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AGE-HARDENING CHARACTERISTICS OF 
AN AlMgSi ALLOY

Z . H . Is m a i l  and B . B o u c h r a

D epartm ent of Metallurgy, N R C , A tom ic Energy Com mission  
Cairo, Egypt

(Received 20 June 1990)

Age-hardening behaviour of an AlMgSi alloy was followed by hardness measurements 
during isochronal and isotherm al ageing. The alloy is  found to age-harden during natural 
ageing at room  temperature after quenching from the solid solution tem perature. The  
alloy exhibits peak hardness by artificial ageing at 200 °C for 2 hours. Isotherm al ageing 
curves indicated that the rate o f hardness increase at early stages of ageing, is dependent 
upon the ageing temperature in  a  manner which obeys an Arrhenius-type equation. An  
activation energy of 0.95 ±  0.05 eV was calculated from  the Arrhenius p lot o f the results. 
This activation energy shows that the process responsible for hardness increase in the early 
stages of ageing m ay be controlled by the migration of solute-vacancy com plexes.

1. Introduction

The AlMgSi system is the basis for a major class of heat-treable alloys used 
for both wrought and cast products. These alloys are of great technological inter
est since they combine many favourable characteristics including moderately high 
strength, relatively low quench sensitivity and good corrosion resistance. In a pre
vious work [1] the precipitation behaviour during ageing of the supersaturated solid 
solution of an AlMgSi alloy was investigated using transmission electron microscope. 
The aim of the present work was to follow the precipitation from solid solution dur
ing ageing at various temperatures, by hardness measurements.

2. Materials and experimental

The material under investigation is cold-rolled sheets of AlMgSi alloy con
taining 0.98 wt % Si, 0.78 wt % Mg as major alloying elements and 0.31 wt % Mn 
and 0.06 wt % Fe as minor additions. Specimens of about 1 cm2 area were cut 
from the as-received sheet, and solid solution annealed at 570 °C for one hour in air 
muffle furnace whose temperature is controlled to ±5°C. The specimens were then 
quenched in water and were given 5 minutes standard delay at room temperature 
before artificial ageing. Artificial ageing was conducted in an air chamber furnace 
at temperatures from 100 up to 300 °C for various periods of time ranging from 5 
minutes to 24 hours. The temperature of the furnace was controlled to ±5 °C.
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4 Z. H. ISMAIL a n d  B. BOUCHRA

Natural ageing was simply performed by leaving the specimens at room tem
perature in air for different time periods after quenching.

Vickers hardness was then measured using a hardness testing machine type 
W. P. M. Werkstoffprüfmaschinen, Leipzig, Germany. The relationship between 
hardness values and ageing temperature and/or time are plotted. Each data point 
on the hardness curves is the average of at least ten measurements.

3. Results

Isochronal ageing curves are presented in Fig. 1, from which it is shown that 
hardness increases with ageing temperature to a maximum, then decreases by fur
ther temperature increase. It can also be noticed that increasing duration of ageing 
resulted in a shift of the peak hardness towards lower temperatures. From Fig. 
1 one can observe that maximum hardening of the alloy is achieved by ageing at 
200 °C for 2 hours after quenching from the solid solution temperature.

a g e in g  te m p e r a tu r e  l°C )

Fig. 1. Isochronal ageing curves for AlMgSi alloy solid solution annealed for 1 h at 570 °C and
water-quenched

The isothermal ageing curves are illustrated in Fig. 2. It is clear that the 
supersatured solid solution exhibits hardening by natural ageing at room temper
ature as well as during artificial ageing at elevated temperatures. The hardness 
increases at a fast rate in the early stages of ageing at temperatures from room up 
to 200 °C. By prolonged ageing the hardness continues to increase but at a slower 
rate, except for ageing at 200 °C where the hardness achieves a maximum value
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AGE-HARDENING CHARACTERISTICS OF AN AlMgSi ALLOY 5

after 2 hours and then decreases with time. Ageing at 250 °C produced maximum 
hardness after 10 minutes; the shortest ageing time employed, then the hardness 
decreases continuously with time.

Fig. 2. Isotherm al ageing curves for AlM gSi alloy solid solution annealed at 570 °C for 1 h  and
water-quenched

From Fig. 2 it is observed that the rate of hardness increase at early stages 
of ageing is enhanced by ageing temperature increase. The natural logarithm of 
hardening rate exhibited at different ageing temperatures (taken at constant hard
ness value) was plotted against the reciprocal of the absolute ageing temperature 
as shown in Fig. 3. The fact that the points lie on a straight line leads to the 
conclusion that the hardening rate during early stages of artifical ageing obeys an 
Arrhenius-type equation of the form:

H* =  tf0*e“ Q/jRT,

where H* is the hardening rate, H* is a structure constant, Q is the activation 
energy, R is the gas constant and T  is the absolute ageing temperature.

An activation energy of 0.95 ±  0.05 eV is calculated from the slope of the 
straight line in Fig. 3. This represents the activation energy for the process respon
sible for hardness increase.

4. Discussion

The precipitation sequence which takes place during ageing of AlMgSi type 
alloys known from X-ray diffraction and electron microscopy studies [1-5] is as 
follows:

Supersatured—Coherent G. P. zones—Semicoherent—Incoherent 
solid solution of needle shape B’ rods B(Mg2Si) platelets

Acta Phyaica Hungarica 71, 1992
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1000/T (К)

Fig. 3. Arrhenius p lot of In hardening rate H  as a function  of 1 / Т  for A l-M g-S i alloy so lution  
annealed at 570°C for 1 h  and  water-quenched

The change in hardness with varying ageing temperature and/or time shown 
in Figs 1 and 2 could be attributed to the various precipitate structures formed 
as found previously [1]. During early stages of ageing (low temperature and/or 
short time), the increase in hardness takes place due to the formation of clusters 
or fine scale precipitates. These clusters or pre-precipitates as classified before [3] 
could not be revealed during bright field microscopy examination. However, their 
presence was only detected [1,6] by selected area diffraction pattern technique. By 
progressive ageing these clusters grow up in size to form the needle-like G. P. zones 
which are coherent with the matrix along < 100 > cube direction. These needle-like 
precipitates are known [7] to be responsible for age-hardening of AlMgSi alloys. The 
peak hardness (Figs 1, 2) would thus correspond to the optimum size and density 
of such precipitates. The needle-like precipitates grow up by prolonged ageing and 
transform to larger widely spaced rod-like precipitates and then to the equilibrium 
Mg2Si platelets with a corresponding drop in hardness, i.e. overageing.

The isothermal ageing curves in Fig. 2 indicate that the process responsible 
for hardness increase during early stages of ageing is diffusion controlled with an 
activation energy of 0.95±0.05 eV. It was suggested [8,9] that during early stages of 
ageing precipitation is controlled by silicon diffusion. The activation energy of 0.95 
eV determined in the present work is lower than the activation energies of 1.43 and 
1.13 eV reported [10] for the diffusion of Si and Mg in Al, respectively. This low 
activation energy determined in the present results might be due to the formation 
of complexes between quenched-in vacancies and solute atoms [11], namely silicon. 
The activation energy for the migration of these complexes is expected to be less

Acta Physica Hungarica 71, 1992



AGE-HARDENING CHARACTERISTICS OF AN AlMgSi ALLOY 7

than that for normal solute atoms [12]. The initial fast rate of hardness increase 
(Fig. 2) is thus thought to be due to the high rate of clustering or precipitation, 
enhanced by the large concentration of quenched-in vacancies. Due to the high 
binding energy between the vacancies and the clusters [4], the former will rapidly 
become incorporated in the latter and will be virtually eliminated from the matrix. 
Consequently, one would expect a change from a high to low rate of clustering or 
hardness increase (as shown in Fig. 2), as the concentration of vacancies in the 
matrix diminishes.
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ROTATIONAL ENERGY TRANSFER WITHIN THE 
A1̂ --STATE OF Na2 INDUCED BY 

COLLISIONS WITH (2 * * * * * * *S1/2) Na

K . H u s s e i n

Lebanon U niversity, Faculty of Science  
Tripoli, Lebanon

and

O. B a b a k y *

San a’a U niversity, Faculty o f Science, D epartm en t of Physics 
Sana’a, Yem en Republic

(Received in revised  form  11 October 1990)

The (o' =  34, J ' =  14) level in  th e  A 1 E Í  electronic sta te  of Na2 has b een  selectively  
populated by excitation  with the 578.1  nm  line of a  ring dye-laser with rhodam ine 6G. 
Through collisions w ith (2S i / 2) Na a tom s energy is transferred to neighbouring rotational 
levels in  Na2 and the density of these levels is determ ined by observing fluorescence to the  
electronic ground sta te . Prom previous m easurements o f the lifetim e of the A 1 E j  state  and  
new measurem ents o f the intensities o f  collision induced spectral lines, absolute collision  
cross sections for all rotational transitions up to ДУ =  ± 6  have been obtained; the total 
cross section for all rotational transitions observed is:

„Kr10“11 =  0.41 ±  0.11 nm 2 .

1. Introduction

In the last few years, there has been renewed interest in the spectroscopy of
alkali dimer molecules. These systems offer attractive possibilities for the study of
many fundamental phenomena such as dissociation, perturbations, and curve cross
ings [1-3]. Besides, collision processes of these molecules can be conveniently and
precisely studied using spectroscopic techniques. In favourable cases laser induced
fluorescence may be used to gain information about collisional processes.

Previously, we have reported the results of the analysis of the fluorescence 
excited by a dye-laser at 17297.387 cm-1 which populates v' = 34, J' = 14 in 
of sodium molecules (see [1]). We now present results of the absolute cross section 
for rotational transitions to neighbouring rotational levels v' — 34, J' — 14 ±  A J  
with A J  = ±2, ±4, ± 6).

•A uthor to whom  correspondence should  be addressed

A cta Physica Hungarica 71, 1992
Akadémiai K iadó, Budapest



1 0 K. HUSSEIN a n d  О. BABAKY

2. Experimental

Fluorescence was excited by a ring dye-laser with rhodamine 6G (Spectra- 
Physics 380) delivering about 560 mW at 578.1 nm. Sodium vapour was contained 
in a heat-pipe at 760°K in the presence of argon at about 1.3 x 104 Pa. Spectra 
were recorded by high resolution Fourier transform spectroscopy and the dye-laser 
frequency was measured by a wave meter and found to be 17297.387 cm-1. The 
vapour pressure could be controlled by the temperature of the side arm which 
was normally 527°C, corresponding to vapour pressure P^a = 0.8 x 104 Pa and 
РцЛз = 0.4 x 103 Pa [4].

The argon pressure was measured with a capacitance membrane manometer. 
The temperature was measured with thermocouples. The sodium density n and 
mean velocity v were calculated using the relation

P = nkT  and V = K T
)

P

where fi is the reduced mass of the colliding system. The dye-laser radiation overlaps 
with the transition R(13) in the 34-6 band of J41S+ — X 1E4" and the collisison 
induced fluorescence lines (satellite lines) from neighbouring rotational levels ( J ' + 
A J)  are rather well resorved (Fig. 1). The identification of lines was made by 
calculating the satellite line wavelengths from the Na2 molecular constants [1].

3. M ethod of cross-section determination and results

The method of obtaining cross-section for collision-induced rotational transi
tions from the fluorescence spectrum has been described in the literature [5]. The 
excited state J41E j has a spontaneous lifetime r  ~  13 ns [6] and some of the ex
cited molecules may undergo inelastic collisions with atoms (25 i /2) Na, resulting 
in transitions to neighbouring rotational levels (J' +  A J) in the v' =  34 level or to 
adjacent vibrational levels v' + Av. Transitions to other electronics states (e.g. the 
X 1 E+ state of Na2) are also posible, but with much smaller transition probabilities. 
The steady population N(AJ)  of a rotational level J' + AJ,  in the excited Т гЕ+ 
state, is determined by the following excitation and de-excitation processes:

a) Collisional excitation: this can result either directly from the laser excited 
level J  (cross section rot<r(AJ)) in a single collision or by a second collision from 
neighbouring collisional populated levels A J '(rota(A J  — AJ')) if these levels collide 
again with (2£ i /2) Na atoms before they radiate spontaneously.

b) De-excitation: this may occur by spontaneous decay from level (J' + A  J) 
to the electronic ground state with probability 1/ r ,  or by collisional energy transfer 
to all neighbouring rotational or vibrational levels or by electronic quenching with 
cross sections rot<xtotaI, vib<7'total and e[<xtotal, respectively.

In general, the probability for two successive collision induced transitions is 
small but detectable, and the possibility of more than two inelastic collisions of

Acta Physica Hungarica 71, 1992



ROTATIONAL ENER GY TRANSFER 11

an excited molecule can be neglected completely. With this assumption the rate 
equation for the population of level ( J ' + A  J) can be written a follows:

dN(AJ)
dt

n
N (e )TOta(AJ)  + ^ 2  N(AJ')rota(AJ -  A J')

Д  J '

TlN a • V

- N ( A J )  (1 /r  +  [rot<rt0tal + vib (Tt0tal +el <7t0tal] nNa ■ v) ,

( 1 )

where v is the mean relative velocity of the collision partners. The term 
J Z j . N (A J ')rot0(A J  — A J ')n m  v accounts for the increase of N(AJ')  by a second 
collisional transition from all neighbouring rotational levels (Д J'). The summation 
therefore, goes over all rotational levels excited level (for which A J — 0 )  and the 
level A J  itself.

Vi r2 «- z  —
£2  CL c r  СГ

4—

o _ — in0 o ' m ló
fOvIj Vj
Q_CT) ̂ 2 

CL t r

Fig. 1. The corresponding rotational satellite spectrum  with 1.3 x  104 Pa. The assignm ents 
P (A J )  and R (A J )  indicate the fluorescence lines ( J ' — J"  =  ± 1 )  from  collisional pop ulation  level

( Г  +  A J )

Eq. (1) holds for each collisional populated level. Under steady state condi
tions = o and Eq. (1) present a system of algebraic equations which are
coupled by the E"-term with the abbreviation

-a " N (A J ') rot<T(AJ -  AJ')
“  = (------------- щ К Т ) ------------- +ГО, + , ib  -T1“ *' + .1  °” “ ) n N,  ■ VT
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T able  I
Experim ental absolute cross-section  

for collision-induced rotational 
transitions

<T
Д J го,о -« Р (Д 7 )

nm 2
6 0.05±0.01
4 0 .08±0.02
2 0.11±0.03

-2 0 .09±0.02
-4 0 .05±0.02
-6 0.03±0.01

л:

Fig. 2. Absolute cross-sections for all observed collision induced rotational transitions A J  in N a2

w ith  (25 1/ 2)Na atom s

Eq. (1) can be rearranged for steady state conditions with = 0

<2'(л *0 = ~ jv ^ jp (1 +  a ) = rot <r(AJ)n^a -VT (2)

at low pressure

Q(A J ) = =rot <T(A/)nNaVT.

A cta  Physica Hungarica 71, 1992



ROTATIONAL ENER GY TRANSFER 1 3

The quantity Q = can be determined from the measured fluorescence
intensities 7(A7) and 7(0) corrected by the Hönl-London factors for the R  (and p) 
satellites.

The resulting absolute cross section rot<7 for collision-induced rotational tran
sitions are presented in Fig. 2. Numerical values of absolute cross section are listed 
in Table I. The sum over all rotational transitions yields

6

rot<rtotal= ^ 2  rot<r(AJ) = 0.41 ±  0.11 nm2.
ДУ=-6

The inelastic cross section rot<T(AJ) decreases rapidly with |A J| and + Д 7 / — AJ  
asymmetry of cross sections can be observed.

4. Conclusion

The investigation has shown that the technique of laser-induced fluorescence 
is well suited for the study of inelastic collision processes between electronically ex
cited molecules and other collision partners. In Naj — (2S i/2)Na experimental cross 
section has been determined for individual collision-induced transitions between 
well defined initial and final states, with reasonable accuracy.
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ENERGY LEVELS OF 237Np

S. U. E l - K a m e e s y

P hysics D epartm ent, Faculty of Science 
Ain-Sham s U niversity, Cairo, Egypt

(R eceived in revised form  28 December 1990)

The a  decay of 241 Am  to 237Np has been studied using Si(Li) and H .P .G e-N al(T l) 
spectrom eters in the low energy range 5 -45  keV. Twelve gam m a transitions have been  
observed. Two of these transitions are found to be new an d  have energies 28.52 and 
40.44 keV. Furthermore, it  was possible to  confirm the placem ent of the 27.1 keV transition  
in  the level scheme of 2S7Np. The levels from  this and previous work are com pared with 
those calculated by m eans of the unified m odel and the extracted  parameters are given.

1. Introduction

The level structure of 237Np has been studied previously by a variety of ex
perimental techniques including the spectroscopic determination of 7 rays and/or 
particles emitted during a  decay, ß  decay and single nucleon transfer reactions [1-7]. 
Although the energy levels of 237Np have received much attention, they continue to 
be a fruitful medium for testing theories of nuclear structure and the interrelated 
theories of nuclear decay processes.

The 7-ray intensities of 241 Am have been investigated in the low energy region 
(13-150 keV) using a high resolution Ge detector [8]. Energies and intensities of 
only two 7-lines were detected in the energy range 0-40 keV. The same result was 
obtained by Ovechkin and Khokhlov [9] in the same energy region. Moreover, in the 
accumulated results reported in NDS [10] four 7-transitions in the energy range 0- 
40 keV having energies 13.81, 27.03, 31.4 and 38.54 keV are still placed as doubted 
in the decay scheme of 241Am.

It is hoped by such work to settle the previously reported discrepancies 
through the study of singles and coincidence spectra using better techniques and 
pure 241 Am source (ORTEC, USA). Another goal is to extend the comparison of 
the experimentally observed energy levels to those predicted by unified model cal
culations.

2. Experimental procedure

The low energy 7-transitions in 237Np (5-45 keV) have been investigated 
using a 12 mm2 Si(Li) detector of about 150 eV resolution at 5.9 keV. An IBM-XT

A cta Physica Hungarica 71, 1992 
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1 6 S. U. EL-KAMEESY

computer equipped with a nucleus 8192 MCA plug-in-card was used to analyse the 
obtained spectra.

The gamma-gamma coincidence measurements have been carried out using 
a 3" X 3" NaI(Tl)-H.P.Ge fast-slow spectrometer. The time resolution of the fast 
coincidence pulse was about 20 ns, while that of slow coincidence was about 0.5 ps. 
In order to determine the energy per channel an energy and efficiency calibration 
has been carried out using available standard sources.

Fig. la

Figs 1 a,b. G am m a singles of 241 A m  using Si(Li) detector

A cta  Physica Hungarica 71, 1992
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Fig. l b

The background singles spectrum was undertaken and all the circumstances 
concerning the possible existence of escape and sumpeaks were taken in considera
tion.

3. Gamma rays singles and coincidence spectra

The gamma rays singles spectra in the low energy range 5-45 keV with good 
resolution is shown in Figs la,b. Twelve gamma transitions have been identified. 
Four of these transitions of energies 26.345, 33.195, 42.730 and 43.423 keV are well- 
established. The 27.1, 31.4 and 38.54 keV transitions are placed as doubted in the 
level scheme of 237Np [10]. The remaining five transitions are observed for the first 
time in the present work. The 6.58, 8.75 and 25.21 keV transitions are considered to 
be probable because of their weak intensities but the 28.52 and 40.44 keV transitions 
are confirmed to be new by their presence in the coincidence spectrum as shown in
Fig. 2.

The detected gamma transitions and their intensities compared with the previ
ous work are given in Table I. The 13.81 keV proposed to depopulate the 281.36 keV 
level [10] was not observed in the 7-singles spectrum.

The X-ray lines attributed to 241 Am source are carefully selected as shown in 
Fig. la.

To confirm the placement of the 40.44 keV transition between the 800 and 
840 keV levels, the 573.9 and 641.5 keV transitions depopulating the 800 keV level 
were selected as gating transitions. The obtained spectra confirm the presence of

Acta Physica Hungarica 71, 1992
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Table I
Energy and in tensity  values for gam m a transitions in  241 Am  cr-decay 

in  the low energy range 5-45 keV

Present work Ovechkin [9] Genoux-Lubian [8]

E y ? < 1 % E y  (keV) I  % E y  (keV) I  %

6.58* 10 0.00046 12
8.75* 20 0.00085 18

25.21* 15 0.00888 25
26.30 10 2.4 1 26.346 (2 .27) 26.346 6 2.57 26
27.65 11 0.00117 15
28.52 13 0.00332 26
31.40 20 0.00066 19
33.20 12 0.11 1 33.2 0.12 1 33.245 10 0.107 11
38.60 22 0.00745 30
40.44 15 0.0032 8
42.70 16 0.006 1 42.715 50 0.0056 11
43.44 20 0.07 1 43.42 0.066  5 43.413 10 0.0737 74

‘ Probable transitions observed in  the present work.

Fig. 2. G am m a-gam m a coincidence spectrum  using H .P .G e-N al(T l) detectors

the 40.44 keV transition as shown in Fig. 2 (gate 550-650 keV). This result gives 
another support for the existence of the 840.0 keV level proposed previously for the 
first time by the authors [11].

The 28.52 keV transition was proposed to depopulate the 158.51 keV level. 
In this case the 597.5 and 641.5 keV transitions are suitable gating transitions 
included in the previous gate. However, the presence of the 28.52 keV transition in 
the coincidence spectrum shown in Fig. 2 supports our proposal for its placement.

To confirm the placement of the 27.1 keV doubted transition [10] between 
the 102.96 and 75.89 keV levels, the 619.01 keV transition, being the most intense 
line populating the 102.96 keV level was selected as a gating transition in the same
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gate (550-650 keV). The obtained spectrum confirms the presence of the 27.1 keV 
transition as shown in Fig. 2.

о  in ^  m

1 / 2 '

5 /2 '

840.0

800-0

755.9
721.97

11/2'

9 /2 '  
11/2* 

7 /2 '  
9/2- 
5/2 ' 
112 *  

5 12*

LTI СЧ1
LO

LП 
vO

225.95
U~l CD 1Л csi

r— 00
I гп r*1 (_n r— IJÖ.51

J  Q 4 r  esi • 30-0

r *\ ------1-------  59.537

0.0

Fig. 3. Partial level scheme of 237 Np

The results of the present work have been used in constructing a partial level 
scheme of 237Np (Fig.3).

4. Unified model calculations to 23,Np energy levels

Calculation of the energy spectrum was done making use of the well-known 
total Hamiltonian H  for the system where

Я = Hrot + HP + V(r).
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Яго1 is the Hamiltonian for the rotor, Hp is the Hamiltonian for the odd-particle 
and F (r) is the interaction potential between the particle and the rotor. The total 
Hamiltonian can be rewritten as

H = H0 + H°ot +  Ясоир1.

The deviation from the rotational spectrum may be thought of as due to a 
coupling between the rotational mode of motion, and either vibrational or particle 
mode. This coupling contributes to a change in the energy given by the last terms 
in the energy relation

Ej,k = Ek + A kI(I  + 1) +  В I 2 (I + 1)2 +  . . .
+  (-1 ) /+1/ 2(J +  1/2)(Аг + В Д 7  +  1) + . . .  ) * = 1/2 
+  ( - l ) i+3/2(J -  1/2)(/ + 1/2)(J +  3/2)(Aa +  B3I( I  +  1) + . . .  ) к = 3/2 
+ ...........

By means of this equation the energy spectra of seven bands are calculated 
and the set of parameters which yield the best fit to the data are adopted for every 
band. The energy bands are expanded to higher energies giving a correct prediction 
of the already adopted levels [10] and assigning the spin-parity character of some 
higher levels as shown in Fig. 4.

4-1 The ground state 5/2* [642] band

In the previous study of 241 Am a decay and nuclear reactions [3] the members 
of this band have been established as rotational band members and given a 5/2+[642] 
orbital. The regular spacing of these levels indicates a Jfc =  5/2 band with fitting 
parameters Ek = —39.77, A  =  4.55, В = 0.0049 and As = —0.0000258.

4.2 The 5/2~ [523] band

The levels of this band were established previously [3] and were assigned to 
have 5/2-  [523] orbital. The comparison of theoretical and experimental energy 
levels for this band shows excellent agreement. The fitting parameters of our cal
culation to this band are E k = 4.994, A =  6.251, В = —0.00198, As = 0.00001023 
and Bs = 0.000000221.

4.3 The 1/2- [530] band

The level spacing in this band can now be described by the parameters Ek = 
265.012, A = 6.603, В = 0.0350 and A3 =  11.336. All the levels assigned to this
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band were observed in the (d,p) spectrum, only the one at 281.4 keV has not been 
observed. The decay pattern of this state is interesting in that competing modes 
involving El, E2, Ml and М2 transitions are all observed. It is sufficient to say 
that the El and Ml transitions, in particular, are very slow and that accounts 
qualitatively for the failure to observe corresponding transitions from higher levels 
of the band.
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Fig. 4. Experim ental energy levels o f 237Np com pared with the unified m odel calculations
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4-4 The 1/2* [4OO] band

In previous studies [10] this band was proposed to consist of levels at 332.4, 
368.6, 370.9, 452.4 and 459.6 keV with spin sequence 1/2 — 9/2. From the energy 
spacing of this proposed levels the estimated parameters are Ek = 334.328, A  = 
6.237, В =  -0.00496 and A 2 = 6.6425.

4.5 The S/ Г  [521] band

In the previous studies [10] this orbital has been assigned as 3/2“ [521]. 
Transitions that feed or depopulate the members of this band have been identified in 
this work. The observed level spacings indicate extreme agreement with our calcul
ations where the fitting parameters are Ek = 490.814, A = 6.237, В = —0.0038, 
A3 = -0.0116 and B3 = 0.0008496.

4-6 The к =  5/2 band based on the 721.97 keV state

This band has a low hindrance factor for the a transition from 241 Am. The 
members of this band were also seen in the (d,d') reaction where the B-vibrational 
band is not expected to be populated strongly, which led to an assumption that 
this band is not octupole vibrational band coupled with 5/2 [642] [3]. It is very 
difficult to describe this band through gamma ray transitions because its transitions 
are very weak. The level sequence of this band is very well reproduced by means 
of our calculations where the fitting parameters are Ek = 679.586, A = 4.838, 
В = 0.000586 and Ab = -0.0000443.

4-7 The к =  5/2 band based on the 770-4 keV state

This orbital has not been identified in previous studies of 241 Am. Three weak 
transitions define this level at 770.4 keV [10]. These transitions feed the 5/2+, 
7/2+ and (7/2- ) states which are correctly placed in the decay scheme. In the 
same regard the levels at 840.0, 904.0, 930.0 and 946.0 keV which represent the 
main contribution of our previous experimental study [11] feed 5/2 — 11/2 states. 
This led the authors to propose a band characterized by к = 5/2 based on the 
770.4 keV state as a band head of spin-parity 5/2+. The levels at 840.0, 904, 830.0 
and 946.0 keV are proposed the members of this band. Our calculations showed 
an excellent agreement with the experimental observed levels of this band both by 
us [11] and previous (d,d') reaction [10]. The fitting parameters to this band are 
Ek = 657.6172, A  = 14.424 and В = -0.181.
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5. Conclusion

In this work an attempt has been made making use of good resolution detec
tors and pure 241 Am source to study the low energy spectra of 241Am-a decay in 
the range 5-45 keV. Two new gamma transitions attributed to 237Np are observed 
and placed in the decay scheme by means of 7-7 coincidence. The 27.1 keV doubt
ed transition is confirmed and its placement in the decay scheme is assigned. In 
addition to that the energy spectra of seven bands are calculated by means of the 
unified model. The energy bands are expanded to higher energies giving a correct 
prediction for the already adopted levels and assigning the spin-parity character of 
some higher energy levels. This study indicates that the used model can give the 
correct ordering of the energy levels of 237Np.
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DIRAC PARTICLE IN A SPATIALLY PERIODIC 
MAGNETIC FIELD

N. D. S e n  G u p t a

Tata Institu te of Fundam ental Research 
Colaba, Bombay, 400005 India

(Received 8 January 1991)

T he exact general solution of the D irac equation in the steady periodic m agnetic  
field along a fixed direction is obtained.

1. Introduction

Recently, in this journal, there appeared a short paper on ‘Dirac particle 
in a periodic field’ by I. Lovas and Livia Molnár [1]. They have attempted to 
present some particular (exact) solution of the Dirac equation in a spatially periodic 
magnetic field. Unfortunately, some unjustifiable assumptions in the paper have 
impaired the validity of the solution.

They are:
i) The assumption about the nature of the solution, expressed by Eq. (10) of 

the reference, cannot be justified, as is manifested by the general solution 
obtained in the present paper.

ii) It is easy to check that there is no non-trivial spinor ‘u’, which simultaneously 
satisfies both Eqs (14) and (15) of the reference.
The object of the present short paper is to obtain the most general exact 

solution of the equation in a concise form. This is worked out in the following 
Section. 2

2. The equation and its solution

Let the spatial period magnetic field be along the x-axis, with space period 
2n/k, given by

Hx = Ho sin kz, Hy = 0 = H„ (1)

so that the corresponding vector potential a

av Ho , cos kz к ax = 0 = az. (2)
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The Dirac equation for the electron in this field is given by

[“  { ш  -  “- é  -  “» { щ + f  c“ ‘ 2)  -  “■ £ } + H  * = °'

eHo
where

ß  = ck
Since, only the z-coordinate appears in Eq. (2) explicitly one can write 

V»(r, t) =  xl>{z) ■ exp ~(i/h)(Et -  pxx -  pyy) 

and the equation for rp(z) is

(3 )

(3')

(4)

—ihaz —  + ay(py +  p cos kz) + E  + axpx +  ßmc dz 4>(z) = 0. (5)

The matrices ax and ß may be eliminated from the above equation, by introducing 
the matrix Л given by

= axpx + ßmc, A2 = 1. (6)

Since Л commutes with az and ay, we can write Eq. (5), after multiplying it from 
left by exp —Кв/ 2,

Jz +  a y(pcos kz + py) + Q)  ф(г) -  0, (7)

where
ф(г) =  expA0/2 •

tanhö = — * E f (8)
e\/p?+m c J v '

and
0> = £ - r f - m V . (9)

Eq. (7) contains only periodic coefficients hence, by Floquet’s theorem, its solutions 
are of the form

<t>{z) =  ^ 2  An exp i(pz + nkh)/h, (10)

where A„ (spinor) and pz are constants. Substituting this expression in Eq. (7), 
the recurrence relation between A„’s are obtained as

{«z(p* + nkh) + atypy + Q}An +  a ^ ( A n+i + A„_i) =  0. (11)
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The solution of this difference equation may be written as

^ n = / „ ( ^ ) (au+ + (- 1)n6u_)- (12)

Jn ’s are the Bessel coefficients, so that

2nJn(u) = ti{Jn+i(u) +  J „ - i(u)} (13)

and u-fc are eigen-spinors of iazay, such that

iazayu± = ±t»± and a*u± = uT. (14)

Each of u± consists of two linearly independent spinors. In order that the expression 
(12) for A„ is the solution of the difference Eq. (11), a and b must satisfy the 
equations

(Pz -  ipy)a ±  Qb =0,
Q a ± (p z +  ipy)b =0,

(15)

+  or — 1 according as n is even or odd. They lead to the relation (for compatibility),

Q2 = Pi +Py- (16)

Thus from Eq. (9)

p -  = P r + P y + P ^ + m 2c2. (16')

So that An is given by

An(Pl,Py,Q) = W Jn ( J 0  {Q + ( - l ) n(ipy - p z)az}n+, (17)

W  is an arbitrary constant. The most general solution is given by

4>{z) = J IT(p) ^  A„(p, E) exp j - ^ ( £ 7  -  p ■ r) -1- inkz^j d3p, (18)

subject to the condition p ■ p + m2c2 = E 2/с2.
It is of interest to note that the non-localized part of the solution is like that 

of a free particle.

Reference

1. I. Lovas and Lívia Molnár, A cta Phys. H ung., 65, 331, 1989.
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INFRARED BEHAVIOUR OF GREEN’S 
FUNCTION FOR FERMIONS IN 

SUPERSYMMETRIC YANG-MILLS THEORIES

H o a n g  N g o c  L o n g

Institu te  оf  Theoretical Physics, Academ y of Sciences of Vietnam  
Bo Ho, Hanoi 10000, Vietnam

(Received 14 January 1991)

Infrared behaviour of the Greens’s function for fermions in  supersym m etric Y ang- 
Mills thebries is investigated. We show that only massless gauge vector Helds give contri
butions to this behaviour.

The introduction of supersymmetry into quantum field theories has led to 
theories with improved quantum properties [1]. One of the most attractive features 
of supersymmetric theories is the reduction of the number of parameters containing 
ultraviolet divergences. It is known that in the simplest supersymmetric Wess- 
Zumino model only the wave function renormalization is sufficient to renormalize 
the theory [1-3]. The Yang-Mills gauge theory with the maximal supersymmetric 
extension (N  = 4) [4,5] has been found to possess unique properties at the quantum 
level [6]. There are very strong indications that this theory is a finite quantum field 
theory. Originally this theory was found in two different ways, one of which was 
through the construction of supersymmetric Yang-Mills theories in space-times of 
higher dimension [4]. It was found that the 10-dimensional space is the largest space 
that carries a supersymmetric Yang-Mills theory and by dimensional reduction this 
can be taken into 4 dimensions where it emerges as an N  =  4 extended theory. On 
the other hand, this theory was already known from the Neveu-Schwarz-Ramond 
dual model [7], a model which exists only in 10 dimensions. By letting the Regge 
slope a' to tend to zero, in the open-string sector of the model one gets the Born 
terms of a Yang-Mills field coupled to a spinor field, which in fact turn out to be 
the Born terms of the 10-dimensional supersymmetric Yang-Milk theory [1,5].

As it is well known, the vertex and the renormalized Green functions have 
a singularity at p2 = m2. In this paper we study the infrared behaviour of the 
Green’s function for fermions in the theory describing the interaction of a N  = 1 
vector supermultiplet V with some chiral N  = 1 supermultiplet 5,. The action can
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be written [8] as

S  = ̂ Т г [  J  dxd2e\VaWa\ +  ^Tr[ J  dxd2ed2eexp(-2gV)Si exp(2ÿV)5,-]+

| ^ e , jJfcTr{ J  dxd20Si [Sj ,Sk] +  J  dxd2l)Si(Sj ,Hk}}~

- i-T r[  f  dxd2ed26(D2V)(D2V)\+8ac J

^Tr{ J  dxd20d26{â! -  a)LgV[(a + a) +  C th I jV,(a -  e)]}- 

Ê  — Tr[ [  dxd20SiSi +  [  dxd2eSiSi\, (1)
i=i c J J

where W a = {—^-){exp{—2gV)Da exp(2gV)), a and a' are chiral ghost fields, a 
is the gauge parameter, i,j, к = 1, 2, . . . ,  n and the Lie derivative is LXY  = [X, Y]. 
All fields are in the adjoint representation of the gauge group.

When m, =  0, j  = 0 and n = 1 we have the N  = 2 Yang-Mills theory in 
terms of N  = 1 superfields. For m,- = 0, y = g, n = 3 we get the N  =  4 Yang-Mills 
theory in therms of N  = 1 superfields [9]. When ггц ф 0, we obtain a soft breaking 
of JV = 2,4 supersymmetry.

Using the Wess-Zumino gauge [10] we have the following on-shell action in 
terms of ordinary fields

S  = J  dxL,

1-Ф т0 Фт + f  Фт [<4 пЛ  + l 5?mnBù Фп]+

Л-]2 +  [Bi, Bj]2 + 2[Ai, Bj])+ (2)

E  , ЛЬ] -  Ai[Bj, Bk] + 2Bi[Aj, Bk])}-
i= i

1 т г Е ( т М , ? + -  т<Ф<Ф,),

/ М
where Ф =

V’r»V А /

the a and ß matrices obey the following relations:

[ai,ßj ] = 0, K V }  = { ? , ? }  = - 2 64,
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tr(ar , a ‘) = tr(/r/?‘) =  - 4  S'*.

Now, we study the singularity of the renormalized fermion mass operator at 
the one-loop level. For this purpose we have to calculate the one-loop diagrams 
of the self-energy operator for fermions. These diagrams are drawn in Fig. l(a-c), 
where continuous, wave, dotted and dashed-dotted lines denote fermions, gauge 
vector, scalar and pseudoscalar particles, respectively.

( Q ) (C )

F ig. 1. One-loop diagram s contributing to the fermion self-energy operator in  supersym m etric
Yang-M ills m odel

To evaluate Feynman integrals corresponding to these diagrams, the algebraic 
manipulation program SCHOONSCHIP [11] was used.

Our one-loop expression for the self-energy £ ' reads:1

£ '(2)(p) = ^ { P [ - 7  -  7 + 3 -  ln(—xm2) +  (2(1 -  ÿ ) -

m
(1 -  - r ) 2) ln(l -  —ff) -  - H  +  m [- + 4(7 -  ln(—irm ) + - ) -m

( 3 )

-  4 ( 1 - ÿ ) i „ ( i - £ ) » - g -  + 3(7 — ln(—nm2)) + 7—

[  4m2 vA3 4 / 1 -----— In--------
4 m 3 + 1
4 m a _ ^
~РГ

a
where a = |^ ,  2e = (4 — D) and 7 is the Euler constant. Here we remark that the 
first term in Eq. (3) proportional to N  is the contribution from diagram a) and the 
last term comes from diagrams b) and c).

As in the quantum electrodynamics in order to get an expression independent 
of a regularization method the following polynomial is added to £ '^ (p ) , i.e., we 
define

£ (2)(p) =  £'<2)(p) + ci(p -  m) + c2m.

The coefficients ci and c2 are determined from the following conditions

£(2)(m) =0,

—  £(2)(p)|,5=m =0.

l In this paper the dimensional regularization [12] is  used.
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This yields

£<!> ( р ) = £ р { л г [ ? - ^ - т ’7я +  ! +

2(1 — £ ) M 1  -  £ )  -  (1 -  ÿ ) ’ K i  -  sL )m* +  1 +

„ Í  W
3« / 1 ------ 5— In -------

4m 3 + 1

J ”-
4m 3
P 2

-iV 31n ^ +1) +
- 1 (г 'л Д -1)

та f Г1 оX Т  m2 ,, Р2 ч

3 -2 ,У 3 1 п ^ + 1 Н ,
(»V3 - 1 ) / ’

(4)

where 1д =  /  t aKt+f f l_ ma]ü and T = (p2 -  т 2)/д.
2

When р —* т ,  /д  and ln(l — £у) are divergent and it is a manifestation of 
the infrared divergences.

Substituting (4) into the Green’s function

а д  =  ^ - ^ : ( 1 + Е(2)(р)p — m
1 4 _  pa -f mb

' =  Z2m  — p p* — m 2 »

we get

2 \ 2(p2 — m2) 
p2m2 •A!(p2) -  8JVA!(p2) +  iVт 2/д-Ь“ = 1 - ê { - w

1. & -2 p2 2 p2 — m2 y p2 4m3 _  J

. V 5 - ^ - j  1„ M ± ü  _  ,V31» M ± h \ , 
p2 — m2 (iv /3 -1 ) (in/3 — 1) J

6=1 +  ^  2JV(1 -  ^ M i ( p 2) +  ДГт2/д  -  4Ai(p2) +  y ( 3  -  T ) -

^ ' " Ш г 3} '

4m3

4m2

+ 1

- 1

( 5)

( 6)
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where

Using the renormalization group equation for s = a, b (see, for example [13]), 
we find the behaviour of the full Green’s function for fermions in the region p ~  m 2

G(P)
(p 2  -  m 2 ) 1 + 0  ’ ( 7)

where
ß = N ^ .  (8)

7Г

Note, that in the QED, /? = 7 with a  is the fine structure constant.
From (8) we can conclude that only the gauge vector fields give contributions 

to the infrared behaviour of the Green’s function for fermions.
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The fluorescence of different organic plastic and  liquid scintillators has been mea
sured as a function of m agnetic field H  up to 13 m T  (milli tesla). In the case of NE213, 
NE230 and stilbene, the percentage change in  scintillation efficiency A E (% )  increases w ith  
increasing H  t ill it  becom es m axim um  at an optim um  value H m , and then  it decreases 
w ith further increase in  H .  However, in  the case o f pam olene crystal A E ( % )  increases 
m onotonically w ith  H  throughout the m agnetic field range referred to.

Introduction

The main criteria for the selection of scintillators is their high relative light 
output and enhanced scintillation efficiency. Many methods of increasing the light 
output, e.g. (a) addition of wavelength shifter, (b) removal of dissolved oxygen and 
(c) reduction in temperature have been tried. But when the above three conditions 
are fulfilled, the fluorescence efficiency of the scintillator can be further increased 
by applying some optimum magnetic field.

Only few authors have worked on the influence of magnetic field [e.g. 1-4] 
and of temperature (e.g. [5]) on the scintillation efficiency of liquid and plastic 
scintillators. Jeenicke et al [1] studied the efficiency of NE235 organic mineral 
oil based scintillator as a function of magnetic field up to 10 mT and found that 
increase in efficiency reached 1.5 % at 4 mT and saturated at 10 mT to a value 1.8 %. 
Bodenstedt et al [2] found that fluorescent efficiency in their plastic scintillator is 
dependent upon magnetic field up to 10 mT. As work in this field is very scarce, it 
was considered appropriate to extend the investigation to other liquid and plastic 
scintillators by applying higher magnetic fields.

Experimental procedure

To produce a variable magnetic field, a parallel combination of two solenoids 
was fabricated in the laboratory. It was fitted inside a light-proof, wooden box of
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Figs la ,b .  R elation betw een change in  scintillation efficiency A E (% )  and applied m agnetic field 
H  in  the case of stilbene crystal. D ata poin ts denoted by open circles in (b) were obtained by 
reversing the direction of the field w ith respect to that used for the data points depicted by

full circles in (a)

rectangular shape, covered with a wooden lid. The organic scintillator under obser
vation was placed in such a way that it was completely surrounded by the solenoids. 
Liquid scintillator (NE213 or NE230) was contained in a sealed pyrex glass bottle, 
which was all covered, except its base, with aluminium foil. Similarly the cylindri
cal specimens of plastic scintillators (5 cm height x 5 cm diameter stilbene crystal 
or 4 cm height X 4 cm diameter pamolene crystal) were also covered, leaving one 
face open with aluminium foil. This was done to ensure that the fluorescent light 
emanating from the scintillator and falling on an EMI 6255 photomultiplier tube, 
fixed in the base of the wooden box, was maximum due to reflection from the alu
minium shield. A long light guide pipe was interposed between the photocathode of 
the photomultiplier and the base of the scintillator to eliminate any direct effect of 
the magnetic field on the photomultiplier. Ra226 gamma source was placed on the 
centre of the lid of the box. The geometry was made constant by fixing the position
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H ( mT)

F i g .  l b

Change in
T a b le  I

efficiency for organic scintillators

O rganic M axim um  change Magnetic fteld M agnetic field
scintillator in efficiency for maximum change for no change

Д £ т ( % ) in  efficiency in efficiency
t f m (mT) Ho (m T)

Pam olene 13 at 13 m T in one direction
crystal

7 at 13 m T in reverse direction

Stilbene 3.6 6.5 -

crystal

NE213 8.3 4.5 (in one direction) 11.9
3.4 4.5 (in reverse direction) 6.5

NE230 2 . 6 1.7 3.2
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H (mT)

Fig. 2a. Sam e as Fig. 1 but for pam olene crystal

of the photomultiplier scintillator under observation and the gamma source.
The solenoid was connected to a DC current source for the production of the 

magnetic field, and the photomultiplier (EMI 6255) was connected to a preamplifier 
followed by a linear amplifier, a discriminator of single channel analyser and a digital 
scalar (all ORTEC origin). Regulated power supply was used to provide stable 
voltage to the photomultiplier base.

Since the dissolved oxygen in the scintillator NE213 or NE230 has a marked 
effect in quenching the light output of the scintillator, it was eliminated by passing 
argon gas for some time in the solution. Direct and reserved current was used for 
producing magnetic field in both directions in the case of plastic scintillators, i.e. 
stilbene and pamolene, as well as liquid scintillators, i.e. NE213 and NE230.

Counts/min were taken without magnetic field and then with magnetic field. 
The relationship between magnetic field H and percentage change in scintillation 
counting efficiency AE(%) was determined as ДE(%) =  Ŵ ijVi x 100, where Ni = 
counts/min without magnetic field under gamma excitation, and N2 = counts/min

A d a  Phytica Hungarica 71, 1992
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H (mT)

Fig. 2b. For caption see Fig. 2 a

with magnetic field under gamma excitation. Because of low atomic number Z(H)  
in organic scintillators, only Compton electrons would be produced due to impact of 
gamma rays from Ra226 source. Counts with and without magnetic field were taken 
by taking the mean of five independent readings at each magnetic field. The data 
concerning change in scintillation efficiency of different scintillators due to applied 
magnetic field have been denoted by points in Figs 1 to 4.

Results and discussion

It is evident from Figs 1(a), 3(a) and 4(a) that in the case of stilbene, NE213 
and NE230, the change in scintillation efficiency, AE(%), increases with increase 
in magnetic field, attains a maximum value A E m at an optimum magnetic field 
Hm and then it decreases with further increase in magnetic field. Beyond a certain 
critical magnetic field Ho, the value of AE(%) for NE213 and NE230 becomes 
negative (Table I). By reversing the direction of the applied magnetic field H, the
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Fig. За. Sam e as Fig. 1 but for N E  213 liquid scintillator

change in scintillation efficiency, AE(%), in stilbene crystal becomes negative and 
varies with H  first rapidly and then slowly (Fig. lb). However, in the case of NE213 
and NE230, AE(%)  is positive at low values of H and then becomes negative at 
rather higher magnetic fields (Figs 3b and 4b).
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The scintillation response of pamolene crystal under gamma excitation (Fig. 2) 
is quite peculiar. The change in scintillation efficiency, AE(%), increases with in
crease in the strength of magnetic field, irrespective of its direction. A peak is not 
observed in the Д E  versus H curve in the range of 0 to 13 mT investigated in the 
present work. The value of AE  measured at the upper limit of 13 mT is 13 %, 
which reduces to 7 % on reversing the direction of the magnetic field. However, 
the change in scintillation efficiency AE(%)  in the case of pamolene is appreciably 
higher compared with that of stilbene, NE213 and NE230 (Table I).

The trend of the A E  versus H  curve obtained with pamolene crystal is almost 
the same as that of Jeenicke et al [1], who measured relative change in scintillation 
efficiency of NE235 oil based mineral scintillators up to 10 mT under beta excitation. 
However, our results cannot be directly compared with the data of other authors 
because we used different scintillators and different magnetic field range.

Acta Physica Hungarxca 71, 1992
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Fig. 4a. Same as Fig. 1 b u t for NE 230 liquid  scintillator

There is no single generally accepted theoretical explanation available so far 
for the observations referred to above. However, there are many plausible explana
tions to account for the increase or decrease in the scintillation efficiency of organic 
scintillators due to the application of magnetic field. Some of these are as follows.

(a) The magnetic field dependence of the sensitivity of the organic scintillators 
is intrinsic and is due to their molecular structure. This was proposed by Jeenicke 
et al [1] and Swenberg and Geacintor [3].

(b) The enhancement of scintillation efficiency due to magnetic field can be 
ascribed to the change in the trajectories of Compton electrons leaving the sur
rounded scintillator by air, when the air-liquid or air-solid interface is situated in a 
region of rather high magnetic field. Jeenicke et al [1] tried to prove this hypothesis 
in their experiments carried out with NE235 applying magnetic field up to 10 mT, 
but they were not able to deflect the Compton electrons from the air back to the 
scintillator due to the rather ‘low’ magnetic field used by them. In the case of stil- 
bene, NE213 and NE230 used in the present work, the applied magnetic field seems 
to be ‘high’ enough to deflect Compton electrons from the air back to the scintilla
tors. This results in further excitation and ionisation in the scintillators giving rise
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to the enhancement of light output and hence the counting rate. At optimum axial 
magnetic field, Hm, maximum Compton electrons will enter the scintillator result
ing in maximum light output and hence maximum change in scintillation efficiency 
A E m. For axial magnetic field less or greater than Hrn, the value of A E  would be 
less than A E m. The cause of negative A E  observed in the case of NE213, NE230 
and stilbene is, however, not understood.

Conclusion

The fluorescence efficiency of the organic scintillators is dependent on mag
netic field and can be appreciably enhanced. It is believed that enhancement in 
fluorescent efficiency due to magnetic field is most probably due to deflection of

A d a  Physica Hungarica 71, 1992
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Compton electrons trajectories from air back to the scintillator and/or to changes 
in molecular structure as referred to by Jeenicke et al [1] and Swenberg and Geacin- 
itor [3].
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The continuous spectrum  o f internal bremsstrahlung from the unique first forbidden 
b eta  decay of 20 4  T1 was measured using the ß  stopper m ethod with a  m ultichannel analyzer 
and N al (Tl) scintillation detector together with a standard geom etrical arrangement. The  
raw spectrum  was corrected for several factors using the step-by-step process of Liden and  
Starfeld and com pared w ith theoretical results such as KUB (Knipp, Uhlenbeck and B loch), 
LF (Lewis and Ford) and N (Nilsson) theories. T he divergence betw een experiment and  
theory was found to increase w ith increasing energy.

Introduction

Internal bremsstrahlung (IB) is produced by the changing dipole moment 
of the electron-nucleus system due to the creation and emission /^-particles. IB 
radiation accompanying /?-decay has been explained in the literature [1,2,3] that in 
the case of forbidden /1-decays transitions through virtual states may contribute to 
the continuous photon spectrum. In these so-called “detour transitions” the nucleus 
first emits a photon going to a virtual excited state then ß  decay follows or vice 
versa [4]. Several studies on IB were reported [3,4,5,6]. Despite various experimental 
and theoretical studies on IB there exist various disagreements not only between 
theory and experiment but even among the individual measurements especially at 
high photon energies.

In the studies by Ricci [3] on IB from 204T1, the measurements were confined to 
an energy region extending from 80 to 400 keV to compare with theory. The exper
imental results were found to disagree with KUB (Knipp, Uhlenbeck and Bloch) [8] 
theory throughout the energy region investigated and they tended to agree with the 
Nilsson [9] approximation. Below 150 keV there was complete disagreement between 
the experimental results and the KUB as well as Nilsson theories. Narasimhamurty 
and Janananda [4] studied the IB from 204T1 in the region from 90 to 550 keV. 
They reported that there is reasonable agreement between experimental results and
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Coulomb corrected theory of Nilsson above 300 keV while the experimental results 
are much greater than the theoretical ones below 300 keV.

Studies on IB are not only of theoretical interest but also of fundamental 
importance. IB explains a secondary means of understanding /?-decay. There is, 
however, a lack of agreement among the studies. Since the ß  emitter 204T1 is of the 
first forbidden type, an investigation of the IB of 204T1 may also give an idea of the 
contribution to the IB from the detour transitions.

Furthermore 204TI has a relatively low beta end-point energy (0.76 MeV) 
and high atomic number IB from it would probably explain the importance of the 
Coulomb effect and also the degree of forbiddenness especially in the high energy 
region. In addition, IB is an important factor in nuclear physics for shielding cal
culations. Therefore, in the present work, the continuous IB spectrum from 204T1 
was measured and the results were compared with the corresponding theoretical 
and experimental predictions.

Experimental details

The decay scheme of 204T1 and the experimental set-up are shown in Fig. 1.

Fig. 1. (a) Cross-sectional view o f the geometrical set-up for the study o f IB . (1) source, (2) perspex 
ring, (3) perspex rod, (4) /9-stopper, (5) perspex disk, (6 ) and (7) lead collimator inside surface 
lined w ith alum inium , (8 ) N a l(T l) detector, (9) and ( 1 0 ) lead shielding, ( 1 1 ) photom ultiplier.

(b) Decay schem e of 2 0 4  T1

Acta Physica Hungarica 71, 1992
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The IB spectrum from 204T1 was measured in the energy region from 298 to 
760 keV with a Nal(Tl) crystal (2" x 2") scintillation spectrometer. The source 
was obtained in the form of point source from Amersham (England). The source 
activity is 1/ic. Owing to the low intensity of the IB, a strong source would have been 
preferable, so that the counting rate would far exceed the background counting rate. 
However, this was not possible because in thick sources external bremsstrahlung is 
created in the source itself. Counting time is tested until sufficient counts/s was 
determined. The background level was greatly minimized by housing the Nal(Tl) 
crystal-photomultiplier assembly in a lead shield of a wall thickness of ~  5 cm.

Because of the low activity, a lead shielding material was not placed between 
source and detector, only perspex /З-stopper of sufficient thickness was placed.

The linearity of analyzer was checked by using the following 7-ray lines: 
285 keV (203Hg), 662 keV (137Cs), 835 keV (54Mn), 511 keV, 1227 keV (22Na).

The source was placed 1 cm above the surface of the detector and the perspex 
/З-stopper was kept between the source and detector to absorb all the /3-particles 
from the source. In order to reduce the EB (External Bremsstrahlung) interference 
and scattering effects from the air the source was covered with a perspex chamber. 
The full width at half maximum of the 662 keV 7 line of 137Cs was 11 %. During 
the experimental measurements of IB pulse height distributions, sufficient collection 
time was used. The raw IB spectrum from 204T1 weis shown in Fig. 2.

Some of the errors (back-scatter, crystal efficiency, external bremsstrahlung 
e.g) can be diminished by using a suitable geometry. The geometry used in the 
measurements was found experimentally.

Evaluation of the IB spectrum

In order to obtain the true photon distributions, the measured pulse height 
spectrum should be corrected for background, energy resolution, K-X ray escape, 
Compton electron distribution, geometrical and 7 detection efficiency of the crystal, 
for backscattering from the photomultiplier window and also from the surrounding 
material used as shielding.

Because of the small resolving time (~  2 ps) of the analyzer and small strength 
of the source used, corrections for dead-time counting loss was found to be negligible.

Of the various corrections mentioned above, the correction due to the Comp
ton electron distribution becomes important when there are photons of high energy. 
A detailed account of it is given in what follows. If the fraction of photons detected 
with full energy is K(Ey) at energy Ey, it is obvious that the fraction of photons 
detected with less than the full energy is 1 — K(Ey). If the number of photons of 
energy Ey absorbed in the crystal is Na(Ey), then the number of Compton elec
trons, having energies ranging from zero to E*, where E* is the maximum Compton 
electron energy, is Na(Ey)( 1 — K(Ey)). The total number of Compton electrons at 
energy E  due to all incoming photons from zero to Emax is

Nc =  / £Ш“  C(E, Ey)Na(Ey)( 1 -  K(Ey))dEy.
Jo
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Fig. 2. о о oo - M easured distribution, . . .  - background, xxxxx - Com pton electron distribution
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In general, on the assumption that the Compton electron distribution for any gam
ma ray energy is approximately constant over the energy range from zero to E*, 
the following approximation is made:

C(E,Ey) = C(Ey) = - ^  for 0 < E < E ; ,  
b -r

C(E,Ey) = 0 for E > E

Actually, the observed pulse-height is first extrapolated to the end-point. Next the 
corresponding 1 — K(Ey)  is calculated and by choosing a suitable value of A E .r , the 
smaller the better, the ordinate (ANc)Ey of the Compton distribution from zero 
to E * due to photons of energy between Ey and E1 +  A E y is calculated by the 
relation

(ANc)Ey = ± N a ( E y)(l -  K(Ey))AEy .
'C/7

This process is repeated throughout the spectrum and the Compton electron dis
tribution is obtained. This distribution has to be subtracted from the observed 
pulse-height distribution. In the present calculations an energy of 8 keV is used for 
AEy . The Compton electron distribution thus calculated is shown in Fig. 2.

The correction for the geometrical and gamma-detection efficiency of the de
tector is obtained as follows. The gamma-detection efficiency (photopeak efficiency) 
Ep(Ey) at energy E.y is determined as the product of the peak-to-total ratio K(Ey)  
and the intrinsic efficiency et(Ey), that is Ep(Ey ) =  K(Ey) ■ t t(Ey). An experi
mental determination of the peak-to-total ratio is made by recording in the same 
geometrical arrangement the complete pulse-height spectra of the monoenergetic 
7-ray lines. The values of K(Ey) thus determined are shown in Fig. 3. The values 
of intrinsic efficiency for the present geometry were determined by using the total 
absorption coefficient values of White [10] and the values of the geometrical factor 
for the present geometry are calculated according to the values of Ozmutlu [11]

The values of both K(Ey) and t t (Ey) thus used belong to a point source 
geometry.

Correction for iodine K-X-ray escape is important only in the energy re
gion below 150 keV. Since our measurements were restricted to the region above 
~  300 keV this correction was neglected.

The photons backscattered from the photomultiplier window, source backing, 
the crystal container and the lead shield make undesirable contributions to the 
spectrum in the range 100-300 keV. Since the energy region of present interest is 
above 300 keV this correction was also neglected.

Comparison with theory

Knipp and Uhlenbeck and independently Bloch were the first to make the 
theoretical calculation of the IB spectral distribution and this is known as KUB 
theory. Lewis and Ford and Nilsson accounted for the Coulomb effects on the IB
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Fig. 3. Peak-to-total ratios for the gamma-ray detector em ploying a N al(T l) crystal of 2" in
diam eter and 2 " in thickness.

spectrum. Ford and Martin theories included the detour transitions.
According to the KUB theory the number of IB photons per ß  disintegration 

per unit energy interval is given by

dW'P(We)<t>(WeK),

where P(We)dWe is the distribution of the ß  spectrum with end-point energy Wmax 
and 4>{WC, K)  is the probability of an electron coming from the nucleus with energy 
Wt emitting a quantum of energy К .

The function <j>(Wt ,K)  is given as

<t>(we,K) aP
V p j c

Í W t  + W 1 
V w ep

ln(JV +  P) -  2 j

where Wt and W  and Pe and P are energies and momenta of the electron before 
and after the emission of the photon of energy К , respectively, and a = is the 
fine-structure constant. All energies are in units of me2 and all momenta in units 
of me.

The probability for bremsstrahlung production per 1 MeV energy interval 
per data disintegration is chosen for comparison with the experimental results. 
After effecting all the necessary corrections, the final experimental distributions 
are all normalized to 1 MeV energy interval per beta disintegration by dividing the 
corrected IB pulse height distributions by the channel width ДК  in units of me2 
and then by multiplying by 1 MeV in units of me2. According to the theoretical 
results the number of IB photons is given as per ß  disintegration per unit energy 
interval.
Acta. Phytica Hungarica 71, 1992
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Fig. 4. 2 0 4  T l internal bremsstrahlung intensity spectrum, xxxx  - experim ental data; theoretical
curves: K UB, LF sind N theories

Results and discussion

204T1 is found to have a spectral shape of the unique first-forbidden type and 
it has an end-point energy of 760 keV and a half-life of the order of 3.9 years. 
There is also a weak electron capture branch (~ 1.5 %) in the decay of this isotope. 
The end-point energy for the internal bremsstrahlung associated with the electron 
capture has been variously reported to be 250 keV [12].
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It can be seen from Fig. 4 that the portion of the experimental spectrum in the 
high-energy region form 300 keV to 350 keV corresponds closely to the Coulomb-cor
rected Lewis and Ford [13] distribution in the region above 400 keV. Experimental 
excess over all the three theories is more than about 100 %. This excess may be 
explained as partly due to the detour transitions taking place in 204T1, it being a 
forbidden ß  emitter [4]. The contribution to the IB from the so-called detour tran
sitions is significant, although it is almost negligible for allowed ß decay. In order to 
explain the generally observed behaviour of the disagreement between experiment 
and theory concerning IB, namely a positive deviation of experiment from theory 
which increases with increasing photon energy, it is necessary to carry out more 
theoretical and experimental studies.

It is concluded from the present results that the influence of the Coulomb field 
of the nucleus is very important, especially at high photon energies. To perform new 
theoretical calculations by taking into account the Coulomb effect of the nucleus, 
the forbiddenness of the ß spectrum and also detour transitions in a more exact 
manner than in the already existing theories, more work should be done.
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7 -8  dihydroxy—4-m ethyl coumarin A and its  copolyeetere A i through As have b een  
investigated here to study the effect of aliphatic and  aromatic substituents in  the p o ly 
m ers, on the fluorescence of these compounds. It has been observed th a t along w ith other  
em issions 480 iun  emission present in  all the polym er specimens has been  missing in  the  
monomer specim en. The fluorescence of these polym ers is shown to depend  on the aliphatic  
and aromatic substitutions at various positions.

Introduction

The fluorescence efficiency of coumarins depends on the nature and position 
of a substituent in the parent molecule [1] and also changes due to the change in the 
surrounding media. Though coumarin by itself does not exhibit fluorescence; many 
of the derivatives of coumarin are known to be fluorescent in nature [2]. Further, 
in view of the use of coumarin derivatives in the solar cells the present study aims 
at examining the fluorescence spectra of some of the coumarin derivatives.

The 7-8 dihydroxy-4-methyl coumarin monomer and five of its polyesters 
have been investigated here with the view to study the effect of the substituent 
group such as aliphatic or aromatic nuclei in the polymer chains.
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Fig. la .  M onomer specim en A

Fig. lb .  Monomer specim en Ai

Fig. lc .  M onomer specim en A2

Experimental

The fluorescence spectra, excitation and emission, have been recorded at 
room temperature (25 ± 2  °C) by using Aminco Bowmann Spectrophotofluorome- 
ter (SPF). The fluorescence spectra have been corrected for the non-linear response

Acta Phytica Hvngarica 71, 199S
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Fig. 1 d.  Monomer specim en A j

COO

CO C H;

Fig. le .  Monomer specim en A 4

Fig. If. Monomer specim en As

of the detector photomultiplier tube (IP-21) and the non-uniform emission of the 
source, the Xenon lamp.

The coumarin derivatives investigated presently were synthesized according 
to the known method [3] and were checked for purity by melting point (M.P) and 
infra red (IR) spectra. The coumarin monomer 7-8 dihydroxy-4-methyl coumarin 
(A) was subjected to copolymerize [4] with dibasic acids namely sebacic acid (Ai),
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Fig. 2

maleic acid (Аг), phthalic acid (A3), isophthalic acid (A4) and terphthalic acid (A5) 
in pyridine. All polymers were purified by solvent and non-solvent method. DMF 
was used as the solvent while ethyl alcohol was the non-solvent. The structures of 
specimens A, Ai, A2, A3, A4 and A5 are shown in Fig. 1.
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A batch of the above specimens has been preheat-treated at 100 °C for 2 
hours and suddenly cooled to room temperature for the study of the annaled and 
quenched specimens. Another batch of the above specimens is treated mechanically 
under high pressure to transform into pellets.

Results and discussion

The emission band at 480 nm is present in all polymer specimens Ai to A5, 
however, it is missing in the monomer specimen A (Fig. 2). The positions at 7-8 
have been occupied by the hydroxyl group in the specimen A, however, for the 
specimens Ai to A5 the ester group has been substituted in these positions. The 
presence of ester groups in the repeating units of specimens Ai through A5 are 
considered to be responsible for the 480 nm emission. The absence of ester group 
automatically makes up for the missing 480 nm emission in the specimen A.

In the aliphatic compounds Ai and A2, the intensity of 480 nm emission for 
specimen A2 is larger than for specimen Ai. This has to be expected as the presence 
of double bonds -C=CH- in the repeating units of specimen A2 enhances intensity. 
The intensity of emission in the specimens A3, A4 and A5 should diminish due to 
the aromatic substitution [5] in place of the aliphatic nuclei. However, contrary 
to this the observations show a sharp enhancement in the intensity for specimen 
A3. The intensity of the emission drops successively for the specimens A4 and 
A5. In these compounds the ester group has been substituted at -ortho, -meta and 
-para positions in the specimens A3, A4 and A5, respectively. The closeness of the 
ester group in the specimen A3 improves the intensity of the emission. Further, 
520 nm emission is also completely wiped off for the specimen A3. It is possible 
that 480 nm emission might have built up at the cost of 520 nm. The intensity for 
the specimens A3, A4 and A5 depends on the steric factors of the polymer systems. 
Higher steric interaction due to 1,3 and 1,2 substitution on the benzene ring of 
the di-acid repeat units for A4 and A3 should make up for the decrease [6] in the 
intensity for specimens in the order A3 to A4 to A5. The -ortho substitution of 
ester group in polymer chain results in the closer packing of molecules of specimen 
A3. This closer packing gives rise to the increased rigidity to the specimen A3, 
compared to A4 and A5. Since intense fluorescence is characterized by rigid [7,8] 
structured molecules, the fluorescence intensity for specimen A3 is the largest.

The intensity pattern observed for 480 nm emission in the specimens Ai to 
A5 agrees with the explanations provided for 420 nm emission [9] on the basis of 
the structural changes taking place from specimen to specimen. The agreement is 
expected to be observed as 420 and 480 nm emissions are portrayed as doublets.

It is observed that the 480 nm band gets shifted to 460 nm after the specimens 
have been mechanically deformed into pellets. Because 420 and 480 nm emissions 
are doublets, it is observed in Fig. 3 that whenever 420 nm becomes more pro
nounced, it is at the cost of the intensity of the 480 nm emission. Further, it can 
be seen in Fig. 3 that 480 nm emission appears as a shoulder to the main emission 
band at 420 nm.
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—  A   A1 - * “ x-  A3
--------- a 2 ...........  a4

...........  a5
Fig. 3. After m echanical treatment

The intensities for 480 nm emission after plastic deformation in the specimens 
Ai to A5 are more or less similar to those in the powered specimens. This emission 
has been absent in the specimen A as expected due to the absence of the ester 
group.
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..........  *S
Fig. 4. After thermal treatm ent

The thermal treatment to the specimens shifts the 480 nm emission to 500 nm. 
This is due to the configurational changes in the polymer specimens and the long 
chains will be broken into smaller chains of larger numbers. This is responsible for 
the shift of 480 nm. However, the 420 nm emission is dominant in all thermally 
treated specimens, and it is obvious that the other emission, namely 480 nm from 
the doublet is observable in the form of a weak peak. In the specimen A4, the 
emission band at 480 nm is conspicuous by its absence, the intensity of emission at
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420 nm being enhanced. This is an additional fact in favour of the idea that one of 
the emissions grows at the cost of the other in the doublet.

Acknowledgements

One of the authors (S. N . Patil) is thankful to the Council o f Scientific and Industrial 
Research (CSIR) for the award o f a  Senior Research Fellowship.

References

1. S. S . Rathi et al, Current Science, 50, 802, 1987.
2. C. N . R . Rao, UV and V isible Spectroscopy and Chemical A pplications, Butterworth and Co. 

Publishers Ltd., London, 1975.
3. S. Sethana et al, Chem ical Review , 36,  30, 1945.
4. P. W . M organ, Interfacial and Condensation Polymerizations, John W iley and Sons, N. Y. 

1970.
5. W . W est, Chemical Applications of Spectroscopy, N. Y. 1956.
6. K asha, Radiation Res. Suppl., 2 , 243, 1960.
7. W . R hodes ef al, J. M ol. Spectr., 9,  42, 1962.
8. R. M. Hochstrasser, Can. J. Chem ., 39,  459, 1961.
9. J. Jayashree, Ph. D . Thesis, M. S. University o f Baroda, 1989.

Acta Physica Hungarica 71, 1992



Acta Physica Hungarica 71 (1 -2 ) ,  pp. 61-65 (1992)

RELATIVISTIC SCHRÖDINGER EQUATION 
INCLUDING SPIN-ORBIT INTERACTION

H. A .  MOURAD

Department of Physics, Faculty of Science 
University of Zagazig, Zagazig, Egypt

and

I. Sh . V a s h a k id z e

Tbilisi  State University,  S80028 Tbilisi, Georgia 

(Received 25 February 1991)

A relativistic Schrödinger equation including sp in-orb it interaction has been derived. 
T he equation contains two types o f potentials. It is shown that when one of the potentials is 
a potential well, the  exact solution of the equation w ith  and without sp in -orb it interaction  
can be obtained using the boundary condition m ethod. The influence o f the spin-orbit 
interaction is investigated.

1. Introduction

As we know, the relativistic free electron can be described by the Dirac equa
tion (in units h = c =  1)

{E -  (0", p) -  ßm}x/>(r) = 0. (1)

However, to solve a practical problem such as the motion of a relativistic particle in 
a definite potential field we must use the Dirac equation. But it is often not clear, 
to which term in (1) the potential must be added. Also, it is not obvious which 
form of the potential must be taken in spin space.

Recently, the above variants are studied by considering the potential form 
|(1  + fi)V in the Dirac equation, i.e. the potential is added, with equal weight, to 
both the energy and mass [1,2,3].

In the present work, a relativistic Schrödinger equation including spin-orbit 
interaction has been derived. We show that when the potential is a potential well 
the relativistic Schrödinger equation can be solved with and without spin-orbit 
interaction using the boundary condition method.
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2. Relativistic Schrôdinger equation including spin-orbit interaction 

Considering the potential form

4 M »  v ) .  <•>

then, the Dirac equation can be simplified as [1]

( E - m -  V)<t> -  ( •  p)x = 0, (3a)

(E  +  m)x -  ( ■ v)<i> = 0. (3b)

Introducing the notation

„ _ (E -  m)(E + m) +
E>~  -------- 2m-------- ’ V’ ~ ~ 2^ T ]

we have for the bispinor ф(г)

[—P2 +  2m(Ea — У,)]ф = 0,

(4)

( 5)

which is of the same form as the non-relativistic Schrôdinger equation. Naturally, 
Eq. (5) is called the Schrôdinger relativistic equation where the relativistic effects 
are taken into account only at a kinematic level.

In the non-relativistic limit when E —* E'+m, E + m  —» 2m, Eq. (5) coincides 
with the Schrôdinger equation. The radial equation which corresponds to (5) takes 
the form [2]

g ?  + «(* +  1)G +  2m(Jg> _  у, )G(r) =  0, (6)

where к = /(/ +  1) — j ( j  + 1) — 1/4. Eq. (6) turned out very fruitful for clearing 
up some special quark systems which, consequently, indicates that the addition of 
parts of the potential energy to the mass in the Dirac equation has a serious basis. 
Furthermore, such addition in case of positive potential removes the Klein paradox 
which is not the least of the factors either.

But Eq. (5) has a large defect since k(k + 1) =  /(/ + 1) then it does not 
include spin-orbit interaction. Therefore, it is important to choose the potential 
matrix in order that all the attractive sides of (6) are conserved and (6) will contain 
spin-orbit interaction.

Therefore, we believe that in the Dirac equation the potential must take the 
general matrix

where the central interaction Vik{r) is the diagonal matrix of the second rank. The 
matrix (7) is constituted by means of a linear combination of three matrices: 1, pi
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and рз. For the conservation of space parity it is necessary that the coefficient of 
P2 be equal to zero. Therefore, the interaction matrix must take the form

For the potential (8) the Dirac equation takes the form

(E -  m -  • p)x = 0,
(E +  m -  U)X-(1? ■ p )Ф = 0.

(9)
Assuming V an arbitrary potential and U satisfies the condition

U < E  + m, (10)

then, the function \  т а У be given by

* < г )= Ё Т ^ [1 + £ Т ^ + - ' +1(“ р)ф'(11)
thus, the first equation in (9) gives

[ -P 2 + (E + m)(E - m - V ) -  =  0, (12)£j -h Ш
which is the “relativistic Schrôdinger equation” including spin-orbit interaction and 
other relativistic corrections of the same order.

If we retain only the spin-orbit term in Eq. (12) and go on to the equation 
for the radial function, we have

Í - -\  dr2 + 2m[E, - V , -
m(E + m) r dr

G(r) = 0, (13)

which, unlike (6), includes spin-orbit interaction and, on keeping the condition (9), 
it is free from the Klein paradox.

In case of an attractive well of depth Uo and width rc noting that 2(1 ■ s) = 
—(к + 1) then, Eq. (13) takes the form

Г d2 k(k ■
\  dr2 rp l  + 2n , [ E . - V . - ^ ±2 m(E + m) (  r í)  ~ Г<̂  } = °’

where rc is the radius of the sphere where the potential has infinite value. Eq. (14) 
can be used to solve a wide range of problems and, the attractive is that the inclusion 
of spin-orbit interaction is equivalent to the following boundary condition

/ 1  dG\ ( l d G \  « + 1 ( U° \  =
\ G d r ) rc+0 \ G d r ) re_ о E  + m \ r J (15)

where G(r) is the solution of (15) without the last term and assuming that V(r)  
has no singularity at r = rc.
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3. Solution without spin—orbit interaction

For an attractive potential well V(r) of depth Vo and width r0 we introduce 
the notation:

ß2 = (E + m ) ( E - m  + V0), w2 = m2 -  E 2, (16)

where E -  m +  V0 > 0, i.e. V0 > (m -  E) = c(Vb > 2m); e is the binding energy, 
then, the solution of Eq. (6) is given by

G(r) =Airj,(ßr), r < r0,

а д = А Ш ) гк'(,"г)' ,> r »' <i7)

where Ai is the normalization coefficient and, ji and K\ are the spherical and modi
fied spherical Bessel functions, respectively [4]. The energy eigenvalues in the Dirac 
theory are found from the condition [5]

№ ) 1 \F(r)]
[G(r)\ ro+0 № ) J (18)

which for the potential well reduces to the identity 

1
E  +  m + Vő

/  }_dG к \  1 /  1 dG k \
U  dr + r ) ro+0 ~  E + m \ G  dr +  r ) ro_0 ’

(19)

while for the relativistic Schrödinger equation, also, as for the Schrödinger equation 
the condition (18) reduces to the continuity of the logarithmic derivatives, i.e.

J_dG\ _  ( l _ d G \
G dr ) ro+0 ~  \ G  dr / Го_0 ( 20)

from which the energy eigenvalues are given by

ßji-ijßrp) wKi-!(wr0)
j,(ßr  о) K,(wro) ’ 1 ;

which coincides, within a kinematic factor, with the eigenvalues equation of the 
potential well in the Schrödinger theory.

It is clear that Eq. (21) differs from the eigenvalues equation obtained in the 
Dirac theory. This difference is evidently in the special case / =  0. Really, equation 
(21) gives the expression

ßr0ctgßr0 =  —uir0, (22)

then, as in the Dirac theory, we obtain the equation

ßroctgßro = -tu r0(l +  — - — ) -  7—̂ — . (23)Zni — € Zm. — €
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4. Solution w ith spin—orbit interaction

Now in the potential well problem (V = Vo for r < ro and V = 0 for r > r0) 
the spin-orbit interaction is included. To solve this problem we shall use Eq. (14) 
in which, for definitely, we shall assume that rc > ro.

The corresponding radial wave functions take the form

G(r) =A\rji(ßr)\ r < r 0,
G(r) =BirKi(wr) + Cirii(wr)-} r0 < r < rc, (24)
G(r) =DirKi(wr)] r < rc,

where Ai, Bi, Ci and D\ are constants and i i(wr)  is the modified spherical Bessel 
function [4].

Applying the continuity condition of the wave functions at r  = ro and the 
condition (15) at r = rc, we have

ßji-i(ßro) _  wKi-i(wr0) + wii- i(wr0)Bi 
ji(ßr0) Ki(wr0) + ii(wr0)Bj

where Bi is given by

w K i - i ( w r c) — K, ifWe) . 
[W K,(wrc) K i ( w r c)

w i t- i ( w r c) + К i_i(wrc) , j.
K,( ircy  +  b*\ i i (wrc)

(25)

(26)

where bK is defined by

bK к + 1 f  Uq \  
2m -  e \  rc / (27)

In the absence of spin-orbit interaction, bK =  0 and 6/ = 0 and, as expected, 
expression (25) reduces to expression (21). When ro = rc the eigenvalues equation 
(25) may be simplified and reduced to the form

ßj i - i(ßrc) _  wK\^\(wrc) к + 1 /С/о\ 
j i (ßrc) ~ K,(wre) 2 m - € \ r c ) '

In this case the correction due to spin-orbit interaction is given by the second term 
in the right hand side of equation (28). When l = 0, then к = — 1 and the correction 
due to spin-orbit interaction equals zero.
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The Morse potential is m odified to determine the two and three b od y  forces in  
consistent manner. These forces are em ployed to  build up the dynamical m atrix , which 
predicts the qualitative features of phonon dispersion in  som e of the face centered cubic 
(fee) m etals.

1. Introduction

Incorporation of wave vector dependent dielectric screening in microscopic 
theories [1- 2] for phonon dispersion in fee metals appears to be inadequate in view 
of its dependence [3] on phonon frequency as well. The microscopic model given 
by Animalu [4] does not account for the three-body forces, which affect the phonon 
dispersion decisively. The three-body forces reported by Upadhyay and Prakash 
[5] do influence dominantly only transverse branches. Further, the determination of 
models of these forces is with a certain degree of ambiguity. The study due to Sarkar 
et al [6] makes use of energy dependent HA [7] potentials, which does not account 
for the repulsive forces, which contribute significantly to recent forms [8- 10] of the 
model potential. These latter forms [8-10], however, lack miserably the inclusion of 
the three-body forces and combine the short range repulsive and attractive forces 
with the long-range Coulomb forces.

Most of the phenomenological models [11-12] add up the short range ion-ion 
and long range electron-ion forces. The latter forces are commonly given by the 
Krebs scheme [13] which suffers with the deficiency of crystal inequilibrium [14] and 
does not account for proper dielectric screening.
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q ----- -----  q q-----

Fig. 1. P honon dispersion curve for nickel

The lattice dynamical studies [15] prove emphatically the role of three-body 
forces in coupling the nearby neighbours. For bringing about a logical consistency 
in deriving the two- and three-body forces, we have chosen the Morse potential [16], 
which is modified for explaining the reasonable bindings of the fee metals. The 
dynamical matrix so developed is employed to predict the phonon dispersion in 
some of the fee metals.

2. Theory

2.1 Three-body potential

The response of the loosely coupled electrons towards the ionic displacement 
necessitates the inclusion of three-body forces into the system. For this purpose the
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Fig. 2. Phonon dispersion curve for lead
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effect of the third common nearest (/", k") neighbour into the coupling of the atom 
(/', k') with the atom (l, к) is considered. The trio considered here are located on the 
vertices of an equilateral triangle. The Morse [16] potential modified to represent 
the three-body interaction among the said atoms (/, k), (/', k') and (/", к") assumes 
the form

<£(3)(ri, r 2) =  H  -7T^[ß‘2 exp{-2a(r1 +  r2)} -  2/?ехр{-а(гх + r2)}], (1)
i'.fc' Í.*
l",k"

where ri and r2 are the respective separations of the atoms (/', k1) and (/", k") from 
the atom (/, k), A(k) the three-body parameter, a  measures the hardness of the 
potential and ß, a parameter depending on the equilibrium separation r0, may be 
written as

ß = exp(aro). (2)
The prime on first summation in Eq. (1) means (/', к1) ф l", k" .

( ----------- ) present study

q ----- - ------- q q

F ig . 3 . P h o n o n  dispersion  cu rv e  fo r pa llad ium
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2.2 The two-body Morse potential

Morse has expressed the two-body potential energy per atom as

<t>?} -  y X )  [exP { - 2<*(»V -  r0)} -  2 exp{—a(rj -  r0) } ] , (3)

where D is the dissociation energy of the pair and rj  the distance of J th  atom from 
the origin which may be given as

rj  = (m5 + n] + /3 )1/2a = Mja,  (4)

where ( m j ,n j , l j )  are integers representing the co-ordinates of the J th  atom of the 
lattice and a the semi lattice constant.

( -------------) present study

( x — X— X ) A.Rajput study 

(о— —о— alS.C.Vrati study

(о л ж») experimental points

q------ ----- q q

Fig. 4. P h o n o n  dispersion  curve fo r p la tinum
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2.3 The dynamical matrix

The three-body potential <̂ 3-*(ri, r2) is first used to build up the dynami
cal matrix. The usual procedure leads to the following diagonal and off-diagonal 
elements of the matrix, i.e.

^ L - ( q )  = 4 & [4  -  2c 2a. -  Ca.{Cp. +  Cy) ] ,

D % ( q) =4ßs[Ca.(Cp. + C y )  -  2], (5)

where /З3 is the second derivative of r2), Cy  =  cos Ц р 1 and C2a. =
cos (aqa1).

(------------- ) present study
(o— «— -o ) 0. P. Gupta study

(од*#) experimental points

q------ - ------ q 4

Fig. 5. P h o n o n  d ispersion  curve for cobalt
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The two-body potential accordingly describes the following contribution to 
the dynamical matrix

D % ( q )  =4(/?i +  2ax) -  2(ft +  «i)C„-(C> + Cy)
— 4at\Cß'Cy  -f 4/?2Sa1 +  4a 2(Sßi +  S y ) ,  (6)

D(J ß,{q) =2(/?i — ot\)Sa' Sß',

where 5a< = s in (^ - ) ,  a i, a2 are the first derivatives of the potential coupling the 
first and second neighbours and ßi, ß2 the second derivative.

The phonon frequencies (v) are obtained by solving the usual secular equation,
i.e.

Da'ß'(q) — 4n2v2m l  =  0, (7)

where m is the mass of the atom, I  is the unit matrix of 3 x 3 order and Daißi is 
the total dynamical matrix.

3. Computations and results

We have considered the two-body coupling extending to the eigth neighbour 
of the fee structure, i.e. 140 atoms. The three parameters defining the two-body 
potential ф2(гj) are evaluated by the knowledge of the equilibrium lattice con
stant, cohesive energy and bulk modulus ( k ^ )  of the solid by the procedure laid 
down by Girifalco and Weizer [17]. The three-body parameter A(k) is evaluated 
from the knowledge of measured Cauchy discrepancy in the second order elastic 
constants. Table I shows the input data needed for the four potential parameters 
(D , a, ro, A(k)) and force constants (a i, a2, ßi,ßi,  /?з) which are enlisted in Table II 
for the metals under study, i.e. Ni, Pb, Pt, Co and Th.

4. Conclusion

We have drawn the dispersion curves for Ni, Pb, Pd, Pt, Co and Th (Figs 1— 
6). We have compared the phonon dispersion in Ni (Fig. 1) to those reported 
experimentally by Bergenau et al [24] and theoretically by Mohammad et al [12] 
and Vrati [25]. It may be seen that our results agree more closely to the exper
imental findings as compared to other mentioned above. The experimental data 
[26] on Pb have been compared with our results (Fig. 2) and also with theoretical 
findings of Mohammad et al [12] and Sarkar et al [6]. Our results deviate near the 
zone boundaries. These deviations are common in other theoretical studies [12]. 
The neutron scattering data [27] on Pd exhibit general agreement with our results 
(Fig. 3). The theoretical findings due to Mohammad et al [12] dip down while that 
of Vrati [25] rise up especially near the zone boundary in all the symmetry direc
tions. Our results in Pt (Fig. 4) show slight deviations over the experimental data
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Table I
Input data for fee m etals

Metals Bulk m odulus 
(ionic)

XlO11 N /m “ 2

Cohesive 
energy (ф)
XlO“ 19  J

Semi lattice  
constant 

XlO - 1 0  m

Measured Cauchy 
discrepancy 

XlO11 N /m - 2

Reference to  the  
m easured Cauchy 

discrepancy

Ni 1.571 7.104 1.760 0.265 Rayne [18]
Pb 0.173 3.248 2.475 0.273 K itte l [19]
Pd 0.887 6.224 1.945 1.043 Allers et al [20]
Pt 1.085 9.344 1.960 1.742 Macfarlane [21]
Co 1.486 7.024 1.775 0.230 Sapiro and M oss [22]
Th 0.566 9.920 2.540 0 . 0 1 1 Aurád [23]

Table II
Com puted potential parameters and force constants

M etals D
XlO "l9 J

a
X l0 l °m

Г0
X lO “ 10m

A (k)
X10“ 19J

« 1
x N /m “ 1

a  2
x N /m “ 1 X Z ?

?
1

02
X N / m “ 1

02
x N /m " 1

Ni 0.584 1.228 2.855 -0 .4 3 6 -2 .5 6 0 0.500 29.520 -0 .4 5 0 0.410
Pb 0.182 0.671 4.387 -0 .1 0 7 -0 .5 1 0 0.050 03.910 - 0 . 2 1 0 0.540
Pd 0.453 1.018 3.242 -2 .1 1 5 -1 .7 9 0 0.290 17.790 +0.080 1.750
Pt 0.569 0.895 3.405 -3 .3 8 7 -2 .4 7 0 0.300 20.320 +0.750 2.820
Со 0.566 1 . 2 0 1 2.892 -0 .3 4 2 -2 .4 9 0 0.470 27.840 -0 .3 4 0 0.320
Th 0.647 0.722 4.346 -0 .0 1 3 -1 .6 1 0 0 . 2 2 0 14.170 +0.340 0.006
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[28] at the zone boundary. The theoretical results of Rajput [29] deviate upwardly 
while those of Vrati [25] deviate downwardly with the experimental findings. Our 
predictions in Co (Fig. 5) follow closely the experimental data [22]. The theoretical 
findings of Gupta [32], however, exhibit deviations with the experimental findings. 
Our predictions in Th (Fig. 6) show downward deviations with respect to the ex
perimental findings [30]. The theoretical findings of Thakur and Singh [31] and Oli 
[33], however, incorporate more explicitly the response of conduction electrons and 
therefore give rise to fair agreement with the experimental findings.
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The theory of the problem  of the direct effect of intense laser field on nuclear gam m a  
and b eta  decays is briefly summarized. The laser-assisted internal conversion process and  
electronic-bridge mechanism, which seem to b e  candidate processes where the in tense field  
can m odify nuclear transitions, are treated in  one model. As their characteristics near the 
threshold and near a resonance have special interest they are investigated  in m ore detail. 
The recent results on laser-assisted alpha decay are also discussed.

1. Introduction and historical review

Shortly after the appearence of optical lasers efforts have been made to use 
them for modifying nuclear processes. Most of these early works are related to the 
gamma-ray laser (graser) problem and are well summarized in the review paper 
of Baldwin et al [1]. The application of the laser in other nuclear processes, such 
as laser-induced nuclear orientation, isotope and isomer separation etc. were also 
reviewed at the end of the 70’s [2].

A decade ago the Albuquerque group suggested using the laser for the en
hancement of nuclear beta decay of 3H enlarging the phase space of the outcoming 
electron by an extremely intense laser [3]. The proposed experiment was criticized 
by Reiss [4]. Two years later Reiss predicted the enhancement of nuclear beta de
cay by intense low-(radio)-frequency radiation field [5]. The articles of Reiss were 
followed by a debate between the two groups on the possibility of enhancement of 
nuclear decays by means of intense radiation fields of optical or lower frequencies [6]. 
The problem is closely related to the question, how one has to discuss matter-radi
ation field interaction and in what manner one has to treat gauge transformations 
in a calculation without violating gauge invariance [7]. Finally both parts came to 
the same conclusion, namely that enhancement is generally not possible [8].

The main reason for this conclusion can be understood from the

z
Я 1 = е £ х р .Е £(<) (1)

p= 1

form of the interaction Hamiltonian, which is given in the Göppert-Mayer gauge, 
where xp denotes the proton coordinates and E i(f) stands for the electric field
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strength of the laser field. A simple, order of magnitude analysis shows that the 
coupling of two nuclear states by the interaction given by Eq. (1) is weak at the 
laser intensities available nowadays. The nuclear dimensions are in the order of 
2 — 10 X 10“ 13 cm and the electric field strength of the laser is El ~  40 I 1/ 2, where 
I  is given in W /cm 2 units. Thus, the magnitude of matrix elements of II\ is about 
10-12 — IO" 13 X J 1/2 eV. The energy differences generally encountered are larger 
than 1 keV, thus the coupling strength can be estimated as 10-15 — 10-16 x 71/ 2 in 
an optimum case. Moreover, the shielding of the laser beam by the electron cloud 
at the nucleus is strong for a neutral atom because the centre of mass remains fixed 
causing large atomic response [9]. This fact further decreases the possibility of the 
direct modification of nuclear decays by intense laser beams.

However, a special case, the case of 0 + —* 0 + transitions, which is forbidden 
for direct gamma emission seemed to be appropriate for the demonstration of the 
effect of laser radiation on nuclear 7-transitions [10]. In a two step process the 
nucleus can emit a 7-photon and can emit or absorb a laser photon. The process 
takes place through an intermediate state. It was shown contrary to the earlier 
statement [11] that the intermediate state is not located very close to the initial one 
but it is a giant resonance built up the initial, isomeric state. However, even this 
two step process needs extremely high laser intensities. Spontaneously the laser-free 
decay also takes place partly by two photon emission. In the presence of the laser 
one can expect an enhancement in that channel of the two photonic decay, for which 
the energy of one of the outcoming photons equals that of a laser photon [12].

We want only to mention that enhancement of the low-energy neutron absorp
tion cross section in intense radiation field was also predicted [13] but the magnitude 
of the calculated enhancement was quired [14].

However, modifications of nuclear processes can be expected if a characteristic 
energy of the process is comparable to the laser photon energy. As the laser- 
electron interaction is stronger than the laser-nucleon one it is more promising to 
find some effect of the laser radiation on combined electronic-nuclear processes, e.g. 
on internal conversion and on electronic bridge mechanism. Moreover, the condition 
mentioned above is easier to fulfil in the laser-assisted internal conversion near the 
threshold and in the laser-assisted electronic bridge mechanism near a resonance.

Before dealing with these processes in more detail, we mention that the inverse 
processes, i.e. the coupling of laser radiation to nuclei via collective electronic 
oscillations driven by the laser radiation [15] and the possibility of nuclear excitation 
by laser-driven electronic motion in strong laser field [16] have been investigated 
recently also in connection with the graser problem [17].

Nuclear 7-deexcitation with an energy a little less than the energy difference of 
two bound states in the electronic shell can be drastically modified in the presence of 
an intense laser field. In the process, which is called laser-assisted electronic-bridge 
mechanism, the nuclear excitation energy is transferred to an electronic excitation, 
which leads to the emission of an X-ray photon. The mechanism can be amplified 
in the laser field if the condition of JV-photonic resonance fulfils.

The first experimental observation of the normal laser-free electronic-bridge 
mechanism has been reported recently [18]. This process is a third order one and
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takes place in the following manner. In consequence of the nuclear deexcitation one 
electron of the atom becomes excited, leaves the atom, furthermore, an X-ray is 
emitted. Thus the energy of the nuclear transition is converted to the energy of the 
outcoming electron and X-ray. The process is similar to the internal conversion one 
but in the electronic bridge mechanism X-ray is also emitted.

Here we deal with a special type of laser-assisted electronic-bridge mecha
nism. We investigate those processes, where the energy of the 7-transition is nearly 
resonant to one of the bound-bound electronic transitions, but the energy defect is 
equal to a small integer times the photon energy of the applied intense laser beam. 
In our process the initial and final electronic states are the same. The three steps 
of the process are nuclear deexcitation, electron excitation into a dressed state and 
electron transition to the initial state by X-ray emission. The intermediate elec
tronic state, which is also bound, is strongly modified by the intense laser [19] and 
therefore it is called a dressed state. We deal with resonant processes only, i.e. 
with those, in which the sum of the energies of the 7-photon and that of a few 
laser-photons is equal to one of the energies of the possible bound-bound electronic 
transitions.

2. Simple model of laser-assisted internal conversion and 
electronic-bridge processes

Now we treat the problem of laser-assisted internal conversion [20,21,22] and 
laser-assisted electronic bridge mechanism [23] in one model. We restrict our con
sideration to near the threshold in case of internal conversion and to near a bound- 
bound electronic resonance in case of electronic-bridge mechanism, as noticeable 
changes are expected in these cases only.

We use a very simple model for the description of electron-nucleus interaction. 
The total Hamiltonian of the system can be written as

where

and

H  = Hq +  H\ 4- H% + H3, (2)

h2 , Ze2
H0 = -  —  V2--------+ H N,2p r (3)

Hi = er ■ E i(f), (4)

и  _  Ze2 e2 
2 '  §  ! '-* ■ !

(5)

H3 = er • Ex(t). (6)
Here the following notation is used: p is the rest mass of the electron, Z  is the 
proton number of the nucleus, r  stands for the electron coordinate, Ei{t) is the
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electric field strength of the laser radiation, which is treated classically and has the 
form

Eb(t) = E0è3sm(ut) (7)
in the case of linear polarization and

E i ( t )  = .Eo[êi sin(wf) + ê2 cos(w<)] (8)

in the case of circular polarization. Eq and u> are the amplitude and the angular 
frequency of the laser radiation, êi, ê2 and ёз are unit vectors perpendicular to 
each other and define the frame of reference. H s  is the nuclear Hamiltonian,

E ,(f) = i £  ( 2^ x \ 1/a -t { a e - tuxt _ a + ^ x * ) (9)
u)x ,E

describes the quantized X-ray field, hux  is the X-ray photon energy, ~e determines 
the state of linear polarization, a and a+ are the photon annihilation and creation 
operators and V  is the volume of normalization. Hi describes the laser-electron 
interaction, H3 is a very simple model Hamiltonian for the electron-nucleus in
teraction [24] and #3 represents the interaction of the electron and the quantized 
electromagnetic field, and describes X-ray emission.

The evolution of the many electron system is approximated by the evolution 
of one electron, but the effect of other electrons is taken into account by using 
effective nuclear charges Zen(n) in the one electron eigensolutions of Hq.

3. Nonresonant, laser-assisted internal conversion process

First we discuss the non resonant, laser-assisted internal conversion process. 
The initial electronic state has the form

=  ^o(r)e- i e °‘ , (10)

where <fio(r) is a hydrogen-type solution of quantum numbers k, Iq, mo and of energy 
Eq = heo, the final electronic state is a so called Coulomb-Volkov solution [25] of 
the form t

tl>j = t i ( - ) ( r , q ) e*«A(t)-r /* ee [-<  /  (»4 - « a (*') / «)!,* V 2m»1j ( Ц )

where u^~\r,  q) is a Coulomb function [26], hq is the momentum of the outcoming 
electron, the vector A(t) is defined

Aiin(f) = - (cE0/u ) ë 3cos(wt) (12)

in the case of linear state of polarization and

Acirc(f) =  ~(cE0/u)[êi sin(ud) -  ê2 cos(wf)] (13)
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in the case of circular state of polarization of the laser. The final state is valid only 
if the

fig »  eEo/w (14)

condition holds [25a]. We work in the electric field gauge.
The 5-matrix element of the nonresonant process can be written as [20]

5fi = (ifi)"1
1 * 1 * 4

dr < f( t) \H2\i(t) >,

where |i(t) >=  il>i\a(t) > is the initial state with

|a(f) >=  |a > е~и *г

and |/( t)  >=  ipj\b(t) > is the final state with

Ib(t) >= |fc > e~iCbt,

(15)

(16)

(17)

I a > and I b > denote the space dependent parts of the nuclear initial and final states 
(a) and (b) whose energies Ea = hea and Еь = fie», respectively, and dr refers to the 
integration over the proton coordinates. Ea — Еь = fiwa» is the transition energy.

We investigate inner shells and the laser can have intermediately high intensity 
because of condition (14). The extension of the initial electronic state determines a 
characteristic volume, that has to be taken into account in the integration over г in 
Eq. (15) and which is generally small enough for the е,еА(*)г/Пс = i  approximation 
to be made in it. Thus the effect of the laser remains in the time-dependent factor 
of Eq. (11) and the space- and time-dependent parts of the 5-matrix element can 
be separated. We can recognize that the space dependent part is the same as in the 
laser-free case, which fact provides the possibility of the simplified structure of the 
laser-assisted internal conversion coefficient given below.

Using the Jacobi-Anger formula [27] (circ case) and the definition and prop
erties of the generalized Bessel functions [28] (lin case) after some algebra, and 
dividing the transition probability per unit time of the process by the gamma tran
sition rate we obtain the following form for the laser-assisted internal conversion 
coefficient (LA-ICC) a%’j“  of a transition of multipolarity L and for an electronic 
state of quantum numbers k, j,  Iq

,las £  a ^ h (qN)T(bN),
N > - r

(18)

where T(bN) =  {Tcnc(bN) or Tun(6jv)} with

г2Ъм r*/2
TciTc(bN) = —  J  J2\N\(x)dx = J  jff(bN sind)sintidű (19)
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and
J%j(bNx, -d/4)dx. ( 20)

Here is the laser-free ICC at q =  gjv; k, j,  Iq are the principle, the total
and the orbital angular momentum quantum numbers of the electronic state; L is 
the multipolarity of the gamma transition;

qN = [(N + r0)hu>/Ry]1t 2/aB; (21)

Ry = e2/2 ав\ ав is the Bohr radius; r =  ro -  dpoi; ro =  А /hu; A  = E q +  huab] 
J 2|jv|(x) is a Bessel function of the first kind; N  is an integer; dpoi = {dcirc or dun} 
with

dcirc = d, dlin = d/2, d = е2Е 20/2цТш3, (22)

bN = e E 0qN / f i u 2 = b0(N + r)1/2, (23)

with 6o = 1.07 X 10“ 6 X f 1/ 2(ftW) - 3/2, I  is the intensity of the laser in W /cm2 and 
Tiu) is in units of eV.

Near the threshold Eq. (18) can be approximated as

,las
kj.lo = a L, Th

k,j,lo T, (24)

where a f ’??1 is the threshold value of the laser-free ICC, T  = {Tclrc or Tijn},
K }J )*0

Tcirc = T<=i-(bjv), (25)
N > - r

TH„ = THn (bu), (26)
N > - r

Tcjrc and TUn depend on ro and bo only. Their curves were computed and pub
lished for different values of parameters in papers dealing with laser-assisted X-ray 
absorption [29].

4. Laser-assisted, resonant electronic-bridge mechanism

Now we turn to the problem of laser-assisted electronic-bridge process. The 
motion of the bound electron under the joint action of the Coulomb and laser fields 
is described by the wave function Ф, which can be approximately written in a given 
subshell of principal quantum number n as [19]

OO
Ф(пп1П2т )  = ФП1„зт ^ 2  (27)

N = - oo
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where ФП1„3т  is a hydrogen-type solution in parabolic coordinates and Jn  denotes 
a Bessel function of first kind, N  is an integer, which corresponds to the absorbed 
or emitted number of laser photons, En = hen — ihyn/2 is the complex energy of 
the intermediate electronic state and

AП1П2
3/2n(ni -  П2)Е0еав

Zeffhu
(28)

Here n is the principal quantum number of the subshell, n = n\ +  n2 + |m| + 1, m 
is the magnetic quantum number and ni, n2 are the parabolic quantum numbers 
[30]. We use the A abbreviation further on.

The electronic Green function of the laser-Coulomb problem in this shell can 
be approximately written as [19]

G(t2 — t\)  =  — i6(<2 — t i ) ^ 2  |Фг(ТШ1Т12то) >< Ф(пп1П2т ) |,  (29)
П1П2 ГП

where 0  denotes the step function.
The 5-matrix element governing the laser-assisted, resonant electronic-bridge 

process can be written as

5fl = (ifi) " 2 f  dt2 Г  dt! < f ( t 2)\H3( h ) x  (30)
J f 0 vío
X |Ь(1г) > \0шх > G(t2 — ti) < Owjtl < 6(fi)|-ff2|i(íi) >>

where
|/(í) >=  y>0(r)e-‘£o<|6(f) > \lux  >, (31)
|i(í) >=  y’o(r)e_,t°<|a(í) > |0wx > (32)

are the final and initial states of the electron-nucleus-X-ray system, respectively, 
|0wjr > and I Iw* > are photon number states of angular frequency u j . The initial 
and final electronic states are the same. We suppose that y>o describes an inner state, 
thus the effect of the laser on this state can be neglected because of the shielding 
of the outer electrons, thus tpo is a hydrogenic type solution in the usual spherical 
coordinates. Furthermore, we introduce the following notations: u>no = t n — Co

in Eq. (30) the cross term of the 5-matrix element is neglected as we search 
for a resonance type process only. Furthermore, as in our simple model we use 
only #2 for the description of electron-nucleus interaction the 7-photon exchange 
between the nucleus and the electron cloud does not appear in our formalism.

If we calculate the transition probability per unit time Wj“  of the process [23]
and introduce the quantity 77, which is defined as r) = / W ^ ont, where Wjfont 
is the transition probability per unit time of the spontaneous 7-ray emission [24] 
and restrict ourselves to the L = 1 case discussed below we obtain

П = 27
( » x \ *  \Jnk\2\ h ,nk\2 F
\ w abJ A2 + (fi7» /2)2 (i=1)

(33)
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where Д = h(uab — TVu> — u no) is the detuning,

and

J"t
1 Rko(Zeti(k),r)Rni(Zefr(n),r)r3dr, (34)

i i “‘ = j Rko(Zen(k), r)RnU Z eff(n), r)r1~Ldr, (35)

e [ e

1 2
1 < 1M l/ii/12 > 1 ./#(АП1>Пз)//\г(ЛП1П2) (36)

к т,т,м

The energy of the X-ray photon is hwx = h(w„j — Nui + К w). For the sake of 
clarity we have denoted the different effective charges of the states of different 
principal quantum numbers in Eqs (34) and (35), where Rt  о and Äni are the radial 
parts of the hydrogen-type wave functions, furthermore pi = (m -f ni — n2) /2, 
p2 =  (m — ni +  n2)/2. The ratio rj can characterize the yield of the laser-assisted, 
resonant electronic-bridge mechanism related to the spontaneous y-decay.

Now we restrict ourselves to the isomeric state 183mW, which has an El 
transition of energy 544 eV, and to the 4s1/ 2(7Vi) shell, which has binding energy 
of 592 eV, thus in this case the energy defect is —48 eV [31]. For this state and 
nuclear transition the n = 6 shell with binding energy of about 8 eV can be the 
intermediate state.

In the case of small laser intensity, i.e. A -C 1, the К  = 0 order process will be 
dominant. If we use a laser of photon energy about 13.33 eV we have a third order 
(TV = 3) process from the point of view of laser-atom interaction. The intensity 
of the laser is restricted to /  = 1015 W /cm2. The other quantities we need are 
/46 = 0.0175ав, I\ 46 =  0.0122а]]2, which were obtained with hydrogen-type radial 
functions of Zeff/4 = 6.6 and Zeff/6 =  0.766, and hyn/2 = 3.9 x 10-4 eV, which 
is estimated by the width of a 2p — Is transition of the same energy [32]. So we 
obtain the estimation tj = 1.38. Thus we can see that in the presence of an intense 
laser beam of appropriate angular frequency fulfilling the condition of resonance the 
transfer of the nuclear excitation energy through the electron bridge can become 
effective.

5. Laser-assisted a decay —  a tool for determination 
of low-energy separation o f near nuclear states

Finally we deal with the possibility of a special, laser-assisted а-decay process. 
In a recent article [33] for the energy separation Д of two intrinsic states at the 
ground state of 229Th nucleus 1 ± 4  eV but in any event almost less than 10 eV was 
reported. Here we propose a method, which seems to be capable of determining 
this difference more precisely with the aid of lasers. Earlier it was stated that 
the nowadays available intense lasers of optical and soft X-ray frequencies are not
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appropriate to modify nuclear 7-transitions. While this statement is not questioned, 
but as the energy difference to be investigated is small enough we have the chance, 
as will be seen below, to modify the nuclear process in this special case.

A resonant-type process is discussed here. An experimentalist needs a better 
estimate of the energy difference given above for practical reasons in order to be 
able to tune the laser to the resonance as the resonance-type process has a very 
strong frequency requirement. But we have no idea now how to achieve this better 
approximation of the energy difference.

The levels investigated are connected with an M 1 transition, thus we can use 
the interaction Hamiltonian

Him = Ц B = HpBfiè cos(u><) (37)

describing the laser-nucleus interaction where fip is the Bohr magneton of the pro
ton, В ig the amplitude of the magnetic induction in the laser beam, и and ê are 
the angular frequency and the unit vector parallel to the state of polarization of the 
laser, respectively and /i is the magnetic dipole operator in pp units.

The transition probability W  per unit time for a laser driven resonant process 
in one channel, i.e. the decay rate to one of the levels of the daughter nucleus, can 
be written as

W = W 0 + uW3/2, (38)
where Wo, W3/2 are the transition probabilities per unit time of alpha decays with
out laser for the states in question of angular momentum 5/2+ and 3/2+ of 229Th, 
respectively and

V  =
5T2e2/

M 2c3Au ßr, (39)

where M  is the nucleonic mass, I  and Дш are the intensity and the bandwidth of 
the laser, respectively and r  is the irradiation time. Here it is supposed that we 
are far from saturation and the ordinary time dependent perturbation calculation 
is valid [34]. ß  is the reduced M l transition matrix element, measured in pp units

ß  = (YJ.' + 'n  !C l<al E  /ii„(nucleon)|6 > I2. (40)
'  nucleon

In the case of ß  ~  10-6 , which is two orders of magnitude less than the usual ß 
values of M l transitions [35], we can still expect a laser intensity and frequency 
dependent effect with the use of the nowadays available lasers.

If the applied leiser is so intense that the resonance process reaches its satura
tion and we take into account the decays of the states in question then the results 
of the saturation probability of a damped Rabi flopping can be used [36]. Further
more, for an irradiaton time, which is appropriately long compared to the inverse 
width of the state investigated the steady state excitation probability is valid [37]

.. = 2ne^Iß
" Д /5)2 +  T2/4] ’ 1 ’
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where 7 is the half width of the upper state that is supposed to have much shorter 
half life compared to that of the 5/2+ state.

The quantity, which is common in Eqs. (39) and (41), К  = жe2/ M 2c3 =
9.6 ж 104, meanwhile the intensity has to substitute in W /cm2 units. The bandwidth 
Aw of a glass laser is of the order 5.7 ж 106 Hz [38], the intensity of the laser is 
expressed in W /cm2 and ß  ~  10-6. With these conditions a laser of 1 kW/cm2 
intensity with an integrated irradiation time of one hour gives v = 0.19. This effect, 
which is thus proportional to the radiation time, can be described by Eq. (39).

6. Summary

On the basis of our results we can draw the following conclusions:
It is possible to modify a nuclear decay by intense radiation fields if the process 

has a characteristic energy, which is comparable with the laser photon energy. It 
is found that modification can be expressed in combined processes, which take 
place in consequence of the interaction between the nucleus and the electron cloud. 
The presence of the intense laser beam has an essential role in two types of such 
processes, in the near-below-threshold, laser-assisted internal conversion process 
and in a resonant, laser-assisted electronic-bridge mechanism. In both processes 
the intense beam provides the laser photons, the absorption of which is necessary in 
order to fulfil energy conservation and resonance conditions in the above processes, 
respectively. It was also shown that if the energy difference between nuclear states 
has a magnitude of a few eV, then a laser of resonant, optical frequency can mix 
the nuclear states modifying the a-decay in this manner.
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Considering the inclusion of more than a  single potential held  in  the same loca l 
sym m etry group, we study a sort o f “dynamical transm utation m echanism ” in which the  
freezing of m atter degrees of freedom  yields the appearance of massive vectors in  the physical 
spectrum. 1

1. Introduction

It is a well-known fact that the imposition of a local symmetry on a 
Lagrangian implies the existence of massless particles in the spectrum of the theory 
it describes. The symmetry principle alone does not offer instructions to avoid the 
presence of massless vector fields. Thus, gauge theories could be seen as if they 
contain a razor principle for models that do not display massless spin-1 particles. 
In view of such a situation, a complement to the gauge principle is required in 
order that the experimental demand for massive particles can be considered. The 
observation that symmetries may be realized not only in a manifest form, but also 
in a spontaneously broken way, has developed a standard approach to investigate 
a spectrum containing massive gauge bosons [1]. However, although the conjecture 
that physical models possessing symmetries which are not shared by the vacuum of 
the system has been satisfactory for the description of the electroweak forces, Higgs 
scalars have not been detected so far. We do not know how many Higgs bosons 
exist and there are no general limits that can be set on their masses (constrains do 
exist, but they only become limits if supplemented by a number of assumptions). 
On the other hand, it is a fact the Higgs contribution to perturbative unitarity and 
renormalizability [2]. For instance, the / /  —► W W  scattering cross-section has a
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9 0 R . M . DORIA a n d  J .  A . HELAYEL-NETO

bad high-energy behaviour that is cured by the inclusion of a Higgs boson exchange. 
The challenge brought by the latter has motivated the investigation of several dif
ferent approaches: methods based on the replacement of the Higgses by composite 
objects or more complicated structures [3], gauge-fixing and non-local Lagrangians 
[4], anomalies [5] have been presented and are currently under investigation. A 
contribution to this polemic stems also from the importance of understanding the 
self-coupling \ф4 [6].

It is then a very relevant matter to known to which extent gauge theories 
contain indications for the appearance of massive vector fields. The attempt here 
is to study a method based on the inclusion of more than one potential field in the 
same group, as given below:

A ^ U A ^ U ’ 1 -  — и д „ и - \  (1.1)
91

B„ — UBuU- 1 -  — UduU'1. (1.2)
9 2

There are different reasons for claiming that gauge theories intrinsically contain 
instructions for carrying more than one potential field as in (1.1) and (1.2), but 
with just one genuine gauge field [7]. The arguments are based on the existence 
of enough independent degrees of freedom, a Kaluza-Klein-type description and 
the local Noether theorem [7]. Incidentally, by studying the purely gravitational 
sector of higher-dimensional gravity coupled to fermions with non-vanishing pair 
condensation, the effective four-dimensional theory exhibits two potential fields that 
transform under the action of a single gauge group. By including torsion, one can 
prove that these fields are indeed independent [7].

Thus, considering the results from the spontaneous compactification of a 
D > 4-dimensional gravity-matter theory, one could use the rearrangement of the 
D{D̂~3) physical degrees of freedom of the graviton to look for some alternative 
method to build up massive gauge theories. In Section 2, we briefly present the 
consequences from the inclusion of two potential fields. In Section 3, we combine 
the results of Section 2 with the canonical procedure for discussing the spontaneous 
breaking of a symmetry. Finally, a possible path for massive fields, by considering 
a kind of background potential and integrating out the involved scalar fields, is 
proposed and described in Section 4.

2. Physical masses for two potential fields 
in the same group

From (1.1) and (1.2), it is possible to build up the following gauge-invariant 
mass term:

Cm = im 2ir(flfiA^ - g i B ^ f ,  (2.1)
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where m is a  mass parameter, whereas g\ and <72 are dimensionless constants. At a 
first glance, one might suspect the presence of massive terms for both fields A ß and 
Bp. Nevertheless, in order to calculate the physical masses, we have to observe that 
in perturbation theory a physical particle is defined as the pole of the complete and 
renormalized two-point Green’s function. This interpretation is not straightforward 
in the case of two fields: there appear mixed propagators originated from the non
diagonal terms in the kinetic Lagrangian. For instance, they can appear from the 
following field-strength tensor:

Gfiv =  9idpAv — g-zdvBp +  gig2[Bp, A v], (2-2)

Thus, the bilinear part of a Lagrangian containing two potential fields can generally 
be written as below:

C = (ApBp)K^  ( 5 " )  +  \ m 2t r { g iA p - g 2Bp) \ (2.3)

where
Kp„ = {Aa +  M^)r)pV 4- Вдрди, (2-4)

with
A = ( an  ai2 V B = ( b. n  b.lA,  M = ( mn

\°21 <*22/  \ ° 21 ®22 /  \***21

The tree-level physical masses, Ai and A2, are shown to be the eigenvalues of the 
matrix A~l M 2-.

Ax 2  — {
an  a22ГО22 + — ШЦ —

(<*11022 -  <*i2) l  2
а?2т ц т 22 + ***12(0110221*112 — о п аггтц  —

<*12*7*12 ±  (^ y-***22  -  022*7*11 )  +

n . „ Л . . ̂ 1 3 \  I

Apparently, (2.6) could lead us to think that both fields are massive. This would 
violate the razor principle. However, through a suitable reparametrisation of the 
fields,

Dp —Ap -f- Bp
Cp —g\Ap — g?Bp, (2-7)

one can observe the existence of just one massive field. This means that the intro
duction of more potential fields in the same group yields a gauge-invariant infrared 
régularisation for massless fields without, however, violating the gauge theory in
struction that a local symmetry systematises the existence of a massless particle in 
the physical spectrum (at least in four-dimensional space-time).
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3. Spontaneous symmetry breaking

Basic facts such as translational invariance and absence of ghosts, along with 
the hypothesis that a continuous symmetry may be broken by some order parame
ter, are enough to ensure the presence in the spectrum of a massless scalar boson 
via the Goldstone theorem. This result does not depend on the field content of the 
Lagrangian and is indeed model-independent. We shall in the present section re
consider the Goldstone theorem in its local version (actually, the Higgs mechanism) 
with a family of N  potential fields associated to a single 17(1) gauge symmetry that 
is spontaneously broken by the vacuum expectation value of a scalar.

We start off with a set of к scalar fields transforming under the gauge group 
according to:

Ф, — » Ф' = еЧ^РПф., (3.1)

where g, is the charge of the i-th field. The i/(l)-m  variance and renormalisability 
fix the Lagrangian to be

С = -  m? Ф^Ф* -  ^(Ф,-Ф‘)2. (3.2)

К  and m2 are taken to be real and symmetric matrices (K is also assumed to be 
positive-definite); the coupling parameter A is such that A > 0.

In order to be the closest to the usual case, we prefer to choose a framework 
in which the kinetic term is diagonalised. Consider an orthogonal transformation, 
R, such that

Ф = R'  Ф, (3.3a)

k i j  = (R* К  R)ij = U{6i j . (3.3b)

Also, performing a field rescaling according to

<f>i = y/ulfc, (3.4)

one gets for ф{ the Lagrangian below:

C =  -  J  ( - £ = - £ = )  , (3.5)

where p2 is a symmetric mass matrix given by

rii = - 4 = (л <т2я ) о ~ -  (3.6)Vw‘ v wj
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The ы-s are the eigenvalues of the kinetic matrix К  and, according to our initial 
assumptions on the latter, they are all positive. From (3.5), the Higgs potential can 
immediately be read off:

V(4>) =  W #  + ^  (3.7)

A possible way to bring N  independent gauge potentials, A')1(x), in association 
with the 17(1) symmetry given in (3.1), is to take N  = к and to couple them to the 
scalars as below:

дцфх —* Dß(Ai)<t>i = (dp +  i g q i A ^ i ,  (3.8)

where g is a dimensionless coupling parameter.
The gauge transformed potentials read

Ap{ — Afxi — —dpa, (3-9)

and the gauge-invariant Lagrangian for the <̂ (s and A'ßis can be written as:

C .  =  E g a u g  е ( А ц х )  +  / .g a u g e - m a t t e r  +  l ^ ( ^ t ) j  ( 3 . 1 0 )

where £gauge(A,„) is the extension of the Maxwell Lagrangian to include N  gauge 
potentials (it is discussed in details in [9] and [10]),

/ 'g auge-m atte r =  [ D M M i X  [ ^ ( W ]  , ( 3 .1 1 )

and V(0,) is the Higgs potential of Eq. (3.7). Based on general arguments [1], 
we can conclude that, though the N  vector potentials are mixed up in £ gauge, the 
genuine gauge field of the model (see [10]),

= (3-12)
* = 1

acquires mass whenever У(фх) allows for the spontaneous breaking of the gauge 
symmetry.

Another model that can be proposed, based on the introduction of N  gauge 
potentials, couples just one scalar, Ф(х), to the A^.’s according to the Lagrangian

c  = /'gauge(A^t) +  [D^Ai)Ф]* Nii [D” (Aj)Ф] +  К(Ф), (3.13)

with
0 р , ( А , ) Ф  =  ( d p  +  » 0 , А м<) Ф ,  ( 3 - 1 4 )
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where no summation over i is understood in (3.14) and Ж is a real symmetric matrix. 
Lagrangian (3.13) is invariant under the local transformations

Ф(х) — Ф'(х) = е‘“(*)ф(х) (3.15a)

and
А^{х)  —► Ä  i(x) = А„{(х) -  — őMa(x). (3.15b)

9i
Upon replacement of the covariant derivative (3.14) into (3.13), we get

N  N
C =  £gauge(^0+ 53 NijdpQ*д^Ф + гФ'дмФ

•J=1 *J=l
N53 Я ц д щ А ^ Ф ' Ф  +  и(Ф). (3.16)

i j= 1

Taking now
У(Ф) = р2Ф*Ф + ^(Ф*Ф)2, (3.17)

with /i2 < 0, the ground state is non-trivial and degenerate, giving rise to the 
spontaneous symmetry breaking. As usually done, we choose a real vacuum, v , and 
parametrize Ф as below:

Ф = и + Х1 +»Х2, (3.18)

where xi and X2 are the right field fluctuations. This yields:

N

£ ( x i ,X 2 ;A . . - )  =C g a u g e ( A i )  +  5 3  Nn№ßXid,lxi + dltx2d»x2+
i j = i

N
+  1,2 53 N i j 9 i 9 j A ß i A 1  +  2 m 2x ? - 2 ( x i ő / iX2 +  u ő #1X 2 )-

í,i=i
N  N

■ 5 3  Nii9iA i + 2v 5 3  Nij9i9jAßi A f x i +
*J=1 i,j= 1

N

+ 53 Nii9i9jA^iA^(xl  +  xl)+ (3.19)

-  ^(4uXiX2 + 2XÏX1 +  4vx? + X? +  X*)-

The scalar field X2 can be eliminated by choosing the so-called unitary gauge. Thus 
the spectrum will display N  massive vector particles along with the Higgs scalar. 
Still, the Higgs particle is a physical dynamical field we have to live with. An 
advantage, however, of the introduction of the N  potentials is that power-counting 
renormalisability can be achieved even in the unitary gauge [9,10].
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4. Other paths towards massive vector fields

In this Section, we shall initially discuss the possibility of introducing and 
giving a role to non-dynamical fields. This means to propose a consistent and 
meaningful quantum field theory where some of the fields do not appear in the 
physical spectrum of the theory. The advantage of working with more potential 
fields in the same group is that such an approach yields naturally the enlargement of 
the symmetry considerations. Recalling that the razor principle judgment applies to 
gauge theories without massless fields, it is enough to work with only two potential 
fields in order that our proposals can be tested.

Parametrising the complex field Ф in terms of polar coordinates,

Ф(х) = »?(*)e‘iW , (4.1)

and substituting in (3.16), we get

£  =£gauge(-4; B) +  (xx +  x2 +  2x3) [(drf)2 +  ^ ( Ő ^ ) 2] +

-  ц2г)2 -  ^Г)4 + [xiglApA“ +  + IxzgigiA^B11] r?2+

+ (*i + хз)А„т)2д1'£ + (x2 + x3)Bfir]2d'1̂ , (4.2)

where xi, x2 and x3 are the free parameters that specify the matrix N.  The attitude 
here is that, by imposing the relation

xi +  x2 T 2x3 = o, (4.3)

there remain no scalar quanta to be identified as physical degrees of freedom in the 
theory. Therefore, it turns out necessary to understand which is the meaning of the 
interacting scalar fields in (4.2). Notice that condition (4.3) in the Lagrangian (4.2) 
still preserves the underlying gauge symmetry

7j(x) —7j(x)
£(*)->£(*) + “ (*) (4-4)

and the corresponding conserved current. The survival of gauge invariance upon 
imposition of (4.3) shows that tj and £ only work as a complement to symmetry. This 
means that they can be characterized as background fields of the theory. Rewriting 
(4.2) with condition (4.3) as

£  — £gauge(J4) R) ^background (-*4> B J T], £), (4-5)

one can see that the fields 77 and £ appear just as auxiliary to build up to quanta of 
the vector fields. For instance, applying the standard engineering of breaking down 
symmetries to (4.5), it yields massive vector fields. Thus in this case, the fields
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r) and £ would work as background fields in order that the massless vector fields 
acquire mass without the need for physical propagating scalars.

A second point to be contemplated in this Section is the investigation of the 
possibilities for the dynamics of the theory to evolve its structure to a final picture 
where the fields if and £ are absorbed into the potential fields. In this direction, 
let us first draw our attention to the possibilities for eliminating the field f. By 
virtue of the gauge invariance of the theory, we can suitably choose the arbitrary 
parameter a(x) so as to eliminate the mode £. However, we have to be careful 
about the nature of a mass when it is manifested through a gauge-fixing. So, 
it would be better if the £-field could be eliminated without requiring a gauge
fixing procedure: there would not be any danger of confusing this mass with a 
gauge artifact. Then, a possible relevance of this approach is that Lagrangian (4.2) 
contains an insight for eliminating the £-field without breaking gauge invariance. 
Considering the condition (4.3), the £-field acts as a multiplier that enforces the 
following gauge-invariant constraint:

dl i {[(x1 + x3)A>‘ + ( x 2 + x3)B>i]r,2} = 0 . (4.6)

Hence, as a consequence of the latter equation to be a gauge-invariant condition, the 
dimensionless field £(x) does not contain any track of acting as a gauge parameter.

The constraint (4.6) can be put in a simpler form,

(xi -  x 2)d)i(r)2Cli) = 0, (4.7)

where CM is the gauge-invariant combination of the potential and Bß :

Сц = Ац -  В,,. (4.8)

By simply choosing the parameters x\  and x2 to be equal,

x\ = x2, (4.9)

and this is compatible with the symmetry of the matrix N,  (4.7) is automatically 
satisfied and the rç-field equation of motion reads

r?(»?2 -  \ f ) = 0, (4.10)

where
F  =  - f i 2 + xx (glAffA^ +  g2Bf,B") +  2х3дхд2А,,Вц. (4-11)

The equation of motion (4.10) shows that the theory displays two phases: one 
for which there is a massless gauge field along with a massive vector, and another 
phase for which there are two massive vector particles. This can be readily checked
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if we eliminate tj from Lagrangian (4.2) in terms of the solutions to equation (4.10). 
In the case of the non-trivial configuration

» ( 412)

the theory is described by the effective Lagrangian, Ceff, which reads:

£ e f f  =  £gaugeH; B) +  j F 2, (4.13)

whose spectrum exhibits the presence of two massive gauge fields. So, just to 
conclude, we understand that the introduction of more than a single gauge potential 
enlarges the possibilities of writing down gauge-invariant Lagrangians. This, in 
turn, gives room to more free parameters that can be suitably arranged so as to 
freeze matter degrees of freedom without explicitly breaking the gauge invariance. 
The invariance of the non-propagating matter fields reveals the presence of massive 
vector bosons in the spectrum.
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T he dynamical aspects of two heavy nuclei colliding with energies above the Coulom b  
barrier are considered. T he macroscopic aspects o f the asym m etric and sym m etric colli
sions have been studied. T he classical trajectories for the fusing system s are num erically 
calculated. Effects due to  increasing the in itia l kinetic energy or the initial asym m etry on  
the calculated trajectories are investigated. T he results lead to  three typical trajectories 
which correspond to the deep-inelastic, the quasifission and the form ation of com pound  
system  reactions. It is found that the effect o f  the asymmetry p lays the same role as that 
of the in itial kinetic energy.

1. Introduction

In the last few years, an enormous amount of data resulting from the collision 
between complex nuclei have been obtained leading to experimental investigations 
for the different mechanisms of the reactions between complex nuclei. These reac
tions are characterized by features which are intermediate between those of the sim
ple quasielastic or few nucleon transfer and those of the highly complex compound 
nucleus reactions. These reactions are defined as the damped nuclear reactions char
acterized by the damping of the collective nuclear motion through interactions with 
intrinsic nucleonic modes. The experimental observation of two massive fragments 
produced with asymmetry and close to the initial interacting two nuclei, supports 
the concept of damped reactions as a peripheral contact of two macroscopic un
structured bodies. Theoretical investigations have been obtained [1], [2] from the 
application of the classical dynamical models to the damped reactions. Classical 
dynamical calculations have been carried out [2]—[7] for both of the damped reac
tions and the nuclear fusion using different models for the nuclear configuration of 
the interacting system.

The more realistic dynamical model is that which includes [5], [8] deformation 
degrees of freedom in the classical dynamical calculations to explain a wide variety 
of fusion data [9], [10] including those for heaviest systems. This model predicts 
three important configurations [11] from the dynamical evolution of the nucleus- 
nucleus collisions known as the contact, the conditional saddle and the unconditional 
saddle configurations. These mentioned configurations are associated with the three 
threshold contact, extra push and extra-extra push energies, respectively. This
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model has been modified [12] by including the asymmetry friction term to the 
dissipation function for shapes with a small neck. The previous dynamical model 
predictions have been re-examined [13] to investigate the effect of including the 
asymmetry friction term. Calculations using realistic geometrical shapes and a 
weighted superposition between the two limiting cases of the one-body dissipation 
have been carried out and compared with the experimental data [6], [7]. Another 
variety of experimental data have been observed [14] for damped nuclear reactions 
below the Coulomb barrier. The neck formation cross sections have been calculated 
[15] using the liquid drop model where a strong relation has been evaluated between 
the calculated cross-sections and the sum of the experimental values of the fusion 
and deep-inelastic cross-sections. With the help of the obtained relations, these 
processes may be understood classically.

In the present work, the classical dynamical theory is reconsidered. This the
ory is introduced as to consist of the liquid drop model together with a generalized 
one-body dissipation formula. The nuclear configuration is parametrized by con
sidering the two heavy nuclei of the interacting system as two spheres connected 
together with a conical neck. Then, numerical calculations are carried out for the 
classical trajectories describing the fusion of different fusing systems. The effects 
of changing the initial conditions concerning the injection kinetic energy and the 
asymmetry on the dynamical trajectories are investigated.

In Section 2, the mathematical and theoretical expressions of the dynamics 
of two fusing nuclei are introduced as functions of the different collective degrees of 
freedom. Numerical calculations and results are given in Section 3. Section 4 is left 
for discussion and conclusions.

2. Mathematical and theoretical expressions of the 
dynamics of two fusing nuclei

In the present Section, we consider the dynamical equations of motion de
scribing the dynamical trajectories showing the shape evolutions with respect to 
time for the two fusing nuclei. There are two interesting cases considering the two 
fusing nuclei, namely, the asymmetric and the symmetric cases.

The dynamical trajectories of two asymmetric fusing nuclei are considered. 
In this case, the trajectories are governed by the chaotic regime dynamical theory 
by considering the liquid drop model and one-body dissipation. For this purpose, 
three basic dynamical ingredients will be introduced to obtain the Lagrangian equa
tions of motion. To obtain the shape parametrization and potential energy of the 
two asymmetric fusing nuclei, the nuclear surface is parametrized by the axially 
symmetric shape which consists of two asymmetric spheres connected together by a 
conical neck as shown in Fig. 1. The set of the three dimensionless degrees of free
dom [13] describing the shape parametrization completely are known as the radial 
distance S, the neck size N  and the mass asymmetry D. The liquid drop potential 
energy formula as a function of the above three degrees of freedom is given explicitly
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Fig. 1. Schematic diagram  representing the two heavy nuclei m oving towards fusion

reaction time X

Fig. 2. Radial distance S,  neck size N  and asym m etry D  of the system  10 6  Х ц  as a function  of the 
dim ensionless time r  for zero initial kinetic energy
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Fig. 3. The calculated trajectories o f the radial distance S  o f  the system  19 3  A g4 as a function of 
the dim ensionless time r  for different values o f the initial kinetic energy

in reference [13] by an expression as

2(1 +  D)P.E.(S, N , D) =4ж yR ‘ [{
+ 12 /

5 * {
17 +  10511 +  75D2 -  5D3 5

6(2 + 6£>)5/3

I {21 6D)T n 3

12(2 + 6£))4/з ь - } ]  (

2(1 — D) 
(1 ~ D f

( 1 )

In Eq. (1), 7 is the surface tension, R is the radius of the spherical compound 
nucleus and x is the fissibility parameter.

For calculating the kinetic energy, we shall consider only the central collision 
as a matter of simplicity. Therefore, in this case we employ the assumption of 
considering that the motions in the neck and asymmetry degrees of freedom are
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Fig. 4. The calculated trajectories o f the neck size N  o f  the system  193  Х ц  as a function of the  
dim ensionless tim e r  for different values o f the initial kinetic energy

strongly overdamped. Hence the only effective degree of freedom in the kinetic 
energy is the radial distance. Also, we assumed that when the shapes of the neck 
between the two colliding nuclei are very thin, the inertia is taken to be the reduced 
mass of the non-communicating nuclei, while for shapes without neck, the inertial 
forces are neglected entirely. Making use of these assumptions the kinetic energy 
can be given by an expression as

K.E. ~  \ iiR2S 2. (2)

R  is the radius of the spherical compound nucleus, ц is the reduced mass of the 
separated fragments and is given by

H = m(A\Ai/A).
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Fig. 5. The calculated  trajectories o f the asym m etry D  o f the system  1 9 S-Xg4 as a  function of the 
dim ensionless tim e r  for different values o f the initial k inetic energy

Ai and A i  are the mass number of the separated fragments, A = A\ +  A 2, and 
m = 931 MeV/c2.

In terms of the radial distance S  and the mass asymmetry D, Eq. (2) can be 
expressed as

K E  =  5 <3>

where Af =  m i .
For the dissipation energy [17], it has been shown that the one-body dissipa

tion theory [12] is the most successful one applied to the nuclear dynamics. The 
rate of energy Q which is dissipated during the fusion of the two heavy nuclei is 
derived as a function of our shapes for the degrees of freedom and their derivatives. 
Two limiting cases are considered leading to two different formulas. The first one is 
Qw referring to the wall formula which describes the compact shapes. The second 
one is Quu which stands for the wall-plus-window formula describing the necked-in 
shapes [13]. A generalized formula considered as a weighted superposition of Qw 
and Qwl0 has been assumed [6], [7], [13] for any arbitrary shape. This generalized
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Fig. 6. The calculated trajectories of the radial distance 5  of the system 2 6 6  X 1 0 5  as a function of 
the dimensionless time r  for different values of the initial kinetic energy

formula is given by the expression

Q = Q M -  f l  + fQwv-
f  is a smooth weighting factor defined by the expression

> (2  + 6B f 13̂
f  = cos

(4)

(5)2 (1 — D)2
In terms of the present three shape degrees of freedom, Eq. (4) can be expressed as

Q =рижИл^
2(1 - P ) 2S2y *  I ‘б ( i - p y p * _________________

2 9 0(1 + 3C)4JV2 3(2 + 6D)!/»(1 +

COS

+2 N

ж (2 +  6D)2/3iV2 
2 (1 - D )2

, (2 +  6D)lt3N 2
+ (1 - D )

+
( 1 -  D)2(1 +  D)D2 2(1 — D)252

D( 2 + 6 D ) 1 / 3 ( i  + 3D)3 + 3(1 +  D)( 2 + 6D)2/3

] 4
( 6)
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reaction  time T

Fig. 7. The calculated trajectories of the neck size N  of the system  25SXios as a function of the 
dimensionless tim e r  for different values of the in itial kinetic energy

where p is the nuclear matter density and F is the mean nucleonic velocity.
The dynamical ingredients introduced by the preceding equations are used to 

obtain the Lagrange and Rayleigh dissipation functions given as

C = K.E. -  P.E. (7)

and
DF =  l<j.

Then the equations of motion can be obtained from an expression given by

(8)

d_ i d c \  _  dc  _  dDF 
d t \ d q i )  dqi dqi

where
qi = {S ,N ,D }.

( 9)
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Fig. 8. The calculated trajectories of the asym m etry D  of the system  255 AT1 0 5  as a  function of the 
dimensionless tim e r  for different values of the in itia l kinetic energy

The different equations of motion given by Eq. (9) are reduced to three dimen
sionless coupled nonlinear differential equations. These equations are given by the 
expressions

=  [3(3 +  D) ( d S \  ( d D \  _  Г27г(/ц7Д2)2 ] Г(1 +  3 
\ d r )  \  dr J  l  9 M j  J [ (1 —

3 D)2N
(1 +  3D)(1 -  D)\  \ d r  J \ d r  J [ 9 M 7  J [ (1 — D)3

* ( р ™ 2) 2 ]  ( ( 1  +  W ) 2 \  f d S \  f , r2 4 ( 1 - Д ) 2
3(2 +  6D)2/3(1 +  D)

cos

______ :i n i ±
ЗМ 7  J V (1 — D)3 

/ » ( 2  +  6  D)2' 3N 2\  
\ 2  (1 -  D)2 ) '

Г4»ip U B ^ x ]  (  (1 + Щ 2 \[ 9 M T J V (2  +  6 D ) 4 / 3 7  ’ ( 10)

/  d N \  2(1 — D)N  — (1 — D)S — 3(2 +  6D y^3N 2
V d 7 )  ~  6[NS(l -  D) + (2 + бГ»)1/3^ 3] (И)
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reaction  time T

Fig. 9. The calculated trajectories o f the radial distance S  o f the system  2 8 8  X u s  as a function of 
the dim ensionless tim e r  for different values o f the initial kinetic energy

and

( d D \  Г 9 M j  1 f d S \ 2 (3 + D)
U { p V B ? y \ \ d T )  .(i+Д) . +  И (1 ~D)\f  h4 '  LVr '  J 4 '  L 0(2+6D)i/s + 9 D(l-3D)iVa

X
\n1 (7 + 5 D)S

(l+f>) , 16 (2+6DY/*(l-DYl
L D(1+3D)

4 ,

' 9 D(1+3D)*N3 
Г (D-1) , (D+DJV3

(1+3D) +  (l-D )3
, 2x(l-D)S 1 
^ (l+3D)i

l3(2 -h 6Z>)1/3J [ ß(l+3D)i +  9 D(l+3D)*N*---J

(1 2 )
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reaction  time T

Fig. 10. T he  calculated trajectories o f the neck  size N  of the system  28 6  J fn s  as a  function of the 
dim ensionless tim e r  for different values of the in itia l kinetic energy

г is the dimensionless time given by

T = t / tu, (13)

where tu is the unit time defined as

tu = pvR2/ 6y. (14)

Eq. (10)—(12) are coupled differential equations which can be solved together nu
merically by using the Runge-Kutta method subjected to the initial conditions for 
the collision process. The dynamical equations of motion for the case of symmetric 
collision can be obtained from Eqs (1), (3) and (6) by taking the value of D = 0 
since the mass asymmetric D vanishes.
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Fig. 11. T he calculated trajectories o f the asym m etry D  o f the system  2 ,® Х щ  as a  function of 
the dim ensionless tim e r  for different values o f the initial kinetic energy

3. Numerical calculations and results

In the present work, we introduced a theoretical study for the dynamics of the 
fusion of two heavy nuclei. The time evolution of our collective degrees of freedom 
has been studied. These trajectories are obtained by solving the equations of motion 
numerically with the fourth-order Runge-Kutta method. The time evolution in the 
vicinity of the touching spheres is taken to correspond to 5  = 0, N  = 0.25 (due to 
numerical difficulties) and D is equal to the initial asymmetry of the given system.
The initial injection dimensionless velocity denoted by ( ds(j=0) J js given by the
expression

tuc 8(1 +  3D)2K.E.l
R M( 1 - D )3 J ’ (15)

where c is the velocity of light. Ä,, 7 and pu are the radius of the fragment, the 
surface tension and the nucleon flux density, respectively. These fixed parameters 
which appeared in the present equations are taken to have the values [13]
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reaction time X

Fig. 12. T he calculated trajectories of the radial distance S  and  the neck size N  o f the system  
2 1 0  Yjo as a function of the dimensionless tim e r  for zero asym m etry and different values of the

in itia l kinetic energy

Ri =1.224992A,1/3fm,
7 =0.951569(1 -  1.7826/2) MeV fm"2, 
I  =(N -  Z)/A

and
»F = 0.7974 X 10-  22 MeV • s • fm"4.QV

For all the systems considered presently, the target and projectile have a charge to 
mass ratio given by

Zi_
At

1
2 1 - 0.4j4í

2 0 0  + A , J ’ (16)
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Fig. 13. T he calculated trajectories of the radial distance S  and the neck size N  o f the system  
255-XlOS as a function  of the dimensionless tim e r  for 16 MeV in itia l kinetic energy and  for different

values o f the asymmetry

where i =  1,2 refers to either the target or the projectile. This ratio is satisfied 
for systems which lie along the valley of beta stability. The charge to mass ratio 
formula gives Z,- when A, is known. The sum of the two atomic numbers gives 
the total number Z which is then divided between the two fragments following the 
ratio of their masses according to Z,- =  Ai(Z/A).  We should like to point out that 
the different cases described in the present work are discussed according to the 
value of their fissibility parameters. A light system is considered with the case of 
the asymmetric collision of A\  =  70 and Ai  =  36, for which the mass asymmetry 
D  ~  0.012, and fissibility parameter of the total compound system \  — 0.43. The 
time evolutions of the present degrees of freedom resulting from applying the present 
dynamical model on this light system are given in Fig. 2. The system with zero 
initial injection kinetic above the Coulomb barrier goes towards a very compact 
shape without hesitation in a time of about t ~  15 x 10“ 22 s. The system also passes
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the conditional saddle points with the parameter values N,.p ~  0.31 and S,.p ~  0.25 
which are specified by the solid points drawn on the axes. The trajectory shown is 
that which corresponds to the compound system formation reaction.

For heavier asymmetric systems with A\ =  120 and Ai  =  73 with mass 
asymmetry parameter D ~  Q-007 and \  — 0.73, the situation is different and 
complex as shown in Figs 3-5. In Figs. 3-5, the time evolutions of the three 
degrees of freedom corresponding to different kinetic energies 0.6 and 10 MeV, are 
shown. In the case of zero injection kinetic energy, the neck grows rapidly, while the 
radial distance increases rapidly due to the Coulomb repulsion. The system is then 
stretched till the neck collapses and the reaction time becomes about 21 x 10-22 s. 
Since the asymmetry in this case shows no much change, the system cannot pass 
over the conditional saddle points which are (0.55 — 0.06) and we also notice that 
the expected energy loss due to the deformation of the two separated fragments, 
and so the trajectory is classified as a deep-inelastic scattering reaction. For the 
case of initial injection kinetic energy with the value of 6 MeV, the system reaches 
its saddle point configuration with no kinetic energy remained. The system stays at 
this configuration until the continuous asymmetry decreasing, due to the mass drift, 
reaches a sufficient value that predominates the Coulomb repulsion and overcomes 
the nuclear attraction so that the system then starts to re-separate again.

In this case the reaction time is longer than that for the case of zero MeV and 
is about 56 x 10-22 s. Therefore, the results of this case with relatively long time 
of reaction together with the considerable amount of decrease in the asymmetry, 
about 0.004, lead us to classify this trajectory as a quasifission reaction. The third 
case in Figs 3-5 is the calculations of evolutions of our degrees of freedom for an 
injection kinetic energy of about 10 MeV. The kinetic energy in this case is sufficient 
to take the system over its saddle point configuration and the system automatically 
proceeds towards the compound configuration. The reaction time for this case is 
infinity which in practice would be equal to the compound nucleus life time. This 
case corresponds clearly to the compound system formation reaction.

The time evolution of our degrees of freedom has been calculated for a system 
with Ai = 200 and Ai  = 55, with a mass asymmetry parameter D ~  0.045, 
and fissibility parameter x — 0.90. The results of calculations for this system are 
shown in Figs 6-8 which are the same trajectories as obtained in Figs 3-5, but with 
higher injection kinetic energies than those in Figs 3-5, to compensate the increasing 
Coulomb repulsion. Increasing the fissibility parameter till reaching the value x — 1, 
which corresponds to super heavy systems, a higher asymmetric configuration with 
A\ = 238 and Ai  = 48 , for which the mass asymmetry parameter D ~  0.068 and 
X — 0.98 is considered. The time evolutions of the degrees of freedom are calculated 
for this system for different kinetic energies of 0.8 and 16 MeV. The results of the 
calculations for this super heavy system are shown in Figs 9-11. It is noticed that 
for super heavy systems with higher asymmetries, the different types of trajectories 
are obtained with energies nearly equal to those used for heavy systems with smaller 
asymmetries.

Now let us to consider the symmetric collision case. A symmetric collision 
system for which the value of the fissibility parameter is x — 0.79 is studied. Cal-
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culations of the evolutions of our degrees of freedom for this symmetric system are 
shown in Fig. 12. These results show that all types of trajectories are obtained, but 
with energies nearly equal to those used in Figs 6- 8. This result leads us to the fact 
that the asymmetry effects are to decrease the required energy for proceeding the 
system towards spherical compound configurations. The effects of the asymmetry 
on a system with fissibility parameter x  — 0.90 are shown in Fig. 13, where the 
time evolutions are calculated for different values of the asymmetries of 0, 0.045 
and 0.07. The injection kinetic energy given to the system for all different cases 
considered in Fig. 13 is the same and equal to 16 MeV. From Fig. 13 we see that 
the same three trajectories are obtained by changing the asymmetry and fixing the 
kinetic energy.

4. Discussion and conclusions

In the present work, we introduced a study for the asymmetric and symmetric 
cases of the dynamics of two heavy colliding nuclei with energies above the Coulomb 
barrier. The time evolutions of the dynamical variables considered in the present 
work are obtained by solving the dynamical equations of motion numerically. The 
effect of the initial radial kinetic energy on the fusion process has been investigated 
for the dynamics of different systems defined by their fissibility parameters. The 
compound system formation reaction is found to occur easily for light systems even 
with initial kinetic energy just equal to the Coulomb barrier. The compound system 
reaction mechanism appears in the case of light systems because of the predominance 
of the attractive surface tension with respect to the Coulomb repulsion. For the 
cases of medium and heavy systems, three types of trajectories are obtained. The 
obtained trajectories of the medium and heavy systems are found to depend on the 
energy given to the system. The different three types of trajectories are being deep- 
inelastic, quasi-fission or compound system formation reactions. The super heavy 
systems may be formed but with very large injection kinetic energies and large 
asymmetries. The absence of the asymmetry in the symmetric collision requires us 
to increase the initial kinetic energy to obtain the compound system formation.

Therefore, we can conclude from the present calculations that the effect of 
the asymmetry plays the same role as the injection kinetic energy on the dynamics 
of the fusion process.
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GAUGED Q BALLS ADMITTING A U (l) x 17(1) 
GAUGE SYMMETRY

C .  W o l f

Department of Physics, North Adams College 
North Adams, MA (01247)  USA

(Received in  revised form 28 May 1991)

A com posite system  of two complex scalar fields coupled to different Abelian gauge 
fields is stud ied  in curved space. The mass and th e  conserved global charge of the configura
tion are expressed as functions o f the scalar fields and gauge fields through an approximate 
solution.

1. Introduction

The term Q ball has emerged from the recognition on the part of Coleman 
that a theory admitting a global symmetry possesses a conserved charge or a set 
of conserved charges that may serve to stabilize the configuration of fields against 
collapse [1]. The critical criteria of the Q ball is that the mass of the configuration 
is less than that of the corresponding free pions of the theory. The fulfillment of 
this criteria would prevent the decay of the field configuration to pions. However, 
even if this first criteria is not met, a configuration of fields admitting a global 
symmetry with a stationary solution may still survive providing it is stable to other 
perturbations such as gravitational perturbations or any slight temporal variations 
of the field variables. The configuration in this latter sense sense might be stable 
and still be unstable over long times to decay into pions of the linearized theory. In 
fact, Cohen et al [2] have studied L balls which are configurations of scalar field and 
spinor fields inspired by the Gelmini-Roncadelli model of neutrino mass generation 
[3], these L balls admitting a conserved lepton number are stable except for slow 
decay into fermions at the surface. In the present note, we are interested in the 
general stationary solution of two charged scalar fields, admitting a 17(1) x 17(1) 
global symmetry also admitting a gauge symmetry and thus coupled to two gauge 
fields and do not require the solution to fulfil the first requirement of stability. 
We assume that the classical stationary solution is stable with respect to small 
field variations within a certain range of parameter space and calculate the mass 
and the conserved global charge of the composite system. In the conclusion, we will 
discuss two alternative methods to test for stability to small perturbations.' Actually 
gauged Q balls were first studied by Lee et al [4] who showed that a charged scalar 
field coupled to a gauge field admits a Q ball solution provided the gauge charge 
does not grow too large. This situation is somewhat similar to a large Z  nucleus 
which becomes unstable due to Coulomb repulsion. Our development somewhat
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resembles that of [4], only we introduce two scalar fields coupled to separate gauge 
fields with two different coupling constants. Since global symmetries could very 
well be an accidental result of an unbroken G.U.T. gauge symmetry at a high 
scale, we might expect our analysis to apply to any theory with two surviving 
17(1) factors after the G.U.T. group is broken [5]. We also allow for nonstandard 
couplings between the scalar fields that may represent effective interactions after 
the fermions are integrated out of the theory. Our analysis is also in curved space 
and in a separate note, we have studied an 50(2) Q ball in general relativity with 
the consequence that the Q ball was stable provided it did not grow too large [6]. 
From the point of view of both particle physics and cosmology the following analysis 
is intended to simulate gauge Higgs configurations of a non-topological nature that 
might somewhat resemble the soliton stars studied by Friedberg et al [7] wherein the 
spectrum of allowed masses has a dependence on the coupling constants and gauge 
charges that may well serve to classify them in an astrophysical setting with certain 
regularities revealing their fundamental gauge structure. If such a classification ever 
occurred it would also ascertain the presence of extra 17(1) factors in particle theory 
long before accelerators could ascertain their presence.

2. Gauged Q balls with two Abelian gauge symmetries

We begin our analysis by writing the Lagrangian of gravity and two charged 
scalar fields coupled to separate gauge fields with coupling constants given by

9 i
91-  
hc 9 2

9 2 -  
hc ’

as

L = i J ^ g r V ^ + L m ’
where

L m  =  | г > „ Ф 1 (Г > " Ф 1 )#  +  ^ Ф 2 ( ^ Ф 2 ) #  -  ^  (  Ф 1Ф 1 #  -

-  ~  (ф2ф2#  -  + «о^ Y ^ F lfiVF r  + ^ ф 2ф2#^2̂ Г  j
+  (2.1)

Here, A i f t ,  A2/1 are the two gauge fields and F \ p V, F2fl„ the field tensors. Also, Ф х Ф 2 
are two scalar fields with

D p  Ф 1  —( d p  +  i g i A i p ) $ i t

D p<&i  = ( d p  +  i g 2 Ä 2 p )  Ф 2 ,
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representing the covariant derivatives under each 17(1) factor. The two poten
tials are specified by parameters A\, Ai and A\, A2 and the non-standard couplings 
specified by ao, ßo- Note the distinction between A \ ,A i ,A \ ,A i  which refer to the 
constants in the two Higgs-like potentials for the scalar fields and AyM, Ai^  which 
refer to the vector gauge fields of the first and second 17(1) factors. As mentioned in 
the introduction, the non-standard coupling may arise as a result of integrating out 
fermions generating an effective coupling or perhaps as a result of compactification 
from a higher dimensional Kaluza Klein theory [8]. For a solution, we have the 
following form for the charged scalar fields

*1 f 1 (**) „»tolit
V 2

Ф2 =
V2

Here we have imposed the condition of stationarity and spherical symmetry through 
/ i  (r) and /2 (r). Actually we will demonstrate from the field equation for Ф1, Ф2 that 
the above form for the solutions are actually solutions to the field equations. The 
functions /i(r), / 2(r) are the stationary parts and the time dependant is specified by 
e»wi<, giuia* which will be shown to cancel out of the field equations after substitution. 
The first scalar field carries one unit of gauge charge under the first 17(1) symmetry 
and the second scalar field carries one unit of gauge charge under the second 17(1) 
symmetry. Under the global 17(1) x 17(1) symmetry, the fields Ф1 Ф2 transform as

0Ф1 = ('аФх, 6Ф1Ф = — iaФlф (2-2)

under the first global 17(1) and

6Ф2 = !аФ2, £Ф2#  = —*аФ2# , (2-3)

under the second global 17(1). The global symmetries will generate the global Q 
charges. For the gauge fields we have

M i  =  0, Au  = Xi(r), Ex = FUi = - x i ( r ).
A2i = M t = Хг(г), Ei = Filt = - x 2(r), (2.4)

*• =  1,2,3,

where the prime means differentiation with respect to r  with the only surviving 
component being the fourth components for the scalar potentials. For the energy 
momentum tensor corresponding to the scalar-gauge field part of the Lagrangian in 
Eq. (2.1) we have

m _  2 dLM
^  ~  y/= gdg^
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=Х>„Ф1(Д,Ф1)# + +  (1?„Ф2)(Д,Ф2)#
( ^ * 2)#Р«Ф а) -  ^  ( A ^ i ( F ^ i ) #  + £>аФ2(£>а Ф2)#)

+ "» [ т К ф1ф1#- £ ) ’ + т ( ф!*’# - | Г

-  a° * 1* i * (FxaPF?ß)glll, + ao®i®i#(Fi„eF ít)

-  - — ^ 2* {F2aßF f ) g ^  + ß0* 2* 2# (F 2ttaF?v)

+ ^ „ ( F i ^ F “* +  ^ < , „ ( F 2̂ F 2̂ )

^  IP ipür ^  lp  ipcr4w ^ * 2»a*2ll-
For the boundary conditions on the scalar and gauge fields, we have

Ф1Ф1#==1 ?

giving f i [2M
V a 2

at r  =  0,

Ф2Ф2# = ф ,
>12

• • r / 2Ajgiving / 2 =W - = -  at r =  0.

(2.5)

(2.6)

At r = it (the radius of the configuration) we choose the false vacuum, giving
Ф1Ф1#  = 0 giving / i( r )  = 0 at r  =  R  and r > R, (2.7)
Ф2Ф2#  = 0 giving f 2(r) = 0 at r = R  and r > R.

For the gauge potentials we choose for the boundary condition

Xi(R) = ^ ,  Xi(R) = - ^ 2  at r = Ä,

X2(R) = | ,  x'2(R) = - ^ 2- (2.8)

Here cj, e2 are the gauge charges or electric-like charges of the two separate t/(l)  
groups and the potentials and fields are matched to the exterior potentials and fields 
which are Coulomb-like. If we vary the Lagrangian Eq. (2.1) with respect to the 
fields Ф1, ф f , Ф2, Ф2#, Ax ft, A2f, we obtain

V - 9  gßa + g\AiaAißgßa<i>¥

_ Î L i l  ( м * _  ± . \  +  ° * * Î F i „ F r '
2 V 1 -42/ 4

д*р -  igiAiß<bf g»ß] = 0,
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with i —► —i, Ф1 «-► ф f to obtain the equation for ф f. Also for Ф2

9ßa + glA2aA2ßgßa^ f

-др\у/-9(дрф* 9 ^  -  m A i ß t f  g*?)] = О,

with i —> — i, Ф2 <-► Ф2 to obtain the equation for Ф^. The field equation for A \ß 
is

+gßtiig i$ i ( d ß $ ¥  -  Í 9 í A ip^ f ) ^ g  (2.11)
-•ffi« ÍV "(ü*  Ф1 + igiAia Ф1) - / - ?  = О

and for Аъц is

тЬ(è ^ r )  -  * = *
+ /'* № « 2(0/1®? -  i92A 2p< b f ) V 4  (2 .12)
-*>2®? Р/1"(0аФ2 + »</2А2аФ2) ' / ::5 =  0.

Our next task is to calculate the formal expressions for the conserved global charges, 
by varying Eq. (2.1) with respect to Ф1, we have for the global variation of Ф*, 
®f under the first global symmetry

er &L dL dL dL л  n

ő ® i  0 ® i #  д Ф 1:М ,и  д Ф # м 1>м
(2.13)

Using the field equations for Ф1( ® i# in Eq. (2.13) gives the conserved current

d 
dx?

6Ф1 + dL

дФЬ
= 0. (2.14)

When we multiply Eq. (2.14) by drdedФ  and integrate over the volume of the Q 
matter configuration (0 to R) we have upon inserting the variation from Eq. (2.2) 
into Eq. (2.14) at the spatial boundaries the following conserved Q charge

Q1 dr d e  dФ. (2.15)
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The time derivative of Eq. (2.15) vanishes from Eq. (2.14) and the spatial compo
nents of Eq. (2.14) vanishes upon integration over r, 0 , Ф from the form of the 
variation in Eq. (2.2).

Also, for the field Ф2 and the second Í7(l) factor we have

« *  =  /  /  /  d r d e d *  < 2 1 6 >

For the metric, we choose (x4 =  ct, x' = r, x 2 = 0 , x3 = Ф) the spherical symmetric 
metric.

(ds)2 = ev(dx*)2 -  eA(dr)2 -  r 2(d0)2 -  r 2 sin2 0(</Ф)2. (2.17)

Eq. (2.15) gives, upon using the solution

Ф iu>t

and the definition of A \t in Eq. (2.4) along with the metric in Eq. (2.17)

Q1 = 4 ir J  + g i( f i )2x i)  е(Л v,2)r2dr. (2.18)

Also, for Eq. (2.16) we have

Q2 = 4Ж J0 ( ~ 7 ^ 2^  + 52(^2)2*2) e(A_l,/2)r 2dr. (2.19)

Eq. (2.18) and Eq. (2.19) can be used to solve for uq, u>2 in terms of Q1, Q2 and 
the coupling constants g\ , g2. Our next task is to obtain the equations to solve for 
/ i >  / 2 , X i>  X 2 - Firstly, if the form of the solution for the scalar field is

A ( r ) .iwit tw at
y/2  ’ V 2 ’

( 2 .20)

we find that substitution of the solutions in Eq. (2.9), Eq. (2.10), Eq. (2.11), 
Eq. (2.12) along with the expressions for A \ß and А2ц given by Eq. (2.4) allows 
for the cancellation of the time dependant part since in Eq. (2.9) and Eq. (2.10) 
the scalar field appears in a linear fashion and in terms , (Ф2Ф^ )Ф ^, in
Eq. (2.11) and Eq. (2.12) Фх, Ф2 appear as ФхФ^ ФгФ^, Ф ^ Ф ^  Ф2дрФ* , etc. 
which leads to cancellation of the temporal part. We will find shortly that uii, u2 
are calculated from the conserved global charges. Substitution of Eq. (2.20) along 
with Eq. (2.4) for

Ai4 = x i. = X2
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into Eq. (2.9), Eq. (2.10), Eq. (2.11) and Eq. (2.12) gives where we use the approx
imation ex ~  e" ~  1 for the interior of the Q ball configuration (0 < r < R) to 
calculate approximate values for the scalar field and gauge fields

«0

^  +  Ä I  A  + 252/ 2X2^2

.2  > b / l  / / 1 Л Л Ъ
2 V 2 Г

+ | : ( r2/i,r) =  0, (2.21)

,2 3 2 / 2 / / | А Л
l r 22 V 2 a 7J J

=  0, (2.22)

«o/i2(xi,r)r2^ =  0, (2.23)

A )/2(X2,r)r2\ -  n . to to 0b

r = ( A l / ?  +  £ í á í l ) - | (  r ! f e d _  

r ’ - 1  ( % й  _  M t e d d )  =  0.

To solve Eq. (2.21), Eq. (2.22), Eq. (2.23) and Eq. (2.24) approximately, we first 
write down the power series solution up to the third power

/1 = a0 + a ir  4- a2r2 + a3r3,
/2 =do 4- äxr + ä2r2 +  ä3r3,
Xi =í>o + í>ir + 62r2 +  Ь3г3, (2.25)
Х2 =Ьо +  Sir +  62г2 +  63г3,

Inserting Eq. (2.25) into Eq. (2.21), Eq. (2.22), Eq. (2.23) and Eq. (2.24) and 
insisting that the coefficients of r up to and including the third power in r vanish 
gives

ai = 0, a3 = 0, a0 = to be determined, 
bi = 0, 63 = 0, 60 =  to be determined,

»laobo ( -Aiao A 7a3
c + 2 4~

Also

1
a2 = - - 2  7 2c2 «о + g lb la o  4-

L _  fflboOo -  (a 0U’lf f l ) /C
—

~ Ш  +  3аоа

(2.26)

ai = 0, a3 = 0, ao = to be determined, 
61 = 0, 63 = 0, 6q = to be determined,

a2 = - - wj_ , „2д2_ _ 2</2w2a0f»o
.2—ö-ao + p260a 0 + c* -f Aiao A2a0 (2.27)

T _ g2fc0a0 -  (a0^ 2 9 2 )/c 
2 - ( è )  +  3â2/? '
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We now use the boundary condition in Eq. (2.6), Eq. (2.7) and Eq. (2.8) and add 
on the quartic term in each expansion of Eq. (2.25) and demand the solution obey 
the boundary conditions in Eq. (2.6), Eq. (2.7) and Eq. (2.8);

a0

ao
14xx [ïâ

" V  Ä 2 ’ V  A, +  a2R2 + 54Д4 =  0.
Ai

(2.28)

This gives

(2.29)

a4 = (2.30)

where ai, ai are expressible in terms of ao, a о from Eq. (2.26) and Eq. (2.27). Also, 
for the potential r = R  we have from Eq. (2.8)

bo + b2R2 +  Ь4Л4 ——,К
2b2R + Ab4R3 = -  (2.31)

Also,

bo +  b2R2 + b4i l4 = —,

2b2R + Û 4R3 = - ^ .  (2.32)

Using b2 from Eq. (2.26), and eliminating b4 from the boundary conditions in 
Eq. (2.31), and solving for b2 and then equating the two expressions for b2 gives the 
following expressions for bo

bo
5<| , (°o ^ ig i) /c
2Я 3 ^  - ( 3 / 2 ) i + 3 o J a o

2  _ (  g?«n A '
TP \3alc0-(3/2)* )

(2.33)

Finally, solving Eq. (2.31) for 64 gives

—e i /R 2 -  2b2R
h  = ------- Ш -------

(2.34)
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Similarly for bo, 64 we have

bo
(ajjwigi/c

-(3 /2 )T + 3 äg ffo

3^о-(3/2)т;

We summarize by writing

—e^/R2 — 2b3R  
’4 = -------4Д5------- (2.35)

/23Г  noq =  y  , ai =  a3 = U,

a2 =  - g u j  2 2 2flfiO)ia0 bo . ^4iao  - ĵ-ao +  gib0a0 + ----- -------- 1----—

h  =b3 =  0,
( _  _  glbpal -  (aga;igi)/c 
2 -(3/2)тг + 3aga

—e \ /R 2 -  262Д 
>4=------- 4Д5------- •

^ 2O0 
4 ’

(2.36)

With similar expressions for ap, a-y, a±,bo,bi, i>4 with ffi <-> g2, Ai «-*• Ai, Ay. *-+ A 2, 
ш\ *-* u>2, oq *-¥ ßp, also ai = a3 — 0, 61 = 63 = 0.

Our next task is to calculate the exterior metric and match it to the interior 
metric in order to calculate the mass of the Q configuration. From Eq. (2.5) we 
have for r  > R

Tl = T*=  J-(J51)V < A+*'> + L {E y )2e ~ ^  + A  +  (2.37)
Ö7T 07Г 4 Л .2  4 -4 .2

For the Einstein equations upon varying Eq. (2.1) with respect to g^v gives

Rpv ~zRgnv = 7 Тц V (2.38)i  c

Using the spherically symmetric metric in Eq. (2.17) and the Einstein equations in 
Eq. (2.38) along with the form of the energy momentum tensor in Eq. (2.37) we 
have (A +  1/) =  0 for r  > R. The (*) component of the Einstein equation gives

i . ( r e - A) = l - ^ r 27?. (2.39)
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Now the field equation for F\nVF2t,v for r > R  are

upon varying Eq. (2.1) with respect to A \ß, A2ß; this gives, upon using the condition 
Л +  V =  0

Fi 14 = Fi(r) =  F2li = E2(r) = for г > R. (2.40)

Here the scalar field does not contribute to the equations for F i^ ,  F2fil/ for r > R 
since |ФхI = 0, |Ф2| =  0 for г > R. Inserting Eq. (2.40) into Eq. (2.37) and then 
inserting this value for T f  into the Einstein equation in Eq. (2.39) we have upon 
integration

2GM Ge\ Gel _  8ttG 2 f  Ai_ a \ \
rc2 r2c4 r2c4 Зс4 у \ A 2 4A2 J (2.41)

where we identified the integration constant with the mass of the Q configuration. 
We next evaluate e~x for r < R and match it to Eq. (2.41) to obtain an expression 
for the mass of the Q configuration, we first calculate T4 for r < R from Eq. (2.5) 
with the use of the solutions

Фх

7?= e w ? / i  +  a l f i x l  + g i x i / i W  +  6 A( / i , r ) 2

2c2
. - ,  \ u l f l  . 92f 2x l  . 9 2 X 2 f f a ]  e  л ( / 2 , г ) 2

+e + ~ 2 ~  + ---c---- J + ----2----
, m  (!L  _ 4Л  + â i  ( â  -

4 V 2 M l  4 1,2 A , )

+  ^ ( X . , ) î e - <'- + A > -

In Eq. (2.42) we next approximate

ev ~  ex ~  1

(2.42)

and using the expressions for f \ ,  f 2, Xi, X2 from Eq. (2.25) with the quartic term 
added and the expressions for the coefficients from Eq. (2.36) with f 2, \2  being 
found from gi -+ g2u\ -* u 2, c*o -*■ ßo we have, from Eq. (2.39)

(e~x)R = l - ^  j \ ^ d r  for r = R. (2.43)
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When Eq. (2.43) is matched to Eq. (2.41) at r =  R, we may calculate the mass 
of the gauged Q configuration. To eliminate ui, u>2 we may solve Eq. (2.18) and 
Eq. (2.19) in terms of the conserved Q charges Qi, Q2 and the coupling constants 
gi, 02 along with the solutions found in Eq. (2.36) containing the parameters a0, 
ßo, A i , A2, Ai, Ä 2- This allows for the expression of the mass of the gauged Q 
configuration in terms of the two global charges, the electric-like charges ei, t 2\ the 
coupling constants 01, 02 and the parameters ao, ßo, A\, T2, A\, A 2.

3. Conclusion

It is clear from the above development that the solution obtained is approx
imate, both through neglecting the metric in the T* componenet of the energy 
momentum tensor as well as the approximate solution obtained for / 1, / 2, Xi> X2 
up to the fourth order of r. Nonetheless, the solution should serve as a model 
upon which other more complex gauge Q configurations can be constructed. As 
mentioned in the introduction, the stability of Q configurations is a many sided 
story. The stability to decay into pions was the first type of stability that occupied 
theorists but it also depends on the validity of the quantum field theory expanded 
about the minimum of the potential. This is a subject that has never been fully 
explored since the nonlinear nature of the field theory may change the properties 
of what we think to be “free pions” . In view of this fact we view the solutions 
obtained as having meaning independent of the stability criteria based on the Q 
ball mass being less than the free pions of the theory. The other type of stability 
is that with respect to electromagnetic and gravitational perturbations, there are 
basically two ways of analyzing this stability, the first is to calculate the total ener
gy of the complex scalar field within the radius R without the presence of the EM 
field and gravity, the vacuum energy would also have to be subtracted. When this 
energy is compared to that of the energy of the configuration in the presence of elec
tromagnetism and gravity, then a criteria of stability can be found. Stability will 
occur when a plot of (E q — E e m + g ) is an increasing function of R. This models the 
criteria originally discussed by Wright for Quasar stability [9]. The second method 
is to study small time dependent perturbations to the static solutions, and examine 
regions wherein they give non-exponential growth. This method has recently been 
employed by Gleiser, to study the stability of Boson stars [10]. The two methods 
should give the same results, although a discussion of the equivalence of the two 
methods of determining the stability region has not been given, at least for bosonic 
field configurations. It is hoped that, in an astrophysical setting, the dependence of 
the mass on the Q charges may serve as a probe to look for gauged Q balls when 
the mass of a series of similar objects may show a characteristic dependence on the 
Q charge as measured through the red shift or perhaps the energy of a gamma ray 
burst when these objects collapse through gravitational instability. In closing, we 
appeal to the astrophysics community to entertain the thought of looking for these 
characteristic signatures of Q balls in the cosmos through the red shift or gamma 
ray bursts.
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THE YIELD STRESS CONTRIBUTION 
OF DIMERS AND TRIMERS IN NaCl CRYSTALS 
DOPED WITH DIVALENT CATION IMPURITIES

J . SÁRKÖZI

Department of Experimental Physics ,  Institute of Physics  
Technical University of Budapest,

1521 Budapest, Hungary
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T he relationship betw een the formation-decay processes o f the sim plest im purity  
aggregates, i.e. dimers and trimers, and the y ield  stress changes in  sodium  chloride crys
tals doped w ith divalent cation  impurities has been investigated. The amount o f chosen  
heat treatm ents, and the y ield  stress of these crystals has been determined. The m easure
m ents show that the y ield  stress depends on  b o th , the kind of aggregate and the ty p e  of a 
quaisat omis tic m odel o f th e  interaction betw een dislocations and aggregates.

Introduction

It is a well known experimental fact that the yield stress of alkali halide crys
tals is strongly influenced by divalent cation impurities (Me2+) [1,2]. The yield stress 
contribution of these impurities is related to the fact that the impurity ions form 
bound cation vacancy-cation impurity pairs called dipoles [3], and these dipoles 
strongly interact with the dislocations significantly affecting the yield stress of the 
crystals, if the impurity concentration is more than about 1 pm ole/mole [1]. The 
dipoles may be associated into dipole groups (aggregates) in heavily doped, annealed 
crystals, and these aggregates result also in hardening the crystal.

The process of aggregation of divalent impurities in these crystals is generally 
investigated by the aid of dielectric loss and thermal depolarization measurements 
[4-8]. On the basis of such measurements, it was initially suggested that the first 
step of the process is the formation of trimers, i.e. aggregates consisting of three 
dipoles. More exact measurements and analyses show, however, that first dimers,
i.e. aggregates containing two dipoles, are formed in crystals with moderate (less 
than about 500 pmole/mole) impurity concentrations [9-10]. This means that the 
aggregation process follows the scheme: dipoles —+ dimers —► trimers —> higher 
aggregates.

The achievements in studying the kinetics of aggregation make it possible to 
estimate the amount of different kinds of aggregates in the crystal in some specially 
chosen conditions. If we measure the yield stress of the crystal in the same con
ditions, we can find a relationship between the kind of aggregates and the yield 
stress.

The aim of this work is to estimate the contribution of dimers and trimers to 
the yield stress, and to give an explanation for the results by the aid of a quasiatomic 
model of the interaction between the dislocations and aggregates.
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Experimental techniques

For all of the investigations specially grown, OH-  -free NaCl(Me2+) crystals 
were used [11], in which the concentration of all unwanted divalent impurities was 
less than 0.2 pmole/mole. The concentration of intentionally introduced divalent 
impurities (Ca, Sr, Ba) varied between 1-500 pmole/mole.

In order to change the state of aggregation of the impurity, annealings at 
different temperatures and for different times were applied, and, in some cases, 
for maitaining the state achieved the samples were quenched. Then annealing and 
quenching of the samples were carried out in a furnace of small thermal inertia in 
an inert atmosphere.

In order to have a reference state of the samples, they all were first annealed 
at 600 °C for several hours.

For quenching the samples two different quenching rates were used. The 
cooling rate in “quick quenching” was 100 °C/min, while that in “slow quenching” 
was 0.1 °C/min. Special investigations show that even quick quenching does not 
cause significant stresses or plastic deformations in the samples.

The yield stress of the crystals was measured with an INSTRON testing ma
chine at room temperature and the critical resolved shear stress (CRSS) was calcu
lated in the usual way.

Experimental results

The CRSS contribution of the impurities (rc) is characterized by the difference 
of the CRSS of the doped crystals (r) and that of the extra pure ones (r0) subjected 
to the same heat treatment: rc =  r  -  r0 [2]. In Fig. 1 the CRSS contribution rc 
obtained in this way is shown as the function of the impurity concentration (C) for 
Ca, Sr and Ba impurities for three different kinds of heat treatment.

Curves 1 in Fig. 1 were measured in samples, which were first annealed at 
600 °C, then quickly quenched to 80 °C and annealed at this temperature for 30 
hours. The samples were finally cooled down to room temperature, and the yield 
stress was measured. The reason for choosing this kind of heat treatment is that, 
according to the kinetic analysis of the change in dielectric loss of the crystals [10], 
about half of the dipoles is converted into dimers at this stage of aggregation, and 
the formation of trimers is only at its initial stage. This means that in these samples 
about half of the obstacles for dislocations is in the form of dipoles and the other 
half is in the form of dimers.

Curves 2 in Fig. 1 correspond to samples annealed at 600 °C and quenched 
quickly to room temperature. Dielectric loss measurements [10] show that the 
impurities are practically in the form of single dipoles in such crystals, i.e. the 
obstacles for dislocations are mainly dipoles.

Curves 3 in Fig. 1 correspond to samples annealed at 600 °C and slowly cooled 
to room temperature. Dielectric loss measurements [10] show that the impurity is
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mainly in the form of trimers in such crystals, and, thus, the obstacles for moving 
dislocations are mainly trimers.

Fig. 1. The concentration (C) dependence of the CRSS contribution of im purities (rc) in  NaCl 
crystals w ith different divalent cation  im purities (Ba, Sr, Ca) and different pretreatm ents (1, 2, 
3). 1 —  samples annealed at 80 °C for 30 hours, 2 —  sam ples quickly quenched from 600 °C ,

3 — sam ples slowly cooled from  600 0 C
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Fig. 1 shows that at small impurity concentrations (C < 50 ppm) curves 1 
and 3 are identical with curves 2, i.e. the heat treatment does not affect the CRSS. 
The explanation of this fact is that practically no aggregation of dipoles takes place 
at such small impurity concentrations.

It can be seen from Fig. 1 that the mixture of dipoles and dimers in the crystal 
(curves 1) results in the highest values of yield stress, i.e. the hardening effect of 
dimers is the greatest among dipoles, dimers and trimers. The smallest hardening 
effect corresponds to trimers for Ca and Sr, and dipoles for Ba impurity.

Curves 2 in Fig. 1 show that, in agreement with earlier results [12], the yield 
stress contribution of dipoles is proportional to the impurity concentration: tj = 
K jC . As the theoretical estimation of coefficient K<i based on a semiatomistic model 
has been discussed earlier [12], we are not going to deal with the contribution of 
dipoles r<j here, but we rather focus on the yield stress contribution of the other 
types of obstacle.

Model for the yield stress contribution of dimers and trimers

Starting from the results of Fleischer’s model [13] for the hardening effect of 
aggregates we assume that the yield stress contribution of dimers (td ) and trimers 
(vr) is proportional to the square-root of the impurity concentration (C), i.e. we can 
write tjj — К ц С 1!2 for dimers, and тр =  Kt C1̂  for trimers. The coefficients Kd 
and Kt  are essentially fitting parameters in Fleischer’s theory, which, in principle, 
could be determined by calculation of the yield stress contribution of aggregates 
by purely atomistic methods. But this kind of calculation is hopelessly difficult, 
therefore, we suggest a simpler way, which is based on finding coefficients K d and 
Kt  by a quasiatomistic calculation.

The model is based on a generalization of Gilman’s idea [14] of calculation 
of the yield stress contribution of simple dipoles. Gilman assumes that this yield 
stress contribution originates from cutting the dipoles by sliding dislocations and it 
can be related directly to the energy change of the dipole during this process.

Applying this idea to the dislocation-aggregate interaction we follow the 
changes in the structure of the aggregate caused by the dislocation shearing it. 
If we assume that the CRSS contribution is equal to the cohesive shear stress of the 
aggregate, then this contribution can be found directly from the energy change of 
the aggregate caused by the rearrangement of its constituent parts.

The force exerted by the external shear stress t c \  on unit length of the dis
location meeting an aggregate is rel6, while on the whole segment taking part in 
shearing the aggregate the force is rclfc(ao/2). Here ao =  0.563 nm is the lattice 
parameter of the NaCl lattice, and b = ao/\/2 is the length of the Burgers vector. 
Thus the work done is W  = rei&2a0/2 = rclag/4. According to our assumption this 
work has to be equal to the energy change Д{7 taking place during the rearrange
ment of the aggregate, i.e. Д17 =  rcia%/4.. Using this relationship re\ necessary 
for shearing the aggregate can be expressed in terms of the energy change of the
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Table I
Defect energies according to  [15]. U j is the energy of a dipole in  
ground (n n ) state, Ui  is the energy of an excited  (nnn) dipole, 
Ud  is the energy of a dim er, and Ux  is the energy of a trimer

System u d
(eV)

U'd
(eV)

UD
(eV)

UT
(eV)

NaCl:Caî+ -6 .8 1 0 -6 .7 3 0 -1 3 .8 2 3 -2 1 .0 8 2
NaCl:Sr2+ -5 .4 6 7 -5 .3 0 8 -1 1 .1 6 2 -1 7 .1 2 8
NaCl:Baî+ -4 .3 6 5 -4 .1 4 5 -8 .1 9 3 -1 3 .8 7 1

aggregate as

T el
4 AU

( 1 )

In order to find the total CRSS contribution of dimers and trimers we have 
to add the contributions of all the possible changes in the configuration of the 
aggregate caused by a sliding dislocation, taking into account the statistical weight 
of each change.

For the calculation outlined above the knowledge of the energies of the aggre
gates in their possible configurations is required. These defect energies have been 
determined by atomistic calculations [15], and the results for the impurities used 
here are given in Table I.

The analysis of the possible relative configurations of a dimer or trimer and a 
dislocation shearing it shows that the changes in the structure of these aggregates 
can be reduced to a few ground cases, which are shown in Fig. 2. Here the positions 
of the impurities and vacancies forming the dimer or trimer are represented by full 
and open circles, respectively. The initial positions of the vacancies and impurities 
are indicated by capital letters {A, B, C, etc.), while their final positions (if they 
are different from the initial ones) by primed capital letters (A ' , B ' , C , etc.). The 
slip plane and slip direction of the dislocation and the displacement of vacancies 
and impurities are shown by thin dotted lines.

The possible changes in the structure of a dimer can be reduced to two 
ground cases (1, 2) shown in Fig. 2a. The corresponding energy changes can be 
approximated as follows. In case 1 after passing the dislocation one dipole of the 
dimer becomes excited into nnn-state, i.e. the energy change is approximately 
AUdi ~  U'd — Ud- In case 2 the dimer is, in first approximation, split into two nn- 
dipoles, i.e. AUd2 ~  2Ud — Ud - The analysis of the possible cases shows that the 
statistical weights of cases 1 and 2 are 6/8 and 2/8 respectively. Thus the average 
energy change can be written as

AU0 ~ (6A U m + 2A U D2)/8. (2)

The energy change AUt  at the rearrangement of a trimer can be determined 
in a similar way. Here all the cases can be reduced to two ground cases (Fig. 2b).
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The energy change in case 1 is approximately AUt i  ~  U'D — Ud, and in case 2 
AU? 2 ~  0. The weight of the two cases is the same, thus, the average change of 
energy can be given as

AUT ~  AUt i /I .  (3)

F

Fig. 2. T he ground cases o f shearing a dim er or trimer by a dislocation. Pull circles denote 
im purity ions, open circles represent cation  vacancies. T he in itia l position of the aggregate is 
ind icated  by capital letters, its fin ail position  is denoted by prim ed capital letters. T he slip plane 
and slip  direction of the dislocation and the displacement of vacancies and im purities are shown 
by th in  dotted  lines, a  —  the two ground cases for dimer, b —  the two ground cases for trimer

The assumption that aggregates can be split into independent dipoles by 
dislocations is supported by dielectric loss measurements carried out in deformed 
crystals containing aggregates [16]. These measurements show that deformation 
results in increasing of the number of dipoles.

In order to get the total hindering force acting on a dislocation we have 
to take into account that the dislocation interacts with many aggregates. These 
aggregates are formed from those impurities, which are located in the slip plane of 
the dislocation, and also in the next two planes above and under the slip plane. If 
the concentration of the impurity ions, which are present in form of dipoles in the 
crystal is C, then the concentration of the dimers corresponding to each plane is
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С /2, thus the effective concentration of the dimers interacting with the dislocation 
is Cßeff = 5C/2. Similar consideration shows that the effective concentration of 
trimers is Cxeff — 5C/3, where C is the concentration of impurities forming trimers.

According to Gilman’s argumentation [14], the critical shear stress rc can be 
expressed as

Tc

After substituting the effective concentrations obtained above, and taking rci from 
Eq. (1) we get for dimers

td = AAUd
(4)

The expression for trimers can be obtained similarly

(5)

In (4) and (5) C is the concentration of impurities forming dimers and trimers, 
respectively, AUd and AUt can be calculated by Eqs (2) and (3) using the energies 
given in Table I.

Discussion of the results

The comparison of the calculated and measured rc — C relationships for 
Ca impurity is given in Fig. 3. The curves shown in the figure are calculated 
by using Eq. (4) and (5) for three different experimental situations discussed in 
the experimental part. On the basis of the experimental results it is assumed 
in the calculations that the concentration of the aggregates is zero for impurity 
concentrations less than 50 ppm in all the cases investigated.

Curve 1 corresponds to the samples annealed at 600 °C, quickly quenched 
to 80 °C, and annealed at this temperature for 30 hours. As has been discussed 
above, half of the impurity atoms are in dipoles and the other half in dimers in these 
samples, therefore, the CRSS contribution Ti can be calculated by the formulas

Ti =Td = KdC,  if C  < 50 ppm,
7T =Td = KdC/2 + Kd \ / C /2, if C > 50 ppm.

The experimental results corresponding to this state of aggregation are indicated 
by the symbol “x” .
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Fig. 3. The calculated  (solid lines) and  measured (sym bols “ x ” , and “Д ” ) r c —  C  relationships 
for differently pretreated  NaCl crystals doped with Ca. Curve 1 and sym bol “x" correspond to  
sam ples annealed a t 80 °C for 30 hours, curve 2 and sym bol represent sam ples quickly quenched

from 600 °C , an d  curve 3 and sym bol “Д ” denote sam ples slowly coo led  from 600 °C

Curve 2 in Fig. 3 corresponds to samples annealed at 600 °C and quickly 
quenched to room temperature. In these samples the impurity atoms are in form 
of dipoles, therefore the CRSS contribution тг is calculated by the expression

T2 = U  = K dC.

The corresponding experimental results are represented by full circles in the figure.
Finally, curve 3 in Fig. 3 shows the calculated results for samples annealed at 

600 °C, and slowly cooled to room temperature. As has been discussed, the impurity 
is mainly in the form of trimers in these samples for concentrations C > 50 ppm, 
thus the CRSS contribution T3 can be calculated as

T3 = r d =  KdC,

тз =TT — K t 'Jc ,
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The measured values are denoted by triangles in this case.
The change of CRSS with impurity concentration cannot be followed by cal

culation at about 50 ppm, because we do not know the relationship between the 
impurity concentration and the concentration of the aggregates in this range of 
concentration. The uncertainty caused by this fact is expressed by applying dotted 
lines for these parts of the curves.

Apart from the problem mentioned above, the theoretical curves fit well the 
measured points for all the three cases, as can be seen from Fig. 3. Similar agreement 
of experimental and theoretical results is obtained for Sr and Ba impurities.

Fig. 4. The measured dependence of the CRSS contribution (rc) o f different aggregates on  the ionic 
radius (r ) of the im purity ion. 1 —  CRSS is determ ined m ainly by dim ers, 2 —  CRSS contribution  
of dipoles, 3 —  CRSS contribution of trimere. The impurity concentration is 150 pm ole/m ole  in

each case

It is interesting to compare the CRSS contributions caused by different aggre
gates of different impurities. In Fig. 4 the CRSS contributions of different aggregates 
(tc) at a fixed impurity concentration (C = 150 /tmole/mole) are plotted against the 
ionic radius (r) of the impurity ion. Curves 1, 2 and 3 show the measured values of 
the CRSS contribution determined mainly by dimers, dipoles and trimers, respec
tively. The monotonous increase of the CRSS contribution of dimers and trimers
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with the ionic radius of the impurity ion is the consequence of the similar behaviour 
of energy changes AUd and AUt , which determine the CRSS contribution. The 
maximum in curve 2 (dipoles) has been discussed elsewhere [12]. It is related to 
the fact that, among the impurities considered here, the interaction between an 
impurity-vacancy dipole and a dislocation is the strongest for dipoles containing Sr 
impurity.

Summary

The CRSS contribution of different aggregations of divalent cation impurities 
(Ca, Sr and Ba) in NaCl crystals was investigated. The concentration of the aggre
gates (dipoles, dimers and trimers) was varied by specially chosen heat treatments, 
which made it possible to estimate the relationship between the known total impu
rity concentration and the concentration of the aggregates. The CRSS of samples 
with different types of aggregates was measured as the function of the impurity 
concentration.

The experiments show that the CRSS depends on both the kind of the aggre
gate and the type of the impurity. The hardening effect of dimers is the greatest 
among dipoles, dimers and trimers for all the three impurities investigated, and the 
smallest hardening effect corresponds to trimers for Ca and Sr, and to the dipole 
for Ba impurity.

For the explanation of the experimental results a simple model is used, which 
is based on the assumption that the CRSS contribution originates from shearing 
the aggregates by sliding dislocations, and it can be related directly to the energy 
change of the aggregate during this process. Another basic approximation is that 
the smallest unit originating from the shearing process is a dipole (because of its 
relatively high binding energy), and that the dipoles obtained in this way have 
negligible interactions with each other or with the remaining part of the aggregate.

A good agreement between the calculated and measured data is found, which 
supports the validity of our assumptions, and shows that this simple model is suit
able for the explanation of the CRSS contribution of the dimers and trimers in 
simple ionic crystals.
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BOOK REVIEWS

Interaction o f  A tom s and M olecu les with Solid Surfaces 
E dited by V . Bortolani, N. H. March and M. P. Tosi, P lenum  Press, New York and London, 1990

Thre is  a  considerable interest, both  fundam ental and technological, in  surface phenom 
ena. The description of heterogeneous catalysis and  other surface reactions requires a  detailed  
understanding of atom -surface and m olecule-surface interactions.

Accrding to the Preface the aim  of this b ook  is  to give fairly broad coverage of atom s and 
molecules interacting with solid  surfaces at a leve l suitable for graduate students and research 
workers in  condensed m atter physics, chemical physics, and material science. It is in tended  for 
experim ental workers, too, interested in  basic theory and concepts. T his book is originated in  a 
Spring College held  at the International Centre for Theoretical Physics, Miramare, Trieste.

The Volume contains 19 Chapters, each elaborated by well-known authors.
In Chapter 1 N. H. March investigates th e  changes induced in  a  chemical bon d  w hen it 

is brought up  from infinite separation to a finite distance from a solid  surface (Physisorption, 
Chemisorption, Molecular or D issociative Adsorption).

T. B . Grimley in Chapter 2 deals with gas-surface interactions. Two aspects o f these 
interactions are equally discussed: classical and sta tistica l thermodynamics and quantum  theory.

In Chapter 3 W. Kohn treats the theory o f atom -surface collisions. He starts w ith  the rigid 
target m odel and reaches a theory where the dynam ics of the target a to m  m ust be included.

In Chapter 4 F. Garcia-Moliner deals w ith the basic vibrational properties of surfaces.
Chapter 5 contains the treatm ent of the electronic structure o f m eta l surfaces.
In Chapter 6 the basic structural and electronic properties o f semiconductor surfaces are 

discussed.
Chapter 7 is a short review of the low energy electron diffraction.
Chapter 8 and 9 treat adsorption and chemisorption.
Chapter 10 deals with the surface vibrational spectroscopy.
Since 1982 the scanning tunneling microscopy cannot be ignored. Chapter 11 gives a  short 

review of th is rapidly developing m ethod.
In Chapter 12 the surface-defects are discussed.
The rem aining part of the book  deals w ith fundam ental surface processes (m olecular scat

tering, photoem ission, surface diffusion, heterogeneous catalysis, and grow th processes).
The b ook  gives an excellent up-to-date review  of present theoretical and experim ental 

knowledge connected with the basic surface phenom ena. Therefore it  can be of h igh value to 
research workers interested in th is held.

E . K a p u y

ANTAL MÜLLER: In teraction  and D eterm ination  
Publishing House of the Hungarian Academy o f Sciences (Akadémiai Kiadó) Budapest, 1991

This book by Antal Müller, expert of philosophical problems in  physics, is a work o n  natural 
philosophy. Its ideology relies on  physics, at the sam e tim e, its applicability to physics is also the 
criterion of the correctness of its  conception.

In the problem  of determ inism  raised by m o d em  physics, physical interpretation can  be 
hardly separated from philosophical interpretation, a recognition decisive for the structure of
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th is book. Since the problem of determ inism  is closely related to the fundam ental problems of  
philosophy, the A uthor’s attitude to them  is first expanded b o th  ontologically and gnoseologically; 
since, however, a  logical analysis cannot replace the analysis of reality, an  analysis is given of  
relevant fundam ental achievements o f  20th-century physics which leads to  a  consequent theory of  
determ ination.

In the A uthor’s approach, overall m aterial determ ination is not identical with an unam bigu
ous predeterm ination, accordingly, the problem of determ inism  raised by the statistical feature of  
microphysics can  b e  properly interpreted.

His determ ination theory is definitely a natural philosophy; social phenomena and the  
conscious factor are left undiscussed. This work by A ntal Muller may be o f interest both  to  the  
philosopher and  the physicist. The atten tion  of readers specialising in physics is also called to  the  
book “Q uantum  Mechanics: A P hysical World Picture” (Akadémiai K iadó, Budapest, 1974) by  
the sam e Author.

G. B író
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THERMALLY AND DEFORMATION INDUCED 
FLUORESCENCE IN SODIUM IODIDE

T . R .  J o s h i , A .  K . N e h a t e , M a h m o o d  T a h e r  and L . H. H. P r a s a d

Applied Physics D epartm ent, Faculty of Technology and Engineering 
M. S. University of Baroda 

Baroda 390001, India

(Received 22 April 1991)

The present paper reports the excitation  and em ission spectra of sodium  iodide 
phosphor in three different physical conditions namely (i) as-received powder form, (ii) 
thermally treated N al powder condition and  (iii) N al tableted  condition. The fluores
cence spectra have been  recorded by m eans of Aminco-Bowman spectrophoto-fluorometer 
supplied by American Instrument Co. Inc. The exam ination of fluorescence spectra in  
different physical conditions of N al phosphor reveals the fact that fluorescence spectra are 
found significantly influenced by pretreatm ents. It is presumed that the change in  density  
of vacancy, vacancy pair and dislocation in  lattice of N al on application of pre-treatm ents 
is responsible for the observed change in fluorescence spectra o f N al in different physical 
conditions.

Introduction

The progress made in the field of luminescence of solids has been known 
for a long time. Nowadays the phenomenon of luminescence is one of the impor
tant branches of solid state physics in the present scientific world. Luminescence 
materials are used in a variety of applications like medicine, agriculture, radiation 
applications, archaeological and geological dating, etc. The luminescence from alka- 
lihalides has been found very interesting and useful in different fields. Luminescence 
of alkalihalides, particularly iodides [1-3] has been studied extensively. However, 
the survey of literature indicates that there is no systematic study of sodium iodide 
(Nal). Therefore, the present paper reports the fluorescence spectra of pure Nal in 
different physical conditions.

Experimental

This paper discusses the effect of different physical treatments on the fluores
cence spectra of sodium iodide (Nal). The specimens were prepared by the method 
of recrystallization from aqueous solution. They were subjected to thermal and/or 
mechanical pretreatments. The Nal material was examined for its luminescent be
haviours in the following physical conditions:
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wavelength (nm) — ►

Fig. 1. Fluorescence spectra of N a l powder: in as-received condition; A -  excitation spectra,
В -  emission spectra

(i) As-obtained Nal powder obtained from aqueous solution through recrystal
lization.

(ii) As-obtained Nal, annealed and rapidly cooled to room temperature from 
500 °C in open air.

(iii) Nal pellet obtained from as-obtained material through plastic deformation.
(iv) Nal tablet prepared from 500 °C air-quenched powder through mechanical 

compression.
The emission and excitation spectra were recorded for the above mentioned 

specimens at room temperature under identical experimental conditions. The in
strument used to study the excitation and emission spectra is Aminco-Bowmann 
spectrophoto-fluorometer supplied by American Instrument Co. Inc. Sodium iodide
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wavelength (nm) ------►

Fig. 2. Fluorescence spectra of N a l powder after annealed at 500 °C  and then cooled  to  room  
temperature in  air; A -  excitation  spectra, В -  em ission spectra

in powder form used in the present work was supplied by ‘Loba Chemi Wien-Fi- 
schamed Austramal-Preparate’ Company.

In all cases, the excitation spectrum of a given specimen was first observed and 
subsequently its emission spectrum stimulated by observed excitation was recorded. 
Each excitation and emission band is specified by the wavelength at which its peak 
appears.
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Fig. 3. Fluorescence spectra of N al p e lle t, obtained from as-received N al powder; A -  excitation
spectra, В -  emission spectra

Results and discussion

The fluorescence characteristics exhibited by sodium iodide in different phys
ical conditions are as follows:

(i) Untreated Nal phosphor exhibits two excitation bands at 248 and 272 nm. 
These excitation bands produce dominant emission around 370 nm along with 
a hump at 460 nm (Fig. 1).
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Fig. 4. Fluorescence spectra of N a l pellet obtained from the powder annealed at 500 °C , then  
cooled to  room temperature in air, A -  excitation spectra, В -  em ission spectra

(ii) The fluorescence spectra displayed by Nal phosphor are found sensitive to 
thermal treatment. The main emission, 370 nm, shifts towards the higher 
wavelength side, i.e. to 396 nm on execution of pre-heat-treatment. The 
overall intensity of the fluorescence spectrum also increases with thermal 
treatments. The corresponding excitation wavelengths are 272 and 296 nm
(Fig. 2).

(iii) Like pre-heat-treatment, mechanical pre-treatment also enhances the overall 
intensity of luminescence and shifts the dominant emission band on the higher 
wavelength side (Figs 3 and 4).
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(iv) ït is very clearly found that the pellet of 500 °C air quenched Nal material 
exhibits optimum fluorescence output among the specimens under examina
tion.
It is believed that the emission band exhibited by pure Nal powder may be 

associated with the crystallinity of the material or an inherent metallic impurity 
present in the phosphor. The change in fluorescence behaviours of Nal specimens 
on application of thermal and/or mechanical treatment may be on account of the 
change in density of point defect, migration of point defects, and diffusion of an 
inherently present impurity in Nal material. It is quite obvious that the concentra
tion of point defect and dislocation density is high in pretreated specimens due to 
thermal or mechanical shock. This new situation is responsible for the high fluo
rescence output and other changes in fluoresecence spectra of Nal in the thermally 
and/or mechanically treated specimens.
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OPTICAL PROPERTIES OF POLYSTYRENE-POLY
CARBONATE BLEND THIN LAYERS

C. Y. Y. H a n n a  and A .  K . A b a s s

D epartm ent of Physics, College of Science, University of Basrah 
Basrah, Iraq

(Received in  revised form  5 July 1991)

T he optical properties of polystyrene-polycarbonate b lend thin layers were studied  
in the fundamental absorption region. T he optical data were analysed and interpreted in 
term s of electronic transitions.

1. Introduction

The optical investigation of polymers constitutes an important tool to enhance 
its applications in solar energy conversion as a cover in solar collector, green house 
and as an optical filter. Polystyrene and bisphenol-A-polycarbonate have a wide 
range of industrial applications and their physical properties are listed in many 
articles [1]. The polymer blend field became an interesting subject to many workers. 
In the present work the optical properties of polystyrene, bisphenol-A-polycarbonate 
blends were studied in the fundamental absorption region.

2. Experimental

The commercial polystyrene (r) = 91.5 gm/cm-s) and bisphenol-A-polycar- 
bonate were purified by reprecipitation from C^C b/petroleum  ether several times. 
The chemical structure of commercial polystyrene and bisphenol-A-polycarbonate 
are given as

+  CH-CH2+n с н 3 0

CH3

(Polystyrene) (Bisphenol-A-polycarbonate)

Thin layers of polystyrene-polycarbonate blend polymer were obtained by 
dissolving the desired wt % of each pure polymer in methylene chloride followed 
by causting the viscous solution on a clear dry glass sheet. After 24 hours the 
layers were collected and dried under vacuum of 0.1 mmHg overnight. At the time 
(Dec. 1987) when causting was carried out and due to the atmospheric conditions, 
it was difficult to obtain a uniform and transparent blend layer of polycarbonate
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Fig. la
Fig. 1. Absorption coefficient versus photon  energy; a -  Commercial polystyrene (O) and 3 % poly
carbonate in  polystyrene blend (Я )  b  -  5 % (O ) and 10 % (© )  polycarbonate in  polystyrene b lend  

c -  Pure polycarbonate (Ф )  and 30 % polycarbonate in polystyrene blend ( 3 )

concentration greater than 30 %. The layer thickness was in the range of 0.07 to
0.15 mm.

The absorptance of the polymer layers was recorded at room temperature 
using Pye-Unicam SP8-100 spectrophotometer in the wavelength range 200-900 nm.

3. Results and discussion

Transmittance T  through a weakly absorbing slab of reflectivity R, thickness 
d  and absorption coefficient a  in air is given by

т _  ( 1 - Д )
e ad  _  R 2 e - a d ’ ( 1)
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Fig. l b

where R  = , n is the refractive index. In the region of band-to-band transi
tion, the absorption is large, so that ead 3> R 2e~ad. The transmittance equation 
becomes

T = (1 -  R )2e~ad. (2)

The absorption coefficient is written as

a — —j —(A +  log(l — R)2), (3)

where A is the absorptance (A = — logT). The reflection losses were considered 
to be constant. The absorption coefficient of different specimens w eis  estimated 
after correcting for the reflection losses. The longwavelength tail of the absorptance 
spectrum (the wavelength independent part of the absorptance) extended to the 
short wavelength side. The correction for reflection losses was made by subtracting
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Fig. l e

the extended straightline portion from absorptance. The method of correction of 
reflection losses had been employed earlier and is reasonably justified [2,3]. The 
absorption coefficient is calculated from the relation: a  = 2 ™3A, after correcting 
for reflection losses.

The absorption coefficient spectra versus photon energy of different speci
mens (I. Commercial polystyrene, II. 3 %, 5 %, 10 % and 30 % polycarbonate in 
polystyrene blend and III. bisphenol-A-polycarbonate) are shown in Fig. 1 (a, b, c). 
The absorption coefficient of commercial polystyrene and polystyrene-polycarbon
ate blend specimens shows systematic behaviour versus photon energy. There is a 
hump in the absorption spectrum of bisphenol-A-polycarbonate which is related to 
carbonate group absorption. The specimen of 10 % polycarbonate in polystyrene 
blend shows lower absorption. This may be related to high uniformity in the struc
ture.

The absorption data were analysed in terms of the theory of phonon assisted
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Fig. 2л
Fig. 2. G raphical analysis of absorption data; a — Commercial polystyrene (O) and 3 % polycar
bonate in  polystyrene blend ( ■ )  b  -  5 % ( □ )  and 10 % (© )  polycarbonate in polystyrene blend  
c -  Pure polycarbonate (ф )  and 30 % polycarbonate in  polystyrene b lend (3 ) .  carbonate group

absorption otc (O)

indirect electronic transitions [4]. According to this theory the absorption coefficient 
a depends on the photon energy hu as

a = a a + a e\ h v > E  + Ep,

a .  =  eE,,K T  _  ^ hv -  E  +  ^ р ) 1 /2 ; h v >  E  — Ep,

<*«=! _  Д  /KT { h v - E -  Ep)l l \  hi/ > E  + Ep,

where a„ is the absorption coefficient component involving phonon absorption, ae 
is the component assisted by phonon emission, E is the indirect allowed band gap 
energy and Ep is the phonon energy. c*o is a constant containing the matrix el
ement and density-of-states effective mass of electrons and holes. Two types of 
indirect allowed electronic transitions were (I) the no-phonon vertical transitions 
describing the absorption of commercial purified polystyrene and 3 % polycarbon
ate in polystyrene blend, (II) phonon assisted transition processes describing the

(4)
(5)

( 6)
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Fig. 2b

absorption of other specimens. The plots of a 1!2 versus photon energy for different 
specimen compositions are illustrated in Fig. 2 (a, b, c). A straight line is clearly 
seen in the plot of commercial polystyrene and 3 % polycarbonate in polystyrene 
blend (Fig. 2a), indicating that the absorption is due to indirect allowed vertical 
transitions, i.e. no-phonon is assisting such electronic transitions. The appearance 
of no-phonon component in the absorption spectra is due to the disturbance of 
the translational symmetry of the structure. Such a reason has been mentioned 
in the investigations of optical absorption in GaAsi_j;Pr [5]. The absorption data 
for no-phonon assisting the electronic transition processes are well described by an 
equation of the form

a =  ao (hv — E )2.

The plots are resolved into two straight lines for 5 % and 10 % polycarbonate 
in polystyrene blend (Fig. 2b). The portion at lower energy is due to transition 
assisted by phonon absorption and phonon energy intercept at E — Ep. The other 
line corresponds to the phonon emission process and the phonon energy intercept at 
E+ Ep. From the intercepts, the band gap estimated (Fig. 2c) shows the plot of a 1!2 
of bisphenol-A-polycarbonate and 30% polycarbonate in polystyrene blend. Two
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h v  (eV)

Fig. 2c

straight line portions are seen in the plot. The reason why the higher energy line of
bisphenol-A-polycarbonate is not coinciding with experimental data is due to the

о
absorption of the _ group which takes place simultaneously with band-to-band 
transitions. The carbonate group absorption a e can be estimated by subtracting 
the interband absorption straight line from total absorption. The absorption due 
to the carbonate group is weak and covers a much smaller range than transitions 
between the valence band and conduction band so its effect disappears in the other 
specimens. It is clear that the fact that some other lines are not coinciding exactly 
with the point may be due to extra transitions from valence band to impurity levels 
such as vacancies existing just below the conduction band. These transitions occur 
simultaneously with band-to-band transition. The indirect allowed band gaps and 
assisting phonons are given in Table I. The phonon energy for different specimens 
is too high to be considered as lattice phonon. The structure of Fig. 2b and 2c can 
be attributed to the internal vibrational groups of molecules or may be related to 
the existence of two valence bands.
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T a b le  I
Indirect allowed band gap, type of transition and assisting phonons 

for different layers

Specim en Type of 
transition

Band gap 
energy (eV)

Phonon  
energy (eV)

Commercial
polystyrene Vertical 1.8±0.03 _
3 % polycarbonate in  
polystyrene blend Vertical 1.9±0.03 _
5 % polycarbonate in  
polystyrene blend Non-vertical 2.1 ±0 .03 0.20
10 % polycarbonate in  
polystyrene blend Non-vertical 2.1±0.03 0.20
30 % polycarbonate in  
polystyrene blend Non-vertical 2.07±0.03 0.15
Pure polycarbonate Non-vertical 2.3±0.03 0.4
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DETOUR TRANSITIONS IN INTERNAL 
BREMSSTRAHLUNG FROM 204T1

G Ü N E§ T a NIR and BASAR §ARER

Gazi University, Faculty of Arts and Sciences  
06500 Ankara, Turkey

(Received 15 July 1991)

The contribution of detour transitions to the internal bremsstrahlung accom panying 
nuclear /З-decay from 204 T1 was calculated. It is shown that detour transition is important 
for 204 T1 which is unique first forbidden case. The photon spectrum  was calculated and 
compared with the experim ental spectrum  measured.

Introduction

The process of internal bremsstrahlung (IB) from /З-decay has been stud
ied experimentally and theoretically quite extensively [1]. There is a considerable 
discrepancy between the experimental and theoretical results. In general, the exper
imental spectrum is higher than the predicted spectrum especially at high photon 
energy [2,3,4]. In the theoretical calculations, inclusion of Coulomb effects reduces 
the disagreement but still leaves a large discrepancy [5].

Detour transitions are those in which the parent nucleus first emits the pho
ton and goes into a virtual intermediate excited state from which it subsequently 
/3-decays to the final state or vice-versa. Although the total intensity of radiation 
from the detour transitions may be small compared with that from the direct tran
sition, the high frequency portion of the spectrum can be dominated by the detour 
transitions.

The /З-emitter, 204T1 is of the first forbidden type, an investigation of the 
IB of 204T1 may also give an idea of the contribution to the IB from the detour 
transition. 204T1 has a relatively low beta end-point energy (0.76 MeV) and high 
atomic number.

In the present work, the spectrum of detour transition was calculated and 
compared with the experimental IB spectrum.

The details of experimental spectrum and calculations

The effect of the detour transitions were calculated only for the 204T1 that is 
unique first-forbidden /З-decay (ДJ  =  2, yes).
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In our calculations, we used a formalism of Ford and Martin [6]. The following 
expression has been given for the photon intensity per /?-decay differential in photon 
wave number.

2aк d r ,
Tß dk irN(wo) (Fi(k, w0) + ( F2(k, w0) + r]F3(k, w0)),

where

Jfw° w' dw(w0 -  w)2wp(p2 + (wo — tt;)2)(l +  iraZ—), 
m P

P = V w 2 -  1,

Jf^o-k ...
I dwq2(l +  n a Z —){((tu2 — w2)(w% — m2 + q2) + 2m2kwt ) 
m  P

X log W -  2(we(w2 -  m2 + q2) + k(w2 -  wwe + w2))p},m
rwa—k w + p 

m
rw°~* W Q

F3(k,wo) = — к / dwq2(l  + iraZ —){m2(2u> H— it) log
Jm P 2
f wo~k

F3(k, w q )  =2k2 /  dw q2(l + iraZ—)wp.
Jm P

These integrals are all expressed in terms of elementary functions in [6].

~ { 2w2 + \ k w -

F>g- 1. 204 T1 internal bremse trahlung intensity spectrum  . . . .  Experim ental data; theoretical 
curves KUB [7],LF [8] and N [9] theories
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The experimental IB spectrum from 204T1 is shown in Fig. 1.
In order to obtain the true IB photon distributions, the measured pulse height 

spectrum has been corrected for background, energy resolution, K-X ray escape, 
Compton electron distribution, geometrical and 7-detection efficiency for the crys
tal, for backscattering from the photomultiplier window and also from the surround
ing material used as shielding. Details were given in [4].

Results and discussion

We have calculated the spectrum for the decay of 204T1 (Wo = 2.48 m) to 
illustrate in magnitude of the effect of the detour transitions. In Fig. 2, the spectrum 
was plotted for the case where the parameters (  = rj = 1; to compare the spectrum 
for the direct transition alone (£ = 77 = 0) was also shown. The largest effect was 
found near the middle of the spectrum where the detour transitions increase the 
intensity by about 80 %.

Fig. 2. The spectrum  of internal bremsstrahlung for 204 T l. The photon energy is in units of electron
rest energy

It can be seen from Fig. 1 that in the high energy region of the experimental 
spectrum, there are disagreements with the theoretical results. In general, the 
observed spectrum is higher than the predicted spectrum, the discrepancy being 
greater the higher the photon energy. Inclusion of Coulomb effects in the theoretical

Acta Physica  Hungarica 71, 1992
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Table I
Comparison of calculated values o f detour transition  

w ith  the experim ental values

Energy
(k /m )

Calculations Experiment

0.56 ~  7-10-* ~  7 .8 1 0 - 4
0.6 ~  5 1 0 ~ 4 ~  7-10-4
0.7 ~  4 -10-4 ~  5-10-4
0.8 ~  2-10-4 ~  4-10-4

calculations reduces the disagreement but still leaves a large discrepancy. These 
might be explained partly as due to the detour transitions.

In Fig. 1, it can be seen that there is no agreement between KUB theory and 
any energy region of the experimental spectrum. The reason for this is that the 
effect of the nuclear charge on the radiation and detour transitions are neglected 
according to KUB theory. Because 204T1 has high atomic number, the Coulomb 
effect is important. In the region 0.3-0.4 MeV the experimental results are in 
agreement with that of the LF theory. N and LF theories take into account the 
Coulomb effect but only this correction does not explain the discrepancy in the 
high energy region. Detour transitions might be considered, too. Above 0.4 MeV 
experimental results are higher than theoretical results. In this region, the effects 
of the detour transitions are dominant as it can be seen in Fig. 2. Thus the reason 
for disagreements between experimental and theoretical results can be explained by 
detour transitions.

This calculation is valid for the case of the first-forbidden transition. The 
calculations of the higher-order corrections are in progress.
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The decay of 154Eu to 154G d has been studied using H. P. Ge and H. P. G e-N al(T l) 
spectrometers in  coincidence m easurem ents. 141 gam m a transitions have been observed. 
One of these transitions is found to be new and has an energy of 202.5 keV. The 165.9, 
202.5, 229.8 and 484.6 keV transitions are placed correctly in  the decay schem e of 154Eu. 
T he levels from this and previous work eue compared with those calculated by m eans of 
the unified m odel.

1. Introduction

The decay of 154Eu to 154Gd has been studied early by Meyer [1]. Electron 
capture intensities to the excited states of 154Sm were estimated using the log ft 
values of beta transitions to the corresponding states of 154Gd. Hansen et al [2] 
and Ng et al [3] obtained the branching ratio of beta decay to the excited states 
of 154Gd by beta ray measurements. The relative intensities of gamma rays in 
the decay of 154Eu were measured by Yoshizawa [4]. Intensities of the 618 and 
692 keV EO transitions measured by Yamada et al [5] and the multipole mixing 
ratios of the 692.873 and 1005.0 keV transitions by Gupta et al [6] were used in 
the internal conversion and gamma ray intensity measurements by Iwata et al [7]. 
Angular correlation experiments were performed by Varnell et al [8] to determine 
the multipole mixing ratios of some transitions and several new gamma transitions 
were observed in 154Gd. An experiment to measure the triple gamma ray directional 
correlation is employed to study the 723-873-123 cascade following the beta decay 
of 154Eu by Lewis [9].

Although there is general agreement between the results of these authors, still 
there are some weak intensity transitions not known and/or not placed in the decay 
scheme of 154Eu as well as doubted spin-parity assignments to some energy levels as 
reported by Helmer [10] in a recent publication of accumulated results. Accordingly, 
it was felt worthwhile to reinvestigate the gamma spectrum of 154Gd following the 
beta decay of 154Eu using a detector with better resolution (= 1.8 keV at 1.33 MeV). 
In addition, contributions due to gamma background spectra are highly eliminated 
since a complete quantitative analysis of gamma background radiations is available 
[11]. Another goal was to extend the comparison of the experimentally observed 
energy levels to those predicted by the unified model.
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2. Experimental procedure

Several sources from different manufacturers have been used (ORTEC, USA, 
Isotope Products, Canada and French Atomic Energy Commission, France).

In the present work, successive gamma singles spectra have been investigated 
over a period of two years using different sources of activities ranging from 50 цС 
to 1 mC placed at different distances from the detector.

The gamma ray spectra over the range 80-2000 keV have been studied using 
an ORTEC p-type hyper pure Ge-detector. The detector active volume is 56.6 cc 
while its energy resolution is ~  1.8 keV at 1.33 MeV. The obtained spectra were 
analysed using a NORLAND 4096 multi-channel analyzer (MCA) model 5400 with 
data processor, model 5430, and an IBM-XT personal computer equipped with a 
Nucleus 8192 MCA plug-in card.

The system was calibrated for energy and photopeak efficiency using well- 
known standard sources (22Na, 60Co, 133Ba, 137Cs and 266Ra).

The gamma-gamma coincidence measurements were performed using a 3" x 3" 
NaI(Tl)-Ge fast-slow coincidence spectrometer. The time resolution of the fast 
coincidence pulse was about 20 ns. A triple slow coincidence pulse (time resolution
0.5 /is), was used to gate the MCA to obtain the coincidence spectra.

Fig. 1. A typical singles spectrum  for the low energy gamma transitions of 154 Eu using H.P.Ge- 
detector where the source activity was 50 pC, source-to-detector distance was 15 cm  and the

m easuring tim e wets 20 h
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3. Gamma-ray singles spectra

The analysis of the gamma ray spectra observed in our measurements has 
revealed the existence of 141 gamma transitions attributed to the decay of 154Eu. 
Their energies and intensities, together with the previous data [7,10] are listed 
in Table I. The intensities were normalized to 100 for the 1247 keV gamma ray. 
Successive measurements were undertaken within two years to differentiate between 
lines of different origins. One of the gamma transitions at energy 202.5 keV is found 
to be new and the reduction rate of its intensity is similar to the activity decay rate 
of 1S4Eu. The intensities of the 563.4, 680.0 and 801.2 keV transitions which were 
not known previously are estimated in the present work as shown in Table I. A 
typical gamma-singles spectrum of the low energy transitions is shown in Fig. 1 
where the 202.5 keV gamma transition is clearly visible.

4. Gamma—gamma coincidence measurements

Gamma-gamma coincidence measurements have been performed using several 
window sets; only the results from three window sets are considered. These windows 
are: 125-185, 200-270 and 560-625 keV. There are fourteen gamma transitions not 
placed in the level scheme of 154Gd [10]. Three of these at energies 165.9, 229.8 and
484.6 keV are placed correctly in the level scheme by means of our measurements.

To confirm the placement of the 165.9 keV transition between the 1293.3 and 
1127.8 keV levels, the 131.5 keV transition depopulating the 1127.8 keV level was 
selected as gating transition because of two reasons worth mentioning. First, the 
125-185 gate is pure from any contributions due to 152Eu. Furthermore, the most 
intense 756.8 and 1004.7 keV transitions depopulating the 1127.8 keV level are not 
suitable as gating transitions because they are very close to other 7-transitions at
tributed to 152Eu decay. The obtained spectra confirm the presence of the 165.9 keV 
transition as is obvious in Fig. 2.

The 229.8 and 484.6 keV transitions were proposed to populate the 1047.5 keV 
level. The 232.0 keV transition depopulating the 1047.5 keV level was chosen as a 
gating transition. Fig. 2 shows a typical coincidence spectrum gated by the energy 
window 200-270 keV. The analysis of the obtained spectra confirms the existence 
of these two transitions populating the 1047.5 keV level.

The new observed 202.5 k ^  transition was proposed to populate the 1415.0 keV 
level. The most intense lines depopulating the 1415.0 keV level are the 600.0 and
1292.0 keV transitions. The 1292.0 keV transition is close to the high intense
1299.1 keV transition attributed to 152Eu decay, hence, the 600.0 keV transition 
was chosen as a gating transition (gate 560-625 keV). Fig. 2 shows an example 
of the obtained spectra which confirms the position of the 202.5 keV transition 
between the 1617.1 and 1415.0 keV levels.
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Table I
Energy and intensity values for gam m a transitions in 154 Gd 

following /3~-decay of 154 Eu

Present work Helmer [10] Iwata [7]

1-1 E i 1-1 E i 1-1

58.40 10 0.012 10 58.4 0.0113 11 - -

80.40 12 0.010 6 80.4 0.008 4 - -

123.10 8 117.54 30 123.068 3 117.5 8 123.1 118.5
125.35 16 0.02 1 125.39 0.020 6 - -

129.52 13 0.04 1 129.5 0.039 5 - -

131.5 1 0.03 1 131.573 29 0.0310 11 - -

134.56 20 0.02 1 134.84 0.0203 11 - -

146.04 10 0.070 16 146.036 22 0.0733 28 - -

156.3 1 0.032 12 136.31 10 0.0282 11 - -

162.11 18 0.003 1 162.09 0.0028 14 - -
165.90 21 0.007 1 165.91 0.0065 14 - -

180.75 11 0.015 6 180.73 0.0127 28 - -

188.22 15 0.668 8 188.246 13 0.676 22 - -

202.50 16 0.08 2 - - - -

209.42 12 0.007 1 209.4 4 0.0068 23 - -

219.4 1 0.007 1 219.4 0.0065 25 - -

229.01 13 0.006 2 229.0 0.0056 22 - -

231.03 6 0.071 9 232.01 5 0.0677 28 - -

237.0 3 0.020 7 237.0 0.017 11 - -

247.95 17 19.9 1 247.932 15 19.87 9 248.0 19.91
260.92 12 0.006 1 260.9 0.0056 25 - -

267.41 11 0.04 1 267.44 0.0395 17 - -

269.82 16 0.020 6 269.8 0.0197 28 - -

274.0 4 0.013 5 274.0 5 0.0113 6 - -

279.91 21 0.009 2 279.9 0.0085 6 - -

290.0 3 0 . 0 1 1 3 290.0 0.0096 6 - -

295.72 12 0.007 1 295.7 0.0068 6 - -

301.2 2 0.035 15 301.25 0.0282 11 - -

305.12 13 0.05 1 305.12 0.0496 20 - -

312.23 18 0.042 10 312.28 0.0415 17 - -

315.42 15 0.015 8 314.42 0.0130 6 - -

320.0 1 0.003 1 320.0 1 0.0028 20 - -

322.02 11 0.19 1 322.01 5 0.189 8 - -

328.4 3 0.026 9 322.48 0.0259 14 - -

346.71 14 0.085 10 346.72 5 0.085 3 - -

368.20 11 0.010 9 368.21 0.0085 6 -

370.72 8 0.015 4 370.71 0.015 4 - -

375.20 9 0.005 2 375.2 5 0.0051 28 - -

382.02 15 0.03 1 382.00 5 0.0285 11 - -

397.12 23 0.09 2 397.14 0.085 3 - -

401.36 22 0.61 8 401.30 5 0.56 3 - -
403.57 9 0.071 11 403.55 5 0.076 3 - -
4 1432 8 0.015 8 414.30 0.0141 8 - -
419.4 1 0.015 6 419.4 0.011 6 - -
444.38 7 1.62 5 444.39 4 1.60 3 444.5 1.63
463.93 19 0.014 5 463.9 0.0121 6 - -
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Table I (cont.)

Present work H elm er [10] Iwata [7]

E y Iy E y Ту E y Iy

467.90 12 0.165 9 467.92 0.161 6 - -
478.25 7 0.625 27 478.26 5 0.612 14 478.3 0.626 27
480.62 12 0.015 4 480.61 0.0138 6 - -
483.75 15 0.016 3 483.74 0.0141 8 - -
484.63 9 0.012 4 484.64 0.0113 6 - -
488.40 11 0.021 6 488.26 0.020 8 - -
506.4 2 0.019 4 506.4 0.017 6 - -
509.9 2 0.11 3 509.88 0.103 4 - -
518.0 1 0.135 4 518.00 5 0.132 5 - -
532.88 10 0.04 1 532.84 0.031 6 - -
545.6 1 0.05 1 545.6 0.047 6 - -
557.5 2 0.75 2 557.56 5 0.741 17 557.6 0.758 24
563.40 7 0.008 2 563.4 - - -
569.20 7 0.03 1 569.23 0.0282 11 - -
582.0 1 2.62 2 582.00 5 2.60 3 582.0 2.61 3
591.70 11 14.30 18 591.76 3 14.29 6 591.7 14.35 6
597.5 1 0.020 6 597.5 0.0158 8 - -
598.30 9 0.015 4 59831 0.0172 8 - -
600.0 1 0.017 2 600.0 0.017 11 - -
602.8 2 0.10 3 602.81 5 0.096 4 - -
613.22 16 0.281 12 613.26 5 0.267 10 - -
620.5 1 0.031 2 625.22 5 0.925 21 625.2 0.927 21
642.41 8 0.012 3 642.4 0.011 6 - -
649.4 1 0.22 2 649.44 5 0.214 8 - -
650.62 9 0.030 4 650.6 0.0282 11 - -
664.63 10 0.08 2 664.68 5 0.082 3 - -
668.9 2 0.035 4 668.9 0.034 4 - -
676.52 9 0.440 5 676.59 5 0.395 12 676.5 0.47 5
680.0 2 0.010 3 680.0 - - -
692.41 7 5.183 17 692.42 4 5.182 25 692.4 5.182 25
715.76 3 0.49 1 715.76 5 0.494 15 - -
722.30 5 55.10 5 72230 55.09 21 723.2 58.19 21
756.83 6 13.11 5 75636 3 13.09 9 756.8 13.18 7
774.41 5 0.03 1 774.4 0.028 14 - -
790.13 4 0.032 6 790.12 0.031 8 - -
800.2 1 0.10 2 800.2 0.092 14 - -
801.21 4 0.035 7 801.2 - - -
815.56 8 1.45 2 815.55 5 1.46 7 815.5 1.51 5
845.35 5 1.70 6 84539 5 1.687 21 845.4 1.687 21
850.66 4 0.657 6 850.64 5 0.668 15 850.7 0.692 23
873.2 1 35.15 9 873.20 3 35.14 10 873.1 35.18 12
880.60 5 0.25 3 880.61 5 0.231 9 - -
892.73 5 1.45 3 892.73 5 1.44 4 892.8 1.497 26
898.3 1 0.006 2 89837 0.0056 14 - -
904.05 5 2.46 4 904.05 5 2.47 9 904.1 2.62 3
906.15 7 0.035 5 906.1 0.0338 14 - -
919.25 6 0.031 7 919.24 0.0352 14 - -
924.5 1 0.17 2 924.49 5 0.166 7 - -
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Table I (cont.)

Present work Helmer [10] Iwata [7]

E y Iy E y I y E y Iy
981.36 5 0.02 1 981.3 0.022 6 - -

984.5 2 0.020 4 984.5 0.0180 34 - -

996.35 7 30.10 3 996.30 3 30.07 12 996.2 12 30.09 12
1004.75 9 52.1 1 1004.76 3 52.03 19 1004.7 52.04 19
1012.8 2 0.008 2 1012.8 2 0.0082 34 - -

1023.0 2 0.021 4 1023.0 10 0.020 8 - -

1033.07 9 0.034 3 1033.4 0.0338 14 - -

1047.43 12 0.15 3 1047.4 1 0.141 6 - -

1049.40 8 0.05 2 1049.4 1 0.0493 20 - -

1110.0 2 0.010 6 1110.0 0.008 6 - -

1118.52 14 0.30 3 1118.5 1 0.290 9 - -

1124.22 18 0.020 6 1124.2 0.0197 28 - -

1128.44 8 0.85 5 1128.4 1 0.85 6 1128.5 0.90 4
1136.15 7 0.022 4 1136.1 0.0211 28 - -

1140.92 6 0.64 3 1140.9 1 0.638 20 1140.7 0.671 14
1153.14 11 0.04 1 1153.1 5 0.039 11 - -

1160.6 2 0.125 12 1160.6 0.124 5 - -

1170.0 5 0.015 6 1170.0 5 0.012 6 - -

1188.63 8 0.26 5 1188.6 0.251 20 - -

1232.11 14 0.03 1 1232.1 5 0.026 17 - -

1241.65 12 0.40 3 1241.6 2 0.366 11 1241.4 0.38 5
1246.60 11 2.35 7 1246.6 2 2.33 15 1246.2 2.49 4
1274.55 10 100.00 3 1274.51 7 100.0 5 1274.4 100.00 3
1290.0 1 0.03 1 1290.0 2 0.0324 14 - -

1292.06 8 0.04 1 1290.0 2 0.0369 14 - -

1295.58 30 0.029 11 1295.5 2 0.0254 28 - -

1387.07 11 0.06 2 1387.0 5 0.056 6 - -

1400.0 3 0.00 2 1400.0 0.0084 28 - -

1408.44 12 0.06 2 1408.4 2 0.059 8 - -

1415.03 7 0.015 6 1415.0 5 0.0113 6 - -

1418.6 2 0.024 7 1418.6 2 0.0208 11 - -

1419.06 12 0.006 2 1419.0 0.0056 3 - -

1425.66 20 0.004 1 1425.6 6 0.0036 22 - -

1490.26 15 0.007 2 1490.2 0.0084 14 - -

1494.0 2 2.10 11 1494.08 7 2.058 16 1494.4 2.058 16
1510.0 2 0.015 4 1510.0 5 0.0141 28 - -

1522.1 2 0.002 1 1522.0 10 0.0017 8 - -

1531.44 12 0.020 7 1531.4 0.0172 11 - -

1537.85 15 0.15 3 1537.8 0.141 6 - -

1596.50 6 5.25 2 1596.45 7 5.247 26 1596.7 5.247 26
1667.33 12 0.006 2 1667.3 0.0056 8 - -

1673.17 21 0.004 1 1673.6 0.0039 11 - -

1716.9 2 0.002 1 1716.9 0.0017 10 - -

1773.13 23 0.0010 4 1773.0 10 0.0008 6 - -

1838.0 2 0.003 1 1838.0 5 0.0022 6 - -

1895.18 13 0.0020 6 1895.0 10 0.0017 6 - -
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Fig. 2. G am m a-gam m a coincidence spectra using N aI(Tl)-G e detectors

The results of the present work have been used to construct a partial level 
scheme of 154Gd as shown in Fig. 3.
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Fig. 3. Partial level schem e o f 154 Gd

5. Analysis of the 154Gd energy bands

The analysis of the spectra of strongly deformed nuclei is based on the collec
tive model [12]. In lowest order the energy spacing in a rotational band is predicted 
to follow an 1(1 + 1) progression. First order corrections are attributed to Coriolis 
interaction, non-axial symmetry of the deformed rotor, or rotation-vibration inter
action. A systematic deviation from the rotational spectrum [13] is noted. This 
deviation can be explained by adding correction terms to the energy representing 
different modes of coupling. This coupling contributes to a change in the energy 
given by last terms in the energy relation

E i ,k  = E k + A I ( I  +  1) +  B I2(I  +  l ) 2 +  . ..

+ ( - l ) i+ * +  + !) +  •••]•

The energy spectra for ten bands are calculated and the set of parameters 
which yielded the best fit to the data by means of the foregoing energy relation are 
adopted for every band.
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5.1. Positive parity bands

A. The kr = 0+ ground state, k* = 0+ /З-vibrational, кT = 2+^-vibrational
bands

The regular spacing of energy levels of these bands indicates that they are 
rotational bands with fitting parameters Ek =  58.0427, A =  15.14 and В = —0.01 
for the ground state band, Ek = 747.7, A = 11.328 and В =  —0.0045 for the ß- 
vibrational band, Ek =  897.766, A =  19.583, В  = —0.0615 and Aik =  —0.00295 for 
the 7-vibrational band.

B. The к '  = 0+ band
This band was proposed to consist of levels at (0+)1294.93, (2+)1418.35, 

(4+)1698.0 keV. The fitting parameters are Ek = 1294.93, A = 20.74 and В = 
—0.02975. The observed level spacings indicate extreme agreement with our cal
culation. The calculated energy of the 6+ member of this band is 2113.888 keV 
which corresponds to the 2101.0 keV level observed in (d,d') reaction and/or the
2117.1 keV level observed in 154Sm (a,4n7) and 152Sm(a, 2r»7) reactions [14].

C. The кж = 2+ band
The energy levels (2+)1531.318, (3+)1660.9, (4+)1790.2 keV were proposed 

members of this band. The level spacing in this band can now be described by the 
parameters Ek = 1531.3, A = 28.6 and В  = —0.39. The 5+ member of this band 
is found to have an energy of 2038.3 keV. This may correspond to the 2040.5 keV 
level observed in (a, a ') reaction [14].

D. The *rT =  4+ band
This band is used on the configuration ((тгЗ/2 [411]) (тг5/2 [413])) and was 

proposed to consist of levels at 1645.8, 1770.19, 1911.54, 2073.2 and 2253.99 keV 
with spin sequence 4-8. The observed level spacings indicate excellent agreement 
with our calculations where the fitting parameters are Ek = 1405.855, A = 12.4064, 
В = —0.008728 and A^k — 0.6 x 10-8 . The calculated energy of the 10+ member of 
this band is 2665.6778 keV which may correspond to the 2668.3 keV level observed 
in nuclear reactions [14].

5.2 Negative parity bands 

A. The k* = 0 “ , 2“ , 7“ bands
The 0~ octupole-vibrational band was proposed to consist of levels at 1241.31, 

1251.75, 1404.2, 1674.6, 2040.5 and 2482.2 keV with spin sequence 1-11. The 2" 
octupole-vibrational band was proposed to consist of (2“ )1719.565, (3“ )1796.45, 
(4- )1861 keV levels while the 7~ band consists of (7~)2137.49, (8~)2309.47 and 
(9“ )2474.1 keV levels. Calculations of energy levels using the foregoing formula 
were done for these three negative bands. All the experimental levels attributed to
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each band were considered. It is noticed that this formula failed to determine the 
expected energy values for these bands. This may be due to the vibrational nature 
of these bands.

B. The И  = 1" band
The (2“ )1347.559, (1-)1414.6, (4")1560.09 and (3")1617.14 keV levels were 

proposed to be the members of this band. The calculated energy levels are in 
excellent agreement with the experimental values where the fitting parameters are 
E t  = 1385.639, A  =  6.308, В = 0.4811 and А^ъ = 7.209. The large value of Аг* is 
due to the strength of the Coriolis coupling.

6. Conclusion

In this work an attempt has been made making use of good resolution detec
tors to study the energy spectra of 154Eu-/?-  decay. A new transition is observed 
and placed correctly in the decay scheme. Also, the 165.9, 229.8 and 484.6 keV tran
sitions are placed in the decay scheme by means of our 7 — 7 coincidence measure
ments for the first time. Furthermore, the unified model calculations were applied to 
ten energy bands attributed to the 154Gd level scheme. A good agreement is noticed 
between experimental and theoretical calculations for positive parity states giving 
a correct prediction for the already adopted levels and assigning the spin-parity 
character of some higher levels. Contrary to that, a disagreement is found between 
experimental and theoretical calculations for the negative parity bands (expect the 
ib =  1“ band) and the applied model is not suitable because of the vibrational 
nature of these bands.
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Activation cross-sections for neutron capture have been measured at an energy of 
14.5 M eV for leoGd, relative to <r(160G d (n ,2 n )159Gd) =  1975 m b. Gamma-ray spectra  
of the product nuclei were measured with a  HP Ge-detector. B y system atically varying 
the geom etrical гит an gem ent the corrections due to the influence of lower energy neutrons 
could be determined. T he corrected activation capture cross-section at 14.5 MeV is found 
to be 1.0 ±  0.2 mb.

1. Introduction

The activation technique is a relatively simple method to measure fast neutron 
cross-sections. Applied to (n ,7) cross-sections appear to be difficult primarily due 
to accompanying background neutron sources. On the average, the background 
neutrons are of a much lower energy than the primary neutrons. Even a small 
contamination by background neutrons can seriously disturb the measurements, 
because the (n, 7) cross-section generally increases rapidly with decreasing neutron 
energy [1-5]. This contamination would be particularly serious for deformed nuclei, 
for which even a 1 % fraction of low energy neutrons can disturb the activation 
results considerably [6].

The neutrons with lower energy than the primary neutrons, are produced pri
marily by (n, n'), (n,pn) and (n, 2n) reactions in the sample and in the surrounding 
material in the target-sample assembly. This type of neutrons are called secondary 
neutrons and their influence was first established experimentally by Valkonen and 
Kantele [2]. In measurements, where we have utilized the reaction T(d, n)4He for 
the production of monoenergetic 14 MeV neutrons, the projectiles may also gener
ate a background of low-energy primary neutrons from D(d, n)3He reactions. The 
influence of this type lower-energy neutrons would be serious when an old T-target 
is used for a long time by which the d-contamination could achieve a high value.

14.5-MeV neutron capture cross-sections in 160Gd have been measured with 
activation technique by Kantele and Valkonen and have been found to be 1,0±0.4 mb
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[3]. The purpose of our experiment is to measure the same cross-section with another 
type activation technique, a Water-cooling Neutron Generator, type NA-3 (maxie 
in Hungary) and present measuring counting techniques.

The reaction 160Gd(n, 7)161Gd is suitable for investigation of the effects of 
low-energy neutrons. 160Gd is a deformed nucleus and has a high capture cross-sec
tion for neutrons with low energy. The influence of low-energy background neutrons 
has been studied by systematically varying the target-sample arrangement.

2. Experimental arrangement and procedure

The experiment was carried out at the NA-3 Neutron Generator at the Insti
tute for Plant Protection, Kostinbrod, Bulgaria, which produces neutrons with an 
energy of 14.5 MeV through the reaction T(d, n)4He. We have used tritiated tita
nium targets (2 mg/cm2) on a 0.4 mm thick molibdenum backing. The deuterons 
were accelerated to 120 keV. Beam currents around 1 pA were used. The beam 
spot diameter was typically 4 mm. The relative time variation of the neutron flux 
during the irradiation was measured and the activation results were corrected for 
the time variation effects.

The target is of rotating type and cooling is provided by water, which is 
in contact with all backing of the target. The target holder is made of stainless 
steel. The target head is made of aluminium. Consequently, because of existing 
constructive conditions, the minimal possible layer of cooling water is 1.3 mm; the 
A1 layer between the target and samples is 2.7 mm; the minimal distance between 
the target and samples is 4.5 mm.

The samples of pressed Gd2C>3 were made with a diameter of 8 mm in all 
cases and different thicknesses (260 mg/cm2-670 mg/cm2). Measurements of the 
activation cross-section for gadolinium were performed with various target-sample 
geometries. Irradiation times are generally 11 min with beam currents of typically 
1 fiA. The various irradiations were performed with new targets with the purpose 
to reduce the deuteron contamination of the targets.

-O ^
E
c  3 
о
t> о  
Q> ZU)

О
о

Fig. 1. D ependence of the apparent activation cross-section on the effective distance between the  
target and the sam ple. Statistical uncertainties are given

0 5 10 15 20
effective target-sam ple  distance (mm)
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The gamma rays from the induced activity were measured by a HP Ge-de- 
tector “ORTEC” with an active volume of 166 cm3 and a resolution of 1.9 keV 
for the 1332.5 keV 7-line of 60Co. The strongest gamma-ray line 360.9 keV (f7 =
60.6 ±  6.0 %) in the decay of 161Gd (7\/2 = 3.7 min) was used [8]. Like a moni
tor reaction we used 160Gd(n, 2n)159Gd reaction, known to have a cross-section of 
1975 ±  185 mb [7]. The strongest gamma-ray line 363.3 keV (/7 =  10.8 ±1.0 %) 
in the decay of 159Gd (T1/2 = 18.56 h) we used is very close to the 360.9 keV 
line from the decay of 161Gd, but the two lines are well resolved in the spectra. 
The 161Gd activity measured typically 11 min, but 159Gd activity measured around 
1 hour. Several sets of measurements were performed and the results show good 
consistency.

-Q
E
cо
0<D1Л1in
inо
и

3 

2 

1 

о

Gd sample thickness (m g /c m 2 )

-------------1— §— -|-
distance : 5 mm 
diameter: 8m m

200 400 600

Fig. 2. Dependence o f the apparent activation cross-section on the Gd-sample thickness. Statistical
uncertainties are given

3. Experimental results

The results from measurements with various target-sample arrangements are 
shown in Figs 1-4. We have used the same representation as Valkonen and Kantele: 
“apparent cross-section”, which means the value obtained from comparison with 
the known cross-section of 160Gd(n, 2n)159Gd reaction at 14.5 MeV neutron ener
gy. The latter reaction has a cross-section which decreases rapidly with decreasing 
neutron energy and was used as monitor. Several sets of measurements were per
formed to establish the influence of primary low-energy neutrons from d ( d ,  n)3He 
reactions. The results show that we use a new T-target for one or two irradia
tions, the background of these neutrons does not influence the value of measured 
cross-sections. Thus, the geometrical effects observed on the apparent activation 
cross-section would then be caused by secondary neutrons.
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Fig. 3. Dependence of the apparent activation cross-section on the thickness of A1 layer between 
the target and the sample. S tatistica l uncertainties are given

S.l. Dependence of apparent activation cross-section 
on effective target-sample distance

The influence of secondary neutrons, produced in materials surrounding the 
target and the sample or room-scattered neutrons can be studied through an in
vestigation of the dependence of the total observed activation yield on effective 
target-sample distance. The total observed activation yield, У(п, 7), can roughly 
be described by

Y  ~  <r14 ■ ф14 +  <r0 • Фо + ■ фх, (1)

where <ri4 is the cross-section to be measured, <ro is the effective capture cross-section 
for room-scattered neutrons, <ti is the effective capture cross-section for secondary 
neutrons. Here Ф14, фо and ф\ are corresponding neutron fluxes.

_ _ ± — u ~ - 4 —
distance : 6 mm
diameter : 8 mm
thickness : 450 m g /c m 2

water layer thickness (mm)

Fig. 4. D ependence of the apparent activation cross-section on the thickness of water layer between  
the target and the sample. S tatistica l uncertainties are given
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We define an apparent cross-section for <rapp by

V  ~  0”app ' Ф14*

Thus,
Фо Фо

тлр р  =  <т14 +  ст0 - —  +  (т1 — .

The distance dependence from a point source is

<̂14 ~  -Ö-

( 2)

The room-scattered neutron flux is assumed to be uniformly distributed, i.e.

фо(г) = constant.

The secondary neutrons must have a distance dependence between these two ex
tremes. Thus, we can roughly write

<тлрр~  <ri4 + a  ■ f ( r )+  b ■ f ( r 2). (3)

The influence of room-scattered neutrons and secondary neutrons from sources 
outside the sample itself can be determined by a measurement of the distance de
pendence of the apparent cross section and extrapolation to zero distance. In view 
of the fact that neutron source and samples are not points and have defined sizes, 
a change of these sizes is also a change of “effective” distance between the target 
and the sample [5]. The effective distance is defined by

_  f  f r  d s  1 d s 2

Г f  f  d s  1 ' d s 2

were dsi and ds? are area elements of the sample and the beam spot, respectively, 
and r is the distance between the two elements. Integration is carried out over the 
sample and beam spot areas.

The measurements were performed with samples 450 mg/cm2 thick and 8 mm 
in diameter and the result are shown in Fig. 1.

(4)

9 .2 .  D e p e n d e n c e  o n  g a d o l i n i u m  s a m p l e  s i z e

The influence of secondary neutrons produced in the sample itself can be stud
ied by observing the dependence of sample diameter and thickness on the apparent 
activation cross-section. The influence of activation sample diameter is taken in
to account in the target-sample effective distance (see 3.1). The effect of sample 
thickness was studied by varying it. The measurements were performed at a tar
get-sample distance of 5 mm and samples with a diameter of 8 mm and various 
thicknesses. The experimental results are shown in Fig. 2.
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8.8. Dependence on target-head thickness and cooling water

The target head is made of aluminium and there are a 2.7 mm A1 layer and 
a 1.3 mm cooling water layer between the target and the sample. Aluminium is 
a material which has a small (n, 2n) cross-section (< 0.17 mb [7]), but water is 
one of the major sources of secondary neutrons from (n, n') reactions. To study 
the effects of these layers the apparent activation cross-section was measured with 
various thicknesses of aluminium and water between the target and the sample. The 
measurements were performed with samples 8 mm in diameter and a thickness of 
450 mg/cm2 and constant target-sample distance. The results are shown in Figs 3 
and 4.

The molibdenum target backing is another source of secondary neutrons pri
marily from (n, 2n) reactions, but in our experiment the influence of molibdenum 
backing on the apparent activation cross-section is not taken into account.

S.J. Determination of the activation capture cross-section

The capture cross-section for the reaction 160Gd(n,7)161Gd has been deter
mined from Figs 1-4. The results indicate a linear dependence of the apparent 
cross-section and the lines through the experimental points have in all cases been 
determined by least-squares fitting. Extrapolation of the line in Fig. 1 to zero effec
tive distance gives an apparent cross-section value corrected for both distance and 
diameter dependences. After that, this value was corrected for the dependences 
of sample, aluminium layer and cooling water thickness, respectively, taken from 
Figs 2-4. Thus, we obtain a corrected value of the 14.5 MeV neutron capture 
cross-section in 160Gd of 1.0 ±  0.2 mb.

In determining the accuracy of the cross-section value, the following sources 
of error were taken into account:

-  statistical counting error of the 161Gd and 159Gd activities;
-  uncertainties in the least-squares fitting of the experimental results;
-  uncertainties in the gamma-ray intensities in the decay of 161Gd;
-  uncertainties in the monitor reaction.

4. Conclusions

The 14.5-MeV neutron capture cross-section is found to be 1.0 ±  0.2 mb and 
this value is in good agreement with previous results obtained with activation and 
spectrum methods, 1.0±0.4 mb and 0.9 mb, respectively [3,6]. These results indicate 
that the Neutron Generator with water cooling can be used for the determination of 
neutron activation capture cross-sections at 14-15 MeV with an accuracy of ~  20 %. 
The accuracy can be even better, depending on the decay and half-life of produced 
nuclei, the monitor and counting technique.
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A comparison with previous activation measurements indicates that in the 
present experiment there is an additional serious source of low-energy neutrons, 
namely the cooling water. For more accurate measurements, the contribution of 
secondary neutrons can be decreased by using a gas cooling, thin aluminium backing 
and smaller beam spot.
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Therm odynam ic and dynamic properties of strongly anharmonic rare gas solids by 
the help  of the self-consistent phonon theory are investigated. The system  of equations 
describing the dynam ics and thermodynam ics of the crystal la ttice  is solved for the Singh 
and N eb potential energy curve. Results obtained for the sta tic  lattice energy Фо, binding 
energy D ,  free F  and free Gibbs energies G,  heat capacity C y  , C p , isothermal bulk m odulus 
B ,  coefficients of anisotropy A, S have b een  compared with available experim ental data as 
well as w ith those calculated for various potential energy functions in the previous papers 
by the help of the quasi-harmonic approxim ation and the lowest order of the self-consistent 
phonon theory of W erthamer.

1. Introduction. Potential energy functions 
for rare gas solids

Rare gas solids (RGS) are prototype molecular crystals. They crystallize in 
simple close-packed arrangements to be expected for atoms with spherical symmetry 
[1]. The lattice atoms interact with weak forces, principally van der Waals-London 
attractions [2].

The existence of the van der Waals-London attractions necessitates the con
sideration of an additional repulsive energy to stabilize the crystal lattice of spherical 
atoms. This repulsive interaction is short-range and overlap dependent in nature [3].

Earlier results of theoretical calculations of the short-range repulsion and the 
long-range attractive portion for a variety of pairwise interactions of atoms in the 
RGS have been reviewed in the articles by Pollack [4] and Horton [5] and in the 
books of Hirschfelder and co-workers [3], Goodisman [6] and Klein and Venables [7].

Next, the potential energy curves appropriate for the rare gas atoms have been 
analyzed in [8]. Relative merits of these curves have been tested by calculating the 
values of the vibrational energy eigenvalue differences and comparing them with 
the experimental values. Reliable estimates of the function parameters have been 
collected and compared with those obtained from molecular beam experiments.

Interatomic potential functions proposed for the solids have been collected in 
[9]. The parameters of these functions were determined by the help of the Corner 
method [10] using experimental data for the energy of sublimation of the crystal
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at 0 К, the distance between nearest neighbours in the crystal lattice and the 
Debye characteristic temperature. The comparison of the numerical values of the 
parameters for the Rydberg and Varshni potential models allowed to state that 
for the RGS the three-parametrical function by Rydberg and the first Varshni’s 
function gave nearly the results calculated for the Morse and for the Buckingham 
exp-six potential. Since, Meisel and Cox [11] have found from the analysis of the 
equation of state measurements that the Buckingham exp-six potential was the most 
appropriate for solid Ne and Ar in the paper [12] we used the Morse, Rydberg and 
Varshni potential functions for the description of the dynamic and thermodynamic 
properties of the RGS.

It should be noted that [9] the various shapes of the potential functions have 
been considered in terms of parameters determined in the nearest-neighbours ap
proximation. In order to assure the accuracy of our calculations we used in [12] the 
parameters of the potential energy functions determined in higher approximation 
with respect to the number of shells n of nearest neighbours having influence on the 
pair interaction [13,14].

More recently, Singh and Neb [15] proposed a new potential energy curve 
appropriate for the RGS. This two-parameter model of interatomic interactions 
consists of the attractive van der Waals force modified by the three-body interactions 
arising from the variable induced dipoles and the repulsive Born-Mayer interaction. 
The results presented in [15] showed that the above potential model successfully 
explained many properties such as the harmonic and anharmonic elastic constants 
Caß, Debye temperature 0 d , Grüneisen parameter y, cohesive energy at T  = 0 K. 
The purpose of this paper is to investigate the applicability of the Singh and Neb 
potential model to the description of the temperature and pressure dependence of 
the dynamic and thermodynamic functions of the RGS at low and high temperature 
by the help of the self-consistent phonon theory [16].

2. Temperature-dependent properties of the RGS 
described in previous literature

The principal theoretical results concerning the lattice properties of ideal 
inert-gas crystals have been presented and discussed in [4, 5 to 17-29]. The free 
energy, molar heats Cp, CV, volume thermal expansion coefficient /?, second-order 
elastic constant caß of solid Ar, Kr and Xe obtained in harmonic and quasi-harmonic 
approximations by the help of the Mie-Lennard-Jones (M-L-J) Morse (M) and 
Buckingham (B) potentials, have been collected in [4, 5]. The results given in [4,5] 
as well as the calculations of the temperature dependence of cQß [17] and Cp, ß [18] 
for Ar, Kr and Xe in the case of the (12,6) M-L-J potential showed that the quasi
harmonic approximation was unreliable for T  > \T m — the melting temperature.

Using the quasi-harmonic approximation and the pair potential function of 
Barker and Pompe [29] together with the Axilrod-Teller triple-dipole interaction 
[30], in the papers [19-21] 0j>, ß, caß and the bulk modulus В for Kr at low
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temperatures (0-12 K) were calculated. The agreement between theoretical and 
experimental data for cap was not good [20].

An improved description of the second-order elastic constants [22, 23] and 
selected thermodynamic properties (Cp,C v ,ß ) [24-26], compared to the quasi-har
monic approximation, has been obtained in the lowest order self-consistent phonon 
theory (ISC) [31]. As the potential energy of the solid Ar the M-L-J potential was 
taken. The ISC theory is known to be adequate up to about 3/4 of the melting 
temperature, so that up to this temperature the above calculations were performed.

Cp, C v , ß  and В of Ar and Kr have been calculated using the ISC theory in 
[28]. The potential energy functions of the solids were assumed in the forms derived 
by Barker-Bobetic-Pompe (B-B-P) [29] and Barker-Fischer-Watts (B-F-W) [32]. 
For these potentials CV and В  differ by only 1 % over the whole temperature 
(0 — 3/4 Tm). The B-F-W expansivity (~ 5 % lower than one for the B-B-P 
potential) was in excellent agreement with experiment over a large temperature 
range.

The Monte-Carlo method with B-B-P and M-L-J potentials was used to 
calculate the elastic constants of Ar, Kr and Xe in paper [27]. The results for Ar 
(80 K) and Kr (85 and 115 K) have been obtained for the B-B-P pair potential. For 
Ar (80 K) and Xe (156 K) the calculations were carried out for the (12,6) M -L-J 
potential. The results obtained agreed well with the previous work of Klein and et 
al [26].

Contributions of the various terms to the anharmonic free energy of the RGS 
in terms of the M-L-J potentials have be computed by Leech and Reisland [25]. 
The anharmonic effect was represented by using the vibrational elongation that is 
defined by the average increase of the effective interatomic distances.

From the above considerations it follows that the Mie-Lennard-Jones poten
tial [4, 5 to 17, 18, 22-27] and the Bobetic-Barker-Pompe function [19-21, 27] 
were mainly used for descriptions of the second-order elastic constants, molar heat, 
volume thermal expansion coefficient of the RGS by the help of the quasi-har
monic approximation and the lowest order improved self-consistent phonon theory 
of Werthamer. The quasi-harmonic and ISC approximations become unreliable 
T  > |T m and T  > |T m, respectively, so that up to those temperatures the above 
calculations were performed.

In none of the cited papers has the pressure dependence of the thermodynamic 
functions been investigated. The temperature dependence of the free energy was 
obtained in [25] by the help of the quasi-harmonic method only.

For this reason, in this paper the dynamic and thermodynamic properties of 
strongly anharmonic RGS are described by the help of the self-consistent phonon 
theory developed by Plakida and Siklós [16, 33, 34], which allows to take into 
account all the higher order anharmonic terms in a self-consistent manner in the 
lower order perturbation theory [35].
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3. Basic self-consistent equations for the dynamic and thermodynamic
functions of cubic crystals

As was shown in [16] the renormalized potential energy function Ф(/, T) for a 
cubic crystal can be written in the form:

4 i , T )  =  f 2 h { r u4I’T)) u2k{l)' (i)

where U(l) is the interatomic pair potential, u2(/, T) is the mean square relative 
displacement of neighbouring atoms at a distance /.

In the low (0  <  u>i) and high (0  u>l ) temperature limits we get the 
following equations for u2 [16]:

ï? (/, T) =  A • (UL/B i +  C - 0 //Ï?) , 0  <  , (2)

u2(l,T) = <r ■ \  ■ в  ■ (A + ß l /2 4 ) , 0 > W £ .

The symbols used in Eqs (2) and (3) have the following meaning:
(3)

е = кв  т, л = i /z  • f(i ,T), f ( i ,T ) d 4 ( l , T )
di2 Ф ' U n

=  8 • ft2 • /(/, T)/m , Bx = 0.49 • [l -  7.446 • 1 0 '3 • 7(/, T)] ,

7(/, T) —uiL- ß(l, Г ) /0 , /3(/, T) = Q ■ g \ l ,  T ) / f \ l , Г),

</(i, T) = «'"(/, T), C = 0.518 • 7Г2 • [1 + 0.102 • 7(/, T)],

ßi — ul/Q, A = [1 — 0.11 • /S(/,T)]_1 .

2, Ä and m are the Boltzmann constant, the number of nearest neighbours, the 
Planck constant divided by 2ir and the mass of atom, respectively.

The thermodynamical properties of the cubic lattice consisting of N  identical 
atoms are determined by the internal energy l / N  ■ E, free energy l /N  ■ F  and 
thermodynamical potential l / N  G which can be written in the following form [36]:

— E = - z  N  2 Ф (i,T) + i . u 2( / , T ) . / ( / , r ) +  *з(0), (4)

j r F = Fo + j r E - «2(/, T)  • /(/, D -  4 • * з(0 ), (5)

i . G = i . F  +  3 . P . , :

A d a  Phyaica Hungarica 71, 199£

( 6)



A STUDY OF CRYSTAL PRO PERTIES 1 8 3

T a b le  I
Singh and Neb potential constants for the 

pairwise atom ic interaction in  the rare gas solids

Param eters

Solids C
IO"79 [J m e]

b
1 0 - 1 9  [J]

P
nm

/ Ы
10~3

Ar 12.474 497.459 3.056 1.71
Kr 33.317 652.080 3.347 3.03
Xe 76.938 736.875 3.706 5.82

where the effective cubic anharmonic contributions to the free energy Fß(Q) are 
given in the low and high temperature limits, respectively, by [36]:

Тз(0) = 1-02 • 7(/, Г) • (B[ • +  Ci • в  • /?f3), ( 0 < wl), (7)

7з(0) =  —A\ ■ 0  • /?(/, T), ( 0 » « l ), (8)

with the numerical coefficients:

Ai ~  5.6 • 10-2 , B[ ~  1.887- 10-3 , Ci ~  6.475 • 10-3 .

By applying the method developed by Plakida and Siklós [16] we get an 
analytical expression for the anharmonic isothermal elastic constants caß(T) in the 
form [37]:

caß(T) =  c% ■ re ■ а 2(/, T) • [1 -  2 • ß(l, T) • 5kj]  /I, (9)

where c° ̂  are the harmonic elastic constants, rt is the average distance between 
neighbouring atoms at external pressure P = 0, <*2(/,T) = /( /, T) / f .  The function 
5k,j is defined by the appropriate choice of the type of the mode j  and the direction 
к =  q/|? | of the vector yielding the corresponding elastic constants сц, c44 and 
(сц — C12) [37].

If the isothermal elastic constants are known then the isothermal bulk mod
ulus

В = (cn  + 2 • c12)/3 (10)

and the coefficients of anisotropy

A  = 2 ■ С44/(сц  — C12), (11)

Й = (C44 — Ci2)/c i2 (12)

can be calculated.
Eqs (1)—(12) were solved explicitly for the shape of U(/) (Eq. (1)) as follows

17(0 = 12 b- exp ( - l /p )  -  Cl ' (1 +/612 ' /(/)) + 1 - R - Q d / N , (13)

[15]:
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T able  II
The b in d ing  energy of la ttice  atom s D,  sta tic  la ttice  energy Фо, free energy 

F  and free G ibbs energy G  o f rare gas solids at О К  using the Singh and Neb (S-N ) 
self-consistent potential. Experim ental (Ex) [15, 38, 39] and the b est theoretical data  
obtained in  term s of the M ié-L eim ard-Jones (M -L -J )  [5, 40], Morse (M ) [12] as well 

as Barker-F isher-W atts (B -F -W ) [28] potentials are collected for comparison.
P  =  105 Pa

Solids P otential -D
10 -2 2  la á = ]

-Ф о - F
t s à l

- G

Ar S -N 12.535 7.547 12.772 12.771
M 19.632 7.336 16.594 16.586

M -L -J 14.095 8.489
B -F -W 12.850 7.740

Ex 12.753 7.712
Kr S -N 18.602 11.204 24.573 24.572

M 24.668 10.814 18.692 18.683
M -L -J 19.506 11.749
B -F -W 18.539 11.166

Ex 17.463 11.162

Xe S -N 23.698 14.273 36.619 36.617
M 33.896 14.626 23.292 23.285

M -L -J 27.489 16.557
Ex 24.672 16.035

T ab le  III
Com parison of the values for the isotherm al bulk m odulus В  and 
coefficients of anisotropy A  and 6 at О К  obtained in terms o f the 

Singh and  Neb self-consistent potential w ith experimental [15, 41-44] and 
other theoretical data [15, 22, 40] of RGS.
The m eaning of symbols is as in  Table II

Solids Potential M ethod of 
calculation

В
109 [Pa]

А S

Ar S-N RS CPA 2.473 3.109 -0 .1 3 9
M 2.470 2.621 -0 .0 3 9

M -L-J Q-H* 2.617 2.620 0.038
ICS* 2.636 2.584 0.332

Ex 3.020 2.432 -0 .0 5 4
Кг S-N RSCPA 3.660 3.360 -0 .0 6 8

M 3.069 2.744 -0 .0 1 9
M -I^J Q -H 3.206 2.639 0.019

ICS 3.242 2.627 0.328
Ex 3.607 2.330 -0 .0 5 6

Xe S-N RSCPA 3.660 3.360 -0 .0 6 8
M 3.561 2.640 -0 .0 1 9

M -L-J QH 3.643 2.663 0.020
ICS 3.647 2.641 0.328

Ex 3.636 2.407 -0 .0 5 6

*Q -H : the quasi-harmonic approximation;
ISC: th e  lowest order self-consistent phonon theory
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Table IV
T he effect of temperature and pressure on anharmonic force 

constants f ( l , T )  and g ( l ,T )  o f RGS in  the RSCPA for the Singh and 
N eb (S -N ) potential. Theoretical data  for the Morse self-consistent 

potentia l are shown for comparison

Solids T

[K]

/ ( / ,T )  [N/m] -8 (U  T )  10 10 [Pa]

S -N M*** S-N M***

At 0* 0.8969 0.7720 4.9973 4.3508
0** 0.9861 0.7931 5.2770 4.3518

80* 0.8467 0.7566 4.7629 4.1511
80** 0.9120 0.7679 5.0210 4.1678

83.6* 0.8402 0.7503 4.7325 4.0918
83.6** 0.9047 0.7651 4.9848 4.0938

Kr 0* 1.3188 1.1481 6.9930 5.8772
0** 1.3892 1.1486 7.2487 5.8793

80* 1.2507 1.1264 6.6860 5.6458
80** 1.3157 1.1230 6.9222 5.6483

115* 1.1920 1.1112 6.4209 5.5568
115** 1.2523 1.1159 6.6408 5.5631

Xe 0* 1.3452 1.1393 6.9362 6.3263
0** 1.4150 1.1397 7.1687 6.3289

80* 1.2928 1.1261 6.6932 6.1858
80* * 1.3582 1.1294 6.9111 6.1881

156* 1.2013 1.1116 6.2733 6.1277
156** 1.2593 1.1148 6.4670 6.1309

• P  = 0  Pa; **P = 10 MPa; *** Values obtained on the basis o f analytical
results given in [46] w ith  the help of M orse potential param eters reported 
in  [12].

where the last term is the zero-point energy with R and 0 д  as gas constant and 
Debye temperature at 0 K, respectively,

C i =  14.4539 • C,

/(/)  =  /о • exp(—1/p),

C is the dipole-dipole van der Waals coefficient, /(/) is the three-body force pa
rameter.

4. Num erical results

Using the values of potential parameters for the Singh and Neb function given 
in Table I we have computed, at first, the properties of RGS at T  = 0 K: the binding

Acta Physica Hungarica 71, 1992
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Table V
T he effect o f tem perature on free energy F  and free G ibbs 

energy G  of RGS in the RSCPA. The m eaning of symbols is as in  Table IV

Solids T

[K]

—F  [kJ/mol] —G [kJ/m ol]

S -N M*** S-N M***

A t 0* 12.772 16.594 12.772 16.586
0** 12.861 16.597 12.628 16.589

80* 11.983 10.964 11.984 10.964
80** 12.085 10.965 11.847 10.930
83.6* 11.935 9.694 11.932 9.687
83.6** 12.038 10.506 11.797 10.199

K r 0* 24.573 18.692 24.573 18.683
0** 24.686 18.696 24.411 18.687

80* 23.545 14.083 23.545 14.083
80** 23.664 14.084 23.383 14.992

115* 22.952 12.844 22.952 12.074
115** 23.085 15.892 22.798 14.835

X e 0* 36.619 23.292 36.619 23.285
0** 35.443 16.575 33.899 16.458

80* 35.269 16.574 34.164 16.574
80** 35.443 16.575 33.899 16.458

156* 33.494 13.116 31.259 13.104
156** 33.691 14.341 30.900 14.330

energy of lattice atoms D , the static lattice potential energy Ф0, the free energy F 
and the free Gibbs energy G (Table II). The results are compared with experimental 
[15, 38, 39] and the best theoretical data obtained in terms of the Mie-Lennard- 
Jones (M -L-J) [5, 40], Morse (M) [12] as well as Barker-Fisher-Watts (B-F-W) 
[28] potentials.

The values calculated in RSCPA of the isothermal bulk modulus В and the 
coefficients of anisotropy A  and 6 are given in Table III together with the observed 
[15, 41-44] and other theoretical results [15, 22, 40]. The coefficients A and S express 
the deviation from the Cauchy relation for the isothermal elastic constants [20].

It is evident from Tables II and III that the agreement between the experi
mental and our theoretical results for the static lattice energy and isothermal bulk 
modulus at 0 К is reasonably good. For this reason, as a next reliable test of 
validity of self-consistent equations (1)—(12) we will explore the temperature and 
pressure dependence of various dynamical and thermodynamical functions, i.e.: the 
anharmonic force constants /( / ,  T) and g(l, T ) (Table IV), free energy F, free Gibbs 
energy G (Table V) as well as the molar heat at constant pressure Cp (Table VI). 
Our results for Cp as a function of P, are compared with those obtained on the 
basis of the Fomin formula in the quasi-harmonic approximation [45].

The experimental measurements of the heat capacity at constant volume Cv
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at high temperature limit ape compared in Table VII with theoretical data calculated 
in RSCPA for the S-N and M [46] potentials as well as with those computed for 
the M-L-J and Bobetic-Barker (B-B) potentials by the help of the Monte-Carlo 
(M-C) method [27].

The results presented in Table VII show that the agreement of experimental 
data for CV with those calculated in terms of the Singh and Neb function is a 
little better than the corresponding agreement for the Morse potential at the high 
temperature limit. Reasonably good agreement between the experimental [47, 51] 
and our theoretical results is also evident from Table VIII in which we show the 
comparison of the values reported in the literature for Cv [12, 25] with values 
calculated in the RSCPA over a wider temperature region.

From Table VIII we see that our results for the heat capacity show the same 
temperature behaviour as has been found experimentally. The values of Cv cor
rected by means of the anharmonicity of lattice vibrations are higher than those 
obtained in the lowest order self-consistent phonon theory by Leech and Reisland 
[25] which confirm the thesis on the significance of contributions of anharmonicity 
to the thermal phenomena.

To show the importance of the anharmonic contribution to the heat capacity 
at constant volume, ACv  = — T  ■ , we present in Table IX the comparison
of data on the basis of the Feldman and Horton approximation [52] for the Mie- 
Lennard-Jones potential with values calculated in RSCPA for the Singh and Neb 
and Morse [12] models. From this Table we see that the anharmonic effects are not 
negligible in calculations concerning the thermal phenomena in the high tempera
ture region.

5. Conclusions

The self-consistent phonon theory (SCPT) of anharmonic crystals has been 
used so far for the investigation of physical properties of the face-centred (fee) and 
body-centred (bcc) lattices [33-37, 46]. However, all these calculations are not 
relative to the rare gas solids (RGS).

The SCPT of anharmonic crystals was used in [12] for the investigation of 
physical properties of the RGS. This paper presents a continuation of our inves
tigation of the dynamic and thermodynamic properties of RGS. The calculations 
performed in the reduced second-order self-consistent phonon approximation, con
cern two cases with respect to the initial potential curves:

1) Singh and Neb potential in which the accuracy of thermodynamic properties 
of RGS in the anharmonic approximation is the best in comparison with other 
kinds of potential curves still considered.

2) Morse potential widely used by Plakida and Siklós (e.g. [16]) as a model 
potential for the description of thermodynamic properties of the fee structure 
for the reduced parameters T* and P*.
The system of self-consistency equations describing the thermodynamical and 

mechanical properties of the RGS is solved for the parameters of potential energy
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Table VI
T he effect of pressure on  m olar heat at constant pressure C p  

obtained in terms of the Singh and Neb (S -N ) as well as 
M orse (M ) self-consistent potentials in the RSCPA. Theoretical 
data  calculated on the basis o f the Fomin formula in the quasi
harm onic approximation (Q -H ) [45] are given for comparison

Solids

T [K ]

P

[MPa]

Cp  [J/mol-K]

Q -H

RSCPA

S -N  M

A t 0 21.30 22.71 22.731
80 0.1 23.207 22.72 23.611

10 26.482 23.76 25.659

Kr 0 22.90 23.67 21.668
115 0.1 25,79 23.75 24.972

10 27.568 24.46 25.882

Xe 0 21.80 21.92 23.991
156 0.1 24.332 22.0 24.681

10 28.991 22.73 26.355

Table VII
Comparison of the values for the m olar capacity at constant 

volum e Cy  at high tem perature lim it obtained in terms of the 
Singh and Neb (S -N ) as well as Morse (M ) self-consistent 

potentials with experim ental (Ex) [27] and theoretical data  
calculated for the Mie—Lennard-Jones (M -L -J) and 

B obetic—Barker (B -B ) potentials by the help of the M onte-C arlo  
(M -C ) m ethod [27]

Solids T [K ] C y  [J/mol-K]

Ex M--C RSCPA
Ar 80 22.7 ±  0.5 B -B 21.8 ± 0 .7 S -N 22.670

M -L -J 22.5 M 22.731

Kr 115 22.9 B -B 21.6 ± 0 .7 S -N 23.540
M 24.668

Xe 156 21.2 ±  1.4 M -L -J 22.8 S -N 21.900
M 23.991

functions determined in higher approximation with respect to the number of nearest 
neighbours having influence on the pair interaction in the lattice [14].

Detailed numerical results for the binding energy of lattice atoms, static ener
gy (Table II), isothermal bulk modulus (Table III), heat capacity at constant volume 
Cv  (Tables VII and VIII) have been compared with available experimental data as 
well as with those calculated in previous papers by the help of the quasi-harmonic 
and improved self-consistent phonon approximations.
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Table VIII
Comparison of the values for the molar heat at constant volum e 

C y  obtained in terms of the Singh and Neb (S -N ) self-consistent 
potentia l with experim ental (Ex) [47-51] and other theoretical 
data [12, 25] of RG S. T he meaning of sym bols is as in Table II

Solids T

[KJ

C y  [J/mol-K]

Ex S-N M
[12]

M -L -J
[25]

Ar 10 3.296 3.136 4.146 3.591
40 19.954 19.081 20.270 19.229
60 23.322 24.241 22.275 20.775
70 25.718 23.468 22.673 20.950

Kr 10 5.907 7.772 4.506
40 21.594 22.920 21.525 21.150
80 23.070 24.451 23.583 23.372

100 23.180 24.377 24.616 22.172

Xe 10 7.787 3.566
40 22.734 22.573 22.862 21.997
80 23.446 25.352 23.844 23.095

100 23.111 24.475 23.883 23.020
140 21.897 22.652 23.864 22.571

Table IX
Cubic anharmonic contributions to the heat capacity at constant 

volume Д C y  o f  the RGS using the Singh and Neb (S -N )  
and Morse (M) [12] self-consistent potentials and Feldm an-Horton  

approximation [52] in  the case of M ie-Lennard-Jones (M -L -J )  
nearest neighbour force m odel

Solids T

[K]

C y  [J/mol-K]

S-N M M -L -J

Ar 10 0.2160 0.2274 0.4438
40 1.0520 1.1074 1.7756
60 1.7911 1.8854 2.6634
70 2.1645 2.2785 3.1073

Kr 10 0.1574 0.1657 0.2843
40 0.8619 0.9027 1.1372
80 1.9304 2.0320 2.2744

100 2.5471 2.6812 2.8430

Xe 10 0.1034 0.1089 0.1920
40 0.5697 0.5869 0.7681
80 1.2795 1.5360

100 1.5725 1.6553 1.9200
140 1.1800 1.2412 2.6881
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This article presents several particular aspects in relation to torsion. We have also  
studied the gravitational Held of axial symmetry w ith  torsion as well as the electrom agnetic 
Held and we have suggested a generalization of M axw ell’s equations.

The theory of the gravitational field in spaces with torsion (that use a more 
general affine space, the Riemann-Cartan space) separates the affine characteristics 
from the metric ones, so that torsion should be linked to certain characteristics that 
are not described in the Theory of General Relativity.

The theory of gravitation for such spaces is developed under the form of 
Theory Ua by Hehl [1], Aldersley [2] and Davis [3]. In [4] Hayashi sets forth a 
new theory of the gravitational field using a Weitzenböck space, with torsion and 
without a curvature. Miiller-Hoissen and Nitsch [5] starting from a Lagrangean 
depending on torsion, study the field equations for the homogeneous and isotropic 
space. The development of Dirac’s theory also finds its place within spaces with 
torsion, as it presented by Andretsch [6].

While in the Theory of General Relativity matter appears as an energy-mo
mentum carrier, a phenomenological description of matter possessing but energy- 
momentum is not sufficient to describe its characteristics. A series of articles con
nects torsion with the structure of the bodies that produce the gravitational field 
and a most important question is that concerning the physical aspects and the mi
croscopic origin of torsion (for example, the spin of the particles that produce the 
gravitational field [7]).

At the same time, if torsion is a real quantity, there should exist experiments 
that spotlight it. In [8] the models of such experiments are given, but as the assessed 
results are extremely reduced, they cannot, for the time being, be spotlighted owing 
to technical reasons.

Thus, at present, it is only the theoretical models that can show phenomena 
where torsion can play an important part [9], [10].

Since the above mentioned articles consider that the theories of gravitation 
developed on spaces with torsion are of interest because they cover a wider field of 
the properties of the gravitational field than the standard ones, we too have studied 
some aspects linked with exact solutions on spaces with torsion.

The present paper contains several applications of the equations of the gravi
tational field of the Theory U\. One gets accurate solutions and, at the same time,

A d a  Physica Hungarica 71, 1992  
Akadémiai Kiadó, Budapest



1 9 4 SERVILIA OANCEA

one can draw a comparison with the results that are obtained when torsion gets 
anulled. In order to study the compatibility of the gravitational and the electro
magnetic field we suggested a generalization of Maxwell’s equations for spaces with 
torsion.

Our applications refer to fields of axial symmetry. We considered this sym
metry since it has also been studied much in the theories without torsion in order 
to find exact solutions.

Thus, the first Section of our paper presents the equations of the gravitational 
field with torsion for a particular metric of axial symmetry, using the Newman- 
Penroee formalism for spaces with torsion. In the second Section of this paper these 
equations are solved for the case of the electromagnetic field, taking only a non-null 
component of the electromagnetic field tensor.

The third Section deals with the generalization of Maxwell’s equations in the 
presence of torsion. Then, the system of Einstein-Maxwell’s generalized equations is 
solved for the metric of axial symmetry under consideration; the metric and torsion 
are established.

In the fourth Section the equations of the gravitational field created by a fluid 
without pressure are solved.

I. Let the gravitational field of axial symmetry given by the metric be:

ds2 = —e~2u(dß2 +  dz2 + в2 d<p2) + e2udt2, (1.1)

with variables x1 = g, x2 — z, x3 = <p, x4 =  t that constitute a particular case of 
the axial symmetry given in [11].

In what follows we shall consider the case when both functions that define 
the metric and the torsion depend only on the variable g.

Using the Newman-Penroee formalism written for spaces with torsion [12] (to 
determine the components of the Ricci tensor) and the equations of the gravitational 
field of Theory U+ [13], for metric (1.1), the equations of the gravitational field can 
be written as:

e— 2u

e2“ [(ti')2e2u — 2 /2] = - к Т п , 
e2“ [—(u ')2e2u + 2 /2] =  — kT 22,
p2u
e—  [—(u ')2e2u + 2 /2] = -  kT33,

-2«"e2“ +  (u')2e2u 2u'e2u
в

+ 6 /2 = -  «Г44.

(1.2)

Here /  is the tetrad component of contorsion, T** stand for the contravariant com
ponents of the energy-momentum tensor and “/” represents the derivative with 
respect to variable g [14].

II. We consider the gravitational field of axial symmetry of a body such that 
the only non-null component of the tensor of the electromagnetic field be F u  = iF.
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This choice simplifies the system (1.2) and is compatible with it. Under these 
conditions system (1.2) is reduced to the following equations:

( u ') V u - 2  (H I)

—2u"e2u -  + (u ')2e2u + 6 /2 = -  ^ - F 2.Q о 7Г

If, besides these, for the function that defines the electromagnetic field one 
chooses F  =  а/ß, where a is a constant, then, system (II.1) becomes:

9«' r*f>~2u
—2u" -  —  + 4(u')2 -------= 0, (II.2)

в в

with or =
Noting у = e-2u and with a change of variable t = lnp, Eq. (II.2) becomes:

ÿ -  ay2 = 0, (II.3)

where represents the t derivative.
Integrating Eq. (II.3) we get:

Зз? -  Чау3 = C, (II.4)

C being an integration constant.
From (II.4) there follows:

t = V 3 /  dy - (И.5)
J  v /c  +  V

Substituting у = ( I  — I)1/3 and inserting for simplicity 2a/C = 1, the integral 
(II.5) is reduced to the form of Euler type integrals.

Therefore, for the case of the gravitational field considered above, the general 
solution is difficult to explain. The fact that this solution is not explicit, does not 
reduce the generality of the question of the compatibility of the gravitational and 
electric field in spaces with torsion.

From (II. 1) one can see that torsion depends both explicitly on the electric 
field, through the function F  and implicitly, through the function that defines the 
metric. One can say that, for this case, torsion is compatible with the electromag
netic field.

In order to spotlight the effects of torsion, let us consider for the instances 
above that torsion is annulled.

From the first equation of system (II.l), with F  = а /g it follows:

(u ')V u = X  (II.6)

Acta Physica Hungarica 71, 1992



1 9 6 SERVILIA OANCEA

with 7 = ка2/8я- and for the second equation of the same system:
o,,'

-2 u "  + 2(u')2 -  —  = О, (II.7)

whose solution is function

ti =  - ln ( C i+ C 2ln p), (II.8)

Ci, Ci being likewise constants of integration.
Therefore, the annulling of torsion within the system of equations that de

scribes the gravitational field (II.1) implies the passing from an elliptical solution, 
given implicitly, to a simple logarithmical solution given by (II.8). The modification 
of the function that defines the metric can lead to the modification of the properties 
of the gravitational field it defines.

III. Within Einstein’s General Theory of Relativity, Maxwell’s equations re
garding the electromagnetic field allow for finding exact solutions for the electro
magnetic field in the presence of gravitation. The fact that this theory considers 
a symmetrical connection has, as aftermath, the fact that Maxwell’s first set of 
equations has the same form as in the Special Theory of Relativity., and the sec
ond set of equations is modified. For a Riemann-Cartan space with torsion there 
arises the very asymmetry of the connection which brings about the modifications 
of Maxwell’s first set of equations as well.

Starting from this observation, we have studied the equations of the electro
magnetic field in a space with curvature and torsion, within axial symmetry.

Treating the electromagnetic field within the framework of the theories devel
oped for spaces with torsion requires the redefining of the tensor of the electromag
netic field and the generalization of Maxwell’s equations.

Thus, we define the electromagnetic field tensor, in the presence of torsion, in 
a manner that is different from other authors, under the form [15]:

F it  =  V,v4* -  VfcAi, (III.l)
*

where Ai is the quadripotential of the electromagnetic field and V=V, + ЛГ", 
is the contorsion vector.

We have chosen this definition of the electromagnetic field since, within the
*

framework of theory U4 on which we founded our researches, derivative V is used 
to express the conservation laws.

Using the same covariant derivative and keeping the significance of the physi
cal quantities from the standard theory, we suggest the following form for Maxwell's 
equations:

VpF,j: +  V,- Fkp + VtFpi =0,

VjfcFfi = j \  (III.2)
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Here j* is the fourcurrent that is conserved, therefore:

V ,/ = 0. (Ш.З)

*
If V,j' Ф 0, there arise serious difficulties in the case of describing the non-static 
gravitational field.

We also impose the condition:

V,gik = 0. (HI-4)

*
If Vfÿa ф 0, the raising and lowering of indices are no longer unique.

For metric (1.1) for the case of choosing only one non-null component of the 
electromagnetic field fourpotential A\, Einstein-Maxwell’s generalized equations in 
the presence of torsion are:

e-2u -2u"e2u

e2u [(u,)2e2u — 2 /2]

-  +  (u ')2e2u + 6 /2

f  + f ' e - Z u ' e f  
e2uA'; + 8 /2Л4

=  -  ^  [ Ю 2 +  8 / 2e - 2M 2] ,

= ̂ [ K )2 + S /2e - 2M 2],

= 0, (III.5)
= J4 •

For system (III.5) one finds for contorsion:

e3u
/  = C ---- (III.6)

в

and for the metric a particular solution:

и =  -^ ln (c i ±  c2 lng), (И1.7)

where С, C\, C2 are integrating constants.
With solution (III.7), metric (1.1) can be identified with the metric of a cylin

der with a mass and charge on condition ^ в ^  ro where L is the length and ro 
the radius of the cylinder. The identification of the constants is in this instance:

where <t is the linear density of mass.
Using (III.6) and (III.7) from system (III.5) one can find the fourpotential of 

the electromagnetic field and then, the fourcurrent, j 4.
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In case torsion is annulled, for Maxwell’s equations in the presence of torsion 
we get the equations known from the General Theory of Relativity.

From the first equations of system (III.5) in the case of vanishing torsion, we 
get an equation of the form (II.7) with a solution (II.8). For the four potential of 
the electromagnetic field we get

A4 = — i
Ci -t- C2 In g ’ (III.8)

and for the fourcurrent:
1C3

деГТ сГь^ ' (III.9)

One can notice that, although when torsion is different from zero, the solutions 
to equations (II.2) and (III.5) are different, in case of zero torsion both of them are 
of the same form (II.8). Even if the properties of the electromagnetic field that 
result from the two equations are different, when torsion is absent, the metric is of 
the same form.

If, in the case when torsion is annulled, for the case when only component 
F\4 is non-null, one gets the solution:

e 2u = (ci +  c2 In e)2

for the case of generalizing Maxwell’s equations in the presence of torsion, with the 
same non-null component of electromagnetic field tensor, one gets for the metric:

e~2u = Cl +  C2 ln£.

We reckon that the generalization of Maxwell’s equations in spaces with curvature 
and torsion, alongside with the field equations of Theory [/4, describes the physical 
field under consideration.

We shall also note something else. Torsion is linked to the metric by relation 
(III.6). As e3u cannot vanish, it means that the annulling of torsion implies annulling 
the integrating constant C.

If in the expression of torsion we replace solution (II.8) we find that we cannot 
get the constant C annulled with the help of constants Ci, C2, which means that 
our solution does not satisfy “the principle of correspondence” that is solution (II.8) 
does not imply the annulling of torsion, the way torsion annulling leads to (II.8). We 
reckon this could be explained by both the particular choice of integrating constants 
and by the fact that, generally speaking, this lack of reciprocity reflects the physical 
and geometric aspects that we have not taken into consideration above.

IV. We consider the gravitational field of axial symmetry produced by a fluid 
without pressure, for which the energy-momentum tensor is of the form

r ' J' =  / iu V .  (IV. 1)
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Here щ represents the fourspeed that we prefer to be of the following form:

=  /(Г + I»*’) , (IV.2)

where /* and n* are the contravariant components of the tetrad for metric (1.1).
This choice shows that the fourspeed is only capable of producing the torsion 

of the space that should be compatible with the gravitational field described by the 
system of equations (1.2).

The system of equations (1.2) becomes for this fluid:

2u 9«'#>2u
—2w"e2u -  +  (u')2e2u + 6 /2

(u')2e2u = 2 /2,

= -  2к р /2е~2и.

(IV.3)

System (IV.3) is reduced to equation:

о
—2u" -  —  + (4 + ß){u')2 = О, (IV.4)

в

with ß  =  к /i.
The solution to the equation is of the form:

u = — ln(cj + c'2 In p), (IV.5)

where c(- and c'2 are constants.
Since for metric (1.1) the spatial components of the fourspeed are null, (IV.5) 

represents the gravitational field of a fluid (dust) without motion.
For the fluid without pressure, the vanishing of torsion is meaningless because 

the situation described corresponds to those properties of the fluid that are due 
exclusively to torsion.
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On the basis of the reduced second order self-consistent phonon approximation the  
temperature and  pressure dependence of the thermodynam ic functions o f rare gas solids are 
com puted and compared with experim ental and oth er  theoretical d a ta  in  the high tem per
ature region. T he instability param eters are calculated  also. The system  of self-consistent 
equations is solved for the generalized form of th e  Lennard-Jones (n , m ) interatomic p o 
tential.

1. Introduction

In a previous paper [1] we have used the Plakida and Siklós self-consistent 
method [2] for investigating the dynamic and thermodynamic properties of highly 
anharmonic rare gas solids (RGS) in terms of the Morse, Rydberg and Varshni 
potential models. In this paper the effect of temperature and pressure on the 
thermal properties of the RGS is investigated with the generalized form of the 
Lennard-Jonee (n, m) potential [3] as a model of nearest-neighbour (NN) central 
force interaction by the reduced second-order self-consistent phonon approximation 
(RSCPA) [2].

The Lennard-Jonee (n,m) potential has been previously tested and used by 
Klein et al [4] in evaluating the temperature dependence of the molar heat and 
thermal expansion coefficient of certain RGS. Also, Massa et al [5] used this model of 
NN interaction for the investigation of volume dependence of the elastic constants, 
phonon frequencies and related thermodynamic properties of solid argon by the 
help of pseudo-harmonic approximation. However, this approximation becomes 
unreliable at high temperatures [5, 6]. It is worth pointing out that the parameters 
inherent in the (n, m) potential were determined in [5] with the aid of experimental 
elastic constant values and the melting curve. In this paper the parameters of the 
Lennard-Jonee potential have been determined in the highest approximation with 
respect to the number of shells of NN using experimental values for the energy of 
sublimation, the compressibility and the distance between NN in the crystal lattice 
by help of the method described in [3, 7]. This approach is expected to be more 
useful than those previously used in [5].

Acta Physica Hungarica 71, 1993  
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2. Thermal properties of the anharmonic crystals 
in the RSCPA

Let us take the generalized form of the Lennard-Jones (n,m) potential as a 
model potential

U(l) = Do n — m
(TOY _  n / r o y  
W  /  n -  m \  l J

n>  m, ( 1 )

where ro is the equilibrium distance between the neighbouring atoms in the harmon
ic approximation, U'(ro) =  0, and Do is the depth of the potential, U(ro) =  —Do- 

Applying the method developed by Plakida and Siklós [2] we get the following 
expression for the self-consistent potential:

ф (i) = c 1£( c ï - c km) Bk, ( 2)

where

Cl II a

k=0

■ m D o /n  — m, C* = A*

A kn = \' i .
. pi • (n + 1) ■ (n + 2) • • (n + 2k -  1),

к = 0
* = 1,2 ,...

A km = <f à ’
l  pi • (m +  1) -(m -f 2) • .. . • (m + 2k -  1),

k = 0
k = 1 ,2 ,...

*  = *■■ ( ? ) “ • y - u4l)
У 2 - r l

u2(/) is the mean square relative displacement of neighbouring atoms at a distance
/[2].

Then the thermal properties of the cubic lattice consisting of N  identical 
atoms can be written as follows: 

a) The equation of state is

P  =
z_C
6 • t; X ;[ (n  + 2 i ) .C * - ( m  + 2 t ) .C ‘ ] . 5 ‘ , (3)

к =0

z and V  are the number of nearest neighbours and the specific volume, respectively.
b) The internal energy E, the free energy F and the molar heat at constant 

volume C„ are respectively:

1♦(о+2-/а,л-«а(о + 5 ■ N  • F3(T),

F =Fo +  E -  /(/,T ) • u2(/) • N  — 4 • N ■ F3(T),
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The symbols used in (4)-(6) have the following meaning:

f ( l ,T )  = f ( l  + a y  + 6 Pl),
f  =n m - D0/rl,  a - r 2 - t ,
г  =n + m + 3, t = n2 + m2 + 6 • (n + m) + n • m + 11, 
6 =4 • r /n  • m, pi = 3 • p ■ V ■ го/2 • z ■ Do ■ /о. 

lo = r0 • (1 + r  • p).

Fo and F3 (T) are the free energy in the harmonic approximation [8] and the ef
fective cubic anharmonic contribution to the temperature dependent part of F [9], 
respectively.

The system of self-consistency equations which describe the effect of pressure 
on the thermodynamic properties of cubic crystals near the lattice instability point 
T, was solved analytically in terms of the Lennard-Jones (n, m) potential function in 
[10]. We shall not collect here analytical equations derived there but applying them 
to the lattice of RGS we will explore the pressure dependence of various functions 
i.e.: the instability temperature T, , relative displacements of atoms \/{и>1)/1, , free 
energy F, and the free Gibbs energy G,.

3. Numerical results

Using the values of model parameters reported in Table I, we have computed 
at first the temperature and pressure dependence of various thermodynamical func
tions, i.e.: the binding energy of lattice atoms D, Grüneisen parameter 7, internal 
energy E, free energy F, thermodynamical potential G, relative displacement of 
atoms \/( ti2)/l  and molar heat at constant volume Cv.

The calculated in RSCPA values of D and 7 are given in Table II together 
with the experimental data [11-13].

In Table III the temperature variations of the thermodynamical functions as 
well as the relative displacement of atoms for some values of the external pressure 
are presented. From this Table we can see the thermal expansion of the crystals 
and the decrease of the internal energy E  when the temperature increases. So, 
for larger T  values of the self-consistency potential (2) sufficiently differs from the 
harmonic interaction potential (1), i.e. the behaviour of the crystals in RSCPA 
differs sufficiently from the calculated in harmonic approximation.

The detailed numerical results of the molar heat at constant volume Cv for 
considered potential at various temperatures are given in Table IV together with 
the observed data (Ex) [15, 16] as well as those computed for the Morse (M) self- 
consistent potential [1] and the Lennard-Jones (12,6) nearest neighbour force model 
[17] using the Feldman-Horton approximation [18]. The experimental values of C„ 
for Ar and Kr were obtained from the equation: Cv = Cp — ß2 ■ Т /к  ■ g using 
experimental data for all quantities on the right hand side of the equation. (Cp 
is the molar heat at constant pressure, ß\ is the volume coefficient of thermal
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T a b le  I
Lennard-Jones (n ,m ) potential constants for the 

pairwise atom ic interaction in rare gas solids

Solids

Parameters

n T7l П)
M

Do
i o - J1 [J]

Ar 14.7 7.0 0.375 1.5812
Kr 14.42 6.88 0.399 2.3795
Xe 13.83 6.52 0.434 3.3648

T a b le  II
The effect o f  pressure on the binding energy of la ttice  atoms 
D  and G rímeiben param eter -y o f rare gas solids a t О К using 

the Lennard-Jones (n ,m ) self-consistent potential. Experimental data  
(E x) [12-14] are collected for comparison, p  in un its o f 1.01325 • 10s P a

Solids P - D  ■ 10“ 21 [J/atom ] V *
n, m Ex [12] n , m Ex [13,14]

Ar 0 11.170 12.7527 4.4715 2.80
10 11.173 4.4713 (3.10)*

100 11.200 4.4682
1000 11.427 4.4395

Kr 0 17.293 17.4629 4.2080 2.75
10 17.296 4.2078 (2.80)

100 17.324 4.2060
1000 17.547 4.1881

Xe 0 25.559 24.6723 3.9760 2.75
10 25.563 3.9759 (2.87)

100 25.601 3.9744
w o o 25.907 3.9598

’ Values in parentheses correspond to experimental results given in [14] 
“ Theoretical values obtained on the basis of analytical formula given in [15]

expansion, к is the isothermal compressibility, g is the density.) The calculations 
of Cv for Xe were impossible because of incomplete experimental data set. From 
Table IV we see that our results for the heat capacity show the same temperature 
behaviour as has been found experimentally. The values of Cv obtained in terms of 
the (n, m) potential are somewhat lower than those calculated for the Morse model. 
It follows from this that the values of thermodynamic functions of crystals strongly 
depend on the depth of the potential well Do- The value of Do is always lower in 
the Lennard-Jones (n, m) potential than in the Morse potential [1].

As a next reliable test of validity of the self-consistent phonon theory and 
the generalized form of the Lennard-Jones (n, m) model of interatomic interactions 
in the lattice of RGS we will explore the pressure dependence of thermodynamical

Acta Physica Hungarica 71, 1992
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Table III
Tem perature and pressure variations of the internal energy E ,  

free energy F ,  free Gibbs energy G and the relative  
displacem ent of atom s \ J (u2) / i  o f rare gas solids in the RSCPA  

for the Lennard-Jones (n ,m )  potential

Solids T
[K]

- E
[kJ/mol]

- F
[kJ/m ol]

- G
[kJ/mol]

V w / t

Ar 40* 4.3484 5.5590 5.5590 0.0529
40** 4.3824 5.5635 4.8088 0.0517

60* 3.3010 6.1447 6.1447 0.0746
60 “ 3.4972 6.1946 5.3624 0.0703

70* 2.0428 5.9651 5.9651 0.0988
70* * 2.4606 6.3697 5.4039 0.0893

Kr 80* 5.8623 10.3374 10.3374 0.0645
80“ 5.9828 10.3592 9.4038 0.0625

100* 3.6805 10.8659 10.8695 0.0924
100“ 4.4710 11.2658 10.1824 0.0817

110* 2.8667 10.8504 10.8504 0.1027
110“ 3.1103 11.2099 9.9325 0.0989

Xe 120* 7.8513 16.5432 16.5432 0.0719
120“ 8.0880 16.5918 15.3245 0.0692

140* 5.0677 17.0473 17.0473 0.0976
140“ 6.3445 17.7185 16.3041 0.0852

160* 3.6355 17.4646 17.4646 0.1094
160** 3.9779 17.8807 16.1150 0.1069

*p =  0 Pa  
“ p =  101.325 M Pa

functions near the lattice instability point T,. Numerical results for T, are listed 
in Table V together with ones obtained in terms of the Lennard-Jones (12,6) and 
Morse renormalized potentials. The values of melting temperature Tm [19, 20] are 
shown in this Table because the melting point, which is determined by the balance of 
free energy between solid and liquid, must be a little lower than the temperature of 
lattice instability [21]. For qualitative comparison we have also collected in Table V 
theoretical data for Tm of Ar obtained by Kumari et al [22]. From Table V we see 
that the instability temperature increases as the crystal volume is compressed and 
this qualitative tendency obtained is consistent with the observed melting data [19] 
as well as theoretical ones [22, 23].

Pressure variations of the relative displacement of atoms у/(и])/1, , free energy 
F, and the free Gibbs energy G, of RGS at T  = T, in the RSCPA for the Lennard- 
Jones (n, m) potential are shown in Table VI. Theoretical results obtained in terms 
of the Morse renormalized potential are collected in this Table for comparison. 
Table VI shows that the mean distances between the atoms l, are much larger than 
the mean square displacements \/(uJ) up to the instability point. Therefore the
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T ab le  IV
Comparison of the values for the m olar heat at constant volume 

obtained in term s of the Leim ard-Jones (n, m) self-consistent 
p o ten tia l w ith experim ental [16, 17] and theoretical data com puted for the 

M orse (M ) [l] and Lennard-Jones (12,6) potentials [18] of rare gas solids

Solids T

[K]

C v [J/m ol-K]

E x (n ,m ) (12 ,6) [18] (M) [1]

Ar 5 0.369 0.383 0.482
10 03.296 3.066 3.591 04.146
20 12.222 14.550 12.046 8.595
40 19.954 20.410 19.229 20.270
60 23.322 21.570 20.775 22.275
70 25.718 21.320 20.950 22.673

Kr 5 0.854 0.695 0.986
10 5.198 5.918 4.506
20 15.661 19.320 15.612 16.482
40 21.923 21.980 21.149 21.525
60 23.376 22.070 22.222 23.108
80 25.587 23.640 22.371 23.583

100 27.775 23.050 22.172 24.616

X e 5 1.133 1.614
10 9.068 3.565
20 20.680 17.084 17.958
40 22.810 21.997 22.862
60 22.860 22.945 23.649
80 22.540 23.095 23.844

100 22.310 23.020 23.883
120 21.630 22.795 23.896
140 21.130 22.571 23.864

long-range correlations due to the attractive part of the potential play an essential 
role and the instability point corresponds to the transition from the crystal state 
to the uniform density state [24]. This transition is accompanied by singularities in 
the specific heat [24, 25].

4. Conclusions

The self-consistent phonon theory of anharmonic crystals [2] has been used 
last time for the investigation of physical properties of metallic crystals [10, 26] in 
terms of the generalized form of the Lennard-Jones (n, m) central force interactions 
[3]. This generalized potential has four adjustable parameters m, n, Do and ro 
compared with the Lennard-Jones (12,6) potential, which has only two. Then, 
making use of additional physical property data to determine these parameters a 
more sensitive description can be obtained for crystals.

Applying the method formulated in [2] in this paper we investigate the pres-
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Table V
Pressure variations of the instability temperature T,  of RGS in the  

self-consistent phonon theory for the Lennard-Jones (n ,m )  
and (12,6) as well as Morse (M) potentials. Experimental 

values (Ex) of the m elting temperature Tm [20, 21] and, in  
parentheses, theoretical ones obtained by Kumari et al [23] are 

given for comparison, p in units o f 10s Pa

Solids P Г . [K] Tm [K]

(n ,m ) (12,6) (M) (E x)

A t 0 83.756 79.354 86.887 —
0.689 83.809 79.680 86.930 83.810

(83.810)
101.325 86.961 85.339 92.240 —
923.40 109.428 95.632 125.853 105.281

(103.725)
1210.25 114.271 106.809 147.279 11.433

(109.730)
2462.06 143.991 135.584 170.784 136.269

(134.932)

Kr 0 115.736 102.420 109.620
0.73

101.325
115.804
125.390

102.368
112.756

109.664
115.771

115.78

Xe 0 161.180 147.310 164.822
0.81

101.325
161.284
174.435

147.359
153.650

164.886
172.889

161.37

Table VI
Pressure variations of the relative displacement of atoms 
\Z (u J ) / /j ,  free energy F,  and the free G ibbs energy G,  

of RG S at T  =  T,  in  the RSCPA for the Lennard-Jones (n, m ) 
potential. OtheT theoretical data obtained in term s of the Morse (M) 
renormalized potential are shown for comparison, p in units of 10* P a

Solidk P % /№ )/* . —F,  [kJ/m ol] —G ,  [kJ/m ol]

n, m M n, m M n, m M

Ar 0 0.1045 0.1190 6.5250 6.735 6.5250 6.735
0.689 0.1047 0.1191 6.5292 6.736 6.5116 6.732

101.325 0.1059 0.1233 6.9667 6.737 5.8231 6.730

K r 0 0.1062 0.1280 10.9535 10.267 10.9535 10.267
0.63 0.1063 0.1289 10.9542 10.269 10.9419 10.265

101.325 0.1087 0.1294 11.5504 10.271 10.1209 10.262

Xe 0 0.1105 0.1207 17.4287 17.254 17.4287 17.254
0.81 0.1111 0.1208 17.4292 17.258 17.3653 17.253

101.325 0.1120 0.1234 18.4891 17.261 16.6004 17.250
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sure and temperature dependence of the thermodynamic functions of rare gas solids 
(RGS) in terms of the above interatomic potential. It should be noted that the pa
rameters of the (n, m) renormalized potential listed in Table I have been determined 
in the highest approximation with respect to the number of nearest-neighbour shells 
having influence on the pair interaction by the help of the method described in [3]. 
Numerical results of thermodynamical quantities, which account for the (n, m) self- 
consistent potential, are in reasonable agreement with the measured data (Tables II, 
IV and V). At the same time these results represent the appreciable improvement 
over those which account for the (12,6) renormalized potential. The values of ther
modynamical functions obtained by the help of (n, m) potential are somewhat lower 
than those calculated for the Morse model. From this it follows that the values of 
the above mentioned quantities strongly depend on the depth of the potential well 
Dq. The value of Do is always lower in the Lennard-Jones (n,m) potential than in 
the Morse potential curve [1].

Detailed analysis of the results collected in Tables II-VI shows that the 
Lennard-Jones (n, m) and Morse renormalized potentials are quite good represen
tations for the initial pair interaction in RGS. Let us recall here that the Lennard- 
Jones (12,6) potential was widely used [27] and regarded as a satisfactory quan
titative representation of real potential in RGS. However, the arbitrariness of the 
(12,6) potential was pointed out by Guggenheim and McGlashan [28] and found 
to lead to an incorrect value (by a factor of about 2) for the coefficient of r -6 in 
the long-range region, and to a value for the depth of the potential well which is 
very likely incorrect by as much as about 20 % in the case of argon. This reduces 
the effectiveness of the Lennard-Jones (12,6) potential as a description of the in
teratomic potential for rare gas solids. One way to improve the agreement between 
the potential model and the experimental data is to use the generalized form of the 
interatomic potential — the Lennard-Jones (n, m) potential. The results obtained 
with its application are reported in Section 3.
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In this paper variational calculation is performed for simple jellium  m etal surface 
electron density using the density functional theory. A trial function of the local electron  
density is proposed. The free param eters are obtained by minimization of the toted energy 
functional. The effect of the h igh density gradient expemsions of the kinetic emergy is 
studied (i.e. K irzhnits energy). T he results obtained are similar to those of Lang and 
Kohn, which use a more exact m ethod.

1. Introduction

Hohenberg, Kohn and Sham (HKS) have shown that the total energy of an 
inhomogeneous electron gas can be expressed as a unique functional of the local 
electron density and that this functional attains its minimum at the real electronic 
density [1,2]. Making use of that, the surface energy was calculated in our previous 
work [3]. Here, a modified formula of the local electron density is suggested and 
the effect of the second gradient expansion of kinetic energy is studied. That was 
omitted in the work mentioned. Our results approximate the results of Lang [6] 
well; for example, the maximum difference between our calculation of local electron 
density and that of Lang’s result is 0.056 • n+ at r, = 6.0, where n+ is the bulk 
density and r, is the Wigner-Seitz radius which characterizes the bulk electron 
density.

The jellium model of metal surface is used; the energy is the Hartree and the 
unit of length is the Fermi wavelength. 2 * * * 6

2. Statement of the problem

Using the (HKS) method some important physical quantities were calculated; 
for example, the surface energy, chemical potential and the work function [4, 5].
On the other hand, using (HKS) formalism, Lang and Kohn have calculated the
local electron density by solving a Schrödinger-like equation with the self-consistent 
field method [6]. The electron densities resulting from these calculations have been 
reported in numerical Tables for the integer values of Wigner-Seitz radius from 2 to
6. On the other hand, there are no experimental data on the local electron density
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which would provide a direct validity test of these numerical Tables. The local 
electron density obtained by Lang and Kohn is considered as its exact calculation, 
owing to the fact that the kinetic energy is exact and only the exchange-correlation 
energy was taken in an approximate formula.

In the present model, the metal is assumed to be in the positive region of x 
and the zero point is on the surface of the metal. The analytical formula of the 
suggested electron density is

n(x) =n+ -¥>))]+

0(x — <p) • к •
sin(g(a; -  y>))
. [g(*-v>)]a

cos(q(x -  y>))l 1
[« (*  — v»)]'r J J ’

( i )

This formula is a generalization of the one employed by Szeifert [7] and that 
of our previous work [3]. Неге в(х — tp) is the step function and p, q, k, <p, a, 7 are 
variational parameters. The formula must satisfy the following physical conditions: 

a) charge balance, which means that

f  [0(x) — n(x)\dx — 0, (la)
J  — OO

where в(х) is the step function.
b) continuity of n(x); i.e., the second term of Eq. (1) has to be zero when 

x = <p which results in
7 = а — 1. (lb)

Since the application of the physical conditions has reduced the six parameters 
to four we choose p, q, к and a as free variational parameters.

The energy functional, U[n], is given in the following form:

E [ n ]  =  E k [n ] +  E e, [ n ]  +  E ™ A [ n ] ,  (2)

where E e,  [n] is the electrostatic energy, [n] is the exchange-correlation energy 
in local density approximation and £*[п] is the kinetic energy contribution, which 
consists of Thomas-Fermi energy plus the first and second order gradient expansion 
terms for the kinetic energy. The first gradient term was derived by Weizsäcker [8] 
and the second one by Kirzhnits [9]. The components of the total energy are given 
below.

The kinetic energy may be expressed in this component equation by

В Д  =  E j F [n]  + £ tWK[n] + E f ,  (3)

where E j F  is the Thomas-Fermi energy, £’iJVK[n] is the Weizsäcker energy and 
£'JCr[n] is the Kirzhnits energy. Their analytical expressions have the following 
form:

E F [ n ]  = /  n(a:)5/3dz:, (3a)
r s J  — 00
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£*WK M =
0.0013 r°° 

r2 /' s  J  — oo

1
n(x)

(3b)

The electrostatic energy is given by

1 [°°Et,[n\ =2 J ["(*) - n+(x)\ve,(x)dx, (4)

where n+(x) is the positive background charge density described by a step function 
and t\.,(x) is the electrostatic potential produced by the electric dipole layer (n(x) — 
n+(x)) on the surface.

í£«DA["] is expressed by the Wigner interpolation formula [10], [11] (in local 
density approximation),

E.LDA
xe

. . 0.458 f 00 , ,4/3 j  Г[n] = ----—  / n(x)4' 3 d x -
' 8 J  — OO J  — C

0.44 • n(x)4/3 
r, + 7.8 • n(x)1/3

dx. (5)

3. Results

In the present paper, model calculation for Eq. (1) as a trial function of local 
electron density has been performed. At first the calculation was performed by intro
ducing the first gradient expansion only (Weizsäcker approximation Eq. (3b)) and, 
secondly, by introducing the second gradient expansion (Kirzhnits energy, Eq. (3c)) 
in the kinetic energy. The inclusion of Kirzhnits energy in the energy functional 
is the inherent difference between this and our previous work [3]. The calculations 
were performed at r, = 2,3,4,5,6 (the range of metallic density).

Table I gives the values of the chosen free parameters of Eq. (1), introducing 
only Eq. (3a) and Eq. (3b) in the kinetic energy term. The last column in this 
Table represents the defined minimum value of total energy. Table II is the same as 
Table I with the only difference that Eq. (3c) has been taken into account during 
the calculation. As we see in Tables I and II the minimum value of the total energy 
at r, = 2.0 is very high and it has a positive value. At the other values of r, the 
minimal values of the total energy are smaller and they have a negative value. This
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T a b le  I
Calculated parameters o f electron density 

w ith  Kirzhnits energy om itted

r , P 9 к a V E M

2.0 5.205331 7.895049 0.069164 2.719804 0.007003 0.18886302 • 10 “ 2
3.0 7.720699 6.930177 0.038432 2.591169 0.004543 -0 .36767144  • 10 “ 1
4.0 10.375072 8.953466 0.085654 2.400219 0.008242 -0 .24193683  • 10 “ 1
5.0 12.943867 10.423628 0.170325 2.388006 0.014134 -0 .15306272  • 10-1
6.0 15.462465 12.558343 0.285127 2.337805 0.019953 -0 .100788668- 10-1

T a b le  II
Calculated parameters o f electron density 

w ith  Kirzhnits energy included

rs P 4 к a V E ln]

2.0 4.902696 6.282076 0.061510 2.321621 0.008651 0.19874771 - 10“ 2
3.0 6.223999 329366 0.111859 2.233857 0.013921 -0 .36720419  • 10“ 1
4.0 7.320741 9.047756 0.176699 2.16406 0.018397 -0 .24166628  • 10“ 1
5.0 8.137526 10.356304 0.268837 2.141908 0.024695 -0 .15289046  • 10- 1
6.0 8.755995 11.470215 0.368613 2.039834 0.031837 -0 .10066852 • 10“ 1

Fig. 1. The extrem al nature of the energy functional at the optim um  value of a  and K ,  while p 
and q have been selected at 17 different values around the m inim um  at r ,  =  5.0

Acta P kytica  Hungarica 71, 199Í



ELECTRON DENSITY OF METALLIC SURFACES 215

result is also encountered in the calculation of Lang [6]. The reason for this result 
is that the used jellium model does not represent the very high density metals well. 
This basic shortcoming of the jellium model has been corrected by Lang [6] by going 
over to a model in which the positive ions are more realistically treated.

Fig. 2. The extrem al nature of the energy functional at the optimum value of p and к , w hile a  
and к have been selected at 17 different values around the m inim um  at r ,  =  5.0

Fig. 3. The calculated electron density by om itting Kirzhnits energy at r ,  =  3.0 (solid line) and
r s =  5.0 (dashed line)
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Figure 1 gives good information on the extremal nature of the energy func
tional, Eq. (2), by the aid of 3-D computer graphics drawn at the optimum values of 
к and a  while p and q have been selected at 17 different values around the minimum 
at r, = 5.0. Figure 2 presents the same information at the optimum values of p and 
q, while к and a  are the variables.

Fig. 4. The calculated  electron density by introducing all the suggested term s of kinetic energy at 
r a =  3.0 (so lid  line) and at r s =  5.0 (dashed line)

Figure 3 shows the local electron density obtained by Eq. (1) for r, = 3.0 and 
r, = 5.0, using Eq. (3a) and Eq. (3b) in the kinetic energy. Figure 4 is the same as 
the previous Figure, but all the suggested terms of kinetic energy are included in 
the energy functional E[n],

In Fig. 5 the differences between our calculations of local electron density 
and that of Lang [6] at r, = 5.0 can be seen, where the solid line represents these 
differences if the Kirzhnits energy [9] is omitted and the dotted line demonstrates 
those if that term of kinetic energy has been taken into account. In Fig. 5, as we see, 
the differences between our calculations an Lang’s calculation of electron density 
when all the suggested terms of energy were included are small compared with the 
same differences when the Kirzhnits energy is omitted, especially at the metallic 
surface.

The calculations were performed by an efficient computer program by min
imizing the energy functional. The convergence is rapid for every low electronic 
density (r, > 4.0) and slow for high electronic density (r, < 4.0).
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Fig. 5. The difference* between our calculation of loca l electron density and that of Lang when  
Kirzhnits energy is om itted (solid line) and without om itting this term o f kinetic energy (dashed

line) at r , =  5.0

4. Conclusions

The function of local electron density suggested in the present paper gives 
good results for the model used. This paper also shows the importance of introduc
ing the gradient expansions of the kinetic energy during solving similar problems 
such as this one.
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In this paper an analytical expression for electron density will b e  suggested. One of 
the Atting m ethods is applied to  the self-consistent calculation of Lang through the use of 
this analytical expression. The density for all m etals can be calculated very easily, while the  
electron density has been calculated by Lang only for the integer values o f r ,  (W igner-Seitz  
radius) in range (2 -6 ). The results have been com pared with a sim ilar work of Szeifert. 
The calculated results approxim ate the exact solution of Lang well at all the values o f r , .

1. In troduction

Making use of the self-consistent calculation of electron density [1,3], Szeifert 
has derived an analytic formula for electron density which approximates the self- 
consistent results of Lang [1, 3]. Inthe present paper a modified formula of elec
tronic density has been worked out. The method which estimates the values of the 
parameters differs from Szeifert’s method. The results obtained approximate the 
self-consistent calculation better than those of Szeifert.

The jellium model of metal surface is used. The unit of the electron density 
is positive bulk density and the unit of length is the Fermi wavelength.

2. The model

Much attention has been paid to the electron density calculation at the metal
lic surfaces in the last three decades. Using the self-consistent method, Lang [1] has 
calculated numerically the electron density for the interger values of a parameter 
which characterizes the electron density in metallic range (from 2 to 6). This pa
rameter has been called Wigner-Seitz radius, r, . The values of this parameter have 
been given in Table I of [2] for 41 metals. Using these numerical Tables in the case 
of other problems which depend on electron density, for example work function, 
chemical potential, surface energy and so on, causes some difficulties.

The form of the suggested analytic formula for electron density is:

n(x) =n+ { + -? ) ) ]+

0(x — ф) ■ к ■ 'sin(g(z -  <p)) cos(q(x — у>))1 I
[ ? ( * - ? ) j7  J J ’ ( 1 )
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Table I
Values of the param eters in the analytic  

formula of electron density

r . P 9 к a 9>

2 . 0 4.4653171 8.1720701 0.2224990 2.5199734 0.0225499
3.0 5.2937105 10.1527914 0.3156489 2.2835416 0.0279401
4.0 5.8812459 10.6206928 0.4070619 2.2671306 0.0344539
5.0 6.4114674 11.2140308 0.4715537 2.2018746 0.0389946
6 . 0 7.0035399 11.4913645 0.5166687 2.1761765 0.0420772

where 0(x — <p) is a step function and p, q, k, p, a and 7 are the parameters. This 
formula must satisfy the following physical conditions:

a) Neutrality of the charges, which means that
tf  [в(х) -  n(x)] dx = 0, (la)

J — OO

where 0(x) is the step function.
b) Continuity of n{x) (i.e. the second term of Eq. (1) has to be zero when 

X  = tp). This leads to
7 =  a — 1. (lb)

Since the application of the physical conditions has reduced the six parameters 
to four, we choose p, q, к and a  as the free parameters. As it can be seen, Eq. (1) 
is easy to transform to Szeifert’s formula by putting a  =  2.0 and using Eq. (lb).

The theory that was used to determine the values of the chosen parameters 
was to make the sum of the squares of the differences between self-consistent cal
culation and our calculation a minimum [5] for the non-linear forms, starting with 
a trial set of these parameters. In other words, we have to look for the values of 
parameters for which the following equation has a minimum:

ft(p ,« ,* ,a )=  ]T )( » ( * ) - « L(*))2 . (2)
1 =  1

where n(x) is the suggested formula of electron density and nL(x) are given as 
numerical values by Lang. Szeifert [2] has used another method to fit Lang’s calcu
lation.

3. Results

Making use of the method developed here, values of the chosen parameters 
were calculated with the aid of a computer program at r, =  2,3,4,5 and 6. Table I 
shows the resulting values of these parameters.
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As we can see in Table I the values of every parameter in this range of r, can 
be fitted to an analytic equation as a function of r, , having the form

a[r,] = ci • r ' 2 +  c3, (3)

where “a” is a parameter and ci, с-i and c3 are the fitting parameters. Using the 
theory of fitting mentioned above, one finds

p  =2.4149 r? 4988 +  1.0701, 
q = -  11.4343 • г,"1 5136 +  13.0275,
ib =1.1246-r,0 1916 -  1.0644, (4)
a  =1.6678 r ,“ 2 2097 +  2.1567,
<p =0.0292 • r? 3862 -  0.0 1 59.

Using this family of equations, the electron density for all the values of r, may 
be calculated. It can be considered as the most important result of the suggested 
technique.

Fig. 1. The differences between our calculation o f electron density and  th a t of Lang (solid line) 
and  between Szeifert’s calculation and th a t  of Lang (dashed line) a t r ,  =  2.0

Figure 1 shows the difference between our fitted calculations of electron den
sity and that of Lang (solid line). Also shown is the difference between Szeifert’s
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calculation and that of Lang (dotted line) at r, = 2.0. Figure 2 also shows these 
differences at r, =  6.0.

It can be concluded from Fig. 1 and Fig. 2 that our results approximate 
Lang’s calculation better than Szeifert’s results. For example, the maximum error in 
Szeifert’s calculation is 0.069n+ , while in our case it is 0.023n+ at r, = 6.0. Another 
important difference between the two calculations is that the errors in Szeifert’s 
calculation increase rapidly as r, increases, (the maximum error at r, = 2.0 is 
0.032n+ and at r, =  6.0 it is 0.0693n+), while the errors’ increase is very low in 
the method suggested above (the maximum error at r, = 2.0 is 0.0238n+ and at 
r, =  6.0 it is 0.024n+).

4. Conclusion

This simple analytical formula for electron density with four parameters gives 
good results for the self-consistent calculation of Lang. On the other hand, by using 
this formula the electron density for all the simple metals may be calculated. We 
need only to know the value of r„ for the metal, then simple substitution in Eq. (4) 
and Eq. (1) gives the electronic density of the metal surface.
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Le potentiel de M ie-Grüneisen appliqué à  un arrangement linéaire m ontre l ’insta
bilité du réseau au-delà d ’u n  certain écartem ent lim ite entre les atom es. La fusion résulte 
de vibrations d ’amplitude excédant une valeur critique qui est évaluée à environ 12 % de 
la distance interatom ique d ’équilibre.

Introduction

La transition de l’état solide à l’état liquide est assez mal connue. On constate 
que les solides ayant une grande température de Debye Од présentent des points 
de fusion Tj élevés dépendant de la distance interatomique r donc de la solidité des 
forces de liaison (proportionnelle à 0 |j ) dans le réseau [1]. Il est généralement admis 
que la fusion résulte d’un apport d’énergie provoquant une cassure de la structure 
pour une distance interatomique maximale [2]. Explicitons ce phénomène pour une 
chaîne linéaire à l’aide du modèle de Mie-Lennard-Jones qui rend compte de la 
variation du volume par élévation de température.

L’énergie potentielle d’interaction d’une paire d’atomes distantes entre elles 
de r est W(r) = —a/rm + b/rn où m et n sont des entiers (n > m) et a et b 
des constantes (courbe la). Cette fonction permet aux atomes d’osciller autour de 
leur position d’équilibre et doit rendre compte de l’instabilité du réseau à hautes 
températures. Les coordonnées du minimum d’équilibre: r о =  (am/ 6n)1/(n-m) et 
l’énergie de dissociation Wo permettent d’écrire:

W(r) = Wq
n — m

W(r) =  0 pour ri = r0( ^ ) 1/(n_m). Son asymétrie donne un point d’inflexion 
pour r,- = ro( i± l.)1/(" -m). La force F(r) entre les atomes est donnée par la dérivée 
W '(r), c’est la superposition des composantes attrative et répulsive (courbe lb). 
La dérivée seconde, nulle pour r  =  r, , est analogue à la constante de rappel d’un 
oscillateur harmonique.
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Energie potentielle d’une chaine linéaire à 0 K

Considérons un arrangement linéaire de p atomes, espacés irrégulièrement de 
r,j entre eux:

• ....... • .......... • ............. • • • -j»........ I • • ...........• • • • •
5 4 5 2 1ч------1-------------- *1 2

roT roi

• ...... « ....... •
3 4 5

La longueur totale est L =  pl si / est la valeur moyenne de r^-. L’énergie potentielle 
totale d’interaction des p atomes est:

W =^  ç  { ç  [-»(£)" Ч ^ Л où r j k  =  r 0j  -  ro* et j  Ф k.

Si parmi les valeurs de À: € [0, ±  p /2], on considère, par exemple, l’atome central 
(ifc = 0), son énergie potentielle d’interaction due à la présence de tous les autres 
est:

К * ) ' Ч * Л
où les termes très prépondérants sont seulement dus aux interactions avec les plus 
proches voisins ( j  =  ± 1):

W(roi) ~ = ^ { - [ (£ ) '+ (£ ) + m
m

Si X est la distance de l’atome central au point milieu entre ses deux plus proches 
voisins séparée en moyenne par 21 : r0i = I + x et rQj  = l — x. L’énergie devient une 
fonction symétrique de x par le paramètre /:

W{I)  =  J 2 l_ / _
n — m [ nr о +  r n r £

1
+1(1 + X)" (I ( 1 )

Etudions cette énergie d’interaction W ( x )  pour diverses valeurs de / selon la théorie 
quasi harmonique:

W(x) = n ^ m { ~ nr° [*”"  ( l  +  y )  ”  + ( ‘ ~  y )  ™]

+ m r ;[i-“ ( i  +  ï ) - " + , - ( l - ï ) ‘ " ] }
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où par dee développements limités de (1 ± y) n êt au 4è ordre (x < /):

W(x) ~  [ - п г % Г тn — ТП I

+ т г £ Г п

X 2 X42 +  m(m  + 1)— + m{m +  l)(m + 2)(m + 3)yy^

2 + n(n +  1)^ - + n(n +  l)(n + 2)(n + 3 ) ^ ]  I .

Sa dérivée:

W'(x)  = ( y )  {2 [ - r ^ r ( m+1)(m + 1) + rS H " +1>(n + 1)]

+ W  [ - ro’r(m+1)(m + !)(m + 2)(m + 3) + rnQr ^ l \ n  + l)(n + 2)(n +

s’annule pour x = 0 et pour:

_____________ ( ? Г ( т  + 1 ) - ( ? Г ( п  + 1)_____________  f
- /S+i) (m + l)(m + 2)(m + 3) + ,(Г^ау(п + l)(n + 2)(n + 3)

on pose

( \ l/(n — m)
= ri, N  < 0 pour l < r, et

N  > 0 pour / > r,- (£> = 0 et change de signe pour une valeur supérieure à ri). En 
conséquence, W{x) peut être représenté (courbes 2a à /): / < r< : x$ < 0, W(x) 
est minimal pour x =  0. Chaque atome de l’arrangement linéaire reste dans une 
position moyenne entre ses plus proches voisins comme un oscillateur harmonique. 
Il — ro distance minimale d’équilibre (a), /2 > ro (b). Les droites x = l sont toujours 
asymptotes. / =  r,- : x2 = 0, x = 0 est racine double, /3 = r,(c). / > r, : Xq > 0, 
l’énergie W(z)  présente deux minimums situés à ro des atomes voisins (pour x = 0 
on a W(x)  maximale). La valeur absolue de xo croît avec celle de l(d,e,f).

Dès que I > r,, l’atome central occupe une position stable dans l’un des deux 
minimums. Cette situation est caractéristique de l’état liquide. La chaîne se dilate 
régulièrement depuis pro jusqu’à pr, puis elle devient instable, c’est la fusion, il y a 
fracture en l’absence d’agitation thermique (courbe le).
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Courbe  1. a ) _______ Énergie potentielle W (r), b) — • — • — force F (r ) =  grad W (r),
c ) ----------- fracture de la  chaîne par tension

Courbe 2. L ’énergie W (j-) pour diverses valeurs de / (avec deux minimums si / >  r ,)
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Courbe 3. Représentation de / en fonction de xq

Représentons / en fonction de xq (courbe 3):
-  Si / < r,-, toutes les courbes W(x)  out leur minimum pour xo = 0 sur un seg

ment vertical. L’ordonnée du minimum est égale à l’abscisse des asymptotes 
des courbes 2.

-  Si / =  r,-, le point xo = 0 et / =  г,- correspond à la racine double.
-  Enfin si / > r,-, on a deux minimums d’écartement croissant sur une hyperbole 

rectangulaire.

V ibrations atom iques à T K

En conséquence, à T K, lorsque l’amplitude moyenne des vibrations atomiques 
atteint et excède la valeur maximale I m  = ri — ro, les atomes vibrent loin de leur 
position d’équilibre et le réseau est instable. Des ondes longitudinales de longueur 
d’onde kl (к entier), avec des points d ’instabilité à kl /2, se propagent le long de la 
chaîne. Si on pose r< = r0(l + a), on a o; = ^  = < la dilatation maximale
avant la fusion. Avec

- ( s a r * - ©
l / r - y

1 V 2ln A = ——  ln ^  =  ------y - X  X y - X ln 1 - V * - y / ÿ '
V? .
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T a b le a u  I 
Valeurs de a  =  r‘~ rg

m: 2 3 4 5 6

n : 6 0 ,1 8 0 ,1 6 0,16 0 ,1 5 0,14
7 0 ,1 6 0 ,1 5 0,15 0 ,1 4 0,13
8 0 ,15 0 ,1 4 0,14 0 ,1 3 0 , 1 2

9 0 ,14 0 ,1 3 0,13 0 , 1 2 0 , 1 1

1 0 0 ,1 3 0 , 1 2 0 , 1 2 0 , 1 1 0 , 1 1

1 1 0 , 1 2 0 , 1 1 0 , 1 1 0 , 1 1 0 , 1 0

1 2 0 , 1 1 0 , 1 1 0 , 1 1 0 , 1 0 0 , 1 0

où 0 < < 1 car n < m. En développant:

2ln A = + r.'g .-_> g . + ...>
(y/x +  y/ÿ)Vx (V* + y/ÿ)x X + s/xÿ

d’où l’approximation:

ln Л ~ 2
x + y = ln 2 )  

m + n +  2/ soit Tj ~  r0m -f n + 4 
m + n + 2 et a  = 2

m + n + 2 '

Pour les valeurs de m et n généralement admises, la fraction de г о au delà de 
laquelle il y a perte de la stabilité reste relativement constante (tableau I).

Pour la plupart des solides, près du point de fusion, l’amplitude moyenne 
maximale des vibrations des atomee est comprise entre 10 et 15 % de la distance 
interatomique d’équilibre. Des estimations voisines ont été avancées par divers 
auteurs [3]. Ceci est en accord avec les résultats trouvés par des méthodes différentes 
[4] et avec ceux de Lindemann [1]: e2 = 4,364-10-14 fyLÎ2 cm2 donnant l’équation

réduite = YJ et a = ~  0,11. Nous savons aussi [5] que: e2 ~  8, î °a(0, 06)

d’où a  ~  0,12. L’amplitude des vibrations devient une fonction linéaire (comme 
les autres propriétés thermiques) de la température réduite îfj pour chaque type de 
structure.

L’énergie potentielle de l’atome central, déplacé de x de sa position moyenne 
d’équilibre par agitation thermique, est d’après l’équation (1) si x «  i.

W{x) ~ 2 Wq
n — m ln +

Womn
nm

(m + l)r™ (n + l)rg
/m ln

• Г2
Í2

Le premier terme est l’énergie nécessaire pour atteindre la position d’équilibre. Le 
second est l’énergie nécessaire à la vibration d’amplitude x. La force F(x), rappelant 
vers sa position d’équilibre l’atome central de l’arrangement vibrant comme un 
oscillateur harmonique, est:
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F(x) = dW(x) _  2W0mn 
dx n — m

(m + l)rg* + (n + l)rg
p  K o *

où K q est la constante de rappel sous l’action des plus proches voisins si / ~  tq.
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Com putations of the frequencies of the longitudinal and transverse phonon m odes in  
a binary m etallic glass (C us7 Zr«3 ) based on a sim ple m odel approach have been presented. 
The m odel assum es a  central force effective betw een nearest neighbours, and a volume 
dependent force. B oth  types of excitations of phonons are com puted for the self-consistent 
screening and are compared to those com puted by Kobayashi and Takeuchi using recursion 
m ethod.

1. In troduction

Metallic glasses are such solids whose electronic properties are normally as
sociated to metals but their atomic arrangements are not spatially periodic. Amor
phous and non-crystalline are equivalent terms used to describe the atomic scale 
structure of such materials. In recent years the experimental studies [I] of metallic 
glasses have demonstrated their special characteristics which made the researches 
on the subject more interesting and meaningful. Metallic glasses have notable ap
plications [1, 2] in memory devices used in computers, in remote sensing devices 
and in high critical magnetic field materials as superconductors.

The understanding of the vibrational dynamics is a prerequisite to any un
derstanding of thermodynamic and transport properties of solids. In our present 
work we would like to study one of the dynamical properties — dispersion relation. 
There are two main theoretical approaches to derive phonon frequencies of metallic 
glasses: one is to choose a suitable interatomic pseudopotential as was done by 
Saxena et al [3, 4] for Ca7oMg30 and Mg7oZn3o glasses, respectively. In this ap
proach the quasicrystalline approximation developed by Takeno and Goda [5] was 
used. A second way of calculating phonon frequencies consists in the evaluation of 
force constants /?, 6 and ke as was done by Bhatia and Singh [6] for Ca7oMg3o and by 
Agarwal and Kachhava [7] for Mg7oZn3o glass using a simple model given by Bhatia 
[8]. In the present work we would like to follow Bhatia and Singh in adopting a 
simple model which assumes a central force, effective between the nearest neigh
bours and a volume dependent force due to conduction electrons. The model is 
applied for the calculation of dispersion curves of a binary glass, i.e. Cu57Zr43, for 
the first time both for longitudinal and transverse phonons. The results computed 
in the present calculation are compared to those by Kobayashi and Takeuchi [9] 
using a recursion method.
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[6)

and

2. Theory

The longitudinal and transverse phonon frequencies are respectively given by

w\  — —s’ +  ^ 2] +
2 N
да

2 2JV
ШТ  =  — 2 даг

klK^[G(qr,)Ÿ
е[я2 + ^ t f £(ï )Î

{ ß + \ * ) h - \ 6h

(1)

(2)

where N  is the coordination number, a is the nearest neighbour distance, g = n,M 
is the mean atomic density in which n, is the ion density and

M  — 0.57 X atomic mass of Cu + 0.43 x atomic mass of Zt (3)

is the mean atomic mass. /?, 6 and ke are force constants, ß  and 6 are defined in 
terms of derivatives of interatomic potential IF(r), as

ß =

6 = да

ga_
2 M

3 ,

2

2 M

1 dW(r) 
r dr

1 dW(r) 
dr

У

r = a
(4)

L ,
(5)

The conduction electron screening to interatomic potential is represented by the 
Thomas-Fermi screening length defined in terms of charge e and mass m of electrons 
as

/  4 me'11̂ 2 _n-TF — i ^2 ) m 1/3
( 6)

Then the relevant force constant ke due to the conduction electrons on the basis of 
the Thomas-Fermi model can be derived [6] as

ke = ArnigTiize7
K tf

(7)

where ne is the number density so that ne = щг  and z is the mean valence of the 
glassy system. In Eq. (1), e(q) is the self-consistent dielectric screening function [10]

(8)

where k f  = (Зт2пв)х/3 is the Fermi wave number.
To incorporate the correlation effects in e(q), Eq. (8) is modified to the form

1 [ l + * £ [i.- 4 1 In q +  2 kF
2 L я L Ak2F\ q -  2kF .

1
[ l + ^ i i - 4 1 ln |? +  2^ l2 L я щ \ U -  2 kF J ( 9)
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where /(g) is given by the Hubbard function [11]

/(? ) — jjiV i?2 + + 2 ^ f '̂ ( 10)

The cancellation effects of kinetic and potential energies inside the core of 
ions making the effective potential weak in core gives a shape factor, [G(gr,)]2, to 
be multiplied with the electronic term in Eq. (1), and is therefore of the form [12]

[G(gr,)]2
3[sin(gr,) -  (gr.)cos(gr,)]'

(9Г,)3 ( И )

Г 1where r, =  J  , is the radius of the Wigner-Seitz sphere.
In Eqs (1) and (2)

I n sin 0  cos" 0

so that with X =  да, Iq and / 2 are, respectively,

( 12)

/<>(*) =1 -
S in  X

h(x )  -  sin* 2 cos я
(13)

(14)

For the limiting case д —► 0, i.e. x -* 0; Iq «  я 2 */6  and f2 »  x 2 */ l 0 ; on substituting 
these in Eqs (1) and (2), we have longitudinal and transverse sound velocities, 
respectively, as Vjr (0) = u l / Я an<l Vt (0) = шт/я in low momentum region (g —> 0) 
as

^ l2(0) =N +  l * )  + b ,  (15)

prT2(0) = ^ Q / ? + l i ) .  (16)

3. Calculations, resu lts  and discussion

The values of Vx,(0), Vr(0) and g are taken from Kobayashi et al [9], тц is
calculated from the relation g = n, Af, whereas ke is calculated using Eq. (7) with
z =  2.29 and is found to be 9.106 x 1010 Nm-2. Finally we take N = 12, so that
the relation r»,a® = \/2 corresponding to fee lattice gives a = 3.13 x 10-10 m.
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Fig. 1. D ispersion curves for Cus7 Zr4 3  glass; a -  lul (— ) on the basis o f Eq. (1); b -  us? ( ) on
the basis of Eq. (2 ). Vertical bars denote 90 % width of peak; open circles denote the positions of 

the first moment; crosses denote the peak positions (ref. [9])

Acta Physica Hungarica 71, 1992



DYNAMICS OF A BINARY M ETALLIC GLASS 2 3 7

T a b le  I
Parameter* used in  calculations of phonon dispersion 

in  Cu5 7 Zr43  m etallic glass

ß 6 kF Га KTF
(101 0  N m -2) (10 10  N m “ 2) (1010  N m " 2) ( 1 0 10 m “ 1) ( 1 0 —10 m ) ( 1 0 20  m ~ 2 )

0.891 -1 .4 0 8 9.106 1.460 1.732 3.514

By substituting the values of q, Vl (0), Vt (0) and ke in Eqs (15) and (16), 
ß  and 6 are found. Table I contains the relevant parameters used for obtaining 
dispersion curves on the basis of Eqs (1) and (2).

Figures la and b give dispersion curves for longitudinal and transverse phonons, 
respectively. The first maximum of the u^ — q curve is found at q = 1.0 x 1010 m-1 . 
The first peak of the u>t  — q curve is obtained at higher ^-values than the first peak 
of the ul — q curve. As expected, both longitudinal and transverse phonons show 
strictly linear dispersion curves at low momentum transfers.

4. Conclusion

Although the model approach used in the calculations is basically defined for 
pure metals yet it has been found to a good approximation for metallic glass as 
well. The basic difference between the two systems is that metal has a long-range 
order, while the glass has a short-range as is obvious from Eqs (1) and (2), which 
implies the coordination number. This approach involves the structure relevant to 
the conditions in which the glasses are formed. This model provides knowledge of 
how results might depend on the starting structure from which the glass is made.

Since the experimental data for phonon dispersion of the system are not avail
able, the results might be used for correlating other properties of the metallic glass. 
The results presented are compared with those given by Kobayashi et al [9] and 
are found to be in good qualitative agreement at low q as shown in Fig la and 
b. The deviations at higher momentum transfers might point to the fact that the 
coupling of ß  and 6  to sound velocities provides a rather coarse evaluation of these 
parameters. A more realistic calculation would certainly require the knowledge of 
a detailed form for the interatomic potentials in the metallic glass. Such efforts are 
made in our research group, and the results are expected to be obtained in the near 
future.
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The structure of l l2 , l l4 '116,118Sb nuclei was studied with com plex 7  and electron  
spectroscopic m ethods via (p, n j )  and also (ог,П7 ) reactions (in the case o f 1 1 6 Sb, l l 8 Sb) at 
5.5-9 .2  M eV proton and 14.5-16.0 M eV a-partide energies. New level schemes have b een  
deduced. T he energy splitting o f the proton-neutron m ultiplet states 0 f 4 ® >4*. 120,1 2 2 ,124 gb  
was calculated on the basis of the “parabolic rule” . M any p  — n m ultiplet states have been  
identified and conclusions have been  drawn on the applicability of the parabolic rule as a  
simple guideline for experimental investigations.

D etailed  description of the energy spectra and electrom agnetic properties o f 
116,118,120,122,124 g^ nuclej jg given on the basis o f the interacting boson-ferm ion-ferm ion/ 
odd-odd truncated quadrupole phonon model (IB FFM /O T Q M ). The calculations give ac
count both  o f the “regular” and “irregular” behaviour of the energy sp litting of the p — n  
m ultiplets, as well as of the electromagnetic m om ents, 7 -branching and 7 -mixing ratios. 
Conclusions have been drawn on the role of different interactions in  the multiplet energy 
splitting.

The IBFFM  interpretation of the high-spin intruder bands and  the spectroscopic 
factors o f the neutron transfer reactions are also shortly discussed for Sb nuclei.

1. Introduction. Experimental methods and results

The 103-cm isochronous cyclotron of Hungary was put into operation in 1985- 
86. In the first nuclear spectroscopic program, based on this accelerator, we have 
systematically studied the structure of odd-odd 104- 116ln and u2-124Sb nuclei
(Fig- 1).

The method of experimental work was in-beam spectroscopy, more exact
ly: study of (p,ny) and (a, »17) reactions with complex 7- and e~-spectroscopic 
methods. The targets were prepared form isotopically enriched Ag, Cd, In and Sn 
isotopes.
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Z
Sb 51 

Sn 50 

In  49 

Cd 48 

Ag 47

N

Fig. 1. Part o f the chart o f nuclides. Z: atom ic number, N:  neutron number, shaded areas show 
stab le isotopes. Nuclei, investigated in  th is program, are m arked with mass num bers

Ge (HP) Faraday cup

angular distribution 
tab le

beam

d ia -  - 
phragm

superconducting
m agnet

tran sp o rte r  
Si (Li) -  Si (Li) e " -

spectrom eter 
(S M S )

bending m agnet quadrupole lens

Fig. 2. Layout o f the -y- (A) and electron-spectroscopic (B) beam  channels of the Debrecen 103-cm
isochronous cyclotron

The nuclear spectroscopic channels of the Debrecen cyclotron are shown in 
Fig. 2. On the y(—e~ )-spectroscopic channel (A) a turning “angular distribution” 
table was installed for supporting various semiconductor detectors. Replaceable 
reaction chambers and high resolution Ge (HP and LEPS) 7 spectrometers pro
vided possibility for single 7-spectrum, 7-ray angular distribution, 77- (and other) 
coincidence, as well as lifetime measurements. For conversion electron studies a 
miniorange Si(Li) spectrometer [1] was used in a special chamber.
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On the electron spectroscopic channel (B in Fig. 2) a superconducting mag
net transporter Si(Li)-Si(Li) spectrometer (SMS) was installed, which was operated 
mainly in swept current lens spectrometer (SMLS) mode. This spectrometer, de
veloped in ATOMKI, provides unique possibility for in-beam electron spectroscopic 
studies (high transmission, good energy resolution, low background, etc.). A de
tailed description of the spectrometer is given in [2], the schematic drawing of SMLS 
is shown in Fig. 3.

In order to obtain “complete” spectroscopic information on odd-odd indium 
and antimony nuclei, 7-ray (Ey, 17), 77-coincidence and internal conversion elec
tron spectra, as well as 7-ray angular distributions, lifetimes of excited levels (by 
means of Doppler-shift and delayed coincidence methods) and relative reaction cross 
sections [<Тге1(-ЕьЕу)] were measured at different bombarding particle energies. Lev
el schemes, level energies (Æ'l e v ) ,  spins, parities, 7-branching and 7-mixing ratios 
have been deduced.

Great attention was paid to the reliability and consistency of the obtained da
ta. For example the level spins have been determined with three different methods: 
a) from Hauser-Feshbach analysis of the (p, n) reaction cross sections, b) from in
ternal conversion coefficients of transitions and c) from 7-ray angular distributions.

As a result of experimental work more than 1200 (among them ~  700 new) 
7-rays have been identified, ~  350 (amonç them ~ 320 new) a* internal conversion 
coefficients have been determined, and about 460 (among them ~  250 new) levels 
have been deduced for n 2.114.i16.118Sb and 106.108i110>112.114ln nuclei.

The theoretical interpretation of the experimental results was performed on 
the basis of “parabolic rule” and interacting boson-fermion-fermion model calcula
tions.

The experimental and theoretical results have been published in the following 
papers: 116In [3], 114In [4, 5], 112In [6], 110In [7, 8], 108In [9], 106In [10], 104In [11], 
120Sb [12], 118Sb [13, 14], 116Sb [15, 16], 114Sb [17] and 112Sb [18]. The results 
obtained on odd-odd In nuclei are summarized in [19]. In this paper we overview 
the results of the antimony program.

2. Proton—neutron multiplet states and the parabolic rule

In zeroth order approximation the level energies of odd-odd nuclei can be 
obtained by addition of energies of the odd proton and odd neutron states. In higher 
order approximation the proton-neutron residual interaction must be taken into 
account, too. If we consider the residual interaction as a consequence of quadrupole 
and dipole (spin-vibrational) phonon exchange between proton and neutron through 
the nuclear core, a “parabolic rule” can be deduced from the cluster vibration model 
(Paar [20]). In the present work the applicability of the parabolic rule is studied in 
the case of lie.118.120>122.i24Sb nuclei.
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l i q u i d  h e l i u m  
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s u p e r c o n d u c t i n g  
c o i l

S i  (Li)

Fig. 3. Schematic drawing of the superconducting m agnetic lens electron spectrom eter (SM LS),
developed in  ATOMKI [2]
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2.1. Basic formulas

The energy levels of the proton-proton multiplet states can be described in 
leading order approximation by the following formulas [20], assuming quadrupole- 
quadrupole and spin-spin residual interactions

E(I) =  Ejf  +  Ejn +  A E 2 +  A E lt (1)

where E(I)  is the energy of the level, Ejr and Ejn denote the proton and quasineu
tron energies, respectively,

A Ei — —afV'
( [Д-f + 1) — jpjjp + 1) — jnjjn + l)]2 + I  (I + 1) — jpjjp + 1) — jn (jn + 1)

\  2 j p ( 2 j p  +  2 ) 2 j „ ( 2 j n +  2 )

A E i  =  -  a i í I (I  -H 1) ~  j p j j p  + 1) — j n j j n  + 1) 
(2 ip + 2)(2 j n +  2)

Here I  — I j p — j n I, . . . jp +  j n  I where j  is the total angular momentum of the 
quasiparticle, A E 2 and AE\  describe the energy splitting of the proton-neutron 
multiplet as a consequence of the quadrupole and dipole interactions between proton 
and quasineutron through the nuclear core, a2 and cri are the quadrupole and dipole 
interaction strengths, respectively. The definitions of V and £ coefficients are given 
in [20].

The dependence of the coupling strengths on the occupation probability of 
levels may be described by the following approximate formulas

« 2 U p , i n )  = « (20)lК  -  V?f ) ( U l  -  Т/ J ,  (4)

a i ( j p , j n )  = a (i0 ) , (5 )

where V? is the occupation probability of level j  and Щ — l — V?.

2.2. Parameters

The (quasi)particle energies can be taken from the experimental data of the 
neighbouring single-odd nuclei. Nevertheless, in practice, a separate energy nor
malization was necessary at each p — n multiplet on the basis of one (or more) 
reliably identified state(s) of the odd-odd nucleus. Thus, the parabolic rule is ef
fective mainly for the description of the relative energy splitting of the different 
members of the same p — n multiplet.

The and V2 parameters used in the calculations are summarized in
Table I.
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T a b le  I
Parameters o f the parabolic rule calculations

Isotope (0 ) c (20), MeV V 2

MeV fitted  to from  natural 
exp. data param etrization

1/45/2 i/fl7/2 1/43/2 i / h l l / 2

u e Sb 0.13
l l 4 Sn : 4.1 

5.4 l l 8 Sn : 3.8  
120Те : 19.7

0 . 8 8 0.72 0 . 2 0 0 . 2 1

118Sb 0.13
11 8  Sn : 3.8  

4.4 118Sn : 4.2 
12 0  Те : 19.7

0 . 8 8 0.85 0.30 0.23

1 2 0  Sb 0 . 1 2

11 8  Sn : 4.2 
6  12 0  Sn : 4.1 

12 0  Те : 19.7
0.33 0.23

1 2 2  Sb 0 . 1 2

12 0  Sn : 4.1 
6  122Sn : 4 .7  

122Те : 22.7
0.33 0.41

124Sb 0 . 1 2

E xplanation of the sym bols see in the text (Section 2.2)

The values were calculated from the expression = a i «  \b /A  MeV, 
where A  is the mass number.

a  2°̂  may be estimated from the data of the neighbouring even-even nuclei, on 
the basis of the formula =  382/?|/Лыг MeV (natural parametrization), where 
Tiu2 is the energy of the first 2+ state [E(2f )] in MeV and ßi is the quadrupole de
formation parameter. The E(2~[) and /?2 data were taken from [21]. In practice, the 
phenomenological a^  values, obtained from fitting the parabola to experimental 
data, gave better results.

The proton (above the Z — 50 core in siSb) has been considered as a particle, 
the neutrons as quasiparticles. The occupation probabilities of the quasiparticle 
states were taken from the systematics of the experimental data (from about 30 
publications, citations in [6]).

2.3. Results

The experimental and theoretical level schemes of 116,118> 120,1225̂  are s}lown 
in Figs 4-7, respectively.

In columns a) the low-lying levels of the neighbouring single-odd nuclei are 
given, as well as the main components of the wave functions of the states. The 
configurations were deduced mainly from one-nucleon transfer reactions.

Columns b) and c) show the results of the parabolic rule calculations.
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Fig. 5. Level scheme and p  -  n  m ultiplet states of 118Sb [13]. Further explanations see under
Fig. 4 and in text
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Fig. 7. Level scheme and p  — n m ultiplet states of 12 2  Sb. The 122 Sb experimental data were taken 
from [23-25]. Further explanations see under Fig. 4 and in text
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In columns d) the experimental level schemes are given as well as the main 
components of the wave functions obtained from all available experimental results 
(spectroscopic factors of one-nucleon transfer reactions, magnetic dipole and electric 
quadrupole moments, log f t  values of Д-decay, etc.).

The members of proton-neutron multiplets have been identified on the basis 
of experimental level energies, spins, parities, electromagnetic moments, lp, ln val
ues of one-nucleon transfer reactions and electromagnetic decay properties of levels 
(multipolarities of transitions and reduced 7-branching ratios). It is known that 
between neighbouring J  -* J ±  1 states of the same p — n multiplet one can expect 
strong Ml transitions.

In the case of the жд7/2vs\ /2  and жdb/2vs\/2 doublets of 124Sb the “parabol
ic rule” gives data, which are very similar to IBFFM results (see later in Fig. 14). 
Both theoretical results are in good agreement with experimental data. At the 
same time the experimental energy splitting of the жд7/2t/d3/2, ndb/2i/hll/2  and 
жд7/ 2vh\ \ /2  multiplets clearly deviates from the simple parabolic shape.

2.\. Conclusions

About 70 p — n multiplet states have been identified in 116,118,120,122,12415̂ *. 
In all cases the calculations correctly reproduced the type of parabola (i.e. open 
up or down). The minimum energy members of the multiplets were also correctly 
reproduced almost in all cases (in 22 cases from the 24 total). Even in the remaining 
two cases the predicted minimum energy member of the p — n multiplet was close 
to the experimental one.

Using ai°^ «  15/A and 4.4 £  & 6 interaction strengths for all multiplets,
the energy splitting of about 70 multiplet states could be described within ~  70 keV 
rms deviation. The parameters, obtained by fitting to measured data, were not 
far from the “natural parametrization” values (Table I).

All these results, obtained on odd-odd 116-124Sb nuclei, show that the parabol
ic rule can be applied as a simple guideline for the experimental investigations. 
At the same time the energy splitting of some multiplets clearly deviates from 
the parabolic shape, e.g. the жд7/2vd3/2 multiplet in 124Sb and жdЬ|2vh\\|2, 
жд7/2vh \\ /2  multiplets in 122>124Sb (see later in Fig. 15). In these cases the 
U2(i/d3/2) and V 2(uhll /2)  occupation probabilities are close to 0.5, and the ef
fective or2 values, which determine the strength of the parabolic splitting, are small 
[formula (4)]. If the effect of dynamical particle-core interaction is weak, other (for 
example exchange) interactions may play an important role in the energy splitting 
(see later in Section 3.3).

We remark that a ^ / a ^  was less than 0.03 for the identified p — n multi
plets of ne,us,120,122,m Sb. This indicates that the influence of dipole interaction, 
compared with the quadrupole one, is weak.

•T h is number does not include the jrg7/2i/d3/2 multiplet of 124Sb and the ird 5 /2 i/î» ll/2  
and n g 7 / 2 u h l l / 2  m ultiplets o f 122,124Sb.
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3. IBFFM/OTQM calculations

In order to get deeper insight into the structure of the low-energy states of 
odd-odd Sb isotopes, we have calculated the energies and electromagnetic proper
ties of the states on the basis of the interacting boson-fermion-fermion/truncated 
quadrupole phonon model for odd-odd nuclei (IBFFM/OTQM) [27].

3.1. Hamiltonian

The Hamiltonian of the IBFFM is [27]

H i b f f m  =  ^ i b f m ( p ) +  # i b f m ( b ) — # ib m  +  H p n ,

where # i b f m (p ) and H i b f m ( « )  denote the IBFM Hamiltonians for the neighbouring 
odd-even nuclei with an odd proton and odd neutron, respectively [28]. Яшм 
denotes IBM Hamiltonian [29] for the even-even core nucleus.

Depending on whether we use the Schwinger or the Holstein-Primakoff rep
resentation of the SU(6) boson Hamiltonian, we can distinguish between the inter
acting boson-fermion-fermion and odd-odd truncated quadrupole phonon models. 
The two representations are equivalent on phenomenological level.

The Hpn Hamiltonian of the residual proton-neutron interaction has the fol
lowing form:

Hpn = Vo£(rp - r„)(l + a<Tp ■ <Tn) + Voa[<Tp ■ a„]0,

where Vo and a  are the parameters of the Wigner and Bartlett forces, 6 is the Dirac 
symbol, rp and r„ are the position vectors of the proton and neutron, respectively, 
<r’s are the Pauli spin matrices and Vaa is the parameter of the spin-spin interaction.

The IBFFM/OTQM Hamiltonian was diagonalized in the proton-neutron— 
boson basis: |(jp,jn)Ipn, NR; J  >, where j p and j n stand for the proton and 
neutron angular moments coupled to Ipn, N  is the number of bosons, R is their 
total angular momentum, and J  is the spin of the state.

The computer codes IBM/TQM, IBFM/PTQM and IBFFM/OTQM were 
written by Brant, Paar and Vretenar [30] and adopted for the Debrecen computers 
by Zs. Dombrádi.

3.2. Parametrization

The parameters used in the calculations are summarized in Table II and Fig. 8. 
The d-boson energies of the cores were taken as the energies of the 2f  states of 

the neighbouring even-even tin isotopes. Since we treated only the low-lying states 
of nearly spherical nuclei, the maximum number of the d-bosons was restricted to 
2. It is known that the restriction of the boson number in the presence of SU(5)
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T ab le  I I
Parameters o f the IBFFM  calculation

Parameters l l e Sb
Set 1 Set 2

118 Sb 120  Sb 1 2 2  Sb 124 Sb

d-boeon
(quadrupole phonon)
energies, M eV Äu>2 1.3 1.29 1.23 1.14 1.13

Single-proton e(s-d5/2) 0 0 0 0 . 0 1 0 . 2 0.25
energies, e (* g 7 /2 ) 0.85 0 . 6 8 0.33 0 0 0

MeV e ( x s l / 2 ) 2.65 1.62 1.5 1 .2 1 . 6 2 .0

e(srd3/2) 2 . 0 1.45 1 .2 1 .2 1.5 1 .8

e ( * h l l / 2 ) 1.38 1.4 1.5 1 .6

Quasineutron E (i/d S /2 ) 0.80 0.60 1 .2 1.4 1 . 6 1 .8

energies, E (y g 7 /2 ) 0.45 0.25 0.50 0 . 8 1 . 1 1.4
MeV E ( v » \ /2 ) 0 0 0 . 0 0 0 0.07

E (v d 3 /2 ) 0.47 0.71 0.44 0.33 0 . 2 1 0

E ( v h \ l / 2 ) 0.51 0.38 0 . 2 1 0.08

Strength D ynam ical Г£ 1 . 0 0.53 0.65 0.65 0.65 0.65
parameters Exchange: A j 0 0 0 0 0 0

of nucleon- Monopole: A j 0.08 0 .1 0 . 1 0 .1

core r ? 0.7 1.414 0 . 6 0 . 6 0 . 6 0 . 6

interaction, A? 2.3 1.3 1.3 1.3 1.3 1.3
MeV A? 0 .1 0 .1 0 . 1 0 .1

Param eters of MeV.fm* V0 214 3.60 396 500 500 500
effective p — n a 0.25 0 . 2 0.25 0.15 0.15 0.15
interaction M eV.fm  \ aa 0 . 1 1 0.09 0.06 0.06 0.06

b 2.253 2.253 2.260 2.296 2.296 2.296
Eff. charges, 1.5 1.5 1.5 1.5 1.5
e en 0.5 0.5 0.5 0.5 0.5

evibr 1 . 8 2 . 0 1.7 1 .6 1 . 6 1 .6

Eff. gyro m agnetic g% 0.65flf?(free) 0 .6 5 ^ (free) 0 .6 gf(free) 0 .6 g%(free) 0 .6 g£(free)
ratios 9? 1 1 1 1 1

Я 0.5g"(free) 0.6g” (free) 0.5g"(free) 0 .5 g ” (free) 0.5g"(free)
9? 0 0 0 0 0

9p — Z /A 0.4397 0.432 0.425 0.418 0.411

symmetry can be accounted for by renormalization of parameters. According to our 
calculations even the two-boson components were weak in the wave functions. The 
boson-boson interaction was omitted.

The model space consisted of the d5/2, </7/2, sl/2 , d3/2 and / i l l /2 states both 
for protons and neutrons (with the exception of 116Sb, where we have calculated only 
positive parity level spectrum and omitted the 1/Л11/2 orbit). The single proton 
was considered as a particle and the neutrons as quasiparticles. The occupation 
probabilities for the neutrons were taken from the systematics of experimental data 
(for citations see [6]).

The proton and quasineutron energies, as well as the strength parameters of
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Fig. 8. P roton  partidé  (e) and quasineutron (E )  energies, as well as th e  neutron occupation prob
abilities (V 2 ) for different o d d -o d d  Sb nuclei. T he adopted values for IBFFM /O TQ M  calculations

nucleon-core interaction were fitted to level energies (Fig. 9) and electromagnetic 
moments [31] of the neighbouring odd—A  Sb and Sn nuclei by IBFM calculations.
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Fig. 9. Level energy system atic» of single-odd 1 1 5  12sSb and l l s —123Sn nuclei. D ata  were taken  
from  corresponding Nucl. D ata  Sheets and original papers

Finally, these parameters were slightly adjusted to the level energies and electro
magnetic moments of 116Sb, 118Sb, 120Sb, 122Sb and 124Sb, respectively, with a 
restriction of smooth variation from one isotope to the next. The adopted proton 
and quasineutron energies, as well as the occupation probabilities for neutrons are 
shown in Fig. 8.

The short range proton-neutron effective interaction strengths, Vo and a  were 
estimated from the corresponding data of the double closed shell nuclei [19b, 32]. 
The radial matrix elements of the effective interaction were calculated using har-
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monic oscillator wave function with oscillator parameters “b” , given in Table II.
The effective charges and gyromagnetic ratios were close to the commonly 

used, standard values.

3.3 Results and discussion

The IBFFM energy spectra of n 6.118.12°.122Sb and 124Sb are compared with 
experimental data in Figs 10-14, respectively. Although the energy splitting of 
different p —n multiplets shows great variety, and in some multiplets shape change of 
the splitting can be observed as we proceed from one isotope to the next, reasonable 
agreement has been obtained between experiment and theory.

The IBFFM wave functions of the states are complex, nevertheless the low-ly
ing levels are dominated usually with one proton-neutron component. For example 
in the case of 120Sb the i f ,  2 f , З3 and 4 f states are dominated by components 
with xd5/2t/<Î3/2 (quasi)particles, the 3 f, 2f states with x5/2i/il/2, the 3 f , 4f  
states with тд7/2 vs\/2  (quasi)particles, etc. (Table III), in accordance with the 
approximate classification of the parabolic rule. Similar results on wave functions 
have been obtained for 116.118.122.124Sb nuclei, too.

The systematics o f the energy splitting of the 116>118.120A22>124Sb p — n mul
tiplets and the corresponding IBFFM results are presented in Fig. 15.

The splitting of the ndb/2vdi/2 multiplets shows a regular, open-down para
bolic shape in 116,118’120,i22Sb nuclei, in agreement with IBFFM calculations. This 
parabolic shape is characteristic for the (quasi)particle-core dynamical interaction. 
Strong effect of the dynamical inter actions can be expected in odd-odd Sb nuclei, 
when the V 2 occupation probability of the neutron subshell is far from 0.5.

The splitting of the icdb/2vsl/2 and жд7/2vs\/2  doublets is quite regular in 
116,118,120,122,1245̂  an(j t jje experimental and IBFFM data agree well. Although 
the s l/2  quasineutron is particle-like in 116Sb and hole-like in 118_124Sb (Fig. 8), 
the character of energy splitting does not change. This is because the splitting of 
the doublets is determined by the spin dependent part of the effective interaction, 
which does not depend on occupation probability [formula (5)].

The energy splitting of the жд7/2vdZ/2, жЗЬ/2и}1\\/2  and ng7/2i/hll/2  mul
tiplets shows an open-down, nearly parabolic shape in the lighter nuclei, while in 
124Sb the parabolas are strongly deformed. Clearly they are “preparing” for inver
sion, because the V 2(vdi/2) and V 2{vh \\/2 )  occupation probabilities are close to 
0.5. As Fig. 15 shows, the IBFFM calculations could give a reasonable description 
of the energy splitting of these multiplets. The exchange interaction (the account 
of the Pauli principle in the (quasi)particle-core interaction) has a strong effect 
around V 2 «  0.5, and plays an important role in the interpretation of the “irregu
lar” (non-parabolic) energy splitting.

The icdb/2vg7/2 multiplet was observed only in 116Sb and 118Sb. The energy 
splitting shows (slightly distorted) open-up parabolic shape, in agreement with the 
IBFFM calculations.
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Fig. 11. Level scheme of the low-lying states o f 118Sb [14]. Further explanations see under Fig. 10
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Fig. 12. The low-lying levels of 120Sb [12]. The experimental d a ta  were telken from [22, 23]
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Fig. 13. The low-lying levels of l22Sb. The experimental d a ta  were taken from [23-25]
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Table III
W ave functions of som e low-lying states o f 12 0  Sb. For the given J w states 
th e  \ ( jP, jn ) I ;  N R  >  wave function com ponents and the corresponding 
am plitudes are given. O nly amplitudes larger than 10 % weight are shown

J" | ( ip , in ) / ;  N R  > Am plitude J ’  | ( ip , in ) / ;  N R > Am plitude

1 Í (5 /2 , 3 /2 )1  $ 0 -0.857 2~  (7 /2 , l l/2 )2 ;0 0 -0.867

4+ (5 /2 , 1/2)3;12 0.619 3 f  (7 /2 , ll/2 )3 ;0 0 -0.767
(1 /2 , 1/2)1;0G 0.587 (7 /2 , 11/2)2;12 -0.344

2 Í (5 /2 , l/2 )2 ;0 0 0.678 (7 /2 , 11/2)5;12 0.318
(5 /2 ,  3/2)2;00 -0.453 3~  (5 /2 , 11/2)3;00 -0.774

2  Î (5 /2 , 3/2)2;00 0.590 (5 /2 , H /2)4;12 0.363
(5 /2 ,  1 /2 )2 ,00 0.469 4 f  (7 /2 , ll/2 )4 ;0 0 -0.717
(7 /2 ,  3/2)2;00 0.326 (5 /2 , 11/2)4  ;00 -0.368

3 Í (5 /2 ,  l/2 )3 ;0 0 -0.816 (7 /2 , 11/2)6;12 0.327
(5 /2 , 1/2)3;12 0.328 4"  (5 /2 ,  l l/2 )4 ;0 0 -0.619

3+* (7 /2 , 1 /2 )3 0.810 (7 /2 , 11/2)2;12 -0.453
(7 /2 , 1/2)3;12 -0.327 (5 /2 , 11/2)6;12 0.325
(5 /2 , l/2 )3 ;0 0 0.311 5 f  (7 /2 , l l/2 )5 ;0 0 0.800

3 ,+ (5 /2 , 3/2)3;00 -0.690 (7 /2 , 11/2)7;12 -0.347
(7 /2 , 3/2)3;00 -0.459 (7 /2 , 11/2)3;12 -0.343
(7 /2 ,  1 /2 )4  ;00 -0.859 5J- (5 /2 , ll/2 )5 ;0 0 -0.759
(7 /2 ,  1/2)4;12 0.370 (5 /2 , 11/2)7;12 0.352

4 2+ (5 /2 , 3/2)4;00 -0.830 8 “  (5 /2 , 11/2)8;00 0.833
(5 /2 , 3/2)4;12 0.415 (5 /2 , 11/2)8;12 -0.376

We note that the lj" ground states of 118Sb and 120Sb belong to the ndb/2vd3/2 
multiplet, although the udZ/2 states in u7Sn and 119Sn have higher energy than 
the 2/51/2 ones (Fig. 9). This effect is caused probably by the stronger interaction 
between the жd and vd states, owing to the stronger overlap of the wave functions.

The electromagnetic moments and the corresponding IBFFM results are sum
marized in Table IV. The signs of moments of odd-odd Sb nuclei were properly 
reproduced almost in all cases. The experimental and theoretical magnetic dipole 
moments agree usually within 10 %. The electric quadrupole moments of the pos
itive parity states are reproduced within 17 %, while the moments of the negative 
parity states of 122Sb and 124Sb are somewhat low. (Here we remark that the elec
tric quadrupole moments of the h 11/2 neutron states have negative sign in 117Sn, 
121Sn and positive in 123,125Sn [31]. This corresponds to the fact that in the lighter 
odd Sn nuclei the Л11/2 quasiparticle has a particle-like [V2(p h ll/2 ) < 0.5], while 
in the heavier ones hole-like [V2(ph ll/2 ) > 0.5] character. The 122Sb and 3j" 
124Sb жд!/2 u h \\/2  ground states have small quadrupole moments, very sensitively 
depending on the actual value of the V 2{vh \\/2 )  «  0.5 parameter.)

According to the IBFFM calculations the contribution of the collective Ml 
operator to the magnetic moments is small, while the collective components are 
dominant in the quadrupole moments.
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51Ь Ь 67
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Fig. IS. System atics of energy sp litting  of different p  — n m ultiplets in  l i e ' u 8 ' 1 2 0 ' 1 2 2 ’124  Sb. The 
abscissa is scaled according to J (J  +  X), where J  is the sp in  of the state
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Table IV
Magnetic dipole (ц  in pjv) and electric quadrupole (Q in eb) moments 

of some lie' 4». 12°- 122- 124Sb state.

Nucleus J *, main 1* Q
configuration Exp* IBFFM Exp* IBFFM

H6sb 3+ (ground) ±2.715(9) +2.79(set 1)
wd5/2i/sl/2 +2.88(set 2)
l+(94keV) +2.47(9) +2.30(set 1)
ird5/2vd3/2 +2.18(set 2)

119Sb 1* (ground) 
ird5/2i/d3/2

±2.47(7) +2.31 -0.14

3+(51 keV) +2.63(5)л +2.58 ±0.57(14)st -0.57
wd5/2i/sl/2 
8 f (212 keV) 
ird5/2i/hll/2

±2.32(4) +2.54

±0.25(5)st

-0.92

3j" (270 keV) 
irdb /  2 v h l \ / 2

-3.76(9) -3.43 -0.26

120sb l]*- (ground) 
ird5/2i/d3/2

±2.34(22) +2.32 -0.11

3+(78keV) +2.584(6)h +2.64 ±0.41(4)®* -0.46
ird5/2i/sl/2 
8: ( T 1/2 = 5.76 d) ±2.34(1) +2.51 -0.55
n d 5 / 2 u h l l / 2

122sb 2f (ground) 
irp7/2i//»ll/2

-1.905(20) -2.37 +0.86(17)®* -0.12

3+(61 keV) 
i rg 7 /2 i / i l /2

+2.983(12)h +3.09 ±0.41(4)®* -0.48

5+(137keV)
irfl7/2i/d3/2

+3.05(10) +3.03 -0.64

124Sb 3f (ground) ±1.20(2) -1.23 +1.87(38)®* +0.35
Wÿ7/2i/hll/2 
3+(41 keV) 
3 + * g 7 /2 vd 3 /2

+2.970(33)
+2.32 -0.32

3+irfl7/2i/»l/2 +2.91 -0.46
6f (125 keV) +0.384(12) +0.352 +0.15
* g 7 / 2 i / h l l / 2

’The experimental data were taken from Raghavan’s compilation [31]. ”h": does not 
include Knight-shift correction, ”st”: Stemheimer or other polarization correction 
included

As we have mentioned before, the wave functions of the odd-odd Sb states are 
usually very complex. There are states, which contain more than 200 components. 
At the same time the 7-transition probabilities depend critically even on weak 
components of the wave function. As an example the E2/M1 7-mixing (6) and 7-
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Table V
Transitions within some low-lying 120Sb states

Experiment IBFFM  calc.

E i
keV

E ,
keV

Ey
keV

Multi
polarity

S I-r I«l IyRef. [26] Ref. [26] Ref. [22]
149 3t 78 3t 71 (M1+E2) 0.12 ± 0.12 100 100 0.02 100

193 21 78 31 114 (M1+E2) 0.0 ± 0.04 100 100 0.01 100
0 1t 193 M1+E2 0.09 ± 0.21 32(2) 46 0.06 76

233 21 149 31 84 4(2) 1.7 0.03 1
78 3 Î 155 -0.16 ± 0.16 33(2) 27 0.01 35
0 i t 233 0.07 ± 0.12 100 100 0.06 100

244 4l+) 149 32 95 0 ±  0.11 89(14) 69 0.01 133
78 3t 166 0 ±  0.18 100 100 0.02 100

334 4(+) 244 4Í+> 90 10 0.01 28
149 3t 185 -0.05 ± 0.12 100 100 0.02 100

390 2,3+ 244 4i+) 146 19(7) 21 0.01 5
233 2+l 2 157 19(7) 7 0.03 90
193 2+l 2 189 100 100 0.05 100

branching ratios of 120Sb transitions are given in Table V. The IBFFM calculations 
reasonably reproduced the experimental data. The experimental 7-branching ratios 
agree with the calculated ones within a factor of «  5. The results obtained on U6Sb 
and 118Sb are described in [14] and [16], respectively.

Effect of dynamical and exchange core-particle interactions on the energy 
splitting o f p-n multiplets. The IBFFM calculations gave reasonable description of 
the “regular” and “irregular” energy splitting of different Sb p — n multiplets. In 
“regular” cases (where V f is close to 0 or 1) the IBFFM energies can be approximat
ed with the parabolic rule. The correspondence between IBFFM and its quasipar
ticle approximation remains valid as long as only dynamical interaction influences 
the splitting of the multiplets. The exchange interaction may cause deviation from 
the above picture, which is most significant when the neutron occupation proba
bility is around 0.5. Although the exchange interaction works only for the d-boson 
states, the proton dynamical interaction admixes also d-boson components to the 
wave function of the proton-neutron multiplets, and makes effective the exchange 
interaction for multiplet-like states, too. In this way the proton-boson dynamical 
and the neutron quasiparticle-boson exchange interactions together produce the 
additional splitting of the multiplets. The combined effect of the proton dynamical 
and neutron exchange interactions is shown in Fig. 16 for the n g l/2 vh \\/2  multi
plet. The Гд = 0 case corresponds to the quasiparticle picture. It is seen, how the 
core-particle interactions kink the ends of the multiplet. The possible shape of the 
multiplet depends on the neutron occupation probability, since it determines the
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Fig. 16. The energy splitting of the тгд7/2|//»11/2 multiplet as a function of the proton-core 
dynamical interaction strength (Tq). J  is the spin of the state. All other parameters were kept 

constant (case of 124Sb, in Table II). The curves are shifted relative to each other

weight of the exchange and dynamical interactions.
Comparison with other theoretical results. The present IBFFM calculations 

gave the first comprehensive theoretical description of the structure of U8Sb and 
120Sb nuclei. In the case of U6,122,124Sb the former theoretical works [24, 33-36] 
were based on particle-quasiparticle models. Our IBFFM calculations show that 
the explicit treatment of collective effects is important.

The тгдТ/2 v h \\/2  multiplet is longer than the other ones, so it is more sensi
tive to the details of interactions. Most of the members of this multiplet have been 
found experimentally. In Fig. 17 we compared the energy splitting of the 122Sb 
irg7/2vhll/2  multiplet with different theoretical results.

In the calculations of Gunsteren and Rabenstein [35] a proton was coupled to 
a number projected neutron quasiparticle assuming Z — N  — 50 core. They have 
used renormalized Schiffer interaction. Alexeev et al [24, 33] have calculated the 
energy splitting of different two-quasiparticle multiplets. The residual interaction 
contained short-range Wigner, singlet and (in the case of 124Sb) also tensor forces.
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012 3 4. 5 6 7 8 9 J

Fig. 17. Comparison of the experim ental energy splitting of the 122Sb irg 7 / 2 v h l \ / 2  m ultiplet 
w ith different theoretical results. The abscissa shows J ( J  +  1), where J  is the spin of the state

In the model of Artamanov and Isakov [36] the odd-odd nucleus is considered as a 
system of neutron and proton quasiparticles.

As Fig. 17 shows, the renormalized Schiffer interaction causes a very strong 
staggering compared with experimental data (calculations of Gunsteren and 
Rabenstein [35]). The other theoretical curves indicate smoother J(J  + 1) de
pendence and they are closer to the observed values.

It is known from the works of Shroy et al [37], Van Nés et al [38], Duffait et 
al [39] and Vajda et al [40] that in the odd-A and odd-odd 114.116.118.120Sb nuclei 
there are high-spin bands which show very regular behaviour. We have observed 
the lowest members of these bands in U6Sb and 118Sb from (a, ny) reactions. The 
bandheads in odd-A Sb isotopes are the <7~Д intruder states, which have prolate 
deformation [41, 42].

In the framework of the IBF/PTQ and IBFF/OTQ models we have calculated 
the level spectra of these bands in 117Sb and 118Sb [14]. The calculations showed 
that the experimental data could be interpreted only in the case, if we supposed 
/>з ф 0 (in OTQM parametrization) for intruder states; it is the presence of 7-
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deformation. These results indicate shape co-existence in Sb nuclei: the majority of 
low-lying states have spherical, while the intruder states (bands) deformed shapes.

The low-lying levels of 12°.122.124Sb were studied also through (d, p), (d, t) and 
(p , d) neutron transfer reactions. In work [43] we have calculated the spectroscopic 
factors for the low-lying states of 120,122,124Sb within the framework of the inter
acting boson-fermion-fermion model. The calculated and measured spectroscopic 
factors agree in most cases within a factor of two.
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BOOK REVIEW

MARCELL W ELLNER: Elem ents o f  Physics, 693 pp. Plenum Press, New York and 
London, 1991. ISBN 03-306-433540-0

This textbook has been written for a two or three sem ester introductory course for students 
in engineering or science who need reasonable familiarity w ith physics as a whole. A lthough a 
calculus course, concurrent with the presentation of the m aterial of the book, is supposed, no 
previous knowledge of calculus is necessary, because the early concepts are explained in the book  
as needed, although n ot in  a m athem atically rigorous manner.

The book is clearly and carefully w ritten and well illustrated with figures and tables. The 
la tter  are very well arranged to dem onstrate the scale and order of m agnitude o f the physical 
quantity. To prom ote the successful study of the book, every chapter is supplem ented by the  
follow ing three parts: “Condensed checklist” , “True or false” and “Problems” . The condensed  
checklists contain the definitions of the m ost important concepts and the list of the formulas o f the  
chapters. In the other two supplem entations an abundant collection of questions and problems is 
given.

The book includes 28 chapters which contain the basic laws of classical physics (mechanics, 
electrodynam ics, thermodynam ics and the kinetic theory of gases), the elem ents o f special relativity  
and three short chapters on atomic physics.

The first nine chapters give a relatively detailed and good treatment of the basic laws of 
m echanics although the description of fluids is shorter than it is usual in books of similar type. 
(T here is no m ention of viscosity and surface tension.) T he structure of the text itse lf and its 
presentation of topics are done much in  the usual m anner and the explanations are generally 
clear and helpful for the students. However, for the explanation of weightlessness the author uses 
questionable and m istakable terminology, and the interpretation of the centrifugal force is simply 
wrong. (According to  the author . . .  “while rounding a curve, a car subjects a passenger to a net 
centripetal force, but the passenger exerts a centrifugal force on the car.” )

The next three chapters, covering thermodynamics and the kinetic theory of gases are built 
up also in  a traditional way; the concept o f temperature is based on gas thermom eter, heat is 
introduced by calorimetry, and the entropy is defined through the discussion of the Carnot cycle. 
It m ay cause difficulty in  understanding of these chapters that besides the SI units, the Fahrenheit 
tem perature scale, the calorie and the B ritish thermal unit are also used.

The next two chapters deal with vibrations and waves. The latter one includes the discus
sion o f the properties o f  the sound waves and the Doppler effect. The presentation of waves is 
som ewhat poorer than  that of the previous chapters. There is no mention of interference, diffrac
tion  and polarization. As a minor point, though, it is difficult to see what purpose is served by  
stating  the wave equation with partial derivatives.

The seven chapters on electrom agnetism  deal w ith the description of the electrom agnetic 
field in  a vacuum, and a clear way is given from the Coulom b’s law to the integral form of  
the Maxwell equations. A questionable point of this section is the revival o f the old concept of 
m agnetic poles at the introductory part o f  m agnetism . It is difficult to decide whether the didactic  
advantages of using electrostatic analogy is worth enough confusing the basic ideas o f m agnetic  
field. In spite of this the presentation is quite clear and really gets to  the core o f the theory from  
the basic laws. An especially well written part of the book  is the elementary explanation of the  
energy and m om entum  of the electrom agnetic waves.
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The chapter* on optics, on the one hand, are too long, on the other hand, they are slightly  
incom plete. The derivation of the lens and mirror equation is m issing from the book. At the 
sam e tim e the geom etrical optics is beginning w ith a relatively long and superficial wave optical 
introduction. The Snell's law and the laws of reflection are based on ideas which are similar to 
that o f the Huygens-FYesnel principle although the clear description of the latter one cannot be 
found in  the book.

The chapter on relativity, even for an elementary introduction to the subject, is by  necessity 
very incom plete. It is oriented only toward som e frequently used practical results, nam ely, the 
well-known m ass-energy relation and the Doppler effect for light. The results of this chapter might 
have been  put into an Appendix.

The last three chapters on atom ic and nuclear physics constitute a section sim ilar to that 
w ith  which m ost introductory physics tex ts usually conclude. The presentation is clear and easy 
to  read.

In summary, W ellner’s text is a very well written presentation of the m ost im portant laws 
o f physics for an introductory course. It is on a  par w ith m ost o f the presently available books 
addressing the sam e audience. The good collection of examples and problems of the b ook  is also 
worth serious consideration.

E. Sas
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