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EINE KLEINE NACHTPHYSIK*

W . T h ir r in g

In s t i tu te  f o r  Theoretical P h ys ic s ,V ienna  University 
Vienna, Austria

(Received 8 January  1987)

Some th o u g h ts  a re  given to  th e  anthrop ic  p rincip le  and  its traces in  physics.

The non-informative title of this essay stems from the fact that it was written 
on a night flight when I was stirring up my memories. The reader who finds its 
scientific substance somewhat thin should blame that on the environment where it 
was scribbled.

In the post-war period George Marx and I struggled together, each of us in his 
country, to raise theoretical physics in central Europe to a level fitting for the intel
lectual potentialities of this area. Whereas I then turned to the hard mathematical 
facts he has reflected a great deal about the functioning of the universe, a subject 
rich in philosophical speculations. In this contribution I will also indulge in some 
related thoughts because it seems to me that some old ideas of men appear now in 
a new form. Theologians always wanted for men, the coronation of the creation, 
an appropriately distinguished place in the universe. Though we are admittedly 
at a rather cosy distance to the sun, our position in the galaxy or galaxy cluster 
seems to be nothing special, we did not get a first class ticket for our journey. In 
contradistinction the universe we are living in does indeed seem to be very distin
guished. If we change its laws or other conditions just a little bit we do not only 
erase a subtle phenomenon like life from its surface but the scene changes far more 
drastically. I shall illustrate this claim by going through the history of the universe 
but making some slight deviations from its course.

1) At present one believes that the universe was created by a kind of quantum 
mechanical tunnel effect where the energy for the matter was paid for by the negative 
gravitational energy, the total energy being zero. The relevant time scale for such a 
spontaneous process is the Planck time 10~43 s and the remarkable fact is that this 
fluctuation was so successful that it lasted 1018 s. Starting an expanding universe 
is like launching a satellite, if you do not give it enough thrust it falls back to the 
ground, if you give it too much thrust it soon disappears into space. Only for very 
precisely selected initial conditions it will stay in orbit for a long time and this is 
what happened with our universe. Indeed, we have seen that on the relevant time 
scale its age is 1062.

D edicated  to  P ro f. G . M arx on h is 6 0 th  birthday
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4 W .THIRRING

2) We now think that the laws of nature have undergone an evolution and 
what we see now is the result of some freezing out process. Therefore the masses 
and coupling constants may be the results of historical accidents, as incalculable as 
the thickness of the ice on a lake after a cold night. In any case if they had turned 
out slightly different the appearance of the universe would change completely. Just 
consider the following possibilities.

a) The mass difference between the proton and the neutron is a sensitive 
effect, the small difference between various contributions. Changing the coupling 
constant a little bit it could easily come out the other way and make the proton 
heavier than the neutron. In this case the proton would be unstable and there 
would be no hydrogen, the basic raw material for cooking heavier elements. Thus 
the dark landscape of the universe would then be marked only by neutron stars.

b) The ratio between the mass of pions and electrons, being the lightest 
charged particles of families at best remotely related, is not calculable at present. A 
theory where the pion has a mass of 5 MeV but the electron 140 MeV seems equally 
good to the elementary particle physicist but would put the solid state physicist out 
of job. In this case the pion would be stable and matter consisted not of e~ and 
nuclei but of 7г~ and nuclei. The тг~ would destroy heavier nuclei by the reaction 
p + p + ж~ —» p + n + 5 MeV but even the fate of hydrogen would be wild. Since 
the pions are bosons the the binding energy of hydrogen would not increase ~ N  = 
number of hydrogen atoms but first like Ry ■ N 5/3 until the kinetic energy of the 
proton stabilizes the system. This happens at densities (h2/Мре2)~3 = 1010 times 
the density of water. At that stage it becomes a jellium of protons in a negative 
charge background which practically has no kinetic energy, its binding energy per 
particle is (Mp/ m e)Ry ~  2000 Ry. Thus in this scenario we have a potent and 
space saving fuel but there would be no rockets which could use it.

c) Universe with only hydrogen and perhaps a little helium would be dull, 
for life we need some heavier elements. To produce them there is the bottle neck 
that two a-particles do not stick together for any length of time and unless a third 
one happens to be around to make C12 the further evolution of elements is blocked. 
How one gets through this eye of the needle depends sensitively on the properties of 
the excited states of Be8 and C12 and thus is essentially influenced by the strength 
and range of the nuclear forces. Yet the evolution of life as we know it depends 
on the existence of heavier elements. This list of the hurdles to the creation of life 
can easily be continued and experts from many fields can throw in some more facts 
which would impede the existence of life.

In view of all that some people thought that it should be a guiding principle 
for the laws of nature to be such that they eventually lead to life. It is called the 
anthropic principle and as physicist one has the duty to see how one could find a 
reason for that. There are several attitudes possible.

A) One can accept it by an act of faith and say that when the good Lord 
created the world he did it exceedingly cleverly so that it works so well. This seems 
to be the most reasonable answer in our present state of knowledge but it may not 
satisfy people who like to play with their imagination.

B) One can adopt a Darwinistic point of view and assume that there have been

A cta  Physica Hungarica 64, 1988



EIN E KLEINE NACHTPHYSIK 5

many universes created but most of them were no good, either they collapsed too 
soon or the separation of the various interactions was all messed up e.t.c. Once there 
was finally the lucky strike where everything worked. Then intelligent creatures 
evolved and wondered why everything conspires to make their existence possible. 
Some people may like this idea but unless we see some traces of all these abortive 
universes there is not much scientific substance to such a hypothesis.

C) Since people now find self-organization for many systems without pay
ing much attention to a realistic representation of matter, it may be that self
organization is a feature as general as the tendency to equilibrium and some sort of 
life could also evolve under quite different circumstances. For instance, even in our 
first scenario where there are only neutron stars, it could be that at its surface some 
highly organized structures come into being. As the time scale in nuclear matter 
is speeded up compared to ordinary matter by about a million they would evolve 
much faster and after a few thousand years higher civilizations may populate this 
otherwise dull scenario.

Obviously by such considerations one easily drifts into science fiction. To 
describe the situation in more scientific terms one might say that the present situa
tion in physics is somewhat like in mathematics in the post-Gödel area. Hilbert had 
thought that one could cast mathematics in a closed rational system where every 
truth is provable, but Gödel had shown that this is not so. Similarly one could 
have hoped that physics became a closed rational system where every important 
fact could be deduced from the fundamental laws. It turned out that the facts 
important for us appear to be more of an accidental nature and beyond scientific 
deduction. What is engraved in the fundamental laws does not seem to care too 
much about us. Maybe our present understanding of nature just reflects the fact 
that our mind can readily grasp simplicity and symmetry, but has a hard time 
seeing through complexity.

Acta  Physica Hungarica 64, 1988
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PROGRESS IN OUR NOTION OF MASS* **
H. P i e t s c h  m a n n

Inst i tu te  fo r  Theoretical Physics, Vienna Universi ty  
Vienna, Austria

(Received 8 Jan u a ry  1987)

T h e  developm ent o f ou r concepts of quan tum  field th eo ry  especially in  th e  version of 
local gauge theories has b rough t ab o u t a  trem endous success in predicting  an d  explaining 
experim ental facts. As a  sideeffect, o u r u n derstand ing  of th e  n o tion  of m ass h a s  undergone 
d ram a tic  changes. Since th is is not accom panied  by a  change in  experim ental predic tions 
o r em pirical no tions, i t  is progress in a  field which m igh t b e  considered on th e  borderline 
o f physics and  philosophy of n a tu re .

In trod u ction

My first encounter with George Marx was through his paper on the electron- 
muon mass difference [1]. I was working on my thesis, which dealt with a very similar 
problem [2] and this coincidence was the beginning of a long-lasting friendship as 
well as common scientific interests.

Our notion of mass has totally and dramatically changed since these days and 
in the following, I shall try to work out the various phases of this change; in each 
case, I shall try to explain the notion of the time as well as its origins and problems.

M ass is in teraction  energy

Around I960 it was considered quite obvious that the small mass differences 
between neutral and charged partners of an iso-multiplet were entirely due to elec
tromagnetic self-energy. The fact, that computations within quantum electrody
namics led to divergent integrals, was attributed to various reasons, depending on 
the point of view of the author; common to all was the opinion that the real origin 
of the divergent integrals lay in some physical phenomenon which was not properly 
described by theory at that time.

Straightforward calculations of the pion mass difference, the most typical 
example for an electromagnetic mass difference, led to [3]

m l+ -  m l  о ( 1)

* D edicated  to  P rof. G. M arx on h is 6 0 th  b irthday
** Supported  in p a r t  b y  ’’Fonds zur F örd eru n g  der w issenschaftlichen Forschung in Ö ster

reich” , P ro je c t Nr. 5444.
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8 H. PIETSCHM ANN

where A is a cut-off parameter of the dimension mass. The fact that the mass 
difference was proportional to the fine-structure constant a seemed to indicate the 
right order of magnitude.

The crucial test for this mass philosophy was, of course, the mass difference 
between neutrino and electron, since the neutrino was considered massless. For 
fermions, an electromagnetic mass shift is always proportional to the bare mass due 
to 75-invariance. Thus, in order to create an electromagnetic mass for a particle 
without “mechanical mass” (the term used in those years), 75-invariance had to be 
broken.

In 1958 the V-A theory was born, independently by Marshak and Sudar- 
shan [4] and Feynman and Gell-Mann [5]. Feynman has based his arguments on 
a two-component version of quantum electrodynamics. The success of this ansatz 
was probably reason enough to prompt Feynman to suggest a mechanism for the 
breaking of 75-invariance and creating a mass for the electron, based on the same 
two-component wave equation for Dirac particles [6]. Whether or not this particular 
mechanism was assumed, the notion that the electron mass was of electromagnetic 
origin was quite generally accepted.

This, however, led to the consequence, that by analogy also the masses of 
the heavy particles should be created by strong interactions alone, and it seemed 
to be a natural observation that the mass of a particle was heavier the stronger its 
interactions were.

An exception of this rule of thumb was the muon. Thus it was quite obvious 
to attribute some kind of strong interaction to the muon, which should distinguish 
it from the electron. The solution of George Marx [1] was quite elegant: electro
magnetic masses and mass differences were of the order of eV, masses (or mass 
differences) of the order of 1 GeV were generated by pionic interactions, and masses 
(and mass differences) of the order of 100 MeV were created by kaon interactions. 
Thus, the muon was assumed to interact with pairs of kaons (in order to conserve 
strangeness).

In a different picture, J. Schwinger in a famous paper [7] proposed an inter
action of the muon with a new type of scalar field. The crucial test of all these 
hypotheses was the rather well-known magnetic moment of the muon [8].

Another crucial question in this scheme was the electromagnetic mass differ
ence of the nucleons, i.e. the question why the neutron is heavier than the proton. 
In a famous paper, Feynman and Speisman [9] attributed this fact to the anoma
lously strong magnetic interactions of the nucleons (though this calculation is cut-off 
dependent). In other schemes, the “wrong sign” of the electromagnetic mass differ
ence of nucleons (which is paralleled by that of K-mesons) was connected to larger 
multiplet structures. All these attempts are historic by now, but they show, that 
a quarter of a century ago, it seemed to be one of the main problems to “explain” 
the fact that the proton is the lightest (and therefore stable) baryon.

Before I close this Section, let me mention some attempts at finite calcula
tions of electromagnetic mass differences. For hadrons, a promising scheme seemed 
the inclusion of form factors [10] or other damping methods due to strong interac
tions [11].

A d a  Physica Hungarica 64, 1988



PROGRESS IN OUR NOTION O F  MASS 9

When current algebra provided a means to compute a finite mass difference 
for pions, it drew rather intensive attention from the particle physics community.
The result was [12]

2 3a 2 1 о mi.о = — m .  In 2. т 2тX p ( 2)

However, it became clear quite soon [13] that the finiteness of the result rested 
heavily on the assumption of massless pions and stable p-mesons. A similar (equally 
problematic) finite calculation was possible for p -mesons [14] with the result

amp+ -  m pо = - m po (3)

H eavy  particles w ithout strong interactions?

When the g-2 experiment reached higher and higher accuracy, it became 
more and more plausible that the muon was just a heavy electron without extra 
interactions. The first — still vague — ideas of something like a generation structure 
of elementary particles was published as early as 1958 [15]. This question was, 
however, completely settled only when the third generation was discovered.

hadron

Fig. I. S tro n g  self-energy of in te rm ed ia te  bosons

In the next Section, we shall discuss how the notion of gauge particles emerged 
together with the problem of their masses. Before this notion was cleared up, the 
old idea of mass as interaction energy still persisted and it was therefore natural to 
assume that the intermediate bosons followed the same scheme. In the mid-sixties 
it was clear that their mass was larger than about 2 GeV. Since their main purpose 
was to mediate weak interactions, they were not allowed to participate in a strong 
Yukawa type interaction. In order to solve this puzzle, a strong quartic interaction 
of type W +W~ H H  (where H  is any hadron) was proposed [16]. This could easily 
lead to strong self-energies of the type shown in Fig. 1.
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M asses o f  g a u g e  bosons

The general notion of gauge symmetry as the origin for interactions between 
fermions is rather old. With respect to our problem of masses, the question became 
virulent when Sakurai [17] suggested that strong interactions are based on the gauge 
principle with the vector mesons p, и  and ф as the gauge bosons. The masses of 
these vector mesons — well determined by experiments — became the main obstacle 
of new theoretical interest.

The idea that spontaneous symmetry breaking may be a cause for mass gen
eration is also rather old [18]. With the renewed interest of vector mesons, various 
mechanisms were suggested in the literature [19]. A turning point in the history 
of this question was reached when the famous papers of Higgs appeared [20]. In 
spite of the fact that these considerations were immediately extended [21], its value 
in explaining the masses of gauge particles was only fully recognized in the famous 
papers by Salam and Weinberg [22].

Let us recall the basic Lagrangian of the Higgs model for one gauge boson: 

C h  =  +  (£>„Ф)(Т>"ФГ -  -  Л|Ф|4 . (4)

With the abbreviations

Dp — dp icAp , (5)

FpV = dp A v -  dvAp . (6)

The well-known trick is to allow p 2 to become negative and Ф to obtain a 
non-vanishing vacuum expectation value

< 0 |Ф |0> =  A  =  (7)

Together with a very successful SU(2) x U(l) unification of weak and elec
tromagnetic interactions, this led to a complete dramatic change in our notion of 
masses. Masses were no longer the result of interaction energy but a consequence 
of the structure of the vacuum. Not only were the gauge boson masses produced by 
spontaneous symmetry breaking but all masses of elementary particles (with a pos
sible exception of the Higgs itself). Table I shows the relation of particle masses to 
the parameters of the Higgs Lagrangian (presuming the extension of the Lagrangian 
Eq. (4) to a Higgs doublet and the gauge boson structure of SU(2) x U(l)).

Notice that the masses of fermions and Higgs particles are not really predicted 
since the parameters /  and h do not appear in any other experimentally accessible 
relation. But Table I shows the new philosophy: masses are created by the vacuum 
expectation value of the Higgs field.
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T able I

R ela tion  of p a rtic le  m asses to  H iggs param eters 
and  the  w eak m ixing ang le  0  w

A2 — l/v ^ 2 G  F

r _  g л— ein 2© vv тн= \y/2h

Through this change of paradigm the old question of why the neutron is 
heavier than the proton ceased to be a burning puzzle! It was now shifted to the 
fact that fermion masses were essentially free parameters and that the down quark 
is heavier than the up quark. But at the same time, for the first time in the history 
of particle physics, the problem of masses was directly connected to an experimental 
prediction: the prediction of the existence of a scalar particle — the Higgs boson.

Since there are absolutely no experimental indications as to the existence of 
a Higgs boson, several attempts have been made to circumvent this prediction [23].

H iggs boson  m asses

It has been mentioned in the last Section that the mass of the Higgs boson 
itself is essentially a free parameter. Yet there are interesting effects, which bind its 
value both from above and below. The effective lower bound of about 4 GeV stems 
from the fact that loop corrections create an effective potential which may spoil 
the spontaneous symmetry breaking effect if h is too small [24]. The upper bound 
stems from the observation that perturbation theory will cease to be meaningful if 
mu  exceeds the critical value [25]

mH < mcrit ( 8)

C onclusion

Gauge theories have brought about a change of paradigm with respect to our 
notion of mass. Table II tries to represent this change.

It is quite clear that Table II is only a qualitative indication. However, it 
tries to show that some problems (like the neutron-proton mass difference) have 
become less burning, while it seems to me that the most important problem, which
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Table II

C h an g e  of pa rad ig m  w ith  respect to  som e problem s concern ing  masses

O ld  view New view Search fo r  solution

e—p-puzzle generation  p ro b lem ho rizo n ta l sym m etry

m ass  =  in te rac tion  
energy

Higgs phenom enon find the  H iggs or replace 
it by o th e r  m echanism

m n >  m p m d Tn

is faced by elementary particle physics today, is the question of whether or not a 
Higgs boson exists and what kind of mechanism is the true cause for generating 
masses.
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IS THE MAGNETIC MOMENT OF THE NEUTRON 
A DIPOLE OR AN AMPERIAN CURRENT LOOP?*
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In  classical electrodynam ics th e  two m odel represen ta tions of m ag n e tic  m om ents, 
viz. th e  d ipole a n d  th e  A m perian  cu rren t loop m odels, give equivalent re su lts . In  co n trast, 
for partic les w ith  overlapping wave functions, tills equivalence breaks dow n. In  the  case of 
th e  n eu tro n  a  h e a ted  theoretical d e b a te  in  the 1930’s o n  th e  choice of th e  co rrec t m odel has 
been  experim entally  se ttled  in  th e  1950’s in favour o f  th e  current loop m o d el. T he question  
becam e of d o w n -to -e a r th  technic til relevance in n e u tro n  sp in  echo spectroscopy.

It is a widespread belief that this question makes no sense and the two alter
natives mentioned in the title are equivalent. This is perfectly wrong, and actually 
the current loop model has been proven to be the true one. [1].

This question was a hotly debated controversy from 1936 until it was experi
mentally settled in 1951, but all this has been mostly forgotten since then.

Let us first state the problem by considering the force acting on a magnetic 
moment in a magnetic field, as predicted by the two models of classical microscopic 
dipole or a classical microscopic Amperian current loop, as illustrated in Fig. 1. 
We will consider the forces given by ordinary electrostatics and magnetostatics in 
the limit of making the size of the object going to zero with the magnetic moment 
(ji = ed and Ц =  I i / c  in the two cases, respectively, where f  is the surface element 
vector of the current loop) kept constant. Surprisingly, the two results are different:

Fd = F + + F -  = (ft - grad)H
= grad(/i • H) - ц  X curl H , (1)

F c = j  dF = -c j> dl X H

= ~ J  ёга^ (H ■ df) — -  J (div H) df

= grad(ji ■ H) . (2)

’ D edicated  to  P rof. G. M arx on h is 60 th  b irthday
• ’ P resen t address: H a h n -M e itn e r-In s tilu te  find T echnical University B erlin , PO B 390128 

D —1000 B erlin  /W e s t /  39.
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16 F .  MEZEI

The difference between the force acting on the dipole F<j and the one acting on the 
current loop Fc is nevertheless only non-zero, if the current density at the position 
of the magnetic moment is non-zero. Thus the well-known equivalence of these 
two models in electromagnetism of continuous media is fully compatible with this 
difference, since materials do not penetrate each other. We can also observe that 
Eq. (2) suggests that the energy of the magnetic moment in a field has the simple 
form —ft ■ H, while the situation is more complex for the dipole model. (Knowing 
nature’s penchant for simplicity and aesthetics, we could just discard the dipole 
model at this point. In fact this would not be all that arbitrary: it just turns out 
to be logically difficult to accommodate in a microscopic theory both dipoles and 
currents as sources of fields.)

If we consider a magnetic moment inside a medium, we have to think of H 
as the microscopic field. Since we attribute this internal field to the Amperian 
microcurrents of the electrons, the average of the internal microfields on a macro
scopic scale gives what is customarily called the magnetic induction of the medium 
Bm. (On the microscopic level it does not make sense to distinguish between В 
and # ,  and except otherwise stated I will write H. In some textbooks В  is used 
in this context, i.e. as the real physical field in vacuum.) On the other hand, if 
we would postulate that magnetism in media is due to microscopic dipoles, then 
the internal microscopic field would average to what is usually referred to as the 
magnetic intensity in a medium, Hm =  Bm — AirM, with M being the macroscopic 
magnetic moment density. Thus there will be two simple limiting cases considering 
the average force exerted by a magnetic medium on our particle:

a) If both the particle moment and the magnetism of the media is described 
by Amperian currents:

Fc = grad (/i • Bm) ; (3)

b) If both of them are described by dipoles:

Fd = grad(/i • Hm) . (4)

I have listed these two cases not only because they are the ones which obviously 
correspond to simple Hamiltonians, but also because the actual debate on the nature 
of the neutron magnetic moment in 1930’s and 40’s ultimately boiled down to the 
choice between these two Hamiltonians [2].

Sure enough, the original controversy never appeared as such a simple matter 
at that time and there was quite some confusion. In his prophetic paper Bloch
[3] introduced in 1936 what we today call magnetic neutron scattering, but un
fortunately he used the dipole model. Schwinger reexamined the problem using a 
formal quantum mechanical treatment and arrived at a different expression for the 
cross section [4]. Incorrectly, he believed that this was due to the use of quantum 
mechanics from the outset in contrast to the classical character of some of Bloch’s 
arguments. In his answer [5]. Bloch has correctly demonstrated that the differ
ence has nothing to do with the use of quantum mechanics (which would violate 
the fundamental principle of correspondence), but with the dipole vs current loop 
assumption. He has shown that if we assume kind of a Lorentz hole in the electron
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density around the neutron, the result will depend on the shape of this exclusion 
hole. This actually demonstrates the old difficulty in magnetostatics with the de
scription of interpenetrating magnetizations, viz. what Bloch was trying to avoid 
was a not curl-free magnetic field, in contrast to our Eq.(l). In a little known paper 
from 1938 [6], Migdal claimed to have demonstrated that the model character of 
the neutron moment is irrelevant, which would restore the equivalence of the dipole 
and Amperian current pictures in magnetostatics. In view of the simple example of 
Eqs (1) and (2) this is of course incorrect, and on closer examination one finds that 
he used the Amperian model from the outset. Finally Ekstein [2] summarized the 
two types of Hamiltonians in Eqs (3) and (4), but he did not offer any interpreta
tion for the two assumptions, and — incorrectly — he maintained the distinction 
between H and В even on the microscopic level. What this hid was a fact that 
nobody realized at that time, namely that the dipole vs current loop character of 
the microscopic sources of magnetism of the medium itself is as much part of the 
problem as the nature of the neutron moment.

Fig. 1. M agnetic forces acting  on a  dipole a n d  on a  curren t loop

The forces illustrated in Fig. 1 can be actually measured by observing the deflection 
of the neutron beam traversing a superconducting foil in which high density surface 
currents can be induced. The result confirms the current loop model and it rules 
out the dipole model. Furthermore a ferromagnetic foil produces exactly the same 
deflections as an equivalent superconducting foil, showing that the spin magnetic 
moment of the electrons is also equivalent to a current loop, and not to a dipole.

Beyond the purely intellectual curiosity, a clear understanding of the problem 
of magnetic forces acting on neutron beams also became an important technical issue 
in high resolution NSE spectroscopy [7]. The resolution of the next instrument to be 
completed by 1988 at ILL will attain a fraction of a neV. In this method the neutron 
energy change in the sample scattering process is determined by directly comparing 
the incoming and outgoing velocities for each neutron individually. This is achieved 
by making the neutron spins perform large numbers of Larmor precessions in the
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opposite sense before and after the scattering, as illustrated in Fig. 2. The Larmor 
precessions are initiated by turning the neutron spins perpendicular to the magnetic 
field direction with the help of the first тг/2 flipper coil. The it spin flipper next 
to the sample inverts the apparent sense of the precessions and the second it/2  coil 
together with the polarization analyser serves for the observation of the precessing 
polarization of the scattered beam. The problem with the extreme high resolution 
now planned is that the flipper coils used to initiate and handle the precessions 
produce about 10 Oe fields, i.e. Zeeman energies of the same magnitude as the 
energy resolution of the spectrometer. Furthermore, in the flipper coils the neutrons 
traverse the current carrying wires, i.e. regions with curl H ф 0. Thus it became 
inevitable to analyse the influence of the flipper coils on the velocity of the neutron. 
It can be shown in detail [1] that with the Amperian current loop model found to 
be valid, the flipper coils produce no disturbing effects, essentially because of the 
existence of the bona fide potential energy — /»• H.

We will conclude by examining the physical origin of the Hamiltonian —/i-H. 
It is commonly believed that it corresponds to the mixed term in the energy of the 
total magnetic field H +  H„, where H„ is the magnetic field of the neutron:

Afield =  J  H • H„ dV = ^  J  H„ • curl A dV

= - ^  J  A • curl H n d V = -c J  A j„  dV

= J  A • curl M„ dV = J  Mn 

=  /i H ,

• curl A dV

(5)

where A is the vector potential for H, and j „ = c curl M n the current density 
for H„. This argument gives the correct result in electrostatics, but as we see, 
in magnetism it gives the negative of the correct answer. (This wrong sign has 
been overlooked in some otherwise valuable textbooks). The explanation of this 
apparent discrepancy is that if magnetic moments are moving with respect to each 
other there is a mutual induction effect which tends to change the currents of which 
the fields originate. It can be shown [8] that the electric energy required in order 
to keep these currents constant (e.g. provided by the power supply if the field is 
produced by a coil) is exactly equal to the change of —ц  ■ H for both the neutron 
and the source of the external field H. Thus the total energy balance is indeed:

ЛAfield + A Œ n  +  Adduction = A(—/1 • H) . (6)

It might appear somewhat surprising that the apparently local interaction term 
- ц  ■ H in reality implies the action by distant objects, which might just stress the 
fundamental nonlocality of quantum mechanics.
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analyser

Fig. 2. Schem atic lay-out o f a  N eutron Spin Echo spec trom eter
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W ith  reference to  one of K. F . N ovobátzky’s papers we deduce a  m echanical e q u a tio n  
of m otion  for energy of a  noil-iso lated  classical field. By way of app lication  we co n sid er 
the  stress  tenso r of an  electrom agnetic  plane-w ave propagating  in  a  tran sp aren t m ed iu m . 
It tu rn s  o u t from  tlris considera tion  th a t A b ra h a m ’s energy-m om entum  tensor desc rib es 
the  energy a n d  m om entum  of electrom agnetic  field in an  iso trop ic  tran sp aren t m ed iu m  
correctly.

In one of his papers [1] K. F. Novobátzky posed a question whether one could 
find a dynamical theory of energy on the ground of equivalence of mass and energy. 
The answer weis yes. It was shown that the equation of motion for energy of an 
isolated system is very similar to the equation of motion for a continuum. The 
mechanical equation of motion can be expressed by divergence of the stress tensor 
of the system, therefore it is related with the energy-momentum tensor.

In this context I consider the dynamical description of electromagnetic radi
ation in an isotropic and transparent medium.

Consider in general a closed system which consists of two interacting subsys
tems. A system consisting of a transparent medium and electromagnetic field is a 
typical example.

The energy-momentum tensor of the whole system is

Co:/? — Taß T taßi (U

where Taß and taß denote the energy-momentum tensor of subsystems. 
The system is isolated, therefore we have

(2)

from where it follows that

(3)

’“D ed ica ted  to Prof. G. M arx  on liis 60th b irth d ay .
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where f a denotes the 4-force density between the interacting subsystems.
Let us now study a subsystem characterized by Taß . According to the above 

mentioned example Taß is the energy-momentum tensor of electromagnetic field in 
a transparent medium which is supposed to be homogeneous and isotropic. One can 
derive Taß from a Lagrangian of the subsystem by variation of metric tensor gaP. It 
follows from this definition that Taß is symmetric. In consequence of conservation 
laws Qaß is symmetric, therefore taß is symmetric as well. The well known physical 
meaning of components Taß is the following:

T4 к = ~Sk, Гм = icgk, (k = 1,2,3) (4)c

and
X44 = —u, (5)

where S is the energy current density, g is the momentum current density and u is 
the energy density. Components 7)j are related with the local stresses.

The symmetry of Taß yields the Planck’s formula

( 6)

which expresses the inertness of energy of all kinds. 
From Eq. (3) we have

dTiß dTik dTi4 _  ,
a û ' л Ji >OXß OXk OX 4 ( i= l ,2 ,3 ) . (7)

Tj4 = T4l, consequently it follows from (4) that

dTik 1 dSi _
dxk c2 Öt

( i= l ,2 ,3 ) . ( 8)

Consider now Eq. (3) for the case a=4:

dT4ß _  dT4k dT44 _ _
dxß dxk dx 4 4"

In the light of the meaning of T4* and T44 and from equations (4) and (5) we 
have the following differential conservation law:

dSk du
9ÎT + Й = ' e U ( 9)
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It turns out that ic/4 plays the role of energy-source-density. Let us define 
the velocity of energy-propagation as

vk =■ — , (к =  1,2,3) (10)u

and let the fourth component be V4 = ic. From the conservation law (9) we have

(9’)d(uvk) du
+  -37 =  1СД-dxk dt

Consider now the divergence of tensor uvaVß:

d(uvavfí) d(uve) dva
- ä ^ -  = '’- ^ T  + uv’ ä ^ '

The first term on the right hand side can be written (see (9’)) as

d(uvß

and the second term is equal to и

dxß

dva

— icVafi

Thus we have

On the other hand

dt
dva d(uvav0) .

d(uviv0) __ d(uviVk) ,05,- , 0 0N
~ d ^ - ~ d ^ r  + ~dT'

( 11)

( 12)

From the comparison of (11) and (12) and from (8) one has the following mechanical 
equation of motion for energy:

u ~  = -^-(uv iv t)  -  c2Tilc) -  c2fi -  icvifi, (*=1,2 ,3). (13)

This is a generalization of Novobátzky’s equation for the case when the system 
interacts with enviroment, in consequence of which energy-source terms are arising. 
Let us notice that dividing Eq. ( 13) by c2 one gets an equation of motion for density 
g = u/c2. This equation is completed with a source term and describes the mass 
flow accompanying the energy flow in general.

It follows from the above derivation that (13) holds within the framework 
of an arbitrary classical field theory. We only made use of the fact that energy- 
momentum tensor of the whole isolated closed system is divergenceless and that 
energy-momentum tensor T a ß  is symmetric.
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Dividing Eq. (13) by c2 we get an equation which is very similar to the 
equation of motion for a deformable material body in continuum mechanics:

Æ  = J - ( m v k - T i i ) - f i - - v if 4, (г = 1,2,3). (13’)at oxk c

The expression in brackets plays the role of stress tensor au-, the second term is the 
exterior force density coming from the enviroment and the third one is a material- 
(or energy-) source term. This last term is usually absent in continuum mechanics, 
since generally we examine the velocity field in a large distance from sources of mass 
(or energy). (13’) has the form

= j t  + fi +qVi’ (*' =  i ’2»3)» (14)

where we have introduced the following notations:

o'ik = eviVk -  Tik-, e =  u/c2,

f'i = - / i , q = - l- f 4C (15)

In case of a perfect fluid we know that

Tik = Phk + (S + , n)viVk.c- — vz

In gravitation field the exterior force density is —/, = giß. From Eq. (14) in classical 
(v/c <  1) limit we have

ei t  = egi- É ; ’ ( i = 1 ’2>3)- (16)

These equations are the well known Euler equations.
Let us study the stress tensor defined in (15). It can be derived from the 

energy-momentum tensor as follows (see (10), (4) and (5)):

4  = -  ( r „  -  . (П)

To determine the stress tensor cr'ik one has to solve the field equations and express 
the energy-momentum tensor through the field variables. The mechanical equa
tion of motion (13) does not simplify the description of energy propagation, since 
the Poynting vector provides a more simple picture at kinematical level. It has 
a rather theoretical importance for dynamical description of energy propagation. 
For example the above equation of motion explains the diffraction in a medium of
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inhomogeneous refractive coefficient: a deviating force arises which is proportional 
to the gradient of refractive coefficient.

Let us apply the equation of motion of energy for the situation mentioned 
above: an electromagnetic plane-wave is propagating in an isotropic and homoge
neous insulating substance. Suppose that the plane-wave is propagating along the 
ж-axis of a coordinate system which is fixed to the medium. The solutions of the 
Maxwell equations are

1 , n x . 1 nx

H64 II о Ey = - / (t -

T1■to' 1 IIь?

n c n c

Í4 II о Il у = - g ( t  -
nx
c

1IIÏ4 (18)

where n = ----- is the refractive coefficient and v =  c/n is the speed of propagation.
Уёр c

f  and g are arbitrary functions. The Poynting vector S = — (E x H) aiso points 
towards the ж-axis:

Sy =  Sz = 0. (19)

The energy-density is
u = ^ ( f 2 + g2). (20)

It is clear from (10), (19) and (20) that the electromagnetic energy propagates along 
the x-axis with a velocity equal to the phase velocity of the wave. The force density 
on the right hand side of (13) must be equal to zero, since this velocity is constant 
in a homogeneous medium. Let us calculate the right hand side of (13). First we 
consider the energy-momentum tensor Taß. As is well known, there are various 
definitions for Taß. The two most common definitions are that of Abraham’s and 
Minkowski’s [2].

The Abraham’s tensor is symmetric and for the above plane-wave it has 
the following simple form:

/  u 0 0 n u
0 0 0 0
0 0 0 0

4 « 0 0 — u

( 21)

This tensor is not divergenceless, which means that the electromagnetic wave exerts 
a force on the medium. The force density is

fa — —
d l j f
dx0

(22)
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From (21) one has

t  n2 -  \ du \ — n2 du c t n
fx -  ~~^r~dt -  ~ d i '  Iy -  fz - 0

The reaction-force of this acts on the electromagnetic wave (and in some sense on 
the energy) as an exterior force. Beyond this one the divergence of stress tensor 
crik has an effect as well. A straightforward calculation shows that these two forces 
equalize each other. The dielectricum is supposed to be at rest therefore /4 is zero. 
Thus, in a homogeneous transparent medium there is not any force having an effect 
on the electromagnetic wave, according to the fact that the light propagates in a 
straight line with constant velocity.

If we choose the Abraham’s energy-momentum tensor for electromagnetic field 
then the mechanical equation of motion (13) describes the wave-propagation in a 
homogeneous and isotropic transparent medium in accordance to the observations.

On the contrary, if we choose the non-symmetric Minkowski’s expression, then 
the equation of motion is different from (13):

d(uvivk) . dT4i
dxk tC dt icVi / 4. (24)

Its form is different from that of Eq. (13), because the second term on the right 
hand side cannot be written as a divergence of a 3-dimensional tensor. There
fore one cannot define a stress tensor” the divergence of which would be a force 
density acting on energy (without any exterior force or source of energy). The 
dynamics of energy can be based on a symmetric energy-momentum tensor only. 
The Minkowski’s energy-momentum tensor is not symmetric hence a dynamical 
description of the wave-propagation is impossible. The physical reason is that in 
the Minkowski’s approach the dividing of the whole closed system into two sub
systems (electromagnetic field and medium) is unlucky from the physical point of 
view because the momentum of the field and that of the medium are mixed [3]. A 
straightforward calculation shows that the right hand side of (24) is zero in accord
ance to the observations, but the physical meaning of the complete equation and 
the interpretation of several terms are insufficient.
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C onsistent u se  of th e  principles o f classical k inem atics leads to  in teresting  theorem s, 
connecting  the  coefficients of linear transfo rm ations be tw een  system s of inertia . Differen
tiell equations expressing  such connections d im inish the  n u m b er of independent p o stu la tes  
req u ired  for th e  estab lishm en t of the L oren tz  group.

For the measurement of length in moving systems an old classical principle 
of kinematics is used which states that length has to be measured as the difference 
of simultaneous coordinates. This old rule of kinematics should also be applied 
in a theory of special relativity (STR) where simultaneity is different in systems in 
relative motion to each other.

Thus, H. Poincaré [1] and A. Einstein [2] could show in the early history of 
relativity that the Fitzgerald-Lorentz contraction of moving bodies can easily be 
explained on the basis of transformation equations. If, in general (in one dimensional 
space) the transformation is [3]

t' = a(v)t + b(v)x ,
, X — vt

x = ( \ r(v) ( 1 )

and the inverse transformation is

t = a'(v')t' + 6(v')x' ,
x' -  v't' 

x ~  r '(v') (la)

where

v = v
ar f(v)  = a(v) + vb(v)

and a rod of length, V  — x '2 — y'x is at rest in the primed system B, then in the 
unprimed system A it has a length for the same values of t, which is

*D edicated to  P ro f. G . M arx on liis 60 tli b irthday
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X2 — Xl = L

and
L =  r(x2 -  x\) = rL . (2)

Thus, the coefficient, r(n), of the transformation (1) expresses the “contrac
tion” and therefore it should be called the “contraction function” of (1). In the 
same way r'(u') is the contraction function of the inverse transformation (la).

In a similar way, a time interval, T ' , measured at a fixed point in B, as related 
to the time interval, T, for the point, moving with v in A is

Г  = (a + vb)T = f ( v )T  , (3)

thus, f(v)  expresses the “time dilatation function” . Similarly, / '  =  a' +  v'V = i  is 
the time dilatation function of the inverse transformation (la).

It is interesting to note that in the very extended literature (references listed in 
[4-7]) of STR apparently no attempt was taken to follow up further the consequences 
of kinematics in order to establish general connections among the coefficients of 
the transformation leading to STR. In particular, the functions f{v),  r(ü), b(v) 
(and also the coefficients, g(v) connecting the coordinates perpendicular to v in the 
three dimensional case) have been considered to be mathematically independent 
quantities for the determination of which several physical arguments (such as group 
character, reciprocity, invariance of the speed of light, etc.) should be used.

We will show below that consistent use of the requirements of kinematics 
restricts the freedom of choice of the afore-said coefficients, in that it establishes 
differential equations, valid for changes of relative velocities which connect the co
efficients determining the transformations.

Before deriving those differential equations we investigate the physical mean
ing of the b(v) and b'(v') coefficients of Eqs (1) and (la).

We take two events, (t2, x 2) and ( ti ,xi)  in A which are simultaneous in A, 
thus t2 =  <!•

The corresponding events, ( t^x^) ,  (ii,* i) are not simultaneous in B. Their 
time difference is

t'2 -  t[ = b(v)(x2 -  xi) = b(v)L ; (4)

thus the

function determines the time distribution in В for events simultaneous in A.
Therefore we may call the b(v) function the “time distribution” function for 

the transformed system.
In a similar way: to simultaneity in system В corresponds the time distribu

tion
<2 -  и  = b\v ')(x '2 -  x\) = b'(v')L' (6)
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in A. Thús,

is the coefficient of the time distribution for system A for events simultaneous in B. 
For inverse transformations

b' = - r b / f  = -b /D  ,
b = - r ' b ' / f  = b'/D' , (8)

where D = f / r  and D' =  1/D are the determinants of the transformations.
We also have

b(v) =

thus, Eqs (8) and (9) result in

(9)

-b/b' = D = l /D'  . (10)

The negative ratio of the inverse (or reciprocal) time distribution functions is 
equal to the determinant of the transformation.

The equations (8), (9) and (10) can also be interpreted by saying that the 
b(v) and b'(v') coefficients express the dissynchrony or difference of synchronies 
between two systems of inertia, each in their respective measuring systems.

T he app lication  o f  k inem atics for changes o f  re la tive velocity  
b etw een  two sy stem s o f inertia

We take two simultaneous events in В , where В is moving with v with respect
to A.

Suppose two signals are initiated at those events, for which 

x'2 — x\ = L' and <2 -  tj.

To those signals correspond two events in A : (<2**2) and (<i,xi) which 
are not simultaneous in A. Therefore X2 — aq = Ax is not a length in A, since 
<2 — = At = —(b/a)Ax ф 0.

To obtain the length, L in A, corresponding to L' (at rest in B), we have to 
reduce Ax  to simultaneity in A. Thus,

L — Ax — vAt  
b= Ax  1 H— v a = A x -

( 11)

( 12)
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and
At = ~(b /f )L  . (13)

Now, suppose that besides emitting the signals at t'2 — t\ the same velo
city increment (du' as measured in B, or dv as measured in A) is also imparted 
simultaneously in В to the endpoints x'2 and x \ .

Classical kinematics requires that the distance between those endpoints after 
acceleration does not change as measured in system B, because the difference of 
simultaneous coordinates remains V  in B. But a careful consideration should be 
given to the fact that those points are now not at rest in В ; they are at rest in a 
system (we call it B2) which moves with the velocity v + du in A.

We know that to two simultaneous events in A, separated by L, a time dif
ference of b(v)L corresponds in B. The time difference in B2 differs from that in В 
by the increment, d(bL) of the bL product for the velocity increment dv. That in
crement is proportional to dv and thus the difference of time distributions between 
В and В2 is also proportional to du', where du' is of the same order of magnitude 
as dv when v/c  is not close to unity.

Therefore, similar to Eq. (11), the relationship of L" at rest in B2, to L' at 
rest in B, can be written as

L" -  L' -  du'd(bL) ,

and since du' and d(bL) are both proportional to dv,L" can differ from L' at the 
most to second order of the velocity increment. This result depends only on the con
dition that the coefficients of the transformation are continuous and differentiable 
functions of v. This important finding can be formulated as

Theorem I. I f  an equal velocity increment is simultaneously imparted to the points 
of a system of inertia, then distances in that system do not change to first order

in that velocity increment.

While there is no first order change of distances in B, when the velocity 
increment is imparted simultaneously (according to synchrony in B) to points of 
the system, there will be first order changes of those distances, as measured in A. 
This can be seen from Eq. (11) where we obtain now for v + dv

L(v -[s dv) = Ax — (v + dv)At

and therefore
dL = —dvAt . (14)

(It is easy to visualize how the change, dL, is brought about: If the increase 
of velocity appears earlier at point Xi and later by At  at point x 2, as seen in A, 
then the distance between the two points diminishes by dvAt as measured in A.)
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Eqs (13) and (14) give
dL = (b/f)Ldv

and
dL/L  = (b/f)dv . (15)

If dv —► 0, L" —* L' (Theorem I) mid

dL/L = dr/r

and therefore

£ - 7 * -  (16)
In the derivation of Eq. (16) we used classical kinematics and linearity of 

transformations. Therefore a similar differential equation should be valid for the 
inverse transformation. Thus,

dv1 v‘f
3 7 - F *  (17)

and due to Eqs (6),(7),(8)

dr/dv = -b'  , (18)
dr'/dv' = -6  . (19)

These findings are summarized in

Theorem II. An increment of the relative velocity between two systems of inertia 
results in each system in an increment of the contraction function which is pro

portional to the difference of synchronies between the two systems.

Eqs (16) and (17) express Theorems I and II in mathematical form.
They introduce two conditions, required by the basic principles of kinematics, 

into relativity theory, valid for the coefficients of a homogeneous linear transforma
tion.

It was known already since the early investigations of linear transformations, 
pertinent to relativity theory, that three conditions, applied to the aforesaid coef
ficients, have to be invoked to result in transformation of the type of the Lorentz 
group. In particular, conditions listed by W. Ignatowsky and P. Frank and H. Rothe 
[8] are:

a) the transformations must form a one-parameter homogeneous linear group;
b) —v'  = — V ; r' = r .
This already suffices to lead to

f (v )  = r(v) = V l - a v 2 , b(v) = —r  - - - - -v 1 — av*
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The constant of integration, a, can be inferred by physical arguments to be the 
reciprocal square of the invariant speed of light, c.

Now it can be shown that, owing to Eqs (16) and (17), a single condition, 
added to the general requirements, is sufficient to lead to the Lorentz group. This 
condition can either be one of the a), b), c), listed above, or another one (eg. the 
invariance of c, etc.).

The consequence of Theorem I  is that if to the points of a system of inertia 
a continuous and equal acceleration is applied, always simultaneously according to 
the instantaneous synchrony of the system, distances in that system do not change. 
Distances as measured in other systems of inertia change according to Theorem II. 
This may give the answer to puzzling problems raised by E.Dewan and M.Beran, 
“On Stress Effects Due to Relativistic Contraction” [9].

Observance of the kinematic requirements can also be used to eliminate the 
supposition of a hypothetical rest system A in the empirical foundations of STR.

The kinematic equations are also useful in the criticism of some of the recom
mended “versions” of STR: for example of those based on the unisotropic definition 
of synchrony, advocated by Reichenbach [10] and pursued by the conventionalists,
[11], [12]. They also are useful in the criticism of the so-called RC-CR-ether  theo
ries [13], involving physical rod contraction and clock retardation effects dependent 
on the velocity relative to a standing ether.

The detailed discussion of these questions will be published subsequently.
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R e lax atio n  of p ro b ab ility  d istribu tions tow ards their s ta tio n a ry  s ta te  is s tu d ied  in 
one d im ensional fully developed  chaotic m aps. E xponential re la x a tio n  is described by solv
ing the  eigenvalue problem  of the  F ro b en iu s-P erro n  operato r fo r families of m aps. T h is 
h appens v ia p e rtu rb a tio n  theory , for which a  stra igh tfo rw ard  form alism  is p resented . C rit
ical m aps w ith  power law decay  are also considered .

1. In troduction

In recent years there has been a rising interest in low dimensional nonlinear 
systems. Inspite of the simple deterministic laws of motion they obey, they may ex
hibit strikingly complex, chaotic, behavior. Chaotic phenomena have been detected 
in a wide variety of experimental situations ranging from electronic circuits and 
Josephson junctions to optical and hydrodynamical instabilities to autocatalytic 
chemical reactions [1-4].

In dissipative systems the trajectories are driven towards a limiting set, called 
the attractor. Attractors may be regular, where the system reaches equilibrium or is 
(quasi) periodic in time. Other attractors are explored in an erratic way, they are the 
limiting sets of chaotic trajectories, called the strange attractors. Chaotic motion is 
unpredictable in the sense that uncertainty in the trajectory at one moment yields 
exponentially increasing error in predictions about the motion. In other words, 
there is a sensitivity to initial conditions, nearby trajectories diverge exponentially

‘ D edicated  to  Prof. G . M arx  on his 60th b ir th d ay .
“ P resen t address: Physics D epartm ent, S tevens In stitu te  o f Technology, H oboken, N J, 
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fast. The rate of the divergence, the Lyapunov exponent, is an important indicator 
of the degree of chaoticity [5,6]. Unpredictability also implies a loss of memory: in 
chaotic systems correlations decay with time.

Unlike regular trajectories in linear systems, chaotic curves typically cannot 
be expressed by closed formulae. As a matter of fact, the sensitivity to initial 
condition would render such formulae useless anyhow. Instead, statistical means 
are to be used. The long time behavior is basically described by the probability of 
visiting different regions in the phase space, that is, by the stationary probability 
density. Chaotic systems are also ergodic. This implies that time averages can be 
calculated as median values over the stationary probability density. The knowledge 
of the probability density, therefore, is essential. Probability densities themselves 
exhibit relaxation. No matter what the initial probability density is like, it usually 
approaches the stationary probability density. Whereas relaxation can be observed 
in regular systems as they relax to equilibrium, in the case of chaotic systems 
the phenomenon is richer. Namely, even if the initial density is concentrated on 
the attractor there is a relaxation process characterizing chaoticity. This process 
has a relaxation rate, which is by and large independent of the starting density 
and thus characteristic for the system itself. It also governs the decay of typical 
correlation functions. In this paper we study in detail this relaxation in the simplest 
chaotic systems, in one dimensional maps. Such maps correspond to flows in a three 
dimensional phase space in the limit of large dissipation [7]. They also emerge out 
of higher dimensional systems via slaving.

The paper is organized as follows. In Section 2 we review basic properties of 
chaotic maps and stress the significance of the Frobenius -Perron operator. Section 
3 is devoted to the properties of the tent map. Next, in Section 4, a perturbation 
theory for the eigenvalue problem of the integral version of the Frobenius-Perron 
operator is described. This is applied in Section 5 for the calculation of probabilistic 
measures, relaxation rates and amplitudes. Critical maps with power law relaxation 
are discussed in the last Section.

2. Fully d evelop ed  chaotic m aps

We focus our attention on one dimensional maps of an interval [0,1]

xn+i =  f ( x n). (2.1)

Here /(0) =  /(1 ) = 0 and f (x )  has a single maximum x, where f(x)  = 1. Further 
specifications understood in the definition of f ( x ) are that f ( x )  is smooth, except 
possibly at the maximum, and it is monotonically increasing and decreasing for 
x < x and x > x, respectively. That is, every point has two preimages, except 
x = 1, which has only one, x. We assume that the map does not have stable 
periodic orbits, but exhibits chaotic behavior. Chaos is fully developed in the sense 
that the iterations starting from almost all initial values fill in the whole interval
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(0,1). The trajectory is ergodic, which means that for almost all initial values x\ 
the time average of a function A(xn) is

N  Г
lim ( l /7 \n V  A(xn) — /  P(x)A(x)dx =< A(x) >, (2.2)

N — oo . In=l J

where P(x) is the stationary probability density function associated with the iter
ation (2.1). A condition of ergodicity is given in [8]. The integration goes from 0 
to 1, unless otherwise indicated. Because of the stationarity, it should not matter 
whether the initial condition in (2.2) is X\ or ж2 =  /(* i). Hence

< A(x) > = < A(f(x))  > (2.3)

follows for arbitrary A(x). This is the condition of stationarity, or invariance, for the 
probability density P(x). It is easy to see that the invariance condition is equivalent 
to

P(x) = J  6{x -  f(x' ))P(x')dx' = FP(x), (2.4)

where 6(x) is the Dirac delta function, and F is called the Frobenius-Perron oper
ator. Sometimes it is useful to write the action of F on an arbitrary function A(x) 
in the form

FA(x) = A{y)/ \ f \y ) \  + A(z)/\f'(z)\,  (2.5)

where y and z are the preimages of x, and where elementary properties of the delta 
function have been used. The Frobenius-Perron operator determines the evolution 
of an initial probability density Po(x) as

Pn(x) = M - i ( x )  = F nPo(x). (2.6)

In order to follow the iteration of the density we consider the spectral properties of 
F. A function R(x) is its (right) eigenfunction with eigenvalue m  if

FR(x)  = mR{x). (2.7)

No eigenvalue m > 1 may exist, if it did, the iterated density might grow without 
bounds. Furthermore, P(x) is the unique eigenfunction with eigenvalue m = 1. All 
eigenfunctions with m < 1 satisfy f  R{x)dx =  0, which follows from integrating
(2.7). Let us consider an initial density Po(x) which can be expanded in terms of 
eigenfunctions Rk(x) as OO

Po(z) = £ > ^ * ( z ) -  (2.8)
k—0

Take R°(x) = P(x), and let m1 be the eigenvalue with the second largest absolute 
value, belonging to R l(x). Since f  Rk(x)dx =  6ko, where 6kо is the Kronecker
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symbol, we have a0 = f  Po(x)dx = 1. After many iterations by F, the dominant 
terms in P„(x) are

Pa( x ) ~ P ( x )  + al {m1)~nR 1(x). (2.9)
This shows the importance of the second largest eigenvalue: it governs relaxation 
towards the stationary density.

An alternative form for the invariance condition can be obtained by inte
grating both sides of P(x) = FP(x). This is conveniently written in terms of the 
invariant measure v(x), defined as v(x) = J* P(x )dx . Using Eq. (2.5) and the 
conditions i/(0) = 0, i^(l) =  1, we obtain

u(x) =  1 +  Mv(x). (2-10)

Here the operator M  is given by

M t)(x) =  v t f r ' i * ) )  -  »K/u4 *)). (211)

and /; 1 < X and f ~ l > x denote the lower and upper branches of the inverse of / ,  
respectively. Since M  is an integrated version of F the spectrum of these operators is 
the same. Eq. (2.10) shall be our basic relation for calculating stationary properties 
of the iteration (2.1).

The speed of separation of two nearby points x and x + da; is determined by 
the derivative of the mapping f'(x). On the average, the divergence rate is the 
Lyapunov exponent

N

A = lim (1 /N )  ^ 2  In \ f ' (xn)\ =<  In |/ '(x ) | > . (2.12)N—*■00 *—'n = l

Ergodicity implies that the Lyapunov exponent A does not depend on the initial 
condition for almost all xi in the interval.

Another characteristic of the map is the correlation function

C(n) =<  x /"(x ) > -  < x > 2, (213)

where /" (x )  is the n-th iterate of x, f°(x)  = x. For a chaotic map the correlation 
function decays, C(n) —* 0 if n —► oo. The correlation function of arbitrary functions 
of x as of A(x) and B(x), is given by

CUa(n) = <  A(x)B( fn(x)) > -  < A(x) X  B(x) > . (214)

Again Сдв(п) -+ 0 is expected for large n. The way САв(п)  decays can conveniently 
be approached by rewriting its first term as

< A(x)B( fn(x)) > = J B ( f n(x))A(x)P(x)dx =

= J B(x )6(x — f n(x))A(x)P(x)dxdx =

= J  B(x')FnAP(x')dx , (2.15)
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where the definition (2.4) of the Frobenius-Perron operator has been used. FnAP  
is the n-th iterate of the function A(x)P(x), which for large n has the leading terms

FnAP(x) ~  a°P(x) +  a1 (m1)~nR 1 (x), (2.16)

where a0 =  f  A(x)P(x)dx =< A(x) >, and Rx(x) is the eigenfunction with the 
second largest eigenvalue appearing in the expansion of A(x)P(x). Therefore for 
large n we have

С а в ( п )  ~  a1(m1)- " J  B(x )R1(x )dx , (2-17)

thus the second largest eigenvalue is the factor of correlation decay. (Here we 
disregarded the nontypical case when the integral in (2.17) or a1 is accidentally 
zero.)

In summarizing, the second largest eigenvalue of the Frobenius-Perron oper
ator, or, equivalently, that of M , determines the relaxation of both the probability 
density and the correlation function.

In addition to the eigenfunctions a set of null functions emerges as well. Null 
functions may appear if the operator in question is not self-adjoint: F  and M  are 
not. We shall consider here only M.  A null function of order q, C4(x) i s  defined by 
the property that

M «+V (x) = 0 and М \ ч(х)ф  0, (2.18)

i. e. it is transformed into zero after exactly 9 + 1 applications by M . Note that a 
null function (°(x) is an eigenfunction with eigenvalue zero. Null functions of order 
q form the null space Z q. We also require that a linear combination of null functions 
in Z 4 should belong to Z 4 again, otherwise lower order null functions could be added 
to a C*(x) causing an ambiguous situation. In the following we give a method for 
constructing null functions in the case of symmetric maps /(x) — /(1  —x). For such 
maps the branches of the inverse map are related by /,_1(x) = 1 — f ~1 (x). From 
(2.11) it is clear that all symmetric functions s(x) =  s(l — x) belong to the null 
space Z°. Next, we construct the reverse operation of M . It follows from (2.11) 
that the solution of

M t, ( x ) =  £ (* )  (2.19)
is

r](x) = 1/2 sgn (1/2 — x)£(/(x)) + [symmetric function]. (2.20)
For the sake of uniqueness we set the symmetric function to zero, which yields the 
reverse operation

Â<(x) = 1/2 sign (1/2 -  x) C(/(*))• (2.21)
It satisfies

M N  = Î (2.22)

where 1 is the identity. This enables us to reconstruct the hierarchy of null functions 
starting out from a suitably chosen base (x)}j of Z° , the null space of symmetric

Acta  Physica Hungarica 64, 1988



38 G. G Y Ö R G Y I a n d  P .  SZEPFALUSY

functions. An analytic base is formed, for instance, by the functions sin[(2j — 1)тгх]. 
Null functions of higher order can then be obtained as

9-1
c ™ > )  =  JV «C 0 J ( * )  =  l / 2 J'C ° 'i ( / i ( x ) )  П sign ( 1 / 2  -  f j (x)) ( 2 . 2 3 )

i=o

and they satisfy
ÄC, J (*) = ( , - 1J(*). (2-24)

These null functions are, in general, nonanalytic functions. As we shall see, however, 
the base {С0’-7 (ж)}> can sometimes be chosen so that the resulting null functions 
Ç4’i(x)  are analytic.

The above procedure yields null spaces Z q for all indices q. In such a case 
eigenfunctions can be constructed as infinite series of null functions. Such a con
struction is analogous to the way coherent states build up an eigenstate in a quantum 
oscillator. There, however, the operator is self-adjoint, thus the Hilbert space can 
be spanned out by either the eigenstates or the null functions, i. e. coherent states. 
In our case, the eigenfunctions do not form a complete basis; to complete the basis 
null functions should also be used at the same time. Those null functions, however, 
do not influence the asymptotics of the relaxation.

3. T he linear m ap and its  conjugates

As a simple example for fully developed chaotic one dimensional maps, con
sider the linear map

/*(*) =  1 - |1 - 2 * | ,  (3.1)

which is sometimes called the tent map. From Eq. (2.5) it is clear that Pl (x) = 1 is 
the stationary density, Fl Pl {x) = Pl (x), that is, the invariant measure is Ui(x) = 
X.  Thus the Lyapunov exponent is А/, = In 2, as calculated from (2.12).

The spectrum of the operator Ml can easily be given, provided we restrict 
ourselves to analytic functions [9,10]. Denoting the right eigenfunctions of Ml by 
<f>kL and the eigenvalues by m£ we have

mL = 1/4* and <j>l(x) = B2k+i(x/2), (3.2)

where Bp(x) is the Bernoulli polynomial of order p. This can easily be seen by using 
(2.11) together with (3.1), and the identities

p - i

Bn(px) = pn~l ^ B n i x  + j /p)  and B „ ( l - * )  = (-l)"B „(z), (3.3a-b)
j=o

with p = 2.
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The analytic null functions can also be constructed [10]. Starting out from 
the zeroth order null functions Сь^(х ) = sin[(2J — l)7rar], j  > 1, we get

Cl *(.x) = 2- î  sin[2?(2j — 1)7гх]. (3-4)

Note that the construction (2.23) also leads to these functions. It is worth mention
ing that there is a family of polynomial null functions of index q = 0 as

b°(x) = const., (3.5a)
V(x) = B2j( x ) - B 2j, j >  1, (3.5b)

where the Bn’s are the Bernoulli numbers. They are symmetric polynomials, 
Ы(х) = b> (l — x).

We shall also need a projection technique onto the eigen- and null functions. 
It can be shown that the operator

% (x)  = {22j+1/(2j  +  l)!}{d2j+1/dx2i+1} (3.6)

satisfies

J  <&(х)Фь (x)dx =  6jj' . (3-7a)

J  4>*l (x) b* (x)dx — 0. (3.7b)

We also have the orthogonality property

J V { x ) V  {x)dx = 6j j ,, (3.8)

where 6̂ (x) is defined by

V{x) = {\/{2 j)\}{dV/dxV}.  (3.9)

In conclusion, an initial measure î'o(x) can be expanded in terms of the eigen- and 
null functions using the projections above. As a rule of thumb, one first determines 
the coefficients ak of the eigenfunctions ф\ , then subtracts the resulting series from 
the original function as ^ (я )  — <j>kL(x), and finally determines the projections
of that difference onto the null functions.

The second largest eigenvalue turned out to be m1 = 1/4. This governs the 
relaxation of correlation functions and probability densities, provided we restrict 
ourselves to analytic functions. In fact, it can be shown that functions which become 
analytic after a finite number of steps can be included as well.
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Maps related by smooth coordinate transformation [11] to the tent map pos
sess the same spectrum. Therefore, the relaxation factor is again 1/4. Suppose 
that

f (x )  = n(fL(u~1(x))), (3.10)
where u(x) is a smooth function. Then the invariant measure of the map /(x) is

v(x) = vL(u~l(x)) = u_1(x), (3.11)

and all other eigen- and null functions of M  are related in the same way to those 
of the tent map. A well-known example is the quadratic map [12]

f Q(x) =  4x(l -  x) = 1 -  (1 -  2x)2, (3.12)

related to the tent map through

u(x) = sin2(7rx /2). (3.13)

Consequently, the invariant measure is v q ( x ) = (2/ 7r) arcsin л/х, and the probability 
density Pq ( x ) = (x(l — х))- 1/ 2/я\

Note that in the case of the tent and quadratic maps, both the map and prob
ability density are symmetric functions. It can be shown for such double symmetric 
maps, that the correlation function decays immediately as [11]

C(n) = C(0)0nO. (3.14)

Nevertheless, this is a speciality of the double symmetry, and the correlation Сдв(п) 
between general analytic functions A(x) and B(x) decays exponentially with the 
factor 1/4.

4. P ertu rb ation  theory

Apart from the linear map and its conjugate family the eigenvalue problem 
of fully developed chaotic maps is, in general, not solved. For maps close to an
other map with known properties, a perturbative method seems to be a promising 
approach. Let us suppose, that the non-degenerate positive eigenvalues m]0 and 
the associated eigenfunctions </>q of the operator Mo are known. This operator cor
responds to the fully developed chaotic map fo(x). Consider then the perturbed 
map

/(£, x) = f0(x) + efi(x),  (4.1)
which is a fully developed chaotic map again. We assume that /о and f \  are analytic 
functions apart from isolated points. Then M(e) can be expanded in terms of e as

OO
M(e) = ]T V M i. (4.2)

t = 0
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The operators М,- can be expressed in terms of fo(x) and /i(x ). For symmet
ric maps, f (e ,x)  =  /(e, 1 — x), we give them explicitly in the Appendix. A fur
ther assumption is that the eigenvalues rft(e) and eigenfunctions f t  (e) are analytic 
in e,

OO
m3(e) = Y l m3i £''

i=0
(4.3a)

f t (e ,x)  = f 2 f t i ( x )£>- (4.3b)
t=0

Then one can go along the usual lines to set up a perturbation theory for calculating 
the coefficients in the above series.

Let us expand both sides of

т(е)ф(е, x) = М(е)ф(е, x), (4.4)

where the superscript has been omitted. In the i-th order we obtain

(m0 -  Mo)Фi(x) - (M i  -  пц)ф0(х) +  (M,_i -  m,_i)<?i>1(x)+
+ ---- h(Mi -  m i^ i .^ x ) .  (4.5)

If and </>i(x),. . .  ,(^,_i(x) are known, the number m* can be deter
mined from the condition that the left hand side does not contain any terms pro
portional to the zeroth order eigenfunction <^o(x), and neither does the right hand 
side. This prescription yields (we omit the x dependence)

гтФо -  По W o  + Ц{г.у}(Мч -  ™ni)(m о -  Л/о)- 1(Л/Пз -  mnJ ...

. . .  (m0 — Мо)~1(МПк -  тПк)ф0}, (4.6)
where По denotes the projection onto the eigenfunction ф0 and the summation 

goes over n i ,П2, . . . , n* with the constraints Ylj=i nj — *> 1 < < i, with
all possible fc’s. Note that the insertions (mo — Mo)-1 do not cause singularities 
here. This is due to the fact that the numbers m i,m2. . . , m ,_j have been chosen 
previously so that the dangerous eigenfunction disappears from all those functions 
(mo — Mo)-1 is acting upon. Having found m;, we can also calculate </>,(x) as

f t  -  £{„,} (»no-Mo)- 1(M » i-mn1)(m0-A /o)_1 ■.■(т0- М о )~ 1(М„1' - т Пк)фо,

(4.7)

with 5Zj=i nj — *> nj > 1- Note that Eq. (4.5) leaves the projection onto 
^ о .П о М . undetermined. This ambiguity is eliminated by setting it to zero in 
Eq. (4.7).
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In the previous Section a method was given for constructing null functions for 
symmetric maps. Since any fully developed chaotic map is smoothly conjugate to 
a symmetric map, we can assume that /(e, x) is symmetric as well, thus by using 
M(e) null functions can be constructed explicitly. Therefore, while a perturbation 
theory for null functions can also be set up, there is no immediate need for it.

Eq. (4.7) for the eigenfunction with eigenvalue unity gives the corrections 
for the perturbed invariant measure. The density can be obtained by derivation, 
and also the corrections to the Lyapunov exponent can be calculated straightfor
wardly. The second largest eigenvalue is the relaxation factor of an initial measure 
or, equivalently, of a density, and it also governs decay of correlation. The amplitude 
of relaxation can be calculated from the corresponding eigenfunction. In the fol
lowing Section we show examples of maps for which these quantities are calculated 
explicitly.

5. R elaxation  in  th e  bilinear and  biquadratic m aps 

In this Section we apply our results to two families of maps,

f BL{e, x) = 1 -  (1 -  e)|l -  2x| -  e(l -  2x)2, (5.1a)
f BQ{e, x) =  1 -  (1 -  e)(l -  2x)2 -  e(l -  2x)4, (5.1b)

called bilinear and biquadratic, respectively. By means of perturbation theory their 
stationary probability density functions have been calculated [13] which has been 
put later on a rigorous basis [14].

We are interested in the spectrum and the eigenfunctions of the operators 
M b l {z )  and M b q ( s ) .  The null functions, as described in Section 2, can be cal
culated directly, so we will not deal with them here. In order to avoid too many 
indices we introduce the notation

™b l{c) = «(e), rnBQ{e) = p(e), (5.2a)
Фвь(е, x) = \(e,  x), Фвс){е, x) = ф{е, x). (5.2b)

Consider first the bilinear map. Seeking the perturbed eigenvalues n^(e) = ni£‘
and eigenfunctions x^(e,x) =  (x)s* it turns out that the corrections in all
orders of €  are polynomials. This follows from the fact that ( M B l ) í X o( x ) is a finite 
sum of the polynomials Xoi*) =  Фв(х) a,u  ̂ 6*(x), which have been described in 
Section 3. Furthermore, it can be shown that (МВь )^ к(х) = 0 for all i and k. We 
calculated the first correction to the eigenvalues using Eq. (4.6) as

n '(£) =  l/4>(l —ej(2j +  l) +  ...)•  (5.3)

The largest eigenvalue n°(e) is still one, as it should be. The stationary measure 
reads up to third order as

v b l ( £ ,  x )  =1 + x ° ( e ,  x) =  x +  ex(l -  x) +  e2/3x(8x2 -  15x +  7)+
+ e3/3(21x3 -  50x2 + 40x -  11) + . . . .  (5.4)
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The first correction to the eigenfunctions can be determined using Eq. (4.7) as

j - 1 i +1
*i(*) = $3*ixS(*) +  5 3  ****(*)»

*=l i=i
(5.5a)

where

4

+1

4

B2j- 2t+2 2fc -  1 / 2j  + l \ V ~ k+1 -  1 
22f-2i -  1 2fc + 1 \2k -  I /  4J -* -  1 ’ 
2 j  +  l

22J+!
2j +
k2V+l 

j - 1

4> “  2 /  + 1  '  ; V 2 / - l / V 2 f c - i ;

(5.5b)

(5.5c)

(5.5d)

Note that the sum in (5.5d) appears only for к < j. Whereas higher order correc
tions for a general j  become more complicated, the second largest eigenvalue n1 (c) 
and the eigenfunction x x(c, x) are relatively easy to calculate

пг(е) =1/4(1 -  Зе + 4e2 -  5e3 +  . ..  ), (5.6)
X1̂ . 1) =xj(*) + e/8{362(x) -  46x(a;)}-(-

+ £2/4{192уо(я) + 12b2(x) -  156‘(*)} +
+ e3/16{8663(i:) -  1280xo(x) -  75b2(i)  +  926*(*)} +
+ •••• (5.7)

We are facing a different situation in the case of the biquadratic map / b q ( e , x ) 
given by Eq. (5.1b). As has been pointed out in Section 3, the quadratic map is 
related through a coordinate transformation u(x) = sin '( itx /2) to the linear map. 
As a consequence, using the notation (5.2) we have

Po = m?L, (5.8a)
$o(*) = (5.8b)

where m'L and <j>'L are given by Eq. (3.2). It is useful to introduce the functions

<?(*) =  &Чи_1(*))> (5.9)

with ip’s defined in Eq. (3.5). The stationary measure i/b q (e , x ) can be calcu
lated by realizing that (Mbq)í4>o(x) is a sum of a finite number of null functions 
(q (x) = Q fc(u_1(x)). As a consequence, each correction to the measure is a finite
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sum of null functions again, that is, it is of the form (x(l — ж))1/ 2 times a polynomial 
of x. Concerning smaller eigenvalues, p^(e) < 1, one ascertains that (Mbq) ^ o(*) 
is an infinite series of the eigenfunctions tpk(x) and ck(x). In this way we arrive at 
complicated expressions for the eigenfunctions, yet we can calculate the eigenvalues 
in relatively simple manner. This is due to the feature that (Mbq) ^ o(x ) does 
not contain V'o(x)> ^ < Ji components. The projection prescribed in (4.6) is thus 
simplified. Hence

P>(e) = 1/4J {1 -  ej + e2j ( j  +  l)/2  -  e3j (2 j2 + 6j + 1)/12 +  (5.10)

As expected, the largest eigenvalue with j  = 0 gets no correction. The terms above 
indicate that the convergence radius shrinks to zero for small eigenvalues, i. e. for 
j  —+ oo. We have also calculated the eigenfunction ipl (£,x) to first order

xp{(x) = ^ 2 1* V*o(*) _ ^  ̂  ^ - 3 -— [6 arcsin 2 -  6ir arcsin y/x + 1], (5.11)
j = 1

where

i 1 = 1
. , l4< 3j7T2j-24J-2 . ,

1 ^  2(2j  + 1)1(4-̂  —1 -  1)’ 3 > '

(5.12a)

(5.12b)

The expansions above enable us to present explicit formulae for the asymptotic 
relaxation rate and amplitude of probabilistic measures. An initial measure b'o(x) 
evolves in time as i/n(c, ж) = (1+А/(е))п1/о(х), and approaches the invariant measure 
v(e,x). We only consider analytic measure. It relaxes as

un(e,x) -  v(£,x) ~  e- "r(r)u>(£)</>1(e,x), (5.13)

where we introduced the relaxation rate r(e) =  li^ l/m 1̂ ))  and the amplitude of 
relaxation w(e). Note that w(e) depends on the initial measure, while the rate r(c) 
is invariant for a large class of initial measures. Using Eqs (5.6) and (5.10) the 
decay rate for the maps (5.1a-b) can be given as

гв ь(е) — In 4 + 3c + e2/2  +  2c3 + . . . ,  (5.14a)
гдд(с) =  In 4 + £ — e2/2 +  e3/12 + . . . .  (5.14b)

It is interesting to compare the fate r(c) with the Lyapunov exponent A(e), which 
can be calculated from its definition (2.12) and by using the invariant measure. We 
only quote the first nontrivial correction as [13,15]

2Ab l (£) = l n 4 - e 2/3  + . . . ,  (5.15a)
2Ab q (c) = ln4 — c2/8  + —  (5.15b)

Acta Physica Hungarica 64, I9S8



RELAXATION PROCESSES IN CHAOTIC STATES 45

The accidental coincidence between 2A(s) and r(e) at e = 0 no longer holds in 
the perturbed cases. The Lyapunov exponent shows a maximum at £ = 0, which 
we interpret as a most chaotic state. The maximal sensitivity to initial condition, 
however, is not reflected by the decay rate r(e).

As for the relaxation amplitude te(e), we have to determine the projection of 
the initial measure onto the first eigenfunction. This we did in case of the Lebesgue 
measure i/o (я) =  x as the initial measure, using the orthogonality properties (3.7-8). 
We obtained for the bilinear and biquadratic map respectively

w(e) = 64/3e2( - l  + e /3 . ..  ), (5.16a)
u>(e) = 4л-2/3. (5.16b)

Since the Lebesgue measure is the invariant one for the linear map, the amplitude 
w(e) for the bilinear map should go to zero if e —* 0. Note that the amplitude in the 
second case is independent of e. The relaxation formula (5.13) together with (5.14) 
and (5.16) has been studied numerically as well, yielding results in agreement with 
the theory.

6. C ritical m aps

So far we have focused on maps with exponential divergence of trajectories,
i.e. a positive Lyapunov exponent, and with exponentially relaxing measure and 
correlation function. In some chaotic maps with positive Lyapunov exponent, how
ever, the measure and correlation functions exhibit power law decay. This can 
happen if the initial slope of the map /  (0) = 1 and at the same time f ( x )~x  for 
small x, because then every time the iteration reaches the neighborhood of x — 0, 
it stays there for a long while [16]. An example for critical maps is

/«(*) = 1 — |1 — 2a;|1/2, (6.1)

the stationary probability density of which is given by [13,17,18]

Pc(x) = 2(1 -  *). (6.2)

Note that the map has a peak rather than a smooth maximum. This is needed if 
/  (0) = 1 in order to diminish the probability of driving the iteration near x =  0. 
Otherwise the asymptotic density would be P(x) = 6(x), i. e. the iteration would 
stay mostly near the origin, and the map would not generate fully developed chaos.

In critical maps correlations decay algebraically [19]. Consider the correlation 
function Сдв(п) as defined in Eq. (2.14). A conveniently modified version of the 
result of [19]reads as

CUß(n)ocn"‘, < = (! +  / +  /) / (z  — 1). (6.3)
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The indices /, l' , and z are defined by

f ( x)  = x + axz + . . . , z > l , (6.4a)
P(x)  oc X1, X «  1, (6.4b)
A (i) a  x1 , X «  1. (6.4c)

The power law (6.3), as pointed out in [19], represents the contribution of the 
neighborhood of the origin.

The iteration of the measure can be studied directly by writing

*»(*) = (1 +  M)nvQ(x)
= 1 + £  (8-5)

oi,...,o»=/,u

where D =  £3"=iÆuai, 6UU =  1, áuj = 0 ,  and u, / refer to the upper and lower 
branches of the inverse map f ~ 1(x). We can identify here a term exhibiting power 
law decay, in fact it is the term with the sequence This can be shown as
follows. From Eq. (6.4a) follows that the lower branch of the inverse is asymptoti
cally

/,_1(х) = X -  ax* + ----  (6.6)
In order to determine the n-th iterate of /,- 1(x) we rewrite the backward iteration
in a differential form [16]

X = X — axz —* X — X = dx/dn = —ахг. (6-7)

This trick can be applied, since a backward iteration step causes little change in x. 
It immediately follows

/ f n(*) oc n - 1/**-1), (6.8)

whence
Ы /Г 'Ч *)) «»>““ , « =  po/(z -  1). (6-9)

Here po is the exponent of the initial measure, t'oi1') xPo, i  <  1- In summarizing, 
we demonstrated that in a critical chaotic map the relaxation of the measure exhibits 
power decay. Using (2.15) it can be shown that the exponent in (6.9) is in accord 
with that of the correlation function in Eq (6.3).

A ppendix

We show a way to calculate the coefficients Mi in the e expansion of the 
operator M(e). We study symmetric maps f (e,x)  = f (e,  1 — x) as given in Eq.
(4.1). Let us introduce the operator F(s)

Р(£)ф(х) = ф(/(е,х)). (A.l)
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It can easily be seen tfiat
F(e)M(e) = F0Mo, (A.2)

where Fq = F (0). Furthermore, provided it acts on an analytic function the opera
tor F(e) can be expanded as

« = 0 « = 0 r=/o(*)

We shall also use the left inverse of Fo given by

F0ï t  (*) =  1/ЦФШЧ*)) + Ф(/ои(х))}-

(A.3)

(A.4)

The operators Mi can now be obtained in terms of Fj and F01}  using the fact that 
the left hand side of Eq. (A.2) does not depend on e:

M i = Föl1 í" 1)'^». £ .*• • •  Й> (A.5)
{«il

with the constraint Yl'j=i nj = * and nj > 1- Finally, we list the first three operators

М\ф{х)  =  -  G(x)Q (x), (A.6a)
М 2ф(х) =1/2G(x)2q  '(x) + G(x) G' (x) Q(x) ,  (A.6b)
М 3ф(х) = -  1/ 6Q"( x ) G(x )3 -  G(x )2G (x ) Q"(x) -

-  1/2G(x)2G"(x)Q'(x) -  G(x) G'(x)2Q(x )', (A.6c)

where G(x) = /i(/o"1(a;))) a definition which is unambiguous because /i(x) is sym
metric, and Q(x) = Моф(х).
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A sto ch astic  cellular a u to m a to n  ru le  is considered which gives in tw o lim itin g  cases 
C onw ay 's “Life” a n d  a  Class 2 (according to  W olfram) cellu la r au to m ato n  e x h ib itin g  dom ain  
s tru c tu re . By ch an g in g  the  difference betw een these two rules w ith co n cen tra tio n  c, a  
p h ase  transition  be tw een  phases o f stro n g ly  different densities is found experim entally . A 
generalized inhom ogeneous m ean field approxim ation  is p roposed  to account for th e  findings 
a t  least sem i-quantitatively .

In trod u ction

Cellular automata (CA) are simple mathematical models for describing co
operative phenomena far from thermal equilibrium. They consist of a lattice with 
к  states on each site. The time evolution of the sites is synchronous, governed by 
local transition rules. The value of a given site is determined by previous values 
of the sites in a certain neighbourhood around it. CA’s were introduced in the 
fifties by Neumann and have been studied extensively ever since. Wolfram [1-3] 
has made a fundamental contribution to CA theory recently by systematically in
vestigating and classifying one and two-dimensional CA with deterministic local 
rules. He found essentially four types of behaviour when starting from a random 
initial configuration: Class 1 CA evolve to homogeneous final states, Class 2 CA 
are characterized by separated periodic structures (in space and time). By Class 3 
CA chaotic behaviour is exhibited. Most interesting are those CA which belong to 
Class 4: they show complex localized and propagating structures. The well-known 
example is Conway’s “Game of Life” [4]. It has been shown that the structures 
of “Life” can be combined to perform arbitrary processing of information so that 
“Life” supports universal computation [4].

Stochastic cellular automata show a variety of new phenomena which may be 
of great importance in the study of phase transitions. The CA rules can be meide 
stochastic in different ways. Grassberger et al [5] studied two “elementary” one
dimensional CA, with very specific added noise and obtained a phase-transition from 
Class 2 to Class 3 behaviour via instability of kinks between ordered states. For a 
more general class of stochastic one-dimensional CA, using transfer matrix scaling, 
phase diagrams and critical properties of transitions between Class 1 -  Class 3
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and Class 2 -  Class 3 deterministic behaviour have been calculated and compared 
with numerical results by Kinzel [6].

Studies of phase transition in two-dimensional stochastic CA have been pre
sented recently by Kaneko and Akutsu [7]. The simplest procedure to involve noise 
has been used by these authors, namely at each time step the value obtained by the 
deterministic rule is reversed with a probability p. None of these investigations has 
been, however, aimed at a Class 4 system.

Schulman and Seiden [8], on the other hand, studied Conway’s “Life ” with 
a stochastic component denoted by them as “temperature” . “Temperature” acts 
to assign a finite probability for к =  1 and к — 0 (birth and death) independently 
from the states of the neighbourhood and the centre cell. By starting from an 
approximation akin to mean field theory of statistical physics and calculating the 
correlations to first order they have arrived at a phase transition from “Life”-like 
states to a disordered state characterized by strongly different equilibrium densities. 
The theory has been unsuccessful, however, in predicting the density of the “Life”- 
like equilibrium state.

The aim of the present work is to follow the transition between two 2D au
tomata, namely “Life” and an automaton showing domain structure (Class 2), when 
evolving from a random start and with rule differing from “Life” in a single com
ponent of the transition rule (rule 736 according to Wolfram [3]).

The computer experiment reveals a phase transition at a critical concentra
tion cCrit of this perturbing term, separating a “Life”-type stable phase of very low 
density (poo «  0) and a chaotic-looking phase of finite density Poo(ccrit) и  0.28. 
Poo(c) then increases with c up to about poo и  0.49 at c = 1.0. A generalized 
mean-field-like approximation in which the average density is supposed to be inho
mogeneous is proposed. In this framework cluster-surface cell- states are found to 
play a dominant role in bringing about the above mentioned transition.

T h e m odel

For the 8-neighbour outer-totalistic [1-3] two-dimensional CA the transition 
rule is of the general form

aij(t +  1) = f (ai j( t) ,ai j+i(t) +  ai+ ij(f) + ......+ aj_xj-_i(f)), (1)

where the â - can take к values. The different automata have been specified by 
Wolfram through the code number defined as

C = £ /(a ,n )fc * " + a, (2)
П

where a is the state of the centre cell and n are the possible values of the sum over 
the 8 neighbours (n = 0, .... , 8).
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Here we shall consider the following automaton (k — 2):

/(0,3) = /(1,2) = /(1 ,3 ) = 1;
/(1,4) =  1 with probability c,
/(1,4) = 0 with probability 1 — c,
/(a , n) = 0 otherwise.

For c = 0 we get Conway’s “Life” (code number 224),while for c =  l a  
CA having domain structure results (code number 736). Our goal is to study the 
transition between these two systems by changing c.

Let us first review briefly some basic facts about these two automata.

1. “Life”

The possible configurations of “Life” have been widely studied and discussed 
in the literature. We will be interested here in those stable states only which develop 
from starting with a randomly filled lattice after about N 2 time steps [1].

We are using a 64 x 64 lattice here. The stable pattern which has eventu
ally evolved is seen in Fig.l. These are some of the simplest stable or period 2 
configurations of “Life”.

2. “Domain”

Domain is a structure made up of four basic phases, namely two with verti
cal stripes (stripes either on odd or on even sites) and two phases with horizontal

Fig. 1. S tab le  s ta te  of “Life” ob ta ined  in  a  la ttic e  of 80 X 80 s ites  a fte r  230 steps
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stripes (again on odd or on even sites). Regions formed of one of these phases 
are invariant under the CA rule. Starting from a disordered configuration different 
phases evolve on different parts of the lattice and are separated by domain walls. 
The result is seen in Fig. 2.

• • • .... • • :  :

*: : : :: : :*!v
! ! jj ü D  ! :j.; ! h  !

Fig. 2. “D om ain” s tru c tu re . L attice  size 80 X 80. I te ra tio n  steps: 75

Fig. 3.  Som e of th e  m o st com m on stab le  a n d  oscillatory p a tte rn s  of “Life”

Now turning to the case of general c’s, let us first discuss the case of small c. 
Among the stable and small-period-oscillatory patterns of “Life” many are invariant 
against /(1,4) as perturbation. Some of these are shown in Fig. 3.

If in the presence of some percent of /(1,4) such configurations can evolve and 
far enough from each other, so that no effect of one on the other is exerted, and all 
other patterns die out, the stable phase can be called of type “Life” .

The simplest quantity with which to characterize a CA configuration is the 
average density of sites with value 1, denoted by p. If the final state is of “Life”- 
type p{oo) is very small, effectively zero. With increasing c, however, the growth of
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non-invariant and interacting (nearby) “Life” patterns hinder the lattice to become 
empty enough and finally some intermediate, chaotic-looking state sets in with finite 
density, which then increases with c. A theoretical expression of p as a function of 
t cannot be deduced in general.

The next Section is devoted to a kind of mean field approximation to this 
problem and to the tendencies which can be seen from such a simple-minded theory.

M F  approxim ation

The average density of l ’s will be denoted by p(f), where time t changes in 
discrete steps. If correlations between values at different sites are neglected, an 
analog of the MFA of statistical physics can be given as follows [8,1]. All configu
rations are parametrized by their density p or (equivalently) by probabilities p and 
q(= 1 — p) for each site to have value 1 and 0, respectively. The probability that 
there are n l ’s in the 8-neighbourhood is

O v '" (1)
The time evolution of the average density for the CA studied here is given by (p =  p) 

p{t+ 1) =  { ^ p 4 i - p ) 6p f ( i ,2 )+  ( з ) р за - р ) 5*

[ pf(  1,3) + (1 -  p )/(0, 3)] +  c Q p 4 (1 -  p)4pf(  1,4) =

=  14р3(<)(1 -  p (0)4[2(1 -  P (0)(3 -  Pit)) + 5cp1 2(<)]. (2)
In equilibrium (t —+ oo) p(t + 1) = p(t). Eq. (2) gives a polynomial equation 

for p(oo) = poo

1 =  14/4(1  -  Poo)4[2(1 -  Poo)(3 -  Poo) +  5cpjJ,
which has the real solutions Poo = 0 and Poo(c) 35 shown in Fig. 4.

(3)

Fig. 4- E quilib rium  value of tile average density  poo show n as a  function of th e  concen tra tion  c as 
given by experim en t (do tted  Une) a n d  the  simple m ea n  field approx im ation  (full Une)
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The experimental data also shown in Fig. 4 with a dotted line have been 
obtained starting from a random initial configuration with po = 0.5 and in a lattice 
of 32 X 32 sites, with periodic boundary conditions. Some of the data points have 
been obtained by adding a small “temperature” component of Schulman and Seiden 
[8] to the basic rule. Noise makes transient effects die out more quickly than at 
“T”=0 and the equilibrium state sets in typically in a few hundred steps making 
the computer experiment feasible on an IBM PC. The phase transition shown by 
the experiment at about c fa 0.3 will be discussed later on.

The regions of stability of the fixed points pœ = 0 and Poa(c) can easily be 
inferred from the curve of p(t + 1) as a function of p(t) as shown in Fig. 5 for 
different values of c.

Fig. 5. MFA for th e  average density p fo r c= 0  (full line) a n d  c = l  (do tted  line)

The points of intersection Ao and A\  with the straight line p(t +  1) = p(t) 
are the finite fixed points Poo(c = 0) and poo(c = 1) (for inbetween values of c the 
curves lie between these two). Point В separates the domains of attraction of the 
fixed points poo = 0 and Л,- (i = 0,1). (The weak c-dependence of В has been 
neglected not to confuse the Figure unnecessarily).

For some fixed c, starting from a random initial configuration with p(O) = 0.5, 
p should approach /><»(0) if the mean field approximation were applicable, i.e. the 
effect of correlations were negligible. This is clearly not the case which manifests 
itself most definitely in the stable state of “Life” with poo «  0.

“Life”-like correlations are inclined to produce empty patches in some tens 
of iteration steps already. (See Fig. 6.) We propose here to treat the clusters 
which are formed in this way, surrounded by empty sites, in the spirit of the MFA 
as above. Let us examine a stripe of l ’s which is two-sites wide as the simplest 
structure modelling a cluster in the sea of zero sites.
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Fig. 6. Exam ple o f clustering, o b ta ined  w ith 
c=0.01 afte r 80 s tep s. Lattice size 80 X 80 

w ith periodic b o u ndary  conditions

Let us take the а -type surface sites and formulate a MF expression for the 
average density of l ’s over them. Three of the 8 neighbours are now empty with 
probability 1. Thus the effective number of neighbours which can be “alive” is 5 
and correspondingly

p a {t  +  1) =  ( 3)  p l ( l  -  P a f  • / ( 0 , 3) +  Q p 3a(l -  Paf { {  1 ,2)+

+  ( з ) р а ( 1 - Р а ) 2/ ( 1 , 3 ) +  Q c p 3 ( l - p a) / ( l , 4 )  =

= 10Pa(l -  Pa)2(2 -  Pa) + ЬсР\ (1 -  Pa). (4)

For the а -sites Fig. 8 shows Pa(t +  1) as a function of Pa(t) for different 
c-values.

For c < ccrit =  0.39 only the Poo =  0 fixed point is stable for the average 
density of а -type surface states. At c =  ccrit a new fixed point appears with fi
nite density (poo(ccrit) = 0.5). The magnitude of this new stable density increases 
steadily with increasing c reaching the value of Poo = 0.66 at c = 1.

It is possible to construct and examine wider cluster-mimicking stripes, as 
well. Extension to 3 layers is simple. In this case there are two different densities of 
structure (0а/?а0) and the result is the same as above only with a slightly different 
Ccrit- Wider stripes fail to exhibit the depletion effect.

Acta  Physica Hungarica 64, 1988
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Fig. S. pa (t +  1) a s  a  function  of pa (t)  for th ree  values o f c: full line c= 0 , d o tte d  line c=0.39 an d  
d ash ed  line c = l .  P o in t B ( p  — 0.41) sep ara tes  th e  regions o f a ttrac tio n  of th e  fixed po in ts Poo= 0

a n d  poo (c =  1) =  0 .6 6 (^ i)

1. 5. 10.

Ы
25

Fig. 9. “G lid er” o f “Life” p e r tu rb e d  by /(1 ,4 )  w ith  concen tra tion  c=0 .2  (a ) and  c=0.9  (b ). In 
case a) th e  “g lid e r” dies ou t in  9 s tep s while in  case b ) grow th sets in. For c= 0 , of course, i t  

p ro p a g a tes  forever (in  a n  infinite  m ed ium  a n d  w ithout any collision)

In this way the following oversimplified picture of the phase transition “Life- 
domain”, exhibited in Fig. 4, arises. For small values of the perturbation /(1,4)
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i.e. for low c, “Life”-like correlations lead to cluster-like objects after a random start 
(with po = 0.5) in about, say, 50-100 iterations (depending on lattice-size, noise). 
For clusters which are thin enough the above surface-MF approximation-like treat
ment applies and the overall result is that surface effects will pull the system towards 
smaller and smaller densities. Eventually the density рто «  0 of the “Life”-like 
stable state results. This is opposed by the volume term which favours a stable 
state at some finite density, depending on c (0.37< Poo(c) < 0.45) and which will 
become dominating from some critical value of c on. In the oversimplified model 
treated above this critical value of the concentration was obtained as ccrjt ss 0.4. 
The experimental value is significantly lower, which is plausible if we consider that 
the whole picture of cluster-formation which should work in a self-consistent way 
may lose its validity for c-values which are not small. Namely, with increasing c 
growth of some simple Life-objects sets in which is very well demonstrated e.g. by 
the fate of the “glider” of “Life” when perturbed by f  (1,4). (See Fig. 9.). On the 
other hand, the theoretical and experimental values of poo(c) are in a surprisingly 
good agreement.

A more systematic investigation of surface effects and their combination with 
volume terms for determining the density and also other relevant quantities like 
entropy would be needed to put the results presented above on a more firm basis. 
Also we hope to give a detailed study of the nature of the intermediate state which 
sets in at ccrjt and of the formation of the “domain”-phase near c= l in future work.
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A m ultip licative  m odel of lea rn in g  by synaptic p las tic ity  is reconsidered in order to 
re lax  an  undesired  sym m etry  re stric tio n . T h is is found to  leave essential p revious results 
u n changed . In  p a r tic u la r  th e  netw ork  h a s  an  optim al size of about 700 in terconnected  
n eu rons, ten ta tively  identified  w ith c o rtica l columns. B ou n d s are given for th e  capacity  of 
th e  m ultip licative  m o d el for noiseless in fo rm ation  storage.

1. In trod u ction

A great uprise of activity in studying physically motivated models of neural 
networks [1] has been motivated by Hopfields’s observation [2] that such models 
are related to the spin-glass problem [3]. The connection is this: firing or non
firing neurons correspond to up or down spins [4]; excitatory or inhibitory synapses 
(connections between neurons) correspond to ferromagnetic or antiferromagnetic 
couplings between the spins. A spin system with a sufficiently random mixture of 
ferro- and antiferromagnetic interactions at low temperatures freezes into one of its 
several, apparently disordered, metastable states: this is called a spin-glass [3].

Despite the apparent disorder, the metastable states are rigorously determined 
by the actual values of the coupling strengths, and this is the feature connected 
to more specific neurological information: metastable states that attract thinking 
within some “basin of attraction” may correspond to learned memories, and the 
way they are learned is by appropriate modifications of the couplings or synaptic 
strengths, as postulated by Hebb [5].

The relaxation of the system towards one of its metastable states is governed 
by the firing signals each neuron receives from the others. If the state of the i-th 
neuron is characterized by the “quasi-spin” variable 5) =  ±1 (+1 if fires, -1 if not), 
then it receives an input signal

hi — ^ j J í j S j ,  (1)
i t '

where the (positive or negative) coupling constant J,y represents the sign and 
strength of the synapse through which pulses from the j-th  neuron are transmitted
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to the г-th. In the spin language, this input signal acts as an effective magnetic 
field, forcing the г'-th neuron to alter its state (starting or ceasing to fire) if

Sihi < 0, (2)

because then the “flip” Si —+ —Si reduces the “potential energy” —Sihi. Inequality
[2] is apparently a sharp threshold condition that controls flipping or non-flipping.

Model systems whose dynamics are controlled by similar threshold conditions 
belong to the well-known family of cellular automata [6]. It is a decisive feature 
of Hopfield’s model [2] that neurons for which condition (2) is satisfied are still 
allowed to flip but asynchronously, one at a time. This eliminates some nonrealistic 
periodicities, plaguing some applications of cellular automata.

Another simplifying feature of the model is the symmetry restriction

Jij = Jji, (3)

which — although biologically unrealistic [1] — makes the approach to metastable 
states monotonous [2].

A central issue of the discussion is the memory storage capacity of the net
work, i.e. how many different memories can be simultaneously stored in the form 
of metastable states and recalled with an acceptable fraction of errors. Closely 
related is the problem of various learning algorithms, i.e. various modifications of 
the couplings Jij in order to make given states of the spin system approximately 
metastable ones [7-10]. Even in the simplest cases the precise connection with the 
original spin-glass problem is rather nontrivial [11].

In Section 2 we summarize two possible learning algorithms [2, 10]. The 
second of them, called the multiplicative algorithm [10], is slightly modified here to 
allow obtaining new analytical results. A principal feature of the modification is to 
get rid of the symmetry requirement, Eq. (3). Section 3 describes a novel method 
to analyse the accuracy of memory recalling, taking advantage of this enhanced 
independence of the coupling constants. The results are used in Section 4 to discuss 
the cases of storage with no error and with a given level of relative error. The 
possible significance of the results in connection with the columnar structure of the 
cerebral cortex is discussed in Section 5.

2. L earning algorithm s

If we want to store a given information encoded in the form of a vector 
{5,.°^}(i = 1, where N is the number of neurons), then the choice

J i j  =  5-0)sj0) (4)

would apparently do the job: if the system is put into the same state {5,-°̂ } then 
using Eq. (1) it is obvious that condition (2) is never satisfied, i.e. none of the
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spins (neurons) would flip: {•S',-0’*} is a stable (or, at least, metastable) state of the 
system, and if the neural network “thinks” about something sufficiently similar then 
the system relaxes into this state: the stored information is recalled (that is why 
this kind of memory is called associative).

The situation is changed if p > 1 vectors {5,-“*}(a = 1 ,.. .  ,p; i = 1 , . . . ,  N)  
have to be stored in the same network. The formula [12]

J i j = i b s ia)sia)
a=l

acts in the right direction, however, in recalling anyone of the stored vectors, all the 
others play the role of quasi-random noise.

This noise has been analysed by Hopfield [2] in the following way. If we put 
the system into one of its memorized states, say noise makes the system
relax into another state that differs from {S,-6*} in some fraction of its components 
(bits). According to Hopfield’s criterion [2], memory recalling is acceptable if it has 
probability less than 1/2 that this fraction is over 5%. This fraction is, however, 
hard to calculate and depends on dynamical details. Assuming that those details 
are not very relevant, one chooses therefore a closely analogous but simpler and 
more robust characteristics: the fraction of unstable neurons, i.e. those for which 
condition (2) is satisfied in the given initial state {5,■*’*}. If furthermore ^  and 
hjSjb* are regarded as independent for i ф j  [10] then for a large network (N —► oo) 
Hopfield’s criterion is satisfied for a given critical value £* = 0.052 of the probability 
£ of instability (error) in a single bit. Therefore various learning algorithms can be 
tested through this quantity:

£ =: P(Bib) < 0), (6)

where
B (ib) = s\b)J 2 Ja s j b)- (?)

jV*
Since all neurons are equivalent and so are all memorized vectors (see Eqs (5) or 
(8) below), £ does not depend on either i or 6.

As a model obeying Eq. (3) and thereby defining a spin-glass with well- 
defined correlations built into the distribution of coupling constants, Eq. (5) is a 
convenient starting point for statistical physical studies [2,11]. On the other hand, 
it has severed drawbacks as a model of real neural networks. In particular, synapses 
have their native signs that do not change on learning, and their non-zero native 
strengths even if nothing has been learned. Both these features are missed by the 
additive algorithm, Eq. (5), and this weis the main motivation in [10] to introduce 
and analyse by the same approximate error counting method the multiplicative 
one, defined as

Jij = Tij exp (z  sgn Tij £ S,H Sja)^ , (8)
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where TiJ is the native strength of the coupling J i j .  This means that on learning a 
new vector {5,-°^} each Jii is either multiplied or divided by ex, according to whether 
this coupling is “satisfied” or “frustrated” in the memorized state (Jij5 , - ° ^ >  0 
or < 0 ).

In [10] we chose randomly Тц = Тц =  ±1. Now we regard TiJ and Tji as 
independent, continuous random variables of the same probability distribution for 
all i , j ,  characterized by the moments

and

< \ T i j \ > = t ( 9 )

СЧbIIЛE~T
V

( 1 0 )

Allowing Т ц Ф  Tji has serious consequences for the dynamics, however, it does not 
change the semiquantitative counting of recalling errors based on Eq. (6).

3. N oise an a lysis

In this Section we calculate the probability e of error in a single bit (see Eq.
(6)) as a function of the learning parameter x, the number of interconnected neurons 
N  and the number of memorized vectors p. First let us rewrite Eq.(8) as

Jij =  T i j ( l  -  v * ) - p/2 Г К 1 +  »*8°). (U)
a

where the notations
V = tanh x (12)

and
x j j ] = SÍa)Sja) sgn Tij (13)

have been introduced. Then Eq. (7) takes the form

J5P) =  ( l- t> 2)-P/2 E l Tolyo‘) (14)

with
YW = (xtf + v) П ( н - « 4 в))- (15)

a^b

Now we want to exploit the fact that since the random variables are products 
of random factors of values ± 1, any two of them are uncorrelated if not equal. 
This is the principal novelty of the present approach with respect to [10]. As a 
consequence, the terms of the sum in Eq. (14) are independent random variables, 
and we can safely use the central limit theorem to approximate the probability
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distribution function of В through a Gaussian of mean value В  and dispersion 
S. Then the desired probability of error in a single bit is obtained in the form

e = 1 -  <t>{Z) = 1/2 erfc {Z/y/2), (16)

where z
<KZ) =  /  e~y3t 2dy, (17)

— OO
erfc is the complementary error function [13], and

Z = B/S.  (18)

To evaluate В and S, we observe that is the product of a number of 
factors assuming randomly and independently one of the values 1 +  v and 1 — v. 
Then simple combinatorics give

(Y$)) = v, (19)

( ( Y ^ ) 2) = (l + v2y .  (20)
Finally, using the definitions (9), (10) and (14), we obtain

B = ( N - l ) t v ,  (21)

S2 = ( N -  1)(<t2(1 + v2Y  -  tV ) ,  (22)
which — neglecting 1 with respect to N  — gives the desired result

Z = (N/[v~2(l + v2Y  -  l])1' 2. (23)

In writing Eq. (23) we have restricted ourselves to choosing a discrete set
of synaptic strengths, 7};- = ±t  which entails a2 = t2. It is easy to see that any 
other choice reduces Z  and therefore increases the error probability. For the present 
choice, which is retained in the remaining part of this paper, Eq. (23) should be 
compared to the result obtained* [10] for the symmetric model obeying Eq. (3),

Z  = (N/[(1 +  v- 2)exp(x2(p — 1)) -  l])1̂ 2. (23a)

For the relevant limiting case N »  1, p »  1, v «  1 both Eqs (23) 
and (23a) approach the asymptotic form

Z 2 =  N x 2 exp (—x 2p), (24)

*In [10] Ihe la s t term  -1 in  th e  square  bracket was m issing due to a  calcu la tiona l error. Eq. 
(23a) correc ts tliis  e rro r. Use of the co rrec t Eq. (23a) red u ces th e  discrepancy be tw een  sim ulations 
a n d  ap p ro x im ate  theo ry  ([10], Fig. 1) by  a  factor of two.
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which, introducing the notations

a  = p/N,  (25)

N  = N x 2, (26)
can be rewritten as

Z2 = Ne-**». (27)
The requirement of no error needs Z —*■ oo. On the other hand, as pointed 

out in [10], Hopfield’s criterion is satisfied for Z > Z* «  1.6. These two cases are 
investigated in the next Section.

4. S torage capacity

4-1 Noiseless storage

If the appearance of errors in different neurons (spins, bits) can be taken as 
independent [10] then neurons with В > 0 and < 0 are distributed binomially, 
and the mean number of stressed neurons (erroneous bits) is just Ne. Then e itself 
is the fractional error, which vanishes if Z  —► oo, as seen from Eq. (16). With a 
fixed learning parameter x, it is easy to see from Eq. (24) that for N —* oo, this 
requirement can be satisfied even with an infinite number of different words stored
i.e. p —* oo, if the rather restrictive upper bound

p(N) < (1 -  6)x~2\nN  (28)

is obeyed with a small positive constant 6. However x can be tuned with growing 
N  and p to achieve a more advantageous performance. For given N  and P, the 
maximum of Z  and therefore the minimum error is reached for

xld =  P ~ \  (29)

which gives
z id = И ) ' 1 (30)

and, using the asymptotic expansion of the error function [13] for large Z,

This is closely analogous to the result obtained by Amit et al [15] by the replica 
method for the additive model, with only a slight variation of numerical parameters. 
Here, like in that case, now only a —» 0, which is much less restrictive than (28), is 
needed for vanishing relative noise. Following the reasoning of [15], the vanishing 
of the absolute error Ne now requires

p< N(e lnN)~1. (32)
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4.2. Storage with finite noise

Since Eq. (24) is equivalent to the result obtained in [10], the main results of 
that paper are recovered here. In particular, for a given learning parameter x and 
error fraction e* with a corresponding value Z*(« 1.6 for Hopfield’s criterion [2]), 
there is an upper bound for the relative storage capacity:

«m ax= ( Z m2e ) - \  (33)

which however can be reached for an optimal size of the network,

Nopt = Z*2ex~2. (34)

For Z* =1.6 and x = 0.1, this gives Nopt «  700 [10].

5. C onclusions

We have proven that the main results of [10], namely the existence of an opti
mal network size assuring a maximum relative capacity (stored vector per neuron), 
does not depend upon the unrealistic assumption of symmetric synaptic strengths. 
The numerical estimate of the optimal size, Nopt «  700, also remains valid.

We still think it reasonable to interpret this result in terms of a tendency to 
partition a larger neural network into loosely interconnected blocks of the optimal 
size. In [10] these blocks were tentatively identified with peripherial ganglia. In the 
meantime we have learned [16] that those ganglia consist of functionally unrelated 
neurons. On the other hand, the numerical value estimated for Nopt recalls the 
similar size of columns in the cortex, contrary to the disclaim in [10]. However, cur
rent interpretation of the columnar structure of the cortex is developmental rather 
than functional [16], and much further work is needed to reach any sound conclu
sion about the possible connection between cortical columns and the optimalization 
described in the present work.

A cknow ledgm ents

It is a  p leasure  to  acknow ledge th a t  it was P ro fesso r G. M arx w ho tu rn ed  our a tte n tio n  
to  th e  growing in terest in  spin-glass-like m odels o f n eu ra l networks. We also th an k  en ligh ten ing  
discussions w ith  P rof. J . Szen tágothai an d  Drs. J . K ertész , P. Érdi an d  G . B arna.

References

1. J .W . C lark , J . Rafelski and  J .V . W inston , Phys. R ep ., 12S, 215, 1985.
2. J .J .  Hopfield, P roc. N a tl. A cad. Sei. USA., 79, 2554, 1982.

Acta Phyeica Hungarica 6 i ,  1988



66 R .  NÉMETH a n d  T .  GESZTI

3. Proc. H eidelberg  C olloquium  on Spin G lasses, E ds. J.L . Van H em m en and I. M orgenstern , 
L ecture N o te s  in  Physics, 192, 1983.

4. W .S. M cC ulloch  and W . P i t ts ,  Bull. M ath . B iophys., 5, 115, 1943.
5. D .O . H ebb: T h e  organ ization  of behavior, W iley, New York, 1949.
6. Proc. In terd isc ip lin ary  W orkshop on C ellu lar A u to m ata , Eds. D . F anner, T . Toffoli a n d  S. 

W olfram , P h y sica ., 10D, 1-274, 1984.
7. W . K inzel, Z. Phys., B60,  205, 1985.
8. Vik. S. D otsenko , J. Phys., C I S ,  L1017, 1985.
9. G. P áris i, J .  Phys., A 19, L617, 1986.

10. T . G eszti, P h y s . L ett., 1 Ц А ,  334, 1986.
11. D .J. A m it, H. G u tfreund  a n d  H. Som polinsky, P h y s . Rev., A 32, 1007, 1985.
12. L.N. C o o p e r, F . L iberm an a n d  E . O ja, Biol C y b e rn ., 33, 9, 1979.
13. M. A bram ow itz  and I.A. S teg u n , H andbook of M athem atica l F u nctions, Dover P u b lica tio n s , 

New Y o rk ,C h ap te r  7. 1965.
14. G. W eisbuch an d  F. Fogelm an-Soulie’, J . P hy siq u e  L ett., 46, L623, 1985.
15. D .J. A m it, H . G utfreund  a n d  H . Sompolinsky, P h y s . Rev. L e tt., 55, 1530, 1985.
16. J . S zen tág o th a i, private com m unication .

Acta Physica Hungarica 64, 1988



Acta  Physica Hungarica 64 (1 -3),  VP- 67-7S  (1988)

AN EXACT COMBINATORIAL TREATMENT OF THE 
ONE-DIMENSIONAL HARD-CORE FLUID*

A . B a r a n y a i and I. R u f f

Laboratory of Theoretical Chemistry, D epartment  of 
Chemistry , Roland Eötvös University  

1088 Budapest,  Hungary

(R eceived 8 Jan u ary  1987)

A novel so lu tion  is given of th e  problem  of th e  one-dim ensional hard-core  fluid 
by  d istingu ish ing  th e  n th  neighbour o f a  particle . T h e  p a ir corre lation  functions can  be 
calcu la ted  by a  very sim ple a lgo rithm  based  on this so lu tion . T he eq u atio n  of s ta te  is also 
given.

It is well known that the short-range order in dense fluids is mainly due to 
the steep repulsion wing of the pair potential, i.e. to the excluded volume effect, 
and this is only slightly modified by the long-range forces. The pair correlation 
function, g(r), for a fluid that has a given density and consists of uniform hard 
spheres free of interactions is a good approximation of the pair correlation function 
of a one-component real fluid with the same density. It is also well known that, 
after reaching a definite number density, the hard-core model shows the same kind 
of phase transitions of freezing or melting [1].

It is thus quite obvious why so much effort has been made in the last decades 
to derive the exact pair correlation function and equation of state of the hard-core 
fluid. The most important achievement was the analytical solution of the Percus- 
Yevick equation [2]. This (mathematically complicated) solution yields a simple, 
closed, formula for the equation of state of the hard-core fluid, which is, however, 
not exact, since the final results differ depending on the choice whether the virial 
or the compressibility equation is used for closure:

pV _  l + 77 + íj2
N kBTc (1 -  T])3 '

or
pV _  1 + T] + T)2 -  3»73

N kBTp ~  (1 -  i})3
Still they proved to be good approximations, because they flank closely the function 
fitting computer simulation results that can be considered exact:

(la)

pV _  1 + T] + T)7 -  i f  
NkBT  ~  (1 -  77)3

^D edicated  to  P rof. G. M arx on liis 6 0 th  b irthday.
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where 77 =  7г<т3р/6 is the so-called packing density in which <r is the diameter of the 
rigid spheres and p the number density.

The equation of state of a three-dimensional hard-core fluid is the first quan
titative and rigorous theoretical step from the perfect gas towards real dense fluids. 
While the two-dimensional gas or liquid is an adequate model of adsorbed layers on 
a plane surface, the one-dimensional fluid is only interesting from the theoretical 
point of view. From this latter aspect, however, both one- and two-dimensional 
fluids are much more attractive than three-dimensional ones. For instance the the
ory of phase transitions has been much more successful in two dimensions [3].

The g(r) function of the one-component and one-dimensional hard-core fluid 
was first derived in the 1930’s [4]. Since then several different derivations have 
been published, yet the simple approach given below has not appeared so far. In 
addition, its simplicity makes it useful for didactic purposes [5].

As an introduction to the problem, let us consider a section of straight line 
of length L along which a number N  of point-like particles are distributed whose 
motions are independent of one another. In this case the distribution function of 
every particle will be the same constant function shown in Fig. 1.

1
Г

O X  L

F ig . l .  T h e  even d is tr ib u tio n  of th e  poin t-like  particles of th e  one-dim ensional perfec t gas
(see tex t)

In a given configuration we can number the particles with respect to their 
serial number from one end of the section of line, i.e. we can name the nth closest 
particle to the origin. The occurrence of the nth particle at position x is proportional 
to the event that n — 1 particles are before it and N — n particles are behind it,
i.e. since the probability of their occurrence is independent of one another, it is 
proportional to (x /L )n~1, to |(L — x)/L\N~n, and to the one-particle distribution 
function at position x which is 1/L as well as to the combinatorial number of 
realizations of the given arrangement, since the particles are undistinguishable. The 
nth particle can be selected in N  different ways, while the number n — 1 before the
nth can be selected in ] different ways. (The selection of those behind it

V n ~ 1 /
are already determined unequivocally by these quantities.)

Thus, the probability to find the nth particle at position x is:

Pn(x) H ::i)(rw r (2)

The sum of the Pn(x)’s for all n ’s from 1 to A must reproduce the sum of 
the constant distribution functions in Fig. 1. Indeed, the sum:
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^ '  n = l  '  '

is the binomial decomposition of the constant N/L.
The generalization of this case to one in which the one-dimensional space L 

is replaced by a circle or any kind of closed curve of length L, is quite straightfor
ward. Any point of such a curve may be chosen as the origin, and any of the two 
directions leading from the origin may be chosen as the direction of the positive 
coordinate. The results would be symmetrical for these choices. In this case the 
“radial distribution function in one dimension” -  which is the corresponding pair 
correlation function -  is:

9b{r) = gL{ |*|) = [P(x) + P{-x)\ /2p  = P(x)/p.  (4)

We can follow this procedure for the case when the particles are not point-like 
but their “hard cores”, impenetrable for other particles, occupy small sections of 
straight lines of length er. A common model of this is a thread of length L with N  
pearls of diameter a on it forming a necklace. Let us choose the origin at the centre 
of a particle. As seen in Fig. 2 the positions x — 0 and x = L are equivalent.

Fig.2. To th e  deriva tion  of th e  p a ir  correlation fu n c tio n  of a  one-dim ensional hard-core  fluid: 
choice o f reference partie:le and  the  period ic  occurrence of i ts  n th  neighbour

There is L — Ncr free space for the motion of the particles. Since the particle 
chosen to be at the origin “cannot move”, only N  — 1 particles are to be considered. 
The probability of occurrence at position x of the nth closest neighbour, say, to 
the “right hand side” from the particle carrying the origin, is proportional to the 
(n — l)th power of the free space “before” the nth particle and to the (N — n — l)th  
power of the free space “behind” it. The combinatorial factors are the same as in 
Eq. (2), while the normalization factor is 1 /{L — Ncr) instead of \ /L.  Thus:

K ( * )
N  -  1 Í N  -  2 \ /* „  -  ncr\n~l Í L  -  (N -  n)" -  xn 

L - N a \ n - l )  \ L - N c r  )  V L - N a
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The subscript n of x indicates that the distribution function of the nth particle 
can differ from zero only from the shortest possible distance na up to the farthest 
possible distance L — (N — n)<r, since the rest of the space would be occupied by 
the closest packed particles before and behind it, respectively. Thus:

na < xn < L — (N  — n)a, (6)

while the sum of the distribution of all particles:

r~U ) _  N  - 1 V 1 ( N  -  Л  ( *» -  ( Ь - ( п - г г ) а -  « Л * — 1
Ы  L - N a  ^  \ n - l )  \ L - N t r )  V L - N a  )

( ? )
Applying Eq. (4) again, one gets the pair correlation function:

9b(r) = N N -  1 v ^ /Л Г - 2 \ /x „ -n < rA n-1 Í L - ( N - п ) ( т - х п 
L L - N ( T ^ [ n - l ) \ L - N a )  V L - N aП=1 X N N

TV —n — 1

. ^From this equation the thermodynamic limit can be obtained as the conditional 
limiting case when both N  and L tend to infinity but the density, g = N/L,  is kept 
constant:

s(r) = Ä

-np ( j )n~ ' [ N { \ - o p ) - { x n8 -n p v ) ] N- n~l . (9)

For hard-core fluids the virial equation of state includes only one value of the g(r) 
function, viz. that assumed at distance r =  a:

P
pkBT 1 + pag(a). ( 10)

The value of g(a) can be given immediately on the basis of Eq. (8), since the contri
bution to the pair correlation function at contact can be given only by considering 
particle no. 1. Thus, for Xi = a and n = 1, we have from Eq.(8):

ff(*)
N -  1 1

N  1 - p a  ’ ( И )

which, when N —* oo, yields:

9(<r) =
1

1 — да ( 12)
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Fig.3. P a ir co rre la tio n  function of a  one-dim ensional hard-core  fluid for L  =  100(7 and  various 
densities N / L  ( — : 0 .3 , ......... : 0 .5 ,----------------- : 0.7, 0.8)

Fig.4- I llu s tra tio n  of the rapid  convergence of the g ( x )  function. For о — 1 and p =  0.7, the  
dashed  curve rep resen ts the  case w hen  N  =  7 on L  =  10(7 while the  fu ll curve corresponds to 
N  =  140 on L =  200(7. The la t te r  rem ains p ractically  unalte red  w ith th e  fu rther sim ultaneous

increase of N  a n d  L
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This, when inserted into Eq. (10), leads to:

_ A _  = 1 + _£ÍL_
дквТ l — да

1
1 — да (13)

This result is exact and, as seen, independent of the values of N  and L. It 
depends only on the density p = N/L  and on the size of the particles.

In Figs 3 and 4, some g(r) functions are shown which were calculated with 
various values of N, L, and a.
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T h e  tw o-dim ensional Isirig-m odel is in exhaustib le . Its role in  discovery and  d em o n 
s tra tio n  o f th e  im portance of conform al invariance of two d im ensional critical sy s tem s is 
reviewed. N um erical so lu tion  of an  filtered Ising  m odel is described, w liich suggests u n co n 
ventional new conform al s tru c tu re s .

1. In troduction

The concept of scale invariance is of central importance in understanding 
critical phenomena. The scale invariant fixed point Hamiltonian and the scaling 
fields describing deviations from it provide the framework, where universality of 
critical exponents follows a most natural way.

Although many of the critical exponents were found to be simple rational 
numbers, the general fluctuational theory of continuous phase transitions does not 
account for this feature properly. None of the calculational procedures (high tem
perature series, e- expansion, etc.) is able to deal with this circumstance adequately.

Most of the known results refer to exponents characterizing the behaviour of 
the order parameter or its simplest (two-point) correlations. An elaborate theory 
of correlations of arbitrary complex composites built out of the order parameter is 
missing. In other words no general statement is known on the number of indepen
dent scaling dimensions (anomalous dimensions).

Several features of the explicit solution of the Ising model deviate substantially 
from the results of the mean field theory of Landau. This was one major motivation 
for developing the modern theory of critical phenomena.

A careful investigation of this model led L. P. Kadanoff in 1969 to the formu
lation of the so-called reducibility hypothesis [1], which is equivalent to the short 
distance expansion proposed by K. Wilson [2] in quantum field theory about the 
same time. According to this proposition the product of two scaling fields Oa(x) 
and Op(y) at nearby points x and y can be replaced by the linear combination of a 
complete set of scaling fields, with (maybe singular) coefficients:

Jim Oa(x)Oß(y) ~  Caß-y(x -  y)Oj(x). (1)
7
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A. M. Poljakov has suggested in 1970 [3] that the algebraic structure of the co
efficients Caß-y should reflect the conformal symmetry of critical systems. The 
algebra of the generators of this symmetry, which contains scale transformation as 
special case, was found by M. Virasoro for 2-dimensional systems [4]. This is an 
infinite-dimensional structure (in contradistinction to higher-dimensions , where the 
conformal group is finite dimensional). The generators Ln{n =  ... — 2, —1,0,1,2,...) 
fulfil the relation

[Ln, Z/m] — (n m)Ln+m -|- — 1)î (2)

where the number c is called the central charge of the Virasoro algebra.
At the end of the seventies mathematicians took up the idea and the repre

sentation theory of the two-dimensional conformal group has been worked out by 
Kac [5] and Feigin and Fuks [6]. This development has initiated a renewed interest 
in the general theory of two-dimensional critical systems starting with the funda
mental paper of Belavin, Poljakov and Zamolodchikov in 1984 [7]. This theory leads 
naturally to rational critical exponents and finds a class (the so-called minimal de
generate models) which is characterized by finite number of independent scaling 
fields. In particular, it turns out that the Ising model is the simplest unitary rep
resentative of conformal field theories, possessing only 3 independent scaling fields. 
The exponents derived from representation theory reproduce the values found in 
the explicit solution. In an important development Friedan, Qiu and Shenker [8] 
have found all those unitary representations with central charge smaller than unity 
which might be realized by two-dimensional critical systems.

What remained an art is just the way, how to identify a certain model with 
a member of the catalogue. In a series of papers J. L. Cardy [9] has suggested that 
exploiting the conformal mapping of the infinite system onto a finite width, infinite 
length strip allows the direct computation of the scaling exponents as the spectrum 
of the transfer operator of the strip. The correctness of this idea was demonstrated 
in analytic studies of the Ising [10] and numerical investigations of the 3-state Potts 
[11] models, where the identification was guessed already in the pioneering works
[7], [19]. Recently, it has been understood which piece of the spectrum of the finite 
width strip transfer provides information also on the actual value of the central 
charge [12], [13].

Currently much attention is being payed to the effect of boundary conditions 
on the actual representation content appearing in the spectrum of the strip [14], [15],
[16]. It is again the Ising model where the most detailed test of conformal invariance 
of systems with continuously tuned boundary conditions has been performed [17], 
[18]. A careful finite size analysis has revealed original conformal structures [36], 
which appear at first sight to be incompatible with the classification given in [8]. It 
is to be seen, whether this structure is a peculiarity of the Ising case or once more 
a more general new phenomenon is signalled when reanalyzing this classic system 
from a new point of view.

In Section 2 the analysis is summarized which led to the formulation of the 
reducibility hypothesis. Section 3 introduces the most important elements of the
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2-dimensional conformal algebra and its representation theory. Correspondence be
tween the spectra of scaling dimensions and levels of Hamilton operators of finite 
width systems is established in Section 4. Analytic results for finite quantum Ising 
chains serve for illustration, also of the effect of boundary conditions on the repre
sentation content.

The altered Ising model is introduced in Section 5. It represents a realisa
tion of continuously tunable boundary conditions. Modifications of the Kadanoff 
analysis of Section 1 are discussed. Numerical results for the corresponding strip 
Hamiltonian are presented in Section 6, providing evidence for conformal invariance 
in this altered model, too. The appearing conformal structures show some puzzling 
features. Our conclusions are presented in Section 7.

2. T h e reducib ility  hypothesis

An analytic expression for the thermodynamical averages of products of vari
ables D-y(y), ordered along a straight infinite line has been derived by Kadanoff and 
Ceva [20]. They have considered the “elementary” order parameter field ( i t )  defined 
on lattice sites, the dual disorder field (y) on sites in the dual lattice. The slight 
displacements of these fields are of no importance in the critical point, when the 
correlation length is infinite. In addition to these, the fermion (ip) and antifermion 
(ip) fields introduced by Kaufman [21] were considered and for completeness a sepa
rate notation for the unit operator has been introduced. The identification of these 
fields proceeds through a purposeful choice of the 7 indices:

0 ' ' unit operator
1/2 order parameter

- 1/2 * <=> disorder parameter
1 fermion

-1  . . antifermion

A quantity IV is associated with each ordered product of N  factors:

N
O n  =  П  D y j ( y j ) ,  y j  > y j - i  (4)

j =1

which can be computed recursively

r i + 1  =  r i + ( - l ) 2 r ' 7 ,-+ i ,  1 4  =  7 1  . ( 5 )

The second term on the right hand side of Eq. (5) is called the “charge” of the 
variable at site yj + i

Qj+i  =  ( ~ l ) 2 r , 7 i + i i  ( 6 )
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which gives for Гn
N

г  *  = £ > •  (7)
;'=i

The correlation functions < On > vanish unless Tn  =  0. If the system is 
“neutral” a Coulomb-gas expression is valid:

< On  > =  ел , Л = Y 2 qiqi ln(%' ~  У*). r /v =  0. 
i>i

Consider specifically the nonzero two-point functions:

<  D i / 2(y2)Di / 2(yi)  >  = <  f 5 - i / 2 ( 2 / 2 ) 0 - i / 2 ( 2 / i )  >  =  (2/2 — 2 / i ) - î l / 3  I

< Di(t/2)75-i(2/i) > = <  D- i ( y 2)Di(yi )  > = {y2 -  2/i)_ ,‘ .

These expressions are compared to the general form of the critical correlation func
tions in two dimensions:

<  P ( l / 2 ) v > ( 2 / i )  > ~  (2/2 -  y i ) - 2 * * , ( 1 0 )

where xv is the scaling (or anomalous) dimension of the field <p. One concludes that 

xo = 0, X1 / 2  =  Ж-1 / 2  =  1/8, xi  =  z_ i =  1/2. (11)

The next question is: Could one build new independent scaling fields out of 
those appearing in the list (3). The answer is given by the “fusion rule” of Kadanoff 
[1]. According to it the product of two Dy’s at infinitesimally separated points is 
to be replaced in all correlation functions by a single field whose index and charge 
are completely determined by the corresponding data of the factors:

Da(y +  0 ) Dß(y -  О) ~  D7(y),
7 = a + ( -1 )2“/?, (12)

97 = Яа + ( - l ) 2a9/5-
This is equivalent to the short-distance expansion of Wilson [2]. Kadanoff has 
conjectured the existence of analogous expansion and operator algebra in general. 
He called this suggestion the reducibility hypothesis.

The complete list of the fields in case of the Ising model can be given by 
considering first the product of n fermions (antifermions). The composite field will 
have charge n(—n). Adding to them an order or disorder field, operators with 
all kinds of halfinteger charges will occur. Any other combination leads to one of 
the above composite operators. Their scaling dimensions are found by the formula 
Xy = 1 / 2 as before. Three infinite families are found, whose entries differ by an 
integer from the primary values.

The idea that it is the conformal symmetry of the critical system which is 
behind this tremendous simplification was raised by Polyakov [3]. It took however 
about 13 years until the infinite families were shown to be the simplest irreducible 
representatives of the two-dimensional conformal group.

( 8)

( 9 )
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3. Scaling fields form  conform al blocks

The extension of the scale invariance of the fixed point Hamiltonian govern
ing continuous phase transitions is the concept of its conformal invariance [22]. Its 
variation under a general (non-conformal) coordinate transformation аД х) in the 
two-dimensional plane is expressed through the weighted integral of the correspond
ing energy-momentum tensor:

6H = - ^ ~  [ d2xd ,ia v(x)Tßl/(x), <5x" = a"(x). (14)
2ir J

Let us consider an aß(x) which coincides with a conformal transformation e(z) 
within a circle C(z =  x +  iy) and is identically zero outside C. The variation of the 
correlation functions of the theory due to the change (14) is expressed through a 
contour integral over Т),„(х) as follows:

n,ie'/(zi ) < Т ^ ( х , ) 1р1(х1)....(рп(хп) > ds =

=  Ç  {V (*j)A j +  e ( 2i ) ] f z7 +  e \ z j ) A i  +  <  Pi(*i)--V»n(*n) >  • (15)

Here nß is a unit vector orthogonal to the line-element of the contour, x, denotes 
points on the contour, z = x + iy,e (z) = de/dz,e(z) is complex conjugate to e(z). 
Aj  and Aj  are characteristic constants for the field <pj. Note that e(z) ф e(J), that 
is in general not only real analytic transformations are allowed.

The relation (15) is the conformal Ward identity. The equations (14) and (15) 
emphasize the role of in determination of conformal properties of a critical sys
tem. This symmetric, traceless 2x2 matrix, which has vanishing divergence becomes 
particularly simple in the complexified coordinates z = x + iy and z — x — iy:

T  = г ‘]_ )  дтТ22 = d2Tjj  = 0. (16)

An immediate consequence of Eq. (16) is that the components of the energy- 
momentum tensor are analytic functions

T22 = T(z), T22 = T(z). (17)

Therefore the product T(z)ip(zi,Ti) (and analogously T(7)<p(zi, zj)) can be ex
panded into Laurent-series with respect to z around the point z\\

OO
T(z)<p(zi,zi) = ^ 2  (z -  z1)_2_n(L„v?(21, 2i)). (18)
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This expansion defines the operators Ln(—oo < n < oo) through the inverse trans
formation

£n¥>(zi,Ji) =  =  <£ dz(z -  zi)n+lT(z)tp(zi,zi). (19)
гжг Jc(zi)

The conformal Ward identity restricts strongly the non-zero coefficient func
tions Lntp(zi, zi), when Eq.(15) is rewritten into a local form. For a conformal 
transformation of the г-coordinate it is equivalent to the short distance expansion

T{z) f{z1, z l ) Д
( г - г О 2vK^l.Zi) +

__1___ d_
z — z\ dz\ V?(zri, zri) + regular terms. ( 20)

Similar relations are derived for T  ■ if, with Д replacing Д, in variable z.  From the 
comparison of (18) and (20) follows that

Ln<p(z,z) = 0, Ln<p(z,z) = 0, if n > 0, ^
L0f ( z , z )  = Д • f ( z , z) ,  î 0<p(z,z) = Д ■ f ( z , z) ,

where Ln are the operators defined in the Laurent expansion of T(z).
A field with property (21) is called primary. An infinite family can be con

structed starting from it, by the application of all types of combinations of the 
operators L_„ and L_n (n > 0). The evaluation of the subsequent applications of 
L-operators to f  requires the information on the short distance expansion of the 
product T(z)T(z'), (T ■ T) :

T ( z ) T ( z )  =  ( г  _ 2 г ' ) 2 Г ( г ’)  +  7 Т ( г  )  +  ( g  1 ^ ' ) 4  +  r e 8 u l a r  t e r m s .  С2 2 )

Relative to Eq. (21) the new feature is the presence of the inverse quartic power 
proportional to the conformal anomaly number or central charge (c). Then a double 
use of Eq. (19) followed by a lengthy algebra leads to the algebra of the Ln operators
[4]:

л A л Q
[Ln, Lm] — (ji m)Ln+m -f- y2 1)* (23)

The algebra determines the Lq(Lq) eigenvalues of the secondary fields:

L0(L -nf ( z i , z i ) )  =  (Д + n) f ( z lt zi). (24)
A whole family of secondary fields is then found associated with the primary field f

jy?, L_ i f ,  L_ i f ,  L - i f ,  i - 2f ,  L2_ lip , i_ l f ,  L _ lÍ _ l f  I  (25)

which have Lo and Lq eigenvalues differing by integers from Д and Д. This con
formal block realizes an infinite dimensional irreducible representation of the direct
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product group O x O  where О stands for conformal transformations in variable z 
and О for transformations in z.

The meaning of Д and Д becomes clear when studying the correlation function 
of a primary field. The differential operator representation of L± \, Lq [7] determines 
fully its functional form:

< ‘P(zi,z1)tp(z2, z2) >= (zi -  z2) 2A(z i - z2) 2Л. (26)

For secondary fields the powers are replaced by 2(Д + n) and 2(Д + n).
When looking back to our Ising example, one has to ask what are the condi

tions under which the conformal group admits just three irreducible representations 
to be realised in a continuum theory? The values of the highest weights should be 
chosen to reproduce the correlations appearing in (9):

Д<7 =  Д<Т = 1/16,
Д* =  1/2, Д*р = о, (27)
Д ^ = 0 ,  Д * = 1 /2 .

The representation theory of the Virasoro algebra was developed by mathe
maticians to the end of the seventies. In particular, Kac [5], and Feigin and Fuks 
[6] have found a series of representations with c < 1, where the number of primary 
fields is finite:

m(m + 1) ’
[(m -F l)p -  mg]2 -  1

4 m(m + 1) 1 < p < m — 1, 1 < g < p. (28)

In 1984 Friedan et al proved [8] that the series parametrized by the integer, m, 
provides all unitary representations with c < 1.

If the representations of the conformal algebra are of any relevance for the 
critical Ising model, one has to find the specific m value yielding by (28) just those 
dimensions, which appear in (27). Choosing m = 3, one has indeed

c = 1/2, Ди =0,  Д 2,1 = 1/2, Д 2,2 = 1/16. (29)

This means that the conformal block of the unit operator realizes the (0,0), that of 
the order-parameter the (1/16,1/16), the fermion the (1/2,0), while the antifermion 
the (0 ,1/2) representation of the Virasoro algebra with central charge c =  1/2.

A few other models have been also identified with representations character
ized by low values of m, but it is still a question of “phenomenological” investigation 
to find out for an explicit lattice model what its conformal representation content 
at criticality is.

A cta  Physica Hungarica 64, 1988



80 A. PATKÓS

4. L a ttice  p henom en ology  o f  th e  sca ling  d im ension  spectra

Finite conformal maps can be used to relate the correlation functions in the 
infinite plane to those measurable in restricted geometries. The most convenient 
among them is the logarithmic map

w {z )= - j ^ \n z  (30)

(w = и + tv), which relates the original correlations to those measurable in an 
infinitely long strip of width L (Fig. 1).

i V

L/2

• > P ( U 2 , V 2 )

•  > P ( U 1 , V , )

u

-L/2

Fig. 1. C o rre la tion  function  in  th e  fin ite  w id th  strip

The transformation law for the two-point function is the following [9]:

< <p(zi,zi)(p(z2,z2) >= |u /(z i) r  К ( гг)Г < <p(wi,wl)lfi(w2,W2) > (31)

(гг,- = tr(zi)). Assuming that p is primary, one makes use of Eqs (26) and (30) to 
derive

<‘p(uu vl )p(u2,v2) >

= ( т Г х > - " ^

= (тГ. , 27г . . 2тг,2 cos h — (Ui — и 2) — 2 cos — (vi
Lj Lj

exp + m + >«)(«! -  «2) + »Y"(s + m — m)(vi -  v2)

— X

(32)

where х = Д +  Д, s = А — Д.
The strip correlation function can be represented directly in terms of the 

eigenstates of its transfer operator:

< 4>(ui,vi)p(u2,v2) >=
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= £ £ <  0 |<£(iq)| n, к > e (£»-Eo)(«i “a) < n k |^>(u2)|0 > . (33)
n к

In this expression {f?n} denotes the energy eigenvalues of the eigenstate |n,k  > 
of the transfer operator. A degeneracy index к is also introduced. The eigenstate 
belonging to the largest eigenvalue is denoted by |0 >. The operator <p(v) coincides 
with the field y?(0, v) in the representation where the eigenvectors are functionals of 
this field.

Comparing (32) and (33) one finds the correspondence between the following 
sets of quantities:

{En -  E0}

{< 0|^(t»1)|n,fc >}
(34)

Then the degeneracy index к is equated to s -f m — m, but it is more important 
that the first equality provides a general foundation for the famous gap-amplitude 
relation occasionally found earlier in specific case studies [23].

The extremely interesting conclusion is that there is a one-to-one correspon
dence between the states of the Hilbert space contributing to the 2-point function 
of a primary field and the fields in the conformal block of that field. This cor
respondence allows to find the spectrum of the scaling dimensions of a model by 
computing the eigenvalue spectrum of the transfer operator of the continuum field 
theory on a strip.

The transfer operator for infinitesimal time intervals is simply related to the 
Hamilton operator of the quantum field theory defined on a line of length L

f(A t) = 1 -  AtH. (35)

So one is led to the problem of finding the spectrum of this Hamilton operator.
A practical procedure is to consider first the lattice regulated version of H, 

where N  discrete points will represent a section of the strip along the ^-direction 
in Fig. 1. As H belongs to a conformal invariant theory the only dimensional scale 
for it is provided by the lattice constant a, :

H = — W,  (36)
a,

where W  is some dimensionless operator.
For concreteness we return to the Ising case, where the Hamiltonian of the 

critical lattice system is given by

W  =
N N

" Z ] « i+l>
»'=1 «'=1

(37)
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supplemented with a periodic boundary condition. From finite size scaling theory 
[24] it is known that in the critical point all energy gaps of this finite system are 
inversely proportional to N:

wn -  w0 = Щ-Нп- (38)

Substituting (38) back into (36) and using L = N ■ a, one understands that ampli
tudes An, which can be determined by diagonalizing (37) give an estimate for the 
spectra of the scaling dimensions which in the limit N —+ со, L = N ■ a, =  fixed 
should provide us with their true values if the lattice régularisation makes sense.

Fortunately the spectrum of (37) is known [25] in analytic terms, so the Ising 
system is perfect for illustrative purposes. Performing a Jordan-Wigner [26] trans
formation one arrives at a fermionic Hamiltonian whose solution is found following 
the strategy of Lieb et al [27]

N  N - 1
Hf = 5 > + c „ - l / 2 ) —1/2 £ ( с + - с п)(с++1+с„+1)+

П=1 П=1
( 4 - C j v ) ( c +  + C i ) .

(39)
Q — 0 denotes the energy sector (excitations built of an even number of fermionic 
states), while Q — 1 is for the spin sector with an odd number of filled fermionic 
levels. The eigenvalues for periodic chains were found by Pfeuty [25]

A* = 2sin fc/2, к

(m = 0 ,1....JV — 1). The lowest excited state in the Q =  1 sector is given by filling 
the к = 0, Ло =  0 level. Its energy is given purely by the difference of zero-point 
fluctuation energies in the two sectors:

1 N ~ l  2
Eo(Q = I) =  —2 Ц  Л^ '= ^Tm) =  — cot 2"jv ’

m = 0

/ _ V 1 V—> /f 2m -f" 1 \ / . яг V_ 1 (41)Eo{Q = 0) = - ~  ^ A { k =  — —  it) = - ( s i n —  ) \  ^
m = 0

Л«аР • 17 = J im (^o(Q = 1) -  E0(Q = 0)) = lim tanTV Tv—*' oo TV—*oo 4  TV

The lowest gap in the Q — 0 sector is given by

Energy • Щ  =  A(t = 1 )  +  л (k = ^ ÿ -^тг) =  4 sin (42)

2 m
N  

2 rn + 1
N  '

if Q =  1,

if Q =  0 (40)
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When one performs the continuum limit N —* oo

•Agap — 1/8, -̂ energy — 1 (43)

is found. The first reproduces the result for Дг,2 in (29), if taking into account that 
Agap = Дг,2 +  Дг,21 while the second result is consistent with the fermion scaling 
dimensions given in (29), when one notices that the energy operator is a fermion- 
antifermion composite: фф.

Another important consequence of conformal invariance concerns the leading 
finite size correction to the ground state energy. It follows from the anomalous 
transformation of the energy-momentum tensor-components under conformal maps:

T(z) I w'(z) I2 T(w) + C- d3w !dw 3 / d?w , d w \ 2 
~ d ^ ' ~ f c ~  2 \ d ^ '  )

That is under the logarithmic map (30) one finds

T — » (44)

Using the expression of the Lq and Lo generators as Cauchy integrals over T(z ) and 
T{z), one finds for the generators in the strip

Lq + Lo  ► -—
L_
2jt è / < r

T)dv c
+ Î2 (45)

The quantity in the square bracket on the right-hand side is the Hamiltonian. There
fore the application of the Hamilton operator on the ground state

H | 0 > = f (r ^ L o ) | 0 > - g | 0 > = - ^ | 0 > .  (46)

Using the expression for E(Q = 0) (Eq. (42)) one checks the validity of (46) 
in the lattice regularised Ising field theory:

л-с ? 1 1  2N  1 я- ~ , г_2\
6L  “  n ™ o o  "  ^ 7  +  2 '  6Ï  +  ° ( L  }

The first term on the right hand side diverges when a —* 0. It has to be subtracted 
in the procedure of the régularisation. The equality of the 0 (L -1 ) terms reproduces 
c = 1/2 (c.f. Eq.(29)).

The strategy described in this Section for the identification of the irreducible 
representations of the conformal group appearing in lattice models has been applied 
extensively to some famous models of statistical physics, like the 3-states Potts [28] 
or the Ashkin-Teller model [29]. It was suggested also that the evidence for or 
against conformal invariance will be decisive in disputes about the nature of the 
phase transition in specific models, like the 6-state cubic model [30 ].
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5. A lgebra o f  exp on en ts in a m odified Isin g  m odel

J

J к -J J J

x-J J J J

Fig. 2. T h e  a lte red  Ising m odel in  the  infinite p lan e

Consider the critical Ising model in the infinite plane. Let us assume that 
couplings along a straight ladder are changed from Jc to к ■ Jc (Fig.2). This change 
is a surface effect, which allows to introduce exponents characterizing correlations 
along the defect line [31, 32]. The corresponding exponents vary continuously with 
к. The situation was understood to be a consequence of the marginal nature of the 
surface-energy field (ct(x)<t(x + ea,)) [33]. The modifications are restricted to the 
spin sector exclusively, where they can be stated the most compact way using the 
multipoint correlations introduced in Section 2 [34]. Relations (5) and (8) expressing 
the operator algebra and the correlations in terms of the charges are unchanged. 
The charges however are “renormalized”:

■ I f 7> if 7 = integer,
^  \  7+ /7(/c), if 7 = halfinteger.

Only 1 independent function / 7(/c) appears because the operator algebra re
lates the others to a single one. For example the product of an order and a disorder 
operator being a fermion one has

1?1/г| + I?—1/21 = 1, 

which means by the relation x = q2/ 2

(49)

\/2  x <7( k ) + sJ ï x ^ k) = 1. (50)
This relation was first recognized by Brown [37]. Also the series of halfinteger 
charged composites is seen to possess modified charges:

\/2 xa{n, к) = \J2х„(к) + n =  n + 1 -  yj2хй(к), 

^ 2 х ц(п,к)  =  ^2хД/с) -f n.
(51)
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As / 7(к) takes values continuously depending on к, the exponents appearing.in (51) 
are all independent, so it is suggestive to assume, that one is dealing with infinite 
number of primary fields. Before that stage, however, one has to answer very basic 
questions concerning the validity of conformal invariance in this situation.

Does one find the same spectrum of scaling exponents from the Hamiltonian 
obtained for the system arising from a logarithmic map, for instance? Do the above 
independent dimensions possess their own conformal blocks? Are the level degen
eracies those which follow from character formulae for irreducible representations 
[35]?

Affirmative answers to some of these questions have been given in partial 
investigations [17, 18]. A complete numerical study of scaling dimensions followed 
by the construction of the spectrum generating algebra was attempted in [36] and 
[37]. It led to firmly established conformal structures, which are related in a very 
original way to the characterisation presented above for the perfect Ising system.

6. C onform al strip  phenom enology for th e  altered  Ising  m odel

The logarithmic map of the infinite pleine with a straight defect line leads to 
a strip containing two parallel defects. The physical spectrum is built of fermion 
levels of the following Hamiltonian:

n N - 1

H f  =  ^ > + c„ -  1 / 2 ) -  1/2 £ ( c +  -c„)(c++1 + c n+1)+
П=1 71 =1

+ ( ^  -  <з) (c]v -  C7v)(ci--bcOd- (52)

+  -  K) [(Ct  -  C* ) ( Ci  + i +  C^ + 1) +  ( c i*  -  Сш)(с^£ + 1 +  Cl£ + 1)j .

The analytic, N  —* oo solution of (52) is not yet known. Its numerical diagonali
sation can be achieved following steps of the procedure outlined by Lieb et al [27]. 
The eigenvalues were found for chains consisting of up to 210 sites. With the help 
of an extrapolation technique proposed by Bulirsch and Stoer [38] 8 digit stable 
values of the first 12 eigenvalues were obtained to follow diagonal representation

2~ Hr  = Y  {л£1,|#1)!*г(1) +  A<24 +(2)i?r(2)} ,
г=0

A ^  =  i  —Д(к) + г + О(1/Л0, A «  =  I  +  A(«) +  r +  0 (l/lV ). (53)

In the Q — 0 sector Д(к) = 1/2 independently of the value of к. In the spin sector 
(Q — 1) Д(/с) was found to fit extremely well the functional form

2 1Д(к) = 1 ---- arctan —. (54)
7Г К
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Primary fields in the Q =  0 sector remain what they are in the perfect Ising 
model, implying the unchanged form (47) for the leading ground state correction.

In the sector Q = 1 infinitely many primary fields appear. Their gap values 
are given as

^ G P  = ' E Ari) + A E - (55)
r —0

A E  is the difference in the zero point fluctuation energies in the sectors Q = 1 and 
Q = 0 (c.f. Eq.(41)). This quantity was found to fulfil the relation

A E = ± A 2( k ). (56)

The gaps in (55) are rewritten with help of (54) and (56) in a form which exactly re
produces the known Hamiltonian limit [39] of Eq.(48). This completes the evidence 
for conformal invariance present in the altered model.

One constructs with help of the single fermionic levels also the secondary 
states in the Q = 1 sector. Their degeneracy at level m is given by the number of 
partitions of this integer. That is the generating function has the simple expression:

P(q) = Y , d ( m ) r = f [ ( l - q ”) - 1. (57)
m n= 1

A half-infinite defect line is mapped into a strip problem containing a single 
defect only. Its numerical solution was achieved along the same lines [37] as pre
sented above. The main difference is that the diagonal form of the Hamiltonian is 
of the form (53) now in both (Q =  0,1) sectors. The characteristic functions A 0(k) 
and Ai (k) were found analytically and are different. It is an interesting question 
for future investigations to see whether the form (53) and (57) is the most general 
structure which can be realized in Ising type systems. It is the construction of the 
spectrum generating algebra in terms of the eigenmodes t)r(i), which determines the 
type of representation of the conformal group which appears in the defected Ising 
model.

Consider the following operators:

£ n ( A )  =  Í  X I  ( P  -  A ) : Vn-p+AVp-A ■ , V t= r ) - c n  (5 8 )
p e z + i / 2

where : : denotes normal ordering, that is

' W P ,
: r]aTip := VßVon

а < 0, 
а > 0, 
а = 0 •

(59)
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With help of standard anticommutation rules one shows that £„(A) and £„ ( —A) 
([£„(A),£„/(A')] =  О, A' ф ±A) form in the special points A = 0, 1/2 two 
separate c = 1/2 Virasoro algebras. The value A = 1/4 is also of peculiar nature, 
because then the two infinite oscillator series of (53) collapse into a unique series 
of spacing x / N  on absolute scale. The corresponding single Virasoro algebra has 
again c = 1/2.

Away from the specific values A = 0, 1/2, 1/4 the algebra of the operators 
(58) does not close:

[£„ (A ),£m(A)] = ^ p £ „ +m(A) -  ( n 3 +  n Q  +  6Д2(к )) )  ,
2

[£n(A), £ m( —Д)] = n £n+m( — A) — . 'у 1 '■ Ц п - р - A V p + A  • "b (60)
P = l / 2 + Z

+ \б п ,-т ( ÿ  + n2A +  n ( a 2 -  ^ ) )  •

Introducing
Kn = £n(A) +  £ „ (-A ) (61)

the two extra terms of the computing structures cancel and a single Virasoro algebra 
is found

[tf„,Am] = ( n - r n ) A n+m + 6„,_m^ ( n 3 - n ( l -  12Д2)). (62)

It is known from the representation theory of the conformal group [40], that 
the central charge of the algebra is uniquely fixed by the coefficient in front of n3 
on the right hand side of (62), while the coefficient of n in the same term is fixed 
only by convention.

Indeed, the modified generators

К  = Ko + ^A2(k), K t o  = Knt  о (63)

are seen to fulfil the standard form of a c =  1(!) Virasoro algebra. The represen
tation in terms of the fermion fields (58) is unitary, as one easily convinces himself 
that

< + = KLn. (64)
Also it is known [5] that the degeneracy of all unitary representations of c > 1 
Virasoro algebras follows the pattern (57) and there are no restrictions on the value 
of the highest weights.

It is still not clear at this stage of the analysis what dictates the relations 
between the highest weights of the different conformal blocks as given by Eqs (50) 
and (51)? An important insight is provided by comparing the critical defected Ising 
system with a real boson theory supplemented with specific boundary conditions.
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Following [41] we consider the free field Ф(х) defined on the interval О < x < L 
and taking its values on a circle of radius ß~ l :

0 < Ф < 2nß 1, mod(2Tr/î *). 

Boundary conditions are chosen to be:

U)Ф(0) = О, Ф(1,) = mod(2TT/? x).
r'

(65)

( 66)

The field can be expanded into Fourier series, separately in sectors labeled by the 
number of windings of the Ф-field on its configurational circle:

ф(т )(х) =
2n
T

oo

! ( m+ ï )  + 2 > si"
ТГХТ1

m =  1
(67)

The partition function of this boson theory, Zß(L, u, ß) is compared to the parti
tion function of the critical, defected Ising model , which is defined by the general 
expression

•Ri s i n g  (L,T) E  E v M exp
prim ary m

Using (55), (56) and (57) one finds(g = exp(—2ttT/L))

Rising (Q =1,2 — defeds)= Zb +  A i ( k ) ) , v/ tF

( 68)

(69)

Different conformal blocks contribute to (68) in a way, which is equivalent to the 
contribution of the different winding number sectors to the bosonic partition func
tion. A further extension of the equivalence for fermionic fields proceeds along the 
lines outlined in [41].

In conclusion of this Section we state that the defected critical Ising model in 
the Q — 1 sector provides unitary representations of a single c =  1 Virasoro algebra 
(except in the specific points A = 0, 1/4, 1/2). A posteriori it is very natural that 
two commuting Virasoro algebras of the periodic Ising model fuse into a single one 
under more general boundary conditions.

7. C onclusions

Application of conformal invariant quantum field theory to critical phenom
ena in 2-dimensional statistical systems is one of the brightest achievements of 
the theoretical physics of the eighties. Critical scaling exponents form irreducible
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highest weight representations of the Virasoro algebra. Many well-known systems 
possessing finite number of conformal blocks appear naturally to be identifiable with 
unitary representations with central charge smaller than unity.

In the Ising model the operator algebra which follows from what one calls 
today the representation content of the c = 1/2 Virasoro algebra, had been discov
ered in very explicit terms long before the general group theoretical framework was 
worked out. Also, it allows an explicit analytic check of those features which reflect 
conformal invariance in quantities calculated for finite size systems. The extensive 
study of other models which led to confirmation of the representation theory is one 
of the most undisputable successes of lattice regularized field theories in defining 
continuum field theories at their critical points.

Finally, it was again the Ising model, where one has demonstrated how the 
boundary conditions can change even the central charge of the model. It will be 
interesting to see, whether this observation is extendable to other models.

The present understanding is still not fully satisfactory. One cannot foresee 
which representation of the conformal group will appear in the continuum limit of 
a certain lattice system. This question might become the focus of research in the 
immediate future.
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THE QUARK-GLUON PHASE OF MATTER*

J . K u t i **

Department  of Physics,  University of California 
at San Diego, La Jolla, California 92093, USA

Some im p o rta n t physical p ro p e rtie s  of the  q u a rk -g lu o n  phase of m a t te r  a re  dis
cussed. T he tra n s itio n  tem p era tu re  find th e  laten t h e a t p e r  un it volume fo r th e  creation  
of quark -g luon  p lasm a  from  o rd inary  h ad ro n  m atte r a re  calculated  from  a  very large scale 
co m puter sim ulation  of Q uantum  C hrom odynam ics a t  fin ite  tem pera tu res .

1. In troduction

I dedicate this work to Professor George Marx on his 60th birthday. I have 
had the good fortune and privilege to be his student, coworker and close associate. 
What I have learned from him about physics and human curiosity will guide me for 
the rest of my life.

The work reported here is based on some recent results of a large scale collab
oration spread over two continents. We have studied the physical conditions for the 
transition of ordinary hadron matter into the quark-gluon phase of matter within 
the framework of Quantum Chromodynamics at finite temperatures. My collabo
rators on the project are S.A. Gottlieb, A.D. Kennedy, S. Meyer, B.J. Pendleton, 
R.L. Sugar and D. Toussaint. Without their contributions I could not discuss here 
some interesting results and I am very thankful to them.

2. Quark m atter in n atu re

Quarks and gluons are the known fundamental building blocks of strongly 
interacting hadron matter. They are organized into nucleons, and mesons which 
hold the nucleons together in the nucleus. Quarks and gluons first were believed to 
be confined to the inside of hadrons permanently. Later its was conjectured that 
nuclear matter at large densities or high temperatures where nucleons overlap may 
transform into a deconfined quark-gluon plasma phase (quark matter) where quarks 
are free to move around. As the quark density or the temperature of the plasma 
grows the interaction among quarks and gluons is expected to become negligible 
(asymptotic freedom) and quark matter may become asymptotically an ideal gas of 
quark and gluon quanta.

’•‘D edicated to  P rof. G. M arx on h is 60 th  birthday
**O n leave from  th e  C entra l R esearch  Institu te  for Physics, B udapest
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Quark matter could only be observed under some exotic conditions. The most 
spectacular scenario is provided by the early universe, a few microseconds after the 
big bang. At that time, in the last phase transition of the early universe, at a few 
hundred MeV temperature, quarks and gluons became permanently bound inside 
hadrons, they mainly formed nucleons and the lowest mass mesons.

We have no direct access to quark matter in the early universe, because the big 
bang cannot be replayed. Fortunately, a little bang can be created under laboratory 
conditions in ultra-relativistic heavy ion collisions. The density of matter inside the 
nucleus is about 3 x 1014g/cm 3. The density of matter inside the nucleon is only 
about three times larger than ordinary nuclear density. It is, therefore, concievable 
that if nuclei are compressed to five or ten times their normal density, a transition 
may occur into the quark matter phase. In ultrarelativistic nuclear collisions the 
required densities, and, therefore, quark matter in bulk may be created. The high 
temperature, measured in hundred MeV in the central region of the collision, will 
significantly enhance the possibility of making quark matter in the little bang. 
The observation of the created quark-gluon plasma will require very clever plasma 
diagnostic tools.

It is interesting to note that the cores of neutron stars under very large pres
sure may consist of quark matter. However, to distinguish between quark matter 
and ordinary nuclear matter in the core of neutron stars is a very difficult astro- 
physical problem.

3. Q uantum  chrom odynam ics

Quantum Chromodynamics (QCD) provides a rigorous theoretical framework 
for the study of hadron matter under extreme conditions. The physical conditions 
which are required to create quark matter have to be derived from QCD.

During the last few years quark-gluon thermodynamics has been studied ex
tensively within the framework of lattice Quantum Chromodynamics. The lattice 
provides a nonperturbative regularization scheme for the theory. Computer simu
lation (Monte Carlo methods) is the only available practical tool for calculations 
from first principles in lattice QCD outside the framework of perturbation theory. 
Perturbation theory is, of course, not applicable to the study of phase transitions.

The first computer simulation of the deconfining phase transition [ 1,2] and 
the investigation of gluon thermodynamics with SU(2) color [3] opened the way 
to detailed quantitative results for the realistic SU(3) color group. The computer 
simulations substantially strengthened the arguments of early theoretical work [4,5] 
on the deconfining phase transition and motivated further research with new ideas 
and rigorous results [6,7,8,9] .

In lattice QCD calculations one of the difficult problems is to remove the 
lattice cutoff effects from physical quantities. This can only be accomplished with 
confidence in the scaling regime of the theory where the renormalization group ß  
function is universal and known in perturbation theory. The removal of the cutoff is
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important, if we want to determine the transition temperature and the latent heat 
of the transition in measurable physical units, that is in units of MeV.

We believe that the deconfining phase transition with its first-order character 
may also be the best tool to study the continuum limit of lattice QCD on more 
general grounds. The determination of the transition temperature Tc is a unique 
test of the onset of scaling behavior, since Tc is free of cut-off dependent ultraviolet 
divergences. Locating the transition temperature is relatively easy because the 
system undergoes a sharp first-order phase transition where rounding effects are 
small and controlled by finite size scaling theory.

At present these calculations can be carried out only when the effects of quark 
vacuum polarization are neglected. The hope is that the experience gained from 
these studies of the pure gauge theory will be useful when improved techniques 
and larger computing power make inclusion of dynamical fermions practical. In 
fact, computer simulations in the presence of dynamical quark effects are becoming 
feasible now on medium size lattices.

The partition function for the Euclidean Wilson action SE(U) on the lattice 
is defined by the functional integral

Z = [ H dU exp [~ßSE(U)}, (3.1)

where the integral in Eq. (3.1) is with respect to the Haar measure and the lattice 
coupling is ß — The Wilson action SE is defined as a sum over all unoriented 
plaquettes,

SB(U) = T  (1 -  \  Re Tr UUUU). (3.2)o
plaquettes

The lattice spacing a is a known function of the bare coupling g in the con
tinuum limit,

a = Л 1 16л-2 \  131 - 8>3
n ? )  eiu

(3.3)

where Л is the lattice scale parameter. In the continuum limit Л is related to the 
string tension a of the quenched theory by the relation

Л =  c • (3.4)

with a string tension estimated to be a ss (400 MeV )2 from charmonium spec
troscopy. The constant c can be determined from Monte Carlo calculations of the 
static quark antiquark potential. Its estimated value is about с «  ^  from recent 
very large scale computer simulations [10] .

Since the transition temperature Tc of the deconfining phase transition is a 
measurable physical quantity in the continuum limit, it is renormalization group 
invariant; that is ^ T c (<j(a)) = 0, where a is the lattice cutoff. Using the known 
two loop perturbative ß function
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~ß{d) — bog3 + big5 +  ... (3.5)

with

and

bo
11

16л"2 ’

1021 “  (16ТГ2)2 *

Tc depends on the lattice coupling g as

- J m  ] •  <«>

The constant in Eq.(3.6) must be determined from non-perturbative calculations of 
Tc in the scaling regime.

We use a Monte Carlo measurement of the function aT(g) to determine the 
ß  function. The results are to be compared with the two-loop form of Eq. (3.5) to 
verify asymptotic scaling and to determine the physical value of Tc in MeV.

Tc =  const -  exp a

4. G lobal Z(3) sy m m etry  and the deconfinem ent transition

Gluon thermodynamics for finite temperatures is realized by lattices with spa
tial volume n?s and temporal size nt . The temporal size nt is identified with the 
inverse of the temperature of the quantum field system in lattice spacing units. 
Strictly speaking the spatial size n, should be taken to infinity for fixed nt in the 
thermodynamic limit. This is only approximately realized in Monte Carlo calcula
tions, and finite size effects become an important issue in the discussion.

The order parameter of the deconfinement phase transition is the Polyakov 
loop P(x) which is defined as

P(x) =  Ъ  f í  Ut (x,i),  (4.1)
( = i

where Ut is an SU(3) matrix along a time-like link at spatial location x at time t. 
We shall denote the spatial average of P(x) by P and use it as the order parameter 
of the transition. The free energy Fq of an isolated external quark source is related 
to the order parameter P by the relation

P »  e~ntaFq, (4.2)

where the proportionality constant is a Z(3) symmetric phase factor.
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Lattice QCD at finite temperature has a global Z(3) symmetry, in addition to 
the local gauge symmetry associated with the color SU(3) group. The action under 
the Z(3) symmetry is invariant under multiplication of all time-like links on a single 
time slice by the same element of Z(3). Under this symmetry transformation the 
order parameter transforms as

P — * z -P ,  (4.3)

where 2 is a group element from Z(3). In the low-temperature confined phase 
P — 0 and the Z(3) symmetry is unbroken. In the high-temperature deconfined 
phase P ф 0 and the symmetry is broken with a three-fold degeneracy. The high 
temperature broken symmetry phase is identified as the deconfined phase because 
the free energy Fq of an isolated external quark source is finite on the lattice in the 
deconfined phase.

The dynamics of the Polyakov loop is determined by a three-dimensional 
effective theory: by local gauge invariance all time-like links can be set to the unit 
SU(3) matrix except on one time slice. By integrating out the spatial link variables, 
one can derive an effective SU(3) spin model in three dimensions to describe the 
interaction of the time-like link variables in the time-slice [6,7,8] . If this effective 
SU(3) spin model has short range interactions, it is in the same universality class as 
the three-state Potts model in three dimensions and therefore a first order transition 
is expected.

Following the method of Polonyi and Szlachanyi [7] , we develop a qualitative 
physical picture for the phase transition and the breakdown of the Z(3) symmetry at 
the transition point. This picture will guide our analysis of the computer simulation 
results. In strong coupling we can derive an effective action in three dimensions for 
the partition function of Eq. (3.1) by integrating out the spatial link variables,

Z = j[dP]  exp [-Seff(P)]. (4.4)

The effective action is given by

S M P )  = Äff £  IP(x) -  P(x + e,)|2+ (4.5)
x,i

£  ( - |ln [2 7  -  18|P(x)|2 + 8 Re P (x)3 -  |P(x)|4] -  6/?eff|P (x)|2)

where ßen = ( ^ 7)"' and the Polyakov loop P(x) is defined above. The effective 
action S'eff in invariant under global Z3 transformations given in Eq. (4.3).

Mean field calculations on the effective theory defined by Eqs (4.4) and (4.5) 
predict a first order transition at a critical value of /?eff above which the Z3 symme
try is spontaneously broken. At criticality the three broken Z3 phases coexist with 
the unbroken phase at the origin. Fig. 1 depicts the effective potential of the mean
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Re (P)

Fig. 1. T h e  effective p o ten tia l is show n in the m ean  field approx im ation  to Eq. (3.5) for th ree  
different values o f /3t ff as we s te p  th ro u g h  th e  tran s itio n  po in t. T he d o tte d  line corresponds to  the  
unbroken  confined phase, the  solid line represents coexistence, and  th e  dashed line is ca lcu la ted  

a t  a  value of /3rff in  th e  b roken  deconfined phase

Fig. 2. T he co n to u r plo t of th e  effective p o ten tia l is show n a t coexistence in  th e  com plex p lan e  of 
th e  o rder p a ra m e te r  P .  T he a n a ly tic  m ean  field calcu la tion  com pares very well w ith the co m p u te r 

s im ula tion  a t  n t  =  2 in  Fig. 3 a t th e  coexistence p o in t p -  =  5.092
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field calculation as a function of the real part of the order parameter P for three 
different values of /?eff as we step through the first order transition point. Fig. 2 
shows the contour plot of the effective potential in mean field approximation on 
the complex plane of the order parameter P at the coexistence point of the broken 
and unbroken phases. The effective potential has a minimum around the origin 
which corresponds to the unbroken confined phase. The Z(3) symmetric three 
other minima describe the broken deconfined phase. This qualitative picture has 
been made very convincing in computer simulations.

5. T he transition  tem p eratu re and com puter sim u lation

In the computer simulation of the phase transition the number of time slices 
nt is kept fixed (inverse temperature in lattice spacing units) while the coupling 
constant g is varied to search for the transition point. As g varies, the tempera
ture changes in physical units. The transition temperature Tc corresponds to some 
critical coupling gc for each value of nt . In the scaling limit, for a sequence of nt 
values, the transition temperature Tc has to follow the functional form of Eq. (3.6) 
as a function of gc. The perturbative ß  function of Eq. (3.5) has to be used in the 
exponent of the expression for Tc in Eq. (3.6).

In an earlier paper [11] a Monte Carlo calculation of the critical coupling gc 
was reported for tit ranging from 2 to 10. Fig. 3 demonstrates how the first order 
phase transition is recognized in the computer simulation for nt =  2 and ns — 9. In 
the standard notation of ß = j i  the coexistence point of the two phases is at ß = 
5.092 which corresponds to fairly strong coupling. The similarity of the Polyakov 
loop distribution at coexistence in Fig. 3 is in striking qualitative agreement with 
the contour plot of Fig. 2 which was obtained in mean field approximation at strong 
coupling. At small ri( values we have good theoretical understanding of the detailed 
picture supported quantitatively by computer simulation. At larger values of nt , 
however, we are loosing our analytic power to calculate things, but the computer 
simulation continues to provide the required quantitative results.

The most surprising result of this early calculation was that a pronounced 
non-scaling behavior was found in the coupling constant range 5.1 < 6/д2 < 6.1. 
The implications of this finding were twofold. First, an important upper bound 
was set on the lattice coupling constant g and on the lattice cutoff a for continuum 
physics results. Second, it became obvious that the determination of the transition 
temperature of the deconfinement phase transition in physical units (MeV) will 
require nt values larger than 10, and therefore, given the condition n, »  nt , a 
very large scale computer simulation.

A new very large scale computer simulation was undertaken by our collab
oration and results were reported for nt from 8 to 14 [12]. The calculations were 
done on Cyber 205 supercomputers and on ST100 array processors. Different pro
grams were used, one using the “quasi-heatbath” method [13] , and the other the 
Metropolis method. The Cyber 205 code was running in 32 bit precision with 19 
/rs/link update time using the quasi-heatbath algorithm. The ST100 code used 16
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bit precision with 105 ^s/link update time with 15 Metropolis hits/link including 
measurements at every fourth sweep and reunitarization after every second sweep.

Fig. 3. T h e  g rap h s on the left show the  d is trib u tio n  of the  Polyakov loop  P  in the com plex plane 
for a  93 by 2 la ttice . T h e  to p  row correspond to  ß  <  ß c (confined), th e  m iddle row is a t ß Cl 
and  the  b o tto m  row has ß  >  ß c (deconfined). E ach  p o in t corresponds to  th e  value of th e  average 
Polyakov loop  on a  given configuration , an d  each m easurem ent is se p a ra ted  by 20 sw eeps a t ß c 
an d  5 sweeps away from  th e  tra n s it io n  region. T h e  histogram s on th e  r ig h t show the  d is trib u tio n  

of p o in ts  as a  function  of th e  rad ia l d istance (abso lu te  m agn itude  of the  Polyakov loop)

Runs were reported in length from 1 X 104 to 3 x 104 sweeps. Except for the 
first run at each lattice size, the lattice was initialized to the end result of a run at
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a nearby value of ß  on the same size lattice. The first 2000 sweeps at each coupling 
were discarded. This number, 2000, represents a compromise between the ideal of 
a truly independent start and the relative scarcity of data.

a)

Some of these new results are shown from three Monte Carlo runs in 
Fig. 4. These results are from 193 x 14 lattices, the largest size we studied at 
that time. In the first run we are below the transition point in the confined phase. 
The second run shows the system near the transition point with the coexisting con
fined and deconfined phases. In the third run we are above the transition point in 
the deconfined phase. Since then we cumulated more data on very large lattices up 
to the size of 233 x 14.
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Fig. 4- S c a tte r  plots of the Polyakov loop on 
193 X 14 la ttices  a t 6 / g 2 =  6 .45,6.475, 

an d  6.5 show ing the  tran s itio n  from  th e  confined 
ph ase  to  th e  deconfined phase. T h e  ru n s contain 

28500,22000, a n d  23750 sweeps respectively, 
exclusive of w arm ups. T he average Polyakov loop 

over the  la ttic e  is p lo tted  a t  every te n th  sweep

Fig. 5. T he sam e d a ta  as in Fig. 1. T h e  
five successive m easurem ents have b een  

averaged to  sm o o th  out the h igh 
frequency fluctuations
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In an attempt to clarify scatter plots such as the ones depicted in Fig. 4 we 
have made “blocked” scatter plots in which we averaged the Polyakov loop over 
several successive measurements. The idea is that we are averaging out the high 
frequency (in Monte Carlo sweeps) scatter in the data but leaving the much slower 
movement of the system among the different available phases. Fig. 5 shows the 
same data as in Fig. 4, where five successive points have been averaged. The 
transition becomes morfe visible with this technique.

The coexistence of the confined and deconfined phases over runs of extended 
length (twenty to forty thousand sweeps were typically required to study the sys
tem close to the transition point) and the jump in the order parameter P provide 
evidence that the transition is of first order.

The width A T  of a temperature driven first order phase transition is expected 
to scale as

AT  1 
T  W s V ’ (5.1)

where V = is the spatial volume and s is the latent entropy of the system [14,15]. 
For small values of the jump in the “magnetization” P the latent entropy will be 
proportional to the jump in P  at the transition point. Near a first-order phase 
transition we also anticipate a shift in 7) as a function of the volume V with the 
same scaling law given by Eq. (5.1).

Estimates of Tc can be made from visual inspection of scatter plots such as 
those in Figs 4 and 5 and plots of the magnitude of the order parameter versus 
sweep number. Naturally it would be useful to have a quantitative measure of the 
degree of confinement or deconfinement of a finite size lattice.

Fig. 6 . T he deconfinem ent frac tion  J\  as a  function of tem p era tu re  on tw o different size sp a tia l la t
tices a t fixed value of n t .  The w id th  of th e  rounding scales w ith y .  T h e  cu rv es are expected to  cross

each o ther a t /  RS j

In an attempt to do this we have studied the dimensionless quantities f \  and 
/2 which are the fractions of time spent in a long Monte Carlo run at fixed coupling 
and lattice size in the deconfined and confined phases, respectively. The fraction 
/1 vanishes in the confined phase on an infinite spatial lattice. Fig. 6 shows f \
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schematically on two different spatial lattices at fixed nt . The widths of the curves 
scale with the y  scaling law of Eq. (5.1) and the two curves cross at the best 
possible estimate for Tc in a finite volume.

The crossing is expected to occur at /1 = | ,  if, at coexistence, the integrated 
Polyakov loop density in the complex phase space is equal in the confined phase 
around the origin to the integrated density in the three Z(3) symmetric peaks of 
the deconfined phase. In that case the four coexisting peaks of the Polyakov loop 
distribution will occur with equal probabilities in a long computer run. Mean field 
calculations at strong coupling support that picture as can be deduced from Figs 1 
and 2 and from the details of the analytic mean field calculation.

Fig. 7. C o m p u te r sim ula tion  m easurem ent of ß c for different sp a tia l volumes a t n t  — 2 ,4 ,6 , an d  8 
T he lines show th e  finite-size scaling  ex trapo la tions for th e  j \  =  |  c r ite ria

In our earlier work [11] the value /1 = |  was chosen using the somewhat 
more ad hoc argument that at coexistence the system would spend half time in the 
confined phase and half time in the deconfined phase ignoring the Z(3) structure of 
the broken (deconfined) phase. With this choice we expect a shift in the transition 
point proportional to p-. Of course, we expect to extrapolate in the limit when V 
becomes very large to the transition point obtained from the f \  — |  condition.

Fig. 7 shows the finite size scaling shift of ßc from the the condition /1 = | .  
That has to be compared with Fig. 8 for nt = 2 where the deconfinement fraction 
is plotted for n, = 5 ,7  and 9. The crossing point is at f \  — |  at critical coupling
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ßc =  5.095 which agrees to a very good approximation with the extrapolated value 
obtained from Fig. 7 for nt = 2. We conclude that at n, = 2 our theoretical picture 
and the computer simulation are in very good agreement. The same analysis can 
be used then for larger values of n t .

100

80

60
<

40

20

0

Table I summarizes our results of a large number of Monte Carlo runs for 
different values of nj.

Estimation of the statistical errors is difficult because of the limited amount 
of data. Even our longest runs contain only one or two handful of tunnelings among 
the different phases, so one cannot accurately divide the runs into many independent 
subsets as we would do if we had much more data. Thus our quoted errors represent 
the range of ß over which the scatter plots and time histories appear to change from 
confined to deconfined using the /1 = |  criteria.

The main physics result of our work is depicted in Fig. 9. The measured 
values of Tc/A  are plotted there in the range from 2 to 14 for nt . Where the 
relation between gc and a ■ Tc is that predicted by two loop perturbation theory, 
this graph will be a horizontal line. The height of the line gives the constant of 
proportionality between Tc and Л.

’— '— I— ’— ’— 1— '— I— r 
two - loop scaling

*
- î- f - f -*

j _____ 1_____1____1— I— I— I— 1— I— I— I— I—

5 6 7
coupling : 6 / g2
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Fig. 8 . T he deconfinem ent fraction  as a  
fu n c tio n  of the  coupling  for nt  =  2 a t sp a tia l 

la ttic e  sizes n s =  5 ,7 , and  9.
T h e  zig-zag of th e  curves ind icates th e  s ta tis tic a l 

e rro r involved in  th e  calculations. T h e  curves 
a p p ea r  to  cross each o th e r  a t / i  =  |- w ith in  

s ta tis tica l u n certa in tie s

Fig. 9. T h e  onset of scaling in  th e  
deconfinem ent tem p era tu re
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T a b le  I
C ritical couplings on  various la ttice  sizes

T im e slices L argest spatia l size n s C ritical ß S ta tis tica l error

2 13 5.097 0.005
4 11 5.696 0.005
6 17 5.88 0.01
8 19 6.02 0.02

10 19 6.18 0.02
12 19 6.33 0.02
14 23 6.45 0.02

T a b le  II
D a ta  base

T im e slices S p atia l size /3 Sweeps M ach in e /a lg o ri thm

10 17 6.13 32000 STIO O /M etropolis
10 17 6.17 36000 STlO O /M etropolis
12 19 6.28 22000 STIO O /M etropolis
12 19 6.30 24000 STIO O /M etropolis
12 19 6.32 14000 C y b e r /h e a t b a th
14 21 6.42 34750 C y b e r /h e a tb a th
14 21 6.45 40440 C y b e r /h e a tb a th

T a b le  III 
L aten t h eat

N t ß P laq u e tte  gap Д е /Л 4 X 10“ 7 S ta tis tic a l error

10 6.13 0.000303(59) 3.18 0.93
6.17 0.000275(52) 3.46 0.67

12 6.28 0.000080(51) 1.65 1.18
6.30 0.000181(40) 4.08 0.91
6.32 0.000228(83) 5.62 0.21

14 6.42 0.000080(28) 3.10 1.08
14 6.45 0.000013(34) 0.58 1.50
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The following remarkable structure emerges: after apparent early scaling be
tween 5.1 < 6/ g 2 < 5.7 there is strong scaling violation in the range 5.7 < 6/ g 2 <  

6.10 and finally asymptotic scaling is observed for 6.15 < 6/g2 < 6.50. The on
set of scaling is at much weaker coupling than early optimistic expectations. This 
means that either a large increase in computer power or a substantial improvement 
on Wilson’s lattice action is needed for practical calculations of hadron proper
ties. However, our work does provide evidence that Monte Carlo calculations with 
ß  > 6.15 on sufficiently large lattices can provide believable answers for continuum 
quantities in pure gauge QCD.

Recently a new computer simulation of the string tension у/ a  was carried out 
on a very large lattice of the size 24 x 24 x 24 x 48 at the coupling ß  = 6.3 [10]. 
De Forcrand finds y f o  «  80Л where Л is the lattice scale parameter defined before. 
From Fig. 9 we find T c = (51 ±  3)Л. The combination of the two calculations gives 
Tfe = 0.6 which corresponds to T c =  240 MeV in physical units if y / a  к , 400 MeV 
is chosen from heavy quark spectroscopy.

I should also note that a similar calculation of the deconfinement transition 
temperature was carried out on the Columbia special purpose machine with similar 
findings [16] .

6. T h e  latent h eat o f  th e deconfinem ent tran sition

In the previous Section we have learned from our large scale computer sim
ulation that deconfinement is associated with a first order phase transition. For 
physical applications it is important to know the latent heat per unit volume of the 
transition. It will determine the amount of energy per unit volume which has to be 
pumped into the system at the transition point to make deconfined quark matter.

In many of the Monte Carlo runs used in the study of the transition tem
perature we monitored the expectation value of the plaquette. In this Section we 
use these plaquette measurements to estimate the latent heat of the deconfinement 
transition [17]. To the extent that the deconfinement transition in pure gauge QCD 
is a good approximation to the real world including quarks, this number is impor
tant to the question of whether the deconfined phase will be observed in heavy ion 
collisions, as well as to studies of the early universe.

The theory of the latent heat in lattice QCD can be found in the literature. 
The particular formula that we apply is due to Svetitsky and Fucito [18], and relates 
the latent heat to the discontinuity of the average plaquette across the first order 
transition. We will briefly summarize here the theoretical basis for the latent heat 
calculation.

For any discrete statistical system with states |j  >  of energy E j  = <  j \ H \ j  > 
at temperature T  — l/ kßß  the partition function in the canonical ensemble is 
defined by Z = ]T]j e~-E> ■ Underlined ß is used here to distinguish the physical 
temperature of the system from the unfortunate notation of ß  = p. in QCD.

The energies E j  depend upon an extensive parameter V ,  the volume of the 
“box” . From this we immediately find that the internal energy is
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"•<">= *£•-«*-(^X (6'[)
and the entropy is

e ~ i . E i
S = - k B Pj ln Pi = ~ kB -  z  [~ßEj -  ln Z] = kBßU + kb ln Z,

i i

thus we have the fundamental relation between the free energy F and the partition 
function F = U — T S  = — ̂  ln Z.

The second law of thermodynamics states that dU — TdS — PdV,  hence 
dF =  —SdT — PdV. The pressure P may be defined by

On the lattice the partition function for finite temperature QCD may be 
written as

Z = J [ d U ]  exp { ^ S B[U]̂ j , (6.3)

where the lattice action is

Sb [U] = -  T  ^ Tr Re Upi + — V  ^ Tr Re Upi, (6.4)
Q>t г,  ̂ dg . оsp aceh k e  t im e h k e

and the lattice spacing in the spatial and thermal directions are a, and at respec
tively. We assume the lattice volume to be V — (a,ns)3, the temperature to be 
given by ß — 1 /kbT  =  atnt , and we define the energy density to be e =  U/ V , so we 
obtain

a3,n*nt

P = 1
3a]n3atnt

din Z 
dat 
din Z 
da.

(6.5)

( 6 .6)

Using the explicit form for the SU(3) partition function, together with the 
definition of the configuration-averaged plaquette operator

p  =  %  E  sp ac e lik e  Ъ  ^  U pl

3 n3nt
P  _  f t  E  tim e lik e  ^  ^  U pl

* 3n3nt
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(notice that our individual plaquettes are normalized so that their maximum value 
is three), we find

<  P> +  Pt >  ) 

<P, + Pt > .

(6.7)

( 6.8)

The averages are defined by < Q > =  ^  J[dU] exp (6<7- 2Sj9[t7]fi[t/])and Sß /n2nt = 
Pa + Pt- The two terms in each of the above expressions come from the explicit 
dependence of Sb upon as or at and from the implicit cutoff dependence of the 
coupling constant g.

The expressions just derived for the energy density and pressure hold for any 
temperature, but at Tc, the deconfinement temperature, we know in addition that 
the pressure is continuous (the transition is of first order, so the system changes 
between the confined and deconfined phases at constant T  and P because the free 
energy F is degenerate for the two phases). At Tc we have, therefore,

<c
d(b/g2)

da < P > , (6.9)

where we have also set a, = at =  a and P = (P, +  Pt) / 2.
If the coupling is sufficiently small that the system follows the asymptotic 

scaling laws we can use the weak-coupling form for the /З-function (the dependence 
of g on a, and a, are the same in this limit), and also remove the cutoff dependence 
of our result by reexpressing it in terms of Л:

ß(g) = - a ^  = -bog3 - b ig 5 + . . . ,  (6.10)

аЛ(</) = (b0g2 +  . . . ) _il/26° exp ’ (6Л1)

where the first two (universal) coefficients were given before: bo =  11/(4тг)2 and 
61 = 102/(4tt)4. Let the energy density difference between the two phases be Де, 
then our final result is that the latent heat of the transition is

Де
A4 = 24 11 102<72

+ tt4 t + ---(4л-)2 (4л-)
( ж л
V(4*)2/

2  \  204/121
exp < A P > ( 6 .12)

with < AP > being the change in the average plaquette between the two phases.
We will discuss now our measurement of the jump in the plaquette at the 

transition point and the related uncertainties. Because the gap in the plaquette 
is extremely small at large nt and because the spatial volumes of our lattices are 
relatively small, it is not easy to measure the gap. We attempt to take a long run
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at a single value of ß ,  ideally exactly at the critical value, and separate the run into 
portions where our finite lattice is “confined” or “deconfined”. On our finite size 
lattices there is a region of ß  in which we see phase coexistence, with occasional 
tunneling from one phase to another. The central assumption of our procedure is 
that the configurations of our lattices can be divided into confined and deconfined 
configurations and the average plaquette measured in each phase. This is obviously 
an idealization, and there will be a resulting systematic error on our results.

We used a total of seven Monte Carlo runs in this analysis. To be useful, a 
run had to show coexistence (i.e. tunneling), be rather long, and have the plaquette 
measurements recorded along with the Polyakov loops. Table II contains a summary 
of the runs used.

Table III contains a summary of the plaquette gaps in all the seven runs. This 
Table should be interpreted with some caution. It is clear that the gap measured 
from a particular Monte Carlo run is reasonably insensitive to the exact cutoff used. 
However, this alone does not tell us that another run would give the same gap.

Fig. 1 0. T h e  scaling behavior o f th e  la ten t h e a t as m easured in u n its  of Л

The errors quoted in the Table are statistical errors only. That is, they re
fer to the uncertainty in the average value of the plaquette under the assumptions 
that the configurations can be separated into deconfined and confined configura
tions, and that we have done the separation correctly. Both these assumptions are 
approximate, and both will introduce some systematic error. It is not clear to us 
whether our lattices go from one phase to the other as a whole or whether domain 
walls form. In the first case, we would expect the average energy of an “unde
cided” configuration to be between the deconfined and confined averages, while in 
the second case we would expect it to be higher. We don’t know what direction the
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systematic error caused by the inclusion of such configurations will be. The second 
systematic error comes from misclassifying configurations. This almost certainly 
causes our result to be smaller than the correct number.

It is not clear how to choose a best value for the gap from the above Table. 
Because we suspect that smearing reduces the gap, for the moment we will take the 
largest result from a magnitude cut in each run. Again, the differences as we vary 
the cut are fairly small.

We can now use the formula in Eq. (6.12) to calculate the physical latent 
heat. The resulting values are plotted in Fig 10. The weighted average of the seven 
runs is (3.17 ±  0.35) X 107, with a \ 2 of 7.2 for six degrees of freedom.

The result depicted in Fig. 10 can be translated into a latent heat per unit 
volume in f̂ .^ 3 units using the relation y f â  »s 80Л and the string tension y / f f  «  
400 MeV from heavy quark spectroscopy. This way we find the latent heat per unit 
volume to be about 2.5 which is a large energy density. This number is very
sensitive (fourth power) to our input string tension value and the proportionality 
factor between y f â  and Л.

7. C onclusion

In this report I demonstrated the power of very large scale computer simu
lations for the nonperturbative study of Quantum Chromodynamics. I presented 
evidence that the deconfinement phase transition is of first order and the transition 
temperature was determined in the scaling limit of the theory where cutoff effects 
can be eliminated. The transition temperature was estimated to be about 240 MeV. 
The latent heat of the first order transition was also calculated in the same very 
large scale computer simulation.

Our calculations were carried out in the sector of QCD neglecting quark vac
uum polarization effects. These dynamical quark effects will be included in the next 
generation of computer simulations on medium size lattices in the very near future.
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I t  h a s  been  shown th a t  s tran g e  and n o n -stran g e  quarks generally  possess different 
had ro n iza tio n  ra te s  in  a  qu ark -n u c leo n  phase tran s itio n . Since the  m ain  process d riv ing  th e  
reh ad ro n iza tio n  is th e  expansion a n d  cooling of th e  fireball of quarks, th is  com plicated phase  
tran s itio n  is in tim ate ly  con n ec ted  w ith re la tiv istic  hydrodynam ics. H ere the  consisten t 
h y d ro +  therm odynam ical d escrip tion  of the tra n s it io n  is presented.

1. In troduction

In equilibrium thermodynamics it is a commonplace that the necessary con
dition for phase equilibrium is the equality of all the thermodynamic intensives 
between the phases. This can be visualized in two different ways. Either one can 
observe that in this case all the intensive gradients driving conductive fluxes are 
absent, or one can find that, with fixed total values of the extensives, the entropy 
is maximal at a homogeneous distribution of the intensives [1].

However, in a recent publication [2] it has been pointed out that to keep the 
zero value of strangeness in a heavy ion reaction one has to use different strange 
quark chemical potential, f t , ,  in the quark and hadron phases. Therefore ref. [2] has 
suggested that p, should possess a jump at the phase boundary. But in this case 
the phase transition would be accompanied by entropy change, which is possible 
but not in the equilibrium (or quasistationary) limit, which is a physical limit when 
the hydrodynamical evolution is of moderate velocity.

Ref. [3] has eliminated this problem by showing that the quark-hadron phase 
transition has to proceed through a coexistence region where 41, changes continu
ously from 0 to a finite value, being in each volume element the same for the two 
phases. However, obviously, the presence of such a coexistence region leads to seri
ous problems in the hydrodynamical description of an expanding fireball undergoing 
phase transition from quarks into hadrons.

D edicated  to  Prof. G. M arx on his 60th b ir th d ay
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The aim of this paper is to set up a new type of hydrodynamical formalism 
suited to the present problem. Section 2 briefly summarizes results of [3], needed 
here. Section 3 gives the new type of hydrodynamical equations, while Section 4 
discusses the boundary conditions at the interfaces of different phases. Section 5 
contains the explicit forms of the equations in CM system.

2. P h ase transition  in sy stem s o f  neutral strangeness

First we recapitulate how the phase equilibrium conditions are obtained. Con
sider a thermodynamical system whose independent extensives are Xl\ for the 
general statements the particular number and specification of these extensives is 
unnecessary. The entropy 5  is a homogeneous linear function of X1. Now assume 
that the matter can be in two different phases between which the transition is free 
of constraints. Then the total entropy of states in a container keeping the values of 
the extensives fixed is

s = s (x{) + s  (x27) ,
x[ + x[ = X1 = fixed , ( 2 . 1)

where the lower index labels the particular phase. Since equilibrium belongs to the 
entropy maximum [1], by a variation one obtains

dS dS 
dX( ~ dX{ ' ( 2 .2)

which is just the equality of intensives, called Gibbs criteria.
Now consider a quark plasma, produced in some previous compression phase 

of the heavy ion collision. Charmed, bottom and top quarks can be neglected in 
collisions of the order of GeV/nucleon beam energy, and gluons are not conserved 
particles, therefore their number is determined by the temperature. Furthermore 
in first approximation the neutron and proton numbers are equal, therefore in the 
quark plasma up and down quarks will appear symmetrically. So the quark plasma 
can be characterized by three independent extensive densities: the energy density p, 
the number density of light quarks nq and the number density of strange quarks n , . 
The conjugate entropie intensives are l / T , —pq/ T  and —p , /T ,  respectively, where 
p is the chemical potential and T is the temperature, while the fourth intensive, 
conjugate to the volume V is p/T, where p is the pressure. Now assume that this 
plasma begins to rehadronisate: then, in equilibrium, Eq. (2.2) requires the equality 
of quark and hadron intensives. However, still we have to specify the independent 
characteristic data of the hadronic matter. Because hadrons consist of quarks and 
can be mutually transformed into each other, the complete equilibrium can be 
characterised by only two chemical potentials also on the hadronic side, with e.g.

Pn — 3/iq ,
Рл = 2р? +  р ,, (2.3)
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etc. Then Eq. (2.2) leads to the equality of Т ,ц ч and /i, between the phases, with 
the additional condition

Р\{Т,ц„ц,)  - P 2(T,(iq,n,). (2.4)

Here we will not discuss the specific forms of the pressure functions.
Now, the initial condition of the transition is a quark plasma with zero 

strangeness; then in the plasma /r, = 0. Substituting this into Eq. (2.4) one 
obtains a relation between fiq and T. However, in the hadronic matter generally 
the strangeness does not vanish at ц, = 0, so is seems that one has to choose 
between chemical equilibration and conservation of strangeness [2].

However, in the above discussion a tacit assumption was used, namely that 
the nuclear matter keeps the equilibrium with the original state of the quark plasma. 
This is not necessarily so, furthermore, the above paradox shows that it cannot be 
true. Consequently, with the appearance of the first hadronic droplets the quark 
plasma ceases to be neutral for strangeness; fi3 ф 0, and takes such a value that the 
actual quark-hadron mixture in the volume element investigated can be globally 
neutral at the same ц, value in both phases.

This construction is mathematically possible. The physical processs behind 
it is a fractional distillation of quarks. Let us start from ц, = 0; then, because of

2тк < гад (2.5)

first the s quarks go into the hadronic phase, forming mainly kaons. Then the quark 
plasma becomes s-dominated, starts to increase, until at some value the s quarks 
already possess the needed energy to build up the Л hyperons. The final state of 
the rehadronisation is a hadronic matter neutral for strangeness but already some 
positive Ц, [3].

According to this, in a given volume element the evolution of the matter 
consists of three stages: quark plasma with ца — 0, quark-hadron mixture with 
growing positive Ц, and the final hadronic matter. At fixed time the corresponding 3 
regions can be found in a fireball. Consequently, the hydrodynamics of the expansion 
and transition will be complicated. In the next Section we will explicitly incorporate 
the above phase equilibrium picture into the hydrodynamical formalism.

3. T he evo lu tion  equations o f  hydrodynam ics

Our system is an expanding sphere of particle mixture, in some region with 
two coexisting phases. Nevertheless, in principle, the equations of motion and 
continuity are obtained in the same manner as for one component and one phase. 
Our starting equations are:

ha +  nauT.T =  0,
r r,r =  0,

(3.1)
(3.2)
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where и' is the four-velocity, n is a particle density, the subscript a labels the 
conserved components, and T ik is the energy-momentum tensor of the fluid; the 
semicolon stands for covariant derivative, while the dot is the comoving derivative

h = n,r ur. (3.3)

Eqs (3.1-3) are valid in any coordinate system; the actual forms for CM system will 
be discussed later, but, obviously, Eqs (3.1) are evolution equations for the particle 
densities. Now we turn to Eq. (3.2).

T ik can be decomposed by using the velocity field u’; one obtains

Т к = ри*ик + Я{ик + u{ qk +pik,
Ur Ur  =  - 1 ,

qrur = p’V  = 0. (3.4)

For the observer comoving with the matter p is the energy density, q' is the conduc
tive energy (heat) flux and p>k is the spatial stress tensor [4]. Restricting ourselves 
to perfect fluids,

<?’ = 0,
pik = p(gik +  u‘V ) ,  (3.5)

where p  is the thermodynamic pressure and git  is the metric tensor of the spacetime. 
Substituting the form (3.4) into Eq. (3.2), two equations are obtained:

(p +  p ) u ' . y  + P,r (g'T + u V ) = 0, (3.6)
P + (p + p) ur;r = 0. (3.7)

The first equation is the equation of motion, being u'.rur the acceleration, while 
Eq. (3.7) is the balance equation for energy. Eqs (3.1), (3.7) result in an entropy 
equation too, because

s =  s(na’p). (3.8)

(We, of course, assume that all the particle densities not restricted by conservation 
laws take their equilibrium values, i.e. those of the entropy maximum.) Now, for a 
one phase system the entropy production can be evaluated via Eqs (3.1) and (3.7), 
yielding

s +  sur.r =  0 (3.9)

and the same is true for two phases in equilibrium [5]. We will use therefore Eq. 
(3.9) instead of Eq. (3.7). So the system of evolution equation consists of Eqs (3.1), 
(3.6) and (3.9); since the independent extensive densities are na and either p  or s, 
the evolution of p  is determined and then Eq. (3.6) gives the velocity changes for 
any moment.

Acta  Physica Hungarica 64, 1988



HYDRODYNAMICS OF REHADRONIZATION 115

However, during phase transition the variables na and p cannot be directly 
used, because the conditions of phase equilibrium are the equalities of the inten
sives; similarly, now there are “chemical” (i.e. hadronization) reactions during the 
phase transition, whose equilibrium can also be formulated via intensives. Thus we 
have to rewrite the balance equations (3.1), (3.9) in terms of chemical potentials, 
temperature and pressure. It can easily be done for a pure phase as follows.

Consider a fluid characterised by two chemical potentials p\ and p2 and the 
temperature T. Then, due to thermodynamic relations given in the Appendix.

P = P (Pl'P2'T),
— P) 1 »

»2 = P,2 .
S = P,T ,
p = Ts + p in i  + p2n2 -  p,

(3.10)

where the comma and subscript stand for derivatives with respect to thermody
namic variables and 1 is a shorthand notation for ni. Now Eqs. (3.1), (3.9) become 
linear in /1,- and T, while the coefficients are second derivatives of p. The equations 
so obtained can be written into a compact form by exploiting the Riemannian struc
ture of the thermodynamic state space. Namely, let us introduce the independent 
intensive parameters as coordinates in this state space [6]

x1 = (T ,pvti2). (3.11)

Then the second derivatives of p build up a metric tensor [7]

»■« = - s z b  <312)

and the balance equations get the form

9 i k í R  + Р ч  «Г;г = °- (313)

By multiplying with gIK
9IK9KR = t f ,  (3.14)

the result is
=  - 9 I R P , k « V  (3-15)

So we have explicitly obtained the evolution equations for the intensives; substitut
ing the p and p values into Eq. (3.6) the evolution of the velocity is obtained as 
well. One still has to show that the components ni and n2 can be identified by the 
conserved baryon and strangeness numbers; this is done in the Appendix, here we 
only note that in equilibrium the number of independent chemical potentials is 2 in 
both phases [2].
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Now let us turn to the coexistence region, where the matter is a mixture of 
quark and hadronic phases. Assuming that the droplets are sufficiently small for a 
continuous hydrodynamics, all the density-like quantities are to be volume averaged 
as, e.g.

s = asq + (1 -  a )sh, (3.16)
where the subscript labels the particular phase and

a  = Vq/(Vt + Vh). (3.17)

The X1 state space coordinates take the same values for both phases as a consequence 
of equilibrium, therefore the local state is characterized by a^and a. So now one 
more evolution equation is needed. This can be obtained from the condition of 
mechanical equilibrium

pq(xl ) =ph(xI ). (3.18)
In order to obtain again a compact form here we introduce averaged and difference
quantities as

D I =  Pq,i -  Ph,I,

Pi = aPq,i + ( 1 - “ )PW>
9I K  =  a 9qiK +  (1 -  a )9hIK■ (3.19)

Then, from Eqs (3.1), (3.9):

giiiXR -I- Diá + p ,u r.r = 0, (3.20)

while the dot derivative of Eq. (3.18) yields

Dr xr = 0. (3.21)

By introducing the contravariant vector componens via

Eqs (3.20-21) give

D1 = gIRDR,

D r p r  

a ~  D s Ds

= ( % & . d\ D SDS

;r >

'  -  f‘) « V

(3.22)

(3.23)

Being the phase transition of first order, Dq ф 0.
Now the evolution of the local thermodynamical quantities is determined in 

the mixed phase; by using volume averaged p and p values in Eq. (3.6) the equation 
of motion is known as well. Then, in principle, a particular coordinate system can 
be chosen and the evolution equations can be integrated from an appropriate initial 
condition. However, first the question of possible discontinuities is to be discussed.
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4. T h e  phase b oundaries

Perfect fluid models always possess two kinds of possible instabilities. First, 
the Reynolds number, which is inversely proportional to the viscosity coefficient, 
is infinite, therefore turbulency is expected [8]. Second, in the lack of transport 
processes shock fronts may be built up. (If there is either viscosity or heat transfer, 
the front becomes a smooth transition region of finite width [9].) Now, these in
stabilities may or may not be physical depending on the actual values of transport 
coefficients in the actual system investigated; if necessary, the shock fronts can be 
incorporated into the evolution equations via the Rankine-Hugoniot equations [9], 
while the turbulency is at least formally excluded by the high symmetry of the flow. 
The development of shock fronts is highly sensitive on the initial conditions.

In this paper we are concentrating on effects arising from the phase transi
tion and the existence of a mixed phatóé region. Therefore, here we assume that the 
initial conditions are sufficiently smooth in the sense that they could not lead to dis
continuities without phase transition. However, the phase boundaries do represent 
some kinds of discontinuities, so they are to be discussed.

Our particular initial condition is a hot, compressed, static sphere. Therefore 
the pure quark phase occupies the central region, up to some n ;  here a = l identi
cally. At rj there is the first phase boundary B\  separating the pure quark phase 
from the mixture. In the second region a is continuously decreasing, and where it 
reaches the 0 value, there is the second phase boundary В2 whence a = 0 and a 
pure hadronic phase can be found.

Now, one may assume that both x1 and a  are continuous in r, since the 
equality of the intensives is the condition for phase equilibrium. However, there is 
no sufficient reason to assume the continuity of the first derivatives, and generally 
at least a possesses jumps in the first derivative at phase boundaries (being the 
derivative identically 0 outside). But then the first derivatives of x1 must be dis
continuous, too, in order to compensate the effect in p, otherwise a shock front will 
develop. Namely, consider Eq. (3.6) in both sides of B\ (or B2). The coefficient 
p + p is continuous while crossing B \ . However, p„- can be written on the two sides 
as

(P it ) r i - 0  — Pq,Rx  it >

(p,i )r,+0 = P R X R ,i +(p? -  P h ) a , i  ■ (4.1)

At the boundary the values of p4tI and pi coincide due to the continuity of x l and
a. So, in order to get a smooth pressure gradient, the jumps of x 1 ,i and a„- must be 
matched; if not, the acceleration will be different in the two sides of the boundary 
even in the static initial configuration, so a discontinuous flow pattern will develop. 
As it was mentioned above, here we restrict ourselves to smooth initial conditions; 
then the jumps are matched at t= 0, and in principle the stability of the equation of 
motion against shock front is no new condition compared to the situation without 
phase transition.
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Nevertheless, we still have to check if the phase equilibrium can be conti
nuously maintained at B\ during the expansion. The question is not trivial, be
cause the evolution equations (3.15) and (3.23) clearly differ, therefore the comoving 
derivatives of intensives of matter elements just on different sides of B\ differ too. 
However, this fact does not imply any discontinuity developing at B\, since B\  is 
not comoving with the matter. The situation can be visualized as follows.

Consider the moment t, when the boundary is at tv, the three-velocity of the 
matter just at the boundary is v, while that of B\ is w\ for definiteness’ sake assume 
that w > v. Then in the moment t + dt the above mentioned matter element is at 
7-j + vdt, while B\ is at Tq +  wdt. Thus both matter elements just at the two sides 
of Bi in t +  dt, have been governed by the common evolution equation (3.23) (that 
of the mixed phase) up to t +  dt, and therefore their x1 values are equal. Mutatis 
mutandis, this argumentation remains valid for w < v too, while for w =  v Bi  is 
comoving with the matter, therefore á  = 0, and then Eqs (3.15) and (3.23) yield 
the same evolutions.

Fig. 1 . A pprox im ative  p ictu re  o f th e  phase coex istence region on th e  ( ß q , ß a) plane a t  m o d era te  
tem p era tu res . T h e  possible reg ion  is th e  interior of th e  ABCD irregu lar quadrangle. L ine A  is the 
original n e u tra l quark-plasm a; b e y o n d  Line В ß x  <  0 , therefore n x  <  nj ^  a t low n A, so b o th  n aq 
an d  n ,h  w ould b e  positive. O n L ine  C  ß д =  т д ,  b u t  ß x  <  г а к , so b ey o n d  th a t again b o th  phases 
possess positive  strangeness. F ina lly , beyond Line D  th e re  is a  Bose co n d en sa te  of kaons, therefore 

for su b s ta n tia l  am ount of h ad ro n ic  phase th e  to ta l  strageness w ould be  strongly negative.

The above discussion leads to the consequence that matching conditions are 
insufficient to govern the motion of Вi and Ö2- This is true, and these boundaries 
are determined by the evolutions of the intensives. There is a definite domain of 
x1 where mixed phase can exist, and at any moment t the boundaries are localised 
in the volume elements just leaving this domain. For moderate temperatures the 
coexistence region is roughly temperature-independent, and displayed on Fig. 1 as 
being approximately the interior of the irregular quadrangle ABCD; B\ is roughly
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located at A and D, while B2 at В or C. (More explanation can be found in the 
Figure Caption.) Since in this way the motion of B ’s is completely determined by 
the equations discussed previously, and, on the other hand, its actual calculation 
may depend on the details of the evolution of the matter (e.g. whether it crosses 
line В or C when going into the pure hadronic phase), we leave the technical details 
of this question to the particular calculations.

5. T he center o f  m ass coord inate system

As we have seen, the variables of the problem are as follows: for the local 
description of the matter x1 = T ,p \ ,P 2, and a, which is 0 or 1 in pure phases; for 
the flow the components of u‘. The needed information is the forms of the potential 
functions P q { x I ) and ph(xI), and the initial and boundary conditions. The initial 
conditions do not need more discussion, the boundary conditions are: p, = 0 at 

= 0 at B2 and p = 0 at the surface [10]. Then the problem is completely 
defined, except that we are still in an arbitrary coordinate system, thus the form of 
the covariant derivative, denoted by a semicolon, is not specified.

Three different kinds of coordinate systems can be serious candidates: the 
first is comoving with the matter, the second is comoving with phase transition 
and the third is rigid, centered at the center of mass of the sphere. While the 
first possibility is simple enough in some sense [11], now the phase boundary is not 
comoving with the matter, so some part of the usual simplicity is lost. The second 
system is not uniquely defined outside the coexistence region. The third can be 
constructed in the following way.

Let us introduce spherical coordinates in the Minkowski spacetime

V  = (<>r, ú,<p) (5.1)

in such a way that the metric tensor obtains the form

--1 0 0 0 -
0 1 0 0
0 0 r2 0

. 0 0 0 r2 sin2 Ő.

(5.2)

In this coordinate system, due to the sphericity of the expansion and the normal
ization of u‘,

=  (v T + ^2 ,u ,0 ,0 ) . (5.3)

Since и is the spatial component of the four-velocity, it is not bound from above. 
The three-velocity can be obtained as v1 = u1/u°.

The covariant derivative of u' is defined as

W ; i  — R iki  T l T f U  , (5.4)
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where Tikm is the Christoffel symbol [12], calculable from Since the accelera
tion is orthogonal to u \  and the latter possesses only one nontrivial independent 
component, Eq. (3.6) reduces to one component, e.g. to the radial one. Its explicit 
form is

(p + p )(\/l +  и2 и,о +uu, 1 ) + p,о V l  + и2 и +  р,х (1 + и2) = 0, (5.5)

where, as it has been discussed, p and p depend on t and r via T, p i,p 2 and a. For 
the evolution equations of these latter local variables, note that, according to the 
definition (3.3):

T  = T, о V l  + u2 + T, 1 и (5.6)

and so on, while using Eq. (5.4),

uu,o , , 2
V l  + u2 r

(5.7)

and then all the needed particular equations can be directly constructed.

6. C onclusions

In this paper we have demonstrated that fractional destination type processes 
in the phase transition of a multicomponent fluid do not hinder the consistent rela
tivistic hydrodynamical description of the transition: in fact, the system of evolution 
equations is presented in Section 3. Of course, some simplifying assumptions have 
been used, as e.g. the equilibrium nature of the phase transition and the uniqueness 
of the velocity field. Nevertheless, it is well known that delayed phase transitions 
are consistent with hydrodynamics, too [13]. As for the uniqueness of u‘, it is 
worthwhile to note that no a priori guarancy exists for the proportionality of the 
particle current vectors n'a; if these vectors are not parallel, then diffusion effects 
appear [4]. However, for sufficiently strong interactions viscosity-type forces lead to 
the equilibration of velocities.

The presented formalism can be applied for calculating the strange particle 
yields in a heavy ion collision containing deconfinement stage of the evolution. We 
restricted the number of different quark flavors to 2, but this was done only for 
simplicity’s sake: since each individual flavor possesses its own conserved quantum 
number, the equations have the same structure in the generic case.
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A ppendix:
T he variables o f  the therm odynam ic p o ten tia l

Consider a multicomponent matter. Then it fulfils the thermodynamic rela
tions

s = s(p,na),

P =  T S  -  p  +  У ]  ЦдПд,  
a

1 _  ds
t ~ T p '

Pa _  ds 
T  dna

(A.l)

(A.2)

(A.3)

Hence, by introducing T  and pa as new variables, one obtains [14], [15]

na

s

d p

W
d p

d f ' (A.4)

while p can be obtained from Eq. (A.2).
Now, consider our p functions. In the quark phase clearly

In the hadronic phase

Pq=Pq(Pq,P»T). (A.5)

Ph=Ph(Ph,T), (A.6)

wher ph stands for all the different hadronic chemical potentials, but, due to com
bined chemical and phase equilibrium,

Ph = ChqPq + chtp,, (A.7)

where Chq and Ch, are the numbers of normal and strange quarks building up the 
particular hadron. Therefore p>, is a function of р я , р ,  and T ,  too.

Now we show that, instead of pq and p,, one can introduce special combi
nations pi and p2 so that the conserved number densities пв  and ns be direct 
derivatives of p. In order to see this, let us write

пв  = g(n, +  n.) =  -

ns = n, dp

d p , ’

(  dp_ d p  \  

\ d p q +  d p , )  ’

(A.8)
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in both phases. Then, by introducing new combinations

Hi =  Zpq,

Hi  =  ~Hq +  H. (A.9)

into p, Eqs (A.8) give

пв  = Q—
d p

d p i ’
d p (A.10)

as used in this paper. For our present purposes the specification of the particular 
form of the pressure function is not necessary.
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A possib le  way of the  in tro d u c tio n  of ch arged  vector mesons as gauge fields h as b e e n  
analysed an d  app lied  to  the gauge-invariant and renorm alizable generalization  of W alecka’s 
m odel and  th a t  o f the  linear (T-model

1. In troduction

The charged constituents of the atoms, the atomic nucleus and the electrons, 
are bounded to each other by Coulomb force, while among the neutral atoms Van 
der Waals force takes place, which can be derived from the fundamental Coulomb 
force acting between the constituents of the atoms. Nevertheless, it is reasonable 
to consider the Van der Waals force as a fundamental one, if the single electron 
and nuclear degrees of freedom are not playing any significant role in the physical 
phenomenon being in the scope of our interest. (For example, the thermodynamical 
properties of a dilute monoatomic gas are not — or almost not — influenced by the 
internal dergrees of freedom of the atoms).

In nuclear physics, one confronts with a similar situation. The color-charged 
constituents of the hadrons, the quarks and the antiquarks, are bounded by strong 
interaction described by QCD, while the interaction between the colorless hadrons 
(e. g. the NN-and 7rN-interaction) reveals itself as a force of Van der Waals type. 
It is believed that this force can be derived from QCD. Nevertheless, it is clear that 
a lot of properties of finite nuclei, nuclear matter and nuclear reactions are rather 
slightly affected by the internal degrees of freedom of the nucleons. Thus, it seems 
reasonable to work out an effective theory, in which the baryon and meson degrees 
of freedom are the basic ingredients.

Relativistic quantum many-body systems, such as nuclear systems, can be 
treated in the framework of quantum field theory. The quantum field theory, pre
tending to describe hadron-hadron interactions and hadronic many-body systems 
is called Quantumhadrodynamics (QHD). The question is, how construct the La- 
grangian of QHD. It has been established [1, 2, 3] that in addition to the nucleon 
field at least scalar-isoscalar field cr and vector-isoscalar field u>̂ should be included 
into the QHD Lagrangian in order to reproduce nuclear saturation. This simple 
version of QHD, Walecka’s model is renormalizable [4].

D edicated  to  Prof. G. M arx on  Ills 60tli b irth d ay .
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It seems to be important to maintain renormalizability when one intends to 
generalize Walecka’s model. First, only in a renormalizable theory is it possible 
to compute quantum corrections to the expectation values of observables in a con
sistent way. Second, a renormalizable theory has a finite number of parameters 
(masses and coupling constants) and having fitted them to experimental data all 
the observables are finite. Third, there is no need of introducing a high-momentum 
cut-off and therefore a renormalizable theory is highly insensitive to the details of 
the short-range hadron-hadron interactions.

Here it should be mentioned that although nonrenormalizable generalizations 
of Walecka’s model exist, they have not made a success. Including for example, a 
cr2w^w  ̂ interaction term into the Lagrangian, the model is unable to describe the 
ground states of finite nuclei [5, 6]. Introducing the pion field with nonrenormal
izable pseudovector NN^r-coupling, predictions have been made for the threshold 
density of the pion condensation [7, 8]. The predicted threshold densities are sig
nificantly smaller, than it would be expected [9].

The Lagrangian of QHD is strongly restricted by the requirement of renor- 
malizability. In Walecka’s model the Yukawa coupling of the neutral vector-meson 
field Uft to the conserved baryon current is renormalizable. More problematical is 
the introduction of the charged vector-isovecto r field pß, which is responsible for 
the asymmetry energy in systems with different numbers of neutrons and protons 
(N ф Z ). Its coupling to the conserved vector-isovector current is not renormaliz
able. The only way of including charged vector mesons without destroying renor- 
malizability is to introduce them as massless gauge fields and to generate their 
masses by the Higgs mechanism.

In Section 2 of the present paper we shall analyse the procedure of including 
vector mesons in a renormalizable way. In Section 3 and Section 4 examples will 
be given on the gauge-invariant generalization of Walecka’s model and that of the 
linear cr-model, respectively.

2. V ector m esons as gauge fields

In order to introduce gauge fields, one should decide, what global symmetries 
of the model will be raised to the level of local symmetries. It would seem natural 
to connect the inclusion of the vector fields and p^ with making local the baryon
number symmetry U(l) and the isospin symmetry SU(2), respectively. In order 
to get massive gauge fields, however, one should assume that the above mentioned 
symmetries are spontaneously broken by the vacuum state. But such an assumption 
is unacceptable, since it would mean that the vacuum state is an eigenstate neither 
of the baryon number nor of the isospin.

The idea, how to overcome this difficulty, has been proposed by de Wit [10], 
Fabricius and Fleischer [11] and Serot [12]. We shall outline their procedure in a 
more general way. Let us suppose, S  is the Lie-group of unbroken physical symme
tries leading to the conservation of the baryon number, isospin, etc. The idea is to 
start with a Lagrangian of the larger symmetry group G x H  Э S, where G and
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H are Lie-groups of global and local symmetries, respectively. Vector meson fields 
are introduced now as gauge fields of the local symmetry group H. Thereafter, 
by introducing selfinteracting Lorentz-scalar fields, the symmetry group G x H is 
spontaneously broken down to its subgroup S  and, in the same time, the gauge 
fields become massive due to the Higgs mechanism.

This program can be realized by making use of the following (trivial) math
ematical statement. Let G and II be two isomorphic Lie-groups, whose generators 
corresponded to each other by the isomorphism are Qa and 7f° (a = 1 ,2 ,... ,N), 
respectively. Then S a =  Ga + 7f° (a =  1 ,2 , . . . ,N) are generators of subgroup 
5  C G x H and the subgroup S  is isomorphic with both G and H .

The model with the required properties can be constructed making the fol
lowing assumptions:

i/ Let S  be the Lie-group of the unbroken global symmetries. Choose the Lie- 
groups G and H  to be isomorphic with S. Let denote by Ga and 'Ha (a = 
1,2, ...,1V) the generators of the groups G and H, respectively, which are 
corresponded to each other by the isomorphism. Let identify the group S  with 
the subgroup of G x H, whose generators are S a =  Ga + ’Ha (a — 1 , 2 , ,  N). 

ii/ Construct a Lagrangian Co with the global symmetry G x H from the fields 
with the following transformation properties:

G X Я

V singlet m ultiplet
Ф singlet m ultiplet
Ф m ultip let m ultip let

Here is a fermion field, <f> and Ф denote Lorentz scalar boson fields. All 
the fields are assumed to be G singlets, except for the field Ф, which is meant to 
produce the spontaneous symmetry breaking, as we shall see below. (We use real 
representations for the Lorentz-scalar fields.) 

iii/ Let the field Ф £ R n have a self-interaction

У(ФТФ) = /12ФТФ +  Л(ФТФ)2 (л*2 < О, А >0) (1)

with the symmetry 0(п). The dimension of the representation is chosen to 
fulfil the relations TZn(G),TZn(H) C O(n), where 7Z„(G) and 7Zn(H) are the 
n x n matrix representations of the groups G and II, respectively, according 
to which the field Ф transforms.
As a consequence of assumption iii/ the field Ф has a nonvanishing vacuum
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expectation value [13]

< Ф >=

/ ° \

0
V w )

^ 0  (w =  \ / —a»2/(2A))

and its mass matrix is diagonal of the form 

62V
( M i ) a  =

l. e.

6<bi6<bj

M l  =

ф = < ф >

/ 0  . . .  0 0 \

0 ... о 0 
Vo ... 0 m l )

m 2 = SXw2.

( 2)

= 8A < Ф ><< Ф >j ( i , j=  1,2, . . . ,n )  (3)

( 4 )

It means, that the field Ф has (n — 1) Goldstone components with zero mass and 
one Higgs-component with the mass mn. 

iv/ Choose the representations 7tn{G) and 7Zn(H) in which

Ça < Ф >=  ГФ(0а) < Ф >ф 0, H a < Ф >= ТФ{Па) < Ф >ф 0 (5)
( а  =  1 , 2 , . . . , N),

but
S a < Ф >= ГФ(5а) < Ф >=  0 (а = 1 ,2 ...,  N).  (6)

As a consequence, the symmetry group G x H of dimension 2N  breaks down 
spontaneously to its subgroup S  of dimension N. A comparison with the 
consequences of assumption iii/ shows that n = N + 1 should be fulfilled, 

v / In order to introduce a minimum number of Goldstone components of the 
field Ф, we choose

n = N + l. (7)

As we shall see later, assumption v/ enables us to transform away all the 
Goldstone components of the field Ф.

vi/ The Lagrangian with the globed symmetry G x H has now the following form

Co = i p ( i -  m)rp -  дф1рГгрф+

+ ^д1Лфтд^ф -  ^ т 2ффтф+ (8)

+  \д^Фтд ^  -  У(ФТФ).

Acta Physica Hungáriái 64, 1988



GAUGE-INVARIANT QHD LAGRANGIANS 127

Let now raise the symmetry Я to the level of local symmetry, introducing the 
gauge fields (a = 1 ,2 ,... ,1V) with minimal coupling to the fields being not 
Я -singlet. This is done by replacing their derivatives with covariant ones:

а д  =(a„ -  1днг^(па)ь1)ф,
а д  =(д, -  гднГф(Па)Ъ1)ф, (9)

=(ő„ -  *<?яГФ(Яа)6“)Ф.

Here Г^,, and Гф denote the matrix representations of group Я  accord
ing to which the fields ф , ф and Ф transform, respectively. The following 
Lagrangian can be obtained:

C =ip(iy,1Dtt — m)ip — дффТфф+

+ ^ ( а д Г а д  -  \т2ффтф+ (io)

+  ^ ( £ > „ Ф ) Т £ ^ Ф  -  У ( Ф Т Ф )  -  \ b l vb»va

with the field strength

Ъ% = д , ь : -д „ ь ;  + д „ г ь% ь 1 . ( 11)

(/°"c are the structure constants of the Lie-group Я).
Due to assumptions v / and vi/, all the N = n — 1 Goldstone components of 

the field Ф can be transformed away. In order to do this, the field Ф is parametrized 
as follows

/  0 \
Ф = exp {гГФ(7ад°(*)} 0

\ w  + T](x)J

( 12)

Performing now the local gauge transformation

ÛH(x) = exp {—гЯа£а(х)}, (13)

only the Higgs component r]{x) of the field Ф is retained in the Lagrangian,

Ф
/  0 \

Ф' = ин (х)Ф =
0

\ w  + T](x)/

(14)

(For simplicity, we shall not distinguish the transformed fields from the original 
ones in our notations, unless a distinction is unavoidable.)
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As a consequence of the Higgs mechanism [13], in the Lagrangian appears a 
mass term quadratic in the gauge fields,

l- ( M 2)aX b » b (15)

with the symmetric and real mass matrix

( M 2 ) ab =  ш2 Гф (7ia )„• Гф (Wb )in (16)

(no summation for n). Therefore exists an orthogonal matrix x) by means of which 
the mass matrix M 2 can be diagonalized

Mß = ФМ2дт = diagonal , (17)

and the mass eigenstates are
Bl  = daa' b (18)

Disregarding the constant terms, the selfinteraction potential functional V 
can be rewritten in terms of the Higgs field

V =  + 4AtuT?3 + At/4, (19)

where
m2 = — V  =  8 Ait;2 (20)

is the mass of the Higgs boson т/.
Finally, the Lagrangian takes the form:

C =V>(î7 ,îôm -  т)ф -  дффТфф +  днФ7 )*Тф{'На)(Фт)аЬВ^ф-ф 

+  1}(дрФ)Т д*Ф -  ^тп2ффтф+

+  ^ T ^ T ?  -  \ m W  -  iXwrl3 -  V +

+  1днФтТ ф{'На ) { д т) аЪВ ь̂ ф - Ф

+  \ д ^ саФтТФ{Па)Тф{Пь)ф{Фт)ь,1В1В ^ +

+  \ э н  г){г) +  2w)ticar*(Ha)niT*('Hb)in(dT)bdBÍB>‘d-

-  \ в % в ^ а + ^(Mß)abB “B ßb, (21)

where the notation

b % = d»Bav -  д , в ;  + д н Г Ьев ь„ в: ( 22)
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has been introduced. Use has been made of the equation

(0яФ)т Г*(Йв)а',(£Гя Ф) =  0. (23)

Up to this point, the scalar-meson field ф has been supposed to have vanishing 
vacuum expectation value. Let us now examine the case, when it has a nonvanish
ing vacuum expectation value, due to which the group S of global symmetries is 
spontaneously broken down to its subgroup So. This can happen, if the following 
further assumptions are made: 

vii/ Let the field ф have a selfinteraction of the form

У(фтф) = ц20фтф + \о(фтф)2, (24)
( Ф €  R"*, A*o<0, Ao>0) ,

with the symmetry О(пф), which is larger than the Пф x Пф matrix represen
tations of the groups G and H, according to which the field ф transforms, 
7v-n*(G),7о„ф(Я) С 0(пф).

viii/ The existence of a subgroup So C S  of unbroken symmetries with the gener
ators 5°(a =  1 ,2 ,... ,No,No < N)  is supposed:

ё а < ф '> = 0  (a = 1,2,...,ЛГ0), (25)

where ф' = Он(х)ф.
Denote the vacuum expectation value of the field ф by

< ф' > -
! 0 \

0
\ w 0 /

(w0 = yJ-nl/(2X0) Ф 0)

and make the following shift

ф' - <  ф' > +y>, {<p G R"*).

(26)

(27)

The Goldstone components of the field Ф can be eliminated by the local gauge 
transformation Uh (x), as before, but the number n — 1 Goldstone components of 
the field cannot be eliminated. They correspond to real Goldstone bosons with 
zero mass, m? =  0 (i = 1, 2, . . . ,  Пф — 1), while the пф-th component of the field 
<p, <рПф — er' is a Higgs boson with the mass

m l  =  -4  nl = 8A0u>oi (28)

as it can be read from the selfinteraction potential (24) replacing Eq. (27) into it 
and omitting the constant term:

П Ф Т Ф) =  \ m l <T'2 +  4AoWo<t' ^ VW i +  <7'2^ +  A° ^ X !  ViVi +  <T'2^ ■ (29)
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The mass matrix of the vector-meson fields b* is also modified as a consquence 
of the additional symmetry breaking

( M 2) ab =  g 2H ( w 2 T * ( H a ) n i T * ( i i b) in +  и 2 Г ф( Н а ) п . , Т ф( Н ь)1П. ) ,

(* =  1 ,2 ,... ,r»; j  = 1 ,2 , . . . п ф), (30)

but it can be diagonalized as before.
The Lagrangian takes now the following form:

C  = ф ( ^ ^ д ^  -  m ) i p  -  д фф Г ф ( <  ф'  >  +y?)+
+ д н й ' * и ( ' Н а)(От)аЬВь11ф+

+ \  [др<т'д»<т' + ^ 2  д^ д>л<Р^ -  I 171***'2-

Па—1 па-1
-  4А0к;о<т' ( а'2 +  ^  y w  ) -  А0 Í <т'2 +  ^  ) +

»=1 •=1
Пф- 1

+ гдн Y 2
J = i  L

па-1
Ы  + <т')ГД7П„*; + J 2

1=1
ŐVj - ^  +

+ д2н ю0дсаГф(ППпФ̂ Ф(П % к(дт)ь*<ркВ ; В ^ +

+ ^ / / ^ ^ car ÿ(7Îa)or^(W b)j i (i?T)bV * ô ^ ' ld+

+ ^r jd^T ]  -  ^ m 2r]2 -  4Аw i f  -  Aí73 4-H 

+  \ a W v  + 2 w ) 0 caT * ( H a)nir i ( n b)in(<)T )bdB cttB>id-  

- l- B % B » va+ l- { M 2B)abBlB »b. (31)

All what was said before, has a straighforward generalization for the case, 
when 5 is a direct product of several semisimple Lie-groups, S  = Si x Si x . . .  X Sq. 
We start now with the symmetry G x H , where G = G\ x G2 x . . .  x Gq and 
H =  Hi X H2 X . . .  x Hq. Then we introduce q gauge fields and coupling constants 
raising the symmetry H to the level of local symmetry, and introduce the same 
number of multiplets of Lorentz-scalar fields, namely, one multiplet to each of the 
subgroups Gr x Hr which is singlet with respect to the other symmetries and which 
breaks the symmetry Gr x Hr to its subgroup Sr spontaneously. For this purpose, 
we prescribe appropriate selfinteractions of the form of Eq. (1) to these scalar fields 
(fi2 < 0 , Ar > 0, r  =  1,2, . . . ,q).

3. G eneralization of Walecka’s model

As an example, the general scheme described in the previous Section has been 
applied to the generalization of Walecka’s model. Let S  be the direct product of
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the isospin symmetry group SU(2) and that of the baryon number symmetry group 
U(l), S=SU(2)xU(l). Now we construct a Lagrangian with the symmetry G x H, 
where G=(SU(2)x 11(1))  ̂ and #=(SU(2)xU(l))j. (lower case g and l indicate 
global and local symmetries, respectively). The transformation properties of the 
fields are given as follows:

The generators of the subgroups Gi=SU(2)s , G2=U (l)ÿ, Hi=SU(2)/, # 2=U(l)i, 
5i=SU(2) and 5г=и(1) denoted by gf a, gŸ , \Ta, iY, T a and Ÿ  are represented 
as follows (a, j, £=1,2,3):

ГД  gTa) = О, ГД , f )  = Г Д  Т-) = \ т \  Г Д ,У )  = 0, 

ГД ,У) = ГДУ) = 1;
ГД дТ а) =  О, ГД , f a)jk = ГД f ° ) jk = - i e ajk, ГД gŸ)  =  О, 

ГД ,У) = ГДУ) = 0;

[г*(1)( *Г“)Ф(1)] =  - | ф ( 1 )0 6aj + ^л«*Ф(1)*, [ г . ,„ (  /г -)]

[Гф(1)( ,Г*)Ф(1)] . = +^Ф(1)06aj + ^£;о*Ф(1)*, [г.„>< ■**>],

[Г Ф(1)( Г ‘ )Ф (1)] . =  гедакФ(1)к , [ г * (1)( Г а ) Ф (1)] о =  0,

Гф(1)( ,У)Ф(1) = Г*(0( ,У)Ф(1) = Гф(1)(У)Ф(1) = 0; 
ГФ(а)( 9Т а) = Г*(я)( ,Та) = ГФ(Д  Т а) =  0,

r* w (,V ') = G, ГФ(а)( ,У) = -Q,  ГФ(а)(У) = 0, (32)

where the matrix
(33)
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has been introduced. By direct calculation one can check, that requirement iv/ is 
fulfilled.

The procedure described in Section 2 leads to the following expression for the
Lagrangian:

_ _ _ _ T -
C -  т ) ф  -  д ф ф Т г р ф  -  д а ф ф а  +  д \ Ф ^ - В ^ ^ ф  +  дъфч*B ^ ) ^ +

+ \д » ф д » ф  -  \т \ф ф  + 31 X д 'ф )В(1)„ +  l-g \  (ф ж В (1)/1) (* х B fo ) +2 т 2
+ ^дцад^сг -  ^ т 2<т2 -  £/(„) +

+ i í Jii»14B (1)|1B^1) +

+ - Я  ЯР — I m 2n2 _  \  rü í n  n3 _  (  \  £i.„42^мпdq 2 ^  32*7

+ 92w2CB(2)^B^ + -<?2С20 (2)̂ -В("2)+

+ -  im (2C2 -  \ ^ - g 2с3 -  \  9ÍC4-2 M22

-  + ^M 2B ^ B (1),  -  \ b w , vB ^  + ÍAÍ22B(2)/iBf2), (34)

where

— ^ B ( l ) v — + ÿ lB (1)/i X B (1)„  В(2)ци — d p B ( 2 ) v  — ^иВ(2)ц-  (35)

Неге В(г)д and gr denote the gauge fields £md the coupling constants connected 
with the groups Hr of local symmetries, respectively; g and £ denote the Higgs 
components of the fields Ф(х) and Ф(2) with the masses m2 and m2, respectively. 
The mass matrices of the gauge fields are diagonal (i? = 1):

-  (9 iwi)26ab = M2i a6, = (ÿ2̂ 2)2- (36)

Making use of Eqs (20) and (36), the parameters Ai and A2 of the selfinteraction 
potentials for the fields Ф(1) and Ф(2) can be expressed in terms of the masses of 
the Higgs bosons and those of the gauge bosons:

uq = 2M i/ g i , Ax = ^ (m v3l/M i)2 ,

w2 = M2/02 , A2 = g(mcp2/M2)2 .
The fields can now be identified with known particle fields:

ф —*■ nucleon field, 
ф —+ X : pion field,

B(i)/i —* P/i : rho-meson field,
В(2)ц —*■ '■ omega-meson field.
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Appropriately changing the notations

m p = M  i, тш =  M2, 9\  = 9 p ,  9 i  = gu , 9ф — 9 г ,  тф =  т ж

and supposing a pseudoscalar IVWir-coupling (Г =  75т), the following gauge- 
invariant and renormalizable Lagrangian has been obtained:

С = ф (п цдр -  т)гр -  джг1>у5тгрж- дагргр(х + gp^ Y -фрр +  g ^ y ^  грш р+

+ \ д^ ж  -  irn^T2 +  др{ж х д»ж)рр +  ^</2(ж х Рр)(ж х р>*)+

+ ^дрстд^а -  i т 2<т2 -  í/(<r)+

+  + \ s W , ^  + \  -  ( ^ )

+ + г й с Ч » '  + 5<WS*C -  5 m<<! -  5 ^ ; í «í 3 - 1 ( ^ )  c4-

-  7 P^PfiV +  \ m ] p ^  -  +  i m 2w/Jw'í. (38)

Lagrangian (38) differs from that used by Serot [12] in the unique treat
ment of the isoscalar and isovector vectormesons as gauge fields. Transforming the 
pseudoscalar ,/V./V>-coupling in Eq. (38) into a pseudovector coupling by means of 
a nonlinear chiral transformation and adding a crx2 interaction term with appro
priately chosen coupling constant to the Lagrangian (38), a gauge-invariant and 
renormalizable Lagrangian can be obtained which is in accordance with low-energy 
7TiV-phenomenology [14].

4. G eneralization of the linear cr-model

It has been established on the basis of low-energy îrTV-phenomenology that 
the chiral SU(2)l x SU(2)ß symmetry is almost an exact symmetry in hadron 
physics. Furthermore, QCD is also chiral invariant if the quarks are regarded as 
massless particles. Therefore, it is a question of interest, how gauge invariant and 
renormalizable Lagrangian with chiral symmetry can be constructed and used as a 
model Lagrangian of QHD.

Let 5  the chiral symmetry group S  = SU(2)l x SU(2)h x U(l). We construct 
a Lagrangian with the symmetry G x # ,  where G = (SU(2) i x SU(2)h x и(1))5 
and H  =  (SU(2)l x SU(2)fl x U(l))|. The transformation properties of the fields 
are given as follows:
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(S U (2 )i X (S U (2 )« )9 X SU(2)x, X SU (2)Ä)j X U ( l ) 9 X U ( l ) ,

Фь 0 0 1/2 0 0 1
'Pr 0 0 0 1/2 0 1
Ф 0 0 1/2 1 /2 0 0

XL 1 /2 0 1/2 0 0 0
X R 0 1/2 0 1/2 0 0
f 0 0 0 0 1 -1

G enera
to rs

фа
91 L

фа
91 R

фа  
l 1 R 9y I Ÿ

C oupling
co n stan ts

— — Gx Gy — 9<jf

G auge
fields

— — x aA/i Y a1 V — <jfp

Here ф is a chiral multiplet of scalar-pseudoscalar mesons. If its interactions 
with other fields are turned off, the Lagrangian of the free field ф is that of the linear 
cr-model with the selfinteraction (24) (Пф = 4). The field ф has a nonvanishing 
vacuum expectation value. Due to this fact the symmetry group S  is spontaneously 
broken down to its subgroup So =  SU(2) xU(l) corresponding to isospin and baryon 
number conservation. This is just the case of the additional symmetry breaking.

The matrix representations of the generators satisfying requirement iv/ are 
given as follows:

и ь п )  =
1 +  75 Ta U W )  =

1 -  75  Ta
Г Л я П я )  =  о,1 2  v 2 2 

г * ( / У )  =  1, г * ( , у )  =  о , 

r*(,fj?) = 0e, r*(,T£) = í?a, г д а  = о, 
г* (Д 2 ,н) =  о, тф(д? )  = о,

г  х Л я П )  = ва, г х ь (,  f £ )  = Qa, TXb(t Ÿ)  = TXL(,Ÿ) =  01

г Хя № )  =  0 °, г х„(,Т£) =  <Д r XR(gŸ) = ГХЯ(,У) = о,
Г((гУ) =  Q ,  ГС(,У) =  - Q ,  = г со т г >я) =  о, (39)
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where the following matrices are introduced

/ 0 1 0  (

0 3 =
Í 0 0 0 1\

* 1 0 0 - 1 0 1
2 o 1 0 0\ - l 0 0 0 /

( °
0 0

i 0 0 - 1 0
2 0 1 0 0

\ 1 0 0 0 /

(The matrix Q is given by Eq. (33)).
The convariant derivative of the nucleon field

= (d„ -  -  w M  =
T T

= (dß -  igP -  igAib-ÿA-v -  гдшиц)Ф

(40)

(41)

can be expressed in terms of the vector and axialvector fields defined as follows:

(42)

After some algebra we get for the convariant derivative the expression

9PP, = \ ( G r X ,  + Gy Y„), дл А„ =  ^ , Х „  -  Gy Y„).

Dp<f> =  (ôp -  iGxQX.^ -  iG y tiY ß + iguQ u ^  =
+ ЯлА-рф \

J  '

{ дцфо 4
\ д рф - длА^фо + g ррц хф

where ф is the four-component column vector

(43)

Ф (44)
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Performing the local gauge transformation U h (x ),  we get

(  w l + V l ( x ) \  (  w R +T)R ( x ) \  (  0  \

"  =  ( ,  о  ) •  X R = (  о  ) ’ i = U + « J ’ ( 4 5 )

where t]l , t j r  and (  are the Higgs fields and w i ,  w r  and v  are the appropriate 
vacuum expectation values. The covariant derivatives of the fields \L ,  XR, and C 

are given by

(' dpT)L \
D , xl = (dp -  iGx0 aX°)xL = k -  ^GxXp(wL + T]L)̂

(46)

l  dpW \
DpXR =  (dp -  íGy^ Y ^ x r  = \ \ G YYp(wR + r1R)J (47)

Dpi = (dp + igwQu>p)i = (( -  9*Up(v + C ) \

V dpi ) '
(48)

The Lagrangian with the symmetry Gg x Hi has the form

C Dptp -  дфф(ф0 + гу5тф)ф +  ^ ( D^ ) T -  \>(фтф)+

+  ^ ( D ß X L ) T D ^ x l  -  V l (x Tl X l )  +  ^ { D ^ x r ) T D ^ x r  ~  Vr ( x r X r ) +

+ -  V ( ? t )  -  \ Х р „ Х ^  -  -  \ и > ^ ,  (49)

where the following field strengths have been introduced:

X„„ = d ^ X . - d . X ^  + G x X ^ x X , ,  Y . ^ Ő ^ - ^ + G ^ x Y , ,  (50)

uifti, = dpUv — dvUp. (51)

Introducing the field strength of the vector and axialvector fields by

„2
F pV — дцри d^Pp ~b 9ррц x Pv "b Ар x А„ (52)9р

and
Gцу — dpAv di/ Ар Т gp(Ap x pv -}- рр х А^), (53)
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we get

G x
_ 9 p ip I 9 A p/АV — Q Г ßV ~T ^

1 1

ßU ) •xr   9p -p   9A
^  ~  Gy ^  Gy ^

(54)

and

 ̂Y 'VA**' AV VM1' _— —Л -^i/uV — ~  1 /it/ 1 —

Ä + G2, )  (ff'
r’F ^ F '“' - h ^ G ^ G " ')  + ( ^ r  -  £ г )  2^ 5aF „ G ^

(55)

These kinetic energy terms are diagonal and have the standard normalization factor 
1 /4 if and only if

G
9 a ~ 9» ~  у 2 'Gx = Gy = G,

The kinetic energy of the fields \L  and хя is given by

^ ( D ^ x l )TD^ xl  +  i ^ DpX RŸ  D^ x r  =  ud^TiL +  i 0м1»я0"|№+

(56)

+ \  («4 + ^ r ) \ (9 2pPhP̂  + 9a АмАм) + (ш£ - +

+  ^ ( 2 w l t)L  +  T ) l ) ( g pp ^  +  И Д , ) 2 +  ~ ( 2 w r t)R  +  n R ) ( g Pp p -  gAA „ ) 2 . ( 5 7 )

The kinetic energy of the field £ has the form

i(D „ 0 TD 4  = + <2). (58)

Terms quadratic in the fields pp, and A p appear in expression (57) and they are 
diagonal if and only if

w l  =  WR — w - (59)
In order to guarantee Eq. (59), the appropriate parameters of the selfinteraction 
potentials are assumed to be equal for the left-right pair of the fields XL  and X R -

Мг, = Мя = Мх> Лх, = Ая = Ах. (60)

Then the masses of the Higgs fields гц and rjR are identical
2 2 2 

™ L =  m R  =  "V (61)

The kinetic energy of the field ф also contains terms quadratic and diagonal 
in the gauge fields:

i ( D #10)T£>,>  = ^ ( 0 ^ 0  +  5 aA ^ ) 2 +  ^(d p<p -  gAA p<po + gppp x y>)2+

+  (̂9aWq)2АРАЦ -  gAWoÂ ip -  gAÂ ip0 + gPff x»>)
(62)
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Here the shift (27) has been performed and the notations

- ( ; ) ■  < * > = ( » )  <63>
introduced.

Since Eq. (62) contains mixed quadratic term of the form А^дц<р, the terms 
quadratic in А ц and dß<p should be brought into a diagonal form, before asking for 
the particle content of the model. Diagonalization can be performed by means of 
the transformation.

= A^ — кдц<р (к = const.) (64)

As a result, we get the following expression

1 1 1
~9a (wо +  -u r)A ^ A ^  -  gAw0A ßdßip + =

=  ̂ K  + ^ 2) A > " '  + +  2 Ŵ K~ 9aW° A ^ i/H-

1
+  2 1 -  2gAw0K +  g\(u>l + -tu2)«:2 dpipd̂ tp.

The terms with A^d^ip drop out in Eq. (65) if we choose

i - l
/С — W q 9a (w I +  i t у2)

Renormalizing the pseudoscalar-isovector field (p as follows 

*■ =  Z ~ l l2<p, Z - 1 = 1 -  gpKw0,

(65)

( 66)

(67)

the kinetic energy of the renormalized field x  can be rewritten into the standard form 
^ő^xő^x. Now the mass terms of the gauge fields are diagonal and the following 
masses can be obtained

1 ,2  „22 _ _2 . . ,2  „ 2  _ 2 I _2.. .2  , z
m p -  2 g P W  > r n A = r n p +  9 p W o> m w =  9 u v - (68)

The renormalization constant Zv 1 can be expressed in terms of the masses of the 
gauge fields:

Z~'  = (mp/ m A)2. (69)

Performing the transformation given by Eqs (64), (67) and introducing the 
notations <po =  er', дф — ga, we get for the Lagrangian the following form

C =  Cg, +  CsC +  £ h + (70)
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where the expressions of the different terms will be given below.
The term Сф is given by

T T I
Сф - i p i y p{dp -  igp-р» -  5 2 “  *9шши)Ф+

+ Фурдриу5гд,жф -  igpT‘фу5тфт -  gaxp(w0 +  <т')ф. (71)

Thus the mass of the nucleon can be identified with

m = gaw0.

The following coupling constants have appeared in Eq. (71)

(72)

(73)

(The superscripts ‘ps’ and ‘pv’ indicate pseudoscalar and pseudovector coupling.) 
As a consequence of the transformation (64), pseudovector coupling of the 
pseudoscalar-isovector meson field to the nucleon field has appeared.

Due to the spontaneous breaking of the chiral symmetry S, the Higgs field <r' 
with the mass m 2a ф 0 and the Goldstone fields x with zero mass present themselves 
in the model. It is well known [13] that by adding to the selfinteraction potential 
Ф(фтф) the explicit symmetry breaking term —ecr1, the Goldstone fields become 
massive. Doing this, we get for the scalar meson term in Eq. (70) the expression:

Csc  = 2 ( ^ 0', +  So,)2 +  2 ^ T ^m)2+

+ (  —  -  1 +  /с— ^ S^ő^x — g^WoS^A11' -  \ m 2a(r'2 -  \-m\x2-  \  nip m p J 2 2

-  4A0u>0<r' ^<r'2 +  -  ло ( v ' 2 +  • (7

Here the following notations have been introduced:

Sop = gP---- A x  + дркtrip
e  171 *  т А я  a 's, —  gp p,  X X  &Ор.ж gр(тА.m p Tn p

The masses of the scalar and pseudoscalar mesons are given by

m2a = —  + 8X0wl, 
w0

(75)

(76)

(77)
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The Lagrangian of the Higgs fields тц, t)r in Eq. (70) takes the following form

= ̂ дргцд^г)Ь + ^drfRÔ^riR +

+ \я1 \iPn + К  + n Z 1J2dllv)2(2wr)L +  rfc) +

+ (fin -  K  -  ^ Z x/2dfix)2(2wr1R + r?|)] + i ifwwMw#‘(2t;C +  <2) -  (79)

-  \ т2п(п1 +  Vr ) -  4Ar,w ( n l  +  Vr ) - \ ( V l +  Vr ) -  \ т 1<? ~  4 V C 3 -  A(C 4 - 

Here the parameters are given by

Finally the gauge term Cg in Eq. (70) has the form 

£• =  -  -  | g (,í,G f  -

+ \ m ÎPnP>i+ \™2aK A,í ' + (82)

where the explicit expressions of the fields strengths are as follows:

= dpPv -  dvp,i + gp x/>, + (Â  + KZlJ 2dßr) X (Â  + kZxJ2ôvx)| ,
(83)

G„„ = dpA„ -  dvA^ + gp [(A  ̂+ kZ ^ ô̂ x) х /» Л ^ х  (а '„ + K.ZxJ 2dvx)] ,
(84)

шр„ =  д^ши -  дишр. (85)

Taking into account Eqs (68) and (72), the mass of the axialvector field is given by

m A -  + ( ^ m)  • (86)
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The Lagrangian given by Eq. (70) leads to PCAC in the form

fyj'e“ = e Z ÿ 2na = m l f r ira,

where /* denotes the decay constant of the pion.
Taking into account Eqs (67), (78) and (87) the relation

u
m mp
g<? rnA

can be obtained. Using Eqs (73) and (88), we conclude that

1
v 2̂

Eq. (89) contradicts the Goldberger-Treiman relation [15]:

/ -  f  -  Я* 
9w ~  Gvл/2;

1.2
m

(87)

( 88)

(89)

The model, which has been obtained in the present Section, in the gauge- 
invariant and renormalizable generalization of the model with the symmetry 
SU(2) X SU(2) proposed by Gasiorowicz and Geffen [16].

5. C oncluding remarks

Renormalizable, gauge invariant generalization of Walecka’s model and that of 
the linear <r-model have been given. Both models might be used for the Lagrangian 
of QHD. Nevertheless, there is a significant conception^ difference between them, 
reflected by the role the scalar-isoscalar field plays in them.

In Walecka’s model the scalar-isoscalar field a is included in order to pro
duce the intermediate range attraction between the nucleons. In this context the 
(T-exchange imitates the exchange of two interacting pions [17]. The vacuum ex
pectation value of the field a vanishes, but due to the attractive TVTV-interaction 
trough the <r exchange a nonvanishing ground state expectation value of the field 
tг can appear in a nuclear many-body system. This results in the decrease of the 
effective mass of the nucleon [18].

In the linear <r-model, the scalar-isoscalar field (фо in our notation) plays a 
quite different role. In this case the field фо is a Higgs boson and it has a non
vanishing vacuum expectation value, causing spontaneous symmetry breaking. As 
a consequence of this, the originally massless nucleons become massive and their 
mass is determined by the vacuum expectation value of the scalar-isoscalar field. 
The linear а-model has been developed by Gell-Mann and Lévy [19] just to solve the 
paradox, how chiral symmetry (as an almost good symmetry) and the nucleon with
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its finite mass can exist at the same time in nature. Clearly, the scalar-isoscalar field 
imitates now some dynamics, responsible for hadronic structure. It can hardly be 
expected that its coupling to the nucleon field would produce a realistic intermediate 
range attraction. Lagrangian (70) surely does not, as it contains pseudoscalar and 
pseudovector NNir-couplings at the same time, which does not allow the dominance 
of the p-wave interaction in low-energy 7r/'/-scattering, and it leads to a relation, 
contradicting the Goldberger-Treiman relationship. It is an open question, whether 
the gauge invariant generalization of the linear <7-mo del could be reinterpreted as an 
effective theory for QCD. Recently, similar attempts have been made on the basis 
of the nonlinear <r-model [20] .
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Assum ing a  k~*  singularity  for th e  gluon p ro p ag ato r a t  fc —» 0, it is show n th a t  in 
Q u an tu m  C hrom odynam ics th e  qu ark  p ro p ag ato r is fin ite  on  th e  m ass shell in  axial and 
covariant gauges, a n d  in  ax ia l gauges i t  has an  essential singu larity  in g2 a t  g 2 =  0 around  
th e  m ass shell.

In a recent paper [1] we have calculated the infrared behaviour of the quark 
propagator SF(p) for the gauge group SU(2) in a vacuum saturation approximation 
using a confining gluon propagator. The purpose of this note is to extend the 
calculation to the case of SU(3). For SU(2) SF(p) is finite in the mass shell limit and 
this remains true also for SU(3). Furthermore, in both cases the quark propagator 
has an essential singularity in g2 at g2 = 0 around the mass shell, but the result on 
the mass shell is independent of the coupling constant.

We start with the general result [1] in the infrared region

OO

S'F(p) = j è ÿ  J  (5 i (9) + 5" ( 9 ) ) A ,
— OO

1

1
( 2*)4

OO
-i(7pP" +  m) J 1(2Ъи2у1*’-т'+и>dv,

0
oo

iiyvĜ{2pu')Çb J ̂ p . e ^ - m2+ic>du,

(U

( 2)

(3)
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where Gltt,(2pi/ ) is the confining gluon propagator in coordinate-space including 
the confining term Q2/F2. -fGp is independent of v [1]:

^ 7P (7n)(Pn)n in axial gauges n2 ф 0
— 7#ip"G/il/(2pt/) =  < p2 — (pn)2n~2 ’

P
.2P7

(4)
in covariant gauges

and

b = T ^ " (p2“ (pn)2"  2)’

6 f  =  4 ^ r ( e ) p 2  =  t 6 i -

(5)

( 6)

6 = — 1 corresponds to the usual axial gauge. The bp (Feynman gauge) and 
(Landau gauge) are written down in n = 4 -f e dimensions, thus for n —* 4, 

bpL —» —00(p2 —♦ 0). For SU(7V) the function /  is defined by

f ( z ) =
n = 0 (2n)! dp.

..6 02n l<*2n * (7)

The goes over all the distinct maj-pairings, Aa’s are the N  x TV colour matrices,
dp.

for SU(N) a =  1 , . . . , N 2 - 1 .
First of all f ( z )  can be written as

/<*) =  E
n = 0

(*/2)"
n!(2n)! A^(A£ )2" ( 8)

here x means an N 2 — 1 dimensional arbitrary vector and Д* is the corresponding 
Laplace-operator. f ( z )  is analytic in z everywhere. f (z)  is unchanged if one adds 
an arbitrary polynomial without a 2n-th order term to (Ax)2" in (8) and takes 
x =  0. In this way

f ( z) = Î 2 (j^ r A ï ch (Ax)u=0. (9)
n=0

Now, Fourier-transform ch( Ax) and carry out the differentiation, then a Gauss-type 
integral emerges and we get for Re 2 > 0

/(*) =  l) /  ^ 3- 1£е"^сЛ(А x) = / +(z) +  /_ (z), (10)
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where
f ± ( z )  =  ^ (2тг)зС̂ а- 1) - 1 J  ( 11)

It is easy to see that (10), (11) are valid also for abritrary z ’s.
Substitute (10), (11) into (2) and integrate over u:

J d4qSI = ^(2тг)>^3 1} 1(7p + m )  J  dN* 1xe *•

• [(p2 — m2 + iV — 2bXx + te)-1 + (p2 — m2 — iV—2b \ x  +  ie)-1].
( 12)

From now on we assume N  = 3. Then, employing the properties of Gell-Mann 
matrices one can show that A rules out in the integrand of (12) and

1
W ?

(2n )3(a + ie)
(7 p + m) J d8xe - 4 [{a + i£y  - i b x 2]-1, (13)

a — p2 — m2. (13) can be expressed by the integral [2]

(14)

namely

In the same way we obtain

For small x we use the expansion [2]

2

Ei(x) = In |x| + <7 T -j—yy +  2T2T + • • • > (17)
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where the series beside In |x| defines an analytic function of x, C is the Euler 
constant.

In axial gauges (6 < 0), and in covariant gauges in 4 + e dimensions ( b p , L  < 0) 
we get

S'f ( p ) -  (18)

in the mass shell limit a —► 0, that is, SF(p) is finite and independent of g. This may 
be a manifestation of the quark confinement. Similarly (18) holds also in covariant 
gauges in four dimensions.

Let us note that for small а, а ф 0, (15) and (16) have the following properties:

(15) = 0(a) analytic part +0(a7lna),
(16) = (18) + 0(a8 In a),

so that in SF a branch cut appears which vanishes for a —*■ 0.
Being [2]

exE i ( -x )  = - - F 1(x), (20)x
where Fi(x) has an essential singularity at x = 0, it follows that in axial gauges 
SF(p) has an essential singularity in g2 at g2 = 0 for а ф 0. This remains true in 
4 + e dimensions in covariant gauges.
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T here  a re  ind ica tions for the  W einberg-Salam  m odel being  an  effective th eo ry  only. 
T h is  would im ply  a  re la tion  betw een th e  scale (Acul ) before which new physics should  be 
observed and th e  Higgs m eson m ass т ц .  T h e  re la tio n  Acu* =  Acut( m ц )  is s tu d ied  in  an 
approx im ate , b u t  n o n p e rtu rb a tiv e  way. For m j j / п ц у  ~  10, Acu* is of th e  o rder of the  
Higgs m eson m ass itse lf (i.e. th is is a n  u p p e r bound), while for т ц / m \ v  ~  6, Acut can 
b e  very large a n d  no  practically  in te res tin g  constrain t em erges.

1. In troduction

The old Fermi theory of weak interactions gave an excellent prescription of 
many low energy weak phenomena. The Fermi model is, however, not renormaliz- 
able, the cut-off Acut cannot be removed. The model had to be considered as an 
effective theory. At a certain scale the Fermi model breaks down and one could 
expect new physics to occur before this scale.

There are indications for the Weinberg-Salam model having the same prob
lem: although it is perturbatively renormalizable, the cut-off cannot be removed 
from the full theory. This would not be a catastrophe. At scales much below the 
cut-off, the predictions remain unchanged. At high energies however, the model 
is expected to break down. Actually, this scale Acut, before which “new physics” 
(i.e. phenomena not described by the standard model) should be observed, can be 
predicted within the framework of the standard model.

The scale Acut depends on the parameters of the theory, most notably on the 
value of the Higgs meson mass тц.  Since тц  is unknown, one can only predict a 
functional relation Acut = Acut(m#). The cut-off Acut is expected to decrease as 
тц  is increased. When тц  is large, the cut-off becomes comparable to the Higgs 
mass itself, and the model loses its meaning. This gives an upper bound on the 
Higgs mass тц.

The determination of the relation Acut = Acut(m#) is a fully nonperturbative 
problem. The upper bound on тц  it implies follows from a basic criterion (namely 
that cut-off should be (much) larger than a physical mass). There exist upper

•D ed ica ted  to  P ro f. G. M arx on liis 6 0 th  b irthday
**W ork su p p o rted  p a rtly  by Schweizerischer N ationalfonds
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bound estimates in the literature, which use ad hoc criteria and perturbation theory 
[1]. The present work is based on nonperturbative renormalization group (RG) 
considerations and closest in spirit to a proposal of Dashen and Neuberger [2].

Of course, the question addressed here is sensible only, if the Weinberg-Salam 
model is really an effective theory with an unremovable cut-off. The arguments come 
mainly from the theoretical and numerical investigations of an SU(2) gauge theory 
with a scalar doublet:

2

Ï .
i=i

CE = 1/4F%F*V + £  ( З Д *  (D„Ф). + 1/2т £  + 1/4Л <&) -
a = l \ a  = l

( i )

D* = дц1 — igA“— .

This is the part of the standard model, which is relevant for the Higgs mechanism. 
This model has been the subject of detailed numerical studies during the last few 
years [3]. They seem to indicate that the only point in the 3 dimensional coupling 
constant space (g2,r, Л), where a cut-off independent field theory can be defined 
(without a priori losing the gauge or the scalar part the model) is the Gaussian 
point (g2 = 0 ,r =  0, A = 0).

What kind of theory is obtained by tuning the parameters towards the Gaus
sian point and, at the same time, sending the cut-off to infinity? In QCD, which is 
defined also at the Gaussian point [4], this procedure results in a cut-off indepen
dent, interacting field theory, which describes — as far as we can see — correctly 
the strong interactions.

For the SU(2) gauge theory with a scalar doublet this procedure gives a cut-off 
independent theory with three massive vector bosons and a massive Higgs boson. 
Unfortunately, no interaction survives, the model is free [5]. An interacting model 
can be defined only if a finite cut-off Acut is kept. It is an effective theory in the 
sense discussed before.

It is a plausible possibility that the full Weinberg-Salam model suffers from 
the same disease as the SU(2) gauge, doublet Higgs model.

2. T h e  W ein berg-S a lam  m od el as an effective theory

Our aim is to find the relation Acut =  Acut(mя ) and the corresponding upper 
bound on mj/. Even low level perturbative formulais suggest the existence of an 
upper bound. Really, tree level gives

R 2 = m 2H/ m 2w =  8Л/g2, (2)

where we might take Л as the running coupling at the scale гад : À = \{тц)-  Given 
g2 (ss 0.4) and mw, Eq. (2) relates the Higgs mass to the selfcoupling at the scale
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of the Higgs mass. According to perturbation theory, Л is an increasing function of 
the scale (non-aysmptotic free), and hits the point A = oo at some finite scale Acut 
(Landau pole). Increasing т н /mw  increases А(тд), which results in a smaller 
ratio Acut/rriH-

Unfortunately, for two reasons, this perturbative consideration is not trust
worthy:

1. perturbation theory assumes small couplings throughout the whole calcu
lation and this is not the case here (we have to talk even about A = oo).

2. even if the couplings are small, the radiative corrections contain dangerousl ‘ l г l 1 Âutlogarithms of the type In .
The second problem is treated usually by RG considerations. In our special 

case, as we shall see, both problems are solved by a RG transformation.
By performing the RG transformation Acut —► e_tAcut(< > 0), the cut-off is 

pushed towards the physical scales (without changing the physical content of the 
theory) and the large logarithms are suppressed. We shall make the assumption 
that the effect of gauge fields and fermions on the RG flows of the scalar theory is 
small and negligible [2]. This is our 1st approximation, which is made plausible by 
the small values of the gauge and Yukawa couplings (assuming the top quark is not 
too heavy) in the standard model.

3. RG transform ation  in  an  0 (4 )  scalar field  theory

We have to consider, therefore, the flow of the coupling constants under the 
transformation Acut —► e_tAcut in a four component scalar theory. We shall follow 
these flows with the help of a nonperturbative, approximate RG relation derived 
and discussed in [6]. In this approximation the action, obtained after the RG trans
formation, is projected back to the subspace, where no couplings with derivatives 
occur:

- J
ddx

N

Ac“‘— e-iA'“*

1/ 2 £ ( cV M 2 +  U £ > «
<*=1 \ a = l

5(0  = J ddx I 1/2 £  (д.фа)2 +  V ( £  Ф1 -, t (3)
a = l \a= 1

where V(x, t)  = £3 4>Ùj satisfies a non-linear partial differential equation. 
Written for

N ll* f { x / N ll \ t )  = ^ V { x , t )  (4)

it reads [6]:

Ad [1  f "  N - l x f - f  
2 [N l + f  + N  x2 +  x /. ( 5 )
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where “ •”=  d/dt,  =  д/дх, d is the space-time dimension (=4), N is the
number of scalar fields (=4), Ad is a number (= ^  in d = 4). The RG equation 
describes qualitatively correctly all the fixed points, which are expected to occur 
in 2 < d < 4, and gives reasonable results for the leading and subleading critical 
exponents for the d = 3 ferromagnetic fixed point. It is clearly not exact however, 
and this is our 2nd approximation.

The function /  and the variable x are dimensionless. In Eq.(5) and in the 
following, the dimensions are carried by the (actual) cut-off.

The starting function f ( x , t  =  0) corresponds to the original potential in the 
W-S model

f (x ,  t = 0) = rx + 4Лж3. (6)
First, we have to find the region in the (r, A) plane, where the 0(4) symmetry is 
spontaneously broken. Next, at every point of the broken phase we have to calculate 
Лси* /т я  and R  = We expect a structure sketched in Fig. 1. Our aim is to 
find the envelope giving the maximum value of R for any given Аси‘/ т д .  We shall 
now briefly discuss this procedure, the details are published elsewhere [7].

4. T he p hase diagram  and th e  m asses

Given Eq. (5), it is relatively easy to find Ac =  Ac(r) separating the sponta
neously broken phase from the symmetric phase [8]. The phase diagram, as obtained 
by solving Eq. (5) numerically, is given in Fig. 2.

Even if at t — 0 the function /  has the simple form Eq. (6), it will enter an 
infinite dimensional coupling constant space under the RG transformation. In this 
infinite dimensional space the symmetric and broken phases are separated by the

spontaneously broken phase excluded by the evelope

Fig. 1 . Sketch of th e  procedure  to  b e  followed: Acut/тпц sind Я  =  т ц / m y y  a re  calculated  for 
any  p o in t in  th e  broken  phase of th e  (r , A)-plane. T hese p o in ts  are expected  to  be  bounded from  
above by a n  envelope, determ in ing  th e  functional re la tion  Acu* =  Acul(m # ) .  E xcluding the a rea  

Acu ,/ m H S  О  (1), we get a n  u p p e r b o u n d  for m u
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Fig. 2. T h e  phase d iag ram , as obtained by  solving Eq. (5) num erically

Fig. S. T h e  change of th e  p o ten tia l (in  th e  spontaneously  broken phase) u n d e r  RG tran sfo rm ations. 
t  =  0 : th e  original p o ten tia l, where p e r tu rb a tio n  theory is n o t applicable. 
t  =  t m : th e  po ten tial a t  a n  in term ediate  t, w here  p e rtu rb a tio n  th eo ry  is not

yet applicable.
t =  t | : th e  po ten tial for larg e  t. We apply now  p ertu rb a tio n  th eo ry  around 

X =  M  a n d  calculate ra d ia tiv e  corrections.

critical hypersurface. The critical surface contains one fixed point, the Gaussian 
point (origin: r  = 0, A = 0, all other couplings = 0). This scalar theory is not 
expected to have any other fixed points (“triviality of ф4”) [9], and in our numerical 
study of the approximate RG equation Eq. (5) we did not find any.
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The Gaussian fixed point has no relevant directions along the critical surface 
in d = 4. Therefore, starting anywhere in the vicinity of the critical surface, the EG 
flow will first run towards the Gaussian point, then diverge away from the critical 
surface along the single relevant direction ( “mass” direction) of the Gaussian point. 
Due to this drop towards the origin the RG transformation solves not only the 
problem of dangerous logarithms, but also the problem of large couplings (problem
1. in Section 2).

The strategy is sketched in Fig. 3. At t =  0 (original potential) perturbation 
theory is not applicable in general for the two reasons discussed in Section 2. By 
applying the nonperturbative RG transformation Eq. (5) the system is becoming 
weakly coupled, and when the cut-off and the Higgs mass become of the same order, 
there will be no dangerous logarithms either. At this stage even tree level formulas 
should work. The validity of perturbation theory can be checked by calculating 
radiative corrections using the potential V(x, t) .

On the tree level one obtains (remember, the dimensions were carried by the 
actual cut-off)

(Acut)2 2t______ 1 rn2H _  V“(x = M(t),t)
т н V"(x = M (t ) , ty  rriyy \ g 2M 2(t)

where M(t)  is the position of the minimum of the potential V(x,t).

5. T he resu lts

Every point in the spontaneously broken part of the (r, À) plane gives a pair 
of mass ratios (7)7̂  > (Fig- 1). These pairs are plotted in Fig. 4. The indi
cated errors were estimated by comparing the tree level predictions with the 1-loop 
corrected results.

For a given Acut/m # the ratio is increasing with increasing Л. For small 
Л values this increase is strong, for larger A values R seems to converge rapidly 
forming the expected envelope. Unfortunately, we could not investigate the coupling 
constant region beyond A ~  30. The reason is that Eq.(5) has a singularity when, 
for some xo,f(xo)  approaches -1 (the dimensions are carried by the cut-off), and 
this singularity was hit already at small t values for A > 30).*We were not able to 
treat this singularity neither analytically nor numerically.

For this reason the upmost curves in Fig. 4 are only lower bounds for the 
envelope. The rapid convergence in A suggests, however, that the curves for A ~30 
are very close to the envelope.

*We believe, this s ingu larity  is due to  th e  specific (sharp cu t-off) RG tran sfo rm atio n  and 
n o t to  th e  approxim ation . T herefo re , it would also  b e  present in  th e  exact integro-differential 
eq u atio n  of W egner and  H oughton  ~  10].
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6. D iscu ssion  o f the resu lts

When the ratio drops below 6 or so, becomes so large that no 
practically interesting constraint on the scale of new physics comes from this con
sideration. For large the cut-off comes dangerously close to the Higgs mass
itself, which gives an upper bound ~  10.

Fig. 4 • R esu lts  fo r R  =  m j j  j m w  an d  Ac" ' / m g  fo r couplings A u p  to  32.5

At the end let us collect again the approximations, which entered this calcu
lation.

l 4t approximation

The effect of gauge and fermion fields on the RG flow of the scalars was 
neglected. This is the approximation, which would be most difficult to remove in 
our scheme.

2nd approximation

For the 0(4) scalar theory an approximate (but nonperturbative) RG equation 
was used. This approximation can be replaced or improved rather easily. One might 
turn to Wilson’s approximate recursion relation [11], use large N,  or strong coupling 
expansions, even an MCRG analysis might be feasible.
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3rd approximation

After the RG transformation the resulting weakly coupled model with small 
correlation length was studied perturbatively. This seems to be safe. The radiative 
corrections were checked.

4th approximation

No stronger coupling than A ~  30 was considered. This is a specific technical 
problem related to the RG equation analysed here. However, A ~  30 is a strong 
coupling already, and the curves in Fig. 4 show rapid convergence.

There are ways to improve the reliability of the results. Since the problem 
addressed here is physically relevant, we believe it is worth the effort.
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HELICITY METHOD FOR HEAVY FERMIONS*

Z. K u n s z t * *

Theoretische Physik, ETH-Hönggerberg  
CH-8098 Zürich, Switzerland

(R eceived 8 January  1987)

We show liow to  generalize th e  helicity m e th o d  of calculating  com plex Feynm an 
d iagram s w ith  m assless k inem atics for massive ferm ions. T he m eth o d  is illu stra ted  by  a 
sim ple exam ple.

Hadron collider physics requires the evaluation of the cross-sections of com
plex higher order QCD reactions [1]. Both the UA1 and UA2 collaborations have 
data e.g. on gauge boson + two jet production, four jet production, bottom pair 
production with an additional jet etc. [2]. The theoretical description of these re
actions is given by several hundreds of Feynman diagrams. Obviously, to calculate 
these cross-sections improved computational techniques are required.

Straightforward numerical methods have been attempted [3]. It has been 
found that they give too slow computer programs for practical use. Brute force 
algebraic methods also fail since they generate millions of terms. The key to re
solve these computational problems has been provided by the development of the 
CALKUL collaboration [5] and also by the application of supersymmetry as a tech
nical trick [6].

The CALKUL method makes advantages of the simplification given by mass
less kinematics, by the freedom given by gauge invariance and by the powerful use 
of the helicity amplitudes. In this paper we shall show how to reduce the case of 
massive fermions to the massless formalism.

Let us first consider a simple illustration of the technique given by the example 
of the Compton amplitudes with massless electrons

•D ed ica ted  to  P rof. G .M arx on his 6 0 th  b irthday.
**On leave of absence from  C en tra l Research In s ti tu te  for Physics o f th e  H ungarian  Aca-

7(—ki) + Т(—*2) — * e(Pi) +  e(p2). ( 1)

The amplitude is given in terms of two Feynman diagrams as
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where
WA,»Aa =  ü (P i> « i)ê (* i> A i) ( î i  +  Pi)ê(fc2,A 2)u(p2, s 2). (3)

Due to parity, C-parity invariance and helicity conservation, only two helicity am
plitudes have to be calculated and M++ .

The improved CALKUL method [7] defines the photon polarization vectors 
in terms of massless spinors with one lightlike reference momentum l

е; - ( м )  =  ± < * ± Ы ± > ,
" n/2  < t  ±  |Í=F >

where we used the bra-ket notation for the massless spinors

< P -  k +  > =  u (p ,+ )u (g ,- )

and

and

u(P> +) = v(p, - )  =

/  V p+ \
y/p_exp(iij>p)

V p+
\y/p_exp(i<j>p)/

« (P .-) = v{P,+) =
V 2

(  у/Р-ехР(~*Фр)\ 
-V p+

-v/p_ exp(-t>p)
V V p +  /

Their phases are fixed by the condition

(4)

(5)

(6)

(7)

C(h(±))T = u(T),

where

4 ) -  rn
The momentum components are defined with respect to any convenient axis.

We note some simple properties of the inner products. First products as 
< p — |g— >, < p + |g+ > and < p — |p+ > are vanishing. Furthermore it is easy 
to see from Eqs (6-7) that for po > 0 and qo > 0

<  P  -  \ q +  > = <  p q  > =  V p  -  q +  e ,lp'  — s / p  +  q  -  е "Р ч ,

where
P± = Po ±Рз,

cos(ipp) = Pi
V pI + pI

(9)
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We can also define inner product for negative energy states as

< ~РЯ >=  » < РЯ >, < P -  Я > =  i < pq >, < - p -  q >=  -  < pq> . (10)

We also have conjugate inner products

< « +  Ip — > = <  p — к -t- > f • ( i i )

It can be easily seen that for po,qo > 0

< pq > f = <  pq >*,
< -pq  > t = Í < pq >*, (12)

<  — p  -  я > t =  -  <  pq  > * .

where * denotes complex conjugation. Note also that the inner products are anti
symmetric

<  pq  > — ~  <  qp  >  (13)
and

I < pq > I2 = 2р„д" =  2(pq). (14)

In Eq. (4) the light like four momentum is an arbitrary reference momentum with 
the only constraint that it cannot be parallel with kß. If we choose the reference 
momentum / =  p i  for both the photon polarization vectors e i ( k i , Àj ) and е^к?, Аг) 
we can see that Л/++ = 0 and

M t l  = 2e2— * phase factor. (15)
++ < Pi |*i >

Taking the absolute squared and summing up for all helicities we obtain the known 
result

E  l " l ! = 8' 4 ( ;  + t )  • (16)

It is remarkable that we got this result with few line calculation and without any 
Dirac algebra.

The question arises whether this impressive simplification can partially survive 
for massless fermions or not. We shall give first a representation of the massive 
spinors in terms of massless spinors then we shall calculate the cross-section of 
the reaction (1) but with massive electrons. We shall see that although many 
simplifications given by massless kinematics survive, the advantage of the method 
is not as striking.

Let us first give a decomposition of a massive four vector in terms of two light 
like vectors sis follows

P  = l  + k = l + £ k .  (17)
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The second form suggests that presumably we may obtain a representation for the 
massive spinors U (p,±),V(p,±) as follows

U(p,±) = \l±> + 

Ü(p,±) = < / ± |  +

m
< l ±  |Arq= >

< к T  |J± >

l*=F >,

< k T  I
(18a)

and
-»V (p ,± ) =  - | / ± >  -

m

- iV (p ,± )  = -  < /,pm| -
< / ±  |fc=F > 

m
l*T >.

<  к ±  |.
(18b)

< ifc T |/± >
We can verify with an explicit calculation that indeed these spinors defined by Eqs 
(18a-b) satisfy the Dirac equation

{p -m )U (p) = 0, (p + m)V(p) = 0 

and satisfy the completeness relations

U (p, s)U (p, s) = (p + m),
8

^ K (p ,s)V '(p ,s )  = ( -P +  m).
8

The amplitude of the process can be given as

(19)

( 20)

ДМ1*2 AT*

П Р2), ( 21)

where di and di denote the denominators

di = (pi + h )2 -  m 2 = 2p\ki = 2kili,

where i =1,2. With the use of the Dirac equation we can write for N\ and N2

N 1 =  ê i î i ë 2 +  2(eipi )ê2,

N2 = è i ^ è i  + 2(e2pi)ei.

( 22)

( 2 3 )

With these simple forms of the numerator matrices and with the choice for the 
photon polarization vectors

i t  ■> = ±
V 2

1,2 < / l ,2 T l* l ,2 ±  >
{ | f c i , 2 T  > <  / 1 .2  T  I +  | / l , 2 ±  > <  * 1,2 ±  I )  ( 2 4 )
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we can easily obtain the simple forms for the numerator functions of the helicity 
amplitudes as follows

and

N [ = —4di < k\ + \k2— X  h ~  K2+ >)
< /1 — |fci+ >Ni+L — 4dim < k\ + |fc2— >

iV++_ = 0,
=  0

< /2|*i+  > (25)

N2+- — - ~ r N ++l H— ,di

N2++ = 4c/2 < k\ + |^2 >< h +  lb -  > (1 + “7” )»

Nf+_ = 4m2 < ki +  Ц’2-  >

d 1
< ll — |&2 + X  /l — I&1+ >

N+_\ = -4  - - ——r.------
< &i +  Ui— >

(26)

< &i + |/i — X  /2 — |&i + >
< ki +  |^2— >"< /1 — I/2+ X  h — h&2+ >)

with similar expressions also for iV+Ja.
The absolute squared of the helicity amplitudes now can be easily obtained 

using Eqs (10-14) and (26-27)

d\d2

|M | í |2 =  0,

|ЛТ±±|2 = 5 |A Í Í Í I 2,
“2

(27)

and

|A / í í |2 = 0,

| m + : | 2 =  4 x 2 ^ ,

i »í + - i2 2 (dl T d2)̂
I " í - 1 = - 4’’’ 1 4 g " (28)

where
x = 1 + m2(dt -f d2) 

d\d2
the remaining amplitudes are obtained by parity. Summing up the contributions of 
all the helicity amplitudes we obtain the known Klein-Nishina formula

A1A2,s iS 2 |m ^ /|2 =  8
t и 4m2 ., m2s.
; + т  +  т г (1 - т г > (29)

Acta Physica Hungarica 64, 1988



162 Z. KUNSZT

where t =■ d\ and и =  di.
Although we have obtained the full spin information and the cross section 

formula without any Dirac algebra, the calculation is more involved then in the 
massless case. The method appears also to be very convenient for the calculation of 
the 0 (m 2/s) corrections to the massless results [4]. Finally we note that in Eq. (3) 
the reference momentum к has definite physical meaning: it defines the direction 
of the spin in the rest frame of the massive fermions. Therefore there is no need 
to perform any integration over the twobody phase space volume. Of course it is 
also a possibility to get the spin averaged answer. (See Kleiss and Stirling for a 
discussion [6]). We also tested the method in the case of the more complicated 
QCD subprocess [7]

9 + 9 — + 9 + Q + Q> (30)
which is described by sixteen Feynman diagrams. The advantage of the method, in 
comparison with the standard covariant technique, is rather marginal since we are 
not interested in polarisation effects in this case.

In conclusion we have demonstrated how we can use the massless helicity 
formalism also in case of massive fermions. As an illustration of the method we 
have rederived the Klein-Nishina formula without any trace algebra. The method 
appears powerful in calculating only 0 (m 2/s) effects (see also [3]).
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X -ray b inary system s em it high energy  photons an d  n eu trin o s. E x p erim en tal d a ta  
in d ica te  an  unexpected  excess of m uons in  show ers correlated  w ith  the  binaries. We suggest 
th a t  th e  m uon excess can  be  understood  in  term s of a  su b s tru c tu re  of leptons a n d  quarks.

1. In trod u ction

It has been known for some time that X-ray binary systems constitute the 
most powerful particle accelerators. In all probability, they emit both charged and 
neutral particles. However, due to interstellar (and intergalactic) magnetic fields, 
the stable charged particles arrive to the top of the Earth’s atmosphere, in essence, 
isotropically. Only stable, neutral particles, typically photons and neutrinos can be 
identified with the source. From the point of view of the particle physicist, an X- 
ray binary emits a pulsed photon (and, in all probability, neutrino) beam of energy 
E l < 106 TeV. When this beam falls on the Earth’s atmosphere, it interacts with 
the “average air nucleus” which has a baryon number A ~  14.4 and electric charge, 
Z  ~7.2. Roughly speaking, the incident photon (and/or neutrino) meets a swarm 
of light quarks, with и and d quarks in equal numbers. Primary energies up to 
about 105 TeV have been observed; this corresponds to about 10 TeV in the center 
of mass. (By comparison, the total CMS energy at the Superconducting Supercol
lider — now in the planning stage — will be 40 GeV). The luminosities, however, 
are not very high by accelerator standards; for instance, the photon luminosity of 
CYG X3, one of the best studied X-ray binaries, is given by the approximate for
mula, EdN/dE  ~  4 x 10- 4£,~1(m- 2s- 2GeV-2), so that the frequency of photons 
with energy E > 104 TeV is about 10~4m-2 year -1 . (This is not quite true; CYG 
X3 behaves in a very erratic way: there are brief and intense bursts, followed by 
periods of quiescence.)

Given these facts, the astrophysics of such binaries is quite intriguing but it 
would be hardly of relevance for particle physics. However, extensive air showers 
(EAS) associated with the binaries are “anomalous” : they appear to contain too 
many muons [1] . Moreover, a number of groups, operating proton-decay detectors 
underground, have reported the observation of muon bursts correlated with the 
phases of the binaries.

’•‘D edicated  to Prof. G . M arx on Ills 6 0 th  b irthday .
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The data (as it is the case with most cosmic ray observations) are not quite 
unambiguous: the total number of events is not very high, there are technical diffi
culties with some of the measuring devices, etc. The evidence and the controversy 
surrounding it is reviewed in a recent article by D’Ettore Piazzoli [2]. One will 
have a clearer picture of the experimental situation a few years from now. There is, 
however, a growing consensus in the physics community that at least some of the 
data reflect a real effect.

If this is the case, the data cannot be understood in terms of the physics we 
are familiar with today [3].

In the following Sections we briefly review the facts and point out those aspects 
of the data which prevent one from giving a satisfactory explanation in terms of 
the standard model of particle interactions. We then suggest a possible explanation 
in terms of a substructure of leptons and quarks and briefly discuss some further 
qualitative consequences of the proposed explanation.

2. T he m uons n ob od y  wanted

This Section gives a very brief qualitative summary of those aspects of the 
data which are relevant from the point of view of the subsequent discussion. For 
more details, cf. [2,3].

i) The particles emitted by the X-ray binaries are light: upper limits on the 
mass are obtained from the fact that a pulse of the particles can be correlated with 
the phase of the binary as measured e.g. in X-rays. The best upper limit was 
reported by the Minnesota group [4]; they claim m < 2MeV.

ii) The particles must be stable, in essence, because they have to survive the 
trip from the binary to the Earth without decay. Using elementary kinematics, one 
estimates r  > dm/E,  where d is the distance of the binary. Taking again data from 
CYG X3, (d «  4 X 1022 cm) one knows that particles of E > ITeV are observed 
from it. On using the rest mass estimate m ?» 2 MeV, we get r  >  2 x 108 s.

The only likely candidates for such particles are photons and neutrinos, see 
e.g. Berezinskii et al for a discussion [5].

This conclusion appears to be clearly incompatible with the following observa
tions:

a) A number of groups operating extensive air showers (EAS) detectors reported 
a substantial number of muons in EAS correlated with X-ray binaries.

b) A number of groups operating proton decay detectors underground reported 
muon bursts correlated with X-ray binaries.

c) All groups reporting positive results agree that the events exhibit a zenith 
effect: more events are seen when the binary is overhead than when it is 
near the horizon, indicating a substantial interaction cross section in the at
mosphere. (The interaction cross section must be <j  > 10- 30m2/nucleon). 
(=0.1mb/nucleon).
According to conventional wisdom, c) alone is sufficient to exclude neutrinos 

as primaries. Moreover, according to the same conventional wisdom, a) and b)
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exclude photons as primaries. In essence, the argument runs as follows. One knows 
that, upon interacting with matter, photons produce very few muons. The dominant 
process is electron pair production. In air, this has a cross section, a e ~  5 x 10_27m2 
(=500 mb). Direct pair production of muons is smaller by a factor (т е/т ц)2 «  
10~4, hence, it is negligible. The main source of muons in photon-air interactions 
is the decay of charged pions into /i + As a rough estimate (born out by 
more detailed calculations) we take the total photoproduction cross section to be 
<r7 ~  (Jh a ,  where a h  is a hadronic total cross section, a  is the fine structure 
constant. At CMS energies of relevance here, <77, ~  A x l0 -27m2 ~  1.44 x 10_26m2, 
so that <r7 ~  1.1 x 10~28m2. (In units used in particle physics, these formulae 
read: ah — A x lOOmb ~  1440mb, and <r7 ~  lim b, respectively.) (It is to be 
remembered that the “average air nucleus” has A ~  14.4, Z  ~  7.2). The multiplicity 
of “leading”, high energy pions is 0(1) even at such high energies, so that A^/JVe ~  
(<т7/ ae) /  ~  0.02/, where /  is the fraction of muons surviving until sea level. An 
elementary estimate gives /  ~  0.1 0.2 at the relevant energies. Thus, at sea
level or in an underground detector Nß/N e ~  10~3. (This number agrees, within 
a factor of two or so, with the result of a careful computation by Stanev et al [6]. 
Instead, the EAS data indicate a muon to electron ratio about a factor 7 bigger at 
high energies; this is roughly consistent with the underground data.

With all the caveats alluded to in the Introduction, it seems very difficult, if 
not impossible, to dismiss all the evidence for a muon excess as spurious. Moreover, 
it appears now (as predicted in [7]) that the phenomenon is universal rather than 
being associated with one particular source. (For instance, the SOUDAN group 
reported muon bursts associated with CYG X3, HER XI and IE 2259+586).

With the present experimental constraints, it seems that the primaries cannot 
be anything but photons or neutrinos. (In particular, a light neutral hadron with 
an interaction cross section of the order of 10~3Om2 (=0.1 mb) or larger would 
be produced copiously enough in present accelerator experiments to show up as a 
spectacular missing energy signal).

Thus, either all data regarding a muon excess must be classified as spurious, 
or some new phenomena begin to take place between the presently explored highest 
energies (~ 0.5 TeV CMS) and ~  10 TeV CMS. This clearly contradicts all theories 
which at present are regarded as well establised and/or internally consistent: “con
ventional” grand unified theories and superstring (or superstring inspired) theories 
alike.

There is a class of theoretical ideas according to which the occurrence of 
“something new”, and, in particular, an increase in photon and neutrino cross 
sections at energies ~  1 TeV CMS is a “natural” phenomenon: these are “composite 
models” of quarks and leptons [8]. None of the specific models proposed so far is 
particularly attractive from the points of view of internal consistency, beauty of their 
structure or even their agreement with presently existing data. The general idea of 
the existence of structures beyond the presently known “elementary” particles is, 
however, an attractive one and we argue that the cosmic ray data we referred to 
provide the first hint at such a “substructure” [9].
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3. S tron g ly  in teractin g  photons and  neutrinos?

In view of the uncertainties presently surrounding composite models (“preon 
models”), we adopt the following strategy.

i) We admit ignorance concerning details of a preon model. Almost certainly 
the dynamics of preon models is quite different from what we are familiar with 
today: quarks and leptons look more and more pointlike as experiments achieve 
increasingly higher accuracies. Yet, one of the main motivations of composite models 
is an attempt to understand the electroweak symmetry breaking mechanism. This 
means that the characteristic energy scale of a preon model cannot be much higher 
than 1 TeV. Therefore, if any “size” of quarks or leptons deduced from the analysis 
of data (e.g. Bhabha scattering) becomes much smaller than 1 TeV-1 , one will have 
a very strong hint at some new type of dynamics at work.

ii) We try to abstract simple and generic features of various composite models, 
which, one hopes, will persist when a “good” model is found. Most preon models 
are constructed in such a manner that

a) leptons and quarks have at least some constituents in common: typically the 
common constituents are non-trivial multiplets of SU(3)coior-

b) Gauge fields, or at least gauge fields corresponding to exact symmetries are 
elementary; hence, preons can be classified, inter alia, according to quantum 
numbers of SU(3)co]or x U(l)e.m,

c) Overall color neutrality of the leptons is assured by an appropriate choice of 
the quantum numbers. However, all models considered are asymptotically 
free and thus, large momentum transfer processes should reveal the presence 
of “colored” preons inside leptons.
Keeping these features in mind, we can now imagine the following scenario. 
A photon or a lepton falls upon a target mainly consisting of quarks. In a vir

tual process, the projectile dissociates into two groups of preons of large transverse 
momenta. One group of colored preons interacts with the target quark, the other 
one fragments into a high transverse momentum jet which, presumably, contains a 
comparable number of hadrons and leptons.

Remarks

1) In a completely analogous manner, one may consider the fragmentation 
of the target as well: however, in the laboratory system, where the quarks are 
approximately at rest, the target fragmentation typically leads to slow secondaries.

2) Leptons (electrons) in the target play a negligible role: the amplitude of 
the corresponding process is proportional to some dissociation amplitude squared, 
whereas the lepton-quark interaction is linear in the dissociation amplitude.

3) It is necessary to observe the products of the projectile fragmentation, 
otherwise we cannot be assured that the process we are considering tests the preon 
structure. By contrast, the jet arising from the preon-quark interaction does not
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appear to carry any characteristic signature of the substructure and its components 
will be summed over.

We have now separated the description of the large — Pt  lepton-quark inter
action into four distinct parts.

I. We need a model of the dissociation amplitude of leptons or photons into 
preons.

II. We need a model of the fragmentation functions, (preon)—► (leptons, 
hadrons).

III. We need a model of the preon-quark interaction.
IV. We have to join steps I thru III in some approximation.
Part IV is the easiest one: it involves hardly more than kinematics and the 

observation that the exchange of light preons (rest mass ~  0) dominates; we also 
consider the exchange of spin 1/2 preons, although this does not seem to be very 
important.

Parts I and II contain very difficult, unsolved problems of composite models: 
in fact, no detailed prediction can be made about either the dissociation amplitudes 
or of the fragmentation functions without having a good composite model. It is at 
this point that we are trying to abstract some features of the teory, based on lessons 
learned from QCD. Before doing that, however, let us proceed as if we had a theory 
at hand.

Let us denote the momenta of the incident neutrino or photon by k, that of 
the incident quark by p; the quark carries a fraction x of the total momentum of 
a nucleon and its structure function is denoted by F(x). The momentum of the 
outgoing, observed, fragmentation product (typically, a hard muon) is denoted by 
q. All rest masses are neglected.

We are interested in the contribution of the projectile fragmentation to the 
inclusive cross section.

;}+ N  — V +  X. (3.1)

We first compute the cross section on quarks. An elementary calculation leads to 
an expression of the form,

^  =  /  rf<%(g,£)|2|d(f,*)|2|;7(f)|2

x T r((7 ( - T  k ) - lA(p, к -  /)(7 • t  -  у • к ) - 1). (3.2)
In this expression, А(р1,рг) is the absorptive part of a forward scattering amplitude 
describing the preon-quark interaction, g(t) is a preon propagator,

{(7 -£)-1 for primary photons,
£ -2 for primary neutrinos,

whereas d and are the corresponding dissociation and fragmentation amplitudes. 
We shall presently argue that the amplitude, A, can be estimated fairly reliably.
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Very little is known about the functions <p and d (cf. items I and II above). Consider, 
however, the limiting case in which the four-momentum q is almost equal to £ : 
in intuitive terms, a hard preon is dressed up by means of a soft process into the 
observed fragment. It is intuitively obvious (and it can be justified by some plausible 
reasoning) that in this case \<рд\* can be, to a good approximation, replaced by 6- 
functions, viz.

M « ,% W I2 oc t> W (q -£ )6 t f) .  (3.3)
This limiting case is of utmost importance: one needs hard leptons to survive 
the penetration of the atmosphere and the overburden (2 x 105g/cm2 or more) 
above an underground detector. Clearly, the approximation (3.3) simplifies matters 
considerably. However, the amplitude d is still undetermined.

Fortunately, it appears that the exact form of jd|2 does not have a great 
influence on the final result. We can reason as follows. Adopting the approximation
(3.3), |d|2 depends, in essence, on one invariant, say, (q — k)2. Given the fact that 
an incoming photon or neutrino is color-neutral, |d|2 must be negligibly small until 
the resolution reaches the compositeness scale, say, at (q — k )2 ss Л2. Thereafter, 
|d|2 is 0(1) until the dissociation amplitude is cut off either by the preon dynamics 
or by some natural cutoff in primary energy, e. g. by the Greisen-Zatsepin cutoff
[10].

We are unable to report a firm result stating the “irrelevance of the cutoff” 
or on the robustness of our calculation with respect to changes in |d|2. However, 
we did experiment with extreme shapes, such as, e. g.

|d|2 ~  0 ( | (g  —fc)2| — A2),

Ml2 -  <$(!(? -  *02| -  A2) (3.4)

and many other shapes (Gaussian, Lorentzian,...) in-between, without finding a 
significant difference in the qualitative properties of the end result.

This evidence encourages us to put in some convenient functional form for 
|d|2 (we ended up using a step function) and hope for the robustness of the result.

Once this is done, the expression of the inclusive cross section is drastically 
simplified.

Formally, one uses a local vertex to describe the photon/neutrino —* (preon- 
pair) dissociation, one identifies the observed fragmentation product (typically, a 
muon) with the preon fragment and also (since no polarizations are measured), 
one expresses A, via a formal optical theorem, in terms of a preon-quark toted 
cross section, à. (It is to be noted, of course, that most of the steps involved 
are purely formal: for instance, one cannot construct an accelerator to produce 
preon beams.... Nevertheless, such formal steps provide a crutch for the intuition 
in exploring unkown realms). The end result is very simple. By integrating over 
the momentum fraction, we give the cross section on nucleons.

The result reads as follows:

^ 5“  = \  J Q dxFix )®(qT -  A )^ á (p 2,t)Ö(/i2), (3.5)
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where à is the preon-quark total cross section. The kinematic invariants are defined 
in the standard fashion, viz.

I =  (p+  k)2 = xs,
t =  ( q -  b)2,
û = (q — p)2 — xu,

p2 = i  + û + t, (3.6)

( û (neutrino primary),
( s + ü (photon primary).

It is convenient to introduce scaling variables by the definition,

X j  -- A í u / s 2 , X =  —u / s ,

so that xt and z are seen to be the transverse momentum fraction and LAB energy 
fraction of the observed particle. In terms of these,

d2a
dxjdz J i n x ) e  "  ■ s  ) ’ •

We now argue that the off-shell preon-quark cross section is determined by 
“low-energy” physics. Indeed, we can write à — p~2f ,  where /  is dimensionless 
and it satisfies a renormalization group equation,

- 2, è + ' + A(G,è) <=°' (3J)
where g and G stand for the coupling constant of QCD and of some hypercolor 
force responsible for binding preons. Eq. (3.7) determines the off-shell (t ф 0) 
extrapolation of the cross section, in terms of its value at some t = to << Л. 
(We cannot set <0 = 0, because of infrared problems.) Given an initial value of / ,  
f ( p 2,to,g,G) = <p(p2,g,G), the solution of (3.7) is:

f  = < p ( j f , 9 ( t ) , G ( t ) ) ,

with

2fdg(t)

21

dt
dG(t) _ 

dt

= /M s(0 )

= A(G(0 ). (3.8)
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i.e. g(t) and G(t) are the usual running couplings. The essential point is that 
(apart from the edge of the accessible phase space) \10ц2/t \  «  A; hence the role 
of G(t) is hidden in the structure of the target quark. The cross section, is
basically determined by ordinary gluon exchange. Thus, apart from some numerical 
factors, <7 ~  ЛдС£). Thus, once the energy is large enough (we need s > 4Л2 in 
order to produce large transverse momenta), the neutrino cross section should rise 
spectacularly. (No spectacular rise is expected in the case of photon and changed 
lepton, due to the large electromagnetic cross sections). One can derive a simple 
asymptotic formula for the cross section, which is valid if s is not too close to 
4Л2. The structure function of quarks inside a nucleon is expected to behave as 
F(x) ~  x~1(x «  1). This gives the asymptotic formula,

a»N ~  ^ ( /n s /4Л2)2. (3.9)

4. D iscu ssion

Having come so far, it is worth asking: can the mechanism proposed here 
explain the muon excess observed?

To this end, we note that the integral of the inclusive cross section, strictly 
speaking, gives the total cross section times the average multiplicity. Therefore, 
if one primary of energy E  penetrates an absorber of thickness t (measured in 
nucleons/cm2) [11] the average number of muons produced is: < N  > e — 
f /  ^ ^ 3p / (^ t )- The total number of muons is then given by integrating < N > e  

over the primary flux. In particular, we assumed that the flux and spectrum of 
neutrinos is the same as that of photons [12]. An approximate integration gives 
then the following formula for CYG X3:

Ntot ~  2.4.10-3 < N  > (A/TeV)-2(</1000g/cm~2)m-2yr-1 , (4.1)

where < N  > is the multiplicity averaged over energies.
M. L. Marshak et al reported the observation of muon flux at SOUDAN, [13], 

Nh ~  21m-2yr_1, under an absorber of 20000 g/cm2. One does not understand 
these data in quantitative terms yet; in particular, Eq. (4.1) does not take multiple 
interactions in the absorber into account. It is known, however, [13] that the muon 
multiplicity in each individual event is not very high. Therefore, substantial cross 
sections of the order of 10~29m2, i.e. a few millibarns, are needed in order to explain 
the data. More will be known as better data become available.

Thus, it appears that the celestial accelerators open a new chapter in particle 
physics. What we wanted to stress in this paper is that a natural explanation can be 
found in terms of a substructure of quarks and leptons. We still do not know whether 
this is the correct explanation, but probably, the answer will be known before the 
end of this decade as new data become available. “Grau, teurer Freund, ist alle
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Theorie, und grün des Lebens goldner Baum”, says Mephistopheles in Goethe’s 
Faust. In physics, the ultimate judge of theories should be the experiment.

W e th an k  F . H alzen, M. L. M arshak . Leon M adansky an d  S. N ussinov for enlightening 
discussions, an d  to  A. K . H arding for p o in tin g  ou t an  error in  th e  original version of th is paper. 
T h is research  was su p p o rted  in p a r t by  th e  U . S. D epartm en t of Energy, u n d e r G ran t NO. DE- 
FG 012-85 E R  40211.
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An indefinite m etric  Abelian m o d el is discussed w here b o th  confinem ent a n d  asym p
to tic  freedom  m ay b e  presem t. Physical u n ita rity  in th e  naive  form  is violated.

In the early days of the confinement problem higher order or multipole ghost 
theories where proposed [1,2,3] as a possible source of a resolution. It turned out 
that the correct description of covariant Lagrangian formalism of non-Abelian gauge 
fields (gravitation included) cannot be carried out without multipole fields [4,5]. 
In this case appropriate auxiliary conditions guarantee the physical unitarity. In 
this paper, after performing the renormalization in the dipole case, we make some 
comments.

The free Froissart (dipole) field [6] is described by the Lagrangian

L = д^АдцВ -  m2AB + ^ A 2.

The quantum theory of this field can be completely solved (c.f.e.g. [7]), leading to 
Green’s functions proportional also to p~4 providing some possibility of a confine
ment [1,2,3].

Power counting shows us that a theory with multipole fields in a Yukawa 
interaction is renormalizable. Here we point out some peculiarities. First, we turn 
to an interaction picture. Dyson’s renormalization requires that it has to be done 
in such a way that the term A A2 has to be considered as an interaction. Therefore 
we take

Li = дфуфф +  —A 2 + counter terms,

where
ip = a iA  q2H,

7 is some matrix, Lorentz or inner indices are omitted. Let the first basic field be

a  =  к  V , к  = y / \ 2 ф  О,

’•‘D edicated  to P rof. G . M arx on his 6 0 th  b irthday.
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174 K .L. NAGY

the second one
6 =  1:- I (aij4 — «2 В).

Then the boson part of Lq is

Lq = ^ (—d^adfiü—m 2a2 + d^bdpb +  m262), 

в = sign аца2 =  ± 1,

i. e. one of them is quantized with indefinite metric: ( q  = +1 means the field a(x) 
is “normal”)

[a, a] = -[b, 6] = igA, [a, b] = 0.

With these fields the interaction Lagrangian becomes

L\ = до'ФгФа + у  a2 + Ц  b2 +  cn ab.

go — gki, ci = c + 6ml, с2 = с +  <5ш2, ci2 = c + 6k,
Л

C_  2
a'2 
«1

other counter terms, necessary to compensate singularities originating from the 
Yukawa interaction (e. g. ~  <p4) or from ф are omitted. The Lq contains the real 
masses. It can be seen that for SF and Г no peculiar new problem arises, therefore 
one can carry out the renormalization in the usual way, thus we have SF = Z2SF, 
Г =  Z ï 1r R. One may notice that terms in £  and Г containing powers of Л Eire 
overall finite. Therefore we discuss the causal functions A F. Let us denote the 
Fourier transforms of these by

A F(a) = da =  g(m2 — p2 — ie) 1 =  —A F(b) = —bb

as А а,Аь and analogously for the primed and renormalized quantities. For this 
interaction the Schwinger-Dyson equations are

A'e = A0 +  А0(тг +  С1)А^ +  с22ДаД[Л^,
Д& = At +  А ьс2Д(, + c2, A bA Ta A b,

where

A Í =  A b + A bc2A \ ,
Д „ =  Д 0 +  A a(ir + c i ) A j .

Here
Ж =  7Г2 + 7T1(m2 — p2) + Жс ~
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RENORMALIZATION OF T H E  DIPOLE FIELD 175

is the sum of all compact a-boson self energy contributions. Then with

A l  =  Z3 A ™ , A a = Z3A я A j  =  A j R, A b =  A f ,

step by step, requiring c —► cR , (Л —► Ля ) choosing (necessary to compensate the 
divergences)

я-0 + 6m\ = 0,

9R  — 1%2%3 9 o ,

c2 = c + 6m\ =  cr =  cZ3, 
C12 =  (c + 6n)2 Z3 =  c2Z |,

с^з =  Сд, 

nR = Z3ttc ,

i. e. 
i. e.

^3 1 =  1 -
02

Í«1
6m\ =  c(Z3 -  1), 

6 k  =  c ( ^ /2  -  1) ,

we have the equations for the renormalized causal functions as

A R = A a + A a(irR + cr ) A r  +  c2RA aA j RA R , 
A ?  = A 6 + A bcRA ?  +  cRA bA ^ RA R,

where

A ™  = A b + cRA bA j R,
A ™  = A a + A a(nR + c«)A™.

Do notice:
i. According to the graph rules, in the remaining real vertex a—b we must 

substitute
A a(c +  6 к ) А ь -  Z ^ 2A r (c + 6k) A r = A RcRA R,

which gives for 6 k  the same value as above.
ii. Contrary to earlier notions [7] for free fields, the cases m = 0 or m /  0 

can be treated on the same footing.
iii. The renormalization multiplier Z3 contains the sign factor g explicitly. 

The renormalized equations give

A r  1 = (Aa + A aA acR)~l -  nR,

A ?" 1 = Ai
■ 1 A„ 1 -  nR -  С д А а 7ГЯ  

А “ 1 — 7ГЯ - С Д

Having performed the renormalization one can calculate the Gell-Man-Low 
function ß

dgR 
И du = ß(9R.)
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in the usual way. We have in lowest order in q r  e. g. for the vector coupling

ß  = в
9r

12ж2 ’

and for the scalar coupling

ß = e 5 9 3r

m 2'
Therefore for g=-1, as it is usually argued, for high energies we have asymptotic 
freedom. At the same time the term ~  сдр-4 in provides the confinement in 
large distances.

Since such a model in not physically unitary, some artificial unitarization can 
always be applied. In the spirit of [4] our best hope is that considering a(x) b(x) as 
gauge fields of certain type, by means of a suitable subsidiary condition the unitarity 
can be restored.
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Strange particle production  is in agreem ent w ith  the basic ex p ec ta tio n s from  th e  
Q u ark  P a rto n  M odel (Q P M ). T h e  energy d is trib u tio n  of inclusively produced vector mesons  
becom es gradually  h a rd er as th e  m ass of the vector m eson increases. In exclusive vector  
meson production  th e  process changes from  a  soft diffractive type  in te rac tio n  to a  h a rd  
poin tlike e lectrom agnetic  in te rac tio n  w ith  increasing m ass of th e  virtuell photon. T h e  u- 
valence quark distribution  derived from  the inclusive d istrib u tio n  o f cheirged pions a n d  
p ro to n s provides additioneil confirm ation  of the Q P M .

In troduction

In a long series of experiments starting in 1977 and ending in 1985 the Eu
ropean Muon Collaboration (EMC)[1] had unique possibilities to study the deep 
inelastic scattering of muons off nucleons and nuclei and thereby to reveal the struc
ture of these latter up to distances as small as 10~16 cm. The 400 GeV Super Proton 
Synchrotron at CERN enabled to produce a high energy (100-280 GeV) and record 
intensity (~ 4.107 muon/burst) muon beam of extremely high purity [2].

In the first phase (NA-2) of the experiment the EMC detector [3], depicted 
in Fig. 1, measured the scattered muons and the forward going charged particles. 
The target was interchangeable enabling to measure the quark structure functions 
on different nuclei [4] which lead among other important results to the discovery of 
the EMC Effect [5]. Also a detailed analysis of the forward going particles has been 
carried out [6, 7] including the production of charmed mesons in a multimuonic and 
hadronic final state [8, 9].

In a later stage, called NA-9, the detector was extended by a large angle 
spectrometer [10] which made possible to detect the charged particles in the full 4ж 
angular region (Fig. 2). The lm  IU and D2 target was surrounded by a streamer 
chamber in a superconducting magnet and by additional time of flight hodoscopes 
and Cerenkov counters which assured high identification power for the charged 
particles. The obtained streamer chamber pictures were analysed among other

•D ed ica ted  to  P rof. G . M arx on his 60 th  b irthday .
• •L ec tu re s  given by  th e  a u th o r  in th e  University of C alifornia San D iego an d  in  the N EV IS 
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laboratories in the Central Research Institute for Physics, Budapest, by highly 
automatized devices [11] (Fig. 3).

Fig. 1. T h e  D etec to r of the  N A -2 Spectrom eter. Halo muons are  ve to ed  by sc in tilla tion  counters 
V. T h e  tra jec to rie s  of the  charged  particles a re  m easured  by p ro p o rtio n a l (P) and  d rift cham bers 
(W ). T h e  m om entum  of th e  charged  p a rtic les is determ ined by m easuring  th e  b e n d in g  caused 
by the  sp ec tro m ete r m agnet. T h e  Cerenkov c o u n te r provides iden tification  of th e  fo rw ard  going 
charged partic les. T he event is triggered  by a  series of sc in tilla tion  hodoscopcs (BH a n d  H). T he 
abso rber is u sed  to  identify th e  m uons in the final s ta te , the H 2 ca lo rim ete r metisures th e  deposited 

electrom agnetic  and  hadronic energies of the  fo rw ard  particles.

T ab le  I
T he num ber of th e  observed

stran g e  particles

A '± A'° Л A

4300 1903 704 302

Finally, in the third stage of the experiment (NA-2’) the large angle spec
trometer has been replaced by a target containing polarized protons and by a series 
of targets of heavy nuclei aiming at a measurement of the structure function on po
larised protons and at the systematic study of the EMC Effect on different nuclei.

In this lecture I report on some new results of the EMC concerning the study 
of the hadronic final state in the NA-9 and NA-2’ phase, namely on the i) inclu
sive production of strange particles, ii) inclusive and exclusive production of vector

Acta Physica  Hungarica 6 4 , 1988



RECEN T RESULTS OF THE E U R OPEA N MUON COLLABORATION 179

mesons and iii) determination of the valence quark distribution in the proton from 
the inclusive hadron distribution.

v e r te x
m a g n e t  Р ф а  РФЬ

ta r g e t  1 / F I C1
STR F 3  CO C A ! W V2 i WV3 W1 W 2 fo rw a rd  s p e c tro m e te r

Fig. 2. T h e  Large A ngle Spectrom eter o f th e  NA-9 E xperim en t. T h e  targ e t is inside a  s tream er 
ch am b er which in  tu rn  is em bedded in  a  superconducting  m ag n e t. T he m ag n e t is su rrounded  
d o w n stream  by a  series o f Cerenkov coun ters (C ), tim e-of-flight hodoscopes (F) w hich provides 
h igh  iden tification  pow er for charged p a rtic les. A dditional p ro p o rtio n a l (PV ) an d  d rift tu b es (W V) 

to  th e  forw ard sp ec tro m ete rs  assure d e tec tio n  of charged p a rtic les in  alm ost 4 -к solid angle

In clusive p rod uction  o f  strange particles

In the Quark Parton Model (QPM) [12, 13] the deep inelastic leptoproduction 
can be written down as it is depicted in Figs 4 and 5. The lepton (muon) emits a 
virtual photon which hits one of the quarks of the nucleon. The struck quark follows 
the direction of the incident virtual photon in the Centre of Mass System (CMS). 
The quark and the remaining diquark stretches a colour field between them which 
materializes into a few quark-antiquark (diquark-antiquark) pairs as is shown in 
Fig. 5. The final hadrons are then the result of the recombination of the quarks with 
the diquarks and antiquarks. An important parameter of the above fragmentation 
process is 7, / tu the relative probability that a strange (s) or a non-strange (u) 
quark-antiquark pair is formed in the stretched colour field. This parameter can be 
determined by studying the inclusive distributions of the final state strange particles 
provided that one has a reliable model wich describes the resonance production and 
their decays. For this purpose the LUND model [13] has been used.

The analysis includes about 60 thousand deep inelastic events after all kine
matic cuts on hydrogen and deuterium targets. The number of the observed strange 
particles are shown in Table I.
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Fig. 3. T h e  m o n ito r a n d  sw itchboard  of th e  RIM A a u to m a tic  m easuring device fo r th e  analysis 
o f the  s tream er ch am b er p ic tu res in  th e  C entra l R esearch In s titu te  for Physics, B udapest

Fig. 6 shows the average multiplicity of the strange mesons as a function 
of W , the total CMS energy of the incoming virtual photon and the nucleon. A 
logarithmic rise is clearly visible. For comparison the average multiplicity of all 
charged particles is also shown. One can see that the slopes of the charged kaons 
are similar to that of all charged particles whereas the neutral kaons exhibit a 
somewhat smaller slope.
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P
t a r g e t ( d i -  
q u a rk )  f r a g 
m e n ts ,  Xp< 0

Fig. 4■ D eep Inelastic  S c a tte rin g  of M uons accord ing  to  the  Q P M . q(x), q(x) are th e  q u a rk  and 
an tiq u a rk  m om entum  d istrib u tio n s inside th e  nucleon, D j( z )  is p ro p o rtio n a l to  th e  p robab ility  
th a t  th e  q u a rk  q fragm en ts in to  a  h ad ron  h. z  is the  energy of th e  h ad ro n  in  u n its  of th e  energy

of th e  v ir tu a l photon

fin a l
b a ry o n  fin a l m e s o n s

Fig. S. P ro d u c tio n  of h ad ro n s in  a  sim plified fragm entation  chain  m odel. T he original qu ark  and 
d iquark  s tre tch es ou t a  colour field in which q u a rk -an tiq u a rk  pail's a re  m aterialized . T hese  la tte r  

recom bine w ith  th e  original q u a rk  a n d  d iquark  to  form  th e  fined hadrons

The logarithmic rise of the multiplicity of the strange mesons manifests itself 
already at lower CMS energies as can be seen in the Figure, where by open symbols 
we have plotted the neutral kaon multiplicity observed in i/-Ne interacion [14]. It 
is a simple consequence of the increase of the available phase space with increasing 
W, namely the logarithmic rise of the the rapidity range, where the CMS rapidity 
is defined as

.  1. Я ' + Pi 
* = 2 lnË ^ j  '

E* and p[j being the CMS energy and longitudinal momentum of the hadron. In
deed, the EMC has shown [15] that the y* distribution of the charged pions exhibits
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a flat plateau, the width of which increases logarithmically with W, whereas its 
lieignt remains constant.

<n>10 I. 
8 -

6 -

О  all c h a rg e d

♦  K *

■  K"

•  K °/2  

О  K °/2

•E M C

BER

i
$ ?  Ф

t  Ф 
*n*

и

8 10 12 14 16 18 20  W [G eV ]

Fig. 6. Average m ultip lic ities of th e  s tra n g e  m esons as a  function  of W . Full sym bols represent 
m easur em ents fro m  th e  EM C. O pen sym bols are used for th e  d a ta  from  the  B roolchaven-C olum bia-

R u tg ers  [14] C ollabora tion

The strange baryon multiplicities are shown in Fig. 7. Here the rise becomes 
clear only at higher energies (W > lOGeV), well above the threshold of the ЛЛ pair 
production. From the p-Ne experiment [14] one can conclude that the average Л 
multiplicity is constant in the 2 ~  W  ~  10 GeV region indicating that most of the 
Л particles originate from the recombination of the target diquark with an s quark 
in the fragmentation chain.

This observation is supported by the i f  distributions, where i f  is the longi
tudinal momentum of the particle in the CMS in units of the maximum available 
energy, W/2. The X f  distribution of the Ä is more or less symmetric in the forward 
( i f  > 0) and backward (z f  < 0) hemisphere (Fig. 8b) in a striking contrast with 
the Л particles (Fig. 8a) which are mainly produced in the target fragmentation 
region (z f < 0). One can see also that the production is practically independent 
whether the target is hydrogen or deuterium as expected from the QPM.

The parameter 7, /y u can be determined the best from the strange to non- 
strange multiplicity ratio, which is directly proportional to it. In Fig. 9 this ratio 
is plotted against W. The solid lines correspond to the LUND model predictions 
with different values of the parameter. One can be see that y,/yu  is between 0.25
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and 0.35, however there is an indication that it depends on W .

Fig.  7. Average m ultiplicity  of A a n d  Л. Symbols a re  used  as ind icated  in  F ig . 6

Strange particle production enables a further test on the QPM, thé mechanism 
depicted in Fig. 4. If we plot the CMS rapidity distribution of the total observed 
strangeness normalised to the number of events (Fig. 10) one can observe a clean 
separation of the forward (quark) and backward (diquark) fragmentation region. In 
the forward region (y* > 0) the net strangeness is positive due to the fact that the 
struck quark is mainly a ti quark which recombines with an s quark forming a K +. 
On the other hand, in the backward (у* < 0) region the remaining diquark picks 
up an s quark to form a strange baryon which has a negative strangeness. This is, 
however, only true if x, the fraction of the momentum carried by the quark, is high 
(greater than 0.1), otherwise the virtual photon strikes a quark (or antiquark) in 
the strange-symmetric sea which does not result in a separation of the forward and 
backward region as can be seen in Fig. 11.

The hadronisation process depicted in Fig. 5 can be tested in more detail by 
looking at the pair correlation of strange mesons. Although smeared somewhat by 
the decay of unstable particles it is generally expected from the Figure that meson 
pairs with opposite strangeness are close in the CMS rapidity, whereas pairs with 
the same strangeness show no such correlation. This is clearly demonstrated in 
Fig. 12 where the average rapidity of one of the particles from the pair is plotted 
against the rapidity of the other particle.
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In conclusion, we can say that all of the above observations in strange particle 
production are in a good agreement with the QPM of the hadronisation process.

xf xF
a )  b )

Fig. 8. x p  d is tr ib u tio n  of а) Л and b ) Л particles. T he full sym bols co rrespond  to  d a ta  on 
hydrogen , th e  open sym bols to  those on d eu te riu m  targe t

Vector m eson production 
Inclusive production

Vector Mesons (VM) have the same quantum numbers as the virtual photon 
and therefore one may expect particularities in their production in electromagnetic 
interactions. Indeed, if we compare the scaled energy distribution of a light pseu
doscalar (PS) meson, e. g. the n° [16] with that of a heavy VM (e. g. the J /ф [8]) in 
Fig. 13a, where z = E/v, E  being the energy of the particle and v that of the vir
tual photon in the laboratory frame, respectively, one observes a striking difference. 
The mechanisms responsible for the production of these two particles are clearly 
different. The л-0 is thought to be produced by the hadronisation process depicted 
in Fig. 5 whereas J /ф  production can be described by the Photon-Gluon-Fusion 
(PGF) mechanism [17] depicted in Fig. 14. Whether the difference in the pro
duction mechanism is due to the spin, isospin or to the quark composition of the 
particles is of considerable importance therefore the EMC has carried out a system
atic study of the inclusive production of light and medium heavy VM’s like the q, 
ui and ф.
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<nK«> ♦ < ПК -> ♦ <nK°> < ,q2 
■d'h1 >

20 - 

15 -

10

LUND

f

_ i___________________ i______________I__________ I------------ 1-------------1---------1-------- 1-------1—

U 6 8 10 12 U 16 18 20
W [GeVJ

Fig. 9. T h e  ra tio  of th e  average <  K + >  +  <  K ~  >  +  <  K °  > m ultiplicity to  th e  average charged 
m u ltip lic ity  as a  fu n c tio n  of W .  Solid lines a re  the  LUND m o d e l predictions w ith  ■уа/ ‘уи =  0 .25 ,0 .30

a n d  0.35, respectively

The number of the observed VM’s after subtraction of the background is given 
in Table II. The г distributions are shown in Fig. 13b. The following remarks can 
be made:

T able II
T h e  num ber of th e  observed vec to r mesons

3оa Ф

7820 ±600 469±82 68 .6± 16 .5

At low and medium z values the inclusive distributions drop very fast with 
increasing mass of the VM. Similarly, with increasing mass the disagreement with 
the LUND model becomes more and more significant. However, as z increases the 
different curves approach each other. In particular the distribution of the ж0 agrees 
well with that of the g and ш for z > 0.8. One would expect three times as many 
g and w as tt° because of the statistical population of their spin states. Thus the 
observed similarity in the production rate for the n° and g (w) may be due to a 
mass suppression for the latter. Interestingly, g and ш production is practically the
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same in the full z range. Since these two particles have mass values very close to 
each other one can conclude that the different number of the isospin states (3 for 
the g and 1 for the ui) does not influence the hadronisation process.

1
N /j л° 1 " <iy" ( к" *ЛО|1 ,1°3

Fig. 10. y* d is tr ib u tio n  of th e  observed to ta l strangeness: К + +  Л — К  — Л. T he so lid  line is the 
LUND m odel p red ic tio n  w ith 7 д /7 и =  0*3

There is another difference in the inclusive 7r° and J/ф production. While 
the former one is practically independent of Q2 the latter exhibits a characteristic 
propagator effect [8]. In inclusive ^-production no Q2-dependence was observed, 
concerning the ф meson no conclusion can be made on this point owing to the 
insufficient statistics.

Exclusive production

At high z (z > 0.95) one can study the process depicted in Fig. 14 where the 
VM is produced in a quasi-elastic scattering of the virtual photon on the nucleon. It 
has been found [18, 19] that at low Q2 the process can be described by the Vector- 
Meson-Dominance Model (VDM)[20] in which the virtual photon first transforms 
into a virtual VM which in turn scatters elastically on the incident nucleon (Fig. 
15). If however Q2 is increasing the lifetime of the virtual photon is becoming
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shorter and shorter leaving no time for the transformation into a virtual hadron. 
Therefore in this case one would expect a hard (electromagnetic) scattering in the 
nucleon vertex in Fig. 14.

_1_ f _dN_ 
Nju [ dy*

X <  0.1

(к**л°) - (к-.л°) « 103

Q 1 <  X <  0.2

Fig. 11. y* d is trib u tio n  of th e  observed  toted stran g en ess in two different x  regions: a) x  <  0.1
an d  b) 0.1 <  x  <  0.2

In the following we shall demonstrate that this is indeed the case. The process 
has been studied by the EMC in hydrogen and ammonia target (the main component 
of the polarised target). Typical t' distributions on ammonia target are shown in 
Fig. 16 where f' = t —<min , t being the four-momentum transfer squared between the 
initial and the final state nucleon and <min is its minimum value. One can observe an 
exponential fall with some excess of events on the top of it around t1 — 0. This excess 
is the result of the coherent scattering of the virtrual photon on several nucleons 
in the ammonia nucleus, whereas the exponentially falling points extending to high 
t' values are due to the incoherent scattering on individual nucleons, as only this 
component is present in a measurement on hydrogen target. One can clearly see 
from the Figure that independently of the energy as Q2 increases the t' distributions 
become more and more flat. This is illustrated in Fig. 17, where the slope 6 of the 
incoherent scattering is plotted together with the real photoproduction experiment 
(Q2 =  0)[IS]. In the range of Q2 from 0 to 14 GeV2 the slope parameter drops 
from a value typical for hadronic diffraction to a value characteristic for point-like 
scattering.

At the same time one can observe in Fig. 16 that the ratio of coherent to 
incoherent contribution also decreases with increasing Q2. Defining

OO

Vine = a J  e - 6l‘'ld|<, |
о
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and
<7coh = number of events — <rmc

we plot their ratio in Fig. 18. It is evident that as Q2 increases the coherent scatter
ing on several nucleons of the ammonia nucleus dies away—again indicating that 
the scattering becomes point-like.

Furthermore, the vanishing of the coherence is accompained by a helicity 
transfer between the initial and final nucleon. Measuring the angular distribution 
of one of the pions in the g decay one can deduce the polarisation of the g. The value 
of the parameter, called r00 of the angular distribution is 0 if the g is transversally 
polarised, and it is 1 if the g has longitudinal polarisation. In Fig. 19 r00 is shown 
as a function of Q2. The change of the g polarisation from transverse to longitudinal 
as Q2 is increased is evident. On the other hand, the virtual photon has always 
transverse polarisation as was found by comparing the virtual photon cross sections 
at two different energies [21]. One can thus conclude that while at small Q2 the 
helicity is conserved, at high Q2 a helicity transfer can be observed in the nucleon 
vertex in Fig. 14.

к * к ' 
к* к* 1 
к’ к" /

Fig. 12. A verage rap id ity  <  у* >  of a  strange m eson versus the  rap id ity  of ano ther strange  m eson 
from  the sam e even t: full sym bol is used  for to ta l strangeness гего a n d  open  symbol is u sed  when

th e  strangeness of th e  p a ir  is ± 2

In conclusion, in elastic g production a change of regime is clearly seen: as Q2 
increases the process changes from a soft hadronic interaction to a hard point-like 
electromagnetic interaction. It is therefore somewhat surprising that nevertheless
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the total production rate of the process shows a universal feature, namely the rate 
for different types of VM can be described by a universal formula valid for all the 
three types of VM we have studied: g, ф and J/ip and in the fu l l  Q2 range:

rate = c gSU3

(Q2 + ^ m)2 ' ( 1 )

Here <7su3 is the SU3 coupling constant of the photon to the VM, Мум is the 
mass and c is a universal constant chosen in such a way that for every Q2 the rate 
of the g meson equals 9.

1 dN

a) b)

Fig. IS. z  d is trib u tio n s norm alized to  th e  num ber o f events a) for ir° (full) a n d  J/ф (open 
sym bol) b ) for g (full circle), w (open circle) and  Ф (full square). T he solid lines a re  the  LUND

m odel predic tions for Q a n d  ф
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Fig. 14- Feym an g ra p h  for elastic 
Vector M eson p ro d u c tio n

Fig. 15. F ey n m an  graph for e lastic  
VM p ro d u c tio n  according to  th e  
Vectorm eson -  D om inance M odel

2 0 0  GeV

120 GeV

Fig. 16. t '  - d istrib u tio n s o f exclusively p ro d u ced  ß mesons in  /x N H 3 sca ttering  a t d ifferent betűn
energies and  Q2
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Q2 d e p e n d e n c e  of b

Fig. 17. T he slope of th e  t '-d is tr ib u tio n s  as a  function  o f Q 2. Full sym bols: ßp  scattering , o pen  
sym bols: /rNH3 incoheren t sca ttering , m easured  by th e  E M C . Low Q2 m easu rem en ts taken  fro m  

[18] a n d  [19] are also show n, the  la tte r  d a ta  are represented  by  lines

2 .4 

2.0 

1.6 

1.2 

: 0.8 

0.4 

0.0

- O TC  8 GeV
#/jN H 3120GeV

■ i
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Fig. 18. <TCoh/<7inc (see tex t) v sQ 2 for two different b e a m  energies observed b y  th e  EM C in  *iNH3 
sca ttering . Also show n is the value o b ta ined  in  a  re a l pho toproduction  experim ent on  c a rb o n

target

The experimentally observed rates are confronted with Eq. (1) in Table III. 
One can see excellent agreement. It would be very interesting to see if the validity 
of Eq. (1) could be extended also to PS particles like the n° or r]°. According to the
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above picture elastic PS particle production is not expected at low Q2 (where VDM 
is valid), on the other hand at high Q2 PS particles can be produced elastically in 
the electromagnetic scattering of the virtual photon with one of the quarks of the 
nucleon. Therefore a formula like Eq. (1) is not expected to hold for the whole Q2 
range.

Q2 d e p e n d e n c e  of r ° °

lo n g itu d in a l

tr a n s v e rs e

Fig. 19. T h e  q p o larisa tio n , r 00v s Q 2. Full sym bols are  the resu lts fro m  th e  EM C, op en  sym bols 
rep resen t d a ta  from  low Q 2 m easurem ents

D eterm in a tio n  o f  the u valen ce quark d istribu tion

If the simple picture of deep inelastic leptoproduction, as shown in Figs 4 and 
5, is valid one can in principle determine the quark momentum distribution inside 
the nucleon from the observed hadronic final state. The comparison of this result 
with the same distribution obtained from the measurement of the scattered lepton 
provides then a strong test of the QPM.

According to the QPM (Fig. 4) the scaled energy distribution of the hadrons 
in the forward direction is given by

! dNb Ç  *<*>*?<*>
1  a;v = J ___________  (21

Nn dz Z > 2g(*)
я

where N h and are the number of hadrons and the number of events, respec
tively, q(x) and eq are the momentum distribution and the charge of the quark 
q, finally Dq(z) is proportional to the probability that the quark q fragments 
into a hadron h .  The denominator is the F i  structure function. The validity of 
Eq. (2) has been extensively tested by the EMC, among others an interesting pre
diction, that Eq. (2) when applied to all unidentified hadrons does not depend
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on X  and thus on the type of the target [22]. Fig. 20 demonstrates that indeed 
1/Nft ■ dN±/dz  is the same for both H2 and D2 targets.

T ab le  III
Vector m eson p ro d u c tio n  ra tios

p

9

Ф

2 8

T y p e/ R em arks 

PSU3

9 0 .68± 0.1 3. ± 0 .1 10~ 2 D ata
Q 2= 0

9 0.65 CO »-» О 1 to Eq. (1)

9 0.63±0.1* 
1.2 ± 0 .2 **

0.17±0.03 D ata
Q 2 = lG e V 2

9 1.2 0.18 Eq. (1)

9 1.6 ± 0 .4 2.0 ± 0 .4 D ata
Q 2 =  7.5GeV2

9 1.8 1.8 Eq. (1)

= 150G eV **f;M= 100G eV

Working out Eq. (2) for the difference of positive and negative pions in case 
of pp scattering using the relations following from charge conjugation and isospin 
symmetry:

D l+ = D f , D*u+ = D f ,  
D Ÿ  =  D f , D Ÿ  = D l ,

one obtains

(3)
where u(x) and d(x) are the distributions of the u and d valence quarks inside the 
proton. A similar expression for the difference of protons and antiprotons can be 
obtained:

h?(x) ■ i / (
dNp dNp '
dz dz J dz

9 F£(x) [4u(*) +  d(x)) J { D l  -  Dl)dz. (4)
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Fig. 20. 1 /jVM • d N ^ / d z  for all charged h ad ro n s on hydrogen (full) and d eu te riu m  (open sym bols)
targets

Combining Eqs (3) and (4) one can extract u(x) and d(x) provided

c* =  j ( D l \ z ) - D : { z ) ) d z

and
c ^ = J ( D P  ( z ) - D l  (z))dz

are known. These latter can be determined from the same combinations of the final 
state hadrons in /id scattering:

Î r b  = Ï8

)dz,
(5)

( 6)
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Fig. 21. a ) dn ( i )  a n d  b) dp (x)  (see Eqs (5) and (6 ) in  th e  tex t). T he so lid  lines are the fits  to  the  
A n sa tz  given by Eqs (7) a n d  (8 ) in the tex t

At high X F$(x) is proportional to (u(x) + d(x)) therefore the x-dependence 
cancels in Eqs (5) and (6) and dr (x) as well as dp(x) approaches to constant values 
proportional to cr and cp. This behaviour is taken into account by the parametri- 
sation

<T(x)

dP(x)

5 1 + 7(1 — x)0 ’
x a____ -______ cP

1 + 7(1 -  x y

(7)

(8)

The fit of Eqs (7) and (8) to the experimental data is shown in Figs 2 1a  and
b. Using the obtained values of c* and (+ from the fit and the F? structure function 
on hydrogen measured by the EMC [4] one can deduce u(x):

xu(x) 9 F£(x) h ' (x )  hp(x)' 
c* cP (9)

Acta Phyaica Hungarica 64, 19SS



196 E. NAGY

■ X UV(X) from hadrons 
•  Х-Uv (X) from single arm EMC (H2 »D2)

Fig. 22. T h e  x .u ( x )  valence q u a rk  d is trib u tio n  as de te rm in ed  from  th e  inclusive d is tr ib u tio n  of 
identified h a d ro n s  using  Eq. (9) in  th e  tex t (full sq u ares). Also shown is th e  sam e qu an tity  derived  

fro m  th e  single arm  sc a tte r in g  d a ta  on  H 2 a n d  D2 target [23] (full circles)

The result is plotted in Fig. 22. In the same Figure we also show the same 
quantity obtained from the measurement of the scattered muon on H2 and D2 target 
[23].

It is clear that the mesurement of u(z) from the identified hadrons — mainly 
because of the low rate of forward produced protons — cannot compete with that 
from the scattered lepton. However, the good agreement between the two kinds of 
determination shows once again that QPM is able to describe correctly even an as 
complex process as the production of hadrons in deep inelastic scattering of leptons.
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COMPUTER SIMULATION OF THE NEUTRINO DETECTOR 
SYSTEM AT LAKE BAIKAL*

P. K a k a s  and D. Kiss

Central Research Insti tute f o r  Physics  
1525 Budapest, Hungary

(R eceived 8 Jan u ary  1987)

A deep  underw ater m u o n  am i neutrino  d e te c to r  system  is d u e  to  be  com pleted a t 
Lake Baikal, USSR. T he p rim ary  purpose  of th is sy s tem  is to m easu re  cosm ic ray n eu trin o  
flux a t ex trem ely  high energies. T he experim ental set-up  and th e  co m p u te r sim ulation  
of th e  d e tec to r acceptance are  p resented . T he d e te c to r  system  s tro n g ly  depends on  the  
arrangem en t of i ts  constituen t p a rts , th e  photom ultip liers.

1. In troduction

The building of the neutrino detector in Lake Baikal was started in 1983. For 
a better understanding of its operation it is useful to review the history of neutrino 
measurements.

In 1930 W. Pauli foretold the discovery of neutrino. His assumption of the 
parameters of the neutrino: the 1/2 spin, the zero or nearly zero mass, and the 
extremely low interactional cross section were justified by later measurements. It 
was in 1953 that F. Reines and G.A. Cowan directly demonstrated the existence 
of the neutrino at a nuclear reactor (nuclear reactors can be considered as high 
intensity sources of neutrinos due to the beta activity of the fission products) with 
the help of induced ß + decay.

In the experiment it was found that the international cross section of the neu
trino is of the order of magnitude of 10_44cm2 (the actual value strongly depends 
on the energy of the neutrino). Since that time, the problem concerning the detec
tion of the neutrino has become well known. The device for cosmic ray neutrino 
flux measurements should be located at great depth underground or under water 
to avoid the noise due to the high background radiation and it needs to be large 
because of the low flux of the neutrino. In the seventies, the idea of using water as 
the medium of the neutrino detector arose. A neutrino interacting with nucleons 
can create muons. According to the Bethe-Bloch formula, a relativistic muon mov
ing in water loses about 2 MeV energy per cm. Since the muon’s energy range lies 
in the TeV order of magnitude (1012 eV), this particle may travel several thousand 
meters in water before being absorbed. Within this interval of time and distance 
the direction of its movement can be well studied — with the help of the emitted

* D edicated  to  Prof. G. M arx o n  h is 60 th  b irthday .
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Cerenkov radiation — the direction of which radiation is in good correlation with 
that of neutrinos.

Measurements of this kind are due to be carried out by two independent teams 
of scientists: one team plans to build a neutrino detector in the Pacific Ocean near 
the Hawaii Islands at a depth of 5 km; the other team (of Soviet scientists) has 
chosen Lake Baikal for the location of their detector [1]. Two favourable conditions 
speak in favour of the latter version, viz.: the building of the detector is made 
essentially easier by the freezing over of the Lake during winter on the one hand 
and, on the other, due to chemical or biological processes the photon background 
in the water of Lake Baikal is lower than that of the Pacific Ocean near Hawaii at 
a depth of 5 km.

To sum up, the task is the following: muons produced by the interactions of 
neutrinos have to be detected on the basis of their Cerenkov radiation in water of 
great volume.

2. C on stru ction

It is planned that the completed neutrino detector should consist of many 
photomultipliers located near each other.

The individual detector units (two multiplier pairs) are located at a distance 
of about 15 m from each other. 96 multipliers are coupled to one cable.

Nineteen cables form a detector plane with the cables also being at a distance 
of 15 m from each other. The whole detector system comprises 6 detector planes.

Fig. 1. Tw o photom ultip liers forming a  p a ir
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In this experiment we are only interested in the muons originating from the 
interactions of neutrinos. The detector system should, accordingly, operate solely 
with horizontally directed muons since it is only in this direction that the secondary 
muons are able to produce an effect at the given detector depth. Muons from 
any direction other than horizontal are excluded from detection by increasing the 
distance between the detector planes. The distance between the detector planes is 
40 m. The dimensions of the whole detector system are, accordingly: 270 x 345 x 200 
m. The uppermost photomultipliers of the arrangement are at a depth of 1000 m. 
From the above arrangement it follows for the number of photomultipliers that the 
19 cables of each individual plane carry 1824 photomultipliers while the complete 
system of 6 planes comprises 10 944 photomultipliers.

3. C om puter sim ulation

i. Simulation for a single 'photomultiplier

For simulation purposes, the first step is to calculate the signal to be obtained 
for one photomultiplier at a high-energy muon.

surface of the water

Fig. 2. C o n struc tion  of a  cable w ith  photom ultip liers
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In a path section of length / the Cerenkov light of the muon yields photons between 
the wavelength Л -f dX:

dN = 2жа sin2 Qc ■ I ■ dX/X2. ( 1)

Fig. S. T he n e u lrin o  d e tecto r system

Fig. 4- Schem atic  d iag ram  for calcula ting  d e tectio n . A sem icircle represents th e  p h o to m u ltip lier 
&C - th e  angle o f th e  Cerenkov ra d ia tio n  (41°)
R  - th e  d istan ce  of the  de tec to r from  the  m uon p a th  
© - th e  angle form ed by th e  axis o f th e  de tec to r a n d  th e  m uon p a th
r  -  th e  rad ius o f th e  de tec to r
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Here a  is a fine structure constant (1/137). Since the light passes through wa
ter before reaching the photomultiplier, its intensity decreases due to dispersion, 
absorption, etc. as a function of the path length and the transparency of the water.

dN = lira sin2 Qc  ■ l ■ e - ß(-xW  *швс d\.  (2)

Here the last term represents the effect of water. The function /?(A) was obtained 
in a former measurement [2] and is illustrated in Fig. 5.

Fig. 5. A bsorption  coefficient ß  
as a  function  of the w avelength  of light

Fig. 6. P h o to n -e lec tro n  conversion efficiency 
as a  function  of the  wavelength

The function curve cannot be described by a mathematical function therefore a 
polynomial was fitted to the measurement data for the subsequent numerical inte
gration. It has to be taken into account that the direction of the Cerenkov light 
forms an angle with the detector axes; that is, one has to calculate the projection 
of the detector surface, Stj, to that part of the spherical surface cut by the conical 
solid angle of the Cerenkov light, 5C, and the ratio of the two surfaces:

У = Sd/ S e. (3)

The final form of this expression is

________ r(l 4- cos(Q -  6 ç))______
^ 4(2Л + rcos©c(cos(0 -  0 c )  — 1))

Hence formula (2) takes the form

dN  _  Жа Г2 sin 0 ç ( l  +  COS(0 — 0 ç ))2 e—/?(А) Я / в т 0 с  
2 2R +  r cos ©c(cos(0 — 0c) — 1)
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During the operation of the detector, the photocathode emits electrons upon 
the influence of the photons. The efficiency of this process depends only on the 
wavelength and can be measured. The shape of the function is shown in Fig. 6 [3]. 
Our results can be summed up by the expression written in integral from:

N{R,Q) not r2 • s i n  O c ( l  +  c o s ( 0  -  О с ) ) 2 Г rç(A)

2 2 Д  +  r  c o s 0 c ( c o s ( 0  -  0 c )  — 1 )  J  A2
l̂ow

d \. ( 6)

Fig. 7. N u m b er of pho toelectrons as a  function of d istance  from th e  d e tec to r

The limits of the integration are determined by the sensitivity range of the photo
multiplier and their values are: AiOWer = 300 nm; AUpper = 700 nm. The result is 
illustrated in Fig. 7 as a function of R with 0  = 41°.

ii. The detector system

So far as its operation is concerned the system can be divided into cells (see 
Fig. 8) which operate independently of each other and can be considered as separate
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units. For the further calculations let us place the cell into the coordinate system 
shown in Fig. 9. Within the cell we are only interested in the measurement results 
for the finite number of points shown in Fig. 10. Hereafter, it is to be considered 
that the photoelectrons emitted from the photocathode obey a probabilistic law:

Р (к ,й )  = ^ е - * ,  (7)

where N  is the mean value of the number of photoelectrons detected (in our case 
N  =  N)  and к is the number of photoelectrons obtained.

Fig. 8. One of th e  cells of the  d e tecto r system

Fig. 9. T he cell show n in Fig. 8 p laced  
in  a  co o rd in a te  system

A cta  Physica Hungarica 64, 1988
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The probability of the photomultiplier not detecting any event is given by

P( 0,Â) = e"* . (8)

For us, it is important only if the detector records at least one event, that is

9 = l - е " * .  (9)

As can be seen from Fig. 8, the detectors having the same direction are near each 
other. Independent pairs of such detectors yield the following detection probability:

P = (1 -  e~*)2 = g2. (10)

We now have to calculate the probability of obtaining an event by the detectors 
located in the four angles for all the points of the given lattice. With such a system 
it is a reasonable requirement that the efficiency of the detection should be higher 
than 90 per cent. Accordingly, we defined three selection conditions which are partly 
determined by the behaviour of the muons to be detected and partly required in 
order to improve the detection efficiency.
a. First condition of selection. Here we consider the cases when the detectors 
operate in pairs and at least two pairs give a response at the same time. The 
probability of detecting more than m  events is

j  =  m  '  '

5 X =  5з = £ £ Р { Я « П Я * } .  (12)
« « к

In our case all the events are independent

P (£7 in ...n£7„) = n />(£,-) ( 12a)
1=1

In this case, the probability will have the form

P>2 = D “ 1)'’" 2 ( 3 “  =  S2 -  253 + 354, (13)
j = 2 '  '

5i = P\Pi + P\Pz + P\P\ + Pi Pa +  P3P4.
Si = P1P7P3 +  P\Pi Pa + P1P3P4 + P3P3P4,
S3 =  P1P2P3P4,

Pt r i  = P>2- (14)
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This information already enables the first condition of selection to be calculated for 
the detectors on one of the cables. Performing the operation for the second cable 
in the same way, we can summarize the results as follows:

P a  — 1 — (1  — ^ C A l ) ( l  — P c A \)  — P c A l  +  P c A l ~  P c A lP c A l -  ( ^ )

Hence we can calculate the probabilities determined by the first condition of se
lection for all points. By taking the arithmetic mean of these, we obtain a value 
characteristic of the whole plane. This value is 0.51 which is far below the expected 
efficiency of 90 per cent. To improve this value, a second condition of selection was 
chosen.
b. Second condition of selection. With this condition we consider a detector group 
of four (i. e. two pairs) and calculate the probability of a minimum of three of them 
giving a response:

P>3 = Í 2 ( - i y - l ( J 9 l)sj = S3 - i S 4, (16)
;=3 4 '

S3 =  919293 + </10204 + 010304 + 020304, 
■S4 = 01020304, (17)

PcAl — P> 3-

The probabilities obtained for two detector groups of four can be summarized as 

Pi- — PcA2 + PcA2 ~ PcA2PcA2- (18)

Fig. 11. Schem atic d iag ram  for calcu la ting  th e  d e tecto r sy s tem  acceptance. 
Пм - u n it vector characteris tic  of th e  m uon p a th  
fo - co o rd ina te  vector of the  d e tec to r 
Оф - n o rm al vector o f the  d e tec to r surface
f l  - coord ina te  vector of the  p o in t th ro u g h  which the  m uon  passes 
По - vector of d irec tion  of the  Cerenkov light
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Now we perform the same calculation for the second cable and summarize the results 
obtained for the two cables:

P£ = P?_ + Pi  j -  P?_ P l v  (19)

The value resulting from the combination of the first and the second condition of 
selection is 0.84. This figure is still considerably lower than the required 90 per cent 
efficiency so we employ a further condition of selection.

c. Third condition of selection. This condition permits the following events: From 
the upper detector group of four on a given cable the lower two respond, the upper 
two do not; and from the lower group of four, one of the upper detectors operates 
and the other does not. By taking this arrangement in every possible variation 
we obtain a third trigger. By a combined calculation of all the three conditions 
of selection and by taking their arithmetic mean for the lattice, we arrive at an 
efficiency that is already higher than 90 per cent.

Figure 11 shows how we calculate the above probability values; one needs to 
know the distance of the given muon path from the individual detectors and the 
angle between the muon path and the axis of the detector. Knowing R and 0 , 
we can obtain the probabilities from the data already calculated. For a detailed 
analysis the detector system can be divided into sub-planes of 15x15 m.

4. Sum m ary

At the present stage of the experiment only two cables have been suspended. 
The main aim of the basic experiment is to verify the calculations described above. 
Another such experiment will be to register the Cerenkov light of the proton decays 
caused by the catalytic effect of magnetic monopoles.
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ANGULAR DISTRIBUTION OF FISSION FRAGMENTS 
FROM 235U, 238U AND 237Np 

NEAR THE (n, 2n/) THRESHOLD* **
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T he a n g u la r d is trib u tio n  of fission fragm ents from  th e  fast n e u tro n  induced fission of 
235U, 238U a n d  237N p were m easu red  n ear the  (n , 2 n f )  threshold by p o ly carb o n ate  nuclear 
track  d e tec to r. A function  of th e  fo n n  W (0 )  — ao +  cos2 0  has b e en  fitted  to  th e  d a ta  
m easured . T h e  anisotropy p a ram e te rs  de term ined  a ro u n d  14 MeV show  a  definite energy 
a n d  Z 2 j  A  dependence. T he d ifferential fission cross sections were also deduced.

In trod u ction

It is well known [1] that the angular distribution of the fission fragments 
can provide valuable information about the quantum numbers К  belonging to the 
saddle point deformation of the fissioning nucleus: К  being the projection of the 
total angular momentum J along the nuclear symmetry axis.

Moreover, prior knowledge of the fragment angular distribution is required 
to determine the fission cross sections, even when а 4тг geometry is used for the 
measurements.

The fission of nuclei such as 235U, 238U and 237Np in the neutron energy 
range above 12 MeV involves the (n, /) , (n ,n ' f  ) and (n,2n/) reactions, therefore, 
the fission fragment angular distributions are superpositions of the first, second and 
third-chance fission contributions.

It is expected from the theory [2-6] that the anisotropy parameter 
W(0°)/W(90°) increases abruptly with the neutron energy whenever a multi-chance 
fission threshold is reached. The experimental results described in the previous liter
ature [7-12] support such an increase in R(En) at the (n, / )  and (n, n'f)  thresholds, 
Ej  ~  1.6-2 MeV and Ej  ~  6-7 MeV. On the other hand, no noticeable increase 
in the anisotropy was observed near the (n ,2n /) threshold, E j  ~  10.5-13 MeV, 
although a great deal of work [7, 10, 13-21] has been carried out in this energy 
region.
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E xperim en tal procedure

The irradiation of fissile samples was performed by fast neutrons produced in 
the 3H(d, n)4IIe reaction using a 180 kV neutron generator. The intensity of the 
analysed D+ beam was about 200 /rA in all experiments. A collimator of 5 mm in 
diameter was used to determine the beam spot.

Fig. 1. E xperim en tal se t-up  for irrad ia tio n

A schematic drawing of the experimental arrangement is shown in Fig. 1. 
Samples of 19 nun diameter deposited onto aluminium backing plates of 0.2 mm 
thickness and 40 mm diameter were placed in a vacuum chamber together with 
the detector foils. Two Makrofol KG detector foils of 12/im thickness and 26 mm 
width were placed at 10 cm from the sample, symmetrically, with respect to the 
plane of the fission process, to assure the simultaneous recording of fragments at 24 
laboratory angles through the same solid angle of about 10“ 3sr.

The angle of the fissile samples, placed at 5 cm from the neutron source was 
45° relative to the neutron beam. The energy of neutrons was changed by the 
emission angle by placing the samples in different directions to the deuteron beam.

The isotopic composition and a real density of the samples are summarized 
in Table I. Since the fission cross sections гиге relatively high for these nuclei, irradi
ation times of about two hours were enough to obtain suitably high traurk densities 
(~1000-1500 tracks/cm2) in the detector foils.

After irradiation, the detector foils were etched in a 28% КОII solution for one 
hour at 60°C; then washed in distilled water and dried before counting. The tracks
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due to the passage of fission fragments through the detector foils, were evaluated 
by a jumping spark counter, constructed [22] according to the idea of Cross and 
Tommasino [23] .

T a b le  I
Isotopic com position  and  areal d e n s ity  of the fissile sam ples used 

in  the p resen t experim ent

Sam ple Iso topic  com position A real density  
[jxg/cm 2]

2 3 5 U 234 и 235U « « U 170
0.0010 99.9955 0.0035

2 3 8 y is d ep le ted  by a  fac to r o f 230 190

237Np 237N p 239 Pu 241 Am 148
99.9933 0.0062 0.0005

R esults a n d  discussion

The absolute experimental differential cross sections and the corresponding 
fitted curves plotted against the laboratory angles at different neutron energies are 
shown in Figs. 2-4. The relative angular distributions for all fragments were fitted 
with a series of Legendre polynomials of the form

N
IT(0 ) = a2n cos2" 0 . (1)

n = 0

The expansion coefficients a.2n were obtained by a least-squares fitting procedure. 
The anisotropy parameters, derived from the fitted angular distributions are given 
in Table II together with the Z2/А data of the compound nucleus. The absolute 
differential cross sections were deduced from the fitted angular distributions by 
normalization to the integrated cross sections of 235U, 238U, and 237Np:

<rj(En) = 2n J  W(En,Q) sin 0 d 0 . (2)
о

The errors indicated in Figs 2-4 and in Table II include both the uncertainty in the 
measured data and the goodness of fitting. The <j](En) values were taken from the 
literature [24] .
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T a b le  I I
T h e  pa ram ete rs  of th e  fitted  an g u la r d istrib u tio n  functions

T arget E n  [MeV] ao (12 R ( Z 2/A )< j f  
• (1 0 -28m 2) [24]

14.12 1 4 3 .9 9 i2 .3 3 9 63 .4 8 i8 .0 6 2 1 .4 4 Ü 0 .0 5 6 2.0754
23b y 14.45 35.86 2.0932

14.80 150.52±0.930 5 0 .13 i3 .118 1.333Í0 .022 2.1014

14.12 7 6 .6 3 il .1 9 2 4 0 .4 8 i4 .2 5 4 1 .528Í0 .055 1.2470
238u 14.45 7 9 .5 8 i0 .9 0 0 3 9 .7 7 i3 .1 8 3 1.499Í0 .040 35.41 1.2388

14.80 8 3 .6 3 i0 .9 0 5 3 5 .2 0 i3 .1 2 0 1 .4 2 Ü 0 .0 3 7 1.2300

14.12 1 6 6 .7 1 il .2 5 0 62 .5 0 i4 .2 4 4 1.375Í0 .025 2.3556
237Np 14.45 1 7 5 .2 0 il .3 9 6 48 .4 0 i4 .5 8 9 1 .276Í0 .026 36.34 2.4044

14.80 1 8 1 .0 0 il .1 2 6 4 1 .9 1 i3 .6 4 7 1.232Í0 .020 2.4500

The sources of errors are as follows:
a) The self-absorption of the fission fragments can affect the angular distri

butions by less than 1%;
b) The uncertainty in the solid angle used can contribute to the anisotropy 

values less than 1%;
c) The main correction which is applied for the thermal neutron induced 

fission of 235 U. The thermal neutron background was checked by measuring the 
fission cross section ratio for 238U, 235U as a function of the distance from the 
neutron source. No significant variation in this ratio has been observed indicating 
that the contribution of the thermal neutron induced fission to the total one can be 
neglected. In order to observe the change in the shape and anisotropy of the angular 
distribution caused by low energy neutrons the vacuum chamber was surrounded 
by a paraffin shielding. An isotropic angular distribution, which can be attributed 
to the almost completely thermalized fast neutron beam, was observed as can be 
seen in Fig. 4. The statistical error of the track density is also indicated in the last 
part of Fig. 4.

The data in Table II show the expected decrease in the anisotropy by increas
ing the Z "1 /А  parameter value. The results obtained are summarized in Table III 
and compared with the literature data (see Refs. [4, 7, 10, 13, 19, 21, 25-29] ). The 
present results show a systematic decrease in the anisotropy parameter with the 
increase in neutron energy beyond the (n,2n/) threshold. No definite trend could 
be observed in the R(En) function in the evaluation of the previous data.

In the vicinity of the (n ,2n /) threshold the angular distribution of fission 
fragments is interpreted as a superposition of the first, second and third-chance
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fission processes (see [18] ) which can be expressed as:

1=2
ŵ e) = 2>wi(e)

t = 0

and
0]i

*  = 1=2— - 

i= 0

0 30 60 90
0,ab Ideg)

( 3 )

( 4 )

Fig. 2. M easured d ifferential fission cross sections for 238U a t around 14 M eV  neu tro n  energy

where 7; is the probability of the contribution to the fission process by the г-th 
transition nucleus with an angular distribution of lVi(0 ) and aji the corresponding 
г-th chance fission cross section. Accepting the expression

Wi(0) = 1 + Aicos2© (5)
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for the approximation of the angular distribution, the total anisotropy can be de
rived in the form:

R(En) = 1 +  7o-^o +  7i^ i  + 72^ 2- (6)

0 30 60 90
e tab ( deg. 1

Fig. S. M easu red  differential fission cross sec tions for 237Np a t a ro u n d  14 MeV n e u tro n  energy

The calculated values of the anisotropy parameters were obtained by deriving 
the 7o,7i and 72 probabilities from the avaible fission cross section data [30,31] and 
accepting the Ло and A\ values given in [21] . The Л2(^„ ) anisotropy parameter 
values, which refer to the contribution of the (n,2n /) reaction, were tentatively 
determined from the expression [32] :

M E .)  = (7)
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where Lm is the maximum value of the orbital angular momentum of the incident 
neutron depending only on its energy in the form

Lm = (4.2 En)1' 2 (8)

Fig. 4■ M easured  differential fission cross sections for 235U a t  around 14 M eV . T he track d ensity  
as a  function  of em ission angle from  th erm al neu tron  in d u ced  fission on  235U is also in d ica ted

and Kq represents the square of the standard deviation of the Gaussian distribution 
function that is assumed for the quantum number K.

The calculated values of the anisotropy were obtained in two ways:
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a) by estimating the parameter A'q from the experimental anisotropies, using 
the approximate formula of Griffin [32] :

R ( E n )  =  1 +  Lm(87™2+ 2 ) ; (9)

b) by deriving K q from a calculation, using the fitted coefficients given by 
Simmons and Henkel [8] for the different even-even, even-odd and odd-odd nuclei, 
under the assumption of a linear dependence of Kq on the excitation energy.

T able III
E xperim ental anisotropy values com pared to  th e  previous d a ta

En[ MeV] R R eference P re se n t work
£ „[M eV ] R

14.0 1.27±0.17 12, 25
14.0 1 .27Í0 .08 13, 14, 26

235U 14.0 1.23±0.08 4, 15
14.1±0.1 1 .27 Í0 .10 1 , 10 14 .12±0.08 1.441±0.06
1 4 .8 Í0 .1 1.28±0.07 19, 29 1 4 .S 0 i0 .1 7 1 .333Í0 .02

14.0 1 .31Í0 .05 13, 14, 26
14.0 1 .37 Í0 .13 15

238 U 14.1 1 .30Í0 .03 7, 19 14 .12±0.08 1.528±0.55
1 4 .1 Í0 .1 1 .31Í0 .02 4, 10
14.5±0.5 1 .40Í0 .14 7, 16 14.45±0.12 1.499±0.040
14.7 1.43±0.05 7, 19

14 .80±0.17 1.421±0.037
14.9 1.25±0.02 17, 27

14.0 1.15±0.04 13, 14, 26
14.0 1 .14 Í0 .04 4, 15

237N p 1 4 .1 Í0 .1 1.12±0.05 4, 10 14.12 1.375±0.025
14.45 1.276±0.026

14.7 1.16±0.02 18, 28
14.80 1.232dt0.020

In the latter case, the mean excitation energy Ex above the (n, 2nf)  threshold 
was estimated as:

Ex = En - E } - W n, (10)

where En is the incident neutron energy and W„ is the mean kinetic energy carried 
off by the evaporated neutrons before fission estimated as Wn = IT, where T  is the 
nuclear temperature.

The two calculated sets of the anisotropy values in comparison with the ex
perimental data are given in Table IV. There is a good agreement between the
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Table IV
C om parison of th e  experim ental and  calculeted  an iso tropy  values

Nuclide £[M eV] Experim ented C alcu lated  anisotropy o  0 Oï <72 Ao Лг
anisotropy a ) b) (10- 28m 2) c )

14.12iO.OS 1 .441Í0 .056 1.296Í0 .01 1 .6 6 9 Ü .0 6
235 и

1 4 .8 0 i0 .1 7 1.333Í0 .021 1 .2 7 Ü 0 .0 2 1 .493Í0 .42
1.15 0.67 0.55 0.16 0.4

14.12±0.08 1.528Í0 .055 1 .299Í0 .015 1 .6 2 8 Ü .1 2
238 у 14.45±0.12 1 .499Í0 .040 1 .294Í0 .010 1 .550Í0 .74 0.56 0.44 0.20 0.20 0.3

14 .8 0 i0 .1 7 1 .4 2 Ü 0 .0 3 7 1 .2 8 Ü 0 .0 0 7 1 .496Í0 .52

1 4 .1 2 i0 .0 8 1.375Í0 .025 1.271 Í0 .0 0 4 1 .554Í0 .85
237Np 1 4 .4 5 i0 .1 2 1 .276Í0 .026 1 .26Ü 0 .002 1 .4 3 4 Í1 .6 1.43 0.94 0.26 0.16 0.41

1 4 .8 0 i0 .1 7 1.232Í0 .020 1.256Í0.001 1.379Í4 .1

a) C alcu lated  R  values using th e  re la tio n  [8] to  ob ta in  .
b) C alcu lation  perform ed by assum ing a  linear dependence of К jj on  th e  excita tion  energy 

and  using the  fitted  coefficients from  reference [8]
c) N uclear d a ta  collection from  previous publications
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measured and the calculated anisotropies, within the involved uncertainties and 
approximations. The same trend can also be observed for the calculated and the 
experimental anisotropies as a function of neutron energy, i. e. the R(En) function 
increases with the neutron energy going down to the (n ,2n /)  threshold.
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Y ields o f gam m a rays w ilh  energies above 1.3 MeV have been  stud ied  in  coincidence 
w ith  ligh t fragm ent iso topes from  collisions of carbon , nickel a n d  holm ium  ta rg e ts  w ith  
35 M e V /u 14N ions. T h e  a n g u la r d istrib u tio n  of th e  gam m a rays is isotropic. T h e  to ta l 
num ber o f th e  coincident gam m a rays falls exponentially  w ith fragm ent angle, b u t  the  
num ber o f gam m a rays p e r fragm ent (the m ultip lic ity ) is alm ost independen t of fragm ent 
angle. For a  given fragm ent iso tope the m ultip lic ities w ith the  nickel an d  hoknium  ta rg e ts  
are equal, b u t th e  m ultip lic ity  obtained w ith  th e  carbon  ta rg e t is lower by a  fac to r of 
from  tw o to  six. T h e  h a rd  gam m a-ray  m ultip lic ities for the  nickel an d  holm ium  tar gets 
ten d  to  b e  lower when th e  m ass of the coincident light fragm ent is h igher. T he re su lts  are 
qualitatively  consisten t w ith  th e  assum ption  th a t  th e  spec tra  a re  d o m inated  by incoheren t 
b rem sstralrlung  from  nucleon-nucleon collision in  th e  nuclear m a tte r  h e a ted  in the collisions.

In troduction

The investigation of the spectra of energetic (over several MeV) gamma rays 
from intermediate energy (20 MeV < E/A < 100 MeV) heavy-ion collisions has at
tracted much recent interest [1-8]. For these gamma-ray energies the contributions

’ D edicated  to P rof.G . M arx  on  his 60th b ir th d a y  
’ ’ P resen t address: D onnelly C orp ., Holland, M ichigan 
’ ’ ’ P re sen t address: Law rence Livermore N a tio n a l L aboratory

.4cia Physica Hungarica 64, 19SS 
A kadém ia i  Riadó, Budapest



2 2 0 F. DEÁK e t  al

from electromagnetic transitions (E < 1 MeV [9]) in the residual nuclei are small. 
The spectra of energetic gamma rays should be dominated by bremsstrahlung pho
tons.

The majority of such gamma rays could be created during the initial slowing 
down of the colliding nuclei or from nucleon-nucleon collissions at a subsequent 
stage [5-7] of the reaction. The former component is coherent, mostly of quadrupole 
nature, and is expected to have a characteristic angular distribution. It is produced 
cooperatively by the participant projectile and target nucleons. The second type of 
contribution is incoherent, therefore isotropic, and it reflects the nucleon-nucleon 
interactions which take place in the participant zone and in the heated spectators 
formed in the heavy ion reactions.

As all these gamma rays are emitted prior to, or in competition with particle 
emissions, and as they represent weakly interacting probes, the investigation of the 
nuclear electromagnetic bremsstrahlung has been suggested to be a valuable new 
tool for probing the dynamics of intermediate energy heavy ion collisions [6]. In 
particular, the study of the gamma-ray yields in coincidence experiments could be of 
special value. With various triggers we may study heavy-ion reactions of different 
dynamics. The bremsstrahlung photons could trace the corresponding processes 
back to early stages of the collisions.

Unfortunately, in-beam experimental work on the emission of energetic gamma 
rays from violent heavy-ion collisions faces inherent difficulties of the available ex
perimental methods. The complicated and energy dependent response functions of 
the gamma-ray detectors at elevated energies [10], the determination of efficiencies, 
and the intense particle backgrounds are some of the problems in the field. Up 
to now only a few experimental investigations have been published on this topic
[1,3,4,7].

The aim of the present paper is to report on experimental results on the 
yields of energetic gamma rays emitted from collisions of 35 MeV/u 14N ions with 
carbon, nickel and holmium targets. Our main interest has been devoted to the 
angular distributions and to the target mass dependence of the relative gamma-ray 
yields and multiplicities in coincidence with projectile-like fragment (PLF) isotopes. 
First we briefly describe the experimental method and data acquisition, then the 
results will be presented. The question of whether the experimental results are 
consistent with an interpretation that the spectra are dominated by contributions 
from bremsstrahlung will be discussed.

T h e exp erim en ta l m ethod

The experiment was performed at the National Superconducting Cyclotron 
Laboratory using the 35MeV/u 14N5+ beam. The targets were natural carbon 
(3.1 mg/cm2), nickel (4.6 mg/cm2) and holmium (8.9 mg/cm2) foils.

The gamma rays were observed at angles ±10°, ±30°, ±70°, ±110° and ±160° 
relative to the beam. The detectors were NE213 scintillator in cylinders of 12.7 cm 
diameter and 7.62 cm height at distances of 1.6 m to 2.4 m from the target. The
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combination of pulse shape discrimination and time-of-flight between the PLf-s and 
the gamma rays (typical time resolution was ~  1 ns) proved to be important to 
simultaneously get rid of the backgrounds of neutrons and delayed gamma rays.

The coincident light fragments were detected by solid state detector telescopes 
which allowed isotope resolutions for the PLF-s. The telescopes were positioned at 
+7°, —10°, +15°, —18°, +23° in the plane of the gamma detectors and at 15° out 
of the plane.

The data were recorded event by event and analysed off-line. The details of 
the experimental set-up have been described in an earlier paper [11].

particle identification channel

F ig . l .  M ass d is tr ib u tio n  of th e  P L F -s in coincidence w ith  energetic gam m as. B oth  th e  P L F  
telescope a n d  th e  gamm a-ray d e te c to r were a t 10°

D ata  acq u isition  and exp erim en ta l resu lts

In the data acquisition a pulse-height threshold at the 60Co edge (1.3 MeV) 
was used. For this level the gamma-ray efficiencies of the detectors were estimated 
on the basis of the absorption coefficients of the detector materied [10]. The effi
ciencies slowly grow from the threshold to ~  3 MeV gamma energy and from there 
they remained practically constant up to ~ 50 MeV or more. The threshold energy 
for detection of the coincident PLF was 7 MeV/u.

Figure 1 shows a typical mass distribution of the PLF-s at 10° in coincidence 
with gamma rays also at 10°, for the holmium target. The spectra for each of
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the six PLF telescope and ten gamma-ray detector combinations for each of the 
three targets were divided into lithium, beryllium, boron and carbon PLF element 
regions. Each region was fitted by Gaussian distributions superimposed on a linear 
background for each isotope which was seen with significant intensity. For Li the 
significant isotopes had A=6 and 7, for Be A=7, 9 and 10, for В A=10, 11 and 12 
and for С A = ll, 12 and 13.

Slob t PLF 1

Fig. 2. R ela tive  s tren g th  of th e  h a rd  gam m a lay s  in  coincidence w ith  boron and  c a rb o n  PLF 
iso topes w hen th e  targ e t is carb o n . T h e  circles a re  th e  d a ta  for th e  out-of-p lane P L F  telescope

Although our data do not include a determination of energies of the gamma 
rays, the energy-integrated yields exhibit some interesting properties. Most promi
nent is the observation that the gamma-ray yields are very different for the various 
PLF angles and isotopes, but for each particular case the angular distribution of 
the gamma rays was found to be isotropic up to a precision consistent with the 
standard deviations (~  15%).

The relative yields of the hard gamma rays in coincidence with the PLF 
isotopes at a given telescope angle were determined from the data summed-up
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for all of the gamma detectors The target thickness, the PLF solid angles and 
the collected charge were taken into account in determining the relative strengths. 
Figure 2 displays typical results of this procedure for the boron and carbon PLF 
isotopes when the target is carbon. The relative strengths show nearly exponential 
fall-offs with PLF telescope angle. The in-plane and out-of-plane 15° strengths were 
very close to each other for all PLF isotopes.

The multiplicities of the hard gamma rays have been determined from the 
relative strengths using a calculated average value of 0.07 for the efficiency of the 
gamma-rays and the cross sections of the PLF singles.
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Fig. S. M ultiplicities o f th e  h a rd  gam m a rays in  coincidence w ith  the  11В P L F -s  for the carbon , 
nickel and holm ium  targ e ts . T he circles are the d a ta  for th e  out-of-plane P L F  telescope
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Figure 3 displays results for all three targets when the coincident PLF is 11B. 
These angular distributions are representative of most of the other data. Accord
ingly, the multiplicities for the different PLF angles for a given target and for the 
same coincident isotope do not scatter more than ~  15% around the average value. 
There is a slight trend that the multiplicities are bigger for bigger PLF angles.

Table I contains the estimated absolute multiplicities for the carbon, nickel 
and holmium targets in coincidence with the signißcant PLF isotopes. The data 
in Table I were calculated by averaging the results for the different PLF angles 
and assuming isotropic gamma-ray angular distributions. These multiplicities may 
be somewhat unreliable due to the unknown energy spectra at the lower energies. 
Assuming that the gamma-ray spectra in the present experiment do not deviate 
significantly from those in [1], [4], [5]and [7], we estimate that the absolute gamma- 
ray multiplicities are correct up to a factor of two. Their relative values may have 
a deviation which corresponds to the average scatter of the different data points in 
the angular distributions (15%).
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The multiplicities in Table I do not show any systematic dependence on PLF 
isotope in the case of the carbon target. Their average value is about 0.15. The 
multiplicities for the nickel and holmium targets are considerably (by factors be
tween 2 and 6) greater than for the carbon target, but their values for the same 
PLF isotope are similar to each other. Furthermore, the multiplicities for the two 
heavier targets seem to be lower for higher-mass PLF isotopes.

T able I

M ultip lic ities of energetic  gam m a rays in coincidence 
w ith  P L F  isotopes for cab o n , nickel and  ho lm ium  targets 

(L'gamma > 1 .3  M eV; £pL F >  7 M eV /u )

P L F T arget

iso tope carbon nickel holm ium

6 Li 0.112±0.030 0.504±0.068 0 .6 65Í0 .100
7 Li 0 .0 97Í0 .018 0 .5 8 1Í0 .029 0.623±0.045

7 Be 0.116L0.056 0 .3 8 9Í0 .094 0 .6 7 9 Í0 .0 4 7
9Be 0 .1 0 2Í0 .014 0 .4 93Í0 .043 0 .5 7 9Í0 .056

10Be 0 .276Í0 .051 0 .6 48Í0 .078 0 .670±  0.063

io B 0.123±0.006 0.424±0.030 0.475±0.035
n B 0.169Í0 .021 0.423±0.028 0.473±0.041
12B 0 .2 04Í0 .074 0.418±0.076 0.366±0.044

n c 0.191±0.027 0.472±0.043 0.434Í0 .021
12c 0.140±0.009 0.389±0.062 0.396±0.034
13C 0.140±0.029 0 .392Í0 .0S9 0.366L0.041

D iscu ssion  o f  the results

The requirement of the detection of a PLF coincident with each hard photon 
probably means a selective trigger on the reaction mechanism. The shapes of the 
PLF energy distributions change considerably with PLF detection angle [11, 12]. At 
small angles (say up to ~  15°) the quasi-elastic, peripheral mechanism dominates, 
while at larger angles the strongly-damped processes become important.

The fact that the hard gamma rays do not show any angular anisotropy for 
any of the targets, for any of the PLF isotopes, or for any of the PLF angles is the 
most striking result of the present experiment. It has been found to be true even
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when the PLF-s were detected at 15° out of the plane of the gamma-ray detectors. 
This, together with the observation that the corresponding data are similar for the 
15° in-plane and out-of-plane cases, makes it probable that the yields are isotropic 
for energetic gamma rays. This may be strong evidence that the origin of the bulk of 
the hard photons is not the statistical transitions between highly excited states of the 
rapidly rotating nuclei developed after particle emission in a peripheral collision. It 
also means that the coherent part of the bremsstrahlung cannot be dominant in the 
production of the detected gamma-rays for any of the targets. This is consistent 
with the results of Ko et al [6] who suggested that even for higher-Z projectile 
and/or target nuclei there should be a large background from the incoherent dipole 
component of the bremsstrahlung. (We note that the isotropy — with the precision 
quoted earlier — is consistent with isotropic emission from recoiling source at our 
gamma-ray threshold and possible source velocities [7].)

The discussed independence of the multiplicities can be interpreted as addi
tional evidence that the hard gamma-rays were emitted by bremsstrahlung processes 
in an early stage of the heavy-ion collision. This is because the PLF isotopes de
tected at different angles are produced in reactions of different types [11,12]. It is 
difficult to imagine that the gamma-ray multiplicities would not depend on them 
if they were emitted later. Consequently, for those processes in which a PLF is 
formed, it seems probable to us that most of the energetic photons are results of 
bremsstrahlung from the hot participant zone and the heated spectators.

This interpretation is consistent with the result that for each PLF isotope 
the multiplicities for the nickel and holmium targets are similar to each other and 
considerably higher than for the carbon target (Table I). These observations again 
could not be understood if the sources of the hard protons were the excited nuclei 
formed after the particle emissions. For then the highest multiplicities would be 
expected for the holmium target for which the level densities are the highest. If, 
however, a hot participant zone is formed by approximately the same number of 
particle and target nucleons, its size and temperature would be nearly independent 
of the target mass [11, 12]. In the cases of the nickel and holmium targets the 
colliding systems contain many nucleons and the average number of the nucleon 
collisions in both the hot zone and the heated spectators could be about the same. 
Furthermore, the bigger the mass of the detected PLF isotope, the smaller is the size 
of the original participant zone [12] and one expects fewer bremsstrahlung gamma 
rays.

For the carbon target, however, there are only a few nucleons present, and 
so the number of nucleon -  nucleon collisions should be considerably smaller. In 
addition, here the colliding heavy-ion systems are very nearly symmetric, and the 
target-like and projectile-like fragments cannot be differentiated experimentally. 
This could lead to an approximate doubling of the probability of emission of PLF-s 
with a corresponding reduction of the gamma-ray multiplicities.
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A sem iclassical tw o-param eter collective m odel is ou tlined  to  describe  th e  general 
featu res of th e  n uclear g ian t m onopole resonance. In  variance w ith  th e  generally  used  scaling 
m odel, th is app ro ach  includes also surface effects. Using energy density  functionals an d  a 
m odified Skyrm e in te rac tio n  for describing th e  nuclear m a tte r  p ro p erties , a  deform ation  
energy m ap  is genera ted . T he p ro p erties  of th is m ap  ind ica te  th a t the  scaling  m odel is no t 
always ap p ro p ria te  for describing th e  g iant m onopole oscillation. T h is m odel shows how 
th e  excitation  energy, th e  oscillator s tren g th  and  th e  sh ap e  of th e  tran s itio n  density  are 
re la ted  th rough  th e  nuclear m a tte r  p roperties . T hese q u an titie s  were tre a te d  independently  
so far.

In trod u ction

The existence of the giant monopole resonance is experimentally well estab
lished, mostly from inelastic hadron scattering experiments on heavy nuclei [1,2,3,4]. 
Recently, nearly 100% of the EO EWSR has been found also in some light nuclei 
in fragmented small resonances [5].

The experimental data were generally analysed by the DWBA method. In 
view of the high bombarding energies and the small scattering angles involved, the 
DWBA seems to be appropriate. In the DWBA the characteristics of a specific 
nuclear excitation is taken into account by the inelastic scattering form factor. 
Within the framework of the double-folding model this form factor is related to the 
PTr transition density of the target nucleus. Because of the collective nature of the 
nuclear giant resonances, usually collective transition densities are used, although 
some microscopic transition densities are also available from RPA calculations [6].

For describing the monopole excitation the most generally used collective tran
sition density is the Tassie density [7] or Version I. of Satchler [8]. This particular 
density is closely related to the scaling model [9] of the giant monopole oscillation.

PTr =  3 p 0 ( r )  +  r ^ .  (1 )

There is, however, experimental evidence [4] that this particular model does 
not give a consistent description of the measured cross-sections, when results of

^D edicated  to P rof. G .M arx  on h is 60 tli b irthday
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inelastic (a, a ) and (d, d )  scattering experiments are compared. In [4] a consistent 
description has been achieved only if the transition density had stronger surface 
components than the Tassie density.

In this paper we discuss different monopole transition densities deduced from 
the shape of the monopole deformation energy map generated by a modified 
Skyrme-type effective interaction. We use the collective model and we allow for 
the independent variation of the radius-parameter and the surface diffuseness of the 
nucleus as well.

1. D escrip tion  o f  m onopole deform ations

1.1 Collective macroscopic transition densities

In the early days the sharp cut-off model was used, where the nuclear density 
was taken constant within the radius R  of the nucleus, and exactly zero outside. 
Thus, for describing the oscillation the nuclear radius was the only relevant quantity. 
This is a crude approximation, since the nuclear surface is known to be diffuse, and 
the alteration of the surface diffuseness may represent another degree of freedom 
for the oscillation, which cannot be a priori excluded.

In our model we restrict ourselves to spherical deformation of spherical nuclei, 
but we allow also for the variation of the surface diffuseness independently from the 
variation of the nuclear radius. We do not take Coulomb effects into account, and 
do not distinguish between neutrons and protons (isoscalar excitation).

We suppose that the nuclear density can be written in the general form

p(r) = n f ( x ) ,  (2)

where
X — (r -  R)/a. (3)

“R” being the radius parameter, “a” being the surface diffuseness and “n” is related 
to the central density. At this point we do not need to specify the form of f(x)  yet. 
The three parameters (n,R ,a ) are relevant for describing the nuclear density. For 
a given nucleus these are not independent, since the integral of the total density 
gives the total number of particles (denoted by “A” in the following).

Up to the first order terms any variation 6p of the density can be written as

Ŝ aÙ ' Sn+l l i SR+î -a '6“(4)

using (2) and (3) it follows that

dp _  p dp _  dp dp _  r — R dp , .
dn n ’ dR d r ’ da a dr
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Thus the density variation around the equilibrium can be written as
Sn dp SR dp da

6p = p ------- R0 • д - ■ —  -  (r -  Rq) - -------- .no dr R0 dr a0
The mass should be conserved during the deformation:

4?r J  r2Sp(r) = 0.

Substituting (6) into (7), and taking into account the normalization we get
Ro
T

6n л n f 6R 6a \  л [---- A + 2 —--------- -4тг /
« о  \ Л о  а о /  Jo

Introducing the notation
Ro 1 . Ro 2 .< —  > =  — • 47Г / — pr dr,
Г A Jo r

Ô CLp ■ r2dr + ЗЛ • — = 0. 
ao

we write
(  Sn 6 a \ Ro (  SR Sa\— + 3— + 2 < - ^ >  - -------- = 0 .
\ n 0 aoj  r \ R o  aoj

Expressing and substituting into (6) we get for the density perturbation 

.  ( nSa Ro f S R  S a \ \  dp (  SR <5a \- 6 p = p ^ -  +  2 < - > ( - - - j y £ ( R0- + { r - R o ) - y

( 6)

(7)

( 8)

(9)

( 10)

( И )

Here p and both refer to the equilibrium density distribution.
This expression contains all of the collective monopole transition densities 

used in the literature as special cases.
We get the scaling mode, or Tassie density with ^  and the version II

of Satchler with 6 a  = 0 (diffuseness conserving oscillation).

1.2 Exhaustion of the monopole energy weighted sum rule (EWSR)

If an excited state < f\ of Ex excitation energy exhausts 100% of the energy 
weighted sum rule, then

Ex ■ I < / | г 2|0 > I2 = S(EW SR),  (12)
where r2 is the isoscalar monopole operator. This equation can be expressed also 
using the collective ртг transition density:

Иir-Jo P Tr ( r )  ■ r4dr \2 = — . (13)

This means that the expectation value of the r2 operator calculated with the tran
sition density is closely related to the strength of a state relative to the EWSR. The 
amplitudes in the above introduced transition densities (e.g. SR/Ro in Eq. (11)) 
determine the percentage of the exhaustion of the EWSR of the corresponding state. 
Or, inversely, if an excited state exhausts 90% or 100% of the EWSR, the amplitude 
of the corresponding transition density can be calculated using Eq. (13).
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2. T he m on op ole deform ation  en ergy

CS. SÜKÖSD

In this Section we calculate the V(R,a) potential energy of the monopole 
oscillation of a spherical nucleus. We restrict ourselves to Fermi-type nuclear den
sities: f ( x ) = l/(exp(x) + 1). These functions are used most commonly, because 
they are analytically simple and both the radius and surface diffuseness are taken 
into account. On the other hand, microscopic self-consistent calulations show that 
the general behaviour of the density function can be well approximated by Fermi 
functions, choosing appropriate radius and diffuseness parameters.

For calculating the monopole deformation energy we assume that the actual 
shape of the nuclear density can be described by a Fermi function, changing only 
the two free parameters R  and “a”.

This assumption restricts the basis of the calculation to a relatively small 
class of functions. However, this basis is much larger than that of the sharp cut-off 
model, and it is large enough to demonstrate the importance of surface efTects in 
nuclear monopole oscillations. We calculate for quasistatical nuclear deformations 
and suppose that the nuclear energy is a functional of the matter-density:

V = V[p). (14)

Since the density depends on two parameters “R” and “a” , so does the energy 
too. This way we get an “energy-map” V(R, a). The minimum of this energy map 
determines the ground state radius and diffuseness parameters. But this map can 
be used to determine not only the ground state parameters, but also the energies 
needed for different monopole deformations characterised by R and “a” (Fig.l).

The main idea behind this procedure is the following. There are energy- 
functionals published in the literature that describe reasonably well the ground 
state properties of the nuclei throughout the periodic table. This proves that they 
contain a piece of general information about the way how energy and nuclear matter 
density are related. We use this information to calculate the energy needed for a 
slight deformation of a particular nucleus too. Thus no additional free parameter 
is introduced.

An additional remark should be made: the energy functionals mentioned 
above describe reasonably well the observed ground state properties of nuclei when 
using them in self-consistent calculations [10]. This means that not only the pa
rameters, but also the shapes of the ground state nuclear densities are calculated. 
The shapes may differ from a Fermi function, so it may seem to be inconsistent to 
use Fermi functions with these functionals. We show in the Discussion, however, 
that the ground state parameters determined by the minimum of our energy map 
are very close to the self consistent (and also to the measured) parameters, indi
cating that the restriction of the function space to Fermi functions does not cause 
important effects.
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Fig.  1. D eform ation  energy m ap of quasistatic  m onopole  deform ations o f Pb-208, as a  fu n k tio n  of 
th e  nuclear rad iu s  ( R )  and  dilluseness (a) param eters. T h e  dashed and  d o tte d  lines represen t tra n 
sition  densities, where th e  corresponding  monopole ex c ita tio n  would ex h au s t the energy w eighted 
su m  rule (EYVSR) in  the  percen tage  indicated. T h e  po in t denoted by ртг3 corresponds to  the  

em pirically d e te rm in ed  m onopole transition  density o f [4].

Since our previous experimental results were achieved for the Pb-208 nucleus, 
these calculations were made also for it. We tried several energy-functionals avail
able in the literature. The main features of the obtained energy-map were similar 
for all, differing only slightly in numerical details. We present here only one of them 
where the energy functional was taken from [11].

V[p] = J  <[p]d37- +  J  v [ p ] d 3 r

the kinetic energy being

•p5/3 + V

(15)

(16)

and a Skyrme-type modified effective interaction was used in form

v\p] -  a2 ■ p1 = a3 • p3 +a, • Vp)2. (17)

The values for the different parameters were identical to Set II in [11]:

n = 4/9, a2 = —408.4(MeVfm3), a3 = 1079.4(MeVfm6), (18)

a, = 67.7(MeVfm5).
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3. Discussion of th e  results

First, the comparison of some ground state properties shown in Table I yields 
evidence that the Fermi functions approximate reasonably well the ground state 
density profiles.

CS. SÜKÖSD

Table I
C om parison of ground s ta te  p a ram e te rs  for A —208

T his work Ref. [11]

E /A -11.096 MeV -11.2 MeV
R M S-radius 5.613 fm 5.6 fm
difTuseness 0.494 fm 0.5 fm
central d en sity 0.147 fm -3 0.155 fm “ 3

On the energy-map in Fig.l it is clearly seen that the potential energy is 
of harmonic oscillator type for not too large deformations. It is also evident that 
the interplay between the radial and surface deformations causes diferent effective 
incompressibilities. The direction, where the smallest effective incompressibility 
occurs is called “most easy mode”, and that of the largest incompressibility is 
called “surface compressive mode”. These directions represent also the main axis 
of the energy surface. It is obvious that these axes do not coincide either with the 
scaling-mode direction, or with Satchler’s Version II, which would be represented 
as a horizontal line.

In Fig. 2 we show the outer part of the deformed nuclear densities and the 
corresponding transition densities for these three special deformations.

In Fig. 1 those (R, a) points are also plotted with dotted and dashed lines, 
where the amplitude of the transition density is so large, that the corresponding 
excited state would exhaust the monopole EWSR in 90% and in 100%, respectively.

It should be mentioned that this energy map plays the role of a potential 
energy for the monopole vibration, inspite of the kinetic energy functionals used 
in the calculation (Eq. (16)). This kinetic energy describes the quantum nuclear 
motion within a static nuclear matter, and it should be distinguished from the 
kinetic energy of a collective motion..

In the scaling model of monopole oscillation there is only one dynamic variable 
for the oscillation: the RMS radius of the nucleus. In our two-parameter model there 
are two generalised coordinates (and momenta) in the Hamiltonian. Inspecting 
the potential surface one notices that the most appropriate generalised coordinates 
would be those combinations of “R” and “a” , which would represent the two main 
axes, of the potential surface. Expressing also the kinetic energy operator with their 
canonical momenta the two parameter oscillation Hamiltonian can be separated 
and solved. These calculations are in progress and the results will be presented 
elsewhere.
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Fig. 2. T h e  o u ter p a r t  of th e  deform ed nu c lear densities (left side) and the correspond ing  tran s itio n  
densities (right side) o f th ree  special m onopole deform ations are shown. T h e  nam es refer to  th e

defo rm ation  m odes ind ica ted  in  F ig .l

Now we would like to discuss an interesting aspect of the comparison of exper
imental parameters of the giant monopole resonance with the deformation energy 
surface.
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Generally a fixed transition density form (e.g. Tassie form) is used in the 
analysis of most experiments. The experiments yield two parameters: the Ex exci
tation energy, and the strength of the resonance, usually expressed in percentage of 
the EWSR. In some cases [4] the. empirical determination of the form of the tran
sition density was also possible. For Pb-208 nucleus these experimental parameters 
are: E x =.13.8 MeV, strength= 90% of the EWSR, and the transition density is 
characterised by 6R/R=  -0.005 and 6a/a— -0.12 [4].

These three experimental informations are thought to be more or less inde
pendent from each other. Now, the point of the empirically determined transition 
density plotted in the potential energy map (denoted by ртг3 in Fig. 1.) falls pre
cisely on the crossing point of the 2?x=13.8 MeV curve and of the 90% EWSR curve. 
Additionally, this point is very near to the smaller main axis. Although we think 
that this very precise agreement is a matter of chance and using other parameters 
slight deviations might occur, however, this coincidence seems to be very remark
able. That is because for constructing the potential energy map no information has 
been used about the monopole excitation itself, only the energy functionals were 
used, which are fitted to describe the systematics of the ground state properties 
of many nuclei. This coincidence may indicate that the excitation energy, transi
tion strength and transition density are deeply related with each other through the 
general properties of the nuclear matter.

This fact might also explain, why the monopole excitations are concentrated 
in heavy nuclei to form an experimentally well detectable giant resonance bump 
exhausting an essential amount of the monopole EWSR, and why they are more 
fragmented in light nuclei, where only small resonances can be observed exhausting 
10-13% of the EWSR at most [5].

Our results indicate also that the generally used Tassie transition density is 
not always adequate for the analysis of the experimental data. A better choice 
would be a transition density closer to the surface compressive mode. If these types 
of densities would be used also for the investigation of other nuclei, the deduced 
EWSR strengths would change sligthly and the calculated incompressibility values 
should also be revised.

CS. SÜKÖSD
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A tliree-com ponent fluid m odel is in troduced  for heavy ion reac tio n s  to  determ ine 
th e  viscosity te rm  and  the  en tro p y  production  o f th e  process. T h e  en tropy  p ro d u c tio n  
tu rn s  out to  be coim ected w ith  th e  m odified tw o-nucleon scattering  cross section, while 
th e  viscosity coefficient is re la ted  only to  the densities and  to the velocity  gradients, as in  
o rd inary  hydrodynam ics.

1. In troduction

In different energy domains the collision of two heavy nuclei has to be de
scribed with different models. At low energies the evolution of the system can be 
characterized with the time-dependent Hartree-Fock equations, while at high ener
gies among others different cascade calculations can be applied. At the intermediate 
energy domain neither of these approaches are satisfactory. It seems to us that the 
best possibility is either to apply a hydrodynamical model, or to determine the 
phase-space distribution function from some transport equation. In the latter case 
the calculations are very tedious, and since none of the transport equations are 
satisfactory enough, it is doubtful whether it is worth while to carry out the long 
numerical calculations. On the other hand in the hydrodynamical model one needs 
some further assumptions, which cannot be sufficiently justified. Among those the 
most doubtful points are the local thermal equilibrium or the expression used for 
the viscosity and the dissipation term. An additional difficulty is caused by the fact 
that the nuclear density is varying from zero the central density value, contrary to 
the ordinary hydrodynamics, where the fluid-density is almost zero.

In order to get some reasonable expression for the nuclear viscosity, a three- 
component fluid dynamical model is introduced for the description of heavy ion

D edicated  to P rof. G. M arx on Ills 60th b irthday .
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collisions. In this model every single component is assumed to be in thermal equi
librium separately, which seems to be a better justified approximation. In this way 
the viscosity of the total, non-equilibrium system, as well as the entropy production 
can be determined without any further approximations.

In Chapter 2 a three-component fluid model in introduced on the basis of a 
modified Boltzmann-type of transport equation. In Chapter 3 the viscosity term 
and the entropy production is analysed, while in Chapter 4 the results and some 
extensions of the model are discussed.

2. T h e  th rec-com pon en t fluid m o d el

Hydrodynamical equations can be deduced starting from a Boltzmann-Vlasov 
type of transport equation [1]. The phase space distribution function can be deter
mined by

Df{r,p,t) Ë I  + plëL _ ^ L î L  = c <+) _  C(->
dt m dxi dxi dpi ( 2.1)

where U(p) is the mean field single particle potential and and C ( ) are the 
gain and the loss terms. In the simplest case for example the loss term is

C~(P) =  d3Pif(p)f(P1) \ P - P 1W(\P~P1\)- (2-2)

describes the changes of /  due to a p + p̂  —► p' +  p'i type of two-nucleon 
collision inside the nucleus. In Eq. (2.2) a is the cross section of this collision. (It 
has to be emphasised that it is not the free two-nucleon cross section; it includes 
the modifying effect of the nuclear background, such as the Pauli principle and the 
many-body correlations.)

The hydrodynamical equations can by derived from (2.1) by multiplying it 
with 1, Pi, ^  respectively, and integrate it over d3p. On the basis of general 
principles it can be proved that the gain and loss term integrals cancel each other 
and the three resulting equations express the mass, the momentum and the energy 
conservation. The first two of these equations take the following forms:

^  -h div (pu) = 0,

+  дк(рщик) +  £ diU +  djPij  =  0,

where p is the density, щ the velocity and Pi: the pressure of the fluid

r  = K j f  f(p)d3p, (2.5a)

трщ — К j(  Pif{p)dZp , (2.5b)

4*1 II >4 f  PiPjf{jp)d3p - m 2UiUjp (2.5c)

(2.3)

(2.4)
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and
r  _  4

( 2 т г Л ) 3 ‘

If /  is in local equilibrium, the momentum distribution is symmetric around the и 
fluid velocity. If slight deviations from the equilibrium axe allowed, the pressure is

P i j  = I m e S i j  +  m 2G i j , (2.6)

where
£ =  K  J p2fdPp — i mu2p (2.5d)

is the kinetic energy of the system and G,j is the viscosity term.
If two nuclei collide with high velocity, in the overlapping region a hot, dense 

nuclear matter drop is formed, whereas a big part of the colliding nuclei is still cold. 
To assume about this total system that it is either in thermal, or in momentum 
equilibrium is an oversimplification. Since in the hydrodynamical modes the entropy 
production (temperature increase) and the viscosity are closely connected, in order 
to get experimentally observed temperature values, big viscosity terms have to be 
introduced. In addition a simple hydrodynamical model cannot give answers to 
some basic questions. For example: in head-on collisions will the original nuclei be 
completely absorbed in the hot drop or will part of them emerge after the collision 
as big cold fragments with almost unchanged velocities? It is also an interesting 
question, how big the maximal central density becomes and what the compressional- 
heat energy relations are during the collision.

To try to get at least some vague answers to some of these questions, we 
applied a modified version of three-component fluid model of Csernai et al [2] to 
describe the nuclear collision [3]. The /  distribution function will be divided into 
three parts:

f = f i  + h  + /з, (2.7)
where components 1 and 2 denote the bombarding and target nuclei and component 
3 denotes the hot fluid created in the collisions. Any nucleon which collided at least 
once, will belong to component 3. This means that component 1 and 2 will decrease 
all the time, and component 3 will increase. The transport equation (2.1) can be 
divided into three parts

DA = -C < -> (/i,/ , ) - < * - > ( / ! , /3), (2.8a)
Df 2 = -  C < --\h ,h )  -  С<->(/2, / 3), (2.8b)
D f z  = C ( + ) ( / i , / 2) +  C<+>(/a, / 1) +  C ^ \ h , / 3)+

+ С(+)( /2,/з) + C<+>(/3, / )  -  C<-)(/3, / ) ,  (2.8c)

where a term like / 3) means that the component 1 is decreasing because
two nucleons from component 1 and 3 collide with each other.

Acta Phyeica Hungarica 6 4 , 1988



240 J . N ÉM ETH et  al

In the following we assume that components 1 and 2 are cold nuclei, moving 
with 2 velocities, while component 3 is a hot nucleus with temperature T  and 
velocity U3. Since we know from our earlier calculations [4], that the temperature 
is very nearly a global quantity in the one-fluid model, we shall assume that the 
temperature of fluid 3 is space-independent. Since according to the model each of 
the single fluids are in local equilibrium, viscosity terms are neglected.

The single components can be in equilibrium only if they do not overlap in the 
phase-space: that means, that the model is applicable only if the fluid veloicities их 
and «2 are bigger than the Fermi velocities. On the other hand, a non-relativistic 
approximation can be applied only for not too high velocoties. This means that the 
model can be used only in the intermediate energy domain.

Taking into account the above considerations the (2.3)-(2.4) hydrodynamical 
equations for the three components can be written as follows:

^  +  d i i p M  = - I a, a = 1 ,2  (2.9a)

^  + di(p3ui) = h  + I2, (2.9b)

- -g ? - +  dk(paui,uka) + ^ di£a + ^ d i U  =  —Г„, (2.10a)

д^ П'з) + & (р з4 « з) + ~ д < е 3 + ^-diU = F' + Г*, (2.10b)
Of  0777 777

where I  and the Г are the collision integrals

h  =  l [ î ) + №  =  P i [ p 2 <  <rv 12 > +Рз < <rvi 3  >], (2.11a)
И  = Г12 + Г\3 = pi [p2 < <t v i 2 u \  > +P3 < <™i3u'2 >] ■ (2.12a)

Here V12 =  |«i — u21 is the relative velocity of two components. In the inter
mediate energy domain

Г ï ~ u i l a, a =  1, 2. (2.13)

The Euler type of equations (2.10), using (2.9) and (2.13), take a simpler form

^  + {икадк)и'а+ -д< и  +  ^ ~ — di£a = 0, (2.14a)at m 3m pa

+ {ukdk)u i+ -d iU  + ^ - - d i £3 = Kit (2.14b)at m 3m p3

where Ki is as follows

Ki = — [(uj -  t^ )h  +  (u’2 -  U^)h] ■ (2-15)
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In the case of fluid 1 and 2, applying the

фа = Vp^eiSa (2.16)

Madelung transformation, Eqs (2.9a)-(2.11a) can be included into a single equation

ih~ t r  = ~Tï~Arpa + VaxpQ +  iWa4>a, at 2m
(2.17)

where

(2.18b)Wa = -  —  Ia
*Pa

a  =  1, 2 .

In the case of the third component the Madelung transformation can be ap
plied only if rot K_ = 0. In this case there exists a H_ function, for which

V tf = K. (2.19)

(2.19) is generally not satisfied. For axial symmetric collision however we substitute 
К  in (2.14b) with V # , where

f) H
ж = к "  (2Л9а)

This way we use an approximation; but at least we assure that the total momentum 
is conserved. Later calculations showed that the comitted error is insignificant.

Substituting (2.19) into (2.14b) the Madelung transformation can be carried 
out even for the third component. The potentials occurring in Eq. (2.17) are

f t2 6 p 1' 2

V> = U + 2 + 

W3 = ^ - ( I l + I2),

(2.20a)

(2.20b)

where r/ in the chemical potential of the hot system, and T  is its temperature:

p3 = сГ3/2Е1/2(»7) 
£3 =  cT 5' 2F 3 /2 ( V ) .

( 2.21)

In equations (2.21) c is a constant and Fu/ 2 is the Fermi integral

xv !2= / r+ e*-*>
-dx.
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With the potentials (2.18), (2.20) one has to solve for each component a (2.17) 
Schróedinger-type of equation with complex potential.

The temperature of the third fluid can be determined from the third 
fluid-dynamical equation. Since we use, however, a space-independent tempera
ture, it is simpler to determine T  directly from the total energy conservation:

( 2.22)

From (2.22) we get a tirhe-dependent differential equation for the temperature

+ B T - C = 0, (2.23)

where the coefficients of Eq. (2.23) are as follows

A

В

C

f  [5 / 372(̂ 7) 9 Fi/2{r)) 1
J P [2 F1/2(r1) 2 F _ 1/2(t,)J ’

/ v < « w ) ( 4 - 3 ^ Ä ) ‘n',

/ /ф ™ » ; . + ( y « )  I s ] « ' *

Г г Г1 2 (Зж2 . 2/3 Л2
J  h  2mu23 + [ 2 P\ ' 2m

(2.24a)

(2.24b)

(2.24c)

Solving the three (2.17) equations together with (2.23) we can determine all 
the relevant quantities of the nuclear collision.

3. E ntropy p rod u ction  and v isco sity

Comparing the results of the three-fluid description with a one-fluid model, 
we can determine the viscosity term and the dissipation. Substituting (2.6) into 
Eq. (2.3), the Navier-Stokes equation is

~ ■ + dk(pUiUk) -I- —diU + —— die +  djGij = 0, (3.1)ot m ám

where Gÿ is the viscosity term. Adding the three (2.10) equations we get a one-fluid 
Navier-Stokes equation from the three-component model:

д(рщ)
dt

3
+ X / db(p<*ui uk) +  + 3m X] «

Or=l
=  0 . (3.2)
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Comparing Eqs (3.1) and (3.2), the G,j viscosity tensor turns out to be

Gij =  Pc«?«“ -  pUiUj) +  ^  (5 Z  £a ~  £) • (3-3)

The total fluid density, velocity and energy can be expressed in terms of the 
three-component model densities, velocities and energies

Pi +  P2 + Рз, (3.4)
Pl«l + p2U2 + P 3ÎÎ3 , (3.5)

/  Q mpu2 + CT5/2f3/2(C) + W( p) j  dV =

J  ^W(p) + X ] ( £<* + \ mP o P l^ j  dV’ (3.6)

In Eq. (3.6) r  is the temperature of the total fluid, (  is its chemical potential 
and W  is the total mean field potential energy density, r  and C, can be determined 
from the density and the energy:

p  =  c t 3' 2 F 1/2( C), (3-7a)
e =  c t 5' 2F 3 / 2 ( 0 ,  (3.7b)

where e is the kinetic energy of the total system. It can be expressed from Eq. (3.6) 
as follows

e
m

~2 Y ^ P c ^ l - p u 2 (3.8)

Substituting (3.8) into (3.3), the viscosity term turns out to be

Gij (3.9)

where <Tij is
Oij = -  [p\Piu\2vku  +  pip3v\3vkiz +  p2p3v'23v\3\ . (3.10)

As expected, TrGjj = 0, that is Gij is a traceless tensor.
In the three-component fluid model the entropy increase is due only to the 

third component, because the other two nuclei are cold ones. The total entropy and 
its time derivative can be written as

S = J  [ | cF3/2(»7)T3/ 2 -  w sj dV, (3.11)

dS 1 f  T ( \  , h 2 ( З г г \ !'3 Л
dt ~ T  J ( h  1 2 mvi3 + 2m 1( - Г '" )  T)

+ è  / ' =  ( H > + 55  ( 2T '”) W3 -  "r)  (312)
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where we have used Eq. (2.21) for the time derivative of the temperature.
It is interesting to observe that while the viscosity term is only a function 

of the velocities and densities, the entropy increase is directly proportional to the 
collision integrals. We do not find the close connection between viscosity and dissi
pation, as in ordinary hydrodynamics.

In the above calculations we have assumed that the temperature of the third 
fluid is a constant all over component 3. From equations (3.4)-(3.7) it is easy to see, 
that the temperature of the total fluid cannot be constant throughout the whole 
system, that is grad т ф 0. This means in ordinary hydrodynamics that the entropy 
production is mainly caused by the heat current term.

4. R esu lts  and d iscussion

To solve the three-component fluid dynamical problem, an expression is needed 
for the <t cross section. In the usual Boltzmann equation the system is a weakly 
interacting gas, there is no mean field term, so in the collision integrals one can use 
the free two particle collision cross section for the two particle interaction. Nuclei 
are, on the other hand, strongly interacting systems. This means partly that a mean 
field interaction has to be introduced as a self-consistent potential (Vlasov equa
tion), and partly that in the collision integral the two-nucleon interaction within 
the nuclear matter has to be taken into account. From relativistic calculation we 
know that even in the nonrelativistic limit the nucleon potential itself changes due 
to the nuclear surrounding. If we take into account the many body effects, this 
change is even more significant. There are relativistic Bruckner Hartree-Fock cal
culations, which determine the correct expression to be used in the collision integral
[5]. They show that the free-nucleon cross section has to be decreased by a factor 
of two or even more, depending on the energy. This makes our calculations a bit 
more difficult, because all our results strongly depend on the collision cross section. 
One simplification arises, however: the integrals of the loss terms can be expressed 
with the imaginary part of the optical potential determined in many body calcula
tions by different authors [6]. So in the first calculation we introduced the simplest 
possible expressions for < av > (constant or proportional to v) and varied its nu
merical coefficient. Later we are going to use an expression taken from the many 
body calculations. (In the one-fluid hydrodynamical calculations the problem does 
not arise, because the integrals of the gain and loss term cancel each other. In the 
calculations however, where the distribution function is determined directly by the 
transport equation, the difficulty of the double counting has to be considered too. 
In fact the situation is even worse, because in the non-integrated form the complex 
optical potential cannot be used for the gain terms).

In our calculations we considered Mg24 — Ca40 and Mg24 — Pb208 head on 
collisions, with 200-800 MeV/particle bombarding energy. In this energy domain 
the applicability conditions of the models are fulfilled. The details of the numeri
cal calculations will be published elsewhere, here we simply collect the important 
features of the results.
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1. The probability of finding a big, fast, relatively cold fragment depends first 
of all on the numerical value of the cross section, and much less on the bombarding 
energy and the velocity dependence of <r. If the results of the Brueckner Hartree- 
Fock calculations are correct, such fragments can be found, with the free two- 
nucleon cross section without Pauli principle the colliding nuclei melt into the hot 
component.

2. The velocity of the cold nuclei decreases very little during the collision, so 
«J, and u2 in the CM system are strongly forward and backward peaked, while the 
velocity of the component 3 is at the beginning almost completely perpendicular to 
the collision direction. As the time evolves «зц and ti3X will have roughly the same 
values, the hot spot is expanding in every direction.

3. The temperature of the third component increases fast up to 20-50 MeV 
(depending on a and the collision energy) and after a time it starts to cool down 
due to the expansion. In our calculation the central nuclear density in the overlap 
region is only slightly higher than the nuclear matter density, so we did not succeed 
to produce very dense matter. Further calculations concerning this question are 
in progress. (It has to be investigated, how the central density depends on the 
compressibility of the mean field.)

4. In the case of very asymmetric collisions the hot spot is smaller compared 
to the total mass of the nuclear system, and the incoming nucleus is completely 
absorbed in it. That means that we cannot expect that the hydrodynamical side- 
flow angle is the same for symmetric and asymmetric collisions.

5. The high temperatures indicate that the thermal pion creation has to be 
taken into account.

The above results can be considered only as preliminary ones, calculations 
including pion creation and more exact two-nucleon collision cross section inside 
nuclear matter are under way.
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It is show n th a t  the  approx im ation  to  th e  reso n an t solution of a  Schrödinger equar 
tion , based  on  separable expansions of the  asym pto tica lly  negligible p a r t  of th e  p o ten tia l 
gives no t only excellent resonance energies bu t a lso  well-behaved wave functions even in 
large d istances from  th e  centre of th e  po ten tial a n d  even if  relatively sm all bases are used .

1. In troduction

Some of the most important quantum mechanical approximation methods are 
htose using sets of known functions to approximate the unknown solutions of the 
Schrödinger equation.

There are two versions of these basis set methods that are especially often 
used. One is based on the representation of the wave function by a linear combina
tion of a number of basis functions and the determination of the coefficients (and 
the possibile non-linear parameter(s)) from a variational principle. The other is 
the expansion of the wave function in a (truncated) complete set of basis functions 
and the diagonalization of the Hamiltonian in the truncated Hilbert space. If the 
Hamiltonian operator is Hermitean and the basis functions are square integrable, 
the variational method exhibits an extremely advantageous property, viz. by en
larging the basis the approximate energies approach the exact one monotonically. 
When the basis size is fixed the wave function expansion (WFE) method can be 
recognized as a special case of the variational method containing only linear vari
ational parameters. The drawback of both methods is that, if the asymptotics of 
the basis functions are different from that of the exact one, the farther we need the 
exact wave function the larger the basis size we have to apply. If e. g. very weakly 
bound or resonant solutions are calculated it is hardly hopeful to obtain the correct 
asymptotics with a tolerable number of square integrable functions. Considering 
that to a number of important transition matrix elements (electromagnetic tran
sitions, nucleon or nuclear cluster transfer, etc.) considerable contributions may 
come from the outer part of the wave function, a poor representation of that part 
may lead to serious errors. That is why there is really a high demand for methods 
yielding asymptotically correct wave functions.

•D ed icated  to  Prof. G. M arx on h is 60 th  b irthday .
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In the variational method very good results have been obtained in this respect 
by using the ad hoc (nonetheless intuitively natural) suggestion that the trial func
tion should contain at least one term possessing the correct asymptotics (Siegert 
type trial function).

A more systematic way of finding an asymptotically correct solution to the 
equation

Н\ф >= Е\ф > (1)
is to handle correctly, from the outset, that part of the equation which influences 
the asymptotic behaviour. The potential separable expansion method [l]which will 
be briefly reviewed in Section 2 is such a method. In Section 3 and 4 two new 
examples will be presented to convince the reader about the exceptionally good 
characteristics of this technique.

2. T he p o ten tia l separable exp an sion  (P S E ) m ethod

Looking for an asymptotically correct approximate solution to Eq. (1) we 
split H = Hо + H, so that Hо may comprise all terms that cannot be neglected at 
infinity and we approximate only H, = V . We seek for the solution to (1) as the 
N  —+ oo limit of the solutions to the intermediate problems

( H 0 + Vn )\iI>n  >= En \tJ>n  > N = 0 ,1 ,. . . ,  (2)

where Vn  is a projection of V to a N  + 1 dimensional subspace of the Hilbert space. 
It was proven in [ljthat if V is locally square integrable and bounded, as well as Ho 
is self-adjoint, and the projector is

ЛГ
P n  = £  I*- X  «I. (3)

» = 0

where |i > is an element of an orthonormalized complete set, the procedure is 
convergent. It turned out that, unfortunately, the limit may be reached after un
pleasant oscillations: the procedure is thus convergent but it is not variational. To 
remedy the oscillatory behaviour an arbitrary smoothing factor о?  was introduced 
in Pn  so as to keep the proof of the convergence valid. We chose a?  as

jN  i -  exp i - ( a ^ ) 2] i = 0 ,1 ,...  TV,
i -N -  1 2̂1 

* N+1
1 — exp [—a 2]

where a  is a non-linear parameter of the procedure. Then using

(4)

N
Vn = Y ,  I* > v5  < &

i,j = 0
Vfj = <t,N < i\V\j > o f , (5)
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Eq.(2) with purely out-going (bound or resonant) boundary conditions can be ar
ranged into the form of a homogeneous Lippmann-Schwinger equation,

№лг >=  (E -  Я0)-1 VjvlV'Jv > •

Denoting the Green’s function (z—#o)-1 belonging to H0 by Go(z) and the numbers 
< j\^N > by c f  we have

N
IrpN >= £  сМ °Со(Е„)^>  .

i,j-0
( 6)

For the coefficients cj*, a system of homogeneous algebraic equations derives by 
multiplying Eq. (6) by < k\

f>kj -
i=o к

The roots En  of the transcendent equation

N
< k\Go(EN)\i > V$ \ c f  = 0, к = 0 ,1 ,... N. (7)

i = 0

D{E) = det 1 6kj -  g  < t|Go(£?)|* > ^ | = 0  (8)

are the approximate eigenvalues, which, together with the solutions сУ of Eq. (7) 
at En , determine the approximate eigenvectors through Eq. (6).

It is worth quoting here a result in [2], namely that Eq. (6), which is a 
composition of IV+  1 non-orthogonal functions Go(En )\í > with correct asymptotic 
behaviour, can identically be rewritten in a sum of the combination of N  square 
integrable and orthonormal functions |t > and 1 function Go(£V)|0 >, which bears 
the correct asymptotics. So the systematic PSE procedure helps to understand 
the success of the Siegert type trial functions in the framework of the variational 
method.

In what follows we will be concerned with complex En eigenvalues, more 
precisely with those defined by the relations

\ J 2 itiEn / h2 =  Icn = k n  — i~iN, KN >  7 N >  0.

The related states are called Gamow or Siegert states. These states do not belong 
to the Hilbert space. In coordinate representation they are complex and not square 
integrable, and their real and imaginary parts oscillate between exponentially di
verging envelopes. So an inner product containing Gamow state(s) does not exist 
in the orthodox sense. Nevertheless there are various, essentially equivalent gen
eralizations of the concept of the inner product that make sense if one or both of
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the factors are Gamow states and boil down to the usual definition if the factors 
are bound states. We chose to work with the rules elaborated by T. Berggren and 
reviewed in [3]. All inner products in Eqs (6)-(8) are to be regarded as generalized 
ones. The Gamow states are of great conceptual and practical importance in the 
theory of resonances, and, because of their violent asymptotic behaviour, they pro
vide an ideal testing ground of a method that aims at describing the wave function 
correctly also in the asymptotic region.

T able I

T he energy  E  o f the S i /2 resonance  in  the  p o te n tia l  
7.5 r 2 e —r as a  function  of th e  basis size *

12 3.42834-i 0.0126291
13 3.42741-« 0.0131535
14 3.42701-»' 0.0126980
15 3.42674-»' 0.0127830
16 3.42674-«' 0.0128572
17 3.42667-»' 0.0127485
18 3.42663-» 0.0128073
19 3.42652-» 0.0127838
20 3.42652-« 0.0127681
21 3.42648-» 0.0127948
22 3.42645-i 0.0127711
23 3.42642-» 0.0127786
24 3.42642-» 0.0127794
25 3.42642-«' 0.0127721
26 3.42641-» 0.0127799
27 3.42640-» 0.0127737
28 3.42640-«' 0.0127753
29 3.42640-» 0.0127761

*6 =  1.3, a  =  6

3. T he S 1/2 resonance in th e  7.5 r2e~r p o ten tia l

In this paragraph all quantities are given in atomic units. The potential in 
the section heading is a famous standard in atomic physics. The best variational 
value of its S1/2 resonance is 3.42639-i 0.0127745 as it was published in 1974 [4]. 
The “exact” values, i. e. the results of the direct numerical integration given all 
over this paper were generated by the code GAMOW [5].

As this potential is short-ranged the kinetic energy T  plays the role of Ho- It 
is thus convenient to use for the basis {\i >} the harmonic oscillator wave functions 
(IIOWF), since the matrix element of the free Green operator between them can

Acta  Physica Hungarica 6 4 , 1988



STR ING EN T TESTS OF T H E  POTENTIAL SEPARABLE EXPANSION M ETHOD 2 5 l

be computed exactly with a recursion relation. The algorithms and the program 
of the HOWF-based PSE method called PSEUDO have been published in [6]. The 
numerical results are based on this program, except that the subroutine FC01A 
computing exp [—г2] Erfc (гг) has been substituted by the extremely precise rou
tine elaborated by A.D. Isaacson. The convergence of the method is displayed in 
Table I. The 6 stands for the size parameter of the HOWF basis, and a is the 
parameter of the smoothing factor (4). It has been checked that the results are 
nearly independent of their values over a reasonably broad range. Fig. 1 shows the 
complete agreement between the exact and PSE radial wave functions.

Fig. 1. R eal (im aginary) p a r ts  of the  rad ia l wave function. T h e  continuous lines rep resen t the 
resu lts  of th e  d irec t num erical in teg ra tio n , the  d o ts a re  th e  PSE  values

4. A broad resonance in a Saxon—Woods plus liard-sphcre 
Coulomb potential

In our second example we intend to show a most conspicuous example of a 
broad £'=13.63 - i 3.28 (MeV) proton resonance in a potential that schematically 
represents the 208Pb nucleus

V = V0f(r)  + Vso ( Tr .2l d/(r) 
m r c r dr l(T + Vc, (9)

/(**) =  - { ! -  exp[(r -  R0)/d\) 1,

v  = Í а д ( е 2/2Яс)(3 -  г2/Л 2), г < Rc 
X Z yZ i^ /r ,  r > Rc,

( 10)

( П )
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with the parameter values Vo = 50.9 MeV, Vso — 5.8 MeV, Ro = Rc = 7.06 fm, 
d = 0.75 fm, Z\ =  82, Z-g — 1 (l,<r are the orbital and spin angular momentum, mT 
is the pion mass, c is the velocity of light, e is the electron charge, ft is the Planck 
constant divided by 2it).

Fig. 2. Covergence o f th e  real and  im ag in ary  pa rts  of th e  eigenenergies a t  th e  ind ica ted  values of
the sm oo tliing  p a ram ete r a ,  b — 2.7 fm

Fig. S. R eal a n d  im aginary  p a rts  of th e  resonance wave function, a  =  6 , 6= 2.7  fm. N = 2 4 .
N o ta tio n  as in F ig  1
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In this case Но = Hc = T  + ZyZ-^e"1 /г,  and the matrix elements of the 
Coulomb-Green operator Gc belonging to Hc are to be correctly computed on the 
basis used for the expansion of the rest of the Hamiltonian. In [7] a PSE algorithm 
is presented based on the Coulomb-Sturmian functions

( 1 \  1/2
(n + 21 + 1)! у (26r),+1e-6rL^,+ 1(26r), (12)

here L„+1 are the associated Laguerre polynomials, and 6 is a scaling factor. In 
Fig. 2 the convergence of the eigenenergies is shown at the indicated values of the 
smoothing parameter a, the value of the scale parameter of the basis is 6=2.7 fm but 
around this value the results are almost independent of 6. In Fig 3 the spectacular 
performance of the method in reproducing the wave function can be observed.
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SHAPE ANALYSIS OF THE “CUSP” IN THE SPECTRUM 
OF ELECTRONS EJECTED INTO FORWARD DIRECTION 

FROM ION-ATOM COLLISIONS*

D . B e r é n y i , L .  G u l y á s , Á .  K ö v é r  and G y . S z a b ó

Inst i tu te  of Nuclear Research of the Hungarian Academy of Sciences 
4 OOI Debrecen, Hungary

(Received 8 Ja n u a ry  1987)

T h e  energy dependence of the  p a ram e te rs  in  th e  series expansion  of th e  cusp-shape 
was s tu d ied  by using the  experim ental d a ta  of the  present a u th o rs  and  all the o th e r  p u b 
lished  d a ta .  T h e  recent theo re tica l in te rp re ta tio n s  are also d iscussed .

1. In troduction

It was in 1970 that Crocks and Rudd observed for the first time a very in
tensive sharp peak (a so called “cusp”) in the energy spectrum of electrons ejected 
in the forward direction from II+-IIe collisions [1]. In the same year a similar cusp 
wets observed in the case of solid target (carbon and gold foils) [2]. The position 
of the cusp in the energy spectrum of forward ejected electrons corresponds to a 
value of the velocity of the ejected electron which is equal to that of the emergent 
ion. The origin of the electrons in the cusp can be either the transfer (capture) of a 
target electron to a low-lying projectile continuum state (ECC, Electron Capture to 
the Continuum) or the excitation of a projectile electron to a low-lying continuum 
state (ELC, Electron Loss to the Continuum) if the projectile carries electron(s).

During the last more than one decade a number of experimental and 
theoretical studies were carried out on this phenomenon (see e.g. the surveys in 
[3-6] and in 1984 a whole symposium was devoted to this topic in Aarhus [7]). The 
production cross section, the position, the width, the shape of the cusp were studied 
as a function of impact energy, the type and charge state of the projectile as well as 
the emission angle of the electron in detail, both experimentally and theoretically.

Contrary to the very many investigations, there are problems and uneluci
dated items on practically all the features of the cusp, namely cross section, width 
and shape. In connection with the shape it has become clear during the studies 
in the last years that the cusp is nearly symmetric only in the ELC processes (for 
projectiles carrying electron(s)) but it is skewed towards lower velocities for bare 
projectiles (ECC process) for gaseous targets (see e.g. in [8]). In cases of solid 
targets (foils) the symmetry and the shape of the cusp is rather similar to those for

’"D edicated  to Prof. G . M arx on liis 60 th  b irth d ay .
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ELC cusp (see e.g. [9][10]). The asymmetric character of the ECC cusp, however, 
cannot be completely explained theoretically up till now (see e.g. in [8][11—12]).

Several years ago, a series expansion and fitting procedure was introduced for 
the better characterization of the experimental cusp-shape [13][14]. This multipole 
expansion method is independent of any specific theory and of the actual apparatus. 
Recently a number of such studies were carried out at light [8] [14-16] and heavy 
ion [17-21] impact even if those with foil targets [13][22][23] are not taken into 
consideration. In this way there is now a good opportunity to compare them with 
each other and there is also a possibility for looking at the energy dependence of 
the coefficients in the series expansion for gaseous targets (where single-collision 
conditions are maintained) by using all the published values. That is our goal in 
the present paper.

In this analysis and consideration of the data, however, mainly the cases
[8][14][16—18][20—21] (ECC process) are to be studied in which the projectile was 
bare ion.

2. The series expansion procedure and  experim ental conditions

The cross section of forward ejected electrons can be described both for ELC 
and ECC in the following form:

der
dve К  -  vi

-F(ve,vp,cosO ), ( 1 )

where ve, vp is the velocity of the electron and the ion in the laboratory frame, 
respectively, while 0  is the angle between ve and vp in the laboratory frame and 
0  is the same angle in the projectile frame (see in Fig. 1).

Vp

Fig. 1. Velocity vector d iagram  o f th e  collision p rocess

The observed asymmetry should be associated with the finite F(ve,vp, cos0 ) which 
can be expanded by the help of the Legendre polynoms:

F(ve,vp cos© ) = Y  a‘(v'e)Pi(cos©'), (2)
n,/=0

where v'e =  \ e — v p.ai(v'e) can be expanded in Taylor series while ve is always small 
around the cusp:
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der
dve

Y  Bn,(vp)V' Pi(cosQ'),
n,l—0

(3)

where Bni axe the Taylor coefficients of the series cq.
The measured distribution Q(ve,Qe) of ejected electrons is a convolution of 

the double differential cross section (da/dv,.) in laboratory frame and the electron 
spectrometer transition function (5(ue, fie)) where i)e is the solid angle of the spec
trometer:

Q(ue,Qe) =  J j  ̂ £^-S(ve,Qe)dvedQt
V. n.

Substituting Eq. (3) to Eq. (4) we get:

Q(Ve, П.) = J 2  B^ p W n l  = B00 Y  I -U ni,
n,/=0 n ,1=0

where the form of Uni is in velocity representation:

В oo

(4)

(5)

Uni =  J J v2t (ve)n- 1P,(coSe )S (v e, í le)dvedíle. (6)
Ve fl« .

The experimental investigation of electrons ejected into the direction of the 
projectile beam is rather difficult. The projectile beam must be well collimated and 
cleaned from secondary electrons. It should pass through the electron spectrometer 
without touching any solid part of it avoiding additional secondary electron produc
tion. The cusp electrons are sharply peaked into the beam direction and therefore 
narrow acceptance solid angle of the electron analyzer is required. The main pa
rameters of the experimental setup used by the different authors can be seen in 
Table I. Mainly electrostatic analyzers are used for recording the electron spectra.

As it can be seen above, the S(ve, fle) expresses the spectrometer transmission 
function. Meckbach et al [14] showed that for high velocity resolution and small 
acceptance angle the transmission function is separable:

S(i>„i2,) = Ä(w«)G( fi.).

The R(ve) can be well approximated by a triangular or trapezoidal line shape. 
G(fie) is calculated from the geometrical conditions of the analyzer [20].

The Q(ve,Qe) electron distribution should be corrected for the efficiency of the 
analyzer (mainly for the efficiency of the channel electron detector) before the fitting 
procedure. For the peak shape analysis only the relative change of the efficiency 
as a function of the impact electron energy is interesting. In general, the detector
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Table I
C om parison of th e  experim ental conditions used for shape analysis

P ro jectile  beam E lection  spec trom eter

A uthors T ype  Velocity Beam
in t. [a.u.] divergency

T arget T ype Relative A cceptance 
energy half 

resolution angle(Qo)

C orrection
for

efficiency

Dalil [24]
(R 0dbro  & H + 1-3.2 Ile electrosta tic i% 0.38° +200V

A ndersen [25]) paralle l p la te

M eckbach electrosta tic
et al H + , H° 1.25-3.1 <  0 .1° Не cylindrical 0 .1-0 .5% 0.17°-2.5° +  100 V
[14] m irror

K övér et electrosta tic m easured
al [26] H + ,I I 2+ 2.5-4 O Cn O Не cylindrical 0.3% 1 .0 ° efficiency

И m irror curve

A ndersen H + ,H a+
et al c6+ e lectrosta tic constan t im pact

[16][18] o*+,cin+ 2-10 Не parallel p late 0 .6% 3.4° energy on CEM
K nudsen A u1I +

оосо 300 eV
e t al [21]

e lectrosta tic
Berry ce+,o8+ 6.3-10 <  0 .1° spherical 1 .1-1.3% 1.8 °-2 .0 ° no
et al H,l b , Не m irro r 160°

[17] [20]
O s+ ,N e ,0 + 15.0-18.1 <  0 .1° m agnetic
A r16+ sector 90° 0.7-1.7% 1.4°-1.5° no
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efficiency increases from 0 eV to 200-300 eV where it reaches its maximum and 
than slowly decreases. In order to avoid the efficiency correction some authors, 
when measuring low energy electrons, accelerate those with a fixed potential field 
[14][24]. Andersen et al [16] and Knudsen et al [18] accelerate or deaccelerate the 
electrons in front of the channel detector to assure constant impact energy (300 
eV). We determined the ejected electron yield from II+-IIe collision and compared 
with the absolute double differential cross section found in the literature for the 
determination of the efficiency curve [26]. The advantage of our procedure is that 
we determined not only the efficiency function of the detector but the efficiency 
of the whole analyzer including the detector, too. Berry et al [17][20] did not use 
any correction but they measured high energy electrons (Ee > 500 eV) where the 
change of the efficiency of the system in the measuring range is negligible.

Vager et al [27] suggested that the significant fraction of the cusp yield is 
ejected from the analyzer field-ionized Rydberg states. However, Berry et al [20] 
indicated that it is insignificant in the commonly used experimental arrangements.

3. D iscu ssion  o f th e  experim ental results

The leading parameter of the series expansion is the Boo value which is related 
to the total ECC cross section (see Eq. 5). The other parameters are connected with 
the asymmetry of the cusp and show the dynamics (the transfer velocity distribution 
in the projectile frame) of the transfer process. The contribution of the different 
parameters can be seen in Fig. 2.

Recently Andersen et al [16] and Knudsen et al [21] analyzed the energy de
pendence of the Boo parameter. For light projectiles and high impact energy they 
found that Boo is proportional to 01 Vj,~n '3±0'2 which agrees rather well with 
the perturbative second order Born theories [16]. For heavy projectiles, however, 
substantial deviations were found from this Zp prediction where the projectile ve
locity is comparable to the orbital velocity [16]. A similar discrepancy was observed 
for the velocity dependence, too [16].

These results are in contradiction with the Z  dependence of the ECC cross 
section measured by Breinig et al [3] and Kövér et al [26], who found for heavy and 
light projectiles that the exponent of Zp in the cross section function is 2.3±0.3 
and 2.5±0.3, respectively. This discrepancy among the experimental values may be 
caused by the fact that they determined the total yield of the cusp and not the Boo 
parameter.

The next parameter is the B \o  which describes a continuous “background” 
contribution to the measured cusp, therefore its effect to the overall shape is minor, 
but helps to find the best fit. Andersen et al [16] neglected this parameter in their 
fitting procedure.

As it can be seen in Fig. 2 the next parameters are connected with the asym
metry of the cusp. The Box parameter is responsible for the main contribution to the
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asymmetry. Sometimes it is called dipól parameter. Fig. 3 shows the impact energy 
and projectile charge dependence of the Bqi/B qo measured by different authors.

e le c tro n  v e lo c ity  l a .u .  ]

Fig. 2. C on trib u tio n  of th e  different pa ram ete rs  to  th e  shape  of th e  cusp  [35]

Disregarding the data of Andersen et al [16] and Dahl [24] measured for H+ 
projectile, most of the measured values agree fairly well with each other in a certain 
interval indicating a slight increase towards the higher impact velocities. However, 
the spread of the data is rather high, therefore it is difficult to find any tendency 
of the values as a function of the impact energy and charge. The sign of Bq\ is 
negative, showing that the cusp skewed towards the lower electron velocities.

For light projectiles the data of Andersen et al [16] deviate from the data of 
Meckbach et al [14] and Gulyás et al [8] which agree rather well with each other 
and with the data measured for heavy ions. This discrepancy may be caused by 
the fact that Andersen et al [16] used only two parameters (Boo and £?oi) in the 
fitting procedure and they found that these parameters are enough for the best fit
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assuming that in the small interval around the top of the cusp where v'e «  1 the 
leading term is the Boi• The data of Dahl (showed in Fig. 3) were published by 
Andersen et al [16]. In the original work of Dahl [24] only the backward-to-forward 
ratio of emitted electrons in the projectile frame can be found. From these data the 
value of B01 can be determined when neglecting all other parameters.

0.01 0l1 1 Ю
E ( MeV /  omu / 2}

Fig. 3. C om parison  of th e  experim ental and  theo re tical B q i / B qq param ete rs  d e te rm in ed  by
different au th o rs

Gulyás et al [8] examined the effect of the length of the interval around the 
top of the peak where the fitting procedure was performed and they found that 
the values of the parameters were practically constant only in the interval larger 
than (1 ±  0.05)np. For a smaller region where the assumption of Andersen et al 
[16] is valid (i.e. two parameters are enough for the fitting) some changes could be 
observed. A similar conclusion has been drawn by Berry et al [20]. They found 
that higher order terms are important in the wings of the cusp where ve «  1 is 
less valid.

Gulyás et al [8] also investigated the value of the reduced x 2 by using different 
parameters for fitting. It was found that four parameters are necessary for the best 
fit at light projectiles. By using two parameters (Boo and B0i), the value of Boi 
was higher than it was in the case of four parameters fitting of their data.

As it is seen in Fig. 2 the effect of the Bn parameter is similar to the Boi but 
its relative importance is increasing at the wings of the cusp. It is interesting that 
the value of this parameter shows a sharp decrease towards higher impact energies 
as it is seen in Fig. 4. Unfortunately, Knudsen et al [21] did not publish these 
values. For heavy ion-atom collision the B02 (quadrupole term) was investigated, 
too [20-21]. It was found that this value has a negative character and its relative 
importance is increasing with decreasing impact velocity [21].
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Shape analyzes for the ELC processes are rather few, mainly qualitative re
sults can be found. Recently, three dimensional cusp was measured as a function of 
the electron velocity and its emission angle and the so called contour lines are com
pared with the theory [15][19]. Among the studies for ELC mechanism, however, 
multiply ionized Au projectiles having still very many electrons were used and here 
the coincidence technique was also applied in the measurement concerned [18].

Fig. 4 • C o m parison  of the  experim ented В ц / B qq p a ram ete rs  de term ined  by different au th o rs

Gulyás et al [8] studied the shape of the cusp for light projectile (IIe+) carrying 
electron and found that the value of the Boi parameter is practically zero but the 
value of Dn  is rather high showing a slight asymmetry.

4. T heoretica l descrip tion

The early first order Born approximations [28-30] give symmetric shape for 
the ECC cusp which is in contrast with the experimental observations. This con
tradiction was one of the reasons of the theoretical investigations of higher order 
approximations. Shakeshaft and Spruch [31] published a second order Born calcula
tion for II-like target and asymptotically high velocity, which gives an asymmetric 
shape for the ECC cusp. Fig. 3 shows the values of the Boi parameter calcu
lated according to this theoretical approximation by Jakubassa-Amundsen [11] for 
H+-IIe collision. As it was noted this approximation is valid only for higher than 
0.4 MeV/amu impact energies. A similar calculation was done by Kövér et al [26]
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for IIe2+-He collision in the lower energy region (less than 0.4 MeV/amu). These 
data are substantially smaller than the experimental values.

The calculation made by Miraglia and Ponce [32] is based on the same as
sumptions as that of Shakeshaft and Spruch, but differs in the approximations. The 
value of the series expansion parameters determined by them is rather similar to 
those which was calculated according to Shakeshaft and Spruch [31].

Another theoretical description was done by Barrachina and Garibotti [33] 
which is based in the multiple scattering expansion of the ionization amplitudes. 
The calculated value of the relative Box agreed rather well with the experimental 
result of Meckbach et al [14] and Gulyás et al [8] but for higher order parameters 
the agreement is rather poor.

Jakubassa-Amundsen [11][34] interpreted the ECC process with the semiclas- 
sical impulse approximation for asymmetric collision systems where the projectile 
is heavier than the target. This description is valid for H-like target atoms, but it 
can be expanded for more complicated systems, too. These results for II+-He and 
for C6+, Ne10+, Arls+-IIe collision systems [11] are displayed in Fig. 3.

Recently, Burgdörfer united the description of the ELC and ECC processes 
in terms of the density matrix of the low lying continuum states [12]. In this ap
proximation the asymmetry parameters can be determined in terms of the expected 
values of the Runge-Lenz operators. Fig. 3 shows the results of his calculation in 
continuum distorted wave approximation for II+-He system.

The scaling used for the comparison of the different experimental values by 
Knudsen et al [21] and by us in Fig. 3 is valid theoretically only in impulse ap
proximation [34] for heavy projectiles. However, these theoretical curves are in bad 
agreement with most of the experimental values except the data of Andersen et al 
[16] in which case this theory is not valid (the projectile is lighter than the target).

5. C onclusions

The detailed analysis of the shape of the cusp by series expansion seems 
to be a fruitful method for examining the electron-transfer process. It is inde
pendent from the theoretical model and the experimental arrangements, therefore 
stimulates further theoretical and experimental investigations. Unfortunately, for 
the most important parameter (Roi) the experimental data show a rather large 
spread. Recently, the different theoretical approximations differ not only from the 
experimental data but from each other, too. A standard evaluation procedure and 
interpretation for the series expansion coefficients would be necessary not only for 
the experimental but for the theoretical data.

Recently, Meckbach et al [15] and Elston et al [19] have measured the ELC 
angular distribution around the projectile beam determining the transverse electron 
transmission. It is a promising extension method to study more complex collision 
problems.
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In  th is p a p e r we sum m arize the  m ost im p o rta n t result o f th e  VEGA , G IO T T O  an d  
SU ISEI space m issions relevant to  u n d e rstan d  th e  physics of th e  nucleus of Halley’s C om et.

1. In trod u ction

Comets, especially Halley’s Comet always set people’s imagination into work. 
What are they, where did they come from, how are the visible features, the coma, 
the tail etc. created? These are only some of the interesting questions which excited 
not only astronomers but laymen, too.

Comets as we presently understand [1] form an important link between the 
solar system and the rest of the Universe. The comets created are stored in a cloud 
at about 50000 AU from the Sun. This cloud, first proposed by Oort, stores about 
1012 comets with an average mass of 1017 g. To retain one comet in the cloud about 
20 have to escape, not necesssarily toward us. Due to gravitational effect of passing 
stars 5 -1 0  comets yearly start their journey towards the solar system. The general 
dynamics of the cloud is not completely satisfactory but no major contradiction is 
present.

Comets were created from compactification of interstellar grains resulted of 
gravitational sedimentation. One theory assumes that they were formed in the 
region of Uranus and Neptune, at 15-30 AU from the Sun in an environment 
50-100 К cold. Some grew to planets, most were swept towards the outer re
gions. Comparing the mass of the Oort cloud to that of the planets of the solar 
system one may claim that the planets are just the by-products of comet formation. 
Other theories assume that at 300-1000 AU there was an extended accretion disk 
where comets were formed at a 20-40 К temperature. Dynamically it is improbable 
that comets result from external capture; the too long accretion time contradicts to 
originating them from distant nebula fragments. Generally, it is assumed that the 
cometary material is 99% volatiles (gas) and 1% interplanetary dust.

It is an important question how pristine comets are [2], which means that 
one should not only investigate how comets were formed but also how they were 
stored and during their return what modifications they suffered. During storage the
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dust environment, accretion of more gas and the irradation may alter the surface 
materials. During the return phase both the solar wind interaction and the acquired 
heat may modify its material. The processes have to be understood, too, if from the 
investigation of comets we would like to make conclusions about the origin of the 
solar system. M. Wallis [3] raised the interesting question that radioactive heating 
could have played an important role in cometary evolution. The decay of 26A1 may 
cause heating enough to obtain a fluid core. If that really happens, comets may not 
be as pristine as it is generally assumed.

As ground observations could not reveal many phenomena related to these, 
space missions should have been planned to fill some of the gaps in our knowledge.

Cometary fly-by missions had become technically feasible before the next 
apparition of Halley’s Comet was due in 1985-86. The scientific objectives of the 
missions were very similar: to image the nucleus and the near nucleus region, study 
jet phenomena, analyze the chemical processes in the cometary atmosphere, analyze 
the mass distribution and composition of the dust, investigate plasma phenomena 
including the interaction with the solar wind. Alterations in the objectives were 
due to the technical capabilities of the individual missions.

This paper is a summary of the investigations of the results of the cometary 
nucleus.

2. Im ag in g  o f th e  nucleus aboard  th e V E G A  spacecraft

One of the most important goals of the space missions was to image the 
nucleus of Halley’s Comet. This curiosity was understandable since cometary nuclei 
cannot be observed from ground as the extended dust coma screens it from ground 
based telescopes. Though astronomers generally assumed one single solid object as 
nucleus, more extravagant ideas were also present, from multiple core to non solid 
nucleus.

To image the nucleus, a very complex television system (TVS) was put on 
board the VEGA s/c [4] because it also had the task to search and find its tar
get. Halley’s Comet revolves retrograde, hence the relative speed at the encounter 
between the comet and the s/c was high, almost 80 km/s. So all the optical ex
periments were put on a turnable platform pointing toward the nucleus during the 
observation. As the exact position of the nucleus was not known TVS had to find 
its target autonomously.

TVS consisted of two telescopes, a narrow angle (1200 mm focal length) for 
scientific imaging and a wide angle (150 mm focal length) for navigation. The light 
in both was split into two paths and reached Soviet-made CCD detectors 512x512 
pixel wide. One channel of the WAC was used by an autonomous system for back-up 
navigation. One channel of the NAC was dedicated to make the scientific images. 
In this channel there was a filter magazin with 8 different filters in the 400-1100 nm 
interval. In the other channels there were only fixed red filters (red filters are 
optimal to diminish dust screening). The TVS set the exposure time automatically 
in a broad (10 ms -  163 s) interval. The automatic tracking and navigation required

A cta  Pkysica Hungarica 64, 1988



THE NUCLEUS OF HA LLEY’S COMET 269

a very advanced and sophisticated software, but its details are out of the scope of 
this paper.

Before launch the system underwent appropriate calibration, and built-in 
lamps made possible in-flight calibration, too. During ground calibration the dark 
current was measured at different temperatures, the homogeneity and linearity of 
the detectors were registered, different transfer functions of the system were mea
sured: spectral transfer function, line transfer function (better than 80% of the 
theoretical value), charge transfer efficiency (0.9997/line), etc. The resolution was 
checked by a special grid pattern and proved to be not very far from the theoretical 
value. The dynamical range of the system was better than 20, the effect of bloom
ing was also investigated. The characteristics of the in-flight calibration lamps were 
also registered. The ground calibration data in total filled 200 normal size magnetic 
tapes, their evaluation took more than a year after launch.

It followed from the general considerations of the VEGA mission that imaging 
of the nucleus was possible on -2, -1, 1, 2 days for 2 hours from a distance of 
-14, -7, 7 and 14 million km, and for 3 hours around closest approach. As TVS 
was in transport position till mid-February 1986, calibration earlier was possible 
only using the built-in lamps; this took place in every two month after launch. 
After having opened the platform to operational position, Jupiter and Saturn were 
observed. This was necessary partly for the optical check up of the system and 
partly to acquire data for the photometric measurements of the nucleus.

The scientific observation of the nucleus was done according to so-called “pho
tosequences” , i.e. according to a software program written in the memory before 
launch. The sequences were compiled to satisfy different goals. On the basis of 
the spectrum of comet P/Tuttle different filters were used to try to differentiate 
between emission lines. A special sequence was composed to observe the nucleus 
around closest approach. It consisted only of three filters covering the 400-650, 
630-760, 740-900 nm range and the so-called moving window images. It was opti
mized to get enough comparable images with the same filter (allowing a margin for 
the unknown brightness) but to make it possible to reconstruct the real colour and 
shape of the nucleus. In-flight modification of the “photosequences” was possible: 
this option was used during the VEGA-2 fly-by.

3. D iscussion  o f th e  results

The imaging experiment was very successful [5,6,7,8]. This is true in spite 
of the fact that during the VEGA-2 encounter the orientation microprocessor on 
board failed and the system worked in a back-up mode transmitting only full frame 
images with exposure times not optimized for nucleus observation.

Some further problems made the image processing difficult. In the case of 
VEGA-1, the linear response of the CCD matrix was shifted from zero by an offset of 
about 40 digital intensity values. Coherent noise was also present both on VEGA-1 
and VEGA-2 images which was removed using Fourier transformation.

As of today we have processed only those images in which the nucleus can be
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identified. This includes about 63 VEGA-1 and 11 VEGA-2 images taken around 
closest approach which were, respectively, on 6 March 1986 at 07.20:00 UT at a 
distance of 8889 km and on 9 March at 07.20:06 UT at a distance of 8030 km from 
the nucleus.

F ig . l .  Im age of th e  nucleus of H a lley ’s Com et tak en  by  the  cam era on b o a rd  the VEGA-2 space
c raft on 9 M arch  1986. It was tak en  a t 07.19:58 U T , two seconds before  closest approach , a t  a  
d istance of 8030 k m  from  the  nucleus, using a  n ear-in frared  filter (700-900 nm ). T he d irec tio n  of 
th e  Sun is tow ards th e  lower left h a n d  corner, 113° from  th e  vertical ax is o f the  image. T h e  phase  
angle (the  angle be tw een  th e  spacecraft -  comet a n d  th e  Sun -  com et lines) is 28.5°. T he reso lu tio n  
is 120 m  and  160 m . T h e  com et nucleus appears as an  aspherical p ean u t-sh ap ed  object w ith  over
all dim ensions of 16x8x8 km . T h e  region surround ing  th e  nucleus a p p ea rs  bright due to su n lig h t

reflected by d u s t particles.

Fig. 1 shows the best image of the nucleus taken by VEGA-2 at a distance 
of 8030 km from the nucleus with a resolution of 120 x 160 m2, in the 740-900 nra 
range.

Our first goal was to obtain the size of the nucleus. On the images only 
the illuminated part can be seen, but by iterating images, taking into account 
the fly-by geometry and the rotation period, we reached the conclusion that the 
overall dimension of the nucleus is (16-l)x (8-l)x (8-l) km. On GIOTTO s/c the
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camera could define only two sizes [9], those agree with our result. The nucleus is 
irregularly shaped, similar to a potato or an avocado; the closest geometrical body 
is a truncated cone capped at each end by hemispheres of 4 km and 2.25 km radii, 
respectively. The volume is about 500 km3. Its density is about 0.6 g/cm3, very 
much less than it had been anticipated.

The rotation period was obtained by reconstructing in space the major axis 
of the nucleus. From this, supposing prograde rotation, we obtained 53.5 + / - lh  
period [7]. This agrees well with ground based observation of the jet periodicity
[11] and brightness variations [12], and with the Lyman-a breathing of the hydrogen 
coma observed by the SUSEI s/c [13]. GIOTTO has no data for the rotation. We 
have to mention, however, that some ground based astronomers observing brightness 
change of the coma have obtained 7.4 days period.

Using both the ground based and spacecraft observations we reanalyzed the 
rotation of the nucleus [10]. Since it is an irregular body, its rotation is the rotation 
of an asymmetric top. Based on the stability of the 7.4 d period we accepted that 
the motion is free, and we assumed that the nucleus is rigid. We also assumed that 
the orientation of the angular momentum vector is not far from one of the inertial 
axes of the nucleus, since in that case the rotation of an asymmetric top can be 
solved in closed form.

We accepted from the observations the existence of a short, 2.2 d and a long, 
7.4 d period. The major dimensions, 16 km for the longest and 7 km for the shortest 
axis were taken from the VEGA observations. We identified the position of the long 
axis with the position of the shortest inertial momentum axis, which is reasonable 
from the existing data. Then using the orientation of the long axis during the 
different encounters (as given earlier) we concluded that the nucleus of P/IIalley 
rotates as a slightly asymmetric top. The orientation of the rotation vector, i.e. 
the orientation of the angular momentum vector is b——54°, 1—219° in the ecliptic 
system (/=39° in our cometocentric system). The error zone is a cone about this 
axis with a half opening angle of 15°.

In the rotation of an asymmetric top the rotation axis is not fixed rigidly to 
the body, so while the nucleus rotates about the axis with a short period of 2.2 
+ / -  0.05 d, its long axis “nods” periodically with the long period of 7.4+/-0.05 d. 
The amplitude of the “nodding” is about 14° + /-3° in both directions relative to 
a plane perpendicular to the rotation axis. The rotation is a so-called short axis 
mode.

No differences could be found between images made by different filters; so we 
conclude that the colour of the nucleus is neutral, grey.

At present we are in the process of defining the contour of the nucleus on 
individual images. This should be corrected by the illumination to obtain the limb of 
the dark side too, based on the fiy-by geometry. At this stage preliminary limbs are 
available. Using these, in the Space Research Institute in Moscow an approximate
3-dimensional nucleus has been reconstructed, but this needs further improvement. 
The same group, using a similar technique as in medical tomography, reconstructed 
the 3-d light intensity distribution in the near nucleus region. The dust jets shield 
some part of the limb, so it was important for us to understand the jet geometry.
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An important observation was that jets are observable mostly around the 
sunlit hemisphere, after dawn or before dusk the jet activity was limited. The 
VEGA-2 images made possible the 3-d reconstruction of most of the jet sources. 
On those images the jet boundaries and cores are clearly identifiable.

For 3-d reconstruction, we assumed that the jet sources could be approximated 
either by discrete points or by lines. (The edges of a linear source should appear as 
boundaries on several images.) By knowing the geometry, most but not all of the 
sources could be spatially reconstructed.

- 90 *

Fig.2. T h e  p a th  of V EG A -2 p ro jec ted  onto a  sphere  centered on  th e  nucleus. N orth  is ecliptic  n o rth  
on  th e  F igure , the  subso lar p o in t defines zero longitude. On th e  p a th ,  dots ind icate  th e  recording 
of th e  im ages; e.g. we lis t fo r im ages А-G  th e  recording tim e  relative to  en co u n te r (E) and  
d is tan ce  from  th e  nucleus. (A: El-370.5 s, 29539 km ; В: E-101.7 s, 11197 km; C: R -1 .5  s, 8031 km; 
D: E + 9 8 .7  s, 11037 km ; E: E + 1 8 7 .3  s, 16462 km ; F : E+280.5S, 22971 km ; G :E + 5 5 8 .1  s, 43567 km ).

T h e  identified  line-like je t  sources are  denoted  by  th e  shaded regions

The result is shown in Fig.2. One important discovery is that not only are 
many of the sources actually pointlike or linear, but they seem to be ordered to form 
an even larger quasi-linear structure along the surface. One part of this structure 
crosses the projection of the s/c trajectory onto the nucleus, which means that the 
s/c crossed this jet. This was actually observed by the SP-1 dust counter [14]. 
We were’ able to identify a jet source on the dark hemisphere too, using the shift 
differentiation technique developed by Larson and Sekanina [15].

The GIOTTO HMC experiment [9] concluded that the very active regions on 
the surface are less than 15-20 % of the total surface. The Lyman-a imaging on 
SUISEI [13] also identified localized sources on the surface: two strong (SI, S2) and 
four weak (W1-W4) sources were identified, resulting in periodic breathing of the
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Lyman-a coma. The angular positions of the sources are: S1(0) -  Wl(20) -  W2(75) 
-  S2(150) -  W3(204) -  W4(326), where the degrees in parentheses are the positions 
of the sources projected onto an arbitrary circle. The conclusion was reached that 
VEGA-1 experienced the outburst of S2, whereas VEGA-2 did the same with W4, 
assuming a 7h time of flight for dust particles from surface to s/c. These conclusions 
agree well with the general features of VEGA-1 and VEGA-2 images. As GIOTTO 
met the comet when it was rotated by almost 180 degree in comparison to the 
VEGA-1 situation, it explains why the GIOTTO images are relatively clear from 
dust.

It is important to note that on the VEGA images the surface of the nucleus 
on the non-active parts covered by optically thin dust [8], the optical thickness is 
less than 0.1. These measurements also revealed that the nucleus is covered by a 
dark material resulting in a low, 4% albedo.

Work is in progress to identify the observed surface brightness variations on 
the processed images with topographic features, dust sources, etc. At this stage 
from the VEGA images no surface feature has been identified unambiuously. The 
GIOTTO images show some crater-like structures on the surface.

The results of some other experiments are also relevant to understand the 
nucleus. The IKS experiment on VEGA measured the surface temperature of the 
nucleus and found it to be 300-400 K, in a region of about 5 x 3  km2. There the 
surface cannot be highly darkened normal ice. Both devices, the PUMA on VEGA 
[16] and the PIA [18] on GIOTTO measured the dust composition. They confirmed 
that dust particles fall into different classes: one is quite close to light organic mate
rial, another to silicates, the third is close to Cl carbonaceous chondrites but richer 
in carbon. Ten minutes before closest approach the dust material very frequently 
had the highest peak in carbon, closer to the nucleus the highest peak was carbon 
or silicon. Both IKS and TKS on VEGA confirmed thet the activity around the nu
cleus was very asymmetrical, and confined to the sunward hemisphere. In different 
spectral ranges jet-like activities were observed [18,19].

What is our present understanding of the nucleus? At the advent of the 
space missions Whipple’s dirty snow ball model was the accepted paradigm. It was 
developed further e.g. by allowing an outgassed, friable sponge like mantle on top of 
the ice-dust core [20]. As this model yielded a fairly homogeneous activity, special 
surface features were considered to explain jet activity.

After the space missions we have to conclude that the nuclear activity is much 
more inhomogeneous than was previously thought. The most active area is about 
20% of the surface, being divided into active spots and crisps, linear features. The 
inactive or less active areas are covered by dark, refractory material probably rich in 
carbon. (The IRAS experiment observed three comets all of which were very dark 
[21]). At some places the solid surface might be almost impervious to the escape of 
gas. The volatiles are either produced from jet sources or are emitted from the dust 
in the atmosphere but pure gas outbursts cannot be excluded. The surface material 
ható probably low heat conductivity. If one compares the position of the jet sources 
measured by VEGA-2 with the active regions measured by SUISEI and as seen by 
GIOTTO, the activity is highest around noon and varies with the Sun angle. IKS
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on VEGA observed about 5-10 degrees of heat lag, corresponding to 1-2 hours of 
lag. Having so localized jet sources and small active surface, the active areas should 
almost be covered by ice to account for the observed total gas production rate [22]. 
However, here we face some difficulty in understanding where the dust comes from. 
If it is just frozen in material in the ice, dust analysis does not reveal the overall 
cometary composition. However, this is an unlikely situation, because to account 
for the total material lost during one apparition, the surface layer has to shrink 
about 1 m, or, assuming 20% active areas, 5 m deep crisps should cross the surface. 
But deepening decreases the possibility for the Sun to heat it, so the active areas 
should change from time to time. It will be interesting to see how the 1910 jet 
sources coincide with the present observations. If the positions of the crisps are 
changing, this can be due to heat stresses. In that case the new crisps are covered 
by “fresh dust” from the surface layer and the dust will give information about the 
overall composition of the comet. In this picture the icy core is covered by a thicker 
layer of solid mantle.

There is another option too, that the crisps are not changing position. In that 
case the nucleus is similar to the icy glue model [23]. This means, however, that 
the crisps should be deep and wide after many apparitions, slowly leading to the 
disintegration of the nucleus. Some crisps should be big enough to be observable 
by the camera having about 200-300 m resolution. This type of analysis is still in 
progress. We would mention that in this case the missions give information about 
the composition of the icy glue, but not about the boulders glued together. The 
difficulty of this model is, however, that it is unclear how large-sized boulders could 
reach regions outside the big planets.

If we believe that comets were born in the Uranus-Neptunus region (though 
the low density favours more distant regions), it is conceivable that very big objects 
were also created with small likelihood. Some of the big ones could have been 
captured by the giant planets. It is tempting to claim that Umbriel, a satellite of 
Uranus recently observed by Voyager, is very similar to Halley albeit very much 
larger.

During the 20th ESLAB Symposium (27-31 October 1986, Heidelberg) 
Whipple suggested that comets are made of smaller snow balls glued together [24]. 
The surface probably underwent some changes due to irradiation, etc., while the 
comets were stored in the Oort cloud, and this yielded the less active or inactive 
areas. The friable sponge like mantle might be in work only in the active places. 
Further studies are needed to clarify this situation.
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W e consider th e  effect of a  noniso trop ic  selection fu n c tio n  on the  e s tim a ted  values 
o f th e  large  scale velocities o f the  galaxy d is trib u tio n . We show th a t  the d irec tion  of the  
velocity is corre lated  w ith  th e  dipole anisotropy, and  it is also effected by qu ad ru p o le  and  
h igher te rm s. These an iso trop ies seem to  b e  unavoidable and  th e ir  effect should be  included 
w hen com paring  the  re su lts  of experim ents to  theoretical p red ic tions.

It is generally accepted that early, close to the Big Bang the Universe was close 
to homogeneous and isotropic, only small fluctuations of the density and curvature 
existed. The present structure of the Universe arose from these small primordial 
fluctuations. Here we attempt to derive observable consequences of these, namely 
their effect on large scale flows in the galaxy distribution.

The fluctuations are described by a dimensionless density fluctuation field 
and the peculiar velocity field relative to the Hubble flow. Both are functions of the 
comoving spatial coordinate X and time t.

<5(x,0  =  ^ -X/’,y -  1; v obe(x , t) = v (x ,t) +  Hs.
Po(t)

X = xo +  s and H = (â/a), the Hubble constant, a is the expansion factor. Solv
ing the hydrodynamic equations in expanding coordinates a second order differen
tial equation is obtained for the fluctuation amplitude, which contains the second 
derivative of the pressure. In late epochs (Z < 200) the universe is dominated 
by nonrelativistic matter, thus pressure in negligible. If the fluctuations are small, 
we can linearize the equations. This approximation can be used to describe the 
behaviour of large scale density irregularities in the present Universe.

One would like to relate the fluctuation spectrum of the Universe to obser
vational facts. This has been done by calculating rms density fluctuations, corre
lation functions etc., fluctuations in the microwave background radiation. So far 
measurements of the microwave anisotropy yield only upper limits on the fluctua
tion amplitude, whereas the presence of galaxies and clusters is a lower limit. Only 
the galaxy correlation function has been used to provide a normalization for any
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given spectrum. However, if light does not trace mass, these normalizations can be 
false. On the other hand peculiar velocities are caused by the perturbations in the 
mass distribution, so it has been suggested (Peebles and Clutton-Brock [1], Kaiser
[2] ), that the peculiar motion of relatively large regions be studied instead. These 
regions — if large enough — are well described by linear theory since nonlinear 
motions inside the region cancel out, only the collective part remains.

The experimental determination of such large scale motion is indeed possible, 
and has been carried out recently, although results remain somewhat controversial. 
Several groups attempted to determine the collective motion of relatively large 
(about 10-50 Mpc in radius) region of the Universe centered on us (Rubin and Ford
[3] , Hart and Davies [4], Burnstein et al [5], Collins et al [6]). Using an independent 
distance determination to subtract the Hubble flow from the observed total radial 
velocity, the radial peculiar velocity ur (s) = v(s)s can be determined for each 
object, s =  s /s  is a vector of unit length parallel to s. The whole radial velocity 
is measured from the redshift, and the distances are calculated from secondary 
distance indicators: absolute luminosity is related to the radial velocity dispersion 
within an elliptical galaxy (Burnstein et al [5]) or to the dispersion of the 21 cm 
line in a spiral galaxy (Collins et al [6]).

The various groups determine the net CM velocity of the observed region in 
different ways. Either they take the vector sum of the radial measurements weighted 
with a radial selection function that defines the distribution of the observed objects 
(de Vaucouleurs and Peters [7]), or they use a least square fit or maximum likelihood 
techniques to the distribution of the radial velocity in various directions. Results 
depend on the method used and can have large systematic errors. The different 
samples do not give identical results yet.

Motion on such a large scale is linear, therefore it can be related to the 
primordial linear fluctuation spectrum in a straightforward way as follows. Using 
the Fourier expansion:

6 ( x )  =  J  d 3 k e i k x 6 k -, v(x) =  J  d3fceikxVk,

where 6k has random phases and P(k) = |<Sk|2 is the power spectrum. From the 
continuity equation:

V* =  - i ( H a f ) ^ S k = íct>k

with H f  = (D /D ) and D is the growing solution of the linear equation on ők 
(Peebles [8]).

Given a selection function describing the observed region one can predict a 
center-of-mass velocity, based upon the fluctuation spectrum. The magnitude of 
this prediction is given by the rms (root mean square ) value, which is compared to 
the observed velocity. If the two strongly disagree, then our choice or normalization 
of the fluctuation spectrum can be rejected. In order to make strong statements, 
our calculation should attempt to simulate the observations as close as possible.
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The expected value of the CM velocity at a given point is given by the integral 
of v(x) over the observed area:

V (x0) =
f  cPsФ(в)у(б)

/с138Ф( S )  '

The selection function is <$(s), normalized such that the denominator becomes 1. 
All theoretical calculations of this kind so far have assumed an isotropic selection 
function. The dispersion < V2 > can be expressed through the power spectrum and 
the scalar window function W(k), which is the Fourier transform of the isotropic 
«(•):

< V 2 > =  J d3k\vk \2W (k)\

The assumption of isotropy is generally not correct (clumpy distribution of 
galaxies, galactic exinction, etc). Here we take the anisotropies into account, and 
show that they have a strong effect. We consider the galaxy distribution in a 
spherical shell describing the selected region and expand it in multipoles. We derive 
the dispersion of the CM velocity of the region selected this way, assuming that it 
is at a random place in the Universe and compare it to the results obtained with 
an isotropic selection.

We have analytically calculated the case when there is a dipole component 
along the z axis and there are quadrupole components as well. Doing a least squares 
fit to determine the U CM velocity from the v' = v‘s' observed radial velocities:

y^(v* — U s')2 = min ,

leading to 

where

thus

U = M ~ 1V]

i J

U(*o) = =< vr (s)i > =  J  d3s<ï>(s)svr (s);

< \uv\2 >= < v;vß > .

First we determine V, the vector-sum of the radial velocities

Va = J  d3s<b(s)iaSßVß(x) =  J  d3fceikx° v^ß Waß (к ) ,
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where we have a tensor window function, similar to the one used by Grinstein et al
[9]

Waß{Y) = J  d3seikesöÍ0<$(s).

We use a spherical coordinate system: V„ =  U+aVa where U is a unitary 
rotation matrix

/  —1/л/2 0 l/> /2 '
u = ( 0 1 0

V  i/y/2  0 i/V 2 (

/47Г

V,(x0) = J d3ke*x°Vil/ = J  d3keikx° ( v ^ J  ^5Ф (8)е<к* у У 1„(П,)У1;(П .) )  .

4л\
vk/j — — 1 l/i(Gv)-

We assumed that our position is random location, thus the dispersions in 
coordinate- and Fourier space are equal, so the expectation value of |V„(xo)|2 is:

<|V „(x0) |2 > =  (2tt)3 J  fk  |Uk„|2.

Let us expand Ук|/ in multipoles and determine the coefficients

Vk./ =  V k^gjm ,„(k)y/m(fik), 
l , m

< |V„|2 > =  (2*)3£  J  d3k\vv\2qlmiV\2.
I ,m

From these equations:

9;m,,/ =  ( y ) 3/2Ç  J  dGky ,^(G k)ylM(fik) J  d3ŝ (s)eî Yïl/(Q,)Yl*ll(Çl.).

Using the Rayleigh expansion:

e'k* = E  4x»',A'(b)y,Tm,(fik)yJîm,(fi.).
l m

and

J dSlY;m Y l r Y ,.m.  =  y X y ^ ± i c ( / ' l l : 0 0 ) C ( l ' l ( ; m  -

r , ; r , 23 -  m,
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where we apply the integral for and the product for fis. Using the properties of 
the Clebsch-Gordan coefficients we arrive at:

- Л  C (l\L \00)C(/1L; — m ,  u) [  д

qim v -  УГ2/Т1К2Г+lj J  {s) )f

where

Let us expand Ф(s) in multipoles:

Ф (s) = F ( s ) ^ a , , m,y,rm,(i2.))
/I /m

thus

where

J  d3s<b(s)YL> Qi(ks)
(2 /+ 1) = aL^Gi{k),

Gi(k) = J dss2F(s) 
о

Calculating the C coefficients we get:

Qi(ks)
(2/ + 1)4л\

? /m ,±  1 — I \
1(1 ±  m)(l ± m -  1)

2(2/ -  1)(2/+ 1) a/-l,±l-m  +

+
|(1 Т га + 1 )(1 тга  +  2)

2(2/+ l)(2/ + 3) <*/+l,±l-m Gl,

Qlm,0
P -  m2

Y (2 /— 1)(2/+ 1)

Now let us calculate M:

< */-!,- m  +
I (I + l)2 — rn2 
(2/+ l)(2/ + 3) Ol + l , - m  I G l .

ooM„v = J  dss2F ( s ) Y ,  aim J  =
n lm

тгаоо lm

3  / *4 Vi

^ a'mV27TTc(11/;00)c,(11/;m"

hence only a00 contribute to the normalization of Ф(в). 
Since only / = 0 and 1 = 2 are non-vanishing:

M,nv = ^  + / A J _
3 V 15 a00a2,ti+v
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Analyzing the data of Dürnstein et al we can consider the case when there 
is a dipole along the z axis and a rotationally symmetric quadrupole around the 
equatorial since we cannot see through the plane of the Milky-Way Galaxy. Thus 
only aoo, aio and <220 are not zero. In this case we can easily invert M. Hence in 
the mentioned simplified case for the multipole components a/m = a/06m0 we arrive 
at Çlm,V — 4lm,m^m,v and

<v;vlt> = 6,p<\vll\2>,
< \uu\2 > = M^M-J < IV,I2 > .

Thus through the only non-vanishing

< |Vb|2 > =  (2*)3у  (Я0а / ) 2х

X J  dk\6k\2 ( а 20^ а 20 Q g 2 +  ^ G 2)  +  а20 ( ^  +  ^ Gí )  +  ^ аооа2о)

< |f /± i |2 >=  (2ж)3у ( Я 0а / ) 2х

X J  dfc|6i|2 ^aoogGf(fc) -t- a 20- G 2 +  a20 -  з ^ Д “00“ 20)  '

The dispersion of U comes from the elements of M -1 . We present our re
sults in terms of the coefficients K v: the correction to be applied to the results of 
calculations based upon the assumption of isotropy:

Kv < \Uv I2 >
< IÜ ,|2 > '

Taking a delta-function as radial selection due to the thin shell I \v becomes 
independent of the radius. The bulk of the contribution to the к integrals is coming 
from the large scale part of the spectrum, thus we use plain Zel’dovich spectrum 
(P(k) =  k). Calculating the integrals we get:

Due to extinction, galaxy groups, the location of the telescope the dipole 
component in the galaxy distribution can be as large as 1/3. The Burnstein po
sition data give 0.25; analyzing the different shells of de Vaucouleurs and Peters 
we got values about 0.3. The quadrupole term is amounting to 0.5 considering the
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Burnstein data. All these give a 91 per cent systematic error in the longitudinal 
component and 35 per cent in the transverse one.

In conclusion, we have made several improvements over the usual ways of 
calculating large scale motions in the Universe. We took into account that observers 
measure radial velocities, this resulted in a tensor window function. Furthermore, 
we have calculated the effects of a non-isotropic galaxy distribution previously not 
considered and we have shown that it has important consequences on the expected 
motions: the direction of the velocity will be correlated with the dipole moment of 
the galaxy distribution.
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T h e  ho t b ig  b an g  cosmology, o r th e  s ta n d a rd  cosm ology as i t  is ap p ro p ria te ly  known, 
is a  h ighly successful m odel, providing a  reliable and te s te d  accounting of th e  Universe 
from  0.01 s a fte r th e  b an g  un til today, som e 15 G yr la te r . However, very specia l initial 
d a ta  seem  to  be req u ired  in  order to  accoun t for the observed  sm oothness a n d  flatness of 
ou r H ubble  volume an d  for the existence of the small p rim eval density inhom ogeneities 
req u ired  for the  fo rm atio n  of stru c tu re  in  th e  Universe. In fla tio n  offers a  m eans of account
ing fo r these special in itia l d a ta  which is based  upon physics a t sub-P lanck energy scales 
(■C rn.pi — 1019G eV ) a n d  is m otivated  by  contem porary  ideas in particle  theory . Here I 
review  the  s ta tu s  o f th e  “Inflationary  P arad ig m ,” C irca 1986. A t p resent essentially  all 
in fla tionary  m odels involve a  very weakly-coupled (quantified  by  the presence of a  dimen
sionless p a ram ete r o f o rd e r 10-12  or so) sca la r field which is displaced from  th e  m inim um  
of i ts  p o ten tia l. R egions of the Universe where the scalar field is initially d isp laced  from 
its m inim um  undergo  inflation  as th e  sca lar field relaxes, resu lting  in a  U niverse today 
w hich resem bles o u rs in  regions m uch la rg e r th an  our p re sen t Hubble volume ( ~  1028cm), 
b u t  w hich on very large  scales (>■ 1028cm ) m ay be highly irregu lar. A t p resen t, the  most 
conspicuous b lem ish  on  th e  paradigm  is th e  lack of a  com pelling  particle  physics m odel to 
im plem ent it. I also briefly review som e o th er unresolved issues facing in fla tion , including 
th e  confron ta tion  be tw een  the  p red ic tions o f inflation a n d  observational d a ta .

P reface

George Marx is one of the physicists who pioneered research at the interface 
of particle physics and cosmology. In 1972 he and Sándor A. Szalay wrote a paper 
speculating about the role of massive neutrinos in cosmology and placing a cos
mological bound on the mass of the neutrino (Marx and Szalay [1]). The paper 
has become a classic reference in the field, and it could be argued that this paper 
marked the birth of the field of cosmology and particle physics. Physics at the 
interface of cosmology and elementary particle physics is now flourishing. The idea 
of the neutrino-dominated Universe has spawned other-ino (or WIMP) dominated 
Universe models. One of the other flowers that has blossomed in this field is the
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inflationary Universe scenario. From the very beginning George has taken a keen 
interest in the inflationary Universe scenario and so I have chosen as the topic of my 
contribution to this volume celebrating George’s 60th birthday, the present status 
of the inflationary Universe. Because the inflationary scenario predicts G = 1.0 and 
primordial nucleosynthesis precludes Qbaryon ~ 0.15, an inflationary Universe must 
be dominated by something other than baryons, the most promising candidate be
ing relic WIMPs. One of the toughest challenges facing the inflationary scenario is 
reconciling the prediction of Q = 1.0 with the observational evidence that on scales 
~  ЗОМрс Œ<30 — 0-2 ±  0.1. The neutrino-dominated Universe offers a very attrac
tive resolution to this dilemma, as neutrinos, by virtue of their very large damping 
length, would probably be smoothly distributed on these scales and thereby would 
not affect the determinations of Q on these scales.

Successes o f  th e  standard cosm ology

The standard cosmology is a remarkable achievement. Based upon the 
Friedmann-Robertson-Walker (FRW) homogeneous and isotropic cosmological 
model, it provides us with an accurate description of the evolution of the Uni
verse from about 10_2s after the bang (when the temperature of the Universe was 
about 10 MeV) until the present some 3 x 1017s later (and temperature 2.75 K). 
Support for the standard cosmology is based upon a triad of observations. First, 
the isotropic Hubble flow and homogeneous distribution of galaxies; light from the 
most distant galaxies and QSO’s (redshifts of order 3-4) left these objects only a 
few billion years after the bang and therefore test the model to within a few billion 
years of the bang. Second, there is the cosmic microwave background radiation 
(CMBR) whose spectrum is consistent with that of a black body at a temperature 
of 2.75 ±  0.05K (Smoot et al [2]; Peterson et al [3] and which is spatially uniform 
to about a part in 104 on angular scales from a few arcminutes to 180 degrees 
(Wilkinson [4]). [The only anisotropy unambiguously detected thus far is the dipole 
component whose magnitude is of order 10~3 and whose simplest interpretation is 
being due to our motion with respect to the cosmic rest frame.] The surface of last 
scattering for the CMBR is the Universe at i ~  1013 s and T ~  1/3 eV, and so it 
provides a probe of the standard model to within a few 100,000 yrs of the bang. 
Finally, there is the concordance of the cosmic abundances of D,3He,4He, and 7Li 
with the predictions of big bang nucleosynthesis, providing that the present baryon- 
to-photon ratio rj ~  (4 — 7) x 1010 (equivalently, 0.014 ~ Пд/i2 ~  0.035, where as 
usual Ho — 100hkms-1Mpc-1) (Yang et al [5]; Boesgaard and Steigman [6]). Ac
cording to the standard cosmology there was an epoch of primordial nucleosynthesis 
from about t ~  0.01s-300s (T ~  lOMeV-O.lMeV), and so the cosmic abundances of 
these light elements serve to test the model at times to within a fraction of a second 
after the bang. In addition, the standard cosmology provides a general framework 
for understanding how structure in the Universe evolved (see, e.g., Efstathiou and 
Silk [7]): once the Universe became matter-dominated (t ~  10los and T  ~  lOeV),
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small (~ 10-4 ) primeval density inhomogeneities grew via the Jeans (or gravita
tional) instability into the plethora of structure we observe today (galaxies, clusters 
of galaxies, superclusters, voids, etc.).

During its early history (t < 1010s) the energy density of the Universe was 
dominated by relativistic particle species in thermal equilibrium with a tempera
ture T  ~  (i/s)1/ 2MeV, and the cosmic scale factor R(t) oc t1/2. While the standard 
cosmology is only tested back to times of order 10-2s, the standard model of par
ticle physics,the SU(3)C<8> SU(2)x,<g>U(l)y gauge theory of the strong, weak, and 
electromagnetic interactions (belived to be valid at energies ~  lOOOGeV), and the
oretical speculations about physics at very high (~  1014GeV) energies (e.g., grand 
unification, supersymmetry/supergravity, and superstring theories) allow us to ex
trapolate the model back to times as early as 10-43s and perhaps even earlier (see 
Fig-1).
[At times earlier than 10_43s (corresponding to temperatures ~  1019GeV) quan

tum gravitational effects should become very important and extrapolation to times 
this early necessarily requires a quantum description of gravity.] The speculations 
have proven very interesting, from extra dimension, to baryogenesis, to monopoles, 
to cosmic strings, to relic WIMPs, to phase transitions, and finally inflations, the 
subject of this paper. Of course, all of these interesting speculations could prove to 
be nothing more than that; however, nothing in our present knowledge of physics 
would tell us that such speculations are a priori wrong. Compare this to the situ
ation some 20 years ago when it was thought that hadrons were fundamental: at 
times earlier than about 10-5s after the bang inter-particle distances should have 
been less than the size of a typical hadron, thus precluding sensible speculations 
about times earlier than this.

Shortcom ings o f the stan d ard  m odel

As successful as it is, the standard model has its shortcomings. They in
volve a number of very fundamental facts about the Universe we observe within our 
Hubble volume, which it can accommodate, but by no means provides fundamental 
explanations for (in contrast, the standard cosmology provides a fundamental ex
planation for the abundance of the light elements). These cosmological conundrums 
are by this time very well known; they include: (1) The smoothness (isotropy and 
homogeneity) of our present Hubble volume (radius ~  Я -1 ~  1028cm) on scales 

lOMpc, as evidenced by the uniformity of the CMBR and of the distribution of 
galaxies. The size of our Hubble volume is conveniently quantified by the entropy 
within it, which is dominated by the relic photon and neutrino seas and is of order 
10s8. Because of the existence of particle horizons in the standard cosmology it is 
essentially impossible to account for a smooth volume this large as having evolved 
due to physical processes operating in the early Universe: when matter and radi
ation last interacted, the Hubble volume at the time contained an entropy of only 
about 1082, so that particle interactions could not account for such a large smooth
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volume. (2) The origin and nature of the primeval fluctuations required to explain 
the rich array of structure in the Universe today; curvature fluctuations of order 
1Ö-4 on mass scales 1O8M0 — 1O15M0 are required. In the standard cosmology, 
curvature fluctuations cannot arise spontaneously (again because of the existence 
of particle horizons; see, e.g., Bardeen [8] and must be put in ab initio. [It is possible 
that the requisite fluctuations are isocurvature fluctuations and were created during 
the early history of the Universe, perhaps during a phase transition; a promising 
example which has attracted a great deal of attention lately is cosmic strings (see 
e.g., Vilenkin [9]; Albrecht and Turok[10j; Túrok [11]).] (3) The apparent flatness of 
our Hubble volume; the radius of curvature (Äcurv = Л(<)|&|~1/ 2 = H~l /\Q. — 111/ 2) 
in our vicinity must be at least comparable to the radius of our Hubble volume.Had 
the radius of curvature been of order the Planck length (~ 10-33cm) at the Planck 
time (~  10-43s), it would only be of order 0.1cm when the Universe reached a 
temperature of 3K. [Put another way, in order that Í2 still not be too different from 
unity, at the Planck time it must have been equal to 1 to within a part in lO60.] (This 
dilemma and the naturalness of the flat, Einstein-deSitter model has been empha
sized by Dicke and Peebles [12]. (4) The net baryon number within our Hubble 
volume, quantified as the baryon-to-entropy ratio, n g /s ~  rj/7 ~  (7 — 10) x 10-11. 
Of course one of the great successes of the InnerSpace/OuterSpace connection is 
baryogenesis, the modern theory of the origin of the baryon asymmetry, and it ap
pears that now we at least have a framework for understanding the origin of this 
very fundamental quantity (for a review see Kolb and Turner [13]). (5) The dearth 
(thank goodness) of monopoles and other topological beasts which would have been 
produced in great excess during the earliest moments of the Universe (t < 10~34s) 
had the standard model been valid and if the interactions of nature are unified by a 
semi-simple gauge group, such as SUs,SOw, or Eg (for a review see Preskill [14]).
(6) The smallness of the present cosmological term. With the possible exception of 
supersymmetry, no symmetry forbids such a term in the Einstein-Hilbert action, 
and so on dimensional grounds one would expect such a term to be of order m2,, 
corresponding to a vacuum energy of order m4,. In any case, contributions to the 
vacuum energy of order M4 arise due to spontaneous symmetry breaking (SSB) 
at the energy scale M . The measured expansion rate of the Universe restricts the 
present vacuum energy contribution to be ~  10_46GeV4. Even the contribution 
from chiral symmetry breaking (M ~  /etulOOMeV)—a phenomenon that parti
cle physicists think they know something about, violates this bound by some 42 
orders-of-magnitude!

All of these cosmological facts can be accommodated by the standard model, 
but seemingly at the expense of highly special initial data (the possible exception 
being the monopole problem). In 1973, Collins and Hawking [15] pointed out that 
the set of initial data which evolve to a Universe such as ours is of measure zero 
providing that the stress energy in the Universe has always satisfied the strong and 
dominant energy conditions. Over the years there have been a number of attempts 
to try to understand and/or explain this apparent dilemma of initial data. Inflation 
is the most recent attempt and I believe shows great promise. Let me begin by 
briefly mentioning the earlier attempts:
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-Mixmaster paradigm. Starting with a solution with a singularity which ex
hibits the features of the most general singular solutions known (the so-called mix- 
master model) Misner and his coworkers hoped that they could show that particle 
viscosity would smooth out the geometry. In part because horizons still effectively 
exist in the mixmaster solution this program has proven unsuccessful (see, e.g., 
Misner [16], [17]; Matzer and Misner [18]).

-Nature of the initial singularity. Penrose [19] explored the possibility of 
explaining the observed smoothness of the Universe by restricting the kinds of initial 
singularities which are permitted in Nature (those with vanishing Weyl curvature). 
In a sense his approach is to postulate a law of physics governing allowed initial 
data.

-Quantum gravity effects. The first two solutions involve appealing to classical 
gravitational effects. A number of authors have suggested that quantum gravity 
effects might be responsible for smoothing out the space-time geometry (deWitt [20]; 
Parker [21]; Zel’dovich [22]; Starobinskii [23]; Anderson [24]; Ilartle and IIu [25]; 
Fischetti et al. [26]). The basic idea being that anisotropy and/or inhomogeneity 
would drive gravitational particle creation, which due to back reaction effects would 
eliminate particle horizons and smooth out the geometry. Recently, Hawking and 
Ilartle [27] have advocated the Quantum Cosmology approach to actually compute 
the initial state. All of these approaches necessarily involve events at times ~  10_43s 
and energy densities ~ m4,.

-Anthropic principle. Some (Carr and Rees [28]; Barrow and Tipler [29]) 
have suggested (or in some cases even advocated) “explaining” many of the puzzling 
features of the Universe around us (and in some cases, even the laws of physics!) 
by arguing that unless they were as they are intelligent life would not have been 
able to develop and observe them! Hopefully we will not have to resort to such an 
explanation.

The approach of inflation is somewhat different from previous approaches. In
flation (at least from my point-of-view) is based upon well-defined and reasonably 
well-understood microphysics (albeit, some of it very speculative). That micro
physics is:

-  Classical Gravity (general relativity), at least as an effective, low energy 
theory of gravitation;

- “Modern Particle Physics”—grand unification, supersymmetry /supergrav
ity, field theory limit of superstring theories at energy scales ~  mp;.

As I will emphasize, in all viable models of inflation the inflationary period (at 
least the portion of interest to us) takes place well after the Planck epoch, with the 
energy densities involved being far less than m4, (although semi-classical quantum 
gravity effects might have to be included as non-renormalizable terms in the effective 
Lagrangian). Of course, it could be that a resolution to the cosmological puzzles 
discussed above involves both “modern particle physics” and quantum gravitational 
effects in their full glory (as in a fully ten dimensional quantum theory of strings).

I will not take the space here to review the historical development of our 
present view of inflation; I refer the interested reader to the interesting paper on this
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subject by Lindley [30]. It suffices to say that Guth’s very influential paper of 1981 
[31] initiated the inflation revolution, and that Guth’s doomed original model (Guth 
and Weinberg [32]; Hawking et al. [33]) was revived by Linde’s [34] and Albrecht 
and Steinhardt’s [35] variant, “new inflation” . I will focus all of my attention on 
the present status of the “slow-rollover” model of Linde [34] and Albrecht and 
Steinhardt [35].

Basic m echanics o f n ew  inflation

Stated in the most general terms, the current view of inflation is that it 
involves the dynamical evolution of a very weakly-coupled scalar field (hereafter 
referred to as ф)  which is, for one reason or another, initially displaced from the 
minimum of its potential (see Fig. 2).While it is displaced from its minimum, and is 
slowly-evolving toward that minimum, its potential energy density drives the rapid 
(exponential) expansion of the Universe, now known as inflation.

V (Ф) v <*>

Fig. 2. S ta te d  in  th e  m ost general term s, infla tion  involves the  dynam ical evolution of a  sca la r 
field w hich w as in itially  displaced from  th e  m in im um  of its  po ten tial, be  th a t  m inim um  a t  a — 0

or а ф 0

The usual assumptions which are made (often implicitly) in order to analyze 
inflation are:

-A FRW spacetime with scale factor R(t) and expansion rate

H 2 = (R /R )2 = 8trp/3mp( — k /R 2, (1)

where the energy density is assumed to be dominated by the stress energy associated 
with the scalar field (in any case, other forms of stress energy rapidly redshift away 
during inflation and become irrelevant).
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-The scalar field ф is spatially constant (at least on a scale ~  # -1 ) with 
initial value ф{ ф о, where V(<т) =  V'(cr) = 0, and stress energy tensor

T? = diagonal (~p,p,p,p), (2a)
p = V  + ф2/2{+\7ф2/2Е2), (2b)
p = - V  +  ф2/2{-У7ф2/SR2). (2c)

(I have indicated the contribution of the spatial gradient terms for future 
reference.)

-  The semi-calassical equation of motion for ф provides an accurate description 
of its evolution; more precisely,

Ф(1) = Фы(1) +  &Ф(2М, (За)

Фы +  3 Нфс1 + Тфс1 +  У(фс1) = о, (ЗЬ)
where the quantum fluctuations (characterized by size Афе^м — Н /2ж) are assumed 
to be a small perturbation to the classical trajectory фс\(f), and Г is the decay width 
of the ф particle. Throughout I use units where h = кв = c = 1; overdot indicates 
a derivative with respect to proper time and prime with respect to ф. From this 
point forward I will drop the subscript “cl”. I will return later to these assumptions 
to discuss how they have been or can be relaxed and/or justified.

The semi-classical evolution of ф naturally splits into three phases: slow-roll; 
coherent scalar field oscillations; and quantum fluctuations.

(1) Slow-roll. Assuming that the scalar potential is sufficiently flat (the re
quirement being that 9H2 ~  |V"|) there will be a period when the motion of ф is 
friction-dominated, so that the ф term in Eq. (3b) can be neglected and ф2 <C V 
can be neglected in Eq. (2b). The equation of motion for ф becomes

ЗНф ~  —V ,
H 2 ~  8жУ(ф)/Зт21.

The growth of the scale factor during the slow-roll is approximately exponential 
since H ~  constant, and

R f/R i  = exp( J Hdt) = exp (N), (4a)

J  H 2dф/V' ~  8тгт~ 2 J -У(ф№/У'(ф). (4b)

The exponential growth or inflation occurs during the slow-roll phase.
(2) Coherent scalar field oscillations. As approaches <r the potential steepens 

sufficiently (or V (ф) becomes sufficiently small) so that the motion of ф is no longer 
friction-dominated (which occurs when \V"\ ~  9H 2) and ф begins to oscillate about
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the minimum of the potential (ф — <т) on a timescale (~ |У"|-1/ 2 = m^1) short 
compared to the Hubble time. During this phase its oscillatory motion can be 
time-averaged, and the equation for its evolution becomes

РФ +  Ъ Н  рф — 0 , (5 )

whose solution is рф ос exp(—r t ) / ß -3-precisely that of an unstable, NR particle 
species. The coherent field oscillations behave like NR matter (as they should, since 
they correspond to the zero momentum mode of the field), and decay in a time Г-1 
(= Тф, the lifetime of the ф particle) due to particle creation by the oscillating ф 
field. From the particle point-of-view, the oscillations correspond to a very cold 
condensate of ф particles, which then decay. During this phase the scale factor 
R(t) oc <2/3. Assuming that the decay products thermalize quickly (or at least 
are relativistic) and neglecting any relativistic particles present before inflation as 
they ’ve been exponentially diluted, the evolution of the energy density in radiation 
produced by the decay of the coherent field oscillations is governed by

P r  +  4Яря =  Т р ф.  (6)

The evolution of рф,ря, and the entropy per comoving volume (= S ос Д3рд 4) 
are shown in Fig. 3.

lo g  ( p  )

end of reheat
inflation

Fig. J .T h e  evo lu tion  of the  energy density  in  the sc a la r  field (рф), in  ra d ia tio n  (p r ), a n d  of the  
entropy p e r  comoving volum e, S  ос Я 3р ^ 4

At early times, 1 < Г  1,pr oc< 1 and S  oc f5/ 4. The entropy per comoving volume 
levels off when most of the ф particles have decayed, at t ~  Г-1 , and thereafter the
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energy density in coherent field oscillations decreases exponentially. The reheating 
process is essentially complete at this time (save for the possible thermalization of 
the decay products of the ф particles) and the temperature is about

TRH ~  (Гшр,)1/2. (7)

Figure 3 summarizes the evolution of ф and the reheating process. For further 
discussion see Turner [36].

(3) Quantum fluctuations. During inflation ф is on the flat part of its potential 
and can be treated as an effectively massless scalar field. The spectrum of de Sitter 
space quantum fluctuations is given by (Bunch and Davies [37])

АфЪм = \6фк\Ч3/ (2ж)3 = Я 2/  167Г3, (8)

where 8фк is the kth Fourier component of 8ф and kphys =  k/R(i) is the physical 
wavenumber of the mode with comoving wavenumber k. For scales kpьу5 ~  Я -1 
these perturbations are treated quantum mechanically; as kphys becomes ~  Я “ 1, 
and a given scale crosses outside the “physics horizon” (or Hubble radius) Я -1 
the fluctuation on that scale is taken to evolve classically thereafter (the quantum 
fluctuation is assumed to “freeze in” as a classical perturbation in the metric). The 
evolution of the metric perturbations due to the classical fluctuations is straight
forward to compute. They give rise to curvature (scalar mode) fluctuations of 
amplitude (Bardeen et al [38]; Guth and Pi [39]; Starobinskii [40]; Hawking [41])

( ö p / p H O R )  — ^ 3 ^2 |<5jt | / (27r)3/,2
(Я 2/7Г3/,2<̂>) |t l , 
(Я 2/10тг3/ 2<̂ )|11,

(9a)
(9b)

when they reenter the horizon. Perturbations which reenter when the Universe is 
radiation-dominated do so as pressure waves (in the baryon-photon fluid) of the 
amplitude indicated in Eq. (9a); those which reenter when it is matter-dominated 
do so as growing mode perturbations with the amplitude indicated in Eq. (9b).

Tensor mode metric (gravitational wave) perturbations also arise and are of 
dimensionless amplitude (Abbott and Wise [42]; Starobinskii [43]; Rubakov et al 
[44])

hGW\HOR — { H / m p\)\t l , ( 10)

when they reenter the horizon after inflation. In both cases the quantities on the rhs 
are to be evaluated when the comoving scale of interest crossed outside the Hubble 
radius (k /R  ~  Я), at t = t x (see Fig. 4). Normalizing Rtoday = 1, if follows that a 
given scale Jk(= 2тг/Л) crossed outside the horizon during inflation

N (A) ~  45 + ln(A/Mpc) + 21n(A//1014GeV)/3 + ln(Tfi///10loGeV)/3 (11)

Hubble times (or e-folds) before the end of inflation (see Fig. 4). Thus the scales of 
astrophysical interest crossed outside the horizon 40 ± 10 or so Hubble times before 
the end of inflation. Although Я and ф can vary considerably during inflation, over
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such a small range of Hubble times both H and H 2/ф are essentially constant (vary 
by less than a factor of 2 in all the models I have studied) and so a generic prediction 
of inflationary models is scale invariant curvature and tensor perturbations. [In 
models where there are other massless fields, quantum fluctuations of order Н/2ж 
arise in these fields too during inflation and can give rise to isocurvature (often 
called isothermal) perturbations. A simple example being axion models where the 
quantum fluctuations in the axion field result in fluctuations in the local axion 
to entropy density ratio na/s  (see Steinhardt and Turner [45]; Linde [46]; Turner 
[47]).] The mechanics of inflation are described in much greater detail in the review 
by Turner [48].

Successfully im p lem en tin g  inflation

Now that I have discussed the basic mechanics of inflation, how does one build 
a model which actually leads to a Universe which resembles ours in regions as large 
as our current Hubble volume? I t’s as easy as 1,2,3,4,5,6,7,8,...

Fig. 4 .T he evo lu tion  of th e  physical wavelength of a  given m ode. E arly  during  inflation 
Aphy3 ~  Я - 1 a n d  th e  scale is inside th e  physics horizon an d  fluctuations are  trea ted  q u an tu m  

m echanically. As th e  m ode leaves th e  physics horizon (Aphys >  1), the  p e rtu rb a tio n  is assum ed  to
“freeze in ” as a  classical m e tric  p e rtu rb a tio n
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(1) Smoothness/Flatness.—After inflation there must be smooth/flat regions 
of the Universe which contain an entropy of at least 1088. Assuming that ф was 
constant in a region of size of order the Hubble radius before inflation, it is straight
forward to show that the number of e-folds of inflation required so that the patch 
contains an entropy of at least 1088 after reheating is

N  = J H d t~  J -З Н ^ ф /У '  ~  53 + 21n(M/1014GeV)/3 + ln(THR/10loGeV)/3.

( 12)
The number of e-folds required to solve the “flatness problem” is equal to this plus 
In 11 — 11 where is the value of Q at the beginning of inflation. In general, if a
given model inflates at all, it is not difficult to make it inflate enough to solve the 
smoothness/flatness problems.

(2) Sufficiently large smooth patch. In order that the vacuum energy contribu
tion to the energy density of the Universe dominates the gradient terms (( 'Уф)2), ф 
must be smooth over a sufficiently large region. [If the gradient term dominates, 
the stress energy of the scalar field behaves like a fluid with p = —p/3 and scale 
factor only grows as R(t) oc t, not exponentially.] The condition that V (Уф)2 
requires ф to be smooth over a region of size greater than фх/ V 1/,z ~  (ф{/тр1)Н~1.

(3) Validity of semi-classical description. In order that the semi-classical
equations of motion be self consistent ~  H must be much less than фС1. I
will return to this point later — in general it is not a difficulty.

(4) Topological beasts. One must be careful not to produce any of the dan
gerous topological beasts such as domain walls, monopoles, etc. after inflation. 
This can be arranged by having the symmetry breaking stages which result in the 
formation of such objects occur before or early on during inflation.

(5) Other unwanted garbage. As is well-known the ratio of the energy density 
in nonrelativistic (NR) particles relative to that in relativistic (R) particles grows 
with time: Pn r / Р г R(t). Since our Universe did not become matter-dominated 
until rather recently, T  ~  10 eV and t ~  10los, the ratio of energy density in stable, 
NR particles (which do not come into thermal equilibrium, or annihilate) to that 
in R particles after inflation must be small:

Pn r / p r  ~  10-19(10loGeV/T*„) (13)

— which is not always an easy thing to do. [Just ask any experimentalist about sup
pressing something by 19 orders-of-magnitude!] Examples of potentially dangerous 
forms of NR matter include: gravitinos, weakly-coupled scalar fields which may be 
put into oscillation after inflation (the so-called Polonyi problem; e.g., see Coughlan 
et al [49]), etc. There are even stronger limits on unstable NR particles (particularly 
gravitinos) which follow by considering their effect on primordinal nucleosynthesis 
(Ellis et al [50]; Khlopov and Linde [51]; Scherrer and Turner [52]).

(6) Metric perturbations. While the eventual development of structure in 
the Universe requires density perturbations of the order of few  x 10-5 or so, the 
observed isotropy of the CMBR precludes scalar or tensor perturbations of size
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greater than about 10-4 . Achieving tensor mode perturbations of this size or smaller 
is not difficult; it only requires that inflation occur at an energy scale M  ~  V ~  
10~2mp;, putting an upper limit on the reheating temperature: T r h  ~  3 x 1016GeV. 
The scalar perturbations are another matter; thus far, they have posed the most 
serious obstacle to constructing a successful model of inflation. To achieve curvature 
fluctuations of amplitude less than about 10-4 requires a dimension parameter in 
the scalar potential of the order of 10-12. For example, for a potential of the 
form V = Ad»4, A must be ~ 10-13; for the potential V = To +  аф2 — РФ2 + АфА, 
a ~  10~15m2,, A ~  10—11, ß ~  3x 10~12mp(; for the potential V =  m2<£2 (i.e., anon-
interacting, massive scalar field),m2 ~  10_9m2,. Achieving density perturbations of 
an acceptable amplitude necessitates a very weakly-coupled scalar field; weakly- 
coupled to all fields in the theory or else radiative corrections would spoil the small 
coupling put in at tree level. Such a small coupling also implies that inflation takes 
place at an energy scale much less than the Planck scale; typically, V ~  Аф4 ~  
10-12m4, or less.

(7) Sufficient reheating. In order not to spoil the concordance of the pre
dictions of primordial nucleosynthesis with the observed abundances, the Universe 
ehould be radiation-dominated when t ~  0.01s and T  ~  lOMeV at the very latest, 
i.e., Trh ~10MeV. This implies that Г must be ~  10_23GeV—which is not difficult 
to achieve, even for a very weakly-coupled scalar field. Baryogenesis, however, poses 
a more formidable challenge. It goes without saying that baryogenesis must follow 
inflation , as any baryon asymmetry produced before inflation is diluted away by 
the enormous entropy produced by inflation. If baryogenesis is to proceed in the 
usual way, T r h  must be gerater than about a m # /10, where m# is the mass of the 
superheavy boson whose out-of-equilibrium decays produce the baryon asymmetry 
(see Kolb and Turner [13]). In most unified theories the longevity of the proton 
requires the masses of superheavy bosons whose interactions violate B-conservation 
to be greater than about 10loGeV, thereby requiring T r h  ~  109GeV at the very 
least. Because the scalar field must be very weakly-coupled (to produce density 
perturbations of an acceptable magnitude) Г tends to be very small, and sufficient 
reheating is often very difficult to achieve. There is, however, an alternative method 
which does not require such a high reheating temperature: the direct production 
of the baryon asymmetry by the decays of the scalar field responsible for inflation 
(ф —*■ q s, l s with A B  ф 0). In this case the baryon asymmetry produced is

nB/s  ~  еТин/гПф, (14)

where e is the magnitude of the requisite C,CP  violation in the decay of the ф 
particle. Note that the asymmetry produced only depends upon the ratio of the 
reheating temperature to the mass of the ф particle, and so it is possible to have a 
relatively low reheating temperature and still a baryon asymmetry of the required 
magnitude.

(8) Part of a unified model which predicts sensible particle physics. In order 
to avoid having the tail wag the dog so to speak, the scalar field should be part of 
a unified theory which predicts sensible particle physics.
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Specific m odels

While the requirements on a successful model of inflation are straightforward 
they are not simple to satisfy simultaneously, and the path to a successful model 
is strewn with the remains of many an attractive model that failed for one reason 
or another. The toughest challenge has been the constraint imposed by the scalar 
density perturbations. At present there are no successful models which are so 
elegant as to be compelling (compelling here, meaning attractive to other than the 
authors of the model!), although there do exist a number of “proof of existence” 
models. I will describe two particularly simple models here.

(1) Shafi-Vilenkin-Pi model. This model.(Shaft and Vilenkin [53]; Pi [54]) 
is based upon an SUs nonsupersymmetric GUT (although the gauge group could 
just as well be SOw or Eg). The scalar field responsible for inflation is a complex 
Higgs gauge singlet, which in addition to being responsible for inflation, also breaks 
a Peccei-Quinn (PQ) symmetry and effects GUT symmetry breaking by inducing 
a negative mass squared for the adjoint Higgs representation which then breaks the 
GUT down to SU(3) ® SU(2) ® U(l). The part of the Higgs potential which is 
relevant for inflation is a Coleman-Weinberg type potential

V{<t>) =  Ba4/ 2 + Вф4[Щф3/а 2) -  1/2], (15)

where a ~  1018GeV is the vacuum expectation value of ф at low temperatures, 
which breaks PQ symmetry and induces GUT SSB; В ~  10“ 15 arises due to radia
tive corrections from coupling of ф to other scalar fields in the theory. Interestingly 
enough isocurvature axion fluctuations of similar magnitude to the curvature fluc
tuations also arise in this model (Seckel and Turner [47]).

(2) Florida SUGR. This model (Holman et al [55]) is based on an effective 
low energy supergravity theory with a superpotential of the form, 7 + S  +  G, where 
the three pieces of the superpotential are responsible for inflation, supersymmetry 
breaking and GUT symmetry breaking respectively. The inflation piece of the 
superpotential takes a particularly simple form

7 = (А2/М)(ф -  A/)2, (16)

where A is the only adjustable parameter and corresponds to the intermediate scale 
and M  =  mpi/(8n)lG ~  2.43 x 1018GeV. The resulting scalar potential for ф is given 
by

V/(<£) =  A4 exp(ф2/ М 2)[ф6/М 6 -  4ф5/ М 5 + 1ф4/М 4 -  4ф3/М 3 -  ф2/ М 2 + 1]

~  Д4[1 -  4ф3/М 3 + 6 .Ьф4/М 4 -  8фъ/ М ъ +  . . .  (17)
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Achieving density perturbations of an acceptable magnitude requires that (A/M) ~  
9 X 10-5 . Note that the coefficient of the ф4 term in V/ is dimensionless and for this 
value of Д is about 4 x 10_16-the small dimensionless parameter which always arises. 
Of course, in this model it is directly related to the smallness of the intermediate 
scale relative to the Planck scale, suggesting (or offering hope) that the very small 
parameter needed for áuccessful inflation is related to fundamental physics. This 
model reheats to a temperature of about 106GeV and baryogenesis is effected directly 
through the decays of the ф field.

O pen (or sem i-open) questions

“Who is ф?”

Inflationary models exist in which the scalar field ф: effects SSB of the GUT 
(Shaft and Vilenkin [53]; Pi [54]), effects SSB of SUSY (Ovrut and Steinhardt 
[56,57]), induces Newton’s constant (in a Landau-Ginzburg model of induced grav
ity) (Accetta et al [58]; Spokoiny [59]), is ~  1п(гл-£<э) (where r \  is the radius of 
compactified extra dimensions) in theories with extra dimensions which become 
compactified (Shaft and Wetterich [60,61]), is oc (scalar curvature)1/ 2 (Starobinskii 
[23]; Mijic et al [62]), is just some “random” scalar field (Linde [63]), or is merely in 
the theory to effect inflation (Holman et al [55]; Nanopoulos [64]). Given the number 
of different kinds of inflationary scenarios which exist, it seems as though inflation is 
generic to early Universe microphysics, occurring whenever a weakly-coupled scalar 
field finds itself displaced from the minimum of its potential. Clearly, a key question 
at this point is just how “the inflation sector” of the theory fits into the Big Picture!

What determines the initial value of ф?

One thing is certain, and that is that ф must be very weakly-coupled, as quan
tified by its small dimensionless coupling constant. Because of this fact, it is almost 
certain that ф was not initially in thermal contact with the rest of the Universe and 
so фi is unlikely to be determined by thermal considerations (in the earliest mod
els of new inflation, фi was determined by thermal considerations, however, these 
models resulted in density perturbations of an unacceptably large amplitude). At 
present ф1 must be taken as initial data. Some have argued that ф{ might be deter
mined in an anthropic-like way, as regions of the Universe where ф,• is sufficiently 
far displaced from equilibrium will undergo inflation and eventually occupy most 
of the physical volume of the Universe. Perhaps the wavefunction of the Universe 
approach will shed some light on the initial distribution of the scalar field ф. Or 
it could be that due to “as-of-yet unknown dynamics” ф weis indeed in thermal 
equilibrium at a very early epoch. It goes without saying that it is crucial that ф 
be initially displaced from its minimum.
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Validity of the semi-classical equations of motion for ф

While it may seem perfectly plausible that ф evolves according to its semi- 
classical equations of motion, the validity of this assumption has troubled inflation
ists from the “dawn of new inflation”. While a full quantum field theory treatment 
of inflation is very difficult and has not been effected, a number of specific issues 
have been addressed. Several authors have studied the role of inhomogeneities in 
ф, and have found that for the very weakly-coupled fields one is dealing with, mode 
coupling is not important and the individual modes are quickly smoothed by the 
exponential expansion of their physical wavelengths (Albrecht and Brandenberger 
[65]; Albrecht et al [66]). I already mentioned the necessity of having ф smooth 
over a sufficiently large region so that the gradient terms in the stress energy do 
not dominate.

The effect of quantum fluctuations on the evolution of ф has been studied 
in some detail by Guth and Pi [67], Fischler et al [68], Linde [69], and Vilenkin 
and Ford [70]. The basic conclusion that one draws from the work of these authors 
is that the use of the semi-classical equations of motion is valid so long as ф с\ >• 
Аф <зм  — N 1/ 2 H / 2 n ,  which is almost always satisfied for the very flat potentials of 
interest to inflationists (at least for the last 50 or so e-folds which affect our present 
Hubble volume). [More precisely, the semi-classical change in ф in a Hubble time, 
A (̂ Hubble — — V ' / Z  H 2 ~  — V  mp,/(87rV), should be much greater than the increase 
in < ф 2 >1qm , which is of order Н / 2i r,  due to the addition of an another quantum 
mode; see Bardeen et al [38].] At present the validity of the semi-classical equations 
of motion seems to be reasonably well established.

No hair conjectures
While inflation has been touted from the very beginning as making the present 

state of the Universe insensitive to the initial spacetime geometry, not much has 
been done to justify this claim until very recently. As I mentioned earlier, inflation 
is nearly always analyzed in the context of a flat, FRW cosmological model, mak
ing such a claim somewhat dubious. However, it has now been shown that all of 
the homogeneous models (with the exception of the highly-closed models) undergo 
inflation, isotropize and remain isotropic to the present epoch providing that the 
model would have inflated the requisite 60 or so e-folds in the absence of anisotropy 
(Turner and Widrow [71]; Jensen and Stein-Schabes [72]).

The proof of this result involves three parts. First, Wald [79] demonstrated 
that all homogeneous models with a positive cosmological term asymptotically ap
proach deSitter (less the aforementioned highly-closed models which recollapse be
fore the cosmological term becomes relevant). Wald’s result follows because all 
forms of “anisotropy energy density” decrease with increasing proper volume ele
ment, whereas the cosmological term remains constant, and so eventually triumphs. 
Of course, inflationary models do not in the strictest sense, have a cosmological term, 
rather they have a positive vacuum energy as long as the scalar field is displaced 
from the minimum of its potential. Thus the dynamics of the scalar field comes
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into play: does ф stay displaced from the minimum of its potential long enough 
so that the vacuum energy comes to dominate? Due to the presence of anisotropy 
the expansion rate is greater than if there were only vacuum energy density, and 
so the friction felt by ф as it trys to roll (the 3Нф term) is greater and it takes ф 
longer to evolve to its minimum than without anisotropy. For this reason the Uni
verse does become vacuum dominated before the vacuum energy disappears, and in 
fact the Universe inflates slightly longer in the presence of anisotropy (one or two 
e-folds)(Steigman and Turner [74]). Finally, is the anisotropy reduced sufficiently 
so that the Universe today is still nearly isotropic? As it turns out, the requisite 60 
or so e-folds needed to solve the other conundrums reduces the growing modes of 
anisotropy sufficiently to render them small today.

Allowing for inhomogeneous initial spacetimes makes matters much difficult. 
Jensen and Stein-Schabes [75] and Starobinskii [76] have proven the analogue of 
Wald’s theorem for spacetimes which are negatively-curved. Jensen and Stein- 
Schabes [75] have gone on to conjecture that spacetimes which have sufficiently 
large regions of negative curvature will undergo inflation, resulting in a Universe 
today which although not globally homogeneous, at least contains smooth volumes 
as large as our current Hubble volume.

Does this improve the situation that Collins and Hawking discussed in 1973? 
While the work of Jensen and Stein-Schabes [75] seems to indicate that many inho
mogeneous spacetimes undergo inflation and even leads one to speculate that the 
measure of the set of initial spacetimes which eventually inflate is non-zero, it is 
not possible to draw a definite conclusion without first defining a measure on the 
space of initial data. In fact, as Penrose [19] pointed out there is at least one way of 
defining the measure such that this is not the case. Consider the set of all Cauchy 
data at the present epoch; intuitively it is clear that those spacetime slices which 
are highly irregular are the rule, and those which are smooth in regions much larger 
than our current Hubble volume are the exception. Defining the measure today, it 
seems very reasonable that the smooth spacetime slices are a set of measure zero. 
Now evolve the spacetimes back to some initial epoch (for example t = 10-43s). 
Using the seemingly very reasonable measure defined today and the mapping back 
to “initial” spacetimes, one could argue that the set of initial data which inflate is 
still of measure zero. While I believe that this argument is technically correct, I also 
believe that it is silly. First, upon close examination of all of those initial space- 
times which led to spacetimes today without smooth regions as large as our present 
Hubble volume, one would presumably find that the scalar field in most would be 
very close to the minimum of its potential (in order that they not inflate)—not a 
very generic initial condition. Secondly, if one adopts the point-of-view of an evolv
ing Universe which has an “initial epoch” (and not everyone does), then there is a 
preferred epoch at which one would define a measure — the “initial epoch,” and at 
that epoch I believe any reasonably defined measure would lead to the set of initial 
spacetimes which inflate being of non-zero measure.

Although it is not possible yet to claim rigorously that inflation has resolved 
the problem of the seemingly special initial data required to reproduce the Universe 
we see today (at least within our Hubble volume), I think that any fairminded per
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son would admit that it has improved the situation dramatically. Extrapolating 
from the solid results that exist, it seems to me that starting with a general inho
mogeneous spacetime, there will exist regions which undergo inflation and which 
today are much larger than our present Hubble volume, thereby accounting for the 
smooth region we find ourselves in. From a more global perspective, one might 
expect that on scales H~l the Universe would be highly irregular.

The present vanishingly small value of the cosmological constant

Inflation has shed no light on this difficult and very fundamental puzzle (nor 
has anything else for that matter!). In fact, since inflation runs on vacuum energy so 
to speak, the fate of inflation hinges upon the resolution of this puzzle. For example, 
suppose there were a grand principle that dictated that the vacuum energy of the 
Universe is always zero, or that there were an axion-like mechanism which operated 
and ensured that any cosmological constant rapidly relaxed to zero; either would 
be a disaster to inflation shorting out its source of power-vacuum energy. [Another 
possibility which has received a great deal of attention recently is the possibility 
that deSitter space might be quantum mechanically unstable—of course, if its life
time were least 60 some e-folds that would not necessarily adversely affect inflation 
(Starobinskii [23]; Myhrvad [77]; Mottola [78]; Parker [79]; Ford [80]; Anderson [81]; 
Traschen and Hill [82].]

Inflation  confronts observation

No matter how appealing a theory may be, it must meet and pass the test 
of experimental verification. Experiment and/or observation is the final arbiter. 
One of the few blemishes on early Universe physics is the lack, thus far, of exper- 
imental/observational tests of the many beautiful and exciting predictions. That 
situation is beginning to change as the field starts to mature. Inflation is one of the 
early Universe theories which is becoming amenable to verification or falsification. 
Inflation makes the following very definite predictions (postdictions?):

-  Í2 = 1.0 (more precisely, 72cUrv = = H ~l/\Çï — l |1/i2 i f -1)
-  Harrison-Zel’dovich spectrum of constant curvature perturbations (and pos

sibly isocurvature perturbations as well) and tensor mode gravitational wave mode 
perturbations.

The prediction of П = 1.0 together with the primordial nucleosynthesis con
straint on the baryonic contribution, 0.014 ~  Пд/i2 ~  0.035 ~ 0.15 (Yang et al 
[5]), suggests that most of the matter in the Universe must be nonbaryonic. The 
simplest and most plausible possibility is that it exists in the form of relic WIMPs 
(PUeakly-interacting Massive Particles, e.g., axions, photinos, neutrinos; for a re
view, see Turner [83]). Going a step further, these two original predictions then 
lead to testable consequences:

-  Hoto = 2/3 (providing that the bulk of the matter in the Universe today is 
in the form of NR particles)—The observational data both Ho and <o are far from 
being definitive: Ho ~  40 — 100kms-1Mpc-1 and io —12 -  20 Gyr, implying only 
that Hoto — 0.5 —2.0.
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-  1.0. All of the dynamical observations suggest that the fraction of 
critical density contributed by matter which is clumped on scales ~  10 — ЗОМрс is 
only about: f^<30 — 0.2 ±  0.1(±0.1 is not meant to be a formal error estimate, but 
indicates the spread in the observations) (see the recent review by Trimble [84]). 
If inflation is not be falsified, that leaves but two options: (1) the observations are 
somehow misleading or wrong; or (2) there exists a component of energy density 
which is smoothly distributed on scales ~ 10 — 30 Mpc (and therefore would not be 
reflected in the dynamical determinations). Candidates for the smooth component 
include: relic, light neutrinos, which by virtue of the large length scale (A„ ~  
13h_2Mpc) on which neutrino perturbations are damped by freestreaming, would 
likely still be smooth on these scales; relic relativistic particles produced by the 
recent decay of an unstable WIMP species (Turner et al [85]; Dicus et al [86]; 
Olive et al [87]; a relic cosmological term (Turner et al [85]; Peebles [88];) “failed 
galaxies,” referring to a population of galaxies which have the same mix of dark 
matter to baryons, but are more smoothly distributed and are too faint to observe 
(at least thus far) (Kaiser [89], [90]; Bardeen et al [91]; a relic population of light 
strings — either fast moving nonintercommuting strings or a tangled network of 
non-Abelian strings (Vilenkin [92]). All of these smooth component scenarios have 
testable consequences (Charlton and Turner [93]) — their predictions for ff0fo differ 
from 2/3; the growth of perturbations is different; the evolution of the cosmic scale 
factor R(t) is different from the matter-dominated model and various kinematic tests 
(magnitude-redshift), angular size-redshift, lookback time-redshift, proper volume 
element-redshift, etc.) can in principle differentiate between them.

-  Microwavefluctuations. Both the scalar and tensor metric perturbations, 
cf. Eqs (9.10), lead to fluctuations in the CMBR on large angular scales (î > 1°). 
On such large scales causal processes (such as reionization) cannot have erased the 
primordial fluctuations, and so if ever present, they must still be there. The scalar 
perturbations (if they have anything to do with structure formation) must be of 
amplitude ~  few  x 10~6, which is within a factor of 10 or less of the current upper 
limits oh these scales.

-  Two detailed stories of structure formation. The simplest possibility, namely 
that the most of the mass density is in relic WIMPs ( £1\v i m p  — 1-0 — О д  ~  0.9) 
leads to two very detailed scenarios of structure formation: hot dark matter (the 
case where the dark matter is neutrinos) and cold dark matter (essentially any other 
WIMP as dark matter). At present, the numerical simulations of these scenarios 
are sufficiently definite that it is possible to falsify them-and in fact, both of these 
simplest scenarios have difficulties (see the recent review by White [94]). In the 
hot dark matter case it is forming galaxies early enough. The large-scale structure 
which evolves in this case (voids, superclusters, froth) qualitatively agrees with what 
is observed; however, in order to get agreement with the galaxy-galaxy correlation 
function, galaxies must form very recently (redshifts ~ 1) in contradiction to all the 
galaxies (redshifts as large as 3.2) and QSO’s (redshifts as large as 4.0) which are 
seen at redshifts ~  1.
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With cold dark matter the simulations can nicely reproduce galaxy clustering, 
most of the observed properties of galaxies (masses and densities, rotation curves, 
etc) (Blumenthal et al [95]; Davis et al [96]). However, the simulations do not seem 
to be able to produce sufficient large-scale structure. In particular, they fail to 
account for the amplitude of the cluster-cluster correlation function (by a factor of 
about 3), large amplitude, largescale peculiar velocities, and voids. [In fairness I 
should mention that our knowledge of large-scale structure of the Universe is still 
very fragmentary, with the first moderate sized (~ 104), 3-dimensional surveys hav
ing just recently been completed.] In order to account for Q = 1.0, galaxy formation 
must be biased (i.e. only density-averaged peaks greater than some threshold, typi
cally 2 -  3<r, are assumed to evolve into galaxies which we see today, the more typical 
1er peaks resulting in “failed galaxies” for some reason or another; see Bardeen et 
al [91]).

[The situation with respect to large scale structure is becoming more in
teresting every moment. Several groups have now reported large-amplitude (600 -  
1000 kmsec-1 ) peculiar velocities on large scales (~  50h-1Mpc) (Burstein et al [97]; 
Collins et al [98]). Such large peculiar velocities are very difficult, if not impossible, 
to reconcile with either hot or cold dark matter (or even smooth component models) 
and the Zel’dovich spectrum (Vittorio and Turner [99]). If these data hold up they 
may pose an almost insurmountable obstacle to any scenario with the Zel’dovich 
spectrum of density perturbations. The frothy structure observed in the galaxy 
distribution by de Lapparent et al [100], galaxies distributed on the surface on large 
(~  30h-1 Mpc), empty bubbles, although somewhat more qualitative, also seems 
difficult to reconcile with cold dark matter.]

There are a number of observations/experiments which can and will be done 
in the next few years and which should really put the inflationary scenario to the 
test. They include improved sensitivity measurements of the CMBR anisotropy. 
The microwave background anisotropies predicted in the hot dark matter scenario 
are very close to the observational upper limits on angular scales of both 5 or 
so areminutes and ~  few degrees (Vittorio and Silk [101]; Bond and Efstathiou 
[102]). With cold dark matter, the predictions are a factor of 3 — 10 away from the 
observational limits (for the isocurvature spectrum, the quadrupole upper limit may 
actually rule out this possibility; see, Efstathiou and Bond [103]). An improvement 
in sensitivity to microwave anisotropies of the order of 3 — 10 could either begin 
to confirm one of the scenarios or rule them both out, and is definitely within the 
realm of experimental reality (Wilkinson [4]).

The relic WIMP hypothesis for the dark matter can also be tested. While 
it was once almost universally believed that all WIMP dark matter candidates 
were, in spite of their large abundance, essentially impossible to detect because of 
the feebleness of their interactions, a number of clever ideas have recently been 
suggested (and are being experimentally implemented) for detecting axions (Sikivie 
[104]), photinos, sneutrinos, heavy neutrinos, etc (Goodman and Witten [105]). 
Results and/or limits will be forthcoming soon. With the coming online of the 
Tevatron at Fermilab, the SLC at SLAC, and hopefully the SSC it is possible that

Acta Physica Hungarica 64, 1988



INFLATION IN T H E  UNIVERSE, CIRCA 1986 305

one of the candidates may be directly produced in the lab. Experiments to detect 
neutrino masses in the eV mass range also continue.

A geometric measurement of the curvature of the Universe (which uses the de
pendence of the comoving volume element as a function of redshift) has recently been 
made by Loh and Spillar [106]). Their preliminary results indicate fi =  0.9Í q 5(95% 
confidence) (for a matter-dominated model.) This technique appears to have great 
cosmological leverage and looks very promising—far more promising than the tradi
tional approach of determining the density of the Universe through the declaration 
parameter qo■

Another area with great potential for improvement is 3d surveys of the distri
bution of galaxies. The largest redshift surveys at present contain only a few 1000 
galaxies, yet have been very tantalizing, indicating evidence of voids and froth-like 
structure to the galaxy distribution (de Lapparent et al [100]). The large, auto
mated surveys which are likely to be done in the next decade could very well lead 
to a quantum leap in our understanding of the large scale features of the Universe 
and help to provide hints as to how they evolved.

The peculiar velocity field of the Universe is potentially a very valuable and 
direct probe of the the density field of the Universe:

N * I = \6k/k\  (= (XH/2n)6k for 0 = 1 ) ,  (18)

(6v/c)X sí (A/104h -1Mpc)(5p/p)A, (19)

where 6k and 6vk are the ifcth Fourier components of bpfp and 6v/c respectively. 
The very recent measurements which indicate large amplitude peculiar velocities 
on scales of ~  50-1Mpc are surprising in that they indicate substantial power on 
these scales, and are problematic to almost every scenario of structure formation. 
Should they be confirmed they will provide a very acute test of structure formation 
in inflationary models.

Of course, theorists are very accommodating and have already started suggest
ing alternatives to the simplest scenarios for structure formations. As I mentioned 
earlier, scenarios with a smooth component to the energy density have been put for
ward to solve the Cl problem. Cosmic strings present a radically different approach 
to structure formation with their non-gaussian spectrum of density fluctuations.[It 
is interesting to note that cosmic strings of the right “weight” (Gp ~  10-6 or so, 
where p is the string tension) seem to be somewhat incompatible with inflation, as 
they must necessarily be produced after inflation and require reheating to a temper
ature ~  /r1/ 2 ~  1016GeV which seems difficult.] Somewhat immodestly I mention a 
proposal Silk and I recently made: “double inflation” (Silk and Turner [107]; Turner 
et al [108]). While the Harrison — Zel’dovich spectrum is a beautiful prediction 
both because of its geometric simplicity and its definiteness, it may well be in con
flict with observation because it does not seem to allow enough power on large scales 
to account for the recent observations of froth and large amplitude peculiar veloci
ties. In the variant we have proposed there are two (or more) episodes of inflation,

Acta Physica Hungarica 64, 19SS



306 M.S. T U R N E R

with the final episode lasting only about 40 e-folds or so, so that the amplitudes of 
perturbations on large scales are set by the first episode and those on small scales by 
the second episode. This enables one to have very large amplitude perturbations on 
small scales (of order 10-1) and larger than usual amplitude perturbations on large 
scales (nearly saturating the large scale microwave limits), thereby providing enough 
power for the large scale structure which the recent redshift surveys and peculiar 
velocity measurements indicate. The large amplitude perturbations on small scales 
allows for very early galaxy formation (and reionization of the Universe, thereby 
erasing the CMBR fluctuations on small angular scales). If the second episode of 
inflation proceeds via the nucléation of bubbles, they might directly explain the 
froth-like structure recently reported by de Lapparent [100].

E pilogu e

Despite the absence of a compelling model which successfully implements the 
inflationary paradigm, inflation remains a very attractive means of accounting for a 
number of very fundamental cosmological facts by microphysics that we have some 
understanding of: namely, scalar field dynamics at sub-Planck energies. The lack of 
a compelling model at present must be viewed in the light of the fact that at present 
we have no compelling, detailed model for the “Theory of Everything” and the fact 
that despite vigorous scrutiny there has yet to be a No-Go Theorem for inflation 
unearthed. It is my belief that the undoing of inflation (if it should come) will 
involve observation and not theory. At the very least The Inflationary Paradigm is 
still worthy of further consideration.

My review of inflation has necessarily been incomplete, for which I apologize. 
I refer the interested reader to the more complete reviews by Linde [109]; by Abbott 
and Pi [110]; and by Steinhardt [111]; by Brandenberger [112]; and by myself (Turner 
[48]). My prescription for successfully implementing inflation borrows heavily from 
the paper written by Steinhardt and myself (Steinhardt and Turner [113]).

This work was supported in part by the DoE (at Chicago) and by my Alfred 
P. Sloan Fellowship.
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We discuss how a  random  G aussian  density flu c tu a tio n  field can  dynam ically  evolve 
in to  a  fractal th ro u g h  various physical processes c rea tin g  th e  lum inosity  o f galaxies. It 
is show n th a t  in  m any  cases th e  d is tr ib u tio n  of ligh t will deviate from  G aussian . I t  can 
often  have a  lognorm al d is trib u tio n  in  accordance w ith  a n  observation by  H ubble, a  fact 
unexplained so far.

It has been long recognized that the galaxy distribution has a power law 
correlation function [1] £(r) =  ( r / r0)7. It is well known that such scale invariant 
structures are called fractals [2]: the galaxy distribution has a nontrivial fractional 
or fractal dimension [3] Dp. The previous exponent 7 and Dp are related:

7 = 3 - D p . (1)

On the other hand, it is believed that the density fluctuations in the early 
universe were Gaussian (random phases of the initial Fourier components.) The 
accepted view has been that nonlinear gravitational clustering can be solely re
sponsible for transforming these small fluctuations into the power law clustering 
hierarchy that we see today [1]. However, the improving limits of the microwave 
background fluctuations [4] and the discovery of a very strong cluster-cluster cor
relation [5,6] pose some interesting questions. Compared to the AT /T  limits even 
the galaxy correlations are too strong. If these are due to nonlinear gravitational 
clustering, and the cluster-cluster systems sire believed to be still linear, why does

’ D edicated  to P rof. G . M arx on his 60 th  b irthday
**A no te  ad ded  by  Ya. B. Z.: G eorge M arx was th e  first person  whom I have  m et abroad. 

T h ere  were a  lo t of paralle l lines in  o u r work: from  lep ton  num bers to n eu trin o  m asses we had  
sim ilar ideas. B ut, th e  com petition  has never spoiled our p e rso n al fxiendsliip!
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the cluster correlation function have an identical shape? Besides, it has been noted 
that the galaxy and cluster correlation functions obey a scaling relation; if we had 
a picture of each catalog without labels we could not distinguish between them. 
In mathematical terms this means that both correlation functions are adequately 
described by the same relation [7]:

fc(r) =  0 . 3 ( £ ) ~ 1 8 , (2)

where L — n-1/3 is the mean distance among the objects in the catalog. This scaling 
is well satisfied by the well known trend of increasing correlation with richness.

It has been suggested by Kaiser [8], that by the “biasing” of Gaussian fluctua
tions (taking only the regions which are above a certain threshold) one can enhance 
the correlations of clusters with respect to galaxies. One can overcome the AT/Т  
limits easily by assuming that the observed galaxies do not follow the distribution 
of the mass. The general idea behind biasing is to introduce an extra degree of 
freedom how the mass fluctuations turn into light. Several other papers have car
ried this idea of biasing further since [9]. Another form of biasing, an exponential 
relationship between the linear overdensity and the nonlinear number of galaxies 
has been discussed by Kaiser and Davis [10], a lognormal transformation, that we 
will consider more in detail below.

In a recent paper by Szalay and Mandelbrot [14] it is suggested that for 
certain random Gaussian fields biasing can change the correlation properties of the 
distribution drastically: one can get power law correlations for the biased regions, 
where the slope of the power law depends on the “threshold”. We would like 
to outline this idea here. Consider the linear density fluctuations 6 = 6p/p. If 
(|й|2) =  cr2, one can introduce a normal Gaussian random field у =  6/<т, with a 
linear dimensionless correlation function w(r) = (3/12/2)- Instead of using a sharp 
threshold, one can use a smooth one by creating a new lognormal random field У, 
representing the luminosity density

Y  = Aevy. (3)

Here A is required to normalize the mean of У to 1. The correlation function of the 
У field can be trivially calculated:

1-K„(r) = (ПУг) = e"3"<r>. (4)

This is very similar to the approximation obtained by Politzer and Wise [11] for 
sharp clipping, but this is an exact result. It seems, that the correlation function 
of the “biased” regions is quite insensitive to the sharpness of the clipping.

The random field у has a natural lower and upper cutoff scale as all physical 
systems do. For fluctuation spectra describing the distribution of galaxies it is not 
unreasonable to assume that the small scale cutoff is around the scale of the galaxies 
Л0 and the large scale cutoff would be determined by the equality of the matter and 
radiation energy densities Лх.
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Certain fluctuation spectra |áfc|2a&-3 have equal power per octave, so the dis
persion integral would diverge logarithmically were there no cutoffs. The dispersion 
is determined by the logarithm of the two cutoff scales, and the correlation function 
of the у-field has a logarithmic leading term. Due to this behaviour the correlation 
function of the У-field becomes a power law:

tn(r) =
ln(r/Ac) 

ln(A0/Ax) ’ 1+ Ш = ( i )

- i^ / lnCA x/A ,,)

(5)

For reasonable values of A0 «  1 Mpc and Ax «  50(Qo/i2)-1 Mpc «  100 Mpc the 
observed correlation function slope is given by v ss 2.5 — 2.7, a similar value to 
what was obtained from the cold dark matter iV-body simulations in the best case
[12]. It was thus shown that power law correlation functions can be generated by 
the appropriate nonlinear distortion of a Gaussian random field with a spectrum 
near k~3. The resulting distribution will have the right correlation properties. One 
cannot do a separate clipping on the scale of clusters, since the filtering and the 
nonlinear biasing are not interchangeable. There are two separate questions, one of 
them is the viability of the lognormal process, the other is whether the underlying 
random field has a k~3 spectrum.

The above lognormal transformation has attractive features: it describes such 
a nonlinear process, which does lead to negative densities. It does not satisfy the 
continuity equation, however, so it cannot come from nonlinear hydrodynamic mo
tion. Here we address the question, how such a lognormal biasing of the fluctuations 
can arise physically. We take the view that it is the luminosity which is a nonlinear 
function of the overdensity, the transformation describes the “relative visibility” 
of the various regions. In this case the continuity equation does not have to be 
satisfied.

It turns out that in physics it is quite easy to imagine conditions under which 
lognormal distributions arise. As discussed in the very enjoyable paper by Montroll 
and Schlesinger [15], ( “The tale of the tails ...”) if there is an event with probability 
P that depends on the occurrence of N independent events with probabilities p,-, i = 
1, ...N, then

logP = logpi + ...logpjv. (6)
If the pi are well behaved, i.e. they have second moments, then due to the cen
tral limit theorem log P will have a normal distribution, thus P will be random 
lognormal. One such case is the “broken-stick” type fragmentation, the random 
breakup of a stick into smaller parts. The distribution of the fragments will be 
lognormal, as first pointed out by Kapteyn then applied by Kolmogorov [16] to the 
size distribution of crushed ore.

In another case we consider the random process у representing fluctuations in 
the gravitational potential. If the galaxy distribution has a uniform virial tempera
ture Tg, then the density distribution of the galaxies in such a fluctuating potential 
will be

ф(~5*Л
кТя j

n(~x*) = n0 exp
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This functional dependence is precisely of the discussed lognormal type, but instead 
of a static threshold here the dispersion of the potential Ф and the temperature Tg 
determine an effective и =  (|Ф2|)Х/2/ . If the density fluctuations are scale- 
invariant (n =  1), the fluctuations of the potential have a k~3 spectrum, so we 
obtain the above mentioned fractal distribution.

One can also turn to an analogy in biology, suggested by one of us [13] for 
the population growth of bacteria. If for some time there is an exponential growth 
law for the luminosity of a region

^  =/?(■**)£; L(-? ,t)a  exp(ß(-x>)t). (8)

If the growth coefficient ß is a Gaussian random function, one can easily see that 
the luminosity density will have a lognormal distribution. This fact will not change 
if we allow for the diffusion-like motion of particles.

The galaxy distribution has indeed such a property, found by Hubble [16]: 
he made the remark that the distribution of galaxy counts on the different plates 
is lognormal, log N  is very close to a Gaussian. Recently Crane and Saslaw [18] 
analysed the galaxy counts in equal area cells of the Zwicky catalog. They show, 
that the distribution is rather well fitted by a lognormal, and they point out that 
multiple capture on clusters will also result in lognormality.

The galaxy distribution is known to deviate from the Gaussian, having a 
more extended tail. Biasing is just one way to try to simulate this feature, and 
lognormality is a smooth and physically plausible version to achieve this. We saw 
above that it is possible to come up with various models which will generate a power 
law correlation function and lognormal galaxy counts.
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D uring th e  photocycle  of bacterio rhodopsin  in  th e  purp le  m em brane of H alobacteria  
h a lob ium  pro tons a re  pum ped  th ro u g h  th e  m em brane. In  purple m em brane suspension the 
release and  up tak e  of p ro tons cause a  transien t electric conductiv ity  change. T his change is 
m easu red  in  AC electric  field o rien ted  purp le  m em brane suspension. T h e  signal is strongly 
an d  nonlinearly  o rien ta tio n al d ep en d en t. T he tim e course of th e  electric signal is analyzed 
a n d  it  is shown th a t  p ro to n  release coincides w ith th e  decay of the M -sta te  an d  the p ro ton  
u p tak e  w ith  th e  decay of the (9-sta te .

In troduction

Halobacterium halobium can convert light energy into chemical energy. For 
this purpose the bacterium develops some special patches on the cell wall, named 
purple membrane (pm). This membrane contains only one type of protein in a 
two-dimensional crystal-like ordered array, the bacteriorhodopsin (bR) consisting 
of a known sequence of amino acids and a photochemically active chromophore 
linked to the peptide-chain through a Schiff-base. The bacteriorhodopsin protrud
ing through the membrane can pump protons from one side of the membrane to the 
other. When the chromophore absorbs light the proton pump generates a gradi
ent of H+-concentration, which can drive the metabolic processes of the bacterium. 
The chromophore is a retinal like the light-sensing molecule of the eye. The light 
excitation of retinád is followed by an isomerization process which perturbs the 
neighbourhood of the Schiff-base, thus initiating the proton pump. After the ex
citation the process is thermally decaying through some intermediate states of the 
so-called photocycle recycling the bR again to its ground-state [1].

Though the molecular mechanism of proton pumping is not yet well under
stood, many aspects are known: the isomerization process of the retinal and the 
Schiff-base [2], the primary deprotonation step of the protein [3] and proton move- 
mént through the membrane [4]. A very important question is the mechanism of 
proton release and uptake by the membrane. This problem was investigated by 
different methods: steady state measurements of light-induced pH-change in phos
pholipid vesicles [5], determining volume changes [6] and using pll-indicator dyes

•D ed ica ted  to P rof. G . M arx on liis 60 th  birthday.
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[7]. Marinetti and Mauzerall measured the small electrical conductivity change of 
pm suspension during the flash-initiated photocycle [8,9].

At pH ~  7 the pm is negatively charged. The bound (partly surface) charges 
and the screening ionic cloud play an important role in the behaviour of pm in 
electric field. In AC fields the pm will be aligned parallel to the field due to the 
anisotropic polarizability of the ionic cloud around the pm [10]. This alignment 
can be detected by electric dichroism (see e. g. [11]). We found that the electric 
conductivity of the pm suspension changes (increases) during the alignment. This 
observation led us to the idea that perhaps the transiently released charges during 
the photocycle could be detected much easier on aligned pm suspension. In the 
following we give some experimental results supporting this idea.

M aterials and  m ethods

The measuring circuit is shown schematically in Fig. 1. Two specially de
signed and matched cuvettes with platinum electrodes contain the pm suspen
sion. Because of the matching the circuit needs only a small phase and amplitude

P t e le c tro d e s

b)

Fig. 1. (a) E xperim ental a rrangem ent. C l  a n d  C2 are the two m easuring cuvettes , (b) Cross
section  of th e  cuvette

compensation in order to balance the bridge. The difference signal is amplified and 
recorded by a transient recorder. The generator supplies high enough AC-voltages 
(~  100V, 2kIIz) to orient the pm in the cuvettes. At the same time the bridge
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allows to detect small conductivity changes in any of the cuvettes. The Chebysev 
filter strongly attenuates the unwanted higher harmonics of the response signal. 
The bridge (difference signal) can be compensated almost to 10-5 .

For the excitation of the photocycle in one of the cuvettes a nitrogen laser 
pumped rhodamin 6G dye laser was used with a pulse energy of ~200pJ. The laser 
light was focused to the central narrow part of the cuvette (Fig. lb).

The pm suspensions were a gift from the Institute of Biophysics, Biological 
Research Center, Hungarian Academy of Sciences, Szeged. All measurements were 
made on pm suspended in distilled water with an absorbance of 1.4 cm-1 at 575 nm. 
The resistance of the suspension in the measuring cuvette was 200 kohm.

Electrodichroic measurements were made with an apparatus described previ
ously [11].

R esults and  discussion

The electric conductivity change during the alignment of pm in AC electric 
field is shown in Fig. 2.

Fig. 2. O rien ta tio n a l increase of the electric conductiv ity  of the p m  suspension. AC voltage 100V. 
O ne period  is 0.5 m s. R ela tive  conductiv ity  change a t the en d  of th e  recording :!.6  • 10“ 2

At this recording one of the cuvettes in the bridge was replaced by an ap
propriate resistor. At the beginning, when the voltage is switched on (arrow), the 
bridge is balanced. As the orientation of the pm in the suspension is going on, we 
observe an increase in the electric conductivity of the sample. This is much more
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pronounced than the heating effect (shown by the shadowed area) which originates 
in the temperature variation of the cuvette in the bridge. The statement that this 
conductivity increase is an orientational effect is supported by the observation that 
the time course of the dichroism and the conductivity increase are similar (Fig. 3). 
This orientational increase of the conductivity is an interesting problem in itself. 
We believe that this effect is connected with the anisotropic electrical polarizability 
of the ionic cloud around the charged membrane. In an AC field this cloud moves 
collectively, oscillating around the membrane. This oscillation is more pronounced 
when the pm is parallel to the field, giving maximal contribution to the conductivity 
of the pm suspension.

?  200 - E » 4 0 0  V /cm

о •  '

•  conductivity 

о absorption

I 100 -

°  .....................
•  •  о

E * 1 5 0  V /c m  
o*

ОИ1

•  •  •  о

10 20 
t I m s ]

30

Fig. 3. C onductiv ity  a n d  absorption  change afte r an AC field is sw itched on the  p m  suspension

This orientational enhancement of the electric conductivity was applied to 
detect the charge release and uptake by the pm during the photocycle. After the 
orientation a laser pulse initiates the photocycle of BR in one of the cuvettes and 
the charges injected into the medium by the pm cause a transient increase of the 
conductivity of that cuvette. A few such recordings are shown in Fig. 4.

After the laser pulse the conductivity (electric signal) increases and going 
through a maximum it returns to the starting level. The signal amplitude at the 
maximum is strongly and nonlinearly orientational dependent. Fig. 5 shows the 
signal amplitude dependence on the orienting field strength. For comparison, we 
give the electric field dependence of the dichroism, too. Without an orientational 
enhancement the starting linear region, shown in Fig. 5, would be expected for the 
transient electric signal. Measurements given in [8, 9] were made in this region.

The electric signal vvas recorded at different temperatures and the kinetics of 
the charge release and uptake was analyzed. Supposing that the observed conductiv
ity change is proportional to the number of transiently released charges, the simplest
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Fig. 4■ T ransient conductiv ity  increase of th e  p m  
suspension during  the  photocycle a t different tem pera tu res . 

Arrow shows when th e  laser pulse weis given.
T he sharp  change a fte r the  leiser is cm electriceil eirtifact from  the  

laser discharge, (a) <=10, 5C, (b) <=25, 2C, (c) <=28, 2C
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kinetics which can reproduce the transient signal is the following:
\

n(t) = A r ^ — (1)
л- l  —  к  2

This is a first order reaction for the release and the same for the uptake 
of charges. Here A is proportional to the number of the excited (photocycling) 
bacteriorhodopsins. The measured signals were fitted to this equation and it was 
found that the two rate constants are practically equal. The temperature depen
dence of the rate constants are shown in Fig. 6, where for comparison, the M-state 
kinetics of the photocycle is shown, too, taken from [12].

From these results it follows that the measured transient conductivity change 
reflects the appearance of additional free or loosely bounded charge-carriers in the 
boundary layer of pm. The question whether these charge-carriers are protons or 
the pumped protons have been exchanged by other ions (originally bounded on 
the membrane surface [8, 9, 13]) can be answered by the investigation of the ionic 
strength and pH-dependence of the signal.

Fig. 5. T h e  electric  field d ependence  of the tran s ien t conductivity change caused by th e  photocycle 
of pm . For com parison  d a ta  fo r electrodichroism  a re  shown, too

The time-dependence of these processes seems to be well described by a simple 
exponential function, as mentioned above, i. e. they are monophasic in contrast 
to the biphasic M-state kinetics measured by optical absorption changes during the 
photocycle [12, 14]. As Fig. 6 shows, the value and the temperature dependence 
of the rate constant of charge release are well correlated with those of the slow 
component of the M-state decay. This seems to be in agreement with the result, 
that the bR pumps protons only in the slow decaying M-state [14] and the fast
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M-state is an equilibrium state with the L-form [15], which does not pump protons 
directly. The rate constant of the decay of the electric signal goes parallel with the 
decay of the О-state as determined by kinetic absorption measurements (data not 
shown).

Fig. 6. T em p era tu re  dependence o f th e  ra te  constan ts: electric signal rise  an d  decay (□), th e  two 
M -sta tes rise  (® slow and © fa st com ponents) a n d  decay (•  slow a n d  +  feist com ponents)
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STUDY OF THE RADIATION PROTECTION EFFECT 
OF SELENIUM-METHIONINE 

BY DETERMINING THE PARAMAGNETIC PROPERTIES 
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T he p a ram ag n e tic  p roperties o f th e  liver tissu es were observed a f te r  th e  change 
w hich took  place d u rin g  3, 18 and 24 hours following th e  adm in istra tion  of s-m ethionine or 
a lte rn a tiv e ly  of se-m ethionine and  subsequent irrad ia tio n . T he signals reco rded  were those 
characteris tic  of P -450  citochrom e, free radicals of th e  sem ichinon type, M o-protein  and  
Fe-s-protein. S p e c tra  of these pa ram ag n e tic  centres generally  show the  changes in activ ity  
o f th e  ferm ents ch aracte ris tic  for th e  tissue, which is closely re la ted  to  th e  increased or 
decreased  functional activ ity  of the  liver tissues [1,2].

We show ed th a t  in  irrad ia ted  anim als which con tained  o rd inary  m eth ion ine the  
functional activ ity  o f th e  hepocites d rops w ith the increase  of doses. In  an im als trea ted  
w ith  se-m ethionine, however, the functional activity  was found to b e  significantly  larger 
in  com parison w ith  th e  control g ro u p  of anim als w hich h ad  no t been p ro tec ted . T his is 
believed to  be  due  to  the  rad ia tion  p ro tec tiv e  effect of se-m ethionine.

1. In troduction

According to several papers published in the literature, there have been quite 
a number of attempts to use selenium as antitumorous and a radiation protective 
agent, based on the well-known antioxidant properties of its compounds. [3, 4, 5, 
6,7].

The present work is one of a series of papers on the mechanisms of the bio
logical activity of selenomethionine. It describes results obtained by investigation 
of the effects of this compound upon the change of general energetic parameters of 
cells in normal as well as X-ray irradiated tissues.

M aterials and m ethod

Animals investigated were white Balb <f mice of 20 gm average weight, the 
number of animals in each group amounting to ten. Administration of selenium- 
methionine was carried out in amounts of 1.5 mg/kg by interpertionial injection of

‘ D edicated  to P ro f. G . M arx on his 6 0 th  b irthday
**O n leave from  D ep artm en t of B iophysics, Cairo U niversity , E gypt
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0.5 ml of aqueous se-methionine solution. This was performed 10 minutes before 
irradiation with doses 2, 4.5 and 6 Gy, respectively, of X-rays. Sampling was done 
3, 18 and 24 hours after irradiation; the mice were decapitated and dissected, their 
liver taken out and frozen in liquid nitrogen.

Fig. 1. T h e  E P R  sp ec tru m  of a  frozen in ta c t  liver tissues sam ple  of Balb t?  m ice. 1. j>-450 
c itoch rom e (5= 2 .25) 2 . Free radicals of th e  sem ichinon ty p e  (5 = 2) 3. M o-pro te in  (5= 1.97)

4. Fe-s-pro tein  (5 = 1 .94)

The paramagnetic resonance method is used to investigate the kinetic nature 
of the change of the paramagnetic properties of the liver tissues. Figure 1 shows the 
EPR spectrum of the frozen intact liver tissue samples of the white Balb <f mice. 
The EPR spectrum was determined at low temperature to make possible fixation of 
the cells in their metabolitically active state. Normal liver tissues are characterized 
by certain signals of the EPR spectrum differing in their <7-factor values and their 
intensities. In the signals recorded were those characteristic for:

1. P.450 citochrome (<7=2.25) which takes part in the processes of detoxication 
of the disintegration products;

2. Free radicals of the semichinone type (<7= 2.00) which takes part in the ener
getic processes;

3. Mo-protein (<7= 1.97) of the disintegration ferments;
4. Fe-s-protein (5= 1.94) electron carriers in the citochrome system.

From the changes in the intensities of the signals for these paramagnetic cen
tres, their biochemical nature ей well as the levels of the various metabolic processes 
in the tissue can be deduced. Figure 2 shows some examples of changes in some 
different cases.

R esu lts and conclusion

Table I gives the important kinetic changes in relative intensities of the signals 
of the paramagnetic centres after 3, 18 emd 24 hours following administration of s- 
methionine or se-methionine and irradiation with X-rays in doses 2, 4.5 and 6 Gy.

In determining the concentrations of the paramagnetic centres of the liver 
tissues of mice, the mean standard error of the results was equal in average to
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15%. (Generally this method of paramagnetic resonance yields results whose error 
is usually in the range of 10% to 30%.) To prove that the tendency observed in the 
changing of concentrations of the paramagnetic centres is a real one, calculations 
were meide by applying the method of dispersion analysis and linear regression. The 
results confirmed the tendency derived by us from observations in our study.

Figure 3 shows the change in relative intensities of the signals for the para
magnetic centres as a function of time and doses of irradiation. These changes 
generally show the changes in activity of the ferments characteristic for the tissue, 
which is closely related to the change in the functional activity of the liver tissues.

T able I
T he re la tive  intensities of th e  signals for the  pa ram ag n e tic  centres 

of th e  liver tissues sam ples of Balb d* m ice

G roups of anim als R ela tive  concentra tions of the  pa ram ag n e tic  centers

T ype of 
adm in is
tra tio n

T im e of 
change

[h]

Irrad ia tio n  P-450 
dose of X-ray c itoc luom c

[Gy] 5 = 2 .25

Free rad ia l 
of the semi- 
chinon type  

9=2

M o-protein

5=1.97

Fe-s-protein

5=1.94

s-m eth- 2 1.07±0.20 1.03±0.13 0.94±0.20 0.98±0.20
ionine 3 4.5 0 .9 2 Í0 .2 0 1.09±0.20 0.76±0.13 0.93±0.20

6 0 .82±0.16 1.02±0.17 0.81±0.18 0.90±0.17

se-m eth- 2 0 .95± 0 .17 1.11±0.19 0.84±0.13 1.04±0.21
ionine 3 4.5 1 .0 4 Í0 .1 8 1.08±0.20 1.11±0.18 0 .9 9 Í0 .2 0

6 0 .85± 0 .15 1.05±0.20 0.90±0.16 0.87±0.18

s-m etli- 2 0 .94±0.21 0.88±0.18 0 .8 3 Í0 .1 8 0.89±0.15
ionine 18 4.5 0 .82±0 .20 0 .7 1 Í0 .1 6 1 .01Í0 .31 0.79±0.14

6 0 .97±0.12 0 .8 8 Í0 .1 7 1.09±0.22 0.97±0.16

se-m eth- 2 1 .1 7 Í0 .2 1 1 .0 5 Í0 .2 0 1.05±0.19 1.07±0.20
ionine 18 4.5 0 .94±0 .18 1.00± 0.20 0.92±0.19 0.94±0.17

6 1 .0 4 Í0 .1 3 0.87±0.18 0.96±0.20 0.96±0.18

s-m etli- 2 1.00±0.16 1.12±0.16 0 .9 3 Í0 .1 8 0 .9 7 Í0 .1 9
ionine 24 4.5 0.74±0.14 0.88±0.13 0.72±0.15 0.73±0.11

6 0 .S 7 Í0 .1 6 0.73±0.14 0.87±0.17 0 .8 3 Í0 .1 4

se-m eth- 2 1.28±0.31 0.89±0.19 1.16±0.19 1 .05 Í0 .22
ionine 24 4.5 1.15±0.21 1.03±0.17 0 .9 6 Í0 .2 0 1.00±0.19

6 1.19±0.15 0.97±0.18 1.23±0.24 1.10±0.18
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•) f)

Fig. Z. T h e  change in  th e  E P R  sp ec tru m  of a  frozen liver tissues sam ple of B alb  d 1 mice during  
th e  first day after: 1 . adm in istering  o f s-m ethionine or se-m ethionine (a, b , respectively) 2 . 
adm in istering  of s-m eth ion ine  or se-m ethionine (c, d, respectively) and irrad ia te d  w ith a  dose of 
2 G y  of X-rays 3. ad m in istering  of s-m eth ion ine or se-m ethionine (e, f, respectively) and  irrad iated  
w ith  a  dose of 6 Gy of X-rays. T he record ing  is carried o u t a t  77 K, th e  m icrowave power is 
10 m W  and  0.2 m W  in  case of free rad icals an d  the am p litu d e  of the  high frequency m odulation  is

1 m T  (in  u n its  of m agnetic  field)

Taking into account the above mentioned results and supposing, as is well- 
known, that biologically active substances mobilize the internal potentialities of the 
organism to keep up its homeostasis against stress impacts, it becomes obvious that 
se-methionine may exert a certain radiation protective action.

From the results it appears that in animals treated with s-methionine and 
exposed to a sublethal X-ray dose amounting to 2 Gy the homeostasis is restored 
during the first 24 hours after irradiation (general adaptive syndrome according to 
Selye) and the functional activity of the ferment systems becomes normal.

However, in the case of exposure with higher-lethal-doses (6 Gy) a monotonie 
decrease in functional activity is observed during the first day. As a contrary, for
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animals treated with se-methionine the functional activity of the ferment system 
goes to normal.

»- methionine 
se - methionine

Fig. 3. T h e  change in concen tra tion  of the p a ram ag n e tic  centres (in re la tive  units) as a  function 
of tim e a fte r adm in istra tio n  of s-m ethionine or se-m ethionine and irrad ia tio n  with X -rays in  doses 

2, 4.5 an d  6 Gy (I, II, an d  III, respectively) 
a. p-450 citochrom e b. free radicals of th e  sem ichinon type
c. M o-pro te in  d . Fe-s-protein

A. du ring  3 hours B . du ring  18 hours
C. du ring  24 hours after irrad ia tio n

Resuming the results, we underline that for irradiated animals which con
tained ordinary methionine the functional activity of the liver tissues drops with
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the increase of doses. In animals treated with se-methionine, however, the func
tional activity was found to be significantly larger in comparison with the control 
group of animals which had not been protected.

We deduce from these facts the suggestion that se-methionine has radiation 
protective effect.
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CONVERSION OF GRAVITATIONAL WAVES INTO 
ELECTROMAGNETIC WAVES IN A BIANCHI TYPE I 

UNIVERSE WITH A UNIFORM MAGNETIC 
FIELD — COSMOLOGICAL IMPLICATIONS

D .  B O C C A L E T T I and  W .  AGOSTINI

D epartm ent  of M athem atics ,  “La S a p ien za "  University o f  R om e  
Rome, I taly

(Received in  revised form  5 Jan u ary  1985)

T h e  process of conversion of g. waves in to  e.m . waves is s tu d ie d  in  an  ax isym m etric  
B ianchi ty p e  I universe w ith  a  un iform  m ag n e tic  field. A case is fo u n d  in  which th e  p rocess 
is sufficiently effective to m ain ta in  a  continuous interchange be tw een  p ho tons and g rav itons. 
T h is  causes p ho tons and g rav itons to  have th e  saune frequency.

1. In trod u ction

The problem of the conversion of gravitational waves into electromagnetic 
waves and vice versa has been discussed from various points of view, in its own right 
and in view of detecting gravitational waves or in cosmological and astrophysical 
implications [1, 2, 3]. It has been shown that in a flat Minkowski background 
containing a uniform magnetic field gravitational waves are transformed into e.m. 
waves and v. v. at a rate growing quadratically with distance [2]. In spite of this, 
one must consider very high strength magnetic fields and paths of cosmological 
magnitude to get appreciable effects [2].

The case has also been studied in which the magnetic field is embedded in 
a conducting plasma with anisotropic conductivity; the results depend on the fre
quency of incoming gravitational waves but are not very different from the case 
of the empty space [4]. In this paper we study the conversion of g. waves into 
e.m. waves no longer in a flat background but in an anisotropic cosmological model 
endowed with a uniform magnetic field.

Our aim is to estimate if this process is working sufficiently to maintain pho
tons and gravitons at the same frequency, taking into account that the inverse 
process must have the same rate. We proceed in this way: we consider the g. waves 
as first-order perturbation of the anisotropic metric with magnetic field and try to 
solve the Maxwell equations in this perturbed metric. As we are interested in the 
cosmological era preceding the recombination, we insert in the Maxwell equations 
(in the three cases we consider) asymptotic expressions for the metric coefficients 
valid near the initial singularity.

This enables us to solve analytically the Maxwell equations which in all 
the three cases lead to the solution of equations of the Bessel type. If we call

1*
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328 D. BOCCALETTI a n d  W .  AGOSTINI

77=(produced flux o f e.m . w aves)/(in cid en t flux of g. w aves), then we give an 
approxim ate evaluation o f r) as a function o f  tim e.

As we know, only if the primordial magnetic field is created with a strength 
not exceeding the so-called .Serit = 4.4 x 1013 gauss, can it be treated on a classical 
ground; furthermore it seems likely that, for fields of infinite strength or of strength 
В »  Serit, a held organized on a large scale would not emerge as the universe 
expanded out of the singularity [5].

Therefore we take as fairly unrealistic the second and the third case we con
sider which, also at times over the Planck time tg ~  1043s, involve field strengths 
largely exceeding Scrjt . In the first case we study, on the contrary, we assume an 
initial field of the order of Scrit.

2. A x isy m m etric  cosm ologies o f  B ianchi ty p e  I w ith  a 
uniform  m a g n etic  field— asy m p to tic  so lu tion s

In the second half of the sixties, after the discovery of the cosmic microwave 
radiation background, spatially homogeneous anisotropic cosmological models en
dowed with a uniform magnetic field were extensively studied [6]. The hypothesis 
of the existence of primordial magnetic fields was largerly favoured [5, 6] because of 
the necessity of understanding how galactic magnetic fields could have arisen since 
the big-bang creation of the universe. Also if today we seem to have a satisfactory 
theory of galactic magnetic fields which do not require magnetic fields frozen into 
the matter since the origin of the universe, the hypothesis of primordial magnetic 
fields is not ruled out [7]. We assume the existence of such a primordial field.

We shall consider universe models with metric
ds2 = c2dt2 — A 2(t)(dx2 + dy2) — W 2(t)dz2 (2-1)

filled with perfect-fluid matter at rest in the coordinate system of equations (2- 1) 
and having an equation of state

P = 1 PM, (2- 2)
where 0 < 7 < 1 and рм is the energy density of the perfect-fluid matter. The 
stress-energy tensor contains both рм and рв,  where рв is the energy density 
of the magnetic field. Solving the Maxwell equations in the metric (2-1) in the 
hypothesis of a uniform magnetic field aligned along the z-axis, one obtains for the 
primeval field

Bt =Bo{WA2) ~ \  
and for the magnetic energy density

рв = B2J8x • A ~4 (2-31)

'F o r  the  defin ition  of th e  3-dim ensional fields we follow L.D. L an d au , E.M . Lifshitz, C las
sical theory of fields, Pergam on P re ss , Oxford — New York, 1971, p. 256, from  now on re fe rred  
to  as L.L.
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CONVERSION OF GRAVITATIONAL WAVES 329

(Bq is a constant to be fixed).
As is known, the Einstein field equations in the case of (2-1), (2-2), (2-3) 

have been solved analytically in four cases [6]; moreover, there are solutions valid in 
asymptotic conditions, near the singularity. If we define an adimensional normalized 
time r  = at (a ~  10-17 s-1), the asymptotic conditions, near the initial singularity, 
are characterized by r  << 1 (being r  ~  1 to day). We shall study three cases:

1) Axisymmetric pancake singularity;
2) Isotropic point singularity;
3) Axisymmetric hard magnetic solution.
The case 1) is defined by

A = (1 + a • r *-1 7 )̂, W  =  г ,  p B  -  В о/8тг 1 — 4a ■ A 1 7) (2-4)

(a non-negative constant) 0 < 7 < 1, and is an asymptotic solution. Of the 
three cases it is the only one which allows for a finite magnetic energy density for 
r  —► 0; furthermore the solution becomes isotropic for large r. We fix the constant 
Bo ~  jBcrit =  4.4 X 1013 gauss. The case 2), also an asymptotic solution, is given by

A = W  = r r ( Г = | ( 1  + 7)), 1/3 < 7 < 1,

PB = B o / 8 tt • т - 4 Г . (2-5)

Obviously рв —*• 0 0  when r  -* 0; we fix the constant Во ~  10-8 gauss (a possible 
value for the intergalactic field to day, but leading to a physically inconceivable 
magnetic field at the early times). The case 3) is at the same time an approximate 
solution (r < <  1) and an exact solution (but not the general solution) and is given 
by

A = T1/2, W = t a (  A = 1 - 7 / I + 7), 1/3 < 7 < 1, (2-6)
рв = Bq/ 8tt ■ r -2 , where the constant Bo is not arbitrary but has the value 
Bo = ca /(G )1/i2 [(1 -  7ХЗ7 — l )]1̂ 2 /2(1 + 7). Also this case has рв —* oo when 
r — 0.

3. T he M axw ell equations in  th e  p erturbed  m etric

We have to solve the Maxwell equations:2

dFik/dx' + dFei/dxk + dFki/dx’ = 0,
{ -g ) ~ l i *d/dxk K -g ) 1, 2Fik] = -Аж/сГ,

(3-1)

2For definitions, n o ta tio n s (except the  g rav ita tio n a l constan t we den o te  by G) an d  a ll th a t ,
see L. L.
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330 D. BOCCALETTI a n d  W .  AGOSTINI

in the metric

9ik = 9ik +  hik,
9ik = 9°ik -  hik,

where gfk are the coefficients of the metric (2-1) and hit are first-order perturba
tions; the solutions of (3-1) are to be considered small of the first order like the 
hik'- squares are negligible. We choose gravitational waves travelling in the positive 
æ-direction and two independent polarizations denoted as

h\(x, t)  and -  h2(x, t)  = hl(x,t).

Being perturbations, they will be linear and we consider plane waves:

hl(x,t) =  £a exp ik(x -  ct), ^  ^
— h\{x, t ) = h^(x,t) — £b exp ik(x — ct),

any g. wave being a sum of terms like (3-2), we solve (3-1), separately for each of 
the two polarizations.

Making use of the variable r=at, we rewrite (3-2) as

h%(x, t) = £a exp [ik(x -  c/a ■ r)],
—h\{x, r ) =  h\(x, t) = £ь exp [ik(x — c/a ■ r)].

3a. Polarization

In virtue of the assumed plane symmetry (3-1) yield in this case

d/dx (WA2Br ) = 0; d /dr (W A 2Bx) = 0, 
a/cd/dr(WA2By) -  W A~ 2d /d x (W - 1A 2E2) = 0, 

a/cd/dr(WA2Bz) + W~ld/dx(WEy)  = 0,
W - lA~ 2d/dx(WEx) = 4 x/c?°; d /d r (W E x) = 0, 

a/cd/dr{WEy)  +  WA~2d /dx (W A 2Bz) = 0, 
a/ cd/ dr(W~xA2Ez) -  W ~ld /dx (W A 2By) = WA~2B0dh32/dx,

having taken into account that F12 = W A 2BZ + Bq. Rewriting and rearranging the 
relevant equations, we have:

f  a/cd/dT(WA2Bz) + W - xd/dx(WEy) = 0,
\  a/cd/dT(WEy)  + W A~ 2d/dx(WA2Bz) = 0,

(3 -la ’)
Í a/cd/dr(WA2Bv) -  W A - 2d /dx (W ~ 1A 2Ez) = 0,
\  a/cd/dT(W~lA 2Ez) -  W ~ xd / d x ( W A 2By)  = W A ~ 2B0dh32/dx.

Acta  Physica Hungarica 6 4 , 1988



3b. Polarization —h\ —h3 

In this case (3-1) yield:

d/dx (WA2Br ) = 0; d/dr{WA2Bx) = 0, 
a/cd/dr(WA2By) -  W A~ 2d/dx(W~1A 2Ez) = 0, 

a/cd/dr(W A 2 Bz) + W~ld /dx (W Ey) = 0,
W~lA~2d/dx(WEx) =  An/cj°; d /dr (W Ex) = 0,

a/cd/dr{WEy)  +  WA~2d/dx (WA2Bz) = W A ~2 B0dh\/dx,  
a/cd/dT(W~lA 2Et ) -  W~xd/dx{WA2By) = 0.

And, rewriting and rearranging the relevant equations:

Г a / c d / d r ( W A 2By) -  WA ~ 2d / d x ( W ~ l A2Ez) = 0,
\  a/cd /dr{W -l A 2Ez) -  W~ld /dx (W A 2By) = 0,

(3 -lb ’)
Í a/cd/dT(WA2B,)  + W - 1d/dx(WEy) = 0,
{ a/cd/dr(WEy)  +  WA~2d /dx (W A 2Bl ) = WA~2B0dh2/dx.

In the subsequent sections we shall solve (3 -la ’) and (3 -lb ’) in the three cases of 
asymptotic solution for the metric (2-1) we have discussed in Section 2, substituting 
the coefficients of (3 -la’) and (3-lb’) by their asymptotic expressions.

4. A xisym m etric pancake singularity

As we have seen in Section 2, this case is characterized by A(t) = 1-f 
W{t) — г with 0 < 7 < 1 and a, a non-negative constant. For small r , (3 -la ’) 
asymptotically become:

a/cd/dr{WA2Bz) +  r ~ xd/dx{WEy) = 0, 
a/cd /  dr (W Ey) +  rd /dx(WA2Bz) = 0,

(4 -la ’)
Í  a/ cd/ dr (\VA2By) -  г д /д х ^ ' 1 A 2Ez) = 0,
\  a/cd/dr(W~lA 2Ez) — r~ l d/dx(WA2Bv) = ikeaBo ■ r ■ exp [il:(x — c/a ■ r)]. 

The systems (4 -la’) have the solutions
W A 2Bv =(Aie_iir +  B\eikx) ■ kc/a ■ rJ^kc /a  ■ r)+

+ (—*/5 • kc/a ■ r3 -  1/5 • r 2)eaB0 exp [*ifc(x — c/a ■ r)],
W~ xA2Ez = -  i(A\e~ikx + Bxeikx) ■ J0(kc/a ■ r)+  (4-2a’)

+ (i/5 kc/a ■ г2 — 2/5 • r  + 2 /5 ia/kc)eaBoe\p [ifc(x — c/a ■ r)], 
W A 2Bz =(Cie~ikx + Dieikx)J0{kc/a ■ r),

WEy = -  i (C i t~ ikx - t-  Dxeikx)kc/a ■ r  • Jx{kc/a ■ r),

CONVERSION OF GRAVITATIONAL WAVES 331
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332 D. B O C C A LETTI a n d  W . AGOSTINI

where Jo and J\ are Bessel functions3. Imposing to (4-2a’) the obvious initial 
condition that the left members vanish at r  = 0, the final result is:

W A 2By =ea ■ Bo {2/bJ\{kc/a ■ r) ■ r  ■ eikx + (—*/5 kc/a ■ r3 -  1/5 • r 2)- 
• exp [ifc(x — c/a • r)]} ,

W ~ XA 2EZ —£aB0 {—2/5* a/kc J0{kc/a ■ r)eikx + (i/5 kc/a ■ r 2 -  
—  2/5 • T  +  2/bia/kc)  exp [ik(x — c/a • r ) ] }  ,

W A 2B z =WEy = 0 

and then
' F3 —£aB0 {— 2/bJ\{kc/a ■ r) ■ t  ■ e'kx + (*'/5 kc/a ■ r 3+

+  l /5 r 2) exp [ik(x — c/a ■ r)]} ,
< F03 =eaBo {2/5 i a/kc Jo(kc/a ■ r) ■ r -1 • e,kx + (2/5 — i/5 kc/a ■ r — (4-3a’) 

— 2 /5 i а/кст~х) exp [ik(x — c/a ■ r)]} ,
. Fl =F02 = 0.

In the same way (3-lb’) asymptotically become:

í a /cd/ dr (W A 2By) -  Td/dx(W~1A 2E2) = 0,
{ a/cd /dr(W~1A 2E2) -  r ~ 1d /dx (W A 2By) = 0,

(4 -lb ’)
Í a/cd/dr(WA2B2) + г " 1 d/ dx(WEy) = 0,
( a/cd/dT{WEy)  + rd /dx{WA2B2) — —ikcb ■ B q t  exp [iJfc(x -  c/a ■ r)], 

with the solutions:
W A 2B v ={A2e~ikx +  B 2eikx)kc/a ■ т ■ J x(kc/a ■ r),

W~ l A2E2 = -  i(A2e~ikx + B 2eikx) ■ J0(kc/a ■ r),
W A 2Bz =(C2e~ikx + D2eikx)Jo(kc/a • r) + (-1 /3  + ikc/a ■ т)еьВо■

• exp [ik(x — c/a ■ t)],
WEy =  -  i(C2e~ikx +  D2eikx)kc/a ■ r  ■ J^kc /a  ■ r)+

+ (—i/Zkc/a ■ T2) exp [ifc(x — c/a ■ r)]

and, imposing the initial conditions, we get:

' F31 =  F 03 = 0,
- F2 = £ьВо {l/ZJo(kc/a ■ т)е,кх — 1/3{ikc/a ■ т + 1) exp [ik(x — c/a ■ r)]} ,

_  £bß Q I i/Zkc/aJ\(kc/a ■ r)e,kx + i/Ъкс/а ■ т exp [iik(x — c/a ■ r)]} .
(4-3b’)

3 We assum e th e  n o ta tio n s a n d  definitions of V. I. Smirnov: A course of h igher m ath em atics , 
Vol. I l l ,  p a r t  2, Perg am o n  Press, O xford  —  New York.
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CONVERSION OF GRAVITATIONAL WAVES 333

5. Iso trop ic p o in t singularity

This case is characterized by

A ( t )  = W ( t )  = r r , where Г = 2/3(1 + у )  and 1/3 < у  < 1.

(3-1 a’) become:

( a/cd /dr(WA2B2) -f T~r d/dx(WEy) =  0,
\  a/cd/dr(WEv) + T~rd /dx (W A 2Bz) =  0,

(5 -la ’)
a/cd/dT(WA2By) -  т~т d /  dx(W~l A2 Ez) =  0,
a/cd/dT(W~1A2Ez) -  т~г d/ dx(WA2By) =  ik£aB0T~r  exp [ik(x -  c/a ■ r)], 

and have the solutions

W A 2B z =(Hie- ikx + Lie ikx)-
■ {Mi exp [-ikc/a(  1 -  Г) • r 1_r] + Ni exp [ikc/a{\ -  Г) • r 1 -r]} , 

W EV ={Hie~ikz -  Lxeikx)-
■ {—M\ exp [~ikc/a{ 1 -  Г) • r 1_r] + Nx exp [ikc/a{ 1 -  Г) • r 1 -r]} , 

W A 2By ={Pie~ikx + Qic*fc*)-
■ {Л1 • exp [—iTc/a(l -  Г) • r 1 -r] + Sx exp [ikc/a(l -  Г) • r 1“ r ]} + 

+  eaB0eikx ■ (  ( —2eikz' a T + exp [-iTc/a(l -  Г) • r 1̂ }  +

+  exp [ikc/a{\ — Г) • т1 Г] — ike/а (5-2а’)

I  exp [~ikc/a{\ -  Г) -г1 г] • J  exp [ike/a^ 1 г /(1 -  Г) —

- exp [iTc/a(l -  Г) • r 1-r] • í exp [-|Тс/а(£1_г/(1 -  Г) +  £)]dÇ
Jo

W ~ 1A2Ez —{—Pie~ikx + Qie***)-
• { -Я 1 exp [—ikc/a{ 1 -  Г) ■ r 1_r] + Si exp [btc/a(l -  Г) ■ г 1-Г]} +

+  ieaB0kc/a I  exp [*T(x -  e/a( 1 — Г) ■ r 1_r)] •

• Í  exp [ike/a(£1 -r/( l  -  Г) -  £)№ -  exp [»fc(x + c/a(l -  Г) • r 1_r)]- 
Jo

■ j f  exp [-tfcc/a(í1- r /( l  -  Г) + £)№ j •
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And, imposing the initial conditions:

W A 2 В , = W E y = 0,
W A 2By =£aB 0 {—2 exp [iib(x — с/ a ■ г)] +  exp [iJfc(x -  c /a (l — Г) • r 1_r)]+

+  exp [ik(x + c/a( 1 — Г) • т-1-г)]} — i£aBokc/a-

■ I  exp [ik(x -  c/a( 1 -  Г) ■ r 1 -r)] • exp [ifcc/a(£1_r/( 1 -  Г) -  £)]d£-

-  exp [ik(x + c /a (l -  Г) • r 1" 1')] • J  exp [ifcc/a(£1_r/( i  -  Г) +  £)]<*£ j > 
W ~ 1A2Ez =i£aB0kc/a-

■ j  exp [ifc(x -  c /a (l -  Г) • r 1_r)] • J  exp [ifcc/a(£1_r/( l  -  Г) -  O R ~

-  exp [ifc(x + c /a(l -  Г) • r 1 -r] • J  exp [-ifcc/a(£1-I7 ( l -  Г) +  £)№£ j >
and then:

F$ - F 02 =  0,
F31 —£aB0 ■ t~2T {2 exp [i)fc(x — с/ a ■ r)] — exp [ik(x +  c/a( 1 — Г) • r 1-r]—

-  exp [ik(x -  c/a( 1 — Г) • r 1_r]} + i£aB 0kc/ar~2r-

• |  exp [ifc(x — c/a(l — Г) • 7-1_r] • J  exp [i&è/a(£1 -r / ( l  — Г) — £)]d£—

-  exp [ik(x + c/a(l -  Г) • r 1 -r)] • J  exp [^ifcc/a(£1 - r / ( l  -  Г) + >

F 03 = -  i£aB0kc/aT~3r■ (5-За’)

• j exp [tfc(æ — c/a(l — Г) • т 1-Г] • J  exp [ifcc/a(£1_r/ ( l  — Г) -  £)]...£—

-  exp [ifc(x + c/a(l — Г) • r 1 -r)] • J  exp [-ifcc/a(£1 -r /( l  -  Г) + .

In the same way, from (3 -lb ’) we get:

F31 = F 03 = 0,
F% = — £ъВот~2Г {2 exp [ik(x — c/a ■ r)]—

-  exp [iJfc(x + c/a( 1 — Г) • r 1-r] — exp [üfc(x — c/a(l — Г) • r 1_r]} —
-  i£bB0kc/a ■ т~2Г-

■ I  exp [ifc(x — c/a(l — Г) ■ r 1-r] ■ J  exp [t&c/a(£1_r/ ( l  — Г) — £)]d£—

-  exp [ik(x + c/a(l — Г) • r 1_r)] • J  exp [-jfcc/a(f 1 -г /(1 -  Г) + j >
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F02 =Í£bB0kc/a ■ т зг-

• I  exp [-ifc(x -  c/a( 1 -  Г)г1-г)] • J  exp [iFc/a(£1 -r/ ( l  -  Г) -  £)№£-

-  exp [ifc(x + c/a( 1 -  Г)г1-г)]'- J  exp [-ifcc/a(£1_r/ ( l  -  Г) + £)]d£ j  •

( 5 - 3 V )

6. A x isym m etric  hard-m agnetic solution

A{t ) = r 1/ 2; W(t) = r A where Л = 1 — 7 / I  + 7  and 1/3 < 7  < 1. For this
case, (3 -la’) become

j  a/cd/dr(W A 2 B2) +  T~Ad/dx (W Ey) = 0,
\  a/cd/dr(WEy) + TA~ld/dx (WA2B,) = 0,

(6 -la ’

j  a/cd/dr(WA2By) -  TA~1d /dx (W ~ 1A2E,) =  0
\  a/cO/dr(W~1A 2E2) -  r~Ad /dx (W A 2By) = ikeaB0 ■ r A_1 ■ exp [ifc(x -  c/a ■ r)]

and the solutions are

W A 2Bz ={Ët~ikx + Feikx)(2kc/a ■ T1/2)l~A-
■ [Gi  • J\-\{2kc/a • r 1' 2) + H  ■ J^-i(2kc/a ■ r 1' 2)] , 

W E y = -  i ( -Ë e ~ ikx + Feikx)(2kc/a)1~A ■ t 1' 2-
■ [H ■ J\{2kc/a ■ T1' 2) -  G ■ J . K(2kc/a ■ r 1' 2)] , 

W ~ 1A 2E2 ={Me~ikx + Neikx)(2kc/arl/2)1~A-
■ [P ■ J\-\{2kc/a ■ t1/2) + Q ■ J\ - i(2kc /a  ■ r l/2)} +

+  e i k x  • (  f ;  I o j n  • Т п + Л  +  f ;  C„ • r " + A + 1 j  ,
U = 0  n = 0  J

*(2A -  l ) ( - l ) n(Jbc/a)2n+1 -eaBo
( A + l ) „ . ( 2 A ) n

П
1/A(2A -  1) -  Y ,  (*a/ kc)m l/m!(A)m • (2Л -  l)m

' ,ТО:=1
(—l)n(fcc/a)2n+2 ■ CgBp '

bn =

Cri — P  + 2)„]2

W A 2By =i(—Me~ikx + Neikx)(2kc/a)l~A ■ ta<2■

1 / ( A  +  l ) 2 -  Y , М к с ) т 1 / т \ [ ( А  +  l ) m ] 2 \  ,
m = 1

[0 • J\(2kc/a • r 1' 2) -  P ■ J_\{2kc/a • r 1/2)] + eikx ■ anrП +  2Л

n = 0  '
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da —( - l )" * 1 ■ (kc/a)2n+2 ■ ea ■ B0 
(A + 1)„ • (2Л + 1)„

П
1/2Л2 + £(ia/*c)m • 1/m! • (A)m • (2A)„

m = l
(6-2a’)

where Jp is the Bessel function of not integer subscript (see footnote 3) and, as 
usual (Л)„ =  Л • (Л + 1 )... (Л + n — 1). Imposing the initial conditions, it remains:

W E ,  =  W A 2 B a =  0 ,

W ~ l  А 2 Е г =  e i k x  ■ \  b"  ■ r " + A  +  Ÿ 1 c "  ' r " +A +1
U=0 n=0

W A 2 B V =  e i k x  • U  a n  • r n + 2 A l  ,
<n=zO

and then
F ,1 =  F 02 =  0 ,

F i =  - e

F°3 _  gikx

i k x  —2Л —
1 X ! a" r ” -n=0

o o

r 2A 1 • У " 4 6 „  • r n +  r 2A ■ тп
n=0 n=0

In the same way, we get from (3-lb’):

F 3X =  F 03 =  0 ,
OO

F l = e ' kx Y , d n T n,
n = 0

00
F02 = - e ikx - J 2 e n Tn,

n = 0

where

d„ = (~ l)n+1 (kc/a)2n+2 -eb - B0 
(Л +  1)„ • (n +  1)!

_ (—l ) n+1 • (kc/a)2n+2 ■ еь ■ Bq

£n (A+ 2)„ ■(«+!)!

(6-3a’)

(6-3b’)

l / A + £ ( i a / * c ) m (A)n
m=0

n
1 / ( A + 1 ) +  £ ( . a / J f c c ) " * ( A + l ) „

m =0

7. C onclusions

As already mentioned in the first Section, the process we have studied and 
the inverse process, on the ground of general principles, must have the same rate.
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Therefore our process, if working effectively, does not help to annihilate gravi
tons but, on the contrary, it supplies them with the same frequency of the photons, 
because in the mutual conversion the frequency is not altered. To estimate the effec
tiveness of the process we shall calculate for each case the coefficient 77 = (produced 
flux of e.m. waves)/(incident flux of g. wave). For the produced e.m. waves trav
elling in the positive ^-direction we must calculate c ■ T°^ (-means average ). For 
the first g. wave polarization (ea) we have:

c ' = —c/4ir(ReF£ ■ ReF03)

and for the polarization

c • 7™. =  - c/4n(ReF12 ■ ReF02).

Moreover, we remember that c • T°^v = c5/32nG ■ К 2 ■ e2a b. The coefficient 77 must 
be evaluated each time, taking into account, when depending on the frequency of 
the incident g. wave of the value of the frequency at that time (considering the 
redshift of the particular model). Obviously, as we have inserted in the Maxwell 
equations asymptotic expressions of A(t) and W(t), the expressions we get for 77 
are valid near the singularity. In the first case (axisymmetric pancake singularity), 
we have for the polarization ea

77 ~  4/25

77 is growing with time and, for Bo ~  Berit : 1 
the polarization еь

r) ~  4/9( £ M )

—+ 1 for r К Г8 (t = 109s). For

taking again Bo ~  Bcrjt , 77 —► 1 for r  —♦ 10“ 16 (t ~  10s). For both polarizations 77 
does not depend on the frequency of the incident gravitational wave.

In the second case (isotropic point singularity) there is no difference between 
the two polarizations and we get

16( GB2, 1 -зг

Here we have a dependence on the frequency and the process is appreciable only at 
times inconceivably smaller than the Planck time. As an example, for B0 ~  10~8 
gauss and a frequency ~  t~x at t = tg, one has 77 ~  1 for т- г  ~  1070 (1/3 <
Г < 1/2). The axisymmetric hard-magnetic solution gives 77 not depending on the 
frequency and for the polarization e0.

77 ~  4( r 4A-3 (1 — 7)(3y - 1) 4A_3
( 1 + 7 )2
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For the polarization Сь, we have

. , G B oV 2 .
4 - 4 — 4~ )Z 2 T

(1 -  7 )937- 1) a
(1+7)2

(1/3 < 7 < 1), Л =  (1 -  7) /( l  +  7 )- Through decreasing with time 77, in this case, 
has unphysical values also at large r.

If we consider the first case as the more realistic one (it has finite magnetic 
energy density at the early times and becomes isotropic at large r), we are led to 
think that with sufficiently large primordial magnetic fields a continuous interchange 
between photons and gravitons can take place. In this way, the e.m. waves and the 
g. waves retain the same frequency.

R eferences

1 . M .E . G e rstsen sh te in , Sov. Phys. JE T P , Ц , 84, 1962;
G .A. L u panov , Sov. Phys. JE T P , 25,  76, 1967.

2. D. B occale tti, V . De Sabbata , P. Fortin i and C. G ua ld i, Nuovo C im en to , 7OB, 129, 1970; 
D. B occale tti a n d  F . O cchionero, L e tt .  Nuovo C im en to , 2, 549, 1971;
W .K . De Logi a n d  A.R. M ickeleon, Phys. Rev. D -16,  2915, 1977.

3. L.P. G rishdhuk, M .V. Sazhin, Sov. Phys. JE T P , 4U  787, 1976;
L . P. G rishchuk , Sov. Phye. U sp ., 20,  319, 1977.

4. D. B occale tti, F . Occhionero, L A S-F rascati In te rn a l R eport №  40, D ecem ber 1978.
5. K.S. T h o m e , A p . J ., Ц 8,  51, 1967.
6 . Ya.B. Zel’dov ich , Sov. Phys. J E T P , 21, 656, 1965;

A .G. D oroshkevich , A strophysics, 1, 138, 1965;
I.S. Shikin, Sov. Phys. Doklady, 11, 944, 1967;
K .C . Jacobs, A p . J ., 15S, 661, 1968; 155, 379, 1969.

7. M. R e in h a rd t, M . N. R. A. S. 156, 151, 1972.;
M. R e in h a rd t, a n d  M.S. R o b e rts , A strophys. L e tt .,  12, 201, 1972.

A cta  Physica Hungarica  64, 19S6



Acta Phÿsica Hungarica 64 (4), VV- $39-351 (1988)

•" --' i t  c - b '  . C  . \ )  .*?!• - r ;  : • ’ ■ > •
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T his p a p e r  reviews the theo ry  of the  m agnetic  m onopole as an  astrophysica l object. 
In  particu la r we co n stru c t a  m odel by which we are able to  calculate th e  m ass of the 
m onopole by th e  un ique  assum ption  th a t  the  source of energy of quasars is due  to  m onopole- 
antim onopole an n ih ila tion , w ithout referring to  p a rticu la r  G U Ts. It re su lts  th a t  th e  mass 
o f the m onopole m u st be  1016 G eV , i.e. the  m onopole p red ic ted  by th e  G eorgi-G lashow  
m odel.

' v • • . - U
1. In troduction

'  л  •' < . . . S U. ч .,<■,* .... i ; ' .4 , . :

Since 1931, when Dirac [1] introduced it for the first time, the magnetic 
monopole has been considered a mathematical object rather than a physical one, 
because the theory was not able to predict its physical properties and so the exper
imentalists had no clues to reveal it.

This situation was unchanged till 1974, when 4 Hooft [2] and Polyakov [3] 
demonstrated the “necessity” of the existence of the magnetic monopole in the 
framework of a theory that predicts the unification of three of the four fundamental 
forces: the electromagnetic, the weak and the strong interactions.

The key point of the 4 Hooft-Polyakov theory is that it is able to calculate 
the mass of the monopole in terms of free parameters of the Grand Unification 
Theories (GUTs). From this calculation it results that the monopole has a mass in 
the range of 104-1019 GeV [4,5], according to different theories, and the standard 
model of Georgi-Glashow [6] predicts a value of 1016 GeV. Because of the value of 
the mass, the monopole cannot be produced in any particle accelerators: an object 
of such energy can be produced only in the very early Universe, immediately after 
the “Big Bang”.

So the magnetic monopole becomes a cosmological problem: in fact the match
ing between Cosmology and Particle Physics leads to the birth of the “new cosmol
ogy”. which describes the GUTs in the framework of Einstein’s General Theory 
of Relativity. From this matching a double benefit occurs: the cosmologists can 
now extrapolate the Big Bang theory to times less than one second without making

•P resen t address: In terna tional School for Advanced S tud ies - S trad a  C o stiera  11 - 34014 
T rieste  - Italy
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aprioristic assumptions (i.e. they can justify the initial conditions) while the theo
rists employ the Universe as a laboratory in which to search for the tests of their 
theories.

In Part 2 of this paper we will give a review of the theory of the magnetic 
monopole, both the classical and the GUT one. In Part 3 we will describe the 
inflationary Universe model; in Part 4 we will calculate the limits to the density 
and the flux of the monopoles from astrophysical observations; in Part 5 we will 
construct a model of energy production for quasars, from which we obtain, for 
the mass of the monopole, a value of 1016 GeV, i.e. the mass predicted from the 
standard model of grand unification, the Georgi-Glashow model. In this paper, 
except Part 5, we use units for which = с — к (Boltzmann constant) = 1.

2. T heory o f  th e  m agnetic m on op ole

More than fifty years ago Dirac [1] demonstrated that the quantization of 
the electric charge can be explained supposing the existence of at least one free 
magnetic charge: the magnetic monopole.

Dirac considered the monopole like a semi-infinite and infinitesimal thin 
solenoid; in fact if we consider a monopole of magnetic charge g, placed in the 
origin of a polar coordinate system, it will produce a magnetic field of strength

B = 9~„ ( 1 )

where f is the radial unit vector. In a suitable gauge the vector potential associated 
to this field has the form

A = , l + ^ ± t .
sin l? r

Although (1) is singular only for r  =  0, (2) has a singularity also for d =  0. This 
“string” singularity does not depend on the chosen gauge: we will always find a 
string singularity from r  = 0 to r =  oo.

Because the quantum mechanical equations of charged particles are expressed 
directly in terms of the vector potential, it is necessary to make the singularity 
unobservable.

So we consider the effect that a trip around the string produces on the wawe 
function of a particle with electric charge —e: generally the phase of the wave 
function will be modified because of the vector potential A

xp —*► xp =  exp[—»e J  A ■ dx)xp.

Once the integral is computed, with the aid of (2), we obtain

ip =  exp[4 nige]xp.

(3)

(4)
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So the string singularity is not detectable if the magnetic charge of the monopole 
obeys the condition

(5)

when n is an integer. The smallest magnetic charge is the Dirac magnetic charge 
go, the value of which is

go = l / 2e ~  68.5e ~  3.310 8 CGS units. ( 6)

Now we reverse the reasoning: we suppose there is a particle of electric charge Q 
and zero magnetic charge. Because of the existence of the magnetic monopole we 
must have

ехр[4я-г<2 <7£)] = 1 (7)

and so
Q

2 ego = m, (8)

where m  is an integer. The existence of the magnetic monopole involves the quan
tization of the electric charge. Someone could object that, in the calculation of 
go, we should have used — e/3, the charge of the quark d, and not —e because it 
should be considered the smallest electric charge. This is not true because of the 
quark confinement: in fact it implies that the colour charge is screened for a dis
tance greater than some fermis so that the previous discussion is still right. The 
Dirac’s theory cannot predict the mass of the monopole because, from the Maxwell 
equation

div(B) =  0 (9)

it follows that the electromagnetic mass, considering a pointlike monopole, must be 
divergent.

As we have seen, the existence of the magnetic monopole implies the quantiza
tion of electric charge; in 1974 the inverse has been demonstrated [2,3]: every model 
of grand unification in which the electric charge is quantized (and so the electro
magnetic group U(l) is embedded in the group which is broken by the mechanism 
of spontaneous symmetry breaking [7], contains necessarily magnetic monopoles.

So if we apply the GUTs we can determine the mass and the radius of a 
monopole. For example [8] we consider the electroweak theory which has (for sim
plicity) as gauge bosons the massless photon 7 and the heavy W’± . As we have 
seen, (9) shows that the magnetic field of the electromagnetic interaction B 1 is 
everywhere divergent. Yet in this theory it is necessary to consider the “covariant” 
derivative [9] and not the usual one. So (9) becomes

D B = div(B^) +  ieA+B~ -  ieÂ~ B + =  0, (10)

where and are the fields associated with the bosons W ^.  In this way (10) 
can be written in the form

div(By ) =  p, (11)
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where p is the source term due to the gauge bosons:

p =  ie{Ä~B + -  À + B~). (12)

Because it is possible for (12) to have a constant value, different from zero, 
in a region of the size of the Compton wavelength of the gauge bosons, this implies 
that the source is no longer pointlike and so there is no problem of divergence: the 
physical properties of monopoles are well-defined.

Actually it is not possible to use the electroweak theory because we need a 
theory which considers also the strong interaction. The Georgi-Glashow model, 
based on the symmetry breaking from the group SU(5) to the group SU(3) x SU(2) 
X U(l), predicts that the physical properties of monopoles are

1
Ж 10- 2 8 cm, m « Mx

« G U T
1016GeV, (13)

where Mx is the mass of one of the bosons that mediates the unified interactions 
and ogut the gauge coupling constant. As we can see (13) depends strictly from 
the particular GUT: in fact the mass of the monopole is predicted to be in the range 
from 104 to 1016 GeV, according as we consider particular phase transitions [10] or 
we introduce also the gravitational interaction (Kaluza-Klein theories).

Because, as we have shown, the Maxwell equations break down at very short 
distance, the magnetic monopole must have an internal structure, which is as follows 
[11, 12, 13]

a) the core, with radius rc ~  10-28 cm, in which there are virtual X bosons;
b) the electroweak region, with radius rew ~  10“ 16 cm, containing virtual bosons 

W ± ,Z°  and 7 ;
c) the confinement region, with radius rc/  ~  10-13 cm, where there are strongly 

interacting objects (quarks, antiquarks and gluons);
d) a fermion-antifermion condensate, with radius of about one fermi for hadrons 

and few fermis for leptons, in which the baryonic number is not conserved;
e) for distances greater than few fermis the monopole acts like a Dirac monopole, 

yielding a magnetic field |ß | = çd/ г2- From these results it follows that the 
monopole can act as a catalyst in the proton decay process [11, 12]

M  + p —► M + e+ + 7r°, 
M  + p —► M  + e+ ,

(14)

with cross-section of the order of 10- 27cm2. Consequently, we have that the 
M — M  annihilation cross section is larger than the classical one [14]; in fact 
from (14) it follows that the reaction

M + M —► p +  e+ -f- 7T° (15)

has the same cross section of the catalysis process, i.e. er ~  10-26 cm2.
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3. T h e  inflationary Universe

The standard cosmological theory is the so-cad led “Big Bang” theory [15]. 
Starting from the assumption of an isotropic and homogeneous Universe and so 
described by a Robertson-Walker metric [16]

dr2
1-jfcr2 +  r2(dd2 + sin2 űd4>7 (16)

where к assumes the values —1, 0, +1 for an open, flat or closed Universe, respec
tively, it describes the evolution of the scale factor R(t) by means of the Einstein- 
Fridman equations

(17)

t ß  = A n G ( p  + 3p)R. (18)

This system of equations, plus the energy conservation, the state equation of mat
ter and the additional assumption of an adiabatic expansion can explain a lot of 
observed features of our Universe: the red-shifted light from distant galaxies; the 
cosmic microwave background radiation and the abundance of the primordial ele
ments [15,16]: Deuterium and Helium.

But if we extrapolate the model to times less than one second we cannot un
derstand why the Universe is so uniform on a great scale (the “horizon problem”) 
[17, 18]; why the density of the Universe is so close to the critical one (the “flatness 
problem”) [19] and why the Universe is composed only of matter and not of antimat
ter (the “baryon number” problem) [20]. To solve these problems the cosmologists 
imposed ad hoc conditions, assumed as initial conditions. Among these the less 
acceptable was the assumption that the Universe had to be originally asymmetrical 
between baryons and antibaryons while it is extremely plausible that matter and 
antimatter should appear on the same footing.

Just this last problem has led to introduce theories that predict the non con
servation of the baryonic number: the GUTs. The GUTs predict that for very high 
energies the fundamental interactions are unified, i.e. mediated by the same gauge 
boson. As the energy (and so the temperature) drops, the interactions decoupled 
by means of a mechanism called spontaneous symmetry breaking, which is driven 
by a potential which assumes different forms according as the particular type of 
GUT is taken into account. The result which we arrive in applying these theories 
to the Einstein-Fridman equations is that the scale factor R(t) has, for a certain 
period, an exponential law of evolution (“inflation”) [21]

Г eHt T  «  Tc,
j j l / 2  T > T C,
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where H =  (87rGVo/3)1/2, G is the Newton constant and Vo the vacuum value of 
the potential. For a temperature larger than that at which the decoupling occurs 
Tc the scale factor resumes the power law predicted from the standard theory.

This theory solves in a very elegant way all the previous problems but a new 
problem comes in: during the phase transition that decouples the interactions some 
defects occur, defects that physically correspond to magnetic monopoles.

If we calculate the number density of these monopoles we obtain [14]

n ~  10"10 T 3 (20)

of the same order of the baryon one. This is naturally against the experimental 
observations because the monopole mass is much larger than the baryon one (of the 
order of 1016!). To solve the “magnetic monopole” problem it has been considered 
a particular GUT, the Coleman-Weinberg theory [22]; but using this theory we 
obtain a monopole density extremely low [23,24,25]

n ~  lO-220 T 3 (21)

so the direct observation of monopole becomes practically impossible. As we have 
seen the theory is not able to predict the magnetic monopole density unambiguously. 
In the next Section we will show how to calculate limits on the flux of monopoles 
from astrophysical observations.

4. E xperim en ta l lim its to  m on op ole d en sity

Because the detectable monopoles come from cosmic rays, they are influenced 
by gravitational fields and/or magnetic fields. We can give an order of magnitude 
to the velocity acquired by a monopole free falling in the gravitational field of our 
galaxy; in fact

where M a  ~  1011Mq ~  1044<7 and R q  ~  1022 cm are the mass and the radius of 
our galaxy [26]. As we can see [22] is mass independent.

To compute the effect of the galactic magnetic field on a monopole we remem
ber that our galaxy has a magnetic field of 10-6 gauss uniform on a scale L ~  1021 
cm; the velocity acquired by the monopole is

A cta  Physica Hungarica 64, 1988



SOME ASTROPHYSICAL CONSEQUENCES DU E TO MAGNETIC MONOPOLES 3 4 5

for a monopole of magnetic charge go = l / 2e.
From (23) we see that for тм > 1017 GeV the velocity acquired in the 

gravitational field is larger than that acquired in the magnetic one, moreover, that 
it is possible to consider the monopole as a classical object for тм  > 1011 GeV.

For the interactions between monopoles and condensed matter it has been 
found [27] that, for rather slow monopoles (/? ~  10“ 2), the stopping power is of the 
order of 1011 cm; in this way the Earth is trasparent to their motion.

A limit on the monopole density is first of all set by the critical density of 
matter in the Universe, i.e. p < 10~29 g/cm so that

„ < 1 0 - c m - 3  flO^GeVN  
V rnM )

Combining this expression with (23), valid for m M < Ю17 GeV, we obtain

nt; < 10- 2m- 2yr-1 ( 10m^ eV)  - mM < 1017GeV. (25)

For a monopole mass greater than 1017 GeV the gravitational interaction prevails 
on the electromagnetic one so that the monopoles will be confined in the galactic 
halo, increasing their density. In this case, assuming a mass of the galactic halo of 
1O12M0 and a velocity of 10-3 c we obtain

nv < 102m- 2yr_1 > uiAi > 1017GeV. (26)

Moreover, is possible to obtain limits on the monopole flux by indirect reasoning, 
like the persistence of the galactic magnetic field [28,29,30] or the study of the 
X emission from neutron stars [31,32]. We see in detail these arguments. If the 
galactic magnetic field is due to the presence of persistent currents [33] (because 
rot (jBgai) Ф 0) then the monopoles that move in our galaxy acquired energy at 
the field expense, reducing consequently the currents. The actual observation of 
the galactic magnetic field implies that the rate at which the energy is dissipated 
is smaller than the regeneration rate of the currents by dynamo mechanism, with a 
period T  of about 108 years, so we have that

nv < 2 - l(T4m- 2yr-1 (
В \  Í  108y r\

3 • 10-6gauss/  \  t  )  ’
(27)

which is independent of the mass of the monopole. Actually, we have neglected 
the effects of the gravitational field and this assumption is valid only for monopoles 
of mass smaller than 1017 GeV. In fact the very massive monopoles “feel” less the 
influence of the galactic magnetic field and so they extract from it less energy; in 
this way we obtain a less stringent limit on their flux

nv < 2 • 10- 4m~2yr-1 1017GeV
В  \  / 108yr\  

10_6gaussJ \  t ) \m M > 1017GeV.
(28)
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Combining (28) with (26) we obtain a mass independent limit for the monopole flux 
(Parker limit)

nv < 10-1m-2yr-1 . (29)
We can obtain another limit on the monopole flux from the observation of neutron 
stars. In fact because of their very high density the neutron stars capture all the 
monopoles which fall on them and if the number of monopoles present in the star at 
the moment of its formation is negligible, then the number N  of monopoles present 
in a neutron star will be proportional to their flux. Because it has been found 
[11,12] that the monopoles act as catalyst in the nucleon decay process with cross 
section of the same order of that of strong interaction (of the order of 10~27cm2), 
it follows that also a little number of monopoles can cause a neutron star to emit 
in the ultraviolet and X. From observation in these frequency ranges it is possible 
to obtain a limit for crN and so limit for nv:

^ in_ i2 -2 _i / '1 0 -26cm2N\ nv < 10 m yr I ------------1

in clear contrast with (29).

5. M  — M  annihilation as “pow er supply” o f quasars

The unsuccessful research of the magnetic monopoles shows that their number 
is now very little, below the sensibility of the detectors. But the theory predicts 
them so a mechanism that reduces their number is necessary, for example the M  -  
M  annihilation process. The energy emitted in this process, because of the mass 
of the monopole, would be enormous so we should observe “signs” of annihilation 
in very old astrophyçical objects and therefore very close to the Big Bang. A good 
candidate as a seat of the M -  M  annihilation process seems to be quasars, quasi 
stellar objects characterized by having the lines of their spectra red-shifted of 16% 
and more with respect to the wavelength observed on the Earth. Explaining this 
shift as due to Doppler effect, they would be very far from us and so very close 
to the Big Bang. Once their distance is known, it is possible to calculate their 
intrinsic (absolute) luminosity, which is of the order of 1039W almost independent 
of the frequency of observation.

The physical properties of quasars are summarized in Table I [34]. From the 
analysis of the physical characteristics of quasars we deduce that the thermonuclear 
reactions cannot occur because the density is too low. The observed energy might 
be produced gravitationally but in this case the radiation pressure would prevail on 
the pressure of the gas, preventing the collapse. So our idea has been to consider 
a quasar like a cloud of mass Л4 and volume V  containing a number of monopoles 
and antimonopole, with the same density, so that their mass energy does not exceed 
the mass energy of the matter.

Because the major contribution to the mass energy of matter is due to protons, 
it will be

NPEP = 2NMEM, (31)
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Table I

O bject z Lopt Lir Lradio

3C R 273 0.158 1.5 104e 6.7 1048 5.0 1044
1400+16 0.244 1.0 104S 7.6 1044

2.3 10453C 279 0.536 3.1 1046
3C 446 1.404 2.1 1046 5.4 1047 6.4 1045
PKS2126-15 3.270 1.0 1048

T h e  m ass o f a  q u asa r is M И 1041 -  1043 g
T h e  rad ius o f a  quasar is Я  »  10le cm

where the factor 2 has been introduced to distinguish monopoles from antimono
poles. The number of protons in a quasar is

Np = M/rrip, (32)

so that the monopole (antimonopole) number density, supposing their volume con
stant in time and equal to the volume of the quasar, is

N M M
п м ~ V  " 2 VM M(g)Cm

where Мм{д) stands for the mass of the monopole expressed in grams. Because 
of continuous annihilation we have that the number of monopoles (antimonopoles) 
will be a time-dependent quantity; in particular

dt «л/(0 = -  < (TV > n2M(t), (34)

where cr is the annihilation cross section, of order of 10-27cm2 and v ~  10-3c is the 
monopole velocity. Integrating (34) with the condition that for t =  0 пд/ =  пд/0 we 
have

nM(t) = пм о_______
1+ < (TV > nMot' (35)

where пд/0 is given by (33).
The luminosity £ of a quasar will become function of its age with the following 

expression

C = 2MM(g)c2n2M(t) < (tv > V = M 2c2
2 V M u (g)

< (TV >
< (TV > Mt~\ 2
2 V M M (g)  .

■ (36)

4
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The mass-luminosity diagram is shown in Fig. 1; as we can see there is a maximum 
luminosity, corresponding to the limit case of a quasar of infinite mass, given by

„ 2V Мм(д)с2 
max~ < a v > t 2 ’

The inverse function, i.e. M  = A4(£), of (36) is

M  = ___________ 2 VMM{g)___________
(2VMM(g) <(rv> /С) ' !*-  < <xv > t ' (38)

From this expression we see that to have Л4 > 0 it is necessary for the denominator 
to be positive, i.e.

2V M m /C > < av > t2. (39)

This restriction on C implies also a restriction on the mass of the monopole. 
In fact if we consider C ~  Cmax ~  1039W we obtain Table II.

From this Table it is possible to see that the only monopole that allows for 
a luminosity smaller than £ max and consistent with every observed red-shift is the 
monopole with mass of 1016 GeV. i.e. the monopole predicted by the Georgi- 
Glashow model.

Another mechanism which can increase the brightness of a quasar is the cata
lysis of the monopole on the proton decay. In this case the number density of the 
protons will vary in time with law

— np(t) = -  < av > nM(t)np(t), (40)
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Table II

EM( GeV) z Ща) Я м  (G eV ) z Щв)

10le 3 7.83 1042 1016 1 8.69 1042
1015 3 2.80 1042 1015 1 4.34 1 042
1014 3 1.53 1042 1014 1 -1 .6 5  1042
1013 3 - 3 .7 8  1041 1013 1 -6 .5 5  1 040
to 4 3 -1 .4 5  1032 104 1 -5 .1 2  1031
10le 2 8.07 1042 1016 0.5 9.57 1042
1015 2 3.13 1042 1015 0.5 7.99 1042
1014 2 3.53 1042 1014 0.5 - 6 .3 3  1041
1013 2 - 1 .5 7  1041 1016 0.1 1.15 1043
104 2 -9 .4 2  1031 1015 0.1 -1 .8 9  1043

where the catalysis cross section is equal to the annihilation one. Developing the 
same kind of calculations done for the annihilation process we obtain that the 
luminosity produced by the catalysis process is

Ccat —
A f 2c2

VMu (g) <<TV>
< <rv > M t  

VMM(g) .
(41)

which compared with (36) shows that the two processes differ in the fact that in 
the annihilation there is 2V while in the catalysis there is only V. With the same 
arguments as the previous one we arrive at a constraint on the monopole mass, 
which must be necessarily 1016 GeV.

Now it is necessary to establish for which values of the physical parameters a 
process prevails on the other. In order that (36) is greater than (41) it has to be

m > V 2VMm W s M
< av > t

so for a certain age of the quasar the brightness due to annihilation prevails on that 
due to catalysis if M  > M* (Fig. 2). From Table I we have, for a typical quasar

M*  = 1.3 • 1043(1 +  2)3/2 (43)

and so the observed luminosity is due to the catalysis process. This model can 
explain effectively the energy emitted from quasars, determining moreover the mass 
of the monopole, but it contains a “bug”: from (35) we have that the time necessary 
to reduce the initial number of monopoles to half is much greater than the age of the 
Universe so it would be possible to observe them: of course it is not in agreement 
with the observational data. A way to solve this problem might be to assume that 
the volume occupied by the monopoles is a time-dependent quantity, but this is at 
the moment, not clear, yet.
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6. C onclusion

The theoretical previsions about the number of monopoles that we should 
observe now are not in agreement, depending critically on the GUTs adopted. The 
mass itself of the monopole, in the framework of various theories, can vary widely: 
from 104 to 1019 GeV.

The only experimental data about monopoles we have at our disposal is that 
their number is actually below the sensitivity of the detectors, i.e. the present 
number of monopoles is practically zero. But because the theory predicts their ex
istence a mechanism is necessary which is able to reduce their number in an effective 
manner; such a mechanism might be the monopole-antimonopole annihilation.

Because of the enormous mass of the monopole, the energy released in the 
process is very high and so it seems natural to us to think of their annihilation as 
taking place in quasars, which are very old and bright heavenly objects with not 
yet known source of energy.

The interest of this model resides in the fact that it can explain the energy 
emitted by the quasars and from the measurement of their luminosity it is obtained 
that the ONLY monopole that can produce such an energy must be the 1016 GeV 
monopole, i.e. the Georgi-Glashow monopole. One must point out that this result 
is obtained by the unique assumption that the source of energy of quasars is the M 
-  M  annihilation and so without referring to particular GUTs.

Moreover, if we suppose that the monopoles, inside the quasars, tend to gather 
towards the centre, then we have that the annihilation time is of the same order 
of magnitude of the age of the Universe and the volume occupied by them is very 
small: this makes them practically undetectable.
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A KERR-LIKE RADIATING METRIC 
IN THE EXPANDING UNIVERSE
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Using th e  m e th o d  of d ifferential forms a  K err-like m etric is derived  as an  exact 
so lu tion  of E in s te in ’s field equations corresponding to  a  perfect fluid d is tr ib u tio n  plus a 
pu re  rad ia tio n  field. T h e  solution is in te rpreted  as a  Kerr-like ra d ia tin g  m etric  in the 
cosmological b ackground  of an expand ing  universe. T h e  rad ia ting  K err m etric  and the 
rad ia tin g  associated  K err m etric a re  derived as p a rticu la r  cases. T he de ta ils  of the solution 
are also discussed.

1. In troduction

Vaidya [1] has discussed a metric which reduces to the metric of an expanding 
universe in the absence of the source and becomes the well known Kerr metric 
(Kerr [2]) in the absence of the expansion of the universe. The source for Vaidya’s 
solution is an imperfect fluid (i.e. the pressures in three spatial directions are not 
equal). Guha Thakurta [3] has also discussed the Kerr metric in the background 
of expanding universe. He has used the field equations corresponding to a perfect 
fluid with heat flow for his discussion.

Kerr metric describes the exterior gravitational field of a rotating body. Many 
people have tried to construct the non-static generalization of Kerr metric. Vaidya 
and Patel [4] have obtained a radiating Kerr solution in terms of a Kerr-Schild (Kerr 
and Schild [5]) metric. Their solution describes the exterior gravitational field of a 
radiating rotating body. Vaidya, Patel and Bhatt [6] have also constructed Kerr- 
like radiating solutions of Einstein’s equations. These solutions are simpler than 
the one reported earlier by Vaidya amd Patel [4]. The main purpose of the present 
investigation is to obtain an exact explicit solution of Einstein’s equations which 
describes the radiating Kerr and the radiating associated Kerr solution, discussed 
by Vaidya, Patel and Bhatt [6], in the cosmological background of an expanding 
universe.

For the derivation of our solution we shall use Cartan’s exterior calculus of 
differential forms. This method of differential forms is standard now. Therefore we 
shall not enter into the details here.
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2. E quations o f  s tn ic tu re

For calculations leading to the equations of structure, we take the line element
in the form

ds2 = e~F[2(du + g sin adß)dt -  M 2{da2 + sin2 adß2) — 2L{du + gsm adß2], (1)

were F = F(t),M = M(u,a, t) ,g  = g(a) and L = L (u ,a ,i). The metric (1) is 
conformal to the Kerr-NUT metric discussed by Vaidya, Patel and Bhatt [6], the 
conformal factor being a function of time t.

In the space-time manifold defined by the metric (1), let us introduce the 
following basic 1 - forms

Here and in what follows the bracketed indices indicate tetrad components with 
respect to the tetrad (2). Using (2) it is easy to compute the exterior derivatives dOa, 
and Cartan’s first structure equation dOa = — WbAOh will the give the connection 
1 - forms wb. A straightforward calculation gives

01 = eF(du + gs'madß), 62 = eFda,
e4 = eFdt — L6l , в3 = eFM  sin adß.

(2)

Therefore the metric (1) becomes

ds2 = 20l04 -  (02)2 -  (03)2 = д(аЬ)ва9ь. (3)

I = - e Fw\  = {Lt + LFt)Ql -  Ft9 \

with wat + Wba = 0, /  = + g cot a ) , and a suffix denoting partial derivatives
(e.g. ga = §£,Ft = etc.) From the second equation of structure

dwab + wacAwcb = Rbed0eA0d.
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We can now compute the curvature components Rycá. For the sake of brevity they 
are not listed here. If R(ab) = Rcabc denote the tetrad components of the Ricci

ПЛ1* 1|?Л 4"» /-1 f rtensor, we find that 

^(23) =0,

=2 ( * £ - £ ) +  W .  -  J?),

( % )  r

„2F,

.2Fp _  »e легд-! — TTw - M

„IFd _  ~9
Я(34) “  л7 M +ш м 1 ]

К ,,, ,  = и ‘г Н , „ ,  +  ~ L VF, +  i .  | ( l ,  +  +  ( $ ) .

e7F R( i3) =Le2F R( 34) — т4:£M

A/Ui + (LMt)t + -^ -1  +nr n Ze R(14) =L (t + —

+ 4LFt( + 2LF, +  2F, ^2Lt + .

« 2 F  p  ___2 .F  p  __
e Я (22) - e Ä (33) - +

+ ^  + 4~ JT  *  1 “  (M2)u‘ +  {L{M2)<}‘

(5)

я _ ( ,  2MU\  j r  / „  2Mt\  n r „
- 2Jr' { L' + - M - ) -  iLF‘ (,f ‘ + ТЕГj  -  ■2LF" '

e7FR(n) =L 2e2FfZ(44) + [</2(LUu + £yy) +

+2fLy +  2LuM M t + ALMMtu -  2LtMMu + 2MMUU] + 2LuFt.

In the above the variable у replaces the variable a  in differentiation, the defining
relation being

gda = dy. 3 ( 6)

3. The field equations 

We shall try to solve the following field equations

Rik -  ^gikR = —8 tt[ ( p  + p)viVk -  P9ik + <rwiWk] -  Лgik, (7)
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with
g ' k ViVk =  1, g , k w i w k =  0 , g , k v i w k =  1. (8)

The last condition in (8) is the normalizing condition.Here <rwiwk is the tensor 
arising out of the flowing null radiation, v‘ is the flow vector of the perfect fluid 
and Л is the cosmological constant. The other symbols occurring in (7) have their 
usual meanings.

It is painless to see that the field equations (7) can be expressed in the tetrad 
form as

R(ab) =  Л(/(в4) -  8ir<Tw(a)w(b) -  8tt (P + p)v(a)V(b) - ~ ( p -  P)ff(0J) (9)

For the metric (1) and the tetrad (2) we take the tetrad components of the vectors 
and tv,- as

V(e) = >"'(«) =  ( x ’0,0,0)  ’ (1°)

where Л is a function of the co-ordinates to be determined from the field equations. 
It is easy to see that v,- and tVj given by (10) satisfy the conditions (8). The equations
(9) and (10) imply the following relations:

■R(24) =  0, Я(34) — 0, (И )
Я(12) =  0. Я(13) =  о, (12)

<1•vС?'1IIft,
oo (13)

8 *p — —2Я(22) — Л(14) — Л, (14)

2Л2 _  Я(44) j (15)
Л(22) + ri(i4)

и . »  ß |n )  + i( i( ) . (16)

Here the tetrad components Щаь) of the Ricci tensor are given by (5).

4. T he so lu tion  o f th e  field  equations

Take the two equations (11). These involve only one unknown function, M. 
One can easily verify that these equations admit the solution

M 2 = ( f / Y ) ( X 2 +  У2), (17)

with
X u = - Y v, X V = YU, X t = -1,  Yt = 0. (18)
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For our purpose we shall take a particular case of the above solution. We assume 
f  = Y.  Therefore, the above solution becomes

M 2 = Х 2 +  У2, (19)

with
Y  = - a y + B ,  X  — au - t .  (20)

Here a and В are undetermined constants and no additive constant is shown 
explicitly in X, because such a constant can always be incorporated in the t co
ordinate. The two equations (12) can be explicitly written as.

and
Lty + + 2 LyFt — 0.

Using the results (19) and (20) a solution of the above two differential equations 
can be expressed as

2L — a + a -  1 + 2( F ' X  + ETY)'
X2 + y2

B — 2F ( 21)

with
E * = - ( a  -  1)Y, F* =  —a(a -  l)ti -  m, (22)

where m  is a constant of integration. The pressure p, the density p, A2 and the 
radiation density <r can be determined from (13), (14), (15) and (16). They are 
given by

8тгр = Л — e"2F[a(2Ftt + F,) + e~2i (2L0 -  a)(Ftt -  )],

87r(p + p) = —2e 2F 

-  2e-4F

A2 =

a — 1
X 2 + Y 2 

1 — a
X 2 + У 2 

а _  2(F» -  F?)e~2F

+ a ( F „ - F 2)

-  (2L0 -  a)F,2 - 2Ft{(a -  l)t + m}'
X 2 + У 2

- 8 tr(p + p)

167ГСГ = -47t(p + p )  +
1

(23)

(24)

(25)

4tr(p + p)

+ (Ftt -  F 2)e -4F{a + (2L0 -  a)e"2F}2

A —6F
X 2 + Y 2ÍFu -  F ‘2 ) { ( a  "  1 }  +  r F t }  +

(26)
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where 2Lq is given by

2 Liq — 2a — 1 -|- 2(E*Y + F*X) 
Х 2 + У2 (27)

and F* and E * are given by (22).
With 2 / =  g a + g cot a, gda = dy and f  — Y , the result (20) shows that the 

function У satisfies the differential equation

yzz(l — z2) — 2zYt -f 2аУ =  0, z = cos a, (28)

This differential equation admits a power series solution if a > — g. Given a satis
fying this condition, one can find a real number n such that 2a = n(n + 1), and so 
(28) becomes the Legendre equation

y « ( l  -  z2) -  2гУг + n(n + 1 )y = 0. 

The solution of (29) can be expressed as

У = A'P„(cosa) + N Q n(cos a),

(29)

(30)

where К  and N  are arbitrary constants and P  and Q are respectively the Legendre 
polynomial and the associated Legendre polynomial of order n. It is easy to see 
that

К dPn . 2 N  dQn . 2g sin a = • sin а  + • sin a.a dz a dz
Thus the final form of the metric of our solution can be explicitly expressed as

ds2 = e2F

(31)

2{du + ( I± ¥ d L  + ?L sin2 adß ) dt _
\  a dz a dz J

 ̂ \  a dz a dz J J

— (X 2 +  Y 2)(da2 + sin2 ad/?2) (32)

where

X  = au — t, Y  = KPn(c osa) -f NQ„( cos a),

2 L — a T (1 -  a) +
2X {(1 — a)t — m}’ 

X 2 + У2
- 2  F

When F = 0,Л =  0, we have verified that p = 0,p = 0 but <r ф 0. In this case 
the metric (32) reduces to the radiating Kerr-like metric discussed by Vaidya, Patel 
and Bhatt [6].
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Let us study the situation when a — 1. In this case n — 1 and consequently 
У is given by

Y  = К  cos a +  N (cos a log tan — +  1).

In this case the parameters p, p, À 2 and a are given by

Om rf-2F
8 Ч> =Л -  e-*r (2F„ + f? )  + x 2  + y 2 t f „  -  f? )  

Ы р + р) = -  2 ,- ( F „  -  f ? )  +  +

д2 J ( F tt -  F 2)e~2F
-8  n(p + p)

167ГСГ - 1
4 т г (р  + p)

AmFt 
r 2 +  У 2

г 2 +  У 2

(F„ -  F2)e~6F +

+ (F„ -  F , V F { 1 +

(33)

(34)

-  4 т ( р  +  р ) ,

where У is given by (33) and x = и — t = —r. From (34) it is obvious that when 
F = 0,Л =  0 we get p = p = a = 0. Thus, we get an empty space time described 
by the metric

ds2 =2[du + {К  sin2 a +  ,/V(sin2 « log tan — — cos a)}dß]dt—

— (r2 + Y 2)(da2 +  sin2 ad/?2) — 1 +
2mr

r 2 +  У 2
(35)

x [du + {К sin2 a  + TV (sin2 a log tan — — cosa)d/?}]2,

where У is given by (33).
The metric (35) is the particular case of Kerr-like vacuum metric discussed 

by Demianski [7] with slight changes of notation. When TV = 0, (35) reduces to the 
well-known Kerr metric. When К  =  0, (35) reduces to the associated Kerr metric 
discussed by Vaidya [8]. Here it should be noted that when m = 0 the metric 
(35) reduces to the fiat metric. The explicit transformations of coordinates for this 
purpose are given by Demianski [7]. Therefore when a = 1 and m = 0 the metric 
(32) reduces to the metric of an expanding universe.

Thus the metric (32) with a = 1 and TV =  0 gives us Kerr metric in the 
background of an expanding universe. Also the metric (32) with a = 1 and К = 
0 represents the field of the associated Kerr source embedded in an expanding 
universe.

We can interpret the metric (32) when TV = 0 as the radiating Kerr metric in 
the cosmological background of an expanding universe. Similarly when К = 0, the 
metric (32) represents the radiating associated Kerr metric, in the background of 
an expanding universe.
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When the background universe is pressure-free, then we have

2 Ftt + F? = 0. (36)

The Eq. (36) can be easily integrated to have

e2F = (/<-H)4, (37)

where / and q are constants of integration. The metric (32) with e2F given by (37) 
represents a radiating Kerr-like metric in the cosmological background of Einstein- 
de Sitter universe.
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G iven a  function  j(paPb) of th e  scalar p ro d u c t of two tim elike, lightlike o r space
like four-vectors i t  can  be  expanded  in  term s of th e  p ro d u c ts  Yp(pa)t Ур(рь) of spherical 
functions on  th e  (pa )2 an d  (рь)2 hyperboloids. S im ple form ulas for th e  evaluation  of the  
expansion coefficients tire derived. T h e  expansions a re  presented  in the  form  o f ad d itio n  th e 
orem s by w hich th e  integrals J  d? P  Y p  (pa)’ Yp (рь) are  understood. T h ere  exist six types 
of th em  according to  w hether pa o r pt, are timelike, ligh tlike  or spacelike four-vectors. W hen  
Pa — 4a a n d  рь = дь are b o th  spacelike vectors th e  above integral dep en d s besides the  
scalar p ro d u c t ( q a 4 b )  on an  a d d itio n a l invariant, I ( q a , 4 b ) i  defined w henever ( Ч а Ч ь ) 2 >  l i  

as th e  sign of -f (дадь)Ча ■

1. In troduction

In a recent paper [1] spherical functions of the Lorentz group on the upper 
sheet of the double-sheeted hyperboloid, и2 = 1, forward light cone, к2 = 0, and 
the single-sheeted hyperboloid , q2 = — 1, have been derived. They are labelled by 
the two-dimensional horospheric momentum P =  (Pi, P2) within an irreducible 
representation. The above set is completed here by the spherical functions on the 
lower sheet of double-sheeted hyperboloid and the backward light cone.

The aim of the present paper is to give formulas for the expansion of a suffi
ciently well behaved invariant scalar function of two four-vectors in terms of spheri
cal functions. Let e.g. (ua)2 = 1, (ub)2 = 1, 11° > 1, 11° > 1 be two timelike vectors 
then the expansion of a function of the scalar product looks like

OO OO

/(«„«») = j  °2*т /  <*2Ра(<г)У£(и0)*УР> 6), (1.1)
0 —oo

where the expansion coefficient a(cr) is determined by

OO
z(<r) = 2t J dui shw sin(<ra;)/( chw) ( 1.2)

( chw = ( u a u b) > 1, 0 < w  <  0 0 ).
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The expansion (1.1) is conveniently presented in two steps. At first the addi
tion theorem

J ^ Y i ;<«.>• (1.3)

is stated. The right hand side of this equation will be called the addition function 
of the two spherical functions involved. It is clearly a Lorentz invariant quantity. 
At the subsequent step the expansion of a function / ( иащ ) in terms of the addition 
function is performed,

OO

Д ‘|» )  =  !  o -<)
0

This is a sine Fourier expansion whose inverse is Eq. (1.2).
A kind of addition theorem has been derived in [1]. By addition theorem in 

the present context the one given by Eq. (1.3) and by its counterparts for spacelike 
and lightlike vectors are meant. Addition theorems like (1.3) evaluated in other e.g. 
angular momentum basis can be found in literature at several places (cf. [2], [3] 
Chapter X.§3/5). It is clear, however, that the addition functions are independent 
of the basis chosen.

The most general form of addition theorems on the Lorentz group is the group 
multiplication law for the irreducible matrix representations. Addition theorems for 
the spherical functions can be deduced from these by restricting the labels speci
fying states within an irreducible representation to certain particular values ([3] 
Chapter III. §4). Therefore, results obtained in the present paper could, at least 
in principle, be derived from the matrix elements of irreducible unitary represen
tations expressed in an appropriate basis. As, however, these matrices are known 
to be rather complicated objects it is not the simplest way for obtaining the ad
dition theorems in this manner. In the present paper a straightforward method of 
derivation is chosen.

In Eq. (1.3) i;t has been supposed that the integration with respect to P can 
be performed in advance and the addition function (1.3) exists. This is really so in 
the case considered, i. e. when both spherical functions are defined on the double- 
sheeted hyperboloid. However, in other cases like the lightlike-lightlike one the 
addition function may not exist at all the corresponding integral being divergent. 
Thus the method needs deeper foundations. While the analogous formulas for the 
spherical harmonics of the rotation group work without any trouble the situation 
in the Lorentz group is much more complicated. The reason is that the relevant 
spherical functions belong to the continuous spectrum not only through a but also 
through the label P . The commuting set of operators whose eigenfunctions are 
Yp have no common nonzero square integrable eigenfunctions, thus none of Yp is 
normalizable. A proper mathematical framework for treating such eigenfunctions 
is the theory of rigged Hilbert spaces. In [4] an attempt has been made to outline 
a more rigorous treatment on that basis. Here we recall the final result only. Let 
<p(u) be hn elerrient of an appropriate test function space specified in [4], then the

1 4  V.v 5 'o r . ,  ■ • V- : • í K l
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action of an /  operator with the kernel / (иащ) is given by

( / V ) ( « » )  =  J <r2d<r d2V a(a)Yp(ub)(Yp ,ip),
where (Yp, <p) is a scalar product with the test function <f>(ua). The integration 
within the scalar product should be performed at first and the P integration sub
sequently. Whether these integrations may or may not be interchanged depends 
on the kind of the spherical functions concerned. The integrations are really inter
changeable in the timelike-timelike case in contrast to some other cases implying 
that there is no addition theorem at all then since it is just the result of integration 
over P . Hence if one requires the existence of addition functions the correspond
ing integrals should be regularized somehow. It turns out that if a is extended to 
complex values the integrális acquire a meaning and the result can analytically be 
continued to real values of <r.

Out of the six addition theorems there are two of particular interest. The 
spacelike-spacelike addition function contains explicitly a Lorentz invariant quantity

Д3а,«б) =  sg(qî +(qaqb)qä ) (1-5)

( q l  =  q l  =  - 1 , q - = i ° - 4 3 )

defined whenever (<Ь5ь)2 > 1. It takes the values ±1 independently of the scalar 
product provided (qa<Ib)2 > 1. It is invariant under the simultaneous proper Lorentz 
transformation of qa and </&, I (g~l qa, g-1qb) = /(5а,5ь)- In particular, if (qaqb) < 
— 1 I(qa,gb) is a Lorentz invariant scalar antisymmetric in qa and qb, I(qa,Qb) = 
—I(qb,qa)- A function f j(qa<lb) Ihat depends on I(qa,qb) in addition to the scalar 
product of two spacelike vectors is Lorentz invariant. Since I  is defined only when 
(^аЯь)2 >  1 for the remaining —1 < (</„<?&) < 1 values of the scalar product 
f+(qaQb) and f - ( q aqb) are supposed to coincide. The expansion of f i (qaqb) in terms 
of spherical functions takes account of the /-dependence, too.

Another Lorentz invariant quantity that arises explicitly in an addition func
tion is g(i±)6(kakb) which means simply that if in some frame the components of

K a
a lightlike vector are constant multiple of an other one, this constant is a Lorentz

к —invariant quantity. Thus the function F(ka,kb) =  f ( k akb) + д(-£-)(>(какь) of two 
lightlike vectors is invariant, i.e. F(g~1ka, д~'кь) =  F(ka,kb), (g 6 L, k% — k$ = 
0). In particular, this implies the existence of an invariant, antisymmetric with 
respect to the interchange of the lightlike four-vectors, quantity

where

F(ka,kb) = h 6(kakb) -F(kb,ka), ( 1.6)
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Addition theorems provide the expansion of F(ka,kb) in terms of spherical functions 
in the general form, including the delta function term.

In the next Section we recall from [1] the explicit form of spherical functions 
completed by suitable phase factors. Out of them Yp (q) and yp(k) defined on time
like and lightlike vectors, respectively, transform according to irreducible unitary 
representation of the principal series. The spherical functions on the single-sheeted 
hyperboloid as are given in [1] proved to be reducible since they can be decom
posed into two irreducible components of even and odd parity [6] . Thus in order 
to get irreducible spaces one more label, r, the reflection parity is necessary and so 
Yp'r(g) (r = ± )  transform according to irreducible unitary representations T°'r . 
It is an interesting consequence of the existence of the invariant I(qa,4b) that the 
representations labelled by r = -f and r =  — are equivalent since an intertwining 
operator can be found between them (Section 3). Although the reflection parity 
is necessary for labelling the spherical functions and irreducible spaces the matrix 
elements of representations T",+ and T°'~ in the irreducible basis coincide.

According to timelike, lightlike or spacelike character of four-vectors there 
exist essentially three types of spherical functions which can be combined with each 
other in six different ways, correspondingly, there exist six basic types of addition 
functions. Taking into account the backward light cone and the lower sheet of the 
double-sheeted hyperboloid there аде five types of homogeneous spaces amounting 
to fifteen addition functions after all. However, these are absorbed into the six 
basic types in a concise form. At the next step a sufficiently well behaved invariant 
function is expanded in terms of addition functions. Inversion formulas for these 
expansions can be given easily, merely the spacelike-spacelike case proves slightly 
more involved.

2. Spherical functions

The homogeneous spaces considered are on the surface

Up uß = (u0)2 — (u1)2 — (u2)2 — (u3)2 = £ with £ — 1,0,-1

and can be specified as follows.

1. Double-sheeted hyperboloid.
a. ) Н \  : upper sheet, £ = 1,

b. ) # j. : lower sheet, £ = 1,

2. Light cone.
a. ) #o : forward light cone, £ = 0,

b. ) #Q : backward light cone, £ = 0,

UpUß =  1 ,  u° >  1 ,  ( 0  <  /  <  o o ) ,

UpUß = 1, u° < —1, (-oo < / < 0)

UpUß = 0, u° > 0, (0 < / < oo), 

UpUß = 0, u° < 0, (—oo < / < 0).
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3. Single-sheeted hyperboloid.
H- ,  £ = -1 , = -1 , (—oo < l < oo, / ф 0).

The parametrization introduced in [lj can be written in a unified form for all 
the five homogeneous spaces as

u+ = £ /+  ly " , u = y ,  (£ = 1,0, —1), (2.1)

where u+ = u° + и3, u~ = u° — u3, u  = (u1,«2), z =  (x,y), | z |2= x2 + y2. The 
components of z range in —oo < x < oo, —oo < у < oo in each case and the limits 
of variation of / are indicated above at each homogeneous space.

The scalar product of two functions on either of these spaces is defined by

(<Р,Ф)= J  2 ^ 3  d2zy>*(l,z)rp(l,z).

Denote the generators of spatial rotations and boosts by M and N. The 
spherical functions on either of the above spaces satisfy the eigenvalue equation of 
the Casimir operator

(M2 -  N 2)y  = (j2 -  <r2 -  1)У, (2.2)

where jo =  0, a is real continuous for the spherical functions on Я+, Я |,  I I I , 
and for the continuous part of the spectrum on Я_. On the latter space there is 
also a discrete spectrum for which <7 = 0, jo — integer.

The basis is defined by the eigenvalue equation of the horospheric momenta

(tfi + М2) Y  = Pi У, (ЛГ2 -  ЛЯ) У = Р2У (2.3)

which hold for all the three values of £. To specify states unambiguously one more 
label, the 7v.-reflection parity and its counterpart are necessary in spacelike and 
lightlike cases. It is discussed somewhat later in this Section.

The simultaneous eigenfunctions of (2.2) and (2.3) derived in [1] are as follows:

ad l.a.),b.) Double-sheeted hyperboloid, (both sheets: Я]. or Я+, £ = 1, jo — 0)

Yi; ( ' .z) = « 4 / t ^  11 I Kio(P I / 1)(jj~e- ‘Pz), (2.4)

where e = sg l, ea = sgu, Kia is the third kind modified Bessel function [5] , 
P  = (P i,P 2), z = (x,y), Pz = Pix + P2y, P =  \/(P i)2 + (Рг)2- For a complete 
set it is sufficient to let a vary between 0 < a < 00 but it may vary between 
—00 < <j  < 0 on equal footing.
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ad 2. Light cone.

a.) Forward light cone (#g, £ = 0, jo =  0),

yp(f.z) = A Г (
Г (

í i í L ^ V “  > -<р Л  (2.5)
—ut) \  2 J ur-Уж \ 2 ж  J

(—00 < о < oo).

b.) Backward light cone (Hq , £ = 0, jo = 0),

î/p^.z) = m -
т - Ц =  I /  \1+ia (  J ~ e ~ i P z )  (2 .6 )la) \ 2  J tas/ïr \2îr J

(—oo < a < oo).
T(ia

These two cases can be written in a concise form 

2/p(*.z) -  -
Г(г£<г)

Г(—leer ) (?)’ Gr"") <27>
(—oo < a < oo, £ = sg Ï).

ad 3. Single-sheeted hyperboloid. (#_ , £ = — 1)

a.) Continuous spectrum (jo = 0, a continuous)

Y £(/,z) =
\Лт sharer 1 11 J-uÁP  1 1 I) ^ -е " ‘рЛ2тг J ( 2 .8)

(—oo < ст < oo, £ = sg /),

where J_j£<7 is the Bessel function.
b.) Discrete spectrum (<r = 0, jo = integer)

Y p ((z )  = ï 1 1 J«(p o  (èe_<Pï) (29)
(jo =  n- 1 ,2 ,3 ,.. .) .

For a complete set it is sufficient to let jo = n run over positive integers but 
it can run alternatively over negative integers. The notation |n| is merely in order 
to cover both cases.

Spherical functions given in [1] have been extended to the lower sheet of the 
double-sheeted hyperboloid II + and to the backward light cone tfg. Furthermore, 
to obtain a coherent set they are endowed with suitable phases. In Eq. (2.8) the cap
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is in order to distinguish Ÿp from the irreducible linear combination to be defined 
in Eqs. (2.11), (2.12).

With this minor alteration all formulas but the defining equations of [1] remain 
valid. They should be replaced by the present definitions.

Spherical functions given by (2.4), (2.7), (2.8) and (2.9) form complete or
thonormal sets on the space of L2 functions over the corresponding homogeneous 
space.

It is well known from the representation theory of the Lorentz group that 
the unitary representations labelled by (j0 = 0, <r), (j 0 = 0, —<r) are equivalent ([8] 
p.178). It is possible to distinguish these function spaces ([6] p. 346) by defining 
one more discrete label, namely, let Ÿ p(/,z)' =  Ÿp7(/,z)(s = ±1) i.e.

Y 1 . ( 1 , z ) >  =  ^ = =  11 I J - U . Á P  I I  I) ( ^ e-iPl)  (2-10)

(<7 >  0, S  =  ±1).

Thus in order to label a state unambiguously the value of <r and two horospheric 
momenta axe not sufficient since there appears an additional label s taking the 
values ±1 . Then a ranges over positive (negative) values only.

In Poincaré group space time reflection is necessarily represented by antilinear, 
antiunitary operator. Within the Lorentz group it can be represented either by 
linear or by antilinear operators. To see the meaning of the label s define the linear 
operator of g-reflection (qß — *■ —g**) by

K Y £ ( g ) = Y £ ( - g ) .

(In terms of parameters this reflection can be performed simply by changing the 
sign of l and leaving z unaltered.)

It is obvious from the explicit form of Yp* that

Y p ( —9)* =  Y p ( g ) - * .

Hence the 7v.-reflection eigenstates belonging to the eigenvalues ±1 are the 
combinations

YJ(i)+ = ^ l Ÿ&(î)++Ÿ&(i)"l =

= [j - íA p \4) +  ‘M ^ i 'i ) ]  ( è e_,Pï) - (211)

у Р(9Г  = ^ [ П ( д ) + - ^ ( 9 Г ]  =

= -  J i A p \i\)] ( ^ e~ipI)  - (212)

(e = sgl).
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These satisfy the eigenvalue equation

RY*P(q)r =  rYp(ç)r (2.13)
(r =  ±)

They are even and odd functions on H_ and can alternatively be derived by an. 
integral transformation method suggested in [6] . Along with (2.9) they form a 
complete orthonormal set and satisfy the orthogonality relations

( y £'*, Y £r) = 6, r± 6(a' -  a)6\ Q -  P) (2.14)

(cr > 0, <r > 0; 8,r = ±)

(y jq°, Y £r) = 0 (2.15)

Since the linear operator 71 commutes with the operator of group action, [7c, Tg] — 0, 
the eigenstates of 7c form invariant, moreover, irreducible subspaces. Thus Yp’r 
functions given by (2.11), (2.12) transform according to irreducible unitary repre
sentations of the principal series. When applied to spherical functions of the discrete 
spectrum the 7c-reflection decomposes them into states of even and odd parity of 
the index jo ,

K Y l n(q) = Y  £•(«), ( 2 . 1 6 )

7 c Y p * - 1 ( g )  =  - Y p - 1 ( î ) .  ( 2 . 1 7 )

(» = 1 ,2 ,...).

As distinct from the representations (cr, +) and (cr, —) of the continuous spectrum 
irreducible representations n = jo > 0  belonging to different eigenvalues of 7c are 
inequivalent.

Spherical functions on the cone can be treated in an analogous manner. Since, 
however, the reflection к^ — ► —k^ is not a symmetry of either of the cones Hq , Hq 
define the integral operator

(Ky) (ka) =  V  J dkbn ' ( k b, ka)y(kb) ( 2 . 1 8 )

(к a and kb are both on Hq or Hq),

where

7c (kb, 6(какь) (2.19)

(eb = sg lb)
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in order to distinguish spaces of functions a and —a. (V denotes the principal value 
of the integral). The kernel 7Z (ka, kb) is Lorentz invariant scalar, antisymmetric in 
кa and kb.

The operator TZ commutes with the left group action

Tt ,Tl'} = o

therefore, its eigenvalue is a good quantum number for labelling the function spaces 
transforming according to equivalent representations <t, —<t. Replace in yp given 
by (2.7) <t — *• r<7 where r = ±  and define

yaP(k)r = УрГ(к) =
/  Г(г'£г<т)
Г(—ter<r) (2.20)

(0 < (7 < OO, r =  ± ).

It is easy to verify that the functions defined so satisfy the eigenvalue equation

Ky°Ak)r = ryW y .  (2.21)

This completes the eigenvalue equations (2.2) and (2.3).

3. Irreducib le representations and th e  invariant I(qa,<lb)

Given two spacelike vectors (qa)2 = —1, (?ь)2 = —1 then in addition to the 
scalar product there exists one more invariant under the proper Lorentz group 
provided {qaqb)2 > 1, namely,1)

ДЗо, Зб) =  Sÿfar + (3a3i)3a ] = ±1- (3-1)

This is so because и** — q% + (ЗаЗь)з^ is a timelike or lightlike four-vector, therefore, 
the sign of its u~ = u° — u3 component is a Lorentz invariant quantity taking the 
values I(qa,qb) = ±1 independently of the scalar product whenever (qaqk)2 > 1. 
More explicitly,

l (9~l qa,9~l qh) =  l(qa,qb),

where g is a proper Lorentz transformation1). The value of I(qa,qh) is independent 
of the scalar product in the sense that for a given (qaqi)2 ,> 1 value of the scalar 
product I(qa,qt>) can take the values +1 or —1 and vice versa: for a fixed value

1T h is  invariance holds also for space reflection, therefore, I(qa ,4b) •» in v arian t under the  
o rthochronous L orentz group  afte r all.
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370 M . HUSZÁR

of I(qa,Çb) the scalar product may have different values. On the other hand both 
1(<1а,Яь) and the scalar product are determined unambiguously by the components 
of qa and g».

The invariant I  is either symmetric or antisymmetric with respect to the 
interchange of the order of qa and gj,

i(qb,qa) = Çl{qa,qb), (3.2)

where (  = sg(qaqb) = ±1. This means, in particular, that if (qaqb) < —1, 7(ga,?i>) 
is an invariant scalar antisymmmetric in qa and gj, I(qb,qa) = —I(qa, Яь)- Fur
thermore, it has the obvious properties,

I ( - q a,qb) = l(qa,qb)\ l(qa,-qb) = -1 (яа,яьУ, (3.3)
l ( - q a,-qb) = - l{qa,qb)•

(There exist invariants like this in the remaining cases, too. E.g. let q2 = — 1, k2 =
0 € #o then the four-vector = qß +  defined when (kq) /  0 is timelike,
и2 — 1, nevertheless, the invariant I(k,q) — sg(q~ + щ^к~)  is not independent of 
the scalar product since I(k,q) = sg(kq)).

By means of 7(ga,gj) an invariant Hermitean form

W ,  'P) = {t/b V>Y -  (<P, Grp) = J dqadqb 4>{qa Y  G ( q a , q b)rp{qb) (3.4)

with
G(qa,qb) = ^[i(qa,qb) + l(qb,qa)] = l(qa,qb)— (3.5)

can be defined where dq is the invariant measure on Я _ , dq = ^ p d 2z.
Similarly, there is an invariant antisymmetric form

[<Р,Ф] = = {<P,Sxl>) = J dqadqb<p(qa)*S(qa,qb)ip(qb), (3.6)

where
S(qa,qb) = ^[7(îo ,î0  -  1(яь,Яа)] = Две,«»)—j —• (3-7)

Both forms are invariant under the group action,

{Tg(p,Tgip} = {<p,rp}, [Тд<р,Тдф\ = [<р,ф], (3.8)

where Tg is the operator of left displacement, Tgip(q) = <p(g~lq)-
Only some consequences of the existence of the invariant I are discussed here. 

One of them is the equivalence of г =  +  and r = — representations. To this end 
consider the representation spaces 77+ and H~ spanned by Yp,+ and Y p for a
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fixed value of <r. This is the space of functions square integrable in P. Then T+ 
and T ~ , the corresponding irreducible representations are equivalent.

To verify this consider the linear operator A in 7i~,

(A<P)(<la) = J  dqb I{qa,qb)A(qaqb)ip(qb), (3.9)

where A(qaqb) is an even function of the scalar product. It follows from the symme
try properties (3.3) of I(qa,qb) that Tl(Aip) = A<p i.e. A is an 'H~ Я+ mapping, 
moreover, it is bijective. It follows from the relation AY^~(q)  =  a(er)Yp + (ç) which 
can be derived from the addition theorems to be proved in the next Section. Here 
a(<r) is a constant for a definite value of <r . There exists a kernel A(qaqb) that the 
constant a(cr) corresponding to it is nonzero and finite for 0 < <r < oo.

Furthermore, the symmetries (3.3) and the invariance of the measure dqb 
imply, (cf. [3] Chapter I.§/4)

(T?A<p)(qa) = J  dqbI(g-1qa,qb)A(g- 'qaqb)<p(qb) =

= J  dqbI{qa,gqb)A(qagqk)4>(qb) =

=  J  dqbI(qa,qb)A(qaqb)<p(g-1qb),

thus
T+A = A T -  (3.10)

which proves the equivalence stated.
As a further consequence it can be easily shown that the matrix elements 

of irreducible representations T+ and T~ in Y p + and Y p_ bases coincide. Hence 
the matrix elements of irreducible representations, Dqp(g), are independent of the 
label r = ± , D & (g )  = D^~(g) = D"QP(g).

4. A ddition  th eorem s

The addition theorems stated in this Section refer to the spherical functions 
given by Eqs. (2.4), (2.9), (2.11), (2.12), (2.20).

1. Timelike-timelike case

Let (ua)2 =  1> (ub)2 =  1 be two timelike vectors and ua, ub G (Я^ or Я+) 
independently. Consider the addition function defined by

A°(uaub) = J d2PY£(uay  YP°(ub), (4.1)
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where the integral is extended to the entire P\, Pi plane. It can be evaluated either 
directly or by noticing that Аа(иащ) is a Lorentz invariant quantity thus depending 
on the scalar product (uaub) only. There exists a frame where ua = (ea, 0, 0, 0), 
ub — (k°, 0, Ouf). Denote the parameters of ua and ub by (/„, za), (lb, zb) and 
let ea — sgla, £b = sglb then this frame corresponds to the values of coordinates 
la = ea, za = 0, 0 < £bh < oo, zb = 0.

The result of integration is

А°(иащ) = J <PPY£(ua)*Y£(ub) = C ^ — (4-2)

«  = £a£b = sg{uaub)),

where

uaub = C chw = - +  lb+(za -  z*)2] (4.3)

(w > 0).

Expand now a function f (uaub) of the scalar product in terms of the addition 
function as oo

f (uaub) = / «  chw) = J  a7 dff al;(cr)A'7 (Ç chw). (4.4)
о

This can easily be reversed,

aç(cr) = 2л3 J du sh2w>lCT(£ chw)/(£ chw). (4-5)
о

Thus the expansion of f ( u aub) in terms of spherical functions takes the form

OO OO

/(« .«» ) =  J J d2P a ( {<r)Y£(uay Y £ { u b). (4.6)

2. Timelike-lightlike case

Let u2 = 1, k2 = 0(u € (Я+ or Я+), к G (Я^ or Яд)) two timelike and 
lightlike vectors. Then the addition theorem is

A°(ku)r = f  d2P ур(к)г* Yp (u) = - í - p t u l - 1-**»", (4.7)J 1Г-СГ
(to = sgl0, e = sgl, r = ±)
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where the scalar product (ku) is expressed through the coordinates и — u(l, z), 
к — k(l0, z0) as

(ku) =Çw=  —  [/2 +  ( z - z 0)2] (4.8)

(C =  sg(ku)).

Expansion of a function of (ku) in terms of the addition function is a Mellin 
transformation,

f (ku) = f (  Çw) = Y ^  f  <r2 da ac((r)rA°(Çw)r (4.9)
г о

which has the inverse
OO

a^(a)r = 2ж3 J wdw A~a(Çw)r f(Çw). (4-10)
о

3. Timelike-spacelike case

Let now u2 = 1, q2 = — 1 (и £ (Н\  or H+), q € Я_ ) a timelike and spacelike 
vector whose coordinates are и = u(la, z0), q =  q(h,^b) then two addition theorems 
exist,

A > ? ) + =  J
A°(uq)~ = J

d2P Yp(u)* Yp(q)+ =

d 2 P  У р ( и ) *  Y p ( g ) -  =

—iea cos(craj) 
\pl ж2 a chw 

£„ SÍn(íTw) 
yjlie 2<r chw

(ea

(4.11)

(4.12)

where the scalar product can be written as
1(uq) = £a shw =  — -[/2 - l 2b +  (za - z b)2] (4.13)

" a ' l
( —OO < W < oo).

The expansion in terms of the addition functions is a Fourier transformation

f(uq) = f (£a shw) = V ' Í <r2d(T A° (£a shw)r a(<r)r , (4.14)

(r = ±)
where the dependence of a(a)r on £a is suppressed. Eq.(4.14) has the inverse

/ oo
du ch2w /(e0 sh w ^  a(£a shw)r . (4-15)

-oo
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4- Lighllike-lighilike case

The addition theorem in this case slightly differs from the other ones. The 
reason for this is that the integrals f  d2P  j/p(fc)r*j/p(Jb)±r do not exists in the 
ordinary sense, some kind of regularization is necessary. For real er the relation 
Ур(ка)г =  У~р(ка)~г holds. Substituting this into the above integral it becomes 
an analytic function of a which acquires a meaning for certain complex values of ex 
and can be continued to its real values.

Let fc2 =  0, kb =  0 be two lightlike vectors (ka,kb G (HqOtHq)) with the 
coordinates ka = ka(la, za), kb = kb(lb, zb) and denote by ea — sgla, eb = sglb. 
These signs determine which light cone are ka and kb on.

The scalar product is simply

(kakb) =  = ( z a  -  Z f c ) 2

2 L h
(C = sg(kakb)).

(4.16)

Let ka and kb be situated on the same light cone then

A ' ( k a,kby r = J d2P y i P(ka) - y i ( k by (4.17)

with

(  1 la
A°(ka,kb) = x2<r2 h

l

S(lka kb) - Л - \ 2какьГ 1- и° \x ‘ie<r
1

1C*l£<T 1-2 /т2 6(kakb)
(4.18)

(^ < es Imcr < 1 for the off-diagonal elements, ea = eb = e; s, r = ±).
Elements of this and subsequent matrices are arranged so that in the first row 

the elements (s,r) = (+ ,+ ) ; (+ ,—) are situated. The addition theorem is valid in 
the indicated range but it can be analytically continued to real values of er.

Addition theorems for t a — —Сь =  £ are obtained by interchanging the 
columns of the matrix (4.17).

As mentioned in the introduction the function

F(ka,kb) = f (kakb) - k g ( j ^ j  «(*,*»)

is Lorentz invariant. Its expansion in terms of addition functions is

F(ka,kb) =  £  f  cruder аг.(ет)А°(ка,кьу г , (4.19)
• w J*ir
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where the path of integration on the complex a -plane for the off-diagonal elements 
(s, r) = (r, —r) runs from irea2 to oo + irea2, (<r2 =  I m a , ^ < ea2 < 1) and f°r the 
diagonal elements (s,r) = (r, r) from 0 to oo. If the coefficients а_Г1Г(<т) have no 
singularities in the strip [a\ +  irO,<Ti + iera2], 0 < <7i < oo the path of integration 
can be shifted to the real axis. Then the limits of integration in (4.19) are 0,oo. 
For the expansion coefficients one gets

OO

а-Г)Г((т) =  2л-3 J wdwA~a(w)r'~rf(w),  (4.20)
о

oo
ar A cT) = 7} J  dww" 1 ~Ur(7g(w). (4.21)

о

5. Lighllike-spacelike case

Let к2 = 0()fc 6 (Яд or Ho )) be a lightlike and q2 = — 1 a spacelike vector 
(q £ //_ ). In terms of the parameters к = k(lo,zo), q = q(l, z) the scalar product 
can be written as

{kq) =  e0w = T ^ H 2 + (z -  zo)2]* (4-22)

Taking into account the relation Ур(к)г = y l p{k ) ~r again and adding an imagi
nary part to a the following addition theorem can be derived

A ' ( k qy r = J  d2P y lp (* r* Y M ? )r

(s ,r  =  ±),

with

A°(kq) = to |2fcç|-1 - 'Co<7 Ч |2 ^ Г 1_<Го<7\
V 2n2i<r 4 |2 fc « r1+<'°"J ’

(0 < e0sa2 < 1 ; 02 = Ima, C = s<7(k?)> Co =  sgl0)-
The expansion in terms of the addition functions takes the form

/ ( k ? ) = X ]  j  <r'1d a a r , ( a ) A a (k q ) ‘ r .

(4.23)

(4.24)

(4.25)

The path of integration on the complex cr-plane runs from iseoa2 to oo+ iseoa2 but 
it can be shifted to the real axis provided ars (a) is free of singularities in the strip 
[<ti -f isO, ai +  is<T2], 0 < <ti < oo. The integration in (4.25) runs then from 0 to oo. 
The expansion can be reversed as

OO

art(a) =  2?r3 J  du>|u>| A~a(w),rf(w).  (4-26)
—oo
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6. Spacelike-spacelike case

Let ql = —1, q\ = —1 be two spacelike vectors with the parameters qa = 
qa{lo!zo)i Зб = Зб(^б.2б) then in addition to the scalar product

(ЗаЗб) = 2Ï J - H I  -  + (*- -  *b?] (4.27)

the addition functions depend also on the invariant /(з0,3б) =  sg(q^ + (ЗаЗб)Зо ) 
defined formerly in (3.1),

Л " Ы б Г  = J  dn-PY°P(qbrY°P(qay =
[Л 1(0)}г if (ЗоЗб) =  -  ch© < -1  

=  l  Aő(<p)‘r if -  1 <  ( З а 3 б )  =  c o s v ?  <  1 ( 4 . 2 8 )

U + ( 0 ) / r if (ЗаЗб) = Ch© > 1
(й,Г — i , 0 >  0, 0 < <p <  7T,£T > 0) 

where matrices A a_ , A ^ , A \  have the explicit form

л -<е >' = - е т э (
sino-0 
i l  cosa©

H COS <70\
sin O’© / (4.29)

A°o(<P) =

I t - a  sh© ( i f

1 , (
hirer sin ip \

sin<r© 
cos<r©

ch<r + с1нт(ж — ip)

(I  =  /(3а,3б))
— i l  cos <т@>
— sin <rô

о
2л~(т sharer sin ip V 0 chtrip — ch<x(7r — ip)

(4.30)

(4.31)

The addition theorem for the spherical functions of the discrete spectrum reads

5"(3а3б) = J  d2P Y £ ( î4)*Y £(ga) =

if (ЗаЗб) < “ I,

if -  1 < (задь) = cos^ < 1, (4.32)

if (ЗаЗб) > 1,

(0 < ip < 7г).

An invariant function may depend on I(qa, qt) in addition to the scalar prod
uct. Since I  is defined only for (qaqb)2 > 1, the value of an invariant function .in 
the intermediate range — 1 < (qaqi) < 1 is supposed to be independent of I.
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The expansion in the two outer ranges reads

OO

f i ( -chQ) = Y ,  J  <r2daar,(a)A°_(Q)Y (4.33)

((ЧаЧь) = —chO < - 1)

OO

/ / ( eh Ö) = Е / <r2d<rar.(*)A°+(Q)Y (4.34)

(chO =  (qaqb) > 1).

Eqs (4.33), (4.34) can be reversed by knowing the values of fi(qa4b) merely 
in the outer ranges,

ar,(a) = 2tt3 /  dQ sh20  ] Г [ / / ( -  ch0)A l‘7(0 )îr + / / (  сЬ 0)Л ;а(0)}г]. (4.35) 
Jo ,

In the intermediate range — 1 < (qaqb) < 1 both the addition functions of the 
continuous and discrete spectra are needed,

Since the coefficients ara(a) have been determined through Eq. (4.35) the integral 
part of the expansion can be considered as a known function. There is, however, an 
ambiguity in the value of the expansion coefficients аг,((т), disregarded in (4.33),
(4.34) . On substituting (4.29) and (4.30) into these equations it is seen that the 
expansion coefficients are written in the form aar,(a) which means that ar,(cr) itself 
is determined only up to an additive term proportional to 6(a) i.e. the replacement 
ar,(a) — ► аг,(сг) + 7г3а06(<т) yields the same / / (±  ch0) functions in (4.33) and
(4.34) . This ambiguity, irrelevant in the outer ranges, becomes relevant in the 
intermediate range where the expansion (4.36) holds since under this replacement 
the integral term transforms as

The coefficient a о can be determined by multiplying Eq. (4.36) by sin^? and inte
grating from 0 to 7Г. The value of a о thus obtained is ao =  fo + go where /о and 
go are given by Eqs (4.38), (4.39).

OO

OO
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Substituting (4.35) into (4.36) the Chebyshev expansion of the integral term 
can be given explicitly. Accordingly, the coefficient 6„ in (4.36) consists of two 
terms, the contribution from the integral term and from /(cos p) itself,

u&n — fn +  9n, Go — /о +  9o
(n = 1 ,2 ,3 ,...) ,

(4.37)

with

2 / '
/„ = — / dip sin p cos n<p f  (cos p) (4.38)

Jo
(« =  0 ,1 ,2 ,...) ,

2 7°° 1
gn = -  dO sh0 e - n0 -  Y ,[ f i  (ch 0 )  + (—)n/ / ( —ch 0)] (4.39)

~ Jo z J

(n = 0 ,1 ,2 ,...) .

Thus, finally, the expansion in terms of spherical functions takes the form

OO

//(ЗаЗь) = J  d2r[ari{a) +  a07r36((T)]Yp(gb)*J Y p(«a)r+

°o

n = l  J
d2P Y ^ (56)*Y J(îa), (4.40)

where the expansion coefficients are given by (4.35), (4.37).
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A ccording to  the  Le C h a te lie r’s princip le th e  spontaneous processes induced  by a  
dev ia tion  from  equilibrium  are  in  a  direction to  resto re  the system  to  equilibrium . W e give 
th is princip le in  deta iled  a n d  explicit form.

1. In troduction

It is important to know about a physical system whether it is stable or not. If 
it is in equilibrium state then it is known that the conditions of stability are ds = 0 
and drS < 0 where S  is the entropy function of the system [1]. Now we consider a 
system that is taken out of equilibrium by some imposed perturbation. According 
to the Le Chatelier-Braun principle the perturbation directly includes a process 
that reduces the perturbation.

The most generalized thermostatic form of this principle is due to Fényes and 
Tisza and is in close connection with the following inequality series [2, 3]

dy i  , d y i , дух , д у  1 .
(1)& Г 1' - ••'x“ д х ( у'-Хз- - X" > дху  1УЗ' ^  g lya,-

ŐXi d x i д х \ д х у .
(2)

w » - ■у” > •у" >

which refer to the initial state of the perturbed system, where x* are the exten
sive parameters and гц the intensive ones. These are consequences of the entropy 
maximum principle.

We characterize the departure from equilibrium state with parameters а^[4,5]

X{ X io
<*. = ----------,

•En+1
t = 1 ,2 ... ,n , (3)

then the thermodynamic forces are:

X  -  — i _  0— L 
* ~  dcei д с п  0  ’

i = 1 ,2 ...,  n, (4)
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where a, is the a parameter of the entropy as the function of the other a,- param
eters.

By means of parameters a,- and forces ЛГ,- I. Kirschner gave another way to 
characterize the perturbed system initial state [6].

l-^lUa....an > 1-^11x3,03,...,a„ > 1-̂ 1 |х 2,Хз04,...,o, "  ' >  |^1|X2, -,Xn (5)

|a i lx 3,...,xn > |a i |e a,rs,....,Xn > l<*l|aa,as,X4,--.-Х» > ••• >  |a l |a3,...,ar„ (6)
and by fluxes: ái =

I“ i |x 2>...,A-. > |« l |â 2lXs, .,*» > |»l|á2,ó3,W,.. ,A'n > • ^  I®1 |á2,. .,án (7)

where X\ ф 0 and

1-̂ 1 |á2, > |-̂ 1 1x2,03,•..,0, > |^lU2,X3à4,...,à„, > ••• >  |-̂ 1 \Хз,...,Хп, (8)

where ói ф 0.

2. Effect of p ertu rb a tio n  to th e  therm odynam ic system 

The parameter a of the entropy is:

a  * = аДа1»2 • • • ,»n)-

We can expand as in powers of the parameters a;

d2a, ■otiak + ----

(9)

( 10)
» dai 2 да*до‘к'- 

We introduce the positive definite symmetric matrix </,•*

d2a,  , >
9ik dak dat (11)

and by inserting Eq. (10) in Eq. (4), we find in second-order approximation

x i = -
к

* = 1 ,2 ,... ,n. (12)

From Eq. (4) it follows in second-order approximation

л 1 ^  1.
A a > = ~ 2 2.*/ 3ika ia k = -^goa-  (13)

i,k
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The entropy production is the sum of products of each force with its conjugated 
affinity [7, 8] and in this case, we have

<r = A á , = ' ^ 2 g i tói»* = ^ à i X i  = qX. (14)
i ,k i

Differentiating the entropy production a with respect to the time, we have:

à = Ö.X + ÓX, (15)
a = LX, (16)

where the Onsager theorem states that Ljj, is a positive definite symmetric matrix
M;

Assuming that L is constant the acceleration can be written as follows

a = LX.  (17)

Inserting this Eq. (15), we obtain

& = L X X  + LXX,  (18)

where the two terms on the right hand side are equal. Thus

<t = 2LXX = 2ÓX. (19)

It is remarkable that this result was obtained already in 1963 by Gyarmati and Oláh, 
however, in a different way [10]. From Table I substituting any initial condition into 
Eq. (19) we find

<7 = 2Xi<*i (20)

and substituting the A'-th initial condition into Eqs. (12) we have

X \  =  — <7llC*i — <72202 — • • • — <7i,„_]bán _fc,

0 =  — 0 2 1 « !  — <722<*2 — • • • -  <72,n —Jfcdn —Jk i

0 =  —ÿ 3 l â l  — 0 3202  — --------gn-k ,n -k Ó ln -k ,

( 21)

0 =  — — 9 п - к ,  2 » 2  — --------9 3 , n - k à n - k ,
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where we have written out the first n — к equations explicitly.

D \ -  k«1 = Dn-k
X u ( 22)

where notation £>„_* stands for the principal minor of the git matrix with n — к 
rows and columns and D \_ k is obtainable from Dn- t omitting the first row and
column. Because: n. n. n l

(23)

where

DD'  =

Dk
Dl

D k - i

D l-1

D 1
Dl D D '

9i,i 
92,к

Sh,2 S h ,i- i
D L  r

9k,2 
9k,3

9k—1,к
D l-1

9k —2 '------- -9k,к
gk,k-1 

9k,1

(24)

Thus by the help of positive definitivity of matrix from Eq. (22) it follows:

> l“ llx-j,...,x„_1,án > I“ llx3,...,xn*3)án_1,á» > ••• > I®1 |áj,...,ó„ • (25)

Inserting this in Eq. (19), we have:

Mx2,...,xn > Нха.-.Х,-!,». > l<rlx3,...>x n_3lá._,,á, > > klá3,...,á„- (26)

Similarly, if the initial state is oq ^  0 and the bound conditions are as in 
Table I, we obtain:

1*1 к ... > I*1 Ixa.áj,...,<*» > l*llx’3,X’3á<,...,án > ■" > l*llx3,...,x„ (2?)

and from Eq. (19) it follows:

Hóra,--,ón > k lx3á3,...,á„ > Н х 3Х̂<*41...,<*» > " > lcrlx3...,x:„ ■ (28)

We would like to state that the inequality series (25), (26), (27) and (28) refer to 
the initial state of the perturbed system, and give information about the velocity 
of decrease of the deviation from equilibrium.
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SURFACE SCATTERING POTENTIAL FOR ELECTRON
DIFFRACTION*

K. Stachulec

Technical University,
25-314 Kielce, Poland

(R eceived 30 July  1986)

A sim ple dynam ical sca tte rin g  po ten tia l for e lec tro n  diffraction b y  a  free surface of 
a  solid s ta te  sam ple  is proposed. A few m onoatom ic layers parallel to  th e  surface of the  
sca tte rin g  sam ple a re  trea te d  as a  th in  film while the  o th e r  p a r t of th e  sam ple  is considered 
as a  su b stra te . T h e  scattering  p o ten tia l of the sam ple is expressed in te rm s of the m ean 
square  d isp lacem ent o f atom s a n d  th e  electron density  d istrib u tio n  a t a  sca tte rin g  surface 
of th e  th in  film sam ple. T he o b ta in ed  form ula for th e  sca tte rin g  p o ten tia l in  special cases 
leads to  resu lts  of D voriankin’s p a p e r  [3]. T he proposed  surface sc a tte rin g  po ten tial can 
b e  used  to  describe low energy e lec tro n  diffraction (L E E D ) as well as h ig h  energy electron 
diffraction  (H E E D ) experim ents.

1. In troduction

In the present paper we propose a simple dynamical scattering potential for 
electron diffraction by a solid state sample with a free surface. The sample is treated 
as a thin film evaporated on a substrate. We regard a thin film as a system of a 
few monoatomic layers parallel to the surface of the sample, while the other part of 
the sample is considered as the substrate.

For such samples we have calculated a scattering potential including the ex
change of the incident electrons with the electrons of the sample. Including the 
exchange part of the scattering potential gives a possibility to use of the scattering 
potential to describe a polarized electron diffraction experiment in the cases of low 
energy electron diffraction (LEED) as well as of high energy electron diffraction 
(IIEED).

The proposed surface scattering potential in its analytical form is a temper
ature and thickness dependent quantity and it is expressed in terms of the mean 
square displacement of atoms and the electron density distribution of the thin film. 
The division of the scattering film into the thin film and the substrate allows one 
to compute the dynamical parameters of the scattering potential by means of the 
field theories developed for thin films [2].

•S u p p o rted  by  th e  Polish  G overm cnt P rogram , C P B P  01 . 08. B3
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386 K. STACHULEC

2. The scattering  po ten tia l for electron diffraction 
by a sample w ith  free surface

We shall assume that a spin polarized electron beam is incident on a perfectly 
clean, well ordered surface of a sample. Our interest will focus on the elastically 
scattering electrons, because they produce almost all the structure in the diffraction 
patterns.

To construct the scattering potential we divide the scattering sample into a 
thin film and a substrate. By the thin film we understand n monoatomic layers 
parallel to the surface. They are numbered by v, starting with v — 1 for the 
free surface of the film and finishing with v — n for the atomic layer evaporated 
directly on the substrate. Any monoatomic layer и we divide into two-dimensional 
elementary cells and the position of any cell inside the i/-th atomic layer related to 
the cell chosen as the origin of the coordinate system is given by a two-dimensional 
vector j„ = a + b j^ , where a and b are lattice vectors and j", jy denote integer 
numbers.

Let the z-axis of the coordinate system be perpendicular to the surface and 
directed into the inside of the film. A position of any atom in the film can be 
described by the vector

IUj„. = j*/ +êiC„i' + pv, = R„j„ +p' ,  (1)

where pvs describes the position of an s-th atom belonging to the (r'jv)-th cell related 
to the origin of the local coordinate system bounded with the (^jv)-th cell inside 
the film.

From the point of view of the diffraction problem the thin film is regarded as 
a system of n • N 2 bounded atoms, where N 2 denotes the number of atoms in any 
i/-th layer parallel to the surface.

Such a system produces a suitable effective scattering potential localized 
round about each lattice node of the film. In general case, the scattering potential of 
the (i/j„s)-th atom of the thin film depends on the position (r — and spin co
ordinates so of the diffracted electrons. Denoting this potential by F (r — Rj,j„,,so), 
a total scattering potential on the position r  inside the film and spin so V (r, so) can 
be treated in a first approximation as the superposition of the effective potentials 
of the individual atoms from which the film is built:

F ( r ,So) = Ç F ( r - R ^ , s 0). (2)

By the effective potential of the individual atom we understand the potential pro
duced by a given atom in the presence of other atoms of the thin film and the 
substrate on which the film is evaporated. This potential can be constructed by a 
modification of the scattering potential of a free atom.

Now, let us consider the scattering of an electron by free atom. Denoting by 
ro and so the position and spin coordinates of the incident electron, and by riSi,

A cta  Physica Hungarica 64, Í9 S S



SURFACE SCATTERING PO TEN TIA L 387

Г2в2, . . . гдг s n , the position and spin coordinates of the atomic electrons, where N  
denotes the total number of electrons in the atom, we should describe the scattering 
problem by means of a wave function Ф = Ф(го«о,Г1*1, .. . r/vsjv) which depends 
on all coordinates of the (N +  1) electrons.

The many body function Ф has to satisfy an equation which we write in the
form:

where (—ft2 V2 /2m) is the operator of the kinetic enegy of the y'-th electron, so that 
£)(—fi2 V 2 /2m) describes the kinetic energy of the system of N  atomic electrons 
plus an incident electron. The term £)(—Ze2/т-j) is the potential energy of all the 
eletrons in the field of nucleus, the third term in Eq. (3) stands for the Coulomb 
interaction between electrons. Et denotes the total energy of the system and Ze the 
nuclear charge while j  numbers the electrons of the system.

The difficulty in Eq. (3) is that electrons influence one another via Coulomb 
repulsion and the incident electron may distort wave functions of the atomic elec
trons by its own electrostatic field correlating their motion with its own and changing 
the potential seen by the incident electron itself.

If the free atom wave function is known, we can express the many body 
function by means of the free atom functions ipi(riSi)ip2(r2S2) . ..  фн(гмsjv) as 
follows [1]

ф  =  X ^ p ^ o S ö M n s i )  • ■ • 1>n ( t n s n ) ,  ( 4 )
p

where ф(го$о) is the incident electron’s function.
The sum is over permutations of the particle coordinates and ep takes the value 

of +1 if permutation p can be achieved by exchanging an even number of particle 
coordinates, —1 for an odd number. There are (N  + 1)! possible permutations.

Since the atom state part of Ф is known, we want to eliminate this part from 
our equations and concentrate on <̂ (ro«o) being the incident electron wave function.

Multiplying Eq. (3) by

X* = ip*i(risi)tl>*2{r2s2) .. .ip*N(rNsN), (5)

integrating over space, and summing over spin coordinates of x we obtain the equa
tion for ф(roso)

<̂ (r0so)-—  V72 Ze +  У ' /  V ' iÉ iÍE ü z l l^ ,
2m Vo r0 |r0 - r ; r r'

£  / £  * * ( » • . >  = (6)

where Eq denotes the energy of the incident electron.
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388 K. STACHULEC

The last equation is a one-electron equation for the wave function of the 
incident electron and it defines the effective scattering potential of the free atom 
Vo(roSo)

Vb(r0so)= /  E
i 9j

lV’j ( rj g;) |2
ko -T j |

d3r + f/exc(^O^o)j (7)

where by teXc(ro«o) we denote the so called exchange potential, which is defined by 
the equation:

V;xc(roSo)<A(r0so) =  E  E  /  d3ri ^  Sj} (r°So)- (8)

The two first terms on the right hand side of the equation (7) have a simple 
interpretation as the electrostatic potentials produced by the nucleus and the elec
tron density distribution of the atom, respectively. The exchange potential defined 
by (8) is non-local potential and it arises out of considerations of antisymmetry of 
the wave function under exchange of particle coordinates, because no two electrons 
can be in the same place at the same time, hence each electron is surrounded by a 
region depleted of other electrons and hence lower potential.

Writing the one-electron wave function ipji'rjSj) as tpj(rjSj) = грj(r j)xj (sj ), 
where Xj(sj) is the spin coordinate dependent part of the wave function of the j-th  
atomic electron while rp(rj) is space coordinate dependent only, we can express the 
electrostatic potential of atomic electrons by means of the electron distribution in 
the atom pj(r) as:

IV)j( rj sj)l2
ko - г ,-1

d3r pj(r )
ko -  r| ' (9)

Analogically, writing <p(roSo) =  <fi(ro)7](so), where tj(so) is the spin wave function of 
an incident electron, the exchange potential can be written as

, r  / _  .  \  _  X j ( s j ) rl ( s j ) X j ( s o ) ' n* ( s o )  r 4 ^  £ T ,  \
^eXc(r O*o) — E  E  k(so)|2 ^ ( Г°) — E  (rn), ( 10)

where
r ч _ ^ ( Т 0 )Ф’ ( Г0)  f  3 1 р * (Г ] )ф (T j )

i i ( r o ) -  W r o l P  J d r ‘ | t o - r , | ( 11)

and the sum is over the atomic electrons which have the same spin as the incident 
electron.

In this way a full scattering potential of a free atom takes the form:

V. »,7,(г0). ( 12)
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SURFACE SCATTERING POTENTIAL 389

The above formula will be a basis to construct the scattering potential for the 
electrons scattered by thin films.

It is known that crystal lattice atoms at a given temperature take part in the 
temperature vibrations around their equilibrium position and the influence of the 
temperature on the scattering potential must be taken into consideration defining 
a dynamic scattering potential for an atom as [3, 7]

V r(r,s0) = J  Vbt(r‘, s0) T ( r - r ) d 3r , (13)

where T(r) describes a distribution of the mass centre of an atom in its vibra
tions around the equilibrium position. For the atom bounded in crystal T(r) is 
determined by the lattice dynamics.

Other thing we would like to stress is that placing an atom in a lattice site 
of an infinite size sample does not change the mean square displacement which 
characterizes the dynamics of the atom in the sample and it is the same for every 
atom. However, in the thin film crystal case the surface atoms of any solid body are 
in a situation which is dilferent from that of atoms situated in the inside of the film. 
The surface atoms feel the changes in the geometry of the neighbours surrounding 
them caused by the missing neighbours, by the spontaneous deformation of the 
lattice near the surface. As a result, the scattering potential near the surface must 
be different from that inside of a bulk material. It is to be expected that the changes 
of the electronic structure near the surface must cause some changes of the physical 
properties related to the surface.

To take above into consideration we introduce the effective numbers of elec
trons per j-th  orbital of the (uj^s) atom in the film (п„^а) which are the same for 
the atoms in the v-th monoatomic layer but they create a distribution in the direc
tion perpendicular to the surface. The redistribution of the electronic charge in the 
film creates some new boundary conditions for lattice vibrations which must influ
ence the temperature dependence of the mean square displacements of the atoms in 
other atomic layers parallel to the surface. Denoting the mean square displacement 
of the (uji,s)-th atom in the film by Bv-iuS we can write

Bviv, =  ((Л 1„Ы 2) = B„„ (14)

as well as for the electron density distribution of the j-th orbital

K j B.) =  « . ) >  (15)

where the symbol (...) stands for the thermodynamical average, and the above 
relations are the consequence of the translation symmetry of the film.

By means of the above dynamical parameters Bu> and (n{s) we propose the 
following modification of the scattering potential of the atom in the (i'jys)-th site 
of the film:

VT(r0 -  « о )  =  (2ТГВ,
■>-*/

d3r Vat(r -  R„j„
lrO~Ri/

(16)
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where T(r') = (2irBvt) t  exp (—|ro-R „j„, — r’ |2/2Bvt) describes the distribution 
of the mass centre of the (i/j„s)-th atom in its temperature vibrations [3] and in
place of the free atom potential Vat given by (12) we take Vat which we define as

V , ,(ro -  H .J .. ,* )  = ,r o . R ^ , |  -  « £ ( < )  ]  +

+ e ^ 2 {ni . ) li ( ro -  Bwj,.)«,S 0 * j  * (17)

To obtain an analytic formula for the scattering potential of the spin polarized 
electrons scattered by thin films using the formulae (2), (16) and (17) we have to 
know the atomic orbitals of a free atom. By means of these orbitals the quantities 
P j  and I j  in formula (17) are expressed. For that we restrict our next considerations 
to the case when the free atom orbitals are spherically symmetric and we take them 
in the Slater form [1, 4]:

Ф}(г) = Ajrßi exp (Aj г), (18)

where p j , Aj are the numerical parameters given for all free atoms in [4], and A j  is 
the normalization constant. If we now write the incident electron wave function in 
the form of the plane wave:

ф(г) =  exp (ik r) (19)

where k is the wave vector of the incident electron, we can insert expressions (18) 
and (19) into the equation (17) and calculate the static scattering potential of (i/j„s)
atom Vat(ro — Ri/j„«,so) of the film. We have:

V̂ at ((r0 R i/j„»),S o) —

I Го -  Ri/jj, , I

Z e

lr 0 I

-4тге £  Aj (ni.)  [ |го_ 1д-^ - |' J  I r j - R ^ l 2" ^  ^ - ^ . \ drj+
i о

00
+ J  |i j  -  R 1/j„,|2''i+1e_2Aj|rj~R,/J‘' , |drj +

|ro”Ri/ji/»|

+AneY,A]{ni,)\v0 -  R ^ . r i e - ( Ai +,'*')lr<>-R^ * U
1

----- - /  |rj - R 1/j„,|i‘i+2e"(Â'’",V)|ri' R‘'J‘'’ldo +
« ••'j* *  I J. |r0 -  Ri/j,

U

OO

+  J  I r - R ^ J ^ e - ^ —' k')\r> - * - ^ ’ \ d r j ( 20)

Iro-R^.l
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Integrating over by means of the standard formulae [5]:

391

U
J  xv~x exp (-fix)dx  = n~vj(v,  fiu), 
о

OO

J  ж"-1 exp (-fix)dx = р- *Т(//,ри),

where 7(1/, pu) and r(i/, pu) are so-called incomplete gamma functions, as the result 
we obtain

V .t= -
Ze

r  — Ri/j„j I
(К ,)

(2Лi) 2̂ +2

l(Pj ~b 3, |r0 R-i/jV»|2Aj) +  r(p j + 2, |r0 — |2Aj-) +
lr o — Rrj„i |2Aj

+ Аже^2А]б.0. , ( п { , ) е - ^ к' ^ - к ^  ■ |r0 -  R ^ T  (A,• -  i*')<*+a>*

7(Hj + 3, (Aj -  ik )]r0 -  R„jvi,|) 
lr0 — Ri/j„a |(Aj — ik ) +  r(pj +  2 , (Aj -  ifc )|r0 -R „ j„ ,|)

( 21)

Next, the calculation for the dynamical scattering potential by means of the formula 
(16) and explicit form of V at given by (21) leads to the expression

where

V T( r -  R„j„„*o) = e - 1' " ^ ' 13 £  ((2fcB+ l) !  ^ T )( ^ ^ o ) ,

V % \ b v„ 80) = (2xBv,) * J  4ттг'2к+2е ■ Vat(r ,s0)dr‘ =
0

=  Ze(F0 -i)k -  4я~е ^  A)(n{s) ^ ^ Í j +з *

* [4 x -  (2a*j +  2) i f  ^ ^ ( F 2Ai,m_l) t+

( 22)

m = 0
2^+1

+ £
m  =  0

(2A; )r
ml ■(F2\j,m)k +  4тге^Л ?(п  Í , ) 6, 0,j (2 у  +  1)!

ßV +2

( 1 /* У + 2  / э т — 1 \  P j + 1  ß m

И1 m = 0 ‘ /  m =0

(23)
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where Fxn = rne XT and (Fx>n) stands for the following integral for the (ry^s) - site 
of the lattice

(Fx,n)k = ( 2 7 J4 irr2k+2 exp ( - r 2/ 2B„,)Fxn(r)dr =

= 4(27rßJ/J) -§ (5 I/ä)2i^ ( 2 f c  + n + 2)!e^-"^£>_(2i+n+3) ( х ^ / В ^ )  .
(24)

In the last expression D„(x) denotes the standard function of the parabolic cylinder 
[5], while the quantity ßj which appears in (23) is defined as

ß j  =  2Лj  -  i k ( l  — cos0) = 2 — i k  sin2 > (25)

where 0  is the scattering angle of the electrons and ß j  =  \ j  — i k .

The final result for the total scattering potential produced by thin films for 
the spin polarized electrons takes the form

V T (r ,s0) = Ç
I/j„5

e as»,. f ( i / y 1
^ 0 (2fc +  i ) !

V{k\ B vt)s o) (26)

and V(k){Bv I, so) is given by expressions (23,24) and (25).

3. C onclusions

The formulae obtained for the scattering potential have interesting properties. 
At first this potential is finite at every lattice point contrary to the effective
potential of the free atom which is infinite at the middle of the atom. Another 
thing we point out is that one can obtain from it the forms used in literature [3,7]. 
Namely, if we ignore the exchange part of this potential and restrict a consideration 
to the high temperature limit, which means the high values of Bvs the formula (26) 
can be approximated and for simple cubic lattice it takes the form:

V T( r ) ~ J 2  V ^ \ b „) (27)
"j-

where Vj>°\Bv) is given by

V<t°\Bv) =Ze(F0t- 1)0 -  4;r E 4 2(”U ((22f f
2 Hj + 2 

2Aj (^o.-i)o—

2l>j+2
-  (2m  +  2)

m = 0

( 2 A j )
m-l 2/ij + l

ml - ( F i x  j , m — l)o +  У )
(2A j ) r

‘ {F2Àj,m)o
m =0
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= 4 n e J 2 Aj ( ní)
j

(2Pj + 1)! ,
(2Aj)^i+2

*
m = 0 ' m —0

(2 bj)m
ml ( F 2Aj ,m)o

and
( F 2 X J i n ) o  =  4 T ( 2 ^ ) - t ( 5 ) ^ ( „  +  2)!eB^?£>_(n+3) (2A;V ^ )  • (28)

The last two formulae in the hydrogen atom case, for which the wave function has 
the simplest form lead to the result of Dworiankin [3]. Instead of the Slater type of 
function by means of which the electrostatic potential of free atoms is calculated one 
can use the electrostatic potential of a free atom in the Strand and Tietz form [6]:

V(r) =
Ze ' Zp{r)' Ze V—> 

= —
r л

— b\r (29)

where a\ and b \  are numerical parameters given in [6]. In this case the formulae 
(27-29) give the results we have obtained in the papers [7, 8].

Let us remark that the surface scattering potential given by the formulae (26, 
23-25) due to its general and analytical form can be very useful for the description of 
the LEED as well as of the HEED experiments. Due to including the exchange part 
of the scattering potential it can be used to search the magnetic sample surfaces by 
means of the spin polarized low energy electron diffraction, which introduces a new 
dimension to surface physics. The last problem is presented in our recent paper [9].
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APPLICATION OF COMMERCIAL FIELD-EFFECT 
TRANSISTORS IN Si(Li) SPECTROMETERS
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(R eceived 10 N ovem ber 1986)

T h e  first stage of the  charge sensitive p ream plifier of the h igh  energy resolution Si (Li) 
X-ray sp ec tro m ete rs  is a  cooled ju n ctio n  F ield-E ffect T ransistor (F E T ) exhibiting low level 
of noise. T h e  spectrom eter m anufactu rers use se lec ted  F E T  chips m o u n ted  into low d ielectic  
loss m ate ria l. Noise m easurem ents have been p e rfo rm ed  for selection of low cost com m ercial 
F E T s of ty p e  2N4416 from  different series of T exas Instrum ents factories. T he F E T s  were 
en cap su la ted  and  m ounted  in to  a  teflon block. T h e  m easurem ents have been c a rried  ou t 
in  a  h igh  im pedance  gate m ode in  tim e dom ain . T h e  noise m easurem ent arrangem en t, th e  
resu lts o f selection  of FE T s a n d  some observations on generation-recom bination (G R ) noise 
of F E T s a re  described.

In trod u ction

For the first stage of the Si(Li) spectrometer application the 2N4416 FET 
chips have been found most suitable [1], [2]. In order to eliminate the noise of 
borosilicate glass header spectrometer manufacturers mount the preselected chips 
into low dielectric loss material into boron nitride or teflon. For the first stage 
of static or pulsed drain feedback charge sensitive preamplifier commercial FETs 
are used in our laboratory encapsulated and mounted into a teflon block. The 
feedback capacitor is also mounted in the same block [3]. The selection of FETs 
can be carried out in time domain or frequency domain. Detailed analytical and 
experimental discussion, further their advantages and disadvantages are given by 
Llacer [4]. The noise of the FETs is influenced by several factors: the geometry of 
the chip, the number and activitation energy of impurities in gate-channel junction 
and the quality of the surface of the chip, the material of the capsulation. The 
noise of the FET strongly depends also on the device working parameters: on drain 
current, drain voltage, chip temperature and input capaticance. Our measurements 
have been carried out in high impedance gate mode, as the first stage of a static 
drain-feedback preamplifier. The working parameters of the FET (the drain current, 
drain voltage, input capacitance) were chosen close to the working condition in the 
Si(Li) spectrometer. In order to eliminate the noise of the test Si(Li) detector it 
was replaced by a cooled teflon capacitor.

Acta Physica Hungarica 64, 1988 
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T he n o ise  m easurem ent configuration

Figure 1 shows the noise measurement configuration. The FET and the charge 
injector capacitor (Q) is mounted into a detector cyrostat. The capacitance of C\ 
is 1.1 pF which value corresponds to the capacitance of a single grooved 20 mm2 
active area 5 mm thick Si(Li) detector at high voltage bias. The noise of the cooled 
teflon has been found low [5], therefore this arrangement allows to measure the noise 
of the FET without important additional noise. To keep the microphonics at low 
level the connecting wires must be short and rigid. The 10-5 Pa pressure in the 
cryostat is maintained by a 1 1/s titanium getter ion pump.

cryostat

Fig. 1. Schem atic d iag ram  of the noise m easurem ent configuration

The temperature of the capacitor and the teflon block without FET power 
dissipation is 87.5 K. The chip temperature was varied with its selfheating. The 
drain current was settled with a current generator in the preamplifier and the drain 
voltage was trimmed with the gate current forced by the high voltage (0-1 kV) 
connected on the teflon block (R). The noise was filtered with a semi-gaussian 
linear-amplifier of [9] peaking time constans in the range of 0.46-80 fis. The transfer 
function of the linear amplifier and its noise indices are [6], [3]:

H(p) —

delta noise index: < Nд > = 1.92/тр, 
step noise index: < IV2 > = 0.98rp 

/ “ ,£* = ±1 noise index: < N ^ u  > = 6.81.
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For the calibration of the system long decay time constant (1000 /is) pulses 
were fed to the capacitor Ci. The amplitude of pulses measured by the multichannel 
analyser corresponds to the pulses of energy E — uCii/q, where и is the amplitude 
of the pulses, £ the average energy required to produce one hole-electron pair. The 
calibration and the measurement of the line width was carried out at 11.8 fis peaking 
time, for the other peaking time constant settlings, the FWHM were calculated from 
the RMS voltage readings. The FWHM2 versus peaking time has the general form 
of:

FWHM2 = Атр + В/тр + C + D(2E / tp + rp/2E),

where A = 2.3552£2/?  < N 2 > Ig, Ig is the gate current, B = 2.3bb2ë2/q22kTr, < 
П  > C2n, г. is the equivalent resistance in series with the FET gate, which gener
ates noise equivalent to the white noise in the channel, T  is the temperature of the 
chip, Cin is the input capacitance,

C = 2.3bb2£2/q2A aC?n ,

where 2Aa is the value of the power spectrum of the 1/f  noise at 1 Hz,

D = 2.Zbb2é2/q2Kg < N l я > C2„,

where Kg is a proportionality constant for the generation recombination noise, 
< NqR > is the GR noise index, E = тд is the GR noise generation time.

Fig. 2. D istribu tion  of th e  m inim um  F W IIM  of F E T s m easu red  a t op tim um  working p a ram ete rs
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140 FETs have been tested. For searching the optimum working parameters 
of the FETs FWHM versus peaking time curves were measured at different drain 
currents in the range of 3 mA-9 mA while the drain voltage was kept between 
5-7 V. The A .. .E  noise parameters have been calculated using least squares fit.

R esu lts  o f  th e m easurem ents

Figure 2 shows the distribution of the minimum FWHM measured at optimum 
chip dissipation and peaking time. 30% of the FETs exhibited relatively low noise, 
their minimum FWHM was less than 170 eV, 7% of the FET belonged to the group 
of FWHM less than 130 eV. 55% of the relatively low noise FETs showed small 
generation-recombination noise.

I 1 П
10 11 -10*

В t e V 2yus]

r~L
u 1.6 ■ 10‘

C t e V 2 I

D [ e V 2 J

Fig. 3. D istrib u tio n  of th e  noise p a ram ete rs В , C  and  D  of th e  F E T s  showing low noise
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Figure 3 shows the distribution of the calculated most important noise parameters: 
B, C and D of the FETs having FWHM less than 170 eV at optimum. In 2 cases 
the least squares fit gave too low values for B(< 5000eV2) because of the fold back 
of the FWHM2(rp) curve at low peaking time constants. The GR noise of FETs is 
discussed in the next Section.

Fig. 4 • FW H M 2 versus p eak in g  tim e and th e  calcu la ted  noise com ponents of a  F E T  w ithou t G R
noise

Figure 4 shows that the FWHM2 versus peaking time and the noise compo
nents of one of the best FET did not exhibit GR noise. The largest influence on the 
noise performance of the FET at optimum dissipation and peaking time is made by 
the / “ noises: 61%, while the contribution of the step noise is 27%, the shot noise 
is 12%. The values of the noise parameters are: A =  100 eV2/rs, В = 7400 eV2fis, 
С = 9000 eV2.

T he gen eration-recom b in ation  n o ise  o f  the FE T s

A great part (84%) of the tested FETs exhibited small or large GR bumps. 
The typical value for noise parameter D proportional to the number of trap centres 
in the gate-channel junction is 100 000-200 000 eV2. In some cases the FWHM ver
sus peaking time curve exhibited a regular figure and it was possible to determine
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the activation energy of the GR centres. The measurement of the activation energy 
(Egr) of the GR centres is based on the variation of the position of the GR bump 
(parameter E) versus chip temperature: d(lnrg)/d(l/T) = —Едг/к, к is the Boltz
mann factor [5]. The chip temperature weis calculated from the power dissipation 
of the FET and the thermal resistance of the teflon capsulation and from the zero 
power temperature of the FET.

Fig. 5. G R  noise gen era tio n  tim e versus 10 0 0 /T  of th e  groups of F E T s exhib iting  G R  noise

Figure 5 shows that five different groups of GR noise were observed. In a series 
of FETs made before 1980 in the USA, two groups have been found. Most of the 
FETs exhibiting low noise showed small GR bump. The typical value for parameter 
D at optimum working parameters is 20000 eV2. By proper chip temperature the 
GR bump is shifted to the low peaking time constant, and its contribution at the 
optimum peaking time is low, about 50 eV. The GR noise of this type is caused 
by GR centres of activation energy 0.18 eV. Figure 6 shows the FWHM2(rp) and 
the noise components of a FET belonging to this group. In this case the value for 
parameter D is larger than the average, D =  55000 eV2.

FETs from the same series showing poor noise performance (200-500 eV) 
exhibited frequently large GR bump from GR centres of activation energy 0.1 eV. 
The typical value for parameter D is 150 000 eV2 (see Fig. 7). In another series 
marked E8035, one part of the FETs showed no or very little GR noise, in the other 
part the activation energies of 0.2 eV and 0.25 eV have been observed. The values
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for parameter D were between 20 000 and 50 000 eV2. Figures 5 and 8 show that 
in this case the position and the value of parameter D varies strongly with chip 
temperature. The GR centre levels of 0.18 eV and 0.25 eV were observed earlier 
by J. Llacer [5], while Hiatt identified activation energy 0.19 eV in specially made 
transistors [9].

Fig. 6. FW H M 2 versus peak ing  tim e of a  F E T  exhibiting G R  noise from  0.18 eV activation
energy  centers

A pplicab ility  o f  th e com m ercia l FETs in S i(L i) sp ectrom eters

Si(Li) X-ray spectrometers have been built with detector cryostat [7] and 
Si(Li) detectors of grooved type, with 20 mm2 active area and 4-5 mm thickness 
prepared in our laboratory [3], and with the selected FETs under 135 eV noise 
level at optimum. The energy resolution of the spectrometers at 5.9 keV mea
sured with NV-809 pulsed drain-feedback charge sensitive preamplifier and NZ-870 
time variant filter signal processor [7], [8] with noise indices: < N j  > =  1.9/ r p, 
< ЛГд > =  0.6rp,<  N 2!, >=  4 is between 150-180 eV; the electronic noise is 90- 
130 eV. FETs not exhibiting GR noise with noise parameters A «  100 eV2//xs, В «  
75000 eV2/rs,C «  10000 eV2 have been found most suitable. Some of the FETs 
belonging to the group of 0.18 eV, 0.21 eV, 0.25 eV activation energy with noise 
parameter D < 30000 eV2 were also used. FETs belonging to the group of 0.1 eV
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and 0.2 eV or to the other groups with large value of D are unusable for the first 
stage of Si(Li) spectrometers.

FWHM2

leV2]

10s

10*

UDR = 7 V

J___l__ I I I I I I_________I_____ 1___ I__ I I I I I 1_________ I_____ i___ i__ I i I I I I_________ L
1 to  XX)

T, {yus ]

Fig. 7. FW H M 2 versus peak ing  tim e of a  F E T  showing large G R  noise from  G R  cen tres of 0.1 eV

C onclusions

Time domain noise measurements were performed in high impedance gate 
mode, without Si(Li) test detector for selection of commercial field-effect transistor 
chips mounted into teflon block. This arrangement has the advantage that the 
FET noises were measured close to the working condition of the FET in Si(Li) 
spectrometer without important additional noise. With the measurement of the 
FWHM2 versus peaking time at different FET working parameters the optimum 
working conditions were searched. Less than 15% of the FETs has been found 
useful for high energy resolution Si(Li) spectrometer application.
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Fig. 8. FYVIIM2 versus peaking tim e curves m easu red  a t  different pow er d issipation o f a  F E T  
having G R  noise 0.2 eV ac tiv a tio n  energy cen ters
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THE FIRST IONIZATION ENERGY, ELECTRON AFFINITY 
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METHOD WITH AB INITIO SELF-CONSISTENT 
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Ab in itio  self-consistent exchange param ete rs  c«scF have been in troduced  in to  th e  
X a  m ethod. S la te r’s tran s itio n -s ta te  m ethod a n d  th e  definition of e lectronegativ ity  given 
by Iczkowski a n d  Margrave have b een  applied. F irs t  ionization energy, e lectron  affinity an d  
e lectronegativ ity  have been calcu la ted .

In trod u ction

Important development has been made in the theory of the X a  method since 
it was first advanced by Slater [1]. All the same it is still not precisely known how 
the exchange parameter a is to be determined. In 1976 Gopinathan, Whitehead 
and Bogdanovic [2] derived an analytical expression for the a parameter assuming 
a linear variation of the Fermi-hole density. However, they applied an adjusting 
parameter, too.

Earlier, in 1974, one of the authors [3] proposed a method to determine ab 
initio exchange parameters in the A'q method. Recently a comparison has been 
presented [4] for the spin orbitals of a few atoms calculated by the X a  method with 
several values of exchange parameters.

Here, the first ionization energy, electron affinity, electronegativity and chem
ical potential calculated by the X a  method using ab initio self-consistent exchange 
parameter are presented. Slater’s transition-state method has been applied.

The electronegativity determined by the formula of Mulliken [5] and the tran
sition-state method is equal to the one obtained using the definition of electroneg
ativity by Iczkowski and Margrave [6] disregarding the third order terms.

T h e  X a  m eth od  w ith  sclf-consisten t ab in itio  
exch an ge param eters

One of the authors has suggested a method [3] which rests on the free-electron 
gas theory. The exchange potential of an electron with spin up can be written in 
the form [7]

Fa' t(I) =  - 8  F(i)

Acta Physica Hungarica 64, 1988  
A kadém ia i  Kiadó, Budapest

i / o

( 1 )



406 R. GÁSPÁR a n d  Á. NAGY

where
1 + 1
1 -Г]

Pi is the total electron density of the electrons with spin up and

V
V =  — .Pf

( 2 )

(3)

where p is the momentum of the electron considered and pp is the Fermi momentum. 
(Energies are in Rydbergs, other quantities are in atomic units.) This exchange 
potential can be averaged in the momentum space near the Fermi surface for a thin 
shell containing electrons in the unit volume, where

Ч 1) = (4)

is the density of the electron considered. We then find for the exchange potential 
the following

Kx-a,.h«i, =  - 6 a Tshell 4тгPî(l)
1/3

where

and

Pi
«T shell =  —  

V1
1 - ^ - ^ 3 +  ^ (Tl2 - 1)2ln

1 + ri
1-1?

(5)

( 6) 

(7)

As this exchange potential is different for the different spin orbitals, i.e. for different 
shells, it is averaged over the shells

a T(r) =
E  H j« T sh e ll
Л_______

it
(8)

This exchange parameter oq (r) is still a function. To get a constant parameter aq 
the mean squared deviation of the original X a  exchange potential

Vjr.f (l) =  - 6 e T 

and the exchange potential

1/3

Rxat(i)(l) =  —6aT(l)
1/3

(9)

( 10)

with the exchange parameter (8) is minimised. This exchange parameter oq can be 
determined self-consistently. That is why the method is denoted by XascF-
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C alcu lation  o f  ionization  energy, electron  affinity  
and ch em ical p oten tia l in  th e X a  m eth o d

The first ionization energies of atoms have been calculated by the Slater’s 
transition-state method [8]. The ionization energy can be given by the negative of 
the corresponding orbital energy with an occupation number reduced by half

1 = - fXa ' (U )

Similarly, the electron affinity is

The electronegativity was given by Mulliken [5] with the expression

A + I

As the ionization energy of an atom with N  electrons is

I  = (EXa(N  -  1)> -  {EXa(N)) 

and the electron affinity is

A = (EX a(N )) -  (E X a (N  + l )),

(13)

(14)

(15)

for the electronegativity we get

Х = Л { < £ Х а (А -1 )> -< £ Х а (А + 1 ))} . (16)

Two cases are treated. First, the electron leaves the same shell (i) as it enters in case 
of ionization. Expanding around the neutral atomic state (as a transition-state) the 
total X a  energy is given by

(EXa(N  -  1)) =  (EXa(N)) -

and

d(EXa)
drii

1 d3{EXa)
2 dnf

1 d3{EXa) 
3! dnf

(17)

(EXa(N  +  1)) = (EXa(N))  + d(EXa)
drii

1 d2(EXa)
2 dn? +

1 d3(EX a) 
3! dnf + . . .  .

(18)
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For the electronegativity we get

d{EXa)
X =  -

using the well-known

dtii
1 d3(EXa)
3! dnf «  - U X c

CiXa =
d(EXa)

dru

(19)

( 20)

formula of the X a  method.
Secondly, the electron leaves the *th shell forming a positive ion and enters 

the kth shell forming a negative ion. The occupation numbers of the *th shell гиге 
denoted by and n^ +1 and for the negative and positive ions and for a
suitably chosen transition-state, respectively. The same notation is used for the kth 
shell.

(.E X a (N  -  1)) =  {EXa )о + ( " f - 1 -  n°)+

+
d(EXa)

dnk
(nN~t _  ц0! + 1 d(EXa)  

}  k *) + 2 Őn? ("Г 1 -  ",°)2+

+
d2{EXa)
driidnic

/ jv- i -  n°\(nN- 1 -  n°l 4- 1 d2(EXa)\ni ni )\nk n k)  +  о  i>„22 дп\
/„ЛГ-1 „0\2 ,(” * - « * ) + • ■ • »

0 ( 21)

(E X a(N  -  1)) =  (ЕХа)о + 

д(ЕХа)

(и? * 1 -  «?)+

+ дпк
(nN+l -  п°) + 1 д{ЕХа)  

,( * *) + 2 Ön? ( п Г 1 -  "°)2+

д2(ЕХ а)
( „ Г 1 ■

О (22)driidnic

The third-order terms are neglected. If the transition-state is given by

«° =  («Г+1 +  " ? _1)/2

and
»2 =  ("* +l +  n ? _1)/2 (23)

the second-order terms will vanish in the expression of electronegativity. Taking 
into consideration that

„ЛГ-1 _  „ N + 1  _  N - 1 ni ni — nk ПN + l  _  _1к — t> (24)

we arrive at the results
X

_ I-0  _  i ,o
2е'Ха 2 tkXa' (25)
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where the superscript 0 shows that the one-electron energies are calculated for the 
transition-state.

Recently the electronegativity \  of an atom has been defined by the formula [7]

X = (26)

where E is the total energy of the atom, N  is the number of electrons and Z  is the 
atomic number. So the electronegativity is the negative of the chemical potential 
ц. The partial derivative of the Xa  total energy with respect to the number of 
electrons is given by

d(EXa)
dN z

d(EXa)
du]

du] 
z dN

d(EXa) du, 
duj 2 dN

d(EXa)
drij

drij
z w (27)

The summation goes for the spin orbitals with the occupation number rij. The first 
term in Eq. (27) containing the partial derivative of the spin orbitals vanishes as 
the X a  one-electron equations come from the variation principle. We have

d(EXa) du]

du] dN +
d(EXa)

duj
duj

. W
dv =

= ] £  / (ni c>ui j N  + ni €i uï j N  )dv = ^ nj€jWN J  U*Ujdv = ° ’ (28)

because the spin orbitals are normalised.
To evaluate the second term of expression (27), two cases are considered. 

Provided only one spin orbital (i) changes its occupation number when going from 
the negative ion to the positive one, we have

d{EXa)
4 -  dn.i 1

dni
z dN  xXa' (29)

So the electronegativity equals the negative of the highest occupied orbital en
ergy, i.e.,

Х = ~И = -d x a -  (30)
In the second case two spin orbitals (i and it) change their occupation numbers 

during a transition from the negative to the positive ion. These occupation numbers 
щ and nk are not a continuous function of N  at the ground state of the atom 
and hence the formula (29) cannot be applied. As it has been shown the Slater’s
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transition-state method can be used in this case, too. Nevertheless, it is worth 
mentioning that the formula (25) obtained by the transition-state method contains 
derivatives at the transition-state which differ from the derivatives calculated at the 
ground state of the atom.

It is easy to calculate the difference between the Mulliken’s expression of 
electronegativity and the formula given by Margrave and Iczkowski. The electron 
affinity and the first ionization energy (7 = I\) can be written in the power series 
of N

A = (EXa(N)) -  (E X a (N  + 1)) =

1 d2(EXa)
2 dN2

1 d3(EXa)  
3! dN 3 + . . .

I  = h  = (EXa(N  -  1)) -  (EXa(N))  = - d(EXa)
dN

I d 2 (EX a) 
+  2 dN2

1 d3(EXa)
3! dN 3 + . . .

(31)

(32)

Similarly, the second ionization energy is given by

h  = (E X a (N  -  2)) -  (Ë X a (N  -  1)) =  ~ h  + (EXa(N  -  2))-

— (EXa(N)) = - h - 2 d(EXa)
dN + 2d2(EXa)

d N 2
4 d3(EXa)  

+ 3 d N 3 (33)

Combining the formulae (31), (32) and (33) the electronegativity is given by

X V h +-A + h  -  2/i
6 (34)

R esults and discussion

The first ionization energies have beeen determined by the transition-state 
method using the formula (11). Though, in the case of a few atoms the occupation 
number of two shells changes during the ionization. (For example the electron 
configuration for Ni is 4s23d8 and for Ni+ 3d9, so the transition-state is 4s13d8 5.) 
Denoting the occupation numbers of these two shells in the initial state by n\, n‘2, 
in the final state by n{,n{ and in the transition-state by n9, n^, the expansion of
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the total energy around the transition-state is given by

(EXa(n\ ,n\ ) )  = {£Xa(n°,n°)> +  d{EXa)
dn\ ( " i  -  " ? ) +

+
d(EXa)

dn2 (n2 ~  пг) + • • • >

(ЕХа(п{,п{))  =(EXa(nln°2)) +о , d(EXa)
( « 1  -  »*?)+

+
d(EXa)

dn2

dnx

("a  - » § )  +  ••• •

(35)

(36)

Neglecting the third-order terms we arrive at the ionization energy

_ d(EXa)  
dnx (n{ -  n\)+

+
d(EXa)

dn2 ( » 2  -  n 2 )- (37)

For example the ionization energy of the Ni is given by 7

7 = <3 d - 2 ^ . ,  (38)

where and €4, are the 3d and 4s one-electron energies in the transition-state 
mentioned above. The same expression has been used for V and Co.

Table I contains the ionization energies calculated by the X a  method with 
the exchange parameters a  = 1, avt [9] and ascF- For comparison the experimental
[10] and the Hartree-Fock data [11] are also presented. Of course, the Hartree-Fock 
ionization energies are the closest to the experimental data. The X a  results with 
a =  1 are the furthest from the experimental ionization energies. The X a  ionization 
energies gained by avt and « scf are often very close together, though sometimes 
there is considerable difference between them.,

Table II contains the electronegativity of atoms calculated by the Ara method 
with the exchange parameters asCF and a vt [12]. The expressions (19) and (25) 
are used for this calculation. Generally, there is only small difference between the 
results gained by the exchange parameter ascF and avt.

Table III includes the electron affinity of atoms calculated by the X a  method 
with the exchange parameters ascF and avt [12]. The electron affinity may be given 
by the Mulliken formula (13)

A = 2X - I .  (39)
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Table I
F irs t  ion ization  energies o f atom s calcu la ted  by the  H artree -F o ck  and the 

X a  m eth o d s w ith a  =  1 [9] and Of„i [9] a n d  the  self-consistently  determ ined 
exchange p a ram ete rs  »SC F- E xperim ental ionization energies are also 

p resen ted  [10] (in R ydbergs)

z H F
Of =  1

X a
« tft «S C F

E xp

3 0.392 0.434 0.370 0.318 0.396
4 0.619 0.811 0.675 0.638 0.685
5 0.620 0.750 0.582 0.471 0.610
6 0.814 0.992 0.781 0.809 0.828
7 1.017 1.255 0.984 1.012 1.069
8 1.233 1.522 1.194 1.223 1.000
9 1.460 1.798 1.412 1.442 1.280

10 1.701 2.086 1.635 1.671 1.585
11 0.365 0.430 0.345 0.338 0.378
12 0.500 0.683 0.547 0.547 0.562
13 0.420 0.519 0.384 0.378 0.440
14 0.557 0.699 0.528 0.525 0.599
15 0.701 0.881 0.673 0.747 0.775
16 0.853 1.068 0.824 0.818 0.761
17 1.013 1.260 0.979 0.973 0.956
18 1.182 1.458 1.140 1.280 1.158
19 0.295 0.362 0.286 0.279 0.319
20 0.391 0.540 0.427 0.417 0.449
21 0.420 0.584 0.467 0.310 0.482
22 0.444 0.620 0.499 0.493 0.502
23 0.466 0.406 0.474 0.475 0.495
24 0.415 0.553 0.464 0.463 0.497
25 0.503 0.711 0.572 0.477 0.546
26 0.520 0.738 0.594 0.588 0.514
27 0.537 0.293 0.400 0.403 0.578
28 0.553 0.266 0.383 0.386 0.561
29 0.477 0.660 0.542 0.646 0.567
30 0.585 0.836 0.670 0.664 0.690
31 0.417 0.523 0.377 0.521 0.441
32 0.539 0.681 0.503 0.495 0.579
33 0.660 0.834 0.625 0.616 0.721
34 0.785 0.986 0.747 0.737 0.717
35 0.914 1.140 0.872 0.859 0.870
36 1.048 1.296 0.997 0.984 1.029
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Table II
E lectronegativ ity  of atom s calcu la ted  by th e  X a  m ethod  w ith  th e  

exchange param eters c*SCF “ id [12] (in  Rydbergs)

z “ SCF Otvt

3 0.165 0.190
4 0.253 0.279
5 0.264 0.250
6 0.399 0.377
7 0.535 0.512
8 0.680 0.656
9 0.836 0.808
10 0.791 0.758
11 0.164 0.171
12 0.223 0.223
13 0.160 0.165
14 0.262 0.265
15 0.365 0.368
16 0.474 0.479
17 0.590 0.596
18 0.519 0.523
19 0.135 0.141
20 0.128 0.137
21 0.209 0.185
22 0.217 0.224
23 0.299 0.245
24 0.314 0.254
25 0.311 0.318
26 0.338 0.346
27 0.351 0.276
28 0.362 0.284
29 0.373 0.290
30 0.228 0.269
31 0.149 0.155
32 0.241 0.248
33 0.332 0.340
34 0.425 0.434
35 0.521 0.532
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T a b le  I I I
E lectron  affinity of a to m s calcu la ted  by  th e  X or m eth o d  w ith  the exchange 

p a ram e te r c*sCF an d  a vi (12] u sing  th e  form ula (13) a n d  (12).
In  a  few cases th e  H artree—Fock [14] and  the experim en ta l [13] 

e lectron  affinities are also  p resen ted  (in R y dbergs)

z
orscF  

Eq. (39)

X a
“ SCF 

E q. (12)
<*vt

Eq. (39)
Otvt

Eq. (12)

Exp H F

3 0.012 0.014 0.009 0.032 0.043
4 -0.132 -0.115
5 0.057 -0.082 0.022
6 -0.010 0.065 -0.027 0.050 0.092 0.086
7 0.058 0.135 0.040 0.118 -0 .0 2 0
8 0.137 0.216 0.118 0.198 0.108 0 .0 9 0
9 0.229 0.309 0.206 0.287 0.253 0.248

10 -0.089 -0.120
11 -0.010 0.017 -0.004 0.057
12 -0.101 -0.101
13 -0.057 -0.053 0.036
14 -0.001 0.082 0.001 0.041 0.102
15 -0.017 0.142 0.063 0.101 0.057
16 0.130 0.167 0.134 0.171 0.152 0.156
17 0.208 0.244 0.213 0.248 0.266 0.262
18 -0.242 -0.095
19 -0.010 0.012 -0.004
20 -0.161 -0.153
21 0.108 -0.097
22 -0.059 -0.051
23 0.123 0.016
24 0.150 0.043
25 0.144 0.097 0.065 0.107
26 0.088 0.099 0.142
27 0.094 0.154 0.176
28 0.339 0.185 0.210
29 0.101 0.038
30 -0.209 -0.132
31 0.066 0.061 -0.067
32 -0.013 -0.007
33 0.048 0.083 0.054
34 0.113 0.121
35 0.182 0.213 0.193
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T ab le  IV
T he e lec tro n  affinity, th e  first and  second io n iza tio n  energies 

find th e  chem ical p o ten tia l for a  few atom s (in  R ydbergs)

2 A
Eq. (12)

h
E q. (11)

h
Eq. (11)

X
Eq. (30)

XM =  | ( b  +  A) X
Eq. (34)

6 0.065 0.809 1.817 0.399 0.437 0.393
9 0.309 1.442 2.872 0.836 0.876 0.826
17 0.244 0.973 1.827 0.590 0.609 0.588
35 0.213 0.860 1.608 0.521 0.536 0.519

In a few cases the electron affinity has been determined by using the expression
(12), too. For comparison the experimental [13] and Hartree-Fock [14] data are also 
presented for a few atoms. With a few exceptions there is quite good agreement 
between the experimental and the X a  data. In the majority of the results the 
electron affinities determined by the exchange parameter c*s c f  a n d  a vt are close 
together. There is considerable disagreement between them in a few cases. However, 
it is not surprising that there is a difference between the electron affinity calculated 
by expressions (12) and (39). The Eq. (34) presents a more precise expression. To 
illustrate the correctness of Eq. (34), the electronegativity has been calculated using 
the expressions (30) and (34) for a few atoms. Table IV presents the electron affinity 
calculated by Eq. (12), the first and second ionization energies calculated by Eq.
(11), the electronegativity using the expression (30), the Mulliken’s electronegativity 
and the electronegativity given by Eq. (34).
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