat treatments on the Al/Si contact.

1. Introduction

One of the most important problems of the N-channel MOS device processing is 
that of the ohmic contacts connected with the defect structure of the Al/Si interface. 
This interface can be characterized—among others—by the contact resistance. We 
intend to report on the effect of metallization and sintering processes on the contact 
resistance.

2. Contact problems associated with aluminium metallization

Aluminium is the material most frequently used for ohmic contact in MOS 
integrated circuits. The processing technique includes vacuum deposition and—after 
patterning—the heat treatment of the metal film. The heat treatment is accompanied 
by the dissolution of the underlying silicon into the metal and subsequent penetration 
of aluminium into the silicon [1]. The A1—Si interdiffusion results in the so-called etch 
pits (Figs 1, 2), also in case of polycrystalline silicon underlayer (Fig. 3).

The etch pits are large but shallow on (111) oriented silicon wafers, however, they 
are deep in the (100) wafers. The etch pits may cause excessive leakage or even shorting 
of the p — n junction.

* This paper was presented at the School on Defect Complexes in Semiconductor Structures, 
Mátrafüred, Hungary, 1982.
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Fig. 2. Cross-section of an etch pit in Fig. 1

Ada Physiva Hungarica 56, 1984

Fig. I. Contact window on phosphorus diffused (100) monocrystalline silicon area after removal of the pure
A1 metallization
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Fig. 3. Contact windows on polycrystalline silicon stripes after removal of the pure A1 metallization

Furthermore, on cooling down an epitaxially regrown silicon layer saturated 
with aluminium develops in the contact windows. This p-type layer can modify the 
ohmic character of the contact and it increases the contact resistance.

These problems can be eliminated by using Si-alloyed A1 metallization. The 
minimum Si-concentration of the film to prevent interdiffusion is about 0,9%, i.e. the 
solid solubility of silicon in aluminium at the sintering temperature [2]. The Si- 
concentration is limited by the film resistivity: over about 1,6% Si the film resistivity 
increases sharply [3], probably because of precipitates. 3

3. Preparation possibilities of AlSi films

(i) Simultaneous evaporation of the pure materials from two electron beam evaporation 
sources.
The film composition can be easily controlled by the evaporation rates over a wide 
range, and the method itself is compatible with the MOS technique.

8 Acta Physica Hungarica 56, 1984
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(ii) Sputtering of an AlSi alloy target
The modern Penning sputtering sources (their well-known names are “Magnet­
ron” or “S-gun”) provide a sufficient rate. The film composition is determined by 
the target composition.

(iii) In-situ saturation of the aluminium film with silicon by the annealing of a poly-Si/Al 
sandwich layer
This method implies more problems than the others, therefore it is not widely used.

(iv) Flash evaporation of AlSi alloy
It is not suitable for MOS devices because of contaminations.

In our work we applied the first and the second metallization methods.

4. Experimental

The test vehicles were prepared with a Si-gate N-channel MOS process on 5 —7 
ohmcm (100) p-type silicon wafers. The thickness of the poly-Si layer was 600 nm, the 
concentration of phosphorus doping was 5 x 102Ocm 3. The thickness of the PSG 
isolation layer was 1.10 pm with about 7% phosphorus.The area of contact windows 
was 5 x 5  pm2. Metallization was carried out at about 100 °C wafer temperature. The 
film parameters are given in Table I.

Table I

Metal film parameters

Method Film Thickness
[pm]

R,
[mohm/D]

Spec, resistivity 
[pohm/cm]

EB Al 1.30 21.4 2.78
evaporation AlSi 1.42 22.5 3.19

Penning* Al 1.20 35.6 4.27
sputtering AlSi 0.94 86.0 8.08

* Deposition of the sputtered films was performed in the Central 
Research Institute for Physics of the Hungarian Academy of Sciences.

The specific resistivity of the different films is quite different: the method of 
sputtering results in an increased resistivity, and so does the alloying.

The passivation glass made by CVD at 400 °C was 1.20 pm thick. The various 
sintering processes were carried out in a N 2 + H2 (about 20%) atmosphere at 450— 
500 °C for 20 — 60— 120 min, respectively.
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5. Results and discussion

[ 4 ] .

The contact resistances were calculated from four-point probe measurements

5.1. Contact resistance of Al and AlSi to monocrystalline silicon 
(Rj'ff = 2 5 -3 0  ohm/D) (Fig. 4)

The contact resistance (Rc) of AlSi metallization is always higher than that of the 
pure Al before sintering. It is due to the higher film resistivity.

Rc drops after 20 min heat treatment in every case. Pure Al still gives lower 
resistance, however, the difference between pure and Si-alloyed Al is decreased. This 
period of resistance changes can be explained by a chemical reaction: Al reduces the 
native S i02 which is always present on the surface of silicon.

The reduction is followed by dissolution of the underlying Si in the Al film, then 
by Al-diffusion into the silicon wafer. Thus, the etch pits are developed.

The critical step is the dissolution which can be eliminated by presaturation of Al 
with Si from an outer source. Its effect is shown in Fig. 5: after removal of the AlSi 
metallization there are no etch pits present in the contact window.

After longer heat treatment we measured higher contact resistances for pure Al, 
but the AlSi metallization hardly changed. The difference was much remarkable at 
500 °C sintering. The reason of this phenomenon may be the formation of the p-type 
(Al-doped) epitaxial silicon layer mentioned above.

These processes are complicated by the simultaneous recrystallization of the 
metal films.

R f  [ 5 1  R c' ff 1 5 ? ]

Fig. 4. Contact resistance (R'llff) of Al and AlSi metallization to monocrystalline silicon as function of the
sintering time
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Fig. 5. Contact window after removal of the AlSi metallization from diffused area

--------At -------AlSi < EB » PE

Fig. 6. Contact resistance of A1 and AlSi metallization to polycrystalline silicon (Rcpoly) as function of the
sintering time
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5.2. Contact resistance of Al and AISi to polycrystalline silicon 
(/?g°ly = 70—80 ohm /D) (Fig. 6)

The curves are similar to the former ones, thus the processes taking place may be 
similar as well. Fig. 7 shows the etch pit free contact window on poly-Si after removal of 
the AlSi metallization.

The initial structure of the poly-Si layer and its recrystallization has an 
important role, but opinions differ concerning the details [5].

The difference in contact resistance of evaporated and sputtered pure A1 might be 
explained by the different crystal structure of these films.

Fig. 7. Contact window after removal of the AlSi metallization from poly-Si

6. Conclusions

We can state that
(i) AlSi metallization eliminates the formation of etch pits;

(ii) AlSi metallization tolerates long heat treatment even at elevated temperatures;
(iii) in most cases there is no significant difference between EB evaporation and 

Penning sputtering (from the point of view of the contact resistance).

We wish to express our acknowledgement to our Colleagues for their help both in the experimental 
work and in the discussion.
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The possible influence of dislocations on device operation is discussed. The first part deals 
with the properties of dislocations themselves (development, electronic structure), then the effects of 
the recombination and trapping are described. In the last part dislocations in concrete devices (silicon 
and optoelectronic devices) are examined.

The problem of dislocations in semiconductor materials and devices is as old as 
semiconductor electronics itself. Dislocations were very early recognized as important 
faults of the active materials used for device fabrication. Consequently, dislocations in 
those materials began to be intensively studied and this fact, in turn, became extremely 
stimulating in the development of the physics of dislocation itself.

The present paper demonstrates in what ways dislocations may affect the device 
operation. The first part of this paper deals with the properties of dislocations 
themselves. It is perhaps surprising that after many years of intensive studies we are not 
able to answer definitely such fundamental question as: what is the electronic structure 
of dislocation in a given material? It is a consequence of the fact that the problem of 
dislocations in semiconductor crystals turned out to be much more complicated than 
anybody suspected in the early fifties.

1. Dislocations in tetrahedrally coordinated semiconductors

Dislocation is characterized by its Burgers vector that is invariant for a whole 
dislocation line and is conserved during the dislocation motion. For a curvilinear 
dislocation the angle a between the dislocation line (axis) and its Burgers vector is 
varying and, in consequence, the character of dislocation may change from a screw one 
(oc =  0°) to the edge one (a = 90°). Under the shear stress a dislocation is able to move 
conservatively by gliding on its glide plane, i.e., on the plane containing both the 
dislocation line and its Burgers vector. The dislocation can leave its original glide plane

* This paper was presented al the School on Defect Complexes in Semiconductor Structures 
Mátrafüred, Hungary, 1982.
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by nonconservative motion, or climb, in which interstitials or vacancies are being 
absorbed or emitted at the dislocation core. The segment of dislocation that leads out a 
dislocation line from one glide plane to another is called a jog. Thus jogs are the sites on 
the dislocation line where point defects are easily accepted or emitted during the climb 
motion.

In diamond- and sphalerite-type structures the privileged glide occurs on the 
{111} crystallographic planes. As those structures are composed of two sublattices, of 
the f.c.c. type, displaced by the vector <111 >/4 (in lattice constant units), the glide may 
occur either between closely spaced or between widely spaced atomic {111} planes 
(Fig. 1). Although in the first case the number of covalent bonds which have to be 
broken to allow for shearing parallel to the {111} plane is three times greater than in the 
second case, the first one is actually realized in nature. Dislocations in that case are 
called to belong to the glide set. The glide set dislocation lowers its elastic energy by 
splitting into two Shockley partial dislocations, and it is connected with the creation of 
a stacking fault ribbon between them. Two main types of dislocations, occurring in the 
structures under consideration, dissociate as follows: screw dislocation splits into two 
30° partials, and 60° dislocation into a 30° and edge partial [1] (Fig. 2).

Fig. 1. Projection of diamond (sphalerite) type structure on the {110} plane. Black balls correspond to atom 
positions shifted by <110>/4 with respect to white ones. Two possible shearing planes are shown by dotted

lines: (1) shuffle set, (2) glide set

Fig. 2. Split glide-set 60°-dislocation. (1) 30°-partial, (B) 90°-partial
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2. Electronic structure of dislocations

Semiconductor people wish to know, first of all, what electron states are created 
by various types of dislocations present in a crystal. For a long time the dangling bonds, 
which were expected to exist in the core of edge-component dislocation, were assumed 
to be responsible for dislocation-induced energy levels lying inside the band gap and, 
consequently, for the electrical activity of dislocations. This assumption had to be 
altered in view of recent investigations. The dominant types of dislocations occurring in 
the crystals under consideration are 30° and edge partials. These kinds of partials 
nominally contain the dangling bonds in their cores. The cores, however, can be easily 
reconstructed in a way that no dangling bonds remain there. Actually, only a small 
fraction of all topologically possible dangling bonds in plastically deformed silicon is 
detected by the EPR [2].

In a series of recent works, done by Markiund and Jones [3, 4, 5], the electron 
energies of split glide-set dislocations in Si and GaAs were calculated by tight binding 
calculation. The one-electron energies of partial dislocations were represented by the 
eigenvalue spectrum of a large periodic cluster of atoms treated in the LCAO

Fig. 3. Energy bands connected with partial dislocations in diamond (sphalerite) structure (a) not 
reconstructed 90°-partial, (b) partially reconstructed 90°-partial, (c) not reconstructed 30°-partial, (d)

partially reconstructed 30°-partial [3]

approximation. Electron states, localized in the heavily distorted core region of the 
dislocation, are produced even in the case when, after reconstruction, no dangling 
bonds exist there. These states form narrow one-dimensional energy bands with a k- 
vector parallel to the dislocation axis; the position and width of these bands depend 
critically on the core atom configuration (Fig. 3). The core reconstruction is found to be 
energetically favourable and it usually leads to an occupied band separated from an 
empty one; at least one of them enters the energy gap of the semiconductor. The results 
obtained so far show that a selfconsistent calculation, in which both electronic and 
atomic configurations are simultaneously taken into account, is needed to obtain more 
realistic data. Moreover, such calculation has to get beyond the one-electron 
approximation so as in narrow energy bands correlation effects between electrons 
become important.

a) b) c) d)
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Unfortunately, experiments also do not allow for unambiguous localization 
of dislocation-induced states in the energy scale. One can find in literature a great variety 
of divergent results concerning these states. The large discrepancy in the results 
obtained by different authors and different methods can be attributed mainly to the fact 
that dislocations are always accompanied by interfering point defects. Point defects are 
created in a considerable amount during the plastic deformation when preparing the 
samples; the number of stable defects is the higher, the lower is the temperature of 
deformation. Nevertheless, it follows from the photoconductivity [6] and DLTS [7] 
measurements performed on plastically deformed silicon that the Fermi level is locally 
pinned at some dominant trap levels lying at ~0.6 eV below the conduction band edge. 
In the opinion of the present author this value is indicative of the localization of 
dislocation-induced states in Si. The situation in GaAs is much less clear than that in Si. 
Two pinning energies were found by photoconductivity in plastically deformed GaAs 
[8] but those just coincide with the energy levels recently attributed to the arsenic 
antisite defect [9].

3. Recombination and trapping

Dislocation-induced states offer intermediate steps for electron transitions in the 
process of electron-hole recombination. Moreover, the energy dissipated in the 
recombination act may be supposed to be easily accepted by the dislocation line giving 
rise to its excitation of the electronic or elastic type. In fact, the most drastic effect of 
dislocations has been observed on the recombination of excess charge carriers. 
Reciprocal proportionality between the lifetime of minority carriers and dislocation 
density has been observed in various semiconductors for a dislocation density 
exceeding a certain value [10]. Since this property is a drawback in the operation of 
semiconductor devices, like bipolar transistors, it attracted the attention of physicists, 
especially in the early stage of semiconductor electronics development. Today, the 
interest in recombination properties of dislocations resurges in connection with LED’s 
and laser devices in which dislocations seem to be killers of luminescence and laser 
action. Despite of many works devoted to the problems mentioned above, the present 
understanding of recombination processes at dislocations is still unsatisfactory.

According to various works there is no unique relation between the minority 
carrier lifetime and dislocation density for different samples of a given semiconductor, 
and it has to be attributed to a variable impurity (defect) decoration of dislocation. 
Both the EBIC contrast [11] and the DLTS spectrum [7,12] in dislocated silicon seem 
to confirm the above conclusion.

As in the case under consideration the distribution of recombination sinks is 
strongly inhomogeneous, the question arises if the recombination of minority carriers 
is a process controlled by the sinking of carriers at dislocation lines (capture-limited 
case) or by the diffusion of carriers to the lines (diffusion-limited case). In the latter case 
the direct proportionality between the recombination probability, l /т, and dislocation
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density, N, fails. For the idealized case of homogeneous distribution of parallel 
dislocation lines the relationship between т and N may be expressed in the following 
approximate form [14]:

т = [ -  1п(лг£Л0-6/5]/4тгЛт, (1)

which assumes that the dislocation exhibits a capture distance r0 and that the minority 
carrier concentration is zero within this distance. D is here the carrier diffusion 
coefficient. There is some evidence that capture-limited recombination occurs in Ge 
and Si while diffusion-limited one in GaAs and GaP (Fig. 4).

Fig. 4. The dependence of transient lifetime (300 K) on dislocation density in GaP. The data are fitted using 
the diffusion-limited theory (Eq. (1)), with a residual lifetime of 3.0 ps

At a sufficiently low temperature a trap behaviour of dislocation is distinctly 
revealed in a sense that the lifetime of majority carriers becomes extremely long due to 
the repulsive action of an electrostatic potential of dislocation. This potential is built up 
due to the electric charge of majority carriers accepted by the dislocation when 
reaching the equilibrium with matrix [14]. The equilibrium charge of dislocation, 
counted per one available site, is only a small fraction of unity because an increase in 
the electrostatic energy of interacting charges limits the population of dislocation 
states. Under conditions of excess carrier generation this charge is reduced by the 
opposite one of minority carriers trapped at the line. Consequently, the capture 
probability for majority carriers is not a constant value but depends on the number of 
minority carriers already trapped at the dislocation.

The mechanism mentioned above is the reason for a strong nonlinearity of the 
recombination process in the trapping regime. The recombination process can be 
quantitatively described by the barrier model of recombination at dislocations [6].
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One of the consequences of this model is a specific run of transient photoconductivity. 
For instance, the decay of photoconductivity from a steady state, expressed in terms of 
the concentration of minority carriers trapped at the dislocations, Am, is described by 
the formula, valid for times t < z

Am = Ы( — кЪ]0/е2Ф0) In [(t +  i0)/r] , (2)

where f0 is a parameter determined by the steady state condition, and т has the meaning 
of the lifetime of majority carriers ( l/т is a thermally activated parameter with an 
activation energy equal to the difference between the conduction band edge and local 
Fermi energy in the dislocation core region). The r\0 is the line density of electric charge 
and Ф0 the potential of dislocation, both under thermal equilibrium conditions. 
According to (2), for r > t > t 0 the decay occurs logarithmically as a function of time 
(Fig. 5). For longer times, t>  r, the decay is exponential and characterized by the 
lifetime r.

The onset of the trapping regime shifts to higher temperature as dislocation 
density increases, and in wide-gap semiconductors with moderate dislocation density it 
can enter the room temperature range. Then, at a low excitation level, the difference 
between the minority- and majority-carrier lifetimes may be significant even under 
conditions of device operation or material diagnosing.

The importance of dislocations in the luminescence efficiency of GaAs and GaP 
materials and devices was recognized quite early. Dislocations crossing the surface are 
seen as dark spots in these materials when observed in the scanning electron 
microscope in the cathodoluminescence mode. Moreover, the precise 1:1 corre­
spondence between dark spots and dislocations is often reported by various 
investigators [15]. These results strongly point to dislocations as the main sinks for 
nonradiative recombination. Only recently a new point of view on the role of

Fig. 5. Decay of photoconductivity Aa in plastically deformed Si samples with various electron 
concentrations and dislocation densities (1-5) at 195 К [6], and in GaAs (6) at 273 К [8]
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dislocations in this phenomenon appeared in literature [9]. It is connected with recent 
EPR identification of antisite defects in GaP and GaAs. These antisite defects, AsGa, 
have the character of deep double donors, and act probably as the main electron traps 
in those materials [16]. On the other hand, these defects are found to be closely related 
to dislocations in crystals and are likely produced by moving dislocations (Fig. 6). The 
suggestion is that these antisite defects associated with dislocations are directly 
responsible for the nonradiative recombination and not the dislocations themselves.

4. Dislocations in silicon devices

In practice, only a weak correlation between dislocations and bad device 
characteristics is observed since good quality silicon crystals with low dislocation 
densities have been obtained and applied to device production [17]. Surprisingly, it has 
been found that materials with zero dislocation density were generally not better for 
device operation than those with dislocation densities of the order of 103cm~2. 
However, as it was quite early recognized, the “dislocation-free” crystals may, in fact, 
contain a great number of small dislocation prismatic loops (called also swirl defects) 
formed through clustering of excess interstitials when cooling the crystal. The 
clustering occurs heterogeneously at some nuclei in which carbon atoms are involved. 
Dislocations present previously in the crystal may act as sinks for excess point defects 
and thus prevent their supersaturation.

During the device fabrication the initial dislocation density in the as-grown 
crystal is changed by process-dependent effects. An example of process-induced 
dislocations which may affect silicon device yield are dislocations created in bipolar 
integrated circuits with isolated transistor elements [18]. During the fabrication of 
those circuits a selective oxidation process is applied, using silicon nitride as a mask to 
protect the device area against oxidation. One of the severe disadvantages of this 
procedure is the stress field created in the wafer at the oxide-nitride edges (Fig. 7). 
Dislocations which are formed to release the stresses may extend into the active 
transistor area and cause emitter-collector shorts. Evidence was supplied by special 
experiments that enhanced the diffusion of emitter dopant along the dislocation lines, 
i.e., the so-called pipe diffusion, constitutes the main cause for emitter-collector 
leakage.

One of the most frequently observed effects injunction devices is the correlation 
between dislocations which thread a p — n junction and the softening of the reverse 
characteristics. Microscopically, it is connected with the appearance of microplasma 
breakdown sites where the multiplication of charge carriers begins. It is now well 
established that soft breakdown sites do in fact occur in metal precipitates occurring at 
some dislocations, and not at the dislocations themselves [19, 20]. Electric field 
concentration at the site is the primary cause of this phenomenon.

It has to be added that stacking faults (SF) may succesfully compete with 
dislocations as sinks for metal impurities. The SF’s are usually formed during epitaxy
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and oxidation processes and reduce considerably the yield of bipolar and MOS 
integrated circuits. Stacking faults are found to reduce the storage time of MOS 
capacitors: this time decreases with increasing decoration of Frank partial dislocations 
bounding the SF. In dynamic MOS memories the information, stored as charge in 
MOS capacitors, is gradually reduced due to different leakage processes and it must be 
refreshed before vanishing. The failures which occur in the refresh cycles are due mainly 
to the enhanced minority carrier generation in the space charge region of the MOS 
capacitor and they are very often correlated with the presence of SF [18].

5. Dislocations in optoelectronic devices

In heterostructure light-emitting devices the so-called misfit dislocations appear. 
The misfit dislocations occur in the interface between two different materials, in order 
to accommodate a part of the lattice misfit [17]. The simplest case is when an epitaxial 
layer is grown on the crystalline substrate of a different material. Then, if the layer

Fig. 6. DLTS spectra of undeformed GaAs samples and GaAs samples plastically deformed by compression. 
Increase in concentration of the main electron trap with activation energy 0.8 eV in seen after deformation

[16]
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thickness exceeds a critical value, it is energetically favourable to create the misfit 
dislocations. The misfit dislocation may be generated from a dislocation replicated 
from the substrate and threading the interface plane or from a small halfioop nucleated 
at the layer surface and next expanding to the interface (Fig. 8). Another source of 
dislocations and stacking faults in the interface may be inclusions (like graphite 
particles) incorporated into the layer during the LPE growth. The misfit dislocations in

S Í3N 4
Ы  Ä ,

n  ep ila y e r n V _ /
n *  j  p  1 n* n+ p n*

N---

Fig. 7. Fragment of integrated n — p — n transistor in OXIS technology in various stages of oxide isolation 
process, (a) deposition, structuring and etching of nitride film, (b) etching of silicon well, (c) oxidation 

resulting in the creation of stresses at the oxide-nitride edges [18]

I 2 3
ПоуеТ \ \ I / /

substrate

Fig. 8. Generation of misfit dislocations in the interface between LPE layer and substrate: (left) by replication 
of substrate dislocations and (right) by expanding of a halfioop occurring on the layer surface

an interface plane produce there localized electron states. In a heterojunction those 
states, when charged, change the potential profile of the junction. The misfit 
dislocations are also the centres of additional recombination and trapping of charge 
carriers. They reduce the injection coefficient of a p — n heterojunction and 
the luminescence efficiency of light emitting devices.

A very important feature of light emitting devices, from the point of view of their 
utility to optoelectronic applications, is their reliability. Degradation processes, 
occurring in the devices during their operation, give rise to a decrease in the efficiency of 
LED’s and limits the lifetime of lasers. Among different degradation mechanisms the
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dislocation-related ones are dominant in a short-term gradual degradation of GaAlAs- 
GaAs DH lasers. Generally, this kind of failure consists in gradual elongation of an 
initial dislocation present in the device, occurring under high injection conditions. The 
total dislocation length in the active layer of the device is at last so drastically increased 
that the enhancement of the nonradiative recombination rate kills laser action.

Fia. 9. Configuration of dislocation dipole growing in degraded area of GaAlAs-GaAs DH laser

One of the dislocation-related mechanisms, which leads to a failure of the device 
in a time period shorter than lh, has been identified as due to the dislocation glide [21, 
22]. A small initial dislocation half-loop originating from a microscratch on the 
external device surface glides under high injection conditions down to the interface 
between the active layer and the adjacent one, becoming there a misfit dislocation; the 
process is similar to that shown in Fig. 8. The glide velocity of dislocation occurring in 
this process is by several orders of magnitude higher than the usual thermal velocity of 
glide observed at the temperature of device operation. This enormous speed gives 
evidence for a new physical phenomenon: the excitation-enhanced glide motion of 
dislocation.

Another major mode of rapid degradation occurring in GaAlAs-GaAs DH 
lasers is the dislocation-related process which leads to the appearance of the so-called 
dark line defects (DLD) [23]. DLD’s—nonemitting areas within the active layer of 
laser device—are gradually enlarged during the device operation. Microscopically, 
they are composed of networks of giant dislocation dipoles originating at an initial 
dislocation, usually that threading the active layer, and next expanding under high 
injection conditions [24]. The dislocation lines forming the dipoles are highly 
convoluted which points out climb as the main mechanism of dislocation motion in this 
process. The mean dipole plane is usually inclined at 45° to the junction (001) plane and 
is normal to the Burgers vector of dislocation (Fig. 9). The ТЕМ contrast indicates an 
interstitial character of the dipoles. It means that interstitials of both atomic species 
migrate towards the growing dipole front during the degradation process and build a 
ribbon of extra lattice atoms there. It has been proved that the dipoles develop as a 
result of the high injection of charge carriers and not of the thermal heating of the 
device.

The dark line defect problem—one of the most striking in crystal defect 
physics—raises numerous questions: What is the origin of point defect supersaturation
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Fig. 10. Postulated geometry of dislocation dipole which assures its continuous growth through pipe 
diffusion of lattice atoms along dislocation line [27]

necessary to account for the observed amount of climb? What is the driving force for 
the climb of dislocations? What is the reason for a very high speed and highly 
directional growth of the dipoles? Although more or less reasonable hypotheses do 
exist regarding particular questions [25, 26], the whole problem has not been 
satisfactorily solved till now. The most commonly accepted opinion is that the 
formation of dipoles is due to the recombination-enhanced migration of interstitials to 
dislocation lines that causes their climb motion. Only one species of interstitial atoms, 
present initially in the crystal in a concentration of about 5 x  1018c m '3, may be 
sufficient for this process so as the other ones can be produced by the climb process 
itself [26].

In an alternative model proposed by the present author [27] no supersaturation 
of interstitials is needed at all and the dipoles are assumed to develop by the pipe 
diffusion of lattice atoms along the dislocation lines. Some areas of definite atomic 
planes are emptied and other ones are filled in by lattice atoms in that process which 
tends to release the tangent stresses between the active layer and the adjacent ones 
(Fig. 10). Independently of the detailed mechanism of dipole development, one 
practical solution of the DLD problem is to prepare a laser material which is free of 
dislocations and other macrodefects in order to avoid the seeds for dislocation growth.
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K . C . G u p t a * and R. P. S. R a t h o r e  

Department of Physics, R. B. S. College, Agra-282002 India

(Received 10 May 1983)

A shell model incorporating a consistent equilibrium condition is developed to derive the 
effective masses of the electrons in complex bcc metals. The validity of the model is tested by 
predicting the phonon dispersion in a-iron.

1. Introduction

Ftelek [1], while discussing the inclusion of equilibrium condition into the Krebs 
[2] scheme, has considered the contributions of the ground state and pseudopotential 
energies of the electrons. The former part involves the correlation energy which despite 
of extensive investigations [3-6] needs a final complete expression. The latter part 
makes use of the weak local pseudopotential, which is treated as a perturbation on the 
system of interacting electrons. The treatment requiring tedious computational efforts, 
is subjected to some questions [7]. The locality of the pseudopotential, particularly 
with complex metals appears to be doubtful. The exclusive effectiveness of the energies 
associated with the electrons seems to be inconsistent with the structure of the metals. It 
may be noted that because of the drawbacks Fielek could not incorporate the proposed 
equilibrium condition [1] in his latter studies [8, 9].

The present communication derives an equilibrium condition in terms of the 
interaction energies coupling the cores and the electrons. The bindings among the 
former are assumed to be central pairwise and those for the latter are derived from their 
potential and the kinetic energies. The kinetic part incorporates the effective mass of 
the electrons which seems to be an important entity, (i) The effective mass undertakes 
the effect of lattice periodicity, which in turn governs the behaviour of the electrons 
against the uniform background of the positive charges. The effective mass apparently 
governs the plasma-frequency, (ii) The interband couplings invariably depend on the 
effective mass of the electrons, (iii) The form of pseudopotential in reciprocal space 
shows an obvious correlation with the effective mass. The latest refinement of the 
theory demands inclusion [10] of the effective mass correction into the energy and the 
wave number dependence of the diagonal matrix elements of the pseudopotential.
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(iv) The non-locality of the pseudopotential has explicit dependence on the effective 
mass. The correction factor, applied to the band structure energy depends on the 
effective mass, which determines the magnitude of band gap. For small values of 
momentum transfers, a more careful study [11] is needed, (v) Effective valence which is 
so important with the transition metals, is also determined by the effective mass, (vi) 
Finally, the screening effects and the dielectric constants show the specific dependence 
on the effective mass.

The present study includes the potential energy of the electrons in a manner 
which is consistent with the scheme incorporating the volume forces. The careful 
analysis of the literature reveals that the various expressions [12-15,2] for the volume 
interactions have been developed for the lattice dynamical study of the metals but none 
of them imply the adequate role of these forces towards the stability of the lattices.

The volume forces employed by Fielek [8, 9,16] contain various philosophical 
inconsistencies [17]. We have therefore used the Bhatia [18] expression, which has 
been modified for the proper convergence without the use of usual g2 factor. The new 
expression renders the proper slope and the desired continuity at the zone boundary.

The model reported here is essentially a screened shell model, which accounts for 
the core-shell interactions in terms of harmonic forces. The shell-shell couplings are 
assumed to be angular [19]. The core-core bindings follow the said central pairwise 
forces and the volume forces, for the systems of core-conduction electrons and shell- 
conduction electrons follow the said modified Bhatia scheme. The model is employed 
to evaluate the effective masses in representative 3d, 4d and 5d metals, i.e. a-Fe, Cr, Mo, 
W and Ta. The phonon dispersion in the representative transition metal i.e. а-iron is 
also presented.

2. Dynamical matrices

Under the harmonic approximation, the phonon frequencies (v) may be 
expressed as the solution of the following secular equation:

|JVq)-4Tr2v2m /|=0 , (1)

where m is the mass of the core and / is the 3 x 3  unit matrix and the dynamical matrix

D(q) =  R ( q ) - S - , (q)K, (2)

where the elements of the dynamical matrix R(q) are derived by the knowledge of the 
interaction of cores with its neighbouring environment, i.e.

R*ß(4) =  J  (Px -«1  )S 'SßCy + BGjß(q) (1 -  P) ,

R M = j ( ß x  + 2Xl) ( l - C a Cß Cy) + B G ' M  (1 ~ P ) + K ,  (3)
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where Ce = cos (1/2 aqj,  S„ =  Sin (1/2 aqj, a is the lattice constant and qx is the <xth 
component of the phonon wave vector q. a, and ßy are the first and the second 
derivatives of the central pairwise potential coupling the neighbouring cores. В is the 
parameter of the volume interactions, which are expressed by G(q). Following Fielek, 
the value of P, which determines the strength of the volume interactions is fixed at 0.2. 
К is the harmonic force parameter representing the coupling of the cores with the 
shells.

The details of the elemental equation for the dynamical matrix S(q) depend on 
the nature of the interactions operating amongst the shell and its surrounding entities

S.,(q) = K — Syl SxSfiCy+ BGaß(q)P,

S«(q) = 16y 1 ( 1 - C ' C , C y) ~ 2y,(4Cat - C ßl- C n - 2) +  BGM(q)P , (4)

where yt is the CGW [19] type angular force constant for the noncentral couplings 
among the nearby shells,

Cai=cos(aqJ, etc.

The modified form of the Bhatia [18] expression for G(q) may be written as

„  2S.S,
* 'W "  l+4/a2Kt(S2, + S 2ß + S2y)'

2Sa2
G“ (4) = \+4/a2K 2(S2x + S 2 + S2) ’ (5)

where Kc is the screening parameter, which has been evaluated in the Bohm-Pine [20] 
limit.

3. Equilibrium condition

The total energy of the lattice comprises the core (Ec) and the electron (Ее) 
energy, i.e.

E = Ec + Е е .

ÔE
For the equilibrium of the lattice —r should vanish obviously, and

ci2

dEc _ 2 
dQ a

(6)

(7)

The energy of the electron may be expressed as the algebraic sum of the potential (Up) 
and the kinetic (uk) energy, i.e.

Ee = Uk — U p . (8)
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The kinetic part may be written as

l/k =
h2K 2 
2m* '

(9 )

where i
/3  n2Z * \\ K F =  I ——— 1 is the radius of the Fermi sphere, ß  is the atomic volume and m*

is the effective mass of the electron. Z* is the effective valence.
Within the framework of the Bhatia scheme, the potential part may be written as

BÜ213
Up =

21/3 ( .  16*2у
( 10)

The equilibrium condition may now assume the form

( П )

4. Evaluation of the parameters

The model comprises the six model parameters (a ,, ß t , у , , KB  and m*). One of 
them is yielded by the equilibrium constraint (11). Three of them are evaluated by the 
three elastic relations and the remaining two are calculated making use of the two zone 
boundary frequencies, i.e. vL(100) and v7l(l 10) for а-iron and vt (100) and vL(l 10) for the 
other metals. Input data for these evaluations are shown in Table I [21-25].

Table I

Input data for the five bcc transition metals

Input data a-iron Та W Cr Mo

a [A. U.] 2.866 3.3 3.16 3.68 3.14
C n f ltF 'N /m 2] 2.331 2.609 5.3255 3.398 4.4077
C 12[10u N /m 2] 1.355 1.574 2.0495 0.586 1.7243
C « [1 0 ,LN/m 2] 1.1783 0.818 1.6373 0.990 1.2165
m [10 -27 Kg] 92.7060 300.3770 305.191 86.3134 159.2604
vJlOO) [T. Hz ] 8.52 5.03 5.5 7.7 5.52
vt (110) [T. Hz ] 9.19 4.35 6.8 9.4 8.14
vTl(110)[T .H z] 4.55 2.63 4.1 5.8 4.56
vTj(110)[T. H z ] 6.49 4.35 4.2 7.8 5.73
Source of input data [21] [22] [23] [24] [25]
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5. The effective masses of the electrons

The present study is the first to employ the model to calculate the effective mass 
of the electrons in the five transition metals, which are given in Table II. It may be 
mentioned that so far the tedious model potential calculations [26-28] have revealed 
the values of the effective mass of the electrons in simple metals only.

Table II

Computed effective masses of electrons (m*/m) for five bcc transition metals

a-iron Та W Cr Mo

where m* = effective 
mass of electron 

m = rest mass of electron

-0.77264 -0.648 76 -0.23529 -0.13171 -0.312 50

6. Phonon dispersion

The computed model parameters needed for the exposition of the phonon 
dispersion in a-iron are listed in Table III, Fig. 1 depicts the dispersion relations for a- 
iron along the principle symmetry directions. The experimental data (О Д  A) [29] are 
also plotted alongside the curves for comparison purposes.

Table III

Computed model parameters for a-iron [10' N/m]

a i fi, У1 К В m*/m

-1.0101 -3.2425 0.069 30 4.6456 3.9898 -0.77264

Fig. I. Phonon dispersion curves for a-iron along three major symmetry directions. Solid lines represent the 
theoretical curves of the present study. (О Д  A) represent experimental points due to [29]
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7. Discussion

Five metals, namely а-iron, chromium, molybdenum, tungsten and tantalum, 
which cover almost all the anomalous behaviours shown in the phonon dispersion of 
bcc transition metals are analysed. The corresponding metallic electronic structure 
outside the core of closed shells may be expressed as 3d64S2 (a-Fe), 3d54S(Cr), 
4d55S'(MO), 5d46S2(W) and 5d36S2(Ta). We find from the comparison of our 
theoretical curves with the experimental ones that in a-Fe the results are in fairly good 
agreement in all the directions.

The experimental curves available for Cr, Mo, W and Ta [30,25,31,22] indicate 
that they have quite different shapes along the [£££] direction between £ = 0.5 to £ =  1.0. 
The usual hump present in the L-branch disappears in these metals except for Ta. Our 
theoretical curves obtained for these metals (not reported here) successfully predict this 
change of behaviour. They also show fair agreement in [(£0] and [£00] directions. The 
striking anomaly observed along the [£00] direction of Ta is the crossing of Land T 
branches, which is exhibited successfully by our model. However, the model fails to 
reproduce reasonably the T-branches in [£££] direction at higher wave vectors which 
may be attributed to the crudity of the scheme used for expressing volume forces.

8. Conclusions

The efficiency of the model should be seen in the light of the fact that the single 
model like the present one predicts dispersion curves in metals bearing striking 
anomalies of different nature. The model making use of consistent equilibrium 
condition has one extra advantage in that it provides, of course with many 
understandable limitations, a tool for determining the effective masses of the electrons 
in bcc transition metals, which are perhaps not known to date. The resulting effective 
masses are small negative values, contrary to the expected high positive values [32] for 
the metals considered here.
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Singular surface theory is applied to study the non-uniform propagation of weak 
discontinuities in radiation magnetogas dynamics. The fundamental differential equations governing 
the growth and decay of these discontinuities are formulated and these equations are solved 
completely. The criteria for decay or ‘blowup’ of these discontinuities are obtained. It turns out that 
the weak discontinuity grows into a shock and the effect of radiation is to delay the shock formation 
while the electrical conductivity causes the rapid onset of shock wave.

1. Introduction

Recently Rama Shankar and Jain [1] while discussing the uniform propagation 
of weak discontinuities in radiation magnetogas dynamics have derived the 
fundamental differential equations governing the growth and decay of weak 
discontinuities and solved for various wave fronts. They showed that the effect of 
electrical and radiative heat transfer is to cause damping in the formation of the shocks. 
But if the medium ahead is moving then it can be shown [2] that the wave propagation 
is anisotropic. In order to study anisotropic wave propagation Lighthill [3] has 
developed an elegant method. Numerous applications of this method followed. Ludwig
[4] and Duff [5] further generalized and developed this technique.

Elcrat [6] studied the non-uniform propagation of weak discontinuities in an 
unsteady flow of a perfect gas. In order to integrate the growth equations Elcrat 
transformed them into an equation along the bicharacteristic curve in the character­
istic manifold. When this is done an ordinary differential equation is obtained, which 
when solved gives an explicit criterion for the decay or ‘blowup’ of sonic discontinuities.

In the present paper following the aforementioned analysis we have derived and 
discussed the fundamental differential equations in radiation magnetogas dynamics 
and their solutions. The criterion for the decay or ‘blowup’ of sonic discontinuities has 
also been given.
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2. Equations of propagation

The set of non-linear differential equations governing the three-dimensional 
unsteady flow in radiation magnetogas dynamics are [1]

dp—  +м,р,( + рмм = 0,

p l h  + pUjUiJ+Pi+fiHiHk.i-HHkHi. * = 0 ,

(1)

(2)

dH
(3)

- f d S  „ \  .  J 1
(4)

J 2= J tJt; •Л-  eijk^k,j > (5)

p - p R T , S=S(p,p), (6)

where H( denote the components of magnetic field, J the electric current density, a the 
electrical conductivity, qf  radiation heat flux vector, t the time, p the pressure, p the 
density, Tthe temperature, uf the components of flow velocity, S the entropy and p the 
magnetic permeability constant.

We have used the tensor notation. A comma followed by a latin index denotes 
the partial differentiation with respect to a space variable.

We consider a moving singular surface S(t) across which the magnetic field and 
temperature and their first derivatives are continuous, but may have possible 
discontinuities in the second derivatives. All other flow quantities are continuous but 
have possible discontinuities in their first derivatives.

Suppose that S(t) is ^(x, , i)=0. We denote by n, the components of the unit 
ф . дф/dt

normal vector -— and let G = —  ------ —— be the normal speed of advance of S(t).
I grad ф I I grad ф \

The surface S(t) is imagined to have two sides denoted by (1) and (2) with n directed into 
(2). The relative speed of advance of S(f) through fluid is U =  G — щщ. We use a square 
bracket to denote the difference in the value of quantity behind and ahead of the surface 
S(r). Possible discontinuities may be written in the form (Thomas [7])

K j ]  = Anfn,, j ^ ~ l  = -  GAf,

W-C-„ [ f ]—'sc.

ы - < « „  [ ! ] = - < * .
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Making use of first order compatibility conditions in (l)-(3) we get

pA =  ( / i ,  (7)

- p U À + Ç = 0, (8)
rji=<rUA.(Hl — Hnnù, (9)

where

From (7) and (8) we obtain

£ = р Ш  =  1/2( .

Further taking jump in the first derivative of p = p R T yields

É = c 2 Ç.

From the above equations we write

l / 2 =  c2 ,

which indicates that the propagation speed of weak discontinuities in a non-uniform 
medium is just the isothermal speed of sound.

Differentiating (1) and (2) w.r.t. Xj and applying the jump conditions of Thomas 
[7], we have

i / f - (  и к - г и ы + ш

and
—2l/(A+ 2l/£ (uif/ 1,л,)2 + Ug^Ui C,„xi ß=0 (10)

Pf t +а - РихЛ) -т ( ^ + ( ^  +»a . ) ! c».+ vc( ^ ) !a

+ Uti(uk'jnknj)2 + pg',ßl'lt xk'ßuk + p(Hkijk- Н^,п()=0. (l l)

Now addition of (10) and (11) gives

U j t  + p f t + ( Z ~ U 20 + -  2pt/ Afí -  2 l/2C2 +  3 f/C(u,m ) 2

+  ̂  + “M . i ^ n £  + U c ( ^ J 2'ii + v(Hkrjk- H nrjini) = 0 . (12)

«5
Here — denotes differentiation along an orthogonal trajectory of the surface S(f), Q is

ot
the mean curvature of S(f) defined by 2S2 = gxßblß, while gxß and bxß are the first and 
second fundamental forms of S(f). While writing Eq. (12) we made use of the following 
transformation
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dÇ К  а ,
ÿ - S + » 'C a № .., .

dk ôk
л “ * + Л ' " л - ' ’

d£
г * + ^ -

Differentiation of p = p(p,S) and application of jump conditions yields

+ â (sA £n'+ t , ! r + l [ s -"]n '"''
(13)

Differentiating (4) w.r.t. t, we get after taking jumps across S(i) and using T= T(p, S) and 
qf  j = d<xpaRT 4 (Vincenti and Kruger [8])

[S.ü]n,nj= c
pTU 

+ TU

Ш / ' X Î * - )  

( I )
16apaRT 3.

2 \yP /  2

- 2 р ^ Ш 2е1]кП](Нк- Н Л ) ^ .

Substituting (14) in (13) we get

д2р dp C+ T ^ - ( S , ) 2Cn(+ P
dSdp dS pTU m -)

+( f  +“'S|)I+TO(S )r 16v , 7'ï(0 ).
-  2p ^  (Ji)2eijknj(Hk-  Нпп() J.

Further use of (15) into (12) leads to

dA <52p 
U ——hp —h -r—j dí dí dp2

+ c
pTU

[< 8 Н ‘ г Ш ‘

ш а - х а ч * ” ® ,
-  16араяТ30 ^  -  2p ~  {J^e ijknj(Hk-  W„nk)J

(14)

(15)
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U2i 2
2pU kQ -2 — —  +3UÇ(uijnlnJ)2

+

K a -
(I? + « А . ) < + У { ( ^ ) г»,

+n(.Hi — H„ni)fji=0.

Now using the relation pA =  t/£ we write (16) as follows:

( 16)

or

-  2% -  Ц + 7 - ( s ) ,

— 2U2fí+3U(uiJninj)2 +

dç
dt +c J _  dÛ  _  _1_ dp 

2U dt ~ 2p ~dt +

+
d2p ( ÔS 1

as dp \ 8 n ) 2 pTU \dS

dS

_l { 2 * * ( dA2 U (_ dp2 \дп Д

(dp [MdT
dp

+ T

+ TUI —  ) - Ш „ а кГ
d T \  
д р )  г*(§ +“A)

- 2 p j { J ^ eijknj(Hk- H„nt)J +  - ~ ( ^ j  - 2 U 2Q

+ 3U (W )! + ( § + « a . ) í » ,+ f ( ^ ) i „i

+ < T ^ U ( H f - H 2n)
4 ' p I V Pp2) (17)
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Eq. (17) can be expressed as

where

—2U2Q + 3U (иипрj)2

+ ( a  + “A . )  гп+ О—  U( Hf - HZ) .

(1 8 )

Eq. (18) is the basic differential equation for the growth and decay of weak 
discontinuities associated with the wave surface S(t) existing in R.M.G.D.* As a 
necessary check to our calculations we deduce from the preceding equations the 
differential equation for growth and decay of weak discontinuities in uniform 
propagation in magnetogasdynamics and these agree with the one derived in [1].

Integrating (18) with S(t) = S0 , £ = £0 , Л = Л0 , £ = £0 , U = U0 and p = po a t t= 0  
we get

where

and

, г°Ш

’ “ О< - * « » *

t

о

(19)

* Radiation Magnetogas Dynamics
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3. Discussion of the solution

If the functions <p(t) and I(t) are continuous for 0 < t < T *  and have finite 
limits <p(T*) and f(T) as t-*T*  and if sgn £„ =  — sgn /(f) then the right hand side of 
(19) will not only remain continuous throughout 0 < t < T *  but will approach a finite 
limit as Also if sgn Ç0 = sgn /(0, the right hand side of (19) will remain finite
throughout 0 < t < T *  provided that | Co I <Cc where Cc is a positive critical value of the 
initial discontinuity given by

Ч ( £ Г ' * ' Г
If sgn C0 = sgn I(t) and 

t*<T*  given by /(t*) =

Col >Cc it follows from (19) that there will exist a time 

such that IC J -юо as f-»f*. This is the

criterion for the discontinuity to blow up at a finite time T*, i.e. actually for the 
appearance of a shock wave at T*. Finally if | Со I =Cc and sgn Co = sgn /(f), then C is 
continuous for t in [0, T*] but approaches infinity as t-*T*.

Thus the role of radiation and electrical conduction is to resist the formation of 
shocks and delay the onset of shock wave. The effect of radiation is to delay the shock 
formation but the electrical conductivity causes the onset of shock wave rapidly.
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Laser operation parameters were investigated in a 469 nm He-К г hollow anode-cathode 
laser. In this type of discharge tube voltage could be changed by varying the number of internal anode 
rods. Increasing tube voltage resulted in higher output power and lower threshold current. Optimum 
He and Kr partial pressure values were found to depend on discharge current. A maximum output 
power of 75 mW and a gain of 16%/m was obtained.

1. Introduction

The hollow cathode discharge has been found useful in research for developing 
low or medium output power gas lasers operating in the green, blue and ultraviolet 
region of the spectrum. The main advantage of the hollow cathode discharge is that the 
density of high energy electrons is larger than in the positive column discharge region. 
Since most of the blue-green laser transitions belong to the spectrum of singly ionized 
atoms, this explains the need of high energy electrons to excite these lasers. The use of 
hollow cathode discharge excitation resulted in achieving cw laser operation in He-Kr, 
He-Ar and He-Ne-Xe noble gas mixture active materials [1-3], which oscillate at 
transitions of the Kr, Ar and Xe ion, respectively, and could be operated earlier only 
pulsed in positive column tubes. The strongest transition of these lasers has been found 
to be the 469 nm line of the Не-K r system.

The high energy component of electrons in the hollow cathode discharge is 
related to tube voltage, so any increase in the latter should produce more high energy 
electrons and thus laser output is expected to increase. The problem is that in a given 
diameter the tube voltage can be usually increased only by decreasing gas pressure, but 
this decreases the possible number of atoms to be excited for the laser, so this way to 
increase tube voltage may be unfavourable for laser operation. A modified hollow 
cathode discharge tube was developed to increase tube voltage independently of 
changing gas pressure [4]. This is achieved bv placing a series of anode rods inside the
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cathode in the way shown in Fig. 1. This configuration is named hollow anode-cathode 
(НАС) tube. The bright part of the discharge is formed in the centre of the tube, the 
discharge operates properly if the distance D between the cathode and the nearest 
anode is too small to produce all the ions necessary for self sustained discharge. At a 
given tube diameter, pressure and discharge current, this type of discharge tube 
operates at a higher voltage than a conventional hollow cathode. Since the increased

Fig. 1. Scheme of hollow anode-cathode discharge. 1 — cathode, 2 — anodes, 3 — bright part of the
discharge

Table I

Laser transitions in Не-Kr gas mixture

KrII wavelength 
[nm] Intensity

651.0 medium
512.6 weak
469.4 strong
458.3 medium
438.7 medium
431.8 strong

tube voltage indicates a larger number of high energy electrons in the discharge 
the population of high energy states will be increased. It is noted that other methods for 
increasing tube voltage have been developed, these are an internal rotatable anode 
structure £5], the use of a coil cathode [6], and the division of the cathode surface into 
small independent parts [7]. A high voltage discharge occurs also if the working surface 
of the anodes and the hollow cathode are on the same cylinder jacket [8]

An increase of intensity of some neutral and ionic spectral lines was observed in 
НАС discharges, the increase of ionic line intensities being quite significant [4]. Laser 
oscillation was obtained in noble gas mixture НАС discharge tubes and in the He-Kr 
and He-Ar lasers a decrease of threshold current and increase of output power was 
observed [3]. From these measurements for the effect of higher voltage only
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preliminary conclusions could be made, since the geometry of the hollow cathode lasers 
used for comparison was not equivalent to the НАС laser. For this reason a series of 
experiments were performed to investigate within more exact conditions the 
dependence of laser output on tube voltage, the latter being changed by using within 
the same cathode structure a different number of internal anode rods. As noble gas 
mixture active medium, the Не-K r system was used. Table I shows laser transitions of 
the Не-K r system, the investigations were performed at the 469 nm transition. 
Measurements of output power at 469 nm as a function of He and Kr partial gas 
pressure and discharge current were performed in НАС discharge tubes with one, 
three, and six internal anode rods. Some experiments were performed with twelve 
internal anode rods but technical difficulties due to the very high voltage ( ~  1500 V) 
prevented detailed measurements in this tube. The results of measurements show a 
quite complicated behaviour of the dependence of laser output on all these parameters.

2. Experimental arrangement

The scheme of the laser tube used in our experiments is shown in Fig. 2. The inner 
diameter of the hollow cathode was 8.5 mm, the tube was built of four cathode sections 
with metal rings between them. These served to hold the different number of anode

Fig. 2. Scheme of hollow anode-cathode laser tube

rods. Insulation between the anode-holders and the cathode were steatit rings. The 
distance between anode rods and the cathode surface was 0.5 mm. The whole hollow 
anode-cathode structure was contained inside a pyrex glass tube. The discharge was 
excited by half wave rectified alternating current, where the repetition rate was reduced 
to 12.5 Hz. High reflectivity mirrors were used in the measurements to be able to 
perform the investigations in a possible broadest range of discharge paremeters. In 
most cases the radius of mirrors was 3 m and 1.15 m, respectively, the latter had a 
transmission of 0.1%, which was used for detecting laser intensity. For optimum laser 
output measurements a higher transmission mirror was used. The output power was 
measured by a Spectra Physics 404 type power meter.
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3. Results of measurements

The voltage-current characteristics of the discharge tubes were investigated in 
detail, some results of measurements are shown in Fig. 3. It can be seen from the Figure 
in accordance with earlier experiments, that tube voltage increases with increasing 
internal anode rod number. High voltages exceeding 1000 V were observed in the case 
of twelve internal anode rods at 2 A discharge current in the 16-20 mbar He pressure 
range.

Figure 4 shows dependence of tube voltage on He pressure. It can be seen from 
the Figure that in the case of six anode rods the shape of the curve changes, a significant 
increase of voltage occurs at pressures below 20 mbar.

Fig. 3. Voltage-current characteristics in hollow anode-cathode tubes with a different number of internal
anode rods

I
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1
0

д 3 
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_ j____________________________ I___________________________I—

10 20 30
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Fig. 4. Dependence of tube voltage on He pressure in hollow anode-cathode tubes with a different number of
internal anode rods
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Measurements were performed on the laser output power as a function of 
different discharge parameters in tubes having various anode rod numbers. The main 
results are summarized in Table II. It can be seen from the Table that laser threshold 
current decreases and output power increases with the increasing number of anode 
rods. Laser efficiency that is output power/input electrical power shows an optimum in 
the case of the three rod system. In the following some data measured in this tube are 
given.

Table II

Hollow anode-cathode Не-K r ion laser 
A = 469.4 nm; PHt = 23 mbar; PKr = 9 x  10“ 2 mbar

Number 
of anode 

rods

Tube
voltage*

[V]

Threshold
current

[A]

Output 
power*’b 

[mW]

Efficiency
X 10-5

1 390 3.3 12 0.45
3 450 2.3 35 1.1
6 590 2.2 38 0.92

* At 7A discharge current; 
b Using output mirror with 1% transmission

Figure 5 shows laser threshold current as a function of He pressure at different 
Kr partial pressure values. It can be seen that minimum threshold current occurs in the 
10-15 mbar He pressure range. It is noted that in the case of six anode rods minimum 
threshold current was 0.9 A, while using twelve anode rods it decreased to 0.7 A.

Figure 6 shows tube voltage as a function of He pressure. Comparing Fig. 6 to 
Fig. 5 it seems that minimum voltage at a given current occurs in the same range as 
where minimum threshold current is observed. The accuracy of the data is not enough, 
however, to conclude whether these two minima coincide exactly or not.

I
I
S
£

Pu, [mbar 1

Fig. 5. Laser threshold current as a function of He pressure (3 anode rods)
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The dependence of laser output power on He pressure is shown in Fig. 7. At 5 A 
discharge current the optimum He pressure is 24-28 mbar slightly depending on the 
value of Kr partial pressure. The measurements performed at different currents have 
shown that optimum He and Kr partial pressure depend on the value of discharge

V [V] 

600

500

400

300

2.6 5.3 8.0 10.6 13.3
PHe t mbar 1

Fig. 6. Tube voltage as a function of He pressure (3 anode rods)

1.5

S
§  1.0 
о

0.5

current : 5 A

L-V-
21 28 35

PHe [mbar]

Fig. 7. Dependence of laser output power on He pressure (3 anode rods)
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Table III

Hollow anode-cathode Не-K r ion laser 
2 = 469.4 nm, 3 anode rods

Discharge current [A] 3 5 7 9
Tube voltage [V] 405 435 465 510

Optimum Kr partial pressure [10 2 mbar] 8.5 11 12.5 18.5
Optimum He partial pressure [mbar] 23 24.5 31.5 41

Output power“ [mW] 0.9 1.8 2.1 2.7

* Using high reflectivity output mirror with 0.1% transmission

current [A3
Fig. 8. Dependence of laser power on discharge current (3 anode rods)

current. The results obtained are summarized in Table III, where output power 
obtained with high reflectivity mirrors is also given. It can be seen from the data that 
with increasing discharge current tube voltage, optimum He and Kr partial pressure 
increases and maximum output power is obtained, when all these values are at the 
possible maximum. This result is shown in a different way in Fig. 8, where laser power is 
plotted as a function of discharge current at different He pressure parameters. At low 
He pressure the threshold current is low and laser power saturates with increasing
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_ _ _ _ _ I_ _ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ _ I_ _ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _
2 4 6 8 10 12 14 16

, current [ A ]

Fig. 9. Saturation parameter as a function of discharge current (6 anode rods)

Fig. 10. Gain as a function of discharge current (6 anode rods)
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discharge current. At high pressures the situation is different, however, threshold 
current is high and laser power increases very rapidly with increasing discharge current 
and no saturation occurs in the current range investigated. In this case at a He pressure 
41 mbar and Kr pressure 0.18 mbar using an output mirror of 2.3% transmission at 
10 A discharge current 66 mW output power was measured. In accordance with data 
given in Table II in the six rod system 75 mW power output was obtained. Using quasi- 
cw excitation with 100 /xs halfwidth 20 A current pulses a peak output power of 
450 mW was measured, in this case tube voltage in the six rod system was 1 кV and the 
He pressure was 26 mbar.

Measurements were performed in the six rod system on the gain and saturation 
parameter of the 469 nm laser transition as a function of discharge current. These data 
were obtained from measuring output power as a function of loss produced by rotating 
a quartz window inside the laser resonator [9]. In this measurement a big advantage of 
the Не-K r laser system was that due to the large pressure broadening, the 469 nm 
transition has a homogeneous linewidth and oscillates only in a single axial mode. For 
measurement of the saturation parameter TEM 00 mode operation was produced by 
inserting a diaphragm in the resonator. Excitation of the laser tube was quasi-cw with 
100 /xs halfwidth current pulses. The results of measurements are shown in Fig. 9 and 
Fig. 10. It can be seen from Fig. 9 that the saturation parameter increases with 
increasing discharge current and reaches a value of 150 W/cm2 at 16 A peak current. 
Fig. 10 shows gain as a function of current, a value of 16%/m is measured at 16 A. Gain 
increases slower than linear with increasing discharge current, while the increase of 
output power is linear. Considering that output power is qualitatively proportional to 
the product of gain and saturation parameter since the latter increases also slower than 
linear the product of them gives approximately a linear dependence.

4. Discussion

The measurements performed in similar configuration hollow anode-cathode 
tubes with a different number of internal anodes show a gradual increase of voltage 
with increasing rod number and at the same time a significant change occurs in laser 
parameters. The increasing voltage is related to an increasing density of high energy 
electrons and this results in the observed change in laser data.

Considering the excitation mechanism of the 469 nm laser transition the 
following can be said. The upper laser state is excited by second kind collisions between 
He 23S metastables and ground state Kr ions. The electron excitation cross-section of 
the He 23S metastables is maximum near threshold energy and drops with increasing 
energy, so although the higher density of high energy electrons increases somewhat the 
metastable density, this effect is not too large. The main effect of the high energy 
electrons in the НАС discharge is the increased production of Kr ions by electron 
impact. The cross-section of this ionization process has a broad peak at 80 eV and
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significant ionization can occur at high energies, too [10]. It was shown in [11] that the 
role of Penning ionization in producing Kr ions by collisions with He metastables is 
comparable to electron impact only in positive column discharges with Maxwellian 
electron energy distribution, but here up to now no cw laser oscillation has been 
observed at 469 nm. Thus the observed decrease of threshold current and increase of 
laser power by increasing voltage in the Не-K r НАС discharge may be attributed to 
increased production of Kr ions by electron impact.

It was observed in the tube with medium increased voltage (3 rods) that 
minimum laser threshold current falls in the pressure range where the hollow cathode 
effect occurs, that is at a constant discharge current a minimum is found in tube voltage 
as a function of He pressure. It is not clear whether this observation is a consequence of 
any basic phenomenon or not. We note that the maximum stability of hollow cathode 
discharges against glow to arc transitions was observed also to fall in this pressure 
region.

The increase of threshold current with increasing He pressure can be explained 
by change in the radial distribution of the light intensity produced by the discharge; the 
changes in atomic excitation process rates are less significant in producing this 
variation of threshold current. It was observed that at high He pressures and at low 
currents the central part of hollow cathode discharges is dark, the negative glow has a 
ring form and a certain discharge current is needed to make this region bright, to get the 
negative glow to fill the whole tube cross-section. It is clear that laser oscillation can 
only occur in this latter condition and by increasing He pressure high currents are 
needed to fulfil the condition of the negative glow filling the whole discharge tube cross- 
section, thus the laser threshold current has to be higher, too. Optimizing tube diameter 
and pressure together are important to reach low current operation.

An interesting feature is that if the discharge current is considerably higher than 
threshold values then the optimum He pressure significantly differs from the value 
where threshold current is minimum. In the low pressure region laser power saturates 
with increasing discharge current and at high pressures this is not observed. The reason 
of saturation could be increased ionization of He from the 23S metastable state and 
increased production of double ionized Kr from the single ionized state, both processes 
occurring by electron impact. The rates of these processes are high in the low pressure 
region due to the large density of high energy electrons. At higher pressures due to the 
smaller density of energetic electrons the rates of the mentioned loss processes for He 
23S metastables and Kr ions decreases and saturation of laser power does not appear in 
the current region investigated. It is possible that in the saturation of laser power the 
effect of sputtered cathode material plays also a role, the amount of metal vapour due 
to sputtering is smaller at high pressures.

Considering optimum discharge parameters for laser operation it can be 
concluded that in the range investigated up to 1 kV voltage laser power can be 
increased. Regarding practical aspects maximum efficiency occurs at only a medium 
increase of tube voltage, however. In a given system then the optimum gas fill values are
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determined by the discharge current of the tube. Optimum He and Kr partial pressure 
values increase with discharge current, which is believed to be connected to the 
condition for the negative glow to fill the whole tube cross-section. At higher discharge 
currents the bright discharge in the central region of the tube can be reached at higher 
He and Kr pressure values. This results in more He 23S metastables and Kr ions, which 
leads to a higher degree of population inversion and more laser output power.

The change of the saturation parameter with current can be attributed to the 
change of the spontaneous linewidth due to increased temperature or some other 
broadening mechanism. Further measurements are necessary to clarify details of this 
problem.

5. Summary

Laser output power as a function of discharge parameters was investigated in 
hollow anode-cathode tubes with a different number of internal anodes. It was found 
that the three anode rod system resulting in a medium increase of tube voltage gives 
output power increase with best efficiency. Optimum gas filling data were found to 
depend on discharge current. High laser output power can be reached in high current- 
high pressure hollow anode-cathode tubes. Although the blue 469 nm laser transition 
is perspective in building hollow anode-cathode lasers for practical uses, significant 
efforts are still required to construct lasers for this aim, since special tube technology is 
needed, which is not yet developed. The features observed of the hollow anode-cathode 
Не-Kr laser refer only to the noble gas mixture systems. Some experiments indicate 
that other noble gas-metal vapour lasers having a different excitation mechanism 
behave differently in increased tube voltage hollow cathode discharges [12-14].
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A very surprising anisotropy in the magnetic hyperfine interaction was observed in the 
Mössbauer effect spectra of some iron ore deposits in Q atar (Arabian Gulf). This was attributed to the 
presence of the stable as well as the metastable states of the oxyhydroxide (a-FeOOH) in the ore 
(glassy, mesocrystalline and holocrystalline).

The ordering temperatures for the magnetic and superparamagnetic particles were defined. 
The decomposition of the metastable forms of the oxyhydroxide to metastable forms of the oxide (a- 
Fe20 3), which is a new observation in the natural phenomena, was investigated. The increase in the 
crystallinity of the oxide during grpwth was followed up.

The physical and geochemical conditions of formation of the different iron ore deposits, as 
well as their relative geological age«, were evaluated.

Introduction

The usefulness of the Mössbauer effect technique in the study of mineralogical 
systems has been demonstrated in a large number of literatures through the past two 
decades. In view of the great importance of iron in the earth’s crust and the widespread 
occurrence of this element in rock-forming minerals, we are interested in applying this 
technique for studying local iron ores. The ME technique has been successfully used in 
the study of Egyptian iron ore deposits which included goethite, heamatite, pyrite and 
chalcopyrite (Eissa et al [1, 2]). These studies provided important information about 
the chemical and physical properties of the different forms of iron in each deposit and 
the influence of the geochemical conditions of formation on these properties.

The present work deals with the use of the ME technique in the study of the 
recently discovered iron ores in the State of Qatar (Arabian Gulf), in order to reveal 
some information about the fine properties of these ores.

* Permanent address: Mössbauer Laboratory, Physics Department, Faculty of Science, Al-Azhar 
University, Cairo Egypt.
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Experimental details

The iron-ore samples used in the present study were collected from Halóul 
(Halóul-1 and Haloul-2) and Sauda Nathil localities. They were provided by the 
Geology Department of Qatar University and the Qatari Industrical Development 
Technical Centre. The ME measurements and X-ray diffraction analysis have been 
carried out on a set of representative samples taken from each of the three deposits.

The ME measurements were performed at different temperatures ranging 
between the liquid nitrogen temperature to 67 °C. In addition, the samples were 
annealed for two hours at different temperatures up to 1100°C and were then 
measured at room temperature. The ME absorbers were prepared from the finely 
powdered material so that the natural iron abundance in the absorber was 
~  15 mg cm-2 . The channel for zero Doppler velocity between source (30 mC 57Co in 
palladium matrix) and the absorber was specified using a laser system. The curves were 
fitted using a computer programme.

Results

The X-ray diffraction results revealed that the Halóul-1 deposit is entirely 
composed of heamatite (a-Fe20 3), while Haloul-2 is composed of goethite (a-FeOOH). 
On the other hand, the X-ray results of the Sauda Nathil deposit revealed only the three 
strongest lines characteristic of goethite (Fig. 1).

56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16

Fig. 1. X-ray diffraction pattern of a representative sample of Sauda-Nathil ore. Only the three strongest 
lines, characterizing goethite, have appeared
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Table I

ME parameters of representative samples from the different iron ore deposits

Halóul-1 Haloul-2 Sauda-Nathil
Temperature

H
[kOe]

Q.S.
[mm/s]

IS .
[mm/s]

H
[kOe]

Q.S.
[mm/s]

IS .
[mm/s] Fe% H

[kOe]
QS.

[mm/s]
IS .

[mm/s] Fe%

533 0.684 0.309 519 0.720 0.244 527 _ _
A 38 512 0.760 0.215 27

512 0.720 0.244 507.5
L.N.

474 0.684 0.282 463 — —

В 462 0.760 0.282 62 455 0.494 0.114 73
450 0.760 0.244 425 — —

419.5 0.836 0.244 404 - -

515 0.416 0.258
507 0.416 0.232 507 0.416 0.284

517.5 0.413 0.384 A 407 0.416 0.284 495 0.468 0.232
484 0.416 0.258 484 0.468 0.258
460 0.416 0.258 458 0.468 0.206

R.T.
373 0.416 0.284 353 0.416 0.284
361 0.416 0.284 340 0.468 0.271

В 1 319 0.468 0.284
251 - — 1

193 - -

Error in velocity scale =±0.052 
Error in fields =  ±  1.6

Error in Fe percentage =  ± 2  
I.S. with respect to Pd matrix
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The room temperature ME results of Halóul-1 samples showed a simple six-lines 
pattern with parameters characteristic of a well-crystallized, bulk heamatite (Fig. 2 and 
Table I). On the other hand, the spectra of Haloul-2 and Sauda Nathil samples showed 
complicated magnetic patterns with many relaxed and superimposed lines (Fig. 3). The 
analysis of the spectra obtained revealed the presence of two different groups of 
magnetic patterns and a central paramagnetic doublet of small intensity. For Haloul-2

velocity [mm/s]
Fig. 2. Room temperature ME spectrum of Halóul-1 ore

samples, the first group of patterns (A) could be resolved into four different magnetic 
patterns, having fields ranging from 507 kOe to 460 kOe. All the patterns have nearly 
the same quadrupole splitting and very close values of isomer shifts (Table I). The 
second group (B) showed a broader distribution of the fields to much reduced values. 
Only two patterns of group (B) could be resolved. They have field values of 373 and 
361 kOe and their quadrupole splitting and isomer shift are similar to those of group 
(A). The value of the smallest field in group (B) could be estimated from the separation 
between the innermost two lines surrounding the paramagnetic doublet by applying 
the ratios 0.16:0.58:1.00 for the separation between the three doublets of the field 
(van der Woode [3]). The spectra of Sauda Nathil samples showed the same two 
groups of magnetic patterns (A & B), but with a larger number of distributed fields 
and more reduced values for the fields of group (B).
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Fig. 3. Room temperature ME spectrum of a representative sample of Sauda-Nathil ore. Two different 
groups of many superimposed magnetic patterns could be observed

velocity [ mm/s ]
Fig. 4. ME spectrum of Haloul-2 ore at liquid nitrogen temperature. Recovery of the magnetic properties of

the superparamagnetic grains is obvious
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When the samples were measured at liquid nitrogen temperature, the spectra of 
Halóul-1 samples showed some increase in the value of the magnetic field, with a 
change in the sign of the quadrupole splitting. The spectra of both Haloul-2 and Sauda 
Nathil samples showed a more compact and less relaxed pattern for the groups (A & B), 
relative to those obtained at room temperature (Fig. 4). The fields of group (A) attained 
very close values which are slightly higher than those obtained at room temperature. 
The values of the fields of group (B) showed a more remarkable increase (463-404); 
however they were still smaller than the values characteristic of goethite at such 
temperatures (Hrynkiwicz et al [4] and Szytuca et al [5]. Although the parameters of

Fig. 5. ME spectrum of a Sauda-Nathil sample at 45 °C. An increase in the intensity of the central 
paramagnetic doublet, due to the disordering of some of the goethite components, is seen clearly
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group (A), at both room and liquid nitrogen temperatures, are in the order of those 
characterizing heamatite, the Morin transition (Kundinget al [6]) was not observed for 
Haloul-2 or Sauda Nathil samples.

When Haloul-2 and Sauda Nathil samples were measured at temperatures 
slightly higher than room temperature, the intensity of the central doublet began to

velocity [mm/s]
Fig. 6. ME spectrum of Sauda-Nathil ore at 67 °C. All goethite present has been transformed to its

paramagnetic state

increase with a corresponding collapse in the different magnetic components of group 
(B) (Fig. 5). Further heating resulted in a continuous disordering of the different 
components of group (B) at different temperatures. Disordering of all the components 
was completed at 67 °C (Fig. 6).

The spectra of the pre-annealed Haloul-2 and Sauda-Nathil samples showed the 
disappearance of the group (B) lines and an accompanying increase in the number and
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intensity of group (A) lines (Fig. 7). These changes, which are due to the decomposition 
of goethite to heamatite, began at — 223 °C. This temperature is much lower than that 
at which the bulk, well-crystallized goethite starts to decompose to heamatite, 350- 
390 °C. (Mackenzie [7]).

velocity [ mm/s 1

Fig. 7. Room temperature ME spectrum of a Haloul-2 sample preannealed at 225 °C for 2 hours. Most of 
goethite has been decomposed to heamatite

The increase in the annealing temperatures resulted in an increase in the 
compactness of the group (A) composite patterns. This was due to a systematic increase 
in the values of the smaller fields to join the larger ones (Figs 8 and 9). After annealing 
the samples at 800 °C, a single magnetic pattern, having the parameters characteristic 
of the well-crystallized heamatite, was obtained.
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velocity [ mm/s 3

Fig. 8. Room temperature ME spectrum of a Haloul-2 sample preannealed at 700 °C for 2 hours. All 
heamatite components joined up the two ones of largest fields

annealing temperature [ °C ]

Fig. 9. The relation between the annealing temperature and the magnetic components present in the ores of 
Haloul-2 and Sauda-Nathil deposits. The fields for the goethite grains, having sizes near to the critical one,

could not be resolved before annealing.
The decomposition of metastable forms of goethite to metastable forms of heamatite and the growth of the 

different metastable forms of heamatite to the final stable form could be observed
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Discussion

The values of the fields of Halóul-1 samples, at both room and liquid nitrogen 
temperatures, and the change of the sign of the quadrupole splitting when the samples 
were cooled to a temperature less than the Morin transition temperature (~260 K), 
indicate that this deposit contains ordered haematite. At Morin temperature, the spins 
change their direction and the oxide transforms from antiferromagnetic at low 
temperatures to a weak ferrimagnetic above the so-called Morin temperature 
(Greenwood and Gibb, [8]). The presence of a well crystallized heamatite is in 
agreement with the X-ray results obtained for the same deposit. On the other hand, the 
results of the X-ray diffraction and the ME of Haloul-2 and Sauda Nathil samples, 
showed some remarkable discrepancies and revealed many questionable character­
istics which can be summarized as follows:
(i) The X-ray data showed the presence of goethite as the sole iron mineral, while the 

ME results revealed the presence of both goethite and heamatite.
(ii) The ME results showed that goethite is considerably abundant; however, it is 

represented in the X-ray diffraction patterns, expecially for Sauda Nathil samples, 
by very few lines.

(iii) The magnetic behaviour of the minerals is anisotropic.
(iv) Goethite is composed of many components. These components acquired their 

magnetic ordering over a wide range of temperatures which are much lower than 
the normal temperature ( ~  120 °C, van der Woode and Dekker [3]).

(v) The different components of goethite decomposed to heamatite at unusually low 
temperature. Moreover, the resulting heamatite has abnormal properties.

(vi) Heamatite lacks Morin transition.
(vii) Heamatite is represented by different components, having different field values. 

Upon annealing the fields with the smaller values showed a systematic increase 
and joined the larger ones.

The above peculiar magnetic properties of the investigated iron minerals can be 
explained by the assumptions:
(i) The minerals possess a wide range of particle sizes and/or
(ii) The minerals have a wide range of crystallinities.

The particle size is known to affect the electron spin relaxation time, according to 
the equation:

t = t0 exp (K V/kT),

where К is the anisotropy constant, V the particle volume, T  the absolute temperature 
and к the Boltzmann constant. In the investigated deposits, particles with sizes close to 
the critical size (d„~  17.0 nm (170 Â)) for goethite at room temperature, Suzdalev [9]) 
will have electron spin relaxation time in the order of the nuclear Larmor precession 
time; hence they produce the broadened and relaxed lines. The paramagnetic doublet 
resulted from the particles, having sizes less than the critical size (Eissa et al [10]). On
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the other hand, particles with sizes larger than the critical size are responsible for the 
normal magnetic patterns.

The deviation in the magnetic properties of synthetic goethite was interpreted by 
Oosterhout [11] to be due to defect structure which leads to a partial breakdown of 
the antiferromagnetic structure of the crystallites. Van der Woode and Dekker [3] 
emphasized the possibility of the presence of the same varieties in naturally occurring 
goethite. In a-FeOOH with a defect structure, the chains of antiferromagnetically 
coupled ferric ions along the X-axis are interrupted. If the clusters in these chains are 
small enough, the reversal frequency of the sublattice magnetization may become of the 
same order of magnitude as Larmor precession frequency. This effect, which is already 
observed in the Mössbauer spectra of superparamagnetic particles, leads to 
broadening of the absorption peaks, a decrease of the effective magnetic field and 
finally to a complete destruction of the hyperfine structure below the Neel temperature 
of a well-crystallized material. According to the studies of Oosterhout [11] and Van der 
Woode [3] it can be strongly suggested that the observed properties of the investigated 
iron deposits are the result of the presence of particles having different states of 
crystallinities (glass, crystallites, microlites and holocrystalline crystals). These 
represent the whole range of metastable to stable states (Tyrrell, [12]).

In the present work, it is thought that the crystallinity factor contributed much 
more than the particle size factor in affecting the iron-minerals’ behaviour. However, 
this does not imply that the particle-size factor did not play a considerable role. An 
important criterion for the effect of crystallinity factor is the sudden decomposition of 
goethite to heamatite at abnormally low temperature. Moreover, the pattern of the 
resulting heamatite indicated the presence of a wide range of crystallites and stabilities 
which, upon heating, gradually changed into the stable well-crystallized form.

The heamatite lacking Morin transition, which is reported in Haloul-2 and 
Sauda-Nathil samples, most probably originated under a rapid rate of formation. 
Riederer [13] emphasized that slow oxidation under mildly oxidizing conditions and 
at a fairly low temperature is favourable to the growth of heamatite crystallites that are 
large enough to yield a ME pattern typical for antiferromagnetic heamatite.

Conclusions

The results obtained in the present work reveal that the iron ore deposits in 
Qatar are either composed entirely of heamatite or a mixture of heamatite and goethite. 
Heamatite, which occurs as a sole constituent in some deposits, acquires a high degree 
of crystallinity and large particle size and, hence, normal magnetic properties. On the 
other hand, heamatite which accompanies goethite, possesses a wide range of 
crystallinity and particle size resembling in this aspect goethite; both showing many 
peculiar characteristics.
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The mode of occurrence of the different iron deposits indicates that they were 
originally composed of goethite and heamatite deposited under normal sedimentary 
conditions. However, some of these deposits were taken on and invariably subjected to 
sudden heating and cooling conditions of complicated nature (mostly by the effect of 
younger basalt flows which are known to exist in the area studied). These conditions 
resulted in the change of the iron minerals to their amorphous and highly disordered 
states. As time elapsed, goethite crystallites and microlites of abnormal nature started 
to develop (Tyrrell, [12]). A considerable part of these metastable forms was 
transformed into a corresponding abnormal heamatite before achieving their normal 
crystalline states.

Taking into consideration the degree of crystallinity and the relative abundances 
of goethite and heamatite in the investigated deposits, and realizing the effect of the 
time factor on these aspects, it can be predicted that the Haloul-2 deposit is older than 
the Sauda-Nathil one; both are younger than the Haloul-1 deposit.

The present work clearly shows the usefulness and effectiveness of the 
Mössbauer effect technique in solving many problems concerning natural ores.
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The luminescence spectra of potassium chloride phosphors doped with strontium have been 
studied in microcrystalline powder specimens as-received and thermally treated with varying 
amounts of strontium content, with the help of Aminco Bowmann spectrophotofluorometer. From 
the detailed examination of the excitation and emission spectra of these specimens, it is concluded 
that the emission at 320 nm is presumed to consist of dipoles being situated in the strained region of 
a dislocation at a distance where only elastic interaction is Of significance.

Introduction

A small amount of strontium introduced into an alkali halide produces a 
luminescent material of considerable fundamental interest. Much experimental and 
theoretical work has therefore been reported on the luminescence of thallium-doped 
alkali halide phosphors and a little on divalent impurities (Ca, Ba, Sr and Pb etc.) doped 
in alkali halide phosphors. According to the Seitz, Williams and Joshi et al [1-5] 
theory, thallium or strontium ions replacing a cation in the host lattice act as a 
luminescence centre. This model could satisfactorily explain many of the features 
arising in lightly as well as heavily doped phosphors. At higher strontium 
concentration («  10 ~4 m.f. and above) one has, however, to deal with a more complex 
problem. The present work arises out of an attempt to understand the luminescent 
behaviour of the KC1 : Sr phosphor in more detail. The experiments involved the study 
o£ the excitation and emission spectra of variously pre-treated KC1 : Sr phosphors 
differing in Sr concentration. All the measurements were made at room temperature.

Experimental details

The samples used in the present study were microcrystalline in nature, prepared 
by the usual method of crystallization from aqueous solution, and contained varying 
amounts of Sr (from 10"4 to 10"1 mole fraction). A large number of as-received and 
pre-treated KC1 : Sr specimens were examined for their excitation and emission spectra.
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The excitation and emission spectra of these specimens were determined after UV — 
irradiation at room temperature. The instrument used in the present study was an 
Aminco-Bowmann spectrophotofluorometer supplied by the American Instrument 
Co., Inc.

Results and discussion

The present work concerns the investigation of the nature of the centre 
responsible for luminescence in as-received and heat pre-treated doped potassium 
chloride. One specimen batch was taken as-received prepared from aqueous solution. 
Another specimen batch was quenched rapidly to room temperature in a platinum 
crucible after annealing at 500 °C for 5 h (quenched in air). In yet another pretreatment, 
KC1 : Sr specimens prepared from aqueous solution with different Sr contents were 
annealed in evacuated and sealed tubes, and slowly cooled to room temperature 
(0.8 °C/min) after annealing at 500 °C for 5 h. In all cases the excitation and emission 
measurements were carried out with powder specimens on a Aminco-Bowmann 
spectrophotofluorometer. The area of the sample exposed to the exciting radiation, the 
geometry of the experimental arrangments, etc., remain unaltered throughout the 
course of the experiments. The luminescence output was recorded on Honeywell 
stripchart recorder. In Figs 1 and 2 Curves 1 and 2 represent the emission spectra of the 
phosphor with 10“ 2 and 10 1 m.f. respectively. In Fig. 3 Curves 1,2,3 and 4 represent 
the emission spectra of the phosphor with 10 “ 4 to 10 ~1 m.f. respectively. It is obvious 
from these Figures that the emission spectra consist of a single dominant band at

Fig. I. Emission spectra of KCl:Sr powder phosphor (Curves 1 and 2 as-received from solution with Sr 
concentration 10-2 and 10“ 1 m.f., respectively)
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320 nm for 272 to 278 nm excitation. It is worth noting that the emission band is 
favoured if the heat treatment is carried out in air and in an evacuated sealed tube 
(compare Fig. 1 with Figs 2 and 3). It was observed that the increase in Sr concentration 
reduces the emission preferably in the ultraviolet region (compare Curve 2 in Figs 1 
and 2, and Curve 4 in Fig. 3).

Fig. 2. Emission spectra of К Cl : Sr powder phosphor (Curves 1 and 2 annealed in air at 500 °C for 5 h and 
quenched rapidly to room temperature with Sr concentration 10“ 2 and 10“ 1 m.f. respectively)

Fig. 3. Emission spectra of KC1 : Sr powder phosphor (Curves 1, 2, 3 and 4 annealed in an evacuated and 
sealed tube at 500 °C for 5 h and slowly çooled at room temperature 0.8 "C/min with Sr concentration 10~4

to 10*1 m.f. respectively)
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The emission spectra for the specimen annealed and quenched from higher 
temperature, the 320 nm band appears quite prominent. This is due to the fact that a 
thermal treatment would provide uniform distribution of isolated Sr++ ions in the 
bulk of the specimens. One may therefore conclude that at higher concentration two or 
more Sr+ + ions occupy nearest-neighbour positions and thereby cause quenching of 
the specimen in the ultraviolet region.

From the emission spectra of the annealed and slowly cooled specimen it is 
inferred that the solubility of Sr in KC1 is quite high. Hence at higher Sr concentrations 
most of the strontium is retained in solid solution by the host lattice even after the 
specimen is subjected to slow cooling treatment. The emission spectra of annealed and 
slowly cooled specimens also show a dominant band in the ultraviolet. Slow cooling 
should bring about aggregation of Sr+ + ions in the lattice. Hence one would expect in 
this case S r+ + ions in dispersed state in the lattice. This naturally results in exhibiting 
prominent ultraviolet emission. At higher Sr concentrations the aggregation of Sr+ + 
ions will be significant which leads to the destruction of isolated Sr+ + ions and hence 
the suppression of ultraviolet emission.

When divalent metal impurity ions are incorporated into an alkali halide lattice, 
they go in substitutionally for alkali ions [6, 7]. Because of the requirement of charge 
neutrality, the divalent cation addition is accompanied by the introduction of an equal 
number of positive ion vacancies. At low temperatures, a large number of divalent ion­
positive ion vacancy pairs (dipoles) are formed since their formation lowers the energy 
of the crystal [8]. Since impurity — vacancy dipoles in alkali halides produce 
asymmetric strain in the matrix, it has been suggested by Pratt et al [9] that dipole 
interaction with dislocation mainly accounts for the hardening of the alkali halide 
crystals. There is now general agreement that below about 500 °C dislocations in alkali 
halide are negatively charged with a surrounding cloud of positive charges, namely 
negative ion vacancies. At lower temperatures, divalent impurity ions are significantly 
associated with their charge compensating cation vacancies and hence instead of free 
Sr + + ion, single dipole or aggregates of dipoles [10,11] together with the negative ion 
vacancies will be involved in the cloud formation around dislocations. Dipoles being 
electrically neutral relative to the KC1 matrix, their presence will not affect the sign of 
the charge cloud surrounding the dislocation and that born by the dislocation itself. 
Hence it is concluded that the luminescence centre responsible in the region at 320 nm 
is presumed to consist of dipoles, situated in the strain region of a dislocation at a 
distance where only elastic interaction is of significance.
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Creep curves were obtained under a constant applied stress, <r = 7 Kg/mm2, for mild steel 
samples with various grain sizes between 660 °C and 750 °C. (The eutectoid temperature (723 °C) falls 
into this temperature range).

Slightly below the eutectoid temperature, at 710 °C, the creep rate showed a maximum which 
increased with increasing grain size. This effect was attributed to spherodization, coarsening and 
dissolution of iron carbide.

In this region the activation energy of steady state creep may be attributed to decomposition 
of pearlite.

Introduction

In proeutectoid mild steel various processes take place upon heating, i.e. [1-3]:
(i) spherodization, coarsening and dissolution of the carbide phase below the 

eutectoid temperature, and
(ii) nucléation and growth of the austenite phase and dissolution of the carbide 

phase above the eutectoid temperature.
These phase transformations proceeding in the proeutectoid structure might be 

designated as inverse eutectoid transformations.
Several creep mechanisms have been proposed to account for the plasticity 

associated with the above mentioned transformations:

1. Recovery creep enhanced by the abundance of lattice defects connected with the 
transformation of ferrite and carbide into austenite [1,4-6];

2. Dislocation creep governed by the interaction and annihilation of dislocation pile- 
ups at austenite/ferrite, ferrite/carbide [7, 8] interfaces or connected with the 
segregation of carbon atoms at grain boundaries [9];

3. One of the creep mechanisms during eutectoid transformation of mild steel is 
diffusional creep. It is associated with the vacancy-carbon migration [10, 11].

* Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
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Grain size is known to influence the creep characteristics (especially the strength 
[ 12,13]) of the material which undergoes no transformations. (Refining the grain size in 
mild steel increases its strength [14,15].) The aim of the present work is to examine the 
effect of the grain size and the inverse eutectoid transformation on the atomic 
mechanisms controlling the creep behaviour of mild steel.

Experimental technique

Mild steel (0.15% C) was obtained from Delta Steel Company, Cairo, Egypt. Its 
chemical analysis is given in the following Table:

Composition of the tested mild steel in wt %

c Mn Si P S Fe

0.15 0.4 0.1 0.05 0.05 balance

The as-received specimens were in the form of wires of gauge length 40 mm and 
of diameter 0.8 mm with an initial grain diameter of 5 pm. They were preannealed in 
vacuo at 800 °C for various annealing times (30, 60 and 90 min) followed by slow 
cooling with an average cooling rate of 2 °C/min, the achieved grain diameters were 10, 
15 and 20 pm, respectively. Slow cooling is required to allow the austenite to 
decompose into ferrite grains and granular pearlite islands. The purpose of this heat 
treatment is to obtain high ductility and to relieve internal stresses.

Optical microscopy was carried out after etching in 1 pet. Nital. The 
metallographic micrographs of preannealed samples indicated the formation of 
primary ferrite grains (see Fig. la).

A simple creep lever machine was used for creep tests under a constant stress 
(a = 7 Kg/mm2) at various temperatures ranging from 660 to 750 °C, increasing in steps 
of 10 °C to include the eutectoid temperature (723 °C). The creep run was repeated 
several times on a number of samples until reliable and reproducible results were 
obtained.

Structural investigation by means of light microscopy and X-ray diffraction were 
carried out before and after the creep test. To this end the deformed samples were 
slowly cooled in the vicinity of the eutectoid point.
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10 j*jm
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Fig. la. Metallographie micrographs on mild steel preannealed at 800 °C for 30,45, 60 min and cooled at a 
cooling rate of 2 °C/min (Magnification x 450)
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Experimental results

The creep deformation (e%) was recorded as a function of the creep time (f) for 
each temperature. The creep curves for samples with various grain sizes are shown in 
Fig. (lb). The sequence of the creep curves with respect to the temperature was 
anomalous in the transformation region, i.e. between 700 and 750 °C. This anomaly, in 
terms of the stationary creep rate, is shown in Fig. 2a. (This rate was determined from 
the slopes of the linear parts of the creep curves.) The stationary creep rate was affected 
also by the initial grain size (Fig. 2b): at temperatures below the eutectoid point, the 
stationary creep rate increased with increasing initial diameter, while at temperatures 
above this point the rate decreased with increasing initial grain diameter.

The energy activating the steady-state creep was found to be independent of the 
grain size, but it was dependent on the range of the testing temperature (Fig. 3).

0 10 20 30 40
time, t [min]

Fig. lb. Creep curves for mild steels with various grain diameters crept under a constant applied stress of 
7 kg/mm2 in the temperature range of 660 and 750 °C
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Fig. 2a. Temperature dependence of steady state 
strain rate for annealed mild steel with various grain 

diameters

• Ю jum

a) b)

Fig. 3. Relation between creep temperature and logarithmic strain rate for mild steel samples with various 
grain diameters a) 6  =  256 ±4kJ/mole,' T  =  660 -  690°C b) £) =  260 ±4kj/m ole, T  = 700 -  720°C
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Fig. 4 shows the lattice parameter, a, the X-ray line width, AL, and the grain 
diameter, G. D., of the deformed material as a function of the creep temperature. The 
lattice parameter and the line width has a minimum on the samples which crept with 
the highest anomalous strain rate. On the other hand, the post-creep grain diameter 
increases with increasing creep rate as long as the grain size is not determined by the 
phase transformation taking place upon cooling. (The iron carbide phase cannot be 
observed here via X-ray diffraction, due to its small volume fraction.)

Fig. 4. Grain diameter (G. D.), lattice parameter (a) and line width (AL) after creep fracture at various creep
temperatures
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Discussion

The stationary creep rate shows an anomalous temperature dependence in the 
temperature region of the inverse eutectoid transformation, i.e. between 690 and 
750 °C. This behaviour may be attributed to the effects of the phase transformation on 
the microstructure, when we bear in mind that the kinetics of the transformation 
depends also on the initial grain size of the material [1-3].

At temperatures below the eutectoid point, i.e. between 690 and 720 °C, the 
stationary creep rate increased both with the initial (Fig. 2b) and with the actual grain 
size (Fig. 4). This is in accordance with the expectation, since with increasing grain size 
the materials become softer. Further on, the spherodization, coarsening and 
dissolution of the carbide phase increases both the free path of the dislocation motion 
and the rate of recrystallisation in the ferrite matrix. Since both effects soften the 
material, the explanation of the strain rate increase via the transformation is at hand.

At temperatures above the eutectoid point, i.e. between 725 and 750 °C, the 
stationary strain rate is inversely proportional to the initial grain size. This effect may 
be ascribed to the influence of the initial grain size on the austenitization [1-3]. The 
behaviour at a certain initial grain size can be explained as follows:

At the very beginning of the creep, the material consists of ferrite, carbide and 
austenite. Slightly above the eutectoid temperature the rate of austenitization is 
relatively slow, hence the austenite grains are small and have a relatively high solute 
content, since the carbide is already dissolved. Slightly above the eutectoid temperature 
this solid solution strengthening should bring about relatively low creep rates (Fig. 2a). 
As the austenite grains grow, a second softening is expected, in agreement with the 
observations (Fig. 2a).

The activation energy of creep below the eutectoid temperature was about 256 
±  1 kJ/mole which is in good agreement with the activation energy for the 
decomposition of pearlite [16]. This supports the conclusion that the anomalous creep 
behaviour in the vicinity of the eutectoid temperature was mainly due to dissolution, 
spherodization and coarsening of carbide in pearlite. The driving force of these 
processes is the approach to the actual equilibrium.

The X-ray data of Fig. 4 prove that the internal stresses relax both during creep 
and in the course of phase transformation upon cooling. The first conclusion is based 
on the line width decrease below the eutectoid point and the second suggestion is 
supported by the line width decrease at creep temperatures, where the investigated 
structure was due to a common eutectoid phase transformation taking place during the 
cooling of the crept samples.
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A proposed model of scattering of X-rays on atoms is criticized and it is shown that a 
Rayleigh Mie scattering, based on the shadow effect of the photoelectric absorption and the 
Compton scattering only, cannot explain the coherent scattering of X-rays.

Two papers have been published recently in this journal [1, 2], criticising the 
usual treatment of X-ray scattering on atoms and pointing out some apparent 
contradictions in the theory. Herewith we would like to show that the contradictions 
presented by the author are not existing at all and the proposed new way of 
treatment—the perturbation of the wawe field by “opaque” electrons—cannot explain 
the process of scattering. All questions touched upon in [1] and [2] will not be 
discussed here, however. We shall restrict ourselves to the important points only.

1. “Thomson scattering”

The correct treatment is based on quantum mechanics. This does not give simply 
an “interpretation of the Thomson scattering” but offers a unified, complete 
description of the scattering. The theory requires the solution of the Schrödinger 
equation in the presence of the electromagnetic field. The main difficulty of the 
quantitative treatment is to find the appropriate solutions of the Schrödinger equation
[3], but we can make important statements without knowing the exact form of the 
wave-functions. i.

i. We know that the perturbing electromagnetic field results in charge oscillations 
(and this is not a “dubious philosophy”) which can be described as oscillating 
current density. On this basis one can define the dielectric and magnetic 
susceptibilities (polarizabilities) of the atoms for X-ray frequencies and these can be 
expressed by the set of the stationary (unperturbed) eigenfunctions of the 
Schrödinger equation by expanding the perturbed wave function as a linear 
combination of these orthonormal eigenfunctions [4, 5].
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186 L. ZSOLDOS

ii. The existence of the “coherent” and “incoherent” scattering is an inherent property 
of the scattering of X-rays on bounded electrons (and not of the electron itself) and 
the well known relation

ffot fcoh~ff;nc I p

г
X f ij= 1

+ Ie\  Z  — Z l/;l2-  X X \ f » \ 2 ) * Z I ( 1 )

i* k

is not the definition of the incoherent part of the scattered intensity (as stated in [1] 
following Eq. (4a)), but the result of the orthonormality of eigenfunctions. (For the 
notations see [1].)

iii. For atoms with single electron Eq. (1) reduces to

/coh = /el/ |2. Л„с = /Д1-|Л2), /.« = /«, (2)
but this does not mean that “each electron contributes (to the total intensity) by one 
electron unit” (Ie). This is obvius if we consider the integrated scattered intensity 
from two samples, having the same structure but consisting of different atoms (e.g. 
Si and Ge). At least for thin crystals the integrated intensity is propotional to Z 2 
instead of Z, because the intensity redistribution, as a result of the coherent 
scattering, takes place not only within the scattered waves but within the whole 
wave field.

iv. It must be also emphasized that the assumption of “continuous tunable oscillators” 
is not necessary. It is a simple forced oscillation taking place, far from the 
absorption edge (the resonant frequency), and therefore it is trivial that any 
frequency can be “reproduced” by the scattering whereas the atom remains in the 
original but perturbed state.

2. Agreement with physical optics

It is claimed in [2] that “coherent scattering” should be explained on the basis of 
the existing laws of the physical optics, the Huygens-Fresnel and the Babinet 
principles.
i. The application of the Huygens-Fresnel principle for slits and obstacles being much 

smaller than the wavelength is questionable [6], and even the most rigorous 
formulation, the Helmoltz-Kirchhoff integral theorem contains no information on 
the mechanism of the scattering. The theorem is simply the consequence of the wave 
equation and must agree with any consequences of the Maxwell equations, too.

ii. Similarly, there is no contradiction between the existing treatment of scattering and 
the Babinet principle, which is a very useful theorem, but again gives no information 
about the origin of the scattering.
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3. The application of the Rayleigh-Mie scattering

The application of the Mie theory of scattering, without further supplementary 
assumptions, considering the effect of charge oscillations, cannot explain the scattering 
of X-rays on atoms.

1. The Mie theory also presumes implicitly some charge oscillations near the surface, 
through the boundary conditions, implied in the values of the conductivity and the 
dielectric constant.

2. For very small particles (Rayleigh scattering) the Mie theory gives a scattered 
intensity proportional to A- 4 , whereas for X-rays /coh is practically independent of A. 
(The monotonous decrease with sin 9/A is the result of the electronic structure of the 
atoms.)

3. Coherent X-ray scattering is often regarded as a special case of Rayleigh scattering 
[7,8], but also in these cases the treatment starts always with the consideration of the 
charge oscillations in the atoms. Otherwise we have to define appropriate boundary 
conditions and the definition of the boundary itself would result in several serious 
difficulties.

4. The Mie scattering is not necessarily connected with the opacity of the objects. The 
absorption often plays a secondary role in modifying the wave field. 4

4. The “shadow effect”

A simple shadow effect of the photoelectric and Compton effects cannot explain 
the Z and wavelength dependence of the atomic form factors.

i. At the absorption edges the “opacity of the electrons” suffers drastic changes 
(jumps) and there are no similar changes in the real parts of the form factors. This 
occurs in the imaginary part of the dispersion correction (/") only.

ii. It would be rather difficult to explain with the model that the real part of the form 
factor (scattering) is usually much greater than the imaginary one (absorption).

iii. The assumption that “if the opacity o f  such (excitable) electrons exceeds very much 
the average value, the effect (increased scattering) must change the sign. . . ” is false 
and has nothing to do with the Babinet principle.
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EIN M A G N E T O H Y D R O D Y N A M IS C H E S  
D Y N A M O -M O D E L L

J. S za b ó

Technische Universität fär die Schwerindustrie, Lehrstuhl für Physik 
Miskolc, Ungarn

(Eingegangen 16 Juni 1983)

Es wird gezeigt, dass das anfängliche magnetische Feld durch spezielle magnetohydrodyna­
mische Strömungen verstärkt werden kann. Vorausgesetzt wird, dass die hydrodynamische 
Viscosität des Plasmas vernachlässigbar klein, die elektrische Leitfähigkeit aber endlich ist. Es 
werden zwei zweidimensionale Dynamo-Modelle ausführlicher untersucht. In dem ersten Modell 
bewegt sich ein halb-unendlich ausgedehntes Plasma, in dem zweiten eine Plasmaschicht in einem, 
anfänglich homogenen magnetischen Feld. Es ergibt sich, dass das magnetische Feld in beiden Fällen 
durch die Strömung des Plasmas verstärkt wird.

1.

Es wird heutzutage allgemein angenommen, dass das Problem der Sonnen­
flecken mit Hilfe der Magnetohydrodynamik zu lösen, dass das starke Magnetfeld in 
den Sonnenflecken mit einem magnetohydrodynamischen Dynamo-Modell zu 
erklären sind. Obwohl das — ziemlich zusammengesetzte — Problem der Sonnenakti­
vität noch nicht endgültig, oder befriedigend gelöst ist, sind diesbezüglich interessante 
Ideen veröffentlicht worden. In erster Linie sind vielleicht die Arbeiten von Gurevich 
und Lebedinsky [1], Cowling [2], Parker [3], Schlüter und Temesväry [4], Babcock
[5] und Steenbeck [6] zu erwähnen. Von allen diesen Verfassern wird angenommen, 
dass die Sonne ein allgemeines (ewtl. bipoláris) Magnetfeld besitzt und dass das starke 
Magnetfeld der Sonnenflecken ein sekundäres Feld sei, das durch Strömung von gut 
leitenden Plasmamassen in dem primären, allgemeinen Magnetfeld induziert wird.

Man hat auch schon versucht, das Magnetfeld der Sterne mittels ähnlichen 
magnetohydrodynamischen Dynamo-Modellen theoretisch zu erklären [7].

Es sei noch erwähnt, dass man im Laboratorium sehr intensive elektrische 
Ströme und sehr starke magnetische Felder so induzieren konnte, dass man 
Plasmabündel quer zu dem primären, äusseren Magnetfeld eingeschossen hat [8].

Wegen der Kompliziertheit des Gleichungssystems der Magnetohydrodynamik 
gibt es wenige instationäre magnetohydrodynamische Randwertprobleme, welche 
man exakt lösen könnte. Auch deshalb wird es vielleicht lehrreich sein ein exakt 
lösbares, zweidimensionales magnetohydrodynamisches Dynamo-Modell ausführli-
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cher zu untersuchen. (Das entsprechende stationäre Problem wurde bereits im Jahre 
1937 von Hartmann theoretisch [9] und noch im selben Jahr von Hartmann Und 
Lazarus [10] experimentell untersucht.)

2.

Wir wollen zuerst das folgende, vereinfachte Modell untersuchen. Das 
homogene, inkompressible und unendlich ausgedehnte Plasma befindet sich zum 
Zeitpunkt t = 0 im homogenen, äusseren Magnetfeld H0. Die z-Achse des Cartesischen 
Koordinatensystems wählen wir in der Richtung von H0. Die Geschwindigkeitsvertei­
lung für r= 0  sei vx = v0I(z), wo J(z) =  1 für z< 0und  / (z) =  0, für z>0. Wir untersuchen 
das in der Richtung x induzierte magnetische Feld, die Geschwindigkeit vx und das in 
Richtung y induzierte elektrische Feld Ey für t > 0.

Die Anfangsbedingungen lauten:

vx = v0I(z), 

Hx=0,

vy =  0, vz = 0

Hy = 0, HZ = H0 für i = 0.

P = P>

( 1 )

Die hydrodynamische Viscosität der Flüssigkeit wird vernachlässigt, die elektrische 
Leitfähigheit ist aber endlich. In diesem Fall sind die Grundgleichungen der 
Magnetohj drodynar';u'

P Tt +p(vf7)v =  - V p - (2)

F v= 0 , (3)
/,2

—  = F x ( v x H ) + — d H , 
öt 4лст (4)

„  „  IdH
P x E = ------— ,c dt (5)

оIIXь. (6)

wo die gewöhnlichen Bezeichnungen gebraucht wurden. Aus der Symmetrie des 
Problems folgt, dass die hier vorkommenden Grössen nur von der Koordinate z und 
von der Zeit t abhängen. So bekommen wir aus (2}-(6):

dvx dvx Hz dHx 
P~dt +pVzl h  = 4 n ~ d T ’ (7)

(8 )
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EIN MAGNETOHYDRODYNAMISCHES DYNAMO-MODELL 191

ëHx = H dVx c2 d2Hx 
dt z dz 4 na dz2

dHz _  c2 d2Hz 
dt 4л<т dz2

dEy _  1 dHx 
dz c dt

(9)

( 10)

( 11)

Hier haben wir schon in Betracht gezogen, dass nach (3) bzw. (6) die Grössen vz und Hz 
von der Koordinate z unabhängig sind. Aus den Anfangsbedingungen und aus den 
Gleichungen (8) und (10) folgt:

t>z = 0; HZ = H0 . (12)

Es ist zweckmässig, dimensionslose Veränderlichen einzuführen:

V0
и H* { =

z t
Ho' c2 ’ T” c2 ’

4 nav0 4navl

p -  p E -  E> k2 = Hl
H2o’ r0H0 ’ 4Ttpvl '
8 n c

(13)

Mit diesen Veränderlichen lassen sich die Gleichungen (7), (8), (9), (11) folgendennassen 
schreiben:

-  = Д2-  (141
dz d f  (14)

~ ( P  + h2)= 0 ,

d h  du d 2h  

dz = dd+ W ’

f ö _ d h
~ d £ ~ l h '

Die Anfangsbedingungen haben jetzt folgende Form:

h=0, и = 1(0, = — S(0, für г = 0 .

(15)

(16) 

(17)

Die Lösung der Gleichungen (14)—(17) suchen wir mittels Laplacesche- 
Transformation hinsichtlich z. Die Laplacesche-transformierte einer Funktion cp(0 z) 
bezeichnen wir, wie folgt:

<p(0s)=jq>(0z)e~”dz. (18)
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Nach der Laplaceschen-Transformation bekommen wir aus (14) und (16):

sm- /(£ )  = A2^ ,  
CÇ,

(19)

r  dû  d 2R

sli~ e i  + W
(20)

Eliminiert man die Grösse и aus diesen beiden Gleichungen und berücksichtigt man, 

dass ^  = — Ô(Ç) ist, so erhält man:

d2K _  s2 <5(£)
dt,2 s +  A2 s + A2 (21)

Jetzt nehmen wir die Fourier-transformierte der Funktion Я nach £, die wir 
folgendermassen bezeichnen:

h ( f c , s )  =  Í  h(Ç,s)e ikidÇ, ( 2 2 )
— 00

und die Invers-transformierte:

-  00

(23)

Für die Funktion h(k,s) erhalten wir aus (21):

h(k, s) =
ï + A2

k2 + s +  Я2

(24)

Die Invers-transformierte von h(k, s) hinsichtlich der Fourierschen Transformation ist 
leicht zu finden:

£(<!;,s) =
»ICI

—e s n u
2s y/s + Àe

(25)

Bei Umkehr der Laplaceschen Transformation ergibt sich:

А «,.)-- й+1{1.-‘-+ 3 .
со e Rt cos Rt

VÍ R - V
R ^ j R - k 2

dR. (26)
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Es ergibt sich auf ähnliche Weise für die (dimensionslosen) Grössen и und E:

u(£,t)= \  +e x*l +2 2n

-Rr°° e sin -

Í у к - я 2
R(R—X2)

dR,

u n 2 Jt
*«■*>-2  T  2

oo

- i jA*

Rt
s / R - l 2
R

dR,

(27)

(28)

wo das obere Vorzeichen für £>0, das untere für ^< 0  gilt.
Es wurden also ein zusätzliches Magnetfeld in der Richtung der Strömung, und 

ein elektrisches Feld senkrecht zu der Strömungsrichtung und zu dem anfänglichen 
Magnetfeld induziert. Für r-»oo, d. h. für f->oo verschwinden die beiden letzten 
Glieder in (26H28). In diesem Grenzfall wird das induzierte Magnetfeld Hx = ̂ /n p  ■ v0,

V H
und das induzierte elektrische Feld Ey— 0 0 homogen; das ganze unendlich

2c

ausgedehnte Plasma bewegt sich mit der Geschwindigkeit vx = у  ; die für f =  0 sich

bewegende Plasmamasse wurde also auf die Hälfte der anfänglichen Geschwindigkeit 
gebremst, die anfänglich ruhende Plasmamasse wurde aber in Bewegung gesetzt; die 
relative Geschwindigkeit der Plasmamassen in den beiden Halbräumen z > 0 bzw. z < 0 
klingt mit der Relaxationszeit tr =  pc2!aH\ ab.

Betrachten wir noch den speziellen Fall, wo die Strömungsgeschwindigkeit v0 in 
dem Gebiet z <  0 mittels irgendeiner äusseren Kraft für alle t < 0 aufrecht erhalten wird, 
und wo das Medium in dem Gebiet z> 0  für alle t> 0  festgehalten wird.

Da es jetzt für alle i> 0  gilt, dass vx = v0l(z) ist, so bekommen wir aus der 
Gleichung (16):

dh _  d*h 
dz dÇ2 - * ( ö - (29)

Die für r = 0  und £ =  oo verschwindende Lösung der Gleichung (29) ist:

die Fehlerfunktion ist.

(30)
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|Л
Für —= 4 1 erhalten wir die asymptotische Formel: h(^,x)x  

s / x

'4navlt
Hx(t)~H0

... z
fur fg>— =— . 

c
4 ncrv0

Durch Plasmaströmung im äusseren magnetischen Feld kann sich also ein starkes 
Magnetfeld induzieren. Nebenbei erwähnen wir, dass für die Konvektionszone der 
Sonne: cr/c2«  10 8 CGSE, v0x  104 cms_1: für t — 104 s ergibt sich Hxx 2.103 Oe.

3.

Wir untersuchen jetzt das folgende, weniger idealisierte Dynamo-Modell. Eine 
Plasma-Schicht von endlicher Dicke 2a bewegt sich in Richtung der x-Achse senkrecht 
zu dem anfänglichen, homogenen magnetischen Feld HZ = H0. Die sich bewegende 
Plasmaschicht ist in einem unendlich ausgedehnten Plasma von gleichem Charakter 
eingebettet. Wir nehmen noch an, dass eine nur von z und t abhängige Kraft in 
Richtung X auf die Plasmaschicht wirkt. Den Charakter dieser Kraft werden wir später 
näher angeben.

Die Grundgleichungen sind auch in diesem Fall die Gleichungen (2) bis (6) mit 
dem Unterschied, dass die hydrodynamische Bewegungsgleichung die äussere 
Kraftdichte F(z, i) enthält. Die Anfangsbedingungen lauten jedoch:

vx = v0 [ /  + (z + a) + /_ ( z - a ) ] ,

Hx = 0, Hy =0, HZ = H0, für r =  0 , (31)

P = Po >

wo

M ö =

M i ) =

1, für £> o
о, für £< 0

1, für £>0
0, für i < 0 '

(32)

Aus der Symmetrie und der Voraussetzung, dass die äussere Kraft nicht von den 
Koordinaten x und y abhängt, folgt, dass die zu bestimmenden Grössen nur von z und t 
abhängen. Es sind nun die Grössen vx, Hx und Ey für f> 0  zu bestimmen. Nach 
Einführung der obigen dimensionslosen Veränderlichen bekommen wir für die 
unbekannten Grössen, wie früher:

( 33)
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EIN MAGNETOHYDRODYNAMISCHES DYNAMO-MODELL 195

WO

dh du d2h

lh = dz + dZ1 ’

d£, ~  ~dx'

Ф(т,£) =
F c 2 

4 na pvl

(34)

(35)

(36)

die dimensionslose “Kraftdichte” ist. Die Anfangsbedingungen lauten jetzt in den 
neuen Veränderlichen:

u =  / +(£ + a) +  / - ( £ -a )

du
К

=  á(í +  a)á(^-a) für t = 0 ,

/i= 0 ,

(37)

wo

47t<Ji;0

(38)

Für die Kraftdichte Ф(£, т) nehmen wir nun an, dass sie nur in dem Intervall | £ | <tx 
wirkt und dass sie die Form hat:

Ф(£, т) = Ф(т) [/+(£ + *) + / - ( £ - « ) ] . (39)

Es wird weiter vorausgesetzt, dass die Funktion sich langsam mit т ändert, dass wir also 
schreiben können:

Ф(т) =  Ф(0) + тФ'(О). (40)

Die Gleichungen (33) und (34) lösen wir wieder mit Hilfe der Laplaceschen und der 
Fourierschen Transformation. Nach der Laplaceschen Transformation und nach 
Elimination von ü erhalten wir für die Laplaceschen Transformierte R(Ç, s) von h(Ç, т) 
die folgende Gleichung:

A2 \  d2F 1

1+
Ф(0) Ф
- V  + Ч0Л 

s3 J [* (€ + « )-* « ;- a ) ]

=  0 . (41)
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Nach der Fourierschen Transformation ergibt sich dann:

h(k, s) —

, ,  m  , *чо)
s s2 е~,кл—е~1ка
s + k2 k2 + K2

wo

(42)

(43)
_  s + k2 '

Die Fouriersche Transformation kann man ziemlich leicht umkehren; es ergibt sich:

я « ,в ) -

Ф(0) Ф'( 0)
S  S 2  £ * «  +  « )  _ £ * ( { - « )

s  + A 2 2к
für K | < a ,

(44)
. Ф(0) Ф'( 0)

s s2 e+Ka —c - *“
s  + A 2 2 k

g *141̂  für Ç>a

Nach der Umkehrung der Laplaceschen Transformation bekommen wir endlich:

h(Ç, т)= + £  Ф(0) + Ф'(0) | \ -  Mji -  1  + 2ae-2241 -  ^  + +

1
+  -  

71

1 Ф(0) Ф'(0)\__
K R2 R3

Ra
e Âtsin—, _ sin—, ^  . dR ,

яг
J  R - к 2 J  R - к2

für K l < « ,  (45)

1
A2 1

1 [ (  1 Ф(0) Ф'(
J t j  \R  R2 R

(0 )

а 1 > Ф(0)
А к2 J A2

е~Лт sin
Rot

----------- sin

+

dR ,

für I  ̂I >  a . (46)

Aus den Formeln (45) und (46) ist zu ersehen, dass für Ф(0) =  0, Ф'(0)=0 und т->со kein 
induziertes Magnetfeld existiert. [Dasselbe gilt auch für die Geschwindigkeit и(оо)]. 
Das will aber nicht bedeuten, dass es ohne äussere Kraft keinen Dynamo-Effekt gibt, 
sondern dass im Fall Ф(т) =  0 der Dynamo-Effekt, den das Integralglied enthélt, mit der 
Zeit abklingt. Die Relaxationszeit der Abnahme des induzierten Magnetfeldes ist auch 
jetzt t =  pc2/oHо.
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EIN MAGNETOHYDRODYNAMISCHES DYNAMO-MODELL 197

Betrachten wir noch den speziellen Fall, wo die äussere Kraft Ф von der Zeit 
unabhängig ist, d. h. wo Ф'(0)=0 ist. Wir bekommen leicht aus (45) und (46) für den

Grenzfall

h =

1
F :

осФ(О)
für £ < -o c ;

í#(0)
h = -

k2 ’

, аф (°) rh = -----fur i > a ;

für | £ | < a . (47)

Das induzierte Magnetfeld ist also mit der äusseren Kraftdichte proportional.

Der Verfasser dankt Herrn Prof. Dr. N. G. van Kämpen für wertvolle Diskussionen.
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From combined laser-microwave spectroscopy of the ls2s3Sl hyperfine structure (hfs) 
splittings in helium-like 6,7Li + ions, the magnetic dipole hfs interaction constant A and a small 
displacement ö of the F = 1 substate, caused by ls2s 3S,-ls2s ‘S0 hyperfine mixing, have been 
obtained. Analysis of A yields nuclear structure effects in the hfs splittings of the isotopes 6,7Li + . The 
result of a calculation of 6,7<5 with accurate integral-transform 2 'S0 and 2 3S, wave functions is 
presented.

1. Introduction

Methods of perturbation theory are of key importance for a quantitative 
understanding of the interactions between singlet and triplet states in atomic and 
molecular spectra. I. Kovács dealt with singlet-triplet perturbations in diatomic 
molecules [1-6]. In atomic spectra, the problem of singlet-triplet mixing has been 
discussed e.g. by Breit and Wills [7]. Regarding the hyperfine structure (hfs), Schwartz 
[8] and Lurio, Mandel and Novick [9] developed the principal formulae for the 
practical evaluation of the perturbations from the measured hfs spectra.

The present article briefly describes the measurement of hyperfine splitting 
frequencies in the L i+ ion spectrum and provides a theoretical analysis of the 
experimental results, including aspects of singlet-triplet hyperfine mixing.

The spectrum of singly ionised lithium is helium-like and thus of fundamental 
interest for modern atomic structure theory. Its characteristics like e.g. fine structure, 
hyperfine structure, isotope shift, Lamb shift and lifetimes can be calculated accurately 
with advanced perturbation methods. Many theoretical as well as experimental studies 
concerned the lowest excited states, the metastable ls2s 3Sj term (t%50 s) and the 
short-lived ls2p 3P multiplet (т»43 ns). A part of the Li+ spectrum for the stable

* Dedicated to Prof. Dr. István Kovács on his 70th birthday
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isotopes 6Li+ and 7L i+ with 2 3SX and 2 3P is shown in Fig. 1. Since the two isotopes 
have a nuclear spin, /  =  1 for 6Li and I = 3/2 for 7Li, hfs splittings arise in both states. As 
indicated by the frequency scale on the right side of Fig. 1 the size of the hfs splittings is 
between 1 and 20 GHz. The ls2s 3S, hfs splittings were measured with a combined 
laser-microwave technique [10, 11]. Somewhat modified, this experimental scheme
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Fig. 1. Energy level scheme of the ls2s 3S , and ls2p 3P  multiplets of 6,7Li +

had been applied for the first time to molecules and ions by Rosner, Gaily and Holt [12, 
13] and to atoms by Ertmer and Hofer [14]. The theoretical treatment of the 
experimental splitting frequencies concerns two different aspects:

a. The 2 3S, hyperfine structure arises exclusively from magnetic dipole Fermi 
contact interaction between electron spins and nuclear spin. Ignoring the influence of 
nuclear structure on the hfs splittings, the constant A can be calculated, using precise 
fundamental constants and relativistic and quantumelectrodynamic corrections, 
available in the literature. Thus a comparison between the measured and calculated A 
factors provides a small nuclear structure effect in the hfs. It arises from the fact that the 
nucleus, rather than being a point-like particle, exhibits a finite distribution of its 
charge and magnetism.

b. The precise laser-microwave measurement revealed a small energy displace­
ment Ô in the splitting pattern of the 2 3Sj hfs multiplet of 7Li + . The hfs operator 
selectively mediates a triplet -singlet interaction between the (2 3St, F =  /)  substate and 
the unsplit (2 lS0, F = I) state, causing a mutual repulsion of the two levels while the 
two 3Sj substates with quantum numbers F = I ±  1 remain unperturbed. The shift Ô can 
be therefore extracted without theoretical assumptions from the experimental data as a 
deviation from the Landé interval rule. A calculation of S with accurate integral 
transform 2 380 and 2 3Sj wave functions is presented. Electron exchange and 
correlation effects which differ for parallel (3Sj) and antiparallel (lS0) spins, are treated
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in detail, in order to obtain very good agreement between measured and theoretical 
values for this tiny perturbation. Hyperfine induced triplet-singlet mixing has been 
reported for various atoms, e.g.,for 3He [15,16,17,18], 87Sr [19,20] and Ba [21]. But, 
only in He is the mixing as simple in origin as in Li+, while the other atoms experience 
additional core effects. However, since 3He has a nuclear spin /  = 1/2, the 2 3St state 
splits into two hyperfine substates, and the displacement ô could not be extracted 
directly from the measurement [22].

2. Experimental setup and measurement

The experimental arrangement is shown in Fig. 2. Lithium atoms are evaporated 
from a stainless steel oven and ionized by concentric electron impact when leaving the 
oven aperture. A small fraction of the ions (about 10“ 3) is excited to the 2 3Sj state. 
After acceleration to a kinetic energy of200-400eV, an electrostatic lens system focuses 
the ions to a narrow and well collimated beam. The beam of a continuous-wave single­
mode dye laser crosses the ion beam at right angles and selectively excites ions from a 
certain 2 3St hfs substate to a suitable 2 3P hfs sublevel through a resonance transition 
at wavelength 2 = 548.5 nm. Since the 2 3P decays back to the 2 3St via all allowed 
channels, obeying the selection rule F — F ' —O, +1 , F and F’ being the hyperfine 
quantum numbers of 3P and .3S states, respectively, depletion of the initial 2 3St hfs 
substate by optical pumping occurs.

The L i+ beam then passes a waveguide where microwave transitions between 
adjacent F substates restore the original statistical level population. This is detected via

Fig. 2. Experimental arrangement of laser-microwave spectrometer and ion-beam apparatus
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an increase of resonance fluorescence light intensity in a second laser-beam ion-beam 
crossing zone. The microwave field in the waveguide is reflected back on itself at one 
end, so that one wave travels with the ion motion and the other wave in the opposite 
direction. Hence, as a function of frequency two Doppler shifted microwave signals 
appear. The lower laser beam is amplitude modulated with a frequency of typically 
2 kHz. The fluorescence signal in the second beam crossing region is monitored with 
lock-in technique at this frequency and stored in a multichannel analyzer. A 
microcomputer varies the microwave generator frequency in steps and synchronously 
switches the channel number. For each of the four frequencies, about 3 and 6 GHz in 
6L i+ and 12 and 20 GHz in 7Li+, a different waveguide setup had to be prepared. In 
Fig. 3 the microwave system with X and К band versions used for 12 GHz and 20 GHz 
is drawn. Fig. 4 shows the two Doppler shifted signals for the 2 3Sj (F =  3/2 — F = 5/2) 
transition of 7 L i+ .

allernative К- band version

Fig. 4. Doppler snitted microwave signals of 2 -’S! (F =  3 /2 - F = 5/2) transition in ’Li*
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3. Discussion of the experimental results*

a. Magnetic hyperfine interaction constant

A more detailed sketch of the 2 3Sj hyperfine multiplet of 7L i+ is given in Fig. 5. 
The measurement of both splittings yielded the magnetic hyperfine interaction 
constant A. In the case of the 2 3S] state A arises exclusively from Fermi contact 
interaction between electron spins and nuclear spin and can be expressed by the 
following formula [25]:

A(2 3Si)exp =  36a2 (g,lpN){mJmp) R x cM* [1 +  d rel(ls) + d qcd(ls) +  d M rel+

+ £( 1 + d rel (2s) + dqed (2s) +  A M rel)] ( 1 + A nuc) .

Fig. 5. Diagram of the 2 3S, hyperfine multiplet and 2 ’S0 state of 7Li + , including the F = /  =  3/2 
displacement (enlarged). The constant A can be extracted from the unperturbed (F =  5/2 — F = 1/2) splitting

M* = (1 + me/M )~3 corrects for the reduced mass of the nucleus. The terms in brackets 
represent relativistic (dre,; AM rel) and quantum-electrodynamic (dqed) corrections as 
well as corrections for the presence of the 2s electron (e) and for effects of nuclear 
structure on hyperfine splitting (dnuc = d). If all numbers equal for both isotopes are 
comprised in a factor C, the ratio

4 . „  = C V M * (1  + 7J)
C6g,6M * ( l + 6A)

can be transformed to

7Ле>рЧ 6М* .. 1 + 7A
6Aexp7g ,7M* 1 + 6d ~

1 + 7Л - 6Л = 1 - 6'7Л .

* Some of the results, including the values Ac,„ dnuc and p 2 ■ á(heor have been briefly reported in [23]. 
More recently theoretical values for Ô have been also presented by other authors [24].
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The expression 6,1 A = 6A —1 2A is called hyperfine structure anomaly. Evaluation of 
Acxp = Лса|(1 +  Л) for each isotope with the most precise data available in the literature 
for the constants and corrections leads to explicit values for 6A and 1 A. This means that 
a decomposition of the hyperfme anomaly 6,7A into the contributions of the single 
isotopes has been achieved. Taking 7,8d from [26] allows us also to calculate 8A. The 
measured splitting frequencies and extracted constants Aexp, together with the 
calculated values Acal and the nuclear structure effects A are compiled in Tables I and 
II. Nuclear structure effects in hyperfme structure of single isotopes have been obtained 
before only for hydrogen, deuterium, tritium and 3He and were treated theoretically. A 
review of these investigations can be found in [27].

Table I

Measured 2 3S, hfs splittings in MHz (Errors are 3<r)

"Li* F =  0 — F = 1 splitting 
F = 1 —F = 2 splitting

3001.780(50) 
6003.600 (50)

7Li + F =  1/2 — F =  3/2 splitting 
F =  3/2 —F = 5/2 splitting

11890.018(40) 
19817.673 (40)

b. Hyperfme induced 2 3S t —2 *S0 interaction

Comparison of the two 3Si hfs splitting frequencies of 7Li+ showed that the 
Lande interval rule does not hold strictly, indicating that a small perturbation of the 
2 3Sj wave function must exist. A small lowering ö of the inner hfs substate is inserted in 
Fig. 5, enlarged by a factor of about 104 with respect to the total splitting. The hyperfme 
quantum number F of this substate is equal to the nuclear spin quantum number /. The
2 *S0 state which has no hyperfme splitting and is represented by the quantum number
F = I is also drawn in the picture. The hfs operator selectively induces a triplet-singlet
mixing between the (2 3S,, F =  /)  sublevel and the 2 ‘S0 state [28]. This causes a mutual

A da Physica Hungurica 56, 1984

Table II

Experimental and calculated hfs interaction constants (in MHz) of the 2 3S, 
multiplet and nuclear structure effects. Experimental errors are 3tr. The errors 
of Ac,I and A are based on the assumption that the relativistic and radiative 

corrections are uncertain within 1 ■ 10“ 5 each.
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repulsion of the two levels and results in a small depression <5 of the (2 3SX, F = I) 
substate, since the 2 3S, lies below the 2 ‘Sq.

The hfs theory for Is configurations of two-electron atoms as developed by Breit 
and Wills [7], Schwartz [8] and Lurio, Mandel and Novick [9] serves as a basis for the 
calculation of Ô. Evaluation of the magnetic dipole matrix elements of an Is 
configuration as given in [9] provides the following energy submatrices:

6Li + ‘S0, F — 1 3S„ F=  1 7Li + ‘S0, F = 3/2 3Sj, F = 3/2

СЛ о II 0 v/2 
2~ a* ‘S0, F =  3/2 0

УТ5
4

3S„ F — 1
2 ' - J ~ w

<NII УТ5
4 - ̂  - W  2

Diagonalisation of the matrices provides the expressions

4" as (6Li+)
4 h e o r  =  -7----------------------------------  =  3 9 . 1 8 8 ( 3 )  kHz,

T as (6Li + ) + ^

15 a2f7Li + t
7<5iheor= TT - i — ^ ----- —  =  512.39(3)kHz.

- a sC U +)+ W

In the above formula the magnetic hfs interaction constant as is related to the constant 
A by as =  2A as defined in [29], while W  =  15339.62(20) cm “ 1 [30] is the 2 3S, -  2 1S0 
energy splitting. The diagonal and nondiagonal matrix elements in [9] contain 
identical spatial wave functions expressed by the same as. This is not completely correct 
because the exchange interaction between the two electrons differs for parallel and 
antiparallel electron spins. Since as used for the evaluation of (5|heor was taken from the 
2 3S, hfs measurement, ô'theoT includes the square of the diagonal spatial matrix element

<2 3St (rI ,r2) I á3(r,) +  <53(r2) I 2 »Soir, ,r2)> = d

rather than of the nondiagonal element

<2 3S ,(rt,r2) I <53(r,) —á 3(r2) I 2 1S0(r„ r2)> = n .

Multiplying S[heor with the factor p2 = corrects for this imperfection. The

calculation of p2 =0.725457(1) was performed [31] with accurate integral-transform
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wave functions from [32]. The experimental results for Ô together with the calculated 
values <5|heor and <5|heor • p2 are given in Table III. The error of <5|heor is dominated by the 
uncertainty of W, neglecting isotope shift and hyperfine splitting leading to an error of 
1-2 cm " *. The accuracy of p2 is limited to a few parts in 105 since the wave functions in 
[32] have been developed for infinite mass Li nucleus.

Table III

Experimental and calculated values (in kHz) for the displacement ó of the 
2 3St hfs substate with F = I. Experimental errors are 3<r. For errors in á;he„  

and p2 see text.

< 5 « , p ^ t h e o r p 2 ■ <5;heor

6Li + 
7Li +

13(37)
366(29)

39.188(3)
512.39(3)

28.429(3)
371.72(4)

4. Conclusion

The combined method of laser optical pumping and microwave transitions has 
been used to determine the splitting frequencies of the metastable 2 3St hyperfine 
multiplet of 6'7Li+. The resulting magnetic hyperfine interaction constants A are 
compared with calculated values using the most precise fundamental constants and 
relativistic and quantum-electrodynamic corrections available in the literature. A 
nuclear structure effect A in the interaction constant A is extracted for 6Li+ and 7Li+, 
thus yielding a decomposition of the hyperfine anomaly into the contributions of the 
single isotopes.

A small deviation Ó of the 2 3St hfs splitting frequencies from the Landé interval 
rule was found for 7Li+. This displacement of the (2 3Sl tF = I )  substate is caused by 
2 3S ,—2 ^ 0  hyperfine mixing. It could also be calculated with accurate wave 
functions, taking into account that the spatial parts of the 2 3Sj and 2 'S 0 wave 
functions are not identical, since the electron exchange interaction differs for parallel 
and antiparallel electron spins. Very good agreement between measured and calculated 
values is obtained.
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Amorphous semiconductors contain broad distributions of localised states in their mobility 
gaps. The paper presents an analysis of how the density of these states may be deduced from the field 
effect. In response to the application of a transversal field Fx a space charge distribution results. The 
gross features of the corresponding distorted band structure are reflected in the longitudinal 
conductance Gz. The main task is to convert this implicit information into explicit formulae which 
enable the direct estimate of the density of the localised states from the measured G, versus Fx 
functions. This is accomplished by studying a somewhat simplified model which approximates the 
density of states by piecewise constant parts.

Wide gap amorphous semiconductors contain broad distributions of localised 
states in their mobility gaps, i.e. between Ev and Ec in Fig. 1. For any practical 
description, there is a need for a reliable estimate on the density function g{E). The field- 
effect method, first applied to amorphous semiconductors by Spear and Le Comber 
[2], is regarded widely as one appropriate to the task.

Fig. 1. Density of states distribution for a-Si prepared by the glow discharge method (from [1])

From the experimental point of view, the method looks deceptively simple. In a 
thin film (d ~  1 pm) of amorphous semiconductor (a  SC), the longitudinal conductance 
Gz is measured whenever the new steady state has settled down in response to the 
deliberate alterations in the transverse electric field Fx. The resulting distortion in the
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energy profile can be characterized by the band bending Щх) (Fig. 2). Owing to the 
wide gap, the contribution of the mobile charge carriers to the space charge p[t/(x)] 
will usually be negligible compared to the localised charges.

In contrast to the space charge forming ability, only the carriers with energy 
outside the mobility gap will contribute noticeably to the conductivity <x, at least at not 
too low temperatures T ( k T >  10 meV). Since the equilibrium concentration of the

Fig. 2. Band bending by the field effect

mobile carriers varies as exp (C///cT), the changes in U(x) induced by Fx may be felt 
strongly even in the conductivity integral Gz~  J <r[l/(x)] • dx. Furthermore, since the 
behaviour of U(x) depends also on the energetic distribution of the charged localised 
states, the information implicit in Gz may be sufficient for deducing a g(E) function. 
However, the matter of interpretation has never been settled with certainty [3-4]. 
Thus, for example, [3] suggests a procedure which claims validity for arbitrary density 
of states functions. It leaves, however, the real task to the persons who try to interpret 
their data: the g(E) function must be adjusted until self-consistency is obtained. On the 
other hand, [4] admits that its procedure assumes relatively thick films (d > 1 pm) and a 
quadratic function for the logarithm of g(E). Nevertheless, the relevant parameters still 
have to be found by adjustment. Being aware of the aforementioned difficulties, we wish 
to circumvent these problems by restricting ourselves to the study of deliberately 
simplified distributions of the localised states. If such a starting point is once accepted, 
however, our treatment will proceed without further simplifying assumptions, and we 
will provide explicit formulae for the calculation of the few parameters characterizing 
our approximate model.

The review article [1], from which also Fig. 2 is taken, summarizes the notions 
prevailing among experimenters concerning the nature of the band gap states. It is thus 
suggested that the broad minimum of g(E) around the midgap arises from overlapping 
tails of two distributions of defect centres which differ by their charge state. The dotted 
curves in Fig. 1 show a likely division of g(E) into its two components, which is also 
consistent with the observed Fermi level position. Distribution gA, extending from the 
Ec side into the gap contains acceptor-like states which are neutral when empty, so that

Acta Physica Hungarica 56, 1984



DENSITY OF GAP STATES IN AMORPHOUS SEMICONDUCTORS 211

below the Fermi level Ef  they will carry a negative charge. Curve gD contains states 
from the opposite side of the gap which are neutral when occupied and therefore 
provide positively charged donor-like states above EF. The charge states described are 
identical to those envisaged in the Cohen-Fritzsche-Ovshinsky model [5] but the 
important difference is that here we are dealing with the overlap of defect distributions, 
whereas the original CFO model considered the tail state overlap in alloy glasses.

Fig. 3. The simplified density of states model

Let us now turn to our model of the gap states (Fig. 3). As it is apparent from the 
comparison with Fig. 1, our model retains the gross overall shape of the gap 
distribution, while replacing the smooth transition regions by abrupt jumps in g(E). In 
our opinion, however, this approach may be justified on the ground that the more 
detailed studies all agree on the point that the resolving power of the field effect cannot 
be better than a few k Tanyway. The values of £ , ,  E0, E2 and g i , g 0,92 are as yet free 
parameters.

We have in mind a double-gated arrangement such that the dielectric 
displacement is the same at both sides \xs\ = d/2 of the semiconductor:

£o£,F = e0esc- U'Jq*, (1)
where U's is the potential energy gradient within the semiconductor at |x ,|, 
£0 =  8.8542-10“ 14 As/Vcm, q* = 1 eV/V, while the elementary charge will be 
distinguished by q= 1.6- 10“ 19 As. Typical values are £, = 4 for the insulator and e*. 
= 20 for the amorphous semiconductor (d =  1 pm).

If we assume that the role of the possible surface states is negligible, then charge 
neutrality must hold everywhere in the a-SC in the unperturbed state, which is also the 
sensible reference zero for band bending:

po = p(U =  0) =  0. (2)

In this state of neutrality (flat band condition), E0 is the position of the Fermi level in 
the reference system relative to the band structure. Mathematically, E0 is the root of the 
following equation:

Î  9 d(E) • [1 -  f(EJ]dE =  Í gA(E) • / (£ )  • dE, (3)
Ev E„
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where £ 0 is contained in the Fermi-Dirac occupation function:

/(£ )  =  [ 1+exP £ fĉ ° ]  • (4)

Since the gA, gD states too far away from E0 are inactive, numerical-graphical estimates 
will convince that E0 must lie somewhere close to the middle of the gap, where gA(E0) 
and gD(E0) are of the same order of magnitude.

In the modulated case, thanks to the insulators, no net current j x  may flow in the 
steady state. Thus the concept of the Fermi level is still meaningful, and it is horizontal. 
On the other hand, the level E0, fixed to the band energy system, is displaced by just 
U(x). Where U(x) Ф 0, p(U) is given by the charge imbalance between empty donors and 
occupied acceptors:

f W  = q- Í 9d(E) • [1 —/ ( £  + (/)] ■ dE — q- Í дл(Е) • / ( £  +  U) • dE, (5)
Cl c,

By making use of (2) and (3), however, (5) may be rewritten:

p(U) = p ( U ) - P o = -  Mo ■ ?  / ( £  +  U)-  /(£ )  d E * g 0 q- U(x). (6)
Cl

(6) is valid for E0 — E2< U < E 0 — E 1. As it can be shown by some elaboration, similar 
relations hold:

p(U)*9i-q- U for £ 0- £ 1< l / < £ 0- £ „ ,

p(U)xg2 q- u for E0 — EC<U <E0 — R 2.

(7)

(8)

Thus the individual gA, gD functions are important only in setting £ 0; otherwise the 
field effect senses only their sum g(E)=gA(E) + gD(E).

By (6H8), the Poisson equation takes the form:

d2U _  U 
dx2 ~  L2 ’

(9)

where L denotes the respective Debye length:

L = ( 10)

At moderate fields the modulation is limited so that (6) is valid through the whole cross 
section. Then the solution is of the form:

U(x) = U'.-L 0
cosh(xJL0) ■ sin/j(x/L0). ( 11)
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We plotted both L and L- tanh(xJL) in Fig. 4. Also, on the right hand scale are 
indicated the values of Us induced by an external field F  =  105  V/cm across the 
insulators, which by ( 1 ) corresponds to t/' =  2 • 104  e V /cm. One can judge from this that 
working with practical fields, sizeable modulations (a few к T, at least) can be expected 
only below g0< 101 8  cm - 3  eV-1. We dealt with the case of higher g0 densities in two

Fig. 4. Debye length L  versus density of localised states g. The plot of L- tanh(xJL) if read off the right hand 
scale, gives also the values of U, induced by an external field F = 105 V/cm across the insulators with i, = 4

recent publications [6-7]. Here we mention for completeness that in that case a 
minimum has to be found in the empirical (dG/dF) • (1/F2) versus F function. By this,

_  £q £.•
9o~ qkT

■ 0.6564 • <x0

• kT- min
( 12)

Once an average g0 is obtained, then the corresponding sweep in energy Us can be 
calculated via (1 0 ) and ( 1 1 ).

Let us now turn to the case when g0 is low enough to allow modulations U large 
enough so that the shoulders Ey or E2, if present, may be reached. (For a practical 
estimate, let 0 o = lO1 7  cm - 3  eV-1, E2 — E0 = E0 — El = 0.4 eV. Then the right hand 
scale of Fig. 4 would immediately give |C/S| =0.21 eV for F =  10s V/cm. To achieve 
|t /J = 0 .4  eV, F=1.9 105  V/cm suffices, which is well within the feasibility of 
practical fields.) It was proved in [ 6 ] that in this range log G varies against F with 
a slope proportional to L (Fig. 5). A heuristic explanation may sound like the 
following. Whenever U, is several kT  large, then let x, denote the place where 
(7(x1) = M1 ■ kT,uy =0.37251. (The particular choice for u, will be justified below on the 
ground that it is a root of the exponential integral: Ei(u2) =  0, see [8].) Then the 
variation in G takes part mostly in the much better conducting skin-region beyond x l , 
where и(х)= f/(x)/(/cT) is nearly exponential:

u(x)«u! exp (13)
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G x G n

а ( х ) к а 1 exp [ |ф с )-и 1],
Xs

exp [u(x) — u jd x ;
(TjL

exp u, J
Xl

log G «  const +  us + l/us — log us,

exp и 
I l ­

dii,

(14)

(15)

(16)

i Ä z / , - 1
dus \  us

(17)

where we made use of the properties of Ei(uJ in (15) (see [8]) and of (13). Since l/us< 1 
and L is by (10) connected to g, the explicit formula for the latter: .

£0 esc _  £0q* / kT  d log G\  2 
qq*l3 ~  ex q \  e, dF ) (18)

Owing to the logarithmic derivative, the value of the flat band conductance G0 does not 
enter into (18). However, the flat band condition is the reference zero for the energy 
sweep Us.

Fig. 5. Plots of log G/G0 versus inducing field F. The parameters are the orders of magnitude of g

In Fig. 5, we give some characteristic examples (T= 295 K). For completeness, the 
plots for g = 1015 and 1016 cm-3 eV“ \  respectively, are also given, assuming that the 
whole mobility gap would be filled uniformly by these unusually low g0 densities, which 
are seldom encountered in practice. The uppermost dashed line represents the takeover 
in controlling the space charge by the mobile carriers in the delocalised bands [6].

By contrast, the lowest broken line demonstrates that at field F i the shoulder E2 
has been reached. (For E2- E 0 — 0.4 eV this happens at about F , » 2  • 105 V/cm, as it 
was already mentioned.) Should this broken line be obtained experimentally, with 
unknown densities and location of the jump in density, the procedure is straightfor­
ward. From the logarithmic slope below F 1; g0x  1017 cm-3 eV~1 can be deduced via 
( 18). Then, with the help of (10) and ( 11 ), U j = E2 -  E0 can be calculated. The procedure 
is entirely similar above F t . Obviously, the method may be generalized also for the case 
when g(E) is approximated by piecewise constant parts, provided each constant part 
extends at least several kT  in energy (>0.1 eV).
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A classical relativistic theory is proposed describing the hydrodynamics and thermody­
namics of fermions in the presence of a nonlinear scalar field, which contributes to the rest mass of 
particles. The macro and microdynamics (i.e. hydrodynamics and Fermi motion) are separated in a 
covariant way. The obtained equations of motion, of field and of state are consistent with 
thermodynamics and with the conventional formulation of relativistic hydrodynamics. Static 
solutions can describe e.g. cosmological domain walls or scalar bags. The acoustic and scalar waves 
propagating in the medium have been investigated.

Introduction

The scalar fields, having been frequently discussed in the forties and the fifties 
[1]—[7] appeared again in particle physics: the non-vanishing vacuum expectation 
value of a scalar field serves as a background of the motion of other particles and gives 
them masses via the Higgs mechanism. But at sufficiently high energy the scalar fields 
occur as independent degrees of freedom. They may play an important role in the 
formation processes and in the equilibrium state of macroscopic objects on 
astrophysical and cosmological scale (quark stars, vacuum domains, etc.). It justifies 
the effort to investigate the interactions of scalar fields with other fields and particles in 
the frame of classical physics. The results and solutions, the possible structures can 
serve as guides to the non-perturbative investigations in the nonlinear quantum field 
theory.

The basic phenomenon of the Higgs mechanism is the contribution of scalar field 
to the masses of other particles. This phenomenon already occurs in the classical 
relativistic physics [1]—[4]. This fact motivated the choice of methods used in the 
present paper: the treatment is all along relativistic, but quantum phenomena are 
neglected. The only exceptions are zero point energy and pressure of fermion systems, 
occurring already on macroscopic level in the thermodynamics of fermion matter.

Earlier papers (e.g. [7], [8], [9]) dealing with the interaction of fermions and 
scalar fields on semi-classical level averaged the zero point Fermi motion and 
investigated the thermostatic equation of state, seeking for possible phase transitions 
and anomalous states.
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But the large size (e.g. quark star) or fast variations (e.g. transition complex 
formed in heavy-ion collision) of the realistic fermion-scalar systems make the static 
treatment insufficient and require the description of spatial structures and of dynamical 
processes.

The present paper attempts the consistent development of the classical 
relativistic hydrodynamics and thermodynamics of fermion systems interacting with 
nonlinear scalar fields. After defining the previous hydrodynamical theory the main 
step is the consequent covariant separation of fluctuations and macroscopic flow. 
According to the thermodynamical discussion this separation process works on a 
sufficiently broad class of averaging methods. The theory obtained has static solutions 
describing spatial structures which may be suitable to model the realistic objects 
mentioned above. After discussing some hydrodynamical aspects of the theory we 
investigate different types of waves propagating in the fermion-scalar system.

Let us consider a (D+ 1) dimensional space-time with metrics and notations:

The covariant equation of motion for a mass point of rest mass M, interacting 
with a scalar field <p via a coupling constant g is [3]:

1. Motion of a mass point in a scalar field

dz = ( — dxkdxk)i,2 = d t y j \ —v2 .

U A j

The norm of the Minkowski velocity L/, =  —  is

UtU ~ - 1. ( 1. 1)

( 1.2)

The projection of Eq. (1.2) on the direction of {/, gives

(1.3)
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thus the rest mass M  is not constant but varies from point to point with the scalar field 
as

M = M 0 + gcp.

This is the most characteristic feature of relativistic motion in a scalar field [1], [2].
Because of the close connection of <p and M one can consider M  as the physical 

quantity describing the scalar field with an appropriate shift and change of the scale. 
The derivation with respect to the proper time x will be written in the form

T x ^ Ukdk'

thus the equation of motion is

Ubd^MUJ + d iM ^O.  (1.4)

2. Hydrodynamics of an incoherent fluid in a scalar field

Let the Lagrangian describing the fluid and scalar field be a sum of three terms:

Lo = + Ly + Ly, (2.1)
where

LM= - j d kMdkM (2.2)

represents the kinetics of the scalar field;

Ly = - V ( M ) (2.3)

describes the self-energy and nonlinear self-interaction of scalar field (where К is a 
positive semi-definite function of M , in the renormable case a polynomial of fourth 
order at most); and

Lf  = - M Po (2.4)

gives the rest and kinetic energy of fermions: p0 denotes the density of particle number 
measured in the local co-moving frame, called “particle frame”.

Varying L0 with respect to M  one gets the equation of field:

□  M = p0+V'(M) = Z 0 . (2.5)

The rest of equations can be derived from an energy-momentum tensor. By using 
Hilbert’s definition and formulas of Appendix A one gets the term T{k corresponding to
L/'

T{k =  -  Mp0gik -  2 Ц  (gik + Ut Uk) = Mp0 U,Uk. (2.6)
dp0 2
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LM can be writte’n in the form

д‘кд(м д км ,

thus the corresponding term of the energy-momentum tensor is

T% = diM d kM - j S ikd ,M dlM ,  (2.7)

with the divergence

дкТ £  = П М - д , М .  (2.8)

The third term is
T l  = - V ( M ) ô ik. (2.9,

The divergence of (T% +  T Vlk) can be written as follows, using the field equation (2.5):

дк(Т% +  Tfc) =  [ D M -  V W Ï ]  d tM = p0 d(M . (2.10)

The total energy-momentum tensor of the hydrodynamical theory is given by

Tfk = Mp0UiUk + T Í Í - V ö ik. (2.11)

Its vanishing divergence gives the equations of motion:

дк К = ek (Mp0 u ,  Uk)+ p0 d ,M = о , (2.12 )

where we have used Eq. (2.10). This is the relativistic Euler equation [5], [14]. Its 
projection to the direction of Ut leads to the equation of continuity:

dk (pUk) = 0 , (2.13)

and the transversal components are identical with the equations of motion (1.4) for the 
particles forming the fluid. The complete set of the equations (1.1), (2.5) and (2.12) 
contains 6 equations for the 6 variables (M, p0, U,).

Let us investigate the static limit. (2.13) and the 0th component of (1.4) are 
satisfied as 0 =  0. The space components of (1.4) give

eaM = 0 .  (2.14)

Substituting it into the static form of Eq. (2.5) one gets

Zo = po+V' (M)=0,  (2.15)

which is not a differential equation but an algebraic “equation of state” for the physical 
quantities M and p0, characterizing a homogeneous phase of matter and field. There 
are no static spatial structures among the solutions.

Acta Physica Hungarica 56, 1984



RELATIVISTIC HYDRO- AND THERMODYNAMICS 221

3. Covariant separation of micro and macrodynamics

The macroscopic behaviour of a system composed of microscopic particles can 
be obtained by averaging over microscopic motions. So the fluid flow described by 
hydrodynamical equations does not give exact trajectories but the average of random 
motion of particles.

The critical point of statistical theories is the separation of macro and 
microdynamics, the well-defined separation of macro and microdynamics, the well- 
defined separation of macroscopically observable processes and ones to be averaged.

Let the Minkowski velocity 1/, be decomposed to a slow macroscopic 
hydrodynamical motion varying smoothly and to fast stochastic fluctuations. This 
decomposition has to be made according to the relativistic addition of velocities.

Let us fix a point of the space-time. Let the vector of nonrelativistic velocity of 
particles be denoted by V, and the vector of macroscopic observable fluid velocity by v. 
The velocity of the examined particle is w in the frame called “fluid frame” co-moving 
with the fluid of velocity v. The Minkowski vectors of (D + 1) dimension corresponding 
to the space vectors V, v and w of D dimension are denoted by Uh u, and a>,, 
respectively.

The velocity V of the moving particle, measured in the labor frame can be 
obtained by Lorentz boosting the velocity w measured in the fluid frame. The 
parameters of the Lorentz transformation are the components of the velocity (—v) of 
labor frame, measured in the fluid frame:

U ^ A ik( - y ) œ k . (3.1)

Properties of Lorentz matrices Aik are summarized in Appendix B.
Let us investigate the density of particle number p0, which is defined in the 

particle frame. After the averaging any information concerning the particle frame will 
vanish, but quantities related to the fluid frame will survive. Therefore p0 must be 
changed to the density p defined in fluid frame:

P = P о

v / l - w 1
(3.2)

Let us substitute (3.2) to each formula to be averaged.
The term T {k of T°k can be written in the following form, using the quantities p, w, 

and (—v) defined in the fluid frame:

T{k = Mp0 ut Uk = Mp Att( -  v) Лкт( -  V) (У П ^ Й  CO, t á j .  (3.3)

The factors outside the parenthesis will survive the averaging. Let us denote the 
quantities averaged over the fluctuation velocity w by brackets: </’(w)>. The method of 
averaging will be fixed later.
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Let us define:

G ^ c / T ^ a w . ) -  ^ = f ) >

so the average of T{k is:

< T{k} = Mp Л и Akm Glm.

Knowing the distribution of fluctuations in the labor frame we can calculate Glm, 
using w given by Lorentz boost parametrized by arbitrary v. Now let us require the 
mixed components of Glm to satisfy:

G*o = 0 . (3.6)

These are 3 independent requirements for 3 component of v. Therefore Eq. (3.6) can be 
used to fix the fluid frame.

Let us decompose the energy-momentum tensor (3.5) according to the space and 
time-like components of Glm, by using Eq. (3.6). The space components Gxß can be 
further decomposed to diagonal and trace-less components. (Forming the trace of Gjß 
the number of spatial dimensions, D appears explicitly in our equations.)

(T{k'> = M p A i0Ak0G00 + M p A iaAka^ G yy +

+ M p A ixAkß( G 'ß- ö aiß̂ G ŷ .  (3.7)

Using formulas of Appendix В one can transform (3.7) into the following form: 

<T{k} = - M p  G00 ui“k+ M p ^ G r,(öik + uiuk) +

+ M p A i0LAkß(Gxß- ö aß^ G „ y  (3.8)

Let us compare (3.8) with the conventional form of the energy-momentum tensor used 
in relativistic hydrodynamics (see e.g. [14]):

T ik = ещик + p (5ik +  utuk) + 0ik, (3.9)

where e is the energy density of fluid and p is the hydrostatic pressure. The symmetric, 
trace-less tensor 6ik, describing the dissipative phenomena, is orthogonal to up.

eikuk = 0 . (3.10)

A simple comparison shows that (3.8) corresponds to (3.9) and (3.10) has been satisfied.
In the rest of this papier we neglect the dissipative phenomena, i.e. assume that the 

distribution of fluctuations is isotropic in the fluid frame, thus

(3.4)

(3.5)
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which leads to

Gtß -  £  Gyy »

0*= o . (3.11)

In the first term of (3.8)

e= — MpG00 = — Mp <co0co0 - w 2 } = Mp
1

У*3 w
= Mp <chco>

(3.12)
represents the intrinsic and kinetic energy densities of fluid, involving the contribution 
of fluctuations, but not involving the energy density of scalar field, occurring in Tfi  and 
T v1 ik •

At the last transformation of (3.12) we have introduced the usual notation

со = arth I w I .

In the second term of Eq. (3.8) 

p = } - M p  Gyy = У  Mp <coyco, v / l - w 2>= У  Mp

(3.13)

D D
w

У 1- w
1 /sh  2co

chco 
(3.14)

means the hydrostatic pressure induced by the fluctuations in the continuum which 
was originally incoherent.

The average of the total energy-momentum tensor T°k is

Tik = < Tfk > =  ещик + p(őik +  UjUk) Vóik+ T fi = 

= (e+P) u,uk+ (p-  V)Sik + T f i . (3.15)

It is manifest that the potential V(M) of scalar field acts as a negative pressure. 
Therefore let us introduce the total pressure P:

P = p - V ( M ) (3.16)

and the following quantity:

e=e+V(M).  (3.17)

The enthalpy density (e + p) transforms to (e -I- P). Using the new notations (3.15) gives:

Т 1к = (Е  + Р)щик + Р01к + Т » .  (3.18)

Let us consider the total energy density:

^  m 1 „ M 2 (\M )2
- T o o - i e  + P ) ^ - P +  —  + - y -  =

l — o
£ „  V

+ P
M 2 (VM)2

1 — o3 +  ~2~ + 2
(3.19)
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In the static case it is simplified to

— T’oo ~ E >

thus the physical meaning of e introduced by (3.17) is the total energy density in the 
homogeneous static states of our system.

Substitution of (3.2) into the right side of field equation (2.5) to be averaged leads 
to a new averaged quantity, which is not independent from the former ones, thus <p0> 
can be expressed by e and p:

z =  <Po>==<P V/ l - w 2 > =  p

= P 1 (е- о д . (3.20)

Let us denote the averaged right side of (2.5) by Z. Therefore the new form of scalar field 
equation is

where
□ M  = Z ,

Z  = z + V'(M)= e—^ ~  +  V'(M). M

(3.21)

(3.22)

4. First law of thermodynamics in the presence of scalar field

The usual form of the First Law of thermodynamics concerning densities is [15]:

de = Tda +  pdp . (4.1)

Here e is the energy density (it may be identified with the quantity defined by Eq. (3.17)), 
p is the particle density (3.2), T, <j , and p are the absolute temperature, the entropy 
density and the chemical potential, respectively.

This form of the first law has to be completed because of the presence of a new 
degree of freedom, the value M  of the scalar field. The energy density depends on M as 
well.

Before averaging, the total energy density e0 of the static case was given by 
(-T ooH seeE q. (2.11)):

£o =  Mpo+K(M).

Its variation according to M  is

öe0= (p0 + V ' m  ÔM = Z 0ÔM,

where Z 0 is the right side of the field equation (2.5). This expression has to be changed to
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its average Z, which stands in the right side of Eq. (3.21). So the completed differential 
form of the First Law is

de=Tdo + ndp + Z d M . (4.2)

According to Eq. (4.2) the proper variables of e are the densities of two extensive 
quantities (the entropy S and the particle number N)  and an intensive parameter, M. 
Thus e cannot be identified with the density of the thermodynamical energy, but with 
one of its Legendre transforms [15]. The quantity Z  conjugated to M in Eq. (4.2) is the 
density of an extensive quantity, (Z V ), where F stands now for volume.

Let us perform the inverse Legendre transformation. Let è denote the density of 
the proper thermodynamical energy:

E — E— Z M  =  в(<7, P, Z)  .

Its differential is

dÈ=Tda + pdp — M d Z . (4.3)

Passing on to the extensive quantities one getà [15]:

Ë=VÈ,
and

dË = TdS — PdV + pdN  -  Md(Z V) ,

where the thermodynamic pressure P may be identified with the expression (2.16).
According to Euler’s theorem on homogeneous functions the differential form of 

the First Law expressed by differentials of extensive quantities only can be integrated 
directly [15]:

Ë = T S - P V  + p N - M Z V ,

thus its density ê is

6= To — P + pp — M Z .  (4.4)

Using the form (4.3) of the First Law one gets the Gibbs-Duhem relation:

0 = a d T - d P  + p d p - Z d M  . (4.5)

Let us perform the Legendre transformation of the finite (4.4) and the 
infinitesimal (4.3) forms of the First Law:

e= T o — P + p p , (4.6)

de =  T da + pdp + Z d M .  (4.7)

It will be useful to use the specific entropy

s = o/p (4.8)

(instead of the entropy density a) and the specific enthalpy
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m = p + Ts  (4.9)

(instead of the chemical potential p). Substituting (4.8) and (4.9) into the thermodynam­
ical equations (4.5)-(4.7) one gets:

E = mp — P,  (4.10)

de=Tpds + mdp + Z d M , (4.11)

dP= —Tpds + pdm — Z d M . r (4.12)

Subtracting the contributions of the scalar field potential V(M) the equations 
(4.10H4.12) can be expressed by purely hydrodynamical quantities:

e = mp—p,  (4.13)

de=Tpds + mdp + z d M , (4.14)

dp =  — Tpds + pdm—z dM , (4.15)

where z is the average (3.20) of p0. In the rest of this paper the forms (4.10H412) and 
(4.13H4.15) of the First Law will be used.

5. Hydrodynamical equations of motion

Let us rewrite the energy-momentum tensor (3.18) using the specific enthalpy
(4.9):

Tik=mpu;uk + Pôik + T%. (5.1)

The equations of motion can be obtained from the divergence of T ik. The 
divergence of the term T% can be written by using (2.8) and (3.21) as

dk Tfl = d , M - O M  = Zd ,M.  (5.2)

Thus the hydrodynamical equations of motion are

dk T ik =  дк (mp u, uk ) +  д/ P + Z 5, M = 0 . (5.3)

Calculating the expression (5.3) one gets

mut dk(puk) + p[ukdk (mUi) +  dtm] = pôim — ôiP — Z d iM.  (5.4)

The multiplication of Eq. (5.4) by (utdr) and the substitution of (4.12) lead to

— mdk(puk) dz = pdm — dP — Z d M = T p d s .

Thus the equation of continuity has the form

mdk(puk)= — T p u kdks.  (5.5)
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Substituting Eq. (5.5) into Eq. (5.4) one gets the projection of Euler equation, 
orthogonal to u{.

“k dk (muj) +  di m = (ы, uk + őik)T d ks.  (5.6)

The equations (5.5) and (5.6) are identical with the corresponding formulas of the 
conventional relativistic hydrodynamics (see [14]).

There is a need for further assumptions about the mechanism of dissipative 
processes to complete the set of equations. The most simple assumption is that of 
isentropy, i.e. the fluid is assumed to be ideal:

ds
—  =ukdks = 0 . (5.7)

By using this (oversimplifying) assumption one gets the set of equations, describing the 
system of ideal fluid and scalar field:

□  M = Z , (5.8)

dk(P“k)=0. (5.9)

ukdk (mul) + dim = 0 . (5.10)

By using Eqs (3.22) and (4.13) Z can be expressed by e, M, p and m:

\J M  = Z = V ' ( M ) + ^ - [ ( D + l ) e - m p ] .  (5.11)

The set of equations is not closed: one has 7 variables (M, p, m, e and 3 independent 
components of ut) and 5 equations ((5.9), (5.11) and 3 independent components of 
(5.10)). (The situation is more complicated in the case of non-ideal flow: in the general 
case further thermodynamical quantities (T and s) appear in the hydrodynamical 
equations.) The missing equations characterize the examined state (“phase”) of system. 
They can be found by fixing the method of averaging, seeking for connections among 
the quantities occurring. These equations serve as equations of state, e.g. in the form:

e = e(M,p), (5.12)

m = m(M,p) . (5.13)

This question will be discussed in detail later.

6. Static solutions

Let us compare the new set of equations (5.9H5.11) to the old ones ((1.4), (2.5), 
(2.13)). The individual velocity of particles, l / f has been replaced by uh the velocity of 
the fluid, which is the average of Ut. The quantity M has been splitted to M, 
representing the scalar field in the field equation (5.11) and to the specific enthalpy m,
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taking the original role of M  in the Euler equation (5.10). The particle density pQ has 
been replaced by p (its Lorentz transformed value) in the equation of continuity (5.9) 
and by z (its average) as a source of scalar field in Eq. (5.11).

Let us consider the static limit of the set of Eqs (5.9H5.11) and compare to the 
corresponding results of Chapter 2. Eq. (5.9) and the time component of (5.10) are 
satisfied identically, but the space components of (5.10) give

Sxm = 0 , (6.1)

i.e. the specific enthalpy m is to be constant. Contrary to (2.14) there is no requirement 
for the scalar field M  to be homogeneous. In the averaged form of the theory the 
acceleration of fluid is due to the gradient of m instead of the gradient of M. Therefore 
the static form of field equation (5.11)

r 2M  = Z=V' (M)+  - l- [ ( D + l ) e - m p ] ,  (6.2)
M

the equations of state (5.12) and (5.13), and the requirement (6.1) form a complete set of 
equations for the quantities M, p, m, e, which has spatially structured solutions. The 
results of detailed numerical investigation and classification of static structures 
described by Eq. (6.2) (e.g. periodic scalar fields, domains, domain walls, scalar bag) will 
be published elsewhere.

7. Specific averages

The quantities e and p were defined by the averages (3.12) and (3.14), but at the 
same time they appear as thermodynamical variables in the Eqs (4.13H4.15). The 
correspondence of these two roles of quantities leads to requirements concerning the 
averaging method.

Identical transformations of the thermodynamical equations (4.13H4.15) give

Mp
P

Mp
e —zM dM dp\  1

where we have introduced the notations
M P )  У

M
~T’

m
x =  M

(7.1)

(7.2. a, b, c)

Thus by using Eqs (4.9) and (4.13) one gets

<x = y x —s. (7.3)

The right side of Eq. (7.1) can be transformed by using Eq. (7.3):

-  (da. — xdy) — d x ---- -. (7.4)
У У
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Let us now utilize the form of z given by Eq. (3.20) and let us introduce the new 
quantity X.

x = M ~ 1p llD. (7.5)

Substituting (3.20) and (7.5) into (7.1) one gets:

Let us substitute the definitions of e and p, given by averages in Eqs (3.12) and (3.14), 
respectively:

J { yx° (sst;)) a ? )

Eq. (7.7) shows that the quantity occurring on the left side, including an averaged 
quantity over the individual velocity parameter со of particles, can be considered as a 
function of two thermodynamical parameters: a and y. Therefore one can choose a and 
у for the averaging parameters, occurring in the weight function, which defines the 
averages over со:

<F(co)> = J F (со) Щсо;а,у) dco = <F} (ос, у). (7.8)

It can be shown [ 17] that the thermodynamical requirement (7.7) can be satisfied 
by specifying the weight function as follows:

? dco F (со) ß(co) cp(b(co, et, y))
<FM > = ----------------------------- , (7.9)

j  dco ß(co) cp(b(co, oc, y))

where

ß(co) = D shD~ 'со ch со = ~  (shDco), (7.10)
dco

b(co, a, y)=y  ch со — a, (7.11)

and identifying xD with the denominator of Eq. (7.9):

xD= J  dco ß(co) cp(b(co, ct, y)). (7.12)

The function cp(b) is arbitrary, there is only the restriction of the convergence of 
integrals in Eq. (7.9). Direct substitution and partial integration shows that (7.7) is 
satisfied. It can be proved [17] that Eq. (7.12) does not contradict to other 
thermodynamic equations.

Acta Physica Hungarica 56, 1984



2 3 0 G. DÁVID

Let some special cases be mentioned. If one specifies the arbitrary function 
<p(b) as

q>(b) = (eb + k) \ (7.13)

one gets the finite temperature Fermi, Bose, or Maxwell distributions in a relativistic 
velocity space of dimension D, by putting k=  1, k=  — 1, and k=0, respectively. 

Specifying <p(b) as
<р(Ь) = в(-Ь), (7.14)

where 0(x) is Heaviside’s unit step function, Eq. (7.9) can be rewritten as

F(a>) d(shDw), (7.15)

where
a и

Q = arch -  =  arch — .
у M

(7.16)

This is the zero temperature Fermi distribution: Eq. (7.15) indicates averaging over the 
filled Fermi sphere of dimension D. The radius of Fermi sphere,

x = sh Í2 (7.17)

is the relativistic Fermi velocity,

is the nonrelativistic Fermi velocity,

p 1/D = M x = M sh Q = pF

(7.18)

(7.19)

means the Fermi momentum, and

m = p = M  ch й  = ч/А /2 + pj = EF (7.20)

defines the Fermi energy, which is now equal to the specific enthalpy m and the 
chemical potential p. In this case the averages in Eq. (7.7) and the quantities (7.16)— 
(7.20) can be calculated analytically [17], [18].

W

8. Effective Lagrange theory of ideal flow

Substituting the definitions of e (3.12) and p (3.14) into (4.13) and using (7.2. c) we 
can express x as an average:

X = ch ÜÁ+
1 sh2 co\
D ch (o /  ’

( 8. 1)
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i.e. (fixing the weight function) as a function of y and a. By using (8.1), (7.3) and the 
expression of x  (7.12) as functions of y and a one can express the thermodynamical 
parameters y and a by x  and s. We can consider every averages < / ( w ) >  as functions of x  

and s.
Investigating the ideal flow, s is only a constant parameter. Thus the averages are 

functions of x  only. Let us introduce a function

Ф(х) = <ch ш>. (8.2)

It can be shown [17] that specifying Ф(х) is equivalent to the fixing the weight function 
q>(b), and Ф(х) contains all the information one needs about the microscopic motion. 

Other quantities can be defined by Ф(х) and its derivative Ф'(*):

e = Mp Ф(х) = Mp Ф(х(М, p)) = e(M, p), (8.3)

р =  М р^Ф '(х) =  р(М,р), (8.4)

m = Mx  = M ^Ф + ^  <f>'j = A  e(M, p) = m(M, p), (8.5)

1 Я
z =  — (e -  Dp) =  р(Ф -  хФ') = —  «KM, p) = z(M, p). (8.6)

At the next transformations in (8.5) and (8.6) we used the definition of x  (7.5). The 
definitions (8.3)—(8.6) are consistent with the thermodynamical requirements of 
Chapter 7. Substituting (8.3H8.6) into (7.1), using (7.4) and utilizing the assumption of 
ideal flow (ds = 0) one can prove, that (7.1) is satisfied identically.

We note that Eqs (8.3) and (8.5) can serve as the missing equations of state 
mentioned in Chapter 5.

Let us now define an effective Lagrange theory of ideal flow. The new Lagrangian 
is

Le= —e(M, p) + LM, (8.7)

where LM is defined by (2.2), e by (3.17), and the quantity e is identified with (8.3):

e = e+ V(M)=Mp  Ф(х(М, p))+ V(M) = e(M,p). (8.8)

As consequences of (8.5), (8.6) and (3.22), derivatives of e(M, p) with respect to M and p 
give Z and m, respectively:

^ - Z - ' + r m  0 - m .  (8-9)

Thus the variation of M in Lt leads to the field equation (5.11). The energy-momentum 
tensor belonging to Le is identical with (5.1). (Deriving it one has to make use of the 
remark after (A.7) in Appendix A.) Therefore the corresponding equations of motion
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and of continuity are identical with (5.10) and (5.9). The effective Lagrangian (8.7) 
containing the arbitrary function Ф(х) has reproduced the hydrodynamical and field 
equations, has given the equations of state (8.3) and (8.5), leading to a complete set of 
equations for quantities M, p, m and u,.

9. Potential flow

The equation of motion (5.10) can be satisfied identically by the assumptions [5]

(9.1)

(9-2)

where ф will be called relativistic momentum potential. These flows form a subset of 
solutions of Eq. (5.10): the class of potential flows. The condition of a flow to have 
potential is

д,(тик) - д к(тщ)=0. (9.3)

The equation of continuity now has the form:

(9.4)

Eq. (9.2) can be considered as a relativistic Bernoulli equation [5]:

дкфдкф= - m 2(M, p), (9.5)

where m is expressed by basic quantities M  and p via Eq. (8.5).
To construct a Lagrange formalism for potential flows it is suitable to exchange 

the roles of the basic quantity p and the derived quantity m. Considering Eqs (4.10)- 
(4.12) one can see that in the isentropic case the proper variables of £ are M and p, but 
those of P are M and m.

Let us define a new Lagrangian for potential flows. Its basic variables are ф and 
M:

Lv = P{M ,m(ÔM  + LM, (9.6)

where P(M, m) can be derived from functions m(M, p) (8.5) and p(M, p) (8.4) using (3.16), 
LM is defined by (2.2), and m(dk ip) refers to Bernoulli equation (9.5).

Varying Lv with respect to M  and by taking the consequence of (4.12)

dP(M, m) 
dM

(9.7)

into account one gets the field equation (5.11).
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gives the equation of continuity directly, without the roundabout of Hilbert’s 
Tik. Lv does not depend on ф, thus one gets a conserved current:

Л =
dL„ dP dm
ддкф dm ддкф 

We used (4.12) to get the derivative of P:

- P
дкФ
m

dP
dm ■P-

(9.8)

(9.9)

The conservation of j k gives the equation of continuity (9.4). 
The velocity of fluid can be defined by (9.1) and (9.2):

u.= <3i<A
y / ~ дкфдкф

Thus u, obeys the condition

(9.10)

(9.11)

One can derive the energy-momentum tensor corresponding to Lv: according to 
Appendix A, it is identical with (5.1).

By using the remark made after (A.8) one may start from a Lagrangian LP 
containing an arbitrary function P(M, m), without the assumption of potential flow:

LP = P(M, m) + LM. (9.12)

Eqs (9.7) and (9.9) are now used as definitions of quantities Z and p. The field equation 
and energy-momentum tensor corresponding to LP are identical with (5.11) and (5.1), 
respectively. (One can use the results of Appendix A to get the metric derivative of m.)

This description of a non-potential flow will be especially useful while discussing 
the wave phenomena propagating in the system.

10. Wave phenomena

The set of Eqs (5.8H5.11) has homogeneous static solutions characterized by

Uk =  i^kO ’

Z 0 = Z(Mo,p 0) = 0, (10.1. a-c)

m0 = m(M0,p 0),

where M0, p0 and m0 are now constants.
We shall investigate here small perturbations of these solutions, using the way of 

description of the system by the function P(M, m). Let us introduce some notations:

P'm h = - Z ' m = - Q ,  (10.2)
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* P" = p' = —  — (10.3)m0 c

P" — n' — 7' — ^r Mm — PM— — ш ж 2 „2 *MQc q
(10.4)

These equations serve as definitions of Q, c2 and q2. We introduce a further quantity a 
which will set a scale of the frequency space:

p0m0 1 (10.5)
M0 c Y '  •

Let us write the perturbations of the state (10.1) in the following form:

M(r, f) = M0[l +/i(r, f)],

p(T, t )=p0[\+r](T,  t ) ] ,

m(r, i) = m0[l +  v(r, t)], (10.6. a-e)

u*=Ur,t),

u0 = i.

The products and powers of the dimensionless, time and space dependent quantities p, 
rj, V, and £„ will be neglected. (The above form of u, obeys Eq. (9.11)).

The linearization of the equation of continuity (5.9) gives

4 = - d aÇa. (10.7)

The linearized form of time component of (5.10) leads to an identity. Its space 
components give

4=-3«v- (10-8)

Eqs (10.7) and (10.8) can be contracted:

fj = V2v. (10.9)

By using the definitions (10.2H10.5) one gets the linearized form of field equation (5.11):

- ^ - П М  = О р = ^ г  =Qp + a2c \  (10.10)
M0 M0

and that of the equation of state (8.5):

v = c2r i + \ p .  ( 1 0 .1 1 )
4

Let us take the plane wave solutions of the linearized set of Eqs (10.9)—(10.11). 
One gets the algebraic set of equations:

(со2— k2— Q)p — a2q2v = 0, (10.12a)
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v - c 2r i - \ n = 0 ,  (10.12b)
q

k2\  — co2ri=0. (10.12c)

The condition of getting nontrivial solutions is the vanishing determinant:

(cu2 — k2 — Q)(a)2—c2k2) — w2a2=0. (10.13)

This is the dispersion relation for the plane waves. Let us scale the frequency space with 
a (10.5). By introducing

&2 о)2 О
X = - J ,  Y = - î - , (10.14. a-c)

a a a

the dispersion relation gets the form

('Y - X - K ) { Y - c 2X)=Y. (10.15)

This is the equation of a hyperbola going through the origin. The points of the 
hyperbola in the quarter ^ > 0 ,  У>0 represent travelling plane waves, those of quarter 
X <0, У>0 refer to unbounded solutions, which cannot be considered as per­
turbations. Points of quarter X > 0, У<0 form the instability region.

The physical criterion of stability of homogeneous static solutions (10.1) requires 
that the hyperbola (10.15) should not enter into this quarter. The placing of hyperbola 
depends on the parameter K. The only stable placing is characterized by the 
requirement

that is
K>  0, (10.16)

0 > 0 . (10.17)

Based on the set of Eqs (10.12) the relative magnitudes of oscillating 
perturbations can be estimated:

<Ü/v ~  k/w =  yfXJY ,

n 2 v - c 2ri 
— ~  q --------
V V

t]/v~k2/w2 = X/Y,

(10.18. a-c)

Fig. 1 shows the dispersion relation of the stable case (К >0), plotted on to — к 
plane. The curve has two branches: an “acoustic branch” starting from origin and a 
“scalar branch” starting with a gap.

The scalar branch in the long wavelength limit has the dispersion relation

eu2 =œl + v jk2, (10.19)
where ,

u>o = Q + a2, и‘ =  1 + х Т Т '  (10.20)
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Fig. 1. Plot of the dispersion relation (10.13). Acoustic and scalar branches and their asymptotics are shown

The relative magnitudes are now:

M l ,  CO~OD0,

Ç/v~k/coo~0, ri/v~k2/œ l~0 ,  (10.21)

H/v~q2.

At long waves the perturbation of the density and velocity can be neglected: the 
phenomenon is practically a pure scalar wave obeying the dispersion relation (10.19).

In the short wavelength limit the curve of scalar branch fits to the line У= X,  thus 
both the phase and group velocities converge to 1, to the speed of light in vacuum. The 
relative magnitudes are now:

k$> 1, w ~ k ,

if/v~{/v~ 1, (10.22)

n /v~ q2( l - c 2).

Fig. 2 shows the velocities, Fig. 3 the relative magnitudes of perturbations against the 
frequency a> scaled by a.

The dispersion relation of the acoustic branch near the origin gives a straight 
line, thus the phase and group velocities are equal:

VaPH =  V\ = Ко := c < c. (10.23)
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Fig. 2. Plot of phase (subscript pH) and group (subscript g) velocities of acoustic (superscript a) and scalar 
(superscript s) waves against scaled frequency w /a

Fig. 3. Relative magnitudes of perturbations in the case of acoustic (subscript a) and scalar (subscript s) waves 
as functions of frequency to. Asymptotic (co~oo) and initial (co~0 or to~to0) values are indicated
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The relative magnitudes are

£/v~ 1/K0, ф - 1 /Vl
p /v ~ q 2( l - c 2/ V 2) = - q 2/K. (10.24)

In the short wavelength limit the phase and group velocities both converge to c (see 
Fig. 2). It can be proved that the maximum value of group velocity is less than 1. Using 
the accurate form (10.15) of the dispersion relation one gets that in this limit

c2
Y—c2X  ~  ------* > (10.25)1 — c

thus the relative magnitudes are

£ /v~l/c, rj/v~ l/с2,

q2c2 1
(ia26)

One can see that at high frequencies the amplitude p of the perturbation of scalar field 
M  is repressed by w~2: the scalar field is practically constant, but the density p, the 
velocity u, and the specific enthalpy m oscillate with comparable amplitudes r\, and v, 
respectively. This phenomenon is the sound in fermion matter in the presence of scalar 
field. Comparing the speed of sound c, defined by (10.3) to the classical non-relativistic 
speed of sound c0 (defined as square root of derivative of pressure with respect to the 
density of mass) one gets:

According to Eq. (8.1) x is an average of a quantity larger than 1, thus the relativistic 
speed of acoustic waves is smaller than the classical one [5]:

c2 — cl < « .
x(x(M, p))

The theory of relativity gives bounds to the speed of sound:

0 < c i < 5 '

(10.28)

(10.29)

where D is the number of spatial dimensions. By using definitions of c (10.3) and x 
(7.2. c), (8.1), the above condition can be transformed to

d In x(x) 
d in  x

< 1. (10.30)
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We note, that in the case of zero temperature Fermi averaging

(10.31)

Eq. (10.30) can be rewritten by using directly the function Ф(х) (8.2):

(10.32)

The requirement (10.32) restricts the allowed class of functions Ф(х) for the Lagrangian 
(8.7).

Further and detailed investigations on wave propagation, on the stability of 
static solutions (10.1) and of spatial structures mentioned in Chapter 6 will be published 
later [18].

Following and extending the previous investigations of [5], [7], [8] and 
introducing a covariant method for the separation of macro and microdynamics a 
relativistic hydrodynamical theory of fermions moving in a scalar field has been 
presented. The theory works successfully under a sufficiently broad class of averaging 
instructions (including Fermi, Bose and Maxwell statistics), it is consistent with the 
thermodynamics and with the conventional relativistic hydrodynamics. This theory 
can be derived from effective Lagrangians. Static solutions can describe e.g. domain 
walls or scalar bags. The dynamical theory enables the investigation of wave 
phenomena and stability problem.

The theory can be extended to non-isotropic local velocity distributions and to 
non-equilibrium statistics. By dropping the assumption of isentropy one can give the 
description of viscosity phenomena. The contribution of antifermions to the 
equilibrium can also be taken into consideration. Detailed numerical calculations may 
clarify the question of phase equilibrium in this model. The behaviour of perturbations, 
shock waves in a macroscopic configuration (e.g. quark star) or their scattering on the 
inhomogeneities of scalar field can also be approached by the theory presented. These 
problems may be subject of further work.

1 am grateful to Professor G. Marx for stimulating this work and for his fruitful suggestions and 
comments.
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Appendix A

Properties of physical quantities during the variation of metrics

Hilbert’s definition of energy-momentum tensor (see [6], [ 12], [ 13]) makes use of 
the variation of the metrical tensor:

ô ^ ^ / g  L d x D+l = -

Here gik is the metrical tensor, gik is its inverse and g is its determinant. The definition of 
determinant leads [13] to

y  J  Tik àgikJ g dxD+1 (A.l)

(5 In J g =  - y (A.2)

So (A.l) can be written in the form:

Tikàg‘k =  —  —j=  àiL^fg) =  ^Lgik — 2 ̂ ï ï j  àg‘k,

thus [6]

T ^ Í L g ^ - 2 ^ )
\  /  9 ik  = à ik

Let us consider the proper time interval dx. Its definition is

dx = y/ - g ikdx‘dxk,

where dx‘ is independent of the variation of gik. Thus

Ô In dx = -  y  dx‘dxkôgik = у  щик0д‘к,

(А.З)

(А.4)

where the Minkowski velocity

obeys the condition
giku‘uk= - l .

The metric properties of physical quantities in the Lagrangian can be traced back 
to those of the auxiliary quantities discussed above in (A.2) and (A.4).

The quantities like the proper density of mass or particle number are defined [5] 
by the their invariant integral with respect to the volume element of the rest frame:

/ =  JpdK0 = inv. (A.5)
Since

J~g dxD +1 =  ̂ /~g d Vdt = d V0 dx =  in v.,
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gik, therefore T0 transforms like \/di. The specific entropy s is invariant [15], thus the 
entropy density a behaves like p. Therefore the metric variation of quantity

iT0a J g )

vanishes: the Lagrangian containing free energy density leads to the same energy- 
momentum tensor as Lt and Lp containing energy density or pressure.

Appendix В

Some useful properties of matrix of Lorentz boosts

The general form of a Lorentz transformation matrix containing no spatial 
rotation, corresponding to the boost of velocity ( — v) and written by the metrics defined 
in Chapter 1 is [16]:

л = / l y r ^ + í í - y r ^ j v o v  - ivV  1 (B1)
V «  1 /  ^ l - v 2 '

where 1 denotes the unit matrix of dimension D and ° indicates diadic product. 
Orthogonality of Lorentz transformation gives

ЛцАк1 = AuA lk = ôik. (B.2)

One can recognize that the 0th column of А (B.l) is proportional to uf:

Ai0= - iu , .  (B.3)

The space-like elements of the 0,h row of matrix are:

^0« = «'“« =  -Д .0 -  (B.4)

We shall need the product of vector u, and matrix Aik. Substituting (B.l) we get:

UiAik = iők0. (B.5)

The physical meaning of (B.5) is clear: the Lorentz boost of velocity parameter ( —v) 
transforms the Minkowski vector ut belonging to the velocity v to the “standing” 
velocity vector (0, i).

The important expression

can be written using Eqs (B.2) and (B.3) as follows:

AfaA ka =  AitAkl — A iQ Ak0 =  ôik + utuk. (B.6)

There is a consequence of (B.5) or (B.6)

Л«Ака1ик=0. (B.7)
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Wilczynski’s criticism of our derivation of the “relativistic” Doppler formula is repudiated. 
Some clarifications intended to facilitate the understanding are made. The main points of the aether 
approach are summarized stressing the importance of the concept of “universal field”.

In a recent article [1] Wilczynski criticizes our derivation of the “relativistic” 
Doppler formula in a class of aether theories [2] characterized by the assumption that 
the ratio between the longitudinal and transversal contraction of moving bodies is 
given by the relation (t>(w)/4,(w) = \ —w2/c2. He makes however several obvious
mistakes which invalidate his criticism.

In our answer to Wilczynski’s criticism we shall restrict ourselves to a few 
principal points, the clarifying of which we hope to be of use for a better understanding 
of the physics related to the Doppler effect. At the end of the paper we shall also make 
some general remarks concerning the aether approach and the importance of universal 
fields.

Wilczynski’s criticism centres on our formula

w„

V =  V,

l - l * c o s / »  
fl(ws) c

'ß(w B) WS1------ cos a
c

( 1 )

V is here the frequency measured by the observer В (at rest in FB). v0 is the proper 
frequency of the oscillator acting as source. (By ‘proper frequency’ of an oscillator we 
understand its frequency as measured in the preferred frame FP when it is at rest with 
respect to FP. Note that, due to our choice of units in moving frames “preserving 
matter-geometry” [3], which is the choice that most authors (implicitely) prefer we 
obtain a de facto equivalent definition if we substitute an arbitrary moving frame FM

16
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for Fp.) ws and wB are the velocities of the source and the observer, respectively, a and ß 
are the angles between the velocity vectors and the straight line between the source and 
the observer.

Let us now show in detail how we obtained the formula (1). We consider two 
oscillators with the same proper frequency v0, moving with respect to FP at the 
respective velocities ws and wB. The oscillator S is the source of waves and the oscillator 
В the receiver.

In classical physics the frequencies of moving oscillators are not changed due to 
their motion. The frequency of S as observed by В is then given by the classical Doppler 
formula. (This formula is immediately obtained from (1) by setting ß(w )s 1.)

In our actual world, however, the frequencies of moving oscillators depend on 
their velocities. We assume the change of frequency to be given by the factor ß(w), i.e. an 
oscillator with the proper frequency v0 will have the frequency vw = v0ß(w), when 
moving at the velocity w with respect to the preferred reference frame FP. This must 
evidently be taken into account in the derivation of the “relativistic” Doppler formula.

i) In the case that the observer is at rest and the source is moving, the frequency of 
the source will be v0ß(vvs). Since B's frequency standard will not have changed but will 
still be v0, he will observe the frequency

v =  v0ß(ws) ^ l ------co sa ^  . (2)

ii) In the case of the source at rest and the observer moving the emitted frequency 
will be v0. However, since the frequency standard of the observer has changed and is 
here v0ß(wB), he does not measure the “right” frequency as given by the classical 
Doppler formula but instead measures the frequency

v = v0ß(wB) " 11^1- ^ c o s ß ^ j .  (3)

iii) In the case that both the source and the observer are moving we of course 
have to combine the formulae (2) and (3) and obtain immediately the formula (1).

It is evident that the formula (1) is in general valid only in FP since the slowing 
down of moving clocks in a moving frame FM in general is given by a function 0 Fu(v) 
t̂ í2(v) (cf. [4]). Presupposing standard Poincaré-Einstein synchronization, the 
function QFm is independent of FM only in the Lorentzian world, i.e. when

ß  = Ф =  y j \  — w2/c2 and *¥ = 1.

In fact, in the first paragraph of his introduction Wilczynski claims that we in our 
derivation of the Doppler formula assume ß(w) = y j \  — w2/c2. This is wrong. We make 
no assumption on the form of the function ß  at the derivation of the Doppler formula. 
Only in Section 4 do we point out that experiments have “shown” that ß  =  y / l —w2/c2. 
This mistake of Wilczynski’s also explains why he does not see the important difference
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between Ives’ formula (5) and ours (his Sect. 2.1). Ives’ formula is valid only in the 
Lorentzian world, so it can be used in any inertial frame.

In the second paragraph of his Section 2.1 Wilczynski criticizes the fact that from 
formula (1) follows that for ws - w B it holds v = v0. -  An obvious consequence of ws 
= wB is that the “source oscillator” and the “receiver oscillator” have the same 
frequency. B’s measurement of the frequency of the source will therefore, in this special 
case, give the same result as if both В and S were at rest in FP.

Wilczynski derives a formula (number 5 in his article) which he claims to be the 
correct Doppler formula in the aether world. Apart from the fact that he only considers 
the Lorentzian world, so his formula is less general than ours, there is a very important 
difference: he writes vB instead of v0, where vB is given by vB = v0v/ l  —w2/c2. Such a 
“revaluation”, as Wilczynski calls it, it is possible to do. It is, however, very important 
to know what it means, since every revaluation will have consequences at the process of 
measurement. If one does not take account of this, it can happen as in Great Britain at 
the change from Fahrenheit to Centigrades (Celsius): People thought that it was colder 
since the thermometers showed “less”.

In Wilczynski’s case the revaluation means that the units in the observer’s frame 
are not chosen in the usual way (“preserving matter-geometry” [3]) but so that all 
observers agree about the frequencies of moving clocks. (We therefore suggest to call 
this choice “absolute”.) This means that an oscillator at rest in FB, which has the 
frequency v0ß(wB) as measured in FP, will per definition have the frequency v0ß(wB) as 
measured in FB, too. If one takes account of this change of the units of measurement 
used in FB, Wilczynski’s formula (5) is physically equivalent to our formula in the 
Lorentzian world. Let us note, however, that not only practical reasons speak against 
Wilczynski’s formula but also theoretical: the “absolute” choice of units presupposes 
the knowledge of absolute velocities, what is forbidden by Poincare’s principle [4, 6]. 1

In the third paragraph of his introduction Wilczynski makes a rather cryptic 
statement about the velocity of light in a moving frame. The correct statement is that, 
presupposed that the units in the moving frame are chosen “preserving matter- 
geometry” [3], which is the way in which they are usually (implicitly) chosen, the 
measured round trip velocity of light in a frame moving at the velocity wM is given by 
the following expression:

(4)
ß(wM)0(wM)

where c is the velocity of light in the preferred frame FP. If we choose standard 
synchronization, also the one-way velocity will be given by this expression.

In his Section 2.5 Wilczynski writes “Podlaha and Sjödin propose a new 
modification of the rotor experiment to state the value of Г ”. He has here completely 
misunderstood the purpose of our proposed experiment: we do neither propose to 
measure any absolute velocities nor the ordinary velocity dependence of the rates of 
moving clocks. In fact, a prerequisite for our experiment is the validity of Poincare’s

!6*
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principle about the impossibility to measure absolute velocities [4, 7] and hence also 
the relation Q = y j  1 —w2/c2. We suggest a precision experiment to test the possible 
acceleration dependence of the rates of clocks.

At the time when we wrote the paper [2], we had no reason to suspect that there 
would exist any acceleration dependence, so our experiment was mainly intended as a 
proof that the hitherto observed effects at the rotor experiments are due to the velocity 
dependence of the rate of moving clocks and not to any acceleration dependence as 
sometimes erroneously asserted [8]. In the meantime, however,' theoretical con­
siderations [9] have given us reason to suppose that, contrary to the common opinion 
[10], there exists an additional acceleration influence on the rates of moving clocks and 
that it is proportional to 1/c4. The influence of the usual transversal Doppler effect 
(classical part eliminated) is proportional to 1/c2. If this effect is not eliminated, the 
measurement of the influence of acceleration is practically impossible. Our proposed 
experiment is a ‘null experiment’ ih the sense that if the rates of moving clocks do not 
depend on acceleration, no effect should be observed. Any observed effect must hence 
be due to the acceleration dependence. As far as we know, our experiment is the first 
one offering the possibility to measure the possible acceleration effect with some 
precision.

*

At this occasion we would like to summarize the main points of the aether 
approach. The basic idea is that the “aether”, or “physical vacuum” which is just 
another name for the same thing, is a material physical entity which is everywhere and 
can have three forms: 1) the “amorphous” or “primal” aether, 2) radiation, 3) mass 
substance (or “body”, not to be mixed up with the measure of mass). All different kinds 
of observed elementary particles are considered as created of the amorphous aether at 
its conversion into mass substance.

A very important property of particles is their wave nature as described by de 
Broglie’s waves [11]. As we have found elsewhere, associated to each particle there exist 
two different kinds of material waves, to be called de Broglie’s waves of first and second 
order respectively [12]. Let us note, however, that the existence of two kinds of material 
waves does not contradict the notion of one physical reality. Both the considered kinds 
of waves are waves of the same material entity. Since further the “amorphous aether”, 
the mass substance, and the radiation are only different forms of matter in this theory, 
we consider the whole cosmos as consisting of only one physical reality for which a 
“primary conservation law” is valid.

The most important feature of the aether concept is that the space between the 
elementary particles is not “void” but filled with the material amorphous aether. So for 
example, the amorphous aether around a body with mass M has a density [13]

p(r)xp0(l+2GM/rc2), (5)

which is the real physical cause of the observed bending of light in the gravitational field
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around the Sun [14, 13]. It is also the inhomogeneity of the aether around masses 
which is the real cause of the gravitational forces [14].

Gravitation-free space, i.e. the space of the theory of special relativity, is in the 
aether theory considered to have an aether density

p = p0 = const. (6)

We may therefore define the gravitation-free space as a homogeneous aether field. 
Since the inhomogeneous aether field is a universal field, so is also the homogeneous 
field, being just a special case of the inhomogeneous one.

The universality of a field is defined by the statement that it cannot be detected 
locally, and therefore the “absolute value” of p remains unknown. It is, however,

possible to measure (grad p)/p and jP- The impossibility to detect the aether field

locally is equivalent to the impossibility to measure the one-way velocity of light. This 
impossibility is further equivalent to the impossibility to measure absolute velocities 
(“Poincare’s principle of relativity”). Reichenbach [15] characterized a universal field 
by the following two properties: i) It affects all materials in the same way. ii) There are 
no insulating walls. It is, however, easily seen that they are not sufficient for a complete 
characterization for which instead one of the above equivalent principles is needed. 
Reichenbach’s properties then become testable consequences. For the case of 
gravitation these consequences have been tested, the first one already by Galileo Galilei 
in his experiments with falling bodies on the leaning tower of Pisa. The second 
statement was experimentally verified by Austin and Thwing [16]. The two statements 
have also been tested together, namely by Fekete, Eötvös, and Pekar [17]. All these 
experiments can hence be considered as tests of the universality of the inhomogeneous 
aether field.

The Michelson-Morley, Trouton-Noble, Kennedy-Thorndike, and Ives- 
Stilwell experiments as well as the experiments of the Champeney and Moon type can 
be considered as tests of the universality of the homogeneous aether field.

From this point of view the resulting formula for the Doppler effect can be 
considered as a logical consequence of both the validity of the very general formula (1) 
and the universality of the homogeneous aether field which guarantees that Q(w) = 

— w2/c2, and that therefore the absolute velocity w cannot be measured.
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Complementing a recent work published in this journal [1] this note reports on 
some supplementary investigations of birefringence carried out on undoped and Cu- 
doped triglycine sulphate (TGS) crystals.

Samples and measurements

For the investigations orthogonal parallelepipeds of sizes between 5 and 15 mm 
in the X, У and Z directions were prepared from undoped and 0.1 mole% Cu-doped 
TGS single crystals grown from solutions. The У-axes of the samples corresponded to 
the <010) and the Z ones to the <001) crystallographic directions of the TGS crystals. 
The angles between the Z-axes and the crystallographic < 100) directions amounted to 
15 degrees.

The temperature dependence of the change of birefringence was measured in the 
three orthogonal directions on heating and cooling between 308 and 340 К by means of 
an orthoscopic set-up described earlier [2]. The crystal samples were placed in a small 
furnace between crossed polarizers and illuminated with collimated light of the 
wavelength of 535 nm. The polarizers were rotated to ±45 0 opposite to the direction 
of extinction. The intensity of the transmitted light measured behind the analyzer by a 
photomultiplier changes sinusoidally; this corresponds to the actual path difference 
given by the birefringence change during the variation of the temperature. The 
birefringence changes could be determined from the points of minimum transmissions 
which corresponded to path differences of integer numbers of the used wavelength. The 
heating and cooling cycles were performed by a temperature program controller at a 
rate of 0.5 K/min.
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Results and discussion

Fig. 1 shows orthoscopic photographs of a homogeneous sample from an 
undoped TGS crystal (a) and of an inhomogeneous sample from a Cu-doped crystal (b). 
In Fig. lb  the shifts in the fringes mark the boundaries between neighbouring growth 
pyramids of the crystal. At the intersection of the boundary lines a large defect is also 
visible.

a) b)

Fig. /. Orthoscopic photographs of a homogeneous undoped TGS crystal sample (a) and of an
inhomogeneous Cu-doped sample (b).

The changes of the birefringence öx =  <5(nz — ny) , Sz =  0(nx — ny) and ôy — S(nz — n j  
for a light beam propagating in the three orthogonal directions are shown in Fig. 2 as 
functions of the temperature. Fig. 2a demonstrates that on heating the ôx decreases in 
the case of the undoped as well as of the Cu-doped crystals. The ferroelectric phase 
transition around 322 К appears somewhat diffuse at first heating after long-term 
storage of the crystal, but on cooling and also during subsequent temperature cycles the 
phase transition is indicated by a sharp kink. During a heating and subsequent cooling 
cycle a small hysteresis can be observed. The hysteresis is more distinct for Cu-doped 
crystals than for undoped ones (see curves 1 and 2 in Fig. 2a).

In the case of light propagating in the Z-direction Sz shows similar main courses 
as before the ôx, though the Cu-dopants cause only small shifts as compared with 
those at Sx, (see curves 1 and 2 in Fig. 2b and in the enlarged inset). The hystereses are 
also smaller than those for Sx.

It should be mentioned that both for ôx and for <5Z , the differences between the 
ferroelectric legs of the curves and the straight lines extrapolated from the 
corresponding paraelectric legs show similar courses with the temperature as does the 
spontaneous polarization measured earlier [1].

Contrary to the ôx and őz for the light propagating in the У-direction the change of 
birefringence öy slightly increases in the ferroelectric phase. After reaching a sharp 
maximum it decreases again in the paraelectric phase as demonstrated in Fig. 2c. The
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Fig. 2. Changes of birefringence versus temperature in undoped (curves 1) and 0.1 mole% Cu-doped (curves 2) 
TGS crystal samples for light propagating in the orthogonal directions X  (a), Z  (b) and Y (c).
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Cu-dopants cause only a small shifting but no hysteresis can be observed (see curves 1 
and 2).

Some characteristic data concerning the ferroelectric (f)-paraelectric (p) 
transition points (T,) on heating (h) and cooling (c), and the slopes (s) of the curves are 
listed in Table I. Comparing the curves and their slopes in Table I one can conclude 
that the birefringence and the slopes, furthermore the hystereses in a heating-cooling 
cycle are generally increased by the Cu-dopants.

Table I

Characteristic data for the temperature dependence of the change of birefringence found in 
undoped and Cu-doped TGS crystals.

TGS TGS : Cu
Direction Course

TfK ]
s/10" 5[K]

7j[K]
s/10' 5[K]

f P f P

X h
c

324.4
322.3 -5 .4 -3 .12 323.4

322.1 -7 .8 -3 .29

Z h
c

323.5
323.1 -5 .4 -2 .30 323.3

322.9 -5 .2 -2 .5 0

Y h
c 323.3 +  0.55 -1 .20 323.3 + 0.38 -1 .1 9

The results can be summarized as follows: The main characteristics of the 
birefringence-temperature curves correspond to those known from the literature for 
undoped TGS crystals only [3]. The fine differences in the characteristic data listed in 
Table 1 point to the influence of Cu-dopants on the formation and structure of 
ferroelectric domains at phase transition, thus supporting earlier conclusions [1].
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Cheung et al [1] have analysed the A 5I  — X  5/7(0,0) electronic transition of the 
CrO molecule. Recently the following explicit expression valid for all values of Y 
intermediate between Hund’s cases a) and b) has been given by one of us [2] for the 
width of the Л-type doubling of a 5/7 state:

M sn N)= J ( J + 1) {2C0 VN + C, [2X N(J - 1 )  (J +  2 )+ 3У*]

where
+ C2 [4Z N(J - 1 ) (J + 2) +  M Nf NgN-]}

+  ( 1 )

(N = J + 2,J + 1, . .  , , J  — 2)

^  ^ ( ~ Ш  +  2г,)2 C, , , V
C° =  12?  ~v(5Tl 5Z K) =6(0 + p +  «}»

C i= 3 2 Ç - w ^ r = 4 (p + 2 i) ’

r  o v  M ) V  ,
2 8 ? v  (sn * Z K) q

MJ + 2 =  MJ+1 = MJ _ 1 =  MJ _2 =  3, M j = l

(2)

and £ =(AL() (5П 5Z), rj = (BL() (5Я 5 Г) and L((5ÍI 5Г) denotes the matrix element of 
the component of the electronic orbital angular momentum in the £ direction, 
perpendicular to the molecular axis for the stationary molecule. (The three parameters 
o, p, and q are named following the usage of Mulliken and Christy.) In the middle part of
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Eqs (2) in the exponent 1=  0 or 1 according as the perturbing 51  term is I + or Z~, CN, 
VN, X N, Yn , Z N , f N, gN are complicated functions of the coupling constant Y=A/B 
(where A is the multiplet splitting constant and В is the rotational constant) and of the 
rotational quantum number J and are given explicitly in the paper [2].

Using the values of the rotational lines of the branches and the value Y= 
120.56 cm“ 1 given in Ref. [1] we obtain for the width of the Л-type doubling of the

Х 5П(v = 0) (Fig. 1) with C0= —1.89 • 10“ 1 cm “ 1, Ct = —2.756 • 10“2 cm“ 1 
and C2 = 3.33 • 10“ 5 cm “ The solid line curves and the circles indicate the calculated 
and the observed values, respectively. The agreement between the observed and 
calculated values is excellent.

It is remarkable that in order to theoretically interpret the Л-type doubling it was 
not necessary to use in addition to the first order spin-orbit interaction and the matrix 
element neglected at the separation of the wave equation other interactions such as the 
spin-spin, the spin-rotation interactions and the centrifugal distortion corrections.
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Ledures on Lepton Nucleon Scattering and Quantum 
Chromodynamics

Edited by: A. Jaffe and D. Ruelle, Birkhäuser, 
Boston—Basel, 1982, pp. 561

Quantum chromodynamics is certainly the most 
feverishly developing chapter of fundamental 
physics in our days. The essential points are far from 
everyday experiences, the experiments are indirect, 
the calculations are complex. The science journals 
print only short letters about the work of dozens of 
scientists and with a huge computation in the 
background. The essential flow of information goes 
another way: through informal workshops, hardly 
accessible for those living far from world centers.

This volume contains four lectures, given at the 
1982 Stanford Linear Accelerator Center’s Summer 
Institute by four staff members: W. B. Atwood, 
J. D. Bjorken, S. J. Brodsky, R. Stroynowski. They 
offer an introduction to QCD and also a status 
report of the theory, based on calculations and 
experiments. So the book is a valuable help for 
everyone working in this field in the early eighties. It 
is comprehensive, readable and up-to-date. But you 
have to rush to study it in time! r  M

W alter T h ir r in g : Quantum Mechanics o f Large 
Systems

A Course in Mathematical Physics Vol. 4. Springer 
Verlag, Wien, New York 1983, pp. 290, 39 figures

“Take 10 clocks with hands moving at different 
rates. The question is: how long it takes for the initial 
configuration of clock faces to reappear within an 
angular accuracy of 1 %T  A simple question allow­
ing exact evaluation. The answer is shocking: 
“Longer than the age of the Universe.” This start 
illustrates the ars poetica of the author: exactness 
does not contradict simplicity but it makes simpli­
city possible. This has been the goal of the whole

textbook series but it has been realized in the most 
convincing way in this volume. It is based on the 
density matrix formalism of quantum mechanics. 
“The ordinary perturbation-theoretic calculations 
are not very useful here. Those methods have never 
led to propositions of much substance”—writes the 
author in the preface. He restricts himself to a few 
models which can be treated with rigour and which 
illustrate the thermal behaviour of realistic systems 
(like gases, atoms, metals, stars, radiation, even 
living organisms). G Marx

Third Workshop on Grand Unification

University of North Carolina, Chapel Hill, April 15- 
17, 1982. Edited by: P. H. Frampton, S. L. Glashow 
and H. van Dam, Progress in Physics, No. 6. Edited 
by: A. Jaffe and D. Ruelle, Birkhäuser Boston, Inc., 
1982, pp 374

In this book the status of grand unified theories 
and their connection to experiment are discussed, 
based on 27 talks given at the Third Workshop on 
Grand Unification, Chapel Hill, April 1982. Each of 
the 14 experimental contributions follows after a 
theoretical one. 8 experimental talks treat the status 
of proton decay experiments. Two talks discuss 
experiments on the neutrino mass, furthermore, 
searches of neutrino oscillations are described in 
two papers. Neutron-antineutron oscillation, and 
the magnetic monopole search at Stanford are dealt 
with in two reports.

On the theoretical side, various aspects and 
problems of the supersymmetry are described in 6 
reports. In particular, S. Weinberg examines the 
problem of supersymmetry breaking. Grand unified 
theories are discussed in three papers. Possible 
origins for the monopole flux, a novel approach to 
the gauge hierarchy problem, the invisible axion and 
the top quark mass are treated in further talks.

The volume provides the reader with a clear 
overall picture of the present status of grand
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unification. Its authors are experts of this field, such 
as S. L. Glashow, S. Weinberg, P. H. Frampton, 
B. A. Ovrut, S. Dimopoulos, S. Miyake, H. Georgi,
S. Rudaz, P. Langacker, A. de Rujula, D. Cundy, 
S. Pakvasa etc.

This book is valuable first of all to professional 
researchers in the field, and also to the wide 
community of particle physicists.

\ j . г  ÖCSIK

Physics in Collision. High Energy ee(pp) Inter­
actions

Volume 2. Proceedings of an International 
Conference on Physics in Collision, June 2-4, 1982, 
Stockholm. Edited by: P. Carlson and W. P. Trower. 
Plenum Press, New York and London, 1983, pp. 432

This volume contains 18 papers of main 
speakers presented at the Second International 
Conference on Physics in Collision, held in Stock­
holm, Sweden, June 2-4,1982. The motivation of the 
Conference was to provide an up-to-date review of 
the most exciting results of experimental particle 
physics obtained since the first Conference in 1981.

Thus, 6 papers deal with the physics of pp/pp 
collisions. Not only hard scattering at ISR energies 
is treated, but also quite new results on pp collisions 
at a centre of mass energy of 540 GeV (Proton- 
Antiproton Collider) are included (Section I).

In Section II (4 papers) promising aspects of 
e*e~ collisions are reviewed. In particular, two- 
photon physics, the J/i/i region, Upsilon resonances 
and electroweak effects are discussed.

Experimental results on jets at PETRA and PEP 
are described in Section III (3 papers).

Section IV is devoted to studying structures in 
hadronic interactions and heavy flavours (4 papers).

Llewellyn Smith’s overview (Section V) is a far- 
seeing conclusion of this excellent volume.

Since the book contains very important new 
results in experimental particle physics, it is highly 
recommended to particle physicists, both theoret­
icians and experimentalists. „  „ ,G. Pocstk

O razio Svelto: Principles of Lasers

Second Edition, Plenum Publishing Corporation, 
New York and London, 1982

An excellent introductory text on the theory and 
practice of lasers that has been needed since long. It 
gives the reader a fairly complete still deep insight 
into the field and provides an excellent basis for 
further theoretical or experimental work, or further 
studies of the specialized literature.

The short and clear explanations of the basic 
physical ideas, specifying limitations of different 
models describing the operational mechanisms of 
lasers are followed by practical chapters: on the 
types of lasers, properties of laser beams, trans­
formation of laser beam in space, amplitude or 
frequency, and applications of lasers.

Since the book contains recent results as well (up 
to 1980) it provides the reader a good survey over 
the results of the last 20 years. It gives a very good 
physical insight into laser science and technology 
therefore it can be highly recommended for students 
at the upper undergraduate level, as a textbook as
we^ Peter Richter

The Dissipation of Electromagnetic Waves in 
Plasmas

Consultants Bureau, New York and London, a 
Division of Plenum Publishing Corporation, New 
York, 1982. Translated from Russian by H. McNeill

The anthology contains four papers on experi­
ments with the interaction between high-power 
electromagnetic waves and collisionless plasmas or 
electrons. In particular, these are special reports on 
the non-linear interaction of waves with plasmas, 
investigated both under free space conditions and in 
waveguides. Secondary-emission discharges were 
studied in order to ascertain their possible effects on 
measurements in waveguides.

The original Russian text as Volume 92 of the 
Proceedings in “The Lebedev Physics Institute 
Series" edited by Academicians D. V. Skobel’tsyn 
and N. G. Basov, was published in 1977 by N auka 
Press, Moscow, for the Academy of Sciences of the 
USSR.

The results presented are of interest to physicists 
and engineers concerned with a wide range of 
problems of the interaction of electromagnetic 
radiation with plasmas, microwave heating of 
plasmas and laser fusion included.

The summaries of the four papers are as follows:
An experimental investigation of nonlinear 

dissipation of electromagnetic waves in inhomo­
geneous collisionless plasmas. (G. M. Batanov and 
V. A. Silin)

The methods of transferring energy from an 
electromagnetic wave to the electrons of a plasma by 
exciting various types of parametric instabilities are 
examined. Data are presented from an experimental 
study of the reflection and penetration of micro- 
waves at an inhomogeneous collisionless plasma 
layer. Measurements of the energy of fast electrons, a 
determination of the combination frequencies, and 
modulation of the plasma density suggest that a t—
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—L + s instability arises. It is established that the 
energy density of the plasma is not constant in time. 
This is manifested in the form of an almost periodic 
modulation in the fast-electron current, which exists 
throughout the time a microwave field is acting on 
the layer.

Collisionless absorption of electromagnetic 
waves in plasmas and “SLOW” nonlinear pheno­
mena. (V. I. Barinov, I. R. Gekker, V. A. Ivanov and 
D. M. Karfidov)

An experimental study is matje of the interaction 
of pulsed microwaves in the 10 cm range with 
collisionless plasma flows (ta S> v) in a waveguide 
under both favourable (An || E, roxcoLe) and un­
favourable initial conditions for plasma resonance 
of the waves. It is shown that in the first case over the 
interval vE/vTe =  10~s — 5 the absorption coefficient 
D2 changes little while absorption sets in almost 
immediately (i <0,01 ps) and is accompanied by the 
rapid decay of the plasma and the production of fast 
electrons. In the second case (V nlE ) anomalously 
strong absorption sets in after a time delay 
(Geia, = 1 — 3 ps) related to the time for the leading 
edge of the plasma to become deformed when wave 
pressure exceeds plasma pressure (E/,)Hn>neTJ.

Nonlinear effects in the propagation of electron 
plasma waves in an inhomogeneous plasma layer. 
(V. A. Silin)

A review is given of some experiments on the 
dynamics of electron Langmuir oscillations and 
plasma waves in weakly inhomogeneous collision­
less plasmas. Field amplification at a plasma 
resonance, collapse, and nonlinearities in the colli­
sionless damping of waves are discussed. Experi­
mental data on the deformation of the field distri­
bution in the neighbourhood of a plasma resonance 
are presented. It is established that, at high field 
amplitudes, in an inhomogeneous layer plasma 
waves fill the region from the critical density point nc 
to ~ l/4 n c .

A study of secondary-emission microwave 
discharges with large electron transit angles. 
(L. V. Grishin, A. A. Dorofeyuk, I. A. Kossyi, 
G. S. Luk’yanchikov and M. M. Savchenko)

The conditions for the production of a 
secondary-emission microwave discharge in sys­
tems with a large distance between the walls (cavity 
resonators, waveguides, etc.) and in free space are 
analyzed. The traditional theory of a resonance 
discharge is shown to be invalid for these cases and a 
new method is proposed for determining the 
thresholds for the discharge. The discussion takes 
into account the contribution to the discharge 
current from electrons emitted at all phases of the 
field. The theoretical calculations are compared 
with experimental results.

J. Bito

D. P apouSek and M. R. Aliev:
Molecular Vibrational/Rotational Spectra

Czechoslovak Academy of Sciences, Academia, 
Prague, 1982, pp. 323, Kcs 145

Research workers dealing with the theory and 
analysis of the vibration-rotation spectra of small 
polyatomic molecules in the gaseous phase must 
note this book with particular interest. Experi­
mental techniques in the field of high-resolution 
molecular spectroscopy have developed very fast in 
recent years. Albeit a number of excellent, older 
treatments of the theory for the accurate interpre­
tation of such spectra are available, the theoretical 
apparatus for the needs of the working spectrosco- 
pist is rather scattered. A significant portion of 
important developments, including the authors’ 
own work, has up till now been available in the form 
of original papers only. The authors have therefore 
attempted to collect and organize the up-to-date 
theory of vibrational-rotational spectroscopy into a 
compact volume of 323 pages. As the authors belong 
to today’s active theoreticians this goal has certainly 
been achieved.

The book contains four main chapters, each 
structured to several subdivisions. References are 
grouped for each subdivision independently. The 
first chapter discusses the vibrational-rotational 
Hamiltonian of semi-rigid molecules, the second 
contains the description of the modern, permuta­
tion-inversion concept of molecular symmetry and 
its applications in the classification of vibrational- 
rotational states, and the optical selection rules 
among them. The third chapter covers various 
forms of interactions between vibrations and rota­
tions, including Coriolis interactions, while the final 
chapter describes non-rigid molecules possessing 
large-amplitude motions,, in particular molecular 
inversion and internal rotation. There are ten 
interesting Appendices, containing for example the 
sum-rules for vibration-rotation interaction coeffi­
cients, the description of the adiabatic approxi­
mation for separating dynamical degrees of freedom 
in a molecule, character tables for the irreducible 
representations of some point groups, and symme­
try relations among molecular spectroscopic 
parameters.

The Subject Index is detailed, but—alas—no 
Author Index is given. The treatment is strictly 
theoretical throughout, but as it progresses from 
fundamentals to advanced ideas it should enable the 
practically minded, chemically-oriented infrared, 
Raman and microwave spectroscopists to under­
stand and develop their problems deeper and 
further. By the same token this book is recom­
mended for advanced courses on molecular spec­
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troscopy. In addition the rapidly advancing field of 
infrared laser physics necessitates the kind of 
understanding of molecular vibrational — rota­
tional levels that this book fosters.

The Publishing House of the Czechoslovak 
Academy of Sciences, Academia/Prague has pro­
duced a cloth-bound book of good material quality, 
careful printing and low price (145 Czech Crowns). 
To the knowledge of the reviewer there will be 
another publication of the same book to supply a 
wider market by Elsevier Scientific Publishing Co. 
Amsterdam.

László Nemes

W. Petzold: Strahlenphysik, Dosimetrie und 
Strahlenschutz

B. G. Teubner Verlag, Stuttgart, 1983

Dieses Buch enthält eine gute und klare Zusam­
menfassung über Strahlenphysik, Dosimetrie und 
Strahlenschutz für Röntgentechniker, medizinische 
und technische Studenten und beginnende 
Fachleute. Der Autor schreibt im Vorwort des 
Buches': “Für die Niederschrift des Buches haben 
mir viele Diskussionen mit Studenten, Kollegen des 
Physikalischen Instituts und Kursteilnehmern wert­
volle Anregungen gegeben.”

Diese Arbeit war erfolgreich, weil der Leser ein 
Buch mit vielen guten, in der Praxis anwendbaren 
Informationen über die Strahlenphysik und den 
Strahlenschutz erhält.

In den ersten 6 Kapiteln der Zusammenstellung 
sind die Grundgesetze von Radioaktivität und 
Röntgenstrahlung bzw. die Wechselwirkungen von 
Röntgen- und Gammastrahlen mit der Materie 
zusammengefasst.

In Kapitel 7 (Dosimetrie) werden die Grundbe­
griffe der Dosimetrie: die Dosiseinheiten, die ver­
schiedenen Messverfahren in der Dosimetrie und die 
grundsätzlichen Berechnungen der Ortsdosis 
beschrieben.

In Kapitel 8 (Strahlenschutz) sind die nächsten 
Themenkreise zusammengefasst: die schädigende 
Wirkung ionisierender Strahlung, natürliche und 
zivilisatorische Strahlenbelastung des Menschen, 
Strahlenschutzbereiche und Schutzzonen, Röntgen­
und Strahlenschutzverordnung, praktischer 
Strahlenschutz.

Im Anhang befinden sich viele Zahlenbeispiele 
und Tabellen, die in der Praxis gut verwendbar sind.

Das Buch des B. G. Teubner Verlages ist zu 
empfehlen als eine praxisorientierte Einführung in 
die Grundlagen der Dosimetrie und des Strahlen­

schutzes für medizinisch-technische Assistenten, 
sowie für Studierende der Naturwissenschaften und 
der Medizin.

E. Virägh

H ans-Jürgen T reder: Grosse Physiker und ihre 
Probleme

Studien zur Geschichte der Physik, Akademie- 
Verlag, Berlin, 1983

Die geistreiche Grundidee der Artikel und 
Vorträge des Verfassers zu dem, im Titel an­
gedeuteten Thema ist folgende: Würde sich die 
Physik nur aufgrund der Ansammlung ihrer inneren 
Kenntnisse entwickeln, so wäre es schwer zu ver­
stehen, warum nicht einige Generationen nach 
Axiomatisierung der Statik von Archimedes ein 
Galilei zur Gründung der Dynamik gelangte und 
weshalb 2000 Jahre zwischen Archimedes und 
Galilei in Wirklichkeit vergehen mussten. Da die 
Denkweise und die Möglichkeiten der Physiker 
nicht nur vom Niveau der physikalischen Kennt­
nisse, sondern auch von den gesellschaftlichen 
Verhältnissen und Produktivkräften, d. h. von dem 
Entwicklungsstand der Technik und andererseits 
von den philosophischen Anschauungen der gege­
benen Zeit bestimmt werden, ist es empfehlenswert, 
all diese Verhältnisse in der Tätigkeit eines Phy­
sikers konkret zu analysieren. Der wissenschaftliche 
Lebenslauf von grossen Physikern ist kein anekdot­
ischer Beitrag zur Geschichte der Physik, sondern 
ein wesentliches Element der Entwicklung, d. h. der 
Geschichte der Physik.

Das Buch enthält insgesamt 29 Artikel und 
umfasst eine ganze Reihe von Wissenschaftlern von 
Aristoteles über Descartes, Helmholtz und Boltz­
mann bis zu Einstein und Planck. Die grossen 
Physiker werden im Spiegel eines speziellen Prob­
lems und die grossen Probleme durch die Tätigkeit 
der Wissenschaftler dargestellt. Unter den schöpfe­
rischen Persönlichkeiten sind nicht nur die grossen 
Personen der Geschichte und Vorgeschichte der 
Physik zu finden, sondern auch Kant, Hegel, Engels 
und Lenin sind im Zusammenhang mit einem 
Problem der Naturwissenschaften oder der Physik 
vertreten.

Das Werk will natürlich keine “Gesell­
schaftsgeschichte” der Physik im weiten Sinne des 
Wortes anbieten, aber der Verfasser als theoreti­
scher Physiker gibt lehrreiche Beiträge dazu. Die 
Studiensammlung kann sowohl für Physiker als 
auch Philosophen und Historiker von Interesse sein.

G. Biró
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